1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 #include "opt_bpf.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_pf.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/gsb_crc32.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/sdt.h> 61 #include <sys/socket.h> 62 #include <sys/sysctl.h> 63 #include <sys/taskqueue.h> 64 #include <sys/ucred.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_private.h> 69 #include <net/if_types.h> 70 #include <net/if_vlan_var.h> 71 #include <net/route.h> 72 #include <net/route/nhop.h> 73 #include <net/vnet.h> 74 75 #include <net/pfil.h> 76 #include <net/pfvar.h> 77 #include <net/if_pflog.h> 78 #include <net/if_pfsync.h> 79 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_var.h> 82 #include <netinet/in_fib.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_fw.h> 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp.h> 89 #include <netinet/tcp_fsm.h> 90 #include <netinet/tcp_seq.h> 91 #include <netinet/tcp_timer.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet/udp.h> 94 #include <netinet/udp_var.h> 95 96 /* dummynet */ 97 #include <netinet/ip_dummynet.h> 98 #include <netinet/ip_fw.h> 99 #include <netpfil/ipfw/dn_heap.h> 100 #include <netpfil/ipfw/ip_fw_private.h> 101 #include <netpfil/ipfw/ip_dn_private.h> 102 103 #ifdef INET6 104 #include <netinet/ip6.h> 105 #include <netinet/icmp6.h> 106 #include <netinet6/nd6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet6/in6_pcb.h> 109 #include <netinet6/in6_fib.h> 110 #include <netinet6/scope6_var.h> 111 #endif /* INET6 */ 112 113 #include <netinet/sctp_header.h> 114 #include <netinet/sctp_crc32.h> 115 116 #include <machine/in_cksum.h> 117 #include <security/mac/mac_framework.h> 118 119 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 120 121 SDT_PROVIDER_DEFINE(pf); 122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 123 "struct pf_kstate *"); 124 SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", 125 "struct pf_kstate *"); 126 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 127 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 128 "struct pf_kstate *"); 129 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *", 130 "struct pfi_kkif *"); 131 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *", 132 "struct pf_krule *", "struct mbuf *", "int"); 133 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t", 134 "struct pf_sctp_source *"); 135 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t", 136 "struct pf_kstate *", "struct pf_sctp_source *"); 137 138 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 139 "struct mbuf *"); 140 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 141 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 142 "int", "struct pf_keth_rule *", "char *"); 143 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 144 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 145 "int", "struct pf_keth_rule *"); 146 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t"); 147 148 /* 149 * Global variables 150 */ 151 152 /* state tables */ 153 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 154 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 155 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 156 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 157 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 158 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 159 VNET_DEFINE(struct pf_kstatus, pf_status); 160 161 VNET_DEFINE(u_int32_t, ticket_altqs_active); 162 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 163 VNET_DEFINE(int, altqs_inactive_open); 164 VNET_DEFINE(u_int32_t, ticket_pabuf); 165 166 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 167 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 168 VNET_DEFINE(u_char, pf_tcp_secret[16]); 169 #define V_pf_tcp_secret VNET(pf_tcp_secret) 170 VNET_DEFINE(int, pf_tcp_secret_init); 171 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 172 VNET_DEFINE(int, pf_tcp_iss_off); 173 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 174 VNET_DECLARE(int, pf_vnet_active); 175 #define V_pf_vnet_active VNET(pf_vnet_active) 176 177 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 178 #define V_pf_purge_idx VNET(pf_purge_idx) 179 180 #ifdef PF_WANT_32_TO_64_COUNTER 181 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 182 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 183 184 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 185 VNET_DEFINE(size_t, pf_allrulecount); 186 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 187 #endif 188 189 struct pf_sctp_endpoint; 190 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint); 191 struct pf_sctp_source { 192 sa_family_t af; 193 struct pf_addr addr; 194 TAILQ_ENTRY(pf_sctp_source) entry; 195 }; 196 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source); 197 struct pf_sctp_endpoint 198 { 199 uint32_t v_tag; 200 struct pf_sctp_sources sources; 201 RB_ENTRY(pf_sctp_endpoint) entry; 202 }; 203 static int 204 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b) 205 { 206 return (a->v_tag - b->v_tag); 207 } 208 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 209 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 210 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints); 211 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints) 212 static struct mtx_padalign pf_sctp_endpoints_mtx; 213 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF); 214 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx) 215 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx) 216 217 /* 218 * Queue for pf_intr() sends. 219 */ 220 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 221 struct pf_send_entry { 222 STAILQ_ENTRY(pf_send_entry) pfse_next; 223 struct mbuf *pfse_m; 224 enum { 225 PFSE_IP, 226 PFSE_IP6, 227 PFSE_ICMP, 228 PFSE_ICMP6, 229 } pfse_type; 230 struct { 231 int type; 232 int code; 233 int mtu; 234 } icmpopts; 235 }; 236 237 STAILQ_HEAD(pf_send_head, pf_send_entry); 238 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 239 #define V_pf_sendqueue VNET(pf_sendqueue) 240 241 static struct mtx_padalign pf_sendqueue_mtx; 242 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 243 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 244 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 245 246 /* 247 * Queue for pf_overload_task() tasks. 248 */ 249 struct pf_overload_entry { 250 SLIST_ENTRY(pf_overload_entry) next; 251 struct pf_addr addr; 252 sa_family_t af; 253 uint8_t dir; 254 struct pf_krule *rule; 255 }; 256 257 SLIST_HEAD(pf_overload_head, pf_overload_entry); 258 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 259 #define V_pf_overloadqueue VNET(pf_overloadqueue) 260 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 261 #define V_pf_overloadtask VNET(pf_overloadtask) 262 263 static struct mtx_padalign pf_overloadqueue_mtx; 264 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 265 "pf overload/flush queue", MTX_DEF); 266 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 267 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 268 269 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 270 struct mtx_padalign pf_unlnkdrules_mtx; 271 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 272 MTX_DEF); 273 274 struct sx pf_config_lock; 275 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 276 277 struct mtx_padalign pf_table_stats_lock; 278 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 279 MTX_DEF); 280 281 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 282 #define V_pf_sources_z VNET(pf_sources_z) 283 uma_zone_t pf_mtag_z; 284 VNET_DEFINE(uma_zone_t, pf_state_z); 285 VNET_DEFINE(uma_zone_t, pf_state_key_z); 286 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z); 287 288 VNET_DEFINE(struct unrhdr64, pf_stateid); 289 290 static void pf_src_tree_remove_state(struct pf_kstate *); 291 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 292 u_int32_t); 293 static void pf_add_threshold(struct pf_threshold *); 294 static int pf_check_threshold(struct pf_threshold *); 295 296 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 297 u_int16_t *, u_int16_t *, struct pf_addr *, 298 u_int16_t, u_int8_t, sa_family_t); 299 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 300 struct tcphdr *, struct pf_state_peer *); 301 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *, 302 int *, u_int16_t *, u_int16_t *); 303 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 304 struct pf_addr *, struct pf_addr *, u_int16_t, 305 u_int16_t *, u_int16_t *, u_int16_t *, 306 u_int16_t *, u_int8_t, sa_family_t); 307 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 308 sa_family_t, struct pf_krule *, int); 309 static void pf_detach_state(struct pf_kstate *); 310 static int pf_state_key_attach(struct pf_state_key *, 311 struct pf_state_key *, struct pf_kstate *); 312 static void pf_state_key_detach(struct pf_kstate *, int); 313 static int pf_state_key_ctor(void *, int, void *, int); 314 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 315 static __inline void pf_dummynet_flag_remove(struct mbuf *m, 316 struct pf_mtag *pf_mtag); 317 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *, 318 struct pf_krule *, struct mbuf **); 319 static int pf_dummynet_route(struct pf_pdesc *, 320 struct pf_kstate *, struct pf_krule *, 321 struct ifnet *, struct sockaddr *, struct mbuf **); 322 static int pf_test_eth_rule(int, struct pfi_kkif *, 323 struct mbuf **); 324 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 325 struct pfi_kkif *, struct mbuf *, int, 326 struct pf_pdesc *, struct pf_krule **, 327 struct pf_kruleset **, struct inpcb *); 328 static int pf_create_state(struct pf_krule *, struct pf_krule *, 329 struct pf_krule *, struct pf_pdesc *, 330 struct pf_ksrc_node *, struct pf_state_key *, 331 struct pf_state_key *, struct mbuf *, int, 332 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 333 struct pf_kstate **, int, u_int16_t, u_int16_t, 334 int, struct pf_krule_slist *, struct pf_udp_mapping *); 335 static int pf_state_key_addr_setup(struct pf_pdesc *, struct mbuf *, 336 int, struct pf_state_key_cmp *, int, struct pf_addr *, 337 int, struct pf_addr *, int); 338 static int pf_test_fragment(struct pf_krule **, struct pfi_kkif *, 339 struct mbuf *, void *, struct pf_pdesc *, 340 struct pf_krule **, struct pf_kruleset **); 341 static int pf_tcp_track_full(struct pf_kstate **, 342 struct pfi_kkif *, struct mbuf *, int, 343 struct pf_pdesc *, u_short *, int *); 344 static int pf_tcp_track_sloppy(struct pf_kstate **, 345 struct pf_pdesc *, u_short *); 346 static int pf_test_state_tcp(struct pf_kstate **, 347 struct pfi_kkif *, struct mbuf *, int, 348 void *, struct pf_pdesc *, u_short *); 349 static int pf_test_state_udp(struct pf_kstate **, 350 struct pfi_kkif *, struct mbuf *, int, 351 void *, struct pf_pdesc *); 352 int pf_icmp_state_lookup(struct pf_state_key_cmp *, 353 struct pf_pdesc *, struct pf_kstate **, struct mbuf *, 354 int, int, struct pfi_kkif *, u_int16_t, u_int16_t, 355 int, int *, int, int); 356 static int pf_test_state_icmp(struct pf_kstate **, 357 struct pfi_kkif *, struct mbuf *, int, 358 void *, struct pf_pdesc *, u_short *); 359 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *); 360 static void pf_sctp_multihome_delayed(struct pf_pdesc *, int, 361 struct pfi_kkif *, struct pf_kstate *, int); 362 static int pf_test_state_sctp(struct pf_kstate **, 363 struct pfi_kkif *, struct mbuf *, int, 364 void *, struct pf_pdesc *, u_short *); 365 static int pf_test_state_other(struct pf_kstate **, 366 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 367 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 368 int, u_int16_t); 369 static int pf_check_proto_cksum(struct mbuf *, int, int, 370 u_int8_t, sa_family_t); 371 static void pf_print_state_parts(struct pf_kstate *, 372 struct pf_state_key *, struct pf_state_key *); 373 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 374 bool, u_int8_t); 375 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 376 const struct pf_state_key_cmp *, u_int); 377 static int pf_src_connlimit(struct pf_kstate **); 378 static int pf_match_rcvif(struct mbuf *, struct pf_krule *); 379 static void pf_overload_task(void *v, int pending); 380 static u_short pf_insert_src_node(struct pf_ksrc_node **, 381 struct pf_krule *, struct pf_addr *, sa_family_t); 382 static u_int pf_purge_expired_states(u_int, int); 383 static void pf_purge_unlinked_rules(void); 384 static int pf_mtag_uminit(void *, int, int); 385 static void pf_mtag_free(struct m_tag *); 386 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 387 int, struct pf_state_key *); 388 #ifdef INET 389 static void pf_route(struct mbuf **, struct pf_krule *, 390 struct ifnet *, struct pf_kstate *, 391 struct pf_pdesc *, struct inpcb *); 392 #endif /* INET */ 393 #ifdef INET6 394 static void pf_change_a6(struct pf_addr *, u_int16_t *, 395 struct pf_addr *, u_int8_t); 396 static void pf_route6(struct mbuf **, struct pf_krule *, 397 struct ifnet *, struct pf_kstate *, 398 struct pf_pdesc *, struct inpcb *); 399 #endif /* INET6 */ 400 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 401 402 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 403 404 extern int pf_end_threads; 405 extern struct proc *pf_purge_proc; 406 407 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 408 409 enum { PF_ICMP_MULTI_NONE, PF_ICMP_MULTI_LINK }; 410 411 #define PACKET_UNDO_NAT(_m, _pd, _off, _s) \ 412 do { \ 413 struct pf_state_key *nk; \ 414 if ((pd->dir) == PF_OUT) \ 415 nk = (_s)->key[PF_SK_STACK]; \ 416 else \ 417 nk = (_s)->key[PF_SK_WIRE]; \ 418 pf_packet_rework_nat(_m, _pd, _off, nk); \ 419 } while (0) 420 421 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 422 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED) 423 424 #define STATE_LOOKUP(i, k, s, pd) \ 425 do { \ 426 (s) = pf_find_state((i), (k), (pd->dir)); \ 427 SDT_PROBE5(pf, ip, state, lookup, i, k, (pd->dir), pd, (s)); \ 428 if ((s) == NULL) \ 429 return (PF_DROP); \ 430 if (PACKET_LOOPED(pd)) \ 431 return (PF_PASS); \ 432 } while (0) 433 434 static struct pfi_kkif * 435 BOUND_IFACE(struct pf_kstate *st, struct pfi_kkif *k) 436 { 437 SDT_PROBE2(pf, ip, , bound_iface, st, k); 438 439 /* Floating unless otherwise specified. */ 440 if (! (st->rule.ptr->rule_flag & PFRULE_IFBOUND)) 441 return (V_pfi_all); 442 443 /* 444 * Initially set to all, because we don't know what interface we'll be 445 * sending this out when we create the state. 446 */ 447 if (st->rule.ptr->rt == PF_REPLYTO) 448 return (V_pfi_all); 449 450 /* Don't overrule the interface for states created on incoming packets. */ 451 if (st->direction == PF_IN) 452 return (k); 453 454 /* No route-to, so don't overrule. */ 455 if (st->rt != PF_ROUTETO) 456 return (k); 457 458 /* Bind to the route-to interface. */ 459 return (st->rt_kif); 460 } 461 462 #define STATE_INC_COUNTERS(s) \ 463 do { \ 464 struct pf_krule_item *mrm; \ 465 counter_u64_add(s->rule.ptr->states_cur, 1); \ 466 counter_u64_add(s->rule.ptr->states_tot, 1); \ 467 if (s->anchor.ptr != NULL) { \ 468 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 469 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 470 } \ 471 if (s->nat_rule.ptr != NULL) { \ 472 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 473 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 474 } \ 475 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 476 counter_u64_add(mrm->r->states_cur, 1); \ 477 counter_u64_add(mrm->r->states_tot, 1); \ 478 } \ 479 } while (0) 480 481 #define STATE_DEC_COUNTERS(s) \ 482 do { \ 483 struct pf_krule_item *mrm; \ 484 if (s->nat_rule.ptr != NULL) \ 485 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 486 if (s->anchor.ptr != NULL) \ 487 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 488 counter_u64_add(s->rule.ptr->states_cur, -1); \ 489 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 490 counter_u64_add(mrm->r->states_cur, -1); \ 491 } while (0) 492 493 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 494 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 495 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 496 VNET_DEFINE(struct pf_idhash *, pf_idhash); 497 VNET_DEFINE(struct pf_srchash *, pf_srchash); 498 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash); 499 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping); 500 501 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 502 "pf(4)"); 503 504 VNET_DEFINE(u_long, pf_hashmask); 505 VNET_DEFINE(u_long, pf_srchashmask); 506 VNET_DEFINE(u_long, pf_udpendpointhashmask); 507 VNET_DEFINE_STATIC(u_long, pf_hashsize); 508 #define V_pf_hashsize VNET(pf_hashsize) 509 VNET_DEFINE_STATIC(u_long, pf_srchashsize); 510 #define V_pf_srchashsize VNET(pf_srchashsize) 511 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize); 512 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize) 513 u_long pf_ioctl_maxcount = 65535; 514 515 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 516 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 517 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 518 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 519 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 520 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable"); 521 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 522 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 523 524 VNET_DEFINE(void *, pf_swi_cookie); 525 VNET_DEFINE(struct intr_event *, pf_swi_ie); 526 527 VNET_DEFINE(uint32_t, pf_hashseed); 528 #define V_pf_hashseed VNET(pf_hashseed) 529 530 static void 531 pf_sctp_checksum(struct mbuf *m, int off) 532 { 533 uint32_t sum = 0; 534 535 /* Zero out the checksum, to enable recalculation. */ 536 m_copyback(m, off + offsetof(struct sctphdr, checksum), 537 sizeof(sum), (caddr_t)&sum); 538 539 sum = sctp_calculate_cksum(m, off); 540 541 m_copyback(m, off + offsetof(struct sctphdr, checksum), 542 sizeof(sum), (caddr_t)&sum); 543 } 544 545 int 546 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 547 { 548 549 switch (af) { 550 #ifdef INET 551 case AF_INET: 552 if (a->addr32[0] > b->addr32[0]) 553 return (1); 554 if (a->addr32[0] < b->addr32[0]) 555 return (-1); 556 break; 557 #endif /* INET */ 558 #ifdef INET6 559 case AF_INET6: 560 if (a->addr32[3] > b->addr32[3]) 561 return (1); 562 if (a->addr32[3] < b->addr32[3]) 563 return (-1); 564 if (a->addr32[2] > b->addr32[2]) 565 return (1); 566 if (a->addr32[2] < b->addr32[2]) 567 return (-1); 568 if (a->addr32[1] > b->addr32[1]) 569 return (1); 570 if (a->addr32[1] < b->addr32[1]) 571 return (-1); 572 if (a->addr32[0] > b->addr32[0]) 573 return (1); 574 if (a->addr32[0] < b->addr32[0]) 575 return (-1); 576 break; 577 #endif /* INET6 */ 578 default: 579 panic("%s: unknown address family %u", __func__, af); 580 } 581 return (0); 582 } 583 584 static void 585 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 586 struct pf_state_key *nk) 587 { 588 589 switch (pd->proto) { 590 case IPPROTO_TCP: { 591 struct tcphdr *th = &pd->hdr.tcp; 592 593 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 594 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 595 &th->th_sum, &nk->addr[pd->sidx], 596 nk->port[pd->sidx], 0, pd->af); 597 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 598 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 599 &th->th_sum, &nk->addr[pd->didx], 600 nk->port[pd->didx], 0, pd->af); 601 m_copyback(m, off, sizeof(*th), (caddr_t)th); 602 break; 603 } 604 case IPPROTO_UDP: { 605 struct udphdr *uh = &pd->hdr.udp; 606 607 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 608 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 609 &uh->uh_sum, &nk->addr[pd->sidx], 610 nk->port[pd->sidx], 1, pd->af); 611 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 612 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 613 &uh->uh_sum, &nk->addr[pd->didx], 614 nk->port[pd->didx], 1, pd->af); 615 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 616 break; 617 } 618 case IPPROTO_SCTP: { 619 struct sctphdr *sh = &pd->hdr.sctp; 620 uint16_t checksum = 0; 621 622 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 623 pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum, 624 &checksum, &nk->addr[pd->sidx], 625 nk->port[pd->sidx], 1, pd->af); 626 } 627 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 628 pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum, 629 &checksum, &nk->addr[pd->didx], 630 nk->port[pd->didx], 1, pd->af); 631 } 632 633 break; 634 } 635 case IPPROTO_ICMP: { 636 struct icmp *ih = &pd->hdr.icmp; 637 638 if (nk->port[pd->sidx] != ih->icmp_id) { 639 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 640 ih->icmp_cksum, ih->icmp_id, 641 nk->port[pd->sidx], 0); 642 ih->icmp_id = nk->port[pd->sidx]; 643 pd->sport = &ih->icmp_id; 644 645 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 646 } 647 /* FALLTHROUGH */ 648 } 649 default: 650 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 651 switch (pd->af) { 652 case AF_INET: 653 pf_change_a(&pd->src->v4.s_addr, 654 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 655 0); 656 break; 657 case AF_INET6: 658 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 659 break; 660 } 661 } 662 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 663 switch (pd->af) { 664 case AF_INET: 665 pf_change_a(&pd->dst->v4.s_addr, 666 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 667 0); 668 break; 669 case AF_INET6: 670 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 671 break; 672 } 673 } 674 break; 675 } 676 } 677 678 static __inline uint32_t 679 pf_hashkey(const struct pf_state_key *sk) 680 { 681 uint32_t h; 682 683 h = murmur3_32_hash32((const uint32_t *)sk, 684 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 685 V_pf_hashseed); 686 687 return (h & V_pf_hashmask); 688 } 689 690 static __inline uint32_t 691 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 692 { 693 uint32_t h; 694 695 switch (af) { 696 case AF_INET: 697 h = murmur3_32_hash32((uint32_t *)&addr->v4, 698 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 699 break; 700 case AF_INET6: 701 h = murmur3_32_hash32((uint32_t *)&addr->v6, 702 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 703 break; 704 default: 705 panic("%s: unknown address family %u", __func__, af); 706 } 707 708 return (h & V_pf_srchashmask); 709 } 710 711 static inline uint32_t 712 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint) 713 { 714 uint32_t h; 715 716 h = murmur3_32_hash32((uint32_t *)endpoint, 717 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t), 718 V_pf_hashseed); 719 return (h & V_pf_udpendpointhashmask); 720 } 721 722 #ifdef ALTQ 723 static int 724 pf_state_hash(struct pf_kstate *s) 725 { 726 u_int32_t hv = (intptr_t)s / sizeof(*s); 727 728 hv ^= crc32(&s->src, sizeof(s->src)); 729 hv ^= crc32(&s->dst, sizeof(s->dst)); 730 if (hv == 0) 731 hv = 1; 732 return (hv); 733 } 734 #endif 735 736 static __inline void 737 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 738 { 739 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 740 s->dst.state = newstate; 741 if (which == PF_PEER_DST) 742 return; 743 if (s->src.state == newstate) 744 return; 745 if (s->creatorid == V_pf_status.hostid && 746 s->key[PF_SK_STACK] != NULL && 747 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 748 !(TCPS_HAVEESTABLISHED(s->src.state) || 749 s->src.state == TCPS_CLOSED) && 750 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 751 atomic_add_32(&V_pf_status.states_halfopen, -1); 752 753 s->src.state = newstate; 754 } 755 756 #ifdef INET6 757 void 758 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 759 { 760 switch (af) { 761 #ifdef INET 762 case AF_INET: 763 memcpy(&dst->v4, &src->v4, sizeof(dst->v4)); 764 break; 765 #endif /* INET */ 766 case AF_INET6: 767 memcpy(&dst->v6, &src->v6, sizeof(dst->v6)); 768 break; 769 } 770 } 771 #endif /* INET6 */ 772 773 static void 774 pf_init_threshold(struct pf_threshold *threshold, 775 u_int32_t limit, u_int32_t seconds) 776 { 777 threshold->limit = limit * PF_THRESHOLD_MULT; 778 threshold->seconds = seconds; 779 threshold->count = 0; 780 threshold->last = time_uptime; 781 } 782 783 static void 784 pf_add_threshold(struct pf_threshold *threshold) 785 { 786 u_int32_t t = time_uptime, diff = t - threshold->last; 787 788 if (diff >= threshold->seconds) 789 threshold->count = 0; 790 else 791 threshold->count -= threshold->count * diff / 792 threshold->seconds; 793 threshold->count += PF_THRESHOLD_MULT; 794 threshold->last = t; 795 } 796 797 static int 798 pf_check_threshold(struct pf_threshold *threshold) 799 { 800 return (threshold->count > threshold->limit); 801 } 802 803 static int 804 pf_src_connlimit(struct pf_kstate **state) 805 { 806 struct pf_overload_entry *pfoe; 807 int bad = 0; 808 809 PF_STATE_LOCK_ASSERT(*state); 810 /* 811 * XXXKS: The src node is accessed unlocked! 812 * PF_SRC_NODE_LOCK_ASSERT((*state)->src_node); 813 */ 814 815 (*state)->src_node->conn++; 816 (*state)->src.tcp_est = 1; 817 pf_add_threshold(&(*state)->src_node->conn_rate); 818 819 if ((*state)->rule.ptr->max_src_conn && 820 (*state)->rule.ptr->max_src_conn < 821 (*state)->src_node->conn) { 822 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 823 bad++; 824 } 825 826 if ((*state)->rule.ptr->max_src_conn_rate.limit && 827 pf_check_threshold(&(*state)->src_node->conn_rate)) { 828 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 829 bad++; 830 } 831 832 if (!bad) 833 return (0); 834 835 /* Kill this state. */ 836 (*state)->timeout = PFTM_PURGE; 837 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 838 839 if ((*state)->rule.ptr->overload_tbl == NULL) 840 return (1); 841 842 /* Schedule overloading and flushing task. */ 843 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 844 if (pfoe == NULL) 845 return (1); /* too bad :( */ 846 847 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 848 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 849 pfoe->rule = (*state)->rule.ptr; 850 pfoe->dir = (*state)->direction; 851 PF_OVERLOADQ_LOCK(); 852 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 853 PF_OVERLOADQ_UNLOCK(); 854 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 855 856 return (1); 857 } 858 859 static void 860 pf_overload_task(void *v, int pending) 861 { 862 struct pf_overload_head queue; 863 struct pfr_addr p; 864 struct pf_overload_entry *pfoe, *pfoe1; 865 uint32_t killed = 0; 866 867 CURVNET_SET((struct vnet *)v); 868 869 PF_OVERLOADQ_LOCK(); 870 queue = V_pf_overloadqueue; 871 SLIST_INIT(&V_pf_overloadqueue); 872 PF_OVERLOADQ_UNLOCK(); 873 874 bzero(&p, sizeof(p)); 875 SLIST_FOREACH(pfoe, &queue, next) { 876 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 877 if (V_pf_status.debug >= PF_DEBUG_MISC) { 878 printf("%s: blocking address ", __func__); 879 pf_print_host(&pfoe->addr, 0, pfoe->af); 880 printf("\n"); 881 } 882 883 p.pfra_af = pfoe->af; 884 switch (pfoe->af) { 885 #ifdef INET 886 case AF_INET: 887 p.pfra_net = 32; 888 p.pfra_ip4addr = pfoe->addr.v4; 889 break; 890 #endif 891 #ifdef INET6 892 case AF_INET6: 893 p.pfra_net = 128; 894 p.pfra_ip6addr = pfoe->addr.v6; 895 break; 896 #endif 897 } 898 899 PF_RULES_WLOCK(); 900 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 901 PF_RULES_WUNLOCK(); 902 } 903 904 /* 905 * Remove those entries, that don't need flushing. 906 */ 907 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 908 if (pfoe->rule->flush == 0) { 909 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 910 free(pfoe, M_PFTEMP); 911 } else 912 counter_u64_add( 913 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 914 915 /* If nothing to flush, return. */ 916 if (SLIST_EMPTY(&queue)) { 917 CURVNET_RESTORE(); 918 return; 919 } 920 921 for (int i = 0; i <= V_pf_hashmask; i++) { 922 struct pf_idhash *ih = &V_pf_idhash[i]; 923 struct pf_state_key *sk; 924 struct pf_kstate *s; 925 926 PF_HASHROW_LOCK(ih); 927 LIST_FOREACH(s, &ih->states, entry) { 928 sk = s->key[PF_SK_WIRE]; 929 SLIST_FOREACH(pfoe, &queue, next) 930 if (sk->af == pfoe->af && 931 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 932 pfoe->rule == s->rule.ptr) && 933 ((pfoe->dir == PF_OUT && 934 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 935 (pfoe->dir == PF_IN && 936 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 937 s->timeout = PFTM_PURGE; 938 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 939 killed++; 940 } 941 } 942 PF_HASHROW_UNLOCK(ih); 943 } 944 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 945 free(pfoe, M_PFTEMP); 946 if (V_pf_status.debug >= PF_DEBUG_MISC) 947 printf("%s: %u states killed", __func__, killed); 948 949 CURVNET_RESTORE(); 950 } 951 952 /* 953 * Can return locked on failure, so that we can consistently 954 * allocate and insert a new one. 955 */ 956 struct pf_ksrc_node * 957 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 958 struct pf_srchash **sh, bool returnlocked) 959 { 960 struct pf_ksrc_node *n; 961 962 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 963 964 *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 965 PF_HASHROW_LOCK(*sh); 966 LIST_FOREACH(n, &(*sh)->nodes, entry) 967 if (n->rule.ptr == rule && n->af == af && 968 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 969 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 970 break; 971 972 if (n != NULL) { 973 n->states++; 974 PF_HASHROW_UNLOCK(*sh); 975 } else if (returnlocked == false) 976 PF_HASHROW_UNLOCK(*sh); 977 978 return (n); 979 } 980 981 static void 982 pf_free_src_node(struct pf_ksrc_node *sn) 983 { 984 985 for (int i = 0; i < 2; i++) { 986 counter_u64_free(sn->bytes[i]); 987 counter_u64_free(sn->packets[i]); 988 } 989 uma_zfree(V_pf_sources_z, sn); 990 } 991 992 static u_short 993 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 994 struct pf_addr *src, sa_family_t af) 995 { 996 u_short reason = 0; 997 struct pf_srchash *sh = NULL; 998 999 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 1000 rule->rpool.opts & PF_POOL_STICKYADDR), 1001 ("%s for non-tracking rule %p", __func__, rule)); 1002 1003 if (*sn == NULL) 1004 *sn = pf_find_src_node(src, rule, af, &sh, true); 1005 1006 if (*sn == NULL) { 1007 PF_HASHROW_ASSERT(sh); 1008 1009 if (rule->max_src_nodes && 1010 counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) { 1011 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); 1012 PF_HASHROW_UNLOCK(sh); 1013 reason = PFRES_SRCLIMIT; 1014 goto done; 1015 } 1016 1017 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 1018 if ((*sn) == NULL) { 1019 PF_HASHROW_UNLOCK(sh); 1020 reason = PFRES_MEMORY; 1021 goto done; 1022 } 1023 1024 for (int i = 0; i < 2; i++) { 1025 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 1026 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 1027 1028 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 1029 pf_free_src_node(*sn); 1030 PF_HASHROW_UNLOCK(sh); 1031 reason = PFRES_MEMORY; 1032 goto done; 1033 } 1034 } 1035 1036 pf_init_threshold(&(*sn)->conn_rate, 1037 rule->max_src_conn_rate.limit, 1038 rule->max_src_conn_rate.seconds); 1039 1040 MPASS((*sn)->lock == NULL); 1041 (*sn)->lock = &sh->lock; 1042 1043 (*sn)->af = af; 1044 (*sn)->rule.ptr = rule; 1045 PF_ACPY(&(*sn)->addr, src, af); 1046 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 1047 (*sn)->creation = time_uptime; 1048 (*sn)->ruletype = rule->action; 1049 (*sn)->states = 1; 1050 if ((*sn)->rule.ptr != NULL) 1051 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 1052 PF_HASHROW_UNLOCK(sh); 1053 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 1054 } else { 1055 if (rule->max_src_states && 1056 (*sn)->states >= rule->max_src_states) { 1057 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 1058 1); 1059 reason = PFRES_SRCLIMIT; 1060 goto done; 1061 } 1062 } 1063 done: 1064 return (reason); 1065 } 1066 1067 void 1068 pf_unlink_src_node(struct pf_ksrc_node *src) 1069 { 1070 PF_SRC_NODE_LOCK_ASSERT(src); 1071 1072 LIST_REMOVE(src, entry); 1073 if (src->rule.ptr) 1074 counter_u64_add(src->rule.ptr->src_nodes, -1); 1075 } 1076 1077 u_int 1078 pf_free_src_nodes(struct pf_ksrc_node_list *head) 1079 { 1080 struct pf_ksrc_node *sn, *tmp; 1081 u_int count = 0; 1082 1083 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 1084 pf_free_src_node(sn); 1085 count++; 1086 } 1087 1088 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 1089 1090 return (count); 1091 } 1092 1093 void 1094 pf_mtag_initialize(void) 1095 { 1096 1097 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 1098 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 1099 UMA_ALIGN_PTR, 0); 1100 } 1101 1102 /* Per-vnet data storage structures initialization. */ 1103 void 1104 pf_initialize(void) 1105 { 1106 struct pf_keyhash *kh; 1107 struct pf_idhash *ih; 1108 struct pf_srchash *sh; 1109 struct pf_udpendpointhash *uh; 1110 u_int i; 1111 1112 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 1113 V_pf_hashsize = PF_HASHSIZ; 1114 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 1115 V_pf_srchashsize = PF_SRCHASHSIZ; 1116 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize)) 1117 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1118 1119 V_pf_hashseed = arc4random(); 1120 1121 /* States and state keys storage. */ 1122 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1123 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1124 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1125 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1126 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1127 1128 V_pf_state_key_z = uma_zcreate("pf state keys", 1129 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1130 UMA_ALIGN_PTR, 0); 1131 1132 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash), 1133 M_PFHASH, M_NOWAIT | M_ZERO); 1134 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash), 1135 M_PFHASH, M_NOWAIT | M_ZERO); 1136 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1137 printf("pf: Unable to allocate memory for " 1138 "state_hashsize %lu.\n", V_pf_hashsize); 1139 1140 free(V_pf_keyhash, M_PFHASH); 1141 free(V_pf_idhash, M_PFHASH); 1142 1143 V_pf_hashsize = PF_HASHSIZ; 1144 V_pf_keyhash = mallocarray(V_pf_hashsize, 1145 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1146 V_pf_idhash = mallocarray(V_pf_hashsize, 1147 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1148 } 1149 1150 V_pf_hashmask = V_pf_hashsize - 1; 1151 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 1152 i++, kh++, ih++) { 1153 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1154 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1155 } 1156 1157 /* Source nodes. */ 1158 V_pf_sources_z = uma_zcreate("pf source nodes", 1159 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1160 0); 1161 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1162 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1163 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1164 1165 V_pf_srchash = mallocarray(V_pf_srchashsize, 1166 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1167 if (V_pf_srchash == NULL) { 1168 printf("pf: Unable to allocate memory for " 1169 "source_hashsize %lu.\n", V_pf_srchashsize); 1170 1171 V_pf_srchashsize = PF_SRCHASHSIZ; 1172 V_pf_srchash = mallocarray(V_pf_srchashsize, 1173 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1174 } 1175 1176 V_pf_srchashmask = V_pf_srchashsize - 1; 1177 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 1178 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1179 1180 1181 /* UDP endpoint mappings. */ 1182 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings", 1183 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL, 1184 UMA_ALIGN_PTR, 0); 1185 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1186 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO); 1187 if (V_pf_udpendpointhash == NULL) { 1188 printf("pf: Unable to allocate memory for " 1189 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize); 1190 1191 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1192 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1193 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO); 1194 } 1195 1196 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1; 1197 for (i = 0, uh = V_pf_udpendpointhash; 1198 i <= V_pf_udpendpointhashmask; 1199 i++, uh++) { 1200 mtx_init(&uh->lock, "pf_udpendpointhash", NULL, 1201 MTX_DEF | MTX_DUPOK); 1202 } 1203 1204 /* ALTQ */ 1205 TAILQ_INIT(&V_pf_altqs[0]); 1206 TAILQ_INIT(&V_pf_altqs[1]); 1207 TAILQ_INIT(&V_pf_altqs[2]); 1208 TAILQ_INIT(&V_pf_altqs[3]); 1209 TAILQ_INIT(&V_pf_pabuf); 1210 V_pf_altqs_active = &V_pf_altqs[0]; 1211 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1212 V_pf_altqs_inactive = &V_pf_altqs[2]; 1213 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1214 1215 /* Send & overload+flush queues. */ 1216 STAILQ_INIT(&V_pf_sendqueue); 1217 SLIST_INIT(&V_pf_overloadqueue); 1218 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1219 1220 /* Unlinked, but may be referenced rules. */ 1221 TAILQ_INIT(&V_pf_unlinked_rules); 1222 } 1223 1224 void 1225 pf_mtag_cleanup(void) 1226 { 1227 1228 uma_zdestroy(pf_mtag_z); 1229 } 1230 1231 void 1232 pf_cleanup(void) 1233 { 1234 struct pf_keyhash *kh; 1235 struct pf_idhash *ih; 1236 struct pf_srchash *sh; 1237 struct pf_udpendpointhash *uh; 1238 struct pf_send_entry *pfse, *next; 1239 u_int i; 1240 1241 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; 1242 i <= V_pf_hashmask; 1243 i++, kh++, ih++) { 1244 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1245 __func__)); 1246 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1247 __func__)); 1248 mtx_destroy(&kh->lock); 1249 mtx_destroy(&ih->lock); 1250 } 1251 free(V_pf_keyhash, M_PFHASH); 1252 free(V_pf_idhash, M_PFHASH); 1253 1254 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1255 KASSERT(LIST_EMPTY(&sh->nodes), 1256 ("%s: source node hash not empty", __func__)); 1257 mtx_destroy(&sh->lock); 1258 } 1259 free(V_pf_srchash, M_PFHASH); 1260 1261 for (i = 0, uh = V_pf_udpendpointhash; 1262 i <= V_pf_udpendpointhashmask; 1263 i++, uh++) { 1264 KASSERT(LIST_EMPTY(&uh->endpoints), 1265 ("%s: udp endpoint hash not empty", __func__)); 1266 mtx_destroy(&uh->lock); 1267 } 1268 free(V_pf_udpendpointhash, M_PFHASH); 1269 1270 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1271 m_freem(pfse->pfse_m); 1272 free(pfse, M_PFTEMP); 1273 } 1274 MPASS(RB_EMPTY(&V_pf_sctp_endpoints)); 1275 1276 uma_zdestroy(V_pf_sources_z); 1277 uma_zdestroy(V_pf_state_z); 1278 uma_zdestroy(V_pf_state_key_z); 1279 uma_zdestroy(V_pf_udp_mapping_z); 1280 } 1281 1282 static int 1283 pf_mtag_uminit(void *mem, int size, int how) 1284 { 1285 struct m_tag *t; 1286 1287 t = (struct m_tag *)mem; 1288 t->m_tag_cookie = MTAG_ABI_COMPAT; 1289 t->m_tag_id = PACKET_TAG_PF; 1290 t->m_tag_len = sizeof(struct pf_mtag); 1291 t->m_tag_free = pf_mtag_free; 1292 1293 return (0); 1294 } 1295 1296 static void 1297 pf_mtag_free(struct m_tag *t) 1298 { 1299 1300 uma_zfree(pf_mtag_z, t); 1301 } 1302 1303 struct pf_mtag * 1304 pf_get_mtag(struct mbuf *m) 1305 { 1306 struct m_tag *mtag; 1307 1308 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1309 return ((struct pf_mtag *)(mtag + 1)); 1310 1311 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1312 if (mtag == NULL) 1313 return (NULL); 1314 bzero(mtag + 1, sizeof(struct pf_mtag)); 1315 m_tag_prepend(m, mtag); 1316 1317 return ((struct pf_mtag *)(mtag + 1)); 1318 } 1319 1320 static int 1321 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1322 struct pf_kstate *s) 1323 { 1324 struct pf_keyhash *khs, *khw, *kh; 1325 struct pf_state_key *sk, *cur; 1326 struct pf_kstate *si, *olds = NULL; 1327 int idx; 1328 1329 NET_EPOCH_ASSERT(); 1330 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1331 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1332 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1333 1334 /* 1335 * We need to lock hash slots of both keys. To avoid deadlock 1336 * we always lock the slot with lower address first. Unlock order 1337 * isn't important. 1338 * 1339 * We also need to lock ID hash slot before dropping key 1340 * locks. On success we return with ID hash slot locked. 1341 */ 1342 1343 if (skw == sks) { 1344 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1345 PF_HASHROW_LOCK(khs); 1346 } else { 1347 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1348 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1349 if (khs == khw) { 1350 PF_HASHROW_LOCK(khs); 1351 } else if (khs < khw) { 1352 PF_HASHROW_LOCK(khs); 1353 PF_HASHROW_LOCK(khw); 1354 } else { 1355 PF_HASHROW_LOCK(khw); 1356 PF_HASHROW_LOCK(khs); 1357 } 1358 } 1359 1360 #define KEYS_UNLOCK() do { \ 1361 if (khs != khw) { \ 1362 PF_HASHROW_UNLOCK(khs); \ 1363 PF_HASHROW_UNLOCK(khw); \ 1364 } else \ 1365 PF_HASHROW_UNLOCK(khs); \ 1366 } while (0) 1367 1368 /* 1369 * First run: start with wire key. 1370 */ 1371 sk = skw; 1372 kh = khw; 1373 idx = PF_SK_WIRE; 1374 1375 MPASS(s->lock == NULL); 1376 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1377 1378 keyattach: 1379 LIST_FOREACH(cur, &kh->keys, entry) 1380 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1381 break; 1382 1383 if (cur != NULL) { 1384 /* Key exists. Check for same kif, if none, add to key. */ 1385 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1386 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1387 1388 PF_HASHROW_LOCK(ih); 1389 if (si->kif == s->kif && 1390 si->direction == s->direction) { 1391 if (sk->proto == IPPROTO_TCP && 1392 si->src.state >= TCPS_FIN_WAIT_2 && 1393 si->dst.state >= TCPS_FIN_WAIT_2) { 1394 /* 1395 * New state matches an old >FIN_WAIT_2 1396 * state. We can't drop key hash locks, 1397 * thus we can't unlink it properly. 1398 * 1399 * As a workaround we drop it into 1400 * TCPS_CLOSED state, schedule purge 1401 * ASAP and push it into the very end 1402 * of the slot TAILQ, so that it won't 1403 * conflict with our new state. 1404 */ 1405 pf_set_protostate(si, PF_PEER_BOTH, 1406 TCPS_CLOSED); 1407 si->timeout = PFTM_PURGE; 1408 olds = si; 1409 } else { 1410 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1411 printf("pf: %s key attach " 1412 "failed on %s: ", 1413 (idx == PF_SK_WIRE) ? 1414 "wire" : "stack", 1415 s->kif->pfik_name); 1416 pf_print_state_parts(s, 1417 (idx == PF_SK_WIRE) ? 1418 sk : NULL, 1419 (idx == PF_SK_STACK) ? 1420 sk : NULL); 1421 printf(", existing: "); 1422 pf_print_state_parts(si, 1423 (idx == PF_SK_WIRE) ? 1424 sk : NULL, 1425 (idx == PF_SK_STACK) ? 1426 sk : NULL); 1427 printf("\n"); 1428 } 1429 s->timeout = PFTM_UNLINKED; 1430 PF_HASHROW_UNLOCK(ih); 1431 KEYS_UNLOCK(); 1432 uma_zfree(V_pf_state_key_z, sk); 1433 if (idx == PF_SK_STACK) 1434 pf_detach_state(s); 1435 return (EEXIST); /* collision! */ 1436 } 1437 } 1438 PF_HASHROW_UNLOCK(ih); 1439 } 1440 uma_zfree(V_pf_state_key_z, sk); 1441 s->key[idx] = cur; 1442 } else { 1443 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1444 s->key[idx] = sk; 1445 } 1446 1447 stateattach: 1448 /* List is sorted, if-bound states before floating. */ 1449 if (s->kif == V_pfi_all) 1450 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1451 else 1452 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1453 1454 if (olds) { 1455 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1456 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1457 key_list[idx]); 1458 olds = NULL; 1459 } 1460 1461 /* 1462 * Attach done. See how should we (or should not?) 1463 * attach a second key. 1464 */ 1465 if (sks == skw) { 1466 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1467 idx = PF_SK_STACK; 1468 sks = NULL; 1469 goto stateattach; 1470 } else if (sks != NULL) { 1471 /* 1472 * Continue attaching with stack key. 1473 */ 1474 sk = sks; 1475 kh = khs; 1476 idx = PF_SK_STACK; 1477 sks = NULL; 1478 goto keyattach; 1479 } 1480 1481 PF_STATE_LOCK(s); 1482 KEYS_UNLOCK(); 1483 1484 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1485 ("%s failure", __func__)); 1486 1487 return (0); 1488 #undef KEYS_UNLOCK 1489 } 1490 1491 static void 1492 pf_detach_state(struct pf_kstate *s) 1493 { 1494 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1495 struct pf_keyhash *kh; 1496 1497 NET_EPOCH_ASSERT(); 1498 MPASS(s->timeout >= PFTM_MAX); 1499 1500 pf_sctp_multihome_detach_addr(s); 1501 1502 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr) 1503 V_pflow_export_state_ptr(s); 1504 1505 if (sks != NULL) { 1506 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1507 PF_HASHROW_LOCK(kh); 1508 if (s->key[PF_SK_STACK] != NULL) 1509 pf_state_key_detach(s, PF_SK_STACK); 1510 /* 1511 * If both point to same key, then we are done. 1512 */ 1513 if (sks == s->key[PF_SK_WIRE]) { 1514 pf_state_key_detach(s, PF_SK_WIRE); 1515 PF_HASHROW_UNLOCK(kh); 1516 return; 1517 } 1518 PF_HASHROW_UNLOCK(kh); 1519 } 1520 1521 if (s->key[PF_SK_WIRE] != NULL) { 1522 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1523 PF_HASHROW_LOCK(kh); 1524 if (s->key[PF_SK_WIRE] != NULL) 1525 pf_state_key_detach(s, PF_SK_WIRE); 1526 PF_HASHROW_UNLOCK(kh); 1527 } 1528 } 1529 1530 static void 1531 pf_state_key_detach(struct pf_kstate *s, int idx) 1532 { 1533 struct pf_state_key *sk = s->key[idx]; 1534 #ifdef INVARIANTS 1535 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1536 1537 PF_HASHROW_ASSERT(kh); 1538 #endif 1539 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1540 s->key[idx] = NULL; 1541 1542 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1543 LIST_REMOVE(sk, entry); 1544 uma_zfree(V_pf_state_key_z, sk); 1545 } 1546 } 1547 1548 static int 1549 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1550 { 1551 struct pf_state_key *sk = mem; 1552 1553 bzero(sk, sizeof(struct pf_state_key_cmp)); 1554 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1555 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1556 1557 return (0); 1558 } 1559 1560 static int 1561 pf_state_key_addr_setup(struct pf_pdesc *pd, struct mbuf *m, int off, 1562 struct pf_state_key_cmp *key, int sidx, struct pf_addr *saddr, 1563 int didx, struct pf_addr *daddr, int multi) 1564 { 1565 #ifdef INET6 1566 struct nd_neighbor_solicit nd; 1567 struct pf_addr *target; 1568 u_short action, reason; 1569 1570 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6) 1571 goto copy; 1572 1573 switch (pd->hdr.icmp6.icmp6_type) { 1574 case ND_NEIGHBOR_SOLICIT: 1575 if (multi) 1576 return (-1); 1577 if (!pf_pull_hdr(m, off, &nd, sizeof(nd), &action, &reason, pd->af)) 1578 return (-1); 1579 target = (struct pf_addr *)&nd.nd_ns_target; 1580 daddr = target; 1581 break; 1582 case ND_NEIGHBOR_ADVERT: 1583 if (multi) 1584 return (-1); 1585 if (!pf_pull_hdr(m, off, &nd, sizeof(nd), &action, &reason, pd->af)) 1586 return (-1); 1587 target = (struct pf_addr *)&nd.nd_ns_target; 1588 saddr = target; 1589 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) { 1590 key->addr[didx].addr32[0] = 0; 1591 key->addr[didx].addr32[1] = 0; 1592 key->addr[didx].addr32[2] = 0; 1593 key->addr[didx].addr32[3] = 0; 1594 daddr = NULL; /* overwritten */ 1595 } 1596 break; 1597 default: 1598 if (multi == PF_ICMP_MULTI_LINK) { 1599 key->addr[sidx].addr32[0] = IPV6_ADDR_INT32_MLL; 1600 key->addr[sidx].addr32[1] = 0; 1601 key->addr[sidx].addr32[2] = 0; 1602 key->addr[sidx].addr32[3] = IPV6_ADDR_INT32_ONE; 1603 saddr = NULL; /* overwritten */ 1604 } 1605 } 1606 copy: 1607 #endif 1608 if (saddr) 1609 PF_ACPY(&key->addr[sidx], saddr, pd->af); 1610 if (daddr) 1611 PF_ACPY(&key->addr[didx], daddr, pd->af); 1612 1613 return (0); 1614 } 1615 1616 struct pf_state_key * 1617 pf_state_key_setup(struct pf_pdesc *pd, struct mbuf *m, int off, 1618 struct pf_addr *saddr, struct pf_addr *daddr, u_int16_t sport, 1619 u_int16_t dport) 1620 { 1621 struct pf_state_key *sk; 1622 1623 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1624 if (sk == NULL) 1625 return (NULL); 1626 1627 if (pf_state_key_addr_setup(pd, m, off, (struct pf_state_key_cmp *)sk, 1628 pd->sidx, pd->src, pd->didx, pd->dst, 0)) { 1629 uma_zfree(V_pf_state_key_z, sk); 1630 return (NULL); 1631 } 1632 1633 sk->port[pd->sidx] = sport; 1634 sk->port[pd->didx] = dport; 1635 sk->proto = pd->proto; 1636 sk->af = pd->af; 1637 1638 return (sk); 1639 } 1640 1641 struct pf_state_key * 1642 pf_state_key_clone(const struct pf_state_key *orig) 1643 { 1644 struct pf_state_key *sk; 1645 1646 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1647 if (sk == NULL) 1648 return (NULL); 1649 1650 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1651 1652 return (sk); 1653 } 1654 1655 int 1656 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1657 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1658 { 1659 struct pf_idhash *ih; 1660 struct pf_kstate *cur; 1661 int error; 1662 1663 NET_EPOCH_ASSERT(); 1664 1665 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1666 ("%s: sks not pristine", __func__)); 1667 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1668 ("%s: skw not pristine", __func__)); 1669 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1670 1671 s->kif = kif; 1672 s->orig_kif = orig_kif; 1673 1674 if (s->id == 0 && s->creatorid == 0) { 1675 s->id = alloc_unr64(&V_pf_stateid); 1676 s->id = htobe64(s->id); 1677 s->creatorid = V_pf_status.hostid; 1678 } 1679 1680 /* Returns with ID locked on success. */ 1681 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1682 return (error); 1683 1684 ih = &V_pf_idhash[PF_IDHASH(s)]; 1685 PF_HASHROW_ASSERT(ih); 1686 LIST_FOREACH(cur, &ih->states, entry) 1687 if (cur->id == s->id && cur->creatorid == s->creatorid) 1688 break; 1689 1690 if (cur != NULL) { 1691 s->timeout = PFTM_UNLINKED; 1692 PF_HASHROW_UNLOCK(ih); 1693 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1694 printf("pf: state ID collision: " 1695 "id: %016llx creatorid: %08x\n", 1696 (unsigned long long)be64toh(s->id), 1697 ntohl(s->creatorid)); 1698 } 1699 pf_detach_state(s); 1700 return (EEXIST); 1701 } 1702 LIST_INSERT_HEAD(&ih->states, s, entry); 1703 /* One for keys, one for ID hash. */ 1704 refcount_init(&s->refs, 2); 1705 1706 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1707 if (V_pfsync_insert_state_ptr != NULL) 1708 V_pfsync_insert_state_ptr(s); 1709 1710 /* Returns locked. */ 1711 return (0); 1712 } 1713 1714 /* 1715 * Find state by ID: returns with locked row on success. 1716 */ 1717 struct pf_kstate * 1718 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1719 { 1720 struct pf_idhash *ih; 1721 struct pf_kstate *s; 1722 1723 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1724 1725 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))]; 1726 1727 PF_HASHROW_LOCK(ih); 1728 LIST_FOREACH(s, &ih->states, entry) 1729 if (s->id == id && s->creatorid == creatorid) 1730 break; 1731 1732 if (s == NULL) 1733 PF_HASHROW_UNLOCK(ih); 1734 1735 return (s); 1736 } 1737 1738 /* 1739 * Find state by key. 1740 * Returns with ID hash slot locked on success. 1741 */ 1742 static struct pf_kstate * 1743 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key, 1744 u_int dir) 1745 { 1746 struct pf_keyhash *kh; 1747 struct pf_state_key *sk; 1748 struct pf_kstate *s; 1749 int idx; 1750 1751 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1752 1753 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1754 1755 PF_HASHROW_LOCK(kh); 1756 LIST_FOREACH(sk, &kh->keys, entry) 1757 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1758 break; 1759 if (sk == NULL) { 1760 PF_HASHROW_UNLOCK(kh); 1761 return (NULL); 1762 } 1763 1764 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1765 1766 /* List is sorted, if-bound states before floating ones. */ 1767 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1768 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) { 1769 PF_STATE_LOCK(s); 1770 PF_HASHROW_UNLOCK(kh); 1771 if (__predict_false(s->timeout >= PFTM_MAX)) { 1772 /* 1773 * State is either being processed by 1774 * pf_unlink_state() in an other thread, or 1775 * is scheduled for immediate expiry. 1776 */ 1777 PF_STATE_UNLOCK(s); 1778 return (NULL); 1779 } 1780 return (s); 1781 } 1782 PF_HASHROW_UNLOCK(kh); 1783 1784 return (NULL); 1785 } 1786 1787 /* 1788 * Returns with ID hash slot locked on success. 1789 */ 1790 struct pf_kstate * 1791 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more) 1792 { 1793 struct pf_keyhash *kh; 1794 struct pf_state_key *sk; 1795 struct pf_kstate *s, *ret = NULL; 1796 int idx, inout = 0; 1797 1798 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1799 1800 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1801 1802 PF_HASHROW_LOCK(kh); 1803 LIST_FOREACH(sk, &kh->keys, entry) 1804 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1805 break; 1806 if (sk == NULL) { 1807 PF_HASHROW_UNLOCK(kh); 1808 return (NULL); 1809 } 1810 switch (dir) { 1811 case PF_IN: 1812 idx = PF_SK_WIRE; 1813 break; 1814 case PF_OUT: 1815 idx = PF_SK_STACK; 1816 break; 1817 case PF_INOUT: 1818 idx = PF_SK_WIRE; 1819 inout = 1; 1820 break; 1821 default: 1822 panic("%s: dir %u", __func__, dir); 1823 } 1824 second_run: 1825 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1826 if (more == NULL) { 1827 PF_STATE_LOCK(s); 1828 PF_HASHROW_UNLOCK(kh); 1829 return (s); 1830 } 1831 1832 if (ret) 1833 (*more)++; 1834 else { 1835 ret = s; 1836 PF_STATE_LOCK(s); 1837 } 1838 } 1839 if (inout == 1) { 1840 inout = 0; 1841 idx = PF_SK_STACK; 1842 goto second_run; 1843 } 1844 PF_HASHROW_UNLOCK(kh); 1845 1846 return (ret); 1847 } 1848 1849 /* 1850 * FIXME 1851 * This routine is inefficient -- locks the state only to unlock immediately on 1852 * return. 1853 * It is racy -- after the state is unlocked nothing stops other threads from 1854 * removing it. 1855 */ 1856 bool 1857 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir) 1858 { 1859 struct pf_kstate *s; 1860 1861 s = pf_find_state_all(key, dir, NULL); 1862 if (s != NULL) { 1863 PF_STATE_UNLOCK(s); 1864 return (true); 1865 } 1866 return (false); 1867 } 1868 1869 struct pf_udp_mapping * 1870 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port, 1871 struct pf_addr *nat_addr, uint16_t nat_port) 1872 { 1873 struct pf_udp_mapping *mapping; 1874 1875 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO); 1876 if (mapping == NULL) 1877 return (NULL); 1878 PF_ACPY(&mapping->endpoints[0].addr, src_addr, af); 1879 mapping->endpoints[0].port = src_port; 1880 mapping->endpoints[0].af = af; 1881 mapping->endpoints[0].mapping = mapping; 1882 PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af); 1883 mapping->endpoints[1].port = nat_port; 1884 mapping->endpoints[1].af = af; 1885 mapping->endpoints[1].mapping = mapping; 1886 refcount_init(&mapping->refs, 1); 1887 return (mapping); 1888 } 1889 1890 int 1891 pf_udp_mapping_insert(struct pf_udp_mapping *mapping) 1892 { 1893 struct pf_udpendpointhash *h0, *h1; 1894 struct pf_udp_endpoint *endpoint; 1895 int ret = EEXIST; 1896 1897 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 1898 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 1899 if (h0 == h1) { 1900 PF_HASHROW_LOCK(h0); 1901 } else if (h0 < h1) { 1902 PF_HASHROW_LOCK(h0); 1903 PF_HASHROW_LOCK(h1); 1904 } else { 1905 PF_HASHROW_LOCK(h1); 1906 PF_HASHROW_LOCK(h0); 1907 } 1908 1909 LIST_FOREACH(endpoint, &h0->endpoints, entry) { 1910 if (bcmp(endpoint, &mapping->endpoints[0], 1911 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1912 break; 1913 } 1914 if (endpoint != NULL) 1915 goto cleanup; 1916 LIST_FOREACH(endpoint, &h1->endpoints, entry) { 1917 if (bcmp(endpoint, &mapping->endpoints[1], 1918 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1919 break; 1920 } 1921 if (endpoint != NULL) 1922 goto cleanup; 1923 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry); 1924 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry); 1925 ret = 0; 1926 1927 cleanup: 1928 if (h0 != h1) { 1929 PF_HASHROW_UNLOCK(h0); 1930 PF_HASHROW_UNLOCK(h1); 1931 } else { 1932 PF_HASHROW_UNLOCK(h0); 1933 } 1934 return (ret); 1935 } 1936 1937 void 1938 pf_udp_mapping_release(struct pf_udp_mapping *mapping) 1939 { 1940 /* refcount is synchronized on the source endpoint's row lock */ 1941 struct pf_udpendpointhash *h0, *h1; 1942 1943 if (mapping == NULL) 1944 return; 1945 1946 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 1947 PF_HASHROW_LOCK(h0); 1948 if (refcount_release(&mapping->refs)) { 1949 LIST_REMOVE(&mapping->endpoints[0], entry); 1950 PF_HASHROW_UNLOCK(h0); 1951 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 1952 PF_HASHROW_LOCK(h1); 1953 LIST_REMOVE(&mapping->endpoints[1], entry); 1954 PF_HASHROW_UNLOCK(h1); 1955 1956 uma_zfree(V_pf_udp_mapping_z, mapping); 1957 } else { 1958 PF_HASHROW_UNLOCK(h0); 1959 } 1960 } 1961 1962 1963 struct pf_udp_mapping * 1964 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key) 1965 { 1966 struct pf_udpendpointhash *uh; 1967 struct pf_udp_endpoint *endpoint; 1968 1969 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)]; 1970 1971 PF_HASHROW_LOCK(uh); 1972 LIST_FOREACH(endpoint, &uh->endpoints, entry) { 1973 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 && 1974 bcmp(endpoint, &endpoint->mapping->endpoints[0], 1975 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1976 break; 1977 } 1978 if (endpoint == NULL) { 1979 PF_HASHROW_UNLOCK(uh); 1980 return (NULL); 1981 } 1982 refcount_acquire(&endpoint->mapping->refs); 1983 PF_HASHROW_UNLOCK(uh); 1984 return (endpoint->mapping); 1985 } 1986 /* END state table stuff */ 1987 1988 static void 1989 pf_send(struct pf_send_entry *pfse) 1990 { 1991 1992 PF_SENDQ_LOCK(); 1993 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1994 PF_SENDQ_UNLOCK(); 1995 swi_sched(V_pf_swi_cookie, 0); 1996 } 1997 1998 static bool 1999 pf_isforlocal(struct mbuf *m, int af) 2000 { 2001 switch (af) { 2002 #ifdef INET 2003 case AF_INET: { 2004 struct ip *ip = mtod(m, struct ip *); 2005 2006 return (in_localip(ip->ip_dst)); 2007 } 2008 #endif 2009 #ifdef INET6 2010 case AF_INET6: { 2011 struct ip6_hdr *ip6; 2012 struct in6_ifaddr *ia; 2013 ip6 = mtod(m, struct ip6_hdr *); 2014 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 2015 if (ia == NULL) 2016 return (false); 2017 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 2018 } 2019 #endif 2020 default: 2021 panic("Unsupported af %d", af); 2022 } 2023 2024 return (false); 2025 } 2026 2027 int 2028 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type, 2029 int *icmp_dir, int *multi, u_int16_t *virtual_id, u_int16_t *virtual_type) 2030 { 2031 /* 2032 * ICMP types marked with PF_OUT are typically responses to 2033 * PF_IN, and will match states in the opposite direction. 2034 * PF_IN ICMP types need to match a state with that type. 2035 */ 2036 *icmp_dir = PF_OUT; 2037 *multi = PF_ICMP_MULTI_LINK; 2038 /* Queries (and responses) */ 2039 switch (pd->af) { 2040 #ifdef INET 2041 case AF_INET: 2042 switch (type) { 2043 case ICMP_ECHO: 2044 *icmp_dir = PF_IN; 2045 case ICMP_ECHOREPLY: 2046 *virtual_type = ICMP_ECHO; 2047 *virtual_id = pd->hdr.icmp.icmp_id; 2048 break; 2049 2050 case ICMP_TSTAMP: 2051 *icmp_dir = PF_IN; 2052 case ICMP_TSTAMPREPLY: 2053 *virtual_type = ICMP_TSTAMP; 2054 *virtual_id = pd->hdr.icmp.icmp_id; 2055 break; 2056 2057 case ICMP_IREQ: 2058 *icmp_dir = PF_IN; 2059 case ICMP_IREQREPLY: 2060 *virtual_type = ICMP_IREQ; 2061 *virtual_id = pd->hdr.icmp.icmp_id; 2062 break; 2063 2064 case ICMP_MASKREQ: 2065 *icmp_dir = PF_IN; 2066 case ICMP_MASKREPLY: 2067 *virtual_type = ICMP_MASKREQ; 2068 *virtual_id = pd->hdr.icmp.icmp_id; 2069 break; 2070 2071 case ICMP_IPV6_WHEREAREYOU: 2072 *icmp_dir = PF_IN; 2073 case ICMP_IPV6_IAMHERE: 2074 *virtual_type = ICMP_IPV6_WHEREAREYOU; 2075 *virtual_id = 0; /* Nothing sane to match on! */ 2076 break; 2077 2078 case ICMP_MOBILE_REGREQUEST: 2079 *icmp_dir = PF_IN; 2080 case ICMP_MOBILE_REGREPLY: 2081 *virtual_type = ICMP_MOBILE_REGREQUEST; 2082 *virtual_id = 0; /* Nothing sane to match on! */ 2083 break; 2084 2085 case ICMP_ROUTERSOLICIT: 2086 *icmp_dir = PF_IN; 2087 case ICMP_ROUTERADVERT: 2088 *virtual_type = ICMP_ROUTERSOLICIT; 2089 *virtual_id = 0; /* Nothing sane to match on! */ 2090 break; 2091 2092 /* These ICMP types map to other connections */ 2093 case ICMP_UNREACH: 2094 case ICMP_SOURCEQUENCH: 2095 case ICMP_REDIRECT: 2096 case ICMP_TIMXCEED: 2097 case ICMP_PARAMPROB: 2098 /* These will not be used, but set them anyway */ 2099 *icmp_dir = PF_IN; 2100 *virtual_type = type; 2101 *virtual_id = 0; 2102 HTONS(*virtual_type); 2103 return (1); /* These types match to another state */ 2104 2105 /* 2106 * All remaining ICMP types get their own states, 2107 * and will only match in one direction. 2108 */ 2109 default: 2110 *icmp_dir = PF_IN; 2111 *virtual_type = type; 2112 *virtual_id = 0; 2113 break; 2114 } 2115 break; 2116 #endif /* INET */ 2117 #ifdef INET6 2118 case AF_INET6: 2119 switch (type) { 2120 case ICMP6_ECHO_REQUEST: 2121 *icmp_dir = PF_IN; 2122 case ICMP6_ECHO_REPLY: 2123 *virtual_type = ICMP6_ECHO_REQUEST; 2124 *virtual_id = pd->hdr.icmp6.icmp6_id; 2125 break; 2126 2127 case MLD_LISTENER_QUERY: 2128 case MLD_LISTENER_REPORT: { 2129 /* 2130 * Listener Report can be sent by clients 2131 * without an associated Listener Query. 2132 * In addition to that, when Report is sent as a 2133 * reply to a Query its source and destination 2134 * address are different. 2135 */ 2136 *icmp_dir = PF_IN; 2137 *virtual_type = MLD_LISTENER_QUERY; 2138 *virtual_id = 0; 2139 break; 2140 } 2141 case MLD_MTRACE: 2142 *icmp_dir = PF_IN; 2143 case MLD_MTRACE_RESP: 2144 *virtual_type = MLD_MTRACE; 2145 *virtual_id = 0; /* Nothing sane to match on! */ 2146 break; 2147 2148 case ND_NEIGHBOR_SOLICIT: 2149 *icmp_dir = PF_IN; 2150 case ND_NEIGHBOR_ADVERT: { 2151 *virtual_type = ND_NEIGHBOR_SOLICIT; 2152 *virtual_id = 0; 2153 break; 2154 } 2155 2156 /* 2157 * These ICMP types map to other connections. 2158 * ND_REDIRECT can't be in this list because the triggering 2159 * packet header is optional. 2160 */ 2161 case ICMP6_DST_UNREACH: 2162 case ICMP6_PACKET_TOO_BIG: 2163 case ICMP6_TIME_EXCEEDED: 2164 case ICMP6_PARAM_PROB: 2165 /* These will not be used, but set them anyway */ 2166 *icmp_dir = PF_IN; 2167 *virtual_type = type; 2168 *virtual_id = 0; 2169 HTONS(*virtual_type); 2170 return (1); /* These types match to another state */ 2171 /* 2172 * All remaining ICMP6 types get their own states, 2173 * and will only match in one direction. 2174 */ 2175 default: 2176 *icmp_dir = PF_IN; 2177 *virtual_type = type; 2178 *virtual_id = 0; 2179 break; 2180 } 2181 break; 2182 #endif /* INET6 */ 2183 default: 2184 *icmp_dir = PF_IN; 2185 *virtual_type = type; 2186 *virtual_id = 0; 2187 break; 2188 } 2189 HTONS(*virtual_type); 2190 return (0); /* These types match to their own state */ 2191 } 2192 2193 void 2194 pf_intr(void *v) 2195 { 2196 struct epoch_tracker et; 2197 struct pf_send_head queue; 2198 struct pf_send_entry *pfse, *next; 2199 2200 CURVNET_SET((struct vnet *)v); 2201 2202 PF_SENDQ_LOCK(); 2203 queue = V_pf_sendqueue; 2204 STAILQ_INIT(&V_pf_sendqueue); 2205 PF_SENDQ_UNLOCK(); 2206 2207 NET_EPOCH_ENTER(et); 2208 2209 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 2210 switch (pfse->pfse_type) { 2211 #ifdef INET 2212 case PFSE_IP: { 2213 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 2214 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 2215 pfse->pfse_m->m_pkthdr.csum_flags |= 2216 CSUM_IP_VALID | CSUM_IP_CHECKED; 2217 ip_input(pfse->pfse_m); 2218 } else { 2219 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2220 NULL); 2221 } 2222 break; 2223 } 2224 case PFSE_ICMP: 2225 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 2226 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 2227 break; 2228 #endif /* INET */ 2229 #ifdef INET6 2230 case PFSE_IP6: 2231 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 2232 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 2233 ip6_input(pfse->pfse_m); 2234 } else { 2235 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2236 NULL, NULL); 2237 } 2238 break; 2239 case PFSE_ICMP6: 2240 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 2241 pfse->icmpopts.code, pfse->icmpopts.mtu); 2242 break; 2243 #endif /* INET6 */ 2244 default: 2245 panic("%s: unknown type", __func__); 2246 } 2247 free(pfse, M_PFTEMP); 2248 } 2249 NET_EPOCH_EXIT(et); 2250 CURVNET_RESTORE(); 2251 } 2252 2253 #define pf_purge_thread_period (hz / 10) 2254 2255 #ifdef PF_WANT_32_TO_64_COUNTER 2256 static void 2257 pf_status_counter_u64_periodic(void) 2258 { 2259 2260 PF_RULES_RASSERT(); 2261 2262 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 2263 return; 2264 } 2265 2266 for (int i = 0; i < FCNT_MAX; i++) { 2267 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 2268 } 2269 } 2270 2271 static void 2272 pf_kif_counter_u64_periodic(void) 2273 { 2274 struct pfi_kkif *kif; 2275 size_t r, run; 2276 2277 PF_RULES_RASSERT(); 2278 2279 if (__predict_false(V_pf_allkifcount == 0)) { 2280 return; 2281 } 2282 2283 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2284 return; 2285 } 2286 2287 run = V_pf_allkifcount / 10; 2288 if (run < 5) 2289 run = 5; 2290 2291 for (r = 0; r < run; r++) { 2292 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 2293 if (kif == NULL) { 2294 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2295 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 2296 break; 2297 } 2298 2299 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2300 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 2301 2302 for (int i = 0; i < 2; i++) { 2303 for (int j = 0; j < 2; j++) { 2304 for (int k = 0; k < 2; k++) { 2305 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 2306 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 2307 } 2308 } 2309 } 2310 } 2311 } 2312 2313 static void 2314 pf_rule_counter_u64_periodic(void) 2315 { 2316 struct pf_krule *rule; 2317 size_t r, run; 2318 2319 PF_RULES_RASSERT(); 2320 2321 if (__predict_false(V_pf_allrulecount == 0)) { 2322 return; 2323 } 2324 2325 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2326 return; 2327 } 2328 2329 run = V_pf_allrulecount / 10; 2330 if (run < 5) 2331 run = 5; 2332 2333 for (r = 0; r < run; r++) { 2334 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 2335 if (rule == NULL) { 2336 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2337 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 2338 break; 2339 } 2340 2341 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2342 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 2343 2344 pf_counter_u64_periodic(&rule->evaluations); 2345 for (int i = 0; i < 2; i++) { 2346 pf_counter_u64_periodic(&rule->packets[i]); 2347 pf_counter_u64_periodic(&rule->bytes[i]); 2348 } 2349 } 2350 } 2351 2352 static void 2353 pf_counter_u64_periodic_main(void) 2354 { 2355 PF_RULES_RLOCK_TRACKER; 2356 2357 V_pf_counter_periodic_iter++; 2358 2359 PF_RULES_RLOCK(); 2360 pf_counter_u64_critical_enter(); 2361 pf_status_counter_u64_periodic(); 2362 pf_kif_counter_u64_periodic(); 2363 pf_rule_counter_u64_periodic(); 2364 pf_counter_u64_critical_exit(); 2365 PF_RULES_RUNLOCK(); 2366 } 2367 #else 2368 #define pf_counter_u64_periodic_main() do { } while (0) 2369 #endif 2370 2371 void 2372 pf_purge_thread(void *unused __unused) 2373 { 2374 struct epoch_tracker et; 2375 2376 VNET_ITERATOR_DECL(vnet_iter); 2377 2378 sx_xlock(&pf_end_lock); 2379 while (pf_end_threads == 0) { 2380 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 2381 2382 VNET_LIST_RLOCK(); 2383 NET_EPOCH_ENTER(et); 2384 VNET_FOREACH(vnet_iter) { 2385 CURVNET_SET(vnet_iter); 2386 2387 /* Wait until V_pf_default_rule is initialized. */ 2388 if (V_pf_vnet_active == 0) { 2389 CURVNET_RESTORE(); 2390 continue; 2391 } 2392 2393 pf_counter_u64_periodic_main(); 2394 2395 /* 2396 * Process 1/interval fraction of the state 2397 * table every run. 2398 */ 2399 V_pf_purge_idx = 2400 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask / 2401 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 2402 2403 /* 2404 * Purge other expired types every 2405 * PFTM_INTERVAL seconds. 2406 */ 2407 if (V_pf_purge_idx == 0) { 2408 /* 2409 * Order is important: 2410 * - states and src nodes reference rules 2411 * - states and rules reference kifs 2412 */ 2413 pf_purge_expired_fragments(); 2414 pf_purge_expired_src_nodes(); 2415 pf_purge_unlinked_rules(); 2416 pfi_kkif_purge(); 2417 } 2418 CURVNET_RESTORE(); 2419 } 2420 NET_EPOCH_EXIT(et); 2421 VNET_LIST_RUNLOCK(); 2422 } 2423 2424 pf_end_threads++; 2425 sx_xunlock(&pf_end_lock); 2426 kproc_exit(0); 2427 } 2428 2429 void 2430 pf_unload_vnet_purge(void) 2431 { 2432 2433 /* 2434 * To cleanse up all kifs and rules we need 2435 * two runs: first one clears reference flags, 2436 * then pf_purge_expired_states() doesn't 2437 * raise them, and then second run frees. 2438 */ 2439 pf_purge_unlinked_rules(); 2440 pfi_kkif_purge(); 2441 2442 /* 2443 * Now purge everything. 2444 */ 2445 pf_purge_expired_states(0, V_pf_hashmask); 2446 pf_purge_fragments(UINT_MAX); 2447 pf_purge_expired_src_nodes(); 2448 2449 /* 2450 * Now all kifs & rules should be unreferenced, 2451 * thus should be successfully freed. 2452 */ 2453 pf_purge_unlinked_rules(); 2454 pfi_kkif_purge(); 2455 } 2456 2457 u_int32_t 2458 pf_state_expires(const struct pf_kstate *state) 2459 { 2460 u_int32_t timeout; 2461 u_int32_t start; 2462 u_int32_t end; 2463 u_int32_t states; 2464 2465 /* handle all PFTM_* > PFTM_MAX here */ 2466 if (state->timeout == PFTM_PURGE) 2467 return (time_uptime); 2468 KASSERT(state->timeout != PFTM_UNLINKED, 2469 ("pf_state_expires: timeout == PFTM_UNLINKED")); 2470 KASSERT((state->timeout < PFTM_MAX), 2471 ("pf_state_expires: timeout > PFTM_MAX")); 2472 timeout = state->rule.ptr->timeout[state->timeout]; 2473 if (!timeout) 2474 timeout = V_pf_default_rule.timeout[state->timeout]; 2475 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 2476 if (start && state->rule.ptr != &V_pf_default_rule) { 2477 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 2478 states = counter_u64_fetch(state->rule.ptr->states_cur); 2479 } else { 2480 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 2481 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 2482 states = V_pf_status.states; 2483 } 2484 if (end && states > start && start < end) { 2485 if (states < end) { 2486 timeout = (u_int64_t)timeout * (end - states) / 2487 (end - start); 2488 return ((state->expire / 1000) + timeout); 2489 } 2490 else 2491 return (time_uptime); 2492 } 2493 return ((state->expire / 1000) + timeout); 2494 } 2495 2496 void 2497 pf_purge_expired_src_nodes(void) 2498 { 2499 struct pf_ksrc_node_list freelist; 2500 struct pf_srchash *sh; 2501 struct pf_ksrc_node *cur, *next; 2502 int i; 2503 2504 LIST_INIT(&freelist); 2505 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 2506 PF_HASHROW_LOCK(sh); 2507 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 2508 if (cur->states == 0 && cur->expire <= time_uptime) { 2509 pf_unlink_src_node(cur); 2510 LIST_INSERT_HEAD(&freelist, cur, entry); 2511 } else if (cur->rule.ptr != NULL) 2512 cur->rule.ptr->rule_ref |= PFRULE_REFS; 2513 PF_HASHROW_UNLOCK(sh); 2514 } 2515 2516 pf_free_src_nodes(&freelist); 2517 2518 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2519 } 2520 2521 static void 2522 pf_src_tree_remove_state(struct pf_kstate *s) 2523 { 2524 struct pf_ksrc_node *sn; 2525 uint32_t timeout; 2526 2527 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 2528 s->rule.ptr->timeout[PFTM_SRC_NODE] : 2529 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2530 2531 if (s->src_node != NULL) { 2532 sn = s->src_node; 2533 PF_SRC_NODE_LOCK(sn); 2534 if (s->src.tcp_est) 2535 --sn->conn; 2536 if (--sn->states == 0) 2537 sn->expire = time_uptime + timeout; 2538 PF_SRC_NODE_UNLOCK(sn); 2539 } 2540 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 2541 sn = s->nat_src_node; 2542 PF_SRC_NODE_LOCK(sn); 2543 if (--sn->states == 0) 2544 sn->expire = time_uptime + timeout; 2545 PF_SRC_NODE_UNLOCK(sn); 2546 } 2547 s->src_node = s->nat_src_node = NULL; 2548 } 2549 2550 /* 2551 * Unlink and potentilly free a state. Function may be 2552 * called with ID hash row locked, but always returns 2553 * unlocked, since it needs to go through key hash locking. 2554 */ 2555 int 2556 pf_unlink_state(struct pf_kstate *s) 2557 { 2558 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2559 2560 NET_EPOCH_ASSERT(); 2561 PF_HASHROW_ASSERT(ih); 2562 2563 if (s->timeout == PFTM_UNLINKED) { 2564 /* 2565 * State is being processed 2566 * by pf_unlink_state() in 2567 * an other thread. 2568 */ 2569 PF_HASHROW_UNLOCK(ih); 2570 return (0); /* XXXGL: undefined actually */ 2571 } 2572 2573 if (s->src.state == PF_TCPS_PROXY_DST) { 2574 /* XXX wire key the right one? */ 2575 pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af, 2576 &s->key[PF_SK_WIRE]->addr[1], 2577 &s->key[PF_SK_WIRE]->addr[0], 2578 s->key[PF_SK_WIRE]->port[1], 2579 s->key[PF_SK_WIRE]->port[0], 2580 s->src.seqhi, s->src.seqlo + 1, 2581 TH_RST|TH_ACK, 0, 0, 0, true, s->tag, 0, s->act.rtableid); 2582 } 2583 2584 LIST_REMOVE(s, entry); 2585 pf_src_tree_remove_state(s); 2586 2587 if (V_pfsync_delete_state_ptr != NULL) 2588 V_pfsync_delete_state_ptr(s); 2589 2590 STATE_DEC_COUNTERS(s); 2591 2592 s->timeout = PFTM_UNLINKED; 2593 2594 /* Ensure we remove it from the list of halfopen states, if needed. */ 2595 if (s->key[PF_SK_STACK] != NULL && 2596 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2597 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2598 2599 PF_HASHROW_UNLOCK(ih); 2600 2601 pf_detach_state(s); 2602 2603 pf_udp_mapping_release(s->udp_mapping); 2604 2605 /* pf_state_insert() initialises refs to 2 */ 2606 return (pf_release_staten(s, 2)); 2607 } 2608 2609 struct pf_kstate * 2610 pf_alloc_state(int flags) 2611 { 2612 2613 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2614 } 2615 2616 void 2617 pf_free_state(struct pf_kstate *cur) 2618 { 2619 struct pf_krule_item *ri; 2620 2621 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2622 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2623 cur->timeout)); 2624 2625 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2626 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2627 free(ri, M_PF_RULE_ITEM); 2628 } 2629 2630 pf_normalize_tcp_cleanup(cur); 2631 uma_zfree(V_pf_state_z, cur); 2632 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2633 } 2634 2635 /* 2636 * Called only from pf_purge_thread(), thus serialized. 2637 */ 2638 static u_int 2639 pf_purge_expired_states(u_int i, int maxcheck) 2640 { 2641 struct pf_idhash *ih; 2642 struct pf_kstate *s; 2643 struct pf_krule_item *mrm; 2644 size_t count __unused; 2645 2646 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2647 2648 /* 2649 * Go through hash and unlink states that expire now. 2650 */ 2651 while (maxcheck > 0) { 2652 count = 0; 2653 ih = &V_pf_idhash[i]; 2654 2655 /* only take the lock if we expect to do work */ 2656 if (!LIST_EMPTY(&ih->states)) { 2657 relock: 2658 PF_HASHROW_LOCK(ih); 2659 LIST_FOREACH(s, &ih->states, entry) { 2660 if (pf_state_expires(s) <= time_uptime) { 2661 V_pf_status.states -= 2662 pf_unlink_state(s); 2663 goto relock; 2664 } 2665 s->rule.ptr->rule_ref |= PFRULE_REFS; 2666 if (s->nat_rule.ptr != NULL) 2667 s->nat_rule.ptr->rule_ref |= PFRULE_REFS; 2668 if (s->anchor.ptr != NULL) 2669 s->anchor.ptr->rule_ref |= PFRULE_REFS; 2670 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2671 SLIST_FOREACH(mrm, &s->match_rules, entry) 2672 mrm->r->rule_ref |= PFRULE_REFS; 2673 if (s->rt_kif) 2674 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2675 count++; 2676 } 2677 PF_HASHROW_UNLOCK(ih); 2678 } 2679 2680 SDT_PROBE2(pf, purge, state, rowcount, i, count); 2681 2682 /* Return when we hit end of hash. */ 2683 if (++i > V_pf_hashmask) { 2684 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2685 return (0); 2686 } 2687 2688 maxcheck--; 2689 } 2690 2691 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2692 2693 return (i); 2694 } 2695 2696 static void 2697 pf_purge_unlinked_rules(void) 2698 { 2699 struct pf_krulequeue tmpq; 2700 struct pf_krule *r, *r1; 2701 2702 /* 2703 * If we have overloading task pending, then we'd 2704 * better skip purging this time. There is a tiny 2705 * probability that overloading task references 2706 * an already unlinked rule. 2707 */ 2708 PF_OVERLOADQ_LOCK(); 2709 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2710 PF_OVERLOADQ_UNLOCK(); 2711 return; 2712 } 2713 PF_OVERLOADQ_UNLOCK(); 2714 2715 /* 2716 * Do naive mark-and-sweep garbage collecting of old rules. 2717 * Reference flag is raised by pf_purge_expired_states() 2718 * and pf_purge_expired_src_nodes(). 2719 * 2720 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2721 * use a temporary queue. 2722 */ 2723 TAILQ_INIT(&tmpq); 2724 PF_UNLNKDRULES_LOCK(); 2725 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2726 if (!(r->rule_ref & PFRULE_REFS)) { 2727 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2728 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2729 } else 2730 r->rule_ref &= ~PFRULE_REFS; 2731 } 2732 PF_UNLNKDRULES_UNLOCK(); 2733 2734 if (!TAILQ_EMPTY(&tmpq)) { 2735 PF_CONFIG_LOCK(); 2736 PF_RULES_WLOCK(); 2737 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2738 TAILQ_REMOVE(&tmpq, r, entries); 2739 pf_free_rule(r); 2740 } 2741 PF_RULES_WUNLOCK(); 2742 PF_CONFIG_UNLOCK(); 2743 } 2744 } 2745 2746 void 2747 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2748 { 2749 switch (af) { 2750 #ifdef INET 2751 case AF_INET: { 2752 u_int32_t a = ntohl(addr->addr32[0]); 2753 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2754 (a>>8)&255, a&255); 2755 if (p) { 2756 p = ntohs(p); 2757 printf(":%u", p); 2758 } 2759 break; 2760 } 2761 #endif /* INET */ 2762 #ifdef INET6 2763 case AF_INET6: { 2764 u_int16_t b; 2765 u_int8_t i, curstart, curend, maxstart, maxend; 2766 curstart = curend = maxstart = maxend = 255; 2767 for (i = 0; i < 8; i++) { 2768 if (!addr->addr16[i]) { 2769 if (curstart == 255) 2770 curstart = i; 2771 curend = i; 2772 } else { 2773 if ((curend - curstart) > 2774 (maxend - maxstart)) { 2775 maxstart = curstart; 2776 maxend = curend; 2777 } 2778 curstart = curend = 255; 2779 } 2780 } 2781 if ((curend - curstart) > 2782 (maxend - maxstart)) { 2783 maxstart = curstart; 2784 maxend = curend; 2785 } 2786 for (i = 0; i < 8; i++) { 2787 if (i >= maxstart && i <= maxend) { 2788 if (i == 0) 2789 printf(":"); 2790 if (i == maxend) 2791 printf(":"); 2792 } else { 2793 b = ntohs(addr->addr16[i]); 2794 printf("%x", b); 2795 if (i < 7) 2796 printf(":"); 2797 } 2798 } 2799 if (p) { 2800 p = ntohs(p); 2801 printf("[%u]", p); 2802 } 2803 break; 2804 } 2805 #endif /* INET6 */ 2806 } 2807 } 2808 2809 void 2810 pf_print_state(struct pf_kstate *s) 2811 { 2812 pf_print_state_parts(s, NULL, NULL); 2813 } 2814 2815 static void 2816 pf_print_state_parts(struct pf_kstate *s, 2817 struct pf_state_key *skwp, struct pf_state_key *sksp) 2818 { 2819 struct pf_state_key *skw, *sks; 2820 u_int8_t proto, dir; 2821 2822 /* Do our best to fill these, but they're skipped if NULL */ 2823 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2824 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2825 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2826 dir = s ? s->direction : 0; 2827 2828 switch (proto) { 2829 case IPPROTO_IPV4: 2830 printf("IPv4"); 2831 break; 2832 case IPPROTO_IPV6: 2833 printf("IPv6"); 2834 break; 2835 case IPPROTO_TCP: 2836 printf("TCP"); 2837 break; 2838 case IPPROTO_UDP: 2839 printf("UDP"); 2840 break; 2841 case IPPROTO_ICMP: 2842 printf("ICMP"); 2843 break; 2844 case IPPROTO_ICMPV6: 2845 printf("ICMPv6"); 2846 break; 2847 default: 2848 printf("%u", proto); 2849 break; 2850 } 2851 switch (dir) { 2852 case PF_IN: 2853 printf(" in"); 2854 break; 2855 case PF_OUT: 2856 printf(" out"); 2857 break; 2858 } 2859 if (skw) { 2860 printf(" wire: "); 2861 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2862 printf(" "); 2863 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2864 } 2865 if (sks) { 2866 printf(" stack: "); 2867 if (sks != skw) { 2868 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2869 printf(" "); 2870 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2871 } else 2872 printf("-"); 2873 } 2874 if (s) { 2875 if (proto == IPPROTO_TCP) { 2876 printf(" [lo=%u high=%u win=%u modulator=%u", 2877 s->src.seqlo, s->src.seqhi, 2878 s->src.max_win, s->src.seqdiff); 2879 if (s->src.wscale && s->dst.wscale) 2880 printf(" wscale=%u", 2881 s->src.wscale & PF_WSCALE_MASK); 2882 printf("]"); 2883 printf(" [lo=%u high=%u win=%u modulator=%u", 2884 s->dst.seqlo, s->dst.seqhi, 2885 s->dst.max_win, s->dst.seqdiff); 2886 if (s->src.wscale && s->dst.wscale) 2887 printf(" wscale=%u", 2888 s->dst.wscale & PF_WSCALE_MASK); 2889 printf("]"); 2890 } 2891 printf(" %u:%u", s->src.state, s->dst.state); 2892 } 2893 } 2894 2895 void 2896 pf_print_flags(u_int8_t f) 2897 { 2898 if (f) 2899 printf(" "); 2900 if (f & TH_FIN) 2901 printf("F"); 2902 if (f & TH_SYN) 2903 printf("S"); 2904 if (f & TH_RST) 2905 printf("R"); 2906 if (f & TH_PUSH) 2907 printf("P"); 2908 if (f & TH_ACK) 2909 printf("A"); 2910 if (f & TH_URG) 2911 printf("U"); 2912 if (f & TH_ECE) 2913 printf("E"); 2914 if (f & TH_CWR) 2915 printf("W"); 2916 } 2917 2918 #define PF_SET_SKIP_STEPS(i) \ 2919 do { \ 2920 while (head[i] != cur) { \ 2921 head[i]->skip[i].ptr = cur; \ 2922 head[i] = TAILQ_NEXT(head[i], entries); \ 2923 } \ 2924 } while (0) 2925 2926 void 2927 pf_calc_skip_steps(struct pf_krulequeue *rules) 2928 { 2929 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2930 int i; 2931 2932 cur = TAILQ_FIRST(rules); 2933 prev = cur; 2934 for (i = 0; i < PF_SKIP_COUNT; ++i) 2935 head[i] = cur; 2936 while (cur != NULL) { 2937 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2938 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2939 if (cur->direction != prev->direction) 2940 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2941 if (cur->af != prev->af) 2942 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2943 if (cur->proto != prev->proto) 2944 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2945 if (cur->src.neg != prev->src.neg || 2946 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2947 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2948 if (cur->src.port[0] != prev->src.port[0] || 2949 cur->src.port[1] != prev->src.port[1] || 2950 cur->src.port_op != prev->src.port_op) 2951 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2952 if (cur->dst.neg != prev->dst.neg || 2953 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2954 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2955 if (cur->dst.port[0] != prev->dst.port[0] || 2956 cur->dst.port[1] != prev->dst.port[1] || 2957 cur->dst.port_op != prev->dst.port_op) 2958 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2959 2960 prev = cur; 2961 cur = TAILQ_NEXT(cur, entries); 2962 } 2963 for (i = 0; i < PF_SKIP_COUNT; ++i) 2964 PF_SET_SKIP_STEPS(i); 2965 } 2966 2967 int 2968 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2969 { 2970 if (aw1->type != aw2->type) 2971 return (1); 2972 switch (aw1->type) { 2973 case PF_ADDR_ADDRMASK: 2974 case PF_ADDR_RANGE: 2975 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2976 return (1); 2977 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2978 return (1); 2979 return (0); 2980 case PF_ADDR_DYNIFTL: 2981 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2982 case PF_ADDR_NOROUTE: 2983 case PF_ADDR_URPFFAILED: 2984 return (0); 2985 case PF_ADDR_TABLE: 2986 return (aw1->p.tbl != aw2->p.tbl); 2987 default: 2988 printf("invalid address type: %d\n", aw1->type); 2989 return (1); 2990 } 2991 } 2992 2993 /** 2994 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2995 * header isn't always a full checksum. In some cases (i.e. output) it's a 2996 * pseudo-header checksum, which is a partial checksum over src/dst IP 2997 * addresses, protocol number and length. 2998 * 2999 * That means we have the following cases: 3000 * * Input or forwarding: we don't have TSO, the checksum fields are full 3001 * checksums, we need to update the checksum whenever we change anything. 3002 * * Output (i.e. the checksum is a pseudo-header checksum): 3003 * x The field being updated is src/dst address or affects the length of 3004 * the packet. We need to update the pseudo-header checksum (note that this 3005 * checksum is not ones' complement). 3006 * x Some other field is being modified (e.g. src/dst port numbers): We 3007 * don't have to update anything. 3008 **/ 3009 u_int16_t 3010 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 3011 { 3012 u_int32_t x; 3013 3014 x = cksum + old - new; 3015 x = (x + (x >> 16)) & 0xffff; 3016 3017 /* optimise: eliminate a branch when not udp */ 3018 if (udp && cksum == 0x0000) 3019 return cksum; 3020 if (udp && x == 0x0000) 3021 x = 0xffff; 3022 3023 return (u_int16_t)(x); 3024 } 3025 3026 static void 3027 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 3028 u_int8_t udp) 3029 { 3030 u_int16_t old = htons(hi ? (*f << 8) : *f); 3031 u_int16_t new = htons(hi ? ( v << 8) : v); 3032 3033 if (*f == v) 3034 return; 3035 3036 *f = v; 3037 3038 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3039 return; 3040 3041 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 3042 } 3043 3044 void 3045 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 3046 bool hi, u_int8_t udp) 3047 { 3048 u_int8_t *fb = (u_int8_t *)f; 3049 u_int8_t *vb = (u_int8_t *)&v; 3050 3051 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3052 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3053 } 3054 3055 void 3056 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 3057 bool hi, u_int8_t udp) 3058 { 3059 u_int8_t *fb = (u_int8_t *)f; 3060 u_int8_t *vb = (u_int8_t *)&v; 3061 3062 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3063 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3064 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3065 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3066 } 3067 3068 u_int16_t 3069 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 3070 u_int16_t new, u_int8_t udp) 3071 { 3072 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3073 return (cksum); 3074 3075 return (pf_cksum_fixup(cksum, old, new, udp)); 3076 } 3077 3078 static void 3079 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 3080 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 3081 sa_family_t af) 3082 { 3083 struct pf_addr ao; 3084 u_int16_t po = *p; 3085 3086 PF_ACPY(&ao, a, af); 3087 PF_ACPY(a, an, af); 3088 3089 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3090 *pc = ~*pc; 3091 3092 *p = pn; 3093 3094 switch (af) { 3095 #ifdef INET 3096 case AF_INET: 3097 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3098 ao.addr16[0], an->addr16[0], 0), 3099 ao.addr16[1], an->addr16[1], 0); 3100 *p = pn; 3101 3102 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 3103 ao.addr16[0], an->addr16[0], u), 3104 ao.addr16[1], an->addr16[1], u); 3105 3106 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 3107 break; 3108 #endif /* INET */ 3109 #ifdef INET6 3110 case AF_INET6: 3111 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3112 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3113 pf_cksum_fixup(pf_cksum_fixup(*pc, 3114 ao.addr16[0], an->addr16[0], u), 3115 ao.addr16[1], an->addr16[1], u), 3116 ao.addr16[2], an->addr16[2], u), 3117 ao.addr16[3], an->addr16[3], u), 3118 ao.addr16[4], an->addr16[4], u), 3119 ao.addr16[5], an->addr16[5], u), 3120 ao.addr16[6], an->addr16[6], u), 3121 ao.addr16[7], an->addr16[7], u); 3122 3123 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 3124 break; 3125 #endif /* INET6 */ 3126 } 3127 3128 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 3129 CSUM_DELAY_DATA_IPV6)) { 3130 *pc = ~*pc; 3131 if (! *pc) 3132 *pc = 0xffff; 3133 } 3134 } 3135 3136 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 3137 void 3138 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 3139 { 3140 u_int32_t ao; 3141 3142 memcpy(&ao, a, sizeof(ao)); 3143 memcpy(a, &an, sizeof(u_int32_t)); 3144 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 3145 ao % 65536, an % 65536, u); 3146 } 3147 3148 void 3149 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 3150 { 3151 u_int32_t ao; 3152 3153 memcpy(&ao, a, sizeof(ao)); 3154 memcpy(a, &an, sizeof(u_int32_t)); 3155 3156 *c = pf_proto_cksum_fixup(m, 3157 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 3158 ao % 65536, an % 65536, udp); 3159 } 3160 3161 #ifdef INET6 3162 static void 3163 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 3164 { 3165 struct pf_addr ao; 3166 3167 PF_ACPY(&ao, a, AF_INET6); 3168 PF_ACPY(a, an, AF_INET6); 3169 3170 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3171 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3172 pf_cksum_fixup(pf_cksum_fixup(*c, 3173 ao.addr16[0], an->addr16[0], u), 3174 ao.addr16[1], an->addr16[1], u), 3175 ao.addr16[2], an->addr16[2], u), 3176 ao.addr16[3], an->addr16[3], u), 3177 ao.addr16[4], an->addr16[4], u), 3178 ao.addr16[5], an->addr16[5], u), 3179 ao.addr16[6], an->addr16[6], u), 3180 ao.addr16[7], an->addr16[7], u); 3181 } 3182 #endif /* INET6 */ 3183 3184 static void 3185 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 3186 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 3187 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 3188 { 3189 struct pf_addr oia, ooa; 3190 3191 PF_ACPY(&oia, ia, af); 3192 if (oa) 3193 PF_ACPY(&ooa, oa, af); 3194 3195 /* Change inner protocol port, fix inner protocol checksum. */ 3196 if (ip != NULL) { 3197 u_int16_t oip = *ip; 3198 u_int32_t opc; 3199 3200 if (pc != NULL) 3201 opc = *pc; 3202 *ip = np; 3203 if (pc != NULL) 3204 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 3205 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 3206 if (pc != NULL) 3207 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 3208 } 3209 /* Change inner ip address, fix inner ip and icmp checksums. */ 3210 PF_ACPY(ia, na, af); 3211 switch (af) { 3212 #ifdef INET 3213 case AF_INET: { 3214 u_int32_t oh2c = *h2c; 3215 3216 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 3217 oia.addr16[0], ia->addr16[0], 0), 3218 oia.addr16[1], ia->addr16[1], 0); 3219 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3220 oia.addr16[0], ia->addr16[0], 0), 3221 oia.addr16[1], ia->addr16[1], 0); 3222 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 3223 break; 3224 } 3225 #endif /* INET */ 3226 #ifdef INET6 3227 case AF_INET6: 3228 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3229 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3230 pf_cksum_fixup(pf_cksum_fixup(*ic, 3231 oia.addr16[0], ia->addr16[0], u), 3232 oia.addr16[1], ia->addr16[1], u), 3233 oia.addr16[2], ia->addr16[2], u), 3234 oia.addr16[3], ia->addr16[3], u), 3235 oia.addr16[4], ia->addr16[4], u), 3236 oia.addr16[5], ia->addr16[5], u), 3237 oia.addr16[6], ia->addr16[6], u), 3238 oia.addr16[7], ia->addr16[7], u); 3239 break; 3240 #endif /* INET6 */ 3241 } 3242 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 3243 if (oa) { 3244 PF_ACPY(oa, na, af); 3245 switch (af) { 3246 #ifdef INET 3247 case AF_INET: 3248 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 3249 ooa.addr16[0], oa->addr16[0], 0), 3250 ooa.addr16[1], oa->addr16[1], 0); 3251 break; 3252 #endif /* INET */ 3253 #ifdef INET6 3254 case AF_INET6: 3255 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3256 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3257 pf_cksum_fixup(pf_cksum_fixup(*ic, 3258 ooa.addr16[0], oa->addr16[0], u), 3259 ooa.addr16[1], oa->addr16[1], u), 3260 ooa.addr16[2], oa->addr16[2], u), 3261 ooa.addr16[3], oa->addr16[3], u), 3262 ooa.addr16[4], oa->addr16[4], u), 3263 ooa.addr16[5], oa->addr16[5], u), 3264 ooa.addr16[6], oa->addr16[6], u), 3265 ooa.addr16[7], oa->addr16[7], u); 3266 break; 3267 #endif /* INET6 */ 3268 } 3269 } 3270 } 3271 3272 /* 3273 * Need to modulate the sequence numbers in the TCP SACK option 3274 * (credits to Krzysztof Pfaff for report and patch) 3275 */ 3276 static int 3277 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 3278 struct tcphdr *th, struct pf_state_peer *dst) 3279 { 3280 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 3281 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 3282 int copyback = 0, i, olen; 3283 struct sackblk sack; 3284 3285 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 3286 if (hlen < TCPOLEN_SACKLEN || 3287 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 3288 return 0; 3289 3290 while (hlen >= TCPOLEN_SACKLEN) { 3291 size_t startoff = opt - opts; 3292 olen = opt[1]; 3293 switch (*opt) { 3294 case TCPOPT_EOL: /* FALLTHROUGH */ 3295 case TCPOPT_NOP: 3296 opt++; 3297 hlen--; 3298 break; 3299 case TCPOPT_SACK: 3300 if (olen > hlen) 3301 olen = hlen; 3302 if (olen >= TCPOLEN_SACKLEN) { 3303 for (i = 2; i + TCPOLEN_SACK <= olen; 3304 i += TCPOLEN_SACK) { 3305 memcpy(&sack, &opt[i], sizeof(sack)); 3306 pf_patch_32_unaligned(m, 3307 &th->th_sum, &sack.start, 3308 htonl(ntohl(sack.start) - dst->seqdiff), 3309 PF_ALGNMNT(startoff), 3310 0); 3311 pf_patch_32_unaligned(m, &th->th_sum, 3312 &sack.end, 3313 htonl(ntohl(sack.end) - dst->seqdiff), 3314 PF_ALGNMNT(startoff), 3315 0); 3316 memcpy(&opt[i], &sack, sizeof(sack)); 3317 } 3318 copyback = 1; 3319 } 3320 /* FALLTHROUGH */ 3321 default: 3322 if (olen < 2) 3323 olen = 2; 3324 hlen -= olen; 3325 opt += olen; 3326 } 3327 } 3328 3329 if (copyback) 3330 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 3331 return (copyback); 3332 } 3333 3334 struct mbuf * 3335 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 3336 const struct pf_addr *saddr, const struct pf_addr *daddr, 3337 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3338 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3339 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3340 { 3341 struct mbuf *m; 3342 int len, tlen; 3343 #ifdef INET 3344 struct ip *h = NULL; 3345 #endif /* INET */ 3346 #ifdef INET6 3347 struct ip6_hdr *h6 = NULL; 3348 #endif /* INET6 */ 3349 struct tcphdr *th; 3350 char *opt; 3351 struct pf_mtag *pf_mtag; 3352 3353 len = 0; 3354 th = NULL; 3355 3356 /* maximum segment size tcp option */ 3357 tlen = sizeof(struct tcphdr); 3358 if (mss) 3359 tlen += 4; 3360 3361 switch (af) { 3362 #ifdef INET 3363 case AF_INET: 3364 len = sizeof(struct ip) + tlen; 3365 break; 3366 #endif /* INET */ 3367 #ifdef INET6 3368 case AF_INET6: 3369 len = sizeof(struct ip6_hdr) + tlen; 3370 break; 3371 #endif /* INET6 */ 3372 default: 3373 panic("%s: unsupported af %d", __func__, af); 3374 } 3375 3376 m = m_gethdr(M_NOWAIT, MT_DATA); 3377 if (m == NULL) 3378 return (NULL); 3379 3380 #ifdef MAC 3381 mac_netinet_firewall_send(m); 3382 #endif 3383 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 3384 m_freem(m); 3385 return (NULL); 3386 } 3387 if (skip_firewall) 3388 m->m_flags |= M_SKIP_FIREWALL; 3389 pf_mtag->tag = mtag_tag; 3390 pf_mtag->flags = mtag_flags; 3391 3392 if (rtableid >= 0) 3393 M_SETFIB(m, rtableid); 3394 3395 #ifdef ALTQ 3396 if (r != NULL && r->qid) { 3397 pf_mtag->qid = r->qid; 3398 3399 /* add hints for ecn */ 3400 pf_mtag->hdr = mtod(m, struct ip *); 3401 } 3402 #endif /* ALTQ */ 3403 m->m_data += max_linkhdr; 3404 m->m_pkthdr.len = m->m_len = len; 3405 /* The rest of the stack assumes a rcvif, so provide one. 3406 * This is a locally generated packet, so .. close enough. */ 3407 m->m_pkthdr.rcvif = V_loif; 3408 bzero(m->m_data, len); 3409 switch (af) { 3410 #ifdef INET 3411 case AF_INET: 3412 h = mtod(m, struct ip *); 3413 3414 /* IP header fields included in the TCP checksum */ 3415 h->ip_p = IPPROTO_TCP; 3416 h->ip_len = htons(tlen); 3417 h->ip_src.s_addr = saddr->v4.s_addr; 3418 h->ip_dst.s_addr = daddr->v4.s_addr; 3419 3420 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 3421 break; 3422 #endif /* INET */ 3423 #ifdef INET6 3424 case AF_INET6: 3425 h6 = mtod(m, struct ip6_hdr *); 3426 3427 /* IP header fields included in the TCP checksum */ 3428 h6->ip6_nxt = IPPROTO_TCP; 3429 h6->ip6_plen = htons(tlen); 3430 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 3431 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 3432 3433 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 3434 break; 3435 #endif /* INET6 */ 3436 } 3437 3438 /* TCP header */ 3439 th->th_sport = sport; 3440 th->th_dport = dport; 3441 th->th_seq = htonl(seq); 3442 th->th_ack = htonl(ack); 3443 th->th_off = tlen >> 2; 3444 th->th_flags = tcp_flags; 3445 th->th_win = htons(win); 3446 3447 if (mss) { 3448 opt = (char *)(th + 1); 3449 opt[0] = TCPOPT_MAXSEG; 3450 opt[1] = 4; 3451 HTONS(mss); 3452 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 3453 } 3454 3455 switch (af) { 3456 #ifdef INET 3457 case AF_INET: 3458 /* TCP checksum */ 3459 th->th_sum = in_cksum(m, len); 3460 3461 /* Finish the IP header */ 3462 h->ip_v = 4; 3463 h->ip_hl = sizeof(*h) >> 2; 3464 h->ip_tos = IPTOS_LOWDELAY; 3465 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 3466 h->ip_len = htons(len); 3467 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3468 h->ip_sum = 0; 3469 break; 3470 #endif /* INET */ 3471 #ifdef INET6 3472 case AF_INET6: 3473 /* TCP checksum */ 3474 th->th_sum = in6_cksum(m, IPPROTO_TCP, 3475 sizeof(struct ip6_hdr), tlen); 3476 3477 h6->ip6_vfc |= IPV6_VERSION; 3478 h6->ip6_hlim = IPV6_DEFHLIM; 3479 break; 3480 #endif /* INET6 */ 3481 } 3482 3483 return (m); 3484 } 3485 3486 static void 3487 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd, 3488 uint8_t ttl, int rtableid) 3489 { 3490 struct mbuf *m; 3491 #ifdef INET 3492 struct ip *h = NULL; 3493 #endif /* INET */ 3494 #ifdef INET6 3495 struct ip6_hdr *h6 = NULL; 3496 #endif /* INET6 */ 3497 struct sctphdr *hdr; 3498 struct sctp_chunkhdr *chunk; 3499 struct pf_send_entry *pfse; 3500 int off = 0; 3501 3502 MPASS(af == pd->af); 3503 3504 m = m_gethdr(M_NOWAIT, MT_DATA); 3505 if (m == NULL) 3506 return; 3507 3508 m->m_data += max_linkhdr; 3509 m->m_flags |= M_SKIP_FIREWALL; 3510 /* The rest of the stack assumes a rcvif, so provide one. 3511 * This is a locally generated packet, so .. close enough. */ 3512 m->m_pkthdr.rcvif = V_loif; 3513 3514 /* IPv4|6 header */ 3515 switch (af) { 3516 #ifdef INET 3517 case AF_INET: 3518 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk)); 3519 3520 h = mtod(m, struct ip *); 3521 3522 /* IP header fields included in the TCP checksum */ 3523 3524 h->ip_p = IPPROTO_SCTP; 3525 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk)); 3526 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3527 h->ip_src = pd->dst->v4; 3528 h->ip_dst = pd->src->v4; 3529 3530 off += sizeof(struct ip); 3531 break; 3532 #endif /* INET */ 3533 #ifdef INET6 3534 case AF_INET6: 3535 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk)); 3536 3537 h6 = mtod(m, struct ip6_hdr *); 3538 3539 /* IP header fields included in the TCP checksum */ 3540 h6->ip6_vfc |= IPV6_VERSION; 3541 h6->ip6_nxt = IPPROTO_SCTP; 3542 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk)); 3543 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim; 3544 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr)); 3545 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr)); 3546 3547 off += sizeof(struct ip6_hdr); 3548 break; 3549 #endif /* INET6 */ 3550 } 3551 3552 /* SCTP header */ 3553 hdr = mtodo(m, off); 3554 3555 hdr->src_port = pd->hdr.sctp.dest_port; 3556 hdr->dest_port = pd->hdr.sctp.src_port; 3557 hdr->v_tag = pd->sctp_initiate_tag; 3558 hdr->checksum = 0; 3559 3560 /* Abort chunk. */ 3561 off += sizeof(struct sctphdr); 3562 chunk = mtodo(m, off); 3563 3564 chunk->chunk_type = SCTP_ABORT_ASSOCIATION; 3565 chunk->chunk_length = htons(sizeof(*chunk)); 3566 3567 /* SCTP checksum */ 3568 off += sizeof(*chunk); 3569 m->m_pkthdr.len = m->m_len = off; 3570 3571 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk)); 3572 3573 if (rtableid >= 0) 3574 M_SETFIB(m, rtableid); 3575 3576 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3577 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3578 if (pfse == NULL) { 3579 m_freem(m); 3580 return; 3581 } 3582 3583 switch (af) { 3584 #ifdef INET 3585 case AF_INET: 3586 pfse->pfse_type = PFSE_IP; 3587 break; 3588 #endif /* INET */ 3589 #ifdef INET6 3590 case AF_INET6: 3591 pfse->pfse_type = PFSE_IP6; 3592 break; 3593 #endif /* INET6 */ 3594 } 3595 3596 pfse->pfse_m = m; 3597 pf_send(pfse); 3598 } 3599 3600 void 3601 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 3602 const struct pf_addr *saddr, const struct pf_addr *daddr, 3603 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3604 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3605 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3606 { 3607 struct pf_send_entry *pfse; 3608 struct mbuf *m; 3609 3610 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags, 3611 win, mss, ttl, skip_firewall, mtag_tag, mtag_flags, rtableid); 3612 if (m == NULL) 3613 return; 3614 3615 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3616 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3617 if (pfse == NULL) { 3618 m_freem(m); 3619 return; 3620 } 3621 3622 switch (af) { 3623 #ifdef INET 3624 case AF_INET: 3625 pfse->pfse_type = PFSE_IP; 3626 break; 3627 #endif /* INET */ 3628 #ifdef INET6 3629 case AF_INET6: 3630 pfse->pfse_type = PFSE_IP6; 3631 break; 3632 #endif /* INET6 */ 3633 } 3634 3635 pfse->pfse_m = m; 3636 pf_send(pfse); 3637 } 3638 3639 static void 3640 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 3641 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 3642 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 3643 u_short *reason, int rtableid) 3644 { 3645 struct pf_addr * const saddr = pd->src; 3646 struct pf_addr * const daddr = pd->dst; 3647 sa_family_t af = pd->af; 3648 3649 /* undo NAT changes, if they have taken place */ 3650 if (nr != NULL) { 3651 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3652 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3653 if (pd->sport) 3654 *pd->sport = sk->port[pd->sidx]; 3655 if (pd->dport) 3656 *pd->dport = sk->port[pd->didx]; 3657 if (pd->proto_sum) 3658 *pd->proto_sum = bproto_sum; 3659 if (pd->ip_sum) 3660 *pd->ip_sum = bip_sum; 3661 m_copyback(m, off, hdrlen, pd->hdr.any); 3662 } 3663 if (pd->proto == IPPROTO_TCP && 3664 ((r->rule_flag & PFRULE_RETURNRST) || 3665 (r->rule_flag & PFRULE_RETURN)) && 3666 !(th->th_flags & TH_RST)) { 3667 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3668 int len = 0; 3669 #ifdef INET 3670 struct ip *h4; 3671 #endif 3672 #ifdef INET6 3673 struct ip6_hdr *h6; 3674 #endif 3675 3676 switch (af) { 3677 #ifdef INET 3678 case AF_INET: 3679 h4 = mtod(m, struct ip *); 3680 len = ntohs(h4->ip_len) - off; 3681 break; 3682 #endif 3683 #ifdef INET6 3684 case AF_INET6: 3685 h6 = mtod(m, struct ip6_hdr *); 3686 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3687 break; 3688 #endif 3689 } 3690 3691 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3692 REASON_SET(reason, PFRES_PROTCKSUM); 3693 else { 3694 if (th->th_flags & TH_SYN) 3695 ack++; 3696 if (th->th_flags & TH_FIN) 3697 ack++; 3698 pf_send_tcp(r, af, pd->dst, 3699 pd->src, th->th_dport, th->th_sport, 3700 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3701 r->return_ttl, true, 0, 0, rtableid); 3702 } 3703 } else if (pd->proto == IPPROTO_SCTP && 3704 (r->rule_flag & PFRULE_RETURN)) { 3705 pf_send_sctp_abort(af, pd, r->return_ttl, rtableid); 3706 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3707 r->return_icmp) 3708 pf_send_icmp(m, r->return_icmp >> 8, 3709 r->return_icmp & 255, af, r, rtableid); 3710 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3711 r->return_icmp6) 3712 pf_send_icmp(m, r->return_icmp6 >> 8, 3713 r->return_icmp6 & 255, af, r, rtableid); 3714 } 3715 3716 static int 3717 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 3718 { 3719 struct m_tag *mtag; 3720 u_int8_t mpcp; 3721 3722 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 3723 if (mtag == NULL) 3724 return (0); 3725 3726 if (prio == PF_PRIO_ZERO) 3727 prio = 0; 3728 3729 mpcp = *(uint8_t *)(mtag + 1); 3730 3731 return (mpcp == prio); 3732 } 3733 3734 static int 3735 pf_icmp_to_bandlim(uint8_t type) 3736 { 3737 switch (type) { 3738 case ICMP_ECHO: 3739 case ICMP_ECHOREPLY: 3740 return (BANDLIM_ICMP_ECHO); 3741 case ICMP_TSTAMP: 3742 case ICMP_TSTAMPREPLY: 3743 return (BANDLIM_ICMP_TSTAMP); 3744 case ICMP_UNREACH: 3745 default: 3746 return (BANDLIM_ICMP_UNREACH); 3747 } 3748 } 3749 3750 static void 3751 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 3752 struct pf_krule *r, int rtableid) 3753 { 3754 struct pf_send_entry *pfse; 3755 struct mbuf *m0; 3756 struct pf_mtag *pf_mtag; 3757 3758 /* ICMP packet rate limitation. */ 3759 #ifdef INET6 3760 if (af == AF_INET6) { 3761 if (icmp6_ratelimit(NULL, type, code)) 3762 return; 3763 } 3764 #endif 3765 #ifdef INET 3766 if (af == AF_INET) { 3767 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 3768 return; 3769 } 3770 #endif 3771 3772 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3773 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3774 if (pfse == NULL) 3775 return; 3776 3777 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 3778 free(pfse, M_PFTEMP); 3779 return; 3780 } 3781 3782 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 3783 free(pfse, M_PFTEMP); 3784 return; 3785 } 3786 /* XXX: revisit */ 3787 m0->m_flags |= M_SKIP_FIREWALL; 3788 3789 if (rtableid >= 0) 3790 M_SETFIB(m0, rtableid); 3791 3792 #ifdef ALTQ 3793 if (r->qid) { 3794 pf_mtag->qid = r->qid; 3795 /* add hints for ecn */ 3796 pf_mtag->hdr = mtod(m0, struct ip *); 3797 } 3798 #endif /* ALTQ */ 3799 3800 switch (af) { 3801 #ifdef INET 3802 case AF_INET: 3803 pfse->pfse_type = PFSE_ICMP; 3804 break; 3805 #endif /* INET */ 3806 #ifdef INET6 3807 case AF_INET6: 3808 pfse->pfse_type = PFSE_ICMP6; 3809 break; 3810 #endif /* INET6 */ 3811 } 3812 pfse->pfse_m = m0; 3813 pfse->icmpopts.type = type; 3814 pfse->icmpopts.code = code; 3815 pf_send(pfse); 3816 } 3817 3818 /* 3819 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 3820 * If n is 0, they match if they are equal. If n is != 0, they match if they 3821 * are different. 3822 */ 3823 int 3824 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 3825 struct pf_addr *b, sa_family_t af) 3826 { 3827 int match = 0; 3828 3829 switch (af) { 3830 #ifdef INET 3831 case AF_INET: 3832 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4)) 3833 match++; 3834 break; 3835 #endif /* INET */ 3836 #ifdef INET6 3837 case AF_INET6: 3838 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6)) 3839 match++; 3840 break; 3841 #endif /* INET6 */ 3842 } 3843 if (match) { 3844 if (n) 3845 return (0); 3846 else 3847 return (1); 3848 } else { 3849 if (n) 3850 return (1); 3851 else 3852 return (0); 3853 } 3854 } 3855 3856 /* 3857 * Return 1 if b <= a <= e, otherwise return 0. 3858 */ 3859 int 3860 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 3861 struct pf_addr *a, sa_family_t af) 3862 { 3863 switch (af) { 3864 #ifdef INET 3865 case AF_INET: 3866 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 3867 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 3868 return (0); 3869 break; 3870 #endif /* INET */ 3871 #ifdef INET6 3872 case AF_INET6: { 3873 int i; 3874 3875 /* check a >= b */ 3876 for (i = 0; i < 4; ++i) 3877 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 3878 break; 3879 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 3880 return (0); 3881 /* check a <= e */ 3882 for (i = 0; i < 4; ++i) 3883 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 3884 break; 3885 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 3886 return (0); 3887 break; 3888 } 3889 #endif /* INET6 */ 3890 } 3891 return (1); 3892 } 3893 3894 static int 3895 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3896 { 3897 switch (op) { 3898 case PF_OP_IRG: 3899 return ((p > a1) && (p < a2)); 3900 case PF_OP_XRG: 3901 return ((p < a1) || (p > a2)); 3902 case PF_OP_RRG: 3903 return ((p >= a1) && (p <= a2)); 3904 case PF_OP_EQ: 3905 return (p == a1); 3906 case PF_OP_NE: 3907 return (p != a1); 3908 case PF_OP_LT: 3909 return (p < a1); 3910 case PF_OP_LE: 3911 return (p <= a1); 3912 case PF_OP_GT: 3913 return (p > a1); 3914 case PF_OP_GE: 3915 return (p >= a1); 3916 } 3917 return (0); /* never reached */ 3918 } 3919 3920 int 3921 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3922 { 3923 NTOHS(a1); 3924 NTOHS(a2); 3925 NTOHS(p); 3926 return (pf_match(op, a1, a2, p)); 3927 } 3928 3929 static int 3930 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3931 { 3932 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3933 return (0); 3934 return (pf_match(op, a1, a2, u)); 3935 } 3936 3937 static int 3938 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3939 { 3940 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3941 return (0); 3942 return (pf_match(op, a1, a2, g)); 3943 } 3944 3945 int 3946 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3947 { 3948 if (*tag == -1) 3949 *tag = mtag; 3950 3951 return ((!r->match_tag_not && r->match_tag == *tag) || 3952 (r->match_tag_not && r->match_tag != *tag)); 3953 } 3954 3955 static int 3956 pf_match_rcvif(struct mbuf *m, struct pf_krule *r) 3957 { 3958 struct ifnet *ifp = m->m_pkthdr.rcvif; 3959 struct pfi_kkif *kif; 3960 3961 if (ifp == NULL) 3962 return (0); 3963 3964 kif = (struct pfi_kkif *)ifp->if_pf_kif; 3965 3966 if (kif == NULL) { 3967 DPFPRINTF(PF_DEBUG_URGENT, 3968 ("pf_test_via: kif == NULL, @%d via %s\n", r->nr, 3969 r->rcv_ifname)); 3970 return (0); 3971 } 3972 3973 return (pfi_kkif_match(r->rcv_kif, kif)); 3974 } 3975 3976 int 3977 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 3978 { 3979 3980 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 3981 3982 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 3983 return (ENOMEM); 3984 3985 pd->pf_mtag->tag = tag; 3986 3987 return (0); 3988 } 3989 3990 #define PF_ANCHOR_STACKSIZE 32 3991 struct pf_kanchor_stackframe { 3992 struct pf_kruleset *rs; 3993 struct pf_krule *r; /* XXX: + match bit */ 3994 struct pf_kanchor *child; 3995 }; 3996 3997 /* 3998 * XXX: We rely on malloc(9) returning pointer aligned addresses. 3999 */ 4000 #define PF_ANCHORSTACK_MATCH 0x00000001 4001 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 4002 4003 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4004 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 4005 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4006 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4007 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4008 } while (0) 4009 4010 void 4011 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 4012 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 4013 int *match) 4014 { 4015 struct pf_kanchor_stackframe *f; 4016 4017 PF_RULES_RASSERT(); 4018 4019 if (match) 4020 *match = 0; 4021 if (*depth >= PF_ANCHOR_STACKSIZE) { 4022 printf("%s: anchor stack overflow on %s\n", 4023 __func__, (*r)->anchor->name); 4024 *r = TAILQ_NEXT(*r, entries); 4025 return; 4026 } else if (*depth == 0 && a != NULL) 4027 *a = *r; 4028 f = stack + (*depth)++; 4029 f->rs = *rs; 4030 f->r = *r; 4031 if ((*r)->anchor_wildcard) { 4032 struct pf_kanchor_node *parent = &(*r)->anchor->children; 4033 4034 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 4035 *r = NULL; 4036 return; 4037 } 4038 *rs = &f->child->ruleset; 4039 } else { 4040 f->child = NULL; 4041 *rs = &(*r)->anchor->ruleset; 4042 } 4043 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4044 } 4045 4046 int 4047 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 4048 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 4049 int *match) 4050 { 4051 struct pf_kanchor_stackframe *f; 4052 struct pf_krule *fr; 4053 int quick = 0; 4054 4055 PF_RULES_RASSERT(); 4056 4057 do { 4058 if (*depth <= 0) 4059 break; 4060 f = stack + *depth - 1; 4061 fr = PF_ANCHOR_RULE(f); 4062 if (f->child != NULL) { 4063 /* 4064 * This block traverses through 4065 * a wildcard anchor. 4066 */ 4067 if (match != NULL && *match) { 4068 /* 4069 * If any of "*" matched, then 4070 * "foo/ *" matched, mark frame 4071 * appropriately. 4072 */ 4073 PF_ANCHOR_SET_MATCH(f); 4074 *match = 0; 4075 } 4076 f->child = RB_NEXT(pf_kanchor_node, 4077 &fr->anchor->children, f->child); 4078 if (f->child != NULL) { 4079 *rs = &f->child->ruleset; 4080 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4081 if (*r == NULL) 4082 continue; 4083 else 4084 break; 4085 } 4086 } 4087 (*depth)--; 4088 if (*depth == 0 && a != NULL) 4089 *a = NULL; 4090 *rs = f->rs; 4091 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 4092 quick = fr->quick; 4093 *r = TAILQ_NEXT(fr, entries); 4094 } while (*r == NULL); 4095 4096 return (quick); 4097 } 4098 4099 struct pf_keth_anchor_stackframe { 4100 struct pf_keth_ruleset *rs; 4101 struct pf_keth_rule *r; /* XXX: + match bit */ 4102 struct pf_keth_anchor *child; 4103 }; 4104 4105 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4106 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 4107 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4108 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4109 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4110 } while (0) 4111 4112 void 4113 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4114 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4115 struct pf_keth_rule **a, int *match) 4116 { 4117 struct pf_keth_anchor_stackframe *f; 4118 4119 NET_EPOCH_ASSERT(); 4120 4121 if (match) 4122 *match = 0; 4123 if (*depth >= PF_ANCHOR_STACKSIZE) { 4124 printf("%s: anchor stack overflow on %s\n", 4125 __func__, (*r)->anchor->name); 4126 *r = TAILQ_NEXT(*r, entries); 4127 return; 4128 } else if (*depth == 0 && a != NULL) 4129 *a = *r; 4130 f = stack + (*depth)++; 4131 f->rs = *rs; 4132 f->r = *r; 4133 if ((*r)->anchor_wildcard) { 4134 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 4135 4136 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 4137 *r = NULL; 4138 return; 4139 } 4140 *rs = &f->child->ruleset; 4141 } else { 4142 f->child = NULL; 4143 *rs = &(*r)->anchor->ruleset; 4144 } 4145 *r = TAILQ_FIRST((*rs)->active.rules); 4146 } 4147 4148 int 4149 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4150 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4151 struct pf_keth_rule **a, int *match) 4152 { 4153 struct pf_keth_anchor_stackframe *f; 4154 struct pf_keth_rule *fr; 4155 int quick = 0; 4156 4157 NET_EPOCH_ASSERT(); 4158 4159 do { 4160 if (*depth <= 0) 4161 break; 4162 f = stack + *depth - 1; 4163 fr = PF_ETH_ANCHOR_RULE(f); 4164 if (f->child != NULL) { 4165 /* 4166 * This block traverses through 4167 * a wildcard anchor. 4168 */ 4169 if (match != NULL && *match) { 4170 /* 4171 * If any of "*" matched, then 4172 * "foo/ *" matched, mark frame 4173 * appropriately. 4174 */ 4175 PF_ETH_ANCHOR_SET_MATCH(f); 4176 *match = 0; 4177 } 4178 f->child = RB_NEXT(pf_keth_anchor_node, 4179 &fr->anchor->children, f->child); 4180 if (f->child != NULL) { 4181 *rs = &f->child->ruleset; 4182 *r = TAILQ_FIRST((*rs)->active.rules); 4183 if (*r == NULL) 4184 continue; 4185 else 4186 break; 4187 } 4188 } 4189 (*depth)--; 4190 if (*depth == 0 && a != NULL) 4191 *a = NULL; 4192 *rs = f->rs; 4193 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 4194 quick = fr->quick; 4195 *r = TAILQ_NEXT(fr, entries); 4196 } while (*r == NULL); 4197 4198 return (quick); 4199 } 4200 4201 #ifdef INET6 4202 void 4203 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 4204 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 4205 { 4206 switch (af) { 4207 #ifdef INET 4208 case AF_INET: 4209 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4210 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4211 break; 4212 #endif /* INET */ 4213 case AF_INET6: 4214 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4215 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4216 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 4217 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 4218 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 4219 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 4220 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 4221 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 4222 break; 4223 } 4224 } 4225 4226 void 4227 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 4228 { 4229 switch (af) { 4230 #ifdef INET 4231 case AF_INET: 4232 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 4233 break; 4234 #endif /* INET */ 4235 case AF_INET6: 4236 if (addr->addr32[3] == 0xffffffff) { 4237 addr->addr32[3] = 0; 4238 if (addr->addr32[2] == 0xffffffff) { 4239 addr->addr32[2] = 0; 4240 if (addr->addr32[1] == 0xffffffff) { 4241 addr->addr32[1] = 0; 4242 addr->addr32[0] = 4243 htonl(ntohl(addr->addr32[0]) + 1); 4244 } else 4245 addr->addr32[1] = 4246 htonl(ntohl(addr->addr32[1]) + 1); 4247 } else 4248 addr->addr32[2] = 4249 htonl(ntohl(addr->addr32[2]) + 1); 4250 } else 4251 addr->addr32[3] = 4252 htonl(ntohl(addr->addr32[3]) + 1); 4253 break; 4254 } 4255 } 4256 #endif /* INET6 */ 4257 4258 void 4259 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 4260 { 4261 /* 4262 * Modern rules use the same flags in rules as they do in states. 4263 */ 4264 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 4265 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 4266 4267 /* 4268 * Old-style scrub rules have different flags which need to be translated. 4269 */ 4270 if (r->rule_flag & PFRULE_RANDOMID) 4271 a->flags |= PFSTATE_RANDOMID; 4272 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) { 4273 a->flags |= PFSTATE_SETTOS; 4274 a->set_tos = r->set_tos; 4275 } 4276 4277 if (r->qid) 4278 a->qid = r->qid; 4279 if (r->pqid) 4280 a->pqid = r->pqid; 4281 if (r->rtableid >= 0) 4282 a->rtableid = r->rtableid; 4283 a->log |= r->log; 4284 if (r->min_ttl) 4285 a->min_ttl = r->min_ttl; 4286 if (r->max_mss) 4287 a->max_mss = r->max_mss; 4288 if (r->dnpipe) 4289 a->dnpipe = r->dnpipe; 4290 if (r->dnrpipe) 4291 a->dnrpipe = r->dnrpipe; 4292 if (r->dnpipe || r->dnrpipe) { 4293 if (r->free_flags & PFRULE_DN_IS_PIPE) 4294 a->flags |= PFSTATE_DN_IS_PIPE; 4295 else 4296 a->flags &= ~PFSTATE_DN_IS_PIPE; 4297 } 4298 if (r->scrub_flags & PFSTATE_SETPRIO) { 4299 a->set_prio[0] = r->set_prio[0]; 4300 a->set_prio[1] = r->set_prio[1]; 4301 } 4302 } 4303 4304 int 4305 pf_socket_lookup(struct pf_pdesc *pd, struct mbuf *m) 4306 { 4307 struct pf_addr *saddr, *daddr; 4308 u_int16_t sport, dport; 4309 struct inpcbinfo *pi; 4310 struct inpcb *inp; 4311 4312 pd->lookup.uid = UID_MAX; 4313 pd->lookup.gid = GID_MAX; 4314 4315 switch (pd->proto) { 4316 case IPPROTO_TCP: 4317 sport = pd->hdr.tcp.th_sport; 4318 dport = pd->hdr.tcp.th_dport; 4319 pi = &V_tcbinfo; 4320 break; 4321 case IPPROTO_UDP: 4322 sport = pd->hdr.udp.uh_sport; 4323 dport = pd->hdr.udp.uh_dport; 4324 pi = &V_udbinfo; 4325 break; 4326 default: 4327 return (-1); 4328 } 4329 if (pd->dir == PF_IN) { 4330 saddr = pd->src; 4331 daddr = pd->dst; 4332 } else { 4333 u_int16_t p; 4334 4335 p = sport; 4336 sport = dport; 4337 dport = p; 4338 saddr = pd->dst; 4339 daddr = pd->src; 4340 } 4341 switch (pd->af) { 4342 #ifdef INET 4343 case AF_INET: 4344 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 4345 dport, INPLOOKUP_RLOCKPCB, NULL, m); 4346 if (inp == NULL) { 4347 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 4348 daddr->v4, dport, INPLOOKUP_WILDCARD | 4349 INPLOOKUP_RLOCKPCB, NULL, m); 4350 if (inp == NULL) 4351 return (-1); 4352 } 4353 break; 4354 #endif /* INET */ 4355 #ifdef INET6 4356 case AF_INET6: 4357 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 4358 dport, INPLOOKUP_RLOCKPCB, NULL, m); 4359 if (inp == NULL) { 4360 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 4361 &daddr->v6, dport, INPLOOKUP_WILDCARD | 4362 INPLOOKUP_RLOCKPCB, NULL, m); 4363 if (inp == NULL) 4364 return (-1); 4365 } 4366 break; 4367 #endif /* INET6 */ 4368 4369 default: 4370 return (-1); 4371 } 4372 INP_RLOCK_ASSERT(inp); 4373 pd->lookup.uid = inp->inp_cred->cr_uid; 4374 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4375 INP_RUNLOCK(inp); 4376 4377 return (1); 4378 } 4379 4380 u_int8_t 4381 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 4382 { 4383 int hlen; 4384 u_int8_t hdr[60]; 4385 u_int8_t *opt, optlen; 4386 u_int8_t wscale = 0; 4387 4388 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 4389 if (hlen <= sizeof(struct tcphdr)) 4390 return (0); 4391 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 4392 return (0); 4393 opt = hdr + sizeof(struct tcphdr); 4394 hlen -= sizeof(struct tcphdr); 4395 while (hlen >= 3) { 4396 switch (*opt) { 4397 case TCPOPT_EOL: 4398 case TCPOPT_NOP: 4399 ++opt; 4400 --hlen; 4401 break; 4402 case TCPOPT_WINDOW: 4403 wscale = opt[2]; 4404 if (wscale > TCP_MAX_WINSHIFT) 4405 wscale = TCP_MAX_WINSHIFT; 4406 wscale |= PF_WSCALE_FLAG; 4407 /* FALLTHROUGH */ 4408 default: 4409 optlen = opt[1]; 4410 if (optlen < 2) 4411 optlen = 2; 4412 hlen -= optlen; 4413 opt += optlen; 4414 break; 4415 } 4416 } 4417 return (wscale); 4418 } 4419 4420 u_int16_t 4421 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 4422 { 4423 int hlen; 4424 u_int8_t hdr[60]; 4425 u_int8_t *opt, optlen; 4426 u_int16_t mss = V_tcp_mssdflt; 4427 4428 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 4429 if (hlen <= sizeof(struct tcphdr)) 4430 return (0); 4431 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 4432 return (0); 4433 opt = hdr + sizeof(struct tcphdr); 4434 hlen -= sizeof(struct tcphdr); 4435 while (hlen >= TCPOLEN_MAXSEG) { 4436 switch (*opt) { 4437 case TCPOPT_EOL: 4438 case TCPOPT_NOP: 4439 ++opt; 4440 --hlen; 4441 break; 4442 case TCPOPT_MAXSEG: 4443 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 4444 NTOHS(mss); 4445 /* FALLTHROUGH */ 4446 default: 4447 optlen = opt[1]; 4448 if (optlen < 2) 4449 optlen = 2; 4450 hlen -= optlen; 4451 opt += optlen; 4452 break; 4453 } 4454 } 4455 return (mss); 4456 } 4457 4458 static u_int16_t 4459 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 4460 { 4461 struct nhop_object *nh; 4462 #ifdef INET6 4463 struct in6_addr dst6; 4464 uint32_t scopeid; 4465 #endif /* INET6 */ 4466 int hlen = 0; 4467 uint16_t mss = 0; 4468 4469 NET_EPOCH_ASSERT(); 4470 4471 switch (af) { 4472 #ifdef INET 4473 case AF_INET: 4474 hlen = sizeof(struct ip); 4475 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 4476 if (nh != NULL) 4477 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4478 break; 4479 #endif /* INET */ 4480 #ifdef INET6 4481 case AF_INET6: 4482 hlen = sizeof(struct ip6_hdr); 4483 in6_splitscope(&addr->v6, &dst6, &scopeid); 4484 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 4485 if (nh != NULL) 4486 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4487 break; 4488 #endif /* INET6 */ 4489 } 4490 4491 mss = max(V_tcp_mssdflt, mss); 4492 mss = min(mss, offer); 4493 mss = max(mss, 64); /* sanity - at least max opt space */ 4494 return (mss); 4495 } 4496 4497 static u_int32_t 4498 pf_tcp_iss(struct pf_pdesc *pd) 4499 { 4500 MD5_CTX ctx; 4501 u_int32_t digest[4]; 4502 4503 if (V_pf_tcp_secret_init == 0) { 4504 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 4505 MD5Init(&V_pf_tcp_secret_ctx); 4506 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 4507 sizeof(V_pf_tcp_secret)); 4508 V_pf_tcp_secret_init = 1; 4509 } 4510 4511 ctx = V_pf_tcp_secret_ctx; 4512 4513 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 4514 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 4515 if (pd->af == AF_INET6) { 4516 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 4517 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 4518 } else { 4519 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 4520 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 4521 } 4522 MD5Final((u_char *)digest, &ctx); 4523 V_pf_tcp_iss_off += 4096; 4524 #define ISN_RANDOM_INCREMENT (4096 - 1) 4525 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 4526 V_pf_tcp_iss_off); 4527 #undef ISN_RANDOM_INCREMENT 4528 } 4529 4530 static bool 4531 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 4532 { 4533 bool match = true; 4534 4535 /* Always matches if not set */ 4536 if (! r->isset) 4537 return (!r->neg); 4538 4539 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 4540 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 4541 match = false; 4542 break; 4543 } 4544 } 4545 4546 return (match ^ r->neg); 4547 } 4548 4549 static int 4550 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 4551 { 4552 if (*tag == -1) 4553 *tag = mtag; 4554 4555 return ((!r->match_tag_not && r->match_tag == *tag) || 4556 (r->match_tag_not && r->match_tag != *tag)); 4557 } 4558 4559 static void 4560 pf_bridge_to(struct ifnet *ifp, struct mbuf *m) 4561 { 4562 /* If we don't have the interface drop the packet. */ 4563 if (ifp == NULL) { 4564 m_freem(m); 4565 return; 4566 } 4567 4568 switch (ifp->if_type) { 4569 case IFT_ETHER: 4570 case IFT_XETHER: 4571 case IFT_L2VLAN: 4572 case IFT_BRIDGE: 4573 case IFT_IEEE8023ADLAG: 4574 break; 4575 default: 4576 m_freem(m); 4577 return; 4578 } 4579 4580 ifp->if_transmit(ifp, m); 4581 } 4582 4583 static int 4584 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 4585 { 4586 #ifdef INET 4587 struct ip ip; 4588 #endif 4589 #ifdef INET6 4590 struct ip6_hdr ip6; 4591 #endif 4592 struct mbuf *m = *m0; 4593 struct ether_header *e; 4594 struct pf_keth_rule *r, *rm, *a = NULL; 4595 struct pf_keth_ruleset *ruleset = NULL; 4596 struct pf_mtag *mtag; 4597 struct pf_keth_ruleq *rules; 4598 struct pf_addr *src = NULL, *dst = NULL; 4599 struct pfi_kkif *bridge_to; 4600 sa_family_t af = 0; 4601 uint16_t proto; 4602 int asd = 0, match = 0; 4603 int tag = -1; 4604 uint8_t action; 4605 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4606 4607 MPASS(kif->pfik_ifp->if_vnet == curvnet); 4608 NET_EPOCH_ASSERT(); 4609 4610 PF_RULES_RLOCK_TRACKER; 4611 4612 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 4613 4614 mtag = pf_find_mtag(m); 4615 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 4616 /* Dummynet re-injects packets after they've 4617 * completed their delay. We've already 4618 * processed them, so pass unconditionally. */ 4619 4620 /* But only once. We may see the packet multiple times (e.g. 4621 * PFIL_IN/PFIL_OUT). */ 4622 pf_dummynet_flag_remove(m, mtag); 4623 4624 return (PF_PASS); 4625 } 4626 4627 ruleset = V_pf_keth; 4628 rules = ck_pr_load_ptr(&ruleset->active.rules); 4629 r = TAILQ_FIRST(rules); 4630 rm = NULL; 4631 4632 if (__predict_false(m->m_len < sizeof(struct ether_header)) && 4633 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) { 4634 DPFPRINTF(PF_DEBUG_URGENT, 4635 ("pf_test_eth_rule: m_len < sizeof(struct ether_header)" 4636 ", pullup failed\n")); 4637 return (PF_DROP); 4638 } 4639 e = mtod(m, struct ether_header *); 4640 proto = ntohs(e->ether_type); 4641 4642 switch (proto) { 4643 #ifdef INET 4644 case ETHERTYPE_IP: { 4645 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4646 sizeof(ip))) 4647 return (PF_DROP); 4648 4649 af = AF_INET; 4650 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 4651 (caddr_t)&ip); 4652 src = (struct pf_addr *)&ip.ip_src; 4653 dst = (struct pf_addr *)&ip.ip_dst; 4654 break; 4655 } 4656 #endif /* INET */ 4657 #ifdef INET6 4658 case ETHERTYPE_IPV6: { 4659 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4660 sizeof(ip6))) 4661 return (PF_DROP); 4662 4663 af = AF_INET6; 4664 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 4665 (caddr_t)&ip6); 4666 src = (struct pf_addr *)&ip6.ip6_src; 4667 dst = (struct pf_addr *)&ip6.ip6_dst; 4668 break; 4669 } 4670 #endif /* INET6 */ 4671 } 4672 4673 PF_RULES_RLOCK(); 4674 4675 while (r != NULL) { 4676 counter_u64_add(r->evaluations, 1); 4677 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 4678 4679 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 4680 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4681 "kif"); 4682 r = r->skip[PFE_SKIP_IFP].ptr; 4683 } 4684 else if (r->direction && r->direction != dir) { 4685 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4686 "dir"); 4687 r = r->skip[PFE_SKIP_DIR].ptr; 4688 } 4689 else if (r->proto && r->proto != proto) { 4690 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4691 "proto"); 4692 r = r->skip[PFE_SKIP_PROTO].ptr; 4693 } 4694 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 4695 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4696 "src"); 4697 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 4698 } 4699 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 4700 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4701 "dst"); 4702 r = r->skip[PFE_SKIP_DST_ADDR].ptr; 4703 } 4704 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 4705 r->ipsrc.neg, kif, M_GETFIB(m))) { 4706 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4707 "ip_src"); 4708 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr; 4709 } 4710 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 4711 r->ipdst.neg, kif, M_GETFIB(m))) { 4712 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4713 "ip_dst"); 4714 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr; 4715 } 4716 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 4717 mtag ? mtag->tag : 0)) { 4718 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4719 "match_tag"); 4720 r = TAILQ_NEXT(r, entries); 4721 } 4722 else { 4723 if (r->tag) 4724 tag = r->tag; 4725 if (r->anchor == NULL) { 4726 /* Rule matches */ 4727 rm = r; 4728 4729 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 4730 4731 if (r->quick) 4732 break; 4733 4734 r = TAILQ_NEXT(r, entries); 4735 } else { 4736 pf_step_into_keth_anchor(anchor_stack, &asd, 4737 &ruleset, &r, &a, &match); 4738 } 4739 } 4740 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 4741 &ruleset, &r, &a, &match)) 4742 break; 4743 } 4744 4745 r = rm; 4746 4747 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 4748 4749 /* Default to pass. */ 4750 if (r == NULL) { 4751 PF_RULES_RUNLOCK(); 4752 return (PF_PASS); 4753 } 4754 4755 /* Execute action. */ 4756 counter_u64_add(r->packets[dir == PF_OUT], 1); 4757 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 4758 pf_update_timestamp(r); 4759 4760 /* Shortcut. Don't tag if we're just going to drop anyway. */ 4761 if (r->action == PF_DROP) { 4762 PF_RULES_RUNLOCK(); 4763 return (PF_DROP); 4764 } 4765 4766 if (tag > 0) { 4767 if (mtag == NULL) 4768 mtag = pf_get_mtag(m); 4769 if (mtag == NULL) { 4770 PF_RULES_RUNLOCK(); 4771 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4772 return (PF_DROP); 4773 } 4774 mtag->tag = tag; 4775 } 4776 4777 if (r->qid != 0) { 4778 if (mtag == NULL) 4779 mtag = pf_get_mtag(m); 4780 if (mtag == NULL) { 4781 PF_RULES_RUNLOCK(); 4782 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4783 return (PF_DROP); 4784 } 4785 mtag->qid = r->qid; 4786 } 4787 4788 action = r->action; 4789 bridge_to = r->bridge_to; 4790 4791 /* Dummynet */ 4792 if (r->dnpipe) { 4793 struct ip_fw_args dnflow; 4794 4795 /* Drop packet if dummynet is not loaded. */ 4796 if (ip_dn_io_ptr == NULL) { 4797 PF_RULES_RUNLOCK(); 4798 m_freem(m); 4799 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4800 return (PF_DROP); 4801 } 4802 if (mtag == NULL) 4803 mtag = pf_get_mtag(m); 4804 if (mtag == NULL) { 4805 PF_RULES_RUNLOCK(); 4806 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4807 return (PF_DROP); 4808 } 4809 4810 bzero(&dnflow, sizeof(dnflow)); 4811 4812 /* We don't have port numbers here, so we set 0. That means 4813 * that we'll be somewhat limited in distinguishing flows (i.e. 4814 * only based on IP addresses, not based on port numbers), but 4815 * it's better than nothing. */ 4816 dnflow.f_id.dst_port = 0; 4817 dnflow.f_id.src_port = 0; 4818 dnflow.f_id.proto = 0; 4819 4820 dnflow.rule.info = r->dnpipe; 4821 dnflow.rule.info |= IPFW_IS_DUMMYNET; 4822 if (r->dnflags & PFRULE_DN_IS_PIPE) 4823 dnflow.rule.info |= IPFW_IS_PIPE; 4824 4825 dnflow.f_id.extra = dnflow.rule.info; 4826 4827 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 4828 dnflow.flags |= IPFW_ARGS_ETHER; 4829 dnflow.ifp = kif->pfik_ifp; 4830 4831 switch (af) { 4832 case AF_INET: 4833 dnflow.f_id.addr_type = 4; 4834 dnflow.f_id.src_ip = src->v4.s_addr; 4835 dnflow.f_id.dst_ip = dst->v4.s_addr; 4836 break; 4837 case AF_INET6: 4838 dnflow.flags |= IPFW_ARGS_IP6; 4839 dnflow.f_id.addr_type = 6; 4840 dnflow.f_id.src_ip6 = src->v6; 4841 dnflow.f_id.dst_ip6 = dst->v6; 4842 break; 4843 } 4844 4845 PF_RULES_RUNLOCK(); 4846 4847 mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 4848 ip_dn_io_ptr(m0, &dnflow); 4849 if (*m0 != NULL) 4850 pf_dummynet_flag_remove(m, mtag); 4851 } else { 4852 PF_RULES_RUNLOCK(); 4853 } 4854 4855 if (action == PF_PASS && bridge_to) { 4856 pf_bridge_to(bridge_to->pfik_ifp, *m0); 4857 *m0 = NULL; /* We've eaten the packet. */ 4858 } 4859 4860 return (action); 4861 } 4862 4863 static int 4864 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, struct pfi_kkif *kif, 4865 struct mbuf *m, int off, struct pf_pdesc *pd, struct pf_krule **am, 4866 struct pf_kruleset **rsm, struct inpcb *inp) 4867 { 4868 struct pf_krule *nr = NULL; 4869 struct pf_addr * const saddr = pd->src; 4870 struct pf_addr * const daddr = pd->dst; 4871 sa_family_t af = pd->af; 4872 struct pf_krule *r, *a = NULL; 4873 struct pf_kruleset *ruleset = NULL; 4874 struct pf_krule_slist match_rules; 4875 struct pf_krule_item *ri; 4876 struct pf_ksrc_node *nsn = NULL; 4877 struct tcphdr *th = &pd->hdr.tcp; 4878 struct pf_state_key *sk = NULL, *nk = NULL; 4879 u_short reason, transerror; 4880 int rewrite = 0, hdrlen = 0; 4881 int tag = -1; 4882 int asd = 0; 4883 int match = 0; 4884 int state_icmp = 0, icmp_dir, multi; 4885 u_int16_t sport = 0, dport = 0, virtual_type, virtual_id; 4886 u_int16_t bproto_sum = 0, bip_sum = 0; 4887 u_int8_t icmptype = 0, icmpcode = 0; 4888 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4889 struct pf_udp_mapping *udp_mapping = NULL; 4890 4891 PF_RULES_RASSERT(); 4892 4893 SLIST_INIT(&match_rules); 4894 4895 if (inp != NULL) { 4896 INP_LOCK_ASSERT(inp); 4897 pd->lookup.uid = inp->inp_cred->cr_uid; 4898 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4899 pd->lookup.done = 1; 4900 } 4901 4902 switch (pd->proto) { 4903 case IPPROTO_TCP: 4904 sport = th->th_sport; 4905 dport = th->th_dport; 4906 hdrlen = sizeof(*th); 4907 break; 4908 case IPPROTO_UDP: 4909 sport = pd->hdr.udp.uh_sport; 4910 dport = pd->hdr.udp.uh_dport; 4911 hdrlen = sizeof(pd->hdr.udp); 4912 break; 4913 case IPPROTO_SCTP: 4914 sport = pd->hdr.sctp.src_port; 4915 dport = pd->hdr.sctp.dest_port; 4916 hdrlen = sizeof(pd->hdr.sctp); 4917 break; 4918 #ifdef INET 4919 case IPPROTO_ICMP: 4920 if (pd->af != AF_INET) 4921 break; 4922 hdrlen = sizeof(pd->hdr.icmp); 4923 icmptype = pd->hdr.icmp.icmp_type; 4924 icmpcode = pd->hdr.icmp.icmp_code; 4925 state_icmp = pf_icmp_mapping(pd, icmptype, 4926 &icmp_dir, &multi, &virtual_id, &virtual_type); 4927 if (icmp_dir == PF_IN) { 4928 sport = virtual_id; 4929 dport = virtual_type; 4930 } else { 4931 sport = virtual_type; 4932 dport = virtual_id; 4933 } 4934 break; 4935 #endif /* INET */ 4936 #ifdef INET6 4937 case IPPROTO_ICMPV6: 4938 if (af != AF_INET6) 4939 break; 4940 hdrlen = sizeof(pd->hdr.icmp6); 4941 icmptype = pd->hdr.icmp6.icmp6_type; 4942 icmpcode = pd->hdr.icmp6.icmp6_code; 4943 state_icmp = pf_icmp_mapping(pd, icmptype, 4944 &icmp_dir, &multi, &virtual_id, &virtual_type); 4945 if (icmp_dir == PF_IN) { 4946 sport = virtual_id; 4947 dport = virtual_type; 4948 } else { 4949 sport = virtual_type; 4950 dport = virtual_id; 4951 } 4952 4953 break; 4954 #endif /* INET6 */ 4955 default: 4956 sport = dport = hdrlen = 0; 4957 break; 4958 } 4959 4960 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4961 4962 /* check packet for BINAT/NAT/RDR */ 4963 transerror = pf_get_translation(pd, m, off, kif, &nsn, &sk, 4964 &nk, saddr, daddr, sport, dport, anchor_stack, &nr, &udp_mapping); 4965 switch (transerror) { 4966 default: 4967 /* A translation error occurred. */ 4968 REASON_SET(&reason, transerror); 4969 goto cleanup; 4970 case PFRES_MAX: 4971 /* No match. */ 4972 break; 4973 case PFRES_MATCH: 4974 KASSERT(sk != NULL, ("%s: null sk", __func__)); 4975 KASSERT(nk != NULL, ("%s: null nk", __func__)); 4976 4977 if (nr->log) { 4978 PFLOG_PACKET(kif, m, af, PF_PASS, PFRES_MATCH, nr, a, 4979 ruleset, pd, 1); 4980 } 4981 4982 if (pd->ip_sum) 4983 bip_sum = *pd->ip_sum; 4984 4985 switch (pd->proto) { 4986 case IPPROTO_TCP: 4987 bproto_sum = th->th_sum; 4988 pd->proto_sum = &th->th_sum; 4989 4990 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4991 nk->port[pd->sidx] != sport) { 4992 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 4993 &th->th_sum, &nk->addr[pd->sidx], 4994 nk->port[pd->sidx], 0, af); 4995 pd->sport = &th->th_sport; 4996 sport = th->th_sport; 4997 } 4998 4999 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 5000 nk->port[pd->didx] != dport) { 5001 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 5002 &th->th_sum, &nk->addr[pd->didx], 5003 nk->port[pd->didx], 0, af); 5004 dport = th->th_dport; 5005 pd->dport = &th->th_dport; 5006 } 5007 rewrite++; 5008 break; 5009 case IPPROTO_UDP: 5010 bproto_sum = pd->hdr.udp.uh_sum; 5011 pd->proto_sum = &pd->hdr.udp.uh_sum; 5012 5013 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 5014 nk->port[pd->sidx] != sport) { 5015 pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, 5016 pd->ip_sum, &pd->hdr.udp.uh_sum, 5017 &nk->addr[pd->sidx], 5018 nk->port[pd->sidx], 1, af); 5019 sport = pd->hdr.udp.uh_sport; 5020 pd->sport = &pd->hdr.udp.uh_sport; 5021 } 5022 5023 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 5024 nk->port[pd->didx] != dport) { 5025 pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, 5026 pd->ip_sum, &pd->hdr.udp.uh_sum, 5027 &nk->addr[pd->didx], 5028 nk->port[pd->didx], 1, af); 5029 dport = pd->hdr.udp.uh_dport; 5030 pd->dport = &pd->hdr.udp.uh_dport; 5031 } 5032 rewrite++; 5033 break; 5034 case IPPROTO_SCTP: { 5035 uint16_t checksum = 0; 5036 5037 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 5038 nk->port[pd->sidx] != sport) { 5039 pf_change_ap(m, saddr, &pd->hdr.sctp.src_port, 5040 pd->ip_sum, &checksum, 5041 &nk->addr[pd->sidx], 5042 nk->port[pd->sidx], 1, af); 5043 } 5044 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 5045 nk->port[pd->didx] != dport) { 5046 pf_change_ap(m, daddr, &pd->hdr.sctp.dest_port, 5047 pd->ip_sum, &checksum, 5048 &nk->addr[pd->didx], 5049 nk->port[pd->didx], 1, af); 5050 } 5051 break; 5052 } 5053 #ifdef INET 5054 case IPPROTO_ICMP: 5055 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 5056 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 5057 nk->addr[pd->sidx].v4.s_addr, 0); 5058 5059 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 5060 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 5061 nk->addr[pd->didx].v4.s_addr, 0); 5062 5063 if (virtual_type == htons(ICMP_ECHO) && 5064 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) { 5065 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 5066 pd->hdr.icmp.icmp_cksum, sport, 5067 nk->port[pd->sidx], 0); 5068 pd->hdr.icmp.icmp_id = nk->port[pd->sidx]; 5069 pd->sport = &pd->hdr.icmp.icmp_id; 5070 } 5071 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 5072 break; 5073 #endif /* INET */ 5074 #ifdef INET6 5075 case IPPROTO_ICMPV6: 5076 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 5077 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 5078 &nk->addr[pd->sidx], 0); 5079 5080 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 5081 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 5082 &nk->addr[pd->didx], 0); 5083 rewrite++; 5084 break; 5085 #endif /* INET */ 5086 default: 5087 switch (af) { 5088 #ifdef INET 5089 case AF_INET: 5090 if (PF_ANEQ(saddr, 5091 &nk->addr[pd->sidx], AF_INET)) 5092 pf_change_a(&saddr->v4.s_addr, 5093 pd->ip_sum, 5094 nk->addr[pd->sidx].v4.s_addr, 0); 5095 5096 if (PF_ANEQ(daddr, 5097 &nk->addr[pd->didx], AF_INET)) 5098 pf_change_a(&daddr->v4.s_addr, 5099 pd->ip_sum, 5100 nk->addr[pd->didx].v4.s_addr, 0); 5101 break; 5102 #endif /* INET */ 5103 #ifdef INET6 5104 case AF_INET6: 5105 if (PF_ANEQ(saddr, 5106 &nk->addr[pd->sidx], AF_INET6)) 5107 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 5108 5109 if (PF_ANEQ(daddr, 5110 &nk->addr[pd->didx], AF_INET6)) 5111 PF_ACPY(daddr, &nk->addr[pd->didx], af); 5112 break; 5113 #endif /* INET */ 5114 } 5115 break; 5116 } 5117 if (nr->natpass) 5118 r = NULL; 5119 pd->nat_rule = nr; 5120 } 5121 5122 while (r != NULL) { 5123 pf_counter_u64_add(&r->evaluations, 1); 5124 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 5125 r = r->skip[PF_SKIP_IFP].ptr; 5126 else if (r->direction && r->direction != pd->dir) 5127 r = r->skip[PF_SKIP_DIR].ptr; 5128 else if (r->af && r->af != af) 5129 r = r->skip[PF_SKIP_AF].ptr; 5130 else if (r->proto && r->proto != pd->proto) 5131 r = r->skip[PF_SKIP_PROTO].ptr; 5132 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 5133 r->src.neg, kif, M_GETFIB(m))) 5134 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 5135 /* tcp/udp only. port_op always 0 in other cases */ 5136 else if (r->src.port_op && !pf_match_port(r->src.port_op, 5137 r->src.port[0], r->src.port[1], sport)) 5138 r = r->skip[PF_SKIP_SRC_PORT].ptr; 5139 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 5140 r->dst.neg, NULL, M_GETFIB(m))) 5141 r = r->skip[PF_SKIP_DST_ADDR].ptr; 5142 /* tcp/udp only. port_op always 0 in other cases */ 5143 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 5144 r->dst.port[0], r->dst.port[1], dport)) 5145 r = r->skip[PF_SKIP_DST_PORT].ptr; 5146 /* icmp only. type always 0 in other cases */ 5147 else if (r->type && r->type != icmptype + 1) 5148 r = TAILQ_NEXT(r, entries); 5149 /* icmp only. type always 0 in other cases */ 5150 else if (r->code && r->code != icmpcode + 1) 5151 r = TAILQ_NEXT(r, entries); 5152 else if (r->tos && !(r->tos == pd->tos)) 5153 r = TAILQ_NEXT(r, entries); 5154 else if (r->rule_flag & PFRULE_FRAGMENT) 5155 r = TAILQ_NEXT(r, entries); 5156 else if (pd->proto == IPPROTO_TCP && 5157 (r->flagset & th->th_flags) != r->flags) 5158 r = TAILQ_NEXT(r, entries); 5159 /* tcp/udp only. uid.op always 0 in other cases */ 5160 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 5161 pf_socket_lookup(pd, m), 1)) && 5162 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 5163 pd->lookup.uid)) 5164 r = TAILQ_NEXT(r, entries); 5165 /* tcp/udp only. gid.op always 0 in other cases */ 5166 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 5167 pf_socket_lookup(pd, m), 1)) && 5168 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 5169 pd->lookup.gid)) 5170 r = TAILQ_NEXT(r, entries); 5171 else if (r->prio && 5172 !pf_match_ieee8021q_pcp(r->prio, m)) 5173 r = TAILQ_NEXT(r, entries); 5174 else if (r->prob && 5175 r->prob <= arc4random()) 5176 r = TAILQ_NEXT(r, entries); 5177 else if (r->match_tag && !pf_match_tag(m, r, &tag, 5178 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 5179 r = TAILQ_NEXT(r, entries); 5180 else if (r->rcv_kif && !pf_match_rcvif(m, r)) 5181 r = TAILQ_NEXT(r, entries); 5182 else if (r->os_fingerprint != PF_OSFP_ANY && 5183 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 5184 pf_osfp_fingerprint(pd, m, off, th), 5185 r->os_fingerprint))) 5186 r = TAILQ_NEXT(r, entries); 5187 else { 5188 if (r->tag) 5189 tag = r->tag; 5190 if (r->anchor == NULL) { 5191 if (r->action == PF_MATCH) { 5192 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5193 if (ri == NULL) { 5194 REASON_SET(&reason, PFRES_MEMORY); 5195 goto cleanup; 5196 } 5197 ri->r = r; 5198 SLIST_INSERT_HEAD(&match_rules, ri, entry); 5199 pf_counter_u64_critical_enter(); 5200 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5201 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5202 pf_counter_u64_critical_exit(); 5203 pf_rule_to_actions(r, &pd->act); 5204 if (r->log) 5205 PFLOG_PACKET(kif, m, af, 5206 r->action, PFRES_MATCH, r, 5207 a, ruleset, pd, 1); 5208 } else { 5209 match = 1; 5210 *rm = r; 5211 *am = a; 5212 *rsm = ruleset; 5213 } 5214 if ((*rm)->quick) 5215 break; 5216 r = TAILQ_NEXT(r, entries); 5217 } else 5218 pf_step_into_anchor(anchor_stack, &asd, 5219 &ruleset, PF_RULESET_FILTER, &r, &a, 5220 &match); 5221 } 5222 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 5223 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 5224 break; 5225 } 5226 r = *rm; 5227 a = *am; 5228 ruleset = *rsm; 5229 5230 REASON_SET(&reason, PFRES_MATCH); 5231 5232 /* apply actions for last matching pass/block rule */ 5233 pf_rule_to_actions(r, &pd->act); 5234 5235 if (r->log) { 5236 if (rewrite) 5237 m_copyback(m, off, hdrlen, pd->hdr.any); 5238 PFLOG_PACKET(kif, m, af, r->action, reason, r, a, ruleset, pd, 1); 5239 } 5240 5241 if ((r->action == PF_DROP) && 5242 ((r->rule_flag & PFRULE_RETURNRST) || 5243 (r->rule_flag & PFRULE_RETURNICMP) || 5244 (r->rule_flag & PFRULE_RETURN))) { 5245 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 5246 bip_sum, hdrlen, &reason, r->rtableid); 5247 } 5248 5249 if (r->action == PF_DROP) 5250 goto cleanup; 5251 5252 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 5253 REASON_SET(&reason, PFRES_MEMORY); 5254 goto cleanup; 5255 } 5256 if (pd->act.rtableid >= 0) 5257 M_SETFIB(m, pd->act.rtableid); 5258 5259 if (!state_icmp && (r->keep_state || nr != NULL || 5260 (pd->flags & PFDESC_TCP_NORM))) { 5261 int action; 5262 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 5263 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 5264 hdrlen, &match_rules, udp_mapping); 5265 if (action != PF_PASS) { 5266 pf_udp_mapping_release(udp_mapping); 5267 if (action == PF_DROP && 5268 (r->rule_flag & PFRULE_RETURN)) 5269 pf_return(r, nr, pd, sk, off, m, th, kif, 5270 bproto_sum, bip_sum, hdrlen, &reason, 5271 pd->act.rtableid); 5272 return (action); 5273 } 5274 } else { 5275 while ((ri = SLIST_FIRST(&match_rules))) { 5276 SLIST_REMOVE_HEAD(&match_rules, entry); 5277 free(ri, M_PF_RULE_ITEM); 5278 } 5279 5280 uma_zfree(V_pf_state_key_z, sk); 5281 uma_zfree(V_pf_state_key_z, nk); 5282 pf_udp_mapping_release(udp_mapping); 5283 } 5284 5285 /* copy back packet headers if we performed NAT operations */ 5286 if (rewrite) 5287 m_copyback(m, off, hdrlen, pd->hdr.any); 5288 5289 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 5290 pd->dir == PF_OUT && 5291 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 5292 /* 5293 * We want the state created, but we dont 5294 * want to send this in case a partner 5295 * firewall has to know about it to allow 5296 * replies through it. 5297 */ 5298 return (PF_DEFER); 5299 5300 return (PF_PASS); 5301 5302 cleanup: 5303 while ((ri = SLIST_FIRST(&match_rules))) { 5304 SLIST_REMOVE_HEAD(&match_rules, entry); 5305 free(ri, M_PF_RULE_ITEM); 5306 } 5307 5308 uma_zfree(V_pf_state_key_z, sk); 5309 uma_zfree(V_pf_state_key_z, nk); 5310 pf_udp_mapping_release(udp_mapping); 5311 5312 return (PF_DROP); 5313 } 5314 5315 static int 5316 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 5317 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 5318 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 5319 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, 5320 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 5321 struct pf_krule_slist *match_rules, struct pf_udp_mapping *udp_mapping) 5322 { 5323 struct pf_kstate *s = NULL; 5324 struct pf_ksrc_node *sn = NULL; 5325 struct tcphdr *th = &pd->hdr.tcp; 5326 u_int16_t mss = V_tcp_mssdflt; 5327 u_short reason, sn_reason; 5328 struct pf_krule_item *ri; 5329 5330 /* check maximums */ 5331 if (r->max_states && 5332 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 5333 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 5334 REASON_SET(&reason, PFRES_MAXSTATES); 5335 goto csfailed; 5336 } 5337 /* src node for filter rule */ 5338 if ((r->rule_flag & PFRULE_SRCTRACK || 5339 r->rpool.opts & PF_POOL_STICKYADDR) && 5340 (sn_reason = pf_insert_src_node(&sn, r, pd->src, pd->af)) != 0) { 5341 REASON_SET(&reason, sn_reason); 5342 goto csfailed; 5343 } 5344 /* src node for translation rule */ 5345 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 5346 (sn_reason = pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], 5347 pd->af)) != 0 ) { 5348 REASON_SET(&reason, sn_reason); 5349 goto csfailed; 5350 } 5351 s = pf_alloc_state(M_NOWAIT); 5352 if (s == NULL) { 5353 REASON_SET(&reason, PFRES_MEMORY); 5354 goto csfailed; 5355 } 5356 s->rule.ptr = r; 5357 s->nat_rule.ptr = nr; 5358 s->anchor.ptr = a; 5359 bcopy(match_rules, &s->match_rules, sizeof(s->match_rules)); 5360 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions)); 5361 5362 STATE_INC_COUNTERS(s); 5363 if (r->allow_opts) 5364 s->state_flags |= PFSTATE_ALLOWOPTS; 5365 if (r->rule_flag & PFRULE_STATESLOPPY) 5366 s->state_flags |= PFSTATE_SLOPPY; 5367 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 5368 s->state_flags |= PFSTATE_SCRUB_TCP; 5369 if ((r->rule_flag & PFRULE_PFLOW) || 5370 (nr != NULL && nr->rule_flag & PFRULE_PFLOW)) 5371 s->state_flags |= PFSTATE_PFLOW; 5372 5373 s->act.log = pd->act.log & PF_LOG_ALL; 5374 s->sync_state = PFSYNC_S_NONE; 5375 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */ 5376 5377 if (nr != NULL) 5378 s->act.log |= nr->log & PF_LOG_ALL; 5379 switch (pd->proto) { 5380 case IPPROTO_TCP: 5381 s->src.seqlo = ntohl(th->th_seq); 5382 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 5383 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 5384 r->keep_state == PF_STATE_MODULATE) { 5385 /* Generate sequence number modulator */ 5386 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 5387 0) 5388 s->src.seqdiff = 1; 5389 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 5390 htonl(s->src.seqlo + s->src.seqdiff), 0); 5391 *rewrite = 1; 5392 } else 5393 s->src.seqdiff = 0; 5394 if (th->th_flags & TH_SYN) { 5395 s->src.seqhi++; 5396 s->src.wscale = pf_get_wscale(m, off, 5397 th->th_off, pd->af); 5398 } 5399 s->src.max_win = MAX(ntohs(th->th_win), 1); 5400 if (s->src.wscale & PF_WSCALE_MASK) { 5401 /* Remove scale factor from initial window */ 5402 int win = s->src.max_win; 5403 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 5404 s->src.max_win = (win - 1) >> 5405 (s->src.wscale & PF_WSCALE_MASK); 5406 } 5407 if (th->th_flags & TH_FIN) 5408 s->src.seqhi++; 5409 s->dst.seqhi = 1; 5410 s->dst.max_win = 1; 5411 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 5412 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 5413 s->timeout = PFTM_TCP_FIRST_PACKET; 5414 atomic_add_32(&V_pf_status.states_halfopen, 1); 5415 break; 5416 case IPPROTO_UDP: 5417 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 5418 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 5419 s->timeout = PFTM_UDP_FIRST_PACKET; 5420 break; 5421 case IPPROTO_SCTP: 5422 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT); 5423 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED); 5424 s->timeout = PFTM_SCTP_FIRST_PACKET; 5425 break; 5426 case IPPROTO_ICMP: 5427 #ifdef INET6 5428 case IPPROTO_ICMPV6: 5429 #endif 5430 s->timeout = PFTM_ICMP_FIRST_PACKET; 5431 break; 5432 default: 5433 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 5434 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 5435 s->timeout = PFTM_OTHER_FIRST_PACKET; 5436 } 5437 5438 if (r->rt) { 5439 /* pf_map_addr increases the reason counters */ 5440 if ((reason = pf_map_addr(pd->af, r, pd->src, &s->rt_addr, 5441 &s->rt_kif, NULL, &sn)) != 0) 5442 goto csfailed; 5443 s->rt = r->rt; 5444 } 5445 5446 s->creation = s->expire = pf_get_uptime(); 5447 5448 if (sn != NULL) 5449 s->src_node = sn; 5450 if (nsn != NULL) { 5451 /* XXX We only modify one side for now. */ 5452 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 5453 s->nat_src_node = nsn; 5454 } 5455 if (pd->proto == IPPROTO_TCP) { 5456 if (s->state_flags & PFSTATE_SCRUB_TCP && 5457 pf_normalize_tcp_init(m, off, pd, th, &s->src, &s->dst)) { 5458 REASON_SET(&reason, PFRES_MEMORY); 5459 goto drop; 5460 } 5461 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 5462 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 5463 &s->src, &s->dst, rewrite)) { 5464 /* This really shouldn't happen!!! */ 5465 DPFPRINTF(PF_DEBUG_URGENT, 5466 ("pf_normalize_tcp_stateful failed on first " 5467 "pkt\n")); 5468 goto drop; 5469 } 5470 } else if (pd->proto == IPPROTO_SCTP) { 5471 if (pf_normalize_sctp_init(m, off, pd, &s->src, &s->dst)) 5472 goto drop; 5473 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP))) 5474 goto drop; 5475 } 5476 s->direction = pd->dir; 5477 5478 /* 5479 * sk/nk could already been setup by pf_get_translation(). 5480 */ 5481 if (nr == NULL) { 5482 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 5483 __func__, nr, sk, nk)); 5484 sk = pf_state_key_setup(pd, m, off, pd->src, pd->dst, sport, dport); 5485 if (sk == NULL) 5486 goto csfailed; 5487 nk = sk; 5488 } else 5489 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 5490 __func__, nr, sk, nk)); 5491 5492 /* Swap sk/nk for PF_OUT. */ 5493 if (pf_state_insert(BOUND_IFACE(s, kif), kif, 5494 (pd->dir == PF_IN) ? sk : nk, 5495 (pd->dir == PF_IN) ? nk : sk, s)) { 5496 REASON_SET(&reason, PFRES_STATEINS); 5497 goto drop; 5498 } else 5499 *sm = s; 5500 5501 if (tag > 0) 5502 s->tag = tag; 5503 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 5504 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 5505 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 5506 /* undo NAT changes, if they have taken place */ 5507 if (nr != NULL) { 5508 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 5509 if (pd->dir == PF_OUT) 5510 skt = s->key[PF_SK_STACK]; 5511 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 5512 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 5513 if (pd->sport) 5514 *pd->sport = skt->port[pd->sidx]; 5515 if (pd->dport) 5516 *pd->dport = skt->port[pd->didx]; 5517 if (pd->proto_sum) 5518 *pd->proto_sum = bproto_sum; 5519 if (pd->ip_sum) 5520 *pd->ip_sum = bip_sum; 5521 m_copyback(m, off, hdrlen, pd->hdr.any); 5522 } 5523 s->src.seqhi = htonl(arc4random()); 5524 /* Find mss option */ 5525 int rtid = M_GETFIB(m); 5526 mss = pf_get_mss(m, off, th->th_off, pd->af); 5527 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 5528 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 5529 s->src.mss = mss; 5530 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 5531 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 5532 TH_SYN|TH_ACK, 0, s->src.mss, 0, true, 0, 0, 5533 pd->act.rtableid); 5534 REASON_SET(&reason, PFRES_SYNPROXY); 5535 return (PF_SYNPROXY_DROP); 5536 } 5537 5538 s->udp_mapping = udp_mapping; 5539 5540 return (PF_PASS); 5541 5542 csfailed: 5543 while ((ri = SLIST_FIRST(match_rules))) { 5544 SLIST_REMOVE_HEAD(match_rules, entry); 5545 free(ri, M_PF_RULE_ITEM); 5546 } 5547 5548 uma_zfree(V_pf_state_key_z, sk); 5549 uma_zfree(V_pf_state_key_z, nk); 5550 5551 if (sn != NULL) { 5552 PF_SRC_NODE_LOCK(sn); 5553 if (--sn->states == 0 && sn->expire == 0) { 5554 pf_unlink_src_node(sn); 5555 uma_zfree(V_pf_sources_z, sn); 5556 counter_u64_add( 5557 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5558 } 5559 PF_SRC_NODE_UNLOCK(sn); 5560 } 5561 5562 if (nsn != sn && nsn != NULL) { 5563 PF_SRC_NODE_LOCK(nsn); 5564 if (--nsn->states == 0 && nsn->expire == 0) { 5565 pf_unlink_src_node(nsn); 5566 uma_zfree(V_pf_sources_z, nsn); 5567 counter_u64_add( 5568 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5569 } 5570 PF_SRC_NODE_UNLOCK(nsn); 5571 } 5572 5573 drop: 5574 if (s != NULL) { 5575 pf_src_tree_remove_state(s); 5576 s->timeout = PFTM_UNLINKED; 5577 STATE_DEC_COUNTERS(s); 5578 pf_free_state(s); 5579 } 5580 5581 return (PF_DROP); 5582 } 5583 5584 static int 5585 pf_test_fragment(struct pf_krule **rm, struct pfi_kkif *kif, 5586 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, 5587 struct pf_kruleset **rsm) 5588 { 5589 struct pf_krule *r, *a = NULL; 5590 struct pf_kruleset *ruleset = NULL; 5591 struct pf_krule_slist match_rules; 5592 struct pf_krule_item *ri; 5593 sa_family_t af = pd->af; 5594 u_short reason; 5595 int tag = -1; 5596 int asd = 0; 5597 int match = 0; 5598 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 5599 5600 PF_RULES_RASSERT(); 5601 5602 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 5603 SLIST_INIT(&match_rules); 5604 while (r != NULL) { 5605 pf_counter_u64_add(&r->evaluations, 1); 5606 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 5607 r = r->skip[PF_SKIP_IFP].ptr; 5608 else if (r->direction && r->direction != pd->dir) 5609 r = r->skip[PF_SKIP_DIR].ptr; 5610 else if (r->af && r->af != af) 5611 r = r->skip[PF_SKIP_AF].ptr; 5612 else if (r->proto && r->proto != pd->proto) 5613 r = r->skip[PF_SKIP_PROTO].ptr; 5614 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 5615 r->src.neg, kif, M_GETFIB(m))) 5616 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 5617 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 5618 r->dst.neg, NULL, M_GETFIB(m))) 5619 r = r->skip[PF_SKIP_DST_ADDR].ptr; 5620 else if (r->tos && !(r->tos == pd->tos)) 5621 r = TAILQ_NEXT(r, entries); 5622 else if (r->os_fingerprint != PF_OSFP_ANY) 5623 r = TAILQ_NEXT(r, entries); 5624 else if (pd->proto == IPPROTO_UDP && 5625 (r->src.port_op || r->dst.port_op)) 5626 r = TAILQ_NEXT(r, entries); 5627 else if (pd->proto == IPPROTO_TCP && 5628 (r->src.port_op || r->dst.port_op || r->flagset)) 5629 r = TAILQ_NEXT(r, entries); 5630 else if ((pd->proto == IPPROTO_ICMP || 5631 pd->proto == IPPROTO_ICMPV6) && 5632 (r->type || r->code)) 5633 r = TAILQ_NEXT(r, entries); 5634 else if (r->prio && 5635 !pf_match_ieee8021q_pcp(r->prio, m)) 5636 r = TAILQ_NEXT(r, entries); 5637 else if (r->prob && r->prob <= 5638 (arc4random() % (UINT_MAX - 1) + 1)) 5639 r = TAILQ_NEXT(r, entries); 5640 else if (r->match_tag && !pf_match_tag(m, r, &tag, 5641 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 5642 r = TAILQ_NEXT(r, entries); 5643 else { 5644 if (r->anchor == NULL) { 5645 if (r->action == PF_MATCH) { 5646 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5647 if (ri == NULL) { 5648 REASON_SET(&reason, PFRES_MEMORY); 5649 goto cleanup; 5650 } 5651 ri->r = r; 5652 SLIST_INSERT_HEAD(&match_rules, ri, entry); 5653 pf_counter_u64_critical_enter(); 5654 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5655 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5656 pf_counter_u64_critical_exit(); 5657 pf_rule_to_actions(r, &pd->act); 5658 if (r->log) 5659 PFLOG_PACKET(kif, m, af, 5660 r->action, PFRES_MATCH, r, 5661 a, ruleset, pd, 1); 5662 } else { 5663 match = 1; 5664 *rm = r; 5665 *am = a; 5666 *rsm = ruleset; 5667 } 5668 if ((*rm)->quick) 5669 break; 5670 r = TAILQ_NEXT(r, entries); 5671 } else 5672 pf_step_into_anchor(anchor_stack, &asd, 5673 &ruleset, PF_RULESET_FILTER, &r, &a, 5674 &match); 5675 } 5676 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 5677 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 5678 break; 5679 } 5680 r = *rm; 5681 a = *am; 5682 ruleset = *rsm; 5683 5684 REASON_SET(&reason, PFRES_MATCH); 5685 5686 /* apply actions for last matching pass/block rule */ 5687 pf_rule_to_actions(r, &pd->act); 5688 5689 if (r->log) 5690 PFLOG_PACKET(kif, m, af, r->action, reason, r, a, ruleset, pd, 1); 5691 5692 if (r->action != PF_PASS) 5693 return (PF_DROP); 5694 5695 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 5696 REASON_SET(&reason, PFRES_MEMORY); 5697 goto cleanup; 5698 } 5699 5700 return (PF_PASS); 5701 5702 cleanup: 5703 while ((ri = SLIST_FIRST(&match_rules))) { 5704 SLIST_REMOVE_HEAD(&match_rules, entry); 5705 free(ri, M_PF_RULE_ITEM); 5706 } 5707 5708 return (PF_DROP); 5709 } 5710 5711 static int 5712 pf_tcp_track_full(struct pf_kstate **state, struct pfi_kkif *kif, 5713 struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason, 5714 int *copyback) 5715 { 5716 struct tcphdr *th = &pd->hdr.tcp; 5717 struct pf_state_peer *src, *dst; 5718 u_int16_t win = ntohs(th->th_win); 5719 u_int32_t ack, end, data_end, seq, orig_seq; 5720 u_int8_t sws, dws, psrc, pdst; 5721 int ackskew; 5722 5723 if (pd->dir == (*state)->direction) { 5724 src = &(*state)->src; 5725 dst = &(*state)->dst; 5726 psrc = PF_PEER_SRC; 5727 pdst = PF_PEER_DST; 5728 } else { 5729 src = &(*state)->dst; 5730 dst = &(*state)->src; 5731 psrc = PF_PEER_DST; 5732 pdst = PF_PEER_SRC; 5733 } 5734 5735 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 5736 sws = src->wscale & PF_WSCALE_MASK; 5737 dws = dst->wscale & PF_WSCALE_MASK; 5738 } else 5739 sws = dws = 0; 5740 5741 /* 5742 * Sequence tracking algorithm from Guido van Rooij's paper: 5743 * http://www.madison-gurkha.com/publications/tcp_filtering/ 5744 * tcp_filtering.ps 5745 */ 5746 5747 orig_seq = seq = ntohl(th->th_seq); 5748 if (src->seqlo == 0) { 5749 /* First packet from this end. Set its state */ 5750 5751 if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 5752 src->scrub == NULL) { 5753 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 5754 REASON_SET(reason, PFRES_MEMORY); 5755 return (PF_DROP); 5756 } 5757 } 5758 5759 /* Deferred generation of sequence number modulator */ 5760 if (dst->seqdiff && !src->seqdiff) { 5761 /* use random iss for the TCP server */ 5762 while ((src->seqdiff = arc4random() - seq) == 0) 5763 ; 5764 ack = ntohl(th->th_ack) - dst->seqdiff; 5765 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5766 src->seqdiff), 0); 5767 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5768 *copyback = 1; 5769 } else { 5770 ack = ntohl(th->th_ack); 5771 } 5772 5773 end = seq + pd->p_len; 5774 if (th->th_flags & TH_SYN) { 5775 end++; 5776 if (dst->wscale & PF_WSCALE_FLAG) { 5777 src->wscale = pf_get_wscale(m, off, th->th_off, 5778 pd->af); 5779 if (src->wscale & PF_WSCALE_FLAG) { 5780 /* Remove scale factor from initial 5781 * window */ 5782 sws = src->wscale & PF_WSCALE_MASK; 5783 win = ((u_int32_t)win + (1 << sws) - 1) 5784 >> sws; 5785 dws = dst->wscale & PF_WSCALE_MASK; 5786 } else { 5787 /* fixup other window */ 5788 dst->max_win = MIN(TCP_MAXWIN, 5789 (u_int32_t)dst->max_win << 5790 (dst->wscale & PF_WSCALE_MASK)); 5791 /* in case of a retrans SYN|ACK */ 5792 dst->wscale = 0; 5793 } 5794 } 5795 } 5796 data_end = end; 5797 if (th->th_flags & TH_FIN) 5798 end++; 5799 5800 src->seqlo = seq; 5801 if (src->state < TCPS_SYN_SENT) 5802 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5803 5804 /* 5805 * May need to slide the window (seqhi may have been set by 5806 * the crappy stack check or if we picked up the connection 5807 * after establishment) 5808 */ 5809 if (src->seqhi == 1 || 5810 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 5811 src->seqhi = end + MAX(1, dst->max_win << dws); 5812 if (win > src->max_win) 5813 src->max_win = win; 5814 5815 } else { 5816 ack = ntohl(th->th_ack) - dst->seqdiff; 5817 if (src->seqdiff) { 5818 /* Modulate sequence numbers */ 5819 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5820 src->seqdiff), 0); 5821 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5822 *copyback = 1; 5823 } 5824 end = seq + pd->p_len; 5825 if (th->th_flags & TH_SYN) 5826 end++; 5827 data_end = end; 5828 if (th->th_flags & TH_FIN) 5829 end++; 5830 } 5831 5832 if ((th->th_flags & TH_ACK) == 0) { 5833 /* Let it pass through the ack skew check */ 5834 ack = dst->seqlo; 5835 } else if ((ack == 0 && 5836 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 5837 /* broken tcp stacks do not set ack */ 5838 (dst->state < TCPS_SYN_SENT)) { 5839 /* 5840 * Many stacks (ours included) will set the ACK number in an 5841 * FIN|ACK if the SYN times out -- no sequence to ACK. 5842 */ 5843 ack = dst->seqlo; 5844 } 5845 5846 if (seq == end) { 5847 /* Ease sequencing restrictions on no data packets */ 5848 seq = src->seqlo; 5849 data_end = end = seq; 5850 } 5851 5852 ackskew = dst->seqlo - ack; 5853 5854 /* 5855 * Need to demodulate the sequence numbers in any TCP SACK options 5856 * (Selective ACK). We could optionally validate the SACK values 5857 * against the current ACK window, either forwards or backwards, but 5858 * I'm not confident that SACK has been implemented properly 5859 * everywhere. It wouldn't surprise me if several stacks accidentally 5860 * SACK too far backwards of previously ACKed data. There really aren't 5861 * any security implications of bad SACKing unless the target stack 5862 * doesn't validate the option length correctly. Someone trying to 5863 * spoof into a TCP connection won't bother blindly sending SACK 5864 * options anyway. 5865 */ 5866 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 5867 if (pf_modulate_sack(m, off, pd, th, dst)) 5868 *copyback = 1; 5869 } 5870 5871 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 5872 if (SEQ_GEQ(src->seqhi, data_end) && 5873 /* Last octet inside other's window space */ 5874 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 5875 /* Retrans: not more than one window back */ 5876 (ackskew >= -MAXACKWINDOW) && 5877 /* Acking not more than one reassembled fragment backwards */ 5878 (ackskew <= (MAXACKWINDOW << sws)) && 5879 /* Acking not more than one window forward */ 5880 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 5881 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) { 5882 /* Require an exact/+1 sequence match on resets when possible */ 5883 5884 if (dst->scrub || src->scrub) { 5885 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5886 *state, src, dst, copyback)) 5887 return (PF_DROP); 5888 } 5889 5890 /* update max window */ 5891 if (src->max_win < win) 5892 src->max_win = win; 5893 /* synchronize sequencing */ 5894 if (SEQ_GT(end, src->seqlo)) 5895 src->seqlo = end; 5896 /* slide the window of what the other end can send */ 5897 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5898 dst->seqhi = ack + MAX((win << sws), 1); 5899 5900 /* update states */ 5901 if (th->th_flags & TH_SYN) 5902 if (src->state < TCPS_SYN_SENT) 5903 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5904 if (th->th_flags & TH_FIN) 5905 if (src->state < TCPS_CLOSING) 5906 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5907 if (th->th_flags & TH_ACK) { 5908 if (dst->state == TCPS_SYN_SENT) { 5909 pf_set_protostate(*state, pdst, 5910 TCPS_ESTABLISHED); 5911 if (src->state == TCPS_ESTABLISHED && 5912 (*state)->src_node != NULL && 5913 pf_src_connlimit(state)) { 5914 REASON_SET(reason, PFRES_SRCLIMIT); 5915 return (PF_DROP); 5916 } 5917 } else if (dst->state == TCPS_CLOSING) 5918 pf_set_protostate(*state, pdst, 5919 TCPS_FIN_WAIT_2); 5920 } 5921 if (th->th_flags & TH_RST) 5922 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5923 5924 /* update expire time */ 5925 (*state)->expire = pf_get_uptime(); 5926 if (src->state >= TCPS_FIN_WAIT_2 && 5927 dst->state >= TCPS_FIN_WAIT_2) 5928 (*state)->timeout = PFTM_TCP_CLOSED; 5929 else if (src->state >= TCPS_CLOSING && 5930 dst->state >= TCPS_CLOSING) 5931 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5932 else if (src->state < TCPS_ESTABLISHED || 5933 dst->state < TCPS_ESTABLISHED) 5934 (*state)->timeout = PFTM_TCP_OPENING; 5935 else if (src->state >= TCPS_CLOSING || 5936 dst->state >= TCPS_CLOSING) 5937 (*state)->timeout = PFTM_TCP_CLOSING; 5938 else 5939 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5940 5941 /* Fall through to PASS packet */ 5942 5943 } else if ((dst->state < TCPS_SYN_SENT || 5944 dst->state >= TCPS_FIN_WAIT_2 || 5945 src->state >= TCPS_FIN_WAIT_2) && 5946 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) && 5947 /* Within a window forward of the originating packet */ 5948 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 5949 /* Within a window backward of the originating packet */ 5950 5951 /* 5952 * This currently handles three situations: 5953 * 1) Stupid stacks will shotgun SYNs before their peer 5954 * replies. 5955 * 2) When PF catches an already established stream (the 5956 * firewall rebooted, the state table was flushed, routes 5957 * changed...) 5958 * 3) Packets get funky immediately after the connection 5959 * closes (this should catch Solaris spurious ACK|FINs 5960 * that web servers like to spew after a close) 5961 * 5962 * This must be a little more careful than the above code 5963 * since packet floods will also be caught here. We don't 5964 * update the TTL here to mitigate the damage of a packet 5965 * flood and so the same code can handle awkward establishment 5966 * and a loosened connection close. 5967 * In the establishment case, a correct peer response will 5968 * validate the connection, go through the normal state code 5969 * and keep updating the state TTL. 5970 */ 5971 5972 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5973 printf("pf: loose state match: "); 5974 pf_print_state(*state); 5975 pf_print_flags(th->th_flags); 5976 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5977 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 5978 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 5979 (unsigned long long)(*state)->packets[1], 5980 pd->dir == PF_IN ? "in" : "out", 5981 pd->dir == (*state)->direction ? "fwd" : "rev"); 5982 } 5983 5984 if (dst->scrub || src->scrub) { 5985 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5986 *state, src, dst, copyback)) 5987 return (PF_DROP); 5988 } 5989 5990 /* update max window */ 5991 if (src->max_win < win) 5992 src->max_win = win; 5993 /* synchronize sequencing */ 5994 if (SEQ_GT(end, src->seqlo)) 5995 src->seqlo = end; 5996 /* slide the window of what the other end can send */ 5997 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5998 dst->seqhi = ack + MAX((win << sws), 1); 5999 6000 /* 6001 * Cannot set dst->seqhi here since this could be a shotgunned 6002 * SYN and not an already established connection. 6003 */ 6004 6005 if (th->th_flags & TH_FIN) 6006 if (src->state < TCPS_CLOSING) 6007 pf_set_protostate(*state, psrc, TCPS_CLOSING); 6008 if (th->th_flags & TH_RST) 6009 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6010 6011 /* Fall through to PASS packet */ 6012 6013 } else { 6014 if ((*state)->dst.state == TCPS_SYN_SENT && 6015 (*state)->src.state == TCPS_SYN_SENT) { 6016 /* Send RST for state mismatches during handshake */ 6017 if (!(th->th_flags & TH_RST)) 6018 pf_send_tcp((*state)->rule.ptr, pd->af, 6019 pd->dst, pd->src, th->th_dport, 6020 th->th_sport, ntohl(th->th_ack), 0, 6021 TH_RST, 0, 0, 6022 (*state)->rule.ptr->return_ttl, true, 0, 0, 6023 (*state)->act.rtableid); 6024 src->seqlo = 0; 6025 src->seqhi = 1; 6026 src->max_win = 1; 6027 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 6028 printf("pf: BAD state: "); 6029 pf_print_state(*state); 6030 pf_print_flags(th->th_flags); 6031 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 6032 "pkts=%llu:%llu dir=%s,%s\n", 6033 seq, orig_seq, ack, pd->p_len, ackskew, 6034 (unsigned long long)(*state)->packets[0], 6035 (unsigned long long)(*state)->packets[1], 6036 pd->dir == PF_IN ? "in" : "out", 6037 pd->dir == (*state)->direction ? "fwd" : "rev"); 6038 printf("pf: State failure on: %c %c %c %c | %c %c\n", 6039 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1', 6040 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 6041 ' ': '2', 6042 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 6043 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 6044 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5', 6045 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 6046 } 6047 REASON_SET(reason, PFRES_BADSTATE); 6048 return (PF_DROP); 6049 } 6050 6051 return (PF_PASS); 6052 } 6053 6054 static int 6055 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 6056 { 6057 struct tcphdr *th = &pd->hdr.tcp; 6058 struct pf_state_peer *src, *dst; 6059 u_int8_t psrc, pdst; 6060 6061 if (pd->dir == (*state)->direction) { 6062 src = &(*state)->src; 6063 dst = &(*state)->dst; 6064 psrc = PF_PEER_SRC; 6065 pdst = PF_PEER_DST; 6066 } else { 6067 src = &(*state)->dst; 6068 dst = &(*state)->src; 6069 psrc = PF_PEER_DST; 6070 pdst = PF_PEER_SRC; 6071 } 6072 6073 if (th->th_flags & TH_SYN) 6074 if (src->state < TCPS_SYN_SENT) 6075 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 6076 if (th->th_flags & TH_FIN) 6077 if (src->state < TCPS_CLOSING) 6078 pf_set_protostate(*state, psrc, TCPS_CLOSING); 6079 if (th->th_flags & TH_ACK) { 6080 if (dst->state == TCPS_SYN_SENT) { 6081 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 6082 if (src->state == TCPS_ESTABLISHED && 6083 (*state)->src_node != NULL && 6084 pf_src_connlimit(state)) { 6085 REASON_SET(reason, PFRES_SRCLIMIT); 6086 return (PF_DROP); 6087 } 6088 } else if (dst->state == TCPS_CLOSING) { 6089 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 6090 } else if (src->state == TCPS_SYN_SENT && 6091 dst->state < TCPS_SYN_SENT) { 6092 /* 6093 * Handle a special sloppy case where we only see one 6094 * half of the connection. If there is a ACK after 6095 * the initial SYN without ever seeing a packet from 6096 * the destination, set the connection to established. 6097 */ 6098 pf_set_protostate(*state, PF_PEER_BOTH, 6099 TCPS_ESTABLISHED); 6100 dst->state = src->state = TCPS_ESTABLISHED; 6101 if ((*state)->src_node != NULL && 6102 pf_src_connlimit(state)) { 6103 REASON_SET(reason, PFRES_SRCLIMIT); 6104 return (PF_DROP); 6105 } 6106 } else if (src->state == TCPS_CLOSING && 6107 dst->state == TCPS_ESTABLISHED && 6108 dst->seqlo == 0) { 6109 /* 6110 * Handle the closing of half connections where we 6111 * don't see the full bidirectional FIN/ACK+ACK 6112 * handshake. 6113 */ 6114 pf_set_protostate(*state, pdst, TCPS_CLOSING); 6115 } 6116 } 6117 if (th->th_flags & TH_RST) 6118 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6119 6120 /* update expire time */ 6121 (*state)->expire = pf_get_uptime(); 6122 if (src->state >= TCPS_FIN_WAIT_2 && 6123 dst->state >= TCPS_FIN_WAIT_2) 6124 (*state)->timeout = PFTM_TCP_CLOSED; 6125 else if (src->state >= TCPS_CLOSING && 6126 dst->state >= TCPS_CLOSING) 6127 (*state)->timeout = PFTM_TCP_FIN_WAIT; 6128 else if (src->state < TCPS_ESTABLISHED || 6129 dst->state < TCPS_ESTABLISHED) 6130 (*state)->timeout = PFTM_TCP_OPENING; 6131 else if (src->state >= TCPS_CLOSING || 6132 dst->state >= TCPS_CLOSING) 6133 (*state)->timeout = PFTM_TCP_CLOSING; 6134 else 6135 (*state)->timeout = PFTM_TCP_ESTABLISHED; 6136 6137 return (PF_PASS); 6138 } 6139 6140 static int 6141 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 6142 { 6143 struct pf_state_key *sk = (*state)->key[pd->didx]; 6144 struct tcphdr *th = &pd->hdr.tcp; 6145 6146 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 6147 if (pd->dir != (*state)->direction) { 6148 REASON_SET(reason, PFRES_SYNPROXY); 6149 return (PF_SYNPROXY_DROP); 6150 } 6151 if (th->th_flags & TH_SYN) { 6152 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 6153 REASON_SET(reason, PFRES_SYNPROXY); 6154 return (PF_DROP); 6155 } 6156 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 6157 pd->src, th->th_dport, th->th_sport, 6158 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 6159 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, true, 0, 0, 6160 (*state)->act.rtableid); 6161 REASON_SET(reason, PFRES_SYNPROXY); 6162 return (PF_SYNPROXY_DROP); 6163 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 6164 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 6165 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 6166 REASON_SET(reason, PFRES_SYNPROXY); 6167 return (PF_DROP); 6168 } else if ((*state)->src_node != NULL && 6169 pf_src_connlimit(state)) { 6170 REASON_SET(reason, PFRES_SRCLIMIT); 6171 return (PF_DROP); 6172 } else 6173 pf_set_protostate(*state, PF_PEER_SRC, 6174 PF_TCPS_PROXY_DST); 6175 } 6176 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 6177 if (pd->dir == (*state)->direction) { 6178 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 6179 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 6180 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 6181 REASON_SET(reason, PFRES_SYNPROXY); 6182 return (PF_DROP); 6183 } 6184 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 6185 if ((*state)->dst.seqhi == 1) 6186 (*state)->dst.seqhi = htonl(arc4random()); 6187 pf_send_tcp((*state)->rule.ptr, pd->af, 6188 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6189 sk->port[pd->sidx], sk->port[pd->didx], 6190 (*state)->dst.seqhi, 0, TH_SYN, 0, 6191 (*state)->src.mss, 0, false, (*state)->tag, 0, 6192 (*state)->act.rtableid); 6193 REASON_SET(reason, PFRES_SYNPROXY); 6194 return (PF_SYNPROXY_DROP); 6195 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 6196 (TH_SYN|TH_ACK)) || 6197 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 6198 REASON_SET(reason, PFRES_SYNPROXY); 6199 return (PF_DROP); 6200 } else { 6201 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 6202 (*state)->dst.seqlo = ntohl(th->th_seq); 6203 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 6204 pd->src, th->th_dport, th->th_sport, 6205 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 6206 TH_ACK, (*state)->src.max_win, 0, 0, false, 6207 (*state)->tag, 0, (*state)->act.rtableid); 6208 pf_send_tcp((*state)->rule.ptr, pd->af, 6209 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6210 sk->port[pd->sidx], sk->port[pd->didx], 6211 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 6212 TH_ACK, (*state)->dst.max_win, 0, 0, true, 0, 0, 6213 (*state)->act.rtableid); 6214 (*state)->src.seqdiff = (*state)->dst.seqhi - 6215 (*state)->src.seqlo; 6216 (*state)->dst.seqdiff = (*state)->src.seqhi - 6217 (*state)->dst.seqlo; 6218 (*state)->src.seqhi = (*state)->src.seqlo + 6219 (*state)->dst.max_win; 6220 (*state)->dst.seqhi = (*state)->dst.seqlo + 6221 (*state)->src.max_win; 6222 (*state)->src.wscale = (*state)->dst.wscale = 0; 6223 pf_set_protostate(*state, PF_PEER_BOTH, 6224 TCPS_ESTABLISHED); 6225 REASON_SET(reason, PFRES_SYNPROXY); 6226 return (PF_SYNPROXY_DROP); 6227 } 6228 } 6229 6230 return (PF_PASS); 6231 } 6232 6233 static int 6234 pf_test_state_tcp(struct pf_kstate **state, struct pfi_kkif *kif, 6235 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 6236 u_short *reason) 6237 { 6238 struct pf_state_key_cmp key; 6239 struct tcphdr *th = &pd->hdr.tcp; 6240 int copyback = 0; 6241 int action; 6242 struct pf_state_peer *src, *dst; 6243 6244 bzero(&key, sizeof(key)); 6245 key.af = pd->af; 6246 key.proto = IPPROTO_TCP; 6247 if (pd->dir == PF_IN) { /* wire side, straight */ 6248 PF_ACPY(&key.addr[0], pd->src, key.af); 6249 PF_ACPY(&key.addr[1], pd->dst, key.af); 6250 key.port[0] = th->th_sport; 6251 key.port[1] = th->th_dport; 6252 } else { /* stack side, reverse */ 6253 PF_ACPY(&key.addr[1], pd->src, key.af); 6254 PF_ACPY(&key.addr[0], pd->dst, key.af); 6255 key.port[1] = th->th_sport; 6256 key.port[0] = th->th_dport; 6257 } 6258 6259 STATE_LOOKUP(kif, &key, *state, pd); 6260 6261 if (pd->dir == (*state)->direction) { 6262 src = &(*state)->src; 6263 dst = &(*state)->dst; 6264 } else { 6265 src = &(*state)->dst; 6266 dst = &(*state)->src; 6267 } 6268 6269 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 6270 return (action); 6271 6272 if (dst->state >= TCPS_FIN_WAIT_2 && 6273 src->state >= TCPS_FIN_WAIT_2 && 6274 (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) || 6275 ((th->th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK && 6276 pf_syncookie_check(pd) && pd->dir == PF_IN))) { 6277 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6278 printf("pf: state reuse "); 6279 pf_print_state(*state); 6280 pf_print_flags(th->th_flags); 6281 printf("\n"); 6282 } 6283 /* XXX make sure it's the same direction ?? */ 6284 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 6285 pf_unlink_state(*state); 6286 *state = NULL; 6287 return (PF_DROP); 6288 } 6289 6290 if ((*state)->state_flags & PFSTATE_SLOPPY) { 6291 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 6292 return (PF_DROP); 6293 } else { 6294 if (pf_tcp_track_full(state, kif, m, off, pd, reason, 6295 ©back) == PF_DROP) 6296 return (PF_DROP); 6297 } 6298 6299 /* translate source/destination address, if necessary */ 6300 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6301 struct pf_state_key *nk = (*state)->key[pd->didx]; 6302 6303 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6304 nk->port[pd->sidx] != th->th_sport) 6305 pf_change_ap(m, pd->src, &th->th_sport, 6306 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 6307 nk->port[pd->sidx], 0, pd->af); 6308 6309 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6310 nk->port[pd->didx] != th->th_dport) 6311 pf_change_ap(m, pd->dst, &th->th_dport, 6312 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 6313 nk->port[pd->didx], 0, pd->af); 6314 copyback = 1; 6315 } 6316 6317 /* Copyback sequence modulation or stateful scrub changes if needed */ 6318 if (copyback) 6319 m_copyback(m, off, sizeof(*th), (caddr_t)th); 6320 6321 return (PF_PASS); 6322 } 6323 6324 static int 6325 pf_test_state_udp(struct pf_kstate **state, struct pfi_kkif *kif, 6326 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 6327 { 6328 struct pf_state_peer *src, *dst; 6329 struct pf_state_key_cmp key; 6330 struct udphdr *uh = &pd->hdr.udp; 6331 uint8_t psrc, pdst; 6332 6333 bzero(&key, sizeof(key)); 6334 key.af = pd->af; 6335 key.proto = IPPROTO_UDP; 6336 if (pd->dir == PF_IN) { /* wire side, straight */ 6337 PF_ACPY(&key.addr[0], pd->src, key.af); 6338 PF_ACPY(&key.addr[1], pd->dst, key.af); 6339 key.port[0] = uh->uh_sport; 6340 key.port[1] = uh->uh_dport; 6341 } else { /* stack side, reverse */ 6342 PF_ACPY(&key.addr[1], pd->src, key.af); 6343 PF_ACPY(&key.addr[0], pd->dst, key.af); 6344 key.port[1] = uh->uh_sport; 6345 key.port[0] = uh->uh_dport; 6346 } 6347 6348 STATE_LOOKUP(kif, &key, *state, pd); 6349 6350 if (pd->dir == (*state)->direction) { 6351 src = &(*state)->src; 6352 dst = &(*state)->dst; 6353 psrc = PF_PEER_SRC; 6354 pdst = PF_PEER_DST; 6355 } else { 6356 src = &(*state)->dst; 6357 dst = &(*state)->src; 6358 psrc = PF_PEER_DST; 6359 pdst = PF_PEER_SRC; 6360 } 6361 6362 /* update states */ 6363 if (src->state < PFUDPS_SINGLE) 6364 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 6365 if (dst->state == PFUDPS_SINGLE) 6366 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 6367 6368 /* update expire time */ 6369 (*state)->expire = pf_get_uptime(); 6370 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 6371 (*state)->timeout = PFTM_UDP_MULTIPLE; 6372 else 6373 (*state)->timeout = PFTM_UDP_SINGLE; 6374 6375 /* translate source/destination address, if necessary */ 6376 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6377 struct pf_state_key *nk = (*state)->key[pd->didx]; 6378 6379 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6380 nk->port[pd->sidx] != uh->uh_sport) 6381 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 6382 &uh->uh_sum, &nk->addr[pd->sidx], 6383 nk->port[pd->sidx], 1, pd->af); 6384 6385 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6386 nk->port[pd->didx] != uh->uh_dport) 6387 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 6388 &uh->uh_sum, &nk->addr[pd->didx], 6389 nk->port[pd->didx], 1, pd->af); 6390 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 6391 } 6392 6393 return (PF_PASS); 6394 } 6395 6396 static int 6397 pf_test_state_sctp(struct pf_kstate **state, struct pfi_kkif *kif, 6398 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 6399 { 6400 struct pf_state_key_cmp key; 6401 struct pf_state_peer *src, *dst; 6402 struct sctphdr *sh = &pd->hdr.sctp; 6403 u_int8_t psrc; //, pdst; 6404 6405 bzero(&key, sizeof(key)); 6406 key.af = pd->af; 6407 key.proto = IPPROTO_SCTP; 6408 if (pd->dir == PF_IN) { /* wire side, straight */ 6409 PF_ACPY(&key.addr[0], pd->src, key.af); 6410 PF_ACPY(&key.addr[1], pd->dst, key.af); 6411 key.port[0] = sh->src_port; 6412 key.port[1] = sh->dest_port; 6413 } else { /* stack side, reverse */ 6414 PF_ACPY(&key.addr[1], pd->src, key.af); 6415 PF_ACPY(&key.addr[0], pd->dst, key.af); 6416 key.port[1] = sh->src_port; 6417 key.port[0] = sh->dest_port; 6418 } 6419 6420 STATE_LOOKUP(kif, &key, *state, pd); 6421 6422 if (pd->dir == (*state)->direction) { 6423 src = &(*state)->src; 6424 dst = &(*state)->dst; 6425 psrc = PF_PEER_SRC; 6426 } else { 6427 src = &(*state)->dst; 6428 dst = &(*state)->src; 6429 psrc = PF_PEER_DST; 6430 } 6431 6432 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) && 6433 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) && 6434 pd->sctp_flags & PFDESC_SCTP_INIT) { 6435 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED); 6436 pf_unlink_state(*state); 6437 *state = NULL; 6438 return (PF_DROP); 6439 } 6440 6441 /* Track state. */ 6442 if (pd->sctp_flags & PFDESC_SCTP_INIT) { 6443 if (src->state < SCTP_COOKIE_WAIT) { 6444 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT); 6445 (*state)->timeout = PFTM_SCTP_OPENING; 6446 } 6447 } 6448 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) { 6449 MPASS(dst->scrub != NULL); 6450 if (dst->scrub->pfss_v_tag == 0) 6451 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag; 6452 } 6453 6454 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) { 6455 if (src->state < SCTP_ESTABLISHED) { 6456 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED); 6457 (*state)->timeout = PFTM_SCTP_ESTABLISHED; 6458 } 6459 } 6460 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | PFDESC_SCTP_ABORT | 6461 PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 6462 if (src->state < SCTP_SHUTDOWN_PENDING) { 6463 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING); 6464 (*state)->timeout = PFTM_SCTP_CLOSING; 6465 } 6466 } 6467 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 6468 pf_set_protostate(*state, psrc, SCTP_CLOSED); 6469 (*state)->timeout = PFTM_SCTP_CLOSED; 6470 } 6471 6472 if (src->scrub != NULL) { 6473 if (src->scrub->pfss_v_tag == 0) { 6474 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag; 6475 } else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag) 6476 return (PF_DROP); 6477 } 6478 6479 (*state)->expire = pf_get_uptime(); 6480 6481 /* translate source/destination address, if necessary */ 6482 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6483 uint16_t checksum = 0; 6484 struct pf_state_key *nk = (*state)->key[pd->didx]; 6485 6486 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6487 nk->port[pd->sidx] != pd->hdr.sctp.src_port) { 6488 pf_change_ap(m, pd->src, &pd->hdr.sctp.src_port, 6489 pd->ip_sum, &checksum, &nk->addr[pd->sidx], 6490 nk->port[pd->sidx], 1, pd->af); 6491 } 6492 6493 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6494 nk->port[pd->didx] != pd->hdr.sctp.dest_port) { 6495 pf_change_ap(m, pd->dst, &pd->hdr.sctp.dest_port, 6496 pd->ip_sum, &checksum, &nk->addr[pd->didx], 6497 nk->port[pd->didx], 1, pd->af); 6498 } 6499 } 6500 6501 return (PF_PASS); 6502 } 6503 6504 static void 6505 pf_sctp_multihome_detach_addr(const struct pf_kstate *s) 6506 { 6507 struct pf_sctp_endpoint key; 6508 struct pf_sctp_endpoint *ep; 6509 struct pf_state_key *sks = s->key[PF_SK_STACK]; 6510 struct pf_sctp_source *i, *tmp; 6511 6512 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL) 6513 return; 6514 6515 PF_SCTP_ENDPOINTS_LOCK(); 6516 6517 key.v_tag = s->dst.scrub->pfss_v_tag; 6518 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6519 if (ep != NULL) { 6520 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6521 if (pf_addr_cmp(&i->addr, 6522 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT], 6523 s->key[PF_SK_WIRE]->af) == 0) { 6524 SDT_PROBE3(pf, sctp, multihome, remove, 6525 key.v_tag, s, i); 6526 TAILQ_REMOVE(&ep->sources, i, entry); 6527 free(i, M_PFTEMP); 6528 break; 6529 } 6530 } 6531 6532 if (TAILQ_EMPTY(&ep->sources)) { 6533 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6534 free(ep, M_PFTEMP); 6535 } 6536 } 6537 6538 /* Other direction. */ 6539 key.v_tag = s->src.scrub->pfss_v_tag; 6540 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6541 if (ep != NULL) { 6542 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6543 if (pf_addr_cmp(&i->addr, 6544 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN], 6545 s->key[PF_SK_WIRE]->af) == 0) { 6546 SDT_PROBE3(pf, sctp, multihome, remove, 6547 key.v_tag, s, i); 6548 TAILQ_REMOVE(&ep->sources, i, entry); 6549 free(i, M_PFTEMP); 6550 break; 6551 } 6552 } 6553 6554 if (TAILQ_EMPTY(&ep->sources)) { 6555 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6556 free(ep, M_PFTEMP); 6557 } 6558 } 6559 6560 PF_SCTP_ENDPOINTS_UNLOCK(); 6561 } 6562 6563 static void 6564 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag) 6565 { 6566 struct pf_sctp_endpoint key = { 6567 .v_tag = v_tag, 6568 }; 6569 struct pf_sctp_source *i; 6570 struct pf_sctp_endpoint *ep; 6571 6572 PF_SCTP_ENDPOINTS_LOCK(); 6573 6574 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6575 if (ep == NULL) { 6576 ep = malloc(sizeof(struct pf_sctp_endpoint), 6577 M_PFTEMP, M_NOWAIT); 6578 if (ep == NULL) { 6579 PF_SCTP_ENDPOINTS_UNLOCK(); 6580 return; 6581 } 6582 6583 ep->v_tag = v_tag; 6584 TAILQ_INIT(&ep->sources); 6585 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6586 } 6587 6588 /* Avoid inserting duplicates. */ 6589 TAILQ_FOREACH(i, &ep->sources, entry) { 6590 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) { 6591 PF_SCTP_ENDPOINTS_UNLOCK(); 6592 return; 6593 } 6594 } 6595 6596 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT); 6597 if (i == NULL) { 6598 PF_SCTP_ENDPOINTS_UNLOCK(); 6599 return; 6600 } 6601 6602 i->af = pd->af; 6603 memcpy(&i->addr, a, sizeof(*a)); 6604 TAILQ_INSERT_TAIL(&ep->sources, i, entry); 6605 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i); 6606 6607 PF_SCTP_ENDPOINTS_UNLOCK(); 6608 } 6609 6610 static void 6611 pf_sctp_multihome_delayed(struct pf_pdesc *pd, int off, struct pfi_kkif *kif, 6612 struct pf_kstate *s, int action) 6613 { 6614 struct pf_sctp_multihome_job *j, *tmp; 6615 struct pf_sctp_source *i; 6616 int ret __unused; 6617 struct pf_kstate *sm = NULL; 6618 struct pf_krule *ra = NULL; 6619 struct pf_krule *r = &V_pf_default_rule; 6620 struct pf_kruleset *rs = NULL; 6621 bool do_extra = true; 6622 6623 PF_RULES_RLOCK_TRACKER; 6624 6625 again: 6626 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) { 6627 if (s == NULL || action != PF_PASS) 6628 goto free; 6629 6630 /* Confirm we don't recurse here. */ 6631 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP)); 6632 6633 switch (j->op) { 6634 case SCTP_ADD_IP_ADDRESS: { 6635 uint32_t v_tag = pd->sctp_initiate_tag; 6636 6637 if (v_tag == 0) { 6638 if (s->direction == pd->dir) 6639 v_tag = s->src.scrub->pfss_v_tag; 6640 else 6641 v_tag = s->dst.scrub->pfss_v_tag; 6642 } 6643 6644 /* 6645 * Avoid duplicating states. We'll already have 6646 * created a state based on the source address of 6647 * the packet, but SCTP endpoints may also list this 6648 * address again in the INIT(_ACK) parameters. 6649 */ 6650 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) { 6651 break; 6652 } 6653 6654 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP; 6655 PF_RULES_RLOCK(); 6656 sm = NULL; 6657 /* 6658 * New connections need to be floating, because 6659 * we cannot know what interfaces it will use. 6660 * That's why we pass V_pfi_all rather than kif. 6661 */ 6662 ret = pf_test_rule(&r, &sm, V_pfi_all, 6663 j->m, off, &j->pd, &ra, &rs, NULL); 6664 PF_RULES_RUNLOCK(); 6665 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->m, ret); 6666 if (ret != PF_DROP && sm != NULL) { 6667 /* Inherit v_tag values. */ 6668 if (sm->direction == s->direction) { 6669 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6670 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6671 } else { 6672 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6673 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6674 } 6675 PF_STATE_UNLOCK(sm); 6676 } else { 6677 /* If we try duplicate inserts? */ 6678 break; 6679 } 6680 6681 /* Only add the address if we've actually allowed the state. */ 6682 pf_sctp_multihome_add_addr(pd, &j->src, v_tag); 6683 6684 if (! do_extra) { 6685 break; 6686 } 6687 /* 6688 * We need to do this for each of our source addresses. 6689 * Find those based on the verification tag. 6690 */ 6691 struct pf_sctp_endpoint key = { 6692 .v_tag = pd->hdr.sctp.v_tag, 6693 }; 6694 struct pf_sctp_endpoint *ep; 6695 6696 PF_SCTP_ENDPOINTS_LOCK(); 6697 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6698 if (ep == NULL) { 6699 PF_SCTP_ENDPOINTS_UNLOCK(); 6700 break; 6701 } 6702 MPASS(ep != NULL); 6703 6704 TAILQ_FOREACH(i, &ep->sources, entry) { 6705 struct pf_sctp_multihome_job *nj; 6706 6707 /* SCTP can intermingle IPv4 and IPv6. */ 6708 if (i->af != pd->af) 6709 continue; 6710 6711 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO); 6712 if (! nj) { 6713 continue; 6714 } 6715 memcpy(&nj->pd, &j->pd, sizeof(j->pd)); 6716 memcpy(&nj->src, &j->src, sizeof(nj->src)); 6717 nj->pd.src = &nj->src; 6718 // New destination address! 6719 memcpy(&nj->dst, &i->addr, sizeof(nj->dst)); 6720 nj->pd.dst = &nj->dst; 6721 nj->m = j->m; 6722 nj->op = j->op; 6723 6724 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next); 6725 } 6726 PF_SCTP_ENDPOINTS_UNLOCK(); 6727 6728 break; 6729 } 6730 case SCTP_DEL_IP_ADDRESS: { 6731 struct pf_state_key_cmp key; 6732 uint8_t psrc; 6733 6734 bzero(&key, sizeof(key)); 6735 key.af = j->pd.af; 6736 key.proto = IPPROTO_SCTP; 6737 if (j->pd.dir == PF_IN) { /* wire side, straight */ 6738 PF_ACPY(&key.addr[0], j->pd.src, key.af); 6739 PF_ACPY(&key.addr[1], j->pd.dst, key.af); 6740 key.port[0] = j->pd.hdr.sctp.src_port; 6741 key.port[1] = j->pd.hdr.sctp.dest_port; 6742 } else { /* stack side, reverse */ 6743 PF_ACPY(&key.addr[1], j->pd.src, key.af); 6744 PF_ACPY(&key.addr[0], j->pd.dst, key.af); 6745 key.port[1] = j->pd.hdr.sctp.src_port; 6746 key.port[0] = j->pd.hdr.sctp.dest_port; 6747 } 6748 6749 sm = pf_find_state(kif, &key, j->pd.dir); 6750 if (sm != NULL) { 6751 PF_STATE_LOCK_ASSERT(sm); 6752 if (j->pd.dir == sm->direction) { 6753 psrc = PF_PEER_SRC; 6754 } else { 6755 psrc = PF_PEER_DST; 6756 } 6757 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING); 6758 sm->timeout = PFTM_SCTP_CLOSING; 6759 PF_STATE_UNLOCK(sm); 6760 } 6761 break; 6762 default: 6763 panic("Unknown op %#x", j->op); 6764 } 6765 } 6766 6767 free: 6768 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next); 6769 free(j, M_PFTEMP); 6770 } 6771 6772 /* We may have inserted extra work while processing the list. */ 6773 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) { 6774 do_extra = false; 6775 goto again; 6776 } 6777 } 6778 6779 static int 6780 pf_multihome_scan(struct mbuf *m, int start, int len, struct pf_pdesc *pd, 6781 struct pfi_kkif *kif, int op) 6782 { 6783 int off = 0; 6784 struct pf_sctp_multihome_job *job; 6785 6786 while (off < len) { 6787 struct sctp_paramhdr h; 6788 6789 if (!pf_pull_hdr(m, start + off, &h, sizeof(h), NULL, NULL, 6790 pd->af)) 6791 return (PF_DROP); 6792 6793 /* Parameters are at least 4 bytes. */ 6794 if (ntohs(h.param_length) < 4) 6795 return (PF_DROP); 6796 6797 switch (ntohs(h.param_type)) { 6798 case SCTP_IPV4_ADDRESS: { 6799 struct in_addr t; 6800 6801 if (ntohs(h.param_length) != 6802 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6803 return (PF_DROP); 6804 6805 if (!pf_pull_hdr(m, start + off + sizeof(h), &t, sizeof(t), 6806 NULL, NULL, pd->af)) 6807 return (PF_DROP); 6808 6809 if (in_nullhost(t)) 6810 t.s_addr = pd->src->v4.s_addr; 6811 6812 /* 6813 * We hold the state lock (idhash) here, which means 6814 * that we can't acquire the keyhash, or we'll get a 6815 * LOR (and potentially double-lock things too). We also 6816 * can't release the state lock here, so instead we'll 6817 * enqueue this for async handling. 6818 * There's a relatively small race here, in that a 6819 * packet using the new addresses could arrive already, 6820 * but that's just though luck for it. 6821 */ 6822 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6823 if (! job) 6824 return (PF_DROP); 6825 6826 memcpy(&job->pd, pd, sizeof(*pd)); 6827 6828 // New source address! 6829 memcpy(&job->src, &t, sizeof(t)); 6830 job->pd.src = &job->src; 6831 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6832 job->pd.dst = &job->dst; 6833 job->m = m; 6834 job->op = op; 6835 6836 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6837 break; 6838 } 6839 #ifdef INET6 6840 case SCTP_IPV6_ADDRESS: { 6841 struct in6_addr t; 6842 6843 if (ntohs(h.param_length) != 6844 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6845 return (PF_DROP); 6846 6847 if (!pf_pull_hdr(m, start + off + sizeof(h), &t, sizeof(t), 6848 NULL, NULL, pd->af)) 6849 return (PF_DROP); 6850 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0) 6851 break; 6852 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0) 6853 memcpy(&t, &pd->src->v6, sizeof(t)); 6854 6855 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6856 if (! job) 6857 return (PF_DROP); 6858 6859 memcpy(&job->pd, pd, sizeof(*pd)); 6860 memcpy(&job->src, &t, sizeof(t)); 6861 job->pd.src = &job->src; 6862 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6863 job->pd.dst = &job->dst; 6864 job->m = m; 6865 job->op = op; 6866 6867 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6868 break; 6869 } 6870 #endif 6871 case SCTP_ADD_IP_ADDRESS: { 6872 int ret; 6873 struct sctp_asconf_paramhdr ah; 6874 6875 if (!pf_pull_hdr(m, start + off, &ah, sizeof(ah), 6876 NULL, NULL, pd->af)) 6877 return (PF_DROP); 6878 6879 ret = pf_multihome_scan(m, start + off + sizeof(ah), 6880 ntohs(ah.ph.param_length) - sizeof(ah), pd, kif, 6881 SCTP_ADD_IP_ADDRESS); 6882 if (ret != PF_PASS) 6883 return (ret); 6884 break; 6885 } 6886 case SCTP_DEL_IP_ADDRESS: { 6887 int ret; 6888 struct sctp_asconf_paramhdr ah; 6889 6890 if (!pf_pull_hdr(m, start + off, &ah, sizeof(ah), 6891 NULL, NULL, pd->af)) 6892 return (PF_DROP); 6893 ret = pf_multihome_scan(m, start + off + sizeof(ah), 6894 ntohs(ah.ph.param_length) - sizeof(ah), pd, kif, 6895 SCTP_DEL_IP_ADDRESS); 6896 if (ret != PF_PASS) 6897 return (ret); 6898 break; 6899 } 6900 default: 6901 break; 6902 } 6903 6904 off += roundup(ntohs(h.param_length), 4); 6905 } 6906 6907 return (PF_PASS); 6908 } 6909 int 6910 pf_multihome_scan_init(struct mbuf *m, int start, int len, struct pf_pdesc *pd, 6911 struct pfi_kkif *kif) 6912 { 6913 start += sizeof(struct sctp_init_chunk); 6914 len -= sizeof(struct sctp_init_chunk); 6915 6916 return (pf_multihome_scan(m, start, len, pd, kif, SCTP_ADD_IP_ADDRESS)); 6917 } 6918 6919 int 6920 pf_multihome_scan_asconf(struct mbuf *m, int start, int len, 6921 struct pf_pdesc *pd, struct pfi_kkif *kif) 6922 { 6923 start += sizeof(struct sctp_asconf_chunk); 6924 len -= sizeof(struct sctp_asconf_chunk); 6925 6926 return (pf_multihome_scan(m, start, len, pd, kif, SCTP_ADD_IP_ADDRESS)); 6927 } 6928 6929 int 6930 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd, 6931 struct pf_kstate **state, struct mbuf *m, int off, int direction, 6932 struct pfi_kkif *kif, u_int16_t icmpid, u_int16_t type, int icmp_dir, 6933 int *iidx, int multi, int inner) 6934 { 6935 key->af = pd->af; 6936 key->proto = pd->proto; 6937 if (icmp_dir == PF_IN) { 6938 *iidx = pd->sidx; 6939 key->port[pd->sidx] = icmpid; 6940 key->port[pd->didx] = type; 6941 } else { 6942 *iidx = pd->didx; 6943 key->port[pd->sidx] = type; 6944 key->port[pd->didx] = icmpid; 6945 } 6946 if (pf_state_key_addr_setup(pd, m, off, key, pd->sidx, pd->src, 6947 pd->didx, pd->dst, multi)) 6948 return (PF_DROP); 6949 6950 STATE_LOOKUP(kif, key, *state, pd); 6951 6952 if ((*state)->state_flags & PFSTATE_SLOPPY) 6953 return (-1); 6954 6955 /* Is this ICMP message flowing in right direction? */ 6956 if ((*state)->rule.ptr->type && 6957 (((!inner && (*state)->direction == direction) || 6958 (inner && (*state)->direction != direction)) ? 6959 PF_IN : PF_OUT) != icmp_dir) { 6960 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6961 printf("pf: icmp type %d in wrong direction (%d): ", 6962 ntohs(type), icmp_dir); 6963 pf_print_state(*state); 6964 printf("\n"); 6965 } 6966 PF_STATE_UNLOCK(*state); 6967 *state = NULL; 6968 return (PF_DROP); 6969 } 6970 return (-1); 6971 } 6972 6973 static int 6974 pf_test_state_icmp(struct pf_kstate **state, struct pfi_kkif *kif, 6975 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 6976 { 6977 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 6978 u_int16_t *icmpsum, virtual_id, virtual_type; 6979 u_int8_t icmptype, icmpcode; 6980 int icmp_dir, iidx, ret, multi; 6981 struct pf_state_key_cmp key; 6982 #ifdef INET 6983 u_int16_t icmpid; 6984 #endif 6985 6986 MPASS(*state == NULL); 6987 6988 bzero(&key, sizeof(key)); 6989 switch (pd->proto) { 6990 #ifdef INET 6991 case IPPROTO_ICMP: 6992 icmptype = pd->hdr.icmp.icmp_type; 6993 icmpcode = pd->hdr.icmp.icmp_code; 6994 icmpid = pd->hdr.icmp.icmp_id; 6995 icmpsum = &pd->hdr.icmp.icmp_cksum; 6996 break; 6997 #endif /* INET */ 6998 #ifdef INET6 6999 case IPPROTO_ICMPV6: 7000 icmptype = pd->hdr.icmp6.icmp6_type; 7001 icmpcode = pd->hdr.icmp6.icmp6_code; 7002 #ifdef INET 7003 icmpid = pd->hdr.icmp6.icmp6_id; 7004 #endif 7005 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 7006 break; 7007 #endif /* INET6 */ 7008 } 7009 7010 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &multi, 7011 &virtual_id, &virtual_type) == 0) { 7012 /* 7013 * ICMP query/reply message not related to a TCP/UDP packet. 7014 * Search for an ICMP state. 7015 */ 7016 ret = pf_icmp_state_lookup(&key, pd, state, m, off, pd->dir, 7017 kif, virtual_id, virtual_type, icmp_dir, &iidx, 7018 PF_ICMP_MULTI_NONE, 0); 7019 if (ret >= 0) { 7020 MPASS(*state == NULL); 7021 if (ret == PF_DROP && pd->af == AF_INET6 && 7022 icmp_dir == PF_OUT) { 7023 ret = pf_icmp_state_lookup(&key, pd, state, m, off, 7024 pd->dir, kif, virtual_id, virtual_type, 7025 icmp_dir, &iidx, multi, 0); 7026 if (ret >= 0) { 7027 MPASS(*state == NULL); 7028 return (ret); 7029 } 7030 } else 7031 return (ret); 7032 } 7033 7034 (*state)->expire = pf_get_uptime(); 7035 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 7036 7037 /* translate source/destination address, if necessary */ 7038 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7039 struct pf_state_key *nk = (*state)->key[pd->didx]; 7040 7041 switch (pd->af) { 7042 #ifdef INET 7043 case AF_INET: 7044 if (PF_ANEQ(pd->src, 7045 &nk->addr[pd->sidx], AF_INET)) 7046 pf_change_a(&saddr->v4.s_addr, 7047 pd->ip_sum, 7048 nk->addr[pd->sidx].v4.s_addr, 0); 7049 7050 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 7051 AF_INET)) 7052 pf_change_a(&daddr->v4.s_addr, 7053 pd->ip_sum, 7054 nk->addr[pd->didx].v4.s_addr, 0); 7055 7056 if (nk->port[iidx] != 7057 pd->hdr.icmp.icmp_id) { 7058 pd->hdr.icmp.icmp_cksum = 7059 pf_cksum_fixup( 7060 pd->hdr.icmp.icmp_cksum, icmpid, 7061 nk->port[iidx], 0); 7062 pd->hdr.icmp.icmp_id = 7063 nk->port[iidx]; 7064 } 7065 7066 m_copyback(m, off, ICMP_MINLEN, 7067 (caddr_t )&pd->hdr.icmp); 7068 break; 7069 #endif /* INET */ 7070 #ifdef INET6 7071 case AF_INET6: 7072 if (PF_ANEQ(pd->src, 7073 &nk->addr[pd->sidx], AF_INET6)) 7074 pf_change_a6(saddr, 7075 &pd->hdr.icmp6.icmp6_cksum, 7076 &nk->addr[pd->sidx], 0); 7077 7078 if (PF_ANEQ(pd->dst, 7079 &nk->addr[pd->didx], AF_INET6)) 7080 pf_change_a6(daddr, 7081 &pd->hdr.icmp6.icmp6_cksum, 7082 &nk->addr[pd->didx], 0); 7083 7084 m_copyback(m, off, sizeof(struct icmp6_hdr), 7085 (caddr_t )&pd->hdr.icmp6); 7086 break; 7087 #endif /* INET6 */ 7088 } 7089 } 7090 return (PF_PASS); 7091 7092 } else { 7093 /* 7094 * ICMP error message in response to a TCP/UDP packet. 7095 * Extract the inner TCP/UDP header and search for that state. 7096 */ 7097 7098 struct pf_pdesc pd2; 7099 bzero(&pd2, sizeof pd2); 7100 #ifdef INET 7101 struct ip h2; 7102 #endif /* INET */ 7103 #ifdef INET6 7104 struct ip6_hdr h2_6; 7105 int terminal = 0; 7106 #endif /* INET6 */ 7107 int ipoff2 = 0; 7108 int off2 = 0; 7109 7110 pd2.af = pd->af; 7111 pd2.dir = pd->dir; 7112 /* Payload packet is from the opposite direction. */ 7113 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0; 7114 pd2.didx = (pd->dir == PF_IN) ? 0 : 1; 7115 switch (pd->af) { 7116 #ifdef INET 7117 case AF_INET: 7118 /* offset of h2 in mbuf chain */ 7119 ipoff2 = off + ICMP_MINLEN; 7120 7121 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 7122 NULL, reason, pd2.af)) { 7123 DPFPRINTF(PF_DEBUG_MISC, 7124 ("pf: ICMP error message too short " 7125 "(ip)\n")); 7126 return (PF_DROP); 7127 } 7128 /* 7129 * ICMP error messages don't refer to non-first 7130 * fragments 7131 */ 7132 if (h2.ip_off & htons(IP_OFFMASK)) { 7133 REASON_SET(reason, PFRES_FRAG); 7134 return (PF_DROP); 7135 } 7136 7137 /* offset of protocol header that follows h2 */ 7138 off2 = ipoff2 + (h2.ip_hl << 2); 7139 7140 pd2.proto = h2.ip_p; 7141 pd2.src = (struct pf_addr *)&h2.ip_src; 7142 pd2.dst = (struct pf_addr *)&h2.ip_dst; 7143 pd2.ip_sum = &h2.ip_sum; 7144 break; 7145 #endif /* INET */ 7146 #ifdef INET6 7147 case AF_INET6: 7148 ipoff2 = off + sizeof(struct icmp6_hdr); 7149 7150 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 7151 NULL, reason, pd2.af)) { 7152 DPFPRINTF(PF_DEBUG_MISC, 7153 ("pf: ICMP error message too short " 7154 "(ip6)\n")); 7155 return (PF_DROP); 7156 } 7157 pd2.proto = h2_6.ip6_nxt; 7158 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 7159 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 7160 pd2.ip_sum = NULL; 7161 off2 = ipoff2 + sizeof(h2_6); 7162 do { 7163 switch (pd2.proto) { 7164 case IPPROTO_FRAGMENT: 7165 /* 7166 * ICMPv6 error messages for 7167 * non-first fragments 7168 */ 7169 REASON_SET(reason, PFRES_FRAG); 7170 return (PF_DROP); 7171 case IPPROTO_AH: 7172 case IPPROTO_HOPOPTS: 7173 case IPPROTO_ROUTING: 7174 case IPPROTO_DSTOPTS: { 7175 /* get next header and header length */ 7176 struct ip6_ext opt6; 7177 7178 if (!pf_pull_hdr(m, off2, &opt6, 7179 sizeof(opt6), NULL, reason, 7180 pd2.af)) { 7181 DPFPRINTF(PF_DEBUG_MISC, 7182 ("pf: ICMPv6 short opt\n")); 7183 return (PF_DROP); 7184 } 7185 if (pd2.proto == IPPROTO_AH) 7186 off2 += (opt6.ip6e_len + 2) * 4; 7187 else 7188 off2 += (opt6.ip6e_len + 1) * 8; 7189 pd2.proto = opt6.ip6e_nxt; 7190 /* goto the next header */ 7191 break; 7192 } 7193 default: 7194 terminal++; 7195 break; 7196 } 7197 } while (!terminal); 7198 break; 7199 #endif /* INET6 */ 7200 } 7201 7202 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 7203 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7204 printf("pf: BAD ICMP %d:%d outer dst: ", 7205 icmptype, icmpcode); 7206 pf_print_host(pd->src, 0, pd->af); 7207 printf(" -> "); 7208 pf_print_host(pd->dst, 0, pd->af); 7209 printf(" inner src: "); 7210 pf_print_host(pd2.src, 0, pd2.af); 7211 printf(" -> "); 7212 pf_print_host(pd2.dst, 0, pd2.af); 7213 printf("\n"); 7214 } 7215 REASON_SET(reason, PFRES_BADSTATE); 7216 return (PF_DROP); 7217 } 7218 7219 switch (pd2.proto) { 7220 case IPPROTO_TCP: { 7221 struct tcphdr th; 7222 u_int32_t seq; 7223 struct pf_state_peer *src, *dst; 7224 u_int8_t dws; 7225 int copyback = 0; 7226 7227 /* 7228 * Only the first 8 bytes of the TCP header can be 7229 * expected. Don't access any TCP header fields after 7230 * th_seq, an ackskew test is not possible. 7231 */ 7232 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 7233 pd2.af)) { 7234 DPFPRINTF(PF_DEBUG_MISC, 7235 ("pf: ICMP error message too short " 7236 "(tcp)\n")); 7237 return (PF_DROP); 7238 } 7239 7240 key.af = pd2.af; 7241 key.proto = IPPROTO_TCP; 7242 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7243 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7244 key.port[pd2.sidx] = th.th_sport; 7245 key.port[pd2.didx] = th.th_dport; 7246 7247 STATE_LOOKUP(kif, &key, *state, pd); 7248 7249 if (pd->dir == (*state)->direction) { 7250 src = &(*state)->dst; 7251 dst = &(*state)->src; 7252 } else { 7253 src = &(*state)->src; 7254 dst = &(*state)->dst; 7255 } 7256 7257 if (src->wscale && dst->wscale) 7258 dws = dst->wscale & PF_WSCALE_MASK; 7259 else 7260 dws = 0; 7261 7262 /* Demodulate sequence number */ 7263 seq = ntohl(th.th_seq) - src->seqdiff; 7264 if (src->seqdiff) { 7265 pf_change_a(&th.th_seq, icmpsum, 7266 htonl(seq), 0); 7267 copyback = 1; 7268 } 7269 7270 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 7271 (!SEQ_GEQ(src->seqhi, seq) || 7272 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 7273 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7274 printf("pf: BAD ICMP %d:%d ", 7275 icmptype, icmpcode); 7276 pf_print_host(pd->src, 0, pd->af); 7277 printf(" -> "); 7278 pf_print_host(pd->dst, 0, pd->af); 7279 printf(" state: "); 7280 pf_print_state(*state); 7281 printf(" seq=%u\n", seq); 7282 } 7283 REASON_SET(reason, PFRES_BADSTATE); 7284 return (PF_DROP); 7285 } else { 7286 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7287 printf("pf: OK ICMP %d:%d ", 7288 icmptype, icmpcode); 7289 pf_print_host(pd->src, 0, pd->af); 7290 printf(" -> "); 7291 pf_print_host(pd->dst, 0, pd->af); 7292 printf(" state: "); 7293 pf_print_state(*state); 7294 printf(" seq=%u\n", seq); 7295 } 7296 } 7297 7298 /* translate source/destination address, if necessary */ 7299 if ((*state)->key[PF_SK_WIRE] != 7300 (*state)->key[PF_SK_STACK]) { 7301 struct pf_state_key *nk = 7302 (*state)->key[pd->didx]; 7303 7304 if (PF_ANEQ(pd2.src, 7305 &nk->addr[pd2.sidx], pd2.af) || 7306 nk->port[pd2.sidx] != th.th_sport) 7307 pf_change_icmp(pd2.src, &th.th_sport, 7308 daddr, &nk->addr[pd2.sidx], 7309 nk->port[pd2.sidx], NULL, 7310 pd2.ip_sum, icmpsum, 7311 pd->ip_sum, 0, pd2.af); 7312 7313 if (PF_ANEQ(pd2.dst, 7314 &nk->addr[pd2.didx], pd2.af) || 7315 nk->port[pd2.didx] != th.th_dport) 7316 pf_change_icmp(pd2.dst, &th.th_dport, 7317 saddr, &nk->addr[pd2.didx], 7318 nk->port[pd2.didx], NULL, 7319 pd2.ip_sum, icmpsum, 7320 pd->ip_sum, 0, pd2.af); 7321 copyback = 1; 7322 } 7323 7324 if (copyback) { 7325 switch (pd2.af) { 7326 #ifdef INET 7327 case AF_INET: 7328 m_copyback(m, off, ICMP_MINLEN, 7329 (caddr_t )&pd->hdr.icmp); 7330 m_copyback(m, ipoff2, sizeof(h2), 7331 (caddr_t )&h2); 7332 break; 7333 #endif /* INET */ 7334 #ifdef INET6 7335 case AF_INET6: 7336 m_copyback(m, off, 7337 sizeof(struct icmp6_hdr), 7338 (caddr_t )&pd->hdr.icmp6); 7339 m_copyback(m, ipoff2, sizeof(h2_6), 7340 (caddr_t )&h2_6); 7341 break; 7342 #endif /* INET6 */ 7343 } 7344 m_copyback(m, off2, 8, (caddr_t)&th); 7345 } 7346 7347 return (PF_PASS); 7348 break; 7349 } 7350 case IPPROTO_UDP: { 7351 struct udphdr uh; 7352 7353 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 7354 NULL, reason, pd2.af)) { 7355 DPFPRINTF(PF_DEBUG_MISC, 7356 ("pf: ICMP error message too short " 7357 "(udp)\n")); 7358 return (PF_DROP); 7359 } 7360 7361 key.af = pd2.af; 7362 key.proto = IPPROTO_UDP; 7363 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7364 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7365 key.port[pd2.sidx] = uh.uh_sport; 7366 key.port[pd2.didx] = uh.uh_dport; 7367 7368 STATE_LOOKUP(kif, &key, *state, pd); 7369 7370 /* translate source/destination address, if necessary */ 7371 if ((*state)->key[PF_SK_WIRE] != 7372 (*state)->key[PF_SK_STACK]) { 7373 struct pf_state_key *nk = 7374 (*state)->key[pd->didx]; 7375 7376 if (PF_ANEQ(pd2.src, 7377 &nk->addr[pd2.sidx], pd2.af) || 7378 nk->port[pd2.sidx] != uh.uh_sport) 7379 pf_change_icmp(pd2.src, &uh.uh_sport, 7380 daddr, &nk->addr[pd2.sidx], 7381 nk->port[pd2.sidx], &uh.uh_sum, 7382 pd2.ip_sum, icmpsum, 7383 pd->ip_sum, 1, pd2.af); 7384 7385 if (PF_ANEQ(pd2.dst, 7386 &nk->addr[pd2.didx], pd2.af) || 7387 nk->port[pd2.didx] != uh.uh_dport) 7388 pf_change_icmp(pd2.dst, &uh.uh_dport, 7389 saddr, &nk->addr[pd2.didx], 7390 nk->port[pd2.didx], &uh.uh_sum, 7391 pd2.ip_sum, icmpsum, 7392 pd->ip_sum, 1, pd2.af); 7393 7394 switch (pd2.af) { 7395 #ifdef INET 7396 case AF_INET: 7397 m_copyback(m, off, ICMP_MINLEN, 7398 (caddr_t )&pd->hdr.icmp); 7399 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 7400 break; 7401 #endif /* INET */ 7402 #ifdef INET6 7403 case AF_INET6: 7404 m_copyback(m, off, 7405 sizeof(struct icmp6_hdr), 7406 (caddr_t )&pd->hdr.icmp6); 7407 m_copyback(m, ipoff2, sizeof(h2_6), 7408 (caddr_t )&h2_6); 7409 break; 7410 #endif /* INET6 */ 7411 } 7412 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 7413 } 7414 return (PF_PASS); 7415 break; 7416 } 7417 #ifdef INET 7418 case IPPROTO_ICMP: { 7419 struct icmp *iih = &pd2.hdr.icmp; 7420 7421 if (!pf_pull_hdr(m, off2, iih, ICMP_MINLEN, 7422 NULL, reason, pd2.af)) { 7423 DPFPRINTF(PF_DEBUG_MISC, 7424 ("pf: ICMP error message too short i" 7425 "(icmp)\n")); 7426 return (PF_DROP); 7427 } 7428 7429 icmpid = iih->icmp_id; 7430 pf_icmp_mapping(&pd2, iih->icmp_type, 7431 &icmp_dir, &multi, &virtual_id, &virtual_type); 7432 7433 ret = pf_icmp_state_lookup(&key, &pd2, state, m, off, 7434 pd2.dir, kif, virtual_id, virtual_type, 7435 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1); 7436 if (ret >= 0) { 7437 MPASS(*state == NULL); 7438 return (ret); 7439 } 7440 7441 /* translate source/destination address, if necessary */ 7442 if ((*state)->key[PF_SK_WIRE] != 7443 (*state)->key[PF_SK_STACK]) { 7444 struct pf_state_key *nk = 7445 (*state)->key[pd->didx]; 7446 7447 if (PF_ANEQ(pd2.src, 7448 &nk->addr[pd2.sidx], pd2.af) || 7449 (virtual_type == htons(ICMP_ECHO) && 7450 nk->port[iidx] != iih->icmp_id)) 7451 pf_change_icmp(pd2.src, 7452 (virtual_type == htons(ICMP_ECHO)) ? 7453 &iih->icmp_id : NULL, 7454 daddr, &nk->addr[pd2.sidx], 7455 (virtual_type == htons(ICMP_ECHO)) ? 7456 nk->port[iidx] : 0, NULL, 7457 pd2.ip_sum, icmpsum, 7458 pd->ip_sum, 0, AF_INET); 7459 7460 if (PF_ANEQ(pd2.dst, 7461 &nk->addr[pd2.didx], pd2.af)) 7462 pf_change_icmp(pd2.dst, NULL, NULL, 7463 &nk->addr[pd2.didx], 0, NULL, 7464 pd2.ip_sum, icmpsum, pd->ip_sum, 0, 7465 AF_INET); 7466 7467 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 7468 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 7469 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)iih); 7470 } 7471 return (PF_PASS); 7472 break; 7473 } 7474 #endif /* INET */ 7475 #ifdef INET6 7476 case IPPROTO_ICMPV6: { 7477 struct icmp6_hdr *iih = &pd2.hdr.icmp6; 7478 7479 if (!pf_pull_hdr(m, off2, iih, 7480 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 7481 DPFPRINTF(PF_DEBUG_MISC, 7482 ("pf: ICMP error message too short " 7483 "(icmp6)\n")); 7484 return (PF_DROP); 7485 } 7486 7487 pf_icmp_mapping(&pd2, iih->icmp6_type, 7488 &icmp_dir, &multi, &virtual_id, &virtual_type); 7489 7490 ret = pf_icmp_state_lookup(&key, &pd2, state, m, off, 7491 pd->dir, kif, virtual_id, virtual_type, 7492 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1); 7493 if (ret >= 0) { 7494 MPASS(*state == NULL); 7495 if (ret == PF_DROP && pd2.af == AF_INET6 && 7496 icmp_dir == PF_OUT) { 7497 ret = pf_icmp_state_lookup(&key, &pd2, 7498 state, m, off, pd->dir, kif, 7499 virtual_id, virtual_type, 7500 icmp_dir, &iidx, multi, 1); 7501 if (ret >= 0) { 7502 MPASS(*state == NULL); 7503 return (ret); 7504 } 7505 } else 7506 return (ret); 7507 } 7508 7509 /* translate source/destination address, if necessary */ 7510 if ((*state)->key[PF_SK_WIRE] != 7511 (*state)->key[PF_SK_STACK]) { 7512 struct pf_state_key *nk = 7513 (*state)->key[pd->didx]; 7514 7515 if (PF_ANEQ(pd2.src, 7516 &nk->addr[pd2.sidx], pd2.af) || 7517 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) && 7518 nk->port[pd2.sidx] != iih->icmp6_id)) 7519 pf_change_icmp(pd2.src, 7520 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 7521 ? &iih->icmp6_id : NULL, 7522 daddr, &nk->addr[pd2.sidx], 7523 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 7524 ? nk->port[iidx] : 0, NULL, 7525 pd2.ip_sum, icmpsum, 7526 pd->ip_sum, 0, AF_INET6); 7527 7528 if (PF_ANEQ(pd2.dst, 7529 &nk->addr[pd2.didx], pd2.af)) 7530 pf_change_icmp(pd2.dst, NULL, NULL, 7531 &nk->addr[pd2.didx], 0, NULL, 7532 pd2.ip_sum, icmpsum, 7533 pd->ip_sum, 0, AF_INET6); 7534 7535 m_copyback(m, off, sizeof(struct icmp6_hdr), 7536 (caddr_t)&pd->hdr.icmp6); 7537 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 7538 m_copyback(m, off2, sizeof(struct icmp6_hdr), 7539 (caddr_t)iih); 7540 } 7541 return (PF_PASS); 7542 break; 7543 } 7544 #endif /* INET6 */ 7545 default: { 7546 key.af = pd2.af; 7547 key.proto = pd2.proto; 7548 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7549 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7550 key.port[0] = key.port[1] = 0; 7551 7552 STATE_LOOKUP(kif, &key, *state, pd); 7553 7554 /* translate source/destination address, if necessary */ 7555 if ((*state)->key[PF_SK_WIRE] != 7556 (*state)->key[PF_SK_STACK]) { 7557 struct pf_state_key *nk = 7558 (*state)->key[pd->didx]; 7559 7560 if (PF_ANEQ(pd2.src, 7561 &nk->addr[pd2.sidx], pd2.af)) 7562 pf_change_icmp(pd2.src, NULL, daddr, 7563 &nk->addr[pd2.sidx], 0, NULL, 7564 pd2.ip_sum, icmpsum, 7565 pd->ip_sum, 0, pd2.af); 7566 7567 if (PF_ANEQ(pd2.dst, 7568 &nk->addr[pd2.didx], pd2.af)) 7569 pf_change_icmp(pd2.dst, NULL, saddr, 7570 &nk->addr[pd2.didx], 0, NULL, 7571 pd2.ip_sum, icmpsum, 7572 pd->ip_sum, 0, pd2.af); 7573 7574 switch (pd2.af) { 7575 #ifdef INET 7576 case AF_INET: 7577 m_copyback(m, off, ICMP_MINLEN, 7578 (caddr_t)&pd->hdr.icmp); 7579 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 7580 break; 7581 #endif /* INET */ 7582 #ifdef INET6 7583 case AF_INET6: 7584 m_copyback(m, off, 7585 sizeof(struct icmp6_hdr), 7586 (caddr_t )&pd->hdr.icmp6); 7587 m_copyback(m, ipoff2, sizeof(h2_6), 7588 (caddr_t )&h2_6); 7589 break; 7590 #endif /* INET6 */ 7591 } 7592 } 7593 return (PF_PASS); 7594 break; 7595 } 7596 } 7597 } 7598 } 7599 7600 static int 7601 pf_test_state_other(struct pf_kstate **state, struct pfi_kkif *kif, 7602 struct mbuf *m, struct pf_pdesc *pd) 7603 { 7604 struct pf_state_peer *src, *dst; 7605 struct pf_state_key_cmp key; 7606 uint8_t psrc, pdst; 7607 7608 bzero(&key, sizeof(key)); 7609 key.af = pd->af; 7610 key.proto = pd->proto; 7611 if (pd->dir == PF_IN) { 7612 PF_ACPY(&key.addr[0], pd->src, key.af); 7613 PF_ACPY(&key.addr[1], pd->dst, key.af); 7614 key.port[0] = key.port[1] = 0; 7615 } else { 7616 PF_ACPY(&key.addr[1], pd->src, key.af); 7617 PF_ACPY(&key.addr[0], pd->dst, key.af); 7618 key.port[1] = key.port[0] = 0; 7619 } 7620 7621 STATE_LOOKUP(kif, &key, *state, pd); 7622 7623 if (pd->dir == (*state)->direction) { 7624 src = &(*state)->src; 7625 dst = &(*state)->dst; 7626 psrc = PF_PEER_SRC; 7627 pdst = PF_PEER_DST; 7628 } else { 7629 src = &(*state)->dst; 7630 dst = &(*state)->src; 7631 psrc = PF_PEER_DST; 7632 pdst = PF_PEER_SRC; 7633 } 7634 7635 /* update states */ 7636 if (src->state < PFOTHERS_SINGLE) 7637 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 7638 if (dst->state == PFOTHERS_SINGLE) 7639 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 7640 7641 /* update expire time */ 7642 (*state)->expire = pf_get_uptime(); 7643 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 7644 (*state)->timeout = PFTM_OTHER_MULTIPLE; 7645 else 7646 (*state)->timeout = PFTM_OTHER_SINGLE; 7647 7648 /* translate source/destination address, if necessary */ 7649 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7650 struct pf_state_key *nk = (*state)->key[pd->didx]; 7651 7652 KASSERT(nk, ("%s: nk is null", __func__)); 7653 KASSERT(pd, ("%s: pd is null", __func__)); 7654 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 7655 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 7656 switch (pd->af) { 7657 #ifdef INET 7658 case AF_INET: 7659 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 7660 pf_change_a(&pd->src->v4.s_addr, 7661 pd->ip_sum, 7662 nk->addr[pd->sidx].v4.s_addr, 7663 0); 7664 7665 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 7666 pf_change_a(&pd->dst->v4.s_addr, 7667 pd->ip_sum, 7668 nk->addr[pd->didx].v4.s_addr, 7669 0); 7670 7671 break; 7672 #endif /* INET */ 7673 #ifdef INET6 7674 case AF_INET6: 7675 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET6)) 7676 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 7677 7678 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET6)) 7679 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 7680 #endif /* INET6 */ 7681 } 7682 } 7683 return (PF_PASS); 7684 } 7685 7686 /* 7687 * ipoff and off are measured from the start of the mbuf chain. 7688 * h must be at "ipoff" on the mbuf chain. 7689 */ 7690 void * 7691 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len, 7692 u_short *actionp, u_short *reasonp, sa_family_t af) 7693 { 7694 switch (af) { 7695 #ifdef INET 7696 case AF_INET: { 7697 const struct ip *h = mtod(m, struct ip *); 7698 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 7699 7700 if (fragoff) { 7701 if (fragoff >= len) 7702 ACTION_SET(actionp, PF_PASS); 7703 else { 7704 ACTION_SET(actionp, PF_DROP); 7705 REASON_SET(reasonp, PFRES_FRAG); 7706 } 7707 return (NULL); 7708 } 7709 if (m->m_pkthdr.len < off + len || 7710 ntohs(h->ip_len) < off + len) { 7711 ACTION_SET(actionp, PF_DROP); 7712 REASON_SET(reasonp, PFRES_SHORT); 7713 return (NULL); 7714 } 7715 break; 7716 } 7717 #endif /* INET */ 7718 #ifdef INET6 7719 case AF_INET6: { 7720 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 7721 7722 if (m->m_pkthdr.len < off + len || 7723 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 7724 (unsigned)(off + len)) { 7725 ACTION_SET(actionp, PF_DROP); 7726 REASON_SET(reasonp, PFRES_SHORT); 7727 return (NULL); 7728 } 7729 break; 7730 } 7731 #endif /* INET6 */ 7732 } 7733 m_copydata(m, off, len, p); 7734 return (p); 7735 } 7736 7737 int 7738 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 7739 int rtableid) 7740 { 7741 struct ifnet *ifp; 7742 7743 /* 7744 * Skip check for addresses with embedded interface scope, 7745 * as they would always match anyway. 7746 */ 7747 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 7748 return (1); 7749 7750 if (af != AF_INET && af != AF_INET6) 7751 return (0); 7752 7753 if (kif == V_pfi_all) 7754 return (1); 7755 7756 /* Skip checks for ipsec interfaces */ 7757 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 7758 return (1); 7759 7760 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 7761 7762 switch (af) { 7763 #ifdef INET6 7764 case AF_INET6: 7765 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 7766 ifp)); 7767 #endif 7768 #ifdef INET 7769 case AF_INET: 7770 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 7771 ifp)); 7772 #endif 7773 } 7774 7775 return (0); 7776 } 7777 7778 #ifdef INET 7779 static void 7780 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7781 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7782 { 7783 struct mbuf *m0, *m1, *md; 7784 struct sockaddr_in dst; 7785 struct ip *ip; 7786 struct pfi_kkif *nkif = NULL; 7787 struct ifnet *ifp = NULL; 7788 struct pf_addr naddr; 7789 struct pf_ksrc_node *sn = NULL; 7790 int error = 0; 7791 uint16_t ip_len, ip_off; 7792 uint16_t tmp; 7793 int r_rt, r_dir; 7794 7795 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 7796 7797 if (s) { 7798 r_rt = s->rt; 7799 r_dir = s->direction; 7800 } else { 7801 r_rt = r->rt; 7802 r_dir = r->direction; 7803 } 7804 7805 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7806 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7807 __func__)); 7808 7809 if ((pd->pf_mtag == NULL && 7810 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7811 pd->pf_mtag->routed++ > 3) { 7812 m0 = *m; 7813 *m = NULL; 7814 goto bad_locked; 7815 } 7816 7817 if (r_rt == PF_DUPTO) { 7818 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7819 if (s == NULL) { 7820 ifp = r->rpool.cur->kif ? 7821 r->rpool.cur->kif->pfik_ifp : NULL; 7822 } else { 7823 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7824 /* If pfsync'd */ 7825 if (ifp == NULL && r->rpool.cur != NULL) 7826 ifp = r->rpool.cur->kif ? 7827 r->rpool.cur->kif->pfik_ifp : NULL; 7828 PF_STATE_UNLOCK(s); 7829 } 7830 if (ifp == oifp) { 7831 /* When the 2nd interface is not skipped */ 7832 return; 7833 } else { 7834 m0 = *m; 7835 *m = NULL; 7836 goto bad; 7837 } 7838 } else { 7839 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 7840 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 7841 if (s) 7842 PF_STATE_UNLOCK(s); 7843 return; 7844 } 7845 } 7846 } else { 7847 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 7848 pf_dummynet(pd, s, r, m); 7849 if (s) 7850 PF_STATE_UNLOCK(s); 7851 return; 7852 } 7853 m0 = *m; 7854 } 7855 7856 ip = mtod(m0, struct ip *); 7857 7858 bzero(&dst, sizeof(dst)); 7859 dst.sin_family = AF_INET; 7860 dst.sin_len = sizeof(dst); 7861 dst.sin_addr = ip->ip_dst; 7862 7863 bzero(&naddr, sizeof(naddr)); 7864 7865 if (s == NULL) { 7866 if (TAILQ_EMPTY(&r->rpool.list)) { 7867 DPFPRINTF(PF_DEBUG_URGENT, 7868 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 7869 goto bad_locked; 7870 } 7871 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 7872 &naddr, &nkif, NULL, &sn); 7873 if (!PF_AZERO(&naddr, AF_INET)) 7874 dst.sin_addr.s_addr = naddr.v4.s_addr; 7875 ifp = nkif ? nkif->pfik_ifp : NULL; 7876 } else { 7877 struct pfi_kkif *kif; 7878 7879 if (!PF_AZERO(&s->rt_addr, AF_INET)) 7880 dst.sin_addr.s_addr = 7881 s->rt_addr.v4.s_addr; 7882 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7883 kif = s->rt_kif; 7884 /* If pfsync'd */ 7885 if (ifp == NULL && r->rpool.cur != NULL) { 7886 ifp = r->rpool.cur->kif ? 7887 r->rpool.cur->kif->pfik_ifp : NULL; 7888 kif = r->rpool.cur->kif; 7889 } 7890 if (ifp != NULL && kif != NULL && 7891 r->rule_flag & PFRULE_IFBOUND && 7892 r->rt == PF_REPLYTO && 7893 s->kif == V_pfi_all) { 7894 s->kif = kif; 7895 s->orig_kif = oifp->if_pf_kif; 7896 } 7897 7898 PF_STATE_UNLOCK(s); 7899 } 7900 7901 if (ifp == NULL) 7902 goto bad; 7903 7904 if (pd->dir == PF_IN) { 7905 if (pf_test(PF_OUT, PFIL_FWD, ifp, &m0, inp, &pd->act) != PF_PASS) 7906 goto bad; 7907 else if (m0 == NULL) 7908 goto done; 7909 if (m0->m_len < sizeof(struct ip)) { 7910 DPFPRINTF(PF_DEBUG_URGENT, 7911 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 7912 goto bad; 7913 } 7914 ip = mtod(m0, struct ip *); 7915 } 7916 7917 if (ifp->if_flags & IFF_LOOPBACK) 7918 m0->m_flags |= M_SKIP_FIREWALL; 7919 7920 ip_len = ntohs(ip->ip_len); 7921 ip_off = ntohs(ip->ip_off); 7922 7923 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 7924 m0->m_pkthdr.csum_flags |= CSUM_IP; 7925 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 7926 in_delayed_cksum(m0); 7927 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 7928 } 7929 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 7930 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2)); 7931 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 7932 } 7933 7934 if (pd->dir == PF_IN) { 7935 /* 7936 * Make sure dummynet gets the correct direction, in case it needs to 7937 * re-inject later. 7938 */ 7939 pd->dir = PF_OUT; 7940 7941 /* 7942 * The following processing is actually the rest of the inbound processing, even 7943 * though we've marked it as outbound (so we don't look through dummynet) and it 7944 * happens after the outbound processing (pf_test(PF_OUT) above). 7945 * Swap the dummynet pipe numbers, because it's going to come to the wrong 7946 * conclusion about what direction it's processing, and we can't fix it or it 7947 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 7948 * decision will pick the right pipe, and everything will mostly work as expected. 7949 */ 7950 tmp = pd->act.dnrpipe; 7951 pd->act.dnrpipe = pd->act.dnpipe; 7952 pd->act.dnpipe = tmp; 7953 } 7954 7955 /* 7956 * If small enough for interface, or the interface will take 7957 * care of the fragmentation for us, we can just send directly. 7958 */ 7959 if (ip_len <= ifp->if_mtu || 7960 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 7961 ip->ip_sum = 0; 7962 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 7963 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 7964 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 7965 } 7966 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 7967 7968 md = m0; 7969 error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 7970 if (md != NULL) 7971 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL); 7972 goto done; 7973 } 7974 7975 /* Balk when DF bit is set or the interface didn't support TSO. */ 7976 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 7977 error = EMSGSIZE; 7978 KMOD_IPSTAT_INC(ips_cantfrag); 7979 if (r_rt != PF_DUPTO) { 7980 if (s && pd->nat_rule != NULL) 7981 PACKET_UNDO_NAT(m0, pd, 7982 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 7983 s); 7984 7985 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 7986 ifp->if_mtu); 7987 goto done; 7988 } else 7989 goto bad; 7990 } 7991 7992 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 7993 if (error) 7994 goto bad; 7995 7996 for (; m0; m0 = m1) { 7997 m1 = m0->m_nextpkt; 7998 m0->m_nextpkt = NULL; 7999 if (error == 0) { 8000 m_clrprotoflags(m0); 8001 md = m0; 8002 pd->pf_mtag = pf_find_mtag(md); 8003 error = pf_dummynet_route(pd, s, r, ifp, 8004 sintosa(&dst), &md); 8005 if (md != NULL) 8006 error = (*ifp->if_output)(ifp, md, 8007 sintosa(&dst), NULL); 8008 } else 8009 m_freem(m0); 8010 } 8011 8012 if (error == 0) 8013 KMOD_IPSTAT_INC(ips_fragmented); 8014 8015 done: 8016 if (r_rt != PF_DUPTO) 8017 *m = NULL; 8018 return; 8019 8020 bad_locked: 8021 if (s) 8022 PF_STATE_UNLOCK(s); 8023 bad: 8024 m_freem(m0); 8025 goto done; 8026 } 8027 #endif /* INET */ 8028 8029 #ifdef INET6 8030 static void 8031 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 8032 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 8033 { 8034 struct mbuf *m0, *md; 8035 struct sockaddr_in6 dst; 8036 struct ip6_hdr *ip6; 8037 struct pfi_kkif *nkif = NULL; 8038 struct ifnet *ifp = NULL; 8039 struct pf_addr naddr; 8040 struct pf_ksrc_node *sn = NULL; 8041 int r_rt, r_dir; 8042 8043 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 8044 8045 if (s) { 8046 r_rt = s->rt; 8047 r_dir = s->direction; 8048 } else { 8049 r_rt = r->rt; 8050 r_dir = r->direction; 8051 } 8052 8053 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 8054 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 8055 __func__)); 8056 8057 if ((pd->pf_mtag == NULL && 8058 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 8059 pd->pf_mtag->routed++ > 3) { 8060 m0 = *m; 8061 *m = NULL; 8062 goto bad_locked; 8063 } 8064 8065 if (r_rt == PF_DUPTO) { 8066 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 8067 if (s == NULL) { 8068 ifp = r->rpool.cur->kif ? 8069 r->rpool.cur->kif->pfik_ifp : NULL; 8070 } else { 8071 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 8072 /* If pfsync'd */ 8073 if (ifp == NULL && r->rpool.cur != NULL) 8074 ifp = r->rpool.cur->kif ? 8075 r->rpool.cur->kif->pfik_ifp : NULL; 8076 PF_STATE_UNLOCK(s); 8077 } 8078 if (ifp == oifp) { 8079 /* When the 2nd interface is not skipped */ 8080 return; 8081 } else { 8082 m0 = *m; 8083 *m = NULL; 8084 goto bad; 8085 } 8086 } else { 8087 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 8088 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 8089 if (s) 8090 PF_STATE_UNLOCK(s); 8091 return; 8092 } 8093 } 8094 } else { 8095 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 8096 pf_dummynet(pd, s, r, m); 8097 if (s) 8098 PF_STATE_UNLOCK(s); 8099 return; 8100 } 8101 m0 = *m; 8102 } 8103 8104 ip6 = mtod(m0, struct ip6_hdr *); 8105 8106 bzero(&dst, sizeof(dst)); 8107 dst.sin6_family = AF_INET6; 8108 dst.sin6_len = sizeof(dst); 8109 dst.sin6_addr = ip6->ip6_dst; 8110 8111 bzero(&naddr, sizeof(naddr)); 8112 8113 if (s == NULL) { 8114 if (TAILQ_EMPTY(&r->rpool.list)) { 8115 DPFPRINTF(PF_DEBUG_URGENT, 8116 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 8117 goto bad_locked; 8118 } 8119 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 8120 &naddr, &nkif, NULL, &sn); 8121 if (!PF_AZERO(&naddr, AF_INET6)) 8122 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 8123 &naddr, AF_INET6); 8124 ifp = nkif ? nkif->pfik_ifp : NULL; 8125 } else { 8126 struct pfi_kkif *kif; 8127 8128 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 8129 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 8130 &s->rt_addr, AF_INET6); 8131 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 8132 kif = s->rt_kif; 8133 /* If pfsync'd */ 8134 if (ifp == NULL && r->rpool.cur != NULL) { 8135 ifp = r->rpool.cur->kif ? 8136 r->rpool.cur->kif->pfik_ifp : NULL; 8137 kif = r->rpool.cur->kif; 8138 } 8139 if (ifp != NULL && kif != NULL && 8140 r->rule_flag & PFRULE_IFBOUND && 8141 r->rt == PF_REPLYTO && 8142 s->kif == V_pfi_all) { 8143 s->kif = kif; 8144 s->orig_kif = oifp->if_pf_kif; 8145 } 8146 } 8147 8148 if (s) 8149 PF_STATE_UNLOCK(s); 8150 8151 if (ifp == NULL) 8152 goto bad; 8153 8154 if (pd->dir == PF_IN) { 8155 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp, &pd->act) != PF_PASS) 8156 goto bad; 8157 else if (m0 == NULL) 8158 goto done; 8159 if (m0->m_len < sizeof(struct ip6_hdr)) { 8160 DPFPRINTF(PF_DEBUG_URGENT, 8161 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 8162 __func__)); 8163 goto bad; 8164 } 8165 ip6 = mtod(m0, struct ip6_hdr *); 8166 } 8167 8168 if (ifp->if_flags & IFF_LOOPBACK) 8169 m0->m_flags |= M_SKIP_FIREWALL; 8170 8171 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 8172 ~ifp->if_hwassist) { 8173 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 8174 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 8175 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 8176 } 8177 8178 /* 8179 * If the packet is too large for the outgoing interface, 8180 * send back an icmp6 error. 8181 */ 8182 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 8183 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 8184 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 8185 md = m0; 8186 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 8187 if (md != NULL) 8188 nd6_output_ifp(ifp, ifp, md, &dst, NULL); 8189 } 8190 else { 8191 in6_ifstat_inc(ifp, ifs6_in_toobig); 8192 if (r_rt != PF_DUPTO) { 8193 if (s && pd->nat_rule != NULL) 8194 PACKET_UNDO_NAT(m0, pd, 8195 ((caddr_t)ip6 - m0->m_data) + 8196 sizeof(struct ip6_hdr), s); 8197 8198 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 8199 } else 8200 goto bad; 8201 } 8202 8203 done: 8204 if (r_rt != PF_DUPTO) 8205 *m = NULL; 8206 return; 8207 8208 bad_locked: 8209 if (s) 8210 PF_STATE_UNLOCK(s); 8211 bad: 8212 m_freem(m0); 8213 goto done; 8214 } 8215 #endif /* INET6 */ 8216 8217 /* 8218 * FreeBSD supports cksum offloads for the following drivers. 8219 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 8220 * 8221 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 8222 * network driver performed cksum including pseudo header, need to verify 8223 * csum_data 8224 * CSUM_DATA_VALID : 8225 * network driver performed cksum, needs to additional pseudo header 8226 * cksum computation with partial csum_data(i.e. lack of H/W support for 8227 * pseudo header, for instance sk(4) and possibly gem(4)) 8228 * 8229 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 8230 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 8231 * TCP/UDP layer. 8232 * Also, set csum_data to 0xffff to force cksum validation. 8233 */ 8234 static int 8235 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 8236 { 8237 u_int16_t sum = 0; 8238 int hw_assist = 0; 8239 struct ip *ip; 8240 8241 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 8242 return (1); 8243 if (m->m_pkthdr.len < off + len) 8244 return (1); 8245 8246 switch (p) { 8247 case IPPROTO_TCP: 8248 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 8249 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 8250 sum = m->m_pkthdr.csum_data; 8251 } else { 8252 ip = mtod(m, struct ip *); 8253 sum = in_pseudo(ip->ip_src.s_addr, 8254 ip->ip_dst.s_addr, htonl((u_short)len + 8255 m->m_pkthdr.csum_data + IPPROTO_TCP)); 8256 } 8257 sum ^= 0xffff; 8258 ++hw_assist; 8259 } 8260 break; 8261 case IPPROTO_UDP: 8262 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 8263 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 8264 sum = m->m_pkthdr.csum_data; 8265 } else { 8266 ip = mtod(m, struct ip *); 8267 sum = in_pseudo(ip->ip_src.s_addr, 8268 ip->ip_dst.s_addr, htonl((u_short)len + 8269 m->m_pkthdr.csum_data + IPPROTO_UDP)); 8270 } 8271 sum ^= 0xffff; 8272 ++hw_assist; 8273 } 8274 break; 8275 case IPPROTO_ICMP: 8276 #ifdef INET6 8277 case IPPROTO_ICMPV6: 8278 #endif /* INET6 */ 8279 break; 8280 default: 8281 return (1); 8282 } 8283 8284 if (!hw_assist) { 8285 switch (af) { 8286 case AF_INET: 8287 if (p == IPPROTO_ICMP) { 8288 if (m->m_len < off) 8289 return (1); 8290 m->m_data += off; 8291 m->m_len -= off; 8292 sum = in_cksum(m, len); 8293 m->m_data -= off; 8294 m->m_len += off; 8295 } else { 8296 if (m->m_len < sizeof(struct ip)) 8297 return (1); 8298 sum = in4_cksum(m, p, off, len); 8299 } 8300 break; 8301 #ifdef INET6 8302 case AF_INET6: 8303 if (m->m_len < sizeof(struct ip6_hdr)) 8304 return (1); 8305 sum = in6_cksum(m, p, off, len); 8306 break; 8307 #endif /* INET6 */ 8308 default: 8309 return (1); 8310 } 8311 } 8312 if (sum) { 8313 switch (p) { 8314 case IPPROTO_TCP: 8315 { 8316 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 8317 break; 8318 } 8319 case IPPROTO_UDP: 8320 { 8321 KMOD_UDPSTAT_INC(udps_badsum); 8322 break; 8323 } 8324 #ifdef INET 8325 case IPPROTO_ICMP: 8326 { 8327 KMOD_ICMPSTAT_INC(icps_checksum); 8328 break; 8329 } 8330 #endif 8331 #ifdef INET6 8332 case IPPROTO_ICMPV6: 8333 { 8334 KMOD_ICMP6STAT_INC(icp6s_checksum); 8335 break; 8336 } 8337 #endif /* INET6 */ 8338 } 8339 return (1); 8340 } else { 8341 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 8342 m->m_pkthdr.csum_flags |= 8343 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 8344 m->m_pkthdr.csum_data = 0xffff; 8345 } 8346 } 8347 return (0); 8348 } 8349 8350 static bool 8351 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r, 8352 const struct pf_kstate *s, struct ip_fw_args *dnflow) 8353 { 8354 int dndir = r->direction; 8355 8356 if (s && dndir == PF_INOUT) { 8357 dndir = s->direction; 8358 } else if (dndir == PF_INOUT) { 8359 /* Assume primary direction. Happens when we've set dnpipe in 8360 * the ethernet level code. */ 8361 dndir = pd->dir; 8362 } 8363 8364 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED) 8365 return (false); 8366 8367 memset(dnflow, 0, sizeof(*dnflow)); 8368 8369 if (pd->dport != NULL) 8370 dnflow->f_id.dst_port = ntohs(*pd->dport); 8371 if (pd->sport != NULL) 8372 dnflow->f_id.src_port = ntohs(*pd->sport); 8373 8374 if (pd->dir == PF_IN) 8375 dnflow->flags |= IPFW_ARGS_IN; 8376 else 8377 dnflow->flags |= IPFW_ARGS_OUT; 8378 8379 if (pd->dir != dndir && pd->act.dnrpipe) { 8380 dnflow->rule.info = pd->act.dnrpipe; 8381 } 8382 else if (pd->dir == dndir && pd->act.dnpipe) { 8383 dnflow->rule.info = pd->act.dnpipe; 8384 } 8385 else { 8386 return (false); 8387 } 8388 8389 dnflow->rule.info |= IPFW_IS_DUMMYNET; 8390 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 8391 dnflow->rule.info |= IPFW_IS_PIPE; 8392 8393 dnflow->f_id.proto = pd->proto; 8394 dnflow->f_id.extra = dnflow->rule.info; 8395 switch (pd->af) { 8396 case AF_INET: 8397 dnflow->f_id.addr_type = 4; 8398 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 8399 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 8400 break; 8401 case AF_INET6: 8402 dnflow->flags |= IPFW_ARGS_IP6; 8403 dnflow->f_id.addr_type = 6; 8404 dnflow->f_id.src_ip6 = pd->src->v6; 8405 dnflow->f_id.dst_ip6 = pd->dst->v6; 8406 break; 8407 default: 8408 panic("Invalid AF"); 8409 break; 8410 } 8411 8412 return (true); 8413 } 8414 8415 int 8416 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 8417 struct inpcb *inp) 8418 { 8419 struct pfi_kkif *kif; 8420 struct mbuf *m = *m0; 8421 8422 M_ASSERTPKTHDR(m); 8423 MPASS(ifp->if_vnet == curvnet); 8424 NET_EPOCH_ASSERT(); 8425 8426 if (!V_pf_status.running) 8427 return (PF_PASS); 8428 8429 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8430 8431 if (kif == NULL) { 8432 DPFPRINTF(PF_DEBUG_URGENT, 8433 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname)); 8434 return (PF_DROP); 8435 } 8436 if (kif->pfik_flags & PFI_IFLAG_SKIP) 8437 return (PF_PASS); 8438 8439 if (m->m_flags & M_SKIP_FIREWALL) 8440 return (PF_PASS); 8441 8442 if (__predict_false(! M_WRITABLE(*m0))) { 8443 m = *m0 = m_unshare(*m0, M_NOWAIT); 8444 if (*m0 == NULL) 8445 return (PF_DROP); 8446 } 8447 8448 /* Stateless! */ 8449 return (pf_test_eth_rule(dir, kif, m0)); 8450 } 8451 8452 static __inline void 8453 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag) 8454 { 8455 struct m_tag *mtag; 8456 8457 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 8458 8459 /* dummynet adds this tag, but pf does not need it, 8460 * and keeping it creates unexpected behavior, 8461 * e.g. in case of divert(4) usage right after dummynet. */ 8462 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 8463 if (mtag != NULL) 8464 m_tag_delete(m, mtag); 8465 } 8466 8467 static int 8468 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s, 8469 struct pf_krule *r, struct mbuf **m0) 8470 { 8471 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0)); 8472 } 8473 8474 static int 8475 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s, 8476 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa, 8477 struct mbuf **m0) 8478 { 8479 NET_EPOCH_ASSERT(); 8480 8481 if (pd->act.dnpipe || pd->act.dnrpipe) { 8482 struct ip_fw_args dnflow; 8483 if (ip_dn_io_ptr == NULL) { 8484 m_freem(*m0); 8485 *m0 = NULL; 8486 return (ENOMEM); 8487 } 8488 8489 if (pd->pf_mtag == NULL && 8490 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 8491 m_freem(*m0); 8492 *m0 = NULL; 8493 return (ENOMEM); 8494 } 8495 8496 if (ifp != NULL) { 8497 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO; 8498 8499 pd->pf_mtag->if_index = ifp->if_index; 8500 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 8501 8502 MPASS(sa != NULL); 8503 8504 if (pd->af == AF_INET) 8505 memcpy(&pd->pf_mtag->dst, sa, 8506 sizeof(struct sockaddr_in)); 8507 else 8508 memcpy(&pd->pf_mtag->dst, sa, 8509 sizeof(struct sockaddr_in6)); 8510 } 8511 8512 if (s != NULL && s->nat_rule.ptr != NULL && 8513 s->nat_rule.ptr->action == PF_RDR && 8514 ( 8515 #ifdef INET 8516 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) || 8517 #endif 8518 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) { 8519 /* 8520 * If we're redirecting to loopback mark this packet 8521 * as being local. Otherwise it might get dropped 8522 * if dummynet re-injects. 8523 */ 8524 (*m0)->m_pkthdr.rcvif = V_loif; 8525 } 8526 8527 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) { 8528 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 8529 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED; 8530 ip_dn_io_ptr(m0, &dnflow); 8531 if (*m0 != NULL) { 8532 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 8533 pf_dummynet_flag_remove(*m0, pd->pf_mtag); 8534 } 8535 } 8536 } 8537 8538 return (0); 8539 } 8540 8541 #ifdef INET 8542 int 8543 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 8544 struct inpcb *inp, struct pf_rule_actions *default_actions) 8545 { 8546 struct pfi_kkif *kif; 8547 u_short action, reason = 0; 8548 struct mbuf *m = *m0; 8549 struct ip *h = NULL; 8550 struct m_tag *mtag; 8551 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 8552 struct pf_kstate *s = NULL; 8553 struct pf_kruleset *ruleset = NULL; 8554 struct pf_pdesc pd; 8555 int off, dirndx, use_2nd_queue = 0; 8556 uint16_t tag; 8557 uint8_t rt; 8558 8559 PF_RULES_RLOCK_TRACKER; 8560 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 8561 M_ASSERTPKTHDR(m); 8562 8563 if (!V_pf_status.running) 8564 return (PF_PASS); 8565 8566 PF_RULES_RLOCK(); 8567 8568 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8569 8570 if (__predict_false(kif == NULL)) { 8571 DPFPRINTF(PF_DEBUG_URGENT, 8572 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 8573 PF_RULES_RUNLOCK(); 8574 return (PF_DROP); 8575 } 8576 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 8577 PF_RULES_RUNLOCK(); 8578 return (PF_PASS); 8579 } 8580 8581 if (m->m_flags & M_SKIP_FIREWALL) { 8582 PF_RULES_RUNLOCK(); 8583 return (PF_PASS); 8584 } 8585 8586 if (__predict_false(! M_WRITABLE(*m0))) { 8587 m = *m0 = m_unshare(*m0, M_NOWAIT); 8588 if (*m0 == NULL) 8589 return (PF_DROP); 8590 } 8591 8592 memset(&pd, 0, sizeof(pd)); 8593 TAILQ_INIT(&pd.sctp_multihome_jobs); 8594 if (default_actions != NULL) 8595 memcpy(&pd.act, default_actions, sizeof(pd.act)); 8596 pd.pf_mtag = pf_find_mtag(m); 8597 8598 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 8599 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 8600 8601 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 8602 pd.pf_mtag->if_idxgen); 8603 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 8604 PF_RULES_RUNLOCK(); 8605 m_freem(*m0); 8606 *m0 = NULL; 8607 return (PF_PASS); 8608 } 8609 PF_RULES_RUNLOCK(); 8610 (ifp->if_output)(ifp, m, sintosa(&pd.pf_mtag->dst), NULL); 8611 *m0 = NULL; 8612 return (PF_PASS); 8613 } 8614 8615 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 8616 pd.act.dnpipe = pd.pf_mtag->dnpipe; 8617 pd.act.flags = pd.pf_mtag->dnflags; 8618 } 8619 8620 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 8621 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 8622 /* Dummynet re-injects packets after they've 8623 * completed their delay. We've already 8624 * processed them, so pass unconditionally. */ 8625 8626 /* But only once. We may see the packet multiple times (e.g. 8627 * PFIL_IN/PFIL_OUT). */ 8628 pf_dummynet_flag_remove(m, pd.pf_mtag); 8629 PF_RULES_RUNLOCK(); 8630 8631 return (PF_PASS); 8632 } 8633 8634 pd.sport = pd.dport = NULL; 8635 pd.proto_sum = NULL; 8636 pd.dir = dir; 8637 pd.sidx = (dir == PF_IN) ? 0 : 1; 8638 pd.didx = (dir == PF_IN) ? 1 : 0; 8639 pd.af = AF_INET; 8640 pd.act.rtableid = -1; 8641 8642 if (__predict_false(m->m_len < sizeof(struct ip)) && 8643 (m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) { 8644 DPFPRINTF(PF_DEBUG_URGENT, 8645 ("pf_test: m_len < sizeof(struct ip), pullup failed\n")); 8646 PF_RULES_RUNLOCK(); 8647 return (PF_DROP); 8648 } 8649 h = mtod(m, struct ip *); 8650 off = h->ip_hl << 2; 8651 8652 if (__predict_false(ip_divert_ptr != NULL) && 8653 ((mtag = m_tag_locate(m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) { 8654 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1); 8655 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) || 8656 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) { 8657 if (pd.pf_mtag == NULL && 8658 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 8659 action = PF_DROP; 8660 goto done; 8661 } 8662 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED; 8663 } 8664 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) { 8665 m->m_flags |= M_FASTFWD_OURS; 8666 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 8667 } 8668 m_tag_delete(m, mtag); 8669 8670 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 8671 if (mtag != NULL) 8672 m_tag_delete(m, mtag); 8673 } else if (pf_normalize_ip(m0, kif, &reason, &pd) != PF_PASS) { 8674 /* We do IP header normalization and packet reassembly here */ 8675 action = PF_DROP; 8676 goto done; 8677 } 8678 m = *m0; /* pf_normalize messes with m0 */ 8679 h = mtod(m, struct ip *); 8680 8681 off = h->ip_hl << 2; 8682 if (off < (int)sizeof(struct ip)) { 8683 action = PF_DROP; 8684 REASON_SET(&reason, PFRES_SHORT); 8685 pd.act.log = PF_LOG_FORCE; 8686 goto done; 8687 } 8688 8689 pd.src = (struct pf_addr *)&h->ip_src; 8690 pd.dst = (struct pf_addr *)&h->ip_dst; 8691 pd.ip_sum = &h->ip_sum; 8692 pd.proto = h->ip_p; 8693 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 8694 pd.tot_len = ntohs(h->ip_len); 8695 8696 /* handle fragments that didn't get reassembled by normalization */ 8697 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 8698 action = pf_test_fragment(&r, kif, m, h, &pd, &a, &ruleset); 8699 goto done; 8700 } 8701 8702 switch (h->ip_p) { 8703 case IPPROTO_TCP: { 8704 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 8705 &action, &reason, AF_INET)) { 8706 if (action != PF_PASS) 8707 pd.act.log = PF_LOG_FORCE; 8708 goto done; 8709 } 8710 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 8711 8712 pd.sport = &pd.hdr.tcp.th_sport; 8713 pd.dport = &pd.hdr.tcp.th_dport; 8714 8715 /* Respond to SYN with a syncookie. */ 8716 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 8717 pd.dir == PF_IN && pf_synflood_check(&pd)) { 8718 pf_syncookie_send(m, off, &pd); 8719 action = PF_DROP; 8720 break; 8721 } 8722 8723 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 8724 use_2nd_queue = 1; 8725 action = pf_normalize_tcp(kif, m, 0, off, h, &pd); 8726 if (action == PF_DROP) 8727 goto done; 8728 action = pf_test_state_tcp(&s, kif, m, off, h, &pd, &reason); 8729 if (action == PF_PASS) { 8730 if (V_pfsync_update_state_ptr != NULL) 8731 V_pfsync_update_state_ptr(s); 8732 r = s->rule.ptr; 8733 a = s->anchor.ptr; 8734 } else if (s == NULL) { 8735 /* Validate remote SYN|ACK, re-create original SYN if 8736 * valid. */ 8737 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 8738 TH_ACK && pf_syncookie_validate(&pd) && 8739 pd.dir == PF_IN) { 8740 struct mbuf *msyn; 8741 8742 msyn = pf_syncookie_recreate_syn(h->ip_ttl, off, 8743 &pd); 8744 if (msyn == NULL) { 8745 action = PF_DROP; 8746 break; 8747 } 8748 8749 action = pf_test(dir, pflags, ifp, &msyn, inp, 8750 &pd.act); 8751 m_freem(msyn); 8752 if (action != PF_PASS) 8753 break; 8754 8755 action = pf_test_state_tcp(&s, kif, m, off, h, 8756 &pd, &reason); 8757 if (action != PF_PASS || s == NULL) { 8758 action = PF_DROP; 8759 break; 8760 } 8761 8762 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 8763 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 8764 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 8765 action = pf_synproxy(&pd, &s, &reason); 8766 break; 8767 } else { 8768 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8769 &a, &ruleset, inp); 8770 } 8771 } 8772 break; 8773 } 8774 8775 case IPPROTO_UDP: { 8776 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 8777 &action, &reason, AF_INET)) { 8778 if (action != PF_PASS) 8779 pd.act.log = PF_LOG_FORCE; 8780 goto done; 8781 } 8782 pd.sport = &pd.hdr.udp.uh_sport; 8783 pd.dport = &pd.hdr.udp.uh_dport; 8784 if (pd.hdr.udp.uh_dport == 0 || 8785 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 8786 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 8787 action = PF_DROP; 8788 REASON_SET(&reason, PFRES_SHORT); 8789 goto done; 8790 } 8791 action = pf_test_state_udp(&s, kif, m, off, h, &pd); 8792 if (action == PF_PASS) { 8793 if (V_pfsync_update_state_ptr != NULL) 8794 V_pfsync_update_state_ptr(s); 8795 r = s->rule.ptr; 8796 a = s->anchor.ptr; 8797 } else if (s == NULL) 8798 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8799 &a, &ruleset, inp); 8800 break; 8801 } 8802 8803 case IPPROTO_SCTP: { 8804 if (!pf_pull_hdr(m, off, &pd.hdr.sctp, sizeof(pd.hdr.sctp), 8805 &action, &reason, AF_INET)) { 8806 if (action != PF_PASS) 8807 pd.act.log |= PF_LOG_FORCE; 8808 goto done; 8809 } 8810 pd.p_len = pd.tot_len - off; 8811 8812 pd.sport = &pd.hdr.sctp.src_port; 8813 pd.dport = &pd.hdr.sctp.dest_port; 8814 if (pd.hdr.sctp.src_port == 0 || pd.hdr.sctp.dest_port == 0) { 8815 action = PF_DROP; 8816 REASON_SET(&reason, PFRES_SHORT); 8817 goto done; 8818 } 8819 action = pf_normalize_sctp(dir, kif, m, 0, off, h, &pd); 8820 if (action == PF_DROP) 8821 goto done; 8822 action = pf_test_state_sctp(&s, kif, m, off, h, &pd, 8823 &reason); 8824 if (action == PF_PASS) { 8825 if (V_pfsync_update_state_ptr != NULL) 8826 V_pfsync_update_state_ptr(s); 8827 r = s->rule.ptr; 8828 a = s->anchor.ptr; 8829 } else if (s == NULL) { 8830 action = pf_test_rule(&r, &s, kif, m, off, 8831 &pd, &a, &ruleset, inp); 8832 } 8833 break; 8834 } 8835 8836 case IPPROTO_ICMP: { 8837 if (!pf_pull_hdr(m, off, &pd.hdr.icmp, ICMP_MINLEN, 8838 &action, &reason, AF_INET)) { 8839 if (action != PF_PASS) 8840 pd.act.log = PF_LOG_FORCE; 8841 goto done; 8842 } 8843 action = pf_test_state_icmp(&s, kif, m, off, h, &pd, &reason); 8844 if (action == PF_PASS) { 8845 if (V_pfsync_update_state_ptr != NULL) 8846 V_pfsync_update_state_ptr(s); 8847 r = s->rule.ptr; 8848 a = s->anchor.ptr; 8849 } else if (s == NULL) 8850 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8851 &a, &ruleset, inp); 8852 break; 8853 } 8854 8855 case IPPROTO_ICMPV6: { 8856 action = PF_DROP; 8857 DPFPRINTF(PF_DEBUG_MISC, 8858 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 8859 goto done; 8860 } 8861 8862 default: 8863 action = pf_test_state_other(&s, kif, m, &pd); 8864 if (action == PF_PASS) { 8865 if (V_pfsync_update_state_ptr != NULL) 8866 V_pfsync_update_state_ptr(s); 8867 r = s->rule.ptr; 8868 a = s->anchor.ptr; 8869 } else if (s == NULL) 8870 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8871 &a, &ruleset, inp); 8872 break; 8873 } 8874 8875 done: 8876 PF_RULES_RUNLOCK(); 8877 if (action == PF_PASS && h->ip_hl > 5 && 8878 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 8879 action = PF_DROP; 8880 REASON_SET(&reason, PFRES_IPOPTIONS); 8881 pd.act.log = PF_LOG_FORCE; 8882 DPFPRINTF(PF_DEBUG_MISC, 8883 ("pf: dropping packet with ip options\n")); 8884 } 8885 8886 if (s) { 8887 uint8_t log = pd.act.log; 8888 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 8889 pd.act.log |= log; 8890 tag = s->tag; 8891 rt = s->rt; 8892 } else { 8893 tag = r->tag; 8894 rt = r->rt; 8895 } 8896 8897 if (tag > 0 && pf_tag_packet(m, &pd, tag)) { 8898 action = PF_DROP; 8899 REASON_SET(&reason, PFRES_MEMORY); 8900 } 8901 8902 pf_scrub_ip(&m, &pd); 8903 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 8904 pf_normalize_mss(m, off, &pd); 8905 8906 if (pd.act.rtableid >= 0) 8907 M_SETFIB(m, pd.act.rtableid); 8908 8909 if (pd.act.flags & PFSTATE_SETPRIO) { 8910 if (pd.tos & IPTOS_LOWDELAY) 8911 use_2nd_queue = 1; 8912 if (vlan_set_pcp(m, pd.act.set_prio[use_2nd_queue])) { 8913 action = PF_DROP; 8914 REASON_SET(&reason, PFRES_MEMORY); 8915 pd.act.log = PF_LOG_FORCE; 8916 DPFPRINTF(PF_DEBUG_MISC, 8917 ("pf: failed to allocate 802.1q mtag\n")); 8918 } 8919 } 8920 8921 #ifdef ALTQ 8922 if (action == PF_PASS && pd.act.qid) { 8923 if (pd.pf_mtag == NULL && 8924 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 8925 action = PF_DROP; 8926 REASON_SET(&reason, PFRES_MEMORY); 8927 } else { 8928 if (s != NULL) 8929 pd.pf_mtag->qid_hash = pf_state_hash(s); 8930 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY)) 8931 pd.pf_mtag->qid = pd.act.pqid; 8932 else 8933 pd.pf_mtag->qid = pd.act.qid; 8934 /* Add hints for ecn. */ 8935 pd.pf_mtag->hdr = h; 8936 } 8937 } 8938 #endif /* ALTQ */ 8939 8940 /* 8941 * connections redirected to loopback should not match sockets 8942 * bound specifically to loopback due to security implications, 8943 * see tcp_input() and in_pcblookup_listen(). 8944 */ 8945 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 8946 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 8947 (s->nat_rule.ptr->action == PF_RDR || 8948 s->nat_rule.ptr->action == PF_BINAT) && 8949 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 8950 m->m_flags |= M_SKIP_FIREWALL; 8951 8952 if (__predict_false(ip_divert_ptr != NULL) && action == PF_PASS && 8953 r->divert.port && !PACKET_LOOPED(&pd)) { 8954 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0, 8955 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO); 8956 if (mtag != NULL) { 8957 ((struct pf_divert_mtag *)(mtag+1))->port = 8958 ntohs(r->divert.port); 8959 ((struct pf_divert_mtag *)(mtag+1))->idir = 8960 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN : 8961 PF_DIVERT_MTAG_DIR_OUT; 8962 8963 if (s) 8964 PF_STATE_UNLOCK(s); 8965 8966 m_tag_prepend(m, mtag); 8967 if (m->m_flags & M_FASTFWD_OURS) { 8968 if (pd.pf_mtag == NULL && 8969 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 8970 action = PF_DROP; 8971 REASON_SET(&reason, PFRES_MEMORY); 8972 pd.act.log = PF_LOG_FORCE; 8973 DPFPRINTF(PF_DEBUG_MISC, 8974 ("pf: failed to allocate tag\n")); 8975 } else { 8976 pd.pf_mtag->flags |= 8977 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 8978 m->m_flags &= ~M_FASTFWD_OURS; 8979 } 8980 } 8981 ip_divert_ptr(*m0, dir == PF_IN); 8982 *m0 = NULL; 8983 8984 return (action); 8985 } else { 8986 /* XXX: ipfw has the same behaviour! */ 8987 action = PF_DROP; 8988 REASON_SET(&reason, PFRES_MEMORY); 8989 pd.act.log = PF_LOG_FORCE; 8990 DPFPRINTF(PF_DEBUG_MISC, 8991 ("pf: failed to allocate divert tag\n")); 8992 } 8993 } 8994 /* this flag will need revising if the pkt is forwarded */ 8995 if (pd.pf_mtag) 8996 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED; 8997 8998 if (pd.act.log) { 8999 struct pf_krule *lr; 9000 struct pf_krule_item *ri; 9001 9002 if (s != NULL && s->nat_rule.ptr != NULL && 9003 s->nat_rule.ptr->log & PF_LOG_ALL) 9004 lr = s->nat_rule.ptr; 9005 else 9006 lr = r; 9007 9008 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 9009 PFLOG_PACKET(kif, m, AF_INET, action, reason, lr, a, 9010 ruleset, &pd, (s == NULL)); 9011 if (s) { 9012 SLIST_FOREACH(ri, &s->match_rules, entry) 9013 if (ri->r->log & PF_LOG_ALL) 9014 PFLOG_PACKET(kif, m, AF_INET, action, 9015 reason, ri->r, a, ruleset, &pd, 0); 9016 } 9017 } 9018 9019 pf_counter_u64_critical_enter(); 9020 pf_counter_u64_add_protected(&kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], 9021 pd.tot_len); 9022 pf_counter_u64_add_protected(&kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 9023 1); 9024 9025 if (action == PF_PASS || r->action == PF_DROP) { 9026 dirndx = (dir == PF_OUT); 9027 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 9028 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 9029 pf_update_timestamp(r); 9030 9031 if (a != NULL) { 9032 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 9033 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 9034 } 9035 if (s != NULL) { 9036 struct pf_krule_item *ri; 9037 9038 if (s->nat_rule.ptr != NULL) { 9039 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 9040 1); 9041 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 9042 pd.tot_len); 9043 } 9044 if (s->src_node != NULL) { 9045 counter_u64_add(s->src_node->packets[dirndx], 9046 1); 9047 counter_u64_add(s->src_node->bytes[dirndx], 9048 pd.tot_len); 9049 } 9050 if (s->nat_src_node != NULL) { 9051 counter_u64_add(s->nat_src_node->packets[dirndx], 9052 1); 9053 counter_u64_add(s->nat_src_node->bytes[dirndx], 9054 pd.tot_len); 9055 } 9056 dirndx = (dir == s->direction) ? 0 : 1; 9057 s->packets[dirndx]++; 9058 s->bytes[dirndx] += pd.tot_len; 9059 SLIST_FOREACH(ri, &s->match_rules, entry) { 9060 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 9061 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd.tot_len); 9062 } 9063 } 9064 tr = r; 9065 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 9066 if (nr != NULL && r == &V_pf_default_rule) 9067 tr = nr; 9068 if (tr->src.addr.type == PF_ADDR_TABLE) 9069 pfr_update_stats(tr->src.addr.p.tbl, 9070 (s == NULL) ? pd.src : 9071 &s->key[(s->direction == PF_IN)]-> 9072 addr[(s->direction == PF_OUT)], 9073 pd.af, pd.tot_len, dir == PF_OUT, 9074 r->action == PF_PASS, tr->src.neg); 9075 if (tr->dst.addr.type == PF_ADDR_TABLE) 9076 pfr_update_stats(tr->dst.addr.p.tbl, 9077 (s == NULL) ? pd.dst : 9078 &s->key[(s->direction == PF_IN)]-> 9079 addr[(s->direction == PF_IN)], 9080 pd.af, pd.tot_len, dir == PF_OUT, 9081 r->action == PF_PASS, tr->dst.neg); 9082 } 9083 pf_counter_u64_critical_exit(); 9084 9085 switch (action) { 9086 case PF_SYNPROXY_DROP: 9087 m_freem(*m0); 9088 case PF_DEFER: 9089 *m0 = NULL; 9090 action = PF_PASS; 9091 break; 9092 case PF_DROP: 9093 m_freem(*m0); 9094 *m0 = NULL; 9095 break; 9096 default: 9097 /* pf_route() returns unlocked. */ 9098 if (rt) { 9099 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp); 9100 goto out; 9101 } 9102 if (pf_dummynet(&pd, s, r, m0) != 0) { 9103 action = PF_DROP; 9104 REASON_SET(&reason, PFRES_MEMORY); 9105 } 9106 break; 9107 } 9108 9109 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 9110 9111 if (s && action != PF_DROP) { 9112 if (!s->if_index_in && dir == PF_IN) 9113 s->if_index_in = ifp->if_index; 9114 else if (!s->if_index_out && dir == PF_OUT) 9115 s->if_index_out = ifp->if_index; 9116 } 9117 9118 if (s) 9119 PF_STATE_UNLOCK(s); 9120 9121 out: 9122 pf_sctp_multihome_delayed(&pd, off, kif, s, action); 9123 9124 return (action); 9125 } 9126 #endif /* INET */ 9127 9128 #ifdef INET6 9129 int 9130 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp, 9131 struct pf_rule_actions *default_actions) 9132 { 9133 struct pfi_kkif *kif; 9134 u_short action, reason = 0; 9135 struct mbuf *m = *m0, *n = NULL; 9136 struct m_tag *mtag; 9137 struct ip6_hdr *h = NULL; 9138 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 9139 struct pf_kstate *s = NULL; 9140 struct pf_kruleset *ruleset = NULL; 9141 struct pf_pdesc pd; 9142 int off, terminal = 0, dirndx, rh_cnt = 0, use_2nd_queue = 0; 9143 uint16_t tag; 9144 uint8_t rt; 9145 9146 PF_RULES_RLOCK_TRACKER; 9147 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 9148 M_ASSERTPKTHDR(m); 9149 9150 if (!V_pf_status.running) 9151 return (PF_PASS); 9152 9153 PF_RULES_RLOCK(); 9154 9155 kif = (struct pfi_kkif *)ifp->if_pf_kif; 9156 if (__predict_false(kif == NULL)) { 9157 DPFPRINTF(PF_DEBUG_URGENT, 9158 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 9159 PF_RULES_RUNLOCK(); 9160 return (PF_DROP); 9161 } 9162 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 9163 PF_RULES_RUNLOCK(); 9164 return (PF_PASS); 9165 } 9166 9167 if (m->m_flags & M_SKIP_FIREWALL) { 9168 PF_RULES_RUNLOCK(); 9169 return (PF_PASS); 9170 } 9171 9172 /* 9173 * If we end up changing IP addresses (e.g. binat) the stack may get 9174 * confused and fail to send the icmp6 packet too big error. Just send 9175 * it here, before we do any NAT. 9176 */ 9177 if (dir == PF_OUT && pflags & PFIL_FWD && IN6_LINKMTU(ifp) < pf_max_frag_size(m)) { 9178 PF_RULES_RUNLOCK(); 9179 *m0 = NULL; 9180 icmp6_error(m, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp)); 9181 return (PF_DROP); 9182 } 9183 9184 if (__predict_false(! M_WRITABLE(*m0))) { 9185 m = *m0 = m_unshare(*m0, M_NOWAIT); 9186 if (*m0 == NULL) 9187 return (PF_DROP); 9188 } 9189 9190 memset(&pd, 0, sizeof(pd)); 9191 TAILQ_INIT(&pd.sctp_multihome_jobs); 9192 if (default_actions != NULL) 9193 memcpy(&pd.act, default_actions, sizeof(pd.act)); 9194 pd.pf_mtag = pf_find_mtag(m); 9195 9196 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 9197 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 9198 9199 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 9200 pd.pf_mtag->if_idxgen); 9201 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 9202 PF_RULES_RUNLOCK(); 9203 m_freem(*m0); 9204 *m0 = NULL; 9205 return (PF_PASS); 9206 } 9207 PF_RULES_RUNLOCK(); 9208 nd6_output_ifp(ifp, ifp, m, 9209 (struct sockaddr_in6 *)&pd.pf_mtag->dst, NULL); 9210 *m0 = NULL; 9211 return (PF_PASS); 9212 } 9213 9214 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 9215 pd.act.dnpipe = pd.pf_mtag->dnpipe; 9216 pd.act.flags = pd.pf_mtag->dnflags; 9217 } 9218 9219 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 9220 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 9221 pf_dummynet_flag_remove(m, pd.pf_mtag); 9222 /* Dummynet re-injects packets after they've 9223 * completed their delay. We've already 9224 * processed them, so pass unconditionally. */ 9225 PF_RULES_RUNLOCK(); 9226 return (PF_PASS); 9227 } 9228 9229 pd.sport = pd.dport = NULL; 9230 pd.ip_sum = NULL; 9231 pd.proto_sum = NULL; 9232 pd.dir = dir; 9233 pd.sidx = (dir == PF_IN) ? 0 : 1; 9234 pd.didx = (dir == PF_IN) ? 1 : 0; 9235 pd.af = AF_INET6; 9236 pd.act.rtableid = -1; 9237 9238 if (__predict_false(m->m_len < sizeof(struct ip6_hdr)) && 9239 (m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) { 9240 DPFPRINTF(PF_DEBUG_URGENT, 9241 ("pf_test6: m_len < sizeof(struct ip6_hdr)" 9242 ", pullup failed\n")); 9243 PF_RULES_RUNLOCK(); 9244 return (PF_DROP); 9245 } 9246 h = mtod(m, struct ip6_hdr *); 9247 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 9248 9249 /* We do IP header normalization and packet reassembly here */ 9250 if (pf_normalize_ip6(m0, kif, &reason, &pd) != PF_PASS) { 9251 action = PF_DROP; 9252 goto done; 9253 } 9254 m = *m0; /* pf_normalize messes with m0 */ 9255 h = mtod(m, struct ip6_hdr *); 9256 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 9257 9258 /* 9259 * we do not support jumbogram. if we keep going, zero ip6_plen 9260 * will do something bad, so drop the packet for now. 9261 */ 9262 if (htons(h->ip6_plen) == 0) { 9263 action = PF_DROP; 9264 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 9265 goto done; 9266 } 9267 9268 pd.src = (struct pf_addr *)&h->ip6_src; 9269 pd.dst = (struct pf_addr *)&h->ip6_dst; 9270 pd.tos = IPV6_DSCP(h); 9271 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 9272 9273 pd.proto = h->ip6_nxt; 9274 do { 9275 switch (pd.proto) { 9276 case IPPROTO_FRAGMENT: 9277 action = pf_test_fragment(&r, kif, m, h, &pd, &a, 9278 &ruleset); 9279 if (action == PF_DROP) 9280 REASON_SET(&reason, PFRES_FRAG); 9281 goto done; 9282 case IPPROTO_ROUTING: { 9283 struct ip6_rthdr rthdr; 9284 9285 if (rh_cnt++) { 9286 DPFPRINTF(PF_DEBUG_MISC, 9287 ("pf: IPv6 more than one rthdr\n")); 9288 action = PF_DROP; 9289 REASON_SET(&reason, PFRES_IPOPTIONS); 9290 pd.act.log = PF_LOG_FORCE; 9291 goto done; 9292 } 9293 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 9294 &reason, pd.af)) { 9295 DPFPRINTF(PF_DEBUG_MISC, 9296 ("pf: IPv6 short rthdr\n")); 9297 action = PF_DROP; 9298 REASON_SET(&reason, PFRES_SHORT); 9299 pd.act.log = PF_LOG_FORCE; 9300 goto done; 9301 } 9302 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 9303 DPFPRINTF(PF_DEBUG_MISC, 9304 ("pf: IPv6 rthdr0\n")); 9305 action = PF_DROP; 9306 REASON_SET(&reason, PFRES_IPOPTIONS); 9307 pd.act.log = PF_LOG_FORCE; 9308 goto done; 9309 } 9310 /* FALLTHROUGH */ 9311 } 9312 case IPPROTO_AH: 9313 case IPPROTO_HOPOPTS: 9314 case IPPROTO_DSTOPTS: { 9315 /* get next header and header length */ 9316 struct ip6_ext opt6; 9317 9318 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 9319 NULL, &reason, pd.af)) { 9320 DPFPRINTF(PF_DEBUG_MISC, 9321 ("pf: IPv6 short opt\n")); 9322 action = PF_DROP; 9323 pd.act.log = PF_LOG_FORCE; 9324 goto done; 9325 } 9326 if (pd.proto == IPPROTO_AH) 9327 off += (opt6.ip6e_len + 2) * 4; 9328 else 9329 off += (opt6.ip6e_len + 1) * 8; 9330 pd.proto = opt6.ip6e_nxt; 9331 /* goto the next header */ 9332 break; 9333 } 9334 default: 9335 terminal++; 9336 break; 9337 } 9338 } while (!terminal); 9339 9340 /* if there's no routing header, use unmodified mbuf for checksumming */ 9341 if (!n) 9342 n = m; 9343 9344 switch (pd.proto) { 9345 case IPPROTO_TCP: { 9346 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 9347 &action, &reason, AF_INET6)) { 9348 if (action != PF_PASS) 9349 pd.act.log |= PF_LOG_FORCE; 9350 goto done; 9351 } 9352 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 9353 pd.sport = &pd.hdr.tcp.th_sport; 9354 pd.dport = &pd.hdr.tcp.th_dport; 9355 9356 /* Respond to SYN with a syncookie. */ 9357 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 9358 pd.dir == PF_IN && pf_synflood_check(&pd)) { 9359 pf_syncookie_send(m, off, &pd); 9360 action = PF_DROP; 9361 break; 9362 } 9363 9364 action = pf_normalize_tcp(kif, m, 0, off, h, &pd); 9365 if (action == PF_DROP) 9366 goto done; 9367 action = pf_test_state_tcp(&s, kif, m, off, h, &pd, &reason); 9368 if (action == PF_PASS) { 9369 if (V_pfsync_update_state_ptr != NULL) 9370 V_pfsync_update_state_ptr(s); 9371 r = s->rule.ptr; 9372 a = s->anchor.ptr; 9373 } else if (s == NULL) { 9374 /* Validate remote SYN|ACK, re-create original SYN if 9375 * valid. */ 9376 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 9377 TH_ACK && pf_syncookie_validate(&pd) && 9378 pd.dir == PF_IN) { 9379 struct mbuf *msyn; 9380 9381 msyn = pf_syncookie_recreate_syn(h->ip6_hlim, 9382 off, &pd); 9383 if (msyn == NULL) { 9384 action = PF_DROP; 9385 break; 9386 } 9387 9388 action = pf_test6(dir, pflags, ifp, &msyn, inp, 9389 &pd.act); 9390 m_freem(msyn); 9391 if (action != PF_PASS) 9392 break; 9393 9394 action = pf_test_state_tcp(&s, kif, m, off, h, 9395 &pd, &reason); 9396 if (action != PF_PASS || s == NULL) { 9397 action = PF_DROP; 9398 break; 9399 } 9400 9401 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 9402 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 9403 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 9404 9405 action = pf_synproxy(&pd, &s, &reason); 9406 break; 9407 } else { 9408 action = pf_test_rule(&r, &s, kif, m, off, &pd, 9409 &a, &ruleset, inp); 9410 } 9411 } 9412 break; 9413 } 9414 9415 case IPPROTO_UDP: { 9416 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 9417 &action, &reason, AF_INET6)) { 9418 if (action != PF_PASS) 9419 pd.act.log |= PF_LOG_FORCE; 9420 goto done; 9421 } 9422 pd.sport = &pd.hdr.udp.uh_sport; 9423 pd.dport = &pd.hdr.udp.uh_dport; 9424 if (pd.hdr.udp.uh_dport == 0 || 9425 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 9426 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 9427 action = PF_DROP; 9428 REASON_SET(&reason, PFRES_SHORT); 9429 goto done; 9430 } 9431 action = pf_test_state_udp(&s, kif, m, off, h, &pd); 9432 if (action == PF_PASS) { 9433 if (V_pfsync_update_state_ptr != NULL) 9434 V_pfsync_update_state_ptr(s); 9435 r = s->rule.ptr; 9436 a = s->anchor.ptr; 9437 } else if (s == NULL) 9438 action = pf_test_rule(&r, &s, kif, m, off, &pd, 9439 &a, &ruleset, inp); 9440 break; 9441 } 9442 9443 case IPPROTO_SCTP: { 9444 if (!pf_pull_hdr(m, off, &pd.hdr.sctp, sizeof(pd.hdr.sctp), 9445 &action, &reason, AF_INET6)) { 9446 if (action != PF_PASS) 9447 pd.act.log |= PF_LOG_FORCE; 9448 goto done; 9449 } 9450 pd.sport = &pd.hdr.sctp.src_port; 9451 pd.dport = &pd.hdr.sctp.dest_port; 9452 if (pd.hdr.sctp.src_port == 0 || pd.hdr.sctp.dest_port == 0) { 9453 action = PF_DROP; 9454 REASON_SET(&reason, PFRES_SHORT); 9455 goto done; 9456 } 9457 action = pf_normalize_sctp(dir, kif, m, 0, off, h, &pd); 9458 if (action == PF_DROP) 9459 goto done; 9460 action = pf_test_state_sctp(&s, kif, m, off, h, &pd, 9461 &reason); 9462 if (action == PF_PASS) { 9463 if (V_pfsync_update_state_ptr != NULL) 9464 V_pfsync_update_state_ptr(s); 9465 r = s->rule.ptr; 9466 a = s->anchor.ptr; 9467 } else if (s == NULL) { 9468 action = pf_test_rule(&r, &s, kif, m, off, 9469 &pd, &a, &ruleset, inp); 9470 } 9471 break; 9472 } 9473 9474 case IPPROTO_ICMP: { 9475 action = PF_DROP; 9476 DPFPRINTF(PF_DEBUG_MISC, 9477 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 9478 goto done; 9479 } 9480 9481 case IPPROTO_ICMPV6: { 9482 if (!pf_pull_hdr(m, off, &pd.hdr.icmp6, sizeof(pd.hdr.icmp6), 9483 &action, &reason, AF_INET6)) { 9484 if (action != PF_PASS) 9485 pd.act.log |= PF_LOG_FORCE; 9486 goto done; 9487 } 9488 action = pf_test_state_icmp(&s, kif, m, off, h, &pd, &reason); 9489 if (action == PF_PASS) { 9490 if (V_pfsync_update_state_ptr != NULL) 9491 V_pfsync_update_state_ptr(s); 9492 r = s->rule.ptr; 9493 a = s->anchor.ptr; 9494 } else if (s == NULL) 9495 action = pf_test_rule(&r, &s, kif, m, off, &pd, 9496 &a, &ruleset, inp); 9497 break; 9498 } 9499 9500 default: 9501 action = pf_test_state_other(&s, kif, m, &pd); 9502 if (action == PF_PASS) { 9503 if (V_pfsync_update_state_ptr != NULL) 9504 V_pfsync_update_state_ptr(s); 9505 r = s->rule.ptr; 9506 a = s->anchor.ptr; 9507 } else if (s == NULL) 9508 action = pf_test_rule(&r, &s, kif, m, off, &pd, 9509 &a, &ruleset, inp); 9510 break; 9511 } 9512 9513 done: 9514 PF_RULES_RUNLOCK(); 9515 if (n != m) { 9516 m_freem(n); 9517 n = NULL; 9518 } 9519 9520 /* handle dangerous IPv6 extension headers. */ 9521 if (action == PF_PASS && rh_cnt && 9522 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 9523 action = PF_DROP; 9524 REASON_SET(&reason, PFRES_IPOPTIONS); 9525 pd.act.log = r->log; 9526 DPFPRINTF(PF_DEBUG_MISC, 9527 ("pf: dropping packet with dangerous v6 headers\n")); 9528 } 9529 9530 if (s) { 9531 uint8_t log = pd.act.log; 9532 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 9533 pd.act.log |= log; 9534 tag = s->tag; 9535 rt = s->rt; 9536 } else { 9537 tag = r->tag; 9538 rt = r->rt; 9539 } 9540 9541 if (tag > 0 && pf_tag_packet(m, &pd, tag)) { 9542 action = PF_DROP; 9543 REASON_SET(&reason, PFRES_MEMORY); 9544 } 9545 9546 pf_scrub_ip6(&m, &pd); 9547 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 9548 pf_normalize_mss(m, off, &pd); 9549 9550 if (pd.act.rtableid >= 0) 9551 M_SETFIB(m, pd.act.rtableid); 9552 9553 if (pd.act.flags & PFSTATE_SETPRIO) { 9554 if (pd.tos & IPTOS_LOWDELAY) 9555 use_2nd_queue = 1; 9556 if (vlan_set_pcp(m, pd.act.set_prio[use_2nd_queue])) { 9557 action = PF_DROP; 9558 REASON_SET(&reason, PFRES_MEMORY); 9559 pd.act.log = PF_LOG_FORCE; 9560 DPFPRINTF(PF_DEBUG_MISC, 9561 ("pf: failed to allocate 802.1q mtag\n")); 9562 } 9563 } 9564 9565 #ifdef ALTQ 9566 if (action == PF_PASS && pd.act.qid) { 9567 if (pd.pf_mtag == NULL && 9568 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 9569 action = PF_DROP; 9570 REASON_SET(&reason, PFRES_MEMORY); 9571 } else { 9572 if (s != NULL) 9573 pd.pf_mtag->qid_hash = pf_state_hash(s); 9574 if (pd.tos & IPTOS_LOWDELAY) 9575 pd.pf_mtag->qid = pd.act.pqid; 9576 else 9577 pd.pf_mtag->qid = pd.act.qid; 9578 /* Add hints for ecn. */ 9579 pd.pf_mtag->hdr = h; 9580 } 9581 } 9582 #endif /* ALTQ */ 9583 9584 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 9585 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 9586 (s->nat_rule.ptr->action == PF_RDR || 9587 s->nat_rule.ptr->action == PF_BINAT) && 9588 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 9589 m->m_flags |= M_SKIP_FIREWALL; 9590 9591 /* XXX: Anybody working on it?! */ 9592 if (r->divert.port) 9593 printf("pf: divert(9) is not supported for IPv6\n"); 9594 9595 if (pd.act.log) { 9596 struct pf_krule *lr; 9597 struct pf_krule_item *ri; 9598 9599 if (s != NULL && s->nat_rule.ptr != NULL && 9600 s->nat_rule.ptr->log & PF_LOG_ALL) 9601 lr = s->nat_rule.ptr; 9602 else 9603 lr = r; 9604 9605 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 9606 PFLOG_PACKET(kif, m, AF_INET6, action, reason, lr, a, ruleset, 9607 &pd, (s == NULL)); 9608 if (s) { 9609 SLIST_FOREACH(ri, &s->match_rules, entry) 9610 if (ri->r->log & PF_LOG_ALL) 9611 PFLOG_PACKET(kif, m, AF_INET6, action, reason, 9612 ri->r, a, ruleset, &pd, 0); 9613 } 9614 } 9615 9616 pf_counter_u64_critical_enter(); 9617 pf_counter_u64_add_protected(&kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], 9618 pd.tot_len); 9619 pf_counter_u64_add_protected(&kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 9620 1); 9621 9622 if (action == PF_PASS || r->action == PF_DROP) { 9623 dirndx = (dir == PF_OUT); 9624 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 9625 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 9626 if (a != NULL) { 9627 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 9628 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 9629 } 9630 if (s != NULL) { 9631 if (s->nat_rule.ptr != NULL) { 9632 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 9633 1); 9634 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 9635 pd.tot_len); 9636 } 9637 if (s->src_node != NULL) { 9638 counter_u64_add(s->src_node->packets[dirndx], 9639 1); 9640 counter_u64_add(s->src_node->bytes[dirndx], 9641 pd.tot_len); 9642 } 9643 if (s->nat_src_node != NULL) { 9644 counter_u64_add(s->nat_src_node->packets[dirndx], 9645 1); 9646 counter_u64_add(s->nat_src_node->bytes[dirndx], 9647 pd.tot_len); 9648 } 9649 dirndx = (dir == s->direction) ? 0 : 1; 9650 s->packets[dirndx]++; 9651 s->bytes[dirndx] += pd.tot_len; 9652 } 9653 tr = r; 9654 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 9655 if (nr != NULL && r == &V_pf_default_rule) 9656 tr = nr; 9657 if (tr->src.addr.type == PF_ADDR_TABLE) 9658 pfr_update_stats(tr->src.addr.p.tbl, 9659 (s == NULL) ? pd.src : 9660 &s->key[(s->direction == PF_IN)]->addr[0], 9661 pd.af, pd.tot_len, dir == PF_OUT, 9662 r->action == PF_PASS, tr->src.neg); 9663 if (tr->dst.addr.type == PF_ADDR_TABLE) 9664 pfr_update_stats(tr->dst.addr.p.tbl, 9665 (s == NULL) ? pd.dst : 9666 &s->key[(s->direction == PF_IN)]->addr[1], 9667 pd.af, pd.tot_len, dir == PF_OUT, 9668 r->action == PF_PASS, tr->dst.neg); 9669 } 9670 pf_counter_u64_critical_exit(); 9671 9672 switch (action) { 9673 case PF_SYNPROXY_DROP: 9674 m_freem(*m0); 9675 case PF_DEFER: 9676 *m0 = NULL; 9677 action = PF_PASS; 9678 break; 9679 case PF_DROP: 9680 m_freem(*m0); 9681 *m0 = NULL; 9682 break; 9683 default: 9684 /* pf_route6() returns unlocked. */ 9685 if (rt) { 9686 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp); 9687 goto out; 9688 } 9689 if (pf_dummynet(&pd, s, r, m0) != 0) { 9690 action = PF_DROP; 9691 REASON_SET(&reason, PFRES_MEMORY); 9692 } 9693 break; 9694 } 9695 9696 if (s && action != PF_DROP) { 9697 if (!s->if_index_in && dir == PF_IN) 9698 s->if_index_in = ifp->if_index; 9699 else if (!s->if_index_out && dir == PF_OUT) 9700 s->if_index_out = ifp->if_index; 9701 } 9702 9703 if (s) 9704 PF_STATE_UNLOCK(s); 9705 9706 /* If reassembled packet passed, create new fragments. */ 9707 if (action == PF_PASS && *m0 && dir == PF_OUT && 9708 (mtag = m_tag_find(m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL) 9709 action = pf_refragment6(ifp, m0, mtag, pflags & PFIL_FWD); 9710 9711 out: 9712 SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); 9713 9714 pf_sctp_multihome_delayed(&pd, off, kif, s, action); 9715 9716 return (action); 9717 } 9718 #endif /* INET6 */ 9719