xref: /freebsd/sys/netpfil/pf/pf.c (revision b224af946a17b8e7a7b4942157556b5bc86dd6fb)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Daniel Hartmeier
5  * Copyright (c) 2002 - 2008 Henning Brauer
6  * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  *    - Redistributions of source code must retain the above copyright
14  *      notice, this list of conditions and the following disclaimer.
15  *    - Redistributions in binary form must reproduce the above
16  *      copyright notice, this list of conditions and the following
17  *      disclaimer in the documentation and/or other materials provided
18  *      with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
28  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  * Effort sponsored in part by the Defense Advanced Research Projects
34  * Agency (DARPA) and Air Force Research Laboratory, Air Force
35  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
36  *
37  *	$OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $
38  */
39 
40 #include <sys/cdefs.h>
41 #include "opt_bpf.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_pf.h"
45 #include "opt_sctp.h"
46 
47 #include <sys/param.h>
48 #include <sys/bus.h>
49 #include <sys/endian.h>
50 #include <sys/gsb_crc32.h>
51 #include <sys/hash.h>
52 #include <sys/interrupt.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/limits.h>
56 #include <sys/mbuf.h>
57 #include <sys/md5.h>
58 #include <sys/random.h>
59 #include <sys/refcount.h>
60 #include <sys/sdt.h>
61 #include <sys/socket.h>
62 #include <sys/sysctl.h>
63 #include <sys/taskqueue.h>
64 #include <sys/ucred.h>
65 
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/if_private.h>
69 #include <net/if_types.h>
70 #include <net/if_vlan_var.h>
71 #include <net/route.h>
72 #include <net/route/nhop.h>
73 #include <net/vnet.h>
74 
75 #include <net/pfil.h>
76 #include <net/pfvar.h>
77 #include <net/if_pflog.h>
78 #include <net/if_pfsync.h>
79 
80 #include <netinet/in_pcb.h>
81 #include <netinet/in_var.h>
82 #include <netinet/in_fib.h>
83 #include <netinet/ip.h>
84 #include <netinet/ip_fw.h>
85 #include <netinet/ip_icmp.h>
86 #include <netinet/icmp_var.h>
87 #include <netinet/ip_var.h>
88 #include <netinet/tcp.h>
89 #include <netinet/tcp_fsm.h>
90 #include <netinet/tcp_seq.h>
91 #include <netinet/tcp_timer.h>
92 #include <netinet/tcp_var.h>
93 #include <netinet/udp.h>
94 #include <netinet/udp_var.h>
95 
96 /* dummynet */
97 #include <netinet/ip_dummynet.h>
98 #include <netinet/ip_fw.h>
99 #include <netpfil/ipfw/dn_heap.h>
100 #include <netpfil/ipfw/ip_fw_private.h>
101 #include <netpfil/ipfw/ip_dn_private.h>
102 
103 #ifdef INET6
104 #include <netinet/ip6.h>
105 #include <netinet/icmp6.h>
106 #include <netinet6/nd6.h>
107 #include <netinet6/ip6_var.h>
108 #include <netinet6/in6_pcb.h>
109 #include <netinet6/in6_fib.h>
110 #include <netinet6/scope6_var.h>
111 #endif /* INET6 */
112 
113 #include <netinet/sctp_header.h>
114 #include <netinet/sctp_crc32.h>
115 
116 #include <machine/in_cksum.h>
117 #include <security/mac/mac_framework.h>
118 
119 #define	DPFPRINTF(n, x)	if (V_pf_status.debug >= (n)) printf x
120 
121 SDT_PROVIDER_DEFINE(pf);
122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *",
123     "struct pf_kstate *");
124 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *",
125     "struct pf_state_key_cmp *", "int", "struct pf_pdesc *",
126     "struct pf_kstate *");
127 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *",
128     "struct pfi_kkif *");
129 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *",
130     "struct pf_krule *", "struct mbuf *", "int");
131 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t",
132     "struct pf_sctp_source *");
133 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t",
134     "struct pf_kstate *", "struct pf_sctp_source *");
135 
136 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *",
137     "struct mbuf *");
138 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *");
139 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch,
140     "int", "struct pf_keth_rule *", "char *");
141 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *");
142 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match,
143     "int", "struct pf_keth_rule *");
144 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t");
145 
146 /*
147  * Global variables
148  */
149 
150 /* state tables */
151 VNET_DEFINE(struct pf_altqqueue,	 pf_altqs[4]);
152 VNET_DEFINE(struct pf_kpalist,		 pf_pabuf);
153 VNET_DEFINE(struct pf_altqqueue *,	 pf_altqs_active);
154 VNET_DEFINE(struct pf_altqqueue *,	 pf_altq_ifs_active);
155 VNET_DEFINE(struct pf_altqqueue *,	 pf_altqs_inactive);
156 VNET_DEFINE(struct pf_altqqueue *,	 pf_altq_ifs_inactive);
157 VNET_DEFINE(struct pf_kstatus,		 pf_status);
158 
159 VNET_DEFINE(u_int32_t,			 ticket_altqs_active);
160 VNET_DEFINE(u_int32_t,			 ticket_altqs_inactive);
161 VNET_DEFINE(int,			 altqs_inactive_open);
162 VNET_DEFINE(u_int32_t,			 ticket_pabuf);
163 
164 VNET_DEFINE(MD5_CTX,			 pf_tcp_secret_ctx);
165 #define	V_pf_tcp_secret_ctx		 VNET(pf_tcp_secret_ctx)
166 VNET_DEFINE(u_char,			 pf_tcp_secret[16]);
167 #define	V_pf_tcp_secret			 VNET(pf_tcp_secret)
168 VNET_DEFINE(int,			 pf_tcp_secret_init);
169 #define	V_pf_tcp_secret_init		 VNET(pf_tcp_secret_init)
170 VNET_DEFINE(int,			 pf_tcp_iss_off);
171 #define	V_pf_tcp_iss_off		 VNET(pf_tcp_iss_off)
172 VNET_DECLARE(int,			 pf_vnet_active);
173 #define	V_pf_vnet_active		 VNET(pf_vnet_active)
174 
175 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx);
176 #define V_pf_purge_idx	VNET(pf_purge_idx)
177 
178 #ifdef PF_WANT_32_TO_64_COUNTER
179 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter);
180 #define	V_pf_counter_periodic_iter	VNET(pf_counter_periodic_iter)
181 
182 VNET_DEFINE(struct allrulelist_head, pf_allrulelist);
183 VNET_DEFINE(size_t, pf_allrulecount);
184 VNET_DEFINE(struct pf_krule *, pf_rulemarker);
185 #endif
186 
187 struct pf_sctp_endpoint;
188 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint);
189 struct pf_sctp_source {
190 	sa_family_t			af;
191 	struct pf_addr			addr;
192 	TAILQ_ENTRY(pf_sctp_source)	entry;
193 };
194 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source);
195 struct pf_sctp_endpoint
196 {
197 	uint32_t		 v_tag;
198 	struct pf_sctp_sources	 sources;
199 	RB_ENTRY(pf_sctp_endpoint)	entry;
200 };
201 static int
202 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b)
203 {
204 	return (a->v_tag - b->v_tag);
205 }
206 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
207 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
208 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints);
209 #define V_pf_sctp_endpoints	VNET(pf_sctp_endpoints)
210 static struct mtx_padalign pf_sctp_endpoints_mtx;
211 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF);
212 #define	PF_SCTP_ENDPOINTS_LOCK()	mtx_lock(&pf_sctp_endpoints_mtx)
213 #define	PF_SCTP_ENDPOINTS_UNLOCK()	mtx_unlock(&pf_sctp_endpoints_mtx)
214 
215 /*
216  * Queue for pf_intr() sends.
217  */
218 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations");
219 struct pf_send_entry {
220 	STAILQ_ENTRY(pf_send_entry)	pfse_next;
221 	struct mbuf			*pfse_m;
222 	enum {
223 		PFSE_IP,
224 		PFSE_IP6,
225 		PFSE_ICMP,
226 		PFSE_ICMP6,
227 	}				pfse_type;
228 	struct {
229 		int		type;
230 		int		code;
231 		int		mtu;
232 	} icmpopts;
233 };
234 
235 STAILQ_HEAD(pf_send_head, pf_send_entry);
236 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue);
237 #define	V_pf_sendqueue	VNET(pf_sendqueue)
238 
239 static struct mtx_padalign pf_sendqueue_mtx;
240 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF);
241 #define	PF_SENDQ_LOCK()		mtx_lock(&pf_sendqueue_mtx)
242 #define	PF_SENDQ_UNLOCK()	mtx_unlock(&pf_sendqueue_mtx)
243 
244 /*
245  * Queue for pf_overload_task() tasks.
246  */
247 struct pf_overload_entry {
248 	SLIST_ENTRY(pf_overload_entry)	next;
249 	struct pf_addr  		addr;
250 	sa_family_t			af;
251 	uint8_t				dir;
252 	struct pf_krule  		*rule;
253 };
254 
255 SLIST_HEAD(pf_overload_head, pf_overload_entry);
256 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue);
257 #define V_pf_overloadqueue	VNET(pf_overloadqueue)
258 VNET_DEFINE_STATIC(struct task, pf_overloadtask);
259 #define	V_pf_overloadtask	VNET(pf_overloadtask)
260 
261 static struct mtx_padalign pf_overloadqueue_mtx;
262 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx,
263     "pf overload/flush queue", MTX_DEF);
264 #define	PF_OVERLOADQ_LOCK()	mtx_lock(&pf_overloadqueue_mtx)
265 #define	PF_OVERLOADQ_UNLOCK()	mtx_unlock(&pf_overloadqueue_mtx)
266 
267 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules);
268 struct mtx_padalign pf_unlnkdrules_mtx;
269 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules",
270     MTX_DEF);
271 
272 struct sx pf_config_lock;
273 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config");
274 
275 struct mtx_padalign pf_table_stats_lock;
276 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats",
277     MTX_DEF);
278 
279 VNET_DEFINE_STATIC(uma_zone_t,	pf_sources_z);
280 #define	V_pf_sources_z	VNET(pf_sources_z)
281 uma_zone_t		pf_mtag_z;
282 VNET_DEFINE(uma_zone_t,	 pf_state_z);
283 VNET_DEFINE(uma_zone_t,	 pf_state_key_z);
284 VNET_DEFINE(uma_zone_t,	 pf_udp_mapping_z);
285 
286 VNET_DEFINE(struct unrhdr64, pf_stateid);
287 
288 static void		 pf_src_tree_remove_state(struct pf_kstate *);
289 static void		 pf_init_threshold(struct pf_threshold *, u_int32_t,
290 			    u_int32_t);
291 static void		 pf_add_threshold(struct pf_threshold *);
292 static int		 pf_check_threshold(struct pf_threshold *);
293 
294 static void		 pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *,
295 			    u_int16_t *, u_int16_t *, struct pf_addr *,
296 			    u_int16_t, u_int8_t, sa_family_t);
297 static int		 pf_modulate_sack(struct pf_pdesc *,
298 			    struct tcphdr *, struct pf_state_peer *);
299 int			 pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *,
300 			    int *, u_int16_t *, u_int16_t *);
301 static void		 pf_change_icmp(struct pf_addr *, u_int16_t *,
302 			    struct pf_addr *, struct pf_addr *, u_int16_t,
303 			    u_int16_t *, u_int16_t *, u_int16_t *,
304 			    u_int16_t *, u_int8_t, sa_family_t);
305 static void		 pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t,
306 			    sa_family_t, struct pf_krule *, int);
307 static void		 pf_detach_state(struct pf_kstate *);
308 static int		 pf_state_key_attach(struct pf_state_key *,
309 			    struct pf_state_key *, struct pf_kstate *);
310 static void		 pf_state_key_detach(struct pf_kstate *, int);
311 static int		 pf_state_key_ctor(void *, int, void *, int);
312 static u_int32_t	 pf_tcp_iss(struct pf_pdesc *);
313 static __inline void	 pf_dummynet_flag_remove(struct mbuf *m,
314 			    struct pf_mtag *pf_mtag);
315 static int		 pf_dummynet(struct pf_pdesc *, struct pf_kstate *,
316 			    struct pf_krule *, struct mbuf **);
317 static int		 pf_dummynet_route(struct pf_pdesc *,
318 			    struct pf_kstate *, struct pf_krule *,
319 			    struct ifnet *, struct sockaddr *, struct mbuf **);
320 static int		 pf_test_eth_rule(int, struct pfi_kkif *,
321 			    struct mbuf **);
322 static int		 pf_test_rule(struct pf_krule **, struct pf_kstate **,
323 			    struct pf_pdesc *, struct pf_krule **,
324 			    struct pf_kruleset **, struct inpcb *);
325 static int		 pf_create_state(struct pf_krule *, struct pf_krule *,
326 			    struct pf_krule *, struct pf_pdesc *,
327 			    struct pf_ksrc_node *, struct pf_state_key *,
328 			    struct pf_state_key *,
329 			    u_int16_t, u_int16_t, int *,
330 			    struct pf_kstate **, int, u_int16_t, u_int16_t,
331 			    struct pf_krule_slist *, struct pf_udp_mapping *);
332 static int		 pf_state_key_addr_setup(struct pf_pdesc *,
333 			    struct pf_state_key_cmp *, int);
334 static int		 pf_tcp_track_full(struct pf_kstate **,
335 			    struct pf_pdesc *, u_short *, int *);
336 static int		 pf_tcp_track_sloppy(struct pf_kstate **,
337 			    struct pf_pdesc *, u_short *);
338 static int		 pf_test_state_tcp(struct pf_kstate **,
339 			    struct pf_pdesc *, u_short *);
340 static int		 pf_test_state_udp(struct pf_kstate **,
341 			    struct pf_pdesc *);
342 int			 pf_icmp_state_lookup(struct pf_state_key_cmp *,
343 			    struct pf_pdesc *, struct pf_kstate **,
344 			    int, u_int16_t, u_int16_t,
345 			    int, int *, int, int);
346 static int		 pf_test_state_icmp(struct pf_kstate **,
347 			    struct pf_pdesc *, u_short *);
348 static void		 pf_sctp_multihome_detach_addr(const struct pf_kstate *);
349 static void		 pf_sctp_multihome_delayed(struct pf_pdesc *,
350 			    struct pfi_kkif *, struct pf_kstate *, int);
351 static int		 pf_test_state_sctp(struct pf_kstate **,
352 			    struct pf_pdesc *, u_short *);
353 static int		 pf_test_state_other(struct pf_kstate **,
354 			    struct pf_pdesc *);
355 static u_int16_t	 pf_calc_mss(struct pf_addr *, sa_family_t,
356 				int, u_int16_t);
357 static int		 pf_check_proto_cksum(struct mbuf *, int, int,
358 			    u_int8_t, sa_family_t);
359 static int		 pf_walk_option6(struct mbuf *, int, int, uint32_t *,
360 			    u_short *);
361 static void		 pf_print_state_parts(struct pf_kstate *,
362 			    struct pf_state_key *, struct pf_state_key *);
363 static void		 pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t,
364 			    bool, u_int8_t);
365 static struct pf_kstate	*pf_find_state(struct pfi_kkif *,
366 			    const struct pf_state_key_cmp *, u_int);
367 static int		 pf_src_connlimit(struct pf_kstate **);
368 static int		 pf_match_rcvif(struct mbuf *, struct pf_krule *);
369 static void		 pf_counters_inc(int, struct pf_pdesc *,
370 			    struct pf_kstate *, struct pf_krule *,
371 			    struct pf_krule *);
372 static void		 pf_overload_task(void *v, int pending);
373 static u_short		 pf_insert_src_node(struct pf_ksrc_node **,
374 			    struct pf_krule *, struct pf_addr *, sa_family_t);
375 static u_int		 pf_purge_expired_states(u_int, int);
376 static void		 pf_purge_unlinked_rules(void);
377 static int		 pf_mtag_uminit(void *, int, int);
378 static void		 pf_mtag_free(struct m_tag *);
379 static void		 pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *,
380 			    int, struct pf_state_key *);
381 #ifdef INET
382 static void		 pf_route(struct mbuf **, struct pf_krule *,
383 			    struct ifnet *, struct pf_kstate *,
384 			    struct pf_pdesc *, struct inpcb *);
385 #endif /* INET */
386 #ifdef INET6
387 static void		 pf_change_a6(struct pf_addr *, u_int16_t *,
388 			    struct pf_addr *, u_int8_t);
389 static void		 pf_route6(struct mbuf **, struct pf_krule *,
390 			    struct ifnet *, struct pf_kstate *,
391 			    struct pf_pdesc *, struct inpcb *);
392 #endif /* INET6 */
393 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t);
394 
395 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len);
396 
397 extern int pf_end_threads;
398 extern struct proc *pf_purge_proc;
399 
400 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]);
401 
402 enum { PF_ICMP_MULTI_NONE, PF_ICMP_MULTI_LINK };
403 
404 #define	PACKET_UNDO_NAT(_m, _pd, _off, _s)		\
405 	do {								\
406 		struct pf_state_key *nk;				\
407 		if ((pd->dir) == PF_OUT)					\
408 			nk = (_s)->key[PF_SK_STACK];			\
409 		else							\
410 			nk = (_s)->key[PF_SK_WIRE];			\
411 		pf_packet_rework_nat(_m, _pd, _off, nk);		\
412 	} while (0)
413 
414 #define	PACKET_LOOPED(pd)	((pd)->pf_mtag &&			\
415 				 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED)
416 
417 #define	STATE_LOOKUP(k, s, pd)						\
418 	do {								\
419 		(s) = pf_find_state((pd->kif), (k), (pd->dir));		\
420 		SDT_PROBE5(pf, ip, state, lookup, pd->kif, k, (pd->dir), pd, (s));	\
421 		if ((s) == NULL)					\
422 			return (PF_DROP);				\
423 		if (PACKET_LOOPED(pd))					\
424 			return (PF_PASS);				\
425 	} while (0)
426 
427 static struct pfi_kkif *
428 BOUND_IFACE(struct pf_kstate *st, struct pfi_kkif *k)
429 {
430 	SDT_PROBE2(pf, ip, , bound_iface, st, k);
431 
432 	/* Floating unless otherwise specified. */
433 	if (! (st->rule->rule_flag & PFRULE_IFBOUND))
434 		return (V_pfi_all);
435 
436 	/*
437 	 * Initially set to all, because we don't know what interface we'll be
438 	 * sending this out when we create the state.
439 	 */
440 	if (st->rule->rt == PF_REPLYTO)
441 		return (V_pfi_all);
442 
443 	/* Don't overrule the interface for states created on incoming packets. */
444 	if (st->direction == PF_IN)
445 		return (k);
446 
447 	/* No route-to, so don't overrule. */
448 	if (st->rt != PF_ROUTETO)
449 		return (k);
450 
451 	/* Bind to the route-to interface. */
452 	return (st->rt_kif);
453 }
454 
455 #define	STATE_INC_COUNTERS(s)						\
456 	do {								\
457 		struct pf_krule_item *mrm;				\
458 		counter_u64_add(s->rule->states_cur, 1);		\
459 		counter_u64_add(s->rule->states_tot, 1);		\
460 		if (s->anchor != NULL) {				\
461 			counter_u64_add(s->anchor->states_cur, 1);	\
462 			counter_u64_add(s->anchor->states_tot, 1);	\
463 		}							\
464 		if (s->nat_rule != NULL) {				\
465 			counter_u64_add(s->nat_rule->states_cur, 1);\
466 			counter_u64_add(s->nat_rule->states_tot, 1);\
467 		}							\
468 		SLIST_FOREACH(mrm, &s->match_rules, entry) {		\
469 			counter_u64_add(mrm->r->states_cur, 1);		\
470 			counter_u64_add(mrm->r->states_tot, 1);		\
471 		}							\
472 	} while (0)
473 
474 #define	STATE_DEC_COUNTERS(s)						\
475 	do {								\
476 		struct pf_krule_item *mrm;				\
477 		if (s->nat_rule != NULL)				\
478 			counter_u64_add(s->nat_rule->states_cur, -1);\
479 		if (s->anchor != NULL)				\
480 			counter_u64_add(s->anchor->states_cur, -1);	\
481 		counter_u64_add(s->rule->states_cur, -1);		\
482 		SLIST_FOREACH(mrm, &s->match_rules, entry)		\
483 			counter_u64_add(mrm->r->states_cur, -1);	\
484 	} while (0)
485 
486 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures");
487 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items");
488 VNET_DEFINE(struct pf_keyhash *, pf_keyhash);
489 VNET_DEFINE(struct pf_idhash *, pf_idhash);
490 VNET_DEFINE(struct pf_srchash *, pf_srchash);
491 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash);
492 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping);
493 
494 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
495     "pf(4)");
496 
497 VNET_DEFINE(u_long, pf_hashmask);
498 VNET_DEFINE(u_long, pf_srchashmask);
499 VNET_DEFINE(u_long, pf_udpendpointhashmask);
500 VNET_DEFINE_STATIC(u_long, pf_hashsize);
501 #define V_pf_hashsize	VNET(pf_hashsize)
502 VNET_DEFINE_STATIC(u_long, pf_srchashsize);
503 #define V_pf_srchashsize	VNET(pf_srchashsize)
504 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize);
505 #define V_pf_udpendpointhashsize	VNET(pf_udpendpointhashsize)
506 u_long	pf_ioctl_maxcount = 65535;
507 
508 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
509     &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable");
510 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
511     &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable");
512 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
513     &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable");
514 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN,
515     &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call");
516 
517 VNET_DEFINE(void *, pf_swi_cookie);
518 VNET_DEFINE(struct intr_event *, pf_swi_ie);
519 
520 VNET_DEFINE(uint32_t, pf_hashseed);
521 #define	V_pf_hashseed	VNET(pf_hashseed)
522 
523 static void
524 pf_sctp_checksum(struct mbuf *m, int off)
525 {
526 	uint32_t sum = 0;
527 
528 	/* Zero out the checksum, to enable recalculation. */
529 	m_copyback(m, off + offsetof(struct sctphdr, checksum),
530 	    sizeof(sum), (caddr_t)&sum);
531 
532 	sum = sctp_calculate_cksum(m, off);
533 
534 	m_copyback(m, off + offsetof(struct sctphdr, checksum),
535 	    sizeof(sum), (caddr_t)&sum);
536 }
537 
538 int
539 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af)
540 {
541 
542 	switch (af) {
543 #ifdef INET
544 	case AF_INET:
545 		if (a->addr32[0] > b->addr32[0])
546 			return (1);
547 		if (a->addr32[0] < b->addr32[0])
548 			return (-1);
549 		break;
550 #endif /* INET */
551 #ifdef INET6
552 	case AF_INET6:
553 		if (a->addr32[3] > b->addr32[3])
554 			return (1);
555 		if (a->addr32[3] < b->addr32[3])
556 			return (-1);
557 		if (a->addr32[2] > b->addr32[2])
558 			return (1);
559 		if (a->addr32[2] < b->addr32[2])
560 			return (-1);
561 		if (a->addr32[1] > b->addr32[1])
562 			return (1);
563 		if (a->addr32[1] < b->addr32[1])
564 			return (-1);
565 		if (a->addr32[0] > b->addr32[0])
566 			return (1);
567 		if (a->addr32[0] < b->addr32[0])
568 			return (-1);
569 		break;
570 #endif /* INET6 */
571 	}
572 	return (0);
573 }
574 
575 static bool
576 pf_is_loopback(sa_family_t af, struct pf_addr *addr)
577 {
578 	switch (af) {
579 #ifdef INET
580 	case AF_INET:
581 		return IN_LOOPBACK(ntohl(addr->v4.s_addr));
582 #endif
583 	case AF_INET6:
584 		return IN6_IS_ADDR_LOOPBACK(&addr->v6);
585 	default:
586 		panic("Unknown af %d", af);
587 	}
588 }
589 
590 static void
591 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off,
592 	struct pf_state_key *nk)
593 {
594 
595 	switch (pd->proto) {
596 	case IPPROTO_TCP: {
597 		struct tcphdr *th = &pd->hdr.tcp;
598 
599 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
600 			pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum,
601 			    &th->th_sum, &nk->addr[pd->sidx],
602 			    nk->port[pd->sidx], 0, pd->af);
603 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
604 			pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum,
605 			    &th->th_sum, &nk->addr[pd->didx],
606 			    nk->port[pd->didx], 0, pd->af);
607 		m_copyback(m, off, sizeof(*th), (caddr_t)th);
608 		break;
609 	}
610 	case IPPROTO_UDP: {
611 		struct udphdr *uh = &pd->hdr.udp;
612 
613 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
614 			pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum,
615 			    &uh->uh_sum, &nk->addr[pd->sidx],
616 			    nk->port[pd->sidx], 1, pd->af);
617 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
618 			pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum,
619 			    &uh->uh_sum, &nk->addr[pd->didx],
620 			    nk->port[pd->didx], 1, pd->af);
621 		m_copyback(m, off, sizeof(*uh), (caddr_t)uh);
622 		break;
623 	}
624 	case IPPROTO_SCTP: {
625 		struct sctphdr *sh = &pd->hdr.sctp;
626 		uint16_t checksum = 0;
627 
628 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
629 			pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum,
630 			    &checksum, &nk->addr[pd->sidx],
631 			    nk->port[pd->sidx], 1, pd->af);
632 		}
633 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
634 			pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum,
635 			    &checksum, &nk->addr[pd->didx],
636 			    nk->port[pd->didx], 1, pd->af);
637 		}
638 
639 		break;
640 	}
641 	case IPPROTO_ICMP: {
642 		struct icmp *ih = &pd->hdr.icmp;
643 
644 		if (nk->port[pd->sidx] != ih->icmp_id) {
645 			pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
646 			    ih->icmp_cksum, ih->icmp_id,
647 			    nk->port[pd->sidx], 0);
648 			ih->icmp_id = nk->port[pd->sidx];
649 			pd->sport = &ih->icmp_id;
650 
651 			m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih);
652 		}
653 		/* FALLTHROUGH */
654 	}
655 	default:
656 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
657 			switch (pd->af) {
658 			case AF_INET:
659 				pf_change_a(&pd->src->v4.s_addr,
660 				    pd->ip_sum, nk->addr[pd->sidx].v4.s_addr,
661 				    0);
662 				break;
663 			case AF_INET6:
664 				PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
665 				break;
666 			}
667 		}
668 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
669 			switch (pd->af) {
670 			case AF_INET:
671 				pf_change_a(&pd->dst->v4.s_addr,
672 				    pd->ip_sum, nk->addr[pd->didx].v4.s_addr,
673 				    0);
674 				break;
675 			case AF_INET6:
676 				PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
677 				break;
678 			}
679 		}
680 		break;
681 	}
682 }
683 
684 static __inline uint32_t
685 pf_hashkey(const struct pf_state_key *sk)
686 {
687 	uint32_t h;
688 
689 	h = murmur3_32_hash32((const uint32_t *)sk,
690 	    sizeof(struct pf_state_key_cmp)/sizeof(uint32_t),
691 	    V_pf_hashseed);
692 
693 	return (h & V_pf_hashmask);
694 }
695 
696 static __inline uint32_t
697 pf_hashsrc(struct pf_addr *addr, sa_family_t af)
698 {
699 	uint32_t h;
700 
701 	switch (af) {
702 	case AF_INET:
703 		h = murmur3_32_hash32((uint32_t *)&addr->v4,
704 		    sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed);
705 		break;
706 	case AF_INET6:
707 		h = murmur3_32_hash32((uint32_t *)&addr->v6,
708 		    sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed);
709 		break;
710 	}
711 
712 	return (h & V_pf_srchashmask);
713 }
714 
715 static inline uint32_t
716 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint)
717 {
718 	uint32_t h;
719 
720 	h = murmur3_32_hash32((uint32_t *)endpoint,
721 	    sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t),
722 	    V_pf_hashseed);
723 	return (h & V_pf_udpendpointhashmask);
724 }
725 
726 #ifdef ALTQ
727 static int
728 pf_state_hash(struct pf_kstate *s)
729 {
730 	u_int32_t hv = (intptr_t)s / sizeof(*s);
731 
732 	hv ^= crc32(&s->src, sizeof(s->src));
733 	hv ^= crc32(&s->dst, sizeof(s->dst));
734 	if (hv == 0)
735 		hv = 1;
736 	return (hv);
737 }
738 #endif
739 
740 static __inline void
741 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate)
742 {
743 	if (which == PF_PEER_DST || which == PF_PEER_BOTH)
744 		s->dst.state = newstate;
745 	if (which == PF_PEER_DST)
746 		return;
747 	if (s->src.state == newstate)
748 		return;
749 	if (s->creatorid == V_pf_status.hostid &&
750 	    s->key[PF_SK_STACK] != NULL &&
751 	    s->key[PF_SK_STACK]->proto == IPPROTO_TCP &&
752 	    !(TCPS_HAVEESTABLISHED(s->src.state) ||
753 	    s->src.state == TCPS_CLOSED) &&
754 	    (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED))
755 		atomic_add_32(&V_pf_status.states_halfopen, -1);
756 
757 	s->src.state = newstate;
758 }
759 
760 #ifdef INET6
761 void
762 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af)
763 {
764 	switch (af) {
765 #ifdef INET
766 	case AF_INET:
767 		memcpy(&dst->v4, &src->v4, sizeof(dst->v4));
768 		break;
769 #endif /* INET */
770 	case AF_INET6:
771 		memcpy(&dst->v6, &src->v6, sizeof(dst->v6));
772 		break;
773 	}
774 }
775 #endif /* INET6 */
776 
777 static void
778 pf_init_threshold(struct pf_threshold *threshold,
779     u_int32_t limit, u_int32_t seconds)
780 {
781 	threshold->limit = limit * PF_THRESHOLD_MULT;
782 	threshold->seconds = seconds;
783 	threshold->count = 0;
784 	threshold->last = time_uptime;
785 }
786 
787 static void
788 pf_add_threshold(struct pf_threshold *threshold)
789 {
790 	u_int32_t t = time_uptime, diff = t - threshold->last;
791 
792 	if (diff >= threshold->seconds)
793 		threshold->count = 0;
794 	else
795 		threshold->count -= threshold->count * diff /
796 		    threshold->seconds;
797 	threshold->count += PF_THRESHOLD_MULT;
798 	threshold->last = t;
799 }
800 
801 static int
802 pf_check_threshold(struct pf_threshold *threshold)
803 {
804 	return (threshold->count > threshold->limit);
805 }
806 
807 static int
808 pf_src_connlimit(struct pf_kstate **state)
809 {
810 	struct pf_overload_entry *pfoe;
811 	int bad = 0;
812 
813 	PF_STATE_LOCK_ASSERT(*state);
814 	/*
815 	 * XXXKS: The src node is accessed unlocked!
816 	 * PF_SRC_NODE_LOCK_ASSERT((*state)->src_node);
817 	 */
818 
819 	(*state)->src_node->conn++;
820 	(*state)->src.tcp_est = 1;
821 	pf_add_threshold(&(*state)->src_node->conn_rate);
822 
823 	if ((*state)->rule->max_src_conn &&
824 	    (*state)->rule->max_src_conn <
825 	    (*state)->src_node->conn) {
826 		counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1);
827 		bad++;
828 	}
829 
830 	if ((*state)->rule->max_src_conn_rate.limit &&
831 	    pf_check_threshold(&(*state)->src_node->conn_rate)) {
832 		counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1);
833 		bad++;
834 	}
835 
836 	if (!bad)
837 		return (0);
838 
839 	/* Kill this state. */
840 	(*state)->timeout = PFTM_PURGE;
841 	pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED);
842 
843 	if ((*state)->rule->overload_tbl == NULL)
844 		return (1);
845 
846 	/* Schedule overloading and flushing task. */
847 	pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT);
848 	if (pfoe == NULL)
849 		return (1);	/* too bad :( */
850 
851 	bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr));
852 	pfoe->af = (*state)->key[PF_SK_WIRE]->af;
853 	pfoe->rule = (*state)->rule;
854 	pfoe->dir = (*state)->direction;
855 	PF_OVERLOADQ_LOCK();
856 	SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next);
857 	PF_OVERLOADQ_UNLOCK();
858 	taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask);
859 
860 	return (1);
861 }
862 
863 static void
864 pf_overload_task(void *v, int pending)
865 {
866 	struct pf_overload_head queue;
867 	struct pfr_addr p;
868 	struct pf_overload_entry *pfoe, *pfoe1;
869 	uint32_t killed = 0;
870 
871 	CURVNET_SET((struct vnet *)v);
872 
873 	PF_OVERLOADQ_LOCK();
874 	queue = V_pf_overloadqueue;
875 	SLIST_INIT(&V_pf_overloadqueue);
876 	PF_OVERLOADQ_UNLOCK();
877 
878 	bzero(&p, sizeof(p));
879 	SLIST_FOREACH(pfoe, &queue, next) {
880 		counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1);
881 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
882 			printf("%s: blocking address ", __func__);
883 			pf_print_host(&pfoe->addr, 0, pfoe->af);
884 			printf("\n");
885 		}
886 
887 		p.pfra_af = pfoe->af;
888 		switch (pfoe->af) {
889 #ifdef INET
890 		case AF_INET:
891 			p.pfra_net = 32;
892 			p.pfra_ip4addr = pfoe->addr.v4;
893 			break;
894 #endif
895 #ifdef INET6
896 		case AF_INET6:
897 			p.pfra_net = 128;
898 			p.pfra_ip6addr = pfoe->addr.v6;
899 			break;
900 #endif
901 		}
902 
903 		PF_RULES_WLOCK();
904 		pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second);
905 		PF_RULES_WUNLOCK();
906 	}
907 
908 	/*
909 	 * Remove those entries, that don't need flushing.
910 	 */
911 	SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
912 		if (pfoe->rule->flush == 0) {
913 			SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next);
914 			free(pfoe, M_PFTEMP);
915 		} else
916 			counter_u64_add(
917 			    V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1);
918 
919 	/* If nothing to flush, return. */
920 	if (SLIST_EMPTY(&queue)) {
921 		CURVNET_RESTORE();
922 		return;
923 	}
924 
925 	for (int i = 0; i <= V_pf_hashmask; i++) {
926 		struct pf_idhash *ih = &V_pf_idhash[i];
927 		struct pf_state_key *sk;
928 		struct pf_kstate *s;
929 
930 		PF_HASHROW_LOCK(ih);
931 		LIST_FOREACH(s, &ih->states, entry) {
932 		    sk = s->key[PF_SK_WIRE];
933 		    SLIST_FOREACH(pfoe, &queue, next)
934 			if (sk->af == pfoe->af &&
935 			    ((pfoe->rule->flush & PF_FLUSH_GLOBAL) ||
936 			    pfoe->rule == s->rule) &&
937 			    ((pfoe->dir == PF_OUT &&
938 			    PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) ||
939 			    (pfoe->dir == PF_IN &&
940 			    PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) {
941 				s->timeout = PFTM_PURGE;
942 				pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
943 				killed++;
944 			}
945 		}
946 		PF_HASHROW_UNLOCK(ih);
947 	}
948 	SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
949 		free(pfoe, M_PFTEMP);
950 	if (V_pf_status.debug >= PF_DEBUG_MISC)
951 		printf("%s: %u states killed", __func__, killed);
952 
953 	CURVNET_RESTORE();
954 }
955 
956 /*
957  * Can return locked on failure, so that we can consistently
958  * allocate and insert a new one.
959  */
960 struct pf_ksrc_node *
961 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af,
962 	struct pf_srchash **sh, bool returnlocked)
963 {
964 	struct pf_ksrc_node *n;
965 
966 	counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
967 
968 	*sh = &V_pf_srchash[pf_hashsrc(src, af)];
969 	PF_HASHROW_LOCK(*sh);
970 	LIST_FOREACH(n, &(*sh)->nodes, entry)
971 		if (n->rule == rule && n->af == af &&
972 		    ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) ||
973 		    (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0)))
974 			break;
975 
976 	if (n != NULL) {
977 		n->states++;
978 		PF_HASHROW_UNLOCK(*sh);
979 	} else if (returnlocked == false)
980 		PF_HASHROW_UNLOCK(*sh);
981 
982 	return (n);
983 }
984 
985 static void
986 pf_free_src_node(struct pf_ksrc_node *sn)
987 {
988 
989 	for (int i = 0; i < 2; i++) {
990 		counter_u64_free(sn->bytes[i]);
991 		counter_u64_free(sn->packets[i]);
992 	}
993 	uma_zfree(V_pf_sources_z, sn);
994 }
995 
996 static u_short
997 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule,
998     struct pf_addr *src, sa_family_t af)
999 {
1000 	u_short			 reason = 0;
1001 	struct pf_srchash	*sh = NULL;
1002 
1003 	KASSERT((rule->rule_flag & PFRULE_SRCTRACK ||
1004 	    rule->rpool.opts & PF_POOL_STICKYADDR),
1005 	    ("%s for non-tracking rule %p", __func__, rule));
1006 
1007 	if (*sn == NULL)
1008 		*sn = pf_find_src_node(src, rule, af, &sh, true);
1009 
1010 	if (*sn == NULL) {
1011 		PF_HASHROW_ASSERT(sh);
1012 
1013 		if (rule->max_src_nodes &&
1014 		    counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) {
1015 			counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1);
1016 			PF_HASHROW_UNLOCK(sh);
1017 			reason = PFRES_SRCLIMIT;
1018 			goto done;
1019 		}
1020 
1021 		(*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO);
1022 		if ((*sn) == NULL) {
1023 			PF_HASHROW_UNLOCK(sh);
1024 			reason = PFRES_MEMORY;
1025 			goto done;
1026 		}
1027 
1028 		for (int i = 0; i < 2; i++) {
1029 			(*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT);
1030 			(*sn)->packets[i] = counter_u64_alloc(M_NOWAIT);
1031 
1032 			if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) {
1033 				pf_free_src_node(*sn);
1034 				PF_HASHROW_UNLOCK(sh);
1035 				reason = PFRES_MEMORY;
1036 				goto done;
1037 			}
1038 		}
1039 
1040 		pf_init_threshold(&(*sn)->conn_rate,
1041 		    rule->max_src_conn_rate.limit,
1042 		    rule->max_src_conn_rate.seconds);
1043 
1044 		MPASS((*sn)->lock == NULL);
1045 		(*sn)->lock = &sh->lock;
1046 
1047 		(*sn)->af = af;
1048 		(*sn)->rule = rule;
1049 		PF_ACPY(&(*sn)->addr, src, af);
1050 		LIST_INSERT_HEAD(&sh->nodes, *sn, entry);
1051 		(*sn)->creation = time_uptime;
1052 		(*sn)->ruletype = rule->action;
1053 		(*sn)->states = 1;
1054 		if ((*sn)->rule != NULL)
1055 			counter_u64_add((*sn)->rule->src_nodes, 1);
1056 		PF_HASHROW_UNLOCK(sh);
1057 		counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1);
1058 	} else {
1059 		if (rule->max_src_states &&
1060 		    (*sn)->states >= rule->max_src_states) {
1061 			counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES],
1062 			    1);
1063 			reason = PFRES_SRCLIMIT;
1064 			goto done;
1065 		}
1066 	}
1067 done:
1068 	return (reason);
1069 }
1070 
1071 void
1072 pf_unlink_src_node(struct pf_ksrc_node *src)
1073 {
1074 	PF_SRC_NODE_LOCK_ASSERT(src);
1075 
1076 	LIST_REMOVE(src, entry);
1077 	if (src->rule)
1078 		counter_u64_add(src->rule->src_nodes, -1);
1079 }
1080 
1081 u_int
1082 pf_free_src_nodes(struct pf_ksrc_node_list *head)
1083 {
1084 	struct pf_ksrc_node *sn, *tmp;
1085 	u_int count = 0;
1086 
1087 	LIST_FOREACH_SAFE(sn, head, entry, tmp) {
1088 		pf_free_src_node(sn);
1089 		count++;
1090 	}
1091 
1092 	counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count);
1093 
1094 	return (count);
1095 }
1096 
1097 void
1098 pf_mtag_initialize(void)
1099 {
1100 
1101 	pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) +
1102 	    sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL,
1103 	    UMA_ALIGN_PTR, 0);
1104 }
1105 
1106 /* Per-vnet data storage structures initialization. */
1107 void
1108 pf_initialize(void)
1109 {
1110 	struct pf_keyhash	*kh;
1111 	struct pf_idhash	*ih;
1112 	struct pf_srchash	*sh;
1113 	struct pf_udpendpointhash	*uh;
1114 	u_int i;
1115 
1116 	if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize))
1117 		V_pf_hashsize = PF_HASHSIZ;
1118 	if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize))
1119 		V_pf_srchashsize = PF_SRCHASHSIZ;
1120 	if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize))
1121 		V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1122 
1123 	V_pf_hashseed = arc4random();
1124 
1125 	/* States and state keys storage. */
1126 	V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate),
1127 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1128 	V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z;
1129 	uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT);
1130 	uma_zone_set_warning(V_pf_state_z, "PF states limit reached");
1131 
1132 	V_pf_state_key_z = uma_zcreate("pf state keys",
1133 	    sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL,
1134 	    UMA_ALIGN_PTR, 0);
1135 
1136 	V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash),
1137 	    M_PFHASH, M_NOWAIT | M_ZERO);
1138 	V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash),
1139 	    M_PFHASH, M_NOWAIT | M_ZERO);
1140 	if (V_pf_keyhash == NULL || V_pf_idhash == NULL) {
1141 		printf("pf: Unable to allocate memory for "
1142 		    "state_hashsize %lu.\n", V_pf_hashsize);
1143 
1144 		free(V_pf_keyhash, M_PFHASH);
1145 		free(V_pf_idhash, M_PFHASH);
1146 
1147 		V_pf_hashsize = PF_HASHSIZ;
1148 		V_pf_keyhash = mallocarray(V_pf_hashsize,
1149 		    sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO);
1150 		V_pf_idhash = mallocarray(V_pf_hashsize,
1151 		    sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO);
1152 	}
1153 
1154 	V_pf_hashmask = V_pf_hashsize - 1;
1155 	for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask;
1156 	    i++, kh++, ih++) {
1157 		mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK);
1158 		mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF);
1159 	}
1160 
1161 	/* Source nodes. */
1162 	V_pf_sources_z = uma_zcreate("pf source nodes",
1163 	    sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1164 	    0);
1165 	V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z;
1166 	uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT);
1167 	uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached");
1168 
1169 	V_pf_srchash = mallocarray(V_pf_srchashsize,
1170 	    sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO);
1171 	if (V_pf_srchash == NULL) {
1172 		printf("pf: Unable to allocate memory for "
1173 		    "source_hashsize %lu.\n", V_pf_srchashsize);
1174 
1175 		V_pf_srchashsize = PF_SRCHASHSIZ;
1176 		V_pf_srchash = mallocarray(V_pf_srchashsize,
1177 		    sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO);
1178 	}
1179 
1180 	V_pf_srchashmask = V_pf_srchashsize - 1;
1181 	for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++)
1182 		mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF);
1183 
1184 
1185 	/* UDP endpoint mappings. */
1186 	V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings",
1187 	    sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL,
1188 	    UMA_ALIGN_PTR, 0);
1189 	V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1190 	    sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO);
1191 	if (V_pf_udpendpointhash == NULL) {
1192 		printf("pf: Unable to allocate memory for "
1193 		    "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize);
1194 
1195 		V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1196 		V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1197 		    sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO);
1198 	}
1199 
1200 	V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1;
1201 	for (i = 0, uh = V_pf_udpendpointhash;
1202 	    i <= V_pf_udpendpointhashmask;
1203 	    i++, uh++) {
1204 		mtx_init(&uh->lock, "pf_udpendpointhash", NULL,
1205 		    MTX_DEF | MTX_DUPOK);
1206 	}
1207 
1208 	/* ALTQ */
1209 	TAILQ_INIT(&V_pf_altqs[0]);
1210 	TAILQ_INIT(&V_pf_altqs[1]);
1211 	TAILQ_INIT(&V_pf_altqs[2]);
1212 	TAILQ_INIT(&V_pf_altqs[3]);
1213 	TAILQ_INIT(&V_pf_pabuf);
1214 	V_pf_altqs_active = &V_pf_altqs[0];
1215 	V_pf_altq_ifs_active = &V_pf_altqs[1];
1216 	V_pf_altqs_inactive = &V_pf_altqs[2];
1217 	V_pf_altq_ifs_inactive = &V_pf_altqs[3];
1218 
1219 	/* Send & overload+flush queues. */
1220 	STAILQ_INIT(&V_pf_sendqueue);
1221 	SLIST_INIT(&V_pf_overloadqueue);
1222 	TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet);
1223 
1224 	/* Unlinked, but may be referenced rules. */
1225 	TAILQ_INIT(&V_pf_unlinked_rules);
1226 }
1227 
1228 void
1229 pf_mtag_cleanup(void)
1230 {
1231 
1232 	uma_zdestroy(pf_mtag_z);
1233 }
1234 
1235 void
1236 pf_cleanup(void)
1237 {
1238 	struct pf_keyhash	*kh;
1239 	struct pf_idhash	*ih;
1240 	struct pf_srchash	*sh;
1241 	struct pf_udpendpointhash	*uh;
1242 	struct pf_send_entry	*pfse, *next;
1243 	u_int i;
1244 
1245 	for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash;
1246 	    i <= V_pf_hashmask;
1247 	    i++, kh++, ih++) {
1248 		KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty",
1249 		    __func__));
1250 		KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty",
1251 		    __func__));
1252 		mtx_destroy(&kh->lock);
1253 		mtx_destroy(&ih->lock);
1254 	}
1255 	free(V_pf_keyhash, M_PFHASH);
1256 	free(V_pf_idhash, M_PFHASH);
1257 
1258 	for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
1259 		KASSERT(LIST_EMPTY(&sh->nodes),
1260 		    ("%s: source node hash not empty", __func__));
1261 		mtx_destroy(&sh->lock);
1262 	}
1263 	free(V_pf_srchash, M_PFHASH);
1264 
1265 	for (i = 0, uh = V_pf_udpendpointhash;
1266 	    i <= V_pf_udpendpointhashmask;
1267 	    i++, uh++) {
1268 		KASSERT(LIST_EMPTY(&uh->endpoints),
1269 		    ("%s: udp endpoint hash not empty", __func__));
1270 		mtx_destroy(&uh->lock);
1271 	}
1272 	free(V_pf_udpendpointhash, M_PFHASH);
1273 
1274 	STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) {
1275 		m_freem(pfse->pfse_m);
1276 		free(pfse, M_PFTEMP);
1277 	}
1278 	MPASS(RB_EMPTY(&V_pf_sctp_endpoints));
1279 
1280 	uma_zdestroy(V_pf_sources_z);
1281 	uma_zdestroy(V_pf_state_z);
1282 	uma_zdestroy(V_pf_state_key_z);
1283 	uma_zdestroy(V_pf_udp_mapping_z);
1284 }
1285 
1286 static int
1287 pf_mtag_uminit(void *mem, int size, int how)
1288 {
1289 	struct m_tag *t;
1290 
1291 	t = (struct m_tag *)mem;
1292 	t->m_tag_cookie = MTAG_ABI_COMPAT;
1293 	t->m_tag_id = PACKET_TAG_PF;
1294 	t->m_tag_len = sizeof(struct pf_mtag);
1295 	t->m_tag_free = pf_mtag_free;
1296 
1297 	return (0);
1298 }
1299 
1300 static void
1301 pf_mtag_free(struct m_tag *t)
1302 {
1303 
1304 	uma_zfree(pf_mtag_z, t);
1305 }
1306 
1307 struct pf_mtag *
1308 pf_get_mtag(struct mbuf *m)
1309 {
1310 	struct m_tag *mtag;
1311 
1312 	if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL)
1313 		return ((struct pf_mtag *)(mtag + 1));
1314 
1315 	mtag = uma_zalloc(pf_mtag_z, M_NOWAIT);
1316 	if (mtag == NULL)
1317 		return (NULL);
1318 	bzero(mtag + 1, sizeof(struct pf_mtag));
1319 	m_tag_prepend(m, mtag);
1320 
1321 	return ((struct pf_mtag *)(mtag + 1));
1322 }
1323 
1324 static int
1325 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks,
1326     struct pf_kstate *s)
1327 {
1328 	struct pf_keyhash	*khs, *khw, *kh;
1329 	struct pf_state_key	*sk, *cur;
1330 	struct pf_kstate	*si, *olds = NULL;
1331 	int idx;
1332 
1333 	NET_EPOCH_ASSERT();
1334 	KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1335 	KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__));
1336 	KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__));
1337 
1338 	/*
1339 	 * We need to lock hash slots of both keys. To avoid deadlock
1340 	 * we always lock the slot with lower address first. Unlock order
1341 	 * isn't important.
1342 	 *
1343 	 * We also need to lock ID hash slot before dropping key
1344 	 * locks. On success we return with ID hash slot locked.
1345 	 */
1346 
1347 	if (skw == sks) {
1348 		khs = khw = &V_pf_keyhash[pf_hashkey(skw)];
1349 		PF_HASHROW_LOCK(khs);
1350 	} else {
1351 		khs = &V_pf_keyhash[pf_hashkey(sks)];
1352 		khw = &V_pf_keyhash[pf_hashkey(skw)];
1353 		if (khs == khw) {
1354 			PF_HASHROW_LOCK(khs);
1355 		} else if (khs < khw) {
1356 			PF_HASHROW_LOCK(khs);
1357 			PF_HASHROW_LOCK(khw);
1358 		} else {
1359 			PF_HASHROW_LOCK(khw);
1360 			PF_HASHROW_LOCK(khs);
1361 		}
1362 	}
1363 
1364 #define	KEYS_UNLOCK()	do {			\
1365 	if (khs != khw) {			\
1366 		PF_HASHROW_UNLOCK(khs);		\
1367 		PF_HASHROW_UNLOCK(khw);		\
1368 	} else					\
1369 		PF_HASHROW_UNLOCK(khs);		\
1370 } while (0)
1371 
1372 	/*
1373 	 * First run: start with wire key.
1374 	 */
1375 	sk = skw;
1376 	kh = khw;
1377 	idx = PF_SK_WIRE;
1378 
1379 	MPASS(s->lock == NULL);
1380 	s->lock = &V_pf_idhash[PF_IDHASH(s)].lock;
1381 
1382 keyattach:
1383 	LIST_FOREACH(cur, &kh->keys, entry)
1384 		if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0)
1385 			break;
1386 
1387 	if (cur != NULL) {
1388 		/* Key exists. Check for same kif, if none, add to key. */
1389 		TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) {
1390 			struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)];
1391 
1392 			PF_HASHROW_LOCK(ih);
1393 			if (si->kif == s->kif &&
1394 			    si->direction == s->direction) {
1395 				if (sk->proto == IPPROTO_TCP &&
1396 				    si->src.state >= TCPS_FIN_WAIT_2 &&
1397 				    si->dst.state >= TCPS_FIN_WAIT_2) {
1398 					/*
1399 					 * New state matches an old >FIN_WAIT_2
1400 					 * state. We can't drop key hash locks,
1401 					 * thus we can't unlink it properly.
1402 					 *
1403 					 * As a workaround we drop it into
1404 					 * TCPS_CLOSED state, schedule purge
1405 					 * ASAP and push it into the very end
1406 					 * of the slot TAILQ, so that it won't
1407 					 * conflict with our new state.
1408 					 */
1409 					pf_set_protostate(si, PF_PEER_BOTH,
1410 					    TCPS_CLOSED);
1411 					si->timeout = PFTM_PURGE;
1412 					olds = si;
1413 				} else {
1414 					if (V_pf_status.debug >= PF_DEBUG_MISC) {
1415 						printf("pf: %s key attach "
1416 						    "failed on %s: ",
1417 						    (idx == PF_SK_WIRE) ?
1418 						    "wire" : "stack",
1419 						    s->kif->pfik_name);
1420 						pf_print_state_parts(s,
1421 						    (idx == PF_SK_WIRE) ?
1422 						    sk : NULL,
1423 						    (idx == PF_SK_STACK) ?
1424 						    sk : NULL);
1425 						printf(", existing: ");
1426 						pf_print_state_parts(si,
1427 						    (idx == PF_SK_WIRE) ?
1428 						    sk : NULL,
1429 						    (idx == PF_SK_STACK) ?
1430 						    sk : NULL);
1431 						printf("\n");
1432 					}
1433 					s->timeout = PFTM_UNLINKED;
1434 					PF_HASHROW_UNLOCK(ih);
1435 					KEYS_UNLOCK();
1436 					uma_zfree(V_pf_state_key_z, skw);
1437 					if (skw != sks)
1438 						uma_zfree(V_pf_state_key_z, sks);
1439 					if (idx == PF_SK_STACK)
1440 						pf_detach_state(s);
1441 					return (EEXIST); /* collision! */
1442 				}
1443 			}
1444 			PF_HASHROW_UNLOCK(ih);
1445 		}
1446 		uma_zfree(V_pf_state_key_z, sk);
1447 		s->key[idx] = cur;
1448 	} else {
1449 		LIST_INSERT_HEAD(&kh->keys, sk, entry);
1450 		s->key[idx] = sk;
1451 	}
1452 
1453 stateattach:
1454 	/* List is sorted, if-bound states before floating. */
1455 	if (s->kif == V_pfi_all)
1456 		TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]);
1457 	else
1458 		TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]);
1459 
1460 	if (olds) {
1461 		TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]);
1462 		TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds,
1463 		    key_list[idx]);
1464 		olds = NULL;
1465 	}
1466 
1467 	/*
1468 	 * Attach done. See how should we (or should not?)
1469 	 * attach a second key.
1470 	 */
1471 	if (sks == skw) {
1472 		s->key[PF_SK_STACK] = s->key[PF_SK_WIRE];
1473 		idx = PF_SK_STACK;
1474 		sks = NULL;
1475 		goto stateattach;
1476 	} else if (sks != NULL) {
1477 		/*
1478 		 * Continue attaching with stack key.
1479 		 */
1480 		sk = sks;
1481 		kh = khs;
1482 		idx = PF_SK_STACK;
1483 		sks = NULL;
1484 		goto keyattach;
1485 	}
1486 
1487 	PF_STATE_LOCK(s);
1488 	KEYS_UNLOCK();
1489 
1490 	KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL,
1491 	    ("%s failure", __func__));
1492 
1493 	return (0);
1494 #undef	KEYS_UNLOCK
1495 }
1496 
1497 static void
1498 pf_detach_state(struct pf_kstate *s)
1499 {
1500 	struct pf_state_key *sks = s->key[PF_SK_STACK];
1501 	struct pf_keyhash *kh;
1502 
1503 	NET_EPOCH_ASSERT();
1504 	MPASS(s->timeout >= PFTM_MAX);
1505 
1506 	pf_sctp_multihome_detach_addr(s);
1507 
1508 	if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr)
1509 		V_pflow_export_state_ptr(s);
1510 
1511 	if (sks != NULL) {
1512 		kh = &V_pf_keyhash[pf_hashkey(sks)];
1513 		PF_HASHROW_LOCK(kh);
1514 		if (s->key[PF_SK_STACK] != NULL)
1515 			pf_state_key_detach(s, PF_SK_STACK);
1516 		/*
1517 		 * If both point to same key, then we are done.
1518 		 */
1519 		if (sks == s->key[PF_SK_WIRE]) {
1520 			pf_state_key_detach(s, PF_SK_WIRE);
1521 			PF_HASHROW_UNLOCK(kh);
1522 			return;
1523 		}
1524 		PF_HASHROW_UNLOCK(kh);
1525 	}
1526 
1527 	if (s->key[PF_SK_WIRE] != NULL) {
1528 		kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])];
1529 		PF_HASHROW_LOCK(kh);
1530 		if (s->key[PF_SK_WIRE] != NULL)
1531 			pf_state_key_detach(s, PF_SK_WIRE);
1532 		PF_HASHROW_UNLOCK(kh);
1533 	}
1534 }
1535 
1536 static void
1537 pf_state_key_detach(struct pf_kstate *s, int idx)
1538 {
1539 	struct pf_state_key *sk = s->key[idx];
1540 #ifdef INVARIANTS
1541 	struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)];
1542 
1543 	PF_HASHROW_ASSERT(kh);
1544 #endif
1545 	TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]);
1546 	s->key[idx] = NULL;
1547 
1548 	if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) {
1549 		LIST_REMOVE(sk, entry);
1550 		uma_zfree(V_pf_state_key_z, sk);
1551 	}
1552 }
1553 
1554 static int
1555 pf_state_key_ctor(void *mem, int size, void *arg, int flags)
1556 {
1557 	struct pf_state_key *sk = mem;
1558 
1559 	bzero(sk, sizeof(struct pf_state_key_cmp));
1560 	TAILQ_INIT(&sk->states[PF_SK_WIRE]);
1561 	TAILQ_INIT(&sk->states[PF_SK_STACK]);
1562 
1563 	return (0);
1564 }
1565 
1566 static int
1567 pf_state_key_addr_setup(struct pf_pdesc *pd,
1568     struct pf_state_key_cmp *key, int multi)
1569 {
1570 	struct pf_addr *saddr = pd->src;
1571 	struct pf_addr *daddr = pd->dst;
1572 #ifdef INET6
1573 	struct nd_neighbor_solicit nd;
1574 	struct pf_addr *target;
1575 	u_short action, reason;
1576 
1577 	if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6)
1578 		goto copy;
1579 
1580 	switch (pd->hdr.icmp6.icmp6_type) {
1581 	case ND_NEIGHBOR_SOLICIT:
1582 		if (multi)
1583 			return (-1);
1584 		if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af))
1585 			return (-1);
1586 		target = (struct pf_addr *)&nd.nd_ns_target;
1587 		daddr = target;
1588 		break;
1589 	case ND_NEIGHBOR_ADVERT:
1590 		if (multi)
1591 			return (-1);
1592 		if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af))
1593 			return (-1);
1594 		target = (struct pf_addr *)&nd.nd_ns_target;
1595 		saddr = target;
1596 		if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) {
1597 			key->addr[pd->didx].addr32[0] = 0;
1598 			key->addr[pd->didx].addr32[1] = 0;
1599 			key->addr[pd->didx].addr32[2] = 0;
1600 			key->addr[pd->didx].addr32[3] = 0;
1601 			daddr = NULL; /* overwritten */
1602 		}
1603 		break;
1604 	default:
1605 		if (multi == PF_ICMP_MULTI_LINK) {
1606 			key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL;
1607 			key->addr[pd->sidx].addr32[1] = 0;
1608 			key->addr[pd->sidx].addr32[2] = 0;
1609 			key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE;
1610 			saddr = NULL; /* overwritten */
1611 		}
1612 	}
1613 copy:
1614 #endif
1615 	if (saddr)
1616 		PF_ACPY(&key->addr[pd->sidx], saddr, pd->af);
1617 	if (daddr)
1618 		PF_ACPY(&key->addr[pd->didx], daddr, pd->af);
1619 
1620 	return (0);
1621 }
1622 
1623 struct pf_state_key *
1624 pf_state_key_setup(struct pf_pdesc *pd,
1625     struct pf_addr *saddr, struct pf_addr *daddr, u_int16_t sport,
1626     u_int16_t dport)
1627 {
1628 	struct pf_state_key *sk;
1629 
1630 	sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1631 	if (sk == NULL)
1632 		return (NULL);
1633 
1634 	if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)sk,
1635 	    0)) {
1636 		uma_zfree(V_pf_state_key_z, sk);
1637 		return (NULL);
1638 	}
1639 
1640 	sk->port[pd->sidx] = sport;
1641 	sk->port[pd->didx] = dport;
1642 	sk->proto = pd->proto;
1643 	sk->af = pd->af;
1644 
1645 	return (sk);
1646 }
1647 
1648 struct pf_state_key *
1649 pf_state_key_clone(const struct pf_state_key *orig)
1650 {
1651 	struct pf_state_key *sk;
1652 
1653 	sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1654 	if (sk == NULL)
1655 		return (NULL);
1656 
1657 	bcopy(orig, sk, sizeof(struct pf_state_key_cmp));
1658 
1659 	return (sk);
1660 }
1661 
1662 int
1663 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif,
1664     struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s)
1665 {
1666 	struct pf_idhash *ih;
1667 	struct pf_kstate *cur;
1668 	int error;
1669 
1670 	NET_EPOCH_ASSERT();
1671 
1672 	KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]),
1673 	    ("%s: sks not pristine", __func__));
1674 	KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]),
1675 	    ("%s: skw not pristine", __func__));
1676 	KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1677 
1678 	s->kif = kif;
1679 	s->orig_kif = orig_kif;
1680 
1681 	if (s->id == 0 && s->creatorid == 0) {
1682 		s->id = alloc_unr64(&V_pf_stateid);
1683 		s->id = htobe64(s->id);
1684 		s->creatorid = V_pf_status.hostid;
1685 	}
1686 
1687 	/* Returns with ID locked on success. */
1688 	if ((error = pf_state_key_attach(skw, sks, s)) != 0)
1689 		return (error);
1690 
1691 	ih = &V_pf_idhash[PF_IDHASH(s)];
1692 	PF_HASHROW_ASSERT(ih);
1693 	LIST_FOREACH(cur, &ih->states, entry)
1694 		if (cur->id == s->id && cur->creatorid == s->creatorid)
1695 			break;
1696 
1697 	if (cur != NULL) {
1698 		s->timeout = PFTM_UNLINKED;
1699 		PF_HASHROW_UNLOCK(ih);
1700 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1701 			printf("pf: state ID collision: "
1702 			    "id: %016llx creatorid: %08x\n",
1703 			    (unsigned long long)be64toh(s->id),
1704 			    ntohl(s->creatorid));
1705 		}
1706 		pf_detach_state(s);
1707 		return (EEXIST);
1708 	}
1709 	LIST_INSERT_HEAD(&ih->states, s, entry);
1710 	/* One for keys, one for ID hash. */
1711 	refcount_init(&s->refs, 2);
1712 
1713 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1);
1714 	if (V_pfsync_insert_state_ptr != NULL)
1715 		V_pfsync_insert_state_ptr(s);
1716 
1717 	/* Returns locked. */
1718 	return (0);
1719 }
1720 
1721 /*
1722  * Find state by ID: returns with locked row on success.
1723  */
1724 struct pf_kstate *
1725 pf_find_state_byid(uint64_t id, uint32_t creatorid)
1726 {
1727 	struct pf_idhash *ih;
1728 	struct pf_kstate *s;
1729 
1730 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1731 
1732 	ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))];
1733 
1734 	PF_HASHROW_LOCK(ih);
1735 	LIST_FOREACH(s, &ih->states, entry)
1736 		if (s->id == id && s->creatorid == creatorid)
1737 			break;
1738 
1739 	if (s == NULL)
1740 		PF_HASHROW_UNLOCK(ih);
1741 
1742 	return (s);
1743 }
1744 
1745 /*
1746  * Find state by key.
1747  * Returns with ID hash slot locked on success.
1748  */
1749 static struct pf_kstate *
1750 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key,
1751     u_int dir)
1752 {
1753 	struct pf_keyhash	*kh;
1754 	struct pf_state_key	*sk;
1755 	struct pf_kstate	*s;
1756 	int idx;
1757 
1758 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1759 
1760 	kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1761 
1762 	PF_HASHROW_LOCK(kh);
1763 	LIST_FOREACH(sk, &kh->keys, entry)
1764 		if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1765 			break;
1766 	if (sk == NULL) {
1767 		PF_HASHROW_UNLOCK(kh);
1768 		return (NULL);
1769 	}
1770 
1771 	idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK);
1772 
1773 	/* List is sorted, if-bound states before floating ones. */
1774 	TAILQ_FOREACH(s, &sk->states[idx], key_list[idx])
1775 		if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) {
1776 			PF_STATE_LOCK(s);
1777 			PF_HASHROW_UNLOCK(kh);
1778 			if (__predict_false(s->timeout >= PFTM_MAX)) {
1779 				/*
1780 				 * State is either being processed by
1781 				 * pf_unlink_state() in an other thread, or
1782 				 * is scheduled for immediate expiry.
1783 				 */
1784 				PF_STATE_UNLOCK(s);
1785 				return (NULL);
1786 			}
1787 			return (s);
1788 		}
1789 	PF_HASHROW_UNLOCK(kh);
1790 
1791 	return (NULL);
1792 }
1793 
1794 /*
1795  * Returns with ID hash slot locked on success.
1796  */
1797 struct pf_kstate *
1798 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more)
1799 {
1800 	struct pf_keyhash	*kh;
1801 	struct pf_state_key	*sk;
1802 	struct pf_kstate	*s, *ret = NULL;
1803 	int			 idx, inout = 0;
1804 
1805 	if (more != NULL)
1806 		*more = 0;
1807 
1808 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1809 
1810 	kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1811 
1812 	PF_HASHROW_LOCK(kh);
1813 	LIST_FOREACH(sk, &kh->keys, entry)
1814 		if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1815 			break;
1816 	if (sk == NULL) {
1817 		PF_HASHROW_UNLOCK(kh);
1818 		return (NULL);
1819 	}
1820 	switch (dir) {
1821 	case PF_IN:
1822 		idx = PF_SK_WIRE;
1823 		break;
1824 	case PF_OUT:
1825 		idx = PF_SK_STACK;
1826 		break;
1827 	case PF_INOUT:
1828 		idx = PF_SK_WIRE;
1829 		inout = 1;
1830 		break;
1831 	default:
1832 		panic("%s: dir %u", __func__, dir);
1833 	}
1834 second_run:
1835 	TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
1836 		if (more == NULL) {
1837 			PF_STATE_LOCK(s);
1838 			PF_HASHROW_UNLOCK(kh);
1839 			return (s);
1840 		}
1841 
1842 		if (ret)
1843 			(*more)++;
1844 		else {
1845 			ret = s;
1846 			PF_STATE_LOCK(s);
1847 		}
1848 	}
1849 	if (inout == 1) {
1850 		inout = 0;
1851 		idx = PF_SK_STACK;
1852 		goto second_run;
1853 	}
1854 	PF_HASHROW_UNLOCK(kh);
1855 
1856 	return (ret);
1857 }
1858 
1859 /*
1860  * FIXME
1861  * This routine is inefficient -- locks the state only to unlock immediately on
1862  * return.
1863  * It is racy -- after the state is unlocked nothing stops other threads from
1864  * removing it.
1865  */
1866 bool
1867 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir)
1868 {
1869 	struct pf_kstate *s;
1870 
1871 	s = pf_find_state_all(key, dir, NULL);
1872 	if (s != NULL) {
1873 		PF_STATE_UNLOCK(s);
1874 		return (true);
1875 	}
1876 	return (false);
1877 }
1878 
1879 struct pf_udp_mapping *
1880 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port,
1881     struct pf_addr *nat_addr, uint16_t nat_port)
1882 {
1883 	struct pf_udp_mapping *mapping;
1884 
1885 	mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO);
1886 	if (mapping == NULL)
1887 		return (NULL);
1888 	PF_ACPY(&mapping->endpoints[0].addr, src_addr, af);
1889 	mapping->endpoints[0].port = src_port;
1890 	mapping->endpoints[0].af = af;
1891 	mapping->endpoints[0].mapping = mapping;
1892 	PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af);
1893 	mapping->endpoints[1].port = nat_port;
1894 	mapping->endpoints[1].af = af;
1895 	mapping->endpoints[1].mapping = mapping;
1896 	refcount_init(&mapping->refs, 1);
1897 	return (mapping);
1898 }
1899 
1900 int
1901 pf_udp_mapping_insert(struct pf_udp_mapping *mapping)
1902 {
1903 	struct pf_udpendpointhash *h0, *h1;
1904 	struct pf_udp_endpoint *endpoint;
1905 	int ret = EEXIST;
1906 
1907 	h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
1908 	h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
1909 	if (h0 == h1) {
1910 		PF_HASHROW_LOCK(h0);
1911 	} else if (h0 < h1) {
1912 		PF_HASHROW_LOCK(h0);
1913 		PF_HASHROW_LOCK(h1);
1914 	} else {
1915 		PF_HASHROW_LOCK(h1);
1916 		PF_HASHROW_LOCK(h0);
1917 	}
1918 
1919 	LIST_FOREACH(endpoint, &h0->endpoints, entry) {
1920 		if (bcmp(endpoint, &mapping->endpoints[0],
1921 		    sizeof(struct pf_udp_endpoint_cmp)) == 0)
1922 			break;
1923 	}
1924 	if (endpoint != NULL)
1925 		goto cleanup;
1926 	LIST_FOREACH(endpoint, &h1->endpoints, entry) {
1927 		if (bcmp(endpoint, &mapping->endpoints[1],
1928 		    sizeof(struct pf_udp_endpoint_cmp)) == 0)
1929 			break;
1930 	}
1931 	if (endpoint != NULL)
1932 		goto cleanup;
1933 	LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry);
1934 	LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry);
1935 	ret = 0;
1936 
1937 cleanup:
1938 	if (h0 != h1) {
1939 		PF_HASHROW_UNLOCK(h0);
1940 		PF_HASHROW_UNLOCK(h1);
1941 	} else {
1942 		PF_HASHROW_UNLOCK(h0);
1943 	}
1944 	return (ret);
1945 }
1946 
1947 void
1948 pf_udp_mapping_release(struct pf_udp_mapping *mapping)
1949 {
1950 	/* refcount is synchronized on the source endpoint's row lock */
1951 	struct pf_udpendpointhash *h0, *h1;
1952 
1953 	if (mapping == NULL)
1954 		return;
1955 
1956 	h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
1957 	PF_HASHROW_LOCK(h0);
1958 	if (refcount_release(&mapping->refs)) {
1959 		LIST_REMOVE(&mapping->endpoints[0], entry);
1960 		PF_HASHROW_UNLOCK(h0);
1961 		h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
1962 		PF_HASHROW_LOCK(h1);
1963 		LIST_REMOVE(&mapping->endpoints[1], entry);
1964 		PF_HASHROW_UNLOCK(h1);
1965 
1966 		uma_zfree(V_pf_udp_mapping_z, mapping);
1967 	} else {
1968 			PF_HASHROW_UNLOCK(h0);
1969 	}
1970 }
1971 
1972 
1973 struct pf_udp_mapping *
1974 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key)
1975 {
1976 	struct pf_udpendpointhash *uh;
1977 	struct pf_udp_endpoint *endpoint;
1978 
1979 	uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)];
1980 
1981 	PF_HASHROW_LOCK(uh);
1982 	LIST_FOREACH(endpoint, &uh->endpoints, entry) {
1983 		if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 &&
1984 			bcmp(endpoint, &endpoint->mapping->endpoints[0],
1985 			    sizeof(struct pf_udp_endpoint_cmp)) == 0)
1986 			break;
1987 	}
1988 	if (endpoint == NULL) {
1989 		PF_HASHROW_UNLOCK(uh);
1990 		return (NULL);
1991 	}
1992 	refcount_acquire(&endpoint->mapping->refs);
1993 	PF_HASHROW_UNLOCK(uh);
1994 	return (endpoint->mapping);
1995 }
1996 /* END state table stuff */
1997 
1998 static void
1999 pf_send(struct pf_send_entry *pfse)
2000 {
2001 
2002 	PF_SENDQ_LOCK();
2003 	STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next);
2004 	PF_SENDQ_UNLOCK();
2005 	swi_sched(V_pf_swi_cookie, 0);
2006 }
2007 
2008 static bool
2009 pf_isforlocal(struct mbuf *m, int af)
2010 {
2011 	switch (af) {
2012 #ifdef INET
2013 	case AF_INET: {
2014 		struct ip *ip = mtod(m, struct ip *);
2015 
2016 		return (in_localip(ip->ip_dst));
2017 	}
2018 #endif
2019 #ifdef INET6
2020 	case AF_INET6: {
2021 		struct ip6_hdr *ip6;
2022 		struct in6_ifaddr *ia;
2023 		ip6 = mtod(m, struct ip6_hdr *);
2024 		ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
2025 		if (ia == NULL)
2026 			return (false);
2027 		return (! (ia->ia6_flags & IN6_IFF_NOTREADY));
2028 	}
2029 #endif
2030 	}
2031 
2032 	return (false);
2033 }
2034 
2035 int
2036 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type,
2037     int *icmp_dir, int *multi, u_int16_t *virtual_id, u_int16_t *virtual_type)
2038 {
2039 	/*
2040 	 * ICMP types marked with PF_OUT are typically responses to
2041 	 * PF_IN, and will match states in the opposite direction.
2042 	 * PF_IN ICMP types need to match a state with that type.
2043 	 */
2044 	*icmp_dir = PF_OUT;
2045 	*multi = PF_ICMP_MULTI_LINK;
2046 	/* Queries (and responses) */
2047 	switch (pd->af) {
2048 #ifdef INET
2049 	case AF_INET:
2050 		switch (type) {
2051 		case ICMP_ECHO:
2052 			*icmp_dir = PF_IN;
2053 		case ICMP_ECHOREPLY:
2054 			*virtual_type = ICMP_ECHO;
2055 			*virtual_id = pd->hdr.icmp.icmp_id;
2056 			break;
2057 
2058 		case ICMP_TSTAMP:
2059 			*icmp_dir = PF_IN;
2060 		case ICMP_TSTAMPREPLY:
2061 			*virtual_type = ICMP_TSTAMP;
2062 			*virtual_id = pd->hdr.icmp.icmp_id;
2063 			break;
2064 
2065 		case ICMP_IREQ:
2066 			*icmp_dir = PF_IN;
2067 		case ICMP_IREQREPLY:
2068 			*virtual_type = ICMP_IREQ;
2069 			*virtual_id = pd->hdr.icmp.icmp_id;
2070 			break;
2071 
2072 		case ICMP_MASKREQ:
2073 			*icmp_dir = PF_IN;
2074 		case ICMP_MASKREPLY:
2075 			*virtual_type = ICMP_MASKREQ;
2076 			*virtual_id = pd->hdr.icmp.icmp_id;
2077 			break;
2078 
2079 		case ICMP_IPV6_WHEREAREYOU:
2080 			*icmp_dir = PF_IN;
2081 		case ICMP_IPV6_IAMHERE:
2082 			*virtual_type = ICMP_IPV6_WHEREAREYOU;
2083 			*virtual_id = 0; /* Nothing sane to match on! */
2084 			break;
2085 
2086 		case ICMP_MOBILE_REGREQUEST:
2087 			*icmp_dir = PF_IN;
2088 		case ICMP_MOBILE_REGREPLY:
2089 			*virtual_type = ICMP_MOBILE_REGREQUEST;
2090 			*virtual_id = 0; /* Nothing sane to match on! */
2091 			break;
2092 
2093 		case ICMP_ROUTERSOLICIT:
2094 			*icmp_dir = PF_IN;
2095 		case ICMP_ROUTERADVERT:
2096 			*virtual_type = ICMP_ROUTERSOLICIT;
2097 			*virtual_id = 0; /* Nothing sane to match on! */
2098 			break;
2099 
2100 		/* These ICMP types map to other connections */
2101 		case ICMP_UNREACH:
2102 		case ICMP_SOURCEQUENCH:
2103 		case ICMP_REDIRECT:
2104 		case ICMP_TIMXCEED:
2105 		case ICMP_PARAMPROB:
2106 			/* These will not be used, but set them anyway */
2107 			*icmp_dir = PF_IN;
2108 			*virtual_type = type;
2109 			*virtual_id = 0;
2110 			HTONS(*virtual_type);
2111 			return (1);  /* These types match to another state */
2112 
2113 		/*
2114 		 * All remaining ICMP types get their own states,
2115 		 * and will only match in one direction.
2116 		 */
2117 		default:
2118 			*icmp_dir = PF_IN;
2119 			*virtual_type = type;
2120 			*virtual_id = 0;
2121 			break;
2122 		}
2123 		break;
2124 #endif /* INET */
2125 #ifdef INET6
2126 	case AF_INET6:
2127 		switch (type) {
2128 		case ICMP6_ECHO_REQUEST:
2129 			*icmp_dir = PF_IN;
2130 		case ICMP6_ECHO_REPLY:
2131 			*virtual_type = ICMP6_ECHO_REQUEST;
2132 			*virtual_id = pd->hdr.icmp6.icmp6_id;
2133 			break;
2134 
2135 		case MLD_LISTENER_QUERY:
2136 		case MLD_LISTENER_REPORT: {
2137 			/*
2138 			 * Listener Report can be sent by clients
2139 			 * without an associated Listener Query.
2140 			 * In addition to that, when Report is sent as a
2141 			 * reply to a Query its source and destination
2142 			 * address are different.
2143 			 */
2144 			*icmp_dir = PF_IN;
2145 			*virtual_type = MLD_LISTENER_QUERY;
2146 			*virtual_id = 0;
2147 			break;
2148 		}
2149 		case MLD_MTRACE:
2150 			*icmp_dir = PF_IN;
2151 		case MLD_MTRACE_RESP:
2152 			*virtual_type = MLD_MTRACE;
2153 			*virtual_id = 0; /* Nothing sane to match on! */
2154 			break;
2155 
2156 		case ND_NEIGHBOR_SOLICIT:
2157 			*icmp_dir = PF_IN;
2158 		case ND_NEIGHBOR_ADVERT: {
2159 			*virtual_type = ND_NEIGHBOR_SOLICIT;
2160 			*virtual_id = 0;
2161 			break;
2162 		}
2163 
2164 		/*
2165 		 * These ICMP types map to other connections.
2166 		 * ND_REDIRECT can't be in this list because the triggering
2167 		 * packet header is optional.
2168 		 */
2169 		case ICMP6_DST_UNREACH:
2170 		case ICMP6_PACKET_TOO_BIG:
2171 		case ICMP6_TIME_EXCEEDED:
2172 		case ICMP6_PARAM_PROB:
2173 			/* These will not be used, but set them anyway */
2174 			*icmp_dir = PF_IN;
2175 			*virtual_type = type;
2176 			*virtual_id = 0;
2177 			HTONS(*virtual_type);
2178 			return (1);  /* These types match to another state */
2179 		/*
2180 		 * All remaining ICMP6 types get their own states,
2181 		 * and will only match in one direction.
2182 		 */
2183 		default:
2184 			*icmp_dir = PF_IN;
2185 			*virtual_type = type;
2186 			*virtual_id = 0;
2187 			break;
2188 		}
2189 		break;
2190 #endif /* INET6 */
2191 	}
2192 	HTONS(*virtual_type);
2193 	return (0);  /* These types match to their own state */
2194 }
2195 
2196 void
2197 pf_intr(void *v)
2198 {
2199 	struct epoch_tracker et;
2200 	struct pf_send_head queue;
2201 	struct pf_send_entry *pfse, *next;
2202 
2203 	CURVNET_SET((struct vnet *)v);
2204 
2205 	PF_SENDQ_LOCK();
2206 	queue = V_pf_sendqueue;
2207 	STAILQ_INIT(&V_pf_sendqueue);
2208 	PF_SENDQ_UNLOCK();
2209 
2210 	NET_EPOCH_ENTER(et);
2211 
2212 	STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) {
2213 		switch (pfse->pfse_type) {
2214 #ifdef INET
2215 		case PFSE_IP: {
2216 			if (pf_isforlocal(pfse->pfse_m, AF_INET)) {
2217 				KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2218 				    ("%s: rcvif != loif", __func__));
2219 
2220 				pfse->pfse_m->m_flags |= M_SKIP_FIREWALL;
2221 				pfse->pfse_m->m_pkthdr.csum_flags |=
2222 				    CSUM_IP_VALID | CSUM_IP_CHECKED;
2223 				ip_input(pfse->pfse_m);
2224 			} else {
2225 				ip_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2226 				    NULL);
2227 			}
2228 			break;
2229 		}
2230 		case PFSE_ICMP:
2231 			icmp_error(pfse->pfse_m, pfse->icmpopts.type,
2232 			    pfse->icmpopts.code, 0, pfse->icmpopts.mtu);
2233 			break;
2234 #endif /* INET */
2235 #ifdef INET6
2236 		case PFSE_IP6:
2237 			if (pf_isforlocal(pfse->pfse_m, AF_INET6)) {
2238 				KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2239 				    ("%s: rcvif != loif", __func__));
2240 
2241 				pfse->pfse_m->m_flags |= M_SKIP_FIREWALL |
2242 				    M_LOOP;
2243 				ip6_input(pfse->pfse_m);
2244 			} else {
2245 				ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2246 				    NULL, NULL);
2247 			}
2248 			break;
2249 		case PFSE_ICMP6:
2250 			icmp6_error(pfse->pfse_m, pfse->icmpopts.type,
2251 			    pfse->icmpopts.code, pfse->icmpopts.mtu);
2252 			break;
2253 #endif /* INET6 */
2254 		default:
2255 			panic("%s: unknown type", __func__);
2256 		}
2257 		free(pfse, M_PFTEMP);
2258 	}
2259 	NET_EPOCH_EXIT(et);
2260 	CURVNET_RESTORE();
2261 }
2262 
2263 #define	pf_purge_thread_period	(hz / 10)
2264 
2265 #ifdef PF_WANT_32_TO_64_COUNTER
2266 static void
2267 pf_status_counter_u64_periodic(void)
2268 {
2269 
2270 	PF_RULES_RASSERT();
2271 
2272 	if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) {
2273 		return;
2274 	}
2275 
2276 	for (int i = 0; i < FCNT_MAX; i++) {
2277 		pf_counter_u64_periodic(&V_pf_status.fcounters[i]);
2278 	}
2279 }
2280 
2281 static void
2282 pf_kif_counter_u64_periodic(void)
2283 {
2284 	struct pfi_kkif *kif;
2285 	size_t r, run;
2286 
2287 	PF_RULES_RASSERT();
2288 
2289 	if (__predict_false(V_pf_allkifcount == 0)) {
2290 		return;
2291 	}
2292 
2293 	if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2294 		return;
2295 	}
2296 
2297 	run = V_pf_allkifcount / 10;
2298 	if (run < 5)
2299 		run = 5;
2300 
2301 	for (r = 0; r < run; r++) {
2302 		kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist);
2303 		if (kif == NULL) {
2304 			LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2305 			LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist);
2306 			break;
2307 		}
2308 
2309 		LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2310 		LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist);
2311 
2312 		for (int i = 0; i < 2; i++) {
2313 			for (int j = 0; j < 2; j++) {
2314 				for (int k = 0; k < 2; k++) {
2315 					pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]);
2316 					pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]);
2317 				}
2318 			}
2319 		}
2320 	}
2321 }
2322 
2323 static void
2324 pf_rule_counter_u64_periodic(void)
2325 {
2326 	struct pf_krule *rule;
2327 	size_t r, run;
2328 
2329 	PF_RULES_RASSERT();
2330 
2331 	if (__predict_false(V_pf_allrulecount == 0)) {
2332 		return;
2333 	}
2334 
2335 	if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2336 		return;
2337 	}
2338 
2339 	run = V_pf_allrulecount / 10;
2340 	if (run < 5)
2341 		run = 5;
2342 
2343 	for (r = 0; r < run; r++) {
2344 		rule = LIST_NEXT(V_pf_rulemarker, allrulelist);
2345 		if (rule == NULL) {
2346 			LIST_REMOVE(V_pf_rulemarker, allrulelist);
2347 			LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist);
2348 			break;
2349 		}
2350 
2351 		LIST_REMOVE(V_pf_rulemarker, allrulelist);
2352 		LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist);
2353 
2354 		pf_counter_u64_periodic(&rule->evaluations);
2355 		for (int i = 0; i < 2; i++) {
2356 			pf_counter_u64_periodic(&rule->packets[i]);
2357 			pf_counter_u64_periodic(&rule->bytes[i]);
2358 		}
2359 	}
2360 }
2361 
2362 static void
2363 pf_counter_u64_periodic_main(void)
2364 {
2365 	PF_RULES_RLOCK_TRACKER;
2366 
2367 	V_pf_counter_periodic_iter++;
2368 
2369 	PF_RULES_RLOCK();
2370 	pf_counter_u64_critical_enter();
2371 	pf_status_counter_u64_periodic();
2372 	pf_kif_counter_u64_periodic();
2373 	pf_rule_counter_u64_periodic();
2374 	pf_counter_u64_critical_exit();
2375 	PF_RULES_RUNLOCK();
2376 }
2377 #else
2378 #define	pf_counter_u64_periodic_main()	do { } while (0)
2379 #endif
2380 
2381 void
2382 pf_purge_thread(void *unused __unused)
2383 {
2384 	struct epoch_tracker	 et;
2385 
2386 	VNET_ITERATOR_DECL(vnet_iter);
2387 
2388 	sx_xlock(&pf_end_lock);
2389 	while (pf_end_threads == 0) {
2390 		sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period);
2391 
2392 		VNET_LIST_RLOCK();
2393 		NET_EPOCH_ENTER(et);
2394 		VNET_FOREACH(vnet_iter) {
2395 			CURVNET_SET(vnet_iter);
2396 
2397 			/* Wait until V_pf_default_rule is initialized. */
2398 			if (V_pf_vnet_active == 0) {
2399 				CURVNET_RESTORE();
2400 				continue;
2401 			}
2402 
2403 			pf_counter_u64_periodic_main();
2404 
2405 			/*
2406 			 *  Process 1/interval fraction of the state
2407 			 * table every run.
2408 			 */
2409 			V_pf_purge_idx =
2410 			    pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask /
2411 			    (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10));
2412 
2413 			/*
2414 			 * Purge other expired types every
2415 			 * PFTM_INTERVAL seconds.
2416 			 */
2417 			if (V_pf_purge_idx == 0) {
2418 				/*
2419 				 * Order is important:
2420 				 * - states and src nodes reference rules
2421 				 * - states and rules reference kifs
2422 				 */
2423 				pf_purge_expired_fragments();
2424 				pf_purge_expired_src_nodes();
2425 				pf_purge_unlinked_rules();
2426 				pfi_kkif_purge();
2427 			}
2428 			CURVNET_RESTORE();
2429 		}
2430 		NET_EPOCH_EXIT(et);
2431 		VNET_LIST_RUNLOCK();
2432 	}
2433 
2434 	pf_end_threads++;
2435 	sx_xunlock(&pf_end_lock);
2436 	kproc_exit(0);
2437 }
2438 
2439 void
2440 pf_unload_vnet_purge(void)
2441 {
2442 
2443 	/*
2444 	 * To cleanse up all kifs and rules we need
2445 	 * two runs: first one clears reference flags,
2446 	 * then pf_purge_expired_states() doesn't
2447 	 * raise them, and then second run frees.
2448 	 */
2449 	pf_purge_unlinked_rules();
2450 	pfi_kkif_purge();
2451 
2452 	/*
2453 	 * Now purge everything.
2454 	 */
2455 	pf_purge_expired_states(0, V_pf_hashmask);
2456 	pf_purge_fragments(UINT_MAX);
2457 	pf_purge_expired_src_nodes();
2458 
2459 	/*
2460 	 * Now all kifs & rules should be unreferenced,
2461 	 * thus should be successfully freed.
2462 	 */
2463 	pf_purge_unlinked_rules();
2464 	pfi_kkif_purge();
2465 }
2466 
2467 u_int32_t
2468 pf_state_expires(const struct pf_kstate *state)
2469 {
2470 	u_int32_t	timeout;
2471 	u_int32_t	start;
2472 	u_int32_t	end;
2473 	u_int32_t	states;
2474 
2475 	/* handle all PFTM_* > PFTM_MAX here */
2476 	if (state->timeout == PFTM_PURGE)
2477 		return (time_uptime);
2478 	KASSERT(state->timeout != PFTM_UNLINKED,
2479 	    ("pf_state_expires: timeout == PFTM_UNLINKED"));
2480 	KASSERT((state->timeout < PFTM_MAX),
2481 	    ("pf_state_expires: timeout > PFTM_MAX"));
2482 	timeout = state->rule->timeout[state->timeout];
2483 	if (!timeout)
2484 		timeout = V_pf_default_rule.timeout[state->timeout];
2485 	start = state->rule->timeout[PFTM_ADAPTIVE_START];
2486 	if (start && state->rule != &V_pf_default_rule) {
2487 		end = state->rule->timeout[PFTM_ADAPTIVE_END];
2488 		states = counter_u64_fetch(state->rule->states_cur);
2489 	} else {
2490 		start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START];
2491 		end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END];
2492 		states = V_pf_status.states;
2493 	}
2494 	if (end && states > start && start < end) {
2495 		if (states < end) {
2496 			timeout = (u_int64_t)timeout * (end - states) /
2497 			    (end - start);
2498 			return ((state->expire / 1000) + timeout);
2499 		}
2500 		else
2501 			return (time_uptime);
2502 	}
2503 	return ((state->expire / 1000) + timeout);
2504 }
2505 
2506 void
2507 pf_purge_expired_src_nodes(void)
2508 {
2509 	struct pf_ksrc_node_list	 freelist;
2510 	struct pf_srchash	*sh;
2511 	struct pf_ksrc_node	*cur, *next;
2512 	int i;
2513 
2514 	LIST_INIT(&freelist);
2515 	for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
2516 	    PF_HASHROW_LOCK(sh);
2517 	    LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next)
2518 		if (cur->states == 0 && cur->expire <= time_uptime) {
2519 			pf_unlink_src_node(cur);
2520 			LIST_INSERT_HEAD(&freelist, cur, entry);
2521 		} else if (cur->rule != NULL)
2522 			cur->rule->rule_ref |= PFRULE_REFS;
2523 	    PF_HASHROW_UNLOCK(sh);
2524 	}
2525 
2526 	pf_free_src_nodes(&freelist);
2527 
2528 	V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z);
2529 }
2530 
2531 static void
2532 pf_src_tree_remove_state(struct pf_kstate *s)
2533 {
2534 	struct pf_ksrc_node *sn;
2535 	uint32_t timeout;
2536 
2537 	timeout = s->rule->timeout[PFTM_SRC_NODE] ?
2538 	    s->rule->timeout[PFTM_SRC_NODE] :
2539 	    V_pf_default_rule.timeout[PFTM_SRC_NODE];
2540 
2541 	if (s->src_node != NULL) {
2542 		sn = s->src_node;
2543 		PF_SRC_NODE_LOCK(sn);
2544 		if (s->src.tcp_est)
2545 			--sn->conn;
2546 		if (--sn->states == 0)
2547 			sn->expire = time_uptime + timeout;
2548 		PF_SRC_NODE_UNLOCK(sn);
2549 	}
2550 	if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) {
2551 		sn = s->nat_src_node;
2552 		PF_SRC_NODE_LOCK(sn);
2553 		if (--sn->states == 0)
2554 			sn->expire = time_uptime + timeout;
2555 		PF_SRC_NODE_UNLOCK(sn);
2556 	}
2557 	s->src_node = s->nat_src_node = NULL;
2558 }
2559 
2560 /*
2561  * Unlink and potentilly free a state. Function may be
2562  * called with ID hash row locked, but always returns
2563  * unlocked, since it needs to go through key hash locking.
2564  */
2565 int
2566 pf_unlink_state(struct pf_kstate *s)
2567 {
2568 	struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)];
2569 
2570 	NET_EPOCH_ASSERT();
2571 	PF_HASHROW_ASSERT(ih);
2572 
2573 	if (s->timeout == PFTM_UNLINKED) {
2574 		/*
2575 		 * State is being processed
2576 		 * by pf_unlink_state() in
2577 		 * an other thread.
2578 		 */
2579 		PF_HASHROW_UNLOCK(ih);
2580 		return (0);	/* XXXGL: undefined actually */
2581 	}
2582 
2583 	if (s->src.state == PF_TCPS_PROXY_DST) {
2584 		/* XXX wire key the right one? */
2585 		pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af,
2586 		    &s->key[PF_SK_WIRE]->addr[1],
2587 		    &s->key[PF_SK_WIRE]->addr[0],
2588 		    s->key[PF_SK_WIRE]->port[1],
2589 		    s->key[PF_SK_WIRE]->port[0],
2590 		    s->src.seqhi, s->src.seqlo + 1,
2591 		    TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0,
2592 		    s->act.rtableid);
2593 	}
2594 
2595 	LIST_REMOVE(s, entry);
2596 	pf_src_tree_remove_state(s);
2597 
2598 	if (V_pfsync_delete_state_ptr != NULL)
2599 		V_pfsync_delete_state_ptr(s);
2600 
2601 	STATE_DEC_COUNTERS(s);
2602 
2603 	s->timeout = PFTM_UNLINKED;
2604 
2605 	/* Ensure we remove it from the list of halfopen states, if needed. */
2606 	if (s->key[PF_SK_STACK] != NULL &&
2607 	    s->key[PF_SK_STACK]->proto == IPPROTO_TCP)
2608 		pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
2609 
2610 	PF_HASHROW_UNLOCK(ih);
2611 
2612 	pf_detach_state(s);
2613 
2614 	pf_udp_mapping_release(s->udp_mapping);
2615 
2616 	/* pf_state_insert() initialises refs to 2 */
2617 	return (pf_release_staten(s, 2));
2618 }
2619 
2620 struct pf_kstate *
2621 pf_alloc_state(int flags)
2622 {
2623 
2624 	return (uma_zalloc(V_pf_state_z, flags | M_ZERO));
2625 }
2626 
2627 void
2628 pf_free_state(struct pf_kstate *cur)
2629 {
2630 	struct pf_krule_item *ri;
2631 
2632 	KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur));
2633 	KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__,
2634 	    cur->timeout));
2635 
2636 	while ((ri = SLIST_FIRST(&cur->match_rules))) {
2637 		SLIST_REMOVE_HEAD(&cur->match_rules, entry);
2638 		free(ri, M_PF_RULE_ITEM);
2639 	}
2640 
2641 	pf_normalize_tcp_cleanup(cur);
2642 	uma_zfree(V_pf_state_z, cur);
2643 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1);
2644 }
2645 
2646 /*
2647  * Called only from pf_purge_thread(), thus serialized.
2648  */
2649 static u_int
2650 pf_purge_expired_states(u_int i, int maxcheck)
2651 {
2652 	struct pf_idhash *ih;
2653 	struct pf_kstate *s;
2654 	struct pf_krule_item *mrm;
2655 	size_t count __unused;
2656 
2657 	V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2658 
2659 	/*
2660 	 * Go through hash and unlink states that expire now.
2661 	 */
2662 	while (maxcheck > 0) {
2663 		count = 0;
2664 		ih = &V_pf_idhash[i];
2665 
2666 		/* only take the lock if we expect to do work */
2667 		if (!LIST_EMPTY(&ih->states)) {
2668 relock:
2669 			PF_HASHROW_LOCK(ih);
2670 			LIST_FOREACH(s, &ih->states, entry) {
2671 				if (pf_state_expires(s) <= time_uptime) {
2672 					V_pf_status.states -=
2673 					    pf_unlink_state(s);
2674 					goto relock;
2675 				}
2676 				s->rule->rule_ref |= PFRULE_REFS;
2677 				if (s->nat_rule != NULL)
2678 					s->nat_rule->rule_ref |= PFRULE_REFS;
2679 				if (s->anchor != NULL)
2680 					s->anchor->rule_ref |= PFRULE_REFS;
2681 				s->kif->pfik_flags |= PFI_IFLAG_REFS;
2682 				SLIST_FOREACH(mrm, &s->match_rules, entry)
2683 					mrm->r->rule_ref |= PFRULE_REFS;
2684 				if (s->rt_kif)
2685 					s->rt_kif->pfik_flags |= PFI_IFLAG_REFS;
2686 				count++;
2687 			}
2688 			PF_HASHROW_UNLOCK(ih);
2689 		}
2690 
2691 		SDT_PROBE2(pf, purge, state, rowcount, i, count);
2692 
2693 		/* Return when we hit end of hash. */
2694 		if (++i > V_pf_hashmask) {
2695 			V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2696 			return (0);
2697 		}
2698 
2699 		maxcheck--;
2700 	}
2701 
2702 	V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2703 
2704 	return (i);
2705 }
2706 
2707 static void
2708 pf_purge_unlinked_rules(void)
2709 {
2710 	struct pf_krulequeue tmpq;
2711 	struct pf_krule *r, *r1;
2712 
2713 	/*
2714 	 * If we have overloading task pending, then we'd
2715 	 * better skip purging this time. There is a tiny
2716 	 * probability that overloading task references
2717 	 * an already unlinked rule.
2718 	 */
2719 	PF_OVERLOADQ_LOCK();
2720 	if (!SLIST_EMPTY(&V_pf_overloadqueue)) {
2721 		PF_OVERLOADQ_UNLOCK();
2722 		return;
2723 	}
2724 	PF_OVERLOADQ_UNLOCK();
2725 
2726 	/*
2727 	 * Do naive mark-and-sweep garbage collecting of old rules.
2728 	 * Reference flag is raised by pf_purge_expired_states()
2729 	 * and pf_purge_expired_src_nodes().
2730 	 *
2731 	 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK,
2732 	 * use a temporary queue.
2733 	 */
2734 	TAILQ_INIT(&tmpq);
2735 	PF_UNLNKDRULES_LOCK();
2736 	TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) {
2737 		if (!(r->rule_ref & PFRULE_REFS)) {
2738 			TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries);
2739 			TAILQ_INSERT_TAIL(&tmpq, r, entries);
2740 		} else
2741 			r->rule_ref &= ~PFRULE_REFS;
2742 	}
2743 	PF_UNLNKDRULES_UNLOCK();
2744 
2745 	if (!TAILQ_EMPTY(&tmpq)) {
2746 		PF_CONFIG_LOCK();
2747 		PF_RULES_WLOCK();
2748 		TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) {
2749 			TAILQ_REMOVE(&tmpq, r, entries);
2750 			pf_free_rule(r);
2751 		}
2752 		PF_RULES_WUNLOCK();
2753 		PF_CONFIG_UNLOCK();
2754 	}
2755 }
2756 
2757 void
2758 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af)
2759 {
2760 	switch (af) {
2761 #ifdef INET
2762 	case AF_INET: {
2763 		u_int32_t a = ntohl(addr->addr32[0]);
2764 		printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255,
2765 		    (a>>8)&255, a&255);
2766 		if (p) {
2767 			p = ntohs(p);
2768 			printf(":%u", p);
2769 		}
2770 		break;
2771 	}
2772 #endif /* INET */
2773 #ifdef INET6
2774 	case AF_INET6: {
2775 		u_int16_t b;
2776 		u_int8_t i, curstart, curend, maxstart, maxend;
2777 		curstart = curend = maxstart = maxend = 255;
2778 		for (i = 0; i < 8; i++) {
2779 			if (!addr->addr16[i]) {
2780 				if (curstart == 255)
2781 					curstart = i;
2782 				curend = i;
2783 			} else {
2784 				if ((curend - curstart) >
2785 				    (maxend - maxstart)) {
2786 					maxstart = curstart;
2787 					maxend = curend;
2788 				}
2789 				curstart = curend = 255;
2790 			}
2791 		}
2792 		if ((curend - curstart) >
2793 		    (maxend - maxstart)) {
2794 			maxstart = curstart;
2795 			maxend = curend;
2796 		}
2797 		for (i = 0; i < 8; i++) {
2798 			if (i >= maxstart && i <= maxend) {
2799 				if (i == 0)
2800 					printf(":");
2801 				if (i == maxend)
2802 					printf(":");
2803 			} else {
2804 				b = ntohs(addr->addr16[i]);
2805 				printf("%x", b);
2806 				if (i < 7)
2807 					printf(":");
2808 			}
2809 		}
2810 		if (p) {
2811 			p = ntohs(p);
2812 			printf("[%u]", p);
2813 		}
2814 		break;
2815 	}
2816 #endif /* INET6 */
2817 	}
2818 }
2819 
2820 void
2821 pf_print_state(struct pf_kstate *s)
2822 {
2823 	pf_print_state_parts(s, NULL, NULL);
2824 }
2825 
2826 static void
2827 pf_print_state_parts(struct pf_kstate *s,
2828     struct pf_state_key *skwp, struct pf_state_key *sksp)
2829 {
2830 	struct pf_state_key *skw, *sks;
2831 	u_int8_t proto, dir;
2832 
2833 	/* Do our best to fill these, but they're skipped if NULL */
2834 	skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL);
2835 	sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL);
2836 	proto = skw ? skw->proto : (sks ? sks->proto : 0);
2837 	dir = s ? s->direction : 0;
2838 
2839 	switch (proto) {
2840 	case IPPROTO_IPV4:
2841 		printf("IPv4");
2842 		break;
2843 	case IPPROTO_IPV6:
2844 		printf("IPv6");
2845 		break;
2846 	case IPPROTO_TCP:
2847 		printf("TCP");
2848 		break;
2849 	case IPPROTO_UDP:
2850 		printf("UDP");
2851 		break;
2852 	case IPPROTO_ICMP:
2853 		printf("ICMP");
2854 		break;
2855 	case IPPROTO_ICMPV6:
2856 		printf("ICMPv6");
2857 		break;
2858 	default:
2859 		printf("%u", proto);
2860 		break;
2861 	}
2862 	switch (dir) {
2863 	case PF_IN:
2864 		printf(" in");
2865 		break;
2866 	case PF_OUT:
2867 		printf(" out");
2868 		break;
2869 	}
2870 	if (skw) {
2871 		printf(" wire: ");
2872 		pf_print_host(&skw->addr[0], skw->port[0], skw->af);
2873 		printf(" ");
2874 		pf_print_host(&skw->addr[1], skw->port[1], skw->af);
2875 	}
2876 	if (sks) {
2877 		printf(" stack: ");
2878 		if (sks != skw) {
2879 			pf_print_host(&sks->addr[0], sks->port[0], sks->af);
2880 			printf(" ");
2881 			pf_print_host(&sks->addr[1], sks->port[1], sks->af);
2882 		} else
2883 			printf("-");
2884 	}
2885 	if (s) {
2886 		if (proto == IPPROTO_TCP) {
2887 			printf(" [lo=%u high=%u win=%u modulator=%u",
2888 			    s->src.seqlo, s->src.seqhi,
2889 			    s->src.max_win, s->src.seqdiff);
2890 			if (s->src.wscale && s->dst.wscale)
2891 				printf(" wscale=%u",
2892 				    s->src.wscale & PF_WSCALE_MASK);
2893 			printf("]");
2894 			printf(" [lo=%u high=%u win=%u modulator=%u",
2895 			    s->dst.seqlo, s->dst.seqhi,
2896 			    s->dst.max_win, s->dst.seqdiff);
2897 			if (s->src.wscale && s->dst.wscale)
2898 				printf(" wscale=%u",
2899 				s->dst.wscale & PF_WSCALE_MASK);
2900 			printf("]");
2901 		}
2902 		printf(" %u:%u", s->src.state, s->dst.state);
2903 		if (s->rule)
2904 			printf(" @%d", s->rule->nr);
2905 	}
2906 }
2907 
2908 void
2909 pf_print_flags(u_int8_t f)
2910 {
2911 	if (f)
2912 		printf(" ");
2913 	if (f & TH_FIN)
2914 		printf("F");
2915 	if (f & TH_SYN)
2916 		printf("S");
2917 	if (f & TH_RST)
2918 		printf("R");
2919 	if (f & TH_PUSH)
2920 		printf("P");
2921 	if (f & TH_ACK)
2922 		printf("A");
2923 	if (f & TH_URG)
2924 		printf("U");
2925 	if (f & TH_ECE)
2926 		printf("E");
2927 	if (f & TH_CWR)
2928 		printf("W");
2929 }
2930 
2931 #define	PF_SET_SKIP_STEPS(i)					\
2932 	do {							\
2933 		while (head[i] != cur) {			\
2934 			head[i]->skip[i] = cur;			\
2935 			head[i] = TAILQ_NEXT(head[i], entries);	\
2936 		}						\
2937 	} while (0)
2938 
2939 void
2940 pf_calc_skip_steps(struct pf_krulequeue *rules)
2941 {
2942 	struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT];
2943 	int i;
2944 
2945 	cur = TAILQ_FIRST(rules);
2946 	prev = cur;
2947 	for (i = 0; i < PF_SKIP_COUNT; ++i)
2948 		head[i] = cur;
2949 	while (cur != NULL) {
2950 		if (cur->kif != prev->kif || cur->ifnot != prev->ifnot)
2951 			PF_SET_SKIP_STEPS(PF_SKIP_IFP);
2952 		if (cur->direction != prev->direction)
2953 			PF_SET_SKIP_STEPS(PF_SKIP_DIR);
2954 		if (cur->af != prev->af)
2955 			PF_SET_SKIP_STEPS(PF_SKIP_AF);
2956 		if (cur->proto != prev->proto)
2957 			PF_SET_SKIP_STEPS(PF_SKIP_PROTO);
2958 		if (cur->src.neg != prev->src.neg ||
2959 		    pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr))
2960 			PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR);
2961 		if (cur->dst.neg != prev->dst.neg ||
2962 		    pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr))
2963 			PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR);
2964 		if (cur->src.port[0] != prev->src.port[0] ||
2965 		    cur->src.port[1] != prev->src.port[1] ||
2966 		    cur->src.port_op != prev->src.port_op)
2967 			PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT);
2968 		if (cur->dst.port[0] != prev->dst.port[0] ||
2969 		    cur->dst.port[1] != prev->dst.port[1] ||
2970 		    cur->dst.port_op != prev->dst.port_op)
2971 			PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT);
2972 
2973 		prev = cur;
2974 		cur = TAILQ_NEXT(cur, entries);
2975 	}
2976 	for (i = 0; i < PF_SKIP_COUNT; ++i)
2977 		PF_SET_SKIP_STEPS(i);
2978 }
2979 
2980 int
2981 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2)
2982 {
2983 	if (aw1->type != aw2->type)
2984 		return (1);
2985 	switch (aw1->type) {
2986 	case PF_ADDR_ADDRMASK:
2987 	case PF_ADDR_RANGE:
2988 		if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6))
2989 			return (1);
2990 		if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6))
2991 			return (1);
2992 		return (0);
2993 	case PF_ADDR_DYNIFTL:
2994 		return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt);
2995 	case PF_ADDR_NOROUTE:
2996 	case PF_ADDR_URPFFAILED:
2997 		return (0);
2998 	case PF_ADDR_TABLE:
2999 		return (aw1->p.tbl != aw2->p.tbl);
3000 	default:
3001 		printf("invalid address type: %d\n", aw1->type);
3002 		return (1);
3003 	}
3004 }
3005 
3006 /**
3007  * Checksum updates are a little complicated because the checksum in the TCP/UDP
3008  * header isn't always a full checksum. In some cases (i.e. output) it's a
3009  * pseudo-header checksum, which is a partial checksum over src/dst IP
3010  * addresses, protocol number and length.
3011  *
3012  * That means we have the following cases:
3013  *  * Input or forwarding: we don't have TSO, the checksum fields are full
3014  *  	checksums, we need to update the checksum whenever we change anything.
3015  *  * Output (i.e. the checksum is a pseudo-header checksum):
3016  *  	x The field being updated is src/dst address or affects the length of
3017  *  	the packet. We need to update the pseudo-header checksum (note that this
3018  *  	checksum is not ones' complement).
3019  *  	x Some other field is being modified (e.g. src/dst port numbers): We
3020  *  	don't have to update anything.
3021  **/
3022 u_int16_t
3023 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp)
3024 {
3025 	u_int32_t x;
3026 
3027 	x = cksum + old - new;
3028 	x = (x + (x >> 16)) & 0xffff;
3029 
3030 	/* optimise: eliminate a branch when not udp */
3031 	if (udp && cksum == 0x0000)
3032 		return cksum;
3033 	if (udp && x == 0x0000)
3034 		x = 0xffff;
3035 
3036 	return (u_int16_t)(x);
3037 }
3038 
3039 static void
3040 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi,
3041     u_int8_t udp)
3042 {
3043 	u_int16_t old = htons(hi ? (*f << 8) : *f);
3044 	u_int16_t new = htons(hi ? ( v << 8) :  v);
3045 
3046 	if (*f == v)
3047 		return;
3048 
3049 	*f = v;
3050 
3051 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3052 		return;
3053 
3054 	*cksum = pf_cksum_fixup(*cksum, old, new, udp);
3055 }
3056 
3057 void
3058 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v,
3059     bool hi, u_int8_t udp)
3060 {
3061 	u_int8_t *fb = (u_int8_t *)f;
3062 	u_int8_t *vb = (u_int8_t *)&v;
3063 
3064 	pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
3065 	pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
3066 }
3067 
3068 void
3069 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v,
3070     bool hi, u_int8_t udp)
3071 {
3072 	u_int8_t *fb = (u_int8_t *)f;
3073 	u_int8_t *vb = (u_int8_t *)&v;
3074 
3075 	pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
3076 	pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
3077 	pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
3078 	pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
3079 }
3080 
3081 u_int16_t
3082 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old,
3083         u_int16_t new, u_int8_t udp)
3084 {
3085 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3086 		return (cksum);
3087 
3088 	return (pf_cksum_fixup(cksum, old, new, udp));
3089 }
3090 
3091 static void
3092 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic,
3093         u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u,
3094         sa_family_t af)
3095 {
3096 	struct pf_addr	ao;
3097 	u_int16_t	po = *p;
3098 
3099 	PF_ACPY(&ao, a, af);
3100 	PF_ACPY(a, an, af);
3101 
3102 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3103 		*pc = ~*pc;
3104 
3105 	*p = pn;
3106 
3107 	switch (af) {
3108 #ifdef INET
3109 	case AF_INET:
3110 		*ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
3111 		    ao.addr16[0], an->addr16[0], 0),
3112 		    ao.addr16[1], an->addr16[1], 0);
3113 		*p = pn;
3114 
3115 		*pc = pf_cksum_fixup(pf_cksum_fixup(*pc,
3116 		    ao.addr16[0], an->addr16[0], u),
3117 		    ao.addr16[1], an->addr16[1], u);
3118 
3119 		*pc = pf_proto_cksum_fixup(m, *pc, po, pn, u);
3120 		break;
3121 #endif /* INET */
3122 #ifdef INET6
3123 	case AF_INET6:
3124 		*pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3125 		    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3126 		    pf_cksum_fixup(pf_cksum_fixup(*pc,
3127 		    ao.addr16[0], an->addr16[0], u),
3128 		    ao.addr16[1], an->addr16[1], u),
3129 		    ao.addr16[2], an->addr16[2], u),
3130 		    ao.addr16[3], an->addr16[3], u),
3131 		    ao.addr16[4], an->addr16[4], u),
3132 		    ao.addr16[5], an->addr16[5], u),
3133 		    ao.addr16[6], an->addr16[6], u),
3134 		    ao.addr16[7], an->addr16[7], u);
3135 
3136 		*pc = pf_proto_cksum_fixup(m, *pc, po, pn, u);
3137 		break;
3138 #endif /* INET6 */
3139 	}
3140 
3141 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
3142 	    CSUM_DELAY_DATA_IPV6)) {
3143 		*pc = ~*pc;
3144 		if (! *pc)
3145 			*pc = 0xffff;
3146 	}
3147 }
3148 
3149 /* Changes a u_int32_t.  Uses a void * so there are no align restrictions */
3150 void
3151 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u)
3152 {
3153 	u_int32_t	ao;
3154 
3155 	memcpy(&ao, a, sizeof(ao));
3156 	memcpy(a, &an, sizeof(u_int32_t));
3157 	*c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u),
3158 	    ao % 65536, an % 65536, u);
3159 }
3160 
3161 void
3162 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp)
3163 {
3164 	u_int32_t	ao;
3165 
3166 	memcpy(&ao, a, sizeof(ao));
3167 	memcpy(a, &an, sizeof(u_int32_t));
3168 
3169 	*c = pf_proto_cksum_fixup(m,
3170 	    pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp),
3171 	    ao % 65536, an % 65536, udp);
3172 }
3173 
3174 #ifdef INET6
3175 static void
3176 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u)
3177 {
3178 	struct pf_addr	ao;
3179 
3180 	PF_ACPY(&ao, a, AF_INET6);
3181 	PF_ACPY(a, an, AF_INET6);
3182 
3183 	*c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3184 	    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3185 	    pf_cksum_fixup(pf_cksum_fixup(*c,
3186 	    ao.addr16[0], an->addr16[0], u),
3187 	    ao.addr16[1], an->addr16[1], u),
3188 	    ao.addr16[2], an->addr16[2], u),
3189 	    ao.addr16[3], an->addr16[3], u),
3190 	    ao.addr16[4], an->addr16[4], u),
3191 	    ao.addr16[5], an->addr16[5], u),
3192 	    ao.addr16[6], an->addr16[6], u),
3193 	    ao.addr16[7], an->addr16[7], u);
3194 }
3195 #endif /* INET6 */
3196 
3197 static void
3198 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa,
3199     struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c,
3200     u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af)
3201 {
3202 	struct pf_addr	oia, ooa;
3203 
3204 	PF_ACPY(&oia, ia, af);
3205 	if (oa)
3206 		PF_ACPY(&ooa, oa, af);
3207 
3208 	/* Change inner protocol port, fix inner protocol checksum. */
3209 	if (ip != NULL) {
3210 		u_int16_t	oip = *ip;
3211 		u_int32_t	opc;
3212 
3213 		if (pc != NULL)
3214 			opc = *pc;
3215 		*ip = np;
3216 		if (pc != NULL)
3217 			*pc = pf_cksum_fixup(*pc, oip, *ip, u);
3218 		*ic = pf_cksum_fixup(*ic, oip, *ip, 0);
3219 		if (pc != NULL)
3220 			*ic = pf_cksum_fixup(*ic, opc, *pc, 0);
3221 	}
3222 	/* Change inner ip address, fix inner ip and icmp checksums. */
3223 	PF_ACPY(ia, na, af);
3224 	switch (af) {
3225 #ifdef INET
3226 	case AF_INET: {
3227 		u_int32_t	 oh2c = *h2c;
3228 
3229 		*h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c,
3230 		    oia.addr16[0], ia->addr16[0], 0),
3231 		    oia.addr16[1], ia->addr16[1], 0);
3232 		*ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
3233 		    oia.addr16[0], ia->addr16[0], 0),
3234 		    oia.addr16[1], ia->addr16[1], 0);
3235 		*ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0);
3236 		break;
3237 	}
3238 #endif /* INET */
3239 #ifdef INET6
3240 	case AF_INET6:
3241 		*ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3242 		    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3243 		    pf_cksum_fixup(pf_cksum_fixup(*ic,
3244 		    oia.addr16[0], ia->addr16[0], u),
3245 		    oia.addr16[1], ia->addr16[1], u),
3246 		    oia.addr16[2], ia->addr16[2], u),
3247 		    oia.addr16[3], ia->addr16[3], u),
3248 		    oia.addr16[4], ia->addr16[4], u),
3249 		    oia.addr16[5], ia->addr16[5], u),
3250 		    oia.addr16[6], ia->addr16[6], u),
3251 		    oia.addr16[7], ia->addr16[7], u);
3252 		break;
3253 #endif /* INET6 */
3254 	}
3255 	/* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */
3256 	if (oa) {
3257 		PF_ACPY(oa, na, af);
3258 		switch (af) {
3259 #ifdef INET
3260 		case AF_INET:
3261 			*hc = pf_cksum_fixup(pf_cksum_fixup(*hc,
3262 			    ooa.addr16[0], oa->addr16[0], 0),
3263 			    ooa.addr16[1], oa->addr16[1], 0);
3264 			break;
3265 #endif /* INET */
3266 #ifdef INET6
3267 		case AF_INET6:
3268 			*ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3269 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3270 			    pf_cksum_fixup(pf_cksum_fixup(*ic,
3271 			    ooa.addr16[0], oa->addr16[0], u),
3272 			    ooa.addr16[1], oa->addr16[1], u),
3273 			    ooa.addr16[2], oa->addr16[2], u),
3274 			    ooa.addr16[3], oa->addr16[3], u),
3275 			    ooa.addr16[4], oa->addr16[4], u),
3276 			    ooa.addr16[5], oa->addr16[5], u),
3277 			    ooa.addr16[6], oa->addr16[6], u),
3278 			    ooa.addr16[7], oa->addr16[7], u);
3279 			break;
3280 #endif /* INET6 */
3281 		}
3282 	}
3283 }
3284 
3285 /*
3286  * Need to modulate the sequence numbers in the TCP SACK option
3287  * (credits to Krzysztof Pfaff for report and patch)
3288  */
3289 static int
3290 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th,
3291     struct pf_state_peer *dst)
3292 {
3293 	int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen;
3294 	u_int8_t opts[TCP_MAXOLEN], *opt = opts;
3295 	int copyback = 0, i, olen;
3296 	struct sackblk sack;
3297 
3298 #define	TCPOLEN_SACKLEN	(TCPOLEN_SACK + 2)
3299 	if (hlen < TCPOLEN_SACKLEN ||
3300 	    !pf_pull_hdr(pd->m, pd->off + sizeof(*th), opts, hlen, NULL, NULL, pd->af))
3301 		return 0;
3302 
3303 	while (hlen >= TCPOLEN_SACKLEN) {
3304 		size_t startoff = opt - opts;
3305 		olen = opt[1];
3306 		switch (*opt) {
3307 		case TCPOPT_EOL:	/* FALLTHROUGH */
3308 		case TCPOPT_NOP:
3309 			opt++;
3310 			hlen--;
3311 			break;
3312 		case TCPOPT_SACK:
3313 			if (olen > hlen)
3314 				olen = hlen;
3315 			if (olen >= TCPOLEN_SACKLEN) {
3316 				for (i = 2; i + TCPOLEN_SACK <= olen;
3317 				    i += TCPOLEN_SACK) {
3318 					memcpy(&sack, &opt[i], sizeof(sack));
3319 					pf_patch_32_unaligned(pd->m,
3320 					    &th->th_sum, &sack.start,
3321 					    htonl(ntohl(sack.start) - dst->seqdiff),
3322 					    PF_ALGNMNT(startoff),
3323 					    0);
3324 					pf_patch_32_unaligned(pd->m, &th->th_sum,
3325 					    &sack.end,
3326 					    htonl(ntohl(sack.end) - dst->seqdiff),
3327 					    PF_ALGNMNT(startoff),
3328 					    0);
3329 					memcpy(&opt[i], &sack, sizeof(sack));
3330 				}
3331 				copyback = 1;
3332 			}
3333 			/* FALLTHROUGH */
3334 		default:
3335 			if (olen < 2)
3336 				olen = 2;
3337 			hlen -= olen;
3338 			opt += olen;
3339 		}
3340 	}
3341 
3342 	if (copyback)
3343 		m_copyback(pd->m, pd->off + sizeof(*th), thoptlen, (caddr_t)opts);
3344 	return (copyback);
3345 }
3346 
3347 struct mbuf *
3348 pf_build_tcp(const struct pf_krule *r, sa_family_t af,
3349     const struct pf_addr *saddr, const struct pf_addr *daddr,
3350     u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
3351     u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
3352     int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid)
3353 {
3354 	struct mbuf	*m;
3355 	int		 len, tlen;
3356 #ifdef INET
3357 	struct ip	*h = NULL;
3358 #endif /* INET */
3359 #ifdef INET6
3360 	struct ip6_hdr	*h6 = NULL;
3361 #endif /* INET6 */
3362 	struct tcphdr	*th;
3363 	char		*opt;
3364 	struct pf_mtag  *pf_mtag;
3365 
3366 	len = 0;
3367 	th = NULL;
3368 
3369 	/* maximum segment size tcp option */
3370 	tlen = sizeof(struct tcphdr);
3371 	if (mss)
3372 		tlen += 4;
3373 
3374 	switch (af) {
3375 #ifdef INET
3376 	case AF_INET:
3377 		len = sizeof(struct ip) + tlen;
3378 		break;
3379 #endif /* INET */
3380 #ifdef INET6
3381 	case AF_INET6:
3382 		len = sizeof(struct ip6_hdr) + tlen;
3383 		break;
3384 #endif /* INET6 */
3385 	}
3386 
3387 	m = m_gethdr(M_NOWAIT, MT_DATA);
3388 	if (m == NULL)
3389 		return (NULL);
3390 
3391 #ifdef MAC
3392 	mac_netinet_firewall_send(m);
3393 #endif
3394 	if ((pf_mtag = pf_get_mtag(m)) == NULL) {
3395 		m_freem(m);
3396 		return (NULL);
3397 	}
3398 	m->m_flags |= mbuf_flags;
3399 	pf_mtag->tag = mtag_tag;
3400 	pf_mtag->flags = mtag_flags;
3401 
3402 	if (rtableid >= 0)
3403 		M_SETFIB(m, rtableid);
3404 
3405 #ifdef ALTQ
3406 	if (r != NULL && r->qid) {
3407 		pf_mtag->qid = r->qid;
3408 
3409 		/* add hints for ecn */
3410 		pf_mtag->hdr = mtod(m, struct ip *);
3411 	}
3412 #endif /* ALTQ */
3413 	m->m_data += max_linkhdr;
3414 	m->m_pkthdr.len = m->m_len = len;
3415 	/* The rest of the stack assumes a rcvif, so provide one.
3416 	 * This is a locally generated packet, so .. close enough. */
3417 	m->m_pkthdr.rcvif = V_loif;
3418 	bzero(m->m_data, len);
3419 	switch (af) {
3420 #ifdef INET
3421 	case AF_INET:
3422 		h = mtod(m, struct ip *);
3423 
3424 		/* IP header fields included in the TCP checksum */
3425 		h->ip_p = IPPROTO_TCP;
3426 		h->ip_len = htons(tlen);
3427 		h->ip_src.s_addr = saddr->v4.s_addr;
3428 		h->ip_dst.s_addr = daddr->v4.s_addr;
3429 
3430 		th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip));
3431 		break;
3432 #endif /* INET */
3433 #ifdef INET6
3434 	case AF_INET6:
3435 		h6 = mtod(m, struct ip6_hdr *);
3436 
3437 		/* IP header fields included in the TCP checksum */
3438 		h6->ip6_nxt = IPPROTO_TCP;
3439 		h6->ip6_plen = htons(tlen);
3440 		memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr));
3441 		memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr));
3442 
3443 		th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr));
3444 		break;
3445 #endif /* INET6 */
3446 	}
3447 
3448 	/* TCP header */
3449 	th->th_sport = sport;
3450 	th->th_dport = dport;
3451 	th->th_seq = htonl(seq);
3452 	th->th_ack = htonl(ack);
3453 	th->th_off = tlen >> 2;
3454 	th->th_flags = tcp_flags;
3455 	th->th_win = htons(win);
3456 
3457 	if (mss) {
3458 		opt = (char *)(th + 1);
3459 		opt[0] = TCPOPT_MAXSEG;
3460 		opt[1] = 4;
3461 		HTONS(mss);
3462 		bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2);
3463 	}
3464 
3465 	switch (af) {
3466 #ifdef INET
3467 	case AF_INET:
3468 		/* TCP checksum */
3469 		th->th_sum = in_cksum(m, len);
3470 
3471 		/* Finish the IP header */
3472 		h->ip_v = 4;
3473 		h->ip_hl = sizeof(*h) >> 2;
3474 		h->ip_tos = IPTOS_LOWDELAY;
3475 		h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0);
3476 		h->ip_len = htons(len);
3477 		h->ip_ttl = ttl ? ttl : V_ip_defttl;
3478 		h->ip_sum = 0;
3479 		break;
3480 #endif /* INET */
3481 #ifdef INET6
3482 	case AF_INET6:
3483 		/* TCP checksum */
3484 		th->th_sum = in6_cksum(m, IPPROTO_TCP,
3485 		    sizeof(struct ip6_hdr), tlen);
3486 
3487 		h6->ip6_vfc |= IPV6_VERSION;
3488 		h6->ip6_hlim = IPV6_DEFHLIM;
3489 		break;
3490 #endif /* INET6 */
3491 	}
3492 
3493 	return (m);
3494 }
3495 
3496 static void
3497 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd,
3498     uint8_t ttl, int rtableid)
3499 {
3500 	struct mbuf		*m;
3501 #ifdef INET
3502 	struct ip		*h = NULL;
3503 #endif /* INET */
3504 #ifdef INET6
3505 	struct ip6_hdr		*h6 = NULL;
3506 #endif /* INET6 */
3507 	struct sctphdr		*hdr;
3508 	struct sctp_chunkhdr	*chunk;
3509 	struct pf_send_entry	*pfse;
3510 	int			 off = 0;
3511 
3512 	MPASS(af == pd->af);
3513 
3514 	m = m_gethdr(M_NOWAIT, MT_DATA);
3515 	if (m == NULL)
3516 		return;
3517 
3518 	m->m_data += max_linkhdr;
3519 	m->m_flags |= M_SKIP_FIREWALL;
3520 	/* The rest of the stack assumes a rcvif, so provide one.
3521 	 * This is a locally generated packet, so .. close enough. */
3522 	m->m_pkthdr.rcvif = V_loif;
3523 
3524 	/* IPv4|6 header */
3525 	switch (af) {
3526 #ifdef INET
3527 	case AF_INET:
3528 		bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk));
3529 
3530 		h = mtod(m, struct ip *);
3531 
3532 		/* IP header fields included in the TCP checksum */
3533 
3534 		h->ip_p = IPPROTO_SCTP;
3535 		h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk));
3536 		h->ip_ttl = ttl ? ttl : V_ip_defttl;
3537 		h->ip_src = pd->dst->v4;
3538 		h->ip_dst = pd->src->v4;
3539 
3540 		off += sizeof(struct ip);
3541 		break;
3542 #endif /* INET */
3543 #ifdef INET6
3544 	case AF_INET6:
3545 		bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk));
3546 
3547 		h6 = mtod(m, struct ip6_hdr *);
3548 
3549 		/* IP header fields included in the TCP checksum */
3550 		h6->ip6_vfc |= IPV6_VERSION;
3551 		h6->ip6_nxt = IPPROTO_SCTP;
3552 		h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk));
3553 		h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim;
3554 		memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr));
3555 		memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr));
3556 
3557 		off += sizeof(struct ip6_hdr);
3558 		break;
3559 #endif /* INET6 */
3560 	}
3561 
3562 	/* SCTP header */
3563 	hdr = mtodo(m, off);
3564 
3565 	hdr->src_port = pd->hdr.sctp.dest_port;
3566 	hdr->dest_port = pd->hdr.sctp.src_port;
3567 	hdr->v_tag = pd->sctp_initiate_tag;
3568 	hdr->checksum = 0;
3569 
3570 	/* Abort chunk. */
3571 	off += sizeof(struct sctphdr);
3572 	chunk = mtodo(m, off);
3573 
3574 	chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
3575 	chunk->chunk_length = htons(sizeof(*chunk));
3576 
3577 	/* SCTP checksum */
3578 	off += sizeof(*chunk);
3579 	m->m_pkthdr.len = m->m_len = off;
3580 
3581 	pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk));
3582 
3583 	if (rtableid >= 0)
3584 		M_SETFIB(m, rtableid);
3585 
3586 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
3587 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
3588 	if (pfse == NULL) {
3589 		m_freem(m);
3590 		return;
3591 	}
3592 
3593 	switch (af) {
3594 #ifdef INET
3595 	case AF_INET:
3596 		pfse->pfse_type = PFSE_IP;
3597 		break;
3598 #endif /* INET */
3599 #ifdef INET6
3600 	case AF_INET6:
3601 		pfse->pfse_type = PFSE_IP6;
3602 		break;
3603 #endif /* INET6 */
3604 	}
3605 
3606 	pfse->pfse_m = m;
3607 	pf_send(pfse);
3608 }
3609 
3610 void
3611 pf_send_tcp(const struct pf_krule *r, sa_family_t af,
3612     const struct pf_addr *saddr, const struct pf_addr *daddr,
3613     u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
3614     u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
3615     int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid)
3616 {
3617 	struct pf_send_entry *pfse;
3618 	struct mbuf	*m;
3619 
3620 	m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags,
3621 	    win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, rtableid);
3622 	if (m == NULL)
3623 		return;
3624 
3625 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
3626 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
3627 	if (pfse == NULL) {
3628 		m_freem(m);
3629 		return;
3630 	}
3631 
3632 	switch (af) {
3633 #ifdef INET
3634 	case AF_INET:
3635 		pfse->pfse_type = PFSE_IP;
3636 		break;
3637 #endif /* INET */
3638 #ifdef INET6
3639 	case AF_INET6:
3640 		pfse->pfse_type = PFSE_IP6;
3641 		break;
3642 #endif /* INET6 */
3643 	}
3644 
3645 	pfse->pfse_m = m;
3646 	pf_send(pfse);
3647 }
3648 
3649 static void
3650 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd,
3651     struct pf_state_key *sk, struct tcphdr *th,
3652     u_int16_t bproto_sum, u_int16_t bip_sum,
3653     u_short *reason, int rtableid)
3654 {
3655 	struct pf_addr	* const saddr = pd->src;
3656 	struct pf_addr	* const daddr = pd->dst;
3657 
3658 	/* undo NAT changes, if they have taken place */
3659 	if (nr != NULL) {
3660 		PF_ACPY(saddr, &sk->addr[pd->sidx], pd->af);
3661 		PF_ACPY(daddr, &sk->addr[pd->didx], pd->af);
3662 		if (pd->sport)
3663 			*pd->sport = sk->port[pd->sidx];
3664 		if (pd->dport)
3665 			*pd->dport = sk->port[pd->didx];
3666 		if (pd->proto_sum)
3667 			*pd->proto_sum = bproto_sum;
3668 		if (pd->ip_sum)
3669 			*pd->ip_sum = bip_sum;
3670 		m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
3671 	}
3672 	if (pd->proto == IPPROTO_TCP &&
3673 	    ((r->rule_flag & PFRULE_RETURNRST) ||
3674 	    (r->rule_flag & PFRULE_RETURN)) &&
3675 	    !(th->th_flags & TH_RST)) {
3676 		u_int32_t	 ack = ntohl(th->th_seq) + pd->p_len;
3677 
3678 		if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off,
3679 		    IPPROTO_TCP, pd->af))
3680 			REASON_SET(reason, PFRES_PROTCKSUM);
3681 		else {
3682 			if (th->th_flags & TH_SYN)
3683 				ack++;
3684 			if (th->th_flags & TH_FIN)
3685 				ack++;
3686 			pf_send_tcp(r, pd->af, pd->dst,
3687 				pd->src, th->th_dport, th->th_sport,
3688 				ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0,
3689 				r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid);
3690 		}
3691 	} else if (pd->proto == IPPROTO_SCTP &&
3692 	    (r->rule_flag & PFRULE_RETURN)) {
3693 		pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid);
3694 	} else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET &&
3695 		r->return_icmp)
3696 		pf_send_icmp(pd->m, r->return_icmp >> 8,
3697 			r->return_icmp & 255, pd->af, r, rtableid);
3698 	else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 &&
3699 		r->return_icmp6)
3700 		pf_send_icmp(pd->m, r->return_icmp6 >> 8,
3701 			r->return_icmp6 & 255, pd->af, r, rtableid);
3702 }
3703 
3704 static int
3705 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m)
3706 {
3707 	struct m_tag *mtag;
3708 	u_int8_t mpcp;
3709 
3710 	mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
3711 	if (mtag == NULL)
3712 		return (0);
3713 
3714 	if (prio == PF_PRIO_ZERO)
3715 		prio = 0;
3716 
3717 	mpcp = *(uint8_t *)(mtag + 1);
3718 
3719 	return (mpcp == prio);
3720 }
3721 
3722 static int
3723 pf_icmp_to_bandlim(uint8_t type)
3724 {
3725 	switch (type) {
3726 		case ICMP_ECHO:
3727 		case ICMP_ECHOREPLY:
3728 			return (BANDLIM_ICMP_ECHO);
3729 		case ICMP_TSTAMP:
3730 		case ICMP_TSTAMPREPLY:
3731 			return (BANDLIM_ICMP_TSTAMP);
3732 		case ICMP_UNREACH:
3733 		default:
3734 			return (BANDLIM_ICMP_UNREACH);
3735 	}
3736 }
3737 
3738 static void
3739 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af,
3740     struct pf_krule *r, int rtableid)
3741 {
3742 	struct pf_send_entry *pfse;
3743 	struct mbuf *m0;
3744 	struct pf_mtag *pf_mtag;
3745 
3746 	/* ICMP packet rate limitation. */
3747 	switch (af) {
3748 #ifdef INET6
3749 	case AF_INET6:
3750 		if (icmp6_ratelimit(NULL, type, code))
3751 			return;
3752 		break;
3753 #endif
3754 #ifdef INET
3755 	case AF_INET:
3756 		if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0)
3757 			return;
3758 		break;
3759 #endif
3760 	}
3761 
3762 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
3763 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
3764 	if (pfse == NULL)
3765 		return;
3766 
3767 	if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) {
3768 		free(pfse, M_PFTEMP);
3769 		return;
3770 	}
3771 
3772 	if ((pf_mtag = pf_get_mtag(m0)) == NULL) {
3773 		free(pfse, M_PFTEMP);
3774 		return;
3775 	}
3776 	/* XXX: revisit */
3777 	m0->m_flags |= M_SKIP_FIREWALL;
3778 
3779 	if (rtableid >= 0)
3780 		M_SETFIB(m0, rtableid);
3781 
3782 #ifdef ALTQ
3783 	if (r->qid) {
3784 		pf_mtag->qid = r->qid;
3785 		/* add hints for ecn */
3786 		pf_mtag->hdr = mtod(m0, struct ip *);
3787 	}
3788 #endif /* ALTQ */
3789 
3790 	switch (af) {
3791 #ifdef INET
3792 	case AF_INET:
3793 		pfse->pfse_type = PFSE_ICMP;
3794 		break;
3795 #endif /* INET */
3796 #ifdef INET6
3797 	case AF_INET6:
3798 		pfse->pfse_type = PFSE_ICMP6;
3799 		break;
3800 #endif /* INET6 */
3801 	}
3802 	pfse->pfse_m = m0;
3803 	pfse->icmpopts.type = type;
3804 	pfse->icmpopts.code = code;
3805 	pf_send(pfse);
3806 }
3807 
3808 /*
3809  * Return 1 if the addresses a and b match (with mask m), otherwise return 0.
3810  * If n is 0, they match if they are equal. If n is != 0, they match if they
3811  * are different.
3812  */
3813 int
3814 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m,
3815     struct pf_addr *b, sa_family_t af)
3816 {
3817 	int	match = 0;
3818 
3819 	switch (af) {
3820 #ifdef INET
3821 	case AF_INET:
3822 		if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4))
3823 			match++;
3824 		break;
3825 #endif /* INET */
3826 #ifdef INET6
3827 	case AF_INET6:
3828 		if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6))
3829 			match++;
3830 		break;
3831 #endif /* INET6 */
3832 	}
3833 	if (match) {
3834 		if (n)
3835 			return (0);
3836 		else
3837 			return (1);
3838 	} else {
3839 		if (n)
3840 			return (1);
3841 		else
3842 			return (0);
3843 	}
3844 }
3845 
3846 /*
3847  * Return 1 if b <= a <= e, otherwise return 0.
3848  */
3849 int
3850 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e,
3851     struct pf_addr *a, sa_family_t af)
3852 {
3853 	switch (af) {
3854 #ifdef INET
3855 	case AF_INET:
3856 		if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) ||
3857 		    (ntohl(a->addr32[0]) > ntohl(e->addr32[0])))
3858 			return (0);
3859 		break;
3860 #endif /* INET */
3861 #ifdef INET6
3862 	case AF_INET6: {
3863 		int	i;
3864 
3865 		/* check a >= b */
3866 		for (i = 0; i < 4; ++i)
3867 			if (ntohl(a->addr32[i]) > ntohl(b->addr32[i]))
3868 				break;
3869 			else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i]))
3870 				return (0);
3871 		/* check a <= e */
3872 		for (i = 0; i < 4; ++i)
3873 			if (ntohl(a->addr32[i]) < ntohl(e->addr32[i]))
3874 				break;
3875 			else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i]))
3876 				return (0);
3877 		break;
3878 	}
3879 #endif /* INET6 */
3880 	}
3881 	return (1);
3882 }
3883 
3884 static int
3885 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p)
3886 {
3887 	switch (op) {
3888 	case PF_OP_IRG:
3889 		return ((p > a1) && (p < a2));
3890 	case PF_OP_XRG:
3891 		return ((p < a1) || (p > a2));
3892 	case PF_OP_RRG:
3893 		return ((p >= a1) && (p <= a2));
3894 	case PF_OP_EQ:
3895 		return (p == a1);
3896 	case PF_OP_NE:
3897 		return (p != a1);
3898 	case PF_OP_LT:
3899 		return (p < a1);
3900 	case PF_OP_LE:
3901 		return (p <= a1);
3902 	case PF_OP_GT:
3903 		return (p > a1);
3904 	case PF_OP_GE:
3905 		return (p >= a1);
3906 	}
3907 	return (0); /* never reached */
3908 }
3909 
3910 int
3911 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p)
3912 {
3913 	NTOHS(a1);
3914 	NTOHS(a2);
3915 	NTOHS(p);
3916 	return (pf_match(op, a1, a2, p));
3917 }
3918 
3919 static int
3920 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u)
3921 {
3922 	if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
3923 		return (0);
3924 	return (pf_match(op, a1, a2, u));
3925 }
3926 
3927 static int
3928 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g)
3929 {
3930 	if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
3931 		return (0);
3932 	return (pf_match(op, a1, a2, g));
3933 }
3934 
3935 int
3936 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag)
3937 {
3938 	if (*tag == -1)
3939 		*tag = mtag;
3940 
3941 	return ((!r->match_tag_not && r->match_tag == *tag) ||
3942 	    (r->match_tag_not && r->match_tag != *tag));
3943 }
3944 
3945 static int
3946 pf_match_rcvif(struct mbuf *m, struct pf_krule *r)
3947 {
3948 	struct ifnet *ifp = m->m_pkthdr.rcvif;
3949 	struct pfi_kkif *kif;
3950 
3951 	if (ifp == NULL)
3952 		return (0);
3953 
3954 	kif = (struct pfi_kkif *)ifp->if_pf_kif;
3955 
3956 	if (kif == NULL) {
3957 		DPFPRINTF(PF_DEBUG_URGENT,
3958 		    ("pf_test_via: kif == NULL, @%d via %s\n", r->nr,
3959 			r->rcv_ifname));
3960 		return (0);
3961 	}
3962 
3963 	return (pfi_kkif_match(r->rcv_kif, kif));
3964 }
3965 
3966 int
3967 pf_tag_packet(struct pf_pdesc *pd, int tag)
3968 {
3969 
3970 	KASSERT(tag > 0, ("%s: tag %d", __func__, tag));
3971 
3972 	if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL))
3973 		return (ENOMEM);
3974 
3975 	pd->pf_mtag->tag = tag;
3976 
3977 	return (0);
3978 }
3979 
3980 #define	PF_ANCHOR_STACKSIZE	32
3981 struct pf_kanchor_stackframe {
3982 	struct pf_kruleset	*rs;
3983 	struct pf_krule		*r;	/* XXX: + match bit */
3984 	struct pf_kanchor	*child;
3985 };
3986 
3987 /*
3988  * XXX: We rely on malloc(9) returning pointer aligned addresses.
3989  */
3990 #define	PF_ANCHORSTACK_MATCH	0x00000001
3991 #define	PF_ANCHORSTACK_MASK	(PF_ANCHORSTACK_MATCH)
3992 
3993 #define	PF_ANCHOR_MATCH(f)	((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
3994 #define	PF_ANCHOR_RULE(f)	(struct pf_krule *)			\
3995 				((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
3996 #define	PF_ANCHOR_SET_MATCH(f)	do { (f)->r = (void *) 			\
3997 				((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH);  \
3998 } while (0)
3999 
4000 void
4001 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth,
4002     struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a,
4003     int *match)
4004 {
4005 	struct pf_kanchor_stackframe	*f;
4006 
4007 	PF_RULES_RASSERT();
4008 
4009 	if (match)
4010 		*match = 0;
4011 	if (*depth >= PF_ANCHOR_STACKSIZE) {
4012 		printf("%s: anchor stack overflow on %s\n",
4013 		    __func__, (*r)->anchor->name);
4014 		*r = TAILQ_NEXT(*r, entries);
4015 		return;
4016 	} else if (*depth == 0 && a != NULL)
4017 		*a = *r;
4018 	f = stack + (*depth)++;
4019 	f->rs = *rs;
4020 	f->r = *r;
4021 	if ((*r)->anchor_wildcard) {
4022 		struct pf_kanchor_node *parent = &(*r)->anchor->children;
4023 
4024 		if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) {
4025 			*r = NULL;
4026 			return;
4027 		}
4028 		*rs = &f->child->ruleset;
4029 	} else {
4030 		f->child = NULL;
4031 		*rs = &(*r)->anchor->ruleset;
4032 	}
4033 	*r = TAILQ_FIRST((*rs)->rules[n].active.ptr);
4034 }
4035 
4036 int
4037 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth,
4038     struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a,
4039     int *match)
4040 {
4041 	struct pf_kanchor_stackframe	*f;
4042 	struct pf_krule *fr;
4043 	int quick = 0;
4044 
4045 	PF_RULES_RASSERT();
4046 
4047 	do {
4048 		if (*depth <= 0)
4049 			break;
4050 		f = stack + *depth - 1;
4051 		fr = PF_ANCHOR_RULE(f);
4052 		if (f->child != NULL) {
4053 			/*
4054 			 * This block traverses through
4055 			 * a wildcard anchor.
4056 			 */
4057 			if (match != NULL && *match) {
4058 				/*
4059 				 * If any of "*" matched, then
4060 				 * "foo/ *" matched, mark frame
4061 				 * appropriately.
4062 				 */
4063 				PF_ANCHOR_SET_MATCH(f);
4064 				*match = 0;
4065 			}
4066 			f->child = RB_NEXT(pf_kanchor_node,
4067 			    &fr->anchor->children, f->child);
4068 			if (f->child != NULL) {
4069 				*rs = &f->child->ruleset;
4070 				*r = TAILQ_FIRST((*rs)->rules[n].active.ptr);
4071 				if (*r == NULL)
4072 					continue;
4073 				else
4074 					break;
4075 			}
4076 		}
4077 		(*depth)--;
4078 		if (*depth == 0 && a != NULL)
4079 			*a = NULL;
4080 		*rs = f->rs;
4081 		if (PF_ANCHOR_MATCH(f) || (match != NULL && *match))
4082 			quick = fr->quick;
4083 		*r = TAILQ_NEXT(fr, entries);
4084 	} while (*r == NULL);
4085 
4086 	return (quick);
4087 }
4088 
4089 struct pf_keth_anchor_stackframe {
4090 	struct pf_keth_ruleset	*rs;
4091 	struct pf_keth_rule	*r;	/* XXX: + match bit */
4092 	struct pf_keth_anchor	*child;
4093 };
4094 
4095 #define	PF_ETH_ANCHOR_MATCH(f)	((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4096 #define	PF_ETH_ANCHOR_RULE(f)	(struct pf_keth_rule *)			\
4097 				((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4098 #define	PF_ETH_ANCHOR_SET_MATCH(f)	do { (f)->r = (void *) 		\
4099 				((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH);  \
4100 } while (0)
4101 
4102 void
4103 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4104     struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4105     struct pf_keth_rule **a, int *match)
4106 {
4107 	struct pf_keth_anchor_stackframe	*f;
4108 
4109 	NET_EPOCH_ASSERT();
4110 
4111 	if (match)
4112 		*match = 0;
4113 	if (*depth >= PF_ANCHOR_STACKSIZE) {
4114 		printf("%s: anchor stack overflow on %s\n",
4115 		    __func__, (*r)->anchor->name);
4116 		*r = TAILQ_NEXT(*r, entries);
4117 		return;
4118 	} else if (*depth == 0 && a != NULL)
4119 		*a = *r;
4120 	f = stack + (*depth)++;
4121 	f->rs = *rs;
4122 	f->r = *r;
4123 	if ((*r)->anchor_wildcard) {
4124 		struct pf_keth_anchor_node *parent = &(*r)->anchor->children;
4125 
4126 		if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) {
4127 			*r = NULL;
4128 			return;
4129 		}
4130 		*rs = &f->child->ruleset;
4131 	} else {
4132 		f->child = NULL;
4133 		*rs = &(*r)->anchor->ruleset;
4134 	}
4135 	*r = TAILQ_FIRST((*rs)->active.rules);
4136 }
4137 
4138 int
4139 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4140     struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4141     struct pf_keth_rule **a, int *match)
4142 {
4143 	struct pf_keth_anchor_stackframe	*f;
4144 	struct pf_keth_rule *fr;
4145 	int quick = 0;
4146 
4147 	NET_EPOCH_ASSERT();
4148 
4149 	do {
4150 		if (*depth <= 0)
4151 			break;
4152 		f = stack + *depth - 1;
4153 		fr = PF_ETH_ANCHOR_RULE(f);
4154 		if (f->child != NULL) {
4155 			/*
4156 			 * This block traverses through
4157 			 * a wildcard anchor.
4158 			 */
4159 			if (match != NULL && *match) {
4160 				/*
4161 				 * If any of "*" matched, then
4162 				 * "foo/ *" matched, mark frame
4163 				 * appropriately.
4164 				 */
4165 				PF_ETH_ANCHOR_SET_MATCH(f);
4166 				*match = 0;
4167 			}
4168 			f->child = RB_NEXT(pf_keth_anchor_node,
4169 			    &fr->anchor->children, f->child);
4170 			if (f->child != NULL) {
4171 				*rs = &f->child->ruleset;
4172 				*r = TAILQ_FIRST((*rs)->active.rules);
4173 				if (*r == NULL)
4174 					continue;
4175 				else
4176 					break;
4177 			}
4178 		}
4179 		(*depth)--;
4180 		if (*depth == 0 && a != NULL)
4181 			*a = NULL;
4182 		*rs = f->rs;
4183 		if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match))
4184 			quick = fr->quick;
4185 		*r = TAILQ_NEXT(fr, entries);
4186 	} while (*r == NULL);
4187 
4188 	return (quick);
4189 }
4190 
4191 #ifdef INET6
4192 void
4193 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr,
4194     struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af)
4195 {
4196 	switch (af) {
4197 #ifdef INET
4198 	case AF_INET:
4199 		naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4200 		((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4201 		break;
4202 #endif /* INET */
4203 	case AF_INET6:
4204 		naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4205 		((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4206 		naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) |
4207 		((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]);
4208 		naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) |
4209 		((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]);
4210 		naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) |
4211 		((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]);
4212 		break;
4213 	}
4214 }
4215 
4216 void
4217 pf_addr_inc(struct pf_addr *addr, sa_family_t af)
4218 {
4219 	switch (af) {
4220 #ifdef INET
4221 	case AF_INET:
4222 		addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1);
4223 		break;
4224 #endif /* INET */
4225 	case AF_INET6:
4226 		if (addr->addr32[3] == 0xffffffff) {
4227 			addr->addr32[3] = 0;
4228 			if (addr->addr32[2] == 0xffffffff) {
4229 				addr->addr32[2] = 0;
4230 				if (addr->addr32[1] == 0xffffffff) {
4231 					addr->addr32[1] = 0;
4232 					addr->addr32[0] =
4233 					    htonl(ntohl(addr->addr32[0]) + 1);
4234 				} else
4235 					addr->addr32[1] =
4236 					    htonl(ntohl(addr->addr32[1]) + 1);
4237 			} else
4238 				addr->addr32[2] =
4239 				    htonl(ntohl(addr->addr32[2]) + 1);
4240 		} else
4241 			addr->addr32[3] =
4242 			    htonl(ntohl(addr->addr32[3]) + 1);
4243 		break;
4244 	}
4245 }
4246 #endif /* INET6 */
4247 
4248 void
4249 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a)
4250 {
4251 	/*
4252 	 * Modern rules use the same flags in rules as they do in states.
4253 	 */
4254 	a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID|
4255 	    PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO));
4256 
4257 	/*
4258 	 * Old-style scrub rules have different flags which need to be translated.
4259 	 */
4260 	if (r->rule_flag & PFRULE_RANDOMID)
4261 		a->flags |= PFSTATE_RANDOMID;
4262 	if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) {
4263 		a->flags |= PFSTATE_SETTOS;
4264 		a->set_tos = r->set_tos;
4265 	}
4266 
4267 	if (r->qid)
4268 		a->qid = r->qid;
4269 	if (r->pqid)
4270 		a->pqid = r->pqid;
4271 	if (r->rtableid >= 0)
4272 		a->rtableid = r->rtableid;
4273 	a->log |= r->log;
4274 	if (r->min_ttl)
4275 		a->min_ttl = r->min_ttl;
4276 	if (r->max_mss)
4277 		a->max_mss = r->max_mss;
4278 	if (r->dnpipe)
4279 		a->dnpipe = r->dnpipe;
4280 	if (r->dnrpipe)
4281 		a->dnrpipe = r->dnrpipe;
4282 	if (r->dnpipe || r->dnrpipe) {
4283 		if (r->free_flags & PFRULE_DN_IS_PIPE)
4284 			a->flags |= PFSTATE_DN_IS_PIPE;
4285 		else
4286 			a->flags &= ~PFSTATE_DN_IS_PIPE;
4287 	}
4288 	if (r->scrub_flags & PFSTATE_SETPRIO) {
4289 		a->set_prio[0] = r->set_prio[0];
4290 		a->set_prio[1] = r->set_prio[1];
4291 	}
4292 }
4293 
4294 int
4295 pf_socket_lookup(struct pf_pdesc *pd)
4296 {
4297 	struct pf_addr		*saddr, *daddr;
4298 	u_int16_t		 sport, dport;
4299 	struct inpcbinfo	*pi;
4300 	struct inpcb		*inp;
4301 
4302 	pd->lookup.uid = UID_MAX;
4303 	pd->lookup.gid = GID_MAX;
4304 
4305 	switch (pd->proto) {
4306 	case IPPROTO_TCP:
4307 		sport = pd->hdr.tcp.th_sport;
4308 		dport = pd->hdr.tcp.th_dport;
4309 		pi = &V_tcbinfo;
4310 		break;
4311 	case IPPROTO_UDP:
4312 		sport = pd->hdr.udp.uh_sport;
4313 		dport = pd->hdr.udp.uh_dport;
4314 		pi = &V_udbinfo;
4315 		break;
4316 	default:
4317 		return (-1);
4318 	}
4319 	if (pd->dir == PF_IN) {
4320 		saddr = pd->src;
4321 		daddr = pd->dst;
4322 	} else {
4323 		u_int16_t	p;
4324 
4325 		p = sport;
4326 		sport = dport;
4327 		dport = p;
4328 		saddr = pd->dst;
4329 		daddr = pd->src;
4330 	}
4331 	switch (pd->af) {
4332 #ifdef INET
4333 	case AF_INET:
4334 		inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4,
4335 		    dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
4336 		if (inp == NULL) {
4337 			inp = in_pcblookup_mbuf(pi, saddr->v4, sport,
4338 			   daddr->v4, dport, INPLOOKUP_WILDCARD |
4339 			   INPLOOKUP_RLOCKPCB, NULL, pd->m);
4340 			if (inp == NULL)
4341 				return (-1);
4342 		}
4343 		break;
4344 #endif /* INET */
4345 #ifdef INET6
4346 	case AF_INET6:
4347 		inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6,
4348 		    dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
4349 		if (inp == NULL) {
4350 			inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport,
4351 			    &daddr->v6, dport, INPLOOKUP_WILDCARD |
4352 			    INPLOOKUP_RLOCKPCB, NULL, pd->m);
4353 			if (inp == NULL)
4354 				return (-1);
4355 		}
4356 		break;
4357 #endif /* INET6 */
4358 	}
4359 	INP_RLOCK_ASSERT(inp);
4360 	pd->lookup.uid = inp->inp_cred->cr_uid;
4361 	pd->lookup.gid = inp->inp_cred->cr_groups[0];
4362 	INP_RUNLOCK(inp);
4363 
4364 	return (1);
4365 }
4366 
4367 u_int8_t
4368 pf_get_wscale(struct pf_pdesc *pd)
4369 {
4370 	struct tcphdr	*th = &pd->hdr.tcp;
4371 	int		 hlen;
4372 	u_int8_t	 hdr[60];
4373 	u_int8_t	*opt, optlen;
4374 	u_int8_t	 wscale = 0;
4375 
4376 	hlen = th->th_off << 2;		/* hlen <= sizeof(hdr) */
4377 	if (hlen <= sizeof(struct tcphdr))
4378 		return (0);
4379 	if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af))
4380 		return (0);
4381 	opt = hdr + sizeof(struct tcphdr);
4382 	hlen -= sizeof(struct tcphdr);
4383 	while (hlen >= 3) {
4384 		switch (*opt) {
4385 		case TCPOPT_EOL:
4386 		case TCPOPT_NOP:
4387 			++opt;
4388 			--hlen;
4389 			break;
4390 		case TCPOPT_WINDOW:
4391 			wscale = opt[2];
4392 			if (wscale > TCP_MAX_WINSHIFT)
4393 				wscale = TCP_MAX_WINSHIFT;
4394 			wscale |= PF_WSCALE_FLAG;
4395 			/* FALLTHROUGH */
4396 		default:
4397 			optlen = opt[1];
4398 			if (optlen < 2)
4399 				optlen = 2;
4400 			hlen -= optlen;
4401 			opt += optlen;
4402 			break;
4403 		}
4404 	}
4405 	return (wscale);
4406 }
4407 
4408 u_int16_t
4409 pf_get_mss(struct pf_pdesc *pd)
4410 {
4411 	struct tcphdr	*th = &pd->hdr.tcp;
4412 	int		 hlen;
4413 	u_int8_t	 hdr[60];
4414 	u_int8_t	*opt, optlen;
4415 	u_int16_t	 mss = V_tcp_mssdflt;
4416 
4417 	hlen = th->th_off << 2;	/* hlen <= sizeof(hdr) */
4418 	if (hlen <= sizeof(struct tcphdr))
4419 		return (0);
4420 	if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af))
4421 		return (0);
4422 	opt = hdr + sizeof(struct tcphdr);
4423 	hlen -= sizeof(struct tcphdr);
4424 	while (hlen >= TCPOLEN_MAXSEG) {
4425 		switch (*opt) {
4426 		case TCPOPT_EOL:
4427 		case TCPOPT_NOP:
4428 			++opt;
4429 			--hlen;
4430 			break;
4431 		case TCPOPT_MAXSEG:
4432 			bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2);
4433 			NTOHS(mss);
4434 			/* FALLTHROUGH */
4435 		default:
4436 			optlen = opt[1];
4437 			if (optlen < 2)
4438 				optlen = 2;
4439 			hlen -= optlen;
4440 			opt += optlen;
4441 			break;
4442 		}
4443 	}
4444 	return (mss);
4445 }
4446 
4447 static u_int16_t
4448 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer)
4449 {
4450 	struct nhop_object *nh;
4451 #ifdef INET6
4452 	struct in6_addr		dst6;
4453 	uint32_t		scopeid;
4454 #endif /* INET6 */
4455 	int			 hlen = 0;
4456 	uint16_t		 mss = 0;
4457 
4458 	NET_EPOCH_ASSERT();
4459 
4460 	switch (af) {
4461 #ifdef INET
4462 	case AF_INET:
4463 		hlen = sizeof(struct ip);
4464 		nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0);
4465 		if (nh != NULL)
4466 			mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
4467 		break;
4468 #endif /* INET */
4469 #ifdef INET6
4470 	case AF_INET6:
4471 		hlen = sizeof(struct ip6_hdr);
4472 		in6_splitscope(&addr->v6, &dst6, &scopeid);
4473 		nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0);
4474 		if (nh != NULL)
4475 			mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
4476 		break;
4477 #endif /* INET6 */
4478 	}
4479 
4480 	mss = max(V_tcp_mssdflt, mss);
4481 	mss = min(mss, offer);
4482 	mss = max(mss, 64);		/* sanity - at least max opt space */
4483 	return (mss);
4484 }
4485 
4486 static u_int32_t
4487 pf_tcp_iss(struct pf_pdesc *pd)
4488 {
4489 	MD5_CTX ctx;
4490 	u_int32_t digest[4];
4491 
4492 	if (V_pf_tcp_secret_init == 0) {
4493 		arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret));
4494 		MD5Init(&V_pf_tcp_secret_ctx);
4495 		MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret,
4496 		    sizeof(V_pf_tcp_secret));
4497 		V_pf_tcp_secret_init = 1;
4498 	}
4499 
4500 	ctx = V_pf_tcp_secret_ctx;
4501 
4502 	MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short));
4503 	MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short));
4504 	switch (pd->af) {
4505 	case AF_INET6:
4506 		MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr));
4507 		MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr));
4508 		break;
4509 	case AF_INET:
4510 		MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr));
4511 		MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr));
4512 		break;
4513 	}
4514 	MD5Final((u_char *)digest, &ctx);
4515 	V_pf_tcp_iss_off += 4096;
4516 #define	ISN_RANDOM_INCREMENT (4096 - 1)
4517 	return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) +
4518 	    V_pf_tcp_iss_off);
4519 #undef	ISN_RANDOM_INCREMENT
4520 }
4521 
4522 static bool
4523 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r)
4524 {
4525 	bool match = true;
4526 
4527 	/* Always matches if not set */
4528 	if (! r->isset)
4529 		return (!r->neg);
4530 
4531 	for (int i = 0; i < ETHER_ADDR_LEN; i++) {
4532 		if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) {
4533 			match = false;
4534 			break;
4535 		}
4536 	}
4537 
4538 	return (match ^ r->neg);
4539 }
4540 
4541 static int
4542 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag)
4543 {
4544 	if (*tag == -1)
4545 		*tag = mtag;
4546 
4547 	return ((!r->match_tag_not && r->match_tag == *tag) ||
4548 	    (r->match_tag_not && r->match_tag != *tag));
4549 }
4550 
4551 static void
4552 pf_bridge_to(struct ifnet *ifp, struct mbuf *m)
4553 {
4554 	/* If we don't have the interface drop the packet. */
4555 	if (ifp == NULL) {
4556 		m_freem(m);
4557 		return;
4558 	}
4559 
4560 	switch (ifp->if_type) {
4561 	case IFT_ETHER:
4562 	case IFT_XETHER:
4563 	case IFT_L2VLAN:
4564 	case IFT_BRIDGE:
4565 	case IFT_IEEE8023ADLAG:
4566 		break;
4567 	default:
4568 		m_freem(m);
4569 		return;
4570 	}
4571 
4572 	ifp->if_transmit(ifp, m);
4573 }
4574 
4575 static int
4576 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0)
4577 {
4578 #ifdef INET
4579 	struct ip ip;
4580 #endif
4581 #ifdef INET6
4582 	struct ip6_hdr ip6;
4583 #endif
4584 	struct mbuf *m = *m0;
4585 	struct ether_header *e;
4586 	struct pf_keth_rule *r, *rm, *a = NULL;
4587 	struct pf_keth_ruleset *ruleset = NULL;
4588 	struct pf_mtag *mtag;
4589 	struct pf_keth_ruleq *rules;
4590 	struct pf_addr *src = NULL, *dst = NULL;
4591 	struct pfi_kkif *bridge_to;
4592 	sa_family_t af = 0;
4593 	uint16_t proto;
4594 	int asd = 0, match = 0;
4595 	int tag = -1;
4596 	uint8_t action;
4597 	struct pf_keth_anchor_stackframe	anchor_stack[PF_ANCHOR_STACKSIZE];
4598 
4599 	MPASS(kif->pfik_ifp->if_vnet == curvnet);
4600 	NET_EPOCH_ASSERT();
4601 
4602 	PF_RULES_RLOCK_TRACKER;
4603 
4604 	SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m);
4605 
4606 	mtag = pf_find_mtag(m);
4607 	if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
4608 		/* Dummynet re-injects packets after they've
4609 		 * completed their delay. We've already
4610 		 * processed them, so pass unconditionally. */
4611 
4612 		/* But only once. We may see the packet multiple times (e.g.
4613 		 * PFIL_IN/PFIL_OUT). */
4614 		pf_dummynet_flag_remove(m, mtag);
4615 
4616 		return (PF_PASS);
4617 	}
4618 
4619 	ruleset = V_pf_keth;
4620 	rules = ck_pr_load_ptr(&ruleset->active.rules);
4621 	r = TAILQ_FIRST(rules);
4622 	rm = NULL;
4623 
4624 	if (__predict_false(m->m_len < sizeof(struct ether_header)) &&
4625 	    (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) {
4626 		DPFPRINTF(PF_DEBUG_URGENT,
4627 		    ("pf_test_eth_rule: m_len < sizeof(struct ether_header)"
4628 		     ", pullup failed\n"));
4629 		return (PF_DROP);
4630 	}
4631 	e = mtod(m, struct ether_header *);
4632 	proto = ntohs(e->ether_type);
4633 
4634 	switch (proto) {
4635 #ifdef INET
4636 	case ETHERTYPE_IP: {
4637 		if (m_length(m, NULL) < (sizeof(struct ether_header) +
4638 		    sizeof(ip)))
4639 			return (PF_DROP);
4640 
4641 		af = AF_INET;
4642 		m_copydata(m, sizeof(struct ether_header), sizeof(ip),
4643 		    (caddr_t)&ip);
4644 		src = (struct pf_addr *)&ip.ip_src;
4645 		dst = (struct pf_addr *)&ip.ip_dst;
4646 		break;
4647 	}
4648 #endif /* INET */
4649 #ifdef INET6
4650 	case ETHERTYPE_IPV6: {
4651 		if (m_length(m, NULL) < (sizeof(struct ether_header) +
4652 		    sizeof(ip6)))
4653 			return (PF_DROP);
4654 
4655 		af = AF_INET6;
4656 		m_copydata(m, sizeof(struct ether_header), sizeof(ip6),
4657 		    (caddr_t)&ip6);
4658 		src = (struct pf_addr *)&ip6.ip6_src;
4659 		dst = (struct pf_addr *)&ip6.ip6_dst;
4660 		break;
4661 	}
4662 #endif /* INET6 */
4663 	}
4664 
4665 	PF_RULES_RLOCK();
4666 
4667 	while (r != NULL) {
4668 		counter_u64_add(r->evaluations, 1);
4669 		SDT_PROBE2(pf, eth, test_rule, test, r->nr, r);
4670 
4671 		if (pfi_kkif_match(r->kif, kif) == r->ifnot) {
4672 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4673 			    "kif");
4674 			r = r->skip[PFE_SKIP_IFP].ptr;
4675 		}
4676 		else if (r->direction && r->direction != dir) {
4677 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4678 			    "dir");
4679 			r = r->skip[PFE_SKIP_DIR].ptr;
4680 		}
4681 		else if (r->proto && r->proto != proto) {
4682 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4683 			    "proto");
4684 			r = r->skip[PFE_SKIP_PROTO].ptr;
4685 		}
4686 		else if (! pf_match_eth_addr(e->ether_shost, &r->src)) {
4687 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4688 			    "src");
4689 			r = r->skip[PFE_SKIP_SRC_ADDR].ptr;
4690 		}
4691 		else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) {
4692 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4693 			    "dst");
4694 			r = r->skip[PFE_SKIP_DST_ADDR].ptr;
4695 		}
4696 		else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af,
4697 		    r->ipsrc.neg, kif, M_GETFIB(m))) {
4698 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4699 			    "ip_src");
4700 			r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr;
4701 		}
4702 		else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af,
4703 		    r->ipdst.neg, kif, M_GETFIB(m))) {
4704 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4705 			    "ip_dst");
4706 			r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr;
4707 		}
4708 		else if (r->match_tag && !pf_match_eth_tag(m, r, &tag,
4709 		    mtag ? mtag->tag : 0)) {
4710 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4711 			    "match_tag");
4712 			r = TAILQ_NEXT(r, entries);
4713 		}
4714 		else {
4715 			if (r->tag)
4716 				tag = r->tag;
4717 			if (r->anchor == NULL) {
4718 				/* Rule matches */
4719 				rm = r;
4720 
4721 				SDT_PROBE2(pf, eth, test_rule, match, r->nr, r);
4722 
4723 				if (r->quick)
4724 					break;
4725 
4726 				r = TAILQ_NEXT(r, entries);
4727 			} else {
4728 				pf_step_into_keth_anchor(anchor_stack, &asd,
4729 				    &ruleset, &r, &a, &match);
4730 			}
4731 		}
4732 		if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd,
4733 		    &ruleset, &r, &a, &match))
4734 			break;
4735 	}
4736 
4737 	r = rm;
4738 
4739 	SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r);
4740 
4741 	/* Default to pass. */
4742 	if (r == NULL) {
4743 		PF_RULES_RUNLOCK();
4744 		return (PF_PASS);
4745 	}
4746 
4747 	/* Execute action. */
4748 	counter_u64_add(r->packets[dir == PF_OUT], 1);
4749 	counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL));
4750 	pf_update_timestamp(r);
4751 
4752 	/* Shortcut. Don't tag if we're just going to drop anyway. */
4753 	if (r->action == PF_DROP) {
4754 		PF_RULES_RUNLOCK();
4755 		return (PF_DROP);
4756 	}
4757 
4758 	if (tag > 0) {
4759 		if (mtag == NULL)
4760 			mtag = pf_get_mtag(m);
4761 		if (mtag == NULL) {
4762 			PF_RULES_RUNLOCK();
4763 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
4764 			return (PF_DROP);
4765 		}
4766 		mtag->tag = tag;
4767 	}
4768 
4769 	if (r->qid != 0) {
4770 		if (mtag == NULL)
4771 			mtag = pf_get_mtag(m);
4772 		if (mtag == NULL) {
4773 			PF_RULES_RUNLOCK();
4774 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
4775 			return (PF_DROP);
4776 		}
4777 		mtag->qid = r->qid;
4778 	}
4779 
4780 	action = r->action;
4781 	bridge_to = r->bridge_to;
4782 
4783 	/* Dummynet */
4784 	if (r->dnpipe) {
4785 		struct ip_fw_args dnflow;
4786 
4787 		/* Drop packet if dummynet is not loaded. */
4788 		if (ip_dn_io_ptr == NULL) {
4789 			PF_RULES_RUNLOCK();
4790 			m_freem(m);
4791 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
4792 			return (PF_DROP);
4793 		}
4794 		if (mtag == NULL)
4795 			mtag = pf_get_mtag(m);
4796 		if (mtag == NULL) {
4797 			PF_RULES_RUNLOCK();
4798 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
4799 			return (PF_DROP);
4800 		}
4801 
4802 		bzero(&dnflow, sizeof(dnflow));
4803 
4804 		/* We don't have port numbers here, so we set 0.  That means
4805 		 * that we'll be somewhat limited in distinguishing flows (i.e.
4806 		 * only based on IP addresses, not based on port numbers), but
4807 		 * it's better than nothing. */
4808 		dnflow.f_id.dst_port = 0;
4809 		dnflow.f_id.src_port = 0;
4810 		dnflow.f_id.proto = 0;
4811 
4812 		dnflow.rule.info = r->dnpipe;
4813 		dnflow.rule.info |= IPFW_IS_DUMMYNET;
4814 		if (r->dnflags & PFRULE_DN_IS_PIPE)
4815 			dnflow.rule.info |= IPFW_IS_PIPE;
4816 
4817 		dnflow.f_id.extra = dnflow.rule.info;
4818 
4819 		dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT;
4820 		dnflow.flags |= IPFW_ARGS_ETHER;
4821 		dnflow.ifp = kif->pfik_ifp;
4822 
4823 		switch (af) {
4824 		case AF_INET:
4825 			dnflow.f_id.addr_type = 4;
4826 			dnflow.f_id.src_ip = src->v4.s_addr;
4827 			dnflow.f_id.dst_ip = dst->v4.s_addr;
4828 			break;
4829 		case AF_INET6:
4830 			dnflow.flags |= IPFW_ARGS_IP6;
4831 			dnflow.f_id.addr_type = 6;
4832 			dnflow.f_id.src_ip6 = src->v6;
4833 			dnflow.f_id.dst_ip6 = dst->v6;
4834 			break;
4835 		}
4836 
4837 		PF_RULES_RUNLOCK();
4838 
4839 		mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
4840 		ip_dn_io_ptr(m0, &dnflow);
4841 		if (*m0 != NULL)
4842 			pf_dummynet_flag_remove(m, mtag);
4843 	} else {
4844 		PF_RULES_RUNLOCK();
4845 	}
4846 
4847 	if (action == PF_PASS && bridge_to) {
4848 		pf_bridge_to(bridge_to->pfik_ifp, *m0);
4849 		*m0 = NULL; /* We've eaten the packet. */
4850 	}
4851 
4852 	return (action);
4853 }
4854 
4855 #define PF_TEST_ATTRIB(t, a)\
4856 	do {				\
4857 		if (t) {		\
4858 			r = a;		\
4859 			goto nextrule;	\
4860 		}			\
4861 	} while (0)
4862 
4863 static int
4864 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm,
4865     struct pf_pdesc *pd, struct pf_krule **am,
4866     struct pf_kruleset **rsm, struct inpcb *inp)
4867 {
4868 	struct pf_krule		*nr = NULL;
4869 	struct pf_addr		* const saddr = pd->src;
4870 	struct pf_addr		* const daddr = pd->dst;
4871 	struct pf_krule		*r, *a = NULL;
4872 	struct pf_kruleset	*ruleset = NULL;
4873 	struct pf_krule_slist	 match_rules;
4874 	struct pf_krule_item	*ri;
4875 	struct pf_ksrc_node	*nsn = NULL;
4876 	struct tcphdr		*th = &pd->hdr.tcp;
4877 	struct pf_state_key	*sk = NULL, *nk = NULL;
4878 	u_short			 reason, transerror;
4879 	int			 rewrite = 0;
4880 	int			 tag = -1;
4881 	int			 asd = 0;
4882 	int			 match = 0;
4883 	int			 state_icmp = 0, icmp_dir, multi;
4884 	u_int16_t		 sport = 0, dport = 0, virtual_type, virtual_id;
4885 	u_int16_t		 bproto_sum = 0, bip_sum = 0;
4886 	u_int8_t		 icmptype = 0, icmpcode = 0;
4887 	struct pf_kanchor_stackframe	anchor_stack[PF_ANCHOR_STACKSIZE];
4888 	struct pf_udp_mapping	*udp_mapping = NULL;
4889 
4890 	PF_RULES_RASSERT();
4891 
4892 	SLIST_INIT(&match_rules);
4893 
4894 	if (inp != NULL) {
4895 		INP_LOCK_ASSERT(inp);
4896 		pd->lookup.uid = inp->inp_cred->cr_uid;
4897 		pd->lookup.gid = inp->inp_cred->cr_groups[0];
4898 		pd->lookup.done = 1;
4899 	}
4900 
4901 	switch (pd->virtual_proto) {
4902 	case IPPROTO_TCP:
4903 		sport = th->th_sport;
4904 		dport = th->th_dport;
4905 		break;
4906 	case IPPROTO_UDP:
4907 		sport = pd->hdr.udp.uh_sport;
4908 		dport = pd->hdr.udp.uh_dport;
4909 		break;
4910 	case IPPROTO_SCTP:
4911 		sport = pd->hdr.sctp.src_port;
4912 		dport = pd->hdr.sctp.dest_port;
4913 		break;
4914 #ifdef INET
4915 	case IPPROTO_ICMP:
4916 		MPASS(pd->af == AF_INET);
4917 		icmptype = pd->hdr.icmp.icmp_type;
4918 		icmpcode = pd->hdr.icmp.icmp_code;
4919 		state_icmp = pf_icmp_mapping(pd, icmptype,
4920 		    &icmp_dir, &multi, &virtual_id, &virtual_type);
4921 		if (icmp_dir == PF_IN) {
4922 			sport = virtual_id;
4923 			dport = virtual_type;
4924 		} else {
4925 			sport = virtual_type;
4926 			dport = virtual_id;
4927 		}
4928 		break;
4929 #endif /* INET */
4930 #ifdef INET6
4931 	case IPPROTO_ICMPV6:
4932 		MPASS(pd->af == AF_INET6);
4933 		icmptype = pd->hdr.icmp6.icmp6_type;
4934 		icmpcode = pd->hdr.icmp6.icmp6_code;
4935 		state_icmp = pf_icmp_mapping(pd, icmptype,
4936 		    &icmp_dir, &multi, &virtual_id, &virtual_type);
4937 		if (icmp_dir == PF_IN) {
4938 			sport = virtual_id;
4939 			dport = virtual_type;
4940 		} else {
4941 			sport = virtual_type;
4942 			dport = virtual_id;
4943 		}
4944 
4945 		break;
4946 #endif /* INET6 */
4947 	default:
4948 		sport = dport = 0;
4949 		break;
4950 	}
4951 
4952 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr);
4953 
4954 	/* check packet for BINAT/NAT/RDR */
4955 	transerror = pf_get_translation(pd, pd->off, &nsn, &sk,
4956 	    &nk, saddr, daddr, sport, dport, anchor_stack, &nr, &udp_mapping);
4957 	switch (transerror) {
4958 	default:
4959 		/* A translation error occurred. */
4960 		REASON_SET(&reason, transerror);
4961 		goto cleanup;
4962 	case PFRES_MAX:
4963 		/* No match. */
4964 		break;
4965 	case PFRES_MATCH:
4966 		KASSERT(sk != NULL, ("%s: null sk", __func__));
4967 		KASSERT(nk != NULL, ("%s: null nk", __func__));
4968 
4969 		if (nr->log) {
4970 			PFLOG_PACKET(PF_PASS, PFRES_MATCH, nr, a,
4971 			    ruleset, pd, 1);
4972 		}
4973 
4974 		if (pd->ip_sum)
4975 			bip_sum = *pd->ip_sum;
4976 
4977 		switch (pd->proto) {
4978 		case IPPROTO_TCP:
4979 			bproto_sum = th->th_sum;
4980 			pd->proto_sum = &th->th_sum;
4981 
4982 			if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) ||
4983 			    nk->port[pd->sidx] != sport) {
4984 				pf_change_ap(pd->m, saddr, &th->th_sport, pd->ip_sum,
4985 				    &th->th_sum, &nk->addr[pd->sidx],
4986 				    nk->port[pd->sidx], 0, pd->af);
4987 				pd->sport = &th->th_sport;
4988 				sport = th->th_sport;
4989 			}
4990 
4991 			if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) ||
4992 			    nk->port[pd->didx] != dport) {
4993 				pf_change_ap(pd->m, daddr, &th->th_dport, pd->ip_sum,
4994 				    &th->th_sum, &nk->addr[pd->didx],
4995 				    nk->port[pd->didx], 0, pd->af);
4996 				dport = th->th_dport;
4997 				pd->dport = &th->th_dport;
4998 			}
4999 			rewrite++;
5000 			break;
5001 		case IPPROTO_UDP:
5002 			bproto_sum = pd->hdr.udp.uh_sum;
5003 			pd->proto_sum = &pd->hdr.udp.uh_sum;
5004 
5005 			if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) ||
5006 			    nk->port[pd->sidx] != sport) {
5007 				pf_change_ap(pd->m, saddr, &pd->hdr.udp.uh_sport,
5008 				    pd->ip_sum, &pd->hdr.udp.uh_sum,
5009 				    &nk->addr[pd->sidx],
5010 				    nk->port[pd->sidx], 1, pd->af);
5011 				sport = pd->hdr.udp.uh_sport;
5012 				pd->sport = &pd->hdr.udp.uh_sport;
5013 			}
5014 
5015 			if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) ||
5016 			    nk->port[pd->didx] != dport) {
5017 				pf_change_ap(pd->m, daddr, &pd->hdr.udp.uh_dport,
5018 				    pd->ip_sum, &pd->hdr.udp.uh_sum,
5019 				    &nk->addr[pd->didx],
5020 				    nk->port[pd->didx], 1, pd->af);
5021 				dport = pd->hdr.udp.uh_dport;
5022 				pd->dport = &pd->hdr.udp.uh_dport;
5023 			}
5024 			rewrite++;
5025 			break;
5026 		case IPPROTO_SCTP: {
5027 			uint16_t checksum = 0;
5028 
5029 			if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) ||
5030 			    nk->port[pd->sidx] != sport) {
5031 				pf_change_ap(pd->m, saddr, &pd->hdr.sctp.src_port,
5032 				    pd->ip_sum, &checksum,
5033 				    &nk->addr[pd->sidx],
5034 				    nk->port[pd->sidx], 1, pd->af);
5035 			}
5036 			if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) ||
5037 			    nk->port[pd->didx] != dport) {
5038 				pf_change_ap(pd->m, daddr, &pd->hdr.sctp.dest_port,
5039 				    pd->ip_sum, &checksum,
5040 				    &nk->addr[pd->didx],
5041 				    nk->port[pd->didx], 1, pd->af);
5042 			}
5043 			break;
5044 		}
5045 #ifdef INET
5046 		case IPPROTO_ICMP:
5047 			if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET))
5048 				pf_change_a(&saddr->v4.s_addr, pd->ip_sum,
5049 				    nk->addr[pd->sidx].v4.s_addr, 0);
5050 
5051 			if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET))
5052 				pf_change_a(&daddr->v4.s_addr, pd->ip_sum,
5053 				    nk->addr[pd->didx].v4.s_addr, 0);
5054 
5055 			if (virtual_type == htons(ICMP_ECHO) &&
5056 			     nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) {
5057 				pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
5058 				    pd->hdr.icmp.icmp_cksum, sport,
5059 				    nk->port[pd->sidx], 0);
5060 				pd->hdr.icmp.icmp_id = nk->port[pd->sidx];
5061 				pd->sport = &pd->hdr.icmp.icmp_id;
5062 			}
5063 			m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
5064 			break;
5065 #endif /* INET */
5066 #ifdef INET6
5067 		case IPPROTO_ICMPV6:
5068 			if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6))
5069 				pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum,
5070 				    &nk->addr[pd->sidx], 0);
5071 
5072 			if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6))
5073 				pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum,
5074 				    &nk->addr[pd->didx], 0);
5075 			rewrite++;
5076 			break;
5077 #endif /* INET */
5078 		default:
5079 			switch (pd->af) {
5080 #ifdef INET
5081 			case AF_INET:
5082 				if (PF_ANEQ(saddr,
5083 				    &nk->addr[pd->sidx], AF_INET))
5084 					pf_change_a(&saddr->v4.s_addr,
5085 					    pd->ip_sum,
5086 					    nk->addr[pd->sidx].v4.s_addr, 0);
5087 
5088 				if (PF_ANEQ(daddr,
5089 				    &nk->addr[pd->didx], AF_INET))
5090 					pf_change_a(&daddr->v4.s_addr,
5091 					    pd->ip_sum,
5092 					    nk->addr[pd->didx].v4.s_addr, 0);
5093 				break;
5094 #endif /* INET */
5095 #ifdef INET6
5096 			case AF_INET6:
5097 				if (PF_ANEQ(saddr,
5098 				    &nk->addr[pd->sidx], AF_INET6))
5099 					PF_ACPY(saddr, &nk->addr[pd->sidx], pd->af);
5100 
5101 				if (PF_ANEQ(daddr,
5102 				    &nk->addr[pd->didx], AF_INET6))
5103 					PF_ACPY(daddr, &nk->addr[pd->didx], pd->af);
5104 				break;
5105 #endif /* INET */
5106 			}
5107 			break;
5108 		}
5109 		if (nr->natpass)
5110 			r = NULL;
5111 	}
5112 
5113 	while (r != NULL) {
5114 		pf_counter_u64_add(&r->evaluations, 1);
5115 		PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot,
5116 			r->skip[PF_SKIP_IFP]);
5117 		PF_TEST_ATTRIB(r->direction && r->direction != pd->dir,
5118 			r->skip[PF_SKIP_DIR]);
5119 		PF_TEST_ATTRIB(r->af && r->af != pd->af,
5120 			r->skip[PF_SKIP_AF]);
5121 		PF_TEST_ATTRIB(r->proto && r->proto != pd->proto,
5122 			r->skip[PF_SKIP_PROTO]);
5123 		PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, saddr, pd->af,
5124 		    r->src.neg, pd->kif, M_GETFIB(pd->m)),
5125 			r->skip[PF_SKIP_SRC_ADDR]);
5126 		PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, daddr, pd->af,
5127 		    r->dst.neg, NULL, M_GETFIB(pd->m)),
5128 			r->skip[PF_SKIP_DST_ADDR]);
5129 		switch (pd->virtual_proto) {
5130 		case PF_VPROTO_FRAGMENT:
5131 			/* tcp/udp only. port_op always 0 in other cases */
5132 			PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op),
5133 				TAILQ_NEXT(r, entries));
5134 			PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset),
5135 				TAILQ_NEXT(r, entries));
5136 			/* icmp only. type/code always 0 in other cases */
5137 			PF_TEST_ATTRIB((r->type || r->code),
5138 				TAILQ_NEXT(r, entries));
5139 			/* tcp/udp only. {uid|gid}.op always 0 in other cases */
5140 			PF_TEST_ATTRIB((r->gid.op || r->uid.op),
5141 				TAILQ_NEXT(r, entries));
5142 			break;
5143 
5144 		case IPPROTO_TCP:
5145 			PF_TEST_ATTRIB((r->flagset & th->th_flags) != r->flags,
5146 				TAILQ_NEXT(r, entries));
5147 			/* FALLTHROUGH */
5148 		case IPPROTO_SCTP:
5149 		case IPPROTO_UDP:
5150 			/* tcp/udp only. port_op always 0 in other cases */
5151 			PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op,
5152 			    r->src.port[0], r->src.port[1], sport),
5153 				r->skip[PF_SKIP_SRC_PORT]);
5154 			/* tcp/udp only. port_op always 0 in other cases */
5155 			PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op,
5156 			    r->dst.port[0], r->dst.port[1], dport),
5157 				r->skip[PF_SKIP_DST_PORT]);
5158 			/* tcp/udp only. uid.op always 0 in other cases */
5159 			PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done =
5160 			    pf_socket_lookup(pd), 1)) &&
5161 			    !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1],
5162 			    pd->lookup.uid),
5163 				TAILQ_NEXT(r, entries));
5164 			/* tcp/udp only. gid.op always 0 in other cases */
5165 			PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done =
5166 			    pf_socket_lookup(pd), 1)) &&
5167 			    !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1],
5168 			    pd->lookup.gid),
5169 				TAILQ_NEXT(r, entries));
5170 			break;
5171 
5172 		case IPPROTO_ICMP:
5173 		case IPPROTO_ICMPV6:
5174 			/* icmp only. type always 0 in other cases */
5175 			PF_TEST_ATTRIB(r->type && r->type != icmptype + 1,
5176 				TAILQ_NEXT(r, entries));
5177 			/* icmp only. type always 0 in other cases */
5178 			PF_TEST_ATTRIB(r->code && r->code != icmpcode + 1,
5179 				TAILQ_NEXT(r, entries));
5180 			break;
5181 
5182 		default:
5183 			break;
5184 		}
5185 		PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos),
5186 			TAILQ_NEXT(r, entries));
5187 		PF_TEST_ATTRIB(r->prio &&
5188 		    !pf_match_ieee8021q_pcp(r->prio, pd->m),
5189 			TAILQ_NEXT(r, entries));
5190 		PF_TEST_ATTRIB(r->prob &&
5191 		    r->prob <= arc4random(),
5192 			TAILQ_NEXT(r, entries));
5193 		PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r, &tag,
5194 		    pd->pf_mtag ? pd->pf_mtag->tag : 0),
5195 			TAILQ_NEXT(r, entries));
5196 		PF_TEST_ATTRIB(r->rcv_kif && !pf_match_rcvif(pd->m, r),
5197 			TAILQ_NEXT(r, entries));
5198 		PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT &&
5199 		    pd->virtual_proto != PF_VPROTO_FRAGMENT),
5200 			TAILQ_NEXT(r, entries));
5201 		PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY &&
5202 		    (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match(
5203 		    pf_osfp_fingerprint(pd, th),
5204 		    r->os_fingerprint)),
5205 			TAILQ_NEXT(r, entries));
5206 		/* FALLTHROUGH */
5207 		if (r->tag)
5208 			tag = r->tag;
5209 		if (r->anchor == NULL) {
5210 			if (r->action == PF_MATCH) {
5211 				ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO);
5212 				if (ri == NULL) {
5213 					REASON_SET(&reason, PFRES_MEMORY);
5214 					goto cleanup;
5215 				}
5216 				ri->r = r;
5217 				SLIST_INSERT_HEAD(&match_rules, ri, entry);
5218 				pf_counter_u64_critical_enter();
5219 				pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
5220 				pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
5221 				pf_counter_u64_critical_exit();
5222 				pf_rule_to_actions(r, &pd->act);
5223 				if (r->log || pd->act.log & PF_LOG_MATCHES)
5224 					PFLOG_PACKET(r->action, PFRES_MATCH, r,
5225 					    a, ruleset, pd, 1);
5226 			} else {
5227 				match = 1;
5228 				*rm = r;
5229 				*am = a;
5230 				*rsm = ruleset;
5231 				if (pd->act.log & PF_LOG_MATCHES)
5232 					PFLOG_PACKET(r->action, PFRES_MATCH, r,
5233 					    a, ruleset, pd, 1);
5234 			}
5235 			if ((*rm)->quick)
5236 				break;
5237 			r = TAILQ_NEXT(r, entries);
5238 		} else
5239 			pf_step_into_anchor(anchor_stack, &asd,
5240 			    &ruleset, PF_RULESET_FILTER, &r, &a,
5241 			    &match);
5242 nextrule:
5243 		if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd,
5244 		    &ruleset, PF_RULESET_FILTER, &r, &a, &match))
5245 			break;
5246 	}
5247 	r = *rm;
5248 	a = *am;
5249 	ruleset = *rsm;
5250 
5251 	REASON_SET(&reason, PFRES_MATCH);
5252 
5253 	/* apply actions for last matching pass/block rule */
5254 	pf_rule_to_actions(r, &pd->act);
5255 
5256 	if (r->log || pd->act.log & PF_LOG_MATCHES) {
5257 		if (rewrite)
5258 			m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5259 		PFLOG_PACKET(r->action, reason, r, a, ruleset, pd, 1);
5260 	}
5261 
5262 	if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5263 	   (r->action == PF_DROP) &&
5264 	    ((r->rule_flag & PFRULE_RETURNRST) ||
5265 	    (r->rule_flag & PFRULE_RETURNICMP) ||
5266 	    (r->rule_flag & PFRULE_RETURN))) {
5267 		pf_return(r, nr, pd, sk, th, bproto_sum,
5268 		    bip_sum, &reason, r->rtableid);
5269 	}
5270 
5271 	if (r->action == PF_DROP)
5272 		goto cleanup;
5273 
5274 	if (tag > 0 && pf_tag_packet(pd, tag)) {
5275 		REASON_SET(&reason, PFRES_MEMORY);
5276 		goto cleanup;
5277 	}
5278 	if (pd->act.rtableid >= 0)
5279 		M_SETFIB(pd->m, pd->act.rtableid);
5280 
5281 	if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5282 	   (!state_icmp && (r->keep_state || nr != NULL ||
5283 	    (pd->flags & PFDESC_TCP_NORM)))) {
5284 		int action;
5285 		action = pf_create_state(r, nr, a, pd, nsn, nk, sk,
5286 		    sport, dport, &rewrite, sm, tag, bproto_sum, bip_sum,
5287 		    &match_rules, udp_mapping);
5288 		if (action != PF_PASS) {
5289 			pf_udp_mapping_release(udp_mapping);
5290 			if (action == PF_DROP &&
5291 			    (r->rule_flag & PFRULE_RETURN))
5292 				pf_return(r, nr, pd, sk, th,
5293 				    bproto_sum, bip_sum, &reason,
5294 				    pd->act.rtableid);
5295 			return (action);
5296 		}
5297 	} else {
5298 		while ((ri = SLIST_FIRST(&match_rules))) {
5299 			SLIST_REMOVE_HEAD(&match_rules, entry);
5300 			free(ri, M_PF_RULE_ITEM);
5301 		}
5302 
5303 		uma_zfree(V_pf_state_key_z, sk);
5304 		uma_zfree(V_pf_state_key_z, nk);
5305 		pf_udp_mapping_release(udp_mapping);
5306 	}
5307 
5308 	/* copy back packet headers if we performed NAT operations */
5309 	if (rewrite)
5310 		m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5311 
5312 	if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) &&
5313 	    pd->dir == PF_OUT &&
5314 	    V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m))
5315 		/*
5316 		 * We want the state created, but we dont
5317 		 * want to send this in case a partner
5318 		 * firewall has to know about it to allow
5319 		 * replies through it.
5320 		 */
5321 		return (PF_DEFER);
5322 
5323 	return (PF_PASS);
5324 
5325 cleanup:
5326 	while ((ri = SLIST_FIRST(&match_rules))) {
5327 		SLIST_REMOVE_HEAD(&match_rules, entry);
5328 		free(ri, M_PF_RULE_ITEM);
5329 	}
5330 
5331 	uma_zfree(V_pf_state_key_z, sk);
5332 	uma_zfree(V_pf_state_key_z, nk);
5333 	pf_udp_mapping_release(udp_mapping);
5334 
5335 	return (PF_DROP);
5336 }
5337 
5338 static int
5339 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a,
5340     struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk,
5341     struct pf_state_key *sk, u_int16_t sport,
5342     u_int16_t dport, int *rewrite, struct pf_kstate **sm,
5343     int tag, u_int16_t bproto_sum, u_int16_t bip_sum,
5344     struct pf_krule_slist *match_rules, struct pf_udp_mapping *udp_mapping)
5345 {
5346 	struct pf_kstate	*s = NULL;
5347 	struct pf_ksrc_node	*sn = NULL;
5348 	struct tcphdr		*th = &pd->hdr.tcp;
5349 	u_int16_t		 mss = V_tcp_mssdflt;
5350 	u_short			 reason, sn_reason;
5351 	struct pf_krule_item	*ri;
5352 
5353 	/* check maximums */
5354 	if (r->max_states &&
5355 	    (counter_u64_fetch(r->states_cur) >= r->max_states)) {
5356 		counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1);
5357 		REASON_SET(&reason, PFRES_MAXSTATES);
5358 		goto csfailed;
5359 	}
5360 	/* src node for filter rule */
5361 	if ((r->rule_flag & PFRULE_SRCTRACK ||
5362 	    r->rpool.opts & PF_POOL_STICKYADDR) &&
5363 	    (sn_reason = pf_insert_src_node(&sn, r, pd->src, pd->af)) != 0) {
5364 		REASON_SET(&reason, sn_reason);
5365 		goto csfailed;
5366 	}
5367 	/* src node for translation rule */
5368 	if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) &&
5369 	    (sn_reason = pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx],
5370 	    pd->af)) != 0 ) {
5371 		REASON_SET(&reason, sn_reason);
5372 		goto csfailed;
5373 	}
5374 	s = pf_alloc_state(M_NOWAIT);
5375 	if (s == NULL) {
5376 		REASON_SET(&reason, PFRES_MEMORY);
5377 		goto csfailed;
5378 	}
5379 	s->rule = r;
5380 	s->nat_rule = nr;
5381 	s->anchor = a;
5382 	bcopy(match_rules, &s->match_rules, sizeof(s->match_rules));
5383 	memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions));
5384 
5385 	STATE_INC_COUNTERS(s);
5386 	if (r->allow_opts)
5387 		s->state_flags |= PFSTATE_ALLOWOPTS;
5388 	if (r->rule_flag & PFRULE_STATESLOPPY)
5389 		s->state_flags |= PFSTATE_SLOPPY;
5390 	if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */
5391 		s->state_flags |= PFSTATE_SCRUB_TCP;
5392 	if ((r->rule_flag & PFRULE_PFLOW) ||
5393 	    (nr != NULL && nr->rule_flag & PFRULE_PFLOW))
5394 		s->state_flags |= PFSTATE_PFLOW;
5395 
5396 	s->act.log = pd->act.log & PF_LOG_ALL;
5397 	s->sync_state = PFSYNC_S_NONE;
5398 	s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */
5399 
5400 	if (nr != NULL)
5401 		s->act.log |= nr->log & PF_LOG_ALL;
5402 	switch (pd->proto) {
5403 	case IPPROTO_TCP:
5404 		s->src.seqlo = ntohl(th->th_seq);
5405 		s->src.seqhi = s->src.seqlo + pd->p_len + 1;
5406 		if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN &&
5407 		    r->keep_state == PF_STATE_MODULATE) {
5408 			/* Generate sequence number modulator */
5409 			if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) ==
5410 			    0)
5411 				s->src.seqdiff = 1;
5412 			pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum,
5413 			    htonl(s->src.seqlo + s->src.seqdiff), 0);
5414 			*rewrite = 1;
5415 		} else
5416 			s->src.seqdiff = 0;
5417 		if (th->th_flags & TH_SYN) {
5418 			s->src.seqhi++;
5419 			s->src.wscale = pf_get_wscale(pd);
5420 		}
5421 		s->src.max_win = MAX(ntohs(th->th_win), 1);
5422 		if (s->src.wscale & PF_WSCALE_MASK) {
5423 			/* Remove scale factor from initial window */
5424 			int win = s->src.max_win;
5425 			win += 1 << (s->src.wscale & PF_WSCALE_MASK);
5426 			s->src.max_win = (win - 1) >>
5427 			    (s->src.wscale & PF_WSCALE_MASK);
5428 		}
5429 		if (th->th_flags & TH_FIN)
5430 			s->src.seqhi++;
5431 		s->dst.seqhi = 1;
5432 		s->dst.max_win = 1;
5433 		pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT);
5434 		pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED);
5435 		s->timeout = PFTM_TCP_FIRST_PACKET;
5436 		atomic_add_32(&V_pf_status.states_halfopen, 1);
5437 		break;
5438 	case IPPROTO_UDP:
5439 		pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE);
5440 		pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC);
5441 		s->timeout = PFTM_UDP_FIRST_PACKET;
5442 		break;
5443 	case IPPROTO_SCTP:
5444 		pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT);
5445 		pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED);
5446 		s->timeout = PFTM_SCTP_FIRST_PACKET;
5447 		break;
5448 	case IPPROTO_ICMP:
5449 #ifdef INET6
5450 	case IPPROTO_ICMPV6:
5451 #endif
5452 		s->timeout = PFTM_ICMP_FIRST_PACKET;
5453 		break;
5454 	default:
5455 		pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE);
5456 		pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC);
5457 		s->timeout = PFTM_OTHER_FIRST_PACKET;
5458 	}
5459 
5460 	if (r->rt) {
5461 		/* pf_map_addr increases the reason counters */
5462 		if ((reason = pf_map_addr_sn(pd->af, r, pd->src, &s->rt_addr,
5463 		    &s->rt_kif, NULL, &sn)) != 0)
5464 			goto csfailed;
5465 		s->rt = r->rt;
5466 	}
5467 
5468 	s->creation = s->expire = pf_get_uptime();
5469 
5470 	if (sn != NULL)
5471 		s->src_node = sn;
5472 	if (nsn != NULL) {
5473 		/* XXX We only modify one side for now. */
5474 		PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af);
5475 		s->nat_src_node = nsn;
5476 	}
5477 	if (pd->proto == IPPROTO_TCP) {
5478 		if (s->state_flags & PFSTATE_SCRUB_TCP &&
5479 		    pf_normalize_tcp_init(pd, th, &s->src, &s->dst)) {
5480 			REASON_SET(&reason, PFRES_MEMORY);
5481 			goto csfailed;
5482 		}
5483 		if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub &&
5484 		    pf_normalize_tcp_stateful(pd, &reason, th, s,
5485 		    &s->src, &s->dst, rewrite)) {
5486 			/* This really shouldn't happen!!! */
5487 			DPFPRINTF(PF_DEBUG_URGENT,
5488 			    ("pf_normalize_tcp_stateful failed on first "
5489 			     "pkt\n"));
5490 			goto csfailed;
5491 		}
5492 	} else if (pd->proto == IPPROTO_SCTP) {
5493 		if (pf_normalize_sctp_init(pd, &s->src, &s->dst))
5494 			goto csfailed;
5495 		if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP)))
5496 			goto csfailed;
5497 	}
5498 	s->direction = pd->dir;
5499 
5500 	/*
5501 	 * sk/nk could already been setup by pf_get_translation().
5502 	 */
5503 	if (nr == NULL) {
5504 		KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p",
5505 		    __func__, nr, sk, nk));
5506 		sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport);
5507 		if (sk == NULL)
5508 			goto csfailed;
5509 		nk = sk;
5510 	} else
5511 		KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p",
5512 		    __func__, nr, sk, nk));
5513 
5514 	/* Swap sk/nk for PF_OUT. */
5515 	if (pf_state_insert(BOUND_IFACE(s, pd->kif), pd->kif,
5516 	    (pd->dir == PF_IN) ? sk : nk,
5517 	    (pd->dir == PF_IN) ? nk : sk, s)) {
5518 		REASON_SET(&reason, PFRES_STATEINS);
5519 		goto drop;
5520 	} else
5521 		*sm = s;
5522 
5523 	if (tag > 0)
5524 		s->tag = tag;
5525 	if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) ==
5526 	    TH_SYN && r->keep_state == PF_STATE_SYNPROXY) {
5527 		pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC);
5528 		/* undo NAT changes, if they have taken place */
5529 		if (nr != NULL) {
5530 			struct pf_state_key *skt = s->key[PF_SK_WIRE];
5531 			if (pd->dir == PF_OUT)
5532 				skt = s->key[PF_SK_STACK];
5533 			PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af);
5534 			PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af);
5535 			if (pd->sport)
5536 				*pd->sport = skt->port[pd->sidx];
5537 			if (pd->dport)
5538 				*pd->dport = skt->port[pd->didx];
5539 			if (pd->proto_sum)
5540 				*pd->proto_sum = bproto_sum;
5541 			if (pd->ip_sum)
5542 				*pd->ip_sum = bip_sum;
5543 			m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5544 		}
5545 		s->src.seqhi = htonl(arc4random());
5546 		/* Find mss option */
5547 		int rtid = M_GETFIB(pd->m);
5548 		mss = pf_get_mss(pd);
5549 		mss = pf_calc_mss(pd->src, pd->af, rtid, mss);
5550 		mss = pf_calc_mss(pd->dst, pd->af, rtid, mss);
5551 		s->src.mss = mss;
5552 		pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport,
5553 		    th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1,
5554 		    TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0,
5555 		    pd->act.rtableid);
5556 		REASON_SET(&reason, PFRES_SYNPROXY);
5557 		return (PF_SYNPROXY_DROP);
5558 	}
5559 
5560 	s->udp_mapping = udp_mapping;
5561 
5562 	return (PF_PASS);
5563 
5564 csfailed:
5565 	while ((ri = SLIST_FIRST(match_rules))) {
5566 		SLIST_REMOVE_HEAD(match_rules, entry);
5567 		free(ri, M_PF_RULE_ITEM);
5568 	}
5569 
5570 	uma_zfree(V_pf_state_key_z, sk);
5571 	uma_zfree(V_pf_state_key_z, nk);
5572 
5573 	if (sn != NULL) {
5574 		PF_SRC_NODE_LOCK(sn);
5575 		if (--sn->states == 0 && sn->expire == 0) {
5576 			pf_unlink_src_node(sn);
5577 			uma_zfree(V_pf_sources_z, sn);
5578 			counter_u64_add(
5579 			    V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
5580 		}
5581 		PF_SRC_NODE_UNLOCK(sn);
5582 	}
5583 
5584 	if (nsn != sn && nsn != NULL) {
5585 		PF_SRC_NODE_LOCK(nsn);
5586 		if (--nsn->states == 0 && nsn->expire == 0) {
5587 			pf_unlink_src_node(nsn);
5588 			uma_zfree(V_pf_sources_z, nsn);
5589 			counter_u64_add(
5590 			    V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
5591 		}
5592 		PF_SRC_NODE_UNLOCK(nsn);
5593 	}
5594 
5595 drop:
5596 	if (s != NULL) {
5597 		pf_src_tree_remove_state(s);
5598 		s->timeout = PFTM_UNLINKED;
5599 		STATE_DEC_COUNTERS(s);
5600 		pf_free_state(s);
5601 	}
5602 
5603 	return (PF_DROP);
5604 }
5605 
5606 static int
5607 pf_tcp_track_full(struct pf_kstate **state, struct pf_pdesc *pd,
5608     u_short *reason, int *copyback)
5609 {
5610 	struct tcphdr		*th = &pd->hdr.tcp;
5611 	struct pf_state_peer	*src, *dst;
5612 	u_int16_t		 win = ntohs(th->th_win);
5613 	u_int32_t		 ack, end, data_end, seq, orig_seq;
5614 	u_int8_t		 sws, dws, psrc, pdst;
5615 	int			 ackskew;
5616 
5617 	if (pd->dir == (*state)->direction) {
5618 		src = &(*state)->src;
5619 		dst = &(*state)->dst;
5620 		psrc = PF_PEER_SRC;
5621 		pdst = PF_PEER_DST;
5622 	} else {
5623 		src = &(*state)->dst;
5624 		dst = &(*state)->src;
5625 		psrc = PF_PEER_DST;
5626 		pdst = PF_PEER_SRC;
5627 	}
5628 
5629 	if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) {
5630 		sws = src->wscale & PF_WSCALE_MASK;
5631 		dws = dst->wscale & PF_WSCALE_MASK;
5632 	} else
5633 		sws = dws = 0;
5634 
5635 	/*
5636 	 * Sequence tracking algorithm from Guido van Rooij's paper:
5637 	 *   http://www.madison-gurkha.com/publications/tcp_filtering/
5638 	 *	tcp_filtering.ps
5639 	 */
5640 
5641 	orig_seq = seq = ntohl(th->th_seq);
5642 	if (src->seqlo == 0) {
5643 		/* First packet from this end. Set its state */
5644 
5645 		if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) &&
5646 		    src->scrub == NULL) {
5647 			if (pf_normalize_tcp_init(pd, th, src, dst)) {
5648 				REASON_SET(reason, PFRES_MEMORY);
5649 				return (PF_DROP);
5650 			}
5651 		}
5652 
5653 		/* Deferred generation of sequence number modulator */
5654 		if (dst->seqdiff && !src->seqdiff) {
5655 			/* use random iss for the TCP server */
5656 			while ((src->seqdiff = arc4random() - seq) == 0)
5657 				;
5658 			ack = ntohl(th->th_ack) - dst->seqdiff;
5659 			pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
5660 			    src->seqdiff), 0);
5661 			pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
5662 			*copyback = 1;
5663 		} else {
5664 			ack = ntohl(th->th_ack);
5665 		}
5666 
5667 		end = seq + pd->p_len;
5668 		if (th->th_flags & TH_SYN) {
5669 			end++;
5670 			if (dst->wscale & PF_WSCALE_FLAG) {
5671 				src->wscale = pf_get_wscale(pd);
5672 				if (src->wscale & PF_WSCALE_FLAG) {
5673 					/* Remove scale factor from initial
5674 					 * window */
5675 					sws = src->wscale & PF_WSCALE_MASK;
5676 					win = ((u_int32_t)win + (1 << sws) - 1)
5677 					    >> sws;
5678 					dws = dst->wscale & PF_WSCALE_MASK;
5679 				} else {
5680 					/* fixup other window */
5681 					dst->max_win = MIN(TCP_MAXWIN,
5682 					    (u_int32_t)dst->max_win <<
5683 					    (dst->wscale & PF_WSCALE_MASK));
5684 					/* in case of a retrans SYN|ACK */
5685 					dst->wscale = 0;
5686 				}
5687 			}
5688 		}
5689 		data_end = end;
5690 		if (th->th_flags & TH_FIN)
5691 			end++;
5692 
5693 		src->seqlo = seq;
5694 		if (src->state < TCPS_SYN_SENT)
5695 			pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
5696 
5697 		/*
5698 		 * May need to slide the window (seqhi may have been set by
5699 		 * the crappy stack check or if we picked up the connection
5700 		 * after establishment)
5701 		 */
5702 		if (src->seqhi == 1 ||
5703 		    SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi))
5704 			src->seqhi = end + MAX(1, dst->max_win << dws);
5705 		if (win > src->max_win)
5706 			src->max_win = win;
5707 
5708 	} else {
5709 		ack = ntohl(th->th_ack) - dst->seqdiff;
5710 		if (src->seqdiff) {
5711 			/* Modulate sequence numbers */
5712 			pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
5713 			    src->seqdiff), 0);
5714 			pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
5715 			*copyback = 1;
5716 		}
5717 		end = seq + pd->p_len;
5718 		if (th->th_flags & TH_SYN)
5719 			end++;
5720 		data_end = end;
5721 		if (th->th_flags & TH_FIN)
5722 			end++;
5723 	}
5724 
5725 	if ((th->th_flags & TH_ACK) == 0) {
5726 		/* Let it pass through the ack skew check */
5727 		ack = dst->seqlo;
5728 	} else if ((ack == 0 &&
5729 	    (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) ||
5730 	    /* broken tcp stacks do not set ack */
5731 	    (dst->state < TCPS_SYN_SENT)) {
5732 		/*
5733 		 * Many stacks (ours included) will set the ACK number in an
5734 		 * FIN|ACK if the SYN times out -- no sequence to ACK.
5735 		 */
5736 		ack = dst->seqlo;
5737 	}
5738 
5739 	if (seq == end) {
5740 		/* Ease sequencing restrictions on no data packets */
5741 		seq = src->seqlo;
5742 		data_end = end = seq;
5743 	}
5744 
5745 	ackskew = dst->seqlo - ack;
5746 
5747 	/*
5748 	 * Need to demodulate the sequence numbers in any TCP SACK options
5749 	 * (Selective ACK). We could optionally validate the SACK values
5750 	 * against the current ACK window, either forwards or backwards, but
5751 	 * I'm not confident that SACK has been implemented properly
5752 	 * everywhere. It wouldn't surprise me if several stacks accidentally
5753 	 * SACK too far backwards of previously ACKed data. There really aren't
5754 	 * any security implications of bad SACKing unless the target stack
5755 	 * doesn't validate the option length correctly. Someone trying to
5756 	 * spoof into a TCP connection won't bother blindly sending SACK
5757 	 * options anyway.
5758 	 */
5759 	if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) {
5760 		if (pf_modulate_sack(pd, th, dst))
5761 			*copyback = 1;
5762 	}
5763 
5764 #define	MAXACKWINDOW (0xffff + 1500)	/* 1500 is an arbitrary fudge factor */
5765 	if (SEQ_GEQ(src->seqhi, data_end) &&
5766 	    /* Last octet inside other's window space */
5767 	    SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) &&
5768 	    /* Retrans: not more than one window back */
5769 	    (ackskew >= -MAXACKWINDOW) &&
5770 	    /* Acking not more than one reassembled fragment backwards */
5771 	    (ackskew <= (MAXACKWINDOW << sws)) &&
5772 	    /* Acking not more than one window forward */
5773 	    ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo ||
5774 	    (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) {
5775 	    /* Require an exact/+1 sequence match on resets when possible */
5776 
5777 		if (dst->scrub || src->scrub) {
5778 			if (pf_normalize_tcp_stateful(pd, reason, th,
5779 			    *state, src, dst, copyback))
5780 				return (PF_DROP);
5781 		}
5782 
5783 		/* update max window */
5784 		if (src->max_win < win)
5785 			src->max_win = win;
5786 		/* synchronize sequencing */
5787 		if (SEQ_GT(end, src->seqlo))
5788 			src->seqlo = end;
5789 		/* slide the window of what the other end can send */
5790 		if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
5791 			dst->seqhi = ack + MAX((win << sws), 1);
5792 
5793 		/* update states */
5794 		if (th->th_flags & TH_SYN)
5795 			if (src->state < TCPS_SYN_SENT)
5796 				pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
5797 		if (th->th_flags & TH_FIN)
5798 			if (src->state < TCPS_CLOSING)
5799 				pf_set_protostate(*state, psrc, TCPS_CLOSING);
5800 		if (th->th_flags & TH_ACK) {
5801 			if (dst->state == TCPS_SYN_SENT) {
5802 				pf_set_protostate(*state, pdst,
5803 				    TCPS_ESTABLISHED);
5804 				if (src->state == TCPS_ESTABLISHED &&
5805 				    (*state)->src_node != NULL &&
5806 				    pf_src_connlimit(state)) {
5807 					REASON_SET(reason, PFRES_SRCLIMIT);
5808 					return (PF_DROP);
5809 				}
5810 			} else if (dst->state == TCPS_CLOSING)
5811 				pf_set_protostate(*state, pdst,
5812 				    TCPS_FIN_WAIT_2);
5813 		}
5814 		if (th->th_flags & TH_RST)
5815 			pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
5816 
5817 		/* update expire time */
5818 		(*state)->expire = pf_get_uptime();
5819 		if (src->state >= TCPS_FIN_WAIT_2 &&
5820 		    dst->state >= TCPS_FIN_WAIT_2)
5821 			(*state)->timeout = PFTM_TCP_CLOSED;
5822 		else if (src->state >= TCPS_CLOSING &&
5823 		    dst->state >= TCPS_CLOSING)
5824 			(*state)->timeout = PFTM_TCP_FIN_WAIT;
5825 		else if (src->state < TCPS_ESTABLISHED ||
5826 		    dst->state < TCPS_ESTABLISHED)
5827 			(*state)->timeout = PFTM_TCP_OPENING;
5828 		else if (src->state >= TCPS_CLOSING ||
5829 		    dst->state >= TCPS_CLOSING)
5830 			(*state)->timeout = PFTM_TCP_CLOSING;
5831 		else
5832 			(*state)->timeout = PFTM_TCP_ESTABLISHED;
5833 
5834 		/* Fall through to PASS packet */
5835 
5836 	} else if ((dst->state < TCPS_SYN_SENT ||
5837 		dst->state >= TCPS_FIN_WAIT_2 ||
5838 		src->state >= TCPS_FIN_WAIT_2) &&
5839 	    SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) &&
5840 	    /* Within a window forward of the originating packet */
5841 	    SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) {
5842 	    /* Within a window backward of the originating packet */
5843 
5844 		/*
5845 		 * This currently handles three situations:
5846 		 *  1) Stupid stacks will shotgun SYNs before their peer
5847 		 *     replies.
5848 		 *  2) When PF catches an already established stream (the
5849 		 *     firewall rebooted, the state table was flushed, routes
5850 		 *     changed...)
5851 		 *  3) Packets get funky immediately after the connection
5852 		 *     closes (this should catch Solaris spurious ACK|FINs
5853 		 *     that web servers like to spew after a close)
5854 		 *
5855 		 * This must be a little more careful than the above code
5856 		 * since packet floods will also be caught here. We don't
5857 		 * update the TTL here to mitigate the damage of a packet
5858 		 * flood and so the same code can handle awkward establishment
5859 		 * and a loosened connection close.
5860 		 * In the establishment case, a correct peer response will
5861 		 * validate the connection, go through the normal state code
5862 		 * and keep updating the state TTL.
5863 		 */
5864 
5865 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
5866 			printf("pf: loose state match: ");
5867 			pf_print_state(*state);
5868 			pf_print_flags(th->th_flags);
5869 			printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
5870 			    "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack,
5871 			    pd->p_len, ackskew, (unsigned long long)(*state)->packets[0],
5872 			    (unsigned long long)(*state)->packets[1],
5873 			    pd->dir == PF_IN ? "in" : "out",
5874 			    pd->dir == (*state)->direction ? "fwd" : "rev");
5875 		}
5876 
5877 		if (dst->scrub || src->scrub) {
5878 			if (pf_normalize_tcp_stateful(pd, reason, th,
5879 			    *state, src, dst, copyback))
5880 				return (PF_DROP);
5881 		}
5882 
5883 		/* update max window */
5884 		if (src->max_win < win)
5885 			src->max_win = win;
5886 		/* synchronize sequencing */
5887 		if (SEQ_GT(end, src->seqlo))
5888 			src->seqlo = end;
5889 		/* slide the window of what the other end can send */
5890 		if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
5891 			dst->seqhi = ack + MAX((win << sws), 1);
5892 
5893 		/*
5894 		 * Cannot set dst->seqhi here since this could be a shotgunned
5895 		 * SYN and not an already established connection.
5896 		 */
5897 
5898 		if (th->th_flags & TH_FIN)
5899 			if (src->state < TCPS_CLOSING)
5900 				pf_set_protostate(*state, psrc, TCPS_CLOSING);
5901 		if (th->th_flags & TH_RST)
5902 			pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
5903 
5904 		/* Fall through to PASS packet */
5905 
5906 	} else {
5907 		if ((*state)->dst.state == TCPS_SYN_SENT &&
5908 		    (*state)->src.state == TCPS_SYN_SENT) {
5909 			/* Send RST for state mismatches during handshake */
5910 			if (!(th->th_flags & TH_RST))
5911 				pf_send_tcp((*state)->rule, pd->af,
5912 				    pd->dst, pd->src, th->th_dport,
5913 				    th->th_sport, ntohl(th->th_ack), 0,
5914 				    TH_RST, 0, 0,
5915 				    (*state)->rule->return_ttl, M_SKIP_FIREWALL,
5916 				    0, 0, (*state)->act.rtableid);
5917 			src->seqlo = 0;
5918 			src->seqhi = 1;
5919 			src->max_win = 1;
5920 		} else if (V_pf_status.debug >= PF_DEBUG_MISC) {
5921 			printf("pf: BAD state: ");
5922 			pf_print_state(*state);
5923 			pf_print_flags(th->th_flags);
5924 			printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
5925 			    "pkts=%llu:%llu dir=%s,%s\n",
5926 			    seq, orig_seq, ack, pd->p_len, ackskew,
5927 			    (unsigned long long)(*state)->packets[0],
5928 			    (unsigned long long)(*state)->packets[1],
5929 			    pd->dir == PF_IN ? "in" : "out",
5930 			    pd->dir == (*state)->direction ? "fwd" : "rev");
5931 			printf("pf: State failure on: %c %c %c %c | %c %c\n",
5932 			    SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1',
5933 			    SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ?
5934 			    ' ': '2',
5935 			    (ackskew >= -MAXACKWINDOW) ? ' ' : '3',
5936 			    (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4',
5937 			    SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5',
5938 			    SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6');
5939 		}
5940 		REASON_SET(reason, PFRES_BADSTATE);
5941 		return (PF_DROP);
5942 	}
5943 
5944 	return (PF_PASS);
5945 }
5946 
5947 static int
5948 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason)
5949 {
5950 	struct tcphdr		*th = &pd->hdr.tcp;
5951 	struct pf_state_peer	*src, *dst;
5952 	u_int8_t		 psrc, pdst;
5953 
5954 	if (pd->dir == (*state)->direction) {
5955 		src = &(*state)->src;
5956 		dst = &(*state)->dst;
5957 		psrc = PF_PEER_SRC;
5958 		pdst = PF_PEER_DST;
5959 	} else {
5960 		src = &(*state)->dst;
5961 		dst = &(*state)->src;
5962 		psrc = PF_PEER_DST;
5963 		pdst = PF_PEER_SRC;
5964 	}
5965 
5966 	if (th->th_flags & TH_SYN)
5967 		if (src->state < TCPS_SYN_SENT)
5968 			pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
5969 	if (th->th_flags & TH_FIN)
5970 		if (src->state < TCPS_CLOSING)
5971 			pf_set_protostate(*state, psrc, TCPS_CLOSING);
5972 	if (th->th_flags & TH_ACK) {
5973 		if (dst->state == TCPS_SYN_SENT) {
5974 			pf_set_protostate(*state, pdst, TCPS_ESTABLISHED);
5975 			if (src->state == TCPS_ESTABLISHED &&
5976 			    (*state)->src_node != NULL &&
5977 			    pf_src_connlimit(state)) {
5978 				REASON_SET(reason, PFRES_SRCLIMIT);
5979 				return (PF_DROP);
5980 			}
5981 		} else if (dst->state == TCPS_CLOSING) {
5982 			pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2);
5983 		} else if (src->state == TCPS_SYN_SENT &&
5984 		    dst->state < TCPS_SYN_SENT) {
5985 			/*
5986 			 * Handle a special sloppy case where we only see one
5987 			 * half of the connection. If there is a ACK after
5988 			 * the initial SYN without ever seeing a packet from
5989 			 * the destination, set the connection to established.
5990 			 */
5991 			pf_set_protostate(*state, PF_PEER_BOTH,
5992 			    TCPS_ESTABLISHED);
5993 			dst->state = src->state = TCPS_ESTABLISHED;
5994 			if ((*state)->src_node != NULL &&
5995 			    pf_src_connlimit(state)) {
5996 				REASON_SET(reason, PFRES_SRCLIMIT);
5997 				return (PF_DROP);
5998 			}
5999 		} else if (src->state == TCPS_CLOSING &&
6000 		    dst->state == TCPS_ESTABLISHED &&
6001 		    dst->seqlo == 0) {
6002 			/*
6003 			 * Handle the closing of half connections where we
6004 			 * don't see the full bidirectional FIN/ACK+ACK
6005 			 * handshake.
6006 			 */
6007 			pf_set_protostate(*state, pdst, TCPS_CLOSING);
6008 		}
6009 	}
6010 	if (th->th_flags & TH_RST)
6011 		pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6012 
6013 	/* update expire time */
6014 	(*state)->expire = pf_get_uptime();
6015 	if (src->state >= TCPS_FIN_WAIT_2 &&
6016 	    dst->state >= TCPS_FIN_WAIT_2)
6017 		(*state)->timeout = PFTM_TCP_CLOSED;
6018 	else if (src->state >= TCPS_CLOSING &&
6019 	    dst->state >= TCPS_CLOSING)
6020 		(*state)->timeout = PFTM_TCP_FIN_WAIT;
6021 	else if (src->state < TCPS_ESTABLISHED ||
6022 	    dst->state < TCPS_ESTABLISHED)
6023 		(*state)->timeout = PFTM_TCP_OPENING;
6024 	else if (src->state >= TCPS_CLOSING ||
6025 	    dst->state >= TCPS_CLOSING)
6026 		(*state)->timeout = PFTM_TCP_CLOSING;
6027 	else
6028 		(*state)->timeout = PFTM_TCP_ESTABLISHED;
6029 
6030 	return (PF_PASS);
6031 }
6032 
6033 static int
6034 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason)
6035 {
6036 	struct pf_state_key	*sk = (*state)->key[pd->didx];
6037 	struct tcphdr		*th = &pd->hdr.tcp;
6038 
6039 	if ((*state)->src.state == PF_TCPS_PROXY_SRC) {
6040 		if (pd->dir != (*state)->direction) {
6041 			REASON_SET(reason, PFRES_SYNPROXY);
6042 			return (PF_SYNPROXY_DROP);
6043 		}
6044 		if (th->th_flags & TH_SYN) {
6045 			if (ntohl(th->th_seq) != (*state)->src.seqlo) {
6046 				REASON_SET(reason, PFRES_SYNPROXY);
6047 				return (PF_DROP);
6048 			}
6049 			pf_send_tcp((*state)->rule, pd->af, pd->dst,
6050 			    pd->src, th->th_dport, th->th_sport,
6051 			    (*state)->src.seqhi, ntohl(th->th_seq) + 1,
6052 			    TH_SYN|TH_ACK, 0, (*state)->src.mss, 0,
6053 			    M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid);
6054 			REASON_SET(reason, PFRES_SYNPROXY);
6055 			return (PF_SYNPROXY_DROP);
6056 		} else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK ||
6057 		    (ntohl(th->th_ack) != (*state)->src.seqhi + 1) ||
6058 		    (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) {
6059 			REASON_SET(reason, PFRES_SYNPROXY);
6060 			return (PF_DROP);
6061 		} else if ((*state)->src_node != NULL &&
6062 		    pf_src_connlimit(state)) {
6063 			REASON_SET(reason, PFRES_SRCLIMIT);
6064 			return (PF_DROP);
6065 		} else
6066 			pf_set_protostate(*state, PF_PEER_SRC,
6067 			    PF_TCPS_PROXY_DST);
6068 	}
6069 	if ((*state)->src.state == PF_TCPS_PROXY_DST) {
6070 		if (pd->dir == (*state)->direction) {
6071 			if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) ||
6072 			    (ntohl(th->th_ack) != (*state)->src.seqhi + 1) ||
6073 			    (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) {
6074 				REASON_SET(reason, PFRES_SYNPROXY);
6075 				return (PF_DROP);
6076 			}
6077 			(*state)->src.max_win = MAX(ntohs(th->th_win), 1);
6078 			if ((*state)->dst.seqhi == 1)
6079 				(*state)->dst.seqhi = htonl(arc4random());
6080 			pf_send_tcp((*state)->rule, pd->af,
6081 			    &sk->addr[pd->sidx], &sk->addr[pd->didx],
6082 			    sk->port[pd->sidx], sk->port[pd->didx],
6083 			    (*state)->dst.seqhi, 0, TH_SYN, 0,
6084 			    (*state)->src.mss, 0,
6085 			    (*state)->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0,
6086 			    (*state)->tag, 0, (*state)->act.rtableid);
6087 			REASON_SET(reason, PFRES_SYNPROXY);
6088 			return (PF_SYNPROXY_DROP);
6089 		} else if (((th->th_flags & (TH_SYN|TH_ACK)) !=
6090 		    (TH_SYN|TH_ACK)) ||
6091 		    (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) {
6092 			REASON_SET(reason, PFRES_SYNPROXY);
6093 			return (PF_DROP);
6094 		} else {
6095 			(*state)->dst.max_win = MAX(ntohs(th->th_win), 1);
6096 			(*state)->dst.seqlo = ntohl(th->th_seq);
6097 			pf_send_tcp((*state)->rule, pd->af, pd->dst,
6098 			    pd->src, th->th_dport, th->th_sport,
6099 			    ntohl(th->th_ack), ntohl(th->th_seq) + 1,
6100 			    TH_ACK, (*state)->src.max_win, 0, 0, 0,
6101 			    (*state)->tag, 0, (*state)->act.rtableid);
6102 			pf_send_tcp((*state)->rule, pd->af,
6103 			    &sk->addr[pd->sidx], &sk->addr[pd->didx],
6104 			    sk->port[pd->sidx], sk->port[pd->didx],
6105 			    (*state)->src.seqhi + 1, (*state)->src.seqlo + 1,
6106 			    TH_ACK, (*state)->dst.max_win, 0, 0,
6107 			    M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid);
6108 			(*state)->src.seqdiff = (*state)->dst.seqhi -
6109 			    (*state)->src.seqlo;
6110 			(*state)->dst.seqdiff = (*state)->src.seqhi -
6111 			    (*state)->dst.seqlo;
6112 			(*state)->src.seqhi = (*state)->src.seqlo +
6113 			    (*state)->dst.max_win;
6114 			(*state)->dst.seqhi = (*state)->dst.seqlo +
6115 			    (*state)->src.max_win;
6116 			(*state)->src.wscale = (*state)->dst.wscale = 0;
6117 			pf_set_protostate(*state, PF_PEER_BOTH,
6118 			    TCPS_ESTABLISHED);
6119 			REASON_SET(reason, PFRES_SYNPROXY);
6120 			return (PF_SYNPROXY_DROP);
6121 		}
6122 	}
6123 
6124 	return (PF_PASS);
6125 }
6126 
6127 static int
6128 pf_test_state_tcp(struct pf_kstate **state, struct pf_pdesc *pd,
6129     u_short *reason)
6130 {
6131 	struct pf_state_key_cmp	 key;
6132 	struct tcphdr		*th = &pd->hdr.tcp;
6133 	int			 copyback = 0;
6134 	int			 action;
6135 	struct pf_state_peer	*src, *dst;
6136 
6137 	bzero(&key, sizeof(key));
6138 	key.af = pd->af;
6139 	key.proto = IPPROTO_TCP;
6140 	if (pd->dir == PF_IN)	{	/* wire side, straight */
6141 		PF_ACPY(&key.addr[0], pd->src, key.af);
6142 		PF_ACPY(&key.addr[1], pd->dst, key.af);
6143 		key.port[0] = th->th_sport;
6144 		key.port[1] = th->th_dport;
6145 	} else {			/* stack side, reverse */
6146 		PF_ACPY(&key.addr[1], pd->src, key.af);
6147 		PF_ACPY(&key.addr[0], pd->dst, key.af);
6148 		key.port[1] = th->th_sport;
6149 		key.port[0] = th->th_dport;
6150 	}
6151 
6152 	STATE_LOOKUP(&key, *state, pd);
6153 
6154 	if (pd->dir == (*state)->direction) {
6155 		src = &(*state)->src;
6156 		dst = &(*state)->dst;
6157 	} else {
6158 		src = &(*state)->dst;
6159 		dst = &(*state)->src;
6160 	}
6161 
6162 	if ((action = pf_synproxy(pd, state, reason)) != PF_PASS)
6163 		return (action);
6164 
6165 	if (dst->state >= TCPS_FIN_WAIT_2 &&
6166 	    src->state >= TCPS_FIN_WAIT_2 &&
6167 	    (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) ||
6168 	    ((th->th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK &&
6169 	    pf_syncookie_check(pd) && pd->dir == PF_IN))) {
6170 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
6171 			printf("pf: state reuse ");
6172 			pf_print_state(*state);
6173 			pf_print_flags(th->th_flags);
6174 			printf("\n");
6175 		}
6176 		/* XXX make sure it's the same direction ?? */
6177 		pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED);
6178 		pf_unlink_state(*state);
6179 		*state = NULL;
6180 		return (PF_DROP);
6181 	}
6182 
6183 	if ((*state)->state_flags & PFSTATE_SLOPPY) {
6184 		if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP)
6185 			return (PF_DROP);
6186 	} else {
6187 		if (pf_tcp_track_full(state, pd, reason,
6188 		    &copyback) == PF_DROP)
6189 			return (PF_DROP);
6190 	}
6191 
6192 	/* translate source/destination address, if necessary */
6193 	if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
6194 		struct pf_state_key *nk = (*state)->key[pd->didx];
6195 
6196 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) ||
6197 		    nk->port[pd->sidx] != th->th_sport)
6198 			pf_change_ap(pd->m, pd->src, &th->th_sport,
6199 			    pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx],
6200 			    nk->port[pd->sidx], 0, pd->af);
6201 
6202 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) ||
6203 		    nk->port[pd->didx] != th->th_dport)
6204 			pf_change_ap(pd->m, pd->dst, &th->th_dport,
6205 			    pd->ip_sum, &th->th_sum, &nk->addr[pd->didx],
6206 			    nk->port[pd->didx], 0, pd->af);
6207 		copyback = 1;
6208 	}
6209 
6210 	/* Copyback sequence modulation or stateful scrub changes if needed */
6211 	if (copyback)
6212 		m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th);
6213 
6214 	return (PF_PASS);
6215 }
6216 
6217 static int
6218 pf_test_state_udp(struct pf_kstate **state, struct pf_pdesc *pd)
6219 {
6220 	struct pf_state_peer	*src, *dst;
6221 	struct pf_state_key_cmp	 key;
6222 	struct udphdr		*uh = &pd->hdr.udp;
6223 	uint8_t			 psrc, pdst;
6224 
6225 	bzero(&key, sizeof(key));
6226 	key.af = pd->af;
6227 	key.proto = IPPROTO_UDP;
6228 	if (pd->dir == PF_IN)	{	/* wire side, straight */
6229 		PF_ACPY(&key.addr[0], pd->src, key.af);
6230 		PF_ACPY(&key.addr[1], pd->dst, key.af);
6231 		key.port[0] = uh->uh_sport;
6232 		key.port[1] = uh->uh_dport;
6233 	} else {			/* stack side, reverse */
6234 		PF_ACPY(&key.addr[1], pd->src, key.af);
6235 		PF_ACPY(&key.addr[0], pd->dst, key.af);
6236 		key.port[1] = uh->uh_sport;
6237 		key.port[0] = uh->uh_dport;
6238 	}
6239 
6240 	STATE_LOOKUP(&key, *state, pd);
6241 
6242 	if (pd->dir == (*state)->direction) {
6243 		src = &(*state)->src;
6244 		dst = &(*state)->dst;
6245 		psrc = PF_PEER_SRC;
6246 		pdst = PF_PEER_DST;
6247 	} else {
6248 		src = &(*state)->dst;
6249 		dst = &(*state)->src;
6250 		psrc = PF_PEER_DST;
6251 		pdst = PF_PEER_SRC;
6252 	}
6253 
6254 	/* update states */
6255 	if (src->state < PFUDPS_SINGLE)
6256 		pf_set_protostate(*state, psrc, PFUDPS_SINGLE);
6257 	if (dst->state == PFUDPS_SINGLE)
6258 		pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE);
6259 
6260 	/* update expire time */
6261 	(*state)->expire = pf_get_uptime();
6262 	if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE)
6263 		(*state)->timeout = PFTM_UDP_MULTIPLE;
6264 	else
6265 		(*state)->timeout = PFTM_UDP_SINGLE;
6266 
6267 	/* translate source/destination address, if necessary */
6268 	if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
6269 		struct pf_state_key *nk = (*state)->key[pd->didx];
6270 
6271 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) ||
6272 		    nk->port[pd->sidx] != uh->uh_sport)
6273 			pf_change_ap(pd->m, pd->src, &uh->uh_sport, pd->ip_sum,
6274 			    &uh->uh_sum, &nk->addr[pd->sidx],
6275 			    nk->port[pd->sidx], 1, pd->af);
6276 
6277 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) ||
6278 		    nk->port[pd->didx] != uh->uh_dport)
6279 			pf_change_ap(pd->m, pd->dst, &uh->uh_dport, pd->ip_sum,
6280 			    &uh->uh_sum, &nk->addr[pd->didx],
6281 			    nk->port[pd->didx], 1, pd->af);
6282 		m_copyback(pd->m, pd->off, sizeof(*uh), (caddr_t)uh);
6283 	}
6284 
6285 	return (PF_PASS);
6286 }
6287 
6288 static int
6289 pf_test_state_sctp(struct pf_kstate **state, struct pf_pdesc *pd,
6290     u_short *reason)
6291 {
6292 	struct pf_state_key_cmp	 key;
6293 	struct pf_state_peer	*src, *dst;
6294 	struct sctphdr		*sh = &pd->hdr.sctp;
6295 	u_int8_t		 psrc; //, pdst;
6296 
6297 	bzero(&key, sizeof(key));
6298 	key.af = pd->af;
6299 	key.proto = IPPROTO_SCTP;
6300 	if (pd->dir == PF_IN)	{	/* wire side, straight */
6301 		PF_ACPY(&key.addr[0], pd->src, key.af);
6302 		PF_ACPY(&key.addr[1], pd->dst, key.af);
6303 		key.port[0] = sh->src_port;
6304 		key.port[1] = sh->dest_port;
6305 	} else {			/* stack side, reverse */
6306 		PF_ACPY(&key.addr[1], pd->src, key.af);
6307 		PF_ACPY(&key.addr[0], pd->dst, key.af);
6308 		key.port[1] = sh->src_port;
6309 		key.port[0] = sh->dest_port;
6310 	}
6311 
6312 	STATE_LOOKUP(&key, *state, pd);
6313 
6314 	if (pd->dir == (*state)->direction) {
6315 		src = &(*state)->src;
6316 		dst = &(*state)->dst;
6317 		psrc = PF_PEER_SRC;
6318 	} else {
6319 		src = &(*state)->dst;
6320 		dst = &(*state)->src;
6321 		psrc = PF_PEER_DST;
6322 	}
6323 
6324 	if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) &&
6325 	    (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) &&
6326 	    pd->sctp_flags & PFDESC_SCTP_INIT) {
6327 		pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED);
6328 		pf_unlink_state(*state);
6329 		*state = NULL;
6330 		return (PF_DROP);
6331 	}
6332 
6333 	/* Track state. */
6334 	if (pd->sctp_flags & PFDESC_SCTP_INIT) {
6335 		if (src->state < SCTP_COOKIE_WAIT) {
6336 			pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT);
6337 			(*state)->timeout = PFTM_SCTP_OPENING;
6338 		}
6339 	}
6340 	if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) {
6341 		MPASS(dst->scrub != NULL);
6342 		if (dst->scrub->pfss_v_tag == 0)
6343 			dst->scrub->pfss_v_tag = pd->sctp_initiate_tag;
6344 	}
6345 
6346 	if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) {
6347 		if (src->state < SCTP_ESTABLISHED) {
6348 			pf_set_protostate(*state, psrc, SCTP_ESTABLISHED);
6349 			(*state)->timeout = PFTM_SCTP_ESTABLISHED;
6350 		}
6351 	}
6352 	if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | PFDESC_SCTP_ABORT |
6353 	    PFDESC_SCTP_SHUTDOWN_COMPLETE)) {
6354 		if (src->state < SCTP_SHUTDOWN_PENDING) {
6355 			pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING);
6356 			(*state)->timeout = PFTM_SCTP_CLOSING;
6357 		}
6358 	}
6359 	if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE)) {
6360 		pf_set_protostate(*state, psrc, SCTP_CLOSED);
6361 		(*state)->timeout = PFTM_SCTP_CLOSED;
6362 	}
6363 
6364 	if (src->scrub != NULL) {
6365 		if (src->scrub->pfss_v_tag == 0) {
6366 			src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag;
6367 		} else  if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag)
6368 			return (PF_DROP);
6369 	}
6370 
6371 	(*state)->expire = pf_get_uptime();
6372 
6373 	/* translate source/destination address, if necessary */
6374 	if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
6375 		uint16_t checksum = 0;
6376 		struct pf_state_key *nk = (*state)->key[pd->didx];
6377 
6378 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) ||
6379 		    nk->port[pd->sidx] != pd->hdr.sctp.src_port) {
6380 			pf_change_ap(pd->m, pd->src, &pd->hdr.sctp.src_port,
6381 			    pd->ip_sum, &checksum, &nk->addr[pd->sidx],
6382 			    nk->port[pd->sidx], 1, pd->af);
6383 		}
6384 
6385 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) ||
6386 		    nk->port[pd->didx] != pd->hdr.sctp.dest_port) {
6387 			pf_change_ap(pd->m, pd->dst, &pd->hdr.sctp.dest_port,
6388 			    pd->ip_sum, &checksum, &nk->addr[pd->didx],
6389 			    nk->port[pd->didx], 1, pd->af);
6390 		}
6391 	}
6392 
6393 	return (PF_PASS);
6394 }
6395 
6396 static void
6397 pf_sctp_multihome_detach_addr(const struct pf_kstate *s)
6398 {
6399 	struct pf_sctp_endpoint key;
6400 	struct pf_sctp_endpoint *ep;
6401 	struct pf_state_key *sks = s->key[PF_SK_STACK];
6402 	struct pf_sctp_source *i, *tmp;
6403 
6404 	if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL)
6405 		return;
6406 
6407 	PF_SCTP_ENDPOINTS_LOCK();
6408 
6409 	key.v_tag = s->dst.scrub->pfss_v_tag;
6410 	ep  = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
6411 	if (ep != NULL) {
6412 		TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
6413 			if (pf_addr_cmp(&i->addr,
6414 			    &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT],
6415 			    s->key[PF_SK_WIRE]->af) == 0) {
6416 				SDT_PROBE3(pf, sctp, multihome, remove,
6417 				    key.v_tag, s, i);
6418 				TAILQ_REMOVE(&ep->sources, i, entry);
6419 				free(i, M_PFTEMP);
6420 				break;
6421 			}
6422 		}
6423 
6424 		if (TAILQ_EMPTY(&ep->sources)) {
6425 			RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
6426 			free(ep, M_PFTEMP);
6427 		}
6428 	}
6429 
6430 	/* Other direction. */
6431 	key.v_tag = s->src.scrub->pfss_v_tag;
6432 	ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
6433 	if (ep != NULL) {
6434 		TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
6435 			if (pf_addr_cmp(&i->addr,
6436 			    &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN],
6437 			    s->key[PF_SK_WIRE]->af) == 0) {
6438 				SDT_PROBE3(pf, sctp, multihome, remove,
6439 				    key.v_tag, s, i);
6440 				TAILQ_REMOVE(&ep->sources, i, entry);
6441 				free(i, M_PFTEMP);
6442 				break;
6443 			}
6444 		}
6445 
6446 		if (TAILQ_EMPTY(&ep->sources)) {
6447 			RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
6448 			free(ep, M_PFTEMP);
6449 		}
6450 	}
6451 
6452 	PF_SCTP_ENDPOINTS_UNLOCK();
6453 }
6454 
6455 static void
6456 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag)
6457 {
6458 	struct pf_sctp_endpoint key = {
6459 		.v_tag = v_tag,
6460 	};
6461 	struct pf_sctp_source *i;
6462 	struct pf_sctp_endpoint *ep;
6463 
6464 	PF_SCTP_ENDPOINTS_LOCK();
6465 
6466 	ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
6467 	if (ep == NULL) {
6468 		ep = malloc(sizeof(struct pf_sctp_endpoint),
6469 		    M_PFTEMP, M_NOWAIT);
6470 		if (ep == NULL) {
6471 			PF_SCTP_ENDPOINTS_UNLOCK();
6472 			return;
6473 		}
6474 
6475 		ep->v_tag = v_tag;
6476 		TAILQ_INIT(&ep->sources);
6477 		RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
6478 	}
6479 
6480 	/* Avoid inserting duplicates. */
6481 	TAILQ_FOREACH(i, &ep->sources, entry) {
6482 		if (pf_addr_cmp(&i->addr, a, pd->af) == 0) {
6483 			PF_SCTP_ENDPOINTS_UNLOCK();
6484 			return;
6485 		}
6486 	}
6487 
6488 	i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT);
6489 	if (i == NULL) {
6490 		PF_SCTP_ENDPOINTS_UNLOCK();
6491 		return;
6492 	}
6493 
6494 	i->af = pd->af;
6495 	memcpy(&i->addr, a, sizeof(*a));
6496 	TAILQ_INSERT_TAIL(&ep->sources, i, entry);
6497 	SDT_PROBE2(pf, sctp, multihome, add, v_tag, i);
6498 
6499 	PF_SCTP_ENDPOINTS_UNLOCK();
6500 }
6501 
6502 static void
6503 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif,
6504     struct pf_kstate *s, int action)
6505 {
6506 	struct pf_sctp_multihome_job	*j, *tmp;
6507 	struct pf_sctp_source		*i;
6508 	int			 ret __unused;
6509 	struct pf_kstate	*sm = NULL;
6510 	struct pf_krule		*ra = NULL;
6511 	struct pf_krule		*r = &V_pf_default_rule;
6512 	struct pf_kruleset	*rs = NULL;
6513 	bool do_extra = true;
6514 
6515 	PF_RULES_RLOCK_TRACKER;
6516 
6517 again:
6518 	TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) {
6519 		if (s == NULL || action != PF_PASS)
6520 			goto free;
6521 
6522 		/* Confirm we don't recurse here. */
6523 		MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP));
6524 
6525 		switch (j->op) {
6526 		case  SCTP_ADD_IP_ADDRESS: {
6527 			uint32_t v_tag = pd->sctp_initiate_tag;
6528 
6529 			if (v_tag == 0) {
6530 				if (s->direction == pd->dir)
6531 					v_tag = s->src.scrub->pfss_v_tag;
6532 				else
6533 					v_tag = s->dst.scrub->pfss_v_tag;
6534 			}
6535 
6536 			/*
6537 			 * Avoid duplicating states. We'll already have
6538 			 * created a state based on the source address of
6539 			 * the packet, but SCTP endpoints may also list this
6540 			 * address again in the INIT(_ACK) parameters.
6541 			 */
6542 			if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) {
6543 				break;
6544 			}
6545 
6546 			j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP;
6547 			PF_RULES_RLOCK();
6548 			sm = NULL;
6549 			/*
6550 			 * New connections need to be floating, because
6551 			 * we cannot know what interfaces it will use.
6552 			 * That's why we pass V_pfi_all rather than kif.
6553 			 */
6554 			j->pd.kif = V_pfi_all;
6555 			ret = pf_test_rule(&r, &sm,
6556 			    &j->pd, &ra, &rs, NULL);
6557 			PF_RULES_RUNLOCK();
6558 			SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret);
6559 			if (ret != PF_DROP && sm != NULL) {
6560 				/* Inherit v_tag values. */
6561 				if (sm->direction == s->direction) {
6562 					sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
6563 					sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
6564 				} else {
6565 					sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
6566 					sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
6567 				}
6568 				PF_STATE_UNLOCK(sm);
6569 			} else {
6570 				/* If we try duplicate inserts? */
6571 				break;
6572 			}
6573 
6574 			/* Only add the address if we've actually allowed the state. */
6575 			pf_sctp_multihome_add_addr(pd, &j->src, v_tag);
6576 
6577 			if (! do_extra) {
6578 				break;
6579 			}
6580 			/*
6581 			 * We need to do this for each of our source addresses.
6582 			 * Find those based on the verification tag.
6583 			 */
6584 			struct pf_sctp_endpoint key = {
6585 				.v_tag = pd->hdr.sctp.v_tag,
6586 			};
6587 			struct pf_sctp_endpoint *ep;
6588 
6589 			PF_SCTP_ENDPOINTS_LOCK();
6590 			ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
6591 			if (ep == NULL) {
6592 				PF_SCTP_ENDPOINTS_UNLOCK();
6593 				break;
6594 			}
6595 			MPASS(ep != NULL);
6596 
6597 			TAILQ_FOREACH(i, &ep->sources, entry) {
6598 				struct pf_sctp_multihome_job *nj;
6599 
6600 				/* SCTP can intermingle IPv4 and IPv6. */
6601 				if (i->af != pd->af)
6602 					continue;
6603 
6604 				nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO);
6605 				if (! nj) {
6606 					continue;
6607 				}
6608 				memcpy(&nj->pd, &j->pd, sizeof(j->pd));
6609 				memcpy(&nj->src, &j->src, sizeof(nj->src));
6610 				nj->pd.src = &nj->src;
6611 				// New destination address!
6612 				memcpy(&nj->dst, &i->addr, sizeof(nj->dst));
6613 				nj->pd.dst = &nj->dst;
6614 				nj->pd.m = j->pd.m;
6615 				nj->op = j->op;
6616 
6617 				TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next);
6618 			}
6619 			PF_SCTP_ENDPOINTS_UNLOCK();
6620 
6621 			break;
6622 		}
6623 		case SCTP_DEL_IP_ADDRESS: {
6624 			struct pf_state_key_cmp key;
6625 			uint8_t psrc;
6626 
6627 			bzero(&key, sizeof(key));
6628 			key.af = j->pd.af;
6629 			key.proto = IPPROTO_SCTP;
6630 			if (j->pd.dir == PF_IN)	{	/* wire side, straight */
6631 				PF_ACPY(&key.addr[0], j->pd.src, key.af);
6632 				PF_ACPY(&key.addr[1], j->pd.dst, key.af);
6633 				key.port[0] = j->pd.hdr.sctp.src_port;
6634 				key.port[1] = j->pd.hdr.sctp.dest_port;
6635 			} else {			/* stack side, reverse */
6636 				PF_ACPY(&key.addr[1], j->pd.src, key.af);
6637 				PF_ACPY(&key.addr[0], j->pd.dst, key.af);
6638 				key.port[1] = j->pd.hdr.sctp.src_port;
6639 				key.port[0] = j->pd.hdr.sctp.dest_port;
6640 			}
6641 
6642 			sm = pf_find_state(kif, &key, j->pd.dir);
6643 			if (sm != NULL) {
6644 				PF_STATE_LOCK_ASSERT(sm);
6645 				if (j->pd.dir == sm->direction) {
6646 					psrc = PF_PEER_SRC;
6647 				} else {
6648 					psrc = PF_PEER_DST;
6649 				}
6650 				pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING);
6651 				sm->timeout = PFTM_SCTP_CLOSING;
6652 				PF_STATE_UNLOCK(sm);
6653 			}
6654 			break;
6655 		default:
6656 			panic("Unknown op %#x", j->op);
6657 		}
6658 	}
6659 
6660 	free:
6661 		TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next);
6662 		free(j, M_PFTEMP);
6663 	}
6664 
6665 	/* We may have inserted extra work while processing the list. */
6666 	if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) {
6667 		do_extra = false;
6668 		goto again;
6669 	}
6670 }
6671 
6672 static int
6673 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op)
6674 {
6675 	int			 off = 0;
6676 	struct pf_sctp_multihome_job	*job;
6677 
6678 	while (off < len) {
6679 		struct sctp_paramhdr h;
6680 
6681 		if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL, NULL,
6682 		    pd->af))
6683 			return (PF_DROP);
6684 
6685 		/* Parameters are at least 4 bytes. */
6686 		if (ntohs(h.param_length) < 4)
6687 			return (PF_DROP);
6688 
6689 		switch (ntohs(h.param_type)) {
6690 		case  SCTP_IPV4_ADDRESS: {
6691 			struct in_addr t;
6692 
6693 			if (ntohs(h.param_length) !=
6694 			    (sizeof(struct sctp_paramhdr) + sizeof(t)))
6695 				return (PF_DROP);
6696 
6697 			if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
6698 			    NULL, NULL, pd->af))
6699 				return (PF_DROP);
6700 
6701 			if (in_nullhost(t))
6702 				t.s_addr = pd->src->v4.s_addr;
6703 
6704 			/*
6705 			 * We hold the state lock (idhash) here, which means
6706 			 * that we can't acquire the keyhash, or we'll get a
6707 			 * LOR (and potentially double-lock things too). We also
6708 			 * can't release the state lock here, so instead we'll
6709 			 * enqueue this for async handling.
6710 			 * There's a relatively small race here, in that a
6711 			 * packet using the new addresses could arrive already,
6712 			 * but that's just though luck for it.
6713 			 */
6714 			job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
6715 			if (! job)
6716 				return (PF_DROP);
6717 
6718 			memcpy(&job->pd, pd, sizeof(*pd));
6719 
6720 			// New source address!
6721 			memcpy(&job->src, &t, sizeof(t));
6722 			job->pd.src = &job->src;
6723 			memcpy(&job->dst, pd->dst, sizeof(job->dst));
6724 			job->pd.dst = &job->dst;
6725 			job->pd.m = pd->m;
6726 			job->op = op;
6727 
6728 			TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
6729 			break;
6730 		}
6731 #ifdef INET6
6732 		case SCTP_IPV6_ADDRESS: {
6733 			struct in6_addr t;
6734 
6735 			if (ntohs(h.param_length) !=
6736 			    (sizeof(struct sctp_paramhdr) + sizeof(t)))
6737 				return (PF_DROP);
6738 
6739 			if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
6740 			    NULL, NULL, pd->af))
6741 				return (PF_DROP);
6742 			if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0)
6743 				break;
6744 			if (memcmp(&t, &in6addr_any, sizeof(t)) == 0)
6745 				memcpy(&t, &pd->src->v6, sizeof(t));
6746 
6747 			job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
6748 			if (! job)
6749 				return (PF_DROP);
6750 
6751 			memcpy(&job->pd, pd, sizeof(*pd));
6752 			memcpy(&job->src, &t, sizeof(t));
6753 			job->pd.src = &job->src;
6754 			memcpy(&job->dst, pd->dst, sizeof(job->dst));
6755 			job->pd.dst = &job->dst;
6756 			job->pd.m = pd->m;
6757 			job->op = op;
6758 
6759 			TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
6760 			break;
6761 		}
6762 #endif
6763 		case SCTP_ADD_IP_ADDRESS: {
6764 			int ret;
6765 			struct sctp_asconf_paramhdr ah;
6766 
6767 			if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
6768 			    NULL, NULL, pd->af))
6769 				return (PF_DROP);
6770 
6771 			ret = pf_multihome_scan(start + off + sizeof(ah),
6772 			    ntohs(ah.ph.param_length) - sizeof(ah), pd,
6773 			    SCTP_ADD_IP_ADDRESS);
6774 			if (ret != PF_PASS)
6775 				return (ret);
6776 			break;
6777 		}
6778 		case SCTP_DEL_IP_ADDRESS: {
6779 			int ret;
6780 			struct sctp_asconf_paramhdr ah;
6781 
6782 			if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
6783 			    NULL, NULL, pd->af))
6784 				return (PF_DROP);
6785 			ret = pf_multihome_scan(start + off + sizeof(ah),
6786 			    ntohs(ah.ph.param_length) - sizeof(ah), pd,
6787 			    SCTP_DEL_IP_ADDRESS);
6788 			if (ret != PF_PASS)
6789 				return (ret);
6790 			break;
6791 		}
6792 		default:
6793 			break;
6794 		}
6795 
6796 		off += roundup(ntohs(h.param_length), 4);
6797 	}
6798 
6799 	return (PF_PASS);
6800 }
6801 int
6802 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd)
6803 {
6804 	start += sizeof(struct sctp_init_chunk);
6805 	len -= sizeof(struct sctp_init_chunk);
6806 
6807 	return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
6808 }
6809 
6810 int
6811 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd)
6812 {
6813 	start += sizeof(struct sctp_asconf_chunk);
6814 	len -= sizeof(struct sctp_asconf_chunk);
6815 
6816 	return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
6817 }
6818 
6819 int
6820 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd,
6821     struct pf_kstate **state, int direction,
6822     u_int16_t icmpid, u_int16_t type, int icmp_dir,
6823     int *iidx, int multi, int inner)
6824 {
6825 	key->af = pd->af;
6826 	key->proto = pd->proto;
6827 	if (icmp_dir == PF_IN) {
6828 		*iidx = pd->sidx;
6829 		key->port[pd->sidx] = icmpid;
6830 		key->port[pd->didx] = type;
6831 	} else {
6832 		*iidx = pd->didx;
6833 		key->port[pd->sidx] = type;
6834 		key->port[pd->didx] = icmpid;
6835 	}
6836 	if (pf_state_key_addr_setup(pd, key, multi))
6837 		return (PF_DROP);
6838 
6839 	STATE_LOOKUP(key, *state, pd);
6840 
6841 	if ((*state)->state_flags & PFSTATE_SLOPPY)
6842 		return (-1);
6843 
6844 	/* Is this ICMP message flowing in right direction? */
6845 	if ((*state)->rule->type &&
6846 	    (((!inner && (*state)->direction == direction) ||
6847 	    (inner && (*state)->direction != direction)) ?
6848 	    PF_IN : PF_OUT) != icmp_dir) {
6849 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
6850 			printf("pf: icmp type %d in wrong direction (%d): ",
6851 			    ntohs(type), icmp_dir);
6852 			pf_print_state(*state);
6853 			printf("\n");
6854 		}
6855 		PF_STATE_UNLOCK(*state);
6856 		*state = NULL;
6857 		return (PF_DROP);
6858 	}
6859 	return (-1);
6860 }
6861 
6862 static int
6863 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd,
6864     u_short *reason)
6865 {
6866 	struct pf_addr  *saddr = pd->src, *daddr = pd->dst;
6867 	u_int16_t	*icmpsum, virtual_id, virtual_type;
6868 	u_int8_t	 icmptype, icmpcode;
6869 	int		 icmp_dir, iidx, ret, multi;
6870 	struct pf_state_key_cmp key;
6871 #ifdef INET
6872 	u_int16_t	 icmpid;
6873 #endif
6874 
6875 	MPASS(*state == NULL);
6876 
6877 	bzero(&key, sizeof(key));
6878 	switch (pd->proto) {
6879 #ifdef INET
6880 	case IPPROTO_ICMP:
6881 		icmptype = pd->hdr.icmp.icmp_type;
6882 		icmpcode = pd->hdr.icmp.icmp_code;
6883 		icmpid = pd->hdr.icmp.icmp_id;
6884 		icmpsum = &pd->hdr.icmp.icmp_cksum;
6885 		break;
6886 #endif /* INET */
6887 #ifdef INET6
6888 	case IPPROTO_ICMPV6:
6889 		icmptype = pd->hdr.icmp6.icmp6_type;
6890 		icmpcode = pd->hdr.icmp6.icmp6_code;
6891 #ifdef INET
6892 		icmpid = pd->hdr.icmp6.icmp6_id;
6893 #endif
6894 		icmpsum = &pd->hdr.icmp6.icmp6_cksum;
6895 		break;
6896 #endif /* INET6 */
6897 	}
6898 
6899 	if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &multi,
6900 	    &virtual_id, &virtual_type) == 0) {
6901 		/*
6902 		 * ICMP query/reply message not related to a TCP/UDP packet.
6903 		 * Search for an ICMP state.
6904 		 */
6905 		ret = pf_icmp_state_lookup(&key, pd, state, pd->dir,
6906 		    virtual_id, virtual_type, icmp_dir, &iidx,
6907 		    PF_ICMP_MULTI_NONE, 0);
6908 		if (ret >= 0) {
6909 			MPASS(*state == NULL);
6910 			if (ret == PF_DROP && pd->af == AF_INET6 &&
6911 			    icmp_dir == PF_OUT) {
6912 				ret = pf_icmp_state_lookup(&key, pd, state,
6913 				    pd->dir, virtual_id, virtual_type,
6914 				    icmp_dir, &iidx, multi, 0);
6915 				if (ret >= 0) {
6916 					MPASS(*state == NULL);
6917 					return (ret);
6918 				}
6919 			} else
6920 				return (ret);
6921 		}
6922 
6923 		(*state)->expire = pf_get_uptime();
6924 		(*state)->timeout = PFTM_ICMP_ERROR_REPLY;
6925 
6926 		/* translate source/destination address, if necessary */
6927 		if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
6928 			struct pf_state_key *nk = (*state)->key[pd->didx];
6929 
6930 			switch (pd->af) {
6931 #ifdef INET
6932 			case AF_INET:
6933 				if (PF_ANEQ(pd->src,
6934 				    &nk->addr[pd->sidx], AF_INET))
6935 					pf_change_a(&saddr->v4.s_addr,
6936 					    pd->ip_sum,
6937 					    nk->addr[pd->sidx].v4.s_addr, 0);
6938 
6939 				if (PF_ANEQ(pd->dst, &nk->addr[pd->didx],
6940 				    AF_INET))
6941 					pf_change_a(&daddr->v4.s_addr,
6942 					    pd->ip_sum,
6943 					    nk->addr[pd->didx].v4.s_addr, 0);
6944 
6945 				if (nk->port[iidx] !=
6946 				    pd->hdr.icmp.icmp_id) {
6947 					pd->hdr.icmp.icmp_cksum =
6948 					    pf_cksum_fixup(
6949 					    pd->hdr.icmp.icmp_cksum, icmpid,
6950 					    nk->port[iidx], 0);
6951 					pd->hdr.icmp.icmp_id =
6952 					    nk->port[iidx];
6953 				}
6954 
6955 				m_copyback(pd->m, pd->off, ICMP_MINLEN,
6956 				    (caddr_t )&pd->hdr.icmp);
6957 				break;
6958 #endif /* INET */
6959 #ifdef INET6
6960 			case AF_INET6:
6961 				if (PF_ANEQ(pd->src,
6962 				    &nk->addr[pd->sidx], AF_INET6))
6963 					pf_change_a6(saddr,
6964 					    &pd->hdr.icmp6.icmp6_cksum,
6965 					    &nk->addr[pd->sidx], 0);
6966 
6967 				if (PF_ANEQ(pd->dst,
6968 				    &nk->addr[pd->didx], AF_INET6))
6969 					pf_change_a6(daddr,
6970 					    &pd->hdr.icmp6.icmp6_cksum,
6971 					    &nk->addr[pd->didx], 0);
6972 
6973 				m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
6974 				    (caddr_t )&pd->hdr.icmp6);
6975 				break;
6976 #endif /* INET6 */
6977 			}
6978 		}
6979 		return (PF_PASS);
6980 
6981 	} else {
6982 		/*
6983 		 * ICMP error message in response to a TCP/UDP packet.
6984 		 * Extract the inner TCP/UDP header and search for that state.
6985 		 */
6986 
6987 		struct pf_pdesc	pd2;
6988 		bzero(&pd2, sizeof pd2);
6989 #ifdef INET
6990 		struct ip	h2;
6991 #endif /* INET */
6992 #ifdef INET6
6993 		struct ip6_hdr	h2_6;
6994 		int		fragoff2, extoff2;
6995 		u_int32_t	jumbolen;
6996 #endif /* INET6 */
6997 		int		ipoff2 = 0;
6998 
6999 		pd2.af = pd->af;
7000 		pd2.dir = pd->dir;
7001 		/* Payload packet is from the opposite direction. */
7002 		pd2.sidx = (pd->dir == PF_IN) ? 1 : 0;
7003 		pd2.didx = (pd->dir == PF_IN) ? 0 : 1;
7004 		pd2.m = pd->m;
7005 		switch (pd->af) {
7006 #ifdef INET
7007 		case AF_INET:
7008 			/* offset of h2 in mbuf chain */
7009 			ipoff2 = pd->off + ICMP_MINLEN;
7010 
7011 			if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2),
7012 			    NULL, reason, pd2.af)) {
7013 				DPFPRINTF(PF_DEBUG_MISC,
7014 				    ("pf: ICMP error message too short "
7015 				    "(ip)\n"));
7016 				return (PF_DROP);
7017 			}
7018 			/*
7019 			 * ICMP error messages don't refer to non-first
7020 			 * fragments
7021 			 */
7022 			if (h2.ip_off & htons(IP_OFFMASK)) {
7023 				REASON_SET(reason, PFRES_FRAG);
7024 				return (PF_DROP);
7025 			}
7026 
7027 			/* offset of protocol header that follows h2 */
7028 			pd2.off = ipoff2 + (h2.ip_hl << 2);
7029 
7030 			pd2.proto = h2.ip_p;
7031 			pd2.src = (struct pf_addr *)&h2.ip_src;
7032 			pd2.dst = (struct pf_addr *)&h2.ip_dst;
7033 			pd2.ip_sum = &h2.ip_sum;
7034 			break;
7035 #endif /* INET */
7036 #ifdef INET6
7037 		case AF_INET6:
7038 			ipoff2 = pd->off + sizeof(struct icmp6_hdr);
7039 
7040 			if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6),
7041 			    NULL, reason, pd2.af)) {
7042 				DPFPRINTF(PF_DEBUG_MISC,
7043 				    ("pf: ICMP error message too short "
7044 				    "(ip6)\n"));
7045 				return (PF_DROP);
7046 			}
7047 			pd2.off = ipoff2;
7048 			if (pf_walk_header6(pd->m, &h2_6, &pd2.off, &extoff2,
7049 				&fragoff2, &pd2.proto, &jumbolen,
7050 				reason) != PF_PASS)
7051 				return (PF_DROP);
7052 
7053 			pd2.src = (struct pf_addr *)&h2_6.ip6_src;
7054 			pd2.dst = (struct pf_addr *)&h2_6.ip6_dst;
7055 			pd2.ip_sum = NULL;
7056 			break;
7057 #endif /* INET6 */
7058 		}
7059 
7060 		if (PF_ANEQ(pd->dst, pd2.src, pd->af)) {
7061 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
7062 				printf("pf: BAD ICMP %d:%d outer dst: ",
7063 				    icmptype, icmpcode);
7064 				pf_print_host(pd->src, 0, pd->af);
7065 				printf(" -> ");
7066 				pf_print_host(pd->dst, 0, pd->af);
7067 				printf(" inner src: ");
7068 				pf_print_host(pd2.src, 0, pd2.af);
7069 				printf(" -> ");
7070 				pf_print_host(pd2.dst, 0, pd2.af);
7071 				printf("\n");
7072 			}
7073 			REASON_SET(reason, PFRES_BADSTATE);
7074 			return (PF_DROP);
7075 		}
7076 
7077 		switch (pd2.proto) {
7078 		case IPPROTO_TCP: {
7079 			struct tcphdr		 th;
7080 			u_int32_t		 seq;
7081 			struct pf_state_peer	*src, *dst;
7082 			u_int8_t		 dws;
7083 			int			 copyback = 0;
7084 
7085 			/*
7086 			 * Only the first 8 bytes of the TCP header can be
7087 			 * expected. Don't access any TCP header fields after
7088 			 * th_seq, an ackskew test is not possible.
7089 			 */
7090 			if (!pf_pull_hdr(pd->m, pd2.off, &th, 8, NULL, reason,
7091 			    pd2.af)) {
7092 				DPFPRINTF(PF_DEBUG_MISC,
7093 				    ("pf: ICMP error message too short "
7094 				    "(tcp)\n"));
7095 				return (PF_DROP);
7096 			}
7097 
7098 			key.af = pd2.af;
7099 			key.proto = IPPROTO_TCP;
7100 			PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
7101 			PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
7102 			key.port[pd2.sidx] = th.th_sport;
7103 			key.port[pd2.didx] = th.th_dport;
7104 
7105 			STATE_LOOKUP(&key, *state, pd);
7106 
7107 			if (pd->dir == (*state)->direction) {
7108 				src = &(*state)->dst;
7109 				dst = &(*state)->src;
7110 			} else {
7111 				src = &(*state)->src;
7112 				dst = &(*state)->dst;
7113 			}
7114 
7115 			if (src->wscale && dst->wscale)
7116 				dws = dst->wscale & PF_WSCALE_MASK;
7117 			else
7118 				dws = 0;
7119 
7120 			/* Demodulate sequence number */
7121 			seq = ntohl(th.th_seq) - src->seqdiff;
7122 			if (src->seqdiff) {
7123 				pf_change_a(&th.th_seq, icmpsum,
7124 				    htonl(seq), 0);
7125 				copyback = 1;
7126 			}
7127 
7128 			if (!((*state)->state_flags & PFSTATE_SLOPPY) &&
7129 			    (!SEQ_GEQ(src->seqhi, seq) ||
7130 			    !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) {
7131 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
7132 					printf("pf: BAD ICMP %d:%d ",
7133 					    icmptype, icmpcode);
7134 					pf_print_host(pd->src, 0, pd->af);
7135 					printf(" -> ");
7136 					pf_print_host(pd->dst, 0, pd->af);
7137 					printf(" state: ");
7138 					pf_print_state(*state);
7139 					printf(" seq=%u\n", seq);
7140 				}
7141 				REASON_SET(reason, PFRES_BADSTATE);
7142 				return (PF_DROP);
7143 			} else {
7144 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
7145 					printf("pf: OK ICMP %d:%d ",
7146 					    icmptype, icmpcode);
7147 					pf_print_host(pd->src, 0, pd->af);
7148 					printf(" -> ");
7149 					pf_print_host(pd->dst, 0, pd->af);
7150 					printf(" state: ");
7151 					pf_print_state(*state);
7152 					printf(" seq=%u\n", seq);
7153 				}
7154 			}
7155 
7156 			/* translate source/destination address, if necessary */
7157 			if ((*state)->key[PF_SK_WIRE] !=
7158 			    (*state)->key[PF_SK_STACK]) {
7159 				struct pf_state_key *nk =
7160 				    (*state)->key[pd->didx];
7161 
7162 				if (PF_ANEQ(pd2.src,
7163 				    &nk->addr[pd2.sidx], pd2.af) ||
7164 				    nk->port[pd2.sidx] != th.th_sport)
7165 					pf_change_icmp(pd2.src, &th.th_sport,
7166 					    daddr, &nk->addr[pd2.sidx],
7167 					    nk->port[pd2.sidx], NULL,
7168 					    pd2.ip_sum, icmpsum,
7169 					    pd->ip_sum, 0, pd2.af);
7170 
7171 				if (PF_ANEQ(pd2.dst,
7172 				    &nk->addr[pd2.didx], pd2.af) ||
7173 				    nk->port[pd2.didx] != th.th_dport)
7174 					pf_change_icmp(pd2.dst, &th.th_dport,
7175 					    saddr, &nk->addr[pd2.didx],
7176 					    nk->port[pd2.didx], NULL,
7177 					    pd2.ip_sum, icmpsum,
7178 					    pd->ip_sum, 0, pd2.af);
7179 				copyback = 1;
7180 			}
7181 
7182 			if (copyback) {
7183 				switch (pd2.af) {
7184 #ifdef INET
7185 				case AF_INET:
7186 					m_copyback(pd->m, pd->off, ICMP_MINLEN,
7187 					    (caddr_t )&pd->hdr.icmp);
7188 					m_copyback(pd->m, ipoff2, sizeof(h2),
7189 					    (caddr_t )&h2);
7190 					break;
7191 #endif /* INET */
7192 #ifdef INET6
7193 				case AF_INET6:
7194 					m_copyback(pd->m, pd->off,
7195 					    sizeof(struct icmp6_hdr),
7196 					    (caddr_t )&pd->hdr.icmp6);
7197 					m_copyback(pd->m, ipoff2, sizeof(h2_6),
7198 					    (caddr_t )&h2_6);
7199 					break;
7200 #endif /* INET6 */
7201 				}
7202 				m_copyback(pd->m, pd2.off, 8, (caddr_t)&th);
7203 			}
7204 
7205 			return (PF_PASS);
7206 			break;
7207 		}
7208 		case IPPROTO_UDP: {
7209 			struct udphdr		uh;
7210 
7211 			if (!pf_pull_hdr(pd->m, pd2.off, &uh, sizeof(uh),
7212 			    NULL, reason, pd2.af)) {
7213 				DPFPRINTF(PF_DEBUG_MISC,
7214 				    ("pf: ICMP error message too short "
7215 				    "(udp)\n"));
7216 				return (PF_DROP);
7217 			}
7218 
7219 			key.af = pd2.af;
7220 			key.proto = IPPROTO_UDP;
7221 			PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
7222 			PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
7223 			key.port[pd2.sidx] = uh.uh_sport;
7224 			key.port[pd2.didx] = uh.uh_dport;
7225 
7226 			STATE_LOOKUP(&key, *state, pd);
7227 
7228 			/* translate source/destination address, if necessary */
7229 			if ((*state)->key[PF_SK_WIRE] !=
7230 			    (*state)->key[PF_SK_STACK]) {
7231 				struct pf_state_key *nk =
7232 				    (*state)->key[pd->didx];
7233 
7234 				if (PF_ANEQ(pd2.src,
7235 				    &nk->addr[pd2.sidx], pd2.af) ||
7236 				    nk->port[pd2.sidx] != uh.uh_sport)
7237 					pf_change_icmp(pd2.src, &uh.uh_sport,
7238 					    daddr, &nk->addr[pd2.sidx],
7239 					    nk->port[pd2.sidx], &uh.uh_sum,
7240 					    pd2.ip_sum, icmpsum,
7241 					    pd->ip_sum, 1, pd2.af);
7242 
7243 				if (PF_ANEQ(pd2.dst,
7244 				    &nk->addr[pd2.didx], pd2.af) ||
7245 				    nk->port[pd2.didx] != uh.uh_dport)
7246 					pf_change_icmp(pd2.dst, &uh.uh_dport,
7247 					    saddr, &nk->addr[pd2.didx],
7248 					    nk->port[pd2.didx], &uh.uh_sum,
7249 					    pd2.ip_sum, icmpsum,
7250 					    pd->ip_sum, 1, pd2.af);
7251 
7252 				switch (pd2.af) {
7253 #ifdef INET
7254 				case AF_INET:
7255 					m_copyback(pd->m, pd->off, ICMP_MINLEN,
7256 					    (caddr_t )&pd->hdr.icmp);
7257 					m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
7258 					break;
7259 #endif /* INET */
7260 #ifdef INET6
7261 				case AF_INET6:
7262 					m_copyback(pd->m, pd->off,
7263 					    sizeof(struct icmp6_hdr),
7264 					    (caddr_t )&pd->hdr.icmp6);
7265 					m_copyback(pd->m, ipoff2, sizeof(h2_6),
7266 					    (caddr_t )&h2_6);
7267 					break;
7268 #endif /* INET6 */
7269 				}
7270 				m_copyback(pd->m, pd2.off, sizeof(uh), (caddr_t)&uh);
7271 			}
7272 			return (PF_PASS);
7273 			break;
7274 		}
7275 #ifdef INET
7276 		case IPPROTO_ICMP: {
7277 			struct icmp	*iih = &pd2.hdr.icmp;
7278 
7279 			if (pd2.af != AF_INET) {
7280 				REASON_SET(reason, PFRES_NORM);
7281 				return (PF_DROP);
7282 			}
7283 
7284 			if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN,
7285 			    NULL, reason, pd2.af)) {
7286 				DPFPRINTF(PF_DEBUG_MISC,
7287 				    ("pf: ICMP error message too short i"
7288 				    "(icmp)\n"));
7289 				return (PF_DROP);
7290 			}
7291 
7292 			icmpid = iih->icmp_id;
7293 			pf_icmp_mapping(&pd2, iih->icmp_type,
7294 			    &icmp_dir, &multi, &virtual_id, &virtual_type);
7295 
7296 			ret = pf_icmp_state_lookup(&key, &pd2, state,
7297 			    pd2.dir, virtual_id, virtual_type,
7298 			    icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1);
7299 			if (ret >= 0) {
7300 				MPASS(*state == NULL);
7301 				return (ret);
7302 			}
7303 
7304 			/* translate source/destination address, if necessary */
7305 			if ((*state)->key[PF_SK_WIRE] !=
7306 			    (*state)->key[PF_SK_STACK]) {
7307 				struct pf_state_key *nk =
7308 				    (*state)->key[pd->didx];
7309 
7310 				if (PF_ANEQ(pd2.src,
7311 				    &nk->addr[pd2.sidx], pd2.af) ||
7312 				    (virtual_type == htons(ICMP_ECHO) &&
7313 				    nk->port[iidx] != iih->icmp_id))
7314 					pf_change_icmp(pd2.src,
7315 					    (virtual_type == htons(ICMP_ECHO)) ?
7316 					    &iih->icmp_id : NULL,
7317 					    daddr, &nk->addr[pd2.sidx],
7318 					    (virtual_type == htons(ICMP_ECHO)) ?
7319 					    nk->port[iidx] : 0, NULL,
7320 					    pd2.ip_sum, icmpsum,
7321 					    pd->ip_sum, 0, AF_INET);
7322 
7323 				if (PF_ANEQ(pd2.dst,
7324 				    &nk->addr[pd2.didx], pd2.af))
7325 					pf_change_icmp(pd2.dst, NULL, NULL,
7326 					    &nk->addr[pd2.didx], 0, NULL,
7327 					    pd2.ip_sum, icmpsum, pd->ip_sum, 0,
7328 					    AF_INET);
7329 
7330 				m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
7331 				m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
7332 				m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih);
7333 			}
7334 			return (PF_PASS);
7335 			break;
7336 		}
7337 #endif /* INET */
7338 #ifdef INET6
7339 		case IPPROTO_ICMPV6: {
7340 			struct icmp6_hdr	*iih = &pd2.hdr.icmp6;
7341 
7342 			if (pd2.af != AF_INET6) {
7343 				REASON_SET(reason, PFRES_NORM);
7344 				return (PF_DROP);
7345 			}
7346 
7347 			if (!pf_pull_hdr(pd->m, pd2.off, iih,
7348 			    sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) {
7349 				DPFPRINTF(PF_DEBUG_MISC,
7350 				    ("pf: ICMP error message too short "
7351 				    "(icmp6)\n"));
7352 				return (PF_DROP);
7353 			}
7354 
7355 			pf_icmp_mapping(&pd2, iih->icmp6_type,
7356 			    &icmp_dir, &multi, &virtual_id, &virtual_type);
7357 
7358 			ret = pf_icmp_state_lookup(&key, &pd2, state,
7359 			    pd->dir, virtual_id, virtual_type,
7360 			    icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1);
7361 			if (ret >= 0) {
7362 				MPASS(*state == NULL);
7363 				if (ret == PF_DROP && pd2.af == AF_INET6 &&
7364 				    icmp_dir == PF_OUT) {
7365 					ret = pf_icmp_state_lookup(&key, &pd2,
7366 					    state, pd->dir,
7367 					    virtual_id, virtual_type,
7368 					    icmp_dir, &iidx, multi, 1);
7369 					if (ret >= 0) {
7370 						MPASS(*state == NULL);
7371 						return (ret);
7372 					}
7373 				} else
7374 					return (ret);
7375 			}
7376 
7377 			/* translate source/destination address, if necessary */
7378 			if ((*state)->key[PF_SK_WIRE] !=
7379 			    (*state)->key[PF_SK_STACK]) {
7380 				struct pf_state_key *nk =
7381 				    (*state)->key[pd->didx];
7382 
7383 				if (PF_ANEQ(pd2.src,
7384 				    &nk->addr[pd2.sidx], pd2.af) ||
7385 				    ((virtual_type == htons(ICMP6_ECHO_REQUEST)) &&
7386 				    nk->port[pd2.sidx] != iih->icmp6_id))
7387 					pf_change_icmp(pd2.src,
7388 					    (virtual_type == htons(ICMP6_ECHO_REQUEST))
7389 					    ? &iih->icmp6_id : NULL,
7390 					    daddr, &nk->addr[pd2.sidx],
7391 					    (virtual_type == htons(ICMP6_ECHO_REQUEST))
7392 					    ? nk->port[iidx] : 0, NULL,
7393 					    pd2.ip_sum, icmpsum,
7394 					    pd->ip_sum, 0, AF_INET6);
7395 
7396 				if (PF_ANEQ(pd2.dst,
7397 				    &nk->addr[pd2.didx], pd2.af))
7398 					pf_change_icmp(pd2.dst, NULL, NULL,
7399 					    &nk->addr[pd2.didx], 0, NULL,
7400 					    pd2.ip_sum, icmpsum,
7401 					    pd->ip_sum, 0, AF_INET6);
7402 
7403 				m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
7404 				    (caddr_t)&pd->hdr.icmp6);
7405 				m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6);
7406 				m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr),
7407 				    (caddr_t)iih);
7408 			}
7409 			return (PF_PASS);
7410 			break;
7411 		}
7412 #endif /* INET6 */
7413 		default: {
7414 			key.af = pd2.af;
7415 			key.proto = pd2.proto;
7416 			PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
7417 			PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
7418 			key.port[0] = key.port[1] = 0;
7419 
7420 			STATE_LOOKUP(&key, *state, pd);
7421 
7422 			/* translate source/destination address, if necessary */
7423 			if ((*state)->key[PF_SK_WIRE] !=
7424 			    (*state)->key[PF_SK_STACK]) {
7425 				struct pf_state_key *nk =
7426 				    (*state)->key[pd->didx];
7427 
7428 				if (PF_ANEQ(pd2.src,
7429 				    &nk->addr[pd2.sidx], pd2.af))
7430 					pf_change_icmp(pd2.src, NULL, daddr,
7431 					    &nk->addr[pd2.sidx], 0, NULL,
7432 					    pd2.ip_sum, icmpsum,
7433 					    pd->ip_sum, 0, pd2.af);
7434 
7435 				if (PF_ANEQ(pd2.dst,
7436 				    &nk->addr[pd2.didx], pd2.af))
7437 					pf_change_icmp(pd2.dst, NULL, saddr,
7438 					    &nk->addr[pd2.didx], 0, NULL,
7439 					    pd2.ip_sum, icmpsum,
7440 					    pd->ip_sum, 0, pd2.af);
7441 
7442 				switch (pd2.af) {
7443 #ifdef INET
7444 				case AF_INET:
7445 					m_copyback(pd->m, pd->off, ICMP_MINLEN,
7446 					    (caddr_t)&pd->hdr.icmp);
7447 					m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
7448 					break;
7449 #endif /* INET */
7450 #ifdef INET6
7451 				case AF_INET6:
7452 					m_copyback(pd->m, pd->off,
7453 					    sizeof(struct icmp6_hdr),
7454 					    (caddr_t )&pd->hdr.icmp6);
7455 					m_copyback(pd->m, ipoff2, sizeof(h2_6),
7456 					    (caddr_t )&h2_6);
7457 					break;
7458 #endif /* INET6 */
7459 				}
7460 			}
7461 			return (PF_PASS);
7462 			break;
7463 		}
7464 		}
7465 	}
7466 }
7467 
7468 static int
7469 pf_test_state_other(struct pf_kstate **state, struct pf_pdesc *pd)
7470 {
7471 	struct pf_state_peer	*src, *dst;
7472 	struct pf_state_key_cmp	 key;
7473 	uint8_t			 psrc, pdst;
7474 
7475 	bzero(&key, sizeof(key));
7476 	key.af = pd->af;
7477 	key.proto = pd->proto;
7478 	if (pd->dir == PF_IN)	{
7479 		PF_ACPY(&key.addr[0], pd->src, key.af);
7480 		PF_ACPY(&key.addr[1], pd->dst, key.af);
7481 		key.port[0] = key.port[1] = 0;
7482 	} else {
7483 		PF_ACPY(&key.addr[1], pd->src, key.af);
7484 		PF_ACPY(&key.addr[0], pd->dst, key.af);
7485 		key.port[1] = key.port[0] = 0;
7486 	}
7487 
7488 	STATE_LOOKUP(&key, *state, pd);
7489 
7490 	if (pd->dir == (*state)->direction) {
7491 		src = &(*state)->src;
7492 		dst = &(*state)->dst;
7493 		psrc = PF_PEER_SRC;
7494 		pdst = PF_PEER_DST;
7495 	} else {
7496 		src = &(*state)->dst;
7497 		dst = &(*state)->src;
7498 		psrc = PF_PEER_DST;
7499 		pdst = PF_PEER_SRC;
7500 	}
7501 
7502 	/* update states */
7503 	if (src->state < PFOTHERS_SINGLE)
7504 		pf_set_protostate(*state, psrc, PFOTHERS_SINGLE);
7505 	if (dst->state == PFOTHERS_SINGLE)
7506 		pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE);
7507 
7508 	/* update expire time */
7509 	(*state)->expire = pf_get_uptime();
7510 	if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE)
7511 		(*state)->timeout = PFTM_OTHER_MULTIPLE;
7512 	else
7513 		(*state)->timeout = PFTM_OTHER_SINGLE;
7514 
7515 	/* translate source/destination address, if necessary */
7516 	if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7517 		struct pf_state_key *nk = (*state)->key[pd->didx];
7518 
7519 		KASSERT(nk, ("%s: nk is null", __func__));
7520 		KASSERT(pd, ("%s: pd is null", __func__));
7521 		KASSERT(pd->src, ("%s: pd->src is null", __func__));
7522 		KASSERT(pd->dst, ("%s: pd->dst is null", __func__));
7523 		switch (pd->af) {
7524 #ifdef INET
7525 		case AF_INET:
7526 			if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET))
7527 				pf_change_a(&pd->src->v4.s_addr,
7528 				    pd->ip_sum,
7529 				    nk->addr[pd->sidx].v4.s_addr,
7530 				    0);
7531 
7532 			if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET))
7533 				pf_change_a(&pd->dst->v4.s_addr,
7534 				    pd->ip_sum,
7535 				    nk->addr[pd->didx].v4.s_addr,
7536 				    0);
7537 
7538 			break;
7539 #endif /* INET */
7540 #ifdef INET6
7541 		case AF_INET6:
7542 			if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET6))
7543 				PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
7544 
7545 			if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET6))
7546 				PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
7547 #endif /* INET6 */
7548 		}
7549 	}
7550 	return (PF_PASS);
7551 }
7552 
7553 /*
7554  * ipoff and off are measured from the start of the mbuf chain.
7555  * h must be at "ipoff" on the mbuf chain.
7556  */
7557 void *
7558 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len,
7559     u_short *actionp, u_short *reasonp, sa_family_t af)
7560 {
7561 	switch (af) {
7562 #ifdef INET
7563 	case AF_INET: {
7564 		const struct ip	*h = mtod(m, struct ip *);
7565 		u_int16_t	 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
7566 
7567 		if (fragoff) {
7568 			if (fragoff >= len)
7569 				ACTION_SET(actionp, PF_PASS);
7570 			else {
7571 				ACTION_SET(actionp, PF_DROP);
7572 				REASON_SET(reasonp, PFRES_FRAG);
7573 			}
7574 			return (NULL);
7575 		}
7576 		if (m->m_pkthdr.len < off + len ||
7577 		    ntohs(h->ip_len) < off + len) {
7578 			ACTION_SET(actionp, PF_DROP);
7579 			REASON_SET(reasonp, PFRES_SHORT);
7580 			return (NULL);
7581 		}
7582 		break;
7583 	}
7584 #endif /* INET */
7585 #ifdef INET6
7586 	case AF_INET6: {
7587 		const struct ip6_hdr	*h = mtod(m, struct ip6_hdr *);
7588 
7589 		if (m->m_pkthdr.len < off + len ||
7590 		    (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) <
7591 		    (unsigned)(off + len)) {
7592 			ACTION_SET(actionp, PF_DROP);
7593 			REASON_SET(reasonp, PFRES_SHORT);
7594 			return (NULL);
7595 		}
7596 		break;
7597 	}
7598 #endif /* INET6 */
7599 	}
7600 	m_copydata(m, off, len, p);
7601 	return (p);
7602 }
7603 
7604 int
7605 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif,
7606     int rtableid)
7607 {
7608 	struct ifnet		*ifp;
7609 
7610 	/*
7611 	 * Skip check for addresses with embedded interface scope,
7612 	 * as they would always match anyway.
7613 	 */
7614 	if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6))
7615 		return (1);
7616 
7617 	if (af != AF_INET && af != AF_INET6)
7618 		return (0);
7619 
7620 	if (kif == V_pfi_all)
7621 		return (1);
7622 
7623 	/* Skip checks for ipsec interfaces */
7624 	if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC)
7625 		return (1);
7626 
7627 	ifp = (kif != NULL) ? kif->pfik_ifp : NULL;
7628 
7629 	switch (af) {
7630 #ifdef INET6
7631 	case AF_INET6:
7632 		return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE,
7633 		    ifp));
7634 #endif
7635 #ifdef INET
7636 	case AF_INET:
7637 		return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE,
7638 		    ifp));
7639 #endif
7640 	}
7641 
7642 	return (0);
7643 }
7644 
7645 #ifdef INET
7646 static void
7647 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp,
7648     struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
7649 {
7650 	struct mbuf		*m0, *m1, *md;
7651 	struct sockaddr_in	dst;
7652 	struct ip		*ip;
7653 	struct pfi_kkif		*nkif = NULL;
7654 	struct ifnet		*ifp = NULL;
7655 	struct pf_addr		 naddr;
7656 	int			 error = 0;
7657 	uint16_t		 ip_len, ip_off;
7658 	uint16_t		 tmp;
7659 	int			 r_rt, r_dir;
7660 
7661 	KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__));
7662 
7663 	if (s) {
7664 		r_rt = s->rt;
7665 		r_dir = s->direction;
7666 	} else {
7667 		r_rt = r->rt;
7668 		r_dir = r->direction;
7669 	}
7670 
7671 	KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
7672 	    r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
7673 	    __func__));
7674 
7675 	if ((pd->pf_mtag == NULL &&
7676 	    ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) ||
7677 	    pd->pf_mtag->routed++ > 3) {
7678 		m0 = *m;
7679 		*m = NULL;
7680 		goto bad_locked;
7681 	}
7682 
7683 	if (r_rt == PF_DUPTO) {
7684 		if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
7685 			if (s == NULL) {
7686 				ifp = r->rpool.cur->kif ?
7687 				    r->rpool.cur->kif->pfik_ifp : NULL;
7688 			} else {
7689 				ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
7690 				/* If pfsync'd */
7691 				if (ifp == NULL && r->rpool.cur != NULL)
7692 					ifp = r->rpool.cur->kif ?
7693 					    r->rpool.cur->kif->pfik_ifp : NULL;
7694 				PF_STATE_UNLOCK(s);
7695 			}
7696 			if (ifp == oifp) {
7697 				/* When the 2nd interface is not skipped */
7698 				return;
7699 			} else {
7700 				m0 = *m;
7701 				*m = NULL;
7702 				goto bad;
7703 			}
7704 		} else {
7705 			pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
7706 			if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) {
7707 				if (s)
7708 					PF_STATE_UNLOCK(s);
7709 				return;
7710 			}
7711 		}
7712 	} else {
7713 		if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) {
7714 			pf_dummynet(pd, s, r, m);
7715 			if (s)
7716 				PF_STATE_UNLOCK(s);
7717 			return;
7718 		}
7719 		m0 = *m;
7720 	}
7721 
7722 	ip = mtod(m0, struct ip *);
7723 
7724 	bzero(&dst, sizeof(dst));
7725 	dst.sin_family = AF_INET;
7726 	dst.sin_len = sizeof(dst);
7727 	dst.sin_addr = ip->ip_dst;
7728 
7729 	bzero(&naddr, sizeof(naddr));
7730 
7731 	if (s == NULL) {
7732 		if (TAILQ_EMPTY(&r->rpool.list)) {
7733 			DPFPRINTF(PF_DEBUG_URGENT,
7734 			    ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__));
7735 			goto bad_locked;
7736 		}
7737 		pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src,
7738 		    &naddr, &nkif, NULL);
7739 		if (!PF_AZERO(&naddr, AF_INET))
7740 			dst.sin_addr.s_addr = naddr.v4.s_addr;
7741 		ifp = nkif ? nkif->pfik_ifp : NULL;
7742 	} else {
7743 		struct pfi_kkif *kif;
7744 
7745 		if (!PF_AZERO(&s->rt_addr, AF_INET))
7746 			dst.sin_addr.s_addr =
7747 			    s->rt_addr.v4.s_addr;
7748 		ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
7749 		kif = s->rt_kif;
7750 		/* If pfsync'd */
7751 		if (ifp == NULL && r->rpool.cur != NULL) {
7752 			ifp = r->rpool.cur->kif ?
7753 			    r->rpool.cur->kif->pfik_ifp : NULL;
7754 			kif = r->rpool.cur->kif;
7755 		}
7756 		if (ifp != NULL && kif != NULL &&
7757 		    r->rule_flag & PFRULE_IFBOUND &&
7758 		    r->rt == PF_REPLYTO &&
7759 		    s->kif == V_pfi_all) {
7760 			s->kif = kif;
7761 			s->orig_kif = oifp->if_pf_kif;
7762 		}
7763 
7764 		PF_STATE_UNLOCK(s);
7765 	}
7766 
7767 	if (ifp == NULL)
7768 		goto bad;
7769 
7770 	if (pd->dir == PF_IN) {
7771 		if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp,
7772 		    &pd->act) != PF_PASS)
7773 			goto bad;
7774 		else if (m0 == NULL)
7775 			goto done;
7776 		if (m0->m_len < sizeof(struct ip)) {
7777 			DPFPRINTF(PF_DEBUG_URGENT,
7778 			    ("%s: m0->m_len < sizeof(struct ip)\n", __func__));
7779 			goto bad;
7780 		}
7781 		ip = mtod(m0, struct ip *);
7782 	}
7783 
7784 	if (ifp->if_flags & IFF_LOOPBACK)
7785 		m0->m_flags |= M_SKIP_FIREWALL;
7786 
7787 	ip_len = ntohs(ip->ip_len);
7788 	ip_off = ntohs(ip->ip_off);
7789 
7790 	/* Copied from FreeBSD 10.0-CURRENT ip_output. */
7791 	m0->m_pkthdr.csum_flags |= CSUM_IP;
7792 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
7793 		in_delayed_cksum(m0);
7794 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
7795 	}
7796 	if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
7797 		pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2));
7798 		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
7799 	}
7800 
7801 	if (pd->dir == PF_IN) {
7802 		/*
7803 		 * Make sure dummynet gets the correct direction, in case it needs to
7804 		 * re-inject later.
7805 		 */
7806 		pd->dir = PF_OUT;
7807 
7808 		/*
7809 		 * The following processing is actually the rest of the inbound processing, even
7810 		 * though we've marked it as outbound (so we don't look through dummynet) and it
7811 		 * happens after the outbound processing (pf_test(PF_OUT) above).
7812 		 * Swap the dummynet pipe numbers, because it's going to come to the wrong
7813 		 * conclusion about what direction it's processing, and we can't fix it or it
7814 		 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
7815 		 * decision will pick the right pipe, and everything will mostly work as expected.
7816 		 */
7817 		tmp = pd->act.dnrpipe;
7818 		pd->act.dnrpipe = pd->act.dnpipe;
7819 		pd->act.dnpipe = tmp;
7820 	}
7821 
7822 	/*
7823 	 * If small enough for interface, or the interface will take
7824 	 * care of the fragmentation for us, we can just send directly.
7825 	 */
7826 	if (ip_len <= ifp->if_mtu ||
7827 	    (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
7828 		ip->ip_sum = 0;
7829 		if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
7830 			ip->ip_sum = in_cksum(m0, ip->ip_hl << 2);
7831 			m0->m_pkthdr.csum_flags &= ~CSUM_IP;
7832 		}
7833 		m_clrprotoflags(m0);	/* Avoid confusing lower layers. */
7834 
7835 		md = m0;
7836 		error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md);
7837 		if (md != NULL)
7838 			error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL);
7839 		goto done;
7840 	}
7841 
7842 	/* Balk when DF bit is set or the interface didn't support TSO. */
7843 	if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
7844 		error = EMSGSIZE;
7845 		KMOD_IPSTAT_INC(ips_cantfrag);
7846 		if (r_rt != PF_DUPTO) {
7847 			if (s && s->nat_rule != NULL)
7848 				PACKET_UNDO_NAT(m0, pd,
7849 				    (ip->ip_hl << 2) + (ip_off & IP_OFFMASK),
7850 				    s);
7851 
7852 			icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0,
7853 			    ifp->if_mtu);
7854 			goto done;
7855 		} else
7856 			goto bad;
7857 	}
7858 
7859 	error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist);
7860 	if (error)
7861 		goto bad;
7862 
7863 	for (; m0; m0 = m1) {
7864 		m1 = m0->m_nextpkt;
7865 		m0->m_nextpkt = NULL;
7866 		if (error == 0) {
7867 			m_clrprotoflags(m0);
7868 			md = m0;
7869 			pd->pf_mtag = pf_find_mtag(md);
7870 			error = pf_dummynet_route(pd, s, r, ifp,
7871 			    sintosa(&dst), &md);
7872 			if (md != NULL)
7873 				error = (*ifp->if_output)(ifp, md,
7874 				    sintosa(&dst), NULL);
7875 		} else
7876 			m_freem(m0);
7877 	}
7878 
7879 	if (error == 0)
7880 		KMOD_IPSTAT_INC(ips_fragmented);
7881 
7882 done:
7883 	if (r_rt != PF_DUPTO)
7884 		*m = NULL;
7885 	return;
7886 
7887 bad_locked:
7888 	if (s)
7889 		PF_STATE_UNLOCK(s);
7890 bad:
7891 	m_freem(m0);
7892 	goto done;
7893 }
7894 #endif /* INET */
7895 
7896 #ifdef INET6
7897 static void
7898 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp,
7899     struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
7900 {
7901 	struct mbuf		*m0, *md;
7902 	struct sockaddr_in6	dst;
7903 	struct ip6_hdr		*ip6;
7904 	struct pfi_kkif		*nkif = NULL;
7905 	struct ifnet		*ifp = NULL;
7906 	struct pf_addr		 naddr;
7907 	int			 r_rt, r_dir;
7908 
7909 	KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__));
7910 
7911 	if (s) {
7912 		r_rt = s->rt;
7913 		r_dir = s->direction;
7914 	} else {
7915 		r_rt = r->rt;
7916 		r_dir = r->direction;
7917 	}
7918 
7919 	KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
7920 	    r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
7921 	    __func__));
7922 
7923 	if ((pd->pf_mtag == NULL &&
7924 	    ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) ||
7925 	    pd->pf_mtag->routed++ > 3) {
7926 		m0 = *m;
7927 		*m = NULL;
7928 		goto bad_locked;
7929 	}
7930 
7931 	if (r_rt == PF_DUPTO) {
7932 		if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
7933 			if (s == NULL) {
7934 				ifp = r->rpool.cur->kif ?
7935 				    r->rpool.cur->kif->pfik_ifp : NULL;
7936 			} else {
7937 				ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
7938 				/* If pfsync'd */
7939 				if (ifp == NULL && r->rpool.cur != NULL)
7940 					ifp = r->rpool.cur->kif ?
7941 					    r->rpool.cur->kif->pfik_ifp : NULL;
7942 				PF_STATE_UNLOCK(s);
7943 			}
7944 			if (ifp == oifp) {
7945 				/* When the 2nd interface is not skipped */
7946 				return;
7947 			} else {
7948 				m0 = *m;
7949 				*m = NULL;
7950 				goto bad;
7951 			}
7952 		} else {
7953 			pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
7954 			if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) {
7955 				if (s)
7956 					PF_STATE_UNLOCK(s);
7957 				return;
7958 			}
7959 		}
7960 	} else {
7961 		if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) {
7962 			pf_dummynet(pd, s, r, m);
7963 			if (s)
7964 				PF_STATE_UNLOCK(s);
7965 			return;
7966 		}
7967 		m0 = *m;
7968 	}
7969 
7970 	ip6 = mtod(m0, struct ip6_hdr *);
7971 
7972 	bzero(&dst, sizeof(dst));
7973 	dst.sin6_family = AF_INET6;
7974 	dst.sin6_len = sizeof(dst);
7975 	dst.sin6_addr = ip6->ip6_dst;
7976 
7977 	bzero(&naddr, sizeof(naddr));
7978 
7979 	if (s == NULL) {
7980 		if (TAILQ_EMPTY(&r->rpool.list)) {
7981 			DPFPRINTF(PF_DEBUG_URGENT,
7982 			    ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__));
7983 			goto bad_locked;
7984 		}
7985 		pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src,
7986 		    &naddr, &nkif, NULL);
7987 		if (!PF_AZERO(&naddr, AF_INET6))
7988 			PF_ACPY((struct pf_addr *)&dst.sin6_addr,
7989 			    &naddr, AF_INET6);
7990 		ifp = nkif ? nkif->pfik_ifp : NULL;
7991 	} else {
7992 		struct pfi_kkif *kif;
7993 
7994 		if (!PF_AZERO(&s->rt_addr, AF_INET6))
7995 			PF_ACPY((struct pf_addr *)&dst.sin6_addr,
7996 			    &s->rt_addr, AF_INET6);
7997 		ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
7998 		kif = s->rt_kif;
7999 		/* If pfsync'd */
8000 		if (ifp == NULL && r->rpool.cur != NULL) {
8001 			ifp = r->rpool.cur->kif ?
8002 			    r->rpool.cur->kif->pfik_ifp : NULL;
8003 			kif = r->rpool.cur->kif;
8004 		}
8005 		if (ifp != NULL && kif != NULL &&
8006 		    r->rule_flag & PFRULE_IFBOUND &&
8007 		    r->rt == PF_REPLYTO &&
8008 		    s->kif == V_pfi_all) {
8009 			s->kif = kif;
8010 			s->orig_kif = oifp->if_pf_kif;
8011 		}
8012 	}
8013 
8014 	if (s)
8015 		PF_STATE_UNLOCK(s);
8016 
8017 	if (ifp == NULL)
8018 		goto bad;
8019 
8020 	if (pd->dir == PF_IN) {
8021 		if (pf_test(AF_INET6, PF_OUT, PFIL_FWD, ifp, &m0, inp,
8022 		    &pd->act) != PF_PASS)
8023 			goto bad;
8024 		else if (m0 == NULL)
8025 			goto done;
8026 		if (m0->m_len < sizeof(struct ip6_hdr)) {
8027 			DPFPRINTF(PF_DEBUG_URGENT,
8028 			    ("%s: m0->m_len < sizeof(struct ip6_hdr)\n",
8029 			    __func__));
8030 			goto bad;
8031 		}
8032 		ip6 = mtod(m0, struct ip6_hdr *);
8033 	}
8034 
8035 	if (ifp->if_flags & IFF_LOOPBACK)
8036 		m0->m_flags |= M_SKIP_FIREWALL;
8037 
8038 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 &
8039 	    ~ifp->if_hwassist) {
8040 		uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6);
8041 		in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr));
8042 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
8043 	}
8044 
8045 	/*
8046 	 * If the packet is too large for the outgoing interface,
8047 	 * send back an icmp6 error.
8048 	 */
8049 	if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr))
8050 		dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
8051 	if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) {
8052 		md = m0;
8053 		pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md);
8054 		if (md != NULL)
8055 			nd6_output_ifp(ifp, ifp, md, &dst, NULL);
8056 	}
8057 	else {
8058 		in6_ifstat_inc(ifp, ifs6_in_toobig);
8059 		if (r_rt != PF_DUPTO) {
8060 			if (s && s->nat_rule != NULL)
8061 				PACKET_UNDO_NAT(m0, pd,
8062 				    ((caddr_t)ip6 - m0->m_data) +
8063 				    sizeof(struct ip6_hdr), s);
8064 
8065 			icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu);
8066 		} else
8067 			goto bad;
8068 	}
8069 
8070 done:
8071 	if (r_rt != PF_DUPTO)
8072 		*m = NULL;
8073 	return;
8074 
8075 bad_locked:
8076 	if (s)
8077 		PF_STATE_UNLOCK(s);
8078 bad:
8079 	m_freem(m0);
8080 	goto done;
8081 }
8082 #endif /* INET6 */
8083 
8084 /*
8085  * FreeBSD supports cksum offloads for the following drivers.
8086  *  em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4)
8087  *
8088  * CSUM_DATA_VALID | CSUM_PSEUDO_HDR :
8089  *  network driver performed cksum including pseudo header, need to verify
8090  *   csum_data
8091  * CSUM_DATA_VALID :
8092  *  network driver performed cksum, needs to additional pseudo header
8093  *  cksum computation with partial csum_data(i.e. lack of H/W support for
8094  *  pseudo header, for instance sk(4) and possibly gem(4))
8095  *
8096  * After validating the cksum of packet, set both flag CSUM_DATA_VALID and
8097  * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper
8098  * TCP/UDP layer.
8099  * Also, set csum_data to 0xffff to force cksum validation.
8100  */
8101 static int
8102 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af)
8103 {
8104 	u_int16_t sum = 0;
8105 	int hw_assist = 0;
8106 	struct ip *ip;
8107 
8108 	if (off < sizeof(struct ip) || len < sizeof(struct udphdr))
8109 		return (1);
8110 	if (m->m_pkthdr.len < off + len)
8111 		return (1);
8112 
8113 	switch (p) {
8114 	case IPPROTO_TCP:
8115 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
8116 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
8117 				sum = m->m_pkthdr.csum_data;
8118 			} else {
8119 				ip = mtod(m, struct ip *);
8120 				sum = in_pseudo(ip->ip_src.s_addr,
8121 				ip->ip_dst.s_addr, htonl((u_short)len +
8122 				m->m_pkthdr.csum_data + IPPROTO_TCP));
8123 			}
8124 			sum ^= 0xffff;
8125 			++hw_assist;
8126 		}
8127 		break;
8128 	case IPPROTO_UDP:
8129 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
8130 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
8131 				sum = m->m_pkthdr.csum_data;
8132 			} else {
8133 				ip = mtod(m, struct ip *);
8134 				sum = in_pseudo(ip->ip_src.s_addr,
8135 				ip->ip_dst.s_addr, htonl((u_short)len +
8136 				m->m_pkthdr.csum_data + IPPROTO_UDP));
8137 			}
8138 			sum ^= 0xffff;
8139 			++hw_assist;
8140 		}
8141 		break;
8142 	case IPPROTO_ICMP:
8143 #ifdef INET6
8144 	case IPPROTO_ICMPV6:
8145 #endif /* INET6 */
8146 		break;
8147 	default:
8148 		return (1);
8149 	}
8150 
8151 	if (!hw_assist) {
8152 		switch (af) {
8153 		case AF_INET:
8154 			if (p == IPPROTO_ICMP) {
8155 				if (m->m_len < off)
8156 					return (1);
8157 				m->m_data += off;
8158 				m->m_len -= off;
8159 				sum = in_cksum(m, len);
8160 				m->m_data -= off;
8161 				m->m_len += off;
8162 			} else {
8163 				if (m->m_len < sizeof(struct ip))
8164 					return (1);
8165 				sum = in4_cksum(m, p, off, len);
8166 			}
8167 			break;
8168 #ifdef INET6
8169 		case AF_INET6:
8170 			if (m->m_len < sizeof(struct ip6_hdr))
8171 				return (1);
8172 			sum = in6_cksum(m, p, off, len);
8173 			break;
8174 #endif /* INET6 */
8175 		}
8176 	}
8177 	if (sum) {
8178 		switch (p) {
8179 		case IPPROTO_TCP:
8180 		    {
8181 			KMOD_TCPSTAT_INC(tcps_rcvbadsum);
8182 			break;
8183 		    }
8184 		case IPPROTO_UDP:
8185 		    {
8186 			KMOD_UDPSTAT_INC(udps_badsum);
8187 			break;
8188 		    }
8189 #ifdef INET
8190 		case IPPROTO_ICMP:
8191 		    {
8192 			KMOD_ICMPSTAT_INC(icps_checksum);
8193 			break;
8194 		    }
8195 #endif
8196 #ifdef INET6
8197 		case IPPROTO_ICMPV6:
8198 		    {
8199 			KMOD_ICMP6STAT_INC(icp6s_checksum);
8200 			break;
8201 		    }
8202 #endif /* INET6 */
8203 		}
8204 		return (1);
8205 	} else {
8206 		if (p == IPPROTO_TCP || p == IPPROTO_UDP) {
8207 			m->m_pkthdr.csum_flags |=
8208 			    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
8209 			m->m_pkthdr.csum_data = 0xffff;
8210 		}
8211 	}
8212 	return (0);
8213 }
8214 
8215 static bool
8216 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r,
8217     const struct pf_kstate *s, struct ip_fw_args *dnflow)
8218 {
8219 	int dndir = r->direction;
8220 
8221 	if (s && dndir == PF_INOUT) {
8222 		dndir = s->direction;
8223 	} else if (dndir == PF_INOUT) {
8224 		/* Assume primary direction. Happens when we've set dnpipe in
8225 		 * the ethernet level code. */
8226 		dndir = pd->dir;
8227 	}
8228 
8229 	if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED)
8230 		return (false);
8231 
8232 	memset(dnflow, 0, sizeof(*dnflow));
8233 
8234 	if (pd->dport != NULL)
8235 		dnflow->f_id.dst_port = ntohs(*pd->dport);
8236 	if (pd->sport != NULL)
8237 		dnflow->f_id.src_port = ntohs(*pd->sport);
8238 
8239 	if (pd->dir == PF_IN)
8240 		dnflow->flags |= IPFW_ARGS_IN;
8241 	else
8242 		dnflow->flags |= IPFW_ARGS_OUT;
8243 
8244 	if (pd->dir != dndir && pd->act.dnrpipe) {
8245 		dnflow->rule.info = pd->act.dnrpipe;
8246 	}
8247 	else if (pd->dir == dndir && pd->act.dnpipe) {
8248 		dnflow->rule.info = pd->act.dnpipe;
8249 	}
8250 	else {
8251 		return (false);
8252 	}
8253 
8254 	dnflow->rule.info |= IPFW_IS_DUMMYNET;
8255 	if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE)
8256 		dnflow->rule.info |= IPFW_IS_PIPE;
8257 
8258 	dnflow->f_id.proto = pd->proto;
8259 	dnflow->f_id.extra = dnflow->rule.info;
8260 	switch (pd->af) {
8261 	case AF_INET:
8262 		dnflow->f_id.addr_type = 4;
8263 		dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr);
8264 		dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr);
8265 		break;
8266 	case AF_INET6:
8267 		dnflow->flags |= IPFW_ARGS_IP6;
8268 		dnflow->f_id.addr_type = 6;
8269 		dnflow->f_id.src_ip6 = pd->src->v6;
8270 		dnflow->f_id.dst_ip6 = pd->dst->v6;
8271 		break;
8272 	}
8273 
8274 	return (true);
8275 }
8276 
8277 int
8278 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
8279     struct inpcb *inp)
8280 {
8281 	struct pfi_kkif		*kif;
8282 	struct mbuf		*m = *m0;
8283 
8284 	M_ASSERTPKTHDR(m);
8285 	MPASS(ifp->if_vnet == curvnet);
8286 	NET_EPOCH_ASSERT();
8287 
8288 	if (!V_pf_status.running)
8289 		return (PF_PASS);
8290 
8291 	kif = (struct pfi_kkif *)ifp->if_pf_kif;
8292 
8293 	if (kif == NULL) {
8294 		DPFPRINTF(PF_DEBUG_URGENT,
8295 		    ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname));
8296 		return (PF_DROP);
8297 	}
8298 	if (kif->pfik_flags & PFI_IFLAG_SKIP)
8299 		return (PF_PASS);
8300 
8301 	if (m->m_flags & M_SKIP_FIREWALL)
8302 		return (PF_PASS);
8303 
8304 	if (__predict_false(! M_WRITABLE(*m0))) {
8305 		m = *m0 = m_unshare(*m0, M_NOWAIT);
8306 		if (*m0 == NULL)
8307 			return (PF_DROP);
8308 	}
8309 
8310 	/* Stateless! */
8311 	return (pf_test_eth_rule(dir, kif, m0));
8312 }
8313 
8314 static __inline void
8315 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag)
8316 {
8317 	struct m_tag *mtag;
8318 
8319 	pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET;
8320 
8321 	/* dummynet adds this tag, but pf does not need it,
8322 	 * and keeping it creates unexpected behavior,
8323 	 * e.g. in case of divert(4) usage right after dummynet. */
8324 	mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL);
8325 	if (mtag != NULL)
8326 		m_tag_delete(m, mtag);
8327 }
8328 
8329 static int
8330 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s,
8331     struct pf_krule *r, struct mbuf **m0)
8332 {
8333 	return (pf_dummynet_route(pd, s, r, NULL, NULL, m0));
8334 }
8335 
8336 static int
8337 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s,
8338     struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa,
8339     struct mbuf **m0)
8340 {
8341 	NET_EPOCH_ASSERT();
8342 
8343 	if (pd->act.dnpipe || pd->act.dnrpipe) {
8344 		struct ip_fw_args dnflow;
8345 		if (ip_dn_io_ptr == NULL) {
8346 			m_freem(*m0);
8347 			*m0 = NULL;
8348 			return (ENOMEM);
8349 		}
8350 
8351 		if (pd->pf_mtag == NULL &&
8352 		    ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) {
8353 			m_freem(*m0);
8354 			*m0 = NULL;
8355 			return (ENOMEM);
8356 		}
8357 
8358 		if (ifp != NULL) {
8359 			pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO;
8360 
8361 			pd->pf_mtag->if_index = ifp->if_index;
8362 			pd->pf_mtag->if_idxgen = ifp->if_idxgen;
8363 
8364 			MPASS(sa != NULL);
8365 
8366 			switch (pd->af) {
8367 			case AF_INET:
8368 				memcpy(&pd->pf_mtag->dst, sa,
8369 				    sizeof(struct sockaddr_in));
8370 				break;
8371 			case AF_INET6:
8372 				memcpy(&pd->pf_mtag->dst, sa,
8373 				    sizeof(struct sockaddr_in6));
8374 				break;
8375 			}
8376 		}
8377 
8378 		if (s != NULL && s->nat_rule != NULL &&
8379 		    s->nat_rule->action == PF_RDR &&
8380 		    (
8381 #ifdef INET
8382 		    (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) ||
8383 #endif
8384 		    (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) {
8385 			/*
8386 			 * If we're redirecting to loopback mark this packet
8387 			 * as being local. Otherwise it might get dropped
8388 			 * if dummynet re-injects.
8389 			 */
8390 			(*m0)->m_pkthdr.rcvif = V_loif;
8391 		}
8392 
8393 		if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) {
8394 			pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
8395 			pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED;
8396 			ip_dn_io_ptr(m0, &dnflow);
8397 			if (*m0 != NULL) {
8398 				pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
8399 				pf_dummynet_flag_remove(*m0, pd->pf_mtag);
8400 			}
8401 		}
8402 	}
8403 
8404 	return (0);
8405 }
8406 
8407 #ifdef INET6
8408 static int
8409 pf_walk_option6(struct mbuf *m, int off, int end, uint32_t *jumbolen,
8410     u_short *reason)
8411 {
8412 	struct ip6_opt		 opt;
8413 	struct ip6_opt_jumbo	 jumbo;
8414 	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
8415 
8416 	while (off < end) {
8417 		if (!pf_pull_hdr(m, off, &opt.ip6o_type, sizeof(opt.ip6o_type),
8418 			NULL, reason, AF_INET6)) {
8419 			DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt type"));
8420 			return (PF_DROP);
8421 		}
8422 		if (opt.ip6o_type == IP6OPT_PAD1) {
8423 			off++;
8424 			continue;
8425 		}
8426 		if (!pf_pull_hdr(m, off, &opt, sizeof(opt), NULL, reason,
8427 			AF_INET6)) {
8428 			DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt"));
8429 			return (PF_DROP);
8430 		}
8431 		if (off + sizeof(opt) + opt.ip6o_len > end) {
8432 			DPFPRINTF(PF_DEBUG_MISC, ("IPv6 long opt"));
8433 			REASON_SET(reason, PFRES_IPOPTIONS);
8434 			return (PF_DROP);
8435 		}
8436 		switch (opt.ip6o_type) {
8437 		case IP6OPT_JUMBO:
8438 			if (*jumbolen != 0) {
8439 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple jumbo"));
8440 				REASON_SET(reason, PFRES_IPOPTIONS);
8441 				return (PF_DROP);
8442 			}
8443 			if (ntohs(h->ip6_plen) != 0) {
8444 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 bad jumbo plen"));
8445 				REASON_SET(reason, PFRES_IPOPTIONS);
8446 				return (PF_DROP);
8447 			}
8448 			if (!pf_pull_hdr(m, off, &jumbo, sizeof(jumbo), NULL,
8449 				reason, AF_INET6)) {
8450 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbo"));
8451 				return (PF_DROP);
8452 			}
8453 			memcpy(jumbolen, jumbo.ip6oj_jumbo_len,
8454 			    sizeof(*jumbolen));
8455 			*jumbolen = ntohl(*jumbolen);
8456 			if (*jumbolen < IPV6_MAXPACKET) {
8457 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbolen"));
8458 				REASON_SET(reason, PFRES_IPOPTIONS);
8459 				return (PF_DROP);
8460 			}
8461 			break;
8462 		default:
8463 			break;
8464 		}
8465 		off += sizeof(opt) + opt.ip6o_len;
8466 	}
8467 
8468 	return (PF_PASS);
8469 }
8470 
8471 int
8472 pf_walk_header6(struct mbuf *m, struct ip6_hdr *h, int *off, int *extoff,
8473     int *fragoff, uint8_t *nxt, uint32_t *jumbolen, u_short *reason)
8474 {
8475 	struct ip6_frag		 frag;
8476 	struct ip6_ext		 ext;
8477 	struct ip6_rthdr	 rthdr;
8478 	int			 rthdr_cnt = 0;
8479 
8480 	*off += sizeof(struct ip6_hdr);
8481 	*extoff = *fragoff = 0;
8482 	*nxt = h->ip6_nxt;
8483 	*jumbolen = 0;
8484 	for (;;) {
8485 		switch (*nxt) {
8486 		case IPPROTO_FRAGMENT:
8487 			if (*fragoff != 0) {
8488 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple fragment"));
8489 				REASON_SET(reason, PFRES_FRAG);
8490 				return (PF_DROP);
8491 			}
8492 			/* jumbo payload packets cannot be fragmented */
8493 			if (*jumbolen != 0) {
8494 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 fragmented jumbo"));
8495 				REASON_SET(reason, PFRES_FRAG);
8496 				return (PF_DROP);
8497 			}
8498 			if (!pf_pull_hdr(m, *off, &frag, sizeof(frag), NULL,
8499 				reason, AF_INET6)) {
8500 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short fragment"));
8501 				return (PF_DROP);
8502 			}
8503 			*fragoff = *off;
8504 			/* stop walking over non initial fragments */
8505 			if ((frag.ip6f_offlg & IP6F_OFF_MASK) != 0)
8506 				return (PF_PASS);
8507 			*off += sizeof(frag);
8508 			*nxt = frag.ip6f_nxt;
8509 			break;
8510 		case IPPROTO_ROUTING:
8511 			if (rthdr_cnt++) {
8512 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple rthdr"));
8513 				REASON_SET(reason, PFRES_IPOPTIONS);
8514 				return (PF_DROP);
8515 			}
8516 			if (!pf_pull_hdr(m, *off, &rthdr, sizeof(rthdr), NULL,
8517 				reason, AF_INET6)) {
8518 				/* fragments may be short */
8519 				if (*fragoff != 0) {
8520 					*off = *fragoff;
8521 					*nxt = IPPROTO_FRAGMENT;
8522 					return (PF_PASS);
8523 				}
8524 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short rthdr"));
8525 				return (PF_DROP);
8526 			}
8527 			if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) {
8528 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 rthdr0"));
8529 				REASON_SET(reason, PFRES_IPOPTIONS);
8530 				return (PF_DROP);
8531 			}
8532 			/* FALLTHROUGH */
8533 		case IPPROTO_AH:
8534 		case IPPROTO_HOPOPTS:
8535 		case IPPROTO_DSTOPTS:
8536 			if (!pf_pull_hdr(m, *off, &ext, sizeof(ext), NULL,
8537 				reason, AF_INET6)) {
8538 				/* fragments may be short */
8539 				if (*fragoff != 0) {
8540 					*off = *fragoff;
8541 					*nxt = IPPROTO_FRAGMENT;
8542 					return (PF_PASS);
8543 				}
8544 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short exthdr"));
8545 				return (PF_DROP);
8546 			}
8547 			/* reassembly needs the ext header before the frag */
8548 			if (*fragoff == 0)
8549 				*extoff = *off;
8550 			if (*nxt == IPPROTO_HOPOPTS && *fragoff == 0) {
8551 				if (pf_walk_option6(m, *off + sizeof(ext),
8552 					*off + (ext.ip6e_len + 1) * 8, jumbolen,
8553 					reason) != PF_PASS)
8554 					return (PF_DROP);
8555 				if (ntohs(h->ip6_plen) == 0 && *jumbolen != 0) {
8556 					DPFPRINTF(PF_DEBUG_MISC,
8557 					    ("IPv6 missing jumbo"));
8558 					REASON_SET(reason, PFRES_IPOPTIONS);
8559 					return (PF_DROP);
8560 				}
8561 			}
8562 			if (*nxt == IPPROTO_AH)
8563 				*off += (ext.ip6e_len + 2) * 4;
8564 			else
8565 				*off += (ext.ip6e_len + 1) * 8;
8566 			*nxt = ext.ip6e_nxt;
8567 			break;
8568 		case IPPROTO_TCP:
8569 		case IPPROTO_UDP:
8570 		case IPPROTO_SCTP:
8571 		case IPPROTO_ICMPV6:
8572 			/* fragments may be short, ignore inner header then */
8573 			if (*fragoff != 0 && ntohs(h->ip6_plen) < *off +
8574 			    (*nxt == IPPROTO_TCP ? sizeof(struct tcphdr) :
8575 			    *nxt == IPPROTO_UDP ? sizeof(struct udphdr) :
8576 			    *nxt == IPPROTO_SCTP ? sizeof(struct sctphdr) :
8577 			    sizeof(struct icmp6_hdr))) {
8578 				*off = *fragoff;
8579 				*nxt = IPPROTO_FRAGMENT;
8580 			}
8581 			/* FALLTHROUGH */
8582 		default:
8583 			return (PF_PASS);
8584 		}
8585 	}
8586 }
8587 #endif
8588 
8589 static void
8590 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m)
8591 {
8592 	memset(pd, 0, sizeof(*pd));
8593 	pd->pf_mtag = pf_find_mtag(m);
8594 	pd->m = m;
8595 }
8596 
8597 static int
8598 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0,
8599     u_short *action, u_short *reason, struct pfi_kkif *kif,
8600     struct pf_rule_actions *default_actions)
8601 {
8602 	pd->af = af;
8603 	pd->dir = dir;
8604 	pd->kif = kif;
8605 	pd->m = *m0;
8606 	pd->sidx = (dir == PF_IN) ? 0 : 1;
8607 	pd->didx = (dir == PF_IN) ? 1 : 0;
8608 
8609 	TAILQ_INIT(&pd->sctp_multihome_jobs);
8610 	if (default_actions != NULL)
8611 		memcpy(&pd->act, default_actions, sizeof(pd->act));
8612 
8613 	if (pd->pf_mtag && pd->pf_mtag->dnpipe) {
8614 		pd->act.dnpipe = pd->pf_mtag->dnpipe;
8615 		pd->act.flags = pd->pf_mtag->dnflags;
8616 	}
8617 
8618 	switch (af) {
8619 #ifdef INET
8620 	case AF_INET: {
8621 		struct ip *h;
8622 
8623 		if (__predict_false((*m0)->m_len < sizeof(struct ip)) &&
8624 		    (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) {
8625 			DPFPRINTF(PF_DEBUG_URGENT,
8626 			    ("pf_test: m_len < sizeof(struct ip), pullup failed\n"));
8627 			*action = PF_DROP;
8628 			REASON_SET(reason, PFRES_SHORT);
8629 			return (-1);
8630 		}
8631 
8632 		if (pf_normalize_ip(m0, reason, pd) != PF_PASS) {
8633 			/* We do IP header normalization and packet reassembly here */
8634 			*action = PF_DROP;
8635 			return (-1);
8636 		}
8637 		pd->m = *m0;
8638 
8639 		h = mtod(pd->m, struct ip *);
8640 		pd->off = h->ip_hl << 2;
8641 		if (pd->off < (int)sizeof(*h)) {
8642 			*action = PF_DROP;
8643 			REASON_SET(reason, PFRES_SHORT);
8644 			return (-1);
8645 		}
8646 		pd->src = (struct pf_addr *)&h->ip_src;
8647 		pd->dst = (struct pf_addr *)&h->ip_dst;
8648 		pd->ip_sum = &h->ip_sum;
8649 		pd->proto_sum = NULL;
8650 		pd->virtual_proto = pd->proto = h->ip_p;
8651 		pd->tos = h->ip_tos;
8652 		pd->ttl = h->ip_ttl;
8653 		pd->tot_len = ntohs(h->ip_len);
8654 		pd->act.rtableid = -1;
8655 
8656 		if (h->ip_hl > 5)	/* has options */
8657 			pd->badopts++;
8658 
8659 		if (h->ip_off & htons(IP_MF | IP_OFFMASK))
8660 			pd->virtual_proto = PF_VPROTO_FRAGMENT;
8661 
8662 		break;
8663 	}
8664 #endif
8665 #ifdef INET6
8666 	case AF_INET6: {
8667 		struct ip6_hdr *h;
8668 		int fragoff;
8669 		uint32_t jumbolen;
8670 		uint8_t nxt;
8671 
8672 		if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) &&
8673 		    (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) {
8674 			DPFPRINTF(PF_DEBUG_URGENT,
8675 			    ("pf_test6: m_len < sizeof(struct ip6_hdr)"
8676 			     ", pullup failed\n"));
8677 			*action = PF_DROP;
8678 			REASON_SET(reason, PFRES_SHORT);
8679 			return (-1);
8680 		}
8681 
8682 		h = mtod(pd->m, struct ip6_hdr *);
8683 		pd->off = 0;
8684 		if (pf_walk_header6(pd->m, h, &pd->off, &pd->extoff, &fragoff, &nxt,
8685 		    &jumbolen, reason) != PF_PASS) {
8686 			*action = PF_DROP;
8687 			return (-1);
8688 		}
8689 
8690 		h = mtod(pd->m, struct ip6_hdr *);
8691 		pd->src = (struct pf_addr *)&h->ip6_src;
8692 		pd->dst = (struct pf_addr *)&h->ip6_dst;
8693 		pd->ip_sum = NULL;
8694 		pd->proto_sum = NULL;
8695 		pd->tos = IPV6_DSCP(h);
8696 		pd->ttl = h->ip6_hlim;
8697 		pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
8698 		pd->virtual_proto = pd->proto = h->ip6_nxt;
8699 		pd->act.rtableid = -1;
8700 
8701 		if (fragoff != 0)
8702 			pd->virtual_proto = PF_VPROTO_FRAGMENT;
8703 
8704 		/*
8705 		 * we do not support jumbogram.  if we keep going, zero ip6_plen
8706 		 * will do something bad, so drop the packet for now.
8707 		 */
8708 		if (htons(h->ip6_plen) == 0) {
8709 			*action = PF_DROP;
8710 			return (-1);
8711 		}
8712 
8713 		/* We do IP header normalization and packet reassembly here */
8714 		if (pf_normalize_ip6(m0, fragoff, reason, pd) !=
8715 		    PF_PASS) {
8716 			*action = PF_DROP;
8717 			return (-1);
8718 		}
8719 		pd->m = *m0;
8720 		if (pd->m == NULL) {
8721 			/* packet sits in reassembly queue, no error */
8722 			*action = PF_PASS;
8723 			return (-1);
8724 		}
8725 
8726 		/* Update pointers into the packet. */
8727 		h = mtod(pd->m, struct ip6_hdr *);
8728 		pd->src = (struct pf_addr *)&h->ip6_src;
8729 		pd->dst = (struct pf_addr *)&h->ip6_dst;
8730 
8731 		/*
8732 		 * Reassembly may have changed the next protocol from fragment
8733 		 * to something else, so update.
8734 		 */
8735 		pd->virtual_proto = pd->proto = h->ip6_nxt;
8736 		pd->off = 0;
8737 
8738 		if (pf_walk_header6(pd->m, h, &pd->off, &pd->extoff, &fragoff, &nxt,
8739 			&jumbolen, reason) != PF_PASS) {
8740 			*action = PF_DROP;
8741 			return (-1);
8742 		}
8743 
8744 		if (fragoff != 0)
8745 			pd->virtual_proto = PF_VPROTO_FRAGMENT;
8746 
8747 		break;
8748 	}
8749 #endif
8750 	default:
8751 		panic("pf_setup_pdesc called with illegal af %u", af);
8752 	}
8753 
8754 	switch (pd->virtual_proto) {
8755 	case IPPROTO_TCP: {
8756 		struct tcphdr *th = &pd->hdr.tcp;
8757 
8758 		if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th), action,
8759 			reason, af)) {
8760 			*action = PF_DROP;
8761 			REASON_SET(reason, PFRES_SHORT);
8762 			return (-1);
8763 		}
8764 		pd->hdrlen = sizeof(*th);
8765 		pd->p_len = pd->tot_len - pd->off - (th->th_off << 2);
8766 		pd->sport = &th->th_sport;
8767 		pd->dport = &th->th_dport;
8768 		break;
8769 	}
8770 	case IPPROTO_UDP: {
8771 		struct udphdr *uh = &pd->hdr.udp;
8772 
8773 		if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh), action,
8774 			reason, af)) {
8775 			*action = PF_DROP;
8776 			REASON_SET(reason, PFRES_SHORT);
8777 			return (-1);
8778 		}
8779 		pd->hdrlen = sizeof(*uh);
8780 		if (uh->uh_dport == 0 ||
8781 		    ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off ||
8782 		    ntohs(uh->uh_ulen) < sizeof(struct udphdr)) {
8783 			*action = PF_DROP;
8784 			REASON_SET(reason, PFRES_SHORT);
8785 			return (-1);
8786 		}
8787 		pd->sport = &uh->uh_sport;
8788 		pd->dport = &uh->uh_dport;
8789 		break;
8790 	}
8791 	case IPPROTO_SCTP: {
8792 		if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp),
8793 		    action, reason, af)) {
8794 			*action = PF_DROP;
8795 			REASON_SET(reason, PFRES_SHORT);
8796 			return (-1);
8797 		}
8798 		pd->hdrlen = sizeof(pd->hdr.sctp);
8799 		pd->p_len = pd->tot_len - pd->off;
8800 
8801 		pd->sport = &pd->hdr.sctp.src_port;
8802 		pd->dport = &pd->hdr.sctp.dest_port;
8803 		if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) {
8804 			*action = PF_DROP;
8805 			REASON_SET(reason, PFRES_SHORT);
8806 			return (-1);
8807 		}
8808 		if (pf_scan_sctp(pd) != PF_PASS) {
8809 			*action = PF_DROP;
8810 			REASON_SET(reason, PFRES_SHORT);
8811 			return (-1);
8812 		}
8813 		break;
8814 	}
8815 	case IPPROTO_ICMP: {
8816 		if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN,
8817 			action, reason, af)) {
8818 			*action = PF_DROP;
8819 			REASON_SET(reason, PFRES_SHORT);
8820 			return (-1);
8821 		}
8822 		pd->hdrlen = ICMP_MINLEN;
8823 		break;
8824 	}
8825 #ifdef INET6
8826 	case IPPROTO_ICMPV6: {
8827 		size_t icmp_hlen = sizeof(struct icmp6_hdr);
8828 
8829 		if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
8830 			action, reason, af)) {
8831 			*action = PF_DROP;
8832 			REASON_SET(reason, PFRES_SHORT);
8833 			return (-1);
8834 		}
8835 		/* ICMP headers we look further into to match state */
8836 		switch (pd->hdr.icmp6.icmp6_type) {
8837 		case MLD_LISTENER_QUERY:
8838 		case MLD_LISTENER_REPORT:
8839 			icmp_hlen = sizeof(struct mld_hdr);
8840 			break;
8841 		case ND_NEIGHBOR_SOLICIT:
8842 		case ND_NEIGHBOR_ADVERT:
8843 			icmp_hlen = sizeof(struct nd_neighbor_solicit);
8844 			break;
8845 		}
8846 		if (icmp_hlen > sizeof(struct icmp6_hdr) &&
8847 		    !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
8848 			action, reason, af)) {
8849 			*action = PF_DROP;
8850 			REASON_SET(reason, PFRES_SHORT);
8851 			return (-1);
8852 		}
8853 		pd->hdrlen = icmp_hlen;
8854 		break;
8855 	}
8856 #endif
8857 	}
8858 	return (0);
8859 }
8860 
8861 static void
8862 pf_counters_inc(int action, struct pf_pdesc *pd,
8863     struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a)
8864 {
8865 	struct pf_krule		*tr;
8866 	int			 dir = pd->dir;
8867 	int			 dirndx;
8868 
8869 	pf_counter_u64_critical_enter();
8870 	pf_counter_u64_add_protected(
8871 	    &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
8872 	    pd->tot_len);
8873 	pf_counter_u64_add_protected(
8874 	    &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
8875 	    1);
8876 
8877 	if (action == PF_PASS || r->action == PF_DROP) {
8878 		dirndx = (dir == PF_OUT);
8879 		pf_counter_u64_add_protected(&r->packets[dirndx], 1);
8880 		pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len);
8881 		pf_update_timestamp(r);
8882 
8883 		if (a != NULL) {
8884 			pf_counter_u64_add_protected(&a->packets[dirndx], 1);
8885 			pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len);
8886 		}
8887 		if (s != NULL) {
8888 			struct pf_krule_item	*ri;
8889 
8890 			if (s->nat_rule != NULL) {
8891 				pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx],
8892 				    1);
8893 				pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx],
8894 				    pd->tot_len);
8895 			}
8896 			if (s->src_node != NULL) {
8897 				counter_u64_add(s->src_node->packets[dirndx],
8898 				    1);
8899 				counter_u64_add(s->src_node->bytes[dirndx],
8900 				    pd->tot_len);
8901 			}
8902 			if (s->nat_src_node != NULL) {
8903 				counter_u64_add(s->nat_src_node->packets[dirndx],
8904 				    1);
8905 				counter_u64_add(s->nat_src_node->bytes[dirndx],
8906 				    pd->tot_len);
8907 			}
8908 			dirndx = (dir == s->direction) ? 0 : 1;
8909 			s->packets[dirndx]++;
8910 			s->bytes[dirndx] += pd->tot_len;
8911 
8912 			SLIST_FOREACH(ri, &s->match_rules, entry) {
8913 				pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1);
8914 				pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len);
8915 			}
8916 		}
8917 
8918 		tr = r;
8919 		if (s != NULL && s->nat_rule != NULL &&
8920 		    r == &V_pf_default_rule)
8921 			tr = s->nat_rule;
8922 
8923 		if (tr->src.addr.type == PF_ADDR_TABLE)
8924 			pfr_update_stats(tr->src.addr.p.tbl,
8925 			    (s == NULL) ? pd->src :
8926 			    &s->key[(s->direction == PF_IN)]->
8927 				addr[(s->direction == PF_OUT)],
8928 			    pd->af, pd->tot_len, dir == PF_OUT,
8929 			    r->action == PF_PASS, tr->src.neg);
8930 		if (tr->dst.addr.type == PF_ADDR_TABLE)
8931 			pfr_update_stats(tr->dst.addr.p.tbl,
8932 			    (s == NULL) ? pd->dst :
8933 			    &s->key[(s->direction == PF_IN)]->
8934 				addr[(s->direction == PF_IN)],
8935 			    pd->af, pd->tot_len, dir == PF_OUT,
8936 			    r->action == PF_PASS, tr->dst.neg);
8937 	}
8938 	pf_counter_u64_critical_exit();
8939 }
8940 
8941 #if defined(INET) || defined(INET6)
8942 int
8943 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
8944     struct inpcb *inp, struct pf_rule_actions *default_actions)
8945 {
8946 	struct pfi_kkif		*kif;
8947 	u_short			 action, reason = 0;
8948 	struct m_tag		*mtag;
8949 	struct pf_krule		*a = NULL, *r = &V_pf_default_rule;
8950 	struct pf_kstate	*s = NULL;
8951 	struct pf_kruleset	*ruleset = NULL;
8952 	struct pf_pdesc		 pd;
8953 	int			 use_2nd_queue = 0;
8954 	uint16_t		 tag;
8955 	uint8_t			 rt;
8956 
8957 	PF_RULES_RLOCK_TRACKER;
8958 	KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir));
8959 	M_ASSERTPKTHDR(*m0);
8960 
8961 	if (!V_pf_status.running)
8962 		return (PF_PASS);
8963 
8964 	PF_RULES_RLOCK();
8965 
8966 	kif = (struct pfi_kkif *)ifp->if_pf_kif;
8967 
8968 	if (__predict_false(kif == NULL)) {
8969 		DPFPRINTF(PF_DEBUG_URGENT,
8970 		    ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname));
8971 		PF_RULES_RUNLOCK();
8972 		return (PF_DROP);
8973 	}
8974 	if (kif->pfik_flags & PFI_IFLAG_SKIP) {
8975 		PF_RULES_RUNLOCK();
8976 		return (PF_PASS);
8977 	}
8978 
8979 	if ((*m0)->m_flags & M_SKIP_FIREWALL) {
8980 		PF_RULES_RUNLOCK();
8981 		return (PF_PASS);
8982 	}
8983 
8984 #ifdef INET6
8985 	/*
8986 	 * If we end up changing IP addresses (e.g. binat) the stack may get
8987 	 * confused and fail to send the icmp6 packet too big error. Just send
8988 	 * it here, before we do any NAT.
8989 	 */
8990 	if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD &&
8991 	    IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) {
8992 		PF_RULES_RUNLOCK();
8993 		icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp));
8994 		*m0 = NULL;
8995 		return (PF_DROP);
8996 	}
8997 #endif
8998 
8999 	if (__predict_false(! M_WRITABLE(*m0))) {
9000 		*m0 = m_unshare(*m0, M_NOWAIT);
9001 		if (*m0 == NULL)
9002 			return (PF_DROP);
9003 	}
9004 
9005 	pf_init_pdesc(&pd, *m0);
9006 
9007 	if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) {
9008 		pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
9009 
9010 		ifp = ifnet_byindexgen(pd.pf_mtag->if_index,
9011 		    pd.pf_mtag->if_idxgen);
9012 		if (ifp == NULL || ifp->if_flags & IFF_DYING) {
9013 			PF_RULES_RUNLOCK();
9014 			m_freem(*m0);
9015 			*m0 = NULL;
9016 			return (PF_PASS);
9017 		}
9018 		PF_RULES_RUNLOCK();
9019 		(ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL);
9020 		*m0 = NULL;
9021 		return (PF_PASS);
9022 	}
9023 
9024 	if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL &&
9025 	    pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
9026 		/* Dummynet re-injects packets after they've
9027 		 * completed their delay. We've already
9028 		 * processed them, so pass unconditionally. */
9029 
9030 		/* But only once. We may see the packet multiple times (e.g.
9031 		 * PFIL_IN/PFIL_OUT). */
9032 		pf_dummynet_flag_remove(pd.m, pd.pf_mtag);
9033 		PF_RULES_RUNLOCK();
9034 
9035 		return (PF_PASS);
9036 	}
9037 
9038 	if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason,
9039 		kif, default_actions) == -1) {
9040 		if (action != PF_PASS)
9041 			pd.act.log |= PF_LOG_FORCE;
9042 		goto done;
9043 	}
9044 
9045 	if (__predict_false(ip_divert_ptr != NULL) &&
9046 	    ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) {
9047 		struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1);
9048 		if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) ||
9049 		    (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) {
9050 			if (pd.pf_mtag == NULL &&
9051 			    ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
9052 				action = PF_DROP;
9053 				goto done;
9054 			}
9055 			pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED;
9056 		}
9057 		if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) {
9058 			pd.m->m_flags |= M_FASTFWD_OURS;
9059 			pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
9060 		}
9061 		m_tag_delete(pd.m, mtag);
9062 
9063 		mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL);
9064 		if (mtag != NULL)
9065 			m_tag_delete(pd.m, mtag);
9066 	}
9067 
9068 	switch (pd.virtual_proto) {
9069 	case PF_VPROTO_FRAGMENT:
9070 		/*
9071 		 * handle fragments that aren't reassembled by
9072 		 * normalization
9073 		 */
9074 		if (kif == NULL || r == NULL) /* pflog */
9075 			action = PF_DROP;
9076 		else
9077 			action = pf_test_rule(&r, &s, &pd, &a,
9078 			    &ruleset, inp);
9079 		if (action != PF_PASS)
9080 			REASON_SET(&reason, PFRES_FRAG);
9081 		break;
9082 
9083 	case IPPROTO_TCP: {
9084 		/* Respond to SYN with a syncookie. */
9085 		if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN &&
9086 		    pd.dir == PF_IN && pf_synflood_check(&pd)) {
9087 			pf_syncookie_send(&pd);
9088 			action = PF_DROP;
9089 			break;
9090 		}
9091 
9092 		if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0)
9093 			use_2nd_queue = 1;
9094 		action = pf_normalize_tcp(&pd);
9095 		if (action == PF_DROP)
9096 			goto done;
9097 		action = pf_test_state_tcp(&s, &pd, &reason);
9098 		if (action == PF_PASS) {
9099 			if (V_pfsync_update_state_ptr != NULL)
9100 				V_pfsync_update_state_ptr(s);
9101 			r = s->rule;
9102 			a = s->anchor;
9103 		} else if (s == NULL) {
9104 			/* Validate remote SYN|ACK, re-create original SYN if
9105 			 * valid. */
9106 			if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) ==
9107 			    TH_ACK && pf_syncookie_validate(&pd) &&
9108 			    pd.dir == PF_IN) {
9109 				struct mbuf *msyn;
9110 
9111 				msyn = pf_syncookie_recreate_syn(&pd);
9112 				if (msyn == NULL) {
9113 					action = PF_DROP;
9114 					break;
9115 				}
9116 
9117 				action = pf_test(af, dir, pflags, ifp, &msyn, inp,
9118 				    &pd.act);
9119 				m_freem(msyn);
9120 				if (action != PF_PASS)
9121 					break;
9122 
9123 				action = pf_test_state_tcp(&s, &pd, &reason);
9124 				if (action != PF_PASS || s == NULL) {
9125 					action = PF_DROP;
9126 					break;
9127 				}
9128 
9129 				s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1;
9130 				s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1;
9131 				pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST);
9132 				action = pf_synproxy(&pd, &s, &reason);
9133 				break;
9134 			} else {
9135 				action = pf_test_rule(&r, &s, &pd,
9136 				    &a, &ruleset, inp);
9137 			}
9138 		}
9139 		break;
9140 	}
9141 
9142 	case IPPROTO_UDP: {
9143 		action = pf_test_state_udp(&s, &pd);
9144 		if (action == PF_PASS) {
9145 			if (V_pfsync_update_state_ptr != NULL)
9146 				V_pfsync_update_state_ptr(s);
9147 			r = s->rule;
9148 			a = s->anchor;
9149 		} else if (s == NULL)
9150 			action = pf_test_rule(&r, &s, &pd,
9151 			    &a, &ruleset, inp);
9152 		break;
9153 	}
9154 
9155 	case IPPROTO_SCTP: {
9156 		action = pf_normalize_sctp(&pd);
9157 		if (action == PF_DROP)
9158 			goto done;
9159 		action = pf_test_state_sctp(&s, &pd, &reason);
9160 		if (action == PF_PASS) {
9161 			if (V_pfsync_update_state_ptr != NULL)
9162 				V_pfsync_update_state_ptr(s);
9163 			r = s->rule;
9164 			a = s->anchor;
9165 		} else if (s == NULL) {
9166 			action = pf_test_rule(&r, &s,
9167 			    &pd, &a, &ruleset, inp);
9168 		}
9169 		break;
9170 	}
9171 
9172 	case IPPROTO_ICMP: {
9173 		if (af != AF_INET) {
9174 			action = PF_DROP;
9175 			REASON_SET(&reason, PFRES_NORM);
9176 			DPFPRINTF(PF_DEBUG_MISC,
9177 			    ("dropping IPv6 packet with ICMPv4 payload"));
9178 			goto done;
9179 		}
9180 		action = pf_test_state_icmp(&s, &pd, &reason);
9181 		if (action == PF_PASS) {
9182 			if (V_pfsync_update_state_ptr != NULL)
9183 				V_pfsync_update_state_ptr(s);
9184 			r = s->rule;
9185 			a = s->anchor;
9186 		} else if (s == NULL)
9187 			action = pf_test_rule(&r, &s, &pd,
9188 			    &a, &ruleset, inp);
9189 		break;
9190 	}
9191 
9192 	case IPPROTO_ICMPV6: {
9193 		if (af != AF_INET6) {
9194 			action = PF_DROP;
9195 			REASON_SET(&reason, PFRES_NORM);
9196 			DPFPRINTF(PF_DEBUG_MISC,
9197 			    ("pf: dropping IPv4 packet with ICMPv6 payload\n"));
9198 			goto done;
9199 		}
9200 		action = pf_test_state_icmp(&s, &pd, &reason);
9201 		if (action == PF_PASS) {
9202 			if (V_pfsync_update_state_ptr != NULL)
9203 				V_pfsync_update_state_ptr(s);
9204 			r = s->rule;
9205 			a = s->anchor;
9206 		} else if (s == NULL)
9207 			action = pf_test_rule(&r, &s, &pd,
9208 			    &a, &ruleset, inp);
9209 		break;
9210 	}
9211 
9212 	default:
9213 		action = pf_test_state_other(&s, &pd);
9214 		if (action == PF_PASS) {
9215 			if (V_pfsync_update_state_ptr != NULL)
9216 				V_pfsync_update_state_ptr(s);
9217 			r = s->rule;
9218 			a = s->anchor;
9219 		} else if (s == NULL)
9220 			action = pf_test_rule(&r, &s, &pd,
9221 			    &a, &ruleset, inp);
9222 		break;
9223 	}
9224 
9225 done:
9226 	PF_RULES_RUNLOCK();
9227 
9228 	if (pd.m == NULL)
9229 		goto eat_pkt;
9230 
9231 	if (action == PF_PASS && pd.badopts &&
9232 	    !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) {
9233 		action = PF_DROP;
9234 		REASON_SET(&reason, PFRES_IPOPTIONS);
9235 		pd.act.log = PF_LOG_FORCE;
9236 		DPFPRINTF(PF_DEBUG_MISC,
9237 		    ("pf: dropping packet with dangerous headers\n"));
9238 	}
9239 
9240 	if (s) {
9241 		uint8_t log = pd.act.log;
9242 		memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions));
9243 		pd.act.log |= log;
9244 		tag = s->tag;
9245 		rt = s->rt;
9246 	} else {
9247 		tag = r->tag;
9248 		rt = r->rt;
9249 	}
9250 
9251 	if (tag > 0 && pf_tag_packet(&pd, tag)) {
9252 		action = PF_DROP;
9253 		REASON_SET(&reason, PFRES_MEMORY);
9254 	}
9255 
9256 	pf_scrub(&pd);
9257 	if (pd.proto == IPPROTO_TCP && pd.act.max_mss)
9258 		pf_normalize_mss(&pd);
9259 
9260 	if (pd.act.rtableid >= 0)
9261 		M_SETFIB(pd.m, pd.act.rtableid);
9262 
9263 	if (pd.act.flags & PFSTATE_SETPRIO) {
9264 		if (pd.tos & IPTOS_LOWDELAY)
9265 			use_2nd_queue = 1;
9266 		if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) {
9267 			action = PF_DROP;
9268 			REASON_SET(&reason, PFRES_MEMORY);
9269 			pd.act.log = PF_LOG_FORCE;
9270 			DPFPRINTF(PF_DEBUG_MISC,
9271 			    ("pf: failed to allocate 802.1q mtag\n"));
9272 		}
9273 	}
9274 
9275 #ifdef ALTQ
9276 	if (action == PF_PASS && pd.act.qid) {
9277 		if (pd.pf_mtag == NULL &&
9278 		    ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
9279 			action = PF_DROP;
9280 			REASON_SET(&reason, PFRES_MEMORY);
9281 		} else {
9282 			if (s != NULL)
9283 				pd.pf_mtag->qid_hash = pf_state_hash(s);
9284 			if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY))
9285 				pd.pf_mtag->qid = pd.act.pqid;
9286 			else
9287 				pd.pf_mtag->qid = pd.act.qid;
9288 			/* Add hints for ecn. */
9289 			pd.pf_mtag->hdr = mtod(pd.m, void *);
9290 		}
9291 	}
9292 #endif /* ALTQ */
9293 
9294 	/*
9295 	 * connections redirected to loopback should not match sockets
9296 	 * bound specifically to loopback due to security implications,
9297 	 * see tcp_input() and in_pcblookup_listen().
9298 	 */
9299 	if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP ||
9300 	    pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL &&
9301 	    (s->nat_rule->action == PF_RDR ||
9302 	    s->nat_rule->action == PF_BINAT) &&
9303 	    pf_is_loopback(af, pd.dst))
9304 		pd.m->m_flags |= M_SKIP_FIREWALL;
9305 
9306 	if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) &&
9307 	    action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) {
9308 		mtag = m_tag_alloc(MTAG_PF_DIVERT, 0,
9309 		    sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO);
9310 		if (mtag != NULL) {
9311 			((struct pf_divert_mtag *)(mtag+1))->port =
9312 			    ntohs(r->divert.port);
9313 			((struct pf_divert_mtag *)(mtag+1))->idir =
9314 			    (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN :
9315 			    PF_DIVERT_MTAG_DIR_OUT;
9316 
9317 			if (s)
9318 				PF_STATE_UNLOCK(s);
9319 
9320 			m_tag_prepend(pd.m, mtag);
9321 			if (pd.m->m_flags & M_FASTFWD_OURS) {
9322 				if (pd.pf_mtag == NULL &&
9323 				    ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
9324 					action = PF_DROP;
9325 					REASON_SET(&reason, PFRES_MEMORY);
9326 					pd.act.log = PF_LOG_FORCE;
9327 					DPFPRINTF(PF_DEBUG_MISC,
9328 					    ("pf: failed to allocate tag\n"));
9329 				} else {
9330 					pd.pf_mtag->flags |=
9331 					    PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
9332 					pd.m->m_flags &= ~M_FASTFWD_OURS;
9333 				}
9334 			}
9335 			ip_divert_ptr(*m0, dir == PF_IN);
9336 			*m0 = NULL;
9337 
9338 			return (action);
9339 		} else {
9340 			/* XXX: ipfw has the same behaviour! */
9341 			action = PF_DROP;
9342 			REASON_SET(&reason, PFRES_MEMORY);
9343 			pd.act.log = PF_LOG_FORCE;
9344 			DPFPRINTF(PF_DEBUG_MISC,
9345 			    ("pf: failed to allocate divert tag\n"));
9346 		}
9347 	}
9348 	/* XXX: Anybody working on it?! */
9349 	if (af == AF_INET6 && r->divert.port)
9350 		printf("pf: divert(9) is not supported for IPv6\n");
9351 
9352 	/* this flag will need revising if the pkt is forwarded */
9353 	if (pd.pf_mtag)
9354 		pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED;
9355 
9356 	if (pd.act.log) {
9357 		struct pf_krule		*lr;
9358 		struct pf_krule_item	*ri;
9359 
9360 		if (s != NULL && s->nat_rule != NULL &&
9361 		    s->nat_rule->log & PF_LOG_ALL)
9362 			lr = s->nat_rule;
9363 		else
9364 			lr = r;
9365 
9366 		if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL)
9367 			PFLOG_PACKET(action, reason, lr, a,
9368 			    ruleset, &pd, (s == NULL));
9369 		if (s) {
9370 			SLIST_FOREACH(ri, &s->match_rules, entry)
9371 				if (ri->r->log & PF_LOG_ALL)
9372 					PFLOG_PACKET(action,
9373 					    reason, ri->r, a, ruleset, &pd, 0);
9374 		}
9375 	}
9376 
9377 	pf_counters_inc(action, &pd, s, r, a);
9378 
9379 	switch (action) {
9380 	case PF_SYNPROXY_DROP:
9381 		m_freem(*m0);
9382 	case PF_DEFER:
9383 		*m0 = NULL;
9384 		action = PF_PASS;
9385 		break;
9386 	case PF_DROP:
9387 		m_freem(*m0);
9388 		*m0 = NULL;
9389 		break;
9390 	default:
9391 		if (rt) {
9392 			switch (af) {
9393 #ifdef INET
9394 			case AF_INET:
9395 				/* pf_route() returns unlocked. */
9396 				pf_route(m0, r, kif->pfik_ifp, s, &pd, inp);
9397 				break;
9398 #endif
9399 #ifdef INET6
9400 			case AF_INET6:
9401 				/* pf_route6() returns unlocked. */
9402 				pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp);
9403 				break;
9404 #endif
9405 			}
9406 			goto out;
9407 		}
9408 		if (pf_dummynet(&pd, s, r, m0) != 0) {
9409 			action = PF_DROP;
9410 			REASON_SET(&reason, PFRES_MEMORY);
9411 		}
9412 		break;
9413 	}
9414 
9415 eat_pkt:
9416 	SDT_PROBE4(pf, ip, test, done, action, reason, r, s);
9417 
9418 	if (s && action != PF_DROP) {
9419 		if (!s->if_index_in && dir == PF_IN)
9420 			s->if_index_in = ifp->if_index;
9421 		else if (!s->if_index_out && dir == PF_OUT)
9422 			s->if_index_out = ifp->if_index;
9423 	}
9424 
9425 	if (s)
9426 		PF_STATE_UNLOCK(s);
9427 
9428 #ifdef INET6
9429 	/* If reassembled packet passed, create new fragments. */
9430 	if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT &&
9431 	    (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL)
9432 		action = pf_refragment6(ifp, m0, mtag, pflags & PFIL_FWD);
9433 #endif
9434 
9435 out:
9436 	pf_sctp_multihome_delayed(&pd, kif, s, action);
9437 
9438 	return (action);
9439 }
9440 #endif /* INET || INET6 */
9441