1 /*- 2 * Copyright (c) 2001 Daniel Hartmeier 3 * Copyright (c) 2002 - 2008 Henning Brauer 4 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * - Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * - Redistributions in binary form must reproduce the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer in the documentation and/or other materials provided 16 * with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 26 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Effort sponsored in part by the Defense Advanced Research Projects 32 * Agency (DARPA) and Air Force Research Laboratory, Air Force 33 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 34 * 35 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_inet.h" 42 #include "opt_inet6.h" 43 #include "opt_bpf.h" 44 #include "opt_pf.h" 45 46 #include <sys/param.h> 47 #include <sys/bus.h> 48 #include <sys/endian.h> 49 #include <sys/hash.h> 50 #include <sys/interrupt.h> 51 #include <sys/kernel.h> 52 #include <sys/kthread.h> 53 #include <sys/limits.h> 54 #include <sys/mbuf.h> 55 #include <sys/md5.h> 56 #include <sys/random.h> 57 #include <sys/refcount.h> 58 #include <sys/socket.h> 59 #include <sys/sysctl.h> 60 #include <sys/taskqueue.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_types.h> 66 #include <net/route.h> 67 #include <net/radix_mpath.h> 68 #include <net/vnet.h> 69 70 #include <net/pfvar.h> 71 #include <net/if_pflog.h> 72 #include <net/if_pfsync.h> 73 74 #include <netinet/in_pcb.h> 75 #include <netinet/in_var.h> 76 #include <netinet/ip.h> 77 #include <netinet/ip_fw.h> 78 #include <netinet/ip_icmp.h> 79 #include <netinet/icmp_var.h> 80 #include <netinet/ip_var.h> 81 #include <netinet/tcp.h> 82 #include <netinet/tcp_fsm.h> 83 #include <netinet/tcp_seq.h> 84 #include <netinet/tcp_timer.h> 85 #include <netinet/tcp_var.h> 86 #include <netinet/udp.h> 87 #include <netinet/udp_var.h> 88 89 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 90 91 #ifdef INET6 92 #include <netinet/ip6.h> 93 #include <netinet/icmp6.h> 94 #include <netinet6/nd6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/in6_pcb.h> 97 #endif /* INET6 */ 98 99 #include <machine/in_cksum.h> 100 #include <security/mac/mac_framework.h> 101 102 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 103 104 /* 105 * Global variables 106 */ 107 108 /* state tables */ 109 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 110 VNET_DEFINE(struct pf_palist, pf_pabuf); 111 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 112 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 113 VNET_DEFINE(struct pf_kstatus, pf_status); 114 115 VNET_DEFINE(u_int32_t, ticket_altqs_active); 116 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 117 VNET_DEFINE(int, altqs_inactive_open); 118 VNET_DEFINE(u_int32_t, ticket_pabuf); 119 120 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 121 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 122 VNET_DEFINE(u_char, pf_tcp_secret[16]); 123 #define V_pf_tcp_secret VNET(pf_tcp_secret) 124 VNET_DEFINE(int, pf_tcp_secret_init); 125 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 126 VNET_DEFINE(int, pf_tcp_iss_off); 127 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 128 129 /* 130 * Queue for pf_intr() sends. 131 */ 132 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 133 struct pf_send_entry { 134 STAILQ_ENTRY(pf_send_entry) pfse_next; 135 struct mbuf *pfse_m; 136 enum { 137 PFSE_IP, 138 PFSE_IP6, 139 PFSE_ICMP, 140 PFSE_ICMP6, 141 } pfse_type; 142 struct { 143 int type; 144 int code; 145 int mtu; 146 } icmpopts; 147 }; 148 149 STAILQ_HEAD(pf_send_head, pf_send_entry); 150 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 151 #define V_pf_sendqueue VNET(pf_sendqueue) 152 153 static struct mtx pf_sendqueue_mtx; 154 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 155 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 156 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 157 158 /* 159 * Queue for pf_overload_task() tasks. 160 */ 161 struct pf_overload_entry { 162 SLIST_ENTRY(pf_overload_entry) next; 163 struct pf_addr addr; 164 sa_family_t af; 165 uint8_t dir; 166 struct pf_rule *rule; 167 }; 168 169 SLIST_HEAD(pf_overload_head, pf_overload_entry); 170 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 171 #define V_pf_overloadqueue VNET(pf_overloadqueue) 172 static VNET_DEFINE(struct task, pf_overloadtask); 173 #define V_pf_overloadtask VNET(pf_overloadtask) 174 175 static struct mtx pf_overloadqueue_mtx; 176 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 177 "pf overload/flush queue", MTX_DEF); 178 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 179 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 180 181 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 182 struct mtx pf_unlnkdrules_mtx; 183 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 184 MTX_DEF); 185 186 static VNET_DEFINE(uma_zone_t, pf_sources_z); 187 #define V_pf_sources_z VNET(pf_sources_z) 188 uma_zone_t pf_mtag_z; 189 VNET_DEFINE(uma_zone_t, pf_state_z); 190 VNET_DEFINE(uma_zone_t, pf_state_key_z); 191 192 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 193 #define PFID_CPUBITS 8 194 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 195 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 196 #define PFID_MAXID (~PFID_CPUMASK) 197 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 198 199 static void pf_src_tree_remove_state(struct pf_state *); 200 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 201 u_int32_t); 202 static void pf_add_threshold(struct pf_threshold *); 203 static int pf_check_threshold(struct pf_threshold *); 204 205 static void pf_change_ap(struct pf_addr *, u_int16_t *, 206 u_int16_t *, u_int16_t *, struct pf_addr *, 207 u_int16_t, u_int8_t, sa_family_t); 208 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 209 struct tcphdr *, struct pf_state_peer *); 210 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 211 struct pf_addr *, struct pf_addr *, u_int16_t, 212 u_int16_t *, u_int16_t *, u_int16_t *, 213 u_int16_t *, u_int8_t, sa_family_t); 214 static void pf_send_tcp(struct mbuf *, 215 const struct pf_rule *, sa_family_t, 216 const struct pf_addr *, const struct pf_addr *, 217 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 218 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 219 u_int16_t, struct ifnet *); 220 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 221 sa_family_t, struct pf_rule *); 222 static void pf_detach_state(struct pf_state *); 223 static int pf_state_key_attach(struct pf_state_key *, 224 struct pf_state_key *, struct pf_state *); 225 static void pf_state_key_detach(struct pf_state *, int); 226 static int pf_state_key_ctor(void *, int, void *, int); 227 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 228 static int pf_test_rule(struct pf_rule **, struct pf_state **, 229 int, struct pfi_kif *, struct mbuf *, int, 230 struct pf_pdesc *, struct pf_rule **, 231 struct pf_ruleset **, struct inpcb *); 232 static int pf_create_state(struct pf_rule *, struct pf_rule *, 233 struct pf_rule *, struct pf_pdesc *, 234 struct pf_src_node *, struct pf_state_key *, 235 struct pf_state_key *, struct mbuf *, int, 236 u_int16_t, u_int16_t, int *, struct pfi_kif *, 237 struct pf_state **, int, u_int16_t, u_int16_t, 238 int); 239 static int pf_test_fragment(struct pf_rule **, int, 240 struct pfi_kif *, struct mbuf *, void *, 241 struct pf_pdesc *, struct pf_rule **, 242 struct pf_ruleset **); 243 static int pf_tcp_track_full(struct pf_state_peer *, 244 struct pf_state_peer *, struct pf_state **, 245 struct pfi_kif *, struct mbuf *, int, 246 struct pf_pdesc *, u_short *, int *); 247 static int pf_tcp_track_sloppy(struct pf_state_peer *, 248 struct pf_state_peer *, struct pf_state **, 249 struct pf_pdesc *, u_short *); 250 static int pf_test_state_tcp(struct pf_state **, int, 251 struct pfi_kif *, struct mbuf *, int, 252 void *, struct pf_pdesc *, u_short *); 253 static int pf_test_state_udp(struct pf_state **, int, 254 struct pfi_kif *, struct mbuf *, int, 255 void *, struct pf_pdesc *); 256 static int pf_test_state_icmp(struct pf_state **, int, 257 struct pfi_kif *, struct mbuf *, int, 258 void *, struct pf_pdesc *, u_short *); 259 static int pf_test_state_other(struct pf_state **, int, 260 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 261 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 262 sa_family_t); 263 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 264 sa_family_t); 265 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 266 int, u_int16_t); 267 static int pf_check_proto_cksum(struct mbuf *, int, int, 268 u_int8_t, sa_family_t); 269 static void pf_print_state_parts(struct pf_state *, 270 struct pf_state_key *, struct pf_state_key *); 271 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 272 struct pf_addr_wrap *); 273 static struct pf_state *pf_find_state(struct pfi_kif *, 274 struct pf_state_key_cmp *, u_int); 275 static int pf_src_connlimit(struct pf_state **); 276 static void pf_overload_task(void *v, int pending); 277 static int pf_insert_src_node(struct pf_src_node **, 278 struct pf_rule *, struct pf_addr *, sa_family_t); 279 static u_int pf_purge_expired_states(u_int, int); 280 static void pf_purge_unlinked_rules(void); 281 static int pf_mtag_uminit(void *, int, int); 282 static void pf_mtag_free(struct m_tag *); 283 #ifdef INET 284 static void pf_route(struct mbuf **, struct pf_rule *, int, 285 struct ifnet *, struct pf_state *, 286 struct pf_pdesc *); 287 #endif /* INET */ 288 #ifdef INET6 289 static void pf_change_a6(struct pf_addr *, u_int16_t *, 290 struct pf_addr *, u_int8_t); 291 static void pf_route6(struct mbuf **, struct pf_rule *, int, 292 struct ifnet *, struct pf_state *, 293 struct pf_pdesc *); 294 #endif /* INET6 */ 295 296 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 297 298 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 299 300 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 301 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 302 303 #define STATE_LOOKUP(i, k, d, s, pd) \ 304 do { \ 305 (s) = pf_find_state((i), (k), (d)); \ 306 if ((s) == NULL) \ 307 return (PF_DROP); \ 308 if (PACKET_LOOPED(pd)) \ 309 return (PF_PASS); \ 310 if ((d) == PF_OUT && \ 311 (((s)->rule.ptr->rt == PF_ROUTETO && \ 312 (s)->rule.ptr->direction == PF_OUT) || \ 313 ((s)->rule.ptr->rt == PF_REPLYTO && \ 314 (s)->rule.ptr->direction == PF_IN)) && \ 315 (s)->rt_kif != NULL && \ 316 (s)->rt_kif != (i)) \ 317 return (PF_PASS); \ 318 } while (0) 319 320 #define BOUND_IFACE(r, k) \ 321 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 322 323 #define STATE_INC_COUNTERS(s) \ 324 do { \ 325 counter_u64_add(s->rule.ptr->states_cur, 1); \ 326 counter_u64_add(s->rule.ptr->states_tot, 1); \ 327 if (s->anchor.ptr != NULL) { \ 328 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 329 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 330 } \ 331 if (s->nat_rule.ptr != NULL) { \ 332 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 333 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 334 } \ 335 } while (0) 336 337 #define STATE_DEC_COUNTERS(s) \ 338 do { \ 339 if (s->nat_rule.ptr != NULL) \ 340 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 341 if (s->anchor.ptr != NULL) \ 342 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 343 counter_u64_add(s->rule.ptr->states_cur, -1); \ 344 } while (0) 345 346 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 347 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 348 VNET_DEFINE(struct pf_idhash *, pf_idhash); 349 VNET_DEFINE(struct pf_srchash *, pf_srchash); 350 351 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 352 353 u_long pf_hashmask; 354 u_long pf_srchashmask; 355 static u_long pf_hashsize; 356 static u_long pf_srchashsize; 357 358 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 359 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 360 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 361 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 362 363 VNET_DEFINE(void *, pf_swi_cookie); 364 365 VNET_DEFINE(uint32_t, pf_hashseed); 366 #define V_pf_hashseed VNET(pf_hashseed) 367 368 static __inline uint32_t 369 pf_hashkey(struct pf_state_key *sk) 370 { 371 uint32_t h; 372 373 h = murmur3_32_hash32((uint32_t *)sk, 374 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 375 V_pf_hashseed); 376 377 return (h & pf_hashmask); 378 } 379 380 static __inline uint32_t 381 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 382 { 383 uint32_t h; 384 385 switch (af) { 386 case AF_INET: 387 h = murmur3_32_hash32((uint32_t *)&addr->v4, 388 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 389 break; 390 case AF_INET6: 391 h = murmur3_32_hash32((uint32_t *)&addr->v6, 392 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 393 break; 394 default: 395 panic("%s: unknown address family %u", __func__, af); 396 } 397 398 return (h & pf_srchashmask); 399 } 400 401 #ifdef INET6 402 void 403 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 404 { 405 switch (af) { 406 #ifdef INET 407 case AF_INET: 408 dst->addr32[0] = src->addr32[0]; 409 break; 410 #endif /* INET */ 411 case AF_INET6: 412 dst->addr32[0] = src->addr32[0]; 413 dst->addr32[1] = src->addr32[1]; 414 dst->addr32[2] = src->addr32[2]; 415 dst->addr32[3] = src->addr32[3]; 416 break; 417 } 418 } 419 #endif /* INET6 */ 420 421 static void 422 pf_init_threshold(struct pf_threshold *threshold, 423 u_int32_t limit, u_int32_t seconds) 424 { 425 threshold->limit = limit * PF_THRESHOLD_MULT; 426 threshold->seconds = seconds; 427 threshold->count = 0; 428 threshold->last = time_uptime; 429 } 430 431 static void 432 pf_add_threshold(struct pf_threshold *threshold) 433 { 434 u_int32_t t = time_uptime, diff = t - threshold->last; 435 436 if (diff >= threshold->seconds) 437 threshold->count = 0; 438 else 439 threshold->count -= threshold->count * diff / 440 threshold->seconds; 441 threshold->count += PF_THRESHOLD_MULT; 442 threshold->last = t; 443 } 444 445 static int 446 pf_check_threshold(struct pf_threshold *threshold) 447 { 448 return (threshold->count > threshold->limit); 449 } 450 451 static int 452 pf_src_connlimit(struct pf_state **state) 453 { 454 struct pf_overload_entry *pfoe; 455 int bad = 0; 456 457 PF_STATE_LOCK_ASSERT(*state); 458 459 (*state)->src_node->conn++; 460 (*state)->src.tcp_est = 1; 461 pf_add_threshold(&(*state)->src_node->conn_rate); 462 463 if ((*state)->rule.ptr->max_src_conn && 464 (*state)->rule.ptr->max_src_conn < 465 (*state)->src_node->conn) { 466 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 467 bad++; 468 } 469 470 if ((*state)->rule.ptr->max_src_conn_rate.limit && 471 pf_check_threshold(&(*state)->src_node->conn_rate)) { 472 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 473 bad++; 474 } 475 476 if (!bad) 477 return (0); 478 479 /* Kill this state. */ 480 (*state)->timeout = PFTM_PURGE; 481 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 482 483 if ((*state)->rule.ptr->overload_tbl == NULL) 484 return (1); 485 486 /* Schedule overloading and flushing task. */ 487 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 488 if (pfoe == NULL) 489 return (1); /* too bad :( */ 490 491 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 492 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 493 pfoe->rule = (*state)->rule.ptr; 494 pfoe->dir = (*state)->direction; 495 PF_OVERLOADQ_LOCK(); 496 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 497 PF_OVERLOADQ_UNLOCK(); 498 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 499 500 return (1); 501 } 502 503 static void 504 pf_overload_task(void *v, int pending) 505 { 506 struct pf_overload_head queue; 507 struct pfr_addr p; 508 struct pf_overload_entry *pfoe, *pfoe1; 509 uint32_t killed = 0; 510 511 CURVNET_SET((struct vnet *)v); 512 513 PF_OVERLOADQ_LOCK(); 514 queue = V_pf_overloadqueue; 515 SLIST_INIT(&V_pf_overloadqueue); 516 PF_OVERLOADQ_UNLOCK(); 517 518 bzero(&p, sizeof(p)); 519 SLIST_FOREACH(pfoe, &queue, next) { 520 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 521 if (V_pf_status.debug >= PF_DEBUG_MISC) { 522 printf("%s: blocking address ", __func__); 523 pf_print_host(&pfoe->addr, 0, pfoe->af); 524 printf("\n"); 525 } 526 527 p.pfra_af = pfoe->af; 528 switch (pfoe->af) { 529 #ifdef INET 530 case AF_INET: 531 p.pfra_net = 32; 532 p.pfra_ip4addr = pfoe->addr.v4; 533 break; 534 #endif 535 #ifdef INET6 536 case AF_INET6: 537 p.pfra_net = 128; 538 p.pfra_ip6addr = pfoe->addr.v6; 539 break; 540 #endif 541 } 542 543 PF_RULES_WLOCK(); 544 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 545 PF_RULES_WUNLOCK(); 546 } 547 548 /* 549 * Remove those entries, that don't need flushing. 550 */ 551 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 552 if (pfoe->rule->flush == 0) { 553 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 554 free(pfoe, M_PFTEMP); 555 } else 556 counter_u64_add( 557 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 558 559 /* If nothing to flush, return. */ 560 if (SLIST_EMPTY(&queue)) { 561 CURVNET_RESTORE(); 562 return; 563 } 564 565 for (int i = 0; i <= pf_hashmask; i++) { 566 struct pf_idhash *ih = &V_pf_idhash[i]; 567 struct pf_state_key *sk; 568 struct pf_state *s; 569 570 PF_HASHROW_LOCK(ih); 571 LIST_FOREACH(s, &ih->states, entry) { 572 sk = s->key[PF_SK_WIRE]; 573 SLIST_FOREACH(pfoe, &queue, next) 574 if (sk->af == pfoe->af && 575 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 576 pfoe->rule == s->rule.ptr) && 577 ((pfoe->dir == PF_OUT && 578 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 579 (pfoe->dir == PF_IN && 580 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 581 s->timeout = PFTM_PURGE; 582 s->src.state = s->dst.state = TCPS_CLOSED; 583 killed++; 584 } 585 } 586 PF_HASHROW_UNLOCK(ih); 587 } 588 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 589 free(pfoe, M_PFTEMP); 590 if (V_pf_status.debug >= PF_DEBUG_MISC) 591 printf("%s: %u states killed", __func__, killed); 592 593 CURVNET_RESTORE(); 594 } 595 596 /* 597 * Can return locked on failure, so that we can consistently 598 * allocate and insert a new one. 599 */ 600 struct pf_src_node * 601 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 602 int returnlocked) 603 { 604 struct pf_srchash *sh; 605 struct pf_src_node *n; 606 607 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 608 609 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 610 PF_HASHROW_LOCK(sh); 611 LIST_FOREACH(n, &sh->nodes, entry) 612 if (n->rule.ptr == rule && n->af == af && 613 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 614 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 615 break; 616 if (n != NULL || returnlocked == 0) 617 PF_HASHROW_UNLOCK(sh); 618 619 return (n); 620 } 621 622 static int 623 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 624 struct pf_addr *src, sa_family_t af) 625 { 626 627 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 628 rule->rpool.opts & PF_POOL_STICKYADDR), 629 ("%s for non-tracking rule %p", __func__, rule)); 630 631 if (*sn == NULL) 632 *sn = pf_find_src_node(src, rule, af, 1); 633 634 if (*sn == NULL) { 635 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 636 637 PF_HASHROW_ASSERT(sh); 638 639 if (!rule->max_src_nodes || 640 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 641 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 642 else 643 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 644 1); 645 if ((*sn) == NULL) { 646 PF_HASHROW_UNLOCK(sh); 647 return (-1); 648 } 649 650 pf_init_threshold(&(*sn)->conn_rate, 651 rule->max_src_conn_rate.limit, 652 rule->max_src_conn_rate.seconds); 653 654 (*sn)->af = af; 655 (*sn)->rule.ptr = rule; 656 PF_ACPY(&(*sn)->addr, src, af); 657 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 658 (*sn)->creation = time_uptime; 659 (*sn)->ruletype = rule->action; 660 if ((*sn)->rule.ptr != NULL) 661 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 662 PF_HASHROW_UNLOCK(sh); 663 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 664 } else { 665 if (rule->max_src_states && 666 (*sn)->states >= rule->max_src_states) { 667 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 668 1); 669 return (-1); 670 } 671 } 672 return (0); 673 } 674 675 void 676 pf_unlink_src_node_locked(struct pf_src_node *src) 677 { 678 #ifdef INVARIANTS 679 struct pf_srchash *sh; 680 681 sh = &V_pf_srchash[pf_hashsrc(&src->addr, src->af)]; 682 PF_HASHROW_ASSERT(sh); 683 #endif 684 LIST_REMOVE(src, entry); 685 if (src->rule.ptr) 686 counter_u64_add(src->rule.ptr->src_nodes, -1); 687 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 688 } 689 690 void 691 pf_unlink_src_node(struct pf_src_node *src) 692 { 693 struct pf_srchash *sh; 694 695 sh = &V_pf_srchash[pf_hashsrc(&src->addr, src->af)]; 696 PF_HASHROW_LOCK(sh); 697 pf_unlink_src_node_locked(src); 698 PF_HASHROW_UNLOCK(sh); 699 } 700 701 static void 702 pf_free_src_node(struct pf_src_node *sn) 703 { 704 705 KASSERT(sn->states == 0, ("%s: %p has refs", __func__, sn)); 706 uma_zfree(V_pf_sources_z, sn); 707 } 708 709 u_int 710 pf_free_src_nodes(struct pf_src_node_list *head) 711 { 712 struct pf_src_node *sn, *tmp; 713 u_int count = 0; 714 715 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 716 pf_free_src_node(sn); 717 count++; 718 } 719 720 return (count); 721 } 722 723 void 724 pf_mtag_initialize() 725 { 726 727 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 728 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 729 UMA_ALIGN_PTR, 0); 730 } 731 732 /* Per-vnet data storage structures initialization. */ 733 void 734 pf_vnet_initialize() 735 { 736 struct pf_keyhash *kh; 737 struct pf_idhash *ih; 738 struct pf_srchash *sh; 739 u_int i; 740 741 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 742 pf_hashsize = PF_HASHSIZ; 743 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 744 pf_srchashsize = PF_HASHSIZ / 4; 745 746 V_pf_hashseed = arc4random(); 747 748 /* States and state keys storage. */ 749 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 750 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 751 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 752 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 753 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 754 755 V_pf_state_key_z = uma_zcreate("pf state keys", 756 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 757 UMA_ALIGN_PTR, 0); 758 V_pf_keyhash = malloc(pf_hashsize * sizeof(struct pf_keyhash), 759 M_PFHASH, M_WAITOK | M_ZERO); 760 V_pf_idhash = malloc(pf_hashsize * sizeof(struct pf_idhash), 761 M_PFHASH, M_WAITOK | M_ZERO); 762 pf_hashmask = pf_hashsize - 1; 763 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 764 i++, kh++, ih++) { 765 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 766 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 767 } 768 769 /* Source nodes. */ 770 V_pf_sources_z = uma_zcreate("pf source nodes", 771 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 772 0); 773 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 774 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 775 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 776 V_pf_srchash = malloc(pf_srchashsize * sizeof(struct pf_srchash), 777 M_PFHASH, M_WAITOK|M_ZERO); 778 pf_srchashmask = pf_srchashsize - 1; 779 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 780 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 781 782 /* ALTQ */ 783 TAILQ_INIT(&V_pf_altqs[0]); 784 TAILQ_INIT(&V_pf_altqs[1]); 785 TAILQ_INIT(&V_pf_pabuf); 786 V_pf_altqs_active = &V_pf_altqs[0]; 787 V_pf_altqs_inactive = &V_pf_altqs[1]; 788 789 790 /* Send & overload+flush queues. */ 791 STAILQ_INIT(&V_pf_sendqueue); 792 SLIST_INIT(&V_pf_overloadqueue); 793 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 794 795 /* Unlinked, but may be referenced rules. */ 796 TAILQ_INIT(&V_pf_unlinked_rules); 797 } 798 799 void 800 pf_mtag_cleanup() 801 { 802 803 uma_zdestroy(pf_mtag_z); 804 } 805 806 void 807 pf_cleanup() 808 { 809 struct pf_keyhash *kh; 810 struct pf_idhash *ih; 811 struct pf_srchash *sh; 812 struct pf_send_entry *pfse, *next; 813 u_int i; 814 815 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 816 i++, kh++, ih++) { 817 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 818 __func__)); 819 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 820 __func__)); 821 mtx_destroy(&kh->lock); 822 mtx_destroy(&ih->lock); 823 } 824 free(V_pf_keyhash, M_PFHASH); 825 free(V_pf_idhash, M_PFHASH); 826 827 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 828 KASSERT(LIST_EMPTY(&sh->nodes), 829 ("%s: source node hash not empty", __func__)); 830 mtx_destroy(&sh->lock); 831 } 832 free(V_pf_srchash, M_PFHASH); 833 834 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 835 m_freem(pfse->pfse_m); 836 free(pfse, M_PFTEMP); 837 } 838 839 uma_zdestroy(V_pf_sources_z); 840 uma_zdestroy(V_pf_state_z); 841 uma_zdestroy(V_pf_state_key_z); 842 } 843 844 static int 845 pf_mtag_uminit(void *mem, int size, int how) 846 { 847 struct m_tag *t; 848 849 t = (struct m_tag *)mem; 850 t->m_tag_cookie = MTAG_ABI_COMPAT; 851 t->m_tag_id = PACKET_TAG_PF; 852 t->m_tag_len = sizeof(struct pf_mtag); 853 t->m_tag_free = pf_mtag_free; 854 855 return (0); 856 } 857 858 static void 859 pf_mtag_free(struct m_tag *t) 860 { 861 862 uma_zfree(pf_mtag_z, t); 863 } 864 865 struct pf_mtag * 866 pf_get_mtag(struct mbuf *m) 867 { 868 struct m_tag *mtag; 869 870 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 871 return ((struct pf_mtag *)(mtag + 1)); 872 873 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 874 if (mtag == NULL) 875 return (NULL); 876 bzero(mtag + 1, sizeof(struct pf_mtag)); 877 m_tag_prepend(m, mtag); 878 879 return ((struct pf_mtag *)(mtag + 1)); 880 } 881 882 static int 883 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 884 struct pf_state *s) 885 { 886 struct pf_keyhash *khs, *khw, *kh; 887 struct pf_state_key *sk, *cur; 888 struct pf_state *si, *olds = NULL; 889 int idx; 890 891 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 892 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 893 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 894 895 /* 896 * We need to lock hash slots of both keys. To avoid deadlock 897 * we always lock the slot with lower address first. Unlock order 898 * isn't important. 899 * 900 * We also need to lock ID hash slot before dropping key 901 * locks. On success we return with ID hash slot locked. 902 */ 903 904 if (skw == sks) { 905 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 906 PF_HASHROW_LOCK(khs); 907 } else { 908 khs = &V_pf_keyhash[pf_hashkey(sks)]; 909 khw = &V_pf_keyhash[pf_hashkey(skw)]; 910 if (khs == khw) { 911 PF_HASHROW_LOCK(khs); 912 } else if (khs < khw) { 913 PF_HASHROW_LOCK(khs); 914 PF_HASHROW_LOCK(khw); 915 } else { 916 PF_HASHROW_LOCK(khw); 917 PF_HASHROW_LOCK(khs); 918 } 919 } 920 921 #define KEYS_UNLOCK() do { \ 922 if (khs != khw) { \ 923 PF_HASHROW_UNLOCK(khs); \ 924 PF_HASHROW_UNLOCK(khw); \ 925 } else \ 926 PF_HASHROW_UNLOCK(khs); \ 927 } while (0) 928 929 /* 930 * First run: start with wire key. 931 */ 932 sk = skw; 933 kh = khw; 934 idx = PF_SK_WIRE; 935 936 keyattach: 937 LIST_FOREACH(cur, &kh->keys, entry) 938 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 939 break; 940 941 if (cur != NULL) { 942 /* Key exists. Check for same kif, if none, add to key. */ 943 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 944 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 945 946 PF_HASHROW_LOCK(ih); 947 if (si->kif == s->kif && 948 si->direction == s->direction) { 949 if (sk->proto == IPPROTO_TCP && 950 si->src.state >= TCPS_FIN_WAIT_2 && 951 si->dst.state >= TCPS_FIN_WAIT_2) { 952 /* 953 * New state matches an old >FIN_WAIT_2 954 * state. We can't drop key hash locks, 955 * thus we can't unlink it properly. 956 * 957 * As a workaround we drop it into 958 * TCPS_CLOSED state, schedule purge 959 * ASAP and push it into the very end 960 * of the slot TAILQ, so that it won't 961 * conflict with our new state. 962 */ 963 si->src.state = si->dst.state = 964 TCPS_CLOSED; 965 si->timeout = PFTM_PURGE; 966 olds = si; 967 } else { 968 if (V_pf_status.debug >= PF_DEBUG_MISC) { 969 printf("pf: %s key attach " 970 "failed on %s: ", 971 (idx == PF_SK_WIRE) ? 972 "wire" : "stack", 973 s->kif->pfik_name); 974 pf_print_state_parts(s, 975 (idx == PF_SK_WIRE) ? 976 sk : NULL, 977 (idx == PF_SK_STACK) ? 978 sk : NULL); 979 printf(", existing: "); 980 pf_print_state_parts(si, 981 (idx == PF_SK_WIRE) ? 982 sk : NULL, 983 (idx == PF_SK_STACK) ? 984 sk : NULL); 985 printf("\n"); 986 } 987 PF_HASHROW_UNLOCK(ih); 988 KEYS_UNLOCK(); 989 uma_zfree(V_pf_state_key_z, sk); 990 if (idx == PF_SK_STACK) 991 pf_detach_state(s); 992 return (EEXIST); /* collision! */ 993 } 994 } 995 PF_HASHROW_UNLOCK(ih); 996 } 997 uma_zfree(V_pf_state_key_z, sk); 998 s->key[idx] = cur; 999 } else { 1000 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1001 s->key[idx] = sk; 1002 } 1003 1004 stateattach: 1005 /* List is sorted, if-bound states before floating. */ 1006 if (s->kif == V_pfi_all) 1007 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1008 else 1009 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1010 1011 if (olds) { 1012 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1013 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1014 key_list[idx]); 1015 olds = NULL; 1016 } 1017 1018 /* 1019 * Attach done. See how should we (or should not?) 1020 * attach a second key. 1021 */ 1022 if (sks == skw) { 1023 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1024 idx = PF_SK_STACK; 1025 sks = NULL; 1026 goto stateattach; 1027 } else if (sks != NULL) { 1028 /* 1029 * Continue attaching with stack key. 1030 */ 1031 sk = sks; 1032 kh = khs; 1033 idx = PF_SK_STACK; 1034 sks = NULL; 1035 goto keyattach; 1036 } 1037 1038 PF_STATE_LOCK(s); 1039 KEYS_UNLOCK(); 1040 1041 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1042 ("%s failure", __func__)); 1043 1044 return (0); 1045 #undef KEYS_UNLOCK 1046 } 1047 1048 static void 1049 pf_detach_state(struct pf_state *s) 1050 { 1051 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1052 struct pf_keyhash *kh; 1053 1054 if (sks != NULL) { 1055 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1056 PF_HASHROW_LOCK(kh); 1057 if (s->key[PF_SK_STACK] != NULL) 1058 pf_state_key_detach(s, PF_SK_STACK); 1059 /* 1060 * If both point to same key, then we are done. 1061 */ 1062 if (sks == s->key[PF_SK_WIRE]) { 1063 pf_state_key_detach(s, PF_SK_WIRE); 1064 PF_HASHROW_UNLOCK(kh); 1065 return; 1066 } 1067 PF_HASHROW_UNLOCK(kh); 1068 } 1069 1070 if (s->key[PF_SK_WIRE] != NULL) { 1071 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1072 PF_HASHROW_LOCK(kh); 1073 if (s->key[PF_SK_WIRE] != NULL) 1074 pf_state_key_detach(s, PF_SK_WIRE); 1075 PF_HASHROW_UNLOCK(kh); 1076 } 1077 } 1078 1079 static void 1080 pf_state_key_detach(struct pf_state *s, int idx) 1081 { 1082 struct pf_state_key *sk = s->key[idx]; 1083 #ifdef INVARIANTS 1084 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1085 1086 PF_HASHROW_ASSERT(kh); 1087 #endif 1088 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1089 s->key[idx] = NULL; 1090 1091 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1092 LIST_REMOVE(sk, entry); 1093 uma_zfree(V_pf_state_key_z, sk); 1094 } 1095 } 1096 1097 static int 1098 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1099 { 1100 struct pf_state_key *sk = mem; 1101 1102 bzero(sk, sizeof(struct pf_state_key_cmp)); 1103 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1104 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1105 1106 return (0); 1107 } 1108 1109 struct pf_state_key * 1110 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1111 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1112 { 1113 struct pf_state_key *sk; 1114 1115 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1116 if (sk == NULL) 1117 return (NULL); 1118 1119 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1120 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1121 sk->port[pd->sidx] = sport; 1122 sk->port[pd->didx] = dport; 1123 sk->proto = pd->proto; 1124 sk->af = pd->af; 1125 1126 return (sk); 1127 } 1128 1129 struct pf_state_key * 1130 pf_state_key_clone(struct pf_state_key *orig) 1131 { 1132 struct pf_state_key *sk; 1133 1134 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1135 if (sk == NULL) 1136 return (NULL); 1137 1138 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1139 1140 return (sk); 1141 } 1142 1143 int 1144 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1145 struct pf_state_key *sks, struct pf_state *s) 1146 { 1147 struct pf_idhash *ih; 1148 struct pf_state *cur; 1149 int error; 1150 1151 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1152 ("%s: sks not pristine", __func__)); 1153 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1154 ("%s: skw not pristine", __func__)); 1155 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1156 1157 s->kif = kif; 1158 1159 if (s->id == 0 && s->creatorid == 0) { 1160 /* XXX: should be atomic, but probability of collision low */ 1161 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1162 V_pf_stateid[curcpu] = 1; 1163 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1164 s->id = htobe64(s->id); 1165 s->creatorid = V_pf_status.hostid; 1166 } 1167 1168 /* Returns with ID locked on success. */ 1169 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1170 return (error); 1171 1172 ih = &V_pf_idhash[PF_IDHASH(s)]; 1173 PF_HASHROW_ASSERT(ih); 1174 LIST_FOREACH(cur, &ih->states, entry) 1175 if (cur->id == s->id && cur->creatorid == s->creatorid) 1176 break; 1177 1178 if (cur != NULL) { 1179 PF_HASHROW_UNLOCK(ih); 1180 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1181 printf("pf: state ID collision: " 1182 "id: %016llx creatorid: %08x\n", 1183 (unsigned long long)be64toh(s->id), 1184 ntohl(s->creatorid)); 1185 } 1186 pf_detach_state(s); 1187 return (EEXIST); 1188 } 1189 LIST_INSERT_HEAD(&ih->states, s, entry); 1190 /* One for keys, one for ID hash. */ 1191 refcount_init(&s->refs, 2); 1192 1193 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1194 if (pfsync_insert_state_ptr != NULL) 1195 pfsync_insert_state_ptr(s); 1196 1197 /* Returns locked. */ 1198 return (0); 1199 } 1200 1201 /* 1202 * Find state by ID: returns with locked row on success. 1203 */ 1204 struct pf_state * 1205 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1206 { 1207 struct pf_idhash *ih; 1208 struct pf_state *s; 1209 1210 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1211 1212 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1213 1214 PF_HASHROW_LOCK(ih); 1215 LIST_FOREACH(s, &ih->states, entry) 1216 if (s->id == id && s->creatorid == creatorid) 1217 break; 1218 1219 if (s == NULL) 1220 PF_HASHROW_UNLOCK(ih); 1221 1222 return (s); 1223 } 1224 1225 /* 1226 * Find state by key. 1227 * Returns with ID hash slot locked on success. 1228 */ 1229 static struct pf_state * 1230 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1231 { 1232 struct pf_keyhash *kh; 1233 struct pf_state_key *sk; 1234 struct pf_state *s; 1235 int idx; 1236 1237 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1238 1239 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1240 1241 PF_HASHROW_LOCK(kh); 1242 LIST_FOREACH(sk, &kh->keys, entry) 1243 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1244 break; 1245 if (sk == NULL) { 1246 PF_HASHROW_UNLOCK(kh); 1247 return (NULL); 1248 } 1249 1250 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1251 1252 /* List is sorted, if-bound states before floating ones. */ 1253 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1254 if (s->kif == V_pfi_all || s->kif == kif) { 1255 PF_STATE_LOCK(s); 1256 PF_HASHROW_UNLOCK(kh); 1257 if (s->timeout >= PFTM_MAX) { 1258 /* 1259 * State is either being processed by 1260 * pf_unlink_state() in an other thread, or 1261 * is scheduled for immediate expiry. 1262 */ 1263 PF_STATE_UNLOCK(s); 1264 return (NULL); 1265 } 1266 return (s); 1267 } 1268 PF_HASHROW_UNLOCK(kh); 1269 1270 return (NULL); 1271 } 1272 1273 struct pf_state * 1274 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1275 { 1276 struct pf_keyhash *kh; 1277 struct pf_state_key *sk; 1278 struct pf_state *s, *ret = NULL; 1279 int idx, inout = 0; 1280 1281 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1282 1283 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1284 1285 PF_HASHROW_LOCK(kh); 1286 LIST_FOREACH(sk, &kh->keys, entry) 1287 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1288 break; 1289 if (sk == NULL) { 1290 PF_HASHROW_UNLOCK(kh); 1291 return (NULL); 1292 } 1293 switch (dir) { 1294 case PF_IN: 1295 idx = PF_SK_WIRE; 1296 break; 1297 case PF_OUT: 1298 idx = PF_SK_STACK; 1299 break; 1300 case PF_INOUT: 1301 idx = PF_SK_WIRE; 1302 inout = 1; 1303 break; 1304 default: 1305 panic("%s: dir %u", __func__, dir); 1306 } 1307 second_run: 1308 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1309 if (more == NULL) { 1310 PF_HASHROW_UNLOCK(kh); 1311 return (s); 1312 } 1313 1314 if (ret) 1315 (*more)++; 1316 else 1317 ret = s; 1318 } 1319 if (inout == 1) { 1320 inout = 0; 1321 idx = PF_SK_STACK; 1322 goto second_run; 1323 } 1324 PF_HASHROW_UNLOCK(kh); 1325 1326 return (ret); 1327 } 1328 1329 /* END state table stuff */ 1330 1331 static void 1332 pf_send(struct pf_send_entry *pfse) 1333 { 1334 1335 PF_SENDQ_LOCK(); 1336 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1337 PF_SENDQ_UNLOCK(); 1338 swi_sched(V_pf_swi_cookie, 0); 1339 } 1340 1341 void 1342 pf_intr(void *v) 1343 { 1344 struct pf_send_head queue; 1345 struct pf_send_entry *pfse, *next; 1346 1347 CURVNET_SET((struct vnet *)v); 1348 1349 PF_SENDQ_LOCK(); 1350 queue = V_pf_sendqueue; 1351 STAILQ_INIT(&V_pf_sendqueue); 1352 PF_SENDQ_UNLOCK(); 1353 1354 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1355 switch (pfse->pfse_type) { 1356 #ifdef INET 1357 case PFSE_IP: 1358 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1359 break; 1360 case PFSE_ICMP: 1361 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1362 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1363 break; 1364 #endif /* INET */ 1365 #ifdef INET6 1366 case PFSE_IP6: 1367 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1368 NULL); 1369 break; 1370 case PFSE_ICMP6: 1371 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1372 pfse->icmpopts.code, pfse->icmpopts.mtu); 1373 break; 1374 #endif /* INET6 */ 1375 default: 1376 panic("%s: unknown type", __func__); 1377 } 1378 free(pfse, M_PFTEMP); 1379 } 1380 CURVNET_RESTORE(); 1381 } 1382 1383 void 1384 pf_purge_thread(void *v __unused) 1385 { 1386 u_int idx = 0; 1387 VNET_ITERATOR_DECL(vnet_iter); 1388 1389 for (;;) { 1390 tsleep(pf_purge_thread, PWAIT, "pftm", hz / 10); 1391 VNET_LIST_RLOCK(); 1392 VNET_FOREACH(vnet_iter) { 1393 CURVNET_SET(vnet_iter); 1394 /* Process 1/interval fraction of the state table every run. */ 1395 idx = pf_purge_expired_states(idx, pf_hashmask / 1396 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1397 1398 /* Purge other expired types every PFTM_INTERVAL seconds. */ 1399 if (idx == 0) { 1400 /* 1401 * Order is important: 1402 * - states and src nodes reference rules 1403 * - states and rules reference kifs 1404 */ 1405 pf_purge_expired_fragments(); 1406 pf_purge_expired_src_nodes(); 1407 pf_purge_unlinked_rules(); 1408 pfi_kif_purge(); 1409 } 1410 CURVNET_RESTORE(); 1411 } 1412 VNET_LIST_RUNLOCK(); 1413 } 1414 /* not reached */ 1415 } 1416 1417 u_int32_t 1418 pf_state_expires(const struct pf_state *state) 1419 { 1420 u_int32_t timeout; 1421 u_int32_t start; 1422 u_int32_t end; 1423 u_int32_t states; 1424 1425 /* handle all PFTM_* > PFTM_MAX here */ 1426 if (state->timeout == PFTM_PURGE) 1427 return (time_uptime); 1428 KASSERT(state->timeout != PFTM_UNLINKED, 1429 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1430 KASSERT((state->timeout < PFTM_MAX), 1431 ("pf_state_expires: timeout > PFTM_MAX")); 1432 timeout = state->rule.ptr->timeout[state->timeout]; 1433 if (!timeout) 1434 timeout = V_pf_default_rule.timeout[state->timeout]; 1435 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1436 if (start) { 1437 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1438 states = counter_u64_fetch(state->rule.ptr->states_cur); 1439 } else { 1440 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1441 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1442 states = V_pf_status.states; 1443 } 1444 if (end && states > start && start < end) { 1445 if (states < end) 1446 return (state->expire + timeout * (end - states) / 1447 (end - start)); 1448 else 1449 return (time_uptime); 1450 } 1451 return (state->expire + timeout); 1452 } 1453 1454 void 1455 pf_purge_expired_src_nodes() 1456 { 1457 struct pf_src_node_list freelist; 1458 struct pf_srchash *sh; 1459 struct pf_src_node *cur, *next; 1460 int i; 1461 1462 LIST_INIT(&freelist); 1463 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1464 PF_HASHROW_LOCK(sh); 1465 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1466 if (cur->states == 0 && cur->expire <= time_uptime) { 1467 pf_unlink_src_node_locked(cur); 1468 LIST_INSERT_HEAD(&freelist, cur, entry); 1469 } else if (cur->rule.ptr != NULL) 1470 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1471 PF_HASHROW_UNLOCK(sh); 1472 } 1473 1474 pf_free_src_nodes(&freelist); 1475 1476 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1477 } 1478 1479 static void 1480 pf_src_tree_remove_state(struct pf_state *s) 1481 { 1482 u_int32_t timeout; 1483 1484 if (s->src_node != NULL) { 1485 if (s->src.tcp_est) 1486 --s->src_node->conn; 1487 if (--s->src_node->states == 0) { 1488 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1489 if (!timeout) 1490 timeout = 1491 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1492 s->src_node->expire = time_uptime + timeout; 1493 } 1494 } 1495 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1496 if (--s->nat_src_node->states == 0) { 1497 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1498 if (!timeout) 1499 timeout = 1500 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1501 s->nat_src_node->expire = time_uptime + timeout; 1502 } 1503 } 1504 s->src_node = s->nat_src_node = NULL; 1505 } 1506 1507 /* 1508 * Unlink and potentilly free a state. Function may be 1509 * called with ID hash row locked, but always returns 1510 * unlocked, since it needs to go through key hash locking. 1511 */ 1512 int 1513 pf_unlink_state(struct pf_state *s, u_int flags) 1514 { 1515 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1516 1517 if ((flags & PF_ENTER_LOCKED) == 0) 1518 PF_HASHROW_LOCK(ih); 1519 else 1520 PF_HASHROW_ASSERT(ih); 1521 1522 if (s->timeout == PFTM_UNLINKED) { 1523 /* 1524 * State is being processed 1525 * by pf_unlink_state() in 1526 * an other thread. 1527 */ 1528 PF_HASHROW_UNLOCK(ih); 1529 return (0); /* XXXGL: undefined actually */ 1530 } 1531 1532 if (s->src.state == PF_TCPS_PROXY_DST) { 1533 /* XXX wire key the right one? */ 1534 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1535 &s->key[PF_SK_WIRE]->addr[1], 1536 &s->key[PF_SK_WIRE]->addr[0], 1537 s->key[PF_SK_WIRE]->port[1], 1538 s->key[PF_SK_WIRE]->port[0], 1539 s->src.seqhi, s->src.seqlo + 1, 1540 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1541 } 1542 1543 LIST_REMOVE(s, entry); 1544 pf_src_tree_remove_state(s); 1545 1546 if (pfsync_delete_state_ptr != NULL) 1547 pfsync_delete_state_ptr(s); 1548 1549 STATE_DEC_COUNTERS(s); 1550 1551 s->timeout = PFTM_UNLINKED; 1552 1553 PF_HASHROW_UNLOCK(ih); 1554 1555 pf_detach_state(s); 1556 refcount_release(&s->refs); 1557 1558 return (pf_release_state(s)); 1559 } 1560 1561 void 1562 pf_free_state(struct pf_state *cur) 1563 { 1564 1565 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1566 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1567 cur->timeout)); 1568 1569 pf_normalize_tcp_cleanup(cur); 1570 uma_zfree(V_pf_state_z, cur); 1571 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1572 } 1573 1574 /* 1575 * Called only from pf_purge_thread(), thus serialized. 1576 */ 1577 static u_int 1578 pf_purge_expired_states(u_int i, int maxcheck) 1579 { 1580 struct pf_idhash *ih; 1581 struct pf_state *s; 1582 1583 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1584 1585 /* 1586 * Go through hash and unlink states that expire now. 1587 */ 1588 while (maxcheck > 0) { 1589 1590 ih = &V_pf_idhash[i]; 1591 relock: 1592 PF_HASHROW_LOCK(ih); 1593 LIST_FOREACH(s, &ih->states, entry) { 1594 if (pf_state_expires(s) <= time_uptime) { 1595 V_pf_status.states -= 1596 pf_unlink_state(s, PF_ENTER_LOCKED); 1597 goto relock; 1598 } 1599 s->rule.ptr->rule_flag |= PFRULE_REFS; 1600 if (s->nat_rule.ptr != NULL) 1601 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1602 if (s->anchor.ptr != NULL) 1603 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1604 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1605 if (s->rt_kif) 1606 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1607 } 1608 PF_HASHROW_UNLOCK(ih); 1609 1610 /* Return when we hit end of hash. */ 1611 if (++i > pf_hashmask) { 1612 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1613 return (0); 1614 } 1615 1616 maxcheck--; 1617 } 1618 1619 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1620 1621 return (i); 1622 } 1623 1624 static void 1625 pf_purge_unlinked_rules() 1626 { 1627 struct pf_rulequeue tmpq; 1628 struct pf_rule *r, *r1; 1629 1630 /* 1631 * If we have overloading task pending, then we'd 1632 * better skip purging this time. There is a tiny 1633 * probability that overloading task references 1634 * an already unlinked rule. 1635 */ 1636 PF_OVERLOADQ_LOCK(); 1637 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1638 PF_OVERLOADQ_UNLOCK(); 1639 return; 1640 } 1641 PF_OVERLOADQ_UNLOCK(); 1642 1643 /* 1644 * Do naive mark-and-sweep garbage collecting of old rules. 1645 * Reference flag is raised by pf_purge_expired_states() 1646 * and pf_purge_expired_src_nodes(). 1647 * 1648 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1649 * use a temporary queue. 1650 */ 1651 TAILQ_INIT(&tmpq); 1652 PF_UNLNKDRULES_LOCK(); 1653 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1654 if (!(r->rule_flag & PFRULE_REFS)) { 1655 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1656 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1657 } else 1658 r->rule_flag &= ~PFRULE_REFS; 1659 } 1660 PF_UNLNKDRULES_UNLOCK(); 1661 1662 if (!TAILQ_EMPTY(&tmpq)) { 1663 PF_RULES_WLOCK(); 1664 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1665 TAILQ_REMOVE(&tmpq, r, entries); 1666 pf_free_rule(r); 1667 } 1668 PF_RULES_WUNLOCK(); 1669 } 1670 } 1671 1672 void 1673 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1674 { 1675 switch (af) { 1676 #ifdef INET 1677 case AF_INET: { 1678 u_int32_t a = ntohl(addr->addr32[0]); 1679 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1680 (a>>8)&255, a&255); 1681 if (p) { 1682 p = ntohs(p); 1683 printf(":%u", p); 1684 } 1685 break; 1686 } 1687 #endif /* INET */ 1688 #ifdef INET6 1689 case AF_INET6: { 1690 u_int16_t b; 1691 u_int8_t i, curstart, curend, maxstart, maxend; 1692 curstart = curend = maxstart = maxend = 255; 1693 for (i = 0; i < 8; i++) { 1694 if (!addr->addr16[i]) { 1695 if (curstart == 255) 1696 curstart = i; 1697 curend = i; 1698 } else { 1699 if ((curend - curstart) > 1700 (maxend - maxstart)) { 1701 maxstart = curstart; 1702 maxend = curend; 1703 } 1704 curstart = curend = 255; 1705 } 1706 } 1707 if ((curend - curstart) > 1708 (maxend - maxstart)) { 1709 maxstart = curstart; 1710 maxend = curend; 1711 } 1712 for (i = 0; i < 8; i++) { 1713 if (i >= maxstart && i <= maxend) { 1714 if (i == 0) 1715 printf(":"); 1716 if (i == maxend) 1717 printf(":"); 1718 } else { 1719 b = ntohs(addr->addr16[i]); 1720 printf("%x", b); 1721 if (i < 7) 1722 printf(":"); 1723 } 1724 } 1725 if (p) { 1726 p = ntohs(p); 1727 printf("[%u]", p); 1728 } 1729 break; 1730 } 1731 #endif /* INET6 */ 1732 } 1733 } 1734 1735 void 1736 pf_print_state(struct pf_state *s) 1737 { 1738 pf_print_state_parts(s, NULL, NULL); 1739 } 1740 1741 static void 1742 pf_print_state_parts(struct pf_state *s, 1743 struct pf_state_key *skwp, struct pf_state_key *sksp) 1744 { 1745 struct pf_state_key *skw, *sks; 1746 u_int8_t proto, dir; 1747 1748 /* Do our best to fill these, but they're skipped if NULL */ 1749 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1750 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1751 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1752 dir = s ? s->direction : 0; 1753 1754 switch (proto) { 1755 case IPPROTO_IPV4: 1756 printf("IPv4"); 1757 break; 1758 case IPPROTO_IPV6: 1759 printf("IPv6"); 1760 break; 1761 case IPPROTO_TCP: 1762 printf("TCP"); 1763 break; 1764 case IPPROTO_UDP: 1765 printf("UDP"); 1766 break; 1767 case IPPROTO_ICMP: 1768 printf("ICMP"); 1769 break; 1770 case IPPROTO_ICMPV6: 1771 printf("ICMPv6"); 1772 break; 1773 default: 1774 printf("%u", skw->proto); 1775 break; 1776 } 1777 switch (dir) { 1778 case PF_IN: 1779 printf(" in"); 1780 break; 1781 case PF_OUT: 1782 printf(" out"); 1783 break; 1784 } 1785 if (skw) { 1786 printf(" wire: "); 1787 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1788 printf(" "); 1789 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1790 } 1791 if (sks) { 1792 printf(" stack: "); 1793 if (sks != skw) { 1794 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1795 printf(" "); 1796 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1797 } else 1798 printf("-"); 1799 } 1800 if (s) { 1801 if (proto == IPPROTO_TCP) { 1802 printf(" [lo=%u high=%u win=%u modulator=%u", 1803 s->src.seqlo, s->src.seqhi, 1804 s->src.max_win, s->src.seqdiff); 1805 if (s->src.wscale && s->dst.wscale) 1806 printf(" wscale=%u", 1807 s->src.wscale & PF_WSCALE_MASK); 1808 printf("]"); 1809 printf(" [lo=%u high=%u win=%u modulator=%u", 1810 s->dst.seqlo, s->dst.seqhi, 1811 s->dst.max_win, s->dst.seqdiff); 1812 if (s->src.wscale && s->dst.wscale) 1813 printf(" wscale=%u", 1814 s->dst.wscale & PF_WSCALE_MASK); 1815 printf("]"); 1816 } 1817 printf(" %u:%u", s->src.state, s->dst.state); 1818 } 1819 } 1820 1821 void 1822 pf_print_flags(u_int8_t f) 1823 { 1824 if (f) 1825 printf(" "); 1826 if (f & TH_FIN) 1827 printf("F"); 1828 if (f & TH_SYN) 1829 printf("S"); 1830 if (f & TH_RST) 1831 printf("R"); 1832 if (f & TH_PUSH) 1833 printf("P"); 1834 if (f & TH_ACK) 1835 printf("A"); 1836 if (f & TH_URG) 1837 printf("U"); 1838 if (f & TH_ECE) 1839 printf("E"); 1840 if (f & TH_CWR) 1841 printf("W"); 1842 } 1843 1844 #define PF_SET_SKIP_STEPS(i) \ 1845 do { \ 1846 while (head[i] != cur) { \ 1847 head[i]->skip[i].ptr = cur; \ 1848 head[i] = TAILQ_NEXT(head[i], entries); \ 1849 } \ 1850 } while (0) 1851 1852 void 1853 pf_calc_skip_steps(struct pf_rulequeue *rules) 1854 { 1855 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1856 int i; 1857 1858 cur = TAILQ_FIRST(rules); 1859 prev = cur; 1860 for (i = 0; i < PF_SKIP_COUNT; ++i) 1861 head[i] = cur; 1862 while (cur != NULL) { 1863 1864 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1865 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1866 if (cur->direction != prev->direction) 1867 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1868 if (cur->af != prev->af) 1869 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1870 if (cur->proto != prev->proto) 1871 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1872 if (cur->src.neg != prev->src.neg || 1873 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1874 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1875 if (cur->src.port[0] != prev->src.port[0] || 1876 cur->src.port[1] != prev->src.port[1] || 1877 cur->src.port_op != prev->src.port_op) 1878 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1879 if (cur->dst.neg != prev->dst.neg || 1880 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1881 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1882 if (cur->dst.port[0] != prev->dst.port[0] || 1883 cur->dst.port[1] != prev->dst.port[1] || 1884 cur->dst.port_op != prev->dst.port_op) 1885 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1886 1887 prev = cur; 1888 cur = TAILQ_NEXT(cur, entries); 1889 } 1890 for (i = 0; i < PF_SKIP_COUNT; ++i) 1891 PF_SET_SKIP_STEPS(i); 1892 } 1893 1894 static int 1895 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1896 { 1897 if (aw1->type != aw2->type) 1898 return (1); 1899 switch (aw1->type) { 1900 case PF_ADDR_ADDRMASK: 1901 case PF_ADDR_RANGE: 1902 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, 0)) 1903 return (1); 1904 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, 0)) 1905 return (1); 1906 return (0); 1907 case PF_ADDR_DYNIFTL: 1908 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 1909 case PF_ADDR_NOROUTE: 1910 case PF_ADDR_URPFFAILED: 1911 return (0); 1912 case PF_ADDR_TABLE: 1913 return (aw1->p.tbl != aw2->p.tbl); 1914 default: 1915 printf("invalid address type: %d\n", aw1->type); 1916 return (1); 1917 } 1918 } 1919 1920 u_int16_t 1921 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 1922 { 1923 u_int32_t l; 1924 1925 if (udp && !cksum) 1926 return (0x0000); 1927 l = cksum + old - new; 1928 l = (l >> 16) + (l & 65535); 1929 l = l & 65535; 1930 if (udp && !l) 1931 return (0xFFFF); 1932 return (l); 1933 } 1934 1935 static void 1936 pf_change_ap(struct pf_addr *a, u_int16_t *p, u_int16_t *ic, u_int16_t *pc, 1937 struct pf_addr *an, u_int16_t pn, u_int8_t u, sa_family_t af) 1938 { 1939 struct pf_addr ao; 1940 u_int16_t po = *p; 1941 1942 PF_ACPY(&ao, a, af); 1943 PF_ACPY(a, an, af); 1944 1945 *p = pn; 1946 1947 switch (af) { 1948 #ifdef INET 1949 case AF_INET: 1950 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 1951 ao.addr16[0], an->addr16[0], 0), 1952 ao.addr16[1], an->addr16[1], 0); 1953 *p = pn; 1954 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 1955 ao.addr16[0], an->addr16[0], u), 1956 ao.addr16[1], an->addr16[1], u), 1957 po, pn, u); 1958 break; 1959 #endif /* INET */ 1960 #ifdef INET6 1961 case AF_INET6: 1962 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 1963 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 1964 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 1965 ao.addr16[0], an->addr16[0], u), 1966 ao.addr16[1], an->addr16[1], u), 1967 ao.addr16[2], an->addr16[2], u), 1968 ao.addr16[3], an->addr16[3], u), 1969 ao.addr16[4], an->addr16[4], u), 1970 ao.addr16[5], an->addr16[5], u), 1971 ao.addr16[6], an->addr16[6], u), 1972 ao.addr16[7], an->addr16[7], u), 1973 po, pn, u); 1974 break; 1975 #endif /* INET6 */ 1976 } 1977 } 1978 1979 1980 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 1981 void 1982 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 1983 { 1984 u_int32_t ao; 1985 1986 memcpy(&ao, a, sizeof(ao)); 1987 memcpy(a, &an, sizeof(u_int32_t)); 1988 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 1989 ao % 65536, an % 65536, u); 1990 } 1991 1992 #ifdef INET6 1993 static void 1994 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 1995 { 1996 struct pf_addr ao; 1997 1998 PF_ACPY(&ao, a, AF_INET6); 1999 PF_ACPY(a, an, AF_INET6); 2000 2001 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2002 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2003 pf_cksum_fixup(pf_cksum_fixup(*c, 2004 ao.addr16[0], an->addr16[0], u), 2005 ao.addr16[1], an->addr16[1], u), 2006 ao.addr16[2], an->addr16[2], u), 2007 ao.addr16[3], an->addr16[3], u), 2008 ao.addr16[4], an->addr16[4], u), 2009 ao.addr16[5], an->addr16[5], u), 2010 ao.addr16[6], an->addr16[6], u), 2011 ao.addr16[7], an->addr16[7], u); 2012 } 2013 #endif /* INET6 */ 2014 2015 static void 2016 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2017 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2018 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2019 { 2020 struct pf_addr oia, ooa; 2021 2022 PF_ACPY(&oia, ia, af); 2023 if (oa) 2024 PF_ACPY(&ooa, oa, af); 2025 2026 /* Change inner protocol port, fix inner protocol checksum. */ 2027 if (ip != NULL) { 2028 u_int16_t oip = *ip; 2029 u_int32_t opc; 2030 2031 if (pc != NULL) 2032 opc = *pc; 2033 *ip = np; 2034 if (pc != NULL) 2035 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2036 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2037 if (pc != NULL) 2038 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2039 } 2040 /* Change inner ip address, fix inner ip and icmp checksums. */ 2041 PF_ACPY(ia, na, af); 2042 switch (af) { 2043 #ifdef INET 2044 case AF_INET: { 2045 u_int32_t oh2c = *h2c; 2046 2047 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2048 oia.addr16[0], ia->addr16[0], 0), 2049 oia.addr16[1], ia->addr16[1], 0); 2050 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2051 oia.addr16[0], ia->addr16[0], 0), 2052 oia.addr16[1], ia->addr16[1], 0); 2053 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2054 break; 2055 } 2056 #endif /* INET */ 2057 #ifdef INET6 2058 case AF_INET6: 2059 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2060 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2061 pf_cksum_fixup(pf_cksum_fixup(*ic, 2062 oia.addr16[0], ia->addr16[0], u), 2063 oia.addr16[1], ia->addr16[1], u), 2064 oia.addr16[2], ia->addr16[2], u), 2065 oia.addr16[3], ia->addr16[3], u), 2066 oia.addr16[4], ia->addr16[4], u), 2067 oia.addr16[5], ia->addr16[5], u), 2068 oia.addr16[6], ia->addr16[6], u), 2069 oia.addr16[7], ia->addr16[7], u); 2070 break; 2071 #endif /* INET6 */ 2072 } 2073 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2074 if (oa) { 2075 PF_ACPY(oa, na, af); 2076 switch (af) { 2077 #ifdef INET 2078 case AF_INET: 2079 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2080 ooa.addr16[0], oa->addr16[0], 0), 2081 ooa.addr16[1], oa->addr16[1], 0); 2082 break; 2083 #endif /* INET */ 2084 #ifdef INET6 2085 case AF_INET6: 2086 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2087 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2088 pf_cksum_fixup(pf_cksum_fixup(*ic, 2089 ooa.addr16[0], oa->addr16[0], u), 2090 ooa.addr16[1], oa->addr16[1], u), 2091 ooa.addr16[2], oa->addr16[2], u), 2092 ooa.addr16[3], oa->addr16[3], u), 2093 ooa.addr16[4], oa->addr16[4], u), 2094 ooa.addr16[5], oa->addr16[5], u), 2095 ooa.addr16[6], oa->addr16[6], u), 2096 ooa.addr16[7], oa->addr16[7], u); 2097 break; 2098 #endif /* INET6 */ 2099 } 2100 } 2101 } 2102 2103 2104 /* 2105 * Need to modulate the sequence numbers in the TCP SACK option 2106 * (credits to Krzysztof Pfaff for report and patch) 2107 */ 2108 static int 2109 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2110 struct tcphdr *th, struct pf_state_peer *dst) 2111 { 2112 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2113 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2114 int copyback = 0, i, olen; 2115 struct sackblk sack; 2116 2117 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2118 if (hlen < TCPOLEN_SACKLEN || 2119 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2120 return 0; 2121 2122 while (hlen >= TCPOLEN_SACKLEN) { 2123 olen = opt[1]; 2124 switch (*opt) { 2125 case TCPOPT_EOL: /* FALLTHROUGH */ 2126 case TCPOPT_NOP: 2127 opt++; 2128 hlen--; 2129 break; 2130 case TCPOPT_SACK: 2131 if (olen > hlen) 2132 olen = hlen; 2133 if (olen >= TCPOLEN_SACKLEN) { 2134 for (i = 2; i + TCPOLEN_SACK <= olen; 2135 i += TCPOLEN_SACK) { 2136 memcpy(&sack, &opt[i], sizeof(sack)); 2137 pf_change_a(&sack.start, &th->th_sum, 2138 htonl(ntohl(sack.start) - 2139 dst->seqdiff), 0); 2140 pf_change_a(&sack.end, &th->th_sum, 2141 htonl(ntohl(sack.end) - 2142 dst->seqdiff), 0); 2143 memcpy(&opt[i], &sack, sizeof(sack)); 2144 } 2145 copyback = 1; 2146 } 2147 /* FALLTHROUGH */ 2148 default: 2149 if (olen < 2) 2150 olen = 2; 2151 hlen -= olen; 2152 opt += olen; 2153 } 2154 } 2155 2156 if (copyback) 2157 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2158 return (copyback); 2159 } 2160 2161 static void 2162 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2163 const struct pf_addr *saddr, const struct pf_addr *daddr, 2164 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2165 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2166 u_int16_t rtag, struct ifnet *ifp) 2167 { 2168 struct pf_send_entry *pfse; 2169 struct mbuf *m; 2170 int len, tlen; 2171 #ifdef INET 2172 struct ip *h = NULL; 2173 #endif /* INET */ 2174 #ifdef INET6 2175 struct ip6_hdr *h6 = NULL; 2176 #endif /* INET6 */ 2177 struct tcphdr *th; 2178 char *opt; 2179 struct pf_mtag *pf_mtag; 2180 2181 len = 0; 2182 th = NULL; 2183 2184 /* maximum segment size tcp option */ 2185 tlen = sizeof(struct tcphdr); 2186 if (mss) 2187 tlen += 4; 2188 2189 switch (af) { 2190 #ifdef INET 2191 case AF_INET: 2192 len = sizeof(struct ip) + tlen; 2193 break; 2194 #endif /* INET */ 2195 #ifdef INET6 2196 case AF_INET6: 2197 len = sizeof(struct ip6_hdr) + tlen; 2198 break; 2199 #endif /* INET6 */ 2200 default: 2201 panic("%s: unsupported af %d", __func__, af); 2202 } 2203 2204 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2205 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2206 if (pfse == NULL) 2207 return; 2208 m = m_gethdr(M_NOWAIT, MT_DATA); 2209 if (m == NULL) { 2210 free(pfse, M_PFTEMP); 2211 return; 2212 } 2213 #ifdef MAC 2214 mac_netinet_firewall_send(m); 2215 #endif 2216 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2217 free(pfse, M_PFTEMP); 2218 m_freem(m); 2219 return; 2220 } 2221 if (tag) 2222 m->m_flags |= M_SKIP_FIREWALL; 2223 pf_mtag->tag = rtag; 2224 2225 if (r != NULL && r->rtableid >= 0) 2226 M_SETFIB(m, r->rtableid); 2227 2228 #ifdef ALTQ 2229 if (r != NULL && r->qid) { 2230 pf_mtag->qid = r->qid; 2231 2232 /* add hints for ecn */ 2233 pf_mtag->hdr = mtod(m, struct ip *); 2234 } 2235 #endif /* ALTQ */ 2236 m->m_data += max_linkhdr; 2237 m->m_pkthdr.len = m->m_len = len; 2238 m->m_pkthdr.rcvif = NULL; 2239 bzero(m->m_data, len); 2240 switch (af) { 2241 #ifdef INET 2242 case AF_INET: 2243 h = mtod(m, struct ip *); 2244 2245 /* IP header fields included in the TCP checksum */ 2246 h->ip_p = IPPROTO_TCP; 2247 h->ip_len = htons(tlen); 2248 h->ip_src.s_addr = saddr->v4.s_addr; 2249 h->ip_dst.s_addr = daddr->v4.s_addr; 2250 2251 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2252 break; 2253 #endif /* INET */ 2254 #ifdef INET6 2255 case AF_INET6: 2256 h6 = mtod(m, struct ip6_hdr *); 2257 2258 /* IP header fields included in the TCP checksum */ 2259 h6->ip6_nxt = IPPROTO_TCP; 2260 h6->ip6_plen = htons(tlen); 2261 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2262 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2263 2264 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2265 break; 2266 #endif /* INET6 */ 2267 } 2268 2269 /* TCP header */ 2270 th->th_sport = sport; 2271 th->th_dport = dport; 2272 th->th_seq = htonl(seq); 2273 th->th_ack = htonl(ack); 2274 th->th_off = tlen >> 2; 2275 th->th_flags = flags; 2276 th->th_win = htons(win); 2277 2278 if (mss) { 2279 opt = (char *)(th + 1); 2280 opt[0] = TCPOPT_MAXSEG; 2281 opt[1] = 4; 2282 HTONS(mss); 2283 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2284 } 2285 2286 switch (af) { 2287 #ifdef INET 2288 case AF_INET: 2289 /* TCP checksum */ 2290 th->th_sum = in_cksum(m, len); 2291 2292 /* Finish the IP header */ 2293 h->ip_v = 4; 2294 h->ip_hl = sizeof(*h) >> 2; 2295 h->ip_tos = IPTOS_LOWDELAY; 2296 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2297 h->ip_len = htons(len); 2298 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2299 h->ip_sum = 0; 2300 2301 pfse->pfse_type = PFSE_IP; 2302 break; 2303 #endif /* INET */ 2304 #ifdef INET6 2305 case AF_INET6: 2306 /* TCP checksum */ 2307 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2308 sizeof(struct ip6_hdr), tlen); 2309 2310 h6->ip6_vfc |= IPV6_VERSION; 2311 h6->ip6_hlim = IPV6_DEFHLIM; 2312 2313 pfse->pfse_type = PFSE_IP6; 2314 break; 2315 #endif /* INET6 */ 2316 } 2317 pfse->pfse_m = m; 2318 pf_send(pfse); 2319 } 2320 2321 static void 2322 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2323 struct pf_rule *r) 2324 { 2325 struct pf_send_entry *pfse; 2326 struct mbuf *m0; 2327 struct pf_mtag *pf_mtag; 2328 2329 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2330 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2331 if (pfse == NULL) 2332 return; 2333 2334 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2335 free(pfse, M_PFTEMP); 2336 return; 2337 } 2338 2339 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2340 free(pfse, M_PFTEMP); 2341 return; 2342 } 2343 /* XXX: revisit */ 2344 m0->m_flags |= M_SKIP_FIREWALL; 2345 2346 if (r->rtableid >= 0) 2347 M_SETFIB(m0, r->rtableid); 2348 2349 #ifdef ALTQ 2350 if (r->qid) { 2351 pf_mtag->qid = r->qid; 2352 /* add hints for ecn */ 2353 pf_mtag->hdr = mtod(m0, struct ip *); 2354 } 2355 #endif /* ALTQ */ 2356 2357 switch (af) { 2358 #ifdef INET 2359 case AF_INET: 2360 pfse->pfse_type = PFSE_ICMP; 2361 break; 2362 #endif /* INET */ 2363 #ifdef INET6 2364 case AF_INET6: 2365 pfse->pfse_type = PFSE_ICMP6; 2366 break; 2367 #endif /* INET6 */ 2368 } 2369 pfse->pfse_m = m0; 2370 pfse->icmpopts.type = type; 2371 pfse->icmpopts.code = code; 2372 pf_send(pfse); 2373 } 2374 2375 /* 2376 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2377 * If n is 0, they match if they are equal. If n is != 0, they match if they 2378 * are different. 2379 */ 2380 int 2381 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2382 struct pf_addr *b, sa_family_t af) 2383 { 2384 int match = 0; 2385 2386 switch (af) { 2387 #ifdef INET 2388 case AF_INET: 2389 if ((a->addr32[0] & m->addr32[0]) == 2390 (b->addr32[0] & m->addr32[0])) 2391 match++; 2392 break; 2393 #endif /* INET */ 2394 #ifdef INET6 2395 case AF_INET6: 2396 if (((a->addr32[0] & m->addr32[0]) == 2397 (b->addr32[0] & m->addr32[0])) && 2398 ((a->addr32[1] & m->addr32[1]) == 2399 (b->addr32[1] & m->addr32[1])) && 2400 ((a->addr32[2] & m->addr32[2]) == 2401 (b->addr32[2] & m->addr32[2])) && 2402 ((a->addr32[3] & m->addr32[3]) == 2403 (b->addr32[3] & m->addr32[3]))) 2404 match++; 2405 break; 2406 #endif /* INET6 */ 2407 } 2408 if (match) { 2409 if (n) 2410 return (0); 2411 else 2412 return (1); 2413 } else { 2414 if (n) 2415 return (1); 2416 else 2417 return (0); 2418 } 2419 } 2420 2421 /* 2422 * Return 1 if b <= a <= e, otherwise return 0. 2423 */ 2424 int 2425 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2426 struct pf_addr *a, sa_family_t af) 2427 { 2428 switch (af) { 2429 #ifdef INET 2430 case AF_INET: 2431 if ((a->addr32[0] < b->addr32[0]) || 2432 (a->addr32[0] > e->addr32[0])) 2433 return (0); 2434 break; 2435 #endif /* INET */ 2436 #ifdef INET6 2437 case AF_INET6: { 2438 int i; 2439 2440 /* check a >= b */ 2441 for (i = 0; i < 4; ++i) 2442 if (a->addr32[i] > b->addr32[i]) 2443 break; 2444 else if (a->addr32[i] < b->addr32[i]) 2445 return (0); 2446 /* check a <= e */ 2447 for (i = 0; i < 4; ++i) 2448 if (a->addr32[i] < e->addr32[i]) 2449 break; 2450 else if (a->addr32[i] > e->addr32[i]) 2451 return (0); 2452 break; 2453 } 2454 #endif /* INET6 */ 2455 } 2456 return (1); 2457 } 2458 2459 static int 2460 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2461 { 2462 switch (op) { 2463 case PF_OP_IRG: 2464 return ((p > a1) && (p < a2)); 2465 case PF_OP_XRG: 2466 return ((p < a1) || (p > a2)); 2467 case PF_OP_RRG: 2468 return ((p >= a1) && (p <= a2)); 2469 case PF_OP_EQ: 2470 return (p == a1); 2471 case PF_OP_NE: 2472 return (p != a1); 2473 case PF_OP_LT: 2474 return (p < a1); 2475 case PF_OP_LE: 2476 return (p <= a1); 2477 case PF_OP_GT: 2478 return (p > a1); 2479 case PF_OP_GE: 2480 return (p >= a1); 2481 } 2482 return (0); /* never reached */ 2483 } 2484 2485 int 2486 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2487 { 2488 NTOHS(a1); 2489 NTOHS(a2); 2490 NTOHS(p); 2491 return (pf_match(op, a1, a2, p)); 2492 } 2493 2494 static int 2495 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2496 { 2497 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2498 return (0); 2499 return (pf_match(op, a1, a2, u)); 2500 } 2501 2502 static int 2503 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2504 { 2505 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2506 return (0); 2507 return (pf_match(op, a1, a2, g)); 2508 } 2509 2510 int 2511 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2512 { 2513 if (*tag == -1) 2514 *tag = mtag; 2515 2516 return ((!r->match_tag_not && r->match_tag == *tag) || 2517 (r->match_tag_not && r->match_tag != *tag)); 2518 } 2519 2520 int 2521 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2522 { 2523 2524 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2525 2526 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2527 return (ENOMEM); 2528 2529 pd->pf_mtag->tag = tag; 2530 2531 return (0); 2532 } 2533 2534 #define PF_ANCHOR_STACKSIZE 32 2535 struct pf_anchor_stackframe { 2536 struct pf_ruleset *rs; 2537 struct pf_rule *r; /* XXX: + match bit */ 2538 struct pf_anchor *child; 2539 }; 2540 2541 /* 2542 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2543 */ 2544 #define PF_ANCHORSTACK_MATCH 0x00000001 2545 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2546 2547 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2548 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2549 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2550 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2551 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2552 } while (0) 2553 2554 void 2555 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2556 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2557 int *match) 2558 { 2559 struct pf_anchor_stackframe *f; 2560 2561 PF_RULES_RASSERT(); 2562 2563 if (match) 2564 *match = 0; 2565 if (*depth >= PF_ANCHOR_STACKSIZE) { 2566 printf("%s: anchor stack overflow on %s\n", 2567 __func__, (*r)->anchor->name); 2568 *r = TAILQ_NEXT(*r, entries); 2569 return; 2570 } else if (*depth == 0 && a != NULL) 2571 *a = *r; 2572 f = stack + (*depth)++; 2573 f->rs = *rs; 2574 f->r = *r; 2575 if ((*r)->anchor_wildcard) { 2576 struct pf_anchor_node *parent = &(*r)->anchor->children; 2577 2578 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2579 *r = NULL; 2580 return; 2581 } 2582 *rs = &f->child->ruleset; 2583 } else { 2584 f->child = NULL; 2585 *rs = &(*r)->anchor->ruleset; 2586 } 2587 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2588 } 2589 2590 int 2591 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2592 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2593 int *match) 2594 { 2595 struct pf_anchor_stackframe *f; 2596 struct pf_rule *fr; 2597 int quick = 0; 2598 2599 PF_RULES_RASSERT(); 2600 2601 do { 2602 if (*depth <= 0) 2603 break; 2604 f = stack + *depth - 1; 2605 fr = PF_ANCHOR_RULE(f); 2606 if (f->child != NULL) { 2607 struct pf_anchor_node *parent; 2608 2609 /* 2610 * This block traverses through 2611 * a wildcard anchor. 2612 */ 2613 parent = &fr->anchor->children; 2614 if (match != NULL && *match) { 2615 /* 2616 * If any of "*" matched, then 2617 * "foo/ *" matched, mark frame 2618 * appropriately. 2619 */ 2620 PF_ANCHOR_SET_MATCH(f); 2621 *match = 0; 2622 } 2623 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2624 if (f->child != NULL) { 2625 *rs = &f->child->ruleset; 2626 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2627 if (*r == NULL) 2628 continue; 2629 else 2630 break; 2631 } 2632 } 2633 (*depth)--; 2634 if (*depth == 0 && a != NULL) 2635 *a = NULL; 2636 *rs = f->rs; 2637 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2638 quick = fr->quick; 2639 *r = TAILQ_NEXT(fr, entries); 2640 } while (*r == NULL); 2641 2642 return (quick); 2643 } 2644 2645 #ifdef INET6 2646 void 2647 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2648 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2649 { 2650 switch (af) { 2651 #ifdef INET 2652 case AF_INET: 2653 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2654 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2655 break; 2656 #endif /* INET */ 2657 case AF_INET6: 2658 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2659 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2660 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2661 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2662 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2663 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2664 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2665 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2666 break; 2667 } 2668 } 2669 2670 void 2671 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2672 { 2673 switch (af) { 2674 #ifdef INET 2675 case AF_INET: 2676 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2677 break; 2678 #endif /* INET */ 2679 case AF_INET6: 2680 if (addr->addr32[3] == 0xffffffff) { 2681 addr->addr32[3] = 0; 2682 if (addr->addr32[2] == 0xffffffff) { 2683 addr->addr32[2] = 0; 2684 if (addr->addr32[1] == 0xffffffff) { 2685 addr->addr32[1] = 0; 2686 addr->addr32[0] = 2687 htonl(ntohl(addr->addr32[0]) + 1); 2688 } else 2689 addr->addr32[1] = 2690 htonl(ntohl(addr->addr32[1]) + 1); 2691 } else 2692 addr->addr32[2] = 2693 htonl(ntohl(addr->addr32[2]) + 1); 2694 } else 2695 addr->addr32[3] = 2696 htonl(ntohl(addr->addr32[3]) + 1); 2697 break; 2698 } 2699 } 2700 #endif /* INET6 */ 2701 2702 int 2703 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2704 { 2705 struct pf_addr *saddr, *daddr; 2706 u_int16_t sport, dport; 2707 struct inpcbinfo *pi; 2708 struct inpcb *inp; 2709 2710 pd->lookup.uid = UID_MAX; 2711 pd->lookup.gid = GID_MAX; 2712 2713 switch (pd->proto) { 2714 case IPPROTO_TCP: 2715 if (pd->hdr.tcp == NULL) 2716 return (-1); 2717 sport = pd->hdr.tcp->th_sport; 2718 dport = pd->hdr.tcp->th_dport; 2719 pi = &V_tcbinfo; 2720 break; 2721 case IPPROTO_UDP: 2722 if (pd->hdr.udp == NULL) 2723 return (-1); 2724 sport = pd->hdr.udp->uh_sport; 2725 dport = pd->hdr.udp->uh_dport; 2726 pi = &V_udbinfo; 2727 break; 2728 default: 2729 return (-1); 2730 } 2731 if (direction == PF_IN) { 2732 saddr = pd->src; 2733 daddr = pd->dst; 2734 } else { 2735 u_int16_t p; 2736 2737 p = sport; 2738 sport = dport; 2739 dport = p; 2740 saddr = pd->dst; 2741 daddr = pd->src; 2742 } 2743 switch (pd->af) { 2744 #ifdef INET 2745 case AF_INET: 2746 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2747 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2748 if (inp == NULL) { 2749 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2750 daddr->v4, dport, INPLOOKUP_WILDCARD | 2751 INPLOOKUP_RLOCKPCB, NULL, m); 2752 if (inp == NULL) 2753 return (-1); 2754 } 2755 break; 2756 #endif /* INET */ 2757 #ifdef INET6 2758 case AF_INET6: 2759 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2760 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2761 if (inp == NULL) { 2762 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2763 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2764 INPLOOKUP_RLOCKPCB, NULL, m); 2765 if (inp == NULL) 2766 return (-1); 2767 } 2768 break; 2769 #endif /* INET6 */ 2770 2771 default: 2772 return (-1); 2773 } 2774 INP_RLOCK_ASSERT(inp); 2775 pd->lookup.uid = inp->inp_cred->cr_uid; 2776 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2777 INP_RUNLOCK(inp); 2778 2779 return (1); 2780 } 2781 2782 static u_int8_t 2783 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2784 { 2785 int hlen; 2786 u_int8_t hdr[60]; 2787 u_int8_t *opt, optlen; 2788 u_int8_t wscale = 0; 2789 2790 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2791 if (hlen <= sizeof(struct tcphdr)) 2792 return (0); 2793 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2794 return (0); 2795 opt = hdr + sizeof(struct tcphdr); 2796 hlen -= sizeof(struct tcphdr); 2797 while (hlen >= 3) { 2798 switch (*opt) { 2799 case TCPOPT_EOL: 2800 case TCPOPT_NOP: 2801 ++opt; 2802 --hlen; 2803 break; 2804 case TCPOPT_WINDOW: 2805 wscale = opt[2]; 2806 if (wscale > TCP_MAX_WINSHIFT) 2807 wscale = TCP_MAX_WINSHIFT; 2808 wscale |= PF_WSCALE_FLAG; 2809 /* FALLTHROUGH */ 2810 default: 2811 optlen = opt[1]; 2812 if (optlen < 2) 2813 optlen = 2; 2814 hlen -= optlen; 2815 opt += optlen; 2816 break; 2817 } 2818 } 2819 return (wscale); 2820 } 2821 2822 static u_int16_t 2823 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2824 { 2825 int hlen; 2826 u_int8_t hdr[60]; 2827 u_int8_t *opt, optlen; 2828 u_int16_t mss = V_tcp_mssdflt; 2829 2830 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2831 if (hlen <= sizeof(struct tcphdr)) 2832 return (0); 2833 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2834 return (0); 2835 opt = hdr + sizeof(struct tcphdr); 2836 hlen -= sizeof(struct tcphdr); 2837 while (hlen >= TCPOLEN_MAXSEG) { 2838 switch (*opt) { 2839 case TCPOPT_EOL: 2840 case TCPOPT_NOP: 2841 ++opt; 2842 --hlen; 2843 break; 2844 case TCPOPT_MAXSEG: 2845 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 2846 NTOHS(mss); 2847 /* FALLTHROUGH */ 2848 default: 2849 optlen = opt[1]; 2850 if (optlen < 2) 2851 optlen = 2; 2852 hlen -= optlen; 2853 opt += optlen; 2854 break; 2855 } 2856 } 2857 return (mss); 2858 } 2859 2860 static u_int16_t 2861 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 2862 { 2863 #ifdef INET 2864 struct sockaddr_in *dst; 2865 struct route ro; 2866 #endif /* INET */ 2867 #ifdef INET6 2868 struct sockaddr_in6 *dst6; 2869 struct route_in6 ro6; 2870 #endif /* INET6 */ 2871 struct rtentry *rt = NULL; 2872 int hlen = 0; 2873 u_int16_t mss = V_tcp_mssdflt; 2874 2875 switch (af) { 2876 #ifdef INET 2877 case AF_INET: 2878 hlen = sizeof(struct ip); 2879 bzero(&ro, sizeof(ro)); 2880 dst = (struct sockaddr_in *)&ro.ro_dst; 2881 dst->sin_family = AF_INET; 2882 dst->sin_len = sizeof(*dst); 2883 dst->sin_addr = addr->v4; 2884 in_rtalloc_ign(&ro, 0, rtableid); 2885 rt = ro.ro_rt; 2886 break; 2887 #endif /* INET */ 2888 #ifdef INET6 2889 case AF_INET6: 2890 hlen = sizeof(struct ip6_hdr); 2891 bzero(&ro6, sizeof(ro6)); 2892 dst6 = (struct sockaddr_in6 *)&ro6.ro_dst; 2893 dst6->sin6_family = AF_INET6; 2894 dst6->sin6_len = sizeof(*dst6); 2895 dst6->sin6_addr = addr->v6; 2896 in6_rtalloc_ign(&ro6, 0, rtableid); 2897 rt = ro6.ro_rt; 2898 break; 2899 #endif /* INET6 */ 2900 } 2901 2902 if (rt && rt->rt_ifp) { 2903 mss = rt->rt_ifp->if_mtu - hlen - sizeof(struct tcphdr); 2904 mss = max(V_tcp_mssdflt, mss); 2905 RTFREE(rt); 2906 } 2907 mss = min(mss, offer); 2908 mss = max(mss, 64); /* sanity - at least max opt space */ 2909 return (mss); 2910 } 2911 2912 static u_int32_t 2913 pf_tcp_iss(struct pf_pdesc *pd) 2914 { 2915 MD5_CTX ctx; 2916 u_int32_t digest[4]; 2917 2918 if (V_pf_tcp_secret_init == 0) { 2919 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 2920 MD5Init(&V_pf_tcp_secret_ctx); 2921 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 2922 sizeof(V_pf_tcp_secret)); 2923 V_pf_tcp_secret_init = 1; 2924 } 2925 2926 ctx = V_pf_tcp_secret_ctx; 2927 2928 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 2929 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 2930 if (pd->af == AF_INET6) { 2931 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 2932 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 2933 } else { 2934 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 2935 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 2936 } 2937 MD5Final((u_char *)digest, &ctx); 2938 V_pf_tcp_iss_off += 4096; 2939 #define ISN_RANDOM_INCREMENT (4096 - 1) 2940 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 2941 V_pf_tcp_iss_off); 2942 #undef ISN_RANDOM_INCREMENT 2943 } 2944 2945 static int 2946 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 2947 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 2948 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 2949 { 2950 struct pf_rule *nr = NULL; 2951 struct pf_addr * const saddr = pd->src; 2952 struct pf_addr * const daddr = pd->dst; 2953 sa_family_t af = pd->af; 2954 struct pf_rule *r, *a = NULL; 2955 struct pf_ruleset *ruleset = NULL; 2956 struct pf_src_node *nsn = NULL; 2957 struct tcphdr *th = pd->hdr.tcp; 2958 struct pf_state_key *sk = NULL, *nk = NULL; 2959 u_short reason; 2960 int rewrite = 0, hdrlen = 0; 2961 int tag = -1, rtableid = -1; 2962 int asd = 0; 2963 int match = 0; 2964 int state_icmp = 0; 2965 u_int16_t sport = 0, dport = 0; 2966 u_int16_t bproto_sum = 0, bip_sum = 0; 2967 u_int8_t icmptype = 0, icmpcode = 0; 2968 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 2969 2970 PF_RULES_RASSERT(); 2971 2972 if (inp != NULL) { 2973 INP_LOCK_ASSERT(inp); 2974 pd->lookup.uid = inp->inp_cred->cr_uid; 2975 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2976 pd->lookup.done = 1; 2977 } 2978 2979 switch (pd->proto) { 2980 case IPPROTO_TCP: 2981 sport = th->th_sport; 2982 dport = th->th_dport; 2983 hdrlen = sizeof(*th); 2984 break; 2985 case IPPROTO_UDP: 2986 sport = pd->hdr.udp->uh_sport; 2987 dport = pd->hdr.udp->uh_dport; 2988 hdrlen = sizeof(*pd->hdr.udp); 2989 break; 2990 #ifdef INET 2991 case IPPROTO_ICMP: 2992 if (pd->af != AF_INET) 2993 break; 2994 sport = dport = pd->hdr.icmp->icmp_id; 2995 hdrlen = sizeof(*pd->hdr.icmp); 2996 icmptype = pd->hdr.icmp->icmp_type; 2997 icmpcode = pd->hdr.icmp->icmp_code; 2998 2999 if (icmptype == ICMP_UNREACH || 3000 icmptype == ICMP_SOURCEQUENCH || 3001 icmptype == ICMP_REDIRECT || 3002 icmptype == ICMP_TIMXCEED || 3003 icmptype == ICMP_PARAMPROB) 3004 state_icmp++; 3005 break; 3006 #endif /* INET */ 3007 #ifdef INET6 3008 case IPPROTO_ICMPV6: 3009 if (af != AF_INET6) 3010 break; 3011 sport = dport = pd->hdr.icmp6->icmp6_id; 3012 hdrlen = sizeof(*pd->hdr.icmp6); 3013 icmptype = pd->hdr.icmp6->icmp6_type; 3014 icmpcode = pd->hdr.icmp6->icmp6_code; 3015 3016 if (icmptype == ICMP6_DST_UNREACH || 3017 icmptype == ICMP6_PACKET_TOO_BIG || 3018 icmptype == ICMP6_TIME_EXCEEDED || 3019 icmptype == ICMP6_PARAM_PROB) 3020 state_icmp++; 3021 break; 3022 #endif /* INET6 */ 3023 default: 3024 sport = dport = hdrlen = 0; 3025 break; 3026 } 3027 3028 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3029 3030 /* check packet for BINAT/NAT/RDR */ 3031 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3032 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3033 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3034 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3035 3036 if (pd->ip_sum) 3037 bip_sum = *pd->ip_sum; 3038 3039 switch (pd->proto) { 3040 case IPPROTO_TCP: 3041 bproto_sum = th->th_sum; 3042 pd->proto_sum = &th->th_sum; 3043 3044 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3045 nk->port[pd->sidx] != sport) { 3046 pf_change_ap(saddr, &th->th_sport, pd->ip_sum, 3047 &th->th_sum, &nk->addr[pd->sidx], 3048 nk->port[pd->sidx], 0, af); 3049 pd->sport = &th->th_sport; 3050 sport = th->th_sport; 3051 } 3052 3053 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3054 nk->port[pd->didx] != dport) { 3055 pf_change_ap(daddr, &th->th_dport, pd->ip_sum, 3056 &th->th_sum, &nk->addr[pd->didx], 3057 nk->port[pd->didx], 0, af); 3058 dport = th->th_dport; 3059 pd->dport = &th->th_dport; 3060 } 3061 rewrite++; 3062 break; 3063 case IPPROTO_UDP: 3064 bproto_sum = pd->hdr.udp->uh_sum; 3065 pd->proto_sum = &pd->hdr.udp->uh_sum; 3066 3067 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3068 nk->port[pd->sidx] != sport) { 3069 pf_change_ap(saddr, &pd->hdr.udp->uh_sport, 3070 pd->ip_sum, &pd->hdr.udp->uh_sum, 3071 &nk->addr[pd->sidx], 3072 nk->port[pd->sidx], 1, af); 3073 sport = pd->hdr.udp->uh_sport; 3074 pd->sport = &pd->hdr.udp->uh_sport; 3075 } 3076 3077 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3078 nk->port[pd->didx] != dport) { 3079 pf_change_ap(daddr, &pd->hdr.udp->uh_dport, 3080 pd->ip_sum, &pd->hdr.udp->uh_sum, 3081 &nk->addr[pd->didx], 3082 nk->port[pd->didx], 1, af); 3083 dport = pd->hdr.udp->uh_dport; 3084 pd->dport = &pd->hdr.udp->uh_dport; 3085 } 3086 rewrite++; 3087 break; 3088 #ifdef INET 3089 case IPPROTO_ICMP: 3090 nk->port[0] = nk->port[1]; 3091 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3092 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3093 nk->addr[pd->sidx].v4.s_addr, 0); 3094 3095 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3096 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3097 nk->addr[pd->didx].v4.s_addr, 0); 3098 3099 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3100 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3101 pd->hdr.icmp->icmp_cksum, sport, 3102 nk->port[1], 0); 3103 pd->hdr.icmp->icmp_id = nk->port[1]; 3104 pd->sport = &pd->hdr.icmp->icmp_id; 3105 } 3106 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3107 break; 3108 #endif /* INET */ 3109 #ifdef INET6 3110 case IPPROTO_ICMPV6: 3111 nk->port[0] = nk->port[1]; 3112 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3113 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3114 &nk->addr[pd->sidx], 0); 3115 3116 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3117 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3118 &nk->addr[pd->didx], 0); 3119 rewrite++; 3120 break; 3121 #endif /* INET */ 3122 default: 3123 switch (af) { 3124 #ifdef INET 3125 case AF_INET: 3126 if (PF_ANEQ(saddr, 3127 &nk->addr[pd->sidx], AF_INET)) 3128 pf_change_a(&saddr->v4.s_addr, 3129 pd->ip_sum, 3130 nk->addr[pd->sidx].v4.s_addr, 0); 3131 3132 if (PF_ANEQ(daddr, 3133 &nk->addr[pd->didx], AF_INET)) 3134 pf_change_a(&daddr->v4.s_addr, 3135 pd->ip_sum, 3136 nk->addr[pd->didx].v4.s_addr, 0); 3137 break; 3138 #endif /* INET */ 3139 #ifdef INET6 3140 case AF_INET6: 3141 if (PF_ANEQ(saddr, 3142 &nk->addr[pd->sidx], AF_INET6)) 3143 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3144 3145 if (PF_ANEQ(daddr, 3146 &nk->addr[pd->didx], AF_INET6)) 3147 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3148 break; 3149 #endif /* INET */ 3150 } 3151 break; 3152 } 3153 if (nr->natpass) 3154 r = NULL; 3155 pd->nat_rule = nr; 3156 } 3157 3158 while (r != NULL) { 3159 r->evaluations++; 3160 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3161 r = r->skip[PF_SKIP_IFP].ptr; 3162 else if (r->direction && r->direction != direction) 3163 r = r->skip[PF_SKIP_DIR].ptr; 3164 else if (r->af && r->af != af) 3165 r = r->skip[PF_SKIP_AF].ptr; 3166 else if (r->proto && r->proto != pd->proto) 3167 r = r->skip[PF_SKIP_PROTO].ptr; 3168 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3169 r->src.neg, kif, M_GETFIB(m))) 3170 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3171 /* tcp/udp only. port_op always 0 in other cases */ 3172 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3173 r->src.port[0], r->src.port[1], sport)) 3174 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3175 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3176 r->dst.neg, NULL, M_GETFIB(m))) 3177 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3178 /* tcp/udp only. port_op always 0 in other cases */ 3179 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3180 r->dst.port[0], r->dst.port[1], dport)) 3181 r = r->skip[PF_SKIP_DST_PORT].ptr; 3182 /* icmp only. type always 0 in other cases */ 3183 else if (r->type && r->type != icmptype + 1) 3184 r = TAILQ_NEXT(r, entries); 3185 /* icmp only. type always 0 in other cases */ 3186 else if (r->code && r->code != icmpcode + 1) 3187 r = TAILQ_NEXT(r, entries); 3188 else if (r->tos && !(r->tos == pd->tos)) 3189 r = TAILQ_NEXT(r, entries); 3190 else if (r->rule_flag & PFRULE_FRAGMENT) 3191 r = TAILQ_NEXT(r, entries); 3192 else if (pd->proto == IPPROTO_TCP && 3193 (r->flagset & th->th_flags) != r->flags) 3194 r = TAILQ_NEXT(r, entries); 3195 /* tcp/udp only. uid.op always 0 in other cases */ 3196 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3197 pf_socket_lookup(direction, pd, m), 1)) && 3198 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3199 pd->lookup.uid)) 3200 r = TAILQ_NEXT(r, entries); 3201 /* tcp/udp only. gid.op always 0 in other cases */ 3202 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3203 pf_socket_lookup(direction, pd, m), 1)) && 3204 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3205 pd->lookup.gid)) 3206 r = TAILQ_NEXT(r, entries); 3207 else if (r->prob && 3208 r->prob <= arc4random()) 3209 r = TAILQ_NEXT(r, entries); 3210 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3211 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3212 r = TAILQ_NEXT(r, entries); 3213 else if (r->os_fingerprint != PF_OSFP_ANY && 3214 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3215 pf_osfp_fingerprint(pd, m, off, th), 3216 r->os_fingerprint))) 3217 r = TAILQ_NEXT(r, entries); 3218 else { 3219 if (r->tag) 3220 tag = r->tag; 3221 if (r->rtableid >= 0) 3222 rtableid = r->rtableid; 3223 if (r->anchor == NULL) { 3224 match = 1; 3225 *rm = r; 3226 *am = a; 3227 *rsm = ruleset; 3228 if ((*rm)->quick) 3229 break; 3230 r = TAILQ_NEXT(r, entries); 3231 } else 3232 pf_step_into_anchor(anchor_stack, &asd, 3233 &ruleset, PF_RULESET_FILTER, &r, &a, 3234 &match); 3235 } 3236 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3237 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3238 break; 3239 } 3240 r = *rm; 3241 a = *am; 3242 ruleset = *rsm; 3243 3244 REASON_SET(&reason, PFRES_MATCH); 3245 3246 if (r->log || (nr != NULL && nr->log)) { 3247 if (rewrite) 3248 m_copyback(m, off, hdrlen, pd->hdr.any); 3249 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3250 ruleset, pd, 1); 3251 } 3252 3253 if ((r->action == PF_DROP) && 3254 ((r->rule_flag & PFRULE_RETURNRST) || 3255 (r->rule_flag & PFRULE_RETURNICMP) || 3256 (r->rule_flag & PFRULE_RETURN))) { 3257 /* undo NAT changes, if they have taken place */ 3258 if (nr != NULL) { 3259 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3260 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3261 if (pd->sport) 3262 *pd->sport = sk->port[pd->sidx]; 3263 if (pd->dport) 3264 *pd->dport = sk->port[pd->didx]; 3265 if (pd->proto_sum) 3266 *pd->proto_sum = bproto_sum; 3267 if (pd->ip_sum) 3268 *pd->ip_sum = bip_sum; 3269 m_copyback(m, off, hdrlen, pd->hdr.any); 3270 } 3271 if (pd->proto == IPPROTO_TCP && 3272 ((r->rule_flag & PFRULE_RETURNRST) || 3273 (r->rule_flag & PFRULE_RETURN)) && 3274 !(th->th_flags & TH_RST)) { 3275 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3276 int len = 0; 3277 #ifdef INET 3278 struct ip *h4; 3279 #endif 3280 #ifdef INET6 3281 struct ip6_hdr *h6; 3282 #endif 3283 3284 switch (af) { 3285 #ifdef INET 3286 case AF_INET: 3287 h4 = mtod(m, struct ip *); 3288 len = ntohs(h4->ip_len) - off; 3289 break; 3290 #endif 3291 #ifdef INET6 3292 case AF_INET6: 3293 h6 = mtod(m, struct ip6_hdr *); 3294 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3295 break; 3296 #endif 3297 } 3298 3299 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3300 REASON_SET(&reason, PFRES_PROTCKSUM); 3301 else { 3302 if (th->th_flags & TH_SYN) 3303 ack++; 3304 if (th->th_flags & TH_FIN) 3305 ack++; 3306 pf_send_tcp(m, r, af, pd->dst, 3307 pd->src, th->th_dport, th->th_sport, 3308 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3309 r->return_ttl, 1, 0, kif->pfik_ifp); 3310 } 3311 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3312 r->return_icmp) 3313 pf_send_icmp(m, r->return_icmp >> 8, 3314 r->return_icmp & 255, af, r); 3315 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3316 r->return_icmp6) 3317 pf_send_icmp(m, r->return_icmp6 >> 8, 3318 r->return_icmp6 & 255, af, r); 3319 } 3320 3321 if (r->action == PF_DROP) 3322 goto cleanup; 3323 3324 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3325 REASON_SET(&reason, PFRES_MEMORY); 3326 goto cleanup; 3327 } 3328 if (rtableid >= 0) 3329 M_SETFIB(m, rtableid); 3330 3331 if (!state_icmp && (r->keep_state || nr != NULL || 3332 (pd->flags & PFDESC_TCP_NORM))) { 3333 int action; 3334 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3335 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3336 hdrlen); 3337 if (action != PF_PASS) 3338 return (action); 3339 } else { 3340 if (sk != NULL) 3341 uma_zfree(V_pf_state_key_z, sk); 3342 if (nk != NULL) 3343 uma_zfree(V_pf_state_key_z, nk); 3344 } 3345 3346 /* copy back packet headers if we performed NAT operations */ 3347 if (rewrite) 3348 m_copyback(m, off, hdrlen, pd->hdr.any); 3349 3350 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3351 direction == PF_OUT && 3352 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3353 /* 3354 * We want the state created, but we dont 3355 * want to send this in case a partner 3356 * firewall has to know about it to allow 3357 * replies through it. 3358 */ 3359 return (PF_DEFER); 3360 3361 return (PF_PASS); 3362 3363 cleanup: 3364 if (sk != NULL) 3365 uma_zfree(V_pf_state_key_z, sk); 3366 if (nk != NULL) 3367 uma_zfree(V_pf_state_key_z, nk); 3368 return (PF_DROP); 3369 } 3370 3371 static int 3372 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3373 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3374 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3375 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3376 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3377 { 3378 struct pf_state *s = NULL; 3379 struct pf_src_node *sn = NULL; 3380 struct tcphdr *th = pd->hdr.tcp; 3381 u_int16_t mss = V_tcp_mssdflt; 3382 u_short reason; 3383 3384 /* check maximums */ 3385 if (r->max_states && 3386 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3387 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3388 REASON_SET(&reason, PFRES_MAXSTATES); 3389 return (PF_DROP); 3390 } 3391 /* src node for filter rule */ 3392 if ((r->rule_flag & PFRULE_SRCTRACK || 3393 r->rpool.opts & PF_POOL_STICKYADDR) && 3394 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3395 REASON_SET(&reason, PFRES_SRCLIMIT); 3396 goto csfailed; 3397 } 3398 /* src node for translation rule */ 3399 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3400 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3401 REASON_SET(&reason, PFRES_SRCLIMIT); 3402 goto csfailed; 3403 } 3404 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3405 if (s == NULL) { 3406 REASON_SET(&reason, PFRES_MEMORY); 3407 goto csfailed; 3408 } 3409 s->rule.ptr = r; 3410 s->nat_rule.ptr = nr; 3411 s->anchor.ptr = a; 3412 STATE_INC_COUNTERS(s); 3413 if (r->allow_opts) 3414 s->state_flags |= PFSTATE_ALLOWOPTS; 3415 if (r->rule_flag & PFRULE_STATESLOPPY) 3416 s->state_flags |= PFSTATE_SLOPPY; 3417 s->log = r->log & PF_LOG_ALL; 3418 s->sync_state = PFSYNC_S_NONE; 3419 if (nr != NULL) 3420 s->log |= nr->log & PF_LOG_ALL; 3421 switch (pd->proto) { 3422 case IPPROTO_TCP: 3423 s->src.seqlo = ntohl(th->th_seq); 3424 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3425 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3426 r->keep_state == PF_STATE_MODULATE) { 3427 /* Generate sequence number modulator */ 3428 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3429 0) 3430 s->src.seqdiff = 1; 3431 pf_change_a(&th->th_seq, &th->th_sum, 3432 htonl(s->src.seqlo + s->src.seqdiff), 0); 3433 *rewrite = 1; 3434 } else 3435 s->src.seqdiff = 0; 3436 if (th->th_flags & TH_SYN) { 3437 s->src.seqhi++; 3438 s->src.wscale = pf_get_wscale(m, off, 3439 th->th_off, pd->af); 3440 } 3441 s->src.max_win = MAX(ntohs(th->th_win), 1); 3442 if (s->src.wscale & PF_WSCALE_MASK) { 3443 /* Remove scale factor from initial window */ 3444 int win = s->src.max_win; 3445 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3446 s->src.max_win = (win - 1) >> 3447 (s->src.wscale & PF_WSCALE_MASK); 3448 } 3449 if (th->th_flags & TH_FIN) 3450 s->src.seqhi++; 3451 s->dst.seqhi = 1; 3452 s->dst.max_win = 1; 3453 s->src.state = TCPS_SYN_SENT; 3454 s->dst.state = TCPS_CLOSED; 3455 s->timeout = PFTM_TCP_FIRST_PACKET; 3456 break; 3457 case IPPROTO_UDP: 3458 s->src.state = PFUDPS_SINGLE; 3459 s->dst.state = PFUDPS_NO_TRAFFIC; 3460 s->timeout = PFTM_UDP_FIRST_PACKET; 3461 break; 3462 case IPPROTO_ICMP: 3463 #ifdef INET6 3464 case IPPROTO_ICMPV6: 3465 #endif 3466 s->timeout = PFTM_ICMP_FIRST_PACKET; 3467 break; 3468 default: 3469 s->src.state = PFOTHERS_SINGLE; 3470 s->dst.state = PFOTHERS_NO_TRAFFIC; 3471 s->timeout = PFTM_OTHER_FIRST_PACKET; 3472 } 3473 3474 if (r->rt && r->rt != PF_FASTROUTE) { 3475 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3476 REASON_SET(&reason, PFRES_MAPFAILED); 3477 pf_src_tree_remove_state(s); 3478 STATE_DEC_COUNTERS(s); 3479 uma_zfree(V_pf_state_z, s); 3480 goto csfailed; 3481 } 3482 s->rt_kif = r->rpool.cur->kif; 3483 } 3484 3485 s->creation = time_uptime; 3486 s->expire = time_uptime; 3487 3488 if (sn != NULL) { 3489 s->src_node = sn; 3490 s->src_node->states++; 3491 } 3492 if (nsn != NULL) { 3493 /* XXX We only modify one side for now. */ 3494 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3495 s->nat_src_node = nsn; 3496 s->nat_src_node->states++; 3497 } 3498 if (pd->proto == IPPROTO_TCP) { 3499 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3500 off, pd, th, &s->src, &s->dst)) { 3501 REASON_SET(&reason, PFRES_MEMORY); 3502 pf_src_tree_remove_state(s); 3503 STATE_DEC_COUNTERS(s); 3504 uma_zfree(V_pf_state_z, s); 3505 return (PF_DROP); 3506 } 3507 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3508 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3509 &s->src, &s->dst, rewrite)) { 3510 /* This really shouldn't happen!!! */ 3511 DPFPRINTF(PF_DEBUG_URGENT, 3512 ("pf_normalize_tcp_stateful failed on first pkt")); 3513 pf_normalize_tcp_cleanup(s); 3514 pf_src_tree_remove_state(s); 3515 STATE_DEC_COUNTERS(s); 3516 uma_zfree(V_pf_state_z, s); 3517 return (PF_DROP); 3518 } 3519 } 3520 s->direction = pd->dir; 3521 3522 /* 3523 * sk/nk could already been setup by pf_get_translation(). 3524 */ 3525 if (nr == NULL) { 3526 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3527 __func__, nr, sk, nk)); 3528 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3529 if (sk == NULL) 3530 goto csfailed; 3531 nk = sk; 3532 } else 3533 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3534 __func__, nr, sk, nk)); 3535 3536 /* Swap sk/nk for PF_OUT. */ 3537 if (pf_state_insert(BOUND_IFACE(r, kif), 3538 (pd->dir == PF_IN) ? sk : nk, 3539 (pd->dir == PF_IN) ? nk : sk, s)) { 3540 if (pd->proto == IPPROTO_TCP) 3541 pf_normalize_tcp_cleanup(s); 3542 REASON_SET(&reason, PFRES_STATEINS); 3543 pf_src_tree_remove_state(s); 3544 STATE_DEC_COUNTERS(s); 3545 uma_zfree(V_pf_state_z, s); 3546 return (PF_DROP); 3547 } else 3548 *sm = s; 3549 3550 if (tag > 0) 3551 s->tag = tag; 3552 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3553 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3554 s->src.state = PF_TCPS_PROXY_SRC; 3555 /* undo NAT changes, if they have taken place */ 3556 if (nr != NULL) { 3557 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3558 if (pd->dir == PF_OUT) 3559 skt = s->key[PF_SK_STACK]; 3560 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3561 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3562 if (pd->sport) 3563 *pd->sport = skt->port[pd->sidx]; 3564 if (pd->dport) 3565 *pd->dport = skt->port[pd->didx]; 3566 if (pd->proto_sum) 3567 *pd->proto_sum = bproto_sum; 3568 if (pd->ip_sum) 3569 *pd->ip_sum = bip_sum; 3570 m_copyback(m, off, hdrlen, pd->hdr.any); 3571 } 3572 s->src.seqhi = htonl(arc4random()); 3573 /* Find mss option */ 3574 int rtid = M_GETFIB(m); 3575 mss = pf_get_mss(m, off, th->th_off, pd->af); 3576 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3577 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3578 s->src.mss = mss; 3579 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3580 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3581 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3582 REASON_SET(&reason, PFRES_SYNPROXY); 3583 return (PF_SYNPROXY_DROP); 3584 } 3585 3586 return (PF_PASS); 3587 3588 csfailed: 3589 if (sk != NULL) 3590 uma_zfree(V_pf_state_key_z, sk); 3591 if (nk != NULL) 3592 uma_zfree(V_pf_state_key_z, nk); 3593 3594 if (sn != NULL && sn->states == 0 && sn->expire == 0) { 3595 pf_unlink_src_node(sn); 3596 pf_free_src_node(sn); 3597 } 3598 3599 if (nsn != sn && nsn != NULL && nsn->states == 0 && nsn->expire == 0) { 3600 pf_unlink_src_node(nsn); 3601 pf_free_src_node(nsn); 3602 } 3603 3604 return (PF_DROP); 3605 } 3606 3607 static int 3608 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3609 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3610 struct pf_ruleset **rsm) 3611 { 3612 struct pf_rule *r, *a = NULL; 3613 struct pf_ruleset *ruleset = NULL; 3614 sa_family_t af = pd->af; 3615 u_short reason; 3616 int tag = -1; 3617 int asd = 0; 3618 int match = 0; 3619 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3620 3621 PF_RULES_RASSERT(); 3622 3623 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3624 while (r != NULL) { 3625 r->evaluations++; 3626 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3627 r = r->skip[PF_SKIP_IFP].ptr; 3628 else if (r->direction && r->direction != direction) 3629 r = r->skip[PF_SKIP_DIR].ptr; 3630 else if (r->af && r->af != af) 3631 r = r->skip[PF_SKIP_AF].ptr; 3632 else if (r->proto && r->proto != pd->proto) 3633 r = r->skip[PF_SKIP_PROTO].ptr; 3634 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3635 r->src.neg, kif, M_GETFIB(m))) 3636 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3637 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3638 r->dst.neg, NULL, M_GETFIB(m))) 3639 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3640 else if (r->tos && !(r->tos == pd->tos)) 3641 r = TAILQ_NEXT(r, entries); 3642 else if (r->os_fingerprint != PF_OSFP_ANY) 3643 r = TAILQ_NEXT(r, entries); 3644 else if (pd->proto == IPPROTO_UDP && 3645 (r->src.port_op || r->dst.port_op)) 3646 r = TAILQ_NEXT(r, entries); 3647 else if (pd->proto == IPPROTO_TCP && 3648 (r->src.port_op || r->dst.port_op || r->flagset)) 3649 r = TAILQ_NEXT(r, entries); 3650 else if ((pd->proto == IPPROTO_ICMP || 3651 pd->proto == IPPROTO_ICMPV6) && 3652 (r->type || r->code)) 3653 r = TAILQ_NEXT(r, entries); 3654 else if (r->prob && r->prob <= 3655 (arc4random() % (UINT_MAX - 1) + 1)) 3656 r = TAILQ_NEXT(r, entries); 3657 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3658 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3659 r = TAILQ_NEXT(r, entries); 3660 else { 3661 if (r->anchor == NULL) { 3662 match = 1; 3663 *rm = r; 3664 *am = a; 3665 *rsm = ruleset; 3666 if ((*rm)->quick) 3667 break; 3668 r = TAILQ_NEXT(r, entries); 3669 } else 3670 pf_step_into_anchor(anchor_stack, &asd, 3671 &ruleset, PF_RULESET_FILTER, &r, &a, 3672 &match); 3673 } 3674 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3675 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3676 break; 3677 } 3678 r = *rm; 3679 a = *am; 3680 ruleset = *rsm; 3681 3682 REASON_SET(&reason, PFRES_MATCH); 3683 3684 if (r->log) 3685 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3686 1); 3687 3688 if (r->action != PF_PASS) 3689 return (PF_DROP); 3690 3691 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3692 REASON_SET(&reason, PFRES_MEMORY); 3693 return (PF_DROP); 3694 } 3695 3696 return (PF_PASS); 3697 } 3698 3699 static int 3700 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3701 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3702 struct pf_pdesc *pd, u_short *reason, int *copyback) 3703 { 3704 struct tcphdr *th = pd->hdr.tcp; 3705 u_int16_t win = ntohs(th->th_win); 3706 u_int32_t ack, end, seq, orig_seq; 3707 u_int8_t sws, dws; 3708 int ackskew; 3709 3710 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3711 sws = src->wscale & PF_WSCALE_MASK; 3712 dws = dst->wscale & PF_WSCALE_MASK; 3713 } else 3714 sws = dws = 0; 3715 3716 /* 3717 * Sequence tracking algorithm from Guido van Rooij's paper: 3718 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3719 * tcp_filtering.ps 3720 */ 3721 3722 orig_seq = seq = ntohl(th->th_seq); 3723 if (src->seqlo == 0) { 3724 /* First packet from this end. Set its state */ 3725 3726 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3727 src->scrub == NULL) { 3728 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3729 REASON_SET(reason, PFRES_MEMORY); 3730 return (PF_DROP); 3731 } 3732 } 3733 3734 /* Deferred generation of sequence number modulator */ 3735 if (dst->seqdiff && !src->seqdiff) { 3736 /* use random iss for the TCP server */ 3737 while ((src->seqdiff = arc4random() - seq) == 0) 3738 ; 3739 ack = ntohl(th->th_ack) - dst->seqdiff; 3740 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3741 src->seqdiff), 0); 3742 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3743 *copyback = 1; 3744 } else { 3745 ack = ntohl(th->th_ack); 3746 } 3747 3748 end = seq + pd->p_len; 3749 if (th->th_flags & TH_SYN) { 3750 end++; 3751 if (dst->wscale & PF_WSCALE_FLAG) { 3752 src->wscale = pf_get_wscale(m, off, th->th_off, 3753 pd->af); 3754 if (src->wscale & PF_WSCALE_FLAG) { 3755 /* Remove scale factor from initial 3756 * window */ 3757 sws = src->wscale & PF_WSCALE_MASK; 3758 win = ((u_int32_t)win + (1 << sws) - 1) 3759 >> sws; 3760 dws = dst->wscale & PF_WSCALE_MASK; 3761 } else { 3762 /* fixup other window */ 3763 dst->max_win <<= dst->wscale & 3764 PF_WSCALE_MASK; 3765 /* in case of a retrans SYN|ACK */ 3766 dst->wscale = 0; 3767 } 3768 } 3769 } 3770 if (th->th_flags & TH_FIN) 3771 end++; 3772 3773 src->seqlo = seq; 3774 if (src->state < TCPS_SYN_SENT) 3775 src->state = TCPS_SYN_SENT; 3776 3777 /* 3778 * May need to slide the window (seqhi may have been set by 3779 * the crappy stack check or if we picked up the connection 3780 * after establishment) 3781 */ 3782 if (src->seqhi == 1 || 3783 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3784 src->seqhi = end + MAX(1, dst->max_win << dws); 3785 if (win > src->max_win) 3786 src->max_win = win; 3787 3788 } else { 3789 ack = ntohl(th->th_ack) - dst->seqdiff; 3790 if (src->seqdiff) { 3791 /* Modulate sequence numbers */ 3792 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3793 src->seqdiff), 0); 3794 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3795 *copyback = 1; 3796 } 3797 end = seq + pd->p_len; 3798 if (th->th_flags & TH_SYN) 3799 end++; 3800 if (th->th_flags & TH_FIN) 3801 end++; 3802 } 3803 3804 if ((th->th_flags & TH_ACK) == 0) { 3805 /* Let it pass through the ack skew check */ 3806 ack = dst->seqlo; 3807 } else if ((ack == 0 && 3808 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 3809 /* broken tcp stacks do not set ack */ 3810 (dst->state < TCPS_SYN_SENT)) { 3811 /* 3812 * Many stacks (ours included) will set the ACK number in an 3813 * FIN|ACK if the SYN times out -- no sequence to ACK. 3814 */ 3815 ack = dst->seqlo; 3816 } 3817 3818 if (seq == end) { 3819 /* Ease sequencing restrictions on no data packets */ 3820 seq = src->seqlo; 3821 end = seq; 3822 } 3823 3824 ackskew = dst->seqlo - ack; 3825 3826 3827 /* 3828 * Need to demodulate the sequence numbers in any TCP SACK options 3829 * (Selective ACK). We could optionally validate the SACK values 3830 * against the current ACK window, either forwards or backwards, but 3831 * I'm not confident that SACK has been implemented properly 3832 * everywhere. It wouldn't surprise me if several stacks accidently 3833 * SACK too far backwards of previously ACKed data. There really aren't 3834 * any security implications of bad SACKing unless the target stack 3835 * doesn't validate the option length correctly. Someone trying to 3836 * spoof into a TCP connection won't bother blindly sending SACK 3837 * options anyway. 3838 */ 3839 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 3840 if (pf_modulate_sack(m, off, pd, th, dst)) 3841 *copyback = 1; 3842 } 3843 3844 3845 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 3846 if (SEQ_GEQ(src->seqhi, end) && 3847 /* Last octet inside other's window space */ 3848 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 3849 /* Retrans: not more than one window back */ 3850 (ackskew >= -MAXACKWINDOW) && 3851 /* Acking not more than one reassembled fragment backwards */ 3852 (ackskew <= (MAXACKWINDOW << sws)) && 3853 /* Acking not more than one window forward */ 3854 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 3855 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 3856 (pd->flags & PFDESC_IP_REAS) == 0)) { 3857 /* Require an exact/+1 sequence match on resets when possible */ 3858 3859 if (dst->scrub || src->scrub) { 3860 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 3861 *state, src, dst, copyback)) 3862 return (PF_DROP); 3863 } 3864 3865 /* update max window */ 3866 if (src->max_win < win) 3867 src->max_win = win; 3868 /* synchronize sequencing */ 3869 if (SEQ_GT(end, src->seqlo)) 3870 src->seqlo = end; 3871 /* slide the window of what the other end can send */ 3872 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 3873 dst->seqhi = ack + MAX((win << sws), 1); 3874 3875 3876 /* update states */ 3877 if (th->th_flags & TH_SYN) 3878 if (src->state < TCPS_SYN_SENT) 3879 src->state = TCPS_SYN_SENT; 3880 if (th->th_flags & TH_FIN) 3881 if (src->state < TCPS_CLOSING) 3882 src->state = TCPS_CLOSING; 3883 if (th->th_flags & TH_ACK) { 3884 if (dst->state == TCPS_SYN_SENT) { 3885 dst->state = TCPS_ESTABLISHED; 3886 if (src->state == TCPS_ESTABLISHED && 3887 (*state)->src_node != NULL && 3888 pf_src_connlimit(state)) { 3889 REASON_SET(reason, PFRES_SRCLIMIT); 3890 return (PF_DROP); 3891 } 3892 } else if (dst->state == TCPS_CLOSING) 3893 dst->state = TCPS_FIN_WAIT_2; 3894 } 3895 if (th->th_flags & TH_RST) 3896 src->state = dst->state = TCPS_TIME_WAIT; 3897 3898 /* update expire time */ 3899 (*state)->expire = time_uptime; 3900 if (src->state >= TCPS_FIN_WAIT_2 && 3901 dst->state >= TCPS_FIN_WAIT_2) 3902 (*state)->timeout = PFTM_TCP_CLOSED; 3903 else if (src->state >= TCPS_CLOSING && 3904 dst->state >= TCPS_CLOSING) 3905 (*state)->timeout = PFTM_TCP_FIN_WAIT; 3906 else if (src->state < TCPS_ESTABLISHED || 3907 dst->state < TCPS_ESTABLISHED) 3908 (*state)->timeout = PFTM_TCP_OPENING; 3909 else if (src->state >= TCPS_CLOSING || 3910 dst->state >= TCPS_CLOSING) 3911 (*state)->timeout = PFTM_TCP_CLOSING; 3912 else 3913 (*state)->timeout = PFTM_TCP_ESTABLISHED; 3914 3915 /* Fall through to PASS packet */ 3916 3917 } else if ((dst->state < TCPS_SYN_SENT || 3918 dst->state >= TCPS_FIN_WAIT_2 || 3919 src->state >= TCPS_FIN_WAIT_2) && 3920 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 3921 /* Within a window forward of the originating packet */ 3922 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 3923 /* Within a window backward of the originating packet */ 3924 3925 /* 3926 * This currently handles three situations: 3927 * 1) Stupid stacks will shotgun SYNs before their peer 3928 * replies. 3929 * 2) When PF catches an already established stream (the 3930 * firewall rebooted, the state table was flushed, routes 3931 * changed...) 3932 * 3) Packets get funky immediately after the connection 3933 * closes (this should catch Solaris spurious ACK|FINs 3934 * that web servers like to spew after a close) 3935 * 3936 * This must be a little more careful than the above code 3937 * since packet floods will also be caught here. We don't 3938 * update the TTL here to mitigate the damage of a packet 3939 * flood and so the same code can handle awkward establishment 3940 * and a loosened connection close. 3941 * In the establishment case, a correct peer response will 3942 * validate the connection, go through the normal state code 3943 * and keep updating the state TTL. 3944 */ 3945 3946 if (V_pf_status.debug >= PF_DEBUG_MISC) { 3947 printf("pf: loose state match: "); 3948 pf_print_state(*state); 3949 pf_print_flags(th->th_flags); 3950 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 3951 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 3952 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 3953 (unsigned long long)(*state)->packets[1], 3954 pd->dir == PF_IN ? "in" : "out", 3955 pd->dir == (*state)->direction ? "fwd" : "rev"); 3956 } 3957 3958 if (dst->scrub || src->scrub) { 3959 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 3960 *state, src, dst, copyback)) 3961 return (PF_DROP); 3962 } 3963 3964 /* update max window */ 3965 if (src->max_win < win) 3966 src->max_win = win; 3967 /* synchronize sequencing */ 3968 if (SEQ_GT(end, src->seqlo)) 3969 src->seqlo = end; 3970 /* slide the window of what the other end can send */ 3971 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 3972 dst->seqhi = ack + MAX((win << sws), 1); 3973 3974 /* 3975 * Cannot set dst->seqhi here since this could be a shotgunned 3976 * SYN and not an already established connection. 3977 */ 3978 3979 if (th->th_flags & TH_FIN) 3980 if (src->state < TCPS_CLOSING) 3981 src->state = TCPS_CLOSING; 3982 if (th->th_flags & TH_RST) 3983 src->state = dst->state = TCPS_TIME_WAIT; 3984 3985 /* Fall through to PASS packet */ 3986 3987 } else { 3988 if ((*state)->dst.state == TCPS_SYN_SENT && 3989 (*state)->src.state == TCPS_SYN_SENT) { 3990 /* Send RST for state mismatches during handshake */ 3991 if (!(th->th_flags & TH_RST)) 3992 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 3993 pd->dst, pd->src, th->th_dport, 3994 th->th_sport, ntohl(th->th_ack), 0, 3995 TH_RST, 0, 0, 3996 (*state)->rule.ptr->return_ttl, 1, 0, 3997 kif->pfik_ifp); 3998 src->seqlo = 0; 3999 src->seqhi = 1; 4000 src->max_win = 1; 4001 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4002 printf("pf: BAD state: "); 4003 pf_print_state(*state); 4004 pf_print_flags(th->th_flags); 4005 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4006 "pkts=%llu:%llu dir=%s,%s\n", 4007 seq, orig_seq, ack, pd->p_len, ackskew, 4008 (unsigned long long)(*state)->packets[0], 4009 (unsigned long long)(*state)->packets[1], 4010 pd->dir == PF_IN ? "in" : "out", 4011 pd->dir == (*state)->direction ? "fwd" : "rev"); 4012 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4013 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4014 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4015 ' ': '2', 4016 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4017 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4018 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4019 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4020 } 4021 REASON_SET(reason, PFRES_BADSTATE); 4022 return (PF_DROP); 4023 } 4024 4025 return (PF_PASS); 4026 } 4027 4028 static int 4029 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4030 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4031 { 4032 struct tcphdr *th = pd->hdr.tcp; 4033 4034 if (th->th_flags & TH_SYN) 4035 if (src->state < TCPS_SYN_SENT) 4036 src->state = TCPS_SYN_SENT; 4037 if (th->th_flags & TH_FIN) 4038 if (src->state < TCPS_CLOSING) 4039 src->state = TCPS_CLOSING; 4040 if (th->th_flags & TH_ACK) { 4041 if (dst->state == TCPS_SYN_SENT) { 4042 dst->state = TCPS_ESTABLISHED; 4043 if (src->state == TCPS_ESTABLISHED && 4044 (*state)->src_node != NULL && 4045 pf_src_connlimit(state)) { 4046 REASON_SET(reason, PFRES_SRCLIMIT); 4047 return (PF_DROP); 4048 } 4049 } else if (dst->state == TCPS_CLOSING) { 4050 dst->state = TCPS_FIN_WAIT_2; 4051 } else if (src->state == TCPS_SYN_SENT && 4052 dst->state < TCPS_SYN_SENT) { 4053 /* 4054 * Handle a special sloppy case where we only see one 4055 * half of the connection. If there is a ACK after 4056 * the initial SYN without ever seeing a packet from 4057 * the destination, set the connection to established. 4058 */ 4059 dst->state = src->state = TCPS_ESTABLISHED; 4060 if ((*state)->src_node != NULL && 4061 pf_src_connlimit(state)) { 4062 REASON_SET(reason, PFRES_SRCLIMIT); 4063 return (PF_DROP); 4064 } 4065 } else if (src->state == TCPS_CLOSING && 4066 dst->state == TCPS_ESTABLISHED && 4067 dst->seqlo == 0) { 4068 /* 4069 * Handle the closing of half connections where we 4070 * don't see the full bidirectional FIN/ACK+ACK 4071 * handshake. 4072 */ 4073 dst->state = TCPS_CLOSING; 4074 } 4075 } 4076 if (th->th_flags & TH_RST) 4077 src->state = dst->state = TCPS_TIME_WAIT; 4078 4079 /* update expire time */ 4080 (*state)->expire = time_uptime; 4081 if (src->state >= TCPS_FIN_WAIT_2 && 4082 dst->state >= TCPS_FIN_WAIT_2) 4083 (*state)->timeout = PFTM_TCP_CLOSED; 4084 else if (src->state >= TCPS_CLOSING && 4085 dst->state >= TCPS_CLOSING) 4086 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4087 else if (src->state < TCPS_ESTABLISHED || 4088 dst->state < TCPS_ESTABLISHED) 4089 (*state)->timeout = PFTM_TCP_OPENING; 4090 else if (src->state >= TCPS_CLOSING || 4091 dst->state >= TCPS_CLOSING) 4092 (*state)->timeout = PFTM_TCP_CLOSING; 4093 else 4094 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4095 4096 return (PF_PASS); 4097 } 4098 4099 static int 4100 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4101 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4102 u_short *reason) 4103 { 4104 struct pf_state_key_cmp key; 4105 struct tcphdr *th = pd->hdr.tcp; 4106 int copyback = 0; 4107 struct pf_state_peer *src, *dst; 4108 struct pf_state_key *sk; 4109 4110 bzero(&key, sizeof(key)); 4111 key.af = pd->af; 4112 key.proto = IPPROTO_TCP; 4113 if (direction == PF_IN) { /* wire side, straight */ 4114 PF_ACPY(&key.addr[0], pd->src, key.af); 4115 PF_ACPY(&key.addr[1], pd->dst, key.af); 4116 key.port[0] = th->th_sport; 4117 key.port[1] = th->th_dport; 4118 } else { /* stack side, reverse */ 4119 PF_ACPY(&key.addr[1], pd->src, key.af); 4120 PF_ACPY(&key.addr[0], pd->dst, key.af); 4121 key.port[1] = th->th_sport; 4122 key.port[0] = th->th_dport; 4123 } 4124 4125 STATE_LOOKUP(kif, &key, direction, *state, pd); 4126 4127 if (direction == (*state)->direction) { 4128 src = &(*state)->src; 4129 dst = &(*state)->dst; 4130 } else { 4131 src = &(*state)->dst; 4132 dst = &(*state)->src; 4133 } 4134 4135 sk = (*state)->key[pd->didx]; 4136 4137 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4138 if (direction != (*state)->direction) { 4139 REASON_SET(reason, PFRES_SYNPROXY); 4140 return (PF_SYNPROXY_DROP); 4141 } 4142 if (th->th_flags & TH_SYN) { 4143 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4144 REASON_SET(reason, PFRES_SYNPROXY); 4145 return (PF_DROP); 4146 } 4147 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4148 pd->src, th->th_dport, th->th_sport, 4149 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4150 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4151 REASON_SET(reason, PFRES_SYNPROXY); 4152 return (PF_SYNPROXY_DROP); 4153 } else if (!(th->th_flags & TH_ACK) || 4154 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4155 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4156 REASON_SET(reason, PFRES_SYNPROXY); 4157 return (PF_DROP); 4158 } else if ((*state)->src_node != NULL && 4159 pf_src_connlimit(state)) { 4160 REASON_SET(reason, PFRES_SRCLIMIT); 4161 return (PF_DROP); 4162 } else 4163 (*state)->src.state = PF_TCPS_PROXY_DST; 4164 } 4165 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4166 if (direction == (*state)->direction) { 4167 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4168 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4169 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4170 REASON_SET(reason, PFRES_SYNPROXY); 4171 return (PF_DROP); 4172 } 4173 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4174 if ((*state)->dst.seqhi == 1) 4175 (*state)->dst.seqhi = htonl(arc4random()); 4176 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4177 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4178 sk->port[pd->sidx], sk->port[pd->didx], 4179 (*state)->dst.seqhi, 0, TH_SYN, 0, 4180 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4181 REASON_SET(reason, PFRES_SYNPROXY); 4182 return (PF_SYNPROXY_DROP); 4183 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4184 (TH_SYN|TH_ACK)) || 4185 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4186 REASON_SET(reason, PFRES_SYNPROXY); 4187 return (PF_DROP); 4188 } else { 4189 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4190 (*state)->dst.seqlo = ntohl(th->th_seq); 4191 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4192 pd->src, th->th_dport, th->th_sport, 4193 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4194 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4195 (*state)->tag, NULL); 4196 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4197 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4198 sk->port[pd->sidx], sk->port[pd->didx], 4199 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4200 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4201 (*state)->src.seqdiff = (*state)->dst.seqhi - 4202 (*state)->src.seqlo; 4203 (*state)->dst.seqdiff = (*state)->src.seqhi - 4204 (*state)->dst.seqlo; 4205 (*state)->src.seqhi = (*state)->src.seqlo + 4206 (*state)->dst.max_win; 4207 (*state)->dst.seqhi = (*state)->dst.seqlo + 4208 (*state)->src.max_win; 4209 (*state)->src.wscale = (*state)->dst.wscale = 0; 4210 (*state)->src.state = (*state)->dst.state = 4211 TCPS_ESTABLISHED; 4212 REASON_SET(reason, PFRES_SYNPROXY); 4213 return (PF_SYNPROXY_DROP); 4214 } 4215 } 4216 4217 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4218 dst->state >= TCPS_FIN_WAIT_2 && 4219 src->state >= TCPS_FIN_WAIT_2) { 4220 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4221 printf("pf: state reuse "); 4222 pf_print_state(*state); 4223 pf_print_flags(th->th_flags); 4224 printf("\n"); 4225 } 4226 /* XXX make sure it's the same direction ?? */ 4227 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4228 pf_unlink_state(*state, PF_ENTER_LOCKED); 4229 *state = NULL; 4230 return (PF_DROP); 4231 } 4232 4233 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4234 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4235 return (PF_DROP); 4236 } else { 4237 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4238 ©back) == PF_DROP) 4239 return (PF_DROP); 4240 } 4241 4242 /* translate source/destination address, if necessary */ 4243 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4244 struct pf_state_key *nk = (*state)->key[pd->didx]; 4245 4246 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4247 nk->port[pd->sidx] != th->th_sport) 4248 pf_change_ap(pd->src, &th->th_sport, pd->ip_sum, 4249 &th->th_sum, &nk->addr[pd->sidx], 4250 nk->port[pd->sidx], 0, pd->af); 4251 4252 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4253 nk->port[pd->didx] != th->th_dport) 4254 pf_change_ap(pd->dst, &th->th_dport, pd->ip_sum, 4255 &th->th_sum, &nk->addr[pd->didx], 4256 nk->port[pd->didx], 0, pd->af); 4257 copyback = 1; 4258 } 4259 4260 /* Copyback sequence modulation or stateful scrub changes if needed */ 4261 if (copyback) 4262 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4263 4264 return (PF_PASS); 4265 } 4266 4267 static int 4268 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4269 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4270 { 4271 struct pf_state_peer *src, *dst; 4272 struct pf_state_key_cmp key; 4273 struct udphdr *uh = pd->hdr.udp; 4274 4275 bzero(&key, sizeof(key)); 4276 key.af = pd->af; 4277 key.proto = IPPROTO_UDP; 4278 if (direction == PF_IN) { /* wire side, straight */ 4279 PF_ACPY(&key.addr[0], pd->src, key.af); 4280 PF_ACPY(&key.addr[1], pd->dst, key.af); 4281 key.port[0] = uh->uh_sport; 4282 key.port[1] = uh->uh_dport; 4283 } else { /* stack side, reverse */ 4284 PF_ACPY(&key.addr[1], pd->src, key.af); 4285 PF_ACPY(&key.addr[0], pd->dst, key.af); 4286 key.port[1] = uh->uh_sport; 4287 key.port[0] = uh->uh_dport; 4288 } 4289 4290 STATE_LOOKUP(kif, &key, direction, *state, pd); 4291 4292 if (direction == (*state)->direction) { 4293 src = &(*state)->src; 4294 dst = &(*state)->dst; 4295 } else { 4296 src = &(*state)->dst; 4297 dst = &(*state)->src; 4298 } 4299 4300 /* update states */ 4301 if (src->state < PFUDPS_SINGLE) 4302 src->state = PFUDPS_SINGLE; 4303 if (dst->state == PFUDPS_SINGLE) 4304 dst->state = PFUDPS_MULTIPLE; 4305 4306 /* update expire time */ 4307 (*state)->expire = time_uptime; 4308 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4309 (*state)->timeout = PFTM_UDP_MULTIPLE; 4310 else 4311 (*state)->timeout = PFTM_UDP_SINGLE; 4312 4313 /* translate source/destination address, if necessary */ 4314 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4315 struct pf_state_key *nk = (*state)->key[pd->didx]; 4316 4317 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4318 nk->port[pd->sidx] != uh->uh_sport) 4319 pf_change_ap(pd->src, &uh->uh_sport, pd->ip_sum, 4320 &uh->uh_sum, &nk->addr[pd->sidx], 4321 nk->port[pd->sidx], 1, pd->af); 4322 4323 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4324 nk->port[pd->didx] != uh->uh_dport) 4325 pf_change_ap(pd->dst, &uh->uh_dport, pd->ip_sum, 4326 &uh->uh_sum, &nk->addr[pd->didx], 4327 nk->port[pd->didx], 1, pd->af); 4328 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4329 } 4330 4331 return (PF_PASS); 4332 } 4333 4334 static int 4335 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4336 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4337 { 4338 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4339 u_int16_t icmpid = 0, *icmpsum; 4340 u_int8_t icmptype; 4341 int state_icmp = 0; 4342 struct pf_state_key_cmp key; 4343 4344 bzero(&key, sizeof(key)); 4345 switch (pd->proto) { 4346 #ifdef INET 4347 case IPPROTO_ICMP: 4348 icmptype = pd->hdr.icmp->icmp_type; 4349 icmpid = pd->hdr.icmp->icmp_id; 4350 icmpsum = &pd->hdr.icmp->icmp_cksum; 4351 4352 if (icmptype == ICMP_UNREACH || 4353 icmptype == ICMP_SOURCEQUENCH || 4354 icmptype == ICMP_REDIRECT || 4355 icmptype == ICMP_TIMXCEED || 4356 icmptype == ICMP_PARAMPROB) 4357 state_icmp++; 4358 break; 4359 #endif /* INET */ 4360 #ifdef INET6 4361 case IPPROTO_ICMPV6: 4362 icmptype = pd->hdr.icmp6->icmp6_type; 4363 icmpid = pd->hdr.icmp6->icmp6_id; 4364 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4365 4366 if (icmptype == ICMP6_DST_UNREACH || 4367 icmptype == ICMP6_PACKET_TOO_BIG || 4368 icmptype == ICMP6_TIME_EXCEEDED || 4369 icmptype == ICMP6_PARAM_PROB) 4370 state_icmp++; 4371 break; 4372 #endif /* INET6 */ 4373 } 4374 4375 if (!state_icmp) { 4376 4377 /* 4378 * ICMP query/reply message not related to a TCP/UDP packet. 4379 * Search for an ICMP state. 4380 */ 4381 key.af = pd->af; 4382 key.proto = pd->proto; 4383 key.port[0] = key.port[1] = icmpid; 4384 if (direction == PF_IN) { /* wire side, straight */ 4385 PF_ACPY(&key.addr[0], pd->src, key.af); 4386 PF_ACPY(&key.addr[1], pd->dst, key.af); 4387 } else { /* stack side, reverse */ 4388 PF_ACPY(&key.addr[1], pd->src, key.af); 4389 PF_ACPY(&key.addr[0], pd->dst, key.af); 4390 } 4391 4392 STATE_LOOKUP(kif, &key, direction, *state, pd); 4393 4394 (*state)->expire = time_uptime; 4395 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4396 4397 /* translate source/destination address, if necessary */ 4398 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4399 struct pf_state_key *nk = (*state)->key[pd->didx]; 4400 4401 switch (pd->af) { 4402 #ifdef INET 4403 case AF_INET: 4404 if (PF_ANEQ(pd->src, 4405 &nk->addr[pd->sidx], AF_INET)) 4406 pf_change_a(&saddr->v4.s_addr, 4407 pd->ip_sum, 4408 nk->addr[pd->sidx].v4.s_addr, 0); 4409 4410 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4411 AF_INET)) 4412 pf_change_a(&daddr->v4.s_addr, 4413 pd->ip_sum, 4414 nk->addr[pd->didx].v4.s_addr, 0); 4415 4416 if (nk->port[0] != 4417 pd->hdr.icmp->icmp_id) { 4418 pd->hdr.icmp->icmp_cksum = 4419 pf_cksum_fixup( 4420 pd->hdr.icmp->icmp_cksum, icmpid, 4421 nk->port[pd->sidx], 0); 4422 pd->hdr.icmp->icmp_id = 4423 nk->port[pd->sidx]; 4424 } 4425 4426 m_copyback(m, off, ICMP_MINLEN, 4427 (caddr_t )pd->hdr.icmp); 4428 break; 4429 #endif /* INET */ 4430 #ifdef INET6 4431 case AF_INET6: 4432 if (PF_ANEQ(pd->src, 4433 &nk->addr[pd->sidx], AF_INET6)) 4434 pf_change_a6(saddr, 4435 &pd->hdr.icmp6->icmp6_cksum, 4436 &nk->addr[pd->sidx], 0); 4437 4438 if (PF_ANEQ(pd->dst, 4439 &nk->addr[pd->didx], AF_INET6)) 4440 pf_change_a6(daddr, 4441 &pd->hdr.icmp6->icmp6_cksum, 4442 &nk->addr[pd->didx], 0); 4443 4444 m_copyback(m, off, sizeof(struct icmp6_hdr), 4445 (caddr_t )pd->hdr.icmp6); 4446 break; 4447 #endif /* INET6 */ 4448 } 4449 } 4450 return (PF_PASS); 4451 4452 } else { 4453 /* 4454 * ICMP error message in response to a TCP/UDP packet. 4455 * Extract the inner TCP/UDP header and search for that state. 4456 */ 4457 4458 struct pf_pdesc pd2; 4459 bzero(&pd2, sizeof pd2); 4460 #ifdef INET 4461 struct ip h2; 4462 #endif /* INET */ 4463 #ifdef INET6 4464 struct ip6_hdr h2_6; 4465 int terminal = 0; 4466 #endif /* INET6 */ 4467 int ipoff2 = 0; 4468 int off2 = 0; 4469 4470 pd2.af = pd->af; 4471 /* Payload packet is from the opposite direction. */ 4472 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4473 pd2.didx = (direction == PF_IN) ? 0 : 1; 4474 switch (pd->af) { 4475 #ifdef INET 4476 case AF_INET: 4477 /* offset of h2 in mbuf chain */ 4478 ipoff2 = off + ICMP_MINLEN; 4479 4480 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4481 NULL, reason, pd2.af)) { 4482 DPFPRINTF(PF_DEBUG_MISC, 4483 ("pf: ICMP error message too short " 4484 "(ip)\n")); 4485 return (PF_DROP); 4486 } 4487 /* 4488 * ICMP error messages don't refer to non-first 4489 * fragments 4490 */ 4491 if (h2.ip_off & htons(IP_OFFMASK)) { 4492 REASON_SET(reason, PFRES_FRAG); 4493 return (PF_DROP); 4494 } 4495 4496 /* offset of protocol header that follows h2 */ 4497 off2 = ipoff2 + (h2.ip_hl << 2); 4498 4499 pd2.proto = h2.ip_p; 4500 pd2.src = (struct pf_addr *)&h2.ip_src; 4501 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4502 pd2.ip_sum = &h2.ip_sum; 4503 break; 4504 #endif /* INET */ 4505 #ifdef INET6 4506 case AF_INET6: 4507 ipoff2 = off + sizeof(struct icmp6_hdr); 4508 4509 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4510 NULL, reason, pd2.af)) { 4511 DPFPRINTF(PF_DEBUG_MISC, 4512 ("pf: ICMP error message too short " 4513 "(ip6)\n")); 4514 return (PF_DROP); 4515 } 4516 pd2.proto = h2_6.ip6_nxt; 4517 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4518 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4519 pd2.ip_sum = NULL; 4520 off2 = ipoff2 + sizeof(h2_6); 4521 do { 4522 switch (pd2.proto) { 4523 case IPPROTO_FRAGMENT: 4524 /* 4525 * ICMPv6 error messages for 4526 * non-first fragments 4527 */ 4528 REASON_SET(reason, PFRES_FRAG); 4529 return (PF_DROP); 4530 case IPPROTO_AH: 4531 case IPPROTO_HOPOPTS: 4532 case IPPROTO_ROUTING: 4533 case IPPROTO_DSTOPTS: { 4534 /* get next header and header length */ 4535 struct ip6_ext opt6; 4536 4537 if (!pf_pull_hdr(m, off2, &opt6, 4538 sizeof(opt6), NULL, reason, 4539 pd2.af)) { 4540 DPFPRINTF(PF_DEBUG_MISC, 4541 ("pf: ICMPv6 short opt\n")); 4542 return (PF_DROP); 4543 } 4544 if (pd2.proto == IPPROTO_AH) 4545 off2 += (opt6.ip6e_len + 2) * 4; 4546 else 4547 off2 += (opt6.ip6e_len + 1) * 8; 4548 pd2.proto = opt6.ip6e_nxt; 4549 /* goto the next header */ 4550 break; 4551 } 4552 default: 4553 terminal++; 4554 break; 4555 } 4556 } while (!terminal); 4557 break; 4558 #endif /* INET6 */ 4559 } 4560 4561 switch (pd2.proto) { 4562 case IPPROTO_TCP: { 4563 struct tcphdr th; 4564 u_int32_t seq; 4565 struct pf_state_peer *src, *dst; 4566 u_int8_t dws; 4567 int copyback = 0; 4568 4569 /* 4570 * Only the first 8 bytes of the TCP header can be 4571 * expected. Don't access any TCP header fields after 4572 * th_seq, an ackskew test is not possible. 4573 */ 4574 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4575 pd2.af)) { 4576 DPFPRINTF(PF_DEBUG_MISC, 4577 ("pf: ICMP error message too short " 4578 "(tcp)\n")); 4579 return (PF_DROP); 4580 } 4581 4582 key.af = pd2.af; 4583 key.proto = IPPROTO_TCP; 4584 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4585 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4586 key.port[pd2.sidx] = th.th_sport; 4587 key.port[pd2.didx] = th.th_dport; 4588 4589 STATE_LOOKUP(kif, &key, direction, *state, pd); 4590 4591 if (direction == (*state)->direction) { 4592 src = &(*state)->dst; 4593 dst = &(*state)->src; 4594 } else { 4595 src = &(*state)->src; 4596 dst = &(*state)->dst; 4597 } 4598 4599 if (src->wscale && dst->wscale) 4600 dws = dst->wscale & PF_WSCALE_MASK; 4601 else 4602 dws = 0; 4603 4604 /* Demodulate sequence number */ 4605 seq = ntohl(th.th_seq) - src->seqdiff; 4606 if (src->seqdiff) { 4607 pf_change_a(&th.th_seq, icmpsum, 4608 htonl(seq), 0); 4609 copyback = 1; 4610 } 4611 4612 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4613 (!SEQ_GEQ(src->seqhi, seq) || 4614 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4615 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4616 printf("pf: BAD ICMP %d:%d ", 4617 icmptype, pd->hdr.icmp->icmp_code); 4618 pf_print_host(pd->src, 0, pd->af); 4619 printf(" -> "); 4620 pf_print_host(pd->dst, 0, pd->af); 4621 printf(" state: "); 4622 pf_print_state(*state); 4623 printf(" seq=%u\n", seq); 4624 } 4625 REASON_SET(reason, PFRES_BADSTATE); 4626 return (PF_DROP); 4627 } else { 4628 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4629 printf("pf: OK ICMP %d:%d ", 4630 icmptype, pd->hdr.icmp->icmp_code); 4631 pf_print_host(pd->src, 0, pd->af); 4632 printf(" -> "); 4633 pf_print_host(pd->dst, 0, pd->af); 4634 printf(" state: "); 4635 pf_print_state(*state); 4636 printf(" seq=%u\n", seq); 4637 } 4638 } 4639 4640 /* translate source/destination address, if necessary */ 4641 if ((*state)->key[PF_SK_WIRE] != 4642 (*state)->key[PF_SK_STACK]) { 4643 struct pf_state_key *nk = 4644 (*state)->key[pd->didx]; 4645 4646 if (PF_ANEQ(pd2.src, 4647 &nk->addr[pd2.sidx], pd2.af) || 4648 nk->port[pd2.sidx] != th.th_sport) 4649 pf_change_icmp(pd2.src, &th.th_sport, 4650 daddr, &nk->addr[pd2.sidx], 4651 nk->port[pd2.sidx], NULL, 4652 pd2.ip_sum, icmpsum, 4653 pd->ip_sum, 0, pd2.af); 4654 4655 if (PF_ANEQ(pd2.dst, 4656 &nk->addr[pd2.didx], pd2.af) || 4657 nk->port[pd2.didx] != th.th_dport) 4658 pf_change_icmp(pd2.dst, &th.th_dport, 4659 NULL, /* XXX Inbound NAT? */ 4660 &nk->addr[pd2.didx], 4661 nk->port[pd2.didx], NULL, 4662 pd2.ip_sum, icmpsum, 4663 pd->ip_sum, 0, pd2.af); 4664 copyback = 1; 4665 } 4666 4667 if (copyback) { 4668 switch (pd2.af) { 4669 #ifdef INET 4670 case AF_INET: 4671 m_copyback(m, off, ICMP_MINLEN, 4672 (caddr_t )pd->hdr.icmp); 4673 m_copyback(m, ipoff2, sizeof(h2), 4674 (caddr_t )&h2); 4675 break; 4676 #endif /* INET */ 4677 #ifdef INET6 4678 case AF_INET6: 4679 m_copyback(m, off, 4680 sizeof(struct icmp6_hdr), 4681 (caddr_t )pd->hdr.icmp6); 4682 m_copyback(m, ipoff2, sizeof(h2_6), 4683 (caddr_t )&h2_6); 4684 break; 4685 #endif /* INET6 */ 4686 } 4687 m_copyback(m, off2, 8, (caddr_t)&th); 4688 } 4689 4690 return (PF_PASS); 4691 break; 4692 } 4693 case IPPROTO_UDP: { 4694 struct udphdr uh; 4695 4696 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4697 NULL, reason, pd2.af)) { 4698 DPFPRINTF(PF_DEBUG_MISC, 4699 ("pf: ICMP error message too short " 4700 "(udp)\n")); 4701 return (PF_DROP); 4702 } 4703 4704 key.af = pd2.af; 4705 key.proto = IPPROTO_UDP; 4706 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4707 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4708 key.port[pd2.sidx] = uh.uh_sport; 4709 key.port[pd2.didx] = uh.uh_dport; 4710 4711 STATE_LOOKUP(kif, &key, direction, *state, pd); 4712 4713 /* translate source/destination address, if necessary */ 4714 if ((*state)->key[PF_SK_WIRE] != 4715 (*state)->key[PF_SK_STACK]) { 4716 struct pf_state_key *nk = 4717 (*state)->key[pd->didx]; 4718 4719 if (PF_ANEQ(pd2.src, 4720 &nk->addr[pd2.sidx], pd2.af) || 4721 nk->port[pd2.sidx] != uh.uh_sport) 4722 pf_change_icmp(pd2.src, &uh.uh_sport, 4723 daddr, &nk->addr[pd2.sidx], 4724 nk->port[pd2.sidx], &uh.uh_sum, 4725 pd2.ip_sum, icmpsum, 4726 pd->ip_sum, 1, pd2.af); 4727 4728 if (PF_ANEQ(pd2.dst, 4729 &nk->addr[pd2.didx], pd2.af) || 4730 nk->port[pd2.didx] != uh.uh_dport) 4731 pf_change_icmp(pd2.dst, &uh.uh_dport, 4732 NULL, /* XXX Inbound NAT? */ 4733 &nk->addr[pd2.didx], 4734 nk->port[pd2.didx], &uh.uh_sum, 4735 pd2.ip_sum, icmpsum, 4736 pd->ip_sum, 1, pd2.af); 4737 4738 switch (pd2.af) { 4739 #ifdef INET 4740 case AF_INET: 4741 m_copyback(m, off, ICMP_MINLEN, 4742 (caddr_t )pd->hdr.icmp); 4743 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4744 break; 4745 #endif /* INET */ 4746 #ifdef INET6 4747 case AF_INET6: 4748 m_copyback(m, off, 4749 sizeof(struct icmp6_hdr), 4750 (caddr_t )pd->hdr.icmp6); 4751 m_copyback(m, ipoff2, sizeof(h2_6), 4752 (caddr_t )&h2_6); 4753 break; 4754 #endif /* INET6 */ 4755 } 4756 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4757 } 4758 return (PF_PASS); 4759 break; 4760 } 4761 #ifdef INET 4762 case IPPROTO_ICMP: { 4763 struct icmp iih; 4764 4765 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4766 NULL, reason, pd2.af)) { 4767 DPFPRINTF(PF_DEBUG_MISC, 4768 ("pf: ICMP error message too short i" 4769 "(icmp)\n")); 4770 return (PF_DROP); 4771 } 4772 4773 key.af = pd2.af; 4774 key.proto = IPPROTO_ICMP; 4775 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4776 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4777 key.port[0] = key.port[1] = iih.icmp_id; 4778 4779 STATE_LOOKUP(kif, &key, direction, *state, pd); 4780 4781 /* translate source/destination address, if necessary */ 4782 if ((*state)->key[PF_SK_WIRE] != 4783 (*state)->key[PF_SK_STACK]) { 4784 struct pf_state_key *nk = 4785 (*state)->key[pd->didx]; 4786 4787 if (PF_ANEQ(pd2.src, 4788 &nk->addr[pd2.sidx], pd2.af) || 4789 nk->port[pd2.sidx] != iih.icmp_id) 4790 pf_change_icmp(pd2.src, &iih.icmp_id, 4791 daddr, &nk->addr[pd2.sidx], 4792 nk->port[pd2.sidx], NULL, 4793 pd2.ip_sum, icmpsum, 4794 pd->ip_sum, 0, AF_INET); 4795 4796 if (PF_ANEQ(pd2.dst, 4797 &nk->addr[pd2.didx], pd2.af) || 4798 nk->port[pd2.didx] != iih.icmp_id) 4799 pf_change_icmp(pd2.dst, &iih.icmp_id, 4800 NULL, /* XXX Inbound NAT? */ 4801 &nk->addr[pd2.didx], 4802 nk->port[pd2.didx], NULL, 4803 pd2.ip_sum, icmpsum, 4804 pd->ip_sum, 0, AF_INET); 4805 4806 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 4807 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4808 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 4809 } 4810 return (PF_PASS); 4811 break; 4812 } 4813 #endif /* INET */ 4814 #ifdef INET6 4815 case IPPROTO_ICMPV6: { 4816 struct icmp6_hdr iih; 4817 4818 if (!pf_pull_hdr(m, off2, &iih, 4819 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 4820 DPFPRINTF(PF_DEBUG_MISC, 4821 ("pf: ICMP error message too short " 4822 "(icmp6)\n")); 4823 return (PF_DROP); 4824 } 4825 4826 key.af = pd2.af; 4827 key.proto = IPPROTO_ICMPV6; 4828 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4829 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4830 key.port[0] = key.port[1] = iih.icmp6_id; 4831 4832 STATE_LOOKUP(kif, &key, direction, *state, pd); 4833 4834 /* translate source/destination address, if necessary */ 4835 if ((*state)->key[PF_SK_WIRE] != 4836 (*state)->key[PF_SK_STACK]) { 4837 struct pf_state_key *nk = 4838 (*state)->key[pd->didx]; 4839 4840 if (PF_ANEQ(pd2.src, 4841 &nk->addr[pd2.sidx], pd2.af) || 4842 nk->port[pd2.sidx] != iih.icmp6_id) 4843 pf_change_icmp(pd2.src, &iih.icmp6_id, 4844 daddr, &nk->addr[pd2.sidx], 4845 nk->port[pd2.sidx], NULL, 4846 pd2.ip_sum, icmpsum, 4847 pd->ip_sum, 0, AF_INET6); 4848 4849 if (PF_ANEQ(pd2.dst, 4850 &nk->addr[pd2.didx], pd2.af) || 4851 nk->port[pd2.didx] != iih.icmp6_id) 4852 pf_change_icmp(pd2.dst, &iih.icmp6_id, 4853 NULL, /* XXX Inbound NAT? */ 4854 &nk->addr[pd2.didx], 4855 nk->port[pd2.didx], NULL, 4856 pd2.ip_sum, icmpsum, 4857 pd->ip_sum, 0, AF_INET6); 4858 4859 m_copyback(m, off, sizeof(struct icmp6_hdr), 4860 (caddr_t)pd->hdr.icmp6); 4861 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 4862 m_copyback(m, off2, sizeof(struct icmp6_hdr), 4863 (caddr_t)&iih); 4864 } 4865 return (PF_PASS); 4866 break; 4867 } 4868 #endif /* INET6 */ 4869 default: { 4870 key.af = pd2.af; 4871 key.proto = pd2.proto; 4872 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4873 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4874 key.port[0] = key.port[1] = 0; 4875 4876 STATE_LOOKUP(kif, &key, direction, *state, pd); 4877 4878 /* translate source/destination address, if necessary */ 4879 if ((*state)->key[PF_SK_WIRE] != 4880 (*state)->key[PF_SK_STACK]) { 4881 struct pf_state_key *nk = 4882 (*state)->key[pd->didx]; 4883 4884 if (PF_ANEQ(pd2.src, 4885 &nk->addr[pd2.sidx], pd2.af)) 4886 pf_change_icmp(pd2.src, NULL, daddr, 4887 &nk->addr[pd2.sidx], 0, NULL, 4888 pd2.ip_sum, icmpsum, 4889 pd->ip_sum, 0, pd2.af); 4890 4891 if (PF_ANEQ(pd2.dst, 4892 &nk->addr[pd2.didx], pd2.af)) 4893 pf_change_icmp(pd2.src, NULL, 4894 NULL, /* XXX Inbound NAT? */ 4895 &nk->addr[pd2.didx], 0, NULL, 4896 pd2.ip_sum, icmpsum, 4897 pd->ip_sum, 0, pd2.af); 4898 4899 switch (pd2.af) { 4900 #ifdef INET 4901 case AF_INET: 4902 m_copyback(m, off, ICMP_MINLEN, 4903 (caddr_t)pd->hdr.icmp); 4904 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4905 break; 4906 #endif /* INET */ 4907 #ifdef INET6 4908 case AF_INET6: 4909 m_copyback(m, off, 4910 sizeof(struct icmp6_hdr), 4911 (caddr_t )pd->hdr.icmp6); 4912 m_copyback(m, ipoff2, sizeof(h2_6), 4913 (caddr_t )&h2_6); 4914 break; 4915 #endif /* INET6 */ 4916 } 4917 } 4918 return (PF_PASS); 4919 break; 4920 } 4921 } 4922 } 4923 } 4924 4925 static int 4926 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 4927 struct mbuf *m, struct pf_pdesc *pd) 4928 { 4929 struct pf_state_peer *src, *dst; 4930 struct pf_state_key_cmp key; 4931 4932 bzero(&key, sizeof(key)); 4933 key.af = pd->af; 4934 key.proto = pd->proto; 4935 if (direction == PF_IN) { 4936 PF_ACPY(&key.addr[0], pd->src, key.af); 4937 PF_ACPY(&key.addr[1], pd->dst, key.af); 4938 key.port[0] = key.port[1] = 0; 4939 } else { 4940 PF_ACPY(&key.addr[1], pd->src, key.af); 4941 PF_ACPY(&key.addr[0], pd->dst, key.af); 4942 key.port[1] = key.port[0] = 0; 4943 } 4944 4945 STATE_LOOKUP(kif, &key, direction, *state, pd); 4946 4947 if (direction == (*state)->direction) { 4948 src = &(*state)->src; 4949 dst = &(*state)->dst; 4950 } else { 4951 src = &(*state)->dst; 4952 dst = &(*state)->src; 4953 } 4954 4955 /* update states */ 4956 if (src->state < PFOTHERS_SINGLE) 4957 src->state = PFOTHERS_SINGLE; 4958 if (dst->state == PFOTHERS_SINGLE) 4959 dst->state = PFOTHERS_MULTIPLE; 4960 4961 /* update expire time */ 4962 (*state)->expire = time_uptime; 4963 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 4964 (*state)->timeout = PFTM_OTHER_MULTIPLE; 4965 else 4966 (*state)->timeout = PFTM_OTHER_SINGLE; 4967 4968 /* translate source/destination address, if necessary */ 4969 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4970 struct pf_state_key *nk = (*state)->key[pd->didx]; 4971 4972 KASSERT(nk, ("%s: nk is null", __func__)); 4973 KASSERT(pd, ("%s: pd is null", __func__)); 4974 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 4975 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 4976 switch (pd->af) { 4977 #ifdef INET 4978 case AF_INET: 4979 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 4980 pf_change_a(&pd->src->v4.s_addr, 4981 pd->ip_sum, 4982 nk->addr[pd->sidx].v4.s_addr, 4983 0); 4984 4985 4986 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 4987 pf_change_a(&pd->dst->v4.s_addr, 4988 pd->ip_sum, 4989 nk->addr[pd->didx].v4.s_addr, 4990 0); 4991 4992 break; 4993 #endif /* INET */ 4994 #ifdef INET6 4995 case AF_INET6: 4996 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 4997 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 4998 4999 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5000 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5001 #endif /* INET6 */ 5002 } 5003 } 5004 return (PF_PASS); 5005 } 5006 5007 /* 5008 * ipoff and off are measured from the start of the mbuf chain. 5009 * h must be at "ipoff" on the mbuf chain. 5010 */ 5011 void * 5012 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5013 u_short *actionp, u_short *reasonp, sa_family_t af) 5014 { 5015 switch (af) { 5016 #ifdef INET 5017 case AF_INET: { 5018 struct ip *h = mtod(m, struct ip *); 5019 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5020 5021 if (fragoff) { 5022 if (fragoff >= len) 5023 ACTION_SET(actionp, PF_PASS); 5024 else { 5025 ACTION_SET(actionp, PF_DROP); 5026 REASON_SET(reasonp, PFRES_FRAG); 5027 } 5028 return (NULL); 5029 } 5030 if (m->m_pkthdr.len < off + len || 5031 ntohs(h->ip_len) < off + len) { 5032 ACTION_SET(actionp, PF_DROP); 5033 REASON_SET(reasonp, PFRES_SHORT); 5034 return (NULL); 5035 } 5036 break; 5037 } 5038 #endif /* INET */ 5039 #ifdef INET6 5040 case AF_INET6: { 5041 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5042 5043 if (m->m_pkthdr.len < off + len || 5044 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5045 (unsigned)(off + len)) { 5046 ACTION_SET(actionp, PF_DROP); 5047 REASON_SET(reasonp, PFRES_SHORT); 5048 return (NULL); 5049 } 5050 break; 5051 } 5052 #endif /* INET6 */ 5053 } 5054 m_copydata(m, off, len, p); 5055 return (p); 5056 } 5057 5058 int 5059 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5060 int rtableid) 5061 { 5062 #ifdef RADIX_MPATH 5063 struct radix_node_head *rnh; 5064 #endif 5065 struct sockaddr_in *dst; 5066 int ret = 1; 5067 int check_mpath; 5068 #ifdef INET6 5069 struct sockaddr_in6 *dst6; 5070 struct route_in6 ro; 5071 #else 5072 struct route ro; 5073 #endif 5074 struct radix_node *rn; 5075 struct rtentry *rt; 5076 struct ifnet *ifp; 5077 5078 check_mpath = 0; 5079 #ifdef RADIX_MPATH 5080 /* XXX: stick to table 0 for now */ 5081 rnh = rt_tables_get_rnh(0, af); 5082 if (rnh != NULL && rn_mpath_capable(rnh)) 5083 check_mpath = 1; 5084 #endif 5085 bzero(&ro, sizeof(ro)); 5086 switch (af) { 5087 case AF_INET: 5088 dst = satosin(&ro.ro_dst); 5089 dst->sin_family = AF_INET; 5090 dst->sin_len = sizeof(*dst); 5091 dst->sin_addr = addr->v4; 5092 break; 5093 #ifdef INET6 5094 case AF_INET6: 5095 /* 5096 * Skip check for addresses with embedded interface scope, 5097 * as they would always match anyway. 5098 */ 5099 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5100 goto out; 5101 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5102 dst6->sin6_family = AF_INET6; 5103 dst6->sin6_len = sizeof(*dst6); 5104 dst6->sin6_addr = addr->v6; 5105 break; 5106 #endif /* INET6 */ 5107 default: 5108 return (0); 5109 } 5110 5111 /* Skip checks for ipsec interfaces */ 5112 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5113 goto out; 5114 5115 switch (af) { 5116 #ifdef INET6 5117 case AF_INET6: 5118 in6_rtalloc_ign(&ro, 0, rtableid); 5119 break; 5120 #endif 5121 #ifdef INET 5122 case AF_INET: 5123 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5124 break; 5125 #endif 5126 default: 5127 rtalloc_ign((struct route *)&ro, 0); /* No/default FIB. */ 5128 break; 5129 } 5130 5131 if (ro.ro_rt != NULL) { 5132 /* No interface given, this is a no-route check */ 5133 if (kif == NULL) 5134 goto out; 5135 5136 if (kif->pfik_ifp == NULL) { 5137 ret = 0; 5138 goto out; 5139 } 5140 5141 /* Perform uRPF check if passed input interface */ 5142 ret = 0; 5143 rn = (struct radix_node *)ro.ro_rt; 5144 do { 5145 rt = (struct rtentry *)rn; 5146 ifp = rt->rt_ifp; 5147 5148 if (kif->pfik_ifp == ifp) 5149 ret = 1; 5150 #ifdef RADIX_MPATH 5151 rn = rn_mpath_next(rn); 5152 #endif 5153 } while (check_mpath == 1 && rn != NULL && ret == 0); 5154 } else 5155 ret = 0; 5156 out: 5157 if (ro.ro_rt != NULL) 5158 RTFREE(ro.ro_rt); 5159 return (ret); 5160 } 5161 5162 #ifdef INET 5163 static void 5164 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5165 struct pf_state *s, struct pf_pdesc *pd) 5166 { 5167 struct mbuf *m0, *m1; 5168 struct sockaddr_in dst; 5169 struct ip *ip; 5170 struct ifnet *ifp = NULL; 5171 struct pf_addr naddr; 5172 struct pf_src_node *sn = NULL; 5173 int error = 0; 5174 uint16_t ip_len, ip_off; 5175 5176 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5177 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5178 __func__)); 5179 5180 if ((pd->pf_mtag == NULL && 5181 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5182 pd->pf_mtag->routed++ > 3) { 5183 m0 = *m; 5184 *m = NULL; 5185 goto bad_locked; 5186 } 5187 5188 if (r->rt == PF_DUPTO) { 5189 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5190 if (s) 5191 PF_STATE_UNLOCK(s); 5192 return; 5193 } 5194 } else { 5195 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5196 if (s) 5197 PF_STATE_UNLOCK(s); 5198 return; 5199 } 5200 m0 = *m; 5201 } 5202 5203 ip = mtod(m0, struct ip *); 5204 5205 bzero(&dst, sizeof(dst)); 5206 dst.sin_family = AF_INET; 5207 dst.sin_len = sizeof(dst); 5208 dst.sin_addr = ip->ip_dst; 5209 5210 if (r->rt == PF_FASTROUTE) { 5211 struct rtentry *rt; 5212 5213 if (s) 5214 PF_STATE_UNLOCK(s); 5215 rt = rtalloc1_fib(sintosa(&dst), 0, 0, M_GETFIB(m0)); 5216 if (rt == NULL) { 5217 KMOD_IPSTAT_INC(ips_noroute); 5218 error = EHOSTUNREACH; 5219 goto bad; 5220 } 5221 5222 ifp = rt->rt_ifp; 5223 counter_u64_add(rt->rt_pksent, 1); 5224 5225 if (rt->rt_flags & RTF_GATEWAY) 5226 bcopy(satosin(rt->rt_gateway), &dst, sizeof(dst)); 5227 RTFREE_LOCKED(rt); 5228 } else { 5229 if (TAILQ_EMPTY(&r->rpool.list)) { 5230 DPFPRINTF(PF_DEBUG_URGENT, 5231 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5232 goto bad_locked; 5233 } 5234 if (s == NULL) { 5235 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5236 &naddr, NULL, &sn); 5237 if (!PF_AZERO(&naddr, AF_INET)) 5238 dst.sin_addr.s_addr = naddr.v4.s_addr; 5239 ifp = r->rpool.cur->kif ? 5240 r->rpool.cur->kif->pfik_ifp : NULL; 5241 } else { 5242 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5243 dst.sin_addr.s_addr = 5244 s->rt_addr.v4.s_addr; 5245 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5246 PF_STATE_UNLOCK(s); 5247 } 5248 } 5249 if (ifp == NULL) 5250 goto bad; 5251 5252 if (oifp != ifp) { 5253 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5254 goto bad; 5255 else if (m0 == NULL) 5256 goto done; 5257 if (m0->m_len < sizeof(struct ip)) { 5258 DPFPRINTF(PF_DEBUG_URGENT, 5259 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5260 goto bad; 5261 } 5262 ip = mtod(m0, struct ip *); 5263 } 5264 5265 if (ifp->if_flags & IFF_LOOPBACK) 5266 m0->m_flags |= M_SKIP_FIREWALL; 5267 5268 ip_len = ntohs(ip->ip_len); 5269 ip_off = ntohs(ip->ip_off); 5270 5271 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5272 m0->m_pkthdr.csum_flags |= CSUM_IP; 5273 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5274 in_delayed_cksum(m0); 5275 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5276 } 5277 #ifdef SCTP 5278 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5279 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5280 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5281 } 5282 #endif 5283 5284 /* 5285 * If small enough for interface, or the interface will take 5286 * care of the fragmentation for us, we can just send directly. 5287 */ 5288 if (ip_len <= ifp->if_mtu || 5289 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5290 ip->ip_sum = 0; 5291 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5292 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5293 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5294 } 5295 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5296 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5297 goto done; 5298 } 5299 5300 /* Balk when DF bit is set or the interface didn't support TSO. */ 5301 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5302 error = EMSGSIZE; 5303 KMOD_IPSTAT_INC(ips_cantfrag); 5304 if (r->rt != PF_DUPTO) { 5305 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5306 ifp->if_mtu); 5307 goto done; 5308 } else 5309 goto bad; 5310 } 5311 5312 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5313 if (error) 5314 goto bad; 5315 5316 for (; m0; m0 = m1) { 5317 m1 = m0->m_nextpkt; 5318 m0->m_nextpkt = NULL; 5319 if (error == 0) { 5320 m_clrprotoflags(m0); 5321 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5322 } else 5323 m_freem(m0); 5324 } 5325 5326 if (error == 0) 5327 KMOD_IPSTAT_INC(ips_fragmented); 5328 5329 done: 5330 if (r->rt != PF_DUPTO) 5331 *m = NULL; 5332 return; 5333 5334 bad_locked: 5335 if (s) 5336 PF_STATE_UNLOCK(s); 5337 bad: 5338 m_freem(m0); 5339 goto done; 5340 } 5341 #endif /* INET */ 5342 5343 #ifdef INET6 5344 static void 5345 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5346 struct pf_state *s, struct pf_pdesc *pd) 5347 { 5348 struct mbuf *m0; 5349 struct sockaddr_in6 dst; 5350 struct ip6_hdr *ip6; 5351 struct ifnet *ifp = NULL; 5352 struct pf_addr naddr; 5353 struct pf_src_node *sn = NULL; 5354 5355 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5356 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5357 __func__)); 5358 5359 if ((pd->pf_mtag == NULL && 5360 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5361 pd->pf_mtag->routed++ > 3) { 5362 m0 = *m; 5363 *m = NULL; 5364 goto bad_locked; 5365 } 5366 5367 if (r->rt == PF_DUPTO) { 5368 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5369 if (s) 5370 PF_STATE_UNLOCK(s); 5371 return; 5372 } 5373 } else { 5374 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5375 if (s) 5376 PF_STATE_UNLOCK(s); 5377 return; 5378 } 5379 m0 = *m; 5380 } 5381 5382 ip6 = mtod(m0, struct ip6_hdr *); 5383 5384 bzero(&dst, sizeof(dst)); 5385 dst.sin6_family = AF_INET6; 5386 dst.sin6_len = sizeof(dst); 5387 dst.sin6_addr = ip6->ip6_dst; 5388 5389 /* Cheat. XXX why only in the v6 case??? */ 5390 if (r->rt == PF_FASTROUTE) { 5391 if (s) 5392 PF_STATE_UNLOCK(s); 5393 m0->m_flags |= M_SKIP_FIREWALL; 5394 ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL); 5395 return; 5396 } 5397 5398 if (TAILQ_EMPTY(&r->rpool.list)) { 5399 DPFPRINTF(PF_DEBUG_URGENT, 5400 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5401 goto bad_locked; 5402 } 5403 if (s == NULL) { 5404 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5405 &naddr, NULL, &sn); 5406 if (!PF_AZERO(&naddr, AF_INET6)) 5407 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5408 &naddr, AF_INET6); 5409 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5410 } else { 5411 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5412 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5413 &s->rt_addr, AF_INET6); 5414 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5415 } 5416 5417 if (s) 5418 PF_STATE_UNLOCK(s); 5419 5420 if (ifp == NULL) 5421 goto bad; 5422 5423 if (oifp != ifp) { 5424 if (pf_test6(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5425 goto bad; 5426 else if (m0 == NULL) 5427 goto done; 5428 if (m0->m_len < sizeof(struct ip6_hdr)) { 5429 DPFPRINTF(PF_DEBUG_URGENT, 5430 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5431 __func__)); 5432 goto bad; 5433 } 5434 ip6 = mtod(m0, struct ip6_hdr *); 5435 } 5436 5437 if (ifp->if_flags & IFF_LOOPBACK) 5438 m0->m_flags |= M_SKIP_FIREWALL; 5439 5440 /* 5441 * If the packet is too large for the outgoing interface, 5442 * send back an icmp6 error. 5443 */ 5444 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5445 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5446 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5447 nd6_output(ifp, ifp, m0, &dst, NULL); 5448 else { 5449 in6_ifstat_inc(ifp, ifs6_in_toobig); 5450 if (r->rt != PF_DUPTO) 5451 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5452 else 5453 goto bad; 5454 } 5455 5456 done: 5457 if (r->rt != PF_DUPTO) 5458 *m = NULL; 5459 return; 5460 5461 bad_locked: 5462 if (s) 5463 PF_STATE_UNLOCK(s); 5464 bad: 5465 m_freem(m0); 5466 goto done; 5467 } 5468 #endif /* INET6 */ 5469 5470 /* 5471 * FreeBSD supports cksum offloads for the following drivers. 5472 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5473 * ti(4), txp(4), xl(4) 5474 * 5475 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5476 * network driver performed cksum including pseudo header, need to verify 5477 * csum_data 5478 * CSUM_DATA_VALID : 5479 * network driver performed cksum, needs to additional pseudo header 5480 * cksum computation with partial csum_data(i.e. lack of H/W support for 5481 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5482 * 5483 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5484 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5485 * TCP/UDP layer. 5486 * Also, set csum_data to 0xffff to force cksum validation. 5487 */ 5488 static int 5489 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5490 { 5491 u_int16_t sum = 0; 5492 int hw_assist = 0; 5493 struct ip *ip; 5494 5495 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5496 return (1); 5497 if (m->m_pkthdr.len < off + len) 5498 return (1); 5499 5500 switch (p) { 5501 case IPPROTO_TCP: 5502 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5503 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5504 sum = m->m_pkthdr.csum_data; 5505 } else { 5506 ip = mtod(m, struct ip *); 5507 sum = in_pseudo(ip->ip_src.s_addr, 5508 ip->ip_dst.s_addr, htonl((u_short)len + 5509 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5510 } 5511 sum ^= 0xffff; 5512 ++hw_assist; 5513 } 5514 break; 5515 case IPPROTO_UDP: 5516 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5517 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5518 sum = m->m_pkthdr.csum_data; 5519 } else { 5520 ip = mtod(m, struct ip *); 5521 sum = in_pseudo(ip->ip_src.s_addr, 5522 ip->ip_dst.s_addr, htonl((u_short)len + 5523 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5524 } 5525 sum ^= 0xffff; 5526 ++hw_assist; 5527 } 5528 break; 5529 case IPPROTO_ICMP: 5530 #ifdef INET6 5531 case IPPROTO_ICMPV6: 5532 #endif /* INET6 */ 5533 break; 5534 default: 5535 return (1); 5536 } 5537 5538 if (!hw_assist) { 5539 switch (af) { 5540 case AF_INET: 5541 if (p == IPPROTO_ICMP) { 5542 if (m->m_len < off) 5543 return (1); 5544 m->m_data += off; 5545 m->m_len -= off; 5546 sum = in_cksum(m, len); 5547 m->m_data -= off; 5548 m->m_len += off; 5549 } else { 5550 if (m->m_len < sizeof(struct ip)) 5551 return (1); 5552 sum = in4_cksum(m, p, off, len); 5553 } 5554 break; 5555 #ifdef INET6 5556 case AF_INET6: 5557 if (m->m_len < sizeof(struct ip6_hdr)) 5558 return (1); 5559 sum = in6_cksum(m, p, off, len); 5560 break; 5561 #endif /* INET6 */ 5562 default: 5563 return (1); 5564 } 5565 } 5566 if (sum) { 5567 switch (p) { 5568 case IPPROTO_TCP: 5569 { 5570 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5571 break; 5572 } 5573 case IPPROTO_UDP: 5574 { 5575 KMOD_UDPSTAT_INC(udps_badsum); 5576 break; 5577 } 5578 #ifdef INET 5579 case IPPROTO_ICMP: 5580 { 5581 KMOD_ICMPSTAT_INC(icps_checksum); 5582 break; 5583 } 5584 #endif 5585 #ifdef INET6 5586 case IPPROTO_ICMPV6: 5587 { 5588 KMOD_ICMP6STAT_INC(icp6s_checksum); 5589 break; 5590 } 5591 #endif /* INET6 */ 5592 } 5593 return (1); 5594 } else { 5595 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5596 m->m_pkthdr.csum_flags |= 5597 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5598 m->m_pkthdr.csum_data = 0xffff; 5599 } 5600 } 5601 return (0); 5602 } 5603 5604 5605 #ifdef INET 5606 int 5607 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5608 { 5609 struct pfi_kif *kif; 5610 u_short action, reason = 0, log = 0; 5611 struct mbuf *m = *m0; 5612 struct ip *h = NULL; 5613 struct m_tag *ipfwtag; 5614 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5615 struct pf_state *s = NULL; 5616 struct pf_ruleset *ruleset = NULL; 5617 struct pf_pdesc pd; 5618 int off, dirndx, pqid = 0; 5619 5620 M_ASSERTPKTHDR(m); 5621 5622 if (!V_pf_status.running) 5623 return (PF_PASS); 5624 5625 memset(&pd, 0, sizeof(pd)); 5626 5627 kif = (struct pfi_kif *)ifp->if_pf_kif; 5628 5629 if (kif == NULL) { 5630 DPFPRINTF(PF_DEBUG_URGENT, 5631 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5632 return (PF_DROP); 5633 } 5634 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5635 return (PF_PASS); 5636 5637 if (m->m_flags & M_SKIP_FIREWALL) 5638 return (PF_PASS); 5639 5640 pd.pf_mtag = pf_find_mtag(m); 5641 5642 PF_RULES_RLOCK(); 5643 5644 if (ip_divert_ptr != NULL && 5645 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5646 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5647 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5648 if (pd.pf_mtag == NULL && 5649 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5650 action = PF_DROP; 5651 goto done; 5652 } 5653 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5654 m_tag_delete(m, ipfwtag); 5655 } 5656 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5657 m->m_flags |= M_FASTFWD_OURS; 5658 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5659 } 5660 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5661 /* We do IP header normalization and packet reassembly here */ 5662 action = PF_DROP; 5663 goto done; 5664 } 5665 m = *m0; /* pf_normalize messes with m0 */ 5666 h = mtod(m, struct ip *); 5667 5668 off = h->ip_hl << 2; 5669 if (off < (int)sizeof(struct ip)) { 5670 action = PF_DROP; 5671 REASON_SET(&reason, PFRES_SHORT); 5672 log = 1; 5673 goto done; 5674 } 5675 5676 pd.src = (struct pf_addr *)&h->ip_src; 5677 pd.dst = (struct pf_addr *)&h->ip_dst; 5678 pd.sport = pd.dport = NULL; 5679 pd.ip_sum = &h->ip_sum; 5680 pd.proto_sum = NULL; 5681 pd.proto = h->ip_p; 5682 pd.dir = dir; 5683 pd.sidx = (dir == PF_IN) ? 0 : 1; 5684 pd.didx = (dir == PF_IN) ? 1 : 0; 5685 pd.af = AF_INET; 5686 pd.tos = h->ip_tos; 5687 pd.tot_len = ntohs(h->ip_len); 5688 5689 /* handle fragments that didn't get reassembled by normalization */ 5690 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5691 action = pf_test_fragment(&r, dir, kif, m, h, 5692 &pd, &a, &ruleset); 5693 goto done; 5694 } 5695 5696 switch (h->ip_p) { 5697 5698 case IPPROTO_TCP: { 5699 struct tcphdr th; 5700 5701 pd.hdr.tcp = &th; 5702 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5703 &action, &reason, AF_INET)) { 5704 log = action != PF_PASS; 5705 goto done; 5706 } 5707 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5708 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5709 pqid = 1; 5710 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5711 if (action == PF_DROP) 5712 goto done; 5713 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5714 &reason); 5715 if (action == PF_PASS) { 5716 if (pfsync_update_state_ptr != NULL) 5717 pfsync_update_state_ptr(s); 5718 r = s->rule.ptr; 5719 a = s->anchor.ptr; 5720 log = s->log; 5721 } else if (s == NULL) 5722 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5723 &a, &ruleset, inp); 5724 break; 5725 } 5726 5727 case IPPROTO_UDP: { 5728 struct udphdr uh; 5729 5730 pd.hdr.udp = &uh; 5731 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5732 &action, &reason, AF_INET)) { 5733 log = action != PF_PASS; 5734 goto done; 5735 } 5736 if (uh.uh_dport == 0 || 5737 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5738 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5739 action = PF_DROP; 5740 REASON_SET(&reason, PFRES_SHORT); 5741 goto done; 5742 } 5743 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5744 if (action == PF_PASS) { 5745 if (pfsync_update_state_ptr != NULL) 5746 pfsync_update_state_ptr(s); 5747 r = s->rule.ptr; 5748 a = s->anchor.ptr; 5749 log = s->log; 5750 } else if (s == NULL) 5751 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5752 &a, &ruleset, inp); 5753 break; 5754 } 5755 5756 case IPPROTO_ICMP: { 5757 struct icmp ih; 5758 5759 pd.hdr.icmp = &ih; 5760 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 5761 &action, &reason, AF_INET)) { 5762 log = action != PF_PASS; 5763 goto done; 5764 } 5765 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 5766 &reason); 5767 if (action == PF_PASS) { 5768 if (pfsync_update_state_ptr != NULL) 5769 pfsync_update_state_ptr(s); 5770 r = s->rule.ptr; 5771 a = s->anchor.ptr; 5772 log = s->log; 5773 } else if (s == NULL) 5774 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5775 &a, &ruleset, inp); 5776 break; 5777 } 5778 5779 #ifdef INET6 5780 case IPPROTO_ICMPV6: { 5781 action = PF_DROP; 5782 DPFPRINTF(PF_DEBUG_MISC, 5783 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 5784 goto done; 5785 } 5786 #endif 5787 5788 default: 5789 action = pf_test_state_other(&s, dir, kif, m, &pd); 5790 if (action == PF_PASS) { 5791 if (pfsync_update_state_ptr != NULL) 5792 pfsync_update_state_ptr(s); 5793 r = s->rule.ptr; 5794 a = s->anchor.ptr; 5795 log = s->log; 5796 } else if (s == NULL) 5797 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5798 &a, &ruleset, inp); 5799 break; 5800 } 5801 5802 done: 5803 PF_RULES_RUNLOCK(); 5804 if (action == PF_PASS && h->ip_hl > 5 && 5805 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 5806 action = PF_DROP; 5807 REASON_SET(&reason, PFRES_IPOPTIONS); 5808 log = 1; 5809 DPFPRINTF(PF_DEBUG_MISC, 5810 ("pf: dropping packet with ip options\n")); 5811 } 5812 5813 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 5814 action = PF_DROP; 5815 REASON_SET(&reason, PFRES_MEMORY); 5816 } 5817 if (r->rtableid >= 0) 5818 M_SETFIB(m, r->rtableid); 5819 5820 #ifdef ALTQ 5821 if (action == PF_PASS && r->qid) { 5822 if (pd.pf_mtag == NULL && 5823 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5824 action = PF_DROP; 5825 REASON_SET(&reason, PFRES_MEMORY); 5826 } 5827 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 5828 pd.pf_mtag->qid = r->pqid; 5829 else 5830 pd.pf_mtag->qid = r->qid; 5831 /* add hints for ecn */ 5832 pd.pf_mtag->hdr = h; 5833 5834 } 5835 #endif /* ALTQ */ 5836 5837 /* 5838 * connections redirected to loopback should not match sockets 5839 * bound specifically to loopback due to security implications, 5840 * see tcp_input() and in_pcblookup_listen(). 5841 */ 5842 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 5843 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 5844 (s->nat_rule.ptr->action == PF_RDR || 5845 s->nat_rule.ptr->action == PF_BINAT) && 5846 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 5847 m->m_flags |= M_SKIP_FIREWALL; 5848 5849 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 5850 !PACKET_LOOPED(&pd)) { 5851 5852 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 5853 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 5854 if (ipfwtag != NULL) { 5855 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 5856 ntohs(r->divert.port); 5857 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 5858 5859 if (s) 5860 PF_STATE_UNLOCK(s); 5861 5862 m_tag_prepend(m, ipfwtag); 5863 if (m->m_flags & M_FASTFWD_OURS) { 5864 if (pd.pf_mtag == NULL && 5865 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5866 action = PF_DROP; 5867 REASON_SET(&reason, PFRES_MEMORY); 5868 log = 1; 5869 DPFPRINTF(PF_DEBUG_MISC, 5870 ("pf: failed to allocate tag\n")); 5871 } 5872 pd.pf_mtag->flags |= PF_FASTFWD_OURS_PRESENT; 5873 m->m_flags &= ~M_FASTFWD_OURS; 5874 } 5875 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 5876 *m0 = NULL; 5877 5878 return (action); 5879 } else { 5880 /* XXX: ipfw has the same behaviour! */ 5881 action = PF_DROP; 5882 REASON_SET(&reason, PFRES_MEMORY); 5883 log = 1; 5884 DPFPRINTF(PF_DEBUG_MISC, 5885 ("pf: failed to allocate divert tag\n")); 5886 } 5887 } 5888 5889 if (log) { 5890 struct pf_rule *lr; 5891 5892 if (s != NULL && s->nat_rule.ptr != NULL && 5893 s->nat_rule.ptr->log & PF_LOG_ALL) 5894 lr = s->nat_rule.ptr; 5895 else 5896 lr = r; 5897 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 5898 (s == NULL)); 5899 } 5900 5901 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 5902 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 5903 5904 if (action == PF_PASS || r->action == PF_DROP) { 5905 dirndx = (dir == PF_OUT); 5906 r->packets[dirndx]++; 5907 r->bytes[dirndx] += pd.tot_len; 5908 if (a != NULL) { 5909 a->packets[dirndx]++; 5910 a->bytes[dirndx] += pd.tot_len; 5911 } 5912 if (s != NULL) { 5913 if (s->nat_rule.ptr != NULL) { 5914 s->nat_rule.ptr->packets[dirndx]++; 5915 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 5916 } 5917 if (s->src_node != NULL) { 5918 s->src_node->packets[dirndx]++; 5919 s->src_node->bytes[dirndx] += pd.tot_len; 5920 } 5921 if (s->nat_src_node != NULL) { 5922 s->nat_src_node->packets[dirndx]++; 5923 s->nat_src_node->bytes[dirndx] += pd.tot_len; 5924 } 5925 dirndx = (dir == s->direction) ? 0 : 1; 5926 s->packets[dirndx]++; 5927 s->bytes[dirndx] += pd.tot_len; 5928 } 5929 tr = r; 5930 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 5931 if (nr != NULL && r == &V_pf_default_rule) 5932 tr = nr; 5933 if (tr->src.addr.type == PF_ADDR_TABLE) 5934 pfr_update_stats(tr->src.addr.p.tbl, 5935 (s == NULL) ? pd.src : 5936 &s->key[(s->direction == PF_IN)]-> 5937 addr[(s->direction == PF_OUT)], 5938 pd.af, pd.tot_len, dir == PF_OUT, 5939 r->action == PF_PASS, tr->src.neg); 5940 if (tr->dst.addr.type == PF_ADDR_TABLE) 5941 pfr_update_stats(tr->dst.addr.p.tbl, 5942 (s == NULL) ? pd.dst : 5943 &s->key[(s->direction == PF_IN)]-> 5944 addr[(s->direction == PF_IN)], 5945 pd.af, pd.tot_len, dir == PF_OUT, 5946 r->action == PF_PASS, tr->dst.neg); 5947 } 5948 5949 switch (action) { 5950 case PF_SYNPROXY_DROP: 5951 m_freem(*m0); 5952 case PF_DEFER: 5953 *m0 = NULL; 5954 action = PF_PASS; 5955 break; 5956 case PF_DROP: 5957 m_freem(*m0); 5958 *m0 = NULL; 5959 break; 5960 default: 5961 /* pf_route() returns unlocked. */ 5962 if (r->rt) { 5963 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 5964 return (action); 5965 } 5966 break; 5967 } 5968 if (s) 5969 PF_STATE_UNLOCK(s); 5970 5971 return (action); 5972 } 5973 #endif /* INET */ 5974 5975 #ifdef INET6 5976 int 5977 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5978 { 5979 struct pfi_kif *kif; 5980 u_short action, reason = 0, log = 0; 5981 struct mbuf *m = *m0, *n = NULL; 5982 struct ip6_hdr *h = NULL; 5983 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5984 struct pf_state *s = NULL; 5985 struct pf_ruleset *ruleset = NULL; 5986 struct pf_pdesc pd; 5987 int off, terminal = 0, dirndx, rh_cnt = 0; 5988 5989 M_ASSERTPKTHDR(m); 5990 5991 if (!V_pf_status.running) 5992 return (PF_PASS); 5993 5994 memset(&pd, 0, sizeof(pd)); 5995 pd.pf_mtag = pf_find_mtag(m); 5996 5997 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 5998 return (PF_PASS); 5999 6000 kif = (struct pfi_kif *)ifp->if_pf_kif; 6001 if (kif == NULL) { 6002 DPFPRINTF(PF_DEBUG_URGENT, 6003 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6004 return (PF_DROP); 6005 } 6006 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6007 return (PF_PASS); 6008 6009 if (m->m_flags & M_SKIP_FIREWALL) 6010 return (PF_PASS); 6011 6012 PF_RULES_RLOCK(); 6013 6014 /* We do IP header normalization and packet reassembly here */ 6015 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6016 action = PF_DROP; 6017 goto done; 6018 } 6019 m = *m0; /* pf_normalize messes with m0 */ 6020 h = mtod(m, struct ip6_hdr *); 6021 6022 #if 1 6023 /* 6024 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6025 * will do something bad, so drop the packet for now. 6026 */ 6027 if (htons(h->ip6_plen) == 0) { 6028 action = PF_DROP; 6029 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6030 goto done; 6031 } 6032 #endif 6033 6034 pd.src = (struct pf_addr *)&h->ip6_src; 6035 pd.dst = (struct pf_addr *)&h->ip6_dst; 6036 pd.sport = pd.dport = NULL; 6037 pd.ip_sum = NULL; 6038 pd.proto_sum = NULL; 6039 pd.dir = dir; 6040 pd.sidx = (dir == PF_IN) ? 0 : 1; 6041 pd.didx = (dir == PF_IN) ? 1 : 0; 6042 pd.af = AF_INET6; 6043 pd.tos = 0; 6044 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6045 6046 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6047 pd.proto = h->ip6_nxt; 6048 do { 6049 switch (pd.proto) { 6050 case IPPROTO_FRAGMENT: 6051 action = pf_test_fragment(&r, dir, kif, m, h, 6052 &pd, &a, &ruleset); 6053 if (action == PF_DROP) 6054 REASON_SET(&reason, PFRES_FRAG); 6055 goto done; 6056 case IPPROTO_ROUTING: { 6057 struct ip6_rthdr rthdr; 6058 6059 if (rh_cnt++) { 6060 DPFPRINTF(PF_DEBUG_MISC, 6061 ("pf: IPv6 more than one rthdr\n")); 6062 action = PF_DROP; 6063 REASON_SET(&reason, PFRES_IPOPTIONS); 6064 log = 1; 6065 goto done; 6066 } 6067 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6068 &reason, pd.af)) { 6069 DPFPRINTF(PF_DEBUG_MISC, 6070 ("pf: IPv6 short rthdr\n")); 6071 action = PF_DROP; 6072 REASON_SET(&reason, PFRES_SHORT); 6073 log = 1; 6074 goto done; 6075 } 6076 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6077 DPFPRINTF(PF_DEBUG_MISC, 6078 ("pf: IPv6 rthdr0\n")); 6079 action = PF_DROP; 6080 REASON_SET(&reason, PFRES_IPOPTIONS); 6081 log = 1; 6082 goto done; 6083 } 6084 /* FALLTHROUGH */ 6085 } 6086 case IPPROTO_AH: 6087 case IPPROTO_HOPOPTS: 6088 case IPPROTO_DSTOPTS: { 6089 /* get next header and header length */ 6090 struct ip6_ext opt6; 6091 6092 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6093 NULL, &reason, pd.af)) { 6094 DPFPRINTF(PF_DEBUG_MISC, 6095 ("pf: IPv6 short opt\n")); 6096 action = PF_DROP; 6097 log = 1; 6098 goto done; 6099 } 6100 if (pd.proto == IPPROTO_AH) 6101 off += (opt6.ip6e_len + 2) * 4; 6102 else 6103 off += (opt6.ip6e_len + 1) * 8; 6104 pd.proto = opt6.ip6e_nxt; 6105 /* goto the next header */ 6106 break; 6107 } 6108 default: 6109 terminal++; 6110 break; 6111 } 6112 } while (!terminal); 6113 6114 /* if there's no routing header, use unmodified mbuf for checksumming */ 6115 if (!n) 6116 n = m; 6117 6118 switch (pd.proto) { 6119 6120 case IPPROTO_TCP: { 6121 struct tcphdr th; 6122 6123 pd.hdr.tcp = &th; 6124 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6125 &action, &reason, AF_INET6)) { 6126 log = action != PF_PASS; 6127 goto done; 6128 } 6129 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6130 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6131 if (action == PF_DROP) 6132 goto done; 6133 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6134 &reason); 6135 if (action == PF_PASS) { 6136 if (pfsync_update_state_ptr != NULL) 6137 pfsync_update_state_ptr(s); 6138 r = s->rule.ptr; 6139 a = s->anchor.ptr; 6140 log = s->log; 6141 } else if (s == NULL) 6142 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6143 &a, &ruleset, inp); 6144 break; 6145 } 6146 6147 case IPPROTO_UDP: { 6148 struct udphdr uh; 6149 6150 pd.hdr.udp = &uh; 6151 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6152 &action, &reason, AF_INET6)) { 6153 log = action != PF_PASS; 6154 goto done; 6155 } 6156 if (uh.uh_dport == 0 || 6157 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6158 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6159 action = PF_DROP; 6160 REASON_SET(&reason, PFRES_SHORT); 6161 goto done; 6162 } 6163 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6164 if (action == PF_PASS) { 6165 if (pfsync_update_state_ptr != NULL) 6166 pfsync_update_state_ptr(s); 6167 r = s->rule.ptr; 6168 a = s->anchor.ptr; 6169 log = s->log; 6170 } else if (s == NULL) 6171 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6172 &a, &ruleset, inp); 6173 break; 6174 } 6175 6176 case IPPROTO_ICMP: { 6177 action = PF_DROP; 6178 DPFPRINTF(PF_DEBUG_MISC, 6179 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6180 goto done; 6181 } 6182 6183 case IPPROTO_ICMPV6: { 6184 struct icmp6_hdr ih; 6185 6186 pd.hdr.icmp6 = &ih; 6187 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6188 &action, &reason, AF_INET6)) { 6189 log = action != PF_PASS; 6190 goto done; 6191 } 6192 action = pf_test_state_icmp(&s, dir, kif, 6193 m, off, h, &pd, &reason); 6194 if (action == PF_PASS) { 6195 if (pfsync_update_state_ptr != NULL) 6196 pfsync_update_state_ptr(s); 6197 r = s->rule.ptr; 6198 a = s->anchor.ptr; 6199 log = s->log; 6200 } else if (s == NULL) 6201 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6202 &a, &ruleset, inp); 6203 break; 6204 } 6205 6206 default: 6207 action = pf_test_state_other(&s, dir, kif, m, &pd); 6208 if (action == PF_PASS) { 6209 if (pfsync_update_state_ptr != NULL) 6210 pfsync_update_state_ptr(s); 6211 r = s->rule.ptr; 6212 a = s->anchor.ptr; 6213 log = s->log; 6214 } else if (s == NULL) 6215 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6216 &a, &ruleset, inp); 6217 break; 6218 } 6219 6220 done: 6221 PF_RULES_RUNLOCK(); 6222 if (n != m) { 6223 m_freem(n); 6224 n = NULL; 6225 } 6226 6227 /* handle dangerous IPv6 extension headers. */ 6228 if (action == PF_PASS && rh_cnt && 6229 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6230 action = PF_DROP; 6231 REASON_SET(&reason, PFRES_IPOPTIONS); 6232 log = 1; 6233 DPFPRINTF(PF_DEBUG_MISC, 6234 ("pf: dropping packet with dangerous v6 headers\n")); 6235 } 6236 6237 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6238 action = PF_DROP; 6239 REASON_SET(&reason, PFRES_MEMORY); 6240 } 6241 if (r->rtableid >= 0) 6242 M_SETFIB(m, r->rtableid); 6243 6244 #ifdef ALTQ 6245 if (action == PF_PASS && r->qid) { 6246 if (pd.pf_mtag == NULL && 6247 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6248 action = PF_DROP; 6249 REASON_SET(&reason, PFRES_MEMORY); 6250 } 6251 if (pd.tos & IPTOS_LOWDELAY) 6252 pd.pf_mtag->qid = r->pqid; 6253 else 6254 pd.pf_mtag->qid = r->qid; 6255 /* add hints for ecn */ 6256 pd.pf_mtag->hdr = h; 6257 } 6258 #endif /* ALTQ */ 6259 6260 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6261 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6262 (s->nat_rule.ptr->action == PF_RDR || 6263 s->nat_rule.ptr->action == PF_BINAT) && 6264 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6265 m->m_flags |= M_SKIP_FIREWALL; 6266 6267 /* XXX: Anybody working on it?! */ 6268 if (r->divert.port) 6269 printf("pf: divert(9) is not supported for IPv6\n"); 6270 6271 if (log) { 6272 struct pf_rule *lr; 6273 6274 if (s != NULL && s->nat_rule.ptr != NULL && 6275 s->nat_rule.ptr->log & PF_LOG_ALL) 6276 lr = s->nat_rule.ptr; 6277 else 6278 lr = r; 6279 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6280 &pd, (s == NULL)); 6281 } 6282 6283 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6284 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6285 6286 if (action == PF_PASS || r->action == PF_DROP) { 6287 dirndx = (dir == PF_OUT); 6288 r->packets[dirndx]++; 6289 r->bytes[dirndx] += pd.tot_len; 6290 if (a != NULL) { 6291 a->packets[dirndx]++; 6292 a->bytes[dirndx] += pd.tot_len; 6293 } 6294 if (s != NULL) { 6295 if (s->nat_rule.ptr != NULL) { 6296 s->nat_rule.ptr->packets[dirndx]++; 6297 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6298 } 6299 if (s->src_node != NULL) { 6300 s->src_node->packets[dirndx]++; 6301 s->src_node->bytes[dirndx] += pd.tot_len; 6302 } 6303 if (s->nat_src_node != NULL) { 6304 s->nat_src_node->packets[dirndx]++; 6305 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6306 } 6307 dirndx = (dir == s->direction) ? 0 : 1; 6308 s->packets[dirndx]++; 6309 s->bytes[dirndx] += pd.tot_len; 6310 } 6311 tr = r; 6312 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6313 if (nr != NULL && r == &V_pf_default_rule) 6314 tr = nr; 6315 if (tr->src.addr.type == PF_ADDR_TABLE) 6316 pfr_update_stats(tr->src.addr.p.tbl, 6317 (s == NULL) ? pd.src : 6318 &s->key[(s->direction == PF_IN)]->addr[0], 6319 pd.af, pd.tot_len, dir == PF_OUT, 6320 r->action == PF_PASS, tr->src.neg); 6321 if (tr->dst.addr.type == PF_ADDR_TABLE) 6322 pfr_update_stats(tr->dst.addr.p.tbl, 6323 (s == NULL) ? pd.dst : 6324 &s->key[(s->direction == PF_IN)]->addr[1], 6325 pd.af, pd.tot_len, dir == PF_OUT, 6326 r->action == PF_PASS, tr->dst.neg); 6327 } 6328 6329 switch (action) { 6330 case PF_SYNPROXY_DROP: 6331 m_freem(*m0); 6332 case PF_DEFER: 6333 *m0 = NULL; 6334 action = PF_PASS; 6335 break; 6336 case PF_DROP: 6337 m_freem(*m0); 6338 *m0 = NULL; 6339 break; 6340 default: 6341 /* pf_route6() returns unlocked. */ 6342 if (r->rt) { 6343 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6344 return (action); 6345 } 6346 break; 6347 } 6348 6349 if (s) 6350 PF_STATE_UNLOCK(s); 6351 6352 return (action); 6353 } 6354 #endif /* INET6 */ 6355