1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 #include "opt_bpf.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_pf.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/gsb_crc32.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/sdt.h> 61 #include <sys/socket.h> 62 #include <sys/sysctl.h> 63 #include <sys/taskqueue.h> 64 #include <sys/ucred.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_private.h> 69 #include <net/if_types.h> 70 #include <net/if_vlan_var.h> 71 #include <net/route.h> 72 #include <net/route/nhop.h> 73 #include <net/vnet.h> 74 75 #include <net/pfil.h> 76 #include <net/pfvar.h> 77 #include <net/if_pflog.h> 78 #include <net/if_pfsync.h> 79 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_var.h> 82 #include <netinet/in_fib.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_fw.h> 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp.h> 89 #include <netinet/tcp_fsm.h> 90 #include <netinet/tcp_seq.h> 91 #include <netinet/tcp_timer.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet/udp.h> 94 #include <netinet/udp_var.h> 95 96 /* dummynet */ 97 #include <netinet/ip_dummynet.h> 98 #include <netinet/ip_fw.h> 99 #include <netpfil/ipfw/dn_heap.h> 100 #include <netpfil/ipfw/ip_fw_private.h> 101 #include <netpfil/ipfw/ip_dn_private.h> 102 103 #ifdef INET6 104 #include <netinet/ip6.h> 105 #include <netinet/icmp6.h> 106 #include <netinet6/nd6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet6/in6_pcb.h> 109 #include <netinet6/in6_fib.h> 110 #include <netinet6/scope6_var.h> 111 #endif /* INET6 */ 112 113 #include <netinet/sctp_header.h> 114 #include <netinet/sctp_crc32.h> 115 116 #include <machine/in_cksum.h> 117 #include <security/mac/mac_framework.h> 118 119 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 120 121 SDT_PROVIDER_DEFINE(pf); 122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 123 "struct pf_kstate *"); 124 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 125 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 126 "struct pf_kstate *"); 127 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *", 128 "struct pfi_kkif *"); 129 SDT_PROBE_DEFINE4(pf, ip, route_to, entry, "struct mbuf *", 130 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *"); 131 SDT_PROBE_DEFINE1(pf, ip, route_to, drop, "int"); 132 SDT_PROBE_DEFINE2(pf, ip, route_to, output, "struct ifnet *", "int"); 133 SDT_PROBE_DEFINE4(pf, ip6, route_to, entry, "struct mbuf *", 134 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *"); 135 SDT_PROBE_DEFINE1(pf, ip6, route_to, drop, "int"); 136 SDT_PROBE_DEFINE2(pf, ip6, route_to, output, "struct ifnet *", "int"); 137 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *", 138 "struct pf_krule *", "struct mbuf *", "int"); 139 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t", 140 "struct pf_sctp_source *"); 141 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t", 142 "struct pf_kstate *", "struct pf_sctp_source *"); 143 144 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 145 "struct mbuf *"); 146 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 147 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 148 "int", "struct pf_keth_rule *", "char *"); 149 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 150 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 151 "int", "struct pf_keth_rule *"); 152 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t"); 153 154 /* 155 * Global variables 156 */ 157 158 /* state tables */ 159 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 160 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 161 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 162 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 163 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 164 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 165 VNET_DEFINE(struct pf_kstatus, pf_status); 166 167 VNET_DEFINE(u_int32_t, ticket_altqs_active); 168 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 169 VNET_DEFINE(int, altqs_inactive_open); 170 VNET_DEFINE(u_int32_t, ticket_pabuf); 171 172 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 173 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 174 VNET_DEFINE(u_char, pf_tcp_secret[16]); 175 #define V_pf_tcp_secret VNET(pf_tcp_secret) 176 VNET_DEFINE(int, pf_tcp_secret_init); 177 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 178 VNET_DEFINE(int, pf_tcp_iss_off); 179 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 180 VNET_DECLARE(int, pf_vnet_active); 181 #define V_pf_vnet_active VNET(pf_vnet_active) 182 183 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 184 #define V_pf_purge_idx VNET(pf_purge_idx) 185 186 #ifdef PF_WANT_32_TO_64_COUNTER 187 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 188 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 189 190 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 191 VNET_DEFINE(size_t, pf_allrulecount); 192 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 193 #endif 194 195 struct pf_sctp_endpoint; 196 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint); 197 struct pf_sctp_source { 198 sa_family_t af; 199 struct pf_addr addr; 200 TAILQ_ENTRY(pf_sctp_source) entry; 201 }; 202 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source); 203 struct pf_sctp_endpoint 204 { 205 uint32_t v_tag; 206 struct pf_sctp_sources sources; 207 RB_ENTRY(pf_sctp_endpoint) entry; 208 }; 209 static int 210 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b) 211 { 212 return (a->v_tag - b->v_tag); 213 } 214 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 215 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 216 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints); 217 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints) 218 static struct mtx_padalign pf_sctp_endpoints_mtx; 219 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF); 220 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx) 221 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx) 222 223 /* 224 * Queue for pf_intr() sends. 225 */ 226 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 227 struct pf_send_entry { 228 STAILQ_ENTRY(pf_send_entry) pfse_next; 229 struct mbuf *pfse_m; 230 enum { 231 PFSE_IP, 232 PFSE_IP6, 233 PFSE_ICMP, 234 PFSE_ICMP6, 235 } pfse_type; 236 struct { 237 int type; 238 int code; 239 int mtu; 240 } icmpopts; 241 }; 242 243 STAILQ_HEAD(pf_send_head, pf_send_entry); 244 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 245 #define V_pf_sendqueue VNET(pf_sendqueue) 246 247 static struct mtx_padalign pf_sendqueue_mtx; 248 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 249 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 250 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 251 252 /* 253 * Queue for pf_overload_task() tasks. 254 */ 255 struct pf_overload_entry { 256 SLIST_ENTRY(pf_overload_entry) next; 257 struct pf_addr addr; 258 sa_family_t af; 259 uint8_t dir; 260 struct pf_krule *rule; 261 }; 262 263 SLIST_HEAD(pf_overload_head, pf_overload_entry); 264 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 265 #define V_pf_overloadqueue VNET(pf_overloadqueue) 266 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 267 #define V_pf_overloadtask VNET(pf_overloadtask) 268 269 static struct mtx_padalign pf_overloadqueue_mtx; 270 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 271 "pf overload/flush queue", MTX_DEF); 272 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 273 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 274 275 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 276 struct mtx_padalign pf_unlnkdrules_mtx; 277 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 278 MTX_DEF); 279 280 struct sx pf_config_lock; 281 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 282 283 struct mtx_padalign pf_table_stats_lock; 284 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 285 MTX_DEF); 286 287 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 288 #define V_pf_sources_z VNET(pf_sources_z) 289 uma_zone_t pf_mtag_z; 290 VNET_DEFINE(uma_zone_t, pf_state_z); 291 VNET_DEFINE(uma_zone_t, pf_state_key_z); 292 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z); 293 294 VNET_DEFINE(struct unrhdr64, pf_stateid); 295 296 static void pf_src_tree_remove_state(struct pf_kstate *); 297 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 298 u_int32_t); 299 static void pf_add_threshold(struct pf_threshold *); 300 static int pf_check_threshold(struct pf_threshold *); 301 302 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 303 u_int16_t *, u_int16_t *, struct pf_addr *, 304 u_int16_t, u_int8_t, sa_family_t); 305 static int pf_modulate_sack(struct pf_pdesc *, 306 struct tcphdr *, struct pf_state_peer *); 307 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *, 308 int *, u_int16_t *, u_int16_t *); 309 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 310 struct pf_addr *, struct pf_addr *, u_int16_t, 311 u_int16_t *, u_int16_t *, u_int16_t *, 312 u_int16_t *, u_int8_t, sa_family_t); 313 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 314 sa_family_t, struct pf_krule *, int); 315 static void pf_detach_state(struct pf_kstate *); 316 static int pf_state_key_attach(struct pf_state_key *, 317 struct pf_state_key *, struct pf_kstate *); 318 static void pf_state_key_detach(struct pf_kstate *, int); 319 static int pf_state_key_ctor(void *, int, void *, int); 320 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 321 static __inline void pf_dummynet_flag_remove(struct mbuf *m, 322 struct pf_mtag *pf_mtag); 323 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *, 324 struct pf_krule *, struct mbuf **); 325 static int pf_dummynet_route(struct pf_pdesc *, 326 struct pf_kstate *, struct pf_krule *, 327 struct ifnet *, struct sockaddr *, struct mbuf **); 328 static int pf_test_eth_rule(int, struct pfi_kkif *, 329 struct mbuf **); 330 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 331 struct pf_pdesc *, struct pf_krule **, 332 struct pf_kruleset **, struct inpcb *); 333 static int pf_create_state(struct pf_krule *, struct pf_krule *, 334 struct pf_krule *, struct pf_pdesc *, 335 struct pf_state_key *, struct pf_state_key *, 336 u_int16_t, u_int16_t, int *, 337 struct pf_kstate **, int, u_int16_t, u_int16_t, 338 struct pf_krule_slist *, struct pf_udp_mapping *); 339 static int pf_state_key_addr_setup(struct pf_pdesc *, 340 struct pf_state_key_cmp *, int); 341 static int pf_tcp_track_full(struct pf_kstate **, 342 struct pf_pdesc *, u_short *, int *); 343 static int pf_tcp_track_sloppy(struct pf_kstate **, 344 struct pf_pdesc *, u_short *); 345 static int pf_test_state_tcp(struct pf_kstate **, 346 struct pf_pdesc *, u_short *); 347 static int pf_test_state_udp(struct pf_kstate **, 348 struct pf_pdesc *); 349 int pf_icmp_state_lookup(struct pf_state_key_cmp *, 350 struct pf_pdesc *, struct pf_kstate **, 351 int, u_int16_t, u_int16_t, 352 int, int *, int, int); 353 static int pf_test_state_icmp(struct pf_kstate **, 354 struct pf_pdesc *, u_short *); 355 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *); 356 static void pf_sctp_multihome_delayed(struct pf_pdesc *, 357 struct pfi_kkif *, struct pf_kstate *, int); 358 static int pf_test_state_sctp(struct pf_kstate **, 359 struct pf_pdesc *, u_short *); 360 static int pf_test_state_other(struct pf_kstate **, 361 struct pf_pdesc *); 362 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 363 int, u_int16_t); 364 static int pf_check_proto_cksum(struct mbuf *, int, int, 365 u_int8_t, sa_family_t); 366 static int pf_walk_option6(struct mbuf *, int, int, uint32_t *, 367 u_short *); 368 static void pf_print_state_parts(struct pf_kstate *, 369 struct pf_state_key *, struct pf_state_key *); 370 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 371 bool, u_int8_t); 372 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 373 const struct pf_state_key_cmp *, u_int); 374 static bool pf_src_connlimit(struct pf_kstate *); 375 static int pf_match_rcvif(struct mbuf *, struct pf_krule *); 376 static void pf_counters_inc(int, struct pf_pdesc *, 377 struct pf_kstate *, struct pf_krule *, 378 struct pf_krule *); 379 static void pf_overload_task(void *v, int pending); 380 static u_short pf_insert_src_node(struct pf_ksrc_node **, 381 struct pf_srchash **, struct pf_krule *, 382 struct pf_addr *, sa_family_t); 383 static u_int pf_purge_expired_states(u_int, int); 384 static void pf_purge_unlinked_rules(void); 385 static int pf_mtag_uminit(void *, int, int); 386 static void pf_mtag_free(struct m_tag *); 387 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 388 int, struct pf_state_key *); 389 #ifdef INET 390 static void pf_route(struct mbuf **, struct pf_krule *, 391 struct ifnet *, struct pf_kstate *, 392 struct pf_pdesc *, struct inpcb *); 393 #endif /* INET */ 394 #ifdef INET6 395 static void pf_change_a6(struct pf_addr *, u_int16_t *, 396 struct pf_addr *, u_int8_t); 397 static void pf_route6(struct mbuf **, struct pf_krule *, 398 struct ifnet *, struct pf_kstate *, 399 struct pf_pdesc *, struct inpcb *); 400 #endif /* INET6 */ 401 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 402 403 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 404 405 extern int pf_end_threads; 406 extern struct proc *pf_purge_proc; 407 408 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 409 410 enum { PF_ICMP_MULTI_NONE, PF_ICMP_MULTI_LINK }; 411 412 #define PACKET_UNDO_NAT(_m, _pd, _off, _s) \ 413 do { \ 414 struct pf_state_key *nk; \ 415 if ((pd->dir) == PF_OUT) \ 416 nk = (_s)->key[PF_SK_STACK]; \ 417 else \ 418 nk = (_s)->key[PF_SK_WIRE]; \ 419 pf_packet_rework_nat(_m, _pd, _off, nk); \ 420 } while (0) 421 422 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 423 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED) 424 425 #define STATE_LOOKUP(k, s, pd) \ 426 do { \ 427 (s) = pf_find_state((pd->kif), (k), (pd->dir)); \ 428 SDT_PROBE5(pf, ip, state, lookup, pd->kif, k, (pd->dir), pd, (s)); \ 429 if ((s) == NULL) \ 430 return (PF_DROP); \ 431 if (PACKET_LOOPED(pd)) \ 432 return (PF_PASS); \ 433 } while (0) 434 435 static struct pfi_kkif * 436 BOUND_IFACE(struct pf_kstate *st, struct pfi_kkif *k) 437 { 438 SDT_PROBE2(pf, ip, , bound_iface, st, k); 439 440 /* Floating unless otherwise specified. */ 441 if (! (st->rule->rule_flag & PFRULE_IFBOUND)) 442 return (V_pfi_all); 443 444 /* 445 * Initially set to all, because we don't know what interface we'll be 446 * sending this out when we create the state. 447 */ 448 if (st->rule->rt == PF_REPLYTO) 449 return (V_pfi_all); 450 451 /* Don't overrule the interface for states created on incoming packets. */ 452 if (st->direction == PF_IN) 453 return (k); 454 455 /* No route-to, so don't overrule. */ 456 if (st->rt != PF_ROUTETO) 457 return (k); 458 459 /* Bind to the route-to interface. */ 460 return (st->rt_kif); 461 } 462 463 #define STATE_INC_COUNTERS(s) \ 464 do { \ 465 struct pf_krule_item *mrm; \ 466 counter_u64_add(s->rule->states_cur, 1); \ 467 counter_u64_add(s->rule->states_tot, 1); \ 468 if (s->anchor != NULL) { \ 469 counter_u64_add(s->anchor->states_cur, 1); \ 470 counter_u64_add(s->anchor->states_tot, 1); \ 471 } \ 472 if (s->nat_rule != NULL) { \ 473 counter_u64_add(s->nat_rule->states_cur, 1);\ 474 counter_u64_add(s->nat_rule->states_tot, 1);\ 475 } \ 476 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 477 counter_u64_add(mrm->r->states_cur, 1); \ 478 counter_u64_add(mrm->r->states_tot, 1); \ 479 } \ 480 } while (0) 481 482 #define STATE_DEC_COUNTERS(s) \ 483 do { \ 484 struct pf_krule_item *mrm; \ 485 if (s->nat_rule != NULL) \ 486 counter_u64_add(s->nat_rule->states_cur, -1);\ 487 if (s->anchor != NULL) \ 488 counter_u64_add(s->anchor->states_cur, -1); \ 489 counter_u64_add(s->rule->states_cur, -1); \ 490 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 491 counter_u64_add(mrm->r->states_cur, -1); \ 492 } while (0) 493 494 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 495 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 496 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 497 VNET_DEFINE(struct pf_idhash *, pf_idhash); 498 VNET_DEFINE(struct pf_srchash *, pf_srchash); 499 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash); 500 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping); 501 502 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 503 "pf(4)"); 504 505 VNET_DEFINE(u_long, pf_hashmask); 506 VNET_DEFINE(u_long, pf_srchashmask); 507 VNET_DEFINE(u_long, pf_udpendpointhashmask); 508 VNET_DEFINE_STATIC(u_long, pf_hashsize); 509 #define V_pf_hashsize VNET(pf_hashsize) 510 VNET_DEFINE_STATIC(u_long, pf_srchashsize); 511 #define V_pf_srchashsize VNET(pf_srchashsize) 512 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize); 513 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize) 514 u_long pf_ioctl_maxcount = 65535; 515 516 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 517 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 518 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 519 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 520 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 521 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable"); 522 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 523 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 524 525 VNET_DEFINE(void *, pf_swi_cookie); 526 VNET_DEFINE(struct intr_event *, pf_swi_ie); 527 528 VNET_DEFINE(uint32_t, pf_hashseed); 529 #define V_pf_hashseed VNET(pf_hashseed) 530 531 static void 532 pf_sctp_checksum(struct mbuf *m, int off) 533 { 534 uint32_t sum = 0; 535 536 /* Zero out the checksum, to enable recalculation. */ 537 m_copyback(m, off + offsetof(struct sctphdr, checksum), 538 sizeof(sum), (caddr_t)&sum); 539 540 sum = sctp_calculate_cksum(m, off); 541 542 m_copyback(m, off + offsetof(struct sctphdr, checksum), 543 sizeof(sum), (caddr_t)&sum); 544 } 545 546 int 547 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 548 { 549 550 switch (af) { 551 #ifdef INET 552 case AF_INET: 553 if (a->addr32[0] > b->addr32[0]) 554 return (1); 555 if (a->addr32[0] < b->addr32[0]) 556 return (-1); 557 break; 558 #endif /* INET */ 559 #ifdef INET6 560 case AF_INET6: 561 if (a->addr32[3] > b->addr32[3]) 562 return (1); 563 if (a->addr32[3] < b->addr32[3]) 564 return (-1); 565 if (a->addr32[2] > b->addr32[2]) 566 return (1); 567 if (a->addr32[2] < b->addr32[2]) 568 return (-1); 569 if (a->addr32[1] > b->addr32[1]) 570 return (1); 571 if (a->addr32[1] < b->addr32[1]) 572 return (-1); 573 if (a->addr32[0] > b->addr32[0]) 574 return (1); 575 if (a->addr32[0] < b->addr32[0]) 576 return (-1); 577 break; 578 #endif /* INET6 */ 579 } 580 return (0); 581 } 582 583 static bool 584 pf_is_loopback(sa_family_t af, struct pf_addr *addr) 585 { 586 switch (af) { 587 #ifdef INET 588 case AF_INET: 589 return IN_LOOPBACK(ntohl(addr->v4.s_addr)); 590 #endif 591 case AF_INET6: 592 return IN6_IS_ADDR_LOOPBACK(&addr->v6); 593 default: 594 panic("Unknown af %d", af); 595 } 596 } 597 598 static void 599 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 600 struct pf_state_key *nk) 601 { 602 603 switch (pd->proto) { 604 case IPPROTO_TCP: { 605 struct tcphdr *th = &pd->hdr.tcp; 606 607 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 608 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 609 &th->th_sum, &nk->addr[pd->sidx], 610 nk->port[pd->sidx], 0, pd->af); 611 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 612 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 613 &th->th_sum, &nk->addr[pd->didx], 614 nk->port[pd->didx], 0, pd->af); 615 m_copyback(m, off, sizeof(*th), (caddr_t)th); 616 break; 617 } 618 case IPPROTO_UDP: { 619 struct udphdr *uh = &pd->hdr.udp; 620 621 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 622 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 623 &uh->uh_sum, &nk->addr[pd->sidx], 624 nk->port[pd->sidx], 1, pd->af); 625 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 626 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 627 &uh->uh_sum, &nk->addr[pd->didx], 628 nk->port[pd->didx], 1, pd->af); 629 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 630 break; 631 } 632 case IPPROTO_SCTP: { 633 struct sctphdr *sh = &pd->hdr.sctp; 634 uint16_t checksum = 0; 635 636 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 637 pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum, 638 &checksum, &nk->addr[pd->sidx], 639 nk->port[pd->sidx], 1, pd->af); 640 } 641 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 642 pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum, 643 &checksum, &nk->addr[pd->didx], 644 nk->port[pd->didx], 1, pd->af); 645 } 646 647 break; 648 } 649 case IPPROTO_ICMP: { 650 struct icmp *ih = &pd->hdr.icmp; 651 652 if (nk->port[pd->sidx] != ih->icmp_id) { 653 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 654 ih->icmp_cksum, ih->icmp_id, 655 nk->port[pd->sidx], 0); 656 ih->icmp_id = nk->port[pd->sidx]; 657 pd->sport = &ih->icmp_id; 658 659 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 660 } 661 /* FALLTHROUGH */ 662 } 663 default: 664 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 665 switch (pd->af) { 666 case AF_INET: 667 pf_change_a(&pd->src->v4.s_addr, 668 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 669 0); 670 break; 671 case AF_INET6: 672 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 673 break; 674 } 675 } 676 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 677 switch (pd->af) { 678 case AF_INET: 679 pf_change_a(&pd->dst->v4.s_addr, 680 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 681 0); 682 break; 683 case AF_INET6: 684 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 685 break; 686 } 687 } 688 break; 689 } 690 } 691 692 static __inline uint32_t 693 pf_hashkey(const struct pf_state_key *sk) 694 { 695 uint32_t h; 696 697 h = murmur3_32_hash32((const uint32_t *)sk, 698 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 699 V_pf_hashseed); 700 701 return (h & V_pf_hashmask); 702 } 703 704 __inline uint32_t 705 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 706 { 707 uint32_t h; 708 709 switch (af) { 710 case AF_INET: 711 h = murmur3_32_hash32((uint32_t *)&addr->v4, 712 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 713 break; 714 case AF_INET6: 715 h = murmur3_32_hash32((uint32_t *)&addr->v6, 716 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 717 break; 718 } 719 720 return (h & V_pf_srchashmask); 721 } 722 723 static inline uint32_t 724 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint) 725 { 726 uint32_t h; 727 728 h = murmur3_32_hash32((uint32_t *)endpoint, 729 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t), 730 V_pf_hashseed); 731 return (h & V_pf_udpendpointhashmask); 732 } 733 734 #ifdef ALTQ 735 static int 736 pf_state_hash(struct pf_kstate *s) 737 { 738 u_int32_t hv = (intptr_t)s / sizeof(*s); 739 740 hv ^= crc32(&s->src, sizeof(s->src)); 741 hv ^= crc32(&s->dst, sizeof(s->dst)); 742 if (hv == 0) 743 hv = 1; 744 return (hv); 745 } 746 #endif 747 748 static __inline void 749 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 750 { 751 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 752 s->dst.state = newstate; 753 if (which == PF_PEER_DST) 754 return; 755 if (s->src.state == newstate) 756 return; 757 if (s->creatorid == V_pf_status.hostid && 758 s->key[PF_SK_STACK] != NULL && 759 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 760 !(TCPS_HAVEESTABLISHED(s->src.state) || 761 s->src.state == TCPS_CLOSED) && 762 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 763 atomic_add_32(&V_pf_status.states_halfopen, -1); 764 765 s->src.state = newstate; 766 } 767 768 #ifdef INET6 769 void 770 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 771 { 772 switch (af) { 773 #ifdef INET 774 case AF_INET: 775 memcpy(&dst->v4, &src->v4, sizeof(dst->v4)); 776 break; 777 #endif /* INET */ 778 case AF_INET6: 779 memcpy(&dst->v6, &src->v6, sizeof(dst->v6)); 780 break; 781 } 782 } 783 #endif /* INET6 */ 784 785 static void 786 pf_init_threshold(struct pf_threshold *threshold, 787 u_int32_t limit, u_int32_t seconds) 788 { 789 threshold->limit = limit * PF_THRESHOLD_MULT; 790 threshold->seconds = seconds; 791 threshold->count = 0; 792 threshold->last = time_uptime; 793 } 794 795 static void 796 pf_add_threshold(struct pf_threshold *threshold) 797 { 798 u_int32_t t = time_uptime, diff = t - threshold->last; 799 800 if (diff >= threshold->seconds) 801 threshold->count = 0; 802 else 803 threshold->count -= threshold->count * diff / 804 threshold->seconds; 805 threshold->count += PF_THRESHOLD_MULT; 806 threshold->last = t; 807 } 808 809 static int 810 pf_check_threshold(struct pf_threshold *threshold) 811 { 812 return (threshold->count > threshold->limit); 813 } 814 815 static bool 816 pf_src_connlimit(struct pf_kstate *state) 817 { 818 struct pf_overload_entry *pfoe; 819 bool limited = false; 820 821 PF_STATE_LOCK_ASSERT(state); 822 PF_SRC_NODE_LOCK(state->src_node); 823 824 state->src_node->conn++; 825 state->src.tcp_est = 1; 826 pf_add_threshold(&state->src_node->conn_rate); 827 828 if (state->rule->max_src_conn && 829 state->rule->max_src_conn < 830 state->src_node->conn) { 831 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 832 limited = true; 833 } 834 835 if (state->rule->max_src_conn_rate.limit && 836 pf_check_threshold(&state->src_node->conn_rate)) { 837 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 838 limited = true; 839 } 840 841 if (!limited) 842 goto done; 843 844 /* Kill this state. */ 845 state->timeout = PFTM_PURGE; 846 pf_set_protostate(state, PF_PEER_BOTH, TCPS_CLOSED); 847 848 if (state->rule->overload_tbl == NULL) 849 goto done; 850 851 /* Schedule overloading and flushing task. */ 852 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 853 if (pfoe == NULL) 854 goto done; /* too bad :( */ 855 856 bcopy(&state->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 857 pfoe->af = state->key[PF_SK_WIRE]->af; 858 pfoe->rule = state->rule; 859 pfoe->dir = state->direction; 860 PF_OVERLOADQ_LOCK(); 861 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 862 PF_OVERLOADQ_UNLOCK(); 863 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 864 865 done: 866 PF_SRC_NODE_UNLOCK(state->src_node); 867 return (limited); 868 } 869 870 static void 871 pf_overload_task(void *v, int pending) 872 { 873 struct pf_overload_head queue; 874 struct pfr_addr p; 875 struct pf_overload_entry *pfoe, *pfoe1; 876 uint32_t killed = 0; 877 878 CURVNET_SET((struct vnet *)v); 879 880 PF_OVERLOADQ_LOCK(); 881 queue = V_pf_overloadqueue; 882 SLIST_INIT(&V_pf_overloadqueue); 883 PF_OVERLOADQ_UNLOCK(); 884 885 bzero(&p, sizeof(p)); 886 SLIST_FOREACH(pfoe, &queue, next) { 887 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 888 if (V_pf_status.debug >= PF_DEBUG_MISC) { 889 printf("%s: blocking address ", __func__); 890 pf_print_host(&pfoe->addr, 0, pfoe->af); 891 printf("\n"); 892 } 893 894 p.pfra_af = pfoe->af; 895 switch (pfoe->af) { 896 #ifdef INET 897 case AF_INET: 898 p.pfra_net = 32; 899 p.pfra_ip4addr = pfoe->addr.v4; 900 break; 901 #endif 902 #ifdef INET6 903 case AF_INET6: 904 p.pfra_net = 128; 905 p.pfra_ip6addr = pfoe->addr.v6; 906 break; 907 #endif 908 } 909 910 PF_RULES_WLOCK(); 911 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 912 PF_RULES_WUNLOCK(); 913 } 914 915 /* 916 * Remove those entries, that don't need flushing. 917 */ 918 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 919 if (pfoe->rule->flush == 0) { 920 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 921 free(pfoe, M_PFTEMP); 922 } else 923 counter_u64_add( 924 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 925 926 /* If nothing to flush, return. */ 927 if (SLIST_EMPTY(&queue)) { 928 CURVNET_RESTORE(); 929 return; 930 } 931 932 for (int i = 0; i <= V_pf_hashmask; i++) { 933 struct pf_idhash *ih = &V_pf_idhash[i]; 934 struct pf_state_key *sk; 935 struct pf_kstate *s; 936 937 PF_HASHROW_LOCK(ih); 938 LIST_FOREACH(s, &ih->states, entry) { 939 sk = s->key[PF_SK_WIRE]; 940 SLIST_FOREACH(pfoe, &queue, next) 941 if (sk->af == pfoe->af && 942 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 943 pfoe->rule == s->rule) && 944 ((pfoe->dir == PF_OUT && 945 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 946 (pfoe->dir == PF_IN && 947 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 948 s->timeout = PFTM_PURGE; 949 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 950 killed++; 951 } 952 } 953 PF_HASHROW_UNLOCK(ih); 954 } 955 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 956 free(pfoe, M_PFTEMP); 957 if (V_pf_status.debug >= PF_DEBUG_MISC) 958 printf("%s: %u states killed", __func__, killed); 959 960 CURVNET_RESTORE(); 961 } 962 963 /* 964 * On node found always returns locked. On not found its configurable. 965 */ 966 struct pf_ksrc_node * 967 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 968 struct pf_srchash **sh, bool returnlocked) 969 { 970 struct pf_ksrc_node *n; 971 972 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 973 974 *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 975 PF_HASHROW_LOCK(*sh); 976 LIST_FOREACH(n, &(*sh)->nodes, entry) 977 if (n->rule == rule && n->af == af && 978 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 979 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 980 break; 981 982 if (n == NULL && !returnlocked) 983 PF_HASHROW_UNLOCK(*sh); 984 985 return (n); 986 } 987 988 bool 989 pf_src_node_exists(struct pf_ksrc_node **sn, struct pf_srchash *sh) 990 { 991 struct pf_ksrc_node *cur; 992 993 if ((*sn) == NULL) 994 return (false); 995 996 KASSERT(sh != NULL, ("%s: sh is NULL", __func__)); 997 998 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 999 PF_HASHROW_LOCK(sh); 1000 LIST_FOREACH(cur, &(sh->nodes), entry) { 1001 if (cur == (*sn) && 1002 cur->expire != 1) /* Ignore nodes being killed */ 1003 return (true); 1004 } 1005 PF_HASHROW_UNLOCK(sh); 1006 (*sn) = NULL; 1007 return (false); 1008 } 1009 1010 static void 1011 pf_free_src_node(struct pf_ksrc_node *sn) 1012 { 1013 1014 for (int i = 0; i < 2; i++) { 1015 counter_u64_free(sn->bytes[i]); 1016 counter_u64_free(sn->packets[i]); 1017 } 1018 uma_zfree(V_pf_sources_z, sn); 1019 } 1020 1021 static u_short 1022 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_srchash **sh, 1023 struct pf_krule *rule, struct pf_addr *src, sa_family_t af) 1024 { 1025 u_short reason = 0; 1026 1027 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 1028 rule->rpool.opts & PF_POOL_STICKYADDR), 1029 ("%s for non-tracking rule %p", __func__, rule)); 1030 1031 /* 1032 * Request the sh to always be locked, as we might insert a new sn. 1033 */ 1034 if (*sn == NULL) 1035 *sn = pf_find_src_node(src, rule, af, sh, true); 1036 1037 if (*sn == NULL) { 1038 PF_HASHROW_ASSERT(*sh); 1039 1040 if (rule->max_src_nodes && 1041 counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) { 1042 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); 1043 reason = PFRES_SRCLIMIT; 1044 goto done; 1045 } 1046 1047 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 1048 if ((*sn) == NULL) { 1049 reason = PFRES_MEMORY; 1050 goto done; 1051 } 1052 1053 for (int i = 0; i < 2; i++) { 1054 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 1055 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 1056 1057 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 1058 pf_free_src_node(*sn); 1059 reason = PFRES_MEMORY; 1060 goto done; 1061 } 1062 } 1063 1064 pf_init_threshold(&(*sn)->conn_rate, 1065 rule->max_src_conn_rate.limit, 1066 rule->max_src_conn_rate.seconds); 1067 1068 MPASS((*sn)->lock == NULL); 1069 (*sn)->lock = &(*sh)->lock; 1070 1071 (*sn)->af = af; 1072 (*sn)->rule = rule; 1073 PF_ACPY(&(*sn)->addr, src, af); 1074 LIST_INSERT_HEAD(&(*sh)->nodes, *sn, entry); 1075 (*sn)->creation = time_uptime; 1076 (*sn)->ruletype = rule->action; 1077 if ((*sn)->rule != NULL) 1078 counter_u64_add((*sn)->rule->src_nodes, 1); 1079 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 1080 } else { 1081 if (rule->max_src_states && 1082 (*sn)->states >= rule->max_src_states) { 1083 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 1084 1); 1085 reason = PFRES_SRCLIMIT; 1086 goto done; 1087 } 1088 } 1089 done: 1090 if (reason == 0) 1091 (*sn)->states++; 1092 else 1093 (*sn) = NULL; 1094 1095 PF_HASHROW_UNLOCK(*sh); 1096 return (reason); 1097 } 1098 1099 void 1100 pf_unlink_src_node(struct pf_ksrc_node *src) 1101 { 1102 PF_SRC_NODE_LOCK_ASSERT(src); 1103 1104 LIST_REMOVE(src, entry); 1105 if (src->rule) 1106 counter_u64_add(src->rule->src_nodes, -1); 1107 } 1108 1109 u_int 1110 pf_free_src_nodes(struct pf_ksrc_node_list *head) 1111 { 1112 struct pf_ksrc_node *sn, *tmp; 1113 u_int count = 0; 1114 1115 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 1116 pf_free_src_node(sn); 1117 count++; 1118 } 1119 1120 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 1121 1122 return (count); 1123 } 1124 1125 void 1126 pf_mtag_initialize(void) 1127 { 1128 1129 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 1130 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 1131 UMA_ALIGN_PTR, 0); 1132 } 1133 1134 /* Per-vnet data storage structures initialization. */ 1135 void 1136 pf_initialize(void) 1137 { 1138 struct pf_keyhash *kh; 1139 struct pf_idhash *ih; 1140 struct pf_srchash *sh; 1141 struct pf_udpendpointhash *uh; 1142 u_int i; 1143 1144 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 1145 V_pf_hashsize = PF_HASHSIZ; 1146 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 1147 V_pf_srchashsize = PF_SRCHASHSIZ; 1148 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize)) 1149 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1150 1151 V_pf_hashseed = arc4random(); 1152 1153 /* States and state keys storage. */ 1154 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1155 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1156 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1157 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1158 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1159 1160 V_pf_state_key_z = uma_zcreate("pf state keys", 1161 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1162 UMA_ALIGN_PTR, 0); 1163 1164 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash), 1165 M_PFHASH, M_NOWAIT | M_ZERO); 1166 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash), 1167 M_PFHASH, M_NOWAIT | M_ZERO); 1168 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1169 printf("pf: Unable to allocate memory for " 1170 "state_hashsize %lu.\n", V_pf_hashsize); 1171 1172 free(V_pf_keyhash, M_PFHASH); 1173 free(V_pf_idhash, M_PFHASH); 1174 1175 V_pf_hashsize = PF_HASHSIZ; 1176 V_pf_keyhash = mallocarray(V_pf_hashsize, 1177 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1178 V_pf_idhash = mallocarray(V_pf_hashsize, 1179 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1180 } 1181 1182 V_pf_hashmask = V_pf_hashsize - 1; 1183 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 1184 i++, kh++, ih++) { 1185 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1186 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1187 } 1188 1189 /* Source nodes. */ 1190 V_pf_sources_z = uma_zcreate("pf source nodes", 1191 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1192 0); 1193 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1194 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1195 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1196 1197 V_pf_srchash = mallocarray(V_pf_srchashsize, 1198 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1199 if (V_pf_srchash == NULL) { 1200 printf("pf: Unable to allocate memory for " 1201 "source_hashsize %lu.\n", V_pf_srchashsize); 1202 1203 V_pf_srchashsize = PF_SRCHASHSIZ; 1204 V_pf_srchash = mallocarray(V_pf_srchashsize, 1205 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1206 } 1207 1208 V_pf_srchashmask = V_pf_srchashsize - 1; 1209 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 1210 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1211 1212 1213 /* UDP endpoint mappings. */ 1214 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings", 1215 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL, 1216 UMA_ALIGN_PTR, 0); 1217 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1218 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO); 1219 if (V_pf_udpendpointhash == NULL) { 1220 printf("pf: Unable to allocate memory for " 1221 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize); 1222 1223 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1224 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1225 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO); 1226 } 1227 1228 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1; 1229 for (i = 0, uh = V_pf_udpendpointhash; 1230 i <= V_pf_udpendpointhashmask; 1231 i++, uh++) { 1232 mtx_init(&uh->lock, "pf_udpendpointhash", NULL, 1233 MTX_DEF | MTX_DUPOK); 1234 } 1235 1236 /* ALTQ */ 1237 TAILQ_INIT(&V_pf_altqs[0]); 1238 TAILQ_INIT(&V_pf_altqs[1]); 1239 TAILQ_INIT(&V_pf_altqs[2]); 1240 TAILQ_INIT(&V_pf_altqs[3]); 1241 TAILQ_INIT(&V_pf_pabuf); 1242 V_pf_altqs_active = &V_pf_altqs[0]; 1243 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1244 V_pf_altqs_inactive = &V_pf_altqs[2]; 1245 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1246 1247 /* Send & overload+flush queues. */ 1248 STAILQ_INIT(&V_pf_sendqueue); 1249 SLIST_INIT(&V_pf_overloadqueue); 1250 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1251 1252 /* Unlinked, but may be referenced rules. */ 1253 TAILQ_INIT(&V_pf_unlinked_rules); 1254 } 1255 1256 void 1257 pf_mtag_cleanup(void) 1258 { 1259 1260 uma_zdestroy(pf_mtag_z); 1261 } 1262 1263 void 1264 pf_cleanup(void) 1265 { 1266 struct pf_keyhash *kh; 1267 struct pf_idhash *ih; 1268 struct pf_srchash *sh; 1269 struct pf_udpendpointhash *uh; 1270 struct pf_send_entry *pfse, *next; 1271 u_int i; 1272 1273 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; 1274 i <= V_pf_hashmask; 1275 i++, kh++, ih++) { 1276 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1277 __func__)); 1278 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1279 __func__)); 1280 mtx_destroy(&kh->lock); 1281 mtx_destroy(&ih->lock); 1282 } 1283 free(V_pf_keyhash, M_PFHASH); 1284 free(V_pf_idhash, M_PFHASH); 1285 1286 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1287 KASSERT(LIST_EMPTY(&sh->nodes), 1288 ("%s: source node hash not empty", __func__)); 1289 mtx_destroy(&sh->lock); 1290 } 1291 free(V_pf_srchash, M_PFHASH); 1292 1293 for (i = 0, uh = V_pf_udpendpointhash; 1294 i <= V_pf_udpendpointhashmask; 1295 i++, uh++) { 1296 KASSERT(LIST_EMPTY(&uh->endpoints), 1297 ("%s: udp endpoint hash not empty", __func__)); 1298 mtx_destroy(&uh->lock); 1299 } 1300 free(V_pf_udpendpointhash, M_PFHASH); 1301 1302 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1303 m_freem(pfse->pfse_m); 1304 free(pfse, M_PFTEMP); 1305 } 1306 MPASS(RB_EMPTY(&V_pf_sctp_endpoints)); 1307 1308 uma_zdestroy(V_pf_sources_z); 1309 uma_zdestroy(V_pf_state_z); 1310 uma_zdestroy(V_pf_state_key_z); 1311 uma_zdestroy(V_pf_udp_mapping_z); 1312 } 1313 1314 static int 1315 pf_mtag_uminit(void *mem, int size, int how) 1316 { 1317 struct m_tag *t; 1318 1319 t = (struct m_tag *)mem; 1320 t->m_tag_cookie = MTAG_ABI_COMPAT; 1321 t->m_tag_id = PACKET_TAG_PF; 1322 t->m_tag_len = sizeof(struct pf_mtag); 1323 t->m_tag_free = pf_mtag_free; 1324 1325 return (0); 1326 } 1327 1328 static void 1329 pf_mtag_free(struct m_tag *t) 1330 { 1331 1332 uma_zfree(pf_mtag_z, t); 1333 } 1334 1335 struct pf_mtag * 1336 pf_get_mtag(struct mbuf *m) 1337 { 1338 struct m_tag *mtag; 1339 1340 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1341 return ((struct pf_mtag *)(mtag + 1)); 1342 1343 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1344 if (mtag == NULL) 1345 return (NULL); 1346 bzero(mtag + 1, sizeof(struct pf_mtag)); 1347 m_tag_prepend(m, mtag); 1348 1349 return ((struct pf_mtag *)(mtag + 1)); 1350 } 1351 1352 static int 1353 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1354 struct pf_kstate *s) 1355 { 1356 struct pf_keyhash *khs, *khw, *kh; 1357 struct pf_state_key *sk, *cur; 1358 struct pf_kstate *si, *olds = NULL; 1359 int idx; 1360 1361 NET_EPOCH_ASSERT(); 1362 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1363 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1364 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1365 1366 /* 1367 * We need to lock hash slots of both keys. To avoid deadlock 1368 * we always lock the slot with lower address first. Unlock order 1369 * isn't important. 1370 * 1371 * We also need to lock ID hash slot before dropping key 1372 * locks. On success we return with ID hash slot locked. 1373 */ 1374 1375 if (skw == sks) { 1376 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1377 PF_HASHROW_LOCK(khs); 1378 } else { 1379 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1380 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1381 if (khs == khw) { 1382 PF_HASHROW_LOCK(khs); 1383 } else if (khs < khw) { 1384 PF_HASHROW_LOCK(khs); 1385 PF_HASHROW_LOCK(khw); 1386 } else { 1387 PF_HASHROW_LOCK(khw); 1388 PF_HASHROW_LOCK(khs); 1389 } 1390 } 1391 1392 #define KEYS_UNLOCK() do { \ 1393 if (khs != khw) { \ 1394 PF_HASHROW_UNLOCK(khs); \ 1395 PF_HASHROW_UNLOCK(khw); \ 1396 } else \ 1397 PF_HASHROW_UNLOCK(khs); \ 1398 } while (0) 1399 1400 /* 1401 * First run: start with wire key. 1402 */ 1403 sk = skw; 1404 kh = khw; 1405 idx = PF_SK_WIRE; 1406 1407 MPASS(s->lock == NULL); 1408 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1409 1410 keyattach: 1411 LIST_FOREACH(cur, &kh->keys, entry) 1412 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1413 break; 1414 1415 if (cur != NULL) { 1416 /* Key exists. Check for same kif, if none, add to key. */ 1417 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1418 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1419 1420 PF_HASHROW_LOCK(ih); 1421 if (si->kif == s->kif && 1422 si->direction == s->direction) { 1423 if (sk->proto == IPPROTO_TCP && 1424 si->src.state >= TCPS_FIN_WAIT_2 && 1425 si->dst.state >= TCPS_FIN_WAIT_2) { 1426 /* 1427 * New state matches an old >FIN_WAIT_2 1428 * state. We can't drop key hash locks, 1429 * thus we can't unlink it properly. 1430 * 1431 * As a workaround we drop it into 1432 * TCPS_CLOSED state, schedule purge 1433 * ASAP and push it into the very end 1434 * of the slot TAILQ, so that it won't 1435 * conflict with our new state. 1436 */ 1437 pf_set_protostate(si, PF_PEER_BOTH, 1438 TCPS_CLOSED); 1439 si->timeout = PFTM_PURGE; 1440 olds = si; 1441 } else { 1442 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1443 printf("pf: %s key attach " 1444 "failed on %s: ", 1445 (idx == PF_SK_WIRE) ? 1446 "wire" : "stack", 1447 s->kif->pfik_name); 1448 pf_print_state_parts(s, 1449 (idx == PF_SK_WIRE) ? 1450 sk : NULL, 1451 (idx == PF_SK_STACK) ? 1452 sk : NULL); 1453 printf(", existing: "); 1454 pf_print_state_parts(si, 1455 (idx == PF_SK_WIRE) ? 1456 sk : NULL, 1457 (idx == PF_SK_STACK) ? 1458 sk : NULL); 1459 printf("\n"); 1460 } 1461 s->timeout = PFTM_UNLINKED; 1462 PF_HASHROW_UNLOCK(ih); 1463 KEYS_UNLOCK(); 1464 uma_zfree(V_pf_state_key_z, skw); 1465 if (skw != sks) 1466 uma_zfree(V_pf_state_key_z, sks); 1467 if (idx == PF_SK_STACK) 1468 pf_detach_state(s); 1469 return (EEXIST); /* collision! */ 1470 } 1471 } 1472 PF_HASHROW_UNLOCK(ih); 1473 } 1474 uma_zfree(V_pf_state_key_z, sk); 1475 s->key[idx] = cur; 1476 } else { 1477 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1478 s->key[idx] = sk; 1479 } 1480 1481 stateattach: 1482 /* List is sorted, if-bound states before floating. */ 1483 if (s->kif == V_pfi_all) 1484 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1485 else 1486 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1487 1488 if (olds) { 1489 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1490 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1491 key_list[idx]); 1492 olds = NULL; 1493 } 1494 1495 /* 1496 * Attach done. See how should we (or should not?) 1497 * attach a second key. 1498 */ 1499 if (sks == skw) { 1500 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1501 idx = PF_SK_STACK; 1502 sks = NULL; 1503 goto stateattach; 1504 } else if (sks != NULL) { 1505 /* 1506 * Continue attaching with stack key. 1507 */ 1508 sk = sks; 1509 kh = khs; 1510 idx = PF_SK_STACK; 1511 sks = NULL; 1512 goto keyattach; 1513 } 1514 1515 PF_STATE_LOCK(s); 1516 KEYS_UNLOCK(); 1517 1518 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1519 ("%s failure", __func__)); 1520 1521 return (0); 1522 #undef KEYS_UNLOCK 1523 } 1524 1525 static void 1526 pf_detach_state(struct pf_kstate *s) 1527 { 1528 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1529 struct pf_keyhash *kh; 1530 1531 NET_EPOCH_ASSERT(); 1532 MPASS(s->timeout >= PFTM_MAX); 1533 1534 pf_sctp_multihome_detach_addr(s); 1535 1536 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr) 1537 V_pflow_export_state_ptr(s); 1538 1539 if (sks != NULL) { 1540 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1541 PF_HASHROW_LOCK(kh); 1542 if (s->key[PF_SK_STACK] != NULL) 1543 pf_state_key_detach(s, PF_SK_STACK); 1544 /* 1545 * If both point to same key, then we are done. 1546 */ 1547 if (sks == s->key[PF_SK_WIRE]) { 1548 pf_state_key_detach(s, PF_SK_WIRE); 1549 PF_HASHROW_UNLOCK(kh); 1550 return; 1551 } 1552 PF_HASHROW_UNLOCK(kh); 1553 } 1554 1555 if (s->key[PF_SK_WIRE] != NULL) { 1556 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1557 PF_HASHROW_LOCK(kh); 1558 if (s->key[PF_SK_WIRE] != NULL) 1559 pf_state_key_detach(s, PF_SK_WIRE); 1560 PF_HASHROW_UNLOCK(kh); 1561 } 1562 } 1563 1564 static void 1565 pf_state_key_detach(struct pf_kstate *s, int idx) 1566 { 1567 struct pf_state_key *sk = s->key[idx]; 1568 #ifdef INVARIANTS 1569 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1570 1571 PF_HASHROW_ASSERT(kh); 1572 #endif 1573 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1574 s->key[idx] = NULL; 1575 1576 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1577 LIST_REMOVE(sk, entry); 1578 uma_zfree(V_pf_state_key_z, sk); 1579 } 1580 } 1581 1582 static int 1583 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1584 { 1585 struct pf_state_key *sk = mem; 1586 1587 bzero(sk, sizeof(struct pf_state_key_cmp)); 1588 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1589 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1590 1591 return (0); 1592 } 1593 1594 static int 1595 pf_state_key_addr_setup(struct pf_pdesc *pd, 1596 struct pf_state_key_cmp *key, int multi) 1597 { 1598 struct pf_addr *saddr = pd->src; 1599 struct pf_addr *daddr = pd->dst; 1600 #ifdef INET6 1601 struct nd_neighbor_solicit nd; 1602 struct pf_addr *target; 1603 u_short action, reason; 1604 1605 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6) 1606 goto copy; 1607 1608 switch (pd->hdr.icmp6.icmp6_type) { 1609 case ND_NEIGHBOR_SOLICIT: 1610 if (multi) 1611 return (-1); 1612 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af)) 1613 return (-1); 1614 target = (struct pf_addr *)&nd.nd_ns_target; 1615 daddr = target; 1616 break; 1617 case ND_NEIGHBOR_ADVERT: 1618 if (multi) 1619 return (-1); 1620 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af)) 1621 return (-1); 1622 target = (struct pf_addr *)&nd.nd_ns_target; 1623 saddr = target; 1624 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) { 1625 key->addr[pd->didx].addr32[0] = 0; 1626 key->addr[pd->didx].addr32[1] = 0; 1627 key->addr[pd->didx].addr32[2] = 0; 1628 key->addr[pd->didx].addr32[3] = 0; 1629 daddr = NULL; /* overwritten */ 1630 } 1631 break; 1632 default: 1633 if (multi == PF_ICMP_MULTI_LINK) { 1634 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL; 1635 key->addr[pd->sidx].addr32[1] = 0; 1636 key->addr[pd->sidx].addr32[2] = 0; 1637 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE; 1638 saddr = NULL; /* overwritten */ 1639 } 1640 } 1641 copy: 1642 #endif 1643 if (saddr) 1644 PF_ACPY(&key->addr[pd->sidx], saddr, pd->af); 1645 if (daddr) 1646 PF_ACPY(&key->addr[pd->didx], daddr, pd->af); 1647 1648 return (0); 1649 } 1650 1651 struct pf_state_key * 1652 pf_state_key_setup(struct pf_pdesc *pd, 1653 struct pf_addr *saddr, struct pf_addr *daddr, u_int16_t sport, 1654 u_int16_t dport) 1655 { 1656 struct pf_state_key *sk; 1657 1658 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1659 if (sk == NULL) 1660 return (NULL); 1661 1662 if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)sk, 1663 0)) { 1664 uma_zfree(V_pf_state_key_z, sk); 1665 return (NULL); 1666 } 1667 1668 sk->port[pd->sidx] = sport; 1669 sk->port[pd->didx] = dport; 1670 sk->proto = pd->proto; 1671 sk->af = pd->af; 1672 1673 return (sk); 1674 } 1675 1676 struct pf_state_key * 1677 pf_state_key_clone(const struct pf_state_key *orig) 1678 { 1679 struct pf_state_key *sk; 1680 1681 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1682 if (sk == NULL) 1683 return (NULL); 1684 1685 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1686 1687 return (sk); 1688 } 1689 1690 int 1691 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1692 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1693 { 1694 struct pf_idhash *ih; 1695 struct pf_kstate *cur; 1696 int error; 1697 1698 NET_EPOCH_ASSERT(); 1699 1700 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1701 ("%s: sks not pristine", __func__)); 1702 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1703 ("%s: skw not pristine", __func__)); 1704 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1705 1706 s->kif = kif; 1707 s->orig_kif = orig_kif; 1708 1709 if (s->id == 0 && s->creatorid == 0) { 1710 s->id = alloc_unr64(&V_pf_stateid); 1711 s->id = htobe64(s->id); 1712 s->creatorid = V_pf_status.hostid; 1713 } 1714 1715 /* Returns with ID locked on success. */ 1716 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1717 return (error); 1718 1719 ih = &V_pf_idhash[PF_IDHASH(s)]; 1720 PF_HASHROW_ASSERT(ih); 1721 LIST_FOREACH(cur, &ih->states, entry) 1722 if (cur->id == s->id && cur->creatorid == s->creatorid) 1723 break; 1724 1725 if (cur != NULL) { 1726 s->timeout = PFTM_UNLINKED; 1727 PF_HASHROW_UNLOCK(ih); 1728 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1729 printf("pf: state ID collision: " 1730 "id: %016llx creatorid: %08x\n", 1731 (unsigned long long)be64toh(s->id), 1732 ntohl(s->creatorid)); 1733 } 1734 pf_detach_state(s); 1735 return (EEXIST); 1736 } 1737 LIST_INSERT_HEAD(&ih->states, s, entry); 1738 /* One for keys, one for ID hash. */ 1739 refcount_init(&s->refs, 2); 1740 1741 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1742 if (V_pfsync_insert_state_ptr != NULL) 1743 V_pfsync_insert_state_ptr(s); 1744 1745 /* Returns locked. */ 1746 return (0); 1747 } 1748 1749 /* 1750 * Find state by ID: returns with locked row on success. 1751 */ 1752 struct pf_kstate * 1753 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1754 { 1755 struct pf_idhash *ih; 1756 struct pf_kstate *s; 1757 1758 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1759 1760 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))]; 1761 1762 PF_HASHROW_LOCK(ih); 1763 LIST_FOREACH(s, &ih->states, entry) 1764 if (s->id == id && s->creatorid == creatorid) 1765 break; 1766 1767 if (s == NULL) 1768 PF_HASHROW_UNLOCK(ih); 1769 1770 return (s); 1771 } 1772 1773 /* 1774 * Find state by key. 1775 * Returns with ID hash slot locked on success. 1776 */ 1777 static struct pf_kstate * 1778 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key, 1779 u_int dir) 1780 { 1781 struct pf_keyhash *kh; 1782 struct pf_state_key *sk; 1783 struct pf_kstate *s; 1784 int idx; 1785 1786 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1787 1788 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1789 1790 PF_HASHROW_LOCK(kh); 1791 LIST_FOREACH(sk, &kh->keys, entry) 1792 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1793 break; 1794 if (sk == NULL) { 1795 PF_HASHROW_UNLOCK(kh); 1796 return (NULL); 1797 } 1798 1799 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1800 1801 /* List is sorted, if-bound states before floating ones. */ 1802 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1803 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) { 1804 PF_STATE_LOCK(s); 1805 PF_HASHROW_UNLOCK(kh); 1806 if (__predict_false(s->timeout >= PFTM_MAX)) { 1807 /* 1808 * State is either being processed by 1809 * pf_unlink_state() in an other thread, or 1810 * is scheduled for immediate expiry. 1811 */ 1812 PF_STATE_UNLOCK(s); 1813 return (NULL); 1814 } 1815 return (s); 1816 } 1817 PF_HASHROW_UNLOCK(kh); 1818 1819 return (NULL); 1820 } 1821 1822 /* 1823 * Returns with ID hash slot locked on success. 1824 */ 1825 struct pf_kstate * 1826 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more) 1827 { 1828 struct pf_keyhash *kh; 1829 struct pf_state_key *sk; 1830 struct pf_kstate *s, *ret = NULL; 1831 int idx, inout = 0; 1832 1833 if (more != NULL) 1834 *more = 0; 1835 1836 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1837 1838 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1839 1840 PF_HASHROW_LOCK(kh); 1841 LIST_FOREACH(sk, &kh->keys, entry) 1842 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1843 break; 1844 if (sk == NULL) { 1845 PF_HASHROW_UNLOCK(kh); 1846 return (NULL); 1847 } 1848 switch (dir) { 1849 case PF_IN: 1850 idx = PF_SK_WIRE; 1851 break; 1852 case PF_OUT: 1853 idx = PF_SK_STACK; 1854 break; 1855 case PF_INOUT: 1856 idx = PF_SK_WIRE; 1857 inout = 1; 1858 break; 1859 default: 1860 panic("%s: dir %u", __func__, dir); 1861 } 1862 second_run: 1863 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1864 if (more == NULL) { 1865 PF_STATE_LOCK(s); 1866 PF_HASHROW_UNLOCK(kh); 1867 return (s); 1868 } 1869 1870 if (ret) 1871 (*more)++; 1872 else { 1873 ret = s; 1874 PF_STATE_LOCK(s); 1875 } 1876 } 1877 if (inout == 1) { 1878 inout = 0; 1879 idx = PF_SK_STACK; 1880 goto second_run; 1881 } 1882 PF_HASHROW_UNLOCK(kh); 1883 1884 return (ret); 1885 } 1886 1887 /* 1888 * FIXME 1889 * This routine is inefficient -- locks the state only to unlock immediately on 1890 * return. 1891 * It is racy -- after the state is unlocked nothing stops other threads from 1892 * removing it. 1893 */ 1894 bool 1895 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir) 1896 { 1897 struct pf_kstate *s; 1898 1899 s = pf_find_state_all(key, dir, NULL); 1900 if (s != NULL) { 1901 PF_STATE_UNLOCK(s); 1902 return (true); 1903 } 1904 return (false); 1905 } 1906 1907 struct pf_udp_mapping * 1908 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port, 1909 struct pf_addr *nat_addr, uint16_t nat_port) 1910 { 1911 struct pf_udp_mapping *mapping; 1912 1913 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO); 1914 if (mapping == NULL) 1915 return (NULL); 1916 PF_ACPY(&mapping->endpoints[0].addr, src_addr, af); 1917 mapping->endpoints[0].port = src_port; 1918 mapping->endpoints[0].af = af; 1919 mapping->endpoints[0].mapping = mapping; 1920 PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af); 1921 mapping->endpoints[1].port = nat_port; 1922 mapping->endpoints[1].af = af; 1923 mapping->endpoints[1].mapping = mapping; 1924 refcount_init(&mapping->refs, 1); 1925 return (mapping); 1926 } 1927 1928 int 1929 pf_udp_mapping_insert(struct pf_udp_mapping *mapping) 1930 { 1931 struct pf_udpendpointhash *h0, *h1; 1932 struct pf_udp_endpoint *endpoint; 1933 int ret = EEXIST; 1934 1935 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 1936 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 1937 if (h0 == h1) { 1938 PF_HASHROW_LOCK(h0); 1939 } else if (h0 < h1) { 1940 PF_HASHROW_LOCK(h0); 1941 PF_HASHROW_LOCK(h1); 1942 } else { 1943 PF_HASHROW_LOCK(h1); 1944 PF_HASHROW_LOCK(h0); 1945 } 1946 1947 LIST_FOREACH(endpoint, &h0->endpoints, entry) { 1948 if (bcmp(endpoint, &mapping->endpoints[0], 1949 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1950 break; 1951 } 1952 if (endpoint != NULL) 1953 goto cleanup; 1954 LIST_FOREACH(endpoint, &h1->endpoints, entry) { 1955 if (bcmp(endpoint, &mapping->endpoints[1], 1956 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1957 break; 1958 } 1959 if (endpoint != NULL) 1960 goto cleanup; 1961 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry); 1962 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry); 1963 ret = 0; 1964 1965 cleanup: 1966 if (h0 != h1) { 1967 PF_HASHROW_UNLOCK(h0); 1968 PF_HASHROW_UNLOCK(h1); 1969 } else { 1970 PF_HASHROW_UNLOCK(h0); 1971 } 1972 return (ret); 1973 } 1974 1975 void 1976 pf_udp_mapping_release(struct pf_udp_mapping *mapping) 1977 { 1978 /* refcount is synchronized on the source endpoint's row lock */ 1979 struct pf_udpendpointhash *h0, *h1; 1980 1981 if (mapping == NULL) 1982 return; 1983 1984 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 1985 PF_HASHROW_LOCK(h0); 1986 if (refcount_release(&mapping->refs)) { 1987 LIST_REMOVE(&mapping->endpoints[0], entry); 1988 PF_HASHROW_UNLOCK(h0); 1989 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 1990 PF_HASHROW_LOCK(h1); 1991 LIST_REMOVE(&mapping->endpoints[1], entry); 1992 PF_HASHROW_UNLOCK(h1); 1993 1994 uma_zfree(V_pf_udp_mapping_z, mapping); 1995 } else { 1996 PF_HASHROW_UNLOCK(h0); 1997 } 1998 } 1999 2000 2001 struct pf_udp_mapping * 2002 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key) 2003 { 2004 struct pf_udpendpointhash *uh; 2005 struct pf_udp_endpoint *endpoint; 2006 2007 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)]; 2008 2009 PF_HASHROW_LOCK(uh); 2010 LIST_FOREACH(endpoint, &uh->endpoints, entry) { 2011 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 && 2012 bcmp(endpoint, &endpoint->mapping->endpoints[0], 2013 sizeof(struct pf_udp_endpoint_cmp)) == 0) 2014 break; 2015 } 2016 if (endpoint == NULL) { 2017 PF_HASHROW_UNLOCK(uh); 2018 return (NULL); 2019 } 2020 refcount_acquire(&endpoint->mapping->refs); 2021 PF_HASHROW_UNLOCK(uh); 2022 return (endpoint->mapping); 2023 } 2024 /* END state table stuff */ 2025 2026 static void 2027 pf_send(struct pf_send_entry *pfse) 2028 { 2029 2030 PF_SENDQ_LOCK(); 2031 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 2032 PF_SENDQ_UNLOCK(); 2033 swi_sched(V_pf_swi_cookie, 0); 2034 } 2035 2036 static bool 2037 pf_isforlocal(struct mbuf *m, int af) 2038 { 2039 switch (af) { 2040 #ifdef INET 2041 case AF_INET: { 2042 struct ip *ip = mtod(m, struct ip *); 2043 2044 return (in_localip(ip->ip_dst)); 2045 } 2046 #endif 2047 #ifdef INET6 2048 case AF_INET6: { 2049 struct ip6_hdr *ip6; 2050 struct in6_ifaddr *ia; 2051 ip6 = mtod(m, struct ip6_hdr *); 2052 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 2053 if (ia == NULL) 2054 return (false); 2055 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 2056 } 2057 #endif 2058 } 2059 2060 return (false); 2061 } 2062 2063 int 2064 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type, 2065 int *icmp_dir, int *multi, u_int16_t *virtual_id, u_int16_t *virtual_type) 2066 { 2067 /* 2068 * ICMP types marked with PF_OUT are typically responses to 2069 * PF_IN, and will match states in the opposite direction. 2070 * PF_IN ICMP types need to match a state with that type. 2071 */ 2072 *icmp_dir = PF_OUT; 2073 *multi = PF_ICMP_MULTI_LINK; 2074 /* Queries (and responses) */ 2075 switch (pd->af) { 2076 #ifdef INET 2077 case AF_INET: 2078 switch (type) { 2079 case ICMP_ECHO: 2080 *icmp_dir = PF_IN; 2081 case ICMP_ECHOREPLY: 2082 *virtual_type = ICMP_ECHO; 2083 *virtual_id = pd->hdr.icmp.icmp_id; 2084 break; 2085 2086 case ICMP_TSTAMP: 2087 *icmp_dir = PF_IN; 2088 case ICMP_TSTAMPREPLY: 2089 *virtual_type = ICMP_TSTAMP; 2090 *virtual_id = pd->hdr.icmp.icmp_id; 2091 break; 2092 2093 case ICMP_IREQ: 2094 *icmp_dir = PF_IN; 2095 case ICMP_IREQREPLY: 2096 *virtual_type = ICMP_IREQ; 2097 *virtual_id = pd->hdr.icmp.icmp_id; 2098 break; 2099 2100 case ICMP_MASKREQ: 2101 *icmp_dir = PF_IN; 2102 case ICMP_MASKREPLY: 2103 *virtual_type = ICMP_MASKREQ; 2104 *virtual_id = pd->hdr.icmp.icmp_id; 2105 break; 2106 2107 case ICMP_IPV6_WHEREAREYOU: 2108 *icmp_dir = PF_IN; 2109 case ICMP_IPV6_IAMHERE: 2110 *virtual_type = ICMP_IPV6_WHEREAREYOU; 2111 *virtual_id = 0; /* Nothing sane to match on! */ 2112 break; 2113 2114 case ICMP_MOBILE_REGREQUEST: 2115 *icmp_dir = PF_IN; 2116 case ICMP_MOBILE_REGREPLY: 2117 *virtual_type = ICMP_MOBILE_REGREQUEST; 2118 *virtual_id = 0; /* Nothing sane to match on! */ 2119 break; 2120 2121 case ICMP_ROUTERSOLICIT: 2122 *icmp_dir = PF_IN; 2123 case ICMP_ROUTERADVERT: 2124 *virtual_type = ICMP_ROUTERSOLICIT; 2125 *virtual_id = 0; /* Nothing sane to match on! */ 2126 break; 2127 2128 /* These ICMP types map to other connections */ 2129 case ICMP_UNREACH: 2130 case ICMP_SOURCEQUENCH: 2131 case ICMP_REDIRECT: 2132 case ICMP_TIMXCEED: 2133 case ICMP_PARAMPROB: 2134 /* These will not be used, but set them anyway */ 2135 *icmp_dir = PF_IN; 2136 *virtual_type = type; 2137 *virtual_id = 0; 2138 HTONS(*virtual_type); 2139 return (1); /* These types match to another state */ 2140 2141 /* 2142 * All remaining ICMP types get their own states, 2143 * and will only match in one direction. 2144 */ 2145 default: 2146 *icmp_dir = PF_IN; 2147 *virtual_type = type; 2148 *virtual_id = 0; 2149 break; 2150 } 2151 break; 2152 #endif /* INET */ 2153 #ifdef INET6 2154 case AF_INET6: 2155 switch (type) { 2156 case ICMP6_ECHO_REQUEST: 2157 *icmp_dir = PF_IN; 2158 case ICMP6_ECHO_REPLY: 2159 *virtual_type = ICMP6_ECHO_REQUEST; 2160 *virtual_id = pd->hdr.icmp6.icmp6_id; 2161 break; 2162 2163 case MLD_LISTENER_QUERY: 2164 case MLD_LISTENER_REPORT: { 2165 /* 2166 * Listener Report can be sent by clients 2167 * without an associated Listener Query. 2168 * In addition to that, when Report is sent as a 2169 * reply to a Query its source and destination 2170 * address are different. 2171 */ 2172 *icmp_dir = PF_IN; 2173 *virtual_type = MLD_LISTENER_QUERY; 2174 *virtual_id = 0; 2175 break; 2176 } 2177 case MLD_MTRACE: 2178 *icmp_dir = PF_IN; 2179 case MLD_MTRACE_RESP: 2180 *virtual_type = MLD_MTRACE; 2181 *virtual_id = 0; /* Nothing sane to match on! */ 2182 break; 2183 2184 case ND_NEIGHBOR_SOLICIT: 2185 *icmp_dir = PF_IN; 2186 case ND_NEIGHBOR_ADVERT: { 2187 *virtual_type = ND_NEIGHBOR_SOLICIT; 2188 *virtual_id = 0; 2189 break; 2190 } 2191 2192 /* 2193 * These ICMP types map to other connections. 2194 * ND_REDIRECT can't be in this list because the triggering 2195 * packet header is optional. 2196 */ 2197 case ICMP6_DST_UNREACH: 2198 case ICMP6_PACKET_TOO_BIG: 2199 case ICMP6_TIME_EXCEEDED: 2200 case ICMP6_PARAM_PROB: 2201 /* These will not be used, but set them anyway */ 2202 *icmp_dir = PF_IN; 2203 *virtual_type = type; 2204 *virtual_id = 0; 2205 HTONS(*virtual_type); 2206 return (1); /* These types match to another state */ 2207 /* 2208 * All remaining ICMP6 types get their own states, 2209 * and will only match in one direction. 2210 */ 2211 default: 2212 *icmp_dir = PF_IN; 2213 *virtual_type = type; 2214 *virtual_id = 0; 2215 break; 2216 } 2217 break; 2218 #endif /* INET6 */ 2219 } 2220 HTONS(*virtual_type); 2221 return (0); /* These types match to their own state */ 2222 } 2223 2224 void 2225 pf_intr(void *v) 2226 { 2227 struct epoch_tracker et; 2228 struct pf_send_head queue; 2229 struct pf_send_entry *pfse, *next; 2230 2231 CURVNET_SET((struct vnet *)v); 2232 2233 PF_SENDQ_LOCK(); 2234 queue = V_pf_sendqueue; 2235 STAILQ_INIT(&V_pf_sendqueue); 2236 PF_SENDQ_UNLOCK(); 2237 2238 NET_EPOCH_ENTER(et); 2239 2240 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 2241 switch (pfse->pfse_type) { 2242 #ifdef INET 2243 case PFSE_IP: { 2244 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 2245 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif, 2246 ("%s: rcvif != loif", __func__)); 2247 2248 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 2249 pfse->pfse_m->m_pkthdr.csum_flags |= 2250 CSUM_IP_VALID | CSUM_IP_CHECKED; 2251 ip_input(pfse->pfse_m); 2252 } else { 2253 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2254 NULL); 2255 } 2256 break; 2257 } 2258 case PFSE_ICMP: 2259 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 2260 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 2261 break; 2262 #endif /* INET */ 2263 #ifdef INET6 2264 case PFSE_IP6: 2265 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 2266 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif, 2267 ("%s: rcvif != loif", __func__)); 2268 2269 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL | 2270 M_LOOP; 2271 ip6_input(pfse->pfse_m); 2272 } else { 2273 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2274 NULL, NULL); 2275 } 2276 break; 2277 case PFSE_ICMP6: 2278 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 2279 pfse->icmpopts.code, pfse->icmpopts.mtu); 2280 break; 2281 #endif /* INET6 */ 2282 default: 2283 panic("%s: unknown type", __func__); 2284 } 2285 free(pfse, M_PFTEMP); 2286 } 2287 NET_EPOCH_EXIT(et); 2288 CURVNET_RESTORE(); 2289 } 2290 2291 #define pf_purge_thread_period (hz / 10) 2292 2293 #ifdef PF_WANT_32_TO_64_COUNTER 2294 static void 2295 pf_status_counter_u64_periodic(void) 2296 { 2297 2298 PF_RULES_RASSERT(); 2299 2300 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 2301 return; 2302 } 2303 2304 for (int i = 0; i < FCNT_MAX; i++) { 2305 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 2306 } 2307 } 2308 2309 static void 2310 pf_kif_counter_u64_periodic(void) 2311 { 2312 struct pfi_kkif *kif; 2313 size_t r, run; 2314 2315 PF_RULES_RASSERT(); 2316 2317 if (__predict_false(V_pf_allkifcount == 0)) { 2318 return; 2319 } 2320 2321 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2322 return; 2323 } 2324 2325 run = V_pf_allkifcount / 10; 2326 if (run < 5) 2327 run = 5; 2328 2329 for (r = 0; r < run; r++) { 2330 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 2331 if (kif == NULL) { 2332 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2333 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 2334 break; 2335 } 2336 2337 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2338 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 2339 2340 for (int i = 0; i < 2; i++) { 2341 for (int j = 0; j < 2; j++) { 2342 for (int k = 0; k < 2; k++) { 2343 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 2344 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 2345 } 2346 } 2347 } 2348 } 2349 } 2350 2351 static void 2352 pf_rule_counter_u64_periodic(void) 2353 { 2354 struct pf_krule *rule; 2355 size_t r, run; 2356 2357 PF_RULES_RASSERT(); 2358 2359 if (__predict_false(V_pf_allrulecount == 0)) { 2360 return; 2361 } 2362 2363 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2364 return; 2365 } 2366 2367 run = V_pf_allrulecount / 10; 2368 if (run < 5) 2369 run = 5; 2370 2371 for (r = 0; r < run; r++) { 2372 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 2373 if (rule == NULL) { 2374 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2375 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 2376 break; 2377 } 2378 2379 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2380 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 2381 2382 pf_counter_u64_periodic(&rule->evaluations); 2383 for (int i = 0; i < 2; i++) { 2384 pf_counter_u64_periodic(&rule->packets[i]); 2385 pf_counter_u64_periodic(&rule->bytes[i]); 2386 } 2387 } 2388 } 2389 2390 static void 2391 pf_counter_u64_periodic_main(void) 2392 { 2393 PF_RULES_RLOCK_TRACKER; 2394 2395 V_pf_counter_periodic_iter++; 2396 2397 PF_RULES_RLOCK(); 2398 pf_counter_u64_critical_enter(); 2399 pf_status_counter_u64_periodic(); 2400 pf_kif_counter_u64_periodic(); 2401 pf_rule_counter_u64_periodic(); 2402 pf_counter_u64_critical_exit(); 2403 PF_RULES_RUNLOCK(); 2404 } 2405 #else 2406 #define pf_counter_u64_periodic_main() do { } while (0) 2407 #endif 2408 2409 void 2410 pf_purge_thread(void *unused __unused) 2411 { 2412 struct epoch_tracker et; 2413 2414 VNET_ITERATOR_DECL(vnet_iter); 2415 2416 sx_xlock(&pf_end_lock); 2417 while (pf_end_threads == 0) { 2418 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 2419 2420 VNET_LIST_RLOCK(); 2421 NET_EPOCH_ENTER(et); 2422 VNET_FOREACH(vnet_iter) { 2423 CURVNET_SET(vnet_iter); 2424 2425 /* Wait until V_pf_default_rule is initialized. */ 2426 if (V_pf_vnet_active == 0) { 2427 CURVNET_RESTORE(); 2428 continue; 2429 } 2430 2431 pf_counter_u64_periodic_main(); 2432 2433 /* 2434 * Process 1/interval fraction of the state 2435 * table every run. 2436 */ 2437 V_pf_purge_idx = 2438 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask / 2439 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 2440 2441 /* 2442 * Purge other expired types every 2443 * PFTM_INTERVAL seconds. 2444 */ 2445 if (V_pf_purge_idx == 0) { 2446 /* 2447 * Order is important: 2448 * - states and src nodes reference rules 2449 * - states and rules reference kifs 2450 */ 2451 pf_purge_expired_fragments(); 2452 pf_purge_expired_src_nodes(); 2453 pf_purge_unlinked_rules(); 2454 pfi_kkif_purge(); 2455 } 2456 CURVNET_RESTORE(); 2457 } 2458 NET_EPOCH_EXIT(et); 2459 VNET_LIST_RUNLOCK(); 2460 } 2461 2462 pf_end_threads++; 2463 sx_xunlock(&pf_end_lock); 2464 kproc_exit(0); 2465 } 2466 2467 void 2468 pf_unload_vnet_purge(void) 2469 { 2470 2471 /* 2472 * To cleanse up all kifs and rules we need 2473 * two runs: first one clears reference flags, 2474 * then pf_purge_expired_states() doesn't 2475 * raise them, and then second run frees. 2476 */ 2477 pf_purge_unlinked_rules(); 2478 pfi_kkif_purge(); 2479 2480 /* 2481 * Now purge everything. 2482 */ 2483 pf_purge_expired_states(0, V_pf_hashmask); 2484 pf_purge_fragments(UINT_MAX); 2485 pf_purge_expired_src_nodes(); 2486 2487 /* 2488 * Now all kifs & rules should be unreferenced, 2489 * thus should be successfully freed. 2490 */ 2491 pf_purge_unlinked_rules(); 2492 pfi_kkif_purge(); 2493 } 2494 2495 u_int32_t 2496 pf_state_expires(const struct pf_kstate *state) 2497 { 2498 u_int32_t timeout; 2499 u_int32_t start; 2500 u_int32_t end; 2501 u_int32_t states; 2502 2503 /* handle all PFTM_* > PFTM_MAX here */ 2504 if (state->timeout == PFTM_PURGE) 2505 return (time_uptime); 2506 KASSERT(state->timeout != PFTM_UNLINKED, 2507 ("pf_state_expires: timeout == PFTM_UNLINKED")); 2508 KASSERT((state->timeout < PFTM_MAX), 2509 ("pf_state_expires: timeout > PFTM_MAX")); 2510 timeout = state->rule->timeout[state->timeout]; 2511 if (!timeout) 2512 timeout = V_pf_default_rule.timeout[state->timeout]; 2513 start = state->rule->timeout[PFTM_ADAPTIVE_START]; 2514 if (start && state->rule != &V_pf_default_rule) { 2515 end = state->rule->timeout[PFTM_ADAPTIVE_END]; 2516 states = counter_u64_fetch(state->rule->states_cur); 2517 } else { 2518 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 2519 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 2520 states = V_pf_status.states; 2521 } 2522 if (end && states > start && start < end) { 2523 if (states < end) { 2524 timeout = (u_int64_t)timeout * (end - states) / 2525 (end - start); 2526 return ((state->expire / 1000) + timeout); 2527 } 2528 else 2529 return (time_uptime); 2530 } 2531 return ((state->expire / 1000) + timeout); 2532 } 2533 2534 void 2535 pf_purge_expired_src_nodes(void) 2536 { 2537 struct pf_ksrc_node_list freelist; 2538 struct pf_srchash *sh; 2539 struct pf_ksrc_node *cur, *next; 2540 int i; 2541 2542 LIST_INIT(&freelist); 2543 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 2544 PF_HASHROW_LOCK(sh); 2545 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 2546 if (cur->states == 0 && cur->expire <= time_uptime) { 2547 pf_unlink_src_node(cur); 2548 LIST_INSERT_HEAD(&freelist, cur, entry); 2549 } else if (cur->rule != NULL) 2550 cur->rule->rule_ref |= PFRULE_REFS; 2551 PF_HASHROW_UNLOCK(sh); 2552 } 2553 2554 pf_free_src_nodes(&freelist); 2555 2556 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2557 } 2558 2559 static void 2560 pf_src_tree_remove_state(struct pf_kstate *s) 2561 { 2562 struct pf_ksrc_node *sn; 2563 uint32_t timeout; 2564 2565 timeout = s->rule->timeout[PFTM_SRC_NODE] ? 2566 s->rule->timeout[PFTM_SRC_NODE] : 2567 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2568 2569 if (s->src_node != NULL) { 2570 sn = s->src_node; 2571 PF_SRC_NODE_LOCK(sn); 2572 if (s->src.tcp_est) 2573 --sn->conn; 2574 if (--sn->states == 0) 2575 sn->expire = time_uptime + timeout; 2576 PF_SRC_NODE_UNLOCK(sn); 2577 } 2578 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 2579 sn = s->nat_src_node; 2580 PF_SRC_NODE_LOCK(sn); 2581 if (--sn->states == 0) 2582 sn->expire = time_uptime + timeout; 2583 PF_SRC_NODE_UNLOCK(sn); 2584 } 2585 s->src_node = s->nat_src_node = NULL; 2586 } 2587 2588 /* 2589 * Unlink and potentilly free a state. Function may be 2590 * called with ID hash row locked, but always returns 2591 * unlocked, since it needs to go through key hash locking. 2592 */ 2593 int 2594 pf_unlink_state(struct pf_kstate *s) 2595 { 2596 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2597 2598 NET_EPOCH_ASSERT(); 2599 PF_HASHROW_ASSERT(ih); 2600 2601 if (s->timeout == PFTM_UNLINKED) { 2602 /* 2603 * State is being processed 2604 * by pf_unlink_state() in 2605 * an other thread. 2606 */ 2607 PF_HASHROW_UNLOCK(ih); 2608 return (0); /* XXXGL: undefined actually */ 2609 } 2610 2611 if (s->src.state == PF_TCPS_PROXY_DST) { 2612 /* XXX wire key the right one? */ 2613 pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af, 2614 &s->key[PF_SK_WIRE]->addr[1], 2615 &s->key[PF_SK_WIRE]->addr[0], 2616 s->key[PF_SK_WIRE]->port[1], 2617 s->key[PF_SK_WIRE]->port[0], 2618 s->src.seqhi, s->src.seqlo + 1, 2619 TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0, 2620 s->act.rtableid); 2621 } 2622 2623 LIST_REMOVE(s, entry); 2624 pf_src_tree_remove_state(s); 2625 2626 if (V_pfsync_delete_state_ptr != NULL) 2627 V_pfsync_delete_state_ptr(s); 2628 2629 STATE_DEC_COUNTERS(s); 2630 2631 s->timeout = PFTM_UNLINKED; 2632 2633 /* Ensure we remove it from the list of halfopen states, if needed. */ 2634 if (s->key[PF_SK_STACK] != NULL && 2635 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2636 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2637 2638 PF_HASHROW_UNLOCK(ih); 2639 2640 pf_detach_state(s); 2641 2642 pf_udp_mapping_release(s->udp_mapping); 2643 2644 /* pf_state_insert() initialises refs to 2 */ 2645 return (pf_release_staten(s, 2)); 2646 } 2647 2648 struct pf_kstate * 2649 pf_alloc_state(int flags) 2650 { 2651 2652 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2653 } 2654 2655 void 2656 pf_free_state(struct pf_kstate *cur) 2657 { 2658 struct pf_krule_item *ri; 2659 2660 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2661 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2662 cur->timeout)); 2663 2664 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2665 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2666 free(ri, M_PF_RULE_ITEM); 2667 } 2668 2669 pf_normalize_tcp_cleanup(cur); 2670 uma_zfree(V_pf_state_z, cur); 2671 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2672 } 2673 2674 /* 2675 * Called only from pf_purge_thread(), thus serialized. 2676 */ 2677 static u_int 2678 pf_purge_expired_states(u_int i, int maxcheck) 2679 { 2680 struct pf_idhash *ih; 2681 struct pf_kstate *s; 2682 struct pf_krule_item *mrm; 2683 size_t count __unused; 2684 2685 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2686 2687 /* 2688 * Go through hash and unlink states that expire now. 2689 */ 2690 while (maxcheck > 0) { 2691 count = 0; 2692 ih = &V_pf_idhash[i]; 2693 2694 /* only take the lock if we expect to do work */ 2695 if (!LIST_EMPTY(&ih->states)) { 2696 relock: 2697 PF_HASHROW_LOCK(ih); 2698 LIST_FOREACH(s, &ih->states, entry) { 2699 if (pf_state_expires(s) <= time_uptime) { 2700 V_pf_status.states -= 2701 pf_unlink_state(s); 2702 goto relock; 2703 } 2704 s->rule->rule_ref |= PFRULE_REFS; 2705 if (s->nat_rule != NULL) 2706 s->nat_rule->rule_ref |= PFRULE_REFS; 2707 if (s->anchor != NULL) 2708 s->anchor->rule_ref |= PFRULE_REFS; 2709 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2710 SLIST_FOREACH(mrm, &s->match_rules, entry) 2711 mrm->r->rule_ref |= PFRULE_REFS; 2712 if (s->rt_kif) 2713 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2714 count++; 2715 } 2716 PF_HASHROW_UNLOCK(ih); 2717 } 2718 2719 SDT_PROBE2(pf, purge, state, rowcount, i, count); 2720 2721 /* Return when we hit end of hash. */ 2722 if (++i > V_pf_hashmask) { 2723 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2724 return (0); 2725 } 2726 2727 maxcheck--; 2728 } 2729 2730 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2731 2732 return (i); 2733 } 2734 2735 static void 2736 pf_purge_unlinked_rules(void) 2737 { 2738 struct pf_krulequeue tmpq; 2739 struct pf_krule *r, *r1; 2740 2741 /* 2742 * If we have overloading task pending, then we'd 2743 * better skip purging this time. There is a tiny 2744 * probability that overloading task references 2745 * an already unlinked rule. 2746 */ 2747 PF_OVERLOADQ_LOCK(); 2748 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2749 PF_OVERLOADQ_UNLOCK(); 2750 return; 2751 } 2752 PF_OVERLOADQ_UNLOCK(); 2753 2754 /* 2755 * Do naive mark-and-sweep garbage collecting of old rules. 2756 * Reference flag is raised by pf_purge_expired_states() 2757 * and pf_purge_expired_src_nodes(). 2758 * 2759 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2760 * use a temporary queue. 2761 */ 2762 TAILQ_INIT(&tmpq); 2763 PF_UNLNKDRULES_LOCK(); 2764 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2765 if (!(r->rule_ref & PFRULE_REFS)) { 2766 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2767 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2768 } else 2769 r->rule_ref &= ~PFRULE_REFS; 2770 } 2771 PF_UNLNKDRULES_UNLOCK(); 2772 2773 if (!TAILQ_EMPTY(&tmpq)) { 2774 PF_CONFIG_LOCK(); 2775 PF_RULES_WLOCK(); 2776 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2777 TAILQ_REMOVE(&tmpq, r, entries); 2778 pf_free_rule(r); 2779 } 2780 PF_RULES_WUNLOCK(); 2781 PF_CONFIG_UNLOCK(); 2782 } 2783 } 2784 2785 void 2786 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2787 { 2788 switch (af) { 2789 #ifdef INET 2790 case AF_INET: { 2791 u_int32_t a = ntohl(addr->addr32[0]); 2792 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2793 (a>>8)&255, a&255); 2794 if (p) { 2795 p = ntohs(p); 2796 printf(":%u", p); 2797 } 2798 break; 2799 } 2800 #endif /* INET */ 2801 #ifdef INET6 2802 case AF_INET6: { 2803 u_int16_t b; 2804 u_int8_t i, curstart, curend, maxstart, maxend; 2805 curstart = curend = maxstart = maxend = 255; 2806 for (i = 0; i < 8; i++) { 2807 if (!addr->addr16[i]) { 2808 if (curstart == 255) 2809 curstart = i; 2810 curend = i; 2811 } else { 2812 if ((curend - curstart) > 2813 (maxend - maxstart)) { 2814 maxstart = curstart; 2815 maxend = curend; 2816 } 2817 curstart = curend = 255; 2818 } 2819 } 2820 if ((curend - curstart) > 2821 (maxend - maxstart)) { 2822 maxstart = curstart; 2823 maxend = curend; 2824 } 2825 for (i = 0; i < 8; i++) { 2826 if (i >= maxstart && i <= maxend) { 2827 if (i == 0) 2828 printf(":"); 2829 if (i == maxend) 2830 printf(":"); 2831 } else { 2832 b = ntohs(addr->addr16[i]); 2833 printf("%x", b); 2834 if (i < 7) 2835 printf(":"); 2836 } 2837 } 2838 if (p) { 2839 p = ntohs(p); 2840 printf("[%u]", p); 2841 } 2842 break; 2843 } 2844 #endif /* INET6 */ 2845 } 2846 } 2847 2848 void 2849 pf_print_state(struct pf_kstate *s) 2850 { 2851 pf_print_state_parts(s, NULL, NULL); 2852 } 2853 2854 static void 2855 pf_print_state_parts(struct pf_kstate *s, 2856 struct pf_state_key *skwp, struct pf_state_key *sksp) 2857 { 2858 struct pf_state_key *skw, *sks; 2859 u_int8_t proto, dir; 2860 2861 /* Do our best to fill these, but they're skipped if NULL */ 2862 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2863 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2864 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2865 dir = s ? s->direction : 0; 2866 2867 switch (proto) { 2868 case IPPROTO_IPV4: 2869 printf("IPv4"); 2870 break; 2871 case IPPROTO_IPV6: 2872 printf("IPv6"); 2873 break; 2874 case IPPROTO_TCP: 2875 printf("TCP"); 2876 break; 2877 case IPPROTO_UDP: 2878 printf("UDP"); 2879 break; 2880 case IPPROTO_ICMP: 2881 printf("ICMP"); 2882 break; 2883 case IPPROTO_ICMPV6: 2884 printf("ICMPv6"); 2885 break; 2886 default: 2887 printf("%u", proto); 2888 break; 2889 } 2890 switch (dir) { 2891 case PF_IN: 2892 printf(" in"); 2893 break; 2894 case PF_OUT: 2895 printf(" out"); 2896 break; 2897 } 2898 if (skw) { 2899 printf(" wire: "); 2900 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2901 printf(" "); 2902 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2903 } 2904 if (sks) { 2905 printf(" stack: "); 2906 if (sks != skw) { 2907 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2908 printf(" "); 2909 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2910 } else 2911 printf("-"); 2912 } 2913 if (s) { 2914 if (proto == IPPROTO_TCP) { 2915 printf(" [lo=%u high=%u win=%u modulator=%u", 2916 s->src.seqlo, s->src.seqhi, 2917 s->src.max_win, s->src.seqdiff); 2918 if (s->src.wscale && s->dst.wscale) 2919 printf(" wscale=%u", 2920 s->src.wscale & PF_WSCALE_MASK); 2921 printf("]"); 2922 printf(" [lo=%u high=%u win=%u modulator=%u", 2923 s->dst.seqlo, s->dst.seqhi, 2924 s->dst.max_win, s->dst.seqdiff); 2925 if (s->src.wscale && s->dst.wscale) 2926 printf(" wscale=%u", 2927 s->dst.wscale & PF_WSCALE_MASK); 2928 printf("]"); 2929 } 2930 printf(" %u:%u", s->src.state, s->dst.state); 2931 if (s->rule) 2932 printf(" @%d", s->rule->nr); 2933 } 2934 } 2935 2936 void 2937 pf_print_flags(uint16_t f) 2938 { 2939 if (f) 2940 printf(" "); 2941 if (f & TH_FIN) 2942 printf("F"); 2943 if (f & TH_SYN) 2944 printf("S"); 2945 if (f & TH_RST) 2946 printf("R"); 2947 if (f & TH_PUSH) 2948 printf("P"); 2949 if (f & TH_ACK) 2950 printf("A"); 2951 if (f & TH_URG) 2952 printf("U"); 2953 if (f & TH_ECE) 2954 printf("E"); 2955 if (f & TH_CWR) 2956 printf("W"); 2957 if (f & TH_AE) 2958 printf("e"); 2959 } 2960 2961 #define PF_SET_SKIP_STEPS(i) \ 2962 do { \ 2963 while (head[i] != cur) { \ 2964 head[i]->skip[i] = cur; \ 2965 head[i] = TAILQ_NEXT(head[i], entries); \ 2966 } \ 2967 } while (0) 2968 2969 void 2970 pf_calc_skip_steps(struct pf_krulequeue *rules) 2971 { 2972 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2973 int i; 2974 2975 cur = TAILQ_FIRST(rules); 2976 prev = cur; 2977 for (i = 0; i < PF_SKIP_COUNT; ++i) 2978 head[i] = cur; 2979 while (cur != NULL) { 2980 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2981 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2982 if (cur->direction != prev->direction) 2983 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2984 if (cur->af != prev->af) 2985 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2986 if (cur->proto != prev->proto) 2987 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2988 if (cur->src.neg != prev->src.neg || 2989 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2990 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2991 if (cur->dst.neg != prev->dst.neg || 2992 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2993 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2994 if (cur->src.port[0] != prev->src.port[0] || 2995 cur->src.port[1] != prev->src.port[1] || 2996 cur->src.port_op != prev->src.port_op) 2997 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2998 if (cur->dst.port[0] != prev->dst.port[0] || 2999 cur->dst.port[1] != prev->dst.port[1] || 3000 cur->dst.port_op != prev->dst.port_op) 3001 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 3002 3003 prev = cur; 3004 cur = TAILQ_NEXT(cur, entries); 3005 } 3006 for (i = 0; i < PF_SKIP_COUNT; ++i) 3007 PF_SET_SKIP_STEPS(i); 3008 } 3009 3010 int 3011 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 3012 { 3013 if (aw1->type != aw2->type) 3014 return (1); 3015 switch (aw1->type) { 3016 case PF_ADDR_ADDRMASK: 3017 case PF_ADDR_RANGE: 3018 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 3019 return (1); 3020 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 3021 return (1); 3022 return (0); 3023 case PF_ADDR_DYNIFTL: 3024 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 3025 case PF_ADDR_NOROUTE: 3026 case PF_ADDR_URPFFAILED: 3027 return (0); 3028 case PF_ADDR_TABLE: 3029 return (aw1->p.tbl != aw2->p.tbl); 3030 default: 3031 printf("invalid address type: %d\n", aw1->type); 3032 return (1); 3033 } 3034 } 3035 3036 /** 3037 * Checksum updates are a little complicated because the checksum in the TCP/UDP 3038 * header isn't always a full checksum. In some cases (i.e. output) it's a 3039 * pseudo-header checksum, which is a partial checksum over src/dst IP 3040 * addresses, protocol number and length. 3041 * 3042 * That means we have the following cases: 3043 * * Input or forwarding: we don't have TSO, the checksum fields are full 3044 * checksums, we need to update the checksum whenever we change anything. 3045 * * Output (i.e. the checksum is a pseudo-header checksum): 3046 * x The field being updated is src/dst address or affects the length of 3047 * the packet. We need to update the pseudo-header checksum (note that this 3048 * checksum is not ones' complement). 3049 * x Some other field is being modified (e.g. src/dst port numbers): We 3050 * don't have to update anything. 3051 **/ 3052 u_int16_t 3053 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 3054 { 3055 u_int32_t x; 3056 3057 x = cksum + old - new; 3058 x = (x + (x >> 16)) & 0xffff; 3059 3060 /* optimise: eliminate a branch when not udp */ 3061 if (udp && cksum == 0x0000) 3062 return cksum; 3063 if (udp && x == 0x0000) 3064 x = 0xffff; 3065 3066 return (u_int16_t)(x); 3067 } 3068 3069 static void 3070 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 3071 u_int8_t udp) 3072 { 3073 u_int16_t old = htons(hi ? (*f << 8) : *f); 3074 u_int16_t new = htons(hi ? ( v << 8) : v); 3075 3076 if (*f == v) 3077 return; 3078 3079 *f = v; 3080 3081 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3082 return; 3083 3084 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 3085 } 3086 3087 void 3088 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 3089 bool hi, u_int8_t udp) 3090 { 3091 u_int8_t *fb = (u_int8_t *)f; 3092 u_int8_t *vb = (u_int8_t *)&v; 3093 3094 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3095 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3096 } 3097 3098 void 3099 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 3100 bool hi, u_int8_t udp) 3101 { 3102 u_int8_t *fb = (u_int8_t *)f; 3103 u_int8_t *vb = (u_int8_t *)&v; 3104 3105 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3106 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3107 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3108 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3109 } 3110 3111 u_int16_t 3112 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 3113 u_int16_t new, u_int8_t udp) 3114 { 3115 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3116 return (cksum); 3117 3118 return (pf_cksum_fixup(cksum, old, new, udp)); 3119 } 3120 3121 static void 3122 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 3123 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 3124 sa_family_t af) 3125 { 3126 struct pf_addr ao; 3127 u_int16_t po = *p; 3128 3129 PF_ACPY(&ao, a, af); 3130 PF_ACPY(a, an, af); 3131 3132 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3133 *pc = ~*pc; 3134 3135 *p = pn; 3136 3137 switch (af) { 3138 #ifdef INET 3139 case AF_INET: 3140 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3141 ao.addr16[0], an->addr16[0], 0), 3142 ao.addr16[1], an->addr16[1], 0); 3143 *p = pn; 3144 3145 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 3146 ao.addr16[0], an->addr16[0], u), 3147 ao.addr16[1], an->addr16[1], u); 3148 3149 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 3150 break; 3151 #endif /* INET */ 3152 #ifdef INET6 3153 case AF_INET6: 3154 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3155 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3156 pf_cksum_fixup(pf_cksum_fixup(*pc, 3157 ao.addr16[0], an->addr16[0], u), 3158 ao.addr16[1], an->addr16[1], u), 3159 ao.addr16[2], an->addr16[2], u), 3160 ao.addr16[3], an->addr16[3], u), 3161 ao.addr16[4], an->addr16[4], u), 3162 ao.addr16[5], an->addr16[5], u), 3163 ao.addr16[6], an->addr16[6], u), 3164 ao.addr16[7], an->addr16[7], u); 3165 3166 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 3167 break; 3168 #endif /* INET6 */ 3169 } 3170 3171 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 3172 CSUM_DELAY_DATA_IPV6)) { 3173 *pc = ~*pc; 3174 if (! *pc) 3175 *pc = 0xffff; 3176 } 3177 } 3178 3179 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 3180 void 3181 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 3182 { 3183 u_int32_t ao; 3184 3185 memcpy(&ao, a, sizeof(ao)); 3186 memcpy(a, &an, sizeof(u_int32_t)); 3187 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 3188 ao % 65536, an % 65536, u); 3189 } 3190 3191 void 3192 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 3193 { 3194 u_int32_t ao; 3195 3196 memcpy(&ao, a, sizeof(ao)); 3197 memcpy(a, &an, sizeof(u_int32_t)); 3198 3199 *c = pf_proto_cksum_fixup(m, 3200 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 3201 ao % 65536, an % 65536, udp); 3202 } 3203 3204 #ifdef INET6 3205 static void 3206 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 3207 { 3208 struct pf_addr ao; 3209 3210 PF_ACPY(&ao, a, AF_INET6); 3211 PF_ACPY(a, an, AF_INET6); 3212 3213 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3214 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3215 pf_cksum_fixup(pf_cksum_fixup(*c, 3216 ao.addr16[0], an->addr16[0], u), 3217 ao.addr16[1], an->addr16[1], u), 3218 ao.addr16[2], an->addr16[2], u), 3219 ao.addr16[3], an->addr16[3], u), 3220 ao.addr16[4], an->addr16[4], u), 3221 ao.addr16[5], an->addr16[5], u), 3222 ao.addr16[6], an->addr16[6], u), 3223 ao.addr16[7], an->addr16[7], u); 3224 } 3225 #endif /* INET6 */ 3226 3227 static void 3228 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 3229 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 3230 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 3231 { 3232 struct pf_addr oia, ooa; 3233 3234 PF_ACPY(&oia, ia, af); 3235 if (oa) 3236 PF_ACPY(&ooa, oa, af); 3237 3238 /* Change inner protocol port, fix inner protocol checksum. */ 3239 if (ip != NULL) { 3240 u_int16_t oip = *ip; 3241 u_int32_t opc; 3242 3243 if (pc != NULL) 3244 opc = *pc; 3245 *ip = np; 3246 if (pc != NULL) 3247 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 3248 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 3249 if (pc != NULL) 3250 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 3251 } 3252 /* Change inner ip address, fix inner ip and icmp checksums. */ 3253 PF_ACPY(ia, na, af); 3254 switch (af) { 3255 #ifdef INET 3256 case AF_INET: { 3257 u_int32_t oh2c = *h2c; 3258 3259 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 3260 oia.addr16[0], ia->addr16[0], 0), 3261 oia.addr16[1], ia->addr16[1], 0); 3262 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3263 oia.addr16[0], ia->addr16[0], 0), 3264 oia.addr16[1], ia->addr16[1], 0); 3265 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 3266 break; 3267 } 3268 #endif /* INET */ 3269 #ifdef INET6 3270 case AF_INET6: 3271 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3272 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3273 pf_cksum_fixup(pf_cksum_fixup(*ic, 3274 oia.addr16[0], ia->addr16[0], u), 3275 oia.addr16[1], ia->addr16[1], u), 3276 oia.addr16[2], ia->addr16[2], u), 3277 oia.addr16[3], ia->addr16[3], u), 3278 oia.addr16[4], ia->addr16[4], u), 3279 oia.addr16[5], ia->addr16[5], u), 3280 oia.addr16[6], ia->addr16[6], u), 3281 oia.addr16[7], ia->addr16[7], u); 3282 break; 3283 #endif /* INET6 */ 3284 } 3285 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 3286 if (oa) { 3287 PF_ACPY(oa, na, af); 3288 switch (af) { 3289 #ifdef INET 3290 case AF_INET: 3291 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 3292 ooa.addr16[0], oa->addr16[0], 0), 3293 ooa.addr16[1], oa->addr16[1], 0); 3294 break; 3295 #endif /* INET */ 3296 #ifdef INET6 3297 case AF_INET6: 3298 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3299 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3300 pf_cksum_fixup(pf_cksum_fixup(*ic, 3301 ooa.addr16[0], oa->addr16[0], u), 3302 ooa.addr16[1], oa->addr16[1], u), 3303 ooa.addr16[2], oa->addr16[2], u), 3304 ooa.addr16[3], oa->addr16[3], u), 3305 ooa.addr16[4], oa->addr16[4], u), 3306 ooa.addr16[5], oa->addr16[5], u), 3307 ooa.addr16[6], oa->addr16[6], u), 3308 ooa.addr16[7], oa->addr16[7], u); 3309 break; 3310 #endif /* INET6 */ 3311 } 3312 } 3313 } 3314 3315 /* 3316 * Need to modulate the sequence numbers in the TCP SACK option 3317 * (credits to Krzysztof Pfaff for report and patch) 3318 */ 3319 static int 3320 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th, 3321 struct pf_state_peer *dst) 3322 { 3323 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 3324 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 3325 int copyback = 0, i, olen; 3326 struct sackblk sack; 3327 3328 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 3329 if (hlen < TCPOLEN_SACKLEN || 3330 !pf_pull_hdr(pd->m, pd->off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 3331 return 0; 3332 3333 while (hlen >= TCPOLEN_SACKLEN) { 3334 size_t startoff = opt - opts; 3335 olen = opt[1]; 3336 switch (*opt) { 3337 case TCPOPT_EOL: /* FALLTHROUGH */ 3338 case TCPOPT_NOP: 3339 opt++; 3340 hlen--; 3341 break; 3342 case TCPOPT_SACK: 3343 if (olen > hlen) 3344 olen = hlen; 3345 if (olen >= TCPOLEN_SACKLEN) { 3346 for (i = 2; i + TCPOLEN_SACK <= olen; 3347 i += TCPOLEN_SACK) { 3348 memcpy(&sack, &opt[i], sizeof(sack)); 3349 pf_patch_32_unaligned(pd->m, 3350 &th->th_sum, &sack.start, 3351 htonl(ntohl(sack.start) - dst->seqdiff), 3352 PF_ALGNMNT(startoff), 3353 0); 3354 pf_patch_32_unaligned(pd->m, &th->th_sum, 3355 &sack.end, 3356 htonl(ntohl(sack.end) - dst->seqdiff), 3357 PF_ALGNMNT(startoff), 3358 0); 3359 memcpy(&opt[i], &sack, sizeof(sack)); 3360 } 3361 copyback = 1; 3362 } 3363 /* FALLTHROUGH */ 3364 default: 3365 if (olen < 2) 3366 olen = 2; 3367 hlen -= olen; 3368 opt += olen; 3369 } 3370 } 3371 3372 if (copyback) 3373 m_copyback(pd->m, pd->off + sizeof(*th), thoptlen, (caddr_t)opts); 3374 return (copyback); 3375 } 3376 3377 struct mbuf * 3378 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 3379 const struct pf_addr *saddr, const struct pf_addr *daddr, 3380 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3381 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3382 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3383 { 3384 struct mbuf *m; 3385 int len, tlen; 3386 #ifdef INET 3387 struct ip *h = NULL; 3388 #endif /* INET */ 3389 #ifdef INET6 3390 struct ip6_hdr *h6 = NULL; 3391 #endif /* INET6 */ 3392 struct tcphdr *th; 3393 char *opt; 3394 struct pf_mtag *pf_mtag; 3395 3396 len = 0; 3397 th = NULL; 3398 3399 /* maximum segment size tcp option */ 3400 tlen = sizeof(struct tcphdr); 3401 if (mss) 3402 tlen += 4; 3403 3404 switch (af) { 3405 #ifdef INET 3406 case AF_INET: 3407 len = sizeof(struct ip) + tlen; 3408 break; 3409 #endif /* INET */ 3410 #ifdef INET6 3411 case AF_INET6: 3412 len = sizeof(struct ip6_hdr) + tlen; 3413 break; 3414 #endif /* INET6 */ 3415 } 3416 3417 m = m_gethdr(M_NOWAIT, MT_DATA); 3418 if (m == NULL) 3419 return (NULL); 3420 3421 #ifdef MAC 3422 mac_netinet_firewall_send(m); 3423 #endif 3424 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 3425 m_freem(m); 3426 return (NULL); 3427 } 3428 m->m_flags |= mbuf_flags; 3429 pf_mtag->tag = mtag_tag; 3430 pf_mtag->flags = mtag_flags; 3431 3432 if (rtableid >= 0) 3433 M_SETFIB(m, rtableid); 3434 3435 #ifdef ALTQ 3436 if (r != NULL && r->qid) { 3437 pf_mtag->qid = r->qid; 3438 3439 /* add hints for ecn */ 3440 pf_mtag->hdr = mtod(m, struct ip *); 3441 } 3442 #endif /* ALTQ */ 3443 m->m_data += max_linkhdr; 3444 m->m_pkthdr.len = m->m_len = len; 3445 /* The rest of the stack assumes a rcvif, so provide one. 3446 * This is a locally generated packet, so .. close enough. */ 3447 m->m_pkthdr.rcvif = V_loif; 3448 bzero(m->m_data, len); 3449 switch (af) { 3450 #ifdef INET 3451 case AF_INET: 3452 h = mtod(m, struct ip *); 3453 3454 /* IP header fields included in the TCP checksum */ 3455 h->ip_p = IPPROTO_TCP; 3456 h->ip_len = htons(tlen); 3457 h->ip_src.s_addr = saddr->v4.s_addr; 3458 h->ip_dst.s_addr = daddr->v4.s_addr; 3459 3460 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 3461 break; 3462 #endif /* INET */ 3463 #ifdef INET6 3464 case AF_INET6: 3465 h6 = mtod(m, struct ip6_hdr *); 3466 3467 /* IP header fields included in the TCP checksum */ 3468 h6->ip6_nxt = IPPROTO_TCP; 3469 h6->ip6_plen = htons(tlen); 3470 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 3471 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 3472 3473 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 3474 break; 3475 #endif /* INET6 */ 3476 } 3477 3478 /* TCP header */ 3479 th->th_sport = sport; 3480 th->th_dport = dport; 3481 th->th_seq = htonl(seq); 3482 th->th_ack = htonl(ack); 3483 th->th_off = tlen >> 2; 3484 tcp_set_flags(th, tcp_flags); 3485 th->th_win = htons(win); 3486 3487 if (mss) { 3488 opt = (char *)(th + 1); 3489 opt[0] = TCPOPT_MAXSEG; 3490 opt[1] = 4; 3491 HTONS(mss); 3492 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 3493 } 3494 3495 switch (af) { 3496 #ifdef INET 3497 case AF_INET: 3498 /* TCP checksum */ 3499 th->th_sum = in_cksum(m, len); 3500 3501 /* Finish the IP header */ 3502 h->ip_v = 4; 3503 h->ip_hl = sizeof(*h) >> 2; 3504 h->ip_tos = IPTOS_LOWDELAY; 3505 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 3506 h->ip_len = htons(len); 3507 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3508 h->ip_sum = 0; 3509 break; 3510 #endif /* INET */ 3511 #ifdef INET6 3512 case AF_INET6: 3513 /* TCP checksum */ 3514 th->th_sum = in6_cksum(m, IPPROTO_TCP, 3515 sizeof(struct ip6_hdr), tlen); 3516 3517 h6->ip6_vfc |= IPV6_VERSION; 3518 h6->ip6_hlim = IPV6_DEFHLIM; 3519 break; 3520 #endif /* INET6 */ 3521 } 3522 3523 return (m); 3524 } 3525 3526 static void 3527 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd, 3528 uint8_t ttl, int rtableid) 3529 { 3530 struct mbuf *m; 3531 #ifdef INET 3532 struct ip *h = NULL; 3533 #endif /* INET */ 3534 #ifdef INET6 3535 struct ip6_hdr *h6 = NULL; 3536 #endif /* INET6 */ 3537 struct sctphdr *hdr; 3538 struct sctp_chunkhdr *chunk; 3539 struct pf_send_entry *pfse; 3540 int off = 0; 3541 3542 MPASS(af == pd->af); 3543 3544 m = m_gethdr(M_NOWAIT, MT_DATA); 3545 if (m == NULL) 3546 return; 3547 3548 m->m_data += max_linkhdr; 3549 m->m_flags |= M_SKIP_FIREWALL; 3550 /* The rest of the stack assumes a rcvif, so provide one. 3551 * This is a locally generated packet, so .. close enough. */ 3552 m->m_pkthdr.rcvif = V_loif; 3553 3554 /* IPv4|6 header */ 3555 switch (af) { 3556 #ifdef INET 3557 case AF_INET: 3558 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk)); 3559 3560 h = mtod(m, struct ip *); 3561 3562 /* IP header fields included in the TCP checksum */ 3563 3564 h->ip_p = IPPROTO_SCTP; 3565 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk)); 3566 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3567 h->ip_src = pd->dst->v4; 3568 h->ip_dst = pd->src->v4; 3569 3570 off += sizeof(struct ip); 3571 break; 3572 #endif /* INET */ 3573 #ifdef INET6 3574 case AF_INET6: 3575 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk)); 3576 3577 h6 = mtod(m, struct ip6_hdr *); 3578 3579 /* IP header fields included in the TCP checksum */ 3580 h6->ip6_vfc |= IPV6_VERSION; 3581 h6->ip6_nxt = IPPROTO_SCTP; 3582 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk)); 3583 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim; 3584 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr)); 3585 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr)); 3586 3587 off += sizeof(struct ip6_hdr); 3588 break; 3589 #endif /* INET6 */ 3590 } 3591 3592 /* SCTP header */ 3593 hdr = mtodo(m, off); 3594 3595 hdr->src_port = pd->hdr.sctp.dest_port; 3596 hdr->dest_port = pd->hdr.sctp.src_port; 3597 hdr->v_tag = pd->sctp_initiate_tag; 3598 hdr->checksum = 0; 3599 3600 /* Abort chunk. */ 3601 off += sizeof(struct sctphdr); 3602 chunk = mtodo(m, off); 3603 3604 chunk->chunk_type = SCTP_ABORT_ASSOCIATION; 3605 chunk->chunk_length = htons(sizeof(*chunk)); 3606 3607 /* SCTP checksum */ 3608 off += sizeof(*chunk); 3609 m->m_pkthdr.len = m->m_len = off; 3610 3611 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk)); 3612 3613 if (rtableid >= 0) 3614 M_SETFIB(m, rtableid); 3615 3616 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3617 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3618 if (pfse == NULL) { 3619 m_freem(m); 3620 return; 3621 } 3622 3623 switch (af) { 3624 #ifdef INET 3625 case AF_INET: 3626 pfse->pfse_type = PFSE_IP; 3627 break; 3628 #endif /* INET */ 3629 #ifdef INET6 3630 case AF_INET6: 3631 pfse->pfse_type = PFSE_IP6; 3632 break; 3633 #endif /* INET6 */ 3634 } 3635 3636 pfse->pfse_m = m; 3637 pf_send(pfse); 3638 } 3639 3640 void 3641 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 3642 const struct pf_addr *saddr, const struct pf_addr *daddr, 3643 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3644 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3645 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3646 { 3647 struct pf_send_entry *pfse; 3648 struct mbuf *m; 3649 3650 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags, 3651 win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, rtableid); 3652 if (m == NULL) 3653 return; 3654 3655 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3656 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3657 if (pfse == NULL) { 3658 m_freem(m); 3659 return; 3660 } 3661 3662 switch (af) { 3663 #ifdef INET 3664 case AF_INET: 3665 pfse->pfse_type = PFSE_IP; 3666 break; 3667 #endif /* INET */ 3668 #ifdef INET6 3669 case AF_INET6: 3670 pfse->pfse_type = PFSE_IP6; 3671 break; 3672 #endif /* INET6 */ 3673 } 3674 3675 pfse->pfse_m = m; 3676 pf_send(pfse); 3677 } 3678 3679 static void 3680 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 3681 struct pf_state_key *sk, struct tcphdr *th, 3682 u_int16_t bproto_sum, u_int16_t bip_sum, 3683 u_short *reason, int rtableid) 3684 { 3685 struct pf_addr * const saddr = pd->src; 3686 struct pf_addr * const daddr = pd->dst; 3687 3688 /* undo NAT changes, if they have taken place */ 3689 if (nr != NULL) { 3690 PF_ACPY(saddr, &sk->addr[pd->sidx], pd->af); 3691 PF_ACPY(daddr, &sk->addr[pd->didx], pd->af); 3692 if (pd->sport) 3693 *pd->sport = sk->port[pd->sidx]; 3694 if (pd->dport) 3695 *pd->dport = sk->port[pd->didx]; 3696 if (pd->proto_sum) 3697 *pd->proto_sum = bproto_sum; 3698 if (pd->ip_sum) 3699 *pd->ip_sum = bip_sum; 3700 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 3701 } 3702 if (pd->proto == IPPROTO_TCP && 3703 ((r->rule_flag & PFRULE_RETURNRST) || 3704 (r->rule_flag & PFRULE_RETURN)) && 3705 !(tcp_get_flags(th) & TH_RST)) { 3706 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3707 3708 if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off, 3709 IPPROTO_TCP, pd->af)) 3710 REASON_SET(reason, PFRES_PROTCKSUM); 3711 else { 3712 if (tcp_get_flags(th) & TH_SYN) 3713 ack++; 3714 if (tcp_get_flags(th) & TH_FIN) 3715 ack++; 3716 pf_send_tcp(r, pd->af, pd->dst, 3717 pd->src, th->th_dport, th->th_sport, 3718 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3719 r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid); 3720 } 3721 } else if (pd->proto == IPPROTO_SCTP && 3722 (r->rule_flag & PFRULE_RETURN)) { 3723 pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid); 3724 } else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET && 3725 r->return_icmp) 3726 pf_send_icmp(pd->m, r->return_icmp >> 8, 3727 r->return_icmp & 255, pd->af, r, rtableid); 3728 else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 && 3729 r->return_icmp6) 3730 pf_send_icmp(pd->m, r->return_icmp6 >> 8, 3731 r->return_icmp6 & 255, pd->af, r, rtableid); 3732 } 3733 3734 static int 3735 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 3736 { 3737 struct m_tag *mtag; 3738 u_int8_t mpcp; 3739 3740 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 3741 if (mtag == NULL) 3742 return (0); 3743 3744 if (prio == PF_PRIO_ZERO) 3745 prio = 0; 3746 3747 mpcp = *(uint8_t *)(mtag + 1); 3748 3749 return (mpcp == prio); 3750 } 3751 3752 static int 3753 pf_icmp_to_bandlim(uint8_t type) 3754 { 3755 switch (type) { 3756 case ICMP_ECHO: 3757 case ICMP_ECHOREPLY: 3758 return (BANDLIM_ICMP_ECHO); 3759 case ICMP_TSTAMP: 3760 case ICMP_TSTAMPREPLY: 3761 return (BANDLIM_ICMP_TSTAMP); 3762 case ICMP_UNREACH: 3763 default: 3764 return (BANDLIM_ICMP_UNREACH); 3765 } 3766 } 3767 3768 static void 3769 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 3770 struct pf_krule *r, int rtableid) 3771 { 3772 struct pf_send_entry *pfse; 3773 struct mbuf *m0; 3774 struct pf_mtag *pf_mtag; 3775 3776 /* ICMP packet rate limitation. */ 3777 switch (af) { 3778 #ifdef INET6 3779 case AF_INET6: 3780 if (icmp6_ratelimit(NULL, type, code)) 3781 return; 3782 break; 3783 #endif 3784 #ifdef INET 3785 case AF_INET: 3786 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 3787 return; 3788 break; 3789 #endif 3790 } 3791 3792 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3793 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3794 if (pfse == NULL) 3795 return; 3796 3797 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 3798 free(pfse, M_PFTEMP); 3799 return; 3800 } 3801 3802 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 3803 free(pfse, M_PFTEMP); 3804 return; 3805 } 3806 /* XXX: revisit */ 3807 m0->m_flags |= M_SKIP_FIREWALL; 3808 3809 if (rtableid >= 0) 3810 M_SETFIB(m0, rtableid); 3811 3812 #ifdef ALTQ 3813 if (r->qid) { 3814 pf_mtag->qid = r->qid; 3815 /* add hints for ecn */ 3816 pf_mtag->hdr = mtod(m0, struct ip *); 3817 } 3818 #endif /* ALTQ */ 3819 3820 switch (af) { 3821 #ifdef INET 3822 case AF_INET: 3823 pfse->pfse_type = PFSE_ICMP; 3824 break; 3825 #endif /* INET */ 3826 #ifdef INET6 3827 case AF_INET6: 3828 pfse->pfse_type = PFSE_ICMP6; 3829 break; 3830 #endif /* INET6 */ 3831 } 3832 pfse->pfse_m = m0; 3833 pfse->icmpopts.type = type; 3834 pfse->icmpopts.code = code; 3835 pf_send(pfse); 3836 } 3837 3838 /* 3839 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 3840 * If n is 0, they match if they are equal. If n is != 0, they match if they 3841 * are different. 3842 */ 3843 int 3844 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 3845 struct pf_addr *b, sa_family_t af) 3846 { 3847 int match = 0; 3848 3849 switch (af) { 3850 #ifdef INET 3851 case AF_INET: 3852 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4)) 3853 match++; 3854 break; 3855 #endif /* INET */ 3856 #ifdef INET6 3857 case AF_INET6: 3858 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6)) 3859 match++; 3860 break; 3861 #endif /* INET6 */ 3862 } 3863 if (match) { 3864 if (n) 3865 return (0); 3866 else 3867 return (1); 3868 } else { 3869 if (n) 3870 return (1); 3871 else 3872 return (0); 3873 } 3874 } 3875 3876 /* 3877 * Return 1 if b <= a <= e, otherwise return 0. 3878 */ 3879 int 3880 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 3881 struct pf_addr *a, sa_family_t af) 3882 { 3883 switch (af) { 3884 #ifdef INET 3885 case AF_INET: 3886 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 3887 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 3888 return (0); 3889 break; 3890 #endif /* INET */ 3891 #ifdef INET6 3892 case AF_INET6: { 3893 int i; 3894 3895 /* check a >= b */ 3896 for (i = 0; i < 4; ++i) 3897 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 3898 break; 3899 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 3900 return (0); 3901 /* check a <= e */ 3902 for (i = 0; i < 4; ++i) 3903 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 3904 break; 3905 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 3906 return (0); 3907 break; 3908 } 3909 #endif /* INET6 */ 3910 } 3911 return (1); 3912 } 3913 3914 static int 3915 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3916 { 3917 switch (op) { 3918 case PF_OP_IRG: 3919 return ((p > a1) && (p < a2)); 3920 case PF_OP_XRG: 3921 return ((p < a1) || (p > a2)); 3922 case PF_OP_RRG: 3923 return ((p >= a1) && (p <= a2)); 3924 case PF_OP_EQ: 3925 return (p == a1); 3926 case PF_OP_NE: 3927 return (p != a1); 3928 case PF_OP_LT: 3929 return (p < a1); 3930 case PF_OP_LE: 3931 return (p <= a1); 3932 case PF_OP_GT: 3933 return (p > a1); 3934 case PF_OP_GE: 3935 return (p >= a1); 3936 } 3937 return (0); /* never reached */ 3938 } 3939 3940 int 3941 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3942 { 3943 NTOHS(a1); 3944 NTOHS(a2); 3945 NTOHS(p); 3946 return (pf_match(op, a1, a2, p)); 3947 } 3948 3949 static int 3950 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3951 { 3952 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3953 return (0); 3954 return (pf_match(op, a1, a2, u)); 3955 } 3956 3957 static int 3958 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3959 { 3960 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3961 return (0); 3962 return (pf_match(op, a1, a2, g)); 3963 } 3964 3965 int 3966 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3967 { 3968 if (*tag == -1) 3969 *tag = mtag; 3970 3971 return ((!r->match_tag_not && r->match_tag == *tag) || 3972 (r->match_tag_not && r->match_tag != *tag)); 3973 } 3974 3975 static int 3976 pf_match_rcvif(struct mbuf *m, struct pf_krule *r) 3977 { 3978 struct ifnet *ifp = m->m_pkthdr.rcvif; 3979 struct pfi_kkif *kif; 3980 3981 if (ifp == NULL) 3982 return (0); 3983 3984 kif = (struct pfi_kkif *)ifp->if_pf_kif; 3985 3986 if (kif == NULL) { 3987 DPFPRINTF(PF_DEBUG_URGENT, 3988 ("pf_test_via: kif == NULL, @%d via %s\n", r->nr, 3989 r->rcv_ifname)); 3990 return (0); 3991 } 3992 3993 return (pfi_kkif_match(r->rcv_kif, kif)); 3994 } 3995 3996 int 3997 pf_tag_packet(struct pf_pdesc *pd, int tag) 3998 { 3999 4000 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 4001 4002 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) 4003 return (ENOMEM); 4004 4005 pd->pf_mtag->tag = tag; 4006 4007 return (0); 4008 } 4009 4010 #define PF_ANCHOR_STACKSIZE 32 4011 struct pf_kanchor_stackframe { 4012 struct pf_kruleset *rs; 4013 struct pf_krule *r; /* XXX: + match bit */ 4014 struct pf_kanchor *child; 4015 }; 4016 4017 /* 4018 * XXX: We rely on malloc(9) returning pointer aligned addresses. 4019 */ 4020 #define PF_ANCHORSTACK_MATCH 0x00000001 4021 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 4022 4023 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4024 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 4025 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4026 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4027 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4028 } while (0) 4029 4030 void 4031 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 4032 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 4033 int *match) 4034 { 4035 struct pf_kanchor_stackframe *f; 4036 4037 PF_RULES_RASSERT(); 4038 4039 if (match) 4040 *match = 0; 4041 if (*depth >= PF_ANCHOR_STACKSIZE) { 4042 printf("%s: anchor stack overflow on %s\n", 4043 __func__, (*r)->anchor->name); 4044 *r = TAILQ_NEXT(*r, entries); 4045 return; 4046 } else if (*depth == 0 && a != NULL) 4047 *a = *r; 4048 f = stack + (*depth)++; 4049 f->rs = *rs; 4050 f->r = *r; 4051 if ((*r)->anchor_wildcard) { 4052 struct pf_kanchor_node *parent = &(*r)->anchor->children; 4053 4054 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 4055 *r = NULL; 4056 return; 4057 } 4058 *rs = &f->child->ruleset; 4059 } else { 4060 f->child = NULL; 4061 *rs = &(*r)->anchor->ruleset; 4062 } 4063 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4064 } 4065 4066 int 4067 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 4068 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 4069 int *match) 4070 { 4071 struct pf_kanchor_stackframe *f; 4072 struct pf_krule *fr; 4073 int quick = 0; 4074 4075 PF_RULES_RASSERT(); 4076 4077 do { 4078 if (*depth <= 0) 4079 break; 4080 f = stack + *depth - 1; 4081 fr = PF_ANCHOR_RULE(f); 4082 if (f->child != NULL) { 4083 /* 4084 * This block traverses through 4085 * a wildcard anchor. 4086 */ 4087 if (match != NULL && *match) { 4088 /* 4089 * If any of "*" matched, then 4090 * "foo/ *" matched, mark frame 4091 * appropriately. 4092 */ 4093 PF_ANCHOR_SET_MATCH(f); 4094 *match = 0; 4095 } 4096 f->child = RB_NEXT(pf_kanchor_node, 4097 &fr->anchor->children, f->child); 4098 if (f->child != NULL) { 4099 *rs = &f->child->ruleset; 4100 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4101 if (*r == NULL) 4102 continue; 4103 else 4104 break; 4105 } 4106 } 4107 (*depth)--; 4108 if (*depth == 0 && a != NULL) 4109 *a = NULL; 4110 *rs = f->rs; 4111 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 4112 quick = fr->quick; 4113 *r = TAILQ_NEXT(fr, entries); 4114 } while (*r == NULL); 4115 4116 return (quick); 4117 } 4118 4119 struct pf_keth_anchor_stackframe { 4120 struct pf_keth_ruleset *rs; 4121 struct pf_keth_rule *r; /* XXX: + match bit */ 4122 struct pf_keth_anchor *child; 4123 }; 4124 4125 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4126 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 4127 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4128 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4129 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4130 } while (0) 4131 4132 void 4133 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4134 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4135 struct pf_keth_rule **a, int *match) 4136 { 4137 struct pf_keth_anchor_stackframe *f; 4138 4139 NET_EPOCH_ASSERT(); 4140 4141 if (match) 4142 *match = 0; 4143 if (*depth >= PF_ANCHOR_STACKSIZE) { 4144 printf("%s: anchor stack overflow on %s\n", 4145 __func__, (*r)->anchor->name); 4146 *r = TAILQ_NEXT(*r, entries); 4147 return; 4148 } else if (*depth == 0 && a != NULL) 4149 *a = *r; 4150 f = stack + (*depth)++; 4151 f->rs = *rs; 4152 f->r = *r; 4153 if ((*r)->anchor_wildcard) { 4154 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 4155 4156 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 4157 *r = NULL; 4158 return; 4159 } 4160 *rs = &f->child->ruleset; 4161 } else { 4162 f->child = NULL; 4163 *rs = &(*r)->anchor->ruleset; 4164 } 4165 *r = TAILQ_FIRST((*rs)->active.rules); 4166 } 4167 4168 int 4169 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4170 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4171 struct pf_keth_rule **a, int *match) 4172 { 4173 struct pf_keth_anchor_stackframe *f; 4174 struct pf_keth_rule *fr; 4175 int quick = 0; 4176 4177 NET_EPOCH_ASSERT(); 4178 4179 do { 4180 if (*depth <= 0) 4181 break; 4182 f = stack + *depth - 1; 4183 fr = PF_ETH_ANCHOR_RULE(f); 4184 if (f->child != NULL) { 4185 /* 4186 * This block traverses through 4187 * a wildcard anchor. 4188 */ 4189 if (match != NULL && *match) { 4190 /* 4191 * If any of "*" matched, then 4192 * "foo/ *" matched, mark frame 4193 * appropriately. 4194 */ 4195 PF_ETH_ANCHOR_SET_MATCH(f); 4196 *match = 0; 4197 } 4198 f->child = RB_NEXT(pf_keth_anchor_node, 4199 &fr->anchor->children, f->child); 4200 if (f->child != NULL) { 4201 *rs = &f->child->ruleset; 4202 *r = TAILQ_FIRST((*rs)->active.rules); 4203 if (*r == NULL) 4204 continue; 4205 else 4206 break; 4207 } 4208 } 4209 (*depth)--; 4210 if (*depth == 0 && a != NULL) 4211 *a = NULL; 4212 *rs = f->rs; 4213 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 4214 quick = fr->quick; 4215 *r = TAILQ_NEXT(fr, entries); 4216 } while (*r == NULL); 4217 4218 return (quick); 4219 } 4220 4221 #ifdef INET6 4222 void 4223 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 4224 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 4225 { 4226 switch (af) { 4227 #ifdef INET 4228 case AF_INET: 4229 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4230 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4231 break; 4232 #endif /* INET */ 4233 case AF_INET6: 4234 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4235 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4236 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 4237 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 4238 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 4239 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 4240 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 4241 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 4242 break; 4243 } 4244 } 4245 4246 void 4247 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 4248 { 4249 switch (af) { 4250 #ifdef INET 4251 case AF_INET: 4252 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 4253 break; 4254 #endif /* INET */ 4255 case AF_INET6: 4256 if (addr->addr32[3] == 0xffffffff) { 4257 addr->addr32[3] = 0; 4258 if (addr->addr32[2] == 0xffffffff) { 4259 addr->addr32[2] = 0; 4260 if (addr->addr32[1] == 0xffffffff) { 4261 addr->addr32[1] = 0; 4262 addr->addr32[0] = 4263 htonl(ntohl(addr->addr32[0]) + 1); 4264 } else 4265 addr->addr32[1] = 4266 htonl(ntohl(addr->addr32[1]) + 1); 4267 } else 4268 addr->addr32[2] = 4269 htonl(ntohl(addr->addr32[2]) + 1); 4270 } else 4271 addr->addr32[3] = 4272 htonl(ntohl(addr->addr32[3]) + 1); 4273 break; 4274 } 4275 } 4276 #endif /* INET6 */ 4277 4278 void 4279 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 4280 { 4281 /* 4282 * Modern rules use the same flags in rules as they do in states. 4283 */ 4284 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 4285 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 4286 4287 /* 4288 * Old-style scrub rules have different flags which need to be translated. 4289 */ 4290 if (r->rule_flag & PFRULE_RANDOMID) 4291 a->flags |= PFSTATE_RANDOMID; 4292 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) { 4293 a->flags |= PFSTATE_SETTOS; 4294 a->set_tos = r->set_tos; 4295 } 4296 4297 if (r->qid) 4298 a->qid = r->qid; 4299 if (r->pqid) 4300 a->pqid = r->pqid; 4301 if (r->rtableid >= 0) 4302 a->rtableid = r->rtableid; 4303 a->log |= r->log; 4304 if (r->min_ttl) 4305 a->min_ttl = r->min_ttl; 4306 if (r->max_mss) 4307 a->max_mss = r->max_mss; 4308 if (r->dnpipe) 4309 a->dnpipe = r->dnpipe; 4310 if (r->dnrpipe) 4311 a->dnrpipe = r->dnrpipe; 4312 if (r->dnpipe || r->dnrpipe) { 4313 if (r->free_flags & PFRULE_DN_IS_PIPE) 4314 a->flags |= PFSTATE_DN_IS_PIPE; 4315 else 4316 a->flags &= ~PFSTATE_DN_IS_PIPE; 4317 } 4318 if (r->scrub_flags & PFSTATE_SETPRIO) { 4319 a->set_prio[0] = r->set_prio[0]; 4320 a->set_prio[1] = r->set_prio[1]; 4321 } 4322 } 4323 4324 int 4325 pf_socket_lookup(struct pf_pdesc *pd) 4326 { 4327 struct pf_addr *saddr, *daddr; 4328 u_int16_t sport, dport; 4329 struct inpcbinfo *pi; 4330 struct inpcb *inp; 4331 4332 pd->lookup.uid = UID_MAX; 4333 pd->lookup.gid = GID_MAX; 4334 4335 switch (pd->proto) { 4336 case IPPROTO_TCP: 4337 sport = pd->hdr.tcp.th_sport; 4338 dport = pd->hdr.tcp.th_dport; 4339 pi = &V_tcbinfo; 4340 break; 4341 case IPPROTO_UDP: 4342 sport = pd->hdr.udp.uh_sport; 4343 dport = pd->hdr.udp.uh_dport; 4344 pi = &V_udbinfo; 4345 break; 4346 default: 4347 return (-1); 4348 } 4349 if (pd->dir == PF_IN) { 4350 saddr = pd->src; 4351 daddr = pd->dst; 4352 } else { 4353 u_int16_t p; 4354 4355 p = sport; 4356 sport = dport; 4357 dport = p; 4358 saddr = pd->dst; 4359 daddr = pd->src; 4360 } 4361 switch (pd->af) { 4362 #ifdef INET 4363 case AF_INET: 4364 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 4365 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m); 4366 if (inp == NULL) { 4367 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 4368 daddr->v4, dport, INPLOOKUP_WILDCARD | 4369 INPLOOKUP_RLOCKPCB, NULL, pd->m); 4370 if (inp == NULL) 4371 return (-1); 4372 } 4373 break; 4374 #endif /* INET */ 4375 #ifdef INET6 4376 case AF_INET6: 4377 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 4378 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m); 4379 if (inp == NULL) { 4380 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 4381 &daddr->v6, dport, INPLOOKUP_WILDCARD | 4382 INPLOOKUP_RLOCKPCB, NULL, pd->m); 4383 if (inp == NULL) 4384 return (-1); 4385 } 4386 break; 4387 #endif /* INET6 */ 4388 } 4389 INP_RLOCK_ASSERT(inp); 4390 pd->lookup.uid = inp->inp_cred->cr_uid; 4391 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4392 INP_RUNLOCK(inp); 4393 4394 return (1); 4395 } 4396 4397 u_int8_t 4398 pf_get_wscale(struct pf_pdesc *pd) 4399 { 4400 struct tcphdr *th = &pd->hdr.tcp; 4401 int hlen; 4402 u_int8_t hdr[60]; 4403 u_int8_t *opt, optlen; 4404 u_int8_t wscale = 0; 4405 4406 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */ 4407 if (hlen <= sizeof(struct tcphdr)) 4408 return (0); 4409 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af)) 4410 return (0); 4411 opt = hdr + sizeof(struct tcphdr); 4412 hlen -= sizeof(struct tcphdr); 4413 while (hlen >= 3) { 4414 switch (*opt) { 4415 case TCPOPT_EOL: 4416 case TCPOPT_NOP: 4417 ++opt; 4418 --hlen; 4419 break; 4420 case TCPOPT_WINDOW: 4421 wscale = opt[2]; 4422 if (wscale > TCP_MAX_WINSHIFT) 4423 wscale = TCP_MAX_WINSHIFT; 4424 wscale |= PF_WSCALE_FLAG; 4425 /* FALLTHROUGH */ 4426 default: 4427 optlen = opt[1]; 4428 if (optlen < 2) 4429 optlen = 2; 4430 hlen -= optlen; 4431 opt += optlen; 4432 break; 4433 } 4434 } 4435 return (wscale); 4436 } 4437 4438 u_int16_t 4439 pf_get_mss(struct pf_pdesc *pd) 4440 { 4441 struct tcphdr *th = &pd->hdr.tcp; 4442 int hlen; 4443 u_int8_t hdr[60]; 4444 u_int8_t *opt, optlen; 4445 u_int16_t mss = V_tcp_mssdflt; 4446 4447 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */ 4448 if (hlen <= sizeof(struct tcphdr)) 4449 return (0); 4450 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af)) 4451 return (0); 4452 opt = hdr + sizeof(struct tcphdr); 4453 hlen -= sizeof(struct tcphdr); 4454 while (hlen >= TCPOLEN_MAXSEG) { 4455 switch (*opt) { 4456 case TCPOPT_EOL: 4457 case TCPOPT_NOP: 4458 ++opt; 4459 --hlen; 4460 break; 4461 case TCPOPT_MAXSEG: 4462 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 4463 NTOHS(mss); 4464 /* FALLTHROUGH */ 4465 default: 4466 optlen = opt[1]; 4467 if (optlen < 2) 4468 optlen = 2; 4469 hlen -= optlen; 4470 opt += optlen; 4471 break; 4472 } 4473 } 4474 return (mss); 4475 } 4476 4477 static u_int16_t 4478 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 4479 { 4480 struct nhop_object *nh; 4481 #ifdef INET6 4482 struct in6_addr dst6; 4483 uint32_t scopeid; 4484 #endif /* INET6 */ 4485 int hlen = 0; 4486 uint16_t mss = 0; 4487 4488 NET_EPOCH_ASSERT(); 4489 4490 switch (af) { 4491 #ifdef INET 4492 case AF_INET: 4493 hlen = sizeof(struct ip); 4494 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 4495 if (nh != NULL) 4496 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4497 break; 4498 #endif /* INET */ 4499 #ifdef INET6 4500 case AF_INET6: 4501 hlen = sizeof(struct ip6_hdr); 4502 in6_splitscope(&addr->v6, &dst6, &scopeid); 4503 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 4504 if (nh != NULL) 4505 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4506 break; 4507 #endif /* INET6 */ 4508 } 4509 4510 mss = max(V_tcp_mssdflt, mss); 4511 mss = min(mss, offer); 4512 mss = max(mss, 64); /* sanity - at least max opt space */ 4513 return (mss); 4514 } 4515 4516 static u_int32_t 4517 pf_tcp_iss(struct pf_pdesc *pd) 4518 { 4519 MD5_CTX ctx; 4520 u_int32_t digest[4]; 4521 4522 if (V_pf_tcp_secret_init == 0) { 4523 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 4524 MD5Init(&V_pf_tcp_secret_ctx); 4525 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 4526 sizeof(V_pf_tcp_secret)); 4527 V_pf_tcp_secret_init = 1; 4528 } 4529 4530 ctx = V_pf_tcp_secret_ctx; 4531 4532 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 4533 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 4534 switch (pd->af) { 4535 case AF_INET6: 4536 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 4537 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 4538 break; 4539 case AF_INET: 4540 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 4541 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 4542 break; 4543 } 4544 MD5Final((u_char *)digest, &ctx); 4545 V_pf_tcp_iss_off += 4096; 4546 #define ISN_RANDOM_INCREMENT (4096 - 1) 4547 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 4548 V_pf_tcp_iss_off); 4549 #undef ISN_RANDOM_INCREMENT 4550 } 4551 4552 static bool 4553 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 4554 { 4555 bool match = true; 4556 4557 /* Always matches if not set */ 4558 if (! r->isset) 4559 return (!r->neg); 4560 4561 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 4562 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 4563 match = false; 4564 break; 4565 } 4566 } 4567 4568 return (match ^ r->neg); 4569 } 4570 4571 static int 4572 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 4573 { 4574 if (*tag == -1) 4575 *tag = mtag; 4576 4577 return ((!r->match_tag_not && r->match_tag == *tag) || 4578 (r->match_tag_not && r->match_tag != *tag)); 4579 } 4580 4581 static void 4582 pf_bridge_to(struct ifnet *ifp, struct mbuf *m) 4583 { 4584 /* If we don't have the interface drop the packet. */ 4585 if (ifp == NULL) { 4586 m_freem(m); 4587 return; 4588 } 4589 4590 switch (ifp->if_type) { 4591 case IFT_ETHER: 4592 case IFT_XETHER: 4593 case IFT_L2VLAN: 4594 case IFT_BRIDGE: 4595 case IFT_IEEE8023ADLAG: 4596 break; 4597 default: 4598 m_freem(m); 4599 return; 4600 } 4601 4602 ifp->if_transmit(ifp, m); 4603 } 4604 4605 static int 4606 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 4607 { 4608 #ifdef INET 4609 struct ip ip; 4610 #endif 4611 #ifdef INET6 4612 struct ip6_hdr ip6; 4613 #endif 4614 struct mbuf *m = *m0; 4615 struct ether_header *e; 4616 struct pf_keth_rule *r, *rm, *a = NULL; 4617 struct pf_keth_ruleset *ruleset = NULL; 4618 struct pf_mtag *mtag; 4619 struct pf_keth_ruleq *rules; 4620 struct pf_addr *src = NULL, *dst = NULL; 4621 struct pfi_kkif *bridge_to; 4622 sa_family_t af = 0; 4623 uint16_t proto; 4624 int asd = 0, match = 0; 4625 int tag = -1; 4626 uint8_t action; 4627 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4628 4629 MPASS(kif->pfik_ifp->if_vnet == curvnet); 4630 NET_EPOCH_ASSERT(); 4631 4632 PF_RULES_RLOCK_TRACKER; 4633 4634 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 4635 4636 mtag = pf_find_mtag(m); 4637 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 4638 /* Dummynet re-injects packets after they've 4639 * completed their delay. We've already 4640 * processed them, so pass unconditionally. */ 4641 4642 /* But only once. We may see the packet multiple times (e.g. 4643 * PFIL_IN/PFIL_OUT). */ 4644 pf_dummynet_flag_remove(m, mtag); 4645 4646 return (PF_PASS); 4647 } 4648 4649 ruleset = V_pf_keth; 4650 rules = ck_pr_load_ptr(&ruleset->active.rules); 4651 r = TAILQ_FIRST(rules); 4652 rm = NULL; 4653 4654 if (__predict_false(m->m_len < sizeof(struct ether_header)) && 4655 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) { 4656 DPFPRINTF(PF_DEBUG_URGENT, 4657 ("pf_test_eth_rule: m_len < sizeof(struct ether_header)" 4658 ", pullup failed\n")); 4659 return (PF_DROP); 4660 } 4661 e = mtod(m, struct ether_header *); 4662 proto = ntohs(e->ether_type); 4663 4664 switch (proto) { 4665 #ifdef INET 4666 case ETHERTYPE_IP: { 4667 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4668 sizeof(ip))) 4669 return (PF_DROP); 4670 4671 af = AF_INET; 4672 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 4673 (caddr_t)&ip); 4674 src = (struct pf_addr *)&ip.ip_src; 4675 dst = (struct pf_addr *)&ip.ip_dst; 4676 break; 4677 } 4678 #endif /* INET */ 4679 #ifdef INET6 4680 case ETHERTYPE_IPV6: { 4681 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4682 sizeof(ip6))) 4683 return (PF_DROP); 4684 4685 af = AF_INET6; 4686 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 4687 (caddr_t)&ip6); 4688 src = (struct pf_addr *)&ip6.ip6_src; 4689 dst = (struct pf_addr *)&ip6.ip6_dst; 4690 break; 4691 } 4692 #endif /* INET6 */ 4693 } 4694 4695 PF_RULES_RLOCK(); 4696 4697 while (r != NULL) { 4698 counter_u64_add(r->evaluations, 1); 4699 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 4700 4701 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 4702 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4703 "kif"); 4704 r = r->skip[PFE_SKIP_IFP].ptr; 4705 } 4706 else if (r->direction && r->direction != dir) { 4707 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4708 "dir"); 4709 r = r->skip[PFE_SKIP_DIR].ptr; 4710 } 4711 else if (r->proto && r->proto != proto) { 4712 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4713 "proto"); 4714 r = r->skip[PFE_SKIP_PROTO].ptr; 4715 } 4716 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 4717 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4718 "src"); 4719 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 4720 } 4721 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 4722 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4723 "dst"); 4724 r = r->skip[PFE_SKIP_DST_ADDR].ptr; 4725 } 4726 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 4727 r->ipsrc.neg, kif, M_GETFIB(m))) { 4728 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4729 "ip_src"); 4730 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr; 4731 } 4732 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 4733 r->ipdst.neg, kif, M_GETFIB(m))) { 4734 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4735 "ip_dst"); 4736 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr; 4737 } 4738 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 4739 mtag ? mtag->tag : 0)) { 4740 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4741 "match_tag"); 4742 r = TAILQ_NEXT(r, entries); 4743 } 4744 else { 4745 if (r->tag) 4746 tag = r->tag; 4747 if (r->anchor == NULL) { 4748 /* Rule matches */ 4749 rm = r; 4750 4751 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 4752 4753 if (r->quick) 4754 break; 4755 4756 r = TAILQ_NEXT(r, entries); 4757 } else { 4758 pf_step_into_keth_anchor(anchor_stack, &asd, 4759 &ruleset, &r, &a, &match); 4760 } 4761 } 4762 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 4763 &ruleset, &r, &a, &match)) 4764 break; 4765 } 4766 4767 r = rm; 4768 4769 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 4770 4771 /* Default to pass. */ 4772 if (r == NULL) { 4773 PF_RULES_RUNLOCK(); 4774 return (PF_PASS); 4775 } 4776 4777 /* Execute action. */ 4778 counter_u64_add(r->packets[dir == PF_OUT], 1); 4779 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 4780 pf_update_timestamp(r); 4781 4782 /* Shortcut. Don't tag if we're just going to drop anyway. */ 4783 if (r->action == PF_DROP) { 4784 PF_RULES_RUNLOCK(); 4785 return (PF_DROP); 4786 } 4787 4788 if (tag > 0) { 4789 if (mtag == NULL) 4790 mtag = pf_get_mtag(m); 4791 if (mtag == NULL) { 4792 PF_RULES_RUNLOCK(); 4793 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4794 return (PF_DROP); 4795 } 4796 mtag->tag = tag; 4797 } 4798 4799 if (r->qid != 0) { 4800 if (mtag == NULL) 4801 mtag = pf_get_mtag(m); 4802 if (mtag == NULL) { 4803 PF_RULES_RUNLOCK(); 4804 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4805 return (PF_DROP); 4806 } 4807 mtag->qid = r->qid; 4808 } 4809 4810 action = r->action; 4811 bridge_to = r->bridge_to; 4812 4813 /* Dummynet */ 4814 if (r->dnpipe) { 4815 struct ip_fw_args dnflow; 4816 4817 /* Drop packet if dummynet is not loaded. */ 4818 if (ip_dn_io_ptr == NULL) { 4819 PF_RULES_RUNLOCK(); 4820 m_freem(m); 4821 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4822 return (PF_DROP); 4823 } 4824 if (mtag == NULL) 4825 mtag = pf_get_mtag(m); 4826 if (mtag == NULL) { 4827 PF_RULES_RUNLOCK(); 4828 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4829 return (PF_DROP); 4830 } 4831 4832 bzero(&dnflow, sizeof(dnflow)); 4833 4834 /* We don't have port numbers here, so we set 0. That means 4835 * that we'll be somewhat limited in distinguishing flows (i.e. 4836 * only based on IP addresses, not based on port numbers), but 4837 * it's better than nothing. */ 4838 dnflow.f_id.dst_port = 0; 4839 dnflow.f_id.src_port = 0; 4840 dnflow.f_id.proto = 0; 4841 4842 dnflow.rule.info = r->dnpipe; 4843 dnflow.rule.info |= IPFW_IS_DUMMYNET; 4844 if (r->dnflags & PFRULE_DN_IS_PIPE) 4845 dnflow.rule.info |= IPFW_IS_PIPE; 4846 4847 dnflow.f_id.extra = dnflow.rule.info; 4848 4849 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 4850 dnflow.flags |= IPFW_ARGS_ETHER; 4851 dnflow.ifp = kif->pfik_ifp; 4852 4853 switch (af) { 4854 case AF_INET: 4855 dnflow.f_id.addr_type = 4; 4856 dnflow.f_id.src_ip = src->v4.s_addr; 4857 dnflow.f_id.dst_ip = dst->v4.s_addr; 4858 break; 4859 case AF_INET6: 4860 dnflow.flags |= IPFW_ARGS_IP6; 4861 dnflow.f_id.addr_type = 6; 4862 dnflow.f_id.src_ip6 = src->v6; 4863 dnflow.f_id.dst_ip6 = dst->v6; 4864 break; 4865 } 4866 4867 PF_RULES_RUNLOCK(); 4868 4869 mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 4870 ip_dn_io_ptr(m0, &dnflow); 4871 if (*m0 != NULL) 4872 pf_dummynet_flag_remove(m, mtag); 4873 } else { 4874 PF_RULES_RUNLOCK(); 4875 } 4876 4877 if (action == PF_PASS && bridge_to) { 4878 pf_bridge_to(bridge_to->pfik_ifp, *m0); 4879 *m0 = NULL; /* We've eaten the packet. */ 4880 } 4881 4882 return (action); 4883 } 4884 4885 #define PF_TEST_ATTRIB(t, a)\ 4886 do { \ 4887 if (t) { \ 4888 r = a; \ 4889 goto nextrule; \ 4890 } \ 4891 } while (0) 4892 4893 static int 4894 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, 4895 struct pf_pdesc *pd, struct pf_krule **am, 4896 struct pf_kruleset **rsm, struct inpcb *inp) 4897 { 4898 struct pf_krule *nr = NULL; 4899 struct pf_addr * const saddr = pd->src; 4900 struct pf_addr * const daddr = pd->dst; 4901 struct pf_krule *r, *a = NULL; 4902 struct pf_kruleset *ruleset = NULL; 4903 struct pf_krule_slist match_rules; 4904 struct pf_krule_item *ri; 4905 struct tcphdr *th = &pd->hdr.tcp; 4906 struct pf_state_key *sk = NULL, *nk = NULL; 4907 u_short reason, transerror; 4908 int rewrite = 0; 4909 int tag = -1; 4910 int asd = 0; 4911 int match = 0; 4912 int state_icmp = 0, icmp_dir, multi; 4913 u_int16_t sport = 0, dport = 0, virtual_type, virtual_id; 4914 u_int16_t bproto_sum = 0, bip_sum = 0; 4915 u_int8_t icmptype = 0, icmpcode = 0; 4916 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4917 struct pf_udp_mapping *udp_mapping = NULL; 4918 4919 PF_RULES_RASSERT(); 4920 4921 SLIST_INIT(&match_rules); 4922 4923 if (inp != NULL) { 4924 INP_LOCK_ASSERT(inp); 4925 pd->lookup.uid = inp->inp_cred->cr_uid; 4926 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4927 pd->lookup.done = 1; 4928 } 4929 4930 switch (pd->virtual_proto) { 4931 case IPPROTO_TCP: 4932 sport = th->th_sport; 4933 dport = th->th_dport; 4934 break; 4935 case IPPROTO_UDP: 4936 sport = pd->hdr.udp.uh_sport; 4937 dport = pd->hdr.udp.uh_dport; 4938 break; 4939 case IPPROTO_SCTP: 4940 sport = pd->hdr.sctp.src_port; 4941 dport = pd->hdr.sctp.dest_port; 4942 break; 4943 #ifdef INET 4944 case IPPROTO_ICMP: 4945 MPASS(pd->af == AF_INET); 4946 icmptype = pd->hdr.icmp.icmp_type; 4947 icmpcode = pd->hdr.icmp.icmp_code; 4948 state_icmp = pf_icmp_mapping(pd, icmptype, 4949 &icmp_dir, &multi, &virtual_id, &virtual_type); 4950 if (icmp_dir == PF_IN) { 4951 sport = virtual_id; 4952 dport = virtual_type; 4953 } else { 4954 sport = virtual_type; 4955 dport = virtual_id; 4956 } 4957 break; 4958 #endif /* INET */ 4959 #ifdef INET6 4960 case IPPROTO_ICMPV6: 4961 MPASS(pd->af == AF_INET6); 4962 icmptype = pd->hdr.icmp6.icmp6_type; 4963 icmpcode = pd->hdr.icmp6.icmp6_code; 4964 state_icmp = pf_icmp_mapping(pd, icmptype, 4965 &icmp_dir, &multi, &virtual_id, &virtual_type); 4966 if (icmp_dir == PF_IN) { 4967 sport = virtual_id; 4968 dport = virtual_type; 4969 } else { 4970 sport = virtual_type; 4971 dport = virtual_id; 4972 } 4973 4974 break; 4975 #endif /* INET6 */ 4976 default: 4977 sport = dport = 0; 4978 break; 4979 } 4980 4981 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4982 4983 /* check packet for BINAT/NAT/RDR */ 4984 transerror = pf_get_translation(pd, pd->off, &sk, &nk, saddr, daddr, 4985 sport, dport, anchor_stack, &nr, &udp_mapping); 4986 switch (transerror) { 4987 default: 4988 /* A translation error occurred. */ 4989 REASON_SET(&reason, transerror); 4990 goto cleanup; 4991 case PFRES_MAX: 4992 /* No match. */ 4993 break; 4994 case PFRES_MATCH: 4995 KASSERT(sk != NULL, ("%s: null sk", __func__)); 4996 KASSERT(nk != NULL, ("%s: null nk", __func__)); 4997 4998 if (nr->log) { 4999 PFLOG_PACKET(PF_PASS, PFRES_MATCH, nr, a, 5000 ruleset, pd, 1); 5001 } 5002 5003 if (pd->ip_sum) 5004 bip_sum = *pd->ip_sum; 5005 5006 switch (pd->proto) { 5007 case IPPROTO_TCP: 5008 bproto_sum = th->th_sum; 5009 pd->proto_sum = &th->th_sum; 5010 5011 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) || 5012 nk->port[pd->sidx] != sport) { 5013 pf_change_ap(pd->m, saddr, &th->th_sport, pd->ip_sum, 5014 &th->th_sum, &nk->addr[pd->sidx], 5015 nk->port[pd->sidx], 0, pd->af); 5016 pd->sport = &th->th_sport; 5017 sport = th->th_sport; 5018 } 5019 5020 if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) || 5021 nk->port[pd->didx] != dport) { 5022 pf_change_ap(pd->m, daddr, &th->th_dport, pd->ip_sum, 5023 &th->th_sum, &nk->addr[pd->didx], 5024 nk->port[pd->didx], 0, pd->af); 5025 dport = th->th_dport; 5026 pd->dport = &th->th_dport; 5027 } 5028 rewrite++; 5029 break; 5030 case IPPROTO_UDP: 5031 bproto_sum = pd->hdr.udp.uh_sum; 5032 pd->proto_sum = &pd->hdr.udp.uh_sum; 5033 5034 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) || 5035 nk->port[pd->sidx] != sport) { 5036 pf_change_ap(pd->m, saddr, &pd->hdr.udp.uh_sport, 5037 pd->ip_sum, &pd->hdr.udp.uh_sum, 5038 &nk->addr[pd->sidx], 5039 nk->port[pd->sidx], 1, pd->af); 5040 sport = pd->hdr.udp.uh_sport; 5041 pd->sport = &pd->hdr.udp.uh_sport; 5042 } 5043 5044 if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) || 5045 nk->port[pd->didx] != dport) { 5046 pf_change_ap(pd->m, daddr, &pd->hdr.udp.uh_dport, 5047 pd->ip_sum, &pd->hdr.udp.uh_sum, 5048 &nk->addr[pd->didx], 5049 nk->port[pd->didx], 1, pd->af); 5050 dport = pd->hdr.udp.uh_dport; 5051 pd->dport = &pd->hdr.udp.uh_dport; 5052 } 5053 rewrite++; 5054 break; 5055 case IPPROTO_SCTP: { 5056 uint16_t checksum = 0; 5057 5058 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) || 5059 nk->port[pd->sidx] != sport) { 5060 pf_change_ap(pd->m, saddr, &pd->hdr.sctp.src_port, 5061 pd->ip_sum, &checksum, 5062 &nk->addr[pd->sidx], 5063 nk->port[pd->sidx], 1, pd->af); 5064 } 5065 if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) || 5066 nk->port[pd->didx] != dport) { 5067 pf_change_ap(pd->m, daddr, &pd->hdr.sctp.dest_port, 5068 pd->ip_sum, &checksum, 5069 &nk->addr[pd->didx], 5070 nk->port[pd->didx], 1, pd->af); 5071 } 5072 break; 5073 } 5074 #ifdef INET 5075 case IPPROTO_ICMP: 5076 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 5077 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 5078 nk->addr[pd->sidx].v4.s_addr, 0); 5079 5080 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 5081 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 5082 nk->addr[pd->didx].v4.s_addr, 0); 5083 5084 if (virtual_type == htons(ICMP_ECHO) && 5085 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) { 5086 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 5087 pd->hdr.icmp.icmp_cksum, sport, 5088 nk->port[pd->sidx], 0); 5089 pd->hdr.icmp.icmp_id = nk->port[pd->sidx]; 5090 pd->sport = &pd->hdr.icmp.icmp_id; 5091 } 5092 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 5093 break; 5094 #endif /* INET */ 5095 #ifdef INET6 5096 case IPPROTO_ICMPV6: 5097 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 5098 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 5099 &nk->addr[pd->sidx], 0); 5100 5101 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 5102 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 5103 &nk->addr[pd->didx], 0); 5104 rewrite++; 5105 break; 5106 #endif /* INET */ 5107 default: 5108 switch (pd->af) { 5109 #ifdef INET 5110 case AF_INET: 5111 if (PF_ANEQ(saddr, 5112 &nk->addr[pd->sidx], AF_INET)) 5113 pf_change_a(&saddr->v4.s_addr, 5114 pd->ip_sum, 5115 nk->addr[pd->sidx].v4.s_addr, 0); 5116 5117 if (PF_ANEQ(daddr, 5118 &nk->addr[pd->didx], AF_INET)) 5119 pf_change_a(&daddr->v4.s_addr, 5120 pd->ip_sum, 5121 nk->addr[pd->didx].v4.s_addr, 0); 5122 break; 5123 #endif /* INET */ 5124 #ifdef INET6 5125 case AF_INET6: 5126 if (PF_ANEQ(saddr, 5127 &nk->addr[pd->sidx], AF_INET6)) 5128 PF_ACPY(saddr, &nk->addr[pd->sidx], pd->af); 5129 5130 if (PF_ANEQ(daddr, 5131 &nk->addr[pd->didx], AF_INET6)) 5132 PF_ACPY(daddr, &nk->addr[pd->didx], pd->af); 5133 break; 5134 #endif /* INET */ 5135 } 5136 break; 5137 } 5138 if (nr->natpass) 5139 r = NULL; 5140 } 5141 5142 while (r != NULL) { 5143 pf_counter_u64_add(&r->evaluations, 1); 5144 PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot, 5145 r->skip[PF_SKIP_IFP]); 5146 PF_TEST_ATTRIB(r->direction && r->direction != pd->dir, 5147 r->skip[PF_SKIP_DIR]); 5148 PF_TEST_ATTRIB(r->af && r->af != pd->af, 5149 r->skip[PF_SKIP_AF]); 5150 PF_TEST_ATTRIB(r->proto && r->proto != pd->proto, 5151 r->skip[PF_SKIP_PROTO]); 5152 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, saddr, pd->af, 5153 r->src.neg, pd->kif, M_GETFIB(pd->m)), 5154 r->skip[PF_SKIP_SRC_ADDR]); 5155 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, daddr, pd->af, 5156 r->dst.neg, NULL, M_GETFIB(pd->m)), 5157 r->skip[PF_SKIP_DST_ADDR]); 5158 switch (pd->virtual_proto) { 5159 case PF_VPROTO_FRAGMENT: 5160 /* tcp/udp only. port_op always 0 in other cases */ 5161 PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op), 5162 TAILQ_NEXT(r, entries)); 5163 PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset), 5164 TAILQ_NEXT(r, entries)); 5165 /* icmp only. type/code always 0 in other cases */ 5166 PF_TEST_ATTRIB((r->type || r->code), 5167 TAILQ_NEXT(r, entries)); 5168 /* tcp/udp only. {uid|gid}.op always 0 in other cases */ 5169 PF_TEST_ATTRIB((r->gid.op || r->uid.op), 5170 TAILQ_NEXT(r, entries)); 5171 break; 5172 5173 case IPPROTO_TCP: 5174 PF_TEST_ATTRIB((r->flagset & tcp_get_flags(th)) != r->flags, 5175 TAILQ_NEXT(r, entries)); 5176 /* FALLTHROUGH */ 5177 case IPPROTO_SCTP: 5178 case IPPROTO_UDP: 5179 /* tcp/udp only. port_op always 0 in other cases */ 5180 PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op, 5181 r->src.port[0], r->src.port[1], sport), 5182 r->skip[PF_SKIP_SRC_PORT]); 5183 /* tcp/udp only. port_op always 0 in other cases */ 5184 PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op, 5185 r->dst.port[0], r->dst.port[1], dport), 5186 r->skip[PF_SKIP_DST_PORT]); 5187 /* tcp/udp only. uid.op always 0 in other cases */ 5188 PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done = 5189 pf_socket_lookup(pd), 1)) && 5190 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 5191 pd->lookup.uid), 5192 TAILQ_NEXT(r, entries)); 5193 /* tcp/udp only. gid.op always 0 in other cases */ 5194 PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done = 5195 pf_socket_lookup(pd), 1)) && 5196 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 5197 pd->lookup.gid), 5198 TAILQ_NEXT(r, entries)); 5199 break; 5200 5201 case IPPROTO_ICMP: 5202 case IPPROTO_ICMPV6: 5203 /* icmp only. type always 0 in other cases */ 5204 PF_TEST_ATTRIB(r->type && r->type != icmptype + 1, 5205 TAILQ_NEXT(r, entries)); 5206 /* icmp only. type always 0 in other cases */ 5207 PF_TEST_ATTRIB(r->code && r->code != icmpcode + 1, 5208 TAILQ_NEXT(r, entries)); 5209 break; 5210 5211 default: 5212 break; 5213 } 5214 PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos), 5215 TAILQ_NEXT(r, entries)); 5216 PF_TEST_ATTRIB(r->prio && 5217 !pf_match_ieee8021q_pcp(r->prio, pd->m), 5218 TAILQ_NEXT(r, entries)); 5219 PF_TEST_ATTRIB(r->prob && 5220 r->prob <= arc4random(), 5221 TAILQ_NEXT(r, entries)); 5222 PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r, &tag, 5223 pd->pf_mtag ? pd->pf_mtag->tag : 0), 5224 TAILQ_NEXT(r, entries)); 5225 PF_TEST_ATTRIB(r->rcv_kif && !pf_match_rcvif(pd->m, r), 5226 TAILQ_NEXT(r, entries)); 5227 PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT && 5228 pd->virtual_proto != PF_VPROTO_FRAGMENT), 5229 TAILQ_NEXT(r, entries)); 5230 PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY && 5231 (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match( 5232 pf_osfp_fingerprint(pd, th), 5233 r->os_fingerprint)), 5234 TAILQ_NEXT(r, entries)); 5235 /* FALLTHROUGH */ 5236 if (r->tag) 5237 tag = r->tag; 5238 if (r->anchor == NULL) { 5239 if (r->action == PF_MATCH) { 5240 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5241 if (ri == NULL) { 5242 REASON_SET(&reason, PFRES_MEMORY); 5243 goto cleanup; 5244 } 5245 ri->r = r; 5246 SLIST_INSERT_HEAD(&match_rules, ri, entry); 5247 pf_counter_u64_critical_enter(); 5248 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5249 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5250 pf_counter_u64_critical_exit(); 5251 pf_rule_to_actions(r, &pd->act); 5252 if (r->log || pd->act.log & PF_LOG_MATCHES) 5253 PFLOG_PACKET(r->action, PFRES_MATCH, r, 5254 a, ruleset, pd, 1); 5255 } else { 5256 match = 1; 5257 *rm = r; 5258 *am = a; 5259 *rsm = ruleset; 5260 if (pd->act.log & PF_LOG_MATCHES) 5261 PFLOG_PACKET(r->action, PFRES_MATCH, r, 5262 a, ruleset, pd, 1); 5263 } 5264 if ((*rm)->quick) 5265 break; 5266 r = TAILQ_NEXT(r, entries); 5267 } else 5268 pf_step_into_anchor(anchor_stack, &asd, 5269 &ruleset, PF_RULESET_FILTER, &r, &a, 5270 &match); 5271 nextrule: 5272 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 5273 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 5274 break; 5275 } 5276 r = *rm; 5277 a = *am; 5278 ruleset = *rsm; 5279 5280 REASON_SET(&reason, PFRES_MATCH); 5281 5282 /* apply actions for last matching pass/block rule */ 5283 pf_rule_to_actions(r, &pd->act); 5284 5285 if (r->log || pd->act.log & PF_LOG_MATCHES) { 5286 if (rewrite) 5287 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5288 PFLOG_PACKET(r->action, reason, r, a, ruleset, pd, 1); 5289 } 5290 5291 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5292 (r->action == PF_DROP) && 5293 ((r->rule_flag & PFRULE_RETURNRST) || 5294 (r->rule_flag & PFRULE_RETURNICMP) || 5295 (r->rule_flag & PFRULE_RETURN))) { 5296 pf_return(r, nr, pd, sk, th, bproto_sum, 5297 bip_sum, &reason, r->rtableid); 5298 } 5299 5300 if (r->action == PF_DROP) 5301 goto cleanup; 5302 5303 if (tag > 0 && pf_tag_packet(pd, tag)) { 5304 REASON_SET(&reason, PFRES_MEMORY); 5305 goto cleanup; 5306 } 5307 if (pd->act.rtableid >= 0) 5308 M_SETFIB(pd->m, pd->act.rtableid); 5309 5310 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5311 (!state_icmp && (r->keep_state || nr != NULL || 5312 (pd->flags & PFDESC_TCP_NORM)))) { 5313 int action; 5314 action = pf_create_state(r, nr, a, pd, nk, sk, 5315 sport, dport, &rewrite, sm, tag, bproto_sum, bip_sum, 5316 &match_rules, udp_mapping); 5317 if (action != PF_PASS) { 5318 pf_udp_mapping_release(udp_mapping); 5319 if (action == PF_DROP && 5320 (r->rule_flag & PFRULE_RETURN)) 5321 pf_return(r, nr, pd, sk, th, 5322 bproto_sum, bip_sum, &reason, 5323 pd->act.rtableid); 5324 return (action); 5325 } 5326 } else { 5327 while ((ri = SLIST_FIRST(&match_rules))) { 5328 SLIST_REMOVE_HEAD(&match_rules, entry); 5329 free(ri, M_PF_RULE_ITEM); 5330 } 5331 5332 uma_zfree(V_pf_state_key_z, sk); 5333 uma_zfree(V_pf_state_key_z, nk); 5334 pf_udp_mapping_release(udp_mapping); 5335 } 5336 5337 /* copy back packet headers if we performed NAT operations */ 5338 if (rewrite) 5339 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5340 5341 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 5342 pd->dir == PF_OUT && 5343 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m)) 5344 /* 5345 * We want the state created, but we dont 5346 * want to send this in case a partner 5347 * firewall has to know about it to allow 5348 * replies through it. 5349 */ 5350 return (PF_DEFER); 5351 5352 return (PF_PASS); 5353 5354 cleanup: 5355 while ((ri = SLIST_FIRST(&match_rules))) { 5356 SLIST_REMOVE_HEAD(&match_rules, entry); 5357 free(ri, M_PF_RULE_ITEM); 5358 } 5359 5360 uma_zfree(V_pf_state_key_z, sk); 5361 uma_zfree(V_pf_state_key_z, nk); 5362 pf_udp_mapping_release(udp_mapping); 5363 5364 return (PF_DROP); 5365 } 5366 5367 static int 5368 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 5369 struct pf_pdesc *pd, struct pf_state_key *nk, struct pf_state_key *sk, 5370 u_int16_t sport, u_int16_t dport, int *rewrite, struct pf_kstate **sm, 5371 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, 5372 struct pf_krule_slist *match_rules, struct pf_udp_mapping *udp_mapping) 5373 { 5374 struct pf_kstate *s = NULL; 5375 struct pf_ksrc_node *sn = NULL; 5376 struct pf_srchash *snh = NULL; 5377 struct pf_ksrc_node *nsn = NULL; 5378 struct pf_srchash *nsnh = NULL; 5379 struct tcphdr *th = &pd->hdr.tcp; 5380 u_int16_t mss = V_tcp_mssdflt; 5381 u_short reason, sn_reason; 5382 struct pf_krule_item *ri; 5383 5384 /* check maximums */ 5385 if (r->max_states && 5386 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 5387 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 5388 REASON_SET(&reason, PFRES_MAXSTATES); 5389 goto csfailed; 5390 } 5391 /* src node for filter rule */ 5392 if ((r->rule_flag & PFRULE_SRCTRACK || 5393 r->rpool.opts & PF_POOL_STICKYADDR) && 5394 (sn_reason = pf_insert_src_node(&sn, &snh, r, pd->src, pd->af)) != 0) { 5395 REASON_SET(&reason, sn_reason); 5396 goto csfailed; 5397 } 5398 /* src node for translation rule */ 5399 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 5400 (sn_reason = pf_insert_src_node(&nsn, &nsnh, nr, &sk->addr[pd->sidx], 5401 pd->af)) != 0 ) { 5402 REASON_SET(&reason, sn_reason); 5403 goto csfailed; 5404 } 5405 s = pf_alloc_state(M_NOWAIT); 5406 if (s == NULL) { 5407 REASON_SET(&reason, PFRES_MEMORY); 5408 goto csfailed; 5409 } 5410 s->rule = r; 5411 s->nat_rule = nr; 5412 s->anchor = a; 5413 bcopy(match_rules, &s->match_rules, sizeof(s->match_rules)); 5414 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions)); 5415 5416 STATE_INC_COUNTERS(s); 5417 if (r->allow_opts) 5418 s->state_flags |= PFSTATE_ALLOWOPTS; 5419 if (r->rule_flag & PFRULE_STATESLOPPY) 5420 s->state_flags |= PFSTATE_SLOPPY; 5421 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 5422 s->state_flags |= PFSTATE_SCRUB_TCP; 5423 if ((r->rule_flag & PFRULE_PFLOW) || 5424 (nr != NULL && nr->rule_flag & PFRULE_PFLOW)) 5425 s->state_flags |= PFSTATE_PFLOW; 5426 5427 s->act.log = pd->act.log & PF_LOG_ALL; 5428 s->sync_state = PFSYNC_S_NONE; 5429 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */ 5430 5431 if (nr != NULL) 5432 s->act.log |= nr->log & PF_LOG_ALL; 5433 switch (pd->proto) { 5434 case IPPROTO_TCP: 5435 s->src.seqlo = ntohl(th->th_seq); 5436 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 5437 if ((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN && 5438 r->keep_state == PF_STATE_MODULATE) { 5439 /* Generate sequence number modulator */ 5440 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 5441 0) 5442 s->src.seqdiff = 1; 5443 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, 5444 htonl(s->src.seqlo + s->src.seqdiff), 0); 5445 *rewrite = 1; 5446 } else 5447 s->src.seqdiff = 0; 5448 if (tcp_get_flags(th) & TH_SYN) { 5449 s->src.seqhi++; 5450 s->src.wscale = pf_get_wscale(pd); 5451 } 5452 s->src.max_win = MAX(ntohs(th->th_win), 1); 5453 if (s->src.wscale & PF_WSCALE_MASK) { 5454 /* Remove scale factor from initial window */ 5455 int win = s->src.max_win; 5456 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 5457 s->src.max_win = (win - 1) >> 5458 (s->src.wscale & PF_WSCALE_MASK); 5459 } 5460 if (tcp_get_flags(th) & TH_FIN) 5461 s->src.seqhi++; 5462 s->dst.seqhi = 1; 5463 s->dst.max_win = 1; 5464 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 5465 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 5466 s->timeout = PFTM_TCP_FIRST_PACKET; 5467 atomic_add_32(&V_pf_status.states_halfopen, 1); 5468 break; 5469 case IPPROTO_UDP: 5470 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 5471 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 5472 s->timeout = PFTM_UDP_FIRST_PACKET; 5473 break; 5474 case IPPROTO_SCTP: 5475 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT); 5476 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED); 5477 s->timeout = PFTM_SCTP_FIRST_PACKET; 5478 break; 5479 case IPPROTO_ICMP: 5480 #ifdef INET6 5481 case IPPROTO_ICMPV6: 5482 #endif 5483 s->timeout = PFTM_ICMP_FIRST_PACKET; 5484 break; 5485 default: 5486 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 5487 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 5488 s->timeout = PFTM_OTHER_FIRST_PACKET; 5489 } 5490 5491 if (r->rt) { 5492 /* pf_map_addr increases the reason counters */ 5493 if ((reason = pf_map_addr_sn(pd->af, r, pd->src, &s->rt_addr, 5494 &s->rt_kif, NULL, &sn, &snh)) != 0) 5495 goto csfailed; 5496 s->rt = r->rt; 5497 } 5498 5499 s->creation = s->expire = pf_get_uptime(); 5500 5501 if (pd->proto == IPPROTO_TCP) { 5502 if (s->state_flags & PFSTATE_SCRUB_TCP && 5503 pf_normalize_tcp_init(pd, th, &s->src, &s->dst)) { 5504 REASON_SET(&reason, PFRES_MEMORY); 5505 goto csfailed; 5506 } 5507 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 5508 pf_normalize_tcp_stateful(pd, &reason, th, s, 5509 &s->src, &s->dst, rewrite)) { 5510 /* This really shouldn't happen!!! */ 5511 DPFPRINTF(PF_DEBUG_URGENT, 5512 ("pf_normalize_tcp_stateful failed on first " 5513 "pkt\n")); 5514 goto csfailed; 5515 } 5516 } else if (pd->proto == IPPROTO_SCTP) { 5517 if (pf_normalize_sctp_init(pd, &s->src, &s->dst)) 5518 goto csfailed; 5519 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP))) 5520 goto csfailed; 5521 } 5522 s->direction = pd->dir; 5523 5524 /* 5525 * sk/nk could already been setup by pf_get_translation(). 5526 */ 5527 if (nr == NULL) { 5528 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 5529 __func__, nr, sk, nk)); 5530 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 5531 if (sk == NULL) 5532 goto csfailed; 5533 nk = sk; 5534 } else 5535 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 5536 __func__, nr, sk, nk)); 5537 5538 /* Swap sk/nk for PF_OUT. */ 5539 if (pf_state_insert(BOUND_IFACE(s, pd->kif), pd->kif, 5540 (pd->dir == PF_IN) ? sk : nk, 5541 (pd->dir == PF_IN) ? nk : sk, s)) { 5542 REASON_SET(&reason, PFRES_STATEINS); 5543 goto drop; 5544 } else 5545 *sm = s; 5546 5547 /* 5548 * Lock order is important: first state, then source node. 5549 */ 5550 if (pf_src_node_exists(&sn, snh)) { 5551 s->src_node = sn; 5552 PF_HASHROW_UNLOCK(snh); 5553 } 5554 if (pf_src_node_exists(&nsn, nsnh)) { 5555 /* XXX We only modify one side for now. */ 5556 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 5557 s->nat_src_node = nsn; 5558 PF_HASHROW_UNLOCK(nsnh); 5559 } 5560 5561 if (tag > 0) 5562 s->tag = tag; 5563 if (pd->proto == IPPROTO_TCP && (tcp_get_flags(th) & (TH_SYN|TH_ACK)) == 5564 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 5565 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 5566 /* undo NAT changes, if they have taken place */ 5567 if (nr != NULL) { 5568 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 5569 if (pd->dir == PF_OUT) 5570 skt = s->key[PF_SK_STACK]; 5571 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 5572 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 5573 if (pd->sport) 5574 *pd->sport = skt->port[pd->sidx]; 5575 if (pd->dport) 5576 *pd->dport = skt->port[pd->didx]; 5577 if (pd->proto_sum) 5578 *pd->proto_sum = bproto_sum; 5579 if (pd->ip_sum) 5580 *pd->ip_sum = bip_sum; 5581 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5582 } 5583 s->src.seqhi = htonl(arc4random()); 5584 /* Find mss option */ 5585 int rtid = M_GETFIB(pd->m); 5586 mss = pf_get_mss(pd); 5587 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 5588 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 5589 s->src.mss = mss; 5590 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 5591 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 5592 TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0, 5593 pd->act.rtableid); 5594 REASON_SET(&reason, PFRES_SYNPROXY); 5595 return (PF_SYNPROXY_DROP); 5596 } 5597 5598 s->udp_mapping = udp_mapping; 5599 5600 return (PF_PASS); 5601 5602 csfailed: 5603 while ((ri = SLIST_FIRST(match_rules))) { 5604 SLIST_REMOVE_HEAD(match_rules, entry); 5605 free(ri, M_PF_RULE_ITEM); 5606 } 5607 5608 uma_zfree(V_pf_state_key_z, sk); 5609 uma_zfree(V_pf_state_key_z, nk); 5610 5611 if (pf_src_node_exists(&sn, snh)) { 5612 if (--sn->states == 0 && sn->expire == 0) { 5613 pf_unlink_src_node(sn); 5614 pf_free_src_node(sn); 5615 counter_u64_add( 5616 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5617 } 5618 PF_HASHROW_UNLOCK(snh); 5619 } 5620 5621 if (sn != nsn && pf_src_node_exists(&nsn, nsnh)) { 5622 if (--nsn->states == 0 && nsn->expire == 0) { 5623 pf_unlink_src_node(nsn); 5624 pf_free_src_node(nsn); 5625 counter_u64_add( 5626 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5627 } 5628 PF_HASHROW_UNLOCK(nsnh); 5629 } 5630 5631 drop: 5632 if (s != NULL) { 5633 pf_src_tree_remove_state(s); 5634 s->timeout = PFTM_UNLINKED; 5635 STATE_DEC_COUNTERS(s); 5636 pf_free_state(s); 5637 } 5638 5639 return (PF_DROP); 5640 } 5641 5642 static int 5643 pf_tcp_track_full(struct pf_kstate **state, struct pf_pdesc *pd, 5644 u_short *reason, int *copyback) 5645 { 5646 struct tcphdr *th = &pd->hdr.tcp; 5647 struct pf_state_peer *src, *dst; 5648 u_int16_t win = ntohs(th->th_win); 5649 u_int32_t ack, end, data_end, seq, orig_seq; 5650 u_int8_t sws, dws, psrc, pdst; 5651 int ackskew; 5652 5653 if (pd->dir == (*state)->direction) { 5654 src = &(*state)->src; 5655 dst = &(*state)->dst; 5656 psrc = PF_PEER_SRC; 5657 pdst = PF_PEER_DST; 5658 } else { 5659 src = &(*state)->dst; 5660 dst = &(*state)->src; 5661 psrc = PF_PEER_DST; 5662 pdst = PF_PEER_SRC; 5663 } 5664 5665 if (src->wscale && dst->wscale && !(tcp_get_flags(th) & TH_SYN)) { 5666 sws = src->wscale & PF_WSCALE_MASK; 5667 dws = dst->wscale & PF_WSCALE_MASK; 5668 } else 5669 sws = dws = 0; 5670 5671 /* 5672 * Sequence tracking algorithm from Guido van Rooij's paper: 5673 * http://www.madison-gurkha.com/publications/tcp_filtering/ 5674 * tcp_filtering.ps 5675 */ 5676 5677 orig_seq = seq = ntohl(th->th_seq); 5678 if (src->seqlo == 0) { 5679 /* First packet from this end. Set its state */ 5680 5681 if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 5682 src->scrub == NULL) { 5683 if (pf_normalize_tcp_init(pd, th, src, dst)) { 5684 REASON_SET(reason, PFRES_MEMORY); 5685 return (PF_DROP); 5686 } 5687 } 5688 5689 /* Deferred generation of sequence number modulator */ 5690 if (dst->seqdiff && !src->seqdiff) { 5691 /* use random iss for the TCP server */ 5692 while ((src->seqdiff = arc4random() - seq) == 0) 5693 ; 5694 ack = ntohl(th->th_ack) - dst->seqdiff; 5695 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq + 5696 src->seqdiff), 0); 5697 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5698 *copyback = 1; 5699 } else { 5700 ack = ntohl(th->th_ack); 5701 } 5702 5703 end = seq + pd->p_len; 5704 if (tcp_get_flags(th) & TH_SYN) { 5705 end++; 5706 if (dst->wscale & PF_WSCALE_FLAG) { 5707 src->wscale = pf_get_wscale(pd); 5708 if (src->wscale & PF_WSCALE_FLAG) { 5709 /* Remove scale factor from initial 5710 * window */ 5711 sws = src->wscale & PF_WSCALE_MASK; 5712 win = ((u_int32_t)win + (1 << sws) - 1) 5713 >> sws; 5714 dws = dst->wscale & PF_WSCALE_MASK; 5715 } else { 5716 /* fixup other window */ 5717 dst->max_win = MIN(TCP_MAXWIN, 5718 (u_int32_t)dst->max_win << 5719 (dst->wscale & PF_WSCALE_MASK)); 5720 /* in case of a retrans SYN|ACK */ 5721 dst->wscale = 0; 5722 } 5723 } 5724 } 5725 data_end = end; 5726 if (tcp_get_flags(th) & TH_FIN) 5727 end++; 5728 5729 src->seqlo = seq; 5730 if (src->state < TCPS_SYN_SENT) 5731 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5732 5733 /* 5734 * May need to slide the window (seqhi may have been set by 5735 * the crappy stack check or if we picked up the connection 5736 * after establishment) 5737 */ 5738 if (src->seqhi == 1 || 5739 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 5740 src->seqhi = end + MAX(1, dst->max_win << dws); 5741 if (win > src->max_win) 5742 src->max_win = win; 5743 5744 } else { 5745 ack = ntohl(th->th_ack) - dst->seqdiff; 5746 if (src->seqdiff) { 5747 /* Modulate sequence numbers */ 5748 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq + 5749 src->seqdiff), 0); 5750 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5751 *copyback = 1; 5752 } 5753 end = seq + pd->p_len; 5754 if (tcp_get_flags(th) & TH_SYN) 5755 end++; 5756 data_end = end; 5757 if (tcp_get_flags(th) & TH_FIN) 5758 end++; 5759 } 5760 5761 if ((tcp_get_flags(th) & TH_ACK) == 0) { 5762 /* Let it pass through the ack skew check */ 5763 ack = dst->seqlo; 5764 } else if ((ack == 0 && 5765 (tcp_get_flags(th) & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 5766 /* broken tcp stacks do not set ack */ 5767 (dst->state < TCPS_SYN_SENT)) { 5768 /* 5769 * Many stacks (ours included) will set the ACK number in an 5770 * FIN|ACK if the SYN times out -- no sequence to ACK. 5771 */ 5772 ack = dst->seqlo; 5773 } 5774 5775 if (seq == end) { 5776 /* Ease sequencing restrictions on no data packets */ 5777 seq = src->seqlo; 5778 data_end = end = seq; 5779 } 5780 5781 ackskew = dst->seqlo - ack; 5782 5783 /* 5784 * Need to demodulate the sequence numbers in any TCP SACK options 5785 * (Selective ACK). We could optionally validate the SACK values 5786 * against the current ACK window, either forwards or backwards, but 5787 * I'm not confident that SACK has been implemented properly 5788 * everywhere. It wouldn't surprise me if several stacks accidentally 5789 * SACK too far backwards of previously ACKed data. There really aren't 5790 * any security implications of bad SACKing unless the target stack 5791 * doesn't validate the option length correctly. Someone trying to 5792 * spoof into a TCP connection won't bother blindly sending SACK 5793 * options anyway. 5794 */ 5795 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 5796 if (pf_modulate_sack(pd, th, dst)) 5797 *copyback = 1; 5798 } 5799 5800 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 5801 if (SEQ_GEQ(src->seqhi, data_end) && 5802 /* Last octet inside other's window space */ 5803 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 5804 /* Retrans: not more than one window back */ 5805 (ackskew >= -MAXACKWINDOW) && 5806 /* Acking not more than one reassembled fragment backwards */ 5807 (ackskew <= (MAXACKWINDOW << sws)) && 5808 /* Acking not more than one window forward */ 5809 ((tcp_get_flags(th) & TH_RST) == 0 || orig_seq == src->seqlo || 5810 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) { 5811 /* Require an exact/+1 sequence match on resets when possible */ 5812 5813 if (dst->scrub || src->scrub) { 5814 if (pf_normalize_tcp_stateful(pd, reason, th, 5815 *state, src, dst, copyback)) 5816 return (PF_DROP); 5817 } 5818 5819 /* update max window */ 5820 if (src->max_win < win) 5821 src->max_win = win; 5822 /* synchronize sequencing */ 5823 if (SEQ_GT(end, src->seqlo)) 5824 src->seqlo = end; 5825 /* slide the window of what the other end can send */ 5826 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5827 dst->seqhi = ack + MAX((win << sws), 1); 5828 5829 /* update states */ 5830 if (tcp_get_flags(th) & TH_SYN) 5831 if (src->state < TCPS_SYN_SENT) 5832 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5833 if (tcp_get_flags(th) & TH_FIN) 5834 if (src->state < TCPS_CLOSING) 5835 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5836 if (tcp_get_flags(th) & TH_ACK) { 5837 if (dst->state == TCPS_SYN_SENT) { 5838 pf_set_protostate(*state, pdst, 5839 TCPS_ESTABLISHED); 5840 if (src->state == TCPS_ESTABLISHED && 5841 (*state)->src_node != NULL && 5842 pf_src_connlimit(*state)) { 5843 REASON_SET(reason, PFRES_SRCLIMIT); 5844 return (PF_DROP); 5845 } 5846 } else if (dst->state == TCPS_CLOSING) 5847 pf_set_protostate(*state, pdst, 5848 TCPS_FIN_WAIT_2); 5849 } 5850 if (tcp_get_flags(th) & TH_RST) 5851 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5852 5853 /* update expire time */ 5854 (*state)->expire = pf_get_uptime(); 5855 if (src->state >= TCPS_FIN_WAIT_2 && 5856 dst->state >= TCPS_FIN_WAIT_2) 5857 (*state)->timeout = PFTM_TCP_CLOSED; 5858 else if (src->state >= TCPS_CLOSING && 5859 dst->state >= TCPS_CLOSING) 5860 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5861 else if (src->state < TCPS_ESTABLISHED || 5862 dst->state < TCPS_ESTABLISHED) 5863 (*state)->timeout = PFTM_TCP_OPENING; 5864 else if (src->state >= TCPS_CLOSING || 5865 dst->state >= TCPS_CLOSING) 5866 (*state)->timeout = PFTM_TCP_CLOSING; 5867 else 5868 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5869 5870 /* Fall through to PASS packet */ 5871 5872 } else if ((dst->state < TCPS_SYN_SENT || 5873 dst->state >= TCPS_FIN_WAIT_2 || 5874 src->state >= TCPS_FIN_WAIT_2) && 5875 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) && 5876 /* Within a window forward of the originating packet */ 5877 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 5878 /* Within a window backward of the originating packet */ 5879 5880 /* 5881 * This currently handles three situations: 5882 * 1) Stupid stacks will shotgun SYNs before their peer 5883 * replies. 5884 * 2) When PF catches an already established stream (the 5885 * firewall rebooted, the state table was flushed, routes 5886 * changed...) 5887 * 3) Packets get funky immediately after the connection 5888 * closes (this should catch Solaris spurious ACK|FINs 5889 * that web servers like to spew after a close) 5890 * 5891 * This must be a little more careful than the above code 5892 * since packet floods will also be caught here. We don't 5893 * update the TTL here to mitigate the damage of a packet 5894 * flood and so the same code can handle awkward establishment 5895 * and a loosened connection close. 5896 * In the establishment case, a correct peer response will 5897 * validate the connection, go through the normal state code 5898 * and keep updating the state TTL. 5899 */ 5900 5901 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5902 printf("pf: loose state match: "); 5903 pf_print_state(*state); 5904 pf_print_flags(tcp_get_flags(th)); 5905 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5906 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 5907 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 5908 (unsigned long long)(*state)->packets[1], 5909 pd->dir == PF_IN ? "in" : "out", 5910 pd->dir == (*state)->direction ? "fwd" : "rev"); 5911 } 5912 5913 if (dst->scrub || src->scrub) { 5914 if (pf_normalize_tcp_stateful(pd, reason, th, 5915 *state, src, dst, copyback)) 5916 return (PF_DROP); 5917 } 5918 5919 /* update max window */ 5920 if (src->max_win < win) 5921 src->max_win = win; 5922 /* synchronize sequencing */ 5923 if (SEQ_GT(end, src->seqlo)) 5924 src->seqlo = end; 5925 /* slide the window of what the other end can send */ 5926 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5927 dst->seqhi = ack + MAX((win << sws), 1); 5928 5929 /* 5930 * Cannot set dst->seqhi here since this could be a shotgunned 5931 * SYN and not an already established connection. 5932 */ 5933 5934 if (tcp_get_flags(th) & TH_FIN) 5935 if (src->state < TCPS_CLOSING) 5936 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5937 if (tcp_get_flags(th) & TH_RST) 5938 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5939 5940 /* Fall through to PASS packet */ 5941 5942 } else { 5943 if ((*state)->dst.state == TCPS_SYN_SENT && 5944 (*state)->src.state == TCPS_SYN_SENT) { 5945 /* Send RST for state mismatches during handshake */ 5946 if (!(tcp_get_flags(th) & TH_RST)) 5947 pf_send_tcp((*state)->rule, pd->af, 5948 pd->dst, pd->src, th->th_dport, 5949 th->th_sport, ntohl(th->th_ack), 0, 5950 TH_RST, 0, 0, 5951 (*state)->rule->return_ttl, M_SKIP_FIREWALL, 5952 0, 0, (*state)->act.rtableid); 5953 src->seqlo = 0; 5954 src->seqhi = 1; 5955 src->max_win = 1; 5956 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 5957 printf("pf: BAD state: "); 5958 pf_print_state(*state); 5959 pf_print_flags(tcp_get_flags(th)); 5960 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5961 "pkts=%llu:%llu dir=%s,%s\n", 5962 seq, orig_seq, ack, pd->p_len, ackskew, 5963 (unsigned long long)(*state)->packets[0], 5964 (unsigned long long)(*state)->packets[1], 5965 pd->dir == PF_IN ? "in" : "out", 5966 pd->dir == (*state)->direction ? "fwd" : "rev"); 5967 printf("pf: State failure on: %c %c %c %c | %c %c\n", 5968 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1', 5969 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 5970 ' ': '2', 5971 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 5972 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 5973 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5', 5974 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 5975 } 5976 REASON_SET(reason, PFRES_BADSTATE); 5977 return (PF_DROP); 5978 } 5979 5980 return (PF_PASS); 5981 } 5982 5983 static int 5984 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 5985 { 5986 struct tcphdr *th = &pd->hdr.tcp; 5987 struct pf_state_peer *src, *dst; 5988 u_int8_t psrc, pdst; 5989 5990 if (pd->dir == (*state)->direction) { 5991 src = &(*state)->src; 5992 dst = &(*state)->dst; 5993 psrc = PF_PEER_SRC; 5994 pdst = PF_PEER_DST; 5995 } else { 5996 src = &(*state)->dst; 5997 dst = &(*state)->src; 5998 psrc = PF_PEER_DST; 5999 pdst = PF_PEER_SRC; 6000 } 6001 6002 if (tcp_get_flags(th) & TH_SYN) 6003 if (src->state < TCPS_SYN_SENT) 6004 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 6005 if (tcp_get_flags(th) & TH_FIN) 6006 if (src->state < TCPS_CLOSING) 6007 pf_set_protostate(*state, psrc, TCPS_CLOSING); 6008 if (tcp_get_flags(th) & TH_ACK) { 6009 if (dst->state == TCPS_SYN_SENT) { 6010 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 6011 if (src->state == TCPS_ESTABLISHED && 6012 (*state)->src_node != NULL && 6013 pf_src_connlimit(*state)) { 6014 REASON_SET(reason, PFRES_SRCLIMIT); 6015 return (PF_DROP); 6016 } 6017 } else if (dst->state == TCPS_CLOSING) { 6018 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 6019 } else if (src->state == TCPS_SYN_SENT && 6020 dst->state < TCPS_SYN_SENT) { 6021 /* 6022 * Handle a special sloppy case where we only see one 6023 * half of the connection. If there is a ACK after 6024 * the initial SYN without ever seeing a packet from 6025 * the destination, set the connection to established. 6026 */ 6027 pf_set_protostate(*state, PF_PEER_BOTH, 6028 TCPS_ESTABLISHED); 6029 dst->state = src->state = TCPS_ESTABLISHED; 6030 if ((*state)->src_node != NULL && 6031 pf_src_connlimit(*state)) { 6032 REASON_SET(reason, PFRES_SRCLIMIT); 6033 return (PF_DROP); 6034 } 6035 } else if (src->state == TCPS_CLOSING && 6036 dst->state == TCPS_ESTABLISHED && 6037 dst->seqlo == 0) { 6038 /* 6039 * Handle the closing of half connections where we 6040 * don't see the full bidirectional FIN/ACK+ACK 6041 * handshake. 6042 */ 6043 pf_set_protostate(*state, pdst, TCPS_CLOSING); 6044 } 6045 } 6046 if (tcp_get_flags(th) & TH_RST) 6047 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6048 6049 /* update expire time */ 6050 (*state)->expire = pf_get_uptime(); 6051 if (src->state >= TCPS_FIN_WAIT_2 && 6052 dst->state >= TCPS_FIN_WAIT_2) 6053 (*state)->timeout = PFTM_TCP_CLOSED; 6054 else if (src->state >= TCPS_CLOSING && 6055 dst->state >= TCPS_CLOSING) 6056 (*state)->timeout = PFTM_TCP_FIN_WAIT; 6057 else if (src->state < TCPS_ESTABLISHED || 6058 dst->state < TCPS_ESTABLISHED) 6059 (*state)->timeout = PFTM_TCP_OPENING; 6060 else if (src->state >= TCPS_CLOSING || 6061 dst->state >= TCPS_CLOSING) 6062 (*state)->timeout = PFTM_TCP_CLOSING; 6063 else 6064 (*state)->timeout = PFTM_TCP_ESTABLISHED; 6065 6066 return (PF_PASS); 6067 } 6068 6069 static int 6070 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 6071 { 6072 struct pf_state_key *sk = (*state)->key[pd->didx]; 6073 struct tcphdr *th = &pd->hdr.tcp; 6074 6075 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 6076 if (pd->dir != (*state)->direction) { 6077 REASON_SET(reason, PFRES_SYNPROXY); 6078 return (PF_SYNPROXY_DROP); 6079 } 6080 if (tcp_get_flags(th) & TH_SYN) { 6081 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 6082 REASON_SET(reason, PFRES_SYNPROXY); 6083 return (PF_DROP); 6084 } 6085 pf_send_tcp((*state)->rule, pd->af, pd->dst, 6086 pd->src, th->th_dport, th->th_sport, 6087 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 6088 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 6089 M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid); 6090 REASON_SET(reason, PFRES_SYNPROXY); 6091 return (PF_SYNPROXY_DROP); 6092 } else if ((tcp_get_flags(th) & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 6093 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 6094 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 6095 REASON_SET(reason, PFRES_SYNPROXY); 6096 return (PF_DROP); 6097 } else if ((*state)->src_node != NULL && 6098 pf_src_connlimit(*state)) { 6099 REASON_SET(reason, PFRES_SRCLIMIT); 6100 return (PF_DROP); 6101 } else 6102 pf_set_protostate(*state, PF_PEER_SRC, 6103 PF_TCPS_PROXY_DST); 6104 } 6105 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 6106 if (pd->dir == (*state)->direction) { 6107 if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != TH_ACK) || 6108 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 6109 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 6110 REASON_SET(reason, PFRES_SYNPROXY); 6111 return (PF_DROP); 6112 } 6113 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 6114 if ((*state)->dst.seqhi == 1) 6115 (*state)->dst.seqhi = htonl(arc4random()); 6116 pf_send_tcp((*state)->rule, pd->af, 6117 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6118 sk->port[pd->sidx], sk->port[pd->didx], 6119 (*state)->dst.seqhi, 0, TH_SYN, 0, 6120 (*state)->src.mss, 0, 6121 (*state)->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0, 6122 (*state)->tag, 0, (*state)->act.rtableid); 6123 REASON_SET(reason, PFRES_SYNPROXY); 6124 return (PF_SYNPROXY_DROP); 6125 } else if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != 6126 (TH_SYN|TH_ACK)) || 6127 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 6128 REASON_SET(reason, PFRES_SYNPROXY); 6129 return (PF_DROP); 6130 } else { 6131 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 6132 (*state)->dst.seqlo = ntohl(th->th_seq); 6133 pf_send_tcp((*state)->rule, pd->af, pd->dst, 6134 pd->src, th->th_dport, th->th_sport, 6135 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 6136 TH_ACK, (*state)->src.max_win, 0, 0, 0, 6137 (*state)->tag, 0, (*state)->act.rtableid); 6138 pf_send_tcp((*state)->rule, pd->af, 6139 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6140 sk->port[pd->sidx], sk->port[pd->didx], 6141 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 6142 TH_ACK, (*state)->dst.max_win, 0, 0, 6143 M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid); 6144 (*state)->src.seqdiff = (*state)->dst.seqhi - 6145 (*state)->src.seqlo; 6146 (*state)->dst.seqdiff = (*state)->src.seqhi - 6147 (*state)->dst.seqlo; 6148 (*state)->src.seqhi = (*state)->src.seqlo + 6149 (*state)->dst.max_win; 6150 (*state)->dst.seqhi = (*state)->dst.seqlo + 6151 (*state)->src.max_win; 6152 (*state)->src.wscale = (*state)->dst.wscale = 0; 6153 pf_set_protostate(*state, PF_PEER_BOTH, 6154 TCPS_ESTABLISHED); 6155 REASON_SET(reason, PFRES_SYNPROXY); 6156 return (PF_SYNPROXY_DROP); 6157 } 6158 } 6159 6160 return (PF_PASS); 6161 } 6162 6163 static int 6164 pf_test_state_tcp(struct pf_kstate **state, struct pf_pdesc *pd, 6165 u_short *reason) 6166 { 6167 struct pf_state_key_cmp key; 6168 struct tcphdr *th = &pd->hdr.tcp; 6169 int copyback = 0; 6170 int action; 6171 struct pf_state_peer *src, *dst; 6172 6173 bzero(&key, sizeof(key)); 6174 key.af = pd->af; 6175 key.proto = IPPROTO_TCP; 6176 if (pd->dir == PF_IN) { /* wire side, straight */ 6177 PF_ACPY(&key.addr[0], pd->src, key.af); 6178 PF_ACPY(&key.addr[1], pd->dst, key.af); 6179 key.port[0] = th->th_sport; 6180 key.port[1] = th->th_dport; 6181 } else { /* stack side, reverse */ 6182 PF_ACPY(&key.addr[1], pd->src, key.af); 6183 PF_ACPY(&key.addr[0], pd->dst, key.af); 6184 key.port[1] = th->th_sport; 6185 key.port[0] = th->th_dport; 6186 } 6187 6188 STATE_LOOKUP(&key, *state, pd); 6189 6190 if (pd->dir == (*state)->direction) { 6191 src = &(*state)->src; 6192 dst = &(*state)->dst; 6193 } else { 6194 src = &(*state)->dst; 6195 dst = &(*state)->src; 6196 } 6197 6198 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 6199 return (action); 6200 6201 if (dst->state >= TCPS_FIN_WAIT_2 && 6202 src->state >= TCPS_FIN_WAIT_2 && 6203 (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN) || 6204 ((tcp_get_flags(th) & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK && 6205 pf_syncookie_check(pd) && pd->dir == PF_IN))) { 6206 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6207 printf("pf: state reuse "); 6208 pf_print_state(*state); 6209 pf_print_flags(tcp_get_flags(th)); 6210 printf("\n"); 6211 } 6212 /* XXX make sure it's the same direction ?? */ 6213 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 6214 pf_unlink_state(*state); 6215 *state = NULL; 6216 return (PF_DROP); 6217 } 6218 6219 if ((*state)->state_flags & PFSTATE_SLOPPY) { 6220 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 6221 return (PF_DROP); 6222 } else { 6223 if (pf_tcp_track_full(state, pd, reason, 6224 ©back) == PF_DROP) 6225 return (PF_DROP); 6226 } 6227 6228 /* translate source/destination address, if necessary */ 6229 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6230 struct pf_state_key *nk = (*state)->key[pd->didx]; 6231 6232 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6233 nk->port[pd->sidx] != th->th_sport) 6234 pf_change_ap(pd->m, pd->src, &th->th_sport, 6235 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 6236 nk->port[pd->sidx], 0, pd->af); 6237 6238 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6239 nk->port[pd->didx] != th->th_dport) 6240 pf_change_ap(pd->m, pd->dst, &th->th_dport, 6241 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 6242 nk->port[pd->didx], 0, pd->af); 6243 copyback = 1; 6244 } 6245 6246 /* Copyback sequence modulation or stateful scrub changes if needed */ 6247 if (copyback) 6248 m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th); 6249 6250 return (PF_PASS); 6251 } 6252 6253 static int 6254 pf_test_state_udp(struct pf_kstate **state, struct pf_pdesc *pd) 6255 { 6256 struct pf_state_peer *src, *dst; 6257 struct pf_state_key_cmp key; 6258 struct udphdr *uh = &pd->hdr.udp; 6259 uint8_t psrc, pdst; 6260 6261 bzero(&key, sizeof(key)); 6262 key.af = pd->af; 6263 key.proto = IPPROTO_UDP; 6264 if (pd->dir == PF_IN) { /* wire side, straight */ 6265 PF_ACPY(&key.addr[0], pd->src, key.af); 6266 PF_ACPY(&key.addr[1], pd->dst, key.af); 6267 key.port[0] = uh->uh_sport; 6268 key.port[1] = uh->uh_dport; 6269 } else { /* stack side, reverse */ 6270 PF_ACPY(&key.addr[1], pd->src, key.af); 6271 PF_ACPY(&key.addr[0], pd->dst, key.af); 6272 key.port[1] = uh->uh_sport; 6273 key.port[0] = uh->uh_dport; 6274 } 6275 6276 STATE_LOOKUP(&key, *state, pd); 6277 6278 if (pd->dir == (*state)->direction) { 6279 src = &(*state)->src; 6280 dst = &(*state)->dst; 6281 psrc = PF_PEER_SRC; 6282 pdst = PF_PEER_DST; 6283 } else { 6284 src = &(*state)->dst; 6285 dst = &(*state)->src; 6286 psrc = PF_PEER_DST; 6287 pdst = PF_PEER_SRC; 6288 } 6289 6290 /* update states */ 6291 if (src->state < PFUDPS_SINGLE) 6292 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 6293 if (dst->state == PFUDPS_SINGLE) 6294 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 6295 6296 /* update expire time */ 6297 (*state)->expire = pf_get_uptime(); 6298 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 6299 (*state)->timeout = PFTM_UDP_MULTIPLE; 6300 else 6301 (*state)->timeout = PFTM_UDP_SINGLE; 6302 6303 /* translate source/destination address, if necessary */ 6304 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6305 struct pf_state_key *nk = (*state)->key[pd->didx]; 6306 6307 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6308 nk->port[pd->sidx] != uh->uh_sport) 6309 pf_change_ap(pd->m, pd->src, &uh->uh_sport, pd->ip_sum, 6310 &uh->uh_sum, &nk->addr[pd->sidx], 6311 nk->port[pd->sidx], 1, pd->af); 6312 6313 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6314 nk->port[pd->didx] != uh->uh_dport) 6315 pf_change_ap(pd->m, pd->dst, &uh->uh_dport, pd->ip_sum, 6316 &uh->uh_sum, &nk->addr[pd->didx], 6317 nk->port[pd->didx], 1, pd->af); 6318 m_copyback(pd->m, pd->off, sizeof(*uh), (caddr_t)uh); 6319 } 6320 6321 return (PF_PASS); 6322 } 6323 6324 static int 6325 pf_test_state_sctp(struct pf_kstate **state, struct pf_pdesc *pd, 6326 u_short *reason) 6327 { 6328 struct pf_state_key_cmp key; 6329 struct pf_state_peer *src, *dst; 6330 struct sctphdr *sh = &pd->hdr.sctp; 6331 u_int8_t psrc; //, pdst; 6332 6333 bzero(&key, sizeof(key)); 6334 key.af = pd->af; 6335 key.proto = IPPROTO_SCTP; 6336 if (pd->dir == PF_IN) { /* wire side, straight */ 6337 PF_ACPY(&key.addr[0], pd->src, key.af); 6338 PF_ACPY(&key.addr[1], pd->dst, key.af); 6339 key.port[0] = sh->src_port; 6340 key.port[1] = sh->dest_port; 6341 } else { /* stack side, reverse */ 6342 PF_ACPY(&key.addr[1], pd->src, key.af); 6343 PF_ACPY(&key.addr[0], pd->dst, key.af); 6344 key.port[1] = sh->src_port; 6345 key.port[0] = sh->dest_port; 6346 } 6347 6348 STATE_LOOKUP(&key, *state, pd); 6349 6350 if (pd->dir == (*state)->direction) { 6351 src = &(*state)->src; 6352 dst = &(*state)->dst; 6353 psrc = PF_PEER_SRC; 6354 } else { 6355 src = &(*state)->dst; 6356 dst = &(*state)->src; 6357 psrc = PF_PEER_DST; 6358 } 6359 6360 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) && 6361 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) && 6362 pd->sctp_flags & PFDESC_SCTP_INIT) { 6363 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED); 6364 pf_unlink_state(*state); 6365 *state = NULL; 6366 return (PF_DROP); 6367 } 6368 6369 /* Track state. */ 6370 if (pd->sctp_flags & PFDESC_SCTP_INIT) { 6371 if (src->state < SCTP_COOKIE_WAIT) { 6372 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT); 6373 (*state)->timeout = PFTM_SCTP_OPENING; 6374 } 6375 } 6376 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) { 6377 MPASS(dst->scrub != NULL); 6378 if (dst->scrub->pfss_v_tag == 0) 6379 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag; 6380 } 6381 6382 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) { 6383 if (src->state < SCTP_ESTABLISHED) { 6384 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED); 6385 (*state)->timeout = PFTM_SCTP_ESTABLISHED; 6386 } 6387 } 6388 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | PFDESC_SCTP_ABORT | 6389 PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 6390 if (src->state < SCTP_SHUTDOWN_PENDING) { 6391 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING); 6392 (*state)->timeout = PFTM_SCTP_CLOSING; 6393 } 6394 } 6395 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 6396 pf_set_protostate(*state, psrc, SCTP_CLOSED); 6397 (*state)->timeout = PFTM_SCTP_CLOSED; 6398 } 6399 6400 if (src->scrub != NULL) { 6401 if (src->scrub->pfss_v_tag == 0) { 6402 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag; 6403 } else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag) 6404 return (PF_DROP); 6405 } 6406 6407 (*state)->expire = pf_get_uptime(); 6408 6409 /* translate source/destination address, if necessary */ 6410 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6411 uint16_t checksum = 0; 6412 struct pf_state_key *nk = (*state)->key[pd->didx]; 6413 6414 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6415 nk->port[pd->sidx] != pd->hdr.sctp.src_port) { 6416 pf_change_ap(pd->m, pd->src, &pd->hdr.sctp.src_port, 6417 pd->ip_sum, &checksum, &nk->addr[pd->sidx], 6418 nk->port[pd->sidx], 1, pd->af); 6419 } 6420 6421 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6422 nk->port[pd->didx] != pd->hdr.sctp.dest_port) { 6423 pf_change_ap(pd->m, pd->dst, &pd->hdr.sctp.dest_port, 6424 pd->ip_sum, &checksum, &nk->addr[pd->didx], 6425 nk->port[pd->didx], 1, pd->af); 6426 } 6427 } 6428 6429 return (PF_PASS); 6430 } 6431 6432 static void 6433 pf_sctp_multihome_detach_addr(const struct pf_kstate *s) 6434 { 6435 struct pf_sctp_endpoint key; 6436 struct pf_sctp_endpoint *ep; 6437 struct pf_state_key *sks = s->key[PF_SK_STACK]; 6438 struct pf_sctp_source *i, *tmp; 6439 6440 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL) 6441 return; 6442 6443 PF_SCTP_ENDPOINTS_LOCK(); 6444 6445 key.v_tag = s->dst.scrub->pfss_v_tag; 6446 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6447 if (ep != NULL) { 6448 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6449 if (pf_addr_cmp(&i->addr, 6450 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT], 6451 s->key[PF_SK_WIRE]->af) == 0) { 6452 SDT_PROBE3(pf, sctp, multihome, remove, 6453 key.v_tag, s, i); 6454 TAILQ_REMOVE(&ep->sources, i, entry); 6455 free(i, M_PFTEMP); 6456 break; 6457 } 6458 } 6459 6460 if (TAILQ_EMPTY(&ep->sources)) { 6461 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6462 free(ep, M_PFTEMP); 6463 } 6464 } 6465 6466 /* Other direction. */ 6467 key.v_tag = s->src.scrub->pfss_v_tag; 6468 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6469 if (ep != NULL) { 6470 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6471 if (pf_addr_cmp(&i->addr, 6472 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN], 6473 s->key[PF_SK_WIRE]->af) == 0) { 6474 SDT_PROBE3(pf, sctp, multihome, remove, 6475 key.v_tag, s, i); 6476 TAILQ_REMOVE(&ep->sources, i, entry); 6477 free(i, M_PFTEMP); 6478 break; 6479 } 6480 } 6481 6482 if (TAILQ_EMPTY(&ep->sources)) { 6483 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6484 free(ep, M_PFTEMP); 6485 } 6486 } 6487 6488 PF_SCTP_ENDPOINTS_UNLOCK(); 6489 } 6490 6491 static void 6492 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag) 6493 { 6494 struct pf_sctp_endpoint key = { 6495 .v_tag = v_tag, 6496 }; 6497 struct pf_sctp_source *i; 6498 struct pf_sctp_endpoint *ep; 6499 6500 PF_SCTP_ENDPOINTS_LOCK(); 6501 6502 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6503 if (ep == NULL) { 6504 ep = malloc(sizeof(struct pf_sctp_endpoint), 6505 M_PFTEMP, M_NOWAIT); 6506 if (ep == NULL) { 6507 PF_SCTP_ENDPOINTS_UNLOCK(); 6508 return; 6509 } 6510 6511 ep->v_tag = v_tag; 6512 TAILQ_INIT(&ep->sources); 6513 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6514 } 6515 6516 /* Avoid inserting duplicates. */ 6517 TAILQ_FOREACH(i, &ep->sources, entry) { 6518 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) { 6519 PF_SCTP_ENDPOINTS_UNLOCK(); 6520 return; 6521 } 6522 } 6523 6524 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT); 6525 if (i == NULL) { 6526 PF_SCTP_ENDPOINTS_UNLOCK(); 6527 return; 6528 } 6529 6530 i->af = pd->af; 6531 memcpy(&i->addr, a, sizeof(*a)); 6532 TAILQ_INSERT_TAIL(&ep->sources, i, entry); 6533 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i); 6534 6535 PF_SCTP_ENDPOINTS_UNLOCK(); 6536 } 6537 6538 static void 6539 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif, 6540 struct pf_kstate *s, int action) 6541 { 6542 struct pf_sctp_multihome_job *j, *tmp; 6543 struct pf_sctp_source *i; 6544 int ret __unused; 6545 struct pf_kstate *sm = NULL; 6546 struct pf_krule *ra = NULL; 6547 struct pf_krule *r = &V_pf_default_rule; 6548 struct pf_kruleset *rs = NULL; 6549 bool do_extra = true; 6550 6551 PF_RULES_RLOCK_TRACKER; 6552 6553 again: 6554 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) { 6555 if (s == NULL || action != PF_PASS) 6556 goto free; 6557 6558 /* Confirm we don't recurse here. */ 6559 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP)); 6560 6561 switch (j->op) { 6562 case SCTP_ADD_IP_ADDRESS: { 6563 uint32_t v_tag = pd->sctp_initiate_tag; 6564 6565 if (v_tag == 0) { 6566 if (s->direction == pd->dir) 6567 v_tag = s->src.scrub->pfss_v_tag; 6568 else 6569 v_tag = s->dst.scrub->pfss_v_tag; 6570 } 6571 6572 /* 6573 * Avoid duplicating states. We'll already have 6574 * created a state based on the source address of 6575 * the packet, but SCTP endpoints may also list this 6576 * address again in the INIT(_ACK) parameters. 6577 */ 6578 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) { 6579 break; 6580 } 6581 6582 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP; 6583 PF_RULES_RLOCK(); 6584 sm = NULL; 6585 /* 6586 * New connections need to be floating, because 6587 * we cannot know what interfaces it will use. 6588 * That's why we pass V_pfi_all rather than kif. 6589 */ 6590 j->pd.kif = V_pfi_all; 6591 ret = pf_test_rule(&r, &sm, 6592 &j->pd, &ra, &rs, NULL); 6593 PF_RULES_RUNLOCK(); 6594 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret); 6595 if (ret != PF_DROP && sm != NULL) { 6596 /* Inherit v_tag values. */ 6597 if (sm->direction == s->direction) { 6598 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6599 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6600 } else { 6601 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6602 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6603 } 6604 PF_STATE_UNLOCK(sm); 6605 } else { 6606 /* If we try duplicate inserts? */ 6607 break; 6608 } 6609 6610 /* Only add the address if we've actually allowed the state. */ 6611 pf_sctp_multihome_add_addr(pd, &j->src, v_tag); 6612 6613 if (! do_extra) { 6614 break; 6615 } 6616 /* 6617 * We need to do this for each of our source addresses. 6618 * Find those based on the verification tag. 6619 */ 6620 struct pf_sctp_endpoint key = { 6621 .v_tag = pd->hdr.sctp.v_tag, 6622 }; 6623 struct pf_sctp_endpoint *ep; 6624 6625 PF_SCTP_ENDPOINTS_LOCK(); 6626 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6627 if (ep == NULL) { 6628 PF_SCTP_ENDPOINTS_UNLOCK(); 6629 break; 6630 } 6631 MPASS(ep != NULL); 6632 6633 TAILQ_FOREACH(i, &ep->sources, entry) { 6634 struct pf_sctp_multihome_job *nj; 6635 6636 /* SCTP can intermingle IPv4 and IPv6. */ 6637 if (i->af != pd->af) 6638 continue; 6639 6640 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO); 6641 if (! nj) { 6642 continue; 6643 } 6644 memcpy(&nj->pd, &j->pd, sizeof(j->pd)); 6645 memcpy(&nj->src, &j->src, sizeof(nj->src)); 6646 nj->pd.src = &nj->src; 6647 // New destination address! 6648 memcpy(&nj->dst, &i->addr, sizeof(nj->dst)); 6649 nj->pd.dst = &nj->dst; 6650 nj->pd.m = j->pd.m; 6651 nj->op = j->op; 6652 6653 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next); 6654 } 6655 PF_SCTP_ENDPOINTS_UNLOCK(); 6656 6657 break; 6658 } 6659 case SCTP_DEL_IP_ADDRESS: { 6660 struct pf_state_key_cmp key; 6661 uint8_t psrc; 6662 6663 bzero(&key, sizeof(key)); 6664 key.af = j->pd.af; 6665 key.proto = IPPROTO_SCTP; 6666 if (j->pd.dir == PF_IN) { /* wire side, straight */ 6667 PF_ACPY(&key.addr[0], j->pd.src, key.af); 6668 PF_ACPY(&key.addr[1], j->pd.dst, key.af); 6669 key.port[0] = j->pd.hdr.sctp.src_port; 6670 key.port[1] = j->pd.hdr.sctp.dest_port; 6671 } else { /* stack side, reverse */ 6672 PF_ACPY(&key.addr[1], j->pd.src, key.af); 6673 PF_ACPY(&key.addr[0], j->pd.dst, key.af); 6674 key.port[1] = j->pd.hdr.sctp.src_port; 6675 key.port[0] = j->pd.hdr.sctp.dest_port; 6676 } 6677 6678 sm = pf_find_state(kif, &key, j->pd.dir); 6679 if (sm != NULL) { 6680 PF_STATE_LOCK_ASSERT(sm); 6681 if (j->pd.dir == sm->direction) { 6682 psrc = PF_PEER_SRC; 6683 } else { 6684 psrc = PF_PEER_DST; 6685 } 6686 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING); 6687 sm->timeout = PFTM_SCTP_CLOSING; 6688 PF_STATE_UNLOCK(sm); 6689 } 6690 break; 6691 default: 6692 panic("Unknown op %#x", j->op); 6693 } 6694 } 6695 6696 free: 6697 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next); 6698 free(j, M_PFTEMP); 6699 } 6700 6701 /* We may have inserted extra work while processing the list. */ 6702 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) { 6703 do_extra = false; 6704 goto again; 6705 } 6706 } 6707 6708 static int 6709 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op) 6710 { 6711 int off = 0; 6712 struct pf_sctp_multihome_job *job; 6713 6714 while (off < len) { 6715 struct sctp_paramhdr h; 6716 6717 if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL, NULL, 6718 pd->af)) 6719 return (PF_DROP); 6720 6721 /* Parameters are at least 4 bytes. */ 6722 if (ntohs(h.param_length) < 4) 6723 return (PF_DROP); 6724 6725 switch (ntohs(h.param_type)) { 6726 case SCTP_IPV4_ADDRESS: { 6727 struct in_addr t; 6728 6729 if (ntohs(h.param_length) != 6730 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6731 return (PF_DROP); 6732 6733 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t), 6734 NULL, NULL, pd->af)) 6735 return (PF_DROP); 6736 6737 if (in_nullhost(t)) 6738 t.s_addr = pd->src->v4.s_addr; 6739 6740 /* 6741 * We hold the state lock (idhash) here, which means 6742 * that we can't acquire the keyhash, or we'll get a 6743 * LOR (and potentially double-lock things too). We also 6744 * can't release the state lock here, so instead we'll 6745 * enqueue this for async handling. 6746 * There's a relatively small race here, in that a 6747 * packet using the new addresses could arrive already, 6748 * but that's just though luck for it. 6749 */ 6750 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6751 if (! job) 6752 return (PF_DROP); 6753 6754 memcpy(&job->pd, pd, sizeof(*pd)); 6755 6756 // New source address! 6757 memcpy(&job->src, &t, sizeof(t)); 6758 job->pd.src = &job->src; 6759 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6760 job->pd.dst = &job->dst; 6761 job->pd.m = pd->m; 6762 job->op = op; 6763 6764 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6765 break; 6766 } 6767 #ifdef INET6 6768 case SCTP_IPV6_ADDRESS: { 6769 struct in6_addr t; 6770 6771 if (ntohs(h.param_length) != 6772 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6773 return (PF_DROP); 6774 6775 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t), 6776 NULL, NULL, pd->af)) 6777 return (PF_DROP); 6778 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0) 6779 break; 6780 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0) 6781 memcpy(&t, &pd->src->v6, sizeof(t)); 6782 6783 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6784 if (! job) 6785 return (PF_DROP); 6786 6787 memcpy(&job->pd, pd, sizeof(*pd)); 6788 memcpy(&job->src, &t, sizeof(t)); 6789 job->pd.src = &job->src; 6790 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6791 job->pd.dst = &job->dst; 6792 job->pd.m = pd->m; 6793 job->op = op; 6794 6795 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6796 break; 6797 } 6798 #endif 6799 case SCTP_ADD_IP_ADDRESS: { 6800 int ret; 6801 struct sctp_asconf_paramhdr ah; 6802 6803 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah), 6804 NULL, NULL, pd->af)) 6805 return (PF_DROP); 6806 6807 ret = pf_multihome_scan(start + off + sizeof(ah), 6808 ntohs(ah.ph.param_length) - sizeof(ah), pd, 6809 SCTP_ADD_IP_ADDRESS); 6810 if (ret != PF_PASS) 6811 return (ret); 6812 break; 6813 } 6814 case SCTP_DEL_IP_ADDRESS: { 6815 int ret; 6816 struct sctp_asconf_paramhdr ah; 6817 6818 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah), 6819 NULL, NULL, pd->af)) 6820 return (PF_DROP); 6821 ret = pf_multihome_scan(start + off + sizeof(ah), 6822 ntohs(ah.ph.param_length) - sizeof(ah), pd, 6823 SCTP_DEL_IP_ADDRESS); 6824 if (ret != PF_PASS) 6825 return (ret); 6826 break; 6827 } 6828 default: 6829 break; 6830 } 6831 6832 off += roundup(ntohs(h.param_length), 4); 6833 } 6834 6835 return (PF_PASS); 6836 } 6837 int 6838 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd) 6839 { 6840 start += sizeof(struct sctp_init_chunk); 6841 len -= sizeof(struct sctp_init_chunk); 6842 6843 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS)); 6844 } 6845 6846 int 6847 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd) 6848 { 6849 start += sizeof(struct sctp_asconf_chunk); 6850 len -= sizeof(struct sctp_asconf_chunk); 6851 6852 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS)); 6853 } 6854 6855 int 6856 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd, 6857 struct pf_kstate **state, int direction, 6858 u_int16_t icmpid, u_int16_t type, int icmp_dir, 6859 int *iidx, int multi, int inner) 6860 { 6861 key->af = pd->af; 6862 key->proto = pd->proto; 6863 if (icmp_dir == PF_IN) { 6864 *iidx = pd->sidx; 6865 key->port[pd->sidx] = icmpid; 6866 key->port[pd->didx] = type; 6867 } else { 6868 *iidx = pd->didx; 6869 key->port[pd->sidx] = type; 6870 key->port[pd->didx] = icmpid; 6871 } 6872 if (pf_state_key_addr_setup(pd, key, multi)) 6873 return (PF_DROP); 6874 6875 STATE_LOOKUP(key, *state, pd); 6876 6877 if ((*state)->state_flags & PFSTATE_SLOPPY) 6878 return (-1); 6879 6880 /* Is this ICMP message flowing in right direction? */ 6881 if ((*state)->rule->type && 6882 (((!inner && (*state)->direction == direction) || 6883 (inner && (*state)->direction != direction)) ? 6884 PF_IN : PF_OUT) != icmp_dir) { 6885 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6886 printf("pf: icmp type %d in wrong direction (%d): ", 6887 ntohs(type), icmp_dir); 6888 pf_print_state(*state); 6889 printf("\n"); 6890 } 6891 PF_STATE_UNLOCK(*state); 6892 *state = NULL; 6893 return (PF_DROP); 6894 } 6895 return (-1); 6896 } 6897 6898 static int 6899 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd, 6900 u_short *reason) 6901 { 6902 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 6903 u_int16_t *icmpsum, virtual_id, virtual_type; 6904 u_int8_t icmptype, icmpcode; 6905 int icmp_dir, iidx, ret, multi; 6906 struct pf_state_key_cmp key; 6907 #ifdef INET 6908 u_int16_t icmpid; 6909 #endif 6910 6911 MPASS(*state == NULL); 6912 6913 bzero(&key, sizeof(key)); 6914 switch (pd->proto) { 6915 #ifdef INET 6916 case IPPROTO_ICMP: 6917 icmptype = pd->hdr.icmp.icmp_type; 6918 icmpcode = pd->hdr.icmp.icmp_code; 6919 icmpid = pd->hdr.icmp.icmp_id; 6920 icmpsum = &pd->hdr.icmp.icmp_cksum; 6921 break; 6922 #endif /* INET */ 6923 #ifdef INET6 6924 case IPPROTO_ICMPV6: 6925 icmptype = pd->hdr.icmp6.icmp6_type; 6926 icmpcode = pd->hdr.icmp6.icmp6_code; 6927 #ifdef INET 6928 icmpid = pd->hdr.icmp6.icmp6_id; 6929 #endif 6930 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 6931 break; 6932 #endif /* INET6 */ 6933 } 6934 6935 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &multi, 6936 &virtual_id, &virtual_type) == 0) { 6937 /* 6938 * ICMP query/reply message not related to a TCP/UDP packet. 6939 * Search for an ICMP state. 6940 */ 6941 ret = pf_icmp_state_lookup(&key, pd, state, pd->dir, 6942 virtual_id, virtual_type, icmp_dir, &iidx, 6943 PF_ICMP_MULTI_NONE, 0); 6944 if (ret >= 0) { 6945 MPASS(*state == NULL); 6946 if (ret == PF_DROP && pd->af == AF_INET6 && 6947 icmp_dir == PF_OUT) { 6948 ret = pf_icmp_state_lookup(&key, pd, state, 6949 pd->dir, virtual_id, virtual_type, 6950 icmp_dir, &iidx, multi, 0); 6951 if (ret >= 0) { 6952 MPASS(*state == NULL); 6953 return (ret); 6954 } 6955 } else 6956 return (ret); 6957 } 6958 6959 (*state)->expire = pf_get_uptime(); 6960 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 6961 6962 /* translate source/destination address, if necessary */ 6963 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6964 struct pf_state_key *nk = (*state)->key[pd->didx]; 6965 6966 switch (pd->af) { 6967 #ifdef INET 6968 case AF_INET: 6969 if (PF_ANEQ(pd->src, 6970 &nk->addr[pd->sidx], AF_INET)) 6971 pf_change_a(&saddr->v4.s_addr, 6972 pd->ip_sum, 6973 nk->addr[pd->sidx].v4.s_addr, 0); 6974 6975 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 6976 AF_INET)) 6977 pf_change_a(&daddr->v4.s_addr, 6978 pd->ip_sum, 6979 nk->addr[pd->didx].v4.s_addr, 0); 6980 6981 if (nk->port[iidx] != 6982 pd->hdr.icmp.icmp_id) { 6983 pd->hdr.icmp.icmp_cksum = 6984 pf_cksum_fixup( 6985 pd->hdr.icmp.icmp_cksum, icmpid, 6986 nk->port[iidx], 0); 6987 pd->hdr.icmp.icmp_id = 6988 nk->port[iidx]; 6989 } 6990 6991 m_copyback(pd->m, pd->off, ICMP_MINLEN, 6992 (caddr_t )&pd->hdr.icmp); 6993 break; 6994 #endif /* INET */ 6995 #ifdef INET6 6996 case AF_INET6: 6997 if (PF_ANEQ(pd->src, 6998 &nk->addr[pd->sidx], AF_INET6)) 6999 pf_change_a6(saddr, 7000 &pd->hdr.icmp6.icmp6_cksum, 7001 &nk->addr[pd->sidx], 0); 7002 7003 if (PF_ANEQ(pd->dst, 7004 &nk->addr[pd->didx], AF_INET6)) 7005 pf_change_a6(daddr, 7006 &pd->hdr.icmp6.icmp6_cksum, 7007 &nk->addr[pd->didx], 0); 7008 7009 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr), 7010 (caddr_t )&pd->hdr.icmp6); 7011 break; 7012 #endif /* INET6 */ 7013 } 7014 } 7015 return (PF_PASS); 7016 7017 } else { 7018 /* 7019 * ICMP error message in response to a TCP/UDP packet. 7020 * Extract the inner TCP/UDP header and search for that state. 7021 */ 7022 7023 struct pf_pdesc pd2; 7024 bzero(&pd2, sizeof pd2); 7025 #ifdef INET 7026 struct ip h2; 7027 #endif /* INET */ 7028 #ifdef INET6 7029 struct ip6_hdr h2_6; 7030 int fragoff2, extoff2; 7031 u_int32_t jumbolen; 7032 #endif /* INET6 */ 7033 int ipoff2 = 0; 7034 7035 pd2.af = pd->af; 7036 pd2.dir = pd->dir; 7037 /* Payload packet is from the opposite direction. */ 7038 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0; 7039 pd2.didx = (pd->dir == PF_IN) ? 0 : 1; 7040 pd2.m = pd->m; 7041 switch (pd->af) { 7042 #ifdef INET 7043 case AF_INET: 7044 /* offset of h2 in mbuf chain */ 7045 ipoff2 = pd->off + ICMP_MINLEN; 7046 7047 if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2), 7048 NULL, reason, pd2.af)) { 7049 DPFPRINTF(PF_DEBUG_MISC, 7050 ("pf: ICMP error message too short " 7051 "(ip)\n")); 7052 return (PF_DROP); 7053 } 7054 /* 7055 * ICMP error messages don't refer to non-first 7056 * fragments 7057 */ 7058 if (h2.ip_off & htons(IP_OFFMASK)) { 7059 REASON_SET(reason, PFRES_FRAG); 7060 return (PF_DROP); 7061 } 7062 7063 /* offset of protocol header that follows h2 */ 7064 pd2.off = ipoff2 + (h2.ip_hl << 2); 7065 7066 pd2.proto = h2.ip_p; 7067 pd2.src = (struct pf_addr *)&h2.ip_src; 7068 pd2.dst = (struct pf_addr *)&h2.ip_dst; 7069 pd2.ip_sum = &h2.ip_sum; 7070 break; 7071 #endif /* INET */ 7072 #ifdef INET6 7073 case AF_INET6: 7074 ipoff2 = pd->off + sizeof(struct icmp6_hdr); 7075 7076 if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6), 7077 NULL, reason, pd2.af)) { 7078 DPFPRINTF(PF_DEBUG_MISC, 7079 ("pf: ICMP error message too short " 7080 "(ip6)\n")); 7081 return (PF_DROP); 7082 } 7083 pd2.off = ipoff2; 7084 if (pf_walk_header6(pd->m, &h2_6, &pd2.off, &extoff2, 7085 &fragoff2, &pd2.proto, &jumbolen, 7086 reason) != PF_PASS) 7087 return (PF_DROP); 7088 7089 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 7090 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 7091 pd2.ip_sum = NULL; 7092 break; 7093 #endif /* INET6 */ 7094 } 7095 7096 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 7097 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7098 printf("pf: BAD ICMP %d:%d outer dst: ", 7099 icmptype, icmpcode); 7100 pf_print_host(pd->src, 0, pd->af); 7101 printf(" -> "); 7102 pf_print_host(pd->dst, 0, pd->af); 7103 printf(" inner src: "); 7104 pf_print_host(pd2.src, 0, pd2.af); 7105 printf(" -> "); 7106 pf_print_host(pd2.dst, 0, pd2.af); 7107 printf("\n"); 7108 } 7109 REASON_SET(reason, PFRES_BADSTATE); 7110 return (PF_DROP); 7111 } 7112 7113 switch (pd2.proto) { 7114 case IPPROTO_TCP: { 7115 struct tcphdr th; 7116 u_int32_t seq; 7117 struct pf_state_peer *src, *dst; 7118 u_int8_t dws; 7119 int copyback = 0; 7120 7121 /* 7122 * Only the first 8 bytes of the TCP header can be 7123 * expected. Don't access any TCP header fields after 7124 * th_seq, an ackskew test is not possible. 7125 */ 7126 if (!pf_pull_hdr(pd->m, pd2.off, &th, 8, NULL, reason, 7127 pd2.af)) { 7128 DPFPRINTF(PF_DEBUG_MISC, 7129 ("pf: ICMP error message too short " 7130 "(tcp)\n")); 7131 return (PF_DROP); 7132 } 7133 7134 key.af = pd2.af; 7135 key.proto = IPPROTO_TCP; 7136 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7137 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7138 key.port[pd2.sidx] = th.th_sport; 7139 key.port[pd2.didx] = th.th_dport; 7140 7141 STATE_LOOKUP(&key, *state, pd); 7142 7143 if (pd->dir == (*state)->direction) { 7144 src = &(*state)->dst; 7145 dst = &(*state)->src; 7146 } else { 7147 src = &(*state)->src; 7148 dst = &(*state)->dst; 7149 } 7150 7151 if (src->wscale && dst->wscale) 7152 dws = dst->wscale & PF_WSCALE_MASK; 7153 else 7154 dws = 0; 7155 7156 /* Demodulate sequence number */ 7157 seq = ntohl(th.th_seq) - src->seqdiff; 7158 if (src->seqdiff) { 7159 pf_change_a(&th.th_seq, icmpsum, 7160 htonl(seq), 0); 7161 copyback = 1; 7162 } 7163 7164 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 7165 (!SEQ_GEQ(src->seqhi, seq) || 7166 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 7167 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7168 printf("pf: BAD ICMP %d:%d ", 7169 icmptype, icmpcode); 7170 pf_print_host(pd->src, 0, pd->af); 7171 printf(" -> "); 7172 pf_print_host(pd->dst, 0, pd->af); 7173 printf(" state: "); 7174 pf_print_state(*state); 7175 printf(" seq=%u\n", seq); 7176 } 7177 REASON_SET(reason, PFRES_BADSTATE); 7178 return (PF_DROP); 7179 } else { 7180 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7181 printf("pf: OK ICMP %d:%d ", 7182 icmptype, icmpcode); 7183 pf_print_host(pd->src, 0, pd->af); 7184 printf(" -> "); 7185 pf_print_host(pd->dst, 0, pd->af); 7186 printf(" state: "); 7187 pf_print_state(*state); 7188 printf(" seq=%u\n", seq); 7189 } 7190 } 7191 7192 /* translate source/destination address, if necessary */ 7193 if ((*state)->key[PF_SK_WIRE] != 7194 (*state)->key[PF_SK_STACK]) { 7195 struct pf_state_key *nk = 7196 (*state)->key[pd->didx]; 7197 7198 if (PF_ANEQ(pd2.src, 7199 &nk->addr[pd2.sidx], pd2.af) || 7200 nk->port[pd2.sidx] != th.th_sport) 7201 pf_change_icmp(pd2.src, &th.th_sport, 7202 daddr, &nk->addr[pd2.sidx], 7203 nk->port[pd2.sidx], NULL, 7204 pd2.ip_sum, icmpsum, 7205 pd->ip_sum, 0, pd2.af); 7206 7207 if (PF_ANEQ(pd2.dst, 7208 &nk->addr[pd2.didx], pd2.af) || 7209 nk->port[pd2.didx] != th.th_dport) 7210 pf_change_icmp(pd2.dst, &th.th_dport, 7211 saddr, &nk->addr[pd2.didx], 7212 nk->port[pd2.didx], NULL, 7213 pd2.ip_sum, icmpsum, 7214 pd->ip_sum, 0, pd2.af); 7215 copyback = 1; 7216 } 7217 7218 if (copyback) { 7219 switch (pd2.af) { 7220 #ifdef INET 7221 case AF_INET: 7222 m_copyback(pd->m, pd->off, ICMP_MINLEN, 7223 (caddr_t )&pd->hdr.icmp); 7224 m_copyback(pd->m, ipoff2, sizeof(h2), 7225 (caddr_t )&h2); 7226 break; 7227 #endif /* INET */ 7228 #ifdef INET6 7229 case AF_INET6: 7230 m_copyback(pd->m, pd->off, 7231 sizeof(struct icmp6_hdr), 7232 (caddr_t )&pd->hdr.icmp6); 7233 m_copyback(pd->m, ipoff2, sizeof(h2_6), 7234 (caddr_t )&h2_6); 7235 break; 7236 #endif /* INET6 */ 7237 } 7238 m_copyback(pd->m, pd2.off, 8, (caddr_t)&th); 7239 } 7240 7241 return (PF_PASS); 7242 break; 7243 } 7244 case IPPROTO_UDP: { 7245 struct udphdr uh; 7246 7247 if (!pf_pull_hdr(pd->m, pd2.off, &uh, sizeof(uh), 7248 NULL, reason, pd2.af)) { 7249 DPFPRINTF(PF_DEBUG_MISC, 7250 ("pf: ICMP error message too short " 7251 "(udp)\n")); 7252 return (PF_DROP); 7253 } 7254 7255 key.af = pd2.af; 7256 key.proto = IPPROTO_UDP; 7257 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7258 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7259 key.port[pd2.sidx] = uh.uh_sport; 7260 key.port[pd2.didx] = uh.uh_dport; 7261 7262 STATE_LOOKUP(&key, *state, pd); 7263 7264 /* translate source/destination address, if necessary */ 7265 if ((*state)->key[PF_SK_WIRE] != 7266 (*state)->key[PF_SK_STACK]) { 7267 struct pf_state_key *nk = 7268 (*state)->key[pd->didx]; 7269 7270 if (PF_ANEQ(pd2.src, 7271 &nk->addr[pd2.sidx], pd2.af) || 7272 nk->port[pd2.sidx] != uh.uh_sport) 7273 pf_change_icmp(pd2.src, &uh.uh_sport, 7274 daddr, &nk->addr[pd2.sidx], 7275 nk->port[pd2.sidx], &uh.uh_sum, 7276 pd2.ip_sum, icmpsum, 7277 pd->ip_sum, 1, pd2.af); 7278 7279 if (PF_ANEQ(pd2.dst, 7280 &nk->addr[pd2.didx], pd2.af) || 7281 nk->port[pd2.didx] != uh.uh_dport) 7282 pf_change_icmp(pd2.dst, &uh.uh_dport, 7283 saddr, &nk->addr[pd2.didx], 7284 nk->port[pd2.didx], &uh.uh_sum, 7285 pd2.ip_sum, icmpsum, 7286 pd->ip_sum, 1, pd2.af); 7287 7288 switch (pd2.af) { 7289 #ifdef INET 7290 case AF_INET: 7291 m_copyback(pd->m, pd->off, ICMP_MINLEN, 7292 (caddr_t )&pd->hdr.icmp); 7293 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 7294 break; 7295 #endif /* INET */ 7296 #ifdef INET6 7297 case AF_INET6: 7298 m_copyback(pd->m, pd->off, 7299 sizeof(struct icmp6_hdr), 7300 (caddr_t )&pd->hdr.icmp6); 7301 m_copyback(pd->m, ipoff2, sizeof(h2_6), 7302 (caddr_t )&h2_6); 7303 break; 7304 #endif /* INET6 */ 7305 } 7306 m_copyback(pd->m, pd2.off, sizeof(uh), (caddr_t)&uh); 7307 } 7308 return (PF_PASS); 7309 break; 7310 } 7311 #ifdef INET 7312 case IPPROTO_ICMP: { 7313 struct icmp *iih = &pd2.hdr.icmp; 7314 7315 if (pd2.af != AF_INET) { 7316 REASON_SET(reason, PFRES_NORM); 7317 return (PF_DROP); 7318 } 7319 7320 if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN, 7321 NULL, reason, pd2.af)) { 7322 DPFPRINTF(PF_DEBUG_MISC, 7323 ("pf: ICMP error message too short i" 7324 "(icmp)\n")); 7325 return (PF_DROP); 7326 } 7327 7328 icmpid = iih->icmp_id; 7329 pf_icmp_mapping(&pd2, iih->icmp_type, 7330 &icmp_dir, &multi, &virtual_id, &virtual_type); 7331 7332 ret = pf_icmp_state_lookup(&key, &pd2, state, 7333 pd2.dir, virtual_id, virtual_type, 7334 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1); 7335 if (ret >= 0) { 7336 MPASS(*state == NULL); 7337 return (ret); 7338 } 7339 7340 /* translate source/destination address, if necessary */ 7341 if ((*state)->key[PF_SK_WIRE] != 7342 (*state)->key[PF_SK_STACK]) { 7343 struct pf_state_key *nk = 7344 (*state)->key[pd->didx]; 7345 7346 if (PF_ANEQ(pd2.src, 7347 &nk->addr[pd2.sidx], pd2.af) || 7348 (virtual_type == htons(ICMP_ECHO) && 7349 nk->port[iidx] != iih->icmp_id)) 7350 pf_change_icmp(pd2.src, 7351 (virtual_type == htons(ICMP_ECHO)) ? 7352 &iih->icmp_id : NULL, 7353 daddr, &nk->addr[pd2.sidx], 7354 (virtual_type == htons(ICMP_ECHO)) ? 7355 nk->port[iidx] : 0, NULL, 7356 pd2.ip_sum, icmpsum, 7357 pd->ip_sum, 0, AF_INET); 7358 7359 if (PF_ANEQ(pd2.dst, 7360 &nk->addr[pd2.didx], pd2.af)) 7361 pf_change_icmp(pd2.dst, NULL, NULL, 7362 &nk->addr[pd2.didx], 0, NULL, 7363 pd2.ip_sum, icmpsum, pd->ip_sum, 0, 7364 AF_INET); 7365 7366 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 7367 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 7368 m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih); 7369 } 7370 return (PF_PASS); 7371 break; 7372 } 7373 #endif /* INET */ 7374 #ifdef INET6 7375 case IPPROTO_ICMPV6: { 7376 struct icmp6_hdr *iih = &pd2.hdr.icmp6; 7377 7378 if (pd2.af != AF_INET6) { 7379 REASON_SET(reason, PFRES_NORM); 7380 return (PF_DROP); 7381 } 7382 7383 if (!pf_pull_hdr(pd->m, pd2.off, iih, 7384 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 7385 DPFPRINTF(PF_DEBUG_MISC, 7386 ("pf: ICMP error message too short " 7387 "(icmp6)\n")); 7388 return (PF_DROP); 7389 } 7390 7391 pf_icmp_mapping(&pd2, iih->icmp6_type, 7392 &icmp_dir, &multi, &virtual_id, &virtual_type); 7393 7394 ret = pf_icmp_state_lookup(&key, &pd2, state, 7395 pd->dir, virtual_id, virtual_type, 7396 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1); 7397 if (ret >= 0) { 7398 MPASS(*state == NULL); 7399 if (ret == PF_DROP && pd2.af == AF_INET6 && 7400 icmp_dir == PF_OUT) { 7401 ret = pf_icmp_state_lookup(&key, &pd2, 7402 state, pd->dir, 7403 virtual_id, virtual_type, 7404 icmp_dir, &iidx, multi, 1); 7405 if (ret >= 0) { 7406 MPASS(*state == NULL); 7407 return (ret); 7408 } 7409 } else 7410 return (ret); 7411 } 7412 7413 /* translate source/destination address, if necessary */ 7414 if ((*state)->key[PF_SK_WIRE] != 7415 (*state)->key[PF_SK_STACK]) { 7416 struct pf_state_key *nk = 7417 (*state)->key[pd->didx]; 7418 7419 if (PF_ANEQ(pd2.src, 7420 &nk->addr[pd2.sidx], pd2.af) || 7421 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) && 7422 nk->port[pd2.sidx] != iih->icmp6_id)) 7423 pf_change_icmp(pd2.src, 7424 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 7425 ? &iih->icmp6_id : NULL, 7426 daddr, &nk->addr[pd2.sidx], 7427 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 7428 ? nk->port[iidx] : 0, NULL, 7429 pd2.ip_sum, icmpsum, 7430 pd->ip_sum, 0, AF_INET6); 7431 7432 if (PF_ANEQ(pd2.dst, 7433 &nk->addr[pd2.didx], pd2.af)) 7434 pf_change_icmp(pd2.dst, NULL, NULL, 7435 &nk->addr[pd2.didx], 0, NULL, 7436 pd2.ip_sum, icmpsum, 7437 pd->ip_sum, 0, AF_INET6); 7438 7439 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr), 7440 (caddr_t)&pd->hdr.icmp6); 7441 m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 7442 m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr), 7443 (caddr_t)iih); 7444 } 7445 return (PF_PASS); 7446 break; 7447 } 7448 #endif /* INET6 */ 7449 default: { 7450 key.af = pd2.af; 7451 key.proto = pd2.proto; 7452 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7453 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7454 key.port[0] = key.port[1] = 0; 7455 7456 STATE_LOOKUP(&key, *state, pd); 7457 7458 /* translate source/destination address, if necessary */ 7459 if ((*state)->key[PF_SK_WIRE] != 7460 (*state)->key[PF_SK_STACK]) { 7461 struct pf_state_key *nk = 7462 (*state)->key[pd->didx]; 7463 7464 if (PF_ANEQ(pd2.src, 7465 &nk->addr[pd2.sidx], pd2.af)) 7466 pf_change_icmp(pd2.src, NULL, daddr, 7467 &nk->addr[pd2.sidx], 0, NULL, 7468 pd2.ip_sum, icmpsum, 7469 pd->ip_sum, 0, pd2.af); 7470 7471 if (PF_ANEQ(pd2.dst, 7472 &nk->addr[pd2.didx], pd2.af)) 7473 pf_change_icmp(pd2.dst, NULL, saddr, 7474 &nk->addr[pd2.didx], 0, NULL, 7475 pd2.ip_sum, icmpsum, 7476 pd->ip_sum, 0, pd2.af); 7477 7478 switch (pd2.af) { 7479 #ifdef INET 7480 case AF_INET: 7481 m_copyback(pd->m, pd->off, ICMP_MINLEN, 7482 (caddr_t)&pd->hdr.icmp); 7483 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 7484 break; 7485 #endif /* INET */ 7486 #ifdef INET6 7487 case AF_INET6: 7488 m_copyback(pd->m, pd->off, 7489 sizeof(struct icmp6_hdr), 7490 (caddr_t )&pd->hdr.icmp6); 7491 m_copyback(pd->m, ipoff2, sizeof(h2_6), 7492 (caddr_t )&h2_6); 7493 break; 7494 #endif /* INET6 */ 7495 } 7496 } 7497 return (PF_PASS); 7498 break; 7499 } 7500 } 7501 } 7502 } 7503 7504 static int 7505 pf_test_state_other(struct pf_kstate **state, struct pf_pdesc *pd) 7506 { 7507 struct pf_state_peer *src, *dst; 7508 struct pf_state_key_cmp key; 7509 uint8_t psrc, pdst; 7510 7511 bzero(&key, sizeof(key)); 7512 key.af = pd->af; 7513 key.proto = pd->proto; 7514 if (pd->dir == PF_IN) { 7515 PF_ACPY(&key.addr[0], pd->src, key.af); 7516 PF_ACPY(&key.addr[1], pd->dst, key.af); 7517 key.port[0] = key.port[1] = 0; 7518 } else { 7519 PF_ACPY(&key.addr[1], pd->src, key.af); 7520 PF_ACPY(&key.addr[0], pd->dst, key.af); 7521 key.port[1] = key.port[0] = 0; 7522 } 7523 7524 STATE_LOOKUP(&key, *state, pd); 7525 7526 if (pd->dir == (*state)->direction) { 7527 src = &(*state)->src; 7528 dst = &(*state)->dst; 7529 psrc = PF_PEER_SRC; 7530 pdst = PF_PEER_DST; 7531 } else { 7532 src = &(*state)->dst; 7533 dst = &(*state)->src; 7534 psrc = PF_PEER_DST; 7535 pdst = PF_PEER_SRC; 7536 } 7537 7538 /* update states */ 7539 if (src->state < PFOTHERS_SINGLE) 7540 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 7541 if (dst->state == PFOTHERS_SINGLE) 7542 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 7543 7544 /* update expire time */ 7545 (*state)->expire = pf_get_uptime(); 7546 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 7547 (*state)->timeout = PFTM_OTHER_MULTIPLE; 7548 else 7549 (*state)->timeout = PFTM_OTHER_SINGLE; 7550 7551 /* translate source/destination address, if necessary */ 7552 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7553 struct pf_state_key *nk = (*state)->key[pd->didx]; 7554 7555 KASSERT(nk, ("%s: nk is null", __func__)); 7556 KASSERT(pd, ("%s: pd is null", __func__)); 7557 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 7558 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 7559 switch (pd->af) { 7560 #ifdef INET 7561 case AF_INET: 7562 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 7563 pf_change_a(&pd->src->v4.s_addr, 7564 pd->ip_sum, 7565 nk->addr[pd->sidx].v4.s_addr, 7566 0); 7567 7568 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 7569 pf_change_a(&pd->dst->v4.s_addr, 7570 pd->ip_sum, 7571 nk->addr[pd->didx].v4.s_addr, 7572 0); 7573 7574 break; 7575 #endif /* INET */ 7576 #ifdef INET6 7577 case AF_INET6: 7578 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET6)) 7579 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 7580 7581 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET6)) 7582 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 7583 #endif /* INET6 */ 7584 } 7585 } 7586 return (PF_PASS); 7587 } 7588 7589 /* 7590 * ipoff and off are measured from the start of the mbuf chain. 7591 * h must be at "ipoff" on the mbuf chain. 7592 */ 7593 void * 7594 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len, 7595 u_short *actionp, u_short *reasonp, sa_family_t af) 7596 { 7597 switch (af) { 7598 #ifdef INET 7599 case AF_INET: { 7600 const struct ip *h = mtod(m, struct ip *); 7601 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 7602 7603 if (fragoff) { 7604 if (fragoff >= len) 7605 ACTION_SET(actionp, PF_PASS); 7606 else { 7607 ACTION_SET(actionp, PF_DROP); 7608 REASON_SET(reasonp, PFRES_FRAG); 7609 } 7610 return (NULL); 7611 } 7612 if (m->m_pkthdr.len < off + len || 7613 ntohs(h->ip_len) < off + len) { 7614 ACTION_SET(actionp, PF_DROP); 7615 REASON_SET(reasonp, PFRES_SHORT); 7616 return (NULL); 7617 } 7618 break; 7619 } 7620 #endif /* INET */ 7621 #ifdef INET6 7622 case AF_INET6: { 7623 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 7624 7625 if (m->m_pkthdr.len < off + len || 7626 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 7627 (unsigned)(off + len)) { 7628 ACTION_SET(actionp, PF_DROP); 7629 REASON_SET(reasonp, PFRES_SHORT); 7630 return (NULL); 7631 } 7632 break; 7633 } 7634 #endif /* INET6 */ 7635 } 7636 m_copydata(m, off, len, p); 7637 return (p); 7638 } 7639 7640 int 7641 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 7642 int rtableid) 7643 { 7644 struct ifnet *ifp; 7645 7646 /* 7647 * Skip check for addresses with embedded interface scope, 7648 * as they would always match anyway. 7649 */ 7650 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 7651 return (1); 7652 7653 if (af != AF_INET && af != AF_INET6) 7654 return (0); 7655 7656 if (kif == V_pfi_all) 7657 return (1); 7658 7659 /* Skip checks for ipsec interfaces */ 7660 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 7661 return (1); 7662 7663 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 7664 7665 switch (af) { 7666 #ifdef INET6 7667 case AF_INET6: 7668 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 7669 ifp)); 7670 #endif 7671 #ifdef INET 7672 case AF_INET: 7673 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 7674 ifp)); 7675 #endif 7676 } 7677 7678 return (0); 7679 } 7680 7681 #ifdef INET 7682 static void 7683 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7684 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7685 { 7686 struct mbuf *m0, *m1, *md; 7687 struct sockaddr_in dst; 7688 struct ip *ip; 7689 struct pfi_kkif *nkif = NULL; 7690 struct ifnet *ifp = NULL; 7691 struct pf_addr naddr; 7692 int error = 0; 7693 uint16_t ip_len, ip_off; 7694 uint16_t tmp; 7695 int r_rt, r_dir; 7696 7697 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 7698 7699 SDT_PROBE4(pf, ip, route_to, entry, *m, pd, s, oifp); 7700 7701 if (s) { 7702 r_rt = s->rt; 7703 r_dir = s->direction; 7704 } else { 7705 r_rt = r->rt; 7706 r_dir = r->direction; 7707 } 7708 7709 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7710 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7711 __func__)); 7712 7713 if ((pd->pf_mtag == NULL && 7714 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7715 pd->pf_mtag->routed++ > 3) { 7716 m0 = *m; 7717 *m = NULL; 7718 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 7719 goto bad_locked; 7720 } 7721 7722 if (r_rt == PF_DUPTO) { 7723 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7724 if (s == NULL) { 7725 ifp = r->rpool.cur->kif ? 7726 r->rpool.cur->kif->pfik_ifp : NULL; 7727 } else { 7728 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7729 /* If pfsync'd */ 7730 if (ifp == NULL && r->rpool.cur != NULL) 7731 ifp = r->rpool.cur->kif ? 7732 r->rpool.cur->kif->pfik_ifp : NULL; 7733 PF_STATE_UNLOCK(s); 7734 } 7735 if (ifp == oifp) { 7736 /* When the 2nd interface is not skipped */ 7737 return; 7738 } else { 7739 m0 = *m; 7740 *m = NULL; 7741 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 7742 goto bad; 7743 } 7744 } else { 7745 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 7746 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 7747 if (s) 7748 PF_STATE_UNLOCK(s); 7749 return; 7750 } 7751 } 7752 } else { 7753 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 7754 pf_dummynet(pd, s, r, m); 7755 if (s) 7756 PF_STATE_UNLOCK(s); 7757 return; 7758 } 7759 m0 = *m; 7760 } 7761 7762 ip = mtod(m0, struct ip *); 7763 7764 bzero(&dst, sizeof(dst)); 7765 dst.sin_family = AF_INET; 7766 dst.sin_len = sizeof(dst); 7767 dst.sin_addr = ip->ip_dst; 7768 7769 bzero(&naddr, sizeof(naddr)); 7770 7771 if (s == NULL) { 7772 if (TAILQ_EMPTY(&r->rpool.list)) { 7773 DPFPRINTF(PF_DEBUG_URGENT, 7774 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 7775 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 7776 goto bad_locked; 7777 } 7778 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 7779 &naddr, &nkif, NULL); 7780 if (!PF_AZERO(&naddr, AF_INET)) 7781 dst.sin_addr.s_addr = naddr.v4.s_addr; 7782 ifp = nkif ? nkif->pfik_ifp : NULL; 7783 } else { 7784 struct pfi_kkif *kif; 7785 7786 if (!PF_AZERO(&s->rt_addr, AF_INET)) 7787 dst.sin_addr.s_addr = 7788 s->rt_addr.v4.s_addr; 7789 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7790 kif = s->rt_kif; 7791 /* If pfsync'd */ 7792 if (ifp == NULL && r->rpool.cur != NULL) { 7793 ifp = r->rpool.cur->kif ? 7794 r->rpool.cur->kif->pfik_ifp : NULL; 7795 kif = r->rpool.cur->kif; 7796 } 7797 if (ifp != NULL && kif != NULL && 7798 r->rule_flag & PFRULE_IFBOUND && 7799 r->rt == PF_REPLYTO && 7800 s->kif == V_pfi_all) { 7801 s->kif = kif; 7802 s->orig_kif = oifp->if_pf_kif; 7803 } 7804 7805 PF_STATE_UNLOCK(s); 7806 } 7807 7808 if (ifp == NULL) { 7809 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 7810 goto bad; 7811 } 7812 7813 if (pd->dir == PF_IN) { 7814 if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp, 7815 &pd->act) != PF_PASS) { 7816 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 7817 goto bad; 7818 } else if (m0 == NULL) { 7819 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 7820 goto done; 7821 } 7822 if (m0->m_len < sizeof(struct ip)) { 7823 DPFPRINTF(PF_DEBUG_URGENT, 7824 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 7825 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 7826 goto bad; 7827 } 7828 ip = mtod(m0, struct ip *); 7829 } 7830 7831 if (ifp->if_flags & IFF_LOOPBACK) 7832 m0->m_flags |= M_SKIP_FIREWALL; 7833 7834 ip_len = ntohs(ip->ip_len); 7835 ip_off = ntohs(ip->ip_off); 7836 7837 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 7838 m0->m_pkthdr.csum_flags |= CSUM_IP; 7839 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 7840 in_delayed_cksum(m0); 7841 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 7842 } 7843 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 7844 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2)); 7845 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 7846 } 7847 7848 if (pd->dir == PF_IN) { 7849 /* 7850 * Make sure dummynet gets the correct direction, in case it needs to 7851 * re-inject later. 7852 */ 7853 pd->dir = PF_OUT; 7854 7855 /* 7856 * The following processing is actually the rest of the inbound processing, even 7857 * though we've marked it as outbound (so we don't look through dummynet) and it 7858 * happens after the outbound processing (pf_test(PF_OUT) above). 7859 * Swap the dummynet pipe numbers, because it's going to come to the wrong 7860 * conclusion about what direction it's processing, and we can't fix it or it 7861 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 7862 * decision will pick the right pipe, and everything will mostly work as expected. 7863 */ 7864 tmp = pd->act.dnrpipe; 7865 pd->act.dnrpipe = pd->act.dnpipe; 7866 pd->act.dnpipe = tmp; 7867 } 7868 7869 /* 7870 * If small enough for interface, or the interface will take 7871 * care of the fragmentation for us, we can just send directly. 7872 */ 7873 if (ip_len <= ifp->if_mtu || 7874 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 7875 ip->ip_sum = 0; 7876 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 7877 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 7878 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 7879 } 7880 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 7881 7882 md = m0; 7883 error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 7884 if (md != NULL) { 7885 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL); 7886 SDT_PROBE2(pf, ip, route_to, output, ifp, error); 7887 } 7888 goto done; 7889 } 7890 7891 /* Balk when DF bit is set or the interface didn't support TSO. */ 7892 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 7893 error = EMSGSIZE; 7894 KMOD_IPSTAT_INC(ips_cantfrag); 7895 if (r_rt != PF_DUPTO) { 7896 if (s && s->nat_rule != NULL) 7897 PACKET_UNDO_NAT(m0, pd, 7898 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 7899 s); 7900 7901 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 7902 ifp->if_mtu); 7903 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 7904 goto done; 7905 } else { 7906 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 7907 goto bad; 7908 } 7909 } 7910 7911 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 7912 if (error) { 7913 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 7914 goto bad; 7915 } 7916 7917 for (; m0; m0 = m1) { 7918 m1 = m0->m_nextpkt; 7919 m0->m_nextpkt = NULL; 7920 if (error == 0) { 7921 m_clrprotoflags(m0); 7922 md = m0; 7923 pd->pf_mtag = pf_find_mtag(md); 7924 error = pf_dummynet_route(pd, s, r, ifp, 7925 sintosa(&dst), &md); 7926 if (md != NULL) { 7927 error = (*ifp->if_output)(ifp, md, 7928 sintosa(&dst), NULL); 7929 SDT_PROBE2(pf, ip, route_to, output, ifp, error); 7930 } 7931 } else 7932 m_freem(m0); 7933 } 7934 7935 if (error == 0) 7936 KMOD_IPSTAT_INC(ips_fragmented); 7937 7938 done: 7939 if (r_rt != PF_DUPTO) 7940 *m = NULL; 7941 return; 7942 7943 bad_locked: 7944 if (s) 7945 PF_STATE_UNLOCK(s); 7946 bad: 7947 m_freem(m0); 7948 goto done; 7949 } 7950 #endif /* INET */ 7951 7952 #ifdef INET6 7953 static void 7954 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7955 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7956 { 7957 struct mbuf *m0, *md; 7958 struct m_tag *mtag; 7959 struct sockaddr_in6 dst; 7960 struct ip6_hdr *ip6; 7961 struct pfi_kkif *nkif = NULL; 7962 struct ifnet *ifp = NULL; 7963 struct pf_addr naddr; 7964 int r_rt, r_dir; 7965 7966 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 7967 7968 SDT_PROBE4(pf, ip6, route_to, entry, *m, pd, s, oifp); 7969 7970 if (s) { 7971 r_rt = s->rt; 7972 r_dir = s->direction; 7973 } else { 7974 r_rt = r->rt; 7975 r_dir = r->direction; 7976 } 7977 7978 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7979 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7980 __func__)); 7981 7982 if ((pd->pf_mtag == NULL && 7983 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7984 pd->pf_mtag->routed++ > 3) { 7985 m0 = *m; 7986 *m = NULL; 7987 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 7988 goto bad_locked; 7989 } 7990 7991 if (r_rt == PF_DUPTO) { 7992 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7993 if (s == NULL) { 7994 ifp = r->rpool.cur->kif ? 7995 r->rpool.cur->kif->pfik_ifp : NULL; 7996 } else { 7997 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7998 /* If pfsync'd */ 7999 if (ifp == NULL && r->rpool.cur != NULL) 8000 ifp = r->rpool.cur->kif ? 8001 r->rpool.cur->kif->pfik_ifp : NULL; 8002 PF_STATE_UNLOCK(s); 8003 } 8004 if (ifp == oifp) { 8005 /* When the 2nd interface is not skipped */ 8006 return; 8007 } else { 8008 m0 = *m; 8009 *m = NULL; 8010 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 8011 goto bad; 8012 } 8013 } else { 8014 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 8015 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 8016 if (s) 8017 PF_STATE_UNLOCK(s); 8018 return; 8019 } 8020 } 8021 } else { 8022 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 8023 pf_dummynet(pd, s, r, m); 8024 if (s) 8025 PF_STATE_UNLOCK(s); 8026 return; 8027 } 8028 m0 = *m; 8029 } 8030 8031 ip6 = mtod(m0, struct ip6_hdr *); 8032 8033 bzero(&dst, sizeof(dst)); 8034 dst.sin6_family = AF_INET6; 8035 dst.sin6_len = sizeof(dst); 8036 dst.sin6_addr = ip6->ip6_dst; 8037 8038 bzero(&naddr, sizeof(naddr)); 8039 8040 if (s == NULL) { 8041 if (TAILQ_EMPTY(&r->rpool.list)) { 8042 DPFPRINTF(PF_DEBUG_URGENT, 8043 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 8044 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 8045 goto bad_locked; 8046 } 8047 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 8048 &naddr, &nkif, NULL); 8049 if (!PF_AZERO(&naddr, AF_INET6)) 8050 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 8051 &naddr, AF_INET6); 8052 ifp = nkif ? nkif->pfik_ifp : NULL; 8053 } else { 8054 struct pfi_kkif *kif; 8055 8056 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 8057 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 8058 &s->rt_addr, AF_INET6); 8059 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 8060 kif = s->rt_kif; 8061 /* If pfsync'd */ 8062 if (ifp == NULL && r->rpool.cur != NULL) { 8063 ifp = r->rpool.cur->kif ? 8064 r->rpool.cur->kif->pfik_ifp : NULL; 8065 kif = r->rpool.cur->kif; 8066 } 8067 if (ifp != NULL && kif != NULL && 8068 r->rule_flag & PFRULE_IFBOUND && 8069 r->rt == PF_REPLYTO && 8070 s->kif == V_pfi_all) { 8071 s->kif = kif; 8072 s->orig_kif = oifp->if_pf_kif; 8073 } 8074 } 8075 8076 if (s) 8077 PF_STATE_UNLOCK(s); 8078 8079 if (ifp == NULL) { 8080 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 8081 goto bad; 8082 } 8083 8084 if (pd->dir == PF_IN) { 8085 if (pf_test(AF_INET6, PF_OUT, PFIL_FWD | PF_PFIL_NOREFRAGMENT, 8086 ifp, &m0, inp, &pd->act) != PF_PASS) { 8087 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 8088 goto bad; 8089 } else if (m0 == NULL) { 8090 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 8091 goto done; 8092 } 8093 if (m0->m_len < sizeof(struct ip6_hdr)) { 8094 DPFPRINTF(PF_DEBUG_URGENT, 8095 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 8096 __func__)); 8097 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 8098 goto bad; 8099 } 8100 ip6 = mtod(m0, struct ip6_hdr *); 8101 } 8102 8103 if (ifp->if_flags & IFF_LOOPBACK) 8104 m0->m_flags |= M_SKIP_FIREWALL; 8105 8106 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 8107 ~ifp->if_hwassist) { 8108 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 8109 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 8110 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 8111 } 8112 8113 /* 8114 * If the packet is too large for the outgoing interface, 8115 * send back an icmp6 error. 8116 */ 8117 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 8118 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 8119 mtag = m_tag_find(m0, PACKET_TAG_PF_REASSEMBLED, NULL); 8120 if (mtag != NULL) { 8121 int ret __sdt_used; 8122 ret = pf_refragment6(ifp, &m0, mtag, ifp, true); 8123 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret); 8124 goto done; 8125 } 8126 8127 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 8128 md = m0; 8129 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 8130 if (md != NULL) { 8131 int ret __sdt_used; 8132 ret = nd6_output_ifp(ifp, ifp, md, &dst, NULL); 8133 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret); 8134 } 8135 } 8136 else { 8137 in6_ifstat_inc(ifp, ifs6_in_toobig); 8138 if (r_rt != PF_DUPTO) { 8139 if (s && s->nat_rule != NULL) 8140 PACKET_UNDO_NAT(m0, pd, 8141 ((caddr_t)ip6 - m0->m_data) + 8142 sizeof(struct ip6_hdr), s); 8143 8144 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 8145 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 8146 } else { 8147 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 8148 goto bad; 8149 } 8150 } 8151 8152 done: 8153 if (r_rt != PF_DUPTO) 8154 *m = NULL; 8155 return; 8156 8157 bad_locked: 8158 if (s) 8159 PF_STATE_UNLOCK(s); 8160 bad: 8161 m_freem(m0); 8162 goto done; 8163 } 8164 #endif /* INET6 */ 8165 8166 /* 8167 * FreeBSD supports cksum offloads for the following drivers. 8168 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 8169 * 8170 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 8171 * network driver performed cksum including pseudo header, need to verify 8172 * csum_data 8173 * CSUM_DATA_VALID : 8174 * network driver performed cksum, needs to additional pseudo header 8175 * cksum computation with partial csum_data(i.e. lack of H/W support for 8176 * pseudo header, for instance sk(4) and possibly gem(4)) 8177 * 8178 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 8179 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 8180 * TCP/UDP layer. 8181 * Also, set csum_data to 0xffff to force cksum validation. 8182 */ 8183 static int 8184 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 8185 { 8186 u_int16_t sum = 0; 8187 int hw_assist = 0; 8188 struct ip *ip; 8189 8190 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 8191 return (1); 8192 if (m->m_pkthdr.len < off + len) 8193 return (1); 8194 8195 switch (p) { 8196 case IPPROTO_TCP: 8197 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 8198 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 8199 sum = m->m_pkthdr.csum_data; 8200 } else { 8201 ip = mtod(m, struct ip *); 8202 sum = in_pseudo(ip->ip_src.s_addr, 8203 ip->ip_dst.s_addr, htonl((u_short)len + 8204 m->m_pkthdr.csum_data + IPPROTO_TCP)); 8205 } 8206 sum ^= 0xffff; 8207 ++hw_assist; 8208 } 8209 break; 8210 case IPPROTO_UDP: 8211 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 8212 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 8213 sum = m->m_pkthdr.csum_data; 8214 } else { 8215 ip = mtod(m, struct ip *); 8216 sum = in_pseudo(ip->ip_src.s_addr, 8217 ip->ip_dst.s_addr, htonl((u_short)len + 8218 m->m_pkthdr.csum_data + IPPROTO_UDP)); 8219 } 8220 sum ^= 0xffff; 8221 ++hw_assist; 8222 } 8223 break; 8224 case IPPROTO_ICMP: 8225 #ifdef INET6 8226 case IPPROTO_ICMPV6: 8227 #endif /* INET6 */ 8228 break; 8229 default: 8230 return (1); 8231 } 8232 8233 if (!hw_assist) { 8234 switch (af) { 8235 case AF_INET: 8236 if (p == IPPROTO_ICMP) { 8237 if (m->m_len < off) 8238 return (1); 8239 m->m_data += off; 8240 m->m_len -= off; 8241 sum = in_cksum(m, len); 8242 m->m_data -= off; 8243 m->m_len += off; 8244 } else { 8245 if (m->m_len < sizeof(struct ip)) 8246 return (1); 8247 sum = in4_cksum(m, p, off, len); 8248 } 8249 break; 8250 #ifdef INET6 8251 case AF_INET6: 8252 if (m->m_len < sizeof(struct ip6_hdr)) 8253 return (1); 8254 sum = in6_cksum(m, p, off, len); 8255 break; 8256 #endif /* INET6 */ 8257 } 8258 } 8259 if (sum) { 8260 switch (p) { 8261 case IPPROTO_TCP: 8262 { 8263 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 8264 break; 8265 } 8266 case IPPROTO_UDP: 8267 { 8268 KMOD_UDPSTAT_INC(udps_badsum); 8269 break; 8270 } 8271 #ifdef INET 8272 case IPPROTO_ICMP: 8273 { 8274 KMOD_ICMPSTAT_INC(icps_checksum); 8275 break; 8276 } 8277 #endif 8278 #ifdef INET6 8279 case IPPROTO_ICMPV6: 8280 { 8281 KMOD_ICMP6STAT_INC(icp6s_checksum); 8282 break; 8283 } 8284 #endif /* INET6 */ 8285 } 8286 return (1); 8287 } else { 8288 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 8289 m->m_pkthdr.csum_flags |= 8290 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 8291 m->m_pkthdr.csum_data = 0xffff; 8292 } 8293 } 8294 return (0); 8295 } 8296 8297 static bool 8298 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r, 8299 const struct pf_kstate *s, struct ip_fw_args *dnflow) 8300 { 8301 int dndir = r->direction; 8302 8303 if (s && dndir == PF_INOUT) { 8304 dndir = s->direction; 8305 } else if (dndir == PF_INOUT) { 8306 /* Assume primary direction. Happens when we've set dnpipe in 8307 * the ethernet level code. */ 8308 dndir = pd->dir; 8309 } 8310 8311 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED) 8312 return (false); 8313 8314 memset(dnflow, 0, sizeof(*dnflow)); 8315 8316 if (pd->dport != NULL) 8317 dnflow->f_id.dst_port = ntohs(*pd->dport); 8318 if (pd->sport != NULL) 8319 dnflow->f_id.src_port = ntohs(*pd->sport); 8320 8321 if (pd->dir == PF_IN) 8322 dnflow->flags |= IPFW_ARGS_IN; 8323 else 8324 dnflow->flags |= IPFW_ARGS_OUT; 8325 8326 if (pd->dir != dndir && pd->act.dnrpipe) { 8327 dnflow->rule.info = pd->act.dnrpipe; 8328 } 8329 else if (pd->dir == dndir && pd->act.dnpipe) { 8330 dnflow->rule.info = pd->act.dnpipe; 8331 } 8332 else { 8333 return (false); 8334 } 8335 8336 dnflow->rule.info |= IPFW_IS_DUMMYNET; 8337 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 8338 dnflow->rule.info |= IPFW_IS_PIPE; 8339 8340 dnflow->f_id.proto = pd->proto; 8341 dnflow->f_id.extra = dnflow->rule.info; 8342 switch (pd->af) { 8343 case AF_INET: 8344 dnflow->f_id.addr_type = 4; 8345 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 8346 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 8347 break; 8348 case AF_INET6: 8349 dnflow->flags |= IPFW_ARGS_IP6; 8350 dnflow->f_id.addr_type = 6; 8351 dnflow->f_id.src_ip6 = pd->src->v6; 8352 dnflow->f_id.dst_ip6 = pd->dst->v6; 8353 break; 8354 } 8355 8356 return (true); 8357 } 8358 8359 int 8360 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 8361 struct inpcb *inp) 8362 { 8363 struct pfi_kkif *kif; 8364 struct mbuf *m = *m0; 8365 8366 M_ASSERTPKTHDR(m); 8367 MPASS(ifp->if_vnet == curvnet); 8368 NET_EPOCH_ASSERT(); 8369 8370 if (!V_pf_status.running) 8371 return (PF_PASS); 8372 8373 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8374 8375 if (kif == NULL) { 8376 DPFPRINTF(PF_DEBUG_URGENT, 8377 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname)); 8378 return (PF_DROP); 8379 } 8380 if (kif->pfik_flags & PFI_IFLAG_SKIP) 8381 return (PF_PASS); 8382 8383 if (m->m_flags & M_SKIP_FIREWALL) 8384 return (PF_PASS); 8385 8386 if (__predict_false(! M_WRITABLE(*m0))) { 8387 m = *m0 = m_unshare(*m0, M_NOWAIT); 8388 if (*m0 == NULL) 8389 return (PF_DROP); 8390 } 8391 8392 /* Stateless! */ 8393 return (pf_test_eth_rule(dir, kif, m0)); 8394 } 8395 8396 static __inline void 8397 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag) 8398 { 8399 struct m_tag *mtag; 8400 8401 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 8402 8403 /* dummynet adds this tag, but pf does not need it, 8404 * and keeping it creates unexpected behavior, 8405 * e.g. in case of divert(4) usage right after dummynet. */ 8406 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 8407 if (mtag != NULL) 8408 m_tag_delete(m, mtag); 8409 } 8410 8411 static int 8412 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s, 8413 struct pf_krule *r, struct mbuf **m0) 8414 { 8415 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0)); 8416 } 8417 8418 static int 8419 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s, 8420 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa, 8421 struct mbuf **m0) 8422 { 8423 struct ip_fw_args dnflow; 8424 8425 NET_EPOCH_ASSERT(); 8426 8427 if (pd->act.dnpipe == 0 && pd->act.dnrpipe == 0) 8428 return (0); 8429 8430 if (ip_dn_io_ptr == NULL) { 8431 m_freem(*m0); 8432 *m0 = NULL; 8433 return (ENOMEM); 8434 } 8435 8436 if (pd->pf_mtag == NULL && 8437 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 8438 m_freem(*m0); 8439 *m0 = NULL; 8440 return (ENOMEM); 8441 } 8442 8443 if (ifp != NULL) { 8444 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO; 8445 8446 pd->pf_mtag->if_index = ifp->if_index; 8447 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 8448 8449 MPASS(sa != NULL); 8450 8451 switch (pd->af) { 8452 case AF_INET: 8453 memcpy(&pd->pf_mtag->dst, sa, 8454 sizeof(struct sockaddr_in)); 8455 break; 8456 case AF_INET6: 8457 memcpy(&pd->pf_mtag->dst, sa, 8458 sizeof(struct sockaddr_in6)); 8459 break; 8460 } 8461 } 8462 8463 if (s != NULL && s->nat_rule != NULL && 8464 s->nat_rule->action == PF_RDR && 8465 ( 8466 #ifdef INET 8467 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) || 8468 #endif 8469 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) { 8470 /* 8471 * If we're redirecting to loopback mark this packet 8472 * as being local. Otherwise it might get dropped 8473 * if dummynet re-injects. 8474 */ 8475 (*m0)->m_pkthdr.rcvif = V_loif; 8476 } 8477 8478 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) { 8479 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 8480 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED; 8481 ip_dn_io_ptr(m0, &dnflow); 8482 if (*m0 != NULL) { 8483 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 8484 pf_dummynet_flag_remove(*m0, pd->pf_mtag); 8485 } 8486 } 8487 8488 return (0); 8489 } 8490 8491 #ifdef INET6 8492 static int 8493 pf_walk_option6(struct mbuf *m, int off, int end, uint32_t *jumbolen, 8494 u_short *reason) 8495 { 8496 struct ip6_opt opt; 8497 struct ip6_opt_jumbo jumbo; 8498 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 8499 8500 while (off < end) { 8501 if (!pf_pull_hdr(m, off, &opt.ip6o_type, sizeof(opt.ip6o_type), 8502 NULL, reason, AF_INET6)) { 8503 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt type")); 8504 return (PF_DROP); 8505 } 8506 if (opt.ip6o_type == IP6OPT_PAD1) { 8507 off++; 8508 continue; 8509 } 8510 if (!pf_pull_hdr(m, off, &opt, sizeof(opt), NULL, reason, 8511 AF_INET6)) { 8512 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt")); 8513 return (PF_DROP); 8514 } 8515 if (off + sizeof(opt) + opt.ip6o_len > end) { 8516 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 long opt")); 8517 REASON_SET(reason, PFRES_IPOPTIONS); 8518 return (PF_DROP); 8519 } 8520 switch (opt.ip6o_type) { 8521 case IP6OPT_JUMBO: 8522 if (*jumbolen != 0) { 8523 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple jumbo")); 8524 REASON_SET(reason, PFRES_IPOPTIONS); 8525 return (PF_DROP); 8526 } 8527 if (ntohs(h->ip6_plen) != 0) { 8528 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 bad jumbo plen")); 8529 REASON_SET(reason, PFRES_IPOPTIONS); 8530 return (PF_DROP); 8531 } 8532 if (!pf_pull_hdr(m, off, &jumbo, sizeof(jumbo), NULL, 8533 reason, AF_INET6)) { 8534 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbo")); 8535 return (PF_DROP); 8536 } 8537 memcpy(jumbolen, jumbo.ip6oj_jumbo_len, 8538 sizeof(*jumbolen)); 8539 *jumbolen = ntohl(*jumbolen); 8540 if (*jumbolen < IPV6_MAXPACKET) { 8541 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbolen")); 8542 REASON_SET(reason, PFRES_IPOPTIONS); 8543 return (PF_DROP); 8544 } 8545 break; 8546 default: 8547 break; 8548 } 8549 off += sizeof(opt) + opt.ip6o_len; 8550 } 8551 8552 return (PF_PASS); 8553 } 8554 8555 int 8556 pf_walk_header6(struct mbuf *m, struct ip6_hdr *h, int *off, int *extoff, 8557 int *fragoff, uint8_t *nxt, uint32_t *jumbolen, u_short *reason) 8558 { 8559 struct ip6_frag frag; 8560 struct ip6_ext ext; 8561 struct ip6_rthdr rthdr; 8562 int rthdr_cnt = 0; 8563 8564 *off += sizeof(struct ip6_hdr); 8565 *extoff = *fragoff = 0; 8566 *nxt = h->ip6_nxt; 8567 *jumbolen = 0; 8568 for (;;) { 8569 switch (*nxt) { 8570 case IPPROTO_FRAGMENT: 8571 if (*fragoff != 0) { 8572 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple fragment")); 8573 REASON_SET(reason, PFRES_FRAG); 8574 return (PF_DROP); 8575 } 8576 /* jumbo payload packets cannot be fragmented */ 8577 if (*jumbolen != 0) { 8578 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 fragmented jumbo")); 8579 REASON_SET(reason, PFRES_FRAG); 8580 return (PF_DROP); 8581 } 8582 if (!pf_pull_hdr(m, *off, &frag, sizeof(frag), NULL, 8583 reason, AF_INET6)) { 8584 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short fragment")); 8585 return (PF_DROP); 8586 } 8587 *fragoff = *off; 8588 /* stop walking over non initial fragments */ 8589 if ((frag.ip6f_offlg & IP6F_OFF_MASK) != 0) 8590 return (PF_PASS); 8591 *off += sizeof(frag); 8592 *nxt = frag.ip6f_nxt; 8593 break; 8594 case IPPROTO_ROUTING: 8595 if (rthdr_cnt++) { 8596 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple rthdr")); 8597 REASON_SET(reason, PFRES_IPOPTIONS); 8598 return (PF_DROP); 8599 } 8600 if (!pf_pull_hdr(m, *off, &rthdr, sizeof(rthdr), NULL, 8601 reason, AF_INET6)) { 8602 /* fragments may be short */ 8603 if (*fragoff != 0) { 8604 *off = *fragoff; 8605 *nxt = IPPROTO_FRAGMENT; 8606 return (PF_PASS); 8607 } 8608 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short rthdr")); 8609 return (PF_DROP); 8610 } 8611 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 8612 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 rthdr0")); 8613 REASON_SET(reason, PFRES_IPOPTIONS); 8614 return (PF_DROP); 8615 } 8616 /* FALLTHROUGH */ 8617 case IPPROTO_AH: 8618 case IPPROTO_HOPOPTS: 8619 case IPPROTO_DSTOPTS: 8620 if (!pf_pull_hdr(m, *off, &ext, sizeof(ext), NULL, 8621 reason, AF_INET6)) { 8622 /* fragments may be short */ 8623 if (*fragoff != 0) { 8624 *off = *fragoff; 8625 *nxt = IPPROTO_FRAGMENT; 8626 return (PF_PASS); 8627 } 8628 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short exthdr")); 8629 return (PF_DROP); 8630 } 8631 /* reassembly needs the ext header before the frag */ 8632 if (*fragoff == 0) 8633 *extoff = *off; 8634 if (*nxt == IPPROTO_HOPOPTS && *fragoff == 0) { 8635 if (pf_walk_option6(m, *off + sizeof(ext), 8636 *off + (ext.ip6e_len + 1) * 8, jumbolen, 8637 reason) != PF_PASS) 8638 return (PF_DROP); 8639 if (ntohs(h->ip6_plen) == 0 && *jumbolen != 0) { 8640 DPFPRINTF(PF_DEBUG_MISC, 8641 ("IPv6 missing jumbo")); 8642 REASON_SET(reason, PFRES_IPOPTIONS); 8643 return (PF_DROP); 8644 } 8645 } 8646 if (*nxt == IPPROTO_AH) 8647 *off += (ext.ip6e_len + 2) * 4; 8648 else 8649 *off += (ext.ip6e_len + 1) * 8; 8650 *nxt = ext.ip6e_nxt; 8651 break; 8652 case IPPROTO_TCP: 8653 case IPPROTO_UDP: 8654 case IPPROTO_SCTP: 8655 case IPPROTO_ICMPV6: 8656 /* fragments may be short, ignore inner header then */ 8657 if (*fragoff != 0 && ntohs(h->ip6_plen) < *off + 8658 (*nxt == IPPROTO_TCP ? sizeof(struct tcphdr) : 8659 *nxt == IPPROTO_UDP ? sizeof(struct udphdr) : 8660 *nxt == IPPROTO_SCTP ? sizeof(struct sctphdr) : 8661 sizeof(struct icmp6_hdr))) { 8662 *off = *fragoff; 8663 *nxt = IPPROTO_FRAGMENT; 8664 } 8665 /* FALLTHROUGH */ 8666 default: 8667 return (PF_PASS); 8668 } 8669 } 8670 } 8671 #endif 8672 8673 static void 8674 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m) 8675 { 8676 memset(pd, 0, sizeof(*pd)); 8677 pd->pf_mtag = pf_find_mtag(m); 8678 pd->m = m; 8679 } 8680 8681 static int 8682 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0, 8683 u_short *action, u_short *reason, struct pfi_kkif *kif, 8684 struct pf_rule_actions *default_actions) 8685 { 8686 pd->af = af; 8687 pd->dir = dir; 8688 pd->kif = kif; 8689 pd->m = *m0; 8690 pd->sidx = (dir == PF_IN) ? 0 : 1; 8691 pd->didx = (dir == PF_IN) ? 1 : 0; 8692 8693 TAILQ_INIT(&pd->sctp_multihome_jobs); 8694 if (default_actions != NULL) 8695 memcpy(&pd->act, default_actions, sizeof(pd->act)); 8696 8697 if (pd->pf_mtag && pd->pf_mtag->dnpipe) { 8698 pd->act.dnpipe = pd->pf_mtag->dnpipe; 8699 pd->act.flags = pd->pf_mtag->dnflags; 8700 } 8701 8702 switch (af) { 8703 #ifdef INET 8704 case AF_INET: { 8705 struct ip *h; 8706 8707 if (__predict_false((*m0)->m_len < sizeof(struct ip)) && 8708 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) { 8709 DPFPRINTF(PF_DEBUG_URGENT, 8710 ("pf_test: m_len < sizeof(struct ip), pullup failed\n")); 8711 *action = PF_DROP; 8712 REASON_SET(reason, PFRES_SHORT); 8713 return (-1); 8714 } 8715 8716 if (pf_normalize_ip(m0, reason, pd) != PF_PASS) { 8717 /* We do IP header normalization and packet reassembly here */ 8718 *action = PF_DROP; 8719 return (-1); 8720 } 8721 pd->m = *m0; 8722 8723 h = mtod(pd->m, struct ip *); 8724 pd->off = h->ip_hl << 2; 8725 if (pd->off < (int)sizeof(*h)) { 8726 *action = PF_DROP; 8727 REASON_SET(reason, PFRES_SHORT); 8728 return (-1); 8729 } 8730 pd->src = (struct pf_addr *)&h->ip_src; 8731 pd->dst = (struct pf_addr *)&h->ip_dst; 8732 pd->ip_sum = &h->ip_sum; 8733 pd->proto_sum = NULL; 8734 pd->virtual_proto = pd->proto = h->ip_p; 8735 pd->tos = h->ip_tos; 8736 pd->ttl = h->ip_ttl; 8737 pd->tot_len = ntohs(h->ip_len); 8738 pd->act.rtableid = -1; 8739 8740 if (h->ip_hl > 5) /* has options */ 8741 pd->badopts++; 8742 8743 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) 8744 pd->virtual_proto = PF_VPROTO_FRAGMENT; 8745 8746 break; 8747 } 8748 #endif 8749 #ifdef INET6 8750 case AF_INET6: { 8751 struct ip6_hdr *h; 8752 int fragoff; 8753 uint32_t jumbolen; 8754 uint8_t nxt; 8755 8756 if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) && 8757 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) { 8758 DPFPRINTF(PF_DEBUG_URGENT, 8759 ("pf_test6: m_len < sizeof(struct ip6_hdr)" 8760 ", pullup failed\n")); 8761 *action = PF_DROP; 8762 REASON_SET(reason, PFRES_SHORT); 8763 return (-1); 8764 } 8765 8766 h = mtod(pd->m, struct ip6_hdr *); 8767 pd->off = 0; 8768 if (pf_walk_header6(pd->m, h, &pd->off, &pd->extoff, &fragoff, &nxt, 8769 &jumbolen, reason) != PF_PASS) { 8770 *action = PF_DROP; 8771 return (-1); 8772 } 8773 8774 h = mtod(pd->m, struct ip6_hdr *); 8775 pd->src = (struct pf_addr *)&h->ip6_src; 8776 pd->dst = (struct pf_addr *)&h->ip6_dst; 8777 pd->ip_sum = NULL; 8778 pd->proto_sum = NULL; 8779 pd->tos = IPV6_DSCP(h); 8780 pd->ttl = h->ip6_hlim; 8781 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 8782 pd->virtual_proto = pd->proto = h->ip6_nxt; 8783 pd->act.rtableid = -1; 8784 8785 if (fragoff != 0) 8786 pd->virtual_proto = PF_VPROTO_FRAGMENT; 8787 8788 /* 8789 * we do not support jumbogram. if we keep going, zero ip6_plen 8790 * will do something bad, so drop the packet for now. 8791 */ 8792 if (htons(h->ip6_plen) == 0) { 8793 *action = PF_DROP; 8794 return (-1); 8795 } 8796 8797 /* We do IP header normalization and packet reassembly here */ 8798 if (pf_normalize_ip6(m0, fragoff, reason, pd) != 8799 PF_PASS) { 8800 *action = PF_DROP; 8801 return (-1); 8802 } 8803 pd->m = *m0; 8804 if (pd->m == NULL) { 8805 /* packet sits in reassembly queue, no error */ 8806 *action = PF_PASS; 8807 return (-1); 8808 } 8809 8810 /* Update pointers into the packet. */ 8811 h = mtod(pd->m, struct ip6_hdr *); 8812 pd->src = (struct pf_addr *)&h->ip6_src; 8813 pd->dst = (struct pf_addr *)&h->ip6_dst; 8814 8815 /* 8816 * Reassembly may have changed the next protocol from fragment 8817 * to something else, so update. 8818 */ 8819 pd->virtual_proto = pd->proto = h->ip6_nxt; 8820 pd->off = 0; 8821 8822 if (pf_walk_header6(pd->m, h, &pd->off, &pd->extoff, &fragoff, &nxt, 8823 &jumbolen, reason) != PF_PASS) { 8824 *action = PF_DROP; 8825 return (-1); 8826 } 8827 8828 if (fragoff != 0) 8829 pd->virtual_proto = PF_VPROTO_FRAGMENT; 8830 8831 break; 8832 } 8833 #endif 8834 default: 8835 panic("pf_setup_pdesc called with illegal af %u", af); 8836 } 8837 8838 switch (pd->virtual_proto) { 8839 case IPPROTO_TCP: { 8840 struct tcphdr *th = &pd->hdr.tcp; 8841 8842 if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th), action, 8843 reason, af)) { 8844 *action = PF_DROP; 8845 REASON_SET(reason, PFRES_SHORT); 8846 return (-1); 8847 } 8848 pd->hdrlen = sizeof(*th); 8849 pd->p_len = pd->tot_len - pd->off - (th->th_off << 2); 8850 pd->sport = &th->th_sport; 8851 pd->dport = &th->th_dport; 8852 break; 8853 } 8854 case IPPROTO_UDP: { 8855 struct udphdr *uh = &pd->hdr.udp; 8856 8857 if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh), action, 8858 reason, af)) { 8859 *action = PF_DROP; 8860 REASON_SET(reason, PFRES_SHORT); 8861 return (-1); 8862 } 8863 pd->hdrlen = sizeof(*uh); 8864 if (uh->uh_dport == 0 || 8865 ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off || 8866 ntohs(uh->uh_ulen) < sizeof(struct udphdr)) { 8867 *action = PF_DROP; 8868 REASON_SET(reason, PFRES_SHORT); 8869 return (-1); 8870 } 8871 pd->sport = &uh->uh_sport; 8872 pd->dport = &uh->uh_dport; 8873 break; 8874 } 8875 case IPPROTO_SCTP: { 8876 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp), 8877 action, reason, af)) { 8878 *action = PF_DROP; 8879 REASON_SET(reason, PFRES_SHORT); 8880 return (-1); 8881 } 8882 pd->hdrlen = sizeof(pd->hdr.sctp); 8883 pd->p_len = pd->tot_len - pd->off; 8884 8885 pd->sport = &pd->hdr.sctp.src_port; 8886 pd->dport = &pd->hdr.sctp.dest_port; 8887 if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) { 8888 *action = PF_DROP; 8889 REASON_SET(reason, PFRES_SHORT); 8890 return (-1); 8891 } 8892 if (pf_scan_sctp(pd) != PF_PASS) { 8893 *action = PF_DROP; 8894 REASON_SET(reason, PFRES_SHORT); 8895 return (-1); 8896 } 8897 break; 8898 } 8899 case IPPROTO_ICMP: { 8900 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN, 8901 action, reason, af)) { 8902 *action = PF_DROP; 8903 REASON_SET(reason, PFRES_SHORT); 8904 return (-1); 8905 } 8906 pd->hdrlen = ICMP_MINLEN; 8907 break; 8908 } 8909 #ifdef INET6 8910 case IPPROTO_ICMPV6: { 8911 size_t icmp_hlen = sizeof(struct icmp6_hdr); 8912 8913 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen, 8914 action, reason, af)) { 8915 *action = PF_DROP; 8916 REASON_SET(reason, PFRES_SHORT); 8917 return (-1); 8918 } 8919 /* ICMP headers we look further into to match state */ 8920 switch (pd->hdr.icmp6.icmp6_type) { 8921 case MLD_LISTENER_QUERY: 8922 case MLD_LISTENER_REPORT: 8923 icmp_hlen = sizeof(struct mld_hdr); 8924 break; 8925 case ND_NEIGHBOR_SOLICIT: 8926 case ND_NEIGHBOR_ADVERT: 8927 icmp_hlen = sizeof(struct nd_neighbor_solicit); 8928 break; 8929 } 8930 if (icmp_hlen > sizeof(struct icmp6_hdr) && 8931 !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen, 8932 action, reason, af)) { 8933 *action = PF_DROP; 8934 REASON_SET(reason, PFRES_SHORT); 8935 return (-1); 8936 } 8937 pd->hdrlen = icmp_hlen; 8938 break; 8939 } 8940 #endif 8941 } 8942 return (0); 8943 } 8944 8945 static void 8946 pf_counters_inc(int action, struct pf_pdesc *pd, 8947 struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a) 8948 { 8949 struct pf_krule *tr; 8950 int dir = pd->dir; 8951 int dirndx; 8952 8953 pf_counter_u64_critical_enter(); 8954 pf_counter_u64_add_protected( 8955 &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 8956 pd->tot_len); 8957 pf_counter_u64_add_protected( 8958 &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 8959 1); 8960 8961 if (action == PF_PASS || r->action == PF_DROP) { 8962 dirndx = (dir == PF_OUT); 8963 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 8964 pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len); 8965 pf_update_timestamp(r); 8966 8967 if (a != NULL) { 8968 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 8969 pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len); 8970 } 8971 if (s != NULL) { 8972 struct pf_krule_item *ri; 8973 8974 if (s->nat_rule != NULL) { 8975 pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx], 8976 1); 8977 pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx], 8978 pd->tot_len); 8979 } 8980 if (s->src_node != NULL) { 8981 counter_u64_add(s->src_node->packets[dirndx], 8982 1); 8983 counter_u64_add(s->src_node->bytes[dirndx], 8984 pd->tot_len); 8985 } 8986 if (s->nat_src_node != NULL) { 8987 counter_u64_add(s->nat_src_node->packets[dirndx], 8988 1); 8989 counter_u64_add(s->nat_src_node->bytes[dirndx], 8990 pd->tot_len); 8991 } 8992 dirndx = (dir == s->direction) ? 0 : 1; 8993 s->packets[dirndx]++; 8994 s->bytes[dirndx] += pd->tot_len; 8995 8996 SLIST_FOREACH(ri, &s->match_rules, entry) { 8997 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 8998 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len); 8999 } 9000 } 9001 9002 tr = r; 9003 if (s != NULL && s->nat_rule != NULL && 9004 r == &V_pf_default_rule) 9005 tr = s->nat_rule; 9006 9007 if (tr->src.addr.type == PF_ADDR_TABLE) 9008 pfr_update_stats(tr->src.addr.p.tbl, 9009 (s == NULL) ? pd->src : 9010 &s->key[(s->direction == PF_IN)]-> 9011 addr[(s->direction == PF_OUT)], 9012 pd->af, pd->tot_len, dir == PF_OUT, 9013 r->action == PF_PASS, tr->src.neg); 9014 if (tr->dst.addr.type == PF_ADDR_TABLE) 9015 pfr_update_stats(tr->dst.addr.p.tbl, 9016 (s == NULL) ? pd->dst : 9017 &s->key[(s->direction == PF_IN)]-> 9018 addr[(s->direction == PF_IN)], 9019 pd->af, pd->tot_len, dir == PF_OUT, 9020 r->action == PF_PASS, tr->dst.neg); 9021 } 9022 pf_counter_u64_critical_exit(); 9023 } 9024 9025 #if defined(INET) || defined(INET6) 9026 int 9027 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 9028 struct inpcb *inp, struct pf_rule_actions *default_actions) 9029 { 9030 struct pfi_kkif *kif; 9031 u_short action, reason = 0; 9032 struct m_tag *mtag; 9033 struct pf_krule *a = NULL, *r = &V_pf_default_rule; 9034 struct pf_kstate *s = NULL; 9035 struct pf_kruleset *ruleset = NULL; 9036 struct pf_pdesc pd; 9037 int use_2nd_queue = 0; 9038 uint16_t tag; 9039 uint8_t rt; 9040 9041 PF_RULES_RLOCK_TRACKER; 9042 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 9043 M_ASSERTPKTHDR(*m0); 9044 9045 if (!V_pf_status.running) 9046 return (PF_PASS); 9047 9048 PF_RULES_RLOCK(); 9049 9050 kif = (struct pfi_kkif *)ifp->if_pf_kif; 9051 9052 if (__predict_false(kif == NULL)) { 9053 DPFPRINTF(PF_DEBUG_URGENT, 9054 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 9055 PF_RULES_RUNLOCK(); 9056 return (PF_DROP); 9057 } 9058 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 9059 PF_RULES_RUNLOCK(); 9060 return (PF_PASS); 9061 } 9062 9063 if ((*m0)->m_flags & M_SKIP_FIREWALL) { 9064 PF_RULES_RUNLOCK(); 9065 return (PF_PASS); 9066 } 9067 9068 #ifdef INET6 9069 /* 9070 * If we end up changing IP addresses (e.g. binat) the stack may get 9071 * confused and fail to send the icmp6 packet too big error. Just send 9072 * it here, before we do any NAT. 9073 */ 9074 if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD && 9075 IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) { 9076 PF_RULES_RUNLOCK(); 9077 icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp)); 9078 *m0 = NULL; 9079 return (PF_DROP); 9080 } 9081 #endif 9082 9083 if (__predict_false(! M_WRITABLE(*m0))) { 9084 *m0 = m_unshare(*m0, M_NOWAIT); 9085 if (*m0 == NULL) { 9086 PF_RULES_RUNLOCK(); 9087 return (PF_DROP); 9088 } 9089 } 9090 9091 pf_init_pdesc(&pd, *m0); 9092 9093 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 9094 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 9095 9096 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 9097 pd.pf_mtag->if_idxgen); 9098 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 9099 PF_RULES_RUNLOCK(); 9100 m_freem(*m0); 9101 *m0 = NULL; 9102 return (PF_PASS); 9103 } 9104 PF_RULES_RUNLOCK(); 9105 (ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL); 9106 *m0 = NULL; 9107 return (PF_PASS); 9108 } 9109 9110 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 9111 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 9112 /* Dummynet re-injects packets after they've 9113 * completed their delay. We've already 9114 * processed them, so pass unconditionally. */ 9115 9116 /* But only once. We may see the packet multiple times (e.g. 9117 * PFIL_IN/PFIL_OUT). */ 9118 pf_dummynet_flag_remove(pd.m, pd.pf_mtag); 9119 PF_RULES_RUNLOCK(); 9120 9121 return (PF_PASS); 9122 } 9123 9124 if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason, 9125 kif, default_actions) == -1) { 9126 if (action != PF_PASS) 9127 pd.act.log |= PF_LOG_FORCE; 9128 goto done; 9129 } 9130 9131 if (__predict_false(ip_divert_ptr != NULL) && 9132 ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) { 9133 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1); 9134 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) || 9135 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) { 9136 if (pd.pf_mtag == NULL && 9137 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 9138 action = PF_DROP; 9139 goto done; 9140 } 9141 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED; 9142 } 9143 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) { 9144 pd.m->m_flags |= M_FASTFWD_OURS; 9145 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 9146 } 9147 m_tag_delete(pd.m, mtag); 9148 9149 mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL); 9150 if (mtag != NULL) 9151 m_tag_delete(pd.m, mtag); 9152 } 9153 9154 switch (pd.virtual_proto) { 9155 case PF_VPROTO_FRAGMENT: 9156 /* 9157 * handle fragments that aren't reassembled by 9158 * normalization 9159 */ 9160 if (kif == NULL || r == NULL) /* pflog */ 9161 action = PF_DROP; 9162 else 9163 action = pf_test_rule(&r, &s, &pd, &a, 9164 &ruleset, inp); 9165 if (action != PF_PASS) 9166 REASON_SET(&reason, PFRES_FRAG); 9167 break; 9168 9169 case IPPROTO_TCP: { 9170 /* Respond to SYN with a syncookie. */ 9171 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 9172 pd.dir == PF_IN && pf_synflood_check(&pd)) { 9173 pf_syncookie_send(&pd); 9174 action = PF_DROP; 9175 break; 9176 } 9177 9178 if ((tcp_get_flags(&pd.hdr.tcp) & TH_ACK) && pd.p_len == 0) 9179 use_2nd_queue = 1; 9180 action = pf_normalize_tcp(&pd); 9181 if (action == PF_DROP) 9182 goto done; 9183 action = pf_test_state_tcp(&s, &pd, &reason); 9184 if (action == PF_PASS) { 9185 if (V_pfsync_update_state_ptr != NULL) 9186 V_pfsync_update_state_ptr(s); 9187 r = s->rule; 9188 a = s->anchor; 9189 } else if (s == NULL) { 9190 /* Validate remote SYN|ACK, re-create original SYN if 9191 * valid. */ 9192 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == 9193 TH_ACK && pf_syncookie_validate(&pd) && 9194 pd.dir == PF_IN) { 9195 struct mbuf *msyn; 9196 9197 msyn = pf_syncookie_recreate_syn(&pd); 9198 if (msyn == NULL) { 9199 action = PF_DROP; 9200 break; 9201 } 9202 9203 action = pf_test(af, dir, pflags, ifp, &msyn, inp, 9204 &pd.act); 9205 m_freem(msyn); 9206 if (action != PF_PASS) 9207 break; 9208 9209 action = pf_test_state_tcp(&s, &pd, &reason); 9210 if (action != PF_PASS || s == NULL) { 9211 action = PF_DROP; 9212 break; 9213 } 9214 9215 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 9216 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 9217 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 9218 action = pf_synproxy(&pd, &s, &reason); 9219 break; 9220 } else { 9221 action = pf_test_rule(&r, &s, &pd, 9222 &a, &ruleset, inp); 9223 } 9224 } 9225 break; 9226 } 9227 9228 case IPPROTO_UDP: { 9229 action = pf_test_state_udp(&s, &pd); 9230 if (action == PF_PASS) { 9231 if (V_pfsync_update_state_ptr != NULL) 9232 V_pfsync_update_state_ptr(s); 9233 r = s->rule; 9234 a = s->anchor; 9235 } else if (s == NULL) 9236 action = pf_test_rule(&r, &s, &pd, 9237 &a, &ruleset, inp); 9238 break; 9239 } 9240 9241 case IPPROTO_SCTP: { 9242 action = pf_normalize_sctp(&pd); 9243 if (action == PF_DROP) 9244 goto done; 9245 action = pf_test_state_sctp(&s, &pd, &reason); 9246 if (action == PF_PASS) { 9247 if (V_pfsync_update_state_ptr != NULL) 9248 V_pfsync_update_state_ptr(s); 9249 r = s->rule; 9250 a = s->anchor; 9251 } else if (s == NULL) { 9252 action = pf_test_rule(&r, &s, 9253 &pd, &a, &ruleset, inp); 9254 } 9255 break; 9256 } 9257 9258 case IPPROTO_ICMP: { 9259 if (af != AF_INET) { 9260 action = PF_DROP; 9261 REASON_SET(&reason, PFRES_NORM); 9262 DPFPRINTF(PF_DEBUG_MISC, 9263 ("dropping IPv6 packet with ICMPv4 payload")); 9264 goto done; 9265 } 9266 action = pf_test_state_icmp(&s, &pd, &reason); 9267 if (action == PF_PASS) { 9268 if (V_pfsync_update_state_ptr != NULL) 9269 V_pfsync_update_state_ptr(s); 9270 r = s->rule; 9271 a = s->anchor; 9272 } else if (s == NULL) 9273 action = pf_test_rule(&r, &s, &pd, 9274 &a, &ruleset, inp); 9275 break; 9276 } 9277 9278 case IPPROTO_ICMPV6: { 9279 if (af != AF_INET6) { 9280 action = PF_DROP; 9281 REASON_SET(&reason, PFRES_NORM); 9282 DPFPRINTF(PF_DEBUG_MISC, 9283 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 9284 goto done; 9285 } 9286 action = pf_test_state_icmp(&s, &pd, &reason); 9287 if (action == PF_PASS) { 9288 if (V_pfsync_update_state_ptr != NULL) 9289 V_pfsync_update_state_ptr(s); 9290 r = s->rule; 9291 a = s->anchor; 9292 } else if (s == NULL) 9293 action = pf_test_rule(&r, &s, &pd, 9294 &a, &ruleset, inp); 9295 break; 9296 } 9297 9298 default: 9299 action = pf_test_state_other(&s, &pd); 9300 if (action == PF_PASS) { 9301 if (V_pfsync_update_state_ptr != NULL) 9302 V_pfsync_update_state_ptr(s); 9303 r = s->rule; 9304 a = s->anchor; 9305 } else if (s == NULL) 9306 action = pf_test_rule(&r, &s, &pd, 9307 &a, &ruleset, inp); 9308 break; 9309 } 9310 9311 done: 9312 PF_RULES_RUNLOCK(); 9313 9314 if (pd.m == NULL) 9315 goto eat_pkt; 9316 9317 if (action == PF_PASS && pd.badopts && 9318 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 9319 action = PF_DROP; 9320 REASON_SET(&reason, PFRES_IPOPTIONS); 9321 pd.act.log = PF_LOG_FORCE; 9322 DPFPRINTF(PF_DEBUG_MISC, 9323 ("pf: dropping packet with dangerous headers\n")); 9324 } 9325 9326 if (s) { 9327 uint8_t log = pd.act.log; 9328 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 9329 pd.act.log |= log; 9330 tag = s->tag; 9331 rt = s->rt; 9332 } else { 9333 tag = r->tag; 9334 rt = r->rt; 9335 } 9336 9337 if (tag > 0 && pf_tag_packet(&pd, tag)) { 9338 action = PF_DROP; 9339 REASON_SET(&reason, PFRES_MEMORY); 9340 } 9341 9342 pf_scrub(&pd); 9343 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 9344 pf_normalize_mss(&pd); 9345 9346 if (pd.act.rtableid >= 0) 9347 M_SETFIB(pd.m, pd.act.rtableid); 9348 9349 if (pd.act.flags & PFSTATE_SETPRIO) { 9350 if (pd.tos & IPTOS_LOWDELAY) 9351 use_2nd_queue = 1; 9352 if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) { 9353 action = PF_DROP; 9354 REASON_SET(&reason, PFRES_MEMORY); 9355 pd.act.log = PF_LOG_FORCE; 9356 DPFPRINTF(PF_DEBUG_MISC, 9357 ("pf: failed to allocate 802.1q mtag\n")); 9358 } 9359 } 9360 9361 #ifdef ALTQ 9362 if (action == PF_PASS && pd.act.qid) { 9363 if (pd.pf_mtag == NULL && 9364 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 9365 action = PF_DROP; 9366 REASON_SET(&reason, PFRES_MEMORY); 9367 } else { 9368 if (s != NULL) 9369 pd.pf_mtag->qid_hash = pf_state_hash(s); 9370 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY)) 9371 pd.pf_mtag->qid = pd.act.pqid; 9372 else 9373 pd.pf_mtag->qid = pd.act.qid; 9374 /* Add hints for ecn. */ 9375 pd.pf_mtag->hdr = mtod(pd.m, void *); 9376 } 9377 } 9378 #endif /* ALTQ */ 9379 9380 /* 9381 * connections redirected to loopback should not match sockets 9382 * bound specifically to loopback due to security implications, 9383 * see tcp_input() and in_pcblookup_listen(). 9384 */ 9385 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 9386 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL && 9387 (s->nat_rule->action == PF_RDR || 9388 s->nat_rule->action == PF_BINAT) && 9389 pf_is_loopback(af, pd.dst)) 9390 pd.m->m_flags |= M_SKIP_FIREWALL; 9391 9392 if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) && 9393 action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) { 9394 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0, 9395 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO); 9396 if (mtag != NULL) { 9397 ((struct pf_divert_mtag *)(mtag+1))->port = 9398 ntohs(r->divert.port); 9399 ((struct pf_divert_mtag *)(mtag+1))->idir = 9400 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN : 9401 PF_DIVERT_MTAG_DIR_OUT; 9402 9403 if (s) 9404 PF_STATE_UNLOCK(s); 9405 9406 m_tag_prepend(pd.m, mtag); 9407 if (pd.m->m_flags & M_FASTFWD_OURS) { 9408 if (pd.pf_mtag == NULL && 9409 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 9410 action = PF_DROP; 9411 REASON_SET(&reason, PFRES_MEMORY); 9412 pd.act.log = PF_LOG_FORCE; 9413 DPFPRINTF(PF_DEBUG_MISC, 9414 ("pf: failed to allocate tag\n")); 9415 } else { 9416 pd.pf_mtag->flags |= 9417 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 9418 pd.m->m_flags &= ~M_FASTFWD_OURS; 9419 } 9420 } 9421 ip_divert_ptr(*m0, dir == PF_IN); 9422 *m0 = NULL; 9423 9424 return (action); 9425 } else { 9426 /* XXX: ipfw has the same behaviour! */ 9427 action = PF_DROP; 9428 REASON_SET(&reason, PFRES_MEMORY); 9429 pd.act.log = PF_LOG_FORCE; 9430 DPFPRINTF(PF_DEBUG_MISC, 9431 ("pf: failed to allocate divert tag\n")); 9432 } 9433 } 9434 /* XXX: Anybody working on it?! */ 9435 if (af == AF_INET6 && r->divert.port) 9436 printf("pf: divert(9) is not supported for IPv6\n"); 9437 9438 /* this flag will need revising if the pkt is forwarded */ 9439 if (pd.pf_mtag) 9440 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED; 9441 9442 if (pd.act.log) { 9443 struct pf_krule *lr; 9444 struct pf_krule_item *ri; 9445 9446 if (s != NULL && s->nat_rule != NULL && 9447 s->nat_rule->log & PF_LOG_ALL) 9448 lr = s->nat_rule; 9449 else 9450 lr = r; 9451 9452 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 9453 PFLOG_PACKET(action, reason, lr, a, 9454 ruleset, &pd, (s == NULL)); 9455 if (s) { 9456 SLIST_FOREACH(ri, &s->match_rules, entry) 9457 if (ri->r->log & PF_LOG_ALL) 9458 PFLOG_PACKET(action, 9459 reason, ri->r, a, ruleset, &pd, 0); 9460 } 9461 } 9462 9463 pf_counters_inc(action, &pd, s, r, a); 9464 9465 switch (action) { 9466 case PF_SYNPROXY_DROP: 9467 m_freem(*m0); 9468 case PF_DEFER: 9469 *m0 = NULL; 9470 action = PF_PASS; 9471 break; 9472 case PF_DROP: 9473 m_freem(*m0); 9474 *m0 = NULL; 9475 break; 9476 default: 9477 if (rt) { 9478 switch (af) { 9479 #ifdef INET 9480 case AF_INET: 9481 /* pf_route() returns unlocked. */ 9482 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp); 9483 break; 9484 #endif 9485 #ifdef INET6 9486 case AF_INET6: 9487 /* pf_route6() returns unlocked. */ 9488 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp); 9489 break; 9490 #endif 9491 } 9492 goto out; 9493 } 9494 if (pf_dummynet(&pd, s, r, m0) != 0) { 9495 action = PF_DROP; 9496 REASON_SET(&reason, PFRES_MEMORY); 9497 } 9498 break; 9499 } 9500 9501 eat_pkt: 9502 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 9503 9504 if (s && action != PF_DROP) { 9505 if (!s->if_index_in && dir == PF_IN) 9506 s->if_index_in = ifp->if_index; 9507 else if (!s->if_index_out && dir == PF_OUT) 9508 s->if_index_out = ifp->if_index; 9509 } 9510 9511 if (s) 9512 PF_STATE_UNLOCK(s); 9513 9514 out: 9515 #ifdef INET6 9516 /* If reassembled packet passed, create new fragments. */ 9517 if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT && 9518 (! (pflags & PF_PFIL_NOREFRAGMENT)) && 9519 (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL) 9520 action = pf_refragment6(ifp, m0, mtag, NULL, pflags & PFIL_FWD); 9521 #endif 9522 9523 pf_sctp_multihome_delayed(&pd, kif, s, action); 9524 9525 return (action); 9526 } 9527 #endif /* INET || INET6 */ 9528