1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_bpf.h" 46 #include "opt_pf.h" 47 48 #include <sys/param.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/socket.h> 61 #include <sys/sysctl.h> 62 #include <sys/taskqueue.h> 63 #include <sys/ucred.h> 64 65 #include <net/if.h> 66 #include <net/if_var.h> 67 #include <net/if_types.h> 68 #include <net/if_vlan_var.h> 69 #include <net/route.h> 70 #include <net/radix_mpath.h> 71 #include <net/vnet.h> 72 73 #include <net/pfil.h> 74 #include <net/pfvar.h> 75 #include <net/if_pflog.h> 76 #include <net/if_pfsync.h> 77 78 #include <netinet/in_pcb.h> 79 #include <netinet/in_var.h> 80 #include <netinet/in_fib.h> 81 #include <netinet/ip.h> 82 #include <netinet/ip_fw.h> 83 #include <netinet/ip_icmp.h> 84 #include <netinet/icmp_var.h> 85 #include <netinet/ip_var.h> 86 #include <netinet/tcp.h> 87 #include <netinet/tcp_fsm.h> 88 #include <netinet/tcp_seq.h> 89 #include <netinet/tcp_timer.h> 90 #include <netinet/tcp_var.h> 91 #include <netinet/udp.h> 92 #include <netinet/udp_var.h> 93 94 #ifdef INET6 95 #include <netinet/ip6.h> 96 #include <netinet/icmp6.h> 97 #include <netinet6/nd6.h> 98 #include <netinet6/ip6_var.h> 99 #include <netinet6/in6_pcb.h> 100 #include <netinet6/in6_fib.h> 101 #include <netinet6/scope6_var.h> 102 #endif /* INET6 */ 103 104 #include <machine/in_cksum.h> 105 #include <security/mac/mac_framework.h> 106 107 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 108 109 /* 110 * Global variables 111 */ 112 113 /* state tables */ 114 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 115 VNET_DEFINE(struct pf_palist, pf_pabuf); 116 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 117 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 118 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 119 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 120 VNET_DEFINE(struct pf_kstatus, pf_status); 121 122 VNET_DEFINE(u_int32_t, ticket_altqs_active); 123 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 124 VNET_DEFINE(int, altqs_inactive_open); 125 VNET_DEFINE(u_int32_t, ticket_pabuf); 126 127 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 128 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 129 VNET_DEFINE(u_char, pf_tcp_secret[16]); 130 #define V_pf_tcp_secret VNET(pf_tcp_secret) 131 VNET_DEFINE(int, pf_tcp_secret_init); 132 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 133 VNET_DEFINE(int, pf_tcp_iss_off); 134 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 135 VNET_DECLARE(int, pf_vnet_active); 136 #define V_pf_vnet_active VNET(pf_vnet_active) 137 138 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 139 #define V_pf_purge_idx VNET(pf_purge_idx) 140 141 /* 142 * Queue for pf_intr() sends. 143 */ 144 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 145 struct pf_send_entry { 146 STAILQ_ENTRY(pf_send_entry) pfse_next; 147 struct mbuf *pfse_m; 148 enum { 149 PFSE_IP, 150 PFSE_IP6, 151 PFSE_ICMP, 152 PFSE_ICMP6, 153 } pfse_type; 154 struct { 155 int type; 156 int code; 157 int mtu; 158 } icmpopts; 159 }; 160 161 STAILQ_HEAD(pf_send_head, pf_send_entry); 162 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 163 #define V_pf_sendqueue VNET(pf_sendqueue) 164 165 static struct mtx pf_sendqueue_mtx; 166 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 167 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 168 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 169 170 /* 171 * Queue for pf_overload_task() tasks. 172 */ 173 struct pf_overload_entry { 174 SLIST_ENTRY(pf_overload_entry) next; 175 struct pf_addr addr; 176 sa_family_t af; 177 uint8_t dir; 178 struct pf_rule *rule; 179 }; 180 181 SLIST_HEAD(pf_overload_head, pf_overload_entry); 182 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 183 #define V_pf_overloadqueue VNET(pf_overloadqueue) 184 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 185 #define V_pf_overloadtask VNET(pf_overloadtask) 186 187 static struct mtx pf_overloadqueue_mtx; 188 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 189 "pf overload/flush queue", MTX_DEF); 190 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 191 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 192 193 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 194 struct mtx pf_unlnkdrules_mtx; 195 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 196 MTX_DEF); 197 198 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 199 #define V_pf_sources_z VNET(pf_sources_z) 200 uma_zone_t pf_mtag_z; 201 VNET_DEFINE(uma_zone_t, pf_state_z); 202 VNET_DEFINE(uma_zone_t, pf_state_key_z); 203 204 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 205 #define PFID_CPUBITS 8 206 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 207 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 208 #define PFID_MAXID (~PFID_CPUMASK) 209 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 210 211 static void pf_src_tree_remove_state(struct pf_state *); 212 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 213 u_int32_t); 214 static void pf_add_threshold(struct pf_threshold *); 215 static int pf_check_threshold(struct pf_threshold *); 216 217 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 218 u_int16_t *, u_int16_t *, struct pf_addr *, 219 u_int16_t, u_int8_t, sa_family_t); 220 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 221 struct tcphdr *, struct pf_state_peer *); 222 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 223 struct pf_addr *, struct pf_addr *, u_int16_t, 224 u_int16_t *, u_int16_t *, u_int16_t *, 225 u_int16_t *, u_int8_t, sa_family_t); 226 static void pf_send_tcp(struct mbuf *, 227 const struct pf_rule *, sa_family_t, 228 const struct pf_addr *, const struct pf_addr *, 229 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 230 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 231 u_int16_t, struct ifnet *); 232 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 233 sa_family_t, struct pf_rule *); 234 static void pf_detach_state(struct pf_state *); 235 static int pf_state_key_attach(struct pf_state_key *, 236 struct pf_state_key *, struct pf_state *); 237 static void pf_state_key_detach(struct pf_state *, int); 238 static int pf_state_key_ctor(void *, int, void *, int); 239 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 240 static int pf_test_rule(struct pf_rule **, struct pf_state **, 241 int, struct pfi_kif *, struct mbuf *, int, 242 struct pf_pdesc *, struct pf_rule **, 243 struct pf_ruleset **, struct inpcb *); 244 static int pf_create_state(struct pf_rule *, struct pf_rule *, 245 struct pf_rule *, struct pf_pdesc *, 246 struct pf_src_node *, struct pf_state_key *, 247 struct pf_state_key *, struct mbuf *, int, 248 u_int16_t, u_int16_t, int *, struct pfi_kif *, 249 struct pf_state **, int, u_int16_t, u_int16_t, 250 int); 251 static int pf_test_fragment(struct pf_rule **, int, 252 struct pfi_kif *, struct mbuf *, void *, 253 struct pf_pdesc *, struct pf_rule **, 254 struct pf_ruleset **); 255 static int pf_tcp_track_full(struct pf_state_peer *, 256 struct pf_state_peer *, struct pf_state **, 257 struct pfi_kif *, struct mbuf *, int, 258 struct pf_pdesc *, u_short *, int *); 259 static int pf_tcp_track_sloppy(struct pf_state_peer *, 260 struct pf_state_peer *, struct pf_state **, 261 struct pf_pdesc *, u_short *); 262 static int pf_test_state_tcp(struct pf_state **, int, 263 struct pfi_kif *, struct mbuf *, int, 264 void *, struct pf_pdesc *, u_short *); 265 static int pf_test_state_udp(struct pf_state **, int, 266 struct pfi_kif *, struct mbuf *, int, 267 void *, struct pf_pdesc *); 268 static int pf_test_state_icmp(struct pf_state **, int, 269 struct pfi_kif *, struct mbuf *, int, 270 void *, struct pf_pdesc *, u_short *); 271 static int pf_test_state_other(struct pf_state **, int, 272 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 273 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 274 sa_family_t); 275 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 276 sa_family_t); 277 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 278 int, u_int16_t); 279 static int pf_check_proto_cksum(struct mbuf *, int, int, 280 u_int8_t, sa_family_t); 281 static void pf_print_state_parts(struct pf_state *, 282 struct pf_state_key *, struct pf_state_key *); 283 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 284 struct pf_addr_wrap *); 285 static struct pf_state *pf_find_state(struct pfi_kif *, 286 struct pf_state_key_cmp *, u_int); 287 static int pf_src_connlimit(struct pf_state **); 288 static void pf_overload_task(void *v, int pending); 289 static int pf_insert_src_node(struct pf_src_node **, 290 struct pf_rule *, struct pf_addr *, sa_family_t); 291 static u_int pf_purge_expired_states(u_int, int); 292 static void pf_purge_unlinked_rules(void); 293 static int pf_mtag_uminit(void *, int, int); 294 static void pf_mtag_free(struct m_tag *); 295 #ifdef INET 296 static void pf_route(struct mbuf **, struct pf_rule *, int, 297 struct ifnet *, struct pf_state *, 298 struct pf_pdesc *, struct inpcb *); 299 #endif /* INET */ 300 #ifdef INET6 301 static void pf_change_a6(struct pf_addr *, u_int16_t *, 302 struct pf_addr *, u_int8_t); 303 static void pf_route6(struct mbuf **, struct pf_rule *, int, 304 struct ifnet *, struct pf_state *, 305 struct pf_pdesc *, struct inpcb *); 306 #endif /* INET6 */ 307 308 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 309 310 extern int pf_end_threads; 311 extern struct proc *pf_purge_proc; 312 313 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 314 315 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 316 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 317 318 #define STATE_LOOKUP(i, k, d, s, pd) \ 319 do { \ 320 (s) = pf_find_state((i), (k), (d)); \ 321 if ((s) == NULL) \ 322 return (PF_DROP); \ 323 if (PACKET_LOOPED(pd)) \ 324 return (PF_PASS); \ 325 if ((d) == PF_OUT && \ 326 (((s)->rule.ptr->rt == PF_ROUTETO && \ 327 (s)->rule.ptr->direction == PF_OUT) || \ 328 ((s)->rule.ptr->rt == PF_REPLYTO && \ 329 (s)->rule.ptr->direction == PF_IN)) && \ 330 (s)->rt_kif != NULL && \ 331 (s)->rt_kif != (i)) \ 332 return (PF_PASS); \ 333 } while (0) 334 335 #define BOUND_IFACE(r, k) \ 336 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 337 338 #define STATE_INC_COUNTERS(s) \ 339 do { \ 340 counter_u64_add(s->rule.ptr->states_cur, 1); \ 341 counter_u64_add(s->rule.ptr->states_tot, 1); \ 342 if (s->anchor.ptr != NULL) { \ 343 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 344 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 345 } \ 346 if (s->nat_rule.ptr != NULL) { \ 347 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 348 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 349 } \ 350 } while (0) 351 352 #define STATE_DEC_COUNTERS(s) \ 353 do { \ 354 if (s->nat_rule.ptr != NULL) \ 355 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 356 if (s->anchor.ptr != NULL) \ 357 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 358 counter_u64_add(s->rule.ptr->states_cur, -1); \ 359 } while (0) 360 361 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 362 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 363 VNET_DEFINE(struct pf_idhash *, pf_idhash); 364 VNET_DEFINE(struct pf_srchash *, pf_srchash); 365 366 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 367 368 u_long pf_hashmask; 369 u_long pf_srchashmask; 370 static u_long pf_hashsize; 371 static u_long pf_srchashsize; 372 u_long pf_ioctl_maxcount = 65535; 373 374 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 375 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 376 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 377 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 378 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RDTUN, 379 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 380 381 VNET_DEFINE(void *, pf_swi_cookie); 382 383 VNET_DEFINE(uint32_t, pf_hashseed); 384 #define V_pf_hashseed VNET(pf_hashseed) 385 386 int 387 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 388 { 389 390 switch (af) { 391 #ifdef INET 392 case AF_INET: 393 if (a->addr32[0] > b->addr32[0]) 394 return (1); 395 if (a->addr32[0] < b->addr32[0]) 396 return (-1); 397 break; 398 #endif /* INET */ 399 #ifdef INET6 400 case AF_INET6: 401 if (a->addr32[3] > b->addr32[3]) 402 return (1); 403 if (a->addr32[3] < b->addr32[3]) 404 return (-1); 405 if (a->addr32[2] > b->addr32[2]) 406 return (1); 407 if (a->addr32[2] < b->addr32[2]) 408 return (-1); 409 if (a->addr32[1] > b->addr32[1]) 410 return (1); 411 if (a->addr32[1] < b->addr32[1]) 412 return (-1); 413 if (a->addr32[0] > b->addr32[0]) 414 return (1); 415 if (a->addr32[0] < b->addr32[0]) 416 return (-1); 417 break; 418 #endif /* INET6 */ 419 default: 420 panic("%s: unknown address family %u", __func__, af); 421 } 422 return (0); 423 } 424 425 static __inline uint32_t 426 pf_hashkey(struct pf_state_key *sk) 427 { 428 uint32_t h; 429 430 h = murmur3_32_hash32((uint32_t *)sk, 431 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 432 V_pf_hashseed); 433 434 return (h & pf_hashmask); 435 } 436 437 static __inline uint32_t 438 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 439 { 440 uint32_t h; 441 442 switch (af) { 443 case AF_INET: 444 h = murmur3_32_hash32((uint32_t *)&addr->v4, 445 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 446 break; 447 case AF_INET6: 448 h = murmur3_32_hash32((uint32_t *)&addr->v6, 449 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 450 break; 451 default: 452 panic("%s: unknown address family %u", __func__, af); 453 } 454 455 return (h & pf_srchashmask); 456 } 457 458 #ifdef ALTQ 459 static int 460 pf_state_hash(struct pf_state *s) 461 { 462 u_int32_t hv = (intptr_t)s / sizeof(*s); 463 464 hv ^= crc32(&s->src, sizeof(s->src)); 465 hv ^= crc32(&s->dst, sizeof(s->dst)); 466 if (hv == 0) 467 hv = 1; 468 return (hv); 469 } 470 #endif 471 472 #ifdef INET6 473 void 474 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 475 { 476 switch (af) { 477 #ifdef INET 478 case AF_INET: 479 dst->addr32[0] = src->addr32[0]; 480 break; 481 #endif /* INET */ 482 case AF_INET6: 483 dst->addr32[0] = src->addr32[0]; 484 dst->addr32[1] = src->addr32[1]; 485 dst->addr32[2] = src->addr32[2]; 486 dst->addr32[3] = src->addr32[3]; 487 break; 488 } 489 } 490 #endif /* INET6 */ 491 492 static void 493 pf_init_threshold(struct pf_threshold *threshold, 494 u_int32_t limit, u_int32_t seconds) 495 { 496 threshold->limit = limit * PF_THRESHOLD_MULT; 497 threshold->seconds = seconds; 498 threshold->count = 0; 499 threshold->last = time_uptime; 500 } 501 502 static void 503 pf_add_threshold(struct pf_threshold *threshold) 504 { 505 u_int32_t t = time_uptime, diff = t - threshold->last; 506 507 if (diff >= threshold->seconds) 508 threshold->count = 0; 509 else 510 threshold->count -= threshold->count * diff / 511 threshold->seconds; 512 threshold->count += PF_THRESHOLD_MULT; 513 threshold->last = t; 514 } 515 516 static int 517 pf_check_threshold(struct pf_threshold *threshold) 518 { 519 return (threshold->count > threshold->limit); 520 } 521 522 static int 523 pf_src_connlimit(struct pf_state **state) 524 { 525 struct pf_overload_entry *pfoe; 526 int bad = 0; 527 528 PF_STATE_LOCK_ASSERT(*state); 529 530 (*state)->src_node->conn++; 531 (*state)->src.tcp_est = 1; 532 pf_add_threshold(&(*state)->src_node->conn_rate); 533 534 if ((*state)->rule.ptr->max_src_conn && 535 (*state)->rule.ptr->max_src_conn < 536 (*state)->src_node->conn) { 537 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 538 bad++; 539 } 540 541 if ((*state)->rule.ptr->max_src_conn_rate.limit && 542 pf_check_threshold(&(*state)->src_node->conn_rate)) { 543 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 544 bad++; 545 } 546 547 if (!bad) 548 return (0); 549 550 /* Kill this state. */ 551 (*state)->timeout = PFTM_PURGE; 552 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 553 554 if ((*state)->rule.ptr->overload_tbl == NULL) 555 return (1); 556 557 /* Schedule overloading and flushing task. */ 558 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 559 if (pfoe == NULL) 560 return (1); /* too bad :( */ 561 562 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 563 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 564 pfoe->rule = (*state)->rule.ptr; 565 pfoe->dir = (*state)->direction; 566 PF_OVERLOADQ_LOCK(); 567 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 568 PF_OVERLOADQ_UNLOCK(); 569 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 570 571 return (1); 572 } 573 574 static void 575 pf_overload_task(void *v, int pending) 576 { 577 struct pf_overload_head queue; 578 struct pfr_addr p; 579 struct pf_overload_entry *pfoe, *pfoe1; 580 uint32_t killed = 0; 581 582 CURVNET_SET((struct vnet *)v); 583 584 PF_OVERLOADQ_LOCK(); 585 queue = V_pf_overloadqueue; 586 SLIST_INIT(&V_pf_overloadqueue); 587 PF_OVERLOADQ_UNLOCK(); 588 589 bzero(&p, sizeof(p)); 590 SLIST_FOREACH(pfoe, &queue, next) { 591 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 592 if (V_pf_status.debug >= PF_DEBUG_MISC) { 593 printf("%s: blocking address ", __func__); 594 pf_print_host(&pfoe->addr, 0, pfoe->af); 595 printf("\n"); 596 } 597 598 p.pfra_af = pfoe->af; 599 switch (pfoe->af) { 600 #ifdef INET 601 case AF_INET: 602 p.pfra_net = 32; 603 p.pfra_ip4addr = pfoe->addr.v4; 604 break; 605 #endif 606 #ifdef INET6 607 case AF_INET6: 608 p.pfra_net = 128; 609 p.pfra_ip6addr = pfoe->addr.v6; 610 break; 611 #endif 612 } 613 614 PF_RULES_WLOCK(); 615 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 616 PF_RULES_WUNLOCK(); 617 } 618 619 /* 620 * Remove those entries, that don't need flushing. 621 */ 622 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 623 if (pfoe->rule->flush == 0) { 624 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 625 free(pfoe, M_PFTEMP); 626 } else 627 counter_u64_add( 628 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 629 630 /* If nothing to flush, return. */ 631 if (SLIST_EMPTY(&queue)) { 632 CURVNET_RESTORE(); 633 return; 634 } 635 636 for (int i = 0; i <= pf_hashmask; i++) { 637 struct pf_idhash *ih = &V_pf_idhash[i]; 638 struct pf_state_key *sk; 639 struct pf_state *s; 640 641 PF_HASHROW_LOCK(ih); 642 LIST_FOREACH(s, &ih->states, entry) { 643 sk = s->key[PF_SK_WIRE]; 644 SLIST_FOREACH(pfoe, &queue, next) 645 if (sk->af == pfoe->af && 646 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 647 pfoe->rule == s->rule.ptr) && 648 ((pfoe->dir == PF_OUT && 649 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 650 (pfoe->dir == PF_IN && 651 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 652 s->timeout = PFTM_PURGE; 653 s->src.state = s->dst.state = TCPS_CLOSED; 654 killed++; 655 } 656 } 657 PF_HASHROW_UNLOCK(ih); 658 } 659 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 660 free(pfoe, M_PFTEMP); 661 if (V_pf_status.debug >= PF_DEBUG_MISC) 662 printf("%s: %u states killed", __func__, killed); 663 664 CURVNET_RESTORE(); 665 } 666 667 /* 668 * Can return locked on failure, so that we can consistently 669 * allocate and insert a new one. 670 */ 671 struct pf_src_node * 672 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 673 int returnlocked) 674 { 675 struct pf_srchash *sh; 676 struct pf_src_node *n; 677 678 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 679 680 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 681 PF_HASHROW_LOCK(sh); 682 LIST_FOREACH(n, &sh->nodes, entry) 683 if (n->rule.ptr == rule && n->af == af && 684 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 685 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 686 break; 687 if (n != NULL) { 688 n->states++; 689 PF_HASHROW_UNLOCK(sh); 690 } else if (returnlocked == 0) 691 PF_HASHROW_UNLOCK(sh); 692 693 return (n); 694 } 695 696 static int 697 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 698 struct pf_addr *src, sa_family_t af) 699 { 700 701 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 702 rule->rpool.opts & PF_POOL_STICKYADDR), 703 ("%s for non-tracking rule %p", __func__, rule)); 704 705 if (*sn == NULL) 706 *sn = pf_find_src_node(src, rule, af, 1); 707 708 if (*sn == NULL) { 709 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 710 711 PF_HASHROW_ASSERT(sh); 712 713 if (!rule->max_src_nodes || 714 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 715 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 716 else 717 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 718 1); 719 if ((*sn) == NULL) { 720 PF_HASHROW_UNLOCK(sh); 721 return (-1); 722 } 723 724 pf_init_threshold(&(*sn)->conn_rate, 725 rule->max_src_conn_rate.limit, 726 rule->max_src_conn_rate.seconds); 727 728 (*sn)->af = af; 729 (*sn)->rule.ptr = rule; 730 PF_ACPY(&(*sn)->addr, src, af); 731 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 732 (*sn)->creation = time_uptime; 733 (*sn)->ruletype = rule->action; 734 (*sn)->states = 1; 735 if ((*sn)->rule.ptr != NULL) 736 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 737 PF_HASHROW_UNLOCK(sh); 738 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 739 } else { 740 if (rule->max_src_states && 741 (*sn)->states >= rule->max_src_states) { 742 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 743 1); 744 return (-1); 745 } 746 } 747 return (0); 748 } 749 750 void 751 pf_unlink_src_node(struct pf_src_node *src) 752 { 753 754 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 755 LIST_REMOVE(src, entry); 756 if (src->rule.ptr) 757 counter_u64_add(src->rule.ptr->src_nodes, -1); 758 } 759 760 u_int 761 pf_free_src_nodes(struct pf_src_node_list *head) 762 { 763 struct pf_src_node *sn, *tmp; 764 u_int count = 0; 765 766 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 767 uma_zfree(V_pf_sources_z, sn); 768 count++; 769 } 770 771 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 772 773 return (count); 774 } 775 776 void 777 pf_mtag_initialize() 778 { 779 780 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 781 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 782 UMA_ALIGN_PTR, 0); 783 } 784 785 /* Per-vnet data storage structures initialization. */ 786 void 787 pf_initialize() 788 { 789 struct pf_keyhash *kh; 790 struct pf_idhash *ih; 791 struct pf_srchash *sh; 792 u_int i; 793 794 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 795 pf_hashsize = PF_HASHSIZ; 796 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 797 pf_srchashsize = PF_SRCHASHSIZ; 798 799 V_pf_hashseed = arc4random(); 800 801 /* States and state keys storage. */ 802 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 803 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 804 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 805 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 806 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 807 808 V_pf_state_key_z = uma_zcreate("pf state keys", 809 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 810 UMA_ALIGN_PTR, 0); 811 812 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 813 M_PFHASH, M_NOWAIT | M_ZERO); 814 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 815 M_PFHASH, M_NOWAIT | M_ZERO); 816 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 817 printf("pf: Unable to allocate memory for " 818 "state_hashsize %lu.\n", pf_hashsize); 819 820 free(V_pf_keyhash, M_PFHASH); 821 free(V_pf_idhash, M_PFHASH); 822 823 pf_hashsize = PF_HASHSIZ; 824 V_pf_keyhash = mallocarray(pf_hashsize, 825 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 826 V_pf_idhash = mallocarray(pf_hashsize, 827 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 828 } 829 830 pf_hashmask = pf_hashsize - 1; 831 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 832 i++, kh++, ih++) { 833 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 834 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 835 } 836 837 /* Source nodes. */ 838 V_pf_sources_z = uma_zcreate("pf source nodes", 839 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 840 0); 841 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 842 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 843 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 844 845 V_pf_srchash = mallocarray(pf_srchashsize, 846 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 847 if (V_pf_srchash == NULL) { 848 printf("pf: Unable to allocate memory for " 849 "source_hashsize %lu.\n", pf_srchashsize); 850 851 pf_srchashsize = PF_SRCHASHSIZ; 852 V_pf_srchash = mallocarray(pf_srchashsize, 853 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 854 } 855 856 pf_srchashmask = pf_srchashsize - 1; 857 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 858 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 859 860 /* ALTQ */ 861 TAILQ_INIT(&V_pf_altqs[0]); 862 TAILQ_INIT(&V_pf_altqs[1]); 863 TAILQ_INIT(&V_pf_altqs[2]); 864 TAILQ_INIT(&V_pf_altqs[3]); 865 TAILQ_INIT(&V_pf_pabuf); 866 V_pf_altqs_active = &V_pf_altqs[0]; 867 V_pf_altq_ifs_active = &V_pf_altqs[1]; 868 V_pf_altqs_inactive = &V_pf_altqs[2]; 869 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 870 871 /* Send & overload+flush queues. */ 872 STAILQ_INIT(&V_pf_sendqueue); 873 SLIST_INIT(&V_pf_overloadqueue); 874 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 875 876 /* Unlinked, but may be referenced rules. */ 877 TAILQ_INIT(&V_pf_unlinked_rules); 878 } 879 880 void 881 pf_mtag_cleanup() 882 { 883 884 uma_zdestroy(pf_mtag_z); 885 } 886 887 void 888 pf_cleanup() 889 { 890 struct pf_keyhash *kh; 891 struct pf_idhash *ih; 892 struct pf_srchash *sh; 893 struct pf_send_entry *pfse, *next; 894 u_int i; 895 896 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 897 i++, kh++, ih++) { 898 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 899 __func__)); 900 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 901 __func__)); 902 mtx_destroy(&kh->lock); 903 mtx_destroy(&ih->lock); 904 } 905 free(V_pf_keyhash, M_PFHASH); 906 free(V_pf_idhash, M_PFHASH); 907 908 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 909 KASSERT(LIST_EMPTY(&sh->nodes), 910 ("%s: source node hash not empty", __func__)); 911 mtx_destroy(&sh->lock); 912 } 913 free(V_pf_srchash, M_PFHASH); 914 915 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 916 m_freem(pfse->pfse_m); 917 free(pfse, M_PFTEMP); 918 } 919 920 uma_zdestroy(V_pf_sources_z); 921 uma_zdestroy(V_pf_state_z); 922 uma_zdestroy(V_pf_state_key_z); 923 } 924 925 static int 926 pf_mtag_uminit(void *mem, int size, int how) 927 { 928 struct m_tag *t; 929 930 t = (struct m_tag *)mem; 931 t->m_tag_cookie = MTAG_ABI_COMPAT; 932 t->m_tag_id = PACKET_TAG_PF; 933 t->m_tag_len = sizeof(struct pf_mtag); 934 t->m_tag_free = pf_mtag_free; 935 936 return (0); 937 } 938 939 static void 940 pf_mtag_free(struct m_tag *t) 941 { 942 943 uma_zfree(pf_mtag_z, t); 944 } 945 946 struct pf_mtag * 947 pf_get_mtag(struct mbuf *m) 948 { 949 struct m_tag *mtag; 950 951 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 952 return ((struct pf_mtag *)(mtag + 1)); 953 954 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 955 if (mtag == NULL) 956 return (NULL); 957 bzero(mtag + 1, sizeof(struct pf_mtag)); 958 m_tag_prepend(m, mtag); 959 960 return ((struct pf_mtag *)(mtag + 1)); 961 } 962 963 static int 964 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 965 struct pf_state *s) 966 { 967 struct pf_keyhash *khs, *khw, *kh; 968 struct pf_state_key *sk, *cur; 969 struct pf_state *si, *olds = NULL; 970 int idx; 971 972 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 973 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 974 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 975 976 /* 977 * We need to lock hash slots of both keys. To avoid deadlock 978 * we always lock the slot with lower address first. Unlock order 979 * isn't important. 980 * 981 * We also need to lock ID hash slot before dropping key 982 * locks. On success we return with ID hash slot locked. 983 */ 984 985 if (skw == sks) { 986 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 987 PF_HASHROW_LOCK(khs); 988 } else { 989 khs = &V_pf_keyhash[pf_hashkey(sks)]; 990 khw = &V_pf_keyhash[pf_hashkey(skw)]; 991 if (khs == khw) { 992 PF_HASHROW_LOCK(khs); 993 } else if (khs < khw) { 994 PF_HASHROW_LOCK(khs); 995 PF_HASHROW_LOCK(khw); 996 } else { 997 PF_HASHROW_LOCK(khw); 998 PF_HASHROW_LOCK(khs); 999 } 1000 } 1001 1002 #define KEYS_UNLOCK() do { \ 1003 if (khs != khw) { \ 1004 PF_HASHROW_UNLOCK(khs); \ 1005 PF_HASHROW_UNLOCK(khw); \ 1006 } else \ 1007 PF_HASHROW_UNLOCK(khs); \ 1008 } while (0) 1009 1010 /* 1011 * First run: start with wire key. 1012 */ 1013 sk = skw; 1014 kh = khw; 1015 idx = PF_SK_WIRE; 1016 1017 keyattach: 1018 LIST_FOREACH(cur, &kh->keys, entry) 1019 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1020 break; 1021 1022 if (cur != NULL) { 1023 /* Key exists. Check for same kif, if none, add to key. */ 1024 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1025 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1026 1027 PF_HASHROW_LOCK(ih); 1028 if (si->kif == s->kif && 1029 si->direction == s->direction) { 1030 if (sk->proto == IPPROTO_TCP && 1031 si->src.state >= TCPS_FIN_WAIT_2 && 1032 si->dst.state >= TCPS_FIN_WAIT_2) { 1033 /* 1034 * New state matches an old >FIN_WAIT_2 1035 * state. We can't drop key hash locks, 1036 * thus we can't unlink it properly. 1037 * 1038 * As a workaround we drop it into 1039 * TCPS_CLOSED state, schedule purge 1040 * ASAP and push it into the very end 1041 * of the slot TAILQ, so that it won't 1042 * conflict with our new state. 1043 */ 1044 si->src.state = si->dst.state = 1045 TCPS_CLOSED; 1046 si->timeout = PFTM_PURGE; 1047 olds = si; 1048 } else { 1049 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1050 printf("pf: %s key attach " 1051 "failed on %s: ", 1052 (idx == PF_SK_WIRE) ? 1053 "wire" : "stack", 1054 s->kif->pfik_name); 1055 pf_print_state_parts(s, 1056 (idx == PF_SK_WIRE) ? 1057 sk : NULL, 1058 (idx == PF_SK_STACK) ? 1059 sk : NULL); 1060 printf(", existing: "); 1061 pf_print_state_parts(si, 1062 (idx == PF_SK_WIRE) ? 1063 sk : NULL, 1064 (idx == PF_SK_STACK) ? 1065 sk : NULL); 1066 printf("\n"); 1067 } 1068 PF_HASHROW_UNLOCK(ih); 1069 KEYS_UNLOCK(); 1070 uma_zfree(V_pf_state_key_z, sk); 1071 if (idx == PF_SK_STACK) 1072 pf_detach_state(s); 1073 return (EEXIST); /* collision! */ 1074 } 1075 } 1076 PF_HASHROW_UNLOCK(ih); 1077 } 1078 uma_zfree(V_pf_state_key_z, sk); 1079 s->key[idx] = cur; 1080 } else { 1081 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1082 s->key[idx] = sk; 1083 } 1084 1085 stateattach: 1086 /* List is sorted, if-bound states before floating. */ 1087 if (s->kif == V_pfi_all) 1088 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1089 else 1090 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1091 1092 if (olds) { 1093 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1094 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1095 key_list[idx]); 1096 olds = NULL; 1097 } 1098 1099 /* 1100 * Attach done. See how should we (or should not?) 1101 * attach a second key. 1102 */ 1103 if (sks == skw) { 1104 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1105 idx = PF_SK_STACK; 1106 sks = NULL; 1107 goto stateattach; 1108 } else if (sks != NULL) { 1109 /* 1110 * Continue attaching with stack key. 1111 */ 1112 sk = sks; 1113 kh = khs; 1114 idx = PF_SK_STACK; 1115 sks = NULL; 1116 goto keyattach; 1117 } 1118 1119 PF_STATE_LOCK(s); 1120 KEYS_UNLOCK(); 1121 1122 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1123 ("%s failure", __func__)); 1124 1125 return (0); 1126 #undef KEYS_UNLOCK 1127 } 1128 1129 static void 1130 pf_detach_state(struct pf_state *s) 1131 { 1132 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1133 struct pf_keyhash *kh; 1134 1135 if (sks != NULL) { 1136 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1137 PF_HASHROW_LOCK(kh); 1138 if (s->key[PF_SK_STACK] != NULL) 1139 pf_state_key_detach(s, PF_SK_STACK); 1140 /* 1141 * If both point to same key, then we are done. 1142 */ 1143 if (sks == s->key[PF_SK_WIRE]) { 1144 pf_state_key_detach(s, PF_SK_WIRE); 1145 PF_HASHROW_UNLOCK(kh); 1146 return; 1147 } 1148 PF_HASHROW_UNLOCK(kh); 1149 } 1150 1151 if (s->key[PF_SK_WIRE] != NULL) { 1152 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1153 PF_HASHROW_LOCK(kh); 1154 if (s->key[PF_SK_WIRE] != NULL) 1155 pf_state_key_detach(s, PF_SK_WIRE); 1156 PF_HASHROW_UNLOCK(kh); 1157 } 1158 } 1159 1160 static void 1161 pf_state_key_detach(struct pf_state *s, int idx) 1162 { 1163 struct pf_state_key *sk = s->key[idx]; 1164 #ifdef INVARIANTS 1165 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1166 1167 PF_HASHROW_ASSERT(kh); 1168 #endif 1169 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1170 s->key[idx] = NULL; 1171 1172 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1173 LIST_REMOVE(sk, entry); 1174 uma_zfree(V_pf_state_key_z, sk); 1175 } 1176 } 1177 1178 static int 1179 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1180 { 1181 struct pf_state_key *sk = mem; 1182 1183 bzero(sk, sizeof(struct pf_state_key_cmp)); 1184 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1185 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1186 1187 return (0); 1188 } 1189 1190 struct pf_state_key * 1191 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1192 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1193 { 1194 struct pf_state_key *sk; 1195 1196 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1197 if (sk == NULL) 1198 return (NULL); 1199 1200 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1201 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1202 sk->port[pd->sidx] = sport; 1203 sk->port[pd->didx] = dport; 1204 sk->proto = pd->proto; 1205 sk->af = pd->af; 1206 1207 return (sk); 1208 } 1209 1210 struct pf_state_key * 1211 pf_state_key_clone(struct pf_state_key *orig) 1212 { 1213 struct pf_state_key *sk; 1214 1215 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1216 if (sk == NULL) 1217 return (NULL); 1218 1219 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1220 1221 return (sk); 1222 } 1223 1224 int 1225 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1226 struct pf_state_key *sks, struct pf_state *s) 1227 { 1228 struct pf_idhash *ih; 1229 struct pf_state *cur; 1230 int error; 1231 1232 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1233 ("%s: sks not pristine", __func__)); 1234 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1235 ("%s: skw not pristine", __func__)); 1236 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1237 1238 s->kif = kif; 1239 1240 if (s->id == 0 && s->creatorid == 0) { 1241 /* XXX: should be atomic, but probability of collision low */ 1242 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1243 V_pf_stateid[curcpu] = 1; 1244 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1245 s->id = htobe64(s->id); 1246 s->creatorid = V_pf_status.hostid; 1247 } 1248 1249 /* Returns with ID locked on success. */ 1250 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1251 return (error); 1252 1253 ih = &V_pf_idhash[PF_IDHASH(s)]; 1254 PF_HASHROW_ASSERT(ih); 1255 LIST_FOREACH(cur, &ih->states, entry) 1256 if (cur->id == s->id && cur->creatorid == s->creatorid) 1257 break; 1258 1259 if (cur != NULL) { 1260 PF_HASHROW_UNLOCK(ih); 1261 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1262 printf("pf: state ID collision: " 1263 "id: %016llx creatorid: %08x\n", 1264 (unsigned long long)be64toh(s->id), 1265 ntohl(s->creatorid)); 1266 } 1267 pf_detach_state(s); 1268 return (EEXIST); 1269 } 1270 LIST_INSERT_HEAD(&ih->states, s, entry); 1271 /* One for keys, one for ID hash. */ 1272 refcount_init(&s->refs, 2); 1273 1274 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1275 if (V_pfsync_insert_state_ptr != NULL) 1276 V_pfsync_insert_state_ptr(s); 1277 1278 /* Returns locked. */ 1279 return (0); 1280 } 1281 1282 /* 1283 * Find state by ID: returns with locked row on success. 1284 */ 1285 struct pf_state * 1286 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1287 { 1288 struct pf_idhash *ih; 1289 struct pf_state *s; 1290 1291 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1292 1293 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1294 1295 PF_HASHROW_LOCK(ih); 1296 LIST_FOREACH(s, &ih->states, entry) 1297 if (s->id == id && s->creatorid == creatorid) 1298 break; 1299 1300 if (s == NULL) 1301 PF_HASHROW_UNLOCK(ih); 1302 1303 return (s); 1304 } 1305 1306 /* 1307 * Find state by key. 1308 * Returns with ID hash slot locked on success. 1309 */ 1310 static struct pf_state * 1311 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1312 { 1313 struct pf_keyhash *kh; 1314 struct pf_state_key *sk; 1315 struct pf_state *s; 1316 int idx; 1317 1318 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1319 1320 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1321 1322 PF_HASHROW_LOCK(kh); 1323 LIST_FOREACH(sk, &kh->keys, entry) 1324 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1325 break; 1326 if (sk == NULL) { 1327 PF_HASHROW_UNLOCK(kh); 1328 return (NULL); 1329 } 1330 1331 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1332 1333 /* List is sorted, if-bound states before floating ones. */ 1334 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1335 if (s->kif == V_pfi_all || s->kif == kif) { 1336 PF_STATE_LOCK(s); 1337 PF_HASHROW_UNLOCK(kh); 1338 if (s->timeout >= PFTM_MAX) { 1339 /* 1340 * State is either being processed by 1341 * pf_unlink_state() in an other thread, or 1342 * is scheduled for immediate expiry. 1343 */ 1344 PF_STATE_UNLOCK(s); 1345 return (NULL); 1346 } 1347 return (s); 1348 } 1349 PF_HASHROW_UNLOCK(kh); 1350 1351 return (NULL); 1352 } 1353 1354 struct pf_state * 1355 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1356 { 1357 struct pf_keyhash *kh; 1358 struct pf_state_key *sk; 1359 struct pf_state *s, *ret = NULL; 1360 int idx, inout = 0; 1361 1362 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1363 1364 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1365 1366 PF_HASHROW_LOCK(kh); 1367 LIST_FOREACH(sk, &kh->keys, entry) 1368 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1369 break; 1370 if (sk == NULL) { 1371 PF_HASHROW_UNLOCK(kh); 1372 return (NULL); 1373 } 1374 switch (dir) { 1375 case PF_IN: 1376 idx = PF_SK_WIRE; 1377 break; 1378 case PF_OUT: 1379 idx = PF_SK_STACK; 1380 break; 1381 case PF_INOUT: 1382 idx = PF_SK_WIRE; 1383 inout = 1; 1384 break; 1385 default: 1386 panic("%s: dir %u", __func__, dir); 1387 } 1388 second_run: 1389 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1390 if (more == NULL) { 1391 PF_HASHROW_UNLOCK(kh); 1392 return (s); 1393 } 1394 1395 if (ret) 1396 (*more)++; 1397 else 1398 ret = s; 1399 } 1400 if (inout == 1) { 1401 inout = 0; 1402 idx = PF_SK_STACK; 1403 goto second_run; 1404 } 1405 PF_HASHROW_UNLOCK(kh); 1406 1407 return (ret); 1408 } 1409 1410 /* END state table stuff */ 1411 1412 static void 1413 pf_send(struct pf_send_entry *pfse) 1414 { 1415 1416 PF_SENDQ_LOCK(); 1417 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1418 PF_SENDQ_UNLOCK(); 1419 swi_sched(V_pf_swi_cookie, 0); 1420 } 1421 1422 void 1423 pf_intr(void *v) 1424 { 1425 struct pf_send_head queue; 1426 struct pf_send_entry *pfse, *next; 1427 1428 CURVNET_SET((struct vnet *)v); 1429 1430 PF_SENDQ_LOCK(); 1431 queue = V_pf_sendqueue; 1432 STAILQ_INIT(&V_pf_sendqueue); 1433 PF_SENDQ_UNLOCK(); 1434 1435 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1436 switch (pfse->pfse_type) { 1437 #ifdef INET 1438 case PFSE_IP: 1439 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1440 break; 1441 case PFSE_ICMP: 1442 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1443 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1444 break; 1445 #endif /* INET */ 1446 #ifdef INET6 1447 case PFSE_IP6: 1448 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1449 NULL); 1450 break; 1451 case PFSE_ICMP6: 1452 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1453 pfse->icmpopts.code, pfse->icmpopts.mtu); 1454 break; 1455 #endif /* INET6 */ 1456 default: 1457 panic("%s: unknown type", __func__); 1458 } 1459 free(pfse, M_PFTEMP); 1460 } 1461 CURVNET_RESTORE(); 1462 } 1463 1464 void 1465 pf_purge_thread(void *unused __unused) 1466 { 1467 VNET_ITERATOR_DECL(vnet_iter); 1468 1469 sx_xlock(&pf_end_lock); 1470 while (pf_end_threads == 0) { 1471 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", hz / 10); 1472 1473 VNET_LIST_RLOCK(); 1474 VNET_FOREACH(vnet_iter) { 1475 CURVNET_SET(vnet_iter); 1476 1477 1478 /* Wait until V_pf_default_rule is initialized. */ 1479 if (V_pf_vnet_active == 0) { 1480 CURVNET_RESTORE(); 1481 continue; 1482 } 1483 1484 /* 1485 * Process 1/interval fraction of the state 1486 * table every run. 1487 */ 1488 V_pf_purge_idx = 1489 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1490 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1491 1492 /* 1493 * Purge other expired types every 1494 * PFTM_INTERVAL seconds. 1495 */ 1496 if (V_pf_purge_idx == 0) { 1497 /* 1498 * Order is important: 1499 * - states and src nodes reference rules 1500 * - states and rules reference kifs 1501 */ 1502 pf_purge_expired_fragments(); 1503 pf_purge_expired_src_nodes(); 1504 pf_purge_unlinked_rules(); 1505 pfi_kif_purge(); 1506 } 1507 CURVNET_RESTORE(); 1508 } 1509 VNET_LIST_RUNLOCK(); 1510 } 1511 1512 pf_end_threads++; 1513 sx_xunlock(&pf_end_lock); 1514 kproc_exit(0); 1515 } 1516 1517 void 1518 pf_unload_vnet_purge(void) 1519 { 1520 1521 /* 1522 * To cleanse up all kifs and rules we need 1523 * two runs: first one clears reference flags, 1524 * then pf_purge_expired_states() doesn't 1525 * raise them, and then second run frees. 1526 */ 1527 pf_purge_unlinked_rules(); 1528 pfi_kif_purge(); 1529 1530 /* 1531 * Now purge everything. 1532 */ 1533 pf_purge_expired_states(0, pf_hashmask); 1534 pf_purge_fragments(UINT_MAX); 1535 pf_purge_expired_src_nodes(); 1536 1537 /* 1538 * Now all kifs & rules should be unreferenced, 1539 * thus should be successfully freed. 1540 */ 1541 pf_purge_unlinked_rules(); 1542 pfi_kif_purge(); 1543 } 1544 1545 1546 u_int32_t 1547 pf_state_expires(const struct pf_state *state) 1548 { 1549 u_int32_t timeout; 1550 u_int32_t start; 1551 u_int32_t end; 1552 u_int32_t states; 1553 1554 /* handle all PFTM_* > PFTM_MAX here */ 1555 if (state->timeout == PFTM_PURGE) 1556 return (time_uptime); 1557 KASSERT(state->timeout != PFTM_UNLINKED, 1558 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1559 KASSERT((state->timeout < PFTM_MAX), 1560 ("pf_state_expires: timeout > PFTM_MAX")); 1561 timeout = state->rule.ptr->timeout[state->timeout]; 1562 if (!timeout) 1563 timeout = V_pf_default_rule.timeout[state->timeout]; 1564 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1565 if (start && state->rule.ptr != &V_pf_default_rule) { 1566 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1567 states = counter_u64_fetch(state->rule.ptr->states_cur); 1568 } else { 1569 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1570 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1571 states = V_pf_status.states; 1572 } 1573 if (end && states > start && start < end) { 1574 if (states < end) { 1575 timeout = (u_int64_t)timeout * (end - states) / 1576 (end - start); 1577 return (state->expire + timeout); 1578 } 1579 else 1580 return (time_uptime); 1581 } 1582 return (state->expire + timeout); 1583 } 1584 1585 void 1586 pf_purge_expired_src_nodes() 1587 { 1588 struct pf_src_node_list freelist; 1589 struct pf_srchash *sh; 1590 struct pf_src_node *cur, *next; 1591 int i; 1592 1593 LIST_INIT(&freelist); 1594 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1595 PF_HASHROW_LOCK(sh); 1596 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1597 if (cur->states == 0 && cur->expire <= time_uptime) { 1598 pf_unlink_src_node(cur); 1599 LIST_INSERT_HEAD(&freelist, cur, entry); 1600 } else if (cur->rule.ptr != NULL) 1601 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1602 PF_HASHROW_UNLOCK(sh); 1603 } 1604 1605 pf_free_src_nodes(&freelist); 1606 1607 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1608 } 1609 1610 static void 1611 pf_src_tree_remove_state(struct pf_state *s) 1612 { 1613 struct pf_src_node *sn; 1614 struct pf_srchash *sh; 1615 uint32_t timeout; 1616 1617 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1618 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1619 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1620 1621 if (s->src_node != NULL) { 1622 sn = s->src_node; 1623 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1624 PF_HASHROW_LOCK(sh); 1625 if (s->src.tcp_est) 1626 --sn->conn; 1627 if (--sn->states == 0) 1628 sn->expire = time_uptime + timeout; 1629 PF_HASHROW_UNLOCK(sh); 1630 } 1631 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1632 sn = s->nat_src_node; 1633 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1634 PF_HASHROW_LOCK(sh); 1635 if (--sn->states == 0) 1636 sn->expire = time_uptime + timeout; 1637 PF_HASHROW_UNLOCK(sh); 1638 } 1639 s->src_node = s->nat_src_node = NULL; 1640 } 1641 1642 /* 1643 * Unlink and potentilly free a state. Function may be 1644 * called with ID hash row locked, but always returns 1645 * unlocked, since it needs to go through key hash locking. 1646 */ 1647 int 1648 pf_unlink_state(struct pf_state *s, u_int flags) 1649 { 1650 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1651 1652 if ((flags & PF_ENTER_LOCKED) == 0) 1653 PF_HASHROW_LOCK(ih); 1654 else 1655 PF_HASHROW_ASSERT(ih); 1656 1657 if (s->timeout == PFTM_UNLINKED) { 1658 /* 1659 * State is being processed 1660 * by pf_unlink_state() in 1661 * an other thread. 1662 */ 1663 PF_HASHROW_UNLOCK(ih); 1664 return (0); /* XXXGL: undefined actually */ 1665 } 1666 1667 if (s->src.state == PF_TCPS_PROXY_DST) { 1668 /* XXX wire key the right one? */ 1669 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1670 &s->key[PF_SK_WIRE]->addr[1], 1671 &s->key[PF_SK_WIRE]->addr[0], 1672 s->key[PF_SK_WIRE]->port[1], 1673 s->key[PF_SK_WIRE]->port[0], 1674 s->src.seqhi, s->src.seqlo + 1, 1675 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1676 } 1677 1678 LIST_REMOVE(s, entry); 1679 pf_src_tree_remove_state(s); 1680 1681 if (V_pfsync_delete_state_ptr != NULL) 1682 V_pfsync_delete_state_ptr(s); 1683 1684 STATE_DEC_COUNTERS(s); 1685 1686 s->timeout = PFTM_UNLINKED; 1687 1688 PF_HASHROW_UNLOCK(ih); 1689 1690 pf_detach_state(s); 1691 /* pf_state_insert() initialises refs to 2, so we can never release the 1692 * last reference here, only in pf_release_state(). */ 1693 (void)refcount_release(&s->refs); 1694 1695 return (pf_release_state(s)); 1696 } 1697 1698 void 1699 pf_free_state(struct pf_state *cur) 1700 { 1701 1702 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1703 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1704 cur->timeout)); 1705 1706 pf_normalize_tcp_cleanup(cur); 1707 uma_zfree(V_pf_state_z, cur); 1708 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1709 } 1710 1711 /* 1712 * Called only from pf_purge_thread(), thus serialized. 1713 */ 1714 static u_int 1715 pf_purge_expired_states(u_int i, int maxcheck) 1716 { 1717 struct pf_idhash *ih; 1718 struct pf_state *s; 1719 1720 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1721 1722 /* 1723 * Go through hash and unlink states that expire now. 1724 */ 1725 while (maxcheck > 0) { 1726 1727 ih = &V_pf_idhash[i]; 1728 1729 /* only take the lock if we expect to do work */ 1730 if (!LIST_EMPTY(&ih->states)) { 1731 relock: 1732 PF_HASHROW_LOCK(ih); 1733 LIST_FOREACH(s, &ih->states, entry) { 1734 if (pf_state_expires(s) <= time_uptime) { 1735 V_pf_status.states -= 1736 pf_unlink_state(s, PF_ENTER_LOCKED); 1737 goto relock; 1738 } 1739 s->rule.ptr->rule_flag |= PFRULE_REFS; 1740 if (s->nat_rule.ptr != NULL) 1741 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1742 if (s->anchor.ptr != NULL) 1743 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1744 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1745 if (s->rt_kif) 1746 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1747 } 1748 PF_HASHROW_UNLOCK(ih); 1749 } 1750 1751 /* Return when we hit end of hash. */ 1752 if (++i > pf_hashmask) { 1753 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1754 return (0); 1755 } 1756 1757 maxcheck--; 1758 } 1759 1760 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1761 1762 return (i); 1763 } 1764 1765 static void 1766 pf_purge_unlinked_rules() 1767 { 1768 struct pf_rulequeue tmpq; 1769 struct pf_rule *r, *r1; 1770 1771 /* 1772 * If we have overloading task pending, then we'd 1773 * better skip purging this time. There is a tiny 1774 * probability that overloading task references 1775 * an already unlinked rule. 1776 */ 1777 PF_OVERLOADQ_LOCK(); 1778 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1779 PF_OVERLOADQ_UNLOCK(); 1780 return; 1781 } 1782 PF_OVERLOADQ_UNLOCK(); 1783 1784 /* 1785 * Do naive mark-and-sweep garbage collecting of old rules. 1786 * Reference flag is raised by pf_purge_expired_states() 1787 * and pf_purge_expired_src_nodes(). 1788 * 1789 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1790 * use a temporary queue. 1791 */ 1792 TAILQ_INIT(&tmpq); 1793 PF_UNLNKDRULES_LOCK(); 1794 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1795 if (!(r->rule_flag & PFRULE_REFS)) { 1796 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1797 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1798 } else 1799 r->rule_flag &= ~PFRULE_REFS; 1800 } 1801 PF_UNLNKDRULES_UNLOCK(); 1802 1803 if (!TAILQ_EMPTY(&tmpq)) { 1804 PF_RULES_WLOCK(); 1805 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1806 TAILQ_REMOVE(&tmpq, r, entries); 1807 pf_free_rule(r); 1808 } 1809 PF_RULES_WUNLOCK(); 1810 } 1811 } 1812 1813 void 1814 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1815 { 1816 switch (af) { 1817 #ifdef INET 1818 case AF_INET: { 1819 u_int32_t a = ntohl(addr->addr32[0]); 1820 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1821 (a>>8)&255, a&255); 1822 if (p) { 1823 p = ntohs(p); 1824 printf(":%u", p); 1825 } 1826 break; 1827 } 1828 #endif /* INET */ 1829 #ifdef INET6 1830 case AF_INET6: { 1831 u_int16_t b; 1832 u_int8_t i, curstart, curend, maxstart, maxend; 1833 curstart = curend = maxstart = maxend = 255; 1834 for (i = 0; i < 8; i++) { 1835 if (!addr->addr16[i]) { 1836 if (curstart == 255) 1837 curstart = i; 1838 curend = i; 1839 } else { 1840 if ((curend - curstart) > 1841 (maxend - maxstart)) { 1842 maxstart = curstart; 1843 maxend = curend; 1844 } 1845 curstart = curend = 255; 1846 } 1847 } 1848 if ((curend - curstart) > 1849 (maxend - maxstart)) { 1850 maxstart = curstart; 1851 maxend = curend; 1852 } 1853 for (i = 0; i < 8; i++) { 1854 if (i >= maxstart && i <= maxend) { 1855 if (i == 0) 1856 printf(":"); 1857 if (i == maxend) 1858 printf(":"); 1859 } else { 1860 b = ntohs(addr->addr16[i]); 1861 printf("%x", b); 1862 if (i < 7) 1863 printf(":"); 1864 } 1865 } 1866 if (p) { 1867 p = ntohs(p); 1868 printf("[%u]", p); 1869 } 1870 break; 1871 } 1872 #endif /* INET6 */ 1873 } 1874 } 1875 1876 void 1877 pf_print_state(struct pf_state *s) 1878 { 1879 pf_print_state_parts(s, NULL, NULL); 1880 } 1881 1882 static void 1883 pf_print_state_parts(struct pf_state *s, 1884 struct pf_state_key *skwp, struct pf_state_key *sksp) 1885 { 1886 struct pf_state_key *skw, *sks; 1887 u_int8_t proto, dir; 1888 1889 /* Do our best to fill these, but they're skipped if NULL */ 1890 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1891 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1892 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1893 dir = s ? s->direction : 0; 1894 1895 switch (proto) { 1896 case IPPROTO_IPV4: 1897 printf("IPv4"); 1898 break; 1899 case IPPROTO_IPV6: 1900 printf("IPv6"); 1901 break; 1902 case IPPROTO_TCP: 1903 printf("TCP"); 1904 break; 1905 case IPPROTO_UDP: 1906 printf("UDP"); 1907 break; 1908 case IPPROTO_ICMP: 1909 printf("ICMP"); 1910 break; 1911 case IPPROTO_ICMPV6: 1912 printf("ICMPv6"); 1913 break; 1914 default: 1915 printf("%u", proto); 1916 break; 1917 } 1918 switch (dir) { 1919 case PF_IN: 1920 printf(" in"); 1921 break; 1922 case PF_OUT: 1923 printf(" out"); 1924 break; 1925 } 1926 if (skw) { 1927 printf(" wire: "); 1928 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1929 printf(" "); 1930 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1931 } 1932 if (sks) { 1933 printf(" stack: "); 1934 if (sks != skw) { 1935 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1936 printf(" "); 1937 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1938 } else 1939 printf("-"); 1940 } 1941 if (s) { 1942 if (proto == IPPROTO_TCP) { 1943 printf(" [lo=%u high=%u win=%u modulator=%u", 1944 s->src.seqlo, s->src.seqhi, 1945 s->src.max_win, s->src.seqdiff); 1946 if (s->src.wscale && s->dst.wscale) 1947 printf(" wscale=%u", 1948 s->src.wscale & PF_WSCALE_MASK); 1949 printf("]"); 1950 printf(" [lo=%u high=%u win=%u modulator=%u", 1951 s->dst.seqlo, s->dst.seqhi, 1952 s->dst.max_win, s->dst.seqdiff); 1953 if (s->src.wscale && s->dst.wscale) 1954 printf(" wscale=%u", 1955 s->dst.wscale & PF_WSCALE_MASK); 1956 printf("]"); 1957 } 1958 printf(" %u:%u", s->src.state, s->dst.state); 1959 } 1960 } 1961 1962 void 1963 pf_print_flags(u_int8_t f) 1964 { 1965 if (f) 1966 printf(" "); 1967 if (f & TH_FIN) 1968 printf("F"); 1969 if (f & TH_SYN) 1970 printf("S"); 1971 if (f & TH_RST) 1972 printf("R"); 1973 if (f & TH_PUSH) 1974 printf("P"); 1975 if (f & TH_ACK) 1976 printf("A"); 1977 if (f & TH_URG) 1978 printf("U"); 1979 if (f & TH_ECE) 1980 printf("E"); 1981 if (f & TH_CWR) 1982 printf("W"); 1983 } 1984 1985 #define PF_SET_SKIP_STEPS(i) \ 1986 do { \ 1987 while (head[i] != cur) { \ 1988 head[i]->skip[i].ptr = cur; \ 1989 head[i] = TAILQ_NEXT(head[i], entries); \ 1990 } \ 1991 } while (0) 1992 1993 void 1994 pf_calc_skip_steps(struct pf_rulequeue *rules) 1995 { 1996 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1997 int i; 1998 1999 cur = TAILQ_FIRST(rules); 2000 prev = cur; 2001 for (i = 0; i < PF_SKIP_COUNT; ++i) 2002 head[i] = cur; 2003 while (cur != NULL) { 2004 2005 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2006 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2007 if (cur->direction != prev->direction) 2008 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2009 if (cur->af != prev->af) 2010 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2011 if (cur->proto != prev->proto) 2012 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2013 if (cur->src.neg != prev->src.neg || 2014 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2015 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2016 if (cur->src.port[0] != prev->src.port[0] || 2017 cur->src.port[1] != prev->src.port[1] || 2018 cur->src.port_op != prev->src.port_op) 2019 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2020 if (cur->dst.neg != prev->dst.neg || 2021 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2022 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2023 if (cur->dst.port[0] != prev->dst.port[0] || 2024 cur->dst.port[1] != prev->dst.port[1] || 2025 cur->dst.port_op != prev->dst.port_op) 2026 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2027 2028 prev = cur; 2029 cur = TAILQ_NEXT(cur, entries); 2030 } 2031 for (i = 0; i < PF_SKIP_COUNT; ++i) 2032 PF_SET_SKIP_STEPS(i); 2033 } 2034 2035 static int 2036 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2037 { 2038 if (aw1->type != aw2->type) 2039 return (1); 2040 switch (aw1->type) { 2041 case PF_ADDR_ADDRMASK: 2042 case PF_ADDR_RANGE: 2043 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2044 return (1); 2045 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2046 return (1); 2047 return (0); 2048 case PF_ADDR_DYNIFTL: 2049 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2050 case PF_ADDR_NOROUTE: 2051 case PF_ADDR_URPFFAILED: 2052 return (0); 2053 case PF_ADDR_TABLE: 2054 return (aw1->p.tbl != aw2->p.tbl); 2055 default: 2056 printf("invalid address type: %d\n", aw1->type); 2057 return (1); 2058 } 2059 } 2060 2061 /** 2062 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2063 * header isn't always a full checksum. In some cases (i.e. output) it's a 2064 * pseudo-header checksum, which is a partial checksum over src/dst IP 2065 * addresses, protocol number and length. 2066 * 2067 * That means we have the following cases: 2068 * * Input or forwarding: we don't have TSO, the checksum fields are full 2069 * checksums, we need to update the checksum whenever we change anything. 2070 * * Output (i.e. the checksum is a pseudo-header checksum): 2071 * x The field being updated is src/dst address or affects the length of 2072 * the packet. We need to update the pseudo-header checksum (note that this 2073 * checksum is not ones' complement). 2074 * x Some other field is being modified (e.g. src/dst port numbers): We 2075 * don't have to update anything. 2076 **/ 2077 u_int16_t 2078 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2079 { 2080 u_int32_t l; 2081 2082 if (udp && !cksum) 2083 return (0x0000); 2084 l = cksum + old - new; 2085 l = (l >> 16) + (l & 65535); 2086 l = l & 65535; 2087 if (udp && !l) 2088 return (0xFFFF); 2089 return (l); 2090 } 2091 2092 u_int16_t 2093 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2094 u_int16_t new, u_int8_t udp) 2095 { 2096 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2097 return (cksum); 2098 2099 return (pf_cksum_fixup(cksum, old, new, udp)); 2100 } 2101 2102 static void 2103 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2104 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2105 sa_family_t af) 2106 { 2107 struct pf_addr ao; 2108 u_int16_t po = *p; 2109 2110 PF_ACPY(&ao, a, af); 2111 PF_ACPY(a, an, af); 2112 2113 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2114 *pc = ~*pc; 2115 2116 *p = pn; 2117 2118 switch (af) { 2119 #ifdef INET 2120 case AF_INET: 2121 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2122 ao.addr16[0], an->addr16[0], 0), 2123 ao.addr16[1], an->addr16[1], 0); 2124 *p = pn; 2125 2126 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2127 ao.addr16[0], an->addr16[0], u), 2128 ao.addr16[1], an->addr16[1], u); 2129 2130 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2131 break; 2132 #endif /* INET */ 2133 #ifdef INET6 2134 case AF_INET6: 2135 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2136 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2137 pf_cksum_fixup(pf_cksum_fixup(*pc, 2138 ao.addr16[0], an->addr16[0], u), 2139 ao.addr16[1], an->addr16[1], u), 2140 ao.addr16[2], an->addr16[2], u), 2141 ao.addr16[3], an->addr16[3], u), 2142 ao.addr16[4], an->addr16[4], u), 2143 ao.addr16[5], an->addr16[5], u), 2144 ao.addr16[6], an->addr16[6], u), 2145 ao.addr16[7], an->addr16[7], u); 2146 2147 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2148 break; 2149 #endif /* INET6 */ 2150 } 2151 2152 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2153 CSUM_DELAY_DATA_IPV6)) { 2154 *pc = ~*pc; 2155 if (! *pc) 2156 *pc = 0xffff; 2157 } 2158 } 2159 2160 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2161 void 2162 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2163 { 2164 u_int32_t ao; 2165 2166 memcpy(&ao, a, sizeof(ao)); 2167 memcpy(a, &an, sizeof(u_int32_t)); 2168 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2169 ao % 65536, an % 65536, u); 2170 } 2171 2172 void 2173 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2174 { 2175 u_int32_t ao; 2176 2177 memcpy(&ao, a, sizeof(ao)); 2178 memcpy(a, &an, sizeof(u_int32_t)); 2179 2180 *c = pf_proto_cksum_fixup(m, 2181 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2182 ao % 65536, an % 65536, udp); 2183 } 2184 2185 #ifdef INET6 2186 static void 2187 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2188 { 2189 struct pf_addr ao; 2190 2191 PF_ACPY(&ao, a, AF_INET6); 2192 PF_ACPY(a, an, AF_INET6); 2193 2194 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2195 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2196 pf_cksum_fixup(pf_cksum_fixup(*c, 2197 ao.addr16[0], an->addr16[0], u), 2198 ao.addr16[1], an->addr16[1], u), 2199 ao.addr16[2], an->addr16[2], u), 2200 ao.addr16[3], an->addr16[3], u), 2201 ao.addr16[4], an->addr16[4], u), 2202 ao.addr16[5], an->addr16[5], u), 2203 ao.addr16[6], an->addr16[6], u), 2204 ao.addr16[7], an->addr16[7], u); 2205 } 2206 #endif /* INET6 */ 2207 2208 static void 2209 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2210 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2211 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2212 { 2213 struct pf_addr oia, ooa; 2214 2215 PF_ACPY(&oia, ia, af); 2216 if (oa) 2217 PF_ACPY(&ooa, oa, af); 2218 2219 /* Change inner protocol port, fix inner protocol checksum. */ 2220 if (ip != NULL) { 2221 u_int16_t oip = *ip; 2222 u_int32_t opc; 2223 2224 if (pc != NULL) 2225 opc = *pc; 2226 *ip = np; 2227 if (pc != NULL) 2228 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2229 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2230 if (pc != NULL) 2231 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2232 } 2233 /* Change inner ip address, fix inner ip and icmp checksums. */ 2234 PF_ACPY(ia, na, af); 2235 switch (af) { 2236 #ifdef INET 2237 case AF_INET: { 2238 u_int32_t oh2c = *h2c; 2239 2240 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2241 oia.addr16[0], ia->addr16[0], 0), 2242 oia.addr16[1], ia->addr16[1], 0); 2243 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2244 oia.addr16[0], ia->addr16[0], 0), 2245 oia.addr16[1], ia->addr16[1], 0); 2246 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2247 break; 2248 } 2249 #endif /* INET */ 2250 #ifdef INET6 2251 case AF_INET6: 2252 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2253 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2254 pf_cksum_fixup(pf_cksum_fixup(*ic, 2255 oia.addr16[0], ia->addr16[0], u), 2256 oia.addr16[1], ia->addr16[1], u), 2257 oia.addr16[2], ia->addr16[2], u), 2258 oia.addr16[3], ia->addr16[3], u), 2259 oia.addr16[4], ia->addr16[4], u), 2260 oia.addr16[5], ia->addr16[5], u), 2261 oia.addr16[6], ia->addr16[6], u), 2262 oia.addr16[7], ia->addr16[7], u); 2263 break; 2264 #endif /* INET6 */ 2265 } 2266 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2267 if (oa) { 2268 PF_ACPY(oa, na, af); 2269 switch (af) { 2270 #ifdef INET 2271 case AF_INET: 2272 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2273 ooa.addr16[0], oa->addr16[0], 0), 2274 ooa.addr16[1], oa->addr16[1], 0); 2275 break; 2276 #endif /* INET */ 2277 #ifdef INET6 2278 case AF_INET6: 2279 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2280 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2281 pf_cksum_fixup(pf_cksum_fixup(*ic, 2282 ooa.addr16[0], oa->addr16[0], u), 2283 ooa.addr16[1], oa->addr16[1], u), 2284 ooa.addr16[2], oa->addr16[2], u), 2285 ooa.addr16[3], oa->addr16[3], u), 2286 ooa.addr16[4], oa->addr16[4], u), 2287 ooa.addr16[5], oa->addr16[5], u), 2288 ooa.addr16[6], oa->addr16[6], u), 2289 ooa.addr16[7], oa->addr16[7], u); 2290 break; 2291 #endif /* INET6 */ 2292 } 2293 } 2294 } 2295 2296 2297 /* 2298 * Need to modulate the sequence numbers in the TCP SACK option 2299 * (credits to Krzysztof Pfaff for report and patch) 2300 */ 2301 static int 2302 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2303 struct tcphdr *th, struct pf_state_peer *dst) 2304 { 2305 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2306 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2307 int copyback = 0, i, olen; 2308 struct sackblk sack; 2309 2310 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2311 if (hlen < TCPOLEN_SACKLEN || 2312 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2313 return 0; 2314 2315 while (hlen >= TCPOLEN_SACKLEN) { 2316 olen = opt[1]; 2317 switch (*opt) { 2318 case TCPOPT_EOL: /* FALLTHROUGH */ 2319 case TCPOPT_NOP: 2320 opt++; 2321 hlen--; 2322 break; 2323 case TCPOPT_SACK: 2324 if (olen > hlen) 2325 olen = hlen; 2326 if (olen >= TCPOLEN_SACKLEN) { 2327 for (i = 2; i + TCPOLEN_SACK <= olen; 2328 i += TCPOLEN_SACK) { 2329 memcpy(&sack, &opt[i], sizeof(sack)); 2330 pf_change_proto_a(m, &sack.start, &th->th_sum, 2331 htonl(ntohl(sack.start) - dst->seqdiff), 0); 2332 pf_change_proto_a(m, &sack.end, &th->th_sum, 2333 htonl(ntohl(sack.end) - dst->seqdiff), 0); 2334 memcpy(&opt[i], &sack, sizeof(sack)); 2335 } 2336 copyback = 1; 2337 } 2338 /* FALLTHROUGH */ 2339 default: 2340 if (olen < 2) 2341 olen = 2; 2342 hlen -= olen; 2343 opt += olen; 2344 } 2345 } 2346 2347 if (copyback) 2348 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2349 return (copyback); 2350 } 2351 2352 static void 2353 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2354 const struct pf_addr *saddr, const struct pf_addr *daddr, 2355 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2356 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2357 u_int16_t rtag, struct ifnet *ifp) 2358 { 2359 struct pf_send_entry *pfse; 2360 struct mbuf *m; 2361 int len, tlen; 2362 #ifdef INET 2363 struct ip *h = NULL; 2364 #endif /* INET */ 2365 #ifdef INET6 2366 struct ip6_hdr *h6 = NULL; 2367 #endif /* INET6 */ 2368 struct tcphdr *th; 2369 char *opt; 2370 struct pf_mtag *pf_mtag; 2371 2372 len = 0; 2373 th = NULL; 2374 2375 /* maximum segment size tcp option */ 2376 tlen = sizeof(struct tcphdr); 2377 if (mss) 2378 tlen += 4; 2379 2380 switch (af) { 2381 #ifdef INET 2382 case AF_INET: 2383 len = sizeof(struct ip) + tlen; 2384 break; 2385 #endif /* INET */ 2386 #ifdef INET6 2387 case AF_INET6: 2388 len = sizeof(struct ip6_hdr) + tlen; 2389 break; 2390 #endif /* INET6 */ 2391 default: 2392 panic("%s: unsupported af %d", __func__, af); 2393 } 2394 2395 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2396 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2397 if (pfse == NULL) 2398 return; 2399 m = m_gethdr(M_NOWAIT, MT_DATA); 2400 if (m == NULL) { 2401 free(pfse, M_PFTEMP); 2402 return; 2403 } 2404 #ifdef MAC 2405 mac_netinet_firewall_send(m); 2406 #endif 2407 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2408 free(pfse, M_PFTEMP); 2409 m_freem(m); 2410 return; 2411 } 2412 if (tag) 2413 m->m_flags |= M_SKIP_FIREWALL; 2414 pf_mtag->tag = rtag; 2415 2416 if (r != NULL && r->rtableid >= 0) 2417 M_SETFIB(m, r->rtableid); 2418 2419 #ifdef ALTQ 2420 if (r != NULL && r->qid) { 2421 pf_mtag->qid = r->qid; 2422 2423 /* add hints for ecn */ 2424 pf_mtag->hdr = mtod(m, struct ip *); 2425 } 2426 #endif /* ALTQ */ 2427 m->m_data += max_linkhdr; 2428 m->m_pkthdr.len = m->m_len = len; 2429 m->m_pkthdr.rcvif = NULL; 2430 bzero(m->m_data, len); 2431 switch (af) { 2432 #ifdef INET 2433 case AF_INET: 2434 h = mtod(m, struct ip *); 2435 2436 /* IP header fields included in the TCP checksum */ 2437 h->ip_p = IPPROTO_TCP; 2438 h->ip_len = htons(tlen); 2439 h->ip_src.s_addr = saddr->v4.s_addr; 2440 h->ip_dst.s_addr = daddr->v4.s_addr; 2441 2442 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2443 break; 2444 #endif /* INET */ 2445 #ifdef INET6 2446 case AF_INET6: 2447 h6 = mtod(m, struct ip6_hdr *); 2448 2449 /* IP header fields included in the TCP checksum */ 2450 h6->ip6_nxt = IPPROTO_TCP; 2451 h6->ip6_plen = htons(tlen); 2452 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2453 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2454 2455 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2456 break; 2457 #endif /* INET6 */ 2458 } 2459 2460 /* TCP header */ 2461 th->th_sport = sport; 2462 th->th_dport = dport; 2463 th->th_seq = htonl(seq); 2464 th->th_ack = htonl(ack); 2465 th->th_off = tlen >> 2; 2466 th->th_flags = flags; 2467 th->th_win = htons(win); 2468 2469 if (mss) { 2470 opt = (char *)(th + 1); 2471 opt[0] = TCPOPT_MAXSEG; 2472 opt[1] = 4; 2473 HTONS(mss); 2474 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2475 } 2476 2477 switch (af) { 2478 #ifdef INET 2479 case AF_INET: 2480 /* TCP checksum */ 2481 th->th_sum = in_cksum(m, len); 2482 2483 /* Finish the IP header */ 2484 h->ip_v = 4; 2485 h->ip_hl = sizeof(*h) >> 2; 2486 h->ip_tos = IPTOS_LOWDELAY; 2487 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2488 h->ip_len = htons(len); 2489 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2490 h->ip_sum = 0; 2491 2492 pfse->pfse_type = PFSE_IP; 2493 break; 2494 #endif /* INET */ 2495 #ifdef INET6 2496 case AF_INET6: 2497 /* TCP checksum */ 2498 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2499 sizeof(struct ip6_hdr), tlen); 2500 2501 h6->ip6_vfc |= IPV6_VERSION; 2502 h6->ip6_hlim = IPV6_DEFHLIM; 2503 2504 pfse->pfse_type = PFSE_IP6; 2505 break; 2506 #endif /* INET6 */ 2507 } 2508 pfse->pfse_m = m; 2509 pf_send(pfse); 2510 } 2511 2512 static void 2513 pf_return(struct pf_rule *r, struct pf_rule *nr, struct pf_pdesc *pd, 2514 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 2515 struct pfi_kif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 2516 u_short *reason) 2517 { 2518 struct pf_addr * const saddr = pd->src; 2519 struct pf_addr * const daddr = pd->dst; 2520 sa_family_t af = pd->af; 2521 2522 /* undo NAT changes, if they have taken place */ 2523 if (nr != NULL) { 2524 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 2525 PF_ACPY(daddr, &sk->addr[pd->didx], af); 2526 if (pd->sport) 2527 *pd->sport = sk->port[pd->sidx]; 2528 if (pd->dport) 2529 *pd->dport = sk->port[pd->didx]; 2530 if (pd->proto_sum) 2531 *pd->proto_sum = bproto_sum; 2532 if (pd->ip_sum) 2533 *pd->ip_sum = bip_sum; 2534 m_copyback(m, off, hdrlen, pd->hdr.any); 2535 } 2536 if (pd->proto == IPPROTO_TCP && 2537 ((r->rule_flag & PFRULE_RETURNRST) || 2538 (r->rule_flag & PFRULE_RETURN)) && 2539 !(th->th_flags & TH_RST)) { 2540 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 2541 int len = 0; 2542 #ifdef INET 2543 struct ip *h4; 2544 #endif 2545 #ifdef INET6 2546 struct ip6_hdr *h6; 2547 #endif 2548 2549 switch (af) { 2550 #ifdef INET 2551 case AF_INET: 2552 h4 = mtod(m, struct ip *); 2553 len = ntohs(h4->ip_len) - off; 2554 break; 2555 #endif 2556 #ifdef INET6 2557 case AF_INET6: 2558 h6 = mtod(m, struct ip6_hdr *); 2559 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 2560 break; 2561 #endif 2562 } 2563 2564 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 2565 REASON_SET(reason, PFRES_PROTCKSUM); 2566 else { 2567 if (th->th_flags & TH_SYN) 2568 ack++; 2569 if (th->th_flags & TH_FIN) 2570 ack++; 2571 pf_send_tcp(m, r, af, pd->dst, 2572 pd->src, th->th_dport, th->th_sport, 2573 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 2574 r->return_ttl, 1, 0, kif->pfik_ifp); 2575 } 2576 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 2577 r->return_icmp) 2578 pf_send_icmp(m, r->return_icmp >> 8, 2579 r->return_icmp & 255, af, r); 2580 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 2581 r->return_icmp6) 2582 pf_send_icmp(m, r->return_icmp6 >> 8, 2583 r->return_icmp6 & 255, af, r); 2584 } 2585 2586 2587 static int 2588 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2589 { 2590 struct m_tag *mtag; 2591 2592 KASSERT(prio <= PF_PRIO_MAX, 2593 ("%s with invalid pcp", __func__)); 2594 2595 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2596 if (mtag == NULL) { 2597 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2598 sizeof(uint8_t), M_NOWAIT); 2599 if (mtag == NULL) 2600 return (ENOMEM); 2601 m_tag_prepend(m, mtag); 2602 } 2603 2604 *(uint8_t *)(mtag + 1) = prio; 2605 return (0); 2606 } 2607 2608 static int 2609 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2610 { 2611 struct m_tag *mtag; 2612 u_int8_t mpcp; 2613 2614 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2615 if (mtag == NULL) 2616 return (0); 2617 2618 if (prio == PF_PRIO_ZERO) 2619 prio = 0; 2620 2621 mpcp = *(uint8_t *)(mtag + 1); 2622 2623 return (mpcp == prio); 2624 } 2625 2626 static void 2627 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2628 struct pf_rule *r) 2629 { 2630 struct pf_send_entry *pfse; 2631 struct mbuf *m0; 2632 struct pf_mtag *pf_mtag; 2633 2634 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2635 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2636 if (pfse == NULL) 2637 return; 2638 2639 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2640 free(pfse, M_PFTEMP); 2641 return; 2642 } 2643 2644 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2645 free(pfse, M_PFTEMP); 2646 return; 2647 } 2648 /* XXX: revisit */ 2649 m0->m_flags |= M_SKIP_FIREWALL; 2650 2651 if (r->rtableid >= 0) 2652 M_SETFIB(m0, r->rtableid); 2653 2654 #ifdef ALTQ 2655 if (r->qid) { 2656 pf_mtag->qid = r->qid; 2657 /* add hints for ecn */ 2658 pf_mtag->hdr = mtod(m0, struct ip *); 2659 } 2660 #endif /* ALTQ */ 2661 2662 switch (af) { 2663 #ifdef INET 2664 case AF_INET: 2665 pfse->pfse_type = PFSE_ICMP; 2666 break; 2667 #endif /* INET */ 2668 #ifdef INET6 2669 case AF_INET6: 2670 pfse->pfse_type = PFSE_ICMP6; 2671 break; 2672 #endif /* INET6 */ 2673 } 2674 pfse->pfse_m = m0; 2675 pfse->icmpopts.type = type; 2676 pfse->icmpopts.code = code; 2677 pf_send(pfse); 2678 } 2679 2680 /* 2681 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2682 * If n is 0, they match if they are equal. If n is != 0, they match if they 2683 * are different. 2684 */ 2685 int 2686 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2687 struct pf_addr *b, sa_family_t af) 2688 { 2689 int match = 0; 2690 2691 switch (af) { 2692 #ifdef INET 2693 case AF_INET: 2694 if ((a->addr32[0] & m->addr32[0]) == 2695 (b->addr32[0] & m->addr32[0])) 2696 match++; 2697 break; 2698 #endif /* INET */ 2699 #ifdef INET6 2700 case AF_INET6: 2701 if (((a->addr32[0] & m->addr32[0]) == 2702 (b->addr32[0] & m->addr32[0])) && 2703 ((a->addr32[1] & m->addr32[1]) == 2704 (b->addr32[1] & m->addr32[1])) && 2705 ((a->addr32[2] & m->addr32[2]) == 2706 (b->addr32[2] & m->addr32[2])) && 2707 ((a->addr32[3] & m->addr32[3]) == 2708 (b->addr32[3] & m->addr32[3]))) 2709 match++; 2710 break; 2711 #endif /* INET6 */ 2712 } 2713 if (match) { 2714 if (n) 2715 return (0); 2716 else 2717 return (1); 2718 } else { 2719 if (n) 2720 return (1); 2721 else 2722 return (0); 2723 } 2724 } 2725 2726 /* 2727 * Return 1 if b <= a <= e, otherwise return 0. 2728 */ 2729 int 2730 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2731 struct pf_addr *a, sa_family_t af) 2732 { 2733 switch (af) { 2734 #ifdef INET 2735 case AF_INET: 2736 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2737 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2738 return (0); 2739 break; 2740 #endif /* INET */ 2741 #ifdef INET6 2742 case AF_INET6: { 2743 int i; 2744 2745 /* check a >= b */ 2746 for (i = 0; i < 4; ++i) 2747 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2748 break; 2749 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2750 return (0); 2751 /* check a <= e */ 2752 for (i = 0; i < 4; ++i) 2753 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2754 break; 2755 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2756 return (0); 2757 break; 2758 } 2759 #endif /* INET6 */ 2760 } 2761 return (1); 2762 } 2763 2764 static int 2765 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2766 { 2767 switch (op) { 2768 case PF_OP_IRG: 2769 return ((p > a1) && (p < a2)); 2770 case PF_OP_XRG: 2771 return ((p < a1) || (p > a2)); 2772 case PF_OP_RRG: 2773 return ((p >= a1) && (p <= a2)); 2774 case PF_OP_EQ: 2775 return (p == a1); 2776 case PF_OP_NE: 2777 return (p != a1); 2778 case PF_OP_LT: 2779 return (p < a1); 2780 case PF_OP_LE: 2781 return (p <= a1); 2782 case PF_OP_GT: 2783 return (p > a1); 2784 case PF_OP_GE: 2785 return (p >= a1); 2786 } 2787 return (0); /* never reached */ 2788 } 2789 2790 int 2791 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2792 { 2793 NTOHS(a1); 2794 NTOHS(a2); 2795 NTOHS(p); 2796 return (pf_match(op, a1, a2, p)); 2797 } 2798 2799 static int 2800 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2801 { 2802 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2803 return (0); 2804 return (pf_match(op, a1, a2, u)); 2805 } 2806 2807 static int 2808 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2809 { 2810 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2811 return (0); 2812 return (pf_match(op, a1, a2, g)); 2813 } 2814 2815 int 2816 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2817 { 2818 if (*tag == -1) 2819 *tag = mtag; 2820 2821 return ((!r->match_tag_not && r->match_tag == *tag) || 2822 (r->match_tag_not && r->match_tag != *tag)); 2823 } 2824 2825 int 2826 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2827 { 2828 2829 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2830 2831 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2832 return (ENOMEM); 2833 2834 pd->pf_mtag->tag = tag; 2835 2836 return (0); 2837 } 2838 2839 #define PF_ANCHOR_STACKSIZE 32 2840 struct pf_anchor_stackframe { 2841 struct pf_ruleset *rs; 2842 struct pf_rule *r; /* XXX: + match bit */ 2843 struct pf_anchor *child; 2844 }; 2845 2846 /* 2847 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2848 */ 2849 #define PF_ANCHORSTACK_MATCH 0x00000001 2850 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2851 2852 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2853 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2854 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2855 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2856 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2857 } while (0) 2858 2859 void 2860 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2861 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2862 int *match) 2863 { 2864 struct pf_anchor_stackframe *f; 2865 2866 PF_RULES_RASSERT(); 2867 2868 if (match) 2869 *match = 0; 2870 if (*depth >= PF_ANCHOR_STACKSIZE) { 2871 printf("%s: anchor stack overflow on %s\n", 2872 __func__, (*r)->anchor->name); 2873 *r = TAILQ_NEXT(*r, entries); 2874 return; 2875 } else if (*depth == 0 && a != NULL) 2876 *a = *r; 2877 f = stack + (*depth)++; 2878 f->rs = *rs; 2879 f->r = *r; 2880 if ((*r)->anchor_wildcard) { 2881 struct pf_anchor_node *parent = &(*r)->anchor->children; 2882 2883 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2884 *r = NULL; 2885 return; 2886 } 2887 *rs = &f->child->ruleset; 2888 } else { 2889 f->child = NULL; 2890 *rs = &(*r)->anchor->ruleset; 2891 } 2892 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2893 } 2894 2895 int 2896 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2897 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2898 int *match) 2899 { 2900 struct pf_anchor_stackframe *f; 2901 struct pf_rule *fr; 2902 int quick = 0; 2903 2904 PF_RULES_RASSERT(); 2905 2906 do { 2907 if (*depth <= 0) 2908 break; 2909 f = stack + *depth - 1; 2910 fr = PF_ANCHOR_RULE(f); 2911 if (f->child != NULL) { 2912 struct pf_anchor_node *parent; 2913 2914 /* 2915 * This block traverses through 2916 * a wildcard anchor. 2917 */ 2918 parent = &fr->anchor->children; 2919 if (match != NULL && *match) { 2920 /* 2921 * If any of "*" matched, then 2922 * "foo/ *" matched, mark frame 2923 * appropriately. 2924 */ 2925 PF_ANCHOR_SET_MATCH(f); 2926 *match = 0; 2927 } 2928 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2929 if (f->child != NULL) { 2930 *rs = &f->child->ruleset; 2931 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2932 if (*r == NULL) 2933 continue; 2934 else 2935 break; 2936 } 2937 } 2938 (*depth)--; 2939 if (*depth == 0 && a != NULL) 2940 *a = NULL; 2941 *rs = f->rs; 2942 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2943 quick = fr->quick; 2944 *r = TAILQ_NEXT(fr, entries); 2945 } while (*r == NULL); 2946 2947 return (quick); 2948 } 2949 2950 #ifdef INET6 2951 void 2952 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2953 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2954 { 2955 switch (af) { 2956 #ifdef INET 2957 case AF_INET: 2958 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2959 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2960 break; 2961 #endif /* INET */ 2962 case AF_INET6: 2963 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2964 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2965 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2966 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2967 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2968 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2969 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2970 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2971 break; 2972 } 2973 } 2974 2975 void 2976 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2977 { 2978 switch (af) { 2979 #ifdef INET 2980 case AF_INET: 2981 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2982 break; 2983 #endif /* INET */ 2984 case AF_INET6: 2985 if (addr->addr32[3] == 0xffffffff) { 2986 addr->addr32[3] = 0; 2987 if (addr->addr32[2] == 0xffffffff) { 2988 addr->addr32[2] = 0; 2989 if (addr->addr32[1] == 0xffffffff) { 2990 addr->addr32[1] = 0; 2991 addr->addr32[0] = 2992 htonl(ntohl(addr->addr32[0]) + 1); 2993 } else 2994 addr->addr32[1] = 2995 htonl(ntohl(addr->addr32[1]) + 1); 2996 } else 2997 addr->addr32[2] = 2998 htonl(ntohl(addr->addr32[2]) + 1); 2999 } else 3000 addr->addr32[3] = 3001 htonl(ntohl(addr->addr32[3]) + 1); 3002 break; 3003 } 3004 } 3005 #endif /* INET6 */ 3006 3007 int 3008 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 3009 { 3010 struct pf_addr *saddr, *daddr; 3011 u_int16_t sport, dport; 3012 struct inpcbinfo *pi; 3013 struct inpcb *inp; 3014 3015 pd->lookup.uid = UID_MAX; 3016 pd->lookup.gid = GID_MAX; 3017 3018 switch (pd->proto) { 3019 case IPPROTO_TCP: 3020 if (pd->hdr.tcp == NULL) 3021 return (-1); 3022 sport = pd->hdr.tcp->th_sport; 3023 dport = pd->hdr.tcp->th_dport; 3024 pi = &V_tcbinfo; 3025 break; 3026 case IPPROTO_UDP: 3027 if (pd->hdr.udp == NULL) 3028 return (-1); 3029 sport = pd->hdr.udp->uh_sport; 3030 dport = pd->hdr.udp->uh_dport; 3031 pi = &V_udbinfo; 3032 break; 3033 default: 3034 return (-1); 3035 } 3036 if (direction == PF_IN) { 3037 saddr = pd->src; 3038 daddr = pd->dst; 3039 } else { 3040 u_int16_t p; 3041 3042 p = sport; 3043 sport = dport; 3044 dport = p; 3045 saddr = pd->dst; 3046 daddr = pd->src; 3047 } 3048 switch (pd->af) { 3049 #ifdef INET 3050 case AF_INET: 3051 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3052 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3053 if (inp == NULL) { 3054 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3055 daddr->v4, dport, INPLOOKUP_WILDCARD | 3056 INPLOOKUP_RLOCKPCB, NULL, m); 3057 if (inp == NULL) 3058 return (-1); 3059 } 3060 break; 3061 #endif /* INET */ 3062 #ifdef INET6 3063 case AF_INET6: 3064 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3065 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3066 if (inp == NULL) { 3067 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3068 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3069 INPLOOKUP_RLOCKPCB, NULL, m); 3070 if (inp == NULL) 3071 return (-1); 3072 } 3073 break; 3074 #endif /* INET6 */ 3075 3076 default: 3077 return (-1); 3078 } 3079 INP_RLOCK_ASSERT(inp); 3080 pd->lookup.uid = inp->inp_cred->cr_uid; 3081 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3082 INP_RUNLOCK(inp); 3083 3084 return (1); 3085 } 3086 3087 static u_int8_t 3088 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3089 { 3090 int hlen; 3091 u_int8_t hdr[60]; 3092 u_int8_t *opt, optlen; 3093 u_int8_t wscale = 0; 3094 3095 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3096 if (hlen <= sizeof(struct tcphdr)) 3097 return (0); 3098 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3099 return (0); 3100 opt = hdr + sizeof(struct tcphdr); 3101 hlen -= sizeof(struct tcphdr); 3102 while (hlen >= 3) { 3103 switch (*opt) { 3104 case TCPOPT_EOL: 3105 case TCPOPT_NOP: 3106 ++opt; 3107 --hlen; 3108 break; 3109 case TCPOPT_WINDOW: 3110 wscale = opt[2]; 3111 if (wscale > TCP_MAX_WINSHIFT) 3112 wscale = TCP_MAX_WINSHIFT; 3113 wscale |= PF_WSCALE_FLAG; 3114 /* FALLTHROUGH */ 3115 default: 3116 optlen = opt[1]; 3117 if (optlen < 2) 3118 optlen = 2; 3119 hlen -= optlen; 3120 opt += optlen; 3121 break; 3122 } 3123 } 3124 return (wscale); 3125 } 3126 3127 static u_int16_t 3128 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3129 { 3130 int hlen; 3131 u_int8_t hdr[60]; 3132 u_int8_t *opt, optlen; 3133 u_int16_t mss = V_tcp_mssdflt; 3134 3135 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3136 if (hlen <= sizeof(struct tcphdr)) 3137 return (0); 3138 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3139 return (0); 3140 opt = hdr + sizeof(struct tcphdr); 3141 hlen -= sizeof(struct tcphdr); 3142 while (hlen >= TCPOLEN_MAXSEG) { 3143 switch (*opt) { 3144 case TCPOPT_EOL: 3145 case TCPOPT_NOP: 3146 ++opt; 3147 --hlen; 3148 break; 3149 case TCPOPT_MAXSEG: 3150 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3151 NTOHS(mss); 3152 /* FALLTHROUGH */ 3153 default: 3154 optlen = opt[1]; 3155 if (optlen < 2) 3156 optlen = 2; 3157 hlen -= optlen; 3158 opt += optlen; 3159 break; 3160 } 3161 } 3162 return (mss); 3163 } 3164 3165 static u_int16_t 3166 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3167 { 3168 #ifdef INET 3169 struct nhop4_basic nh4; 3170 #endif /* INET */ 3171 #ifdef INET6 3172 struct nhop6_basic nh6; 3173 struct in6_addr dst6; 3174 uint32_t scopeid; 3175 #endif /* INET6 */ 3176 int hlen = 0; 3177 uint16_t mss = 0; 3178 3179 switch (af) { 3180 #ifdef INET 3181 case AF_INET: 3182 hlen = sizeof(struct ip); 3183 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) == 0) 3184 mss = nh4.nh_mtu - hlen - sizeof(struct tcphdr); 3185 break; 3186 #endif /* INET */ 3187 #ifdef INET6 3188 case AF_INET6: 3189 hlen = sizeof(struct ip6_hdr); 3190 in6_splitscope(&addr->v6, &dst6, &scopeid); 3191 if (fib6_lookup_nh_basic(rtableid, &dst6, scopeid, 0,0,&nh6)==0) 3192 mss = nh6.nh_mtu - hlen - sizeof(struct tcphdr); 3193 break; 3194 #endif /* INET6 */ 3195 } 3196 3197 mss = max(V_tcp_mssdflt, mss); 3198 mss = min(mss, offer); 3199 mss = max(mss, 64); /* sanity - at least max opt space */ 3200 return (mss); 3201 } 3202 3203 static u_int32_t 3204 pf_tcp_iss(struct pf_pdesc *pd) 3205 { 3206 MD5_CTX ctx; 3207 u_int32_t digest[4]; 3208 3209 if (V_pf_tcp_secret_init == 0) { 3210 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3211 MD5Init(&V_pf_tcp_secret_ctx); 3212 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3213 sizeof(V_pf_tcp_secret)); 3214 V_pf_tcp_secret_init = 1; 3215 } 3216 3217 ctx = V_pf_tcp_secret_ctx; 3218 3219 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3220 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3221 if (pd->af == AF_INET6) { 3222 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3223 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3224 } else { 3225 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3226 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3227 } 3228 MD5Final((u_char *)digest, &ctx); 3229 V_pf_tcp_iss_off += 4096; 3230 #define ISN_RANDOM_INCREMENT (4096 - 1) 3231 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3232 V_pf_tcp_iss_off); 3233 #undef ISN_RANDOM_INCREMENT 3234 } 3235 3236 static int 3237 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3238 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3239 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3240 { 3241 struct pf_rule *nr = NULL; 3242 struct pf_addr * const saddr = pd->src; 3243 struct pf_addr * const daddr = pd->dst; 3244 sa_family_t af = pd->af; 3245 struct pf_rule *r, *a = NULL; 3246 struct pf_ruleset *ruleset = NULL; 3247 struct pf_src_node *nsn = NULL; 3248 struct tcphdr *th = pd->hdr.tcp; 3249 struct pf_state_key *sk = NULL, *nk = NULL; 3250 u_short reason; 3251 int rewrite = 0, hdrlen = 0; 3252 int tag = -1, rtableid = -1; 3253 int asd = 0; 3254 int match = 0; 3255 int state_icmp = 0; 3256 u_int16_t sport = 0, dport = 0; 3257 u_int16_t bproto_sum = 0, bip_sum = 0; 3258 u_int8_t icmptype = 0, icmpcode = 0; 3259 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3260 3261 PF_RULES_RASSERT(); 3262 3263 if (inp != NULL) { 3264 INP_LOCK_ASSERT(inp); 3265 pd->lookup.uid = inp->inp_cred->cr_uid; 3266 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3267 pd->lookup.done = 1; 3268 } 3269 3270 switch (pd->proto) { 3271 case IPPROTO_TCP: 3272 sport = th->th_sport; 3273 dport = th->th_dport; 3274 hdrlen = sizeof(*th); 3275 break; 3276 case IPPROTO_UDP: 3277 sport = pd->hdr.udp->uh_sport; 3278 dport = pd->hdr.udp->uh_dport; 3279 hdrlen = sizeof(*pd->hdr.udp); 3280 break; 3281 #ifdef INET 3282 case IPPROTO_ICMP: 3283 if (pd->af != AF_INET) 3284 break; 3285 sport = dport = pd->hdr.icmp->icmp_id; 3286 hdrlen = sizeof(*pd->hdr.icmp); 3287 icmptype = pd->hdr.icmp->icmp_type; 3288 icmpcode = pd->hdr.icmp->icmp_code; 3289 3290 if (icmptype == ICMP_UNREACH || 3291 icmptype == ICMP_SOURCEQUENCH || 3292 icmptype == ICMP_REDIRECT || 3293 icmptype == ICMP_TIMXCEED || 3294 icmptype == ICMP_PARAMPROB) 3295 state_icmp++; 3296 break; 3297 #endif /* INET */ 3298 #ifdef INET6 3299 case IPPROTO_ICMPV6: 3300 if (af != AF_INET6) 3301 break; 3302 sport = dport = pd->hdr.icmp6->icmp6_id; 3303 hdrlen = sizeof(*pd->hdr.icmp6); 3304 icmptype = pd->hdr.icmp6->icmp6_type; 3305 icmpcode = pd->hdr.icmp6->icmp6_code; 3306 3307 if (icmptype == ICMP6_DST_UNREACH || 3308 icmptype == ICMP6_PACKET_TOO_BIG || 3309 icmptype == ICMP6_TIME_EXCEEDED || 3310 icmptype == ICMP6_PARAM_PROB) 3311 state_icmp++; 3312 break; 3313 #endif /* INET6 */ 3314 default: 3315 sport = dport = hdrlen = 0; 3316 break; 3317 } 3318 3319 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3320 3321 /* check packet for BINAT/NAT/RDR */ 3322 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3323 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3324 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3325 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3326 3327 if (pd->ip_sum) 3328 bip_sum = *pd->ip_sum; 3329 3330 switch (pd->proto) { 3331 case IPPROTO_TCP: 3332 bproto_sum = th->th_sum; 3333 pd->proto_sum = &th->th_sum; 3334 3335 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3336 nk->port[pd->sidx] != sport) { 3337 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3338 &th->th_sum, &nk->addr[pd->sidx], 3339 nk->port[pd->sidx], 0, af); 3340 pd->sport = &th->th_sport; 3341 sport = th->th_sport; 3342 } 3343 3344 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3345 nk->port[pd->didx] != dport) { 3346 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3347 &th->th_sum, &nk->addr[pd->didx], 3348 nk->port[pd->didx], 0, af); 3349 dport = th->th_dport; 3350 pd->dport = &th->th_dport; 3351 } 3352 rewrite++; 3353 break; 3354 case IPPROTO_UDP: 3355 bproto_sum = pd->hdr.udp->uh_sum; 3356 pd->proto_sum = &pd->hdr.udp->uh_sum; 3357 3358 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3359 nk->port[pd->sidx] != sport) { 3360 pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, 3361 pd->ip_sum, &pd->hdr.udp->uh_sum, 3362 &nk->addr[pd->sidx], 3363 nk->port[pd->sidx], 1, af); 3364 sport = pd->hdr.udp->uh_sport; 3365 pd->sport = &pd->hdr.udp->uh_sport; 3366 } 3367 3368 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3369 nk->port[pd->didx] != dport) { 3370 pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, 3371 pd->ip_sum, &pd->hdr.udp->uh_sum, 3372 &nk->addr[pd->didx], 3373 nk->port[pd->didx], 1, af); 3374 dport = pd->hdr.udp->uh_dport; 3375 pd->dport = &pd->hdr.udp->uh_dport; 3376 } 3377 rewrite++; 3378 break; 3379 #ifdef INET 3380 case IPPROTO_ICMP: 3381 nk->port[0] = nk->port[1]; 3382 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3383 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3384 nk->addr[pd->sidx].v4.s_addr, 0); 3385 3386 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3387 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3388 nk->addr[pd->didx].v4.s_addr, 0); 3389 3390 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3391 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3392 pd->hdr.icmp->icmp_cksum, sport, 3393 nk->port[1], 0); 3394 pd->hdr.icmp->icmp_id = nk->port[1]; 3395 pd->sport = &pd->hdr.icmp->icmp_id; 3396 } 3397 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3398 break; 3399 #endif /* INET */ 3400 #ifdef INET6 3401 case IPPROTO_ICMPV6: 3402 nk->port[0] = nk->port[1]; 3403 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3404 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3405 &nk->addr[pd->sidx], 0); 3406 3407 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3408 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3409 &nk->addr[pd->didx], 0); 3410 rewrite++; 3411 break; 3412 #endif /* INET */ 3413 default: 3414 switch (af) { 3415 #ifdef INET 3416 case AF_INET: 3417 if (PF_ANEQ(saddr, 3418 &nk->addr[pd->sidx], AF_INET)) 3419 pf_change_a(&saddr->v4.s_addr, 3420 pd->ip_sum, 3421 nk->addr[pd->sidx].v4.s_addr, 0); 3422 3423 if (PF_ANEQ(daddr, 3424 &nk->addr[pd->didx], AF_INET)) 3425 pf_change_a(&daddr->v4.s_addr, 3426 pd->ip_sum, 3427 nk->addr[pd->didx].v4.s_addr, 0); 3428 break; 3429 #endif /* INET */ 3430 #ifdef INET6 3431 case AF_INET6: 3432 if (PF_ANEQ(saddr, 3433 &nk->addr[pd->sidx], AF_INET6)) 3434 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3435 3436 if (PF_ANEQ(daddr, 3437 &nk->addr[pd->didx], AF_INET6)) 3438 PF_ACPY(daddr, &nk->addr[pd->didx], af); 3439 break; 3440 #endif /* INET */ 3441 } 3442 break; 3443 } 3444 if (nr->natpass) 3445 r = NULL; 3446 pd->nat_rule = nr; 3447 } 3448 3449 while (r != NULL) { 3450 r->evaluations++; 3451 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3452 r = r->skip[PF_SKIP_IFP].ptr; 3453 else if (r->direction && r->direction != direction) 3454 r = r->skip[PF_SKIP_DIR].ptr; 3455 else if (r->af && r->af != af) 3456 r = r->skip[PF_SKIP_AF].ptr; 3457 else if (r->proto && r->proto != pd->proto) 3458 r = r->skip[PF_SKIP_PROTO].ptr; 3459 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3460 r->src.neg, kif, M_GETFIB(m))) 3461 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3462 /* tcp/udp only. port_op always 0 in other cases */ 3463 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3464 r->src.port[0], r->src.port[1], sport)) 3465 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3466 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3467 r->dst.neg, NULL, M_GETFIB(m))) 3468 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3469 /* tcp/udp only. port_op always 0 in other cases */ 3470 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3471 r->dst.port[0], r->dst.port[1], dport)) 3472 r = r->skip[PF_SKIP_DST_PORT].ptr; 3473 /* icmp only. type always 0 in other cases */ 3474 else if (r->type && r->type != icmptype + 1) 3475 r = TAILQ_NEXT(r, entries); 3476 /* icmp only. type always 0 in other cases */ 3477 else if (r->code && r->code != icmpcode + 1) 3478 r = TAILQ_NEXT(r, entries); 3479 else if (r->tos && !(r->tos == pd->tos)) 3480 r = TAILQ_NEXT(r, entries); 3481 else if (r->rule_flag & PFRULE_FRAGMENT) 3482 r = TAILQ_NEXT(r, entries); 3483 else if (pd->proto == IPPROTO_TCP && 3484 (r->flagset & th->th_flags) != r->flags) 3485 r = TAILQ_NEXT(r, entries); 3486 /* tcp/udp only. uid.op always 0 in other cases */ 3487 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3488 pf_socket_lookup(direction, pd, m), 1)) && 3489 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3490 pd->lookup.uid)) 3491 r = TAILQ_NEXT(r, entries); 3492 /* tcp/udp only. gid.op always 0 in other cases */ 3493 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3494 pf_socket_lookup(direction, pd, m), 1)) && 3495 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3496 pd->lookup.gid)) 3497 r = TAILQ_NEXT(r, entries); 3498 else if (r->prio && 3499 !pf_match_ieee8021q_pcp(r->prio, m)) 3500 r = TAILQ_NEXT(r, entries); 3501 else if (r->prob && 3502 r->prob <= arc4random()) 3503 r = TAILQ_NEXT(r, entries); 3504 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3505 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3506 r = TAILQ_NEXT(r, entries); 3507 else if (r->os_fingerprint != PF_OSFP_ANY && 3508 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3509 pf_osfp_fingerprint(pd, m, off, th), 3510 r->os_fingerprint))) 3511 r = TAILQ_NEXT(r, entries); 3512 else { 3513 if (r->tag) 3514 tag = r->tag; 3515 if (r->rtableid >= 0) 3516 rtableid = r->rtableid; 3517 if (r->anchor == NULL) { 3518 match = 1; 3519 *rm = r; 3520 *am = a; 3521 *rsm = ruleset; 3522 if ((*rm)->quick) 3523 break; 3524 r = TAILQ_NEXT(r, entries); 3525 } else 3526 pf_step_into_anchor(anchor_stack, &asd, 3527 &ruleset, PF_RULESET_FILTER, &r, &a, 3528 &match); 3529 } 3530 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3531 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3532 break; 3533 } 3534 r = *rm; 3535 a = *am; 3536 ruleset = *rsm; 3537 3538 REASON_SET(&reason, PFRES_MATCH); 3539 3540 if (r->log || (nr != NULL && nr->log)) { 3541 if (rewrite) 3542 m_copyback(m, off, hdrlen, pd->hdr.any); 3543 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3544 ruleset, pd, 1); 3545 } 3546 3547 if ((r->action == PF_DROP) && 3548 ((r->rule_flag & PFRULE_RETURNRST) || 3549 (r->rule_flag & PFRULE_RETURNICMP) || 3550 (r->rule_flag & PFRULE_RETURN))) { 3551 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 3552 bip_sum, hdrlen, &reason); 3553 } 3554 3555 if (r->action == PF_DROP) 3556 goto cleanup; 3557 3558 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3559 REASON_SET(&reason, PFRES_MEMORY); 3560 goto cleanup; 3561 } 3562 if (rtableid >= 0) 3563 M_SETFIB(m, rtableid); 3564 3565 if (!state_icmp && (r->keep_state || nr != NULL || 3566 (pd->flags & PFDESC_TCP_NORM))) { 3567 int action; 3568 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3569 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3570 hdrlen); 3571 if (action != PF_PASS) { 3572 if (action == PF_DROP && 3573 (r->rule_flag & PFRULE_RETURN)) 3574 pf_return(r, nr, pd, sk, off, m, th, kif, 3575 bproto_sum, bip_sum, hdrlen, &reason); 3576 return (action); 3577 } 3578 } else { 3579 if (sk != NULL) 3580 uma_zfree(V_pf_state_key_z, sk); 3581 if (nk != NULL) 3582 uma_zfree(V_pf_state_key_z, nk); 3583 } 3584 3585 /* copy back packet headers if we performed NAT operations */ 3586 if (rewrite) 3587 m_copyback(m, off, hdrlen, pd->hdr.any); 3588 3589 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3590 direction == PF_OUT && 3591 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 3592 /* 3593 * We want the state created, but we dont 3594 * want to send this in case a partner 3595 * firewall has to know about it to allow 3596 * replies through it. 3597 */ 3598 return (PF_DEFER); 3599 3600 return (PF_PASS); 3601 3602 cleanup: 3603 if (sk != NULL) 3604 uma_zfree(V_pf_state_key_z, sk); 3605 if (nk != NULL) 3606 uma_zfree(V_pf_state_key_z, nk); 3607 return (PF_DROP); 3608 } 3609 3610 static int 3611 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3612 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3613 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3614 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3615 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3616 { 3617 struct pf_state *s = NULL; 3618 struct pf_src_node *sn = NULL; 3619 struct tcphdr *th = pd->hdr.tcp; 3620 u_int16_t mss = V_tcp_mssdflt; 3621 u_short reason; 3622 3623 /* check maximums */ 3624 if (r->max_states && 3625 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3626 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3627 REASON_SET(&reason, PFRES_MAXSTATES); 3628 goto csfailed; 3629 } 3630 /* src node for filter rule */ 3631 if ((r->rule_flag & PFRULE_SRCTRACK || 3632 r->rpool.opts & PF_POOL_STICKYADDR) && 3633 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3634 REASON_SET(&reason, PFRES_SRCLIMIT); 3635 goto csfailed; 3636 } 3637 /* src node for translation rule */ 3638 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3639 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3640 REASON_SET(&reason, PFRES_SRCLIMIT); 3641 goto csfailed; 3642 } 3643 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3644 if (s == NULL) { 3645 REASON_SET(&reason, PFRES_MEMORY); 3646 goto csfailed; 3647 } 3648 s->rule.ptr = r; 3649 s->nat_rule.ptr = nr; 3650 s->anchor.ptr = a; 3651 STATE_INC_COUNTERS(s); 3652 if (r->allow_opts) 3653 s->state_flags |= PFSTATE_ALLOWOPTS; 3654 if (r->rule_flag & PFRULE_STATESLOPPY) 3655 s->state_flags |= PFSTATE_SLOPPY; 3656 s->log = r->log & PF_LOG_ALL; 3657 s->sync_state = PFSYNC_S_NONE; 3658 if (nr != NULL) 3659 s->log |= nr->log & PF_LOG_ALL; 3660 switch (pd->proto) { 3661 case IPPROTO_TCP: 3662 s->src.seqlo = ntohl(th->th_seq); 3663 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3664 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3665 r->keep_state == PF_STATE_MODULATE) { 3666 /* Generate sequence number modulator */ 3667 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3668 0) 3669 s->src.seqdiff = 1; 3670 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3671 htonl(s->src.seqlo + s->src.seqdiff), 0); 3672 *rewrite = 1; 3673 } else 3674 s->src.seqdiff = 0; 3675 if (th->th_flags & TH_SYN) { 3676 s->src.seqhi++; 3677 s->src.wscale = pf_get_wscale(m, off, 3678 th->th_off, pd->af); 3679 } 3680 s->src.max_win = MAX(ntohs(th->th_win), 1); 3681 if (s->src.wscale & PF_WSCALE_MASK) { 3682 /* Remove scale factor from initial window */ 3683 int win = s->src.max_win; 3684 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3685 s->src.max_win = (win - 1) >> 3686 (s->src.wscale & PF_WSCALE_MASK); 3687 } 3688 if (th->th_flags & TH_FIN) 3689 s->src.seqhi++; 3690 s->dst.seqhi = 1; 3691 s->dst.max_win = 1; 3692 s->src.state = TCPS_SYN_SENT; 3693 s->dst.state = TCPS_CLOSED; 3694 s->timeout = PFTM_TCP_FIRST_PACKET; 3695 break; 3696 case IPPROTO_UDP: 3697 s->src.state = PFUDPS_SINGLE; 3698 s->dst.state = PFUDPS_NO_TRAFFIC; 3699 s->timeout = PFTM_UDP_FIRST_PACKET; 3700 break; 3701 case IPPROTO_ICMP: 3702 #ifdef INET6 3703 case IPPROTO_ICMPV6: 3704 #endif 3705 s->timeout = PFTM_ICMP_FIRST_PACKET; 3706 break; 3707 default: 3708 s->src.state = PFOTHERS_SINGLE; 3709 s->dst.state = PFOTHERS_NO_TRAFFIC; 3710 s->timeout = PFTM_OTHER_FIRST_PACKET; 3711 } 3712 3713 if (r->rt) { 3714 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3715 REASON_SET(&reason, PFRES_MAPFAILED); 3716 pf_src_tree_remove_state(s); 3717 STATE_DEC_COUNTERS(s); 3718 uma_zfree(V_pf_state_z, s); 3719 goto csfailed; 3720 } 3721 s->rt_kif = r->rpool.cur->kif; 3722 } 3723 3724 s->creation = time_uptime; 3725 s->expire = time_uptime; 3726 3727 if (sn != NULL) 3728 s->src_node = sn; 3729 if (nsn != NULL) { 3730 /* XXX We only modify one side for now. */ 3731 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3732 s->nat_src_node = nsn; 3733 } 3734 if (pd->proto == IPPROTO_TCP) { 3735 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3736 off, pd, th, &s->src, &s->dst)) { 3737 REASON_SET(&reason, PFRES_MEMORY); 3738 pf_src_tree_remove_state(s); 3739 STATE_DEC_COUNTERS(s); 3740 uma_zfree(V_pf_state_z, s); 3741 return (PF_DROP); 3742 } 3743 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3744 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3745 &s->src, &s->dst, rewrite)) { 3746 /* This really shouldn't happen!!! */ 3747 DPFPRINTF(PF_DEBUG_URGENT, 3748 ("pf_normalize_tcp_stateful failed on first pkt")); 3749 pf_normalize_tcp_cleanup(s); 3750 pf_src_tree_remove_state(s); 3751 STATE_DEC_COUNTERS(s); 3752 uma_zfree(V_pf_state_z, s); 3753 return (PF_DROP); 3754 } 3755 } 3756 s->direction = pd->dir; 3757 3758 /* 3759 * sk/nk could already been setup by pf_get_translation(). 3760 */ 3761 if (nr == NULL) { 3762 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3763 __func__, nr, sk, nk)); 3764 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3765 if (sk == NULL) 3766 goto csfailed; 3767 nk = sk; 3768 } else 3769 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3770 __func__, nr, sk, nk)); 3771 3772 /* Swap sk/nk for PF_OUT. */ 3773 if (pf_state_insert(BOUND_IFACE(r, kif), 3774 (pd->dir == PF_IN) ? sk : nk, 3775 (pd->dir == PF_IN) ? nk : sk, s)) { 3776 if (pd->proto == IPPROTO_TCP) 3777 pf_normalize_tcp_cleanup(s); 3778 REASON_SET(&reason, PFRES_STATEINS); 3779 pf_src_tree_remove_state(s); 3780 STATE_DEC_COUNTERS(s); 3781 uma_zfree(V_pf_state_z, s); 3782 return (PF_DROP); 3783 } else 3784 *sm = s; 3785 3786 if (tag > 0) 3787 s->tag = tag; 3788 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3789 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3790 s->src.state = PF_TCPS_PROXY_SRC; 3791 /* undo NAT changes, if they have taken place */ 3792 if (nr != NULL) { 3793 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3794 if (pd->dir == PF_OUT) 3795 skt = s->key[PF_SK_STACK]; 3796 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3797 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3798 if (pd->sport) 3799 *pd->sport = skt->port[pd->sidx]; 3800 if (pd->dport) 3801 *pd->dport = skt->port[pd->didx]; 3802 if (pd->proto_sum) 3803 *pd->proto_sum = bproto_sum; 3804 if (pd->ip_sum) 3805 *pd->ip_sum = bip_sum; 3806 m_copyback(m, off, hdrlen, pd->hdr.any); 3807 } 3808 s->src.seqhi = htonl(arc4random()); 3809 /* Find mss option */ 3810 int rtid = M_GETFIB(m); 3811 mss = pf_get_mss(m, off, th->th_off, pd->af); 3812 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3813 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3814 s->src.mss = mss; 3815 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3816 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3817 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3818 REASON_SET(&reason, PFRES_SYNPROXY); 3819 return (PF_SYNPROXY_DROP); 3820 } 3821 3822 return (PF_PASS); 3823 3824 csfailed: 3825 if (sk != NULL) 3826 uma_zfree(V_pf_state_key_z, sk); 3827 if (nk != NULL) 3828 uma_zfree(V_pf_state_key_z, nk); 3829 3830 if (sn != NULL) { 3831 struct pf_srchash *sh; 3832 3833 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3834 PF_HASHROW_LOCK(sh); 3835 if (--sn->states == 0 && sn->expire == 0) { 3836 pf_unlink_src_node(sn); 3837 uma_zfree(V_pf_sources_z, sn); 3838 counter_u64_add( 3839 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3840 } 3841 PF_HASHROW_UNLOCK(sh); 3842 } 3843 3844 if (nsn != sn && nsn != NULL) { 3845 struct pf_srchash *sh; 3846 3847 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3848 PF_HASHROW_LOCK(sh); 3849 if (--nsn->states == 0 && nsn->expire == 0) { 3850 pf_unlink_src_node(nsn); 3851 uma_zfree(V_pf_sources_z, nsn); 3852 counter_u64_add( 3853 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3854 } 3855 PF_HASHROW_UNLOCK(sh); 3856 } 3857 3858 return (PF_DROP); 3859 } 3860 3861 static int 3862 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3863 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3864 struct pf_ruleset **rsm) 3865 { 3866 struct pf_rule *r, *a = NULL; 3867 struct pf_ruleset *ruleset = NULL; 3868 sa_family_t af = pd->af; 3869 u_short reason; 3870 int tag = -1; 3871 int asd = 0; 3872 int match = 0; 3873 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3874 3875 PF_RULES_RASSERT(); 3876 3877 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3878 while (r != NULL) { 3879 r->evaluations++; 3880 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3881 r = r->skip[PF_SKIP_IFP].ptr; 3882 else if (r->direction && r->direction != direction) 3883 r = r->skip[PF_SKIP_DIR].ptr; 3884 else if (r->af && r->af != af) 3885 r = r->skip[PF_SKIP_AF].ptr; 3886 else if (r->proto && r->proto != pd->proto) 3887 r = r->skip[PF_SKIP_PROTO].ptr; 3888 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3889 r->src.neg, kif, M_GETFIB(m))) 3890 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3891 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3892 r->dst.neg, NULL, M_GETFIB(m))) 3893 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3894 else if (r->tos && !(r->tos == pd->tos)) 3895 r = TAILQ_NEXT(r, entries); 3896 else if (r->os_fingerprint != PF_OSFP_ANY) 3897 r = TAILQ_NEXT(r, entries); 3898 else if (pd->proto == IPPROTO_UDP && 3899 (r->src.port_op || r->dst.port_op)) 3900 r = TAILQ_NEXT(r, entries); 3901 else if (pd->proto == IPPROTO_TCP && 3902 (r->src.port_op || r->dst.port_op || r->flagset)) 3903 r = TAILQ_NEXT(r, entries); 3904 else if ((pd->proto == IPPROTO_ICMP || 3905 pd->proto == IPPROTO_ICMPV6) && 3906 (r->type || r->code)) 3907 r = TAILQ_NEXT(r, entries); 3908 else if (r->prio && 3909 !pf_match_ieee8021q_pcp(r->prio, m)) 3910 r = TAILQ_NEXT(r, entries); 3911 else if (r->prob && r->prob <= 3912 (arc4random() % (UINT_MAX - 1) + 1)) 3913 r = TAILQ_NEXT(r, entries); 3914 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3915 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3916 r = TAILQ_NEXT(r, entries); 3917 else { 3918 if (r->anchor == NULL) { 3919 match = 1; 3920 *rm = r; 3921 *am = a; 3922 *rsm = ruleset; 3923 if ((*rm)->quick) 3924 break; 3925 r = TAILQ_NEXT(r, entries); 3926 } else 3927 pf_step_into_anchor(anchor_stack, &asd, 3928 &ruleset, PF_RULESET_FILTER, &r, &a, 3929 &match); 3930 } 3931 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3932 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3933 break; 3934 } 3935 r = *rm; 3936 a = *am; 3937 ruleset = *rsm; 3938 3939 REASON_SET(&reason, PFRES_MATCH); 3940 3941 if (r->log) 3942 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3943 1); 3944 3945 if (r->action != PF_PASS) 3946 return (PF_DROP); 3947 3948 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3949 REASON_SET(&reason, PFRES_MEMORY); 3950 return (PF_DROP); 3951 } 3952 3953 return (PF_PASS); 3954 } 3955 3956 static int 3957 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3958 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3959 struct pf_pdesc *pd, u_short *reason, int *copyback) 3960 { 3961 struct tcphdr *th = pd->hdr.tcp; 3962 u_int16_t win = ntohs(th->th_win); 3963 u_int32_t ack, end, seq, orig_seq; 3964 u_int8_t sws, dws; 3965 int ackskew; 3966 3967 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3968 sws = src->wscale & PF_WSCALE_MASK; 3969 dws = dst->wscale & PF_WSCALE_MASK; 3970 } else 3971 sws = dws = 0; 3972 3973 /* 3974 * Sequence tracking algorithm from Guido van Rooij's paper: 3975 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3976 * tcp_filtering.ps 3977 */ 3978 3979 orig_seq = seq = ntohl(th->th_seq); 3980 if (src->seqlo == 0) { 3981 /* First packet from this end. Set its state */ 3982 3983 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3984 src->scrub == NULL) { 3985 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3986 REASON_SET(reason, PFRES_MEMORY); 3987 return (PF_DROP); 3988 } 3989 } 3990 3991 /* Deferred generation of sequence number modulator */ 3992 if (dst->seqdiff && !src->seqdiff) { 3993 /* use random iss for the TCP server */ 3994 while ((src->seqdiff = arc4random() - seq) == 0) 3995 ; 3996 ack = ntohl(th->th_ack) - dst->seqdiff; 3997 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3998 src->seqdiff), 0); 3999 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4000 *copyback = 1; 4001 } else { 4002 ack = ntohl(th->th_ack); 4003 } 4004 4005 end = seq + pd->p_len; 4006 if (th->th_flags & TH_SYN) { 4007 end++; 4008 if (dst->wscale & PF_WSCALE_FLAG) { 4009 src->wscale = pf_get_wscale(m, off, th->th_off, 4010 pd->af); 4011 if (src->wscale & PF_WSCALE_FLAG) { 4012 /* Remove scale factor from initial 4013 * window */ 4014 sws = src->wscale & PF_WSCALE_MASK; 4015 win = ((u_int32_t)win + (1 << sws) - 1) 4016 >> sws; 4017 dws = dst->wscale & PF_WSCALE_MASK; 4018 } else { 4019 /* fixup other window */ 4020 dst->max_win <<= dst->wscale & 4021 PF_WSCALE_MASK; 4022 /* in case of a retrans SYN|ACK */ 4023 dst->wscale = 0; 4024 } 4025 } 4026 } 4027 if (th->th_flags & TH_FIN) 4028 end++; 4029 4030 src->seqlo = seq; 4031 if (src->state < TCPS_SYN_SENT) 4032 src->state = TCPS_SYN_SENT; 4033 4034 /* 4035 * May need to slide the window (seqhi may have been set by 4036 * the crappy stack check or if we picked up the connection 4037 * after establishment) 4038 */ 4039 if (src->seqhi == 1 || 4040 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4041 src->seqhi = end + MAX(1, dst->max_win << dws); 4042 if (win > src->max_win) 4043 src->max_win = win; 4044 4045 } else { 4046 ack = ntohl(th->th_ack) - dst->seqdiff; 4047 if (src->seqdiff) { 4048 /* Modulate sequence numbers */ 4049 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4050 src->seqdiff), 0); 4051 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4052 *copyback = 1; 4053 } 4054 end = seq + pd->p_len; 4055 if (th->th_flags & TH_SYN) 4056 end++; 4057 if (th->th_flags & TH_FIN) 4058 end++; 4059 } 4060 4061 if ((th->th_flags & TH_ACK) == 0) { 4062 /* Let it pass through the ack skew check */ 4063 ack = dst->seqlo; 4064 } else if ((ack == 0 && 4065 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4066 /* broken tcp stacks do not set ack */ 4067 (dst->state < TCPS_SYN_SENT)) { 4068 /* 4069 * Many stacks (ours included) will set the ACK number in an 4070 * FIN|ACK if the SYN times out -- no sequence to ACK. 4071 */ 4072 ack = dst->seqlo; 4073 } 4074 4075 if (seq == end) { 4076 /* Ease sequencing restrictions on no data packets */ 4077 seq = src->seqlo; 4078 end = seq; 4079 } 4080 4081 ackskew = dst->seqlo - ack; 4082 4083 4084 /* 4085 * Need to demodulate the sequence numbers in any TCP SACK options 4086 * (Selective ACK). We could optionally validate the SACK values 4087 * against the current ACK window, either forwards or backwards, but 4088 * I'm not confident that SACK has been implemented properly 4089 * everywhere. It wouldn't surprise me if several stacks accidentally 4090 * SACK too far backwards of previously ACKed data. There really aren't 4091 * any security implications of bad SACKing unless the target stack 4092 * doesn't validate the option length correctly. Someone trying to 4093 * spoof into a TCP connection won't bother blindly sending SACK 4094 * options anyway. 4095 */ 4096 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4097 if (pf_modulate_sack(m, off, pd, th, dst)) 4098 *copyback = 1; 4099 } 4100 4101 4102 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4103 if (SEQ_GEQ(src->seqhi, end) && 4104 /* Last octet inside other's window space */ 4105 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4106 /* Retrans: not more than one window back */ 4107 (ackskew >= -MAXACKWINDOW) && 4108 /* Acking not more than one reassembled fragment backwards */ 4109 (ackskew <= (MAXACKWINDOW << sws)) && 4110 /* Acking not more than one window forward */ 4111 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4112 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4113 (pd->flags & PFDESC_IP_REAS) == 0)) { 4114 /* Require an exact/+1 sequence match on resets when possible */ 4115 4116 if (dst->scrub || src->scrub) { 4117 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4118 *state, src, dst, copyback)) 4119 return (PF_DROP); 4120 } 4121 4122 /* update max window */ 4123 if (src->max_win < win) 4124 src->max_win = win; 4125 /* synchronize sequencing */ 4126 if (SEQ_GT(end, src->seqlo)) 4127 src->seqlo = end; 4128 /* slide the window of what the other end can send */ 4129 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4130 dst->seqhi = ack + MAX((win << sws), 1); 4131 4132 4133 /* update states */ 4134 if (th->th_flags & TH_SYN) 4135 if (src->state < TCPS_SYN_SENT) 4136 src->state = TCPS_SYN_SENT; 4137 if (th->th_flags & TH_FIN) 4138 if (src->state < TCPS_CLOSING) 4139 src->state = TCPS_CLOSING; 4140 if (th->th_flags & TH_ACK) { 4141 if (dst->state == TCPS_SYN_SENT) { 4142 dst->state = TCPS_ESTABLISHED; 4143 if (src->state == TCPS_ESTABLISHED && 4144 (*state)->src_node != NULL && 4145 pf_src_connlimit(state)) { 4146 REASON_SET(reason, PFRES_SRCLIMIT); 4147 return (PF_DROP); 4148 } 4149 } else if (dst->state == TCPS_CLOSING) 4150 dst->state = TCPS_FIN_WAIT_2; 4151 } 4152 if (th->th_flags & TH_RST) 4153 src->state = dst->state = TCPS_TIME_WAIT; 4154 4155 /* update expire time */ 4156 (*state)->expire = time_uptime; 4157 if (src->state >= TCPS_FIN_WAIT_2 && 4158 dst->state >= TCPS_FIN_WAIT_2) 4159 (*state)->timeout = PFTM_TCP_CLOSED; 4160 else if (src->state >= TCPS_CLOSING && 4161 dst->state >= TCPS_CLOSING) 4162 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4163 else if (src->state < TCPS_ESTABLISHED || 4164 dst->state < TCPS_ESTABLISHED) 4165 (*state)->timeout = PFTM_TCP_OPENING; 4166 else if (src->state >= TCPS_CLOSING || 4167 dst->state >= TCPS_CLOSING) 4168 (*state)->timeout = PFTM_TCP_CLOSING; 4169 else 4170 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4171 4172 /* Fall through to PASS packet */ 4173 4174 } else if ((dst->state < TCPS_SYN_SENT || 4175 dst->state >= TCPS_FIN_WAIT_2 || 4176 src->state >= TCPS_FIN_WAIT_2) && 4177 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4178 /* Within a window forward of the originating packet */ 4179 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4180 /* Within a window backward of the originating packet */ 4181 4182 /* 4183 * This currently handles three situations: 4184 * 1) Stupid stacks will shotgun SYNs before their peer 4185 * replies. 4186 * 2) When PF catches an already established stream (the 4187 * firewall rebooted, the state table was flushed, routes 4188 * changed...) 4189 * 3) Packets get funky immediately after the connection 4190 * closes (this should catch Solaris spurious ACK|FINs 4191 * that web servers like to spew after a close) 4192 * 4193 * This must be a little more careful than the above code 4194 * since packet floods will also be caught here. We don't 4195 * update the TTL here to mitigate the damage of a packet 4196 * flood and so the same code can handle awkward establishment 4197 * and a loosened connection close. 4198 * In the establishment case, a correct peer response will 4199 * validate the connection, go through the normal state code 4200 * and keep updating the state TTL. 4201 */ 4202 4203 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4204 printf("pf: loose state match: "); 4205 pf_print_state(*state); 4206 pf_print_flags(th->th_flags); 4207 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4208 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4209 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4210 (unsigned long long)(*state)->packets[1], 4211 pd->dir == PF_IN ? "in" : "out", 4212 pd->dir == (*state)->direction ? "fwd" : "rev"); 4213 } 4214 4215 if (dst->scrub || src->scrub) { 4216 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4217 *state, src, dst, copyback)) 4218 return (PF_DROP); 4219 } 4220 4221 /* update max window */ 4222 if (src->max_win < win) 4223 src->max_win = win; 4224 /* synchronize sequencing */ 4225 if (SEQ_GT(end, src->seqlo)) 4226 src->seqlo = end; 4227 /* slide the window of what the other end can send */ 4228 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4229 dst->seqhi = ack + MAX((win << sws), 1); 4230 4231 /* 4232 * Cannot set dst->seqhi here since this could be a shotgunned 4233 * SYN and not an already established connection. 4234 */ 4235 4236 if (th->th_flags & TH_FIN) 4237 if (src->state < TCPS_CLOSING) 4238 src->state = TCPS_CLOSING; 4239 if (th->th_flags & TH_RST) 4240 src->state = dst->state = TCPS_TIME_WAIT; 4241 4242 /* Fall through to PASS packet */ 4243 4244 } else { 4245 if ((*state)->dst.state == TCPS_SYN_SENT && 4246 (*state)->src.state == TCPS_SYN_SENT) { 4247 /* Send RST for state mismatches during handshake */ 4248 if (!(th->th_flags & TH_RST)) 4249 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4250 pd->dst, pd->src, th->th_dport, 4251 th->th_sport, ntohl(th->th_ack), 0, 4252 TH_RST, 0, 0, 4253 (*state)->rule.ptr->return_ttl, 1, 0, 4254 kif->pfik_ifp); 4255 src->seqlo = 0; 4256 src->seqhi = 1; 4257 src->max_win = 1; 4258 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4259 printf("pf: BAD state: "); 4260 pf_print_state(*state); 4261 pf_print_flags(th->th_flags); 4262 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4263 "pkts=%llu:%llu dir=%s,%s\n", 4264 seq, orig_seq, ack, pd->p_len, ackskew, 4265 (unsigned long long)(*state)->packets[0], 4266 (unsigned long long)(*state)->packets[1], 4267 pd->dir == PF_IN ? "in" : "out", 4268 pd->dir == (*state)->direction ? "fwd" : "rev"); 4269 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4270 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4271 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4272 ' ': '2', 4273 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4274 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4275 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4276 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4277 } 4278 REASON_SET(reason, PFRES_BADSTATE); 4279 return (PF_DROP); 4280 } 4281 4282 return (PF_PASS); 4283 } 4284 4285 static int 4286 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4287 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4288 { 4289 struct tcphdr *th = pd->hdr.tcp; 4290 4291 if (th->th_flags & TH_SYN) 4292 if (src->state < TCPS_SYN_SENT) 4293 src->state = TCPS_SYN_SENT; 4294 if (th->th_flags & TH_FIN) 4295 if (src->state < TCPS_CLOSING) 4296 src->state = TCPS_CLOSING; 4297 if (th->th_flags & TH_ACK) { 4298 if (dst->state == TCPS_SYN_SENT) { 4299 dst->state = TCPS_ESTABLISHED; 4300 if (src->state == TCPS_ESTABLISHED && 4301 (*state)->src_node != NULL && 4302 pf_src_connlimit(state)) { 4303 REASON_SET(reason, PFRES_SRCLIMIT); 4304 return (PF_DROP); 4305 } 4306 } else if (dst->state == TCPS_CLOSING) { 4307 dst->state = TCPS_FIN_WAIT_2; 4308 } else if (src->state == TCPS_SYN_SENT && 4309 dst->state < TCPS_SYN_SENT) { 4310 /* 4311 * Handle a special sloppy case where we only see one 4312 * half of the connection. If there is a ACK after 4313 * the initial SYN without ever seeing a packet from 4314 * the destination, set the connection to established. 4315 */ 4316 dst->state = src->state = TCPS_ESTABLISHED; 4317 if ((*state)->src_node != NULL && 4318 pf_src_connlimit(state)) { 4319 REASON_SET(reason, PFRES_SRCLIMIT); 4320 return (PF_DROP); 4321 } 4322 } else if (src->state == TCPS_CLOSING && 4323 dst->state == TCPS_ESTABLISHED && 4324 dst->seqlo == 0) { 4325 /* 4326 * Handle the closing of half connections where we 4327 * don't see the full bidirectional FIN/ACK+ACK 4328 * handshake. 4329 */ 4330 dst->state = TCPS_CLOSING; 4331 } 4332 } 4333 if (th->th_flags & TH_RST) 4334 src->state = dst->state = TCPS_TIME_WAIT; 4335 4336 /* update expire time */ 4337 (*state)->expire = time_uptime; 4338 if (src->state >= TCPS_FIN_WAIT_2 && 4339 dst->state >= TCPS_FIN_WAIT_2) 4340 (*state)->timeout = PFTM_TCP_CLOSED; 4341 else if (src->state >= TCPS_CLOSING && 4342 dst->state >= TCPS_CLOSING) 4343 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4344 else if (src->state < TCPS_ESTABLISHED || 4345 dst->state < TCPS_ESTABLISHED) 4346 (*state)->timeout = PFTM_TCP_OPENING; 4347 else if (src->state >= TCPS_CLOSING || 4348 dst->state >= TCPS_CLOSING) 4349 (*state)->timeout = PFTM_TCP_CLOSING; 4350 else 4351 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4352 4353 return (PF_PASS); 4354 } 4355 4356 static int 4357 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4358 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4359 u_short *reason) 4360 { 4361 struct pf_state_key_cmp key; 4362 struct tcphdr *th = pd->hdr.tcp; 4363 int copyback = 0; 4364 struct pf_state_peer *src, *dst; 4365 struct pf_state_key *sk; 4366 4367 bzero(&key, sizeof(key)); 4368 key.af = pd->af; 4369 key.proto = IPPROTO_TCP; 4370 if (direction == PF_IN) { /* wire side, straight */ 4371 PF_ACPY(&key.addr[0], pd->src, key.af); 4372 PF_ACPY(&key.addr[1], pd->dst, key.af); 4373 key.port[0] = th->th_sport; 4374 key.port[1] = th->th_dport; 4375 } else { /* stack side, reverse */ 4376 PF_ACPY(&key.addr[1], pd->src, key.af); 4377 PF_ACPY(&key.addr[0], pd->dst, key.af); 4378 key.port[1] = th->th_sport; 4379 key.port[0] = th->th_dport; 4380 } 4381 4382 STATE_LOOKUP(kif, &key, direction, *state, pd); 4383 4384 if (direction == (*state)->direction) { 4385 src = &(*state)->src; 4386 dst = &(*state)->dst; 4387 } else { 4388 src = &(*state)->dst; 4389 dst = &(*state)->src; 4390 } 4391 4392 sk = (*state)->key[pd->didx]; 4393 4394 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4395 if (direction != (*state)->direction) { 4396 REASON_SET(reason, PFRES_SYNPROXY); 4397 return (PF_SYNPROXY_DROP); 4398 } 4399 if (th->th_flags & TH_SYN) { 4400 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4401 REASON_SET(reason, PFRES_SYNPROXY); 4402 return (PF_DROP); 4403 } 4404 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4405 pd->src, th->th_dport, th->th_sport, 4406 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4407 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4408 REASON_SET(reason, PFRES_SYNPROXY); 4409 return (PF_SYNPROXY_DROP); 4410 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 4411 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4412 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4413 REASON_SET(reason, PFRES_SYNPROXY); 4414 return (PF_DROP); 4415 } else if ((*state)->src_node != NULL && 4416 pf_src_connlimit(state)) { 4417 REASON_SET(reason, PFRES_SRCLIMIT); 4418 return (PF_DROP); 4419 } else 4420 (*state)->src.state = PF_TCPS_PROXY_DST; 4421 } 4422 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4423 if (direction == (*state)->direction) { 4424 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4425 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4426 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4427 REASON_SET(reason, PFRES_SYNPROXY); 4428 return (PF_DROP); 4429 } 4430 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4431 if ((*state)->dst.seqhi == 1) 4432 (*state)->dst.seqhi = htonl(arc4random()); 4433 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4434 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4435 sk->port[pd->sidx], sk->port[pd->didx], 4436 (*state)->dst.seqhi, 0, TH_SYN, 0, 4437 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4438 REASON_SET(reason, PFRES_SYNPROXY); 4439 return (PF_SYNPROXY_DROP); 4440 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4441 (TH_SYN|TH_ACK)) || 4442 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4443 REASON_SET(reason, PFRES_SYNPROXY); 4444 return (PF_DROP); 4445 } else { 4446 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4447 (*state)->dst.seqlo = ntohl(th->th_seq); 4448 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4449 pd->src, th->th_dport, th->th_sport, 4450 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4451 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4452 (*state)->tag, NULL); 4453 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4454 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4455 sk->port[pd->sidx], sk->port[pd->didx], 4456 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4457 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4458 (*state)->src.seqdiff = (*state)->dst.seqhi - 4459 (*state)->src.seqlo; 4460 (*state)->dst.seqdiff = (*state)->src.seqhi - 4461 (*state)->dst.seqlo; 4462 (*state)->src.seqhi = (*state)->src.seqlo + 4463 (*state)->dst.max_win; 4464 (*state)->dst.seqhi = (*state)->dst.seqlo + 4465 (*state)->src.max_win; 4466 (*state)->src.wscale = (*state)->dst.wscale = 0; 4467 (*state)->src.state = (*state)->dst.state = 4468 TCPS_ESTABLISHED; 4469 REASON_SET(reason, PFRES_SYNPROXY); 4470 return (PF_SYNPROXY_DROP); 4471 } 4472 } 4473 4474 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4475 dst->state >= TCPS_FIN_WAIT_2 && 4476 src->state >= TCPS_FIN_WAIT_2) { 4477 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4478 printf("pf: state reuse "); 4479 pf_print_state(*state); 4480 pf_print_flags(th->th_flags); 4481 printf("\n"); 4482 } 4483 /* XXX make sure it's the same direction ?? */ 4484 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4485 pf_unlink_state(*state, PF_ENTER_LOCKED); 4486 *state = NULL; 4487 return (PF_DROP); 4488 } 4489 4490 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4491 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4492 return (PF_DROP); 4493 } else { 4494 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4495 ©back) == PF_DROP) 4496 return (PF_DROP); 4497 } 4498 4499 /* translate source/destination address, if necessary */ 4500 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4501 struct pf_state_key *nk = (*state)->key[pd->didx]; 4502 4503 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4504 nk->port[pd->sidx] != th->th_sport) 4505 pf_change_ap(m, pd->src, &th->th_sport, 4506 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4507 nk->port[pd->sidx], 0, pd->af); 4508 4509 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4510 nk->port[pd->didx] != th->th_dport) 4511 pf_change_ap(m, pd->dst, &th->th_dport, 4512 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4513 nk->port[pd->didx], 0, pd->af); 4514 copyback = 1; 4515 } 4516 4517 /* Copyback sequence modulation or stateful scrub changes if needed */ 4518 if (copyback) 4519 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4520 4521 return (PF_PASS); 4522 } 4523 4524 static int 4525 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4526 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4527 { 4528 struct pf_state_peer *src, *dst; 4529 struct pf_state_key_cmp key; 4530 struct udphdr *uh = pd->hdr.udp; 4531 4532 bzero(&key, sizeof(key)); 4533 key.af = pd->af; 4534 key.proto = IPPROTO_UDP; 4535 if (direction == PF_IN) { /* wire side, straight */ 4536 PF_ACPY(&key.addr[0], pd->src, key.af); 4537 PF_ACPY(&key.addr[1], pd->dst, key.af); 4538 key.port[0] = uh->uh_sport; 4539 key.port[1] = uh->uh_dport; 4540 } else { /* stack side, reverse */ 4541 PF_ACPY(&key.addr[1], pd->src, key.af); 4542 PF_ACPY(&key.addr[0], pd->dst, key.af); 4543 key.port[1] = uh->uh_sport; 4544 key.port[0] = uh->uh_dport; 4545 } 4546 4547 STATE_LOOKUP(kif, &key, direction, *state, pd); 4548 4549 if (direction == (*state)->direction) { 4550 src = &(*state)->src; 4551 dst = &(*state)->dst; 4552 } else { 4553 src = &(*state)->dst; 4554 dst = &(*state)->src; 4555 } 4556 4557 /* update states */ 4558 if (src->state < PFUDPS_SINGLE) 4559 src->state = PFUDPS_SINGLE; 4560 if (dst->state == PFUDPS_SINGLE) 4561 dst->state = PFUDPS_MULTIPLE; 4562 4563 /* update expire time */ 4564 (*state)->expire = time_uptime; 4565 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4566 (*state)->timeout = PFTM_UDP_MULTIPLE; 4567 else 4568 (*state)->timeout = PFTM_UDP_SINGLE; 4569 4570 /* translate source/destination address, if necessary */ 4571 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4572 struct pf_state_key *nk = (*state)->key[pd->didx]; 4573 4574 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4575 nk->port[pd->sidx] != uh->uh_sport) 4576 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4577 &uh->uh_sum, &nk->addr[pd->sidx], 4578 nk->port[pd->sidx], 1, pd->af); 4579 4580 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4581 nk->port[pd->didx] != uh->uh_dport) 4582 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4583 &uh->uh_sum, &nk->addr[pd->didx], 4584 nk->port[pd->didx], 1, pd->af); 4585 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4586 } 4587 4588 return (PF_PASS); 4589 } 4590 4591 static int 4592 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4593 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4594 { 4595 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4596 u_int16_t icmpid = 0, *icmpsum; 4597 u_int8_t icmptype; 4598 int state_icmp = 0; 4599 struct pf_state_key_cmp key; 4600 4601 bzero(&key, sizeof(key)); 4602 switch (pd->proto) { 4603 #ifdef INET 4604 case IPPROTO_ICMP: 4605 icmptype = pd->hdr.icmp->icmp_type; 4606 icmpid = pd->hdr.icmp->icmp_id; 4607 icmpsum = &pd->hdr.icmp->icmp_cksum; 4608 4609 if (icmptype == ICMP_UNREACH || 4610 icmptype == ICMP_SOURCEQUENCH || 4611 icmptype == ICMP_REDIRECT || 4612 icmptype == ICMP_TIMXCEED || 4613 icmptype == ICMP_PARAMPROB) 4614 state_icmp++; 4615 break; 4616 #endif /* INET */ 4617 #ifdef INET6 4618 case IPPROTO_ICMPV6: 4619 icmptype = pd->hdr.icmp6->icmp6_type; 4620 icmpid = pd->hdr.icmp6->icmp6_id; 4621 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4622 4623 if (icmptype == ICMP6_DST_UNREACH || 4624 icmptype == ICMP6_PACKET_TOO_BIG || 4625 icmptype == ICMP6_TIME_EXCEEDED || 4626 icmptype == ICMP6_PARAM_PROB) 4627 state_icmp++; 4628 break; 4629 #endif /* INET6 */ 4630 } 4631 4632 if (!state_icmp) { 4633 4634 /* 4635 * ICMP query/reply message not related to a TCP/UDP packet. 4636 * Search for an ICMP state. 4637 */ 4638 key.af = pd->af; 4639 key.proto = pd->proto; 4640 key.port[0] = key.port[1] = icmpid; 4641 if (direction == PF_IN) { /* wire side, straight */ 4642 PF_ACPY(&key.addr[0], pd->src, key.af); 4643 PF_ACPY(&key.addr[1], pd->dst, key.af); 4644 } else { /* stack side, reverse */ 4645 PF_ACPY(&key.addr[1], pd->src, key.af); 4646 PF_ACPY(&key.addr[0], pd->dst, key.af); 4647 } 4648 4649 STATE_LOOKUP(kif, &key, direction, *state, pd); 4650 4651 (*state)->expire = time_uptime; 4652 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4653 4654 /* translate source/destination address, if necessary */ 4655 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4656 struct pf_state_key *nk = (*state)->key[pd->didx]; 4657 4658 switch (pd->af) { 4659 #ifdef INET 4660 case AF_INET: 4661 if (PF_ANEQ(pd->src, 4662 &nk->addr[pd->sidx], AF_INET)) 4663 pf_change_a(&saddr->v4.s_addr, 4664 pd->ip_sum, 4665 nk->addr[pd->sidx].v4.s_addr, 0); 4666 4667 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4668 AF_INET)) 4669 pf_change_a(&daddr->v4.s_addr, 4670 pd->ip_sum, 4671 nk->addr[pd->didx].v4.s_addr, 0); 4672 4673 if (nk->port[0] != 4674 pd->hdr.icmp->icmp_id) { 4675 pd->hdr.icmp->icmp_cksum = 4676 pf_cksum_fixup( 4677 pd->hdr.icmp->icmp_cksum, icmpid, 4678 nk->port[pd->sidx], 0); 4679 pd->hdr.icmp->icmp_id = 4680 nk->port[pd->sidx]; 4681 } 4682 4683 m_copyback(m, off, ICMP_MINLEN, 4684 (caddr_t )pd->hdr.icmp); 4685 break; 4686 #endif /* INET */ 4687 #ifdef INET6 4688 case AF_INET6: 4689 if (PF_ANEQ(pd->src, 4690 &nk->addr[pd->sidx], AF_INET6)) 4691 pf_change_a6(saddr, 4692 &pd->hdr.icmp6->icmp6_cksum, 4693 &nk->addr[pd->sidx], 0); 4694 4695 if (PF_ANEQ(pd->dst, 4696 &nk->addr[pd->didx], AF_INET6)) 4697 pf_change_a6(daddr, 4698 &pd->hdr.icmp6->icmp6_cksum, 4699 &nk->addr[pd->didx], 0); 4700 4701 m_copyback(m, off, sizeof(struct icmp6_hdr), 4702 (caddr_t )pd->hdr.icmp6); 4703 break; 4704 #endif /* INET6 */ 4705 } 4706 } 4707 return (PF_PASS); 4708 4709 } else { 4710 /* 4711 * ICMP error message in response to a TCP/UDP packet. 4712 * Extract the inner TCP/UDP header and search for that state. 4713 */ 4714 4715 struct pf_pdesc pd2; 4716 bzero(&pd2, sizeof pd2); 4717 #ifdef INET 4718 struct ip h2; 4719 #endif /* INET */ 4720 #ifdef INET6 4721 struct ip6_hdr h2_6; 4722 int terminal = 0; 4723 #endif /* INET6 */ 4724 int ipoff2 = 0; 4725 int off2 = 0; 4726 4727 pd2.af = pd->af; 4728 /* Payload packet is from the opposite direction. */ 4729 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4730 pd2.didx = (direction == PF_IN) ? 0 : 1; 4731 switch (pd->af) { 4732 #ifdef INET 4733 case AF_INET: 4734 /* offset of h2 in mbuf chain */ 4735 ipoff2 = off + ICMP_MINLEN; 4736 4737 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4738 NULL, reason, pd2.af)) { 4739 DPFPRINTF(PF_DEBUG_MISC, 4740 ("pf: ICMP error message too short " 4741 "(ip)\n")); 4742 return (PF_DROP); 4743 } 4744 /* 4745 * ICMP error messages don't refer to non-first 4746 * fragments 4747 */ 4748 if (h2.ip_off & htons(IP_OFFMASK)) { 4749 REASON_SET(reason, PFRES_FRAG); 4750 return (PF_DROP); 4751 } 4752 4753 /* offset of protocol header that follows h2 */ 4754 off2 = ipoff2 + (h2.ip_hl << 2); 4755 4756 pd2.proto = h2.ip_p; 4757 pd2.src = (struct pf_addr *)&h2.ip_src; 4758 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4759 pd2.ip_sum = &h2.ip_sum; 4760 break; 4761 #endif /* INET */ 4762 #ifdef INET6 4763 case AF_INET6: 4764 ipoff2 = off + sizeof(struct icmp6_hdr); 4765 4766 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4767 NULL, reason, pd2.af)) { 4768 DPFPRINTF(PF_DEBUG_MISC, 4769 ("pf: ICMP error message too short " 4770 "(ip6)\n")); 4771 return (PF_DROP); 4772 } 4773 pd2.proto = h2_6.ip6_nxt; 4774 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4775 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4776 pd2.ip_sum = NULL; 4777 off2 = ipoff2 + sizeof(h2_6); 4778 do { 4779 switch (pd2.proto) { 4780 case IPPROTO_FRAGMENT: 4781 /* 4782 * ICMPv6 error messages for 4783 * non-first fragments 4784 */ 4785 REASON_SET(reason, PFRES_FRAG); 4786 return (PF_DROP); 4787 case IPPROTO_AH: 4788 case IPPROTO_HOPOPTS: 4789 case IPPROTO_ROUTING: 4790 case IPPROTO_DSTOPTS: { 4791 /* get next header and header length */ 4792 struct ip6_ext opt6; 4793 4794 if (!pf_pull_hdr(m, off2, &opt6, 4795 sizeof(opt6), NULL, reason, 4796 pd2.af)) { 4797 DPFPRINTF(PF_DEBUG_MISC, 4798 ("pf: ICMPv6 short opt\n")); 4799 return (PF_DROP); 4800 } 4801 if (pd2.proto == IPPROTO_AH) 4802 off2 += (opt6.ip6e_len + 2) * 4; 4803 else 4804 off2 += (opt6.ip6e_len + 1) * 8; 4805 pd2.proto = opt6.ip6e_nxt; 4806 /* goto the next header */ 4807 break; 4808 } 4809 default: 4810 terminal++; 4811 break; 4812 } 4813 } while (!terminal); 4814 break; 4815 #endif /* INET6 */ 4816 } 4817 4818 switch (pd2.proto) { 4819 case IPPROTO_TCP: { 4820 struct tcphdr th; 4821 u_int32_t seq; 4822 struct pf_state_peer *src, *dst; 4823 u_int8_t dws; 4824 int copyback = 0; 4825 4826 /* 4827 * Only the first 8 bytes of the TCP header can be 4828 * expected. Don't access any TCP header fields after 4829 * th_seq, an ackskew test is not possible. 4830 */ 4831 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4832 pd2.af)) { 4833 DPFPRINTF(PF_DEBUG_MISC, 4834 ("pf: ICMP error message too short " 4835 "(tcp)\n")); 4836 return (PF_DROP); 4837 } 4838 4839 key.af = pd2.af; 4840 key.proto = IPPROTO_TCP; 4841 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4842 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4843 key.port[pd2.sidx] = th.th_sport; 4844 key.port[pd2.didx] = th.th_dport; 4845 4846 STATE_LOOKUP(kif, &key, direction, *state, pd); 4847 4848 if (direction == (*state)->direction) { 4849 src = &(*state)->dst; 4850 dst = &(*state)->src; 4851 } else { 4852 src = &(*state)->src; 4853 dst = &(*state)->dst; 4854 } 4855 4856 if (src->wscale && dst->wscale) 4857 dws = dst->wscale & PF_WSCALE_MASK; 4858 else 4859 dws = 0; 4860 4861 /* Demodulate sequence number */ 4862 seq = ntohl(th.th_seq) - src->seqdiff; 4863 if (src->seqdiff) { 4864 pf_change_a(&th.th_seq, icmpsum, 4865 htonl(seq), 0); 4866 copyback = 1; 4867 } 4868 4869 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4870 (!SEQ_GEQ(src->seqhi, seq) || 4871 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4872 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4873 printf("pf: BAD ICMP %d:%d ", 4874 icmptype, pd->hdr.icmp->icmp_code); 4875 pf_print_host(pd->src, 0, pd->af); 4876 printf(" -> "); 4877 pf_print_host(pd->dst, 0, pd->af); 4878 printf(" state: "); 4879 pf_print_state(*state); 4880 printf(" seq=%u\n", seq); 4881 } 4882 REASON_SET(reason, PFRES_BADSTATE); 4883 return (PF_DROP); 4884 } else { 4885 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4886 printf("pf: OK ICMP %d:%d ", 4887 icmptype, pd->hdr.icmp->icmp_code); 4888 pf_print_host(pd->src, 0, pd->af); 4889 printf(" -> "); 4890 pf_print_host(pd->dst, 0, pd->af); 4891 printf(" state: "); 4892 pf_print_state(*state); 4893 printf(" seq=%u\n", seq); 4894 } 4895 } 4896 4897 /* translate source/destination address, if necessary */ 4898 if ((*state)->key[PF_SK_WIRE] != 4899 (*state)->key[PF_SK_STACK]) { 4900 struct pf_state_key *nk = 4901 (*state)->key[pd->didx]; 4902 4903 if (PF_ANEQ(pd2.src, 4904 &nk->addr[pd2.sidx], pd2.af) || 4905 nk->port[pd2.sidx] != th.th_sport) 4906 pf_change_icmp(pd2.src, &th.th_sport, 4907 daddr, &nk->addr[pd2.sidx], 4908 nk->port[pd2.sidx], NULL, 4909 pd2.ip_sum, icmpsum, 4910 pd->ip_sum, 0, pd2.af); 4911 4912 if (PF_ANEQ(pd2.dst, 4913 &nk->addr[pd2.didx], pd2.af) || 4914 nk->port[pd2.didx] != th.th_dport) 4915 pf_change_icmp(pd2.dst, &th.th_dport, 4916 saddr, &nk->addr[pd2.didx], 4917 nk->port[pd2.didx], NULL, 4918 pd2.ip_sum, icmpsum, 4919 pd->ip_sum, 0, pd2.af); 4920 copyback = 1; 4921 } 4922 4923 if (copyback) { 4924 switch (pd2.af) { 4925 #ifdef INET 4926 case AF_INET: 4927 m_copyback(m, off, ICMP_MINLEN, 4928 (caddr_t )pd->hdr.icmp); 4929 m_copyback(m, ipoff2, sizeof(h2), 4930 (caddr_t )&h2); 4931 break; 4932 #endif /* INET */ 4933 #ifdef INET6 4934 case AF_INET6: 4935 m_copyback(m, off, 4936 sizeof(struct icmp6_hdr), 4937 (caddr_t )pd->hdr.icmp6); 4938 m_copyback(m, ipoff2, sizeof(h2_6), 4939 (caddr_t )&h2_6); 4940 break; 4941 #endif /* INET6 */ 4942 } 4943 m_copyback(m, off2, 8, (caddr_t)&th); 4944 } 4945 4946 return (PF_PASS); 4947 break; 4948 } 4949 case IPPROTO_UDP: { 4950 struct udphdr uh; 4951 4952 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4953 NULL, reason, pd2.af)) { 4954 DPFPRINTF(PF_DEBUG_MISC, 4955 ("pf: ICMP error message too short " 4956 "(udp)\n")); 4957 return (PF_DROP); 4958 } 4959 4960 key.af = pd2.af; 4961 key.proto = IPPROTO_UDP; 4962 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4963 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4964 key.port[pd2.sidx] = uh.uh_sport; 4965 key.port[pd2.didx] = uh.uh_dport; 4966 4967 STATE_LOOKUP(kif, &key, direction, *state, pd); 4968 4969 /* translate source/destination address, if necessary */ 4970 if ((*state)->key[PF_SK_WIRE] != 4971 (*state)->key[PF_SK_STACK]) { 4972 struct pf_state_key *nk = 4973 (*state)->key[pd->didx]; 4974 4975 if (PF_ANEQ(pd2.src, 4976 &nk->addr[pd2.sidx], pd2.af) || 4977 nk->port[pd2.sidx] != uh.uh_sport) 4978 pf_change_icmp(pd2.src, &uh.uh_sport, 4979 daddr, &nk->addr[pd2.sidx], 4980 nk->port[pd2.sidx], &uh.uh_sum, 4981 pd2.ip_sum, icmpsum, 4982 pd->ip_sum, 1, pd2.af); 4983 4984 if (PF_ANEQ(pd2.dst, 4985 &nk->addr[pd2.didx], pd2.af) || 4986 nk->port[pd2.didx] != uh.uh_dport) 4987 pf_change_icmp(pd2.dst, &uh.uh_dport, 4988 saddr, &nk->addr[pd2.didx], 4989 nk->port[pd2.didx], &uh.uh_sum, 4990 pd2.ip_sum, icmpsum, 4991 pd->ip_sum, 1, pd2.af); 4992 4993 switch (pd2.af) { 4994 #ifdef INET 4995 case AF_INET: 4996 m_copyback(m, off, ICMP_MINLEN, 4997 (caddr_t )pd->hdr.icmp); 4998 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4999 break; 5000 #endif /* INET */ 5001 #ifdef INET6 5002 case AF_INET6: 5003 m_copyback(m, off, 5004 sizeof(struct icmp6_hdr), 5005 (caddr_t )pd->hdr.icmp6); 5006 m_copyback(m, ipoff2, sizeof(h2_6), 5007 (caddr_t )&h2_6); 5008 break; 5009 #endif /* INET6 */ 5010 } 5011 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 5012 } 5013 return (PF_PASS); 5014 break; 5015 } 5016 #ifdef INET 5017 case IPPROTO_ICMP: { 5018 struct icmp iih; 5019 5020 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 5021 NULL, reason, pd2.af)) { 5022 DPFPRINTF(PF_DEBUG_MISC, 5023 ("pf: ICMP error message too short i" 5024 "(icmp)\n")); 5025 return (PF_DROP); 5026 } 5027 5028 key.af = pd2.af; 5029 key.proto = IPPROTO_ICMP; 5030 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5031 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5032 key.port[0] = key.port[1] = iih.icmp_id; 5033 5034 STATE_LOOKUP(kif, &key, direction, *state, pd); 5035 5036 /* translate source/destination address, if necessary */ 5037 if ((*state)->key[PF_SK_WIRE] != 5038 (*state)->key[PF_SK_STACK]) { 5039 struct pf_state_key *nk = 5040 (*state)->key[pd->didx]; 5041 5042 if (PF_ANEQ(pd2.src, 5043 &nk->addr[pd2.sidx], pd2.af) || 5044 nk->port[pd2.sidx] != iih.icmp_id) 5045 pf_change_icmp(pd2.src, &iih.icmp_id, 5046 daddr, &nk->addr[pd2.sidx], 5047 nk->port[pd2.sidx], NULL, 5048 pd2.ip_sum, icmpsum, 5049 pd->ip_sum, 0, AF_INET); 5050 5051 if (PF_ANEQ(pd2.dst, 5052 &nk->addr[pd2.didx], pd2.af) || 5053 nk->port[pd2.didx] != iih.icmp_id) 5054 pf_change_icmp(pd2.dst, &iih.icmp_id, 5055 saddr, &nk->addr[pd2.didx], 5056 nk->port[pd2.didx], NULL, 5057 pd2.ip_sum, icmpsum, 5058 pd->ip_sum, 0, AF_INET); 5059 5060 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 5061 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5062 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5063 } 5064 return (PF_PASS); 5065 break; 5066 } 5067 #endif /* INET */ 5068 #ifdef INET6 5069 case IPPROTO_ICMPV6: { 5070 struct icmp6_hdr iih; 5071 5072 if (!pf_pull_hdr(m, off2, &iih, 5073 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5074 DPFPRINTF(PF_DEBUG_MISC, 5075 ("pf: ICMP error message too short " 5076 "(icmp6)\n")); 5077 return (PF_DROP); 5078 } 5079 5080 key.af = pd2.af; 5081 key.proto = IPPROTO_ICMPV6; 5082 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5083 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5084 key.port[0] = key.port[1] = iih.icmp6_id; 5085 5086 STATE_LOOKUP(kif, &key, direction, *state, pd); 5087 5088 /* translate source/destination address, if necessary */ 5089 if ((*state)->key[PF_SK_WIRE] != 5090 (*state)->key[PF_SK_STACK]) { 5091 struct pf_state_key *nk = 5092 (*state)->key[pd->didx]; 5093 5094 if (PF_ANEQ(pd2.src, 5095 &nk->addr[pd2.sidx], pd2.af) || 5096 nk->port[pd2.sidx] != iih.icmp6_id) 5097 pf_change_icmp(pd2.src, &iih.icmp6_id, 5098 daddr, &nk->addr[pd2.sidx], 5099 nk->port[pd2.sidx], NULL, 5100 pd2.ip_sum, icmpsum, 5101 pd->ip_sum, 0, AF_INET6); 5102 5103 if (PF_ANEQ(pd2.dst, 5104 &nk->addr[pd2.didx], pd2.af) || 5105 nk->port[pd2.didx] != iih.icmp6_id) 5106 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5107 saddr, &nk->addr[pd2.didx], 5108 nk->port[pd2.didx], NULL, 5109 pd2.ip_sum, icmpsum, 5110 pd->ip_sum, 0, AF_INET6); 5111 5112 m_copyback(m, off, sizeof(struct icmp6_hdr), 5113 (caddr_t)pd->hdr.icmp6); 5114 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5115 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5116 (caddr_t)&iih); 5117 } 5118 return (PF_PASS); 5119 break; 5120 } 5121 #endif /* INET6 */ 5122 default: { 5123 key.af = pd2.af; 5124 key.proto = pd2.proto; 5125 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5126 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5127 key.port[0] = key.port[1] = 0; 5128 5129 STATE_LOOKUP(kif, &key, direction, *state, pd); 5130 5131 /* translate source/destination address, if necessary */ 5132 if ((*state)->key[PF_SK_WIRE] != 5133 (*state)->key[PF_SK_STACK]) { 5134 struct pf_state_key *nk = 5135 (*state)->key[pd->didx]; 5136 5137 if (PF_ANEQ(pd2.src, 5138 &nk->addr[pd2.sidx], pd2.af)) 5139 pf_change_icmp(pd2.src, NULL, daddr, 5140 &nk->addr[pd2.sidx], 0, NULL, 5141 pd2.ip_sum, icmpsum, 5142 pd->ip_sum, 0, pd2.af); 5143 5144 if (PF_ANEQ(pd2.dst, 5145 &nk->addr[pd2.didx], pd2.af)) 5146 pf_change_icmp(pd2.dst, NULL, saddr, 5147 &nk->addr[pd2.didx], 0, NULL, 5148 pd2.ip_sum, icmpsum, 5149 pd->ip_sum, 0, pd2.af); 5150 5151 switch (pd2.af) { 5152 #ifdef INET 5153 case AF_INET: 5154 m_copyback(m, off, ICMP_MINLEN, 5155 (caddr_t)pd->hdr.icmp); 5156 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5157 break; 5158 #endif /* INET */ 5159 #ifdef INET6 5160 case AF_INET6: 5161 m_copyback(m, off, 5162 sizeof(struct icmp6_hdr), 5163 (caddr_t )pd->hdr.icmp6); 5164 m_copyback(m, ipoff2, sizeof(h2_6), 5165 (caddr_t )&h2_6); 5166 break; 5167 #endif /* INET6 */ 5168 } 5169 } 5170 return (PF_PASS); 5171 break; 5172 } 5173 } 5174 } 5175 } 5176 5177 static int 5178 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5179 struct mbuf *m, struct pf_pdesc *pd) 5180 { 5181 struct pf_state_peer *src, *dst; 5182 struct pf_state_key_cmp key; 5183 5184 bzero(&key, sizeof(key)); 5185 key.af = pd->af; 5186 key.proto = pd->proto; 5187 if (direction == PF_IN) { 5188 PF_ACPY(&key.addr[0], pd->src, key.af); 5189 PF_ACPY(&key.addr[1], pd->dst, key.af); 5190 key.port[0] = key.port[1] = 0; 5191 } else { 5192 PF_ACPY(&key.addr[1], pd->src, key.af); 5193 PF_ACPY(&key.addr[0], pd->dst, key.af); 5194 key.port[1] = key.port[0] = 0; 5195 } 5196 5197 STATE_LOOKUP(kif, &key, direction, *state, pd); 5198 5199 if (direction == (*state)->direction) { 5200 src = &(*state)->src; 5201 dst = &(*state)->dst; 5202 } else { 5203 src = &(*state)->dst; 5204 dst = &(*state)->src; 5205 } 5206 5207 /* update states */ 5208 if (src->state < PFOTHERS_SINGLE) 5209 src->state = PFOTHERS_SINGLE; 5210 if (dst->state == PFOTHERS_SINGLE) 5211 dst->state = PFOTHERS_MULTIPLE; 5212 5213 /* update expire time */ 5214 (*state)->expire = time_uptime; 5215 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5216 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5217 else 5218 (*state)->timeout = PFTM_OTHER_SINGLE; 5219 5220 /* translate source/destination address, if necessary */ 5221 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5222 struct pf_state_key *nk = (*state)->key[pd->didx]; 5223 5224 KASSERT(nk, ("%s: nk is null", __func__)); 5225 KASSERT(pd, ("%s: pd is null", __func__)); 5226 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5227 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5228 switch (pd->af) { 5229 #ifdef INET 5230 case AF_INET: 5231 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5232 pf_change_a(&pd->src->v4.s_addr, 5233 pd->ip_sum, 5234 nk->addr[pd->sidx].v4.s_addr, 5235 0); 5236 5237 5238 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5239 pf_change_a(&pd->dst->v4.s_addr, 5240 pd->ip_sum, 5241 nk->addr[pd->didx].v4.s_addr, 5242 0); 5243 5244 break; 5245 #endif /* INET */ 5246 #ifdef INET6 5247 case AF_INET6: 5248 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5249 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5250 5251 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5252 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5253 #endif /* INET6 */ 5254 } 5255 } 5256 return (PF_PASS); 5257 } 5258 5259 /* 5260 * ipoff and off are measured from the start of the mbuf chain. 5261 * h must be at "ipoff" on the mbuf chain. 5262 */ 5263 void * 5264 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5265 u_short *actionp, u_short *reasonp, sa_family_t af) 5266 { 5267 switch (af) { 5268 #ifdef INET 5269 case AF_INET: { 5270 struct ip *h = mtod(m, struct ip *); 5271 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5272 5273 if (fragoff) { 5274 if (fragoff >= len) 5275 ACTION_SET(actionp, PF_PASS); 5276 else { 5277 ACTION_SET(actionp, PF_DROP); 5278 REASON_SET(reasonp, PFRES_FRAG); 5279 } 5280 return (NULL); 5281 } 5282 if (m->m_pkthdr.len < off + len || 5283 ntohs(h->ip_len) < off + len) { 5284 ACTION_SET(actionp, PF_DROP); 5285 REASON_SET(reasonp, PFRES_SHORT); 5286 return (NULL); 5287 } 5288 break; 5289 } 5290 #endif /* INET */ 5291 #ifdef INET6 5292 case AF_INET6: { 5293 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5294 5295 if (m->m_pkthdr.len < off + len || 5296 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5297 (unsigned)(off + len)) { 5298 ACTION_SET(actionp, PF_DROP); 5299 REASON_SET(reasonp, PFRES_SHORT); 5300 return (NULL); 5301 } 5302 break; 5303 } 5304 #endif /* INET6 */ 5305 } 5306 m_copydata(m, off, len, p); 5307 return (p); 5308 } 5309 5310 #ifdef RADIX_MPATH 5311 static int 5312 pf_routable_oldmpath(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5313 int rtableid) 5314 { 5315 struct radix_node_head *rnh; 5316 struct sockaddr_in *dst; 5317 int ret = 1; 5318 int check_mpath; 5319 #ifdef INET6 5320 struct sockaddr_in6 *dst6; 5321 struct route_in6 ro; 5322 #else 5323 struct route ro; 5324 #endif 5325 struct radix_node *rn; 5326 struct rtentry *rt; 5327 struct ifnet *ifp; 5328 5329 check_mpath = 0; 5330 /* XXX: stick to table 0 for now */ 5331 rnh = rt_tables_get_rnh(0, af); 5332 if (rnh != NULL && rn_mpath_capable(rnh)) 5333 check_mpath = 1; 5334 bzero(&ro, sizeof(ro)); 5335 switch (af) { 5336 case AF_INET: 5337 dst = satosin(&ro.ro_dst); 5338 dst->sin_family = AF_INET; 5339 dst->sin_len = sizeof(*dst); 5340 dst->sin_addr = addr->v4; 5341 break; 5342 #ifdef INET6 5343 case AF_INET6: 5344 /* 5345 * Skip check for addresses with embedded interface scope, 5346 * as they would always match anyway. 5347 */ 5348 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5349 goto out; 5350 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5351 dst6->sin6_family = AF_INET6; 5352 dst6->sin6_len = sizeof(*dst6); 5353 dst6->sin6_addr = addr->v6; 5354 break; 5355 #endif /* INET6 */ 5356 default: 5357 return (0); 5358 } 5359 5360 /* Skip checks for ipsec interfaces */ 5361 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5362 goto out; 5363 5364 switch (af) { 5365 #ifdef INET6 5366 case AF_INET6: 5367 in6_rtalloc_ign(&ro, 0, rtableid); 5368 break; 5369 #endif 5370 #ifdef INET 5371 case AF_INET: 5372 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5373 break; 5374 #endif 5375 } 5376 5377 if (ro.ro_rt != NULL) { 5378 /* No interface given, this is a no-route check */ 5379 if (kif == NULL) 5380 goto out; 5381 5382 if (kif->pfik_ifp == NULL) { 5383 ret = 0; 5384 goto out; 5385 } 5386 5387 /* Perform uRPF check if passed input interface */ 5388 ret = 0; 5389 rn = (struct radix_node *)ro.ro_rt; 5390 do { 5391 rt = (struct rtentry *)rn; 5392 ifp = rt->rt_ifp; 5393 5394 if (kif->pfik_ifp == ifp) 5395 ret = 1; 5396 rn = rn_mpath_next(rn); 5397 } while (check_mpath == 1 && rn != NULL && ret == 0); 5398 } else 5399 ret = 0; 5400 out: 5401 if (ro.ro_rt != NULL) 5402 RTFREE(ro.ro_rt); 5403 return (ret); 5404 } 5405 #endif 5406 5407 int 5408 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5409 int rtableid) 5410 { 5411 #ifdef INET 5412 struct nhop4_basic nh4; 5413 #endif 5414 #ifdef INET6 5415 struct nhop6_basic nh6; 5416 #endif 5417 struct ifnet *ifp; 5418 #ifdef RADIX_MPATH 5419 struct radix_node_head *rnh; 5420 5421 /* XXX: stick to table 0 for now */ 5422 rnh = rt_tables_get_rnh(0, af); 5423 if (rnh != NULL && rn_mpath_capable(rnh)) 5424 return (pf_routable_oldmpath(addr, af, kif, rtableid)); 5425 #endif 5426 /* 5427 * Skip check for addresses with embedded interface scope, 5428 * as they would always match anyway. 5429 */ 5430 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5431 return (1); 5432 5433 if (af != AF_INET && af != AF_INET6) 5434 return (0); 5435 5436 /* Skip checks for ipsec interfaces */ 5437 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5438 return (1); 5439 5440 ifp = NULL; 5441 5442 switch (af) { 5443 #ifdef INET6 5444 case AF_INET6: 5445 if (fib6_lookup_nh_basic(rtableid, &addr->v6, 0, 0, 0, &nh6)!=0) 5446 return (0); 5447 ifp = nh6.nh_ifp; 5448 break; 5449 #endif 5450 #ifdef INET 5451 case AF_INET: 5452 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) != 0) 5453 return (0); 5454 ifp = nh4.nh_ifp; 5455 break; 5456 #endif 5457 } 5458 5459 /* No interface given, this is a no-route check */ 5460 if (kif == NULL) 5461 return (1); 5462 5463 if (kif->pfik_ifp == NULL) 5464 return (0); 5465 5466 /* Perform uRPF check if passed input interface */ 5467 if (kif->pfik_ifp == ifp) 5468 return (1); 5469 return (0); 5470 } 5471 5472 #ifdef INET 5473 static void 5474 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5475 struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) 5476 { 5477 struct mbuf *m0, *m1; 5478 struct sockaddr_in dst; 5479 struct ip *ip; 5480 struct ifnet *ifp = NULL; 5481 struct pf_addr naddr; 5482 struct pf_src_node *sn = NULL; 5483 int error = 0; 5484 uint16_t ip_len, ip_off; 5485 5486 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5487 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5488 __func__)); 5489 5490 if ((pd->pf_mtag == NULL && 5491 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5492 pd->pf_mtag->routed++ > 3) { 5493 m0 = *m; 5494 *m = NULL; 5495 goto bad_locked; 5496 } 5497 5498 if (r->rt == PF_DUPTO) { 5499 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5500 if (s) 5501 PF_STATE_UNLOCK(s); 5502 return; 5503 } 5504 } else { 5505 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5506 if (s) 5507 PF_STATE_UNLOCK(s); 5508 return; 5509 } 5510 m0 = *m; 5511 } 5512 5513 ip = mtod(m0, struct ip *); 5514 5515 bzero(&dst, sizeof(dst)); 5516 dst.sin_family = AF_INET; 5517 dst.sin_len = sizeof(dst); 5518 dst.sin_addr = ip->ip_dst; 5519 5520 bzero(&naddr, sizeof(naddr)); 5521 5522 if (TAILQ_EMPTY(&r->rpool.list)) { 5523 DPFPRINTF(PF_DEBUG_URGENT, 5524 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5525 goto bad_locked; 5526 } 5527 if (s == NULL) { 5528 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5529 &naddr, NULL, &sn); 5530 if (!PF_AZERO(&naddr, AF_INET)) 5531 dst.sin_addr.s_addr = naddr.v4.s_addr; 5532 ifp = r->rpool.cur->kif ? 5533 r->rpool.cur->kif->pfik_ifp : NULL; 5534 } else { 5535 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5536 dst.sin_addr.s_addr = 5537 s->rt_addr.v4.s_addr; 5538 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5539 PF_STATE_UNLOCK(s); 5540 } 5541 if (ifp == NULL) 5542 goto bad; 5543 5544 if (oifp != ifp) { 5545 if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 5546 goto bad; 5547 else if (m0 == NULL) 5548 goto done; 5549 if (m0->m_len < sizeof(struct ip)) { 5550 DPFPRINTF(PF_DEBUG_URGENT, 5551 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5552 goto bad; 5553 } 5554 ip = mtod(m0, struct ip *); 5555 } 5556 5557 if (ifp->if_flags & IFF_LOOPBACK) 5558 m0->m_flags |= M_SKIP_FIREWALL; 5559 5560 ip_len = ntohs(ip->ip_len); 5561 ip_off = ntohs(ip->ip_off); 5562 5563 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5564 m0->m_pkthdr.csum_flags |= CSUM_IP; 5565 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5566 in_delayed_cksum(m0); 5567 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5568 } 5569 #ifdef SCTP 5570 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5571 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5572 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5573 } 5574 #endif 5575 5576 /* 5577 * If small enough for interface, or the interface will take 5578 * care of the fragmentation for us, we can just send directly. 5579 */ 5580 if (ip_len <= ifp->if_mtu || 5581 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5582 ip->ip_sum = 0; 5583 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5584 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5585 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5586 } 5587 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5588 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5589 goto done; 5590 } 5591 5592 /* Balk when DF bit is set or the interface didn't support TSO. */ 5593 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5594 error = EMSGSIZE; 5595 KMOD_IPSTAT_INC(ips_cantfrag); 5596 if (r->rt != PF_DUPTO) { 5597 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5598 ifp->if_mtu); 5599 goto done; 5600 } else 5601 goto bad; 5602 } 5603 5604 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5605 if (error) 5606 goto bad; 5607 5608 for (; m0; m0 = m1) { 5609 m1 = m0->m_nextpkt; 5610 m0->m_nextpkt = NULL; 5611 if (error == 0) { 5612 m_clrprotoflags(m0); 5613 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5614 } else 5615 m_freem(m0); 5616 } 5617 5618 if (error == 0) 5619 KMOD_IPSTAT_INC(ips_fragmented); 5620 5621 done: 5622 if (r->rt != PF_DUPTO) 5623 *m = NULL; 5624 return; 5625 5626 bad_locked: 5627 if (s) 5628 PF_STATE_UNLOCK(s); 5629 bad: 5630 m_freem(m0); 5631 goto done; 5632 } 5633 #endif /* INET */ 5634 5635 #ifdef INET6 5636 static void 5637 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5638 struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) 5639 { 5640 struct mbuf *m0; 5641 struct sockaddr_in6 dst; 5642 struct ip6_hdr *ip6; 5643 struct ifnet *ifp = NULL; 5644 struct pf_addr naddr; 5645 struct pf_src_node *sn = NULL; 5646 5647 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5648 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5649 __func__)); 5650 5651 if ((pd->pf_mtag == NULL && 5652 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5653 pd->pf_mtag->routed++ > 3) { 5654 m0 = *m; 5655 *m = NULL; 5656 goto bad_locked; 5657 } 5658 5659 if (r->rt == PF_DUPTO) { 5660 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5661 if (s) 5662 PF_STATE_UNLOCK(s); 5663 return; 5664 } 5665 } else { 5666 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5667 if (s) 5668 PF_STATE_UNLOCK(s); 5669 return; 5670 } 5671 m0 = *m; 5672 } 5673 5674 ip6 = mtod(m0, struct ip6_hdr *); 5675 5676 bzero(&dst, sizeof(dst)); 5677 dst.sin6_family = AF_INET6; 5678 dst.sin6_len = sizeof(dst); 5679 dst.sin6_addr = ip6->ip6_dst; 5680 5681 bzero(&naddr, sizeof(naddr)); 5682 5683 if (TAILQ_EMPTY(&r->rpool.list)) { 5684 DPFPRINTF(PF_DEBUG_URGENT, 5685 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5686 goto bad_locked; 5687 } 5688 if (s == NULL) { 5689 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5690 &naddr, NULL, &sn); 5691 if (!PF_AZERO(&naddr, AF_INET6)) 5692 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5693 &naddr, AF_INET6); 5694 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5695 } else { 5696 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5697 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5698 &s->rt_addr, AF_INET6); 5699 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5700 } 5701 5702 if (s) 5703 PF_STATE_UNLOCK(s); 5704 5705 if (ifp == NULL) 5706 goto bad; 5707 5708 if (oifp != ifp) { 5709 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS) 5710 goto bad; 5711 else if (m0 == NULL) 5712 goto done; 5713 if (m0->m_len < sizeof(struct ip6_hdr)) { 5714 DPFPRINTF(PF_DEBUG_URGENT, 5715 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5716 __func__)); 5717 goto bad; 5718 } 5719 ip6 = mtod(m0, struct ip6_hdr *); 5720 } 5721 5722 if (ifp->if_flags & IFF_LOOPBACK) 5723 m0->m_flags |= M_SKIP_FIREWALL; 5724 5725 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5726 ~ifp->if_hwassist) { 5727 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5728 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5729 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5730 } 5731 5732 /* 5733 * If the packet is too large for the outgoing interface, 5734 * send back an icmp6 error. 5735 */ 5736 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5737 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5738 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5739 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5740 else { 5741 in6_ifstat_inc(ifp, ifs6_in_toobig); 5742 if (r->rt != PF_DUPTO) 5743 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5744 else 5745 goto bad; 5746 } 5747 5748 done: 5749 if (r->rt != PF_DUPTO) 5750 *m = NULL; 5751 return; 5752 5753 bad_locked: 5754 if (s) 5755 PF_STATE_UNLOCK(s); 5756 bad: 5757 m_freem(m0); 5758 goto done; 5759 } 5760 #endif /* INET6 */ 5761 5762 /* 5763 * FreeBSD supports cksum offloads for the following drivers. 5764 * em(4), fxp(4), lge(4), ndis(4), nge(4), re(4), ti(4), txp(4), xl(4) 5765 * 5766 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5767 * network driver performed cksum including pseudo header, need to verify 5768 * csum_data 5769 * CSUM_DATA_VALID : 5770 * network driver performed cksum, needs to additional pseudo header 5771 * cksum computation with partial csum_data(i.e. lack of H/W support for 5772 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5773 * 5774 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5775 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5776 * TCP/UDP layer. 5777 * Also, set csum_data to 0xffff to force cksum validation. 5778 */ 5779 static int 5780 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5781 { 5782 u_int16_t sum = 0; 5783 int hw_assist = 0; 5784 struct ip *ip; 5785 5786 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5787 return (1); 5788 if (m->m_pkthdr.len < off + len) 5789 return (1); 5790 5791 switch (p) { 5792 case IPPROTO_TCP: 5793 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5794 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5795 sum = m->m_pkthdr.csum_data; 5796 } else { 5797 ip = mtod(m, struct ip *); 5798 sum = in_pseudo(ip->ip_src.s_addr, 5799 ip->ip_dst.s_addr, htonl((u_short)len + 5800 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5801 } 5802 sum ^= 0xffff; 5803 ++hw_assist; 5804 } 5805 break; 5806 case IPPROTO_UDP: 5807 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5808 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5809 sum = m->m_pkthdr.csum_data; 5810 } else { 5811 ip = mtod(m, struct ip *); 5812 sum = in_pseudo(ip->ip_src.s_addr, 5813 ip->ip_dst.s_addr, htonl((u_short)len + 5814 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5815 } 5816 sum ^= 0xffff; 5817 ++hw_assist; 5818 } 5819 break; 5820 case IPPROTO_ICMP: 5821 #ifdef INET6 5822 case IPPROTO_ICMPV6: 5823 #endif /* INET6 */ 5824 break; 5825 default: 5826 return (1); 5827 } 5828 5829 if (!hw_assist) { 5830 switch (af) { 5831 case AF_INET: 5832 if (p == IPPROTO_ICMP) { 5833 if (m->m_len < off) 5834 return (1); 5835 m->m_data += off; 5836 m->m_len -= off; 5837 sum = in_cksum(m, len); 5838 m->m_data -= off; 5839 m->m_len += off; 5840 } else { 5841 if (m->m_len < sizeof(struct ip)) 5842 return (1); 5843 sum = in4_cksum(m, p, off, len); 5844 } 5845 break; 5846 #ifdef INET6 5847 case AF_INET6: 5848 if (m->m_len < sizeof(struct ip6_hdr)) 5849 return (1); 5850 sum = in6_cksum(m, p, off, len); 5851 break; 5852 #endif /* INET6 */ 5853 default: 5854 return (1); 5855 } 5856 } 5857 if (sum) { 5858 switch (p) { 5859 case IPPROTO_TCP: 5860 { 5861 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5862 break; 5863 } 5864 case IPPROTO_UDP: 5865 { 5866 KMOD_UDPSTAT_INC(udps_badsum); 5867 break; 5868 } 5869 #ifdef INET 5870 case IPPROTO_ICMP: 5871 { 5872 KMOD_ICMPSTAT_INC(icps_checksum); 5873 break; 5874 } 5875 #endif 5876 #ifdef INET6 5877 case IPPROTO_ICMPV6: 5878 { 5879 KMOD_ICMP6STAT_INC(icp6s_checksum); 5880 break; 5881 } 5882 #endif /* INET6 */ 5883 } 5884 return (1); 5885 } else { 5886 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5887 m->m_pkthdr.csum_flags |= 5888 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5889 m->m_pkthdr.csum_data = 0xffff; 5890 } 5891 } 5892 return (0); 5893 } 5894 5895 5896 #ifdef INET 5897 int 5898 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5899 { 5900 struct pfi_kif *kif; 5901 u_short action, reason = 0, log = 0; 5902 struct mbuf *m = *m0; 5903 struct ip *h = NULL; 5904 struct m_tag *ipfwtag; 5905 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5906 struct pf_state *s = NULL; 5907 struct pf_ruleset *ruleset = NULL; 5908 struct pf_pdesc pd; 5909 int off, dirndx, pqid = 0; 5910 5911 PF_RULES_RLOCK_TRACKER; 5912 5913 M_ASSERTPKTHDR(m); 5914 5915 if (!V_pf_status.running) 5916 return (PF_PASS); 5917 5918 memset(&pd, 0, sizeof(pd)); 5919 5920 kif = (struct pfi_kif *)ifp->if_pf_kif; 5921 5922 if (kif == NULL) { 5923 DPFPRINTF(PF_DEBUG_URGENT, 5924 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5925 return (PF_DROP); 5926 } 5927 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5928 return (PF_PASS); 5929 5930 if (m->m_flags & M_SKIP_FIREWALL) 5931 return (PF_PASS); 5932 5933 pd.pf_mtag = pf_find_mtag(m); 5934 5935 PF_RULES_RLOCK(); 5936 5937 if (ip_divert_ptr != NULL && 5938 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5939 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5940 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5941 if (pd.pf_mtag == NULL && 5942 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5943 action = PF_DROP; 5944 goto done; 5945 } 5946 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5947 m_tag_delete(m, ipfwtag); 5948 } 5949 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5950 m->m_flags |= M_FASTFWD_OURS; 5951 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5952 } 5953 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5954 /* We do IP header normalization and packet reassembly here */ 5955 action = PF_DROP; 5956 goto done; 5957 } 5958 m = *m0; /* pf_normalize messes with m0 */ 5959 h = mtod(m, struct ip *); 5960 5961 off = h->ip_hl << 2; 5962 if (off < (int)sizeof(struct ip)) { 5963 action = PF_DROP; 5964 REASON_SET(&reason, PFRES_SHORT); 5965 log = 1; 5966 goto done; 5967 } 5968 5969 pd.src = (struct pf_addr *)&h->ip_src; 5970 pd.dst = (struct pf_addr *)&h->ip_dst; 5971 pd.sport = pd.dport = NULL; 5972 pd.ip_sum = &h->ip_sum; 5973 pd.proto_sum = NULL; 5974 pd.proto = h->ip_p; 5975 pd.dir = dir; 5976 pd.sidx = (dir == PF_IN) ? 0 : 1; 5977 pd.didx = (dir == PF_IN) ? 1 : 0; 5978 pd.af = AF_INET; 5979 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 5980 pd.tot_len = ntohs(h->ip_len); 5981 5982 /* handle fragments that didn't get reassembled by normalization */ 5983 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5984 action = pf_test_fragment(&r, dir, kif, m, h, 5985 &pd, &a, &ruleset); 5986 goto done; 5987 } 5988 5989 switch (h->ip_p) { 5990 5991 case IPPROTO_TCP: { 5992 struct tcphdr th; 5993 5994 pd.hdr.tcp = &th; 5995 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5996 &action, &reason, AF_INET)) { 5997 log = action != PF_PASS; 5998 goto done; 5999 } 6000 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6001 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 6002 pqid = 1; 6003 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6004 if (action == PF_DROP) 6005 goto done; 6006 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6007 &reason); 6008 if (action == PF_PASS) { 6009 if (V_pfsync_update_state_ptr != NULL) 6010 V_pfsync_update_state_ptr(s); 6011 r = s->rule.ptr; 6012 a = s->anchor.ptr; 6013 log = s->log; 6014 } else if (s == NULL) 6015 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6016 &a, &ruleset, inp); 6017 break; 6018 } 6019 6020 case IPPROTO_UDP: { 6021 struct udphdr uh; 6022 6023 pd.hdr.udp = &uh; 6024 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6025 &action, &reason, AF_INET)) { 6026 log = action != PF_PASS; 6027 goto done; 6028 } 6029 if (uh.uh_dport == 0 || 6030 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6031 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6032 action = PF_DROP; 6033 REASON_SET(&reason, PFRES_SHORT); 6034 goto done; 6035 } 6036 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6037 if (action == PF_PASS) { 6038 if (V_pfsync_update_state_ptr != NULL) 6039 V_pfsync_update_state_ptr(s); 6040 r = s->rule.ptr; 6041 a = s->anchor.ptr; 6042 log = s->log; 6043 } else if (s == NULL) 6044 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6045 &a, &ruleset, inp); 6046 break; 6047 } 6048 6049 case IPPROTO_ICMP: { 6050 struct icmp ih; 6051 6052 pd.hdr.icmp = &ih; 6053 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 6054 &action, &reason, AF_INET)) { 6055 log = action != PF_PASS; 6056 goto done; 6057 } 6058 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 6059 &reason); 6060 if (action == PF_PASS) { 6061 if (V_pfsync_update_state_ptr != NULL) 6062 V_pfsync_update_state_ptr(s); 6063 r = s->rule.ptr; 6064 a = s->anchor.ptr; 6065 log = s->log; 6066 } else if (s == NULL) 6067 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6068 &a, &ruleset, inp); 6069 break; 6070 } 6071 6072 #ifdef INET6 6073 case IPPROTO_ICMPV6: { 6074 action = PF_DROP; 6075 DPFPRINTF(PF_DEBUG_MISC, 6076 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6077 goto done; 6078 } 6079 #endif 6080 6081 default: 6082 action = pf_test_state_other(&s, dir, kif, m, &pd); 6083 if (action == PF_PASS) { 6084 if (V_pfsync_update_state_ptr != NULL) 6085 V_pfsync_update_state_ptr(s); 6086 r = s->rule.ptr; 6087 a = s->anchor.ptr; 6088 log = s->log; 6089 } else if (s == NULL) 6090 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6091 &a, &ruleset, inp); 6092 break; 6093 } 6094 6095 done: 6096 PF_RULES_RUNLOCK(); 6097 if (action == PF_PASS && h->ip_hl > 5 && 6098 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6099 action = PF_DROP; 6100 REASON_SET(&reason, PFRES_IPOPTIONS); 6101 log = r->log; 6102 DPFPRINTF(PF_DEBUG_MISC, 6103 ("pf: dropping packet with ip options\n")); 6104 } 6105 6106 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6107 action = PF_DROP; 6108 REASON_SET(&reason, PFRES_MEMORY); 6109 } 6110 if (r->rtableid >= 0) 6111 M_SETFIB(m, r->rtableid); 6112 6113 if (r->scrub_flags & PFSTATE_SETPRIO) { 6114 if (pd.tos & IPTOS_LOWDELAY) 6115 pqid = 1; 6116 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6117 action = PF_DROP; 6118 REASON_SET(&reason, PFRES_MEMORY); 6119 log = 1; 6120 DPFPRINTF(PF_DEBUG_MISC, 6121 ("pf: failed to allocate 802.1q mtag\n")); 6122 } 6123 } 6124 6125 #ifdef ALTQ 6126 if (action == PF_PASS && r->qid) { 6127 if (pd.pf_mtag == NULL && 6128 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6129 action = PF_DROP; 6130 REASON_SET(&reason, PFRES_MEMORY); 6131 } else { 6132 if (s != NULL) 6133 pd.pf_mtag->qid_hash = pf_state_hash(s); 6134 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6135 pd.pf_mtag->qid = r->pqid; 6136 else 6137 pd.pf_mtag->qid = r->qid; 6138 /* Add hints for ecn. */ 6139 pd.pf_mtag->hdr = h; 6140 } 6141 6142 } 6143 #endif /* ALTQ */ 6144 6145 /* 6146 * connections redirected to loopback should not match sockets 6147 * bound specifically to loopback due to security implications, 6148 * see tcp_input() and in_pcblookup_listen(). 6149 */ 6150 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6151 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6152 (s->nat_rule.ptr->action == PF_RDR || 6153 s->nat_rule.ptr->action == PF_BINAT) && 6154 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 6155 m->m_flags |= M_SKIP_FIREWALL; 6156 6157 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6158 !PACKET_LOOPED(&pd)) { 6159 6160 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6161 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6162 if (ipfwtag != NULL) { 6163 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6164 ntohs(r->divert.port); 6165 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6166 6167 if (s) 6168 PF_STATE_UNLOCK(s); 6169 6170 m_tag_prepend(m, ipfwtag); 6171 if (m->m_flags & M_FASTFWD_OURS) { 6172 if (pd.pf_mtag == NULL && 6173 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6174 action = PF_DROP; 6175 REASON_SET(&reason, PFRES_MEMORY); 6176 log = 1; 6177 DPFPRINTF(PF_DEBUG_MISC, 6178 ("pf: failed to allocate tag\n")); 6179 } else { 6180 pd.pf_mtag->flags |= 6181 PF_FASTFWD_OURS_PRESENT; 6182 m->m_flags &= ~M_FASTFWD_OURS; 6183 } 6184 } 6185 ip_divert_ptr(*m0, dir == PF_IN); 6186 *m0 = NULL; 6187 6188 return (action); 6189 } else { 6190 /* XXX: ipfw has the same behaviour! */ 6191 action = PF_DROP; 6192 REASON_SET(&reason, PFRES_MEMORY); 6193 log = 1; 6194 DPFPRINTF(PF_DEBUG_MISC, 6195 ("pf: failed to allocate divert tag\n")); 6196 } 6197 } 6198 6199 if (log) { 6200 struct pf_rule *lr; 6201 6202 if (s != NULL && s->nat_rule.ptr != NULL && 6203 s->nat_rule.ptr->log & PF_LOG_ALL) 6204 lr = s->nat_rule.ptr; 6205 else 6206 lr = r; 6207 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6208 (s == NULL)); 6209 } 6210 6211 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6212 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 6213 6214 if (action == PF_PASS || r->action == PF_DROP) { 6215 dirndx = (dir == PF_OUT); 6216 r->packets[dirndx]++; 6217 r->bytes[dirndx] += pd.tot_len; 6218 if (a != NULL) { 6219 a->packets[dirndx]++; 6220 a->bytes[dirndx] += pd.tot_len; 6221 } 6222 if (s != NULL) { 6223 if (s->nat_rule.ptr != NULL) { 6224 s->nat_rule.ptr->packets[dirndx]++; 6225 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6226 } 6227 if (s->src_node != NULL) { 6228 s->src_node->packets[dirndx]++; 6229 s->src_node->bytes[dirndx] += pd.tot_len; 6230 } 6231 if (s->nat_src_node != NULL) { 6232 s->nat_src_node->packets[dirndx]++; 6233 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6234 } 6235 dirndx = (dir == s->direction) ? 0 : 1; 6236 s->packets[dirndx]++; 6237 s->bytes[dirndx] += pd.tot_len; 6238 } 6239 tr = r; 6240 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6241 if (nr != NULL && r == &V_pf_default_rule) 6242 tr = nr; 6243 if (tr->src.addr.type == PF_ADDR_TABLE) 6244 pfr_update_stats(tr->src.addr.p.tbl, 6245 (s == NULL) ? pd.src : 6246 &s->key[(s->direction == PF_IN)]-> 6247 addr[(s->direction == PF_OUT)], 6248 pd.af, pd.tot_len, dir == PF_OUT, 6249 r->action == PF_PASS, tr->src.neg); 6250 if (tr->dst.addr.type == PF_ADDR_TABLE) 6251 pfr_update_stats(tr->dst.addr.p.tbl, 6252 (s == NULL) ? pd.dst : 6253 &s->key[(s->direction == PF_IN)]-> 6254 addr[(s->direction == PF_IN)], 6255 pd.af, pd.tot_len, dir == PF_OUT, 6256 r->action == PF_PASS, tr->dst.neg); 6257 } 6258 6259 switch (action) { 6260 case PF_SYNPROXY_DROP: 6261 m_freem(*m0); 6262 case PF_DEFER: 6263 *m0 = NULL; 6264 action = PF_PASS; 6265 break; 6266 case PF_DROP: 6267 m_freem(*m0); 6268 *m0 = NULL; 6269 break; 6270 default: 6271 /* pf_route() returns unlocked. */ 6272 if (r->rt) { 6273 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6274 return (action); 6275 } 6276 break; 6277 } 6278 if (s) 6279 PF_STATE_UNLOCK(s); 6280 6281 return (action); 6282 } 6283 #endif /* INET */ 6284 6285 #ifdef INET6 6286 int 6287 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6288 { 6289 struct pfi_kif *kif; 6290 u_short action, reason = 0, log = 0; 6291 struct mbuf *m = *m0, *n = NULL; 6292 struct m_tag *mtag; 6293 struct ip6_hdr *h = NULL; 6294 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6295 struct pf_state *s = NULL; 6296 struct pf_ruleset *ruleset = NULL; 6297 struct pf_pdesc pd; 6298 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6299 6300 PF_RULES_RLOCK_TRACKER; 6301 M_ASSERTPKTHDR(m); 6302 6303 if (!V_pf_status.running) 6304 return (PF_PASS); 6305 6306 memset(&pd, 0, sizeof(pd)); 6307 pd.pf_mtag = pf_find_mtag(m); 6308 6309 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6310 return (PF_PASS); 6311 6312 kif = (struct pfi_kif *)ifp->if_pf_kif; 6313 if (kif == NULL) { 6314 DPFPRINTF(PF_DEBUG_URGENT, 6315 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6316 return (PF_DROP); 6317 } 6318 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6319 return (PF_PASS); 6320 6321 if (m->m_flags & M_SKIP_FIREWALL) 6322 return (PF_PASS); 6323 6324 PF_RULES_RLOCK(); 6325 6326 /* We do IP header normalization and packet reassembly here */ 6327 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6328 action = PF_DROP; 6329 goto done; 6330 } 6331 m = *m0; /* pf_normalize messes with m0 */ 6332 h = mtod(m, struct ip6_hdr *); 6333 6334 #if 1 6335 /* 6336 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6337 * will do something bad, so drop the packet for now. 6338 */ 6339 if (htons(h->ip6_plen) == 0) { 6340 action = PF_DROP; 6341 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6342 goto done; 6343 } 6344 #endif 6345 6346 pd.src = (struct pf_addr *)&h->ip6_src; 6347 pd.dst = (struct pf_addr *)&h->ip6_dst; 6348 pd.sport = pd.dport = NULL; 6349 pd.ip_sum = NULL; 6350 pd.proto_sum = NULL; 6351 pd.dir = dir; 6352 pd.sidx = (dir == PF_IN) ? 0 : 1; 6353 pd.didx = (dir == PF_IN) ? 1 : 0; 6354 pd.af = AF_INET6; 6355 pd.tos = 0; 6356 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6357 6358 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6359 pd.proto = h->ip6_nxt; 6360 do { 6361 switch (pd.proto) { 6362 case IPPROTO_FRAGMENT: 6363 action = pf_test_fragment(&r, dir, kif, m, h, 6364 &pd, &a, &ruleset); 6365 if (action == PF_DROP) 6366 REASON_SET(&reason, PFRES_FRAG); 6367 goto done; 6368 case IPPROTO_ROUTING: { 6369 struct ip6_rthdr rthdr; 6370 6371 if (rh_cnt++) { 6372 DPFPRINTF(PF_DEBUG_MISC, 6373 ("pf: IPv6 more than one rthdr\n")); 6374 action = PF_DROP; 6375 REASON_SET(&reason, PFRES_IPOPTIONS); 6376 log = 1; 6377 goto done; 6378 } 6379 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6380 &reason, pd.af)) { 6381 DPFPRINTF(PF_DEBUG_MISC, 6382 ("pf: IPv6 short rthdr\n")); 6383 action = PF_DROP; 6384 REASON_SET(&reason, PFRES_SHORT); 6385 log = 1; 6386 goto done; 6387 } 6388 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6389 DPFPRINTF(PF_DEBUG_MISC, 6390 ("pf: IPv6 rthdr0\n")); 6391 action = PF_DROP; 6392 REASON_SET(&reason, PFRES_IPOPTIONS); 6393 log = 1; 6394 goto done; 6395 } 6396 /* FALLTHROUGH */ 6397 } 6398 case IPPROTO_AH: 6399 case IPPROTO_HOPOPTS: 6400 case IPPROTO_DSTOPTS: { 6401 /* get next header and header length */ 6402 struct ip6_ext opt6; 6403 6404 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6405 NULL, &reason, pd.af)) { 6406 DPFPRINTF(PF_DEBUG_MISC, 6407 ("pf: IPv6 short opt\n")); 6408 action = PF_DROP; 6409 log = 1; 6410 goto done; 6411 } 6412 if (pd.proto == IPPROTO_AH) 6413 off += (opt6.ip6e_len + 2) * 4; 6414 else 6415 off += (opt6.ip6e_len + 1) * 8; 6416 pd.proto = opt6.ip6e_nxt; 6417 /* goto the next header */ 6418 break; 6419 } 6420 default: 6421 terminal++; 6422 break; 6423 } 6424 } while (!terminal); 6425 6426 /* if there's no routing header, use unmodified mbuf for checksumming */ 6427 if (!n) 6428 n = m; 6429 6430 switch (pd.proto) { 6431 6432 case IPPROTO_TCP: { 6433 struct tcphdr th; 6434 6435 pd.hdr.tcp = &th; 6436 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6437 &action, &reason, AF_INET6)) { 6438 log = action != PF_PASS; 6439 goto done; 6440 } 6441 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6442 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6443 if (action == PF_DROP) 6444 goto done; 6445 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6446 &reason); 6447 if (action == PF_PASS) { 6448 if (V_pfsync_update_state_ptr != NULL) 6449 V_pfsync_update_state_ptr(s); 6450 r = s->rule.ptr; 6451 a = s->anchor.ptr; 6452 log = s->log; 6453 } else if (s == NULL) 6454 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6455 &a, &ruleset, inp); 6456 break; 6457 } 6458 6459 case IPPROTO_UDP: { 6460 struct udphdr uh; 6461 6462 pd.hdr.udp = &uh; 6463 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6464 &action, &reason, AF_INET6)) { 6465 log = action != PF_PASS; 6466 goto done; 6467 } 6468 if (uh.uh_dport == 0 || 6469 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6470 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6471 action = PF_DROP; 6472 REASON_SET(&reason, PFRES_SHORT); 6473 goto done; 6474 } 6475 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6476 if (action == PF_PASS) { 6477 if (V_pfsync_update_state_ptr != NULL) 6478 V_pfsync_update_state_ptr(s); 6479 r = s->rule.ptr; 6480 a = s->anchor.ptr; 6481 log = s->log; 6482 } else if (s == NULL) 6483 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6484 &a, &ruleset, inp); 6485 break; 6486 } 6487 6488 case IPPROTO_ICMP: { 6489 action = PF_DROP; 6490 DPFPRINTF(PF_DEBUG_MISC, 6491 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6492 goto done; 6493 } 6494 6495 case IPPROTO_ICMPV6: { 6496 struct icmp6_hdr ih; 6497 6498 pd.hdr.icmp6 = &ih; 6499 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6500 &action, &reason, AF_INET6)) { 6501 log = action != PF_PASS; 6502 goto done; 6503 } 6504 action = pf_test_state_icmp(&s, dir, kif, 6505 m, off, h, &pd, &reason); 6506 if (action == PF_PASS) { 6507 if (V_pfsync_update_state_ptr != NULL) 6508 V_pfsync_update_state_ptr(s); 6509 r = s->rule.ptr; 6510 a = s->anchor.ptr; 6511 log = s->log; 6512 } else if (s == NULL) 6513 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6514 &a, &ruleset, inp); 6515 break; 6516 } 6517 6518 default: 6519 action = pf_test_state_other(&s, dir, kif, m, &pd); 6520 if (action == PF_PASS) { 6521 if (V_pfsync_update_state_ptr != NULL) 6522 V_pfsync_update_state_ptr(s); 6523 r = s->rule.ptr; 6524 a = s->anchor.ptr; 6525 log = s->log; 6526 } else if (s == NULL) 6527 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6528 &a, &ruleset, inp); 6529 break; 6530 } 6531 6532 done: 6533 PF_RULES_RUNLOCK(); 6534 if (n != m) { 6535 m_freem(n); 6536 n = NULL; 6537 } 6538 6539 /* handle dangerous IPv6 extension headers. */ 6540 if (action == PF_PASS && rh_cnt && 6541 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6542 action = PF_DROP; 6543 REASON_SET(&reason, PFRES_IPOPTIONS); 6544 log = r->log; 6545 DPFPRINTF(PF_DEBUG_MISC, 6546 ("pf: dropping packet with dangerous v6 headers\n")); 6547 } 6548 6549 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6550 action = PF_DROP; 6551 REASON_SET(&reason, PFRES_MEMORY); 6552 } 6553 if (r->rtableid >= 0) 6554 M_SETFIB(m, r->rtableid); 6555 6556 if (r->scrub_flags & PFSTATE_SETPRIO) { 6557 if (pd.tos & IPTOS_LOWDELAY) 6558 pqid = 1; 6559 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6560 action = PF_DROP; 6561 REASON_SET(&reason, PFRES_MEMORY); 6562 log = 1; 6563 DPFPRINTF(PF_DEBUG_MISC, 6564 ("pf: failed to allocate 802.1q mtag\n")); 6565 } 6566 } 6567 6568 #ifdef ALTQ 6569 if (action == PF_PASS && r->qid) { 6570 if (pd.pf_mtag == NULL && 6571 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6572 action = PF_DROP; 6573 REASON_SET(&reason, PFRES_MEMORY); 6574 } else { 6575 if (s != NULL) 6576 pd.pf_mtag->qid_hash = pf_state_hash(s); 6577 if (pd.tos & IPTOS_LOWDELAY) 6578 pd.pf_mtag->qid = r->pqid; 6579 else 6580 pd.pf_mtag->qid = r->qid; 6581 /* Add hints for ecn. */ 6582 pd.pf_mtag->hdr = h; 6583 } 6584 } 6585 #endif /* ALTQ */ 6586 6587 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6588 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6589 (s->nat_rule.ptr->action == PF_RDR || 6590 s->nat_rule.ptr->action == PF_BINAT) && 6591 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6592 m->m_flags |= M_SKIP_FIREWALL; 6593 6594 /* XXX: Anybody working on it?! */ 6595 if (r->divert.port) 6596 printf("pf: divert(9) is not supported for IPv6\n"); 6597 6598 if (log) { 6599 struct pf_rule *lr; 6600 6601 if (s != NULL && s->nat_rule.ptr != NULL && 6602 s->nat_rule.ptr->log & PF_LOG_ALL) 6603 lr = s->nat_rule.ptr; 6604 else 6605 lr = r; 6606 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6607 &pd, (s == NULL)); 6608 } 6609 6610 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6611 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6612 6613 if (action == PF_PASS || r->action == PF_DROP) { 6614 dirndx = (dir == PF_OUT); 6615 r->packets[dirndx]++; 6616 r->bytes[dirndx] += pd.tot_len; 6617 if (a != NULL) { 6618 a->packets[dirndx]++; 6619 a->bytes[dirndx] += pd.tot_len; 6620 } 6621 if (s != NULL) { 6622 if (s->nat_rule.ptr != NULL) { 6623 s->nat_rule.ptr->packets[dirndx]++; 6624 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6625 } 6626 if (s->src_node != NULL) { 6627 s->src_node->packets[dirndx]++; 6628 s->src_node->bytes[dirndx] += pd.tot_len; 6629 } 6630 if (s->nat_src_node != NULL) { 6631 s->nat_src_node->packets[dirndx]++; 6632 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6633 } 6634 dirndx = (dir == s->direction) ? 0 : 1; 6635 s->packets[dirndx]++; 6636 s->bytes[dirndx] += pd.tot_len; 6637 } 6638 tr = r; 6639 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6640 if (nr != NULL && r == &V_pf_default_rule) 6641 tr = nr; 6642 if (tr->src.addr.type == PF_ADDR_TABLE) 6643 pfr_update_stats(tr->src.addr.p.tbl, 6644 (s == NULL) ? pd.src : 6645 &s->key[(s->direction == PF_IN)]->addr[0], 6646 pd.af, pd.tot_len, dir == PF_OUT, 6647 r->action == PF_PASS, tr->src.neg); 6648 if (tr->dst.addr.type == PF_ADDR_TABLE) 6649 pfr_update_stats(tr->dst.addr.p.tbl, 6650 (s == NULL) ? pd.dst : 6651 &s->key[(s->direction == PF_IN)]->addr[1], 6652 pd.af, pd.tot_len, dir == PF_OUT, 6653 r->action == PF_PASS, tr->dst.neg); 6654 } 6655 6656 switch (action) { 6657 case PF_SYNPROXY_DROP: 6658 m_freem(*m0); 6659 case PF_DEFER: 6660 *m0 = NULL; 6661 action = PF_PASS; 6662 break; 6663 case PF_DROP: 6664 m_freem(*m0); 6665 *m0 = NULL; 6666 break; 6667 default: 6668 /* pf_route6() returns unlocked. */ 6669 if (r->rt) { 6670 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6671 return (action); 6672 } 6673 break; 6674 } 6675 6676 if (s) 6677 PF_STATE_UNLOCK(s); 6678 6679 /* If reassembled packet passed, create new fragments. */ 6680 if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && 6681 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6682 action = pf_refragment6(ifp, m0, mtag); 6683 6684 return (action); 6685 } 6686 #endif /* INET6 */ 6687