1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 #include "opt_bpf.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_pf.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/gsb_crc32.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/sdt.h> 61 #include <sys/socket.h> 62 #include <sys/sysctl.h> 63 #include <sys/taskqueue.h> 64 #include <sys/ucred.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_private.h> 69 #include <net/if_types.h> 70 #include <net/if_vlan_var.h> 71 #include <net/route.h> 72 #include <net/route/nhop.h> 73 #include <net/vnet.h> 74 75 #include <net/pfil.h> 76 #include <net/pfvar.h> 77 #include <net/if_pflog.h> 78 #include <net/if_pfsync.h> 79 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_var.h> 82 #include <netinet/in_fib.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_fw.h> 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp.h> 89 #include <netinet/tcp_fsm.h> 90 #include <netinet/tcp_seq.h> 91 #include <netinet/tcp_timer.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet/udp.h> 94 #include <netinet/udp_var.h> 95 96 /* dummynet */ 97 #include <netinet/ip_dummynet.h> 98 #include <netinet/ip_fw.h> 99 #include <netpfil/ipfw/dn_heap.h> 100 #include <netpfil/ipfw/ip_fw_private.h> 101 #include <netpfil/ipfw/ip_dn_private.h> 102 103 #ifdef INET6 104 #include <netinet/ip6.h> 105 #include <netinet/icmp6.h> 106 #include <netinet6/nd6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet6/in6_pcb.h> 109 #include <netinet6/in6_fib.h> 110 #include <netinet6/scope6_var.h> 111 #endif /* INET6 */ 112 113 #include <netinet/sctp_header.h> 114 #include <netinet/sctp_crc32.h> 115 116 #include <machine/in_cksum.h> 117 #include <security/mac/mac_framework.h> 118 119 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 120 121 SDT_PROVIDER_DEFINE(pf); 122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 123 "struct pf_kstate *"); 124 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 125 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 126 "struct pf_kstate *"); 127 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *", 128 "struct pfi_kkif *"); 129 SDT_PROBE_DEFINE4(pf, ip, route_to, entry, "struct mbuf *", 130 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *"); 131 SDT_PROBE_DEFINE1(pf, ip, route_to, drop, "int"); 132 SDT_PROBE_DEFINE2(pf, ip, route_to, output, "struct ifnet *", "int"); 133 SDT_PROBE_DEFINE4(pf, ip6, route_to, entry, "struct mbuf *", 134 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *"); 135 SDT_PROBE_DEFINE1(pf, ip6, route_to, drop, "int"); 136 SDT_PROBE_DEFINE2(pf, ip6, route_to, output, "struct ifnet *", "int"); 137 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *", 138 "struct pf_krule *", "struct mbuf *", "int"); 139 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t", 140 "struct pf_sctp_source *"); 141 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t", 142 "struct pf_kstate *", "struct pf_sctp_source *"); 143 144 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 145 "struct mbuf *"); 146 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 147 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 148 "int", "struct pf_keth_rule *", "char *"); 149 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 150 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 151 "int", "struct pf_keth_rule *"); 152 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t"); 153 154 /* 155 * Global variables 156 */ 157 158 /* state tables */ 159 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 160 VNET_DEFINE(struct pf_kpalist, pf_pabuf[2]); 161 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 162 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 163 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 164 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 165 VNET_DEFINE(struct pf_kstatus, pf_status); 166 167 VNET_DEFINE(u_int32_t, ticket_altqs_active); 168 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 169 VNET_DEFINE(int, altqs_inactive_open); 170 VNET_DEFINE(u_int32_t, ticket_pabuf); 171 172 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 173 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 174 VNET_DEFINE(u_char, pf_tcp_secret[16]); 175 #define V_pf_tcp_secret VNET(pf_tcp_secret) 176 VNET_DEFINE(int, pf_tcp_secret_init); 177 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 178 VNET_DEFINE(int, pf_tcp_iss_off); 179 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 180 VNET_DECLARE(int, pf_vnet_active); 181 #define V_pf_vnet_active VNET(pf_vnet_active) 182 183 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 184 #define V_pf_purge_idx VNET(pf_purge_idx) 185 186 #ifdef PF_WANT_32_TO_64_COUNTER 187 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 188 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 189 190 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 191 VNET_DEFINE(size_t, pf_allrulecount); 192 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 193 #endif 194 195 struct pf_sctp_endpoint; 196 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint); 197 struct pf_sctp_source { 198 sa_family_t af; 199 struct pf_addr addr; 200 TAILQ_ENTRY(pf_sctp_source) entry; 201 }; 202 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source); 203 struct pf_sctp_endpoint 204 { 205 uint32_t v_tag; 206 struct pf_sctp_sources sources; 207 RB_ENTRY(pf_sctp_endpoint) entry; 208 }; 209 static int 210 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b) 211 { 212 return (a->v_tag - b->v_tag); 213 } 214 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 215 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 216 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints); 217 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints) 218 static struct mtx_padalign pf_sctp_endpoints_mtx; 219 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF); 220 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx) 221 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx) 222 223 /* 224 * Queue for pf_intr() sends. 225 */ 226 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 227 struct pf_send_entry { 228 STAILQ_ENTRY(pf_send_entry) pfse_next; 229 struct mbuf *pfse_m; 230 enum { 231 PFSE_IP, 232 PFSE_IP6, 233 PFSE_ICMP, 234 PFSE_ICMP6, 235 } pfse_type; 236 struct { 237 int type; 238 int code; 239 int mtu; 240 } icmpopts; 241 }; 242 243 STAILQ_HEAD(pf_send_head, pf_send_entry); 244 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 245 #define V_pf_sendqueue VNET(pf_sendqueue) 246 247 static struct mtx_padalign pf_sendqueue_mtx; 248 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 249 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 250 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 251 252 /* 253 * Queue for pf_overload_task() tasks. 254 */ 255 struct pf_overload_entry { 256 SLIST_ENTRY(pf_overload_entry) next; 257 struct pf_addr addr; 258 sa_family_t af; 259 uint8_t dir; 260 struct pf_krule *rule; 261 }; 262 263 SLIST_HEAD(pf_overload_head, pf_overload_entry); 264 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 265 #define V_pf_overloadqueue VNET(pf_overloadqueue) 266 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 267 #define V_pf_overloadtask VNET(pf_overloadtask) 268 269 static struct mtx_padalign pf_overloadqueue_mtx; 270 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 271 "pf overload/flush queue", MTX_DEF); 272 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 273 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 274 275 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 276 struct mtx_padalign pf_unlnkdrules_mtx; 277 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 278 MTX_DEF); 279 280 struct sx pf_config_lock; 281 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 282 283 struct mtx_padalign pf_table_stats_lock; 284 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 285 MTX_DEF); 286 287 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 288 #define V_pf_sources_z VNET(pf_sources_z) 289 uma_zone_t pf_mtag_z; 290 VNET_DEFINE(uma_zone_t, pf_state_z); 291 VNET_DEFINE(uma_zone_t, pf_state_key_z); 292 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z); 293 294 VNET_DEFINE(struct unrhdr64, pf_stateid); 295 296 static void pf_src_tree_remove_state(struct pf_kstate *); 297 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 298 u_int32_t); 299 static void pf_add_threshold(struct pf_threshold *); 300 static int pf_check_threshold(struct pf_threshold *); 301 302 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 303 u_int16_t *, u_int16_t *, struct pf_addr *, 304 u_int16_t, u_int8_t, sa_family_t, sa_family_t); 305 static int pf_modulate_sack(struct pf_pdesc *, 306 struct tcphdr *, struct pf_state_peer *); 307 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *, 308 int *, u_int16_t *, u_int16_t *); 309 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 310 struct pf_addr *, struct pf_addr *, u_int16_t, 311 u_int16_t *, u_int16_t *, u_int16_t *, 312 u_int16_t *, u_int8_t, sa_family_t); 313 int pf_change_icmp_af(struct mbuf *, int, 314 struct pf_pdesc *, struct pf_pdesc *, 315 struct pf_addr *, struct pf_addr *, sa_family_t, 316 sa_family_t); 317 int pf_translate_icmp_af(int, void *); 318 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 319 sa_family_t, struct pf_krule *, int); 320 static void pf_detach_state(struct pf_kstate *); 321 static int pf_state_key_attach(struct pf_state_key *, 322 struct pf_state_key *, struct pf_kstate *); 323 static void pf_state_key_detach(struct pf_kstate *, int); 324 static int pf_state_key_ctor(void *, int, void *, int); 325 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 326 static __inline void pf_dummynet_flag_remove(struct mbuf *m, 327 struct pf_mtag *pf_mtag); 328 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *, 329 struct pf_krule *, struct mbuf **); 330 static int pf_dummynet_route(struct pf_pdesc *, 331 struct pf_kstate *, struct pf_krule *, 332 struct ifnet *, struct sockaddr *, struct mbuf **); 333 static int pf_test_eth_rule(int, struct pfi_kkif *, 334 struct mbuf **); 335 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 336 struct pf_pdesc *, struct pf_krule **, 337 struct pf_kruleset **, struct inpcb *); 338 static int pf_create_state(struct pf_krule *, struct pf_krule *, 339 struct pf_krule *, struct pf_pdesc *, 340 struct pf_state_key *, struct pf_state_key *, int *, 341 struct pf_kstate **, int, u_int16_t, u_int16_t, 342 struct pf_krule_slist *, struct pf_udp_mapping *); 343 static int pf_state_key_addr_setup(struct pf_pdesc *, 344 struct pf_state_key_cmp *, int); 345 static int pf_tcp_track_full(struct pf_kstate **, 346 struct pf_pdesc *, u_short *, int *); 347 static int pf_tcp_track_sloppy(struct pf_kstate **, 348 struct pf_pdesc *, u_short *); 349 static int pf_test_state_tcp(struct pf_kstate **, 350 struct pf_pdesc *, u_short *); 351 static int pf_test_state_udp(struct pf_kstate **, 352 struct pf_pdesc *); 353 int pf_icmp_state_lookup(struct pf_state_key_cmp *, 354 struct pf_pdesc *, struct pf_kstate **, 355 int, u_int16_t, u_int16_t, 356 int, int *, int, int); 357 static int pf_test_state_icmp(struct pf_kstate **, 358 struct pf_pdesc *, u_short *); 359 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *); 360 static void pf_sctp_multihome_delayed(struct pf_pdesc *, 361 struct pfi_kkif *, struct pf_kstate *, int); 362 static int pf_test_state_sctp(struct pf_kstate **, 363 struct pf_pdesc *, u_short *); 364 static int pf_test_state_other(struct pf_kstate **, 365 struct pf_pdesc *); 366 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 367 int, u_int16_t); 368 static int pf_check_proto_cksum(struct mbuf *, int, int, 369 u_int8_t, sa_family_t); 370 static int pf_walk_option6(struct mbuf *, int, int, uint32_t *, 371 u_short *); 372 static void pf_print_state_parts(struct pf_kstate *, 373 struct pf_state_key *, struct pf_state_key *); 374 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 375 bool, u_int8_t); 376 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 377 const struct pf_state_key_cmp *, u_int); 378 static bool pf_src_connlimit(struct pf_kstate *); 379 static int pf_match_rcvif(struct mbuf *, struct pf_krule *); 380 static void pf_counters_inc(int, struct pf_pdesc *, 381 struct pf_kstate *, struct pf_krule *, 382 struct pf_krule *); 383 static void pf_overload_task(void *v, int pending); 384 static u_short pf_insert_src_node(struct pf_ksrc_node **, 385 struct pf_srchash **, struct pf_krule *, 386 struct pf_addr *, sa_family_t, struct pf_addr *, 387 struct pfi_kkif *); 388 static u_int pf_purge_expired_states(u_int, int); 389 static void pf_purge_unlinked_rules(void); 390 static int pf_mtag_uminit(void *, int, int); 391 static void pf_mtag_free(struct m_tag *); 392 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 393 int, struct pf_state_key *); 394 #ifdef INET 395 static void pf_route(struct mbuf **, struct pf_krule *, 396 struct ifnet *, struct pf_kstate *, 397 struct pf_pdesc *, struct inpcb *); 398 #endif /* INET */ 399 #ifdef INET6 400 static void pf_change_a6(struct pf_addr *, u_int16_t *, 401 struct pf_addr *, u_int8_t); 402 static void pf_route6(struct mbuf **, struct pf_krule *, 403 struct ifnet *, struct pf_kstate *, 404 struct pf_pdesc *, struct inpcb *); 405 #endif /* INET6 */ 406 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 407 408 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 409 410 extern int pf_end_threads; 411 extern struct proc *pf_purge_proc; 412 413 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 414 415 enum { PF_ICMP_MULTI_NONE, PF_ICMP_MULTI_LINK }; 416 417 #define PACKET_UNDO_NAT(_m, _pd, _off, _s) \ 418 do { \ 419 struct pf_state_key *nk; \ 420 if ((pd->dir) == PF_OUT) \ 421 nk = (_s)->key[PF_SK_STACK]; \ 422 else \ 423 nk = (_s)->key[PF_SK_WIRE]; \ 424 pf_packet_rework_nat(_m, _pd, _off, nk); \ 425 } while (0) 426 427 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 428 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED) 429 430 #define STATE_LOOKUP(k, s, pd) \ 431 do { \ 432 (s) = pf_find_state((pd->kif), (k), (pd->dir)); \ 433 SDT_PROBE5(pf, ip, state, lookup, pd->kif, k, (pd->dir), pd, (s)); \ 434 if ((s) == NULL) \ 435 return (PF_DROP); \ 436 if (PACKET_LOOPED(pd)) \ 437 return (PF_PASS); \ 438 } while (0) 439 440 static struct pfi_kkif * 441 BOUND_IFACE(struct pf_kstate *st, struct pfi_kkif *k) 442 { 443 SDT_PROBE2(pf, ip, , bound_iface, st, k); 444 445 /* Floating unless otherwise specified. */ 446 if (! (st->rule->rule_flag & PFRULE_IFBOUND)) 447 return (V_pfi_all); 448 449 /* 450 * Initially set to all, because we don't know what interface we'll be 451 * sending this out when we create the state. 452 */ 453 if (st->rule->rt == PF_REPLYTO) 454 return (V_pfi_all); 455 456 /* Don't overrule the interface for states created on incoming packets. */ 457 if (st->direction == PF_IN) 458 return (k); 459 460 /* No route-to, so don't overrule. */ 461 if (st->act.rt != PF_ROUTETO) 462 return (k); 463 464 /* Bind to the route-to interface. */ 465 return (st->act.rt_kif); 466 } 467 468 #define STATE_INC_COUNTERS(s) \ 469 do { \ 470 struct pf_krule_item *mrm; \ 471 counter_u64_add(s->rule->states_cur, 1); \ 472 counter_u64_add(s->rule->states_tot, 1); \ 473 if (s->anchor != NULL) { \ 474 counter_u64_add(s->anchor->states_cur, 1); \ 475 counter_u64_add(s->anchor->states_tot, 1); \ 476 } \ 477 if (s->nat_rule != NULL) { \ 478 counter_u64_add(s->nat_rule->states_cur, 1);\ 479 counter_u64_add(s->nat_rule->states_tot, 1);\ 480 } \ 481 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 482 counter_u64_add(mrm->r->states_cur, 1); \ 483 counter_u64_add(mrm->r->states_tot, 1); \ 484 } \ 485 } while (0) 486 487 #define STATE_DEC_COUNTERS(s) \ 488 do { \ 489 struct pf_krule_item *mrm; \ 490 if (s->nat_rule != NULL) \ 491 counter_u64_add(s->nat_rule->states_cur, -1);\ 492 if (s->anchor != NULL) \ 493 counter_u64_add(s->anchor->states_cur, -1); \ 494 counter_u64_add(s->rule->states_cur, -1); \ 495 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 496 counter_u64_add(mrm->r->states_cur, -1); \ 497 } while (0) 498 499 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 500 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 501 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 502 VNET_DEFINE(struct pf_idhash *, pf_idhash); 503 VNET_DEFINE(struct pf_srchash *, pf_srchash); 504 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash); 505 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping); 506 507 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 508 "pf(4)"); 509 510 VNET_DEFINE(u_long, pf_hashmask); 511 VNET_DEFINE(u_long, pf_srchashmask); 512 VNET_DEFINE(u_long, pf_udpendpointhashmask); 513 VNET_DEFINE_STATIC(u_long, pf_hashsize); 514 #define V_pf_hashsize VNET(pf_hashsize) 515 VNET_DEFINE_STATIC(u_long, pf_srchashsize); 516 #define V_pf_srchashsize VNET(pf_srchashsize) 517 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize); 518 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize) 519 u_long pf_ioctl_maxcount = 65535; 520 521 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 522 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 523 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 524 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 525 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 526 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable"); 527 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 528 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 529 530 VNET_DEFINE(void *, pf_swi_cookie); 531 VNET_DEFINE(struct intr_event *, pf_swi_ie); 532 533 VNET_DEFINE(uint32_t, pf_hashseed); 534 #define V_pf_hashseed VNET(pf_hashseed) 535 536 static void 537 pf_sctp_checksum(struct mbuf *m, int off) 538 { 539 uint32_t sum = 0; 540 541 /* Zero out the checksum, to enable recalculation. */ 542 m_copyback(m, off + offsetof(struct sctphdr, checksum), 543 sizeof(sum), (caddr_t)&sum); 544 545 sum = sctp_calculate_cksum(m, off); 546 547 m_copyback(m, off + offsetof(struct sctphdr, checksum), 548 sizeof(sum), (caddr_t)&sum); 549 } 550 551 int 552 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 553 { 554 555 switch (af) { 556 #ifdef INET 557 case AF_INET: 558 if (a->addr32[0] > b->addr32[0]) 559 return (1); 560 if (a->addr32[0] < b->addr32[0]) 561 return (-1); 562 break; 563 #endif /* INET */ 564 #ifdef INET6 565 case AF_INET6: 566 if (a->addr32[3] > b->addr32[3]) 567 return (1); 568 if (a->addr32[3] < b->addr32[3]) 569 return (-1); 570 if (a->addr32[2] > b->addr32[2]) 571 return (1); 572 if (a->addr32[2] < b->addr32[2]) 573 return (-1); 574 if (a->addr32[1] > b->addr32[1]) 575 return (1); 576 if (a->addr32[1] < b->addr32[1]) 577 return (-1); 578 if (a->addr32[0] > b->addr32[0]) 579 return (1); 580 if (a->addr32[0] < b->addr32[0]) 581 return (-1); 582 break; 583 #endif /* INET6 */ 584 } 585 return (0); 586 } 587 588 static bool 589 pf_is_loopback(sa_family_t af, struct pf_addr *addr) 590 { 591 switch (af) { 592 #ifdef INET 593 case AF_INET: 594 return IN_LOOPBACK(ntohl(addr->v4.s_addr)); 595 #endif 596 case AF_INET6: 597 return IN6_IS_ADDR_LOOPBACK(&addr->v6); 598 default: 599 panic("Unknown af %d", af); 600 } 601 } 602 603 static void 604 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 605 struct pf_state_key *nk) 606 { 607 608 switch (pd->proto) { 609 case IPPROTO_TCP: { 610 struct tcphdr *th = &pd->hdr.tcp; 611 612 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 613 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 614 &th->th_sum, &nk->addr[pd->sidx], 615 nk->port[pd->sidx], 0, pd->af, pd->naf); 616 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 617 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 618 &th->th_sum, &nk->addr[pd->didx], 619 nk->port[pd->didx], 0, pd->af, pd->naf); 620 m_copyback(m, off, sizeof(*th), (caddr_t)th); 621 break; 622 } 623 case IPPROTO_UDP: { 624 struct udphdr *uh = &pd->hdr.udp; 625 626 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 627 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 628 &uh->uh_sum, &nk->addr[pd->sidx], 629 nk->port[pd->sidx], 1, pd->af, pd->naf); 630 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 631 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 632 &uh->uh_sum, &nk->addr[pd->didx], 633 nk->port[pd->didx], 1, pd->af, pd->naf); 634 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 635 break; 636 } 637 case IPPROTO_SCTP: { 638 struct sctphdr *sh = &pd->hdr.sctp; 639 uint16_t checksum = 0; 640 641 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 642 pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum, 643 &checksum, &nk->addr[pd->sidx], 644 nk->port[pd->sidx], 1, pd->af, pd->naf); 645 } 646 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 647 pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum, 648 &checksum, &nk->addr[pd->didx], 649 nk->port[pd->didx], 1, pd->af, pd->naf); 650 } 651 652 break; 653 } 654 case IPPROTO_ICMP: { 655 struct icmp *ih = &pd->hdr.icmp; 656 657 if (nk->port[pd->sidx] != ih->icmp_id) { 658 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 659 ih->icmp_cksum, ih->icmp_id, 660 nk->port[pd->sidx], 0); 661 ih->icmp_id = nk->port[pd->sidx]; 662 pd->sport = &ih->icmp_id; 663 664 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 665 } 666 /* FALLTHROUGH */ 667 } 668 default: 669 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 670 switch (pd->af) { 671 case AF_INET: 672 pf_change_a(&pd->src->v4.s_addr, 673 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 674 0); 675 break; 676 case AF_INET6: 677 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 678 break; 679 } 680 } 681 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 682 switch (pd->af) { 683 case AF_INET: 684 pf_change_a(&pd->dst->v4.s_addr, 685 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 686 0); 687 break; 688 case AF_INET6: 689 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 690 break; 691 } 692 } 693 break; 694 } 695 } 696 697 static __inline uint32_t 698 pf_hashkey(const struct pf_state_key *sk) 699 { 700 uint32_t h; 701 702 h = murmur3_32_hash32((const uint32_t *)sk, 703 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 704 V_pf_hashseed); 705 706 return (h & V_pf_hashmask); 707 } 708 709 __inline uint32_t 710 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 711 { 712 uint32_t h; 713 714 switch (af) { 715 case AF_INET: 716 h = murmur3_32_hash32((uint32_t *)&addr->v4, 717 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 718 break; 719 case AF_INET6: 720 h = murmur3_32_hash32((uint32_t *)&addr->v6, 721 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 722 break; 723 } 724 725 return (h & V_pf_srchashmask); 726 } 727 728 static inline uint32_t 729 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint) 730 { 731 uint32_t h; 732 733 h = murmur3_32_hash32((uint32_t *)endpoint, 734 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t), 735 V_pf_hashseed); 736 return (h & V_pf_udpendpointhashmask); 737 } 738 739 #ifdef ALTQ 740 static int 741 pf_state_hash(struct pf_kstate *s) 742 { 743 u_int32_t hv = (intptr_t)s / sizeof(*s); 744 745 hv ^= crc32(&s->src, sizeof(s->src)); 746 hv ^= crc32(&s->dst, sizeof(s->dst)); 747 if (hv == 0) 748 hv = 1; 749 return (hv); 750 } 751 #endif 752 753 static __inline void 754 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 755 { 756 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 757 s->dst.state = newstate; 758 if (which == PF_PEER_DST) 759 return; 760 if (s->src.state == newstate) 761 return; 762 if (s->creatorid == V_pf_status.hostid && 763 s->key[PF_SK_STACK] != NULL && 764 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 765 !(TCPS_HAVEESTABLISHED(s->src.state) || 766 s->src.state == TCPS_CLOSED) && 767 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 768 atomic_add_32(&V_pf_status.states_halfopen, -1); 769 770 s->src.state = newstate; 771 } 772 773 #ifdef INET6 774 void 775 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 776 { 777 switch (af) { 778 #ifdef INET 779 case AF_INET: 780 memcpy(&dst->v4, &src->v4, sizeof(dst->v4)); 781 break; 782 #endif /* INET */ 783 case AF_INET6: 784 memcpy(&dst->v6, &src->v6, sizeof(dst->v6)); 785 break; 786 } 787 } 788 #endif /* INET6 */ 789 790 static void 791 pf_init_threshold(struct pf_threshold *threshold, 792 u_int32_t limit, u_int32_t seconds) 793 { 794 threshold->limit = limit * PF_THRESHOLD_MULT; 795 threshold->seconds = seconds; 796 threshold->count = 0; 797 threshold->last = time_uptime; 798 } 799 800 static void 801 pf_add_threshold(struct pf_threshold *threshold) 802 { 803 u_int32_t t = time_uptime, diff = t - threshold->last; 804 805 if (diff >= threshold->seconds) 806 threshold->count = 0; 807 else 808 threshold->count -= threshold->count * diff / 809 threshold->seconds; 810 threshold->count += PF_THRESHOLD_MULT; 811 threshold->last = t; 812 } 813 814 static int 815 pf_check_threshold(struct pf_threshold *threshold) 816 { 817 return (threshold->count > threshold->limit); 818 } 819 820 static bool 821 pf_src_connlimit(struct pf_kstate *state) 822 { 823 struct pf_overload_entry *pfoe; 824 bool limited = false; 825 826 PF_STATE_LOCK_ASSERT(state); 827 PF_SRC_NODE_LOCK(state->src_node); 828 829 state->src_node->conn++; 830 state->src.tcp_est = 1; 831 pf_add_threshold(&state->src_node->conn_rate); 832 833 if (state->rule->max_src_conn && 834 state->rule->max_src_conn < 835 state->src_node->conn) { 836 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 837 limited = true; 838 } 839 840 if (state->rule->max_src_conn_rate.limit && 841 pf_check_threshold(&state->src_node->conn_rate)) { 842 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 843 limited = true; 844 } 845 846 if (!limited) 847 goto done; 848 849 /* Kill this state. */ 850 state->timeout = PFTM_PURGE; 851 pf_set_protostate(state, PF_PEER_BOTH, TCPS_CLOSED); 852 853 if (state->rule->overload_tbl == NULL) 854 goto done; 855 856 /* Schedule overloading and flushing task. */ 857 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 858 if (pfoe == NULL) 859 goto done; /* too bad :( */ 860 861 bcopy(&state->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 862 pfoe->af = state->key[PF_SK_WIRE]->af; 863 pfoe->rule = state->rule; 864 pfoe->dir = state->direction; 865 PF_OVERLOADQ_LOCK(); 866 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 867 PF_OVERLOADQ_UNLOCK(); 868 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 869 870 done: 871 PF_SRC_NODE_UNLOCK(state->src_node); 872 return (limited); 873 } 874 875 static void 876 pf_overload_task(void *v, int pending) 877 { 878 struct pf_overload_head queue; 879 struct pfr_addr p; 880 struct pf_overload_entry *pfoe, *pfoe1; 881 uint32_t killed = 0; 882 883 CURVNET_SET((struct vnet *)v); 884 885 PF_OVERLOADQ_LOCK(); 886 queue = V_pf_overloadqueue; 887 SLIST_INIT(&V_pf_overloadqueue); 888 PF_OVERLOADQ_UNLOCK(); 889 890 bzero(&p, sizeof(p)); 891 SLIST_FOREACH(pfoe, &queue, next) { 892 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 893 if (V_pf_status.debug >= PF_DEBUG_MISC) { 894 printf("%s: blocking address ", __func__); 895 pf_print_host(&pfoe->addr, 0, pfoe->af); 896 printf("\n"); 897 } 898 899 p.pfra_af = pfoe->af; 900 switch (pfoe->af) { 901 #ifdef INET 902 case AF_INET: 903 p.pfra_net = 32; 904 p.pfra_ip4addr = pfoe->addr.v4; 905 break; 906 #endif 907 #ifdef INET6 908 case AF_INET6: 909 p.pfra_net = 128; 910 p.pfra_ip6addr = pfoe->addr.v6; 911 break; 912 #endif 913 } 914 915 PF_RULES_WLOCK(); 916 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 917 PF_RULES_WUNLOCK(); 918 } 919 920 /* 921 * Remove those entries, that don't need flushing. 922 */ 923 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 924 if (pfoe->rule->flush == 0) { 925 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 926 free(pfoe, M_PFTEMP); 927 } else 928 counter_u64_add( 929 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 930 931 /* If nothing to flush, return. */ 932 if (SLIST_EMPTY(&queue)) { 933 CURVNET_RESTORE(); 934 return; 935 } 936 937 for (int i = 0; i <= V_pf_hashmask; i++) { 938 struct pf_idhash *ih = &V_pf_idhash[i]; 939 struct pf_state_key *sk; 940 struct pf_kstate *s; 941 942 PF_HASHROW_LOCK(ih); 943 LIST_FOREACH(s, &ih->states, entry) { 944 sk = s->key[PF_SK_WIRE]; 945 SLIST_FOREACH(pfoe, &queue, next) 946 if (sk->af == pfoe->af && 947 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 948 pfoe->rule == s->rule) && 949 ((pfoe->dir == PF_OUT && 950 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 951 (pfoe->dir == PF_IN && 952 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 953 s->timeout = PFTM_PURGE; 954 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 955 killed++; 956 } 957 } 958 PF_HASHROW_UNLOCK(ih); 959 } 960 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 961 free(pfoe, M_PFTEMP); 962 if (V_pf_status.debug >= PF_DEBUG_MISC) 963 printf("%s: %u states killed", __func__, killed); 964 965 CURVNET_RESTORE(); 966 } 967 968 /* 969 * On node found always returns locked. On not found its configurable. 970 */ 971 struct pf_ksrc_node * 972 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 973 struct pf_srchash **sh, bool returnlocked) 974 { 975 struct pf_ksrc_node *n; 976 977 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 978 979 *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 980 PF_HASHROW_LOCK(*sh); 981 LIST_FOREACH(n, &(*sh)->nodes, entry) 982 if (n->rule == rule && n->af == af && 983 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 984 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 985 break; 986 987 if (n == NULL && !returnlocked) 988 PF_HASHROW_UNLOCK(*sh); 989 990 return (n); 991 } 992 993 bool 994 pf_src_node_exists(struct pf_ksrc_node **sn, struct pf_srchash *sh) 995 { 996 struct pf_ksrc_node *cur; 997 998 if ((*sn) == NULL) 999 return (false); 1000 1001 KASSERT(sh != NULL, ("%s: sh is NULL", __func__)); 1002 1003 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 1004 PF_HASHROW_LOCK(sh); 1005 LIST_FOREACH(cur, &(sh->nodes), entry) { 1006 if (cur == (*sn) && 1007 cur->expire != 1) /* Ignore nodes being killed */ 1008 return (true); 1009 } 1010 PF_HASHROW_UNLOCK(sh); 1011 (*sn) = NULL; 1012 return (false); 1013 } 1014 1015 static void 1016 pf_free_src_node(struct pf_ksrc_node *sn) 1017 { 1018 1019 for (int i = 0; i < 2; i++) { 1020 counter_u64_free(sn->bytes[i]); 1021 counter_u64_free(sn->packets[i]); 1022 } 1023 uma_zfree(V_pf_sources_z, sn); 1024 } 1025 1026 static u_short 1027 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_srchash **sh, 1028 struct pf_krule *rule, struct pf_addr *src, sa_family_t af, 1029 struct pf_addr *raddr, struct pfi_kkif *rkif) 1030 { 1031 u_short reason = 0; 1032 1033 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 1034 rule->rdr.opts & PF_POOL_STICKYADDR), 1035 ("%s for non-tracking rule %p", __func__, rule)); 1036 1037 /* 1038 * Request the sh to always be locked, as we might insert a new sn. 1039 */ 1040 if (*sn == NULL) 1041 *sn = pf_find_src_node(src, rule, af, sh, true); 1042 1043 if (*sn == NULL) { 1044 PF_HASHROW_ASSERT(*sh); 1045 1046 if (rule->max_src_nodes && 1047 counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) { 1048 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); 1049 reason = PFRES_SRCLIMIT; 1050 goto done; 1051 } 1052 1053 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 1054 if ((*sn) == NULL) { 1055 reason = PFRES_MEMORY; 1056 goto done; 1057 } 1058 1059 for (int i = 0; i < 2; i++) { 1060 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 1061 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 1062 1063 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 1064 pf_free_src_node(*sn); 1065 reason = PFRES_MEMORY; 1066 goto done; 1067 } 1068 } 1069 1070 pf_init_threshold(&(*sn)->conn_rate, 1071 rule->max_src_conn_rate.limit, 1072 rule->max_src_conn_rate.seconds); 1073 1074 MPASS((*sn)->lock == NULL); 1075 (*sn)->lock = &(*sh)->lock; 1076 1077 (*sn)->af = af; 1078 (*sn)->rule = rule; 1079 PF_ACPY(&(*sn)->addr, src, af); 1080 PF_ACPY(&(*sn)->raddr, raddr, af); 1081 (*sn)->rkif = rkif; 1082 LIST_INSERT_HEAD(&(*sh)->nodes, *sn, entry); 1083 (*sn)->creation = time_uptime; 1084 (*sn)->ruletype = rule->action; 1085 if ((*sn)->rule != NULL) 1086 counter_u64_add((*sn)->rule->src_nodes, 1); 1087 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 1088 } else { 1089 if (rule->max_src_states && 1090 (*sn)->states >= rule->max_src_states) { 1091 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 1092 1); 1093 reason = PFRES_SRCLIMIT; 1094 goto done; 1095 } 1096 } 1097 done: 1098 if (reason == 0) 1099 (*sn)->states++; 1100 else 1101 (*sn) = NULL; 1102 1103 PF_HASHROW_UNLOCK(*sh); 1104 return (reason); 1105 } 1106 1107 void 1108 pf_unlink_src_node(struct pf_ksrc_node *src) 1109 { 1110 PF_SRC_NODE_LOCK_ASSERT(src); 1111 1112 LIST_REMOVE(src, entry); 1113 if (src->rule) 1114 counter_u64_add(src->rule->src_nodes, -1); 1115 } 1116 1117 u_int 1118 pf_free_src_nodes(struct pf_ksrc_node_list *head) 1119 { 1120 struct pf_ksrc_node *sn, *tmp; 1121 u_int count = 0; 1122 1123 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 1124 pf_free_src_node(sn); 1125 count++; 1126 } 1127 1128 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 1129 1130 return (count); 1131 } 1132 1133 void 1134 pf_mtag_initialize(void) 1135 { 1136 1137 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 1138 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 1139 UMA_ALIGN_PTR, 0); 1140 } 1141 1142 /* Per-vnet data storage structures initialization. */ 1143 void 1144 pf_initialize(void) 1145 { 1146 struct pf_keyhash *kh; 1147 struct pf_idhash *ih; 1148 struct pf_srchash *sh; 1149 struct pf_udpendpointhash *uh; 1150 u_int i; 1151 1152 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 1153 V_pf_hashsize = PF_HASHSIZ; 1154 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 1155 V_pf_srchashsize = PF_SRCHASHSIZ; 1156 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize)) 1157 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1158 1159 V_pf_hashseed = arc4random(); 1160 1161 /* States and state keys storage. */ 1162 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1163 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1164 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1165 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1166 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1167 1168 V_pf_state_key_z = uma_zcreate("pf state keys", 1169 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1170 UMA_ALIGN_PTR, 0); 1171 1172 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash), 1173 M_PFHASH, M_NOWAIT | M_ZERO); 1174 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash), 1175 M_PFHASH, M_NOWAIT | M_ZERO); 1176 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1177 printf("pf: Unable to allocate memory for " 1178 "state_hashsize %lu.\n", V_pf_hashsize); 1179 1180 free(V_pf_keyhash, M_PFHASH); 1181 free(V_pf_idhash, M_PFHASH); 1182 1183 V_pf_hashsize = PF_HASHSIZ; 1184 V_pf_keyhash = mallocarray(V_pf_hashsize, 1185 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1186 V_pf_idhash = mallocarray(V_pf_hashsize, 1187 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1188 } 1189 1190 V_pf_hashmask = V_pf_hashsize - 1; 1191 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 1192 i++, kh++, ih++) { 1193 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1194 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1195 } 1196 1197 /* Source nodes. */ 1198 V_pf_sources_z = uma_zcreate("pf source nodes", 1199 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1200 0); 1201 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1202 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1203 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1204 1205 V_pf_srchash = mallocarray(V_pf_srchashsize, 1206 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1207 if (V_pf_srchash == NULL) { 1208 printf("pf: Unable to allocate memory for " 1209 "source_hashsize %lu.\n", V_pf_srchashsize); 1210 1211 V_pf_srchashsize = PF_SRCHASHSIZ; 1212 V_pf_srchash = mallocarray(V_pf_srchashsize, 1213 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1214 } 1215 1216 V_pf_srchashmask = V_pf_srchashsize - 1; 1217 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 1218 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1219 1220 1221 /* UDP endpoint mappings. */ 1222 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings", 1223 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL, 1224 UMA_ALIGN_PTR, 0); 1225 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1226 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO); 1227 if (V_pf_udpendpointhash == NULL) { 1228 printf("pf: Unable to allocate memory for " 1229 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize); 1230 1231 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1232 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1233 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO); 1234 } 1235 1236 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1; 1237 for (i = 0, uh = V_pf_udpendpointhash; 1238 i <= V_pf_udpendpointhashmask; 1239 i++, uh++) { 1240 mtx_init(&uh->lock, "pf_udpendpointhash", NULL, 1241 MTX_DEF | MTX_DUPOK); 1242 } 1243 1244 /* ALTQ */ 1245 TAILQ_INIT(&V_pf_altqs[0]); 1246 TAILQ_INIT(&V_pf_altqs[1]); 1247 TAILQ_INIT(&V_pf_altqs[2]); 1248 TAILQ_INIT(&V_pf_altqs[3]); 1249 TAILQ_INIT(&V_pf_pabuf[0]); 1250 TAILQ_INIT(&V_pf_pabuf[1]); 1251 V_pf_altqs_active = &V_pf_altqs[0]; 1252 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1253 V_pf_altqs_inactive = &V_pf_altqs[2]; 1254 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1255 1256 /* Send & overload+flush queues. */ 1257 STAILQ_INIT(&V_pf_sendqueue); 1258 SLIST_INIT(&V_pf_overloadqueue); 1259 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1260 1261 /* Unlinked, but may be referenced rules. */ 1262 TAILQ_INIT(&V_pf_unlinked_rules); 1263 } 1264 1265 void 1266 pf_mtag_cleanup(void) 1267 { 1268 1269 uma_zdestroy(pf_mtag_z); 1270 } 1271 1272 void 1273 pf_cleanup(void) 1274 { 1275 struct pf_keyhash *kh; 1276 struct pf_idhash *ih; 1277 struct pf_srchash *sh; 1278 struct pf_udpendpointhash *uh; 1279 struct pf_send_entry *pfse, *next; 1280 u_int i; 1281 1282 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; 1283 i <= V_pf_hashmask; 1284 i++, kh++, ih++) { 1285 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1286 __func__)); 1287 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1288 __func__)); 1289 mtx_destroy(&kh->lock); 1290 mtx_destroy(&ih->lock); 1291 } 1292 free(V_pf_keyhash, M_PFHASH); 1293 free(V_pf_idhash, M_PFHASH); 1294 1295 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1296 KASSERT(LIST_EMPTY(&sh->nodes), 1297 ("%s: source node hash not empty", __func__)); 1298 mtx_destroy(&sh->lock); 1299 } 1300 free(V_pf_srchash, M_PFHASH); 1301 1302 for (i = 0, uh = V_pf_udpendpointhash; 1303 i <= V_pf_udpendpointhashmask; 1304 i++, uh++) { 1305 KASSERT(LIST_EMPTY(&uh->endpoints), 1306 ("%s: udp endpoint hash not empty", __func__)); 1307 mtx_destroy(&uh->lock); 1308 } 1309 free(V_pf_udpendpointhash, M_PFHASH); 1310 1311 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1312 m_freem(pfse->pfse_m); 1313 free(pfse, M_PFTEMP); 1314 } 1315 MPASS(RB_EMPTY(&V_pf_sctp_endpoints)); 1316 1317 uma_zdestroy(V_pf_sources_z); 1318 uma_zdestroy(V_pf_state_z); 1319 uma_zdestroy(V_pf_state_key_z); 1320 uma_zdestroy(V_pf_udp_mapping_z); 1321 } 1322 1323 static int 1324 pf_mtag_uminit(void *mem, int size, int how) 1325 { 1326 struct m_tag *t; 1327 1328 t = (struct m_tag *)mem; 1329 t->m_tag_cookie = MTAG_ABI_COMPAT; 1330 t->m_tag_id = PACKET_TAG_PF; 1331 t->m_tag_len = sizeof(struct pf_mtag); 1332 t->m_tag_free = pf_mtag_free; 1333 1334 return (0); 1335 } 1336 1337 static void 1338 pf_mtag_free(struct m_tag *t) 1339 { 1340 1341 uma_zfree(pf_mtag_z, t); 1342 } 1343 1344 struct pf_mtag * 1345 pf_get_mtag(struct mbuf *m) 1346 { 1347 struct m_tag *mtag; 1348 1349 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1350 return ((struct pf_mtag *)(mtag + 1)); 1351 1352 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1353 if (mtag == NULL) 1354 return (NULL); 1355 bzero(mtag + 1, sizeof(struct pf_mtag)); 1356 m_tag_prepend(m, mtag); 1357 1358 return ((struct pf_mtag *)(mtag + 1)); 1359 } 1360 1361 static int 1362 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1363 struct pf_kstate *s) 1364 { 1365 struct pf_keyhash *khs, *khw, *kh; 1366 struct pf_state_key *sk, *cur; 1367 struct pf_kstate *si, *olds = NULL; 1368 int idx; 1369 1370 NET_EPOCH_ASSERT(); 1371 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1372 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1373 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1374 1375 /* 1376 * We need to lock hash slots of both keys. To avoid deadlock 1377 * we always lock the slot with lower address first. Unlock order 1378 * isn't important. 1379 * 1380 * We also need to lock ID hash slot before dropping key 1381 * locks. On success we return with ID hash slot locked. 1382 */ 1383 1384 if (skw == sks) { 1385 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1386 PF_HASHROW_LOCK(khs); 1387 } else { 1388 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1389 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1390 if (khs == khw) { 1391 PF_HASHROW_LOCK(khs); 1392 } else if (khs < khw) { 1393 PF_HASHROW_LOCK(khs); 1394 PF_HASHROW_LOCK(khw); 1395 } else { 1396 PF_HASHROW_LOCK(khw); 1397 PF_HASHROW_LOCK(khs); 1398 } 1399 } 1400 1401 #define KEYS_UNLOCK() do { \ 1402 if (khs != khw) { \ 1403 PF_HASHROW_UNLOCK(khs); \ 1404 PF_HASHROW_UNLOCK(khw); \ 1405 } else \ 1406 PF_HASHROW_UNLOCK(khs); \ 1407 } while (0) 1408 1409 /* 1410 * First run: start with wire key. 1411 */ 1412 sk = skw; 1413 kh = khw; 1414 idx = PF_SK_WIRE; 1415 1416 MPASS(s->lock == NULL); 1417 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1418 1419 keyattach: 1420 LIST_FOREACH(cur, &kh->keys, entry) 1421 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1422 break; 1423 1424 if (cur != NULL) { 1425 /* Key exists. Check for same kif, if none, add to key. */ 1426 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1427 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1428 1429 PF_HASHROW_LOCK(ih); 1430 if (si->kif == s->kif && 1431 ((si->key[PF_SK_WIRE]->af == sk->af && 1432 si->direction == s->direction) || 1433 (si->key[PF_SK_WIRE]->af != 1434 si->key[PF_SK_STACK]->af && 1435 sk->af == si->key[PF_SK_STACK]->af && 1436 si->direction != s->direction))) { 1437 if (sk->proto == IPPROTO_TCP && 1438 si->src.state >= TCPS_FIN_WAIT_2 && 1439 si->dst.state >= TCPS_FIN_WAIT_2) { 1440 /* 1441 * New state matches an old >FIN_WAIT_2 1442 * state. We can't drop key hash locks, 1443 * thus we can't unlink it properly. 1444 * 1445 * As a workaround we drop it into 1446 * TCPS_CLOSED state, schedule purge 1447 * ASAP and push it into the very end 1448 * of the slot TAILQ, so that it won't 1449 * conflict with our new state. 1450 */ 1451 pf_set_protostate(si, PF_PEER_BOTH, 1452 TCPS_CLOSED); 1453 si->timeout = PFTM_PURGE; 1454 olds = si; 1455 } else { 1456 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1457 printf("pf: %s key attach " 1458 "failed on %s: ", 1459 (idx == PF_SK_WIRE) ? 1460 "wire" : "stack", 1461 s->kif->pfik_name); 1462 pf_print_state_parts(s, 1463 (idx == PF_SK_WIRE) ? 1464 sk : NULL, 1465 (idx == PF_SK_STACK) ? 1466 sk : NULL); 1467 printf(", existing: "); 1468 pf_print_state_parts(si, 1469 (idx == PF_SK_WIRE) ? 1470 sk : NULL, 1471 (idx == PF_SK_STACK) ? 1472 sk : NULL); 1473 printf("\n"); 1474 } 1475 s->timeout = PFTM_UNLINKED; 1476 PF_HASHROW_UNLOCK(ih); 1477 KEYS_UNLOCK(); 1478 uma_zfree(V_pf_state_key_z, skw); 1479 if (skw != sks) 1480 uma_zfree(V_pf_state_key_z, sks); 1481 if (idx == PF_SK_STACK) 1482 pf_detach_state(s); 1483 return (EEXIST); /* collision! */ 1484 } 1485 } 1486 PF_HASHROW_UNLOCK(ih); 1487 } 1488 uma_zfree(V_pf_state_key_z, sk); 1489 s->key[idx] = cur; 1490 } else { 1491 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1492 s->key[idx] = sk; 1493 } 1494 1495 stateattach: 1496 /* List is sorted, if-bound states before floating. */ 1497 if (s->kif == V_pfi_all) 1498 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1499 else 1500 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1501 1502 if (olds) { 1503 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1504 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1505 key_list[idx]); 1506 olds = NULL; 1507 } 1508 1509 /* 1510 * Attach done. See how should we (or should not?) 1511 * attach a second key. 1512 */ 1513 if (sks == skw) { 1514 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1515 idx = PF_SK_STACK; 1516 sks = NULL; 1517 goto stateattach; 1518 } else if (sks != NULL) { 1519 /* 1520 * Continue attaching with stack key. 1521 */ 1522 sk = sks; 1523 kh = khs; 1524 idx = PF_SK_STACK; 1525 sks = NULL; 1526 goto keyattach; 1527 } 1528 1529 PF_STATE_LOCK(s); 1530 KEYS_UNLOCK(); 1531 1532 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1533 ("%s failure", __func__)); 1534 1535 return (0); 1536 #undef KEYS_UNLOCK 1537 } 1538 1539 static void 1540 pf_detach_state(struct pf_kstate *s) 1541 { 1542 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1543 struct pf_keyhash *kh; 1544 1545 NET_EPOCH_ASSERT(); 1546 MPASS(s->timeout >= PFTM_MAX); 1547 1548 pf_sctp_multihome_detach_addr(s); 1549 1550 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr) 1551 V_pflow_export_state_ptr(s); 1552 1553 if (sks != NULL) { 1554 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1555 PF_HASHROW_LOCK(kh); 1556 if (s->key[PF_SK_STACK] != NULL) 1557 pf_state_key_detach(s, PF_SK_STACK); 1558 /* 1559 * If both point to same key, then we are done. 1560 */ 1561 if (sks == s->key[PF_SK_WIRE]) { 1562 pf_state_key_detach(s, PF_SK_WIRE); 1563 PF_HASHROW_UNLOCK(kh); 1564 return; 1565 } 1566 PF_HASHROW_UNLOCK(kh); 1567 } 1568 1569 if (s->key[PF_SK_WIRE] != NULL) { 1570 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1571 PF_HASHROW_LOCK(kh); 1572 if (s->key[PF_SK_WIRE] != NULL) 1573 pf_state_key_detach(s, PF_SK_WIRE); 1574 PF_HASHROW_UNLOCK(kh); 1575 } 1576 } 1577 1578 static void 1579 pf_state_key_detach(struct pf_kstate *s, int idx) 1580 { 1581 struct pf_state_key *sk = s->key[idx]; 1582 #ifdef INVARIANTS 1583 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1584 1585 PF_HASHROW_ASSERT(kh); 1586 #endif 1587 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1588 s->key[idx] = NULL; 1589 1590 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1591 LIST_REMOVE(sk, entry); 1592 uma_zfree(V_pf_state_key_z, sk); 1593 } 1594 } 1595 1596 static int 1597 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1598 { 1599 struct pf_state_key *sk = mem; 1600 1601 bzero(sk, sizeof(struct pf_state_key_cmp)); 1602 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1603 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1604 1605 return (0); 1606 } 1607 1608 static int 1609 pf_state_key_addr_setup(struct pf_pdesc *pd, 1610 struct pf_state_key_cmp *key, int multi) 1611 { 1612 struct pf_addr *saddr = pd->src; 1613 struct pf_addr *daddr = pd->dst; 1614 #ifdef INET6 1615 struct nd_neighbor_solicit nd; 1616 struct pf_addr *target; 1617 u_short action, reason; 1618 1619 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6) 1620 goto copy; 1621 1622 switch (pd->hdr.icmp6.icmp6_type) { 1623 case ND_NEIGHBOR_SOLICIT: 1624 if (multi) 1625 return (-1); 1626 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af)) 1627 return (-1); 1628 target = (struct pf_addr *)&nd.nd_ns_target; 1629 daddr = target; 1630 break; 1631 case ND_NEIGHBOR_ADVERT: 1632 if (multi) 1633 return (-1); 1634 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af)) 1635 return (-1); 1636 target = (struct pf_addr *)&nd.nd_ns_target; 1637 saddr = target; 1638 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) { 1639 key->addr[pd->didx].addr32[0] = 0; 1640 key->addr[pd->didx].addr32[1] = 0; 1641 key->addr[pd->didx].addr32[2] = 0; 1642 key->addr[pd->didx].addr32[3] = 0; 1643 daddr = NULL; /* overwritten */ 1644 } 1645 break; 1646 default: 1647 if (multi == PF_ICMP_MULTI_LINK) { 1648 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL; 1649 key->addr[pd->sidx].addr32[1] = 0; 1650 key->addr[pd->sidx].addr32[2] = 0; 1651 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE; 1652 saddr = NULL; /* overwritten */ 1653 } 1654 } 1655 copy: 1656 #endif 1657 if (saddr) 1658 PF_ACPY(&key->addr[pd->sidx], saddr, pd->af); 1659 if (daddr) 1660 PF_ACPY(&key->addr[pd->didx], daddr, pd->af); 1661 1662 return (0); 1663 } 1664 1665 int 1666 pf_state_key_setup(struct pf_pdesc *pd, u_int16_t sport, u_int16_t dport, 1667 struct pf_state_key **sk, struct pf_state_key **nk) 1668 { 1669 *sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1670 if (*sk == NULL) 1671 return (ENOMEM); 1672 1673 if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)*sk, 1674 0)) { 1675 uma_zfree(V_pf_state_key_z, *sk); 1676 *sk = NULL; 1677 return (ENOMEM); 1678 } 1679 1680 (*sk)->port[pd->sidx] = sport; 1681 (*sk)->port[pd->didx] = dport; 1682 (*sk)->proto = pd->proto; 1683 (*sk)->af = pd->af; 1684 1685 *nk = pf_state_key_clone(*sk); 1686 if (*nk == NULL) { 1687 uma_zfree(V_pf_state_key_z, *sk); 1688 *sk = NULL; 1689 return (ENOMEM); 1690 } 1691 1692 if (pd->af != pd->naf) { 1693 (*sk)->port[pd->sidx] = pd->osport; 1694 (*sk)->port[pd->didx] = pd->odport; 1695 1696 (*nk)->af = pd->naf; 1697 1698 /* 1699 * We're overwriting an address here, so potentially there's bits of an IPv6 1700 * address left in here. Clear that out first. 1701 */ 1702 bzero(&(*nk)->addr[0], sizeof((*nk)->addr[0])); 1703 bzero(&(*nk)->addr[1], sizeof((*nk)->addr[1])); 1704 1705 PF_ACPY(&(*nk)->addr[pd->af == pd->naf ? pd->sidx : pd->didx], 1706 &pd->nsaddr, pd->naf); 1707 PF_ACPY(&(*nk)->addr[pd->af == pd->naf ? pd->didx : pd->sidx], 1708 &pd->ndaddr, pd->naf); 1709 (*nk)->port[pd->af == pd->naf ? pd->sidx : pd->didx] = pd->nsport; 1710 (*nk)->port[pd->af == pd->naf ? pd->didx : pd->sidx] = pd->ndport; 1711 switch (pd->proto) { 1712 case IPPROTO_ICMP: 1713 (*nk)->proto = IPPROTO_ICMPV6; 1714 break; 1715 case IPPROTO_ICMPV6: 1716 (*nk)->proto = IPPROTO_ICMP; 1717 break; 1718 default: 1719 (*nk)->proto = pd->proto; 1720 } 1721 } 1722 1723 return (0); 1724 } 1725 1726 struct pf_state_key * 1727 pf_state_key_clone(const struct pf_state_key *orig) 1728 { 1729 struct pf_state_key *sk; 1730 1731 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1732 if (sk == NULL) 1733 return (NULL); 1734 1735 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1736 1737 return (sk); 1738 } 1739 1740 int 1741 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1742 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1743 { 1744 struct pf_idhash *ih; 1745 struct pf_kstate *cur; 1746 int error; 1747 1748 NET_EPOCH_ASSERT(); 1749 1750 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1751 ("%s: sks not pristine", __func__)); 1752 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1753 ("%s: skw not pristine", __func__)); 1754 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1755 1756 s->kif = kif; 1757 s->orig_kif = orig_kif; 1758 1759 if (s->id == 0 && s->creatorid == 0) { 1760 s->id = alloc_unr64(&V_pf_stateid); 1761 s->id = htobe64(s->id); 1762 s->creatorid = V_pf_status.hostid; 1763 } 1764 1765 /* Returns with ID locked on success. */ 1766 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1767 return (error); 1768 1769 ih = &V_pf_idhash[PF_IDHASH(s)]; 1770 PF_HASHROW_ASSERT(ih); 1771 LIST_FOREACH(cur, &ih->states, entry) 1772 if (cur->id == s->id && cur->creatorid == s->creatorid) 1773 break; 1774 1775 if (cur != NULL) { 1776 s->timeout = PFTM_UNLINKED; 1777 PF_HASHROW_UNLOCK(ih); 1778 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1779 printf("pf: state ID collision: " 1780 "id: %016llx creatorid: %08x\n", 1781 (unsigned long long)be64toh(s->id), 1782 ntohl(s->creatorid)); 1783 } 1784 pf_detach_state(s); 1785 return (EEXIST); 1786 } 1787 LIST_INSERT_HEAD(&ih->states, s, entry); 1788 /* One for keys, one for ID hash. */ 1789 refcount_init(&s->refs, 2); 1790 1791 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1792 if (V_pfsync_insert_state_ptr != NULL) 1793 V_pfsync_insert_state_ptr(s); 1794 1795 /* Returns locked. */ 1796 return (0); 1797 } 1798 1799 /* 1800 * Find state by ID: returns with locked row on success. 1801 */ 1802 struct pf_kstate * 1803 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1804 { 1805 struct pf_idhash *ih; 1806 struct pf_kstate *s; 1807 1808 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1809 1810 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))]; 1811 1812 PF_HASHROW_LOCK(ih); 1813 LIST_FOREACH(s, &ih->states, entry) 1814 if (s->id == id && s->creatorid == creatorid) 1815 break; 1816 1817 if (s == NULL) 1818 PF_HASHROW_UNLOCK(ih); 1819 1820 return (s); 1821 } 1822 1823 /* 1824 * Find state by key. 1825 * Returns with ID hash slot locked on success. 1826 */ 1827 static struct pf_kstate * 1828 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key, 1829 u_int dir) 1830 { 1831 struct pf_keyhash *kh; 1832 struct pf_state_key *sk; 1833 struct pf_kstate *s; 1834 int idx; 1835 1836 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1837 1838 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1839 1840 PF_HASHROW_LOCK(kh); 1841 LIST_FOREACH(sk, &kh->keys, entry) 1842 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1843 break; 1844 if (sk == NULL) { 1845 PF_HASHROW_UNLOCK(kh); 1846 return (NULL); 1847 } 1848 1849 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1850 1851 /* List is sorted, if-bound states before floating ones. */ 1852 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1853 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) { 1854 PF_STATE_LOCK(s); 1855 PF_HASHROW_UNLOCK(kh); 1856 if (__predict_false(s->timeout >= PFTM_MAX)) { 1857 /* 1858 * State is either being processed by 1859 * pf_unlink_state() in an other thread, or 1860 * is scheduled for immediate expiry. 1861 */ 1862 PF_STATE_UNLOCK(s); 1863 return (NULL); 1864 } 1865 return (s); 1866 } 1867 1868 /* Look through the other list, in case of AF-TO */ 1869 idx = idx == PF_SK_WIRE ? PF_SK_STACK : PF_SK_WIRE; 1870 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1871 if (s->key[PF_SK_WIRE]->af == s->key[PF_SK_STACK]->af) 1872 continue; 1873 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) { 1874 PF_STATE_LOCK(s); 1875 PF_HASHROW_UNLOCK(kh); 1876 if (__predict_false(s->timeout >= PFTM_MAX)) { 1877 /* 1878 * State is either being processed by 1879 * pf_unlink_state() in an other thread, or 1880 * is scheduled for immediate expiry. 1881 */ 1882 PF_STATE_UNLOCK(s); 1883 return (NULL); 1884 } 1885 return (s); 1886 } 1887 } 1888 1889 PF_HASHROW_UNLOCK(kh); 1890 1891 return (NULL); 1892 } 1893 1894 /* 1895 * Returns with ID hash slot locked on success. 1896 */ 1897 struct pf_kstate * 1898 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more) 1899 { 1900 struct pf_keyhash *kh; 1901 struct pf_state_key *sk; 1902 struct pf_kstate *s, *ret = NULL; 1903 int idx, inout = 0; 1904 1905 if (more != NULL) 1906 *more = 0; 1907 1908 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1909 1910 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1911 1912 PF_HASHROW_LOCK(kh); 1913 LIST_FOREACH(sk, &kh->keys, entry) 1914 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1915 break; 1916 if (sk == NULL) { 1917 PF_HASHROW_UNLOCK(kh); 1918 return (NULL); 1919 } 1920 switch (dir) { 1921 case PF_IN: 1922 idx = PF_SK_WIRE; 1923 break; 1924 case PF_OUT: 1925 idx = PF_SK_STACK; 1926 break; 1927 case PF_INOUT: 1928 idx = PF_SK_WIRE; 1929 inout = 1; 1930 break; 1931 default: 1932 panic("%s: dir %u", __func__, dir); 1933 } 1934 second_run: 1935 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1936 if (more == NULL) { 1937 PF_STATE_LOCK(s); 1938 PF_HASHROW_UNLOCK(kh); 1939 return (s); 1940 } 1941 1942 if (ret) 1943 (*more)++; 1944 else { 1945 ret = s; 1946 PF_STATE_LOCK(s); 1947 } 1948 } 1949 if (inout == 1) { 1950 inout = 0; 1951 idx = PF_SK_STACK; 1952 goto second_run; 1953 } 1954 PF_HASHROW_UNLOCK(kh); 1955 1956 return (ret); 1957 } 1958 1959 /* 1960 * FIXME 1961 * This routine is inefficient -- locks the state only to unlock immediately on 1962 * return. 1963 * It is racy -- after the state is unlocked nothing stops other threads from 1964 * removing it. 1965 */ 1966 bool 1967 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir) 1968 { 1969 struct pf_kstate *s; 1970 1971 s = pf_find_state_all(key, dir, NULL); 1972 if (s != NULL) { 1973 PF_STATE_UNLOCK(s); 1974 return (true); 1975 } 1976 return (false); 1977 } 1978 1979 struct pf_udp_mapping * 1980 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port, 1981 struct pf_addr *nat_addr, uint16_t nat_port) 1982 { 1983 struct pf_udp_mapping *mapping; 1984 1985 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO); 1986 if (mapping == NULL) 1987 return (NULL); 1988 PF_ACPY(&mapping->endpoints[0].addr, src_addr, af); 1989 mapping->endpoints[0].port = src_port; 1990 mapping->endpoints[0].af = af; 1991 mapping->endpoints[0].mapping = mapping; 1992 PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af); 1993 mapping->endpoints[1].port = nat_port; 1994 mapping->endpoints[1].af = af; 1995 mapping->endpoints[1].mapping = mapping; 1996 refcount_init(&mapping->refs, 1); 1997 return (mapping); 1998 } 1999 2000 int 2001 pf_udp_mapping_insert(struct pf_udp_mapping *mapping) 2002 { 2003 struct pf_udpendpointhash *h0, *h1; 2004 struct pf_udp_endpoint *endpoint; 2005 int ret = EEXIST; 2006 2007 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 2008 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 2009 if (h0 == h1) { 2010 PF_HASHROW_LOCK(h0); 2011 } else if (h0 < h1) { 2012 PF_HASHROW_LOCK(h0); 2013 PF_HASHROW_LOCK(h1); 2014 } else { 2015 PF_HASHROW_LOCK(h1); 2016 PF_HASHROW_LOCK(h0); 2017 } 2018 2019 LIST_FOREACH(endpoint, &h0->endpoints, entry) { 2020 if (bcmp(endpoint, &mapping->endpoints[0], 2021 sizeof(struct pf_udp_endpoint_cmp)) == 0) 2022 break; 2023 } 2024 if (endpoint != NULL) 2025 goto cleanup; 2026 LIST_FOREACH(endpoint, &h1->endpoints, entry) { 2027 if (bcmp(endpoint, &mapping->endpoints[1], 2028 sizeof(struct pf_udp_endpoint_cmp)) == 0) 2029 break; 2030 } 2031 if (endpoint != NULL) 2032 goto cleanup; 2033 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry); 2034 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry); 2035 ret = 0; 2036 2037 cleanup: 2038 if (h0 != h1) { 2039 PF_HASHROW_UNLOCK(h0); 2040 PF_HASHROW_UNLOCK(h1); 2041 } else { 2042 PF_HASHROW_UNLOCK(h0); 2043 } 2044 return (ret); 2045 } 2046 2047 void 2048 pf_udp_mapping_release(struct pf_udp_mapping *mapping) 2049 { 2050 /* refcount is synchronized on the source endpoint's row lock */ 2051 struct pf_udpendpointhash *h0, *h1; 2052 2053 if (mapping == NULL) 2054 return; 2055 2056 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 2057 PF_HASHROW_LOCK(h0); 2058 if (refcount_release(&mapping->refs)) { 2059 LIST_REMOVE(&mapping->endpoints[0], entry); 2060 PF_HASHROW_UNLOCK(h0); 2061 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 2062 PF_HASHROW_LOCK(h1); 2063 LIST_REMOVE(&mapping->endpoints[1], entry); 2064 PF_HASHROW_UNLOCK(h1); 2065 2066 uma_zfree(V_pf_udp_mapping_z, mapping); 2067 } else { 2068 PF_HASHROW_UNLOCK(h0); 2069 } 2070 } 2071 2072 2073 struct pf_udp_mapping * 2074 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key) 2075 { 2076 struct pf_udpendpointhash *uh; 2077 struct pf_udp_endpoint *endpoint; 2078 2079 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)]; 2080 2081 PF_HASHROW_LOCK(uh); 2082 LIST_FOREACH(endpoint, &uh->endpoints, entry) { 2083 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 && 2084 bcmp(endpoint, &endpoint->mapping->endpoints[0], 2085 sizeof(struct pf_udp_endpoint_cmp)) == 0) 2086 break; 2087 } 2088 if (endpoint == NULL) { 2089 PF_HASHROW_UNLOCK(uh); 2090 return (NULL); 2091 } 2092 refcount_acquire(&endpoint->mapping->refs); 2093 PF_HASHROW_UNLOCK(uh); 2094 return (endpoint->mapping); 2095 } 2096 /* END state table stuff */ 2097 2098 static void 2099 pf_send(struct pf_send_entry *pfse) 2100 { 2101 2102 PF_SENDQ_LOCK(); 2103 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 2104 PF_SENDQ_UNLOCK(); 2105 swi_sched(V_pf_swi_cookie, 0); 2106 } 2107 2108 static bool 2109 pf_isforlocal(struct mbuf *m, int af) 2110 { 2111 switch (af) { 2112 #ifdef INET 2113 case AF_INET: { 2114 struct ip *ip = mtod(m, struct ip *); 2115 2116 return (in_localip(ip->ip_dst)); 2117 } 2118 #endif 2119 #ifdef INET6 2120 case AF_INET6: { 2121 struct ip6_hdr *ip6; 2122 struct in6_ifaddr *ia; 2123 ip6 = mtod(m, struct ip6_hdr *); 2124 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 2125 if (ia == NULL) 2126 return (false); 2127 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 2128 } 2129 #endif 2130 } 2131 2132 return (false); 2133 } 2134 2135 int 2136 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type, 2137 int *icmp_dir, int *multi, u_int16_t *virtual_id, u_int16_t *virtual_type) 2138 { 2139 /* 2140 * ICMP types marked with PF_OUT are typically responses to 2141 * PF_IN, and will match states in the opposite direction. 2142 * PF_IN ICMP types need to match a state with that type. 2143 */ 2144 *icmp_dir = PF_OUT; 2145 *multi = PF_ICMP_MULTI_LINK; 2146 /* Queries (and responses) */ 2147 switch (pd->af) { 2148 #ifdef INET 2149 case AF_INET: 2150 switch (type) { 2151 case ICMP_ECHO: 2152 *icmp_dir = PF_IN; 2153 case ICMP_ECHOREPLY: 2154 *virtual_type = ICMP_ECHO; 2155 *virtual_id = pd->hdr.icmp.icmp_id; 2156 break; 2157 2158 case ICMP_TSTAMP: 2159 *icmp_dir = PF_IN; 2160 case ICMP_TSTAMPREPLY: 2161 *virtual_type = ICMP_TSTAMP; 2162 *virtual_id = pd->hdr.icmp.icmp_id; 2163 break; 2164 2165 case ICMP_IREQ: 2166 *icmp_dir = PF_IN; 2167 case ICMP_IREQREPLY: 2168 *virtual_type = ICMP_IREQ; 2169 *virtual_id = pd->hdr.icmp.icmp_id; 2170 break; 2171 2172 case ICMP_MASKREQ: 2173 *icmp_dir = PF_IN; 2174 case ICMP_MASKREPLY: 2175 *virtual_type = ICMP_MASKREQ; 2176 *virtual_id = pd->hdr.icmp.icmp_id; 2177 break; 2178 2179 case ICMP_IPV6_WHEREAREYOU: 2180 *icmp_dir = PF_IN; 2181 case ICMP_IPV6_IAMHERE: 2182 *virtual_type = ICMP_IPV6_WHEREAREYOU; 2183 *virtual_id = 0; /* Nothing sane to match on! */ 2184 break; 2185 2186 case ICMP_MOBILE_REGREQUEST: 2187 *icmp_dir = PF_IN; 2188 case ICMP_MOBILE_REGREPLY: 2189 *virtual_type = ICMP_MOBILE_REGREQUEST; 2190 *virtual_id = 0; /* Nothing sane to match on! */ 2191 break; 2192 2193 case ICMP_ROUTERSOLICIT: 2194 *icmp_dir = PF_IN; 2195 case ICMP_ROUTERADVERT: 2196 *virtual_type = ICMP_ROUTERSOLICIT; 2197 *virtual_id = 0; /* Nothing sane to match on! */ 2198 break; 2199 2200 /* These ICMP types map to other connections */ 2201 case ICMP_UNREACH: 2202 case ICMP_SOURCEQUENCH: 2203 case ICMP_REDIRECT: 2204 case ICMP_TIMXCEED: 2205 case ICMP_PARAMPROB: 2206 /* These will not be used, but set them anyway */ 2207 *icmp_dir = PF_IN; 2208 *virtual_type = type; 2209 *virtual_id = 0; 2210 HTONS(*virtual_type); 2211 return (1); /* These types match to another state */ 2212 2213 /* 2214 * All remaining ICMP types get their own states, 2215 * and will only match in one direction. 2216 */ 2217 default: 2218 *icmp_dir = PF_IN; 2219 *virtual_type = type; 2220 *virtual_id = 0; 2221 break; 2222 } 2223 break; 2224 #endif /* INET */ 2225 #ifdef INET6 2226 case AF_INET6: 2227 switch (type) { 2228 case ICMP6_ECHO_REQUEST: 2229 *icmp_dir = PF_IN; 2230 case ICMP6_ECHO_REPLY: 2231 *virtual_type = ICMP6_ECHO_REQUEST; 2232 *virtual_id = pd->hdr.icmp6.icmp6_id; 2233 break; 2234 2235 case MLD_LISTENER_QUERY: 2236 case MLD_LISTENER_REPORT: { 2237 /* 2238 * Listener Report can be sent by clients 2239 * without an associated Listener Query. 2240 * In addition to that, when Report is sent as a 2241 * reply to a Query its source and destination 2242 * address are different. 2243 */ 2244 *icmp_dir = PF_IN; 2245 *virtual_type = MLD_LISTENER_QUERY; 2246 *virtual_id = 0; 2247 break; 2248 } 2249 case MLD_MTRACE: 2250 *icmp_dir = PF_IN; 2251 case MLD_MTRACE_RESP: 2252 *virtual_type = MLD_MTRACE; 2253 *virtual_id = 0; /* Nothing sane to match on! */ 2254 break; 2255 2256 case ND_NEIGHBOR_SOLICIT: 2257 *icmp_dir = PF_IN; 2258 case ND_NEIGHBOR_ADVERT: { 2259 *virtual_type = ND_NEIGHBOR_SOLICIT; 2260 *virtual_id = 0; 2261 break; 2262 } 2263 2264 /* 2265 * These ICMP types map to other connections. 2266 * ND_REDIRECT can't be in this list because the triggering 2267 * packet header is optional. 2268 */ 2269 case ICMP6_DST_UNREACH: 2270 case ICMP6_PACKET_TOO_BIG: 2271 case ICMP6_TIME_EXCEEDED: 2272 case ICMP6_PARAM_PROB: 2273 /* These will not be used, but set them anyway */ 2274 *icmp_dir = PF_IN; 2275 *virtual_type = type; 2276 *virtual_id = 0; 2277 HTONS(*virtual_type); 2278 return (1); /* These types match to another state */ 2279 /* 2280 * All remaining ICMP6 types get their own states, 2281 * and will only match in one direction. 2282 */ 2283 default: 2284 *icmp_dir = PF_IN; 2285 *virtual_type = type; 2286 *virtual_id = 0; 2287 break; 2288 } 2289 break; 2290 #endif /* INET6 */ 2291 } 2292 HTONS(*virtual_type); 2293 return (0); /* These types match to their own state */ 2294 } 2295 2296 void 2297 pf_intr(void *v) 2298 { 2299 struct epoch_tracker et; 2300 struct pf_send_head queue; 2301 struct pf_send_entry *pfse, *next; 2302 2303 CURVNET_SET((struct vnet *)v); 2304 2305 PF_SENDQ_LOCK(); 2306 queue = V_pf_sendqueue; 2307 STAILQ_INIT(&V_pf_sendqueue); 2308 PF_SENDQ_UNLOCK(); 2309 2310 NET_EPOCH_ENTER(et); 2311 2312 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 2313 switch (pfse->pfse_type) { 2314 #ifdef INET 2315 case PFSE_IP: { 2316 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 2317 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif, 2318 ("%s: rcvif != loif", __func__)); 2319 2320 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 2321 pfse->pfse_m->m_pkthdr.csum_flags |= 2322 CSUM_IP_VALID | CSUM_IP_CHECKED; 2323 ip_input(pfse->pfse_m); 2324 } else { 2325 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2326 NULL); 2327 } 2328 break; 2329 } 2330 case PFSE_ICMP: 2331 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 2332 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 2333 break; 2334 #endif /* INET */ 2335 #ifdef INET6 2336 case PFSE_IP6: 2337 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 2338 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif, 2339 ("%s: rcvif != loif", __func__)); 2340 2341 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL | 2342 M_LOOP; 2343 ip6_input(pfse->pfse_m); 2344 } else { 2345 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2346 NULL, NULL); 2347 } 2348 break; 2349 case PFSE_ICMP6: 2350 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 2351 pfse->icmpopts.code, pfse->icmpopts.mtu); 2352 break; 2353 #endif /* INET6 */ 2354 default: 2355 panic("%s: unknown type", __func__); 2356 } 2357 free(pfse, M_PFTEMP); 2358 } 2359 NET_EPOCH_EXIT(et); 2360 CURVNET_RESTORE(); 2361 } 2362 2363 #define pf_purge_thread_period (hz / 10) 2364 2365 #ifdef PF_WANT_32_TO_64_COUNTER 2366 static void 2367 pf_status_counter_u64_periodic(void) 2368 { 2369 2370 PF_RULES_RASSERT(); 2371 2372 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 2373 return; 2374 } 2375 2376 for (int i = 0; i < FCNT_MAX; i++) { 2377 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 2378 } 2379 } 2380 2381 static void 2382 pf_kif_counter_u64_periodic(void) 2383 { 2384 struct pfi_kkif *kif; 2385 size_t r, run; 2386 2387 PF_RULES_RASSERT(); 2388 2389 if (__predict_false(V_pf_allkifcount == 0)) { 2390 return; 2391 } 2392 2393 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2394 return; 2395 } 2396 2397 run = V_pf_allkifcount / 10; 2398 if (run < 5) 2399 run = 5; 2400 2401 for (r = 0; r < run; r++) { 2402 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 2403 if (kif == NULL) { 2404 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2405 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 2406 break; 2407 } 2408 2409 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2410 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 2411 2412 for (int i = 0; i < 2; i++) { 2413 for (int j = 0; j < 2; j++) { 2414 for (int k = 0; k < 2; k++) { 2415 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 2416 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 2417 } 2418 } 2419 } 2420 } 2421 } 2422 2423 static void 2424 pf_rule_counter_u64_periodic(void) 2425 { 2426 struct pf_krule *rule; 2427 size_t r, run; 2428 2429 PF_RULES_RASSERT(); 2430 2431 if (__predict_false(V_pf_allrulecount == 0)) { 2432 return; 2433 } 2434 2435 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2436 return; 2437 } 2438 2439 run = V_pf_allrulecount / 10; 2440 if (run < 5) 2441 run = 5; 2442 2443 for (r = 0; r < run; r++) { 2444 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 2445 if (rule == NULL) { 2446 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2447 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 2448 break; 2449 } 2450 2451 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2452 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 2453 2454 pf_counter_u64_periodic(&rule->evaluations); 2455 for (int i = 0; i < 2; i++) { 2456 pf_counter_u64_periodic(&rule->packets[i]); 2457 pf_counter_u64_periodic(&rule->bytes[i]); 2458 } 2459 } 2460 } 2461 2462 static void 2463 pf_counter_u64_periodic_main(void) 2464 { 2465 PF_RULES_RLOCK_TRACKER; 2466 2467 V_pf_counter_periodic_iter++; 2468 2469 PF_RULES_RLOCK(); 2470 pf_counter_u64_critical_enter(); 2471 pf_status_counter_u64_periodic(); 2472 pf_kif_counter_u64_periodic(); 2473 pf_rule_counter_u64_periodic(); 2474 pf_counter_u64_critical_exit(); 2475 PF_RULES_RUNLOCK(); 2476 } 2477 #else 2478 #define pf_counter_u64_periodic_main() do { } while (0) 2479 #endif 2480 2481 void 2482 pf_purge_thread(void *unused __unused) 2483 { 2484 struct epoch_tracker et; 2485 2486 VNET_ITERATOR_DECL(vnet_iter); 2487 2488 sx_xlock(&pf_end_lock); 2489 while (pf_end_threads == 0) { 2490 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 2491 2492 VNET_LIST_RLOCK(); 2493 NET_EPOCH_ENTER(et); 2494 VNET_FOREACH(vnet_iter) { 2495 CURVNET_SET(vnet_iter); 2496 2497 /* Wait until V_pf_default_rule is initialized. */ 2498 if (V_pf_vnet_active == 0) { 2499 CURVNET_RESTORE(); 2500 continue; 2501 } 2502 2503 pf_counter_u64_periodic_main(); 2504 2505 /* 2506 * Process 1/interval fraction of the state 2507 * table every run. 2508 */ 2509 V_pf_purge_idx = 2510 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask / 2511 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 2512 2513 /* 2514 * Purge other expired types every 2515 * PFTM_INTERVAL seconds. 2516 */ 2517 if (V_pf_purge_idx == 0) { 2518 /* 2519 * Order is important: 2520 * - states and src nodes reference rules 2521 * - states and rules reference kifs 2522 */ 2523 pf_purge_expired_fragments(); 2524 pf_purge_expired_src_nodes(); 2525 pf_purge_unlinked_rules(); 2526 pfi_kkif_purge(); 2527 } 2528 CURVNET_RESTORE(); 2529 } 2530 NET_EPOCH_EXIT(et); 2531 VNET_LIST_RUNLOCK(); 2532 } 2533 2534 pf_end_threads++; 2535 sx_xunlock(&pf_end_lock); 2536 kproc_exit(0); 2537 } 2538 2539 void 2540 pf_unload_vnet_purge(void) 2541 { 2542 2543 /* 2544 * To cleanse up all kifs and rules we need 2545 * two runs: first one clears reference flags, 2546 * then pf_purge_expired_states() doesn't 2547 * raise them, and then second run frees. 2548 */ 2549 pf_purge_unlinked_rules(); 2550 pfi_kkif_purge(); 2551 2552 /* 2553 * Now purge everything. 2554 */ 2555 pf_purge_expired_states(0, V_pf_hashmask); 2556 pf_purge_fragments(UINT_MAX); 2557 pf_purge_expired_src_nodes(); 2558 2559 /* 2560 * Now all kifs & rules should be unreferenced, 2561 * thus should be successfully freed. 2562 */ 2563 pf_purge_unlinked_rules(); 2564 pfi_kkif_purge(); 2565 } 2566 2567 u_int32_t 2568 pf_state_expires(const struct pf_kstate *state) 2569 { 2570 u_int32_t timeout; 2571 u_int32_t start; 2572 u_int32_t end; 2573 u_int32_t states; 2574 2575 /* handle all PFTM_* > PFTM_MAX here */ 2576 if (state->timeout == PFTM_PURGE) 2577 return (time_uptime); 2578 KASSERT(state->timeout != PFTM_UNLINKED, 2579 ("pf_state_expires: timeout == PFTM_UNLINKED")); 2580 KASSERT((state->timeout < PFTM_MAX), 2581 ("pf_state_expires: timeout > PFTM_MAX")); 2582 timeout = state->rule->timeout[state->timeout]; 2583 if (!timeout) 2584 timeout = V_pf_default_rule.timeout[state->timeout]; 2585 start = state->rule->timeout[PFTM_ADAPTIVE_START]; 2586 if (start && state->rule != &V_pf_default_rule) { 2587 end = state->rule->timeout[PFTM_ADAPTIVE_END]; 2588 states = counter_u64_fetch(state->rule->states_cur); 2589 } else { 2590 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 2591 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 2592 states = V_pf_status.states; 2593 } 2594 if (end && states > start && start < end) { 2595 if (states < end) { 2596 timeout = (u_int64_t)timeout * (end - states) / 2597 (end - start); 2598 return ((state->expire / 1000) + timeout); 2599 } 2600 else 2601 return (time_uptime); 2602 } 2603 return ((state->expire / 1000) + timeout); 2604 } 2605 2606 void 2607 pf_purge_expired_src_nodes(void) 2608 { 2609 struct pf_ksrc_node_list freelist; 2610 struct pf_srchash *sh; 2611 struct pf_ksrc_node *cur, *next; 2612 int i; 2613 2614 LIST_INIT(&freelist); 2615 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 2616 PF_HASHROW_LOCK(sh); 2617 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 2618 if (cur->states == 0 && cur->expire <= time_uptime) { 2619 pf_unlink_src_node(cur); 2620 LIST_INSERT_HEAD(&freelist, cur, entry); 2621 } else if (cur->rule != NULL) 2622 cur->rule->rule_ref |= PFRULE_REFS; 2623 PF_HASHROW_UNLOCK(sh); 2624 } 2625 2626 pf_free_src_nodes(&freelist); 2627 2628 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2629 } 2630 2631 static void 2632 pf_src_tree_remove_state(struct pf_kstate *s) 2633 { 2634 struct pf_ksrc_node *sn; 2635 uint32_t timeout; 2636 2637 timeout = s->rule->timeout[PFTM_SRC_NODE] ? 2638 s->rule->timeout[PFTM_SRC_NODE] : 2639 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2640 2641 if (s->src_node != NULL) { 2642 sn = s->src_node; 2643 PF_SRC_NODE_LOCK(sn); 2644 if (s->src.tcp_est) 2645 --sn->conn; 2646 if (--sn->states == 0) 2647 sn->expire = time_uptime + timeout; 2648 PF_SRC_NODE_UNLOCK(sn); 2649 } 2650 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 2651 sn = s->nat_src_node; 2652 PF_SRC_NODE_LOCK(sn); 2653 if (--sn->states == 0) 2654 sn->expire = time_uptime + timeout; 2655 PF_SRC_NODE_UNLOCK(sn); 2656 } 2657 s->src_node = s->nat_src_node = NULL; 2658 } 2659 2660 /* 2661 * Unlink and potentilly free a state. Function may be 2662 * called with ID hash row locked, but always returns 2663 * unlocked, since it needs to go through key hash locking. 2664 */ 2665 int 2666 pf_unlink_state(struct pf_kstate *s) 2667 { 2668 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2669 2670 NET_EPOCH_ASSERT(); 2671 PF_HASHROW_ASSERT(ih); 2672 2673 if (s->timeout == PFTM_UNLINKED) { 2674 /* 2675 * State is being processed 2676 * by pf_unlink_state() in 2677 * an other thread. 2678 */ 2679 PF_HASHROW_UNLOCK(ih); 2680 return (0); /* XXXGL: undefined actually */ 2681 } 2682 2683 if (s->src.state == PF_TCPS_PROXY_DST) { 2684 /* XXX wire key the right one? */ 2685 pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af, 2686 &s->key[PF_SK_WIRE]->addr[1], 2687 &s->key[PF_SK_WIRE]->addr[0], 2688 s->key[PF_SK_WIRE]->port[1], 2689 s->key[PF_SK_WIRE]->port[0], 2690 s->src.seqhi, s->src.seqlo + 1, 2691 TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0, 2692 s->act.rtableid); 2693 } 2694 2695 LIST_REMOVE(s, entry); 2696 pf_src_tree_remove_state(s); 2697 2698 if (V_pfsync_delete_state_ptr != NULL) 2699 V_pfsync_delete_state_ptr(s); 2700 2701 STATE_DEC_COUNTERS(s); 2702 2703 s->timeout = PFTM_UNLINKED; 2704 2705 /* Ensure we remove it from the list of halfopen states, if needed. */ 2706 if (s->key[PF_SK_STACK] != NULL && 2707 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2708 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2709 2710 PF_HASHROW_UNLOCK(ih); 2711 2712 pf_detach_state(s); 2713 2714 pf_udp_mapping_release(s->udp_mapping); 2715 2716 /* pf_state_insert() initialises refs to 2 */ 2717 return (pf_release_staten(s, 2)); 2718 } 2719 2720 struct pf_kstate * 2721 pf_alloc_state(int flags) 2722 { 2723 2724 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2725 } 2726 2727 void 2728 pf_free_state(struct pf_kstate *cur) 2729 { 2730 struct pf_krule_item *ri; 2731 2732 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2733 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2734 cur->timeout)); 2735 2736 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2737 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2738 free(ri, M_PF_RULE_ITEM); 2739 } 2740 2741 pf_normalize_tcp_cleanup(cur); 2742 uma_zfree(V_pf_state_z, cur); 2743 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2744 } 2745 2746 /* 2747 * Called only from pf_purge_thread(), thus serialized. 2748 */ 2749 static u_int 2750 pf_purge_expired_states(u_int i, int maxcheck) 2751 { 2752 struct pf_idhash *ih; 2753 struct pf_kstate *s; 2754 struct pf_krule_item *mrm; 2755 size_t count __unused; 2756 2757 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2758 2759 /* 2760 * Go through hash and unlink states that expire now. 2761 */ 2762 while (maxcheck > 0) { 2763 count = 0; 2764 ih = &V_pf_idhash[i]; 2765 2766 /* only take the lock if we expect to do work */ 2767 if (!LIST_EMPTY(&ih->states)) { 2768 relock: 2769 PF_HASHROW_LOCK(ih); 2770 LIST_FOREACH(s, &ih->states, entry) { 2771 if (pf_state_expires(s) <= time_uptime) { 2772 V_pf_status.states -= 2773 pf_unlink_state(s); 2774 goto relock; 2775 } 2776 s->rule->rule_ref |= PFRULE_REFS; 2777 if (s->nat_rule != NULL) 2778 s->nat_rule->rule_ref |= PFRULE_REFS; 2779 if (s->anchor != NULL) 2780 s->anchor->rule_ref |= PFRULE_REFS; 2781 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2782 SLIST_FOREACH(mrm, &s->match_rules, entry) 2783 mrm->r->rule_ref |= PFRULE_REFS; 2784 if (s->act.rt_kif) 2785 s->act.rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2786 count++; 2787 } 2788 PF_HASHROW_UNLOCK(ih); 2789 } 2790 2791 SDT_PROBE2(pf, purge, state, rowcount, i, count); 2792 2793 /* Return when we hit end of hash. */ 2794 if (++i > V_pf_hashmask) { 2795 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2796 return (0); 2797 } 2798 2799 maxcheck--; 2800 } 2801 2802 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2803 2804 return (i); 2805 } 2806 2807 static void 2808 pf_purge_unlinked_rules(void) 2809 { 2810 struct pf_krulequeue tmpq; 2811 struct pf_krule *r, *r1; 2812 2813 /* 2814 * If we have overloading task pending, then we'd 2815 * better skip purging this time. There is a tiny 2816 * probability that overloading task references 2817 * an already unlinked rule. 2818 */ 2819 PF_OVERLOADQ_LOCK(); 2820 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2821 PF_OVERLOADQ_UNLOCK(); 2822 return; 2823 } 2824 PF_OVERLOADQ_UNLOCK(); 2825 2826 /* 2827 * Do naive mark-and-sweep garbage collecting of old rules. 2828 * Reference flag is raised by pf_purge_expired_states() 2829 * and pf_purge_expired_src_nodes(). 2830 * 2831 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2832 * use a temporary queue. 2833 */ 2834 TAILQ_INIT(&tmpq); 2835 PF_UNLNKDRULES_LOCK(); 2836 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2837 if (!(r->rule_ref & PFRULE_REFS)) { 2838 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2839 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2840 } else 2841 r->rule_ref &= ~PFRULE_REFS; 2842 } 2843 PF_UNLNKDRULES_UNLOCK(); 2844 2845 if (!TAILQ_EMPTY(&tmpq)) { 2846 PF_CONFIG_LOCK(); 2847 PF_RULES_WLOCK(); 2848 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2849 TAILQ_REMOVE(&tmpq, r, entries); 2850 pf_free_rule(r); 2851 } 2852 PF_RULES_WUNLOCK(); 2853 PF_CONFIG_UNLOCK(); 2854 } 2855 } 2856 2857 void 2858 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2859 { 2860 switch (af) { 2861 #ifdef INET 2862 case AF_INET: { 2863 u_int32_t a = ntohl(addr->addr32[0]); 2864 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2865 (a>>8)&255, a&255); 2866 if (p) { 2867 p = ntohs(p); 2868 printf(":%u", p); 2869 } 2870 break; 2871 } 2872 #endif /* INET */ 2873 #ifdef INET6 2874 case AF_INET6: { 2875 u_int16_t b; 2876 u_int8_t i, curstart, curend, maxstart, maxend; 2877 curstart = curend = maxstart = maxend = 255; 2878 for (i = 0; i < 8; i++) { 2879 if (!addr->addr16[i]) { 2880 if (curstart == 255) 2881 curstart = i; 2882 curend = i; 2883 } else { 2884 if ((curend - curstart) > 2885 (maxend - maxstart)) { 2886 maxstart = curstart; 2887 maxend = curend; 2888 } 2889 curstart = curend = 255; 2890 } 2891 } 2892 if ((curend - curstart) > 2893 (maxend - maxstart)) { 2894 maxstart = curstart; 2895 maxend = curend; 2896 } 2897 for (i = 0; i < 8; i++) { 2898 if (i >= maxstart && i <= maxend) { 2899 if (i == 0) 2900 printf(":"); 2901 if (i == maxend) 2902 printf(":"); 2903 } else { 2904 b = ntohs(addr->addr16[i]); 2905 printf("%x", b); 2906 if (i < 7) 2907 printf(":"); 2908 } 2909 } 2910 if (p) { 2911 p = ntohs(p); 2912 printf("[%u]", p); 2913 } 2914 break; 2915 } 2916 #endif /* INET6 */ 2917 } 2918 } 2919 2920 void 2921 pf_print_state(struct pf_kstate *s) 2922 { 2923 pf_print_state_parts(s, NULL, NULL); 2924 } 2925 2926 static void 2927 pf_print_state_parts(struct pf_kstate *s, 2928 struct pf_state_key *skwp, struct pf_state_key *sksp) 2929 { 2930 struct pf_state_key *skw, *sks; 2931 u_int8_t proto, dir; 2932 2933 /* Do our best to fill these, but they're skipped if NULL */ 2934 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2935 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2936 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2937 dir = s ? s->direction : 0; 2938 2939 switch (proto) { 2940 case IPPROTO_IPV4: 2941 printf("IPv4"); 2942 break; 2943 case IPPROTO_IPV6: 2944 printf("IPv6"); 2945 break; 2946 case IPPROTO_TCP: 2947 printf("TCP"); 2948 break; 2949 case IPPROTO_UDP: 2950 printf("UDP"); 2951 break; 2952 case IPPROTO_ICMP: 2953 printf("ICMP"); 2954 break; 2955 case IPPROTO_ICMPV6: 2956 printf("ICMPv6"); 2957 break; 2958 default: 2959 printf("%u", proto); 2960 break; 2961 } 2962 switch (dir) { 2963 case PF_IN: 2964 printf(" in"); 2965 break; 2966 case PF_OUT: 2967 printf(" out"); 2968 break; 2969 } 2970 if (skw) { 2971 printf(" wire: "); 2972 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2973 printf(" "); 2974 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2975 } 2976 if (sks) { 2977 printf(" stack: "); 2978 if (sks != skw) { 2979 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2980 printf(" "); 2981 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2982 } else 2983 printf("-"); 2984 } 2985 if (s) { 2986 if (proto == IPPROTO_TCP) { 2987 printf(" [lo=%u high=%u win=%u modulator=%u", 2988 s->src.seqlo, s->src.seqhi, 2989 s->src.max_win, s->src.seqdiff); 2990 if (s->src.wscale && s->dst.wscale) 2991 printf(" wscale=%u", 2992 s->src.wscale & PF_WSCALE_MASK); 2993 printf("]"); 2994 printf(" [lo=%u high=%u win=%u modulator=%u", 2995 s->dst.seqlo, s->dst.seqhi, 2996 s->dst.max_win, s->dst.seqdiff); 2997 if (s->src.wscale && s->dst.wscale) 2998 printf(" wscale=%u", 2999 s->dst.wscale & PF_WSCALE_MASK); 3000 printf("]"); 3001 } 3002 printf(" %u:%u", s->src.state, s->dst.state); 3003 if (s->rule) 3004 printf(" @%d", s->rule->nr); 3005 } 3006 } 3007 3008 void 3009 pf_print_flags(uint16_t f) 3010 { 3011 if (f) 3012 printf(" "); 3013 if (f & TH_FIN) 3014 printf("F"); 3015 if (f & TH_SYN) 3016 printf("S"); 3017 if (f & TH_RST) 3018 printf("R"); 3019 if (f & TH_PUSH) 3020 printf("P"); 3021 if (f & TH_ACK) 3022 printf("A"); 3023 if (f & TH_URG) 3024 printf("U"); 3025 if (f & TH_ECE) 3026 printf("E"); 3027 if (f & TH_CWR) 3028 printf("W"); 3029 if (f & TH_AE) 3030 printf("e"); 3031 } 3032 3033 #define PF_SET_SKIP_STEPS(i) \ 3034 do { \ 3035 while (head[i] != cur) { \ 3036 head[i]->skip[i] = cur; \ 3037 head[i] = TAILQ_NEXT(head[i], entries); \ 3038 } \ 3039 } while (0) 3040 3041 void 3042 pf_calc_skip_steps(struct pf_krulequeue *rules) 3043 { 3044 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 3045 int i; 3046 3047 cur = TAILQ_FIRST(rules); 3048 prev = cur; 3049 for (i = 0; i < PF_SKIP_COUNT; ++i) 3050 head[i] = cur; 3051 while (cur != NULL) { 3052 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 3053 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 3054 if (cur->direction != prev->direction) 3055 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 3056 if (cur->af != prev->af) 3057 PF_SET_SKIP_STEPS(PF_SKIP_AF); 3058 if (cur->proto != prev->proto) 3059 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 3060 if (cur->src.neg != prev->src.neg || 3061 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 3062 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 3063 if (cur->dst.neg != prev->dst.neg || 3064 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 3065 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 3066 if (cur->src.port[0] != prev->src.port[0] || 3067 cur->src.port[1] != prev->src.port[1] || 3068 cur->src.port_op != prev->src.port_op) 3069 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 3070 if (cur->dst.port[0] != prev->dst.port[0] || 3071 cur->dst.port[1] != prev->dst.port[1] || 3072 cur->dst.port_op != prev->dst.port_op) 3073 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 3074 3075 prev = cur; 3076 cur = TAILQ_NEXT(cur, entries); 3077 } 3078 for (i = 0; i < PF_SKIP_COUNT; ++i) 3079 PF_SET_SKIP_STEPS(i); 3080 } 3081 3082 int 3083 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 3084 { 3085 if (aw1->type != aw2->type) 3086 return (1); 3087 switch (aw1->type) { 3088 case PF_ADDR_ADDRMASK: 3089 case PF_ADDR_RANGE: 3090 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 3091 return (1); 3092 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 3093 return (1); 3094 return (0); 3095 case PF_ADDR_DYNIFTL: 3096 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 3097 case PF_ADDR_NONE: 3098 case PF_ADDR_NOROUTE: 3099 case PF_ADDR_URPFFAILED: 3100 return (0); 3101 case PF_ADDR_TABLE: 3102 return (aw1->p.tbl != aw2->p.tbl); 3103 default: 3104 printf("invalid address type: %d\n", aw1->type); 3105 return (1); 3106 } 3107 } 3108 3109 /** 3110 * Checksum updates are a little complicated because the checksum in the TCP/UDP 3111 * header isn't always a full checksum. In some cases (i.e. output) it's a 3112 * pseudo-header checksum, which is a partial checksum over src/dst IP 3113 * addresses, protocol number and length. 3114 * 3115 * That means we have the following cases: 3116 * * Input or forwarding: we don't have TSO, the checksum fields are full 3117 * checksums, we need to update the checksum whenever we change anything. 3118 * * Output (i.e. the checksum is a pseudo-header checksum): 3119 * x The field being updated is src/dst address or affects the length of 3120 * the packet. We need to update the pseudo-header checksum (note that this 3121 * checksum is not ones' complement). 3122 * x Some other field is being modified (e.g. src/dst port numbers): We 3123 * don't have to update anything. 3124 **/ 3125 u_int16_t 3126 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 3127 { 3128 u_int32_t x; 3129 3130 x = cksum + old - new; 3131 x = (x + (x >> 16)) & 0xffff; 3132 3133 /* optimise: eliminate a branch when not udp */ 3134 if (udp && cksum == 0x0000) 3135 return cksum; 3136 if (udp && x == 0x0000) 3137 x = 0xffff; 3138 3139 return (u_int16_t)(x); 3140 } 3141 3142 static void 3143 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 3144 u_int8_t udp) 3145 { 3146 u_int16_t old = htons(hi ? (*f << 8) : *f); 3147 u_int16_t new = htons(hi ? ( v << 8) : v); 3148 3149 if (*f == v) 3150 return; 3151 3152 *f = v; 3153 3154 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3155 return; 3156 3157 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 3158 } 3159 3160 void 3161 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 3162 bool hi, u_int8_t udp) 3163 { 3164 u_int8_t *fb = (u_int8_t *)f; 3165 u_int8_t *vb = (u_int8_t *)&v; 3166 3167 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3168 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3169 } 3170 3171 void 3172 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 3173 bool hi, u_int8_t udp) 3174 { 3175 u_int8_t *fb = (u_int8_t *)f; 3176 u_int8_t *vb = (u_int8_t *)&v; 3177 3178 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3179 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3180 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3181 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3182 } 3183 3184 u_int16_t 3185 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 3186 u_int16_t new, u_int8_t udp) 3187 { 3188 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3189 return (cksum); 3190 3191 return (pf_cksum_fixup(cksum, old, new, udp)); 3192 } 3193 3194 static void 3195 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 3196 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 3197 sa_family_t af, sa_family_t naf) 3198 { 3199 struct pf_addr ao; 3200 u_int16_t po = *p; 3201 3202 PF_ACPY(&ao, a, af); 3203 if (af == naf) 3204 PF_ACPY(a, an, af); 3205 3206 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3207 *pc = ~*pc; 3208 3209 *p = pn; 3210 3211 switch (af) { 3212 #ifdef INET 3213 case AF_INET: 3214 switch (naf) { 3215 case AF_INET: 3216 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3217 ao.addr16[0], an->addr16[0], 0), 3218 ao.addr16[1], an->addr16[1], 0); 3219 *p = pn; 3220 3221 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 3222 ao.addr16[0], an->addr16[0], u), 3223 ao.addr16[1], an->addr16[1], u); 3224 3225 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 3226 break; 3227 #ifdef INET6 3228 case AF_INET6: 3229 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3230 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3231 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 3232 ao.addr16[0], an->addr16[0], u), 3233 ao.addr16[1], an->addr16[1], u), 3234 0, an->addr16[2], u), 3235 0, an->addr16[3], u), 3236 0, an->addr16[4], u), 3237 0, an->addr16[5], u), 3238 0, an->addr16[6], u), 3239 0, an->addr16[7], u), 3240 po, pn, u); 3241 3242 /* XXXKP TODO *ic checksum? */ 3243 break; 3244 #endif /* INET6 */ 3245 } 3246 break; 3247 #endif /* INET */ 3248 #ifdef INET6 3249 case AF_INET6: 3250 switch (naf) { 3251 #ifdef INET 3252 case AF_INET: 3253 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3254 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3255 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 3256 ao.addr16[0], an->addr16[0], u), 3257 ao.addr16[1], an->addr16[1], u), 3258 ao.addr16[2], 0, u), 3259 ao.addr16[3], 0, u), 3260 ao.addr16[4], 0, u), 3261 ao.addr16[5], 0, u), 3262 ao.addr16[6], 0, u), 3263 ao.addr16[7], 0, u), 3264 po, pn, u); 3265 3266 /* XXXKP TODO *ic checksum? */ 3267 break; 3268 #endif /* INET */ 3269 case AF_INET6: 3270 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3271 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3272 pf_cksum_fixup(pf_cksum_fixup(*pc, 3273 ao.addr16[0], an->addr16[0], u), 3274 ao.addr16[1], an->addr16[1], u), 3275 ao.addr16[2], an->addr16[2], u), 3276 ao.addr16[3], an->addr16[3], u), 3277 ao.addr16[4], an->addr16[4], u), 3278 ao.addr16[5], an->addr16[5], u), 3279 ao.addr16[6], an->addr16[6], u), 3280 ao.addr16[7], an->addr16[7], u); 3281 3282 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 3283 break; 3284 } 3285 break; 3286 #endif /* INET6 */ 3287 } 3288 3289 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 3290 CSUM_DELAY_DATA_IPV6)) { 3291 *pc = ~*pc; 3292 if (! *pc) 3293 *pc = 0xffff; 3294 } 3295 } 3296 3297 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 3298 void 3299 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 3300 { 3301 u_int32_t ao; 3302 3303 memcpy(&ao, a, sizeof(ao)); 3304 memcpy(a, &an, sizeof(u_int32_t)); 3305 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 3306 ao % 65536, an % 65536, u); 3307 } 3308 3309 void 3310 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 3311 { 3312 u_int32_t ao; 3313 3314 memcpy(&ao, a, sizeof(ao)); 3315 memcpy(a, &an, sizeof(u_int32_t)); 3316 3317 *c = pf_proto_cksum_fixup(m, 3318 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 3319 ao % 65536, an % 65536, udp); 3320 } 3321 3322 #ifdef INET6 3323 static void 3324 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 3325 { 3326 struct pf_addr ao; 3327 3328 PF_ACPY(&ao, a, AF_INET6); 3329 PF_ACPY(a, an, AF_INET6); 3330 3331 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3332 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3333 pf_cksum_fixup(pf_cksum_fixup(*c, 3334 ao.addr16[0], an->addr16[0], u), 3335 ao.addr16[1], an->addr16[1], u), 3336 ao.addr16[2], an->addr16[2], u), 3337 ao.addr16[3], an->addr16[3], u), 3338 ao.addr16[4], an->addr16[4], u), 3339 ao.addr16[5], an->addr16[5], u), 3340 ao.addr16[6], an->addr16[6], u), 3341 ao.addr16[7], an->addr16[7], u); 3342 } 3343 #endif /* INET6 */ 3344 3345 static void 3346 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 3347 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 3348 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 3349 { 3350 struct pf_addr oia, ooa; 3351 3352 PF_ACPY(&oia, ia, af); 3353 if (oa) 3354 PF_ACPY(&ooa, oa, af); 3355 3356 /* Change inner protocol port, fix inner protocol checksum. */ 3357 if (ip != NULL) { 3358 u_int16_t oip = *ip; 3359 u_int32_t opc; 3360 3361 if (pc != NULL) 3362 opc = *pc; 3363 *ip = np; 3364 if (pc != NULL) 3365 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 3366 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 3367 if (pc != NULL) 3368 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 3369 } 3370 /* Change inner ip address, fix inner ip and icmp checksums. */ 3371 PF_ACPY(ia, na, af); 3372 switch (af) { 3373 #ifdef INET 3374 case AF_INET: { 3375 u_int32_t oh2c = *h2c; 3376 3377 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 3378 oia.addr16[0], ia->addr16[0], 0), 3379 oia.addr16[1], ia->addr16[1], 0); 3380 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3381 oia.addr16[0], ia->addr16[0], 0), 3382 oia.addr16[1], ia->addr16[1], 0); 3383 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 3384 break; 3385 } 3386 #endif /* INET */ 3387 #ifdef INET6 3388 case AF_INET6: 3389 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3390 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3391 pf_cksum_fixup(pf_cksum_fixup(*ic, 3392 oia.addr16[0], ia->addr16[0], u), 3393 oia.addr16[1], ia->addr16[1], u), 3394 oia.addr16[2], ia->addr16[2], u), 3395 oia.addr16[3], ia->addr16[3], u), 3396 oia.addr16[4], ia->addr16[4], u), 3397 oia.addr16[5], ia->addr16[5], u), 3398 oia.addr16[6], ia->addr16[6], u), 3399 oia.addr16[7], ia->addr16[7], u); 3400 break; 3401 #endif /* INET6 */ 3402 } 3403 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 3404 if (oa) { 3405 PF_ACPY(oa, na, af); 3406 switch (af) { 3407 #ifdef INET 3408 case AF_INET: 3409 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 3410 ooa.addr16[0], oa->addr16[0], 0), 3411 ooa.addr16[1], oa->addr16[1], 0); 3412 break; 3413 #endif /* INET */ 3414 #ifdef INET6 3415 case AF_INET6: 3416 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3417 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3418 pf_cksum_fixup(pf_cksum_fixup(*ic, 3419 ooa.addr16[0], oa->addr16[0], u), 3420 ooa.addr16[1], oa->addr16[1], u), 3421 ooa.addr16[2], oa->addr16[2], u), 3422 ooa.addr16[3], oa->addr16[3], u), 3423 ooa.addr16[4], oa->addr16[4], u), 3424 ooa.addr16[5], oa->addr16[5], u), 3425 ooa.addr16[6], oa->addr16[6], u), 3426 ooa.addr16[7], oa->addr16[7], u); 3427 break; 3428 #endif /* INET6 */ 3429 } 3430 } 3431 } 3432 3433 int 3434 pf_translate_af(struct pf_pdesc *pd) 3435 { 3436 #if defined(INET) && defined(INET6) 3437 struct mbuf *mp; 3438 struct ip *ip4; 3439 struct ip6_hdr *ip6; 3440 struct icmp6_hdr *icmp; 3441 int hlen; 3442 3443 hlen = pd->naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6); 3444 3445 /* trim the old header */ 3446 m_adj(pd->m, pd->off); 3447 3448 /* prepend a new one */ 3449 M_PREPEND(pd->m, hlen, M_NOWAIT); 3450 if (pd->m == NULL) 3451 return (-1); 3452 3453 switch (pd->naf) { 3454 case AF_INET: 3455 ip4 = mtod(pd->m, struct ip *); 3456 bzero(ip4, hlen); 3457 ip4->ip_v = IPVERSION; 3458 ip4->ip_hl = hlen >> 2; 3459 ip4->ip_len = htons(hlen + (pd->tot_len - pd->off)); 3460 ip_fillid(ip4); 3461 ip4->ip_off = htons(IP_DF); 3462 ip4->ip_ttl = pd->ttl; 3463 ip4->ip_p = pd->proto; 3464 ip4->ip_src = pd->nsaddr.v4; 3465 ip4->ip_dst = pd->ndaddr.v4; 3466 pd->src = (struct pf_addr *)&ip4->ip_src; 3467 pd->dst = (struct pf_addr *)&ip4->ip_dst; 3468 break; 3469 case AF_INET6: 3470 ip6 = mtod(pd->m, struct ip6_hdr *); 3471 bzero(ip6, hlen); 3472 ip6->ip6_vfc = IPV6_VERSION; 3473 ip6->ip6_plen = htons(pd->tot_len - pd->off); 3474 ip6->ip6_nxt = pd->proto; 3475 if (!pd->ttl || pd->ttl > IPV6_DEFHLIM) 3476 ip6->ip6_hlim = IPV6_DEFHLIM; 3477 else 3478 ip6->ip6_hlim = pd->ttl; 3479 ip6->ip6_src = pd->nsaddr.v6; 3480 ip6->ip6_dst = pd->ndaddr.v6; 3481 pd->src = (struct pf_addr *)&ip6->ip6_src; 3482 pd->dst = (struct pf_addr *)&ip6->ip6_dst; 3483 break; 3484 default: 3485 return (-1); 3486 } 3487 3488 /* recalculate icmp/icmp6 checksums */ 3489 if (pd->proto == IPPROTO_ICMP || pd->proto == IPPROTO_ICMPV6) { 3490 int off; 3491 if ((mp = m_pulldown(pd->m, hlen, sizeof(*icmp), &off)) == 3492 NULL) { 3493 pd->m = NULL; 3494 return (-1); 3495 } 3496 icmp = (struct icmp6_hdr *)(mp->m_data + off); 3497 icmp->icmp6_cksum = 0; 3498 icmp->icmp6_cksum = pd->naf == AF_INET ? 3499 in4_cksum(pd->m, 0, hlen, ntohs(ip4->ip_len) - hlen) : 3500 in6_cksum(pd->m, IPPROTO_ICMPV6, hlen, 3501 ntohs(ip6->ip6_plen)); 3502 } 3503 #endif /* INET && INET6 */ 3504 3505 return (0); 3506 } 3507 3508 int 3509 pf_change_icmp_af(struct mbuf *m, int off, struct pf_pdesc *pd, 3510 struct pf_pdesc *pd2, struct pf_addr *src, struct pf_addr *dst, 3511 sa_family_t af, sa_family_t naf) 3512 { 3513 #if defined(INET) && defined(INET6) 3514 struct mbuf *n = NULL; 3515 struct ip *ip4; 3516 struct ip6_hdr *ip6; 3517 int hlen, olen, mlen; 3518 3519 if (af == naf || (af != AF_INET && af != AF_INET6) || 3520 (naf != AF_INET && naf != AF_INET6)) 3521 return (-1); 3522 3523 /* split the mbuf chain on the inner ip/ip6 header boundary */ 3524 if ((n = m_split(m, off, M_NOWAIT)) == NULL) 3525 return (-1); 3526 3527 /* old header */ 3528 olen = pd2->off - off; 3529 /* new header */ 3530 hlen = naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6); 3531 /* data lenght */ 3532 mlen = m->m_pkthdr.len - pd2->off; 3533 3534 /* trim old header */ 3535 m_adj(n, olen); 3536 3537 /* prepend a new one */ 3538 M_PREPEND(n, hlen, M_NOWAIT); 3539 if (n == NULL) 3540 return (-1); 3541 3542 /* translate inner ip/ip6 header */ 3543 switch (naf) { 3544 case AF_INET: 3545 ip4 = mtod(n, struct ip *); 3546 bzero(ip4, sizeof(*ip4)); 3547 ip4->ip_v = IPVERSION; 3548 ip4->ip_hl = sizeof(*ip4) >> 2; 3549 ip4->ip_len = htons(sizeof(*ip4) + mlen); 3550 ip_fillid(ip4); 3551 ip4->ip_off = htons(IP_DF); 3552 ip4->ip_ttl = pd2->ttl; 3553 if (pd2->proto == IPPROTO_ICMPV6) 3554 ip4->ip_p = IPPROTO_ICMP; 3555 else 3556 ip4->ip_p = pd2->proto; 3557 ip4->ip_src = src->v4; 3558 ip4->ip_dst = dst->v4; 3559 ip4->ip_sum = in_cksum(n, ip4->ip_hl << 2); 3560 break; 3561 case AF_INET6: 3562 ip6 = mtod(n, struct ip6_hdr *); 3563 bzero(ip6, sizeof(*ip6)); 3564 ip6->ip6_vfc = IPV6_VERSION; 3565 ip6->ip6_plen = htons(mlen); 3566 if (pd2->proto == IPPROTO_ICMP) 3567 ip6->ip6_nxt = IPPROTO_ICMPV6; 3568 else 3569 ip6->ip6_nxt = pd2->proto; 3570 if (!pd2->ttl || pd2->ttl > IPV6_DEFHLIM) 3571 ip6->ip6_hlim = IPV6_DEFHLIM; 3572 else 3573 ip6->ip6_hlim = pd2->ttl; 3574 ip6->ip6_src = src->v6; 3575 ip6->ip6_dst = dst->v6; 3576 break; 3577 } 3578 3579 /* adjust payload offset and total packet length */ 3580 pd2->off += hlen - olen; 3581 pd->tot_len += hlen - olen; 3582 3583 /* merge modified inner packet with the original header */ 3584 mlen = n->m_pkthdr.len; 3585 m_cat(m, n); 3586 m->m_pkthdr.len += mlen; 3587 #endif /* INET && INET6 */ 3588 3589 return (0); 3590 } 3591 3592 #define PTR_IP(field) (offsetof(struct ip, field)) 3593 #define PTR_IP6(field) (offsetof(struct ip6_hdr, field)) 3594 3595 int 3596 pf_translate_icmp_af(int af, void *arg) 3597 { 3598 #if defined(INET) && defined(INET6) 3599 struct icmp *icmp4; 3600 struct icmp6_hdr *icmp6; 3601 u_int32_t mtu; 3602 int32_t ptr = -1; 3603 u_int8_t type; 3604 u_int8_t code; 3605 3606 switch (af) { 3607 case AF_INET: 3608 icmp6 = arg; 3609 type = icmp6->icmp6_type; 3610 code = icmp6->icmp6_code; 3611 mtu = ntohl(icmp6->icmp6_mtu); 3612 3613 switch (type) { 3614 case ICMP6_ECHO_REQUEST: 3615 type = ICMP_ECHO; 3616 break; 3617 case ICMP6_ECHO_REPLY: 3618 type = ICMP_ECHOREPLY; 3619 break; 3620 case ICMP6_DST_UNREACH: 3621 type = ICMP_UNREACH; 3622 switch (code) { 3623 case ICMP6_DST_UNREACH_NOROUTE: 3624 case ICMP6_DST_UNREACH_BEYONDSCOPE: 3625 case ICMP6_DST_UNREACH_ADDR: 3626 code = ICMP_UNREACH_HOST; 3627 break; 3628 case ICMP6_DST_UNREACH_ADMIN: 3629 code = ICMP_UNREACH_HOST_PROHIB; 3630 break; 3631 case ICMP6_DST_UNREACH_NOPORT: 3632 code = ICMP_UNREACH_PORT; 3633 break; 3634 default: 3635 return (-1); 3636 } 3637 break; 3638 case ICMP6_PACKET_TOO_BIG: 3639 type = ICMP_UNREACH; 3640 code = ICMP_UNREACH_NEEDFRAG; 3641 mtu -= 20; 3642 break; 3643 case ICMP6_TIME_EXCEEDED: 3644 type = ICMP_TIMXCEED; 3645 break; 3646 case ICMP6_PARAM_PROB: 3647 switch (code) { 3648 case ICMP6_PARAMPROB_HEADER: 3649 type = ICMP_PARAMPROB; 3650 code = ICMP_PARAMPROB_ERRATPTR; 3651 ptr = ntohl(icmp6->icmp6_pptr); 3652 3653 if (ptr == PTR_IP6(ip6_vfc)) 3654 ; /* preserve */ 3655 else if (ptr == PTR_IP6(ip6_vfc) + 1) 3656 ptr = PTR_IP(ip_tos); 3657 else if (ptr == PTR_IP6(ip6_plen) || 3658 ptr == PTR_IP6(ip6_plen) + 1) 3659 ptr = PTR_IP(ip_len); 3660 else if (ptr == PTR_IP6(ip6_nxt)) 3661 ptr = PTR_IP(ip_p); 3662 else if (ptr == PTR_IP6(ip6_hlim)) 3663 ptr = PTR_IP(ip_ttl); 3664 else if (ptr >= PTR_IP6(ip6_src) && 3665 ptr < PTR_IP6(ip6_dst)) 3666 ptr = PTR_IP(ip_src); 3667 else if (ptr >= PTR_IP6(ip6_dst) && 3668 ptr < sizeof(struct ip6_hdr)) 3669 ptr = PTR_IP(ip_dst); 3670 else { 3671 return (-1); 3672 } 3673 break; 3674 case ICMP6_PARAMPROB_NEXTHEADER: 3675 type = ICMP_UNREACH; 3676 code = ICMP_UNREACH_PROTOCOL; 3677 break; 3678 default: 3679 return (-1); 3680 } 3681 break; 3682 default: 3683 return (-1); 3684 } 3685 if (icmp6->icmp6_type != type) { 3686 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3687 icmp6->icmp6_type, type, 0); 3688 icmp6->icmp6_type = type; 3689 } 3690 if (icmp6->icmp6_code != code) { 3691 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3692 icmp6->icmp6_code, code, 0); 3693 icmp6->icmp6_code = code; 3694 } 3695 if (icmp6->icmp6_mtu != htonl(mtu)) { 3696 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3697 htons(ntohl(icmp6->icmp6_mtu)), htons(mtu), 0); 3698 /* aligns well with a icmpv4 nextmtu */ 3699 icmp6->icmp6_mtu = htonl(mtu); 3700 } 3701 if (ptr >= 0 && icmp6->icmp6_pptr != htonl(ptr)) { 3702 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3703 htons(ntohl(icmp6->icmp6_pptr)), htons(ptr), 0); 3704 /* icmpv4 pptr is a one most significant byte */ 3705 icmp6->icmp6_pptr = htonl(ptr << 24); 3706 } 3707 break; 3708 case AF_INET6: 3709 icmp4 = arg; 3710 type = icmp4->icmp_type; 3711 code = icmp4->icmp_code; 3712 mtu = ntohs(icmp4->icmp_nextmtu); 3713 3714 switch (type) { 3715 case ICMP_ECHO: 3716 type = ICMP6_ECHO_REQUEST; 3717 break; 3718 case ICMP_ECHOREPLY: 3719 type = ICMP6_ECHO_REPLY; 3720 break; 3721 case ICMP_UNREACH: 3722 type = ICMP6_DST_UNREACH; 3723 switch (code) { 3724 case ICMP_UNREACH_NET: 3725 case ICMP_UNREACH_HOST: 3726 case ICMP_UNREACH_NET_UNKNOWN: 3727 case ICMP_UNREACH_HOST_UNKNOWN: 3728 case ICMP_UNREACH_ISOLATED: 3729 case ICMP_UNREACH_TOSNET: 3730 case ICMP_UNREACH_TOSHOST: 3731 code = ICMP6_DST_UNREACH_NOROUTE; 3732 break; 3733 case ICMP_UNREACH_PORT: 3734 code = ICMP6_DST_UNREACH_NOPORT; 3735 break; 3736 case ICMP_UNREACH_NET_PROHIB: 3737 case ICMP_UNREACH_HOST_PROHIB: 3738 case ICMP_UNREACH_FILTER_PROHIB: 3739 case ICMP_UNREACH_PRECEDENCE_CUTOFF: 3740 code = ICMP6_DST_UNREACH_ADMIN; 3741 break; 3742 case ICMP_UNREACH_PROTOCOL: 3743 type = ICMP6_PARAM_PROB; 3744 code = ICMP6_PARAMPROB_NEXTHEADER; 3745 ptr = offsetof(struct ip6_hdr, ip6_nxt); 3746 break; 3747 case ICMP_UNREACH_NEEDFRAG: 3748 type = ICMP6_PACKET_TOO_BIG; 3749 code = 0; 3750 mtu += 20; 3751 break; 3752 default: 3753 return (-1); 3754 } 3755 break; 3756 case ICMP_TIMXCEED: 3757 type = ICMP6_TIME_EXCEEDED; 3758 break; 3759 case ICMP_PARAMPROB: 3760 type = ICMP6_PARAM_PROB; 3761 switch (code) { 3762 case ICMP_PARAMPROB_ERRATPTR: 3763 code = ICMP6_PARAMPROB_HEADER; 3764 break; 3765 case ICMP_PARAMPROB_LENGTH: 3766 code = ICMP6_PARAMPROB_HEADER; 3767 break; 3768 default: 3769 return (-1); 3770 } 3771 3772 ptr = icmp4->icmp_pptr; 3773 if (ptr == 0 || ptr == PTR_IP(ip_tos)) 3774 ; /* preserve */ 3775 else if (ptr == PTR_IP(ip_len) || 3776 ptr == PTR_IP(ip_len) + 1) 3777 ptr = PTR_IP6(ip6_plen); 3778 else if (ptr == PTR_IP(ip_ttl)) 3779 ptr = PTR_IP6(ip6_hlim); 3780 else if (ptr == PTR_IP(ip_p)) 3781 ptr = PTR_IP6(ip6_nxt); 3782 else if (ptr >= PTR_IP(ip_src) && ptr < PTR_IP(ip_dst)) 3783 ptr = PTR_IP6(ip6_src); 3784 else if (ptr >= PTR_IP(ip_dst) && 3785 ptr < sizeof(struct ip)) 3786 ptr = PTR_IP6(ip6_dst); 3787 else { 3788 return (-1); 3789 } 3790 break; 3791 default: 3792 return (-1); 3793 } 3794 if (icmp4->icmp_type != type) { 3795 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3796 icmp4->icmp_type, type, 0); 3797 icmp4->icmp_type = type; 3798 } 3799 if (icmp4->icmp_code != code) { 3800 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3801 icmp4->icmp_code, code, 0); 3802 icmp4->icmp_code = code; 3803 } 3804 if (icmp4->icmp_nextmtu != htons(mtu)) { 3805 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3806 icmp4->icmp_nextmtu, htons(mtu), 0); 3807 icmp4->icmp_nextmtu = htons(mtu); 3808 } 3809 if (ptr >= 0 && icmp4->icmp_void != ptr) { 3810 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3811 htons(icmp4->icmp_pptr), htons(ptr), 0); 3812 icmp4->icmp_void = htonl(ptr); 3813 } 3814 break; 3815 } 3816 #endif /* INET && INET6 */ 3817 3818 return (0); 3819 } 3820 3821 /* 3822 * Need to modulate the sequence numbers in the TCP SACK option 3823 * (credits to Krzysztof Pfaff for report and patch) 3824 */ 3825 static int 3826 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th, 3827 struct pf_state_peer *dst) 3828 { 3829 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 3830 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 3831 int copyback = 0, i, olen; 3832 struct sackblk sack; 3833 3834 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 3835 if (hlen < TCPOLEN_SACKLEN || 3836 !pf_pull_hdr(pd->m, pd->off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 3837 return 0; 3838 3839 while (hlen >= TCPOLEN_SACKLEN) { 3840 size_t startoff = opt - opts; 3841 olen = opt[1]; 3842 switch (*opt) { 3843 case TCPOPT_EOL: /* FALLTHROUGH */ 3844 case TCPOPT_NOP: 3845 opt++; 3846 hlen--; 3847 break; 3848 case TCPOPT_SACK: 3849 if (olen > hlen) 3850 olen = hlen; 3851 if (olen >= TCPOLEN_SACKLEN) { 3852 for (i = 2; i + TCPOLEN_SACK <= olen; 3853 i += TCPOLEN_SACK) { 3854 memcpy(&sack, &opt[i], sizeof(sack)); 3855 pf_patch_32_unaligned(pd->m, 3856 &th->th_sum, &sack.start, 3857 htonl(ntohl(sack.start) - dst->seqdiff), 3858 PF_ALGNMNT(startoff), 3859 0); 3860 pf_patch_32_unaligned(pd->m, &th->th_sum, 3861 &sack.end, 3862 htonl(ntohl(sack.end) - dst->seqdiff), 3863 PF_ALGNMNT(startoff), 3864 0); 3865 memcpy(&opt[i], &sack, sizeof(sack)); 3866 } 3867 copyback = 1; 3868 } 3869 /* FALLTHROUGH */ 3870 default: 3871 if (olen < 2) 3872 olen = 2; 3873 hlen -= olen; 3874 opt += olen; 3875 } 3876 } 3877 3878 if (copyback) 3879 m_copyback(pd->m, pd->off + sizeof(*th), thoptlen, (caddr_t)opts); 3880 return (copyback); 3881 } 3882 3883 struct mbuf * 3884 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 3885 const struct pf_addr *saddr, const struct pf_addr *daddr, 3886 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3887 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3888 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3889 { 3890 struct mbuf *m; 3891 int len, tlen; 3892 #ifdef INET 3893 struct ip *h = NULL; 3894 #endif /* INET */ 3895 #ifdef INET6 3896 struct ip6_hdr *h6 = NULL; 3897 #endif /* INET6 */ 3898 struct tcphdr *th; 3899 char *opt; 3900 struct pf_mtag *pf_mtag; 3901 3902 len = 0; 3903 th = NULL; 3904 3905 /* maximum segment size tcp option */ 3906 tlen = sizeof(struct tcphdr); 3907 if (mss) 3908 tlen += 4; 3909 3910 switch (af) { 3911 #ifdef INET 3912 case AF_INET: 3913 len = sizeof(struct ip) + tlen; 3914 break; 3915 #endif /* INET */ 3916 #ifdef INET6 3917 case AF_INET6: 3918 len = sizeof(struct ip6_hdr) + tlen; 3919 break; 3920 #endif /* INET6 */ 3921 } 3922 3923 m = m_gethdr(M_NOWAIT, MT_DATA); 3924 if (m == NULL) 3925 return (NULL); 3926 3927 #ifdef MAC 3928 mac_netinet_firewall_send(m); 3929 #endif 3930 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 3931 m_freem(m); 3932 return (NULL); 3933 } 3934 m->m_flags |= mbuf_flags; 3935 pf_mtag->tag = mtag_tag; 3936 pf_mtag->flags = mtag_flags; 3937 3938 if (rtableid >= 0) 3939 M_SETFIB(m, rtableid); 3940 3941 #ifdef ALTQ 3942 if (r != NULL && r->qid) { 3943 pf_mtag->qid = r->qid; 3944 3945 /* add hints for ecn */ 3946 pf_mtag->hdr = mtod(m, struct ip *); 3947 } 3948 #endif /* ALTQ */ 3949 m->m_data += max_linkhdr; 3950 m->m_pkthdr.len = m->m_len = len; 3951 /* The rest of the stack assumes a rcvif, so provide one. 3952 * This is a locally generated packet, so .. close enough. */ 3953 m->m_pkthdr.rcvif = V_loif; 3954 bzero(m->m_data, len); 3955 switch (af) { 3956 #ifdef INET 3957 case AF_INET: 3958 h = mtod(m, struct ip *); 3959 3960 /* IP header fields included in the TCP checksum */ 3961 h->ip_p = IPPROTO_TCP; 3962 h->ip_len = htons(tlen); 3963 h->ip_src.s_addr = saddr->v4.s_addr; 3964 h->ip_dst.s_addr = daddr->v4.s_addr; 3965 3966 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 3967 break; 3968 #endif /* INET */ 3969 #ifdef INET6 3970 case AF_INET6: 3971 h6 = mtod(m, struct ip6_hdr *); 3972 3973 /* IP header fields included in the TCP checksum */ 3974 h6->ip6_nxt = IPPROTO_TCP; 3975 h6->ip6_plen = htons(tlen); 3976 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 3977 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 3978 3979 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 3980 break; 3981 #endif /* INET6 */ 3982 } 3983 3984 /* TCP header */ 3985 th->th_sport = sport; 3986 th->th_dport = dport; 3987 th->th_seq = htonl(seq); 3988 th->th_ack = htonl(ack); 3989 th->th_off = tlen >> 2; 3990 tcp_set_flags(th, tcp_flags); 3991 th->th_win = htons(win); 3992 3993 if (mss) { 3994 opt = (char *)(th + 1); 3995 opt[0] = TCPOPT_MAXSEG; 3996 opt[1] = 4; 3997 HTONS(mss); 3998 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 3999 } 4000 4001 switch (af) { 4002 #ifdef INET 4003 case AF_INET: 4004 /* TCP checksum */ 4005 th->th_sum = in_cksum(m, len); 4006 4007 /* Finish the IP header */ 4008 h->ip_v = 4; 4009 h->ip_hl = sizeof(*h) >> 2; 4010 h->ip_tos = IPTOS_LOWDELAY; 4011 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 4012 h->ip_len = htons(len); 4013 h->ip_ttl = ttl ? ttl : V_ip_defttl; 4014 h->ip_sum = 0; 4015 break; 4016 #endif /* INET */ 4017 #ifdef INET6 4018 case AF_INET6: 4019 /* TCP checksum */ 4020 th->th_sum = in6_cksum(m, IPPROTO_TCP, 4021 sizeof(struct ip6_hdr), tlen); 4022 4023 h6->ip6_vfc |= IPV6_VERSION; 4024 h6->ip6_hlim = IPV6_DEFHLIM; 4025 break; 4026 #endif /* INET6 */ 4027 } 4028 4029 return (m); 4030 } 4031 4032 static void 4033 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd, 4034 uint8_t ttl, int rtableid) 4035 { 4036 struct mbuf *m; 4037 #ifdef INET 4038 struct ip *h = NULL; 4039 #endif /* INET */ 4040 #ifdef INET6 4041 struct ip6_hdr *h6 = NULL; 4042 #endif /* INET6 */ 4043 struct sctphdr *hdr; 4044 struct sctp_chunkhdr *chunk; 4045 struct pf_send_entry *pfse; 4046 int off = 0; 4047 4048 MPASS(af == pd->af); 4049 4050 m = m_gethdr(M_NOWAIT, MT_DATA); 4051 if (m == NULL) 4052 return; 4053 4054 m->m_data += max_linkhdr; 4055 m->m_flags |= M_SKIP_FIREWALL; 4056 /* The rest of the stack assumes a rcvif, so provide one. 4057 * This is a locally generated packet, so .. close enough. */ 4058 m->m_pkthdr.rcvif = V_loif; 4059 4060 /* IPv4|6 header */ 4061 switch (af) { 4062 #ifdef INET 4063 case AF_INET: 4064 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk)); 4065 4066 h = mtod(m, struct ip *); 4067 4068 /* IP header fields included in the TCP checksum */ 4069 4070 h->ip_p = IPPROTO_SCTP; 4071 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk)); 4072 h->ip_ttl = ttl ? ttl : V_ip_defttl; 4073 h->ip_src = pd->dst->v4; 4074 h->ip_dst = pd->src->v4; 4075 4076 off += sizeof(struct ip); 4077 break; 4078 #endif /* INET */ 4079 #ifdef INET6 4080 case AF_INET6: 4081 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk)); 4082 4083 h6 = mtod(m, struct ip6_hdr *); 4084 4085 /* IP header fields included in the TCP checksum */ 4086 h6->ip6_vfc |= IPV6_VERSION; 4087 h6->ip6_nxt = IPPROTO_SCTP; 4088 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk)); 4089 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim; 4090 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr)); 4091 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr)); 4092 4093 off += sizeof(struct ip6_hdr); 4094 break; 4095 #endif /* INET6 */ 4096 } 4097 4098 /* SCTP header */ 4099 hdr = mtodo(m, off); 4100 4101 hdr->src_port = pd->hdr.sctp.dest_port; 4102 hdr->dest_port = pd->hdr.sctp.src_port; 4103 hdr->v_tag = pd->sctp_initiate_tag; 4104 hdr->checksum = 0; 4105 4106 /* Abort chunk. */ 4107 off += sizeof(struct sctphdr); 4108 chunk = mtodo(m, off); 4109 4110 chunk->chunk_type = SCTP_ABORT_ASSOCIATION; 4111 chunk->chunk_length = htons(sizeof(*chunk)); 4112 4113 /* SCTP checksum */ 4114 off += sizeof(*chunk); 4115 m->m_pkthdr.len = m->m_len = off; 4116 4117 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk)); 4118 4119 if (rtableid >= 0) 4120 M_SETFIB(m, rtableid); 4121 4122 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 4123 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 4124 if (pfse == NULL) { 4125 m_freem(m); 4126 return; 4127 } 4128 4129 switch (af) { 4130 #ifdef INET 4131 case AF_INET: 4132 pfse->pfse_type = PFSE_IP; 4133 break; 4134 #endif /* INET */ 4135 #ifdef INET6 4136 case AF_INET6: 4137 pfse->pfse_type = PFSE_IP6; 4138 break; 4139 #endif /* INET6 */ 4140 } 4141 4142 pfse->pfse_m = m; 4143 pf_send(pfse); 4144 } 4145 4146 void 4147 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 4148 const struct pf_addr *saddr, const struct pf_addr *daddr, 4149 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 4150 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 4151 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 4152 { 4153 struct pf_send_entry *pfse; 4154 struct mbuf *m; 4155 4156 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags, 4157 win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, rtableid); 4158 if (m == NULL) 4159 return; 4160 4161 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 4162 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 4163 if (pfse == NULL) { 4164 m_freem(m); 4165 return; 4166 } 4167 4168 switch (af) { 4169 #ifdef INET 4170 case AF_INET: 4171 pfse->pfse_type = PFSE_IP; 4172 break; 4173 #endif /* INET */ 4174 #ifdef INET6 4175 case AF_INET6: 4176 pfse->pfse_type = PFSE_IP6; 4177 break; 4178 #endif /* INET6 */ 4179 } 4180 4181 pfse->pfse_m = m; 4182 pf_send(pfse); 4183 } 4184 4185 static void 4186 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 4187 struct pf_state_key *sk, struct tcphdr *th, 4188 u_int16_t bproto_sum, u_int16_t bip_sum, 4189 u_short *reason, int rtableid) 4190 { 4191 struct pf_addr * const saddr = pd->src; 4192 struct pf_addr * const daddr = pd->dst; 4193 4194 /* undo NAT changes, if they have taken place */ 4195 if (nr != NULL) { 4196 PF_ACPY(saddr, &sk->addr[pd->sidx], pd->af); 4197 PF_ACPY(daddr, &sk->addr[pd->didx], pd->af); 4198 if (pd->sport) 4199 *pd->sport = sk->port[pd->sidx]; 4200 if (pd->dport) 4201 *pd->dport = sk->port[pd->didx]; 4202 if (pd->ip_sum) 4203 *pd->ip_sum = bip_sum; 4204 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 4205 } 4206 if (pd->proto == IPPROTO_TCP && 4207 ((r->rule_flag & PFRULE_RETURNRST) || 4208 (r->rule_flag & PFRULE_RETURN)) && 4209 !(tcp_get_flags(th) & TH_RST)) { 4210 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 4211 4212 if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off, 4213 IPPROTO_TCP, pd->af)) 4214 REASON_SET(reason, PFRES_PROTCKSUM); 4215 else { 4216 if (tcp_get_flags(th) & TH_SYN) 4217 ack++; 4218 if (tcp_get_flags(th) & TH_FIN) 4219 ack++; 4220 pf_send_tcp(r, pd->af, pd->dst, 4221 pd->src, th->th_dport, th->th_sport, 4222 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 4223 r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid); 4224 } 4225 } else if (pd->proto == IPPROTO_SCTP && 4226 (r->rule_flag & PFRULE_RETURN)) { 4227 pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid); 4228 } else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET && 4229 r->return_icmp) 4230 pf_send_icmp(pd->m, r->return_icmp >> 8, 4231 r->return_icmp & 255, pd->af, r, rtableid); 4232 else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 && 4233 r->return_icmp6) 4234 pf_send_icmp(pd->m, r->return_icmp6 >> 8, 4235 r->return_icmp6 & 255, pd->af, r, rtableid); 4236 } 4237 4238 static int 4239 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 4240 { 4241 struct m_tag *mtag; 4242 u_int8_t mpcp; 4243 4244 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 4245 if (mtag == NULL) 4246 return (0); 4247 4248 if (prio == PF_PRIO_ZERO) 4249 prio = 0; 4250 4251 mpcp = *(uint8_t *)(mtag + 1); 4252 4253 return (mpcp == prio); 4254 } 4255 4256 static int 4257 pf_icmp_to_bandlim(uint8_t type) 4258 { 4259 switch (type) { 4260 case ICMP_ECHO: 4261 case ICMP_ECHOREPLY: 4262 return (BANDLIM_ICMP_ECHO); 4263 case ICMP_TSTAMP: 4264 case ICMP_TSTAMPREPLY: 4265 return (BANDLIM_ICMP_TSTAMP); 4266 case ICMP_UNREACH: 4267 default: 4268 return (BANDLIM_ICMP_UNREACH); 4269 } 4270 } 4271 4272 static void 4273 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 4274 struct pf_krule *r, int rtableid) 4275 { 4276 struct pf_send_entry *pfse; 4277 struct mbuf *m0; 4278 struct pf_mtag *pf_mtag; 4279 4280 /* ICMP packet rate limitation. */ 4281 switch (af) { 4282 #ifdef INET6 4283 case AF_INET6: 4284 if (icmp6_ratelimit(NULL, type, code)) 4285 return; 4286 break; 4287 #endif 4288 #ifdef INET 4289 case AF_INET: 4290 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 4291 return; 4292 break; 4293 #endif 4294 } 4295 4296 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 4297 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 4298 if (pfse == NULL) 4299 return; 4300 4301 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 4302 free(pfse, M_PFTEMP); 4303 return; 4304 } 4305 4306 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 4307 free(pfse, M_PFTEMP); 4308 return; 4309 } 4310 /* XXX: revisit */ 4311 m0->m_flags |= M_SKIP_FIREWALL; 4312 4313 if (rtableid >= 0) 4314 M_SETFIB(m0, rtableid); 4315 4316 #ifdef ALTQ 4317 if (r->qid) { 4318 pf_mtag->qid = r->qid; 4319 /* add hints for ecn */ 4320 pf_mtag->hdr = mtod(m0, struct ip *); 4321 } 4322 #endif /* ALTQ */ 4323 4324 switch (af) { 4325 #ifdef INET 4326 case AF_INET: 4327 pfse->pfse_type = PFSE_ICMP; 4328 break; 4329 #endif /* INET */ 4330 #ifdef INET6 4331 case AF_INET6: 4332 pfse->pfse_type = PFSE_ICMP6; 4333 break; 4334 #endif /* INET6 */ 4335 } 4336 pfse->pfse_m = m0; 4337 pfse->icmpopts.type = type; 4338 pfse->icmpopts.code = code; 4339 pf_send(pfse); 4340 } 4341 4342 /* 4343 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 4344 * If n is 0, they match if they are equal. If n is != 0, they match if they 4345 * are different. 4346 */ 4347 int 4348 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 4349 struct pf_addr *b, sa_family_t af) 4350 { 4351 int match = 0; 4352 4353 switch (af) { 4354 #ifdef INET 4355 case AF_INET: 4356 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4)) 4357 match++; 4358 break; 4359 #endif /* INET */ 4360 #ifdef INET6 4361 case AF_INET6: 4362 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6)) 4363 match++; 4364 break; 4365 #endif /* INET6 */ 4366 } 4367 if (match) { 4368 if (n) 4369 return (0); 4370 else 4371 return (1); 4372 } else { 4373 if (n) 4374 return (1); 4375 else 4376 return (0); 4377 } 4378 } 4379 4380 /* 4381 * Return 1 if b <= a <= e, otherwise return 0. 4382 */ 4383 int 4384 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 4385 struct pf_addr *a, sa_family_t af) 4386 { 4387 switch (af) { 4388 #ifdef INET 4389 case AF_INET: 4390 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 4391 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 4392 return (0); 4393 break; 4394 #endif /* INET */ 4395 #ifdef INET6 4396 case AF_INET6: { 4397 int i; 4398 4399 /* check a >= b */ 4400 for (i = 0; i < 4; ++i) 4401 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 4402 break; 4403 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 4404 return (0); 4405 /* check a <= e */ 4406 for (i = 0; i < 4; ++i) 4407 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 4408 break; 4409 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 4410 return (0); 4411 break; 4412 } 4413 #endif /* INET6 */ 4414 } 4415 return (1); 4416 } 4417 4418 static int 4419 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 4420 { 4421 switch (op) { 4422 case PF_OP_IRG: 4423 return ((p > a1) && (p < a2)); 4424 case PF_OP_XRG: 4425 return ((p < a1) || (p > a2)); 4426 case PF_OP_RRG: 4427 return ((p >= a1) && (p <= a2)); 4428 case PF_OP_EQ: 4429 return (p == a1); 4430 case PF_OP_NE: 4431 return (p != a1); 4432 case PF_OP_LT: 4433 return (p < a1); 4434 case PF_OP_LE: 4435 return (p <= a1); 4436 case PF_OP_GT: 4437 return (p > a1); 4438 case PF_OP_GE: 4439 return (p >= a1); 4440 } 4441 return (0); /* never reached */ 4442 } 4443 4444 int 4445 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 4446 { 4447 NTOHS(a1); 4448 NTOHS(a2); 4449 NTOHS(p); 4450 return (pf_match(op, a1, a2, p)); 4451 } 4452 4453 static int 4454 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 4455 { 4456 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 4457 return (0); 4458 return (pf_match(op, a1, a2, u)); 4459 } 4460 4461 static int 4462 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 4463 { 4464 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 4465 return (0); 4466 return (pf_match(op, a1, a2, g)); 4467 } 4468 4469 int 4470 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 4471 { 4472 if (*tag == -1) 4473 *tag = mtag; 4474 4475 return ((!r->match_tag_not && r->match_tag == *tag) || 4476 (r->match_tag_not && r->match_tag != *tag)); 4477 } 4478 4479 static int 4480 pf_match_rcvif(struct mbuf *m, struct pf_krule *r) 4481 { 4482 struct ifnet *ifp = m->m_pkthdr.rcvif; 4483 struct pfi_kkif *kif; 4484 4485 if (ifp == NULL) 4486 return (0); 4487 4488 kif = (struct pfi_kkif *)ifp->if_pf_kif; 4489 4490 if (kif == NULL) { 4491 DPFPRINTF(PF_DEBUG_URGENT, 4492 ("pf_test_via: kif == NULL, @%d via %s\n", r->nr, 4493 r->rcv_ifname)); 4494 return (0); 4495 } 4496 4497 return (pfi_kkif_match(r->rcv_kif, kif)); 4498 } 4499 4500 int 4501 pf_tag_packet(struct pf_pdesc *pd, int tag) 4502 { 4503 4504 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 4505 4506 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) 4507 return (ENOMEM); 4508 4509 pd->pf_mtag->tag = tag; 4510 4511 return (0); 4512 } 4513 4514 #define PF_ANCHOR_STACKSIZE 32 4515 struct pf_kanchor_stackframe { 4516 struct pf_kruleset *rs; 4517 struct pf_krule *r; /* XXX: + match bit */ 4518 struct pf_kanchor *child; 4519 }; 4520 4521 /* 4522 * XXX: We rely on malloc(9) returning pointer aligned addresses. 4523 */ 4524 #define PF_ANCHORSTACK_MATCH 0x00000001 4525 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 4526 4527 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4528 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 4529 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4530 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4531 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4532 } while (0) 4533 4534 void 4535 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 4536 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 4537 int *match) 4538 { 4539 struct pf_kanchor_stackframe *f; 4540 4541 PF_RULES_RASSERT(); 4542 4543 if (match) 4544 *match = 0; 4545 if (*depth >= PF_ANCHOR_STACKSIZE) { 4546 printf("%s: anchor stack overflow on %s\n", 4547 __func__, (*r)->anchor->name); 4548 *r = TAILQ_NEXT(*r, entries); 4549 return; 4550 } else if (*depth == 0 && a != NULL) 4551 *a = *r; 4552 f = stack + (*depth)++; 4553 f->rs = *rs; 4554 f->r = *r; 4555 if ((*r)->anchor_wildcard) { 4556 struct pf_kanchor_node *parent = &(*r)->anchor->children; 4557 4558 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 4559 *r = NULL; 4560 return; 4561 } 4562 *rs = &f->child->ruleset; 4563 } else { 4564 f->child = NULL; 4565 *rs = &(*r)->anchor->ruleset; 4566 } 4567 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4568 } 4569 4570 int 4571 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 4572 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 4573 int *match) 4574 { 4575 struct pf_kanchor_stackframe *f; 4576 struct pf_krule *fr; 4577 int quick = 0; 4578 4579 PF_RULES_RASSERT(); 4580 4581 do { 4582 if (*depth <= 0) 4583 break; 4584 f = stack + *depth - 1; 4585 fr = PF_ANCHOR_RULE(f); 4586 if (f->child != NULL) { 4587 /* 4588 * This block traverses through 4589 * a wildcard anchor. 4590 */ 4591 if (match != NULL && *match) { 4592 /* 4593 * If any of "*" matched, then 4594 * "foo/ *" matched, mark frame 4595 * appropriately. 4596 */ 4597 PF_ANCHOR_SET_MATCH(f); 4598 *match = 0; 4599 } 4600 f->child = RB_NEXT(pf_kanchor_node, 4601 &fr->anchor->children, f->child); 4602 if (f->child != NULL) { 4603 *rs = &f->child->ruleset; 4604 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4605 if (*r == NULL) 4606 continue; 4607 else 4608 break; 4609 } 4610 } 4611 (*depth)--; 4612 if (*depth == 0 && a != NULL) 4613 *a = NULL; 4614 *rs = f->rs; 4615 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 4616 quick = fr->quick; 4617 *r = TAILQ_NEXT(fr, entries); 4618 } while (*r == NULL); 4619 4620 return (quick); 4621 } 4622 4623 struct pf_keth_anchor_stackframe { 4624 struct pf_keth_ruleset *rs; 4625 struct pf_keth_rule *r; /* XXX: + match bit */ 4626 struct pf_keth_anchor *child; 4627 }; 4628 4629 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4630 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 4631 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4632 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4633 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4634 } while (0) 4635 4636 void 4637 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4638 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4639 struct pf_keth_rule **a, int *match) 4640 { 4641 struct pf_keth_anchor_stackframe *f; 4642 4643 NET_EPOCH_ASSERT(); 4644 4645 if (match) 4646 *match = 0; 4647 if (*depth >= PF_ANCHOR_STACKSIZE) { 4648 printf("%s: anchor stack overflow on %s\n", 4649 __func__, (*r)->anchor->name); 4650 *r = TAILQ_NEXT(*r, entries); 4651 return; 4652 } else if (*depth == 0 && a != NULL) 4653 *a = *r; 4654 f = stack + (*depth)++; 4655 f->rs = *rs; 4656 f->r = *r; 4657 if ((*r)->anchor_wildcard) { 4658 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 4659 4660 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 4661 *r = NULL; 4662 return; 4663 } 4664 *rs = &f->child->ruleset; 4665 } else { 4666 f->child = NULL; 4667 *rs = &(*r)->anchor->ruleset; 4668 } 4669 *r = TAILQ_FIRST((*rs)->active.rules); 4670 } 4671 4672 int 4673 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4674 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4675 struct pf_keth_rule **a, int *match) 4676 { 4677 struct pf_keth_anchor_stackframe *f; 4678 struct pf_keth_rule *fr; 4679 int quick = 0; 4680 4681 NET_EPOCH_ASSERT(); 4682 4683 do { 4684 if (*depth <= 0) 4685 break; 4686 f = stack + *depth - 1; 4687 fr = PF_ETH_ANCHOR_RULE(f); 4688 if (f->child != NULL) { 4689 /* 4690 * This block traverses through 4691 * a wildcard anchor. 4692 */ 4693 if (match != NULL && *match) { 4694 /* 4695 * If any of "*" matched, then 4696 * "foo/ *" matched, mark frame 4697 * appropriately. 4698 */ 4699 PF_ETH_ANCHOR_SET_MATCH(f); 4700 *match = 0; 4701 } 4702 f->child = RB_NEXT(pf_keth_anchor_node, 4703 &fr->anchor->children, f->child); 4704 if (f->child != NULL) { 4705 *rs = &f->child->ruleset; 4706 *r = TAILQ_FIRST((*rs)->active.rules); 4707 if (*r == NULL) 4708 continue; 4709 else 4710 break; 4711 } 4712 } 4713 (*depth)--; 4714 if (*depth == 0 && a != NULL) 4715 *a = NULL; 4716 *rs = f->rs; 4717 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 4718 quick = fr->quick; 4719 *r = TAILQ_NEXT(fr, entries); 4720 } while (*r == NULL); 4721 4722 return (quick); 4723 } 4724 4725 #ifdef INET6 4726 void 4727 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 4728 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 4729 { 4730 switch (af) { 4731 #ifdef INET 4732 case AF_INET: 4733 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4734 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4735 break; 4736 #endif /* INET */ 4737 case AF_INET6: 4738 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4739 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4740 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 4741 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 4742 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 4743 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 4744 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 4745 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 4746 break; 4747 } 4748 } 4749 4750 void 4751 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 4752 { 4753 switch (af) { 4754 #ifdef INET 4755 case AF_INET: 4756 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 4757 break; 4758 #endif /* INET */ 4759 case AF_INET6: 4760 if (addr->addr32[3] == 0xffffffff) { 4761 addr->addr32[3] = 0; 4762 if (addr->addr32[2] == 0xffffffff) { 4763 addr->addr32[2] = 0; 4764 if (addr->addr32[1] == 0xffffffff) { 4765 addr->addr32[1] = 0; 4766 addr->addr32[0] = 4767 htonl(ntohl(addr->addr32[0]) + 1); 4768 } else 4769 addr->addr32[1] = 4770 htonl(ntohl(addr->addr32[1]) + 1); 4771 } else 4772 addr->addr32[2] = 4773 htonl(ntohl(addr->addr32[2]) + 1); 4774 } else 4775 addr->addr32[3] = 4776 htonl(ntohl(addr->addr32[3]) + 1); 4777 break; 4778 } 4779 } 4780 #endif /* INET6 */ 4781 4782 void 4783 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 4784 { 4785 /* 4786 * Modern rules use the same flags in rules as they do in states. 4787 */ 4788 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 4789 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 4790 4791 /* 4792 * Old-style scrub rules have different flags which need to be translated. 4793 */ 4794 if (r->rule_flag & PFRULE_RANDOMID) 4795 a->flags |= PFSTATE_RANDOMID; 4796 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) { 4797 a->flags |= PFSTATE_SETTOS; 4798 a->set_tos = r->set_tos; 4799 } 4800 4801 if (r->qid) 4802 a->qid = r->qid; 4803 if (r->pqid) 4804 a->pqid = r->pqid; 4805 if (r->rtableid >= 0) 4806 a->rtableid = r->rtableid; 4807 a->log |= r->log; 4808 if (r->min_ttl) 4809 a->min_ttl = r->min_ttl; 4810 if (r->max_mss) 4811 a->max_mss = r->max_mss; 4812 if (r->dnpipe) 4813 a->dnpipe = r->dnpipe; 4814 if (r->dnrpipe) 4815 a->dnrpipe = r->dnrpipe; 4816 if (r->dnpipe || r->dnrpipe) { 4817 if (r->free_flags & PFRULE_DN_IS_PIPE) 4818 a->flags |= PFSTATE_DN_IS_PIPE; 4819 else 4820 a->flags &= ~PFSTATE_DN_IS_PIPE; 4821 } 4822 if (r->scrub_flags & PFSTATE_SETPRIO) { 4823 a->set_prio[0] = r->set_prio[0]; 4824 a->set_prio[1] = r->set_prio[1]; 4825 } 4826 } 4827 4828 int 4829 pf_socket_lookup(struct pf_pdesc *pd) 4830 { 4831 struct pf_addr *saddr, *daddr; 4832 u_int16_t sport, dport; 4833 struct inpcbinfo *pi; 4834 struct inpcb *inp; 4835 4836 pd->lookup.uid = UID_MAX; 4837 pd->lookup.gid = GID_MAX; 4838 4839 switch (pd->proto) { 4840 case IPPROTO_TCP: 4841 sport = pd->hdr.tcp.th_sport; 4842 dport = pd->hdr.tcp.th_dport; 4843 pi = &V_tcbinfo; 4844 break; 4845 case IPPROTO_UDP: 4846 sport = pd->hdr.udp.uh_sport; 4847 dport = pd->hdr.udp.uh_dport; 4848 pi = &V_udbinfo; 4849 break; 4850 default: 4851 return (-1); 4852 } 4853 if (pd->dir == PF_IN) { 4854 saddr = pd->src; 4855 daddr = pd->dst; 4856 } else { 4857 u_int16_t p; 4858 4859 p = sport; 4860 sport = dport; 4861 dport = p; 4862 saddr = pd->dst; 4863 daddr = pd->src; 4864 } 4865 switch (pd->af) { 4866 #ifdef INET 4867 case AF_INET: 4868 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 4869 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m); 4870 if (inp == NULL) { 4871 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 4872 daddr->v4, dport, INPLOOKUP_WILDCARD | 4873 INPLOOKUP_RLOCKPCB, NULL, pd->m); 4874 if (inp == NULL) 4875 return (-1); 4876 } 4877 break; 4878 #endif /* INET */ 4879 #ifdef INET6 4880 case AF_INET6: 4881 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 4882 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m); 4883 if (inp == NULL) { 4884 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 4885 &daddr->v6, dport, INPLOOKUP_WILDCARD | 4886 INPLOOKUP_RLOCKPCB, NULL, pd->m); 4887 if (inp == NULL) 4888 return (-1); 4889 } 4890 break; 4891 #endif /* INET6 */ 4892 } 4893 INP_RLOCK_ASSERT(inp); 4894 pd->lookup.uid = inp->inp_cred->cr_uid; 4895 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4896 INP_RUNLOCK(inp); 4897 4898 return (1); 4899 } 4900 4901 u_int8_t 4902 pf_get_wscale(struct pf_pdesc *pd) 4903 { 4904 struct tcphdr *th = &pd->hdr.tcp; 4905 int hlen; 4906 u_int8_t hdr[60]; 4907 u_int8_t *opt, optlen; 4908 u_int8_t wscale = 0; 4909 4910 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */ 4911 if (hlen <= sizeof(struct tcphdr)) 4912 return (0); 4913 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af)) 4914 return (0); 4915 opt = hdr + sizeof(struct tcphdr); 4916 hlen -= sizeof(struct tcphdr); 4917 while (hlen >= 3) { 4918 switch (*opt) { 4919 case TCPOPT_EOL: 4920 case TCPOPT_NOP: 4921 ++opt; 4922 --hlen; 4923 break; 4924 case TCPOPT_WINDOW: 4925 wscale = opt[2]; 4926 if (wscale > TCP_MAX_WINSHIFT) 4927 wscale = TCP_MAX_WINSHIFT; 4928 wscale |= PF_WSCALE_FLAG; 4929 /* FALLTHROUGH */ 4930 default: 4931 optlen = opt[1]; 4932 if (optlen < 2) 4933 optlen = 2; 4934 hlen -= optlen; 4935 opt += optlen; 4936 break; 4937 } 4938 } 4939 return (wscale); 4940 } 4941 4942 u_int16_t 4943 pf_get_mss(struct pf_pdesc *pd) 4944 { 4945 struct tcphdr *th = &pd->hdr.tcp; 4946 int hlen; 4947 u_int8_t hdr[60]; 4948 u_int8_t *opt, optlen; 4949 u_int16_t mss = V_tcp_mssdflt; 4950 4951 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */ 4952 if (hlen <= sizeof(struct tcphdr)) 4953 return (0); 4954 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af)) 4955 return (0); 4956 opt = hdr + sizeof(struct tcphdr); 4957 hlen -= sizeof(struct tcphdr); 4958 while (hlen >= TCPOLEN_MAXSEG) { 4959 switch (*opt) { 4960 case TCPOPT_EOL: 4961 case TCPOPT_NOP: 4962 ++opt; 4963 --hlen; 4964 break; 4965 case TCPOPT_MAXSEG: 4966 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 4967 NTOHS(mss); 4968 /* FALLTHROUGH */ 4969 default: 4970 optlen = opt[1]; 4971 if (optlen < 2) 4972 optlen = 2; 4973 hlen -= optlen; 4974 opt += optlen; 4975 break; 4976 } 4977 } 4978 return (mss); 4979 } 4980 4981 static u_int16_t 4982 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 4983 { 4984 struct nhop_object *nh; 4985 #ifdef INET6 4986 struct in6_addr dst6; 4987 uint32_t scopeid; 4988 #endif /* INET6 */ 4989 int hlen = 0; 4990 uint16_t mss = 0; 4991 4992 NET_EPOCH_ASSERT(); 4993 4994 switch (af) { 4995 #ifdef INET 4996 case AF_INET: 4997 hlen = sizeof(struct ip); 4998 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 4999 if (nh != NULL) 5000 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 5001 break; 5002 #endif /* INET */ 5003 #ifdef INET6 5004 case AF_INET6: 5005 hlen = sizeof(struct ip6_hdr); 5006 in6_splitscope(&addr->v6, &dst6, &scopeid); 5007 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 5008 if (nh != NULL) 5009 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 5010 break; 5011 #endif /* INET6 */ 5012 } 5013 5014 mss = max(V_tcp_mssdflt, mss); 5015 mss = min(mss, offer); 5016 mss = max(mss, 64); /* sanity - at least max opt space */ 5017 return (mss); 5018 } 5019 5020 static u_int32_t 5021 pf_tcp_iss(struct pf_pdesc *pd) 5022 { 5023 MD5_CTX ctx; 5024 u_int32_t digest[4]; 5025 5026 if (V_pf_tcp_secret_init == 0) { 5027 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 5028 MD5Init(&V_pf_tcp_secret_ctx); 5029 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 5030 sizeof(V_pf_tcp_secret)); 5031 V_pf_tcp_secret_init = 1; 5032 } 5033 5034 ctx = V_pf_tcp_secret_ctx; 5035 5036 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 5037 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 5038 switch (pd->af) { 5039 case AF_INET6: 5040 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 5041 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 5042 break; 5043 case AF_INET: 5044 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 5045 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 5046 break; 5047 } 5048 MD5Final((u_char *)digest, &ctx); 5049 V_pf_tcp_iss_off += 4096; 5050 #define ISN_RANDOM_INCREMENT (4096 - 1) 5051 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 5052 V_pf_tcp_iss_off); 5053 #undef ISN_RANDOM_INCREMENT 5054 } 5055 5056 static bool 5057 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 5058 { 5059 bool match = true; 5060 5061 /* Always matches if not set */ 5062 if (! r->isset) 5063 return (!r->neg); 5064 5065 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 5066 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 5067 match = false; 5068 break; 5069 } 5070 } 5071 5072 return (match ^ r->neg); 5073 } 5074 5075 static int 5076 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 5077 { 5078 if (*tag == -1) 5079 *tag = mtag; 5080 5081 return ((!r->match_tag_not && r->match_tag == *tag) || 5082 (r->match_tag_not && r->match_tag != *tag)); 5083 } 5084 5085 static void 5086 pf_bridge_to(struct ifnet *ifp, struct mbuf *m) 5087 { 5088 /* If we don't have the interface drop the packet. */ 5089 if (ifp == NULL) { 5090 m_freem(m); 5091 return; 5092 } 5093 5094 switch (ifp->if_type) { 5095 case IFT_ETHER: 5096 case IFT_XETHER: 5097 case IFT_L2VLAN: 5098 case IFT_BRIDGE: 5099 case IFT_IEEE8023ADLAG: 5100 break; 5101 default: 5102 m_freem(m); 5103 return; 5104 } 5105 5106 ifp->if_transmit(ifp, m); 5107 } 5108 5109 static int 5110 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 5111 { 5112 #ifdef INET 5113 struct ip ip; 5114 #endif 5115 #ifdef INET6 5116 struct ip6_hdr ip6; 5117 #endif 5118 struct mbuf *m = *m0; 5119 struct ether_header *e; 5120 struct pf_keth_rule *r, *rm, *a = NULL; 5121 struct pf_keth_ruleset *ruleset = NULL; 5122 struct pf_mtag *mtag; 5123 struct pf_keth_ruleq *rules; 5124 struct pf_addr *src = NULL, *dst = NULL; 5125 struct pfi_kkif *bridge_to; 5126 sa_family_t af = 0; 5127 uint16_t proto; 5128 int asd = 0, match = 0; 5129 int tag = -1; 5130 uint8_t action; 5131 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 5132 5133 MPASS(kif->pfik_ifp->if_vnet == curvnet); 5134 NET_EPOCH_ASSERT(); 5135 5136 PF_RULES_RLOCK_TRACKER; 5137 5138 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 5139 5140 mtag = pf_find_mtag(m); 5141 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 5142 /* Dummynet re-injects packets after they've 5143 * completed their delay. We've already 5144 * processed them, so pass unconditionally. */ 5145 5146 /* But only once. We may see the packet multiple times (e.g. 5147 * PFIL_IN/PFIL_OUT). */ 5148 pf_dummynet_flag_remove(m, mtag); 5149 5150 return (PF_PASS); 5151 } 5152 5153 ruleset = V_pf_keth; 5154 rules = ck_pr_load_ptr(&ruleset->active.rules); 5155 r = TAILQ_FIRST(rules); 5156 rm = NULL; 5157 5158 if (__predict_false(m->m_len < sizeof(struct ether_header)) && 5159 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) { 5160 DPFPRINTF(PF_DEBUG_URGENT, 5161 ("pf_test_eth_rule: m_len < sizeof(struct ether_header)" 5162 ", pullup failed\n")); 5163 return (PF_DROP); 5164 } 5165 e = mtod(m, struct ether_header *); 5166 proto = ntohs(e->ether_type); 5167 5168 switch (proto) { 5169 #ifdef INET 5170 case ETHERTYPE_IP: { 5171 if (m_length(m, NULL) < (sizeof(struct ether_header) + 5172 sizeof(ip))) 5173 return (PF_DROP); 5174 5175 af = AF_INET; 5176 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 5177 (caddr_t)&ip); 5178 src = (struct pf_addr *)&ip.ip_src; 5179 dst = (struct pf_addr *)&ip.ip_dst; 5180 break; 5181 } 5182 #endif /* INET */ 5183 #ifdef INET6 5184 case ETHERTYPE_IPV6: { 5185 if (m_length(m, NULL) < (sizeof(struct ether_header) + 5186 sizeof(ip6))) 5187 return (PF_DROP); 5188 5189 af = AF_INET6; 5190 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 5191 (caddr_t)&ip6); 5192 src = (struct pf_addr *)&ip6.ip6_src; 5193 dst = (struct pf_addr *)&ip6.ip6_dst; 5194 break; 5195 } 5196 #endif /* INET6 */ 5197 } 5198 5199 PF_RULES_RLOCK(); 5200 5201 while (r != NULL) { 5202 counter_u64_add(r->evaluations, 1); 5203 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 5204 5205 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 5206 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5207 "kif"); 5208 r = r->skip[PFE_SKIP_IFP].ptr; 5209 } 5210 else if (r->direction && r->direction != dir) { 5211 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5212 "dir"); 5213 r = r->skip[PFE_SKIP_DIR].ptr; 5214 } 5215 else if (r->proto && r->proto != proto) { 5216 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5217 "proto"); 5218 r = r->skip[PFE_SKIP_PROTO].ptr; 5219 } 5220 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 5221 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5222 "src"); 5223 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 5224 } 5225 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 5226 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5227 "dst"); 5228 r = r->skip[PFE_SKIP_DST_ADDR].ptr; 5229 } 5230 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 5231 r->ipsrc.neg, kif, M_GETFIB(m))) { 5232 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5233 "ip_src"); 5234 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr; 5235 } 5236 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 5237 r->ipdst.neg, kif, M_GETFIB(m))) { 5238 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5239 "ip_dst"); 5240 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr; 5241 } 5242 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 5243 mtag ? mtag->tag : 0)) { 5244 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5245 "match_tag"); 5246 r = TAILQ_NEXT(r, entries); 5247 } 5248 else { 5249 if (r->tag) 5250 tag = r->tag; 5251 if (r->anchor == NULL) { 5252 /* Rule matches */ 5253 rm = r; 5254 5255 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 5256 5257 if (r->quick) 5258 break; 5259 5260 r = TAILQ_NEXT(r, entries); 5261 } else { 5262 pf_step_into_keth_anchor(anchor_stack, &asd, 5263 &ruleset, &r, &a, &match); 5264 } 5265 } 5266 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 5267 &ruleset, &r, &a, &match)) 5268 break; 5269 } 5270 5271 r = rm; 5272 5273 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 5274 5275 /* Default to pass. */ 5276 if (r == NULL) { 5277 PF_RULES_RUNLOCK(); 5278 return (PF_PASS); 5279 } 5280 5281 /* Execute action. */ 5282 counter_u64_add(r->packets[dir == PF_OUT], 1); 5283 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 5284 pf_update_timestamp(r); 5285 5286 /* Shortcut. Don't tag if we're just going to drop anyway. */ 5287 if (r->action == PF_DROP) { 5288 PF_RULES_RUNLOCK(); 5289 return (PF_DROP); 5290 } 5291 5292 if (tag > 0) { 5293 if (mtag == NULL) 5294 mtag = pf_get_mtag(m); 5295 if (mtag == NULL) { 5296 PF_RULES_RUNLOCK(); 5297 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5298 return (PF_DROP); 5299 } 5300 mtag->tag = tag; 5301 } 5302 5303 if (r->qid != 0) { 5304 if (mtag == NULL) 5305 mtag = pf_get_mtag(m); 5306 if (mtag == NULL) { 5307 PF_RULES_RUNLOCK(); 5308 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5309 return (PF_DROP); 5310 } 5311 mtag->qid = r->qid; 5312 } 5313 5314 action = r->action; 5315 bridge_to = r->bridge_to; 5316 5317 /* Dummynet */ 5318 if (r->dnpipe) { 5319 struct ip_fw_args dnflow; 5320 5321 /* Drop packet if dummynet is not loaded. */ 5322 if (ip_dn_io_ptr == NULL) { 5323 PF_RULES_RUNLOCK(); 5324 m_freem(m); 5325 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5326 return (PF_DROP); 5327 } 5328 if (mtag == NULL) 5329 mtag = pf_get_mtag(m); 5330 if (mtag == NULL) { 5331 PF_RULES_RUNLOCK(); 5332 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5333 return (PF_DROP); 5334 } 5335 5336 bzero(&dnflow, sizeof(dnflow)); 5337 5338 /* We don't have port numbers here, so we set 0. That means 5339 * that we'll be somewhat limited in distinguishing flows (i.e. 5340 * only based on IP addresses, not based on port numbers), but 5341 * it's better than nothing. */ 5342 dnflow.f_id.dst_port = 0; 5343 dnflow.f_id.src_port = 0; 5344 dnflow.f_id.proto = 0; 5345 5346 dnflow.rule.info = r->dnpipe; 5347 dnflow.rule.info |= IPFW_IS_DUMMYNET; 5348 if (r->dnflags & PFRULE_DN_IS_PIPE) 5349 dnflow.rule.info |= IPFW_IS_PIPE; 5350 5351 dnflow.f_id.extra = dnflow.rule.info; 5352 5353 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 5354 dnflow.flags |= IPFW_ARGS_ETHER; 5355 dnflow.ifp = kif->pfik_ifp; 5356 5357 switch (af) { 5358 case AF_INET: 5359 dnflow.f_id.addr_type = 4; 5360 dnflow.f_id.src_ip = src->v4.s_addr; 5361 dnflow.f_id.dst_ip = dst->v4.s_addr; 5362 break; 5363 case AF_INET6: 5364 dnflow.flags |= IPFW_ARGS_IP6; 5365 dnflow.f_id.addr_type = 6; 5366 dnflow.f_id.src_ip6 = src->v6; 5367 dnflow.f_id.dst_ip6 = dst->v6; 5368 break; 5369 } 5370 5371 PF_RULES_RUNLOCK(); 5372 5373 mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 5374 ip_dn_io_ptr(m0, &dnflow); 5375 if (*m0 != NULL) 5376 pf_dummynet_flag_remove(m, mtag); 5377 } else { 5378 PF_RULES_RUNLOCK(); 5379 } 5380 5381 if (action == PF_PASS && bridge_to) { 5382 pf_bridge_to(bridge_to->pfik_ifp, *m0); 5383 *m0 = NULL; /* We've eaten the packet. */ 5384 } 5385 5386 return (action); 5387 } 5388 5389 #define PF_TEST_ATTRIB(t, a)\ 5390 do { \ 5391 if (t) { \ 5392 r = a; \ 5393 goto nextrule; \ 5394 } \ 5395 } while (0) 5396 5397 static int 5398 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, 5399 struct pf_pdesc *pd, struct pf_krule **am, 5400 struct pf_kruleset **rsm, struct inpcb *inp) 5401 { 5402 struct pf_krule *nr = NULL; 5403 struct pf_krule *r, *a = NULL; 5404 struct pf_kruleset *ruleset = NULL; 5405 struct pf_krule_slist match_rules; 5406 struct pf_krule_item *ri; 5407 struct tcphdr *th = &pd->hdr.tcp; 5408 struct pf_state_key *sk = NULL, *nk = NULL; 5409 u_short reason, transerror; 5410 int rewrite = 0; 5411 int tag = -1; 5412 int asd = 0; 5413 int match = 0; 5414 int state_icmp = 0, icmp_dir, multi; 5415 u_int16_t virtual_type, virtual_id; 5416 u_int16_t bproto_sum = 0, bip_sum = 0; 5417 u_int8_t icmptype = 0, icmpcode = 0; 5418 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 5419 struct pf_udp_mapping *udp_mapping = NULL; 5420 5421 PF_RULES_RASSERT(); 5422 5423 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5424 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5425 5426 SLIST_INIT(&match_rules); 5427 5428 if (inp != NULL) { 5429 INP_LOCK_ASSERT(inp); 5430 pd->lookup.uid = inp->inp_cred->cr_uid; 5431 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 5432 pd->lookup.done = 1; 5433 } 5434 5435 switch (pd->virtual_proto) { 5436 case IPPROTO_TCP: 5437 pd->nsport = th->th_sport; 5438 pd->ndport = th->th_dport; 5439 break; 5440 case IPPROTO_UDP: 5441 pd->nsport = pd->hdr.udp.uh_sport; 5442 pd->ndport = pd->hdr.udp.uh_dport; 5443 break; 5444 case IPPROTO_SCTP: 5445 pd->nsport = pd->hdr.sctp.src_port; 5446 pd->ndport = pd->hdr.sctp.dest_port; 5447 break; 5448 #ifdef INET 5449 case IPPROTO_ICMP: 5450 MPASS(pd->af == AF_INET); 5451 icmptype = pd->hdr.icmp.icmp_type; 5452 icmpcode = pd->hdr.icmp.icmp_code; 5453 state_icmp = pf_icmp_mapping(pd, icmptype, 5454 &icmp_dir, &multi, &virtual_id, &virtual_type); 5455 if (icmp_dir == PF_IN) { 5456 pd->nsport = virtual_id; 5457 pd->ndport = virtual_type; 5458 } else { 5459 pd->nsport = virtual_type; 5460 pd->ndport = virtual_id; 5461 } 5462 break; 5463 #endif /* INET */ 5464 #ifdef INET6 5465 case IPPROTO_ICMPV6: 5466 MPASS(pd->af == AF_INET6); 5467 icmptype = pd->hdr.icmp6.icmp6_type; 5468 icmpcode = pd->hdr.icmp6.icmp6_code; 5469 state_icmp = pf_icmp_mapping(pd, icmptype, 5470 &icmp_dir, &multi, &virtual_id, &virtual_type); 5471 if (icmp_dir == PF_IN) { 5472 pd->nsport = virtual_id; 5473 pd->ndport = virtual_type; 5474 } else { 5475 pd->nsport = virtual_type; 5476 pd->ndport = virtual_id; 5477 } 5478 5479 break; 5480 #endif /* INET6 */ 5481 default: 5482 pd->nsport = pd->ndport = 0; 5483 break; 5484 } 5485 pd->osport = pd->nsport; 5486 pd->odport = pd->ndport; 5487 5488 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 5489 5490 /* check packet for BINAT/NAT/RDR */ 5491 transerror = pf_get_translation(pd, pd->off, &sk, &nk, anchor_stack, 5492 &nr, &udp_mapping); 5493 switch (transerror) { 5494 default: 5495 /* A translation error occurred. */ 5496 REASON_SET(&reason, transerror); 5497 goto cleanup; 5498 case PFRES_MAX: 5499 /* No match. */ 5500 break; 5501 case PFRES_MATCH: 5502 KASSERT(sk != NULL, ("%s: null sk", __func__)); 5503 KASSERT(nk != NULL, ("%s: null nk", __func__)); 5504 5505 if (nr->log) { 5506 PFLOG_PACKET(PF_PASS, PFRES_MATCH, nr, a, 5507 ruleset, pd, 1); 5508 } 5509 5510 if (pd->ip_sum) 5511 bip_sum = *pd->ip_sum; 5512 5513 switch (pd->proto) { 5514 case IPPROTO_TCP: 5515 bproto_sum = th->th_sum; 5516 5517 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) || 5518 nk->port[pd->sidx] != pd->nsport) { 5519 pf_change_ap(pd->m, pd->src, &th->th_sport, 5520 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 5521 nk->port[pd->sidx], 0, pd->af, pd->naf); 5522 pd->sport = &th->th_sport; 5523 pd->nsport = th->th_sport; 5524 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5525 } 5526 5527 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) || 5528 nk->port[pd->didx] != pd->ndport) { 5529 pf_change_ap(pd->m, pd->dst, &th->th_dport, 5530 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 5531 nk->port[pd->didx], 0, pd->af, pd->naf); 5532 pd->dport = &th->th_dport; 5533 pd->ndport = th->th_dport; 5534 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5535 } 5536 rewrite++; 5537 break; 5538 case IPPROTO_UDP: 5539 bproto_sum = pd->hdr.udp.uh_sum; 5540 5541 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) || 5542 nk->port[pd->sidx] != pd->nsport) { 5543 pf_change_ap(pd->m, pd->src, 5544 &pd->hdr.udp.uh_sport, 5545 pd->ip_sum, &pd->hdr.udp.uh_sum, 5546 &nk->addr[pd->sidx], 5547 nk->port[pd->sidx], 1, pd->af, pd->naf); 5548 pd->sport = &pd->hdr.udp.uh_sport; 5549 pd->nsport = pd->hdr.udp.uh_sport; 5550 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5551 } 5552 5553 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) || 5554 nk->port[pd->didx] != pd->ndport) { 5555 pf_change_ap(pd->m, pd->dst, 5556 &pd->hdr.udp.uh_dport, 5557 pd->ip_sum, &pd->hdr.udp.uh_sum, 5558 &nk->addr[pd->didx], 5559 nk->port[pd->didx], 1, pd->af, pd->naf); 5560 pd->dport = &pd->hdr.udp.uh_dport; 5561 pd->ndport = pd->hdr.udp.uh_dport; 5562 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5563 } 5564 rewrite++; 5565 break; 5566 case IPPROTO_SCTP: { 5567 uint16_t checksum = 0; 5568 5569 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) || 5570 nk->port[pd->sidx] != pd->nsport) { 5571 pf_change_ap(pd->m, pd->src, 5572 &pd->hdr.sctp.src_port, pd->ip_sum, &checksum, 5573 &nk->addr[pd->sidx], 5574 nk->port[pd->sidx], 1, pd->af, pd->naf); 5575 pd->sport = &pd->hdr.sctp.src_port; 5576 pd->nsport = pd->hdr.sctp.src_port; 5577 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5578 } 5579 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) || 5580 nk->port[pd->didx] != pd->ndport) { 5581 pf_change_ap(pd->m, pd->dst, 5582 &pd->hdr.sctp.dest_port, pd->ip_sum, &checksum, 5583 &nk->addr[pd->didx], 5584 nk->port[pd->didx], 1, pd->af, pd->naf); 5585 pd->dport = &pd->hdr.sctp.dest_port; 5586 pd->ndport = pd->hdr.sctp.dest_port; 5587 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5588 } 5589 break; 5590 } 5591 #ifdef INET 5592 case IPPROTO_ICMP: 5593 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET)) { 5594 pf_change_a(&pd->src->v4.s_addr, pd->ip_sum, 5595 nk->addr[pd->sidx].v4.s_addr, 0); 5596 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5597 } 5598 5599 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET)) { 5600 pf_change_a(&pd->dst->v4.s_addr, pd->ip_sum, 5601 nk->addr[pd->didx].v4.s_addr, 0); 5602 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5603 } 5604 5605 if (virtual_type == htons(ICMP_ECHO) && 5606 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) { 5607 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 5608 pd->hdr.icmp.icmp_cksum, pd->nsport, 5609 nk->port[pd->sidx], 0); 5610 pd->hdr.icmp.icmp_id = nk->port[pd->sidx]; 5611 pd->sport = &pd->hdr.icmp.icmp_id; 5612 } 5613 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 5614 break; 5615 #endif /* INET */ 5616 #ifdef INET6 5617 case IPPROTO_ICMPV6: 5618 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET6)) { 5619 pf_change_a6(pd->src, &pd->hdr.icmp6.icmp6_cksum, 5620 &nk->addr[pd->sidx], 0); 5621 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5622 } 5623 5624 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET6)) { 5625 pf_change_a6(pd->dst, &pd->hdr.icmp6.icmp6_cksum, 5626 &nk->addr[pd->didx], 0); 5627 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5628 } 5629 rewrite++; 5630 break; 5631 #endif /* INET */ 5632 default: 5633 switch (pd->af) { 5634 #ifdef INET 5635 case AF_INET: 5636 if (PF_ANEQ(&pd->nsaddr, 5637 &nk->addr[pd->sidx], AF_INET)) { 5638 pf_change_a(&pd->src->v4.s_addr, 5639 pd->ip_sum, 5640 nk->addr[pd->sidx].v4.s_addr, 0); 5641 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5642 } 5643 5644 if (PF_ANEQ(&pd->ndaddr, 5645 &nk->addr[pd->didx], AF_INET)) { 5646 pf_change_a(&pd->dst->v4.s_addr, 5647 pd->ip_sum, 5648 nk->addr[pd->didx].v4.s_addr, 0); 5649 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5650 } 5651 break; 5652 #endif /* INET */ 5653 #ifdef INET6 5654 case AF_INET6: 5655 if (PF_ANEQ(&pd->nsaddr, 5656 &nk->addr[pd->sidx], AF_INET6)) { 5657 PF_ACPY(&pd->nsaddr, &nk->addr[pd->sidx], pd->af); 5658 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5659 } 5660 5661 if (PF_ANEQ(&pd->ndaddr, 5662 &nk->addr[pd->didx], AF_INET6)) { 5663 PF_ACPY(&pd->ndaddr, &nk->addr[pd->didx], pd->af); 5664 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5665 } 5666 break; 5667 #endif /* INET */ 5668 } 5669 break; 5670 } 5671 if (nr->natpass) 5672 r = NULL; 5673 } 5674 5675 while (r != NULL) { 5676 pf_counter_u64_add(&r->evaluations, 1); 5677 PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot, 5678 r->skip[PF_SKIP_IFP]); 5679 PF_TEST_ATTRIB(r->direction && r->direction != pd->dir, 5680 r->skip[PF_SKIP_DIR]); 5681 PF_TEST_ATTRIB(r->af && r->af != pd->af, 5682 r->skip[PF_SKIP_AF]); 5683 PF_TEST_ATTRIB(r->proto && r->proto != pd->proto, 5684 r->skip[PF_SKIP_PROTO]); 5685 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, &pd->nsaddr, pd->naf, 5686 r->src.neg, pd->kif, M_GETFIB(pd->m)), 5687 r->skip[PF_SKIP_SRC_ADDR]); 5688 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, &pd->ndaddr, pd->af, 5689 r->dst.neg, NULL, M_GETFIB(pd->m)), 5690 r->skip[PF_SKIP_DST_ADDR]); 5691 switch (pd->virtual_proto) { 5692 case PF_VPROTO_FRAGMENT: 5693 /* tcp/udp only. port_op always 0 in other cases */ 5694 PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op), 5695 TAILQ_NEXT(r, entries)); 5696 PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset), 5697 TAILQ_NEXT(r, entries)); 5698 /* icmp only. type/code always 0 in other cases */ 5699 PF_TEST_ATTRIB((r->type || r->code), 5700 TAILQ_NEXT(r, entries)); 5701 /* tcp/udp only. {uid|gid}.op always 0 in other cases */ 5702 PF_TEST_ATTRIB((r->gid.op || r->uid.op), 5703 TAILQ_NEXT(r, entries)); 5704 break; 5705 5706 case IPPROTO_TCP: 5707 PF_TEST_ATTRIB((r->flagset & tcp_get_flags(th)) != r->flags, 5708 TAILQ_NEXT(r, entries)); 5709 /* FALLTHROUGH */ 5710 case IPPROTO_SCTP: 5711 case IPPROTO_UDP: 5712 /* tcp/udp only. port_op always 0 in other cases */ 5713 PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op, 5714 r->src.port[0], r->src.port[1], pd->nsport), 5715 r->skip[PF_SKIP_SRC_PORT]); 5716 /* tcp/udp only. port_op always 0 in other cases */ 5717 PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op, 5718 r->dst.port[0], r->dst.port[1], pd->ndport), 5719 r->skip[PF_SKIP_DST_PORT]); 5720 /* tcp/udp only. uid.op always 0 in other cases */ 5721 PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done = 5722 pf_socket_lookup(pd), 1)) && 5723 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 5724 pd->lookup.uid), 5725 TAILQ_NEXT(r, entries)); 5726 /* tcp/udp only. gid.op always 0 in other cases */ 5727 PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done = 5728 pf_socket_lookup(pd), 1)) && 5729 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 5730 pd->lookup.gid), 5731 TAILQ_NEXT(r, entries)); 5732 break; 5733 5734 case IPPROTO_ICMP: 5735 case IPPROTO_ICMPV6: 5736 /* icmp only. type always 0 in other cases */ 5737 PF_TEST_ATTRIB(r->type && r->type != icmptype + 1, 5738 TAILQ_NEXT(r, entries)); 5739 /* icmp only. type always 0 in other cases */ 5740 PF_TEST_ATTRIB(r->code && r->code != icmpcode + 1, 5741 TAILQ_NEXT(r, entries)); 5742 break; 5743 5744 default: 5745 break; 5746 } 5747 PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos), 5748 TAILQ_NEXT(r, entries)); 5749 PF_TEST_ATTRIB(r->prio && 5750 !pf_match_ieee8021q_pcp(r->prio, pd->m), 5751 TAILQ_NEXT(r, entries)); 5752 PF_TEST_ATTRIB(r->prob && 5753 r->prob <= arc4random(), 5754 TAILQ_NEXT(r, entries)); 5755 PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r, &tag, 5756 pd->pf_mtag ? pd->pf_mtag->tag : 0), 5757 TAILQ_NEXT(r, entries)); 5758 PF_TEST_ATTRIB(r->rcv_kif && !pf_match_rcvif(pd->m, r), 5759 TAILQ_NEXT(r, entries)); 5760 PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT && 5761 pd->virtual_proto != PF_VPROTO_FRAGMENT), 5762 TAILQ_NEXT(r, entries)); 5763 PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY && 5764 (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match( 5765 pf_osfp_fingerprint(pd, th), 5766 r->os_fingerprint)), 5767 TAILQ_NEXT(r, entries)); 5768 /* FALLTHROUGH */ 5769 if (r->tag) 5770 tag = r->tag; 5771 if (r->anchor == NULL) { 5772 if (r->action == PF_MATCH) { 5773 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5774 if (ri == NULL) { 5775 REASON_SET(&reason, PFRES_MEMORY); 5776 goto cleanup; 5777 } 5778 ri->r = r; 5779 SLIST_INSERT_HEAD(&match_rules, ri, entry); 5780 pf_counter_u64_critical_enter(); 5781 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5782 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5783 pf_counter_u64_critical_exit(); 5784 pf_rule_to_actions(r, &pd->act); 5785 if (r->naf) 5786 pd->naf = r->naf; 5787 if (pd->af != pd->naf) { 5788 if (pf_get_transaddr_af(r, pd) == -1) { 5789 REASON_SET(&reason, PFRES_MEMORY); 5790 goto cleanup; 5791 } 5792 } 5793 if (r->log || pd->act.log & PF_LOG_MATCHES) 5794 PFLOG_PACKET(r->action, PFRES_MATCH, r, 5795 a, ruleset, pd, 1); 5796 } else { 5797 match = 1; 5798 *rm = r; 5799 *am = a; 5800 *rsm = ruleset; 5801 if (pd->act.log & PF_LOG_MATCHES) 5802 PFLOG_PACKET(r->action, PFRES_MATCH, r, 5803 a, ruleset, pd, 1); 5804 } 5805 if ((*rm)->quick) 5806 break; 5807 r = TAILQ_NEXT(r, entries); 5808 } else 5809 pf_step_into_anchor(anchor_stack, &asd, 5810 &ruleset, PF_RULESET_FILTER, &r, &a, 5811 &match); 5812 nextrule: 5813 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 5814 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 5815 break; 5816 } 5817 r = *rm; 5818 a = *am; 5819 ruleset = *rsm; 5820 5821 REASON_SET(&reason, PFRES_MATCH); 5822 5823 /* apply actions for last matching pass/block rule */ 5824 pf_rule_to_actions(r, &pd->act); 5825 if (r->naf) 5826 pd->naf = r->naf; 5827 if (pd->af != pd->naf) { 5828 if (pf_get_transaddr_af(r, pd) == -1) { 5829 REASON_SET(&reason, PFRES_MEMORY); 5830 goto cleanup; 5831 } 5832 } 5833 5834 if (r->log || pd->act.log & PF_LOG_MATCHES) { 5835 if (rewrite) 5836 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5837 PFLOG_PACKET(r->action, reason, r, a, ruleset, pd, 1); 5838 } 5839 5840 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5841 (r->action == PF_DROP) && 5842 ((r->rule_flag & PFRULE_RETURNRST) || 5843 (r->rule_flag & PFRULE_RETURNICMP) || 5844 (r->rule_flag & PFRULE_RETURN))) { 5845 pf_return(r, nr, pd, sk, th, bproto_sum, 5846 bip_sum, &reason, r->rtableid); 5847 } 5848 5849 if (r->action == PF_DROP) 5850 goto cleanup; 5851 5852 if (tag > 0 && pf_tag_packet(pd, tag)) { 5853 REASON_SET(&reason, PFRES_MEMORY); 5854 goto cleanup; 5855 } 5856 if (pd->act.rtableid >= 0) 5857 M_SETFIB(pd->m, pd->act.rtableid); 5858 5859 if (r->rt) { 5860 struct pf_ksrc_node *sn = NULL; 5861 struct pf_srchash *snh = NULL; 5862 /* 5863 * Set act.rt here instead of in pf_rule_to_actions() because 5864 * it is applied only from the last pass rule. 5865 */ 5866 pd->act.rt = r->rt; 5867 /* Don't use REASON_SET, pf_map_addr increases the reason counters */ 5868 reason = pf_map_addr_sn(pd->af, r, pd->src, &pd->act.rt_addr, 5869 &pd->act.rt_kif, NULL, &sn, &snh, &r->rdr); 5870 if (reason != 0) 5871 goto cleanup; 5872 } 5873 5874 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5875 (!state_icmp && (r->keep_state || nr != NULL || 5876 (pd->flags & PFDESC_TCP_NORM)))) { 5877 int action; 5878 bool nat64; 5879 5880 action = pf_create_state(r, nr, a, pd, nk, sk, 5881 &rewrite, sm, tag, bproto_sum, bip_sum, 5882 &match_rules, udp_mapping); 5883 if (action != PF_PASS) { 5884 pf_udp_mapping_release(udp_mapping); 5885 if (action == PF_DROP && 5886 (r->rule_flag & PFRULE_RETURN)) 5887 pf_return(r, nr, pd, sk, th, 5888 bproto_sum, bip_sum, &reason, 5889 pd->act.rtableid); 5890 return (action); 5891 } 5892 5893 nat64 = pd->af != pd->naf; 5894 if (nat64) { 5895 struct pf_state_key *_sk; 5896 int ret; 5897 5898 if (sk == NULL) 5899 sk = (*sm)->key[pd->dir == PF_IN ? PF_SK_STACK : PF_SK_WIRE]; 5900 if (nk == NULL) 5901 nk = (*sm)->key[pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK]; 5902 if (pd->dir == PF_IN) 5903 _sk = sk; 5904 else 5905 _sk = nk; 5906 5907 ret = pf_translate(pd, 5908 &_sk->addr[pd->didx], 5909 _sk->port[pd->didx], 5910 &_sk->addr[pd->sidx], 5911 _sk->port[pd->sidx], 5912 virtual_type, icmp_dir); 5913 if (ret < 0) 5914 goto cleanup; 5915 5916 rewrite += ret; 5917 } 5918 } else { 5919 while ((ri = SLIST_FIRST(&match_rules))) { 5920 SLIST_REMOVE_HEAD(&match_rules, entry); 5921 free(ri, M_PF_RULE_ITEM); 5922 } 5923 5924 uma_zfree(V_pf_state_key_z, sk); 5925 uma_zfree(V_pf_state_key_z, nk); 5926 pf_udp_mapping_release(udp_mapping); 5927 } 5928 5929 /* copy back packet headers if we performed NAT operations */ 5930 if (rewrite) 5931 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5932 5933 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 5934 pd->dir == PF_OUT && 5935 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m)) 5936 /* 5937 * We want the state created, but we dont 5938 * want to send this in case a partner 5939 * firewall has to know about it to allow 5940 * replies through it. 5941 */ 5942 return (PF_DEFER); 5943 5944 if (rewrite && sk != NULL && nk != NULL && sk->af != nk->af) { 5945 return (PF_AFRT); 5946 } else 5947 return (PF_PASS); 5948 5949 cleanup: 5950 while ((ri = SLIST_FIRST(&match_rules))) { 5951 SLIST_REMOVE_HEAD(&match_rules, entry); 5952 free(ri, M_PF_RULE_ITEM); 5953 } 5954 5955 uma_zfree(V_pf_state_key_z, sk); 5956 uma_zfree(V_pf_state_key_z, nk); 5957 pf_udp_mapping_release(udp_mapping); 5958 5959 return (PF_DROP); 5960 } 5961 5962 static int 5963 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 5964 struct pf_pdesc *pd, struct pf_state_key *nk, struct pf_state_key *sk, 5965 int *rewrite, struct pf_kstate **sm, int tag, u_int16_t bproto_sum, 5966 u_int16_t bip_sum, struct pf_krule_slist *match_rules, 5967 struct pf_udp_mapping *udp_mapping) 5968 { 5969 struct pf_kstate *s = NULL; 5970 struct pf_ksrc_node *sn = NULL; 5971 struct pf_srchash *snh = NULL; 5972 struct pf_ksrc_node *nsn = NULL; 5973 struct pf_srchash *nsnh = NULL; 5974 struct tcphdr *th = &pd->hdr.tcp; 5975 u_int16_t mss = V_tcp_mssdflt; 5976 u_short reason, sn_reason; 5977 struct pf_krule_item *ri; 5978 5979 /* check maximums */ 5980 if (r->max_states && 5981 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 5982 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 5983 REASON_SET(&reason, PFRES_MAXSTATES); 5984 goto csfailed; 5985 } 5986 /* src node for filter rule */ 5987 if ((r->rule_flag & PFRULE_SRCTRACK || 5988 r->rdr.opts & PF_POOL_STICKYADDR) && 5989 (sn_reason = pf_insert_src_node(&sn, &snh, r, pd->src, pd->af, 5990 &pd->act.rt_addr, pd->act.rt_kif)) != 0) { 5991 REASON_SET(&reason, sn_reason); 5992 goto csfailed; 5993 } 5994 /* src node for translation rule */ 5995 if (nr != NULL && (nr->rdr.opts & PF_POOL_STICKYADDR) && 5996 (sn_reason = pf_insert_src_node(&nsn, &nsnh, nr, &sk->addr[pd->sidx], 5997 pd->af, &nk->addr[1], NULL)) != 0 ) { 5998 REASON_SET(&reason, sn_reason); 5999 goto csfailed; 6000 } 6001 s = pf_alloc_state(M_NOWAIT); 6002 if (s == NULL) { 6003 REASON_SET(&reason, PFRES_MEMORY); 6004 goto csfailed; 6005 } 6006 s->rule = r; 6007 s->nat_rule = nr; 6008 s->anchor = a; 6009 bcopy(match_rules, &s->match_rules, sizeof(s->match_rules)); 6010 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions)); 6011 6012 STATE_INC_COUNTERS(s); 6013 if (r->allow_opts) 6014 s->state_flags |= PFSTATE_ALLOWOPTS; 6015 if (r->rule_flag & PFRULE_STATESLOPPY) 6016 s->state_flags |= PFSTATE_SLOPPY; 6017 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 6018 s->state_flags |= PFSTATE_SCRUB_TCP; 6019 if ((r->rule_flag & PFRULE_PFLOW) || 6020 (nr != NULL && nr->rule_flag & PFRULE_PFLOW)) 6021 s->state_flags |= PFSTATE_PFLOW; 6022 6023 s->act.log = pd->act.log & PF_LOG_ALL; 6024 s->sync_state = PFSYNC_S_NONE; 6025 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */ 6026 6027 if (nr != NULL) 6028 s->act.log |= nr->log & PF_LOG_ALL; 6029 switch (pd->proto) { 6030 case IPPROTO_TCP: 6031 s->src.seqlo = ntohl(th->th_seq); 6032 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 6033 if ((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN && 6034 r->keep_state == PF_STATE_MODULATE) { 6035 /* Generate sequence number modulator */ 6036 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 6037 0) 6038 s->src.seqdiff = 1; 6039 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, 6040 htonl(s->src.seqlo + s->src.seqdiff), 0); 6041 *rewrite = 1; 6042 } else 6043 s->src.seqdiff = 0; 6044 if (tcp_get_flags(th) & TH_SYN) { 6045 s->src.seqhi++; 6046 s->src.wscale = pf_get_wscale(pd); 6047 } 6048 s->src.max_win = MAX(ntohs(th->th_win), 1); 6049 if (s->src.wscale & PF_WSCALE_MASK) { 6050 /* Remove scale factor from initial window */ 6051 int win = s->src.max_win; 6052 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 6053 s->src.max_win = (win - 1) >> 6054 (s->src.wscale & PF_WSCALE_MASK); 6055 } 6056 if (tcp_get_flags(th) & TH_FIN) 6057 s->src.seqhi++; 6058 s->dst.seqhi = 1; 6059 s->dst.max_win = 1; 6060 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 6061 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 6062 s->timeout = PFTM_TCP_FIRST_PACKET; 6063 atomic_add_32(&V_pf_status.states_halfopen, 1); 6064 break; 6065 case IPPROTO_UDP: 6066 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 6067 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 6068 s->timeout = PFTM_UDP_FIRST_PACKET; 6069 break; 6070 case IPPROTO_SCTP: 6071 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT); 6072 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED); 6073 s->timeout = PFTM_SCTP_FIRST_PACKET; 6074 break; 6075 case IPPROTO_ICMP: 6076 #ifdef INET6 6077 case IPPROTO_ICMPV6: 6078 #endif 6079 s->timeout = PFTM_ICMP_FIRST_PACKET; 6080 break; 6081 default: 6082 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 6083 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 6084 s->timeout = PFTM_OTHER_FIRST_PACKET; 6085 } 6086 6087 s->creation = s->expire = pf_get_uptime(); 6088 6089 if (pd->proto == IPPROTO_TCP) { 6090 if (s->state_flags & PFSTATE_SCRUB_TCP && 6091 pf_normalize_tcp_init(pd, th, &s->src, &s->dst)) { 6092 REASON_SET(&reason, PFRES_MEMORY); 6093 goto csfailed; 6094 } 6095 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 6096 pf_normalize_tcp_stateful(pd, &reason, th, s, 6097 &s->src, &s->dst, rewrite)) { 6098 /* This really shouldn't happen!!! */ 6099 DPFPRINTF(PF_DEBUG_URGENT, 6100 ("pf_normalize_tcp_stateful failed on first " 6101 "pkt\n")); 6102 goto csfailed; 6103 } 6104 } else if (pd->proto == IPPROTO_SCTP) { 6105 if (pf_normalize_sctp_init(pd, &s->src, &s->dst)) 6106 goto csfailed; 6107 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP))) 6108 goto csfailed; 6109 } 6110 s->direction = pd->dir; 6111 6112 /* 6113 * sk/nk could already been setup by pf_get_translation(). 6114 */ 6115 if (nr == NULL) { 6116 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 6117 __func__, nr, sk, nk)); 6118 MPASS(pd->sport == NULL || (pd->osport == *pd->sport)); 6119 MPASS(pd->dport == NULL || (pd->odport == *pd->dport)); 6120 if (pf_state_key_setup(pd, pd->nsport, pd->ndport, &sk, &nk)) { 6121 goto csfailed; 6122 } 6123 } else 6124 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 6125 __func__, nr, sk, nk)); 6126 6127 /* Swap sk/nk for PF_OUT. */ 6128 if (pf_state_insert(BOUND_IFACE(s, pd->kif), pd->kif, 6129 (pd->dir == PF_IN) ? sk : nk, 6130 (pd->dir == PF_IN) ? nk : sk, s)) { 6131 REASON_SET(&reason, PFRES_STATEINS); 6132 goto drop; 6133 } else 6134 *sm = s; 6135 6136 /* 6137 * Lock order is important: first state, then source node. 6138 */ 6139 if (pf_src_node_exists(&sn, snh)) { 6140 s->src_node = sn; 6141 PF_HASHROW_UNLOCK(snh); 6142 } 6143 if (pf_src_node_exists(&nsn, nsnh)) { 6144 s->nat_src_node = nsn; 6145 PF_HASHROW_UNLOCK(nsnh); 6146 } 6147 6148 if (tag > 0) 6149 s->tag = tag; 6150 if (pd->proto == IPPROTO_TCP && (tcp_get_flags(th) & (TH_SYN|TH_ACK)) == 6151 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 6152 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 6153 /* undo NAT changes, if they have taken place */ 6154 if (nr != NULL) { 6155 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 6156 if (pd->dir == PF_OUT) 6157 skt = s->key[PF_SK_STACK]; 6158 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 6159 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 6160 if (pd->sport) 6161 *pd->sport = skt->port[pd->sidx]; 6162 if (pd->dport) 6163 *pd->dport = skt->port[pd->didx]; 6164 if (pd->ip_sum) 6165 *pd->ip_sum = bip_sum; 6166 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 6167 } 6168 s->src.seqhi = htonl(arc4random()); 6169 /* Find mss option */ 6170 int rtid = M_GETFIB(pd->m); 6171 mss = pf_get_mss(pd); 6172 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 6173 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 6174 s->src.mss = mss; 6175 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 6176 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 6177 TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0, 6178 pd->act.rtableid); 6179 REASON_SET(&reason, PFRES_SYNPROXY); 6180 return (PF_SYNPROXY_DROP); 6181 } 6182 6183 s->udp_mapping = udp_mapping; 6184 6185 return (PF_PASS); 6186 6187 csfailed: 6188 while ((ri = SLIST_FIRST(match_rules))) { 6189 SLIST_REMOVE_HEAD(match_rules, entry); 6190 free(ri, M_PF_RULE_ITEM); 6191 } 6192 6193 uma_zfree(V_pf_state_key_z, sk); 6194 uma_zfree(V_pf_state_key_z, nk); 6195 6196 if (pf_src_node_exists(&sn, snh)) { 6197 if (--sn->states == 0 && sn->expire == 0) { 6198 pf_unlink_src_node(sn); 6199 pf_free_src_node(sn); 6200 counter_u64_add( 6201 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 6202 } 6203 PF_HASHROW_UNLOCK(snh); 6204 } 6205 6206 if (sn != nsn && pf_src_node_exists(&nsn, nsnh)) { 6207 if (--nsn->states == 0 && nsn->expire == 0) { 6208 pf_unlink_src_node(nsn); 6209 pf_free_src_node(nsn); 6210 counter_u64_add( 6211 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 6212 } 6213 PF_HASHROW_UNLOCK(nsnh); 6214 } 6215 6216 drop: 6217 if (s != NULL) { 6218 pf_src_tree_remove_state(s); 6219 s->timeout = PFTM_UNLINKED; 6220 STATE_DEC_COUNTERS(s); 6221 pf_free_state(s); 6222 } 6223 6224 return (PF_DROP); 6225 } 6226 6227 int 6228 pf_translate(struct pf_pdesc *pd, struct pf_addr *saddr, u_int16_t sport, 6229 struct pf_addr *daddr, u_int16_t dport, u_int16_t virtual_type, 6230 int icmp_dir) 6231 { 6232 /* 6233 * pf_translate() implements OpenBSD's "new" NAT approach. 6234 * We don't follow it, because it involves a breaking syntax change 6235 * (removing nat/rdr rules, moving it into regular pf rules.) 6236 * It also moves NAT processing to be done after normal rules evaluation 6237 * whereas in FreeBSD that's done before rules processing. 6238 * 6239 * We adopt the function only for nat64, and keep other NAT processing 6240 * before rules processing. 6241 */ 6242 int rewrite = 0; 6243 int afto = pd->af != pd->naf; 6244 6245 MPASS(afto); 6246 6247 switch (pd->proto) { 6248 case IPPROTO_TCP: 6249 if (afto || *pd->sport != sport) { 6250 pf_change_ap(pd->m, pd->src, pd->sport, pd->ip_sum, &pd->hdr.tcp.th_sum, 6251 saddr, sport, 0, pd->af, pd->naf); 6252 rewrite = 1; 6253 } 6254 if (afto || *pd->dport != dport) { 6255 pf_change_ap(pd->m, pd->dst, pd->dport, pd->ip_sum, &pd->hdr.tcp.th_sum, 6256 daddr, dport, 0, pd->af, pd->naf); 6257 rewrite = 1; 6258 } 6259 break; 6260 6261 case IPPROTO_UDP: 6262 if (afto || *pd->sport != sport) { 6263 pf_change_ap(pd->m, pd->src, pd->sport, pd->ip_sum, &pd->hdr.udp.uh_sum, 6264 saddr, sport, 1, pd->af, pd->naf); 6265 rewrite = 1; 6266 } 6267 if (afto || *pd->dport != dport) { 6268 pf_change_ap(pd->m, pd->dst, pd->dport, pd->ip_sum, &pd->hdr.udp.uh_sum, 6269 daddr, dport, 1, pd->af, pd->naf); 6270 rewrite = 1; 6271 } 6272 break; 6273 6274 case IPPROTO_SCTP: { 6275 uint16_t checksum = 0; 6276 if (afto || *pd->sport != sport) { 6277 pf_change_ap(pd->m, pd->src, pd->sport, pd->ip_sum, &checksum, 6278 saddr, sport, 1, pd->af, pd->naf); 6279 rewrite = 1; 6280 } 6281 if (afto || *pd->dport != dport) { 6282 pf_change_ap(pd->m, pd->dst, pd->dport, pd->ip_sum, &checksum, 6283 daddr, dport, 1, pd->af, pd->naf); 6284 rewrite = 1; 6285 } 6286 break; 6287 } 6288 6289 #ifdef INET 6290 case IPPROTO_ICMP: 6291 /* pf_translate() is also used when logging invalid packets */ 6292 if (pd->af != AF_INET) 6293 return (0); 6294 6295 if (afto) { 6296 if (pf_translate_icmp_af(AF_INET6, &pd->hdr.icmp)) 6297 return (-1); 6298 pd->proto = IPPROTO_ICMPV6; 6299 rewrite = 1; 6300 } 6301 if (virtual_type == htons(ICMP_ECHO)) { 6302 u_int16_t icmpid = (icmp_dir == PF_IN) ? sport : dport; 6303 6304 if (icmpid != pd->hdr.icmp.icmp_id) { 6305 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 6306 pd->hdr.icmp.icmp_cksum, 6307 pd->hdr.icmp.icmp_id, icmpid, 0); 6308 pd->hdr.icmp.icmp_id = icmpid; 6309 /* XXX TODO copyback. */ 6310 rewrite = 1; 6311 } 6312 } 6313 break; 6314 #endif /* INET */ 6315 6316 #ifdef INET6 6317 case IPPROTO_ICMPV6: 6318 /* pf_translate() is also used when logging invalid packets */ 6319 if (pd->af != AF_INET6) 6320 return (0); 6321 6322 if (afto) { 6323 /* ip_sum will be recalculated in pf_translate_af */ 6324 if (pf_translate_icmp_af(AF_INET, &pd->hdr.icmp6)) 6325 return (0); 6326 pd->proto = IPPROTO_ICMP; 6327 rewrite = 1; 6328 } 6329 break; 6330 #endif /* INET6 */ 6331 6332 default: 6333 break; 6334 } 6335 6336 return (rewrite); 6337 } 6338 6339 static int 6340 pf_tcp_track_full(struct pf_kstate **state, struct pf_pdesc *pd, 6341 u_short *reason, int *copyback) 6342 { 6343 struct tcphdr *th = &pd->hdr.tcp; 6344 struct pf_state_peer *src, *dst; 6345 u_int16_t win = ntohs(th->th_win); 6346 u_int32_t ack, end, data_end, seq, orig_seq; 6347 u_int8_t sws, dws, psrc, pdst; 6348 int ackskew; 6349 6350 if (pd->dir == (*state)->direction) { 6351 if (PF_REVERSED_KEY((*state)->key, pd->af)) { 6352 src = &(*state)->dst; 6353 dst = &(*state)->src; 6354 } else { 6355 src = &(*state)->src; 6356 dst = &(*state)->dst; 6357 } 6358 psrc = PF_PEER_SRC; 6359 pdst = PF_PEER_DST; 6360 } else { 6361 if (PF_REVERSED_KEY((*state)->key, pd->af)) { 6362 src = &(*state)->src; 6363 dst = &(*state)->dst; 6364 } else { 6365 src = &(*state)->dst; 6366 dst = &(*state)->src; 6367 } 6368 psrc = PF_PEER_DST; 6369 pdst = PF_PEER_SRC; 6370 } 6371 6372 if (src->wscale && dst->wscale && !(tcp_get_flags(th) & TH_SYN)) { 6373 sws = src->wscale & PF_WSCALE_MASK; 6374 dws = dst->wscale & PF_WSCALE_MASK; 6375 } else 6376 sws = dws = 0; 6377 6378 /* 6379 * Sequence tracking algorithm from Guido van Rooij's paper: 6380 * http://www.madison-gurkha.com/publications/tcp_filtering/ 6381 * tcp_filtering.ps 6382 */ 6383 6384 orig_seq = seq = ntohl(th->th_seq); 6385 if (src->seqlo == 0) { 6386 /* First packet from this end. Set its state */ 6387 6388 if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 6389 src->scrub == NULL) { 6390 if (pf_normalize_tcp_init(pd, th, src, dst)) { 6391 REASON_SET(reason, PFRES_MEMORY); 6392 return (PF_DROP); 6393 } 6394 } 6395 6396 /* Deferred generation of sequence number modulator */ 6397 if (dst->seqdiff && !src->seqdiff) { 6398 /* use random iss for the TCP server */ 6399 while ((src->seqdiff = arc4random() - seq) == 0) 6400 ; 6401 ack = ntohl(th->th_ack) - dst->seqdiff; 6402 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq + 6403 src->seqdiff), 0); 6404 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0); 6405 *copyback = 1; 6406 } else { 6407 ack = ntohl(th->th_ack); 6408 } 6409 6410 end = seq + pd->p_len; 6411 if (tcp_get_flags(th) & TH_SYN) { 6412 end++; 6413 if (dst->wscale & PF_WSCALE_FLAG) { 6414 src->wscale = pf_get_wscale(pd); 6415 if (src->wscale & PF_WSCALE_FLAG) { 6416 /* Remove scale factor from initial 6417 * window */ 6418 sws = src->wscale & PF_WSCALE_MASK; 6419 win = ((u_int32_t)win + (1 << sws) - 1) 6420 >> sws; 6421 dws = dst->wscale & PF_WSCALE_MASK; 6422 } else { 6423 /* fixup other window */ 6424 dst->max_win = MIN(TCP_MAXWIN, 6425 (u_int32_t)dst->max_win << 6426 (dst->wscale & PF_WSCALE_MASK)); 6427 /* in case of a retrans SYN|ACK */ 6428 dst->wscale = 0; 6429 } 6430 } 6431 } 6432 data_end = end; 6433 if (tcp_get_flags(th) & TH_FIN) 6434 end++; 6435 6436 src->seqlo = seq; 6437 if (src->state < TCPS_SYN_SENT) 6438 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 6439 6440 /* 6441 * May need to slide the window (seqhi may have been set by 6442 * the crappy stack check or if we picked up the connection 6443 * after establishment) 6444 */ 6445 if (src->seqhi == 1 || 6446 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 6447 src->seqhi = end + MAX(1, dst->max_win << dws); 6448 if (win > src->max_win) 6449 src->max_win = win; 6450 6451 } else { 6452 ack = ntohl(th->th_ack) - dst->seqdiff; 6453 if (src->seqdiff) { 6454 /* Modulate sequence numbers */ 6455 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq + 6456 src->seqdiff), 0); 6457 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0); 6458 *copyback = 1; 6459 } 6460 end = seq + pd->p_len; 6461 if (tcp_get_flags(th) & TH_SYN) 6462 end++; 6463 data_end = end; 6464 if (tcp_get_flags(th) & TH_FIN) 6465 end++; 6466 } 6467 6468 if ((tcp_get_flags(th) & TH_ACK) == 0) { 6469 /* Let it pass through the ack skew check */ 6470 ack = dst->seqlo; 6471 } else if ((ack == 0 && 6472 (tcp_get_flags(th) & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 6473 /* broken tcp stacks do not set ack */ 6474 (dst->state < TCPS_SYN_SENT)) { 6475 /* 6476 * Many stacks (ours included) will set the ACK number in an 6477 * FIN|ACK if the SYN times out -- no sequence to ACK. 6478 */ 6479 ack = dst->seqlo; 6480 } 6481 6482 if (seq == end) { 6483 /* Ease sequencing restrictions on no data packets */ 6484 seq = src->seqlo; 6485 data_end = end = seq; 6486 } 6487 6488 ackskew = dst->seqlo - ack; 6489 6490 /* 6491 * Need to demodulate the sequence numbers in any TCP SACK options 6492 * (Selective ACK). We could optionally validate the SACK values 6493 * against the current ACK window, either forwards or backwards, but 6494 * I'm not confident that SACK has been implemented properly 6495 * everywhere. It wouldn't surprise me if several stacks accidentally 6496 * SACK too far backwards of previously ACKed data. There really aren't 6497 * any security implications of bad SACKing unless the target stack 6498 * doesn't validate the option length correctly. Someone trying to 6499 * spoof into a TCP connection won't bother blindly sending SACK 6500 * options anyway. 6501 */ 6502 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 6503 if (pf_modulate_sack(pd, th, dst)) 6504 *copyback = 1; 6505 } 6506 6507 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 6508 if (SEQ_GEQ(src->seqhi, data_end) && 6509 /* Last octet inside other's window space */ 6510 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 6511 /* Retrans: not more than one window back */ 6512 (ackskew >= -MAXACKWINDOW) && 6513 /* Acking not more than one reassembled fragment backwards */ 6514 (ackskew <= (MAXACKWINDOW << sws)) && 6515 /* Acking not more than one window forward */ 6516 ((tcp_get_flags(th) & TH_RST) == 0 || orig_seq == src->seqlo || 6517 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) { 6518 /* Require an exact/+1 sequence match on resets when possible */ 6519 6520 if (dst->scrub || src->scrub) { 6521 if (pf_normalize_tcp_stateful(pd, reason, th, 6522 *state, src, dst, copyback)) 6523 return (PF_DROP); 6524 } 6525 6526 /* update max window */ 6527 if (src->max_win < win) 6528 src->max_win = win; 6529 /* synchronize sequencing */ 6530 if (SEQ_GT(end, src->seqlo)) 6531 src->seqlo = end; 6532 /* slide the window of what the other end can send */ 6533 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 6534 dst->seqhi = ack + MAX((win << sws), 1); 6535 6536 /* update states */ 6537 if (tcp_get_flags(th) & TH_SYN) 6538 if (src->state < TCPS_SYN_SENT) 6539 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 6540 if (tcp_get_flags(th) & TH_FIN) 6541 if (src->state < TCPS_CLOSING) 6542 pf_set_protostate(*state, psrc, TCPS_CLOSING); 6543 if (tcp_get_flags(th) & TH_ACK) { 6544 if (dst->state == TCPS_SYN_SENT) { 6545 pf_set_protostate(*state, pdst, 6546 TCPS_ESTABLISHED); 6547 if (src->state == TCPS_ESTABLISHED && 6548 (*state)->src_node != NULL && 6549 pf_src_connlimit(*state)) { 6550 REASON_SET(reason, PFRES_SRCLIMIT); 6551 return (PF_DROP); 6552 } 6553 } else if (dst->state == TCPS_CLOSING) 6554 pf_set_protostate(*state, pdst, 6555 TCPS_FIN_WAIT_2); 6556 } 6557 if (tcp_get_flags(th) & TH_RST) 6558 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6559 6560 /* update expire time */ 6561 (*state)->expire = pf_get_uptime(); 6562 if (src->state >= TCPS_FIN_WAIT_2 && 6563 dst->state >= TCPS_FIN_WAIT_2) 6564 (*state)->timeout = PFTM_TCP_CLOSED; 6565 else if (src->state >= TCPS_CLOSING && 6566 dst->state >= TCPS_CLOSING) 6567 (*state)->timeout = PFTM_TCP_FIN_WAIT; 6568 else if (src->state < TCPS_ESTABLISHED || 6569 dst->state < TCPS_ESTABLISHED) 6570 (*state)->timeout = PFTM_TCP_OPENING; 6571 else if (src->state >= TCPS_CLOSING || 6572 dst->state >= TCPS_CLOSING) 6573 (*state)->timeout = PFTM_TCP_CLOSING; 6574 else 6575 (*state)->timeout = PFTM_TCP_ESTABLISHED; 6576 6577 /* Fall through to PASS packet */ 6578 6579 } else if ((dst->state < TCPS_SYN_SENT || 6580 dst->state >= TCPS_FIN_WAIT_2 || 6581 src->state >= TCPS_FIN_WAIT_2) && 6582 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) && 6583 /* Within a window forward of the originating packet */ 6584 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 6585 /* Within a window backward of the originating packet */ 6586 6587 /* 6588 * This currently handles three situations: 6589 * 1) Stupid stacks will shotgun SYNs before their peer 6590 * replies. 6591 * 2) When PF catches an already established stream (the 6592 * firewall rebooted, the state table was flushed, routes 6593 * changed...) 6594 * 3) Packets get funky immediately after the connection 6595 * closes (this should catch Solaris spurious ACK|FINs 6596 * that web servers like to spew after a close) 6597 * 6598 * This must be a little more careful than the above code 6599 * since packet floods will also be caught here. We don't 6600 * update the TTL here to mitigate the damage of a packet 6601 * flood and so the same code can handle awkward establishment 6602 * and a loosened connection close. 6603 * In the establishment case, a correct peer response will 6604 * validate the connection, go through the normal state code 6605 * and keep updating the state TTL. 6606 */ 6607 6608 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6609 printf("pf: loose state match: "); 6610 pf_print_state(*state); 6611 pf_print_flags(tcp_get_flags(th)); 6612 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 6613 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 6614 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 6615 (unsigned long long)(*state)->packets[1], 6616 pd->dir == PF_IN ? "in" : "out", 6617 pd->dir == (*state)->direction ? "fwd" : "rev"); 6618 } 6619 6620 if (dst->scrub || src->scrub) { 6621 if (pf_normalize_tcp_stateful(pd, reason, th, 6622 *state, src, dst, copyback)) 6623 return (PF_DROP); 6624 } 6625 6626 /* update max window */ 6627 if (src->max_win < win) 6628 src->max_win = win; 6629 /* synchronize sequencing */ 6630 if (SEQ_GT(end, src->seqlo)) 6631 src->seqlo = end; 6632 /* slide the window of what the other end can send */ 6633 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 6634 dst->seqhi = ack + MAX((win << sws), 1); 6635 6636 /* 6637 * Cannot set dst->seqhi here since this could be a shotgunned 6638 * SYN and not an already established connection. 6639 */ 6640 6641 if (tcp_get_flags(th) & TH_FIN) 6642 if (src->state < TCPS_CLOSING) 6643 pf_set_protostate(*state, psrc, TCPS_CLOSING); 6644 if (tcp_get_flags(th) & TH_RST) 6645 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6646 6647 /* Fall through to PASS packet */ 6648 6649 } else { 6650 if ((*state)->dst.state == TCPS_SYN_SENT && 6651 (*state)->src.state == TCPS_SYN_SENT) { 6652 /* Send RST for state mismatches during handshake */ 6653 if (!(tcp_get_flags(th) & TH_RST)) 6654 pf_send_tcp((*state)->rule, pd->af, 6655 pd->dst, pd->src, th->th_dport, 6656 th->th_sport, ntohl(th->th_ack), 0, 6657 TH_RST, 0, 0, 6658 (*state)->rule->return_ttl, M_SKIP_FIREWALL, 6659 0, 0, (*state)->act.rtableid); 6660 src->seqlo = 0; 6661 src->seqhi = 1; 6662 src->max_win = 1; 6663 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 6664 printf("pf: BAD state: "); 6665 pf_print_state(*state); 6666 pf_print_flags(tcp_get_flags(th)); 6667 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 6668 "pkts=%llu:%llu dir=%s,%s\n", 6669 seq, orig_seq, ack, pd->p_len, ackskew, 6670 (unsigned long long)(*state)->packets[0], 6671 (unsigned long long)(*state)->packets[1], 6672 pd->dir == PF_IN ? "in" : "out", 6673 pd->dir == (*state)->direction ? "fwd" : "rev"); 6674 printf("pf: State failure on: %c %c %c %c | %c %c\n", 6675 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1', 6676 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 6677 ' ': '2', 6678 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 6679 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 6680 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5', 6681 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 6682 } 6683 REASON_SET(reason, PFRES_BADSTATE); 6684 return (PF_DROP); 6685 } 6686 6687 return (PF_PASS); 6688 } 6689 6690 static int 6691 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 6692 { 6693 struct tcphdr *th = &pd->hdr.tcp; 6694 struct pf_state_peer *src, *dst; 6695 u_int8_t psrc, pdst; 6696 6697 if (pd->dir == (*state)->direction) { 6698 src = &(*state)->src; 6699 dst = &(*state)->dst; 6700 psrc = PF_PEER_SRC; 6701 pdst = PF_PEER_DST; 6702 } else { 6703 src = &(*state)->dst; 6704 dst = &(*state)->src; 6705 psrc = PF_PEER_DST; 6706 pdst = PF_PEER_SRC; 6707 } 6708 6709 if (tcp_get_flags(th) & TH_SYN) 6710 if (src->state < TCPS_SYN_SENT) 6711 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 6712 if (tcp_get_flags(th) & TH_FIN) 6713 if (src->state < TCPS_CLOSING) 6714 pf_set_protostate(*state, psrc, TCPS_CLOSING); 6715 if (tcp_get_flags(th) & TH_ACK) { 6716 if (dst->state == TCPS_SYN_SENT) { 6717 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 6718 if (src->state == TCPS_ESTABLISHED && 6719 (*state)->src_node != NULL && 6720 pf_src_connlimit(*state)) { 6721 REASON_SET(reason, PFRES_SRCLIMIT); 6722 return (PF_DROP); 6723 } 6724 } else if (dst->state == TCPS_CLOSING) { 6725 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 6726 } else if (src->state == TCPS_SYN_SENT && 6727 dst->state < TCPS_SYN_SENT) { 6728 /* 6729 * Handle a special sloppy case where we only see one 6730 * half of the connection. If there is a ACK after 6731 * the initial SYN without ever seeing a packet from 6732 * the destination, set the connection to established. 6733 */ 6734 pf_set_protostate(*state, PF_PEER_BOTH, 6735 TCPS_ESTABLISHED); 6736 dst->state = src->state = TCPS_ESTABLISHED; 6737 if ((*state)->src_node != NULL && 6738 pf_src_connlimit(*state)) { 6739 REASON_SET(reason, PFRES_SRCLIMIT); 6740 return (PF_DROP); 6741 } 6742 } else if (src->state == TCPS_CLOSING && 6743 dst->state == TCPS_ESTABLISHED && 6744 dst->seqlo == 0) { 6745 /* 6746 * Handle the closing of half connections where we 6747 * don't see the full bidirectional FIN/ACK+ACK 6748 * handshake. 6749 */ 6750 pf_set_protostate(*state, pdst, TCPS_CLOSING); 6751 } 6752 } 6753 if (tcp_get_flags(th) & TH_RST) 6754 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6755 6756 /* update expire time */ 6757 (*state)->expire = pf_get_uptime(); 6758 if (src->state >= TCPS_FIN_WAIT_2 && 6759 dst->state >= TCPS_FIN_WAIT_2) 6760 (*state)->timeout = PFTM_TCP_CLOSED; 6761 else if (src->state >= TCPS_CLOSING && 6762 dst->state >= TCPS_CLOSING) 6763 (*state)->timeout = PFTM_TCP_FIN_WAIT; 6764 else if (src->state < TCPS_ESTABLISHED || 6765 dst->state < TCPS_ESTABLISHED) 6766 (*state)->timeout = PFTM_TCP_OPENING; 6767 else if (src->state >= TCPS_CLOSING || 6768 dst->state >= TCPS_CLOSING) 6769 (*state)->timeout = PFTM_TCP_CLOSING; 6770 else 6771 (*state)->timeout = PFTM_TCP_ESTABLISHED; 6772 6773 return (PF_PASS); 6774 } 6775 6776 static int 6777 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 6778 { 6779 struct pf_state_key *sk = (*state)->key[pd->didx]; 6780 struct tcphdr *th = &pd->hdr.tcp; 6781 6782 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 6783 if (pd->dir != (*state)->direction) { 6784 REASON_SET(reason, PFRES_SYNPROXY); 6785 return (PF_SYNPROXY_DROP); 6786 } 6787 if (tcp_get_flags(th) & TH_SYN) { 6788 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 6789 REASON_SET(reason, PFRES_SYNPROXY); 6790 return (PF_DROP); 6791 } 6792 pf_send_tcp((*state)->rule, pd->af, pd->dst, 6793 pd->src, th->th_dport, th->th_sport, 6794 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 6795 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 6796 M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid); 6797 REASON_SET(reason, PFRES_SYNPROXY); 6798 return (PF_SYNPROXY_DROP); 6799 } else if ((tcp_get_flags(th) & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 6800 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 6801 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 6802 REASON_SET(reason, PFRES_SYNPROXY); 6803 return (PF_DROP); 6804 } else if ((*state)->src_node != NULL && 6805 pf_src_connlimit(*state)) { 6806 REASON_SET(reason, PFRES_SRCLIMIT); 6807 return (PF_DROP); 6808 } else 6809 pf_set_protostate(*state, PF_PEER_SRC, 6810 PF_TCPS_PROXY_DST); 6811 } 6812 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 6813 if (pd->dir == (*state)->direction) { 6814 if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != TH_ACK) || 6815 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 6816 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 6817 REASON_SET(reason, PFRES_SYNPROXY); 6818 return (PF_DROP); 6819 } 6820 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 6821 if ((*state)->dst.seqhi == 1) 6822 (*state)->dst.seqhi = htonl(arc4random()); 6823 pf_send_tcp((*state)->rule, pd->af, 6824 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6825 sk->port[pd->sidx], sk->port[pd->didx], 6826 (*state)->dst.seqhi, 0, TH_SYN, 0, 6827 (*state)->src.mss, 0, 6828 (*state)->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0, 6829 (*state)->tag, 0, (*state)->act.rtableid); 6830 REASON_SET(reason, PFRES_SYNPROXY); 6831 return (PF_SYNPROXY_DROP); 6832 } else if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != 6833 (TH_SYN|TH_ACK)) || 6834 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 6835 REASON_SET(reason, PFRES_SYNPROXY); 6836 return (PF_DROP); 6837 } else { 6838 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 6839 (*state)->dst.seqlo = ntohl(th->th_seq); 6840 pf_send_tcp((*state)->rule, pd->af, pd->dst, 6841 pd->src, th->th_dport, th->th_sport, 6842 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 6843 TH_ACK, (*state)->src.max_win, 0, 0, 0, 6844 (*state)->tag, 0, (*state)->act.rtableid); 6845 pf_send_tcp((*state)->rule, pd->af, 6846 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6847 sk->port[pd->sidx], sk->port[pd->didx], 6848 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 6849 TH_ACK, (*state)->dst.max_win, 0, 0, 6850 M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid); 6851 (*state)->src.seqdiff = (*state)->dst.seqhi - 6852 (*state)->src.seqlo; 6853 (*state)->dst.seqdiff = (*state)->src.seqhi - 6854 (*state)->dst.seqlo; 6855 (*state)->src.seqhi = (*state)->src.seqlo + 6856 (*state)->dst.max_win; 6857 (*state)->dst.seqhi = (*state)->dst.seqlo + 6858 (*state)->src.max_win; 6859 (*state)->src.wscale = (*state)->dst.wscale = 0; 6860 pf_set_protostate(*state, PF_PEER_BOTH, 6861 TCPS_ESTABLISHED); 6862 REASON_SET(reason, PFRES_SYNPROXY); 6863 return (PF_SYNPROXY_DROP); 6864 } 6865 } 6866 6867 return (PF_PASS); 6868 } 6869 6870 static int 6871 pf_test_state_tcp(struct pf_kstate **state, struct pf_pdesc *pd, 6872 u_short *reason) 6873 { 6874 struct pf_state_key_cmp key; 6875 struct tcphdr *th = &pd->hdr.tcp; 6876 int copyback = 0; 6877 int action = PF_PASS; 6878 struct pf_state_peer *src, *dst; 6879 6880 bzero(&key, sizeof(key)); 6881 key.af = pd->af; 6882 key.proto = IPPROTO_TCP; 6883 if (pd->dir == PF_IN) { /* wire side, straight */ 6884 PF_ACPY(&key.addr[0], pd->src, key.af); 6885 PF_ACPY(&key.addr[1], pd->dst, key.af); 6886 key.port[0] = th->th_sport; 6887 key.port[1] = th->th_dport; 6888 } else { /* stack side, reverse */ 6889 PF_ACPY(&key.addr[1], pd->src, key.af); 6890 PF_ACPY(&key.addr[0], pd->dst, key.af); 6891 key.port[1] = th->th_sport; 6892 key.port[0] = th->th_dport; 6893 } 6894 6895 STATE_LOOKUP(&key, *state, pd); 6896 6897 if (pd->dir == (*state)->direction) { 6898 src = &(*state)->src; 6899 dst = &(*state)->dst; 6900 } else { 6901 src = &(*state)->dst; 6902 dst = &(*state)->src; 6903 } 6904 6905 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 6906 return (action); 6907 6908 if (dst->state >= TCPS_FIN_WAIT_2 && 6909 src->state >= TCPS_FIN_WAIT_2 && 6910 (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN) || 6911 ((tcp_get_flags(th) & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK && 6912 pf_syncookie_check(pd) && pd->dir == PF_IN))) { 6913 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6914 printf("pf: state reuse "); 6915 pf_print_state(*state); 6916 pf_print_flags(tcp_get_flags(th)); 6917 printf("\n"); 6918 } 6919 /* XXX make sure it's the same direction ?? */ 6920 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 6921 pf_unlink_state(*state); 6922 *state = NULL; 6923 return (PF_DROP); 6924 } 6925 6926 if ((*state)->state_flags & PFSTATE_SLOPPY) { 6927 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 6928 return (PF_DROP); 6929 } else { 6930 int ret; 6931 6932 ret = pf_tcp_track_full(state, pd, reason, 6933 ©back); 6934 if (ret == PF_DROP) 6935 return (PF_DROP); 6936 } 6937 6938 /* translate source/destination address, if necessary */ 6939 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6940 struct pf_state_key *nk; 6941 int afto, sidx, didx; 6942 6943 if (PF_REVERSED_KEY((*state)->key, pd->af)) 6944 nk = (*state)->key[pd->sidx]; 6945 else 6946 nk = (*state)->key[pd->didx]; 6947 6948 afto = pd->af != nk->af; 6949 sidx = afto ? pd->didx : pd->sidx; 6950 didx = afto ? pd->sidx : pd->didx; 6951 6952 if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) || 6953 nk->port[sidx] != th->th_sport) 6954 pf_change_ap(pd->m, pd->src, &th->th_sport, 6955 pd->ip_sum, &th->th_sum, &nk->addr[sidx], 6956 nk->port[sidx], 0, pd->af, nk->af); 6957 6958 if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) || 6959 nk->port[didx] != th->th_dport) 6960 pf_change_ap(pd->m, pd->dst, &th->th_dport, 6961 pd->ip_sum, &th->th_sum, &nk->addr[didx], 6962 nk->port[didx], 0, pd->af, nk->af); 6963 6964 if (afto) { 6965 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af); 6966 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af); 6967 pd->naf = nk->af; 6968 action = PF_AFRT; 6969 } 6970 6971 copyback = 1; 6972 } 6973 6974 /* Copyback sequence modulation or stateful scrub changes if needed */ 6975 if (copyback) 6976 m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th); 6977 6978 return (action); 6979 } 6980 6981 static int 6982 pf_test_state_udp(struct pf_kstate **state, struct pf_pdesc *pd) 6983 { 6984 struct pf_state_peer *src, *dst; 6985 struct pf_state_key_cmp key; 6986 struct udphdr *uh = &pd->hdr.udp; 6987 uint8_t psrc, pdst; 6988 int action = PF_PASS; 6989 6990 bzero(&key, sizeof(key)); 6991 key.af = pd->af; 6992 key.proto = IPPROTO_UDP; 6993 if (pd->dir == PF_IN) { /* wire side, straight */ 6994 PF_ACPY(&key.addr[0], pd->src, key.af); 6995 PF_ACPY(&key.addr[1], pd->dst, key.af); 6996 key.port[0] = uh->uh_sport; 6997 key.port[1] = uh->uh_dport; 6998 } else { /* stack side, reverse */ 6999 PF_ACPY(&key.addr[1], pd->src, key.af); 7000 PF_ACPY(&key.addr[0], pd->dst, key.af); 7001 key.port[1] = uh->uh_sport; 7002 key.port[0] = uh->uh_dport; 7003 } 7004 7005 STATE_LOOKUP(&key, *state, pd); 7006 7007 if (pd->dir == (*state)->direction) { 7008 src = &(*state)->src; 7009 dst = &(*state)->dst; 7010 psrc = PF_PEER_SRC; 7011 pdst = PF_PEER_DST; 7012 } else { 7013 src = &(*state)->dst; 7014 dst = &(*state)->src; 7015 psrc = PF_PEER_DST; 7016 pdst = PF_PEER_SRC; 7017 } 7018 7019 /* update states */ 7020 if (src->state < PFUDPS_SINGLE) 7021 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 7022 if (dst->state == PFUDPS_SINGLE) 7023 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 7024 7025 /* update expire time */ 7026 (*state)->expire = pf_get_uptime(); 7027 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 7028 (*state)->timeout = PFTM_UDP_MULTIPLE; 7029 else 7030 (*state)->timeout = PFTM_UDP_SINGLE; 7031 7032 /* translate source/destination address, if necessary */ 7033 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7034 struct pf_state_key *nk; 7035 int afto, sidx, didx; 7036 7037 if (PF_REVERSED_KEY((*state)->key, pd->af)) 7038 nk = (*state)->key[pd->sidx]; 7039 else 7040 nk = (*state)->key[pd->didx]; 7041 7042 afto = pd->af != nk->af; 7043 sidx = afto ? pd->didx : pd->sidx; 7044 didx = afto ? pd->sidx : pd->didx; 7045 7046 if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) || 7047 nk->port[sidx] != uh->uh_sport) 7048 pf_change_ap(pd->m, pd->src, &uh->uh_sport, pd->ip_sum, 7049 &uh->uh_sum, &nk->addr[pd->sidx], 7050 nk->port[sidx], 1, pd->af, nk->af); 7051 7052 if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) || 7053 nk->port[didx] != uh->uh_dport) 7054 pf_change_ap(pd->m, pd->dst, &uh->uh_dport, pd->ip_sum, 7055 &uh->uh_sum, &nk->addr[pd->didx], 7056 nk->port[didx], 1, pd->af, nk->af); 7057 7058 if (afto) { 7059 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af); 7060 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af); 7061 pd->naf = nk->af; 7062 action = PF_AFRT; 7063 } 7064 7065 m_copyback(pd->m, pd->off, sizeof(*uh), (caddr_t)uh); 7066 } 7067 7068 return (action); 7069 } 7070 7071 static int 7072 pf_sctp_track(struct pf_kstate *state, struct pf_pdesc *pd, 7073 u_short *reason) 7074 { 7075 struct pf_state_peer *src; 7076 if (pd->dir == state->direction) { 7077 if (PF_REVERSED_KEY(state->key, pd->af)) 7078 src = &state->dst; 7079 else 7080 src = &state->src; 7081 } else { 7082 if (PF_REVERSED_KEY(state->key, pd->af)) 7083 src = &state->src; 7084 else 7085 src = &state->dst; 7086 } 7087 7088 if (src->scrub != NULL) { 7089 if (src->scrub->pfss_v_tag == 0) 7090 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag; 7091 else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag) 7092 return (PF_DROP); 7093 } 7094 7095 return (PF_PASS); 7096 } 7097 7098 static int 7099 pf_test_state_sctp(struct pf_kstate **state, struct pf_pdesc *pd, 7100 u_short *reason) 7101 { 7102 struct pf_state_key_cmp key; 7103 struct pf_state_peer *src, *dst; 7104 struct sctphdr *sh = &pd->hdr.sctp; 7105 u_int8_t psrc; //, pdst; 7106 7107 bzero(&key, sizeof(key)); 7108 key.af = pd->af; 7109 key.proto = IPPROTO_SCTP; 7110 if (pd->dir == PF_IN) { /* wire side, straight */ 7111 PF_ACPY(&key.addr[0], pd->src, key.af); 7112 PF_ACPY(&key.addr[1], pd->dst, key.af); 7113 key.port[0] = sh->src_port; 7114 key.port[1] = sh->dest_port; 7115 } else { /* stack side, reverse */ 7116 PF_ACPY(&key.addr[1], pd->src, key.af); 7117 PF_ACPY(&key.addr[0], pd->dst, key.af); 7118 key.port[1] = sh->src_port; 7119 key.port[0] = sh->dest_port; 7120 } 7121 7122 STATE_LOOKUP(&key, *state, pd); 7123 7124 if (pd->dir == (*state)->direction) { 7125 src = &(*state)->src; 7126 dst = &(*state)->dst; 7127 psrc = PF_PEER_SRC; 7128 } else { 7129 src = &(*state)->dst; 7130 dst = &(*state)->src; 7131 psrc = PF_PEER_DST; 7132 } 7133 7134 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) && 7135 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) && 7136 pd->sctp_flags & PFDESC_SCTP_INIT) { 7137 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED); 7138 pf_unlink_state(*state); 7139 *state = NULL; 7140 return (PF_DROP); 7141 } 7142 7143 /* Track state. */ 7144 if (pd->sctp_flags & PFDESC_SCTP_INIT) { 7145 if (src->state < SCTP_COOKIE_WAIT) { 7146 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT); 7147 (*state)->timeout = PFTM_SCTP_OPENING; 7148 } 7149 } 7150 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) { 7151 MPASS(dst->scrub != NULL); 7152 if (dst->scrub->pfss_v_tag == 0) 7153 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag; 7154 } 7155 7156 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) { 7157 if (src->state < SCTP_ESTABLISHED) { 7158 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED); 7159 (*state)->timeout = PFTM_SCTP_ESTABLISHED; 7160 } 7161 } 7162 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | PFDESC_SCTP_ABORT | 7163 PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 7164 if (src->state < SCTP_SHUTDOWN_PENDING) { 7165 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING); 7166 (*state)->timeout = PFTM_SCTP_CLOSING; 7167 } 7168 } 7169 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 7170 pf_set_protostate(*state, psrc, SCTP_CLOSED); 7171 (*state)->timeout = PFTM_SCTP_CLOSED; 7172 } 7173 7174 if (pf_sctp_track(*state, pd, reason) != PF_PASS) 7175 return (PF_DROP); 7176 7177 (*state)->expire = pf_get_uptime(); 7178 7179 /* translate source/destination address, if necessary */ 7180 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7181 uint16_t checksum = 0; 7182 struct pf_state_key *nk; 7183 int afto, sidx, didx; 7184 7185 if (PF_REVERSED_KEY((*state)->key, pd->af)) 7186 nk = (*state)->key[pd->sidx]; 7187 else 7188 nk = (*state)->key[pd->didx]; 7189 7190 afto = pd->af != nk->af; 7191 sidx = afto ? pd->didx : pd->sidx; 7192 didx = afto ? pd->sidx : pd->didx; 7193 7194 if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) || 7195 nk->port[sidx] != pd->hdr.sctp.src_port) { 7196 pf_change_ap(pd->m, pd->src, &pd->hdr.sctp.src_port, 7197 pd->ip_sum, &checksum, &nk->addr[sidx], 7198 nk->port[sidx], 1, pd->af, pd->naf); 7199 } 7200 7201 if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) || 7202 nk->port[didx] != pd->hdr.sctp.dest_port) { 7203 pf_change_ap(pd->m, pd->dst, &pd->hdr.sctp.dest_port, 7204 pd->ip_sum, &checksum, &nk->addr[didx], 7205 nk->port[didx], 1, pd->af, pd->naf); 7206 } 7207 7208 if (afto) { 7209 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af); 7210 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af); 7211 pd->naf = nk->af; 7212 return (PF_AFRT); 7213 } 7214 } 7215 7216 return (PF_PASS); 7217 } 7218 7219 static void 7220 pf_sctp_multihome_detach_addr(const struct pf_kstate *s) 7221 { 7222 struct pf_sctp_endpoint key; 7223 struct pf_sctp_endpoint *ep; 7224 struct pf_state_key *sks = s->key[PF_SK_STACK]; 7225 struct pf_sctp_source *i, *tmp; 7226 7227 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL) 7228 return; 7229 7230 PF_SCTP_ENDPOINTS_LOCK(); 7231 7232 key.v_tag = s->dst.scrub->pfss_v_tag; 7233 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7234 if (ep != NULL) { 7235 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 7236 if (pf_addr_cmp(&i->addr, 7237 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT], 7238 s->key[PF_SK_WIRE]->af) == 0) { 7239 SDT_PROBE3(pf, sctp, multihome, remove, 7240 key.v_tag, s, i); 7241 TAILQ_REMOVE(&ep->sources, i, entry); 7242 free(i, M_PFTEMP); 7243 break; 7244 } 7245 } 7246 7247 if (TAILQ_EMPTY(&ep->sources)) { 7248 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 7249 free(ep, M_PFTEMP); 7250 } 7251 } 7252 7253 /* Other direction. */ 7254 key.v_tag = s->src.scrub->pfss_v_tag; 7255 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7256 if (ep != NULL) { 7257 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 7258 if (pf_addr_cmp(&i->addr, 7259 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN], 7260 s->key[PF_SK_WIRE]->af) == 0) { 7261 SDT_PROBE3(pf, sctp, multihome, remove, 7262 key.v_tag, s, i); 7263 TAILQ_REMOVE(&ep->sources, i, entry); 7264 free(i, M_PFTEMP); 7265 break; 7266 } 7267 } 7268 7269 if (TAILQ_EMPTY(&ep->sources)) { 7270 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 7271 free(ep, M_PFTEMP); 7272 } 7273 } 7274 7275 PF_SCTP_ENDPOINTS_UNLOCK(); 7276 } 7277 7278 static void 7279 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag) 7280 { 7281 struct pf_sctp_endpoint key = { 7282 .v_tag = v_tag, 7283 }; 7284 struct pf_sctp_source *i; 7285 struct pf_sctp_endpoint *ep; 7286 7287 PF_SCTP_ENDPOINTS_LOCK(); 7288 7289 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7290 if (ep == NULL) { 7291 ep = malloc(sizeof(struct pf_sctp_endpoint), 7292 M_PFTEMP, M_NOWAIT); 7293 if (ep == NULL) { 7294 PF_SCTP_ENDPOINTS_UNLOCK(); 7295 return; 7296 } 7297 7298 ep->v_tag = v_tag; 7299 TAILQ_INIT(&ep->sources); 7300 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 7301 } 7302 7303 /* Avoid inserting duplicates. */ 7304 TAILQ_FOREACH(i, &ep->sources, entry) { 7305 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) { 7306 PF_SCTP_ENDPOINTS_UNLOCK(); 7307 return; 7308 } 7309 } 7310 7311 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT); 7312 if (i == NULL) { 7313 PF_SCTP_ENDPOINTS_UNLOCK(); 7314 return; 7315 } 7316 7317 i->af = pd->af; 7318 memcpy(&i->addr, a, sizeof(*a)); 7319 TAILQ_INSERT_TAIL(&ep->sources, i, entry); 7320 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i); 7321 7322 PF_SCTP_ENDPOINTS_UNLOCK(); 7323 } 7324 7325 static void 7326 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif, 7327 struct pf_kstate *s, int action) 7328 { 7329 struct pf_sctp_multihome_job *j, *tmp; 7330 struct pf_sctp_source *i; 7331 int ret __unused; 7332 struct pf_kstate *sm = NULL; 7333 struct pf_krule *ra = NULL; 7334 struct pf_krule *r = &V_pf_default_rule; 7335 struct pf_kruleset *rs = NULL; 7336 bool do_extra = true; 7337 7338 PF_RULES_RLOCK_TRACKER; 7339 7340 again: 7341 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) { 7342 if (s == NULL || action != PF_PASS) 7343 goto free; 7344 7345 /* Confirm we don't recurse here. */ 7346 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP)); 7347 7348 switch (j->op) { 7349 case SCTP_ADD_IP_ADDRESS: { 7350 uint32_t v_tag = pd->sctp_initiate_tag; 7351 7352 if (v_tag == 0) { 7353 if (s->direction == pd->dir) 7354 v_tag = s->src.scrub->pfss_v_tag; 7355 else 7356 v_tag = s->dst.scrub->pfss_v_tag; 7357 } 7358 7359 /* 7360 * Avoid duplicating states. We'll already have 7361 * created a state based on the source address of 7362 * the packet, but SCTP endpoints may also list this 7363 * address again in the INIT(_ACK) parameters. 7364 */ 7365 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) { 7366 break; 7367 } 7368 7369 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP; 7370 PF_RULES_RLOCK(); 7371 sm = NULL; 7372 ret = pf_test_rule(&r, &sm, 7373 &j->pd, &ra, &rs, NULL); 7374 PF_RULES_RUNLOCK(); 7375 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret); 7376 if (ret != PF_DROP && sm != NULL) { 7377 /* Inherit v_tag values. */ 7378 if (sm->direction == s->direction) { 7379 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 7380 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 7381 } else { 7382 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 7383 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 7384 } 7385 PF_STATE_UNLOCK(sm); 7386 } else { 7387 /* If we try duplicate inserts? */ 7388 break; 7389 } 7390 7391 /* Only add the address if we've actually allowed the state. */ 7392 pf_sctp_multihome_add_addr(pd, &j->src, v_tag); 7393 7394 if (! do_extra) { 7395 break; 7396 } 7397 /* 7398 * We need to do this for each of our source addresses. 7399 * Find those based on the verification tag. 7400 */ 7401 struct pf_sctp_endpoint key = { 7402 .v_tag = pd->hdr.sctp.v_tag, 7403 }; 7404 struct pf_sctp_endpoint *ep; 7405 7406 PF_SCTP_ENDPOINTS_LOCK(); 7407 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7408 if (ep == NULL) { 7409 PF_SCTP_ENDPOINTS_UNLOCK(); 7410 break; 7411 } 7412 MPASS(ep != NULL); 7413 7414 TAILQ_FOREACH(i, &ep->sources, entry) { 7415 struct pf_sctp_multihome_job *nj; 7416 7417 /* SCTP can intermingle IPv4 and IPv6. */ 7418 if (i->af != pd->af) 7419 continue; 7420 7421 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO); 7422 if (! nj) { 7423 continue; 7424 } 7425 memcpy(&nj->pd, &j->pd, sizeof(j->pd)); 7426 memcpy(&nj->src, &j->src, sizeof(nj->src)); 7427 nj->pd.src = &nj->src; 7428 // New destination address! 7429 memcpy(&nj->dst, &i->addr, sizeof(nj->dst)); 7430 nj->pd.dst = &nj->dst; 7431 nj->pd.m = j->pd.m; 7432 nj->op = j->op; 7433 7434 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next); 7435 } 7436 PF_SCTP_ENDPOINTS_UNLOCK(); 7437 7438 break; 7439 } 7440 case SCTP_DEL_IP_ADDRESS: { 7441 struct pf_state_key_cmp key; 7442 uint8_t psrc; 7443 7444 bzero(&key, sizeof(key)); 7445 key.af = j->pd.af; 7446 key.proto = IPPROTO_SCTP; 7447 if (j->pd.dir == PF_IN) { /* wire side, straight */ 7448 PF_ACPY(&key.addr[0], j->pd.src, key.af); 7449 PF_ACPY(&key.addr[1], j->pd.dst, key.af); 7450 key.port[0] = j->pd.hdr.sctp.src_port; 7451 key.port[1] = j->pd.hdr.sctp.dest_port; 7452 } else { /* stack side, reverse */ 7453 PF_ACPY(&key.addr[1], j->pd.src, key.af); 7454 PF_ACPY(&key.addr[0], j->pd.dst, key.af); 7455 key.port[1] = j->pd.hdr.sctp.src_port; 7456 key.port[0] = j->pd.hdr.sctp.dest_port; 7457 } 7458 7459 sm = pf_find_state(kif, &key, j->pd.dir); 7460 if (sm != NULL) { 7461 PF_STATE_LOCK_ASSERT(sm); 7462 if (j->pd.dir == sm->direction) { 7463 psrc = PF_PEER_SRC; 7464 } else { 7465 psrc = PF_PEER_DST; 7466 } 7467 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING); 7468 sm->timeout = PFTM_SCTP_CLOSING; 7469 PF_STATE_UNLOCK(sm); 7470 } 7471 break; 7472 default: 7473 panic("Unknown op %#x", j->op); 7474 } 7475 } 7476 7477 free: 7478 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next); 7479 free(j, M_PFTEMP); 7480 } 7481 7482 /* We may have inserted extra work while processing the list. */ 7483 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) { 7484 do_extra = false; 7485 goto again; 7486 } 7487 } 7488 7489 static int 7490 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op) 7491 { 7492 int off = 0; 7493 struct pf_sctp_multihome_job *job; 7494 7495 while (off < len) { 7496 struct sctp_paramhdr h; 7497 7498 if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL, NULL, 7499 pd->af)) 7500 return (PF_DROP); 7501 7502 /* Parameters are at least 4 bytes. */ 7503 if (ntohs(h.param_length) < 4) 7504 return (PF_DROP); 7505 7506 switch (ntohs(h.param_type)) { 7507 case SCTP_IPV4_ADDRESS: { 7508 struct in_addr t; 7509 7510 if (ntohs(h.param_length) != 7511 (sizeof(struct sctp_paramhdr) + sizeof(t))) 7512 return (PF_DROP); 7513 7514 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t), 7515 NULL, NULL, pd->af)) 7516 return (PF_DROP); 7517 7518 if (in_nullhost(t)) 7519 t.s_addr = pd->src->v4.s_addr; 7520 7521 /* 7522 * We hold the state lock (idhash) here, which means 7523 * that we can't acquire the keyhash, or we'll get a 7524 * LOR (and potentially double-lock things too). We also 7525 * can't release the state lock here, so instead we'll 7526 * enqueue this for async handling. 7527 * There's a relatively small race here, in that a 7528 * packet using the new addresses could arrive already, 7529 * but that's just though luck for it. 7530 */ 7531 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 7532 if (! job) 7533 return (PF_DROP); 7534 7535 memcpy(&job->pd, pd, sizeof(*pd)); 7536 7537 // New source address! 7538 memcpy(&job->src, &t, sizeof(t)); 7539 job->pd.src = &job->src; 7540 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 7541 job->pd.dst = &job->dst; 7542 job->pd.m = pd->m; 7543 job->op = op; 7544 7545 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 7546 break; 7547 } 7548 #ifdef INET6 7549 case SCTP_IPV6_ADDRESS: { 7550 struct in6_addr t; 7551 7552 if (ntohs(h.param_length) != 7553 (sizeof(struct sctp_paramhdr) + sizeof(t))) 7554 return (PF_DROP); 7555 7556 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t), 7557 NULL, NULL, pd->af)) 7558 return (PF_DROP); 7559 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0) 7560 break; 7561 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0) 7562 memcpy(&t, &pd->src->v6, sizeof(t)); 7563 7564 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 7565 if (! job) 7566 return (PF_DROP); 7567 7568 memcpy(&job->pd, pd, sizeof(*pd)); 7569 memcpy(&job->src, &t, sizeof(t)); 7570 job->pd.src = &job->src; 7571 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 7572 job->pd.dst = &job->dst; 7573 job->pd.m = pd->m; 7574 job->op = op; 7575 7576 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 7577 break; 7578 } 7579 #endif 7580 case SCTP_ADD_IP_ADDRESS: { 7581 int ret; 7582 struct sctp_asconf_paramhdr ah; 7583 7584 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah), 7585 NULL, NULL, pd->af)) 7586 return (PF_DROP); 7587 7588 ret = pf_multihome_scan(start + off + sizeof(ah), 7589 ntohs(ah.ph.param_length) - sizeof(ah), pd, 7590 SCTP_ADD_IP_ADDRESS); 7591 if (ret != PF_PASS) 7592 return (ret); 7593 break; 7594 } 7595 case SCTP_DEL_IP_ADDRESS: { 7596 int ret; 7597 struct sctp_asconf_paramhdr ah; 7598 7599 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah), 7600 NULL, NULL, pd->af)) 7601 return (PF_DROP); 7602 ret = pf_multihome_scan(start + off + sizeof(ah), 7603 ntohs(ah.ph.param_length) - sizeof(ah), pd, 7604 SCTP_DEL_IP_ADDRESS); 7605 if (ret != PF_PASS) 7606 return (ret); 7607 break; 7608 } 7609 default: 7610 break; 7611 } 7612 7613 off += roundup(ntohs(h.param_length), 4); 7614 } 7615 7616 return (PF_PASS); 7617 } 7618 int 7619 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd) 7620 { 7621 start += sizeof(struct sctp_init_chunk); 7622 len -= sizeof(struct sctp_init_chunk); 7623 7624 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS)); 7625 } 7626 7627 int 7628 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd) 7629 { 7630 start += sizeof(struct sctp_asconf_chunk); 7631 len -= sizeof(struct sctp_asconf_chunk); 7632 7633 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS)); 7634 } 7635 7636 int 7637 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd, 7638 struct pf_kstate **state, int direction, 7639 u_int16_t icmpid, u_int16_t type, int icmp_dir, 7640 int *iidx, int multi, int inner) 7641 { 7642 key->af = pd->af; 7643 key->proto = pd->proto; 7644 if (icmp_dir == PF_IN) { 7645 *iidx = pd->sidx; 7646 key->port[pd->sidx] = icmpid; 7647 key->port[pd->didx] = type; 7648 } else { 7649 *iidx = pd->didx; 7650 key->port[pd->sidx] = type; 7651 key->port[pd->didx] = icmpid; 7652 } 7653 if (pf_state_key_addr_setup(pd, key, multi)) 7654 return (PF_DROP); 7655 7656 STATE_LOOKUP(key, *state, pd); 7657 7658 if ((*state)->state_flags & PFSTATE_SLOPPY) 7659 return (-1); 7660 7661 /* Is this ICMP message flowing in right direction? */ 7662 if ((*state)->rule->type && 7663 (((!inner && (*state)->direction == direction) || 7664 (inner && (*state)->direction != direction)) ? 7665 PF_IN : PF_OUT) != icmp_dir) { 7666 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7667 printf("pf: icmp type %d in wrong direction (%d): ", 7668 ntohs(type), icmp_dir); 7669 pf_print_state(*state); 7670 printf("\n"); 7671 } 7672 PF_STATE_UNLOCK(*state); 7673 *state = NULL; 7674 return (PF_DROP); 7675 } 7676 return (-1); 7677 } 7678 7679 static int 7680 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd, 7681 u_short *reason) 7682 { 7683 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 7684 u_int16_t *icmpsum, virtual_id, virtual_type; 7685 u_int8_t icmptype, icmpcode; 7686 int icmp_dir, iidx, ret, multi; 7687 struct pf_state_key_cmp key; 7688 #ifdef INET 7689 u_int16_t icmpid; 7690 #endif 7691 7692 MPASS(*state == NULL); 7693 7694 bzero(&key, sizeof(key)); 7695 switch (pd->proto) { 7696 #ifdef INET 7697 case IPPROTO_ICMP: 7698 icmptype = pd->hdr.icmp.icmp_type; 7699 icmpcode = pd->hdr.icmp.icmp_code; 7700 icmpid = pd->hdr.icmp.icmp_id; 7701 icmpsum = &pd->hdr.icmp.icmp_cksum; 7702 break; 7703 #endif /* INET */ 7704 #ifdef INET6 7705 case IPPROTO_ICMPV6: 7706 icmptype = pd->hdr.icmp6.icmp6_type; 7707 icmpcode = pd->hdr.icmp6.icmp6_code; 7708 #ifdef INET 7709 icmpid = pd->hdr.icmp6.icmp6_id; 7710 #endif 7711 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 7712 break; 7713 #endif /* INET6 */ 7714 } 7715 7716 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &multi, 7717 &virtual_id, &virtual_type) == 0) { 7718 /* 7719 * ICMP query/reply message not related to a TCP/UDP packet. 7720 * Search for an ICMP state. 7721 */ 7722 ret = pf_icmp_state_lookup(&key, pd, state, pd->dir, 7723 virtual_id, virtual_type, icmp_dir, &iidx, 7724 PF_ICMP_MULTI_NONE, 0); 7725 if (ret >= 0) { 7726 MPASS(*state == NULL); 7727 if (ret == PF_DROP && pd->af == AF_INET6 && 7728 icmp_dir == PF_OUT) { 7729 ret = pf_icmp_state_lookup(&key, pd, state, 7730 pd->dir, virtual_id, virtual_type, 7731 icmp_dir, &iidx, multi, 0); 7732 if (ret >= 0) { 7733 MPASS(*state == NULL); 7734 return (ret); 7735 } 7736 } else 7737 return (ret); 7738 } 7739 7740 (*state)->expire = pf_get_uptime(); 7741 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 7742 7743 /* translate source/destination address, if necessary */ 7744 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7745 struct pf_state_key *nk; 7746 int afto, sidx, didx; 7747 7748 if (PF_REVERSED_KEY((*state)->key, pd->af)) 7749 nk = (*state)->key[pd->sidx]; 7750 else 7751 nk = (*state)->key[pd->didx]; 7752 7753 afto = pd->af != nk->af; 7754 sidx = afto ? pd->didx : pd->sidx; 7755 didx = afto ? pd->sidx : pd->didx; 7756 iidx = afto ? !iidx : iidx; 7757 7758 switch (pd->af) { 7759 #ifdef INET 7760 case AF_INET: 7761 #ifdef INET6 7762 if (afto) { 7763 if (pf_translate_icmp_af(AF_INET6, 7764 &pd->hdr.icmp)) 7765 return (PF_DROP); 7766 pd->proto = IPPROTO_ICMPV6; 7767 } 7768 #endif 7769 if (!afto && 7770 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET)) 7771 pf_change_a(&saddr->v4.s_addr, 7772 pd->ip_sum, 7773 nk->addr[sidx].v4.s_addr, 7774 0); 7775 7776 if (!afto && PF_ANEQ(pd->dst, 7777 &nk->addr[didx], AF_INET)) 7778 pf_change_a(&daddr->v4.s_addr, 7779 pd->ip_sum, 7780 nk->addr[didx].v4.s_addr, 0); 7781 7782 if (nk->port[iidx] != 7783 pd->hdr.icmp.icmp_id) { 7784 pd->hdr.icmp.icmp_cksum = 7785 pf_cksum_fixup( 7786 pd->hdr.icmp.icmp_cksum, icmpid, 7787 nk->port[iidx], 0); 7788 pd->hdr.icmp.icmp_id = 7789 nk->port[iidx]; 7790 } 7791 7792 m_copyback(pd->m, pd->off, ICMP_MINLEN, 7793 (caddr_t )&pd->hdr.icmp); 7794 break; 7795 #endif /* INET */ 7796 #ifdef INET6 7797 case AF_INET6: 7798 #ifdef INET 7799 if (afto) { 7800 if (pf_translate_icmp_af(AF_INET, 7801 &pd->hdr.icmp6)) 7802 return (PF_DROP); 7803 pd->proto = IPPROTO_ICMP; 7804 } 7805 #endif 7806 if (!afto && 7807 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET6)) 7808 pf_change_a6(saddr, 7809 &pd->hdr.icmp6.icmp6_cksum, 7810 &nk->addr[sidx], 0); 7811 7812 if (!afto && PF_ANEQ(pd->dst, 7813 &nk->addr[didx], AF_INET6)) 7814 pf_change_a6(daddr, 7815 &pd->hdr.icmp6.icmp6_cksum, 7816 &nk->addr[didx], 0); 7817 7818 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr), 7819 (caddr_t )&pd->hdr.icmp6); 7820 break; 7821 #endif /* INET6 */ 7822 } 7823 if (afto) { 7824 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af); 7825 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af); 7826 pd->naf = nk->af; 7827 return (PF_AFRT); 7828 } 7829 } 7830 return (PF_PASS); 7831 7832 } else { 7833 /* 7834 * ICMP error message in response to a TCP/UDP packet. 7835 * Extract the inner TCP/UDP header and search for that state. 7836 */ 7837 7838 struct pf_pdesc pd2; 7839 bzero(&pd2, sizeof pd2); 7840 #ifdef INET 7841 struct ip h2; 7842 #endif /* INET */ 7843 #ifdef INET6 7844 struct ip6_hdr h2_6; 7845 int fragoff2, extoff2; 7846 u_int32_t jumbolen; 7847 #endif /* INET6 */ 7848 int ipoff2 = 0; 7849 7850 pd2.af = pd->af; 7851 pd2.dir = pd->dir; 7852 /* Payload packet is from the opposite direction. */ 7853 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0; 7854 pd2.didx = (pd->dir == PF_IN) ? 0 : 1; 7855 pd2.m = pd->m; 7856 switch (pd->af) { 7857 #ifdef INET 7858 case AF_INET: 7859 /* offset of h2 in mbuf chain */ 7860 ipoff2 = pd->off + ICMP_MINLEN; 7861 7862 if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2), 7863 NULL, reason, pd2.af)) { 7864 DPFPRINTF(PF_DEBUG_MISC, 7865 ("pf: ICMP error message too short " 7866 "(ip)\n")); 7867 return (PF_DROP); 7868 } 7869 /* 7870 * ICMP error messages don't refer to non-first 7871 * fragments 7872 */ 7873 if (h2.ip_off & htons(IP_OFFMASK)) { 7874 REASON_SET(reason, PFRES_FRAG); 7875 return (PF_DROP); 7876 } 7877 7878 /* offset of protocol header that follows h2 */ 7879 pd2.off = ipoff2 + (h2.ip_hl << 2); 7880 7881 pd2.proto = h2.ip_p; 7882 pd2.src = (struct pf_addr *)&h2.ip_src; 7883 pd2.dst = (struct pf_addr *)&h2.ip_dst; 7884 pd2.ip_sum = &h2.ip_sum; 7885 break; 7886 #endif /* INET */ 7887 #ifdef INET6 7888 case AF_INET6: 7889 ipoff2 = pd->off + sizeof(struct icmp6_hdr); 7890 7891 if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6), 7892 NULL, reason, pd2.af)) { 7893 DPFPRINTF(PF_DEBUG_MISC, 7894 ("pf: ICMP error message too short " 7895 "(ip6)\n")); 7896 return (PF_DROP); 7897 } 7898 pd2.off = ipoff2; 7899 if (pf_walk_header6(pd->m, &h2_6, &pd2.off, &extoff2, 7900 &fragoff2, &pd2.proto, &jumbolen, 7901 reason) != PF_PASS) 7902 return (PF_DROP); 7903 7904 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 7905 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 7906 pd2.ip_sum = NULL; 7907 break; 7908 #endif /* INET6 */ 7909 } 7910 7911 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 7912 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7913 printf("pf: BAD ICMP %d:%d outer dst: ", 7914 icmptype, icmpcode); 7915 pf_print_host(pd->src, 0, pd->af); 7916 printf(" -> "); 7917 pf_print_host(pd->dst, 0, pd->af); 7918 printf(" inner src: "); 7919 pf_print_host(pd2.src, 0, pd2.af); 7920 printf(" -> "); 7921 pf_print_host(pd2.dst, 0, pd2.af); 7922 printf("\n"); 7923 } 7924 REASON_SET(reason, PFRES_BADSTATE); 7925 return (PF_DROP); 7926 } 7927 7928 switch (pd2.proto) { 7929 case IPPROTO_TCP: { 7930 struct tcphdr th; 7931 u_int32_t seq; 7932 struct pf_state_peer *src, *dst; 7933 u_int8_t dws; 7934 int copyback = 0; 7935 7936 /* 7937 * Only the first 8 bytes of the TCP header can be 7938 * expected. Don't access any TCP header fields after 7939 * th_seq, an ackskew test is not possible. 7940 */ 7941 if (!pf_pull_hdr(pd->m, pd2.off, &th, 8, NULL, reason, 7942 pd2.af)) { 7943 DPFPRINTF(PF_DEBUG_MISC, 7944 ("pf: ICMP error message too short " 7945 "(tcp)\n")); 7946 return (PF_DROP); 7947 } 7948 7949 key.af = pd2.af; 7950 key.proto = IPPROTO_TCP; 7951 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7952 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7953 key.port[pd2.sidx] = th.th_sport; 7954 key.port[pd2.didx] = th.th_dport; 7955 7956 STATE_LOOKUP(&key, *state, pd); 7957 7958 if (pd->dir == (*state)->direction) { 7959 if (PF_REVERSED_KEY((*state)->key, pd->af)) { 7960 src = &(*state)->src; 7961 dst = &(*state)->dst; 7962 } else { 7963 src = &(*state)->dst; 7964 dst = &(*state)->src; 7965 } 7966 } else { 7967 if (PF_REVERSED_KEY((*state)->key, pd->af)) { 7968 src = &(*state)->dst; 7969 dst = &(*state)->src; 7970 } else { 7971 src = &(*state)->src; 7972 dst = &(*state)->dst; 7973 } 7974 } 7975 7976 if (src->wscale && dst->wscale) 7977 dws = dst->wscale & PF_WSCALE_MASK; 7978 else 7979 dws = 0; 7980 7981 /* Demodulate sequence number */ 7982 seq = ntohl(th.th_seq) - src->seqdiff; 7983 if (src->seqdiff) { 7984 pf_change_a(&th.th_seq, icmpsum, 7985 htonl(seq), 0); 7986 copyback = 1; 7987 } 7988 7989 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 7990 (!SEQ_GEQ(src->seqhi, seq) || 7991 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 7992 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7993 printf("pf: BAD ICMP %d:%d ", 7994 icmptype, icmpcode); 7995 pf_print_host(pd->src, 0, pd->af); 7996 printf(" -> "); 7997 pf_print_host(pd->dst, 0, pd->af); 7998 printf(" state: "); 7999 pf_print_state(*state); 8000 printf(" seq=%u\n", seq); 8001 } 8002 REASON_SET(reason, PFRES_BADSTATE); 8003 return (PF_DROP); 8004 } else { 8005 if (V_pf_status.debug >= PF_DEBUG_MISC) { 8006 printf("pf: OK ICMP %d:%d ", 8007 icmptype, icmpcode); 8008 pf_print_host(pd->src, 0, pd->af); 8009 printf(" -> "); 8010 pf_print_host(pd->dst, 0, pd->af); 8011 printf(" state: "); 8012 pf_print_state(*state); 8013 printf(" seq=%u\n", seq); 8014 } 8015 } 8016 8017 /* translate source/destination address, if necessary */ 8018 if ((*state)->key[PF_SK_WIRE] != 8019 (*state)->key[PF_SK_STACK]) { 8020 8021 struct pf_state_key *nk; 8022 8023 if (PF_REVERSED_KEY((*state)->key, pd->af)) 8024 nk = (*state)->key[pd->sidx]; 8025 else 8026 nk = (*state)->key[pd->didx]; 8027 8028 #if defined(INET) && defined(INET6) 8029 int afto, sidx, didx; 8030 8031 afto = pd->af != nk->af; 8032 sidx = afto ? pd2.didx : pd2.sidx; 8033 didx = afto ? pd2.sidx : pd2.didx; 8034 8035 if (afto) { 8036 if (pf_translate_icmp_af(nk->af, 8037 &pd->hdr.icmp)) 8038 return (PF_DROP); 8039 m_copyback(pd->m, pd->off, 8040 sizeof(struct icmp6_hdr), 8041 (c_caddr_t)&pd->hdr.icmp6); 8042 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8043 &pd2, &nk->addr[sidx], 8044 &nk->addr[didx], pd->af, 8045 nk->af)) 8046 return (PF_DROP); 8047 if (nk->af == AF_INET) 8048 pd->proto = IPPROTO_ICMP; 8049 else 8050 pd->proto = IPPROTO_ICMPV6; 8051 th.th_sport = nk->port[sidx]; 8052 th.th_dport = nk->port[didx]; 8053 m_copyback(pd2.m, pd2.off, 8, (c_caddr_t)&th); 8054 PF_ACPY(pd->src, 8055 &nk->addr[pd2.sidx], nk->af); 8056 PF_ACPY(pd->dst, 8057 &nk->addr[pd2.didx], nk->af); 8058 pd->naf = nk->af; 8059 return (PF_AFRT); 8060 } 8061 #endif 8062 8063 if (PF_ANEQ(pd2.src, 8064 &nk->addr[pd2.sidx], pd2.af) || 8065 nk->port[pd2.sidx] != th.th_sport) 8066 pf_change_icmp(pd2.src, &th.th_sport, 8067 daddr, &nk->addr[pd2.sidx], 8068 nk->port[pd2.sidx], NULL, 8069 pd2.ip_sum, icmpsum, 8070 pd->ip_sum, 0, pd2.af); 8071 8072 if (PF_ANEQ(pd2.dst, 8073 &nk->addr[pd2.didx], pd2.af) || 8074 nk->port[pd2.didx] != th.th_dport) 8075 pf_change_icmp(pd2.dst, &th.th_dport, 8076 saddr, &nk->addr[pd2.didx], 8077 nk->port[pd2.didx], NULL, 8078 pd2.ip_sum, icmpsum, 8079 pd->ip_sum, 0, pd2.af); 8080 copyback = 1; 8081 } 8082 8083 if (copyback) { 8084 switch (pd2.af) { 8085 #ifdef INET 8086 case AF_INET: 8087 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8088 (caddr_t )&pd->hdr.icmp); 8089 m_copyback(pd->m, ipoff2, sizeof(h2), 8090 (caddr_t )&h2); 8091 break; 8092 #endif /* INET */ 8093 #ifdef INET6 8094 case AF_INET6: 8095 m_copyback(pd->m, pd->off, 8096 sizeof(struct icmp6_hdr), 8097 (caddr_t )&pd->hdr.icmp6); 8098 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8099 (caddr_t )&h2_6); 8100 break; 8101 #endif /* INET6 */ 8102 } 8103 m_copyback(pd->m, pd2.off, 8, (caddr_t)&th); 8104 } 8105 8106 return (PF_PASS); 8107 break; 8108 } 8109 case IPPROTO_UDP: { 8110 struct udphdr uh; 8111 8112 if (!pf_pull_hdr(pd->m, pd2.off, &uh, sizeof(uh), 8113 NULL, reason, pd2.af)) { 8114 DPFPRINTF(PF_DEBUG_MISC, 8115 ("pf: ICMP error message too short " 8116 "(udp)\n")); 8117 return (PF_DROP); 8118 } 8119 8120 key.af = pd2.af; 8121 key.proto = IPPROTO_UDP; 8122 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 8123 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 8124 key.port[pd2.sidx] = uh.uh_sport; 8125 key.port[pd2.didx] = uh.uh_dport; 8126 8127 STATE_LOOKUP(&key, *state, pd); 8128 8129 /* translate source/destination address, if necessary */ 8130 if ((*state)->key[PF_SK_WIRE] != 8131 (*state)->key[PF_SK_STACK]) { 8132 struct pf_state_key *nk; 8133 8134 if (PF_REVERSED_KEY((*state)->key, pd->af)) 8135 nk = (*state)->key[pd->sidx]; 8136 else 8137 nk = (*state)->key[pd->didx]; 8138 8139 #if defined(INET) && defined(INET6) 8140 int afto, sidx, didx; 8141 8142 afto = pd->af != nk->af; 8143 sidx = afto ? pd2.didx : pd2.sidx; 8144 didx = afto ? pd2.sidx : pd2.didx; 8145 8146 if (afto) { 8147 if (pf_translate_icmp_af(nk->af, 8148 &pd->hdr.icmp)) 8149 return (PF_DROP); 8150 m_copyback(pd->m, pd->off, 8151 sizeof(struct icmp6_hdr), 8152 (c_caddr_t)&pd->hdr.icmp6); 8153 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8154 &pd2, &nk->addr[sidx], 8155 &nk->addr[didx], pd->af, 8156 nk->af)) 8157 return (PF_DROP); 8158 if (nk->af == AF_INET) 8159 pd->proto = IPPROTO_ICMP; 8160 else 8161 pd->proto = IPPROTO_ICMPV6; 8162 pf_change_ap(pd->m, pd2.src, &uh.uh_sport, 8163 pd->ip_sum, &uh.uh_sum, &nk->addr[pd2.sidx], 8164 nk->port[sidx], 1, pd->af, nk->af); 8165 pf_change_ap(pd->m, pd2.dst, &uh.uh_dport, 8166 pd->ip_sum, &uh.uh_sum, &nk->addr[pd2.didx], 8167 nk->port[didx], 1, pd->af, nk->af); 8168 m_copyback(pd2.m, pd2.off, sizeof(uh), 8169 (c_caddr_t)&uh); 8170 PF_ACPY(&pd->nsaddr, 8171 &nk->addr[pd2.sidx], nk->af); 8172 PF_ACPY(&pd->ndaddr, 8173 &nk->addr[pd2.didx], nk->af); 8174 pd->naf = nk->af; 8175 return (PF_AFRT); 8176 } 8177 #endif 8178 8179 if (PF_ANEQ(pd2.src, 8180 &nk->addr[pd2.sidx], pd2.af) || 8181 nk->port[pd2.sidx] != uh.uh_sport) 8182 pf_change_icmp(pd2.src, &uh.uh_sport, 8183 daddr, &nk->addr[pd2.sidx], 8184 nk->port[pd2.sidx], &uh.uh_sum, 8185 pd2.ip_sum, icmpsum, 8186 pd->ip_sum, 1, pd2.af); 8187 8188 if (PF_ANEQ(pd2.dst, 8189 &nk->addr[pd2.didx], pd2.af) || 8190 nk->port[pd2.didx] != uh.uh_dport) 8191 pf_change_icmp(pd2.dst, &uh.uh_dport, 8192 saddr, &nk->addr[pd2.didx], 8193 nk->port[pd2.didx], &uh.uh_sum, 8194 pd2.ip_sum, icmpsum, 8195 pd->ip_sum, 1, pd2.af); 8196 8197 switch (pd2.af) { 8198 #ifdef INET 8199 case AF_INET: 8200 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8201 (caddr_t )&pd->hdr.icmp); 8202 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 8203 break; 8204 #endif /* INET */ 8205 #ifdef INET6 8206 case AF_INET6: 8207 m_copyback(pd->m, pd->off, 8208 sizeof(struct icmp6_hdr), 8209 (caddr_t )&pd->hdr.icmp6); 8210 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8211 (caddr_t )&h2_6); 8212 break; 8213 #endif /* INET6 */ 8214 } 8215 m_copyback(pd->m, pd2.off, sizeof(uh), (caddr_t)&uh); 8216 } 8217 return (PF_PASS); 8218 break; 8219 } 8220 #ifdef INET 8221 case IPPROTO_ICMP: { 8222 struct icmp *iih = &pd2.hdr.icmp; 8223 8224 if (pd2.af != AF_INET) { 8225 REASON_SET(reason, PFRES_NORM); 8226 return (PF_DROP); 8227 } 8228 8229 if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN, 8230 NULL, reason, pd2.af)) { 8231 DPFPRINTF(PF_DEBUG_MISC, 8232 ("pf: ICMP error message too short i" 8233 "(icmp)\n")); 8234 return (PF_DROP); 8235 } 8236 8237 icmpid = iih->icmp_id; 8238 pf_icmp_mapping(&pd2, iih->icmp_type, 8239 &icmp_dir, &multi, &virtual_id, &virtual_type); 8240 8241 ret = pf_icmp_state_lookup(&key, &pd2, state, 8242 pd2.dir, virtual_id, virtual_type, 8243 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1); 8244 if (ret >= 0) { 8245 MPASS(*state == NULL); 8246 return (ret); 8247 } 8248 8249 /* translate source/destination address, if necessary */ 8250 if ((*state)->key[PF_SK_WIRE] != 8251 (*state)->key[PF_SK_STACK]) { 8252 struct pf_state_key *nk; 8253 8254 if (PF_REVERSED_KEY((*state)->key, pd->af)) 8255 nk = (*state)->key[pd->sidx]; 8256 else 8257 nk = (*state)->key[pd->didx]; 8258 8259 #if defined(INET) && defined(INET6) 8260 int afto, sidx, didx; 8261 8262 afto = pd->af != nk->af; 8263 sidx = afto ? pd2.didx : pd2.sidx; 8264 didx = afto ? pd2.sidx : pd2.didx; 8265 iidx = afto ? !iidx : iidx; 8266 8267 if (afto) { 8268 if (nk->af != AF_INET6) 8269 return (PF_DROP); 8270 if (pf_translate_icmp_af(nk->af, 8271 &pd->hdr.icmp)) 8272 return (PF_DROP); 8273 m_copyback(pd->m, pd->off, 8274 sizeof(struct icmp6_hdr), 8275 (c_caddr_t)&pd->hdr.icmp6); 8276 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8277 &pd2, &nk->addr[sidx], 8278 &nk->addr[didx], pd->af, 8279 nk->af)) 8280 return (PF_DROP); 8281 pd->proto = IPPROTO_ICMPV6; 8282 if (pf_translate_icmp_af(nk->af, &iih)) 8283 return (PF_DROP); 8284 if (virtual_type == htons(ICMP_ECHO) && 8285 nk->port[iidx] != iih->icmp_id) 8286 iih->icmp_id = nk->port[iidx]; 8287 m_copyback(pd2.m, pd2.off, ICMP_MINLEN, 8288 (c_caddr_t)&iih); 8289 PF_ACPY(&pd->nsaddr, 8290 &nk->addr[pd2.sidx], nk->af); 8291 PF_ACPY(&pd->ndaddr, 8292 &nk->addr[pd2.didx], nk->af); 8293 pd->naf = nk->af; 8294 return (PF_AFRT); 8295 } 8296 #endif 8297 8298 if (PF_ANEQ(pd2.src, 8299 &nk->addr[pd2.sidx], pd2.af) || 8300 (virtual_type == htons(ICMP_ECHO) && 8301 nk->port[iidx] != iih->icmp_id)) 8302 pf_change_icmp(pd2.src, 8303 (virtual_type == htons(ICMP_ECHO)) ? 8304 &iih->icmp_id : NULL, 8305 daddr, &nk->addr[pd2.sidx], 8306 (virtual_type == htons(ICMP_ECHO)) ? 8307 nk->port[iidx] : 0, NULL, 8308 pd2.ip_sum, icmpsum, 8309 pd->ip_sum, 0, AF_INET); 8310 8311 if (PF_ANEQ(pd2.dst, 8312 &nk->addr[pd2.didx], pd2.af)) 8313 pf_change_icmp(pd2.dst, NULL, NULL, 8314 &nk->addr[pd2.didx], 0, NULL, 8315 pd2.ip_sum, icmpsum, pd->ip_sum, 0, 8316 AF_INET); 8317 8318 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 8319 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 8320 m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih); 8321 } 8322 return (PF_PASS); 8323 break; 8324 } 8325 #endif /* INET */ 8326 #ifdef INET6 8327 case IPPROTO_ICMPV6: { 8328 struct icmp6_hdr *iih = &pd2.hdr.icmp6; 8329 8330 if (pd2.af != AF_INET6) { 8331 REASON_SET(reason, PFRES_NORM); 8332 return (PF_DROP); 8333 } 8334 8335 if (!pf_pull_hdr(pd->m, pd2.off, iih, 8336 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 8337 DPFPRINTF(PF_DEBUG_MISC, 8338 ("pf: ICMP error message too short " 8339 "(icmp6)\n")); 8340 return (PF_DROP); 8341 } 8342 8343 pf_icmp_mapping(&pd2, iih->icmp6_type, 8344 &icmp_dir, &multi, &virtual_id, &virtual_type); 8345 8346 ret = pf_icmp_state_lookup(&key, &pd2, state, 8347 pd->dir, virtual_id, virtual_type, 8348 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1); 8349 if (ret >= 0) { 8350 MPASS(*state == NULL); 8351 if (ret == PF_DROP && pd2.af == AF_INET6 && 8352 icmp_dir == PF_OUT) { 8353 ret = pf_icmp_state_lookup(&key, &pd2, 8354 state, pd->dir, 8355 virtual_id, virtual_type, 8356 icmp_dir, &iidx, multi, 1); 8357 if (ret >= 0) { 8358 MPASS(*state == NULL); 8359 return (ret); 8360 } 8361 } else 8362 return (ret); 8363 } 8364 8365 /* translate source/destination address, if necessary */ 8366 if ((*state)->key[PF_SK_WIRE] != 8367 (*state)->key[PF_SK_STACK]) { 8368 struct pf_state_key *nk; 8369 8370 if (PF_REVERSED_KEY((*state)->key, pd->af)) 8371 nk = (*state)->key[pd->sidx]; 8372 else 8373 nk = (*state)->key[pd->didx]; 8374 8375 #if defined(INET) && defined(INET6) 8376 int afto, sidx, didx; 8377 8378 afto = pd->af != nk->af; 8379 sidx = afto ? pd2.didx : pd2.sidx; 8380 didx = afto ? pd2.sidx : pd2.didx; 8381 iidx = afto ? !iidx : iidx; 8382 8383 if (afto) { 8384 if (nk->af != AF_INET) 8385 return (PF_DROP); 8386 if (pf_translate_icmp_af(nk->af, 8387 &pd->hdr.icmp)) 8388 return (PF_DROP); 8389 m_copyback(pd->m, pd->off, 8390 sizeof(struct icmp6_hdr), 8391 (c_caddr_t)&pd->hdr.icmp6); 8392 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8393 &pd2, &nk->addr[sidx], 8394 &nk->addr[didx], pd->af, 8395 nk->af)) 8396 return (PF_DROP); 8397 pd->proto = IPPROTO_ICMP; 8398 if (pf_translate_icmp_af(nk->af, &iih)) 8399 return (PF_DROP); 8400 if (virtual_type == 8401 htons(ICMP6_ECHO_REQUEST) && 8402 nk->port[iidx] != iih->icmp6_id) 8403 iih->icmp6_id = nk->port[iidx]; 8404 m_copyback(pd2.m, pd2.off, 8405 sizeof(struct icmp6_hdr), (c_caddr_t)&iih); 8406 PF_ACPY(&pd->nsaddr, 8407 &nk->addr[pd2.sidx], nk->af); 8408 PF_ACPY(&pd->ndaddr, 8409 &nk->addr[pd2.didx], nk->af); 8410 pd->naf = nk->af; 8411 return (PF_AFRT); 8412 } 8413 #endif 8414 8415 if (PF_ANEQ(pd2.src, 8416 &nk->addr[pd2.sidx], pd2.af) || 8417 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) && 8418 nk->port[pd2.sidx] != iih->icmp6_id)) 8419 pf_change_icmp(pd2.src, 8420 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 8421 ? &iih->icmp6_id : NULL, 8422 daddr, &nk->addr[pd2.sidx], 8423 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 8424 ? nk->port[iidx] : 0, NULL, 8425 pd2.ip_sum, icmpsum, 8426 pd->ip_sum, 0, AF_INET6); 8427 8428 if (PF_ANEQ(pd2.dst, 8429 &nk->addr[pd2.didx], pd2.af)) 8430 pf_change_icmp(pd2.dst, NULL, NULL, 8431 &nk->addr[pd2.didx], 0, NULL, 8432 pd2.ip_sum, icmpsum, 8433 pd->ip_sum, 0, AF_INET6); 8434 8435 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr), 8436 (caddr_t)&pd->hdr.icmp6); 8437 m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 8438 m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr), 8439 (caddr_t)iih); 8440 } 8441 return (PF_PASS); 8442 break; 8443 } 8444 #endif /* INET6 */ 8445 default: { 8446 key.af = pd2.af; 8447 key.proto = pd2.proto; 8448 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 8449 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 8450 key.port[0] = key.port[1] = 0; 8451 8452 STATE_LOOKUP(&key, *state, pd); 8453 8454 /* translate source/destination address, if necessary */ 8455 if ((*state)->key[PF_SK_WIRE] != 8456 (*state)->key[PF_SK_STACK]) { 8457 struct pf_state_key *nk = 8458 (*state)->key[pd->didx]; 8459 8460 if (PF_ANEQ(pd2.src, 8461 &nk->addr[pd2.sidx], pd2.af)) 8462 pf_change_icmp(pd2.src, NULL, daddr, 8463 &nk->addr[pd2.sidx], 0, NULL, 8464 pd2.ip_sum, icmpsum, 8465 pd->ip_sum, 0, pd2.af); 8466 8467 if (PF_ANEQ(pd2.dst, 8468 &nk->addr[pd2.didx], pd2.af)) 8469 pf_change_icmp(pd2.dst, NULL, saddr, 8470 &nk->addr[pd2.didx], 0, NULL, 8471 pd2.ip_sum, icmpsum, 8472 pd->ip_sum, 0, pd2.af); 8473 8474 switch (pd2.af) { 8475 #ifdef INET 8476 case AF_INET: 8477 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8478 (caddr_t)&pd->hdr.icmp); 8479 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 8480 break; 8481 #endif /* INET */ 8482 #ifdef INET6 8483 case AF_INET6: 8484 m_copyback(pd->m, pd->off, 8485 sizeof(struct icmp6_hdr), 8486 (caddr_t )&pd->hdr.icmp6); 8487 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8488 (caddr_t )&h2_6); 8489 break; 8490 #endif /* INET6 */ 8491 } 8492 } 8493 return (PF_PASS); 8494 break; 8495 } 8496 } 8497 } 8498 } 8499 8500 static int 8501 pf_test_state_other(struct pf_kstate **state, struct pf_pdesc *pd) 8502 { 8503 struct pf_state_peer *src, *dst; 8504 struct pf_state_key_cmp key; 8505 uint8_t psrc, pdst; 8506 int action = PF_PASS; 8507 8508 bzero(&key, sizeof(key)); 8509 key.af = pd->af; 8510 key.proto = pd->proto; 8511 if (pd->dir == PF_IN) { 8512 PF_ACPY(&key.addr[0], pd->src, key.af); 8513 PF_ACPY(&key.addr[1], pd->dst, key.af); 8514 key.port[0] = key.port[1] = 0; 8515 } else { 8516 PF_ACPY(&key.addr[1], pd->src, key.af); 8517 PF_ACPY(&key.addr[0], pd->dst, key.af); 8518 key.port[1] = key.port[0] = 0; 8519 } 8520 8521 STATE_LOOKUP(&key, *state, pd); 8522 8523 if (pd->dir == (*state)->direction) { 8524 src = &(*state)->src; 8525 dst = &(*state)->dst; 8526 psrc = PF_PEER_SRC; 8527 pdst = PF_PEER_DST; 8528 } else { 8529 src = &(*state)->dst; 8530 dst = &(*state)->src; 8531 psrc = PF_PEER_DST; 8532 pdst = PF_PEER_SRC; 8533 } 8534 8535 /* update states */ 8536 if (src->state < PFOTHERS_SINGLE) 8537 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 8538 if (dst->state == PFOTHERS_SINGLE) 8539 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 8540 8541 /* update expire time */ 8542 (*state)->expire = pf_get_uptime(); 8543 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 8544 (*state)->timeout = PFTM_OTHER_MULTIPLE; 8545 else 8546 (*state)->timeout = PFTM_OTHER_SINGLE; 8547 8548 /* translate source/destination address, if necessary */ 8549 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 8550 struct pf_state_key *nk; 8551 int afto; 8552 8553 if (PF_REVERSED_KEY((*state)->key, pd->af)) 8554 nk = (*state)->key[pd->sidx]; 8555 else 8556 nk = (*state)->key[pd->didx]; 8557 8558 KASSERT(nk, ("%s: nk is null", __func__)); 8559 KASSERT(pd, ("%s: pd is null", __func__)); 8560 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 8561 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 8562 8563 afto = pd->af != nk->af; 8564 8565 switch (pd->af) { 8566 #ifdef INET 8567 case AF_INET: 8568 if (!afto && 8569 PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 8570 pf_change_a(&pd->src->v4.s_addr, 8571 pd->ip_sum, 8572 nk->addr[pd->sidx].v4.s_addr, 8573 0); 8574 8575 if (!afto && 8576 PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 8577 pf_change_a(&pd->dst->v4.s_addr, 8578 pd->ip_sum, 8579 nk->addr[pd->didx].v4.s_addr, 8580 0); 8581 8582 break; 8583 #endif /* INET */ 8584 #ifdef INET6 8585 case AF_INET6: 8586 if (!afto && 8587 PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET6)) 8588 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 8589 8590 if (!afto && 8591 PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET6)) 8592 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 8593 #endif /* INET6 */ 8594 } 8595 if (afto) { 8596 PF_ACPY(&pd->nsaddr, 8597 &nk->addr[afto ? pd->didx : pd->sidx], nk->af); 8598 PF_ACPY(&pd->ndaddr, 8599 &nk->addr[afto ? pd->sidx : pd->didx], nk->af); 8600 pd->naf = nk->af; 8601 action = PF_AFRT; 8602 } 8603 } 8604 return (action); 8605 } 8606 8607 /* 8608 * ipoff and off are measured from the start of the mbuf chain. 8609 * h must be at "ipoff" on the mbuf chain. 8610 */ 8611 void * 8612 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len, 8613 u_short *actionp, u_short *reasonp, sa_family_t af) 8614 { 8615 switch (af) { 8616 #ifdef INET 8617 case AF_INET: { 8618 const struct ip *h = mtod(m, struct ip *); 8619 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 8620 8621 if (fragoff) { 8622 if (fragoff >= len) 8623 ACTION_SET(actionp, PF_PASS); 8624 else { 8625 ACTION_SET(actionp, PF_DROP); 8626 REASON_SET(reasonp, PFRES_FRAG); 8627 } 8628 return (NULL); 8629 } 8630 if (m->m_pkthdr.len < off + len || 8631 ntohs(h->ip_len) < off + len) { 8632 ACTION_SET(actionp, PF_DROP); 8633 REASON_SET(reasonp, PFRES_SHORT); 8634 return (NULL); 8635 } 8636 break; 8637 } 8638 #endif /* INET */ 8639 #ifdef INET6 8640 case AF_INET6: { 8641 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 8642 8643 if (m->m_pkthdr.len < off + len || 8644 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 8645 (unsigned)(off + len)) { 8646 ACTION_SET(actionp, PF_DROP); 8647 REASON_SET(reasonp, PFRES_SHORT); 8648 return (NULL); 8649 } 8650 break; 8651 } 8652 #endif /* INET6 */ 8653 } 8654 m_copydata(m, off, len, p); 8655 return (p); 8656 } 8657 8658 int 8659 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 8660 int rtableid) 8661 { 8662 struct ifnet *ifp; 8663 8664 /* 8665 * Skip check for addresses with embedded interface scope, 8666 * as they would always match anyway. 8667 */ 8668 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 8669 return (1); 8670 8671 if (af != AF_INET && af != AF_INET6) 8672 return (0); 8673 8674 if (kif == V_pfi_all) 8675 return (1); 8676 8677 /* Skip checks for ipsec interfaces */ 8678 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 8679 return (1); 8680 8681 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 8682 8683 switch (af) { 8684 #ifdef INET6 8685 case AF_INET6: 8686 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 8687 ifp)); 8688 #endif 8689 #ifdef INET 8690 case AF_INET: 8691 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 8692 ifp)); 8693 #endif 8694 } 8695 8696 return (0); 8697 } 8698 8699 #ifdef INET 8700 static void 8701 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 8702 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 8703 { 8704 struct mbuf *m0, *m1, *md; 8705 struct sockaddr_in dst; 8706 struct ip *ip; 8707 struct ifnet *ifp = NULL; 8708 int error = 0; 8709 uint16_t ip_len, ip_off; 8710 uint16_t tmp; 8711 int r_dir; 8712 8713 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 8714 8715 SDT_PROBE4(pf, ip, route_to, entry, *m, pd, s, oifp); 8716 8717 if (s) { 8718 r_dir = s->direction; 8719 } else { 8720 r_dir = r->direction; 8721 } 8722 8723 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 8724 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 8725 __func__)); 8726 8727 if ((pd->pf_mtag == NULL && 8728 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 8729 pd->pf_mtag->routed++ > 3) { 8730 m0 = *m; 8731 *m = NULL; 8732 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8733 goto bad_locked; 8734 } 8735 8736 if (pd->act.rt_kif != NULL) 8737 ifp = pd->act.rt_kif->pfik_ifp; 8738 8739 if (pd->act.rt == PF_DUPTO) { 8740 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 8741 if (s != NULL) { 8742 PF_STATE_UNLOCK(s); 8743 } 8744 if (ifp == oifp) { 8745 /* When the 2nd interface is not skipped */ 8746 return; 8747 } else { 8748 m0 = *m; 8749 *m = NULL; 8750 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8751 goto bad; 8752 } 8753 } else { 8754 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 8755 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 8756 if (s) 8757 PF_STATE_UNLOCK(s); 8758 return; 8759 } 8760 } 8761 } else { 8762 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) { 8763 pf_dummynet(pd, s, r, m); 8764 if (s) 8765 PF_STATE_UNLOCK(s); 8766 return; 8767 } 8768 m0 = *m; 8769 } 8770 8771 ip = mtod(m0, struct ip *); 8772 8773 bzero(&dst, sizeof(dst)); 8774 dst.sin_family = AF_INET; 8775 dst.sin_len = sizeof(dst); 8776 dst.sin_addr = ip->ip_dst; 8777 dst.sin_addr.s_addr = pd->act.rt_addr.v4.s_addr; 8778 8779 if (s != NULL){ 8780 if (r->rule_flag & PFRULE_IFBOUND && 8781 pd->act.rt == PF_REPLYTO && 8782 s->kif == V_pfi_all) { 8783 s->kif = pd->act.rt_kif; 8784 s->orig_kif = oifp->if_pf_kif; 8785 } 8786 8787 if (ifp == NULL && (pd->af != pd->naf)) { 8788 /* We're in the AFTO case. Do a route lookup. */ 8789 struct nhop_object *nh; 8790 nh = fib4_lookup(M_GETFIB(*m), ip->ip_dst, 0, NHR_NONE, 0); 8791 if (nh) { 8792 ifp = nh->nh_ifp; 8793 8794 /* Use the gateway if needed. */ 8795 if (nh->nh_flags & NHF_GATEWAY) 8796 dst.sin_addr = nh->gw4_sa.sin_addr; 8797 else 8798 dst.sin_addr = ip->ip_dst; 8799 } 8800 } 8801 8802 PF_STATE_UNLOCK(s); 8803 } 8804 8805 if (ifp == NULL) { 8806 m0 = *m; 8807 *m = NULL; 8808 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8809 goto bad; 8810 } 8811 8812 if (pd->dir == PF_IN) { 8813 if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp, 8814 &pd->act) != PF_PASS) { 8815 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8816 goto bad; 8817 } else if (m0 == NULL) { 8818 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8819 goto done; 8820 } 8821 if (m0->m_len < sizeof(struct ip)) { 8822 DPFPRINTF(PF_DEBUG_URGENT, 8823 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 8824 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8825 goto bad; 8826 } 8827 ip = mtod(m0, struct ip *); 8828 } 8829 8830 if (ifp->if_flags & IFF_LOOPBACK) 8831 m0->m_flags |= M_SKIP_FIREWALL; 8832 8833 ip_len = ntohs(ip->ip_len); 8834 ip_off = ntohs(ip->ip_off); 8835 8836 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 8837 m0->m_pkthdr.csum_flags |= CSUM_IP; 8838 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 8839 in_delayed_cksum(m0); 8840 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 8841 } 8842 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 8843 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2)); 8844 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 8845 } 8846 8847 if (pd->dir == PF_IN) { 8848 /* 8849 * Make sure dummynet gets the correct direction, in case it needs to 8850 * re-inject later. 8851 */ 8852 pd->dir = PF_OUT; 8853 8854 /* 8855 * The following processing is actually the rest of the inbound processing, even 8856 * though we've marked it as outbound (so we don't look through dummynet) and it 8857 * happens after the outbound processing (pf_test(PF_OUT) above). 8858 * Swap the dummynet pipe numbers, because it's going to come to the wrong 8859 * conclusion about what direction it's processing, and we can't fix it or it 8860 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 8861 * decision will pick the right pipe, and everything will mostly work as expected. 8862 */ 8863 tmp = pd->act.dnrpipe; 8864 pd->act.dnrpipe = pd->act.dnpipe; 8865 pd->act.dnpipe = tmp; 8866 } 8867 8868 /* 8869 * If small enough for interface, or the interface will take 8870 * care of the fragmentation for us, we can just send directly. 8871 */ 8872 if (ip_len <= ifp->if_mtu || 8873 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 8874 ip->ip_sum = 0; 8875 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 8876 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 8877 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 8878 } 8879 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 8880 8881 md = m0; 8882 error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 8883 if (md != NULL) { 8884 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL); 8885 SDT_PROBE2(pf, ip, route_to, output, ifp, error); 8886 } 8887 goto done; 8888 } 8889 8890 /* Balk when DF bit is set or the interface didn't support TSO. */ 8891 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 8892 error = EMSGSIZE; 8893 KMOD_IPSTAT_INC(ips_cantfrag); 8894 if (pd->act.rt != PF_DUPTO) { 8895 if (s && s->nat_rule != NULL) 8896 PACKET_UNDO_NAT(m0, pd, 8897 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 8898 s); 8899 8900 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 8901 ifp->if_mtu); 8902 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8903 goto done; 8904 } else { 8905 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8906 goto bad; 8907 } 8908 } 8909 8910 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 8911 if (error) { 8912 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8913 goto bad; 8914 } 8915 8916 for (; m0; m0 = m1) { 8917 m1 = m0->m_nextpkt; 8918 m0->m_nextpkt = NULL; 8919 if (error == 0) { 8920 m_clrprotoflags(m0); 8921 md = m0; 8922 pd->pf_mtag = pf_find_mtag(md); 8923 error = pf_dummynet_route(pd, s, r, ifp, 8924 sintosa(&dst), &md); 8925 if (md != NULL) { 8926 error = (*ifp->if_output)(ifp, md, 8927 sintosa(&dst), NULL); 8928 SDT_PROBE2(pf, ip, route_to, output, ifp, error); 8929 } 8930 } else 8931 m_freem(m0); 8932 } 8933 8934 if (error == 0) 8935 KMOD_IPSTAT_INC(ips_fragmented); 8936 8937 done: 8938 if (pd->act.rt != PF_DUPTO) 8939 *m = NULL; 8940 return; 8941 8942 bad_locked: 8943 if (s) 8944 PF_STATE_UNLOCK(s); 8945 bad: 8946 m_freem(m0); 8947 goto done; 8948 } 8949 #endif /* INET */ 8950 8951 #ifdef INET6 8952 static void 8953 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 8954 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 8955 { 8956 struct mbuf *m0, *md; 8957 struct m_tag *mtag; 8958 struct sockaddr_in6 dst; 8959 struct ip6_hdr *ip6; 8960 struct ifnet *ifp = NULL; 8961 int r_dir; 8962 8963 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 8964 8965 SDT_PROBE4(pf, ip6, route_to, entry, *m, pd, s, oifp); 8966 8967 if (s) { 8968 r_dir = s->direction; 8969 } else { 8970 r_dir = r->direction; 8971 } 8972 8973 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 8974 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 8975 __func__)); 8976 8977 if ((pd->pf_mtag == NULL && 8978 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 8979 pd->pf_mtag->routed++ > 3) { 8980 m0 = *m; 8981 *m = NULL; 8982 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 8983 goto bad_locked; 8984 } 8985 8986 if (pd->act.rt_kif != NULL) 8987 ifp = pd->act.rt_kif->pfik_ifp; 8988 8989 if (pd->act.rt == PF_DUPTO) { 8990 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 8991 if (s != NULL) { 8992 PF_STATE_UNLOCK(s); 8993 } 8994 if (ifp == oifp) { 8995 /* When the 2nd interface is not skipped */ 8996 return; 8997 } else { 8998 m0 = *m; 8999 *m = NULL; 9000 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9001 goto bad; 9002 } 9003 } else { 9004 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 9005 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 9006 if (s) 9007 PF_STATE_UNLOCK(s); 9008 return; 9009 } 9010 } 9011 } else { 9012 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) { 9013 pf_dummynet(pd, s, r, m); 9014 if (s) 9015 PF_STATE_UNLOCK(s); 9016 return; 9017 } 9018 m0 = *m; 9019 } 9020 9021 ip6 = mtod(m0, struct ip6_hdr *); 9022 9023 bzero(&dst, sizeof(dst)); 9024 dst.sin6_family = AF_INET6; 9025 dst.sin6_len = sizeof(dst); 9026 dst.sin6_addr = ip6->ip6_dst; 9027 PF_ACPY((struct pf_addr *)&dst.sin6_addr, &pd->act.rt_addr, AF_INET6); 9028 9029 if (s != NULL) { 9030 if (r->rule_flag & PFRULE_IFBOUND && 9031 pd->act.rt == PF_REPLYTO && 9032 s->kif == V_pfi_all) { 9033 s->kif = pd->act.rt_kif; 9034 s->orig_kif = oifp->if_pf_kif; 9035 } 9036 9037 if (ifp == NULL && (pd->af != pd->naf)) { 9038 struct nhop_object *nh; 9039 nh = fib6_lookup(M_GETFIB(*m), &ip6->ip6_dst, 0, NHR_NONE, 0); 9040 if (nh) { 9041 ifp = nh->nh_ifp; 9042 9043 /* Use the gateway if needed. */ 9044 if (nh->nh_flags & NHF_GATEWAY) 9045 bcopy(&dst.sin6_addr, &nh->gw6_sa.sin6_addr, 9046 sizeof(dst.sin6_addr)); 9047 else 9048 dst.sin6_addr = ip6->ip6_dst; 9049 } 9050 } 9051 9052 PF_STATE_UNLOCK(s); 9053 } 9054 9055 if (ifp == NULL) { 9056 m0 = *m; 9057 *m = NULL; 9058 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9059 goto bad; 9060 } 9061 9062 if (pd->dir == PF_IN) { 9063 if (pf_test(AF_INET6, PF_OUT, PFIL_FWD | PF_PFIL_NOREFRAGMENT, 9064 ifp, &m0, inp, &pd->act) != PF_PASS) { 9065 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9066 goto bad; 9067 } else if (m0 == NULL) { 9068 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9069 goto done; 9070 } 9071 if (m0->m_len < sizeof(struct ip6_hdr)) { 9072 DPFPRINTF(PF_DEBUG_URGENT, 9073 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 9074 __func__)); 9075 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9076 goto bad; 9077 } 9078 ip6 = mtod(m0, struct ip6_hdr *); 9079 } 9080 9081 if (ifp->if_flags & IFF_LOOPBACK) 9082 m0->m_flags |= M_SKIP_FIREWALL; 9083 9084 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 9085 ~ifp->if_hwassist) { 9086 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 9087 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 9088 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 9089 } 9090 9091 /* 9092 * If the packet is too large for the outgoing interface, 9093 * send back an icmp6 error. 9094 */ 9095 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 9096 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 9097 mtag = m_tag_find(m0, PACKET_TAG_PF_REASSEMBLED, NULL); 9098 if (mtag != NULL) { 9099 int ret __sdt_used; 9100 ret = pf_refragment6(ifp, &m0, mtag, ifp, true); 9101 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret); 9102 goto done; 9103 } 9104 9105 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 9106 md = m0; 9107 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 9108 if (md != NULL) { 9109 int ret __sdt_used; 9110 ret = nd6_output_ifp(ifp, ifp, md, &dst, NULL); 9111 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret); 9112 } 9113 } 9114 else { 9115 in6_ifstat_inc(ifp, ifs6_in_toobig); 9116 if (pd->act.rt != PF_DUPTO) { 9117 if (s && s->nat_rule != NULL) 9118 PACKET_UNDO_NAT(m0, pd, 9119 ((caddr_t)ip6 - m0->m_data) + 9120 sizeof(struct ip6_hdr), s); 9121 9122 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 9123 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9124 } else { 9125 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9126 goto bad; 9127 } 9128 } 9129 9130 done: 9131 if (pd->act.rt != PF_DUPTO) 9132 *m = NULL; 9133 return; 9134 9135 bad_locked: 9136 if (s) 9137 PF_STATE_UNLOCK(s); 9138 bad: 9139 m_freem(m0); 9140 goto done; 9141 } 9142 #endif /* INET6 */ 9143 9144 /* 9145 * FreeBSD supports cksum offloads for the following drivers. 9146 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 9147 * 9148 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 9149 * network driver performed cksum including pseudo header, need to verify 9150 * csum_data 9151 * CSUM_DATA_VALID : 9152 * network driver performed cksum, needs to additional pseudo header 9153 * cksum computation with partial csum_data(i.e. lack of H/W support for 9154 * pseudo header, for instance sk(4) and possibly gem(4)) 9155 * 9156 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 9157 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 9158 * TCP/UDP layer. 9159 * Also, set csum_data to 0xffff to force cksum validation. 9160 */ 9161 static int 9162 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 9163 { 9164 u_int16_t sum = 0; 9165 int hw_assist = 0; 9166 struct ip *ip; 9167 9168 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 9169 return (1); 9170 if (m->m_pkthdr.len < off + len) 9171 return (1); 9172 9173 switch (p) { 9174 case IPPROTO_TCP: 9175 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 9176 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 9177 sum = m->m_pkthdr.csum_data; 9178 } else { 9179 ip = mtod(m, struct ip *); 9180 sum = in_pseudo(ip->ip_src.s_addr, 9181 ip->ip_dst.s_addr, htonl((u_short)len + 9182 m->m_pkthdr.csum_data + IPPROTO_TCP)); 9183 } 9184 sum ^= 0xffff; 9185 ++hw_assist; 9186 } 9187 break; 9188 case IPPROTO_UDP: 9189 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 9190 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 9191 sum = m->m_pkthdr.csum_data; 9192 } else { 9193 ip = mtod(m, struct ip *); 9194 sum = in_pseudo(ip->ip_src.s_addr, 9195 ip->ip_dst.s_addr, htonl((u_short)len + 9196 m->m_pkthdr.csum_data + IPPROTO_UDP)); 9197 } 9198 sum ^= 0xffff; 9199 ++hw_assist; 9200 } 9201 break; 9202 case IPPROTO_ICMP: 9203 #ifdef INET6 9204 case IPPROTO_ICMPV6: 9205 #endif /* INET6 */ 9206 break; 9207 default: 9208 return (1); 9209 } 9210 9211 if (!hw_assist) { 9212 switch (af) { 9213 case AF_INET: 9214 if (p == IPPROTO_ICMP) { 9215 if (m->m_len < off) 9216 return (1); 9217 m->m_data += off; 9218 m->m_len -= off; 9219 sum = in_cksum(m, len); 9220 m->m_data -= off; 9221 m->m_len += off; 9222 } else { 9223 if (m->m_len < sizeof(struct ip)) 9224 return (1); 9225 sum = in4_cksum(m, p, off, len); 9226 } 9227 break; 9228 #ifdef INET6 9229 case AF_INET6: 9230 if (m->m_len < sizeof(struct ip6_hdr)) 9231 return (1); 9232 sum = in6_cksum(m, p, off, len); 9233 break; 9234 #endif /* INET6 */ 9235 } 9236 } 9237 if (sum) { 9238 switch (p) { 9239 case IPPROTO_TCP: 9240 { 9241 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 9242 break; 9243 } 9244 case IPPROTO_UDP: 9245 { 9246 KMOD_UDPSTAT_INC(udps_badsum); 9247 break; 9248 } 9249 #ifdef INET 9250 case IPPROTO_ICMP: 9251 { 9252 KMOD_ICMPSTAT_INC(icps_checksum); 9253 break; 9254 } 9255 #endif 9256 #ifdef INET6 9257 case IPPROTO_ICMPV6: 9258 { 9259 KMOD_ICMP6STAT_INC(icp6s_checksum); 9260 break; 9261 } 9262 #endif /* INET6 */ 9263 } 9264 return (1); 9265 } else { 9266 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 9267 m->m_pkthdr.csum_flags |= 9268 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 9269 m->m_pkthdr.csum_data = 0xffff; 9270 } 9271 } 9272 return (0); 9273 } 9274 9275 static bool 9276 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r, 9277 const struct pf_kstate *s, struct ip_fw_args *dnflow) 9278 { 9279 int dndir = r->direction; 9280 9281 if (s && dndir == PF_INOUT) { 9282 dndir = s->direction; 9283 } else if (dndir == PF_INOUT) { 9284 /* Assume primary direction. Happens when we've set dnpipe in 9285 * the ethernet level code. */ 9286 dndir = pd->dir; 9287 } 9288 9289 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED) 9290 return (false); 9291 9292 memset(dnflow, 0, sizeof(*dnflow)); 9293 9294 if (pd->dport != NULL) 9295 dnflow->f_id.dst_port = ntohs(*pd->dport); 9296 if (pd->sport != NULL) 9297 dnflow->f_id.src_port = ntohs(*pd->sport); 9298 9299 if (pd->dir == PF_IN) 9300 dnflow->flags |= IPFW_ARGS_IN; 9301 else 9302 dnflow->flags |= IPFW_ARGS_OUT; 9303 9304 if (pd->dir != dndir && pd->act.dnrpipe) { 9305 dnflow->rule.info = pd->act.dnrpipe; 9306 } 9307 else if (pd->dir == dndir && pd->act.dnpipe) { 9308 dnflow->rule.info = pd->act.dnpipe; 9309 } 9310 else { 9311 return (false); 9312 } 9313 9314 dnflow->rule.info |= IPFW_IS_DUMMYNET; 9315 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 9316 dnflow->rule.info |= IPFW_IS_PIPE; 9317 9318 dnflow->f_id.proto = pd->proto; 9319 dnflow->f_id.extra = dnflow->rule.info; 9320 switch (pd->af) { 9321 case AF_INET: 9322 dnflow->f_id.addr_type = 4; 9323 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 9324 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 9325 break; 9326 case AF_INET6: 9327 dnflow->flags |= IPFW_ARGS_IP6; 9328 dnflow->f_id.addr_type = 6; 9329 dnflow->f_id.src_ip6 = pd->src->v6; 9330 dnflow->f_id.dst_ip6 = pd->dst->v6; 9331 break; 9332 } 9333 9334 return (true); 9335 } 9336 9337 int 9338 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 9339 struct inpcb *inp) 9340 { 9341 struct pfi_kkif *kif; 9342 struct mbuf *m = *m0; 9343 9344 M_ASSERTPKTHDR(m); 9345 MPASS(ifp->if_vnet == curvnet); 9346 NET_EPOCH_ASSERT(); 9347 9348 if (!V_pf_status.running) 9349 return (PF_PASS); 9350 9351 kif = (struct pfi_kkif *)ifp->if_pf_kif; 9352 9353 if (kif == NULL) { 9354 DPFPRINTF(PF_DEBUG_URGENT, 9355 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname)); 9356 return (PF_DROP); 9357 } 9358 if (kif->pfik_flags & PFI_IFLAG_SKIP) 9359 return (PF_PASS); 9360 9361 if (m->m_flags & M_SKIP_FIREWALL) 9362 return (PF_PASS); 9363 9364 if (__predict_false(! M_WRITABLE(*m0))) { 9365 m = *m0 = m_unshare(*m0, M_NOWAIT); 9366 if (*m0 == NULL) 9367 return (PF_DROP); 9368 } 9369 9370 /* Stateless! */ 9371 return (pf_test_eth_rule(dir, kif, m0)); 9372 } 9373 9374 static __inline void 9375 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag) 9376 { 9377 struct m_tag *mtag; 9378 9379 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 9380 9381 /* dummynet adds this tag, but pf does not need it, 9382 * and keeping it creates unexpected behavior, 9383 * e.g. in case of divert(4) usage right after dummynet. */ 9384 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 9385 if (mtag != NULL) 9386 m_tag_delete(m, mtag); 9387 } 9388 9389 static int 9390 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s, 9391 struct pf_krule *r, struct mbuf **m0) 9392 { 9393 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0)); 9394 } 9395 9396 static int 9397 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s, 9398 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa, 9399 struct mbuf **m0) 9400 { 9401 struct ip_fw_args dnflow; 9402 9403 NET_EPOCH_ASSERT(); 9404 9405 if (pd->act.dnpipe == 0 && pd->act.dnrpipe == 0) 9406 return (0); 9407 9408 if (ip_dn_io_ptr == NULL) { 9409 m_freem(*m0); 9410 *m0 = NULL; 9411 return (ENOMEM); 9412 } 9413 9414 if (pd->pf_mtag == NULL && 9415 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 9416 m_freem(*m0); 9417 *m0 = NULL; 9418 return (ENOMEM); 9419 } 9420 9421 if (ifp != NULL) { 9422 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO; 9423 9424 pd->pf_mtag->if_index = ifp->if_index; 9425 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 9426 9427 MPASS(sa != NULL); 9428 9429 switch (pd->af) { 9430 case AF_INET: 9431 memcpy(&pd->pf_mtag->dst, sa, 9432 sizeof(struct sockaddr_in)); 9433 break; 9434 case AF_INET6: 9435 memcpy(&pd->pf_mtag->dst, sa, 9436 sizeof(struct sockaddr_in6)); 9437 break; 9438 } 9439 } 9440 9441 if (s != NULL && s->nat_rule != NULL && 9442 s->nat_rule->action == PF_RDR && 9443 ( 9444 #ifdef INET 9445 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) || 9446 #endif 9447 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) { 9448 /* 9449 * If we're redirecting to loopback mark this packet 9450 * as being local. Otherwise it might get dropped 9451 * if dummynet re-injects. 9452 */ 9453 (*m0)->m_pkthdr.rcvif = V_loif; 9454 } 9455 9456 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) { 9457 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 9458 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED; 9459 ip_dn_io_ptr(m0, &dnflow); 9460 if (*m0 != NULL) { 9461 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 9462 pf_dummynet_flag_remove(*m0, pd->pf_mtag); 9463 } 9464 } 9465 9466 return (0); 9467 } 9468 9469 #ifdef INET6 9470 static int 9471 pf_walk_option6(struct mbuf *m, int off, int end, uint32_t *jumbolen, 9472 u_short *reason) 9473 { 9474 struct ip6_opt opt; 9475 struct ip6_opt_jumbo jumbo; 9476 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 9477 9478 while (off < end) { 9479 if (!pf_pull_hdr(m, off, &opt.ip6o_type, sizeof(opt.ip6o_type), 9480 NULL, reason, AF_INET6)) { 9481 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt type")); 9482 return (PF_DROP); 9483 } 9484 if (opt.ip6o_type == IP6OPT_PAD1) { 9485 off++; 9486 continue; 9487 } 9488 if (!pf_pull_hdr(m, off, &opt, sizeof(opt), NULL, reason, 9489 AF_INET6)) { 9490 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt")); 9491 return (PF_DROP); 9492 } 9493 if (off + sizeof(opt) + opt.ip6o_len > end) { 9494 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 long opt")); 9495 REASON_SET(reason, PFRES_IPOPTIONS); 9496 return (PF_DROP); 9497 } 9498 switch (opt.ip6o_type) { 9499 case IP6OPT_JUMBO: 9500 if (*jumbolen != 0) { 9501 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple jumbo")); 9502 REASON_SET(reason, PFRES_IPOPTIONS); 9503 return (PF_DROP); 9504 } 9505 if (ntohs(h->ip6_plen) != 0) { 9506 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 bad jumbo plen")); 9507 REASON_SET(reason, PFRES_IPOPTIONS); 9508 return (PF_DROP); 9509 } 9510 if (!pf_pull_hdr(m, off, &jumbo, sizeof(jumbo), NULL, 9511 reason, AF_INET6)) { 9512 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbo")); 9513 return (PF_DROP); 9514 } 9515 memcpy(jumbolen, jumbo.ip6oj_jumbo_len, 9516 sizeof(*jumbolen)); 9517 *jumbolen = ntohl(*jumbolen); 9518 if (*jumbolen < IPV6_MAXPACKET) { 9519 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbolen")); 9520 REASON_SET(reason, PFRES_IPOPTIONS); 9521 return (PF_DROP); 9522 } 9523 break; 9524 default: 9525 break; 9526 } 9527 off += sizeof(opt) + opt.ip6o_len; 9528 } 9529 9530 return (PF_PASS); 9531 } 9532 9533 int 9534 pf_walk_header6(struct mbuf *m, struct ip6_hdr *h, int *off, int *extoff, 9535 int *fragoff, uint8_t *nxt, uint32_t *jumbolen, u_short *reason) 9536 { 9537 struct ip6_frag frag; 9538 struct ip6_ext ext; 9539 struct ip6_rthdr rthdr; 9540 int rthdr_cnt = 0; 9541 9542 *off += sizeof(struct ip6_hdr); 9543 *extoff = *fragoff = 0; 9544 *nxt = h->ip6_nxt; 9545 *jumbolen = 0; 9546 for (;;) { 9547 switch (*nxt) { 9548 case IPPROTO_FRAGMENT: 9549 if (*fragoff != 0) { 9550 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple fragment")); 9551 REASON_SET(reason, PFRES_FRAG); 9552 return (PF_DROP); 9553 } 9554 /* jumbo payload packets cannot be fragmented */ 9555 if (*jumbolen != 0) { 9556 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 fragmented jumbo")); 9557 REASON_SET(reason, PFRES_FRAG); 9558 return (PF_DROP); 9559 } 9560 if (!pf_pull_hdr(m, *off, &frag, sizeof(frag), NULL, 9561 reason, AF_INET6)) { 9562 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short fragment")); 9563 return (PF_DROP); 9564 } 9565 *fragoff = *off; 9566 /* stop walking over non initial fragments */ 9567 if ((frag.ip6f_offlg & IP6F_OFF_MASK) != 0) 9568 return (PF_PASS); 9569 *off += sizeof(frag); 9570 *nxt = frag.ip6f_nxt; 9571 break; 9572 case IPPROTO_ROUTING: 9573 if (rthdr_cnt++) { 9574 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple rthdr")); 9575 REASON_SET(reason, PFRES_IPOPTIONS); 9576 return (PF_DROP); 9577 } 9578 if (!pf_pull_hdr(m, *off, &rthdr, sizeof(rthdr), NULL, 9579 reason, AF_INET6)) { 9580 /* fragments may be short */ 9581 if (*fragoff != 0) { 9582 *off = *fragoff; 9583 *nxt = IPPROTO_FRAGMENT; 9584 return (PF_PASS); 9585 } 9586 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short rthdr")); 9587 return (PF_DROP); 9588 } 9589 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 9590 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 rthdr0")); 9591 REASON_SET(reason, PFRES_IPOPTIONS); 9592 return (PF_DROP); 9593 } 9594 /* FALLTHROUGH */ 9595 case IPPROTO_AH: 9596 case IPPROTO_HOPOPTS: 9597 case IPPROTO_DSTOPTS: 9598 if (!pf_pull_hdr(m, *off, &ext, sizeof(ext), NULL, 9599 reason, AF_INET6)) { 9600 /* fragments may be short */ 9601 if (*fragoff != 0) { 9602 *off = *fragoff; 9603 *nxt = IPPROTO_FRAGMENT; 9604 return (PF_PASS); 9605 } 9606 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short exthdr")); 9607 return (PF_DROP); 9608 } 9609 /* reassembly needs the ext header before the frag */ 9610 if (*fragoff == 0) 9611 *extoff = *off; 9612 if (*nxt == IPPROTO_HOPOPTS && *fragoff == 0) { 9613 if (pf_walk_option6(m, *off + sizeof(ext), 9614 *off + (ext.ip6e_len + 1) * 8, jumbolen, 9615 reason) != PF_PASS) 9616 return (PF_DROP); 9617 if (ntohs(h->ip6_plen) == 0 && *jumbolen != 0) { 9618 DPFPRINTF(PF_DEBUG_MISC, 9619 ("IPv6 missing jumbo")); 9620 REASON_SET(reason, PFRES_IPOPTIONS); 9621 return (PF_DROP); 9622 } 9623 } 9624 if (*nxt == IPPROTO_AH) 9625 *off += (ext.ip6e_len + 2) * 4; 9626 else 9627 *off += (ext.ip6e_len + 1) * 8; 9628 *nxt = ext.ip6e_nxt; 9629 break; 9630 case IPPROTO_TCP: 9631 case IPPROTO_UDP: 9632 case IPPROTO_SCTP: 9633 case IPPROTO_ICMPV6: 9634 /* fragments may be short, ignore inner header then */ 9635 if (*fragoff != 0 && ntohs(h->ip6_plen) < *off + 9636 (*nxt == IPPROTO_TCP ? sizeof(struct tcphdr) : 9637 *nxt == IPPROTO_UDP ? sizeof(struct udphdr) : 9638 *nxt == IPPROTO_SCTP ? sizeof(struct sctphdr) : 9639 sizeof(struct icmp6_hdr))) { 9640 *off = *fragoff; 9641 *nxt = IPPROTO_FRAGMENT; 9642 } 9643 /* FALLTHROUGH */ 9644 default: 9645 return (PF_PASS); 9646 } 9647 } 9648 } 9649 #endif 9650 9651 static void 9652 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m) 9653 { 9654 memset(pd, 0, sizeof(*pd)); 9655 pd->pf_mtag = pf_find_mtag(m); 9656 pd->m = m; 9657 } 9658 9659 static int 9660 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0, 9661 u_short *action, u_short *reason, struct pfi_kkif *kif, 9662 struct pf_rule_actions *default_actions) 9663 { 9664 pd->dir = dir; 9665 pd->kif = kif; 9666 pd->m = *m0; 9667 pd->sidx = (dir == PF_IN) ? 0 : 1; 9668 pd->didx = (dir == PF_IN) ? 1 : 0; 9669 pd->af = pd->naf = af; 9670 9671 TAILQ_INIT(&pd->sctp_multihome_jobs); 9672 if (default_actions != NULL) 9673 memcpy(&pd->act, default_actions, sizeof(pd->act)); 9674 9675 if (pd->pf_mtag && pd->pf_mtag->dnpipe) { 9676 pd->act.dnpipe = pd->pf_mtag->dnpipe; 9677 pd->act.flags = pd->pf_mtag->dnflags; 9678 } 9679 9680 switch (af) { 9681 #ifdef INET 9682 case AF_INET: { 9683 struct ip *h; 9684 9685 if (__predict_false((*m0)->m_len < sizeof(struct ip)) && 9686 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) { 9687 DPFPRINTF(PF_DEBUG_URGENT, 9688 ("pf_test: m_len < sizeof(struct ip), pullup failed\n")); 9689 *action = PF_DROP; 9690 REASON_SET(reason, PFRES_SHORT); 9691 return (-1); 9692 } 9693 9694 if (pf_normalize_ip(m0, reason, pd) != PF_PASS) { 9695 /* We do IP header normalization and packet reassembly here */ 9696 *action = PF_DROP; 9697 return (-1); 9698 } 9699 pd->m = *m0; 9700 9701 h = mtod(pd->m, struct ip *); 9702 pd->off = h->ip_hl << 2; 9703 if (pd->off < (int)sizeof(*h)) { 9704 *action = PF_DROP; 9705 REASON_SET(reason, PFRES_SHORT); 9706 return (-1); 9707 } 9708 pd->src = (struct pf_addr *)&h->ip_src; 9709 pd->dst = (struct pf_addr *)&h->ip_dst; 9710 pd->ip_sum = &h->ip_sum; 9711 pd->virtual_proto = pd->proto = h->ip_p; 9712 pd->tos = h->ip_tos; 9713 pd->ttl = h->ip_ttl; 9714 pd->tot_len = ntohs(h->ip_len); 9715 pd->act.rtableid = -1; 9716 9717 if (h->ip_hl > 5) /* has options */ 9718 pd->badopts++; 9719 9720 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) 9721 pd->virtual_proto = PF_VPROTO_FRAGMENT; 9722 9723 break; 9724 } 9725 #endif 9726 #ifdef INET6 9727 case AF_INET6: { 9728 struct ip6_hdr *h; 9729 int fragoff; 9730 uint32_t jumbolen; 9731 uint8_t nxt; 9732 9733 if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) && 9734 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) { 9735 DPFPRINTF(PF_DEBUG_URGENT, 9736 ("pf_test6: m_len < sizeof(struct ip6_hdr)" 9737 ", pullup failed\n")); 9738 *action = PF_DROP; 9739 REASON_SET(reason, PFRES_SHORT); 9740 return (-1); 9741 } 9742 9743 h = mtod(pd->m, struct ip6_hdr *); 9744 pd->off = 0; 9745 if (pf_walk_header6(pd->m, h, &pd->off, &pd->extoff, &fragoff, &nxt, 9746 &jumbolen, reason) != PF_PASS) { 9747 *action = PF_DROP; 9748 return (-1); 9749 } 9750 9751 h = mtod(pd->m, struct ip6_hdr *); 9752 pd->src = (struct pf_addr *)&h->ip6_src; 9753 pd->dst = (struct pf_addr *)&h->ip6_dst; 9754 pd->ip_sum = NULL; 9755 pd->tos = IPV6_DSCP(h); 9756 pd->ttl = h->ip6_hlim; 9757 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 9758 pd->virtual_proto = pd->proto = h->ip6_nxt; 9759 pd->act.rtableid = -1; 9760 9761 if (fragoff != 0) 9762 pd->virtual_proto = PF_VPROTO_FRAGMENT; 9763 9764 /* 9765 * we do not support jumbogram. if we keep going, zero ip6_plen 9766 * will do something bad, so drop the packet for now. 9767 */ 9768 if (htons(h->ip6_plen) == 0) { 9769 *action = PF_DROP; 9770 return (-1); 9771 } 9772 9773 /* We do IP header normalization and packet reassembly here */ 9774 if (pf_normalize_ip6(m0, fragoff, reason, pd) != 9775 PF_PASS) { 9776 *action = PF_DROP; 9777 return (-1); 9778 } 9779 pd->m = *m0; 9780 if (pd->m == NULL) { 9781 /* packet sits in reassembly queue, no error */ 9782 *action = PF_PASS; 9783 return (-1); 9784 } 9785 9786 /* Update pointers into the packet. */ 9787 h = mtod(pd->m, struct ip6_hdr *); 9788 pd->src = (struct pf_addr *)&h->ip6_src; 9789 pd->dst = (struct pf_addr *)&h->ip6_dst; 9790 9791 /* 9792 * Reassembly may have changed the next protocol from fragment 9793 * to something else, so update. 9794 */ 9795 pd->virtual_proto = pd->proto = h->ip6_nxt; 9796 pd->off = 0; 9797 9798 if (pf_walk_header6(pd->m, h, &pd->off, &pd->extoff, &fragoff, &nxt, 9799 &jumbolen, reason) != PF_PASS) { 9800 *action = PF_DROP; 9801 return (-1); 9802 } 9803 9804 if (fragoff != 0) 9805 pd->virtual_proto = PF_VPROTO_FRAGMENT; 9806 9807 break; 9808 } 9809 #endif 9810 default: 9811 panic("pf_setup_pdesc called with illegal af %u", af); 9812 } 9813 9814 switch (pd->virtual_proto) { 9815 case IPPROTO_TCP: { 9816 struct tcphdr *th = &pd->hdr.tcp; 9817 9818 if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th), action, 9819 reason, af)) { 9820 *action = PF_DROP; 9821 REASON_SET(reason, PFRES_SHORT); 9822 return (-1); 9823 } 9824 pd->hdrlen = sizeof(*th); 9825 pd->p_len = pd->tot_len - pd->off - (th->th_off << 2); 9826 pd->sport = &th->th_sport; 9827 pd->dport = &th->th_dport; 9828 break; 9829 } 9830 case IPPROTO_UDP: { 9831 struct udphdr *uh = &pd->hdr.udp; 9832 9833 if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh), action, 9834 reason, af)) { 9835 *action = PF_DROP; 9836 REASON_SET(reason, PFRES_SHORT); 9837 return (-1); 9838 } 9839 pd->hdrlen = sizeof(*uh); 9840 if (uh->uh_dport == 0 || 9841 ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off || 9842 ntohs(uh->uh_ulen) < sizeof(struct udphdr)) { 9843 *action = PF_DROP; 9844 REASON_SET(reason, PFRES_SHORT); 9845 return (-1); 9846 } 9847 pd->sport = &uh->uh_sport; 9848 pd->dport = &uh->uh_dport; 9849 break; 9850 } 9851 case IPPROTO_SCTP: { 9852 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp), 9853 action, reason, af)) { 9854 *action = PF_DROP; 9855 REASON_SET(reason, PFRES_SHORT); 9856 return (-1); 9857 } 9858 pd->hdrlen = sizeof(pd->hdr.sctp); 9859 pd->p_len = pd->tot_len - pd->off; 9860 9861 pd->sport = &pd->hdr.sctp.src_port; 9862 pd->dport = &pd->hdr.sctp.dest_port; 9863 if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) { 9864 *action = PF_DROP; 9865 REASON_SET(reason, PFRES_SHORT); 9866 return (-1); 9867 } 9868 if (pf_scan_sctp(pd) != PF_PASS) { 9869 *action = PF_DROP; 9870 REASON_SET(reason, PFRES_SHORT); 9871 return (-1); 9872 } 9873 break; 9874 } 9875 case IPPROTO_ICMP: { 9876 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN, 9877 action, reason, af)) { 9878 *action = PF_DROP; 9879 REASON_SET(reason, PFRES_SHORT); 9880 return (-1); 9881 } 9882 pd->hdrlen = ICMP_MINLEN; 9883 break; 9884 } 9885 #ifdef INET6 9886 case IPPROTO_ICMPV6: { 9887 size_t icmp_hlen = sizeof(struct icmp6_hdr); 9888 9889 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen, 9890 action, reason, af)) { 9891 *action = PF_DROP; 9892 REASON_SET(reason, PFRES_SHORT); 9893 return (-1); 9894 } 9895 /* ICMP headers we look further into to match state */ 9896 switch (pd->hdr.icmp6.icmp6_type) { 9897 case MLD_LISTENER_QUERY: 9898 case MLD_LISTENER_REPORT: 9899 icmp_hlen = sizeof(struct mld_hdr); 9900 break; 9901 case ND_NEIGHBOR_SOLICIT: 9902 case ND_NEIGHBOR_ADVERT: 9903 icmp_hlen = sizeof(struct nd_neighbor_solicit); 9904 break; 9905 } 9906 if (icmp_hlen > sizeof(struct icmp6_hdr) && 9907 !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen, 9908 action, reason, af)) { 9909 *action = PF_DROP; 9910 REASON_SET(reason, PFRES_SHORT); 9911 return (-1); 9912 } 9913 pd->hdrlen = icmp_hlen; 9914 break; 9915 } 9916 #endif 9917 } 9918 return (0); 9919 } 9920 9921 static void 9922 pf_counters_inc(int action, struct pf_pdesc *pd, 9923 struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a) 9924 { 9925 struct pf_krule *tr; 9926 int dir = pd->dir; 9927 int dirndx; 9928 9929 pf_counter_u64_critical_enter(); 9930 pf_counter_u64_add_protected( 9931 &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 9932 pd->tot_len); 9933 pf_counter_u64_add_protected( 9934 &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 9935 1); 9936 9937 if (action == PF_PASS || action == PF_AFRT || r->action == PF_DROP) { 9938 dirndx = (dir == PF_OUT); 9939 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 9940 pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len); 9941 pf_update_timestamp(r); 9942 9943 if (a != NULL) { 9944 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 9945 pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len); 9946 } 9947 if (s != NULL) { 9948 struct pf_krule_item *ri; 9949 9950 if (s->nat_rule != NULL) { 9951 pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx], 9952 1); 9953 pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx], 9954 pd->tot_len); 9955 } 9956 if (s->src_node != NULL) { 9957 counter_u64_add(s->src_node->packets[dirndx], 9958 1); 9959 counter_u64_add(s->src_node->bytes[dirndx], 9960 pd->tot_len); 9961 } 9962 if (s->nat_src_node != NULL) { 9963 counter_u64_add(s->nat_src_node->packets[dirndx], 9964 1); 9965 counter_u64_add(s->nat_src_node->bytes[dirndx], 9966 pd->tot_len); 9967 } 9968 dirndx = (dir == s->direction) ? 0 : 1; 9969 s->packets[dirndx]++; 9970 s->bytes[dirndx] += pd->tot_len; 9971 9972 SLIST_FOREACH(ri, &s->match_rules, entry) { 9973 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 9974 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len); 9975 } 9976 } 9977 9978 tr = r; 9979 if (s != NULL && s->nat_rule != NULL && 9980 r == &V_pf_default_rule) 9981 tr = s->nat_rule; 9982 9983 if (tr->src.addr.type == PF_ADDR_TABLE) 9984 pfr_update_stats(tr->src.addr.p.tbl, 9985 (s == NULL) ? pd->src : 9986 &s->key[(s->direction == PF_IN)]-> 9987 addr[(s->direction == PF_OUT)], 9988 pd->af, pd->tot_len, dir == PF_OUT, 9989 r->action == PF_PASS, tr->src.neg); 9990 if (tr->dst.addr.type == PF_ADDR_TABLE) 9991 pfr_update_stats(tr->dst.addr.p.tbl, 9992 (s == NULL) ? pd->dst : 9993 &s->key[(s->direction == PF_IN)]-> 9994 addr[(s->direction == PF_IN)], 9995 pd->af, pd->tot_len, dir == PF_OUT, 9996 r->action == PF_PASS, tr->dst.neg); 9997 } 9998 pf_counter_u64_critical_exit(); 9999 } 10000 10001 #if defined(INET) || defined(INET6) 10002 int 10003 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 10004 struct inpcb *inp, struct pf_rule_actions *default_actions) 10005 { 10006 struct pfi_kkif *kif; 10007 u_short action, reason = 0; 10008 struct m_tag *mtag; 10009 struct pf_krule *a = NULL, *r = &V_pf_default_rule; 10010 struct pf_kstate *s = NULL; 10011 struct pf_kruleset *ruleset = NULL; 10012 struct pf_pdesc pd; 10013 int use_2nd_queue = 0; 10014 uint16_t tag; 10015 10016 PF_RULES_RLOCK_TRACKER; 10017 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 10018 M_ASSERTPKTHDR(*m0); 10019 10020 if (!V_pf_status.running) 10021 return (PF_PASS); 10022 10023 PF_RULES_RLOCK(); 10024 10025 kif = (struct pfi_kkif *)ifp->if_pf_kif; 10026 10027 if (__predict_false(kif == NULL)) { 10028 DPFPRINTF(PF_DEBUG_URGENT, 10029 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 10030 PF_RULES_RUNLOCK(); 10031 return (PF_DROP); 10032 } 10033 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 10034 PF_RULES_RUNLOCK(); 10035 return (PF_PASS); 10036 } 10037 10038 if ((*m0)->m_flags & M_SKIP_FIREWALL) { 10039 PF_RULES_RUNLOCK(); 10040 return (PF_PASS); 10041 } 10042 10043 #ifdef INET6 10044 /* 10045 * If we end up changing IP addresses (e.g. binat) the stack may get 10046 * confused and fail to send the icmp6 packet too big error. Just send 10047 * it here, before we do any NAT. 10048 */ 10049 if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD && 10050 IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) { 10051 PF_RULES_RUNLOCK(); 10052 icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp)); 10053 *m0 = NULL; 10054 return (PF_DROP); 10055 } 10056 #endif 10057 10058 if (__predict_false(! M_WRITABLE(*m0))) { 10059 *m0 = m_unshare(*m0, M_NOWAIT); 10060 if (*m0 == NULL) { 10061 PF_RULES_RUNLOCK(); 10062 return (PF_DROP); 10063 } 10064 } 10065 10066 pf_init_pdesc(&pd, *m0); 10067 10068 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 10069 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 10070 10071 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 10072 pd.pf_mtag->if_idxgen); 10073 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 10074 PF_RULES_RUNLOCK(); 10075 m_freem(*m0); 10076 *m0 = NULL; 10077 return (PF_PASS); 10078 } 10079 PF_RULES_RUNLOCK(); 10080 (ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL); 10081 *m0 = NULL; 10082 return (PF_PASS); 10083 } 10084 10085 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 10086 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 10087 /* Dummynet re-injects packets after they've 10088 * completed their delay. We've already 10089 * processed them, so pass unconditionally. */ 10090 10091 /* But only once. We may see the packet multiple times (e.g. 10092 * PFIL_IN/PFIL_OUT). */ 10093 pf_dummynet_flag_remove(pd.m, pd.pf_mtag); 10094 PF_RULES_RUNLOCK(); 10095 10096 return (PF_PASS); 10097 } 10098 10099 if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason, 10100 kif, default_actions) == -1) { 10101 if (action != PF_PASS) 10102 pd.act.log |= PF_LOG_FORCE; 10103 goto done; 10104 } 10105 10106 if (__predict_false(ip_divert_ptr != NULL) && 10107 ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) { 10108 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1); 10109 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) || 10110 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) { 10111 if (pd.pf_mtag == NULL && 10112 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 10113 action = PF_DROP; 10114 goto done; 10115 } 10116 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED; 10117 } 10118 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) { 10119 pd.m->m_flags |= M_FASTFWD_OURS; 10120 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 10121 } 10122 m_tag_delete(pd.m, mtag); 10123 10124 mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL); 10125 if (mtag != NULL) 10126 m_tag_delete(pd.m, mtag); 10127 } 10128 10129 switch (pd.virtual_proto) { 10130 case PF_VPROTO_FRAGMENT: 10131 /* 10132 * handle fragments that aren't reassembled by 10133 * normalization 10134 */ 10135 if (kif == NULL || r == NULL) /* pflog */ 10136 action = PF_DROP; 10137 else 10138 action = pf_test_rule(&r, &s, &pd, &a, 10139 &ruleset, inp); 10140 if (action != PF_PASS) 10141 REASON_SET(&reason, PFRES_FRAG); 10142 break; 10143 10144 case IPPROTO_TCP: { 10145 /* Respond to SYN with a syncookie. */ 10146 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 10147 pd.dir == PF_IN && pf_synflood_check(&pd)) { 10148 pf_syncookie_send(&pd); 10149 action = PF_DROP; 10150 break; 10151 } 10152 10153 if ((tcp_get_flags(&pd.hdr.tcp) & TH_ACK) && pd.p_len == 0) 10154 use_2nd_queue = 1; 10155 action = pf_normalize_tcp(&pd); 10156 if (action == PF_DROP) 10157 goto done; 10158 action = pf_test_state_tcp(&s, &pd, &reason); 10159 if (action == PF_PASS || action == PF_AFRT) { 10160 if (V_pfsync_update_state_ptr != NULL) 10161 V_pfsync_update_state_ptr(s); 10162 r = s->rule; 10163 a = s->anchor; 10164 } else if (s == NULL) { 10165 /* Validate remote SYN|ACK, re-create original SYN if 10166 * valid. */ 10167 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == 10168 TH_ACK && pf_syncookie_validate(&pd) && 10169 pd.dir == PF_IN) { 10170 struct mbuf *msyn; 10171 10172 msyn = pf_syncookie_recreate_syn(&pd); 10173 if (msyn == NULL) { 10174 action = PF_DROP; 10175 break; 10176 } 10177 10178 action = pf_test(af, dir, pflags, ifp, &msyn, inp, 10179 &pd.act); 10180 m_freem(msyn); 10181 if (action != PF_PASS) 10182 break; 10183 10184 action = pf_test_state_tcp(&s, &pd, &reason); 10185 if (action != PF_PASS || s == NULL) { 10186 action = PF_DROP; 10187 break; 10188 } 10189 10190 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 10191 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 10192 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 10193 action = pf_synproxy(&pd, &s, &reason); 10194 break; 10195 } else { 10196 action = pf_test_rule(&r, &s, &pd, 10197 &a, &ruleset, inp); 10198 } 10199 } 10200 break; 10201 } 10202 10203 case IPPROTO_UDP: { 10204 action = pf_test_state_udp(&s, &pd); 10205 if (action == PF_PASS || action == PF_AFRT) { 10206 if (V_pfsync_update_state_ptr != NULL) 10207 V_pfsync_update_state_ptr(s); 10208 r = s->rule; 10209 a = s->anchor; 10210 } else if (s == NULL) 10211 action = pf_test_rule(&r, &s, &pd, 10212 &a, &ruleset, inp); 10213 break; 10214 } 10215 10216 case IPPROTO_SCTP: { 10217 action = pf_normalize_sctp(&pd); 10218 if (action == PF_DROP) 10219 goto done; 10220 action = pf_test_state_sctp(&s, &pd, &reason); 10221 if (action == PF_PASS || action == PF_AFRT) { 10222 if (V_pfsync_update_state_ptr != NULL) 10223 V_pfsync_update_state_ptr(s); 10224 r = s->rule; 10225 a = s->anchor; 10226 } else if (s == NULL) { 10227 action = pf_test_rule(&r, &s, 10228 &pd, &a, &ruleset, inp); 10229 } 10230 break; 10231 } 10232 10233 case IPPROTO_ICMP: { 10234 if (af != AF_INET) { 10235 action = PF_DROP; 10236 REASON_SET(&reason, PFRES_NORM); 10237 DPFPRINTF(PF_DEBUG_MISC, 10238 ("dropping IPv6 packet with ICMPv4 payload")); 10239 goto done; 10240 } 10241 action = pf_test_state_icmp(&s, &pd, &reason); 10242 if (action == PF_PASS || action == PF_AFRT) { 10243 if (V_pfsync_update_state_ptr != NULL) 10244 V_pfsync_update_state_ptr(s); 10245 r = s->rule; 10246 a = s->anchor; 10247 } else if (s == NULL) 10248 action = pf_test_rule(&r, &s, &pd, 10249 &a, &ruleset, inp); 10250 break; 10251 } 10252 10253 case IPPROTO_ICMPV6: { 10254 if (af != AF_INET6) { 10255 action = PF_DROP; 10256 REASON_SET(&reason, PFRES_NORM); 10257 DPFPRINTF(PF_DEBUG_MISC, 10258 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 10259 goto done; 10260 } 10261 action = pf_test_state_icmp(&s, &pd, &reason); 10262 if (action == PF_PASS || action == PF_AFRT) { 10263 if (V_pfsync_update_state_ptr != NULL) 10264 V_pfsync_update_state_ptr(s); 10265 r = s->rule; 10266 a = s->anchor; 10267 } else if (s == NULL) 10268 action = pf_test_rule(&r, &s, &pd, 10269 &a, &ruleset, inp); 10270 break; 10271 } 10272 10273 default: 10274 action = pf_test_state_other(&s, &pd); 10275 if (action == PF_PASS || action == PF_AFRT) { 10276 if (V_pfsync_update_state_ptr != NULL) 10277 V_pfsync_update_state_ptr(s); 10278 r = s->rule; 10279 a = s->anchor; 10280 } else if (s == NULL) 10281 action = pf_test_rule(&r, &s, &pd, 10282 &a, &ruleset, inp); 10283 break; 10284 } 10285 10286 done: 10287 PF_RULES_RUNLOCK(); 10288 10289 if (pd.m == NULL) 10290 goto eat_pkt; 10291 10292 if (action == PF_PASS && pd.badopts && 10293 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 10294 action = PF_DROP; 10295 REASON_SET(&reason, PFRES_IPOPTIONS); 10296 pd.act.log = PF_LOG_FORCE; 10297 DPFPRINTF(PF_DEBUG_MISC, 10298 ("pf: dropping packet with dangerous headers\n")); 10299 } 10300 10301 if (s) { 10302 uint8_t log = pd.act.log; 10303 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 10304 pd.act.log |= log; 10305 tag = s->tag; 10306 } else { 10307 tag = r->tag; 10308 } 10309 10310 if (tag > 0 && pf_tag_packet(&pd, tag)) { 10311 action = PF_DROP; 10312 REASON_SET(&reason, PFRES_MEMORY); 10313 } 10314 10315 pf_scrub(&pd); 10316 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 10317 pf_normalize_mss(&pd); 10318 10319 if (pd.act.rtableid >= 0) 10320 M_SETFIB(pd.m, pd.act.rtableid); 10321 10322 if (pd.act.flags & PFSTATE_SETPRIO) { 10323 if (pd.tos & IPTOS_LOWDELAY) 10324 use_2nd_queue = 1; 10325 if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) { 10326 action = PF_DROP; 10327 REASON_SET(&reason, PFRES_MEMORY); 10328 pd.act.log = PF_LOG_FORCE; 10329 DPFPRINTF(PF_DEBUG_MISC, 10330 ("pf: failed to allocate 802.1q mtag\n")); 10331 } 10332 } 10333 10334 #ifdef ALTQ 10335 if (action == PF_PASS && pd.act.qid) { 10336 if (pd.pf_mtag == NULL && 10337 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 10338 action = PF_DROP; 10339 REASON_SET(&reason, PFRES_MEMORY); 10340 } else { 10341 if (s != NULL) 10342 pd.pf_mtag->qid_hash = pf_state_hash(s); 10343 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY)) 10344 pd.pf_mtag->qid = pd.act.pqid; 10345 else 10346 pd.pf_mtag->qid = pd.act.qid; 10347 /* Add hints for ecn. */ 10348 pd.pf_mtag->hdr = mtod(pd.m, void *); 10349 } 10350 } 10351 #endif /* ALTQ */ 10352 10353 /* 10354 * connections redirected to loopback should not match sockets 10355 * bound specifically to loopback due to security implications, 10356 * see tcp_input() and in_pcblookup_listen(). 10357 */ 10358 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 10359 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL && 10360 (s->nat_rule->action == PF_RDR || 10361 s->nat_rule->action == PF_BINAT) && 10362 pf_is_loopback(af, pd.dst)) 10363 pd.m->m_flags |= M_SKIP_FIREWALL; 10364 10365 if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) && 10366 action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) { 10367 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0, 10368 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO); 10369 if (mtag != NULL) { 10370 ((struct pf_divert_mtag *)(mtag+1))->port = 10371 ntohs(r->divert.port); 10372 ((struct pf_divert_mtag *)(mtag+1))->idir = 10373 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN : 10374 PF_DIVERT_MTAG_DIR_OUT; 10375 10376 if (s) 10377 PF_STATE_UNLOCK(s); 10378 10379 m_tag_prepend(pd.m, mtag); 10380 if (pd.m->m_flags & M_FASTFWD_OURS) { 10381 if (pd.pf_mtag == NULL && 10382 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 10383 action = PF_DROP; 10384 REASON_SET(&reason, PFRES_MEMORY); 10385 pd.act.log = PF_LOG_FORCE; 10386 DPFPRINTF(PF_DEBUG_MISC, 10387 ("pf: failed to allocate tag\n")); 10388 } else { 10389 pd.pf_mtag->flags |= 10390 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 10391 pd.m->m_flags &= ~M_FASTFWD_OURS; 10392 } 10393 } 10394 ip_divert_ptr(*m0, dir == PF_IN); 10395 *m0 = NULL; 10396 10397 return (action); 10398 } else { 10399 /* XXX: ipfw has the same behaviour! */ 10400 action = PF_DROP; 10401 REASON_SET(&reason, PFRES_MEMORY); 10402 pd.act.log = PF_LOG_FORCE; 10403 DPFPRINTF(PF_DEBUG_MISC, 10404 ("pf: failed to allocate divert tag\n")); 10405 } 10406 } 10407 /* XXX: Anybody working on it?! */ 10408 if (af == AF_INET6 && r->divert.port) 10409 printf("pf: divert(9) is not supported for IPv6\n"); 10410 10411 /* this flag will need revising if the pkt is forwarded */ 10412 if (pd.pf_mtag) 10413 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED; 10414 10415 if (pd.act.log) { 10416 struct pf_krule *lr; 10417 struct pf_krule_item *ri; 10418 10419 if (s != NULL && s->nat_rule != NULL && 10420 s->nat_rule->log & PF_LOG_ALL) 10421 lr = s->nat_rule; 10422 else 10423 lr = r; 10424 10425 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 10426 PFLOG_PACKET(action, reason, lr, a, 10427 ruleset, &pd, (s == NULL)); 10428 if (s) { 10429 SLIST_FOREACH(ri, &s->match_rules, entry) 10430 if (ri->r->log & PF_LOG_ALL) 10431 PFLOG_PACKET(action, 10432 reason, ri->r, a, ruleset, &pd, 0); 10433 } 10434 } 10435 10436 pf_counters_inc(action, &pd, s, r, a); 10437 10438 switch (action) { 10439 case PF_SYNPROXY_DROP: 10440 m_freem(*m0); 10441 case PF_DEFER: 10442 *m0 = NULL; 10443 action = PF_PASS; 10444 break; 10445 case PF_DROP: 10446 m_freem(*m0); 10447 *m0 = NULL; 10448 break; 10449 case PF_AFRT: 10450 if (pf_translate_af(&pd)) { 10451 if (!pd.m) 10452 *m0 = NULL; 10453 action = PF_DROP; 10454 break; 10455 } 10456 *m0 = pd.m; /* pf_translate_af may change pd.m */ 10457 #ifdef INET 10458 if (pd.naf == AF_INET) 10459 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp); 10460 #endif 10461 #ifdef INET6 10462 if (pd.naf == AF_INET6) 10463 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp); 10464 #endif 10465 *m0 = NULL; 10466 action = PF_PASS; 10467 goto out; 10468 break; 10469 default: 10470 if (pd.act.rt) { 10471 switch (af) { 10472 #ifdef INET 10473 case AF_INET: 10474 /* pf_route() returns unlocked. */ 10475 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp); 10476 break; 10477 #endif 10478 #ifdef INET6 10479 case AF_INET6: 10480 /* pf_route6() returns unlocked. */ 10481 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp); 10482 break; 10483 #endif 10484 } 10485 goto out; 10486 } 10487 if (pf_dummynet(&pd, s, r, m0) != 0) { 10488 action = PF_DROP; 10489 REASON_SET(&reason, PFRES_MEMORY); 10490 } 10491 break; 10492 } 10493 10494 eat_pkt: 10495 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 10496 10497 if (s && action != PF_DROP) { 10498 if (!s->if_index_in && dir == PF_IN) 10499 s->if_index_in = ifp->if_index; 10500 else if (!s->if_index_out && dir == PF_OUT) 10501 s->if_index_out = ifp->if_index; 10502 } 10503 10504 if (s) 10505 PF_STATE_UNLOCK(s); 10506 10507 out: 10508 #ifdef INET6 10509 /* If reassembled packet passed, create new fragments. */ 10510 if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT && 10511 (! (pflags & PF_PFIL_NOREFRAGMENT)) && 10512 (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL) 10513 action = pf_refragment6(ifp, m0, mtag, NULL, pflags & PFIL_FWD); 10514 #endif 10515 10516 pf_sctp_multihome_delayed(&pd, kif, s, action); 10517 10518 return (action); 10519 } 10520 #endif /* INET || INET6 */ 10521