1 /* $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ */ 2 3 /* 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * - Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * - Redistributions in binary form must reproduce the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer in the documentation and/or other materials provided 17 * with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 22 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 23 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 27 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 29 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 * 32 * Effort sponsored in part by the Defense Advanced Research Projects 33 * Agency (DARPA) and Air Force Research Laboratory, Air Force 34 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 35 * 36 */ 37 38 #include <sys/cdefs.h> 39 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_bpf.h" 45 #include "opt_pf.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/hash.h> 51 #include <sys/interrupt.h> 52 #include <sys/kernel.h> 53 #include <sys/kthread.h> 54 #include <sys/limits.h> 55 #include <sys/mbuf.h> 56 #include <sys/md5.h> 57 #include <sys/random.h> 58 #include <sys/refcount.h> 59 #include <sys/socket.h> 60 #include <sys/sysctl.h> 61 #include <sys/taskqueue.h> 62 #include <sys/ucred.h> 63 64 #include <net/if.h> 65 #include <net/if_types.h> 66 #include <net/route.h> 67 #include <net/radix_mpath.h> 68 #include <net/vnet.h> 69 70 #include <net/pfvar.h> 71 #include <net/pf_mtag.h> 72 #include <net/if_pflog.h> 73 #include <net/if_pfsync.h> 74 75 #include <netinet/in_pcb.h> 76 #include <netinet/in_var.h> 77 #include <netinet/ip.h> 78 #include <netinet/ip_fw.h> 79 #include <netinet/ip_icmp.h> 80 #include <netinet/icmp_var.h> 81 #include <netinet/ip_var.h> 82 #include <netinet/tcp.h> 83 #include <netinet/tcp_fsm.h> 84 #include <netinet/tcp_seq.h> 85 #include <netinet/tcp_timer.h> 86 #include <netinet/tcp_var.h> 87 #include <netinet/udp.h> 88 #include <netinet/udp_var.h> 89 90 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 91 92 #ifdef INET6 93 #include <netinet/ip6.h> 94 #include <netinet/icmp6.h> 95 #include <netinet6/nd6.h> 96 #include <netinet6/ip6_var.h> 97 #include <netinet6/in6_pcb.h> 98 #endif /* INET6 */ 99 100 #include <machine/in_cksum.h> 101 #include <security/mac/mac_framework.h> 102 103 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 104 105 /* 106 * Global variables 107 */ 108 109 /* state tables */ 110 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 111 VNET_DEFINE(struct pf_palist, pf_pabuf); 112 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 113 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 114 VNET_DEFINE(struct pf_status, pf_status); 115 116 VNET_DEFINE(u_int32_t, ticket_altqs_active); 117 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 118 VNET_DEFINE(int, altqs_inactive_open); 119 VNET_DEFINE(u_int32_t, ticket_pabuf); 120 121 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 122 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 123 VNET_DEFINE(u_char, pf_tcp_secret[16]); 124 #define V_pf_tcp_secret VNET(pf_tcp_secret) 125 VNET_DEFINE(int, pf_tcp_secret_init); 126 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 127 VNET_DEFINE(int, pf_tcp_iss_off); 128 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 129 130 /* 131 * Queue for pf_intr() sends. 132 */ 133 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 134 struct pf_send_entry { 135 STAILQ_ENTRY(pf_send_entry) pfse_next; 136 struct mbuf *pfse_m; 137 enum { 138 PFSE_IP, 139 PFSE_IP6, 140 PFSE_ICMP, 141 PFSE_ICMP6, 142 } pfse_type; 143 union { 144 struct route ro; 145 struct { 146 int type; 147 int code; 148 int mtu; 149 } icmpopts; 150 } u; 151 #define pfse_ro u.ro 152 #define pfse_icmp_type u.icmpopts.type 153 #define pfse_icmp_code u.icmpopts.code 154 #define pfse_icmp_mtu u.icmpopts.mtu 155 }; 156 157 STAILQ_HEAD(pf_send_head, pf_send_entry); 158 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 159 #define V_pf_sendqueue VNET(pf_sendqueue) 160 161 static struct mtx pf_sendqueue_mtx; 162 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 163 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 164 165 /* 166 * Queue for pf_overload_task() tasks. 167 */ 168 struct pf_overload_entry { 169 SLIST_ENTRY(pf_overload_entry) next; 170 struct pf_addr addr; 171 sa_family_t af; 172 uint8_t dir; 173 struct pf_rule *rule; 174 }; 175 176 SLIST_HEAD(pf_overload_head, pf_overload_entry); 177 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 178 #define V_pf_overloadqueue VNET(pf_overloadqueue) 179 static VNET_DEFINE(struct task, pf_overloadtask); 180 #define V_pf_overloadtask VNET(pf_overloadtask) 181 182 static struct mtx pf_overloadqueue_mtx; 183 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 184 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 185 186 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 187 struct mtx pf_unlnkdrules_mtx; 188 189 static VNET_DEFINE(uma_zone_t, pf_sources_z); 190 #define V_pf_sources_z VNET(pf_sources_z) 191 static VNET_DEFINE(uma_zone_t, pf_mtag_z); 192 #define V_pf_mtag_z VNET(pf_mtag_z) 193 VNET_DEFINE(uma_zone_t, pf_state_z); 194 VNET_DEFINE(uma_zone_t, pf_state_key_z); 195 196 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 197 #define PFID_CPUBITS 8 198 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 199 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 200 #define PFID_MAXID (~PFID_CPUMASK) 201 CTASSERT((1 << PFID_CPUBITS) > MAXCPU); 202 203 static void pf_src_tree_remove_state(struct pf_state *); 204 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 205 u_int32_t); 206 static void pf_add_threshold(struct pf_threshold *); 207 static int pf_check_threshold(struct pf_threshold *); 208 209 static void pf_change_ap(struct pf_addr *, u_int16_t *, 210 u_int16_t *, u_int16_t *, struct pf_addr *, 211 u_int16_t, u_int8_t, sa_family_t); 212 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 213 struct tcphdr *, struct pf_state_peer *); 214 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 215 struct pf_addr *, struct pf_addr *, u_int16_t, 216 u_int16_t *, u_int16_t *, u_int16_t *, 217 u_int16_t *, u_int8_t, sa_family_t); 218 static void pf_send_tcp(struct mbuf *, 219 const struct pf_rule *, sa_family_t, 220 const struct pf_addr *, const struct pf_addr *, 221 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 222 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 223 u_int16_t, struct ifnet *); 224 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 225 sa_family_t, struct pf_rule *); 226 static void pf_detach_state(struct pf_state *); 227 static int pf_state_key_attach(struct pf_state_key *, 228 struct pf_state_key *, struct pf_state *); 229 static void pf_state_key_detach(struct pf_state *, int); 230 static int pf_state_key_ctor(void *, int, void *, int); 231 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 232 static int pf_test_rule(struct pf_rule **, struct pf_state **, 233 int, struct pfi_kif *, struct mbuf *, int, 234 struct pf_pdesc *, struct pf_rule **, 235 struct pf_ruleset **, struct inpcb *); 236 static int pf_create_state(struct pf_rule *, struct pf_rule *, 237 struct pf_rule *, struct pf_pdesc *, 238 struct pf_src_node *, struct pf_state_key *, 239 struct pf_state_key *, struct mbuf *, int, 240 u_int16_t, u_int16_t, int *, struct pfi_kif *, 241 struct pf_state **, int, u_int16_t, u_int16_t, 242 int); 243 static int pf_test_fragment(struct pf_rule **, int, 244 struct pfi_kif *, struct mbuf *, void *, 245 struct pf_pdesc *, struct pf_rule **, 246 struct pf_ruleset **); 247 static int pf_tcp_track_full(struct pf_state_peer *, 248 struct pf_state_peer *, struct pf_state **, 249 struct pfi_kif *, struct mbuf *, int, 250 struct pf_pdesc *, u_short *, int *); 251 static int pf_tcp_track_sloppy(struct pf_state_peer *, 252 struct pf_state_peer *, struct pf_state **, 253 struct pf_pdesc *, u_short *); 254 static int pf_test_state_tcp(struct pf_state **, int, 255 struct pfi_kif *, struct mbuf *, int, 256 void *, struct pf_pdesc *, u_short *); 257 static int pf_test_state_udp(struct pf_state **, int, 258 struct pfi_kif *, struct mbuf *, int, 259 void *, struct pf_pdesc *); 260 static int pf_test_state_icmp(struct pf_state **, int, 261 struct pfi_kif *, struct mbuf *, int, 262 void *, struct pf_pdesc *, u_short *); 263 static int pf_test_state_other(struct pf_state **, int, 264 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 265 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 266 sa_family_t); 267 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 268 sa_family_t); 269 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 270 int, u_int16_t); 271 static void pf_set_rt_ifp(struct pf_state *, 272 struct pf_addr *); 273 static int pf_check_proto_cksum(struct mbuf *, int, int, 274 u_int8_t, sa_family_t); 275 static void pf_print_state_parts(struct pf_state *, 276 struct pf_state_key *, struct pf_state_key *); 277 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 278 struct pf_addr_wrap *); 279 static struct pf_state *pf_find_state(struct pfi_kif *, 280 struct pf_state_key_cmp *, u_int); 281 static int pf_src_connlimit(struct pf_state **); 282 static void pf_overload_task(void *c, int pending); 283 static int pf_insert_src_node(struct pf_src_node **, 284 struct pf_rule *, struct pf_addr *, sa_family_t); 285 static u_int pf_purge_expired_states(u_int, int); 286 static void pf_purge_unlinked_rules(void); 287 static int pf_mtag_init(void *, int, int); 288 static void pf_mtag_free(struct m_tag *); 289 #ifdef INET 290 static void pf_route(struct mbuf **, struct pf_rule *, int, 291 struct ifnet *, struct pf_state *, 292 struct pf_pdesc *); 293 #endif /* INET */ 294 #ifdef INET6 295 static void pf_change_a6(struct pf_addr *, u_int16_t *, 296 struct pf_addr *, u_int8_t); 297 static void pf_route6(struct mbuf **, struct pf_rule *, int, 298 struct ifnet *, struct pf_state *, 299 struct pf_pdesc *); 300 #endif /* INET6 */ 301 302 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 303 304 VNET_DECLARE(int, pf_end_threads); 305 306 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 307 308 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 309 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 310 311 #define STATE_LOOKUP(i, k, d, s, pd) \ 312 do { \ 313 (s) = pf_find_state((i), (k), (d)); \ 314 if ((s) == NULL || (s)->timeout == PFTM_PURGE) \ 315 return (PF_DROP); \ 316 if (PACKET_LOOPED(pd)) \ 317 return (PF_PASS); \ 318 if ((d) == PF_OUT && \ 319 (((s)->rule.ptr->rt == PF_ROUTETO && \ 320 (s)->rule.ptr->direction == PF_OUT) || \ 321 ((s)->rule.ptr->rt == PF_REPLYTO && \ 322 (s)->rule.ptr->direction == PF_IN)) && \ 323 (s)->rt_kif != NULL && \ 324 (s)->rt_kif != (i)) \ 325 return (PF_PASS); \ 326 } while (0) 327 328 #define BOUND_IFACE(r, k) \ 329 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 330 331 #define STATE_INC_COUNTERS(s) \ 332 do { \ 333 s->rule.ptr->states_cur++; \ 334 s->rule.ptr->states_tot++; \ 335 if (s->anchor.ptr != NULL) { \ 336 s->anchor.ptr->states_cur++; \ 337 s->anchor.ptr->states_tot++; \ 338 } \ 339 if (s->nat_rule.ptr != NULL) { \ 340 s->nat_rule.ptr->states_cur++; \ 341 s->nat_rule.ptr->states_tot++; \ 342 } \ 343 } while (0) 344 345 #define STATE_DEC_COUNTERS(s) \ 346 do { \ 347 if (s->nat_rule.ptr != NULL) \ 348 s->nat_rule.ptr->states_cur--; \ 349 if (s->anchor.ptr != NULL) \ 350 s->anchor.ptr->states_cur--; \ 351 s->rule.ptr->states_cur--; \ 352 } while (0) 353 354 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 355 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 356 VNET_DEFINE(struct pf_idhash *, pf_idhash); 357 VNET_DEFINE(u_long, pf_hashmask); 358 VNET_DEFINE(struct pf_srchash *, pf_srchash); 359 VNET_DEFINE(u_long, pf_srchashmask); 360 361 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 362 363 VNET_DEFINE(u_long, pf_hashsize); 364 #define V_pf_hashsize VNET(pf_hashsize) 365 SYSCTL_VNET_UINT(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 366 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 367 368 VNET_DEFINE(u_long, pf_srchashsize); 369 #define V_pf_srchashsize VNET(pf_srchashsize) 370 SYSCTL_VNET_UINT(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 371 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 372 373 VNET_DEFINE(void *, pf_swi_cookie); 374 375 VNET_DEFINE(uint32_t, pf_hashseed); 376 #define V_pf_hashseed VNET(pf_hashseed) 377 378 static __inline uint32_t 379 pf_hashkey(struct pf_state_key *sk) 380 { 381 uint32_t h; 382 383 h = jenkins_hash32((uint32_t *)sk, 384 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 385 V_pf_hashseed); 386 387 return (h & V_pf_hashmask); 388 } 389 390 static __inline uint32_t 391 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 392 { 393 uint32_t h; 394 395 switch (af) { 396 case AF_INET: 397 h = jenkins_hash32((uint32_t *)&addr->v4, 398 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 399 break; 400 case AF_INET6: 401 h = jenkins_hash32((uint32_t *)&addr->v6, 402 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 403 break; 404 default: 405 panic("%s: unknown address family %u", __func__, af); 406 } 407 408 return (h & V_pf_srchashmask); 409 } 410 411 #ifdef INET6 412 void 413 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 414 { 415 switch (af) { 416 #ifdef INET 417 case AF_INET: 418 dst->addr32[0] = src->addr32[0]; 419 break; 420 #endif /* INET */ 421 case AF_INET6: 422 dst->addr32[0] = src->addr32[0]; 423 dst->addr32[1] = src->addr32[1]; 424 dst->addr32[2] = src->addr32[2]; 425 dst->addr32[3] = src->addr32[3]; 426 break; 427 } 428 } 429 #endif /* INET6 */ 430 431 static void 432 pf_init_threshold(struct pf_threshold *threshold, 433 u_int32_t limit, u_int32_t seconds) 434 { 435 threshold->limit = limit * PF_THRESHOLD_MULT; 436 threshold->seconds = seconds; 437 threshold->count = 0; 438 threshold->last = time_uptime; 439 } 440 441 static void 442 pf_add_threshold(struct pf_threshold *threshold) 443 { 444 u_int32_t t = time_uptime, diff = t - threshold->last; 445 446 if (diff >= threshold->seconds) 447 threshold->count = 0; 448 else 449 threshold->count -= threshold->count * diff / 450 threshold->seconds; 451 threshold->count += PF_THRESHOLD_MULT; 452 threshold->last = t; 453 } 454 455 static int 456 pf_check_threshold(struct pf_threshold *threshold) 457 { 458 return (threshold->count > threshold->limit); 459 } 460 461 static int 462 pf_src_connlimit(struct pf_state **state) 463 { 464 struct pf_overload_entry *pfoe; 465 int bad = 0; 466 467 PF_STATE_LOCK_ASSERT(*state); 468 469 (*state)->src_node->conn++; 470 (*state)->src.tcp_est = 1; 471 pf_add_threshold(&(*state)->src_node->conn_rate); 472 473 if ((*state)->rule.ptr->max_src_conn && 474 (*state)->rule.ptr->max_src_conn < 475 (*state)->src_node->conn) { 476 V_pf_status.lcounters[LCNT_SRCCONN]++; 477 bad++; 478 } 479 480 if ((*state)->rule.ptr->max_src_conn_rate.limit && 481 pf_check_threshold(&(*state)->src_node->conn_rate)) { 482 V_pf_status.lcounters[LCNT_SRCCONNRATE]++; 483 bad++; 484 } 485 486 if (!bad) 487 return (0); 488 489 /* Kill this state. */ 490 (*state)->timeout = PFTM_PURGE; 491 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 492 493 if ((*state)->rule.ptr->overload_tbl == NULL) 494 return (1); 495 496 /* Schedule overloading and flushing task. */ 497 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 498 if (pfoe == NULL) 499 return (1); /* too bad :( */ 500 501 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 502 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 503 pfoe->rule = (*state)->rule.ptr; 504 pfoe->dir = (*state)->direction; 505 PF_OVERLOADQ_LOCK(); 506 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 507 PF_OVERLOADQ_UNLOCK(); 508 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 509 510 return (1); 511 } 512 513 static void 514 pf_overload_task(void *c, int pending) 515 { 516 struct pf_overload_head queue; 517 struct pfr_addr p; 518 struct pf_overload_entry *pfoe, *pfoe1; 519 uint32_t killed = 0; 520 521 PF_OVERLOADQ_LOCK(); 522 queue = *(struct pf_overload_head *)c; 523 SLIST_INIT((struct pf_overload_head *)c); 524 PF_OVERLOADQ_UNLOCK(); 525 526 bzero(&p, sizeof(p)); 527 SLIST_FOREACH(pfoe, &queue, next) { 528 V_pf_status.lcounters[LCNT_OVERLOAD_TABLE]++; 529 if (V_pf_status.debug >= PF_DEBUG_MISC) { 530 printf("%s: blocking address ", __func__); 531 pf_print_host(&pfoe->addr, 0, pfoe->af); 532 printf("\n"); 533 } 534 535 p.pfra_af = pfoe->af; 536 switch (pfoe->af) { 537 #ifdef INET 538 case AF_INET: 539 p.pfra_net = 32; 540 p.pfra_ip4addr = pfoe->addr.v4; 541 break; 542 #endif 543 #ifdef INET6 544 case AF_INET6: 545 p.pfra_net = 128; 546 p.pfra_ip6addr = pfoe->addr.v6; 547 break; 548 #endif 549 } 550 551 PF_RULES_WLOCK(); 552 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 553 PF_RULES_WUNLOCK(); 554 } 555 556 /* 557 * Remove those entries, that don't need flushing. 558 */ 559 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 560 if (pfoe->rule->flush == 0) { 561 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 562 free(pfoe, M_PFTEMP); 563 } else 564 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH]++; 565 566 /* If nothing to flush, return. */ 567 if (SLIST_EMPTY(&queue)) 568 return; 569 570 for (int i = 0; i <= V_pf_hashmask; i++) { 571 struct pf_idhash *ih = &V_pf_idhash[i]; 572 struct pf_state_key *sk; 573 struct pf_state *s; 574 575 PF_HASHROW_LOCK(ih); 576 LIST_FOREACH(s, &ih->states, entry) { 577 sk = s->key[PF_SK_WIRE]; 578 SLIST_FOREACH(pfoe, &queue, next) 579 if (sk->af == pfoe->af && 580 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 581 pfoe->rule == s->rule.ptr) && 582 ((pfoe->dir == PF_OUT && 583 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 584 (pfoe->dir == PF_IN && 585 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 586 s->timeout = PFTM_PURGE; 587 s->src.state = s->dst.state = TCPS_CLOSED; 588 killed++; 589 } 590 } 591 PF_HASHROW_UNLOCK(ih); 592 } 593 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 594 free(pfoe, M_PFTEMP); 595 if (V_pf_status.debug >= PF_DEBUG_MISC) 596 printf("%s: %u states killed", __func__, killed); 597 } 598 599 /* 600 * Can return locked on failure, so that we can consistently 601 * allocate and insert a new one. 602 */ 603 struct pf_src_node * 604 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 605 int returnlocked) 606 { 607 struct pf_srchash *sh; 608 struct pf_src_node *n; 609 610 V_pf_status.scounters[SCNT_SRC_NODE_SEARCH]++; 611 612 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 613 PF_HASHROW_LOCK(sh); 614 LIST_FOREACH(n, &sh->nodes, entry) 615 if (n->rule.ptr == rule && n->af == af && 616 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 617 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 618 break; 619 if (n != NULL || returnlocked == 0) 620 PF_HASHROW_UNLOCK(sh); 621 622 return (n); 623 } 624 625 static int 626 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 627 struct pf_addr *src, sa_family_t af) 628 { 629 630 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 631 rule->rpool.opts & PF_POOL_STICKYADDR), 632 ("%s for non-tracking rule %p", __func__, rule)); 633 634 if (*sn == NULL) 635 *sn = pf_find_src_node(src, rule, af, 1); 636 637 if (*sn == NULL) { 638 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 639 640 PF_HASHROW_ASSERT(sh); 641 642 if (!rule->max_src_nodes || 643 rule->src_nodes < rule->max_src_nodes) 644 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 645 else 646 V_pf_status.lcounters[LCNT_SRCNODES]++; 647 if ((*sn) == NULL) { 648 PF_HASHROW_UNLOCK(sh); 649 return (-1); 650 } 651 652 pf_init_threshold(&(*sn)->conn_rate, 653 rule->max_src_conn_rate.limit, 654 rule->max_src_conn_rate.seconds); 655 656 (*sn)->af = af; 657 (*sn)->rule.ptr = rule; 658 PF_ACPY(&(*sn)->addr, src, af); 659 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 660 (*sn)->creation = time_uptime; 661 (*sn)->ruletype = rule->action; 662 if ((*sn)->rule.ptr != NULL) 663 (*sn)->rule.ptr->src_nodes++; 664 PF_HASHROW_UNLOCK(sh); 665 V_pf_status.scounters[SCNT_SRC_NODE_INSERT]++; 666 V_pf_status.src_nodes++; 667 } else { 668 if (rule->max_src_states && 669 (*sn)->states >= rule->max_src_states) { 670 V_pf_status.lcounters[LCNT_SRCSTATES]++; 671 return (-1); 672 } 673 } 674 return (0); 675 } 676 677 static void 678 pf_remove_src_node(struct pf_src_node *src) 679 { 680 struct pf_srchash *sh; 681 682 sh = &V_pf_srchash[pf_hashsrc(&src->addr, src->af)]; 683 PF_HASHROW_LOCK(sh); 684 LIST_REMOVE(src, entry); 685 PF_HASHROW_UNLOCK(sh); 686 687 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS]++; 688 V_pf_status.src_nodes--; 689 690 uma_zfree(V_pf_sources_z, src); 691 } 692 693 /* Data storage structures initialization. */ 694 void 695 pf_initialize() 696 { 697 struct pf_keyhash *kh; 698 struct pf_idhash *ih; 699 struct pf_srchash *sh; 700 u_int i; 701 702 TUNABLE_ULONG_FETCH("net.pf.states_hashsize", &V_pf_hashsize); 703 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 704 V_pf_hashsize = PF_HASHSIZ; 705 TUNABLE_ULONG_FETCH("net.pf.source_nodes_hashsize", &V_pf_srchashsize); 706 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 707 V_pf_srchashsize = PF_HASHSIZ / 4; 708 709 V_pf_hashseed = arc4random(); 710 711 /* States and state keys storage. */ 712 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 713 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 714 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 715 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 716 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 717 718 V_pf_state_key_z = uma_zcreate("pf state keys", 719 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 720 UMA_ALIGN_PTR, 0); 721 V_pf_keyhash = malloc(V_pf_hashsize * sizeof(struct pf_keyhash), 722 M_PFHASH, M_WAITOK | M_ZERO); 723 V_pf_idhash = malloc(V_pf_hashsize * sizeof(struct pf_idhash), 724 M_PFHASH, M_WAITOK | M_ZERO); 725 V_pf_hashmask = V_pf_hashsize - 1; 726 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 727 i++, kh++, ih++) { 728 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF); 729 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 730 } 731 732 /* Source nodes. */ 733 V_pf_sources_z = uma_zcreate("pf source nodes", 734 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 735 0); 736 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 737 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 738 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 739 V_pf_srchash = malloc(V_pf_srchashsize * sizeof(struct pf_srchash), 740 M_PFHASH, M_WAITOK|M_ZERO); 741 V_pf_srchashmask = V_pf_srchashsize - 1; 742 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 743 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 744 745 /* ALTQ */ 746 TAILQ_INIT(&V_pf_altqs[0]); 747 TAILQ_INIT(&V_pf_altqs[1]); 748 TAILQ_INIT(&V_pf_pabuf); 749 V_pf_altqs_active = &V_pf_altqs[0]; 750 V_pf_altqs_inactive = &V_pf_altqs[1]; 751 752 /* Mbuf tags */ 753 V_pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 754 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_init, NULL, 755 UMA_ALIGN_PTR, 0); 756 757 /* Send & overload+flush queues. */ 758 STAILQ_INIT(&V_pf_sendqueue); 759 SLIST_INIT(&V_pf_overloadqueue); 760 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, &V_pf_overloadqueue); 761 mtx_init(&pf_sendqueue_mtx, "pf send queue", NULL, MTX_DEF); 762 mtx_init(&pf_overloadqueue_mtx, "pf overload/flush queue", NULL, 763 MTX_DEF); 764 765 /* Unlinked, but may be referenced rules. */ 766 TAILQ_INIT(&V_pf_unlinked_rules); 767 mtx_init(&pf_unlnkdrules_mtx, "pf unlinked rules", NULL, MTX_DEF); 768 } 769 770 void 771 pf_cleanup() 772 { 773 struct pf_keyhash *kh; 774 struct pf_idhash *ih; 775 struct pf_srchash *sh; 776 struct pf_send_entry *pfse, *next; 777 u_int i; 778 779 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 780 i++, kh++, ih++) { 781 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 782 __func__)); 783 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 784 __func__)); 785 mtx_destroy(&kh->lock); 786 mtx_destroy(&ih->lock); 787 } 788 free(V_pf_keyhash, M_PFHASH); 789 free(V_pf_idhash, M_PFHASH); 790 791 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 792 KASSERT(LIST_EMPTY(&sh->nodes), 793 ("%s: source node hash not empty", __func__)); 794 mtx_destroy(&sh->lock); 795 } 796 free(V_pf_srchash, M_PFHASH); 797 798 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 799 m_freem(pfse->pfse_m); 800 free(pfse, M_PFTEMP); 801 } 802 803 mtx_destroy(&pf_sendqueue_mtx); 804 mtx_destroy(&pf_overloadqueue_mtx); 805 mtx_destroy(&pf_unlnkdrules_mtx); 806 807 uma_zdestroy(V_pf_mtag_z); 808 uma_zdestroy(V_pf_sources_z); 809 uma_zdestroy(V_pf_state_z); 810 uma_zdestroy(V_pf_state_key_z); 811 } 812 813 static int 814 pf_mtag_init(void *mem, int size, int how) 815 { 816 struct m_tag *t; 817 818 t = (struct m_tag *)mem; 819 t->m_tag_cookie = MTAG_ABI_COMPAT; 820 t->m_tag_id = PACKET_TAG_PF; 821 t->m_tag_len = sizeof(struct pf_mtag); 822 t->m_tag_free = pf_mtag_free; 823 824 return (0); 825 } 826 827 static void 828 pf_mtag_free(struct m_tag *t) 829 { 830 831 uma_zfree(V_pf_mtag_z, t); 832 } 833 834 struct pf_mtag * 835 pf_get_mtag(struct mbuf *m) 836 { 837 struct m_tag *mtag; 838 839 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 840 return ((struct pf_mtag *)(mtag + 1)); 841 842 mtag = uma_zalloc(V_pf_mtag_z, M_NOWAIT); 843 if (mtag == NULL) 844 return (NULL); 845 bzero(mtag + 1, sizeof(struct pf_mtag)); 846 m_tag_prepend(m, mtag); 847 848 return ((struct pf_mtag *)(mtag + 1)); 849 } 850 851 static int 852 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 853 struct pf_state *s) 854 { 855 struct pf_keyhash *kh; 856 struct pf_state_key *sk, *cur; 857 struct pf_state *si, *olds = NULL; 858 int idx; 859 860 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 861 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 862 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 863 864 /* 865 * First run: start with wire key. 866 */ 867 sk = skw; 868 idx = PF_SK_WIRE; 869 870 keyattach: 871 kh = &V_pf_keyhash[pf_hashkey(sk)]; 872 873 PF_HASHROW_LOCK(kh); 874 LIST_FOREACH(cur, &kh->keys, entry) 875 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 876 break; 877 878 if (cur != NULL) { 879 /* Key exists. Check for same kif, if none, add to key. */ 880 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 881 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 882 883 PF_HASHROW_LOCK(ih); 884 if (si->kif == s->kif && 885 si->direction == s->direction) { 886 if (sk->proto == IPPROTO_TCP && 887 si->src.state >= TCPS_FIN_WAIT_2 && 888 si->dst.state >= TCPS_FIN_WAIT_2) { 889 si->src.state = si->dst.state = 890 TCPS_CLOSED; 891 /* Unlink later or cur can go away. */ 892 pf_ref_state(si); 893 olds = si; 894 } else { 895 if (V_pf_status.debug >= PF_DEBUG_MISC) { 896 printf("pf: %s key attach " 897 "failed on %s: ", 898 (idx == PF_SK_WIRE) ? 899 "wire" : "stack", 900 s->kif->pfik_name); 901 pf_print_state_parts(s, 902 (idx == PF_SK_WIRE) ? 903 sk : NULL, 904 (idx == PF_SK_STACK) ? 905 sk : NULL); 906 printf(", existing: "); 907 pf_print_state_parts(si, 908 (idx == PF_SK_WIRE) ? 909 sk : NULL, 910 (idx == PF_SK_STACK) ? 911 sk : NULL); 912 printf("\n"); 913 } 914 PF_HASHROW_UNLOCK(ih); 915 PF_HASHROW_UNLOCK(kh); 916 uma_zfree(V_pf_state_key_z, sk); 917 if (idx == PF_SK_STACK) 918 pf_detach_state(s); 919 return (-1); /* collision! */ 920 } 921 } 922 PF_HASHROW_UNLOCK(ih); 923 } 924 uma_zfree(V_pf_state_key_z, sk); 925 s->key[idx] = cur; 926 } else { 927 LIST_INSERT_HEAD(&kh->keys, sk, entry); 928 s->key[idx] = sk; 929 } 930 931 stateattach: 932 /* List is sorted, if-bound states before floating. */ 933 if (s->kif == V_pfi_all) 934 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 935 else 936 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 937 938 /* 939 * Attach done. See how should we (or should not?) 940 * attach a second key. 941 */ 942 if (sks == skw) { 943 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 944 idx = PF_SK_STACK; 945 sks = NULL; 946 goto stateattach; 947 } else if (sks != NULL) { 948 PF_HASHROW_UNLOCK(kh); 949 if (olds) { 950 pf_unlink_state(olds, 0); 951 pf_release_state(olds); 952 olds = NULL; 953 } 954 /* 955 * Continue attaching with stack key. 956 */ 957 sk = sks; 958 idx = PF_SK_STACK; 959 sks = NULL; 960 goto keyattach; 961 } else 962 PF_HASHROW_UNLOCK(kh); 963 964 if (olds) { 965 pf_unlink_state(olds, 0); 966 pf_release_state(olds); 967 } 968 969 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 970 ("%s failure", __func__)); 971 972 return (0); 973 } 974 975 static void 976 pf_detach_state(struct pf_state *s) 977 { 978 struct pf_state_key *sks = s->key[PF_SK_STACK]; 979 struct pf_keyhash *kh; 980 981 if (sks != NULL) { 982 kh = &V_pf_keyhash[pf_hashkey(sks)]; 983 PF_HASHROW_LOCK(kh); 984 if (s->key[PF_SK_STACK] != NULL) 985 pf_state_key_detach(s, PF_SK_STACK); 986 /* 987 * If both point to same key, then we are done. 988 */ 989 if (sks == s->key[PF_SK_WIRE]) { 990 pf_state_key_detach(s, PF_SK_WIRE); 991 PF_HASHROW_UNLOCK(kh); 992 return; 993 } 994 PF_HASHROW_UNLOCK(kh); 995 } 996 997 if (s->key[PF_SK_WIRE] != NULL) { 998 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 999 PF_HASHROW_LOCK(kh); 1000 if (s->key[PF_SK_WIRE] != NULL) 1001 pf_state_key_detach(s, PF_SK_WIRE); 1002 PF_HASHROW_UNLOCK(kh); 1003 } 1004 } 1005 1006 static void 1007 pf_state_key_detach(struct pf_state *s, int idx) 1008 { 1009 struct pf_state_key *sk = s->key[idx]; 1010 #ifdef INVARIANTS 1011 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1012 1013 PF_HASHROW_ASSERT(kh); 1014 #endif 1015 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1016 s->key[idx] = NULL; 1017 1018 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1019 LIST_REMOVE(sk, entry); 1020 uma_zfree(V_pf_state_key_z, sk); 1021 } 1022 } 1023 1024 static int 1025 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1026 { 1027 struct pf_state_key *sk = mem; 1028 1029 bzero(sk, sizeof(struct pf_state_key_cmp)); 1030 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1031 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1032 1033 return (0); 1034 } 1035 1036 struct pf_state_key * 1037 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1038 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1039 { 1040 struct pf_state_key *sk; 1041 1042 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1043 if (sk == NULL) 1044 return (NULL); 1045 1046 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1047 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1048 sk->port[pd->sidx] = sport; 1049 sk->port[pd->didx] = dport; 1050 sk->proto = pd->proto; 1051 sk->af = pd->af; 1052 1053 return (sk); 1054 } 1055 1056 struct pf_state_key * 1057 pf_state_key_clone(struct pf_state_key *orig) 1058 { 1059 struct pf_state_key *sk; 1060 1061 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1062 if (sk == NULL) 1063 return (NULL); 1064 1065 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1066 1067 return (sk); 1068 } 1069 1070 int 1071 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1072 struct pf_state_key *sks, struct pf_state *s) 1073 { 1074 struct pf_idhash *ih; 1075 struct pf_state *cur; 1076 1077 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1078 ("%s: sks not pristine", __func__)); 1079 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1080 ("%s: skw not pristine", __func__)); 1081 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1082 1083 s->kif = kif; 1084 1085 if (s->id == 0 && s->creatorid == 0) { 1086 /* XXX: should be atomic, but probability of collision low */ 1087 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1088 V_pf_stateid[curcpu] = 1; 1089 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1090 s->id = htobe64(s->id); 1091 s->creatorid = V_pf_status.hostid; 1092 } 1093 1094 if (pf_state_key_attach(skw, sks, s)) 1095 return (-1); 1096 1097 ih = &V_pf_idhash[PF_IDHASH(s)]; 1098 PF_HASHROW_LOCK(ih); 1099 LIST_FOREACH(cur, &ih->states, entry) 1100 if (cur->id == s->id && cur->creatorid == s->creatorid) 1101 break; 1102 1103 if (cur != NULL) { 1104 PF_HASHROW_UNLOCK(ih); 1105 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1106 printf("pf: state insert failed: " 1107 "id: %016llx creatorid: %08x", 1108 (unsigned long long)be64toh(s->id), 1109 ntohl(s->creatorid)); 1110 printf("\n"); 1111 } 1112 pf_detach_state(s); 1113 return (-1); 1114 } 1115 LIST_INSERT_HEAD(&ih->states, s, entry); 1116 /* One for keys, one for ID hash. */ 1117 refcount_init(&s->refs, 2); 1118 1119 V_pf_status.fcounters[FCNT_STATE_INSERT]++; 1120 if (pfsync_insert_state_ptr != NULL) 1121 pfsync_insert_state_ptr(s); 1122 1123 /* Returns locked. */ 1124 return (0); 1125 } 1126 1127 /* 1128 * Find state by ID: returns with locked row on success. 1129 */ 1130 struct pf_state * 1131 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1132 { 1133 struct pf_idhash *ih; 1134 struct pf_state *s; 1135 1136 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1137 1138 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))]; 1139 1140 PF_HASHROW_LOCK(ih); 1141 LIST_FOREACH(s, &ih->states, entry) 1142 if (s->id == id && s->creatorid == creatorid) 1143 break; 1144 1145 if (s == NULL) 1146 PF_HASHROW_UNLOCK(ih); 1147 1148 return (s); 1149 } 1150 1151 /* 1152 * Find state by key. 1153 * Returns with ID hash slot locked on success. 1154 */ 1155 static struct pf_state * 1156 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1157 { 1158 struct pf_keyhash *kh; 1159 struct pf_state_key *sk; 1160 struct pf_state *s; 1161 int idx; 1162 1163 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1164 1165 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1166 1167 PF_HASHROW_LOCK(kh); 1168 LIST_FOREACH(sk, &kh->keys, entry) 1169 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1170 break; 1171 if (sk == NULL) { 1172 PF_HASHROW_UNLOCK(kh); 1173 return (NULL); 1174 } 1175 1176 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1177 1178 /* List is sorted, if-bound states before floating ones. */ 1179 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1180 if (s->kif == V_pfi_all || s->kif == kif) { 1181 PF_STATE_LOCK(s); 1182 PF_HASHROW_UNLOCK(kh); 1183 if (s->timeout == PFTM_UNLINKED) { 1184 /* 1185 * State is being processed 1186 * by pf_unlink_state() in 1187 * an other thread. 1188 */ 1189 PF_STATE_UNLOCK(s); 1190 return (NULL); 1191 } 1192 return (s); 1193 } 1194 PF_HASHROW_UNLOCK(kh); 1195 1196 return (NULL); 1197 } 1198 1199 struct pf_state * 1200 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1201 { 1202 struct pf_keyhash *kh; 1203 struct pf_state_key *sk; 1204 struct pf_state *s, *ret = NULL; 1205 int idx, inout = 0; 1206 1207 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1208 1209 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1210 1211 PF_HASHROW_LOCK(kh); 1212 LIST_FOREACH(sk, &kh->keys, entry) 1213 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1214 break; 1215 if (sk == NULL) { 1216 PF_HASHROW_UNLOCK(kh); 1217 return (NULL); 1218 } 1219 switch (dir) { 1220 case PF_IN: 1221 idx = PF_SK_WIRE; 1222 break; 1223 case PF_OUT: 1224 idx = PF_SK_STACK; 1225 break; 1226 case PF_INOUT: 1227 idx = PF_SK_WIRE; 1228 inout = 1; 1229 break; 1230 default: 1231 panic("%s: dir %u", __func__, dir); 1232 } 1233 second_run: 1234 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1235 if (more == NULL) { 1236 PF_HASHROW_UNLOCK(kh); 1237 return (s); 1238 } 1239 1240 if (ret) 1241 (*more)++; 1242 else 1243 ret = s; 1244 } 1245 if (inout == 1) { 1246 inout = 0; 1247 idx = PF_SK_STACK; 1248 goto second_run; 1249 } 1250 PF_HASHROW_UNLOCK(kh); 1251 1252 return (ret); 1253 } 1254 1255 /* END state table stuff */ 1256 1257 static void 1258 pf_send(struct pf_send_entry *pfse) 1259 { 1260 1261 PF_SENDQ_LOCK(); 1262 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1263 PF_SENDQ_UNLOCK(); 1264 swi_sched(V_pf_swi_cookie, 0); 1265 } 1266 1267 void 1268 pf_intr(void *v) 1269 { 1270 struct pf_send_head queue; 1271 struct pf_send_entry *pfse, *next; 1272 1273 CURVNET_SET((struct vnet *)v); 1274 1275 PF_SENDQ_LOCK(); 1276 queue = V_pf_sendqueue; 1277 STAILQ_INIT(&V_pf_sendqueue); 1278 PF_SENDQ_UNLOCK(); 1279 1280 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1281 switch (pfse->pfse_type) { 1282 #ifdef INET 1283 case PFSE_IP: 1284 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1285 break; 1286 case PFSE_ICMP: 1287 icmp_error(pfse->pfse_m, pfse->pfse_icmp_type, 1288 pfse->pfse_icmp_code, 0, pfse->pfse_icmp_mtu); 1289 break; 1290 #endif /* INET */ 1291 #ifdef INET6 1292 case PFSE_IP6: 1293 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1294 NULL); 1295 break; 1296 case PFSE_ICMP6: 1297 icmp6_error(pfse->pfse_m, pfse->pfse_icmp_type, 1298 pfse->pfse_icmp_code, pfse->pfse_icmp_mtu); 1299 break; 1300 #endif /* INET6 */ 1301 default: 1302 panic("%s: unknown type", __func__); 1303 } 1304 free(pfse, M_PFTEMP); 1305 } 1306 CURVNET_RESTORE(); 1307 } 1308 1309 void 1310 pf_purge_thread(void *v) 1311 { 1312 u_int idx = 0; 1313 1314 CURVNET_SET((struct vnet *)v); 1315 1316 for (;;) { 1317 PF_RULES_RLOCK(); 1318 rw_sleep(pf_purge_thread, &pf_rules_lock, 0, "pftm", hz / 10); 1319 1320 if (V_pf_end_threads) { 1321 /* 1322 * To cleanse up all kifs and rules we need 1323 * two runs: first one clears reference flags, 1324 * then pf_purge_expired_states() doesn't 1325 * raise them, and then second run frees. 1326 */ 1327 PF_RULES_RUNLOCK(); 1328 pf_purge_unlinked_rules(); 1329 pfi_kif_purge(); 1330 1331 /* 1332 * Now purge everything. 1333 */ 1334 pf_purge_expired_states(0, V_pf_hashmask); 1335 pf_purge_expired_fragments(); 1336 pf_purge_expired_src_nodes(); 1337 1338 /* 1339 * Now all kifs & rules should be unreferenced, 1340 * thus should be successfully freed. 1341 */ 1342 pf_purge_unlinked_rules(); 1343 pfi_kif_purge(); 1344 1345 /* 1346 * Announce success and exit. 1347 */ 1348 PF_RULES_RLOCK(); 1349 V_pf_end_threads++; 1350 PF_RULES_RUNLOCK(); 1351 wakeup(pf_purge_thread); 1352 kproc_exit(0); 1353 } 1354 PF_RULES_RUNLOCK(); 1355 1356 /* Process 1/interval fraction of the state table every run. */ 1357 idx = pf_purge_expired_states(idx, V_pf_hashmask / 1358 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1359 1360 /* Purge other expired types every PFTM_INTERVAL seconds. */ 1361 if (idx == 0) { 1362 /* 1363 * Order is important: 1364 * - states and src nodes reference rules 1365 * - states and rules reference kifs 1366 */ 1367 pf_purge_expired_fragments(); 1368 pf_purge_expired_src_nodes(); 1369 pf_purge_unlinked_rules(); 1370 pfi_kif_purge(); 1371 } 1372 } 1373 /* not reached */ 1374 CURVNET_RESTORE(); 1375 } 1376 1377 u_int32_t 1378 pf_state_expires(const struct pf_state *state) 1379 { 1380 u_int32_t timeout; 1381 u_int32_t start; 1382 u_int32_t end; 1383 u_int32_t states; 1384 1385 /* handle all PFTM_* > PFTM_MAX here */ 1386 if (state->timeout == PFTM_PURGE) 1387 return (time_uptime); 1388 if (state->timeout == PFTM_UNTIL_PACKET) 1389 return (0); 1390 KASSERT(state->timeout != PFTM_UNLINKED, 1391 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1392 KASSERT((state->timeout < PFTM_MAX), 1393 ("pf_state_expires: timeout > PFTM_MAX")); 1394 timeout = state->rule.ptr->timeout[state->timeout]; 1395 if (!timeout) 1396 timeout = V_pf_default_rule.timeout[state->timeout]; 1397 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1398 if (start) { 1399 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1400 states = state->rule.ptr->states_cur; /* XXXGL */ 1401 } else { 1402 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1403 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1404 states = V_pf_status.states; 1405 } 1406 if (end && states > start && start < end) { 1407 if (states < end) 1408 return (state->expire + timeout * (end - states) / 1409 (end - start)); 1410 else 1411 return (time_uptime); 1412 } 1413 return (state->expire + timeout); 1414 } 1415 1416 void 1417 pf_purge_expired_src_nodes() 1418 { 1419 struct pf_srchash *sh; 1420 struct pf_src_node *cur, *next; 1421 int i; 1422 1423 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1424 PF_HASHROW_LOCK(sh); 1425 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1426 if (cur->states <= 0 && cur->expire <= time_uptime) { 1427 if (cur->rule.ptr != NULL) 1428 cur->rule.ptr->src_nodes--; 1429 LIST_REMOVE(cur, entry); 1430 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS]++; 1431 V_pf_status.src_nodes--; 1432 uma_zfree(V_pf_sources_z, cur); 1433 } else if (cur->rule.ptr != NULL) 1434 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1435 PF_HASHROW_UNLOCK(sh); 1436 } 1437 } 1438 1439 static void 1440 pf_src_tree_remove_state(struct pf_state *s) 1441 { 1442 u_int32_t timeout; 1443 1444 if (s->src_node != NULL) { 1445 if (s->src.tcp_est) 1446 --s->src_node->conn; 1447 if (--s->src_node->states <= 0) { 1448 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1449 if (!timeout) 1450 timeout = 1451 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1452 s->src_node->expire = time_uptime + timeout; 1453 } 1454 } 1455 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1456 if (--s->nat_src_node->states <= 0) { 1457 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1458 if (!timeout) 1459 timeout = 1460 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1461 s->nat_src_node->expire = time_uptime + timeout; 1462 } 1463 } 1464 s->src_node = s->nat_src_node = NULL; 1465 } 1466 1467 /* 1468 * Unlink and potentilly free a state. Function may be 1469 * called with ID hash row locked, but always returns 1470 * unlocked, since it needs to go through key hash locking. 1471 */ 1472 int 1473 pf_unlink_state(struct pf_state *s, u_int flags) 1474 { 1475 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1476 1477 if ((flags & PF_ENTER_LOCKED) == 0) 1478 PF_HASHROW_LOCK(ih); 1479 else 1480 PF_HASHROW_ASSERT(ih); 1481 1482 if (s->timeout == PFTM_UNLINKED) { 1483 /* 1484 * State is being processed 1485 * by pf_unlink_state() in 1486 * an other thread. 1487 */ 1488 PF_HASHROW_UNLOCK(ih); 1489 return (0); /* XXXGL: undefined actually */ 1490 } 1491 1492 if (s->src.state == PF_TCPS_PROXY_DST) { 1493 /* XXX wire key the right one? */ 1494 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1495 &s->key[PF_SK_WIRE]->addr[1], 1496 &s->key[PF_SK_WIRE]->addr[0], 1497 s->key[PF_SK_WIRE]->port[1], 1498 s->key[PF_SK_WIRE]->port[0], 1499 s->src.seqhi, s->src.seqlo + 1, 1500 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1501 } 1502 1503 LIST_REMOVE(s, entry); 1504 pf_src_tree_remove_state(s); 1505 1506 if (pfsync_delete_state_ptr != NULL) 1507 pfsync_delete_state_ptr(s); 1508 1509 --s->rule.ptr->states_cur; 1510 if (s->nat_rule.ptr != NULL) 1511 --s->nat_rule.ptr->states_cur; 1512 if (s->anchor.ptr != NULL) 1513 --s->anchor.ptr->states_cur; 1514 1515 s->timeout = PFTM_UNLINKED; 1516 1517 PF_HASHROW_UNLOCK(ih); 1518 1519 pf_detach_state(s); 1520 refcount_release(&s->refs); 1521 1522 return (pf_release_state(s)); 1523 } 1524 1525 void 1526 pf_free_state(struct pf_state *cur) 1527 { 1528 1529 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1530 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1531 cur->timeout)); 1532 1533 pf_normalize_tcp_cleanup(cur); 1534 uma_zfree(V_pf_state_z, cur); 1535 V_pf_status.fcounters[FCNT_STATE_REMOVALS]++; 1536 } 1537 1538 /* 1539 * Called only from pf_purge_thread(), thus serialized. 1540 */ 1541 static u_int 1542 pf_purge_expired_states(u_int i, int maxcheck) 1543 { 1544 struct pf_idhash *ih; 1545 struct pf_state *s; 1546 1547 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1548 1549 /* 1550 * Go through hash and unlink states that expire now. 1551 */ 1552 while (maxcheck > 0) { 1553 1554 ih = &V_pf_idhash[i]; 1555 relock: 1556 PF_HASHROW_LOCK(ih); 1557 LIST_FOREACH(s, &ih->states, entry) { 1558 if (pf_state_expires(s) <= time_uptime) { 1559 V_pf_status.states -= 1560 pf_unlink_state(s, PF_ENTER_LOCKED); 1561 goto relock; 1562 } 1563 s->rule.ptr->rule_flag |= PFRULE_REFS; 1564 if (s->nat_rule.ptr != NULL) 1565 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1566 if (s->anchor.ptr != NULL) 1567 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1568 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1569 if (s->rt_kif) 1570 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1571 } 1572 PF_HASHROW_UNLOCK(ih); 1573 1574 /* Return when we hit end of hash. */ 1575 if (++i > V_pf_hashmask) { 1576 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1577 return (0); 1578 } 1579 1580 maxcheck--; 1581 } 1582 1583 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1584 1585 return (i); 1586 } 1587 1588 static void 1589 pf_purge_unlinked_rules() 1590 { 1591 struct pf_rulequeue tmpq; 1592 struct pf_rule *r, *r1; 1593 1594 /* 1595 * If we have overloading task pending, then we'd 1596 * better skip purging this time. There is a tiny 1597 * probability that overloading task references 1598 * an already unlinked rule. 1599 */ 1600 PF_OVERLOADQ_LOCK(); 1601 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1602 PF_OVERLOADQ_UNLOCK(); 1603 return; 1604 } 1605 PF_OVERLOADQ_UNLOCK(); 1606 1607 /* 1608 * Do naive mark-and-sweep garbage collecting of old rules. 1609 * Reference flag is raised by pf_purge_expired_states() 1610 * and pf_purge_expired_src_nodes(). 1611 * 1612 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1613 * use a temporary queue. 1614 */ 1615 TAILQ_INIT(&tmpq); 1616 PF_UNLNKDRULES_LOCK(); 1617 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1618 if (!(r->rule_flag & PFRULE_REFS)) { 1619 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1620 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1621 } else 1622 r->rule_flag &= ~PFRULE_REFS; 1623 } 1624 PF_UNLNKDRULES_UNLOCK(); 1625 1626 if (!TAILQ_EMPTY(&tmpq)) { 1627 PF_RULES_WLOCK(); 1628 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1629 TAILQ_REMOVE(&tmpq, r, entries); 1630 pf_free_rule(r); 1631 } 1632 PF_RULES_WUNLOCK(); 1633 } 1634 } 1635 1636 void 1637 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1638 { 1639 switch (af) { 1640 #ifdef INET 1641 case AF_INET: { 1642 u_int32_t a = ntohl(addr->addr32[0]); 1643 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1644 (a>>8)&255, a&255); 1645 if (p) { 1646 p = ntohs(p); 1647 printf(":%u", p); 1648 } 1649 break; 1650 } 1651 #endif /* INET */ 1652 #ifdef INET6 1653 case AF_INET6: { 1654 u_int16_t b; 1655 u_int8_t i, curstart, curend, maxstart, maxend; 1656 curstart = curend = maxstart = maxend = 255; 1657 for (i = 0; i < 8; i++) { 1658 if (!addr->addr16[i]) { 1659 if (curstart == 255) 1660 curstart = i; 1661 curend = i; 1662 } else { 1663 if ((curend - curstart) > 1664 (maxend - maxstart)) { 1665 maxstart = curstart; 1666 maxend = curend; 1667 } 1668 curstart = curend = 255; 1669 } 1670 } 1671 if ((curend - curstart) > 1672 (maxend - maxstart)) { 1673 maxstart = curstart; 1674 maxend = curend; 1675 } 1676 for (i = 0; i < 8; i++) { 1677 if (i >= maxstart && i <= maxend) { 1678 if (i == 0) 1679 printf(":"); 1680 if (i == maxend) 1681 printf(":"); 1682 } else { 1683 b = ntohs(addr->addr16[i]); 1684 printf("%x", b); 1685 if (i < 7) 1686 printf(":"); 1687 } 1688 } 1689 if (p) { 1690 p = ntohs(p); 1691 printf("[%u]", p); 1692 } 1693 break; 1694 } 1695 #endif /* INET6 */ 1696 } 1697 } 1698 1699 void 1700 pf_print_state(struct pf_state *s) 1701 { 1702 pf_print_state_parts(s, NULL, NULL); 1703 } 1704 1705 static void 1706 pf_print_state_parts(struct pf_state *s, 1707 struct pf_state_key *skwp, struct pf_state_key *sksp) 1708 { 1709 struct pf_state_key *skw, *sks; 1710 u_int8_t proto, dir; 1711 1712 /* Do our best to fill these, but they're skipped if NULL */ 1713 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1714 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1715 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1716 dir = s ? s->direction : 0; 1717 1718 switch (proto) { 1719 case IPPROTO_IPV4: 1720 printf("IPv4"); 1721 break; 1722 case IPPROTO_IPV6: 1723 printf("IPv6"); 1724 break; 1725 case IPPROTO_TCP: 1726 printf("TCP"); 1727 break; 1728 case IPPROTO_UDP: 1729 printf("UDP"); 1730 break; 1731 case IPPROTO_ICMP: 1732 printf("ICMP"); 1733 break; 1734 case IPPROTO_ICMPV6: 1735 printf("ICMPv6"); 1736 break; 1737 default: 1738 printf("%u", skw->proto); 1739 break; 1740 } 1741 switch (dir) { 1742 case PF_IN: 1743 printf(" in"); 1744 break; 1745 case PF_OUT: 1746 printf(" out"); 1747 break; 1748 } 1749 if (skw) { 1750 printf(" wire: "); 1751 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1752 printf(" "); 1753 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1754 } 1755 if (sks) { 1756 printf(" stack: "); 1757 if (sks != skw) { 1758 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1759 printf(" "); 1760 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1761 } else 1762 printf("-"); 1763 } 1764 if (s) { 1765 if (proto == IPPROTO_TCP) { 1766 printf(" [lo=%u high=%u win=%u modulator=%u", 1767 s->src.seqlo, s->src.seqhi, 1768 s->src.max_win, s->src.seqdiff); 1769 if (s->src.wscale && s->dst.wscale) 1770 printf(" wscale=%u", 1771 s->src.wscale & PF_WSCALE_MASK); 1772 printf("]"); 1773 printf(" [lo=%u high=%u win=%u modulator=%u", 1774 s->dst.seqlo, s->dst.seqhi, 1775 s->dst.max_win, s->dst.seqdiff); 1776 if (s->src.wscale && s->dst.wscale) 1777 printf(" wscale=%u", 1778 s->dst.wscale & PF_WSCALE_MASK); 1779 printf("]"); 1780 } 1781 printf(" %u:%u", s->src.state, s->dst.state); 1782 } 1783 } 1784 1785 void 1786 pf_print_flags(u_int8_t f) 1787 { 1788 if (f) 1789 printf(" "); 1790 if (f & TH_FIN) 1791 printf("F"); 1792 if (f & TH_SYN) 1793 printf("S"); 1794 if (f & TH_RST) 1795 printf("R"); 1796 if (f & TH_PUSH) 1797 printf("P"); 1798 if (f & TH_ACK) 1799 printf("A"); 1800 if (f & TH_URG) 1801 printf("U"); 1802 if (f & TH_ECE) 1803 printf("E"); 1804 if (f & TH_CWR) 1805 printf("W"); 1806 } 1807 1808 #define PF_SET_SKIP_STEPS(i) \ 1809 do { \ 1810 while (head[i] != cur) { \ 1811 head[i]->skip[i].ptr = cur; \ 1812 head[i] = TAILQ_NEXT(head[i], entries); \ 1813 } \ 1814 } while (0) 1815 1816 void 1817 pf_calc_skip_steps(struct pf_rulequeue *rules) 1818 { 1819 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1820 int i; 1821 1822 cur = TAILQ_FIRST(rules); 1823 prev = cur; 1824 for (i = 0; i < PF_SKIP_COUNT; ++i) 1825 head[i] = cur; 1826 while (cur != NULL) { 1827 1828 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1829 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1830 if (cur->direction != prev->direction) 1831 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1832 if (cur->af != prev->af) 1833 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1834 if (cur->proto != prev->proto) 1835 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1836 if (cur->src.neg != prev->src.neg || 1837 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1838 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1839 if (cur->src.port[0] != prev->src.port[0] || 1840 cur->src.port[1] != prev->src.port[1] || 1841 cur->src.port_op != prev->src.port_op) 1842 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1843 if (cur->dst.neg != prev->dst.neg || 1844 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1845 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1846 if (cur->dst.port[0] != prev->dst.port[0] || 1847 cur->dst.port[1] != prev->dst.port[1] || 1848 cur->dst.port_op != prev->dst.port_op) 1849 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1850 1851 prev = cur; 1852 cur = TAILQ_NEXT(cur, entries); 1853 } 1854 for (i = 0; i < PF_SKIP_COUNT; ++i) 1855 PF_SET_SKIP_STEPS(i); 1856 } 1857 1858 static int 1859 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1860 { 1861 if (aw1->type != aw2->type) 1862 return (1); 1863 switch (aw1->type) { 1864 case PF_ADDR_ADDRMASK: 1865 case PF_ADDR_RANGE: 1866 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, 0)) 1867 return (1); 1868 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, 0)) 1869 return (1); 1870 return (0); 1871 case PF_ADDR_DYNIFTL: 1872 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 1873 case PF_ADDR_NOROUTE: 1874 case PF_ADDR_URPFFAILED: 1875 return (0); 1876 case PF_ADDR_TABLE: 1877 return (aw1->p.tbl != aw2->p.tbl); 1878 default: 1879 printf("invalid address type: %d\n", aw1->type); 1880 return (1); 1881 } 1882 } 1883 1884 u_int16_t 1885 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 1886 { 1887 u_int32_t l; 1888 1889 if (udp && !cksum) 1890 return (0x0000); 1891 l = cksum + old - new; 1892 l = (l >> 16) + (l & 65535); 1893 l = l & 65535; 1894 if (udp && !l) 1895 return (0xFFFF); 1896 return (l); 1897 } 1898 1899 static void 1900 pf_change_ap(struct pf_addr *a, u_int16_t *p, u_int16_t *ic, u_int16_t *pc, 1901 struct pf_addr *an, u_int16_t pn, u_int8_t u, sa_family_t af) 1902 { 1903 struct pf_addr ao; 1904 u_int16_t po = *p; 1905 1906 PF_ACPY(&ao, a, af); 1907 PF_ACPY(a, an, af); 1908 1909 *p = pn; 1910 1911 switch (af) { 1912 #ifdef INET 1913 case AF_INET: 1914 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 1915 ao.addr16[0], an->addr16[0], 0), 1916 ao.addr16[1], an->addr16[1], 0); 1917 *p = pn; 1918 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 1919 ao.addr16[0], an->addr16[0], u), 1920 ao.addr16[1], an->addr16[1], u), 1921 po, pn, u); 1922 break; 1923 #endif /* INET */ 1924 #ifdef INET6 1925 case AF_INET6: 1926 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 1927 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 1928 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 1929 ao.addr16[0], an->addr16[0], u), 1930 ao.addr16[1], an->addr16[1], u), 1931 ao.addr16[2], an->addr16[2], u), 1932 ao.addr16[3], an->addr16[3], u), 1933 ao.addr16[4], an->addr16[4], u), 1934 ao.addr16[5], an->addr16[5], u), 1935 ao.addr16[6], an->addr16[6], u), 1936 ao.addr16[7], an->addr16[7], u), 1937 po, pn, u); 1938 break; 1939 #endif /* INET6 */ 1940 } 1941 } 1942 1943 1944 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 1945 void 1946 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 1947 { 1948 u_int32_t ao; 1949 1950 memcpy(&ao, a, sizeof(ao)); 1951 memcpy(a, &an, sizeof(u_int32_t)); 1952 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 1953 ao % 65536, an % 65536, u); 1954 } 1955 1956 #ifdef INET6 1957 static void 1958 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 1959 { 1960 struct pf_addr ao; 1961 1962 PF_ACPY(&ao, a, AF_INET6); 1963 PF_ACPY(a, an, AF_INET6); 1964 1965 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 1966 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 1967 pf_cksum_fixup(pf_cksum_fixup(*c, 1968 ao.addr16[0], an->addr16[0], u), 1969 ao.addr16[1], an->addr16[1], u), 1970 ao.addr16[2], an->addr16[2], u), 1971 ao.addr16[3], an->addr16[3], u), 1972 ao.addr16[4], an->addr16[4], u), 1973 ao.addr16[5], an->addr16[5], u), 1974 ao.addr16[6], an->addr16[6], u), 1975 ao.addr16[7], an->addr16[7], u); 1976 } 1977 #endif /* INET6 */ 1978 1979 static void 1980 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 1981 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 1982 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 1983 { 1984 struct pf_addr oia, ooa; 1985 1986 PF_ACPY(&oia, ia, af); 1987 if (oa) 1988 PF_ACPY(&ooa, oa, af); 1989 1990 /* Change inner protocol port, fix inner protocol checksum. */ 1991 if (ip != NULL) { 1992 u_int16_t oip = *ip; 1993 u_int32_t opc; 1994 1995 if (pc != NULL) 1996 opc = *pc; 1997 *ip = np; 1998 if (pc != NULL) 1999 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2000 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2001 if (pc != NULL) 2002 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2003 } 2004 /* Change inner ip address, fix inner ip and icmp checksums. */ 2005 PF_ACPY(ia, na, af); 2006 switch (af) { 2007 #ifdef INET 2008 case AF_INET: { 2009 u_int32_t oh2c = *h2c; 2010 2011 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2012 oia.addr16[0], ia->addr16[0], 0), 2013 oia.addr16[1], ia->addr16[1], 0); 2014 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2015 oia.addr16[0], ia->addr16[0], 0), 2016 oia.addr16[1], ia->addr16[1], 0); 2017 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2018 break; 2019 } 2020 #endif /* INET */ 2021 #ifdef INET6 2022 case AF_INET6: 2023 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2024 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2025 pf_cksum_fixup(pf_cksum_fixup(*ic, 2026 oia.addr16[0], ia->addr16[0], u), 2027 oia.addr16[1], ia->addr16[1], u), 2028 oia.addr16[2], ia->addr16[2], u), 2029 oia.addr16[3], ia->addr16[3], u), 2030 oia.addr16[4], ia->addr16[4], u), 2031 oia.addr16[5], ia->addr16[5], u), 2032 oia.addr16[6], ia->addr16[6], u), 2033 oia.addr16[7], ia->addr16[7], u); 2034 break; 2035 #endif /* INET6 */ 2036 } 2037 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2038 if (oa) { 2039 PF_ACPY(oa, na, af); 2040 switch (af) { 2041 #ifdef INET 2042 case AF_INET: 2043 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2044 ooa.addr16[0], oa->addr16[0], 0), 2045 ooa.addr16[1], oa->addr16[1], 0); 2046 break; 2047 #endif /* INET */ 2048 #ifdef INET6 2049 case AF_INET6: 2050 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2051 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2052 pf_cksum_fixup(pf_cksum_fixup(*ic, 2053 ooa.addr16[0], oa->addr16[0], u), 2054 ooa.addr16[1], oa->addr16[1], u), 2055 ooa.addr16[2], oa->addr16[2], u), 2056 ooa.addr16[3], oa->addr16[3], u), 2057 ooa.addr16[4], oa->addr16[4], u), 2058 ooa.addr16[5], oa->addr16[5], u), 2059 ooa.addr16[6], oa->addr16[6], u), 2060 ooa.addr16[7], oa->addr16[7], u); 2061 break; 2062 #endif /* INET6 */ 2063 } 2064 } 2065 } 2066 2067 2068 /* 2069 * Need to modulate the sequence numbers in the TCP SACK option 2070 * (credits to Krzysztof Pfaff for report and patch) 2071 */ 2072 static int 2073 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2074 struct tcphdr *th, struct pf_state_peer *dst) 2075 { 2076 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2077 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2078 int copyback = 0, i, olen; 2079 struct sackblk sack; 2080 2081 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2082 if (hlen < TCPOLEN_SACKLEN || 2083 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2084 return 0; 2085 2086 while (hlen >= TCPOLEN_SACKLEN) { 2087 olen = opt[1]; 2088 switch (*opt) { 2089 case TCPOPT_EOL: /* FALLTHROUGH */ 2090 case TCPOPT_NOP: 2091 opt++; 2092 hlen--; 2093 break; 2094 case TCPOPT_SACK: 2095 if (olen > hlen) 2096 olen = hlen; 2097 if (olen >= TCPOLEN_SACKLEN) { 2098 for (i = 2; i + TCPOLEN_SACK <= olen; 2099 i += TCPOLEN_SACK) { 2100 memcpy(&sack, &opt[i], sizeof(sack)); 2101 pf_change_a(&sack.start, &th->th_sum, 2102 htonl(ntohl(sack.start) - 2103 dst->seqdiff), 0); 2104 pf_change_a(&sack.end, &th->th_sum, 2105 htonl(ntohl(sack.end) - 2106 dst->seqdiff), 0); 2107 memcpy(&opt[i], &sack, sizeof(sack)); 2108 } 2109 copyback = 1; 2110 } 2111 /* FALLTHROUGH */ 2112 default: 2113 if (olen < 2) 2114 olen = 2; 2115 hlen -= olen; 2116 opt += olen; 2117 } 2118 } 2119 2120 if (copyback) 2121 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2122 return (copyback); 2123 } 2124 2125 static void 2126 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2127 const struct pf_addr *saddr, const struct pf_addr *daddr, 2128 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2129 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2130 u_int16_t rtag, struct ifnet *ifp) 2131 { 2132 struct pf_send_entry *pfse; 2133 struct mbuf *m; 2134 int len, tlen; 2135 #ifdef INET 2136 struct ip *h = NULL; 2137 #endif /* INET */ 2138 #ifdef INET6 2139 struct ip6_hdr *h6 = NULL; 2140 #endif /* INET6 */ 2141 struct tcphdr *th; 2142 char *opt; 2143 struct pf_mtag *pf_mtag; 2144 2145 len = 0; 2146 th = NULL; 2147 2148 /* maximum segment size tcp option */ 2149 tlen = sizeof(struct tcphdr); 2150 if (mss) 2151 tlen += 4; 2152 2153 switch (af) { 2154 #ifdef INET 2155 case AF_INET: 2156 len = sizeof(struct ip) + tlen; 2157 break; 2158 #endif /* INET */ 2159 #ifdef INET6 2160 case AF_INET6: 2161 len = sizeof(struct ip6_hdr) + tlen; 2162 break; 2163 #endif /* INET6 */ 2164 default: 2165 panic("%s: unsupported af %d", __func__, af); 2166 } 2167 2168 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2169 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2170 if (pfse == NULL) 2171 return; 2172 m = m_gethdr(M_NOWAIT, MT_HEADER); 2173 if (m == NULL) { 2174 free(pfse, M_PFTEMP); 2175 return; 2176 } 2177 #ifdef MAC 2178 mac_netinet_firewall_send(m); 2179 #endif 2180 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2181 free(pfse, M_PFTEMP); 2182 m_freem(m); 2183 return; 2184 } 2185 if (tag) 2186 m->m_flags |= M_SKIP_FIREWALL; 2187 pf_mtag->tag = rtag; 2188 2189 if (r != NULL && r->rtableid >= 0) 2190 M_SETFIB(m, r->rtableid); 2191 2192 #ifdef ALTQ 2193 if (r != NULL && r->qid) { 2194 pf_mtag->qid = r->qid; 2195 2196 /* add hints for ecn */ 2197 pf_mtag->hdr = mtod(m, struct ip *); 2198 } 2199 #endif /* ALTQ */ 2200 m->m_data += max_linkhdr; 2201 m->m_pkthdr.len = m->m_len = len; 2202 m->m_pkthdr.rcvif = NULL; 2203 bzero(m->m_data, len); 2204 switch (af) { 2205 #ifdef INET 2206 case AF_INET: 2207 h = mtod(m, struct ip *); 2208 2209 /* IP header fields included in the TCP checksum */ 2210 h->ip_p = IPPROTO_TCP; 2211 h->ip_len = htons(tlen); 2212 h->ip_src.s_addr = saddr->v4.s_addr; 2213 h->ip_dst.s_addr = daddr->v4.s_addr; 2214 2215 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2216 break; 2217 #endif /* INET */ 2218 #ifdef INET6 2219 case AF_INET6: 2220 h6 = mtod(m, struct ip6_hdr *); 2221 2222 /* IP header fields included in the TCP checksum */ 2223 h6->ip6_nxt = IPPROTO_TCP; 2224 h6->ip6_plen = htons(tlen); 2225 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2226 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2227 2228 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2229 break; 2230 #endif /* INET6 */ 2231 } 2232 2233 /* TCP header */ 2234 th->th_sport = sport; 2235 th->th_dport = dport; 2236 th->th_seq = htonl(seq); 2237 th->th_ack = htonl(ack); 2238 th->th_off = tlen >> 2; 2239 th->th_flags = flags; 2240 th->th_win = htons(win); 2241 2242 if (mss) { 2243 opt = (char *)(th + 1); 2244 opt[0] = TCPOPT_MAXSEG; 2245 opt[1] = 4; 2246 HTONS(mss); 2247 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2248 } 2249 2250 switch (af) { 2251 #ifdef INET 2252 case AF_INET: 2253 /* TCP checksum */ 2254 th->th_sum = in_cksum(m, len); 2255 2256 /* Finish the IP header */ 2257 h->ip_v = 4; 2258 h->ip_hl = sizeof(*h) >> 2; 2259 h->ip_tos = IPTOS_LOWDELAY; 2260 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2261 h->ip_len = htons(len); 2262 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2263 h->ip_sum = 0; 2264 2265 pfse->pfse_type = PFSE_IP; 2266 break; 2267 #endif /* INET */ 2268 #ifdef INET6 2269 case AF_INET6: 2270 /* TCP checksum */ 2271 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2272 sizeof(struct ip6_hdr), tlen); 2273 2274 h6->ip6_vfc |= IPV6_VERSION; 2275 h6->ip6_hlim = IPV6_DEFHLIM; 2276 2277 pfse->pfse_type = PFSE_IP6; 2278 break; 2279 #endif /* INET6 */ 2280 } 2281 pfse->pfse_m = m; 2282 pf_send(pfse); 2283 } 2284 2285 static void 2286 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2287 struct pf_rule *r) 2288 { 2289 struct pf_send_entry *pfse; 2290 struct mbuf *m0; 2291 struct pf_mtag *pf_mtag; 2292 2293 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2294 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2295 if (pfse == NULL) 2296 return; 2297 2298 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2299 free(pfse, M_PFTEMP); 2300 return; 2301 } 2302 2303 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2304 free(pfse, M_PFTEMP); 2305 return; 2306 } 2307 /* XXX: revisit */ 2308 m0->m_flags |= M_SKIP_FIREWALL; 2309 2310 if (r->rtableid >= 0) 2311 M_SETFIB(m0, r->rtableid); 2312 2313 #ifdef ALTQ 2314 if (r->qid) { 2315 pf_mtag->qid = r->qid; 2316 /* add hints for ecn */ 2317 pf_mtag->hdr = mtod(m0, struct ip *); 2318 } 2319 #endif /* ALTQ */ 2320 2321 switch (af) { 2322 #ifdef INET 2323 case AF_INET: 2324 pfse->pfse_type = PFSE_ICMP; 2325 break; 2326 #endif /* INET */ 2327 #ifdef INET6 2328 case AF_INET6: 2329 pfse->pfse_type = PFSE_ICMP6; 2330 break; 2331 #endif /* INET6 */ 2332 } 2333 pfse->pfse_m = m0; 2334 pfse->pfse_icmp_type = type; 2335 pfse->pfse_icmp_code = code; 2336 pf_send(pfse); 2337 } 2338 2339 /* 2340 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2341 * If n is 0, they match if they are equal. If n is != 0, they match if they 2342 * are different. 2343 */ 2344 int 2345 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2346 struct pf_addr *b, sa_family_t af) 2347 { 2348 int match = 0; 2349 2350 switch (af) { 2351 #ifdef INET 2352 case AF_INET: 2353 if ((a->addr32[0] & m->addr32[0]) == 2354 (b->addr32[0] & m->addr32[0])) 2355 match++; 2356 break; 2357 #endif /* INET */ 2358 #ifdef INET6 2359 case AF_INET6: 2360 if (((a->addr32[0] & m->addr32[0]) == 2361 (b->addr32[0] & m->addr32[0])) && 2362 ((a->addr32[1] & m->addr32[1]) == 2363 (b->addr32[1] & m->addr32[1])) && 2364 ((a->addr32[2] & m->addr32[2]) == 2365 (b->addr32[2] & m->addr32[2])) && 2366 ((a->addr32[3] & m->addr32[3]) == 2367 (b->addr32[3] & m->addr32[3]))) 2368 match++; 2369 break; 2370 #endif /* INET6 */ 2371 } 2372 if (match) { 2373 if (n) 2374 return (0); 2375 else 2376 return (1); 2377 } else { 2378 if (n) 2379 return (1); 2380 else 2381 return (0); 2382 } 2383 } 2384 2385 /* 2386 * Return 1 if b <= a <= e, otherwise return 0. 2387 */ 2388 int 2389 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2390 struct pf_addr *a, sa_family_t af) 2391 { 2392 switch (af) { 2393 #ifdef INET 2394 case AF_INET: 2395 if ((a->addr32[0] < b->addr32[0]) || 2396 (a->addr32[0] > e->addr32[0])) 2397 return (0); 2398 break; 2399 #endif /* INET */ 2400 #ifdef INET6 2401 case AF_INET6: { 2402 int i; 2403 2404 /* check a >= b */ 2405 for (i = 0; i < 4; ++i) 2406 if (a->addr32[i] > b->addr32[i]) 2407 break; 2408 else if (a->addr32[i] < b->addr32[i]) 2409 return (0); 2410 /* check a <= e */ 2411 for (i = 0; i < 4; ++i) 2412 if (a->addr32[i] < e->addr32[i]) 2413 break; 2414 else if (a->addr32[i] > e->addr32[i]) 2415 return (0); 2416 break; 2417 } 2418 #endif /* INET6 */ 2419 } 2420 return (1); 2421 } 2422 2423 static int 2424 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2425 { 2426 switch (op) { 2427 case PF_OP_IRG: 2428 return ((p > a1) && (p < a2)); 2429 case PF_OP_XRG: 2430 return ((p < a1) || (p > a2)); 2431 case PF_OP_RRG: 2432 return ((p >= a1) && (p <= a2)); 2433 case PF_OP_EQ: 2434 return (p == a1); 2435 case PF_OP_NE: 2436 return (p != a1); 2437 case PF_OP_LT: 2438 return (p < a1); 2439 case PF_OP_LE: 2440 return (p <= a1); 2441 case PF_OP_GT: 2442 return (p > a1); 2443 case PF_OP_GE: 2444 return (p >= a1); 2445 } 2446 return (0); /* never reached */ 2447 } 2448 2449 int 2450 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2451 { 2452 NTOHS(a1); 2453 NTOHS(a2); 2454 NTOHS(p); 2455 return (pf_match(op, a1, a2, p)); 2456 } 2457 2458 static int 2459 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2460 { 2461 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2462 return (0); 2463 return (pf_match(op, a1, a2, u)); 2464 } 2465 2466 static int 2467 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2468 { 2469 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2470 return (0); 2471 return (pf_match(op, a1, a2, g)); 2472 } 2473 2474 int 2475 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2476 { 2477 if (*tag == -1) 2478 *tag = mtag; 2479 2480 return ((!r->match_tag_not && r->match_tag == *tag) || 2481 (r->match_tag_not && r->match_tag != *tag)); 2482 } 2483 2484 int 2485 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2486 { 2487 2488 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2489 2490 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2491 return (ENOMEM); 2492 2493 pd->pf_mtag->tag = tag; 2494 2495 return (0); 2496 } 2497 2498 #define PF_ANCHOR_STACKSIZE 32 2499 struct pf_anchor_stackframe { 2500 struct pf_ruleset *rs; 2501 struct pf_rule *r; /* XXX: + match bit */ 2502 struct pf_anchor *child; 2503 }; 2504 2505 /* 2506 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2507 */ 2508 #define PF_ANCHORSTACK_MATCH 0x00000001 2509 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2510 2511 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2512 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2513 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2514 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2515 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2516 } while (0) 2517 2518 void 2519 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2520 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2521 int *match) 2522 { 2523 struct pf_anchor_stackframe *f; 2524 2525 PF_RULES_RASSERT(); 2526 2527 if (match) 2528 *match = 0; 2529 if (*depth >= PF_ANCHOR_STACKSIZE) { 2530 printf("%s: anchor stack overflow on %s\n", 2531 __func__, (*r)->anchor->name); 2532 *r = TAILQ_NEXT(*r, entries); 2533 return; 2534 } else if (*depth == 0 && a != NULL) 2535 *a = *r; 2536 f = stack + (*depth)++; 2537 f->rs = *rs; 2538 f->r = *r; 2539 if ((*r)->anchor_wildcard) { 2540 struct pf_anchor_node *parent = &(*r)->anchor->children; 2541 2542 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2543 *r = NULL; 2544 return; 2545 } 2546 *rs = &f->child->ruleset; 2547 } else { 2548 f->child = NULL; 2549 *rs = &(*r)->anchor->ruleset; 2550 } 2551 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2552 } 2553 2554 int 2555 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2556 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2557 int *match) 2558 { 2559 struct pf_anchor_stackframe *f; 2560 struct pf_rule *fr; 2561 int quick = 0; 2562 2563 PF_RULES_RASSERT(); 2564 2565 do { 2566 if (*depth <= 0) 2567 break; 2568 f = stack + *depth - 1; 2569 fr = PF_ANCHOR_RULE(f); 2570 if (f->child != NULL) { 2571 struct pf_anchor_node *parent; 2572 2573 /* 2574 * This block traverses through 2575 * a wildcard anchor. 2576 */ 2577 parent = &fr->anchor->children; 2578 if (match != NULL && *match) { 2579 /* 2580 * If any of "*" matched, then 2581 * "foo/ *" matched, mark frame 2582 * appropriately. 2583 */ 2584 PF_ANCHOR_SET_MATCH(f); 2585 *match = 0; 2586 } 2587 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2588 if (f->child != NULL) { 2589 *rs = &f->child->ruleset; 2590 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2591 if (*r == NULL) 2592 continue; 2593 else 2594 break; 2595 } 2596 } 2597 (*depth)--; 2598 if (*depth == 0 && a != NULL) 2599 *a = NULL; 2600 *rs = f->rs; 2601 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2602 quick = fr->quick; 2603 *r = TAILQ_NEXT(fr, entries); 2604 } while (*r == NULL); 2605 2606 return (quick); 2607 } 2608 2609 #ifdef INET6 2610 void 2611 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2612 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2613 { 2614 switch (af) { 2615 #ifdef INET 2616 case AF_INET: 2617 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2618 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2619 break; 2620 #endif /* INET */ 2621 case AF_INET6: 2622 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2623 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2624 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2625 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2626 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2627 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2628 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2629 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2630 break; 2631 } 2632 } 2633 2634 void 2635 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2636 { 2637 switch (af) { 2638 #ifdef INET 2639 case AF_INET: 2640 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2641 break; 2642 #endif /* INET */ 2643 case AF_INET6: 2644 if (addr->addr32[3] == 0xffffffff) { 2645 addr->addr32[3] = 0; 2646 if (addr->addr32[2] == 0xffffffff) { 2647 addr->addr32[2] = 0; 2648 if (addr->addr32[1] == 0xffffffff) { 2649 addr->addr32[1] = 0; 2650 addr->addr32[0] = 2651 htonl(ntohl(addr->addr32[0]) + 1); 2652 } else 2653 addr->addr32[1] = 2654 htonl(ntohl(addr->addr32[1]) + 1); 2655 } else 2656 addr->addr32[2] = 2657 htonl(ntohl(addr->addr32[2]) + 1); 2658 } else 2659 addr->addr32[3] = 2660 htonl(ntohl(addr->addr32[3]) + 1); 2661 break; 2662 } 2663 } 2664 #endif /* INET6 */ 2665 2666 int 2667 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2668 { 2669 struct pf_addr *saddr, *daddr; 2670 u_int16_t sport, dport; 2671 struct inpcbinfo *pi; 2672 struct inpcb *inp; 2673 2674 pd->lookup.uid = UID_MAX; 2675 pd->lookup.gid = GID_MAX; 2676 2677 switch (pd->proto) { 2678 case IPPROTO_TCP: 2679 if (pd->hdr.tcp == NULL) 2680 return (-1); 2681 sport = pd->hdr.tcp->th_sport; 2682 dport = pd->hdr.tcp->th_dport; 2683 pi = &V_tcbinfo; 2684 break; 2685 case IPPROTO_UDP: 2686 if (pd->hdr.udp == NULL) 2687 return (-1); 2688 sport = pd->hdr.udp->uh_sport; 2689 dport = pd->hdr.udp->uh_dport; 2690 pi = &V_udbinfo; 2691 break; 2692 default: 2693 return (-1); 2694 } 2695 if (direction == PF_IN) { 2696 saddr = pd->src; 2697 daddr = pd->dst; 2698 } else { 2699 u_int16_t p; 2700 2701 p = sport; 2702 sport = dport; 2703 dport = p; 2704 saddr = pd->dst; 2705 daddr = pd->src; 2706 } 2707 switch (pd->af) { 2708 #ifdef INET 2709 case AF_INET: 2710 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2711 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2712 if (inp == NULL) { 2713 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2714 daddr->v4, dport, INPLOOKUP_WILDCARD | 2715 INPLOOKUP_RLOCKPCB, NULL, m); 2716 if (inp == NULL) 2717 return (-1); 2718 } 2719 break; 2720 #endif /* INET */ 2721 #ifdef INET6 2722 case AF_INET6: 2723 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2724 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2725 if (inp == NULL) { 2726 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2727 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2728 INPLOOKUP_RLOCKPCB, NULL, m); 2729 if (inp == NULL) 2730 return (-1); 2731 } 2732 break; 2733 #endif /* INET6 */ 2734 2735 default: 2736 return (-1); 2737 } 2738 INP_RLOCK_ASSERT(inp); 2739 pd->lookup.uid = inp->inp_cred->cr_uid; 2740 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2741 INP_RUNLOCK(inp); 2742 2743 return (1); 2744 } 2745 2746 static u_int8_t 2747 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2748 { 2749 int hlen; 2750 u_int8_t hdr[60]; 2751 u_int8_t *opt, optlen; 2752 u_int8_t wscale = 0; 2753 2754 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2755 if (hlen <= sizeof(struct tcphdr)) 2756 return (0); 2757 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2758 return (0); 2759 opt = hdr + sizeof(struct tcphdr); 2760 hlen -= sizeof(struct tcphdr); 2761 while (hlen >= 3) { 2762 switch (*opt) { 2763 case TCPOPT_EOL: 2764 case TCPOPT_NOP: 2765 ++opt; 2766 --hlen; 2767 break; 2768 case TCPOPT_WINDOW: 2769 wscale = opt[2]; 2770 if (wscale > TCP_MAX_WINSHIFT) 2771 wscale = TCP_MAX_WINSHIFT; 2772 wscale |= PF_WSCALE_FLAG; 2773 /* FALLTHROUGH */ 2774 default: 2775 optlen = opt[1]; 2776 if (optlen < 2) 2777 optlen = 2; 2778 hlen -= optlen; 2779 opt += optlen; 2780 break; 2781 } 2782 } 2783 return (wscale); 2784 } 2785 2786 static u_int16_t 2787 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2788 { 2789 int hlen; 2790 u_int8_t hdr[60]; 2791 u_int8_t *opt, optlen; 2792 u_int16_t mss = V_tcp_mssdflt; 2793 2794 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2795 if (hlen <= sizeof(struct tcphdr)) 2796 return (0); 2797 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2798 return (0); 2799 opt = hdr + sizeof(struct tcphdr); 2800 hlen -= sizeof(struct tcphdr); 2801 while (hlen >= TCPOLEN_MAXSEG) { 2802 switch (*opt) { 2803 case TCPOPT_EOL: 2804 case TCPOPT_NOP: 2805 ++opt; 2806 --hlen; 2807 break; 2808 case TCPOPT_MAXSEG: 2809 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 2810 NTOHS(mss); 2811 /* FALLTHROUGH */ 2812 default: 2813 optlen = opt[1]; 2814 if (optlen < 2) 2815 optlen = 2; 2816 hlen -= optlen; 2817 opt += optlen; 2818 break; 2819 } 2820 } 2821 return (mss); 2822 } 2823 2824 static u_int16_t 2825 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 2826 { 2827 #ifdef INET 2828 struct sockaddr_in *dst; 2829 struct route ro; 2830 #endif /* INET */ 2831 #ifdef INET6 2832 struct sockaddr_in6 *dst6; 2833 struct route_in6 ro6; 2834 #endif /* INET6 */ 2835 struct rtentry *rt = NULL; 2836 int hlen = 0; 2837 u_int16_t mss = V_tcp_mssdflt; 2838 2839 switch (af) { 2840 #ifdef INET 2841 case AF_INET: 2842 hlen = sizeof(struct ip); 2843 bzero(&ro, sizeof(ro)); 2844 dst = (struct sockaddr_in *)&ro.ro_dst; 2845 dst->sin_family = AF_INET; 2846 dst->sin_len = sizeof(*dst); 2847 dst->sin_addr = addr->v4; 2848 in_rtalloc_ign(&ro, 0, rtableid); 2849 rt = ro.ro_rt; 2850 break; 2851 #endif /* INET */ 2852 #ifdef INET6 2853 case AF_INET6: 2854 hlen = sizeof(struct ip6_hdr); 2855 bzero(&ro6, sizeof(ro6)); 2856 dst6 = (struct sockaddr_in6 *)&ro6.ro_dst; 2857 dst6->sin6_family = AF_INET6; 2858 dst6->sin6_len = sizeof(*dst6); 2859 dst6->sin6_addr = addr->v6; 2860 in6_rtalloc_ign(&ro6, 0, rtableid); 2861 rt = ro6.ro_rt; 2862 break; 2863 #endif /* INET6 */ 2864 } 2865 2866 if (rt && rt->rt_ifp) { 2867 mss = rt->rt_ifp->if_mtu - hlen - sizeof(struct tcphdr); 2868 mss = max(V_tcp_mssdflt, mss); 2869 RTFREE(rt); 2870 } 2871 mss = min(mss, offer); 2872 mss = max(mss, 64); /* sanity - at least max opt space */ 2873 return (mss); 2874 } 2875 2876 static void 2877 pf_set_rt_ifp(struct pf_state *s, struct pf_addr *saddr) 2878 { 2879 struct pf_rule *r = s->rule.ptr; 2880 struct pf_src_node *sn = NULL; 2881 2882 s->rt_kif = NULL; 2883 if (!r->rt || r->rt == PF_FASTROUTE) 2884 return; 2885 switch (s->key[PF_SK_WIRE]->af) { 2886 #ifdef INET 2887 case AF_INET: 2888 pf_map_addr(AF_INET, r, saddr, &s->rt_addr, NULL, &sn); 2889 s->rt_kif = r->rpool.cur->kif; 2890 break; 2891 #endif /* INET */ 2892 #ifdef INET6 2893 case AF_INET6: 2894 pf_map_addr(AF_INET6, r, saddr, &s->rt_addr, NULL, &sn); 2895 s->rt_kif = r->rpool.cur->kif; 2896 break; 2897 #endif /* INET6 */ 2898 } 2899 } 2900 2901 static u_int32_t 2902 pf_tcp_iss(struct pf_pdesc *pd) 2903 { 2904 MD5_CTX ctx; 2905 u_int32_t digest[4]; 2906 2907 if (V_pf_tcp_secret_init == 0) { 2908 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 2909 MD5Init(&V_pf_tcp_secret_ctx); 2910 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 2911 sizeof(V_pf_tcp_secret)); 2912 V_pf_tcp_secret_init = 1; 2913 } 2914 2915 ctx = V_pf_tcp_secret_ctx; 2916 2917 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 2918 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 2919 if (pd->af == AF_INET6) { 2920 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 2921 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 2922 } else { 2923 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 2924 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 2925 } 2926 MD5Final((u_char *)digest, &ctx); 2927 V_pf_tcp_iss_off += 4096; 2928 #define ISN_RANDOM_INCREMENT (4096 - 1) 2929 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 2930 V_pf_tcp_iss_off); 2931 #undef ISN_RANDOM_INCREMENT 2932 } 2933 2934 static int 2935 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 2936 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 2937 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 2938 { 2939 struct pf_rule *nr = NULL; 2940 struct pf_addr * const saddr = pd->src; 2941 struct pf_addr * const daddr = pd->dst; 2942 sa_family_t af = pd->af; 2943 struct pf_rule *r, *a = NULL; 2944 struct pf_ruleset *ruleset = NULL; 2945 struct pf_src_node *nsn = NULL; 2946 struct tcphdr *th = pd->hdr.tcp; 2947 struct pf_state_key *sk = NULL, *nk = NULL; 2948 u_short reason; 2949 int rewrite = 0, hdrlen = 0; 2950 int tag = -1, rtableid = -1; 2951 int asd = 0; 2952 int match = 0; 2953 int state_icmp = 0; 2954 u_int16_t sport = 0, dport = 0; 2955 u_int16_t bproto_sum = 0, bip_sum = 0; 2956 u_int8_t icmptype = 0, icmpcode = 0; 2957 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 2958 2959 PF_RULES_RASSERT(); 2960 2961 if (inp != NULL) { 2962 INP_LOCK_ASSERT(inp); 2963 pd->lookup.uid = inp->inp_cred->cr_uid; 2964 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2965 pd->lookup.done = 1; 2966 } 2967 2968 switch (pd->proto) { 2969 case IPPROTO_TCP: 2970 sport = th->th_sport; 2971 dport = th->th_dport; 2972 hdrlen = sizeof(*th); 2973 break; 2974 case IPPROTO_UDP: 2975 sport = pd->hdr.udp->uh_sport; 2976 dport = pd->hdr.udp->uh_dport; 2977 hdrlen = sizeof(*pd->hdr.udp); 2978 break; 2979 #ifdef INET 2980 case IPPROTO_ICMP: 2981 if (pd->af != AF_INET) 2982 break; 2983 sport = dport = pd->hdr.icmp->icmp_id; 2984 hdrlen = sizeof(*pd->hdr.icmp); 2985 icmptype = pd->hdr.icmp->icmp_type; 2986 icmpcode = pd->hdr.icmp->icmp_code; 2987 2988 if (icmptype == ICMP_UNREACH || 2989 icmptype == ICMP_SOURCEQUENCH || 2990 icmptype == ICMP_REDIRECT || 2991 icmptype == ICMP_TIMXCEED || 2992 icmptype == ICMP_PARAMPROB) 2993 state_icmp++; 2994 break; 2995 #endif /* INET */ 2996 #ifdef INET6 2997 case IPPROTO_ICMPV6: 2998 if (af != AF_INET6) 2999 break; 3000 sport = dport = pd->hdr.icmp6->icmp6_id; 3001 hdrlen = sizeof(*pd->hdr.icmp6); 3002 icmptype = pd->hdr.icmp6->icmp6_type; 3003 icmpcode = pd->hdr.icmp6->icmp6_code; 3004 3005 if (icmptype == ICMP6_DST_UNREACH || 3006 icmptype == ICMP6_PACKET_TOO_BIG || 3007 icmptype == ICMP6_TIME_EXCEEDED || 3008 icmptype == ICMP6_PARAM_PROB) 3009 state_icmp++; 3010 break; 3011 #endif /* INET6 */ 3012 default: 3013 sport = dport = hdrlen = 0; 3014 break; 3015 } 3016 3017 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3018 3019 /* check packet for BINAT/NAT/RDR */ 3020 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3021 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3022 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3023 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3024 3025 if (pd->ip_sum) 3026 bip_sum = *pd->ip_sum; 3027 3028 switch (pd->proto) { 3029 case IPPROTO_TCP: 3030 bproto_sum = th->th_sum; 3031 pd->proto_sum = &th->th_sum; 3032 3033 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3034 nk->port[pd->sidx] != sport) { 3035 pf_change_ap(saddr, &th->th_sport, pd->ip_sum, 3036 &th->th_sum, &nk->addr[pd->sidx], 3037 nk->port[pd->sidx], 0, af); 3038 pd->sport = &th->th_sport; 3039 sport = th->th_sport; 3040 } 3041 3042 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3043 nk->port[pd->didx] != dport) { 3044 pf_change_ap(daddr, &th->th_dport, pd->ip_sum, 3045 &th->th_sum, &nk->addr[pd->didx], 3046 nk->port[pd->didx], 0, af); 3047 dport = th->th_dport; 3048 pd->dport = &th->th_dport; 3049 } 3050 rewrite++; 3051 break; 3052 case IPPROTO_UDP: 3053 bproto_sum = pd->hdr.udp->uh_sum; 3054 pd->proto_sum = &pd->hdr.udp->uh_sum; 3055 3056 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3057 nk->port[pd->sidx] != sport) { 3058 pf_change_ap(saddr, &pd->hdr.udp->uh_sport, 3059 pd->ip_sum, &pd->hdr.udp->uh_sum, 3060 &nk->addr[pd->sidx], 3061 nk->port[pd->sidx], 1, af); 3062 sport = pd->hdr.udp->uh_sport; 3063 pd->sport = &pd->hdr.udp->uh_sport; 3064 } 3065 3066 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3067 nk->port[pd->didx] != dport) { 3068 pf_change_ap(daddr, &pd->hdr.udp->uh_dport, 3069 pd->ip_sum, &pd->hdr.udp->uh_sum, 3070 &nk->addr[pd->didx], 3071 nk->port[pd->didx], 1, af); 3072 dport = pd->hdr.udp->uh_dport; 3073 pd->dport = &pd->hdr.udp->uh_dport; 3074 } 3075 rewrite++; 3076 break; 3077 #ifdef INET 3078 case IPPROTO_ICMP: 3079 nk->port[0] = nk->port[1]; 3080 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3081 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3082 nk->addr[pd->sidx].v4.s_addr, 0); 3083 3084 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3085 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3086 nk->addr[pd->didx].v4.s_addr, 0); 3087 3088 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3089 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3090 pd->hdr.icmp->icmp_cksum, sport, 3091 nk->port[1], 0); 3092 pd->hdr.icmp->icmp_id = nk->port[1]; 3093 pd->sport = &pd->hdr.icmp->icmp_id; 3094 } 3095 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3096 break; 3097 #endif /* INET */ 3098 #ifdef INET6 3099 case IPPROTO_ICMPV6: 3100 nk->port[0] = nk->port[1]; 3101 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3102 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3103 &nk->addr[pd->sidx], 0); 3104 3105 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3106 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3107 &nk->addr[pd->didx], 0); 3108 rewrite++; 3109 break; 3110 #endif /* INET */ 3111 default: 3112 switch (af) { 3113 #ifdef INET 3114 case AF_INET: 3115 if (PF_ANEQ(saddr, 3116 &nk->addr[pd->sidx], AF_INET)) 3117 pf_change_a(&saddr->v4.s_addr, 3118 pd->ip_sum, 3119 nk->addr[pd->sidx].v4.s_addr, 0); 3120 3121 if (PF_ANEQ(daddr, 3122 &nk->addr[pd->didx], AF_INET)) 3123 pf_change_a(&daddr->v4.s_addr, 3124 pd->ip_sum, 3125 nk->addr[pd->didx].v4.s_addr, 0); 3126 break; 3127 #endif /* INET */ 3128 #ifdef INET6 3129 case AF_INET6: 3130 if (PF_ANEQ(saddr, 3131 &nk->addr[pd->sidx], AF_INET6)) 3132 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3133 3134 if (PF_ANEQ(daddr, 3135 &nk->addr[pd->didx], AF_INET6)) 3136 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3137 break; 3138 #endif /* INET */ 3139 } 3140 break; 3141 } 3142 if (nr->natpass) 3143 r = NULL; 3144 pd->nat_rule = nr; 3145 } 3146 3147 while (r != NULL) { 3148 r->evaluations++; 3149 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3150 r = r->skip[PF_SKIP_IFP].ptr; 3151 else if (r->direction && r->direction != direction) 3152 r = r->skip[PF_SKIP_DIR].ptr; 3153 else if (r->af && r->af != af) 3154 r = r->skip[PF_SKIP_AF].ptr; 3155 else if (r->proto && r->proto != pd->proto) 3156 r = r->skip[PF_SKIP_PROTO].ptr; 3157 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3158 r->src.neg, kif, M_GETFIB(m))) 3159 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3160 /* tcp/udp only. port_op always 0 in other cases */ 3161 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3162 r->src.port[0], r->src.port[1], sport)) 3163 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3164 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3165 r->dst.neg, NULL, M_GETFIB(m))) 3166 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3167 /* tcp/udp only. port_op always 0 in other cases */ 3168 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3169 r->dst.port[0], r->dst.port[1], dport)) 3170 r = r->skip[PF_SKIP_DST_PORT].ptr; 3171 /* icmp only. type always 0 in other cases */ 3172 else if (r->type && r->type != icmptype + 1) 3173 r = TAILQ_NEXT(r, entries); 3174 /* icmp only. type always 0 in other cases */ 3175 else if (r->code && r->code != icmpcode + 1) 3176 r = TAILQ_NEXT(r, entries); 3177 else if (r->tos && !(r->tos == pd->tos)) 3178 r = TAILQ_NEXT(r, entries); 3179 else if (r->rule_flag & PFRULE_FRAGMENT) 3180 r = TAILQ_NEXT(r, entries); 3181 else if (pd->proto == IPPROTO_TCP && 3182 (r->flagset & th->th_flags) != r->flags) 3183 r = TAILQ_NEXT(r, entries); 3184 /* tcp/udp only. uid.op always 0 in other cases */ 3185 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3186 pf_socket_lookup(direction, pd, m), 1)) && 3187 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3188 pd->lookup.uid)) 3189 r = TAILQ_NEXT(r, entries); 3190 /* tcp/udp only. gid.op always 0 in other cases */ 3191 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3192 pf_socket_lookup(direction, pd, m), 1)) && 3193 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3194 pd->lookup.gid)) 3195 r = TAILQ_NEXT(r, entries); 3196 else if (r->prob && 3197 r->prob <= arc4random()) 3198 r = TAILQ_NEXT(r, entries); 3199 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3200 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3201 r = TAILQ_NEXT(r, entries); 3202 else if (r->os_fingerprint != PF_OSFP_ANY && 3203 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3204 pf_osfp_fingerprint(pd, m, off, th), 3205 r->os_fingerprint))) 3206 r = TAILQ_NEXT(r, entries); 3207 else { 3208 if (r->tag) 3209 tag = r->tag; 3210 if (r->rtableid >= 0) 3211 rtableid = r->rtableid; 3212 if (r->anchor == NULL) { 3213 match = 1; 3214 *rm = r; 3215 *am = a; 3216 *rsm = ruleset; 3217 if ((*rm)->quick) 3218 break; 3219 r = TAILQ_NEXT(r, entries); 3220 } else 3221 pf_step_into_anchor(anchor_stack, &asd, 3222 &ruleset, PF_RULESET_FILTER, &r, &a, 3223 &match); 3224 } 3225 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3226 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3227 break; 3228 } 3229 r = *rm; 3230 a = *am; 3231 ruleset = *rsm; 3232 3233 REASON_SET(&reason, PFRES_MATCH); 3234 3235 if (r->log || (nr != NULL && nr->log)) { 3236 if (rewrite) 3237 m_copyback(m, off, hdrlen, pd->hdr.any); 3238 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3239 ruleset, pd, 1); 3240 } 3241 3242 if ((r->action == PF_DROP) && 3243 ((r->rule_flag & PFRULE_RETURNRST) || 3244 (r->rule_flag & PFRULE_RETURNICMP) || 3245 (r->rule_flag & PFRULE_RETURN))) { 3246 /* undo NAT changes, if they have taken place */ 3247 if (nr != NULL) { 3248 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3249 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3250 if (pd->sport) 3251 *pd->sport = sk->port[pd->sidx]; 3252 if (pd->dport) 3253 *pd->dport = sk->port[pd->didx]; 3254 if (pd->proto_sum) 3255 *pd->proto_sum = bproto_sum; 3256 if (pd->ip_sum) 3257 *pd->ip_sum = bip_sum; 3258 m_copyback(m, off, hdrlen, pd->hdr.any); 3259 } 3260 if (pd->proto == IPPROTO_TCP && 3261 ((r->rule_flag & PFRULE_RETURNRST) || 3262 (r->rule_flag & PFRULE_RETURN)) && 3263 !(th->th_flags & TH_RST)) { 3264 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3265 int len = 0; 3266 #ifdef INET 3267 struct ip *h4; 3268 #endif 3269 #ifdef INET6 3270 struct ip6_hdr *h6; 3271 #endif 3272 3273 switch (af) { 3274 #ifdef INET 3275 case AF_INET: 3276 h4 = mtod(m, struct ip *); 3277 len = ntohs(h4->ip_len) - off; 3278 break; 3279 #endif 3280 #ifdef INET6 3281 case AF_INET6: 3282 h6 = mtod(m, struct ip6_hdr *); 3283 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3284 break; 3285 #endif 3286 } 3287 3288 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3289 REASON_SET(&reason, PFRES_PROTCKSUM); 3290 else { 3291 if (th->th_flags & TH_SYN) 3292 ack++; 3293 if (th->th_flags & TH_FIN) 3294 ack++; 3295 pf_send_tcp(m, r, af, pd->dst, 3296 pd->src, th->th_dport, th->th_sport, 3297 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3298 r->return_ttl, 1, 0, kif->pfik_ifp); 3299 } 3300 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3301 r->return_icmp) 3302 pf_send_icmp(m, r->return_icmp >> 8, 3303 r->return_icmp & 255, af, r); 3304 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3305 r->return_icmp6) 3306 pf_send_icmp(m, r->return_icmp6 >> 8, 3307 r->return_icmp6 & 255, af, r); 3308 } 3309 3310 if (r->action == PF_DROP) 3311 goto cleanup; 3312 3313 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3314 REASON_SET(&reason, PFRES_MEMORY); 3315 goto cleanup; 3316 } 3317 if (rtableid >= 0) 3318 M_SETFIB(m, rtableid); 3319 3320 if (!state_icmp && (r->keep_state || nr != NULL || 3321 (pd->flags & PFDESC_TCP_NORM))) { 3322 int action; 3323 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3324 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3325 hdrlen); 3326 if (action != PF_PASS) 3327 return (action); 3328 } else { 3329 if (sk != NULL) 3330 uma_zfree(V_pf_state_key_z, sk); 3331 if (nk != NULL) 3332 uma_zfree(V_pf_state_key_z, nk); 3333 } 3334 3335 /* copy back packet headers if we performed NAT operations */ 3336 if (rewrite) 3337 m_copyback(m, off, hdrlen, pd->hdr.any); 3338 3339 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3340 direction == PF_OUT && 3341 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3342 /* 3343 * We want the state created, but we dont 3344 * want to send this in case a partner 3345 * firewall has to know about it to allow 3346 * replies through it. 3347 */ 3348 return (PF_DEFER); 3349 3350 return (PF_PASS); 3351 3352 cleanup: 3353 if (sk != NULL) 3354 uma_zfree(V_pf_state_key_z, sk); 3355 if (nk != NULL) 3356 uma_zfree(V_pf_state_key_z, nk); 3357 return (PF_DROP); 3358 } 3359 3360 static int 3361 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3362 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3363 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3364 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3365 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3366 { 3367 struct pf_state *s = NULL; 3368 struct pf_src_node *sn = NULL; 3369 struct tcphdr *th = pd->hdr.tcp; 3370 u_int16_t mss = V_tcp_mssdflt; 3371 u_short reason; 3372 3373 /* check maximums */ 3374 if (r->max_states && (r->states_cur >= r->max_states)) { 3375 V_pf_status.lcounters[LCNT_STATES]++; 3376 REASON_SET(&reason, PFRES_MAXSTATES); 3377 return (PF_DROP); 3378 } 3379 /* src node for filter rule */ 3380 if ((r->rule_flag & PFRULE_SRCTRACK || 3381 r->rpool.opts & PF_POOL_STICKYADDR) && 3382 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3383 REASON_SET(&reason, PFRES_SRCLIMIT); 3384 goto csfailed; 3385 } 3386 /* src node for translation rule */ 3387 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3388 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3389 REASON_SET(&reason, PFRES_SRCLIMIT); 3390 goto csfailed; 3391 } 3392 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3393 if (s == NULL) { 3394 REASON_SET(&reason, PFRES_MEMORY); 3395 goto csfailed; 3396 } 3397 s->rule.ptr = r; 3398 s->nat_rule.ptr = nr; 3399 s->anchor.ptr = a; 3400 STATE_INC_COUNTERS(s); 3401 if (r->allow_opts) 3402 s->state_flags |= PFSTATE_ALLOWOPTS; 3403 if (r->rule_flag & PFRULE_STATESLOPPY) 3404 s->state_flags |= PFSTATE_SLOPPY; 3405 s->log = r->log & PF_LOG_ALL; 3406 s->sync_state = PFSYNC_S_NONE; 3407 if (nr != NULL) 3408 s->log |= nr->log & PF_LOG_ALL; 3409 switch (pd->proto) { 3410 case IPPROTO_TCP: 3411 s->src.seqlo = ntohl(th->th_seq); 3412 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3413 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3414 r->keep_state == PF_STATE_MODULATE) { 3415 /* Generate sequence number modulator */ 3416 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3417 0) 3418 s->src.seqdiff = 1; 3419 pf_change_a(&th->th_seq, &th->th_sum, 3420 htonl(s->src.seqlo + s->src.seqdiff), 0); 3421 *rewrite = 1; 3422 } else 3423 s->src.seqdiff = 0; 3424 if (th->th_flags & TH_SYN) { 3425 s->src.seqhi++; 3426 s->src.wscale = pf_get_wscale(m, off, 3427 th->th_off, pd->af); 3428 } 3429 s->src.max_win = MAX(ntohs(th->th_win), 1); 3430 if (s->src.wscale & PF_WSCALE_MASK) { 3431 /* Remove scale factor from initial window */ 3432 int win = s->src.max_win; 3433 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3434 s->src.max_win = (win - 1) >> 3435 (s->src.wscale & PF_WSCALE_MASK); 3436 } 3437 if (th->th_flags & TH_FIN) 3438 s->src.seqhi++; 3439 s->dst.seqhi = 1; 3440 s->dst.max_win = 1; 3441 s->src.state = TCPS_SYN_SENT; 3442 s->dst.state = TCPS_CLOSED; 3443 s->timeout = PFTM_TCP_FIRST_PACKET; 3444 break; 3445 case IPPROTO_UDP: 3446 s->src.state = PFUDPS_SINGLE; 3447 s->dst.state = PFUDPS_NO_TRAFFIC; 3448 s->timeout = PFTM_UDP_FIRST_PACKET; 3449 break; 3450 case IPPROTO_ICMP: 3451 #ifdef INET6 3452 case IPPROTO_ICMPV6: 3453 #endif 3454 s->timeout = PFTM_ICMP_FIRST_PACKET; 3455 break; 3456 default: 3457 s->src.state = PFOTHERS_SINGLE; 3458 s->dst.state = PFOTHERS_NO_TRAFFIC; 3459 s->timeout = PFTM_OTHER_FIRST_PACKET; 3460 } 3461 3462 s->creation = time_uptime; 3463 s->expire = time_uptime; 3464 3465 if (sn != NULL) { 3466 s->src_node = sn; 3467 s->src_node->states++; 3468 } 3469 if (nsn != NULL) { 3470 /* XXX We only modify one side for now. */ 3471 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3472 s->nat_src_node = nsn; 3473 s->nat_src_node->states++; 3474 } 3475 if (pd->proto == IPPROTO_TCP) { 3476 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3477 off, pd, th, &s->src, &s->dst)) { 3478 REASON_SET(&reason, PFRES_MEMORY); 3479 pf_src_tree_remove_state(s); 3480 STATE_DEC_COUNTERS(s); 3481 uma_zfree(V_pf_state_z, s); 3482 return (PF_DROP); 3483 } 3484 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3485 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3486 &s->src, &s->dst, rewrite)) { 3487 /* This really shouldn't happen!!! */ 3488 DPFPRINTF(PF_DEBUG_URGENT, 3489 ("pf_normalize_tcp_stateful failed on first pkt")); 3490 pf_normalize_tcp_cleanup(s); 3491 pf_src_tree_remove_state(s); 3492 STATE_DEC_COUNTERS(s); 3493 uma_zfree(V_pf_state_z, s); 3494 return (PF_DROP); 3495 } 3496 } 3497 s->direction = pd->dir; 3498 3499 /* 3500 * sk/nk could already been setup by pf_get_translation(). 3501 */ 3502 if (nr == NULL) { 3503 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3504 __func__, nr, sk, nk)); 3505 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3506 if (sk == NULL) 3507 goto csfailed; 3508 nk = sk; 3509 } else 3510 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3511 __func__, nr, sk, nk)); 3512 3513 /* Swap sk/nk for PF_OUT. */ 3514 if (pf_state_insert(BOUND_IFACE(r, kif), 3515 (pd->dir == PF_IN) ? sk : nk, 3516 (pd->dir == PF_IN) ? nk : sk, s)) { 3517 if (pd->proto == IPPROTO_TCP) 3518 pf_normalize_tcp_cleanup(s); 3519 REASON_SET(&reason, PFRES_STATEINS); 3520 pf_src_tree_remove_state(s); 3521 STATE_DEC_COUNTERS(s); 3522 uma_zfree(V_pf_state_z, s); 3523 return (PF_DROP); 3524 } else 3525 *sm = s; 3526 3527 pf_set_rt_ifp(s, pd->src); /* needs s->state_key set */ 3528 if (tag > 0) 3529 s->tag = tag; 3530 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3531 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3532 s->src.state = PF_TCPS_PROXY_SRC; 3533 /* undo NAT changes, if they have taken place */ 3534 if (nr != NULL) { 3535 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3536 if (pd->dir == PF_OUT) 3537 skt = s->key[PF_SK_STACK]; 3538 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3539 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3540 if (pd->sport) 3541 *pd->sport = skt->port[pd->sidx]; 3542 if (pd->dport) 3543 *pd->dport = skt->port[pd->didx]; 3544 if (pd->proto_sum) 3545 *pd->proto_sum = bproto_sum; 3546 if (pd->ip_sum) 3547 *pd->ip_sum = bip_sum; 3548 m_copyback(m, off, hdrlen, pd->hdr.any); 3549 } 3550 s->src.seqhi = htonl(arc4random()); 3551 /* Find mss option */ 3552 int rtid = M_GETFIB(m); 3553 mss = pf_get_mss(m, off, th->th_off, pd->af); 3554 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3555 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3556 s->src.mss = mss; 3557 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3558 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3559 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3560 REASON_SET(&reason, PFRES_SYNPROXY); 3561 return (PF_SYNPROXY_DROP); 3562 } 3563 3564 return (PF_PASS); 3565 3566 csfailed: 3567 if (sk != NULL) 3568 uma_zfree(V_pf_state_key_z, sk); 3569 if (nk != NULL) 3570 uma_zfree(V_pf_state_key_z, nk); 3571 3572 if (sn != NULL && sn->states == 0 && sn->expire == 0) 3573 pf_remove_src_node(sn); 3574 3575 if (nsn != sn && nsn != NULL && nsn->states == 0 && nsn->expire == 0) 3576 pf_remove_src_node(nsn); 3577 3578 return (PF_DROP); 3579 } 3580 3581 static int 3582 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3583 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3584 struct pf_ruleset **rsm) 3585 { 3586 struct pf_rule *r, *a = NULL; 3587 struct pf_ruleset *ruleset = NULL; 3588 sa_family_t af = pd->af; 3589 u_short reason; 3590 int tag = -1; 3591 int asd = 0; 3592 int match = 0; 3593 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3594 3595 PF_RULES_RASSERT(); 3596 3597 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3598 while (r != NULL) { 3599 r->evaluations++; 3600 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3601 r = r->skip[PF_SKIP_IFP].ptr; 3602 else if (r->direction && r->direction != direction) 3603 r = r->skip[PF_SKIP_DIR].ptr; 3604 else if (r->af && r->af != af) 3605 r = r->skip[PF_SKIP_AF].ptr; 3606 else if (r->proto && r->proto != pd->proto) 3607 r = r->skip[PF_SKIP_PROTO].ptr; 3608 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3609 r->src.neg, kif, M_GETFIB(m))) 3610 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3611 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3612 r->dst.neg, NULL, M_GETFIB(m))) 3613 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3614 else if (r->tos && !(r->tos == pd->tos)) 3615 r = TAILQ_NEXT(r, entries); 3616 else if (r->os_fingerprint != PF_OSFP_ANY) 3617 r = TAILQ_NEXT(r, entries); 3618 else if (pd->proto == IPPROTO_UDP && 3619 (r->src.port_op || r->dst.port_op)) 3620 r = TAILQ_NEXT(r, entries); 3621 else if (pd->proto == IPPROTO_TCP && 3622 (r->src.port_op || r->dst.port_op || r->flagset)) 3623 r = TAILQ_NEXT(r, entries); 3624 else if ((pd->proto == IPPROTO_ICMP || 3625 pd->proto == IPPROTO_ICMPV6) && 3626 (r->type || r->code)) 3627 r = TAILQ_NEXT(r, entries); 3628 else if (r->prob && r->prob <= 3629 (arc4random() % (UINT_MAX - 1) + 1)) 3630 r = TAILQ_NEXT(r, entries); 3631 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3632 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3633 r = TAILQ_NEXT(r, entries); 3634 else { 3635 if (r->anchor == NULL) { 3636 match = 1; 3637 *rm = r; 3638 *am = a; 3639 *rsm = ruleset; 3640 if ((*rm)->quick) 3641 break; 3642 r = TAILQ_NEXT(r, entries); 3643 } else 3644 pf_step_into_anchor(anchor_stack, &asd, 3645 &ruleset, PF_RULESET_FILTER, &r, &a, 3646 &match); 3647 } 3648 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3649 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3650 break; 3651 } 3652 r = *rm; 3653 a = *am; 3654 ruleset = *rsm; 3655 3656 REASON_SET(&reason, PFRES_MATCH); 3657 3658 if (r->log) 3659 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3660 1); 3661 3662 if (r->action != PF_PASS) 3663 return (PF_DROP); 3664 3665 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3666 REASON_SET(&reason, PFRES_MEMORY); 3667 return (PF_DROP); 3668 } 3669 3670 return (PF_PASS); 3671 } 3672 3673 static int 3674 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3675 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3676 struct pf_pdesc *pd, u_short *reason, int *copyback) 3677 { 3678 struct tcphdr *th = pd->hdr.tcp; 3679 u_int16_t win = ntohs(th->th_win); 3680 u_int32_t ack, end, seq, orig_seq; 3681 u_int8_t sws, dws; 3682 int ackskew; 3683 3684 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3685 sws = src->wscale & PF_WSCALE_MASK; 3686 dws = dst->wscale & PF_WSCALE_MASK; 3687 } else 3688 sws = dws = 0; 3689 3690 /* 3691 * Sequence tracking algorithm from Guido van Rooij's paper: 3692 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3693 * tcp_filtering.ps 3694 */ 3695 3696 orig_seq = seq = ntohl(th->th_seq); 3697 if (src->seqlo == 0) { 3698 /* First packet from this end. Set its state */ 3699 3700 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3701 src->scrub == NULL) { 3702 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3703 REASON_SET(reason, PFRES_MEMORY); 3704 return (PF_DROP); 3705 } 3706 } 3707 3708 /* Deferred generation of sequence number modulator */ 3709 if (dst->seqdiff && !src->seqdiff) { 3710 /* use random iss for the TCP server */ 3711 while ((src->seqdiff = arc4random() - seq) == 0) 3712 ; 3713 ack = ntohl(th->th_ack) - dst->seqdiff; 3714 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3715 src->seqdiff), 0); 3716 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3717 *copyback = 1; 3718 } else { 3719 ack = ntohl(th->th_ack); 3720 } 3721 3722 end = seq + pd->p_len; 3723 if (th->th_flags & TH_SYN) { 3724 end++; 3725 if (dst->wscale & PF_WSCALE_FLAG) { 3726 src->wscale = pf_get_wscale(m, off, th->th_off, 3727 pd->af); 3728 if (src->wscale & PF_WSCALE_FLAG) { 3729 /* Remove scale factor from initial 3730 * window */ 3731 sws = src->wscale & PF_WSCALE_MASK; 3732 win = ((u_int32_t)win + (1 << sws) - 1) 3733 >> sws; 3734 dws = dst->wscale & PF_WSCALE_MASK; 3735 } else { 3736 /* fixup other window */ 3737 dst->max_win <<= dst->wscale & 3738 PF_WSCALE_MASK; 3739 /* in case of a retrans SYN|ACK */ 3740 dst->wscale = 0; 3741 } 3742 } 3743 } 3744 if (th->th_flags & TH_FIN) 3745 end++; 3746 3747 src->seqlo = seq; 3748 if (src->state < TCPS_SYN_SENT) 3749 src->state = TCPS_SYN_SENT; 3750 3751 /* 3752 * May need to slide the window (seqhi may have been set by 3753 * the crappy stack check or if we picked up the connection 3754 * after establishment) 3755 */ 3756 if (src->seqhi == 1 || 3757 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3758 src->seqhi = end + MAX(1, dst->max_win << dws); 3759 if (win > src->max_win) 3760 src->max_win = win; 3761 3762 } else { 3763 ack = ntohl(th->th_ack) - dst->seqdiff; 3764 if (src->seqdiff) { 3765 /* Modulate sequence numbers */ 3766 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3767 src->seqdiff), 0); 3768 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3769 *copyback = 1; 3770 } 3771 end = seq + pd->p_len; 3772 if (th->th_flags & TH_SYN) 3773 end++; 3774 if (th->th_flags & TH_FIN) 3775 end++; 3776 } 3777 3778 if ((th->th_flags & TH_ACK) == 0) { 3779 /* Let it pass through the ack skew check */ 3780 ack = dst->seqlo; 3781 } else if ((ack == 0 && 3782 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 3783 /* broken tcp stacks do not set ack */ 3784 (dst->state < TCPS_SYN_SENT)) { 3785 /* 3786 * Many stacks (ours included) will set the ACK number in an 3787 * FIN|ACK if the SYN times out -- no sequence to ACK. 3788 */ 3789 ack = dst->seqlo; 3790 } 3791 3792 if (seq == end) { 3793 /* Ease sequencing restrictions on no data packets */ 3794 seq = src->seqlo; 3795 end = seq; 3796 } 3797 3798 ackskew = dst->seqlo - ack; 3799 3800 3801 /* 3802 * Need to demodulate the sequence numbers in any TCP SACK options 3803 * (Selective ACK). We could optionally validate the SACK values 3804 * against the current ACK window, either forwards or backwards, but 3805 * I'm not confident that SACK has been implemented properly 3806 * everywhere. It wouldn't surprise me if several stacks accidently 3807 * SACK too far backwards of previously ACKed data. There really aren't 3808 * any security implications of bad SACKing unless the target stack 3809 * doesn't validate the option length correctly. Someone trying to 3810 * spoof into a TCP connection won't bother blindly sending SACK 3811 * options anyway. 3812 */ 3813 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 3814 if (pf_modulate_sack(m, off, pd, th, dst)) 3815 *copyback = 1; 3816 } 3817 3818 3819 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 3820 if (SEQ_GEQ(src->seqhi, end) && 3821 /* Last octet inside other's window space */ 3822 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 3823 /* Retrans: not more than one window back */ 3824 (ackskew >= -MAXACKWINDOW) && 3825 /* Acking not more than one reassembled fragment backwards */ 3826 (ackskew <= (MAXACKWINDOW << sws)) && 3827 /* Acking not more than one window forward */ 3828 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 3829 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 3830 (pd->flags & PFDESC_IP_REAS) == 0)) { 3831 /* Require an exact/+1 sequence match on resets when possible */ 3832 3833 if (dst->scrub || src->scrub) { 3834 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 3835 *state, src, dst, copyback)) 3836 return (PF_DROP); 3837 } 3838 3839 /* update max window */ 3840 if (src->max_win < win) 3841 src->max_win = win; 3842 /* synchronize sequencing */ 3843 if (SEQ_GT(end, src->seqlo)) 3844 src->seqlo = end; 3845 /* slide the window of what the other end can send */ 3846 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 3847 dst->seqhi = ack + MAX((win << sws), 1); 3848 3849 3850 /* update states */ 3851 if (th->th_flags & TH_SYN) 3852 if (src->state < TCPS_SYN_SENT) 3853 src->state = TCPS_SYN_SENT; 3854 if (th->th_flags & TH_FIN) 3855 if (src->state < TCPS_CLOSING) 3856 src->state = TCPS_CLOSING; 3857 if (th->th_flags & TH_ACK) { 3858 if (dst->state == TCPS_SYN_SENT) { 3859 dst->state = TCPS_ESTABLISHED; 3860 if (src->state == TCPS_ESTABLISHED && 3861 (*state)->src_node != NULL && 3862 pf_src_connlimit(state)) { 3863 REASON_SET(reason, PFRES_SRCLIMIT); 3864 return (PF_DROP); 3865 } 3866 } else if (dst->state == TCPS_CLOSING) 3867 dst->state = TCPS_FIN_WAIT_2; 3868 } 3869 if (th->th_flags & TH_RST) 3870 src->state = dst->state = TCPS_TIME_WAIT; 3871 3872 /* update expire time */ 3873 (*state)->expire = time_uptime; 3874 if (src->state >= TCPS_FIN_WAIT_2 && 3875 dst->state >= TCPS_FIN_WAIT_2) 3876 (*state)->timeout = PFTM_TCP_CLOSED; 3877 else if (src->state >= TCPS_CLOSING && 3878 dst->state >= TCPS_CLOSING) 3879 (*state)->timeout = PFTM_TCP_FIN_WAIT; 3880 else if (src->state < TCPS_ESTABLISHED || 3881 dst->state < TCPS_ESTABLISHED) 3882 (*state)->timeout = PFTM_TCP_OPENING; 3883 else if (src->state >= TCPS_CLOSING || 3884 dst->state >= TCPS_CLOSING) 3885 (*state)->timeout = PFTM_TCP_CLOSING; 3886 else 3887 (*state)->timeout = PFTM_TCP_ESTABLISHED; 3888 3889 /* Fall through to PASS packet */ 3890 3891 } else if ((dst->state < TCPS_SYN_SENT || 3892 dst->state >= TCPS_FIN_WAIT_2 || 3893 src->state >= TCPS_FIN_WAIT_2) && 3894 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 3895 /* Within a window forward of the originating packet */ 3896 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 3897 /* Within a window backward of the originating packet */ 3898 3899 /* 3900 * This currently handles three situations: 3901 * 1) Stupid stacks will shotgun SYNs before their peer 3902 * replies. 3903 * 2) When PF catches an already established stream (the 3904 * firewall rebooted, the state table was flushed, routes 3905 * changed...) 3906 * 3) Packets get funky immediately after the connection 3907 * closes (this should catch Solaris spurious ACK|FINs 3908 * that web servers like to spew after a close) 3909 * 3910 * This must be a little more careful than the above code 3911 * since packet floods will also be caught here. We don't 3912 * update the TTL here to mitigate the damage of a packet 3913 * flood and so the same code can handle awkward establishment 3914 * and a loosened connection close. 3915 * In the establishment case, a correct peer response will 3916 * validate the connection, go through the normal state code 3917 * and keep updating the state TTL. 3918 */ 3919 3920 if (V_pf_status.debug >= PF_DEBUG_MISC) { 3921 printf("pf: loose state match: "); 3922 pf_print_state(*state); 3923 pf_print_flags(th->th_flags); 3924 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 3925 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 3926 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 3927 (unsigned long long)(*state)->packets[1], 3928 pd->dir == PF_IN ? "in" : "out", 3929 pd->dir == (*state)->direction ? "fwd" : "rev"); 3930 } 3931 3932 if (dst->scrub || src->scrub) { 3933 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 3934 *state, src, dst, copyback)) 3935 return (PF_DROP); 3936 } 3937 3938 /* update max window */ 3939 if (src->max_win < win) 3940 src->max_win = win; 3941 /* synchronize sequencing */ 3942 if (SEQ_GT(end, src->seqlo)) 3943 src->seqlo = end; 3944 /* slide the window of what the other end can send */ 3945 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 3946 dst->seqhi = ack + MAX((win << sws), 1); 3947 3948 /* 3949 * Cannot set dst->seqhi here since this could be a shotgunned 3950 * SYN and not an already established connection. 3951 */ 3952 3953 if (th->th_flags & TH_FIN) 3954 if (src->state < TCPS_CLOSING) 3955 src->state = TCPS_CLOSING; 3956 if (th->th_flags & TH_RST) 3957 src->state = dst->state = TCPS_TIME_WAIT; 3958 3959 /* Fall through to PASS packet */ 3960 3961 } else { 3962 if ((*state)->dst.state == TCPS_SYN_SENT && 3963 (*state)->src.state == TCPS_SYN_SENT) { 3964 /* Send RST for state mismatches during handshake */ 3965 if (!(th->th_flags & TH_RST)) 3966 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 3967 pd->dst, pd->src, th->th_dport, 3968 th->th_sport, ntohl(th->th_ack), 0, 3969 TH_RST, 0, 0, 3970 (*state)->rule.ptr->return_ttl, 1, 0, 3971 kif->pfik_ifp); 3972 src->seqlo = 0; 3973 src->seqhi = 1; 3974 src->max_win = 1; 3975 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 3976 printf("pf: BAD state: "); 3977 pf_print_state(*state); 3978 pf_print_flags(th->th_flags); 3979 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 3980 "pkts=%llu:%llu dir=%s,%s\n", 3981 seq, orig_seq, ack, pd->p_len, ackskew, 3982 (unsigned long long)(*state)->packets[0], 3983 (unsigned long long)(*state)->packets[1], 3984 pd->dir == PF_IN ? "in" : "out", 3985 pd->dir == (*state)->direction ? "fwd" : "rev"); 3986 printf("pf: State failure on: %c %c %c %c | %c %c\n", 3987 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 3988 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 3989 ' ': '2', 3990 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 3991 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 3992 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 3993 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 3994 } 3995 REASON_SET(reason, PFRES_BADSTATE); 3996 return (PF_DROP); 3997 } 3998 3999 return (PF_PASS); 4000 } 4001 4002 static int 4003 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4004 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4005 { 4006 struct tcphdr *th = pd->hdr.tcp; 4007 4008 if (th->th_flags & TH_SYN) 4009 if (src->state < TCPS_SYN_SENT) 4010 src->state = TCPS_SYN_SENT; 4011 if (th->th_flags & TH_FIN) 4012 if (src->state < TCPS_CLOSING) 4013 src->state = TCPS_CLOSING; 4014 if (th->th_flags & TH_ACK) { 4015 if (dst->state == TCPS_SYN_SENT) { 4016 dst->state = TCPS_ESTABLISHED; 4017 if (src->state == TCPS_ESTABLISHED && 4018 (*state)->src_node != NULL && 4019 pf_src_connlimit(state)) { 4020 REASON_SET(reason, PFRES_SRCLIMIT); 4021 return (PF_DROP); 4022 } 4023 } else if (dst->state == TCPS_CLOSING) { 4024 dst->state = TCPS_FIN_WAIT_2; 4025 } else if (src->state == TCPS_SYN_SENT && 4026 dst->state < TCPS_SYN_SENT) { 4027 /* 4028 * Handle a special sloppy case where we only see one 4029 * half of the connection. If there is a ACK after 4030 * the initial SYN without ever seeing a packet from 4031 * the destination, set the connection to established. 4032 */ 4033 dst->state = src->state = TCPS_ESTABLISHED; 4034 if ((*state)->src_node != NULL && 4035 pf_src_connlimit(state)) { 4036 REASON_SET(reason, PFRES_SRCLIMIT); 4037 return (PF_DROP); 4038 } 4039 } else if (src->state == TCPS_CLOSING && 4040 dst->state == TCPS_ESTABLISHED && 4041 dst->seqlo == 0) { 4042 /* 4043 * Handle the closing of half connections where we 4044 * don't see the full bidirectional FIN/ACK+ACK 4045 * handshake. 4046 */ 4047 dst->state = TCPS_CLOSING; 4048 } 4049 } 4050 if (th->th_flags & TH_RST) 4051 src->state = dst->state = TCPS_TIME_WAIT; 4052 4053 /* update expire time */ 4054 (*state)->expire = time_uptime; 4055 if (src->state >= TCPS_FIN_WAIT_2 && 4056 dst->state >= TCPS_FIN_WAIT_2) 4057 (*state)->timeout = PFTM_TCP_CLOSED; 4058 else if (src->state >= TCPS_CLOSING && 4059 dst->state >= TCPS_CLOSING) 4060 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4061 else if (src->state < TCPS_ESTABLISHED || 4062 dst->state < TCPS_ESTABLISHED) 4063 (*state)->timeout = PFTM_TCP_OPENING; 4064 else if (src->state >= TCPS_CLOSING || 4065 dst->state >= TCPS_CLOSING) 4066 (*state)->timeout = PFTM_TCP_CLOSING; 4067 else 4068 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4069 4070 return (PF_PASS); 4071 } 4072 4073 static int 4074 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4075 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4076 u_short *reason) 4077 { 4078 struct pf_state_key_cmp key; 4079 struct tcphdr *th = pd->hdr.tcp; 4080 int copyback = 0; 4081 struct pf_state_peer *src, *dst; 4082 struct pf_state_key *sk; 4083 4084 bzero(&key, sizeof(key)); 4085 key.af = pd->af; 4086 key.proto = IPPROTO_TCP; 4087 if (direction == PF_IN) { /* wire side, straight */ 4088 PF_ACPY(&key.addr[0], pd->src, key.af); 4089 PF_ACPY(&key.addr[1], pd->dst, key.af); 4090 key.port[0] = th->th_sport; 4091 key.port[1] = th->th_dport; 4092 } else { /* stack side, reverse */ 4093 PF_ACPY(&key.addr[1], pd->src, key.af); 4094 PF_ACPY(&key.addr[0], pd->dst, key.af); 4095 key.port[1] = th->th_sport; 4096 key.port[0] = th->th_dport; 4097 } 4098 4099 STATE_LOOKUP(kif, &key, direction, *state, pd); 4100 4101 if (direction == (*state)->direction) { 4102 src = &(*state)->src; 4103 dst = &(*state)->dst; 4104 } else { 4105 src = &(*state)->dst; 4106 dst = &(*state)->src; 4107 } 4108 4109 sk = (*state)->key[pd->didx]; 4110 4111 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4112 if (direction != (*state)->direction) { 4113 REASON_SET(reason, PFRES_SYNPROXY); 4114 return (PF_SYNPROXY_DROP); 4115 } 4116 if (th->th_flags & TH_SYN) { 4117 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4118 REASON_SET(reason, PFRES_SYNPROXY); 4119 return (PF_DROP); 4120 } 4121 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4122 pd->src, th->th_dport, th->th_sport, 4123 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4124 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4125 REASON_SET(reason, PFRES_SYNPROXY); 4126 return (PF_SYNPROXY_DROP); 4127 } else if (!(th->th_flags & TH_ACK) || 4128 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4129 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4130 REASON_SET(reason, PFRES_SYNPROXY); 4131 return (PF_DROP); 4132 } else if ((*state)->src_node != NULL && 4133 pf_src_connlimit(state)) { 4134 REASON_SET(reason, PFRES_SRCLIMIT); 4135 return (PF_DROP); 4136 } else 4137 (*state)->src.state = PF_TCPS_PROXY_DST; 4138 } 4139 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4140 if (direction == (*state)->direction) { 4141 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4142 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4143 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4144 REASON_SET(reason, PFRES_SYNPROXY); 4145 return (PF_DROP); 4146 } 4147 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4148 if ((*state)->dst.seqhi == 1) 4149 (*state)->dst.seqhi = htonl(arc4random()); 4150 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4151 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4152 sk->port[pd->sidx], sk->port[pd->didx], 4153 (*state)->dst.seqhi, 0, TH_SYN, 0, 4154 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4155 REASON_SET(reason, PFRES_SYNPROXY); 4156 return (PF_SYNPROXY_DROP); 4157 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4158 (TH_SYN|TH_ACK)) || 4159 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4160 REASON_SET(reason, PFRES_SYNPROXY); 4161 return (PF_DROP); 4162 } else { 4163 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4164 (*state)->dst.seqlo = ntohl(th->th_seq); 4165 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4166 pd->src, th->th_dport, th->th_sport, 4167 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4168 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4169 (*state)->tag, NULL); 4170 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4171 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4172 sk->port[pd->sidx], sk->port[pd->didx], 4173 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4174 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4175 (*state)->src.seqdiff = (*state)->dst.seqhi - 4176 (*state)->src.seqlo; 4177 (*state)->dst.seqdiff = (*state)->src.seqhi - 4178 (*state)->dst.seqlo; 4179 (*state)->src.seqhi = (*state)->src.seqlo + 4180 (*state)->dst.max_win; 4181 (*state)->dst.seqhi = (*state)->dst.seqlo + 4182 (*state)->src.max_win; 4183 (*state)->src.wscale = (*state)->dst.wscale = 0; 4184 (*state)->src.state = (*state)->dst.state = 4185 TCPS_ESTABLISHED; 4186 REASON_SET(reason, PFRES_SYNPROXY); 4187 return (PF_SYNPROXY_DROP); 4188 } 4189 } 4190 4191 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4192 dst->state >= TCPS_FIN_WAIT_2 && 4193 src->state >= TCPS_FIN_WAIT_2) { 4194 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4195 printf("pf: state reuse "); 4196 pf_print_state(*state); 4197 pf_print_flags(th->th_flags); 4198 printf("\n"); 4199 } 4200 /* XXX make sure it's the same direction ?? */ 4201 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4202 pf_unlink_state(*state, PF_ENTER_LOCKED); 4203 *state = NULL; 4204 return (PF_DROP); 4205 } 4206 4207 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4208 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4209 return (PF_DROP); 4210 } else { 4211 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4212 ©back) == PF_DROP) 4213 return (PF_DROP); 4214 } 4215 4216 /* translate source/destination address, if necessary */ 4217 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4218 struct pf_state_key *nk = (*state)->key[pd->didx]; 4219 4220 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4221 nk->port[pd->sidx] != th->th_sport) 4222 pf_change_ap(pd->src, &th->th_sport, pd->ip_sum, 4223 &th->th_sum, &nk->addr[pd->sidx], 4224 nk->port[pd->sidx], 0, pd->af); 4225 4226 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4227 nk->port[pd->didx] != th->th_dport) 4228 pf_change_ap(pd->dst, &th->th_dport, pd->ip_sum, 4229 &th->th_sum, &nk->addr[pd->didx], 4230 nk->port[pd->didx], 0, pd->af); 4231 copyback = 1; 4232 } 4233 4234 /* Copyback sequence modulation or stateful scrub changes if needed */ 4235 if (copyback) 4236 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4237 4238 return (PF_PASS); 4239 } 4240 4241 static int 4242 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4243 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4244 { 4245 struct pf_state_peer *src, *dst; 4246 struct pf_state_key_cmp key; 4247 struct udphdr *uh = pd->hdr.udp; 4248 4249 bzero(&key, sizeof(key)); 4250 key.af = pd->af; 4251 key.proto = IPPROTO_UDP; 4252 if (direction == PF_IN) { /* wire side, straight */ 4253 PF_ACPY(&key.addr[0], pd->src, key.af); 4254 PF_ACPY(&key.addr[1], pd->dst, key.af); 4255 key.port[0] = uh->uh_sport; 4256 key.port[1] = uh->uh_dport; 4257 } else { /* stack side, reverse */ 4258 PF_ACPY(&key.addr[1], pd->src, key.af); 4259 PF_ACPY(&key.addr[0], pd->dst, key.af); 4260 key.port[1] = uh->uh_sport; 4261 key.port[0] = uh->uh_dport; 4262 } 4263 4264 STATE_LOOKUP(kif, &key, direction, *state, pd); 4265 4266 if (direction == (*state)->direction) { 4267 src = &(*state)->src; 4268 dst = &(*state)->dst; 4269 } else { 4270 src = &(*state)->dst; 4271 dst = &(*state)->src; 4272 } 4273 4274 /* update states */ 4275 if (src->state < PFUDPS_SINGLE) 4276 src->state = PFUDPS_SINGLE; 4277 if (dst->state == PFUDPS_SINGLE) 4278 dst->state = PFUDPS_MULTIPLE; 4279 4280 /* update expire time */ 4281 (*state)->expire = time_uptime; 4282 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4283 (*state)->timeout = PFTM_UDP_MULTIPLE; 4284 else 4285 (*state)->timeout = PFTM_UDP_SINGLE; 4286 4287 /* translate source/destination address, if necessary */ 4288 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4289 struct pf_state_key *nk = (*state)->key[pd->didx]; 4290 4291 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4292 nk->port[pd->sidx] != uh->uh_sport) 4293 pf_change_ap(pd->src, &uh->uh_sport, pd->ip_sum, 4294 &uh->uh_sum, &nk->addr[pd->sidx], 4295 nk->port[pd->sidx], 1, pd->af); 4296 4297 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4298 nk->port[pd->didx] != uh->uh_dport) 4299 pf_change_ap(pd->dst, &uh->uh_dport, pd->ip_sum, 4300 &uh->uh_sum, &nk->addr[pd->didx], 4301 nk->port[pd->didx], 1, pd->af); 4302 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4303 } 4304 4305 return (PF_PASS); 4306 } 4307 4308 static int 4309 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4310 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4311 { 4312 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4313 u_int16_t icmpid = 0, *icmpsum; 4314 u_int8_t icmptype; 4315 int state_icmp = 0; 4316 struct pf_state_key_cmp key; 4317 4318 bzero(&key, sizeof(key)); 4319 switch (pd->proto) { 4320 #ifdef INET 4321 case IPPROTO_ICMP: 4322 icmptype = pd->hdr.icmp->icmp_type; 4323 icmpid = pd->hdr.icmp->icmp_id; 4324 icmpsum = &pd->hdr.icmp->icmp_cksum; 4325 4326 if (icmptype == ICMP_UNREACH || 4327 icmptype == ICMP_SOURCEQUENCH || 4328 icmptype == ICMP_REDIRECT || 4329 icmptype == ICMP_TIMXCEED || 4330 icmptype == ICMP_PARAMPROB) 4331 state_icmp++; 4332 break; 4333 #endif /* INET */ 4334 #ifdef INET6 4335 case IPPROTO_ICMPV6: 4336 icmptype = pd->hdr.icmp6->icmp6_type; 4337 icmpid = pd->hdr.icmp6->icmp6_id; 4338 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4339 4340 if (icmptype == ICMP6_DST_UNREACH || 4341 icmptype == ICMP6_PACKET_TOO_BIG || 4342 icmptype == ICMP6_TIME_EXCEEDED || 4343 icmptype == ICMP6_PARAM_PROB) 4344 state_icmp++; 4345 break; 4346 #endif /* INET6 */ 4347 } 4348 4349 if (!state_icmp) { 4350 4351 /* 4352 * ICMP query/reply message not related to a TCP/UDP packet. 4353 * Search for an ICMP state. 4354 */ 4355 key.af = pd->af; 4356 key.proto = pd->proto; 4357 key.port[0] = key.port[1] = icmpid; 4358 if (direction == PF_IN) { /* wire side, straight */ 4359 PF_ACPY(&key.addr[0], pd->src, key.af); 4360 PF_ACPY(&key.addr[1], pd->dst, key.af); 4361 } else { /* stack side, reverse */ 4362 PF_ACPY(&key.addr[1], pd->src, key.af); 4363 PF_ACPY(&key.addr[0], pd->dst, key.af); 4364 } 4365 4366 STATE_LOOKUP(kif, &key, direction, *state, pd); 4367 4368 (*state)->expire = time_uptime; 4369 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4370 4371 /* translate source/destination address, if necessary */ 4372 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4373 struct pf_state_key *nk = (*state)->key[pd->didx]; 4374 4375 switch (pd->af) { 4376 #ifdef INET 4377 case AF_INET: 4378 if (PF_ANEQ(pd->src, 4379 &nk->addr[pd->sidx], AF_INET)) 4380 pf_change_a(&saddr->v4.s_addr, 4381 pd->ip_sum, 4382 nk->addr[pd->sidx].v4.s_addr, 0); 4383 4384 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4385 AF_INET)) 4386 pf_change_a(&daddr->v4.s_addr, 4387 pd->ip_sum, 4388 nk->addr[pd->didx].v4.s_addr, 0); 4389 4390 if (nk->port[0] != 4391 pd->hdr.icmp->icmp_id) { 4392 pd->hdr.icmp->icmp_cksum = 4393 pf_cksum_fixup( 4394 pd->hdr.icmp->icmp_cksum, icmpid, 4395 nk->port[pd->sidx], 0); 4396 pd->hdr.icmp->icmp_id = 4397 nk->port[pd->sidx]; 4398 } 4399 4400 m_copyback(m, off, ICMP_MINLEN, 4401 (caddr_t )pd->hdr.icmp); 4402 break; 4403 #endif /* INET */ 4404 #ifdef INET6 4405 case AF_INET6: 4406 if (PF_ANEQ(pd->src, 4407 &nk->addr[pd->sidx], AF_INET6)) 4408 pf_change_a6(saddr, 4409 &pd->hdr.icmp6->icmp6_cksum, 4410 &nk->addr[pd->sidx], 0); 4411 4412 if (PF_ANEQ(pd->dst, 4413 &nk->addr[pd->didx], AF_INET6)) 4414 pf_change_a6(daddr, 4415 &pd->hdr.icmp6->icmp6_cksum, 4416 &nk->addr[pd->didx], 0); 4417 4418 m_copyback(m, off, sizeof(struct icmp6_hdr), 4419 (caddr_t )pd->hdr.icmp6); 4420 break; 4421 #endif /* INET6 */ 4422 } 4423 } 4424 return (PF_PASS); 4425 4426 } else { 4427 /* 4428 * ICMP error message in response to a TCP/UDP packet. 4429 * Extract the inner TCP/UDP header and search for that state. 4430 */ 4431 4432 struct pf_pdesc pd2; 4433 bzero(&pd2, sizeof pd2); 4434 #ifdef INET 4435 struct ip h2; 4436 #endif /* INET */ 4437 #ifdef INET6 4438 struct ip6_hdr h2_6; 4439 int terminal = 0; 4440 #endif /* INET6 */ 4441 int ipoff2 = 0; 4442 int off2 = 0; 4443 4444 pd2.af = pd->af; 4445 /* Payload packet is from the opposite direction. */ 4446 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4447 pd2.didx = (direction == PF_IN) ? 0 : 1; 4448 switch (pd->af) { 4449 #ifdef INET 4450 case AF_INET: 4451 /* offset of h2 in mbuf chain */ 4452 ipoff2 = off + ICMP_MINLEN; 4453 4454 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4455 NULL, reason, pd2.af)) { 4456 DPFPRINTF(PF_DEBUG_MISC, 4457 ("pf: ICMP error message too short " 4458 "(ip)\n")); 4459 return (PF_DROP); 4460 } 4461 /* 4462 * ICMP error messages don't refer to non-first 4463 * fragments 4464 */ 4465 if (h2.ip_off & htons(IP_OFFMASK)) { 4466 REASON_SET(reason, PFRES_FRAG); 4467 return (PF_DROP); 4468 } 4469 4470 /* offset of protocol header that follows h2 */ 4471 off2 = ipoff2 + (h2.ip_hl << 2); 4472 4473 pd2.proto = h2.ip_p; 4474 pd2.src = (struct pf_addr *)&h2.ip_src; 4475 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4476 pd2.ip_sum = &h2.ip_sum; 4477 break; 4478 #endif /* INET */ 4479 #ifdef INET6 4480 case AF_INET6: 4481 ipoff2 = off + sizeof(struct icmp6_hdr); 4482 4483 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4484 NULL, reason, pd2.af)) { 4485 DPFPRINTF(PF_DEBUG_MISC, 4486 ("pf: ICMP error message too short " 4487 "(ip6)\n")); 4488 return (PF_DROP); 4489 } 4490 pd2.proto = h2_6.ip6_nxt; 4491 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4492 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4493 pd2.ip_sum = NULL; 4494 off2 = ipoff2 + sizeof(h2_6); 4495 do { 4496 switch (pd2.proto) { 4497 case IPPROTO_FRAGMENT: 4498 /* 4499 * ICMPv6 error messages for 4500 * non-first fragments 4501 */ 4502 REASON_SET(reason, PFRES_FRAG); 4503 return (PF_DROP); 4504 case IPPROTO_AH: 4505 case IPPROTO_HOPOPTS: 4506 case IPPROTO_ROUTING: 4507 case IPPROTO_DSTOPTS: { 4508 /* get next header and header length */ 4509 struct ip6_ext opt6; 4510 4511 if (!pf_pull_hdr(m, off2, &opt6, 4512 sizeof(opt6), NULL, reason, 4513 pd2.af)) { 4514 DPFPRINTF(PF_DEBUG_MISC, 4515 ("pf: ICMPv6 short opt\n")); 4516 return (PF_DROP); 4517 } 4518 if (pd2.proto == IPPROTO_AH) 4519 off2 += (opt6.ip6e_len + 2) * 4; 4520 else 4521 off2 += (opt6.ip6e_len + 1) * 8; 4522 pd2.proto = opt6.ip6e_nxt; 4523 /* goto the next header */ 4524 break; 4525 } 4526 default: 4527 terminal++; 4528 break; 4529 } 4530 } while (!terminal); 4531 break; 4532 #endif /* INET6 */ 4533 } 4534 4535 switch (pd2.proto) { 4536 case IPPROTO_TCP: { 4537 struct tcphdr th; 4538 u_int32_t seq; 4539 struct pf_state_peer *src, *dst; 4540 u_int8_t dws; 4541 int copyback = 0; 4542 4543 /* 4544 * Only the first 8 bytes of the TCP header can be 4545 * expected. Don't access any TCP header fields after 4546 * th_seq, an ackskew test is not possible. 4547 */ 4548 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4549 pd2.af)) { 4550 DPFPRINTF(PF_DEBUG_MISC, 4551 ("pf: ICMP error message too short " 4552 "(tcp)\n")); 4553 return (PF_DROP); 4554 } 4555 4556 key.af = pd2.af; 4557 key.proto = IPPROTO_TCP; 4558 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4559 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4560 key.port[pd2.sidx] = th.th_sport; 4561 key.port[pd2.didx] = th.th_dport; 4562 4563 STATE_LOOKUP(kif, &key, direction, *state, pd); 4564 4565 if (direction == (*state)->direction) { 4566 src = &(*state)->dst; 4567 dst = &(*state)->src; 4568 } else { 4569 src = &(*state)->src; 4570 dst = &(*state)->dst; 4571 } 4572 4573 if (src->wscale && dst->wscale) 4574 dws = dst->wscale & PF_WSCALE_MASK; 4575 else 4576 dws = 0; 4577 4578 /* Demodulate sequence number */ 4579 seq = ntohl(th.th_seq) - src->seqdiff; 4580 if (src->seqdiff) { 4581 pf_change_a(&th.th_seq, icmpsum, 4582 htonl(seq), 0); 4583 copyback = 1; 4584 } 4585 4586 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4587 (!SEQ_GEQ(src->seqhi, seq) || 4588 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4589 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4590 printf("pf: BAD ICMP %d:%d ", 4591 icmptype, pd->hdr.icmp->icmp_code); 4592 pf_print_host(pd->src, 0, pd->af); 4593 printf(" -> "); 4594 pf_print_host(pd->dst, 0, pd->af); 4595 printf(" state: "); 4596 pf_print_state(*state); 4597 printf(" seq=%u\n", seq); 4598 } 4599 REASON_SET(reason, PFRES_BADSTATE); 4600 return (PF_DROP); 4601 } else { 4602 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4603 printf("pf: OK ICMP %d:%d ", 4604 icmptype, pd->hdr.icmp->icmp_code); 4605 pf_print_host(pd->src, 0, pd->af); 4606 printf(" -> "); 4607 pf_print_host(pd->dst, 0, pd->af); 4608 printf(" state: "); 4609 pf_print_state(*state); 4610 printf(" seq=%u\n", seq); 4611 } 4612 } 4613 4614 /* translate source/destination address, if necessary */ 4615 if ((*state)->key[PF_SK_WIRE] != 4616 (*state)->key[PF_SK_STACK]) { 4617 struct pf_state_key *nk = 4618 (*state)->key[pd->didx]; 4619 4620 if (PF_ANEQ(pd2.src, 4621 &nk->addr[pd2.sidx], pd2.af) || 4622 nk->port[pd2.sidx] != th.th_sport) 4623 pf_change_icmp(pd2.src, &th.th_sport, 4624 daddr, &nk->addr[pd2.sidx], 4625 nk->port[pd2.sidx], NULL, 4626 pd2.ip_sum, icmpsum, 4627 pd->ip_sum, 0, pd2.af); 4628 4629 if (PF_ANEQ(pd2.dst, 4630 &nk->addr[pd2.didx], pd2.af) || 4631 nk->port[pd2.didx] != th.th_dport) 4632 pf_change_icmp(pd2.dst, &th.th_dport, 4633 NULL, /* XXX Inbound NAT? */ 4634 &nk->addr[pd2.didx], 4635 nk->port[pd2.didx], NULL, 4636 pd2.ip_sum, icmpsum, 4637 pd->ip_sum, 0, pd2.af); 4638 copyback = 1; 4639 } 4640 4641 if (copyback) { 4642 switch (pd2.af) { 4643 #ifdef INET 4644 case AF_INET: 4645 m_copyback(m, off, ICMP_MINLEN, 4646 (caddr_t )pd->hdr.icmp); 4647 m_copyback(m, ipoff2, sizeof(h2), 4648 (caddr_t )&h2); 4649 break; 4650 #endif /* INET */ 4651 #ifdef INET6 4652 case AF_INET6: 4653 m_copyback(m, off, 4654 sizeof(struct icmp6_hdr), 4655 (caddr_t )pd->hdr.icmp6); 4656 m_copyback(m, ipoff2, sizeof(h2_6), 4657 (caddr_t )&h2_6); 4658 break; 4659 #endif /* INET6 */ 4660 } 4661 m_copyback(m, off2, 8, (caddr_t)&th); 4662 } 4663 4664 return (PF_PASS); 4665 break; 4666 } 4667 case IPPROTO_UDP: { 4668 struct udphdr uh; 4669 4670 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4671 NULL, reason, pd2.af)) { 4672 DPFPRINTF(PF_DEBUG_MISC, 4673 ("pf: ICMP error message too short " 4674 "(udp)\n")); 4675 return (PF_DROP); 4676 } 4677 4678 key.af = pd2.af; 4679 key.proto = IPPROTO_UDP; 4680 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4681 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4682 key.port[pd2.sidx] = uh.uh_sport; 4683 key.port[pd2.didx] = uh.uh_dport; 4684 4685 STATE_LOOKUP(kif, &key, direction, *state, pd); 4686 4687 /* translate source/destination address, if necessary */ 4688 if ((*state)->key[PF_SK_WIRE] != 4689 (*state)->key[PF_SK_STACK]) { 4690 struct pf_state_key *nk = 4691 (*state)->key[pd->didx]; 4692 4693 if (PF_ANEQ(pd2.src, 4694 &nk->addr[pd2.sidx], pd2.af) || 4695 nk->port[pd2.sidx] != uh.uh_sport) 4696 pf_change_icmp(pd2.src, &uh.uh_sport, 4697 daddr, &nk->addr[pd2.sidx], 4698 nk->port[pd2.sidx], &uh.uh_sum, 4699 pd2.ip_sum, icmpsum, 4700 pd->ip_sum, 1, pd2.af); 4701 4702 if (PF_ANEQ(pd2.dst, 4703 &nk->addr[pd2.didx], pd2.af) || 4704 nk->port[pd2.didx] != uh.uh_dport) 4705 pf_change_icmp(pd2.dst, &uh.uh_dport, 4706 NULL, /* XXX Inbound NAT? */ 4707 &nk->addr[pd2.didx], 4708 nk->port[pd2.didx], &uh.uh_sum, 4709 pd2.ip_sum, icmpsum, 4710 pd->ip_sum, 1, pd2.af); 4711 4712 switch (pd2.af) { 4713 #ifdef INET 4714 case AF_INET: 4715 m_copyback(m, off, ICMP_MINLEN, 4716 (caddr_t )pd->hdr.icmp); 4717 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4718 break; 4719 #endif /* INET */ 4720 #ifdef INET6 4721 case AF_INET6: 4722 m_copyback(m, off, 4723 sizeof(struct icmp6_hdr), 4724 (caddr_t )pd->hdr.icmp6); 4725 m_copyback(m, ipoff2, sizeof(h2_6), 4726 (caddr_t )&h2_6); 4727 break; 4728 #endif /* INET6 */ 4729 } 4730 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4731 } 4732 return (PF_PASS); 4733 break; 4734 } 4735 #ifdef INET 4736 case IPPROTO_ICMP: { 4737 struct icmp iih; 4738 4739 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4740 NULL, reason, pd2.af)) { 4741 DPFPRINTF(PF_DEBUG_MISC, 4742 ("pf: ICMP error message too short i" 4743 "(icmp)\n")); 4744 return (PF_DROP); 4745 } 4746 4747 key.af = pd2.af; 4748 key.proto = IPPROTO_ICMP; 4749 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4750 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4751 key.port[0] = key.port[1] = iih.icmp_id; 4752 4753 STATE_LOOKUP(kif, &key, direction, *state, pd); 4754 4755 /* translate source/destination address, if necessary */ 4756 if ((*state)->key[PF_SK_WIRE] != 4757 (*state)->key[PF_SK_STACK]) { 4758 struct pf_state_key *nk = 4759 (*state)->key[pd->didx]; 4760 4761 if (PF_ANEQ(pd2.src, 4762 &nk->addr[pd2.sidx], pd2.af) || 4763 nk->port[pd2.sidx] != iih.icmp_id) 4764 pf_change_icmp(pd2.src, &iih.icmp_id, 4765 daddr, &nk->addr[pd2.sidx], 4766 nk->port[pd2.sidx], NULL, 4767 pd2.ip_sum, icmpsum, 4768 pd->ip_sum, 0, AF_INET); 4769 4770 if (PF_ANEQ(pd2.dst, 4771 &nk->addr[pd2.didx], pd2.af) || 4772 nk->port[pd2.didx] != iih.icmp_id) 4773 pf_change_icmp(pd2.dst, &iih.icmp_id, 4774 NULL, /* XXX Inbound NAT? */ 4775 &nk->addr[pd2.didx], 4776 nk->port[pd2.didx], NULL, 4777 pd2.ip_sum, icmpsum, 4778 pd->ip_sum, 0, AF_INET); 4779 4780 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 4781 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4782 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 4783 } 4784 return (PF_PASS); 4785 break; 4786 } 4787 #endif /* INET */ 4788 #ifdef INET6 4789 case IPPROTO_ICMPV6: { 4790 struct icmp6_hdr iih; 4791 4792 if (!pf_pull_hdr(m, off2, &iih, 4793 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 4794 DPFPRINTF(PF_DEBUG_MISC, 4795 ("pf: ICMP error message too short " 4796 "(icmp6)\n")); 4797 return (PF_DROP); 4798 } 4799 4800 key.af = pd2.af; 4801 key.proto = IPPROTO_ICMPV6; 4802 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4803 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4804 key.port[0] = key.port[1] = iih.icmp6_id; 4805 4806 STATE_LOOKUP(kif, &key, direction, *state, pd); 4807 4808 /* translate source/destination address, if necessary */ 4809 if ((*state)->key[PF_SK_WIRE] != 4810 (*state)->key[PF_SK_STACK]) { 4811 struct pf_state_key *nk = 4812 (*state)->key[pd->didx]; 4813 4814 if (PF_ANEQ(pd2.src, 4815 &nk->addr[pd2.sidx], pd2.af) || 4816 nk->port[pd2.sidx] != iih.icmp6_id) 4817 pf_change_icmp(pd2.src, &iih.icmp6_id, 4818 daddr, &nk->addr[pd2.sidx], 4819 nk->port[pd2.sidx], NULL, 4820 pd2.ip_sum, icmpsum, 4821 pd->ip_sum, 0, AF_INET6); 4822 4823 if (PF_ANEQ(pd2.dst, 4824 &nk->addr[pd2.didx], pd2.af) || 4825 nk->port[pd2.didx] != iih.icmp6_id) 4826 pf_change_icmp(pd2.dst, &iih.icmp6_id, 4827 NULL, /* XXX Inbound NAT? */ 4828 &nk->addr[pd2.didx], 4829 nk->port[pd2.didx], NULL, 4830 pd2.ip_sum, icmpsum, 4831 pd->ip_sum, 0, AF_INET6); 4832 4833 m_copyback(m, off, sizeof(struct icmp6_hdr), 4834 (caddr_t)pd->hdr.icmp6); 4835 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 4836 m_copyback(m, off2, sizeof(struct icmp6_hdr), 4837 (caddr_t)&iih); 4838 } 4839 return (PF_PASS); 4840 break; 4841 } 4842 #endif /* INET6 */ 4843 default: { 4844 key.af = pd2.af; 4845 key.proto = pd2.proto; 4846 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4847 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4848 key.port[0] = key.port[1] = 0; 4849 4850 STATE_LOOKUP(kif, &key, direction, *state, pd); 4851 4852 /* translate source/destination address, if necessary */ 4853 if ((*state)->key[PF_SK_WIRE] != 4854 (*state)->key[PF_SK_STACK]) { 4855 struct pf_state_key *nk = 4856 (*state)->key[pd->didx]; 4857 4858 if (PF_ANEQ(pd2.src, 4859 &nk->addr[pd2.sidx], pd2.af)) 4860 pf_change_icmp(pd2.src, NULL, daddr, 4861 &nk->addr[pd2.sidx], 0, NULL, 4862 pd2.ip_sum, icmpsum, 4863 pd->ip_sum, 0, pd2.af); 4864 4865 if (PF_ANEQ(pd2.dst, 4866 &nk->addr[pd2.didx], pd2.af)) 4867 pf_change_icmp(pd2.src, NULL, 4868 NULL, /* XXX Inbound NAT? */ 4869 &nk->addr[pd2.didx], 0, NULL, 4870 pd2.ip_sum, icmpsum, 4871 pd->ip_sum, 0, pd2.af); 4872 4873 switch (pd2.af) { 4874 #ifdef INET 4875 case AF_INET: 4876 m_copyback(m, off, ICMP_MINLEN, 4877 (caddr_t)pd->hdr.icmp); 4878 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4879 break; 4880 #endif /* INET */ 4881 #ifdef INET6 4882 case AF_INET6: 4883 m_copyback(m, off, 4884 sizeof(struct icmp6_hdr), 4885 (caddr_t )pd->hdr.icmp6); 4886 m_copyback(m, ipoff2, sizeof(h2_6), 4887 (caddr_t )&h2_6); 4888 break; 4889 #endif /* INET6 */ 4890 } 4891 } 4892 return (PF_PASS); 4893 break; 4894 } 4895 } 4896 } 4897 } 4898 4899 static int 4900 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 4901 struct mbuf *m, struct pf_pdesc *pd) 4902 { 4903 struct pf_state_peer *src, *dst; 4904 struct pf_state_key_cmp key; 4905 4906 bzero(&key, sizeof(key)); 4907 key.af = pd->af; 4908 key.proto = pd->proto; 4909 if (direction == PF_IN) { 4910 PF_ACPY(&key.addr[0], pd->src, key.af); 4911 PF_ACPY(&key.addr[1], pd->dst, key.af); 4912 key.port[0] = key.port[1] = 0; 4913 } else { 4914 PF_ACPY(&key.addr[1], pd->src, key.af); 4915 PF_ACPY(&key.addr[0], pd->dst, key.af); 4916 key.port[1] = key.port[0] = 0; 4917 } 4918 4919 STATE_LOOKUP(kif, &key, direction, *state, pd); 4920 4921 if (direction == (*state)->direction) { 4922 src = &(*state)->src; 4923 dst = &(*state)->dst; 4924 } else { 4925 src = &(*state)->dst; 4926 dst = &(*state)->src; 4927 } 4928 4929 /* update states */ 4930 if (src->state < PFOTHERS_SINGLE) 4931 src->state = PFOTHERS_SINGLE; 4932 if (dst->state == PFOTHERS_SINGLE) 4933 dst->state = PFOTHERS_MULTIPLE; 4934 4935 /* update expire time */ 4936 (*state)->expire = time_uptime; 4937 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 4938 (*state)->timeout = PFTM_OTHER_MULTIPLE; 4939 else 4940 (*state)->timeout = PFTM_OTHER_SINGLE; 4941 4942 /* translate source/destination address, if necessary */ 4943 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4944 struct pf_state_key *nk = (*state)->key[pd->didx]; 4945 4946 KASSERT(nk, ("%s: nk is null", __func__)); 4947 KASSERT(pd, ("%s: pd is null", __func__)); 4948 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 4949 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 4950 switch (pd->af) { 4951 #ifdef INET 4952 case AF_INET: 4953 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 4954 pf_change_a(&pd->src->v4.s_addr, 4955 pd->ip_sum, 4956 nk->addr[pd->sidx].v4.s_addr, 4957 0); 4958 4959 4960 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 4961 pf_change_a(&pd->dst->v4.s_addr, 4962 pd->ip_sum, 4963 nk->addr[pd->didx].v4.s_addr, 4964 0); 4965 4966 break; 4967 #endif /* INET */ 4968 #ifdef INET6 4969 case AF_INET6: 4970 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 4971 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 4972 4973 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 4974 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 4975 #endif /* INET6 */ 4976 } 4977 } 4978 return (PF_PASS); 4979 } 4980 4981 /* 4982 * ipoff and off are measured from the start of the mbuf chain. 4983 * h must be at "ipoff" on the mbuf chain. 4984 */ 4985 void * 4986 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 4987 u_short *actionp, u_short *reasonp, sa_family_t af) 4988 { 4989 switch (af) { 4990 #ifdef INET 4991 case AF_INET: { 4992 struct ip *h = mtod(m, struct ip *); 4993 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 4994 4995 if (fragoff) { 4996 if (fragoff >= len) 4997 ACTION_SET(actionp, PF_PASS); 4998 else { 4999 ACTION_SET(actionp, PF_DROP); 5000 REASON_SET(reasonp, PFRES_FRAG); 5001 } 5002 return (NULL); 5003 } 5004 if (m->m_pkthdr.len < off + len || 5005 ntohs(h->ip_len) < off + len) { 5006 ACTION_SET(actionp, PF_DROP); 5007 REASON_SET(reasonp, PFRES_SHORT); 5008 return (NULL); 5009 } 5010 break; 5011 } 5012 #endif /* INET */ 5013 #ifdef INET6 5014 case AF_INET6: { 5015 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5016 5017 if (m->m_pkthdr.len < off + len || 5018 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5019 (unsigned)(off + len)) { 5020 ACTION_SET(actionp, PF_DROP); 5021 REASON_SET(reasonp, PFRES_SHORT); 5022 return (NULL); 5023 } 5024 break; 5025 } 5026 #endif /* INET6 */ 5027 } 5028 m_copydata(m, off, len, p); 5029 return (p); 5030 } 5031 5032 int 5033 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5034 int rtableid) 5035 { 5036 #ifdef RADIX_MPATH 5037 struct radix_node_head *rnh; 5038 #endif 5039 struct sockaddr_in *dst; 5040 int ret = 1; 5041 int check_mpath; 5042 #ifdef INET6 5043 struct sockaddr_in6 *dst6; 5044 struct route_in6 ro; 5045 #else 5046 struct route ro; 5047 #endif 5048 struct radix_node *rn; 5049 struct rtentry *rt; 5050 struct ifnet *ifp; 5051 5052 check_mpath = 0; 5053 #ifdef RADIX_MPATH 5054 /* XXX: stick to table 0 for now */ 5055 rnh = rt_tables_get_rnh(0, af); 5056 if (rnh != NULL && rn_mpath_capable(rnh)) 5057 check_mpath = 1; 5058 #endif 5059 bzero(&ro, sizeof(ro)); 5060 switch (af) { 5061 case AF_INET: 5062 dst = satosin(&ro.ro_dst); 5063 dst->sin_family = AF_INET; 5064 dst->sin_len = sizeof(*dst); 5065 dst->sin_addr = addr->v4; 5066 break; 5067 #ifdef INET6 5068 case AF_INET6: 5069 /* 5070 * Skip check for addresses with embedded interface scope, 5071 * as they would always match anyway. 5072 */ 5073 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5074 goto out; 5075 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5076 dst6->sin6_family = AF_INET6; 5077 dst6->sin6_len = sizeof(*dst6); 5078 dst6->sin6_addr = addr->v6; 5079 break; 5080 #endif /* INET6 */ 5081 default: 5082 return (0); 5083 } 5084 5085 /* Skip checks for ipsec interfaces */ 5086 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5087 goto out; 5088 5089 switch (af) { 5090 #ifdef INET6 5091 case AF_INET6: 5092 in6_rtalloc_ign(&ro, 0, rtableid); 5093 break; 5094 #endif 5095 #ifdef INET 5096 case AF_INET: 5097 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5098 break; 5099 #endif 5100 default: 5101 rtalloc_ign((struct route *)&ro, 0); /* No/default FIB. */ 5102 break; 5103 } 5104 5105 if (ro.ro_rt != NULL) { 5106 /* No interface given, this is a no-route check */ 5107 if (kif == NULL) 5108 goto out; 5109 5110 if (kif->pfik_ifp == NULL) { 5111 ret = 0; 5112 goto out; 5113 } 5114 5115 /* Perform uRPF check if passed input interface */ 5116 ret = 0; 5117 rn = (struct radix_node *)ro.ro_rt; 5118 do { 5119 rt = (struct rtentry *)rn; 5120 ifp = rt->rt_ifp; 5121 5122 if (kif->pfik_ifp == ifp) 5123 ret = 1; 5124 #ifdef RADIX_MPATH 5125 rn = rn_mpath_next(rn); 5126 #endif 5127 } while (check_mpath == 1 && rn != NULL && ret == 0); 5128 } else 5129 ret = 0; 5130 out: 5131 if (ro.ro_rt != NULL) 5132 RTFREE(ro.ro_rt); 5133 return (ret); 5134 } 5135 5136 #ifdef INET 5137 static void 5138 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5139 struct pf_state *s, struct pf_pdesc *pd) 5140 { 5141 struct mbuf *m0, *m1; 5142 struct sockaddr_in dst; 5143 struct ip *ip; 5144 struct ifnet *ifp = NULL; 5145 struct pf_addr naddr; 5146 struct pf_src_node *sn = NULL; 5147 int error = 0; 5148 uint16_t ip_len, ip_off; 5149 5150 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5151 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5152 __func__)); 5153 5154 if ((pd->pf_mtag == NULL && 5155 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5156 pd->pf_mtag->routed++ > 3) { 5157 m0 = *m; 5158 *m = NULL; 5159 goto bad_locked; 5160 } 5161 5162 if (r->rt == PF_DUPTO) { 5163 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5164 if (s) 5165 PF_STATE_UNLOCK(s); 5166 return; 5167 } 5168 } else { 5169 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5170 if (s) 5171 PF_STATE_UNLOCK(s); 5172 return; 5173 } 5174 m0 = *m; 5175 } 5176 5177 ip = mtod(m0, struct ip *); 5178 5179 bzero(&dst, sizeof(dst)); 5180 dst.sin_family = AF_INET; 5181 dst.sin_len = sizeof(dst); 5182 dst.sin_addr = ip->ip_dst; 5183 5184 if (r->rt == PF_FASTROUTE) { 5185 struct rtentry *rt; 5186 5187 if (s) 5188 PF_STATE_UNLOCK(s); 5189 rt = rtalloc1_fib(sintosa(&dst), 0, 0, M_GETFIB(m0)); 5190 if (rt == NULL) { 5191 RTFREE_LOCKED(rt); 5192 KMOD_IPSTAT_INC(ips_noroute); 5193 error = EHOSTUNREACH; 5194 goto bad; 5195 } 5196 5197 ifp = rt->rt_ifp; 5198 rt->rt_rmx.rmx_pksent++; 5199 5200 if (rt->rt_flags & RTF_GATEWAY) 5201 bcopy(satosin(rt->rt_gateway), &dst, sizeof(dst)); 5202 RTFREE_LOCKED(rt); 5203 } else { 5204 if (TAILQ_EMPTY(&r->rpool.list)) { 5205 DPFPRINTF(PF_DEBUG_URGENT, 5206 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5207 goto bad_locked; 5208 } 5209 if (s == NULL) { 5210 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5211 &naddr, NULL, &sn); 5212 if (!PF_AZERO(&naddr, AF_INET)) 5213 dst.sin_addr.s_addr = naddr.v4.s_addr; 5214 ifp = r->rpool.cur->kif ? 5215 r->rpool.cur->kif->pfik_ifp : NULL; 5216 } else { 5217 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5218 dst.sin_addr.s_addr = 5219 s->rt_addr.v4.s_addr; 5220 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5221 PF_STATE_UNLOCK(s); 5222 } 5223 } 5224 if (ifp == NULL) 5225 goto bad; 5226 5227 if (oifp != ifp) { 5228 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5229 goto bad; 5230 else if (m0 == NULL) 5231 goto done; 5232 if (m0->m_len < sizeof(struct ip)) { 5233 DPFPRINTF(PF_DEBUG_URGENT, 5234 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5235 goto bad; 5236 } 5237 ip = mtod(m0, struct ip *); 5238 } 5239 5240 if (ifp->if_flags & IFF_LOOPBACK) 5241 m0->m_flags |= M_SKIP_FIREWALL; 5242 5243 ip_len = ntohs(ip->ip_len); 5244 ip_off = ntohs(ip->ip_off); 5245 5246 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5247 m0->m_pkthdr.csum_flags |= CSUM_IP; 5248 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5249 in_delayed_cksum(m0); 5250 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5251 } 5252 #ifdef SCTP 5253 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5254 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5255 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5256 } 5257 #endif 5258 5259 /* 5260 * If small enough for interface, or the interface will take 5261 * care of the fragmentation for us, we can just send directly. 5262 */ 5263 if (ip_len <= ifp->if_mtu || 5264 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 || 5265 ((ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) { 5266 ip->ip_sum = 0; 5267 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5268 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5269 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5270 } 5271 m0->m_flags &= ~(M_PROTOFLAGS); 5272 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5273 goto done; 5274 } 5275 5276 /* Balk when DF bit is set or the interface didn't support TSO. */ 5277 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5278 error = EMSGSIZE; 5279 KMOD_IPSTAT_INC(ips_cantfrag); 5280 if (r->rt != PF_DUPTO) { 5281 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5282 ifp->if_mtu); 5283 goto done; 5284 } else 5285 goto bad; 5286 } 5287 5288 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5289 if (error) 5290 goto bad; 5291 5292 for (; m0; m0 = m1) { 5293 m1 = m0->m_nextpkt; 5294 m0->m_nextpkt = NULL; 5295 if (error == 0) { 5296 m0->m_flags &= ~(M_PROTOFLAGS); 5297 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5298 } else 5299 m_freem(m0); 5300 } 5301 5302 if (error == 0) 5303 KMOD_IPSTAT_INC(ips_fragmented); 5304 5305 done: 5306 if (r->rt != PF_DUPTO) 5307 *m = NULL; 5308 return; 5309 5310 bad_locked: 5311 if (s) 5312 PF_STATE_UNLOCK(s); 5313 bad: 5314 m_freem(m0); 5315 goto done; 5316 } 5317 #endif /* INET */ 5318 5319 #ifdef INET6 5320 static void 5321 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5322 struct pf_state *s, struct pf_pdesc *pd) 5323 { 5324 struct mbuf *m0; 5325 struct sockaddr_in6 dst; 5326 struct ip6_hdr *ip6; 5327 struct ifnet *ifp = NULL; 5328 struct pf_addr naddr; 5329 struct pf_src_node *sn = NULL; 5330 5331 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5332 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5333 __func__)); 5334 5335 if ((pd->pf_mtag == NULL && 5336 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5337 pd->pf_mtag->routed++ > 3) { 5338 m0 = *m; 5339 *m = NULL; 5340 goto bad_locked; 5341 } 5342 5343 if (r->rt == PF_DUPTO) { 5344 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5345 if (s) 5346 PF_STATE_UNLOCK(s); 5347 return; 5348 } 5349 } else { 5350 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5351 if (s) 5352 PF_STATE_UNLOCK(s); 5353 return; 5354 } 5355 m0 = *m; 5356 } 5357 5358 ip6 = mtod(m0, struct ip6_hdr *); 5359 5360 bzero(&dst, sizeof(dst)); 5361 dst.sin6_family = AF_INET6; 5362 dst.sin6_len = sizeof(dst); 5363 dst.sin6_addr = ip6->ip6_dst; 5364 5365 /* Cheat. XXX why only in the v6 case??? */ 5366 if (r->rt == PF_FASTROUTE) { 5367 if (s) 5368 PF_STATE_UNLOCK(s); 5369 m0->m_flags |= M_SKIP_FIREWALL; 5370 ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL); 5371 return; 5372 } 5373 5374 if (TAILQ_EMPTY(&r->rpool.list)) { 5375 DPFPRINTF(PF_DEBUG_URGENT, 5376 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5377 goto bad_locked; 5378 } 5379 if (s == NULL) { 5380 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5381 &naddr, NULL, &sn); 5382 if (!PF_AZERO(&naddr, AF_INET6)) 5383 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5384 &naddr, AF_INET6); 5385 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5386 } else { 5387 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5388 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5389 &s->rt_addr, AF_INET6); 5390 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5391 } 5392 5393 if (s) 5394 PF_STATE_UNLOCK(s); 5395 5396 if (ifp == NULL) 5397 goto bad; 5398 5399 if (oifp != ifp) { 5400 if (pf_test6(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5401 goto bad; 5402 else if (m0 == NULL) 5403 goto done; 5404 if (m0->m_len < sizeof(struct ip6_hdr)) { 5405 DPFPRINTF(PF_DEBUG_URGENT, 5406 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5407 __func__)); 5408 goto bad; 5409 } 5410 ip6 = mtod(m0, struct ip6_hdr *); 5411 } 5412 5413 if (ifp->if_flags & IFF_LOOPBACK) 5414 m0->m_flags |= M_SKIP_FIREWALL; 5415 5416 /* 5417 * If the packet is too large for the outgoing interface, 5418 * send back an icmp6 error. 5419 */ 5420 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5421 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5422 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5423 nd6_output(ifp, ifp, m0, &dst, NULL); 5424 else { 5425 in6_ifstat_inc(ifp, ifs6_in_toobig); 5426 if (r->rt != PF_DUPTO) 5427 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5428 else 5429 goto bad; 5430 } 5431 5432 done: 5433 if (r->rt != PF_DUPTO) 5434 *m = NULL; 5435 return; 5436 5437 bad_locked: 5438 if (s) 5439 PF_STATE_UNLOCK(s); 5440 bad: 5441 m_freem(m0); 5442 goto done; 5443 } 5444 #endif /* INET6 */ 5445 5446 /* 5447 * FreeBSD supports cksum offloads for the following drivers. 5448 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5449 * ti(4), txp(4), xl(4) 5450 * 5451 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5452 * network driver performed cksum including pseudo header, need to verify 5453 * csum_data 5454 * CSUM_DATA_VALID : 5455 * network driver performed cksum, needs to additional pseudo header 5456 * cksum computation with partial csum_data(i.e. lack of H/W support for 5457 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5458 * 5459 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5460 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5461 * TCP/UDP layer. 5462 * Also, set csum_data to 0xffff to force cksum validation. 5463 */ 5464 static int 5465 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5466 { 5467 u_int16_t sum = 0; 5468 int hw_assist = 0; 5469 struct ip *ip; 5470 5471 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5472 return (1); 5473 if (m->m_pkthdr.len < off + len) 5474 return (1); 5475 5476 switch (p) { 5477 case IPPROTO_TCP: 5478 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5479 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5480 sum = m->m_pkthdr.csum_data; 5481 } else { 5482 ip = mtod(m, struct ip *); 5483 sum = in_pseudo(ip->ip_src.s_addr, 5484 ip->ip_dst.s_addr, htonl((u_short)len + 5485 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5486 } 5487 sum ^= 0xffff; 5488 ++hw_assist; 5489 } 5490 break; 5491 case IPPROTO_UDP: 5492 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5493 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5494 sum = m->m_pkthdr.csum_data; 5495 } else { 5496 ip = mtod(m, struct ip *); 5497 sum = in_pseudo(ip->ip_src.s_addr, 5498 ip->ip_dst.s_addr, htonl((u_short)len + 5499 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5500 } 5501 sum ^= 0xffff; 5502 ++hw_assist; 5503 } 5504 break; 5505 case IPPROTO_ICMP: 5506 #ifdef INET6 5507 case IPPROTO_ICMPV6: 5508 #endif /* INET6 */ 5509 break; 5510 default: 5511 return (1); 5512 } 5513 5514 if (!hw_assist) { 5515 switch (af) { 5516 case AF_INET: 5517 if (p == IPPROTO_ICMP) { 5518 if (m->m_len < off) 5519 return (1); 5520 m->m_data += off; 5521 m->m_len -= off; 5522 sum = in_cksum(m, len); 5523 m->m_data -= off; 5524 m->m_len += off; 5525 } else { 5526 if (m->m_len < sizeof(struct ip)) 5527 return (1); 5528 sum = in4_cksum(m, p, off, len); 5529 } 5530 break; 5531 #ifdef INET6 5532 case AF_INET6: 5533 if (m->m_len < sizeof(struct ip6_hdr)) 5534 return (1); 5535 sum = in6_cksum(m, p, off, len); 5536 break; 5537 #endif /* INET6 */ 5538 default: 5539 return (1); 5540 } 5541 } 5542 if (sum) { 5543 switch (p) { 5544 case IPPROTO_TCP: 5545 { 5546 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5547 break; 5548 } 5549 case IPPROTO_UDP: 5550 { 5551 KMOD_UDPSTAT_INC(udps_badsum); 5552 break; 5553 } 5554 #ifdef INET 5555 case IPPROTO_ICMP: 5556 { 5557 KMOD_ICMPSTAT_INC(icps_checksum); 5558 break; 5559 } 5560 #endif 5561 #ifdef INET6 5562 case IPPROTO_ICMPV6: 5563 { 5564 KMOD_ICMP6STAT_INC(icp6s_checksum); 5565 break; 5566 } 5567 #endif /* INET6 */ 5568 } 5569 return (1); 5570 } else { 5571 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5572 m->m_pkthdr.csum_flags |= 5573 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5574 m->m_pkthdr.csum_data = 0xffff; 5575 } 5576 } 5577 return (0); 5578 } 5579 5580 5581 #ifdef INET 5582 int 5583 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5584 { 5585 struct pfi_kif *kif; 5586 u_short action, reason = 0, log = 0; 5587 struct mbuf *m = *m0; 5588 struct ip *h = NULL; 5589 struct m_tag *ipfwtag; 5590 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5591 struct pf_state *s = NULL; 5592 struct pf_ruleset *ruleset = NULL; 5593 struct pf_pdesc pd; 5594 int off, dirndx, pqid = 0; 5595 5596 M_ASSERTPKTHDR(m); 5597 5598 if (!V_pf_status.running) 5599 return (PF_PASS); 5600 5601 memset(&pd, 0, sizeof(pd)); 5602 5603 kif = (struct pfi_kif *)ifp->if_pf_kif; 5604 5605 if (kif == NULL) { 5606 DPFPRINTF(PF_DEBUG_URGENT, 5607 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5608 return (PF_DROP); 5609 } 5610 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5611 return (PF_PASS); 5612 5613 if (m->m_flags & M_SKIP_FIREWALL) 5614 return (PF_PASS); 5615 5616 pd.pf_mtag = pf_find_mtag(m); 5617 5618 PF_RULES_RLOCK(); 5619 5620 if (ip_divert_ptr != NULL && 5621 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5622 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5623 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5624 if (pd.pf_mtag == NULL && 5625 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5626 action = PF_DROP; 5627 goto done; 5628 } 5629 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5630 m_tag_delete(m, ipfwtag); 5631 } 5632 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5633 m->m_flags |= M_FASTFWD_OURS; 5634 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5635 } 5636 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5637 /* We do IP header normalization and packet reassembly here */ 5638 action = PF_DROP; 5639 goto done; 5640 } 5641 m = *m0; /* pf_normalize messes with m0 */ 5642 h = mtod(m, struct ip *); 5643 5644 off = h->ip_hl << 2; 5645 if (off < (int)sizeof(struct ip)) { 5646 action = PF_DROP; 5647 REASON_SET(&reason, PFRES_SHORT); 5648 log = 1; 5649 goto done; 5650 } 5651 5652 pd.src = (struct pf_addr *)&h->ip_src; 5653 pd.dst = (struct pf_addr *)&h->ip_dst; 5654 pd.sport = pd.dport = NULL; 5655 pd.ip_sum = &h->ip_sum; 5656 pd.proto_sum = NULL; 5657 pd.proto = h->ip_p; 5658 pd.dir = dir; 5659 pd.sidx = (dir == PF_IN) ? 0 : 1; 5660 pd.didx = (dir == PF_IN) ? 1 : 0; 5661 pd.af = AF_INET; 5662 pd.tos = h->ip_tos; 5663 pd.tot_len = ntohs(h->ip_len); 5664 5665 /* handle fragments that didn't get reassembled by normalization */ 5666 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5667 action = pf_test_fragment(&r, dir, kif, m, h, 5668 &pd, &a, &ruleset); 5669 goto done; 5670 } 5671 5672 switch (h->ip_p) { 5673 5674 case IPPROTO_TCP: { 5675 struct tcphdr th; 5676 5677 pd.hdr.tcp = &th; 5678 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5679 &action, &reason, AF_INET)) { 5680 log = action != PF_PASS; 5681 goto done; 5682 } 5683 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5684 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5685 pqid = 1; 5686 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5687 if (action == PF_DROP) 5688 goto done; 5689 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5690 &reason); 5691 if (action == PF_PASS) { 5692 if (pfsync_update_state_ptr != NULL) 5693 pfsync_update_state_ptr(s); 5694 r = s->rule.ptr; 5695 a = s->anchor.ptr; 5696 log = s->log; 5697 } else if (s == NULL) 5698 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5699 &a, &ruleset, inp); 5700 break; 5701 } 5702 5703 case IPPROTO_UDP: { 5704 struct udphdr uh; 5705 5706 pd.hdr.udp = &uh; 5707 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5708 &action, &reason, AF_INET)) { 5709 log = action != PF_PASS; 5710 goto done; 5711 } 5712 if (uh.uh_dport == 0 || 5713 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5714 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5715 action = PF_DROP; 5716 REASON_SET(&reason, PFRES_SHORT); 5717 goto done; 5718 } 5719 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5720 if (action == PF_PASS) { 5721 if (pfsync_update_state_ptr != NULL) 5722 pfsync_update_state_ptr(s); 5723 r = s->rule.ptr; 5724 a = s->anchor.ptr; 5725 log = s->log; 5726 } else if (s == NULL) 5727 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5728 &a, &ruleset, inp); 5729 break; 5730 } 5731 5732 case IPPROTO_ICMP: { 5733 struct icmp ih; 5734 5735 pd.hdr.icmp = &ih; 5736 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 5737 &action, &reason, AF_INET)) { 5738 log = action != PF_PASS; 5739 goto done; 5740 } 5741 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 5742 &reason); 5743 if (action == PF_PASS) { 5744 if (pfsync_update_state_ptr != NULL) 5745 pfsync_update_state_ptr(s); 5746 r = s->rule.ptr; 5747 a = s->anchor.ptr; 5748 log = s->log; 5749 } else if (s == NULL) 5750 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5751 &a, &ruleset, inp); 5752 break; 5753 } 5754 5755 #ifdef INET6 5756 case IPPROTO_ICMPV6: { 5757 action = PF_DROP; 5758 DPFPRINTF(PF_DEBUG_MISC, 5759 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 5760 goto done; 5761 } 5762 #endif 5763 5764 default: 5765 action = pf_test_state_other(&s, dir, kif, m, &pd); 5766 if (action == PF_PASS) { 5767 if (pfsync_update_state_ptr != NULL) 5768 pfsync_update_state_ptr(s); 5769 r = s->rule.ptr; 5770 a = s->anchor.ptr; 5771 log = s->log; 5772 } else if (s == NULL) 5773 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5774 &a, &ruleset, inp); 5775 break; 5776 } 5777 5778 done: 5779 PF_RULES_RUNLOCK(); 5780 if (action == PF_PASS && h->ip_hl > 5 && 5781 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 5782 action = PF_DROP; 5783 REASON_SET(&reason, PFRES_IPOPTIONS); 5784 log = 1; 5785 DPFPRINTF(PF_DEBUG_MISC, 5786 ("pf: dropping packet with ip options\n")); 5787 } 5788 5789 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 5790 action = PF_DROP; 5791 REASON_SET(&reason, PFRES_MEMORY); 5792 } 5793 if (r->rtableid >= 0) 5794 M_SETFIB(m, r->rtableid); 5795 5796 #ifdef ALTQ 5797 if (action == PF_PASS && r->qid) { 5798 if (pd.pf_mtag == NULL && 5799 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5800 action = PF_DROP; 5801 REASON_SET(&reason, PFRES_MEMORY); 5802 } 5803 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 5804 pd.pf_mtag->qid = r->pqid; 5805 else 5806 pd.pf_mtag->qid = r->qid; 5807 /* add hints for ecn */ 5808 pd.pf_mtag->hdr = h; 5809 5810 } 5811 #endif /* ALTQ */ 5812 5813 /* 5814 * connections redirected to loopback should not match sockets 5815 * bound specifically to loopback due to security implications, 5816 * see tcp_input() and in_pcblookup_listen(). 5817 */ 5818 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 5819 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 5820 (s->nat_rule.ptr->action == PF_RDR || 5821 s->nat_rule.ptr->action == PF_BINAT) && 5822 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 5823 m->m_flags |= M_SKIP_FIREWALL; 5824 5825 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 5826 !PACKET_LOOPED(&pd)) { 5827 5828 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 5829 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 5830 if (ipfwtag != NULL) { 5831 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 5832 ntohs(r->divert.port); 5833 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 5834 5835 if (s) 5836 PF_STATE_UNLOCK(s); 5837 5838 m_tag_prepend(m, ipfwtag); 5839 if (m->m_flags & M_FASTFWD_OURS) { 5840 if (pd.pf_mtag == NULL && 5841 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5842 action = PF_DROP; 5843 REASON_SET(&reason, PFRES_MEMORY); 5844 log = 1; 5845 DPFPRINTF(PF_DEBUG_MISC, 5846 ("pf: failed to allocate tag\n")); 5847 } 5848 pd.pf_mtag->flags |= PF_FASTFWD_OURS_PRESENT; 5849 m->m_flags &= ~M_FASTFWD_OURS; 5850 } 5851 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 5852 *m0 = NULL; 5853 5854 return (action); 5855 } else { 5856 /* XXX: ipfw has the same behaviour! */ 5857 action = PF_DROP; 5858 REASON_SET(&reason, PFRES_MEMORY); 5859 log = 1; 5860 DPFPRINTF(PF_DEBUG_MISC, 5861 ("pf: failed to allocate divert tag\n")); 5862 } 5863 } 5864 5865 if (log) { 5866 struct pf_rule *lr; 5867 5868 if (s != NULL && s->nat_rule.ptr != NULL && 5869 s->nat_rule.ptr->log & PF_LOG_ALL) 5870 lr = s->nat_rule.ptr; 5871 else 5872 lr = r; 5873 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 5874 (s == NULL)); 5875 } 5876 5877 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 5878 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 5879 5880 if (action == PF_PASS || r->action == PF_DROP) { 5881 dirndx = (dir == PF_OUT); 5882 r->packets[dirndx]++; 5883 r->bytes[dirndx] += pd.tot_len; 5884 if (a != NULL) { 5885 a->packets[dirndx]++; 5886 a->bytes[dirndx] += pd.tot_len; 5887 } 5888 if (s != NULL) { 5889 if (s->nat_rule.ptr != NULL) { 5890 s->nat_rule.ptr->packets[dirndx]++; 5891 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 5892 } 5893 if (s->src_node != NULL) { 5894 s->src_node->packets[dirndx]++; 5895 s->src_node->bytes[dirndx] += pd.tot_len; 5896 } 5897 if (s->nat_src_node != NULL) { 5898 s->nat_src_node->packets[dirndx]++; 5899 s->nat_src_node->bytes[dirndx] += pd.tot_len; 5900 } 5901 dirndx = (dir == s->direction) ? 0 : 1; 5902 s->packets[dirndx]++; 5903 s->bytes[dirndx] += pd.tot_len; 5904 } 5905 tr = r; 5906 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 5907 if (nr != NULL && r == &V_pf_default_rule) 5908 tr = nr; 5909 if (tr->src.addr.type == PF_ADDR_TABLE) 5910 pfr_update_stats(tr->src.addr.p.tbl, 5911 (s == NULL) ? pd.src : 5912 &s->key[(s->direction == PF_IN)]-> 5913 addr[(s->direction == PF_OUT)], 5914 pd.af, pd.tot_len, dir == PF_OUT, 5915 r->action == PF_PASS, tr->src.neg); 5916 if (tr->dst.addr.type == PF_ADDR_TABLE) 5917 pfr_update_stats(tr->dst.addr.p.tbl, 5918 (s == NULL) ? pd.dst : 5919 &s->key[(s->direction == PF_IN)]-> 5920 addr[(s->direction == PF_IN)], 5921 pd.af, pd.tot_len, dir == PF_OUT, 5922 r->action == PF_PASS, tr->dst.neg); 5923 } 5924 5925 switch (action) { 5926 case PF_SYNPROXY_DROP: 5927 m_freem(*m0); 5928 case PF_DEFER: 5929 *m0 = NULL; 5930 action = PF_PASS; 5931 break; 5932 default: 5933 /* pf_route() returns unlocked. */ 5934 if (r->rt) { 5935 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 5936 return (action); 5937 } 5938 break; 5939 } 5940 if (s) 5941 PF_STATE_UNLOCK(s); 5942 5943 return (action); 5944 } 5945 #endif /* INET */ 5946 5947 #ifdef INET6 5948 int 5949 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5950 { 5951 struct pfi_kif *kif; 5952 u_short action, reason = 0, log = 0; 5953 struct mbuf *m = *m0, *n = NULL; 5954 struct ip6_hdr *h = NULL; 5955 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5956 struct pf_state *s = NULL; 5957 struct pf_ruleset *ruleset = NULL; 5958 struct pf_pdesc pd; 5959 int off, terminal = 0, dirndx, rh_cnt = 0; 5960 5961 M_ASSERTPKTHDR(m); 5962 5963 if (!V_pf_status.running) 5964 return (PF_PASS); 5965 5966 memset(&pd, 0, sizeof(pd)); 5967 pd.pf_mtag = pf_find_mtag(m); 5968 5969 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 5970 return (PF_PASS); 5971 5972 kif = (struct pfi_kif *)ifp->if_pf_kif; 5973 if (kif == NULL) { 5974 DPFPRINTF(PF_DEBUG_URGENT, 5975 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 5976 return (PF_DROP); 5977 } 5978 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5979 return (PF_PASS); 5980 5981 PF_RULES_RLOCK(); 5982 5983 /* We do IP header normalization and packet reassembly here */ 5984 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 5985 action = PF_DROP; 5986 goto done; 5987 } 5988 m = *m0; /* pf_normalize messes with m0 */ 5989 h = mtod(m, struct ip6_hdr *); 5990 5991 #if 1 5992 /* 5993 * we do not support jumbogram yet. if we keep going, zero ip6_plen 5994 * will do something bad, so drop the packet for now. 5995 */ 5996 if (htons(h->ip6_plen) == 0) { 5997 action = PF_DROP; 5998 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 5999 goto done; 6000 } 6001 #endif 6002 6003 pd.src = (struct pf_addr *)&h->ip6_src; 6004 pd.dst = (struct pf_addr *)&h->ip6_dst; 6005 pd.sport = pd.dport = NULL; 6006 pd.ip_sum = NULL; 6007 pd.proto_sum = NULL; 6008 pd.dir = dir; 6009 pd.sidx = (dir == PF_IN) ? 0 : 1; 6010 pd.didx = (dir == PF_IN) ? 1 : 0; 6011 pd.af = AF_INET6; 6012 pd.tos = 0; 6013 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6014 6015 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6016 pd.proto = h->ip6_nxt; 6017 do { 6018 switch (pd.proto) { 6019 case IPPROTO_FRAGMENT: 6020 action = pf_test_fragment(&r, dir, kif, m, h, 6021 &pd, &a, &ruleset); 6022 if (action == PF_DROP) 6023 REASON_SET(&reason, PFRES_FRAG); 6024 goto done; 6025 case IPPROTO_ROUTING: { 6026 struct ip6_rthdr rthdr; 6027 6028 if (rh_cnt++) { 6029 DPFPRINTF(PF_DEBUG_MISC, 6030 ("pf: IPv6 more than one rthdr\n")); 6031 action = PF_DROP; 6032 REASON_SET(&reason, PFRES_IPOPTIONS); 6033 log = 1; 6034 goto done; 6035 } 6036 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6037 &reason, pd.af)) { 6038 DPFPRINTF(PF_DEBUG_MISC, 6039 ("pf: IPv6 short rthdr\n")); 6040 action = PF_DROP; 6041 REASON_SET(&reason, PFRES_SHORT); 6042 log = 1; 6043 goto done; 6044 } 6045 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6046 DPFPRINTF(PF_DEBUG_MISC, 6047 ("pf: IPv6 rthdr0\n")); 6048 action = PF_DROP; 6049 REASON_SET(&reason, PFRES_IPOPTIONS); 6050 log = 1; 6051 goto done; 6052 } 6053 /* FALLTHROUGH */ 6054 } 6055 case IPPROTO_AH: 6056 case IPPROTO_HOPOPTS: 6057 case IPPROTO_DSTOPTS: { 6058 /* get next header and header length */ 6059 struct ip6_ext opt6; 6060 6061 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6062 NULL, &reason, pd.af)) { 6063 DPFPRINTF(PF_DEBUG_MISC, 6064 ("pf: IPv6 short opt\n")); 6065 action = PF_DROP; 6066 log = 1; 6067 goto done; 6068 } 6069 if (pd.proto == IPPROTO_AH) 6070 off += (opt6.ip6e_len + 2) * 4; 6071 else 6072 off += (opt6.ip6e_len + 1) * 8; 6073 pd.proto = opt6.ip6e_nxt; 6074 /* goto the next header */ 6075 break; 6076 } 6077 default: 6078 terminal++; 6079 break; 6080 } 6081 } while (!terminal); 6082 6083 /* if there's no routing header, use unmodified mbuf for checksumming */ 6084 if (!n) 6085 n = m; 6086 6087 switch (pd.proto) { 6088 6089 case IPPROTO_TCP: { 6090 struct tcphdr th; 6091 6092 pd.hdr.tcp = &th; 6093 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6094 &action, &reason, AF_INET6)) { 6095 log = action != PF_PASS; 6096 goto done; 6097 } 6098 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6099 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6100 if (action == PF_DROP) 6101 goto done; 6102 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6103 &reason); 6104 if (action == PF_PASS) { 6105 if (pfsync_update_state_ptr != NULL) 6106 pfsync_update_state_ptr(s); 6107 r = s->rule.ptr; 6108 a = s->anchor.ptr; 6109 log = s->log; 6110 } else if (s == NULL) 6111 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6112 &a, &ruleset, inp); 6113 break; 6114 } 6115 6116 case IPPROTO_UDP: { 6117 struct udphdr uh; 6118 6119 pd.hdr.udp = &uh; 6120 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6121 &action, &reason, AF_INET6)) { 6122 log = action != PF_PASS; 6123 goto done; 6124 } 6125 if (uh.uh_dport == 0 || 6126 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6127 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6128 action = PF_DROP; 6129 REASON_SET(&reason, PFRES_SHORT); 6130 goto done; 6131 } 6132 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6133 if (action == PF_PASS) { 6134 if (pfsync_update_state_ptr != NULL) 6135 pfsync_update_state_ptr(s); 6136 r = s->rule.ptr; 6137 a = s->anchor.ptr; 6138 log = s->log; 6139 } else if (s == NULL) 6140 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6141 &a, &ruleset, inp); 6142 break; 6143 } 6144 6145 case IPPROTO_ICMP: { 6146 action = PF_DROP; 6147 DPFPRINTF(PF_DEBUG_MISC, 6148 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6149 goto done; 6150 } 6151 6152 case IPPROTO_ICMPV6: { 6153 struct icmp6_hdr ih; 6154 6155 pd.hdr.icmp6 = &ih; 6156 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6157 &action, &reason, AF_INET6)) { 6158 log = action != PF_PASS; 6159 goto done; 6160 } 6161 action = pf_test_state_icmp(&s, dir, kif, 6162 m, off, h, &pd, &reason); 6163 if (action == PF_PASS) { 6164 if (pfsync_update_state_ptr != NULL) 6165 pfsync_update_state_ptr(s); 6166 r = s->rule.ptr; 6167 a = s->anchor.ptr; 6168 log = s->log; 6169 } else if (s == NULL) 6170 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6171 &a, &ruleset, inp); 6172 break; 6173 } 6174 6175 default: 6176 action = pf_test_state_other(&s, dir, kif, m, &pd); 6177 if (action == PF_PASS) { 6178 if (pfsync_update_state_ptr != NULL) 6179 pfsync_update_state_ptr(s); 6180 r = s->rule.ptr; 6181 a = s->anchor.ptr; 6182 log = s->log; 6183 } else if (s == NULL) 6184 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6185 &a, &ruleset, inp); 6186 break; 6187 } 6188 6189 done: 6190 PF_RULES_RUNLOCK(); 6191 if (n != m) { 6192 m_freem(n); 6193 n = NULL; 6194 } 6195 6196 /* handle dangerous IPv6 extension headers. */ 6197 if (action == PF_PASS && rh_cnt && 6198 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6199 action = PF_DROP; 6200 REASON_SET(&reason, PFRES_IPOPTIONS); 6201 log = 1; 6202 DPFPRINTF(PF_DEBUG_MISC, 6203 ("pf: dropping packet with dangerous v6 headers\n")); 6204 } 6205 6206 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6207 action = PF_DROP; 6208 REASON_SET(&reason, PFRES_MEMORY); 6209 } 6210 if (r->rtableid >= 0) 6211 M_SETFIB(m, r->rtableid); 6212 6213 #ifdef ALTQ 6214 if (action == PF_PASS && r->qid) { 6215 if (pd.pf_mtag == NULL && 6216 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6217 action = PF_DROP; 6218 REASON_SET(&reason, PFRES_MEMORY); 6219 } 6220 if (pd.tos & IPTOS_LOWDELAY) 6221 pd.pf_mtag->qid = r->pqid; 6222 else 6223 pd.pf_mtag->qid = r->qid; 6224 /* add hints for ecn */ 6225 pd.pf_mtag->hdr = h; 6226 } 6227 #endif /* ALTQ */ 6228 6229 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6230 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6231 (s->nat_rule.ptr->action == PF_RDR || 6232 s->nat_rule.ptr->action == PF_BINAT) && 6233 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6234 m->m_flags |= M_SKIP_FIREWALL; 6235 6236 /* XXX: Anybody working on it?! */ 6237 if (r->divert.port) 6238 printf("pf: divert(9) is not supported for IPv6\n"); 6239 6240 if (log) { 6241 struct pf_rule *lr; 6242 6243 if (s != NULL && s->nat_rule.ptr != NULL && 6244 s->nat_rule.ptr->log & PF_LOG_ALL) 6245 lr = s->nat_rule.ptr; 6246 else 6247 lr = r; 6248 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6249 &pd, (s == NULL)); 6250 } 6251 6252 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6253 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6254 6255 if (action == PF_PASS || r->action == PF_DROP) { 6256 dirndx = (dir == PF_OUT); 6257 r->packets[dirndx]++; 6258 r->bytes[dirndx] += pd.tot_len; 6259 if (a != NULL) { 6260 a->packets[dirndx]++; 6261 a->bytes[dirndx] += pd.tot_len; 6262 } 6263 if (s != NULL) { 6264 if (s->nat_rule.ptr != NULL) { 6265 s->nat_rule.ptr->packets[dirndx]++; 6266 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6267 } 6268 if (s->src_node != NULL) { 6269 s->src_node->packets[dirndx]++; 6270 s->src_node->bytes[dirndx] += pd.tot_len; 6271 } 6272 if (s->nat_src_node != NULL) { 6273 s->nat_src_node->packets[dirndx]++; 6274 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6275 } 6276 dirndx = (dir == s->direction) ? 0 : 1; 6277 s->packets[dirndx]++; 6278 s->bytes[dirndx] += pd.tot_len; 6279 } 6280 tr = r; 6281 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6282 if (nr != NULL && r == &V_pf_default_rule) 6283 tr = nr; 6284 if (tr->src.addr.type == PF_ADDR_TABLE) 6285 pfr_update_stats(tr->src.addr.p.tbl, 6286 (s == NULL) ? pd.src : 6287 &s->key[(s->direction == PF_IN)]->addr[0], 6288 pd.af, pd.tot_len, dir == PF_OUT, 6289 r->action == PF_PASS, tr->src.neg); 6290 if (tr->dst.addr.type == PF_ADDR_TABLE) 6291 pfr_update_stats(tr->dst.addr.p.tbl, 6292 (s == NULL) ? pd.dst : 6293 &s->key[(s->direction == PF_IN)]->addr[1], 6294 pd.af, pd.tot_len, dir == PF_OUT, 6295 r->action == PF_PASS, tr->dst.neg); 6296 } 6297 6298 switch (action) { 6299 case PF_SYNPROXY_DROP: 6300 m_freem(*m0); 6301 case PF_DEFER: 6302 *m0 = NULL; 6303 action = PF_PASS; 6304 break; 6305 default: 6306 /* pf_route6() returns unlocked. */ 6307 if (r->rt) { 6308 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6309 return (action); 6310 } 6311 break; 6312 } 6313 6314 if (s) 6315 PF_STATE_UNLOCK(s); 6316 6317 return (action); 6318 } 6319 #endif /* INET6 */ 6320