1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_bpf.h" 46 #include "opt_pf.h" 47 48 #include <sys/param.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/socket.h> 61 #include <sys/sysctl.h> 62 #include <sys/taskqueue.h> 63 #include <sys/ucred.h> 64 65 #include <net/if.h> 66 #include <net/if_var.h> 67 #include <net/if_types.h> 68 #include <net/if_vlan_var.h> 69 #include <net/route.h> 70 #include <net/radix_mpath.h> 71 #include <net/vnet.h> 72 73 #include <net/pfil.h> 74 #include <net/pfvar.h> 75 #include <net/if_pflog.h> 76 #include <net/if_pfsync.h> 77 78 #include <netinet/in_pcb.h> 79 #include <netinet/in_var.h> 80 #include <netinet/in_fib.h> 81 #include <netinet/ip.h> 82 #include <netinet/ip_fw.h> 83 #include <netinet/ip_icmp.h> 84 #include <netinet/icmp_var.h> 85 #include <netinet/ip_var.h> 86 #include <netinet/tcp.h> 87 #include <netinet/tcp_fsm.h> 88 #include <netinet/tcp_seq.h> 89 #include <netinet/tcp_timer.h> 90 #include <netinet/tcp_var.h> 91 #include <netinet/udp.h> 92 #include <netinet/udp_var.h> 93 94 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 95 96 #ifdef INET6 97 #include <netinet/ip6.h> 98 #include <netinet/icmp6.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/ip6_var.h> 101 #include <netinet6/in6_pcb.h> 102 #include <netinet6/in6_fib.h> 103 #include <netinet6/scope6_var.h> 104 #endif /* INET6 */ 105 106 #include <machine/in_cksum.h> 107 #include <security/mac/mac_framework.h> 108 109 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 110 111 /* 112 * Global variables 113 */ 114 115 /* state tables */ 116 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 117 VNET_DEFINE(struct pf_palist, pf_pabuf); 118 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 119 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 120 VNET_DEFINE(struct pf_kstatus, pf_status); 121 122 VNET_DEFINE(u_int32_t, ticket_altqs_active); 123 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 124 VNET_DEFINE(int, altqs_inactive_open); 125 VNET_DEFINE(u_int32_t, ticket_pabuf); 126 127 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 128 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 129 VNET_DEFINE(u_char, pf_tcp_secret[16]); 130 #define V_pf_tcp_secret VNET(pf_tcp_secret) 131 VNET_DEFINE(int, pf_tcp_secret_init); 132 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 133 VNET_DEFINE(int, pf_tcp_iss_off); 134 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 135 VNET_DECLARE(int, pf_vnet_active); 136 #define V_pf_vnet_active VNET(pf_vnet_active) 137 138 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 139 #define V_pf_purge_idx VNET(pf_purge_idx) 140 141 /* 142 * Queue for pf_intr() sends. 143 */ 144 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 145 struct pf_send_entry { 146 STAILQ_ENTRY(pf_send_entry) pfse_next; 147 struct mbuf *pfse_m; 148 enum { 149 PFSE_IP, 150 PFSE_IP6, 151 PFSE_ICMP, 152 PFSE_ICMP6, 153 } pfse_type; 154 struct { 155 int type; 156 int code; 157 int mtu; 158 } icmpopts; 159 }; 160 161 STAILQ_HEAD(pf_send_head, pf_send_entry); 162 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 163 #define V_pf_sendqueue VNET(pf_sendqueue) 164 165 static struct mtx pf_sendqueue_mtx; 166 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 167 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 168 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 169 170 /* 171 * Queue for pf_overload_task() tasks. 172 */ 173 struct pf_overload_entry { 174 SLIST_ENTRY(pf_overload_entry) next; 175 struct pf_addr addr; 176 sa_family_t af; 177 uint8_t dir; 178 struct pf_rule *rule; 179 }; 180 181 SLIST_HEAD(pf_overload_head, pf_overload_entry); 182 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 183 #define V_pf_overloadqueue VNET(pf_overloadqueue) 184 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 185 #define V_pf_overloadtask VNET(pf_overloadtask) 186 187 static struct mtx pf_overloadqueue_mtx; 188 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 189 "pf overload/flush queue", MTX_DEF); 190 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 191 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 192 193 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 194 struct mtx pf_unlnkdrules_mtx; 195 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 196 MTX_DEF); 197 198 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 199 #define V_pf_sources_z VNET(pf_sources_z) 200 uma_zone_t pf_mtag_z; 201 VNET_DEFINE(uma_zone_t, pf_state_z); 202 VNET_DEFINE(uma_zone_t, pf_state_key_z); 203 204 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 205 #define PFID_CPUBITS 8 206 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 207 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 208 #define PFID_MAXID (~PFID_CPUMASK) 209 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 210 211 static void pf_src_tree_remove_state(struct pf_state *); 212 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 213 u_int32_t); 214 static void pf_add_threshold(struct pf_threshold *); 215 static int pf_check_threshold(struct pf_threshold *); 216 217 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 218 u_int16_t *, u_int16_t *, struct pf_addr *, 219 u_int16_t, u_int8_t, sa_family_t); 220 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 221 struct tcphdr *, struct pf_state_peer *); 222 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 223 struct pf_addr *, struct pf_addr *, u_int16_t, 224 u_int16_t *, u_int16_t *, u_int16_t *, 225 u_int16_t *, u_int8_t, sa_family_t); 226 static void pf_send_tcp(struct mbuf *, 227 const struct pf_rule *, sa_family_t, 228 const struct pf_addr *, const struct pf_addr *, 229 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 230 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 231 u_int16_t, struct ifnet *); 232 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 233 sa_family_t, struct pf_rule *); 234 static void pf_detach_state(struct pf_state *); 235 static int pf_state_key_attach(struct pf_state_key *, 236 struct pf_state_key *, struct pf_state *); 237 static void pf_state_key_detach(struct pf_state *, int); 238 static int pf_state_key_ctor(void *, int, void *, int); 239 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 240 static int pf_test_rule(struct pf_rule **, struct pf_state **, 241 int, struct pfi_kif *, struct mbuf *, int, 242 struct pf_pdesc *, struct pf_rule **, 243 struct pf_ruleset **, struct inpcb *); 244 static int pf_create_state(struct pf_rule *, struct pf_rule *, 245 struct pf_rule *, struct pf_pdesc *, 246 struct pf_src_node *, struct pf_state_key *, 247 struct pf_state_key *, struct mbuf *, int, 248 u_int16_t, u_int16_t, int *, struct pfi_kif *, 249 struct pf_state **, int, u_int16_t, u_int16_t, 250 int); 251 static int pf_test_fragment(struct pf_rule **, int, 252 struct pfi_kif *, struct mbuf *, void *, 253 struct pf_pdesc *, struct pf_rule **, 254 struct pf_ruleset **); 255 static int pf_tcp_track_full(struct pf_state_peer *, 256 struct pf_state_peer *, struct pf_state **, 257 struct pfi_kif *, struct mbuf *, int, 258 struct pf_pdesc *, u_short *, int *); 259 static int pf_tcp_track_sloppy(struct pf_state_peer *, 260 struct pf_state_peer *, struct pf_state **, 261 struct pf_pdesc *, u_short *); 262 static int pf_test_state_tcp(struct pf_state **, int, 263 struct pfi_kif *, struct mbuf *, int, 264 void *, struct pf_pdesc *, u_short *); 265 static int pf_test_state_udp(struct pf_state **, int, 266 struct pfi_kif *, struct mbuf *, int, 267 void *, struct pf_pdesc *); 268 static int pf_test_state_icmp(struct pf_state **, int, 269 struct pfi_kif *, struct mbuf *, int, 270 void *, struct pf_pdesc *, u_short *); 271 static int pf_test_state_other(struct pf_state **, int, 272 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 273 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 274 sa_family_t); 275 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 276 sa_family_t); 277 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 278 int, u_int16_t); 279 static int pf_check_proto_cksum(struct mbuf *, int, int, 280 u_int8_t, sa_family_t); 281 static void pf_print_state_parts(struct pf_state *, 282 struct pf_state_key *, struct pf_state_key *); 283 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 284 struct pf_addr_wrap *); 285 static struct pf_state *pf_find_state(struct pfi_kif *, 286 struct pf_state_key_cmp *, u_int); 287 static int pf_src_connlimit(struct pf_state **); 288 static void pf_overload_task(void *v, int pending); 289 static int pf_insert_src_node(struct pf_src_node **, 290 struct pf_rule *, struct pf_addr *, sa_family_t); 291 static u_int pf_purge_expired_states(u_int, int); 292 static void pf_purge_unlinked_rules(void); 293 static int pf_mtag_uminit(void *, int, int); 294 static void pf_mtag_free(struct m_tag *); 295 #ifdef INET 296 static void pf_route(struct mbuf **, struct pf_rule *, int, 297 struct ifnet *, struct pf_state *, 298 struct pf_pdesc *, struct inpcb *); 299 #endif /* INET */ 300 #ifdef INET6 301 static void pf_change_a6(struct pf_addr *, u_int16_t *, 302 struct pf_addr *, u_int8_t); 303 static void pf_route6(struct mbuf **, struct pf_rule *, int, 304 struct ifnet *, struct pf_state *, 305 struct pf_pdesc *, struct inpcb *); 306 #endif /* INET6 */ 307 308 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 309 310 extern int pf_end_threads; 311 extern struct proc *pf_purge_proc; 312 313 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 314 315 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 316 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 317 318 #define STATE_LOOKUP(i, k, d, s, pd) \ 319 do { \ 320 (s) = pf_find_state((i), (k), (d)); \ 321 if ((s) == NULL) \ 322 return (PF_DROP); \ 323 if (PACKET_LOOPED(pd)) \ 324 return (PF_PASS); \ 325 if ((d) == PF_OUT && \ 326 (((s)->rule.ptr->rt == PF_ROUTETO && \ 327 (s)->rule.ptr->direction == PF_OUT) || \ 328 ((s)->rule.ptr->rt == PF_REPLYTO && \ 329 (s)->rule.ptr->direction == PF_IN)) && \ 330 (s)->rt_kif != NULL && \ 331 (s)->rt_kif != (i)) \ 332 return (PF_PASS); \ 333 } while (0) 334 335 #define BOUND_IFACE(r, k) \ 336 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 337 338 #define STATE_INC_COUNTERS(s) \ 339 do { \ 340 counter_u64_add(s->rule.ptr->states_cur, 1); \ 341 counter_u64_add(s->rule.ptr->states_tot, 1); \ 342 if (s->anchor.ptr != NULL) { \ 343 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 344 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 345 } \ 346 if (s->nat_rule.ptr != NULL) { \ 347 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 348 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 349 } \ 350 } while (0) 351 352 #define STATE_DEC_COUNTERS(s) \ 353 do { \ 354 if (s->nat_rule.ptr != NULL) \ 355 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 356 if (s->anchor.ptr != NULL) \ 357 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 358 counter_u64_add(s->rule.ptr->states_cur, -1); \ 359 } while (0) 360 361 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 362 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 363 VNET_DEFINE(struct pf_idhash *, pf_idhash); 364 VNET_DEFINE(struct pf_srchash *, pf_srchash); 365 366 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 367 368 u_long pf_hashmask; 369 u_long pf_srchashmask; 370 static u_long pf_hashsize; 371 static u_long pf_srchashsize; 372 u_long pf_ioctl_maxcount = 65535; 373 374 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 375 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 376 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 377 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 378 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RDTUN, 379 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 380 381 VNET_DEFINE(void *, pf_swi_cookie); 382 383 VNET_DEFINE(uint32_t, pf_hashseed); 384 #define V_pf_hashseed VNET(pf_hashseed) 385 386 int 387 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 388 { 389 390 switch (af) { 391 #ifdef INET 392 case AF_INET: 393 if (a->addr32[0] > b->addr32[0]) 394 return (1); 395 if (a->addr32[0] < b->addr32[0]) 396 return (-1); 397 break; 398 #endif /* INET */ 399 #ifdef INET6 400 case AF_INET6: 401 if (a->addr32[3] > b->addr32[3]) 402 return (1); 403 if (a->addr32[3] < b->addr32[3]) 404 return (-1); 405 if (a->addr32[2] > b->addr32[2]) 406 return (1); 407 if (a->addr32[2] < b->addr32[2]) 408 return (-1); 409 if (a->addr32[1] > b->addr32[1]) 410 return (1); 411 if (a->addr32[1] < b->addr32[1]) 412 return (-1); 413 if (a->addr32[0] > b->addr32[0]) 414 return (1); 415 if (a->addr32[0] < b->addr32[0]) 416 return (-1); 417 break; 418 #endif /* INET6 */ 419 default: 420 panic("%s: unknown address family %u", __func__, af); 421 } 422 return (0); 423 } 424 425 static __inline uint32_t 426 pf_hashkey(struct pf_state_key *sk) 427 { 428 uint32_t h; 429 430 h = murmur3_32_hash32((uint32_t *)sk, 431 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 432 V_pf_hashseed); 433 434 return (h & pf_hashmask); 435 } 436 437 static __inline uint32_t 438 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 439 { 440 uint32_t h; 441 442 switch (af) { 443 case AF_INET: 444 h = murmur3_32_hash32((uint32_t *)&addr->v4, 445 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 446 break; 447 case AF_INET6: 448 h = murmur3_32_hash32((uint32_t *)&addr->v6, 449 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 450 break; 451 default: 452 panic("%s: unknown address family %u", __func__, af); 453 } 454 455 return (h & pf_srchashmask); 456 } 457 458 #ifdef ALTQ 459 static int 460 pf_state_hash(struct pf_state *s) 461 { 462 u_int32_t hv = (intptr_t)s / sizeof(*s); 463 464 hv ^= crc32(&s->src, sizeof(s->src)); 465 hv ^= crc32(&s->dst, sizeof(s->dst)); 466 if (hv == 0) 467 hv = 1; 468 return (hv); 469 } 470 #endif 471 472 #ifdef INET6 473 void 474 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 475 { 476 switch (af) { 477 #ifdef INET 478 case AF_INET: 479 dst->addr32[0] = src->addr32[0]; 480 break; 481 #endif /* INET */ 482 case AF_INET6: 483 dst->addr32[0] = src->addr32[0]; 484 dst->addr32[1] = src->addr32[1]; 485 dst->addr32[2] = src->addr32[2]; 486 dst->addr32[3] = src->addr32[3]; 487 break; 488 } 489 } 490 #endif /* INET6 */ 491 492 static void 493 pf_init_threshold(struct pf_threshold *threshold, 494 u_int32_t limit, u_int32_t seconds) 495 { 496 threshold->limit = limit * PF_THRESHOLD_MULT; 497 threshold->seconds = seconds; 498 threshold->count = 0; 499 threshold->last = time_uptime; 500 } 501 502 static void 503 pf_add_threshold(struct pf_threshold *threshold) 504 { 505 u_int32_t t = time_uptime, diff = t - threshold->last; 506 507 if (diff >= threshold->seconds) 508 threshold->count = 0; 509 else 510 threshold->count -= threshold->count * diff / 511 threshold->seconds; 512 threshold->count += PF_THRESHOLD_MULT; 513 threshold->last = t; 514 } 515 516 static int 517 pf_check_threshold(struct pf_threshold *threshold) 518 { 519 return (threshold->count > threshold->limit); 520 } 521 522 static int 523 pf_src_connlimit(struct pf_state **state) 524 { 525 struct pf_overload_entry *pfoe; 526 int bad = 0; 527 528 PF_STATE_LOCK_ASSERT(*state); 529 530 (*state)->src_node->conn++; 531 (*state)->src.tcp_est = 1; 532 pf_add_threshold(&(*state)->src_node->conn_rate); 533 534 if ((*state)->rule.ptr->max_src_conn && 535 (*state)->rule.ptr->max_src_conn < 536 (*state)->src_node->conn) { 537 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 538 bad++; 539 } 540 541 if ((*state)->rule.ptr->max_src_conn_rate.limit && 542 pf_check_threshold(&(*state)->src_node->conn_rate)) { 543 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 544 bad++; 545 } 546 547 if (!bad) 548 return (0); 549 550 /* Kill this state. */ 551 (*state)->timeout = PFTM_PURGE; 552 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 553 554 if ((*state)->rule.ptr->overload_tbl == NULL) 555 return (1); 556 557 /* Schedule overloading and flushing task. */ 558 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 559 if (pfoe == NULL) 560 return (1); /* too bad :( */ 561 562 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 563 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 564 pfoe->rule = (*state)->rule.ptr; 565 pfoe->dir = (*state)->direction; 566 PF_OVERLOADQ_LOCK(); 567 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 568 PF_OVERLOADQ_UNLOCK(); 569 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 570 571 return (1); 572 } 573 574 static void 575 pf_overload_task(void *v, int pending) 576 { 577 struct pf_overload_head queue; 578 struct pfr_addr p; 579 struct pf_overload_entry *pfoe, *pfoe1; 580 uint32_t killed = 0; 581 582 CURVNET_SET((struct vnet *)v); 583 584 PF_OVERLOADQ_LOCK(); 585 queue = V_pf_overloadqueue; 586 SLIST_INIT(&V_pf_overloadqueue); 587 PF_OVERLOADQ_UNLOCK(); 588 589 bzero(&p, sizeof(p)); 590 SLIST_FOREACH(pfoe, &queue, next) { 591 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 592 if (V_pf_status.debug >= PF_DEBUG_MISC) { 593 printf("%s: blocking address ", __func__); 594 pf_print_host(&pfoe->addr, 0, pfoe->af); 595 printf("\n"); 596 } 597 598 p.pfra_af = pfoe->af; 599 switch (pfoe->af) { 600 #ifdef INET 601 case AF_INET: 602 p.pfra_net = 32; 603 p.pfra_ip4addr = pfoe->addr.v4; 604 break; 605 #endif 606 #ifdef INET6 607 case AF_INET6: 608 p.pfra_net = 128; 609 p.pfra_ip6addr = pfoe->addr.v6; 610 break; 611 #endif 612 } 613 614 PF_RULES_WLOCK(); 615 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 616 PF_RULES_WUNLOCK(); 617 } 618 619 /* 620 * Remove those entries, that don't need flushing. 621 */ 622 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 623 if (pfoe->rule->flush == 0) { 624 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 625 free(pfoe, M_PFTEMP); 626 } else 627 counter_u64_add( 628 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 629 630 /* If nothing to flush, return. */ 631 if (SLIST_EMPTY(&queue)) { 632 CURVNET_RESTORE(); 633 return; 634 } 635 636 for (int i = 0; i <= pf_hashmask; i++) { 637 struct pf_idhash *ih = &V_pf_idhash[i]; 638 struct pf_state_key *sk; 639 struct pf_state *s; 640 641 PF_HASHROW_LOCK(ih); 642 LIST_FOREACH(s, &ih->states, entry) { 643 sk = s->key[PF_SK_WIRE]; 644 SLIST_FOREACH(pfoe, &queue, next) 645 if (sk->af == pfoe->af && 646 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 647 pfoe->rule == s->rule.ptr) && 648 ((pfoe->dir == PF_OUT && 649 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 650 (pfoe->dir == PF_IN && 651 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 652 s->timeout = PFTM_PURGE; 653 s->src.state = s->dst.state = TCPS_CLOSED; 654 killed++; 655 } 656 } 657 PF_HASHROW_UNLOCK(ih); 658 } 659 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 660 free(pfoe, M_PFTEMP); 661 if (V_pf_status.debug >= PF_DEBUG_MISC) 662 printf("%s: %u states killed", __func__, killed); 663 664 CURVNET_RESTORE(); 665 } 666 667 /* 668 * Can return locked on failure, so that we can consistently 669 * allocate and insert a new one. 670 */ 671 struct pf_src_node * 672 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 673 int returnlocked) 674 { 675 struct pf_srchash *sh; 676 struct pf_src_node *n; 677 678 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 679 680 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 681 PF_HASHROW_LOCK(sh); 682 LIST_FOREACH(n, &sh->nodes, entry) 683 if (n->rule.ptr == rule && n->af == af && 684 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 685 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 686 break; 687 if (n != NULL) { 688 n->states++; 689 PF_HASHROW_UNLOCK(sh); 690 } else if (returnlocked == 0) 691 PF_HASHROW_UNLOCK(sh); 692 693 return (n); 694 } 695 696 static int 697 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 698 struct pf_addr *src, sa_family_t af) 699 { 700 701 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 702 rule->rpool.opts & PF_POOL_STICKYADDR), 703 ("%s for non-tracking rule %p", __func__, rule)); 704 705 if (*sn == NULL) 706 *sn = pf_find_src_node(src, rule, af, 1); 707 708 if (*sn == NULL) { 709 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 710 711 PF_HASHROW_ASSERT(sh); 712 713 if (!rule->max_src_nodes || 714 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 715 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 716 else 717 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 718 1); 719 if ((*sn) == NULL) { 720 PF_HASHROW_UNLOCK(sh); 721 return (-1); 722 } 723 724 pf_init_threshold(&(*sn)->conn_rate, 725 rule->max_src_conn_rate.limit, 726 rule->max_src_conn_rate.seconds); 727 728 (*sn)->af = af; 729 (*sn)->rule.ptr = rule; 730 PF_ACPY(&(*sn)->addr, src, af); 731 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 732 (*sn)->creation = time_uptime; 733 (*sn)->ruletype = rule->action; 734 (*sn)->states = 1; 735 if ((*sn)->rule.ptr != NULL) 736 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 737 PF_HASHROW_UNLOCK(sh); 738 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 739 } else { 740 if (rule->max_src_states && 741 (*sn)->states >= rule->max_src_states) { 742 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 743 1); 744 return (-1); 745 } 746 } 747 return (0); 748 } 749 750 void 751 pf_unlink_src_node(struct pf_src_node *src) 752 { 753 754 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 755 LIST_REMOVE(src, entry); 756 if (src->rule.ptr) 757 counter_u64_add(src->rule.ptr->src_nodes, -1); 758 } 759 760 u_int 761 pf_free_src_nodes(struct pf_src_node_list *head) 762 { 763 struct pf_src_node *sn, *tmp; 764 u_int count = 0; 765 766 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 767 uma_zfree(V_pf_sources_z, sn); 768 count++; 769 } 770 771 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 772 773 return (count); 774 } 775 776 void 777 pf_mtag_initialize() 778 { 779 780 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 781 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 782 UMA_ALIGN_PTR, 0); 783 } 784 785 /* Per-vnet data storage structures initialization. */ 786 void 787 pf_initialize() 788 { 789 struct pf_keyhash *kh; 790 struct pf_idhash *ih; 791 struct pf_srchash *sh; 792 u_int i; 793 794 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 795 pf_hashsize = PF_HASHSIZ; 796 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 797 pf_srchashsize = PF_SRCHASHSIZ; 798 799 V_pf_hashseed = arc4random(); 800 801 /* States and state keys storage. */ 802 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 803 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 804 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 805 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 806 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 807 808 V_pf_state_key_z = uma_zcreate("pf state keys", 809 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 810 UMA_ALIGN_PTR, 0); 811 812 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 813 M_PFHASH, M_NOWAIT | M_ZERO); 814 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 815 M_PFHASH, M_NOWAIT | M_ZERO); 816 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 817 printf("pf: Unable to allocate memory for " 818 "state_hashsize %lu.\n", pf_hashsize); 819 820 free(V_pf_keyhash, M_PFHASH); 821 free(V_pf_idhash, M_PFHASH); 822 823 pf_hashsize = PF_HASHSIZ; 824 V_pf_keyhash = mallocarray(pf_hashsize, 825 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 826 V_pf_idhash = mallocarray(pf_hashsize, 827 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 828 } 829 830 pf_hashmask = pf_hashsize - 1; 831 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 832 i++, kh++, ih++) { 833 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 834 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 835 } 836 837 /* Source nodes. */ 838 V_pf_sources_z = uma_zcreate("pf source nodes", 839 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 840 0); 841 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 842 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 843 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 844 845 V_pf_srchash = mallocarray(pf_srchashsize, 846 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 847 if (V_pf_srchash == NULL) { 848 printf("pf: Unable to allocate memory for " 849 "source_hashsize %lu.\n", pf_srchashsize); 850 851 pf_srchashsize = PF_SRCHASHSIZ; 852 V_pf_srchash = mallocarray(pf_srchashsize, 853 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 854 } 855 856 pf_srchashmask = pf_srchashsize - 1; 857 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 858 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 859 860 /* ALTQ */ 861 TAILQ_INIT(&V_pf_altqs[0]); 862 TAILQ_INIT(&V_pf_altqs[1]); 863 TAILQ_INIT(&V_pf_pabuf); 864 V_pf_altqs_active = &V_pf_altqs[0]; 865 V_pf_altqs_inactive = &V_pf_altqs[1]; 866 867 /* Send & overload+flush queues. */ 868 STAILQ_INIT(&V_pf_sendqueue); 869 SLIST_INIT(&V_pf_overloadqueue); 870 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 871 872 /* Unlinked, but may be referenced rules. */ 873 TAILQ_INIT(&V_pf_unlinked_rules); 874 } 875 876 void 877 pf_mtag_cleanup() 878 { 879 880 uma_zdestroy(pf_mtag_z); 881 } 882 883 void 884 pf_cleanup() 885 { 886 struct pf_keyhash *kh; 887 struct pf_idhash *ih; 888 struct pf_srchash *sh; 889 struct pf_send_entry *pfse, *next; 890 u_int i; 891 892 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 893 i++, kh++, ih++) { 894 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 895 __func__)); 896 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 897 __func__)); 898 mtx_destroy(&kh->lock); 899 mtx_destroy(&ih->lock); 900 } 901 free(V_pf_keyhash, M_PFHASH); 902 free(V_pf_idhash, M_PFHASH); 903 904 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 905 KASSERT(LIST_EMPTY(&sh->nodes), 906 ("%s: source node hash not empty", __func__)); 907 mtx_destroy(&sh->lock); 908 } 909 free(V_pf_srchash, M_PFHASH); 910 911 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 912 m_freem(pfse->pfse_m); 913 free(pfse, M_PFTEMP); 914 } 915 916 uma_zdestroy(V_pf_sources_z); 917 uma_zdestroy(V_pf_state_z); 918 uma_zdestroy(V_pf_state_key_z); 919 } 920 921 static int 922 pf_mtag_uminit(void *mem, int size, int how) 923 { 924 struct m_tag *t; 925 926 t = (struct m_tag *)mem; 927 t->m_tag_cookie = MTAG_ABI_COMPAT; 928 t->m_tag_id = PACKET_TAG_PF; 929 t->m_tag_len = sizeof(struct pf_mtag); 930 t->m_tag_free = pf_mtag_free; 931 932 return (0); 933 } 934 935 static void 936 pf_mtag_free(struct m_tag *t) 937 { 938 939 uma_zfree(pf_mtag_z, t); 940 } 941 942 struct pf_mtag * 943 pf_get_mtag(struct mbuf *m) 944 { 945 struct m_tag *mtag; 946 947 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 948 return ((struct pf_mtag *)(mtag + 1)); 949 950 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 951 if (mtag == NULL) 952 return (NULL); 953 bzero(mtag + 1, sizeof(struct pf_mtag)); 954 m_tag_prepend(m, mtag); 955 956 return ((struct pf_mtag *)(mtag + 1)); 957 } 958 959 static int 960 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 961 struct pf_state *s) 962 { 963 struct pf_keyhash *khs, *khw, *kh; 964 struct pf_state_key *sk, *cur; 965 struct pf_state *si, *olds = NULL; 966 int idx; 967 968 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 969 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 970 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 971 972 /* 973 * We need to lock hash slots of both keys. To avoid deadlock 974 * we always lock the slot with lower address first. Unlock order 975 * isn't important. 976 * 977 * We also need to lock ID hash slot before dropping key 978 * locks. On success we return with ID hash slot locked. 979 */ 980 981 if (skw == sks) { 982 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 983 PF_HASHROW_LOCK(khs); 984 } else { 985 khs = &V_pf_keyhash[pf_hashkey(sks)]; 986 khw = &V_pf_keyhash[pf_hashkey(skw)]; 987 if (khs == khw) { 988 PF_HASHROW_LOCK(khs); 989 } else if (khs < khw) { 990 PF_HASHROW_LOCK(khs); 991 PF_HASHROW_LOCK(khw); 992 } else { 993 PF_HASHROW_LOCK(khw); 994 PF_HASHROW_LOCK(khs); 995 } 996 } 997 998 #define KEYS_UNLOCK() do { \ 999 if (khs != khw) { \ 1000 PF_HASHROW_UNLOCK(khs); \ 1001 PF_HASHROW_UNLOCK(khw); \ 1002 } else \ 1003 PF_HASHROW_UNLOCK(khs); \ 1004 } while (0) 1005 1006 /* 1007 * First run: start with wire key. 1008 */ 1009 sk = skw; 1010 kh = khw; 1011 idx = PF_SK_WIRE; 1012 1013 keyattach: 1014 LIST_FOREACH(cur, &kh->keys, entry) 1015 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1016 break; 1017 1018 if (cur != NULL) { 1019 /* Key exists. Check for same kif, if none, add to key. */ 1020 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1021 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1022 1023 PF_HASHROW_LOCK(ih); 1024 if (si->kif == s->kif && 1025 si->direction == s->direction) { 1026 if (sk->proto == IPPROTO_TCP && 1027 si->src.state >= TCPS_FIN_WAIT_2 && 1028 si->dst.state >= TCPS_FIN_WAIT_2) { 1029 /* 1030 * New state matches an old >FIN_WAIT_2 1031 * state. We can't drop key hash locks, 1032 * thus we can't unlink it properly. 1033 * 1034 * As a workaround we drop it into 1035 * TCPS_CLOSED state, schedule purge 1036 * ASAP and push it into the very end 1037 * of the slot TAILQ, so that it won't 1038 * conflict with our new state. 1039 */ 1040 si->src.state = si->dst.state = 1041 TCPS_CLOSED; 1042 si->timeout = PFTM_PURGE; 1043 olds = si; 1044 } else { 1045 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1046 printf("pf: %s key attach " 1047 "failed on %s: ", 1048 (idx == PF_SK_WIRE) ? 1049 "wire" : "stack", 1050 s->kif->pfik_name); 1051 pf_print_state_parts(s, 1052 (idx == PF_SK_WIRE) ? 1053 sk : NULL, 1054 (idx == PF_SK_STACK) ? 1055 sk : NULL); 1056 printf(", existing: "); 1057 pf_print_state_parts(si, 1058 (idx == PF_SK_WIRE) ? 1059 sk : NULL, 1060 (idx == PF_SK_STACK) ? 1061 sk : NULL); 1062 printf("\n"); 1063 } 1064 PF_HASHROW_UNLOCK(ih); 1065 KEYS_UNLOCK(); 1066 uma_zfree(V_pf_state_key_z, sk); 1067 if (idx == PF_SK_STACK) 1068 pf_detach_state(s); 1069 return (EEXIST); /* collision! */ 1070 } 1071 } 1072 PF_HASHROW_UNLOCK(ih); 1073 } 1074 uma_zfree(V_pf_state_key_z, sk); 1075 s->key[idx] = cur; 1076 } else { 1077 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1078 s->key[idx] = sk; 1079 } 1080 1081 stateattach: 1082 /* List is sorted, if-bound states before floating. */ 1083 if (s->kif == V_pfi_all) 1084 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1085 else 1086 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1087 1088 if (olds) { 1089 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1090 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1091 key_list[idx]); 1092 olds = NULL; 1093 } 1094 1095 /* 1096 * Attach done. See how should we (or should not?) 1097 * attach a second key. 1098 */ 1099 if (sks == skw) { 1100 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1101 idx = PF_SK_STACK; 1102 sks = NULL; 1103 goto stateattach; 1104 } else if (sks != NULL) { 1105 /* 1106 * Continue attaching with stack key. 1107 */ 1108 sk = sks; 1109 kh = khs; 1110 idx = PF_SK_STACK; 1111 sks = NULL; 1112 goto keyattach; 1113 } 1114 1115 PF_STATE_LOCK(s); 1116 KEYS_UNLOCK(); 1117 1118 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1119 ("%s failure", __func__)); 1120 1121 return (0); 1122 #undef KEYS_UNLOCK 1123 } 1124 1125 static void 1126 pf_detach_state(struct pf_state *s) 1127 { 1128 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1129 struct pf_keyhash *kh; 1130 1131 if (sks != NULL) { 1132 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1133 PF_HASHROW_LOCK(kh); 1134 if (s->key[PF_SK_STACK] != NULL) 1135 pf_state_key_detach(s, PF_SK_STACK); 1136 /* 1137 * If both point to same key, then we are done. 1138 */ 1139 if (sks == s->key[PF_SK_WIRE]) { 1140 pf_state_key_detach(s, PF_SK_WIRE); 1141 PF_HASHROW_UNLOCK(kh); 1142 return; 1143 } 1144 PF_HASHROW_UNLOCK(kh); 1145 } 1146 1147 if (s->key[PF_SK_WIRE] != NULL) { 1148 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1149 PF_HASHROW_LOCK(kh); 1150 if (s->key[PF_SK_WIRE] != NULL) 1151 pf_state_key_detach(s, PF_SK_WIRE); 1152 PF_HASHROW_UNLOCK(kh); 1153 } 1154 } 1155 1156 static void 1157 pf_state_key_detach(struct pf_state *s, int idx) 1158 { 1159 struct pf_state_key *sk = s->key[idx]; 1160 #ifdef INVARIANTS 1161 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1162 1163 PF_HASHROW_ASSERT(kh); 1164 #endif 1165 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1166 s->key[idx] = NULL; 1167 1168 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1169 LIST_REMOVE(sk, entry); 1170 uma_zfree(V_pf_state_key_z, sk); 1171 } 1172 } 1173 1174 static int 1175 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1176 { 1177 struct pf_state_key *sk = mem; 1178 1179 bzero(sk, sizeof(struct pf_state_key_cmp)); 1180 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1181 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1182 1183 return (0); 1184 } 1185 1186 struct pf_state_key * 1187 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1188 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1189 { 1190 struct pf_state_key *sk; 1191 1192 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1193 if (sk == NULL) 1194 return (NULL); 1195 1196 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1197 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1198 sk->port[pd->sidx] = sport; 1199 sk->port[pd->didx] = dport; 1200 sk->proto = pd->proto; 1201 sk->af = pd->af; 1202 1203 return (sk); 1204 } 1205 1206 struct pf_state_key * 1207 pf_state_key_clone(struct pf_state_key *orig) 1208 { 1209 struct pf_state_key *sk; 1210 1211 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1212 if (sk == NULL) 1213 return (NULL); 1214 1215 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1216 1217 return (sk); 1218 } 1219 1220 int 1221 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1222 struct pf_state_key *sks, struct pf_state *s) 1223 { 1224 struct pf_idhash *ih; 1225 struct pf_state *cur; 1226 int error; 1227 1228 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1229 ("%s: sks not pristine", __func__)); 1230 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1231 ("%s: skw not pristine", __func__)); 1232 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1233 1234 s->kif = kif; 1235 1236 if (s->id == 0 && s->creatorid == 0) { 1237 /* XXX: should be atomic, but probability of collision low */ 1238 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1239 V_pf_stateid[curcpu] = 1; 1240 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1241 s->id = htobe64(s->id); 1242 s->creatorid = V_pf_status.hostid; 1243 } 1244 1245 /* Returns with ID locked on success. */ 1246 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1247 return (error); 1248 1249 ih = &V_pf_idhash[PF_IDHASH(s)]; 1250 PF_HASHROW_ASSERT(ih); 1251 LIST_FOREACH(cur, &ih->states, entry) 1252 if (cur->id == s->id && cur->creatorid == s->creatorid) 1253 break; 1254 1255 if (cur != NULL) { 1256 PF_HASHROW_UNLOCK(ih); 1257 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1258 printf("pf: state ID collision: " 1259 "id: %016llx creatorid: %08x\n", 1260 (unsigned long long)be64toh(s->id), 1261 ntohl(s->creatorid)); 1262 } 1263 pf_detach_state(s); 1264 return (EEXIST); 1265 } 1266 LIST_INSERT_HEAD(&ih->states, s, entry); 1267 /* One for keys, one for ID hash. */ 1268 refcount_init(&s->refs, 2); 1269 1270 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1271 if (pfsync_insert_state_ptr != NULL) 1272 pfsync_insert_state_ptr(s); 1273 1274 /* Returns locked. */ 1275 return (0); 1276 } 1277 1278 /* 1279 * Find state by ID: returns with locked row on success. 1280 */ 1281 struct pf_state * 1282 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1283 { 1284 struct pf_idhash *ih; 1285 struct pf_state *s; 1286 1287 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1288 1289 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1290 1291 PF_HASHROW_LOCK(ih); 1292 LIST_FOREACH(s, &ih->states, entry) 1293 if (s->id == id && s->creatorid == creatorid) 1294 break; 1295 1296 if (s == NULL) 1297 PF_HASHROW_UNLOCK(ih); 1298 1299 return (s); 1300 } 1301 1302 /* 1303 * Find state by key. 1304 * Returns with ID hash slot locked on success. 1305 */ 1306 static struct pf_state * 1307 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1308 { 1309 struct pf_keyhash *kh; 1310 struct pf_state_key *sk; 1311 struct pf_state *s; 1312 int idx; 1313 1314 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1315 1316 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1317 1318 PF_HASHROW_LOCK(kh); 1319 LIST_FOREACH(sk, &kh->keys, entry) 1320 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1321 break; 1322 if (sk == NULL) { 1323 PF_HASHROW_UNLOCK(kh); 1324 return (NULL); 1325 } 1326 1327 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1328 1329 /* List is sorted, if-bound states before floating ones. */ 1330 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1331 if (s->kif == V_pfi_all || s->kif == kif) { 1332 PF_STATE_LOCK(s); 1333 PF_HASHROW_UNLOCK(kh); 1334 if (s->timeout >= PFTM_MAX) { 1335 /* 1336 * State is either being processed by 1337 * pf_unlink_state() in an other thread, or 1338 * is scheduled for immediate expiry. 1339 */ 1340 PF_STATE_UNLOCK(s); 1341 return (NULL); 1342 } 1343 return (s); 1344 } 1345 PF_HASHROW_UNLOCK(kh); 1346 1347 return (NULL); 1348 } 1349 1350 struct pf_state * 1351 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1352 { 1353 struct pf_keyhash *kh; 1354 struct pf_state_key *sk; 1355 struct pf_state *s, *ret = NULL; 1356 int idx, inout = 0; 1357 1358 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1359 1360 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1361 1362 PF_HASHROW_LOCK(kh); 1363 LIST_FOREACH(sk, &kh->keys, entry) 1364 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1365 break; 1366 if (sk == NULL) { 1367 PF_HASHROW_UNLOCK(kh); 1368 return (NULL); 1369 } 1370 switch (dir) { 1371 case PF_IN: 1372 idx = PF_SK_WIRE; 1373 break; 1374 case PF_OUT: 1375 idx = PF_SK_STACK; 1376 break; 1377 case PF_INOUT: 1378 idx = PF_SK_WIRE; 1379 inout = 1; 1380 break; 1381 default: 1382 panic("%s: dir %u", __func__, dir); 1383 } 1384 second_run: 1385 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1386 if (more == NULL) { 1387 PF_HASHROW_UNLOCK(kh); 1388 return (s); 1389 } 1390 1391 if (ret) 1392 (*more)++; 1393 else 1394 ret = s; 1395 } 1396 if (inout == 1) { 1397 inout = 0; 1398 idx = PF_SK_STACK; 1399 goto second_run; 1400 } 1401 PF_HASHROW_UNLOCK(kh); 1402 1403 return (ret); 1404 } 1405 1406 /* END state table stuff */ 1407 1408 static void 1409 pf_send(struct pf_send_entry *pfse) 1410 { 1411 1412 PF_SENDQ_LOCK(); 1413 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1414 PF_SENDQ_UNLOCK(); 1415 swi_sched(V_pf_swi_cookie, 0); 1416 } 1417 1418 void 1419 pf_intr(void *v) 1420 { 1421 struct pf_send_head queue; 1422 struct pf_send_entry *pfse, *next; 1423 1424 CURVNET_SET((struct vnet *)v); 1425 1426 PF_SENDQ_LOCK(); 1427 queue = V_pf_sendqueue; 1428 STAILQ_INIT(&V_pf_sendqueue); 1429 PF_SENDQ_UNLOCK(); 1430 1431 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1432 switch (pfse->pfse_type) { 1433 #ifdef INET 1434 case PFSE_IP: 1435 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1436 break; 1437 case PFSE_ICMP: 1438 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1439 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1440 break; 1441 #endif /* INET */ 1442 #ifdef INET6 1443 case PFSE_IP6: 1444 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1445 NULL); 1446 break; 1447 case PFSE_ICMP6: 1448 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1449 pfse->icmpopts.code, pfse->icmpopts.mtu); 1450 break; 1451 #endif /* INET6 */ 1452 default: 1453 panic("%s: unknown type", __func__); 1454 } 1455 free(pfse, M_PFTEMP); 1456 } 1457 CURVNET_RESTORE(); 1458 } 1459 1460 void 1461 pf_purge_thread(void *unused __unused) 1462 { 1463 VNET_ITERATOR_DECL(vnet_iter); 1464 1465 sx_xlock(&pf_end_lock); 1466 while (pf_end_threads == 0) { 1467 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", hz / 10); 1468 1469 VNET_LIST_RLOCK(); 1470 VNET_FOREACH(vnet_iter) { 1471 CURVNET_SET(vnet_iter); 1472 1473 1474 /* Wait until V_pf_default_rule is initialized. */ 1475 if (V_pf_vnet_active == 0) { 1476 CURVNET_RESTORE(); 1477 continue; 1478 } 1479 1480 /* 1481 * Process 1/interval fraction of the state 1482 * table every run. 1483 */ 1484 V_pf_purge_idx = 1485 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1486 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1487 1488 /* 1489 * Purge other expired types every 1490 * PFTM_INTERVAL seconds. 1491 */ 1492 if (V_pf_purge_idx == 0) { 1493 /* 1494 * Order is important: 1495 * - states and src nodes reference rules 1496 * - states and rules reference kifs 1497 */ 1498 pf_purge_expired_fragments(); 1499 pf_purge_expired_src_nodes(); 1500 pf_purge_unlinked_rules(); 1501 pfi_kif_purge(); 1502 } 1503 CURVNET_RESTORE(); 1504 } 1505 VNET_LIST_RUNLOCK(); 1506 } 1507 1508 pf_end_threads++; 1509 sx_xunlock(&pf_end_lock); 1510 kproc_exit(0); 1511 } 1512 1513 void 1514 pf_unload_vnet_purge(void) 1515 { 1516 1517 /* 1518 * To cleanse up all kifs and rules we need 1519 * two runs: first one clears reference flags, 1520 * then pf_purge_expired_states() doesn't 1521 * raise them, and then second run frees. 1522 */ 1523 pf_purge_unlinked_rules(); 1524 pfi_kif_purge(); 1525 1526 /* 1527 * Now purge everything. 1528 */ 1529 pf_purge_expired_states(0, pf_hashmask); 1530 pf_purge_fragments(UINT_MAX); 1531 pf_purge_expired_src_nodes(); 1532 1533 /* 1534 * Now all kifs & rules should be unreferenced, 1535 * thus should be successfully freed. 1536 */ 1537 pf_purge_unlinked_rules(); 1538 pfi_kif_purge(); 1539 } 1540 1541 1542 u_int32_t 1543 pf_state_expires(const struct pf_state *state) 1544 { 1545 u_int32_t timeout; 1546 u_int32_t start; 1547 u_int32_t end; 1548 u_int32_t states; 1549 1550 /* handle all PFTM_* > PFTM_MAX here */ 1551 if (state->timeout == PFTM_PURGE) 1552 return (time_uptime); 1553 KASSERT(state->timeout != PFTM_UNLINKED, 1554 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1555 KASSERT((state->timeout < PFTM_MAX), 1556 ("pf_state_expires: timeout > PFTM_MAX")); 1557 timeout = state->rule.ptr->timeout[state->timeout]; 1558 if (!timeout) 1559 timeout = V_pf_default_rule.timeout[state->timeout]; 1560 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1561 if (start) { 1562 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1563 states = counter_u64_fetch(state->rule.ptr->states_cur); 1564 } else { 1565 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1566 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1567 states = V_pf_status.states; 1568 } 1569 if (end && states > start && start < end) { 1570 if (states < end) 1571 return (state->expire + timeout * (end - states) / 1572 (end - start)); 1573 else 1574 return (time_uptime); 1575 } 1576 return (state->expire + timeout); 1577 } 1578 1579 void 1580 pf_purge_expired_src_nodes() 1581 { 1582 struct pf_src_node_list freelist; 1583 struct pf_srchash *sh; 1584 struct pf_src_node *cur, *next; 1585 int i; 1586 1587 LIST_INIT(&freelist); 1588 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1589 PF_HASHROW_LOCK(sh); 1590 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1591 if (cur->states == 0 && cur->expire <= time_uptime) { 1592 pf_unlink_src_node(cur); 1593 LIST_INSERT_HEAD(&freelist, cur, entry); 1594 } else if (cur->rule.ptr != NULL) 1595 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1596 PF_HASHROW_UNLOCK(sh); 1597 } 1598 1599 pf_free_src_nodes(&freelist); 1600 1601 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1602 } 1603 1604 static void 1605 pf_src_tree_remove_state(struct pf_state *s) 1606 { 1607 struct pf_src_node *sn; 1608 struct pf_srchash *sh; 1609 uint32_t timeout; 1610 1611 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1612 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1613 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1614 1615 if (s->src_node != NULL) { 1616 sn = s->src_node; 1617 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1618 PF_HASHROW_LOCK(sh); 1619 if (s->src.tcp_est) 1620 --sn->conn; 1621 if (--sn->states == 0) 1622 sn->expire = time_uptime + timeout; 1623 PF_HASHROW_UNLOCK(sh); 1624 } 1625 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1626 sn = s->nat_src_node; 1627 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1628 PF_HASHROW_LOCK(sh); 1629 if (--sn->states == 0) 1630 sn->expire = time_uptime + timeout; 1631 PF_HASHROW_UNLOCK(sh); 1632 } 1633 s->src_node = s->nat_src_node = NULL; 1634 } 1635 1636 /* 1637 * Unlink and potentilly free a state. Function may be 1638 * called with ID hash row locked, but always returns 1639 * unlocked, since it needs to go through key hash locking. 1640 */ 1641 int 1642 pf_unlink_state(struct pf_state *s, u_int flags) 1643 { 1644 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1645 1646 if ((flags & PF_ENTER_LOCKED) == 0) 1647 PF_HASHROW_LOCK(ih); 1648 else 1649 PF_HASHROW_ASSERT(ih); 1650 1651 if (s->timeout == PFTM_UNLINKED) { 1652 /* 1653 * State is being processed 1654 * by pf_unlink_state() in 1655 * an other thread. 1656 */ 1657 PF_HASHROW_UNLOCK(ih); 1658 return (0); /* XXXGL: undefined actually */ 1659 } 1660 1661 if (s->src.state == PF_TCPS_PROXY_DST) { 1662 /* XXX wire key the right one? */ 1663 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1664 &s->key[PF_SK_WIRE]->addr[1], 1665 &s->key[PF_SK_WIRE]->addr[0], 1666 s->key[PF_SK_WIRE]->port[1], 1667 s->key[PF_SK_WIRE]->port[0], 1668 s->src.seqhi, s->src.seqlo + 1, 1669 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1670 } 1671 1672 LIST_REMOVE(s, entry); 1673 pf_src_tree_remove_state(s); 1674 1675 if (pfsync_delete_state_ptr != NULL) 1676 pfsync_delete_state_ptr(s); 1677 1678 STATE_DEC_COUNTERS(s); 1679 1680 s->timeout = PFTM_UNLINKED; 1681 1682 PF_HASHROW_UNLOCK(ih); 1683 1684 pf_detach_state(s); 1685 /* pf_state_insert() initialises refs to 2, so we can never release the 1686 * last reference here, only in pf_release_state(). */ 1687 (void)refcount_release(&s->refs); 1688 1689 return (pf_release_state(s)); 1690 } 1691 1692 void 1693 pf_free_state(struct pf_state *cur) 1694 { 1695 1696 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1697 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1698 cur->timeout)); 1699 1700 pf_normalize_tcp_cleanup(cur); 1701 uma_zfree(V_pf_state_z, cur); 1702 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1703 } 1704 1705 /* 1706 * Called only from pf_purge_thread(), thus serialized. 1707 */ 1708 static u_int 1709 pf_purge_expired_states(u_int i, int maxcheck) 1710 { 1711 struct pf_idhash *ih; 1712 struct pf_state *s; 1713 1714 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1715 1716 /* 1717 * Go through hash and unlink states that expire now. 1718 */ 1719 while (maxcheck > 0) { 1720 1721 ih = &V_pf_idhash[i]; 1722 1723 /* only take the lock if we expect to do work */ 1724 if (!LIST_EMPTY(&ih->states)) { 1725 relock: 1726 PF_HASHROW_LOCK(ih); 1727 LIST_FOREACH(s, &ih->states, entry) { 1728 if (pf_state_expires(s) <= time_uptime) { 1729 V_pf_status.states -= 1730 pf_unlink_state(s, PF_ENTER_LOCKED); 1731 goto relock; 1732 } 1733 s->rule.ptr->rule_flag |= PFRULE_REFS; 1734 if (s->nat_rule.ptr != NULL) 1735 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1736 if (s->anchor.ptr != NULL) 1737 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1738 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1739 if (s->rt_kif) 1740 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1741 } 1742 PF_HASHROW_UNLOCK(ih); 1743 } 1744 1745 /* Return when we hit end of hash. */ 1746 if (++i > pf_hashmask) { 1747 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1748 return (0); 1749 } 1750 1751 maxcheck--; 1752 } 1753 1754 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1755 1756 return (i); 1757 } 1758 1759 static void 1760 pf_purge_unlinked_rules() 1761 { 1762 struct pf_rulequeue tmpq; 1763 struct pf_rule *r, *r1; 1764 1765 /* 1766 * If we have overloading task pending, then we'd 1767 * better skip purging this time. There is a tiny 1768 * probability that overloading task references 1769 * an already unlinked rule. 1770 */ 1771 PF_OVERLOADQ_LOCK(); 1772 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1773 PF_OVERLOADQ_UNLOCK(); 1774 return; 1775 } 1776 PF_OVERLOADQ_UNLOCK(); 1777 1778 /* 1779 * Do naive mark-and-sweep garbage collecting of old rules. 1780 * Reference flag is raised by pf_purge_expired_states() 1781 * and pf_purge_expired_src_nodes(). 1782 * 1783 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1784 * use a temporary queue. 1785 */ 1786 TAILQ_INIT(&tmpq); 1787 PF_UNLNKDRULES_LOCK(); 1788 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1789 if (!(r->rule_flag & PFRULE_REFS)) { 1790 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1791 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1792 } else 1793 r->rule_flag &= ~PFRULE_REFS; 1794 } 1795 PF_UNLNKDRULES_UNLOCK(); 1796 1797 if (!TAILQ_EMPTY(&tmpq)) { 1798 PF_RULES_WLOCK(); 1799 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1800 TAILQ_REMOVE(&tmpq, r, entries); 1801 pf_free_rule(r); 1802 } 1803 PF_RULES_WUNLOCK(); 1804 } 1805 } 1806 1807 void 1808 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1809 { 1810 switch (af) { 1811 #ifdef INET 1812 case AF_INET: { 1813 u_int32_t a = ntohl(addr->addr32[0]); 1814 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1815 (a>>8)&255, a&255); 1816 if (p) { 1817 p = ntohs(p); 1818 printf(":%u", p); 1819 } 1820 break; 1821 } 1822 #endif /* INET */ 1823 #ifdef INET6 1824 case AF_INET6: { 1825 u_int16_t b; 1826 u_int8_t i, curstart, curend, maxstart, maxend; 1827 curstart = curend = maxstart = maxend = 255; 1828 for (i = 0; i < 8; i++) { 1829 if (!addr->addr16[i]) { 1830 if (curstart == 255) 1831 curstart = i; 1832 curend = i; 1833 } else { 1834 if ((curend - curstart) > 1835 (maxend - maxstart)) { 1836 maxstart = curstart; 1837 maxend = curend; 1838 } 1839 curstart = curend = 255; 1840 } 1841 } 1842 if ((curend - curstart) > 1843 (maxend - maxstart)) { 1844 maxstart = curstart; 1845 maxend = curend; 1846 } 1847 for (i = 0; i < 8; i++) { 1848 if (i >= maxstart && i <= maxend) { 1849 if (i == 0) 1850 printf(":"); 1851 if (i == maxend) 1852 printf(":"); 1853 } else { 1854 b = ntohs(addr->addr16[i]); 1855 printf("%x", b); 1856 if (i < 7) 1857 printf(":"); 1858 } 1859 } 1860 if (p) { 1861 p = ntohs(p); 1862 printf("[%u]", p); 1863 } 1864 break; 1865 } 1866 #endif /* INET6 */ 1867 } 1868 } 1869 1870 void 1871 pf_print_state(struct pf_state *s) 1872 { 1873 pf_print_state_parts(s, NULL, NULL); 1874 } 1875 1876 static void 1877 pf_print_state_parts(struct pf_state *s, 1878 struct pf_state_key *skwp, struct pf_state_key *sksp) 1879 { 1880 struct pf_state_key *skw, *sks; 1881 u_int8_t proto, dir; 1882 1883 /* Do our best to fill these, but they're skipped if NULL */ 1884 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1885 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1886 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1887 dir = s ? s->direction : 0; 1888 1889 switch (proto) { 1890 case IPPROTO_IPV4: 1891 printf("IPv4"); 1892 break; 1893 case IPPROTO_IPV6: 1894 printf("IPv6"); 1895 break; 1896 case IPPROTO_TCP: 1897 printf("TCP"); 1898 break; 1899 case IPPROTO_UDP: 1900 printf("UDP"); 1901 break; 1902 case IPPROTO_ICMP: 1903 printf("ICMP"); 1904 break; 1905 case IPPROTO_ICMPV6: 1906 printf("ICMPv6"); 1907 break; 1908 default: 1909 printf("%u", proto); 1910 break; 1911 } 1912 switch (dir) { 1913 case PF_IN: 1914 printf(" in"); 1915 break; 1916 case PF_OUT: 1917 printf(" out"); 1918 break; 1919 } 1920 if (skw) { 1921 printf(" wire: "); 1922 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1923 printf(" "); 1924 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1925 } 1926 if (sks) { 1927 printf(" stack: "); 1928 if (sks != skw) { 1929 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1930 printf(" "); 1931 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1932 } else 1933 printf("-"); 1934 } 1935 if (s) { 1936 if (proto == IPPROTO_TCP) { 1937 printf(" [lo=%u high=%u win=%u modulator=%u", 1938 s->src.seqlo, s->src.seqhi, 1939 s->src.max_win, s->src.seqdiff); 1940 if (s->src.wscale && s->dst.wscale) 1941 printf(" wscale=%u", 1942 s->src.wscale & PF_WSCALE_MASK); 1943 printf("]"); 1944 printf(" [lo=%u high=%u win=%u modulator=%u", 1945 s->dst.seqlo, s->dst.seqhi, 1946 s->dst.max_win, s->dst.seqdiff); 1947 if (s->src.wscale && s->dst.wscale) 1948 printf(" wscale=%u", 1949 s->dst.wscale & PF_WSCALE_MASK); 1950 printf("]"); 1951 } 1952 printf(" %u:%u", s->src.state, s->dst.state); 1953 } 1954 } 1955 1956 void 1957 pf_print_flags(u_int8_t f) 1958 { 1959 if (f) 1960 printf(" "); 1961 if (f & TH_FIN) 1962 printf("F"); 1963 if (f & TH_SYN) 1964 printf("S"); 1965 if (f & TH_RST) 1966 printf("R"); 1967 if (f & TH_PUSH) 1968 printf("P"); 1969 if (f & TH_ACK) 1970 printf("A"); 1971 if (f & TH_URG) 1972 printf("U"); 1973 if (f & TH_ECE) 1974 printf("E"); 1975 if (f & TH_CWR) 1976 printf("W"); 1977 } 1978 1979 #define PF_SET_SKIP_STEPS(i) \ 1980 do { \ 1981 while (head[i] != cur) { \ 1982 head[i]->skip[i].ptr = cur; \ 1983 head[i] = TAILQ_NEXT(head[i], entries); \ 1984 } \ 1985 } while (0) 1986 1987 void 1988 pf_calc_skip_steps(struct pf_rulequeue *rules) 1989 { 1990 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1991 int i; 1992 1993 cur = TAILQ_FIRST(rules); 1994 prev = cur; 1995 for (i = 0; i < PF_SKIP_COUNT; ++i) 1996 head[i] = cur; 1997 while (cur != NULL) { 1998 1999 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2000 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2001 if (cur->direction != prev->direction) 2002 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2003 if (cur->af != prev->af) 2004 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2005 if (cur->proto != prev->proto) 2006 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2007 if (cur->src.neg != prev->src.neg || 2008 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2009 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2010 if (cur->src.port[0] != prev->src.port[0] || 2011 cur->src.port[1] != prev->src.port[1] || 2012 cur->src.port_op != prev->src.port_op) 2013 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2014 if (cur->dst.neg != prev->dst.neg || 2015 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2016 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2017 if (cur->dst.port[0] != prev->dst.port[0] || 2018 cur->dst.port[1] != prev->dst.port[1] || 2019 cur->dst.port_op != prev->dst.port_op) 2020 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2021 2022 prev = cur; 2023 cur = TAILQ_NEXT(cur, entries); 2024 } 2025 for (i = 0; i < PF_SKIP_COUNT; ++i) 2026 PF_SET_SKIP_STEPS(i); 2027 } 2028 2029 static int 2030 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2031 { 2032 if (aw1->type != aw2->type) 2033 return (1); 2034 switch (aw1->type) { 2035 case PF_ADDR_ADDRMASK: 2036 case PF_ADDR_RANGE: 2037 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2038 return (1); 2039 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2040 return (1); 2041 return (0); 2042 case PF_ADDR_DYNIFTL: 2043 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2044 case PF_ADDR_NOROUTE: 2045 case PF_ADDR_URPFFAILED: 2046 return (0); 2047 case PF_ADDR_TABLE: 2048 return (aw1->p.tbl != aw2->p.tbl); 2049 default: 2050 printf("invalid address type: %d\n", aw1->type); 2051 return (1); 2052 } 2053 } 2054 2055 /** 2056 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2057 * header isn't always a full checksum. In some cases (i.e. output) it's a 2058 * pseudo-header checksum, which is a partial checksum over src/dst IP 2059 * addresses, protocol number and length. 2060 * 2061 * That means we have the following cases: 2062 * * Input or forwarding: we don't have TSO, the checksum fields are full 2063 * checksums, we need to update the checksum whenever we change anything. 2064 * * Output (i.e. the checksum is a pseudo-header checksum): 2065 * x The field being updated is src/dst address or affects the length of 2066 * the packet. We need to update the pseudo-header checksum (note that this 2067 * checksum is not ones' complement). 2068 * x Some other field is being modified (e.g. src/dst port numbers): We 2069 * don't have to update anything. 2070 **/ 2071 u_int16_t 2072 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2073 { 2074 u_int32_t l; 2075 2076 if (udp && !cksum) 2077 return (0x0000); 2078 l = cksum + old - new; 2079 l = (l >> 16) + (l & 65535); 2080 l = l & 65535; 2081 if (udp && !l) 2082 return (0xFFFF); 2083 return (l); 2084 } 2085 2086 u_int16_t 2087 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2088 u_int16_t new, u_int8_t udp) 2089 { 2090 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2091 return (cksum); 2092 2093 return (pf_cksum_fixup(cksum, old, new, udp)); 2094 } 2095 2096 static void 2097 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2098 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2099 sa_family_t af) 2100 { 2101 struct pf_addr ao; 2102 u_int16_t po = *p; 2103 2104 PF_ACPY(&ao, a, af); 2105 PF_ACPY(a, an, af); 2106 2107 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2108 *pc = ~*pc; 2109 2110 *p = pn; 2111 2112 switch (af) { 2113 #ifdef INET 2114 case AF_INET: 2115 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2116 ao.addr16[0], an->addr16[0], 0), 2117 ao.addr16[1], an->addr16[1], 0); 2118 *p = pn; 2119 2120 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2121 ao.addr16[0], an->addr16[0], u), 2122 ao.addr16[1], an->addr16[1], u); 2123 2124 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2125 break; 2126 #endif /* INET */ 2127 #ifdef INET6 2128 case AF_INET6: 2129 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2130 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2131 pf_cksum_fixup(pf_cksum_fixup(*pc, 2132 ao.addr16[0], an->addr16[0], u), 2133 ao.addr16[1], an->addr16[1], u), 2134 ao.addr16[2], an->addr16[2], u), 2135 ao.addr16[3], an->addr16[3], u), 2136 ao.addr16[4], an->addr16[4], u), 2137 ao.addr16[5], an->addr16[5], u), 2138 ao.addr16[6], an->addr16[6], u), 2139 ao.addr16[7], an->addr16[7], u); 2140 2141 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2142 break; 2143 #endif /* INET6 */ 2144 } 2145 2146 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2147 CSUM_DELAY_DATA_IPV6)) { 2148 *pc = ~*pc; 2149 if (! *pc) 2150 *pc = 0xffff; 2151 } 2152 } 2153 2154 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2155 void 2156 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2157 { 2158 u_int32_t ao; 2159 2160 memcpy(&ao, a, sizeof(ao)); 2161 memcpy(a, &an, sizeof(u_int32_t)); 2162 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2163 ao % 65536, an % 65536, u); 2164 } 2165 2166 void 2167 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2168 { 2169 u_int32_t ao; 2170 2171 memcpy(&ao, a, sizeof(ao)); 2172 memcpy(a, &an, sizeof(u_int32_t)); 2173 2174 *c = pf_proto_cksum_fixup(m, 2175 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2176 ao % 65536, an % 65536, udp); 2177 } 2178 2179 #ifdef INET6 2180 static void 2181 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2182 { 2183 struct pf_addr ao; 2184 2185 PF_ACPY(&ao, a, AF_INET6); 2186 PF_ACPY(a, an, AF_INET6); 2187 2188 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2189 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2190 pf_cksum_fixup(pf_cksum_fixup(*c, 2191 ao.addr16[0], an->addr16[0], u), 2192 ao.addr16[1], an->addr16[1], u), 2193 ao.addr16[2], an->addr16[2], u), 2194 ao.addr16[3], an->addr16[3], u), 2195 ao.addr16[4], an->addr16[4], u), 2196 ao.addr16[5], an->addr16[5], u), 2197 ao.addr16[6], an->addr16[6], u), 2198 ao.addr16[7], an->addr16[7], u); 2199 } 2200 #endif /* INET6 */ 2201 2202 static void 2203 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2204 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2205 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2206 { 2207 struct pf_addr oia, ooa; 2208 2209 PF_ACPY(&oia, ia, af); 2210 if (oa) 2211 PF_ACPY(&ooa, oa, af); 2212 2213 /* Change inner protocol port, fix inner protocol checksum. */ 2214 if (ip != NULL) { 2215 u_int16_t oip = *ip; 2216 u_int32_t opc; 2217 2218 if (pc != NULL) 2219 opc = *pc; 2220 *ip = np; 2221 if (pc != NULL) 2222 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2223 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2224 if (pc != NULL) 2225 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2226 } 2227 /* Change inner ip address, fix inner ip and icmp checksums. */ 2228 PF_ACPY(ia, na, af); 2229 switch (af) { 2230 #ifdef INET 2231 case AF_INET: { 2232 u_int32_t oh2c = *h2c; 2233 2234 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2235 oia.addr16[0], ia->addr16[0], 0), 2236 oia.addr16[1], ia->addr16[1], 0); 2237 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2238 oia.addr16[0], ia->addr16[0], 0), 2239 oia.addr16[1], ia->addr16[1], 0); 2240 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2241 break; 2242 } 2243 #endif /* INET */ 2244 #ifdef INET6 2245 case AF_INET6: 2246 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2247 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2248 pf_cksum_fixup(pf_cksum_fixup(*ic, 2249 oia.addr16[0], ia->addr16[0], u), 2250 oia.addr16[1], ia->addr16[1], u), 2251 oia.addr16[2], ia->addr16[2], u), 2252 oia.addr16[3], ia->addr16[3], u), 2253 oia.addr16[4], ia->addr16[4], u), 2254 oia.addr16[5], ia->addr16[5], u), 2255 oia.addr16[6], ia->addr16[6], u), 2256 oia.addr16[7], ia->addr16[7], u); 2257 break; 2258 #endif /* INET6 */ 2259 } 2260 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2261 if (oa) { 2262 PF_ACPY(oa, na, af); 2263 switch (af) { 2264 #ifdef INET 2265 case AF_INET: 2266 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2267 ooa.addr16[0], oa->addr16[0], 0), 2268 ooa.addr16[1], oa->addr16[1], 0); 2269 break; 2270 #endif /* INET */ 2271 #ifdef INET6 2272 case AF_INET6: 2273 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2274 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2275 pf_cksum_fixup(pf_cksum_fixup(*ic, 2276 ooa.addr16[0], oa->addr16[0], u), 2277 ooa.addr16[1], oa->addr16[1], u), 2278 ooa.addr16[2], oa->addr16[2], u), 2279 ooa.addr16[3], oa->addr16[3], u), 2280 ooa.addr16[4], oa->addr16[4], u), 2281 ooa.addr16[5], oa->addr16[5], u), 2282 ooa.addr16[6], oa->addr16[6], u), 2283 ooa.addr16[7], oa->addr16[7], u); 2284 break; 2285 #endif /* INET6 */ 2286 } 2287 } 2288 } 2289 2290 2291 /* 2292 * Need to modulate the sequence numbers in the TCP SACK option 2293 * (credits to Krzysztof Pfaff for report and patch) 2294 */ 2295 static int 2296 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2297 struct tcphdr *th, struct pf_state_peer *dst) 2298 { 2299 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2300 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2301 int copyback = 0, i, olen; 2302 struct sackblk sack; 2303 2304 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2305 if (hlen < TCPOLEN_SACKLEN || 2306 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2307 return 0; 2308 2309 while (hlen >= TCPOLEN_SACKLEN) { 2310 olen = opt[1]; 2311 switch (*opt) { 2312 case TCPOPT_EOL: /* FALLTHROUGH */ 2313 case TCPOPT_NOP: 2314 opt++; 2315 hlen--; 2316 break; 2317 case TCPOPT_SACK: 2318 if (olen > hlen) 2319 olen = hlen; 2320 if (olen >= TCPOLEN_SACKLEN) { 2321 for (i = 2; i + TCPOLEN_SACK <= olen; 2322 i += TCPOLEN_SACK) { 2323 memcpy(&sack, &opt[i], sizeof(sack)); 2324 pf_change_proto_a(m, &sack.start, &th->th_sum, 2325 htonl(ntohl(sack.start) - dst->seqdiff), 0); 2326 pf_change_proto_a(m, &sack.end, &th->th_sum, 2327 htonl(ntohl(sack.end) - dst->seqdiff), 0); 2328 memcpy(&opt[i], &sack, sizeof(sack)); 2329 } 2330 copyback = 1; 2331 } 2332 /* FALLTHROUGH */ 2333 default: 2334 if (olen < 2) 2335 olen = 2; 2336 hlen -= olen; 2337 opt += olen; 2338 } 2339 } 2340 2341 if (copyback) 2342 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2343 return (copyback); 2344 } 2345 2346 static void 2347 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2348 const struct pf_addr *saddr, const struct pf_addr *daddr, 2349 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2350 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2351 u_int16_t rtag, struct ifnet *ifp) 2352 { 2353 struct pf_send_entry *pfse; 2354 struct mbuf *m; 2355 int len, tlen; 2356 #ifdef INET 2357 struct ip *h = NULL; 2358 #endif /* INET */ 2359 #ifdef INET6 2360 struct ip6_hdr *h6 = NULL; 2361 #endif /* INET6 */ 2362 struct tcphdr *th; 2363 char *opt; 2364 struct pf_mtag *pf_mtag; 2365 2366 len = 0; 2367 th = NULL; 2368 2369 /* maximum segment size tcp option */ 2370 tlen = sizeof(struct tcphdr); 2371 if (mss) 2372 tlen += 4; 2373 2374 switch (af) { 2375 #ifdef INET 2376 case AF_INET: 2377 len = sizeof(struct ip) + tlen; 2378 break; 2379 #endif /* INET */ 2380 #ifdef INET6 2381 case AF_INET6: 2382 len = sizeof(struct ip6_hdr) + tlen; 2383 break; 2384 #endif /* INET6 */ 2385 default: 2386 panic("%s: unsupported af %d", __func__, af); 2387 } 2388 2389 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2390 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2391 if (pfse == NULL) 2392 return; 2393 m = m_gethdr(M_NOWAIT, MT_DATA); 2394 if (m == NULL) { 2395 free(pfse, M_PFTEMP); 2396 return; 2397 } 2398 #ifdef MAC 2399 mac_netinet_firewall_send(m); 2400 #endif 2401 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2402 free(pfse, M_PFTEMP); 2403 m_freem(m); 2404 return; 2405 } 2406 if (tag) 2407 m->m_flags |= M_SKIP_FIREWALL; 2408 pf_mtag->tag = rtag; 2409 2410 if (r != NULL && r->rtableid >= 0) 2411 M_SETFIB(m, r->rtableid); 2412 2413 #ifdef ALTQ 2414 if (r != NULL && r->qid) { 2415 pf_mtag->qid = r->qid; 2416 2417 /* add hints for ecn */ 2418 pf_mtag->hdr = mtod(m, struct ip *); 2419 } 2420 #endif /* ALTQ */ 2421 m->m_data += max_linkhdr; 2422 m->m_pkthdr.len = m->m_len = len; 2423 m->m_pkthdr.rcvif = NULL; 2424 bzero(m->m_data, len); 2425 switch (af) { 2426 #ifdef INET 2427 case AF_INET: 2428 h = mtod(m, struct ip *); 2429 2430 /* IP header fields included in the TCP checksum */ 2431 h->ip_p = IPPROTO_TCP; 2432 h->ip_len = htons(tlen); 2433 h->ip_src.s_addr = saddr->v4.s_addr; 2434 h->ip_dst.s_addr = daddr->v4.s_addr; 2435 2436 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2437 break; 2438 #endif /* INET */ 2439 #ifdef INET6 2440 case AF_INET6: 2441 h6 = mtod(m, struct ip6_hdr *); 2442 2443 /* IP header fields included in the TCP checksum */ 2444 h6->ip6_nxt = IPPROTO_TCP; 2445 h6->ip6_plen = htons(tlen); 2446 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2447 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2448 2449 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2450 break; 2451 #endif /* INET6 */ 2452 } 2453 2454 /* TCP header */ 2455 th->th_sport = sport; 2456 th->th_dport = dport; 2457 th->th_seq = htonl(seq); 2458 th->th_ack = htonl(ack); 2459 th->th_off = tlen >> 2; 2460 th->th_flags = flags; 2461 th->th_win = htons(win); 2462 2463 if (mss) { 2464 opt = (char *)(th + 1); 2465 opt[0] = TCPOPT_MAXSEG; 2466 opt[1] = 4; 2467 HTONS(mss); 2468 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2469 } 2470 2471 switch (af) { 2472 #ifdef INET 2473 case AF_INET: 2474 /* TCP checksum */ 2475 th->th_sum = in_cksum(m, len); 2476 2477 /* Finish the IP header */ 2478 h->ip_v = 4; 2479 h->ip_hl = sizeof(*h) >> 2; 2480 h->ip_tos = IPTOS_LOWDELAY; 2481 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2482 h->ip_len = htons(len); 2483 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2484 h->ip_sum = 0; 2485 2486 pfse->pfse_type = PFSE_IP; 2487 break; 2488 #endif /* INET */ 2489 #ifdef INET6 2490 case AF_INET6: 2491 /* TCP checksum */ 2492 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2493 sizeof(struct ip6_hdr), tlen); 2494 2495 h6->ip6_vfc |= IPV6_VERSION; 2496 h6->ip6_hlim = IPV6_DEFHLIM; 2497 2498 pfse->pfse_type = PFSE_IP6; 2499 break; 2500 #endif /* INET6 */ 2501 } 2502 pfse->pfse_m = m; 2503 pf_send(pfse); 2504 } 2505 2506 static void 2507 pf_return(struct pf_rule *r, struct pf_rule *nr, struct pf_pdesc *pd, 2508 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 2509 struct pfi_kif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 2510 u_short *reason) 2511 { 2512 struct pf_addr * const saddr = pd->src; 2513 struct pf_addr * const daddr = pd->dst; 2514 sa_family_t af = pd->af; 2515 2516 /* undo NAT changes, if they have taken place */ 2517 if (nr != NULL) { 2518 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 2519 PF_ACPY(daddr, &sk->addr[pd->didx], af); 2520 if (pd->sport) 2521 *pd->sport = sk->port[pd->sidx]; 2522 if (pd->dport) 2523 *pd->dport = sk->port[pd->didx]; 2524 if (pd->proto_sum) 2525 *pd->proto_sum = bproto_sum; 2526 if (pd->ip_sum) 2527 *pd->ip_sum = bip_sum; 2528 m_copyback(m, off, hdrlen, pd->hdr.any); 2529 } 2530 if (pd->proto == IPPROTO_TCP && 2531 ((r->rule_flag & PFRULE_RETURNRST) || 2532 (r->rule_flag & PFRULE_RETURN)) && 2533 !(th->th_flags & TH_RST)) { 2534 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 2535 int len = 0; 2536 #ifdef INET 2537 struct ip *h4; 2538 #endif 2539 #ifdef INET6 2540 struct ip6_hdr *h6; 2541 #endif 2542 2543 switch (af) { 2544 #ifdef INET 2545 case AF_INET: 2546 h4 = mtod(m, struct ip *); 2547 len = ntohs(h4->ip_len) - off; 2548 break; 2549 #endif 2550 #ifdef INET6 2551 case AF_INET6: 2552 h6 = mtod(m, struct ip6_hdr *); 2553 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 2554 break; 2555 #endif 2556 } 2557 2558 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 2559 REASON_SET(reason, PFRES_PROTCKSUM); 2560 else { 2561 if (th->th_flags & TH_SYN) 2562 ack++; 2563 if (th->th_flags & TH_FIN) 2564 ack++; 2565 pf_send_tcp(m, r, af, pd->dst, 2566 pd->src, th->th_dport, th->th_sport, 2567 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 2568 r->return_ttl, 1, 0, kif->pfik_ifp); 2569 } 2570 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 2571 r->return_icmp) 2572 pf_send_icmp(m, r->return_icmp >> 8, 2573 r->return_icmp & 255, af, r); 2574 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 2575 r->return_icmp6) 2576 pf_send_icmp(m, r->return_icmp6 >> 8, 2577 r->return_icmp6 & 255, af, r); 2578 } 2579 2580 2581 static int 2582 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2583 { 2584 struct m_tag *mtag; 2585 2586 KASSERT(prio <= PF_PRIO_MAX, 2587 ("%s with invalid pcp", __func__)); 2588 2589 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2590 if (mtag == NULL) { 2591 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2592 sizeof(uint8_t), M_NOWAIT); 2593 if (mtag == NULL) 2594 return (ENOMEM); 2595 m_tag_prepend(m, mtag); 2596 } 2597 2598 *(uint8_t *)(mtag + 1) = prio; 2599 return (0); 2600 } 2601 2602 static int 2603 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2604 { 2605 struct m_tag *mtag; 2606 u_int8_t mpcp; 2607 2608 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2609 if (mtag == NULL) 2610 return (0); 2611 2612 if (prio == PF_PRIO_ZERO) 2613 prio = 0; 2614 2615 mpcp = *(uint8_t *)(mtag + 1); 2616 2617 return (mpcp == prio); 2618 } 2619 2620 static void 2621 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2622 struct pf_rule *r) 2623 { 2624 struct pf_send_entry *pfse; 2625 struct mbuf *m0; 2626 struct pf_mtag *pf_mtag; 2627 2628 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2629 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2630 if (pfse == NULL) 2631 return; 2632 2633 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2634 free(pfse, M_PFTEMP); 2635 return; 2636 } 2637 2638 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2639 free(pfse, M_PFTEMP); 2640 return; 2641 } 2642 /* XXX: revisit */ 2643 m0->m_flags |= M_SKIP_FIREWALL; 2644 2645 if (r->rtableid >= 0) 2646 M_SETFIB(m0, r->rtableid); 2647 2648 #ifdef ALTQ 2649 if (r->qid) { 2650 pf_mtag->qid = r->qid; 2651 /* add hints for ecn */ 2652 pf_mtag->hdr = mtod(m0, struct ip *); 2653 } 2654 #endif /* ALTQ */ 2655 2656 switch (af) { 2657 #ifdef INET 2658 case AF_INET: 2659 pfse->pfse_type = PFSE_ICMP; 2660 break; 2661 #endif /* INET */ 2662 #ifdef INET6 2663 case AF_INET6: 2664 pfse->pfse_type = PFSE_ICMP6; 2665 break; 2666 #endif /* INET6 */ 2667 } 2668 pfse->pfse_m = m0; 2669 pfse->icmpopts.type = type; 2670 pfse->icmpopts.code = code; 2671 pf_send(pfse); 2672 } 2673 2674 /* 2675 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2676 * If n is 0, they match if they are equal. If n is != 0, they match if they 2677 * are different. 2678 */ 2679 int 2680 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2681 struct pf_addr *b, sa_family_t af) 2682 { 2683 int match = 0; 2684 2685 switch (af) { 2686 #ifdef INET 2687 case AF_INET: 2688 if ((a->addr32[0] & m->addr32[0]) == 2689 (b->addr32[0] & m->addr32[0])) 2690 match++; 2691 break; 2692 #endif /* INET */ 2693 #ifdef INET6 2694 case AF_INET6: 2695 if (((a->addr32[0] & m->addr32[0]) == 2696 (b->addr32[0] & m->addr32[0])) && 2697 ((a->addr32[1] & m->addr32[1]) == 2698 (b->addr32[1] & m->addr32[1])) && 2699 ((a->addr32[2] & m->addr32[2]) == 2700 (b->addr32[2] & m->addr32[2])) && 2701 ((a->addr32[3] & m->addr32[3]) == 2702 (b->addr32[3] & m->addr32[3]))) 2703 match++; 2704 break; 2705 #endif /* INET6 */ 2706 } 2707 if (match) { 2708 if (n) 2709 return (0); 2710 else 2711 return (1); 2712 } else { 2713 if (n) 2714 return (1); 2715 else 2716 return (0); 2717 } 2718 } 2719 2720 /* 2721 * Return 1 if b <= a <= e, otherwise return 0. 2722 */ 2723 int 2724 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2725 struct pf_addr *a, sa_family_t af) 2726 { 2727 switch (af) { 2728 #ifdef INET 2729 case AF_INET: 2730 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2731 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2732 return (0); 2733 break; 2734 #endif /* INET */ 2735 #ifdef INET6 2736 case AF_INET6: { 2737 int i; 2738 2739 /* check a >= b */ 2740 for (i = 0; i < 4; ++i) 2741 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2742 break; 2743 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2744 return (0); 2745 /* check a <= e */ 2746 for (i = 0; i < 4; ++i) 2747 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2748 break; 2749 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2750 return (0); 2751 break; 2752 } 2753 #endif /* INET6 */ 2754 } 2755 return (1); 2756 } 2757 2758 static int 2759 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2760 { 2761 switch (op) { 2762 case PF_OP_IRG: 2763 return ((p > a1) && (p < a2)); 2764 case PF_OP_XRG: 2765 return ((p < a1) || (p > a2)); 2766 case PF_OP_RRG: 2767 return ((p >= a1) && (p <= a2)); 2768 case PF_OP_EQ: 2769 return (p == a1); 2770 case PF_OP_NE: 2771 return (p != a1); 2772 case PF_OP_LT: 2773 return (p < a1); 2774 case PF_OP_LE: 2775 return (p <= a1); 2776 case PF_OP_GT: 2777 return (p > a1); 2778 case PF_OP_GE: 2779 return (p >= a1); 2780 } 2781 return (0); /* never reached */ 2782 } 2783 2784 int 2785 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2786 { 2787 NTOHS(a1); 2788 NTOHS(a2); 2789 NTOHS(p); 2790 return (pf_match(op, a1, a2, p)); 2791 } 2792 2793 static int 2794 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2795 { 2796 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2797 return (0); 2798 return (pf_match(op, a1, a2, u)); 2799 } 2800 2801 static int 2802 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2803 { 2804 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2805 return (0); 2806 return (pf_match(op, a1, a2, g)); 2807 } 2808 2809 int 2810 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2811 { 2812 if (*tag == -1) 2813 *tag = mtag; 2814 2815 return ((!r->match_tag_not && r->match_tag == *tag) || 2816 (r->match_tag_not && r->match_tag != *tag)); 2817 } 2818 2819 int 2820 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2821 { 2822 2823 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2824 2825 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2826 return (ENOMEM); 2827 2828 pd->pf_mtag->tag = tag; 2829 2830 return (0); 2831 } 2832 2833 #define PF_ANCHOR_STACKSIZE 32 2834 struct pf_anchor_stackframe { 2835 struct pf_ruleset *rs; 2836 struct pf_rule *r; /* XXX: + match bit */ 2837 struct pf_anchor *child; 2838 }; 2839 2840 /* 2841 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2842 */ 2843 #define PF_ANCHORSTACK_MATCH 0x00000001 2844 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2845 2846 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2847 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2848 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2849 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2850 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2851 } while (0) 2852 2853 void 2854 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2855 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2856 int *match) 2857 { 2858 struct pf_anchor_stackframe *f; 2859 2860 PF_RULES_RASSERT(); 2861 2862 if (match) 2863 *match = 0; 2864 if (*depth >= PF_ANCHOR_STACKSIZE) { 2865 printf("%s: anchor stack overflow on %s\n", 2866 __func__, (*r)->anchor->name); 2867 *r = TAILQ_NEXT(*r, entries); 2868 return; 2869 } else if (*depth == 0 && a != NULL) 2870 *a = *r; 2871 f = stack + (*depth)++; 2872 f->rs = *rs; 2873 f->r = *r; 2874 if ((*r)->anchor_wildcard) { 2875 struct pf_anchor_node *parent = &(*r)->anchor->children; 2876 2877 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2878 *r = NULL; 2879 return; 2880 } 2881 *rs = &f->child->ruleset; 2882 } else { 2883 f->child = NULL; 2884 *rs = &(*r)->anchor->ruleset; 2885 } 2886 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2887 } 2888 2889 int 2890 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2891 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2892 int *match) 2893 { 2894 struct pf_anchor_stackframe *f; 2895 struct pf_rule *fr; 2896 int quick = 0; 2897 2898 PF_RULES_RASSERT(); 2899 2900 do { 2901 if (*depth <= 0) 2902 break; 2903 f = stack + *depth - 1; 2904 fr = PF_ANCHOR_RULE(f); 2905 if (f->child != NULL) { 2906 struct pf_anchor_node *parent; 2907 2908 /* 2909 * This block traverses through 2910 * a wildcard anchor. 2911 */ 2912 parent = &fr->anchor->children; 2913 if (match != NULL && *match) { 2914 /* 2915 * If any of "*" matched, then 2916 * "foo/ *" matched, mark frame 2917 * appropriately. 2918 */ 2919 PF_ANCHOR_SET_MATCH(f); 2920 *match = 0; 2921 } 2922 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2923 if (f->child != NULL) { 2924 *rs = &f->child->ruleset; 2925 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2926 if (*r == NULL) 2927 continue; 2928 else 2929 break; 2930 } 2931 } 2932 (*depth)--; 2933 if (*depth == 0 && a != NULL) 2934 *a = NULL; 2935 *rs = f->rs; 2936 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2937 quick = fr->quick; 2938 *r = TAILQ_NEXT(fr, entries); 2939 } while (*r == NULL); 2940 2941 return (quick); 2942 } 2943 2944 #ifdef INET6 2945 void 2946 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2947 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2948 { 2949 switch (af) { 2950 #ifdef INET 2951 case AF_INET: 2952 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2953 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2954 break; 2955 #endif /* INET */ 2956 case AF_INET6: 2957 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2958 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2959 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2960 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2961 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2962 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2963 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2964 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2965 break; 2966 } 2967 } 2968 2969 void 2970 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2971 { 2972 switch (af) { 2973 #ifdef INET 2974 case AF_INET: 2975 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2976 break; 2977 #endif /* INET */ 2978 case AF_INET6: 2979 if (addr->addr32[3] == 0xffffffff) { 2980 addr->addr32[3] = 0; 2981 if (addr->addr32[2] == 0xffffffff) { 2982 addr->addr32[2] = 0; 2983 if (addr->addr32[1] == 0xffffffff) { 2984 addr->addr32[1] = 0; 2985 addr->addr32[0] = 2986 htonl(ntohl(addr->addr32[0]) + 1); 2987 } else 2988 addr->addr32[1] = 2989 htonl(ntohl(addr->addr32[1]) + 1); 2990 } else 2991 addr->addr32[2] = 2992 htonl(ntohl(addr->addr32[2]) + 1); 2993 } else 2994 addr->addr32[3] = 2995 htonl(ntohl(addr->addr32[3]) + 1); 2996 break; 2997 } 2998 } 2999 #endif /* INET6 */ 3000 3001 int 3002 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 3003 { 3004 struct pf_addr *saddr, *daddr; 3005 u_int16_t sport, dport; 3006 struct inpcbinfo *pi; 3007 struct inpcb *inp; 3008 3009 pd->lookup.uid = UID_MAX; 3010 pd->lookup.gid = GID_MAX; 3011 3012 switch (pd->proto) { 3013 case IPPROTO_TCP: 3014 if (pd->hdr.tcp == NULL) 3015 return (-1); 3016 sport = pd->hdr.tcp->th_sport; 3017 dport = pd->hdr.tcp->th_dport; 3018 pi = &V_tcbinfo; 3019 break; 3020 case IPPROTO_UDP: 3021 if (pd->hdr.udp == NULL) 3022 return (-1); 3023 sport = pd->hdr.udp->uh_sport; 3024 dport = pd->hdr.udp->uh_dport; 3025 pi = &V_udbinfo; 3026 break; 3027 default: 3028 return (-1); 3029 } 3030 if (direction == PF_IN) { 3031 saddr = pd->src; 3032 daddr = pd->dst; 3033 } else { 3034 u_int16_t p; 3035 3036 p = sport; 3037 sport = dport; 3038 dport = p; 3039 saddr = pd->dst; 3040 daddr = pd->src; 3041 } 3042 switch (pd->af) { 3043 #ifdef INET 3044 case AF_INET: 3045 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3046 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3047 if (inp == NULL) { 3048 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3049 daddr->v4, dport, INPLOOKUP_WILDCARD | 3050 INPLOOKUP_RLOCKPCB, NULL, m); 3051 if (inp == NULL) 3052 return (-1); 3053 } 3054 break; 3055 #endif /* INET */ 3056 #ifdef INET6 3057 case AF_INET6: 3058 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3059 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3060 if (inp == NULL) { 3061 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3062 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3063 INPLOOKUP_RLOCKPCB, NULL, m); 3064 if (inp == NULL) 3065 return (-1); 3066 } 3067 break; 3068 #endif /* INET6 */ 3069 3070 default: 3071 return (-1); 3072 } 3073 INP_RLOCK_ASSERT(inp); 3074 pd->lookup.uid = inp->inp_cred->cr_uid; 3075 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3076 INP_RUNLOCK(inp); 3077 3078 return (1); 3079 } 3080 3081 static u_int8_t 3082 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3083 { 3084 int hlen; 3085 u_int8_t hdr[60]; 3086 u_int8_t *opt, optlen; 3087 u_int8_t wscale = 0; 3088 3089 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3090 if (hlen <= sizeof(struct tcphdr)) 3091 return (0); 3092 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3093 return (0); 3094 opt = hdr + sizeof(struct tcphdr); 3095 hlen -= sizeof(struct tcphdr); 3096 while (hlen >= 3) { 3097 switch (*opt) { 3098 case TCPOPT_EOL: 3099 case TCPOPT_NOP: 3100 ++opt; 3101 --hlen; 3102 break; 3103 case TCPOPT_WINDOW: 3104 wscale = opt[2]; 3105 if (wscale > TCP_MAX_WINSHIFT) 3106 wscale = TCP_MAX_WINSHIFT; 3107 wscale |= PF_WSCALE_FLAG; 3108 /* FALLTHROUGH */ 3109 default: 3110 optlen = opt[1]; 3111 if (optlen < 2) 3112 optlen = 2; 3113 hlen -= optlen; 3114 opt += optlen; 3115 break; 3116 } 3117 } 3118 return (wscale); 3119 } 3120 3121 static u_int16_t 3122 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3123 { 3124 int hlen; 3125 u_int8_t hdr[60]; 3126 u_int8_t *opt, optlen; 3127 u_int16_t mss = V_tcp_mssdflt; 3128 3129 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3130 if (hlen <= sizeof(struct tcphdr)) 3131 return (0); 3132 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3133 return (0); 3134 opt = hdr + sizeof(struct tcphdr); 3135 hlen -= sizeof(struct tcphdr); 3136 while (hlen >= TCPOLEN_MAXSEG) { 3137 switch (*opt) { 3138 case TCPOPT_EOL: 3139 case TCPOPT_NOP: 3140 ++opt; 3141 --hlen; 3142 break; 3143 case TCPOPT_MAXSEG: 3144 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3145 NTOHS(mss); 3146 /* FALLTHROUGH */ 3147 default: 3148 optlen = opt[1]; 3149 if (optlen < 2) 3150 optlen = 2; 3151 hlen -= optlen; 3152 opt += optlen; 3153 break; 3154 } 3155 } 3156 return (mss); 3157 } 3158 3159 static u_int16_t 3160 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3161 { 3162 #ifdef INET 3163 struct nhop4_basic nh4; 3164 #endif /* INET */ 3165 #ifdef INET6 3166 struct nhop6_basic nh6; 3167 struct in6_addr dst6; 3168 uint32_t scopeid; 3169 #endif /* INET6 */ 3170 int hlen = 0; 3171 uint16_t mss = 0; 3172 3173 switch (af) { 3174 #ifdef INET 3175 case AF_INET: 3176 hlen = sizeof(struct ip); 3177 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) == 0) 3178 mss = nh4.nh_mtu - hlen - sizeof(struct tcphdr); 3179 break; 3180 #endif /* INET */ 3181 #ifdef INET6 3182 case AF_INET6: 3183 hlen = sizeof(struct ip6_hdr); 3184 in6_splitscope(&addr->v6, &dst6, &scopeid); 3185 if (fib6_lookup_nh_basic(rtableid, &dst6, scopeid, 0,0,&nh6)==0) 3186 mss = nh6.nh_mtu - hlen - sizeof(struct tcphdr); 3187 break; 3188 #endif /* INET6 */ 3189 } 3190 3191 mss = max(V_tcp_mssdflt, mss); 3192 mss = min(mss, offer); 3193 mss = max(mss, 64); /* sanity - at least max opt space */ 3194 return (mss); 3195 } 3196 3197 static u_int32_t 3198 pf_tcp_iss(struct pf_pdesc *pd) 3199 { 3200 MD5_CTX ctx; 3201 u_int32_t digest[4]; 3202 3203 if (V_pf_tcp_secret_init == 0) { 3204 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3205 MD5Init(&V_pf_tcp_secret_ctx); 3206 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3207 sizeof(V_pf_tcp_secret)); 3208 V_pf_tcp_secret_init = 1; 3209 } 3210 3211 ctx = V_pf_tcp_secret_ctx; 3212 3213 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3214 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3215 if (pd->af == AF_INET6) { 3216 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3217 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3218 } else { 3219 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3220 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3221 } 3222 MD5Final((u_char *)digest, &ctx); 3223 V_pf_tcp_iss_off += 4096; 3224 #define ISN_RANDOM_INCREMENT (4096 - 1) 3225 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3226 V_pf_tcp_iss_off); 3227 #undef ISN_RANDOM_INCREMENT 3228 } 3229 3230 static int 3231 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3232 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3233 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3234 { 3235 struct pf_rule *nr = NULL; 3236 struct pf_addr * const saddr = pd->src; 3237 struct pf_addr * const daddr = pd->dst; 3238 sa_family_t af = pd->af; 3239 struct pf_rule *r, *a = NULL; 3240 struct pf_ruleset *ruleset = NULL; 3241 struct pf_src_node *nsn = NULL; 3242 struct tcphdr *th = pd->hdr.tcp; 3243 struct pf_state_key *sk = NULL, *nk = NULL; 3244 u_short reason; 3245 int rewrite = 0, hdrlen = 0; 3246 int tag = -1, rtableid = -1; 3247 int asd = 0; 3248 int match = 0; 3249 int state_icmp = 0; 3250 u_int16_t sport = 0, dport = 0; 3251 u_int16_t bproto_sum = 0, bip_sum = 0; 3252 u_int8_t icmptype = 0, icmpcode = 0; 3253 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3254 3255 PF_RULES_RASSERT(); 3256 3257 if (inp != NULL) { 3258 INP_LOCK_ASSERT(inp); 3259 pd->lookup.uid = inp->inp_cred->cr_uid; 3260 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3261 pd->lookup.done = 1; 3262 } 3263 3264 switch (pd->proto) { 3265 case IPPROTO_TCP: 3266 sport = th->th_sport; 3267 dport = th->th_dport; 3268 hdrlen = sizeof(*th); 3269 break; 3270 case IPPROTO_UDP: 3271 sport = pd->hdr.udp->uh_sport; 3272 dport = pd->hdr.udp->uh_dport; 3273 hdrlen = sizeof(*pd->hdr.udp); 3274 break; 3275 #ifdef INET 3276 case IPPROTO_ICMP: 3277 if (pd->af != AF_INET) 3278 break; 3279 sport = dport = pd->hdr.icmp->icmp_id; 3280 hdrlen = sizeof(*pd->hdr.icmp); 3281 icmptype = pd->hdr.icmp->icmp_type; 3282 icmpcode = pd->hdr.icmp->icmp_code; 3283 3284 if (icmptype == ICMP_UNREACH || 3285 icmptype == ICMP_SOURCEQUENCH || 3286 icmptype == ICMP_REDIRECT || 3287 icmptype == ICMP_TIMXCEED || 3288 icmptype == ICMP_PARAMPROB) 3289 state_icmp++; 3290 break; 3291 #endif /* INET */ 3292 #ifdef INET6 3293 case IPPROTO_ICMPV6: 3294 if (af != AF_INET6) 3295 break; 3296 sport = dport = pd->hdr.icmp6->icmp6_id; 3297 hdrlen = sizeof(*pd->hdr.icmp6); 3298 icmptype = pd->hdr.icmp6->icmp6_type; 3299 icmpcode = pd->hdr.icmp6->icmp6_code; 3300 3301 if (icmptype == ICMP6_DST_UNREACH || 3302 icmptype == ICMP6_PACKET_TOO_BIG || 3303 icmptype == ICMP6_TIME_EXCEEDED || 3304 icmptype == ICMP6_PARAM_PROB) 3305 state_icmp++; 3306 break; 3307 #endif /* INET6 */ 3308 default: 3309 sport = dport = hdrlen = 0; 3310 break; 3311 } 3312 3313 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3314 3315 /* check packet for BINAT/NAT/RDR */ 3316 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3317 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3318 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3319 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3320 3321 if (pd->ip_sum) 3322 bip_sum = *pd->ip_sum; 3323 3324 switch (pd->proto) { 3325 case IPPROTO_TCP: 3326 bproto_sum = th->th_sum; 3327 pd->proto_sum = &th->th_sum; 3328 3329 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3330 nk->port[pd->sidx] != sport) { 3331 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3332 &th->th_sum, &nk->addr[pd->sidx], 3333 nk->port[pd->sidx], 0, af); 3334 pd->sport = &th->th_sport; 3335 sport = th->th_sport; 3336 } 3337 3338 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3339 nk->port[pd->didx] != dport) { 3340 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3341 &th->th_sum, &nk->addr[pd->didx], 3342 nk->port[pd->didx], 0, af); 3343 dport = th->th_dport; 3344 pd->dport = &th->th_dport; 3345 } 3346 rewrite++; 3347 break; 3348 case IPPROTO_UDP: 3349 bproto_sum = pd->hdr.udp->uh_sum; 3350 pd->proto_sum = &pd->hdr.udp->uh_sum; 3351 3352 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3353 nk->port[pd->sidx] != sport) { 3354 pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, 3355 pd->ip_sum, &pd->hdr.udp->uh_sum, 3356 &nk->addr[pd->sidx], 3357 nk->port[pd->sidx], 1, af); 3358 sport = pd->hdr.udp->uh_sport; 3359 pd->sport = &pd->hdr.udp->uh_sport; 3360 } 3361 3362 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3363 nk->port[pd->didx] != dport) { 3364 pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, 3365 pd->ip_sum, &pd->hdr.udp->uh_sum, 3366 &nk->addr[pd->didx], 3367 nk->port[pd->didx], 1, af); 3368 dport = pd->hdr.udp->uh_dport; 3369 pd->dport = &pd->hdr.udp->uh_dport; 3370 } 3371 rewrite++; 3372 break; 3373 #ifdef INET 3374 case IPPROTO_ICMP: 3375 nk->port[0] = nk->port[1]; 3376 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3377 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3378 nk->addr[pd->sidx].v4.s_addr, 0); 3379 3380 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3381 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3382 nk->addr[pd->didx].v4.s_addr, 0); 3383 3384 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3385 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3386 pd->hdr.icmp->icmp_cksum, sport, 3387 nk->port[1], 0); 3388 pd->hdr.icmp->icmp_id = nk->port[1]; 3389 pd->sport = &pd->hdr.icmp->icmp_id; 3390 } 3391 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3392 break; 3393 #endif /* INET */ 3394 #ifdef INET6 3395 case IPPROTO_ICMPV6: 3396 nk->port[0] = nk->port[1]; 3397 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3398 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3399 &nk->addr[pd->sidx], 0); 3400 3401 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3402 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3403 &nk->addr[pd->didx], 0); 3404 rewrite++; 3405 break; 3406 #endif /* INET */ 3407 default: 3408 switch (af) { 3409 #ifdef INET 3410 case AF_INET: 3411 if (PF_ANEQ(saddr, 3412 &nk->addr[pd->sidx], AF_INET)) 3413 pf_change_a(&saddr->v4.s_addr, 3414 pd->ip_sum, 3415 nk->addr[pd->sidx].v4.s_addr, 0); 3416 3417 if (PF_ANEQ(daddr, 3418 &nk->addr[pd->didx], AF_INET)) 3419 pf_change_a(&daddr->v4.s_addr, 3420 pd->ip_sum, 3421 nk->addr[pd->didx].v4.s_addr, 0); 3422 break; 3423 #endif /* INET */ 3424 #ifdef INET6 3425 case AF_INET6: 3426 if (PF_ANEQ(saddr, 3427 &nk->addr[pd->sidx], AF_INET6)) 3428 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3429 3430 if (PF_ANEQ(daddr, 3431 &nk->addr[pd->didx], AF_INET6)) 3432 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3433 break; 3434 #endif /* INET */ 3435 } 3436 break; 3437 } 3438 if (nr->natpass) 3439 r = NULL; 3440 pd->nat_rule = nr; 3441 } 3442 3443 while (r != NULL) { 3444 r->evaluations++; 3445 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3446 r = r->skip[PF_SKIP_IFP].ptr; 3447 else if (r->direction && r->direction != direction) 3448 r = r->skip[PF_SKIP_DIR].ptr; 3449 else if (r->af && r->af != af) 3450 r = r->skip[PF_SKIP_AF].ptr; 3451 else if (r->proto && r->proto != pd->proto) 3452 r = r->skip[PF_SKIP_PROTO].ptr; 3453 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3454 r->src.neg, kif, M_GETFIB(m))) 3455 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3456 /* tcp/udp only. port_op always 0 in other cases */ 3457 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3458 r->src.port[0], r->src.port[1], sport)) 3459 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3460 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3461 r->dst.neg, NULL, M_GETFIB(m))) 3462 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3463 /* tcp/udp only. port_op always 0 in other cases */ 3464 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3465 r->dst.port[0], r->dst.port[1], dport)) 3466 r = r->skip[PF_SKIP_DST_PORT].ptr; 3467 /* icmp only. type always 0 in other cases */ 3468 else if (r->type && r->type != icmptype + 1) 3469 r = TAILQ_NEXT(r, entries); 3470 /* icmp only. type always 0 in other cases */ 3471 else if (r->code && r->code != icmpcode + 1) 3472 r = TAILQ_NEXT(r, entries); 3473 else if (r->tos && !(r->tos == pd->tos)) 3474 r = TAILQ_NEXT(r, entries); 3475 else if (r->rule_flag & PFRULE_FRAGMENT) 3476 r = TAILQ_NEXT(r, entries); 3477 else if (pd->proto == IPPROTO_TCP && 3478 (r->flagset & th->th_flags) != r->flags) 3479 r = TAILQ_NEXT(r, entries); 3480 /* tcp/udp only. uid.op always 0 in other cases */ 3481 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3482 pf_socket_lookup(direction, pd, m), 1)) && 3483 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3484 pd->lookup.uid)) 3485 r = TAILQ_NEXT(r, entries); 3486 /* tcp/udp only. gid.op always 0 in other cases */ 3487 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3488 pf_socket_lookup(direction, pd, m), 1)) && 3489 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3490 pd->lookup.gid)) 3491 r = TAILQ_NEXT(r, entries); 3492 else if (r->prio && 3493 !pf_match_ieee8021q_pcp(r->prio, m)) 3494 r = TAILQ_NEXT(r, entries); 3495 else if (r->prob && 3496 r->prob <= arc4random()) 3497 r = TAILQ_NEXT(r, entries); 3498 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3499 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3500 r = TAILQ_NEXT(r, entries); 3501 else if (r->os_fingerprint != PF_OSFP_ANY && 3502 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3503 pf_osfp_fingerprint(pd, m, off, th), 3504 r->os_fingerprint))) 3505 r = TAILQ_NEXT(r, entries); 3506 else { 3507 if (r->tag) 3508 tag = r->tag; 3509 if (r->rtableid >= 0) 3510 rtableid = r->rtableid; 3511 if (r->anchor == NULL) { 3512 match = 1; 3513 *rm = r; 3514 *am = a; 3515 *rsm = ruleset; 3516 if ((*rm)->quick) 3517 break; 3518 r = TAILQ_NEXT(r, entries); 3519 } else 3520 pf_step_into_anchor(anchor_stack, &asd, 3521 &ruleset, PF_RULESET_FILTER, &r, &a, 3522 &match); 3523 } 3524 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3525 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3526 break; 3527 } 3528 r = *rm; 3529 a = *am; 3530 ruleset = *rsm; 3531 3532 REASON_SET(&reason, PFRES_MATCH); 3533 3534 if (r->log || (nr != NULL && nr->log)) { 3535 if (rewrite) 3536 m_copyback(m, off, hdrlen, pd->hdr.any); 3537 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3538 ruleset, pd, 1); 3539 } 3540 3541 if ((r->action == PF_DROP) && 3542 ((r->rule_flag & PFRULE_RETURNRST) || 3543 (r->rule_flag & PFRULE_RETURNICMP) || 3544 (r->rule_flag & PFRULE_RETURN))) { 3545 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 3546 bip_sum, hdrlen, &reason); 3547 } 3548 3549 if (r->action == PF_DROP) 3550 goto cleanup; 3551 3552 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3553 REASON_SET(&reason, PFRES_MEMORY); 3554 goto cleanup; 3555 } 3556 if (rtableid >= 0) 3557 M_SETFIB(m, rtableid); 3558 3559 if (!state_icmp && (r->keep_state || nr != NULL || 3560 (pd->flags & PFDESC_TCP_NORM))) { 3561 int action; 3562 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3563 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3564 hdrlen); 3565 if (action != PF_PASS) { 3566 if (action == PF_DROP && 3567 (r->rule_flag & PFRULE_RETURN)) 3568 pf_return(r, nr, pd, sk, off, m, th, kif, 3569 bproto_sum, bip_sum, hdrlen, &reason); 3570 return (action); 3571 } 3572 } else { 3573 if (sk != NULL) 3574 uma_zfree(V_pf_state_key_z, sk); 3575 if (nk != NULL) 3576 uma_zfree(V_pf_state_key_z, nk); 3577 } 3578 3579 /* copy back packet headers if we performed NAT operations */ 3580 if (rewrite) 3581 m_copyback(m, off, hdrlen, pd->hdr.any); 3582 3583 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3584 direction == PF_OUT && 3585 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3586 /* 3587 * We want the state created, but we dont 3588 * want to send this in case a partner 3589 * firewall has to know about it to allow 3590 * replies through it. 3591 */ 3592 return (PF_DEFER); 3593 3594 return (PF_PASS); 3595 3596 cleanup: 3597 if (sk != NULL) 3598 uma_zfree(V_pf_state_key_z, sk); 3599 if (nk != NULL) 3600 uma_zfree(V_pf_state_key_z, nk); 3601 return (PF_DROP); 3602 } 3603 3604 static int 3605 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3606 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3607 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3608 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3609 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3610 { 3611 struct pf_state *s = NULL; 3612 struct pf_src_node *sn = NULL; 3613 struct tcphdr *th = pd->hdr.tcp; 3614 u_int16_t mss = V_tcp_mssdflt; 3615 u_short reason; 3616 3617 /* check maximums */ 3618 if (r->max_states && 3619 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3620 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3621 REASON_SET(&reason, PFRES_MAXSTATES); 3622 goto csfailed; 3623 } 3624 /* src node for filter rule */ 3625 if ((r->rule_flag & PFRULE_SRCTRACK || 3626 r->rpool.opts & PF_POOL_STICKYADDR) && 3627 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3628 REASON_SET(&reason, PFRES_SRCLIMIT); 3629 goto csfailed; 3630 } 3631 /* src node for translation rule */ 3632 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3633 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3634 REASON_SET(&reason, PFRES_SRCLIMIT); 3635 goto csfailed; 3636 } 3637 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3638 if (s == NULL) { 3639 REASON_SET(&reason, PFRES_MEMORY); 3640 goto csfailed; 3641 } 3642 s->rule.ptr = r; 3643 s->nat_rule.ptr = nr; 3644 s->anchor.ptr = a; 3645 STATE_INC_COUNTERS(s); 3646 if (r->allow_opts) 3647 s->state_flags |= PFSTATE_ALLOWOPTS; 3648 if (r->rule_flag & PFRULE_STATESLOPPY) 3649 s->state_flags |= PFSTATE_SLOPPY; 3650 s->log = r->log & PF_LOG_ALL; 3651 s->sync_state = PFSYNC_S_NONE; 3652 if (nr != NULL) 3653 s->log |= nr->log & PF_LOG_ALL; 3654 switch (pd->proto) { 3655 case IPPROTO_TCP: 3656 s->src.seqlo = ntohl(th->th_seq); 3657 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3658 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3659 r->keep_state == PF_STATE_MODULATE) { 3660 /* Generate sequence number modulator */ 3661 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3662 0) 3663 s->src.seqdiff = 1; 3664 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3665 htonl(s->src.seqlo + s->src.seqdiff), 0); 3666 *rewrite = 1; 3667 } else 3668 s->src.seqdiff = 0; 3669 if (th->th_flags & TH_SYN) { 3670 s->src.seqhi++; 3671 s->src.wscale = pf_get_wscale(m, off, 3672 th->th_off, pd->af); 3673 } 3674 s->src.max_win = MAX(ntohs(th->th_win), 1); 3675 if (s->src.wscale & PF_WSCALE_MASK) { 3676 /* Remove scale factor from initial window */ 3677 int win = s->src.max_win; 3678 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3679 s->src.max_win = (win - 1) >> 3680 (s->src.wscale & PF_WSCALE_MASK); 3681 } 3682 if (th->th_flags & TH_FIN) 3683 s->src.seqhi++; 3684 s->dst.seqhi = 1; 3685 s->dst.max_win = 1; 3686 s->src.state = TCPS_SYN_SENT; 3687 s->dst.state = TCPS_CLOSED; 3688 s->timeout = PFTM_TCP_FIRST_PACKET; 3689 break; 3690 case IPPROTO_UDP: 3691 s->src.state = PFUDPS_SINGLE; 3692 s->dst.state = PFUDPS_NO_TRAFFIC; 3693 s->timeout = PFTM_UDP_FIRST_PACKET; 3694 break; 3695 case IPPROTO_ICMP: 3696 #ifdef INET6 3697 case IPPROTO_ICMPV6: 3698 #endif 3699 s->timeout = PFTM_ICMP_FIRST_PACKET; 3700 break; 3701 default: 3702 s->src.state = PFOTHERS_SINGLE; 3703 s->dst.state = PFOTHERS_NO_TRAFFIC; 3704 s->timeout = PFTM_OTHER_FIRST_PACKET; 3705 } 3706 3707 if (r->rt) { 3708 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3709 REASON_SET(&reason, PFRES_MAPFAILED); 3710 pf_src_tree_remove_state(s); 3711 STATE_DEC_COUNTERS(s); 3712 uma_zfree(V_pf_state_z, s); 3713 goto csfailed; 3714 } 3715 s->rt_kif = r->rpool.cur->kif; 3716 } 3717 3718 s->creation = time_uptime; 3719 s->expire = time_uptime; 3720 3721 if (sn != NULL) 3722 s->src_node = sn; 3723 if (nsn != NULL) { 3724 /* XXX We only modify one side for now. */ 3725 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3726 s->nat_src_node = nsn; 3727 } 3728 if (pd->proto == IPPROTO_TCP) { 3729 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3730 off, pd, th, &s->src, &s->dst)) { 3731 REASON_SET(&reason, PFRES_MEMORY); 3732 pf_src_tree_remove_state(s); 3733 STATE_DEC_COUNTERS(s); 3734 uma_zfree(V_pf_state_z, s); 3735 return (PF_DROP); 3736 } 3737 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3738 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3739 &s->src, &s->dst, rewrite)) { 3740 /* This really shouldn't happen!!! */ 3741 DPFPRINTF(PF_DEBUG_URGENT, 3742 ("pf_normalize_tcp_stateful failed on first pkt")); 3743 pf_normalize_tcp_cleanup(s); 3744 pf_src_tree_remove_state(s); 3745 STATE_DEC_COUNTERS(s); 3746 uma_zfree(V_pf_state_z, s); 3747 return (PF_DROP); 3748 } 3749 } 3750 s->direction = pd->dir; 3751 3752 /* 3753 * sk/nk could already been setup by pf_get_translation(). 3754 */ 3755 if (nr == NULL) { 3756 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3757 __func__, nr, sk, nk)); 3758 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3759 if (sk == NULL) 3760 goto csfailed; 3761 nk = sk; 3762 } else 3763 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3764 __func__, nr, sk, nk)); 3765 3766 /* Swap sk/nk for PF_OUT. */ 3767 if (pf_state_insert(BOUND_IFACE(r, kif), 3768 (pd->dir == PF_IN) ? sk : nk, 3769 (pd->dir == PF_IN) ? nk : sk, s)) { 3770 if (pd->proto == IPPROTO_TCP) 3771 pf_normalize_tcp_cleanup(s); 3772 REASON_SET(&reason, PFRES_STATEINS); 3773 pf_src_tree_remove_state(s); 3774 STATE_DEC_COUNTERS(s); 3775 uma_zfree(V_pf_state_z, s); 3776 return (PF_DROP); 3777 } else 3778 *sm = s; 3779 3780 if (tag > 0) 3781 s->tag = tag; 3782 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3783 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3784 s->src.state = PF_TCPS_PROXY_SRC; 3785 /* undo NAT changes, if they have taken place */ 3786 if (nr != NULL) { 3787 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3788 if (pd->dir == PF_OUT) 3789 skt = s->key[PF_SK_STACK]; 3790 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3791 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3792 if (pd->sport) 3793 *pd->sport = skt->port[pd->sidx]; 3794 if (pd->dport) 3795 *pd->dport = skt->port[pd->didx]; 3796 if (pd->proto_sum) 3797 *pd->proto_sum = bproto_sum; 3798 if (pd->ip_sum) 3799 *pd->ip_sum = bip_sum; 3800 m_copyback(m, off, hdrlen, pd->hdr.any); 3801 } 3802 s->src.seqhi = htonl(arc4random()); 3803 /* Find mss option */ 3804 int rtid = M_GETFIB(m); 3805 mss = pf_get_mss(m, off, th->th_off, pd->af); 3806 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3807 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3808 s->src.mss = mss; 3809 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3810 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3811 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3812 REASON_SET(&reason, PFRES_SYNPROXY); 3813 return (PF_SYNPROXY_DROP); 3814 } 3815 3816 return (PF_PASS); 3817 3818 csfailed: 3819 if (sk != NULL) 3820 uma_zfree(V_pf_state_key_z, sk); 3821 if (nk != NULL) 3822 uma_zfree(V_pf_state_key_z, nk); 3823 3824 if (sn != NULL) { 3825 struct pf_srchash *sh; 3826 3827 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3828 PF_HASHROW_LOCK(sh); 3829 if (--sn->states == 0 && sn->expire == 0) { 3830 pf_unlink_src_node(sn); 3831 uma_zfree(V_pf_sources_z, sn); 3832 counter_u64_add( 3833 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3834 } 3835 PF_HASHROW_UNLOCK(sh); 3836 } 3837 3838 if (nsn != sn && nsn != NULL) { 3839 struct pf_srchash *sh; 3840 3841 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3842 PF_HASHROW_LOCK(sh); 3843 if (--nsn->states == 0 && nsn->expire == 0) { 3844 pf_unlink_src_node(nsn); 3845 uma_zfree(V_pf_sources_z, nsn); 3846 counter_u64_add( 3847 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3848 } 3849 PF_HASHROW_UNLOCK(sh); 3850 } 3851 3852 return (PF_DROP); 3853 } 3854 3855 static int 3856 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3857 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3858 struct pf_ruleset **rsm) 3859 { 3860 struct pf_rule *r, *a = NULL; 3861 struct pf_ruleset *ruleset = NULL; 3862 sa_family_t af = pd->af; 3863 u_short reason; 3864 int tag = -1; 3865 int asd = 0; 3866 int match = 0; 3867 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3868 3869 PF_RULES_RASSERT(); 3870 3871 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3872 while (r != NULL) { 3873 r->evaluations++; 3874 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3875 r = r->skip[PF_SKIP_IFP].ptr; 3876 else if (r->direction && r->direction != direction) 3877 r = r->skip[PF_SKIP_DIR].ptr; 3878 else if (r->af && r->af != af) 3879 r = r->skip[PF_SKIP_AF].ptr; 3880 else if (r->proto && r->proto != pd->proto) 3881 r = r->skip[PF_SKIP_PROTO].ptr; 3882 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3883 r->src.neg, kif, M_GETFIB(m))) 3884 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3885 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3886 r->dst.neg, NULL, M_GETFIB(m))) 3887 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3888 else if (r->tos && !(r->tos == pd->tos)) 3889 r = TAILQ_NEXT(r, entries); 3890 else if (r->os_fingerprint != PF_OSFP_ANY) 3891 r = TAILQ_NEXT(r, entries); 3892 else if (pd->proto == IPPROTO_UDP && 3893 (r->src.port_op || r->dst.port_op)) 3894 r = TAILQ_NEXT(r, entries); 3895 else if (pd->proto == IPPROTO_TCP && 3896 (r->src.port_op || r->dst.port_op || r->flagset)) 3897 r = TAILQ_NEXT(r, entries); 3898 else if ((pd->proto == IPPROTO_ICMP || 3899 pd->proto == IPPROTO_ICMPV6) && 3900 (r->type || r->code)) 3901 r = TAILQ_NEXT(r, entries); 3902 else if (r->prio && 3903 !pf_match_ieee8021q_pcp(r->prio, m)) 3904 r = TAILQ_NEXT(r, entries); 3905 else if (r->prob && r->prob <= 3906 (arc4random() % (UINT_MAX - 1) + 1)) 3907 r = TAILQ_NEXT(r, entries); 3908 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3909 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3910 r = TAILQ_NEXT(r, entries); 3911 else { 3912 if (r->anchor == NULL) { 3913 match = 1; 3914 *rm = r; 3915 *am = a; 3916 *rsm = ruleset; 3917 if ((*rm)->quick) 3918 break; 3919 r = TAILQ_NEXT(r, entries); 3920 } else 3921 pf_step_into_anchor(anchor_stack, &asd, 3922 &ruleset, PF_RULESET_FILTER, &r, &a, 3923 &match); 3924 } 3925 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3926 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3927 break; 3928 } 3929 r = *rm; 3930 a = *am; 3931 ruleset = *rsm; 3932 3933 REASON_SET(&reason, PFRES_MATCH); 3934 3935 if (r->log) 3936 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3937 1); 3938 3939 if (r->action != PF_PASS) 3940 return (PF_DROP); 3941 3942 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3943 REASON_SET(&reason, PFRES_MEMORY); 3944 return (PF_DROP); 3945 } 3946 3947 return (PF_PASS); 3948 } 3949 3950 static int 3951 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3952 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3953 struct pf_pdesc *pd, u_short *reason, int *copyback) 3954 { 3955 struct tcphdr *th = pd->hdr.tcp; 3956 u_int16_t win = ntohs(th->th_win); 3957 u_int32_t ack, end, seq, orig_seq; 3958 u_int8_t sws, dws; 3959 int ackskew; 3960 3961 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3962 sws = src->wscale & PF_WSCALE_MASK; 3963 dws = dst->wscale & PF_WSCALE_MASK; 3964 } else 3965 sws = dws = 0; 3966 3967 /* 3968 * Sequence tracking algorithm from Guido van Rooij's paper: 3969 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3970 * tcp_filtering.ps 3971 */ 3972 3973 orig_seq = seq = ntohl(th->th_seq); 3974 if (src->seqlo == 0) { 3975 /* First packet from this end. Set its state */ 3976 3977 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3978 src->scrub == NULL) { 3979 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3980 REASON_SET(reason, PFRES_MEMORY); 3981 return (PF_DROP); 3982 } 3983 } 3984 3985 /* Deferred generation of sequence number modulator */ 3986 if (dst->seqdiff && !src->seqdiff) { 3987 /* use random iss for the TCP server */ 3988 while ((src->seqdiff = arc4random() - seq) == 0) 3989 ; 3990 ack = ntohl(th->th_ack) - dst->seqdiff; 3991 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3992 src->seqdiff), 0); 3993 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 3994 *copyback = 1; 3995 } else { 3996 ack = ntohl(th->th_ack); 3997 } 3998 3999 end = seq + pd->p_len; 4000 if (th->th_flags & TH_SYN) { 4001 end++; 4002 if (dst->wscale & PF_WSCALE_FLAG) { 4003 src->wscale = pf_get_wscale(m, off, th->th_off, 4004 pd->af); 4005 if (src->wscale & PF_WSCALE_FLAG) { 4006 /* Remove scale factor from initial 4007 * window */ 4008 sws = src->wscale & PF_WSCALE_MASK; 4009 win = ((u_int32_t)win + (1 << sws) - 1) 4010 >> sws; 4011 dws = dst->wscale & PF_WSCALE_MASK; 4012 } else { 4013 /* fixup other window */ 4014 dst->max_win <<= dst->wscale & 4015 PF_WSCALE_MASK; 4016 /* in case of a retrans SYN|ACK */ 4017 dst->wscale = 0; 4018 } 4019 } 4020 } 4021 if (th->th_flags & TH_FIN) 4022 end++; 4023 4024 src->seqlo = seq; 4025 if (src->state < TCPS_SYN_SENT) 4026 src->state = TCPS_SYN_SENT; 4027 4028 /* 4029 * May need to slide the window (seqhi may have been set by 4030 * the crappy stack check or if we picked up the connection 4031 * after establishment) 4032 */ 4033 if (src->seqhi == 1 || 4034 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4035 src->seqhi = end + MAX(1, dst->max_win << dws); 4036 if (win > src->max_win) 4037 src->max_win = win; 4038 4039 } else { 4040 ack = ntohl(th->th_ack) - dst->seqdiff; 4041 if (src->seqdiff) { 4042 /* Modulate sequence numbers */ 4043 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4044 src->seqdiff), 0); 4045 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4046 *copyback = 1; 4047 } 4048 end = seq + pd->p_len; 4049 if (th->th_flags & TH_SYN) 4050 end++; 4051 if (th->th_flags & TH_FIN) 4052 end++; 4053 } 4054 4055 if ((th->th_flags & TH_ACK) == 0) { 4056 /* Let it pass through the ack skew check */ 4057 ack = dst->seqlo; 4058 } else if ((ack == 0 && 4059 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4060 /* broken tcp stacks do not set ack */ 4061 (dst->state < TCPS_SYN_SENT)) { 4062 /* 4063 * Many stacks (ours included) will set the ACK number in an 4064 * FIN|ACK if the SYN times out -- no sequence to ACK. 4065 */ 4066 ack = dst->seqlo; 4067 } 4068 4069 if (seq == end) { 4070 /* Ease sequencing restrictions on no data packets */ 4071 seq = src->seqlo; 4072 end = seq; 4073 } 4074 4075 ackskew = dst->seqlo - ack; 4076 4077 4078 /* 4079 * Need to demodulate the sequence numbers in any TCP SACK options 4080 * (Selective ACK). We could optionally validate the SACK values 4081 * against the current ACK window, either forwards or backwards, but 4082 * I'm not confident that SACK has been implemented properly 4083 * everywhere. It wouldn't surprise me if several stacks accidentally 4084 * SACK too far backwards of previously ACKed data. There really aren't 4085 * any security implications of bad SACKing unless the target stack 4086 * doesn't validate the option length correctly. Someone trying to 4087 * spoof into a TCP connection won't bother blindly sending SACK 4088 * options anyway. 4089 */ 4090 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4091 if (pf_modulate_sack(m, off, pd, th, dst)) 4092 *copyback = 1; 4093 } 4094 4095 4096 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4097 if (SEQ_GEQ(src->seqhi, end) && 4098 /* Last octet inside other's window space */ 4099 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4100 /* Retrans: not more than one window back */ 4101 (ackskew >= -MAXACKWINDOW) && 4102 /* Acking not more than one reassembled fragment backwards */ 4103 (ackskew <= (MAXACKWINDOW << sws)) && 4104 /* Acking not more than one window forward */ 4105 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4106 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4107 (pd->flags & PFDESC_IP_REAS) == 0)) { 4108 /* Require an exact/+1 sequence match on resets when possible */ 4109 4110 if (dst->scrub || src->scrub) { 4111 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4112 *state, src, dst, copyback)) 4113 return (PF_DROP); 4114 } 4115 4116 /* update max window */ 4117 if (src->max_win < win) 4118 src->max_win = win; 4119 /* synchronize sequencing */ 4120 if (SEQ_GT(end, src->seqlo)) 4121 src->seqlo = end; 4122 /* slide the window of what the other end can send */ 4123 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4124 dst->seqhi = ack + MAX((win << sws), 1); 4125 4126 4127 /* update states */ 4128 if (th->th_flags & TH_SYN) 4129 if (src->state < TCPS_SYN_SENT) 4130 src->state = TCPS_SYN_SENT; 4131 if (th->th_flags & TH_FIN) 4132 if (src->state < TCPS_CLOSING) 4133 src->state = TCPS_CLOSING; 4134 if (th->th_flags & TH_ACK) { 4135 if (dst->state == TCPS_SYN_SENT) { 4136 dst->state = TCPS_ESTABLISHED; 4137 if (src->state == TCPS_ESTABLISHED && 4138 (*state)->src_node != NULL && 4139 pf_src_connlimit(state)) { 4140 REASON_SET(reason, PFRES_SRCLIMIT); 4141 return (PF_DROP); 4142 } 4143 } else if (dst->state == TCPS_CLOSING) 4144 dst->state = TCPS_FIN_WAIT_2; 4145 } 4146 if (th->th_flags & TH_RST) 4147 src->state = dst->state = TCPS_TIME_WAIT; 4148 4149 /* update expire time */ 4150 (*state)->expire = time_uptime; 4151 if (src->state >= TCPS_FIN_WAIT_2 && 4152 dst->state >= TCPS_FIN_WAIT_2) 4153 (*state)->timeout = PFTM_TCP_CLOSED; 4154 else if (src->state >= TCPS_CLOSING && 4155 dst->state >= TCPS_CLOSING) 4156 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4157 else if (src->state < TCPS_ESTABLISHED || 4158 dst->state < TCPS_ESTABLISHED) 4159 (*state)->timeout = PFTM_TCP_OPENING; 4160 else if (src->state >= TCPS_CLOSING || 4161 dst->state >= TCPS_CLOSING) 4162 (*state)->timeout = PFTM_TCP_CLOSING; 4163 else 4164 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4165 4166 /* Fall through to PASS packet */ 4167 4168 } else if ((dst->state < TCPS_SYN_SENT || 4169 dst->state >= TCPS_FIN_WAIT_2 || 4170 src->state >= TCPS_FIN_WAIT_2) && 4171 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4172 /* Within a window forward of the originating packet */ 4173 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4174 /* Within a window backward of the originating packet */ 4175 4176 /* 4177 * This currently handles three situations: 4178 * 1) Stupid stacks will shotgun SYNs before their peer 4179 * replies. 4180 * 2) When PF catches an already established stream (the 4181 * firewall rebooted, the state table was flushed, routes 4182 * changed...) 4183 * 3) Packets get funky immediately after the connection 4184 * closes (this should catch Solaris spurious ACK|FINs 4185 * that web servers like to spew after a close) 4186 * 4187 * This must be a little more careful than the above code 4188 * since packet floods will also be caught here. We don't 4189 * update the TTL here to mitigate the damage of a packet 4190 * flood and so the same code can handle awkward establishment 4191 * and a loosened connection close. 4192 * In the establishment case, a correct peer response will 4193 * validate the connection, go through the normal state code 4194 * and keep updating the state TTL. 4195 */ 4196 4197 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4198 printf("pf: loose state match: "); 4199 pf_print_state(*state); 4200 pf_print_flags(th->th_flags); 4201 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4202 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4203 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4204 (unsigned long long)(*state)->packets[1], 4205 pd->dir == PF_IN ? "in" : "out", 4206 pd->dir == (*state)->direction ? "fwd" : "rev"); 4207 } 4208 4209 if (dst->scrub || src->scrub) { 4210 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4211 *state, src, dst, copyback)) 4212 return (PF_DROP); 4213 } 4214 4215 /* update max window */ 4216 if (src->max_win < win) 4217 src->max_win = win; 4218 /* synchronize sequencing */ 4219 if (SEQ_GT(end, src->seqlo)) 4220 src->seqlo = end; 4221 /* slide the window of what the other end can send */ 4222 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4223 dst->seqhi = ack + MAX((win << sws), 1); 4224 4225 /* 4226 * Cannot set dst->seqhi here since this could be a shotgunned 4227 * SYN and not an already established connection. 4228 */ 4229 4230 if (th->th_flags & TH_FIN) 4231 if (src->state < TCPS_CLOSING) 4232 src->state = TCPS_CLOSING; 4233 if (th->th_flags & TH_RST) 4234 src->state = dst->state = TCPS_TIME_WAIT; 4235 4236 /* Fall through to PASS packet */ 4237 4238 } else { 4239 if ((*state)->dst.state == TCPS_SYN_SENT && 4240 (*state)->src.state == TCPS_SYN_SENT) { 4241 /* Send RST for state mismatches during handshake */ 4242 if (!(th->th_flags & TH_RST)) 4243 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4244 pd->dst, pd->src, th->th_dport, 4245 th->th_sport, ntohl(th->th_ack), 0, 4246 TH_RST, 0, 0, 4247 (*state)->rule.ptr->return_ttl, 1, 0, 4248 kif->pfik_ifp); 4249 src->seqlo = 0; 4250 src->seqhi = 1; 4251 src->max_win = 1; 4252 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4253 printf("pf: BAD state: "); 4254 pf_print_state(*state); 4255 pf_print_flags(th->th_flags); 4256 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4257 "pkts=%llu:%llu dir=%s,%s\n", 4258 seq, orig_seq, ack, pd->p_len, ackskew, 4259 (unsigned long long)(*state)->packets[0], 4260 (unsigned long long)(*state)->packets[1], 4261 pd->dir == PF_IN ? "in" : "out", 4262 pd->dir == (*state)->direction ? "fwd" : "rev"); 4263 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4264 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4265 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4266 ' ': '2', 4267 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4268 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4269 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4270 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4271 } 4272 REASON_SET(reason, PFRES_BADSTATE); 4273 return (PF_DROP); 4274 } 4275 4276 return (PF_PASS); 4277 } 4278 4279 static int 4280 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4281 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4282 { 4283 struct tcphdr *th = pd->hdr.tcp; 4284 4285 if (th->th_flags & TH_SYN) 4286 if (src->state < TCPS_SYN_SENT) 4287 src->state = TCPS_SYN_SENT; 4288 if (th->th_flags & TH_FIN) 4289 if (src->state < TCPS_CLOSING) 4290 src->state = TCPS_CLOSING; 4291 if (th->th_flags & TH_ACK) { 4292 if (dst->state == TCPS_SYN_SENT) { 4293 dst->state = TCPS_ESTABLISHED; 4294 if (src->state == TCPS_ESTABLISHED && 4295 (*state)->src_node != NULL && 4296 pf_src_connlimit(state)) { 4297 REASON_SET(reason, PFRES_SRCLIMIT); 4298 return (PF_DROP); 4299 } 4300 } else if (dst->state == TCPS_CLOSING) { 4301 dst->state = TCPS_FIN_WAIT_2; 4302 } else if (src->state == TCPS_SYN_SENT && 4303 dst->state < TCPS_SYN_SENT) { 4304 /* 4305 * Handle a special sloppy case where we only see one 4306 * half of the connection. If there is a ACK after 4307 * the initial SYN without ever seeing a packet from 4308 * the destination, set the connection to established. 4309 */ 4310 dst->state = src->state = TCPS_ESTABLISHED; 4311 if ((*state)->src_node != NULL && 4312 pf_src_connlimit(state)) { 4313 REASON_SET(reason, PFRES_SRCLIMIT); 4314 return (PF_DROP); 4315 } 4316 } else if (src->state == TCPS_CLOSING && 4317 dst->state == TCPS_ESTABLISHED && 4318 dst->seqlo == 0) { 4319 /* 4320 * Handle the closing of half connections where we 4321 * don't see the full bidirectional FIN/ACK+ACK 4322 * handshake. 4323 */ 4324 dst->state = TCPS_CLOSING; 4325 } 4326 } 4327 if (th->th_flags & TH_RST) 4328 src->state = dst->state = TCPS_TIME_WAIT; 4329 4330 /* update expire time */ 4331 (*state)->expire = time_uptime; 4332 if (src->state >= TCPS_FIN_WAIT_2 && 4333 dst->state >= TCPS_FIN_WAIT_2) 4334 (*state)->timeout = PFTM_TCP_CLOSED; 4335 else if (src->state >= TCPS_CLOSING && 4336 dst->state >= TCPS_CLOSING) 4337 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4338 else if (src->state < TCPS_ESTABLISHED || 4339 dst->state < TCPS_ESTABLISHED) 4340 (*state)->timeout = PFTM_TCP_OPENING; 4341 else if (src->state >= TCPS_CLOSING || 4342 dst->state >= TCPS_CLOSING) 4343 (*state)->timeout = PFTM_TCP_CLOSING; 4344 else 4345 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4346 4347 return (PF_PASS); 4348 } 4349 4350 static int 4351 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4352 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4353 u_short *reason) 4354 { 4355 struct pf_state_key_cmp key; 4356 struct tcphdr *th = pd->hdr.tcp; 4357 int copyback = 0; 4358 struct pf_state_peer *src, *dst; 4359 struct pf_state_key *sk; 4360 4361 bzero(&key, sizeof(key)); 4362 key.af = pd->af; 4363 key.proto = IPPROTO_TCP; 4364 if (direction == PF_IN) { /* wire side, straight */ 4365 PF_ACPY(&key.addr[0], pd->src, key.af); 4366 PF_ACPY(&key.addr[1], pd->dst, key.af); 4367 key.port[0] = th->th_sport; 4368 key.port[1] = th->th_dport; 4369 } else { /* stack side, reverse */ 4370 PF_ACPY(&key.addr[1], pd->src, key.af); 4371 PF_ACPY(&key.addr[0], pd->dst, key.af); 4372 key.port[1] = th->th_sport; 4373 key.port[0] = th->th_dport; 4374 } 4375 4376 STATE_LOOKUP(kif, &key, direction, *state, pd); 4377 4378 if (direction == (*state)->direction) { 4379 src = &(*state)->src; 4380 dst = &(*state)->dst; 4381 } else { 4382 src = &(*state)->dst; 4383 dst = &(*state)->src; 4384 } 4385 4386 sk = (*state)->key[pd->didx]; 4387 4388 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4389 if (direction != (*state)->direction) { 4390 REASON_SET(reason, PFRES_SYNPROXY); 4391 return (PF_SYNPROXY_DROP); 4392 } 4393 if (th->th_flags & TH_SYN) { 4394 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4395 REASON_SET(reason, PFRES_SYNPROXY); 4396 return (PF_DROP); 4397 } 4398 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4399 pd->src, th->th_dport, th->th_sport, 4400 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4401 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4402 REASON_SET(reason, PFRES_SYNPROXY); 4403 return (PF_SYNPROXY_DROP); 4404 } else if (!(th->th_flags & TH_ACK) || 4405 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4406 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4407 REASON_SET(reason, PFRES_SYNPROXY); 4408 return (PF_DROP); 4409 } else if ((*state)->src_node != NULL && 4410 pf_src_connlimit(state)) { 4411 REASON_SET(reason, PFRES_SRCLIMIT); 4412 return (PF_DROP); 4413 } else 4414 (*state)->src.state = PF_TCPS_PROXY_DST; 4415 } 4416 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4417 if (direction == (*state)->direction) { 4418 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4419 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4420 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4421 REASON_SET(reason, PFRES_SYNPROXY); 4422 return (PF_DROP); 4423 } 4424 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4425 if ((*state)->dst.seqhi == 1) 4426 (*state)->dst.seqhi = htonl(arc4random()); 4427 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4428 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4429 sk->port[pd->sidx], sk->port[pd->didx], 4430 (*state)->dst.seqhi, 0, TH_SYN, 0, 4431 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4432 REASON_SET(reason, PFRES_SYNPROXY); 4433 return (PF_SYNPROXY_DROP); 4434 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4435 (TH_SYN|TH_ACK)) || 4436 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4437 REASON_SET(reason, PFRES_SYNPROXY); 4438 return (PF_DROP); 4439 } else { 4440 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4441 (*state)->dst.seqlo = ntohl(th->th_seq); 4442 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4443 pd->src, th->th_dport, th->th_sport, 4444 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4445 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4446 (*state)->tag, NULL); 4447 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4448 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4449 sk->port[pd->sidx], sk->port[pd->didx], 4450 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4451 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4452 (*state)->src.seqdiff = (*state)->dst.seqhi - 4453 (*state)->src.seqlo; 4454 (*state)->dst.seqdiff = (*state)->src.seqhi - 4455 (*state)->dst.seqlo; 4456 (*state)->src.seqhi = (*state)->src.seqlo + 4457 (*state)->dst.max_win; 4458 (*state)->dst.seqhi = (*state)->dst.seqlo + 4459 (*state)->src.max_win; 4460 (*state)->src.wscale = (*state)->dst.wscale = 0; 4461 (*state)->src.state = (*state)->dst.state = 4462 TCPS_ESTABLISHED; 4463 REASON_SET(reason, PFRES_SYNPROXY); 4464 return (PF_SYNPROXY_DROP); 4465 } 4466 } 4467 4468 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4469 dst->state >= TCPS_FIN_WAIT_2 && 4470 src->state >= TCPS_FIN_WAIT_2) { 4471 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4472 printf("pf: state reuse "); 4473 pf_print_state(*state); 4474 pf_print_flags(th->th_flags); 4475 printf("\n"); 4476 } 4477 /* XXX make sure it's the same direction ?? */ 4478 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4479 pf_unlink_state(*state, PF_ENTER_LOCKED); 4480 *state = NULL; 4481 return (PF_DROP); 4482 } 4483 4484 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4485 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4486 return (PF_DROP); 4487 } else { 4488 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4489 ©back) == PF_DROP) 4490 return (PF_DROP); 4491 } 4492 4493 /* translate source/destination address, if necessary */ 4494 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4495 struct pf_state_key *nk = (*state)->key[pd->didx]; 4496 4497 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4498 nk->port[pd->sidx] != th->th_sport) 4499 pf_change_ap(m, pd->src, &th->th_sport, 4500 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4501 nk->port[pd->sidx], 0, pd->af); 4502 4503 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4504 nk->port[pd->didx] != th->th_dport) 4505 pf_change_ap(m, pd->dst, &th->th_dport, 4506 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4507 nk->port[pd->didx], 0, pd->af); 4508 copyback = 1; 4509 } 4510 4511 /* Copyback sequence modulation or stateful scrub changes if needed */ 4512 if (copyback) 4513 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4514 4515 return (PF_PASS); 4516 } 4517 4518 static int 4519 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4520 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4521 { 4522 struct pf_state_peer *src, *dst; 4523 struct pf_state_key_cmp key; 4524 struct udphdr *uh = pd->hdr.udp; 4525 4526 bzero(&key, sizeof(key)); 4527 key.af = pd->af; 4528 key.proto = IPPROTO_UDP; 4529 if (direction == PF_IN) { /* wire side, straight */ 4530 PF_ACPY(&key.addr[0], pd->src, key.af); 4531 PF_ACPY(&key.addr[1], pd->dst, key.af); 4532 key.port[0] = uh->uh_sport; 4533 key.port[1] = uh->uh_dport; 4534 } else { /* stack side, reverse */ 4535 PF_ACPY(&key.addr[1], pd->src, key.af); 4536 PF_ACPY(&key.addr[0], pd->dst, key.af); 4537 key.port[1] = uh->uh_sport; 4538 key.port[0] = uh->uh_dport; 4539 } 4540 4541 STATE_LOOKUP(kif, &key, direction, *state, pd); 4542 4543 if (direction == (*state)->direction) { 4544 src = &(*state)->src; 4545 dst = &(*state)->dst; 4546 } else { 4547 src = &(*state)->dst; 4548 dst = &(*state)->src; 4549 } 4550 4551 /* update states */ 4552 if (src->state < PFUDPS_SINGLE) 4553 src->state = PFUDPS_SINGLE; 4554 if (dst->state == PFUDPS_SINGLE) 4555 dst->state = PFUDPS_MULTIPLE; 4556 4557 /* update expire time */ 4558 (*state)->expire = time_uptime; 4559 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4560 (*state)->timeout = PFTM_UDP_MULTIPLE; 4561 else 4562 (*state)->timeout = PFTM_UDP_SINGLE; 4563 4564 /* translate source/destination address, if necessary */ 4565 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4566 struct pf_state_key *nk = (*state)->key[pd->didx]; 4567 4568 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4569 nk->port[pd->sidx] != uh->uh_sport) 4570 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4571 &uh->uh_sum, &nk->addr[pd->sidx], 4572 nk->port[pd->sidx], 1, pd->af); 4573 4574 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4575 nk->port[pd->didx] != uh->uh_dport) 4576 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4577 &uh->uh_sum, &nk->addr[pd->didx], 4578 nk->port[pd->didx], 1, pd->af); 4579 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4580 } 4581 4582 return (PF_PASS); 4583 } 4584 4585 static int 4586 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4587 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4588 { 4589 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4590 u_int16_t icmpid = 0, *icmpsum; 4591 u_int8_t icmptype; 4592 int state_icmp = 0; 4593 struct pf_state_key_cmp key; 4594 4595 bzero(&key, sizeof(key)); 4596 switch (pd->proto) { 4597 #ifdef INET 4598 case IPPROTO_ICMP: 4599 icmptype = pd->hdr.icmp->icmp_type; 4600 icmpid = pd->hdr.icmp->icmp_id; 4601 icmpsum = &pd->hdr.icmp->icmp_cksum; 4602 4603 if (icmptype == ICMP_UNREACH || 4604 icmptype == ICMP_SOURCEQUENCH || 4605 icmptype == ICMP_REDIRECT || 4606 icmptype == ICMP_TIMXCEED || 4607 icmptype == ICMP_PARAMPROB) 4608 state_icmp++; 4609 break; 4610 #endif /* INET */ 4611 #ifdef INET6 4612 case IPPROTO_ICMPV6: 4613 icmptype = pd->hdr.icmp6->icmp6_type; 4614 icmpid = pd->hdr.icmp6->icmp6_id; 4615 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4616 4617 if (icmptype == ICMP6_DST_UNREACH || 4618 icmptype == ICMP6_PACKET_TOO_BIG || 4619 icmptype == ICMP6_TIME_EXCEEDED || 4620 icmptype == ICMP6_PARAM_PROB) 4621 state_icmp++; 4622 break; 4623 #endif /* INET6 */ 4624 } 4625 4626 if (!state_icmp) { 4627 4628 /* 4629 * ICMP query/reply message not related to a TCP/UDP packet. 4630 * Search for an ICMP state. 4631 */ 4632 key.af = pd->af; 4633 key.proto = pd->proto; 4634 key.port[0] = key.port[1] = icmpid; 4635 if (direction == PF_IN) { /* wire side, straight */ 4636 PF_ACPY(&key.addr[0], pd->src, key.af); 4637 PF_ACPY(&key.addr[1], pd->dst, key.af); 4638 } else { /* stack side, reverse */ 4639 PF_ACPY(&key.addr[1], pd->src, key.af); 4640 PF_ACPY(&key.addr[0], pd->dst, key.af); 4641 } 4642 4643 STATE_LOOKUP(kif, &key, direction, *state, pd); 4644 4645 (*state)->expire = time_uptime; 4646 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4647 4648 /* translate source/destination address, if necessary */ 4649 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4650 struct pf_state_key *nk = (*state)->key[pd->didx]; 4651 4652 switch (pd->af) { 4653 #ifdef INET 4654 case AF_INET: 4655 if (PF_ANEQ(pd->src, 4656 &nk->addr[pd->sidx], AF_INET)) 4657 pf_change_a(&saddr->v4.s_addr, 4658 pd->ip_sum, 4659 nk->addr[pd->sidx].v4.s_addr, 0); 4660 4661 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4662 AF_INET)) 4663 pf_change_a(&daddr->v4.s_addr, 4664 pd->ip_sum, 4665 nk->addr[pd->didx].v4.s_addr, 0); 4666 4667 if (nk->port[0] != 4668 pd->hdr.icmp->icmp_id) { 4669 pd->hdr.icmp->icmp_cksum = 4670 pf_cksum_fixup( 4671 pd->hdr.icmp->icmp_cksum, icmpid, 4672 nk->port[pd->sidx], 0); 4673 pd->hdr.icmp->icmp_id = 4674 nk->port[pd->sidx]; 4675 } 4676 4677 m_copyback(m, off, ICMP_MINLEN, 4678 (caddr_t )pd->hdr.icmp); 4679 break; 4680 #endif /* INET */ 4681 #ifdef INET6 4682 case AF_INET6: 4683 if (PF_ANEQ(pd->src, 4684 &nk->addr[pd->sidx], AF_INET6)) 4685 pf_change_a6(saddr, 4686 &pd->hdr.icmp6->icmp6_cksum, 4687 &nk->addr[pd->sidx], 0); 4688 4689 if (PF_ANEQ(pd->dst, 4690 &nk->addr[pd->didx], AF_INET6)) 4691 pf_change_a6(daddr, 4692 &pd->hdr.icmp6->icmp6_cksum, 4693 &nk->addr[pd->didx], 0); 4694 4695 m_copyback(m, off, sizeof(struct icmp6_hdr), 4696 (caddr_t )pd->hdr.icmp6); 4697 break; 4698 #endif /* INET6 */ 4699 } 4700 } 4701 return (PF_PASS); 4702 4703 } else { 4704 /* 4705 * ICMP error message in response to a TCP/UDP packet. 4706 * Extract the inner TCP/UDP header and search for that state. 4707 */ 4708 4709 struct pf_pdesc pd2; 4710 bzero(&pd2, sizeof pd2); 4711 #ifdef INET 4712 struct ip h2; 4713 #endif /* INET */ 4714 #ifdef INET6 4715 struct ip6_hdr h2_6; 4716 int terminal = 0; 4717 #endif /* INET6 */ 4718 int ipoff2 = 0; 4719 int off2 = 0; 4720 4721 pd2.af = pd->af; 4722 /* Payload packet is from the opposite direction. */ 4723 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4724 pd2.didx = (direction == PF_IN) ? 0 : 1; 4725 switch (pd->af) { 4726 #ifdef INET 4727 case AF_INET: 4728 /* offset of h2 in mbuf chain */ 4729 ipoff2 = off + ICMP_MINLEN; 4730 4731 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4732 NULL, reason, pd2.af)) { 4733 DPFPRINTF(PF_DEBUG_MISC, 4734 ("pf: ICMP error message too short " 4735 "(ip)\n")); 4736 return (PF_DROP); 4737 } 4738 /* 4739 * ICMP error messages don't refer to non-first 4740 * fragments 4741 */ 4742 if (h2.ip_off & htons(IP_OFFMASK)) { 4743 REASON_SET(reason, PFRES_FRAG); 4744 return (PF_DROP); 4745 } 4746 4747 /* offset of protocol header that follows h2 */ 4748 off2 = ipoff2 + (h2.ip_hl << 2); 4749 4750 pd2.proto = h2.ip_p; 4751 pd2.src = (struct pf_addr *)&h2.ip_src; 4752 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4753 pd2.ip_sum = &h2.ip_sum; 4754 break; 4755 #endif /* INET */ 4756 #ifdef INET6 4757 case AF_INET6: 4758 ipoff2 = off + sizeof(struct icmp6_hdr); 4759 4760 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4761 NULL, reason, pd2.af)) { 4762 DPFPRINTF(PF_DEBUG_MISC, 4763 ("pf: ICMP error message too short " 4764 "(ip6)\n")); 4765 return (PF_DROP); 4766 } 4767 pd2.proto = h2_6.ip6_nxt; 4768 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4769 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4770 pd2.ip_sum = NULL; 4771 off2 = ipoff2 + sizeof(h2_6); 4772 do { 4773 switch (pd2.proto) { 4774 case IPPROTO_FRAGMENT: 4775 /* 4776 * ICMPv6 error messages for 4777 * non-first fragments 4778 */ 4779 REASON_SET(reason, PFRES_FRAG); 4780 return (PF_DROP); 4781 case IPPROTO_AH: 4782 case IPPROTO_HOPOPTS: 4783 case IPPROTO_ROUTING: 4784 case IPPROTO_DSTOPTS: { 4785 /* get next header and header length */ 4786 struct ip6_ext opt6; 4787 4788 if (!pf_pull_hdr(m, off2, &opt6, 4789 sizeof(opt6), NULL, reason, 4790 pd2.af)) { 4791 DPFPRINTF(PF_DEBUG_MISC, 4792 ("pf: ICMPv6 short opt\n")); 4793 return (PF_DROP); 4794 } 4795 if (pd2.proto == IPPROTO_AH) 4796 off2 += (opt6.ip6e_len + 2) * 4; 4797 else 4798 off2 += (opt6.ip6e_len + 1) * 8; 4799 pd2.proto = opt6.ip6e_nxt; 4800 /* goto the next header */ 4801 break; 4802 } 4803 default: 4804 terminal++; 4805 break; 4806 } 4807 } while (!terminal); 4808 break; 4809 #endif /* INET6 */ 4810 } 4811 4812 switch (pd2.proto) { 4813 case IPPROTO_TCP: { 4814 struct tcphdr th; 4815 u_int32_t seq; 4816 struct pf_state_peer *src, *dst; 4817 u_int8_t dws; 4818 int copyback = 0; 4819 4820 /* 4821 * Only the first 8 bytes of the TCP header can be 4822 * expected. Don't access any TCP header fields after 4823 * th_seq, an ackskew test is not possible. 4824 */ 4825 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4826 pd2.af)) { 4827 DPFPRINTF(PF_DEBUG_MISC, 4828 ("pf: ICMP error message too short " 4829 "(tcp)\n")); 4830 return (PF_DROP); 4831 } 4832 4833 key.af = pd2.af; 4834 key.proto = IPPROTO_TCP; 4835 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4836 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4837 key.port[pd2.sidx] = th.th_sport; 4838 key.port[pd2.didx] = th.th_dport; 4839 4840 STATE_LOOKUP(kif, &key, direction, *state, pd); 4841 4842 if (direction == (*state)->direction) { 4843 src = &(*state)->dst; 4844 dst = &(*state)->src; 4845 } else { 4846 src = &(*state)->src; 4847 dst = &(*state)->dst; 4848 } 4849 4850 if (src->wscale && dst->wscale) 4851 dws = dst->wscale & PF_WSCALE_MASK; 4852 else 4853 dws = 0; 4854 4855 /* Demodulate sequence number */ 4856 seq = ntohl(th.th_seq) - src->seqdiff; 4857 if (src->seqdiff) { 4858 pf_change_a(&th.th_seq, icmpsum, 4859 htonl(seq), 0); 4860 copyback = 1; 4861 } 4862 4863 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4864 (!SEQ_GEQ(src->seqhi, seq) || 4865 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4866 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4867 printf("pf: BAD ICMP %d:%d ", 4868 icmptype, pd->hdr.icmp->icmp_code); 4869 pf_print_host(pd->src, 0, pd->af); 4870 printf(" -> "); 4871 pf_print_host(pd->dst, 0, pd->af); 4872 printf(" state: "); 4873 pf_print_state(*state); 4874 printf(" seq=%u\n", seq); 4875 } 4876 REASON_SET(reason, PFRES_BADSTATE); 4877 return (PF_DROP); 4878 } else { 4879 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4880 printf("pf: OK ICMP %d:%d ", 4881 icmptype, pd->hdr.icmp->icmp_code); 4882 pf_print_host(pd->src, 0, pd->af); 4883 printf(" -> "); 4884 pf_print_host(pd->dst, 0, pd->af); 4885 printf(" state: "); 4886 pf_print_state(*state); 4887 printf(" seq=%u\n", seq); 4888 } 4889 } 4890 4891 /* translate source/destination address, if necessary */ 4892 if ((*state)->key[PF_SK_WIRE] != 4893 (*state)->key[PF_SK_STACK]) { 4894 struct pf_state_key *nk = 4895 (*state)->key[pd->didx]; 4896 4897 if (PF_ANEQ(pd2.src, 4898 &nk->addr[pd2.sidx], pd2.af) || 4899 nk->port[pd2.sidx] != th.th_sport) 4900 pf_change_icmp(pd2.src, &th.th_sport, 4901 daddr, &nk->addr[pd2.sidx], 4902 nk->port[pd2.sidx], NULL, 4903 pd2.ip_sum, icmpsum, 4904 pd->ip_sum, 0, pd2.af); 4905 4906 if (PF_ANEQ(pd2.dst, 4907 &nk->addr[pd2.didx], pd2.af) || 4908 nk->port[pd2.didx] != th.th_dport) 4909 pf_change_icmp(pd2.dst, &th.th_dport, 4910 saddr, &nk->addr[pd2.didx], 4911 nk->port[pd2.didx], NULL, 4912 pd2.ip_sum, icmpsum, 4913 pd->ip_sum, 0, pd2.af); 4914 copyback = 1; 4915 } 4916 4917 if (copyback) { 4918 switch (pd2.af) { 4919 #ifdef INET 4920 case AF_INET: 4921 m_copyback(m, off, ICMP_MINLEN, 4922 (caddr_t )pd->hdr.icmp); 4923 m_copyback(m, ipoff2, sizeof(h2), 4924 (caddr_t )&h2); 4925 break; 4926 #endif /* INET */ 4927 #ifdef INET6 4928 case AF_INET6: 4929 m_copyback(m, off, 4930 sizeof(struct icmp6_hdr), 4931 (caddr_t )pd->hdr.icmp6); 4932 m_copyback(m, ipoff2, sizeof(h2_6), 4933 (caddr_t )&h2_6); 4934 break; 4935 #endif /* INET6 */ 4936 } 4937 m_copyback(m, off2, 8, (caddr_t)&th); 4938 } 4939 4940 return (PF_PASS); 4941 break; 4942 } 4943 case IPPROTO_UDP: { 4944 struct udphdr uh; 4945 4946 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4947 NULL, reason, pd2.af)) { 4948 DPFPRINTF(PF_DEBUG_MISC, 4949 ("pf: ICMP error message too short " 4950 "(udp)\n")); 4951 return (PF_DROP); 4952 } 4953 4954 key.af = pd2.af; 4955 key.proto = IPPROTO_UDP; 4956 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4957 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4958 key.port[pd2.sidx] = uh.uh_sport; 4959 key.port[pd2.didx] = uh.uh_dport; 4960 4961 STATE_LOOKUP(kif, &key, direction, *state, pd); 4962 4963 /* translate source/destination address, if necessary */ 4964 if ((*state)->key[PF_SK_WIRE] != 4965 (*state)->key[PF_SK_STACK]) { 4966 struct pf_state_key *nk = 4967 (*state)->key[pd->didx]; 4968 4969 if (PF_ANEQ(pd2.src, 4970 &nk->addr[pd2.sidx], pd2.af) || 4971 nk->port[pd2.sidx] != uh.uh_sport) 4972 pf_change_icmp(pd2.src, &uh.uh_sport, 4973 daddr, &nk->addr[pd2.sidx], 4974 nk->port[pd2.sidx], &uh.uh_sum, 4975 pd2.ip_sum, icmpsum, 4976 pd->ip_sum, 1, pd2.af); 4977 4978 if (PF_ANEQ(pd2.dst, 4979 &nk->addr[pd2.didx], pd2.af) || 4980 nk->port[pd2.didx] != uh.uh_dport) 4981 pf_change_icmp(pd2.dst, &uh.uh_dport, 4982 saddr, &nk->addr[pd2.didx], 4983 nk->port[pd2.didx], &uh.uh_sum, 4984 pd2.ip_sum, icmpsum, 4985 pd->ip_sum, 1, pd2.af); 4986 4987 switch (pd2.af) { 4988 #ifdef INET 4989 case AF_INET: 4990 m_copyback(m, off, ICMP_MINLEN, 4991 (caddr_t )pd->hdr.icmp); 4992 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4993 break; 4994 #endif /* INET */ 4995 #ifdef INET6 4996 case AF_INET6: 4997 m_copyback(m, off, 4998 sizeof(struct icmp6_hdr), 4999 (caddr_t )pd->hdr.icmp6); 5000 m_copyback(m, ipoff2, sizeof(h2_6), 5001 (caddr_t )&h2_6); 5002 break; 5003 #endif /* INET6 */ 5004 } 5005 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 5006 } 5007 return (PF_PASS); 5008 break; 5009 } 5010 #ifdef INET 5011 case IPPROTO_ICMP: { 5012 struct icmp iih; 5013 5014 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 5015 NULL, reason, pd2.af)) { 5016 DPFPRINTF(PF_DEBUG_MISC, 5017 ("pf: ICMP error message too short i" 5018 "(icmp)\n")); 5019 return (PF_DROP); 5020 } 5021 5022 key.af = pd2.af; 5023 key.proto = IPPROTO_ICMP; 5024 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5025 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5026 key.port[0] = key.port[1] = iih.icmp_id; 5027 5028 STATE_LOOKUP(kif, &key, direction, *state, pd); 5029 5030 /* translate source/destination address, if necessary */ 5031 if ((*state)->key[PF_SK_WIRE] != 5032 (*state)->key[PF_SK_STACK]) { 5033 struct pf_state_key *nk = 5034 (*state)->key[pd->didx]; 5035 5036 if (PF_ANEQ(pd2.src, 5037 &nk->addr[pd2.sidx], pd2.af) || 5038 nk->port[pd2.sidx] != iih.icmp_id) 5039 pf_change_icmp(pd2.src, &iih.icmp_id, 5040 daddr, &nk->addr[pd2.sidx], 5041 nk->port[pd2.sidx], NULL, 5042 pd2.ip_sum, icmpsum, 5043 pd->ip_sum, 0, AF_INET); 5044 5045 if (PF_ANEQ(pd2.dst, 5046 &nk->addr[pd2.didx], pd2.af) || 5047 nk->port[pd2.didx] != iih.icmp_id) 5048 pf_change_icmp(pd2.dst, &iih.icmp_id, 5049 saddr, &nk->addr[pd2.didx], 5050 nk->port[pd2.didx], NULL, 5051 pd2.ip_sum, icmpsum, 5052 pd->ip_sum, 0, AF_INET); 5053 5054 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 5055 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5056 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5057 } 5058 return (PF_PASS); 5059 break; 5060 } 5061 #endif /* INET */ 5062 #ifdef INET6 5063 case IPPROTO_ICMPV6: { 5064 struct icmp6_hdr iih; 5065 5066 if (!pf_pull_hdr(m, off2, &iih, 5067 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5068 DPFPRINTF(PF_DEBUG_MISC, 5069 ("pf: ICMP error message too short " 5070 "(icmp6)\n")); 5071 return (PF_DROP); 5072 } 5073 5074 key.af = pd2.af; 5075 key.proto = IPPROTO_ICMPV6; 5076 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5077 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5078 key.port[0] = key.port[1] = iih.icmp6_id; 5079 5080 STATE_LOOKUP(kif, &key, direction, *state, pd); 5081 5082 /* translate source/destination address, if necessary */ 5083 if ((*state)->key[PF_SK_WIRE] != 5084 (*state)->key[PF_SK_STACK]) { 5085 struct pf_state_key *nk = 5086 (*state)->key[pd->didx]; 5087 5088 if (PF_ANEQ(pd2.src, 5089 &nk->addr[pd2.sidx], pd2.af) || 5090 nk->port[pd2.sidx] != iih.icmp6_id) 5091 pf_change_icmp(pd2.src, &iih.icmp6_id, 5092 daddr, &nk->addr[pd2.sidx], 5093 nk->port[pd2.sidx], NULL, 5094 pd2.ip_sum, icmpsum, 5095 pd->ip_sum, 0, AF_INET6); 5096 5097 if (PF_ANEQ(pd2.dst, 5098 &nk->addr[pd2.didx], pd2.af) || 5099 nk->port[pd2.didx] != iih.icmp6_id) 5100 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5101 saddr, &nk->addr[pd2.didx], 5102 nk->port[pd2.didx], NULL, 5103 pd2.ip_sum, icmpsum, 5104 pd->ip_sum, 0, AF_INET6); 5105 5106 m_copyback(m, off, sizeof(struct icmp6_hdr), 5107 (caddr_t)pd->hdr.icmp6); 5108 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5109 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5110 (caddr_t)&iih); 5111 } 5112 return (PF_PASS); 5113 break; 5114 } 5115 #endif /* INET6 */ 5116 default: { 5117 key.af = pd2.af; 5118 key.proto = pd2.proto; 5119 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5120 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5121 key.port[0] = key.port[1] = 0; 5122 5123 STATE_LOOKUP(kif, &key, direction, *state, pd); 5124 5125 /* translate source/destination address, if necessary */ 5126 if ((*state)->key[PF_SK_WIRE] != 5127 (*state)->key[PF_SK_STACK]) { 5128 struct pf_state_key *nk = 5129 (*state)->key[pd->didx]; 5130 5131 if (PF_ANEQ(pd2.src, 5132 &nk->addr[pd2.sidx], pd2.af)) 5133 pf_change_icmp(pd2.src, NULL, daddr, 5134 &nk->addr[pd2.sidx], 0, NULL, 5135 pd2.ip_sum, icmpsum, 5136 pd->ip_sum, 0, pd2.af); 5137 5138 if (PF_ANEQ(pd2.dst, 5139 &nk->addr[pd2.didx], pd2.af)) 5140 pf_change_icmp(pd2.dst, NULL, saddr, 5141 &nk->addr[pd2.didx], 0, NULL, 5142 pd2.ip_sum, icmpsum, 5143 pd->ip_sum, 0, pd2.af); 5144 5145 switch (pd2.af) { 5146 #ifdef INET 5147 case AF_INET: 5148 m_copyback(m, off, ICMP_MINLEN, 5149 (caddr_t)pd->hdr.icmp); 5150 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5151 break; 5152 #endif /* INET */ 5153 #ifdef INET6 5154 case AF_INET6: 5155 m_copyback(m, off, 5156 sizeof(struct icmp6_hdr), 5157 (caddr_t )pd->hdr.icmp6); 5158 m_copyback(m, ipoff2, sizeof(h2_6), 5159 (caddr_t )&h2_6); 5160 break; 5161 #endif /* INET6 */ 5162 } 5163 } 5164 return (PF_PASS); 5165 break; 5166 } 5167 } 5168 } 5169 } 5170 5171 static int 5172 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5173 struct mbuf *m, struct pf_pdesc *pd) 5174 { 5175 struct pf_state_peer *src, *dst; 5176 struct pf_state_key_cmp key; 5177 5178 bzero(&key, sizeof(key)); 5179 key.af = pd->af; 5180 key.proto = pd->proto; 5181 if (direction == PF_IN) { 5182 PF_ACPY(&key.addr[0], pd->src, key.af); 5183 PF_ACPY(&key.addr[1], pd->dst, key.af); 5184 key.port[0] = key.port[1] = 0; 5185 } else { 5186 PF_ACPY(&key.addr[1], pd->src, key.af); 5187 PF_ACPY(&key.addr[0], pd->dst, key.af); 5188 key.port[1] = key.port[0] = 0; 5189 } 5190 5191 STATE_LOOKUP(kif, &key, direction, *state, pd); 5192 5193 if (direction == (*state)->direction) { 5194 src = &(*state)->src; 5195 dst = &(*state)->dst; 5196 } else { 5197 src = &(*state)->dst; 5198 dst = &(*state)->src; 5199 } 5200 5201 /* update states */ 5202 if (src->state < PFOTHERS_SINGLE) 5203 src->state = PFOTHERS_SINGLE; 5204 if (dst->state == PFOTHERS_SINGLE) 5205 dst->state = PFOTHERS_MULTIPLE; 5206 5207 /* update expire time */ 5208 (*state)->expire = time_uptime; 5209 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5210 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5211 else 5212 (*state)->timeout = PFTM_OTHER_SINGLE; 5213 5214 /* translate source/destination address, if necessary */ 5215 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5216 struct pf_state_key *nk = (*state)->key[pd->didx]; 5217 5218 KASSERT(nk, ("%s: nk is null", __func__)); 5219 KASSERT(pd, ("%s: pd is null", __func__)); 5220 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5221 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5222 switch (pd->af) { 5223 #ifdef INET 5224 case AF_INET: 5225 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5226 pf_change_a(&pd->src->v4.s_addr, 5227 pd->ip_sum, 5228 nk->addr[pd->sidx].v4.s_addr, 5229 0); 5230 5231 5232 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5233 pf_change_a(&pd->dst->v4.s_addr, 5234 pd->ip_sum, 5235 nk->addr[pd->didx].v4.s_addr, 5236 0); 5237 5238 break; 5239 #endif /* INET */ 5240 #ifdef INET6 5241 case AF_INET6: 5242 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5243 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5244 5245 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5246 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5247 #endif /* INET6 */ 5248 } 5249 } 5250 return (PF_PASS); 5251 } 5252 5253 /* 5254 * ipoff and off are measured from the start of the mbuf chain. 5255 * h must be at "ipoff" on the mbuf chain. 5256 */ 5257 void * 5258 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5259 u_short *actionp, u_short *reasonp, sa_family_t af) 5260 { 5261 switch (af) { 5262 #ifdef INET 5263 case AF_INET: { 5264 struct ip *h = mtod(m, struct ip *); 5265 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5266 5267 if (fragoff) { 5268 if (fragoff >= len) 5269 ACTION_SET(actionp, PF_PASS); 5270 else { 5271 ACTION_SET(actionp, PF_DROP); 5272 REASON_SET(reasonp, PFRES_FRAG); 5273 } 5274 return (NULL); 5275 } 5276 if (m->m_pkthdr.len < off + len || 5277 ntohs(h->ip_len) < off + len) { 5278 ACTION_SET(actionp, PF_DROP); 5279 REASON_SET(reasonp, PFRES_SHORT); 5280 return (NULL); 5281 } 5282 break; 5283 } 5284 #endif /* INET */ 5285 #ifdef INET6 5286 case AF_INET6: { 5287 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5288 5289 if (m->m_pkthdr.len < off + len || 5290 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5291 (unsigned)(off + len)) { 5292 ACTION_SET(actionp, PF_DROP); 5293 REASON_SET(reasonp, PFRES_SHORT); 5294 return (NULL); 5295 } 5296 break; 5297 } 5298 #endif /* INET6 */ 5299 } 5300 m_copydata(m, off, len, p); 5301 return (p); 5302 } 5303 5304 #ifdef RADIX_MPATH 5305 static int 5306 pf_routable_oldmpath(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5307 int rtableid) 5308 { 5309 struct radix_node_head *rnh; 5310 struct sockaddr_in *dst; 5311 int ret = 1; 5312 int check_mpath; 5313 #ifdef INET6 5314 struct sockaddr_in6 *dst6; 5315 struct route_in6 ro; 5316 #else 5317 struct route ro; 5318 #endif 5319 struct radix_node *rn; 5320 struct rtentry *rt; 5321 struct ifnet *ifp; 5322 5323 check_mpath = 0; 5324 /* XXX: stick to table 0 for now */ 5325 rnh = rt_tables_get_rnh(0, af); 5326 if (rnh != NULL && rn_mpath_capable(rnh)) 5327 check_mpath = 1; 5328 bzero(&ro, sizeof(ro)); 5329 switch (af) { 5330 case AF_INET: 5331 dst = satosin(&ro.ro_dst); 5332 dst->sin_family = AF_INET; 5333 dst->sin_len = sizeof(*dst); 5334 dst->sin_addr = addr->v4; 5335 break; 5336 #ifdef INET6 5337 case AF_INET6: 5338 /* 5339 * Skip check for addresses with embedded interface scope, 5340 * as they would always match anyway. 5341 */ 5342 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5343 goto out; 5344 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5345 dst6->sin6_family = AF_INET6; 5346 dst6->sin6_len = sizeof(*dst6); 5347 dst6->sin6_addr = addr->v6; 5348 break; 5349 #endif /* INET6 */ 5350 default: 5351 return (0); 5352 } 5353 5354 /* Skip checks for ipsec interfaces */ 5355 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5356 goto out; 5357 5358 switch (af) { 5359 #ifdef INET6 5360 case AF_INET6: 5361 in6_rtalloc_ign(&ro, 0, rtableid); 5362 break; 5363 #endif 5364 #ifdef INET 5365 case AF_INET: 5366 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5367 break; 5368 #endif 5369 } 5370 5371 if (ro.ro_rt != NULL) { 5372 /* No interface given, this is a no-route check */ 5373 if (kif == NULL) 5374 goto out; 5375 5376 if (kif->pfik_ifp == NULL) { 5377 ret = 0; 5378 goto out; 5379 } 5380 5381 /* Perform uRPF check if passed input interface */ 5382 ret = 0; 5383 rn = (struct radix_node *)ro.ro_rt; 5384 do { 5385 rt = (struct rtentry *)rn; 5386 ifp = rt->rt_ifp; 5387 5388 if (kif->pfik_ifp == ifp) 5389 ret = 1; 5390 rn = rn_mpath_next(rn); 5391 } while (check_mpath == 1 && rn != NULL && ret == 0); 5392 } else 5393 ret = 0; 5394 out: 5395 if (ro.ro_rt != NULL) 5396 RTFREE(ro.ro_rt); 5397 return (ret); 5398 } 5399 #endif 5400 5401 int 5402 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5403 int rtableid) 5404 { 5405 #ifdef INET 5406 struct nhop4_basic nh4; 5407 #endif 5408 #ifdef INET6 5409 struct nhop6_basic nh6; 5410 #endif 5411 struct ifnet *ifp; 5412 #ifdef RADIX_MPATH 5413 struct radix_node_head *rnh; 5414 5415 /* XXX: stick to table 0 for now */ 5416 rnh = rt_tables_get_rnh(0, af); 5417 if (rnh != NULL && rn_mpath_capable(rnh)) 5418 return (pf_routable_oldmpath(addr, af, kif, rtableid)); 5419 #endif 5420 /* 5421 * Skip check for addresses with embedded interface scope, 5422 * as they would always match anyway. 5423 */ 5424 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5425 return (1); 5426 5427 if (af != AF_INET && af != AF_INET6) 5428 return (0); 5429 5430 /* Skip checks for ipsec interfaces */ 5431 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5432 return (1); 5433 5434 ifp = NULL; 5435 5436 switch (af) { 5437 #ifdef INET6 5438 case AF_INET6: 5439 if (fib6_lookup_nh_basic(rtableid, &addr->v6, 0, 0, 0, &nh6)!=0) 5440 return (0); 5441 ifp = nh6.nh_ifp; 5442 break; 5443 #endif 5444 #ifdef INET 5445 case AF_INET: 5446 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) != 0) 5447 return (0); 5448 ifp = nh4.nh_ifp; 5449 break; 5450 #endif 5451 } 5452 5453 /* No interface given, this is a no-route check */ 5454 if (kif == NULL) 5455 return (1); 5456 5457 if (kif->pfik_ifp == NULL) 5458 return (0); 5459 5460 /* Perform uRPF check if passed input interface */ 5461 if (kif->pfik_ifp == ifp) 5462 return (1); 5463 return (0); 5464 } 5465 5466 #ifdef INET 5467 static void 5468 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5469 struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) 5470 { 5471 struct mbuf *m0, *m1; 5472 struct sockaddr_in dst; 5473 struct ip *ip; 5474 struct ifnet *ifp = NULL; 5475 struct pf_addr naddr; 5476 struct pf_src_node *sn = NULL; 5477 int error = 0; 5478 uint16_t ip_len, ip_off; 5479 5480 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5481 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5482 __func__)); 5483 5484 if ((pd->pf_mtag == NULL && 5485 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5486 pd->pf_mtag->routed++ > 3) { 5487 m0 = *m; 5488 *m = NULL; 5489 goto bad_locked; 5490 } 5491 5492 if (r->rt == PF_DUPTO) { 5493 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5494 if (s) 5495 PF_STATE_UNLOCK(s); 5496 return; 5497 } 5498 } else { 5499 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5500 if (s) 5501 PF_STATE_UNLOCK(s); 5502 return; 5503 } 5504 m0 = *m; 5505 } 5506 5507 ip = mtod(m0, struct ip *); 5508 5509 bzero(&dst, sizeof(dst)); 5510 dst.sin_family = AF_INET; 5511 dst.sin_len = sizeof(dst); 5512 dst.sin_addr = ip->ip_dst; 5513 5514 if (TAILQ_EMPTY(&r->rpool.list)) { 5515 DPFPRINTF(PF_DEBUG_URGENT, 5516 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5517 goto bad_locked; 5518 } 5519 if (s == NULL) { 5520 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5521 &naddr, NULL, &sn); 5522 if (!PF_AZERO(&naddr, AF_INET)) 5523 dst.sin_addr.s_addr = naddr.v4.s_addr; 5524 ifp = r->rpool.cur->kif ? 5525 r->rpool.cur->kif->pfik_ifp : NULL; 5526 } else { 5527 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5528 dst.sin_addr.s_addr = 5529 s->rt_addr.v4.s_addr; 5530 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5531 PF_STATE_UNLOCK(s); 5532 } 5533 if (ifp == NULL) 5534 goto bad; 5535 5536 if (oifp != ifp) { 5537 if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 5538 goto bad; 5539 else if (m0 == NULL) 5540 goto done; 5541 if (m0->m_len < sizeof(struct ip)) { 5542 DPFPRINTF(PF_DEBUG_URGENT, 5543 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5544 goto bad; 5545 } 5546 ip = mtod(m0, struct ip *); 5547 } 5548 5549 if (ifp->if_flags & IFF_LOOPBACK) 5550 m0->m_flags |= M_SKIP_FIREWALL; 5551 5552 ip_len = ntohs(ip->ip_len); 5553 ip_off = ntohs(ip->ip_off); 5554 5555 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5556 m0->m_pkthdr.csum_flags |= CSUM_IP; 5557 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5558 in_delayed_cksum(m0); 5559 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5560 } 5561 #ifdef SCTP 5562 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5563 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5564 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5565 } 5566 #endif 5567 5568 /* 5569 * If small enough for interface, or the interface will take 5570 * care of the fragmentation for us, we can just send directly. 5571 */ 5572 if (ip_len <= ifp->if_mtu || 5573 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5574 ip->ip_sum = 0; 5575 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5576 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5577 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5578 } 5579 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5580 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5581 goto done; 5582 } 5583 5584 /* Balk when DF bit is set or the interface didn't support TSO. */ 5585 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5586 error = EMSGSIZE; 5587 KMOD_IPSTAT_INC(ips_cantfrag); 5588 if (r->rt != PF_DUPTO) { 5589 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5590 ifp->if_mtu); 5591 goto done; 5592 } else 5593 goto bad; 5594 } 5595 5596 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5597 if (error) 5598 goto bad; 5599 5600 for (; m0; m0 = m1) { 5601 m1 = m0->m_nextpkt; 5602 m0->m_nextpkt = NULL; 5603 if (error == 0) { 5604 m_clrprotoflags(m0); 5605 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5606 } else 5607 m_freem(m0); 5608 } 5609 5610 if (error == 0) 5611 KMOD_IPSTAT_INC(ips_fragmented); 5612 5613 done: 5614 if (r->rt != PF_DUPTO) 5615 *m = NULL; 5616 return; 5617 5618 bad_locked: 5619 if (s) 5620 PF_STATE_UNLOCK(s); 5621 bad: 5622 m_freem(m0); 5623 goto done; 5624 } 5625 #endif /* INET */ 5626 5627 #ifdef INET6 5628 static void 5629 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5630 struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) 5631 { 5632 struct mbuf *m0; 5633 struct sockaddr_in6 dst; 5634 struct ip6_hdr *ip6; 5635 struct ifnet *ifp = NULL; 5636 struct pf_addr naddr; 5637 struct pf_src_node *sn = NULL; 5638 5639 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5640 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5641 __func__)); 5642 5643 if ((pd->pf_mtag == NULL && 5644 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5645 pd->pf_mtag->routed++ > 3) { 5646 m0 = *m; 5647 *m = NULL; 5648 goto bad_locked; 5649 } 5650 5651 if (r->rt == PF_DUPTO) { 5652 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5653 if (s) 5654 PF_STATE_UNLOCK(s); 5655 return; 5656 } 5657 } else { 5658 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5659 if (s) 5660 PF_STATE_UNLOCK(s); 5661 return; 5662 } 5663 m0 = *m; 5664 } 5665 5666 ip6 = mtod(m0, struct ip6_hdr *); 5667 5668 bzero(&dst, sizeof(dst)); 5669 dst.sin6_family = AF_INET6; 5670 dst.sin6_len = sizeof(dst); 5671 dst.sin6_addr = ip6->ip6_dst; 5672 5673 if (TAILQ_EMPTY(&r->rpool.list)) { 5674 DPFPRINTF(PF_DEBUG_URGENT, 5675 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5676 goto bad_locked; 5677 } 5678 if (s == NULL) { 5679 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5680 &naddr, NULL, &sn); 5681 if (!PF_AZERO(&naddr, AF_INET6)) 5682 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5683 &naddr, AF_INET6); 5684 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5685 } else { 5686 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5687 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5688 &s->rt_addr, AF_INET6); 5689 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5690 } 5691 5692 if (s) 5693 PF_STATE_UNLOCK(s); 5694 5695 if (ifp == NULL) 5696 goto bad; 5697 5698 if (oifp != ifp) { 5699 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS) 5700 goto bad; 5701 else if (m0 == NULL) 5702 goto done; 5703 if (m0->m_len < sizeof(struct ip6_hdr)) { 5704 DPFPRINTF(PF_DEBUG_URGENT, 5705 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5706 __func__)); 5707 goto bad; 5708 } 5709 ip6 = mtod(m0, struct ip6_hdr *); 5710 } 5711 5712 if (ifp->if_flags & IFF_LOOPBACK) 5713 m0->m_flags |= M_SKIP_FIREWALL; 5714 5715 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5716 ~ifp->if_hwassist) { 5717 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5718 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5719 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5720 } 5721 5722 /* 5723 * If the packet is too large for the outgoing interface, 5724 * send back an icmp6 error. 5725 */ 5726 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5727 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5728 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5729 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5730 else { 5731 in6_ifstat_inc(ifp, ifs6_in_toobig); 5732 if (r->rt != PF_DUPTO) 5733 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5734 else 5735 goto bad; 5736 } 5737 5738 done: 5739 if (r->rt != PF_DUPTO) 5740 *m = NULL; 5741 return; 5742 5743 bad_locked: 5744 if (s) 5745 PF_STATE_UNLOCK(s); 5746 bad: 5747 m_freem(m0); 5748 goto done; 5749 } 5750 #endif /* INET6 */ 5751 5752 /* 5753 * FreeBSD supports cksum offloads for the following drivers. 5754 * em(4), fxp(4), lge(4), ndis(4), nge(4), re(4), ti(4), txp(4), xl(4) 5755 * 5756 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5757 * network driver performed cksum including pseudo header, need to verify 5758 * csum_data 5759 * CSUM_DATA_VALID : 5760 * network driver performed cksum, needs to additional pseudo header 5761 * cksum computation with partial csum_data(i.e. lack of H/W support for 5762 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5763 * 5764 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5765 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5766 * TCP/UDP layer. 5767 * Also, set csum_data to 0xffff to force cksum validation. 5768 */ 5769 static int 5770 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5771 { 5772 u_int16_t sum = 0; 5773 int hw_assist = 0; 5774 struct ip *ip; 5775 5776 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5777 return (1); 5778 if (m->m_pkthdr.len < off + len) 5779 return (1); 5780 5781 switch (p) { 5782 case IPPROTO_TCP: 5783 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5784 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5785 sum = m->m_pkthdr.csum_data; 5786 } else { 5787 ip = mtod(m, struct ip *); 5788 sum = in_pseudo(ip->ip_src.s_addr, 5789 ip->ip_dst.s_addr, htonl((u_short)len + 5790 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5791 } 5792 sum ^= 0xffff; 5793 ++hw_assist; 5794 } 5795 break; 5796 case IPPROTO_UDP: 5797 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5798 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5799 sum = m->m_pkthdr.csum_data; 5800 } else { 5801 ip = mtod(m, struct ip *); 5802 sum = in_pseudo(ip->ip_src.s_addr, 5803 ip->ip_dst.s_addr, htonl((u_short)len + 5804 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5805 } 5806 sum ^= 0xffff; 5807 ++hw_assist; 5808 } 5809 break; 5810 case IPPROTO_ICMP: 5811 #ifdef INET6 5812 case IPPROTO_ICMPV6: 5813 #endif /* INET6 */ 5814 break; 5815 default: 5816 return (1); 5817 } 5818 5819 if (!hw_assist) { 5820 switch (af) { 5821 case AF_INET: 5822 if (p == IPPROTO_ICMP) { 5823 if (m->m_len < off) 5824 return (1); 5825 m->m_data += off; 5826 m->m_len -= off; 5827 sum = in_cksum(m, len); 5828 m->m_data -= off; 5829 m->m_len += off; 5830 } else { 5831 if (m->m_len < sizeof(struct ip)) 5832 return (1); 5833 sum = in4_cksum(m, p, off, len); 5834 } 5835 break; 5836 #ifdef INET6 5837 case AF_INET6: 5838 if (m->m_len < sizeof(struct ip6_hdr)) 5839 return (1); 5840 sum = in6_cksum(m, p, off, len); 5841 break; 5842 #endif /* INET6 */ 5843 default: 5844 return (1); 5845 } 5846 } 5847 if (sum) { 5848 switch (p) { 5849 case IPPROTO_TCP: 5850 { 5851 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5852 break; 5853 } 5854 case IPPROTO_UDP: 5855 { 5856 KMOD_UDPSTAT_INC(udps_badsum); 5857 break; 5858 } 5859 #ifdef INET 5860 case IPPROTO_ICMP: 5861 { 5862 KMOD_ICMPSTAT_INC(icps_checksum); 5863 break; 5864 } 5865 #endif 5866 #ifdef INET6 5867 case IPPROTO_ICMPV6: 5868 { 5869 KMOD_ICMP6STAT_INC(icp6s_checksum); 5870 break; 5871 } 5872 #endif /* INET6 */ 5873 } 5874 return (1); 5875 } else { 5876 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5877 m->m_pkthdr.csum_flags |= 5878 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5879 m->m_pkthdr.csum_data = 0xffff; 5880 } 5881 } 5882 return (0); 5883 } 5884 5885 5886 #ifdef INET 5887 int 5888 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5889 { 5890 struct pfi_kif *kif; 5891 u_short action, reason = 0, log = 0; 5892 struct mbuf *m = *m0; 5893 struct ip *h = NULL; 5894 struct m_tag *ipfwtag; 5895 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5896 struct pf_state *s = NULL; 5897 struct pf_ruleset *ruleset = NULL; 5898 struct pf_pdesc pd; 5899 int off, dirndx, pqid = 0; 5900 5901 PF_RULES_RLOCK_TRACKER; 5902 5903 M_ASSERTPKTHDR(m); 5904 5905 if (!V_pf_status.running) 5906 return (PF_PASS); 5907 5908 memset(&pd, 0, sizeof(pd)); 5909 5910 kif = (struct pfi_kif *)ifp->if_pf_kif; 5911 5912 if (kif == NULL) { 5913 DPFPRINTF(PF_DEBUG_URGENT, 5914 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5915 return (PF_DROP); 5916 } 5917 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5918 return (PF_PASS); 5919 5920 if (m->m_flags & M_SKIP_FIREWALL) 5921 return (PF_PASS); 5922 5923 pd.pf_mtag = pf_find_mtag(m); 5924 5925 PF_RULES_RLOCK(); 5926 5927 if (ip_divert_ptr != NULL && 5928 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5929 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5930 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5931 if (pd.pf_mtag == NULL && 5932 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5933 action = PF_DROP; 5934 goto done; 5935 } 5936 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5937 m_tag_delete(m, ipfwtag); 5938 } 5939 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5940 m->m_flags |= M_FASTFWD_OURS; 5941 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5942 } 5943 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5944 /* We do IP header normalization and packet reassembly here */ 5945 action = PF_DROP; 5946 goto done; 5947 } 5948 m = *m0; /* pf_normalize messes with m0 */ 5949 h = mtod(m, struct ip *); 5950 5951 off = h->ip_hl << 2; 5952 if (off < (int)sizeof(struct ip)) { 5953 action = PF_DROP; 5954 REASON_SET(&reason, PFRES_SHORT); 5955 log = 1; 5956 goto done; 5957 } 5958 5959 pd.src = (struct pf_addr *)&h->ip_src; 5960 pd.dst = (struct pf_addr *)&h->ip_dst; 5961 pd.sport = pd.dport = NULL; 5962 pd.ip_sum = &h->ip_sum; 5963 pd.proto_sum = NULL; 5964 pd.proto = h->ip_p; 5965 pd.dir = dir; 5966 pd.sidx = (dir == PF_IN) ? 0 : 1; 5967 pd.didx = (dir == PF_IN) ? 1 : 0; 5968 pd.af = AF_INET; 5969 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 5970 pd.tot_len = ntohs(h->ip_len); 5971 5972 /* handle fragments that didn't get reassembled by normalization */ 5973 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5974 action = pf_test_fragment(&r, dir, kif, m, h, 5975 &pd, &a, &ruleset); 5976 goto done; 5977 } 5978 5979 switch (h->ip_p) { 5980 5981 case IPPROTO_TCP: { 5982 struct tcphdr th; 5983 5984 pd.hdr.tcp = &th; 5985 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5986 &action, &reason, AF_INET)) { 5987 log = action != PF_PASS; 5988 goto done; 5989 } 5990 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5991 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5992 pqid = 1; 5993 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5994 if (action == PF_DROP) 5995 goto done; 5996 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5997 &reason); 5998 if (action == PF_PASS) { 5999 if (pfsync_update_state_ptr != NULL) 6000 pfsync_update_state_ptr(s); 6001 r = s->rule.ptr; 6002 a = s->anchor.ptr; 6003 log = s->log; 6004 } else if (s == NULL) 6005 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6006 &a, &ruleset, inp); 6007 break; 6008 } 6009 6010 case IPPROTO_UDP: { 6011 struct udphdr uh; 6012 6013 pd.hdr.udp = &uh; 6014 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6015 &action, &reason, AF_INET)) { 6016 log = action != PF_PASS; 6017 goto done; 6018 } 6019 if (uh.uh_dport == 0 || 6020 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6021 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6022 action = PF_DROP; 6023 REASON_SET(&reason, PFRES_SHORT); 6024 goto done; 6025 } 6026 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6027 if (action == PF_PASS) { 6028 if (pfsync_update_state_ptr != NULL) 6029 pfsync_update_state_ptr(s); 6030 r = s->rule.ptr; 6031 a = s->anchor.ptr; 6032 log = s->log; 6033 } else if (s == NULL) 6034 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6035 &a, &ruleset, inp); 6036 break; 6037 } 6038 6039 case IPPROTO_ICMP: { 6040 struct icmp ih; 6041 6042 pd.hdr.icmp = &ih; 6043 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 6044 &action, &reason, AF_INET)) { 6045 log = action != PF_PASS; 6046 goto done; 6047 } 6048 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 6049 &reason); 6050 if (action == PF_PASS) { 6051 if (pfsync_update_state_ptr != NULL) 6052 pfsync_update_state_ptr(s); 6053 r = s->rule.ptr; 6054 a = s->anchor.ptr; 6055 log = s->log; 6056 } else if (s == NULL) 6057 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6058 &a, &ruleset, inp); 6059 break; 6060 } 6061 6062 #ifdef INET6 6063 case IPPROTO_ICMPV6: { 6064 action = PF_DROP; 6065 DPFPRINTF(PF_DEBUG_MISC, 6066 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6067 goto done; 6068 } 6069 #endif 6070 6071 default: 6072 action = pf_test_state_other(&s, dir, kif, m, &pd); 6073 if (action == PF_PASS) { 6074 if (pfsync_update_state_ptr != NULL) 6075 pfsync_update_state_ptr(s); 6076 r = s->rule.ptr; 6077 a = s->anchor.ptr; 6078 log = s->log; 6079 } else if (s == NULL) 6080 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6081 &a, &ruleset, inp); 6082 break; 6083 } 6084 6085 done: 6086 PF_RULES_RUNLOCK(); 6087 if (action == PF_PASS && h->ip_hl > 5 && 6088 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6089 action = PF_DROP; 6090 REASON_SET(&reason, PFRES_IPOPTIONS); 6091 log = r->log; 6092 DPFPRINTF(PF_DEBUG_MISC, 6093 ("pf: dropping packet with ip options\n")); 6094 } 6095 6096 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6097 action = PF_DROP; 6098 REASON_SET(&reason, PFRES_MEMORY); 6099 } 6100 if (r->rtableid >= 0) 6101 M_SETFIB(m, r->rtableid); 6102 6103 if (r->scrub_flags & PFSTATE_SETPRIO) { 6104 if (pd.tos & IPTOS_LOWDELAY) 6105 pqid = 1; 6106 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6107 action = PF_DROP; 6108 REASON_SET(&reason, PFRES_MEMORY); 6109 log = 1; 6110 DPFPRINTF(PF_DEBUG_MISC, 6111 ("pf: failed to allocate 802.1q mtag\n")); 6112 } 6113 } 6114 6115 #ifdef ALTQ 6116 if (action == PF_PASS && r->qid) { 6117 if (pd.pf_mtag == NULL && 6118 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6119 action = PF_DROP; 6120 REASON_SET(&reason, PFRES_MEMORY); 6121 } else { 6122 if (s != NULL) 6123 pd.pf_mtag->qid_hash = pf_state_hash(s); 6124 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6125 pd.pf_mtag->qid = r->pqid; 6126 else 6127 pd.pf_mtag->qid = r->qid; 6128 /* Add hints for ecn. */ 6129 pd.pf_mtag->hdr = h; 6130 } 6131 6132 } 6133 #endif /* ALTQ */ 6134 6135 /* 6136 * connections redirected to loopback should not match sockets 6137 * bound specifically to loopback due to security implications, 6138 * see tcp_input() and in_pcblookup_listen(). 6139 */ 6140 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6141 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6142 (s->nat_rule.ptr->action == PF_RDR || 6143 s->nat_rule.ptr->action == PF_BINAT) && 6144 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 6145 m->m_flags |= M_SKIP_FIREWALL; 6146 6147 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6148 !PACKET_LOOPED(&pd)) { 6149 6150 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6151 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6152 if (ipfwtag != NULL) { 6153 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6154 ntohs(r->divert.port); 6155 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6156 6157 if (s) 6158 PF_STATE_UNLOCK(s); 6159 6160 m_tag_prepend(m, ipfwtag); 6161 if (m->m_flags & M_FASTFWD_OURS) { 6162 if (pd.pf_mtag == NULL && 6163 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6164 action = PF_DROP; 6165 REASON_SET(&reason, PFRES_MEMORY); 6166 log = 1; 6167 DPFPRINTF(PF_DEBUG_MISC, 6168 ("pf: failed to allocate tag\n")); 6169 } else { 6170 pd.pf_mtag->flags |= 6171 PF_FASTFWD_OURS_PRESENT; 6172 m->m_flags &= ~M_FASTFWD_OURS; 6173 } 6174 } 6175 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 6176 *m0 = NULL; 6177 6178 return (action); 6179 } else { 6180 /* XXX: ipfw has the same behaviour! */ 6181 action = PF_DROP; 6182 REASON_SET(&reason, PFRES_MEMORY); 6183 log = 1; 6184 DPFPRINTF(PF_DEBUG_MISC, 6185 ("pf: failed to allocate divert tag\n")); 6186 } 6187 } 6188 6189 if (log) { 6190 struct pf_rule *lr; 6191 6192 if (s != NULL && s->nat_rule.ptr != NULL && 6193 s->nat_rule.ptr->log & PF_LOG_ALL) 6194 lr = s->nat_rule.ptr; 6195 else 6196 lr = r; 6197 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6198 (s == NULL)); 6199 } 6200 6201 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6202 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 6203 6204 if (action == PF_PASS || r->action == PF_DROP) { 6205 dirndx = (dir == PF_OUT); 6206 r->packets[dirndx]++; 6207 r->bytes[dirndx] += pd.tot_len; 6208 if (a != NULL) { 6209 a->packets[dirndx]++; 6210 a->bytes[dirndx] += pd.tot_len; 6211 } 6212 if (s != NULL) { 6213 if (s->nat_rule.ptr != NULL) { 6214 s->nat_rule.ptr->packets[dirndx]++; 6215 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6216 } 6217 if (s->src_node != NULL) { 6218 s->src_node->packets[dirndx]++; 6219 s->src_node->bytes[dirndx] += pd.tot_len; 6220 } 6221 if (s->nat_src_node != NULL) { 6222 s->nat_src_node->packets[dirndx]++; 6223 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6224 } 6225 dirndx = (dir == s->direction) ? 0 : 1; 6226 s->packets[dirndx]++; 6227 s->bytes[dirndx] += pd.tot_len; 6228 } 6229 tr = r; 6230 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6231 if (nr != NULL && r == &V_pf_default_rule) 6232 tr = nr; 6233 if (tr->src.addr.type == PF_ADDR_TABLE) 6234 pfr_update_stats(tr->src.addr.p.tbl, 6235 (s == NULL) ? pd.src : 6236 &s->key[(s->direction == PF_IN)]-> 6237 addr[(s->direction == PF_OUT)], 6238 pd.af, pd.tot_len, dir == PF_OUT, 6239 r->action == PF_PASS, tr->src.neg); 6240 if (tr->dst.addr.type == PF_ADDR_TABLE) 6241 pfr_update_stats(tr->dst.addr.p.tbl, 6242 (s == NULL) ? pd.dst : 6243 &s->key[(s->direction == PF_IN)]-> 6244 addr[(s->direction == PF_IN)], 6245 pd.af, pd.tot_len, dir == PF_OUT, 6246 r->action == PF_PASS, tr->dst.neg); 6247 } 6248 6249 switch (action) { 6250 case PF_SYNPROXY_DROP: 6251 m_freem(*m0); 6252 case PF_DEFER: 6253 *m0 = NULL; 6254 action = PF_PASS; 6255 break; 6256 case PF_DROP: 6257 m_freem(*m0); 6258 *m0 = NULL; 6259 break; 6260 default: 6261 /* pf_route() returns unlocked. */ 6262 if (r->rt) { 6263 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6264 return (action); 6265 } 6266 break; 6267 } 6268 if (s) 6269 PF_STATE_UNLOCK(s); 6270 6271 return (action); 6272 } 6273 #endif /* INET */ 6274 6275 #ifdef INET6 6276 int 6277 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6278 { 6279 struct pfi_kif *kif; 6280 u_short action, reason = 0, log = 0; 6281 struct mbuf *m = *m0, *n = NULL; 6282 struct m_tag *mtag; 6283 struct ip6_hdr *h = NULL; 6284 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6285 struct pf_state *s = NULL; 6286 struct pf_ruleset *ruleset = NULL; 6287 struct pf_pdesc pd; 6288 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6289 6290 PF_RULES_RLOCK_TRACKER; 6291 M_ASSERTPKTHDR(m); 6292 6293 if (!V_pf_status.running) 6294 return (PF_PASS); 6295 6296 memset(&pd, 0, sizeof(pd)); 6297 pd.pf_mtag = pf_find_mtag(m); 6298 6299 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6300 return (PF_PASS); 6301 6302 kif = (struct pfi_kif *)ifp->if_pf_kif; 6303 if (kif == NULL) { 6304 DPFPRINTF(PF_DEBUG_URGENT, 6305 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6306 return (PF_DROP); 6307 } 6308 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6309 return (PF_PASS); 6310 6311 if (m->m_flags & M_SKIP_FIREWALL) 6312 return (PF_PASS); 6313 6314 PF_RULES_RLOCK(); 6315 6316 /* We do IP header normalization and packet reassembly here */ 6317 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6318 action = PF_DROP; 6319 goto done; 6320 } 6321 m = *m0; /* pf_normalize messes with m0 */ 6322 h = mtod(m, struct ip6_hdr *); 6323 6324 #if 1 6325 /* 6326 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6327 * will do something bad, so drop the packet for now. 6328 */ 6329 if (htons(h->ip6_plen) == 0) { 6330 action = PF_DROP; 6331 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6332 goto done; 6333 } 6334 #endif 6335 6336 pd.src = (struct pf_addr *)&h->ip6_src; 6337 pd.dst = (struct pf_addr *)&h->ip6_dst; 6338 pd.sport = pd.dport = NULL; 6339 pd.ip_sum = NULL; 6340 pd.proto_sum = NULL; 6341 pd.dir = dir; 6342 pd.sidx = (dir == PF_IN) ? 0 : 1; 6343 pd.didx = (dir == PF_IN) ? 1 : 0; 6344 pd.af = AF_INET6; 6345 pd.tos = 0; 6346 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6347 6348 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6349 pd.proto = h->ip6_nxt; 6350 do { 6351 switch (pd.proto) { 6352 case IPPROTO_FRAGMENT: 6353 action = pf_test_fragment(&r, dir, kif, m, h, 6354 &pd, &a, &ruleset); 6355 if (action == PF_DROP) 6356 REASON_SET(&reason, PFRES_FRAG); 6357 goto done; 6358 case IPPROTO_ROUTING: { 6359 struct ip6_rthdr rthdr; 6360 6361 if (rh_cnt++) { 6362 DPFPRINTF(PF_DEBUG_MISC, 6363 ("pf: IPv6 more than one rthdr\n")); 6364 action = PF_DROP; 6365 REASON_SET(&reason, PFRES_IPOPTIONS); 6366 log = 1; 6367 goto done; 6368 } 6369 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6370 &reason, pd.af)) { 6371 DPFPRINTF(PF_DEBUG_MISC, 6372 ("pf: IPv6 short rthdr\n")); 6373 action = PF_DROP; 6374 REASON_SET(&reason, PFRES_SHORT); 6375 log = 1; 6376 goto done; 6377 } 6378 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6379 DPFPRINTF(PF_DEBUG_MISC, 6380 ("pf: IPv6 rthdr0\n")); 6381 action = PF_DROP; 6382 REASON_SET(&reason, PFRES_IPOPTIONS); 6383 log = 1; 6384 goto done; 6385 } 6386 /* FALLTHROUGH */ 6387 } 6388 case IPPROTO_AH: 6389 case IPPROTO_HOPOPTS: 6390 case IPPROTO_DSTOPTS: { 6391 /* get next header and header length */ 6392 struct ip6_ext opt6; 6393 6394 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6395 NULL, &reason, pd.af)) { 6396 DPFPRINTF(PF_DEBUG_MISC, 6397 ("pf: IPv6 short opt\n")); 6398 action = PF_DROP; 6399 log = 1; 6400 goto done; 6401 } 6402 if (pd.proto == IPPROTO_AH) 6403 off += (opt6.ip6e_len + 2) * 4; 6404 else 6405 off += (opt6.ip6e_len + 1) * 8; 6406 pd.proto = opt6.ip6e_nxt; 6407 /* goto the next header */ 6408 break; 6409 } 6410 default: 6411 terminal++; 6412 break; 6413 } 6414 } while (!terminal); 6415 6416 /* if there's no routing header, use unmodified mbuf for checksumming */ 6417 if (!n) 6418 n = m; 6419 6420 switch (pd.proto) { 6421 6422 case IPPROTO_TCP: { 6423 struct tcphdr th; 6424 6425 pd.hdr.tcp = &th; 6426 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6427 &action, &reason, AF_INET6)) { 6428 log = action != PF_PASS; 6429 goto done; 6430 } 6431 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6432 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6433 if (action == PF_DROP) 6434 goto done; 6435 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6436 &reason); 6437 if (action == PF_PASS) { 6438 if (pfsync_update_state_ptr != NULL) 6439 pfsync_update_state_ptr(s); 6440 r = s->rule.ptr; 6441 a = s->anchor.ptr; 6442 log = s->log; 6443 } else if (s == NULL) 6444 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6445 &a, &ruleset, inp); 6446 break; 6447 } 6448 6449 case IPPROTO_UDP: { 6450 struct udphdr uh; 6451 6452 pd.hdr.udp = &uh; 6453 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6454 &action, &reason, AF_INET6)) { 6455 log = action != PF_PASS; 6456 goto done; 6457 } 6458 if (uh.uh_dport == 0 || 6459 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6460 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6461 action = PF_DROP; 6462 REASON_SET(&reason, PFRES_SHORT); 6463 goto done; 6464 } 6465 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6466 if (action == PF_PASS) { 6467 if (pfsync_update_state_ptr != NULL) 6468 pfsync_update_state_ptr(s); 6469 r = s->rule.ptr; 6470 a = s->anchor.ptr; 6471 log = s->log; 6472 } else if (s == NULL) 6473 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6474 &a, &ruleset, inp); 6475 break; 6476 } 6477 6478 case IPPROTO_ICMP: { 6479 action = PF_DROP; 6480 DPFPRINTF(PF_DEBUG_MISC, 6481 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6482 goto done; 6483 } 6484 6485 case IPPROTO_ICMPV6: { 6486 struct icmp6_hdr ih; 6487 6488 pd.hdr.icmp6 = &ih; 6489 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6490 &action, &reason, AF_INET6)) { 6491 log = action != PF_PASS; 6492 goto done; 6493 } 6494 action = pf_test_state_icmp(&s, dir, kif, 6495 m, off, h, &pd, &reason); 6496 if (action == PF_PASS) { 6497 if (pfsync_update_state_ptr != NULL) 6498 pfsync_update_state_ptr(s); 6499 r = s->rule.ptr; 6500 a = s->anchor.ptr; 6501 log = s->log; 6502 } else if (s == NULL) 6503 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6504 &a, &ruleset, inp); 6505 break; 6506 } 6507 6508 default: 6509 action = pf_test_state_other(&s, dir, kif, m, &pd); 6510 if (action == PF_PASS) { 6511 if (pfsync_update_state_ptr != NULL) 6512 pfsync_update_state_ptr(s); 6513 r = s->rule.ptr; 6514 a = s->anchor.ptr; 6515 log = s->log; 6516 } else if (s == NULL) 6517 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6518 &a, &ruleset, inp); 6519 break; 6520 } 6521 6522 done: 6523 PF_RULES_RUNLOCK(); 6524 if (n != m) { 6525 m_freem(n); 6526 n = NULL; 6527 } 6528 6529 /* handle dangerous IPv6 extension headers. */ 6530 if (action == PF_PASS && rh_cnt && 6531 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6532 action = PF_DROP; 6533 REASON_SET(&reason, PFRES_IPOPTIONS); 6534 log = r->log; 6535 DPFPRINTF(PF_DEBUG_MISC, 6536 ("pf: dropping packet with dangerous v6 headers\n")); 6537 } 6538 6539 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6540 action = PF_DROP; 6541 REASON_SET(&reason, PFRES_MEMORY); 6542 } 6543 if (r->rtableid >= 0) 6544 M_SETFIB(m, r->rtableid); 6545 6546 if (r->scrub_flags & PFSTATE_SETPRIO) { 6547 if (pd.tos & IPTOS_LOWDELAY) 6548 pqid = 1; 6549 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6550 action = PF_DROP; 6551 REASON_SET(&reason, PFRES_MEMORY); 6552 log = 1; 6553 DPFPRINTF(PF_DEBUG_MISC, 6554 ("pf: failed to allocate 802.1q mtag\n")); 6555 } 6556 } 6557 6558 #ifdef ALTQ 6559 if (action == PF_PASS && r->qid) { 6560 if (pd.pf_mtag == NULL && 6561 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6562 action = PF_DROP; 6563 REASON_SET(&reason, PFRES_MEMORY); 6564 } else { 6565 if (s != NULL) 6566 pd.pf_mtag->qid_hash = pf_state_hash(s); 6567 if (pd.tos & IPTOS_LOWDELAY) 6568 pd.pf_mtag->qid = r->pqid; 6569 else 6570 pd.pf_mtag->qid = r->qid; 6571 /* Add hints for ecn. */ 6572 pd.pf_mtag->hdr = h; 6573 } 6574 } 6575 #endif /* ALTQ */ 6576 6577 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6578 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6579 (s->nat_rule.ptr->action == PF_RDR || 6580 s->nat_rule.ptr->action == PF_BINAT) && 6581 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6582 m->m_flags |= M_SKIP_FIREWALL; 6583 6584 /* XXX: Anybody working on it?! */ 6585 if (r->divert.port) 6586 printf("pf: divert(9) is not supported for IPv6\n"); 6587 6588 if (log) { 6589 struct pf_rule *lr; 6590 6591 if (s != NULL && s->nat_rule.ptr != NULL && 6592 s->nat_rule.ptr->log & PF_LOG_ALL) 6593 lr = s->nat_rule.ptr; 6594 else 6595 lr = r; 6596 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6597 &pd, (s == NULL)); 6598 } 6599 6600 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6601 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6602 6603 if (action == PF_PASS || r->action == PF_DROP) { 6604 dirndx = (dir == PF_OUT); 6605 r->packets[dirndx]++; 6606 r->bytes[dirndx] += pd.tot_len; 6607 if (a != NULL) { 6608 a->packets[dirndx]++; 6609 a->bytes[dirndx] += pd.tot_len; 6610 } 6611 if (s != NULL) { 6612 if (s->nat_rule.ptr != NULL) { 6613 s->nat_rule.ptr->packets[dirndx]++; 6614 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6615 } 6616 if (s->src_node != NULL) { 6617 s->src_node->packets[dirndx]++; 6618 s->src_node->bytes[dirndx] += pd.tot_len; 6619 } 6620 if (s->nat_src_node != NULL) { 6621 s->nat_src_node->packets[dirndx]++; 6622 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6623 } 6624 dirndx = (dir == s->direction) ? 0 : 1; 6625 s->packets[dirndx]++; 6626 s->bytes[dirndx] += pd.tot_len; 6627 } 6628 tr = r; 6629 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6630 if (nr != NULL && r == &V_pf_default_rule) 6631 tr = nr; 6632 if (tr->src.addr.type == PF_ADDR_TABLE) 6633 pfr_update_stats(tr->src.addr.p.tbl, 6634 (s == NULL) ? pd.src : 6635 &s->key[(s->direction == PF_IN)]->addr[0], 6636 pd.af, pd.tot_len, dir == PF_OUT, 6637 r->action == PF_PASS, tr->src.neg); 6638 if (tr->dst.addr.type == PF_ADDR_TABLE) 6639 pfr_update_stats(tr->dst.addr.p.tbl, 6640 (s == NULL) ? pd.dst : 6641 &s->key[(s->direction == PF_IN)]->addr[1], 6642 pd.af, pd.tot_len, dir == PF_OUT, 6643 r->action == PF_PASS, tr->dst.neg); 6644 } 6645 6646 switch (action) { 6647 case PF_SYNPROXY_DROP: 6648 m_freem(*m0); 6649 case PF_DEFER: 6650 *m0 = NULL; 6651 action = PF_PASS; 6652 break; 6653 case PF_DROP: 6654 m_freem(*m0); 6655 *m0 = NULL; 6656 break; 6657 default: 6658 /* pf_route6() returns unlocked. */ 6659 if (r->rt) { 6660 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6661 return (action); 6662 } 6663 break; 6664 } 6665 6666 if (s) 6667 PF_STATE_UNLOCK(s); 6668 6669 /* If reassembled packet passed, create new fragments. */ 6670 if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && 6671 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6672 action = pf_refragment6(ifp, m0, mtag); 6673 6674 return (action); 6675 } 6676 #endif /* INET6 */ 6677