1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_bpf.h" 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_pf.h" 47 #include "opt_sctp.h" 48 49 #include <sys/param.h> 50 #include <sys/bus.h> 51 #include <sys/endian.h> 52 #include <sys/gsb_crc32.h> 53 #include <sys/hash.h> 54 #include <sys/interrupt.h> 55 #include <sys/kernel.h> 56 #include <sys/kthread.h> 57 #include <sys/limits.h> 58 #include <sys/mbuf.h> 59 #include <sys/md5.h> 60 #include <sys/random.h> 61 #include <sys/refcount.h> 62 #include <sys/sdt.h> 63 #include <sys/socket.h> 64 #include <sys/sysctl.h> 65 #include <sys/taskqueue.h> 66 #include <sys/ucred.h> 67 68 #include <net/if.h> 69 #include <net/if_var.h> 70 #include <net/if_types.h> 71 #include <net/if_vlan_var.h> 72 #include <net/route.h> 73 #include <net/route/nhop.h> 74 #include <net/vnet.h> 75 76 #include <net/pfil.h> 77 #include <net/pfvar.h> 78 #include <net/if_pflog.h> 79 #include <net/if_pfsync.h> 80 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_var.h> 83 #include <netinet/in_fib.h> 84 #include <netinet/ip.h> 85 #include <netinet/ip_fw.h> 86 #include <netinet/ip_icmp.h> 87 #include <netinet/icmp_var.h> 88 #include <netinet/ip_var.h> 89 #include <netinet/tcp.h> 90 #include <netinet/tcp_fsm.h> 91 #include <netinet/tcp_seq.h> 92 #include <netinet/tcp_timer.h> 93 #include <netinet/tcp_var.h> 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 97 #ifdef INET6 98 #include <netinet/ip6.h> 99 #include <netinet/icmp6.h> 100 #include <netinet6/nd6.h> 101 #include <netinet6/ip6_var.h> 102 #include <netinet6/in6_pcb.h> 103 #include <netinet6/in6_fib.h> 104 #include <netinet6/scope6_var.h> 105 #endif /* INET6 */ 106 107 #if defined(SCTP) || defined(SCTP_SUPPORT) 108 #include <netinet/sctp_crc32.h> 109 #endif 110 111 #include <machine/in_cksum.h> 112 #include <security/mac/mac_framework.h> 113 114 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 115 116 SDT_PROVIDER_DEFINE(pf); 117 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 118 "struct pf_kstate *"); 119 SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", 120 "struct pf_kstate *"); 121 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 122 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 123 "struct pf_kstate *"); 124 125 /* 126 * Global variables 127 */ 128 129 /* state tables */ 130 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 131 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 132 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 133 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 134 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 135 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 136 VNET_DEFINE(struct pf_kstatus, pf_status); 137 138 VNET_DEFINE(u_int32_t, ticket_altqs_active); 139 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 140 VNET_DEFINE(int, altqs_inactive_open); 141 VNET_DEFINE(u_int32_t, ticket_pabuf); 142 143 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 144 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 145 VNET_DEFINE(u_char, pf_tcp_secret[16]); 146 #define V_pf_tcp_secret VNET(pf_tcp_secret) 147 VNET_DEFINE(int, pf_tcp_secret_init); 148 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 149 VNET_DEFINE(int, pf_tcp_iss_off); 150 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 151 VNET_DECLARE(int, pf_vnet_active); 152 #define V_pf_vnet_active VNET(pf_vnet_active) 153 154 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 155 #define V_pf_purge_idx VNET(pf_purge_idx) 156 157 #ifdef PF_WANT_32_TO_64_COUNTER 158 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 159 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 160 161 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 162 VNET_DEFINE(size_t, pf_allrulecount); 163 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 164 #endif 165 166 /* 167 * Queue for pf_intr() sends. 168 */ 169 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 170 struct pf_send_entry { 171 STAILQ_ENTRY(pf_send_entry) pfse_next; 172 struct mbuf *pfse_m; 173 enum { 174 PFSE_IP, 175 PFSE_IP6, 176 PFSE_ICMP, 177 PFSE_ICMP6, 178 } pfse_type; 179 struct { 180 int type; 181 int code; 182 int mtu; 183 } icmpopts; 184 }; 185 186 STAILQ_HEAD(pf_send_head, pf_send_entry); 187 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 188 #define V_pf_sendqueue VNET(pf_sendqueue) 189 190 static struct mtx_padalign pf_sendqueue_mtx; 191 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 192 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 193 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 194 195 /* 196 * Queue for pf_overload_task() tasks. 197 */ 198 struct pf_overload_entry { 199 SLIST_ENTRY(pf_overload_entry) next; 200 struct pf_addr addr; 201 sa_family_t af; 202 uint8_t dir; 203 struct pf_krule *rule; 204 }; 205 206 SLIST_HEAD(pf_overload_head, pf_overload_entry); 207 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 208 #define V_pf_overloadqueue VNET(pf_overloadqueue) 209 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 210 #define V_pf_overloadtask VNET(pf_overloadtask) 211 212 static struct mtx_padalign pf_overloadqueue_mtx; 213 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 214 "pf overload/flush queue", MTX_DEF); 215 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 216 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 217 218 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 219 struct mtx_padalign pf_unlnkdrules_mtx; 220 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 221 MTX_DEF); 222 223 struct mtx_padalign pf_table_stats_lock; 224 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 225 MTX_DEF); 226 227 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 228 #define V_pf_sources_z VNET(pf_sources_z) 229 uma_zone_t pf_mtag_z; 230 VNET_DEFINE(uma_zone_t, pf_state_z); 231 VNET_DEFINE(uma_zone_t, pf_state_key_z); 232 233 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 234 #define PFID_CPUBITS 8 235 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 236 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 237 #define PFID_MAXID (~PFID_CPUMASK) 238 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 239 240 static void pf_src_tree_remove_state(struct pf_kstate *); 241 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 242 u_int32_t); 243 static void pf_add_threshold(struct pf_threshold *); 244 static int pf_check_threshold(struct pf_threshold *); 245 246 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 247 u_int16_t *, u_int16_t *, struct pf_addr *, 248 u_int16_t, u_int8_t, sa_family_t); 249 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 250 struct tcphdr *, struct pf_state_peer *); 251 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 252 struct pf_addr *, struct pf_addr *, u_int16_t, 253 u_int16_t *, u_int16_t *, u_int16_t *, 254 u_int16_t *, u_int8_t, sa_family_t); 255 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 256 sa_family_t, struct pf_krule *); 257 static void pf_detach_state(struct pf_kstate *); 258 static int pf_state_key_attach(struct pf_state_key *, 259 struct pf_state_key *, struct pf_kstate *); 260 static void pf_state_key_detach(struct pf_kstate *, int); 261 static int pf_state_key_ctor(void *, int, void *, int); 262 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 263 void pf_rule_to_actions(struct pf_krule *, 264 struct pf_rule_actions *); 265 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 266 int, struct pfi_kkif *, struct mbuf *, int, 267 struct pf_pdesc *, struct pf_krule **, 268 struct pf_kruleset **, struct inpcb *); 269 static int pf_create_state(struct pf_krule *, struct pf_krule *, 270 struct pf_krule *, struct pf_pdesc *, 271 struct pf_ksrc_node *, struct pf_state_key *, 272 struct pf_state_key *, struct mbuf *, int, 273 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 274 struct pf_kstate **, int, u_int16_t, u_int16_t, 275 int); 276 static int pf_test_fragment(struct pf_krule **, int, 277 struct pfi_kkif *, struct mbuf *, void *, 278 struct pf_pdesc *, struct pf_krule **, 279 struct pf_kruleset **); 280 static int pf_tcp_track_full(struct pf_kstate **, 281 struct pfi_kkif *, struct mbuf *, int, 282 struct pf_pdesc *, u_short *, int *); 283 static int pf_tcp_track_sloppy(struct pf_kstate **, 284 struct pf_pdesc *, u_short *); 285 static int pf_test_state_tcp(struct pf_kstate **, int, 286 struct pfi_kkif *, struct mbuf *, int, 287 void *, struct pf_pdesc *, u_short *); 288 static int pf_test_state_udp(struct pf_kstate **, int, 289 struct pfi_kkif *, struct mbuf *, int, 290 void *, struct pf_pdesc *); 291 static int pf_test_state_icmp(struct pf_kstate **, int, 292 struct pfi_kkif *, struct mbuf *, int, 293 void *, struct pf_pdesc *, u_short *); 294 static int pf_test_state_other(struct pf_kstate **, int, 295 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 296 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 297 int, u_int16_t); 298 static int pf_check_proto_cksum(struct mbuf *, int, int, 299 u_int8_t, sa_family_t); 300 static void pf_print_state_parts(struct pf_kstate *, 301 struct pf_state_key *, struct pf_state_key *); 302 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 303 struct pf_addr_wrap *); 304 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 305 bool, u_int8_t); 306 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 307 struct pf_state_key_cmp *, u_int); 308 static int pf_src_connlimit(struct pf_kstate **); 309 static void pf_overload_task(void *v, int pending); 310 static int pf_insert_src_node(struct pf_ksrc_node **, 311 struct pf_krule *, struct pf_addr *, sa_family_t); 312 static u_int pf_purge_expired_states(u_int, int); 313 static void pf_purge_unlinked_rules(void); 314 static int pf_mtag_uminit(void *, int, int); 315 static void pf_mtag_free(struct m_tag *); 316 #ifdef INET 317 static void pf_route(struct mbuf **, struct pf_krule *, int, 318 struct ifnet *, struct pf_kstate *, 319 struct pf_pdesc *, struct inpcb *); 320 #endif /* INET */ 321 #ifdef INET6 322 static void pf_change_a6(struct pf_addr *, u_int16_t *, 323 struct pf_addr *, u_int8_t); 324 static void pf_route6(struct mbuf **, struct pf_krule *, int, 325 struct ifnet *, struct pf_kstate *, 326 struct pf_pdesc *, struct inpcb *); 327 #endif /* INET6 */ 328 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 329 330 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 331 332 extern int pf_end_threads; 333 extern struct proc *pf_purge_proc; 334 335 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 336 337 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 338 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 339 340 #define STATE_LOOKUP(i, k, d, s, pd) \ 341 do { \ 342 (s) = pf_find_state((i), (k), (d)); \ 343 SDT_PROBE5(pf, ip, state, lookup, i, k, d, pd, (s)); \ 344 if ((s) == NULL) \ 345 return (PF_DROP); \ 346 if (PACKET_LOOPED(pd)) \ 347 return (PF_PASS); \ 348 } while (0) 349 350 #define BOUND_IFACE(r, k) \ 351 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 352 353 #define STATE_INC_COUNTERS(s) \ 354 do { \ 355 counter_u64_add(s->rule.ptr->states_cur, 1); \ 356 counter_u64_add(s->rule.ptr->states_tot, 1); \ 357 if (s->anchor.ptr != NULL) { \ 358 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 359 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 360 } \ 361 if (s->nat_rule.ptr != NULL) { \ 362 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 363 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 364 } \ 365 } while (0) 366 367 #define STATE_DEC_COUNTERS(s) \ 368 do { \ 369 if (s->nat_rule.ptr != NULL) \ 370 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 371 if (s->anchor.ptr != NULL) \ 372 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 373 counter_u64_add(s->rule.ptr->states_cur, -1); \ 374 } while (0) 375 376 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 377 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 378 VNET_DEFINE(struct pf_idhash *, pf_idhash); 379 VNET_DEFINE(struct pf_srchash *, pf_srchash); 380 381 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 382 "pf(4)"); 383 384 u_long pf_hashmask; 385 u_long pf_srchashmask; 386 static u_long pf_hashsize; 387 static u_long pf_srchashsize; 388 u_long pf_ioctl_maxcount = 65535; 389 390 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 391 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 392 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 393 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 394 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 395 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 396 397 VNET_DEFINE(void *, pf_swi_cookie); 398 VNET_DEFINE(struct intr_event *, pf_swi_ie); 399 400 VNET_DEFINE(uint32_t, pf_hashseed); 401 #define V_pf_hashseed VNET(pf_hashseed) 402 403 int 404 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 405 { 406 407 switch (af) { 408 #ifdef INET 409 case AF_INET: 410 if (a->addr32[0] > b->addr32[0]) 411 return (1); 412 if (a->addr32[0] < b->addr32[0]) 413 return (-1); 414 break; 415 #endif /* INET */ 416 #ifdef INET6 417 case AF_INET6: 418 if (a->addr32[3] > b->addr32[3]) 419 return (1); 420 if (a->addr32[3] < b->addr32[3]) 421 return (-1); 422 if (a->addr32[2] > b->addr32[2]) 423 return (1); 424 if (a->addr32[2] < b->addr32[2]) 425 return (-1); 426 if (a->addr32[1] > b->addr32[1]) 427 return (1); 428 if (a->addr32[1] < b->addr32[1]) 429 return (-1); 430 if (a->addr32[0] > b->addr32[0]) 431 return (1); 432 if (a->addr32[0] < b->addr32[0]) 433 return (-1); 434 break; 435 #endif /* INET6 */ 436 default: 437 panic("%s: unknown address family %u", __func__, af); 438 } 439 return (0); 440 } 441 442 static __inline uint32_t 443 pf_hashkey(struct pf_state_key *sk) 444 { 445 uint32_t h; 446 447 h = murmur3_32_hash32((uint32_t *)sk, 448 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 449 V_pf_hashseed); 450 451 return (h & pf_hashmask); 452 } 453 454 static __inline uint32_t 455 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 456 { 457 uint32_t h; 458 459 switch (af) { 460 case AF_INET: 461 h = murmur3_32_hash32((uint32_t *)&addr->v4, 462 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 463 break; 464 case AF_INET6: 465 h = murmur3_32_hash32((uint32_t *)&addr->v6, 466 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 467 break; 468 default: 469 panic("%s: unknown address family %u", __func__, af); 470 } 471 472 return (h & pf_srchashmask); 473 } 474 475 #ifdef ALTQ 476 static int 477 pf_state_hash(struct pf_kstate *s) 478 { 479 u_int32_t hv = (intptr_t)s / sizeof(*s); 480 481 hv ^= crc32(&s->src, sizeof(s->src)); 482 hv ^= crc32(&s->dst, sizeof(s->dst)); 483 if (hv == 0) 484 hv = 1; 485 return (hv); 486 } 487 #endif 488 489 static __inline void 490 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 491 { 492 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 493 s->dst.state = newstate; 494 if (which == PF_PEER_DST) 495 return; 496 497 s->src.state = newstate; 498 } 499 500 #ifdef INET6 501 void 502 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 503 { 504 switch (af) { 505 #ifdef INET 506 case AF_INET: 507 dst->addr32[0] = src->addr32[0]; 508 break; 509 #endif /* INET */ 510 case AF_INET6: 511 dst->addr32[0] = src->addr32[0]; 512 dst->addr32[1] = src->addr32[1]; 513 dst->addr32[2] = src->addr32[2]; 514 dst->addr32[3] = src->addr32[3]; 515 break; 516 } 517 } 518 #endif /* INET6 */ 519 520 static void 521 pf_init_threshold(struct pf_threshold *threshold, 522 u_int32_t limit, u_int32_t seconds) 523 { 524 threshold->limit = limit * PF_THRESHOLD_MULT; 525 threshold->seconds = seconds; 526 threshold->count = 0; 527 threshold->last = time_uptime; 528 } 529 530 static void 531 pf_add_threshold(struct pf_threshold *threshold) 532 { 533 u_int32_t t = time_uptime, diff = t - threshold->last; 534 535 if (diff >= threshold->seconds) 536 threshold->count = 0; 537 else 538 threshold->count -= threshold->count * diff / 539 threshold->seconds; 540 threshold->count += PF_THRESHOLD_MULT; 541 threshold->last = t; 542 } 543 544 static int 545 pf_check_threshold(struct pf_threshold *threshold) 546 { 547 return (threshold->count > threshold->limit); 548 } 549 550 static int 551 pf_src_connlimit(struct pf_kstate **state) 552 { 553 struct pf_overload_entry *pfoe; 554 int bad = 0; 555 556 PF_STATE_LOCK_ASSERT(*state); 557 558 (*state)->src_node->conn++; 559 (*state)->src.tcp_est = 1; 560 pf_add_threshold(&(*state)->src_node->conn_rate); 561 562 if ((*state)->rule.ptr->max_src_conn && 563 (*state)->rule.ptr->max_src_conn < 564 (*state)->src_node->conn) { 565 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 566 bad++; 567 } 568 569 if ((*state)->rule.ptr->max_src_conn_rate.limit && 570 pf_check_threshold(&(*state)->src_node->conn_rate)) { 571 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 572 bad++; 573 } 574 575 if (!bad) 576 return (0); 577 578 /* Kill this state. */ 579 (*state)->timeout = PFTM_PURGE; 580 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 581 582 if ((*state)->rule.ptr->overload_tbl == NULL) 583 return (1); 584 585 /* Schedule overloading and flushing task. */ 586 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 587 if (pfoe == NULL) 588 return (1); /* too bad :( */ 589 590 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 591 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 592 pfoe->rule = (*state)->rule.ptr; 593 pfoe->dir = (*state)->direction; 594 PF_OVERLOADQ_LOCK(); 595 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 596 PF_OVERLOADQ_UNLOCK(); 597 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 598 599 return (1); 600 } 601 602 static void 603 pf_overload_task(void *v, int pending) 604 { 605 struct pf_overload_head queue; 606 struct pfr_addr p; 607 struct pf_overload_entry *pfoe, *pfoe1; 608 uint32_t killed = 0; 609 610 CURVNET_SET((struct vnet *)v); 611 612 PF_OVERLOADQ_LOCK(); 613 queue = V_pf_overloadqueue; 614 SLIST_INIT(&V_pf_overloadqueue); 615 PF_OVERLOADQ_UNLOCK(); 616 617 bzero(&p, sizeof(p)); 618 SLIST_FOREACH(pfoe, &queue, next) { 619 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 620 if (V_pf_status.debug >= PF_DEBUG_MISC) { 621 printf("%s: blocking address ", __func__); 622 pf_print_host(&pfoe->addr, 0, pfoe->af); 623 printf("\n"); 624 } 625 626 p.pfra_af = pfoe->af; 627 switch (pfoe->af) { 628 #ifdef INET 629 case AF_INET: 630 p.pfra_net = 32; 631 p.pfra_ip4addr = pfoe->addr.v4; 632 break; 633 #endif 634 #ifdef INET6 635 case AF_INET6: 636 p.pfra_net = 128; 637 p.pfra_ip6addr = pfoe->addr.v6; 638 break; 639 #endif 640 } 641 642 PF_RULES_WLOCK(); 643 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 644 PF_RULES_WUNLOCK(); 645 } 646 647 /* 648 * Remove those entries, that don't need flushing. 649 */ 650 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 651 if (pfoe->rule->flush == 0) { 652 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 653 free(pfoe, M_PFTEMP); 654 } else 655 counter_u64_add( 656 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 657 658 /* If nothing to flush, return. */ 659 if (SLIST_EMPTY(&queue)) { 660 CURVNET_RESTORE(); 661 return; 662 } 663 664 for (int i = 0; i <= pf_hashmask; i++) { 665 struct pf_idhash *ih = &V_pf_idhash[i]; 666 struct pf_state_key *sk; 667 struct pf_kstate *s; 668 669 PF_HASHROW_LOCK(ih); 670 LIST_FOREACH(s, &ih->states, entry) { 671 sk = s->key[PF_SK_WIRE]; 672 SLIST_FOREACH(pfoe, &queue, next) 673 if (sk->af == pfoe->af && 674 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 675 pfoe->rule == s->rule.ptr) && 676 ((pfoe->dir == PF_OUT && 677 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 678 (pfoe->dir == PF_IN && 679 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 680 s->timeout = PFTM_PURGE; 681 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 682 killed++; 683 } 684 } 685 PF_HASHROW_UNLOCK(ih); 686 } 687 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 688 free(pfoe, M_PFTEMP); 689 if (V_pf_status.debug >= PF_DEBUG_MISC) 690 printf("%s: %u states killed", __func__, killed); 691 692 CURVNET_RESTORE(); 693 } 694 695 /* 696 * Can return locked on failure, so that we can consistently 697 * allocate and insert a new one. 698 */ 699 struct pf_ksrc_node * 700 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 701 int returnlocked) 702 { 703 struct pf_srchash *sh; 704 struct pf_ksrc_node *n; 705 706 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 707 708 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 709 PF_HASHROW_LOCK(sh); 710 LIST_FOREACH(n, &sh->nodes, entry) 711 if (n->rule.ptr == rule && n->af == af && 712 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 713 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 714 break; 715 if (n != NULL) { 716 n->states++; 717 PF_HASHROW_UNLOCK(sh); 718 } else if (returnlocked == 0) 719 PF_HASHROW_UNLOCK(sh); 720 721 return (n); 722 } 723 724 static void 725 pf_free_src_node(struct pf_ksrc_node *sn) 726 { 727 728 for (int i = 0; i < 2; i++) { 729 counter_u64_free(sn->bytes[i]); 730 counter_u64_free(sn->packets[i]); 731 } 732 uma_zfree(V_pf_sources_z, sn); 733 } 734 735 static int 736 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 737 struct pf_addr *src, sa_family_t af) 738 { 739 740 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 741 rule->rpool.opts & PF_POOL_STICKYADDR), 742 ("%s for non-tracking rule %p", __func__, rule)); 743 744 if (*sn == NULL) 745 *sn = pf_find_src_node(src, rule, af, 1); 746 747 if (*sn == NULL) { 748 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 749 750 PF_HASHROW_ASSERT(sh); 751 752 if (!rule->max_src_nodes || 753 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 754 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 755 else 756 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 757 1); 758 if ((*sn) == NULL) { 759 PF_HASHROW_UNLOCK(sh); 760 return (-1); 761 } 762 763 for (int i = 0; i < 2; i++) { 764 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 765 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 766 767 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 768 pf_free_src_node(*sn); 769 PF_HASHROW_UNLOCK(sh); 770 return (-1); 771 } 772 } 773 774 pf_init_threshold(&(*sn)->conn_rate, 775 rule->max_src_conn_rate.limit, 776 rule->max_src_conn_rate.seconds); 777 778 (*sn)->af = af; 779 (*sn)->rule.ptr = rule; 780 PF_ACPY(&(*sn)->addr, src, af); 781 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 782 (*sn)->creation = time_uptime; 783 (*sn)->ruletype = rule->action; 784 (*sn)->states = 1; 785 if ((*sn)->rule.ptr != NULL) 786 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 787 PF_HASHROW_UNLOCK(sh); 788 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 789 } else { 790 if (rule->max_src_states && 791 (*sn)->states >= rule->max_src_states) { 792 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 793 1); 794 return (-1); 795 } 796 } 797 return (0); 798 } 799 800 void 801 pf_unlink_src_node(struct pf_ksrc_node *src) 802 { 803 804 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 805 LIST_REMOVE(src, entry); 806 if (src->rule.ptr) 807 counter_u64_add(src->rule.ptr->src_nodes, -1); 808 } 809 810 u_int 811 pf_free_src_nodes(struct pf_ksrc_node_list *head) 812 { 813 struct pf_ksrc_node *sn, *tmp; 814 u_int count = 0; 815 816 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 817 pf_free_src_node(sn); 818 count++; 819 } 820 821 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 822 823 return (count); 824 } 825 826 void 827 pf_mtag_initialize() 828 { 829 830 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 831 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 832 UMA_ALIGN_PTR, 0); 833 } 834 835 /* Per-vnet data storage structures initialization. */ 836 void 837 pf_initialize() 838 { 839 struct pf_keyhash *kh; 840 struct pf_idhash *ih; 841 struct pf_srchash *sh; 842 u_int i; 843 844 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 845 pf_hashsize = PF_HASHSIZ; 846 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 847 pf_srchashsize = PF_SRCHASHSIZ; 848 849 V_pf_hashseed = arc4random(); 850 851 /* States and state keys storage. */ 852 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 853 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 854 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 855 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 856 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 857 858 V_pf_state_key_z = uma_zcreate("pf state keys", 859 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 860 UMA_ALIGN_PTR, 0); 861 862 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 863 M_PFHASH, M_NOWAIT | M_ZERO); 864 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 865 M_PFHASH, M_NOWAIT | M_ZERO); 866 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 867 printf("pf: Unable to allocate memory for " 868 "state_hashsize %lu.\n", pf_hashsize); 869 870 free(V_pf_keyhash, M_PFHASH); 871 free(V_pf_idhash, M_PFHASH); 872 873 pf_hashsize = PF_HASHSIZ; 874 V_pf_keyhash = mallocarray(pf_hashsize, 875 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 876 V_pf_idhash = mallocarray(pf_hashsize, 877 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 878 } 879 880 pf_hashmask = pf_hashsize - 1; 881 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 882 i++, kh++, ih++) { 883 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 884 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 885 } 886 887 /* Source nodes. */ 888 V_pf_sources_z = uma_zcreate("pf source nodes", 889 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 890 0); 891 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 892 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 893 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 894 895 V_pf_srchash = mallocarray(pf_srchashsize, 896 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 897 if (V_pf_srchash == NULL) { 898 printf("pf: Unable to allocate memory for " 899 "source_hashsize %lu.\n", pf_srchashsize); 900 901 pf_srchashsize = PF_SRCHASHSIZ; 902 V_pf_srchash = mallocarray(pf_srchashsize, 903 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 904 } 905 906 pf_srchashmask = pf_srchashsize - 1; 907 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 908 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 909 910 /* ALTQ */ 911 TAILQ_INIT(&V_pf_altqs[0]); 912 TAILQ_INIT(&V_pf_altqs[1]); 913 TAILQ_INIT(&V_pf_altqs[2]); 914 TAILQ_INIT(&V_pf_altqs[3]); 915 TAILQ_INIT(&V_pf_pabuf); 916 V_pf_altqs_active = &V_pf_altqs[0]; 917 V_pf_altq_ifs_active = &V_pf_altqs[1]; 918 V_pf_altqs_inactive = &V_pf_altqs[2]; 919 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 920 921 /* Send & overload+flush queues. */ 922 STAILQ_INIT(&V_pf_sendqueue); 923 SLIST_INIT(&V_pf_overloadqueue); 924 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 925 926 /* Unlinked, but may be referenced rules. */ 927 TAILQ_INIT(&V_pf_unlinked_rules); 928 } 929 930 void 931 pf_mtag_cleanup() 932 { 933 934 uma_zdestroy(pf_mtag_z); 935 } 936 937 void 938 pf_cleanup() 939 { 940 struct pf_keyhash *kh; 941 struct pf_idhash *ih; 942 struct pf_srchash *sh; 943 struct pf_send_entry *pfse, *next; 944 u_int i; 945 946 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 947 i++, kh++, ih++) { 948 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 949 __func__)); 950 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 951 __func__)); 952 mtx_destroy(&kh->lock); 953 mtx_destroy(&ih->lock); 954 } 955 free(V_pf_keyhash, M_PFHASH); 956 free(V_pf_idhash, M_PFHASH); 957 958 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 959 KASSERT(LIST_EMPTY(&sh->nodes), 960 ("%s: source node hash not empty", __func__)); 961 mtx_destroy(&sh->lock); 962 } 963 free(V_pf_srchash, M_PFHASH); 964 965 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 966 m_freem(pfse->pfse_m); 967 free(pfse, M_PFTEMP); 968 } 969 970 uma_zdestroy(V_pf_sources_z); 971 uma_zdestroy(V_pf_state_z); 972 uma_zdestroy(V_pf_state_key_z); 973 } 974 975 static int 976 pf_mtag_uminit(void *mem, int size, int how) 977 { 978 struct m_tag *t; 979 980 t = (struct m_tag *)mem; 981 t->m_tag_cookie = MTAG_ABI_COMPAT; 982 t->m_tag_id = PACKET_TAG_PF; 983 t->m_tag_len = sizeof(struct pf_mtag); 984 t->m_tag_free = pf_mtag_free; 985 986 return (0); 987 } 988 989 static void 990 pf_mtag_free(struct m_tag *t) 991 { 992 993 uma_zfree(pf_mtag_z, t); 994 } 995 996 struct pf_mtag * 997 pf_get_mtag(struct mbuf *m) 998 { 999 struct m_tag *mtag; 1000 1001 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1002 return ((struct pf_mtag *)(mtag + 1)); 1003 1004 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1005 if (mtag == NULL) 1006 return (NULL); 1007 bzero(mtag + 1, sizeof(struct pf_mtag)); 1008 m_tag_prepend(m, mtag); 1009 1010 return ((struct pf_mtag *)(mtag + 1)); 1011 } 1012 1013 static int 1014 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1015 struct pf_kstate *s) 1016 { 1017 struct pf_keyhash *khs, *khw, *kh; 1018 struct pf_state_key *sk, *cur; 1019 struct pf_kstate *si, *olds = NULL; 1020 int idx; 1021 1022 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1023 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1024 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1025 1026 /* 1027 * We need to lock hash slots of both keys. To avoid deadlock 1028 * we always lock the slot with lower address first. Unlock order 1029 * isn't important. 1030 * 1031 * We also need to lock ID hash slot before dropping key 1032 * locks. On success we return with ID hash slot locked. 1033 */ 1034 1035 if (skw == sks) { 1036 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1037 PF_HASHROW_LOCK(khs); 1038 } else { 1039 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1040 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1041 if (khs == khw) { 1042 PF_HASHROW_LOCK(khs); 1043 } else if (khs < khw) { 1044 PF_HASHROW_LOCK(khs); 1045 PF_HASHROW_LOCK(khw); 1046 } else { 1047 PF_HASHROW_LOCK(khw); 1048 PF_HASHROW_LOCK(khs); 1049 } 1050 } 1051 1052 #define KEYS_UNLOCK() do { \ 1053 if (khs != khw) { \ 1054 PF_HASHROW_UNLOCK(khs); \ 1055 PF_HASHROW_UNLOCK(khw); \ 1056 } else \ 1057 PF_HASHROW_UNLOCK(khs); \ 1058 } while (0) 1059 1060 /* 1061 * First run: start with wire key. 1062 */ 1063 sk = skw; 1064 kh = khw; 1065 idx = PF_SK_WIRE; 1066 1067 MPASS(s->lock == NULL); 1068 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1069 1070 keyattach: 1071 LIST_FOREACH(cur, &kh->keys, entry) 1072 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1073 break; 1074 1075 if (cur != NULL) { 1076 /* Key exists. Check for same kif, if none, add to key. */ 1077 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1078 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1079 1080 PF_HASHROW_LOCK(ih); 1081 if (si->kif == s->kif && 1082 si->direction == s->direction) { 1083 if (sk->proto == IPPROTO_TCP && 1084 si->src.state >= TCPS_FIN_WAIT_2 && 1085 si->dst.state >= TCPS_FIN_WAIT_2) { 1086 /* 1087 * New state matches an old >FIN_WAIT_2 1088 * state. We can't drop key hash locks, 1089 * thus we can't unlink it properly. 1090 * 1091 * As a workaround we drop it into 1092 * TCPS_CLOSED state, schedule purge 1093 * ASAP and push it into the very end 1094 * of the slot TAILQ, so that it won't 1095 * conflict with our new state. 1096 */ 1097 pf_set_protostate(si, PF_PEER_BOTH, 1098 TCPS_CLOSED); 1099 si->timeout = PFTM_PURGE; 1100 olds = si; 1101 } else { 1102 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1103 printf("pf: %s key attach " 1104 "failed on %s: ", 1105 (idx == PF_SK_WIRE) ? 1106 "wire" : "stack", 1107 s->kif->pfik_name); 1108 pf_print_state_parts(s, 1109 (idx == PF_SK_WIRE) ? 1110 sk : NULL, 1111 (idx == PF_SK_STACK) ? 1112 sk : NULL); 1113 printf(", existing: "); 1114 pf_print_state_parts(si, 1115 (idx == PF_SK_WIRE) ? 1116 sk : NULL, 1117 (idx == PF_SK_STACK) ? 1118 sk : NULL); 1119 printf("\n"); 1120 } 1121 PF_HASHROW_UNLOCK(ih); 1122 KEYS_UNLOCK(); 1123 uma_zfree(V_pf_state_key_z, sk); 1124 if (idx == PF_SK_STACK) 1125 pf_detach_state(s); 1126 return (EEXIST); /* collision! */ 1127 } 1128 } 1129 PF_HASHROW_UNLOCK(ih); 1130 } 1131 uma_zfree(V_pf_state_key_z, sk); 1132 s->key[idx] = cur; 1133 } else { 1134 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1135 s->key[idx] = sk; 1136 } 1137 1138 stateattach: 1139 /* List is sorted, if-bound states before floating. */ 1140 if (s->kif == V_pfi_all) 1141 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1142 else 1143 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1144 1145 if (olds) { 1146 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1147 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1148 key_list[idx]); 1149 olds = NULL; 1150 } 1151 1152 /* 1153 * Attach done. See how should we (or should not?) 1154 * attach a second key. 1155 */ 1156 if (sks == skw) { 1157 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1158 idx = PF_SK_STACK; 1159 sks = NULL; 1160 goto stateattach; 1161 } else if (sks != NULL) { 1162 /* 1163 * Continue attaching with stack key. 1164 */ 1165 sk = sks; 1166 kh = khs; 1167 idx = PF_SK_STACK; 1168 sks = NULL; 1169 goto keyattach; 1170 } 1171 1172 PF_STATE_LOCK(s); 1173 KEYS_UNLOCK(); 1174 1175 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1176 ("%s failure", __func__)); 1177 1178 return (0); 1179 #undef KEYS_UNLOCK 1180 } 1181 1182 static void 1183 pf_detach_state(struct pf_kstate *s) 1184 { 1185 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1186 struct pf_keyhash *kh; 1187 1188 if (sks != NULL) { 1189 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1190 PF_HASHROW_LOCK(kh); 1191 if (s->key[PF_SK_STACK] != NULL) 1192 pf_state_key_detach(s, PF_SK_STACK); 1193 /* 1194 * If both point to same key, then we are done. 1195 */ 1196 if (sks == s->key[PF_SK_WIRE]) { 1197 pf_state_key_detach(s, PF_SK_WIRE); 1198 PF_HASHROW_UNLOCK(kh); 1199 return; 1200 } 1201 PF_HASHROW_UNLOCK(kh); 1202 } 1203 1204 if (s->key[PF_SK_WIRE] != NULL) { 1205 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1206 PF_HASHROW_LOCK(kh); 1207 if (s->key[PF_SK_WIRE] != NULL) 1208 pf_state_key_detach(s, PF_SK_WIRE); 1209 PF_HASHROW_UNLOCK(kh); 1210 } 1211 } 1212 1213 static void 1214 pf_state_key_detach(struct pf_kstate *s, int idx) 1215 { 1216 struct pf_state_key *sk = s->key[idx]; 1217 #ifdef INVARIANTS 1218 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1219 1220 PF_HASHROW_ASSERT(kh); 1221 #endif 1222 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1223 s->key[idx] = NULL; 1224 1225 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1226 LIST_REMOVE(sk, entry); 1227 uma_zfree(V_pf_state_key_z, sk); 1228 } 1229 } 1230 1231 static int 1232 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1233 { 1234 struct pf_state_key *sk = mem; 1235 1236 bzero(sk, sizeof(struct pf_state_key_cmp)); 1237 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1238 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1239 1240 return (0); 1241 } 1242 1243 struct pf_state_key * 1244 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1245 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1246 { 1247 struct pf_state_key *sk; 1248 1249 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1250 if (sk == NULL) 1251 return (NULL); 1252 1253 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1254 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1255 sk->port[pd->sidx] = sport; 1256 sk->port[pd->didx] = dport; 1257 sk->proto = pd->proto; 1258 sk->af = pd->af; 1259 1260 return (sk); 1261 } 1262 1263 struct pf_state_key * 1264 pf_state_key_clone(struct pf_state_key *orig) 1265 { 1266 struct pf_state_key *sk; 1267 1268 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1269 if (sk == NULL) 1270 return (NULL); 1271 1272 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1273 1274 return (sk); 1275 } 1276 1277 int 1278 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1279 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1280 { 1281 struct pf_idhash *ih; 1282 struct pf_kstate *cur; 1283 int error; 1284 1285 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1286 ("%s: sks not pristine", __func__)); 1287 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1288 ("%s: skw not pristine", __func__)); 1289 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1290 1291 s->kif = kif; 1292 s->orig_kif = orig_kif; 1293 1294 if (s->id == 0 && s->creatorid == 0) { 1295 /* XXX: should be atomic, but probability of collision low */ 1296 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1297 V_pf_stateid[curcpu] = 1; 1298 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1299 s->id = htobe64(s->id); 1300 s->creatorid = V_pf_status.hostid; 1301 } 1302 1303 /* Returns with ID locked on success. */ 1304 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1305 return (error); 1306 1307 ih = &V_pf_idhash[PF_IDHASH(s)]; 1308 PF_HASHROW_ASSERT(ih); 1309 LIST_FOREACH(cur, &ih->states, entry) 1310 if (cur->id == s->id && cur->creatorid == s->creatorid) 1311 break; 1312 1313 if (cur != NULL) { 1314 PF_HASHROW_UNLOCK(ih); 1315 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1316 printf("pf: state ID collision: " 1317 "id: %016llx creatorid: %08x\n", 1318 (unsigned long long)be64toh(s->id), 1319 ntohl(s->creatorid)); 1320 } 1321 pf_detach_state(s); 1322 return (EEXIST); 1323 } 1324 LIST_INSERT_HEAD(&ih->states, s, entry); 1325 /* One for keys, one for ID hash. */ 1326 refcount_init(&s->refs, 2); 1327 1328 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1329 if (V_pfsync_insert_state_ptr != NULL) 1330 V_pfsync_insert_state_ptr(s); 1331 1332 /* Returns locked. */ 1333 return (0); 1334 } 1335 1336 /* 1337 * Find state by ID: returns with locked row on success. 1338 */ 1339 struct pf_kstate * 1340 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1341 { 1342 struct pf_idhash *ih; 1343 struct pf_kstate *s; 1344 1345 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1346 1347 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1348 1349 PF_HASHROW_LOCK(ih); 1350 LIST_FOREACH(s, &ih->states, entry) 1351 if (s->id == id && s->creatorid == creatorid) 1352 break; 1353 1354 if (s == NULL) 1355 PF_HASHROW_UNLOCK(ih); 1356 1357 return (s); 1358 } 1359 1360 /* 1361 * Find state by key. 1362 * Returns with ID hash slot locked on success. 1363 */ 1364 static struct pf_kstate * 1365 pf_find_state(struct pfi_kkif *kif, struct pf_state_key_cmp *key, u_int dir) 1366 { 1367 struct pf_keyhash *kh; 1368 struct pf_state_key *sk; 1369 struct pf_kstate *s; 1370 int idx; 1371 1372 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1373 1374 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1375 1376 PF_HASHROW_LOCK(kh); 1377 LIST_FOREACH(sk, &kh->keys, entry) 1378 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1379 break; 1380 if (sk == NULL) { 1381 PF_HASHROW_UNLOCK(kh); 1382 return (NULL); 1383 } 1384 1385 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1386 1387 /* List is sorted, if-bound states before floating ones. */ 1388 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1389 if (s->kif == V_pfi_all || s->kif == kif) { 1390 PF_STATE_LOCK(s); 1391 PF_HASHROW_UNLOCK(kh); 1392 if (__predict_false(s->timeout >= PFTM_MAX)) { 1393 /* 1394 * State is either being processed by 1395 * pf_unlink_state() in an other thread, or 1396 * is scheduled for immediate expiry. 1397 */ 1398 PF_STATE_UNLOCK(s); 1399 return (NULL); 1400 } 1401 return (s); 1402 } 1403 PF_HASHROW_UNLOCK(kh); 1404 1405 return (NULL); 1406 } 1407 1408 struct pf_kstate * 1409 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1410 { 1411 struct pf_keyhash *kh; 1412 struct pf_state_key *sk; 1413 struct pf_kstate *s, *ret = NULL; 1414 int idx, inout = 0; 1415 1416 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1417 1418 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1419 1420 PF_HASHROW_LOCK(kh); 1421 LIST_FOREACH(sk, &kh->keys, entry) 1422 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1423 break; 1424 if (sk == NULL) { 1425 PF_HASHROW_UNLOCK(kh); 1426 return (NULL); 1427 } 1428 switch (dir) { 1429 case PF_IN: 1430 idx = PF_SK_WIRE; 1431 break; 1432 case PF_OUT: 1433 idx = PF_SK_STACK; 1434 break; 1435 case PF_INOUT: 1436 idx = PF_SK_WIRE; 1437 inout = 1; 1438 break; 1439 default: 1440 panic("%s: dir %u", __func__, dir); 1441 } 1442 second_run: 1443 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1444 if (more == NULL) { 1445 PF_HASHROW_UNLOCK(kh); 1446 return (s); 1447 } 1448 1449 if (ret) 1450 (*more)++; 1451 else 1452 ret = s; 1453 } 1454 if (inout == 1) { 1455 inout = 0; 1456 idx = PF_SK_STACK; 1457 goto second_run; 1458 } 1459 PF_HASHROW_UNLOCK(kh); 1460 1461 return (ret); 1462 } 1463 1464 bool 1465 pf_find_state_all_exists(struct pf_state_key_cmp *key, u_int dir) 1466 { 1467 struct pf_kstate *s; 1468 1469 s = pf_find_state_all(key, dir, NULL); 1470 return (s != NULL); 1471 } 1472 1473 /* END state table stuff */ 1474 1475 static void 1476 pf_send(struct pf_send_entry *pfse) 1477 { 1478 1479 PF_SENDQ_LOCK(); 1480 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1481 PF_SENDQ_UNLOCK(); 1482 swi_sched(V_pf_swi_cookie, 0); 1483 } 1484 1485 void 1486 pf_intr(void *v) 1487 { 1488 struct epoch_tracker et; 1489 struct pf_send_head queue; 1490 struct pf_send_entry *pfse, *next; 1491 1492 CURVNET_SET((struct vnet *)v); 1493 1494 PF_SENDQ_LOCK(); 1495 queue = V_pf_sendqueue; 1496 STAILQ_INIT(&V_pf_sendqueue); 1497 PF_SENDQ_UNLOCK(); 1498 1499 NET_EPOCH_ENTER(et); 1500 1501 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1502 switch (pfse->pfse_type) { 1503 #ifdef INET 1504 case PFSE_IP: 1505 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1506 break; 1507 case PFSE_ICMP: 1508 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1509 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1510 break; 1511 #endif /* INET */ 1512 #ifdef INET6 1513 case PFSE_IP6: 1514 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1515 NULL); 1516 break; 1517 case PFSE_ICMP6: 1518 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1519 pfse->icmpopts.code, pfse->icmpopts.mtu); 1520 break; 1521 #endif /* INET6 */ 1522 default: 1523 panic("%s: unknown type", __func__); 1524 } 1525 free(pfse, M_PFTEMP); 1526 } 1527 NET_EPOCH_EXIT(et); 1528 CURVNET_RESTORE(); 1529 } 1530 1531 #define pf_purge_thread_period (hz / 10) 1532 1533 #ifdef PF_WANT_32_TO_64_COUNTER 1534 static void 1535 pf_status_counter_u64_periodic(void) 1536 { 1537 1538 PF_RULES_RASSERT(); 1539 1540 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 1541 return; 1542 } 1543 1544 for (int i = 0; i < FCNT_MAX; i++) { 1545 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 1546 } 1547 } 1548 1549 static void 1550 pf_kif_counter_u64_periodic(void) 1551 { 1552 struct pfi_kkif *kif; 1553 size_t r, run; 1554 1555 PF_RULES_RASSERT(); 1556 1557 if (__predict_false(V_pf_allkifcount == 0)) { 1558 return; 1559 } 1560 1561 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1562 return; 1563 } 1564 1565 run = V_pf_allkifcount / 10; 1566 if (run < 5) 1567 run = 5; 1568 1569 for (r = 0; r < run; r++) { 1570 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 1571 if (kif == NULL) { 1572 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1573 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 1574 break; 1575 } 1576 1577 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1578 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 1579 1580 for (int i = 0; i < 2; i++) { 1581 for (int j = 0; j < 2; j++) { 1582 for (int k = 0; k < 2; k++) { 1583 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 1584 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 1585 } 1586 } 1587 } 1588 } 1589 } 1590 1591 static void 1592 pf_rule_counter_u64_periodic(void) 1593 { 1594 struct pf_krule *rule; 1595 size_t r, run; 1596 1597 PF_RULES_RASSERT(); 1598 1599 if (__predict_false(V_pf_allrulecount == 0)) { 1600 return; 1601 } 1602 1603 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1604 return; 1605 } 1606 1607 run = V_pf_allrulecount / 10; 1608 if (run < 5) 1609 run = 5; 1610 1611 for (r = 0; r < run; r++) { 1612 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 1613 if (rule == NULL) { 1614 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1615 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 1616 break; 1617 } 1618 1619 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1620 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 1621 1622 pf_counter_u64_periodic(&rule->evaluations); 1623 for (int i = 0; i < 2; i++) { 1624 pf_counter_u64_periodic(&rule->packets[i]); 1625 pf_counter_u64_periodic(&rule->bytes[i]); 1626 } 1627 } 1628 } 1629 1630 static void 1631 pf_counter_u64_periodic_main(void) 1632 { 1633 PF_RULES_RLOCK_TRACKER; 1634 1635 V_pf_counter_periodic_iter++; 1636 1637 PF_RULES_RLOCK(); 1638 pf_counter_u64_critical_enter(); 1639 pf_status_counter_u64_periodic(); 1640 pf_kif_counter_u64_periodic(); 1641 pf_rule_counter_u64_periodic(); 1642 pf_counter_u64_critical_exit(); 1643 PF_RULES_RUNLOCK(); 1644 } 1645 #else 1646 #define pf_counter_u64_periodic_main() do { } while (0) 1647 #endif 1648 1649 void 1650 pf_purge_thread(void *unused __unused) 1651 { 1652 VNET_ITERATOR_DECL(vnet_iter); 1653 1654 sx_xlock(&pf_end_lock); 1655 while (pf_end_threads == 0) { 1656 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 1657 1658 VNET_LIST_RLOCK(); 1659 VNET_FOREACH(vnet_iter) { 1660 CURVNET_SET(vnet_iter); 1661 1662 /* Wait until V_pf_default_rule is initialized. */ 1663 if (V_pf_vnet_active == 0) { 1664 CURVNET_RESTORE(); 1665 continue; 1666 } 1667 1668 pf_counter_u64_periodic_main(); 1669 1670 /* 1671 * Process 1/interval fraction of the state 1672 * table every run. 1673 */ 1674 V_pf_purge_idx = 1675 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1676 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1677 1678 /* 1679 * Purge other expired types every 1680 * PFTM_INTERVAL seconds. 1681 */ 1682 if (V_pf_purge_idx == 0) { 1683 /* 1684 * Order is important: 1685 * - states and src nodes reference rules 1686 * - states and rules reference kifs 1687 */ 1688 pf_purge_expired_fragments(); 1689 pf_purge_expired_src_nodes(); 1690 pf_purge_unlinked_rules(); 1691 pfi_kkif_purge(); 1692 } 1693 CURVNET_RESTORE(); 1694 } 1695 VNET_LIST_RUNLOCK(); 1696 } 1697 1698 pf_end_threads++; 1699 sx_xunlock(&pf_end_lock); 1700 kproc_exit(0); 1701 } 1702 1703 void 1704 pf_unload_vnet_purge(void) 1705 { 1706 1707 /* 1708 * To cleanse up all kifs and rules we need 1709 * two runs: first one clears reference flags, 1710 * then pf_purge_expired_states() doesn't 1711 * raise them, and then second run frees. 1712 */ 1713 pf_purge_unlinked_rules(); 1714 pfi_kkif_purge(); 1715 1716 /* 1717 * Now purge everything. 1718 */ 1719 pf_purge_expired_states(0, pf_hashmask); 1720 pf_purge_fragments(UINT_MAX); 1721 pf_purge_expired_src_nodes(); 1722 1723 /* 1724 * Now all kifs & rules should be unreferenced, 1725 * thus should be successfully freed. 1726 */ 1727 pf_purge_unlinked_rules(); 1728 pfi_kkif_purge(); 1729 } 1730 1731 u_int32_t 1732 pf_state_expires(const struct pf_kstate *state) 1733 { 1734 u_int32_t timeout; 1735 u_int32_t start; 1736 u_int32_t end; 1737 u_int32_t states; 1738 1739 /* handle all PFTM_* > PFTM_MAX here */ 1740 if (state->timeout == PFTM_PURGE) 1741 return (time_uptime); 1742 KASSERT(state->timeout != PFTM_UNLINKED, 1743 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1744 KASSERT((state->timeout < PFTM_MAX), 1745 ("pf_state_expires: timeout > PFTM_MAX")); 1746 timeout = state->rule.ptr->timeout[state->timeout]; 1747 if (!timeout) 1748 timeout = V_pf_default_rule.timeout[state->timeout]; 1749 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1750 if (start && state->rule.ptr != &V_pf_default_rule) { 1751 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1752 states = counter_u64_fetch(state->rule.ptr->states_cur); 1753 } else { 1754 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1755 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1756 states = V_pf_status.states; 1757 } 1758 if (end && states > start && start < end) { 1759 if (states < end) { 1760 timeout = (u_int64_t)timeout * (end - states) / 1761 (end - start); 1762 return (state->expire + timeout); 1763 } 1764 else 1765 return (time_uptime); 1766 } 1767 return (state->expire + timeout); 1768 } 1769 1770 void 1771 pf_purge_expired_src_nodes() 1772 { 1773 struct pf_ksrc_node_list freelist; 1774 struct pf_srchash *sh; 1775 struct pf_ksrc_node *cur, *next; 1776 int i; 1777 1778 LIST_INIT(&freelist); 1779 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1780 PF_HASHROW_LOCK(sh); 1781 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1782 if (cur->states == 0 && cur->expire <= time_uptime) { 1783 pf_unlink_src_node(cur); 1784 LIST_INSERT_HEAD(&freelist, cur, entry); 1785 } else if (cur->rule.ptr != NULL) 1786 cur->rule.ptr->rule_ref |= PFRULE_REFS; 1787 PF_HASHROW_UNLOCK(sh); 1788 } 1789 1790 pf_free_src_nodes(&freelist); 1791 1792 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1793 } 1794 1795 static void 1796 pf_src_tree_remove_state(struct pf_kstate *s) 1797 { 1798 struct pf_ksrc_node *sn; 1799 struct pf_srchash *sh; 1800 uint32_t timeout; 1801 1802 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1803 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1804 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1805 1806 if (s->src_node != NULL) { 1807 sn = s->src_node; 1808 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1809 PF_HASHROW_LOCK(sh); 1810 if (s->src.tcp_est) 1811 --sn->conn; 1812 if (--sn->states == 0) 1813 sn->expire = time_uptime + timeout; 1814 PF_HASHROW_UNLOCK(sh); 1815 } 1816 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1817 sn = s->nat_src_node; 1818 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1819 PF_HASHROW_LOCK(sh); 1820 if (--sn->states == 0) 1821 sn->expire = time_uptime + timeout; 1822 PF_HASHROW_UNLOCK(sh); 1823 } 1824 s->src_node = s->nat_src_node = NULL; 1825 } 1826 1827 /* 1828 * Unlink and potentilly free a state. Function may be 1829 * called with ID hash row locked, but always returns 1830 * unlocked, since it needs to go through key hash locking. 1831 */ 1832 int 1833 pf_unlink_state(struct pf_kstate *s, u_int flags) 1834 { 1835 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1836 1837 if ((flags & PF_ENTER_LOCKED) == 0) 1838 PF_HASHROW_LOCK(ih); 1839 else 1840 PF_HASHROW_ASSERT(ih); 1841 1842 if (s->timeout == PFTM_UNLINKED) { 1843 /* 1844 * State is being processed 1845 * by pf_unlink_state() in 1846 * an other thread. 1847 */ 1848 PF_HASHROW_UNLOCK(ih); 1849 return (0); /* XXXGL: undefined actually */ 1850 } 1851 1852 if (s->src.state == PF_TCPS_PROXY_DST) { 1853 /* XXX wire key the right one? */ 1854 pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af, 1855 &s->key[PF_SK_WIRE]->addr[1], 1856 &s->key[PF_SK_WIRE]->addr[0], 1857 s->key[PF_SK_WIRE]->port[1], 1858 s->key[PF_SK_WIRE]->port[0], 1859 s->src.seqhi, s->src.seqlo + 1, 1860 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag); 1861 } 1862 1863 LIST_REMOVE(s, entry); 1864 pf_src_tree_remove_state(s); 1865 1866 if (V_pfsync_delete_state_ptr != NULL) 1867 V_pfsync_delete_state_ptr(s); 1868 1869 STATE_DEC_COUNTERS(s); 1870 1871 s->timeout = PFTM_UNLINKED; 1872 1873 PF_HASHROW_UNLOCK(ih); 1874 1875 pf_detach_state(s); 1876 /* pf_state_insert() initialises refs to 2 */ 1877 return (pf_release_staten(s, 2)); 1878 } 1879 1880 struct pf_kstate * 1881 pf_alloc_state(int flags) 1882 { 1883 1884 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 1885 } 1886 1887 void 1888 pf_free_state(struct pf_kstate *cur) 1889 { 1890 1891 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1892 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1893 cur->timeout)); 1894 1895 pf_normalize_tcp_cleanup(cur); 1896 uma_zfree(V_pf_state_z, cur); 1897 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1898 } 1899 1900 /* 1901 * Called only from pf_purge_thread(), thus serialized. 1902 */ 1903 static u_int 1904 pf_purge_expired_states(u_int i, int maxcheck) 1905 { 1906 struct pf_idhash *ih; 1907 struct pf_kstate *s; 1908 1909 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1910 1911 /* 1912 * Go through hash and unlink states that expire now. 1913 */ 1914 while (maxcheck > 0) { 1915 ih = &V_pf_idhash[i]; 1916 1917 /* only take the lock if we expect to do work */ 1918 if (!LIST_EMPTY(&ih->states)) { 1919 relock: 1920 PF_HASHROW_LOCK(ih); 1921 LIST_FOREACH(s, &ih->states, entry) { 1922 if (pf_state_expires(s) <= time_uptime) { 1923 V_pf_status.states -= 1924 pf_unlink_state(s, PF_ENTER_LOCKED); 1925 goto relock; 1926 } 1927 s->rule.ptr->rule_ref |= PFRULE_REFS; 1928 if (s->nat_rule.ptr != NULL) 1929 s->nat_rule.ptr->rule_ref |= PFRULE_REFS; 1930 if (s->anchor.ptr != NULL) 1931 s->anchor.ptr->rule_ref |= PFRULE_REFS; 1932 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1933 if (s->rt_kif) 1934 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1935 } 1936 PF_HASHROW_UNLOCK(ih); 1937 } 1938 1939 /* Return when we hit end of hash. */ 1940 if (++i > pf_hashmask) { 1941 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1942 return (0); 1943 } 1944 1945 maxcheck--; 1946 } 1947 1948 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1949 1950 return (i); 1951 } 1952 1953 static void 1954 pf_purge_unlinked_rules() 1955 { 1956 struct pf_krulequeue tmpq; 1957 struct pf_krule *r, *r1; 1958 1959 /* 1960 * If we have overloading task pending, then we'd 1961 * better skip purging this time. There is a tiny 1962 * probability that overloading task references 1963 * an already unlinked rule. 1964 */ 1965 PF_OVERLOADQ_LOCK(); 1966 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1967 PF_OVERLOADQ_UNLOCK(); 1968 return; 1969 } 1970 PF_OVERLOADQ_UNLOCK(); 1971 1972 /* 1973 * Do naive mark-and-sweep garbage collecting of old rules. 1974 * Reference flag is raised by pf_purge_expired_states() 1975 * and pf_purge_expired_src_nodes(). 1976 * 1977 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1978 * use a temporary queue. 1979 */ 1980 TAILQ_INIT(&tmpq); 1981 PF_UNLNKDRULES_LOCK(); 1982 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1983 if (!(r->rule_ref & PFRULE_REFS)) { 1984 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1985 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1986 } else 1987 r->rule_ref &= ~PFRULE_REFS; 1988 } 1989 PF_UNLNKDRULES_UNLOCK(); 1990 1991 if (!TAILQ_EMPTY(&tmpq)) { 1992 PF_RULES_WLOCK(); 1993 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1994 TAILQ_REMOVE(&tmpq, r, entries); 1995 pf_free_rule(r); 1996 } 1997 PF_RULES_WUNLOCK(); 1998 } 1999 } 2000 2001 void 2002 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2003 { 2004 switch (af) { 2005 #ifdef INET 2006 case AF_INET: { 2007 u_int32_t a = ntohl(addr->addr32[0]); 2008 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2009 (a>>8)&255, a&255); 2010 if (p) { 2011 p = ntohs(p); 2012 printf(":%u", p); 2013 } 2014 break; 2015 } 2016 #endif /* INET */ 2017 #ifdef INET6 2018 case AF_INET6: { 2019 u_int16_t b; 2020 u_int8_t i, curstart, curend, maxstart, maxend; 2021 curstart = curend = maxstart = maxend = 255; 2022 for (i = 0; i < 8; i++) { 2023 if (!addr->addr16[i]) { 2024 if (curstart == 255) 2025 curstart = i; 2026 curend = i; 2027 } else { 2028 if ((curend - curstart) > 2029 (maxend - maxstart)) { 2030 maxstart = curstart; 2031 maxend = curend; 2032 } 2033 curstart = curend = 255; 2034 } 2035 } 2036 if ((curend - curstart) > 2037 (maxend - maxstart)) { 2038 maxstart = curstart; 2039 maxend = curend; 2040 } 2041 for (i = 0; i < 8; i++) { 2042 if (i >= maxstart && i <= maxend) { 2043 if (i == 0) 2044 printf(":"); 2045 if (i == maxend) 2046 printf(":"); 2047 } else { 2048 b = ntohs(addr->addr16[i]); 2049 printf("%x", b); 2050 if (i < 7) 2051 printf(":"); 2052 } 2053 } 2054 if (p) { 2055 p = ntohs(p); 2056 printf("[%u]", p); 2057 } 2058 break; 2059 } 2060 #endif /* INET6 */ 2061 } 2062 } 2063 2064 void 2065 pf_print_state(struct pf_kstate *s) 2066 { 2067 pf_print_state_parts(s, NULL, NULL); 2068 } 2069 2070 static void 2071 pf_print_state_parts(struct pf_kstate *s, 2072 struct pf_state_key *skwp, struct pf_state_key *sksp) 2073 { 2074 struct pf_state_key *skw, *sks; 2075 u_int8_t proto, dir; 2076 2077 /* Do our best to fill these, but they're skipped if NULL */ 2078 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2079 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2080 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2081 dir = s ? s->direction : 0; 2082 2083 switch (proto) { 2084 case IPPROTO_IPV4: 2085 printf("IPv4"); 2086 break; 2087 case IPPROTO_IPV6: 2088 printf("IPv6"); 2089 break; 2090 case IPPROTO_TCP: 2091 printf("TCP"); 2092 break; 2093 case IPPROTO_UDP: 2094 printf("UDP"); 2095 break; 2096 case IPPROTO_ICMP: 2097 printf("ICMP"); 2098 break; 2099 case IPPROTO_ICMPV6: 2100 printf("ICMPv6"); 2101 break; 2102 default: 2103 printf("%u", proto); 2104 break; 2105 } 2106 switch (dir) { 2107 case PF_IN: 2108 printf(" in"); 2109 break; 2110 case PF_OUT: 2111 printf(" out"); 2112 break; 2113 } 2114 if (skw) { 2115 printf(" wire: "); 2116 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2117 printf(" "); 2118 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2119 } 2120 if (sks) { 2121 printf(" stack: "); 2122 if (sks != skw) { 2123 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2124 printf(" "); 2125 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2126 } else 2127 printf("-"); 2128 } 2129 if (s) { 2130 if (proto == IPPROTO_TCP) { 2131 printf(" [lo=%u high=%u win=%u modulator=%u", 2132 s->src.seqlo, s->src.seqhi, 2133 s->src.max_win, s->src.seqdiff); 2134 if (s->src.wscale && s->dst.wscale) 2135 printf(" wscale=%u", 2136 s->src.wscale & PF_WSCALE_MASK); 2137 printf("]"); 2138 printf(" [lo=%u high=%u win=%u modulator=%u", 2139 s->dst.seqlo, s->dst.seqhi, 2140 s->dst.max_win, s->dst.seqdiff); 2141 if (s->src.wscale && s->dst.wscale) 2142 printf(" wscale=%u", 2143 s->dst.wscale & PF_WSCALE_MASK); 2144 printf("]"); 2145 } 2146 printf(" %u:%u", s->src.state, s->dst.state); 2147 } 2148 } 2149 2150 void 2151 pf_print_flags(u_int8_t f) 2152 { 2153 if (f) 2154 printf(" "); 2155 if (f & TH_FIN) 2156 printf("F"); 2157 if (f & TH_SYN) 2158 printf("S"); 2159 if (f & TH_RST) 2160 printf("R"); 2161 if (f & TH_PUSH) 2162 printf("P"); 2163 if (f & TH_ACK) 2164 printf("A"); 2165 if (f & TH_URG) 2166 printf("U"); 2167 if (f & TH_ECE) 2168 printf("E"); 2169 if (f & TH_CWR) 2170 printf("W"); 2171 } 2172 2173 #define PF_SET_SKIP_STEPS(i) \ 2174 do { \ 2175 while (head[i] != cur) { \ 2176 head[i]->skip[i].ptr = cur; \ 2177 head[i] = TAILQ_NEXT(head[i], entries); \ 2178 } \ 2179 } while (0) 2180 2181 void 2182 pf_calc_skip_steps(struct pf_krulequeue *rules) 2183 { 2184 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2185 int i; 2186 2187 cur = TAILQ_FIRST(rules); 2188 prev = cur; 2189 for (i = 0; i < PF_SKIP_COUNT; ++i) 2190 head[i] = cur; 2191 while (cur != NULL) { 2192 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2193 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2194 if (cur->direction != prev->direction) 2195 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2196 if (cur->af != prev->af) 2197 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2198 if (cur->proto != prev->proto) 2199 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2200 if (cur->src.neg != prev->src.neg || 2201 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2202 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2203 if (cur->src.port[0] != prev->src.port[0] || 2204 cur->src.port[1] != prev->src.port[1] || 2205 cur->src.port_op != prev->src.port_op) 2206 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2207 if (cur->dst.neg != prev->dst.neg || 2208 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2209 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2210 if (cur->dst.port[0] != prev->dst.port[0] || 2211 cur->dst.port[1] != prev->dst.port[1] || 2212 cur->dst.port_op != prev->dst.port_op) 2213 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2214 2215 prev = cur; 2216 cur = TAILQ_NEXT(cur, entries); 2217 } 2218 for (i = 0; i < PF_SKIP_COUNT; ++i) 2219 PF_SET_SKIP_STEPS(i); 2220 } 2221 2222 static int 2223 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2224 { 2225 if (aw1->type != aw2->type) 2226 return (1); 2227 switch (aw1->type) { 2228 case PF_ADDR_ADDRMASK: 2229 case PF_ADDR_RANGE: 2230 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2231 return (1); 2232 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2233 return (1); 2234 return (0); 2235 case PF_ADDR_DYNIFTL: 2236 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2237 case PF_ADDR_NOROUTE: 2238 case PF_ADDR_URPFFAILED: 2239 return (0); 2240 case PF_ADDR_TABLE: 2241 return (aw1->p.tbl != aw2->p.tbl); 2242 default: 2243 printf("invalid address type: %d\n", aw1->type); 2244 return (1); 2245 } 2246 } 2247 2248 /** 2249 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2250 * header isn't always a full checksum. In some cases (i.e. output) it's a 2251 * pseudo-header checksum, which is a partial checksum over src/dst IP 2252 * addresses, protocol number and length. 2253 * 2254 * That means we have the following cases: 2255 * * Input or forwarding: we don't have TSO, the checksum fields are full 2256 * checksums, we need to update the checksum whenever we change anything. 2257 * * Output (i.e. the checksum is a pseudo-header checksum): 2258 * x The field being updated is src/dst address or affects the length of 2259 * the packet. We need to update the pseudo-header checksum (note that this 2260 * checksum is not ones' complement). 2261 * x Some other field is being modified (e.g. src/dst port numbers): We 2262 * don't have to update anything. 2263 **/ 2264 u_int16_t 2265 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2266 { 2267 u_int32_t x; 2268 2269 x = cksum + old - new; 2270 x = (x + (x >> 16)) & 0xffff; 2271 2272 /* optimise: eliminate a branch when not udp */ 2273 if (udp && cksum == 0x0000) 2274 return cksum; 2275 if (udp && x == 0x0000) 2276 x = 0xffff; 2277 2278 return (u_int16_t)(x); 2279 } 2280 2281 static void 2282 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 2283 u_int8_t udp) 2284 { 2285 u_int16_t old = htons(hi ? (*f << 8) : *f); 2286 u_int16_t new = htons(hi ? ( v << 8) : v); 2287 2288 if (*f == v) 2289 return; 2290 2291 *f = v; 2292 2293 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2294 return; 2295 2296 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 2297 } 2298 2299 void 2300 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 2301 bool hi, u_int8_t udp) 2302 { 2303 u_int8_t *fb = (u_int8_t *)f; 2304 u_int8_t *vb = (u_int8_t *)&v; 2305 2306 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2307 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2308 } 2309 2310 void 2311 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 2312 bool hi, u_int8_t udp) 2313 { 2314 u_int8_t *fb = (u_int8_t *)f; 2315 u_int8_t *vb = (u_int8_t *)&v; 2316 2317 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2318 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2319 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2320 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2321 } 2322 2323 u_int16_t 2324 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2325 u_int16_t new, u_int8_t udp) 2326 { 2327 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2328 return (cksum); 2329 2330 return (pf_cksum_fixup(cksum, old, new, udp)); 2331 } 2332 2333 static void 2334 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2335 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2336 sa_family_t af) 2337 { 2338 struct pf_addr ao; 2339 u_int16_t po = *p; 2340 2341 PF_ACPY(&ao, a, af); 2342 PF_ACPY(a, an, af); 2343 2344 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2345 *pc = ~*pc; 2346 2347 *p = pn; 2348 2349 switch (af) { 2350 #ifdef INET 2351 case AF_INET: 2352 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2353 ao.addr16[0], an->addr16[0], 0), 2354 ao.addr16[1], an->addr16[1], 0); 2355 *p = pn; 2356 2357 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2358 ao.addr16[0], an->addr16[0], u), 2359 ao.addr16[1], an->addr16[1], u); 2360 2361 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2362 break; 2363 #endif /* INET */ 2364 #ifdef INET6 2365 case AF_INET6: 2366 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2367 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2368 pf_cksum_fixup(pf_cksum_fixup(*pc, 2369 ao.addr16[0], an->addr16[0], u), 2370 ao.addr16[1], an->addr16[1], u), 2371 ao.addr16[2], an->addr16[2], u), 2372 ao.addr16[3], an->addr16[3], u), 2373 ao.addr16[4], an->addr16[4], u), 2374 ao.addr16[5], an->addr16[5], u), 2375 ao.addr16[6], an->addr16[6], u), 2376 ao.addr16[7], an->addr16[7], u); 2377 2378 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2379 break; 2380 #endif /* INET6 */ 2381 } 2382 2383 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2384 CSUM_DELAY_DATA_IPV6)) { 2385 *pc = ~*pc; 2386 if (! *pc) 2387 *pc = 0xffff; 2388 } 2389 } 2390 2391 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2392 void 2393 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2394 { 2395 u_int32_t ao; 2396 2397 memcpy(&ao, a, sizeof(ao)); 2398 memcpy(a, &an, sizeof(u_int32_t)); 2399 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2400 ao % 65536, an % 65536, u); 2401 } 2402 2403 void 2404 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2405 { 2406 u_int32_t ao; 2407 2408 memcpy(&ao, a, sizeof(ao)); 2409 memcpy(a, &an, sizeof(u_int32_t)); 2410 2411 *c = pf_proto_cksum_fixup(m, 2412 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2413 ao % 65536, an % 65536, udp); 2414 } 2415 2416 #ifdef INET6 2417 static void 2418 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2419 { 2420 struct pf_addr ao; 2421 2422 PF_ACPY(&ao, a, AF_INET6); 2423 PF_ACPY(a, an, AF_INET6); 2424 2425 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2426 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2427 pf_cksum_fixup(pf_cksum_fixup(*c, 2428 ao.addr16[0], an->addr16[0], u), 2429 ao.addr16[1], an->addr16[1], u), 2430 ao.addr16[2], an->addr16[2], u), 2431 ao.addr16[3], an->addr16[3], u), 2432 ao.addr16[4], an->addr16[4], u), 2433 ao.addr16[5], an->addr16[5], u), 2434 ao.addr16[6], an->addr16[6], u), 2435 ao.addr16[7], an->addr16[7], u); 2436 } 2437 #endif /* INET6 */ 2438 2439 static void 2440 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2441 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2442 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2443 { 2444 struct pf_addr oia, ooa; 2445 2446 PF_ACPY(&oia, ia, af); 2447 if (oa) 2448 PF_ACPY(&ooa, oa, af); 2449 2450 /* Change inner protocol port, fix inner protocol checksum. */ 2451 if (ip != NULL) { 2452 u_int16_t oip = *ip; 2453 u_int32_t opc; 2454 2455 if (pc != NULL) 2456 opc = *pc; 2457 *ip = np; 2458 if (pc != NULL) 2459 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2460 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2461 if (pc != NULL) 2462 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2463 } 2464 /* Change inner ip address, fix inner ip and icmp checksums. */ 2465 PF_ACPY(ia, na, af); 2466 switch (af) { 2467 #ifdef INET 2468 case AF_INET: { 2469 u_int32_t oh2c = *h2c; 2470 2471 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2472 oia.addr16[0], ia->addr16[0], 0), 2473 oia.addr16[1], ia->addr16[1], 0); 2474 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2475 oia.addr16[0], ia->addr16[0], 0), 2476 oia.addr16[1], ia->addr16[1], 0); 2477 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2478 break; 2479 } 2480 #endif /* INET */ 2481 #ifdef INET6 2482 case AF_INET6: 2483 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2484 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2485 pf_cksum_fixup(pf_cksum_fixup(*ic, 2486 oia.addr16[0], ia->addr16[0], u), 2487 oia.addr16[1], ia->addr16[1], u), 2488 oia.addr16[2], ia->addr16[2], u), 2489 oia.addr16[3], ia->addr16[3], u), 2490 oia.addr16[4], ia->addr16[4], u), 2491 oia.addr16[5], ia->addr16[5], u), 2492 oia.addr16[6], ia->addr16[6], u), 2493 oia.addr16[7], ia->addr16[7], u); 2494 break; 2495 #endif /* INET6 */ 2496 } 2497 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2498 if (oa) { 2499 PF_ACPY(oa, na, af); 2500 switch (af) { 2501 #ifdef INET 2502 case AF_INET: 2503 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2504 ooa.addr16[0], oa->addr16[0], 0), 2505 ooa.addr16[1], oa->addr16[1], 0); 2506 break; 2507 #endif /* INET */ 2508 #ifdef INET6 2509 case AF_INET6: 2510 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2511 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2512 pf_cksum_fixup(pf_cksum_fixup(*ic, 2513 ooa.addr16[0], oa->addr16[0], u), 2514 ooa.addr16[1], oa->addr16[1], u), 2515 ooa.addr16[2], oa->addr16[2], u), 2516 ooa.addr16[3], oa->addr16[3], u), 2517 ooa.addr16[4], oa->addr16[4], u), 2518 ooa.addr16[5], oa->addr16[5], u), 2519 ooa.addr16[6], oa->addr16[6], u), 2520 ooa.addr16[7], oa->addr16[7], u); 2521 break; 2522 #endif /* INET6 */ 2523 } 2524 } 2525 } 2526 2527 /* 2528 * Need to modulate the sequence numbers in the TCP SACK option 2529 * (credits to Krzysztof Pfaff for report and patch) 2530 */ 2531 static int 2532 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2533 struct tcphdr *th, struct pf_state_peer *dst) 2534 { 2535 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2536 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2537 int copyback = 0, i, olen; 2538 struct sackblk sack; 2539 2540 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2541 if (hlen < TCPOLEN_SACKLEN || 2542 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2543 return 0; 2544 2545 while (hlen >= TCPOLEN_SACKLEN) { 2546 size_t startoff = opt - opts; 2547 olen = opt[1]; 2548 switch (*opt) { 2549 case TCPOPT_EOL: /* FALLTHROUGH */ 2550 case TCPOPT_NOP: 2551 opt++; 2552 hlen--; 2553 break; 2554 case TCPOPT_SACK: 2555 if (olen > hlen) 2556 olen = hlen; 2557 if (olen >= TCPOLEN_SACKLEN) { 2558 for (i = 2; i + TCPOLEN_SACK <= olen; 2559 i += TCPOLEN_SACK) { 2560 memcpy(&sack, &opt[i], sizeof(sack)); 2561 pf_patch_32_unaligned(m, 2562 &th->th_sum, &sack.start, 2563 htonl(ntohl(sack.start) - dst->seqdiff), 2564 PF_ALGNMNT(startoff), 2565 0); 2566 pf_patch_32_unaligned(m, &th->th_sum, 2567 &sack.end, 2568 htonl(ntohl(sack.end) - dst->seqdiff), 2569 PF_ALGNMNT(startoff), 2570 0); 2571 memcpy(&opt[i], &sack, sizeof(sack)); 2572 } 2573 copyback = 1; 2574 } 2575 /* FALLTHROUGH */ 2576 default: 2577 if (olen < 2) 2578 olen = 2; 2579 hlen -= olen; 2580 opt += olen; 2581 } 2582 } 2583 2584 if (copyback) 2585 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2586 return (copyback); 2587 } 2588 2589 struct mbuf * 2590 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 2591 const struct pf_addr *saddr, const struct pf_addr *daddr, 2592 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2593 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2594 u_int16_t rtag) 2595 { 2596 struct mbuf *m; 2597 int len, tlen; 2598 #ifdef INET 2599 struct ip *h = NULL; 2600 #endif /* INET */ 2601 #ifdef INET6 2602 struct ip6_hdr *h6 = NULL; 2603 #endif /* INET6 */ 2604 struct tcphdr *th; 2605 char *opt; 2606 struct pf_mtag *pf_mtag; 2607 2608 len = 0; 2609 th = NULL; 2610 2611 /* maximum segment size tcp option */ 2612 tlen = sizeof(struct tcphdr); 2613 if (mss) 2614 tlen += 4; 2615 2616 switch (af) { 2617 #ifdef INET 2618 case AF_INET: 2619 len = sizeof(struct ip) + tlen; 2620 break; 2621 #endif /* INET */ 2622 #ifdef INET6 2623 case AF_INET6: 2624 len = sizeof(struct ip6_hdr) + tlen; 2625 break; 2626 #endif /* INET6 */ 2627 default: 2628 panic("%s: unsupported af %d", __func__, af); 2629 } 2630 2631 m = m_gethdr(M_NOWAIT, MT_DATA); 2632 if (m == NULL) 2633 return (NULL); 2634 2635 #ifdef MAC 2636 mac_netinet_firewall_send(m); 2637 #endif 2638 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2639 m_freem(m); 2640 return (NULL); 2641 } 2642 if (tag) 2643 m->m_flags |= M_SKIP_FIREWALL; 2644 pf_mtag->tag = rtag; 2645 2646 if (r != NULL && r->rtableid >= 0) 2647 M_SETFIB(m, r->rtableid); 2648 2649 #ifdef ALTQ 2650 if (r != NULL && r->qid) { 2651 pf_mtag->qid = r->qid; 2652 2653 /* add hints for ecn */ 2654 pf_mtag->hdr = mtod(m, struct ip *); 2655 } 2656 #endif /* ALTQ */ 2657 m->m_data += max_linkhdr; 2658 m->m_pkthdr.len = m->m_len = len; 2659 m->m_pkthdr.rcvif = NULL; 2660 bzero(m->m_data, len); 2661 switch (af) { 2662 #ifdef INET 2663 case AF_INET: 2664 h = mtod(m, struct ip *); 2665 2666 /* IP header fields included in the TCP checksum */ 2667 h->ip_p = IPPROTO_TCP; 2668 h->ip_len = htons(tlen); 2669 h->ip_src.s_addr = saddr->v4.s_addr; 2670 h->ip_dst.s_addr = daddr->v4.s_addr; 2671 2672 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2673 break; 2674 #endif /* INET */ 2675 #ifdef INET6 2676 case AF_INET6: 2677 h6 = mtod(m, struct ip6_hdr *); 2678 2679 /* IP header fields included in the TCP checksum */ 2680 h6->ip6_nxt = IPPROTO_TCP; 2681 h6->ip6_plen = htons(tlen); 2682 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2683 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2684 2685 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2686 break; 2687 #endif /* INET6 */ 2688 } 2689 2690 /* TCP header */ 2691 th->th_sport = sport; 2692 th->th_dport = dport; 2693 th->th_seq = htonl(seq); 2694 th->th_ack = htonl(ack); 2695 th->th_off = tlen >> 2; 2696 th->th_flags = flags; 2697 th->th_win = htons(win); 2698 2699 if (mss) { 2700 opt = (char *)(th + 1); 2701 opt[0] = TCPOPT_MAXSEG; 2702 opt[1] = 4; 2703 HTONS(mss); 2704 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2705 } 2706 2707 switch (af) { 2708 #ifdef INET 2709 case AF_INET: 2710 /* TCP checksum */ 2711 th->th_sum = in_cksum(m, len); 2712 2713 /* Finish the IP header */ 2714 h->ip_v = 4; 2715 h->ip_hl = sizeof(*h) >> 2; 2716 h->ip_tos = IPTOS_LOWDELAY; 2717 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2718 h->ip_len = htons(len); 2719 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2720 h->ip_sum = 0; 2721 break; 2722 #endif /* INET */ 2723 #ifdef INET6 2724 case AF_INET6: 2725 /* TCP checksum */ 2726 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2727 sizeof(struct ip6_hdr), tlen); 2728 2729 h6->ip6_vfc |= IPV6_VERSION; 2730 h6->ip6_hlim = IPV6_DEFHLIM; 2731 break; 2732 #endif /* INET6 */ 2733 } 2734 2735 return (m); 2736 } 2737 2738 void 2739 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 2740 const struct pf_addr *saddr, const struct pf_addr *daddr, 2741 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2742 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2743 u_int16_t rtag) 2744 { 2745 struct pf_send_entry *pfse; 2746 struct mbuf *m; 2747 2748 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, flags, 2749 win, mss, ttl, tag, rtag); 2750 if (m == NULL) 2751 return; 2752 2753 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2754 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2755 if (pfse == NULL) { 2756 m_freem(m); 2757 return; 2758 } 2759 2760 switch (af) { 2761 #ifdef INET 2762 case AF_INET: 2763 pfse->pfse_type = PFSE_IP; 2764 break; 2765 #endif /* INET */ 2766 #ifdef INET6 2767 case AF_INET6: 2768 pfse->pfse_type = PFSE_IP6; 2769 break; 2770 #endif /* INET6 */ 2771 } 2772 2773 pfse->pfse_m = m; 2774 pf_send(pfse); 2775 } 2776 2777 static void 2778 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 2779 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 2780 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 2781 u_short *reason) 2782 { 2783 struct pf_addr * const saddr = pd->src; 2784 struct pf_addr * const daddr = pd->dst; 2785 sa_family_t af = pd->af; 2786 2787 /* undo NAT changes, if they have taken place */ 2788 if (nr != NULL) { 2789 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 2790 PF_ACPY(daddr, &sk->addr[pd->didx], af); 2791 if (pd->sport) 2792 *pd->sport = sk->port[pd->sidx]; 2793 if (pd->dport) 2794 *pd->dport = sk->port[pd->didx]; 2795 if (pd->proto_sum) 2796 *pd->proto_sum = bproto_sum; 2797 if (pd->ip_sum) 2798 *pd->ip_sum = bip_sum; 2799 m_copyback(m, off, hdrlen, pd->hdr.any); 2800 } 2801 if (pd->proto == IPPROTO_TCP && 2802 ((r->rule_flag & PFRULE_RETURNRST) || 2803 (r->rule_flag & PFRULE_RETURN)) && 2804 !(th->th_flags & TH_RST)) { 2805 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 2806 int len = 0; 2807 #ifdef INET 2808 struct ip *h4; 2809 #endif 2810 #ifdef INET6 2811 struct ip6_hdr *h6; 2812 #endif 2813 2814 switch (af) { 2815 #ifdef INET 2816 case AF_INET: 2817 h4 = mtod(m, struct ip *); 2818 len = ntohs(h4->ip_len) - off; 2819 break; 2820 #endif 2821 #ifdef INET6 2822 case AF_INET6: 2823 h6 = mtod(m, struct ip6_hdr *); 2824 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 2825 break; 2826 #endif 2827 } 2828 2829 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 2830 REASON_SET(reason, PFRES_PROTCKSUM); 2831 else { 2832 if (th->th_flags & TH_SYN) 2833 ack++; 2834 if (th->th_flags & TH_FIN) 2835 ack++; 2836 pf_send_tcp(r, af, pd->dst, 2837 pd->src, th->th_dport, th->th_sport, 2838 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 2839 r->return_ttl, 1, 0); 2840 } 2841 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 2842 r->return_icmp) 2843 pf_send_icmp(m, r->return_icmp >> 8, 2844 r->return_icmp & 255, af, r); 2845 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 2846 r->return_icmp6) 2847 pf_send_icmp(m, r->return_icmp6 >> 8, 2848 r->return_icmp6 & 255, af, r); 2849 } 2850 2851 static int 2852 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2853 { 2854 struct m_tag *mtag; 2855 u_int8_t mpcp; 2856 2857 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2858 if (mtag == NULL) 2859 return (0); 2860 2861 if (prio == PF_PRIO_ZERO) 2862 prio = 0; 2863 2864 mpcp = *(uint8_t *)(mtag + 1); 2865 2866 return (mpcp == prio); 2867 } 2868 2869 static void 2870 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2871 struct pf_krule *r) 2872 { 2873 struct pf_send_entry *pfse; 2874 struct mbuf *m0; 2875 struct pf_mtag *pf_mtag; 2876 2877 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2878 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2879 if (pfse == NULL) 2880 return; 2881 2882 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2883 free(pfse, M_PFTEMP); 2884 return; 2885 } 2886 2887 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2888 free(pfse, M_PFTEMP); 2889 return; 2890 } 2891 /* XXX: revisit */ 2892 m0->m_flags |= M_SKIP_FIREWALL; 2893 2894 if (r->rtableid >= 0) 2895 M_SETFIB(m0, r->rtableid); 2896 2897 #ifdef ALTQ 2898 if (r->qid) { 2899 pf_mtag->qid = r->qid; 2900 /* add hints for ecn */ 2901 pf_mtag->hdr = mtod(m0, struct ip *); 2902 } 2903 #endif /* ALTQ */ 2904 2905 switch (af) { 2906 #ifdef INET 2907 case AF_INET: 2908 pfse->pfse_type = PFSE_ICMP; 2909 break; 2910 #endif /* INET */ 2911 #ifdef INET6 2912 case AF_INET6: 2913 pfse->pfse_type = PFSE_ICMP6; 2914 break; 2915 #endif /* INET6 */ 2916 } 2917 pfse->pfse_m = m0; 2918 pfse->icmpopts.type = type; 2919 pfse->icmpopts.code = code; 2920 pf_send(pfse); 2921 } 2922 2923 /* 2924 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2925 * If n is 0, they match if they are equal. If n is != 0, they match if they 2926 * are different. 2927 */ 2928 int 2929 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2930 struct pf_addr *b, sa_family_t af) 2931 { 2932 int match = 0; 2933 2934 switch (af) { 2935 #ifdef INET 2936 case AF_INET: 2937 if ((a->addr32[0] & m->addr32[0]) == 2938 (b->addr32[0] & m->addr32[0])) 2939 match++; 2940 break; 2941 #endif /* INET */ 2942 #ifdef INET6 2943 case AF_INET6: 2944 if (((a->addr32[0] & m->addr32[0]) == 2945 (b->addr32[0] & m->addr32[0])) && 2946 ((a->addr32[1] & m->addr32[1]) == 2947 (b->addr32[1] & m->addr32[1])) && 2948 ((a->addr32[2] & m->addr32[2]) == 2949 (b->addr32[2] & m->addr32[2])) && 2950 ((a->addr32[3] & m->addr32[3]) == 2951 (b->addr32[3] & m->addr32[3]))) 2952 match++; 2953 break; 2954 #endif /* INET6 */ 2955 } 2956 if (match) { 2957 if (n) 2958 return (0); 2959 else 2960 return (1); 2961 } else { 2962 if (n) 2963 return (1); 2964 else 2965 return (0); 2966 } 2967 } 2968 2969 /* 2970 * Return 1 if b <= a <= e, otherwise return 0. 2971 */ 2972 int 2973 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2974 struct pf_addr *a, sa_family_t af) 2975 { 2976 switch (af) { 2977 #ifdef INET 2978 case AF_INET: 2979 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2980 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2981 return (0); 2982 break; 2983 #endif /* INET */ 2984 #ifdef INET6 2985 case AF_INET6: { 2986 int i; 2987 2988 /* check a >= b */ 2989 for (i = 0; i < 4; ++i) 2990 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2991 break; 2992 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2993 return (0); 2994 /* check a <= e */ 2995 for (i = 0; i < 4; ++i) 2996 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2997 break; 2998 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2999 return (0); 3000 break; 3001 } 3002 #endif /* INET6 */ 3003 } 3004 return (1); 3005 } 3006 3007 static int 3008 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3009 { 3010 switch (op) { 3011 case PF_OP_IRG: 3012 return ((p > a1) && (p < a2)); 3013 case PF_OP_XRG: 3014 return ((p < a1) || (p > a2)); 3015 case PF_OP_RRG: 3016 return ((p >= a1) && (p <= a2)); 3017 case PF_OP_EQ: 3018 return (p == a1); 3019 case PF_OP_NE: 3020 return (p != a1); 3021 case PF_OP_LT: 3022 return (p < a1); 3023 case PF_OP_LE: 3024 return (p <= a1); 3025 case PF_OP_GT: 3026 return (p > a1); 3027 case PF_OP_GE: 3028 return (p >= a1); 3029 } 3030 return (0); /* never reached */ 3031 } 3032 3033 int 3034 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3035 { 3036 NTOHS(a1); 3037 NTOHS(a2); 3038 NTOHS(p); 3039 return (pf_match(op, a1, a2, p)); 3040 } 3041 3042 static int 3043 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3044 { 3045 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3046 return (0); 3047 return (pf_match(op, a1, a2, u)); 3048 } 3049 3050 static int 3051 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3052 { 3053 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3054 return (0); 3055 return (pf_match(op, a1, a2, g)); 3056 } 3057 3058 int 3059 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3060 { 3061 if (*tag == -1) 3062 *tag = mtag; 3063 3064 return ((!r->match_tag_not && r->match_tag == *tag) || 3065 (r->match_tag_not && r->match_tag != *tag)); 3066 } 3067 3068 int 3069 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 3070 { 3071 3072 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 3073 3074 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 3075 return (ENOMEM); 3076 3077 pd->pf_mtag->tag = tag; 3078 3079 return (0); 3080 } 3081 3082 #define PF_ANCHOR_STACKSIZE 32 3083 struct pf_kanchor_stackframe { 3084 struct pf_kruleset *rs; 3085 struct pf_krule *r; /* XXX: + match bit */ 3086 struct pf_kanchor *child; 3087 }; 3088 3089 /* 3090 * XXX: We rely on malloc(9) returning pointer aligned addresses. 3091 */ 3092 #define PF_ANCHORSTACK_MATCH 0x00000001 3093 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 3094 3095 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3096 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 3097 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3098 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3099 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3100 } while (0) 3101 3102 void 3103 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3104 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3105 int *match) 3106 { 3107 struct pf_kanchor_stackframe *f; 3108 3109 PF_RULES_RASSERT(); 3110 3111 if (match) 3112 *match = 0; 3113 if (*depth >= PF_ANCHOR_STACKSIZE) { 3114 printf("%s: anchor stack overflow on %s\n", 3115 __func__, (*r)->anchor->name); 3116 *r = TAILQ_NEXT(*r, entries); 3117 return; 3118 } else if (*depth == 0 && a != NULL) 3119 *a = *r; 3120 f = stack + (*depth)++; 3121 f->rs = *rs; 3122 f->r = *r; 3123 if ((*r)->anchor_wildcard) { 3124 struct pf_kanchor_node *parent = &(*r)->anchor->children; 3125 3126 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 3127 *r = NULL; 3128 return; 3129 } 3130 *rs = &f->child->ruleset; 3131 } else { 3132 f->child = NULL; 3133 *rs = &(*r)->anchor->ruleset; 3134 } 3135 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3136 } 3137 3138 int 3139 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3140 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3141 int *match) 3142 { 3143 struct pf_kanchor_stackframe *f; 3144 struct pf_krule *fr; 3145 int quick = 0; 3146 3147 PF_RULES_RASSERT(); 3148 3149 do { 3150 if (*depth <= 0) 3151 break; 3152 f = stack + *depth - 1; 3153 fr = PF_ANCHOR_RULE(f); 3154 if (f->child != NULL) { 3155 struct pf_kanchor_node *parent; 3156 3157 /* 3158 * This block traverses through 3159 * a wildcard anchor. 3160 */ 3161 parent = &fr->anchor->children; 3162 if (match != NULL && *match) { 3163 /* 3164 * If any of "*" matched, then 3165 * "foo/ *" matched, mark frame 3166 * appropriately. 3167 */ 3168 PF_ANCHOR_SET_MATCH(f); 3169 *match = 0; 3170 } 3171 f->child = RB_NEXT(pf_kanchor_node, parent, f->child); 3172 if (f->child != NULL) { 3173 *rs = &f->child->ruleset; 3174 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3175 if (*r == NULL) 3176 continue; 3177 else 3178 break; 3179 } 3180 } 3181 (*depth)--; 3182 if (*depth == 0 && a != NULL) 3183 *a = NULL; 3184 *rs = f->rs; 3185 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 3186 quick = fr->quick; 3187 *r = TAILQ_NEXT(fr, entries); 3188 } while (*r == NULL); 3189 3190 return (quick); 3191 } 3192 3193 #ifdef INET6 3194 void 3195 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 3196 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 3197 { 3198 switch (af) { 3199 #ifdef INET 3200 case AF_INET: 3201 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3202 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3203 break; 3204 #endif /* INET */ 3205 case AF_INET6: 3206 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3207 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3208 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 3209 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 3210 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 3211 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 3212 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 3213 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 3214 break; 3215 } 3216 } 3217 3218 void 3219 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 3220 { 3221 switch (af) { 3222 #ifdef INET 3223 case AF_INET: 3224 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 3225 break; 3226 #endif /* INET */ 3227 case AF_INET6: 3228 if (addr->addr32[3] == 0xffffffff) { 3229 addr->addr32[3] = 0; 3230 if (addr->addr32[2] == 0xffffffff) { 3231 addr->addr32[2] = 0; 3232 if (addr->addr32[1] == 0xffffffff) { 3233 addr->addr32[1] = 0; 3234 addr->addr32[0] = 3235 htonl(ntohl(addr->addr32[0]) + 1); 3236 } else 3237 addr->addr32[1] = 3238 htonl(ntohl(addr->addr32[1]) + 1); 3239 } else 3240 addr->addr32[2] = 3241 htonl(ntohl(addr->addr32[2]) + 1); 3242 } else 3243 addr->addr32[3] = 3244 htonl(ntohl(addr->addr32[3]) + 1); 3245 break; 3246 } 3247 } 3248 #endif /* INET6 */ 3249 3250 void 3251 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 3252 { 3253 if (r->qid) 3254 a->qid = r->qid; 3255 if (r->pqid) 3256 a->pqid = r->pqid; 3257 } 3258 3259 int 3260 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 3261 { 3262 struct pf_addr *saddr, *daddr; 3263 u_int16_t sport, dport; 3264 struct inpcbinfo *pi; 3265 struct inpcb *inp; 3266 3267 pd->lookup.uid = UID_MAX; 3268 pd->lookup.gid = GID_MAX; 3269 3270 switch (pd->proto) { 3271 case IPPROTO_TCP: 3272 sport = pd->hdr.tcp.th_sport; 3273 dport = pd->hdr.tcp.th_dport; 3274 pi = &V_tcbinfo; 3275 break; 3276 case IPPROTO_UDP: 3277 sport = pd->hdr.udp.uh_sport; 3278 dport = pd->hdr.udp.uh_dport; 3279 pi = &V_udbinfo; 3280 break; 3281 default: 3282 return (-1); 3283 } 3284 if (direction == PF_IN) { 3285 saddr = pd->src; 3286 daddr = pd->dst; 3287 } else { 3288 u_int16_t p; 3289 3290 p = sport; 3291 sport = dport; 3292 dport = p; 3293 saddr = pd->dst; 3294 daddr = pd->src; 3295 } 3296 switch (pd->af) { 3297 #ifdef INET 3298 case AF_INET: 3299 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3300 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3301 if (inp == NULL) { 3302 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3303 daddr->v4, dport, INPLOOKUP_WILDCARD | 3304 INPLOOKUP_RLOCKPCB, NULL, m); 3305 if (inp == NULL) 3306 return (-1); 3307 } 3308 break; 3309 #endif /* INET */ 3310 #ifdef INET6 3311 case AF_INET6: 3312 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3313 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3314 if (inp == NULL) { 3315 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3316 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3317 INPLOOKUP_RLOCKPCB, NULL, m); 3318 if (inp == NULL) 3319 return (-1); 3320 } 3321 break; 3322 #endif /* INET6 */ 3323 3324 default: 3325 return (-1); 3326 } 3327 INP_RLOCK_ASSERT(inp); 3328 pd->lookup.uid = inp->inp_cred->cr_uid; 3329 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3330 INP_RUNLOCK(inp); 3331 3332 return (1); 3333 } 3334 3335 u_int8_t 3336 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3337 { 3338 int hlen; 3339 u_int8_t hdr[60]; 3340 u_int8_t *opt, optlen; 3341 u_int8_t wscale = 0; 3342 3343 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3344 if (hlen <= sizeof(struct tcphdr)) 3345 return (0); 3346 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3347 return (0); 3348 opt = hdr + sizeof(struct tcphdr); 3349 hlen -= sizeof(struct tcphdr); 3350 while (hlen >= 3) { 3351 switch (*opt) { 3352 case TCPOPT_EOL: 3353 case TCPOPT_NOP: 3354 ++opt; 3355 --hlen; 3356 break; 3357 case TCPOPT_WINDOW: 3358 wscale = opt[2]; 3359 if (wscale > TCP_MAX_WINSHIFT) 3360 wscale = TCP_MAX_WINSHIFT; 3361 wscale |= PF_WSCALE_FLAG; 3362 /* FALLTHROUGH */ 3363 default: 3364 optlen = opt[1]; 3365 if (optlen < 2) 3366 optlen = 2; 3367 hlen -= optlen; 3368 opt += optlen; 3369 break; 3370 } 3371 } 3372 return (wscale); 3373 } 3374 3375 u_int16_t 3376 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3377 { 3378 int hlen; 3379 u_int8_t hdr[60]; 3380 u_int8_t *opt, optlen; 3381 u_int16_t mss = V_tcp_mssdflt; 3382 3383 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3384 if (hlen <= sizeof(struct tcphdr)) 3385 return (0); 3386 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3387 return (0); 3388 opt = hdr + sizeof(struct tcphdr); 3389 hlen -= sizeof(struct tcphdr); 3390 while (hlen >= TCPOLEN_MAXSEG) { 3391 switch (*opt) { 3392 case TCPOPT_EOL: 3393 case TCPOPT_NOP: 3394 ++opt; 3395 --hlen; 3396 break; 3397 case TCPOPT_MAXSEG: 3398 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3399 NTOHS(mss); 3400 /* FALLTHROUGH */ 3401 default: 3402 optlen = opt[1]; 3403 if (optlen < 2) 3404 optlen = 2; 3405 hlen -= optlen; 3406 opt += optlen; 3407 break; 3408 } 3409 } 3410 return (mss); 3411 } 3412 3413 static u_int16_t 3414 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3415 { 3416 struct nhop_object *nh; 3417 #ifdef INET6 3418 struct in6_addr dst6; 3419 uint32_t scopeid; 3420 #endif /* INET6 */ 3421 int hlen = 0; 3422 uint16_t mss = 0; 3423 3424 NET_EPOCH_ASSERT(); 3425 3426 switch (af) { 3427 #ifdef INET 3428 case AF_INET: 3429 hlen = sizeof(struct ip); 3430 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 3431 if (nh != NULL) 3432 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3433 break; 3434 #endif /* INET */ 3435 #ifdef INET6 3436 case AF_INET6: 3437 hlen = sizeof(struct ip6_hdr); 3438 in6_splitscope(&addr->v6, &dst6, &scopeid); 3439 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 3440 if (nh != NULL) 3441 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3442 break; 3443 #endif /* INET6 */ 3444 } 3445 3446 mss = max(V_tcp_mssdflt, mss); 3447 mss = min(mss, offer); 3448 mss = max(mss, 64); /* sanity - at least max opt space */ 3449 return (mss); 3450 } 3451 3452 static u_int32_t 3453 pf_tcp_iss(struct pf_pdesc *pd) 3454 { 3455 MD5_CTX ctx; 3456 u_int32_t digest[4]; 3457 3458 if (V_pf_tcp_secret_init == 0) { 3459 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3460 MD5Init(&V_pf_tcp_secret_ctx); 3461 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3462 sizeof(V_pf_tcp_secret)); 3463 V_pf_tcp_secret_init = 1; 3464 } 3465 3466 ctx = V_pf_tcp_secret_ctx; 3467 3468 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 3469 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 3470 if (pd->af == AF_INET6) { 3471 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3472 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3473 } else { 3474 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3475 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3476 } 3477 MD5Final((u_char *)digest, &ctx); 3478 V_pf_tcp_iss_off += 4096; 3479 #define ISN_RANDOM_INCREMENT (4096 - 1) 3480 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3481 V_pf_tcp_iss_off); 3482 #undef ISN_RANDOM_INCREMENT 3483 } 3484 3485 static int 3486 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, int direction, 3487 struct pfi_kkif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3488 struct pf_krule **am, struct pf_kruleset **rsm, struct inpcb *inp) 3489 { 3490 struct pf_krule *nr = NULL; 3491 struct pf_addr * const saddr = pd->src; 3492 struct pf_addr * const daddr = pd->dst; 3493 sa_family_t af = pd->af; 3494 struct pf_krule *r, *a = NULL; 3495 struct pf_kruleset *ruleset = NULL; 3496 struct pf_ksrc_node *nsn = NULL; 3497 struct tcphdr *th = &pd->hdr.tcp; 3498 struct pf_state_key *sk = NULL, *nk = NULL; 3499 u_short reason; 3500 int rewrite = 0, hdrlen = 0; 3501 int tag = -1, rtableid = -1; 3502 int asd = 0; 3503 int match = 0; 3504 int state_icmp = 0; 3505 u_int16_t sport = 0, dport = 0; 3506 u_int16_t bproto_sum = 0, bip_sum = 0; 3507 u_int8_t icmptype = 0, icmpcode = 0; 3508 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3509 3510 PF_RULES_RASSERT(); 3511 3512 if (inp != NULL) { 3513 INP_LOCK_ASSERT(inp); 3514 pd->lookup.uid = inp->inp_cred->cr_uid; 3515 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3516 pd->lookup.done = 1; 3517 } 3518 3519 switch (pd->proto) { 3520 case IPPROTO_TCP: 3521 sport = th->th_sport; 3522 dport = th->th_dport; 3523 hdrlen = sizeof(*th); 3524 break; 3525 case IPPROTO_UDP: 3526 sport = pd->hdr.udp.uh_sport; 3527 dport = pd->hdr.udp.uh_dport; 3528 hdrlen = sizeof(pd->hdr.udp); 3529 break; 3530 #ifdef INET 3531 case IPPROTO_ICMP: 3532 if (pd->af != AF_INET) 3533 break; 3534 sport = dport = pd->hdr.icmp.icmp_id; 3535 hdrlen = sizeof(pd->hdr.icmp); 3536 icmptype = pd->hdr.icmp.icmp_type; 3537 icmpcode = pd->hdr.icmp.icmp_code; 3538 3539 if (icmptype == ICMP_UNREACH || 3540 icmptype == ICMP_SOURCEQUENCH || 3541 icmptype == ICMP_REDIRECT || 3542 icmptype == ICMP_TIMXCEED || 3543 icmptype == ICMP_PARAMPROB) 3544 state_icmp++; 3545 break; 3546 #endif /* INET */ 3547 #ifdef INET6 3548 case IPPROTO_ICMPV6: 3549 if (af != AF_INET6) 3550 break; 3551 sport = dport = pd->hdr.icmp6.icmp6_id; 3552 hdrlen = sizeof(pd->hdr.icmp6); 3553 icmptype = pd->hdr.icmp6.icmp6_type; 3554 icmpcode = pd->hdr.icmp6.icmp6_code; 3555 3556 if (icmptype == ICMP6_DST_UNREACH || 3557 icmptype == ICMP6_PACKET_TOO_BIG || 3558 icmptype == ICMP6_TIME_EXCEEDED || 3559 icmptype == ICMP6_PARAM_PROB) 3560 state_icmp++; 3561 break; 3562 #endif /* INET6 */ 3563 default: 3564 sport = dport = hdrlen = 0; 3565 break; 3566 } 3567 3568 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3569 3570 /* check packet for BINAT/NAT/RDR */ 3571 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3572 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3573 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3574 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3575 3576 if (pd->ip_sum) 3577 bip_sum = *pd->ip_sum; 3578 3579 switch (pd->proto) { 3580 case IPPROTO_TCP: 3581 bproto_sum = th->th_sum; 3582 pd->proto_sum = &th->th_sum; 3583 3584 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3585 nk->port[pd->sidx] != sport) { 3586 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3587 &th->th_sum, &nk->addr[pd->sidx], 3588 nk->port[pd->sidx], 0, af); 3589 pd->sport = &th->th_sport; 3590 sport = th->th_sport; 3591 } 3592 3593 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3594 nk->port[pd->didx] != dport) { 3595 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3596 &th->th_sum, &nk->addr[pd->didx], 3597 nk->port[pd->didx], 0, af); 3598 dport = th->th_dport; 3599 pd->dport = &th->th_dport; 3600 } 3601 rewrite++; 3602 break; 3603 case IPPROTO_UDP: 3604 bproto_sum = pd->hdr.udp.uh_sum; 3605 pd->proto_sum = &pd->hdr.udp.uh_sum; 3606 3607 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3608 nk->port[pd->sidx] != sport) { 3609 pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, 3610 pd->ip_sum, &pd->hdr.udp.uh_sum, 3611 &nk->addr[pd->sidx], 3612 nk->port[pd->sidx], 1, af); 3613 sport = pd->hdr.udp.uh_sport; 3614 pd->sport = &pd->hdr.udp.uh_sport; 3615 } 3616 3617 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3618 nk->port[pd->didx] != dport) { 3619 pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, 3620 pd->ip_sum, &pd->hdr.udp.uh_sum, 3621 &nk->addr[pd->didx], 3622 nk->port[pd->didx], 1, af); 3623 dport = pd->hdr.udp.uh_dport; 3624 pd->dport = &pd->hdr.udp.uh_dport; 3625 } 3626 rewrite++; 3627 break; 3628 #ifdef INET 3629 case IPPROTO_ICMP: 3630 nk->port[0] = nk->port[1]; 3631 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3632 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3633 nk->addr[pd->sidx].v4.s_addr, 0); 3634 3635 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3636 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3637 nk->addr[pd->didx].v4.s_addr, 0); 3638 3639 if (nk->port[1] != pd->hdr.icmp.icmp_id) { 3640 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 3641 pd->hdr.icmp.icmp_cksum, sport, 3642 nk->port[1], 0); 3643 pd->hdr.icmp.icmp_id = nk->port[1]; 3644 pd->sport = &pd->hdr.icmp.icmp_id; 3645 } 3646 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 3647 break; 3648 #endif /* INET */ 3649 #ifdef INET6 3650 case IPPROTO_ICMPV6: 3651 nk->port[0] = nk->port[1]; 3652 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3653 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 3654 &nk->addr[pd->sidx], 0); 3655 3656 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3657 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 3658 &nk->addr[pd->didx], 0); 3659 rewrite++; 3660 break; 3661 #endif /* INET */ 3662 default: 3663 switch (af) { 3664 #ifdef INET 3665 case AF_INET: 3666 if (PF_ANEQ(saddr, 3667 &nk->addr[pd->sidx], AF_INET)) 3668 pf_change_a(&saddr->v4.s_addr, 3669 pd->ip_sum, 3670 nk->addr[pd->sidx].v4.s_addr, 0); 3671 3672 if (PF_ANEQ(daddr, 3673 &nk->addr[pd->didx], AF_INET)) 3674 pf_change_a(&daddr->v4.s_addr, 3675 pd->ip_sum, 3676 nk->addr[pd->didx].v4.s_addr, 0); 3677 break; 3678 #endif /* INET */ 3679 #ifdef INET6 3680 case AF_INET6: 3681 if (PF_ANEQ(saddr, 3682 &nk->addr[pd->sidx], AF_INET6)) 3683 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3684 3685 if (PF_ANEQ(daddr, 3686 &nk->addr[pd->didx], AF_INET6)) 3687 PF_ACPY(daddr, &nk->addr[pd->didx], af); 3688 break; 3689 #endif /* INET */ 3690 } 3691 break; 3692 } 3693 if (nr->natpass) 3694 r = NULL; 3695 pd->nat_rule = nr; 3696 } 3697 3698 while (r != NULL) { 3699 pf_counter_u64_add(&r->evaluations, 1); 3700 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 3701 r = r->skip[PF_SKIP_IFP].ptr; 3702 else if (r->direction && r->direction != direction) 3703 r = r->skip[PF_SKIP_DIR].ptr; 3704 else if (r->af && r->af != af) 3705 r = r->skip[PF_SKIP_AF].ptr; 3706 else if (r->proto && r->proto != pd->proto) 3707 r = r->skip[PF_SKIP_PROTO].ptr; 3708 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3709 r->src.neg, kif, M_GETFIB(m))) 3710 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3711 /* tcp/udp only. port_op always 0 in other cases */ 3712 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3713 r->src.port[0], r->src.port[1], sport)) 3714 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3715 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3716 r->dst.neg, NULL, M_GETFIB(m))) 3717 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3718 /* tcp/udp only. port_op always 0 in other cases */ 3719 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3720 r->dst.port[0], r->dst.port[1], dport)) 3721 r = r->skip[PF_SKIP_DST_PORT].ptr; 3722 /* icmp only. type always 0 in other cases */ 3723 else if (r->type && r->type != icmptype + 1) 3724 r = TAILQ_NEXT(r, entries); 3725 /* icmp only. type always 0 in other cases */ 3726 else if (r->code && r->code != icmpcode + 1) 3727 r = TAILQ_NEXT(r, entries); 3728 else if (r->tos && !(r->tos == pd->tos)) 3729 r = TAILQ_NEXT(r, entries); 3730 else if (r->rule_flag & PFRULE_FRAGMENT) 3731 r = TAILQ_NEXT(r, entries); 3732 else if (pd->proto == IPPROTO_TCP && 3733 (r->flagset & th->th_flags) != r->flags) 3734 r = TAILQ_NEXT(r, entries); 3735 /* tcp/udp only. uid.op always 0 in other cases */ 3736 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3737 pf_socket_lookup(direction, pd, m), 1)) && 3738 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3739 pd->lookup.uid)) 3740 r = TAILQ_NEXT(r, entries); 3741 /* tcp/udp only. gid.op always 0 in other cases */ 3742 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3743 pf_socket_lookup(direction, pd, m), 1)) && 3744 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3745 pd->lookup.gid)) 3746 r = TAILQ_NEXT(r, entries); 3747 else if (r->prio && 3748 !pf_match_ieee8021q_pcp(r->prio, m)) 3749 r = TAILQ_NEXT(r, entries); 3750 else if (r->prob && 3751 r->prob <= arc4random()) 3752 r = TAILQ_NEXT(r, entries); 3753 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3754 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3755 r = TAILQ_NEXT(r, entries); 3756 else if (r->os_fingerprint != PF_OSFP_ANY && 3757 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3758 pf_osfp_fingerprint(pd, m, off, th), 3759 r->os_fingerprint))) 3760 r = TAILQ_NEXT(r, entries); 3761 else { 3762 if (r->tag) 3763 tag = r->tag; 3764 if (r->rtableid >= 0) 3765 rtableid = r->rtableid; 3766 if (r->anchor == NULL) { 3767 if (r->action == PF_MATCH) { 3768 pf_counter_u64_critical_enter(); 3769 pf_counter_u64_add_protected(&r->packets[direction == PF_OUT], 1); 3770 pf_counter_u64_add_protected(&r->bytes[direction == PF_OUT], pd->tot_len); 3771 pf_counter_u64_critical_exit(); 3772 pf_rule_to_actions(r, &pd->act); 3773 if (r->log) 3774 PFLOG_PACKET(kif, m, af, 3775 direction, PFRES_MATCH, r, 3776 a, ruleset, pd, 1); 3777 } else { 3778 match = 1; 3779 *rm = r; 3780 *am = a; 3781 *rsm = ruleset; 3782 } 3783 if ((*rm)->quick) 3784 break; 3785 r = TAILQ_NEXT(r, entries); 3786 } else 3787 pf_step_into_anchor(anchor_stack, &asd, 3788 &ruleset, PF_RULESET_FILTER, &r, &a, 3789 &match); 3790 } 3791 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3792 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3793 break; 3794 } 3795 r = *rm; 3796 a = *am; 3797 ruleset = *rsm; 3798 3799 REASON_SET(&reason, PFRES_MATCH); 3800 3801 /* apply actions for last matching pass/block rule */ 3802 pf_rule_to_actions(r, &pd->act); 3803 3804 if (r->log || (nr != NULL && nr->log)) { 3805 if (rewrite) 3806 m_copyback(m, off, hdrlen, pd->hdr.any); 3807 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3808 ruleset, pd, 1); 3809 } 3810 3811 if ((r->action == PF_DROP) && 3812 ((r->rule_flag & PFRULE_RETURNRST) || 3813 (r->rule_flag & PFRULE_RETURNICMP) || 3814 (r->rule_flag & PFRULE_RETURN))) { 3815 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 3816 bip_sum, hdrlen, &reason); 3817 } 3818 3819 if (r->action == PF_DROP) 3820 goto cleanup; 3821 3822 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3823 REASON_SET(&reason, PFRES_MEMORY); 3824 goto cleanup; 3825 } 3826 if (rtableid >= 0) 3827 M_SETFIB(m, rtableid); 3828 3829 if (!state_icmp && (r->keep_state || nr != NULL || 3830 (pd->flags & PFDESC_TCP_NORM))) { 3831 int action; 3832 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3833 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3834 hdrlen); 3835 if (action != PF_PASS) { 3836 if (action == PF_DROP && 3837 (r->rule_flag & PFRULE_RETURN)) 3838 pf_return(r, nr, pd, sk, off, m, th, kif, 3839 bproto_sum, bip_sum, hdrlen, &reason); 3840 return (action); 3841 } 3842 } else { 3843 if (sk != NULL) 3844 uma_zfree(V_pf_state_key_z, sk); 3845 if (nk != NULL) 3846 uma_zfree(V_pf_state_key_z, nk); 3847 } 3848 3849 /* copy back packet headers if we performed NAT operations */ 3850 if (rewrite) 3851 m_copyback(m, off, hdrlen, pd->hdr.any); 3852 3853 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3854 direction == PF_OUT && 3855 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 3856 /* 3857 * We want the state created, but we dont 3858 * want to send this in case a partner 3859 * firewall has to know about it to allow 3860 * replies through it. 3861 */ 3862 return (PF_DEFER); 3863 3864 return (PF_PASS); 3865 3866 cleanup: 3867 if (sk != NULL) 3868 uma_zfree(V_pf_state_key_z, sk); 3869 if (nk != NULL) 3870 uma_zfree(V_pf_state_key_z, nk); 3871 return (PF_DROP); 3872 } 3873 3874 static int 3875 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 3876 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 3877 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3878 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, 3879 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3880 { 3881 struct pf_kstate *s = NULL; 3882 struct pf_ksrc_node *sn = NULL; 3883 struct tcphdr *th = &pd->hdr.tcp; 3884 u_int16_t mss = V_tcp_mssdflt; 3885 u_short reason; 3886 3887 /* check maximums */ 3888 if (r->max_states && 3889 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3890 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3891 REASON_SET(&reason, PFRES_MAXSTATES); 3892 goto csfailed; 3893 } 3894 /* src node for filter rule */ 3895 if ((r->rule_flag & PFRULE_SRCTRACK || 3896 r->rpool.opts & PF_POOL_STICKYADDR) && 3897 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3898 REASON_SET(&reason, PFRES_SRCLIMIT); 3899 goto csfailed; 3900 } 3901 /* src node for translation rule */ 3902 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3903 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3904 REASON_SET(&reason, PFRES_SRCLIMIT); 3905 goto csfailed; 3906 } 3907 s = pf_alloc_state(M_NOWAIT); 3908 if (s == NULL) { 3909 REASON_SET(&reason, PFRES_MEMORY); 3910 goto csfailed; 3911 } 3912 s->rule.ptr = r; 3913 s->nat_rule.ptr = nr; 3914 s->anchor.ptr = a; 3915 STATE_INC_COUNTERS(s); 3916 if (r->allow_opts) 3917 s->state_flags |= PFSTATE_ALLOWOPTS; 3918 if (r->rule_flag & PFRULE_STATESLOPPY) 3919 s->state_flags |= PFSTATE_SLOPPY; 3920 s->log = r->log & PF_LOG_ALL; 3921 s->sync_state = PFSYNC_S_NONE; 3922 s->qid = pd->act.qid; 3923 s->pqid = pd->act.pqid; 3924 if (nr != NULL) 3925 s->log |= nr->log & PF_LOG_ALL; 3926 switch (pd->proto) { 3927 case IPPROTO_TCP: 3928 s->src.seqlo = ntohl(th->th_seq); 3929 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3930 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3931 r->keep_state == PF_STATE_MODULATE) { 3932 /* Generate sequence number modulator */ 3933 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3934 0) 3935 s->src.seqdiff = 1; 3936 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3937 htonl(s->src.seqlo + s->src.seqdiff), 0); 3938 *rewrite = 1; 3939 } else 3940 s->src.seqdiff = 0; 3941 if (th->th_flags & TH_SYN) { 3942 s->src.seqhi++; 3943 s->src.wscale = pf_get_wscale(m, off, 3944 th->th_off, pd->af); 3945 } 3946 s->src.max_win = MAX(ntohs(th->th_win), 1); 3947 if (s->src.wscale & PF_WSCALE_MASK) { 3948 /* Remove scale factor from initial window */ 3949 int win = s->src.max_win; 3950 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3951 s->src.max_win = (win - 1) >> 3952 (s->src.wscale & PF_WSCALE_MASK); 3953 } 3954 if (th->th_flags & TH_FIN) 3955 s->src.seqhi++; 3956 s->dst.seqhi = 1; 3957 s->dst.max_win = 1; 3958 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 3959 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 3960 s->timeout = PFTM_TCP_FIRST_PACKET; 3961 break; 3962 case IPPROTO_UDP: 3963 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 3964 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 3965 s->timeout = PFTM_UDP_FIRST_PACKET; 3966 break; 3967 case IPPROTO_ICMP: 3968 #ifdef INET6 3969 case IPPROTO_ICMPV6: 3970 #endif 3971 s->timeout = PFTM_ICMP_FIRST_PACKET; 3972 break; 3973 default: 3974 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 3975 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 3976 s->timeout = PFTM_OTHER_FIRST_PACKET; 3977 } 3978 3979 if (r->rt) { 3980 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3981 REASON_SET(&reason, PFRES_MAPFAILED); 3982 pf_src_tree_remove_state(s); 3983 s->timeout = PFTM_UNLINKED; 3984 STATE_DEC_COUNTERS(s); 3985 pf_free_state(s); 3986 goto csfailed; 3987 } 3988 s->rt_kif = r->rpool.cur->kif; 3989 } 3990 3991 s->creation = time_uptime; 3992 s->expire = time_uptime; 3993 3994 if (sn != NULL) 3995 s->src_node = sn; 3996 if (nsn != NULL) { 3997 /* XXX We only modify one side for now. */ 3998 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3999 s->nat_src_node = nsn; 4000 } 4001 if (pd->proto == IPPROTO_TCP) { 4002 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 4003 off, pd, th, &s->src, &s->dst)) { 4004 REASON_SET(&reason, PFRES_MEMORY); 4005 pf_src_tree_remove_state(s); 4006 s->timeout = PFTM_UNLINKED; 4007 STATE_DEC_COUNTERS(s); 4008 pf_free_state(s); 4009 return (PF_DROP); 4010 } 4011 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 4012 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 4013 &s->src, &s->dst, rewrite)) { 4014 /* This really shouldn't happen!!! */ 4015 DPFPRINTF(PF_DEBUG_URGENT, 4016 ("pf_normalize_tcp_stateful failed on first " 4017 "pkt\n")); 4018 pf_src_tree_remove_state(s); 4019 s->timeout = PFTM_UNLINKED; 4020 STATE_DEC_COUNTERS(s); 4021 pf_free_state(s); 4022 return (PF_DROP); 4023 } 4024 } 4025 s->direction = pd->dir; 4026 4027 /* 4028 * sk/nk could already been setup by pf_get_translation(). 4029 */ 4030 if (nr == NULL) { 4031 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 4032 __func__, nr, sk, nk)); 4033 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 4034 if (sk == NULL) 4035 goto csfailed; 4036 nk = sk; 4037 } else 4038 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 4039 __func__, nr, sk, nk)); 4040 4041 /* Swap sk/nk for PF_OUT. */ 4042 if (pf_state_insert(BOUND_IFACE(r, kif), kif, 4043 (pd->dir == PF_IN) ? sk : nk, 4044 (pd->dir == PF_IN) ? nk : sk, s)) { 4045 REASON_SET(&reason, PFRES_STATEINS); 4046 pf_src_tree_remove_state(s); 4047 s->timeout = PFTM_UNLINKED; 4048 STATE_DEC_COUNTERS(s); 4049 pf_free_state(s); 4050 return (PF_DROP); 4051 } else 4052 *sm = s; 4053 4054 if (tag > 0) 4055 s->tag = tag; 4056 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 4057 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 4058 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 4059 /* undo NAT changes, if they have taken place */ 4060 if (nr != NULL) { 4061 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 4062 if (pd->dir == PF_OUT) 4063 skt = s->key[PF_SK_STACK]; 4064 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 4065 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 4066 if (pd->sport) 4067 *pd->sport = skt->port[pd->sidx]; 4068 if (pd->dport) 4069 *pd->dport = skt->port[pd->didx]; 4070 if (pd->proto_sum) 4071 *pd->proto_sum = bproto_sum; 4072 if (pd->ip_sum) 4073 *pd->ip_sum = bip_sum; 4074 m_copyback(m, off, hdrlen, pd->hdr.any); 4075 } 4076 s->src.seqhi = htonl(arc4random()); 4077 /* Find mss option */ 4078 int rtid = M_GETFIB(m); 4079 mss = pf_get_mss(m, off, th->th_off, pd->af); 4080 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 4081 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 4082 s->src.mss = mss; 4083 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 4084 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 4085 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0); 4086 REASON_SET(&reason, PFRES_SYNPROXY); 4087 return (PF_SYNPROXY_DROP); 4088 } 4089 4090 return (PF_PASS); 4091 4092 csfailed: 4093 if (sk != NULL) 4094 uma_zfree(V_pf_state_key_z, sk); 4095 if (nk != NULL) 4096 uma_zfree(V_pf_state_key_z, nk); 4097 4098 if (sn != NULL) { 4099 struct pf_srchash *sh; 4100 4101 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 4102 PF_HASHROW_LOCK(sh); 4103 if (--sn->states == 0 && sn->expire == 0) { 4104 pf_unlink_src_node(sn); 4105 uma_zfree(V_pf_sources_z, sn); 4106 counter_u64_add( 4107 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 4108 } 4109 PF_HASHROW_UNLOCK(sh); 4110 } 4111 4112 if (nsn != sn && nsn != NULL) { 4113 struct pf_srchash *sh; 4114 4115 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 4116 PF_HASHROW_LOCK(sh); 4117 if (--nsn->states == 0 && nsn->expire == 0) { 4118 pf_unlink_src_node(nsn); 4119 uma_zfree(V_pf_sources_z, nsn); 4120 counter_u64_add( 4121 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 4122 } 4123 PF_HASHROW_UNLOCK(sh); 4124 } 4125 4126 return (PF_DROP); 4127 } 4128 4129 static int 4130 pf_test_fragment(struct pf_krule **rm, int direction, struct pfi_kkif *kif, 4131 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, 4132 struct pf_kruleset **rsm) 4133 { 4134 struct pf_krule *r, *a = NULL; 4135 struct pf_kruleset *ruleset = NULL; 4136 sa_family_t af = pd->af; 4137 u_short reason; 4138 int tag = -1; 4139 int asd = 0; 4140 int match = 0; 4141 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4142 4143 PF_RULES_RASSERT(); 4144 4145 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4146 while (r != NULL) { 4147 pf_counter_u64_add(&r->evaluations, 1); 4148 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 4149 r = r->skip[PF_SKIP_IFP].ptr; 4150 else if (r->direction && r->direction != direction) 4151 r = r->skip[PF_SKIP_DIR].ptr; 4152 else if (r->af && r->af != af) 4153 r = r->skip[PF_SKIP_AF].ptr; 4154 else if (r->proto && r->proto != pd->proto) 4155 r = r->skip[PF_SKIP_PROTO].ptr; 4156 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 4157 r->src.neg, kif, M_GETFIB(m))) 4158 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4159 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 4160 r->dst.neg, NULL, M_GETFIB(m))) 4161 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4162 else if (r->tos && !(r->tos == pd->tos)) 4163 r = TAILQ_NEXT(r, entries); 4164 else if (r->os_fingerprint != PF_OSFP_ANY) 4165 r = TAILQ_NEXT(r, entries); 4166 else if (pd->proto == IPPROTO_UDP && 4167 (r->src.port_op || r->dst.port_op)) 4168 r = TAILQ_NEXT(r, entries); 4169 else if (pd->proto == IPPROTO_TCP && 4170 (r->src.port_op || r->dst.port_op || r->flagset)) 4171 r = TAILQ_NEXT(r, entries); 4172 else if ((pd->proto == IPPROTO_ICMP || 4173 pd->proto == IPPROTO_ICMPV6) && 4174 (r->type || r->code)) 4175 r = TAILQ_NEXT(r, entries); 4176 else if (r->prio && 4177 !pf_match_ieee8021q_pcp(r->prio, m)) 4178 r = TAILQ_NEXT(r, entries); 4179 else if (r->prob && r->prob <= 4180 (arc4random() % (UINT_MAX - 1) + 1)) 4181 r = TAILQ_NEXT(r, entries); 4182 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4183 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4184 r = TAILQ_NEXT(r, entries); 4185 else { 4186 if (r->anchor == NULL) { 4187 if (r->action == PF_MATCH) { 4188 pf_counter_u64_critical_enter(); 4189 pf_counter_u64_add_protected(&r->packets[direction == PF_OUT], 1); 4190 pf_counter_u64_add_protected(&r->bytes[direction == PF_OUT], pd->tot_len); 4191 pf_counter_u64_critical_exit(); 4192 pf_rule_to_actions(r, &pd->act); 4193 if (r->log) 4194 PFLOG_PACKET(kif, m, af, 4195 direction, PFRES_MATCH, r, 4196 a, ruleset, pd, 1); 4197 } else { 4198 match = 1; 4199 *rm = r; 4200 *am = a; 4201 *rsm = ruleset; 4202 } 4203 if ((*rm)->quick) 4204 break; 4205 r = TAILQ_NEXT(r, entries); 4206 } else 4207 pf_step_into_anchor(anchor_stack, &asd, 4208 &ruleset, PF_RULESET_FILTER, &r, &a, 4209 &match); 4210 } 4211 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4212 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4213 break; 4214 } 4215 r = *rm; 4216 a = *am; 4217 ruleset = *rsm; 4218 4219 REASON_SET(&reason, PFRES_MATCH); 4220 4221 /* apply actions for last matching pass/block rule */ 4222 pf_rule_to_actions(r, &pd->act); 4223 4224 if (r->log) 4225 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 4226 1); 4227 4228 if (r->action != PF_PASS) 4229 return (PF_DROP); 4230 4231 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4232 REASON_SET(&reason, PFRES_MEMORY); 4233 return (PF_DROP); 4234 } 4235 4236 return (PF_PASS); 4237 } 4238 4239 static int 4240 pf_tcp_track_full(struct pf_kstate **state, struct pfi_kkif *kif, 4241 struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason, 4242 int *copyback) 4243 { 4244 struct tcphdr *th = &pd->hdr.tcp; 4245 struct pf_state_peer *src, *dst; 4246 u_int16_t win = ntohs(th->th_win); 4247 u_int32_t ack, end, seq, orig_seq; 4248 u_int8_t sws, dws, psrc, pdst; 4249 int ackskew; 4250 4251 if (pd->dir == (*state)->direction) { 4252 src = &(*state)->src; 4253 dst = &(*state)->dst; 4254 psrc = PF_PEER_SRC; 4255 pdst = PF_PEER_DST; 4256 } else { 4257 src = &(*state)->dst; 4258 dst = &(*state)->src; 4259 psrc = PF_PEER_DST; 4260 pdst = PF_PEER_SRC; 4261 } 4262 4263 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 4264 sws = src->wscale & PF_WSCALE_MASK; 4265 dws = dst->wscale & PF_WSCALE_MASK; 4266 } else 4267 sws = dws = 0; 4268 4269 /* 4270 * Sequence tracking algorithm from Guido van Rooij's paper: 4271 * http://www.madison-gurkha.com/publications/tcp_filtering/ 4272 * tcp_filtering.ps 4273 */ 4274 4275 orig_seq = seq = ntohl(th->th_seq); 4276 if (src->seqlo == 0) { 4277 /* First packet from this end. Set its state */ 4278 4279 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 4280 src->scrub == NULL) { 4281 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 4282 REASON_SET(reason, PFRES_MEMORY); 4283 return (PF_DROP); 4284 } 4285 } 4286 4287 /* Deferred generation of sequence number modulator */ 4288 if (dst->seqdiff && !src->seqdiff) { 4289 /* use random iss for the TCP server */ 4290 while ((src->seqdiff = arc4random() - seq) == 0) 4291 ; 4292 ack = ntohl(th->th_ack) - dst->seqdiff; 4293 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4294 src->seqdiff), 0); 4295 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4296 *copyback = 1; 4297 } else { 4298 ack = ntohl(th->th_ack); 4299 } 4300 4301 end = seq + pd->p_len; 4302 if (th->th_flags & TH_SYN) { 4303 end++; 4304 if (dst->wscale & PF_WSCALE_FLAG) { 4305 src->wscale = pf_get_wscale(m, off, th->th_off, 4306 pd->af); 4307 if (src->wscale & PF_WSCALE_FLAG) { 4308 /* Remove scale factor from initial 4309 * window */ 4310 sws = src->wscale & PF_WSCALE_MASK; 4311 win = ((u_int32_t)win + (1 << sws) - 1) 4312 >> sws; 4313 dws = dst->wscale & PF_WSCALE_MASK; 4314 } else { 4315 /* fixup other window */ 4316 dst->max_win <<= dst->wscale & 4317 PF_WSCALE_MASK; 4318 /* in case of a retrans SYN|ACK */ 4319 dst->wscale = 0; 4320 } 4321 } 4322 } 4323 if (th->th_flags & TH_FIN) 4324 end++; 4325 4326 src->seqlo = seq; 4327 if (src->state < TCPS_SYN_SENT) 4328 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 4329 4330 /* 4331 * May need to slide the window (seqhi may have been set by 4332 * the crappy stack check or if we picked up the connection 4333 * after establishment) 4334 */ 4335 if (src->seqhi == 1 || 4336 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4337 src->seqhi = end + MAX(1, dst->max_win << dws); 4338 if (win > src->max_win) 4339 src->max_win = win; 4340 4341 } else { 4342 ack = ntohl(th->th_ack) - dst->seqdiff; 4343 if (src->seqdiff) { 4344 /* Modulate sequence numbers */ 4345 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4346 src->seqdiff), 0); 4347 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4348 *copyback = 1; 4349 } 4350 end = seq + pd->p_len; 4351 if (th->th_flags & TH_SYN) 4352 end++; 4353 if (th->th_flags & TH_FIN) 4354 end++; 4355 } 4356 4357 if ((th->th_flags & TH_ACK) == 0) { 4358 /* Let it pass through the ack skew check */ 4359 ack = dst->seqlo; 4360 } else if ((ack == 0 && 4361 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4362 /* broken tcp stacks do not set ack */ 4363 (dst->state < TCPS_SYN_SENT)) { 4364 /* 4365 * Many stacks (ours included) will set the ACK number in an 4366 * FIN|ACK if the SYN times out -- no sequence to ACK. 4367 */ 4368 ack = dst->seqlo; 4369 } 4370 4371 if (seq == end) { 4372 /* Ease sequencing restrictions on no data packets */ 4373 seq = src->seqlo; 4374 end = seq; 4375 } 4376 4377 ackskew = dst->seqlo - ack; 4378 4379 /* 4380 * Need to demodulate the sequence numbers in any TCP SACK options 4381 * (Selective ACK). We could optionally validate the SACK values 4382 * against the current ACK window, either forwards or backwards, but 4383 * I'm not confident that SACK has been implemented properly 4384 * everywhere. It wouldn't surprise me if several stacks accidentally 4385 * SACK too far backwards of previously ACKed data. There really aren't 4386 * any security implications of bad SACKing unless the target stack 4387 * doesn't validate the option length correctly. Someone trying to 4388 * spoof into a TCP connection won't bother blindly sending SACK 4389 * options anyway. 4390 */ 4391 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4392 if (pf_modulate_sack(m, off, pd, th, dst)) 4393 *copyback = 1; 4394 } 4395 4396 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4397 if (SEQ_GEQ(src->seqhi, end) && 4398 /* Last octet inside other's window space */ 4399 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4400 /* Retrans: not more than one window back */ 4401 (ackskew >= -MAXACKWINDOW) && 4402 /* Acking not more than one reassembled fragment backwards */ 4403 (ackskew <= (MAXACKWINDOW << sws)) && 4404 /* Acking not more than one window forward */ 4405 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4406 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4407 (pd->flags & PFDESC_IP_REAS) == 0)) { 4408 /* Require an exact/+1 sequence match on resets when possible */ 4409 4410 if (dst->scrub || src->scrub) { 4411 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4412 *state, src, dst, copyback)) 4413 return (PF_DROP); 4414 } 4415 4416 /* update max window */ 4417 if (src->max_win < win) 4418 src->max_win = win; 4419 /* synchronize sequencing */ 4420 if (SEQ_GT(end, src->seqlo)) 4421 src->seqlo = end; 4422 /* slide the window of what the other end can send */ 4423 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4424 dst->seqhi = ack + MAX((win << sws), 1); 4425 4426 /* update states */ 4427 if (th->th_flags & TH_SYN) 4428 if (src->state < TCPS_SYN_SENT) 4429 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 4430 if (th->th_flags & TH_FIN) 4431 if (src->state < TCPS_CLOSING) 4432 pf_set_protostate(*state, psrc, TCPS_CLOSING); 4433 if (th->th_flags & TH_ACK) { 4434 if (dst->state == TCPS_SYN_SENT) { 4435 pf_set_protostate(*state, pdst, 4436 TCPS_ESTABLISHED); 4437 if (src->state == TCPS_ESTABLISHED && 4438 (*state)->src_node != NULL && 4439 pf_src_connlimit(state)) { 4440 REASON_SET(reason, PFRES_SRCLIMIT); 4441 return (PF_DROP); 4442 } 4443 } else if (dst->state == TCPS_CLOSING) 4444 pf_set_protostate(*state, pdst, 4445 TCPS_FIN_WAIT_2); 4446 } 4447 if (th->th_flags & TH_RST) 4448 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 4449 4450 /* update expire time */ 4451 (*state)->expire = time_uptime; 4452 if (src->state >= TCPS_FIN_WAIT_2 && 4453 dst->state >= TCPS_FIN_WAIT_2) 4454 (*state)->timeout = PFTM_TCP_CLOSED; 4455 else if (src->state >= TCPS_CLOSING && 4456 dst->state >= TCPS_CLOSING) 4457 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4458 else if (src->state < TCPS_ESTABLISHED || 4459 dst->state < TCPS_ESTABLISHED) 4460 (*state)->timeout = PFTM_TCP_OPENING; 4461 else if (src->state >= TCPS_CLOSING || 4462 dst->state >= TCPS_CLOSING) 4463 (*state)->timeout = PFTM_TCP_CLOSING; 4464 else 4465 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4466 4467 /* Fall through to PASS packet */ 4468 4469 } else if ((dst->state < TCPS_SYN_SENT || 4470 dst->state >= TCPS_FIN_WAIT_2 || 4471 src->state >= TCPS_FIN_WAIT_2) && 4472 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4473 /* Within a window forward of the originating packet */ 4474 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4475 /* Within a window backward of the originating packet */ 4476 4477 /* 4478 * This currently handles three situations: 4479 * 1) Stupid stacks will shotgun SYNs before their peer 4480 * replies. 4481 * 2) When PF catches an already established stream (the 4482 * firewall rebooted, the state table was flushed, routes 4483 * changed...) 4484 * 3) Packets get funky immediately after the connection 4485 * closes (this should catch Solaris spurious ACK|FINs 4486 * that web servers like to spew after a close) 4487 * 4488 * This must be a little more careful than the above code 4489 * since packet floods will also be caught here. We don't 4490 * update the TTL here to mitigate the damage of a packet 4491 * flood and so the same code can handle awkward establishment 4492 * and a loosened connection close. 4493 * In the establishment case, a correct peer response will 4494 * validate the connection, go through the normal state code 4495 * and keep updating the state TTL. 4496 */ 4497 4498 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4499 printf("pf: loose state match: "); 4500 pf_print_state(*state); 4501 pf_print_flags(th->th_flags); 4502 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4503 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4504 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4505 (unsigned long long)(*state)->packets[1], 4506 pd->dir == PF_IN ? "in" : "out", 4507 pd->dir == (*state)->direction ? "fwd" : "rev"); 4508 } 4509 4510 if (dst->scrub || src->scrub) { 4511 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4512 *state, src, dst, copyback)) 4513 return (PF_DROP); 4514 } 4515 4516 /* update max window */ 4517 if (src->max_win < win) 4518 src->max_win = win; 4519 /* synchronize sequencing */ 4520 if (SEQ_GT(end, src->seqlo)) 4521 src->seqlo = end; 4522 /* slide the window of what the other end can send */ 4523 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4524 dst->seqhi = ack + MAX((win << sws), 1); 4525 4526 /* 4527 * Cannot set dst->seqhi here since this could be a shotgunned 4528 * SYN and not an already established connection. 4529 */ 4530 4531 if (th->th_flags & TH_FIN) 4532 if (src->state < TCPS_CLOSING) 4533 pf_set_protostate(*state, psrc, TCPS_CLOSING); 4534 if (th->th_flags & TH_RST) 4535 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 4536 4537 /* Fall through to PASS packet */ 4538 4539 } else { 4540 if ((*state)->dst.state == TCPS_SYN_SENT && 4541 (*state)->src.state == TCPS_SYN_SENT) { 4542 /* Send RST for state mismatches during handshake */ 4543 if (!(th->th_flags & TH_RST)) 4544 pf_send_tcp((*state)->rule.ptr, pd->af, 4545 pd->dst, pd->src, th->th_dport, 4546 th->th_sport, ntohl(th->th_ack), 0, 4547 TH_RST, 0, 0, 4548 (*state)->rule.ptr->return_ttl, 1, 0); 4549 src->seqlo = 0; 4550 src->seqhi = 1; 4551 src->max_win = 1; 4552 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4553 printf("pf: BAD state: "); 4554 pf_print_state(*state); 4555 pf_print_flags(th->th_flags); 4556 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4557 "pkts=%llu:%llu dir=%s,%s\n", 4558 seq, orig_seq, ack, pd->p_len, ackskew, 4559 (unsigned long long)(*state)->packets[0], 4560 (unsigned long long)(*state)->packets[1], 4561 pd->dir == PF_IN ? "in" : "out", 4562 pd->dir == (*state)->direction ? "fwd" : "rev"); 4563 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4564 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4565 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4566 ' ': '2', 4567 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4568 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4569 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4570 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4571 } 4572 REASON_SET(reason, PFRES_BADSTATE); 4573 return (PF_DROP); 4574 } 4575 4576 return (PF_PASS); 4577 } 4578 4579 static int 4580 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 4581 { 4582 struct tcphdr *th = &pd->hdr.tcp; 4583 struct pf_state_peer *src, *dst; 4584 u_int8_t psrc, pdst; 4585 4586 if (pd->dir == (*state)->direction) { 4587 src = &(*state)->src; 4588 dst = &(*state)->dst; 4589 psrc = PF_PEER_SRC; 4590 pdst = PF_PEER_DST; 4591 } else { 4592 src = &(*state)->dst; 4593 dst = &(*state)->src; 4594 psrc = PF_PEER_DST; 4595 pdst = PF_PEER_SRC; 4596 } 4597 4598 if (th->th_flags & TH_SYN) 4599 if (src->state < TCPS_SYN_SENT) 4600 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 4601 if (th->th_flags & TH_FIN) 4602 if (src->state < TCPS_CLOSING) 4603 pf_set_protostate(*state, psrc, TCPS_CLOSING); 4604 if (th->th_flags & TH_ACK) { 4605 if (dst->state == TCPS_SYN_SENT) { 4606 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 4607 if (src->state == TCPS_ESTABLISHED && 4608 (*state)->src_node != NULL && 4609 pf_src_connlimit(state)) { 4610 REASON_SET(reason, PFRES_SRCLIMIT); 4611 return (PF_DROP); 4612 } 4613 } else if (dst->state == TCPS_CLOSING) { 4614 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 4615 } else if (src->state == TCPS_SYN_SENT && 4616 dst->state < TCPS_SYN_SENT) { 4617 /* 4618 * Handle a special sloppy case where we only see one 4619 * half of the connection. If there is a ACK after 4620 * the initial SYN without ever seeing a packet from 4621 * the destination, set the connection to established. 4622 */ 4623 pf_set_protostate(*state, PF_PEER_BOTH, 4624 TCPS_ESTABLISHED); 4625 dst->state = src->state = TCPS_ESTABLISHED; 4626 if ((*state)->src_node != NULL && 4627 pf_src_connlimit(state)) { 4628 REASON_SET(reason, PFRES_SRCLIMIT); 4629 return (PF_DROP); 4630 } 4631 } else if (src->state == TCPS_CLOSING && 4632 dst->state == TCPS_ESTABLISHED && 4633 dst->seqlo == 0) { 4634 /* 4635 * Handle the closing of half connections where we 4636 * don't see the full bidirectional FIN/ACK+ACK 4637 * handshake. 4638 */ 4639 pf_set_protostate(*state, pdst, TCPS_CLOSING); 4640 } 4641 } 4642 if (th->th_flags & TH_RST) 4643 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 4644 4645 /* update expire time */ 4646 (*state)->expire = time_uptime; 4647 if (src->state >= TCPS_FIN_WAIT_2 && 4648 dst->state >= TCPS_FIN_WAIT_2) 4649 (*state)->timeout = PFTM_TCP_CLOSED; 4650 else if (src->state >= TCPS_CLOSING && 4651 dst->state >= TCPS_CLOSING) 4652 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4653 else if (src->state < TCPS_ESTABLISHED || 4654 dst->state < TCPS_ESTABLISHED) 4655 (*state)->timeout = PFTM_TCP_OPENING; 4656 else if (src->state >= TCPS_CLOSING || 4657 dst->state >= TCPS_CLOSING) 4658 (*state)->timeout = PFTM_TCP_CLOSING; 4659 else 4660 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4661 4662 return (PF_PASS); 4663 } 4664 4665 static int 4666 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 4667 { 4668 struct pf_state_key *sk = (*state)->key[pd->didx]; 4669 struct tcphdr *th = &pd->hdr.tcp; 4670 4671 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4672 if (pd->dir != (*state)->direction) { 4673 REASON_SET(reason, PFRES_SYNPROXY); 4674 return (PF_SYNPROXY_DROP); 4675 } 4676 if (th->th_flags & TH_SYN) { 4677 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4678 REASON_SET(reason, PFRES_SYNPROXY); 4679 return (PF_DROP); 4680 } 4681 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 4682 pd->src, th->th_dport, th->th_sport, 4683 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4684 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0); 4685 REASON_SET(reason, PFRES_SYNPROXY); 4686 return (PF_SYNPROXY_DROP); 4687 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 4688 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4689 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4690 REASON_SET(reason, PFRES_SYNPROXY); 4691 return (PF_DROP); 4692 } else if ((*state)->src_node != NULL && 4693 pf_src_connlimit(state)) { 4694 REASON_SET(reason, PFRES_SRCLIMIT); 4695 return (PF_DROP); 4696 } else 4697 pf_set_protostate(*state, PF_PEER_SRC, 4698 PF_TCPS_PROXY_DST); 4699 } 4700 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4701 if (pd->dir == (*state)->direction) { 4702 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4703 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4704 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4705 REASON_SET(reason, PFRES_SYNPROXY); 4706 return (PF_DROP); 4707 } 4708 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4709 if ((*state)->dst.seqhi == 1) 4710 (*state)->dst.seqhi = htonl(arc4random()); 4711 pf_send_tcp((*state)->rule.ptr, pd->af, 4712 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4713 sk->port[pd->sidx], sk->port[pd->didx], 4714 (*state)->dst.seqhi, 0, TH_SYN, 0, 4715 (*state)->src.mss, 0, 0, (*state)->tag); 4716 REASON_SET(reason, PFRES_SYNPROXY); 4717 return (PF_SYNPROXY_DROP); 4718 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4719 (TH_SYN|TH_ACK)) || 4720 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4721 REASON_SET(reason, PFRES_SYNPROXY); 4722 return (PF_DROP); 4723 } else { 4724 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4725 (*state)->dst.seqlo = ntohl(th->th_seq); 4726 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 4727 pd->src, th->th_dport, th->th_sport, 4728 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4729 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4730 (*state)->tag); 4731 pf_send_tcp((*state)->rule.ptr, pd->af, 4732 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4733 sk->port[pd->sidx], sk->port[pd->didx], 4734 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4735 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0); 4736 (*state)->src.seqdiff = (*state)->dst.seqhi - 4737 (*state)->src.seqlo; 4738 (*state)->dst.seqdiff = (*state)->src.seqhi - 4739 (*state)->dst.seqlo; 4740 (*state)->src.seqhi = (*state)->src.seqlo + 4741 (*state)->dst.max_win; 4742 (*state)->dst.seqhi = (*state)->dst.seqlo + 4743 (*state)->src.max_win; 4744 (*state)->src.wscale = (*state)->dst.wscale = 0; 4745 pf_set_protostate(*state, PF_PEER_BOTH, 4746 TCPS_ESTABLISHED); 4747 REASON_SET(reason, PFRES_SYNPROXY); 4748 return (PF_SYNPROXY_DROP); 4749 } 4750 } 4751 4752 return (PF_PASS); 4753 } 4754 4755 static int 4756 pf_test_state_tcp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 4757 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4758 u_short *reason) 4759 { 4760 struct pf_state_key_cmp key; 4761 struct tcphdr *th = &pd->hdr.tcp; 4762 int copyback = 0; 4763 int action; 4764 struct pf_state_peer *src, *dst; 4765 struct pf_state_key *sk; 4766 4767 bzero(&key, sizeof(key)); 4768 key.af = pd->af; 4769 key.proto = IPPROTO_TCP; 4770 if (direction == PF_IN) { /* wire side, straight */ 4771 PF_ACPY(&key.addr[0], pd->src, key.af); 4772 PF_ACPY(&key.addr[1], pd->dst, key.af); 4773 key.port[0] = th->th_sport; 4774 key.port[1] = th->th_dport; 4775 } else { /* stack side, reverse */ 4776 PF_ACPY(&key.addr[1], pd->src, key.af); 4777 PF_ACPY(&key.addr[0], pd->dst, key.af); 4778 key.port[1] = th->th_sport; 4779 key.port[0] = th->th_dport; 4780 } 4781 4782 STATE_LOOKUP(kif, &key, direction, *state, pd); 4783 4784 if (direction == (*state)->direction) { 4785 src = &(*state)->src; 4786 dst = &(*state)->dst; 4787 } else { 4788 src = &(*state)->dst; 4789 dst = &(*state)->src; 4790 } 4791 4792 sk = (*state)->key[pd->didx]; 4793 4794 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 4795 return (action); 4796 4797 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4798 dst->state >= TCPS_FIN_WAIT_2 && 4799 src->state >= TCPS_FIN_WAIT_2) { 4800 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4801 printf("pf: state reuse "); 4802 pf_print_state(*state); 4803 pf_print_flags(th->th_flags); 4804 printf("\n"); 4805 } 4806 /* XXX make sure it's the same direction ?? */ 4807 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 4808 pf_unlink_state(*state, PF_ENTER_LOCKED); 4809 *state = NULL; 4810 return (PF_DROP); 4811 } 4812 4813 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4814 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 4815 return (PF_DROP); 4816 } else { 4817 if (pf_tcp_track_full(state, kif, m, off, pd, reason, 4818 ©back) == PF_DROP) 4819 return (PF_DROP); 4820 } 4821 4822 /* translate source/destination address, if necessary */ 4823 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4824 struct pf_state_key *nk = (*state)->key[pd->didx]; 4825 4826 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4827 nk->port[pd->sidx] != th->th_sport) 4828 pf_change_ap(m, pd->src, &th->th_sport, 4829 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4830 nk->port[pd->sidx], 0, pd->af); 4831 4832 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4833 nk->port[pd->didx] != th->th_dport) 4834 pf_change_ap(m, pd->dst, &th->th_dport, 4835 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4836 nk->port[pd->didx], 0, pd->af); 4837 copyback = 1; 4838 } 4839 4840 /* Copyback sequence modulation or stateful scrub changes if needed */ 4841 if (copyback) 4842 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4843 4844 return (PF_PASS); 4845 } 4846 4847 static int 4848 pf_test_state_udp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 4849 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4850 { 4851 struct pf_state_peer *src, *dst; 4852 struct pf_state_key_cmp key; 4853 struct udphdr *uh = &pd->hdr.udp; 4854 uint8_t psrc, pdst; 4855 4856 bzero(&key, sizeof(key)); 4857 key.af = pd->af; 4858 key.proto = IPPROTO_UDP; 4859 if (direction == PF_IN) { /* wire side, straight */ 4860 PF_ACPY(&key.addr[0], pd->src, key.af); 4861 PF_ACPY(&key.addr[1], pd->dst, key.af); 4862 key.port[0] = uh->uh_sport; 4863 key.port[1] = uh->uh_dport; 4864 } else { /* stack side, reverse */ 4865 PF_ACPY(&key.addr[1], pd->src, key.af); 4866 PF_ACPY(&key.addr[0], pd->dst, key.af); 4867 key.port[1] = uh->uh_sport; 4868 key.port[0] = uh->uh_dport; 4869 } 4870 4871 STATE_LOOKUP(kif, &key, direction, *state, pd); 4872 4873 if (direction == (*state)->direction) { 4874 src = &(*state)->src; 4875 dst = &(*state)->dst; 4876 psrc = PF_PEER_SRC; 4877 pdst = PF_PEER_DST; 4878 } else { 4879 src = &(*state)->dst; 4880 dst = &(*state)->src; 4881 psrc = PF_PEER_DST; 4882 pdst = PF_PEER_SRC; 4883 } 4884 4885 /* update states */ 4886 if (src->state < PFUDPS_SINGLE) 4887 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 4888 if (dst->state == PFUDPS_SINGLE) 4889 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 4890 4891 /* update expire time */ 4892 (*state)->expire = time_uptime; 4893 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4894 (*state)->timeout = PFTM_UDP_MULTIPLE; 4895 else 4896 (*state)->timeout = PFTM_UDP_SINGLE; 4897 4898 /* translate source/destination address, if necessary */ 4899 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4900 struct pf_state_key *nk = (*state)->key[pd->didx]; 4901 4902 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4903 nk->port[pd->sidx] != uh->uh_sport) 4904 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4905 &uh->uh_sum, &nk->addr[pd->sidx], 4906 nk->port[pd->sidx], 1, pd->af); 4907 4908 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4909 nk->port[pd->didx] != uh->uh_dport) 4910 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4911 &uh->uh_sum, &nk->addr[pd->didx], 4912 nk->port[pd->didx], 1, pd->af); 4913 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4914 } 4915 4916 return (PF_PASS); 4917 } 4918 4919 static int 4920 pf_test_state_icmp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 4921 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4922 { 4923 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4924 u_int16_t icmpid = 0, *icmpsum; 4925 u_int8_t icmptype, icmpcode; 4926 int state_icmp = 0; 4927 struct pf_state_key_cmp key; 4928 4929 bzero(&key, sizeof(key)); 4930 switch (pd->proto) { 4931 #ifdef INET 4932 case IPPROTO_ICMP: 4933 icmptype = pd->hdr.icmp.icmp_type; 4934 icmpcode = pd->hdr.icmp.icmp_code; 4935 icmpid = pd->hdr.icmp.icmp_id; 4936 icmpsum = &pd->hdr.icmp.icmp_cksum; 4937 4938 if (icmptype == ICMP_UNREACH || 4939 icmptype == ICMP_SOURCEQUENCH || 4940 icmptype == ICMP_REDIRECT || 4941 icmptype == ICMP_TIMXCEED || 4942 icmptype == ICMP_PARAMPROB) 4943 state_icmp++; 4944 break; 4945 #endif /* INET */ 4946 #ifdef INET6 4947 case IPPROTO_ICMPV6: 4948 icmptype = pd->hdr.icmp6.icmp6_type; 4949 icmpcode = pd->hdr.icmp6.icmp6_code; 4950 icmpid = pd->hdr.icmp6.icmp6_id; 4951 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 4952 4953 if (icmptype == ICMP6_DST_UNREACH || 4954 icmptype == ICMP6_PACKET_TOO_BIG || 4955 icmptype == ICMP6_TIME_EXCEEDED || 4956 icmptype == ICMP6_PARAM_PROB) 4957 state_icmp++; 4958 break; 4959 #endif /* INET6 */ 4960 } 4961 4962 if (!state_icmp) { 4963 /* 4964 * ICMP query/reply message not related to a TCP/UDP packet. 4965 * Search for an ICMP state. 4966 */ 4967 key.af = pd->af; 4968 key.proto = pd->proto; 4969 key.port[0] = key.port[1] = icmpid; 4970 if (direction == PF_IN) { /* wire side, straight */ 4971 PF_ACPY(&key.addr[0], pd->src, key.af); 4972 PF_ACPY(&key.addr[1], pd->dst, key.af); 4973 } else { /* stack side, reverse */ 4974 PF_ACPY(&key.addr[1], pd->src, key.af); 4975 PF_ACPY(&key.addr[0], pd->dst, key.af); 4976 } 4977 4978 STATE_LOOKUP(kif, &key, direction, *state, pd); 4979 4980 (*state)->expire = time_uptime; 4981 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4982 4983 /* translate source/destination address, if necessary */ 4984 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4985 struct pf_state_key *nk = (*state)->key[pd->didx]; 4986 4987 switch (pd->af) { 4988 #ifdef INET 4989 case AF_INET: 4990 if (PF_ANEQ(pd->src, 4991 &nk->addr[pd->sidx], AF_INET)) 4992 pf_change_a(&saddr->v4.s_addr, 4993 pd->ip_sum, 4994 nk->addr[pd->sidx].v4.s_addr, 0); 4995 4996 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4997 AF_INET)) 4998 pf_change_a(&daddr->v4.s_addr, 4999 pd->ip_sum, 5000 nk->addr[pd->didx].v4.s_addr, 0); 5001 5002 if (nk->port[0] != 5003 pd->hdr.icmp.icmp_id) { 5004 pd->hdr.icmp.icmp_cksum = 5005 pf_cksum_fixup( 5006 pd->hdr.icmp.icmp_cksum, icmpid, 5007 nk->port[pd->sidx], 0); 5008 pd->hdr.icmp.icmp_id = 5009 nk->port[pd->sidx]; 5010 } 5011 5012 m_copyback(m, off, ICMP_MINLEN, 5013 (caddr_t )&pd->hdr.icmp); 5014 break; 5015 #endif /* INET */ 5016 #ifdef INET6 5017 case AF_INET6: 5018 if (PF_ANEQ(pd->src, 5019 &nk->addr[pd->sidx], AF_INET6)) 5020 pf_change_a6(saddr, 5021 &pd->hdr.icmp6.icmp6_cksum, 5022 &nk->addr[pd->sidx], 0); 5023 5024 if (PF_ANEQ(pd->dst, 5025 &nk->addr[pd->didx], AF_INET6)) 5026 pf_change_a6(daddr, 5027 &pd->hdr.icmp6.icmp6_cksum, 5028 &nk->addr[pd->didx], 0); 5029 5030 m_copyback(m, off, sizeof(struct icmp6_hdr), 5031 (caddr_t )&pd->hdr.icmp6); 5032 break; 5033 #endif /* INET6 */ 5034 } 5035 } 5036 return (PF_PASS); 5037 5038 } else { 5039 /* 5040 * ICMP error message in response to a TCP/UDP packet. 5041 * Extract the inner TCP/UDP header and search for that state. 5042 */ 5043 5044 struct pf_pdesc pd2; 5045 bzero(&pd2, sizeof pd2); 5046 #ifdef INET 5047 struct ip h2; 5048 #endif /* INET */ 5049 #ifdef INET6 5050 struct ip6_hdr h2_6; 5051 int terminal = 0; 5052 #endif /* INET6 */ 5053 int ipoff2 = 0; 5054 int off2 = 0; 5055 5056 pd2.af = pd->af; 5057 /* Payload packet is from the opposite direction. */ 5058 pd2.sidx = (direction == PF_IN) ? 1 : 0; 5059 pd2.didx = (direction == PF_IN) ? 0 : 1; 5060 switch (pd->af) { 5061 #ifdef INET 5062 case AF_INET: 5063 /* offset of h2 in mbuf chain */ 5064 ipoff2 = off + ICMP_MINLEN; 5065 5066 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 5067 NULL, reason, pd2.af)) { 5068 DPFPRINTF(PF_DEBUG_MISC, 5069 ("pf: ICMP error message too short " 5070 "(ip)\n")); 5071 return (PF_DROP); 5072 } 5073 /* 5074 * ICMP error messages don't refer to non-first 5075 * fragments 5076 */ 5077 if (h2.ip_off & htons(IP_OFFMASK)) { 5078 REASON_SET(reason, PFRES_FRAG); 5079 return (PF_DROP); 5080 } 5081 5082 /* offset of protocol header that follows h2 */ 5083 off2 = ipoff2 + (h2.ip_hl << 2); 5084 5085 pd2.proto = h2.ip_p; 5086 pd2.src = (struct pf_addr *)&h2.ip_src; 5087 pd2.dst = (struct pf_addr *)&h2.ip_dst; 5088 pd2.ip_sum = &h2.ip_sum; 5089 break; 5090 #endif /* INET */ 5091 #ifdef INET6 5092 case AF_INET6: 5093 ipoff2 = off + sizeof(struct icmp6_hdr); 5094 5095 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 5096 NULL, reason, pd2.af)) { 5097 DPFPRINTF(PF_DEBUG_MISC, 5098 ("pf: ICMP error message too short " 5099 "(ip6)\n")); 5100 return (PF_DROP); 5101 } 5102 pd2.proto = h2_6.ip6_nxt; 5103 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 5104 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 5105 pd2.ip_sum = NULL; 5106 off2 = ipoff2 + sizeof(h2_6); 5107 do { 5108 switch (pd2.proto) { 5109 case IPPROTO_FRAGMENT: 5110 /* 5111 * ICMPv6 error messages for 5112 * non-first fragments 5113 */ 5114 REASON_SET(reason, PFRES_FRAG); 5115 return (PF_DROP); 5116 case IPPROTO_AH: 5117 case IPPROTO_HOPOPTS: 5118 case IPPROTO_ROUTING: 5119 case IPPROTO_DSTOPTS: { 5120 /* get next header and header length */ 5121 struct ip6_ext opt6; 5122 5123 if (!pf_pull_hdr(m, off2, &opt6, 5124 sizeof(opt6), NULL, reason, 5125 pd2.af)) { 5126 DPFPRINTF(PF_DEBUG_MISC, 5127 ("pf: ICMPv6 short opt\n")); 5128 return (PF_DROP); 5129 } 5130 if (pd2.proto == IPPROTO_AH) 5131 off2 += (opt6.ip6e_len + 2) * 4; 5132 else 5133 off2 += (opt6.ip6e_len + 1) * 8; 5134 pd2.proto = opt6.ip6e_nxt; 5135 /* goto the next header */ 5136 break; 5137 } 5138 default: 5139 terminal++; 5140 break; 5141 } 5142 } while (!terminal); 5143 break; 5144 #endif /* INET6 */ 5145 } 5146 5147 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 5148 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5149 printf("pf: BAD ICMP %d:%d outer dst: ", 5150 icmptype, icmpcode); 5151 pf_print_host(pd->src, 0, pd->af); 5152 printf(" -> "); 5153 pf_print_host(pd->dst, 0, pd->af); 5154 printf(" inner src: "); 5155 pf_print_host(pd2.src, 0, pd2.af); 5156 printf(" -> "); 5157 pf_print_host(pd2.dst, 0, pd2.af); 5158 printf("\n"); 5159 } 5160 REASON_SET(reason, PFRES_BADSTATE); 5161 return (PF_DROP); 5162 } 5163 5164 switch (pd2.proto) { 5165 case IPPROTO_TCP: { 5166 struct tcphdr th; 5167 u_int32_t seq; 5168 struct pf_state_peer *src, *dst; 5169 u_int8_t dws; 5170 int copyback = 0; 5171 5172 /* 5173 * Only the first 8 bytes of the TCP header can be 5174 * expected. Don't access any TCP header fields after 5175 * th_seq, an ackskew test is not possible. 5176 */ 5177 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 5178 pd2.af)) { 5179 DPFPRINTF(PF_DEBUG_MISC, 5180 ("pf: ICMP error message too short " 5181 "(tcp)\n")); 5182 return (PF_DROP); 5183 } 5184 5185 key.af = pd2.af; 5186 key.proto = IPPROTO_TCP; 5187 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5188 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5189 key.port[pd2.sidx] = th.th_sport; 5190 key.port[pd2.didx] = th.th_dport; 5191 5192 STATE_LOOKUP(kif, &key, direction, *state, pd); 5193 5194 if (direction == (*state)->direction) { 5195 src = &(*state)->dst; 5196 dst = &(*state)->src; 5197 } else { 5198 src = &(*state)->src; 5199 dst = &(*state)->dst; 5200 } 5201 5202 if (src->wscale && dst->wscale) 5203 dws = dst->wscale & PF_WSCALE_MASK; 5204 else 5205 dws = 0; 5206 5207 /* Demodulate sequence number */ 5208 seq = ntohl(th.th_seq) - src->seqdiff; 5209 if (src->seqdiff) { 5210 pf_change_a(&th.th_seq, icmpsum, 5211 htonl(seq), 0); 5212 copyback = 1; 5213 } 5214 5215 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 5216 (!SEQ_GEQ(src->seqhi, seq) || 5217 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 5218 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5219 printf("pf: BAD ICMP %d:%d ", 5220 icmptype, icmpcode); 5221 pf_print_host(pd->src, 0, pd->af); 5222 printf(" -> "); 5223 pf_print_host(pd->dst, 0, pd->af); 5224 printf(" state: "); 5225 pf_print_state(*state); 5226 printf(" seq=%u\n", seq); 5227 } 5228 REASON_SET(reason, PFRES_BADSTATE); 5229 return (PF_DROP); 5230 } else { 5231 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5232 printf("pf: OK ICMP %d:%d ", 5233 icmptype, icmpcode); 5234 pf_print_host(pd->src, 0, pd->af); 5235 printf(" -> "); 5236 pf_print_host(pd->dst, 0, pd->af); 5237 printf(" state: "); 5238 pf_print_state(*state); 5239 printf(" seq=%u\n", seq); 5240 } 5241 } 5242 5243 /* translate source/destination address, if necessary */ 5244 if ((*state)->key[PF_SK_WIRE] != 5245 (*state)->key[PF_SK_STACK]) { 5246 struct pf_state_key *nk = 5247 (*state)->key[pd->didx]; 5248 5249 if (PF_ANEQ(pd2.src, 5250 &nk->addr[pd2.sidx], pd2.af) || 5251 nk->port[pd2.sidx] != th.th_sport) 5252 pf_change_icmp(pd2.src, &th.th_sport, 5253 daddr, &nk->addr[pd2.sidx], 5254 nk->port[pd2.sidx], NULL, 5255 pd2.ip_sum, icmpsum, 5256 pd->ip_sum, 0, pd2.af); 5257 5258 if (PF_ANEQ(pd2.dst, 5259 &nk->addr[pd2.didx], pd2.af) || 5260 nk->port[pd2.didx] != th.th_dport) 5261 pf_change_icmp(pd2.dst, &th.th_dport, 5262 saddr, &nk->addr[pd2.didx], 5263 nk->port[pd2.didx], NULL, 5264 pd2.ip_sum, icmpsum, 5265 pd->ip_sum, 0, pd2.af); 5266 copyback = 1; 5267 } 5268 5269 if (copyback) { 5270 switch (pd2.af) { 5271 #ifdef INET 5272 case AF_INET: 5273 m_copyback(m, off, ICMP_MINLEN, 5274 (caddr_t )&pd->hdr.icmp); 5275 m_copyback(m, ipoff2, sizeof(h2), 5276 (caddr_t )&h2); 5277 break; 5278 #endif /* INET */ 5279 #ifdef INET6 5280 case AF_INET6: 5281 m_copyback(m, off, 5282 sizeof(struct icmp6_hdr), 5283 (caddr_t )&pd->hdr.icmp6); 5284 m_copyback(m, ipoff2, sizeof(h2_6), 5285 (caddr_t )&h2_6); 5286 break; 5287 #endif /* INET6 */ 5288 } 5289 m_copyback(m, off2, 8, (caddr_t)&th); 5290 } 5291 5292 return (PF_PASS); 5293 break; 5294 } 5295 case IPPROTO_UDP: { 5296 struct udphdr uh; 5297 5298 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 5299 NULL, reason, pd2.af)) { 5300 DPFPRINTF(PF_DEBUG_MISC, 5301 ("pf: ICMP error message too short " 5302 "(udp)\n")); 5303 return (PF_DROP); 5304 } 5305 5306 key.af = pd2.af; 5307 key.proto = IPPROTO_UDP; 5308 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5309 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5310 key.port[pd2.sidx] = uh.uh_sport; 5311 key.port[pd2.didx] = uh.uh_dport; 5312 5313 STATE_LOOKUP(kif, &key, direction, *state, pd); 5314 5315 /* translate source/destination address, if necessary */ 5316 if ((*state)->key[PF_SK_WIRE] != 5317 (*state)->key[PF_SK_STACK]) { 5318 struct pf_state_key *nk = 5319 (*state)->key[pd->didx]; 5320 5321 if (PF_ANEQ(pd2.src, 5322 &nk->addr[pd2.sidx], pd2.af) || 5323 nk->port[pd2.sidx] != uh.uh_sport) 5324 pf_change_icmp(pd2.src, &uh.uh_sport, 5325 daddr, &nk->addr[pd2.sidx], 5326 nk->port[pd2.sidx], &uh.uh_sum, 5327 pd2.ip_sum, icmpsum, 5328 pd->ip_sum, 1, pd2.af); 5329 5330 if (PF_ANEQ(pd2.dst, 5331 &nk->addr[pd2.didx], pd2.af) || 5332 nk->port[pd2.didx] != uh.uh_dport) 5333 pf_change_icmp(pd2.dst, &uh.uh_dport, 5334 saddr, &nk->addr[pd2.didx], 5335 nk->port[pd2.didx], &uh.uh_sum, 5336 pd2.ip_sum, icmpsum, 5337 pd->ip_sum, 1, pd2.af); 5338 5339 switch (pd2.af) { 5340 #ifdef INET 5341 case AF_INET: 5342 m_copyback(m, off, ICMP_MINLEN, 5343 (caddr_t )&pd->hdr.icmp); 5344 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5345 break; 5346 #endif /* INET */ 5347 #ifdef INET6 5348 case AF_INET6: 5349 m_copyback(m, off, 5350 sizeof(struct icmp6_hdr), 5351 (caddr_t )&pd->hdr.icmp6); 5352 m_copyback(m, ipoff2, sizeof(h2_6), 5353 (caddr_t )&h2_6); 5354 break; 5355 #endif /* INET6 */ 5356 } 5357 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 5358 } 5359 return (PF_PASS); 5360 break; 5361 } 5362 #ifdef INET 5363 case IPPROTO_ICMP: { 5364 struct icmp iih; 5365 5366 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 5367 NULL, reason, pd2.af)) { 5368 DPFPRINTF(PF_DEBUG_MISC, 5369 ("pf: ICMP error message too short i" 5370 "(icmp)\n")); 5371 return (PF_DROP); 5372 } 5373 5374 key.af = pd2.af; 5375 key.proto = IPPROTO_ICMP; 5376 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5377 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5378 key.port[0] = key.port[1] = iih.icmp_id; 5379 5380 STATE_LOOKUP(kif, &key, direction, *state, pd); 5381 5382 /* translate source/destination address, if necessary */ 5383 if ((*state)->key[PF_SK_WIRE] != 5384 (*state)->key[PF_SK_STACK]) { 5385 struct pf_state_key *nk = 5386 (*state)->key[pd->didx]; 5387 5388 if (PF_ANEQ(pd2.src, 5389 &nk->addr[pd2.sidx], pd2.af) || 5390 nk->port[pd2.sidx] != iih.icmp_id) 5391 pf_change_icmp(pd2.src, &iih.icmp_id, 5392 daddr, &nk->addr[pd2.sidx], 5393 nk->port[pd2.sidx], NULL, 5394 pd2.ip_sum, icmpsum, 5395 pd->ip_sum, 0, AF_INET); 5396 5397 if (PF_ANEQ(pd2.dst, 5398 &nk->addr[pd2.didx], pd2.af) || 5399 nk->port[pd2.didx] != iih.icmp_id) 5400 pf_change_icmp(pd2.dst, &iih.icmp_id, 5401 saddr, &nk->addr[pd2.didx], 5402 nk->port[pd2.didx], NULL, 5403 pd2.ip_sum, icmpsum, 5404 pd->ip_sum, 0, AF_INET); 5405 5406 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 5407 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5408 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5409 } 5410 return (PF_PASS); 5411 break; 5412 } 5413 #endif /* INET */ 5414 #ifdef INET6 5415 case IPPROTO_ICMPV6: { 5416 struct icmp6_hdr iih; 5417 5418 if (!pf_pull_hdr(m, off2, &iih, 5419 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5420 DPFPRINTF(PF_DEBUG_MISC, 5421 ("pf: ICMP error message too short " 5422 "(icmp6)\n")); 5423 return (PF_DROP); 5424 } 5425 5426 key.af = pd2.af; 5427 key.proto = IPPROTO_ICMPV6; 5428 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5429 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5430 key.port[0] = key.port[1] = iih.icmp6_id; 5431 5432 STATE_LOOKUP(kif, &key, direction, *state, pd); 5433 5434 /* translate source/destination address, if necessary */ 5435 if ((*state)->key[PF_SK_WIRE] != 5436 (*state)->key[PF_SK_STACK]) { 5437 struct pf_state_key *nk = 5438 (*state)->key[pd->didx]; 5439 5440 if (PF_ANEQ(pd2.src, 5441 &nk->addr[pd2.sidx], pd2.af) || 5442 nk->port[pd2.sidx] != iih.icmp6_id) 5443 pf_change_icmp(pd2.src, &iih.icmp6_id, 5444 daddr, &nk->addr[pd2.sidx], 5445 nk->port[pd2.sidx], NULL, 5446 pd2.ip_sum, icmpsum, 5447 pd->ip_sum, 0, AF_INET6); 5448 5449 if (PF_ANEQ(pd2.dst, 5450 &nk->addr[pd2.didx], pd2.af) || 5451 nk->port[pd2.didx] != iih.icmp6_id) 5452 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5453 saddr, &nk->addr[pd2.didx], 5454 nk->port[pd2.didx], NULL, 5455 pd2.ip_sum, icmpsum, 5456 pd->ip_sum, 0, AF_INET6); 5457 5458 m_copyback(m, off, sizeof(struct icmp6_hdr), 5459 (caddr_t)&pd->hdr.icmp6); 5460 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5461 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5462 (caddr_t)&iih); 5463 } 5464 return (PF_PASS); 5465 break; 5466 } 5467 #endif /* INET6 */ 5468 default: { 5469 key.af = pd2.af; 5470 key.proto = pd2.proto; 5471 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5472 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5473 key.port[0] = key.port[1] = 0; 5474 5475 STATE_LOOKUP(kif, &key, direction, *state, pd); 5476 5477 /* translate source/destination address, if necessary */ 5478 if ((*state)->key[PF_SK_WIRE] != 5479 (*state)->key[PF_SK_STACK]) { 5480 struct pf_state_key *nk = 5481 (*state)->key[pd->didx]; 5482 5483 if (PF_ANEQ(pd2.src, 5484 &nk->addr[pd2.sidx], pd2.af)) 5485 pf_change_icmp(pd2.src, NULL, daddr, 5486 &nk->addr[pd2.sidx], 0, NULL, 5487 pd2.ip_sum, icmpsum, 5488 pd->ip_sum, 0, pd2.af); 5489 5490 if (PF_ANEQ(pd2.dst, 5491 &nk->addr[pd2.didx], pd2.af)) 5492 pf_change_icmp(pd2.dst, NULL, saddr, 5493 &nk->addr[pd2.didx], 0, NULL, 5494 pd2.ip_sum, icmpsum, 5495 pd->ip_sum, 0, pd2.af); 5496 5497 switch (pd2.af) { 5498 #ifdef INET 5499 case AF_INET: 5500 m_copyback(m, off, ICMP_MINLEN, 5501 (caddr_t)&pd->hdr.icmp); 5502 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5503 break; 5504 #endif /* INET */ 5505 #ifdef INET6 5506 case AF_INET6: 5507 m_copyback(m, off, 5508 sizeof(struct icmp6_hdr), 5509 (caddr_t )&pd->hdr.icmp6); 5510 m_copyback(m, ipoff2, sizeof(h2_6), 5511 (caddr_t )&h2_6); 5512 break; 5513 #endif /* INET6 */ 5514 } 5515 } 5516 return (PF_PASS); 5517 break; 5518 } 5519 } 5520 } 5521 } 5522 5523 static int 5524 pf_test_state_other(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 5525 struct mbuf *m, struct pf_pdesc *pd) 5526 { 5527 struct pf_state_peer *src, *dst; 5528 struct pf_state_key_cmp key; 5529 uint8_t psrc, pdst; 5530 5531 bzero(&key, sizeof(key)); 5532 key.af = pd->af; 5533 key.proto = pd->proto; 5534 if (direction == PF_IN) { 5535 PF_ACPY(&key.addr[0], pd->src, key.af); 5536 PF_ACPY(&key.addr[1], pd->dst, key.af); 5537 key.port[0] = key.port[1] = 0; 5538 } else { 5539 PF_ACPY(&key.addr[1], pd->src, key.af); 5540 PF_ACPY(&key.addr[0], pd->dst, key.af); 5541 key.port[1] = key.port[0] = 0; 5542 } 5543 5544 STATE_LOOKUP(kif, &key, direction, *state, pd); 5545 5546 if (direction == (*state)->direction) { 5547 src = &(*state)->src; 5548 dst = &(*state)->dst; 5549 psrc = PF_PEER_SRC; 5550 pdst = PF_PEER_DST; 5551 } else { 5552 src = &(*state)->dst; 5553 dst = &(*state)->src; 5554 psrc = PF_PEER_DST; 5555 pdst = PF_PEER_SRC; 5556 } 5557 5558 /* update states */ 5559 if (src->state < PFOTHERS_SINGLE) 5560 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 5561 if (dst->state == PFOTHERS_SINGLE) 5562 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 5563 5564 /* update expire time */ 5565 (*state)->expire = time_uptime; 5566 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5567 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5568 else 5569 (*state)->timeout = PFTM_OTHER_SINGLE; 5570 5571 /* translate source/destination address, if necessary */ 5572 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5573 struct pf_state_key *nk = (*state)->key[pd->didx]; 5574 5575 KASSERT(nk, ("%s: nk is null", __func__)); 5576 KASSERT(pd, ("%s: pd is null", __func__)); 5577 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5578 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5579 switch (pd->af) { 5580 #ifdef INET 5581 case AF_INET: 5582 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5583 pf_change_a(&pd->src->v4.s_addr, 5584 pd->ip_sum, 5585 nk->addr[pd->sidx].v4.s_addr, 5586 0); 5587 5588 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5589 pf_change_a(&pd->dst->v4.s_addr, 5590 pd->ip_sum, 5591 nk->addr[pd->didx].v4.s_addr, 5592 0); 5593 5594 break; 5595 #endif /* INET */ 5596 #ifdef INET6 5597 case AF_INET6: 5598 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5599 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5600 5601 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5602 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5603 #endif /* INET6 */ 5604 } 5605 } 5606 return (PF_PASS); 5607 } 5608 5609 /* 5610 * ipoff and off are measured from the start of the mbuf chain. 5611 * h must be at "ipoff" on the mbuf chain. 5612 */ 5613 void * 5614 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5615 u_short *actionp, u_short *reasonp, sa_family_t af) 5616 { 5617 switch (af) { 5618 #ifdef INET 5619 case AF_INET: { 5620 struct ip *h = mtod(m, struct ip *); 5621 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5622 5623 if (fragoff) { 5624 if (fragoff >= len) 5625 ACTION_SET(actionp, PF_PASS); 5626 else { 5627 ACTION_SET(actionp, PF_DROP); 5628 REASON_SET(reasonp, PFRES_FRAG); 5629 } 5630 return (NULL); 5631 } 5632 if (m->m_pkthdr.len < off + len || 5633 ntohs(h->ip_len) < off + len) { 5634 ACTION_SET(actionp, PF_DROP); 5635 REASON_SET(reasonp, PFRES_SHORT); 5636 return (NULL); 5637 } 5638 break; 5639 } 5640 #endif /* INET */ 5641 #ifdef INET6 5642 case AF_INET6: { 5643 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5644 5645 if (m->m_pkthdr.len < off + len || 5646 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5647 (unsigned)(off + len)) { 5648 ACTION_SET(actionp, PF_DROP); 5649 REASON_SET(reasonp, PFRES_SHORT); 5650 return (NULL); 5651 } 5652 break; 5653 } 5654 #endif /* INET6 */ 5655 } 5656 m_copydata(m, off, len, p); 5657 return (p); 5658 } 5659 5660 int 5661 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 5662 int rtableid) 5663 { 5664 struct ifnet *ifp; 5665 5666 /* 5667 * Skip check for addresses with embedded interface scope, 5668 * as they would always match anyway. 5669 */ 5670 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5671 return (1); 5672 5673 if (af != AF_INET && af != AF_INET6) 5674 return (0); 5675 5676 /* Skip checks for ipsec interfaces */ 5677 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5678 return (1); 5679 5680 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 5681 5682 switch (af) { 5683 #ifdef INET6 5684 case AF_INET6: 5685 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 5686 ifp)); 5687 #endif 5688 #ifdef INET 5689 case AF_INET: 5690 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 5691 ifp)); 5692 #endif 5693 } 5694 5695 return (0); 5696 } 5697 5698 #ifdef INET 5699 static void 5700 pf_route(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 5701 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 5702 { 5703 struct mbuf *m0, *m1; 5704 struct sockaddr_in dst; 5705 struct ip *ip; 5706 struct ifnet *ifp = NULL; 5707 struct pf_addr naddr; 5708 struct pf_ksrc_node *sn = NULL; 5709 int error = 0; 5710 uint16_t ip_len, ip_off; 5711 5712 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5713 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5714 __func__)); 5715 5716 if ((pd->pf_mtag == NULL && 5717 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5718 pd->pf_mtag->routed++ > 3) { 5719 m0 = *m; 5720 *m = NULL; 5721 goto bad_locked; 5722 } 5723 5724 if (r->rt == PF_DUPTO) { 5725 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 5726 if (s == NULL) { 5727 ifp = r->rpool.cur->kif ? 5728 r->rpool.cur->kif->pfik_ifp : NULL; 5729 } else { 5730 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5731 PF_STATE_UNLOCK(s); 5732 } 5733 if (ifp == oifp) { 5734 /* When the 2nd interface is not skipped */ 5735 return; 5736 } else { 5737 m0 = *m; 5738 *m = NULL; 5739 goto bad; 5740 } 5741 } else { 5742 pd->pf_mtag->flags |= PF_DUPLICATED; 5743 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 5744 if (s) 5745 PF_STATE_UNLOCK(s); 5746 return; 5747 } 5748 } 5749 } else { 5750 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5751 if (s) 5752 PF_STATE_UNLOCK(s); 5753 return; 5754 } 5755 m0 = *m; 5756 } 5757 5758 ip = mtod(m0, struct ip *); 5759 5760 bzero(&dst, sizeof(dst)); 5761 dst.sin_family = AF_INET; 5762 dst.sin_len = sizeof(dst); 5763 dst.sin_addr = ip->ip_dst; 5764 5765 bzero(&naddr, sizeof(naddr)); 5766 5767 if (TAILQ_EMPTY(&r->rpool.list)) { 5768 DPFPRINTF(PF_DEBUG_URGENT, 5769 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5770 goto bad_locked; 5771 } 5772 if (s == NULL) { 5773 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5774 &naddr, NULL, &sn); 5775 if (!PF_AZERO(&naddr, AF_INET)) 5776 dst.sin_addr.s_addr = naddr.v4.s_addr; 5777 ifp = r->rpool.cur->kif ? 5778 r->rpool.cur->kif->pfik_ifp : NULL; 5779 } else { 5780 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5781 dst.sin_addr.s_addr = 5782 s->rt_addr.v4.s_addr; 5783 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5784 PF_STATE_UNLOCK(s); 5785 } 5786 if (ifp == NULL) 5787 goto bad; 5788 5789 if (dir == PF_IN) { 5790 if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 5791 goto bad; 5792 else if (m0 == NULL) 5793 goto done; 5794 if (m0->m_len < sizeof(struct ip)) { 5795 DPFPRINTF(PF_DEBUG_URGENT, 5796 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5797 goto bad; 5798 } 5799 ip = mtod(m0, struct ip *); 5800 } 5801 5802 if (ifp->if_flags & IFF_LOOPBACK) 5803 m0->m_flags |= M_SKIP_FIREWALL; 5804 5805 ip_len = ntohs(ip->ip_len); 5806 ip_off = ntohs(ip->ip_off); 5807 5808 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5809 m0->m_pkthdr.csum_flags |= CSUM_IP; 5810 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5811 m0 = mb_unmapped_to_ext(m0); 5812 if (m0 == NULL) 5813 goto done; 5814 in_delayed_cksum(m0); 5815 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5816 } 5817 #if defined(SCTP) || defined(SCTP_SUPPORT) 5818 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5819 m0 = mb_unmapped_to_ext(m0); 5820 if (m0 == NULL) 5821 goto done; 5822 sctp_delayed_cksum(m0, (uint32_t)(ip->ip_hl << 2)); 5823 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5824 } 5825 #endif 5826 5827 /* 5828 * If small enough for interface, or the interface will take 5829 * care of the fragmentation for us, we can just send directly. 5830 */ 5831 if (ip_len <= ifp->if_mtu || 5832 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5833 ip->ip_sum = 0; 5834 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5835 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5836 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5837 } 5838 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5839 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5840 goto done; 5841 } 5842 5843 /* Balk when DF bit is set or the interface didn't support TSO. */ 5844 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5845 error = EMSGSIZE; 5846 KMOD_IPSTAT_INC(ips_cantfrag); 5847 if (r->rt != PF_DUPTO) { 5848 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5849 ifp->if_mtu); 5850 goto done; 5851 } else 5852 goto bad; 5853 } 5854 5855 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5856 if (error) 5857 goto bad; 5858 5859 for (; m0; m0 = m1) { 5860 m1 = m0->m_nextpkt; 5861 m0->m_nextpkt = NULL; 5862 if (error == 0) { 5863 m_clrprotoflags(m0); 5864 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5865 } else 5866 m_freem(m0); 5867 } 5868 5869 if (error == 0) 5870 KMOD_IPSTAT_INC(ips_fragmented); 5871 5872 done: 5873 if (r->rt != PF_DUPTO) 5874 *m = NULL; 5875 return; 5876 5877 bad_locked: 5878 if (s) 5879 PF_STATE_UNLOCK(s); 5880 bad: 5881 m_freem(m0); 5882 goto done; 5883 } 5884 #endif /* INET */ 5885 5886 #ifdef INET6 5887 static void 5888 pf_route6(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 5889 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 5890 { 5891 struct mbuf *m0; 5892 struct sockaddr_in6 dst; 5893 struct ip6_hdr *ip6; 5894 struct ifnet *ifp = NULL; 5895 struct pf_addr naddr; 5896 struct pf_ksrc_node *sn = NULL; 5897 5898 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5899 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5900 __func__)); 5901 5902 if ((pd->pf_mtag == NULL && 5903 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5904 pd->pf_mtag->routed++ > 3) { 5905 m0 = *m; 5906 *m = NULL; 5907 goto bad_locked; 5908 } 5909 5910 if (r->rt == PF_DUPTO) { 5911 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 5912 if (s == NULL) { 5913 ifp = r->rpool.cur->kif ? 5914 r->rpool.cur->kif->pfik_ifp : NULL; 5915 } else { 5916 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5917 PF_STATE_UNLOCK(s); 5918 } 5919 if (ifp == oifp) { 5920 /* When the 2nd interface is not skipped */ 5921 return; 5922 } else { 5923 m0 = *m; 5924 *m = NULL; 5925 goto bad; 5926 } 5927 } else { 5928 pd->pf_mtag->flags |= PF_DUPLICATED; 5929 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 5930 if (s) 5931 PF_STATE_UNLOCK(s); 5932 return; 5933 } 5934 } 5935 } else { 5936 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5937 if (s) 5938 PF_STATE_UNLOCK(s); 5939 return; 5940 } 5941 m0 = *m; 5942 } 5943 5944 ip6 = mtod(m0, struct ip6_hdr *); 5945 5946 bzero(&dst, sizeof(dst)); 5947 dst.sin6_family = AF_INET6; 5948 dst.sin6_len = sizeof(dst); 5949 dst.sin6_addr = ip6->ip6_dst; 5950 5951 bzero(&naddr, sizeof(naddr)); 5952 5953 if (TAILQ_EMPTY(&r->rpool.list)) { 5954 DPFPRINTF(PF_DEBUG_URGENT, 5955 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5956 goto bad_locked; 5957 } 5958 if (s == NULL) { 5959 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5960 &naddr, NULL, &sn); 5961 if (!PF_AZERO(&naddr, AF_INET6)) 5962 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5963 &naddr, AF_INET6); 5964 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5965 } else { 5966 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5967 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5968 &s->rt_addr, AF_INET6); 5969 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5970 } 5971 5972 if (s) 5973 PF_STATE_UNLOCK(s); 5974 5975 if (ifp == NULL) 5976 goto bad; 5977 5978 if (dir == PF_IN) { 5979 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS) 5980 goto bad; 5981 else if (m0 == NULL) 5982 goto done; 5983 if (m0->m_len < sizeof(struct ip6_hdr)) { 5984 DPFPRINTF(PF_DEBUG_URGENT, 5985 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5986 __func__)); 5987 goto bad; 5988 } 5989 ip6 = mtod(m0, struct ip6_hdr *); 5990 } 5991 5992 if (ifp->if_flags & IFF_LOOPBACK) 5993 m0->m_flags |= M_SKIP_FIREWALL; 5994 5995 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5996 ~ifp->if_hwassist) { 5997 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5998 m0 = mb_unmapped_to_ext(m0); 5999 if (m0 == NULL) 6000 goto done; 6001 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 6002 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 6003 } 6004 6005 /* 6006 * If the packet is too large for the outgoing interface, 6007 * send back an icmp6 error. 6008 */ 6009 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 6010 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 6011 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 6012 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 6013 else { 6014 in6_ifstat_inc(ifp, ifs6_in_toobig); 6015 if (r->rt != PF_DUPTO) 6016 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 6017 else 6018 goto bad; 6019 } 6020 6021 done: 6022 if (r->rt != PF_DUPTO) 6023 *m = NULL; 6024 return; 6025 6026 bad_locked: 6027 if (s) 6028 PF_STATE_UNLOCK(s); 6029 bad: 6030 m_freem(m0); 6031 goto done; 6032 } 6033 #endif /* INET6 */ 6034 6035 /* 6036 * FreeBSD supports cksum offloads for the following drivers. 6037 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 6038 * 6039 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 6040 * network driver performed cksum including pseudo header, need to verify 6041 * csum_data 6042 * CSUM_DATA_VALID : 6043 * network driver performed cksum, needs to additional pseudo header 6044 * cksum computation with partial csum_data(i.e. lack of H/W support for 6045 * pseudo header, for instance sk(4) and possibly gem(4)) 6046 * 6047 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 6048 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 6049 * TCP/UDP layer. 6050 * Also, set csum_data to 0xffff to force cksum validation. 6051 */ 6052 static int 6053 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 6054 { 6055 u_int16_t sum = 0; 6056 int hw_assist = 0; 6057 struct ip *ip; 6058 6059 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 6060 return (1); 6061 if (m->m_pkthdr.len < off + len) 6062 return (1); 6063 6064 switch (p) { 6065 case IPPROTO_TCP: 6066 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 6067 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 6068 sum = m->m_pkthdr.csum_data; 6069 } else { 6070 ip = mtod(m, struct ip *); 6071 sum = in_pseudo(ip->ip_src.s_addr, 6072 ip->ip_dst.s_addr, htonl((u_short)len + 6073 m->m_pkthdr.csum_data + IPPROTO_TCP)); 6074 } 6075 sum ^= 0xffff; 6076 ++hw_assist; 6077 } 6078 break; 6079 case IPPROTO_UDP: 6080 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 6081 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 6082 sum = m->m_pkthdr.csum_data; 6083 } else { 6084 ip = mtod(m, struct ip *); 6085 sum = in_pseudo(ip->ip_src.s_addr, 6086 ip->ip_dst.s_addr, htonl((u_short)len + 6087 m->m_pkthdr.csum_data + IPPROTO_UDP)); 6088 } 6089 sum ^= 0xffff; 6090 ++hw_assist; 6091 } 6092 break; 6093 case IPPROTO_ICMP: 6094 #ifdef INET6 6095 case IPPROTO_ICMPV6: 6096 #endif /* INET6 */ 6097 break; 6098 default: 6099 return (1); 6100 } 6101 6102 if (!hw_assist) { 6103 switch (af) { 6104 case AF_INET: 6105 if (p == IPPROTO_ICMP) { 6106 if (m->m_len < off) 6107 return (1); 6108 m->m_data += off; 6109 m->m_len -= off; 6110 sum = in_cksum(m, len); 6111 m->m_data -= off; 6112 m->m_len += off; 6113 } else { 6114 if (m->m_len < sizeof(struct ip)) 6115 return (1); 6116 sum = in4_cksum(m, p, off, len); 6117 } 6118 break; 6119 #ifdef INET6 6120 case AF_INET6: 6121 if (m->m_len < sizeof(struct ip6_hdr)) 6122 return (1); 6123 sum = in6_cksum(m, p, off, len); 6124 break; 6125 #endif /* INET6 */ 6126 default: 6127 return (1); 6128 } 6129 } 6130 if (sum) { 6131 switch (p) { 6132 case IPPROTO_TCP: 6133 { 6134 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 6135 break; 6136 } 6137 case IPPROTO_UDP: 6138 { 6139 KMOD_UDPSTAT_INC(udps_badsum); 6140 break; 6141 } 6142 #ifdef INET 6143 case IPPROTO_ICMP: 6144 { 6145 KMOD_ICMPSTAT_INC(icps_checksum); 6146 break; 6147 } 6148 #endif 6149 #ifdef INET6 6150 case IPPROTO_ICMPV6: 6151 { 6152 KMOD_ICMP6STAT_INC(icp6s_checksum); 6153 break; 6154 } 6155 #endif /* INET6 */ 6156 } 6157 return (1); 6158 } else { 6159 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 6160 m->m_pkthdr.csum_flags |= 6161 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 6162 m->m_pkthdr.csum_data = 0xffff; 6163 } 6164 } 6165 return (0); 6166 } 6167 6168 #ifdef INET 6169 int 6170 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6171 { 6172 struct pfi_kkif *kif; 6173 u_short action, reason = 0, log = 0; 6174 struct mbuf *m = *m0; 6175 struct ip *h = NULL; 6176 struct m_tag *ipfwtag; 6177 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6178 struct pf_kstate *s = NULL; 6179 struct pf_kruleset *ruleset = NULL; 6180 struct pf_pdesc pd; 6181 int off, dirndx, pqid = 0; 6182 6183 PF_RULES_RLOCK_TRACKER; 6184 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 6185 M_ASSERTPKTHDR(m); 6186 6187 if (!V_pf_status.running) 6188 return (PF_PASS); 6189 6190 memset(&pd, 0, sizeof(pd)); 6191 6192 kif = (struct pfi_kkif *)ifp->if_pf_kif; 6193 6194 if (kif == NULL) { 6195 DPFPRINTF(PF_DEBUG_URGENT, 6196 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 6197 return (PF_DROP); 6198 } 6199 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6200 return (PF_PASS); 6201 6202 if (m->m_flags & M_SKIP_FIREWALL) 6203 return (PF_PASS); 6204 6205 pd.pf_mtag = pf_find_mtag(m); 6206 6207 PF_RULES_RLOCK(); 6208 6209 if (__predict_false(ip_divert_ptr != NULL) && 6210 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 6211 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 6212 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 6213 if (pd.pf_mtag == NULL && 6214 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6215 action = PF_DROP; 6216 goto done; 6217 } 6218 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 6219 m_tag_delete(m, ipfwtag); 6220 } 6221 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 6222 m->m_flags |= M_FASTFWD_OURS; 6223 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 6224 } 6225 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 6226 /* We do IP header normalization and packet reassembly here */ 6227 action = PF_DROP; 6228 goto done; 6229 } 6230 m = *m0; /* pf_normalize messes with m0 */ 6231 h = mtod(m, struct ip *); 6232 6233 off = h->ip_hl << 2; 6234 if (off < (int)sizeof(struct ip)) { 6235 action = PF_DROP; 6236 REASON_SET(&reason, PFRES_SHORT); 6237 log = 1; 6238 goto done; 6239 } 6240 6241 pd.src = (struct pf_addr *)&h->ip_src; 6242 pd.dst = (struct pf_addr *)&h->ip_dst; 6243 pd.sport = pd.dport = NULL; 6244 pd.ip_sum = &h->ip_sum; 6245 pd.proto_sum = NULL; 6246 pd.proto = h->ip_p; 6247 pd.dir = dir; 6248 pd.sidx = (dir == PF_IN) ? 0 : 1; 6249 pd.didx = (dir == PF_IN) ? 1 : 0; 6250 pd.af = AF_INET; 6251 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 6252 pd.tot_len = ntohs(h->ip_len); 6253 6254 /* handle fragments that didn't get reassembled by normalization */ 6255 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 6256 action = pf_test_fragment(&r, dir, kif, m, h, 6257 &pd, &a, &ruleset); 6258 goto done; 6259 } 6260 6261 switch (h->ip_p) { 6262 case IPPROTO_TCP: { 6263 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 6264 &action, &reason, AF_INET)) { 6265 log = action != PF_PASS; 6266 goto done; 6267 } 6268 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 6269 6270 pd.sport = &pd.hdr.tcp.th_sport; 6271 pd.dport = &pd.hdr.tcp.th_dport; 6272 6273 /* Respond to SYN with a syncookie. */ 6274 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 6275 pd.dir == PF_IN && pf_synflood_check(&pd)) { 6276 pf_syncookie_send(m, off, &pd); 6277 action = PF_DROP; 6278 break; 6279 } 6280 6281 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 6282 pqid = 1; 6283 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6284 if (action == PF_DROP) 6285 goto done; 6286 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6287 &reason); 6288 if (action == PF_PASS) { 6289 if (V_pfsync_update_state_ptr != NULL) 6290 V_pfsync_update_state_ptr(s); 6291 r = s->rule.ptr; 6292 a = s->anchor.ptr; 6293 log = s->log; 6294 } else if (s == NULL) { 6295 /* Validate remote SYN|ACK, re-create original SYN if 6296 * valid. */ 6297 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 6298 TH_ACK && pf_syncookie_validate(&pd) && 6299 pd.dir == PF_IN) { 6300 struct mbuf *msyn; 6301 6302 msyn = pf_syncookie_recreate_syn(h->ip_ttl, 6303 off,&pd); 6304 if (msyn == NULL) { 6305 action = PF_DROP; 6306 break; 6307 } 6308 6309 action = pf_test(dir, pflags, ifp, &msyn, inp); 6310 m_freem(msyn); 6311 6312 if (action == PF_PASS) { 6313 action = pf_test_state_tcp(&s, dir, 6314 kif, m, off, h, &pd, &reason); 6315 if (action != PF_PASS || s == NULL) { 6316 action = PF_DROP; 6317 break; 6318 } 6319 6320 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) 6321 - 1; 6322 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) 6323 - 1; 6324 pf_set_protostate(s, PF_PEER_SRC, 6325 PF_TCPS_PROXY_DST); 6326 6327 action = pf_synproxy(&pd, &s, &reason); 6328 if (action != PF_PASS) 6329 break; 6330 } 6331 break; 6332 } 6333 else { 6334 action = pf_test_rule(&r, &s, dir, kif, m, off, 6335 &pd, &a, &ruleset, inp); 6336 } 6337 } 6338 break; 6339 } 6340 6341 case IPPROTO_UDP: { 6342 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 6343 &action, &reason, AF_INET)) { 6344 log = action != PF_PASS; 6345 goto done; 6346 } 6347 if (pd.hdr.udp.uh_dport == 0 || 6348 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 6349 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 6350 action = PF_DROP; 6351 REASON_SET(&reason, PFRES_SHORT); 6352 goto done; 6353 } 6354 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6355 if (action == PF_PASS) { 6356 if (V_pfsync_update_state_ptr != NULL) 6357 V_pfsync_update_state_ptr(s); 6358 r = s->rule.ptr; 6359 a = s->anchor.ptr; 6360 log = s->log; 6361 } else if (s == NULL) 6362 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6363 &a, &ruleset, inp); 6364 break; 6365 } 6366 6367 case IPPROTO_ICMP: { 6368 if (!pf_pull_hdr(m, off, &pd.hdr.icmp, ICMP_MINLEN, 6369 &action, &reason, AF_INET)) { 6370 log = action != PF_PASS; 6371 goto done; 6372 } 6373 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 6374 &reason); 6375 if (action == PF_PASS) { 6376 if (V_pfsync_update_state_ptr != NULL) 6377 V_pfsync_update_state_ptr(s); 6378 r = s->rule.ptr; 6379 a = s->anchor.ptr; 6380 log = s->log; 6381 } else if (s == NULL) 6382 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6383 &a, &ruleset, inp); 6384 break; 6385 } 6386 6387 #ifdef INET6 6388 case IPPROTO_ICMPV6: { 6389 action = PF_DROP; 6390 DPFPRINTF(PF_DEBUG_MISC, 6391 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6392 goto done; 6393 } 6394 #endif 6395 6396 default: 6397 action = pf_test_state_other(&s, dir, kif, m, &pd); 6398 if (action == PF_PASS) { 6399 if (V_pfsync_update_state_ptr != NULL) 6400 V_pfsync_update_state_ptr(s); 6401 r = s->rule.ptr; 6402 a = s->anchor.ptr; 6403 log = s->log; 6404 } else if (s == NULL) 6405 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6406 &a, &ruleset, inp); 6407 break; 6408 } 6409 6410 done: 6411 PF_RULES_RUNLOCK(); 6412 if (action == PF_PASS && h->ip_hl > 5 && 6413 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6414 action = PF_DROP; 6415 REASON_SET(&reason, PFRES_IPOPTIONS); 6416 log = r->log; 6417 DPFPRINTF(PF_DEBUG_MISC, 6418 ("pf: dropping packet with ip options\n")); 6419 } 6420 6421 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6422 action = PF_DROP; 6423 REASON_SET(&reason, PFRES_MEMORY); 6424 } 6425 if (r->rtableid >= 0) 6426 M_SETFIB(m, r->rtableid); 6427 6428 if (r->scrub_flags & PFSTATE_SETPRIO) { 6429 if (pd.tos & IPTOS_LOWDELAY) 6430 pqid = 1; 6431 if (vlan_set_pcp(m, r->set_prio[pqid])) { 6432 action = PF_DROP; 6433 REASON_SET(&reason, PFRES_MEMORY); 6434 log = 1; 6435 DPFPRINTF(PF_DEBUG_MISC, 6436 ("pf: failed to allocate 802.1q mtag\n")); 6437 } 6438 } 6439 6440 #ifdef ALTQ 6441 if (s && s->qid) { 6442 pd.act.pqid = s->pqid; 6443 pd.act.qid = s->qid; 6444 } else if (r->qid) { 6445 pd.act.pqid = r->pqid; 6446 pd.act.qid = r->qid; 6447 } 6448 if (action == PF_PASS && pd.act.qid) { 6449 if (pd.pf_mtag == NULL && 6450 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6451 action = PF_DROP; 6452 REASON_SET(&reason, PFRES_MEMORY); 6453 } else { 6454 if (s != NULL) 6455 pd.pf_mtag->qid_hash = pf_state_hash(s); 6456 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6457 pd.pf_mtag->qid = pd.act.pqid; 6458 else 6459 pd.pf_mtag->qid = pd.act.qid; 6460 /* Add hints for ecn. */ 6461 pd.pf_mtag->hdr = h; 6462 } 6463 } 6464 #endif /* ALTQ */ 6465 6466 /* 6467 * connections redirected to loopback should not match sockets 6468 * bound specifically to loopback due to security implications, 6469 * see tcp_input() and in_pcblookup_listen(). 6470 */ 6471 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6472 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6473 (s->nat_rule.ptr->action == PF_RDR || 6474 s->nat_rule.ptr->action == PF_BINAT) && 6475 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 6476 m->m_flags |= M_SKIP_FIREWALL; 6477 6478 if (__predict_false(ip_divert_ptr != NULL) && action == PF_PASS && 6479 r->divert.port && !PACKET_LOOPED(&pd)) { 6480 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6481 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6482 if (ipfwtag != NULL) { 6483 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6484 ntohs(r->divert.port); 6485 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6486 6487 if (s) 6488 PF_STATE_UNLOCK(s); 6489 6490 m_tag_prepend(m, ipfwtag); 6491 if (m->m_flags & M_FASTFWD_OURS) { 6492 if (pd.pf_mtag == NULL && 6493 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6494 action = PF_DROP; 6495 REASON_SET(&reason, PFRES_MEMORY); 6496 log = 1; 6497 DPFPRINTF(PF_DEBUG_MISC, 6498 ("pf: failed to allocate tag\n")); 6499 } else { 6500 pd.pf_mtag->flags |= 6501 PF_FASTFWD_OURS_PRESENT; 6502 m->m_flags &= ~M_FASTFWD_OURS; 6503 } 6504 } 6505 ip_divert_ptr(*m0, dir == PF_IN); 6506 *m0 = NULL; 6507 6508 return (action); 6509 } else { 6510 /* XXX: ipfw has the same behaviour! */ 6511 action = PF_DROP; 6512 REASON_SET(&reason, PFRES_MEMORY); 6513 log = 1; 6514 DPFPRINTF(PF_DEBUG_MISC, 6515 ("pf: failed to allocate divert tag\n")); 6516 } 6517 } 6518 6519 if (log) { 6520 struct pf_krule *lr; 6521 6522 if (s != NULL && s->nat_rule.ptr != NULL && 6523 s->nat_rule.ptr->log & PF_LOG_ALL) 6524 lr = s->nat_rule.ptr; 6525 else 6526 lr = r; 6527 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6528 (s == NULL)); 6529 } 6530 6531 pf_counter_u64_critical_enter(); 6532 pf_counter_u64_add_protected(&kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], 6533 pd.tot_len); 6534 pf_counter_u64_add_protected(&kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 6535 1); 6536 6537 if (action == PF_PASS || r->action == PF_DROP) { 6538 dirndx = (dir == PF_OUT); 6539 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 6540 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 6541 if (a != NULL) { 6542 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 6543 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 6544 } 6545 if (s != NULL) { 6546 if (s->nat_rule.ptr != NULL) { 6547 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 6548 1); 6549 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 6550 pd.tot_len); 6551 } 6552 if (s->src_node != NULL) { 6553 counter_u64_add(s->src_node->packets[dirndx], 6554 1); 6555 counter_u64_add(s->src_node->bytes[dirndx], 6556 pd.tot_len); 6557 } 6558 if (s->nat_src_node != NULL) { 6559 counter_u64_add(s->nat_src_node->packets[dirndx], 6560 1); 6561 counter_u64_add(s->nat_src_node->bytes[dirndx], 6562 pd.tot_len); 6563 } 6564 dirndx = (dir == s->direction) ? 0 : 1; 6565 s->packets[dirndx]++; 6566 s->bytes[dirndx] += pd.tot_len; 6567 } 6568 tr = r; 6569 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6570 if (nr != NULL && r == &V_pf_default_rule) 6571 tr = nr; 6572 if (tr->src.addr.type == PF_ADDR_TABLE) 6573 pfr_update_stats(tr->src.addr.p.tbl, 6574 (s == NULL) ? pd.src : 6575 &s->key[(s->direction == PF_IN)]-> 6576 addr[(s->direction == PF_OUT)], 6577 pd.af, pd.tot_len, dir == PF_OUT, 6578 r->action == PF_PASS, tr->src.neg); 6579 if (tr->dst.addr.type == PF_ADDR_TABLE) 6580 pfr_update_stats(tr->dst.addr.p.tbl, 6581 (s == NULL) ? pd.dst : 6582 &s->key[(s->direction == PF_IN)]-> 6583 addr[(s->direction == PF_IN)], 6584 pd.af, pd.tot_len, dir == PF_OUT, 6585 r->action == PF_PASS, tr->dst.neg); 6586 } 6587 pf_counter_u64_critical_exit(); 6588 6589 switch (action) { 6590 case PF_SYNPROXY_DROP: 6591 m_freem(*m0); 6592 case PF_DEFER: 6593 *m0 = NULL; 6594 action = PF_PASS; 6595 break; 6596 case PF_DROP: 6597 m_freem(*m0); 6598 *m0 = NULL; 6599 break; 6600 default: 6601 /* pf_route() returns unlocked. */ 6602 if (r->rt) { 6603 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6604 return (action); 6605 } 6606 break; 6607 } 6608 6609 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 6610 6611 if (s) 6612 PF_STATE_UNLOCK(s); 6613 6614 return (action); 6615 } 6616 #endif /* INET */ 6617 6618 #ifdef INET6 6619 int 6620 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6621 { 6622 struct pfi_kkif *kif; 6623 u_short action, reason = 0, log = 0; 6624 struct mbuf *m = *m0, *n = NULL; 6625 struct m_tag *mtag; 6626 struct ip6_hdr *h = NULL; 6627 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6628 struct pf_kstate *s = NULL; 6629 struct pf_kruleset *ruleset = NULL; 6630 struct pf_pdesc pd; 6631 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6632 6633 PF_RULES_RLOCK_TRACKER; 6634 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 6635 M_ASSERTPKTHDR(m); 6636 6637 if (!V_pf_status.running) 6638 return (PF_PASS); 6639 6640 memset(&pd, 0, sizeof(pd)); 6641 pd.pf_mtag = pf_find_mtag(m); 6642 6643 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6644 return (PF_PASS); 6645 6646 kif = (struct pfi_kkif *)ifp->if_pf_kif; 6647 if (kif == NULL) { 6648 DPFPRINTF(PF_DEBUG_URGENT, 6649 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6650 return (PF_DROP); 6651 } 6652 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6653 return (PF_PASS); 6654 6655 if (m->m_flags & M_SKIP_FIREWALL) 6656 return (PF_PASS); 6657 6658 PF_RULES_RLOCK(); 6659 6660 /* We do IP header normalization and packet reassembly here */ 6661 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6662 action = PF_DROP; 6663 goto done; 6664 } 6665 m = *m0; /* pf_normalize messes with m0 */ 6666 h = mtod(m, struct ip6_hdr *); 6667 6668 /* 6669 * we do not support jumbogram. if we keep going, zero ip6_plen 6670 * will do something bad, so drop the packet for now. 6671 */ 6672 if (htons(h->ip6_plen) == 0) { 6673 action = PF_DROP; 6674 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6675 goto done; 6676 } 6677 6678 pd.src = (struct pf_addr *)&h->ip6_src; 6679 pd.dst = (struct pf_addr *)&h->ip6_dst; 6680 pd.sport = pd.dport = NULL; 6681 pd.ip_sum = NULL; 6682 pd.proto_sum = NULL; 6683 pd.dir = dir; 6684 pd.sidx = (dir == PF_IN) ? 0 : 1; 6685 pd.didx = (dir == PF_IN) ? 1 : 0; 6686 pd.af = AF_INET6; 6687 pd.tos = IPV6_DSCP(h); 6688 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6689 6690 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6691 pd.proto = h->ip6_nxt; 6692 do { 6693 switch (pd.proto) { 6694 case IPPROTO_FRAGMENT: 6695 action = pf_test_fragment(&r, dir, kif, m, h, 6696 &pd, &a, &ruleset); 6697 if (action == PF_DROP) 6698 REASON_SET(&reason, PFRES_FRAG); 6699 goto done; 6700 case IPPROTO_ROUTING: { 6701 struct ip6_rthdr rthdr; 6702 6703 if (rh_cnt++) { 6704 DPFPRINTF(PF_DEBUG_MISC, 6705 ("pf: IPv6 more than one rthdr\n")); 6706 action = PF_DROP; 6707 REASON_SET(&reason, PFRES_IPOPTIONS); 6708 log = 1; 6709 goto done; 6710 } 6711 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6712 &reason, pd.af)) { 6713 DPFPRINTF(PF_DEBUG_MISC, 6714 ("pf: IPv6 short rthdr\n")); 6715 action = PF_DROP; 6716 REASON_SET(&reason, PFRES_SHORT); 6717 log = 1; 6718 goto done; 6719 } 6720 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6721 DPFPRINTF(PF_DEBUG_MISC, 6722 ("pf: IPv6 rthdr0\n")); 6723 action = PF_DROP; 6724 REASON_SET(&reason, PFRES_IPOPTIONS); 6725 log = 1; 6726 goto done; 6727 } 6728 /* FALLTHROUGH */ 6729 } 6730 case IPPROTO_AH: 6731 case IPPROTO_HOPOPTS: 6732 case IPPROTO_DSTOPTS: { 6733 /* get next header and header length */ 6734 struct ip6_ext opt6; 6735 6736 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6737 NULL, &reason, pd.af)) { 6738 DPFPRINTF(PF_DEBUG_MISC, 6739 ("pf: IPv6 short opt\n")); 6740 action = PF_DROP; 6741 log = 1; 6742 goto done; 6743 } 6744 if (pd.proto == IPPROTO_AH) 6745 off += (opt6.ip6e_len + 2) * 4; 6746 else 6747 off += (opt6.ip6e_len + 1) * 8; 6748 pd.proto = opt6.ip6e_nxt; 6749 /* goto the next header */ 6750 break; 6751 } 6752 default: 6753 terminal++; 6754 break; 6755 } 6756 } while (!terminal); 6757 6758 /* if there's no routing header, use unmodified mbuf for checksumming */ 6759 if (!n) 6760 n = m; 6761 6762 switch (pd.proto) { 6763 case IPPROTO_TCP: { 6764 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 6765 &action, &reason, AF_INET6)) { 6766 log = action != PF_PASS; 6767 goto done; 6768 } 6769 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 6770 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6771 if (action == PF_DROP) 6772 goto done; 6773 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6774 &reason); 6775 if (action == PF_PASS) { 6776 if (V_pfsync_update_state_ptr != NULL) 6777 V_pfsync_update_state_ptr(s); 6778 r = s->rule.ptr; 6779 a = s->anchor.ptr; 6780 log = s->log; 6781 } else if (s == NULL) 6782 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6783 &a, &ruleset, inp); 6784 break; 6785 } 6786 6787 case IPPROTO_UDP: { 6788 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 6789 &action, &reason, AF_INET6)) { 6790 log = action != PF_PASS; 6791 goto done; 6792 } 6793 if (pd.hdr.udp.uh_dport == 0 || 6794 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 6795 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 6796 action = PF_DROP; 6797 REASON_SET(&reason, PFRES_SHORT); 6798 goto done; 6799 } 6800 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6801 if (action == PF_PASS) { 6802 if (V_pfsync_update_state_ptr != NULL) 6803 V_pfsync_update_state_ptr(s); 6804 r = s->rule.ptr; 6805 a = s->anchor.ptr; 6806 log = s->log; 6807 } else if (s == NULL) 6808 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6809 &a, &ruleset, inp); 6810 break; 6811 } 6812 6813 case IPPROTO_ICMP: { 6814 action = PF_DROP; 6815 DPFPRINTF(PF_DEBUG_MISC, 6816 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6817 goto done; 6818 } 6819 6820 case IPPROTO_ICMPV6: { 6821 if (!pf_pull_hdr(m, off, &pd.hdr.icmp6, sizeof(pd.hdr.icmp6), 6822 &action, &reason, AF_INET6)) { 6823 log = action != PF_PASS; 6824 goto done; 6825 } 6826 action = pf_test_state_icmp(&s, dir, kif, 6827 m, off, h, &pd, &reason); 6828 if (action == PF_PASS) { 6829 if (V_pfsync_update_state_ptr != NULL) 6830 V_pfsync_update_state_ptr(s); 6831 r = s->rule.ptr; 6832 a = s->anchor.ptr; 6833 log = s->log; 6834 } else if (s == NULL) 6835 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6836 &a, &ruleset, inp); 6837 break; 6838 } 6839 6840 default: 6841 action = pf_test_state_other(&s, dir, kif, m, &pd); 6842 if (action == PF_PASS) { 6843 if (V_pfsync_update_state_ptr != NULL) 6844 V_pfsync_update_state_ptr(s); 6845 r = s->rule.ptr; 6846 a = s->anchor.ptr; 6847 log = s->log; 6848 } else if (s == NULL) 6849 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6850 &a, &ruleset, inp); 6851 break; 6852 } 6853 6854 done: 6855 PF_RULES_RUNLOCK(); 6856 if (n != m) { 6857 m_freem(n); 6858 n = NULL; 6859 } 6860 6861 /* handle dangerous IPv6 extension headers. */ 6862 if (action == PF_PASS && rh_cnt && 6863 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6864 action = PF_DROP; 6865 REASON_SET(&reason, PFRES_IPOPTIONS); 6866 log = r->log; 6867 DPFPRINTF(PF_DEBUG_MISC, 6868 ("pf: dropping packet with dangerous v6 headers\n")); 6869 } 6870 6871 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6872 action = PF_DROP; 6873 REASON_SET(&reason, PFRES_MEMORY); 6874 } 6875 if (r->rtableid >= 0) 6876 M_SETFIB(m, r->rtableid); 6877 6878 if (r->scrub_flags & PFSTATE_SETPRIO) { 6879 if (pd.tos & IPTOS_LOWDELAY) 6880 pqid = 1; 6881 if (vlan_set_pcp(m, r->set_prio[pqid])) { 6882 action = PF_DROP; 6883 REASON_SET(&reason, PFRES_MEMORY); 6884 log = 1; 6885 DPFPRINTF(PF_DEBUG_MISC, 6886 ("pf: failed to allocate 802.1q mtag\n")); 6887 } 6888 } 6889 6890 #ifdef ALTQ 6891 if (s && s->qid) { 6892 pd.act.pqid = s->pqid; 6893 pd.act.qid = s->qid; 6894 } else if (r->qid) { 6895 pd.act.pqid = r->pqid; 6896 pd.act.qid = r->qid; 6897 } 6898 if (action == PF_PASS && pd.act.qid) { 6899 if (pd.pf_mtag == NULL && 6900 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6901 action = PF_DROP; 6902 REASON_SET(&reason, PFRES_MEMORY); 6903 } else { 6904 if (s != NULL) 6905 pd.pf_mtag->qid_hash = pf_state_hash(s); 6906 if (pd.tos & IPTOS_LOWDELAY) 6907 pd.pf_mtag->qid = pd.act.pqid; 6908 else 6909 pd.pf_mtag->qid = pd.act.qid; 6910 /* Add hints for ecn. */ 6911 pd.pf_mtag->hdr = h; 6912 } 6913 } 6914 #endif /* ALTQ */ 6915 6916 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6917 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6918 (s->nat_rule.ptr->action == PF_RDR || 6919 s->nat_rule.ptr->action == PF_BINAT) && 6920 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6921 m->m_flags |= M_SKIP_FIREWALL; 6922 6923 /* XXX: Anybody working on it?! */ 6924 if (r->divert.port) 6925 printf("pf: divert(9) is not supported for IPv6\n"); 6926 6927 if (log) { 6928 struct pf_krule *lr; 6929 6930 if (s != NULL && s->nat_rule.ptr != NULL && 6931 s->nat_rule.ptr->log & PF_LOG_ALL) 6932 lr = s->nat_rule.ptr; 6933 else 6934 lr = r; 6935 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6936 &pd, (s == NULL)); 6937 } 6938 6939 pf_counter_u64_critical_enter(); 6940 pf_counter_u64_add_protected(&kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], 6941 pd.tot_len); 6942 pf_counter_u64_add_protected(&kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 6943 1); 6944 6945 if (action == PF_PASS || r->action == PF_DROP) { 6946 dirndx = (dir == PF_OUT); 6947 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 6948 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 6949 if (a != NULL) { 6950 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 6951 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 6952 } 6953 if (s != NULL) { 6954 if (s->nat_rule.ptr != NULL) { 6955 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 6956 1); 6957 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 6958 pd.tot_len); 6959 } 6960 if (s->src_node != NULL) { 6961 counter_u64_add(s->src_node->packets[dirndx], 6962 1); 6963 counter_u64_add(s->src_node->bytes[dirndx], 6964 pd.tot_len); 6965 } 6966 if (s->nat_src_node != NULL) { 6967 counter_u64_add(s->nat_src_node->packets[dirndx], 6968 1); 6969 counter_u64_add(s->nat_src_node->bytes[dirndx], 6970 pd.tot_len); 6971 } 6972 dirndx = (dir == s->direction) ? 0 : 1; 6973 s->packets[dirndx]++; 6974 s->bytes[dirndx] += pd.tot_len; 6975 } 6976 tr = r; 6977 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6978 if (nr != NULL && r == &V_pf_default_rule) 6979 tr = nr; 6980 if (tr->src.addr.type == PF_ADDR_TABLE) 6981 pfr_update_stats(tr->src.addr.p.tbl, 6982 (s == NULL) ? pd.src : 6983 &s->key[(s->direction == PF_IN)]->addr[0], 6984 pd.af, pd.tot_len, dir == PF_OUT, 6985 r->action == PF_PASS, tr->src.neg); 6986 if (tr->dst.addr.type == PF_ADDR_TABLE) 6987 pfr_update_stats(tr->dst.addr.p.tbl, 6988 (s == NULL) ? pd.dst : 6989 &s->key[(s->direction == PF_IN)]->addr[1], 6990 pd.af, pd.tot_len, dir == PF_OUT, 6991 r->action == PF_PASS, tr->dst.neg); 6992 } 6993 pf_counter_u64_critical_exit(); 6994 6995 switch (action) { 6996 case PF_SYNPROXY_DROP: 6997 m_freem(*m0); 6998 case PF_DEFER: 6999 *m0 = NULL; 7000 action = PF_PASS; 7001 break; 7002 case PF_DROP: 7003 m_freem(*m0); 7004 *m0 = NULL; 7005 break; 7006 default: 7007 /* pf_route6() returns unlocked. */ 7008 if (r->rt) { 7009 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 7010 return (action); 7011 } 7012 break; 7013 } 7014 7015 if (s) 7016 PF_STATE_UNLOCK(s); 7017 7018 /* If reassembled packet passed, create new fragments. */ 7019 if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && 7020 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 7021 action = pf_refragment6(ifp, m0, mtag); 7022 7023 SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); 7024 7025 return (action); 7026 } 7027 #endif /* INET6 */ 7028