1 /*- 2 * Copyright (c) 2001 Daniel Hartmeier 3 * Copyright (c) 2002 - 2008 Henning Brauer 4 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * - Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * - Redistributions in binary form must reproduce the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer in the documentation and/or other materials provided 16 * with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 26 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Effort sponsored in part by the Defense Advanced Research Projects 32 * Agency (DARPA) and Air Force Research Laboratory, Air Force 33 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 34 * 35 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_inet.h" 42 #include "opt_inet6.h" 43 #include "opt_bpf.h" 44 #include "opt_pf.h" 45 46 #include <sys/param.h> 47 #include <sys/bus.h> 48 #include <sys/endian.h> 49 #include <sys/hash.h> 50 #include <sys/interrupt.h> 51 #include <sys/kernel.h> 52 #include <sys/kthread.h> 53 #include <sys/limits.h> 54 #include <sys/mbuf.h> 55 #include <sys/md5.h> 56 #include <sys/random.h> 57 #include <sys/refcount.h> 58 #include <sys/socket.h> 59 #include <sys/sysctl.h> 60 #include <sys/taskqueue.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_types.h> 66 #include <net/if_vlan_var.h> 67 #include <net/route.h> 68 #include <net/radix_mpath.h> 69 #include <net/vnet.h> 70 71 #include <net/pfvar.h> 72 #include <net/if_pflog.h> 73 #include <net/if_pfsync.h> 74 75 #include <netinet/in_pcb.h> 76 #include <netinet/in_var.h> 77 #include <netinet/in_fib.h> 78 #include <netinet/ip.h> 79 #include <netinet/ip_fw.h> 80 #include <netinet/ip_icmp.h> 81 #include <netinet/icmp_var.h> 82 #include <netinet/ip_var.h> 83 #include <netinet/tcp.h> 84 #include <netinet/tcp_fsm.h> 85 #include <netinet/tcp_seq.h> 86 #include <netinet/tcp_timer.h> 87 #include <netinet/tcp_var.h> 88 #include <netinet/udp.h> 89 #include <netinet/udp_var.h> 90 91 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 92 93 #ifdef INET6 94 #include <netinet/ip6.h> 95 #include <netinet/icmp6.h> 96 #include <netinet6/nd6.h> 97 #include <netinet6/ip6_var.h> 98 #include <netinet6/in6_pcb.h> 99 #include <netinet6/in6_fib.h> 100 #include <netinet6/scope6_var.h> 101 #endif /* INET6 */ 102 103 #include <machine/in_cksum.h> 104 #include <security/mac/mac_framework.h> 105 106 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 107 108 /* 109 * Global variables 110 */ 111 112 /* state tables */ 113 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 114 VNET_DEFINE(struct pf_palist, pf_pabuf); 115 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 116 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 117 VNET_DEFINE(struct pf_kstatus, pf_status); 118 119 VNET_DEFINE(u_int32_t, ticket_altqs_active); 120 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 121 VNET_DEFINE(int, altqs_inactive_open); 122 VNET_DEFINE(u_int32_t, ticket_pabuf); 123 124 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 125 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 126 VNET_DEFINE(u_char, pf_tcp_secret[16]); 127 #define V_pf_tcp_secret VNET(pf_tcp_secret) 128 VNET_DEFINE(int, pf_tcp_secret_init); 129 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 130 VNET_DEFINE(int, pf_tcp_iss_off); 131 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 132 VNET_DECLARE(int, pf_vnet_active); 133 #define V_pf_vnet_active VNET(pf_vnet_active) 134 135 static VNET_DEFINE(uint32_t, pf_purge_idx); 136 #define V_pf_purge_idx VNET(pf_purge_idx) 137 138 /* 139 * Queue for pf_intr() sends. 140 */ 141 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 142 struct pf_send_entry { 143 STAILQ_ENTRY(pf_send_entry) pfse_next; 144 struct mbuf *pfse_m; 145 enum { 146 PFSE_IP, 147 PFSE_IP6, 148 PFSE_ICMP, 149 PFSE_ICMP6, 150 } pfse_type; 151 struct { 152 int type; 153 int code; 154 int mtu; 155 } icmpopts; 156 }; 157 158 STAILQ_HEAD(pf_send_head, pf_send_entry); 159 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 160 #define V_pf_sendqueue VNET(pf_sendqueue) 161 162 static struct mtx pf_sendqueue_mtx; 163 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 164 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 165 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 166 167 /* 168 * Queue for pf_overload_task() tasks. 169 */ 170 struct pf_overload_entry { 171 SLIST_ENTRY(pf_overload_entry) next; 172 struct pf_addr addr; 173 sa_family_t af; 174 uint8_t dir; 175 struct pf_rule *rule; 176 }; 177 178 SLIST_HEAD(pf_overload_head, pf_overload_entry); 179 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 180 #define V_pf_overloadqueue VNET(pf_overloadqueue) 181 static VNET_DEFINE(struct task, pf_overloadtask); 182 #define V_pf_overloadtask VNET(pf_overloadtask) 183 184 static struct mtx pf_overloadqueue_mtx; 185 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 186 "pf overload/flush queue", MTX_DEF); 187 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 188 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 189 190 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 191 struct mtx pf_unlnkdrules_mtx; 192 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 193 MTX_DEF); 194 195 static VNET_DEFINE(uma_zone_t, pf_sources_z); 196 #define V_pf_sources_z VNET(pf_sources_z) 197 uma_zone_t pf_mtag_z; 198 VNET_DEFINE(uma_zone_t, pf_state_z); 199 VNET_DEFINE(uma_zone_t, pf_state_key_z); 200 201 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 202 #define PFID_CPUBITS 8 203 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 204 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 205 #define PFID_MAXID (~PFID_CPUMASK) 206 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 207 208 static void pf_src_tree_remove_state(struct pf_state *); 209 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 210 u_int32_t); 211 static void pf_add_threshold(struct pf_threshold *); 212 static int pf_check_threshold(struct pf_threshold *); 213 214 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 215 u_int16_t *, u_int16_t *, struct pf_addr *, 216 u_int16_t, u_int8_t, sa_family_t); 217 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 218 struct tcphdr *, struct pf_state_peer *); 219 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 220 struct pf_addr *, struct pf_addr *, u_int16_t, 221 u_int16_t *, u_int16_t *, u_int16_t *, 222 u_int16_t *, u_int8_t, sa_family_t); 223 static void pf_send_tcp(struct mbuf *, 224 const struct pf_rule *, sa_family_t, 225 const struct pf_addr *, const struct pf_addr *, 226 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 227 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 228 u_int16_t, struct ifnet *); 229 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 230 sa_family_t, struct pf_rule *); 231 static void pf_detach_state(struct pf_state *); 232 static int pf_state_key_attach(struct pf_state_key *, 233 struct pf_state_key *, struct pf_state *); 234 static void pf_state_key_detach(struct pf_state *, int); 235 static int pf_state_key_ctor(void *, int, void *, int); 236 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 237 static int pf_test_rule(struct pf_rule **, struct pf_state **, 238 int, struct pfi_kif *, struct mbuf *, int, 239 struct pf_pdesc *, struct pf_rule **, 240 struct pf_ruleset **, struct inpcb *); 241 static int pf_create_state(struct pf_rule *, struct pf_rule *, 242 struct pf_rule *, struct pf_pdesc *, 243 struct pf_src_node *, struct pf_state_key *, 244 struct pf_state_key *, struct mbuf *, int, 245 u_int16_t, u_int16_t, int *, struct pfi_kif *, 246 struct pf_state **, int, u_int16_t, u_int16_t, 247 int); 248 static int pf_test_fragment(struct pf_rule **, int, 249 struct pfi_kif *, struct mbuf *, void *, 250 struct pf_pdesc *, struct pf_rule **, 251 struct pf_ruleset **); 252 static int pf_tcp_track_full(struct pf_state_peer *, 253 struct pf_state_peer *, struct pf_state **, 254 struct pfi_kif *, struct mbuf *, int, 255 struct pf_pdesc *, u_short *, int *); 256 static int pf_tcp_track_sloppy(struct pf_state_peer *, 257 struct pf_state_peer *, struct pf_state **, 258 struct pf_pdesc *, u_short *); 259 static int pf_test_state_tcp(struct pf_state **, int, 260 struct pfi_kif *, struct mbuf *, int, 261 void *, struct pf_pdesc *, u_short *); 262 static int pf_test_state_udp(struct pf_state **, int, 263 struct pfi_kif *, struct mbuf *, int, 264 void *, struct pf_pdesc *); 265 static int pf_test_state_icmp(struct pf_state **, int, 266 struct pfi_kif *, struct mbuf *, int, 267 void *, struct pf_pdesc *, u_short *); 268 static int pf_test_state_other(struct pf_state **, int, 269 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 270 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 271 sa_family_t); 272 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 273 sa_family_t); 274 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 275 int, u_int16_t); 276 static int pf_check_proto_cksum(struct mbuf *, int, int, 277 u_int8_t, sa_family_t); 278 static void pf_print_state_parts(struct pf_state *, 279 struct pf_state_key *, struct pf_state_key *); 280 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 281 struct pf_addr_wrap *); 282 static struct pf_state *pf_find_state(struct pfi_kif *, 283 struct pf_state_key_cmp *, u_int); 284 static int pf_src_connlimit(struct pf_state **); 285 static void pf_overload_task(void *v, int pending); 286 static int pf_insert_src_node(struct pf_src_node **, 287 struct pf_rule *, struct pf_addr *, sa_family_t); 288 static u_int pf_purge_expired_states(u_int, int); 289 static void pf_purge_unlinked_rules(void); 290 static int pf_mtag_uminit(void *, int, int); 291 static void pf_mtag_free(struct m_tag *); 292 #ifdef INET 293 static void pf_route(struct mbuf **, struct pf_rule *, int, 294 struct ifnet *, struct pf_state *, 295 struct pf_pdesc *); 296 #endif /* INET */ 297 #ifdef INET6 298 static void pf_change_a6(struct pf_addr *, u_int16_t *, 299 struct pf_addr *, u_int8_t); 300 static void pf_route6(struct mbuf **, struct pf_rule *, int, 301 struct ifnet *, struct pf_state *, 302 struct pf_pdesc *); 303 #endif /* INET6 */ 304 305 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 306 307 extern int pf_end_threads; 308 extern struct proc *pf_purge_proc; 309 310 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 311 312 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 313 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 314 315 #define STATE_LOOKUP(i, k, d, s, pd) \ 316 do { \ 317 (s) = pf_find_state((i), (k), (d)); \ 318 if ((s) == NULL) \ 319 return (PF_DROP); \ 320 if (PACKET_LOOPED(pd)) \ 321 return (PF_PASS); \ 322 if ((d) == PF_OUT && \ 323 (((s)->rule.ptr->rt == PF_ROUTETO && \ 324 (s)->rule.ptr->direction == PF_OUT) || \ 325 ((s)->rule.ptr->rt == PF_REPLYTO && \ 326 (s)->rule.ptr->direction == PF_IN)) && \ 327 (s)->rt_kif != NULL && \ 328 (s)->rt_kif != (i)) \ 329 return (PF_PASS); \ 330 } while (0) 331 332 #define BOUND_IFACE(r, k) \ 333 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 334 335 #define STATE_INC_COUNTERS(s) \ 336 do { \ 337 counter_u64_add(s->rule.ptr->states_cur, 1); \ 338 counter_u64_add(s->rule.ptr->states_tot, 1); \ 339 if (s->anchor.ptr != NULL) { \ 340 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 341 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 342 } \ 343 if (s->nat_rule.ptr != NULL) { \ 344 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 345 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 346 } \ 347 } while (0) 348 349 #define STATE_DEC_COUNTERS(s) \ 350 do { \ 351 if (s->nat_rule.ptr != NULL) \ 352 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 353 if (s->anchor.ptr != NULL) \ 354 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 355 counter_u64_add(s->rule.ptr->states_cur, -1); \ 356 } while (0) 357 358 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 359 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 360 VNET_DEFINE(struct pf_idhash *, pf_idhash); 361 VNET_DEFINE(struct pf_srchash *, pf_srchash); 362 363 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 364 365 u_long pf_hashmask; 366 u_long pf_srchashmask; 367 static u_long pf_hashsize; 368 static u_long pf_srchashsize; 369 370 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 371 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 372 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 373 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 374 375 VNET_DEFINE(void *, pf_swi_cookie); 376 377 VNET_DEFINE(uint32_t, pf_hashseed); 378 #define V_pf_hashseed VNET(pf_hashseed) 379 380 int 381 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 382 { 383 384 switch (af) { 385 #ifdef INET 386 case AF_INET: 387 if (a->addr32[0] > b->addr32[0]) 388 return (1); 389 if (a->addr32[0] < b->addr32[0]) 390 return (-1); 391 break; 392 #endif /* INET */ 393 #ifdef INET6 394 case AF_INET6: 395 if (a->addr32[3] > b->addr32[3]) 396 return (1); 397 if (a->addr32[3] < b->addr32[3]) 398 return (-1); 399 if (a->addr32[2] > b->addr32[2]) 400 return (1); 401 if (a->addr32[2] < b->addr32[2]) 402 return (-1); 403 if (a->addr32[1] > b->addr32[1]) 404 return (1); 405 if (a->addr32[1] < b->addr32[1]) 406 return (-1); 407 if (a->addr32[0] > b->addr32[0]) 408 return (1); 409 if (a->addr32[0] < b->addr32[0]) 410 return (-1); 411 break; 412 #endif /* INET6 */ 413 default: 414 panic("%s: unknown address family %u", __func__, af); 415 } 416 return (0); 417 } 418 419 static __inline uint32_t 420 pf_hashkey(struct pf_state_key *sk) 421 { 422 uint32_t h; 423 424 h = murmur3_32_hash32((uint32_t *)sk, 425 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 426 V_pf_hashseed); 427 428 return (h & pf_hashmask); 429 } 430 431 static __inline uint32_t 432 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 433 { 434 uint32_t h; 435 436 switch (af) { 437 case AF_INET: 438 h = murmur3_32_hash32((uint32_t *)&addr->v4, 439 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 440 break; 441 case AF_INET6: 442 h = murmur3_32_hash32((uint32_t *)&addr->v6, 443 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 444 break; 445 default: 446 panic("%s: unknown address family %u", __func__, af); 447 } 448 449 return (h & pf_srchashmask); 450 } 451 452 #ifdef ALTQ 453 static int 454 pf_state_hash(struct pf_state *s) 455 { 456 u_int32_t hv = (intptr_t)s / sizeof(*s); 457 458 hv ^= crc32(&s->src, sizeof(s->src)); 459 hv ^= crc32(&s->dst, sizeof(s->dst)); 460 if (hv == 0) 461 hv = 1; 462 return (hv); 463 } 464 #endif 465 466 #ifdef INET6 467 void 468 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 469 { 470 switch (af) { 471 #ifdef INET 472 case AF_INET: 473 dst->addr32[0] = src->addr32[0]; 474 break; 475 #endif /* INET */ 476 case AF_INET6: 477 dst->addr32[0] = src->addr32[0]; 478 dst->addr32[1] = src->addr32[1]; 479 dst->addr32[2] = src->addr32[2]; 480 dst->addr32[3] = src->addr32[3]; 481 break; 482 } 483 } 484 #endif /* INET6 */ 485 486 static void 487 pf_init_threshold(struct pf_threshold *threshold, 488 u_int32_t limit, u_int32_t seconds) 489 { 490 threshold->limit = limit * PF_THRESHOLD_MULT; 491 threshold->seconds = seconds; 492 threshold->count = 0; 493 threshold->last = time_uptime; 494 } 495 496 static void 497 pf_add_threshold(struct pf_threshold *threshold) 498 { 499 u_int32_t t = time_uptime, diff = t - threshold->last; 500 501 if (diff >= threshold->seconds) 502 threshold->count = 0; 503 else 504 threshold->count -= threshold->count * diff / 505 threshold->seconds; 506 threshold->count += PF_THRESHOLD_MULT; 507 threshold->last = t; 508 } 509 510 static int 511 pf_check_threshold(struct pf_threshold *threshold) 512 { 513 return (threshold->count > threshold->limit); 514 } 515 516 static int 517 pf_src_connlimit(struct pf_state **state) 518 { 519 struct pf_overload_entry *pfoe; 520 int bad = 0; 521 522 PF_STATE_LOCK_ASSERT(*state); 523 524 (*state)->src_node->conn++; 525 (*state)->src.tcp_est = 1; 526 pf_add_threshold(&(*state)->src_node->conn_rate); 527 528 if ((*state)->rule.ptr->max_src_conn && 529 (*state)->rule.ptr->max_src_conn < 530 (*state)->src_node->conn) { 531 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 532 bad++; 533 } 534 535 if ((*state)->rule.ptr->max_src_conn_rate.limit && 536 pf_check_threshold(&(*state)->src_node->conn_rate)) { 537 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 538 bad++; 539 } 540 541 if (!bad) 542 return (0); 543 544 /* Kill this state. */ 545 (*state)->timeout = PFTM_PURGE; 546 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 547 548 if ((*state)->rule.ptr->overload_tbl == NULL) 549 return (1); 550 551 /* Schedule overloading and flushing task. */ 552 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 553 if (pfoe == NULL) 554 return (1); /* too bad :( */ 555 556 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 557 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 558 pfoe->rule = (*state)->rule.ptr; 559 pfoe->dir = (*state)->direction; 560 PF_OVERLOADQ_LOCK(); 561 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 562 PF_OVERLOADQ_UNLOCK(); 563 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 564 565 return (1); 566 } 567 568 static void 569 pf_overload_task(void *v, int pending) 570 { 571 struct pf_overload_head queue; 572 struct pfr_addr p; 573 struct pf_overload_entry *pfoe, *pfoe1; 574 uint32_t killed = 0; 575 576 CURVNET_SET((struct vnet *)v); 577 578 PF_OVERLOADQ_LOCK(); 579 queue = V_pf_overloadqueue; 580 SLIST_INIT(&V_pf_overloadqueue); 581 PF_OVERLOADQ_UNLOCK(); 582 583 bzero(&p, sizeof(p)); 584 SLIST_FOREACH(pfoe, &queue, next) { 585 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 586 if (V_pf_status.debug >= PF_DEBUG_MISC) { 587 printf("%s: blocking address ", __func__); 588 pf_print_host(&pfoe->addr, 0, pfoe->af); 589 printf("\n"); 590 } 591 592 p.pfra_af = pfoe->af; 593 switch (pfoe->af) { 594 #ifdef INET 595 case AF_INET: 596 p.pfra_net = 32; 597 p.pfra_ip4addr = pfoe->addr.v4; 598 break; 599 #endif 600 #ifdef INET6 601 case AF_INET6: 602 p.pfra_net = 128; 603 p.pfra_ip6addr = pfoe->addr.v6; 604 break; 605 #endif 606 } 607 608 PF_RULES_WLOCK(); 609 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 610 PF_RULES_WUNLOCK(); 611 } 612 613 /* 614 * Remove those entries, that don't need flushing. 615 */ 616 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 617 if (pfoe->rule->flush == 0) { 618 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 619 free(pfoe, M_PFTEMP); 620 } else 621 counter_u64_add( 622 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 623 624 /* If nothing to flush, return. */ 625 if (SLIST_EMPTY(&queue)) { 626 CURVNET_RESTORE(); 627 return; 628 } 629 630 for (int i = 0; i <= pf_hashmask; i++) { 631 struct pf_idhash *ih = &V_pf_idhash[i]; 632 struct pf_state_key *sk; 633 struct pf_state *s; 634 635 PF_HASHROW_LOCK(ih); 636 LIST_FOREACH(s, &ih->states, entry) { 637 sk = s->key[PF_SK_WIRE]; 638 SLIST_FOREACH(pfoe, &queue, next) 639 if (sk->af == pfoe->af && 640 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 641 pfoe->rule == s->rule.ptr) && 642 ((pfoe->dir == PF_OUT && 643 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 644 (pfoe->dir == PF_IN && 645 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 646 s->timeout = PFTM_PURGE; 647 s->src.state = s->dst.state = TCPS_CLOSED; 648 killed++; 649 } 650 } 651 PF_HASHROW_UNLOCK(ih); 652 } 653 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 654 free(pfoe, M_PFTEMP); 655 if (V_pf_status.debug >= PF_DEBUG_MISC) 656 printf("%s: %u states killed", __func__, killed); 657 658 CURVNET_RESTORE(); 659 } 660 661 /* 662 * Can return locked on failure, so that we can consistently 663 * allocate and insert a new one. 664 */ 665 struct pf_src_node * 666 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 667 int returnlocked) 668 { 669 struct pf_srchash *sh; 670 struct pf_src_node *n; 671 672 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 673 674 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 675 PF_HASHROW_LOCK(sh); 676 LIST_FOREACH(n, &sh->nodes, entry) 677 if (n->rule.ptr == rule && n->af == af && 678 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 679 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 680 break; 681 if (n != NULL) { 682 n->states++; 683 PF_HASHROW_UNLOCK(sh); 684 } else if (returnlocked == 0) 685 PF_HASHROW_UNLOCK(sh); 686 687 return (n); 688 } 689 690 static int 691 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 692 struct pf_addr *src, sa_family_t af) 693 { 694 695 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 696 rule->rpool.opts & PF_POOL_STICKYADDR), 697 ("%s for non-tracking rule %p", __func__, rule)); 698 699 if (*sn == NULL) 700 *sn = pf_find_src_node(src, rule, af, 1); 701 702 if (*sn == NULL) { 703 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 704 705 PF_HASHROW_ASSERT(sh); 706 707 if (!rule->max_src_nodes || 708 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 709 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 710 else 711 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 712 1); 713 if ((*sn) == NULL) { 714 PF_HASHROW_UNLOCK(sh); 715 return (-1); 716 } 717 718 pf_init_threshold(&(*sn)->conn_rate, 719 rule->max_src_conn_rate.limit, 720 rule->max_src_conn_rate.seconds); 721 722 (*sn)->af = af; 723 (*sn)->rule.ptr = rule; 724 PF_ACPY(&(*sn)->addr, src, af); 725 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 726 (*sn)->creation = time_uptime; 727 (*sn)->ruletype = rule->action; 728 (*sn)->states = 1; 729 if ((*sn)->rule.ptr != NULL) 730 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 731 PF_HASHROW_UNLOCK(sh); 732 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 733 } else { 734 if (rule->max_src_states && 735 (*sn)->states >= rule->max_src_states) { 736 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 737 1); 738 return (-1); 739 } 740 } 741 return (0); 742 } 743 744 void 745 pf_unlink_src_node(struct pf_src_node *src) 746 { 747 748 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 749 LIST_REMOVE(src, entry); 750 if (src->rule.ptr) 751 counter_u64_add(src->rule.ptr->src_nodes, -1); 752 } 753 754 u_int 755 pf_free_src_nodes(struct pf_src_node_list *head) 756 { 757 struct pf_src_node *sn, *tmp; 758 u_int count = 0; 759 760 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 761 uma_zfree(V_pf_sources_z, sn); 762 count++; 763 } 764 765 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 766 767 return (count); 768 } 769 770 void 771 pf_mtag_initialize() 772 { 773 774 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 775 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 776 UMA_ALIGN_PTR, 0); 777 } 778 779 /* Per-vnet data storage structures initialization. */ 780 void 781 pf_initialize() 782 { 783 struct pf_keyhash *kh; 784 struct pf_idhash *ih; 785 struct pf_srchash *sh; 786 u_int i; 787 788 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 789 pf_hashsize = PF_HASHSIZ; 790 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 791 pf_srchashsize = PF_HASHSIZ / 4; 792 793 V_pf_hashseed = arc4random(); 794 795 /* States and state keys storage. */ 796 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 797 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 798 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 799 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 800 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 801 802 V_pf_state_key_z = uma_zcreate("pf state keys", 803 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 804 UMA_ALIGN_PTR, 0); 805 V_pf_keyhash = malloc(pf_hashsize * sizeof(struct pf_keyhash), 806 M_PFHASH, M_WAITOK | M_ZERO); 807 V_pf_idhash = malloc(pf_hashsize * sizeof(struct pf_idhash), 808 M_PFHASH, M_WAITOK | M_ZERO); 809 pf_hashmask = pf_hashsize - 1; 810 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 811 i++, kh++, ih++) { 812 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 813 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 814 } 815 816 /* Source nodes. */ 817 V_pf_sources_z = uma_zcreate("pf source nodes", 818 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 819 0); 820 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 821 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 822 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 823 V_pf_srchash = malloc(pf_srchashsize * sizeof(struct pf_srchash), 824 M_PFHASH, M_WAITOK|M_ZERO); 825 pf_srchashmask = pf_srchashsize - 1; 826 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 827 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 828 829 /* ALTQ */ 830 TAILQ_INIT(&V_pf_altqs[0]); 831 TAILQ_INIT(&V_pf_altqs[1]); 832 TAILQ_INIT(&V_pf_pabuf); 833 V_pf_altqs_active = &V_pf_altqs[0]; 834 V_pf_altqs_inactive = &V_pf_altqs[1]; 835 836 /* Send & overload+flush queues. */ 837 STAILQ_INIT(&V_pf_sendqueue); 838 SLIST_INIT(&V_pf_overloadqueue); 839 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 840 841 /* Unlinked, but may be referenced rules. */ 842 TAILQ_INIT(&V_pf_unlinked_rules); 843 } 844 845 void 846 pf_mtag_cleanup() 847 { 848 849 uma_zdestroy(pf_mtag_z); 850 } 851 852 void 853 pf_cleanup() 854 { 855 struct pf_keyhash *kh; 856 struct pf_idhash *ih; 857 struct pf_srchash *sh; 858 struct pf_send_entry *pfse, *next; 859 u_int i; 860 861 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 862 i++, kh++, ih++) { 863 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 864 __func__)); 865 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 866 __func__)); 867 mtx_destroy(&kh->lock); 868 mtx_destroy(&ih->lock); 869 } 870 free(V_pf_keyhash, M_PFHASH); 871 free(V_pf_idhash, M_PFHASH); 872 873 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 874 KASSERT(LIST_EMPTY(&sh->nodes), 875 ("%s: source node hash not empty", __func__)); 876 mtx_destroy(&sh->lock); 877 } 878 free(V_pf_srchash, M_PFHASH); 879 880 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 881 m_freem(pfse->pfse_m); 882 free(pfse, M_PFTEMP); 883 } 884 885 uma_zdestroy(V_pf_sources_z); 886 uma_zdestroy(V_pf_state_z); 887 uma_zdestroy(V_pf_state_key_z); 888 } 889 890 static int 891 pf_mtag_uminit(void *mem, int size, int how) 892 { 893 struct m_tag *t; 894 895 t = (struct m_tag *)mem; 896 t->m_tag_cookie = MTAG_ABI_COMPAT; 897 t->m_tag_id = PACKET_TAG_PF; 898 t->m_tag_len = sizeof(struct pf_mtag); 899 t->m_tag_free = pf_mtag_free; 900 901 return (0); 902 } 903 904 static void 905 pf_mtag_free(struct m_tag *t) 906 { 907 908 uma_zfree(pf_mtag_z, t); 909 } 910 911 struct pf_mtag * 912 pf_get_mtag(struct mbuf *m) 913 { 914 struct m_tag *mtag; 915 916 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 917 return ((struct pf_mtag *)(mtag + 1)); 918 919 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 920 if (mtag == NULL) 921 return (NULL); 922 bzero(mtag + 1, sizeof(struct pf_mtag)); 923 m_tag_prepend(m, mtag); 924 925 return ((struct pf_mtag *)(mtag + 1)); 926 } 927 928 static int 929 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 930 struct pf_state *s) 931 { 932 struct pf_keyhash *khs, *khw, *kh; 933 struct pf_state_key *sk, *cur; 934 struct pf_state *si, *olds = NULL; 935 int idx; 936 937 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 938 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 939 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 940 941 /* 942 * We need to lock hash slots of both keys. To avoid deadlock 943 * we always lock the slot with lower address first. Unlock order 944 * isn't important. 945 * 946 * We also need to lock ID hash slot before dropping key 947 * locks. On success we return with ID hash slot locked. 948 */ 949 950 if (skw == sks) { 951 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 952 PF_HASHROW_LOCK(khs); 953 } else { 954 khs = &V_pf_keyhash[pf_hashkey(sks)]; 955 khw = &V_pf_keyhash[pf_hashkey(skw)]; 956 if (khs == khw) { 957 PF_HASHROW_LOCK(khs); 958 } else if (khs < khw) { 959 PF_HASHROW_LOCK(khs); 960 PF_HASHROW_LOCK(khw); 961 } else { 962 PF_HASHROW_LOCK(khw); 963 PF_HASHROW_LOCK(khs); 964 } 965 } 966 967 #define KEYS_UNLOCK() do { \ 968 if (khs != khw) { \ 969 PF_HASHROW_UNLOCK(khs); \ 970 PF_HASHROW_UNLOCK(khw); \ 971 } else \ 972 PF_HASHROW_UNLOCK(khs); \ 973 } while (0) 974 975 /* 976 * First run: start with wire key. 977 */ 978 sk = skw; 979 kh = khw; 980 idx = PF_SK_WIRE; 981 982 keyattach: 983 LIST_FOREACH(cur, &kh->keys, entry) 984 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 985 break; 986 987 if (cur != NULL) { 988 /* Key exists. Check for same kif, if none, add to key. */ 989 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 990 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 991 992 PF_HASHROW_LOCK(ih); 993 if (si->kif == s->kif && 994 si->direction == s->direction) { 995 if (sk->proto == IPPROTO_TCP && 996 si->src.state >= TCPS_FIN_WAIT_2 && 997 si->dst.state >= TCPS_FIN_WAIT_2) { 998 /* 999 * New state matches an old >FIN_WAIT_2 1000 * state. We can't drop key hash locks, 1001 * thus we can't unlink it properly. 1002 * 1003 * As a workaround we drop it into 1004 * TCPS_CLOSED state, schedule purge 1005 * ASAP and push it into the very end 1006 * of the slot TAILQ, so that it won't 1007 * conflict with our new state. 1008 */ 1009 si->src.state = si->dst.state = 1010 TCPS_CLOSED; 1011 si->timeout = PFTM_PURGE; 1012 olds = si; 1013 } else { 1014 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1015 printf("pf: %s key attach " 1016 "failed on %s: ", 1017 (idx == PF_SK_WIRE) ? 1018 "wire" : "stack", 1019 s->kif->pfik_name); 1020 pf_print_state_parts(s, 1021 (idx == PF_SK_WIRE) ? 1022 sk : NULL, 1023 (idx == PF_SK_STACK) ? 1024 sk : NULL); 1025 printf(", existing: "); 1026 pf_print_state_parts(si, 1027 (idx == PF_SK_WIRE) ? 1028 sk : NULL, 1029 (idx == PF_SK_STACK) ? 1030 sk : NULL); 1031 printf("\n"); 1032 } 1033 PF_HASHROW_UNLOCK(ih); 1034 KEYS_UNLOCK(); 1035 uma_zfree(V_pf_state_key_z, sk); 1036 if (idx == PF_SK_STACK) 1037 pf_detach_state(s); 1038 return (EEXIST); /* collision! */ 1039 } 1040 } 1041 PF_HASHROW_UNLOCK(ih); 1042 } 1043 uma_zfree(V_pf_state_key_z, sk); 1044 s->key[idx] = cur; 1045 } else { 1046 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1047 s->key[idx] = sk; 1048 } 1049 1050 stateattach: 1051 /* List is sorted, if-bound states before floating. */ 1052 if (s->kif == V_pfi_all) 1053 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1054 else 1055 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1056 1057 if (olds) { 1058 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1059 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1060 key_list[idx]); 1061 olds = NULL; 1062 } 1063 1064 /* 1065 * Attach done. See how should we (or should not?) 1066 * attach a second key. 1067 */ 1068 if (sks == skw) { 1069 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1070 idx = PF_SK_STACK; 1071 sks = NULL; 1072 goto stateattach; 1073 } else if (sks != NULL) { 1074 /* 1075 * Continue attaching with stack key. 1076 */ 1077 sk = sks; 1078 kh = khs; 1079 idx = PF_SK_STACK; 1080 sks = NULL; 1081 goto keyattach; 1082 } 1083 1084 PF_STATE_LOCK(s); 1085 KEYS_UNLOCK(); 1086 1087 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1088 ("%s failure", __func__)); 1089 1090 return (0); 1091 #undef KEYS_UNLOCK 1092 } 1093 1094 static void 1095 pf_detach_state(struct pf_state *s) 1096 { 1097 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1098 struct pf_keyhash *kh; 1099 1100 if (sks != NULL) { 1101 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1102 PF_HASHROW_LOCK(kh); 1103 if (s->key[PF_SK_STACK] != NULL) 1104 pf_state_key_detach(s, PF_SK_STACK); 1105 /* 1106 * If both point to same key, then we are done. 1107 */ 1108 if (sks == s->key[PF_SK_WIRE]) { 1109 pf_state_key_detach(s, PF_SK_WIRE); 1110 PF_HASHROW_UNLOCK(kh); 1111 return; 1112 } 1113 PF_HASHROW_UNLOCK(kh); 1114 } 1115 1116 if (s->key[PF_SK_WIRE] != NULL) { 1117 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1118 PF_HASHROW_LOCK(kh); 1119 if (s->key[PF_SK_WIRE] != NULL) 1120 pf_state_key_detach(s, PF_SK_WIRE); 1121 PF_HASHROW_UNLOCK(kh); 1122 } 1123 } 1124 1125 static void 1126 pf_state_key_detach(struct pf_state *s, int idx) 1127 { 1128 struct pf_state_key *sk = s->key[idx]; 1129 #ifdef INVARIANTS 1130 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1131 1132 PF_HASHROW_ASSERT(kh); 1133 #endif 1134 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1135 s->key[idx] = NULL; 1136 1137 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1138 LIST_REMOVE(sk, entry); 1139 uma_zfree(V_pf_state_key_z, sk); 1140 } 1141 } 1142 1143 static int 1144 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1145 { 1146 struct pf_state_key *sk = mem; 1147 1148 bzero(sk, sizeof(struct pf_state_key_cmp)); 1149 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1150 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1151 1152 return (0); 1153 } 1154 1155 struct pf_state_key * 1156 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1157 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1158 { 1159 struct pf_state_key *sk; 1160 1161 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1162 if (sk == NULL) 1163 return (NULL); 1164 1165 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1166 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1167 sk->port[pd->sidx] = sport; 1168 sk->port[pd->didx] = dport; 1169 sk->proto = pd->proto; 1170 sk->af = pd->af; 1171 1172 return (sk); 1173 } 1174 1175 struct pf_state_key * 1176 pf_state_key_clone(struct pf_state_key *orig) 1177 { 1178 struct pf_state_key *sk; 1179 1180 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1181 if (sk == NULL) 1182 return (NULL); 1183 1184 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1185 1186 return (sk); 1187 } 1188 1189 int 1190 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1191 struct pf_state_key *sks, struct pf_state *s) 1192 { 1193 struct pf_idhash *ih; 1194 struct pf_state *cur; 1195 int error; 1196 1197 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1198 ("%s: sks not pristine", __func__)); 1199 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1200 ("%s: skw not pristine", __func__)); 1201 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1202 1203 s->kif = kif; 1204 1205 if (s->id == 0 && s->creatorid == 0) { 1206 /* XXX: should be atomic, but probability of collision low */ 1207 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1208 V_pf_stateid[curcpu] = 1; 1209 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1210 s->id = htobe64(s->id); 1211 s->creatorid = V_pf_status.hostid; 1212 } 1213 1214 /* Returns with ID locked on success. */ 1215 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1216 return (error); 1217 1218 ih = &V_pf_idhash[PF_IDHASH(s)]; 1219 PF_HASHROW_ASSERT(ih); 1220 LIST_FOREACH(cur, &ih->states, entry) 1221 if (cur->id == s->id && cur->creatorid == s->creatorid) 1222 break; 1223 1224 if (cur != NULL) { 1225 PF_HASHROW_UNLOCK(ih); 1226 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1227 printf("pf: state ID collision: " 1228 "id: %016llx creatorid: %08x\n", 1229 (unsigned long long)be64toh(s->id), 1230 ntohl(s->creatorid)); 1231 } 1232 pf_detach_state(s); 1233 return (EEXIST); 1234 } 1235 LIST_INSERT_HEAD(&ih->states, s, entry); 1236 /* One for keys, one for ID hash. */ 1237 refcount_init(&s->refs, 2); 1238 1239 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1240 if (pfsync_insert_state_ptr != NULL) 1241 pfsync_insert_state_ptr(s); 1242 1243 /* Returns locked. */ 1244 return (0); 1245 } 1246 1247 /* 1248 * Find state by ID: returns with locked row on success. 1249 */ 1250 struct pf_state * 1251 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1252 { 1253 struct pf_idhash *ih; 1254 struct pf_state *s; 1255 1256 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1257 1258 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1259 1260 PF_HASHROW_LOCK(ih); 1261 LIST_FOREACH(s, &ih->states, entry) 1262 if (s->id == id && s->creatorid == creatorid) 1263 break; 1264 1265 if (s == NULL) 1266 PF_HASHROW_UNLOCK(ih); 1267 1268 return (s); 1269 } 1270 1271 /* 1272 * Find state by key. 1273 * Returns with ID hash slot locked on success. 1274 */ 1275 static struct pf_state * 1276 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1277 { 1278 struct pf_keyhash *kh; 1279 struct pf_state_key *sk; 1280 struct pf_state *s; 1281 int idx; 1282 1283 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1284 1285 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1286 1287 PF_HASHROW_LOCK(kh); 1288 LIST_FOREACH(sk, &kh->keys, entry) 1289 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1290 break; 1291 if (sk == NULL) { 1292 PF_HASHROW_UNLOCK(kh); 1293 return (NULL); 1294 } 1295 1296 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1297 1298 /* List is sorted, if-bound states before floating ones. */ 1299 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1300 if (s->kif == V_pfi_all || s->kif == kif) { 1301 PF_STATE_LOCK(s); 1302 PF_HASHROW_UNLOCK(kh); 1303 if (s->timeout >= PFTM_MAX) { 1304 /* 1305 * State is either being processed by 1306 * pf_unlink_state() in an other thread, or 1307 * is scheduled for immediate expiry. 1308 */ 1309 PF_STATE_UNLOCK(s); 1310 return (NULL); 1311 } 1312 return (s); 1313 } 1314 PF_HASHROW_UNLOCK(kh); 1315 1316 return (NULL); 1317 } 1318 1319 struct pf_state * 1320 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1321 { 1322 struct pf_keyhash *kh; 1323 struct pf_state_key *sk; 1324 struct pf_state *s, *ret = NULL; 1325 int idx, inout = 0; 1326 1327 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1328 1329 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1330 1331 PF_HASHROW_LOCK(kh); 1332 LIST_FOREACH(sk, &kh->keys, entry) 1333 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1334 break; 1335 if (sk == NULL) { 1336 PF_HASHROW_UNLOCK(kh); 1337 return (NULL); 1338 } 1339 switch (dir) { 1340 case PF_IN: 1341 idx = PF_SK_WIRE; 1342 break; 1343 case PF_OUT: 1344 idx = PF_SK_STACK; 1345 break; 1346 case PF_INOUT: 1347 idx = PF_SK_WIRE; 1348 inout = 1; 1349 break; 1350 default: 1351 panic("%s: dir %u", __func__, dir); 1352 } 1353 second_run: 1354 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1355 if (more == NULL) { 1356 PF_HASHROW_UNLOCK(kh); 1357 return (s); 1358 } 1359 1360 if (ret) 1361 (*more)++; 1362 else 1363 ret = s; 1364 } 1365 if (inout == 1) { 1366 inout = 0; 1367 idx = PF_SK_STACK; 1368 goto second_run; 1369 } 1370 PF_HASHROW_UNLOCK(kh); 1371 1372 return (ret); 1373 } 1374 1375 /* END state table stuff */ 1376 1377 static void 1378 pf_send(struct pf_send_entry *pfse) 1379 { 1380 1381 PF_SENDQ_LOCK(); 1382 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1383 PF_SENDQ_UNLOCK(); 1384 swi_sched(V_pf_swi_cookie, 0); 1385 } 1386 1387 void 1388 pf_intr(void *v) 1389 { 1390 struct pf_send_head queue; 1391 struct pf_send_entry *pfse, *next; 1392 1393 CURVNET_SET((struct vnet *)v); 1394 1395 PF_SENDQ_LOCK(); 1396 queue = V_pf_sendqueue; 1397 STAILQ_INIT(&V_pf_sendqueue); 1398 PF_SENDQ_UNLOCK(); 1399 1400 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1401 switch (pfse->pfse_type) { 1402 #ifdef INET 1403 case PFSE_IP: 1404 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1405 break; 1406 case PFSE_ICMP: 1407 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1408 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1409 break; 1410 #endif /* INET */ 1411 #ifdef INET6 1412 case PFSE_IP6: 1413 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1414 NULL); 1415 break; 1416 case PFSE_ICMP6: 1417 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1418 pfse->icmpopts.code, pfse->icmpopts.mtu); 1419 break; 1420 #endif /* INET6 */ 1421 default: 1422 panic("%s: unknown type", __func__); 1423 } 1424 free(pfse, M_PFTEMP); 1425 } 1426 CURVNET_RESTORE(); 1427 } 1428 1429 void 1430 pf_purge_thread(void *unused __unused) 1431 { 1432 VNET_ITERATOR_DECL(vnet_iter); 1433 1434 sx_xlock(&pf_end_lock); 1435 while (pf_end_threads == 0) { 1436 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", hz / 10); 1437 1438 VNET_LIST_RLOCK(); 1439 VNET_FOREACH(vnet_iter) { 1440 CURVNET_SET(vnet_iter); 1441 1442 1443 /* Wait until V_pf_default_rule is initialized. */ 1444 if (V_pf_vnet_active == 0) { 1445 CURVNET_RESTORE(); 1446 continue; 1447 } 1448 1449 /* 1450 * Process 1/interval fraction of the state 1451 * table every run. 1452 */ 1453 V_pf_purge_idx = 1454 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1455 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1456 1457 /* 1458 * Purge other expired types every 1459 * PFTM_INTERVAL seconds. 1460 */ 1461 if (V_pf_purge_idx == 0) { 1462 /* 1463 * Order is important: 1464 * - states and src nodes reference rules 1465 * - states and rules reference kifs 1466 */ 1467 pf_purge_expired_fragments(); 1468 pf_purge_expired_src_nodes(); 1469 pf_purge_unlinked_rules(); 1470 pfi_kif_purge(); 1471 } 1472 CURVNET_RESTORE(); 1473 } 1474 VNET_LIST_RUNLOCK(); 1475 } 1476 1477 pf_end_threads++; 1478 sx_xunlock(&pf_end_lock); 1479 kproc_exit(0); 1480 } 1481 1482 void 1483 pf_unload_vnet_purge(void) 1484 { 1485 1486 /* 1487 * To cleanse up all kifs and rules we need 1488 * two runs: first one clears reference flags, 1489 * then pf_purge_expired_states() doesn't 1490 * raise them, and then second run frees. 1491 */ 1492 pf_purge_unlinked_rules(); 1493 pfi_kif_purge(); 1494 1495 /* 1496 * Now purge everything. 1497 */ 1498 pf_purge_expired_states(0, pf_hashmask); 1499 pf_purge_expired_fragments(); 1500 pf_purge_expired_src_nodes(); 1501 1502 /* 1503 * Now all kifs & rules should be unreferenced, 1504 * thus should be successfully freed. 1505 */ 1506 pf_purge_unlinked_rules(); 1507 pfi_kif_purge(); 1508 } 1509 1510 1511 u_int32_t 1512 pf_state_expires(const struct pf_state *state) 1513 { 1514 u_int32_t timeout; 1515 u_int32_t start; 1516 u_int32_t end; 1517 u_int32_t states; 1518 1519 /* handle all PFTM_* > PFTM_MAX here */ 1520 if (state->timeout == PFTM_PURGE) 1521 return (time_uptime); 1522 KASSERT(state->timeout != PFTM_UNLINKED, 1523 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1524 KASSERT((state->timeout < PFTM_MAX), 1525 ("pf_state_expires: timeout > PFTM_MAX")); 1526 timeout = state->rule.ptr->timeout[state->timeout]; 1527 if (!timeout) 1528 timeout = V_pf_default_rule.timeout[state->timeout]; 1529 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1530 if (start) { 1531 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1532 states = counter_u64_fetch(state->rule.ptr->states_cur); 1533 } else { 1534 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1535 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1536 states = V_pf_status.states; 1537 } 1538 if (end && states > start && start < end) { 1539 if (states < end) 1540 return (state->expire + timeout * (end - states) / 1541 (end - start)); 1542 else 1543 return (time_uptime); 1544 } 1545 return (state->expire + timeout); 1546 } 1547 1548 void 1549 pf_purge_expired_src_nodes() 1550 { 1551 struct pf_src_node_list freelist; 1552 struct pf_srchash *sh; 1553 struct pf_src_node *cur, *next; 1554 int i; 1555 1556 LIST_INIT(&freelist); 1557 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1558 PF_HASHROW_LOCK(sh); 1559 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1560 if (cur->states == 0 && cur->expire <= time_uptime) { 1561 pf_unlink_src_node(cur); 1562 LIST_INSERT_HEAD(&freelist, cur, entry); 1563 } else if (cur->rule.ptr != NULL) 1564 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1565 PF_HASHROW_UNLOCK(sh); 1566 } 1567 1568 pf_free_src_nodes(&freelist); 1569 1570 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1571 } 1572 1573 static void 1574 pf_src_tree_remove_state(struct pf_state *s) 1575 { 1576 struct pf_src_node *sn; 1577 struct pf_srchash *sh; 1578 uint32_t timeout; 1579 1580 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1581 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1582 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1583 1584 if (s->src_node != NULL) { 1585 sn = s->src_node; 1586 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1587 PF_HASHROW_LOCK(sh); 1588 if (s->src.tcp_est) 1589 --sn->conn; 1590 if (--sn->states == 0) 1591 sn->expire = time_uptime + timeout; 1592 PF_HASHROW_UNLOCK(sh); 1593 } 1594 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1595 sn = s->nat_src_node; 1596 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1597 PF_HASHROW_LOCK(sh); 1598 if (--sn->states == 0) 1599 sn->expire = time_uptime + timeout; 1600 PF_HASHROW_UNLOCK(sh); 1601 } 1602 s->src_node = s->nat_src_node = NULL; 1603 } 1604 1605 /* 1606 * Unlink and potentilly free a state. Function may be 1607 * called with ID hash row locked, but always returns 1608 * unlocked, since it needs to go through key hash locking. 1609 */ 1610 int 1611 pf_unlink_state(struct pf_state *s, u_int flags) 1612 { 1613 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1614 1615 if ((flags & PF_ENTER_LOCKED) == 0) 1616 PF_HASHROW_LOCK(ih); 1617 else 1618 PF_HASHROW_ASSERT(ih); 1619 1620 if (s->timeout == PFTM_UNLINKED) { 1621 /* 1622 * State is being processed 1623 * by pf_unlink_state() in 1624 * an other thread. 1625 */ 1626 PF_HASHROW_UNLOCK(ih); 1627 return (0); /* XXXGL: undefined actually */ 1628 } 1629 1630 if (s->src.state == PF_TCPS_PROXY_DST) { 1631 /* XXX wire key the right one? */ 1632 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1633 &s->key[PF_SK_WIRE]->addr[1], 1634 &s->key[PF_SK_WIRE]->addr[0], 1635 s->key[PF_SK_WIRE]->port[1], 1636 s->key[PF_SK_WIRE]->port[0], 1637 s->src.seqhi, s->src.seqlo + 1, 1638 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1639 } 1640 1641 LIST_REMOVE(s, entry); 1642 pf_src_tree_remove_state(s); 1643 1644 if (pfsync_delete_state_ptr != NULL) 1645 pfsync_delete_state_ptr(s); 1646 1647 STATE_DEC_COUNTERS(s); 1648 1649 s->timeout = PFTM_UNLINKED; 1650 1651 PF_HASHROW_UNLOCK(ih); 1652 1653 pf_detach_state(s); 1654 refcount_release(&s->refs); 1655 1656 return (pf_release_state(s)); 1657 } 1658 1659 void 1660 pf_free_state(struct pf_state *cur) 1661 { 1662 1663 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1664 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1665 cur->timeout)); 1666 1667 pf_normalize_tcp_cleanup(cur); 1668 uma_zfree(V_pf_state_z, cur); 1669 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1670 } 1671 1672 /* 1673 * Called only from pf_purge_thread(), thus serialized. 1674 */ 1675 static u_int 1676 pf_purge_expired_states(u_int i, int maxcheck) 1677 { 1678 struct pf_idhash *ih; 1679 struct pf_state *s; 1680 1681 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1682 1683 /* 1684 * Go through hash and unlink states that expire now. 1685 */ 1686 while (maxcheck > 0) { 1687 1688 ih = &V_pf_idhash[i]; 1689 relock: 1690 PF_HASHROW_LOCK(ih); 1691 LIST_FOREACH(s, &ih->states, entry) { 1692 if (pf_state_expires(s) <= time_uptime) { 1693 V_pf_status.states -= 1694 pf_unlink_state(s, PF_ENTER_LOCKED); 1695 goto relock; 1696 } 1697 s->rule.ptr->rule_flag |= PFRULE_REFS; 1698 if (s->nat_rule.ptr != NULL) 1699 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1700 if (s->anchor.ptr != NULL) 1701 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1702 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1703 if (s->rt_kif) 1704 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1705 } 1706 PF_HASHROW_UNLOCK(ih); 1707 1708 /* Return when we hit end of hash. */ 1709 if (++i > pf_hashmask) { 1710 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1711 return (0); 1712 } 1713 1714 maxcheck--; 1715 } 1716 1717 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1718 1719 return (i); 1720 } 1721 1722 static void 1723 pf_purge_unlinked_rules() 1724 { 1725 struct pf_rulequeue tmpq; 1726 struct pf_rule *r, *r1; 1727 1728 /* 1729 * If we have overloading task pending, then we'd 1730 * better skip purging this time. There is a tiny 1731 * probability that overloading task references 1732 * an already unlinked rule. 1733 */ 1734 PF_OVERLOADQ_LOCK(); 1735 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1736 PF_OVERLOADQ_UNLOCK(); 1737 return; 1738 } 1739 PF_OVERLOADQ_UNLOCK(); 1740 1741 /* 1742 * Do naive mark-and-sweep garbage collecting of old rules. 1743 * Reference flag is raised by pf_purge_expired_states() 1744 * and pf_purge_expired_src_nodes(). 1745 * 1746 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1747 * use a temporary queue. 1748 */ 1749 TAILQ_INIT(&tmpq); 1750 PF_UNLNKDRULES_LOCK(); 1751 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1752 if (!(r->rule_flag & PFRULE_REFS)) { 1753 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1754 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1755 } else 1756 r->rule_flag &= ~PFRULE_REFS; 1757 } 1758 PF_UNLNKDRULES_UNLOCK(); 1759 1760 if (!TAILQ_EMPTY(&tmpq)) { 1761 PF_RULES_WLOCK(); 1762 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1763 TAILQ_REMOVE(&tmpq, r, entries); 1764 pf_free_rule(r); 1765 } 1766 PF_RULES_WUNLOCK(); 1767 } 1768 } 1769 1770 void 1771 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1772 { 1773 switch (af) { 1774 #ifdef INET 1775 case AF_INET: { 1776 u_int32_t a = ntohl(addr->addr32[0]); 1777 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1778 (a>>8)&255, a&255); 1779 if (p) { 1780 p = ntohs(p); 1781 printf(":%u", p); 1782 } 1783 break; 1784 } 1785 #endif /* INET */ 1786 #ifdef INET6 1787 case AF_INET6: { 1788 u_int16_t b; 1789 u_int8_t i, curstart, curend, maxstart, maxend; 1790 curstart = curend = maxstart = maxend = 255; 1791 for (i = 0; i < 8; i++) { 1792 if (!addr->addr16[i]) { 1793 if (curstart == 255) 1794 curstart = i; 1795 curend = i; 1796 } else { 1797 if ((curend - curstart) > 1798 (maxend - maxstart)) { 1799 maxstart = curstart; 1800 maxend = curend; 1801 } 1802 curstart = curend = 255; 1803 } 1804 } 1805 if ((curend - curstart) > 1806 (maxend - maxstart)) { 1807 maxstart = curstart; 1808 maxend = curend; 1809 } 1810 for (i = 0; i < 8; i++) { 1811 if (i >= maxstart && i <= maxend) { 1812 if (i == 0) 1813 printf(":"); 1814 if (i == maxend) 1815 printf(":"); 1816 } else { 1817 b = ntohs(addr->addr16[i]); 1818 printf("%x", b); 1819 if (i < 7) 1820 printf(":"); 1821 } 1822 } 1823 if (p) { 1824 p = ntohs(p); 1825 printf("[%u]", p); 1826 } 1827 break; 1828 } 1829 #endif /* INET6 */ 1830 } 1831 } 1832 1833 void 1834 pf_print_state(struct pf_state *s) 1835 { 1836 pf_print_state_parts(s, NULL, NULL); 1837 } 1838 1839 static void 1840 pf_print_state_parts(struct pf_state *s, 1841 struct pf_state_key *skwp, struct pf_state_key *sksp) 1842 { 1843 struct pf_state_key *skw, *sks; 1844 u_int8_t proto, dir; 1845 1846 /* Do our best to fill these, but they're skipped if NULL */ 1847 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1848 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1849 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1850 dir = s ? s->direction : 0; 1851 1852 switch (proto) { 1853 case IPPROTO_IPV4: 1854 printf("IPv4"); 1855 break; 1856 case IPPROTO_IPV6: 1857 printf("IPv6"); 1858 break; 1859 case IPPROTO_TCP: 1860 printf("TCP"); 1861 break; 1862 case IPPROTO_UDP: 1863 printf("UDP"); 1864 break; 1865 case IPPROTO_ICMP: 1866 printf("ICMP"); 1867 break; 1868 case IPPROTO_ICMPV6: 1869 printf("ICMPv6"); 1870 break; 1871 default: 1872 printf("%u", proto); 1873 break; 1874 } 1875 switch (dir) { 1876 case PF_IN: 1877 printf(" in"); 1878 break; 1879 case PF_OUT: 1880 printf(" out"); 1881 break; 1882 } 1883 if (skw) { 1884 printf(" wire: "); 1885 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1886 printf(" "); 1887 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1888 } 1889 if (sks) { 1890 printf(" stack: "); 1891 if (sks != skw) { 1892 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1893 printf(" "); 1894 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1895 } else 1896 printf("-"); 1897 } 1898 if (s) { 1899 if (proto == IPPROTO_TCP) { 1900 printf(" [lo=%u high=%u win=%u modulator=%u", 1901 s->src.seqlo, s->src.seqhi, 1902 s->src.max_win, s->src.seqdiff); 1903 if (s->src.wscale && s->dst.wscale) 1904 printf(" wscale=%u", 1905 s->src.wscale & PF_WSCALE_MASK); 1906 printf("]"); 1907 printf(" [lo=%u high=%u win=%u modulator=%u", 1908 s->dst.seqlo, s->dst.seqhi, 1909 s->dst.max_win, s->dst.seqdiff); 1910 if (s->src.wscale && s->dst.wscale) 1911 printf(" wscale=%u", 1912 s->dst.wscale & PF_WSCALE_MASK); 1913 printf("]"); 1914 } 1915 printf(" %u:%u", s->src.state, s->dst.state); 1916 } 1917 } 1918 1919 void 1920 pf_print_flags(u_int8_t f) 1921 { 1922 if (f) 1923 printf(" "); 1924 if (f & TH_FIN) 1925 printf("F"); 1926 if (f & TH_SYN) 1927 printf("S"); 1928 if (f & TH_RST) 1929 printf("R"); 1930 if (f & TH_PUSH) 1931 printf("P"); 1932 if (f & TH_ACK) 1933 printf("A"); 1934 if (f & TH_URG) 1935 printf("U"); 1936 if (f & TH_ECE) 1937 printf("E"); 1938 if (f & TH_CWR) 1939 printf("W"); 1940 } 1941 1942 #define PF_SET_SKIP_STEPS(i) \ 1943 do { \ 1944 while (head[i] != cur) { \ 1945 head[i]->skip[i].ptr = cur; \ 1946 head[i] = TAILQ_NEXT(head[i], entries); \ 1947 } \ 1948 } while (0) 1949 1950 void 1951 pf_calc_skip_steps(struct pf_rulequeue *rules) 1952 { 1953 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1954 int i; 1955 1956 cur = TAILQ_FIRST(rules); 1957 prev = cur; 1958 for (i = 0; i < PF_SKIP_COUNT; ++i) 1959 head[i] = cur; 1960 while (cur != NULL) { 1961 1962 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1963 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1964 if (cur->direction != prev->direction) 1965 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1966 if (cur->af != prev->af) 1967 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1968 if (cur->proto != prev->proto) 1969 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1970 if (cur->src.neg != prev->src.neg || 1971 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1972 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1973 if (cur->src.port[0] != prev->src.port[0] || 1974 cur->src.port[1] != prev->src.port[1] || 1975 cur->src.port_op != prev->src.port_op) 1976 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1977 if (cur->dst.neg != prev->dst.neg || 1978 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1979 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1980 if (cur->dst.port[0] != prev->dst.port[0] || 1981 cur->dst.port[1] != prev->dst.port[1] || 1982 cur->dst.port_op != prev->dst.port_op) 1983 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1984 1985 prev = cur; 1986 cur = TAILQ_NEXT(cur, entries); 1987 } 1988 for (i = 0; i < PF_SKIP_COUNT; ++i) 1989 PF_SET_SKIP_STEPS(i); 1990 } 1991 1992 static int 1993 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1994 { 1995 if (aw1->type != aw2->type) 1996 return (1); 1997 switch (aw1->type) { 1998 case PF_ADDR_ADDRMASK: 1999 case PF_ADDR_RANGE: 2000 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2001 return (1); 2002 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2003 return (1); 2004 return (0); 2005 case PF_ADDR_DYNIFTL: 2006 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2007 case PF_ADDR_NOROUTE: 2008 case PF_ADDR_URPFFAILED: 2009 return (0); 2010 case PF_ADDR_TABLE: 2011 return (aw1->p.tbl != aw2->p.tbl); 2012 default: 2013 printf("invalid address type: %d\n", aw1->type); 2014 return (1); 2015 } 2016 } 2017 2018 /** 2019 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2020 * header isn't always a full checksum. In some cases (i.e. output) it's a 2021 * pseudo-header checksum, which is a partial checksum over src/dst IP 2022 * addresses, protocol number and length. 2023 * 2024 * That means we have the following cases: 2025 * * Input or forwarding: we don't have TSO, the checksum fields are full 2026 * checksums, we need to update the checksum whenever we change anything. 2027 * * Output (i.e. the checksum is a pseudo-header checksum): 2028 * x The field being updated is src/dst address or affects the length of 2029 * the packet. We need to update the pseudo-header checksum (note that this 2030 * checksum is not ones' complement). 2031 * x Some other field is being modified (e.g. src/dst port numbers): We 2032 * don't have to update anything. 2033 **/ 2034 u_int16_t 2035 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2036 { 2037 u_int32_t l; 2038 2039 if (udp && !cksum) 2040 return (0x0000); 2041 l = cksum + old - new; 2042 l = (l >> 16) + (l & 65535); 2043 l = l & 65535; 2044 if (udp && !l) 2045 return (0xFFFF); 2046 return (l); 2047 } 2048 2049 u_int16_t 2050 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2051 u_int16_t new, u_int8_t udp) 2052 { 2053 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2054 return (cksum); 2055 2056 return (pf_cksum_fixup(cksum, old, new, udp)); 2057 } 2058 2059 static void 2060 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2061 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2062 sa_family_t af) 2063 { 2064 struct pf_addr ao; 2065 u_int16_t po = *p; 2066 2067 PF_ACPY(&ao, a, af); 2068 PF_ACPY(a, an, af); 2069 2070 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2071 *pc = ~*pc; 2072 2073 *p = pn; 2074 2075 switch (af) { 2076 #ifdef INET 2077 case AF_INET: 2078 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2079 ao.addr16[0], an->addr16[0], 0), 2080 ao.addr16[1], an->addr16[1], 0); 2081 *p = pn; 2082 2083 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2084 ao.addr16[0], an->addr16[0], u), 2085 ao.addr16[1], an->addr16[1], u); 2086 2087 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2088 break; 2089 #endif /* INET */ 2090 #ifdef INET6 2091 case AF_INET6: 2092 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2093 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2094 pf_cksum_fixup(pf_cksum_fixup(*pc, 2095 ao.addr16[0], an->addr16[0], u), 2096 ao.addr16[1], an->addr16[1], u), 2097 ao.addr16[2], an->addr16[2], u), 2098 ao.addr16[3], an->addr16[3], u), 2099 ao.addr16[4], an->addr16[4], u), 2100 ao.addr16[5], an->addr16[5], u), 2101 ao.addr16[6], an->addr16[6], u), 2102 ao.addr16[7], an->addr16[7], u); 2103 2104 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2105 break; 2106 #endif /* INET6 */ 2107 } 2108 2109 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2110 CSUM_DELAY_DATA_IPV6)) { 2111 *pc = ~*pc; 2112 if (! *pc) 2113 *pc = 0xffff; 2114 } 2115 } 2116 2117 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2118 void 2119 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2120 { 2121 u_int32_t ao; 2122 2123 memcpy(&ao, a, sizeof(ao)); 2124 memcpy(a, &an, sizeof(u_int32_t)); 2125 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2126 ao % 65536, an % 65536, u); 2127 } 2128 2129 void 2130 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2131 { 2132 u_int32_t ao; 2133 2134 memcpy(&ao, a, sizeof(ao)); 2135 memcpy(a, &an, sizeof(u_int32_t)); 2136 2137 *c = pf_proto_cksum_fixup(m, 2138 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2139 ao % 65536, an % 65536, udp); 2140 } 2141 2142 #ifdef INET6 2143 static void 2144 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2145 { 2146 struct pf_addr ao; 2147 2148 PF_ACPY(&ao, a, AF_INET6); 2149 PF_ACPY(a, an, AF_INET6); 2150 2151 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2152 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2153 pf_cksum_fixup(pf_cksum_fixup(*c, 2154 ao.addr16[0], an->addr16[0], u), 2155 ao.addr16[1], an->addr16[1], u), 2156 ao.addr16[2], an->addr16[2], u), 2157 ao.addr16[3], an->addr16[3], u), 2158 ao.addr16[4], an->addr16[4], u), 2159 ao.addr16[5], an->addr16[5], u), 2160 ao.addr16[6], an->addr16[6], u), 2161 ao.addr16[7], an->addr16[7], u); 2162 } 2163 #endif /* INET6 */ 2164 2165 static void 2166 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2167 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2168 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2169 { 2170 struct pf_addr oia, ooa; 2171 2172 PF_ACPY(&oia, ia, af); 2173 if (oa) 2174 PF_ACPY(&ooa, oa, af); 2175 2176 /* Change inner protocol port, fix inner protocol checksum. */ 2177 if (ip != NULL) { 2178 u_int16_t oip = *ip; 2179 u_int32_t opc; 2180 2181 if (pc != NULL) 2182 opc = *pc; 2183 *ip = np; 2184 if (pc != NULL) 2185 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2186 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2187 if (pc != NULL) 2188 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2189 } 2190 /* Change inner ip address, fix inner ip and icmp checksums. */ 2191 PF_ACPY(ia, na, af); 2192 switch (af) { 2193 #ifdef INET 2194 case AF_INET: { 2195 u_int32_t oh2c = *h2c; 2196 2197 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2198 oia.addr16[0], ia->addr16[0], 0), 2199 oia.addr16[1], ia->addr16[1], 0); 2200 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2201 oia.addr16[0], ia->addr16[0], 0), 2202 oia.addr16[1], ia->addr16[1], 0); 2203 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2204 break; 2205 } 2206 #endif /* INET */ 2207 #ifdef INET6 2208 case AF_INET6: 2209 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2210 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2211 pf_cksum_fixup(pf_cksum_fixup(*ic, 2212 oia.addr16[0], ia->addr16[0], u), 2213 oia.addr16[1], ia->addr16[1], u), 2214 oia.addr16[2], ia->addr16[2], u), 2215 oia.addr16[3], ia->addr16[3], u), 2216 oia.addr16[4], ia->addr16[4], u), 2217 oia.addr16[5], ia->addr16[5], u), 2218 oia.addr16[6], ia->addr16[6], u), 2219 oia.addr16[7], ia->addr16[7], u); 2220 break; 2221 #endif /* INET6 */ 2222 } 2223 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2224 if (oa) { 2225 PF_ACPY(oa, na, af); 2226 switch (af) { 2227 #ifdef INET 2228 case AF_INET: 2229 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2230 ooa.addr16[0], oa->addr16[0], 0), 2231 ooa.addr16[1], oa->addr16[1], 0); 2232 break; 2233 #endif /* INET */ 2234 #ifdef INET6 2235 case AF_INET6: 2236 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2237 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2238 pf_cksum_fixup(pf_cksum_fixup(*ic, 2239 ooa.addr16[0], oa->addr16[0], u), 2240 ooa.addr16[1], oa->addr16[1], u), 2241 ooa.addr16[2], oa->addr16[2], u), 2242 ooa.addr16[3], oa->addr16[3], u), 2243 ooa.addr16[4], oa->addr16[4], u), 2244 ooa.addr16[5], oa->addr16[5], u), 2245 ooa.addr16[6], oa->addr16[6], u), 2246 ooa.addr16[7], oa->addr16[7], u); 2247 break; 2248 #endif /* INET6 */ 2249 } 2250 } 2251 } 2252 2253 2254 /* 2255 * Need to modulate the sequence numbers in the TCP SACK option 2256 * (credits to Krzysztof Pfaff for report and patch) 2257 */ 2258 static int 2259 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2260 struct tcphdr *th, struct pf_state_peer *dst) 2261 { 2262 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2263 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2264 int copyback = 0, i, olen; 2265 struct sackblk sack; 2266 2267 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2268 if (hlen < TCPOLEN_SACKLEN || 2269 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2270 return 0; 2271 2272 while (hlen >= TCPOLEN_SACKLEN) { 2273 olen = opt[1]; 2274 switch (*opt) { 2275 case TCPOPT_EOL: /* FALLTHROUGH */ 2276 case TCPOPT_NOP: 2277 opt++; 2278 hlen--; 2279 break; 2280 case TCPOPT_SACK: 2281 if (olen > hlen) 2282 olen = hlen; 2283 if (olen >= TCPOLEN_SACKLEN) { 2284 for (i = 2; i + TCPOLEN_SACK <= olen; 2285 i += TCPOLEN_SACK) { 2286 memcpy(&sack, &opt[i], sizeof(sack)); 2287 pf_change_proto_a(m, &sack.start, &th->th_sum, 2288 htonl(ntohl(sack.start) - dst->seqdiff), 0); 2289 pf_change_proto_a(m, &sack.end, &th->th_sum, 2290 htonl(ntohl(sack.end) - dst->seqdiff), 0); 2291 memcpy(&opt[i], &sack, sizeof(sack)); 2292 } 2293 copyback = 1; 2294 } 2295 /* FALLTHROUGH */ 2296 default: 2297 if (olen < 2) 2298 olen = 2; 2299 hlen -= olen; 2300 opt += olen; 2301 } 2302 } 2303 2304 if (copyback) 2305 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2306 return (copyback); 2307 } 2308 2309 static void 2310 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2311 const struct pf_addr *saddr, const struct pf_addr *daddr, 2312 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2313 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2314 u_int16_t rtag, struct ifnet *ifp) 2315 { 2316 struct pf_send_entry *pfse; 2317 struct mbuf *m; 2318 int len, tlen; 2319 #ifdef INET 2320 struct ip *h = NULL; 2321 #endif /* INET */ 2322 #ifdef INET6 2323 struct ip6_hdr *h6 = NULL; 2324 #endif /* INET6 */ 2325 struct tcphdr *th; 2326 char *opt; 2327 struct pf_mtag *pf_mtag; 2328 2329 len = 0; 2330 th = NULL; 2331 2332 /* maximum segment size tcp option */ 2333 tlen = sizeof(struct tcphdr); 2334 if (mss) 2335 tlen += 4; 2336 2337 switch (af) { 2338 #ifdef INET 2339 case AF_INET: 2340 len = sizeof(struct ip) + tlen; 2341 break; 2342 #endif /* INET */ 2343 #ifdef INET6 2344 case AF_INET6: 2345 len = sizeof(struct ip6_hdr) + tlen; 2346 break; 2347 #endif /* INET6 */ 2348 default: 2349 panic("%s: unsupported af %d", __func__, af); 2350 } 2351 2352 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2353 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2354 if (pfse == NULL) 2355 return; 2356 m = m_gethdr(M_NOWAIT, MT_DATA); 2357 if (m == NULL) { 2358 free(pfse, M_PFTEMP); 2359 return; 2360 } 2361 #ifdef MAC 2362 mac_netinet_firewall_send(m); 2363 #endif 2364 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2365 free(pfse, M_PFTEMP); 2366 m_freem(m); 2367 return; 2368 } 2369 if (tag) 2370 m->m_flags |= M_SKIP_FIREWALL; 2371 pf_mtag->tag = rtag; 2372 2373 if (r != NULL && r->rtableid >= 0) 2374 M_SETFIB(m, r->rtableid); 2375 2376 #ifdef ALTQ 2377 if (r != NULL && r->qid) { 2378 pf_mtag->qid = r->qid; 2379 2380 /* add hints for ecn */ 2381 pf_mtag->hdr = mtod(m, struct ip *); 2382 } 2383 #endif /* ALTQ */ 2384 m->m_data += max_linkhdr; 2385 m->m_pkthdr.len = m->m_len = len; 2386 m->m_pkthdr.rcvif = NULL; 2387 bzero(m->m_data, len); 2388 switch (af) { 2389 #ifdef INET 2390 case AF_INET: 2391 h = mtod(m, struct ip *); 2392 2393 /* IP header fields included in the TCP checksum */ 2394 h->ip_p = IPPROTO_TCP; 2395 h->ip_len = htons(tlen); 2396 h->ip_src.s_addr = saddr->v4.s_addr; 2397 h->ip_dst.s_addr = daddr->v4.s_addr; 2398 2399 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2400 break; 2401 #endif /* INET */ 2402 #ifdef INET6 2403 case AF_INET6: 2404 h6 = mtod(m, struct ip6_hdr *); 2405 2406 /* IP header fields included in the TCP checksum */ 2407 h6->ip6_nxt = IPPROTO_TCP; 2408 h6->ip6_plen = htons(tlen); 2409 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2410 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2411 2412 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2413 break; 2414 #endif /* INET6 */ 2415 } 2416 2417 /* TCP header */ 2418 th->th_sport = sport; 2419 th->th_dport = dport; 2420 th->th_seq = htonl(seq); 2421 th->th_ack = htonl(ack); 2422 th->th_off = tlen >> 2; 2423 th->th_flags = flags; 2424 th->th_win = htons(win); 2425 2426 if (mss) { 2427 opt = (char *)(th + 1); 2428 opt[0] = TCPOPT_MAXSEG; 2429 opt[1] = 4; 2430 HTONS(mss); 2431 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2432 } 2433 2434 switch (af) { 2435 #ifdef INET 2436 case AF_INET: 2437 /* TCP checksum */ 2438 th->th_sum = in_cksum(m, len); 2439 2440 /* Finish the IP header */ 2441 h->ip_v = 4; 2442 h->ip_hl = sizeof(*h) >> 2; 2443 h->ip_tos = IPTOS_LOWDELAY; 2444 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2445 h->ip_len = htons(len); 2446 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2447 h->ip_sum = 0; 2448 2449 pfse->pfse_type = PFSE_IP; 2450 break; 2451 #endif /* INET */ 2452 #ifdef INET6 2453 case AF_INET6: 2454 /* TCP checksum */ 2455 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2456 sizeof(struct ip6_hdr), tlen); 2457 2458 h6->ip6_vfc |= IPV6_VERSION; 2459 h6->ip6_hlim = IPV6_DEFHLIM; 2460 2461 pfse->pfse_type = PFSE_IP6; 2462 break; 2463 #endif /* INET6 */ 2464 } 2465 pfse->pfse_m = m; 2466 pf_send(pfse); 2467 } 2468 2469 static int 2470 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2471 { 2472 struct m_tag *mtag; 2473 2474 KASSERT(prio <= PF_PRIO_MAX, 2475 ("%s with invalid pcp", __func__)); 2476 2477 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2478 if (mtag == NULL) { 2479 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2480 sizeof(uint8_t), M_NOWAIT); 2481 if (mtag == NULL) 2482 return (ENOMEM); 2483 m_tag_prepend(m, mtag); 2484 } 2485 2486 *(uint8_t *)(mtag + 1) = prio; 2487 return (0); 2488 } 2489 2490 static int 2491 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2492 { 2493 struct m_tag *mtag; 2494 u_int8_t mpcp; 2495 2496 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2497 if (mtag == NULL) 2498 return (0); 2499 2500 if (prio == PF_PRIO_ZERO) 2501 prio = 0; 2502 2503 mpcp = *(uint8_t *)(mtag + 1); 2504 2505 return (mpcp == prio); 2506 } 2507 2508 static void 2509 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2510 struct pf_rule *r) 2511 { 2512 struct pf_send_entry *pfse; 2513 struct mbuf *m0; 2514 struct pf_mtag *pf_mtag; 2515 2516 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2517 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2518 if (pfse == NULL) 2519 return; 2520 2521 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2522 free(pfse, M_PFTEMP); 2523 return; 2524 } 2525 2526 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2527 free(pfse, M_PFTEMP); 2528 return; 2529 } 2530 /* XXX: revisit */ 2531 m0->m_flags |= M_SKIP_FIREWALL; 2532 2533 if (r->rtableid >= 0) 2534 M_SETFIB(m0, r->rtableid); 2535 2536 #ifdef ALTQ 2537 if (r->qid) { 2538 pf_mtag->qid = r->qid; 2539 /* add hints for ecn */ 2540 pf_mtag->hdr = mtod(m0, struct ip *); 2541 } 2542 #endif /* ALTQ */ 2543 2544 switch (af) { 2545 #ifdef INET 2546 case AF_INET: 2547 pfse->pfse_type = PFSE_ICMP; 2548 break; 2549 #endif /* INET */ 2550 #ifdef INET6 2551 case AF_INET6: 2552 pfse->pfse_type = PFSE_ICMP6; 2553 break; 2554 #endif /* INET6 */ 2555 } 2556 pfse->pfse_m = m0; 2557 pfse->icmpopts.type = type; 2558 pfse->icmpopts.code = code; 2559 pf_send(pfse); 2560 } 2561 2562 /* 2563 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2564 * If n is 0, they match if they are equal. If n is != 0, they match if they 2565 * are different. 2566 */ 2567 int 2568 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2569 struct pf_addr *b, sa_family_t af) 2570 { 2571 int match = 0; 2572 2573 switch (af) { 2574 #ifdef INET 2575 case AF_INET: 2576 if ((a->addr32[0] & m->addr32[0]) == 2577 (b->addr32[0] & m->addr32[0])) 2578 match++; 2579 break; 2580 #endif /* INET */ 2581 #ifdef INET6 2582 case AF_INET6: 2583 if (((a->addr32[0] & m->addr32[0]) == 2584 (b->addr32[0] & m->addr32[0])) && 2585 ((a->addr32[1] & m->addr32[1]) == 2586 (b->addr32[1] & m->addr32[1])) && 2587 ((a->addr32[2] & m->addr32[2]) == 2588 (b->addr32[2] & m->addr32[2])) && 2589 ((a->addr32[3] & m->addr32[3]) == 2590 (b->addr32[3] & m->addr32[3]))) 2591 match++; 2592 break; 2593 #endif /* INET6 */ 2594 } 2595 if (match) { 2596 if (n) 2597 return (0); 2598 else 2599 return (1); 2600 } else { 2601 if (n) 2602 return (1); 2603 else 2604 return (0); 2605 } 2606 } 2607 2608 /* 2609 * Return 1 if b <= a <= e, otherwise return 0. 2610 */ 2611 int 2612 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2613 struct pf_addr *a, sa_family_t af) 2614 { 2615 switch (af) { 2616 #ifdef INET 2617 case AF_INET: 2618 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2619 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2620 return (0); 2621 break; 2622 #endif /* INET */ 2623 #ifdef INET6 2624 case AF_INET6: { 2625 int i; 2626 2627 /* check a >= b */ 2628 for (i = 0; i < 4; ++i) 2629 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2630 break; 2631 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2632 return (0); 2633 /* check a <= e */ 2634 for (i = 0; i < 4; ++i) 2635 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2636 break; 2637 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2638 return (0); 2639 break; 2640 } 2641 #endif /* INET6 */ 2642 } 2643 return (1); 2644 } 2645 2646 static int 2647 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2648 { 2649 switch (op) { 2650 case PF_OP_IRG: 2651 return ((p > a1) && (p < a2)); 2652 case PF_OP_XRG: 2653 return ((p < a1) || (p > a2)); 2654 case PF_OP_RRG: 2655 return ((p >= a1) && (p <= a2)); 2656 case PF_OP_EQ: 2657 return (p == a1); 2658 case PF_OP_NE: 2659 return (p != a1); 2660 case PF_OP_LT: 2661 return (p < a1); 2662 case PF_OP_LE: 2663 return (p <= a1); 2664 case PF_OP_GT: 2665 return (p > a1); 2666 case PF_OP_GE: 2667 return (p >= a1); 2668 } 2669 return (0); /* never reached */ 2670 } 2671 2672 int 2673 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2674 { 2675 NTOHS(a1); 2676 NTOHS(a2); 2677 NTOHS(p); 2678 return (pf_match(op, a1, a2, p)); 2679 } 2680 2681 static int 2682 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2683 { 2684 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2685 return (0); 2686 return (pf_match(op, a1, a2, u)); 2687 } 2688 2689 static int 2690 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2691 { 2692 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2693 return (0); 2694 return (pf_match(op, a1, a2, g)); 2695 } 2696 2697 int 2698 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2699 { 2700 if (*tag == -1) 2701 *tag = mtag; 2702 2703 return ((!r->match_tag_not && r->match_tag == *tag) || 2704 (r->match_tag_not && r->match_tag != *tag)); 2705 } 2706 2707 int 2708 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2709 { 2710 2711 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2712 2713 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2714 return (ENOMEM); 2715 2716 pd->pf_mtag->tag = tag; 2717 2718 return (0); 2719 } 2720 2721 #define PF_ANCHOR_STACKSIZE 32 2722 struct pf_anchor_stackframe { 2723 struct pf_ruleset *rs; 2724 struct pf_rule *r; /* XXX: + match bit */ 2725 struct pf_anchor *child; 2726 }; 2727 2728 /* 2729 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2730 */ 2731 #define PF_ANCHORSTACK_MATCH 0x00000001 2732 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2733 2734 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2735 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2736 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2737 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2738 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2739 } while (0) 2740 2741 void 2742 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2743 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2744 int *match) 2745 { 2746 struct pf_anchor_stackframe *f; 2747 2748 PF_RULES_RASSERT(); 2749 2750 if (match) 2751 *match = 0; 2752 if (*depth >= PF_ANCHOR_STACKSIZE) { 2753 printf("%s: anchor stack overflow on %s\n", 2754 __func__, (*r)->anchor->name); 2755 *r = TAILQ_NEXT(*r, entries); 2756 return; 2757 } else if (*depth == 0 && a != NULL) 2758 *a = *r; 2759 f = stack + (*depth)++; 2760 f->rs = *rs; 2761 f->r = *r; 2762 if ((*r)->anchor_wildcard) { 2763 struct pf_anchor_node *parent = &(*r)->anchor->children; 2764 2765 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2766 *r = NULL; 2767 return; 2768 } 2769 *rs = &f->child->ruleset; 2770 } else { 2771 f->child = NULL; 2772 *rs = &(*r)->anchor->ruleset; 2773 } 2774 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2775 } 2776 2777 int 2778 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2779 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2780 int *match) 2781 { 2782 struct pf_anchor_stackframe *f; 2783 struct pf_rule *fr; 2784 int quick = 0; 2785 2786 PF_RULES_RASSERT(); 2787 2788 do { 2789 if (*depth <= 0) 2790 break; 2791 f = stack + *depth - 1; 2792 fr = PF_ANCHOR_RULE(f); 2793 if (f->child != NULL) { 2794 struct pf_anchor_node *parent; 2795 2796 /* 2797 * This block traverses through 2798 * a wildcard anchor. 2799 */ 2800 parent = &fr->anchor->children; 2801 if (match != NULL && *match) { 2802 /* 2803 * If any of "*" matched, then 2804 * "foo/ *" matched, mark frame 2805 * appropriately. 2806 */ 2807 PF_ANCHOR_SET_MATCH(f); 2808 *match = 0; 2809 } 2810 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2811 if (f->child != NULL) { 2812 *rs = &f->child->ruleset; 2813 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2814 if (*r == NULL) 2815 continue; 2816 else 2817 break; 2818 } 2819 } 2820 (*depth)--; 2821 if (*depth == 0 && a != NULL) 2822 *a = NULL; 2823 *rs = f->rs; 2824 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2825 quick = fr->quick; 2826 *r = TAILQ_NEXT(fr, entries); 2827 } while (*r == NULL); 2828 2829 return (quick); 2830 } 2831 2832 #ifdef INET6 2833 void 2834 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2835 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2836 { 2837 switch (af) { 2838 #ifdef INET 2839 case AF_INET: 2840 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2841 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2842 break; 2843 #endif /* INET */ 2844 case AF_INET6: 2845 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2846 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2847 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2848 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2849 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2850 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2851 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2852 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2853 break; 2854 } 2855 } 2856 2857 void 2858 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2859 { 2860 switch (af) { 2861 #ifdef INET 2862 case AF_INET: 2863 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2864 break; 2865 #endif /* INET */ 2866 case AF_INET6: 2867 if (addr->addr32[3] == 0xffffffff) { 2868 addr->addr32[3] = 0; 2869 if (addr->addr32[2] == 0xffffffff) { 2870 addr->addr32[2] = 0; 2871 if (addr->addr32[1] == 0xffffffff) { 2872 addr->addr32[1] = 0; 2873 addr->addr32[0] = 2874 htonl(ntohl(addr->addr32[0]) + 1); 2875 } else 2876 addr->addr32[1] = 2877 htonl(ntohl(addr->addr32[1]) + 1); 2878 } else 2879 addr->addr32[2] = 2880 htonl(ntohl(addr->addr32[2]) + 1); 2881 } else 2882 addr->addr32[3] = 2883 htonl(ntohl(addr->addr32[3]) + 1); 2884 break; 2885 } 2886 } 2887 #endif /* INET6 */ 2888 2889 int 2890 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2891 { 2892 struct pf_addr *saddr, *daddr; 2893 u_int16_t sport, dport; 2894 struct inpcbinfo *pi; 2895 struct inpcb *inp; 2896 2897 pd->lookup.uid = UID_MAX; 2898 pd->lookup.gid = GID_MAX; 2899 2900 switch (pd->proto) { 2901 case IPPROTO_TCP: 2902 if (pd->hdr.tcp == NULL) 2903 return (-1); 2904 sport = pd->hdr.tcp->th_sport; 2905 dport = pd->hdr.tcp->th_dport; 2906 pi = &V_tcbinfo; 2907 break; 2908 case IPPROTO_UDP: 2909 if (pd->hdr.udp == NULL) 2910 return (-1); 2911 sport = pd->hdr.udp->uh_sport; 2912 dport = pd->hdr.udp->uh_dport; 2913 pi = &V_udbinfo; 2914 break; 2915 default: 2916 return (-1); 2917 } 2918 if (direction == PF_IN) { 2919 saddr = pd->src; 2920 daddr = pd->dst; 2921 } else { 2922 u_int16_t p; 2923 2924 p = sport; 2925 sport = dport; 2926 dport = p; 2927 saddr = pd->dst; 2928 daddr = pd->src; 2929 } 2930 switch (pd->af) { 2931 #ifdef INET 2932 case AF_INET: 2933 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2934 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2935 if (inp == NULL) { 2936 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2937 daddr->v4, dport, INPLOOKUP_WILDCARD | 2938 INPLOOKUP_RLOCKPCB, NULL, m); 2939 if (inp == NULL) 2940 return (-1); 2941 } 2942 break; 2943 #endif /* INET */ 2944 #ifdef INET6 2945 case AF_INET6: 2946 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2947 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2948 if (inp == NULL) { 2949 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2950 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2951 INPLOOKUP_RLOCKPCB, NULL, m); 2952 if (inp == NULL) 2953 return (-1); 2954 } 2955 break; 2956 #endif /* INET6 */ 2957 2958 default: 2959 return (-1); 2960 } 2961 INP_RLOCK_ASSERT(inp); 2962 pd->lookup.uid = inp->inp_cred->cr_uid; 2963 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2964 INP_RUNLOCK(inp); 2965 2966 return (1); 2967 } 2968 2969 static u_int8_t 2970 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2971 { 2972 int hlen; 2973 u_int8_t hdr[60]; 2974 u_int8_t *opt, optlen; 2975 u_int8_t wscale = 0; 2976 2977 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2978 if (hlen <= sizeof(struct tcphdr)) 2979 return (0); 2980 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2981 return (0); 2982 opt = hdr + sizeof(struct tcphdr); 2983 hlen -= sizeof(struct tcphdr); 2984 while (hlen >= 3) { 2985 switch (*opt) { 2986 case TCPOPT_EOL: 2987 case TCPOPT_NOP: 2988 ++opt; 2989 --hlen; 2990 break; 2991 case TCPOPT_WINDOW: 2992 wscale = opt[2]; 2993 if (wscale > TCP_MAX_WINSHIFT) 2994 wscale = TCP_MAX_WINSHIFT; 2995 wscale |= PF_WSCALE_FLAG; 2996 /* FALLTHROUGH */ 2997 default: 2998 optlen = opt[1]; 2999 if (optlen < 2) 3000 optlen = 2; 3001 hlen -= optlen; 3002 opt += optlen; 3003 break; 3004 } 3005 } 3006 return (wscale); 3007 } 3008 3009 static u_int16_t 3010 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3011 { 3012 int hlen; 3013 u_int8_t hdr[60]; 3014 u_int8_t *opt, optlen; 3015 u_int16_t mss = V_tcp_mssdflt; 3016 3017 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3018 if (hlen <= sizeof(struct tcphdr)) 3019 return (0); 3020 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3021 return (0); 3022 opt = hdr + sizeof(struct tcphdr); 3023 hlen -= sizeof(struct tcphdr); 3024 while (hlen >= TCPOLEN_MAXSEG) { 3025 switch (*opt) { 3026 case TCPOPT_EOL: 3027 case TCPOPT_NOP: 3028 ++opt; 3029 --hlen; 3030 break; 3031 case TCPOPT_MAXSEG: 3032 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3033 NTOHS(mss); 3034 /* FALLTHROUGH */ 3035 default: 3036 optlen = opt[1]; 3037 if (optlen < 2) 3038 optlen = 2; 3039 hlen -= optlen; 3040 opt += optlen; 3041 break; 3042 } 3043 } 3044 return (mss); 3045 } 3046 3047 static u_int16_t 3048 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3049 { 3050 #ifdef INET 3051 struct nhop4_basic nh4; 3052 #endif /* INET */ 3053 #ifdef INET6 3054 struct nhop6_basic nh6; 3055 struct in6_addr dst6; 3056 uint32_t scopeid; 3057 #endif /* INET6 */ 3058 int hlen = 0; 3059 uint16_t mss = 0; 3060 3061 switch (af) { 3062 #ifdef INET 3063 case AF_INET: 3064 hlen = sizeof(struct ip); 3065 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) == 0) 3066 mss = nh4.nh_mtu - hlen - sizeof(struct tcphdr); 3067 break; 3068 #endif /* INET */ 3069 #ifdef INET6 3070 case AF_INET6: 3071 hlen = sizeof(struct ip6_hdr); 3072 in6_splitscope(&addr->v6, &dst6, &scopeid); 3073 if (fib6_lookup_nh_basic(rtableid, &dst6, scopeid, 0,0,&nh6)==0) 3074 mss = nh6.nh_mtu - hlen - sizeof(struct tcphdr); 3075 break; 3076 #endif /* INET6 */ 3077 } 3078 3079 mss = max(V_tcp_mssdflt, mss); 3080 mss = min(mss, offer); 3081 mss = max(mss, 64); /* sanity - at least max opt space */ 3082 return (mss); 3083 } 3084 3085 static u_int32_t 3086 pf_tcp_iss(struct pf_pdesc *pd) 3087 { 3088 MD5_CTX ctx; 3089 u_int32_t digest[4]; 3090 3091 if (V_pf_tcp_secret_init == 0) { 3092 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3093 MD5Init(&V_pf_tcp_secret_ctx); 3094 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3095 sizeof(V_pf_tcp_secret)); 3096 V_pf_tcp_secret_init = 1; 3097 } 3098 3099 ctx = V_pf_tcp_secret_ctx; 3100 3101 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3102 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3103 if (pd->af == AF_INET6) { 3104 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3105 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3106 } else { 3107 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3108 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3109 } 3110 MD5Final((u_char *)digest, &ctx); 3111 V_pf_tcp_iss_off += 4096; 3112 #define ISN_RANDOM_INCREMENT (4096 - 1) 3113 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3114 V_pf_tcp_iss_off); 3115 #undef ISN_RANDOM_INCREMENT 3116 } 3117 3118 static int 3119 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3120 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3121 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3122 { 3123 struct pf_rule *nr = NULL; 3124 struct pf_addr * const saddr = pd->src; 3125 struct pf_addr * const daddr = pd->dst; 3126 sa_family_t af = pd->af; 3127 struct pf_rule *r, *a = NULL; 3128 struct pf_ruleset *ruleset = NULL; 3129 struct pf_src_node *nsn = NULL; 3130 struct tcphdr *th = pd->hdr.tcp; 3131 struct pf_state_key *sk = NULL, *nk = NULL; 3132 u_short reason; 3133 int rewrite = 0, hdrlen = 0; 3134 int tag = -1, rtableid = -1; 3135 int asd = 0; 3136 int match = 0; 3137 int state_icmp = 0; 3138 u_int16_t sport = 0, dport = 0; 3139 u_int16_t bproto_sum = 0, bip_sum = 0; 3140 u_int8_t icmptype = 0, icmpcode = 0; 3141 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3142 3143 PF_RULES_RASSERT(); 3144 3145 if (inp != NULL) { 3146 INP_LOCK_ASSERT(inp); 3147 pd->lookup.uid = inp->inp_cred->cr_uid; 3148 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3149 pd->lookup.done = 1; 3150 } 3151 3152 switch (pd->proto) { 3153 case IPPROTO_TCP: 3154 sport = th->th_sport; 3155 dport = th->th_dport; 3156 hdrlen = sizeof(*th); 3157 break; 3158 case IPPROTO_UDP: 3159 sport = pd->hdr.udp->uh_sport; 3160 dport = pd->hdr.udp->uh_dport; 3161 hdrlen = sizeof(*pd->hdr.udp); 3162 break; 3163 #ifdef INET 3164 case IPPROTO_ICMP: 3165 if (pd->af != AF_INET) 3166 break; 3167 sport = dport = pd->hdr.icmp->icmp_id; 3168 hdrlen = sizeof(*pd->hdr.icmp); 3169 icmptype = pd->hdr.icmp->icmp_type; 3170 icmpcode = pd->hdr.icmp->icmp_code; 3171 3172 if (icmptype == ICMP_UNREACH || 3173 icmptype == ICMP_SOURCEQUENCH || 3174 icmptype == ICMP_REDIRECT || 3175 icmptype == ICMP_TIMXCEED || 3176 icmptype == ICMP_PARAMPROB) 3177 state_icmp++; 3178 break; 3179 #endif /* INET */ 3180 #ifdef INET6 3181 case IPPROTO_ICMPV6: 3182 if (af != AF_INET6) 3183 break; 3184 sport = dport = pd->hdr.icmp6->icmp6_id; 3185 hdrlen = sizeof(*pd->hdr.icmp6); 3186 icmptype = pd->hdr.icmp6->icmp6_type; 3187 icmpcode = pd->hdr.icmp6->icmp6_code; 3188 3189 if (icmptype == ICMP6_DST_UNREACH || 3190 icmptype == ICMP6_PACKET_TOO_BIG || 3191 icmptype == ICMP6_TIME_EXCEEDED || 3192 icmptype == ICMP6_PARAM_PROB) 3193 state_icmp++; 3194 break; 3195 #endif /* INET6 */ 3196 default: 3197 sport = dport = hdrlen = 0; 3198 break; 3199 } 3200 3201 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3202 3203 /* check packet for BINAT/NAT/RDR */ 3204 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3205 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3206 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3207 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3208 3209 if (pd->ip_sum) 3210 bip_sum = *pd->ip_sum; 3211 3212 switch (pd->proto) { 3213 case IPPROTO_TCP: 3214 bproto_sum = th->th_sum; 3215 pd->proto_sum = &th->th_sum; 3216 3217 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3218 nk->port[pd->sidx] != sport) { 3219 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3220 &th->th_sum, &nk->addr[pd->sidx], 3221 nk->port[pd->sidx], 0, af); 3222 pd->sport = &th->th_sport; 3223 sport = th->th_sport; 3224 } 3225 3226 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3227 nk->port[pd->didx] != dport) { 3228 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3229 &th->th_sum, &nk->addr[pd->didx], 3230 nk->port[pd->didx], 0, af); 3231 dport = th->th_dport; 3232 pd->dport = &th->th_dport; 3233 } 3234 rewrite++; 3235 break; 3236 case IPPROTO_UDP: 3237 bproto_sum = pd->hdr.udp->uh_sum; 3238 pd->proto_sum = &pd->hdr.udp->uh_sum; 3239 3240 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3241 nk->port[pd->sidx] != sport) { 3242 pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, 3243 pd->ip_sum, &pd->hdr.udp->uh_sum, 3244 &nk->addr[pd->sidx], 3245 nk->port[pd->sidx], 1, af); 3246 sport = pd->hdr.udp->uh_sport; 3247 pd->sport = &pd->hdr.udp->uh_sport; 3248 } 3249 3250 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3251 nk->port[pd->didx] != dport) { 3252 pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, 3253 pd->ip_sum, &pd->hdr.udp->uh_sum, 3254 &nk->addr[pd->didx], 3255 nk->port[pd->didx], 1, af); 3256 dport = pd->hdr.udp->uh_dport; 3257 pd->dport = &pd->hdr.udp->uh_dport; 3258 } 3259 rewrite++; 3260 break; 3261 #ifdef INET 3262 case IPPROTO_ICMP: 3263 nk->port[0] = nk->port[1]; 3264 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3265 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3266 nk->addr[pd->sidx].v4.s_addr, 0); 3267 3268 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3269 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3270 nk->addr[pd->didx].v4.s_addr, 0); 3271 3272 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3273 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3274 pd->hdr.icmp->icmp_cksum, sport, 3275 nk->port[1], 0); 3276 pd->hdr.icmp->icmp_id = nk->port[1]; 3277 pd->sport = &pd->hdr.icmp->icmp_id; 3278 } 3279 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3280 break; 3281 #endif /* INET */ 3282 #ifdef INET6 3283 case IPPROTO_ICMPV6: 3284 nk->port[0] = nk->port[1]; 3285 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3286 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3287 &nk->addr[pd->sidx], 0); 3288 3289 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3290 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3291 &nk->addr[pd->didx], 0); 3292 rewrite++; 3293 break; 3294 #endif /* INET */ 3295 default: 3296 switch (af) { 3297 #ifdef INET 3298 case AF_INET: 3299 if (PF_ANEQ(saddr, 3300 &nk->addr[pd->sidx], AF_INET)) 3301 pf_change_a(&saddr->v4.s_addr, 3302 pd->ip_sum, 3303 nk->addr[pd->sidx].v4.s_addr, 0); 3304 3305 if (PF_ANEQ(daddr, 3306 &nk->addr[pd->didx], AF_INET)) 3307 pf_change_a(&daddr->v4.s_addr, 3308 pd->ip_sum, 3309 nk->addr[pd->didx].v4.s_addr, 0); 3310 break; 3311 #endif /* INET */ 3312 #ifdef INET6 3313 case AF_INET6: 3314 if (PF_ANEQ(saddr, 3315 &nk->addr[pd->sidx], AF_INET6)) 3316 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3317 3318 if (PF_ANEQ(daddr, 3319 &nk->addr[pd->didx], AF_INET6)) 3320 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3321 break; 3322 #endif /* INET */ 3323 } 3324 break; 3325 } 3326 if (nr->natpass) 3327 r = NULL; 3328 pd->nat_rule = nr; 3329 } 3330 3331 while (r != NULL) { 3332 r->evaluations++; 3333 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3334 r = r->skip[PF_SKIP_IFP].ptr; 3335 else if (r->direction && r->direction != direction) 3336 r = r->skip[PF_SKIP_DIR].ptr; 3337 else if (r->af && r->af != af) 3338 r = r->skip[PF_SKIP_AF].ptr; 3339 else if (r->proto && r->proto != pd->proto) 3340 r = r->skip[PF_SKIP_PROTO].ptr; 3341 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3342 r->src.neg, kif, M_GETFIB(m))) 3343 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3344 /* tcp/udp only. port_op always 0 in other cases */ 3345 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3346 r->src.port[0], r->src.port[1], sport)) 3347 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3348 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3349 r->dst.neg, NULL, M_GETFIB(m))) 3350 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3351 /* tcp/udp only. port_op always 0 in other cases */ 3352 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3353 r->dst.port[0], r->dst.port[1], dport)) 3354 r = r->skip[PF_SKIP_DST_PORT].ptr; 3355 /* icmp only. type always 0 in other cases */ 3356 else if (r->type && r->type != icmptype + 1) 3357 r = TAILQ_NEXT(r, entries); 3358 /* icmp only. type always 0 in other cases */ 3359 else if (r->code && r->code != icmpcode + 1) 3360 r = TAILQ_NEXT(r, entries); 3361 else if (r->tos && !(r->tos == pd->tos)) 3362 r = TAILQ_NEXT(r, entries); 3363 else if (r->rule_flag & PFRULE_FRAGMENT) 3364 r = TAILQ_NEXT(r, entries); 3365 else if (pd->proto == IPPROTO_TCP && 3366 (r->flagset & th->th_flags) != r->flags) 3367 r = TAILQ_NEXT(r, entries); 3368 /* tcp/udp only. uid.op always 0 in other cases */ 3369 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3370 pf_socket_lookup(direction, pd, m), 1)) && 3371 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3372 pd->lookup.uid)) 3373 r = TAILQ_NEXT(r, entries); 3374 /* tcp/udp only. gid.op always 0 in other cases */ 3375 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3376 pf_socket_lookup(direction, pd, m), 1)) && 3377 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3378 pd->lookup.gid)) 3379 r = TAILQ_NEXT(r, entries); 3380 else if (r->prio && 3381 !pf_match_ieee8021q_pcp(r->prio, m)) 3382 r = TAILQ_NEXT(r, entries); 3383 else if (r->prob && 3384 r->prob <= arc4random()) 3385 r = TAILQ_NEXT(r, entries); 3386 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3387 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3388 r = TAILQ_NEXT(r, entries); 3389 else if (r->os_fingerprint != PF_OSFP_ANY && 3390 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3391 pf_osfp_fingerprint(pd, m, off, th), 3392 r->os_fingerprint))) 3393 r = TAILQ_NEXT(r, entries); 3394 else { 3395 if (r->tag) 3396 tag = r->tag; 3397 if (r->rtableid >= 0) 3398 rtableid = r->rtableid; 3399 if (r->anchor == NULL) { 3400 match = 1; 3401 *rm = r; 3402 *am = a; 3403 *rsm = ruleset; 3404 if ((*rm)->quick) 3405 break; 3406 r = TAILQ_NEXT(r, entries); 3407 } else 3408 pf_step_into_anchor(anchor_stack, &asd, 3409 &ruleset, PF_RULESET_FILTER, &r, &a, 3410 &match); 3411 } 3412 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3413 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3414 break; 3415 } 3416 r = *rm; 3417 a = *am; 3418 ruleset = *rsm; 3419 3420 REASON_SET(&reason, PFRES_MATCH); 3421 3422 if (r->log || (nr != NULL && nr->log)) { 3423 if (rewrite) 3424 m_copyback(m, off, hdrlen, pd->hdr.any); 3425 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3426 ruleset, pd, 1); 3427 } 3428 3429 if ((r->action == PF_DROP) && 3430 ((r->rule_flag & PFRULE_RETURNRST) || 3431 (r->rule_flag & PFRULE_RETURNICMP) || 3432 (r->rule_flag & PFRULE_RETURN))) { 3433 /* undo NAT changes, if they have taken place */ 3434 if (nr != NULL) { 3435 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3436 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3437 if (pd->sport) 3438 *pd->sport = sk->port[pd->sidx]; 3439 if (pd->dport) 3440 *pd->dport = sk->port[pd->didx]; 3441 if (pd->proto_sum) 3442 *pd->proto_sum = bproto_sum; 3443 if (pd->ip_sum) 3444 *pd->ip_sum = bip_sum; 3445 m_copyback(m, off, hdrlen, pd->hdr.any); 3446 } 3447 if (pd->proto == IPPROTO_TCP && 3448 ((r->rule_flag & PFRULE_RETURNRST) || 3449 (r->rule_flag & PFRULE_RETURN)) && 3450 !(th->th_flags & TH_RST)) { 3451 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3452 int len = 0; 3453 #ifdef INET 3454 struct ip *h4; 3455 #endif 3456 #ifdef INET6 3457 struct ip6_hdr *h6; 3458 #endif 3459 3460 switch (af) { 3461 #ifdef INET 3462 case AF_INET: 3463 h4 = mtod(m, struct ip *); 3464 len = ntohs(h4->ip_len) - off; 3465 break; 3466 #endif 3467 #ifdef INET6 3468 case AF_INET6: 3469 h6 = mtod(m, struct ip6_hdr *); 3470 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3471 break; 3472 #endif 3473 } 3474 3475 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3476 REASON_SET(&reason, PFRES_PROTCKSUM); 3477 else { 3478 if (th->th_flags & TH_SYN) 3479 ack++; 3480 if (th->th_flags & TH_FIN) 3481 ack++; 3482 pf_send_tcp(m, r, af, pd->dst, 3483 pd->src, th->th_dport, th->th_sport, 3484 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3485 r->return_ttl, 1, 0, kif->pfik_ifp); 3486 } 3487 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3488 r->return_icmp) 3489 pf_send_icmp(m, r->return_icmp >> 8, 3490 r->return_icmp & 255, af, r); 3491 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3492 r->return_icmp6) 3493 pf_send_icmp(m, r->return_icmp6 >> 8, 3494 r->return_icmp6 & 255, af, r); 3495 } 3496 3497 if (r->action == PF_DROP) 3498 goto cleanup; 3499 3500 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3501 REASON_SET(&reason, PFRES_MEMORY); 3502 goto cleanup; 3503 } 3504 if (rtableid >= 0) 3505 M_SETFIB(m, rtableid); 3506 3507 if (!state_icmp && (r->keep_state || nr != NULL || 3508 (pd->flags & PFDESC_TCP_NORM))) { 3509 int action; 3510 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3511 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3512 hdrlen); 3513 if (action != PF_PASS) 3514 return (action); 3515 } else { 3516 if (sk != NULL) 3517 uma_zfree(V_pf_state_key_z, sk); 3518 if (nk != NULL) 3519 uma_zfree(V_pf_state_key_z, nk); 3520 } 3521 3522 /* copy back packet headers if we performed NAT operations */ 3523 if (rewrite) 3524 m_copyback(m, off, hdrlen, pd->hdr.any); 3525 3526 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3527 direction == PF_OUT && 3528 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3529 /* 3530 * We want the state created, but we dont 3531 * want to send this in case a partner 3532 * firewall has to know about it to allow 3533 * replies through it. 3534 */ 3535 return (PF_DEFER); 3536 3537 return (PF_PASS); 3538 3539 cleanup: 3540 if (sk != NULL) 3541 uma_zfree(V_pf_state_key_z, sk); 3542 if (nk != NULL) 3543 uma_zfree(V_pf_state_key_z, nk); 3544 return (PF_DROP); 3545 } 3546 3547 static int 3548 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3549 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3550 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3551 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3552 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3553 { 3554 struct pf_state *s = NULL; 3555 struct pf_src_node *sn = NULL; 3556 struct tcphdr *th = pd->hdr.tcp; 3557 u_int16_t mss = V_tcp_mssdflt; 3558 u_short reason; 3559 3560 /* check maximums */ 3561 if (r->max_states && 3562 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3563 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3564 REASON_SET(&reason, PFRES_MAXSTATES); 3565 goto csfailed; 3566 } 3567 /* src node for filter rule */ 3568 if ((r->rule_flag & PFRULE_SRCTRACK || 3569 r->rpool.opts & PF_POOL_STICKYADDR) && 3570 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3571 REASON_SET(&reason, PFRES_SRCLIMIT); 3572 goto csfailed; 3573 } 3574 /* src node for translation rule */ 3575 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3576 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3577 REASON_SET(&reason, PFRES_SRCLIMIT); 3578 goto csfailed; 3579 } 3580 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3581 if (s == NULL) { 3582 REASON_SET(&reason, PFRES_MEMORY); 3583 goto csfailed; 3584 } 3585 s->rule.ptr = r; 3586 s->nat_rule.ptr = nr; 3587 s->anchor.ptr = a; 3588 STATE_INC_COUNTERS(s); 3589 if (r->allow_opts) 3590 s->state_flags |= PFSTATE_ALLOWOPTS; 3591 if (r->rule_flag & PFRULE_STATESLOPPY) 3592 s->state_flags |= PFSTATE_SLOPPY; 3593 s->log = r->log & PF_LOG_ALL; 3594 s->sync_state = PFSYNC_S_NONE; 3595 if (nr != NULL) 3596 s->log |= nr->log & PF_LOG_ALL; 3597 switch (pd->proto) { 3598 case IPPROTO_TCP: 3599 s->src.seqlo = ntohl(th->th_seq); 3600 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3601 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3602 r->keep_state == PF_STATE_MODULATE) { 3603 /* Generate sequence number modulator */ 3604 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3605 0) 3606 s->src.seqdiff = 1; 3607 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3608 htonl(s->src.seqlo + s->src.seqdiff), 0); 3609 *rewrite = 1; 3610 } else 3611 s->src.seqdiff = 0; 3612 if (th->th_flags & TH_SYN) { 3613 s->src.seqhi++; 3614 s->src.wscale = pf_get_wscale(m, off, 3615 th->th_off, pd->af); 3616 } 3617 s->src.max_win = MAX(ntohs(th->th_win), 1); 3618 if (s->src.wscale & PF_WSCALE_MASK) { 3619 /* Remove scale factor from initial window */ 3620 int win = s->src.max_win; 3621 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3622 s->src.max_win = (win - 1) >> 3623 (s->src.wscale & PF_WSCALE_MASK); 3624 } 3625 if (th->th_flags & TH_FIN) 3626 s->src.seqhi++; 3627 s->dst.seqhi = 1; 3628 s->dst.max_win = 1; 3629 s->src.state = TCPS_SYN_SENT; 3630 s->dst.state = TCPS_CLOSED; 3631 s->timeout = PFTM_TCP_FIRST_PACKET; 3632 break; 3633 case IPPROTO_UDP: 3634 s->src.state = PFUDPS_SINGLE; 3635 s->dst.state = PFUDPS_NO_TRAFFIC; 3636 s->timeout = PFTM_UDP_FIRST_PACKET; 3637 break; 3638 case IPPROTO_ICMP: 3639 #ifdef INET6 3640 case IPPROTO_ICMPV6: 3641 #endif 3642 s->timeout = PFTM_ICMP_FIRST_PACKET; 3643 break; 3644 default: 3645 s->src.state = PFOTHERS_SINGLE; 3646 s->dst.state = PFOTHERS_NO_TRAFFIC; 3647 s->timeout = PFTM_OTHER_FIRST_PACKET; 3648 } 3649 3650 if (r->rt) { 3651 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3652 REASON_SET(&reason, PFRES_MAPFAILED); 3653 pf_src_tree_remove_state(s); 3654 STATE_DEC_COUNTERS(s); 3655 uma_zfree(V_pf_state_z, s); 3656 goto csfailed; 3657 } 3658 s->rt_kif = r->rpool.cur->kif; 3659 } 3660 3661 s->creation = time_uptime; 3662 s->expire = time_uptime; 3663 3664 if (sn != NULL) 3665 s->src_node = sn; 3666 if (nsn != NULL) { 3667 /* XXX We only modify one side for now. */ 3668 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3669 s->nat_src_node = nsn; 3670 } 3671 if (pd->proto == IPPROTO_TCP) { 3672 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3673 off, pd, th, &s->src, &s->dst)) { 3674 REASON_SET(&reason, PFRES_MEMORY); 3675 pf_src_tree_remove_state(s); 3676 STATE_DEC_COUNTERS(s); 3677 uma_zfree(V_pf_state_z, s); 3678 return (PF_DROP); 3679 } 3680 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3681 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3682 &s->src, &s->dst, rewrite)) { 3683 /* This really shouldn't happen!!! */ 3684 DPFPRINTF(PF_DEBUG_URGENT, 3685 ("pf_normalize_tcp_stateful failed on first pkt")); 3686 pf_normalize_tcp_cleanup(s); 3687 pf_src_tree_remove_state(s); 3688 STATE_DEC_COUNTERS(s); 3689 uma_zfree(V_pf_state_z, s); 3690 return (PF_DROP); 3691 } 3692 } 3693 s->direction = pd->dir; 3694 3695 /* 3696 * sk/nk could already been setup by pf_get_translation(). 3697 */ 3698 if (nr == NULL) { 3699 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3700 __func__, nr, sk, nk)); 3701 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3702 if (sk == NULL) 3703 goto csfailed; 3704 nk = sk; 3705 } else 3706 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3707 __func__, nr, sk, nk)); 3708 3709 /* Swap sk/nk for PF_OUT. */ 3710 if (pf_state_insert(BOUND_IFACE(r, kif), 3711 (pd->dir == PF_IN) ? sk : nk, 3712 (pd->dir == PF_IN) ? nk : sk, s)) { 3713 if (pd->proto == IPPROTO_TCP) 3714 pf_normalize_tcp_cleanup(s); 3715 REASON_SET(&reason, PFRES_STATEINS); 3716 pf_src_tree_remove_state(s); 3717 STATE_DEC_COUNTERS(s); 3718 uma_zfree(V_pf_state_z, s); 3719 return (PF_DROP); 3720 } else 3721 *sm = s; 3722 3723 if (tag > 0) 3724 s->tag = tag; 3725 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3726 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3727 s->src.state = PF_TCPS_PROXY_SRC; 3728 /* undo NAT changes, if they have taken place */ 3729 if (nr != NULL) { 3730 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3731 if (pd->dir == PF_OUT) 3732 skt = s->key[PF_SK_STACK]; 3733 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3734 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3735 if (pd->sport) 3736 *pd->sport = skt->port[pd->sidx]; 3737 if (pd->dport) 3738 *pd->dport = skt->port[pd->didx]; 3739 if (pd->proto_sum) 3740 *pd->proto_sum = bproto_sum; 3741 if (pd->ip_sum) 3742 *pd->ip_sum = bip_sum; 3743 m_copyback(m, off, hdrlen, pd->hdr.any); 3744 } 3745 s->src.seqhi = htonl(arc4random()); 3746 /* Find mss option */ 3747 int rtid = M_GETFIB(m); 3748 mss = pf_get_mss(m, off, th->th_off, pd->af); 3749 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3750 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3751 s->src.mss = mss; 3752 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3753 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3754 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3755 REASON_SET(&reason, PFRES_SYNPROXY); 3756 return (PF_SYNPROXY_DROP); 3757 } 3758 3759 return (PF_PASS); 3760 3761 csfailed: 3762 if (sk != NULL) 3763 uma_zfree(V_pf_state_key_z, sk); 3764 if (nk != NULL) 3765 uma_zfree(V_pf_state_key_z, nk); 3766 3767 if (sn != NULL) { 3768 struct pf_srchash *sh; 3769 3770 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3771 PF_HASHROW_LOCK(sh); 3772 if (--sn->states == 0 && sn->expire == 0) { 3773 pf_unlink_src_node(sn); 3774 uma_zfree(V_pf_sources_z, sn); 3775 counter_u64_add( 3776 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3777 } 3778 PF_HASHROW_UNLOCK(sh); 3779 } 3780 3781 if (nsn != sn && nsn != NULL) { 3782 struct pf_srchash *sh; 3783 3784 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3785 PF_HASHROW_LOCK(sh); 3786 if (--nsn->states == 0 && nsn->expire == 0) { 3787 pf_unlink_src_node(nsn); 3788 uma_zfree(V_pf_sources_z, nsn); 3789 counter_u64_add( 3790 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3791 } 3792 PF_HASHROW_UNLOCK(sh); 3793 } 3794 3795 return (PF_DROP); 3796 } 3797 3798 static int 3799 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3800 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3801 struct pf_ruleset **rsm) 3802 { 3803 struct pf_rule *r, *a = NULL; 3804 struct pf_ruleset *ruleset = NULL; 3805 sa_family_t af = pd->af; 3806 u_short reason; 3807 int tag = -1; 3808 int asd = 0; 3809 int match = 0; 3810 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3811 3812 PF_RULES_RASSERT(); 3813 3814 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3815 while (r != NULL) { 3816 r->evaluations++; 3817 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3818 r = r->skip[PF_SKIP_IFP].ptr; 3819 else if (r->direction && r->direction != direction) 3820 r = r->skip[PF_SKIP_DIR].ptr; 3821 else if (r->af && r->af != af) 3822 r = r->skip[PF_SKIP_AF].ptr; 3823 else if (r->proto && r->proto != pd->proto) 3824 r = r->skip[PF_SKIP_PROTO].ptr; 3825 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3826 r->src.neg, kif, M_GETFIB(m))) 3827 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3828 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3829 r->dst.neg, NULL, M_GETFIB(m))) 3830 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3831 else if (r->tos && !(r->tos == pd->tos)) 3832 r = TAILQ_NEXT(r, entries); 3833 else if (r->os_fingerprint != PF_OSFP_ANY) 3834 r = TAILQ_NEXT(r, entries); 3835 else if (pd->proto == IPPROTO_UDP && 3836 (r->src.port_op || r->dst.port_op)) 3837 r = TAILQ_NEXT(r, entries); 3838 else if (pd->proto == IPPROTO_TCP && 3839 (r->src.port_op || r->dst.port_op || r->flagset)) 3840 r = TAILQ_NEXT(r, entries); 3841 else if ((pd->proto == IPPROTO_ICMP || 3842 pd->proto == IPPROTO_ICMPV6) && 3843 (r->type || r->code)) 3844 r = TAILQ_NEXT(r, entries); 3845 else if (r->prio && 3846 !pf_match_ieee8021q_pcp(r->prio, m)) 3847 r = TAILQ_NEXT(r, entries); 3848 else if (r->prob && r->prob <= 3849 (arc4random() % (UINT_MAX - 1) + 1)) 3850 r = TAILQ_NEXT(r, entries); 3851 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3852 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3853 r = TAILQ_NEXT(r, entries); 3854 else { 3855 if (r->anchor == NULL) { 3856 match = 1; 3857 *rm = r; 3858 *am = a; 3859 *rsm = ruleset; 3860 if ((*rm)->quick) 3861 break; 3862 r = TAILQ_NEXT(r, entries); 3863 } else 3864 pf_step_into_anchor(anchor_stack, &asd, 3865 &ruleset, PF_RULESET_FILTER, &r, &a, 3866 &match); 3867 } 3868 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3869 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3870 break; 3871 } 3872 r = *rm; 3873 a = *am; 3874 ruleset = *rsm; 3875 3876 REASON_SET(&reason, PFRES_MATCH); 3877 3878 if (r->log) 3879 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3880 1); 3881 3882 if (r->action != PF_PASS) 3883 return (PF_DROP); 3884 3885 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3886 REASON_SET(&reason, PFRES_MEMORY); 3887 return (PF_DROP); 3888 } 3889 3890 return (PF_PASS); 3891 } 3892 3893 static int 3894 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3895 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3896 struct pf_pdesc *pd, u_short *reason, int *copyback) 3897 { 3898 struct tcphdr *th = pd->hdr.tcp; 3899 u_int16_t win = ntohs(th->th_win); 3900 u_int32_t ack, end, seq, orig_seq; 3901 u_int8_t sws, dws; 3902 int ackskew; 3903 3904 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3905 sws = src->wscale & PF_WSCALE_MASK; 3906 dws = dst->wscale & PF_WSCALE_MASK; 3907 } else 3908 sws = dws = 0; 3909 3910 /* 3911 * Sequence tracking algorithm from Guido van Rooij's paper: 3912 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3913 * tcp_filtering.ps 3914 */ 3915 3916 orig_seq = seq = ntohl(th->th_seq); 3917 if (src->seqlo == 0) { 3918 /* First packet from this end. Set its state */ 3919 3920 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3921 src->scrub == NULL) { 3922 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3923 REASON_SET(reason, PFRES_MEMORY); 3924 return (PF_DROP); 3925 } 3926 } 3927 3928 /* Deferred generation of sequence number modulator */ 3929 if (dst->seqdiff && !src->seqdiff) { 3930 /* use random iss for the TCP server */ 3931 while ((src->seqdiff = arc4random() - seq) == 0) 3932 ; 3933 ack = ntohl(th->th_ack) - dst->seqdiff; 3934 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3935 src->seqdiff), 0); 3936 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 3937 *copyback = 1; 3938 } else { 3939 ack = ntohl(th->th_ack); 3940 } 3941 3942 end = seq + pd->p_len; 3943 if (th->th_flags & TH_SYN) { 3944 end++; 3945 if (dst->wscale & PF_WSCALE_FLAG) { 3946 src->wscale = pf_get_wscale(m, off, th->th_off, 3947 pd->af); 3948 if (src->wscale & PF_WSCALE_FLAG) { 3949 /* Remove scale factor from initial 3950 * window */ 3951 sws = src->wscale & PF_WSCALE_MASK; 3952 win = ((u_int32_t)win + (1 << sws) - 1) 3953 >> sws; 3954 dws = dst->wscale & PF_WSCALE_MASK; 3955 } else { 3956 /* fixup other window */ 3957 dst->max_win <<= dst->wscale & 3958 PF_WSCALE_MASK; 3959 /* in case of a retrans SYN|ACK */ 3960 dst->wscale = 0; 3961 } 3962 } 3963 } 3964 if (th->th_flags & TH_FIN) 3965 end++; 3966 3967 src->seqlo = seq; 3968 if (src->state < TCPS_SYN_SENT) 3969 src->state = TCPS_SYN_SENT; 3970 3971 /* 3972 * May need to slide the window (seqhi may have been set by 3973 * the crappy stack check or if we picked up the connection 3974 * after establishment) 3975 */ 3976 if (src->seqhi == 1 || 3977 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3978 src->seqhi = end + MAX(1, dst->max_win << dws); 3979 if (win > src->max_win) 3980 src->max_win = win; 3981 3982 } else { 3983 ack = ntohl(th->th_ack) - dst->seqdiff; 3984 if (src->seqdiff) { 3985 /* Modulate sequence numbers */ 3986 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3987 src->seqdiff), 0); 3988 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 3989 *copyback = 1; 3990 } 3991 end = seq + pd->p_len; 3992 if (th->th_flags & TH_SYN) 3993 end++; 3994 if (th->th_flags & TH_FIN) 3995 end++; 3996 } 3997 3998 if ((th->th_flags & TH_ACK) == 0) { 3999 /* Let it pass through the ack skew check */ 4000 ack = dst->seqlo; 4001 } else if ((ack == 0 && 4002 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4003 /* broken tcp stacks do not set ack */ 4004 (dst->state < TCPS_SYN_SENT)) { 4005 /* 4006 * Many stacks (ours included) will set the ACK number in an 4007 * FIN|ACK if the SYN times out -- no sequence to ACK. 4008 */ 4009 ack = dst->seqlo; 4010 } 4011 4012 if (seq == end) { 4013 /* Ease sequencing restrictions on no data packets */ 4014 seq = src->seqlo; 4015 end = seq; 4016 } 4017 4018 ackskew = dst->seqlo - ack; 4019 4020 4021 /* 4022 * Need to demodulate the sequence numbers in any TCP SACK options 4023 * (Selective ACK). We could optionally validate the SACK values 4024 * against the current ACK window, either forwards or backwards, but 4025 * I'm not confident that SACK has been implemented properly 4026 * everywhere. It wouldn't surprise me if several stacks accidentally 4027 * SACK too far backwards of previously ACKed data. There really aren't 4028 * any security implications of bad SACKing unless the target stack 4029 * doesn't validate the option length correctly. Someone trying to 4030 * spoof into a TCP connection won't bother blindly sending SACK 4031 * options anyway. 4032 */ 4033 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4034 if (pf_modulate_sack(m, off, pd, th, dst)) 4035 *copyback = 1; 4036 } 4037 4038 4039 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4040 if (SEQ_GEQ(src->seqhi, end) && 4041 /* Last octet inside other's window space */ 4042 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4043 /* Retrans: not more than one window back */ 4044 (ackskew >= -MAXACKWINDOW) && 4045 /* Acking not more than one reassembled fragment backwards */ 4046 (ackskew <= (MAXACKWINDOW << sws)) && 4047 /* Acking not more than one window forward */ 4048 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4049 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4050 (pd->flags & PFDESC_IP_REAS) == 0)) { 4051 /* Require an exact/+1 sequence match on resets when possible */ 4052 4053 if (dst->scrub || src->scrub) { 4054 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4055 *state, src, dst, copyback)) 4056 return (PF_DROP); 4057 } 4058 4059 /* update max window */ 4060 if (src->max_win < win) 4061 src->max_win = win; 4062 /* synchronize sequencing */ 4063 if (SEQ_GT(end, src->seqlo)) 4064 src->seqlo = end; 4065 /* slide the window of what the other end can send */ 4066 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4067 dst->seqhi = ack + MAX((win << sws), 1); 4068 4069 4070 /* update states */ 4071 if (th->th_flags & TH_SYN) 4072 if (src->state < TCPS_SYN_SENT) 4073 src->state = TCPS_SYN_SENT; 4074 if (th->th_flags & TH_FIN) 4075 if (src->state < TCPS_CLOSING) 4076 src->state = TCPS_CLOSING; 4077 if (th->th_flags & TH_ACK) { 4078 if (dst->state == TCPS_SYN_SENT) { 4079 dst->state = TCPS_ESTABLISHED; 4080 if (src->state == TCPS_ESTABLISHED && 4081 (*state)->src_node != NULL && 4082 pf_src_connlimit(state)) { 4083 REASON_SET(reason, PFRES_SRCLIMIT); 4084 return (PF_DROP); 4085 } 4086 } else if (dst->state == TCPS_CLOSING) 4087 dst->state = TCPS_FIN_WAIT_2; 4088 } 4089 if (th->th_flags & TH_RST) 4090 src->state = dst->state = TCPS_TIME_WAIT; 4091 4092 /* update expire time */ 4093 (*state)->expire = time_uptime; 4094 if (src->state >= TCPS_FIN_WAIT_2 && 4095 dst->state >= TCPS_FIN_WAIT_2) 4096 (*state)->timeout = PFTM_TCP_CLOSED; 4097 else if (src->state >= TCPS_CLOSING && 4098 dst->state >= TCPS_CLOSING) 4099 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4100 else if (src->state < TCPS_ESTABLISHED || 4101 dst->state < TCPS_ESTABLISHED) 4102 (*state)->timeout = PFTM_TCP_OPENING; 4103 else if (src->state >= TCPS_CLOSING || 4104 dst->state >= TCPS_CLOSING) 4105 (*state)->timeout = PFTM_TCP_CLOSING; 4106 else 4107 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4108 4109 /* Fall through to PASS packet */ 4110 4111 } else if ((dst->state < TCPS_SYN_SENT || 4112 dst->state >= TCPS_FIN_WAIT_2 || 4113 src->state >= TCPS_FIN_WAIT_2) && 4114 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4115 /* Within a window forward of the originating packet */ 4116 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4117 /* Within a window backward of the originating packet */ 4118 4119 /* 4120 * This currently handles three situations: 4121 * 1) Stupid stacks will shotgun SYNs before their peer 4122 * replies. 4123 * 2) When PF catches an already established stream (the 4124 * firewall rebooted, the state table was flushed, routes 4125 * changed...) 4126 * 3) Packets get funky immediately after the connection 4127 * closes (this should catch Solaris spurious ACK|FINs 4128 * that web servers like to spew after a close) 4129 * 4130 * This must be a little more careful than the above code 4131 * since packet floods will also be caught here. We don't 4132 * update the TTL here to mitigate the damage of a packet 4133 * flood and so the same code can handle awkward establishment 4134 * and a loosened connection close. 4135 * In the establishment case, a correct peer response will 4136 * validate the connection, go through the normal state code 4137 * and keep updating the state TTL. 4138 */ 4139 4140 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4141 printf("pf: loose state match: "); 4142 pf_print_state(*state); 4143 pf_print_flags(th->th_flags); 4144 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4145 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4146 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4147 (unsigned long long)(*state)->packets[1], 4148 pd->dir == PF_IN ? "in" : "out", 4149 pd->dir == (*state)->direction ? "fwd" : "rev"); 4150 } 4151 4152 if (dst->scrub || src->scrub) { 4153 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4154 *state, src, dst, copyback)) 4155 return (PF_DROP); 4156 } 4157 4158 /* update max window */ 4159 if (src->max_win < win) 4160 src->max_win = win; 4161 /* synchronize sequencing */ 4162 if (SEQ_GT(end, src->seqlo)) 4163 src->seqlo = end; 4164 /* slide the window of what the other end can send */ 4165 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4166 dst->seqhi = ack + MAX((win << sws), 1); 4167 4168 /* 4169 * Cannot set dst->seqhi here since this could be a shotgunned 4170 * SYN and not an already established connection. 4171 */ 4172 4173 if (th->th_flags & TH_FIN) 4174 if (src->state < TCPS_CLOSING) 4175 src->state = TCPS_CLOSING; 4176 if (th->th_flags & TH_RST) 4177 src->state = dst->state = TCPS_TIME_WAIT; 4178 4179 /* Fall through to PASS packet */ 4180 4181 } else { 4182 if ((*state)->dst.state == TCPS_SYN_SENT && 4183 (*state)->src.state == TCPS_SYN_SENT) { 4184 /* Send RST for state mismatches during handshake */ 4185 if (!(th->th_flags & TH_RST)) 4186 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4187 pd->dst, pd->src, th->th_dport, 4188 th->th_sport, ntohl(th->th_ack), 0, 4189 TH_RST, 0, 0, 4190 (*state)->rule.ptr->return_ttl, 1, 0, 4191 kif->pfik_ifp); 4192 src->seqlo = 0; 4193 src->seqhi = 1; 4194 src->max_win = 1; 4195 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4196 printf("pf: BAD state: "); 4197 pf_print_state(*state); 4198 pf_print_flags(th->th_flags); 4199 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4200 "pkts=%llu:%llu dir=%s,%s\n", 4201 seq, orig_seq, ack, pd->p_len, ackskew, 4202 (unsigned long long)(*state)->packets[0], 4203 (unsigned long long)(*state)->packets[1], 4204 pd->dir == PF_IN ? "in" : "out", 4205 pd->dir == (*state)->direction ? "fwd" : "rev"); 4206 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4207 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4208 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4209 ' ': '2', 4210 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4211 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4212 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4213 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4214 } 4215 REASON_SET(reason, PFRES_BADSTATE); 4216 return (PF_DROP); 4217 } 4218 4219 return (PF_PASS); 4220 } 4221 4222 static int 4223 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4224 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4225 { 4226 struct tcphdr *th = pd->hdr.tcp; 4227 4228 if (th->th_flags & TH_SYN) 4229 if (src->state < TCPS_SYN_SENT) 4230 src->state = TCPS_SYN_SENT; 4231 if (th->th_flags & TH_FIN) 4232 if (src->state < TCPS_CLOSING) 4233 src->state = TCPS_CLOSING; 4234 if (th->th_flags & TH_ACK) { 4235 if (dst->state == TCPS_SYN_SENT) { 4236 dst->state = TCPS_ESTABLISHED; 4237 if (src->state == TCPS_ESTABLISHED && 4238 (*state)->src_node != NULL && 4239 pf_src_connlimit(state)) { 4240 REASON_SET(reason, PFRES_SRCLIMIT); 4241 return (PF_DROP); 4242 } 4243 } else if (dst->state == TCPS_CLOSING) { 4244 dst->state = TCPS_FIN_WAIT_2; 4245 } else if (src->state == TCPS_SYN_SENT && 4246 dst->state < TCPS_SYN_SENT) { 4247 /* 4248 * Handle a special sloppy case where we only see one 4249 * half of the connection. If there is a ACK after 4250 * the initial SYN without ever seeing a packet from 4251 * the destination, set the connection to established. 4252 */ 4253 dst->state = src->state = TCPS_ESTABLISHED; 4254 if ((*state)->src_node != NULL && 4255 pf_src_connlimit(state)) { 4256 REASON_SET(reason, PFRES_SRCLIMIT); 4257 return (PF_DROP); 4258 } 4259 } else if (src->state == TCPS_CLOSING && 4260 dst->state == TCPS_ESTABLISHED && 4261 dst->seqlo == 0) { 4262 /* 4263 * Handle the closing of half connections where we 4264 * don't see the full bidirectional FIN/ACK+ACK 4265 * handshake. 4266 */ 4267 dst->state = TCPS_CLOSING; 4268 } 4269 } 4270 if (th->th_flags & TH_RST) 4271 src->state = dst->state = TCPS_TIME_WAIT; 4272 4273 /* update expire time */ 4274 (*state)->expire = time_uptime; 4275 if (src->state >= TCPS_FIN_WAIT_2 && 4276 dst->state >= TCPS_FIN_WAIT_2) 4277 (*state)->timeout = PFTM_TCP_CLOSED; 4278 else if (src->state >= TCPS_CLOSING && 4279 dst->state >= TCPS_CLOSING) 4280 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4281 else if (src->state < TCPS_ESTABLISHED || 4282 dst->state < TCPS_ESTABLISHED) 4283 (*state)->timeout = PFTM_TCP_OPENING; 4284 else if (src->state >= TCPS_CLOSING || 4285 dst->state >= TCPS_CLOSING) 4286 (*state)->timeout = PFTM_TCP_CLOSING; 4287 else 4288 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4289 4290 return (PF_PASS); 4291 } 4292 4293 static int 4294 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4295 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4296 u_short *reason) 4297 { 4298 struct pf_state_key_cmp key; 4299 struct tcphdr *th = pd->hdr.tcp; 4300 int copyback = 0; 4301 struct pf_state_peer *src, *dst; 4302 struct pf_state_key *sk; 4303 4304 bzero(&key, sizeof(key)); 4305 key.af = pd->af; 4306 key.proto = IPPROTO_TCP; 4307 if (direction == PF_IN) { /* wire side, straight */ 4308 PF_ACPY(&key.addr[0], pd->src, key.af); 4309 PF_ACPY(&key.addr[1], pd->dst, key.af); 4310 key.port[0] = th->th_sport; 4311 key.port[1] = th->th_dport; 4312 } else { /* stack side, reverse */ 4313 PF_ACPY(&key.addr[1], pd->src, key.af); 4314 PF_ACPY(&key.addr[0], pd->dst, key.af); 4315 key.port[1] = th->th_sport; 4316 key.port[0] = th->th_dport; 4317 } 4318 4319 STATE_LOOKUP(kif, &key, direction, *state, pd); 4320 4321 if (direction == (*state)->direction) { 4322 src = &(*state)->src; 4323 dst = &(*state)->dst; 4324 } else { 4325 src = &(*state)->dst; 4326 dst = &(*state)->src; 4327 } 4328 4329 sk = (*state)->key[pd->didx]; 4330 4331 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4332 if (direction != (*state)->direction) { 4333 REASON_SET(reason, PFRES_SYNPROXY); 4334 return (PF_SYNPROXY_DROP); 4335 } 4336 if (th->th_flags & TH_SYN) { 4337 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4338 REASON_SET(reason, PFRES_SYNPROXY); 4339 return (PF_DROP); 4340 } 4341 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4342 pd->src, th->th_dport, th->th_sport, 4343 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4344 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4345 REASON_SET(reason, PFRES_SYNPROXY); 4346 return (PF_SYNPROXY_DROP); 4347 } else if (!(th->th_flags & TH_ACK) || 4348 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4349 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4350 REASON_SET(reason, PFRES_SYNPROXY); 4351 return (PF_DROP); 4352 } else if ((*state)->src_node != NULL && 4353 pf_src_connlimit(state)) { 4354 REASON_SET(reason, PFRES_SRCLIMIT); 4355 return (PF_DROP); 4356 } else 4357 (*state)->src.state = PF_TCPS_PROXY_DST; 4358 } 4359 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4360 if (direction == (*state)->direction) { 4361 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4362 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4363 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4364 REASON_SET(reason, PFRES_SYNPROXY); 4365 return (PF_DROP); 4366 } 4367 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4368 if ((*state)->dst.seqhi == 1) 4369 (*state)->dst.seqhi = htonl(arc4random()); 4370 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4371 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4372 sk->port[pd->sidx], sk->port[pd->didx], 4373 (*state)->dst.seqhi, 0, TH_SYN, 0, 4374 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4375 REASON_SET(reason, PFRES_SYNPROXY); 4376 return (PF_SYNPROXY_DROP); 4377 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4378 (TH_SYN|TH_ACK)) || 4379 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4380 REASON_SET(reason, PFRES_SYNPROXY); 4381 return (PF_DROP); 4382 } else { 4383 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4384 (*state)->dst.seqlo = ntohl(th->th_seq); 4385 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4386 pd->src, th->th_dport, th->th_sport, 4387 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4388 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4389 (*state)->tag, NULL); 4390 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4391 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4392 sk->port[pd->sidx], sk->port[pd->didx], 4393 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4394 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4395 (*state)->src.seqdiff = (*state)->dst.seqhi - 4396 (*state)->src.seqlo; 4397 (*state)->dst.seqdiff = (*state)->src.seqhi - 4398 (*state)->dst.seqlo; 4399 (*state)->src.seqhi = (*state)->src.seqlo + 4400 (*state)->dst.max_win; 4401 (*state)->dst.seqhi = (*state)->dst.seqlo + 4402 (*state)->src.max_win; 4403 (*state)->src.wscale = (*state)->dst.wscale = 0; 4404 (*state)->src.state = (*state)->dst.state = 4405 TCPS_ESTABLISHED; 4406 REASON_SET(reason, PFRES_SYNPROXY); 4407 return (PF_SYNPROXY_DROP); 4408 } 4409 } 4410 4411 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4412 dst->state >= TCPS_FIN_WAIT_2 && 4413 src->state >= TCPS_FIN_WAIT_2) { 4414 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4415 printf("pf: state reuse "); 4416 pf_print_state(*state); 4417 pf_print_flags(th->th_flags); 4418 printf("\n"); 4419 } 4420 /* XXX make sure it's the same direction ?? */ 4421 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4422 pf_unlink_state(*state, PF_ENTER_LOCKED); 4423 *state = NULL; 4424 return (PF_DROP); 4425 } 4426 4427 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4428 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4429 return (PF_DROP); 4430 } else { 4431 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4432 ©back) == PF_DROP) 4433 return (PF_DROP); 4434 } 4435 4436 /* translate source/destination address, if necessary */ 4437 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4438 struct pf_state_key *nk = (*state)->key[pd->didx]; 4439 4440 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4441 nk->port[pd->sidx] != th->th_sport) 4442 pf_change_ap(m, pd->src, &th->th_sport, 4443 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4444 nk->port[pd->sidx], 0, pd->af); 4445 4446 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4447 nk->port[pd->didx] != th->th_dport) 4448 pf_change_ap(m, pd->dst, &th->th_dport, 4449 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4450 nk->port[pd->didx], 0, pd->af); 4451 copyback = 1; 4452 } 4453 4454 /* Copyback sequence modulation or stateful scrub changes if needed */ 4455 if (copyback) 4456 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4457 4458 return (PF_PASS); 4459 } 4460 4461 static int 4462 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4463 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4464 { 4465 struct pf_state_peer *src, *dst; 4466 struct pf_state_key_cmp key; 4467 struct udphdr *uh = pd->hdr.udp; 4468 4469 bzero(&key, sizeof(key)); 4470 key.af = pd->af; 4471 key.proto = IPPROTO_UDP; 4472 if (direction == PF_IN) { /* wire side, straight */ 4473 PF_ACPY(&key.addr[0], pd->src, key.af); 4474 PF_ACPY(&key.addr[1], pd->dst, key.af); 4475 key.port[0] = uh->uh_sport; 4476 key.port[1] = uh->uh_dport; 4477 } else { /* stack side, reverse */ 4478 PF_ACPY(&key.addr[1], pd->src, key.af); 4479 PF_ACPY(&key.addr[0], pd->dst, key.af); 4480 key.port[1] = uh->uh_sport; 4481 key.port[0] = uh->uh_dport; 4482 } 4483 4484 STATE_LOOKUP(kif, &key, direction, *state, pd); 4485 4486 if (direction == (*state)->direction) { 4487 src = &(*state)->src; 4488 dst = &(*state)->dst; 4489 } else { 4490 src = &(*state)->dst; 4491 dst = &(*state)->src; 4492 } 4493 4494 /* update states */ 4495 if (src->state < PFUDPS_SINGLE) 4496 src->state = PFUDPS_SINGLE; 4497 if (dst->state == PFUDPS_SINGLE) 4498 dst->state = PFUDPS_MULTIPLE; 4499 4500 /* update expire time */ 4501 (*state)->expire = time_uptime; 4502 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4503 (*state)->timeout = PFTM_UDP_MULTIPLE; 4504 else 4505 (*state)->timeout = PFTM_UDP_SINGLE; 4506 4507 /* translate source/destination address, if necessary */ 4508 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4509 struct pf_state_key *nk = (*state)->key[pd->didx]; 4510 4511 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4512 nk->port[pd->sidx] != uh->uh_sport) 4513 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4514 &uh->uh_sum, &nk->addr[pd->sidx], 4515 nk->port[pd->sidx], 1, pd->af); 4516 4517 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4518 nk->port[pd->didx] != uh->uh_dport) 4519 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4520 &uh->uh_sum, &nk->addr[pd->didx], 4521 nk->port[pd->didx], 1, pd->af); 4522 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4523 } 4524 4525 return (PF_PASS); 4526 } 4527 4528 static int 4529 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4530 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4531 { 4532 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4533 u_int16_t icmpid = 0, *icmpsum; 4534 u_int8_t icmptype; 4535 int state_icmp = 0; 4536 struct pf_state_key_cmp key; 4537 4538 bzero(&key, sizeof(key)); 4539 switch (pd->proto) { 4540 #ifdef INET 4541 case IPPROTO_ICMP: 4542 icmptype = pd->hdr.icmp->icmp_type; 4543 icmpid = pd->hdr.icmp->icmp_id; 4544 icmpsum = &pd->hdr.icmp->icmp_cksum; 4545 4546 if (icmptype == ICMP_UNREACH || 4547 icmptype == ICMP_SOURCEQUENCH || 4548 icmptype == ICMP_REDIRECT || 4549 icmptype == ICMP_TIMXCEED || 4550 icmptype == ICMP_PARAMPROB) 4551 state_icmp++; 4552 break; 4553 #endif /* INET */ 4554 #ifdef INET6 4555 case IPPROTO_ICMPV6: 4556 icmptype = pd->hdr.icmp6->icmp6_type; 4557 icmpid = pd->hdr.icmp6->icmp6_id; 4558 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4559 4560 if (icmptype == ICMP6_DST_UNREACH || 4561 icmptype == ICMP6_PACKET_TOO_BIG || 4562 icmptype == ICMP6_TIME_EXCEEDED || 4563 icmptype == ICMP6_PARAM_PROB) 4564 state_icmp++; 4565 break; 4566 #endif /* INET6 */ 4567 } 4568 4569 if (!state_icmp) { 4570 4571 /* 4572 * ICMP query/reply message not related to a TCP/UDP packet. 4573 * Search for an ICMP state. 4574 */ 4575 key.af = pd->af; 4576 key.proto = pd->proto; 4577 key.port[0] = key.port[1] = icmpid; 4578 if (direction == PF_IN) { /* wire side, straight */ 4579 PF_ACPY(&key.addr[0], pd->src, key.af); 4580 PF_ACPY(&key.addr[1], pd->dst, key.af); 4581 } else { /* stack side, reverse */ 4582 PF_ACPY(&key.addr[1], pd->src, key.af); 4583 PF_ACPY(&key.addr[0], pd->dst, key.af); 4584 } 4585 4586 STATE_LOOKUP(kif, &key, direction, *state, pd); 4587 4588 (*state)->expire = time_uptime; 4589 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4590 4591 /* translate source/destination address, if necessary */ 4592 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4593 struct pf_state_key *nk = (*state)->key[pd->didx]; 4594 4595 switch (pd->af) { 4596 #ifdef INET 4597 case AF_INET: 4598 if (PF_ANEQ(pd->src, 4599 &nk->addr[pd->sidx], AF_INET)) 4600 pf_change_a(&saddr->v4.s_addr, 4601 pd->ip_sum, 4602 nk->addr[pd->sidx].v4.s_addr, 0); 4603 4604 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4605 AF_INET)) 4606 pf_change_a(&daddr->v4.s_addr, 4607 pd->ip_sum, 4608 nk->addr[pd->didx].v4.s_addr, 0); 4609 4610 if (nk->port[0] != 4611 pd->hdr.icmp->icmp_id) { 4612 pd->hdr.icmp->icmp_cksum = 4613 pf_cksum_fixup( 4614 pd->hdr.icmp->icmp_cksum, icmpid, 4615 nk->port[pd->sidx], 0); 4616 pd->hdr.icmp->icmp_id = 4617 nk->port[pd->sidx]; 4618 } 4619 4620 m_copyback(m, off, ICMP_MINLEN, 4621 (caddr_t )pd->hdr.icmp); 4622 break; 4623 #endif /* INET */ 4624 #ifdef INET6 4625 case AF_INET6: 4626 if (PF_ANEQ(pd->src, 4627 &nk->addr[pd->sidx], AF_INET6)) 4628 pf_change_a6(saddr, 4629 &pd->hdr.icmp6->icmp6_cksum, 4630 &nk->addr[pd->sidx], 0); 4631 4632 if (PF_ANEQ(pd->dst, 4633 &nk->addr[pd->didx], AF_INET6)) 4634 pf_change_a6(daddr, 4635 &pd->hdr.icmp6->icmp6_cksum, 4636 &nk->addr[pd->didx], 0); 4637 4638 m_copyback(m, off, sizeof(struct icmp6_hdr), 4639 (caddr_t )pd->hdr.icmp6); 4640 break; 4641 #endif /* INET6 */ 4642 } 4643 } 4644 return (PF_PASS); 4645 4646 } else { 4647 /* 4648 * ICMP error message in response to a TCP/UDP packet. 4649 * Extract the inner TCP/UDP header and search for that state. 4650 */ 4651 4652 struct pf_pdesc pd2; 4653 bzero(&pd2, sizeof pd2); 4654 #ifdef INET 4655 struct ip h2; 4656 #endif /* INET */ 4657 #ifdef INET6 4658 struct ip6_hdr h2_6; 4659 int terminal = 0; 4660 #endif /* INET6 */ 4661 int ipoff2 = 0; 4662 int off2 = 0; 4663 4664 pd2.af = pd->af; 4665 /* Payload packet is from the opposite direction. */ 4666 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4667 pd2.didx = (direction == PF_IN) ? 0 : 1; 4668 switch (pd->af) { 4669 #ifdef INET 4670 case AF_INET: 4671 /* offset of h2 in mbuf chain */ 4672 ipoff2 = off + ICMP_MINLEN; 4673 4674 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4675 NULL, reason, pd2.af)) { 4676 DPFPRINTF(PF_DEBUG_MISC, 4677 ("pf: ICMP error message too short " 4678 "(ip)\n")); 4679 return (PF_DROP); 4680 } 4681 /* 4682 * ICMP error messages don't refer to non-first 4683 * fragments 4684 */ 4685 if (h2.ip_off & htons(IP_OFFMASK)) { 4686 REASON_SET(reason, PFRES_FRAG); 4687 return (PF_DROP); 4688 } 4689 4690 /* offset of protocol header that follows h2 */ 4691 off2 = ipoff2 + (h2.ip_hl << 2); 4692 4693 pd2.proto = h2.ip_p; 4694 pd2.src = (struct pf_addr *)&h2.ip_src; 4695 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4696 pd2.ip_sum = &h2.ip_sum; 4697 break; 4698 #endif /* INET */ 4699 #ifdef INET6 4700 case AF_INET6: 4701 ipoff2 = off + sizeof(struct icmp6_hdr); 4702 4703 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4704 NULL, reason, pd2.af)) { 4705 DPFPRINTF(PF_DEBUG_MISC, 4706 ("pf: ICMP error message too short " 4707 "(ip6)\n")); 4708 return (PF_DROP); 4709 } 4710 pd2.proto = h2_6.ip6_nxt; 4711 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4712 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4713 pd2.ip_sum = NULL; 4714 off2 = ipoff2 + sizeof(h2_6); 4715 do { 4716 switch (pd2.proto) { 4717 case IPPROTO_FRAGMENT: 4718 /* 4719 * ICMPv6 error messages for 4720 * non-first fragments 4721 */ 4722 REASON_SET(reason, PFRES_FRAG); 4723 return (PF_DROP); 4724 case IPPROTO_AH: 4725 case IPPROTO_HOPOPTS: 4726 case IPPROTO_ROUTING: 4727 case IPPROTO_DSTOPTS: { 4728 /* get next header and header length */ 4729 struct ip6_ext opt6; 4730 4731 if (!pf_pull_hdr(m, off2, &opt6, 4732 sizeof(opt6), NULL, reason, 4733 pd2.af)) { 4734 DPFPRINTF(PF_DEBUG_MISC, 4735 ("pf: ICMPv6 short opt\n")); 4736 return (PF_DROP); 4737 } 4738 if (pd2.proto == IPPROTO_AH) 4739 off2 += (opt6.ip6e_len + 2) * 4; 4740 else 4741 off2 += (opt6.ip6e_len + 1) * 8; 4742 pd2.proto = opt6.ip6e_nxt; 4743 /* goto the next header */ 4744 break; 4745 } 4746 default: 4747 terminal++; 4748 break; 4749 } 4750 } while (!terminal); 4751 break; 4752 #endif /* INET6 */ 4753 } 4754 4755 switch (pd2.proto) { 4756 case IPPROTO_TCP: { 4757 struct tcphdr th; 4758 u_int32_t seq; 4759 struct pf_state_peer *src, *dst; 4760 u_int8_t dws; 4761 int copyback = 0; 4762 4763 /* 4764 * Only the first 8 bytes of the TCP header can be 4765 * expected. Don't access any TCP header fields after 4766 * th_seq, an ackskew test is not possible. 4767 */ 4768 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4769 pd2.af)) { 4770 DPFPRINTF(PF_DEBUG_MISC, 4771 ("pf: ICMP error message too short " 4772 "(tcp)\n")); 4773 return (PF_DROP); 4774 } 4775 4776 key.af = pd2.af; 4777 key.proto = IPPROTO_TCP; 4778 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4779 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4780 key.port[pd2.sidx] = th.th_sport; 4781 key.port[pd2.didx] = th.th_dport; 4782 4783 STATE_LOOKUP(kif, &key, direction, *state, pd); 4784 4785 if (direction == (*state)->direction) { 4786 src = &(*state)->dst; 4787 dst = &(*state)->src; 4788 } else { 4789 src = &(*state)->src; 4790 dst = &(*state)->dst; 4791 } 4792 4793 if (src->wscale && dst->wscale) 4794 dws = dst->wscale & PF_WSCALE_MASK; 4795 else 4796 dws = 0; 4797 4798 /* Demodulate sequence number */ 4799 seq = ntohl(th.th_seq) - src->seqdiff; 4800 if (src->seqdiff) { 4801 pf_change_a(&th.th_seq, icmpsum, 4802 htonl(seq), 0); 4803 copyback = 1; 4804 } 4805 4806 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4807 (!SEQ_GEQ(src->seqhi, seq) || 4808 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4809 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4810 printf("pf: BAD ICMP %d:%d ", 4811 icmptype, pd->hdr.icmp->icmp_code); 4812 pf_print_host(pd->src, 0, pd->af); 4813 printf(" -> "); 4814 pf_print_host(pd->dst, 0, pd->af); 4815 printf(" state: "); 4816 pf_print_state(*state); 4817 printf(" seq=%u\n", seq); 4818 } 4819 REASON_SET(reason, PFRES_BADSTATE); 4820 return (PF_DROP); 4821 } else { 4822 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4823 printf("pf: OK ICMP %d:%d ", 4824 icmptype, pd->hdr.icmp->icmp_code); 4825 pf_print_host(pd->src, 0, pd->af); 4826 printf(" -> "); 4827 pf_print_host(pd->dst, 0, pd->af); 4828 printf(" state: "); 4829 pf_print_state(*state); 4830 printf(" seq=%u\n", seq); 4831 } 4832 } 4833 4834 /* translate source/destination address, if necessary */ 4835 if ((*state)->key[PF_SK_WIRE] != 4836 (*state)->key[PF_SK_STACK]) { 4837 struct pf_state_key *nk = 4838 (*state)->key[pd->didx]; 4839 4840 if (PF_ANEQ(pd2.src, 4841 &nk->addr[pd2.sidx], pd2.af) || 4842 nk->port[pd2.sidx] != th.th_sport) 4843 pf_change_icmp(pd2.src, &th.th_sport, 4844 daddr, &nk->addr[pd2.sidx], 4845 nk->port[pd2.sidx], NULL, 4846 pd2.ip_sum, icmpsum, 4847 pd->ip_sum, 0, pd2.af); 4848 4849 if (PF_ANEQ(pd2.dst, 4850 &nk->addr[pd2.didx], pd2.af) || 4851 nk->port[pd2.didx] != th.th_dport) 4852 pf_change_icmp(pd2.dst, &th.th_dport, 4853 saddr, &nk->addr[pd2.didx], 4854 nk->port[pd2.didx], NULL, 4855 pd2.ip_sum, icmpsum, 4856 pd->ip_sum, 0, pd2.af); 4857 copyback = 1; 4858 } 4859 4860 if (copyback) { 4861 switch (pd2.af) { 4862 #ifdef INET 4863 case AF_INET: 4864 m_copyback(m, off, ICMP_MINLEN, 4865 (caddr_t )pd->hdr.icmp); 4866 m_copyback(m, ipoff2, sizeof(h2), 4867 (caddr_t )&h2); 4868 break; 4869 #endif /* INET */ 4870 #ifdef INET6 4871 case AF_INET6: 4872 m_copyback(m, off, 4873 sizeof(struct icmp6_hdr), 4874 (caddr_t )pd->hdr.icmp6); 4875 m_copyback(m, ipoff2, sizeof(h2_6), 4876 (caddr_t )&h2_6); 4877 break; 4878 #endif /* INET6 */ 4879 } 4880 m_copyback(m, off2, 8, (caddr_t)&th); 4881 } 4882 4883 return (PF_PASS); 4884 break; 4885 } 4886 case IPPROTO_UDP: { 4887 struct udphdr uh; 4888 4889 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4890 NULL, reason, pd2.af)) { 4891 DPFPRINTF(PF_DEBUG_MISC, 4892 ("pf: ICMP error message too short " 4893 "(udp)\n")); 4894 return (PF_DROP); 4895 } 4896 4897 key.af = pd2.af; 4898 key.proto = IPPROTO_UDP; 4899 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4900 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4901 key.port[pd2.sidx] = uh.uh_sport; 4902 key.port[pd2.didx] = uh.uh_dport; 4903 4904 STATE_LOOKUP(kif, &key, direction, *state, pd); 4905 4906 /* translate source/destination address, if necessary */ 4907 if ((*state)->key[PF_SK_WIRE] != 4908 (*state)->key[PF_SK_STACK]) { 4909 struct pf_state_key *nk = 4910 (*state)->key[pd->didx]; 4911 4912 if (PF_ANEQ(pd2.src, 4913 &nk->addr[pd2.sidx], pd2.af) || 4914 nk->port[pd2.sidx] != uh.uh_sport) 4915 pf_change_icmp(pd2.src, &uh.uh_sport, 4916 daddr, &nk->addr[pd2.sidx], 4917 nk->port[pd2.sidx], &uh.uh_sum, 4918 pd2.ip_sum, icmpsum, 4919 pd->ip_sum, 1, pd2.af); 4920 4921 if (PF_ANEQ(pd2.dst, 4922 &nk->addr[pd2.didx], pd2.af) || 4923 nk->port[pd2.didx] != uh.uh_dport) 4924 pf_change_icmp(pd2.dst, &uh.uh_dport, 4925 saddr, &nk->addr[pd2.didx], 4926 nk->port[pd2.didx], &uh.uh_sum, 4927 pd2.ip_sum, icmpsum, 4928 pd->ip_sum, 1, pd2.af); 4929 4930 switch (pd2.af) { 4931 #ifdef INET 4932 case AF_INET: 4933 m_copyback(m, off, ICMP_MINLEN, 4934 (caddr_t )pd->hdr.icmp); 4935 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4936 break; 4937 #endif /* INET */ 4938 #ifdef INET6 4939 case AF_INET6: 4940 m_copyback(m, off, 4941 sizeof(struct icmp6_hdr), 4942 (caddr_t )pd->hdr.icmp6); 4943 m_copyback(m, ipoff2, sizeof(h2_6), 4944 (caddr_t )&h2_6); 4945 break; 4946 #endif /* INET6 */ 4947 } 4948 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4949 } 4950 return (PF_PASS); 4951 break; 4952 } 4953 #ifdef INET 4954 case IPPROTO_ICMP: { 4955 struct icmp iih; 4956 4957 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4958 NULL, reason, pd2.af)) { 4959 DPFPRINTF(PF_DEBUG_MISC, 4960 ("pf: ICMP error message too short i" 4961 "(icmp)\n")); 4962 return (PF_DROP); 4963 } 4964 4965 key.af = pd2.af; 4966 key.proto = IPPROTO_ICMP; 4967 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4968 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4969 key.port[0] = key.port[1] = iih.icmp_id; 4970 4971 STATE_LOOKUP(kif, &key, direction, *state, pd); 4972 4973 /* translate source/destination address, if necessary */ 4974 if ((*state)->key[PF_SK_WIRE] != 4975 (*state)->key[PF_SK_STACK]) { 4976 struct pf_state_key *nk = 4977 (*state)->key[pd->didx]; 4978 4979 if (PF_ANEQ(pd2.src, 4980 &nk->addr[pd2.sidx], pd2.af) || 4981 nk->port[pd2.sidx] != iih.icmp_id) 4982 pf_change_icmp(pd2.src, &iih.icmp_id, 4983 daddr, &nk->addr[pd2.sidx], 4984 nk->port[pd2.sidx], NULL, 4985 pd2.ip_sum, icmpsum, 4986 pd->ip_sum, 0, AF_INET); 4987 4988 if (PF_ANEQ(pd2.dst, 4989 &nk->addr[pd2.didx], pd2.af) || 4990 nk->port[pd2.didx] != iih.icmp_id) 4991 pf_change_icmp(pd2.dst, &iih.icmp_id, 4992 saddr, &nk->addr[pd2.didx], 4993 nk->port[pd2.didx], NULL, 4994 pd2.ip_sum, icmpsum, 4995 pd->ip_sum, 0, AF_INET); 4996 4997 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 4998 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4999 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5000 } 5001 return (PF_PASS); 5002 break; 5003 } 5004 #endif /* INET */ 5005 #ifdef INET6 5006 case IPPROTO_ICMPV6: { 5007 struct icmp6_hdr iih; 5008 5009 if (!pf_pull_hdr(m, off2, &iih, 5010 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5011 DPFPRINTF(PF_DEBUG_MISC, 5012 ("pf: ICMP error message too short " 5013 "(icmp6)\n")); 5014 return (PF_DROP); 5015 } 5016 5017 key.af = pd2.af; 5018 key.proto = IPPROTO_ICMPV6; 5019 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5020 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5021 key.port[0] = key.port[1] = iih.icmp6_id; 5022 5023 STATE_LOOKUP(kif, &key, direction, *state, pd); 5024 5025 /* translate source/destination address, if necessary */ 5026 if ((*state)->key[PF_SK_WIRE] != 5027 (*state)->key[PF_SK_STACK]) { 5028 struct pf_state_key *nk = 5029 (*state)->key[pd->didx]; 5030 5031 if (PF_ANEQ(pd2.src, 5032 &nk->addr[pd2.sidx], pd2.af) || 5033 nk->port[pd2.sidx] != iih.icmp6_id) 5034 pf_change_icmp(pd2.src, &iih.icmp6_id, 5035 daddr, &nk->addr[pd2.sidx], 5036 nk->port[pd2.sidx], NULL, 5037 pd2.ip_sum, icmpsum, 5038 pd->ip_sum, 0, AF_INET6); 5039 5040 if (PF_ANEQ(pd2.dst, 5041 &nk->addr[pd2.didx], pd2.af) || 5042 nk->port[pd2.didx] != iih.icmp6_id) 5043 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5044 saddr, &nk->addr[pd2.didx], 5045 nk->port[pd2.didx], NULL, 5046 pd2.ip_sum, icmpsum, 5047 pd->ip_sum, 0, AF_INET6); 5048 5049 m_copyback(m, off, sizeof(struct icmp6_hdr), 5050 (caddr_t)pd->hdr.icmp6); 5051 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5052 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5053 (caddr_t)&iih); 5054 } 5055 return (PF_PASS); 5056 break; 5057 } 5058 #endif /* INET6 */ 5059 default: { 5060 key.af = pd2.af; 5061 key.proto = pd2.proto; 5062 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5063 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5064 key.port[0] = key.port[1] = 0; 5065 5066 STATE_LOOKUP(kif, &key, direction, *state, pd); 5067 5068 /* translate source/destination address, if necessary */ 5069 if ((*state)->key[PF_SK_WIRE] != 5070 (*state)->key[PF_SK_STACK]) { 5071 struct pf_state_key *nk = 5072 (*state)->key[pd->didx]; 5073 5074 if (PF_ANEQ(pd2.src, 5075 &nk->addr[pd2.sidx], pd2.af)) 5076 pf_change_icmp(pd2.src, NULL, daddr, 5077 &nk->addr[pd2.sidx], 0, NULL, 5078 pd2.ip_sum, icmpsum, 5079 pd->ip_sum, 0, pd2.af); 5080 5081 if (PF_ANEQ(pd2.dst, 5082 &nk->addr[pd2.didx], pd2.af)) 5083 pf_change_icmp(pd2.dst, NULL, saddr, 5084 &nk->addr[pd2.didx], 0, NULL, 5085 pd2.ip_sum, icmpsum, 5086 pd->ip_sum, 0, pd2.af); 5087 5088 switch (pd2.af) { 5089 #ifdef INET 5090 case AF_INET: 5091 m_copyback(m, off, ICMP_MINLEN, 5092 (caddr_t)pd->hdr.icmp); 5093 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5094 break; 5095 #endif /* INET */ 5096 #ifdef INET6 5097 case AF_INET6: 5098 m_copyback(m, off, 5099 sizeof(struct icmp6_hdr), 5100 (caddr_t )pd->hdr.icmp6); 5101 m_copyback(m, ipoff2, sizeof(h2_6), 5102 (caddr_t )&h2_6); 5103 break; 5104 #endif /* INET6 */ 5105 } 5106 } 5107 return (PF_PASS); 5108 break; 5109 } 5110 } 5111 } 5112 } 5113 5114 static int 5115 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5116 struct mbuf *m, struct pf_pdesc *pd) 5117 { 5118 struct pf_state_peer *src, *dst; 5119 struct pf_state_key_cmp key; 5120 5121 bzero(&key, sizeof(key)); 5122 key.af = pd->af; 5123 key.proto = pd->proto; 5124 if (direction == PF_IN) { 5125 PF_ACPY(&key.addr[0], pd->src, key.af); 5126 PF_ACPY(&key.addr[1], pd->dst, key.af); 5127 key.port[0] = key.port[1] = 0; 5128 } else { 5129 PF_ACPY(&key.addr[1], pd->src, key.af); 5130 PF_ACPY(&key.addr[0], pd->dst, key.af); 5131 key.port[1] = key.port[0] = 0; 5132 } 5133 5134 STATE_LOOKUP(kif, &key, direction, *state, pd); 5135 5136 if (direction == (*state)->direction) { 5137 src = &(*state)->src; 5138 dst = &(*state)->dst; 5139 } else { 5140 src = &(*state)->dst; 5141 dst = &(*state)->src; 5142 } 5143 5144 /* update states */ 5145 if (src->state < PFOTHERS_SINGLE) 5146 src->state = PFOTHERS_SINGLE; 5147 if (dst->state == PFOTHERS_SINGLE) 5148 dst->state = PFOTHERS_MULTIPLE; 5149 5150 /* update expire time */ 5151 (*state)->expire = time_uptime; 5152 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5153 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5154 else 5155 (*state)->timeout = PFTM_OTHER_SINGLE; 5156 5157 /* translate source/destination address, if necessary */ 5158 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5159 struct pf_state_key *nk = (*state)->key[pd->didx]; 5160 5161 KASSERT(nk, ("%s: nk is null", __func__)); 5162 KASSERT(pd, ("%s: pd is null", __func__)); 5163 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5164 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5165 switch (pd->af) { 5166 #ifdef INET 5167 case AF_INET: 5168 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5169 pf_change_a(&pd->src->v4.s_addr, 5170 pd->ip_sum, 5171 nk->addr[pd->sidx].v4.s_addr, 5172 0); 5173 5174 5175 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5176 pf_change_a(&pd->dst->v4.s_addr, 5177 pd->ip_sum, 5178 nk->addr[pd->didx].v4.s_addr, 5179 0); 5180 5181 break; 5182 #endif /* INET */ 5183 #ifdef INET6 5184 case AF_INET6: 5185 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5186 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5187 5188 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5189 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5190 #endif /* INET6 */ 5191 } 5192 } 5193 return (PF_PASS); 5194 } 5195 5196 /* 5197 * ipoff and off are measured from the start of the mbuf chain. 5198 * h must be at "ipoff" on the mbuf chain. 5199 */ 5200 void * 5201 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5202 u_short *actionp, u_short *reasonp, sa_family_t af) 5203 { 5204 switch (af) { 5205 #ifdef INET 5206 case AF_INET: { 5207 struct ip *h = mtod(m, struct ip *); 5208 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5209 5210 if (fragoff) { 5211 if (fragoff >= len) 5212 ACTION_SET(actionp, PF_PASS); 5213 else { 5214 ACTION_SET(actionp, PF_DROP); 5215 REASON_SET(reasonp, PFRES_FRAG); 5216 } 5217 return (NULL); 5218 } 5219 if (m->m_pkthdr.len < off + len || 5220 ntohs(h->ip_len) < off + len) { 5221 ACTION_SET(actionp, PF_DROP); 5222 REASON_SET(reasonp, PFRES_SHORT); 5223 return (NULL); 5224 } 5225 break; 5226 } 5227 #endif /* INET */ 5228 #ifdef INET6 5229 case AF_INET6: { 5230 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5231 5232 if (m->m_pkthdr.len < off + len || 5233 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5234 (unsigned)(off + len)) { 5235 ACTION_SET(actionp, PF_DROP); 5236 REASON_SET(reasonp, PFRES_SHORT); 5237 return (NULL); 5238 } 5239 break; 5240 } 5241 #endif /* INET6 */ 5242 } 5243 m_copydata(m, off, len, p); 5244 return (p); 5245 } 5246 5247 #ifdef RADIX_MPATH 5248 static int 5249 pf_routable_oldmpath(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5250 int rtableid) 5251 { 5252 struct radix_node_head *rnh; 5253 struct sockaddr_in *dst; 5254 int ret = 1; 5255 int check_mpath; 5256 #ifdef INET6 5257 struct sockaddr_in6 *dst6; 5258 struct route_in6 ro; 5259 #else 5260 struct route ro; 5261 #endif 5262 struct radix_node *rn; 5263 struct rtentry *rt; 5264 struct ifnet *ifp; 5265 5266 check_mpath = 0; 5267 /* XXX: stick to table 0 for now */ 5268 rnh = rt_tables_get_rnh(0, af); 5269 if (rnh != NULL && rn_mpath_capable(rnh)) 5270 check_mpath = 1; 5271 bzero(&ro, sizeof(ro)); 5272 switch (af) { 5273 case AF_INET: 5274 dst = satosin(&ro.ro_dst); 5275 dst->sin_family = AF_INET; 5276 dst->sin_len = sizeof(*dst); 5277 dst->sin_addr = addr->v4; 5278 break; 5279 #ifdef INET6 5280 case AF_INET6: 5281 /* 5282 * Skip check for addresses with embedded interface scope, 5283 * as they would always match anyway. 5284 */ 5285 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5286 goto out; 5287 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5288 dst6->sin6_family = AF_INET6; 5289 dst6->sin6_len = sizeof(*dst6); 5290 dst6->sin6_addr = addr->v6; 5291 break; 5292 #endif /* INET6 */ 5293 default: 5294 return (0); 5295 } 5296 5297 /* Skip checks for ipsec interfaces */ 5298 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5299 goto out; 5300 5301 switch (af) { 5302 #ifdef INET6 5303 case AF_INET6: 5304 in6_rtalloc_ign(&ro, 0, rtableid); 5305 break; 5306 #endif 5307 #ifdef INET 5308 case AF_INET: 5309 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5310 break; 5311 #endif 5312 } 5313 5314 if (ro.ro_rt != NULL) { 5315 /* No interface given, this is a no-route check */ 5316 if (kif == NULL) 5317 goto out; 5318 5319 if (kif->pfik_ifp == NULL) { 5320 ret = 0; 5321 goto out; 5322 } 5323 5324 /* Perform uRPF check if passed input interface */ 5325 ret = 0; 5326 rn = (struct radix_node *)ro.ro_rt; 5327 do { 5328 rt = (struct rtentry *)rn; 5329 ifp = rt->rt_ifp; 5330 5331 if (kif->pfik_ifp == ifp) 5332 ret = 1; 5333 rn = rn_mpath_next(rn); 5334 } while (check_mpath == 1 && rn != NULL && ret == 0); 5335 } else 5336 ret = 0; 5337 out: 5338 if (ro.ro_rt != NULL) 5339 RTFREE(ro.ro_rt); 5340 return (ret); 5341 } 5342 #endif 5343 5344 int 5345 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5346 int rtableid) 5347 { 5348 #ifdef INET 5349 struct nhop4_basic nh4; 5350 #endif 5351 #ifdef INET6 5352 struct nhop6_basic nh6; 5353 #endif 5354 struct ifnet *ifp; 5355 #ifdef RADIX_MPATH 5356 struct radix_node_head *rnh; 5357 5358 /* XXX: stick to table 0 for now */ 5359 rnh = rt_tables_get_rnh(0, af); 5360 if (rnh != NULL && rn_mpath_capable(rnh)) 5361 return (pf_routable_oldmpath(addr, af, kif, rtableid)); 5362 #endif 5363 /* 5364 * Skip check for addresses with embedded interface scope, 5365 * as they would always match anyway. 5366 */ 5367 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5368 return (1); 5369 5370 if (af != AF_INET && af != AF_INET6) 5371 return (0); 5372 5373 /* Skip checks for ipsec interfaces */ 5374 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5375 return (1); 5376 5377 ifp = NULL; 5378 5379 switch (af) { 5380 #ifdef INET6 5381 case AF_INET6: 5382 if (fib6_lookup_nh_basic(rtableid, &addr->v6, 0, 0, 0, &nh6)!=0) 5383 return (0); 5384 ifp = nh6.nh_ifp; 5385 break; 5386 #endif 5387 #ifdef INET 5388 case AF_INET: 5389 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) != 0) 5390 return (0); 5391 ifp = nh4.nh_ifp; 5392 break; 5393 #endif 5394 } 5395 5396 /* No interface given, this is a no-route check */ 5397 if (kif == NULL) 5398 return (1); 5399 5400 if (kif->pfik_ifp == NULL) 5401 return (0); 5402 5403 /* Perform uRPF check if passed input interface */ 5404 if (kif->pfik_ifp == ifp) 5405 return (1); 5406 return (0); 5407 } 5408 5409 #ifdef INET 5410 static void 5411 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5412 struct pf_state *s, struct pf_pdesc *pd) 5413 { 5414 struct mbuf *m0, *m1; 5415 struct sockaddr_in dst; 5416 struct ip *ip; 5417 struct ifnet *ifp = NULL; 5418 struct pf_addr naddr; 5419 struct pf_src_node *sn = NULL; 5420 int error = 0; 5421 uint16_t ip_len, ip_off; 5422 5423 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5424 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5425 __func__)); 5426 5427 if ((pd->pf_mtag == NULL && 5428 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5429 pd->pf_mtag->routed++ > 3) { 5430 m0 = *m; 5431 *m = NULL; 5432 goto bad_locked; 5433 } 5434 5435 if (r->rt == PF_DUPTO) { 5436 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5437 if (s) 5438 PF_STATE_UNLOCK(s); 5439 return; 5440 } 5441 } else { 5442 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5443 if (s) 5444 PF_STATE_UNLOCK(s); 5445 return; 5446 } 5447 m0 = *m; 5448 } 5449 5450 ip = mtod(m0, struct ip *); 5451 5452 bzero(&dst, sizeof(dst)); 5453 dst.sin_family = AF_INET; 5454 dst.sin_len = sizeof(dst); 5455 dst.sin_addr = ip->ip_dst; 5456 5457 if (TAILQ_EMPTY(&r->rpool.list)) { 5458 DPFPRINTF(PF_DEBUG_URGENT, 5459 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5460 goto bad_locked; 5461 } 5462 if (s == NULL) { 5463 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5464 &naddr, NULL, &sn); 5465 if (!PF_AZERO(&naddr, AF_INET)) 5466 dst.sin_addr.s_addr = naddr.v4.s_addr; 5467 ifp = r->rpool.cur->kif ? 5468 r->rpool.cur->kif->pfik_ifp : NULL; 5469 } else { 5470 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5471 dst.sin_addr.s_addr = 5472 s->rt_addr.v4.s_addr; 5473 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5474 PF_STATE_UNLOCK(s); 5475 } 5476 if (ifp == NULL) 5477 goto bad; 5478 5479 if (oifp != ifp) { 5480 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5481 goto bad; 5482 else if (m0 == NULL) 5483 goto done; 5484 if (m0->m_len < sizeof(struct ip)) { 5485 DPFPRINTF(PF_DEBUG_URGENT, 5486 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5487 goto bad; 5488 } 5489 ip = mtod(m0, struct ip *); 5490 } 5491 5492 if (ifp->if_flags & IFF_LOOPBACK) 5493 m0->m_flags |= M_SKIP_FIREWALL; 5494 5495 ip_len = ntohs(ip->ip_len); 5496 ip_off = ntohs(ip->ip_off); 5497 5498 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5499 m0->m_pkthdr.csum_flags |= CSUM_IP; 5500 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5501 in_delayed_cksum(m0); 5502 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5503 } 5504 #ifdef SCTP 5505 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5506 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5507 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5508 } 5509 #endif 5510 5511 /* 5512 * If small enough for interface, or the interface will take 5513 * care of the fragmentation for us, we can just send directly. 5514 */ 5515 if (ip_len <= ifp->if_mtu || 5516 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5517 ip->ip_sum = 0; 5518 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5519 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5520 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5521 } 5522 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5523 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5524 goto done; 5525 } 5526 5527 /* Balk when DF bit is set or the interface didn't support TSO. */ 5528 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5529 error = EMSGSIZE; 5530 KMOD_IPSTAT_INC(ips_cantfrag); 5531 if (r->rt != PF_DUPTO) { 5532 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5533 ifp->if_mtu); 5534 goto done; 5535 } else 5536 goto bad; 5537 } 5538 5539 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5540 if (error) 5541 goto bad; 5542 5543 for (; m0; m0 = m1) { 5544 m1 = m0->m_nextpkt; 5545 m0->m_nextpkt = NULL; 5546 if (error == 0) { 5547 m_clrprotoflags(m0); 5548 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5549 } else 5550 m_freem(m0); 5551 } 5552 5553 if (error == 0) 5554 KMOD_IPSTAT_INC(ips_fragmented); 5555 5556 done: 5557 if (r->rt != PF_DUPTO) 5558 *m = NULL; 5559 return; 5560 5561 bad_locked: 5562 if (s) 5563 PF_STATE_UNLOCK(s); 5564 bad: 5565 m_freem(m0); 5566 goto done; 5567 } 5568 #endif /* INET */ 5569 5570 #ifdef INET6 5571 static void 5572 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5573 struct pf_state *s, struct pf_pdesc *pd) 5574 { 5575 struct mbuf *m0; 5576 struct sockaddr_in6 dst; 5577 struct ip6_hdr *ip6; 5578 struct ifnet *ifp = NULL; 5579 struct pf_addr naddr; 5580 struct pf_src_node *sn = NULL; 5581 5582 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5583 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5584 __func__)); 5585 5586 if ((pd->pf_mtag == NULL && 5587 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5588 pd->pf_mtag->routed++ > 3) { 5589 m0 = *m; 5590 *m = NULL; 5591 goto bad_locked; 5592 } 5593 5594 if (r->rt == PF_DUPTO) { 5595 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5596 if (s) 5597 PF_STATE_UNLOCK(s); 5598 return; 5599 } 5600 } else { 5601 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5602 if (s) 5603 PF_STATE_UNLOCK(s); 5604 return; 5605 } 5606 m0 = *m; 5607 } 5608 5609 ip6 = mtod(m0, struct ip6_hdr *); 5610 5611 bzero(&dst, sizeof(dst)); 5612 dst.sin6_family = AF_INET6; 5613 dst.sin6_len = sizeof(dst); 5614 dst.sin6_addr = ip6->ip6_dst; 5615 5616 if (TAILQ_EMPTY(&r->rpool.list)) { 5617 DPFPRINTF(PF_DEBUG_URGENT, 5618 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5619 goto bad_locked; 5620 } 5621 if (s == NULL) { 5622 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5623 &naddr, NULL, &sn); 5624 if (!PF_AZERO(&naddr, AF_INET6)) 5625 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5626 &naddr, AF_INET6); 5627 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5628 } else { 5629 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5630 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5631 &s->rt_addr, AF_INET6); 5632 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5633 } 5634 5635 if (s) 5636 PF_STATE_UNLOCK(s); 5637 5638 if (ifp == NULL) 5639 goto bad; 5640 5641 if (oifp != ifp) { 5642 if (pf_test6(PF_FWD, ifp, &m0, NULL) != PF_PASS) 5643 goto bad; 5644 else if (m0 == NULL) 5645 goto done; 5646 if (m0->m_len < sizeof(struct ip6_hdr)) { 5647 DPFPRINTF(PF_DEBUG_URGENT, 5648 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5649 __func__)); 5650 goto bad; 5651 } 5652 ip6 = mtod(m0, struct ip6_hdr *); 5653 } 5654 5655 if (ifp->if_flags & IFF_LOOPBACK) 5656 m0->m_flags |= M_SKIP_FIREWALL; 5657 5658 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5659 ~ifp->if_hwassist) { 5660 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5661 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5662 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5663 } 5664 5665 /* 5666 * If the packet is too large for the outgoing interface, 5667 * send back an icmp6 error. 5668 */ 5669 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5670 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5671 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5672 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5673 else { 5674 in6_ifstat_inc(ifp, ifs6_in_toobig); 5675 if (r->rt != PF_DUPTO) 5676 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5677 else 5678 goto bad; 5679 } 5680 5681 done: 5682 if (r->rt != PF_DUPTO) 5683 *m = NULL; 5684 return; 5685 5686 bad_locked: 5687 if (s) 5688 PF_STATE_UNLOCK(s); 5689 bad: 5690 m_freem(m0); 5691 goto done; 5692 } 5693 #endif /* INET6 */ 5694 5695 /* 5696 * FreeBSD supports cksum offloads for the following drivers. 5697 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5698 * ti(4), txp(4), xl(4) 5699 * 5700 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5701 * network driver performed cksum including pseudo header, need to verify 5702 * csum_data 5703 * CSUM_DATA_VALID : 5704 * network driver performed cksum, needs to additional pseudo header 5705 * cksum computation with partial csum_data(i.e. lack of H/W support for 5706 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5707 * 5708 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5709 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5710 * TCP/UDP layer. 5711 * Also, set csum_data to 0xffff to force cksum validation. 5712 */ 5713 static int 5714 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5715 { 5716 u_int16_t sum = 0; 5717 int hw_assist = 0; 5718 struct ip *ip; 5719 5720 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5721 return (1); 5722 if (m->m_pkthdr.len < off + len) 5723 return (1); 5724 5725 switch (p) { 5726 case IPPROTO_TCP: 5727 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5728 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5729 sum = m->m_pkthdr.csum_data; 5730 } else { 5731 ip = mtod(m, struct ip *); 5732 sum = in_pseudo(ip->ip_src.s_addr, 5733 ip->ip_dst.s_addr, htonl((u_short)len + 5734 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5735 } 5736 sum ^= 0xffff; 5737 ++hw_assist; 5738 } 5739 break; 5740 case IPPROTO_UDP: 5741 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5742 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5743 sum = m->m_pkthdr.csum_data; 5744 } else { 5745 ip = mtod(m, struct ip *); 5746 sum = in_pseudo(ip->ip_src.s_addr, 5747 ip->ip_dst.s_addr, htonl((u_short)len + 5748 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5749 } 5750 sum ^= 0xffff; 5751 ++hw_assist; 5752 } 5753 break; 5754 case IPPROTO_ICMP: 5755 #ifdef INET6 5756 case IPPROTO_ICMPV6: 5757 #endif /* INET6 */ 5758 break; 5759 default: 5760 return (1); 5761 } 5762 5763 if (!hw_assist) { 5764 switch (af) { 5765 case AF_INET: 5766 if (p == IPPROTO_ICMP) { 5767 if (m->m_len < off) 5768 return (1); 5769 m->m_data += off; 5770 m->m_len -= off; 5771 sum = in_cksum(m, len); 5772 m->m_data -= off; 5773 m->m_len += off; 5774 } else { 5775 if (m->m_len < sizeof(struct ip)) 5776 return (1); 5777 sum = in4_cksum(m, p, off, len); 5778 } 5779 break; 5780 #ifdef INET6 5781 case AF_INET6: 5782 if (m->m_len < sizeof(struct ip6_hdr)) 5783 return (1); 5784 sum = in6_cksum(m, p, off, len); 5785 break; 5786 #endif /* INET6 */ 5787 default: 5788 return (1); 5789 } 5790 } 5791 if (sum) { 5792 switch (p) { 5793 case IPPROTO_TCP: 5794 { 5795 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5796 break; 5797 } 5798 case IPPROTO_UDP: 5799 { 5800 KMOD_UDPSTAT_INC(udps_badsum); 5801 break; 5802 } 5803 #ifdef INET 5804 case IPPROTO_ICMP: 5805 { 5806 KMOD_ICMPSTAT_INC(icps_checksum); 5807 break; 5808 } 5809 #endif 5810 #ifdef INET6 5811 case IPPROTO_ICMPV6: 5812 { 5813 KMOD_ICMP6STAT_INC(icp6s_checksum); 5814 break; 5815 } 5816 #endif /* INET6 */ 5817 } 5818 return (1); 5819 } else { 5820 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5821 m->m_pkthdr.csum_flags |= 5822 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5823 m->m_pkthdr.csum_data = 0xffff; 5824 } 5825 } 5826 return (0); 5827 } 5828 5829 5830 #ifdef INET 5831 int 5832 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5833 { 5834 struct pfi_kif *kif; 5835 u_short action, reason = 0, log = 0; 5836 struct mbuf *m = *m0; 5837 struct ip *h = NULL; 5838 struct m_tag *ipfwtag; 5839 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5840 struct pf_state *s = NULL; 5841 struct pf_ruleset *ruleset = NULL; 5842 struct pf_pdesc pd; 5843 int off, dirndx, pqid = 0; 5844 5845 M_ASSERTPKTHDR(m); 5846 5847 if (!V_pf_status.running) 5848 return (PF_PASS); 5849 5850 memset(&pd, 0, sizeof(pd)); 5851 5852 kif = (struct pfi_kif *)ifp->if_pf_kif; 5853 5854 if (kif == NULL) { 5855 DPFPRINTF(PF_DEBUG_URGENT, 5856 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5857 return (PF_DROP); 5858 } 5859 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5860 return (PF_PASS); 5861 5862 if (m->m_flags & M_SKIP_FIREWALL) 5863 return (PF_PASS); 5864 5865 pd.pf_mtag = pf_find_mtag(m); 5866 5867 PF_RULES_RLOCK(); 5868 5869 if (ip_divert_ptr != NULL && 5870 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5871 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5872 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5873 if (pd.pf_mtag == NULL && 5874 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5875 action = PF_DROP; 5876 goto done; 5877 } 5878 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5879 m_tag_delete(m, ipfwtag); 5880 } 5881 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5882 m->m_flags |= M_FASTFWD_OURS; 5883 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5884 } 5885 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5886 /* We do IP header normalization and packet reassembly here */ 5887 action = PF_DROP; 5888 goto done; 5889 } 5890 m = *m0; /* pf_normalize messes with m0 */ 5891 h = mtod(m, struct ip *); 5892 5893 off = h->ip_hl << 2; 5894 if (off < (int)sizeof(struct ip)) { 5895 action = PF_DROP; 5896 REASON_SET(&reason, PFRES_SHORT); 5897 log = 1; 5898 goto done; 5899 } 5900 5901 pd.src = (struct pf_addr *)&h->ip_src; 5902 pd.dst = (struct pf_addr *)&h->ip_dst; 5903 pd.sport = pd.dport = NULL; 5904 pd.ip_sum = &h->ip_sum; 5905 pd.proto_sum = NULL; 5906 pd.proto = h->ip_p; 5907 pd.dir = dir; 5908 pd.sidx = (dir == PF_IN) ? 0 : 1; 5909 pd.didx = (dir == PF_IN) ? 1 : 0; 5910 pd.af = AF_INET; 5911 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 5912 pd.tot_len = ntohs(h->ip_len); 5913 5914 /* handle fragments that didn't get reassembled by normalization */ 5915 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5916 action = pf_test_fragment(&r, dir, kif, m, h, 5917 &pd, &a, &ruleset); 5918 goto done; 5919 } 5920 5921 switch (h->ip_p) { 5922 5923 case IPPROTO_TCP: { 5924 struct tcphdr th; 5925 5926 pd.hdr.tcp = &th; 5927 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5928 &action, &reason, AF_INET)) { 5929 log = action != PF_PASS; 5930 goto done; 5931 } 5932 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5933 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5934 pqid = 1; 5935 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5936 if (action == PF_DROP) 5937 goto done; 5938 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5939 &reason); 5940 if (action == PF_PASS) { 5941 if (pfsync_update_state_ptr != NULL) 5942 pfsync_update_state_ptr(s); 5943 r = s->rule.ptr; 5944 a = s->anchor.ptr; 5945 log = s->log; 5946 } else if (s == NULL) 5947 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5948 &a, &ruleset, inp); 5949 break; 5950 } 5951 5952 case IPPROTO_UDP: { 5953 struct udphdr uh; 5954 5955 pd.hdr.udp = &uh; 5956 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5957 &action, &reason, AF_INET)) { 5958 log = action != PF_PASS; 5959 goto done; 5960 } 5961 if (uh.uh_dport == 0 || 5962 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5963 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5964 action = PF_DROP; 5965 REASON_SET(&reason, PFRES_SHORT); 5966 goto done; 5967 } 5968 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5969 if (action == PF_PASS) { 5970 if (pfsync_update_state_ptr != NULL) 5971 pfsync_update_state_ptr(s); 5972 r = s->rule.ptr; 5973 a = s->anchor.ptr; 5974 log = s->log; 5975 } else if (s == NULL) 5976 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5977 &a, &ruleset, inp); 5978 break; 5979 } 5980 5981 case IPPROTO_ICMP: { 5982 struct icmp ih; 5983 5984 pd.hdr.icmp = &ih; 5985 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 5986 &action, &reason, AF_INET)) { 5987 log = action != PF_PASS; 5988 goto done; 5989 } 5990 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 5991 &reason); 5992 if (action == PF_PASS) { 5993 if (pfsync_update_state_ptr != NULL) 5994 pfsync_update_state_ptr(s); 5995 r = s->rule.ptr; 5996 a = s->anchor.ptr; 5997 log = s->log; 5998 } else if (s == NULL) 5999 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6000 &a, &ruleset, inp); 6001 break; 6002 } 6003 6004 #ifdef INET6 6005 case IPPROTO_ICMPV6: { 6006 action = PF_DROP; 6007 DPFPRINTF(PF_DEBUG_MISC, 6008 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6009 goto done; 6010 } 6011 #endif 6012 6013 default: 6014 action = pf_test_state_other(&s, dir, kif, m, &pd); 6015 if (action == PF_PASS) { 6016 if (pfsync_update_state_ptr != NULL) 6017 pfsync_update_state_ptr(s); 6018 r = s->rule.ptr; 6019 a = s->anchor.ptr; 6020 log = s->log; 6021 } else if (s == NULL) 6022 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6023 &a, &ruleset, inp); 6024 break; 6025 } 6026 6027 done: 6028 PF_RULES_RUNLOCK(); 6029 if (action == PF_PASS && h->ip_hl > 5 && 6030 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6031 action = PF_DROP; 6032 REASON_SET(&reason, PFRES_IPOPTIONS); 6033 log = r->log; 6034 DPFPRINTF(PF_DEBUG_MISC, 6035 ("pf: dropping packet with ip options\n")); 6036 } 6037 6038 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6039 action = PF_DROP; 6040 REASON_SET(&reason, PFRES_MEMORY); 6041 } 6042 if (r->rtableid >= 0) 6043 M_SETFIB(m, r->rtableid); 6044 6045 if (r->scrub_flags & PFSTATE_SETPRIO) { 6046 if (pd.tos & IPTOS_LOWDELAY) 6047 pqid = 1; 6048 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6049 action = PF_DROP; 6050 REASON_SET(&reason, PFRES_MEMORY); 6051 log = 1; 6052 DPFPRINTF(PF_DEBUG_MISC, 6053 ("pf: failed to allocate 802.1q mtag\n")); 6054 } 6055 } 6056 6057 #ifdef ALTQ 6058 if (action == PF_PASS && r->qid) { 6059 if (pd.pf_mtag == NULL && 6060 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6061 action = PF_DROP; 6062 REASON_SET(&reason, PFRES_MEMORY); 6063 } else { 6064 if (s != NULL) 6065 pd.pf_mtag->qid_hash = pf_state_hash(s); 6066 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6067 pd.pf_mtag->qid = r->pqid; 6068 else 6069 pd.pf_mtag->qid = r->qid; 6070 /* Add hints for ecn. */ 6071 pd.pf_mtag->hdr = h; 6072 } 6073 6074 } 6075 #endif /* ALTQ */ 6076 6077 /* 6078 * connections redirected to loopback should not match sockets 6079 * bound specifically to loopback due to security implications, 6080 * see tcp_input() and in_pcblookup_listen(). 6081 */ 6082 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6083 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6084 (s->nat_rule.ptr->action == PF_RDR || 6085 s->nat_rule.ptr->action == PF_BINAT) && 6086 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 6087 m->m_flags |= M_SKIP_FIREWALL; 6088 6089 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6090 !PACKET_LOOPED(&pd)) { 6091 6092 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6093 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6094 if (ipfwtag != NULL) { 6095 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6096 ntohs(r->divert.port); 6097 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6098 6099 if (s) 6100 PF_STATE_UNLOCK(s); 6101 6102 m_tag_prepend(m, ipfwtag); 6103 if (m->m_flags & M_FASTFWD_OURS) { 6104 if (pd.pf_mtag == NULL && 6105 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6106 action = PF_DROP; 6107 REASON_SET(&reason, PFRES_MEMORY); 6108 log = 1; 6109 DPFPRINTF(PF_DEBUG_MISC, 6110 ("pf: failed to allocate tag\n")); 6111 } else { 6112 pd.pf_mtag->flags |= 6113 PF_FASTFWD_OURS_PRESENT; 6114 m->m_flags &= ~M_FASTFWD_OURS; 6115 } 6116 } 6117 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 6118 *m0 = NULL; 6119 6120 return (action); 6121 } else { 6122 /* XXX: ipfw has the same behaviour! */ 6123 action = PF_DROP; 6124 REASON_SET(&reason, PFRES_MEMORY); 6125 log = 1; 6126 DPFPRINTF(PF_DEBUG_MISC, 6127 ("pf: failed to allocate divert tag\n")); 6128 } 6129 } 6130 6131 if (log) { 6132 struct pf_rule *lr; 6133 6134 if (s != NULL && s->nat_rule.ptr != NULL && 6135 s->nat_rule.ptr->log & PF_LOG_ALL) 6136 lr = s->nat_rule.ptr; 6137 else 6138 lr = r; 6139 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6140 (s == NULL)); 6141 } 6142 6143 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6144 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 6145 6146 if (action == PF_PASS || r->action == PF_DROP) { 6147 dirndx = (dir == PF_OUT); 6148 r->packets[dirndx]++; 6149 r->bytes[dirndx] += pd.tot_len; 6150 if (a != NULL) { 6151 a->packets[dirndx]++; 6152 a->bytes[dirndx] += pd.tot_len; 6153 } 6154 if (s != NULL) { 6155 if (s->nat_rule.ptr != NULL) { 6156 s->nat_rule.ptr->packets[dirndx]++; 6157 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6158 } 6159 if (s->src_node != NULL) { 6160 s->src_node->packets[dirndx]++; 6161 s->src_node->bytes[dirndx] += pd.tot_len; 6162 } 6163 if (s->nat_src_node != NULL) { 6164 s->nat_src_node->packets[dirndx]++; 6165 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6166 } 6167 dirndx = (dir == s->direction) ? 0 : 1; 6168 s->packets[dirndx]++; 6169 s->bytes[dirndx] += pd.tot_len; 6170 } 6171 tr = r; 6172 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6173 if (nr != NULL && r == &V_pf_default_rule) 6174 tr = nr; 6175 if (tr->src.addr.type == PF_ADDR_TABLE) 6176 pfr_update_stats(tr->src.addr.p.tbl, 6177 (s == NULL) ? pd.src : 6178 &s->key[(s->direction == PF_IN)]-> 6179 addr[(s->direction == PF_OUT)], 6180 pd.af, pd.tot_len, dir == PF_OUT, 6181 r->action == PF_PASS, tr->src.neg); 6182 if (tr->dst.addr.type == PF_ADDR_TABLE) 6183 pfr_update_stats(tr->dst.addr.p.tbl, 6184 (s == NULL) ? pd.dst : 6185 &s->key[(s->direction == PF_IN)]-> 6186 addr[(s->direction == PF_IN)], 6187 pd.af, pd.tot_len, dir == PF_OUT, 6188 r->action == PF_PASS, tr->dst.neg); 6189 } 6190 6191 switch (action) { 6192 case PF_SYNPROXY_DROP: 6193 m_freem(*m0); 6194 case PF_DEFER: 6195 *m0 = NULL; 6196 action = PF_PASS; 6197 break; 6198 case PF_DROP: 6199 m_freem(*m0); 6200 *m0 = NULL; 6201 break; 6202 default: 6203 /* pf_route() returns unlocked. */ 6204 if (r->rt) { 6205 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 6206 return (action); 6207 } 6208 break; 6209 } 6210 if (s) 6211 PF_STATE_UNLOCK(s); 6212 6213 return (action); 6214 } 6215 #endif /* INET */ 6216 6217 #ifdef INET6 6218 int 6219 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6220 { 6221 struct pfi_kif *kif; 6222 u_short action, reason = 0, log = 0; 6223 struct mbuf *m = *m0, *n = NULL; 6224 struct m_tag *mtag; 6225 struct ip6_hdr *h = NULL; 6226 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6227 struct pf_state *s = NULL; 6228 struct pf_ruleset *ruleset = NULL; 6229 struct pf_pdesc pd; 6230 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6231 int fwdir = dir; 6232 6233 M_ASSERTPKTHDR(m); 6234 6235 /* Detect packet forwarding. 6236 * If the input interface is different from the output interface we're 6237 * forwarding. 6238 * We do need to be careful about bridges. If the 6239 * net.link.bridge.pfil_bridge sysctl is set we can be filtering on a 6240 * bridge, so if the input interface is a bridge member and the output 6241 * interface is its bridge or a member of the same bridge we're not 6242 * actually forwarding but bridging. 6243 */ 6244 if (dir == PF_OUT && m->m_pkthdr.rcvif && ifp != m->m_pkthdr.rcvif && 6245 (m->m_pkthdr.rcvif->if_bridge == NULL || 6246 (m->m_pkthdr.rcvif->if_bridge != ifp->if_softc && 6247 m->m_pkthdr.rcvif->if_bridge != ifp->if_bridge))) 6248 fwdir = PF_FWD; 6249 6250 if (dir == PF_FWD) 6251 dir = PF_OUT; 6252 6253 if (!V_pf_status.running) 6254 return (PF_PASS); 6255 6256 memset(&pd, 0, sizeof(pd)); 6257 pd.pf_mtag = pf_find_mtag(m); 6258 6259 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6260 return (PF_PASS); 6261 6262 kif = (struct pfi_kif *)ifp->if_pf_kif; 6263 if (kif == NULL) { 6264 DPFPRINTF(PF_DEBUG_URGENT, 6265 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6266 return (PF_DROP); 6267 } 6268 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6269 return (PF_PASS); 6270 6271 if (m->m_flags & M_SKIP_FIREWALL) 6272 return (PF_PASS); 6273 6274 PF_RULES_RLOCK(); 6275 6276 /* We do IP header normalization and packet reassembly here */ 6277 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6278 action = PF_DROP; 6279 goto done; 6280 } 6281 m = *m0; /* pf_normalize messes with m0 */ 6282 h = mtod(m, struct ip6_hdr *); 6283 6284 #if 1 6285 /* 6286 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6287 * will do something bad, so drop the packet for now. 6288 */ 6289 if (htons(h->ip6_plen) == 0) { 6290 action = PF_DROP; 6291 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6292 goto done; 6293 } 6294 #endif 6295 6296 pd.src = (struct pf_addr *)&h->ip6_src; 6297 pd.dst = (struct pf_addr *)&h->ip6_dst; 6298 pd.sport = pd.dport = NULL; 6299 pd.ip_sum = NULL; 6300 pd.proto_sum = NULL; 6301 pd.dir = dir; 6302 pd.sidx = (dir == PF_IN) ? 0 : 1; 6303 pd.didx = (dir == PF_IN) ? 1 : 0; 6304 pd.af = AF_INET6; 6305 pd.tos = 0; 6306 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6307 6308 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6309 pd.proto = h->ip6_nxt; 6310 do { 6311 switch (pd.proto) { 6312 case IPPROTO_FRAGMENT: 6313 action = pf_test_fragment(&r, dir, kif, m, h, 6314 &pd, &a, &ruleset); 6315 if (action == PF_DROP) 6316 REASON_SET(&reason, PFRES_FRAG); 6317 goto done; 6318 case IPPROTO_ROUTING: { 6319 struct ip6_rthdr rthdr; 6320 6321 if (rh_cnt++) { 6322 DPFPRINTF(PF_DEBUG_MISC, 6323 ("pf: IPv6 more than one rthdr\n")); 6324 action = PF_DROP; 6325 REASON_SET(&reason, PFRES_IPOPTIONS); 6326 log = 1; 6327 goto done; 6328 } 6329 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6330 &reason, pd.af)) { 6331 DPFPRINTF(PF_DEBUG_MISC, 6332 ("pf: IPv6 short rthdr\n")); 6333 action = PF_DROP; 6334 REASON_SET(&reason, PFRES_SHORT); 6335 log = 1; 6336 goto done; 6337 } 6338 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6339 DPFPRINTF(PF_DEBUG_MISC, 6340 ("pf: IPv6 rthdr0\n")); 6341 action = PF_DROP; 6342 REASON_SET(&reason, PFRES_IPOPTIONS); 6343 log = 1; 6344 goto done; 6345 } 6346 /* FALLTHROUGH */ 6347 } 6348 case IPPROTO_AH: 6349 case IPPROTO_HOPOPTS: 6350 case IPPROTO_DSTOPTS: { 6351 /* get next header and header length */ 6352 struct ip6_ext opt6; 6353 6354 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6355 NULL, &reason, pd.af)) { 6356 DPFPRINTF(PF_DEBUG_MISC, 6357 ("pf: IPv6 short opt\n")); 6358 action = PF_DROP; 6359 log = 1; 6360 goto done; 6361 } 6362 if (pd.proto == IPPROTO_AH) 6363 off += (opt6.ip6e_len + 2) * 4; 6364 else 6365 off += (opt6.ip6e_len + 1) * 8; 6366 pd.proto = opt6.ip6e_nxt; 6367 /* goto the next header */ 6368 break; 6369 } 6370 default: 6371 terminal++; 6372 break; 6373 } 6374 } while (!terminal); 6375 6376 /* if there's no routing header, use unmodified mbuf for checksumming */ 6377 if (!n) 6378 n = m; 6379 6380 switch (pd.proto) { 6381 6382 case IPPROTO_TCP: { 6383 struct tcphdr th; 6384 6385 pd.hdr.tcp = &th; 6386 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6387 &action, &reason, AF_INET6)) { 6388 log = action != PF_PASS; 6389 goto done; 6390 } 6391 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6392 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6393 if (action == PF_DROP) 6394 goto done; 6395 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6396 &reason); 6397 if (action == PF_PASS) { 6398 if (pfsync_update_state_ptr != NULL) 6399 pfsync_update_state_ptr(s); 6400 r = s->rule.ptr; 6401 a = s->anchor.ptr; 6402 log = s->log; 6403 } else if (s == NULL) 6404 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6405 &a, &ruleset, inp); 6406 break; 6407 } 6408 6409 case IPPROTO_UDP: { 6410 struct udphdr uh; 6411 6412 pd.hdr.udp = &uh; 6413 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6414 &action, &reason, AF_INET6)) { 6415 log = action != PF_PASS; 6416 goto done; 6417 } 6418 if (uh.uh_dport == 0 || 6419 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6420 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6421 action = PF_DROP; 6422 REASON_SET(&reason, PFRES_SHORT); 6423 goto done; 6424 } 6425 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6426 if (action == PF_PASS) { 6427 if (pfsync_update_state_ptr != NULL) 6428 pfsync_update_state_ptr(s); 6429 r = s->rule.ptr; 6430 a = s->anchor.ptr; 6431 log = s->log; 6432 } else if (s == NULL) 6433 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6434 &a, &ruleset, inp); 6435 break; 6436 } 6437 6438 case IPPROTO_ICMP: { 6439 action = PF_DROP; 6440 DPFPRINTF(PF_DEBUG_MISC, 6441 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6442 goto done; 6443 } 6444 6445 case IPPROTO_ICMPV6: { 6446 struct icmp6_hdr ih; 6447 6448 pd.hdr.icmp6 = &ih; 6449 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6450 &action, &reason, AF_INET6)) { 6451 log = action != PF_PASS; 6452 goto done; 6453 } 6454 action = pf_test_state_icmp(&s, dir, kif, 6455 m, off, h, &pd, &reason); 6456 if (action == PF_PASS) { 6457 if (pfsync_update_state_ptr != NULL) 6458 pfsync_update_state_ptr(s); 6459 r = s->rule.ptr; 6460 a = s->anchor.ptr; 6461 log = s->log; 6462 } else if (s == NULL) 6463 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6464 &a, &ruleset, inp); 6465 break; 6466 } 6467 6468 default: 6469 action = pf_test_state_other(&s, dir, kif, m, &pd); 6470 if (action == PF_PASS) { 6471 if (pfsync_update_state_ptr != NULL) 6472 pfsync_update_state_ptr(s); 6473 r = s->rule.ptr; 6474 a = s->anchor.ptr; 6475 log = s->log; 6476 } else if (s == NULL) 6477 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6478 &a, &ruleset, inp); 6479 break; 6480 } 6481 6482 done: 6483 PF_RULES_RUNLOCK(); 6484 if (n != m) { 6485 m_freem(n); 6486 n = NULL; 6487 } 6488 6489 /* handle dangerous IPv6 extension headers. */ 6490 if (action == PF_PASS && rh_cnt && 6491 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6492 action = PF_DROP; 6493 REASON_SET(&reason, PFRES_IPOPTIONS); 6494 log = r->log; 6495 DPFPRINTF(PF_DEBUG_MISC, 6496 ("pf: dropping packet with dangerous v6 headers\n")); 6497 } 6498 6499 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6500 action = PF_DROP; 6501 REASON_SET(&reason, PFRES_MEMORY); 6502 } 6503 if (r->rtableid >= 0) 6504 M_SETFIB(m, r->rtableid); 6505 6506 if (r->scrub_flags & PFSTATE_SETPRIO) { 6507 if (pd.tos & IPTOS_LOWDELAY) 6508 pqid = 1; 6509 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6510 action = PF_DROP; 6511 REASON_SET(&reason, PFRES_MEMORY); 6512 log = 1; 6513 DPFPRINTF(PF_DEBUG_MISC, 6514 ("pf: failed to allocate 802.1q mtag\n")); 6515 } 6516 } 6517 6518 #ifdef ALTQ 6519 if (action == PF_PASS && r->qid) { 6520 if (pd.pf_mtag == NULL && 6521 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6522 action = PF_DROP; 6523 REASON_SET(&reason, PFRES_MEMORY); 6524 } else { 6525 if (s != NULL) 6526 pd.pf_mtag->qid_hash = pf_state_hash(s); 6527 if (pd.tos & IPTOS_LOWDELAY) 6528 pd.pf_mtag->qid = r->pqid; 6529 else 6530 pd.pf_mtag->qid = r->qid; 6531 /* Add hints for ecn. */ 6532 pd.pf_mtag->hdr = h; 6533 } 6534 } 6535 #endif /* ALTQ */ 6536 6537 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6538 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6539 (s->nat_rule.ptr->action == PF_RDR || 6540 s->nat_rule.ptr->action == PF_BINAT) && 6541 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6542 m->m_flags |= M_SKIP_FIREWALL; 6543 6544 /* XXX: Anybody working on it?! */ 6545 if (r->divert.port) 6546 printf("pf: divert(9) is not supported for IPv6\n"); 6547 6548 if (log) { 6549 struct pf_rule *lr; 6550 6551 if (s != NULL && s->nat_rule.ptr != NULL && 6552 s->nat_rule.ptr->log & PF_LOG_ALL) 6553 lr = s->nat_rule.ptr; 6554 else 6555 lr = r; 6556 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6557 &pd, (s == NULL)); 6558 } 6559 6560 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6561 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6562 6563 if (action == PF_PASS || r->action == PF_DROP) { 6564 dirndx = (dir == PF_OUT); 6565 r->packets[dirndx]++; 6566 r->bytes[dirndx] += pd.tot_len; 6567 if (a != NULL) { 6568 a->packets[dirndx]++; 6569 a->bytes[dirndx] += pd.tot_len; 6570 } 6571 if (s != NULL) { 6572 if (s->nat_rule.ptr != NULL) { 6573 s->nat_rule.ptr->packets[dirndx]++; 6574 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6575 } 6576 if (s->src_node != NULL) { 6577 s->src_node->packets[dirndx]++; 6578 s->src_node->bytes[dirndx] += pd.tot_len; 6579 } 6580 if (s->nat_src_node != NULL) { 6581 s->nat_src_node->packets[dirndx]++; 6582 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6583 } 6584 dirndx = (dir == s->direction) ? 0 : 1; 6585 s->packets[dirndx]++; 6586 s->bytes[dirndx] += pd.tot_len; 6587 } 6588 tr = r; 6589 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6590 if (nr != NULL && r == &V_pf_default_rule) 6591 tr = nr; 6592 if (tr->src.addr.type == PF_ADDR_TABLE) 6593 pfr_update_stats(tr->src.addr.p.tbl, 6594 (s == NULL) ? pd.src : 6595 &s->key[(s->direction == PF_IN)]->addr[0], 6596 pd.af, pd.tot_len, dir == PF_OUT, 6597 r->action == PF_PASS, tr->src.neg); 6598 if (tr->dst.addr.type == PF_ADDR_TABLE) 6599 pfr_update_stats(tr->dst.addr.p.tbl, 6600 (s == NULL) ? pd.dst : 6601 &s->key[(s->direction == PF_IN)]->addr[1], 6602 pd.af, pd.tot_len, dir == PF_OUT, 6603 r->action == PF_PASS, tr->dst.neg); 6604 } 6605 6606 switch (action) { 6607 case PF_SYNPROXY_DROP: 6608 m_freem(*m0); 6609 case PF_DEFER: 6610 *m0 = NULL; 6611 action = PF_PASS; 6612 break; 6613 case PF_DROP: 6614 m_freem(*m0); 6615 *m0 = NULL; 6616 break; 6617 default: 6618 /* pf_route6() returns unlocked. */ 6619 if (r->rt) { 6620 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6621 return (action); 6622 } 6623 break; 6624 } 6625 6626 if (s) 6627 PF_STATE_UNLOCK(s); 6628 6629 /* If reassembled packet passed, create new fragments. */ 6630 if (action == PF_PASS && *m0 && fwdir == PF_FWD && 6631 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6632 action = pf_refragment6(ifp, m0, mtag); 6633 6634 return (action); 6635 } 6636 #endif /* INET6 */ 6637