xref: /freebsd/sys/netpfil/pf/pf.c (revision bdafb02fcb88389fd1ab684cfe734cb429d35618)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Daniel Hartmeier
5  * Copyright (c) 2002 - 2008 Henning Brauer
6  * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  *    - Redistributions of source code must retain the above copyright
14  *      notice, this list of conditions and the following disclaimer.
15  *    - Redistributions in binary form must reproduce the above
16  *      copyright notice, this list of conditions and the following
17  *      disclaimer in the documentation and/or other materials provided
18  *      with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
28  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  * Effort sponsored in part by the Defense Advanced Research Projects
34  * Agency (DARPA) and Air Force Research Laboratory, Air Force
35  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
36  *
37  *	$OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_inet.h"
44 #include "opt_inet6.h"
45 #include "opt_bpf.h"
46 #include "opt_pf.h"
47 
48 #include <sys/param.h>
49 #include <sys/bus.h>
50 #include <sys/endian.h>
51 #include <sys/hash.h>
52 #include <sys/interrupt.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/limits.h>
56 #include <sys/mbuf.h>
57 #include <sys/md5.h>
58 #include <sys/random.h>
59 #include <sys/refcount.h>
60 #include <sys/socket.h>
61 #include <sys/sysctl.h>
62 #include <sys/taskqueue.h>
63 #include <sys/ucred.h>
64 
65 #include <net/if.h>
66 #include <net/if_var.h>
67 #include <net/if_types.h>
68 #include <net/if_vlan_var.h>
69 #include <net/route.h>
70 #include <net/radix_mpath.h>
71 #include <net/vnet.h>
72 
73 #include <net/pfil.h>
74 #include <net/pfvar.h>
75 #include <net/if_pflog.h>
76 #include <net/if_pfsync.h>
77 
78 #include <netinet/in_pcb.h>
79 #include <netinet/in_var.h>
80 #include <netinet/in_fib.h>
81 #include <netinet/ip.h>
82 #include <netinet/ip_fw.h>
83 #include <netinet/ip_icmp.h>
84 #include <netinet/icmp_var.h>
85 #include <netinet/ip_var.h>
86 #include <netinet/tcp.h>
87 #include <netinet/tcp_fsm.h>
88 #include <netinet/tcp_seq.h>
89 #include <netinet/tcp_timer.h>
90 #include <netinet/tcp_var.h>
91 #include <netinet/udp.h>
92 #include <netinet/udp_var.h>
93 
94 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */
95 
96 #ifdef INET6
97 #include <netinet/ip6.h>
98 #include <netinet/icmp6.h>
99 #include <netinet6/nd6.h>
100 #include <netinet6/ip6_var.h>
101 #include <netinet6/in6_pcb.h>
102 #include <netinet6/in6_fib.h>
103 #include <netinet6/scope6_var.h>
104 #endif /* INET6 */
105 
106 #include <machine/in_cksum.h>
107 #include <security/mac/mac_framework.h>
108 
109 #define	DPFPRINTF(n, x)	if (V_pf_status.debug >= (n)) printf x
110 
111 /*
112  * Global variables
113  */
114 
115 /* state tables */
116 VNET_DEFINE(struct pf_altqqueue,	 pf_altqs[2]);
117 VNET_DEFINE(struct pf_palist,		 pf_pabuf);
118 VNET_DEFINE(struct pf_altqqueue *,	 pf_altqs_active);
119 VNET_DEFINE(struct pf_altqqueue *,	 pf_altqs_inactive);
120 VNET_DEFINE(struct pf_kstatus,		 pf_status);
121 
122 VNET_DEFINE(u_int32_t,			 ticket_altqs_active);
123 VNET_DEFINE(u_int32_t,			 ticket_altqs_inactive);
124 VNET_DEFINE(int,			 altqs_inactive_open);
125 VNET_DEFINE(u_int32_t,			 ticket_pabuf);
126 
127 VNET_DEFINE(MD5_CTX,			 pf_tcp_secret_ctx);
128 #define	V_pf_tcp_secret_ctx		 VNET(pf_tcp_secret_ctx)
129 VNET_DEFINE(u_char,			 pf_tcp_secret[16]);
130 #define	V_pf_tcp_secret			 VNET(pf_tcp_secret)
131 VNET_DEFINE(int,			 pf_tcp_secret_init);
132 #define	V_pf_tcp_secret_init		 VNET(pf_tcp_secret_init)
133 VNET_DEFINE(int,			 pf_tcp_iss_off);
134 #define	V_pf_tcp_iss_off		 VNET(pf_tcp_iss_off)
135 VNET_DECLARE(int,			 pf_vnet_active);
136 #define	V_pf_vnet_active		 VNET(pf_vnet_active)
137 
138 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx);
139 #define V_pf_purge_idx	VNET(pf_purge_idx)
140 
141 /*
142  * Queue for pf_intr() sends.
143  */
144 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations");
145 struct pf_send_entry {
146 	STAILQ_ENTRY(pf_send_entry)	pfse_next;
147 	struct mbuf			*pfse_m;
148 	enum {
149 		PFSE_IP,
150 		PFSE_IP6,
151 		PFSE_ICMP,
152 		PFSE_ICMP6,
153 	}				pfse_type;
154 	struct {
155 		int		type;
156 		int		code;
157 		int		mtu;
158 	} icmpopts;
159 };
160 
161 STAILQ_HEAD(pf_send_head, pf_send_entry);
162 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue);
163 #define	V_pf_sendqueue	VNET(pf_sendqueue)
164 
165 static struct mtx pf_sendqueue_mtx;
166 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF);
167 #define	PF_SENDQ_LOCK()		mtx_lock(&pf_sendqueue_mtx)
168 #define	PF_SENDQ_UNLOCK()	mtx_unlock(&pf_sendqueue_mtx)
169 
170 /*
171  * Queue for pf_overload_task() tasks.
172  */
173 struct pf_overload_entry {
174 	SLIST_ENTRY(pf_overload_entry)	next;
175 	struct pf_addr  		addr;
176 	sa_family_t			af;
177 	uint8_t				dir;
178 	struct pf_rule  		*rule;
179 };
180 
181 SLIST_HEAD(pf_overload_head, pf_overload_entry);
182 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue);
183 #define V_pf_overloadqueue	VNET(pf_overloadqueue)
184 VNET_DEFINE_STATIC(struct task, pf_overloadtask);
185 #define	V_pf_overloadtask	VNET(pf_overloadtask)
186 
187 static struct mtx pf_overloadqueue_mtx;
188 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx,
189     "pf overload/flush queue", MTX_DEF);
190 #define	PF_OVERLOADQ_LOCK()	mtx_lock(&pf_overloadqueue_mtx)
191 #define	PF_OVERLOADQ_UNLOCK()	mtx_unlock(&pf_overloadqueue_mtx)
192 
193 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules);
194 struct mtx pf_unlnkdrules_mtx;
195 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules",
196     MTX_DEF);
197 
198 VNET_DEFINE_STATIC(uma_zone_t,	pf_sources_z);
199 #define	V_pf_sources_z	VNET(pf_sources_z)
200 uma_zone_t		pf_mtag_z;
201 VNET_DEFINE(uma_zone_t,	 pf_state_z);
202 VNET_DEFINE(uma_zone_t,	 pf_state_key_z);
203 
204 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]);
205 #define	PFID_CPUBITS	8
206 #define	PFID_CPUSHIFT	(sizeof(uint64_t) * NBBY - PFID_CPUBITS)
207 #define	PFID_CPUMASK	((uint64_t)((1 << PFID_CPUBITS) - 1) <<	PFID_CPUSHIFT)
208 #define	PFID_MAXID	(~PFID_CPUMASK)
209 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU);
210 
211 static void		 pf_src_tree_remove_state(struct pf_state *);
212 static void		 pf_init_threshold(struct pf_threshold *, u_int32_t,
213 			    u_int32_t);
214 static void		 pf_add_threshold(struct pf_threshold *);
215 static int		 pf_check_threshold(struct pf_threshold *);
216 
217 static void		 pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *,
218 			    u_int16_t *, u_int16_t *, struct pf_addr *,
219 			    u_int16_t, u_int8_t, sa_family_t);
220 static int		 pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *,
221 			    struct tcphdr *, struct pf_state_peer *);
222 static void		 pf_change_icmp(struct pf_addr *, u_int16_t *,
223 			    struct pf_addr *, struct pf_addr *, u_int16_t,
224 			    u_int16_t *, u_int16_t *, u_int16_t *,
225 			    u_int16_t *, u_int8_t, sa_family_t);
226 static void		 pf_send_tcp(struct mbuf *,
227 			    const struct pf_rule *, sa_family_t,
228 			    const struct pf_addr *, const struct pf_addr *,
229 			    u_int16_t, u_int16_t, u_int32_t, u_int32_t,
230 			    u_int8_t, u_int16_t, u_int16_t, u_int8_t, int,
231 			    u_int16_t, struct ifnet *);
232 static void		 pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t,
233 			    sa_family_t, struct pf_rule *);
234 static void		 pf_detach_state(struct pf_state *);
235 static int		 pf_state_key_attach(struct pf_state_key *,
236 			    struct pf_state_key *, struct pf_state *);
237 static void		 pf_state_key_detach(struct pf_state *, int);
238 static int		 pf_state_key_ctor(void *, int, void *, int);
239 static u_int32_t	 pf_tcp_iss(struct pf_pdesc *);
240 static int		 pf_test_rule(struct pf_rule **, struct pf_state **,
241 			    int, struct pfi_kif *, struct mbuf *, int,
242 			    struct pf_pdesc *, struct pf_rule **,
243 			    struct pf_ruleset **, struct inpcb *);
244 static int		 pf_create_state(struct pf_rule *, struct pf_rule *,
245 			    struct pf_rule *, struct pf_pdesc *,
246 			    struct pf_src_node *, struct pf_state_key *,
247 			    struct pf_state_key *, struct mbuf *, int,
248 			    u_int16_t, u_int16_t, int *, struct pfi_kif *,
249 			    struct pf_state **, int, u_int16_t, u_int16_t,
250 			    int);
251 static int		 pf_test_fragment(struct pf_rule **, int,
252 			    struct pfi_kif *, struct mbuf *, void *,
253 			    struct pf_pdesc *, struct pf_rule **,
254 			    struct pf_ruleset **);
255 static int		 pf_tcp_track_full(struct pf_state_peer *,
256 			    struct pf_state_peer *, struct pf_state **,
257 			    struct pfi_kif *, struct mbuf *, int,
258 			    struct pf_pdesc *, u_short *, int *);
259 static int		 pf_tcp_track_sloppy(struct pf_state_peer *,
260 			    struct pf_state_peer *, struct pf_state **,
261 			    struct pf_pdesc *, u_short *);
262 static int		 pf_test_state_tcp(struct pf_state **, int,
263 			    struct pfi_kif *, struct mbuf *, int,
264 			    void *, struct pf_pdesc *, u_short *);
265 static int		 pf_test_state_udp(struct pf_state **, int,
266 			    struct pfi_kif *, struct mbuf *, int,
267 			    void *, struct pf_pdesc *);
268 static int		 pf_test_state_icmp(struct pf_state **, int,
269 			    struct pfi_kif *, struct mbuf *, int,
270 			    void *, struct pf_pdesc *, u_short *);
271 static int		 pf_test_state_other(struct pf_state **, int,
272 			    struct pfi_kif *, struct mbuf *, struct pf_pdesc *);
273 static u_int8_t		 pf_get_wscale(struct mbuf *, int, u_int16_t,
274 			    sa_family_t);
275 static u_int16_t	 pf_get_mss(struct mbuf *, int, u_int16_t,
276 			    sa_family_t);
277 static u_int16_t	 pf_calc_mss(struct pf_addr *, sa_family_t,
278 				int, u_int16_t);
279 static int		 pf_check_proto_cksum(struct mbuf *, int, int,
280 			    u_int8_t, sa_family_t);
281 static void		 pf_print_state_parts(struct pf_state *,
282 			    struct pf_state_key *, struct pf_state_key *);
283 static int		 pf_addr_wrap_neq(struct pf_addr_wrap *,
284 			    struct pf_addr_wrap *);
285 static struct pf_state	*pf_find_state(struct pfi_kif *,
286 			    struct pf_state_key_cmp *, u_int);
287 static int		 pf_src_connlimit(struct pf_state **);
288 static void		 pf_overload_task(void *v, int pending);
289 static int		 pf_insert_src_node(struct pf_src_node **,
290 			    struct pf_rule *, struct pf_addr *, sa_family_t);
291 static u_int		 pf_purge_expired_states(u_int, int);
292 static void		 pf_purge_unlinked_rules(void);
293 static int		 pf_mtag_uminit(void *, int, int);
294 static void		 pf_mtag_free(struct m_tag *);
295 #ifdef INET
296 static void		 pf_route(struct mbuf **, struct pf_rule *, int,
297 			    struct ifnet *, struct pf_state *,
298 			    struct pf_pdesc *, struct inpcb *);
299 #endif /* INET */
300 #ifdef INET6
301 static void		 pf_change_a6(struct pf_addr *, u_int16_t *,
302 			    struct pf_addr *, u_int8_t);
303 static void		 pf_route6(struct mbuf **, struct pf_rule *, int,
304 			    struct ifnet *, struct pf_state *,
305 			    struct pf_pdesc *, struct inpcb *);
306 #endif /* INET6 */
307 
308 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len);
309 
310 extern int pf_end_threads;
311 extern struct proc *pf_purge_proc;
312 
313 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]);
314 
315 #define	PACKET_LOOPED(pd)	((pd)->pf_mtag &&			\
316 				 (pd)->pf_mtag->flags & PF_PACKET_LOOPED)
317 
318 #define	STATE_LOOKUP(i, k, d, s, pd)					\
319 	do {								\
320 		(s) = pf_find_state((i), (k), (d));			\
321 		if ((s) == NULL)					\
322 			return (PF_DROP);				\
323 		if (PACKET_LOOPED(pd))					\
324 			return (PF_PASS);				\
325 		if ((d) == PF_OUT &&					\
326 		    (((s)->rule.ptr->rt == PF_ROUTETO &&		\
327 		    (s)->rule.ptr->direction == PF_OUT) ||		\
328 		    ((s)->rule.ptr->rt == PF_REPLYTO &&			\
329 		    (s)->rule.ptr->direction == PF_IN)) &&		\
330 		    (s)->rt_kif != NULL &&				\
331 		    (s)->rt_kif != (i))					\
332 			return (PF_PASS);				\
333 	} while (0)
334 
335 #define	BOUND_IFACE(r, k) \
336 	((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all
337 
338 #define	STATE_INC_COUNTERS(s)						\
339 	do {								\
340 		counter_u64_add(s->rule.ptr->states_cur, 1);		\
341 		counter_u64_add(s->rule.ptr->states_tot, 1);		\
342 		if (s->anchor.ptr != NULL) {				\
343 			counter_u64_add(s->anchor.ptr->states_cur, 1);	\
344 			counter_u64_add(s->anchor.ptr->states_tot, 1);	\
345 		}							\
346 		if (s->nat_rule.ptr != NULL) {				\
347 			counter_u64_add(s->nat_rule.ptr->states_cur, 1);\
348 			counter_u64_add(s->nat_rule.ptr->states_tot, 1);\
349 		}							\
350 	} while (0)
351 
352 #define	STATE_DEC_COUNTERS(s)						\
353 	do {								\
354 		if (s->nat_rule.ptr != NULL)				\
355 			counter_u64_add(s->nat_rule.ptr->states_cur, -1);\
356 		if (s->anchor.ptr != NULL)				\
357 			counter_u64_add(s->anchor.ptr->states_cur, -1);	\
358 		counter_u64_add(s->rule.ptr->states_cur, -1);		\
359 	} while (0)
360 
361 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures");
362 VNET_DEFINE(struct pf_keyhash *, pf_keyhash);
363 VNET_DEFINE(struct pf_idhash *, pf_idhash);
364 VNET_DEFINE(struct pf_srchash *, pf_srchash);
365 
366 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)");
367 
368 u_long	pf_hashmask;
369 u_long	pf_srchashmask;
370 static u_long	pf_hashsize;
371 static u_long	pf_srchashsize;
372 u_long	pf_ioctl_maxcount = 65535;
373 
374 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN,
375     &pf_hashsize, 0, "Size of pf(4) states hashtable");
376 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN,
377     &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable");
378 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RDTUN,
379     &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call");
380 
381 VNET_DEFINE(void *, pf_swi_cookie);
382 
383 VNET_DEFINE(uint32_t, pf_hashseed);
384 #define	V_pf_hashseed	VNET(pf_hashseed)
385 
386 int
387 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af)
388 {
389 
390 	switch (af) {
391 #ifdef INET
392 	case AF_INET:
393 		if (a->addr32[0] > b->addr32[0])
394 			return (1);
395 		if (a->addr32[0] < b->addr32[0])
396 			return (-1);
397 		break;
398 #endif /* INET */
399 #ifdef INET6
400 	case AF_INET6:
401 		if (a->addr32[3] > b->addr32[3])
402 			return (1);
403 		if (a->addr32[3] < b->addr32[3])
404 			return (-1);
405 		if (a->addr32[2] > b->addr32[2])
406 			return (1);
407 		if (a->addr32[2] < b->addr32[2])
408 			return (-1);
409 		if (a->addr32[1] > b->addr32[1])
410 			return (1);
411 		if (a->addr32[1] < b->addr32[1])
412 			return (-1);
413 		if (a->addr32[0] > b->addr32[0])
414 			return (1);
415 		if (a->addr32[0] < b->addr32[0])
416 			return (-1);
417 		break;
418 #endif /* INET6 */
419 	default:
420 		panic("%s: unknown address family %u", __func__, af);
421 	}
422 	return (0);
423 }
424 
425 static __inline uint32_t
426 pf_hashkey(struct pf_state_key *sk)
427 {
428 	uint32_t h;
429 
430 	h = murmur3_32_hash32((uint32_t *)sk,
431 	    sizeof(struct pf_state_key_cmp)/sizeof(uint32_t),
432 	    V_pf_hashseed);
433 
434 	return (h & pf_hashmask);
435 }
436 
437 static __inline uint32_t
438 pf_hashsrc(struct pf_addr *addr, sa_family_t af)
439 {
440 	uint32_t h;
441 
442 	switch (af) {
443 	case AF_INET:
444 		h = murmur3_32_hash32((uint32_t *)&addr->v4,
445 		    sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed);
446 		break;
447 	case AF_INET6:
448 		h = murmur3_32_hash32((uint32_t *)&addr->v6,
449 		    sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed);
450 		break;
451 	default:
452 		panic("%s: unknown address family %u", __func__, af);
453 	}
454 
455 	return (h & pf_srchashmask);
456 }
457 
458 #ifdef ALTQ
459 static int
460 pf_state_hash(struct pf_state *s)
461 {
462 	u_int32_t hv = (intptr_t)s / sizeof(*s);
463 
464 	hv ^= crc32(&s->src, sizeof(s->src));
465 	hv ^= crc32(&s->dst, sizeof(s->dst));
466 	if (hv == 0)
467 		hv = 1;
468 	return (hv);
469 }
470 #endif
471 
472 #ifdef INET6
473 void
474 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af)
475 {
476 	switch (af) {
477 #ifdef INET
478 	case AF_INET:
479 		dst->addr32[0] = src->addr32[0];
480 		break;
481 #endif /* INET */
482 	case AF_INET6:
483 		dst->addr32[0] = src->addr32[0];
484 		dst->addr32[1] = src->addr32[1];
485 		dst->addr32[2] = src->addr32[2];
486 		dst->addr32[3] = src->addr32[3];
487 		break;
488 	}
489 }
490 #endif /* INET6 */
491 
492 static void
493 pf_init_threshold(struct pf_threshold *threshold,
494     u_int32_t limit, u_int32_t seconds)
495 {
496 	threshold->limit = limit * PF_THRESHOLD_MULT;
497 	threshold->seconds = seconds;
498 	threshold->count = 0;
499 	threshold->last = time_uptime;
500 }
501 
502 static void
503 pf_add_threshold(struct pf_threshold *threshold)
504 {
505 	u_int32_t t = time_uptime, diff = t - threshold->last;
506 
507 	if (diff >= threshold->seconds)
508 		threshold->count = 0;
509 	else
510 		threshold->count -= threshold->count * diff /
511 		    threshold->seconds;
512 	threshold->count += PF_THRESHOLD_MULT;
513 	threshold->last = t;
514 }
515 
516 static int
517 pf_check_threshold(struct pf_threshold *threshold)
518 {
519 	return (threshold->count > threshold->limit);
520 }
521 
522 static int
523 pf_src_connlimit(struct pf_state **state)
524 {
525 	struct pf_overload_entry *pfoe;
526 	int bad = 0;
527 
528 	PF_STATE_LOCK_ASSERT(*state);
529 
530 	(*state)->src_node->conn++;
531 	(*state)->src.tcp_est = 1;
532 	pf_add_threshold(&(*state)->src_node->conn_rate);
533 
534 	if ((*state)->rule.ptr->max_src_conn &&
535 	    (*state)->rule.ptr->max_src_conn <
536 	    (*state)->src_node->conn) {
537 		counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1);
538 		bad++;
539 	}
540 
541 	if ((*state)->rule.ptr->max_src_conn_rate.limit &&
542 	    pf_check_threshold(&(*state)->src_node->conn_rate)) {
543 		counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1);
544 		bad++;
545 	}
546 
547 	if (!bad)
548 		return (0);
549 
550 	/* Kill this state. */
551 	(*state)->timeout = PFTM_PURGE;
552 	(*state)->src.state = (*state)->dst.state = TCPS_CLOSED;
553 
554 	if ((*state)->rule.ptr->overload_tbl == NULL)
555 		return (1);
556 
557 	/* Schedule overloading and flushing task. */
558 	pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT);
559 	if (pfoe == NULL)
560 		return (1);	/* too bad :( */
561 
562 	bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr));
563 	pfoe->af = (*state)->key[PF_SK_WIRE]->af;
564 	pfoe->rule = (*state)->rule.ptr;
565 	pfoe->dir = (*state)->direction;
566 	PF_OVERLOADQ_LOCK();
567 	SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next);
568 	PF_OVERLOADQ_UNLOCK();
569 	taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask);
570 
571 	return (1);
572 }
573 
574 static void
575 pf_overload_task(void *v, int pending)
576 {
577 	struct pf_overload_head queue;
578 	struct pfr_addr p;
579 	struct pf_overload_entry *pfoe, *pfoe1;
580 	uint32_t killed = 0;
581 
582 	CURVNET_SET((struct vnet *)v);
583 
584 	PF_OVERLOADQ_LOCK();
585 	queue = V_pf_overloadqueue;
586 	SLIST_INIT(&V_pf_overloadqueue);
587 	PF_OVERLOADQ_UNLOCK();
588 
589 	bzero(&p, sizeof(p));
590 	SLIST_FOREACH(pfoe, &queue, next) {
591 		counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1);
592 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
593 			printf("%s: blocking address ", __func__);
594 			pf_print_host(&pfoe->addr, 0, pfoe->af);
595 			printf("\n");
596 		}
597 
598 		p.pfra_af = pfoe->af;
599 		switch (pfoe->af) {
600 #ifdef INET
601 		case AF_INET:
602 			p.pfra_net = 32;
603 			p.pfra_ip4addr = pfoe->addr.v4;
604 			break;
605 #endif
606 #ifdef INET6
607 		case AF_INET6:
608 			p.pfra_net = 128;
609 			p.pfra_ip6addr = pfoe->addr.v6;
610 			break;
611 #endif
612 		}
613 
614 		PF_RULES_WLOCK();
615 		pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second);
616 		PF_RULES_WUNLOCK();
617 	}
618 
619 	/*
620 	 * Remove those entries, that don't need flushing.
621 	 */
622 	SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
623 		if (pfoe->rule->flush == 0) {
624 			SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next);
625 			free(pfoe, M_PFTEMP);
626 		} else
627 			counter_u64_add(
628 			    V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1);
629 
630 	/* If nothing to flush, return. */
631 	if (SLIST_EMPTY(&queue)) {
632 		CURVNET_RESTORE();
633 		return;
634 	}
635 
636 	for (int i = 0; i <= pf_hashmask; i++) {
637 		struct pf_idhash *ih = &V_pf_idhash[i];
638 		struct pf_state_key *sk;
639 		struct pf_state *s;
640 
641 		PF_HASHROW_LOCK(ih);
642 		LIST_FOREACH(s, &ih->states, entry) {
643 		    sk = s->key[PF_SK_WIRE];
644 		    SLIST_FOREACH(pfoe, &queue, next)
645 			if (sk->af == pfoe->af &&
646 			    ((pfoe->rule->flush & PF_FLUSH_GLOBAL) ||
647 			    pfoe->rule == s->rule.ptr) &&
648 			    ((pfoe->dir == PF_OUT &&
649 			    PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) ||
650 			    (pfoe->dir == PF_IN &&
651 			    PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) {
652 				s->timeout = PFTM_PURGE;
653 				s->src.state = s->dst.state = TCPS_CLOSED;
654 				killed++;
655 			}
656 		}
657 		PF_HASHROW_UNLOCK(ih);
658 	}
659 	SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
660 		free(pfoe, M_PFTEMP);
661 	if (V_pf_status.debug >= PF_DEBUG_MISC)
662 		printf("%s: %u states killed", __func__, killed);
663 
664 	CURVNET_RESTORE();
665 }
666 
667 /*
668  * Can return locked on failure, so that we can consistently
669  * allocate and insert a new one.
670  */
671 struct pf_src_node *
672 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af,
673 	int returnlocked)
674 {
675 	struct pf_srchash *sh;
676 	struct pf_src_node *n;
677 
678 	counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
679 
680 	sh = &V_pf_srchash[pf_hashsrc(src, af)];
681 	PF_HASHROW_LOCK(sh);
682 	LIST_FOREACH(n, &sh->nodes, entry)
683 		if (n->rule.ptr == rule && n->af == af &&
684 		    ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) ||
685 		    (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0)))
686 			break;
687 	if (n != NULL) {
688 		n->states++;
689 		PF_HASHROW_UNLOCK(sh);
690 	} else if (returnlocked == 0)
691 		PF_HASHROW_UNLOCK(sh);
692 
693 	return (n);
694 }
695 
696 static int
697 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule,
698     struct pf_addr *src, sa_family_t af)
699 {
700 
701 	KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK ||
702 	    rule->rpool.opts & PF_POOL_STICKYADDR),
703 	    ("%s for non-tracking rule %p", __func__, rule));
704 
705 	if (*sn == NULL)
706 		*sn = pf_find_src_node(src, rule, af, 1);
707 
708 	if (*sn == NULL) {
709 		struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)];
710 
711 		PF_HASHROW_ASSERT(sh);
712 
713 		if (!rule->max_src_nodes ||
714 		    counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes)
715 			(*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO);
716 		else
717 			counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES],
718 			    1);
719 		if ((*sn) == NULL) {
720 			PF_HASHROW_UNLOCK(sh);
721 			return (-1);
722 		}
723 
724 		pf_init_threshold(&(*sn)->conn_rate,
725 		    rule->max_src_conn_rate.limit,
726 		    rule->max_src_conn_rate.seconds);
727 
728 		(*sn)->af = af;
729 		(*sn)->rule.ptr = rule;
730 		PF_ACPY(&(*sn)->addr, src, af);
731 		LIST_INSERT_HEAD(&sh->nodes, *sn, entry);
732 		(*sn)->creation = time_uptime;
733 		(*sn)->ruletype = rule->action;
734 		(*sn)->states = 1;
735 		if ((*sn)->rule.ptr != NULL)
736 			counter_u64_add((*sn)->rule.ptr->src_nodes, 1);
737 		PF_HASHROW_UNLOCK(sh);
738 		counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1);
739 	} else {
740 		if (rule->max_src_states &&
741 		    (*sn)->states >= rule->max_src_states) {
742 			counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES],
743 			    1);
744 			return (-1);
745 		}
746 	}
747 	return (0);
748 }
749 
750 void
751 pf_unlink_src_node(struct pf_src_node *src)
752 {
753 
754 	PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]);
755 	LIST_REMOVE(src, entry);
756 	if (src->rule.ptr)
757 		counter_u64_add(src->rule.ptr->src_nodes, -1);
758 }
759 
760 u_int
761 pf_free_src_nodes(struct pf_src_node_list *head)
762 {
763 	struct pf_src_node *sn, *tmp;
764 	u_int count = 0;
765 
766 	LIST_FOREACH_SAFE(sn, head, entry, tmp) {
767 		uma_zfree(V_pf_sources_z, sn);
768 		count++;
769 	}
770 
771 	counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count);
772 
773 	return (count);
774 }
775 
776 void
777 pf_mtag_initialize()
778 {
779 
780 	pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) +
781 	    sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL,
782 	    UMA_ALIGN_PTR, 0);
783 }
784 
785 /* Per-vnet data storage structures initialization. */
786 void
787 pf_initialize()
788 {
789 	struct pf_keyhash	*kh;
790 	struct pf_idhash	*ih;
791 	struct pf_srchash	*sh;
792 	u_int i;
793 
794 	if (pf_hashsize == 0 || !powerof2(pf_hashsize))
795 		pf_hashsize = PF_HASHSIZ;
796 	if (pf_srchashsize == 0 || !powerof2(pf_srchashsize))
797 		pf_srchashsize = PF_SRCHASHSIZ;
798 
799 	V_pf_hashseed = arc4random();
800 
801 	/* States and state keys storage. */
802 	V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state),
803 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
804 	V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z;
805 	uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT);
806 	uma_zone_set_warning(V_pf_state_z, "PF states limit reached");
807 
808 	V_pf_state_key_z = uma_zcreate("pf state keys",
809 	    sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL,
810 	    UMA_ALIGN_PTR, 0);
811 
812 	V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash),
813 	    M_PFHASH, M_NOWAIT | M_ZERO);
814 	V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash),
815 	    M_PFHASH, M_NOWAIT | M_ZERO);
816 	if (V_pf_keyhash == NULL || V_pf_idhash == NULL) {
817 		printf("pf: Unable to allocate memory for "
818 		    "state_hashsize %lu.\n", pf_hashsize);
819 
820 		free(V_pf_keyhash, M_PFHASH);
821 		free(V_pf_idhash, M_PFHASH);
822 
823 		pf_hashsize = PF_HASHSIZ;
824 		V_pf_keyhash = mallocarray(pf_hashsize,
825 		    sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO);
826 		V_pf_idhash = mallocarray(pf_hashsize,
827 		    sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO);
828 	}
829 
830 	pf_hashmask = pf_hashsize - 1;
831 	for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask;
832 	    i++, kh++, ih++) {
833 		mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK);
834 		mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF);
835 	}
836 
837 	/* Source nodes. */
838 	V_pf_sources_z = uma_zcreate("pf source nodes",
839 	    sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
840 	    0);
841 	V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z;
842 	uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT);
843 	uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached");
844 
845 	V_pf_srchash = mallocarray(pf_srchashsize,
846 	    sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO);
847 	if (V_pf_srchash == NULL) {
848 		printf("pf: Unable to allocate memory for "
849 		    "source_hashsize %lu.\n", pf_srchashsize);
850 
851 		pf_srchashsize = PF_SRCHASHSIZ;
852 		V_pf_srchash = mallocarray(pf_srchashsize,
853 		    sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO);
854 	}
855 
856 	pf_srchashmask = pf_srchashsize - 1;
857 	for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++)
858 		mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF);
859 
860 	/* ALTQ */
861 	TAILQ_INIT(&V_pf_altqs[0]);
862 	TAILQ_INIT(&V_pf_altqs[1]);
863 	TAILQ_INIT(&V_pf_pabuf);
864 	V_pf_altqs_active = &V_pf_altqs[0];
865 	V_pf_altqs_inactive = &V_pf_altqs[1];
866 
867 	/* Send & overload+flush queues. */
868 	STAILQ_INIT(&V_pf_sendqueue);
869 	SLIST_INIT(&V_pf_overloadqueue);
870 	TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet);
871 
872 	/* Unlinked, but may be referenced rules. */
873 	TAILQ_INIT(&V_pf_unlinked_rules);
874 }
875 
876 void
877 pf_mtag_cleanup()
878 {
879 
880 	uma_zdestroy(pf_mtag_z);
881 }
882 
883 void
884 pf_cleanup()
885 {
886 	struct pf_keyhash	*kh;
887 	struct pf_idhash	*ih;
888 	struct pf_srchash	*sh;
889 	struct pf_send_entry	*pfse, *next;
890 	u_int i;
891 
892 	for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask;
893 	    i++, kh++, ih++) {
894 		KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty",
895 		    __func__));
896 		KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty",
897 		    __func__));
898 		mtx_destroy(&kh->lock);
899 		mtx_destroy(&ih->lock);
900 	}
901 	free(V_pf_keyhash, M_PFHASH);
902 	free(V_pf_idhash, M_PFHASH);
903 
904 	for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) {
905 		KASSERT(LIST_EMPTY(&sh->nodes),
906 		    ("%s: source node hash not empty", __func__));
907 		mtx_destroy(&sh->lock);
908 	}
909 	free(V_pf_srchash, M_PFHASH);
910 
911 	STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) {
912 		m_freem(pfse->pfse_m);
913 		free(pfse, M_PFTEMP);
914 	}
915 
916 	uma_zdestroy(V_pf_sources_z);
917 	uma_zdestroy(V_pf_state_z);
918 	uma_zdestroy(V_pf_state_key_z);
919 }
920 
921 static int
922 pf_mtag_uminit(void *mem, int size, int how)
923 {
924 	struct m_tag *t;
925 
926 	t = (struct m_tag *)mem;
927 	t->m_tag_cookie = MTAG_ABI_COMPAT;
928 	t->m_tag_id = PACKET_TAG_PF;
929 	t->m_tag_len = sizeof(struct pf_mtag);
930 	t->m_tag_free = pf_mtag_free;
931 
932 	return (0);
933 }
934 
935 static void
936 pf_mtag_free(struct m_tag *t)
937 {
938 
939 	uma_zfree(pf_mtag_z, t);
940 }
941 
942 struct pf_mtag *
943 pf_get_mtag(struct mbuf *m)
944 {
945 	struct m_tag *mtag;
946 
947 	if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL)
948 		return ((struct pf_mtag *)(mtag + 1));
949 
950 	mtag = uma_zalloc(pf_mtag_z, M_NOWAIT);
951 	if (mtag == NULL)
952 		return (NULL);
953 	bzero(mtag + 1, sizeof(struct pf_mtag));
954 	m_tag_prepend(m, mtag);
955 
956 	return ((struct pf_mtag *)(mtag + 1));
957 }
958 
959 static int
960 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks,
961     struct pf_state *s)
962 {
963 	struct pf_keyhash	*khs, *khw, *kh;
964 	struct pf_state_key	*sk, *cur;
965 	struct pf_state		*si, *olds = NULL;
966 	int idx;
967 
968 	KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
969 	KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__));
970 	KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__));
971 
972 	/*
973 	 * We need to lock hash slots of both keys. To avoid deadlock
974 	 * we always lock the slot with lower address first. Unlock order
975 	 * isn't important.
976 	 *
977 	 * We also need to lock ID hash slot before dropping key
978 	 * locks. On success we return with ID hash slot locked.
979 	 */
980 
981 	if (skw == sks) {
982 		khs = khw = &V_pf_keyhash[pf_hashkey(skw)];
983 		PF_HASHROW_LOCK(khs);
984 	} else {
985 		khs = &V_pf_keyhash[pf_hashkey(sks)];
986 		khw = &V_pf_keyhash[pf_hashkey(skw)];
987 		if (khs == khw) {
988 			PF_HASHROW_LOCK(khs);
989 		} else if (khs < khw) {
990 			PF_HASHROW_LOCK(khs);
991 			PF_HASHROW_LOCK(khw);
992 		} else {
993 			PF_HASHROW_LOCK(khw);
994 			PF_HASHROW_LOCK(khs);
995 		}
996 	}
997 
998 #define	KEYS_UNLOCK()	do {			\
999 	if (khs != khw) {			\
1000 		PF_HASHROW_UNLOCK(khs);		\
1001 		PF_HASHROW_UNLOCK(khw);		\
1002 	} else					\
1003 		PF_HASHROW_UNLOCK(khs);		\
1004 } while (0)
1005 
1006 	/*
1007 	 * First run: start with wire key.
1008 	 */
1009 	sk = skw;
1010 	kh = khw;
1011 	idx = PF_SK_WIRE;
1012 
1013 keyattach:
1014 	LIST_FOREACH(cur, &kh->keys, entry)
1015 		if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0)
1016 			break;
1017 
1018 	if (cur != NULL) {
1019 		/* Key exists. Check for same kif, if none, add to key. */
1020 		TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) {
1021 			struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)];
1022 
1023 			PF_HASHROW_LOCK(ih);
1024 			if (si->kif == s->kif &&
1025 			    si->direction == s->direction) {
1026 				if (sk->proto == IPPROTO_TCP &&
1027 				    si->src.state >= TCPS_FIN_WAIT_2 &&
1028 				    si->dst.state >= TCPS_FIN_WAIT_2) {
1029 					/*
1030 					 * New state matches an old >FIN_WAIT_2
1031 					 * state. We can't drop key hash locks,
1032 					 * thus we can't unlink it properly.
1033 					 *
1034 					 * As a workaround we drop it into
1035 					 * TCPS_CLOSED state, schedule purge
1036 					 * ASAP and push it into the very end
1037 					 * of the slot TAILQ, so that it won't
1038 					 * conflict with our new state.
1039 					 */
1040 					si->src.state = si->dst.state =
1041 					    TCPS_CLOSED;
1042 					si->timeout = PFTM_PURGE;
1043 					olds = si;
1044 				} else {
1045 					if (V_pf_status.debug >= PF_DEBUG_MISC) {
1046 						printf("pf: %s key attach "
1047 						    "failed on %s: ",
1048 						    (idx == PF_SK_WIRE) ?
1049 						    "wire" : "stack",
1050 						    s->kif->pfik_name);
1051 						pf_print_state_parts(s,
1052 						    (idx == PF_SK_WIRE) ?
1053 						    sk : NULL,
1054 						    (idx == PF_SK_STACK) ?
1055 						    sk : NULL);
1056 						printf(", existing: ");
1057 						pf_print_state_parts(si,
1058 						    (idx == PF_SK_WIRE) ?
1059 						    sk : NULL,
1060 						    (idx == PF_SK_STACK) ?
1061 						    sk : NULL);
1062 						printf("\n");
1063 					}
1064 					PF_HASHROW_UNLOCK(ih);
1065 					KEYS_UNLOCK();
1066 					uma_zfree(V_pf_state_key_z, sk);
1067 					if (idx == PF_SK_STACK)
1068 						pf_detach_state(s);
1069 					return (EEXIST); /* collision! */
1070 				}
1071 			}
1072 			PF_HASHROW_UNLOCK(ih);
1073 		}
1074 		uma_zfree(V_pf_state_key_z, sk);
1075 		s->key[idx] = cur;
1076 	} else {
1077 		LIST_INSERT_HEAD(&kh->keys, sk, entry);
1078 		s->key[idx] = sk;
1079 	}
1080 
1081 stateattach:
1082 	/* List is sorted, if-bound states before floating. */
1083 	if (s->kif == V_pfi_all)
1084 		TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]);
1085 	else
1086 		TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]);
1087 
1088 	if (olds) {
1089 		TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]);
1090 		TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds,
1091 		    key_list[idx]);
1092 		olds = NULL;
1093 	}
1094 
1095 	/*
1096 	 * Attach done. See how should we (or should not?)
1097 	 * attach a second key.
1098 	 */
1099 	if (sks == skw) {
1100 		s->key[PF_SK_STACK] = s->key[PF_SK_WIRE];
1101 		idx = PF_SK_STACK;
1102 		sks = NULL;
1103 		goto stateattach;
1104 	} else if (sks != NULL) {
1105 		/*
1106 		 * Continue attaching with stack key.
1107 		 */
1108 		sk = sks;
1109 		kh = khs;
1110 		idx = PF_SK_STACK;
1111 		sks = NULL;
1112 		goto keyattach;
1113 	}
1114 
1115 	PF_STATE_LOCK(s);
1116 	KEYS_UNLOCK();
1117 
1118 	KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL,
1119 	    ("%s failure", __func__));
1120 
1121 	return (0);
1122 #undef	KEYS_UNLOCK
1123 }
1124 
1125 static void
1126 pf_detach_state(struct pf_state *s)
1127 {
1128 	struct pf_state_key *sks = s->key[PF_SK_STACK];
1129 	struct pf_keyhash *kh;
1130 
1131 	if (sks != NULL) {
1132 		kh = &V_pf_keyhash[pf_hashkey(sks)];
1133 		PF_HASHROW_LOCK(kh);
1134 		if (s->key[PF_SK_STACK] != NULL)
1135 			pf_state_key_detach(s, PF_SK_STACK);
1136 		/*
1137 		 * If both point to same key, then we are done.
1138 		 */
1139 		if (sks == s->key[PF_SK_WIRE]) {
1140 			pf_state_key_detach(s, PF_SK_WIRE);
1141 			PF_HASHROW_UNLOCK(kh);
1142 			return;
1143 		}
1144 		PF_HASHROW_UNLOCK(kh);
1145 	}
1146 
1147 	if (s->key[PF_SK_WIRE] != NULL) {
1148 		kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])];
1149 		PF_HASHROW_LOCK(kh);
1150 		if (s->key[PF_SK_WIRE] != NULL)
1151 			pf_state_key_detach(s, PF_SK_WIRE);
1152 		PF_HASHROW_UNLOCK(kh);
1153 	}
1154 }
1155 
1156 static void
1157 pf_state_key_detach(struct pf_state *s, int idx)
1158 {
1159 	struct pf_state_key *sk = s->key[idx];
1160 #ifdef INVARIANTS
1161 	struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)];
1162 
1163 	PF_HASHROW_ASSERT(kh);
1164 #endif
1165 	TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]);
1166 	s->key[idx] = NULL;
1167 
1168 	if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) {
1169 		LIST_REMOVE(sk, entry);
1170 		uma_zfree(V_pf_state_key_z, sk);
1171 	}
1172 }
1173 
1174 static int
1175 pf_state_key_ctor(void *mem, int size, void *arg, int flags)
1176 {
1177 	struct pf_state_key *sk = mem;
1178 
1179 	bzero(sk, sizeof(struct pf_state_key_cmp));
1180 	TAILQ_INIT(&sk->states[PF_SK_WIRE]);
1181 	TAILQ_INIT(&sk->states[PF_SK_STACK]);
1182 
1183 	return (0);
1184 }
1185 
1186 struct pf_state_key *
1187 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr,
1188 	struct pf_addr *daddr, u_int16_t sport, u_int16_t dport)
1189 {
1190 	struct pf_state_key *sk;
1191 
1192 	sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1193 	if (sk == NULL)
1194 		return (NULL);
1195 
1196 	PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af);
1197 	PF_ACPY(&sk->addr[pd->didx], daddr, pd->af);
1198 	sk->port[pd->sidx] = sport;
1199 	sk->port[pd->didx] = dport;
1200 	sk->proto = pd->proto;
1201 	sk->af = pd->af;
1202 
1203 	return (sk);
1204 }
1205 
1206 struct pf_state_key *
1207 pf_state_key_clone(struct pf_state_key *orig)
1208 {
1209 	struct pf_state_key *sk;
1210 
1211 	sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1212 	if (sk == NULL)
1213 		return (NULL);
1214 
1215 	bcopy(orig, sk, sizeof(struct pf_state_key_cmp));
1216 
1217 	return (sk);
1218 }
1219 
1220 int
1221 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw,
1222     struct pf_state_key *sks, struct pf_state *s)
1223 {
1224 	struct pf_idhash *ih;
1225 	struct pf_state *cur;
1226 	int error;
1227 
1228 	KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]),
1229 	    ("%s: sks not pristine", __func__));
1230 	KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]),
1231 	    ("%s: skw not pristine", __func__));
1232 	KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1233 
1234 	s->kif = kif;
1235 
1236 	if (s->id == 0 && s->creatorid == 0) {
1237 		/* XXX: should be atomic, but probability of collision low */
1238 		if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID)
1239 			V_pf_stateid[curcpu] = 1;
1240 		s->id |= (uint64_t )curcpu << PFID_CPUSHIFT;
1241 		s->id = htobe64(s->id);
1242 		s->creatorid = V_pf_status.hostid;
1243 	}
1244 
1245 	/* Returns with ID locked on success. */
1246 	if ((error = pf_state_key_attach(skw, sks, s)) != 0)
1247 		return (error);
1248 
1249 	ih = &V_pf_idhash[PF_IDHASH(s)];
1250 	PF_HASHROW_ASSERT(ih);
1251 	LIST_FOREACH(cur, &ih->states, entry)
1252 		if (cur->id == s->id && cur->creatorid == s->creatorid)
1253 			break;
1254 
1255 	if (cur != NULL) {
1256 		PF_HASHROW_UNLOCK(ih);
1257 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1258 			printf("pf: state ID collision: "
1259 			    "id: %016llx creatorid: %08x\n",
1260 			    (unsigned long long)be64toh(s->id),
1261 			    ntohl(s->creatorid));
1262 		}
1263 		pf_detach_state(s);
1264 		return (EEXIST);
1265 	}
1266 	LIST_INSERT_HEAD(&ih->states, s, entry);
1267 	/* One for keys, one for ID hash. */
1268 	refcount_init(&s->refs, 2);
1269 
1270 	counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1);
1271 	if (pfsync_insert_state_ptr != NULL)
1272 		pfsync_insert_state_ptr(s);
1273 
1274 	/* Returns locked. */
1275 	return (0);
1276 }
1277 
1278 /*
1279  * Find state by ID: returns with locked row on success.
1280  */
1281 struct pf_state *
1282 pf_find_state_byid(uint64_t id, uint32_t creatorid)
1283 {
1284 	struct pf_idhash *ih;
1285 	struct pf_state *s;
1286 
1287 	counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1288 
1289 	ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))];
1290 
1291 	PF_HASHROW_LOCK(ih);
1292 	LIST_FOREACH(s, &ih->states, entry)
1293 		if (s->id == id && s->creatorid == creatorid)
1294 			break;
1295 
1296 	if (s == NULL)
1297 		PF_HASHROW_UNLOCK(ih);
1298 
1299 	return (s);
1300 }
1301 
1302 /*
1303  * Find state by key.
1304  * Returns with ID hash slot locked on success.
1305  */
1306 static struct pf_state *
1307 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir)
1308 {
1309 	struct pf_keyhash	*kh;
1310 	struct pf_state_key	*sk;
1311 	struct pf_state		*s;
1312 	int idx;
1313 
1314 	counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1315 
1316 	kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)];
1317 
1318 	PF_HASHROW_LOCK(kh);
1319 	LIST_FOREACH(sk, &kh->keys, entry)
1320 		if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1321 			break;
1322 	if (sk == NULL) {
1323 		PF_HASHROW_UNLOCK(kh);
1324 		return (NULL);
1325 	}
1326 
1327 	idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK);
1328 
1329 	/* List is sorted, if-bound states before floating ones. */
1330 	TAILQ_FOREACH(s, &sk->states[idx], key_list[idx])
1331 		if (s->kif == V_pfi_all || s->kif == kif) {
1332 			PF_STATE_LOCK(s);
1333 			PF_HASHROW_UNLOCK(kh);
1334 			if (s->timeout >= PFTM_MAX) {
1335 				/*
1336 				 * State is either being processed by
1337 				 * pf_unlink_state() in an other thread, or
1338 				 * is scheduled for immediate expiry.
1339 				 */
1340 				PF_STATE_UNLOCK(s);
1341 				return (NULL);
1342 			}
1343 			return (s);
1344 		}
1345 	PF_HASHROW_UNLOCK(kh);
1346 
1347 	return (NULL);
1348 }
1349 
1350 struct pf_state *
1351 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more)
1352 {
1353 	struct pf_keyhash	*kh;
1354 	struct pf_state_key	*sk;
1355 	struct pf_state		*s, *ret = NULL;
1356 	int			 idx, inout = 0;
1357 
1358 	counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1359 
1360 	kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)];
1361 
1362 	PF_HASHROW_LOCK(kh);
1363 	LIST_FOREACH(sk, &kh->keys, entry)
1364 		if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1365 			break;
1366 	if (sk == NULL) {
1367 		PF_HASHROW_UNLOCK(kh);
1368 		return (NULL);
1369 	}
1370 	switch (dir) {
1371 	case PF_IN:
1372 		idx = PF_SK_WIRE;
1373 		break;
1374 	case PF_OUT:
1375 		idx = PF_SK_STACK;
1376 		break;
1377 	case PF_INOUT:
1378 		idx = PF_SK_WIRE;
1379 		inout = 1;
1380 		break;
1381 	default:
1382 		panic("%s: dir %u", __func__, dir);
1383 	}
1384 second_run:
1385 	TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
1386 		if (more == NULL) {
1387 			PF_HASHROW_UNLOCK(kh);
1388 			return (s);
1389 		}
1390 
1391 		if (ret)
1392 			(*more)++;
1393 		else
1394 			ret = s;
1395 	}
1396 	if (inout == 1) {
1397 		inout = 0;
1398 		idx = PF_SK_STACK;
1399 		goto second_run;
1400 	}
1401 	PF_HASHROW_UNLOCK(kh);
1402 
1403 	return (ret);
1404 }
1405 
1406 /* END state table stuff */
1407 
1408 static void
1409 pf_send(struct pf_send_entry *pfse)
1410 {
1411 
1412 	PF_SENDQ_LOCK();
1413 	STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next);
1414 	PF_SENDQ_UNLOCK();
1415 	swi_sched(V_pf_swi_cookie, 0);
1416 }
1417 
1418 void
1419 pf_intr(void *v)
1420 {
1421 	struct pf_send_head queue;
1422 	struct pf_send_entry *pfse, *next;
1423 
1424 	CURVNET_SET((struct vnet *)v);
1425 
1426 	PF_SENDQ_LOCK();
1427 	queue = V_pf_sendqueue;
1428 	STAILQ_INIT(&V_pf_sendqueue);
1429 	PF_SENDQ_UNLOCK();
1430 
1431 	STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) {
1432 		switch (pfse->pfse_type) {
1433 #ifdef INET
1434 		case PFSE_IP:
1435 			ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL);
1436 			break;
1437 		case PFSE_ICMP:
1438 			icmp_error(pfse->pfse_m, pfse->icmpopts.type,
1439 			    pfse->icmpopts.code, 0, pfse->icmpopts.mtu);
1440 			break;
1441 #endif /* INET */
1442 #ifdef INET6
1443 		case PFSE_IP6:
1444 			ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL,
1445 			    NULL);
1446 			break;
1447 		case PFSE_ICMP6:
1448 			icmp6_error(pfse->pfse_m, pfse->icmpopts.type,
1449 			    pfse->icmpopts.code, pfse->icmpopts.mtu);
1450 			break;
1451 #endif /* INET6 */
1452 		default:
1453 			panic("%s: unknown type", __func__);
1454 		}
1455 		free(pfse, M_PFTEMP);
1456 	}
1457 	CURVNET_RESTORE();
1458 }
1459 
1460 void
1461 pf_purge_thread(void *unused __unused)
1462 {
1463 	VNET_ITERATOR_DECL(vnet_iter);
1464 
1465 	sx_xlock(&pf_end_lock);
1466 	while (pf_end_threads == 0) {
1467 		sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", hz / 10);
1468 
1469 		VNET_LIST_RLOCK();
1470 		VNET_FOREACH(vnet_iter) {
1471 			CURVNET_SET(vnet_iter);
1472 
1473 
1474 			/* Wait until V_pf_default_rule is initialized. */
1475 			if (V_pf_vnet_active == 0) {
1476 				CURVNET_RESTORE();
1477 				continue;
1478 			}
1479 
1480 			/*
1481 			 *  Process 1/interval fraction of the state
1482 			 * table every run.
1483 			 */
1484 			V_pf_purge_idx =
1485 			    pf_purge_expired_states(V_pf_purge_idx, pf_hashmask /
1486 			    (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10));
1487 
1488 			/*
1489 			 * Purge other expired types every
1490 			 * PFTM_INTERVAL seconds.
1491 			 */
1492 			if (V_pf_purge_idx == 0) {
1493 				/*
1494 				 * Order is important:
1495 				 * - states and src nodes reference rules
1496 				 * - states and rules reference kifs
1497 				 */
1498 				pf_purge_expired_fragments();
1499 				pf_purge_expired_src_nodes();
1500 				pf_purge_unlinked_rules();
1501 				pfi_kif_purge();
1502 			}
1503 			CURVNET_RESTORE();
1504 		}
1505 		VNET_LIST_RUNLOCK();
1506 	}
1507 
1508 	pf_end_threads++;
1509 	sx_xunlock(&pf_end_lock);
1510 	kproc_exit(0);
1511 }
1512 
1513 void
1514 pf_unload_vnet_purge(void)
1515 {
1516 
1517 	/*
1518 	 * To cleanse up all kifs and rules we need
1519 	 * two runs: first one clears reference flags,
1520 	 * then pf_purge_expired_states() doesn't
1521 	 * raise them, and then second run frees.
1522 	 */
1523 	pf_purge_unlinked_rules();
1524 	pfi_kif_purge();
1525 
1526 	/*
1527 	 * Now purge everything.
1528 	 */
1529 	pf_purge_expired_states(0, pf_hashmask);
1530 	pf_purge_fragments(UINT_MAX);
1531 	pf_purge_expired_src_nodes();
1532 
1533 	/*
1534 	 * Now all kifs & rules should be unreferenced,
1535 	 * thus should be successfully freed.
1536 	 */
1537 	pf_purge_unlinked_rules();
1538 	pfi_kif_purge();
1539 }
1540 
1541 
1542 u_int32_t
1543 pf_state_expires(const struct pf_state *state)
1544 {
1545 	u_int32_t	timeout;
1546 	u_int32_t	start;
1547 	u_int32_t	end;
1548 	u_int32_t	states;
1549 
1550 	/* handle all PFTM_* > PFTM_MAX here */
1551 	if (state->timeout == PFTM_PURGE)
1552 		return (time_uptime);
1553 	KASSERT(state->timeout != PFTM_UNLINKED,
1554 	    ("pf_state_expires: timeout == PFTM_UNLINKED"));
1555 	KASSERT((state->timeout < PFTM_MAX),
1556 	    ("pf_state_expires: timeout > PFTM_MAX"));
1557 	timeout = state->rule.ptr->timeout[state->timeout];
1558 	if (!timeout)
1559 		timeout = V_pf_default_rule.timeout[state->timeout];
1560 	start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START];
1561 	if (start) {
1562 		end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END];
1563 		states = counter_u64_fetch(state->rule.ptr->states_cur);
1564 	} else {
1565 		start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START];
1566 		end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END];
1567 		states = V_pf_status.states;
1568 	}
1569 	if (end && states > start && start < end) {
1570 		if (states < end)
1571 			return (state->expire + timeout * (end - states) /
1572 			    (end - start));
1573 		else
1574 			return (time_uptime);
1575 	}
1576 	return (state->expire + timeout);
1577 }
1578 
1579 void
1580 pf_purge_expired_src_nodes()
1581 {
1582 	struct pf_src_node_list	 freelist;
1583 	struct pf_srchash	*sh;
1584 	struct pf_src_node	*cur, *next;
1585 	int i;
1586 
1587 	LIST_INIT(&freelist);
1588 	for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) {
1589 	    PF_HASHROW_LOCK(sh);
1590 	    LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next)
1591 		if (cur->states == 0 && cur->expire <= time_uptime) {
1592 			pf_unlink_src_node(cur);
1593 			LIST_INSERT_HEAD(&freelist, cur, entry);
1594 		} else if (cur->rule.ptr != NULL)
1595 			cur->rule.ptr->rule_flag |= PFRULE_REFS;
1596 	    PF_HASHROW_UNLOCK(sh);
1597 	}
1598 
1599 	pf_free_src_nodes(&freelist);
1600 
1601 	V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z);
1602 }
1603 
1604 static void
1605 pf_src_tree_remove_state(struct pf_state *s)
1606 {
1607 	struct pf_src_node *sn;
1608 	struct pf_srchash *sh;
1609 	uint32_t timeout;
1610 
1611 	timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ?
1612 	    s->rule.ptr->timeout[PFTM_SRC_NODE] :
1613 	    V_pf_default_rule.timeout[PFTM_SRC_NODE];
1614 
1615 	if (s->src_node != NULL) {
1616 		sn = s->src_node;
1617 		sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)];
1618 	    	PF_HASHROW_LOCK(sh);
1619 		if (s->src.tcp_est)
1620 			--sn->conn;
1621 		if (--sn->states == 0)
1622 			sn->expire = time_uptime + timeout;
1623 	    	PF_HASHROW_UNLOCK(sh);
1624 	}
1625 	if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) {
1626 		sn = s->nat_src_node;
1627 		sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)];
1628 	    	PF_HASHROW_LOCK(sh);
1629 		if (--sn->states == 0)
1630 			sn->expire = time_uptime + timeout;
1631 	    	PF_HASHROW_UNLOCK(sh);
1632 	}
1633 	s->src_node = s->nat_src_node = NULL;
1634 }
1635 
1636 /*
1637  * Unlink and potentilly free a state. Function may be
1638  * called with ID hash row locked, but always returns
1639  * unlocked, since it needs to go through key hash locking.
1640  */
1641 int
1642 pf_unlink_state(struct pf_state *s, u_int flags)
1643 {
1644 	struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)];
1645 
1646 	if ((flags & PF_ENTER_LOCKED) == 0)
1647 		PF_HASHROW_LOCK(ih);
1648 	else
1649 		PF_HASHROW_ASSERT(ih);
1650 
1651 	if (s->timeout == PFTM_UNLINKED) {
1652 		/*
1653 		 * State is being processed
1654 		 * by pf_unlink_state() in
1655 		 * an other thread.
1656 		 */
1657 		PF_HASHROW_UNLOCK(ih);
1658 		return (0);	/* XXXGL: undefined actually */
1659 	}
1660 
1661 	if (s->src.state == PF_TCPS_PROXY_DST) {
1662 		/* XXX wire key the right one? */
1663 		pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af,
1664 		    &s->key[PF_SK_WIRE]->addr[1],
1665 		    &s->key[PF_SK_WIRE]->addr[0],
1666 		    s->key[PF_SK_WIRE]->port[1],
1667 		    s->key[PF_SK_WIRE]->port[0],
1668 		    s->src.seqhi, s->src.seqlo + 1,
1669 		    TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL);
1670 	}
1671 
1672 	LIST_REMOVE(s, entry);
1673 	pf_src_tree_remove_state(s);
1674 
1675 	if (pfsync_delete_state_ptr != NULL)
1676 		pfsync_delete_state_ptr(s);
1677 
1678 	STATE_DEC_COUNTERS(s);
1679 
1680 	s->timeout = PFTM_UNLINKED;
1681 
1682 	PF_HASHROW_UNLOCK(ih);
1683 
1684 	pf_detach_state(s);
1685 	/* pf_state_insert() initialises refs to 2, so we can never release the
1686 	 * last reference here, only in pf_release_state(). */
1687 	(void)refcount_release(&s->refs);
1688 
1689 	return (pf_release_state(s));
1690 }
1691 
1692 void
1693 pf_free_state(struct pf_state *cur)
1694 {
1695 
1696 	KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur));
1697 	KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__,
1698 	    cur->timeout));
1699 
1700 	pf_normalize_tcp_cleanup(cur);
1701 	uma_zfree(V_pf_state_z, cur);
1702 	counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1);
1703 }
1704 
1705 /*
1706  * Called only from pf_purge_thread(), thus serialized.
1707  */
1708 static u_int
1709 pf_purge_expired_states(u_int i, int maxcheck)
1710 {
1711 	struct pf_idhash *ih;
1712 	struct pf_state *s;
1713 
1714 	V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
1715 
1716 	/*
1717 	 * Go through hash and unlink states that expire now.
1718 	 */
1719 	while (maxcheck > 0) {
1720 
1721 		ih = &V_pf_idhash[i];
1722 
1723 		/* only take the lock if we expect to do work */
1724 		if (!LIST_EMPTY(&ih->states)) {
1725 relock:
1726 			PF_HASHROW_LOCK(ih);
1727 			LIST_FOREACH(s, &ih->states, entry) {
1728 				if (pf_state_expires(s) <= time_uptime) {
1729 					V_pf_status.states -=
1730 					    pf_unlink_state(s, PF_ENTER_LOCKED);
1731 					goto relock;
1732 				}
1733 				s->rule.ptr->rule_flag |= PFRULE_REFS;
1734 				if (s->nat_rule.ptr != NULL)
1735 					s->nat_rule.ptr->rule_flag |= PFRULE_REFS;
1736 				if (s->anchor.ptr != NULL)
1737 					s->anchor.ptr->rule_flag |= PFRULE_REFS;
1738 				s->kif->pfik_flags |= PFI_IFLAG_REFS;
1739 				if (s->rt_kif)
1740 					s->rt_kif->pfik_flags |= PFI_IFLAG_REFS;
1741 			}
1742 			PF_HASHROW_UNLOCK(ih);
1743 		}
1744 
1745 		/* Return when we hit end of hash. */
1746 		if (++i > pf_hashmask) {
1747 			V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
1748 			return (0);
1749 		}
1750 
1751 		maxcheck--;
1752 	}
1753 
1754 	V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
1755 
1756 	return (i);
1757 }
1758 
1759 static void
1760 pf_purge_unlinked_rules()
1761 {
1762 	struct pf_rulequeue tmpq;
1763 	struct pf_rule *r, *r1;
1764 
1765 	/*
1766 	 * If we have overloading task pending, then we'd
1767 	 * better skip purging this time. There is a tiny
1768 	 * probability that overloading task references
1769 	 * an already unlinked rule.
1770 	 */
1771 	PF_OVERLOADQ_LOCK();
1772 	if (!SLIST_EMPTY(&V_pf_overloadqueue)) {
1773 		PF_OVERLOADQ_UNLOCK();
1774 		return;
1775 	}
1776 	PF_OVERLOADQ_UNLOCK();
1777 
1778 	/*
1779 	 * Do naive mark-and-sweep garbage collecting of old rules.
1780 	 * Reference flag is raised by pf_purge_expired_states()
1781 	 * and pf_purge_expired_src_nodes().
1782 	 *
1783 	 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK,
1784 	 * use a temporary queue.
1785 	 */
1786 	TAILQ_INIT(&tmpq);
1787 	PF_UNLNKDRULES_LOCK();
1788 	TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) {
1789 		if (!(r->rule_flag & PFRULE_REFS)) {
1790 			TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries);
1791 			TAILQ_INSERT_TAIL(&tmpq, r, entries);
1792 		} else
1793 			r->rule_flag &= ~PFRULE_REFS;
1794 	}
1795 	PF_UNLNKDRULES_UNLOCK();
1796 
1797 	if (!TAILQ_EMPTY(&tmpq)) {
1798 		PF_RULES_WLOCK();
1799 		TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) {
1800 			TAILQ_REMOVE(&tmpq, r, entries);
1801 			pf_free_rule(r);
1802 		}
1803 		PF_RULES_WUNLOCK();
1804 	}
1805 }
1806 
1807 void
1808 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af)
1809 {
1810 	switch (af) {
1811 #ifdef INET
1812 	case AF_INET: {
1813 		u_int32_t a = ntohl(addr->addr32[0]);
1814 		printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255,
1815 		    (a>>8)&255, a&255);
1816 		if (p) {
1817 			p = ntohs(p);
1818 			printf(":%u", p);
1819 		}
1820 		break;
1821 	}
1822 #endif /* INET */
1823 #ifdef INET6
1824 	case AF_INET6: {
1825 		u_int16_t b;
1826 		u_int8_t i, curstart, curend, maxstart, maxend;
1827 		curstart = curend = maxstart = maxend = 255;
1828 		for (i = 0; i < 8; i++) {
1829 			if (!addr->addr16[i]) {
1830 				if (curstart == 255)
1831 					curstart = i;
1832 				curend = i;
1833 			} else {
1834 				if ((curend - curstart) >
1835 				    (maxend - maxstart)) {
1836 					maxstart = curstart;
1837 					maxend = curend;
1838 				}
1839 				curstart = curend = 255;
1840 			}
1841 		}
1842 		if ((curend - curstart) >
1843 		    (maxend - maxstart)) {
1844 			maxstart = curstart;
1845 			maxend = curend;
1846 		}
1847 		for (i = 0; i < 8; i++) {
1848 			if (i >= maxstart && i <= maxend) {
1849 				if (i == 0)
1850 					printf(":");
1851 				if (i == maxend)
1852 					printf(":");
1853 			} else {
1854 				b = ntohs(addr->addr16[i]);
1855 				printf("%x", b);
1856 				if (i < 7)
1857 					printf(":");
1858 			}
1859 		}
1860 		if (p) {
1861 			p = ntohs(p);
1862 			printf("[%u]", p);
1863 		}
1864 		break;
1865 	}
1866 #endif /* INET6 */
1867 	}
1868 }
1869 
1870 void
1871 pf_print_state(struct pf_state *s)
1872 {
1873 	pf_print_state_parts(s, NULL, NULL);
1874 }
1875 
1876 static void
1877 pf_print_state_parts(struct pf_state *s,
1878     struct pf_state_key *skwp, struct pf_state_key *sksp)
1879 {
1880 	struct pf_state_key *skw, *sks;
1881 	u_int8_t proto, dir;
1882 
1883 	/* Do our best to fill these, but they're skipped if NULL */
1884 	skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL);
1885 	sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL);
1886 	proto = skw ? skw->proto : (sks ? sks->proto : 0);
1887 	dir = s ? s->direction : 0;
1888 
1889 	switch (proto) {
1890 	case IPPROTO_IPV4:
1891 		printf("IPv4");
1892 		break;
1893 	case IPPROTO_IPV6:
1894 		printf("IPv6");
1895 		break;
1896 	case IPPROTO_TCP:
1897 		printf("TCP");
1898 		break;
1899 	case IPPROTO_UDP:
1900 		printf("UDP");
1901 		break;
1902 	case IPPROTO_ICMP:
1903 		printf("ICMP");
1904 		break;
1905 	case IPPROTO_ICMPV6:
1906 		printf("ICMPv6");
1907 		break;
1908 	default:
1909 		printf("%u", proto);
1910 		break;
1911 	}
1912 	switch (dir) {
1913 	case PF_IN:
1914 		printf(" in");
1915 		break;
1916 	case PF_OUT:
1917 		printf(" out");
1918 		break;
1919 	}
1920 	if (skw) {
1921 		printf(" wire: ");
1922 		pf_print_host(&skw->addr[0], skw->port[0], skw->af);
1923 		printf(" ");
1924 		pf_print_host(&skw->addr[1], skw->port[1], skw->af);
1925 	}
1926 	if (sks) {
1927 		printf(" stack: ");
1928 		if (sks != skw) {
1929 			pf_print_host(&sks->addr[0], sks->port[0], sks->af);
1930 			printf(" ");
1931 			pf_print_host(&sks->addr[1], sks->port[1], sks->af);
1932 		} else
1933 			printf("-");
1934 	}
1935 	if (s) {
1936 		if (proto == IPPROTO_TCP) {
1937 			printf(" [lo=%u high=%u win=%u modulator=%u",
1938 			    s->src.seqlo, s->src.seqhi,
1939 			    s->src.max_win, s->src.seqdiff);
1940 			if (s->src.wscale && s->dst.wscale)
1941 				printf(" wscale=%u",
1942 				    s->src.wscale & PF_WSCALE_MASK);
1943 			printf("]");
1944 			printf(" [lo=%u high=%u win=%u modulator=%u",
1945 			    s->dst.seqlo, s->dst.seqhi,
1946 			    s->dst.max_win, s->dst.seqdiff);
1947 			if (s->src.wscale && s->dst.wscale)
1948 				printf(" wscale=%u",
1949 				s->dst.wscale & PF_WSCALE_MASK);
1950 			printf("]");
1951 		}
1952 		printf(" %u:%u", s->src.state, s->dst.state);
1953 	}
1954 }
1955 
1956 void
1957 pf_print_flags(u_int8_t f)
1958 {
1959 	if (f)
1960 		printf(" ");
1961 	if (f & TH_FIN)
1962 		printf("F");
1963 	if (f & TH_SYN)
1964 		printf("S");
1965 	if (f & TH_RST)
1966 		printf("R");
1967 	if (f & TH_PUSH)
1968 		printf("P");
1969 	if (f & TH_ACK)
1970 		printf("A");
1971 	if (f & TH_URG)
1972 		printf("U");
1973 	if (f & TH_ECE)
1974 		printf("E");
1975 	if (f & TH_CWR)
1976 		printf("W");
1977 }
1978 
1979 #define	PF_SET_SKIP_STEPS(i)					\
1980 	do {							\
1981 		while (head[i] != cur) {			\
1982 			head[i]->skip[i].ptr = cur;		\
1983 			head[i] = TAILQ_NEXT(head[i], entries);	\
1984 		}						\
1985 	} while (0)
1986 
1987 void
1988 pf_calc_skip_steps(struct pf_rulequeue *rules)
1989 {
1990 	struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT];
1991 	int i;
1992 
1993 	cur = TAILQ_FIRST(rules);
1994 	prev = cur;
1995 	for (i = 0; i < PF_SKIP_COUNT; ++i)
1996 		head[i] = cur;
1997 	while (cur != NULL) {
1998 
1999 		if (cur->kif != prev->kif || cur->ifnot != prev->ifnot)
2000 			PF_SET_SKIP_STEPS(PF_SKIP_IFP);
2001 		if (cur->direction != prev->direction)
2002 			PF_SET_SKIP_STEPS(PF_SKIP_DIR);
2003 		if (cur->af != prev->af)
2004 			PF_SET_SKIP_STEPS(PF_SKIP_AF);
2005 		if (cur->proto != prev->proto)
2006 			PF_SET_SKIP_STEPS(PF_SKIP_PROTO);
2007 		if (cur->src.neg != prev->src.neg ||
2008 		    pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr))
2009 			PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR);
2010 		if (cur->src.port[0] != prev->src.port[0] ||
2011 		    cur->src.port[1] != prev->src.port[1] ||
2012 		    cur->src.port_op != prev->src.port_op)
2013 			PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT);
2014 		if (cur->dst.neg != prev->dst.neg ||
2015 		    pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr))
2016 			PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR);
2017 		if (cur->dst.port[0] != prev->dst.port[0] ||
2018 		    cur->dst.port[1] != prev->dst.port[1] ||
2019 		    cur->dst.port_op != prev->dst.port_op)
2020 			PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT);
2021 
2022 		prev = cur;
2023 		cur = TAILQ_NEXT(cur, entries);
2024 	}
2025 	for (i = 0; i < PF_SKIP_COUNT; ++i)
2026 		PF_SET_SKIP_STEPS(i);
2027 }
2028 
2029 static int
2030 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2)
2031 {
2032 	if (aw1->type != aw2->type)
2033 		return (1);
2034 	switch (aw1->type) {
2035 	case PF_ADDR_ADDRMASK:
2036 	case PF_ADDR_RANGE:
2037 		if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6))
2038 			return (1);
2039 		if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6))
2040 			return (1);
2041 		return (0);
2042 	case PF_ADDR_DYNIFTL:
2043 		return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt);
2044 	case PF_ADDR_NOROUTE:
2045 	case PF_ADDR_URPFFAILED:
2046 		return (0);
2047 	case PF_ADDR_TABLE:
2048 		return (aw1->p.tbl != aw2->p.tbl);
2049 	default:
2050 		printf("invalid address type: %d\n", aw1->type);
2051 		return (1);
2052 	}
2053 }
2054 
2055 /**
2056  * Checksum updates are a little complicated because the checksum in the TCP/UDP
2057  * header isn't always a full checksum. In some cases (i.e. output) it's a
2058  * pseudo-header checksum, which is a partial checksum over src/dst IP
2059  * addresses, protocol number and length.
2060  *
2061  * That means we have the following cases:
2062  *  * Input or forwarding: we don't have TSO, the checksum fields are full
2063  *  	checksums, we need to update the checksum whenever we change anything.
2064  *  * Output (i.e. the checksum is a pseudo-header checksum):
2065  *  	x The field being updated is src/dst address or affects the length of
2066  *  	the packet. We need to update the pseudo-header checksum (note that this
2067  *  	checksum is not ones' complement).
2068  *  	x Some other field is being modified (e.g. src/dst port numbers): We
2069  *  	don't have to update anything.
2070  **/
2071 u_int16_t
2072 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp)
2073 {
2074 	u_int32_t	l;
2075 
2076 	if (udp && !cksum)
2077 		return (0x0000);
2078 	l = cksum + old - new;
2079 	l = (l >> 16) + (l & 65535);
2080 	l = l & 65535;
2081 	if (udp && !l)
2082 		return (0xFFFF);
2083 	return (l);
2084 }
2085 
2086 u_int16_t
2087 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old,
2088         u_int16_t new, u_int8_t udp)
2089 {
2090 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
2091 		return (cksum);
2092 
2093 	return (pf_cksum_fixup(cksum, old, new, udp));
2094 }
2095 
2096 static void
2097 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic,
2098         u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u,
2099         sa_family_t af)
2100 {
2101 	struct pf_addr	ao;
2102 	u_int16_t	po = *p;
2103 
2104 	PF_ACPY(&ao, a, af);
2105 	PF_ACPY(a, an, af);
2106 
2107 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
2108 		*pc = ~*pc;
2109 
2110 	*p = pn;
2111 
2112 	switch (af) {
2113 #ifdef INET
2114 	case AF_INET:
2115 		*ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
2116 		    ao.addr16[0], an->addr16[0], 0),
2117 		    ao.addr16[1], an->addr16[1], 0);
2118 		*p = pn;
2119 
2120 		*pc = pf_cksum_fixup(pf_cksum_fixup(*pc,
2121 		    ao.addr16[0], an->addr16[0], u),
2122 		    ao.addr16[1], an->addr16[1], u);
2123 
2124 		*pc = pf_proto_cksum_fixup(m, *pc, po, pn, u);
2125 		break;
2126 #endif /* INET */
2127 #ifdef INET6
2128 	case AF_INET6:
2129 		*pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
2130 		    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
2131 		    pf_cksum_fixup(pf_cksum_fixup(*pc,
2132 		    ao.addr16[0], an->addr16[0], u),
2133 		    ao.addr16[1], an->addr16[1], u),
2134 		    ao.addr16[2], an->addr16[2], u),
2135 		    ao.addr16[3], an->addr16[3], u),
2136 		    ao.addr16[4], an->addr16[4], u),
2137 		    ao.addr16[5], an->addr16[5], u),
2138 		    ao.addr16[6], an->addr16[6], u),
2139 		    ao.addr16[7], an->addr16[7], u);
2140 
2141 		*pc = pf_proto_cksum_fixup(m, *pc, po, pn, u);
2142 		break;
2143 #endif /* INET6 */
2144 	}
2145 
2146 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
2147 	    CSUM_DELAY_DATA_IPV6)) {
2148 		*pc = ~*pc;
2149 		if (! *pc)
2150 			*pc = 0xffff;
2151 	}
2152 }
2153 
2154 /* Changes a u_int32_t.  Uses a void * so there are no align restrictions */
2155 void
2156 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u)
2157 {
2158 	u_int32_t	ao;
2159 
2160 	memcpy(&ao, a, sizeof(ao));
2161 	memcpy(a, &an, sizeof(u_int32_t));
2162 	*c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u),
2163 	    ao % 65536, an % 65536, u);
2164 }
2165 
2166 void
2167 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp)
2168 {
2169 	u_int32_t	ao;
2170 
2171 	memcpy(&ao, a, sizeof(ao));
2172 	memcpy(a, &an, sizeof(u_int32_t));
2173 
2174 	*c = pf_proto_cksum_fixup(m,
2175 	    pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp),
2176 	    ao % 65536, an % 65536, udp);
2177 }
2178 
2179 #ifdef INET6
2180 static void
2181 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u)
2182 {
2183 	struct pf_addr	ao;
2184 
2185 	PF_ACPY(&ao, a, AF_INET6);
2186 	PF_ACPY(a, an, AF_INET6);
2187 
2188 	*c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
2189 	    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
2190 	    pf_cksum_fixup(pf_cksum_fixup(*c,
2191 	    ao.addr16[0], an->addr16[0], u),
2192 	    ao.addr16[1], an->addr16[1], u),
2193 	    ao.addr16[2], an->addr16[2], u),
2194 	    ao.addr16[3], an->addr16[3], u),
2195 	    ao.addr16[4], an->addr16[4], u),
2196 	    ao.addr16[5], an->addr16[5], u),
2197 	    ao.addr16[6], an->addr16[6], u),
2198 	    ao.addr16[7], an->addr16[7], u);
2199 }
2200 #endif /* INET6 */
2201 
2202 static void
2203 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa,
2204     struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c,
2205     u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af)
2206 {
2207 	struct pf_addr	oia, ooa;
2208 
2209 	PF_ACPY(&oia, ia, af);
2210 	if (oa)
2211 		PF_ACPY(&ooa, oa, af);
2212 
2213 	/* Change inner protocol port, fix inner protocol checksum. */
2214 	if (ip != NULL) {
2215 		u_int16_t	oip = *ip;
2216 		u_int32_t	opc;
2217 
2218 		if (pc != NULL)
2219 			opc = *pc;
2220 		*ip = np;
2221 		if (pc != NULL)
2222 			*pc = pf_cksum_fixup(*pc, oip, *ip, u);
2223 		*ic = pf_cksum_fixup(*ic, oip, *ip, 0);
2224 		if (pc != NULL)
2225 			*ic = pf_cksum_fixup(*ic, opc, *pc, 0);
2226 	}
2227 	/* Change inner ip address, fix inner ip and icmp checksums. */
2228 	PF_ACPY(ia, na, af);
2229 	switch (af) {
2230 #ifdef INET
2231 	case AF_INET: {
2232 		u_int32_t	 oh2c = *h2c;
2233 
2234 		*h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c,
2235 		    oia.addr16[0], ia->addr16[0], 0),
2236 		    oia.addr16[1], ia->addr16[1], 0);
2237 		*ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
2238 		    oia.addr16[0], ia->addr16[0], 0),
2239 		    oia.addr16[1], ia->addr16[1], 0);
2240 		*ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0);
2241 		break;
2242 	}
2243 #endif /* INET */
2244 #ifdef INET6
2245 	case AF_INET6:
2246 		*ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
2247 		    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
2248 		    pf_cksum_fixup(pf_cksum_fixup(*ic,
2249 		    oia.addr16[0], ia->addr16[0], u),
2250 		    oia.addr16[1], ia->addr16[1], u),
2251 		    oia.addr16[2], ia->addr16[2], u),
2252 		    oia.addr16[3], ia->addr16[3], u),
2253 		    oia.addr16[4], ia->addr16[4], u),
2254 		    oia.addr16[5], ia->addr16[5], u),
2255 		    oia.addr16[6], ia->addr16[6], u),
2256 		    oia.addr16[7], ia->addr16[7], u);
2257 		break;
2258 #endif /* INET6 */
2259 	}
2260 	/* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */
2261 	if (oa) {
2262 		PF_ACPY(oa, na, af);
2263 		switch (af) {
2264 #ifdef INET
2265 		case AF_INET:
2266 			*hc = pf_cksum_fixup(pf_cksum_fixup(*hc,
2267 			    ooa.addr16[0], oa->addr16[0], 0),
2268 			    ooa.addr16[1], oa->addr16[1], 0);
2269 			break;
2270 #endif /* INET */
2271 #ifdef INET6
2272 		case AF_INET6:
2273 			*ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
2274 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
2275 			    pf_cksum_fixup(pf_cksum_fixup(*ic,
2276 			    ooa.addr16[0], oa->addr16[0], u),
2277 			    ooa.addr16[1], oa->addr16[1], u),
2278 			    ooa.addr16[2], oa->addr16[2], u),
2279 			    ooa.addr16[3], oa->addr16[3], u),
2280 			    ooa.addr16[4], oa->addr16[4], u),
2281 			    ooa.addr16[5], oa->addr16[5], u),
2282 			    ooa.addr16[6], oa->addr16[6], u),
2283 			    ooa.addr16[7], oa->addr16[7], u);
2284 			break;
2285 #endif /* INET6 */
2286 		}
2287 	}
2288 }
2289 
2290 
2291 /*
2292  * Need to modulate the sequence numbers in the TCP SACK option
2293  * (credits to Krzysztof Pfaff for report and patch)
2294  */
2295 static int
2296 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd,
2297     struct tcphdr *th, struct pf_state_peer *dst)
2298 {
2299 	int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen;
2300 	u_int8_t opts[TCP_MAXOLEN], *opt = opts;
2301 	int copyback = 0, i, olen;
2302 	struct sackblk sack;
2303 
2304 #define	TCPOLEN_SACKLEN	(TCPOLEN_SACK + 2)
2305 	if (hlen < TCPOLEN_SACKLEN ||
2306 	    !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af))
2307 		return 0;
2308 
2309 	while (hlen >= TCPOLEN_SACKLEN) {
2310 		olen = opt[1];
2311 		switch (*opt) {
2312 		case TCPOPT_EOL:	/* FALLTHROUGH */
2313 		case TCPOPT_NOP:
2314 			opt++;
2315 			hlen--;
2316 			break;
2317 		case TCPOPT_SACK:
2318 			if (olen > hlen)
2319 				olen = hlen;
2320 			if (olen >= TCPOLEN_SACKLEN) {
2321 				for (i = 2; i + TCPOLEN_SACK <= olen;
2322 				    i += TCPOLEN_SACK) {
2323 					memcpy(&sack, &opt[i], sizeof(sack));
2324 					pf_change_proto_a(m, &sack.start, &th->th_sum,
2325 					    htonl(ntohl(sack.start) - dst->seqdiff), 0);
2326 					pf_change_proto_a(m, &sack.end, &th->th_sum,
2327 					    htonl(ntohl(sack.end) - dst->seqdiff), 0);
2328 					memcpy(&opt[i], &sack, sizeof(sack));
2329 				}
2330 				copyback = 1;
2331 			}
2332 			/* FALLTHROUGH */
2333 		default:
2334 			if (olen < 2)
2335 				olen = 2;
2336 			hlen -= olen;
2337 			opt += olen;
2338 		}
2339 	}
2340 
2341 	if (copyback)
2342 		m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts);
2343 	return (copyback);
2344 }
2345 
2346 static void
2347 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af,
2348     const struct pf_addr *saddr, const struct pf_addr *daddr,
2349     u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
2350     u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag,
2351     u_int16_t rtag, struct ifnet *ifp)
2352 {
2353 	struct pf_send_entry *pfse;
2354 	struct mbuf	*m;
2355 	int		 len, tlen;
2356 #ifdef INET
2357 	struct ip	*h = NULL;
2358 #endif /* INET */
2359 #ifdef INET6
2360 	struct ip6_hdr	*h6 = NULL;
2361 #endif /* INET6 */
2362 	struct tcphdr	*th;
2363 	char		*opt;
2364 	struct pf_mtag  *pf_mtag;
2365 
2366 	len = 0;
2367 	th = NULL;
2368 
2369 	/* maximum segment size tcp option */
2370 	tlen = sizeof(struct tcphdr);
2371 	if (mss)
2372 		tlen += 4;
2373 
2374 	switch (af) {
2375 #ifdef INET
2376 	case AF_INET:
2377 		len = sizeof(struct ip) + tlen;
2378 		break;
2379 #endif /* INET */
2380 #ifdef INET6
2381 	case AF_INET6:
2382 		len = sizeof(struct ip6_hdr) + tlen;
2383 		break;
2384 #endif /* INET6 */
2385 	default:
2386 		panic("%s: unsupported af %d", __func__, af);
2387 	}
2388 
2389 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
2390 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
2391 	if (pfse == NULL)
2392 		return;
2393 	m = m_gethdr(M_NOWAIT, MT_DATA);
2394 	if (m == NULL) {
2395 		free(pfse, M_PFTEMP);
2396 		return;
2397 	}
2398 #ifdef MAC
2399 	mac_netinet_firewall_send(m);
2400 #endif
2401 	if ((pf_mtag = pf_get_mtag(m)) == NULL) {
2402 		free(pfse, M_PFTEMP);
2403 		m_freem(m);
2404 		return;
2405 	}
2406 	if (tag)
2407 		m->m_flags |= M_SKIP_FIREWALL;
2408 	pf_mtag->tag = rtag;
2409 
2410 	if (r != NULL && r->rtableid >= 0)
2411 		M_SETFIB(m, r->rtableid);
2412 
2413 #ifdef ALTQ
2414 	if (r != NULL && r->qid) {
2415 		pf_mtag->qid = r->qid;
2416 
2417 		/* add hints for ecn */
2418 		pf_mtag->hdr = mtod(m, struct ip *);
2419 	}
2420 #endif /* ALTQ */
2421 	m->m_data += max_linkhdr;
2422 	m->m_pkthdr.len = m->m_len = len;
2423 	m->m_pkthdr.rcvif = NULL;
2424 	bzero(m->m_data, len);
2425 	switch (af) {
2426 #ifdef INET
2427 	case AF_INET:
2428 		h = mtod(m, struct ip *);
2429 
2430 		/* IP header fields included in the TCP checksum */
2431 		h->ip_p = IPPROTO_TCP;
2432 		h->ip_len = htons(tlen);
2433 		h->ip_src.s_addr = saddr->v4.s_addr;
2434 		h->ip_dst.s_addr = daddr->v4.s_addr;
2435 
2436 		th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip));
2437 		break;
2438 #endif /* INET */
2439 #ifdef INET6
2440 	case AF_INET6:
2441 		h6 = mtod(m, struct ip6_hdr *);
2442 
2443 		/* IP header fields included in the TCP checksum */
2444 		h6->ip6_nxt = IPPROTO_TCP;
2445 		h6->ip6_plen = htons(tlen);
2446 		memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr));
2447 		memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr));
2448 
2449 		th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr));
2450 		break;
2451 #endif /* INET6 */
2452 	}
2453 
2454 	/* TCP header */
2455 	th->th_sport = sport;
2456 	th->th_dport = dport;
2457 	th->th_seq = htonl(seq);
2458 	th->th_ack = htonl(ack);
2459 	th->th_off = tlen >> 2;
2460 	th->th_flags = flags;
2461 	th->th_win = htons(win);
2462 
2463 	if (mss) {
2464 		opt = (char *)(th + 1);
2465 		opt[0] = TCPOPT_MAXSEG;
2466 		opt[1] = 4;
2467 		HTONS(mss);
2468 		bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2);
2469 	}
2470 
2471 	switch (af) {
2472 #ifdef INET
2473 	case AF_INET:
2474 		/* TCP checksum */
2475 		th->th_sum = in_cksum(m, len);
2476 
2477 		/* Finish the IP header */
2478 		h->ip_v = 4;
2479 		h->ip_hl = sizeof(*h) >> 2;
2480 		h->ip_tos = IPTOS_LOWDELAY;
2481 		h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0);
2482 		h->ip_len = htons(len);
2483 		h->ip_ttl = ttl ? ttl : V_ip_defttl;
2484 		h->ip_sum = 0;
2485 
2486 		pfse->pfse_type = PFSE_IP;
2487 		break;
2488 #endif /* INET */
2489 #ifdef INET6
2490 	case AF_INET6:
2491 		/* TCP checksum */
2492 		th->th_sum = in6_cksum(m, IPPROTO_TCP,
2493 		    sizeof(struct ip6_hdr), tlen);
2494 
2495 		h6->ip6_vfc |= IPV6_VERSION;
2496 		h6->ip6_hlim = IPV6_DEFHLIM;
2497 
2498 		pfse->pfse_type = PFSE_IP6;
2499 		break;
2500 #endif /* INET6 */
2501 	}
2502 	pfse->pfse_m = m;
2503 	pf_send(pfse);
2504 }
2505 
2506 static void
2507 pf_return(struct pf_rule *r, struct pf_rule *nr, struct pf_pdesc *pd,
2508     struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th,
2509     struct pfi_kif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen,
2510     u_short *reason)
2511 {
2512 	struct pf_addr	* const saddr = pd->src;
2513 	struct pf_addr	* const daddr = pd->dst;
2514 	sa_family_t	 af = pd->af;
2515 
2516 	/* undo NAT changes, if they have taken place */
2517 	if (nr != NULL) {
2518 		PF_ACPY(saddr, &sk->addr[pd->sidx], af);
2519 		PF_ACPY(daddr, &sk->addr[pd->didx], af);
2520 		if (pd->sport)
2521 			*pd->sport = sk->port[pd->sidx];
2522 		if (pd->dport)
2523 			*pd->dport = sk->port[pd->didx];
2524 		if (pd->proto_sum)
2525 			*pd->proto_sum = bproto_sum;
2526 		if (pd->ip_sum)
2527 			*pd->ip_sum = bip_sum;
2528 		m_copyback(m, off, hdrlen, pd->hdr.any);
2529 	}
2530 	if (pd->proto == IPPROTO_TCP &&
2531 	    ((r->rule_flag & PFRULE_RETURNRST) ||
2532 	    (r->rule_flag & PFRULE_RETURN)) &&
2533 	    !(th->th_flags & TH_RST)) {
2534 		u_int32_t	 ack = ntohl(th->th_seq) + pd->p_len;
2535 		int		 len = 0;
2536 #ifdef INET
2537 		struct ip	*h4;
2538 #endif
2539 #ifdef INET6
2540 		struct ip6_hdr	*h6;
2541 #endif
2542 
2543 		switch (af) {
2544 #ifdef INET
2545 		case AF_INET:
2546 			h4 = mtod(m, struct ip *);
2547 			len = ntohs(h4->ip_len) - off;
2548 			break;
2549 #endif
2550 #ifdef INET6
2551 		case AF_INET6:
2552 			h6 = mtod(m, struct ip6_hdr *);
2553 			len = ntohs(h6->ip6_plen) - (off - sizeof(*h6));
2554 			break;
2555 #endif
2556 		}
2557 
2558 		if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af))
2559 			REASON_SET(reason, PFRES_PROTCKSUM);
2560 		else {
2561 			if (th->th_flags & TH_SYN)
2562 				ack++;
2563 			if (th->th_flags & TH_FIN)
2564 				ack++;
2565 			pf_send_tcp(m, r, af, pd->dst,
2566 				pd->src, th->th_dport, th->th_sport,
2567 				ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0,
2568 				r->return_ttl, 1, 0, kif->pfik_ifp);
2569 		}
2570 	} else if (pd->proto != IPPROTO_ICMP && af == AF_INET &&
2571 		r->return_icmp)
2572 		pf_send_icmp(m, r->return_icmp >> 8,
2573 			r->return_icmp & 255, af, r);
2574 	else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 &&
2575 		r->return_icmp6)
2576 		pf_send_icmp(m, r->return_icmp6 >> 8,
2577 			r->return_icmp6 & 255, af, r);
2578 }
2579 
2580 
2581 static int
2582 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio)
2583 {
2584 	struct m_tag *mtag;
2585 
2586 	KASSERT(prio <= PF_PRIO_MAX,
2587 	    ("%s with invalid pcp", __func__));
2588 
2589 	mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL);
2590 	if (mtag == NULL) {
2591 		mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT,
2592 		    sizeof(uint8_t), M_NOWAIT);
2593 		if (mtag == NULL)
2594 			return (ENOMEM);
2595 		m_tag_prepend(m, mtag);
2596 	}
2597 
2598 	*(uint8_t *)(mtag + 1) = prio;
2599 	return (0);
2600 }
2601 
2602 static int
2603 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m)
2604 {
2605 	struct m_tag *mtag;
2606 	u_int8_t mpcp;
2607 
2608 	mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
2609 	if (mtag == NULL)
2610 		return (0);
2611 
2612 	if (prio == PF_PRIO_ZERO)
2613 		prio = 0;
2614 
2615 	mpcp = *(uint8_t *)(mtag + 1);
2616 
2617 	return (mpcp == prio);
2618 }
2619 
2620 static void
2621 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af,
2622     struct pf_rule *r)
2623 {
2624 	struct pf_send_entry *pfse;
2625 	struct mbuf *m0;
2626 	struct pf_mtag *pf_mtag;
2627 
2628 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
2629 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
2630 	if (pfse == NULL)
2631 		return;
2632 
2633 	if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) {
2634 		free(pfse, M_PFTEMP);
2635 		return;
2636 	}
2637 
2638 	if ((pf_mtag = pf_get_mtag(m0)) == NULL) {
2639 		free(pfse, M_PFTEMP);
2640 		return;
2641 	}
2642 	/* XXX: revisit */
2643 	m0->m_flags |= M_SKIP_FIREWALL;
2644 
2645 	if (r->rtableid >= 0)
2646 		M_SETFIB(m0, r->rtableid);
2647 
2648 #ifdef ALTQ
2649 	if (r->qid) {
2650 		pf_mtag->qid = r->qid;
2651 		/* add hints for ecn */
2652 		pf_mtag->hdr = mtod(m0, struct ip *);
2653 	}
2654 #endif /* ALTQ */
2655 
2656 	switch (af) {
2657 #ifdef INET
2658 	case AF_INET:
2659 		pfse->pfse_type = PFSE_ICMP;
2660 		break;
2661 #endif /* INET */
2662 #ifdef INET6
2663 	case AF_INET6:
2664 		pfse->pfse_type = PFSE_ICMP6;
2665 		break;
2666 #endif /* INET6 */
2667 	}
2668 	pfse->pfse_m = m0;
2669 	pfse->icmpopts.type = type;
2670 	pfse->icmpopts.code = code;
2671 	pf_send(pfse);
2672 }
2673 
2674 /*
2675  * Return 1 if the addresses a and b match (with mask m), otherwise return 0.
2676  * If n is 0, they match if they are equal. If n is != 0, they match if they
2677  * are different.
2678  */
2679 int
2680 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m,
2681     struct pf_addr *b, sa_family_t af)
2682 {
2683 	int	match = 0;
2684 
2685 	switch (af) {
2686 #ifdef INET
2687 	case AF_INET:
2688 		if ((a->addr32[0] & m->addr32[0]) ==
2689 		    (b->addr32[0] & m->addr32[0]))
2690 			match++;
2691 		break;
2692 #endif /* INET */
2693 #ifdef INET6
2694 	case AF_INET6:
2695 		if (((a->addr32[0] & m->addr32[0]) ==
2696 		     (b->addr32[0] & m->addr32[0])) &&
2697 		    ((a->addr32[1] & m->addr32[1]) ==
2698 		     (b->addr32[1] & m->addr32[1])) &&
2699 		    ((a->addr32[2] & m->addr32[2]) ==
2700 		     (b->addr32[2] & m->addr32[2])) &&
2701 		    ((a->addr32[3] & m->addr32[3]) ==
2702 		     (b->addr32[3] & m->addr32[3])))
2703 			match++;
2704 		break;
2705 #endif /* INET6 */
2706 	}
2707 	if (match) {
2708 		if (n)
2709 			return (0);
2710 		else
2711 			return (1);
2712 	} else {
2713 		if (n)
2714 			return (1);
2715 		else
2716 			return (0);
2717 	}
2718 }
2719 
2720 /*
2721  * Return 1 if b <= a <= e, otherwise return 0.
2722  */
2723 int
2724 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e,
2725     struct pf_addr *a, sa_family_t af)
2726 {
2727 	switch (af) {
2728 #ifdef INET
2729 	case AF_INET:
2730 		if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) ||
2731 		    (ntohl(a->addr32[0]) > ntohl(e->addr32[0])))
2732 			return (0);
2733 		break;
2734 #endif /* INET */
2735 #ifdef INET6
2736 	case AF_INET6: {
2737 		int	i;
2738 
2739 		/* check a >= b */
2740 		for (i = 0; i < 4; ++i)
2741 			if (ntohl(a->addr32[i]) > ntohl(b->addr32[i]))
2742 				break;
2743 			else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i]))
2744 				return (0);
2745 		/* check a <= e */
2746 		for (i = 0; i < 4; ++i)
2747 			if (ntohl(a->addr32[i]) < ntohl(e->addr32[i]))
2748 				break;
2749 			else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i]))
2750 				return (0);
2751 		break;
2752 	}
2753 #endif /* INET6 */
2754 	}
2755 	return (1);
2756 }
2757 
2758 static int
2759 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p)
2760 {
2761 	switch (op) {
2762 	case PF_OP_IRG:
2763 		return ((p > a1) && (p < a2));
2764 	case PF_OP_XRG:
2765 		return ((p < a1) || (p > a2));
2766 	case PF_OP_RRG:
2767 		return ((p >= a1) && (p <= a2));
2768 	case PF_OP_EQ:
2769 		return (p == a1);
2770 	case PF_OP_NE:
2771 		return (p != a1);
2772 	case PF_OP_LT:
2773 		return (p < a1);
2774 	case PF_OP_LE:
2775 		return (p <= a1);
2776 	case PF_OP_GT:
2777 		return (p > a1);
2778 	case PF_OP_GE:
2779 		return (p >= a1);
2780 	}
2781 	return (0); /* never reached */
2782 }
2783 
2784 int
2785 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p)
2786 {
2787 	NTOHS(a1);
2788 	NTOHS(a2);
2789 	NTOHS(p);
2790 	return (pf_match(op, a1, a2, p));
2791 }
2792 
2793 static int
2794 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u)
2795 {
2796 	if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
2797 		return (0);
2798 	return (pf_match(op, a1, a2, u));
2799 }
2800 
2801 static int
2802 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g)
2803 {
2804 	if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
2805 		return (0);
2806 	return (pf_match(op, a1, a2, g));
2807 }
2808 
2809 int
2810 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag)
2811 {
2812 	if (*tag == -1)
2813 		*tag = mtag;
2814 
2815 	return ((!r->match_tag_not && r->match_tag == *tag) ||
2816 	    (r->match_tag_not && r->match_tag != *tag));
2817 }
2818 
2819 int
2820 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag)
2821 {
2822 
2823 	KASSERT(tag > 0, ("%s: tag %d", __func__, tag));
2824 
2825 	if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL))
2826 		return (ENOMEM);
2827 
2828 	pd->pf_mtag->tag = tag;
2829 
2830 	return (0);
2831 }
2832 
2833 #define	PF_ANCHOR_STACKSIZE	32
2834 struct pf_anchor_stackframe {
2835 	struct pf_ruleset	*rs;
2836 	struct pf_rule		*r;	/* XXX: + match bit */
2837 	struct pf_anchor	*child;
2838 };
2839 
2840 /*
2841  * XXX: We rely on malloc(9) returning pointer aligned addresses.
2842  */
2843 #define	PF_ANCHORSTACK_MATCH	0x00000001
2844 #define	PF_ANCHORSTACK_MASK	(PF_ANCHORSTACK_MATCH)
2845 
2846 #define	PF_ANCHOR_MATCH(f)	((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
2847 #define	PF_ANCHOR_RULE(f)	(struct pf_rule *)			\
2848 				((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
2849 #define	PF_ANCHOR_SET_MATCH(f)	do { (f)->r = (void *) 			\
2850 				((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH);  \
2851 } while (0)
2852 
2853 void
2854 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth,
2855     struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a,
2856     int *match)
2857 {
2858 	struct pf_anchor_stackframe	*f;
2859 
2860 	PF_RULES_RASSERT();
2861 
2862 	if (match)
2863 		*match = 0;
2864 	if (*depth >= PF_ANCHOR_STACKSIZE) {
2865 		printf("%s: anchor stack overflow on %s\n",
2866 		    __func__, (*r)->anchor->name);
2867 		*r = TAILQ_NEXT(*r, entries);
2868 		return;
2869 	} else if (*depth == 0 && a != NULL)
2870 		*a = *r;
2871 	f = stack + (*depth)++;
2872 	f->rs = *rs;
2873 	f->r = *r;
2874 	if ((*r)->anchor_wildcard) {
2875 		struct pf_anchor_node *parent = &(*r)->anchor->children;
2876 
2877 		if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) {
2878 			*r = NULL;
2879 			return;
2880 		}
2881 		*rs = &f->child->ruleset;
2882 	} else {
2883 		f->child = NULL;
2884 		*rs = &(*r)->anchor->ruleset;
2885 	}
2886 	*r = TAILQ_FIRST((*rs)->rules[n].active.ptr);
2887 }
2888 
2889 int
2890 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth,
2891     struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a,
2892     int *match)
2893 {
2894 	struct pf_anchor_stackframe	*f;
2895 	struct pf_rule *fr;
2896 	int quick = 0;
2897 
2898 	PF_RULES_RASSERT();
2899 
2900 	do {
2901 		if (*depth <= 0)
2902 			break;
2903 		f = stack + *depth - 1;
2904 		fr = PF_ANCHOR_RULE(f);
2905 		if (f->child != NULL) {
2906 			struct pf_anchor_node *parent;
2907 
2908 			/*
2909 			 * This block traverses through
2910 			 * a wildcard anchor.
2911 			 */
2912 			parent = &fr->anchor->children;
2913 			if (match != NULL && *match) {
2914 				/*
2915 				 * If any of "*" matched, then
2916 				 * "foo/ *" matched, mark frame
2917 				 * appropriately.
2918 				 */
2919 				PF_ANCHOR_SET_MATCH(f);
2920 				*match = 0;
2921 			}
2922 			f->child = RB_NEXT(pf_anchor_node, parent, f->child);
2923 			if (f->child != NULL) {
2924 				*rs = &f->child->ruleset;
2925 				*r = TAILQ_FIRST((*rs)->rules[n].active.ptr);
2926 				if (*r == NULL)
2927 					continue;
2928 				else
2929 					break;
2930 			}
2931 		}
2932 		(*depth)--;
2933 		if (*depth == 0 && a != NULL)
2934 			*a = NULL;
2935 		*rs = f->rs;
2936 		if (PF_ANCHOR_MATCH(f) || (match != NULL && *match))
2937 			quick = fr->quick;
2938 		*r = TAILQ_NEXT(fr, entries);
2939 	} while (*r == NULL);
2940 
2941 	return (quick);
2942 }
2943 
2944 #ifdef INET6
2945 void
2946 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr,
2947     struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af)
2948 {
2949 	switch (af) {
2950 #ifdef INET
2951 	case AF_INET:
2952 		naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
2953 		((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
2954 		break;
2955 #endif /* INET */
2956 	case AF_INET6:
2957 		naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
2958 		((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
2959 		naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) |
2960 		((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]);
2961 		naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) |
2962 		((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]);
2963 		naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) |
2964 		((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]);
2965 		break;
2966 	}
2967 }
2968 
2969 void
2970 pf_addr_inc(struct pf_addr *addr, sa_family_t af)
2971 {
2972 	switch (af) {
2973 #ifdef INET
2974 	case AF_INET:
2975 		addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1);
2976 		break;
2977 #endif /* INET */
2978 	case AF_INET6:
2979 		if (addr->addr32[3] == 0xffffffff) {
2980 			addr->addr32[3] = 0;
2981 			if (addr->addr32[2] == 0xffffffff) {
2982 				addr->addr32[2] = 0;
2983 				if (addr->addr32[1] == 0xffffffff) {
2984 					addr->addr32[1] = 0;
2985 					addr->addr32[0] =
2986 					    htonl(ntohl(addr->addr32[0]) + 1);
2987 				} else
2988 					addr->addr32[1] =
2989 					    htonl(ntohl(addr->addr32[1]) + 1);
2990 			} else
2991 				addr->addr32[2] =
2992 				    htonl(ntohl(addr->addr32[2]) + 1);
2993 		} else
2994 			addr->addr32[3] =
2995 			    htonl(ntohl(addr->addr32[3]) + 1);
2996 		break;
2997 	}
2998 }
2999 #endif /* INET6 */
3000 
3001 int
3002 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m)
3003 {
3004 	struct pf_addr		*saddr, *daddr;
3005 	u_int16_t		 sport, dport;
3006 	struct inpcbinfo	*pi;
3007 	struct inpcb		*inp;
3008 
3009 	pd->lookup.uid = UID_MAX;
3010 	pd->lookup.gid = GID_MAX;
3011 
3012 	switch (pd->proto) {
3013 	case IPPROTO_TCP:
3014 		if (pd->hdr.tcp == NULL)
3015 			return (-1);
3016 		sport = pd->hdr.tcp->th_sport;
3017 		dport = pd->hdr.tcp->th_dport;
3018 		pi = &V_tcbinfo;
3019 		break;
3020 	case IPPROTO_UDP:
3021 		if (pd->hdr.udp == NULL)
3022 			return (-1);
3023 		sport = pd->hdr.udp->uh_sport;
3024 		dport = pd->hdr.udp->uh_dport;
3025 		pi = &V_udbinfo;
3026 		break;
3027 	default:
3028 		return (-1);
3029 	}
3030 	if (direction == PF_IN) {
3031 		saddr = pd->src;
3032 		daddr = pd->dst;
3033 	} else {
3034 		u_int16_t	p;
3035 
3036 		p = sport;
3037 		sport = dport;
3038 		dport = p;
3039 		saddr = pd->dst;
3040 		daddr = pd->src;
3041 	}
3042 	switch (pd->af) {
3043 #ifdef INET
3044 	case AF_INET:
3045 		inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4,
3046 		    dport, INPLOOKUP_RLOCKPCB, NULL, m);
3047 		if (inp == NULL) {
3048 			inp = in_pcblookup_mbuf(pi, saddr->v4, sport,
3049 			   daddr->v4, dport, INPLOOKUP_WILDCARD |
3050 			   INPLOOKUP_RLOCKPCB, NULL, m);
3051 			if (inp == NULL)
3052 				return (-1);
3053 		}
3054 		break;
3055 #endif /* INET */
3056 #ifdef INET6
3057 	case AF_INET6:
3058 		inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6,
3059 		    dport, INPLOOKUP_RLOCKPCB, NULL, m);
3060 		if (inp == NULL) {
3061 			inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport,
3062 			    &daddr->v6, dport, INPLOOKUP_WILDCARD |
3063 			    INPLOOKUP_RLOCKPCB, NULL, m);
3064 			if (inp == NULL)
3065 				return (-1);
3066 		}
3067 		break;
3068 #endif /* INET6 */
3069 
3070 	default:
3071 		return (-1);
3072 	}
3073 	INP_RLOCK_ASSERT(inp);
3074 	pd->lookup.uid = inp->inp_cred->cr_uid;
3075 	pd->lookup.gid = inp->inp_cred->cr_groups[0];
3076 	INP_RUNLOCK(inp);
3077 
3078 	return (1);
3079 }
3080 
3081 static u_int8_t
3082 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af)
3083 {
3084 	int		 hlen;
3085 	u_int8_t	 hdr[60];
3086 	u_int8_t	*opt, optlen;
3087 	u_int8_t	 wscale = 0;
3088 
3089 	hlen = th_off << 2;		/* hlen <= sizeof(hdr) */
3090 	if (hlen <= sizeof(struct tcphdr))
3091 		return (0);
3092 	if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af))
3093 		return (0);
3094 	opt = hdr + sizeof(struct tcphdr);
3095 	hlen -= sizeof(struct tcphdr);
3096 	while (hlen >= 3) {
3097 		switch (*opt) {
3098 		case TCPOPT_EOL:
3099 		case TCPOPT_NOP:
3100 			++opt;
3101 			--hlen;
3102 			break;
3103 		case TCPOPT_WINDOW:
3104 			wscale = opt[2];
3105 			if (wscale > TCP_MAX_WINSHIFT)
3106 				wscale = TCP_MAX_WINSHIFT;
3107 			wscale |= PF_WSCALE_FLAG;
3108 			/* FALLTHROUGH */
3109 		default:
3110 			optlen = opt[1];
3111 			if (optlen < 2)
3112 				optlen = 2;
3113 			hlen -= optlen;
3114 			opt += optlen;
3115 			break;
3116 		}
3117 	}
3118 	return (wscale);
3119 }
3120 
3121 static u_int16_t
3122 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af)
3123 {
3124 	int		 hlen;
3125 	u_int8_t	 hdr[60];
3126 	u_int8_t	*opt, optlen;
3127 	u_int16_t	 mss = V_tcp_mssdflt;
3128 
3129 	hlen = th_off << 2;	/* hlen <= sizeof(hdr) */
3130 	if (hlen <= sizeof(struct tcphdr))
3131 		return (0);
3132 	if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af))
3133 		return (0);
3134 	opt = hdr + sizeof(struct tcphdr);
3135 	hlen -= sizeof(struct tcphdr);
3136 	while (hlen >= TCPOLEN_MAXSEG) {
3137 		switch (*opt) {
3138 		case TCPOPT_EOL:
3139 		case TCPOPT_NOP:
3140 			++opt;
3141 			--hlen;
3142 			break;
3143 		case TCPOPT_MAXSEG:
3144 			bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2);
3145 			NTOHS(mss);
3146 			/* FALLTHROUGH */
3147 		default:
3148 			optlen = opt[1];
3149 			if (optlen < 2)
3150 				optlen = 2;
3151 			hlen -= optlen;
3152 			opt += optlen;
3153 			break;
3154 		}
3155 	}
3156 	return (mss);
3157 }
3158 
3159 static u_int16_t
3160 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer)
3161 {
3162 #ifdef INET
3163 	struct nhop4_basic	nh4;
3164 #endif /* INET */
3165 #ifdef INET6
3166 	struct nhop6_basic	nh6;
3167 	struct in6_addr		dst6;
3168 	uint32_t		scopeid;
3169 #endif /* INET6 */
3170 	int			 hlen = 0;
3171 	uint16_t		 mss = 0;
3172 
3173 	switch (af) {
3174 #ifdef INET
3175 	case AF_INET:
3176 		hlen = sizeof(struct ip);
3177 		if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) == 0)
3178 			mss = nh4.nh_mtu - hlen - sizeof(struct tcphdr);
3179 		break;
3180 #endif /* INET */
3181 #ifdef INET6
3182 	case AF_INET6:
3183 		hlen = sizeof(struct ip6_hdr);
3184 		in6_splitscope(&addr->v6, &dst6, &scopeid);
3185 		if (fib6_lookup_nh_basic(rtableid, &dst6, scopeid, 0,0,&nh6)==0)
3186 			mss = nh6.nh_mtu - hlen - sizeof(struct tcphdr);
3187 		break;
3188 #endif /* INET6 */
3189 	}
3190 
3191 	mss = max(V_tcp_mssdflt, mss);
3192 	mss = min(mss, offer);
3193 	mss = max(mss, 64);		/* sanity - at least max opt space */
3194 	return (mss);
3195 }
3196 
3197 static u_int32_t
3198 pf_tcp_iss(struct pf_pdesc *pd)
3199 {
3200 	MD5_CTX ctx;
3201 	u_int32_t digest[4];
3202 
3203 	if (V_pf_tcp_secret_init == 0) {
3204 		read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret));
3205 		MD5Init(&V_pf_tcp_secret_ctx);
3206 		MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret,
3207 		    sizeof(V_pf_tcp_secret));
3208 		V_pf_tcp_secret_init = 1;
3209 	}
3210 
3211 	ctx = V_pf_tcp_secret_ctx;
3212 
3213 	MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short));
3214 	MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short));
3215 	if (pd->af == AF_INET6) {
3216 		MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr));
3217 		MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr));
3218 	} else {
3219 		MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr));
3220 		MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr));
3221 	}
3222 	MD5Final((u_char *)digest, &ctx);
3223 	V_pf_tcp_iss_off += 4096;
3224 #define	ISN_RANDOM_INCREMENT (4096 - 1)
3225 	return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) +
3226 	    V_pf_tcp_iss_off);
3227 #undef	ISN_RANDOM_INCREMENT
3228 }
3229 
3230 static int
3231 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction,
3232     struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd,
3233     struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp)
3234 {
3235 	struct pf_rule		*nr = NULL;
3236 	struct pf_addr		* const saddr = pd->src;
3237 	struct pf_addr		* const daddr = pd->dst;
3238 	sa_family_t		 af = pd->af;
3239 	struct pf_rule		*r, *a = NULL;
3240 	struct pf_ruleset	*ruleset = NULL;
3241 	struct pf_src_node	*nsn = NULL;
3242 	struct tcphdr		*th = pd->hdr.tcp;
3243 	struct pf_state_key	*sk = NULL, *nk = NULL;
3244 	u_short			 reason;
3245 	int			 rewrite = 0, hdrlen = 0;
3246 	int			 tag = -1, rtableid = -1;
3247 	int			 asd = 0;
3248 	int			 match = 0;
3249 	int			 state_icmp = 0;
3250 	u_int16_t		 sport = 0, dport = 0;
3251 	u_int16_t		 bproto_sum = 0, bip_sum = 0;
3252 	u_int8_t		 icmptype = 0, icmpcode = 0;
3253 	struct pf_anchor_stackframe	anchor_stack[PF_ANCHOR_STACKSIZE];
3254 
3255 	PF_RULES_RASSERT();
3256 
3257 	if (inp != NULL) {
3258 		INP_LOCK_ASSERT(inp);
3259 		pd->lookup.uid = inp->inp_cred->cr_uid;
3260 		pd->lookup.gid = inp->inp_cred->cr_groups[0];
3261 		pd->lookup.done = 1;
3262 	}
3263 
3264 	switch (pd->proto) {
3265 	case IPPROTO_TCP:
3266 		sport = th->th_sport;
3267 		dport = th->th_dport;
3268 		hdrlen = sizeof(*th);
3269 		break;
3270 	case IPPROTO_UDP:
3271 		sport = pd->hdr.udp->uh_sport;
3272 		dport = pd->hdr.udp->uh_dport;
3273 		hdrlen = sizeof(*pd->hdr.udp);
3274 		break;
3275 #ifdef INET
3276 	case IPPROTO_ICMP:
3277 		if (pd->af != AF_INET)
3278 			break;
3279 		sport = dport = pd->hdr.icmp->icmp_id;
3280 		hdrlen = sizeof(*pd->hdr.icmp);
3281 		icmptype = pd->hdr.icmp->icmp_type;
3282 		icmpcode = pd->hdr.icmp->icmp_code;
3283 
3284 		if (icmptype == ICMP_UNREACH ||
3285 		    icmptype == ICMP_SOURCEQUENCH ||
3286 		    icmptype == ICMP_REDIRECT ||
3287 		    icmptype == ICMP_TIMXCEED ||
3288 		    icmptype == ICMP_PARAMPROB)
3289 			state_icmp++;
3290 		break;
3291 #endif /* INET */
3292 #ifdef INET6
3293 	case IPPROTO_ICMPV6:
3294 		if (af != AF_INET6)
3295 			break;
3296 		sport = dport = pd->hdr.icmp6->icmp6_id;
3297 		hdrlen = sizeof(*pd->hdr.icmp6);
3298 		icmptype = pd->hdr.icmp6->icmp6_type;
3299 		icmpcode = pd->hdr.icmp6->icmp6_code;
3300 
3301 		if (icmptype == ICMP6_DST_UNREACH ||
3302 		    icmptype == ICMP6_PACKET_TOO_BIG ||
3303 		    icmptype == ICMP6_TIME_EXCEEDED ||
3304 		    icmptype == ICMP6_PARAM_PROB)
3305 			state_icmp++;
3306 		break;
3307 #endif /* INET6 */
3308 	default:
3309 		sport = dport = hdrlen = 0;
3310 		break;
3311 	}
3312 
3313 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr);
3314 
3315 	/* check packet for BINAT/NAT/RDR */
3316 	if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk,
3317 	    &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) {
3318 		KASSERT(sk != NULL, ("%s: null sk", __func__));
3319 		KASSERT(nk != NULL, ("%s: null nk", __func__));
3320 
3321 		if (pd->ip_sum)
3322 			bip_sum = *pd->ip_sum;
3323 
3324 		switch (pd->proto) {
3325 		case IPPROTO_TCP:
3326 			bproto_sum = th->th_sum;
3327 			pd->proto_sum = &th->th_sum;
3328 
3329 			if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) ||
3330 			    nk->port[pd->sidx] != sport) {
3331 				pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum,
3332 				    &th->th_sum, &nk->addr[pd->sidx],
3333 				    nk->port[pd->sidx], 0, af);
3334 				pd->sport = &th->th_sport;
3335 				sport = th->th_sport;
3336 			}
3337 
3338 			if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) ||
3339 			    nk->port[pd->didx] != dport) {
3340 				pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum,
3341 				    &th->th_sum, &nk->addr[pd->didx],
3342 				    nk->port[pd->didx], 0, af);
3343 				dport = th->th_dport;
3344 				pd->dport = &th->th_dport;
3345 			}
3346 			rewrite++;
3347 			break;
3348 		case IPPROTO_UDP:
3349 			bproto_sum = pd->hdr.udp->uh_sum;
3350 			pd->proto_sum = &pd->hdr.udp->uh_sum;
3351 
3352 			if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) ||
3353 			    nk->port[pd->sidx] != sport) {
3354 				pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport,
3355 				    pd->ip_sum, &pd->hdr.udp->uh_sum,
3356 				    &nk->addr[pd->sidx],
3357 				    nk->port[pd->sidx], 1, af);
3358 				sport = pd->hdr.udp->uh_sport;
3359 				pd->sport = &pd->hdr.udp->uh_sport;
3360 			}
3361 
3362 			if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) ||
3363 			    nk->port[pd->didx] != dport) {
3364 				pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport,
3365 				    pd->ip_sum, &pd->hdr.udp->uh_sum,
3366 				    &nk->addr[pd->didx],
3367 				    nk->port[pd->didx], 1, af);
3368 				dport = pd->hdr.udp->uh_dport;
3369 				pd->dport = &pd->hdr.udp->uh_dport;
3370 			}
3371 			rewrite++;
3372 			break;
3373 #ifdef INET
3374 		case IPPROTO_ICMP:
3375 			nk->port[0] = nk->port[1];
3376 			if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET))
3377 				pf_change_a(&saddr->v4.s_addr, pd->ip_sum,
3378 				    nk->addr[pd->sidx].v4.s_addr, 0);
3379 
3380 			if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET))
3381 				pf_change_a(&daddr->v4.s_addr, pd->ip_sum,
3382 				    nk->addr[pd->didx].v4.s_addr, 0);
3383 
3384 			if (nk->port[1] != pd->hdr.icmp->icmp_id) {
3385 				pd->hdr.icmp->icmp_cksum = pf_cksum_fixup(
3386 				    pd->hdr.icmp->icmp_cksum, sport,
3387 				    nk->port[1], 0);
3388 				pd->hdr.icmp->icmp_id = nk->port[1];
3389 				pd->sport = &pd->hdr.icmp->icmp_id;
3390 			}
3391 			m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp);
3392 			break;
3393 #endif /* INET */
3394 #ifdef INET6
3395 		case IPPROTO_ICMPV6:
3396 			nk->port[0] = nk->port[1];
3397 			if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6))
3398 				pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum,
3399 				    &nk->addr[pd->sidx], 0);
3400 
3401 			if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6))
3402 				pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum,
3403 				    &nk->addr[pd->didx], 0);
3404 			rewrite++;
3405 			break;
3406 #endif /* INET */
3407 		default:
3408 			switch (af) {
3409 #ifdef INET
3410 			case AF_INET:
3411 				if (PF_ANEQ(saddr,
3412 				    &nk->addr[pd->sidx], AF_INET))
3413 					pf_change_a(&saddr->v4.s_addr,
3414 					    pd->ip_sum,
3415 					    nk->addr[pd->sidx].v4.s_addr, 0);
3416 
3417 				if (PF_ANEQ(daddr,
3418 				    &nk->addr[pd->didx], AF_INET))
3419 					pf_change_a(&daddr->v4.s_addr,
3420 					    pd->ip_sum,
3421 					    nk->addr[pd->didx].v4.s_addr, 0);
3422 				break;
3423 #endif /* INET */
3424 #ifdef INET6
3425 			case AF_INET6:
3426 				if (PF_ANEQ(saddr,
3427 				    &nk->addr[pd->sidx], AF_INET6))
3428 					PF_ACPY(saddr, &nk->addr[pd->sidx], af);
3429 
3430 				if (PF_ANEQ(daddr,
3431 				    &nk->addr[pd->didx], AF_INET6))
3432 					PF_ACPY(saddr, &nk->addr[pd->didx], af);
3433 				break;
3434 #endif /* INET */
3435 			}
3436 			break;
3437 		}
3438 		if (nr->natpass)
3439 			r = NULL;
3440 		pd->nat_rule = nr;
3441 	}
3442 
3443 	while (r != NULL) {
3444 		r->evaluations++;
3445 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
3446 			r = r->skip[PF_SKIP_IFP].ptr;
3447 		else if (r->direction && r->direction != direction)
3448 			r = r->skip[PF_SKIP_DIR].ptr;
3449 		else if (r->af && r->af != af)
3450 			r = r->skip[PF_SKIP_AF].ptr;
3451 		else if (r->proto && r->proto != pd->proto)
3452 			r = r->skip[PF_SKIP_PROTO].ptr;
3453 		else if (PF_MISMATCHAW(&r->src.addr, saddr, af,
3454 		    r->src.neg, kif, M_GETFIB(m)))
3455 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
3456 		/* tcp/udp only. port_op always 0 in other cases */
3457 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
3458 		    r->src.port[0], r->src.port[1], sport))
3459 			r = r->skip[PF_SKIP_SRC_PORT].ptr;
3460 		else if (PF_MISMATCHAW(&r->dst.addr, daddr, af,
3461 		    r->dst.neg, NULL, M_GETFIB(m)))
3462 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
3463 		/* tcp/udp only. port_op always 0 in other cases */
3464 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
3465 		    r->dst.port[0], r->dst.port[1], dport))
3466 			r = r->skip[PF_SKIP_DST_PORT].ptr;
3467 		/* icmp only. type always 0 in other cases */
3468 		else if (r->type && r->type != icmptype + 1)
3469 			r = TAILQ_NEXT(r, entries);
3470 		/* icmp only. type always 0 in other cases */
3471 		else if (r->code && r->code != icmpcode + 1)
3472 			r = TAILQ_NEXT(r, entries);
3473 		else if (r->tos && !(r->tos == pd->tos))
3474 			r = TAILQ_NEXT(r, entries);
3475 		else if (r->rule_flag & PFRULE_FRAGMENT)
3476 			r = TAILQ_NEXT(r, entries);
3477 		else if (pd->proto == IPPROTO_TCP &&
3478 		    (r->flagset & th->th_flags) != r->flags)
3479 			r = TAILQ_NEXT(r, entries);
3480 		/* tcp/udp only. uid.op always 0 in other cases */
3481 		else if (r->uid.op && (pd->lookup.done || (pd->lookup.done =
3482 		    pf_socket_lookup(direction, pd, m), 1)) &&
3483 		    !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1],
3484 		    pd->lookup.uid))
3485 			r = TAILQ_NEXT(r, entries);
3486 		/* tcp/udp only. gid.op always 0 in other cases */
3487 		else if (r->gid.op && (pd->lookup.done || (pd->lookup.done =
3488 		    pf_socket_lookup(direction, pd, m), 1)) &&
3489 		    !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1],
3490 		    pd->lookup.gid))
3491 			r = TAILQ_NEXT(r, entries);
3492 		else if (r->prio &&
3493 		    !pf_match_ieee8021q_pcp(r->prio, m))
3494 			r = TAILQ_NEXT(r, entries);
3495 		else if (r->prob &&
3496 		    r->prob <= arc4random())
3497 			r = TAILQ_NEXT(r, entries);
3498 		else if (r->match_tag && !pf_match_tag(m, r, &tag,
3499 		    pd->pf_mtag ? pd->pf_mtag->tag : 0))
3500 			r = TAILQ_NEXT(r, entries);
3501 		else if (r->os_fingerprint != PF_OSFP_ANY &&
3502 		    (pd->proto != IPPROTO_TCP || !pf_osfp_match(
3503 		    pf_osfp_fingerprint(pd, m, off, th),
3504 		    r->os_fingerprint)))
3505 			r = TAILQ_NEXT(r, entries);
3506 		else {
3507 			if (r->tag)
3508 				tag = r->tag;
3509 			if (r->rtableid >= 0)
3510 				rtableid = r->rtableid;
3511 			if (r->anchor == NULL) {
3512 				match = 1;
3513 				*rm = r;
3514 				*am = a;
3515 				*rsm = ruleset;
3516 				if ((*rm)->quick)
3517 					break;
3518 				r = TAILQ_NEXT(r, entries);
3519 			} else
3520 				pf_step_into_anchor(anchor_stack, &asd,
3521 				    &ruleset, PF_RULESET_FILTER, &r, &a,
3522 				    &match);
3523 		}
3524 		if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd,
3525 		    &ruleset, PF_RULESET_FILTER, &r, &a, &match))
3526 			break;
3527 	}
3528 	r = *rm;
3529 	a = *am;
3530 	ruleset = *rsm;
3531 
3532 	REASON_SET(&reason, PFRES_MATCH);
3533 
3534 	if (r->log || (nr != NULL && nr->log)) {
3535 		if (rewrite)
3536 			m_copyback(m, off, hdrlen, pd->hdr.any);
3537 		PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a,
3538 		    ruleset, pd, 1);
3539 	}
3540 
3541 	if ((r->action == PF_DROP) &&
3542 	    ((r->rule_flag & PFRULE_RETURNRST) ||
3543 	    (r->rule_flag & PFRULE_RETURNICMP) ||
3544 	    (r->rule_flag & PFRULE_RETURN))) {
3545 		pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum,
3546 		    bip_sum, hdrlen, &reason);
3547 	}
3548 
3549 	if (r->action == PF_DROP)
3550 		goto cleanup;
3551 
3552 	if (tag > 0 && pf_tag_packet(m, pd, tag)) {
3553 		REASON_SET(&reason, PFRES_MEMORY);
3554 		goto cleanup;
3555 	}
3556 	if (rtableid >= 0)
3557 		M_SETFIB(m, rtableid);
3558 
3559 	if (!state_icmp && (r->keep_state || nr != NULL ||
3560 	    (pd->flags & PFDESC_TCP_NORM))) {
3561 		int action;
3562 		action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off,
3563 		    sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum,
3564 		    hdrlen);
3565 		if (action != PF_PASS) {
3566 			if (action == PF_DROP &&
3567 			    (r->rule_flag & PFRULE_RETURN))
3568 				pf_return(r, nr, pd, sk, off, m, th, kif,
3569 				    bproto_sum, bip_sum, hdrlen, &reason);
3570 			return (action);
3571 		}
3572 	} else {
3573 		if (sk != NULL)
3574 			uma_zfree(V_pf_state_key_z, sk);
3575 		if (nk != NULL)
3576 			uma_zfree(V_pf_state_key_z, nk);
3577 	}
3578 
3579 	/* copy back packet headers if we performed NAT operations */
3580 	if (rewrite)
3581 		m_copyback(m, off, hdrlen, pd->hdr.any);
3582 
3583 	if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) &&
3584 	    direction == PF_OUT &&
3585 	    pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m))
3586 		/*
3587 		 * We want the state created, but we dont
3588 		 * want to send this in case a partner
3589 		 * firewall has to know about it to allow
3590 		 * replies through it.
3591 		 */
3592 		return (PF_DEFER);
3593 
3594 	return (PF_PASS);
3595 
3596 cleanup:
3597 	if (sk != NULL)
3598 		uma_zfree(V_pf_state_key_z, sk);
3599 	if (nk != NULL)
3600 		uma_zfree(V_pf_state_key_z, nk);
3601 	return (PF_DROP);
3602 }
3603 
3604 static int
3605 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a,
3606     struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk,
3607     struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport,
3608     u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm,
3609     int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen)
3610 {
3611 	struct pf_state		*s = NULL;
3612 	struct pf_src_node	*sn = NULL;
3613 	struct tcphdr		*th = pd->hdr.tcp;
3614 	u_int16_t		 mss = V_tcp_mssdflt;
3615 	u_short			 reason;
3616 
3617 	/* check maximums */
3618 	if (r->max_states &&
3619 	    (counter_u64_fetch(r->states_cur) >= r->max_states)) {
3620 		counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1);
3621 		REASON_SET(&reason, PFRES_MAXSTATES);
3622 		goto csfailed;
3623 	}
3624 	/* src node for filter rule */
3625 	if ((r->rule_flag & PFRULE_SRCTRACK ||
3626 	    r->rpool.opts & PF_POOL_STICKYADDR) &&
3627 	    pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) {
3628 		REASON_SET(&reason, PFRES_SRCLIMIT);
3629 		goto csfailed;
3630 	}
3631 	/* src node for translation rule */
3632 	if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) &&
3633 	    pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) {
3634 		REASON_SET(&reason, PFRES_SRCLIMIT);
3635 		goto csfailed;
3636 	}
3637 	s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO);
3638 	if (s == NULL) {
3639 		REASON_SET(&reason, PFRES_MEMORY);
3640 		goto csfailed;
3641 	}
3642 	s->rule.ptr = r;
3643 	s->nat_rule.ptr = nr;
3644 	s->anchor.ptr = a;
3645 	STATE_INC_COUNTERS(s);
3646 	if (r->allow_opts)
3647 		s->state_flags |= PFSTATE_ALLOWOPTS;
3648 	if (r->rule_flag & PFRULE_STATESLOPPY)
3649 		s->state_flags |= PFSTATE_SLOPPY;
3650 	s->log = r->log & PF_LOG_ALL;
3651 	s->sync_state = PFSYNC_S_NONE;
3652 	if (nr != NULL)
3653 		s->log |= nr->log & PF_LOG_ALL;
3654 	switch (pd->proto) {
3655 	case IPPROTO_TCP:
3656 		s->src.seqlo = ntohl(th->th_seq);
3657 		s->src.seqhi = s->src.seqlo + pd->p_len + 1;
3658 		if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN &&
3659 		    r->keep_state == PF_STATE_MODULATE) {
3660 			/* Generate sequence number modulator */
3661 			if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) ==
3662 			    0)
3663 				s->src.seqdiff = 1;
3664 			pf_change_proto_a(m, &th->th_seq, &th->th_sum,
3665 			    htonl(s->src.seqlo + s->src.seqdiff), 0);
3666 			*rewrite = 1;
3667 		} else
3668 			s->src.seqdiff = 0;
3669 		if (th->th_flags & TH_SYN) {
3670 			s->src.seqhi++;
3671 			s->src.wscale = pf_get_wscale(m, off,
3672 			    th->th_off, pd->af);
3673 		}
3674 		s->src.max_win = MAX(ntohs(th->th_win), 1);
3675 		if (s->src.wscale & PF_WSCALE_MASK) {
3676 			/* Remove scale factor from initial window */
3677 			int win = s->src.max_win;
3678 			win += 1 << (s->src.wscale & PF_WSCALE_MASK);
3679 			s->src.max_win = (win - 1) >>
3680 			    (s->src.wscale & PF_WSCALE_MASK);
3681 		}
3682 		if (th->th_flags & TH_FIN)
3683 			s->src.seqhi++;
3684 		s->dst.seqhi = 1;
3685 		s->dst.max_win = 1;
3686 		s->src.state = TCPS_SYN_SENT;
3687 		s->dst.state = TCPS_CLOSED;
3688 		s->timeout = PFTM_TCP_FIRST_PACKET;
3689 		break;
3690 	case IPPROTO_UDP:
3691 		s->src.state = PFUDPS_SINGLE;
3692 		s->dst.state = PFUDPS_NO_TRAFFIC;
3693 		s->timeout = PFTM_UDP_FIRST_PACKET;
3694 		break;
3695 	case IPPROTO_ICMP:
3696 #ifdef INET6
3697 	case IPPROTO_ICMPV6:
3698 #endif
3699 		s->timeout = PFTM_ICMP_FIRST_PACKET;
3700 		break;
3701 	default:
3702 		s->src.state = PFOTHERS_SINGLE;
3703 		s->dst.state = PFOTHERS_NO_TRAFFIC;
3704 		s->timeout = PFTM_OTHER_FIRST_PACKET;
3705 	}
3706 
3707 	if (r->rt) {
3708 		if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) {
3709 			REASON_SET(&reason, PFRES_MAPFAILED);
3710 			pf_src_tree_remove_state(s);
3711 			STATE_DEC_COUNTERS(s);
3712 			uma_zfree(V_pf_state_z, s);
3713 			goto csfailed;
3714 		}
3715 		s->rt_kif = r->rpool.cur->kif;
3716 	}
3717 
3718 	s->creation = time_uptime;
3719 	s->expire = time_uptime;
3720 
3721 	if (sn != NULL)
3722 		s->src_node = sn;
3723 	if (nsn != NULL) {
3724 		/* XXX We only modify one side for now. */
3725 		PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af);
3726 		s->nat_src_node = nsn;
3727 	}
3728 	if (pd->proto == IPPROTO_TCP) {
3729 		if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m,
3730 		    off, pd, th, &s->src, &s->dst)) {
3731 			REASON_SET(&reason, PFRES_MEMORY);
3732 			pf_src_tree_remove_state(s);
3733 			STATE_DEC_COUNTERS(s);
3734 			uma_zfree(V_pf_state_z, s);
3735 			return (PF_DROP);
3736 		}
3737 		if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub &&
3738 		    pf_normalize_tcp_stateful(m, off, pd, &reason, th, s,
3739 		    &s->src, &s->dst, rewrite)) {
3740 			/* This really shouldn't happen!!! */
3741 			DPFPRINTF(PF_DEBUG_URGENT,
3742 			    ("pf_normalize_tcp_stateful failed on first pkt"));
3743 			pf_normalize_tcp_cleanup(s);
3744 			pf_src_tree_remove_state(s);
3745 			STATE_DEC_COUNTERS(s);
3746 			uma_zfree(V_pf_state_z, s);
3747 			return (PF_DROP);
3748 		}
3749 	}
3750 	s->direction = pd->dir;
3751 
3752 	/*
3753 	 * sk/nk could already been setup by pf_get_translation().
3754 	 */
3755 	if (nr == NULL) {
3756 		KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p",
3757 		    __func__, nr, sk, nk));
3758 		sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport);
3759 		if (sk == NULL)
3760 			goto csfailed;
3761 		nk = sk;
3762 	} else
3763 		KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p",
3764 		    __func__, nr, sk, nk));
3765 
3766 	/* Swap sk/nk for PF_OUT. */
3767 	if (pf_state_insert(BOUND_IFACE(r, kif),
3768 	    (pd->dir == PF_IN) ? sk : nk,
3769 	    (pd->dir == PF_IN) ? nk : sk, s)) {
3770 		if (pd->proto == IPPROTO_TCP)
3771 			pf_normalize_tcp_cleanup(s);
3772 		REASON_SET(&reason, PFRES_STATEINS);
3773 		pf_src_tree_remove_state(s);
3774 		STATE_DEC_COUNTERS(s);
3775 		uma_zfree(V_pf_state_z, s);
3776 		return (PF_DROP);
3777 	} else
3778 		*sm = s;
3779 
3780 	if (tag > 0)
3781 		s->tag = tag;
3782 	if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) ==
3783 	    TH_SYN && r->keep_state == PF_STATE_SYNPROXY) {
3784 		s->src.state = PF_TCPS_PROXY_SRC;
3785 		/* undo NAT changes, if they have taken place */
3786 		if (nr != NULL) {
3787 			struct pf_state_key *skt = s->key[PF_SK_WIRE];
3788 			if (pd->dir == PF_OUT)
3789 				skt = s->key[PF_SK_STACK];
3790 			PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af);
3791 			PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af);
3792 			if (pd->sport)
3793 				*pd->sport = skt->port[pd->sidx];
3794 			if (pd->dport)
3795 				*pd->dport = skt->port[pd->didx];
3796 			if (pd->proto_sum)
3797 				*pd->proto_sum = bproto_sum;
3798 			if (pd->ip_sum)
3799 				*pd->ip_sum = bip_sum;
3800 			m_copyback(m, off, hdrlen, pd->hdr.any);
3801 		}
3802 		s->src.seqhi = htonl(arc4random());
3803 		/* Find mss option */
3804 		int rtid = M_GETFIB(m);
3805 		mss = pf_get_mss(m, off, th->th_off, pd->af);
3806 		mss = pf_calc_mss(pd->src, pd->af, rtid, mss);
3807 		mss = pf_calc_mss(pd->dst, pd->af, rtid, mss);
3808 		s->src.mss = mss;
3809 		pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport,
3810 		    th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1,
3811 		    TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL);
3812 		REASON_SET(&reason, PFRES_SYNPROXY);
3813 		return (PF_SYNPROXY_DROP);
3814 	}
3815 
3816 	return (PF_PASS);
3817 
3818 csfailed:
3819 	if (sk != NULL)
3820 		uma_zfree(V_pf_state_key_z, sk);
3821 	if (nk != NULL)
3822 		uma_zfree(V_pf_state_key_z, nk);
3823 
3824 	if (sn != NULL) {
3825 		struct pf_srchash *sh;
3826 
3827 		sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)];
3828 		PF_HASHROW_LOCK(sh);
3829 		if (--sn->states == 0 && sn->expire == 0) {
3830 			pf_unlink_src_node(sn);
3831 			uma_zfree(V_pf_sources_z, sn);
3832 			counter_u64_add(
3833 			    V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
3834 		}
3835 		PF_HASHROW_UNLOCK(sh);
3836 	}
3837 
3838 	if (nsn != sn && nsn != NULL) {
3839 		struct pf_srchash *sh;
3840 
3841 		sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)];
3842 		PF_HASHROW_LOCK(sh);
3843 		if (--nsn->states == 0 && nsn->expire == 0) {
3844 			pf_unlink_src_node(nsn);
3845 			uma_zfree(V_pf_sources_z, nsn);
3846 			counter_u64_add(
3847 			    V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
3848 		}
3849 		PF_HASHROW_UNLOCK(sh);
3850 	}
3851 
3852 	return (PF_DROP);
3853 }
3854 
3855 static int
3856 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif,
3857     struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am,
3858     struct pf_ruleset **rsm)
3859 {
3860 	struct pf_rule		*r, *a = NULL;
3861 	struct pf_ruleset	*ruleset = NULL;
3862 	sa_family_t		 af = pd->af;
3863 	u_short			 reason;
3864 	int			 tag = -1;
3865 	int			 asd = 0;
3866 	int			 match = 0;
3867 	struct pf_anchor_stackframe	anchor_stack[PF_ANCHOR_STACKSIZE];
3868 
3869 	PF_RULES_RASSERT();
3870 
3871 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr);
3872 	while (r != NULL) {
3873 		r->evaluations++;
3874 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
3875 			r = r->skip[PF_SKIP_IFP].ptr;
3876 		else if (r->direction && r->direction != direction)
3877 			r = r->skip[PF_SKIP_DIR].ptr;
3878 		else if (r->af && r->af != af)
3879 			r = r->skip[PF_SKIP_AF].ptr;
3880 		else if (r->proto && r->proto != pd->proto)
3881 			r = r->skip[PF_SKIP_PROTO].ptr;
3882 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
3883 		    r->src.neg, kif, M_GETFIB(m)))
3884 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
3885 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
3886 		    r->dst.neg, NULL, M_GETFIB(m)))
3887 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
3888 		else if (r->tos && !(r->tos == pd->tos))
3889 			r = TAILQ_NEXT(r, entries);
3890 		else if (r->os_fingerprint != PF_OSFP_ANY)
3891 			r = TAILQ_NEXT(r, entries);
3892 		else if (pd->proto == IPPROTO_UDP &&
3893 		    (r->src.port_op || r->dst.port_op))
3894 			r = TAILQ_NEXT(r, entries);
3895 		else if (pd->proto == IPPROTO_TCP &&
3896 		    (r->src.port_op || r->dst.port_op || r->flagset))
3897 			r = TAILQ_NEXT(r, entries);
3898 		else if ((pd->proto == IPPROTO_ICMP ||
3899 		    pd->proto == IPPROTO_ICMPV6) &&
3900 		    (r->type || r->code))
3901 			r = TAILQ_NEXT(r, entries);
3902 		else if (r->prio &&
3903 		    !pf_match_ieee8021q_pcp(r->prio, m))
3904 			r = TAILQ_NEXT(r, entries);
3905 		else if (r->prob && r->prob <=
3906 		    (arc4random() % (UINT_MAX - 1) + 1))
3907 			r = TAILQ_NEXT(r, entries);
3908 		else if (r->match_tag && !pf_match_tag(m, r, &tag,
3909 		    pd->pf_mtag ? pd->pf_mtag->tag : 0))
3910 			r = TAILQ_NEXT(r, entries);
3911 		else {
3912 			if (r->anchor == NULL) {
3913 				match = 1;
3914 				*rm = r;
3915 				*am = a;
3916 				*rsm = ruleset;
3917 				if ((*rm)->quick)
3918 					break;
3919 				r = TAILQ_NEXT(r, entries);
3920 			} else
3921 				pf_step_into_anchor(anchor_stack, &asd,
3922 				    &ruleset, PF_RULESET_FILTER, &r, &a,
3923 				    &match);
3924 		}
3925 		if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd,
3926 		    &ruleset, PF_RULESET_FILTER, &r, &a, &match))
3927 			break;
3928 	}
3929 	r = *rm;
3930 	a = *am;
3931 	ruleset = *rsm;
3932 
3933 	REASON_SET(&reason, PFRES_MATCH);
3934 
3935 	if (r->log)
3936 		PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd,
3937 		    1);
3938 
3939 	if (r->action != PF_PASS)
3940 		return (PF_DROP);
3941 
3942 	if (tag > 0 && pf_tag_packet(m, pd, tag)) {
3943 		REASON_SET(&reason, PFRES_MEMORY);
3944 		return (PF_DROP);
3945 	}
3946 
3947 	return (PF_PASS);
3948 }
3949 
3950 static int
3951 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst,
3952 	struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off,
3953 	struct pf_pdesc *pd, u_short *reason, int *copyback)
3954 {
3955 	struct tcphdr		*th = pd->hdr.tcp;
3956 	u_int16_t		 win = ntohs(th->th_win);
3957 	u_int32_t		 ack, end, seq, orig_seq;
3958 	u_int8_t		 sws, dws;
3959 	int			 ackskew;
3960 
3961 	if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) {
3962 		sws = src->wscale & PF_WSCALE_MASK;
3963 		dws = dst->wscale & PF_WSCALE_MASK;
3964 	} else
3965 		sws = dws = 0;
3966 
3967 	/*
3968 	 * Sequence tracking algorithm from Guido van Rooij's paper:
3969 	 *   http://www.madison-gurkha.com/publications/tcp_filtering/
3970 	 *	tcp_filtering.ps
3971 	 */
3972 
3973 	orig_seq = seq = ntohl(th->th_seq);
3974 	if (src->seqlo == 0) {
3975 		/* First packet from this end. Set its state */
3976 
3977 		if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) &&
3978 		    src->scrub == NULL) {
3979 			if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) {
3980 				REASON_SET(reason, PFRES_MEMORY);
3981 				return (PF_DROP);
3982 			}
3983 		}
3984 
3985 		/* Deferred generation of sequence number modulator */
3986 		if (dst->seqdiff && !src->seqdiff) {
3987 			/* use random iss for the TCP server */
3988 			while ((src->seqdiff = arc4random() - seq) == 0)
3989 				;
3990 			ack = ntohl(th->th_ack) - dst->seqdiff;
3991 			pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq +
3992 			    src->seqdiff), 0);
3993 			pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0);
3994 			*copyback = 1;
3995 		} else {
3996 			ack = ntohl(th->th_ack);
3997 		}
3998 
3999 		end = seq + pd->p_len;
4000 		if (th->th_flags & TH_SYN) {
4001 			end++;
4002 			if (dst->wscale & PF_WSCALE_FLAG) {
4003 				src->wscale = pf_get_wscale(m, off, th->th_off,
4004 				    pd->af);
4005 				if (src->wscale & PF_WSCALE_FLAG) {
4006 					/* Remove scale factor from initial
4007 					 * window */
4008 					sws = src->wscale & PF_WSCALE_MASK;
4009 					win = ((u_int32_t)win + (1 << sws) - 1)
4010 					    >> sws;
4011 					dws = dst->wscale & PF_WSCALE_MASK;
4012 				} else {
4013 					/* fixup other window */
4014 					dst->max_win <<= dst->wscale &
4015 					    PF_WSCALE_MASK;
4016 					/* in case of a retrans SYN|ACK */
4017 					dst->wscale = 0;
4018 				}
4019 			}
4020 		}
4021 		if (th->th_flags & TH_FIN)
4022 			end++;
4023 
4024 		src->seqlo = seq;
4025 		if (src->state < TCPS_SYN_SENT)
4026 			src->state = TCPS_SYN_SENT;
4027 
4028 		/*
4029 		 * May need to slide the window (seqhi may have been set by
4030 		 * the crappy stack check or if we picked up the connection
4031 		 * after establishment)
4032 		 */
4033 		if (src->seqhi == 1 ||
4034 		    SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi))
4035 			src->seqhi = end + MAX(1, dst->max_win << dws);
4036 		if (win > src->max_win)
4037 			src->max_win = win;
4038 
4039 	} else {
4040 		ack = ntohl(th->th_ack) - dst->seqdiff;
4041 		if (src->seqdiff) {
4042 			/* Modulate sequence numbers */
4043 			pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq +
4044 			    src->seqdiff), 0);
4045 			pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0);
4046 			*copyback = 1;
4047 		}
4048 		end = seq + pd->p_len;
4049 		if (th->th_flags & TH_SYN)
4050 			end++;
4051 		if (th->th_flags & TH_FIN)
4052 			end++;
4053 	}
4054 
4055 	if ((th->th_flags & TH_ACK) == 0) {
4056 		/* Let it pass through the ack skew check */
4057 		ack = dst->seqlo;
4058 	} else if ((ack == 0 &&
4059 	    (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) ||
4060 	    /* broken tcp stacks do not set ack */
4061 	    (dst->state < TCPS_SYN_SENT)) {
4062 		/*
4063 		 * Many stacks (ours included) will set the ACK number in an
4064 		 * FIN|ACK if the SYN times out -- no sequence to ACK.
4065 		 */
4066 		ack = dst->seqlo;
4067 	}
4068 
4069 	if (seq == end) {
4070 		/* Ease sequencing restrictions on no data packets */
4071 		seq = src->seqlo;
4072 		end = seq;
4073 	}
4074 
4075 	ackskew = dst->seqlo - ack;
4076 
4077 
4078 	/*
4079 	 * Need to demodulate the sequence numbers in any TCP SACK options
4080 	 * (Selective ACK). We could optionally validate the SACK values
4081 	 * against the current ACK window, either forwards or backwards, but
4082 	 * I'm not confident that SACK has been implemented properly
4083 	 * everywhere. It wouldn't surprise me if several stacks accidentally
4084 	 * SACK too far backwards of previously ACKed data. There really aren't
4085 	 * any security implications of bad SACKing unless the target stack
4086 	 * doesn't validate the option length correctly. Someone trying to
4087 	 * spoof into a TCP connection won't bother blindly sending SACK
4088 	 * options anyway.
4089 	 */
4090 	if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) {
4091 		if (pf_modulate_sack(m, off, pd, th, dst))
4092 			*copyback = 1;
4093 	}
4094 
4095 
4096 #define	MAXACKWINDOW (0xffff + 1500)	/* 1500 is an arbitrary fudge factor */
4097 	if (SEQ_GEQ(src->seqhi, end) &&
4098 	    /* Last octet inside other's window space */
4099 	    SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) &&
4100 	    /* Retrans: not more than one window back */
4101 	    (ackskew >= -MAXACKWINDOW) &&
4102 	    /* Acking not more than one reassembled fragment backwards */
4103 	    (ackskew <= (MAXACKWINDOW << sws)) &&
4104 	    /* Acking not more than one window forward */
4105 	    ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo ||
4106 	    (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) ||
4107 	    (pd->flags & PFDESC_IP_REAS) == 0)) {
4108 	    /* Require an exact/+1 sequence match on resets when possible */
4109 
4110 		if (dst->scrub || src->scrub) {
4111 			if (pf_normalize_tcp_stateful(m, off, pd, reason, th,
4112 			    *state, src, dst, copyback))
4113 				return (PF_DROP);
4114 		}
4115 
4116 		/* update max window */
4117 		if (src->max_win < win)
4118 			src->max_win = win;
4119 		/* synchronize sequencing */
4120 		if (SEQ_GT(end, src->seqlo))
4121 			src->seqlo = end;
4122 		/* slide the window of what the other end can send */
4123 		if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
4124 			dst->seqhi = ack + MAX((win << sws), 1);
4125 
4126 
4127 		/* update states */
4128 		if (th->th_flags & TH_SYN)
4129 			if (src->state < TCPS_SYN_SENT)
4130 				src->state = TCPS_SYN_SENT;
4131 		if (th->th_flags & TH_FIN)
4132 			if (src->state < TCPS_CLOSING)
4133 				src->state = TCPS_CLOSING;
4134 		if (th->th_flags & TH_ACK) {
4135 			if (dst->state == TCPS_SYN_SENT) {
4136 				dst->state = TCPS_ESTABLISHED;
4137 				if (src->state == TCPS_ESTABLISHED &&
4138 				    (*state)->src_node != NULL &&
4139 				    pf_src_connlimit(state)) {
4140 					REASON_SET(reason, PFRES_SRCLIMIT);
4141 					return (PF_DROP);
4142 				}
4143 			} else if (dst->state == TCPS_CLOSING)
4144 				dst->state = TCPS_FIN_WAIT_2;
4145 		}
4146 		if (th->th_flags & TH_RST)
4147 			src->state = dst->state = TCPS_TIME_WAIT;
4148 
4149 		/* update expire time */
4150 		(*state)->expire = time_uptime;
4151 		if (src->state >= TCPS_FIN_WAIT_2 &&
4152 		    dst->state >= TCPS_FIN_WAIT_2)
4153 			(*state)->timeout = PFTM_TCP_CLOSED;
4154 		else if (src->state >= TCPS_CLOSING &&
4155 		    dst->state >= TCPS_CLOSING)
4156 			(*state)->timeout = PFTM_TCP_FIN_WAIT;
4157 		else if (src->state < TCPS_ESTABLISHED ||
4158 		    dst->state < TCPS_ESTABLISHED)
4159 			(*state)->timeout = PFTM_TCP_OPENING;
4160 		else if (src->state >= TCPS_CLOSING ||
4161 		    dst->state >= TCPS_CLOSING)
4162 			(*state)->timeout = PFTM_TCP_CLOSING;
4163 		else
4164 			(*state)->timeout = PFTM_TCP_ESTABLISHED;
4165 
4166 		/* Fall through to PASS packet */
4167 
4168 	} else if ((dst->state < TCPS_SYN_SENT ||
4169 		dst->state >= TCPS_FIN_WAIT_2 ||
4170 		src->state >= TCPS_FIN_WAIT_2) &&
4171 	    SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) &&
4172 	    /* Within a window forward of the originating packet */
4173 	    SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) {
4174 	    /* Within a window backward of the originating packet */
4175 
4176 		/*
4177 		 * This currently handles three situations:
4178 		 *  1) Stupid stacks will shotgun SYNs before their peer
4179 		 *     replies.
4180 		 *  2) When PF catches an already established stream (the
4181 		 *     firewall rebooted, the state table was flushed, routes
4182 		 *     changed...)
4183 		 *  3) Packets get funky immediately after the connection
4184 		 *     closes (this should catch Solaris spurious ACK|FINs
4185 		 *     that web servers like to spew after a close)
4186 		 *
4187 		 * This must be a little more careful than the above code
4188 		 * since packet floods will also be caught here. We don't
4189 		 * update the TTL here to mitigate the damage of a packet
4190 		 * flood and so the same code can handle awkward establishment
4191 		 * and a loosened connection close.
4192 		 * In the establishment case, a correct peer response will
4193 		 * validate the connection, go through the normal state code
4194 		 * and keep updating the state TTL.
4195 		 */
4196 
4197 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
4198 			printf("pf: loose state match: ");
4199 			pf_print_state(*state);
4200 			pf_print_flags(th->th_flags);
4201 			printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
4202 			    "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack,
4203 			    pd->p_len, ackskew, (unsigned long long)(*state)->packets[0],
4204 			    (unsigned long long)(*state)->packets[1],
4205 			    pd->dir == PF_IN ? "in" : "out",
4206 			    pd->dir == (*state)->direction ? "fwd" : "rev");
4207 		}
4208 
4209 		if (dst->scrub || src->scrub) {
4210 			if (pf_normalize_tcp_stateful(m, off, pd, reason, th,
4211 			    *state, src, dst, copyback))
4212 				return (PF_DROP);
4213 		}
4214 
4215 		/* update max window */
4216 		if (src->max_win < win)
4217 			src->max_win = win;
4218 		/* synchronize sequencing */
4219 		if (SEQ_GT(end, src->seqlo))
4220 			src->seqlo = end;
4221 		/* slide the window of what the other end can send */
4222 		if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
4223 			dst->seqhi = ack + MAX((win << sws), 1);
4224 
4225 		/*
4226 		 * Cannot set dst->seqhi here since this could be a shotgunned
4227 		 * SYN and not an already established connection.
4228 		 */
4229 
4230 		if (th->th_flags & TH_FIN)
4231 			if (src->state < TCPS_CLOSING)
4232 				src->state = TCPS_CLOSING;
4233 		if (th->th_flags & TH_RST)
4234 			src->state = dst->state = TCPS_TIME_WAIT;
4235 
4236 		/* Fall through to PASS packet */
4237 
4238 	} else {
4239 		if ((*state)->dst.state == TCPS_SYN_SENT &&
4240 		    (*state)->src.state == TCPS_SYN_SENT) {
4241 			/* Send RST for state mismatches during handshake */
4242 			if (!(th->th_flags & TH_RST))
4243 				pf_send_tcp(NULL, (*state)->rule.ptr, pd->af,
4244 				    pd->dst, pd->src, th->th_dport,
4245 				    th->th_sport, ntohl(th->th_ack), 0,
4246 				    TH_RST, 0, 0,
4247 				    (*state)->rule.ptr->return_ttl, 1, 0,
4248 				    kif->pfik_ifp);
4249 			src->seqlo = 0;
4250 			src->seqhi = 1;
4251 			src->max_win = 1;
4252 		} else if (V_pf_status.debug >= PF_DEBUG_MISC) {
4253 			printf("pf: BAD state: ");
4254 			pf_print_state(*state);
4255 			pf_print_flags(th->th_flags);
4256 			printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
4257 			    "pkts=%llu:%llu dir=%s,%s\n",
4258 			    seq, orig_seq, ack, pd->p_len, ackskew,
4259 			    (unsigned long long)(*state)->packets[0],
4260 			    (unsigned long long)(*state)->packets[1],
4261 			    pd->dir == PF_IN ? "in" : "out",
4262 			    pd->dir == (*state)->direction ? "fwd" : "rev");
4263 			printf("pf: State failure on: %c %c %c %c | %c %c\n",
4264 			    SEQ_GEQ(src->seqhi, end) ? ' ' : '1',
4265 			    SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ?
4266 			    ' ': '2',
4267 			    (ackskew >= -MAXACKWINDOW) ? ' ' : '3',
4268 			    (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4',
4269 			    SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5',
4270 			    SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6');
4271 		}
4272 		REASON_SET(reason, PFRES_BADSTATE);
4273 		return (PF_DROP);
4274 	}
4275 
4276 	return (PF_PASS);
4277 }
4278 
4279 static int
4280 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst,
4281 	struct pf_state **state, struct pf_pdesc *pd, u_short *reason)
4282 {
4283 	struct tcphdr		*th = pd->hdr.tcp;
4284 
4285 	if (th->th_flags & TH_SYN)
4286 		if (src->state < TCPS_SYN_SENT)
4287 			src->state = TCPS_SYN_SENT;
4288 	if (th->th_flags & TH_FIN)
4289 		if (src->state < TCPS_CLOSING)
4290 			src->state = TCPS_CLOSING;
4291 	if (th->th_flags & TH_ACK) {
4292 		if (dst->state == TCPS_SYN_SENT) {
4293 			dst->state = TCPS_ESTABLISHED;
4294 			if (src->state == TCPS_ESTABLISHED &&
4295 			    (*state)->src_node != NULL &&
4296 			    pf_src_connlimit(state)) {
4297 				REASON_SET(reason, PFRES_SRCLIMIT);
4298 				return (PF_DROP);
4299 			}
4300 		} else if (dst->state == TCPS_CLOSING) {
4301 			dst->state = TCPS_FIN_WAIT_2;
4302 		} else if (src->state == TCPS_SYN_SENT &&
4303 		    dst->state < TCPS_SYN_SENT) {
4304 			/*
4305 			 * Handle a special sloppy case where we only see one
4306 			 * half of the connection. If there is a ACK after
4307 			 * the initial SYN without ever seeing a packet from
4308 			 * the destination, set the connection to established.
4309 			 */
4310 			dst->state = src->state = TCPS_ESTABLISHED;
4311 			if ((*state)->src_node != NULL &&
4312 			    pf_src_connlimit(state)) {
4313 				REASON_SET(reason, PFRES_SRCLIMIT);
4314 				return (PF_DROP);
4315 			}
4316 		} else if (src->state == TCPS_CLOSING &&
4317 		    dst->state == TCPS_ESTABLISHED &&
4318 		    dst->seqlo == 0) {
4319 			/*
4320 			 * Handle the closing of half connections where we
4321 			 * don't see the full bidirectional FIN/ACK+ACK
4322 			 * handshake.
4323 			 */
4324 			dst->state = TCPS_CLOSING;
4325 		}
4326 	}
4327 	if (th->th_flags & TH_RST)
4328 		src->state = dst->state = TCPS_TIME_WAIT;
4329 
4330 	/* update expire time */
4331 	(*state)->expire = time_uptime;
4332 	if (src->state >= TCPS_FIN_WAIT_2 &&
4333 	    dst->state >= TCPS_FIN_WAIT_2)
4334 		(*state)->timeout = PFTM_TCP_CLOSED;
4335 	else if (src->state >= TCPS_CLOSING &&
4336 	    dst->state >= TCPS_CLOSING)
4337 		(*state)->timeout = PFTM_TCP_FIN_WAIT;
4338 	else if (src->state < TCPS_ESTABLISHED ||
4339 	    dst->state < TCPS_ESTABLISHED)
4340 		(*state)->timeout = PFTM_TCP_OPENING;
4341 	else if (src->state >= TCPS_CLOSING ||
4342 	    dst->state >= TCPS_CLOSING)
4343 		(*state)->timeout = PFTM_TCP_CLOSING;
4344 	else
4345 		(*state)->timeout = PFTM_TCP_ESTABLISHED;
4346 
4347 	return (PF_PASS);
4348 }
4349 
4350 static int
4351 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif,
4352     struct mbuf *m, int off, void *h, struct pf_pdesc *pd,
4353     u_short *reason)
4354 {
4355 	struct pf_state_key_cmp	 key;
4356 	struct tcphdr		*th = pd->hdr.tcp;
4357 	int			 copyback = 0;
4358 	struct pf_state_peer	*src, *dst;
4359 	struct pf_state_key	*sk;
4360 
4361 	bzero(&key, sizeof(key));
4362 	key.af = pd->af;
4363 	key.proto = IPPROTO_TCP;
4364 	if (direction == PF_IN)	{	/* wire side, straight */
4365 		PF_ACPY(&key.addr[0], pd->src, key.af);
4366 		PF_ACPY(&key.addr[1], pd->dst, key.af);
4367 		key.port[0] = th->th_sport;
4368 		key.port[1] = th->th_dport;
4369 	} else {			/* stack side, reverse */
4370 		PF_ACPY(&key.addr[1], pd->src, key.af);
4371 		PF_ACPY(&key.addr[0], pd->dst, key.af);
4372 		key.port[1] = th->th_sport;
4373 		key.port[0] = th->th_dport;
4374 	}
4375 
4376 	STATE_LOOKUP(kif, &key, direction, *state, pd);
4377 
4378 	if (direction == (*state)->direction) {
4379 		src = &(*state)->src;
4380 		dst = &(*state)->dst;
4381 	} else {
4382 		src = &(*state)->dst;
4383 		dst = &(*state)->src;
4384 	}
4385 
4386 	sk = (*state)->key[pd->didx];
4387 
4388 	if ((*state)->src.state == PF_TCPS_PROXY_SRC) {
4389 		if (direction != (*state)->direction) {
4390 			REASON_SET(reason, PFRES_SYNPROXY);
4391 			return (PF_SYNPROXY_DROP);
4392 		}
4393 		if (th->th_flags & TH_SYN) {
4394 			if (ntohl(th->th_seq) != (*state)->src.seqlo) {
4395 				REASON_SET(reason, PFRES_SYNPROXY);
4396 				return (PF_DROP);
4397 			}
4398 			pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst,
4399 			    pd->src, th->th_dport, th->th_sport,
4400 			    (*state)->src.seqhi, ntohl(th->th_seq) + 1,
4401 			    TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL);
4402 			REASON_SET(reason, PFRES_SYNPROXY);
4403 			return (PF_SYNPROXY_DROP);
4404 		} else if (!(th->th_flags & TH_ACK) ||
4405 		    (ntohl(th->th_ack) != (*state)->src.seqhi + 1) ||
4406 		    (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) {
4407 			REASON_SET(reason, PFRES_SYNPROXY);
4408 			return (PF_DROP);
4409 		} else if ((*state)->src_node != NULL &&
4410 		    pf_src_connlimit(state)) {
4411 			REASON_SET(reason, PFRES_SRCLIMIT);
4412 			return (PF_DROP);
4413 		} else
4414 			(*state)->src.state = PF_TCPS_PROXY_DST;
4415 	}
4416 	if ((*state)->src.state == PF_TCPS_PROXY_DST) {
4417 		if (direction == (*state)->direction) {
4418 			if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) ||
4419 			    (ntohl(th->th_ack) != (*state)->src.seqhi + 1) ||
4420 			    (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) {
4421 				REASON_SET(reason, PFRES_SYNPROXY);
4422 				return (PF_DROP);
4423 			}
4424 			(*state)->src.max_win = MAX(ntohs(th->th_win), 1);
4425 			if ((*state)->dst.seqhi == 1)
4426 				(*state)->dst.seqhi = htonl(arc4random());
4427 			pf_send_tcp(NULL, (*state)->rule.ptr, pd->af,
4428 			    &sk->addr[pd->sidx], &sk->addr[pd->didx],
4429 			    sk->port[pd->sidx], sk->port[pd->didx],
4430 			    (*state)->dst.seqhi, 0, TH_SYN, 0,
4431 			    (*state)->src.mss, 0, 0, (*state)->tag, NULL);
4432 			REASON_SET(reason, PFRES_SYNPROXY);
4433 			return (PF_SYNPROXY_DROP);
4434 		} else if (((th->th_flags & (TH_SYN|TH_ACK)) !=
4435 		    (TH_SYN|TH_ACK)) ||
4436 		    (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) {
4437 			REASON_SET(reason, PFRES_SYNPROXY);
4438 			return (PF_DROP);
4439 		} else {
4440 			(*state)->dst.max_win = MAX(ntohs(th->th_win), 1);
4441 			(*state)->dst.seqlo = ntohl(th->th_seq);
4442 			pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst,
4443 			    pd->src, th->th_dport, th->th_sport,
4444 			    ntohl(th->th_ack), ntohl(th->th_seq) + 1,
4445 			    TH_ACK, (*state)->src.max_win, 0, 0, 0,
4446 			    (*state)->tag, NULL);
4447 			pf_send_tcp(NULL, (*state)->rule.ptr, pd->af,
4448 			    &sk->addr[pd->sidx], &sk->addr[pd->didx],
4449 			    sk->port[pd->sidx], sk->port[pd->didx],
4450 			    (*state)->src.seqhi + 1, (*state)->src.seqlo + 1,
4451 			    TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL);
4452 			(*state)->src.seqdiff = (*state)->dst.seqhi -
4453 			    (*state)->src.seqlo;
4454 			(*state)->dst.seqdiff = (*state)->src.seqhi -
4455 			    (*state)->dst.seqlo;
4456 			(*state)->src.seqhi = (*state)->src.seqlo +
4457 			    (*state)->dst.max_win;
4458 			(*state)->dst.seqhi = (*state)->dst.seqlo +
4459 			    (*state)->src.max_win;
4460 			(*state)->src.wscale = (*state)->dst.wscale = 0;
4461 			(*state)->src.state = (*state)->dst.state =
4462 			    TCPS_ESTABLISHED;
4463 			REASON_SET(reason, PFRES_SYNPROXY);
4464 			return (PF_SYNPROXY_DROP);
4465 		}
4466 	}
4467 
4468 	if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) &&
4469 	    dst->state >= TCPS_FIN_WAIT_2 &&
4470 	    src->state >= TCPS_FIN_WAIT_2) {
4471 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
4472 			printf("pf: state reuse ");
4473 			pf_print_state(*state);
4474 			pf_print_flags(th->th_flags);
4475 			printf("\n");
4476 		}
4477 		/* XXX make sure it's the same direction ?? */
4478 		(*state)->src.state = (*state)->dst.state = TCPS_CLOSED;
4479 		pf_unlink_state(*state, PF_ENTER_LOCKED);
4480 		*state = NULL;
4481 		return (PF_DROP);
4482 	}
4483 
4484 	if ((*state)->state_flags & PFSTATE_SLOPPY) {
4485 		if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP)
4486 			return (PF_DROP);
4487 	} else {
4488 		if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason,
4489 		    &copyback) == PF_DROP)
4490 			return (PF_DROP);
4491 	}
4492 
4493 	/* translate source/destination address, if necessary */
4494 	if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
4495 		struct pf_state_key *nk = (*state)->key[pd->didx];
4496 
4497 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) ||
4498 		    nk->port[pd->sidx] != th->th_sport)
4499 			pf_change_ap(m, pd->src, &th->th_sport,
4500 			    pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx],
4501 			    nk->port[pd->sidx], 0, pd->af);
4502 
4503 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) ||
4504 		    nk->port[pd->didx] != th->th_dport)
4505 			pf_change_ap(m, pd->dst, &th->th_dport,
4506 			    pd->ip_sum, &th->th_sum, &nk->addr[pd->didx],
4507 			    nk->port[pd->didx], 0, pd->af);
4508 		copyback = 1;
4509 	}
4510 
4511 	/* Copyback sequence modulation or stateful scrub changes if needed */
4512 	if (copyback)
4513 		m_copyback(m, off, sizeof(*th), (caddr_t)th);
4514 
4515 	return (PF_PASS);
4516 }
4517 
4518 static int
4519 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif,
4520     struct mbuf *m, int off, void *h, struct pf_pdesc *pd)
4521 {
4522 	struct pf_state_peer	*src, *dst;
4523 	struct pf_state_key_cmp	 key;
4524 	struct udphdr		*uh = pd->hdr.udp;
4525 
4526 	bzero(&key, sizeof(key));
4527 	key.af = pd->af;
4528 	key.proto = IPPROTO_UDP;
4529 	if (direction == PF_IN)	{	/* wire side, straight */
4530 		PF_ACPY(&key.addr[0], pd->src, key.af);
4531 		PF_ACPY(&key.addr[1], pd->dst, key.af);
4532 		key.port[0] = uh->uh_sport;
4533 		key.port[1] = uh->uh_dport;
4534 	} else {			/* stack side, reverse */
4535 		PF_ACPY(&key.addr[1], pd->src, key.af);
4536 		PF_ACPY(&key.addr[0], pd->dst, key.af);
4537 		key.port[1] = uh->uh_sport;
4538 		key.port[0] = uh->uh_dport;
4539 	}
4540 
4541 	STATE_LOOKUP(kif, &key, direction, *state, pd);
4542 
4543 	if (direction == (*state)->direction) {
4544 		src = &(*state)->src;
4545 		dst = &(*state)->dst;
4546 	} else {
4547 		src = &(*state)->dst;
4548 		dst = &(*state)->src;
4549 	}
4550 
4551 	/* update states */
4552 	if (src->state < PFUDPS_SINGLE)
4553 		src->state = PFUDPS_SINGLE;
4554 	if (dst->state == PFUDPS_SINGLE)
4555 		dst->state = PFUDPS_MULTIPLE;
4556 
4557 	/* update expire time */
4558 	(*state)->expire = time_uptime;
4559 	if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE)
4560 		(*state)->timeout = PFTM_UDP_MULTIPLE;
4561 	else
4562 		(*state)->timeout = PFTM_UDP_SINGLE;
4563 
4564 	/* translate source/destination address, if necessary */
4565 	if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
4566 		struct pf_state_key *nk = (*state)->key[pd->didx];
4567 
4568 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) ||
4569 		    nk->port[pd->sidx] != uh->uh_sport)
4570 			pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum,
4571 			    &uh->uh_sum, &nk->addr[pd->sidx],
4572 			    nk->port[pd->sidx], 1, pd->af);
4573 
4574 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) ||
4575 		    nk->port[pd->didx] != uh->uh_dport)
4576 			pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum,
4577 			    &uh->uh_sum, &nk->addr[pd->didx],
4578 			    nk->port[pd->didx], 1, pd->af);
4579 		m_copyback(m, off, sizeof(*uh), (caddr_t)uh);
4580 	}
4581 
4582 	return (PF_PASS);
4583 }
4584 
4585 static int
4586 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif,
4587     struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason)
4588 {
4589 	struct pf_addr  *saddr = pd->src, *daddr = pd->dst;
4590 	u_int16_t	 icmpid = 0, *icmpsum;
4591 	u_int8_t	 icmptype;
4592 	int		 state_icmp = 0;
4593 	struct pf_state_key_cmp key;
4594 
4595 	bzero(&key, sizeof(key));
4596 	switch (pd->proto) {
4597 #ifdef INET
4598 	case IPPROTO_ICMP:
4599 		icmptype = pd->hdr.icmp->icmp_type;
4600 		icmpid = pd->hdr.icmp->icmp_id;
4601 		icmpsum = &pd->hdr.icmp->icmp_cksum;
4602 
4603 		if (icmptype == ICMP_UNREACH ||
4604 		    icmptype == ICMP_SOURCEQUENCH ||
4605 		    icmptype == ICMP_REDIRECT ||
4606 		    icmptype == ICMP_TIMXCEED ||
4607 		    icmptype == ICMP_PARAMPROB)
4608 			state_icmp++;
4609 		break;
4610 #endif /* INET */
4611 #ifdef INET6
4612 	case IPPROTO_ICMPV6:
4613 		icmptype = pd->hdr.icmp6->icmp6_type;
4614 		icmpid = pd->hdr.icmp6->icmp6_id;
4615 		icmpsum = &pd->hdr.icmp6->icmp6_cksum;
4616 
4617 		if (icmptype == ICMP6_DST_UNREACH ||
4618 		    icmptype == ICMP6_PACKET_TOO_BIG ||
4619 		    icmptype == ICMP6_TIME_EXCEEDED ||
4620 		    icmptype == ICMP6_PARAM_PROB)
4621 			state_icmp++;
4622 		break;
4623 #endif /* INET6 */
4624 	}
4625 
4626 	if (!state_icmp) {
4627 
4628 		/*
4629 		 * ICMP query/reply message not related to a TCP/UDP packet.
4630 		 * Search for an ICMP state.
4631 		 */
4632 		key.af = pd->af;
4633 		key.proto = pd->proto;
4634 		key.port[0] = key.port[1] = icmpid;
4635 		if (direction == PF_IN)	{	/* wire side, straight */
4636 			PF_ACPY(&key.addr[0], pd->src, key.af);
4637 			PF_ACPY(&key.addr[1], pd->dst, key.af);
4638 		} else {			/* stack side, reverse */
4639 			PF_ACPY(&key.addr[1], pd->src, key.af);
4640 			PF_ACPY(&key.addr[0], pd->dst, key.af);
4641 		}
4642 
4643 		STATE_LOOKUP(kif, &key, direction, *state, pd);
4644 
4645 		(*state)->expire = time_uptime;
4646 		(*state)->timeout = PFTM_ICMP_ERROR_REPLY;
4647 
4648 		/* translate source/destination address, if necessary */
4649 		if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
4650 			struct pf_state_key *nk = (*state)->key[pd->didx];
4651 
4652 			switch (pd->af) {
4653 #ifdef INET
4654 			case AF_INET:
4655 				if (PF_ANEQ(pd->src,
4656 				    &nk->addr[pd->sidx], AF_INET))
4657 					pf_change_a(&saddr->v4.s_addr,
4658 					    pd->ip_sum,
4659 					    nk->addr[pd->sidx].v4.s_addr, 0);
4660 
4661 				if (PF_ANEQ(pd->dst, &nk->addr[pd->didx],
4662 				    AF_INET))
4663 					pf_change_a(&daddr->v4.s_addr,
4664 					    pd->ip_sum,
4665 					    nk->addr[pd->didx].v4.s_addr, 0);
4666 
4667 				if (nk->port[0] !=
4668 				    pd->hdr.icmp->icmp_id) {
4669 					pd->hdr.icmp->icmp_cksum =
4670 					    pf_cksum_fixup(
4671 					    pd->hdr.icmp->icmp_cksum, icmpid,
4672 					    nk->port[pd->sidx], 0);
4673 					pd->hdr.icmp->icmp_id =
4674 					    nk->port[pd->sidx];
4675 				}
4676 
4677 				m_copyback(m, off, ICMP_MINLEN,
4678 				    (caddr_t )pd->hdr.icmp);
4679 				break;
4680 #endif /* INET */
4681 #ifdef INET6
4682 			case AF_INET6:
4683 				if (PF_ANEQ(pd->src,
4684 				    &nk->addr[pd->sidx], AF_INET6))
4685 					pf_change_a6(saddr,
4686 					    &pd->hdr.icmp6->icmp6_cksum,
4687 					    &nk->addr[pd->sidx], 0);
4688 
4689 				if (PF_ANEQ(pd->dst,
4690 				    &nk->addr[pd->didx], AF_INET6))
4691 					pf_change_a6(daddr,
4692 					    &pd->hdr.icmp6->icmp6_cksum,
4693 					    &nk->addr[pd->didx], 0);
4694 
4695 				m_copyback(m, off, sizeof(struct icmp6_hdr),
4696 				    (caddr_t )pd->hdr.icmp6);
4697 				break;
4698 #endif /* INET6 */
4699 			}
4700 		}
4701 		return (PF_PASS);
4702 
4703 	} else {
4704 		/*
4705 		 * ICMP error message in response to a TCP/UDP packet.
4706 		 * Extract the inner TCP/UDP header and search for that state.
4707 		 */
4708 
4709 		struct pf_pdesc	pd2;
4710 		bzero(&pd2, sizeof pd2);
4711 #ifdef INET
4712 		struct ip	h2;
4713 #endif /* INET */
4714 #ifdef INET6
4715 		struct ip6_hdr	h2_6;
4716 		int		terminal = 0;
4717 #endif /* INET6 */
4718 		int		ipoff2 = 0;
4719 		int		off2 = 0;
4720 
4721 		pd2.af = pd->af;
4722 		/* Payload packet is from the opposite direction. */
4723 		pd2.sidx = (direction == PF_IN) ? 1 : 0;
4724 		pd2.didx = (direction == PF_IN) ? 0 : 1;
4725 		switch (pd->af) {
4726 #ifdef INET
4727 		case AF_INET:
4728 			/* offset of h2 in mbuf chain */
4729 			ipoff2 = off + ICMP_MINLEN;
4730 
4731 			if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2),
4732 			    NULL, reason, pd2.af)) {
4733 				DPFPRINTF(PF_DEBUG_MISC,
4734 				    ("pf: ICMP error message too short "
4735 				    "(ip)\n"));
4736 				return (PF_DROP);
4737 			}
4738 			/*
4739 			 * ICMP error messages don't refer to non-first
4740 			 * fragments
4741 			 */
4742 			if (h2.ip_off & htons(IP_OFFMASK)) {
4743 				REASON_SET(reason, PFRES_FRAG);
4744 				return (PF_DROP);
4745 			}
4746 
4747 			/* offset of protocol header that follows h2 */
4748 			off2 = ipoff2 + (h2.ip_hl << 2);
4749 
4750 			pd2.proto = h2.ip_p;
4751 			pd2.src = (struct pf_addr *)&h2.ip_src;
4752 			pd2.dst = (struct pf_addr *)&h2.ip_dst;
4753 			pd2.ip_sum = &h2.ip_sum;
4754 			break;
4755 #endif /* INET */
4756 #ifdef INET6
4757 		case AF_INET6:
4758 			ipoff2 = off + sizeof(struct icmp6_hdr);
4759 
4760 			if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6),
4761 			    NULL, reason, pd2.af)) {
4762 				DPFPRINTF(PF_DEBUG_MISC,
4763 				    ("pf: ICMP error message too short "
4764 				    "(ip6)\n"));
4765 				return (PF_DROP);
4766 			}
4767 			pd2.proto = h2_6.ip6_nxt;
4768 			pd2.src = (struct pf_addr *)&h2_6.ip6_src;
4769 			pd2.dst = (struct pf_addr *)&h2_6.ip6_dst;
4770 			pd2.ip_sum = NULL;
4771 			off2 = ipoff2 + sizeof(h2_6);
4772 			do {
4773 				switch (pd2.proto) {
4774 				case IPPROTO_FRAGMENT:
4775 					/*
4776 					 * ICMPv6 error messages for
4777 					 * non-first fragments
4778 					 */
4779 					REASON_SET(reason, PFRES_FRAG);
4780 					return (PF_DROP);
4781 				case IPPROTO_AH:
4782 				case IPPROTO_HOPOPTS:
4783 				case IPPROTO_ROUTING:
4784 				case IPPROTO_DSTOPTS: {
4785 					/* get next header and header length */
4786 					struct ip6_ext opt6;
4787 
4788 					if (!pf_pull_hdr(m, off2, &opt6,
4789 					    sizeof(opt6), NULL, reason,
4790 					    pd2.af)) {
4791 						DPFPRINTF(PF_DEBUG_MISC,
4792 						    ("pf: ICMPv6 short opt\n"));
4793 						return (PF_DROP);
4794 					}
4795 					if (pd2.proto == IPPROTO_AH)
4796 						off2 += (opt6.ip6e_len + 2) * 4;
4797 					else
4798 						off2 += (opt6.ip6e_len + 1) * 8;
4799 					pd2.proto = opt6.ip6e_nxt;
4800 					/* goto the next header */
4801 					break;
4802 				}
4803 				default:
4804 					terminal++;
4805 					break;
4806 				}
4807 			} while (!terminal);
4808 			break;
4809 #endif /* INET6 */
4810 		}
4811 
4812 		switch (pd2.proto) {
4813 		case IPPROTO_TCP: {
4814 			struct tcphdr		 th;
4815 			u_int32_t		 seq;
4816 			struct pf_state_peer	*src, *dst;
4817 			u_int8_t		 dws;
4818 			int			 copyback = 0;
4819 
4820 			/*
4821 			 * Only the first 8 bytes of the TCP header can be
4822 			 * expected. Don't access any TCP header fields after
4823 			 * th_seq, an ackskew test is not possible.
4824 			 */
4825 			if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason,
4826 			    pd2.af)) {
4827 				DPFPRINTF(PF_DEBUG_MISC,
4828 				    ("pf: ICMP error message too short "
4829 				    "(tcp)\n"));
4830 				return (PF_DROP);
4831 			}
4832 
4833 			key.af = pd2.af;
4834 			key.proto = IPPROTO_TCP;
4835 			PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
4836 			PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
4837 			key.port[pd2.sidx] = th.th_sport;
4838 			key.port[pd2.didx] = th.th_dport;
4839 
4840 			STATE_LOOKUP(kif, &key, direction, *state, pd);
4841 
4842 			if (direction == (*state)->direction) {
4843 				src = &(*state)->dst;
4844 				dst = &(*state)->src;
4845 			} else {
4846 				src = &(*state)->src;
4847 				dst = &(*state)->dst;
4848 			}
4849 
4850 			if (src->wscale && dst->wscale)
4851 				dws = dst->wscale & PF_WSCALE_MASK;
4852 			else
4853 				dws = 0;
4854 
4855 			/* Demodulate sequence number */
4856 			seq = ntohl(th.th_seq) - src->seqdiff;
4857 			if (src->seqdiff) {
4858 				pf_change_a(&th.th_seq, icmpsum,
4859 				    htonl(seq), 0);
4860 				copyback = 1;
4861 			}
4862 
4863 			if (!((*state)->state_flags & PFSTATE_SLOPPY) &&
4864 			    (!SEQ_GEQ(src->seqhi, seq) ||
4865 			    !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) {
4866 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
4867 					printf("pf: BAD ICMP %d:%d ",
4868 					    icmptype, pd->hdr.icmp->icmp_code);
4869 					pf_print_host(pd->src, 0, pd->af);
4870 					printf(" -> ");
4871 					pf_print_host(pd->dst, 0, pd->af);
4872 					printf(" state: ");
4873 					pf_print_state(*state);
4874 					printf(" seq=%u\n", seq);
4875 				}
4876 				REASON_SET(reason, PFRES_BADSTATE);
4877 				return (PF_DROP);
4878 			} else {
4879 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
4880 					printf("pf: OK ICMP %d:%d ",
4881 					    icmptype, pd->hdr.icmp->icmp_code);
4882 					pf_print_host(pd->src, 0, pd->af);
4883 					printf(" -> ");
4884 					pf_print_host(pd->dst, 0, pd->af);
4885 					printf(" state: ");
4886 					pf_print_state(*state);
4887 					printf(" seq=%u\n", seq);
4888 				}
4889 			}
4890 
4891 			/* translate source/destination address, if necessary */
4892 			if ((*state)->key[PF_SK_WIRE] !=
4893 			    (*state)->key[PF_SK_STACK]) {
4894 				struct pf_state_key *nk =
4895 				    (*state)->key[pd->didx];
4896 
4897 				if (PF_ANEQ(pd2.src,
4898 				    &nk->addr[pd2.sidx], pd2.af) ||
4899 				    nk->port[pd2.sidx] != th.th_sport)
4900 					pf_change_icmp(pd2.src, &th.th_sport,
4901 					    daddr, &nk->addr[pd2.sidx],
4902 					    nk->port[pd2.sidx], NULL,
4903 					    pd2.ip_sum, icmpsum,
4904 					    pd->ip_sum, 0, pd2.af);
4905 
4906 				if (PF_ANEQ(pd2.dst,
4907 				    &nk->addr[pd2.didx], pd2.af) ||
4908 				    nk->port[pd2.didx] != th.th_dport)
4909 					pf_change_icmp(pd2.dst, &th.th_dport,
4910 					    saddr, &nk->addr[pd2.didx],
4911 					    nk->port[pd2.didx], NULL,
4912 					    pd2.ip_sum, icmpsum,
4913 					    pd->ip_sum, 0, pd2.af);
4914 				copyback = 1;
4915 			}
4916 
4917 			if (copyback) {
4918 				switch (pd2.af) {
4919 #ifdef INET
4920 				case AF_INET:
4921 					m_copyback(m, off, ICMP_MINLEN,
4922 					    (caddr_t )pd->hdr.icmp);
4923 					m_copyback(m, ipoff2, sizeof(h2),
4924 					    (caddr_t )&h2);
4925 					break;
4926 #endif /* INET */
4927 #ifdef INET6
4928 				case AF_INET6:
4929 					m_copyback(m, off,
4930 					    sizeof(struct icmp6_hdr),
4931 					    (caddr_t )pd->hdr.icmp6);
4932 					m_copyback(m, ipoff2, sizeof(h2_6),
4933 					    (caddr_t )&h2_6);
4934 					break;
4935 #endif /* INET6 */
4936 				}
4937 				m_copyback(m, off2, 8, (caddr_t)&th);
4938 			}
4939 
4940 			return (PF_PASS);
4941 			break;
4942 		}
4943 		case IPPROTO_UDP: {
4944 			struct udphdr		uh;
4945 
4946 			if (!pf_pull_hdr(m, off2, &uh, sizeof(uh),
4947 			    NULL, reason, pd2.af)) {
4948 				DPFPRINTF(PF_DEBUG_MISC,
4949 				    ("pf: ICMP error message too short "
4950 				    "(udp)\n"));
4951 				return (PF_DROP);
4952 			}
4953 
4954 			key.af = pd2.af;
4955 			key.proto = IPPROTO_UDP;
4956 			PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
4957 			PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
4958 			key.port[pd2.sidx] = uh.uh_sport;
4959 			key.port[pd2.didx] = uh.uh_dport;
4960 
4961 			STATE_LOOKUP(kif, &key, direction, *state, pd);
4962 
4963 			/* translate source/destination address, if necessary */
4964 			if ((*state)->key[PF_SK_WIRE] !=
4965 			    (*state)->key[PF_SK_STACK]) {
4966 				struct pf_state_key *nk =
4967 				    (*state)->key[pd->didx];
4968 
4969 				if (PF_ANEQ(pd2.src,
4970 				    &nk->addr[pd2.sidx], pd2.af) ||
4971 				    nk->port[pd2.sidx] != uh.uh_sport)
4972 					pf_change_icmp(pd2.src, &uh.uh_sport,
4973 					    daddr, &nk->addr[pd2.sidx],
4974 					    nk->port[pd2.sidx], &uh.uh_sum,
4975 					    pd2.ip_sum, icmpsum,
4976 					    pd->ip_sum, 1, pd2.af);
4977 
4978 				if (PF_ANEQ(pd2.dst,
4979 				    &nk->addr[pd2.didx], pd2.af) ||
4980 				    nk->port[pd2.didx] != uh.uh_dport)
4981 					pf_change_icmp(pd2.dst, &uh.uh_dport,
4982 					    saddr, &nk->addr[pd2.didx],
4983 					    nk->port[pd2.didx], &uh.uh_sum,
4984 					    pd2.ip_sum, icmpsum,
4985 					    pd->ip_sum, 1, pd2.af);
4986 
4987 				switch (pd2.af) {
4988 #ifdef INET
4989 				case AF_INET:
4990 					m_copyback(m, off, ICMP_MINLEN,
4991 					    (caddr_t )pd->hdr.icmp);
4992 					m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2);
4993 					break;
4994 #endif /* INET */
4995 #ifdef INET6
4996 				case AF_INET6:
4997 					m_copyback(m, off,
4998 					    sizeof(struct icmp6_hdr),
4999 					    (caddr_t )pd->hdr.icmp6);
5000 					m_copyback(m, ipoff2, sizeof(h2_6),
5001 					    (caddr_t )&h2_6);
5002 					break;
5003 #endif /* INET6 */
5004 				}
5005 				m_copyback(m, off2, sizeof(uh), (caddr_t)&uh);
5006 			}
5007 			return (PF_PASS);
5008 			break;
5009 		}
5010 #ifdef INET
5011 		case IPPROTO_ICMP: {
5012 			struct icmp		iih;
5013 
5014 			if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN,
5015 			    NULL, reason, pd2.af)) {
5016 				DPFPRINTF(PF_DEBUG_MISC,
5017 				    ("pf: ICMP error message too short i"
5018 				    "(icmp)\n"));
5019 				return (PF_DROP);
5020 			}
5021 
5022 			key.af = pd2.af;
5023 			key.proto = IPPROTO_ICMP;
5024 			PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
5025 			PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
5026 			key.port[0] = key.port[1] = iih.icmp_id;
5027 
5028 			STATE_LOOKUP(kif, &key, direction, *state, pd);
5029 
5030 			/* translate source/destination address, if necessary */
5031 			if ((*state)->key[PF_SK_WIRE] !=
5032 			    (*state)->key[PF_SK_STACK]) {
5033 				struct pf_state_key *nk =
5034 				    (*state)->key[pd->didx];
5035 
5036 				if (PF_ANEQ(pd2.src,
5037 				    &nk->addr[pd2.sidx], pd2.af) ||
5038 				    nk->port[pd2.sidx] != iih.icmp_id)
5039 					pf_change_icmp(pd2.src, &iih.icmp_id,
5040 					    daddr, &nk->addr[pd2.sidx],
5041 					    nk->port[pd2.sidx], NULL,
5042 					    pd2.ip_sum, icmpsum,
5043 					    pd->ip_sum, 0, AF_INET);
5044 
5045 				if (PF_ANEQ(pd2.dst,
5046 				    &nk->addr[pd2.didx], pd2.af) ||
5047 				    nk->port[pd2.didx] != iih.icmp_id)
5048 					pf_change_icmp(pd2.dst, &iih.icmp_id,
5049 					    saddr, &nk->addr[pd2.didx],
5050 					    nk->port[pd2.didx], NULL,
5051 					    pd2.ip_sum, icmpsum,
5052 					    pd->ip_sum, 0, AF_INET);
5053 
5054 				m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp);
5055 				m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2);
5056 				m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih);
5057 			}
5058 			return (PF_PASS);
5059 			break;
5060 		}
5061 #endif /* INET */
5062 #ifdef INET6
5063 		case IPPROTO_ICMPV6: {
5064 			struct icmp6_hdr	iih;
5065 
5066 			if (!pf_pull_hdr(m, off2, &iih,
5067 			    sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) {
5068 				DPFPRINTF(PF_DEBUG_MISC,
5069 				    ("pf: ICMP error message too short "
5070 				    "(icmp6)\n"));
5071 				return (PF_DROP);
5072 			}
5073 
5074 			key.af = pd2.af;
5075 			key.proto = IPPROTO_ICMPV6;
5076 			PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
5077 			PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
5078 			key.port[0] = key.port[1] = iih.icmp6_id;
5079 
5080 			STATE_LOOKUP(kif, &key, direction, *state, pd);
5081 
5082 			/* translate source/destination address, if necessary */
5083 			if ((*state)->key[PF_SK_WIRE] !=
5084 			    (*state)->key[PF_SK_STACK]) {
5085 				struct pf_state_key *nk =
5086 				    (*state)->key[pd->didx];
5087 
5088 				if (PF_ANEQ(pd2.src,
5089 				    &nk->addr[pd2.sidx], pd2.af) ||
5090 				    nk->port[pd2.sidx] != iih.icmp6_id)
5091 					pf_change_icmp(pd2.src, &iih.icmp6_id,
5092 					    daddr, &nk->addr[pd2.sidx],
5093 					    nk->port[pd2.sidx], NULL,
5094 					    pd2.ip_sum, icmpsum,
5095 					    pd->ip_sum, 0, AF_INET6);
5096 
5097 				if (PF_ANEQ(pd2.dst,
5098 				    &nk->addr[pd2.didx], pd2.af) ||
5099 				    nk->port[pd2.didx] != iih.icmp6_id)
5100 					pf_change_icmp(pd2.dst, &iih.icmp6_id,
5101 					    saddr, &nk->addr[pd2.didx],
5102 					    nk->port[pd2.didx], NULL,
5103 					    pd2.ip_sum, icmpsum,
5104 					    pd->ip_sum, 0, AF_INET6);
5105 
5106 				m_copyback(m, off, sizeof(struct icmp6_hdr),
5107 				    (caddr_t)pd->hdr.icmp6);
5108 				m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6);
5109 				m_copyback(m, off2, sizeof(struct icmp6_hdr),
5110 				    (caddr_t)&iih);
5111 			}
5112 			return (PF_PASS);
5113 			break;
5114 		}
5115 #endif /* INET6 */
5116 		default: {
5117 			key.af = pd2.af;
5118 			key.proto = pd2.proto;
5119 			PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
5120 			PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
5121 			key.port[0] = key.port[1] = 0;
5122 
5123 			STATE_LOOKUP(kif, &key, direction, *state, pd);
5124 
5125 			/* translate source/destination address, if necessary */
5126 			if ((*state)->key[PF_SK_WIRE] !=
5127 			    (*state)->key[PF_SK_STACK]) {
5128 				struct pf_state_key *nk =
5129 				    (*state)->key[pd->didx];
5130 
5131 				if (PF_ANEQ(pd2.src,
5132 				    &nk->addr[pd2.sidx], pd2.af))
5133 					pf_change_icmp(pd2.src, NULL, daddr,
5134 					    &nk->addr[pd2.sidx], 0, NULL,
5135 					    pd2.ip_sum, icmpsum,
5136 					    pd->ip_sum, 0, pd2.af);
5137 
5138 				if (PF_ANEQ(pd2.dst,
5139 				    &nk->addr[pd2.didx], pd2.af))
5140 					pf_change_icmp(pd2.dst, NULL, saddr,
5141 					    &nk->addr[pd2.didx], 0, NULL,
5142 					    pd2.ip_sum, icmpsum,
5143 					    pd->ip_sum, 0, pd2.af);
5144 
5145 				switch (pd2.af) {
5146 #ifdef INET
5147 				case AF_INET:
5148 					m_copyback(m, off, ICMP_MINLEN,
5149 					    (caddr_t)pd->hdr.icmp);
5150 					m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2);
5151 					break;
5152 #endif /* INET */
5153 #ifdef INET6
5154 				case AF_INET6:
5155 					m_copyback(m, off,
5156 					    sizeof(struct icmp6_hdr),
5157 					    (caddr_t )pd->hdr.icmp6);
5158 					m_copyback(m, ipoff2, sizeof(h2_6),
5159 					    (caddr_t )&h2_6);
5160 					break;
5161 #endif /* INET6 */
5162 				}
5163 			}
5164 			return (PF_PASS);
5165 			break;
5166 		}
5167 		}
5168 	}
5169 }
5170 
5171 static int
5172 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif,
5173     struct mbuf *m, struct pf_pdesc *pd)
5174 {
5175 	struct pf_state_peer	*src, *dst;
5176 	struct pf_state_key_cmp	 key;
5177 
5178 	bzero(&key, sizeof(key));
5179 	key.af = pd->af;
5180 	key.proto = pd->proto;
5181 	if (direction == PF_IN)	{
5182 		PF_ACPY(&key.addr[0], pd->src, key.af);
5183 		PF_ACPY(&key.addr[1], pd->dst, key.af);
5184 		key.port[0] = key.port[1] = 0;
5185 	} else {
5186 		PF_ACPY(&key.addr[1], pd->src, key.af);
5187 		PF_ACPY(&key.addr[0], pd->dst, key.af);
5188 		key.port[1] = key.port[0] = 0;
5189 	}
5190 
5191 	STATE_LOOKUP(kif, &key, direction, *state, pd);
5192 
5193 	if (direction == (*state)->direction) {
5194 		src = &(*state)->src;
5195 		dst = &(*state)->dst;
5196 	} else {
5197 		src = &(*state)->dst;
5198 		dst = &(*state)->src;
5199 	}
5200 
5201 	/* update states */
5202 	if (src->state < PFOTHERS_SINGLE)
5203 		src->state = PFOTHERS_SINGLE;
5204 	if (dst->state == PFOTHERS_SINGLE)
5205 		dst->state = PFOTHERS_MULTIPLE;
5206 
5207 	/* update expire time */
5208 	(*state)->expire = time_uptime;
5209 	if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE)
5210 		(*state)->timeout = PFTM_OTHER_MULTIPLE;
5211 	else
5212 		(*state)->timeout = PFTM_OTHER_SINGLE;
5213 
5214 	/* translate source/destination address, if necessary */
5215 	if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
5216 		struct pf_state_key *nk = (*state)->key[pd->didx];
5217 
5218 		KASSERT(nk, ("%s: nk is null", __func__));
5219 		KASSERT(pd, ("%s: pd is null", __func__));
5220 		KASSERT(pd->src, ("%s: pd->src is null", __func__));
5221 		KASSERT(pd->dst, ("%s: pd->dst is null", __func__));
5222 		switch (pd->af) {
5223 #ifdef INET
5224 		case AF_INET:
5225 			if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET))
5226 				pf_change_a(&pd->src->v4.s_addr,
5227 				    pd->ip_sum,
5228 				    nk->addr[pd->sidx].v4.s_addr,
5229 				    0);
5230 
5231 
5232 			if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET))
5233 				pf_change_a(&pd->dst->v4.s_addr,
5234 				    pd->ip_sum,
5235 				    nk->addr[pd->didx].v4.s_addr,
5236 				    0);
5237 
5238 				break;
5239 #endif /* INET */
5240 #ifdef INET6
5241 		case AF_INET6:
5242 			if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET))
5243 				PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
5244 
5245 			if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET))
5246 				PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
5247 #endif /* INET6 */
5248 		}
5249 	}
5250 	return (PF_PASS);
5251 }
5252 
5253 /*
5254  * ipoff and off are measured from the start of the mbuf chain.
5255  * h must be at "ipoff" on the mbuf chain.
5256  */
5257 void *
5258 pf_pull_hdr(struct mbuf *m, int off, void *p, int len,
5259     u_short *actionp, u_short *reasonp, sa_family_t af)
5260 {
5261 	switch (af) {
5262 #ifdef INET
5263 	case AF_INET: {
5264 		struct ip	*h = mtod(m, struct ip *);
5265 		u_int16_t	 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
5266 
5267 		if (fragoff) {
5268 			if (fragoff >= len)
5269 				ACTION_SET(actionp, PF_PASS);
5270 			else {
5271 				ACTION_SET(actionp, PF_DROP);
5272 				REASON_SET(reasonp, PFRES_FRAG);
5273 			}
5274 			return (NULL);
5275 		}
5276 		if (m->m_pkthdr.len < off + len ||
5277 		    ntohs(h->ip_len) < off + len) {
5278 			ACTION_SET(actionp, PF_DROP);
5279 			REASON_SET(reasonp, PFRES_SHORT);
5280 			return (NULL);
5281 		}
5282 		break;
5283 	}
5284 #endif /* INET */
5285 #ifdef INET6
5286 	case AF_INET6: {
5287 		struct ip6_hdr	*h = mtod(m, struct ip6_hdr *);
5288 
5289 		if (m->m_pkthdr.len < off + len ||
5290 		    (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) <
5291 		    (unsigned)(off + len)) {
5292 			ACTION_SET(actionp, PF_DROP);
5293 			REASON_SET(reasonp, PFRES_SHORT);
5294 			return (NULL);
5295 		}
5296 		break;
5297 	}
5298 #endif /* INET6 */
5299 	}
5300 	m_copydata(m, off, len, p);
5301 	return (p);
5302 }
5303 
5304 #ifdef RADIX_MPATH
5305 static int
5306 pf_routable_oldmpath(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif,
5307     int rtableid)
5308 {
5309 	struct radix_node_head	*rnh;
5310 	struct sockaddr_in	*dst;
5311 	int			 ret = 1;
5312 	int			 check_mpath;
5313 #ifdef INET6
5314 	struct sockaddr_in6	*dst6;
5315 	struct route_in6	 ro;
5316 #else
5317 	struct route		 ro;
5318 #endif
5319 	struct radix_node	*rn;
5320 	struct rtentry		*rt;
5321 	struct ifnet		*ifp;
5322 
5323 	check_mpath = 0;
5324 	/* XXX: stick to table 0 for now */
5325 	rnh = rt_tables_get_rnh(0, af);
5326 	if (rnh != NULL && rn_mpath_capable(rnh))
5327 		check_mpath = 1;
5328 	bzero(&ro, sizeof(ro));
5329 	switch (af) {
5330 	case AF_INET:
5331 		dst = satosin(&ro.ro_dst);
5332 		dst->sin_family = AF_INET;
5333 		dst->sin_len = sizeof(*dst);
5334 		dst->sin_addr = addr->v4;
5335 		break;
5336 #ifdef INET6
5337 	case AF_INET6:
5338 		/*
5339 		 * Skip check for addresses with embedded interface scope,
5340 		 * as they would always match anyway.
5341 		 */
5342 		if (IN6_IS_SCOPE_EMBED(&addr->v6))
5343 			goto out;
5344 		dst6 = (struct sockaddr_in6 *)&ro.ro_dst;
5345 		dst6->sin6_family = AF_INET6;
5346 		dst6->sin6_len = sizeof(*dst6);
5347 		dst6->sin6_addr = addr->v6;
5348 		break;
5349 #endif /* INET6 */
5350 	default:
5351 		return (0);
5352 	}
5353 
5354 	/* Skip checks for ipsec interfaces */
5355 	if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC)
5356 		goto out;
5357 
5358 	switch (af) {
5359 #ifdef INET6
5360 	case AF_INET6:
5361 		in6_rtalloc_ign(&ro, 0, rtableid);
5362 		break;
5363 #endif
5364 #ifdef INET
5365 	case AF_INET:
5366 		in_rtalloc_ign((struct route *)&ro, 0, rtableid);
5367 		break;
5368 #endif
5369 	}
5370 
5371 	if (ro.ro_rt != NULL) {
5372 		/* No interface given, this is a no-route check */
5373 		if (kif == NULL)
5374 			goto out;
5375 
5376 		if (kif->pfik_ifp == NULL) {
5377 			ret = 0;
5378 			goto out;
5379 		}
5380 
5381 		/* Perform uRPF check if passed input interface */
5382 		ret = 0;
5383 		rn = (struct radix_node *)ro.ro_rt;
5384 		do {
5385 			rt = (struct rtentry *)rn;
5386 			ifp = rt->rt_ifp;
5387 
5388 			if (kif->pfik_ifp == ifp)
5389 				ret = 1;
5390 			rn = rn_mpath_next(rn);
5391 		} while (check_mpath == 1 && rn != NULL && ret == 0);
5392 	} else
5393 		ret = 0;
5394 out:
5395 	if (ro.ro_rt != NULL)
5396 		RTFREE(ro.ro_rt);
5397 	return (ret);
5398 }
5399 #endif
5400 
5401 int
5402 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif,
5403     int rtableid)
5404 {
5405 #ifdef INET
5406 	struct nhop4_basic	nh4;
5407 #endif
5408 #ifdef INET6
5409 	struct nhop6_basic	nh6;
5410 #endif
5411 	struct ifnet		*ifp;
5412 #ifdef RADIX_MPATH
5413 	struct radix_node_head	*rnh;
5414 
5415 	/* XXX: stick to table 0 for now */
5416 	rnh = rt_tables_get_rnh(0, af);
5417 	if (rnh != NULL && rn_mpath_capable(rnh))
5418 		return (pf_routable_oldmpath(addr, af, kif, rtableid));
5419 #endif
5420 	/*
5421 	 * Skip check for addresses with embedded interface scope,
5422 	 * as they would always match anyway.
5423 	 */
5424 	if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6))
5425 		return (1);
5426 
5427 	if (af != AF_INET && af != AF_INET6)
5428 		return (0);
5429 
5430 	/* Skip checks for ipsec interfaces */
5431 	if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC)
5432 		return (1);
5433 
5434 	ifp = NULL;
5435 
5436 	switch (af) {
5437 #ifdef INET6
5438 	case AF_INET6:
5439 		if (fib6_lookup_nh_basic(rtableid, &addr->v6, 0, 0, 0, &nh6)!=0)
5440 			return (0);
5441 		ifp = nh6.nh_ifp;
5442 		break;
5443 #endif
5444 #ifdef INET
5445 	case AF_INET:
5446 		if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) != 0)
5447 			return (0);
5448 		ifp = nh4.nh_ifp;
5449 		break;
5450 #endif
5451 	}
5452 
5453 	/* No interface given, this is a no-route check */
5454 	if (kif == NULL)
5455 		return (1);
5456 
5457 	if (kif->pfik_ifp == NULL)
5458 		return (0);
5459 
5460 	/* Perform uRPF check if passed input interface */
5461 	if (kif->pfik_ifp == ifp)
5462 		return (1);
5463 	return (0);
5464 }
5465 
5466 #ifdef INET
5467 static void
5468 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp,
5469     struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp)
5470 {
5471 	struct mbuf		*m0, *m1;
5472 	struct sockaddr_in	dst;
5473 	struct ip		*ip;
5474 	struct ifnet		*ifp = NULL;
5475 	struct pf_addr		 naddr;
5476 	struct pf_src_node	*sn = NULL;
5477 	int			 error = 0;
5478 	uint16_t		 ip_len, ip_off;
5479 
5480 	KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__));
5481 	KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction",
5482 	    __func__));
5483 
5484 	if ((pd->pf_mtag == NULL &&
5485 	    ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) ||
5486 	    pd->pf_mtag->routed++ > 3) {
5487 		m0 = *m;
5488 		*m = NULL;
5489 		goto bad_locked;
5490 	}
5491 
5492 	if (r->rt == PF_DUPTO) {
5493 		if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) {
5494 			if (s)
5495 				PF_STATE_UNLOCK(s);
5496 			return;
5497 		}
5498 	} else {
5499 		if ((r->rt == PF_REPLYTO) == (r->direction == dir)) {
5500 			if (s)
5501 				PF_STATE_UNLOCK(s);
5502 			return;
5503 		}
5504 		m0 = *m;
5505 	}
5506 
5507 	ip = mtod(m0, struct ip *);
5508 
5509 	bzero(&dst, sizeof(dst));
5510 	dst.sin_family = AF_INET;
5511 	dst.sin_len = sizeof(dst);
5512 	dst.sin_addr = ip->ip_dst;
5513 
5514 	if (TAILQ_EMPTY(&r->rpool.list)) {
5515 		DPFPRINTF(PF_DEBUG_URGENT,
5516 		    ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__));
5517 		goto bad_locked;
5518 	}
5519 	if (s == NULL) {
5520 		pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src,
5521 		    &naddr, NULL, &sn);
5522 		if (!PF_AZERO(&naddr, AF_INET))
5523 			dst.sin_addr.s_addr = naddr.v4.s_addr;
5524 		ifp = r->rpool.cur->kif ?
5525 		    r->rpool.cur->kif->pfik_ifp : NULL;
5526 	} else {
5527 		if (!PF_AZERO(&s->rt_addr, AF_INET))
5528 			dst.sin_addr.s_addr =
5529 			    s->rt_addr.v4.s_addr;
5530 		ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
5531 		PF_STATE_UNLOCK(s);
5532 	}
5533 	if (ifp == NULL)
5534 		goto bad;
5535 
5536 	if (oifp != ifp) {
5537 		if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS)
5538 			goto bad;
5539 		else if (m0 == NULL)
5540 			goto done;
5541 		if (m0->m_len < sizeof(struct ip)) {
5542 			DPFPRINTF(PF_DEBUG_URGENT,
5543 			    ("%s: m0->m_len < sizeof(struct ip)\n", __func__));
5544 			goto bad;
5545 		}
5546 		ip = mtod(m0, struct ip *);
5547 	}
5548 
5549 	if (ifp->if_flags & IFF_LOOPBACK)
5550 		m0->m_flags |= M_SKIP_FIREWALL;
5551 
5552 	ip_len = ntohs(ip->ip_len);
5553 	ip_off = ntohs(ip->ip_off);
5554 
5555 	/* Copied from FreeBSD 10.0-CURRENT ip_output. */
5556 	m0->m_pkthdr.csum_flags |= CSUM_IP;
5557 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
5558 		in_delayed_cksum(m0);
5559 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
5560 	}
5561 #ifdef SCTP
5562 	if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
5563 		sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
5564 		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
5565 	}
5566 #endif
5567 
5568 	/*
5569 	 * If small enough for interface, or the interface will take
5570 	 * care of the fragmentation for us, we can just send directly.
5571 	 */
5572 	if (ip_len <= ifp->if_mtu ||
5573 	    (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
5574 		ip->ip_sum = 0;
5575 		if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
5576 			ip->ip_sum = in_cksum(m0, ip->ip_hl << 2);
5577 			m0->m_pkthdr.csum_flags &= ~CSUM_IP;
5578 		}
5579 		m_clrprotoflags(m0);	/* Avoid confusing lower layers. */
5580 		error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL);
5581 		goto done;
5582 	}
5583 
5584 	/* Balk when DF bit is set or the interface didn't support TSO. */
5585 	if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5586 		error = EMSGSIZE;
5587 		KMOD_IPSTAT_INC(ips_cantfrag);
5588 		if (r->rt != PF_DUPTO) {
5589 			icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0,
5590 			    ifp->if_mtu);
5591 			goto done;
5592 		} else
5593 			goto bad;
5594 	}
5595 
5596 	error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist);
5597 	if (error)
5598 		goto bad;
5599 
5600 	for (; m0; m0 = m1) {
5601 		m1 = m0->m_nextpkt;
5602 		m0->m_nextpkt = NULL;
5603 		if (error == 0) {
5604 			m_clrprotoflags(m0);
5605 			error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL);
5606 		} else
5607 			m_freem(m0);
5608 	}
5609 
5610 	if (error == 0)
5611 		KMOD_IPSTAT_INC(ips_fragmented);
5612 
5613 done:
5614 	if (r->rt != PF_DUPTO)
5615 		*m = NULL;
5616 	return;
5617 
5618 bad_locked:
5619 	if (s)
5620 		PF_STATE_UNLOCK(s);
5621 bad:
5622 	m_freem(m0);
5623 	goto done;
5624 }
5625 #endif /* INET */
5626 
5627 #ifdef INET6
5628 static void
5629 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp,
5630     struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp)
5631 {
5632 	struct mbuf		*m0;
5633 	struct sockaddr_in6	dst;
5634 	struct ip6_hdr		*ip6;
5635 	struct ifnet		*ifp = NULL;
5636 	struct pf_addr		 naddr;
5637 	struct pf_src_node	*sn = NULL;
5638 
5639 	KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__));
5640 	KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction",
5641 	    __func__));
5642 
5643 	if ((pd->pf_mtag == NULL &&
5644 	    ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) ||
5645 	    pd->pf_mtag->routed++ > 3) {
5646 		m0 = *m;
5647 		*m = NULL;
5648 		goto bad_locked;
5649 	}
5650 
5651 	if (r->rt == PF_DUPTO) {
5652 		if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) {
5653 			if (s)
5654 				PF_STATE_UNLOCK(s);
5655 			return;
5656 		}
5657 	} else {
5658 		if ((r->rt == PF_REPLYTO) == (r->direction == dir)) {
5659 			if (s)
5660 				PF_STATE_UNLOCK(s);
5661 			return;
5662 		}
5663 		m0 = *m;
5664 	}
5665 
5666 	ip6 = mtod(m0, struct ip6_hdr *);
5667 
5668 	bzero(&dst, sizeof(dst));
5669 	dst.sin6_family = AF_INET6;
5670 	dst.sin6_len = sizeof(dst);
5671 	dst.sin6_addr = ip6->ip6_dst;
5672 
5673 	if (TAILQ_EMPTY(&r->rpool.list)) {
5674 		DPFPRINTF(PF_DEBUG_URGENT,
5675 		    ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__));
5676 		goto bad_locked;
5677 	}
5678 	if (s == NULL) {
5679 		pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src,
5680 		    &naddr, NULL, &sn);
5681 		if (!PF_AZERO(&naddr, AF_INET6))
5682 			PF_ACPY((struct pf_addr *)&dst.sin6_addr,
5683 			    &naddr, AF_INET6);
5684 		ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL;
5685 	} else {
5686 		if (!PF_AZERO(&s->rt_addr, AF_INET6))
5687 			PF_ACPY((struct pf_addr *)&dst.sin6_addr,
5688 			    &s->rt_addr, AF_INET6);
5689 		ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
5690 	}
5691 
5692 	if (s)
5693 		PF_STATE_UNLOCK(s);
5694 
5695 	if (ifp == NULL)
5696 		goto bad;
5697 
5698 	if (oifp != ifp) {
5699 		if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS)
5700 			goto bad;
5701 		else if (m0 == NULL)
5702 			goto done;
5703 		if (m0->m_len < sizeof(struct ip6_hdr)) {
5704 			DPFPRINTF(PF_DEBUG_URGENT,
5705 			    ("%s: m0->m_len < sizeof(struct ip6_hdr)\n",
5706 			    __func__));
5707 			goto bad;
5708 		}
5709 		ip6 = mtod(m0, struct ip6_hdr *);
5710 	}
5711 
5712 	if (ifp->if_flags & IFF_LOOPBACK)
5713 		m0->m_flags |= M_SKIP_FIREWALL;
5714 
5715 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 &
5716 	    ~ifp->if_hwassist) {
5717 		uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6);
5718 		in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr));
5719 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
5720 	}
5721 
5722 	/*
5723 	 * If the packet is too large for the outgoing interface,
5724 	 * send back an icmp6 error.
5725 	 */
5726 	if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr))
5727 		dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
5728 	if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu)
5729 		nd6_output_ifp(ifp, ifp, m0, &dst, NULL);
5730 	else {
5731 		in6_ifstat_inc(ifp, ifs6_in_toobig);
5732 		if (r->rt != PF_DUPTO)
5733 			icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu);
5734 		else
5735 			goto bad;
5736 	}
5737 
5738 done:
5739 	if (r->rt != PF_DUPTO)
5740 		*m = NULL;
5741 	return;
5742 
5743 bad_locked:
5744 	if (s)
5745 		PF_STATE_UNLOCK(s);
5746 bad:
5747 	m_freem(m0);
5748 	goto done;
5749 }
5750 #endif /* INET6 */
5751 
5752 /*
5753  * FreeBSD supports cksum offloads for the following drivers.
5754  *  em(4), fxp(4), lge(4), ndis(4), nge(4), re(4), ti(4), txp(4), xl(4)
5755  *
5756  * CSUM_DATA_VALID | CSUM_PSEUDO_HDR :
5757  *  network driver performed cksum including pseudo header, need to verify
5758  *   csum_data
5759  * CSUM_DATA_VALID :
5760  *  network driver performed cksum, needs to additional pseudo header
5761  *  cksum computation with partial csum_data(i.e. lack of H/W support for
5762  *  pseudo header, for instance hme(4), sk(4) and possibly gem(4))
5763  *
5764  * After validating the cksum of packet, set both flag CSUM_DATA_VALID and
5765  * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper
5766  * TCP/UDP layer.
5767  * Also, set csum_data to 0xffff to force cksum validation.
5768  */
5769 static int
5770 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af)
5771 {
5772 	u_int16_t sum = 0;
5773 	int hw_assist = 0;
5774 	struct ip *ip;
5775 
5776 	if (off < sizeof(struct ip) || len < sizeof(struct udphdr))
5777 		return (1);
5778 	if (m->m_pkthdr.len < off + len)
5779 		return (1);
5780 
5781 	switch (p) {
5782 	case IPPROTO_TCP:
5783 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
5784 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
5785 				sum = m->m_pkthdr.csum_data;
5786 			} else {
5787 				ip = mtod(m, struct ip *);
5788 				sum = in_pseudo(ip->ip_src.s_addr,
5789 				ip->ip_dst.s_addr, htonl((u_short)len +
5790 				m->m_pkthdr.csum_data + IPPROTO_TCP));
5791 			}
5792 			sum ^= 0xffff;
5793 			++hw_assist;
5794 		}
5795 		break;
5796 	case IPPROTO_UDP:
5797 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
5798 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
5799 				sum = m->m_pkthdr.csum_data;
5800 			} else {
5801 				ip = mtod(m, struct ip *);
5802 				sum = in_pseudo(ip->ip_src.s_addr,
5803 				ip->ip_dst.s_addr, htonl((u_short)len +
5804 				m->m_pkthdr.csum_data + IPPROTO_UDP));
5805 			}
5806 			sum ^= 0xffff;
5807 			++hw_assist;
5808 		}
5809 		break;
5810 	case IPPROTO_ICMP:
5811 #ifdef INET6
5812 	case IPPROTO_ICMPV6:
5813 #endif /* INET6 */
5814 		break;
5815 	default:
5816 		return (1);
5817 	}
5818 
5819 	if (!hw_assist) {
5820 		switch (af) {
5821 		case AF_INET:
5822 			if (p == IPPROTO_ICMP) {
5823 				if (m->m_len < off)
5824 					return (1);
5825 				m->m_data += off;
5826 				m->m_len -= off;
5827 				sum = in_cksum(m, len);
5828 				m->m_data -= off;
5829 				m->m_len += off;
5830 			} else {
5831 				if (m->m_len < sizeof(struct ip))
5832 					return (1);
5833 				sum = in4_cksum(m, p, off, len);
5834 			}
5835 			break;
5836 #ifdef INET6
5837 		case AF_INET6:
5838 			if (m->m_len < sizeof(struct ip6_hdr))
5839 				return (1);
5840 			sum = in6_cksum(m, p, off, len);
5841 			break;
5842 #endif /* INET6 */
5843 		default:
5844 			return (1);
5845 		}
5846 	}
5847 	if (sum) {
5848 		switch (p) {
5849 		case IPPROTO_TCP:
5850 		    {
5851 			KMOD_TCPSTAT_INC(tcps_rcvbadsum);
5852 			break;
5853 		    }
5854 		case IPPROTO_UDP:
5855 		    {
5856 			KMOD_UDPSTAT_INC(udps_badsum);
5857 			break;
5858 		    }
5859 #ifdef INET
5860 		case IPPROTO_ICMP:
5861 		    {
5862 			KMOD_ICMPSTAT_INC(icps_checksum);
5863 			break;
5864 		    }
5865 #endif
5866 #ifdef INET6
5867 		case IPPROTO_ICMPV6:
5868 		    {
5869 			KMOD_ICMP6STAT_INC(icp6s_checksum);
5870 			break;
5871 		    }
5872 #endif /* INET6 */
5873 		}
5874 		return (1);
5875 	} else {
5876 		if (p == IPPROTO_TCP || p == IPPROTO_UDP) {
5877 			m->m_pkthdr.csum_flags |=
5878 			    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
5879 			m->m_pkthdr.csum_data = 0xffff;
5880 		}
5881 	}
5882 	return (0);
5883 }
5884 
5885 
5886 #ifdef INET
5887 int
5888 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp)
5889 {
5890 	struct pfi_kif		*kif;
5891 	u_short			 action, reason = 0, log = 0;
5892 	struct mbuf		*m = *m0;
5893 	struct ip		*h = NULL;
5894 	struct m_tag		*ipfwtag;
5895 	struct pf_rule		*a = NULL, *r = &V_pf_default_rule, *tr, *nr;
5896 	struct pf_state		*s = NULL;
5897 	struct pf_ruleset	*ruleset = NULL;
5898 	struct pf_pdesc		 pd;
5899 	int			 off, dirndx, pqid = 0;
5900 
5901 	PF_RULES_RLOCK_TRACKER;
5902 
5903 	M_ASSERTPKTHDR(m);
5904 
5905 	if (!V_pf_status.running)
5906 		return (PF_PASS);
5907 
5908 	memset(&pd, 0, sizeof(pd));
5909 
5910 	kif = (struct pfi_kif *)ifp->if_pf_kif;
5911 
5912 	if (kif == NULL) {
5913 		DPFPRINTF(PF_DEBUG_URGENT,
5914 		    ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname));
5915 		return (PF_DROP);
5916 	}
5917 	if (kif->pfik_flags & PFI_IFLAG_SKIP)
5918 		return (PF_PASS);
5919 
5920 	if (m->m_flags & M_SKIP_FIREWALL)
5921 		return (PF_PASS);
5922 
5923 	pd.pf_mtag = pf_find_mtag(m);
5924 
5925 	PF_RULES_RLOCK();
5926 
5927 	if (ip_divert_ptr != NULL &&
5928 	    ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) {
5929 		struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1);
5930 		if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) {
5931 			if (pd.pf_mtag == NULL &&
5932 			    ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) {
5933 				action = PF_DROP;
5934 				goto done;
5935 			}
5936 			pd.pf_mtag->flags |= PF_PACKET_LOOPED;
5937 			m_tag_delete(m, ipfwtag);
5938 		}
5939 		if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) {
5940 			m->m_flags |= M_FASTFWD_OURS;
5941 			pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT;
5942 		}
5943 	} else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) {
5944 		/* We do IP header normalization and packet reassembly here */
5945 		action = PF_DROP;
5946 		goto done;
5947 	}
5948 	m = *m0;	/* pf_normalize messes with m0 */
5949 	h = mtod(m, struct ip *);
5950 
5951 	off = h->ip_hl << 2;
5952 	if (off < (int)sizeof(struct ip)) {
5953 		action = PF_DROP;
5954 		REASON_SET(&reason, PFRES_SHORT);
5955 		log = 1;
5956 		goto done;
5957 	}
5958 
5959 	pd.src = (struct pf_addr *)&h->ip_src;
5960 	pd.dst = (struct pf_addr *)&h->ip_dst;
5961 	pd.sport = pd.dport = NULL;
5962 	pd.ip_sum = &h->ip_sum;
5963 	pd.proto_sum = NULL;
5964 	pd.proto = h->ip_p;
5965 	pd.dir = dir;
5966 	pd.sidx = (dir == PF_IN) ? 0 : 1;
5967 	pd.didx = (dir == PF_IN) ? 1 : 0;
5968 	pd.af = AF_INET;
5969 	pd.tos = h->ip_tos & ~IPTOS_ECN_MASK;
5970 	pd.tot_len = ntohs(h->ip_len);
5971 
5972 	/* handle fragments that didn't get reassembled by normalization */
5973 	if (h->ip_off & htons(IP_MF | IP_OFFMASK)) {
5974 		action = pf_test_fragment(&r, dir, kif, m, h,
5975 		    &pd, &a, &ruleset);
5976 		goto done;
5977 	}
5978 
5979 	switch (h->ip_p) {
5980 
5981 	case IPPROTO_TCP: {
5982 		struct tcphdr	th;
5983 
5984 		pd.hdr.tcp = &th;
5985 		if (!pf_pull_hdr(m, off, &th, sizeof(th),
5986 		    &action, &reason, AF_INET)) {
5987 			log = action != PF_PASS;
5988 			goto done;
5989 		}
5990 		pd.p_len = pd.tot_len - off - (th.th_off << 2);
5991 		if ((th.th_flags & TH_ACK) && pd.p_len == 0)
5992 			pqid = 1;
5993 		action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd);
5994 		if (action == PF_DROP)
5995 			goto done;
5996 		action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd,
5997 		    &reason);
5998 		if (action == PF_PASS) {
5999 			if (pfsync_update_state_ptr != NULL)
6000 				pfsync_update_state_ptr(s);
6001 			r = s->rule.ptr;
6002 			a = s->anchor.ptr;
6003 			log = s->log;
6004 		} else if (s == NULL)
6005 			action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
6006 			    &a, &ruleset, inp);
6007 		break;
6008 	}
6009 
6010 	case IPPROTO_UDP: {
6011 		struct udphdr	uh;
6012 
6013 		pd.hdr.udp = &uh;
6014 		if (!pf_pull_hdr(m, off, &uh, sizeof(uh),
6015 		    &action, &reason, AF_INET)) {
6016 			log = action != PF_PASS;
6017 			goto done;
6018 		}
6019 		if (uh.uh_dport == 0 ||
6020 		    ntohs(uh.uh_ulen) > m->m_pkthdr.len - off ||
6021 		    ntohs(uh.uh_ulen) < sizeof(struct udphdr)) {
6022 			action = PF_DROP;
6023 			REASON_SET(&reason, PFRES_SHORT);
6024 			goto done;
6025 		}
6026 		action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd);
6027 		if (action == PF_PASS) {
6028 			if (pfsync_update_state_ptr != NULL)
6029 				pfsync_update_state_ptr(s);
6030 			r = s->rule.ptr;
6031 			a = s->anchor.ptr;
6032 			log = s->log;
6033 		} else if (s == NULL)
6034 			action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
6035 			    &a, &ruleset, inp);
6036 		break;
6037 	}
6038 
6039 	case IPPROTO_ICMP: {
6040 		struct icmp	ih;
6041 
6042 		pd.hdr.icmp = &ih;
6043 		if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN,
6044 		    &action, &reason, AF_INET)) {
6045 			log = action != PF_PASS;
6046 			goto done;
6047 		}
6048 		action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd,
6049 		    &reason);
6050 		if (action == PF_PASS) {
6051 			if (pfsync_update_state_ptr != NULL)
6052 				pfsync_update_state_ptr(s);
6053 			r = s->rule.ptr;
6054 			a = s->anchor.ptr;
6055 			log = s->log;
6056 		} else if (s == NULL)
6057 			action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
6058 			    &a, &ruleset, inp);
6059 		break;
6060 	}
6061 
6062 #ifdef INET6
6063 	case IPPROTO_ICMPV6: {
6064 		action = PF_DROP;
6065 		DPFPRINTF(PF_DEBUG_MISC,
6066 		    ("pf: dropping IPv4 packet with ICMPv6 payload\n"));
6067 		goto done;
6068 	}
6069 #endif
6070 
6071 	default:
6072 		action = pf_test_state_other(&s, dir, kif, m, &pd);
6073 		if (action == PF_PASS) {
6074 			if (pfsync_update_state_ptr != NULL)
6075 				pfsync_update_state_ptr(s);
6076 			r = s->rule.ptr;
6077 			a = s->anchor.ptr;
6078 			log = s->log;
6079 		} else if (s == NULL)
6080 			action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
6081 			    &a, &ruleset, inp);
6082 		break;
6083 	}
6084 
6085 done:
6086 	PF_RULES_RUNLOCK();
6087 	if (action == PF_PASS && h->ip_hl > 5 &&
6088 	    !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) {
6089 		action = PF_DROP;
6090 		REASON_SET(&reason, PFRES_IPOPTIONS);
6091 		log = r->log;
6092 		DPFPRINTF(PF_DEBUG_MISC,
6093 		    ("pf: dropping packet with ip options\n"));
6094 	}
6095 
6096 	if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) {
6097 		action = PF_DROP;
6098 		REASON_SET(&reason, PFRES_MEMORY);
6099 	}
6100 	if (r->rtableid >= 0)
6101 		M_SETFIB(m, r->rtableid);
6102 
6103 	if (r->scrub_flags & PFSTATE_SETPRIO) {
6104 		if (pd.tos & IPTOS_LOWDELAY)
6105 			pqid = 1;
6106 		if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) {
6107 			action = PF_DROP;
6108 			REASON_SET(&reason, PFRES_MEMORY);
6109 			log = 1;
6110 			DPFPRINTF(PF_DEBUG_MISC,
6111 			    ("pf: failed to allocate 802.1q mtag\n"));
6112 		}
6113 	}
6114 
6115 #ifdef ALTQ
6116 	if (action == PF_PASS && r->qid) {
6117 		if (pd.pf_mtag == NULL &&
6118 		    ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) {
6119 			action = PF_DROP;
6120 			REASON_SET(&reason, PFRES_MEMORY);
6121 		} else {
6122 			if (s != NULL)
6123 				pd.pf_mtag->qid_hash = pf_state_hash(s);
6124 			if (pqid || (pd.tos & IPTOS_LOWDELAY))
6125 				pd.pf_mtag->qid = r->pqid;
6126 			else
6127 				pd.pf_mtag->qid = r->qid;
6128 			/* Add hints for ecn. */
6129 			pd.pf_mtag->hdr = h;
6130 		}
6131 
6132 	}
6133 #endif /* ALTQ */
6134 
6135 	/*
6136 	 * connections redirected to loopback should not match sockets
6137 	 * bound specifically to loopback due to security implications,
6138 	 * see tcp_input() and in_pcblookup_listen().
6139 	 */
6140 	if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP ||
6141 	    pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL &&
6142 	    (s->nat_rule.ptr->action == PF_RDR ||
6143 	    s->nat_rule.ptr->action == PF_BINAT) &&
6144 	    (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)
6145 		m->m_flags |= M_SKIP_FIREWALL;
6146 
6147 	if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL &&
6148 	    !PACKET_LOOPED(&pd)) {
6149 
6150 		ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0,
6151 		    sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO);
6152 		if (ipfwtag != NULL) {
6153 			((struct ipfw_rule_ref *)(ipfwtag+1))->info =
6154 			    ntohs(r->divert.port);
6155 			((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir;
6156 
6157 			if (s)
6158 				PF_STATE_UNLOCK(s);
6159 
6160 			m_tag_prepend(m, ipfwtag);
6161 			if (m->m_flags & M_FASTFWD_OURS) {
6162 				if (pd.pf_mtag == NULL &&
6163 				    ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) {
6164 					action = PF_DROP;
6165 					REASON_SET(&reason, PFRES_MEMORY);
6166 					log = 1;
6167 					DPFPRINTF(PF_DEBUG_MISC,
6168 					    ("pf: failed to allocate tag\n"));
6169 				} else {
6170 					pd.pf_mtag->flags |=
6171 					    PF_FASTFWD_OURS_PRESENT;
6172 					m->m_flags &= ~M_FASTFWD_OURS;
6173 				}
6174 			}
6175 			ip_divert_ptr(*m0, dir ==  PF_IN ? DIR_IN : DIR_OUT);
6176 			*m0 = NULL;
6177 
6178 			return (action);
6179 		} else {
6180 			/* XXX: ipfw has the same behaviour! */
6181 			action = PF_DROP;
6182 			REASON_SET(&reason, PFRES_MEMORY);
6183 			log = 1;
6184 			DPFPRINTF(PF_DEBUG_MISC,
6185 			    ("pf: failed to allocate divert tag\n"));
6186 		}
6187 	}
6188 
6189 	if (log) {
6190 		struct pf_rule *lr;
6191 
6192 		if (s != NULL && s->nat_rule.ptr != NULL &&
6193 		    s->nat_rule.ptr->log & PF_LOG_ALL)
6194 			lr = s->nat_rule.ptr;
6195 		else
6196 			lr = r;
6197 		PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd,
6198 		    (s == NULL));
6199 	}
6200 
6201 	kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len;
6202 	kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++;
6203 
6204 	if (action == PF_PASS || r->action == PF_DROP) {
6205 		dirndx = (dir == PF_OUT);
6206 		r->packets[dirndx]++;
6207 		r->bytes[dirndx] += pd.tot_len;
6208 		if (a != NULL) {
6209 			a->packets[dirndx]++;
6210 			a->bytes[dirndx] += pd.tot_len;
6211 		}
6212 		if (s != NULL) {
6213 			if (s->nat_rule.ptr != NULL) {
6214 				s->nat_rule.ptr->packets[dirndx]++;
6215 				s->nat_rule.ptr->bytes[dirndx] += pd.tot_len;
6216 			}
6217 			if (s->src_node != NULL) {
6218 				s->src_node->packets[dirndx]++;
6219 				s->src_node->bytes[dirndx] += pd.tot_len;
6220 			}
6221 			if (s->nat_src_node != NULL) {
6222 				s->nat_src_node->packets[dirndx]++;
6223 				s->nat_src_node->bytes[dirndx] += pd.tot_len;
6224 			}
6225 			dirndx = (dir == s->direction) ? 0 : 1;
6226 			s->packets[dirndx]++;
6227 			s->bytes[dirndx] += pd.tot_len;
6228 		}
6229 		tr = r;
6230 		nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule;
6231 		if (nr != NULL && r == &V_pf_default_rule)
6232 			tr = nr;
6233 		if (tr->src.addr.type == PF_ADDR_TABLE)
6234 			pfr_update_stats(tr->src.addr.p.tbl,
6235 			    (s == NULL) ? pd.src :
6236 			    &s->key[(s->direction == PF_IN)]->
6237 				addr[(s->direction == PF_OUT)],
6238 			    pd.af, pd.tot_len, dir == PF_OUT,
6239 			    r->action == PF_PASS, tr->src.neg);
6240 		if (tr->dst.addr.type == PF_ADDR_TABLE)
6241 			pfr_update_stats(tr->dst.addr.p.tbl,
6242 			    (s == NULL) ? pd.dst :
6243 			    &s->key[(s->direction == PF_IN)]->
6244 				addr[(s->direction == PF_IN)],
6245 			    pd.af, pd.tot_len, dir == PF_OUT,
6246 			    r->action == PF_PASS, tr->dst.neg);
6247 	}
6248 
6249 	switch (action) {
6250 	case PF_SYNPROXY_DROP:
6251 		m_freem(*m0);
6252 	case PF_DEFER:
6253 		*m0 = NULL;
6254 		action = PF_PASS;
6255 		break;
6256 	case PF_DROP:
6257 		m_freem(*m0);
6258 		*m0 = NULL;
6259 		break;
6260 	default:
6261 		/* pf_route() returns unlocked. */
6262 		if (r->rt) {
6263 			pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp);
6264 			return (action);
6265 		}
6266 		break;
6267 	}
6268 	if (s)
6269 		PF_STATE_UNLOCK(s);
6270 
6271 	return (action);
6272 }
6273 #endif /* INET */
6274 
6275 #ifdef INET6
6276 int
6277 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp)
6278 {
6279 	struct pfi_kif		*kif;
6280 	u_short			 action, reason = 0, log = 0;
6281 	struct mbuf		*m = *m0, *n = NULL;
6282 	struct m_tag		*mtag;
6283 	struct ip6_hdr		*h = NULL;
6284 	struct pf_rule		*a = NULL, *r = &V_pf_default_rule, *tr, *nr;
6285 	struct pf_state		*s = NULL;
6286 	struct pf_ruleset	*ruleset = NULL;
6287 	struct pf_pdesc		 pd;
6288 	int			 off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0;
6289 
6290 	PF_RULES_RLOCK_TRACKER;
6291 	M_ASSERTPKTHDR(m);
6292 
6293 	if (!V_pf_status.running)
6294 		return (PF_PASS);
6295 
6296 	memset(&pd, 0, sizeof(pd));
6297 	pd.pf_mtag = pf_find_mtag(m);
6298 
6299 	if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED)
6300 		return (PF_PASS);
6301 
6302 	kif = (struct pfi_kif *)ifp->if_pf_kif;
6303 	if (kif == NULL) {
6304 		DPFPRINTF(PF_DEBUG_URGENT,
6305 		    ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname));
6306 		return (PF_DROP);
6307 	}
6308 	if (kif->pfik_flags & PFI_IFLAG_SKIP)
6309 		return (PF_PASS);
6310 
6311 	if (m->m_flags & M_SKIP_FIREWALL)
6312 		return (PF_PASS);
6313 
6314 	PF_RULES_RLOCK();
6315 
6316 	/* We do IP header normalization and packet reassembly here */
6317 	if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) {
6318 		action = PF_DROP;
6319 		goto done;
6320 	}
6321 	m = *m0;	/* pf_normalize messes with m0 */
6322 	h = mtod(m, struct ip6_hdr *);
6323 
6324 #if 1
6325 	/*
6326 	 * we do not support jumbogram yet.  if we keep going, zero ip6_plen
6327 	 * will do something bad, so drop the packet for now.
6328 	 */
6329 	if (htons(h->ip6_plen) == 0) {
6330 		action = PF_DROP;
6331 		REASON_SET(&reason, PFRES_NORM);	/*XXX*/
6332 		goto done;
6333 	}
6334 #endif
6335 
6336 	pd.src = (struct pf_addr *)&h->ip6_src;
6337 	pd.dst = (struct pf_addr *)&h->ip6_dst;
6338 	pd.sport = pd.dport = NULL;
6339 	pd.ip_sum = NULL;
6340 	pd.proto_sum = NULL;
6341 	pd.dir = dir;
6342 	pd.sidx = (dir == PF_IN) ? 0 : 1;
6343 	pd.didx = (dir == PF_IN) ? 1 : 0;
6344 	pd.af = AF_INET6;
6345 	pd.tos = 0;
6346 	pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
6347 
6348 	off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr);
6349 	pd.proto = h->ip6_nxt;
6350 	do {
6351 		switch (pd.proto) {
6352 		case IPPROTO_FRAGMENT:
6353 			action = pf_test_fragment(&r, dir, kif, m, h,
6354 			    &pd, &a, &ruleset);
6355 			if (action == PF_DROP)
6356 				REASON_SET(&reason, PFRES_FRAG);
6357 			goto done;
6358 		case IPPROTO_ROUTING: {
6359 			struct ip6_rthdr rthdr;
6360 
6361 			if (rh_cnt++) {
6362 				DPFPRINTF(PF_DEBUG_MISC,
6363 				    ("pf: IPv6 more than one rthdr\n"));
6364 				action = PF_DROP;
6365 				REASON_SET(&reason, PFRES_IPOPTIONS);
6366 				log = 1;
6367 				goto done;
6368 			}
6369 			if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL,
6370 			    &reason, pd.af)) {
6371 				DPFPRINTF(PF_DEBUG_MISC,
6372 				    ("pf: IPv6 short rthdr\n"));
6373 				action = PF_DROP;
6374 				REASON_SET(&reason, PFRES_SHORT);
6375 				log = 1;
6376 				goto done;
6377 			}
6378 			if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) {
6379 				DPFPRINTF(PF_DEBUG_MISC,
6380 				    ("pf: IPv6 rthdr0\n"));
6381 				action = PF_DROP;
6382 				REASON_SET(&reason, PFRES_IPOPTIONS);
6383 				log = 1;
6384 				goto done;
6385 			}
6386 			/* FALLTHROUGH */
6387 		}
6388 		case IPPROTO_AH:
6389 		case IPPROTO_HOPOPTS:
6390 		case IPPROTO_DSTOPTS: {
6391 			/* get next header and header length */
6392 			struct ip6_ext	opt6;
6393 
6394 			if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6),
6395 			    NULL, &reason, pd.af)) {
6396 				DPFPRINTF(PF_DEBUG_MISC,
6397 				    ("pf: IPv6 short opt\n"));
6398 				action = PF_DROP;
6399 				log = 1;
6400 				goto done;
6401 			}
6402 			if (pd.proto == IPPROTO_AH)
6403 				off += (opt6.ip6e_len + 2) * 4;
6404 			else
6405 				off += (opt6.ip6e_len + 1) * 8;
6406 			pd.proto = opt6.ip6e_nxt;
6407 			/* goto the next header */
6408 			break;
6409 		}
6410 		default:
6411 			terminal++;
6412 			break;
6413 		}
6414 	} while (!terminal);
6415 
6416 	/* if there's no routing header, use unmodified mbuf for checksumming */
6417 	if (!n)
6418 		n = m;
6419 
6420 	switch (pd.proto) {
6421 
6422 	case IPPROTO_TCP: {
6423 		struct tcphdr	th;
6424 
6425 		pd.hdr.tcp = &th;
6426 		if (!pf_pull_hdr(m, off, &th, sizeof(th),
6427 		    &action, &reason, AF_INET6)) {
6428 			log = action != PF_PASS;
6429 			goto done;
6430 		}
6431 		pd.p_len = pd.tot_len - off - (th.th_off << 2);
6432 		action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd);
6433 		if (action == PF_DROP)
6434 			goto done;
6435 		action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd,
6436 		    &reason);
6437 		if (action == PF_PASS) {
6438 			if (pfsync_update_state_ptr != NULL)
6439 				pfsync_update_state_ptr(s);
6440 			r = s->rule.ptr;
6441 			a = s->anchor.ptr;
6442 			log = s->log;
6443 		} else if (s == NULL)
6444 			action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
6445 			    &a, &ruleset, inp);
6446 		break;
6447 	}
6448 
6449 	case IPPROTO_UDP: {
6450 		struct udphdr	uh;
6451 
6452 		pd.hdr.udp = &uh;
6453 		if (!pf_pull_hdr(m, off, &uh, sizeof(uh),
6454 		    &action, &reason, AF_INET6)) {
6455 			log = action != PF_PASS;
6456 			goto done;
6457 		}
6458 		if (uh.uh_dport == 0 ||
6459 		    ntohs(uh.uh_ulen) > m->m_pkthdr.len - off ||
6460 		    ntohs(uh.uh_ulen) < sizeof(struct udphdr)) {
6461 			action = PF_DROP;
6462 			REASON_SET(&reason, PFRES_SHORT);
6463 			goto done;
6464 		}
6465 		action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd);
6466 		if (action == PF_PASS) {
6467 			if (pfsync_update_state_ptr != NULL)
6468 				pfsync_update_state_ptr(s);
6469 			r = s->rule.ptr;
6470 			a = s->anchor.ptr;
6471 			log = s->log;
6472 		} else if (s == NULL)
6473 			action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
6474 			    &a, &ruleset, inp);
6475 		break;
6476 	}
6477 
6478 	case IPPROTO_ICMP: {
6479 		action = PF_DROP;
6480 		DPFPRINTF(PF_DEBUG_MISC,
6481 		    ("pf: dropping IPv6 packet with ICMPv4 payload\n"));
6482 		goto done;
6483 	}
6484 
6485 	case IPPROTO_ICMPV6: {
6486 		struct icmp6_hdr	ih;
6487 
6488 		pd.hdr.icmp6 = &ih;
6489 		if (!pf_pull_hdr(m, off, &ih, sizeof(ih),
6490 		    &action, &reason, AF_INET6)) {
6491 			log = action != PF_PASS;
6492 			goto done;
6493 		}
6494 		action = pf_test_state_icmp(&s, dir, kif,
6495 		    m, off, h, &pd, &reason);
6496 		if (action == PF_PASS) {
6497 			if (pfsync_update_state_ptr != NULL)
6498 				pfsync_update_state_ptr(s);
6499 			r = s->rule.ptr;
6500 			a = s->anchor.ptr;
6501 			log = s->log;
6502 		} else if (s == NULL)
6503 			action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
6504 			    &a, &ruleset, inp);
6505 		break;
6506 	}
6507 
6508 	default:
6509 		action = pf_test_state_other(&s, dir, kif, m, &pd);
6510 		if (action == PF_PASS) {
6511 			if (pfsync_update_state_ptr != NULL)
6512 				pfsync_update_state_ptr(s);
6513 			r = s->rule.ptr;
6514 			a = s->anchor.ptr;
6515 			log = s->log;
6516 		} else if (s == NULL)
6517 			action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
6518 			    &a, &ruleset, inp);
6519 		break;
6520 	}
6521 
6522 done:
6523 	PF_RULES_RUNLOCK();
6524 	if (n != m) {
6525 		m_freem(n);
6526 		n = NULL;
6527 	}
6528 
6529 	/* handle dangerous IPv6 extension headers. */
6530 	if (action == PF_PASS && rh_cnt &&
6531 	    !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) {
6532 		action = PF_DROP;
6533 		REASON_SET(&reason, PFRES_IPOPTIONS);
6534 		log = r->log;
6535 		DPFPRINTF(PF_DEBUG_MISC,
6536 		    ("pf: dropping packet with dangerous v6 headers\n"));
6537 	}
6538 
6539 	if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) {
6540 		action = PF_DROP;
6541 		REASON_SET(&reason, PFRES_MEMORY);
6542 	}
6543 	if (r->rtableid >= 0)
6544 		M_SETFIB(m, r->rtableid);
6545 
6546 	if (r->scrub_flags & PFSTATE_SETPRIO) {
6547 		if (pd.tos & IPTOS_LOWDELAY)
6548 			pqid = 1;
6549 		if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) {
6550 			action = PF_DROP;
6551 			REASON_SET(&reason, PFRES_MEMORY);
6552 			log = 1;
6553 			DPFPRINTF(PF_DEBUG_MISC,
6554 			    ("pf: failed to allocate 802.1q mtag\n"));
6555 		}
6556 	}
6557 
6558 #ifdef ALTQ
6559 	if (action == PF_PASS && r->qid) {
6560 		if (pd.pf_mtag == NULL &&
6561 		    ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) {
6562 			action = PF_DROP;
6563 			REASON_SET(&reason, PFRES_MEMORY);
6564 		} else {
6565 			if (s != NULL)
6566 				pd.pf_mtag->qid_hash = pf_state_hash(s);
6567 			if (pd.tos & IPTOS_LOWDELAY)
6568 				pd.pf_mtag->qid = r->pqid;
6569 			else
6570 				pd.pf_mtag->qid = r->qid;
6571 			/* Add hints for ecn. */
6572 			pd.pf_mtag->hdr = h;
6573 		}
6574 	}
6575 #endif /* ALTQ */
6576 
6577 	if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP ||
6578 	    pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL &&
6579 	    (s->nat_rule.ptr->action == PF_RDR ||
6580 	    s->nat_rule.ptr->action == PF_BINAT) &&
6581 	    IN6_IS_ADDR_LOOPBACK(&pd.dst->v6))
6582 		m->m_flags |= M_SKIP_FIREWALL;
6583 
6584 	/* XXX: Anybody working on it?! */
6585 	if (r->divert.port)
6586 		printf("pf: divert(9) is not supported for IPv6\n");
6587 
6588 	if (log) {
6589 		struct pf_rule *lr;
6590 
6591 		if (s != NULL && s->nat_rule.ptr != NULL &&
6592 		    s->nat_rule.ptr->log & PF_LOG_ALL)
6593 			lr = s->nat_rule.ptr;
6594 		else
6595 			lr = r;
6596 		PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset,
6597 		    &pd, (s == NULL));
6598 	}
6599 
6600 	kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len;
6601 	kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++;
6602 
6603 	if (action == PF_PASS || r->action == PF_DROP) {
6604 		dirndx = (dir == PF_OUT);
6605 		r->packets[dirndx]++;
6606 		r->bytes[dirndx] += pd.tot_len;
6607 		if (a != NULL) {
6608 			a->packets[dirndx]++;
6609 			a->bytes[dirndx] += pd.tot_len;
6610 		}
6611 		if (s != NULL) {
6612 			if (s->nat_rule.ptr != NULL) {
6613 				s->nat_rule.ptr->packets[dirndx]++;
6614 				s->nat_rule.ptr->bytes[dirndx] += pd.tot_len;
6615 			}
6616 			if (s->src_node != NULL) {
6617 				s->src_node->packets[dirndx]++;
6618 				s->src_node->bytes[dirndx] += pd.tot_len;
6619 			}
6620 			if (s->nat_src_node != NULL) {
6621 				s->nat_src_node->packets[dirndx]++;
6622 				s->nat_src_node->bytes[dirndx] += pd.tot_len;
6623 			}
6624 			dirndx = (dir == s->direction) ? 0 : 1;
6625 			s->packets[dirndx]++;
6626 			s->bytes[dirndx] += pd.tot_len;
6627 		}
6628 		tr = r;
6629 		nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule;
6630 		if (nr != NULL && r == &V_pf_default_rule)
6631 			tr = nr;
6632 		if (tr->src.addr.type == PF_ADDR_TABLE)
6633 			pfr_update_stats(tr->src.addr.p.tbl,
6634 			    (s == NULL) ? pd.src :
6635 			    &s->key[(s->direction == PF_IN)]->addr[0],
6636 			    pd.af, pd.tot_len, dir == PF_OUT,
6637 			    r->action == PF_PASS, tr->src.neg);
6638 		if (tr->dst.addr.type == PF_ADDR_TABLE)
6639 			pfr_update_stats(tr->dst.addr.p.tbl,
6640 			    (s == NULL) ? pd.dst :
6641 			    &s->key[(s->direction == PF_IN)]->addr[1],
6642 			    pd.af, pd.tot_len, dir == PF_OUT,
6643 			    r->action == PF_PASS, tr->dst.neg);
6644 	}
6645 
6646 	switch (action) {
6647 	case PF_SYNPROXY_DROP:
6648 		m_freem(*m0);
6649 	case PF_DEFER:
6650 		*m0 = NULL;
6651 		action = PF_PASS;
6652 		break;
6653 	case PF_DROP:
6654 		m_freem(*m0);
6655 		*m0 = NULL;
6656 		break;
6657 	default:
6658 		/* pf_route6() returns unlocked. */
6659 		if (r->rt) {
6660 			pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp);
6661 			return (action);
6662 		}
6663 		break;
6664 	}
6665 
6666 	if (s)
6667 		PF_STATE_UNLOCK(s);
6668 
6669 	/* If reassembled packet passed, create new fragments. */
6670 	if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) &&
6671 	    (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL)
6672 		action = pf_refragment6(ifp, m0, mtag);
6673 
6674 	return (action);
6675 }
6676 #endif /* INET6 */
6677