1 /*- 2 * Copyright (c) 2001 Daniel Hartmeier 3 * Copyright (c) 2002 - 2008 Henning Brauer 4 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * - Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * - Redistributions in binary form must reproduce the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer in the documentation and/or other materials provided 16 * with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 26 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Effort sponsored in part by the Defense Advanced Research Projects 32 * Agency (DARPA) and Air Force Research Laboratory, Air Force 33 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 34 * 35 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_inet.h" 42 #include "opt_inet6.h" 43 #include "opt_bpf.h" 44 #include "opt_pf.h" 45 46 #include <sys/param.h> 47 #include <sys/bus.h> 48 #include <sys/endian.h> 49 #include <sys/hash.h> 50 #include <sys/interrupt.h> 51 #include <sys/kernel.h> 52 #include <sys/kthread.h> 53 #include <sys/limits.h> 54 #include <sys/mbuf.h> 55 #include <sys/md5.h> 56 #include <sys/random.h> 57 #include <sys/refcount.h> 58 #include <sys/socket.h> 59 #include <sys/sysctl.h> 60 #include <sys/taskqueue.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_types.h> 66 #include <net/route.h> 67 #include <net/radix_mpath.h> 68 #include <net/vnet.h> 69 70 #include <net/pfvar.h> 71 #include <net/if_pflog.h> 72 #include <net/if_pfsync.h> 73 74 #include <netinet/in_pcb.h> 75 #include <netinet/in_var.h> 76 #include <netinet/ip.h> 77 #include <netinet/ip_fw.h> 78 #include <netinet/ip_icmp.h> 79 #include <netinet/icmp_var.h> 80 #include <netinet/ip_var.h> 81 #include <netinet/tcp.h> 82 #include <netinet/tcp_fsm.h> 83 #include <netinet/tcp_seq.h> 84 #include <netinet/tcp_timer.h> 85 #include <netinet/tcp_var.h> 86 #include <netinet/udp.h> 87 #include <netinet/udp_var.h> 88 89 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 90 91 #ifdef INET6 92 #include <netinet/ip6.h> 93 #include <netinet/icmp6.h> 94 #include <netinet6/nd6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/in6_pcb.h> 97 #endif /* INET6 */ 98 99 #include <machine/in_cksum.h> 100 #include <security/mac/mac_framework.h> 101 102 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 103 104 /* 105 * Global variables 106 */ 107 108 /* state tables */ 109 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 110 VNET_DEFINE(struct pf_palist, pf_pabuf); 111 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 112 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 113 VNET_DEFINE(struct pf_status, pf_status); 114 115 VNET_DEFINE(u_int32_t, ticket_altqs_active); 116 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 117 VNET_DEFINE(int, altqs_inactive_open); 118 VNET_DEFINE(u_int32_t, ticket_pabuf); 119 120 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 121 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 122 VNET_DEFINE(u_char, pf_tcp_secret[16]); 123 #define V_pf_tcp_secret VNET(pf_tcp_secret) 124 VNET_DEFINE(int, pf_tcp_secret_init); 125 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 126 VNET_DEFINE(int, pf_tcp_iss_off); 127 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 128 129 /* 130 * Queue for pf_intr() sends. 131 */ 132 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 133 struct pf_send_entry { 134 STAILQ_ENTRY(pf_send_entry) pfse_next; 135 struct mbuf *pfse_m; 136 enum { 137 PFSE_IP, 138 PFSE_IP6, 139 PFSE_ICMP, 140 PFSE_ICMP6, 141 } pfse_type; 142 union { 143 struct route ro; 144 struct { 145 int type; 146 int code; 147 int mtu; 148 } icmpopts; 149 } u; 150 #define pfse_ro u.ro 151 #define pfse_icmp_type u.icmpopts.type 152 #define pfse_icmp_code u.icmpopts.code 153 #define pfse_icmp_mtu u.icmpopts.mtu 154 }; 155 156 STAILQ_HEAD(pf_send_head, pf_send_entry); 157 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 158 #define V_pf_sendqueue VNET(pf_sendqueue) 159 160 static struct mtx pf_sendqueue_mtx; 161 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 162 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 163 164 /* 165 * Queue for pf_overload_task() tasks. 166 */ 167 struct pf_overload_entry { 168 SLIST_ENTRY(pf_overload_entry) next; 169 struct pf_addr addr; 170 sa_family_t af; 171 uint8_t dir; 172 struct pf_rule *rule; 173 }; 174 175 SLIST_HEAD(pf_overload_head, pf_overload_entry); 176 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 177 #define V_pf_overloadqueue VNET(pf_overloadqueue) 178 static VNET_DEFINE(struct task, pf_overloadtask); 179 #define V_pf_overloadtask VNET(pf_overloadtask) 180 181 static struct mtx pf_overloadqueue_mtx; 182 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 183 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 184 185 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 186 struct mtx pf_unlnkdrules_mtx; 187 188 static VNET_DEFINE(uma_zone_t, pf_sources_z); 189 #define V_pf_sources_z VNET(pf_sources_z) 190 uma_zone_t pf_mtag_z; 191 VNET_DEFINE(uma_zone_t, pf_state_z); 192 VNET_DEFINE(uma_zone_t, pf_state_key_z); 193 194 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 195 #define PFID_CPUBITS 8 196 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 197 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 198 #define PFID_MAXID (~PFID_CPUMASK) 199 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 200 201 static void pf_src_tree_remove_state(struct pf_state *); 202 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 203 u_int32_t); 204 static void pf_add_threshold(struct pf_threshold *); 205 static int pf_check_threshold(struct pf_threshold *); 206 207 static void pf_change_ap(struct pf_addr *, u_int16_t *, 208 u_int16_t *, u_int16_t *, struct pf_addr *, 209 u_int16_t, u_int8_t, sa_family_t); 210 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 211 struct tcphdr *, struct pf_state_peer *); 212 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 213 struct pf_addr *, struct pf_addr *, u_int16_t, 214 u_int16_t *, u_int16_t *, u_int16_t *, 215 u_int16_t *, u_int8_t, sa_family_t); 216 static void pf_send_tcp(struct mbuf *, 217 const struct pf_rule *, sa_family_t, 218 const struct pf_addr *, const struct pf_addr *, 219 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 220 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 221 u_int16_t, struct ifnet *); 222 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 223 sa_family_t, struct pf_rule *); 224 static void pf_detach_state(struct pf_state *); 225 static int pf_state_key_attach(struct pf_state_key *, 226 struct pf_state_key *, struct pf_state *); 227 static void pf_state_key_detach(struct pf_state *, int); 228 static int pf_state_key_ctor(void *, int, void *, int); 229 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 230 static int pf_test_rule(struct pf_rule **, struct pf_state **, 231 int, struct pfi_kif *, struct mbuf *, int, 232 struct pf_pdesc *, struct pf_rule **, 233 struct pf_ruleset **, struct inpcb *); 234 static int pf_create_state(struct pf_rule *, struct pf_rule *, 235 struct pf_rule *, struct pf_pdesc *, 236 struct pf_src_node *, struct pf_state_key *, 237 struct pf_state_key *, struct mbuf *, int, 238 u_int16_t, u_int16_t, int *, struct pfi_kif *, 239 struct pf_state **, int, u_int16_t, u_int16_t, 240 int); 241 static int pf_test_fragment(struct pf_rule **, int, 242 struct pfi_kif *, struct mbuf *, void *, 243 struct pf_pdesc *, struct pf_rule **, 244 struct pf_ruleset **); 245 static int pf_tcp_track_full(struct pf_state_peer *, 246 struct pf_state_peer *, struct pf_state **, 247 struct pfi_kif *, struct mbuf *, int, 248 struct pf_pdesc *, u_short *, int *); 249 static int pf_tcp_track_sloppy(struct pf_state_peer *, 250 struct pf_state_peer *, struct pf_state **, 251 struct pf_pdesc *, u_short *); 252 static int pf_test_state_tcp(struct pf_state **, int, 253 struct pfi_kif *, struct mbuf *, int, 254 void *, struct pf_pdesc *, u_short *); 255 static int pf_test_state_udp(struct pf_state **, int, 256 struct pfi_kif *, struct mbuf *, int, 257 void *, struct pf_pdesc *); 258 static int pf_test_state_icmp(struct pf_state **, int, 259 struct pfi_kif *, struct mbuf *, int, 260 void *, struct pf_pdesc *, u_short *); 261 static int pf_test_state_other(struct pf_state **, int, 262 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 263 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 264 sa_family_t); 265 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 266 sa_family_t); 267 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 268 int, u_int16_t); 269 static void pf_set_rt_ifp(struct pf_state *, 270 struct pf_addr *); 271 static int pf_check_proto_cksum(struct mbuf *, int, int, 272 u_int8_t, sa_family_t); 273 static void pf_print_state_parts(struct pf_state *, 274 struct pf_state_key *, struct pf_state_key *); 275 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 276 struct pf_addr_wrap *); 277 static struct pf_state *pf_find_state(struct pfi_kif *, 278 struct pf_state_key_cmp *, u_int); 279 static int pf_src_connlimit(struct pf_state **); 280 static void pf_overload_task(void *v, int pending); 281 static int pf_insert_src_node(struct pf_src_node **, 282 struct pf_rule *, struct pf_addr *, sa_family_t); 283 static u_int pf_purge_expired_states(u_int, int); 284 static void pf_purge_unlinked_rules(void); 285 static int pf_mtag_uminit(void *, int, int); 286 static void pf_mtag_free(struct m_tag *); 287 #ifdef INET 288 static void pf_route(struct mbuf **, struct pf_rule *, int, 289 struct ifnet *, struct pf_state *, 290 struct pf_pdesc *); 291 #endif /* INET */ 292 #ifdef INET6 293 static void pf_change_a6(struct pf_addr *, u_int16_t *, 294 struct pf_addr *, u_int8_t); 295 static void pf_route6(struct mbuf **, struct pf_rule *, int, 296 struct ifnet *, struct pf_state *, 297 struct pf_pdesc *); 298 #endif /* INET6 */ 299 300 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 301 302 VNET_DECLARE(int, pf_end_threads); 303 304 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 305 306 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 307 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 308 309 #define STATE_LOOKUP(i, k, d, s, pd) \ 310 do { \ 311 (s) = pf_find_state((i), (k), (d)); \ 312 if ((s) == NULL) \ 313 return (PF_DROP); \ 314 if (PACKET_LOOPED(pd)) \ 315 return (PF_PASS); \ 316 if ((d) == PF_OUT && \ 317 (((s)->rule.ptr->rt == PF_ROUTETO && \ 318 (s)->rule.ptr->direction == PF_OUT) || \ 319 ((s)->rule.ptr->rt == PF_REPLYTO && \ 320 (s)->rule.ptr->direction == PF_IN)) && \ 321 (s)->rt_kif != NULL && \ 322 (s)->rt_kif != (i)) \ 323 return (PF_PASS); \ 324 } while (0) 325 326 #define BOUND_IFACE(r, k) \ 327 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 328 329 #define STATE_INC_COUNTERS(s) \ 330 do { \ 331 counter_u64_add(s->rule.ptr->states_cur, 1); \ 332 counter_u64_add(s->rule.ptr->states_tot, 1); \ 333 if (s->anchor.ptr != NULL) { \ 334 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 335 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 336 } \ 337 if (s->nat_rule.ptr != NULL) { \ 338 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 339 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 340 } \ 341 } while (0) 342 343 #define STATE_DEC_COUNTERS(s) \ 344 do { \ 345 if (s->nat_rule.ptr != NULL) \ 346 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 347 if (s->anchor.ptr != NULL) \ 348 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 349 counter_u64_add(s->rule.ptr->states_cur, -1); \ 350 } while (0) 351 352 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 353 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 354 VNET_DEFINE(struct pf_idhash *, pf_idhash); 355 VNET_DEFINE(struct pf_srchash *, pf_srchash); 356 357 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 358 359 u_long pf_hashmask; 360 u_long pf_srchashmask; 361 static u_long pf_hashsize; 362 static u_long pf_srchashsize; 363 364 SYSCTL_UINT(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 365 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 366 SYSCTL_UINT(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 367 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 368 369 VNET_DEFINE(void *, pf_swi_cookie); 370 371 VNET_DEFINE(uint32_t, pf_hashseed); 372 #define V_pf_hashseed VNET(pf_hashseed) 373 374 static __inline uint32_t 375 pf_hashkey(struct pf_state_key *sk) 376 { 377 uint32_t h; 378 379 h = jenkins_hash32((uint32_t *)sk, 380 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 381 V_pf_hashseed); 382 383 return (h & pf_hashmask); 384 } 385 386 static __inline uint32_t 387 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 388 { 389 uint32_t h; 390 391 switch (af) { 392 case AF_INET: 393 h = jenkins_hash32((uint32_t *)&addr->v4, 394 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 395 break; 396 case AF_INET6: 397 h = jenkins_hash32((uint32_t *)&addr->v6, 398 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 399 break; 400 default: 401 panic("%s: unknown address family %u", __func__, af); 402 } 403 404 return (h & pf_srchashmask); 405 } 406 407 #ifdef INET6 408 void 409 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 410 { 411 switch (af) { 412 #ifdef INET 413 case AF_INET: 414 dst->addr32[0] = src->addr32[0]; 415 break; 416 #endif /* INET */ 417 case AF_INET6: 418 dst->addr32[0] = src->addr32[0]; 419 dst->addr32[1] = src->addr32[1]; 420 dst->addr32[2] = src->addr32[2]; 421 dst->addr32[3] = src->addr32[3]; 422 break; 423 } 424 } 425 #endif /* INET6 */ 426 427 static void 428 pf_init_threshold(struct pf_threshold *threshold, 429 u_int32_t limit, u_int32_t seconds) 430 { 431 threshold->limit = limit * PF_THRESHOLD_MULT; 432 threshold->seconds = seconds; 433 threshold->count = 0; 434 threshold->last = time_uptime; 435 } 436 437 static void 438 pf_add_threshold(struct pf_threshold *threshold) 439 { 440 u_int32_t t = time_uptime, diff = t - threshold->last; 441 442 if (diff >= threshold->seconds) 443 threshold->count = 0; 444 else 445 threshold->count -= threshold->count * diff / 446 threshold->seconds; 447 threshold->count += PF_THRESHOLD_MULT; 448 threshold->last = t; 449 } 450 451 static int 452 pf_check_threshold(struct pf_threshold *threshold) 453 { 454 return (threshold->count > threshold->limit); 455 } 456 457 static int 458 pf_src_connlimit(struct pf_state **state) 459 { 460 struct pf_overload_entry *pfoe; 461 int bad = 0; 462 463 PF_STATE_LOCK_ASSERT(*state); 464 465 (*state)->src_node->conn++; 466 (*state)->src.tcp_est = 1; 467 pf_add_threshold(&(*state)->src_node->conn_rate); 468 469 if ((*state)->rule.ptr->max_src_conn && 470 (*state)->rule.ptr->max_src_conn < 471 (*state)->src_node->conn) { 472 V_pf_status.lcounters[LCNT_SRCCONN]++; 473 bad++; 474 } 475 476 if ((*state)->rule.ptr->max_src_conn_rate.limit && 477 pf_check_threshold(&(*state)->src_node->conn_rate)) { 478 V_pf_status.lcounters[LCNT_SRCCONNRATE]++; 479 bad++; 480 } 481 482 if (!bad) 483 return (0); 484 485 /* Kill this state. */ 486 (*state)->timeout = PFTM_PURGE; 487 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 488 489 if ((*state)->rule.ptr->overload_tbl == NULL) 490 return (1); 491 492 /* Schedule overloading and flushing task. */ 493 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 494 if (pfoe == NULL) 495 return (1); /* too bad :( */ 496 497 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 498 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 499 pfoe->rule = (*state)->rule.ptr; 500 pfoe->dir = (*state)->direction; 501 PF_OVERLOADQ_LOCK(); 502 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 503 PF_OVERLOADQ_UNLOCK(); 504 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 505 506 return (1); 507 } 508 509 static void 510 pf_overload_task(void *v, int pending) 511 { 512 struct pf_overload_head queue; 513 struct pfr_addr p; 514 struct pf_overload_entry *pfoe, *pfoe1; 515 uint32_t killed = 0; 516 517 CURVNET_SET((struct vnet *)v); 518 519 PF_OVERLOADQ_LOCK(); 520 queue = V_pf_overloadqueue; 521 SLIST_INIT(&V_pf_overloadqueue); 522 PF_OVERLOADQ_UNLOCK(); 523 524 bzero(&p, sizeof(p)); 525 SLIST_FOREACH(pfoe, &queue, next) { 526 V_pf_status.lcounters[LCNT_OVERLOAD_TABLE]++; 527 if (V_pf_status.debug >= PF_DEBUG_MISC) { 528 printf("%s: blocking address ", __func__); 529 pf_print_host(&pfoe->addr, 0, pfoe->af); 530 printf("\n"); 531 } 532 533 p.pfra_af = pfoe->af; 534 switch (pfoe->af) { 535 #ifdef INET 536 case AF_INET: 537 p.pfra_net = 32; 538 p.pfra_ip4addr = pfoe->addr.v4; 539 break; 540 #endif 541 #ifdef INET6 542 case AF_INET6: 543 p.pfra_net = 128; 544 p.pfra_ip6addr = pfoe->addr.v6; 545 break; 546 #endif 547 } 548 549 PF_RULES_WLOCK(); 550 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 551 PF_RULES_WUNLOCK(); 552 } 553 554 /* 555 * Remove those entries, that don't need flushing. 556 */ 557 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 558 if (pfoe->rule->flush == 0) { 559 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 560 free(pfoe, M_PFTEMP); 561 } else 562 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH]++; 563 564 /* If nothing to flush, return. */ 565 if (SLIST_EMPTY(&queue)) { 566 CURVNET_RESTORE(); 567 return; 568 } 569 570 for (int i = 0; i <= pf_hashmask; i++) { 571 struct pf_idhash *ih = &V_pf_idhash[i]; 572 struct pf_state_key *sk; 573 struct pf_state *s; 574 575 PF_HASHROW_LOCK(ih); 576 LIST_FOREACH(s, &ih->states, entry) { 577 sk = s->key[PF_SK_WIRE]; 578 SLIST_FOREACH(pfoe, &queue, next) 579 if (sk->af == pfoe->af && 580 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 581 pfoe->rule == s->rule.ptr) && 582 ((pfoe->dir == PF_OUT && 583 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 584 (pfoe->dir == PF_IN && 585 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 586 s->timeout = PFTM_PURGE; 587 s->src.state = s->dst.state = TCPS_CLOSED; 588 killed++; 589 } 590 } 591 PF_HASHROW_UNLOCK(ih); 592 } 593 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 594 free(pfoe, M_PFTEMP); 595 if (V_pf_status.debug >= PF_DEBUG_MISC) 596 printf("%s: %u states killed", __func__, killed); 597 598 CURVNET_RESTORE(); 599 } 600 601 /* 602 * Can return locked on failure, so that we can consistently 603 * allocate and insert a new one. 604 */ 605 struct pf_src_node * 606 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 607 int returnlocked) 608 { 609 struct pf_srchash *sh; 610 struct pf_src_node *n; 611 612 V_pf_status.scounters[SCNT_SRC_NODE_SEARCH]++; 613 614 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 615 PF_HASHROW_LOCK(sh); 616 LIST_FOREACH(n, &sh->nodes, entry) 617 if (n->rule.ptr == rule && n->af == af && 618 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 619 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 620 break; 621 if (n != NULL || returnlocked == 0) 622 PF_HASHROW_UNLOCK(sh); 623 624 return (n); 625 } 626 627 static int 628 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 629 struct pf_addr *src, sa_family_t af) 630 { 631 632 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 633 rule->rpool.opts & PF_POOL_STICKYADDR), 634 ("%s for non-tracking rule %p", __func__, rule)); 635 636 if (*sn == NULL) 637 *sn = pf_find_src_node(src, rule, af, 1); 638 639 if (*sn == NULL) { 640 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 641 642 PF_HASHROW_ASSERT(sh); 643 644 if (!rule->max_src_nodes || 645 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 646 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 647 else 648 V_pf_status.lcounters[LCNT_SRCNODES]++; 649 if ((*sn) == NULL) { 650 PF_HASHROW_UNLOCK(sh); 651 return (-1); 652 } 653 654 pf_init_threshold(&(*sn)->conn_rate, 655 rule->max_src_conn_rate.limit, 656 rule->max_src_conn_rate.seconds); 657 658 (*sn)->af = af; 659 (*sn)->rule.ptr = rule; 660 PF_ACPY(&(*sn)->addr, src, af); 661 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 662 (*sn)->creation = time_uptime; 663 (*sn)->ruletype = rule->action; 664 if ((*sn)->rule.ptr != NULL) 665 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 666 PF_HASHROW_UNLOCK(sh); 667 V_pf_status.scounters[SCNT_SRC_NODE_INSERT]++; 668 V_pf_status.src_nodes++; 669 } else { 670 if (rule->max_src_states && 671 (*sn)->states >= rule->max_src_states) { 672 V_pf_status.lcounters[LCNT_SRCSTATES]++; 673 return (-1); 674 } 675 } 676 return (0); 677 } 678 679 void 680 pf_unlink_src_node_locked(struct pf_src_node *src) 681 { 682 #ifdef INVARIANTS 683 struct pf_srchash *sh; 684 685 sh = &V_pf_srchash[pf_hashsrc(&src->addr, src->af)]; 686 PF_HASHROW_ASSERT(sh); 687 #endif 688 LIST_REMOVE(src, entry); 689 if (src->rule.ptr) 690 counter_u64_add(src->rule.ptr->src_nodes, -1); 691 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS]++; 692 V_pf_status.src_nodes--; 693 } 694 695 void 696 pf_unlink_src_node(struct pf_src_node *src) 697 { 698 struct pf_srchash *sh; 699 700 sh = &V_pf_srchash[pf_hashsrc(&src->addr, src->af)]; 701 PF_HASHROW_LOCK(sh); 702 pf_unlink_src_node_locked(src); 703 PF_HASHROW_UNLOCK(sh); 704 } 705 706 static void 707 pf_free_src_node(struct pf_src_node *sn) 708 { 709 710 KASSERT(sn->states == 0, ("%s: %p has refs", __func__, sn)); 711 uma_zfree(V_pf_sources_z, sn); 712 } 713 714 u_int 715 pf_free_src_nodes(struct pf_src_node_list *head) 716 { 717 struct pf_src_node *sn, *tmp; 718 u_int count = 0; 719 720 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 721 pf_free_src_node(sn); 722 count++; 723 } 724 725 return (count); 726 } 727 728 void 729 pf_mtag_initialize() 730 { 731 732 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 733 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 734 UMA_ALIGN_PTR, 0); 735 } 736 737 /* Per-vnet data storage structures initialization. */ 738 void 739 pf_initialize() 740 { 741 struct pf_keyhash *kh; 742 struct pf_idhash *ih; 743 struct pf_srchash *sh; 744 u_int i; 745 746 TUNABLE_ULONG_FETCH("net.pf.states_hashsize", &pf_hashsize); 747 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 748 pf_hashsize = PF_HASHSIZ; 749 TUNABLE_ULONG_FETCH("net.pf.source_nodes_hashsize", &pf_srchashsize); 750 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 751 pf_srchashsize = PF_HASHSIZ / 4; 752 753 V_pf_hashseed = arc4random(); 754 755 /* States and state keys storage. */ 756 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 757 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 758 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 759 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 760 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 761 762 V_pf_state_key_z = uma_zcreate("pf state keys", 763 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 764 UMA_ALIGN_PTR, 0); 765 V_pf_keyhash = malloc(pf_hashsize * sizeof(struct pf_keyhash), 766 M_PFHASH, M_WAITOK | M_ZERO); 767 V_pf_idhash = malloc(pf_hashsize * sizeof(struct pf_idhash), 768 M_PFHASH, M_WAITOK | M_ZERO); 769 pf_hashmask = pf_hashsize - 1; 770 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 771 i++, kh++, ih++) { 772 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 773 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 774 } 775 776 /* Source nodes. */ 777 V_pf_sources_z = uma_zcreate("pf source nodes", 778 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 779 0); 780 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 781 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 782 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 783 V_pf_srchash = malloc(pf_srchashsize * sizeof(struct pf_srchash), 784 M_PFHASH, M_WAITOK|M_ZERO); 785 pf_srchashmask = pf_srchashsize - 1; 786 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 787 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 788 789 /* ALTQ */ 790 TAILQ_INIT(&V_pf_altqs[0]); 791 TAILQ_INIT(&V_pf_altqs[1]); 792 TAILQ_INIT(&V_pf_pabuf); 793 V_pf_altqs_active = &V_pf_altqs[0]; 794 V_pf_altqs_inactive = &V_pf_altqs[1]; 795 796 797 /* Send & overload+flush queues. */ 798 STAILQ_INIT(&V_pf_sendqueue); 799 SLIST_INIT(&V_pf_overloadqueue); 800 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 801 mtx_init(&pf_sendqueue_mtx, "pf send queue", NULL, MTX_DEF); 802 mtx_init(&pf_overloadqueue_mtx, "pf overload/flush queue", NULL, 803 MTX_DEF); 804 805 /* Unlinked, but may be referenced rules. */ 806 TAILQ_INIT(&V_pf_unlinked_rules); 807 mtx_init(&pf_unlnkdrules_mtx, "pf unlinked rules", NULL, MTX_DEF); 808 } 809 810 void 811 pf_mtag_cleanup() 812 { 813 814 uma_zdestroy(pf_mtag_z); 815 } 816 817 void 818 pf_cleanup() 819 { 820 struct pf_keyhash *kh; 821 struct pf_idhash *ih; 822 struct pf_srchash *sh; 823 struct pf_send_entry *pfse, *next; 824 u_int i; 825 826 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 827 i++, kh++, ih++) { 828 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 829 __func__)); 830 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 831 __func__)); 832 mtx_destroy(&kh->lock); 833 mtx_destroy(&ih->lock); 834 } 835 free(V_pf_keyhash, M_PFHASH); 836 free(V_pf_idhash, M_PFHASH); 837 838 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 839 KASSERT(LIST_EMPTY(&sh->nodes), 840 ("%s: source node hash not empty", __func__)); 841 mtx_destroy(&sh->lock); 842 } 843 free(V_pf_srchash, M_PFHASH); 844 845 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 846 m_freem(pfse->pfse_m); 847 free(pfse, M_PFTEMP); 848 } 849 850 mtx_destroy(&pf_sendqueue_mtx); 851 mtx_destroy(&pf_overloadqueue_mtx); 852 mtx_destroy(&pf_unlnkdrules_mtx); 853 854 uma_zdestroy(V_pf_sources_z); 855 uma_zdestroy(V_pf_state_z); 856 uma_zdestroy(V_pf_state_key_z); 857 } 858 859 static int 860 pf_mtag_uminit(void *mem, int size, int how) 861 { 862 struct m_tag *t; 863 864 t = (struct m_tag *)mem; 865 t->m_tag_cookie = MTAG_ABI_COMPAT; 866 t->m_tag_id = PACKET_TAG_PF; 867 t->m_tag_len = sizeof(struct pf_mtag); 868 t->m_tag_free = pf_mtag_free; 869 870 return (0); 871 } 872 873 static void 874 pf_mtag_free(struct m_tag *t) 875 { 876 877 uma_zfree(pf_mtag_z, t); 878 } 879 880 struct pf_mtag * 881 pf_get_mtag(struct mbuf *m) 882 { 883 struct m_tag *mtag; 884 885 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 886 return ((struct pf_mtag *)(mtag + 1)); 887 888 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 889 if (mtag == NULL) 890 return (NULL); 891 bzero(mtag + 1, sizeof(struct pf_mtag)); 892 m_tag_prepend(m, mtag); 893 894 return ((struct pf_mtag *)(mtag + 1)); 895 } 896 897 static int 898 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 899 struct pf_state *s) 900 { 901 struct pf_keyhash *khs, *khw, *kh; 902 struct pf_state_key *sk, *cur; 903 struct pf_state *si, *olds = NULL; 904 int idx; 905 906 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 907 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 908 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 909 910 /* 911 * We need to lock hash slots of both keys. To avoid deadlock 912 * we always lock the slot with lower address first. Unlock order 913 * isn't important. 914 * 915 * We also need to lock ID hash slot before dropping key 916 * locks. On success we return with ID hash slot locked. 917 */ 918 919 if (skw == sks) { 920 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 921 PF_HASHROW_LOCK(khs); 922 } else { 923 khs = &V_pf_keyhash[pf_hashkey(sks)]; 924 khw = &V_pf_keyhash[pf_hashkey(skw)]; 925 if (khs == khw) { 926 PF_HASHROW_LOCK(khs); 927 } else if (khs < khw) { 928 PF_HASHROW_LOCK(khs); 929 PF_HASHROW_LOCK(khw); 930 } else { 931 PF_HASHROW_LOCK(khw); 932 PF_HASHROW_LOCK(khs); 933 } 934 } 935 936 #define KEYS_UNLOCK() do { \ 937 if (khs != khw) { \ 938 PF_HASHROW_UNLOCK(khs); \ 939 PF_HASHROW_UNLOCK(khw); \ 940 } else \ 941 PF_HASHROW_UNLOCK(khs); \ 942 } while (0) 943 944 /* 945 * First run: start with wire key. 946 */ 947 sk = skw; 948 kh = khw; 949 idx = PF_SK_WIRE; 950 951 keyattach: 952 LIST_FOREACH(cur, &kh->keys, entry) 953 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 954 break; 955 956 if (cur != NULL) { 957 /* Key exists. Check for same kif, if none, add to key. */ 958 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 959 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 960 961 PF_HASHROW_LOCK(ih); 962 if (si->kif == s->kif && 963 si->direction == s->direction) { 964 if (sk->proto == IPPROTO_TCP && 965 si->src.state >= TCPS_FIN_WAIT_2 && 966 si->dst.state >= TCPS_FIN_WAIT_2) { 967 /* 968 * New state matches an old >FIN_WAIT_2 969 * state. We can't drop key hash locks, 970 * thus we can't unlink it properly. 971 * 972 * As a workaround we drop it into 973 * TCPS_CLOSED state, schedule purge 974 * ASAP and push it into the very end 975 * of the slot TAILQ, so that it won't 976 * conflict with our new state. 977 */ 978 si->src.state = si->dst.state = 979 TCPS_CLOSED; 980 si->timeout = PFTM_PURGE; 981 olds = si; 982 } else { 983 if (V_pf_status.debug >= PF_DEBUG_MISC) { 984 printf("pf: %s key attach " 985 "failed on %s: ", 986 (idx == PF_SK_WIRE) ? 987 "wire" : "stack", 988 s->kif->pfik_name); 989 pf_print_state_parts(s, 990 (idx == PF_SK_WIRE) ? 991 sk : NULL, 992 (idx == PF_SK_STACK) ? 993 sk : NULL); 994 printf(", existing: "); 995 pf_print_state_parts(si, 996 (idx == PF_SK_WIRE) ? 997 sk : NULL, 998 (idx == PF_SK_STACK) ? 999 sk : NULL); 1000 printf("\n"); 1001 } 1002 PF_HASHROW_UNLOCK(ih); 1003 KEYS_UNLOCK(); 1004 uma_zfree(V_pf_state_key_z, sk); 1005 if (idx == PF_SK_STACK) 1006 pf_detach_state(s); 1007 return (EEXIST); /* collision! */ 1008 } 1009 } 1010 PF_HASHROW_UNLOCK(ih); 1011 } 1012 uma_zfree(V_pf_state_key_z, sk); 1013 s->key[idx] = cur; 1014 } else { 1015 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1016 s->key[idx] = sk; 1017 } 1018 1019 stateattach: 1020 /* List is sorted, if-bound states before floating. */ 1021 if (s->kif == V_pfi_all) 1022 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1023 else 1024 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1025 1026 if (olds) { 1027 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1028 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1029 key_list[idx]); 1030 olds = NULL; 1031 } 1032 1033 /* 1034 * Attach done. See how should we (or should not?) 1035 * attach a second key. 1036 */ 1037 if (sks == skw) { 1038 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1039 idx = PF_SK_STACK; 1040 sks = NULL; 1041 goto stateattach; 1042 } else if (sks != NULL) { 1043 /* 1044 * Continue attaching with stack key. 1045 */ 1046 sk = sks; 1047 kh = khs; 1048 idx = PF_SK_STACK; 1049 sks = NULL; 1050 goto keyattach; 1051 } 1052 1053 PF_STATE_LOCK(s); 1054 KEYS_UNLOCK(); 1055 1056 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1057 ("%s failure", __func__)); 1058 1059 return (0); 1060 #undef KEYS_UNLOCK 1061 } 1062 1063 static void 1064 pf_detach_state(struct pf_state *s) 1065 { 1066 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1067 struct pf_keyhash *kh; 1068 1069 if (sks != NULL) { 1070 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1071 PF_HASHROW_LOCK(kh); 1072 if (s->key[PF_SK_STACK] != NULL) 1073 pf_state_key_detach(s, PF_SK_STACK); 1074 /* 1075 * If both point to same key, then we are done. 1076 */ 1077 if (sks == s->key[PF_SK_WIRE]) { 1078 pf_state_key_detach(s, PF_SK_WIRE); 1079 PF_HASHROW_UNLOCK(kh); 1080 return; 1081 } 1082 PF_HASHROW_UNLOCK(kh); 1083 } 1084 1085 if (s->key[PF_SK_WIRE] != NULL) { 1086 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1087 PF_HASHROW_LOCK(kh); 1088 if (s->key[PF_SK_WIRE] != NULL) 1089 pf_state_key_detach(s, PF_SK_WIRE); 1090 PF_HASHROW_UNLOCK(kh); 1091 } 1092 } 1093 1094 static void 1095 pf_state_key_detach(struct pf_state *s, int idx) 1096 { 1097 struct pf_state_key *sk = s->key[idx]; 1098 #ifdef INVARIANTS 1099 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1100 1101 PF_HASHROW_ASSERT(kh); 1102 #endif 1103 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1104 s->key[idx] = NULL; 1105 1106 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1107 LIST_REMOVE(sk, entry); 1108 uma_zfree(V_pf_state_key_z, sk); 1109 } 1110 } 1111 1112 static int 1113 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1114 { 1115 struct pf_state_key *sk = mem; 1116 1117 bzero(sk, sizeof(struct pf_state_key_cmp)); 1118 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1119 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1120 1121 return (0); 1122 } 1123 1124 struct pf_state_key * 1125 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1126 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1127 { 1128 struct pf_state_key *sk; 1129 1130 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1131 if (sk == NULL) 1132 return (NULL); 1133 1134 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1135 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1136 sk->port[pd->sidx] = sport; 1137 sk->port[pd->didx] = dport; 1138 sk->proto = pd->proto; 1139 sk->af = pd->af; 1140 1141 return (sk); 1142 } 1143 1144 struct pf_state_key * 1145 pf_state_key_clone(struct pf_state_key *orig) 1146 { 1147 struct pf_state_key *sk; 1148 1149 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1150 if (sk == NULL) 1151 return (NULL); 1152 1153 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1154 1155 return (sk); 1156 } 1157 1158 int 1159 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1160 struct pf_state_key *sks, struct pf_state *s) 1161 { 1162 struct pf_idhash *ih; 1163 struct pf_state *cur; 1164 int error; 1165 1166 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1167 ("%s: sks not pristine", __func__)); 1168 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1169 ("%s: skw not pristine", __func__)); 1170 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1171 1172 s->kif = kif; 1173 1174 if (s->id == 0 && s->creatorid == 0) { 1175 /* XXX: should be atomic, but probability of collision low */ 1176 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1177 V_pf_stateid[curcpu] = 1; 1178 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1179 s->id = htobe64(s->id); 1180 s->creatorid = V_pf_status.hostid; 1181 } 1182 1183 /* Returns with ID locked on success. */ 1184 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1185 return (error); 1186 1187 ih = &V_pf_idhash[PF_IDHASH(s)]; 1188 PF_HASHROW_ASSERT(ih); 1189 LIST_FOREACH(cur, &ih->states, entry) 1190 if (cur->id == s->id && cur->creatorid == s->creatorid) 1191 break; 1192 1193 if (cur != NULL) { 1194 PF_HASHROW_UNLOCK(ih); 1195 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1196 printf("pf: state ID collision: " 1197 "id: %016llx creatorid: %08x\n", 1198 (unsigned long long)be64toh(s->id), 1199 ntohl(s->creatorid)); 1200 } 1201 pf_detach_state(s); 1202 return (EEXIST); 1203 } 1204 LIST_INSERT_HEAD(&ih->states, s, entry); 1205 /* One for keys, one for ID hash. */ 1206 refcount_init(&s->refs, 2); 1207 1208 V_pf_status.fcounters[FCNT_STATE_INSERT]++; 1209 if (pfsync_insert_state_ptr != NULL) 1210 pfsync_insert_state_ptr(s); 1211 1212 /* Returns locked. */ 1213 return (0); 1214 } 1215 1216 /* 1217 * Find state by ID: returns with locked row on success. 1218 */ 1219 struct pf_state * 1220 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1221 { 1222 struct pf_idhash *ih; 1223 struct pf_state *s; 1224 1225 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1226 1227 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1228 1229 PF_HASHROW_LOCK(ih); 1230 LIST_FOREACH(s, &ih->states, entry) 1231 if (s->id == id && s->creatorid == creatorid) 1232 break; 1233 1234 if (s == NULL) 1235 PF_HASHROW_UNLOCK(ih); 1236 1237 return (s); 1238 } 1239 1240 /* 1241 * Find state by key. 1242 * Returns with ID hash slot locked on success. 1243 */ 1244 static struct pf_state * 1245 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1246 { 1247 struct pf_keyhash *kh; 1248 struct pf_state_key *sk; 1249 struct pf_state *s; 1250 int idx; 1251 1252 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1253 1254 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1255 1256 PF_HASHROW_LOCK(kh); 1257 LIST_FOREACH(sk, &kh->keys, entry) 1258 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1259 break; 1260 if (sk == NULL) { 1261 PF_HASHROW_UNLOCK(kh); 1262 return (NULL); 1263 } 1264 1265 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1266 1267 /* List is sorted, if-bound states before floating ones. */ 1268 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1269 if (s->kif == V_pfi_all || s->kif == kif) { 1270 PF_STATE_LOCK(s); 1271 PF_HASHROW_UNLOCK(kh); 1272 if (s->timeout >= PFTM_MAX) { 1273 /* 1274 * State is either being processed by 1275 * pf_unlink_state() in an other thread, or 1276 * is scheduled for immediate expiry. 1277 */ 1278 PF_STATE_UNLOCK(s); 1279 return (NULL); 1280 } 1281 return (s); 1282 } 1283 PF_HASHROW_UNLOCK(kh); 1284 1285 return (NULL); 1286 } 1287 1288 struct pf_state * 1289 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1290 { 1291 struct pf_keyhash *kh; 1292 struct pf_state_key *sk; 1293 struct pf_state *s, *ret = NULL; 1294 int idx, inout = 0; 1295 1296 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1297 1298 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1299 1300 PF_HASHROW_LOCK(kh); 1301 LIST_FOREACH(sk, &kh->keys, entry) 1302 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1303 break; 1304 if (sk == NULL) { 1305 PF_HASHROW_UNLOCK(kh); 1306 return (NULL); 1307 } 1308 switch (dir) { 1309 case PF_IN: 1310 idx = PF_SK_WIRE; 1311 break; 1312 case PF_OUT: 1313 idx = PF_SK_STACK; 1314 break; 1315 case PF_INOUT: 1316 idx = PF_SK_WIRE; 1317 inout = 1; 1318 break; 1319 default: 1320 panic("%s: dir %u", __func__, dir); 1321 } 1322 second_run: 1323 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1324 if (more == NULL) { 1325 PF_HASHROW_UNLOCK(kh); 1326 return (s); 1327 } 1328 1329 if (ret) 1330 (*more)++; 1331 else 1332 ret = s; 1333 } 1334 if (inout == 1) { 1335 inout = 0; 1336 idx = PF_SK_STACK; 1337 goto second_run; 1338 } 1339 PF_HASHROW_UNLOCK(kh); 1340 1341 return (ret); 1342 } 1343 1344 /* END state table stuff */ 1345 1346 static void 1347 pf_send(struct pf_send_entry *pfse) 1348 { 1349 1350 PF_SENDQ_LOCK(); 1351 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1352 PF_SENDQ_UNLOCK(); 1353 swi_sched(V_pf_swi_cookie, 0); 1354 } 1355 1356 void 1357 pf_intr(void *v) 1358 { 1359 struct pf_send_head queue; 1360 struct pf_send_entry *pfse, *next; 1361 1362 CURVNET_SET((struct vnet *)v); 1363 1364 PF_SENDQ_LOCK(); 1365 queue = V_pf_sendqueue; 1366 STAILQ_INIT(&V_pf_sendqueue); 1367 PF_SENDQ_UNLOCK(); 1368 1369 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1370 switch (pfse->pfse_type) { 1371 #ifdef INET 1372 case PFSE_IP: 1373 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1374 break; 1375 case PFSE_ICMP: 1376 icmp_error(pfse->pfse_m, pfse->pfse_icmp_type, 1377 pfse->pfse_icmp_code, 0, pfse->pfse_icmp_mtu); 1378 break; 1379 #endif /* INET */ 1380 #ifdef INET6 1381 case PFSE_IP6: 1382 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1383 NULL); 1384 break; 1385 case PFSE_ICMP6: 1386 icmp6_error(pfse->pfse_m, pfse->pfse_icmp_type, 1387 pfse->pfse_icmp_code, pfse->pfse_icmp_mtu); 1388 break; 1389 #endif /* INET6 */ 1390 default: 1391 panic("%s: unknown type", __func__); 1392 } 1393 free(pfse, M_PFTEMP); 1394 } 1395 CURVNET_RESTORE(); 1396 } 1397 1398 void 1399 pf_purge_thread(void *v) 1400 { 1401 u_int idx = 0; 1402 1403 CURVNET_SET((struct vnet *)v); 1404 1405 for (;;) { 1406 PF_RULES_RLOCK(); 1407 rw_sleep(pf_purge_thread, &pf_rules_lock, 0, "pftm", hz / 10); 1408 1409 if (V_pf_end_threads) { 1410 /* 1411 * To cleanse up all kifs and rules we need 1412 * two runs: first one clears reference flags, 1413 * then pf_purge_expired_states() doesn't 1414 * raise them, and then second run frees. 1415 */ 1416 PF_RULES_RUNLOCK(); 1417 pf_purge_unlinked_rules(); 1418 pfi_kif_purge(); 1419 1420 /* 1421 * Now purge everything. 1422 */ 1423 pf_purge_expired_states(0, pf_hashmask); 1424 pf_purge_expired_fragments(); 1425 pf_purge_expired_src_nodes(); 1426 1427 /* 1428 * Now all kifs & rules should be unreferenced, 1429 * thus should be successfully freed. 1430 */ 1431 pf_purge_unlinked_rules(); 1432 pfi_kif_purge(); 1433 1434 /* 1435 * Announce success and exit. 1436 */ 1437 PF_RULES_RLOCK(); 1438 V_pf_end_threads++; 1439 PF_RULES_RUNLOCK(); 1440 wakeup(pf_purge_thread); 1441 kproc_exit(0); 1442 } 1443 PF_RULES_RUNLOCK(); 1444 1445 /* Process 1/interval fraction of the state table every run. */ 1446 idx = pf_purge_expired_states(idx, pf_hashmask / 1447 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1448 1449 /* Purge other expired types every PFTM_INTERVAL seconds. */ 1450 if (idx == 0) { 1451 /* 1452 * Order is important: 1453 * - states and src nodes reference rules 1454 * - states and rules reference kifs 1455 */ 1456 pf_purge_expired_fragments(); 1457 pf_purge_expired_src_nodes(); 1458 pf_purge_unlinked_rules(); 1459 pfi_kif_purge(); 1460 } 1461 } 1462 /* not reached */ 1463 CURVNET_RESTORE(); 1464 } 1465 1466 u_int32_t 1467 pf_state_expires(const struct pf_state *state) 1468 { 1469 u_int32_t timeout; 1470 u_int32_t start; 1471 u_int32_t end; 1472 u_int32_t states; 1473 1474 /* handle all PFTM_* > PFTM_MAX here */ 1475 if (state->timeout == PFTM_PURGE) 1476 return (time_uptime); 1477 KASSERT(state->timeout != PFTM_UNLINKED, 1478 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1479 KASSERT((state->timeout < PFTM_MAX), 1480 ("pf_state_expires: timeout > PFTM_MAX")); 1481 timeout = state->rule.ptr->timeout[state->timeout]; 1482 if (!timeout) 1483 timeout = V_pf_default_rule.timeout[state->timeout]; 1484 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1485 if (start) { 1486 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1487 states = counter_u64_fetch(state->rule.ptr->states_cur); 1488 } else { 1489 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1490 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1491 states = V_pf_status.states; 1492 } 1493 if (end && states > start && start < end) { 1494 if (states < end) 1495 return (state->expire + timeout * (end - states) / 1496 (end - start)); 1497 else 1498 return (time_uptime); 1499 } 1500 return (state->expire + timeout); 1501 } 1502 1503 void 1504 pf_purge_expired_src_nodes() 1505 { 1506 struct pf_src_node_list freelist; 1507 struct pf_srchash *sh; 1508 struct pf_src_node *cur, *next; 1509 int i; 1510 1511 LIST_INIT(&freelist); 1512 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1513 PF_HASHROW_LOCK(sh); 1514 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1515 if (cur->states == 0 && cur->expire <= time_uptime) { 1516 pf_unlink_src_node_locked(cur); 1517 LIST_INSERT_HEAD(&freelist, cur, entry); 1518 } else if (cur->rule.ptr != NULL) 1519 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1520 PF_HASHROW_UNLOCK(sh); 1521 } 1522 1523 pf_free_src_nodes(&freelist); 1524 } 1525 1526 static void 1527 pf_src_tree_remove_state(struct pf_state *s) 1528 { 1529 u_int32_t timeout; 1530 1531 if (s->src_node != NULL) { 1532 if (s->src.tcp_est) 1533 --s->src_node->conn; 1534 if (--s->src_node->states == 0) { 1535 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1536 if (!timeout) 1537 timeout = 1538 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1539 s->src_node->expire = time_uptime + timeout; 1540 } 1541 } 1542 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1543 if (--s->nat_src_node->states == 0) { 1544 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1545 if (!timeout) 1546 timeout = 1547 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1548 s->nat_src_node->expire = time_uptime + timeout; 1549 } 1550 } 1551 s->src_node = s->nat_src_node = NULL; 1552 } 1553 1554 /* 1555 * Unlink and potentilly free a state. Function may be 1556 * called with ID hash row locked, but always returns 1557 * unlocked, since it needs to go through key hash locking. 1558 */ 1559 int 1560 pf_unlink_state(struct pf_state *s, u_int flags) 1561 { 1562 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1563 1564 if ((flags & PF_ENTER_LOCKED) == 0) 1565 PF_HASHROW_LOCK(ih); 1566 else 1567 PF_HASHROW_ASSERT(ih); 1568 1569 if (s->timeout == PFTM_UNLINKED) { 1570 /* 1571 * State is being processed 1572 * by pf_unlink_state() in 1573 * an other thread. 1574 */ 1575 PF_HASHROW_UNLOCK(ih); 1576 return (0); /* XXXGL: undefined actually */ 1577 } 1578 1579 if (s->src.state == PF_TCPS_PROXY_DST) { 1580 /* XXX wire key the right one? */ 1581 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1582 &s->key[PF_SK_WIRE]->addr[1], 1583 &s->key[PF_SK_WIRE]->addr[0], 1584 s->key[PF_SK_WIRE]->port[1], 1585 s->key[PF_SK_WIRE]->port[0], 1586 s->src.seqhi, s->src.seqlo + 1, 1587 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1588 } 1589 1590 LIST_REMOVE(s, entry); 1591 pf_src_tree_remove_state(s); 1592 1593 if (pfsync_delete_state_ptr != NULL) 1594 pfsync_delete_state_ptr(s); 1595 1596 STATE_DEC_COUNTERS(s); 1597 1598 s->timeout = PFTM_UNLINKED; 1599 1600 PF_HASHROW_UNLOCK(ih); 1601 1602 pf_detach_state(s); 1603 refcount_release(&s->refs); 1604 1605 return (pf_release_state(s)); 1606 } 1607 1608 void 1609 pf_free_state(struct pf_state *cur) 1610 { 1611 1612 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1613 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1614 cur->timeout)); 1615 1616 pf_normalize_tcp_cleanup(cur); 1617 uma_zfree(V_pf_state_z, cur); 1618 V_pf_status.fcounters[FCNT_STATE_REMOVALS]++; 1619 } 1620 1621 /* 1622 * Called only from pf_purge_thread(), thus serialized. 1623 */ 1624 static u_int 1625 pf_purge_expired_states(u_int i, int maxcheck) 1626 { 1627 struct pf_idhash *ih; 1628 struct pf_state *s; 1629 1630 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1631 1632 /* 1633 * Go through hash and unlink states that expire now. 1634 */ 1635 while (maxcheck > 0) { 1636 1637 ih = &V_pf_idhash[i]; 1638 relock: 1639 PF_HASHROW_LOCK(ih); 1640 LIST_FOREACH(s, &ih->states, entry) { 1641 if (pf_state_expires(s) <= time_uptime) { 1642 V_pf_status.states -= 1643 pf_unlink_state(s, PF_ENTER_LOCKED); 1644 goto relock; 1645 } 1646 s->rule.ptr->rule_flag |= PFRULE_REFS; 1647 if (s->nat_rule.ptr != NULL) 1648 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1649 if (s->anchor.ptr != NULL) 1650 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1651 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1652 if (s->rt_kif) 1653 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1654 } 1655 PF_HASHROW_UNLOCK(ih); 1656 1657 /* Return when we hit end of hash. */ 1658 if (++i > pf_hashmask) { 1659 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1660 return (0); 1661 } 1662 1663 maxcheck--; 1664 } 1665 1666 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1667 1668 return (i); 1669 } 1670 1671 static void 1672 pf_purge_unlinked_rules() 1673 { 1674 struct pf_rulequeue tmpq; 1675 struct pf_rule *r, *r1; 1676 1677 /* 1678 * If we have overloading task pending, then we'd 1679 * better skip purging this time. There is a tiny 1680 * probability that overloading task references 1681 * an already unlinked rule. 1682 */ 1683 PF_OVERLOADQ_LOCK(); 1684 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1685 PF_OVERLOADQ_UNLOCK(); 1686 return; 1687 } 1688 PF_OVERLOADQ_UNLOCK(); 1689 1690 /* 1691 * Do naive mark-and-sweep garbage collecting of old rules. 1692 * Reference flag is raised by pf_purge_expired_states() 1693 * and pf_purge_expired_src_nodes(). 1694 * 1695 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1696 * use a temporary queue. 1697 */ 1698 TAILQ_INIT(&tmpq); 1699 PF_UNLNKDRULES_LOCK(); 1700 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1701 if (!(r->rule_flag & PFRULE_REFS)) { 1702 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1703 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1704 } else 1705 r->rule_flag &= ~PFRULE_REFS; 1706 } 1707 PF_UNLNKDRULES_UNLOCK(); 1708 1709 if (!TAILQ_EMPTY(&tmpq)) { 1710 PF_RULES_WLOCK(); 1711 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1712 TAILQ_REMOVE(&tmpq, r, entries); 1713 pf_free_rule(r); 1714 } 1715 PF_RULES_WUNLOCK(); 1716 } 1717 } 1718 1719 void 1720 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1721 { 1722 switch (af) { 1723 #ifdef INET 1724 case AF_INET: { 1725 u_int32_t a = ntohl(addr->addr32[0]); 1726 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1727 (a>>8)&255, a&255); 1728 if (p) { 1729 p = ntohs(p); 1730 printf(":%u", p); 1731 } 1732 break; 1733 } 1734 #endif /* INET */ 1735 #ifdef INET6 1736 case AF_INET6: { 1737 u_int16_t b; 1738 u_int8_t i, curstart, curend, maxstart, maxend; 1739 curstart = curend = maxstart = maxend = 255; 1740 for (i = 0; i < 8; i++) { 1741 if (!addr->addr16[i]) { 1742 if (curstart == 255) 1743 curstart = i; 1744 curend = i; 1745 } else { 1746 if ((curend - curstart) > 1747 (maxend - maxstart)) { 1748 maxstart = curstart; 1749 maxend = curend; 1750 } 1751 curstart = curend = 255; 1752 } 1753 } 1754 if ((curend - curstart) > 1755 (maxend - maxstart)) { 1756 maxstart = curstart; 1757 maxend = curend; 1758 } 1759 for (i = 0; i < 8; i++) { 1760 if (i >= maxstart && i <= maxend) { 1761 if (i == 0) 1762 printf(":"); 1763 if (i == maxend) 1764 printf(":"); 1765 } else { 1766 b = ntohs(addr->addr16[i]); 1767 printf("%x", b); 1768 if (i < 7) 1769 printf(":"); 1770 } 1771 } 1772 if (p) { 1773 p = ntohs(p); 1774 printf("[%u]", p); 1775 } 1776 break; 1777 } 1778 #endif /* INET6 */ 1779 } 1780 } 1781 1782 void 1783 pf_print_state(struct pf_state *s) 1784 { 1785 pf_print_state_parts(s, NULL, NULL); 1786 } 1787 1788 static void 1789 pf_print_state_parts(struct pf_state *s, 1790 struct pf_state_key *skwp, struct pf_state_key *sksp) 1791 { 1792 struct pf_state_key *skw, *sks; 1793 u_int8_t proto, dir; 1794 1795 /* Do our best to fill these, but they're skipped if NULL */ 1796 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1797 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1798 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1799 dir = s ? s->direction : 0; 1800 1801 switch (proto) { 1802 case IPPROTO_IPV4: 1803 printf("IPv4"); 1804 break; 1805 case IPPROTO_IPV6: 1806 printf("IPv6"); 1807 break; 1808 case IPPROTO_TCP: 1809 printf("TCP"); 1810 break; 1811 case IPPROTO_UDP: 1812 printf("UDP"); 1813 break; 1814 case IPPROTO_ICMP: 1815 printf("ICMP"); 1816 break; 1817 case IPPROTO_ICMPV6: 1818 printf("ICMPv6"); 1819 break; 1820 default: 1821 printf("%u", skw->proto); 1822 break; 1823 } 1824 switch (dir) { 1825 case PF_IN: 1826 printf(" in"); 1827 break; 1828 case PF_OUT: 1829 printf(" out"); 1830 break; 1831 } 1832 if (skw) { 1833 printf(" wire: "); 1834 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1835 printf(" "); 1836 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1837 } 1838 if (sks) { 1839 printf(" stack: "); 1840 if (sks != skw) { 1841 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1842 printf(" "); 1843 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1844 } else 1845 printf("-"); 1846 } 1847 if (s) { 1848 if (proto == IPPROTO_TCP) { 1849 printf(" [lo=%u high=%u win=%u modulator=%u", 1850 s->src.seqlo, s->src.seqhi, 1851 s->src.max_win, s->src.seqdiff); 1852 if (s->src.wscale && s->dst.wscale) 1853 printf(" wscale=%u", 1854 s->src.wscale & PF_WSCALE_MASK); 1855 printf("]"); 1856 printf(" [lo=%u high=%u win=%u modulator=%u", 1857 s->dst.seqlo, s->dst.seqhi, 1858 s->dst.max_win, s->dst.seqdiff); 1859 if (s->src.wscale && s->dst.wscale) 1860 printf(" wscale=%u", 1861 s->dst.wscale & PF_WSCALE_MASK); 1862 printf("]"); 1863 } 1864 printf(" %u:%u", s->src.state, s->dst.state); 1865 } 1866 } 1867 1868 void 1869 pf_print_flags(u_int8_t f) 1870 { 1871 if (f) 1872 printf(" "); 1873 if (f & TH_FIN) 1874 printf("F"); 1875 if (f & TH_SYN) 1876 printf("S"); 1877 if (f & TH_RST) 1878 printf("R"); 1879 if (f & TH_PUSH) 1880 printf("P"); 1881 if (f & TH_ACK) 1882 printf("A"); 1883 if (f & TH_URG) 1884 printf("U"); 1885 if (f & TH_ECE) 1886 printf("E"); 1887 if (f & TH_CWR) 1888 printf("W"); 1889 } 1890 1891 #define PF_SET_SKIP_STEPS(i) \ 1892 do { \ 1893 while (head[i] != cur) { \ 1894 head[i]->skip[i].ptr = cur; \ 1895 head[i] = TAILQ_NEXT(head[i], entries); \ 1896 } \ 1897 } while (0) 1898 1899 void 1900 pf_calc_skip_steps(struct pf_rulequeue *rules) 1901 { 1902 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1903 int i; 1904 1905 cur = TAILQ_FIRST(rules); 1906 prev = cur; 1907 for (i = 0; i < PF_SKIP_COUNT; ++i) 1908 head[i] = cur; 1909 while (cur != NULL) { 1910 1911 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1912 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1913 if (cur->direction != prev->direction) 1914 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1915 if (cur->af != prev->af) 1916 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1917 if (cur->proto != prev->proto) 1918 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1919 if (cur->src.neg != prev->src.neg || 1920 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1921 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1922 if (cur->src.port[0] != prev->src.port[0] || 1923 cur->src.port[1] != prev->src.port[1] || 1924 cur->src.port_op != prev->src.port_op) 1925 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1926 if (cur->dst.neg != prev->dst.neg || 1927 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1928 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1929 if (cur->dst.port[0] != prev->dst.port[0] || 1930 cur->dst.port[1] != prev->dst.port[1] || 1931 cur->dst.port_op != prev->dst.port_op) 1932 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1933 1934 prev = cur; 1935 cur = TAILQ_NEXT(cur, entries); 1936 } 1937 for (i = 0; i < PF_SKIP_COUNT; ++i) 1938 PF_SET_SKIP_STEPS(i); 1939 } 1940 1941 static int 1942 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1943 { 1944 if (aw1->type != aw2->type) 1945 return (1); 1946 switch (aw1->type) { 1947 case PF_ADDR_ADDRMASK: 1948 case PF_ADDR_RANGE: 1949 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, 0)) 1950 return (1); 1951 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, 0)) 1952 return (1); 1953 return (0); 1954 case PF_ADDR_DYNIFTL: 1955 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 1956 case PF_ADDR_NOROUTE: 1957 case PF_ADDR_URPFFAILED: 1958 return (0); 1959 case PF_ADDR_TABLE: 1960 return (aw1->p.tbl != aw2->p.tbl); 1961 default: 1962 printf("invalid address type: %d\n", aw1->type); 1963 return (1); 1964 } 1965 } 1966 1967 u_int16_t 1968 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 1969 { 1970 u_int32_t l; 1971 1972 if (udp && !cksum) 1973 return (0x0000); 1974 l = cksum + old - new; 1975 l = (l >> 16) + (l & 65535); 1976 l = l & 65535; 1977 if (udp && !l) 1978 return (0xFFFF); 1979 return (l); 1980 } 1981 1982 static void 1983 pf_change_ap(struct pf_addr *a, u_int16_t *p, u_int16_t *ic, u_int16_t *pc, 1984 struct pf_addr *an, u_int16_t pn, u_int8_t u, sa_family_t af) 1985 { 1986 struct pf_addr ao; 1987 u_int16_t po = *p; 1988 1989 PF_ACPY(&ao, a, af); 1990 PF_ACPY(a, an, af); 1991 1992 *p = pn; 1993 1994 switch (af) { 1995 #ifdef INET 1996 case AF_INET: 1997 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 1998 ao.addr16[0], an->addr16[0], 0), 1999 ao.addr16[1], an->addr16[1], 0); 2000 *p = pn; 2001 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 2002 ao.addr16[0], an->addr16[0], u), 2003 ao.addr16[1], an->addr16[1], u), 2004 po, pn, u); 2005 break; 2006 #endif /* INET */ 2007 #ifdef INET6 2008 case AF_INET6: 2009 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2010 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2011 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 2012 ao.addr16[0], an->addr16[0], u), 2013 ao.addr16[1], an->addr16[1], u), 2014 ao.addr16[2], an->addr16[2], u), 2015 ao.addr16[3], an->addr16[3], u), 2016 ao.addr16[4], an->addr16[4], u), 2017 ao.addr16[5], an->addr16[5], u), 2018 ao.addr16[6], an->addr16[6], u), 2019 ao.addr16[7], an->addr16[7], u), 2020 po, pn, u); 2021 break; 2022 #endif /* INET6 */ 2023 } 2024 } 2025 2026 2027 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2028 void 2029 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2030 { 2031 u_int32_t ao; 2032 2033 memcpy(&ao, a, sizeof(ao)); 2034 memcpy(a, &an, sizeof(u_int32_t)); 2035 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2036 ao % 65536, an % 65536, u); 2037 } 2038 2039 #ifdef INET6 2040 static void 2041 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2042 { 2043 struct pf_addr ao; 2044 2045 PF_ACPY(&ao, a, AF_INET6); 2046 PF_ACPY(a, an, AF_INET6); 2047 2048 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2049 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2050 pf_cksum_fixup(pf_cksum_fixup(*c, 2051 ao.addr16[0], an->addr16[0], u), 2052 ao.addr16[1], an->addr16[1], u), 2053 ao.addr16[2], an->addr16[2], u), 2054 ao.addr16[3], an->addr16[3], u), 2055 ao.addr16[4], an->addr16[4], u), 2056 ao.addr16[5], an->addr16[5], u), 2057 ao.addr16[6], an->addr16[6], u), 2058 ao.addr16[7], an->addr16[7], u); 2059 } 2060 #endif /* INET6 */ 2061 2062 static void 2063 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2064 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2065 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2066 { 2067 struct pf_addr oia, ooa; 2068 2069 PF_ACPY(&oia, ia, af); 2070 if (oa) 2071 PF_ACPY(&ooa, oa, af); 2072 2073 /* Change inner protocol port, fix inner protocol checksum. */ 2074 if (ip != NULL) { 2075 u_int16_t oip = *ip; 2076 u_int32_t opc; 2077 2078 if (pc != NULL) 2079 opc = *pc; 2080 *ip = np; 2081 if (pc != NULL) 2082 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2083 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2084 if (pc != NULL) 2085 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2086 } 2087 /* Change inner ip address, fix inner ip and icmp checksums. */ 2088 PF_ACPY(ia, na, af); 2089 switch (af) { 2090 #ifdef INET 2091 case AF_INET: { 2092 u_int32_t oh2c = *h2c; 2093 2094 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2095 oia.addr16[0], ia->addr16[0], 0), 2096 oia.addr16[1], ia->addr16[1], 0); 2097 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2098 oia.addr16[0], ia->addr16[0], 0), 2099 oia.addr16[1], ia->addr16[1], 0); 2100 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2101 break; 2102 } 2103 #endif /* INET */ 2104 #ifdef INET6 2105 case AF_INET6: 2106 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2107 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2108 pf_cksum_fixup(pf_cksum_fixup(*ic, 2109 oia.addr16[0], ia->addr16[0], u), 2110 oia.addr16[1], ia->addr16[1], u), 2111 oia.addr16[2], ia->addr16[2], u), 2112 oia.addr16[3], ia->addr16[3], u), 2113 oia.addr16[4], ia->addr16[4], u), 2114 oia.addr16[5], ia->addr16[5], u), 2115 oia.addr16[6], ia->addr16[6], u), 2116 oia.addr16[7], ia->addr16[7], u); 2117 break; 2118 #endif /* INET6 */ 2119 } 2120 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2121 if (oa) { 2122 PF_ACPY(oa, na, af); 2123 switch (af) { 2124 #ifdef INET 2125 case AF_INET: 2126 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2127 ooa.addr16[0], oa->addr16[0], 0), 2128 ooa.addr16[1], oa->addr16[1], 0); 2129 break; 2130 #endif /* INET */ 2131 #ifdef INET6 2132 case AF_INET6: 2133 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2134 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2135 pf_cksum_fixup(pf_cksum_fixup(*ic, 2136 ooa.addr16[0], oa->addr16[0], u), 2137 ooa.addr16[1], oa->addr16[1], u), 2138 ooa.addr16[2], oa->addr16[2], u), 2139 ooa.addr16[3], oa->addr16[3], u), 2140 ooa.addr16[4], oa->addr16[4], u), 2141 ooa.addr16[5], oa->addr16[5], u), 2142 ooa.addr16[6], oa->addr16[6], u), 2143 ooa.addr16[7], oa->addr16[7], u); 2144 break; 2145 #endif /* INET6 */ 2146 } 2147 } 2148 } 2149 2150 2151 /* 2152 * Need to modulate the sequence numbers in the TCP SACK option 2153 * (credits to Krzysztof Pfaff for report and patch) 2154 */ 2155 static int 2156 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2157 struct tcphdr *th, struct pf_state_peer *dst) 2158 { 2159 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2160 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2161 int copyback = 0, i, olen; 2162 struct sackblk sack; 2163 2164 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2165 if (hlen < TCPOLEN_SACKLEN || 2166 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2167 return 0; 2168 2169 while (hlen >= TCPOLEN_SACKLEN) { 2170 olen = opt[1]; 2171 switch (*opt) { 2172 case TCPOPT_EOL: /* FALLTHROUGH */ 2173 case TCPOPT_NOP: 2174 opt++; 2175 hlen--; 2176 break; 2177 case TCPOPT_SACK: 2178 if (olen > hlen) 2179 olen = hlen; 2180 if (olen >= TCPOLEN_SACKLEN) { 2181 for (i = 2; i + TCPOLEN_SACK <= olen; 2182 i += TCPOLEN_SACK) { 2183 memcpy(&sack, &opt[i], sizeof(sack)); 2184 pf_change_a(&sack.start, &th->th_sum, 2185 htonl(ntohl(sack.start) - 2186 dst->seqdiff), 0); 2187 pf_change_a(&sack.end, &th->th_sum, 2188 htonl(ntohl(sack.end) - 2189 dst->seqdiff), 0); 2190 memcpy(&opt[i], &sack, sizeof(sack)); 2191 } 2192 copyback = 1; 2193 } 2194 /* FALLTHROUGH */ 2195 default: 2196 if (olen < 2) 2197 olen = 2; 2198 hlen -= olen; 2199 opt += olen; 2200 } 2201 } 2202 2203 if (copyback) 2204 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2205 return (copyback); 2206 } 2207 2208 static void 2209 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2210 const struct pf_addr *saddr, const struct pf_addr *daddr, 2211 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2212 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2213 u_int16_t rtag, struct ifnet *ifp) 2214 { 2215 struct pf_send_entry *pfse; 2216 struct mbuf *m; 2217 int len, tlen; 2218 #ifdef INET 2219 struct ip *h = NULL; 2220 #endif /* INET */ 2221 #ifdef INET6 2222 struct ip6_hdr *h6 = NULL; 2223 #endif /* INET6 */ 2224 struct tcphdr *th; 2225 char *opt; 2226 struct pf_mtag *pf_mtag; 2227 2228 len = 0; 2229 th = NULL; 2230 2231 /* maximum segment size tcp option */ 2232 tlen = sizeof(struct tcphdr); 2233 if (mss) 2234 tlen += 4; 2235 2236 switch (af) { 2237 #ifdef INET 2238 case AF_INET: 2239 len = sizeof(struct ip) + tlen; 2240 break; 2241 #endif /* INET */ 2242 #ifdef INET6 2243 case AF_INET6: 2244 len = sizeof(struct ip6_hdr) + tlen; 2245 break; 2246 #endif /* INET6 */ 2247 default: 2248 panic("%s: unsupported af %d", __func__, af); 2249 } 2250 2251 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2252 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2253 if (pfse == NULL) 2254 return; 2255 m = m_gethdr(M_NOWAIT, MT_DATA); 2256 if (m == NULL) { 2257 free(pfse, M_PFTEMP); 2258 return; 2259 } 2260 #ifdef MAC 2261 mac_netinet_firewall_send(m); 2262 #endif 2263 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2264 free(pfse, M_PFTEMP); 2265 m_freem(m); 2266 return; 2267 } 2268 if (tag) 2269 m->m_flags |= M_SKIP_FIREWALL; 2270 pf_mtag->tag = rtag; 2271 2272 if (r != NULL && r->rtableid >= 0) 2273 M_SETFIB(m, r->rtableid); 2274 2275 #ifdef ALTQ 2276 if (r != NULL && r->qid) { 2277 pf_mtag->qid = r->qid; 2278 2279 /* add hints for ecn */ 2280 pf_mtag->hdr = mtod(m, struct ip *); 2281 } 2282 #endif /* ALTQ */ 2283 m->m_data += max_linkhdr; 2284 m->m_pkthdr.len = m->m_len = len; 2285 m->m_pkthdr.rcvif = NULL; 2286 bzero(m->m_data, len); 2287 switch (af) { 2288 #ifdef INET 2289 case AF_INET: 2290 h = mtod(m, struct ip *); 2291 2292 /* IP header fields included in the TCP checksum */ 2293 h->ip_p = IPPROTO_TCP; 2294 h->ip_len = htons(tlen); 2295 h->ip_src.s_addr = saddr->v4.s_addr; 2296 h->ip_dst.s_addr = daddr->v4.s_addr; 2297 2298 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2299 break; 2300 #endif /* INET */ 2301 #ifdef INET6 2302 case AF_INET6: 2303 h6 = mtod(m, struct ip6_hdr *); 2304 2305 /* IP header fields included in the TCP checksum */ 2306 h6->ip6_nxt = IPPROTO_TCP; 2307 h6->ip6_plen = htons(tlen); 2308 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2309 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2310 2311 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2312 break; 2313 #endif /* INET6 */ 2314 } 2315 2316 /* TCP header */ 2317 th->th_sport = sport; 2318 th->th_dport = dport; 2319 th->th_seq = htonl(seq); 2320 th->th_ack = htonl(ack); 2321 th->th_off = tlen >> 2; 2322 th->th_flags = flags; 2323 th->th_win = htons(win); 2324 2325 if (mss) { 2326 opt = (char *)(th + 1); 2327 opt[0] = TCPOPT_MAXSEG; 2328 opt[1] = 4; 2329 HTONS(mss); 2330 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2331 } 2332 2333 switch (af) { 2334 #ifdef INET 2335 case AF_INET: 2336 /* TCP checksum */ 2337 th->th_sum = in_cksum(m, len); 2338 2339 /* Finish the IP header */ 2340 h->ip_v = 4; 2341 h->ip_hl = sizeof(*h) >> 2; 2342 h->ip_tos = IPTOS_LOWDELAY; 2343 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2344 h->ip_len = htons(len); 2345 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2346 h->ip_sum = 0; 2347 2348 pfse->pfse_type = PFSE_IP; 2349 break; 2350 #endif /* INET */ 2351 #ifdef INET6 2352 case AF_INET6: 2353 /* TCP checksum */ 2354 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2355 sizeof(struct ip6_hdr), tlen); 2356 2357 h6->ip6_vfc |= IPV6_VERSION; 2358 h6->ip6_hlim = IPV6_DEFHLIM; 2359 2360 pfse->pfse_type = PFSE_IP6; 2361 break; 2362 #endif /* INET6 */ 2363 } 2364 pfse->pfse_m = m; 2365 pf_send(pfse); 2366 } 2367 2368 static void 2369 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2370 struct pf_rule *r) 2371 { 2372 struct pf_send_entry *pfse; 2373 struct mbuf *m0; 2374 struct pf_mtag *pf_mtag; 2375 2376 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2377 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2378 if (pfse == NULL) 2379 return; 2380 2381 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2382 free(pfse, M_PFTEMP); 2383 return; 2384 } 2385 2386 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2387 free(pfse, M_PFTEMP); 2388 return; 2389 } 2390 /* XXX: revisit */ 2391 m0->m_flags |= M_SKIP_FIREWALL; 2392 2393 if (r->rtableid >= 0) 2394 M_SETFIB(m0, r->rtableid); 2395 2396 #ifdef ALTQ 2397 if (r->qid) { 2398 pf_mtag->qid = r->qid; 2399 /* add hints for ecn */ 2400 pf_mtag->hdr = mtod(m0, struct ip *); 2401 } 2402 #endif /* ALTQ */ 2403 2404 switch (af) { 2405 #ifdef INET 2406 case AF_INET: 2407 pfse->pfse_type = PFSE_ICMP; 2408 break; 2409 #endif /* INET */ 2410 #ifdef INET6 2411 case AF_INET6: 2412 pfse->pfse_type = PFSE_ICMP6; 2413 break; 2414 #endif /* INET6 */ 2415 } 2416 pfse->pfse_m = m0; 2417 pfse->pfse_icmp_type = type; 2418 pfse->pfse_icmp_code = code; 2419 pf_send(pfse); 2420 } 2421 2422 /* 2423 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2424 * If n is 0, they match if they are equal. If n is != 0, they match if they 2425 * are different. 2426 */ 2427 int 2428 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2429 struct pf_addr *b, sa_family_t af) 2430 { 2431 int match = 0; 2432 2433 switch (af) { 2434 #ifdef INET 2435 case AF_INET: 2436 if ((a->addr32[0] & m->addr32[0]) == 2437 (b->addr32[0] & m->addr32[0])) 2438 match++; 2439 break; 2440 #endif /* INET */ 2441 #ifdef INET6 2442 case AF_INET6: 2443 if (((a->addr32[0] & m->addr32[0]) == 2444 (b->addr32[0] & m->addr32[0])) && 2445 ((a->addr32[1] & m->addr32[1]) == 2446 (b->addr32[1] & m->addr32[1])) && 2447 ((a->addr32[2] & m->addr32[2]) == 2448 (b->addr32[2] & m->addr32[2])) && 2449 ((a->addr32[3] & m->addr32[3]) == 2450 (b->addr32[3] & m->addr32[3]))) 2451 match++; 2452 break; 2453 #endif /* INET6 */ 2454 } 2455 if (match) { 2456 if (n) 2457 return (0); 2458 else 2459 return (1); 2460 } else { 2461 if (n) 2462 return (1); 2463 else 2464 return (0); 2465 } 2466 } 2467 2468 /* 2469 * Return 1 if b <= a <= e, otherwise return 0. 2470 */ 2471 int 2472 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2473 struct pf_addr *a, sa_family_t af) 2474 { 2475 switch (af) { 2476 #ifdef INET 2477 case AF_INET: 2478 if ((a->addr32[0] < b->addr32[0]) || 2479 (a->addr32[0] > e->addr32[0])) 2480 return (0); 2481 break; 2482 #endif /* INET */ 2483 #ifdef INET6 2484 case AF_INET6: { 2485 int i; 2486 2487 /* check a >= b */ 2488 for (i = 0; i < 4; ++i) 2489 if (a->addr32[i] > b->addr32[i]) 2490 break; 2491 else if (a->addr32[i] < b->addr32[i]) 2492 return (0); 2493 /* check a <= e */ 2494 for (i = 0; i < 4; ++i) 2495 if (a->addr32[i] < e->addr32[i]) 2496 break; 2497 else if (a->addr32[i] > e->addr32[i]) 2498 return (0); 2499 break; 2500 } 2501 #endif /* INET6 */ 2502 } 2503 return (1); 2504 } 2505 2506 static int 2507 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2508 { 2509 switch (op) { 2510 case PF_OP_IRG: 2511 return ((p > a1) && (p < a2)); 2512 case PF_OP_XRG: 2513 return ((p < a1) || (p > a2)); 2514 case PF_OP_RRG: 2515 return ((p >= a1) && (p <= a2)); 2516 case PF_OP_EQ: 2517 return (p == a1); 2518 case PF_OP_NE: 2519 return (p != a1); 2520 case PF_OP_LT: 2521 return (p < a1); 2522 case PF_OP_LE: 2523 return (p <= a1); 2524 case PF_OP_GT: 2525 return (p > a1); 2526 case PF_OP_GE: 2527 return (p >= a1); 2528 } 2529 return (0); /* never reached */ 2530 } 2531 2532 int 2533 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2534 { 2535 NTOHS(a1); 2536 NTOHS(a2); 2537 NTOHS(p); 2538 return (pf_match(op, a1, a2, p)); 2539 } 2540 2541 static int 2542 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2543 { 2544 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2545 return (0); 2546 return (pf_match(op, a1, a2, u)); 2547 } 2548 2549 static int 2550 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2551 { 2552 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2553 return (0); 2554 return (pf_match(op, a1, a2, g)); 2555 } 2556 2557 int 2558 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2559 { 2560 if (*tag == -1) 2561 *tag = mtag; 2562 2563 return ((!r->match_tag_not && r->match_tag == *tag) || 2564 (r->match_tag_not && r->match_tag != *tag)); 2565 } 2566 2567 int 2568 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2569 { 2570 2571 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2572 2573 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2574 return (ENOMEM); 2575 2576 pd->pf_mtag->tag = tag; 2577 2578 return (0); 2579 } 2580 2581 #define PF_ANCHOR_STACKSIZE 32 2582 struct pf_anchor_stackframe { 2583 struct pf_ruleset *rs; 2584 struct pf_rule *r; /* XXX: + match bit */ 2585 struct pf_anchor *child; 2586 }; 2587 2588 /* 2589 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2590 */ 2591 #define PF_ANCHORSTACK_MATCH 0x00000001 2592 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2593 2594 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2595 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2596 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2597 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2598 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2599 } while (0) 2600 2601 void 2602 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2603 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2604 int *match) 2605 { 2606 struct pf_anchor_stackframe *f; 2607 2608 PF_RULES_RASSERT(); 2609 2610 if (match) 2611 *match = 0; 2612 if (*depth >= PF_ANCHOR_STACKSIZE) { 2613 printf("%s: anchor stack overflow on %s\n", 2614 __func__, (*r)->anchor->name); 2615 *r = TAILQ_NEXT(*r, entries); 2616 return; 2617 } else if (*depth == 0 && a != NULL) 2618 *a = *r; 2619 f = stack + (*depth)++; 2620 f->rs = *rs; 2621 f->r = *r; 2622 if ((*r)->anchor_wildcard) { 2623 struct pf_anchor_node *parent = &(*r)->anchor->children; 2624 2625 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2626 *r = NULL; 2627 return; 2628 } 2629 *rs = &f->child->ruleset; 2630 } else { 2631 f->child = NULL; 2632 *rs = &(*r)->anchor->ruleset; 2633 } 2634 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2635 } 2636 2637 int 2638 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2639 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2640 int *match) 2641 { 2642 struct pf_anchor_stackframe *f; 2643 struct pf_rule *fr; 2644 int quick = 0; 2645 2646 PF_RULES_RASSERT(); 2647 2648 do { 2649 if (*depth <= 0) 2650 break; 2651 f = stack + *depth - 1; 2652 fr = PF_ANCHOR_RULE(f); 2653 if (f->child != NULL) { 2654 struct pf_anchor_node *parent; 2655 2656 /* 2657 * This block traverses through 2658 * a wildcard anchor. 2659 */ 2660 parent = &fr->anchor->children; 2661 if (match != NULL && *match) { 2662 /* 2663 * If any of "*" matched, then 2664 * "foo/ *" matched, mark frame 2665 * appropriately. 2666 */ 2667 PF_ANCHOR_SET_MATCH(f); 2668 *match = 0; 2669 } 2670 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2671 if (f->child != NULL) { 2672 *rs = &f->child->ruleset; 2673 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2674 if (*r == NULL) 2675 continue; 2676 else 2677 break; 2678 } 2679 } 2680 (*depth)--; 2681 if (*depth == 0 && a != NULL) 2682 *a = NULL; 2683 *rs = f->rs; 2684 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2685 quick = fr->quick; 2686 *r = TAILQ_NEXT(fr, entries); 2687 } while (*r == NULL); 2688 2689 return (quick); 2690 } 2691 2692 #ifdef INET6 2693 void 2694 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2695 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2696 { 2697 switch (af) { 2698 #ifdef INET 2699 case AF_INET: 2700 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2701 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2702 break; 2703 #endif /* INET */ 2704 case AF_INET6: 2705 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2706 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2707 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2708 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2709 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2710 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2711 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2712 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2713 break; 2714 } 2715 } 2716 2717 void 2718 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2719 { 2720 switch (af) { 2721 #ifdef INET 2722 case AF_INET: 2723 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2724 break; 2725 #endif /* INET */ 2726 case AF_INET6: 2727 if (addr->addr32[3] == 0xffffffff) { 2728 addr->addr32[3] = 0; 2729 if (addr->addr32[2] == 0xffffffff) { 2730 addr->addr32[2] = 0; 2731 if (addr->addr32[1] == 0xffffffff) { 2732 addr->addr32[1] = 0; 2733 addr->addr32[0] = 2734 htonl(ntohl(addr->addr32[0]) + 1); 2735 } else 2736 addr->addr32[1] = 2737 htonl(ntohl(addr->addr32[1]) + 1); 2738 } else 2739 addr->addr32[2] = 2740 htonl(ntohl(addr->addr32[2]) + 1); 2741 } else 2742 addr->addr32[3] = 2743 htonl(ntohl(addr->addr32[3]) + 1); 2744 break; 2745 } 2746 } 2747 #endif /* INET6 */ 2748 2749 int 2750 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2751 { 2752 struct pf_addr *saddr, *daddr; 2753 u_int16_t sport, dport; 2754 struct inpcbinfo *pi; 2755 struct inpcb *inp; 2756 2757 pd->lookup.uid = UID_MAX; 2758 pd->lookup.gid = GID_MAX; 2759 2760 switch (pd->proto) { 2761 case IPPROTO_TCP: 2762 if (pd->hdr.tcp == NULL) 2763 return (-1); 2764 sport = pd->hdr.tcp->th_sport; 2765 dport = pd->hdr.tcp->th_dport; 2766 pi = &V_tcbinfo; 2767 break; 2768 case IPPROTO_UDP: 2769 if (pd->hdr.udp == NULL) 2770 return (-1); 2771 sport = pd->hdr.udp->uh_sport; 2772 dport = pd->hdr.udp->uh_dport; 2773 pi = &V_udbinfo; 2774 break; 2775 default: 2776 return (-1); 2777 } 2778 if (direction == PF_IN) { 2779 saddr = pd->src; 2780 daddr = pd->dst; 2781 } else { 2782 u_int16_t p; 2783 2784 p = sport; 2785 sport = dport; 2786 dport = p; 2787 saddr = pd->dst; 2788 daddr = pd->src; 2789 } 2790 switch (pd->af) { 2791 #ifdef INET 2792 case AF_INET: 2793 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2794 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2795 if (inp == NULL) { 2796 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2797 daddr->v4, dport, INPLOOKUP_WILDCARD | 2798 INPLOOKUP_RLOCKPCB, NULL, m); 2799 if (inp == NULL) 2800 return (-1); 2801 } 2802 break; 2803 #endif /* INET */ 2804 #ifdef INET6 2805 case AF_INET6: 2806 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2807 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2808 if (inp == NULL) { 2809 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2810 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2811 INPLOOKUP_RLOCKPCB, NULL, m); 2812 if (inp == NULL) 2813 return (-1); 2814 } 2815 break; 2816 #endif /* INET6 */ 2817 2818 default: 2819 return (-1); 2820 } 2821 INP_RLOCK_ASSERT(inp); 2822 pd->lookup.uid = inp->inp_cred->cr_uid; 2823 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2824 INP_RUNLOCK(inp); 2825 2826 return (1); 2827 } 2828 2829 static u_int8_t 2830 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2831 { 2832 int hlen; 2833 u_int8_t hdr[60]; 2834 u_int8_t *opt, optlen; 2835 u_int8_t wscale = 0; 2836 2837 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2838 if (hlen <= sizeof(struct tcphdr)) 2839 return (0); 2840 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2841 return (0); 2842 opt = hdr + sizeof(struct tcphdr); 2843 hlen -= sizeof(struct tcphdr); 2844 while (hlen >= 3) { 2845 switch (*opt) { 2846 case TCPOPT_EOL: 2847 case TCPOPT_NOP: 2848 ++opt; 2849 --hlen; 2850 break; 2851 case TCPOPT_WINDOW: 2852 wscale = opt[2]; 2853 if (wscale > TCP_MAX_WINSHIFT) 2854 wscale = TCP_MAX_WINSHIFT; 2855 wscale |= PF_WSCALE_FLAG; 2856 /* FALLTHROUGH */ 2857 default: 2858 optlen = opt[1]; 2859 if (optlen < 2) 2860 optlen = 2; 2861 hlen -= optlen; 2862 opt += optlen; 2863 break; 2864 } 2865 } 2866 return (wscale); 2867 } 2868 2869 static u_int16_t 2870 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2871 { 2872 int hlen; 2873 u_int8_t hdr[60]; 2874 u_int8_t *opt, optlen; 2875 u_int16_t mss = V_tcp_mssdflt; 2876 2877 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2878 if (hlen <= sizeof(struct tcphdr)) 2879 return (0); 2880 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2881 return (0); 2882 opt = hdr + sizeof(struct tcphdr); 2883 hlen -= sizeof(struct tcphdr); 2884 while (hlen >= TCPOLEN_MAXSEG) { 2885 switch (*opt) { 2886 case TCPOPT_EOL: 2887 case TCPOPT_NOP: 2888 ++opt; 2889 --hlen; 2890 break; 2891 case TCPOPT_MAXSEG: 2892 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 2893 NTOHS(mss); 2894 /* FALLTHROUGH */ 2895 default: 2896 optlen = opt[1]; 2897 if (optlen < 2) 2898 optlen = 2; 2899 hlen -= optlen; 2900 opt += optlen; 2901 break; 2902 } 2903 } 2904 return (mss); 2905 } 2906 2907 static u_int16_t 2908 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 2909 { 2910 #ifdef INET 2911 struct sockaddr_in *dst; 2912 struct route ro; 2913 #endif /* INET */ 2914 #ifdef INET6 2915 struct sockaddr_in6 *dst6; 2916 struct route_in6 ro6; 2917 #endif /* INET6 */ 2918 struct rtentry *rt = NULL; 2919 int hlen = 0; 2920 u_int16_t mss = V_tcp_mssdflt; 2921 2922 switch (af) { 2923 #ifdef INET 2924 case AF_INET: 2925 hlen = sizeof(struct ip); 2926 bzero(&ro, sizeof(ro)); 2927 dst = (struct sockaddr_in *)&ro.ro_dst; 2928 dst->sin_family = AF_INET; 2929 dst->sin_len = sizeof(*dst); 2930 dst->sin_addr = addr->v4; 2931 in_rtalloc_ign(&ro, 0, rtableid); 2932 rt = ro.ro_rt; 2933 break; 2934 #endif /* INET */ 2935 #ifdef INET6 2936 case AF_INET6: 2937 hlen = sizeof(struct ip6_hdr); 2938 bzero(&ro6, sizeof(ro6)); 2939 dst6 = (struct sockaddr_in6 *)&ro6.ro_dst; 2940 dst6->sin6_family = AF_INET6; 2941 dst6->sin6_len = sizeof(*dst6); 2942 dst6->sin6_addr = addr->v6; 2943 in6_rtalloc_ign(&ro6, 0, rtableid); 2944 rt = ro6.ro_rt; 2945 break; 2946 #endif /* INET6 */ 2947 } 2948 2949 if (rt && rt->rt_ifp) { 2950 mss = rt->rt_ifp->if_mtu - hlen - sizeof(struct tcphdr); 2951 mss = max(V_tcp_mssdflt, mss); 2952 RTFREE(rt); 2953 } 2954 mss = min(mss, offer); 2955 mss = max(mss, 64); /* sanity - at least max opt space */ 2956 return (mss); 2957 } 2958 2959 static void 2960 pf_set_rt_ifp(struct pf_state *s, struct pf_addr *saddr) 2961 { 2962 struct pf_rule *r = s->rule.ptr; 2963 struct pf_src_node *sn = NULL; 2964 2965 s->rt_kif = NULL; 2966 if (!r->rt || r->rt == PF_FASTROUTE) 2967 return; 2968 switch (s->key[PF_SK_WIRE]->af) { 2969 #ifdef INET 2970 case AF_INET: 2971 pf_map_addr(AF_INET, r, saddr, &s->rt_addr, NULL, &sn); 2972 s->rt_kif = r->rpool.cur->kif; 2973 break; 2974 #endif /* INET */ 2975 #ifdef INET6 2976 case AF_INET6: 2977 pf_map_addr(AF_INET6, r, saddr, &s->rt_addr, NULL, &sn); 2978 s->rt_kif = r->rpool.cur->kif; 2979 break; 2980 #endif /* INET6 */ 2981 } 2982 } 2983 2984 static u_int32_t 2985 pf_tcp_iss(struct pf_pdesc *pd) 2986 { 2987 MD5_CTX ctx; 2988 u_int32_t digest[4]; 2989 2990 if (V_pf_tcp_secret_init == 0) { 2991 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 2992 MD5Init(&V_pf_tcp_secret_ctx); 2993 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 2994 sizeof(V_pf_tcp_secret)); 2995 V_pf_tcp_secret_init = 1; 2996 } 2997 2998 ctx = V_pf_tcp_secret_ctx; 2999 3000 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3001 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3002 if (pd->af == AF_INET6) { 3003 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3004 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3005 } else { 3006 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3007 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3008 } 3009 MD5Final((u_char *)digest, &ctx); 3010 V_pf_tcp_iss_off += 4096; 3011 #define ISN_RANDOM_INCREMENT (4096 - 1) 3012 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3013 V_pf_tcp_iss_off); 3014 #undef ISN_RANDOM_INCREMENT 3015 } 3016 3017 static int 3018 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3019 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3020 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3021 { 3022 struct pf_rule *nr = NULL; 3023 struct pf_addr * const saddr = pd->src; 3024 struct pf_addr * const daddr = pd->dst; 3025 sa_family_t af = pd->af; 3026 struct pf_rule *r, *a = NULL; 3027 struct pf_ruleset *ruleset = NULL; 3028 struct pf_src_node *nsn = NULL; 3029 struct tcphdr *th = pd->hdr.tcp; 3030 struct pf_state_key *sk = NULL, *nk = NULL; 3031 u_short reason; 3032 int rewrite = 0, hdrlen = 0; 3033 int tag = -1, rtableid = -1; 3034 int asd = 0; 3035 int match = 0; 3036 int state_icmp = 0; 3037 u_int16_t sport = 0, dport = 0; 3038 u_int16_t bproto_sum = 0, bip_sum = 0; 3039 u_int8_t icmptype = 0, icmpcode = 0; 3040 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3041 3042 PF_RULES_RASSERT(); 3043 3044 if (inp != NULL) { 3045 INP_LOCK_ASSERT(inp); 3046 pd->lookup.uid = inp->inp_cred->cr_uid; 3047 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3048 pd->lookup.done = 1; 3049 } 3050 3051 switch (pd->proto) { 3052 case IPPROTO_TCP: 3053 sport = th->th_sport; 3054 dport = th->th_dport; 3055 hdrlen = sizeof(*th); 3056 break; 3057 case IPPROTO_UDP: 3058 sport = pd->hdr.udp->uh_sport; 3059 dport = pd->hdr.udp->uh_dport; 3060 hdrlen = sizeof(*pd->hdr.udp); 3061 break; 3062 #ifdef INET 3063 case IPPROTO_ICMP: 3064 if (pd->af != AF_INET) 3065 break; 3066 sport = dport = pd->hdr.icmp->icmp_id; 3067 hdrlen = sizeof(*pd->hdr.icmp); 3068 icmptype = pd->hdr.icmp->icmp_type; 3069 icmpcode = pd->hdr.icmp->icmp_code; 3070 3071 if (icmptype == ICMP_UNREACH || 3072 icmptype == ICMP_SOURCEQUENCH || 3073 icmptype == ICMP_REDIRECT || 3074 icmptype == ICMP_TIMXCEED || 3075 icmptype == ICMP_PARAMPROB) 3076 state_icmp++; 3077 break; 3078 #endif /* INET */ 3079 #ifdef INET6 3080 case IPPROTO_ICMPV6: 3081 if (af != AF_INET6) 3082 break; 3083 sport = dport = pd->hdr.icmp6->icmp6_id; 3084 hdrlen = sizeof(*pd->hdr.icmp6); 3085 icmptype = pd->hdr.icmp6->icmp6_type; 3086 icmpcode = pd->hdr.icmp6->icmp6_code; 3087 3088 if (icmptype == ICMP6_DST_UNREACH || 3089 icmptype == ICMP6_PACKET_TOO_BIG || 3090 icmptype == ICMP6_TIME_EXCEEDED || 3091 icmptype == ICMP6_PARAM_PROB) 3092 state_icmp++; 3093 break; 3094 #endif /* INET6 */ 3095 default: 3096 sport = dport = hdrlen = 0; 3097 break; 3098 } 3099 3100 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3101 3102 /* check packet for BINAT/NAT/RDR */ 3103 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3104 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3105 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3106 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3107 3108 if (pd->ip_sum) 3109 bip_sum = *pd->ip_sum; 3110 3111 switch (pd->proto) { 3112 case IPPROTO_TCP: 3113 bproto_sum = th->th_sum; 3114 pd->proto_sum = &th->th_sum; 3115 3116 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3117 nk->port[pd->sidx] != sport) { 3118 pf_change_ap(saddr, &th->th_sport, pd->ip_sum, 3119 &th->th_sum, &nk->addr[pd->sidx], 3120 nk->port[pd->sidx], 0, af); 3121 pd->sport = &th->th_sport; 3122 sport = th->th_sport; 3123 } 3124 3125 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3126 nk->port[pd->didx] != dport) { 3127 pf_change_ap(daddr, &th->th_dport, pd->ip_sum, 3128 &th->th_sum, &nk->addr[pd->didx], 3129 nk->port[pd->didx], 0, af); 3130 dport = th->th_dport; 3131 pd->dport = &th->th_dport; 3132 } 3133 rewrite++; 3134 break; 3135 case IPPROTO_UDP: 3136 bproto_sum = pd->hdr.udp->uh_sum; 3137 pd->proto_sum = &pd->hdr.udp->uh_sum; 3138 3139 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3140 nk->port[pd->sidx] != sport) { 3141 pf_change_ap(saddr, &pd->hdr.udp->uh_sport, 3142 pd->ip_sum, &pd->hdr.udp->uh_sum, 3143 &nk->addr[pd->sidx], 3144 nk->port[pd->sidx], 1, af); 3145 sport = pd->hdr.udp->uh_sport; 3146 pd->sport = &pd->hdr.udp->uh_sport; 3147 } 3148 3149 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3150 nk->port[pd->didx] != dport) { 3151 pf_change_ap(daddr, &pd->hdr.udp->uh_dport, 3152 pd->ip_sum, &pd->hdr.udp->uh_sum, 3153 &nk->addr[pd->didx], 3154 nk->port[pd->didx], 1, af); 3155 dport = pd->hdr.udp->uh_dport; 3156 pd->dport = &pd->hdr.udp->uh_dport; 3157 } 3158 rewrite++; 3159 break; 3160 #ifdef INET 3161 case IPPROTO_ICMP: 3162 nk->port[0] = nk->port[1]; 3163 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3164 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3165 nk->addr[pd->sidx].v4.s_addr, 0); 3166 3167 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3168 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3169 nk->addr[pd->didx].v4.s_addr, 0); 3170 3171 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3172 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3173 pd->hdr.icmp->icmp_cksum, sport, 3174 nk->port[1], 0); 3175 pd->hdr.icmp->icmp_id = nk->port[1]; 3176 pd->sport = &pd->hdr.icmp->icmp_id; 3177 } 3178 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3179 break; 3180 #endif /* INET */ 3181 #ifdef INET6 3182 case IPPROTO_ICMPV6: 3183 nk->port[0] = nk->port[1]; 3184 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3185 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3186 &nk->addr[pd->sidx], 0); 3187 3188 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3189 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3190 &nk->addr[pd->didx], 0); 3191 rewrite++; 3192 break; 3193 #endif /* INET */ 3194 default: 3195 switch (af) { 3196 #ifdef INET 3197 case AF_INET: 3198 if (PF_ANEQ(saddr, 3199 &nk->addr[pd->sidx], AF_INET)) 3200 pf_change_a(&saddr->v4.s_addr, 3201 pd->ip_sum, 3202 nk->addr[pd->sidx].v4.s_addr, 0); 3203 3204 if (PF_ANEQ(daddr, 3205 &nk->addr[pd->didx], AF_INET)) 3206 pf_change_a(&daddr->v4.s_addr, 3207 pd->ip_sum, 3208 nk->addr[pd->didx].v4.s_addr, 0); 3209 break; 3210 #endif /* INET */ 3211 #ifdef INET6 3212 case AF_INET6: 3213 if (PF_ANEQ(saddr, 3214 &nk->addr[pd->sidx], AF_INET6)) 3215 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3216 3217 if (PF_ANEQ(daddr, 3218 &nk->addr[pd->didx], AF_INET6)) 3219 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3220 break; 3221 #endif /* INET */ 3222 } 3223 break; 3224 } 3225 if (nr->natpass) 3226 r = NULL; 3227 pd->nat_rule = nr; 3228 } 3229 3230 while (r != NULL) { 3231 r->evaluations++; 3232 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3233 r = r->skip[PF_SKIP_IFP].ptr; 3234 else if (r->direction && r->direction != direction) 3235 r = r->skip[PF_SKIP_DIR].ptr; 3236 else if (r->af && r->af != af) 3237 r = r->skip[PF_SKIP_AF].ptr; 3238 else if (r->proto && r->proto != pd->proto) 3239 r = r->skip[PF_SKIP_PROTO].ptr; 3240 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3241 r->src.neg, kif, M_GETFIB(m))) 3242 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3243 /* tcp/udp only. port_op always 0 in other cases */ 3244 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3245 r->src.port[0], r->src.port[1], sport)) 3246 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3247 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3248 r->dst.neg, NULL, M_GETFIB(m))) 3249 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3250 /* tcp/udp only. port_op always 0 in other cases */ 3251 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3252 r->dst.port[0], r->dst.port[1], dport)) 3253 r = r->skip[PF_SKIP_DST_PORT].ptr; 3254 /* icmp only. type always 0 in other cases */ 3255 else if (r->type && r->type != icmptype + 1) 3256 r = TAILQ_NEXT(r, entries); 3257 /* icmp only. type always 0 in other cases */ 3258 else if (r->code && r->code != icmpcode + 1) 3259 r = TAILQ_NEXT(r, entries); 3260 else if (r->tos && !(r->tos == pd->tos)) 3261 r = TAILQ_NEXT(r, entries); 3262 else if (r->rule_flag & PFRULE_FRAGMENT) 3263 r = TAILQ_NEXT(r, entries); 3264 else if (pd->proto == IPPROTO_TCP && 3265 (r->flagset & th->th_flags) != r->flags) 3266 r = TAILQ_NEXT(r, entries); 3267 /* tcp/udp only. uid.op always 0 in other cases */ 3268 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3269 pf_socket_lookup(direction, pd, m), 1)) && 3270 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3271 pd->lookup.uid)) 3272 r = TAILQ_NEXT(r, entries); 3273 /* tcp/udp only. gid.op always 0 in other cases */ 3274 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3275 pf_socket_lookup(direction, pd, m), 1)) && 3276 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3277 pd->lookup.gid)) 3278 r = TAILQ_NEXT(r, entries); 3279 else if (r->prob && 3280 r->prob <= arc4random()) 3281 r = TAILQ_NEXT(r, entries); 3282 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3283 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3284 r = TAILQ_NEXT(r, entries); 3285 else if (r->os_fingerprint != PF_OSFP_ANY && 3286 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3287 pf_osfp_fingerprint(pd, m, off, th), 3288 r->os_fingerprint))) 3289 r = TAILQ_NEXT(r, entries); 3290 else { 3291 if (r->tag) 3292 tag = r->tag; 3293 if (r->rtableid >= 0) 3294 rtableid = r->rtableid; 3295 if (r->anchor == NULL) { 3296 match = 1; 3297 *rm = r; 3298 *am = a; 3299 *rsm = ruleset; 3300 if ((*rm)->quick) 3301 break; 3302 r = TAILQ_NEXT(r, entries); 3303 } else 3304 pf_step_into_anchor(anchor_stack, &asd, 3305 &ruleset, PF_RULESET_FILTER, &r, &a, 3306 &match); 3307 } 3308 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3309 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3310 break; 3311 } 3312 r = *rm; 3313 a = *am; 3314 ruleset = *rsm; 3315 3316 REASON_SET(&reason, PFRES_MATCH); 3317 3318 if (r->log || (nr != NULL && nr->log)) { 3319 if (rewrite) 3320 m_copyback(m, off, hdrlen, pd->hdr.any); 3321 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3322 ruleset, pd, 1); 3323 } 3324 3325 if ((r->action == PF_DROP) && 3326 ((r->rule_flag & PFRULE_RETURNRST) || 3327 (r->rule_flag & PFRULE_RETURNICMP) || 3328 (r->rule_flag & PFRULE_RETURN))) { 3329 /* undo NAT changes, if they have taken place */ 3330 if (nr != NULL) { 3331 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3332 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3333 if (pd->sport) 3334 *pd->sport = sk->port[pd->sidx]; 3335 if (pd->dport) 3336 *pd->dport = sk->port[pd->didx]; 3337 if (pd->proto_sum) 3338 *pd->proto_sum = bproto_sum; 3339 if (pd->ip_sum) 3340 *pd->ip_sum = bip_sum; 3341 m_copyback(m, off, hdrlen, pd->hdr.any); 3342 } 3343 if (pd->proto == IPPROTO_TCP && 3344 ((r->rule_flag & PFRULE_RETURNRST) || 3345 (r->rule_flag & PFRULE_RETURN)) && 3346 !(th->th_flags & TH_RST)) { 3347 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3348 int len = 0; 3349 #ifdef INET 3350 struct ip *h4; 3351 #endif 3352 #ifdef INET6 3353 struct ip6_hdr *h6; 3354 #endif 3355 3356 switch (af) { 3357 #ifdef INET 3358 case AF_INET: 3359 h4 = mtod(m, struct ip *); 3360 len = ntohs(h4->ip_len) - off; 3361 break; 3362 #endif 3363 #ifdef INET6 3364 case AF_INET6: 3365 h6 = mtod(m, struct ip6_hdr *); 3366 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3367 break; 3368 #endif 3369 } 3370 3371 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3372 REASON_SET(&reason, PFRES_PROTCKSUM); 3373 else { 3374 if (th->th_flags & TH_SYN) 3375 ack++; 3376 if (th->th_flags & TH_FIN) 3377 ack++; 3378 pf_send_tcp(m, r, af, pd->dst, 3379 pd->src, th->th_dport, th->th_sport, 3380 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3381 r->return_ttl, 1, 0, kif->pfik_ifp); 3382 } 3383 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3384 r->return_icmp) 3385 pf_send_icmp(m, r->return_icmp >> 8, 3386 r->return_icmp & 255, af, r); 3387 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3388 r->return_icmp6) 3389 pf_send_icmp(m, r->return_icmp6 >> 8, 3390 r->return_icmp6 & 255, af, r); 3391 } 3392 3393 if (r->action == PF_DROP) 3394 goto cleanup; 3395 3396 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3397 REASON_SET(&reason, PFRES_MEMORY); 3398 goto cleanup; 3399 } 3400 if (rtableid >= 0) 3401 M_SETFIB(m, rtableid); 3402 3403 if (!state_icmp && (r->keep_state || nr != NULL || 3404 (pd->flags & PFDESC_TCP_NORM))) { 3405 int action; 3406 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3407 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3408 hdrlen); 3409 if (action != PF_PASS) 3410 return (action); 3411 } else { 3412 if (sk != NULL) 3413 uma_zfree(V_pf_state_key_z, sk); 3414 if (nk != NULL) 3415 uma_zfree(V_pf_state_key_z, nk); 3416 } 3417 3418 /* copy back packet headers if we performed NAT operations */ 3419 if (rewrite) 3420 m_copyback(m, off, hdrlen, pd->hdr.any); 3421 3422 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3423 direction == PF_OUT && 3424 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3425 /* 3426 * We want the state created, but we dont 3427 * want to send this in case a partner 3428 * firewall has to know about it to allow 3429 * replies through it. 3430 */ 3431 return (PF_DEFER); 3432 3433 return (PF_PASS); 3434 3435 cleanup: 3436 if (sk != NULL) 3437 uma_zfree(V_pf_state_key_z, sk); 3438 if (nk != NULL) 3439 uma_zfree(V_pf_state_key_z, nk); 3440 return (PF_DROP); 3441 } 3442 3443 static int 3444 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3445 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3446 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3447 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3448 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3449 { 3450 struct pf_state *s = NULL; 3451 struct pf_src_node *sn = NULL; 3452 struct tcphdr *th = pd->hdr.tcp; 3453 u_int16_t mss = V_tcp_mssdflt; 3454 u_short reason; 3455 3456 /* check maximums */ 3457 if (r->max_states && 3458 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3459 V_pf_status.lcounters[LCNT_STATES]++; 3460 REASON_SET(&reason, PFRES_MAXSTATES); 3461 return (PF_DROP); 3462 } 3463 /* src node for filter rule */ 3464 if ((r->rule_flag & PFRULE_SRCTRACK || 3465 r->rpool.opts & PF_POOL_STICKYADDR) && 3466 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3467 REASON_SET(&reason, PFRES_SRCLIMIT); 3468 goto csfailed; 3469 } 3470 /* src node for translation rule */ 3471 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3472 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3473 REASON_SET(&reason, PFRES_SRCLIMIT); 3474 goto csfailed; 3475 } 3476 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3477 if (s == NULL) { 3478 REASON_SET(&reason, PFRES_MEMORY); 3479 goto csfailed; 3480 } 3481 s->rule.ptr = r; 3482 s->nat_rule.ptr = nr; 3483 s->anchor.ptr = a; 3484 STATE_INC_COUNTERS(s); 3485 if (r->allow_opts) 3486 s->state_flags |= PFSTATE_ALLOWOPTS; 3487 if (r->rule_flag & PFRULE_STATESLOPPY) 3488 s->state_flags |= PFSTATE_SLOPPY; 3489 s->log = r->log & PF_LOG_ALL; 3490 s->sync_state = PFSYNC_S_NONE; 3491 if (nr != NULL) 3492 s->log |= nr->log & PF_LOG_ALL; 3493 switch (pd->proto) { 3494 case IPPROTO_TCP: 3495 s->src.seqlo = ntohl(th->th_seq); 3496 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3497 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3498 r->keep_state == PF_STATE_MODULATE) { 3499 /* Generate sequence number modulator */ 3500 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3501 0) 3502 s->src.seqdiff = 1; 3503 pf_change_a(&th->th_seq, &th->th_sum, 3504 htonl(s->src.seqlo + s->src.seqdiff), 0); 3505 *rewrite = 1; 3506 } else 3507 s->src.seqdiff = 0; 3508 if (th->th_flags & TH_SYN) { 3509 s->src.seqhi++; 3510 s->src.wscale = pf_get_wscale(m, off, 3511 th->th_off, pd->af); 3512 } 3513 s->src.max_win = MAX(ntohs(th->th_win), 1); 3514 if (s->src.wscale & PF_WSCALE_MASK) { 3515 /* Remove scale factor from initial window */ 3516 int win = s->src.max_win; 3517 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3518 s->src.max_win = (win - 1) >> 3519 (s->src.wscale & PF_WSCALE_MASK); 3520 } 3521 if (th->th_flags & TH_FIN) 3522 s->src.seqhi++; 3523 s->dst.seqhi = 1; 3524 s->dst.max_win = 1; 3525 s->src.state = TCPS_SYN_SENT; 3526 s->dst.state = TCPS_CLOSED; 3527 s->timeout = PFTM_TCP_FIRST_PACKET; 3528 break; 3529 case IPPROTO_UDP: 3530 s->src.state = PFUDPS_SINGLE; 3531 s->dst.state = PFUDPS_NO_TRAFFIC; 3532 s->timeout = PFTM_UDP_FIRST_PACKET; 3533 break; 3534 case IPPROTO_ICMP: 3535 #ifdef INET6 3536 case IPPROTO_ICMPV6: 3537 #endif 3538 s->timeout = PFTM_ICMP_FIRST_PACKET; 3539 break; 3540 default: 3541 s->src.state = PFOTHERS_SINGLE; 3542 s->dst.state = PFOTHERS_NO_TRAFFIC; 3543 s->timeout = PFTM_OTHER_FIRST_PACKET; 3544 } 3545 3546 s->creation = time_uptime; 3547 s->expire = time_uptime; 3548 3549 if (sn != NULL) { 3550 s->src_node = sn; 3551 s->src_node->states++; 3552 } 3553 if (nsn != NULL) { 3554 /* XXX We only modify one side for now. */ 3555 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3556 s->nat_src_node = nsn; 3557 s->nat_src_node->states++; 3558 } 3559 if (pd->proto == IPPROTO_TCP) { 3560 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3561 off, pd, th, &s->src, &s->dst)) { 3562 REASON_SET(&reason, PFRES_MEMORY); 3563 pf_src_tree_remove_state(s); 3564 STATE_DEC_COUNTERS(s); 3565 uma_zfree(V_pf_state_z, s); 3566 return (PF_DROP); 3567 } 3568 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3569 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3570 &s->src, &s->dst, rewrite)) { 3571 /* This really shouldn't happen!!! */ 3572 DPFPRINTF(PF_DEBUG_URGENT, 3573 ("pf_normalize_tcp_stateful failed on first pkt")); 3574 pf_normalize_tcp_cleanup(s); 3575 pf_src_tree_remove_state(s); 3576 STATE_DEC_COUNTERS(s); 3577 uma_zfree(V_pf_state_z, s); 3578 return (PF_DROP); 3579 } 3580 } 3581 s->direction = pd->dir; 3582 3583 /* 3584 * sk/nk could already been setup by pf_get_translation(). 3585 */ 3586 if (nr == NULL) { 3587 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3588 __func__, nr, sk, nk)); 3589 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3590 if (sk == NULL) 3591 goto csfailed; 3592 nk = sk; 3593 } else 3594 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3595 __func__, nr, sk, nk)); 3596 3597 /* Swap sk/nk for PF_OUT. */ 3598 if (pf_state_insert(BOUND_IFACE(r, kif), 3599 (pd->dir == PF_IN) ? sk : nk, 3600 (pd->dir == PF_IN) ? nk : sk, s)) { 3601 if (pd->proto == IPPROTO_TCP) 3602 pf_normalize_tcp_cleanup(s); 3603 REASON_SET(&reason, PFRES_STATEINS); 3604 pf_src_tree_remove_state(s); 3605 STATE_DEC_COUNTERS(s); 3606 uma_zfree(V_pf_state_z, s); 3607 return (PF_DROP); 3608 } else 3609 *sm = s; 3610 3611 pf_set_rt_ifp(s, pd->src); /* needs s->state_key set */ 3612 if (tag > 0) 3613 s->tag = tag; 3614 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3615 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3616 s->src.state = PF_TCPS_PROXY_SRC; 3617 /* undo NAT changes, if they have taken place */ 3618 if (nr != NULL) { 3619 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3620 if (pd->dir == PF_OUT) 3621 skt = s->key[PF_SK_STACK]; 3622 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3623 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3624 if (pd->sport) 3625 *pd->sport = skt->port[pd->sidx]; 3626 if (pd->dport) 3627 *pd->dport = skt->port[pd->didx]; 3628 if (pd->proto_sum) 3629 *pd->proto_sum = bproto_sum; 3630 if (pd->ip_sum) 3631 *pd->ip_sum = bip_sum; 3632 m_copyback(m, off, hdrlen, pd->hdr.any); 3633 } 3634 s->src.seqhi = htonl(arc4random()); 3635 /* Find mss option */ 3636 int rtid = M_GETFIB(m); 3637 mss = pf_get_mss(m, off, th->th_off, pd->af); 3638 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3639 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3640 s->src.mss = mss; 3641 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3642 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3643 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3644 REASON_SET(&reason, PFRES_SYNPROXY); 3645 return (PF_SYNPROXY_DROP); 3646 } 3647 3648 return (PF_PASS); 3649 3650 csfailed: 3651 if (sk != NULL) 3652 uma_zfree(V_pf_state_key_z, sk); 3653 if (nk != NULL) 3654 uma_zfree(V_pf_state_key_z, nk); 3655 3656 if (sn != NULL && sn->states == 0 && sn->expire == 0) { 3657 pf_unlink_src_node(sn); 3658 pf_free_src_node(sn); 3659 } 3660 3661 if (nsn != sn && nsn != NULL && nsn->states == 0 && nsn->expire == 0) { 3662 pf_unlink_src_node(nsn); 3663 pf_free_src_node(nsn); 3664 } 3665 3666 return (PF_DROP); 3667 } 3668 3669 static int 3670 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3671 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3672 struct pf_ruleset **rsm) 3673 { 3674 struct pf_rule *r, *a = NULL; 3675 struct pf_ruleset *ruleset = NULL; 3676 sa_family_t af = pd->af; 3677 u_short reason; 3678 int tag = -1; 3679 int asd = 0; 3680 int match = 0; 3681 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3682 3683 PF_RULES_RASSERT(); 3684 3685 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3686 while (r != NULL) { 3687 r->evaluations++; 3688 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3689 r = r->skip[PF_SKIP_IFP].ptr; 3690 else if (r->direction && r->direction != direction) 3691 r = r->skip[PF_SKIP_DIR].ptr; 3692 else if (r->af && r->af != af) 3693 r = r->skip[PF_SKIP_AF].ptr; 3694 else if (r->proto && r->proto != pd->proto) 3695 r = r->skip[PF_SKIP_PROTO].ptr; 3696 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3697 r->src.neg, kif, M_GETFIB(m))) 3698 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3699 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3700 r->dst.neg, NULL, M_GETFIB(m))) 3701 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3702 else if (r->tos && !(r->tos == pd->tos)) 3703 r = TAILQ_NEXT(r, entries); 3704 else if (r->os_fingerprint != PF_OSFP_ANY) 3705 r = TAILQ_NEXT(r, entries); 3706 else if (pd->proto == IPPROTO_UDP && 3707 (r->src.port_op || r->dst.port_op)) 3708 r = TAILQ_NEXT(r, entries); 3709 else if (pd->proto == IPPROTO_TCP && 3710 (r->src.port_op || r->dst.port_op || r->flagset)) 3711 r = TAILQ_NEXT(r, entries); 3712 else if ((pd->proto == IPPROTO_ICMP || 3713 pd->proto == IPPROTO_ICMPV6) && 3714 (r->type || r->code)) 3715 r = TAILQ_NEXT(r, entries); 3716 else if (r->prob && r->prob <= 3717 (arc4random() % (UINT_MAX - 1) + 1)) 3718 r = TAILQ_NEXT(r, entries); 3719 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3720 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3721 r = TAILQ_NEXT(r, entries); 3722 else { 3723 if (r->anchor == NULL) { 3724 match = 1; 3725 *rm = r; 3726 *am = a; 3727 *rsm = ruleset; 3728 if ((*rm)->quick) 3729 break; 3730 r = TAILQ_NEXT(r, entries); 3731 } else 3732 pf_step_into_anchor(anchor_stack, &asd, 3733 &ruleset, PF_RULESET_FILTER, &r, &a, 3734 &match); 3735 } 3736 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3737 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3738 break; 3739 } 3740 r = *rm; 3741 a = *am; 3742 ruleset = *rsm; 3743 3744 REASON_SET(&reason, PFRES_MATCH); 3745 3746 if (r->log) 3747 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3748 1); 3749 3750 if (r->action != PF_PASS) 3751 return (PF_DROP); 3752 3753 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3754 REASON_SET(&reason, PFRES_MEMORY); 3755 return (PF_DROP); 3756 } 3757 3758 return (PF_PASS); 3759 } 3760 3761 static int 3762 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3763 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3764 struct pf_pdesc *pd, u_short *reason, int *copyback) 3765 { 3766 struct tcphdr *th = pd->hdr.tcp; 3767 u_int16_t win = ntohs(th->th_win); 3768 u_int32_t ack, end, seq, orig_seq; 3769 u_int8_t sws, dws; 3770 int ackskew; 3771 3772 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3773 sws = src->wscale & PF_WSCALE_MASK; 3774 dws = dst->wscale & PF_WSCALE_MASK; 3775 } else 3776 sws = dws = 0; 3777 3778 /* 3779 * Sequence tracking algorithm from Guido van Rooij's paper: 3780 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3781 * tcp_filtering.ps 3782 */ 3783 3784 orig_seq = seq = ntohl(th->th_seq); 3785 if (src->seqlo == 0) { 3786 /* First packet from this end. Set its state */ 3787 3788 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3789 src->scrub == NULL) { 3790 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3791 REASON_SET(reason, PFRES_MEMORY); 3792 return (PF_DROP); 3793 } 3794 } 3795 3796 /* Deferred generation of sequence number modulator */ 3797 if (dst->seqdiff && !src->seqdiff) { 3798 /* use random iss for the TCP server */ 3799 while ((src->seqdiff = arc4random() - seq) == 0) 3800 ; 3801 ack = ntohl(th->th_ack) - dst->seqdiff; 3802 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3803 src->seqdiff), 0); 3804 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3805 *copyback = 1; 3806 } else { 3807 ack = ntohl(th->th_ack); 3808 } 3809 3810 end = seq + pd->p_len; 3811 if (th->th_flags & TH_SYN) { 3812 end++; 3813 if (dst->wscale & PF_WSCALE_FLAG) { 3814 src->wscale = pf_get_wscale(m, off, th->th_off, 3815 pd->af); 3816 if (src->wscale & PF_WSCALE_FLAG) { 3817 /* Remove scale factor from initial 3818 * window */ 3819 sws = src->wscale & PF_WSCALE_MASK; 3820 win = ((u_int32_t)win + (1 << sws) - 1) 3821 >> sws; 3822 dws = dst->wscale & PF_WSCALE_MASK; 3823 } else { 3824 /* fixup other window */ 3825 dst->max_win <<= dst->wscale & 3826 PF_WSCALE_MASK; 3827 /* in case of a retrans SYN|ACK */ 3828 dst->wscale = 0; 3829 } 3830 } 3831 } 3832 if (th->th_flags & TH_FIN) 3833 end++; 3834 3835 src->seqlo = seq; 3836 if (src->state < TCPS_SYN_SENT) 3837 src->state = TCPS_SYN_SENT; 3838 3839 /* 3840 * May need to slide the window (seqhi may have been set by 3841 * the crappy stack check or if we picked up the connection 3842 * after establishment) 3843 */ 3844 if (src->seqhi == 1 || 3845 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3846 src->seqhi = end + MAX(1, dst->max_win << dws); 3847 if (win > src->max_win) 3848 src->max_win = win; 3849 3850 } else { 3851 ack = ntohl(th->th_ack) - dst->seqdiff; 3852 if (src->seqdiff) { 3853 /* Modulate sequence numbers */ 3854 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3855 src->seqdiff), 0); 3856 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3857 *copyback = 1; 3858 } 3859 end = seq + pd->p_len; 3860 if (th->th_flags & TH_SYN) 3861 end++; 3862 if (th->th_flags & TH_FIN) 3863 end++; 3864 } 3865 3866 if ((th->th_flags & TH_ACK) == 0) { 3867 /* Let it pass through the ack skew check */ 3868 ack = dst->seqlo; 3869 } else if ((ack == 0 && 3870 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 3871 /* broken tcp stacks do not set ack */ 3872 (dst->state < TCPS_SYN_SENT)) { 3873 /* 3874 * Many stacks (ours included) will set the ACK number in an 3875 * FIN|ACK if the SYN times out -- no sequence to ACK. 3876 */ 3877 ack = dst->seqlo; 3878 } 3879 3880 if (seq == end) { 3881 /* Ease sequencing restrictions on no data packets */ 3882 seq = src->seqlo; 3883 end = seq; 3884 } 3885 3886 ackskew = dst->seqlo - ack; 3887 3888 3889 /* 3890 * Need to demodulate the sequence numbers in any TCP SACK options 3891 * (Selective ACK). We could optionally validate the SACK values 3892 * against the current ACK window, either forwards or backwards, but 3893 * I'm not confident that SACK has been implemented properly 3894 * everywhere. It wouldn't surprise me if several stacks accidently 3895 * SACK too far backwards of previously ACKed data. There really aren't 3896 * any security implications of bad SACKing unless the target stack 3897 * doesn't validate the option length correctly. Someone trying to 3898 * spoof into a TCP connection won't bother blindly sending SACK 3899 * options anyway. 3900 */ 3901 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 3902 if (pf_modulate_sack(m, off, pd, th, dst)) 3903 *copyback = 1; 3904 } 3905 3906 3907 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 3908 if (SEQ_GEQ(src->seqhi, end) && 3909 /* Last octet inside other's window space */ 3910 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 3911 /* Retrans: not more than one window back */ 3912 (ackskew >= -MAXACKWINDOW) && 3913 /* Acking not more than one reassembled fragment backwards */ 3914 (ackskew <= (MAXACKWINDOW << sws)) && 3915 /* Acking not more than one window forward */ 3916 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 3917 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 3918 (pd->flags & PFDESC_IP_REAS) == 0)) { 3919 /* Require an exact/+1 sequence match on resets when possible */ 3920 3921 if (dst->scrub || src->scrub) { 3922 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 3923 *state, src, dst, copyback)) 3924 return (PF_DROP); 3925 } 3926 3927 /* update max window */ 3928 if (src->max_win < win) 3929 src->max_win = win; 3930 /* synchronize sequencing */ 3931 if (SEQ_GT(end, src->seqlo)) 3932 src->seqlo = end; 3933 /* slide the window of what the other end can send */ 3934 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 3935 dst->seqhi = ack + MAX((win << sws), 1); 3936 3937 3938 /* update states */ 3939 if (th->th_flags & TH_SYN) 3940 if (src->state < TCPS_SYN_SENT) 3941 src->state = TCPS_SYN_SENT; 3942 if (th->th_flags & TH_FIN) 3943 if (src->state < TCPS_CLOSING) 3944 src->state = TCPS_CLOSING; 3945 if (th->th_flags & TH_ACK) { 3946 if (dst->state == TCPS_SYN_SENT) { 3947 dst->state = TCPS_ESTABLISHED; 3948 if (src->state == TCPS_ESTABLISHED && 3949 (*state)->src_node != NULL && 3950 pf_src_connlimit(state)) { 3951 REASON_SET(reason, PFRES_SRCLIMIT); 3952 return (PF_DROP); 3953 } 3954 } else if (dst->state == TCPS_CLOSING) 3955 dst->state = TCPS_FIN_WAIT_2; 3956 } 3957 if (th->th_flags & TH_RST) 3958 src->state = dst->state = TCPS_TIME_WAIT; 3959 3960 /* update expire time */ 3961 (*state)->expire = time_uptime; 3962 if (src->state >= TCPS_FIN_WAIT_2 && 3963 dst->state >= TCPS_FIN_WAIT_2) 3964 (*state)->timeout = PFTM_TCP_CLOSED; 3965 else if (src->state >= TCPS_CLOSING && 3966 dst->state >= TCPS_CLOSING) 3967 (*state)->timeout = PFTM_TCP_FIN_WAIT; 3968 else if (src->state < TCPS_ESTABLISHED || 3969 dst->state < TCPS_ESTABLISHED) 3970 (*state)->timeout = PFTM_TCP_OPENING; 3971 else if (src->state >= TCPS_CLOSING || 3972 dst->state >= TCPS_CLOSING) 3973 (*state)->timeout = PFTM_TCP_CLOSING; 3974 else 3975 (*state)->timeout = PFTM_TCP_ESTABLISHED; 3976 3977 /* Fall through to PASS packet */ 3978 3979 } else if ((dst->state < TCPS_SYN_SENT || 3980 dst->state >= TCPS_FIN_WAIT_2 || 3981 src->state >= TCPS_FIN_WAIT_2) && 3982 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 3983 /* Within a window forward of the originating packet */ 3984 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 3985 /* Within a window backward of the originating packet */ 3986 3987 /* 3988 * This currently handles three situations: 3989 * 1) Stupid stacks will shotgun SYNs before their peer 3990 * replies. 3991 * 2) When PF catches an already established stream (the 3992 * firewall rebooted, the state table was flushed, routes 3993 * changed...) 3994 * 3) Packets get funky immediately after the connection 3995 * closes (this should catch Solaris spurious ACK|FINs 3996 * that web servers like to spew after a close) 3997 * 3998 * This must be a little more careful than the above code 3999 * since packet floods will also be caught here. We don't 4000 * update the TTL here to mitigate the damage of a packet 4001 * flood and so the same code can handle awkward establishment 4002 * and a loosened connection close. 4003 * In the establishment case, a correct peer response will 4004 * validate the connection, go through the normal state code 4005 * and keep updating the state TTL. 4006 */ 4007 4008 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4009 printf("pf: loose state match: "); 4010 pf_print_state(*state); 4011 pf_print_flags(th->th_flags); 4012 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4013 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4014 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4015 (unsigned long long)(*state)->packets[1], 4016 pd->dir == PF_IN ? "in" : "out", 4017 pd->dir == (*state)->direction ? "fwd" : "rev"); 4018 } 4019 4020 if (dst->scrub || src->scrub) { 4021 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4022 *state, src, dst, copyback)) 4023 return (PF_DROP); 4024 } 4025 4026 /* update max window */ 4027 if (src->max_win < win) 4028 src->max_win = win; 4029 /* synchronize sequencing */ 4030 if (SEQ_GT(end, src->seqlo)) 4031 src->seqlo = end; 4032 /* slide the window of what the other end can send */ 4033 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4034 dst->seqhi = ack + MAX((win << sws), 1); 4035 4036 /* 4037 * Cannot set dst->seqhi here since this could be a shotgunned 4038 * SYN and not an already established connection. 4039 */ 4040 4041 if (th->th_flags & TH_FIN) 4042 if (src->state < TCPS_CLOSING) 4043 src->state = TCPS_CLOSING; 4044 if (th->th_flags & TH_RST) 4045 src->state = dst->state = TCPS_TIME_WAIT; 4046 4047 /* Fall through to PASS packet */ 4048 4049 } else { 4050 if ((*state)->dst.state == TCPS_SYN_SENT && 4051 (*state)->src.state == TCPS_SYN_SENT) { 4052 /* Send RST for state mismatches during handshake */ 4053 if (!(th->th_flags & TH_RST)) 4054 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4055 pd->dst, pd->src, th->th_dport, 4056 th->th_sport, ntohl(th->th_ack), 0, 4057 TH_RST, 0, 0, 4058 (*state)->rule.ptr->return_ttl, 1, 0, 4059 kif->pfik_ifp); 4060 src->seqlo = 0; 4061 src->seqhi = 1; 4062 src->max_win = 1; 4063 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4064 printf("pf: BAD state: "); 4065 pf_print_state(*state); 4066 pf_print_flags(th->th_flags); 4067 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4068 "pkts=%llu:%llu dir=%s,%s\n", 4069 seq, orig_seq, ack, pd->p_len, ackskew, 4070 (unsigned long long)(*state)->packets[0], 4071 (unsigned long long)(*state)->packets[1], 4072 pd->dir == PF_IN ? "in" : "out", 4073 pd->dir == (*state)->direction ? "fwd" : "rev"); 4074 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4075 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4076 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4077 ' ': '2', 4078 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4079 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4080 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4081 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4082 } 4083 REASON_SET(reason, PFRES_BADSTATE); 4084 return (PF_DROP); 4085 } 4086 4087 return (PF_PASS); 4088 } 4089 4090 static int 4091 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4092 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4093 { 4094 struct tcphdr *th = pd->hdr.tcp; 4095 4096 if (th->th_flags & TH_SYN) 4097 if (src->state < TCPS_SYN_SENT) 4098 src->state = TCPS_SYN_SENT; 4099 if (th->th_flags & TH_FIN) 4100 if (src->state < TCPS_CLOSING) 4101 src->state = TCPS_CLOSING; 4102 if (th->th_flags & TH_ACK) { 4103 if (dst->state == TCPS_SYN_SENT) { 4104 dst->state = TCPS_ESTABLISHED; 4105 if (src->state == TCPS_ESTABLISHED && 4106 (*state)->src_node != NULL && 4107 pf_src_connlimit(state)) { 4108 REASON_SET(reason, PFRES_SRCLIMIT); 4109 return (PF_DROP); 4110 } 4111 } else if (dst->state == TCPS_CLOSING) { 4112 dst->state = TCPS_FIN_WAIT_2; 4113 } else if (src->state == TCPS_SYN_SENT && 4114 dst->state < TCPS_SYN_SENT) { 4115 /* 4116 * Handle a special sloppy case where we only see one 4117 * half of the connection. If there is a ACK after 4118 * the initial SYN without ever seeing a packet from 4119 * the destination, set the connection to established. 4120 */ 4121 dst->state = src->state = TCPS_ESTABLISHED; 4122 if ((*state)->src_node != NULL && 4123 pf_src_connlimit(state)) { 4124 REASON_SET(reason, PFRES_SRCLIMIT); 4125 return (PF_DROP); 4126 } 4127 } else if (src->state == TCPS_CLOSING && 4128 dst->state == TCPS_ESTABLISHED && 4129 dst->seqlo == 0) { 4130 /* 4131 * Handle the closing of half connections where we 4132 * don't see the full bidirectional FIN/ACK+ACK 4133 * handshake. 4134 */ 4135 dst->state = TCPS_CLOSING; 4136 } 4137 } 4138 if (th->th_flags & TH_RST) 4139 src->state = dst->state = TCPS_TIME_WAIT; 4140 4141 /* update expire time */ 4142 (*state)->expire = time_uptime; 4143 if (src->state >= TCPS_FIN_WAIT_2 && 4144 dst->state >= TCPS_FIN_WAIT_2) 4145 (*state)->timeout = PFTM_TCP_CLOSED; 4146 else if (src->state >= TCPS_CLOSING && 4147 dst->state >= TCPS_CLOSING) 4148 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4149 else if (src->state < TCPS_ESTABLISHED || 4150 dst->state < TCPS_ESTABLISHED) 4151 (*state)->timeout = PFTM_TCP_OPENING; 4152 else if (src->state >= TCPS_CLOSING || 4153 dst->state >= TCPS_CLOSING) 4154 (*state)->timeout = PFTM_TCP_CLOSING; 4155 else 4156 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4157 4158 return (PF_PASS); 4159 } 4160 4161 static int 4162 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4163 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4164 u_short *reason) 4165 { 4166 struct pf_state_key_cmp key; 4167 struct tcphdr *th = pd->hdr.tcp; 4168 int copyback = 0; 4169 struct pf_state_peer *src, *dst; 4170 struct pf_state_key *sk; 4171 4172 bzero(&key, sizeof(key)); 4173 key.af = pd->af; 4174 key.proto = IPPROTO_TCP; 4175 if (direction == PF_IN) { /* wire side, straight */ 4176 PF_ACPY(&key.addr[0], pd->src, key.af); 4177 PF_ACPY(&key.addr[1], pd->dst, key.af); 4178 key.port[0] = th->th_sport; 4179 key.port[1] = th->th_dport; 4180 } else { /* stack side, reverse */ 4181 PF_ACPY(&key.addr[1], pd->src, key.af); 4182 PF_ACPY(&key.addr[0], pd->dst, key.af); 4183 key.port[1] = th->th_sport; 4184 key.port[0] = th->th_dport; 4185 } 4186 4187 STATE_LOOKUP(kif, &key, direction, *state, pd); 4188 4189 if (direction == (*state)->direction) { 4190 src = &(*state)->src; 4191 dst = &(*state)->dst; 4192 } else { 4193 src = &(*state)->dst; 4194 dst = &(*state)->src; 4195 } 4196 4197 sk = (*state)->key[pd->didx]; 4198 4199 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4200 if (direction != (*state)->direction) { 4201 REASON_SET(reason, PFRES_SYNPROXY); 4202 return (PF_SYNPROXY_DROP); 4203 } 4204 if (th->th_flags & TH_SYN) { 4205 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4206 REASON_SET(reason, PFRES_SYNPROXY); 4207 return (PF_DROP); 4208 } 4209 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4210 pd->src, th->th_dport, th->th_sport, 4211 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4212 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4213 REASON_SET(reason, PFRES_SYNPROXY); 4214 return (PF_SYNPROXY_DROP); 4215 } else if (!(th->th_flags & TH_ACK) || 4216 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4217 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4218 REASON_SET(reason, PFRES_SYNPROXY); 4219 return (PF_DROP); 4220 } else if ((*state)->src_node != NULL && 4221 pf_src_connlimit(state)) { 4222 REASON_SET(reason, PFRES_SRCLIMIT); 4223 return (PF_DROP); 4224 } else 4225 (*state)->src.state = PF_TCPS_PROXY_DST; 4226 } 4227 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4228 if (direction == (*state)->direction) { 4229 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4230 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4231 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4232 REASON_SET(reason, PFRES_SYNPROXY); 4233 return (PF_DROP); 4234 } 4235 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4236 if ((*state)->dst.seqhi == 1) 4237 (*state)->dst.seqhi = htonl(arc4random()); 4238 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4239 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4240 sk->port[pd->sidx], sk->port[pd->didx], 4241 (*state)->dst.seqhi, 0, TH_SYN, 0, 4242 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4243 REASON_SET(reason, PFRES_SYNPROXY); 4244 return (PF_SYNPROXY_DROP); 4245 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4246 (TH_SYN|TH_ACK)) || 4247 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4248 REASON_SET(reason, PFRES_SYNPROXY); 4249 return (PF_DROP); 4250 } else { 4251 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4252 (*state)->dst.seqlo = ntohl(th->th_seq); 4253 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4254 pd->src, th->th_dport, th->th_sport, 4255 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4256 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4257 (*state)->tag, NULL); 4258 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4259 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4260 sk->port[pd->sidx], sk->port[pd->didx], 4261 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4262 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4263 (*state)->src.seqdiff = (*state)->dst.seqhi - 4264 (*state)->src.seqlo; 4265 (*state)->dst.seqdiff = (*state)->src.seqhi - 4266 (*state)->dst.seqlo; 4267 (*state)->src.seqhi = (*state)->src.seqlo + 4268 (*state)->dst.max_win; 4269 (*state)->dst.seqhi = (*state)->dst.seqlo + 4270 (*state)->src.max_win; 4271 (*state)->src.wscale = (*state)->dst.wscale = 0; 4272 (*state)->src.state = (*state)->dst.state = 4273 TCPS_ESTABLISHED; 4274 REASON_SET(reason, PFRES_SYNPROXY); 4275 return (PF_SYNPROXY_DROP); 4276 } 4277 } 4278 4279 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4280 dst->state >= TCPS_FIN_WAIT_2 && 4281 src->state >= TCPS_FIN_WAIT_2) { 4282 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4283 printf("pf: state reuse "); 4284 pf_print_state(*state); 4285 pf_print_flags(th->th_flags); 4286 printf("\n"); 4287 } 4288 /* XXX make sure it's the same direction ?? */ 4289 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4290 pf_unlink_state(*state, PF_ENTER_LOCKED); 4291 *state = NULL; 4292 return (PF_DROP); 4293 } 4294 4295 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4296 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4297 return (PF_DROP); 4298 } else { 4299 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4300 ©back) == PF_DROP) 4301 return (PF_DROP); 4302 } 4303 4304 /* translate source/destination address, if necessary */ 4305 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4306 struct pf_state_key *nk = (*state)->key[pd->didx]; 4307 4308 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4309 nk->port[pd->sidx] != th->th_sport) 4310 pf_change_ap(pd->src, &th->th_sport, pd->ip_sum, 4311 &th->th_sum, &nk->addr[pd->sidx], 4312 nk->port[pd->sidx], 0, pd->af); 4313 4314 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4315 nk->port[pd->didx] != th->th_dport) 4316 pf_change_ap(pd->dst, &th->th_dport, pd->ip_sum, 4317 &th->th_sum, &nk->addr[pd->didx], 4318 nk->port[pd->didx], 0, pd->af); 4319 copyback = 1; 4320 } 4321 4322 /* Copyback sequence modulation or stateful scrub changes if needed */ 4323 if (copyback) 4324 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4325 4326 return (PF_PASS); 4327 } 4328 4329 static int 4330 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4331 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4332 { 4333 struct pf_state_peer *src, *dst; 4334 struct pf_state_key_cmp key; 4335 struct udphdr *uh = pd->hdr.udp; 4336 4337 bzero(&key, sizeof(key)); 4338 key.af = pd->af; 4339 key.proto = IPPROTO_UDP; 4340 if (direction == PF_IN) { /* wire side, straight */ 4341 PF_ACPY(&key.addr[0], pd->src, key.af); 4342 PF_ACPY(&key.addr[1], pd->dst, key.af); 4343 key.port[0] = uh->uh_sport; 4344 key.port[1] = uh->uh_dport; 4345 } else { /* stack side, reverse */ 4346 PF_ACPY(&key.addr[1], pd->src, key.af); 4347 PF_ACPY(&key.addr[0], pd->dst, key.af); 4348 key.port[1] = uh->uh_sport; 4349 key.port[0] = uh->uh_dport; 4350 } 4351 4352 STATE_LOOKUP(kif, &key, direction, *state, pd); 4353 4354 if (direction == (*state)->direction) { 4355 src = &(*state)->src; 4356 dst = &(*state)->dst; 4357 } else { 4358 src = &(*state)->dst; 4359 dst = &(*state)->src; 4360 } 4361 4362 /* update states */ 4363 if (src->state < PFUDPS_SINGLE) 4364 src->state = PFUDPS_SINGLE; 4365 if (dst->state == PFUDPS_SINGLE) 4366 dst->state = PFUDPS_MULTIPLE; 4367 4368 /* update expire time */ 4369 (*state)->expire = time_uptime; 4370 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4371 (*state)->timeout = PFTM_UDP_MULTIPLE; 4372 else 4373 (*state)->timeout = PFTM_UDP_SINGLE; 4374 4375 /* translate source/destination address, if necessary */ 4376 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4377 struct pf_state_key *nk = (*state)->key[pd->didx]; 4378 4379 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4380 nk->port[pd->sidx] != uh->uh_sport) 4381 pf_change_ap(pd->src, &uh->uh_sport, pd->ip_sum, 4382 &uh->uh_sum, &nk->addr[pd->sidx], 4383 nk->port[pd->sidx], 1, pd->af); 4384 4385 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4386 nk->port[pd->didx] != uh->uh_dport) 4387 pf_change_ap(pd->dst, &uh->uh_dport, pd->ip_sum, 4388 &uh->uh_sum, &nk->addr[pd->didx], 4389 nk->port[pd->didx], 1, pd->af); 4390 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4391 } 4392 4393 return (PF_PASS); 4394 } 4395 4396 static int 4397 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4398 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4399 { 4400 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4401 u_int16_t icmpid = 0, *icmpsum; 4402 u_int8_t icmptype; 4403 int state_icmp = 0; 4404 struct pf_state_key_cmp key; 4405 4406 bzero(&key, sizeof(key)); 4407 switch (pd->proto) { 4408 #ifdef INET 4409 case IPPROTO_ICMP: 4410 icmptype = pd->hdr.icmp->icmp_type; 4411 icmpid = pd->hdr.icmp->icmp_id; 4412 icmpsum = &pd->hdr.icmp->icmp_cksum; 4413 4414 if (icmptype == ICMP_UNREACH || 4415 icmptype == ICMP_SOURCEQUENCH || 4416 icmptype == ICMP_REDIRECT || 4417 icmptype == ICMP_TIMXCEED || 4418 icmptype == ICMP_PARAMPROB) 4419 state_icmp++; 4420 break; 4421 #endif /* INET */ 4422 #ifdef INET6 4423 case IPPROTO_ICMPV6: 4424 icmptype = pd->hdr.icmp6->icmp6_type; 4425 icmpid = pd->hdr.icmp6->icmp6_id; 4426 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4427 4428 if (icmptype == ICMP6_DST_UNREACH || 4429 icmptype == ICMP6_PACKET_TOO_BIG || 4430 icmptype == ICMP6_TIME_EXCEEDED || 4431 icmptype == ICMP6_PARAM_PROB) 4432 state_icmp++; 4433 break; 4434 #endif /* INET6 */ 4435 } 4436 4437 if (!state_icmp) { 4438 4439 /* 4440 * ICMP query/reply message not related to a TCP/UDP packet. 4441 * Search for an ICMP state. 4442 */ 4443 key.af = pd->af; 4444 key.proto = pd->proto; 4445 key.port[0] = key.port[1] = icmpid; 4446 if (direction == PF_IN) { /* wire side, straight */ 4447 PF_ACPY(&key.addr[0], pd->src, key.af); 4448 PF_ACPY(&key.addr[1], pd->dst, key.af); 4449 } else { /* stack side, reverse */ 4450 PF_ACPY(&key.addr[1], pd->src, key.af); 4451 PF_ACPY(&key.addr[0], pd->dst, key.af); 4452 } 4453 4454 STATE_LOOKUP(kif, &key, direction, *state, pd); 4455 4456 (*state)->expire = time_uptime; 4457 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4458 4459 /* translate source/destination address, if necessary */ 4460 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4461 struct pf_state_key *nk = (*state)->key[pd->didx]; 4462 4463 switch (pd->af) { 4464 #ifdef INET 4465 case AF_INET: 4466 if (PF_ANEQ(pd->src, 4467 &nk->addr[pd->sidx], AF_INET)) 4468 pf_change_a(&saddr->v4.s_addr, 4469 pd->ip_sum, 4470 nk->addr[pd->sidx].v4.s_addr, 0); 4471 4472 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4473 AF_INET)) 4474 pf_change_a(&daddr->v4.s_addr, 4475 pd->ip_sum, 4476 nk->addr[pd->didx].v4.s_addr, 0); 4477 4478 if (nk->port[0] != 4479 pd->hdr.icmp->icmp_id) { 4480 pd->hdr.icmp->icmp_cksum = 4481 pf_cksum_fixup( 4482 pd->hdr.icmp->icmp_cksum, icmpid, 4483 nk->port[pd->sidx], 0); 4484 pd->hdr.icmp->icmp_id = 4485 nk->port[pd->sidx]; 4486 } 4487 4488 m_copyback(m, off, ICMP_MINLEN, 4489 (caddr_t )pd->hdr.icmp); 4490 break; 4491 #endif /* INET */ 4492 #ifdef INET6 4493 case AF_INET6: 4494 if (PF_ANEQ(pd->src, 4495 &nk->addr[pd->sidx], AF_INET6)) 4496 pf_change_a6(saddr, 4497 &pd->hdr.icmp6->icmp6_cksum, 4498 &nk->addr[pd->sidx], 0); 4499 4500 if (PF_ANEQ(pd->dst, 4501 &nk->addr[pd->didx], AF_INET6)) 4502 pf_change_a6(daddr, 4503 &pd->hdr.icmp6->icmp6_cksum, 4504 &nk->addr[pd->didx], 0); 4505 4506 m_copyback(m, off, sizeof(struct icmp6_hdr), 4507 (caddr_t )pd->hdr.icmp6); 4508 break; 4509 #endif /* INET6 */ 4510 } 4511 } 4512 return (PF_PASS); 4513 4514 } else { 4515 /* 4516 * ICMP error message in response to a TCP/UDP packet. 4517 * Extract the inner TCP/UDP header and search for that state. 4518 */ 4519 4520 struct pf_pdesc pd2; 4521 bzero(&pd2, sizeof pd2); 4522 #ifdef INET 4523 struct ip h2; 4524 #endif /* INET */ 4525 #ifdef INET6 4526 struct ip6_hdr h2_6; 4527 int terminal = 0; 4528 #endif /* INET6 */ 4529 int ipoff2 = 0; 4530 int off2 = 0; 4531 4532 pd2.af = pd->af; 4533 /* Payload packet is from the opposite direction. */ 4534 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4535 pd2.didx = (direction == PF_IN) ? 0 : 1; 4536 switch (pd->af) { 4537 #ifdef INET 4538 case AF_INET: 4539 /* offset of h2 in mbuf chain */ 4540 ipoff2 = off + ICMP_MINLEN; 4541 4542 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4543 NULL, reason, pd2.af)) { 4544 DPFPRINTF(PF_DEBUG_MISC, 4545 ("pf: ICMP error message too short " 4546 "(ip)\n")); 4547 return (PF_DROP); 4548 } 4549 /* 4550 * ICMP error messages don't refer to non-first 4551 * fragments 4552 */ 4553 if (h2.ip_off & htons(IP_OFFMASK)) { 4554 REASON_SET(reason, PFRES_FRAG); 4555 return (PF_DROP); 4556 } 4557 4558 /* offset of protocol header that follows h2 */ 4559 off2 = ipoff2 + (h2.ip_hl << 2); 4560 4561 pd2.proto = h2.ip_p; 4562 pd2.src = (struct pf_addr *)&h2.ip_src; 4563 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4564 pd2.ip_sum = &h2.ip_sum; 4565 break; 4566 #endif /* INET */ 4567 #ifdef INET6 4568 case AF_INET6: 4569 ipoff2 = off + sizeof(struct icmp6_hdr); 4570 4571 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4572 NULL, reason, pd2.af)) { 4573 DPFPRINTF(PF_DEBUG_MISC, 4574 ("pf: ICMP error message too short " 4575 "(ip6)\n")); 4576 return (PF_DROP); 4577 } 4578 pd2.proto = h2_6.ip6_nxt; 4579 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4580 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4581 pd2.ip_sum = NULL; 4582 off2 = ipoff2 + sizeof(h2_6); 4583 do { 4584 switch (pd2.proto) { 4585 case IPPROTO_FRAGMENT: 4586 /* 4587 * ICMPv6 error messages for 4588 * non-first fragments 4589 */ 4590 REASON_SET(reason, PFRES_FRAG); 4591 return (PF_DROP); 4592 case IPPROTO_AH: 4593 case IPPROTO_HOPOPTS: 4594 case IPPROTO_ROUTING: 4595 case IPPROTO_DSTOPTS: { 4596 /* get next header and header length */ 4597 struct ip6_ext opt6; 4598 4599 if (!pf_pull_hdr(m, off2, &opt6, 4600 sizeof(opt6), NULL, reason, 4601 pd2.af)) { 4602 DPFPRINTF(PF_DEBUG_MISC, 4603 ("pf: ICMPv6 short opt\n")); 4604 return (PF_DROP); 4605 } 4606 if (pd2.proto == IPPROTO_AH) 4607 off2 += (opt6.ip6e_len + 2) * 4; 4608 else 4609 off2 += (opt6.ip6e_len + 1) * 8; 4610 pd2.proto = opt6.ip6e_nxt; 4611 /* goto the next header */ 4612 break; 4613 } 4614 default: 4615 terminal++; 4616 break; 4617 } 4618 } while (!terminal); 4619 break; 4620 #endif /* INET6 */ 4621 } 4622 4623 switch (pd2.proto) { 4624 case IPPROTO_TCP: { 4625 struct tcphdr th; 4626 u_int32_t seq; 4627 struct pf_state_peer *src, *dst; 4628 u_int8_t dws; 4629 int copyback = 0; 4630 4631 /* 4632 * Only the first 8 bytes of the TCP header can be 4633 * expected. Don't access any TCP header fields after 4634 * th_seq, an ackskew test is not possible. 4635 */ 4636 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4637 pd2.af)) { 4638 DPFPRINTF(PF_DEBUG_MISC, 4639 ("pf: ICMP error message too short " 4640 "(tcp)\n")); 4641 return (PF_DROP); 4642 } 4643 4644 key.af = pd2.af; 4645 key.proto = IPPROTO_TCP; 4646 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4647 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4648 key.port[pd2.sidx] = th.th_sport; 4649 key.port[pd2.didx] = th.th_dport; 4650 4651 STATE_LOOKUP(kif, &key, direction, *state, pd); 4652 4653 if (direction == (*state)->direction) { 4654 src = &(*state)->dst; 4655 dst = &(*state)->src; 4656 } else { 4657 src = &(*state)->src; 4658 dst = &(*state)->dst; 4659 } 4660 4661 if (src->wscale && dst->wscale) 4662 dws = dst->wscale & PF_WSCALE_MASK; 4663 else 4664 dws = 0; 4665 4666 /* Demodulate sequence number */ 4667 seq = ntohl(th.th_seq) - src->seqdiff; 4668 if (src->seqdiff) { 4669 pf_change_a(&th.th_seq, icmpsum, 4670 htonl(seq), 0); 4671 copyback = 1; 4672 } 4673 4674 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4675 (!SEQ_GEQ(src->seqhi, seq) || 4676 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4677 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4678 printf("pf: BAD ICMP %d:%d ", 4679 icmptype, pd->hdr.icmp->icmp_code); 4680 pf_print_host(pd->src, 0, pd->af); 4681 printf(" -> "); 4682 pf_print_host(pd->dst, 0, pd->af); 4683 printf(" state: "); 4684 pf_print_state(*state); 4685 printf(" seq=%u\n", seq); 4686 } 4687 REASON_SET(reason, PFRES_BADSTATE); 4688 return (PF_DROP); 4689 } else { 4690 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4691 printf("pf: OK ICMP %d:%d ", 4692 icmptype, pd->hdr.icmp->icmp_code); 4693 pf_print_host(pd->src, 0, pd->af); 4694 printf(" -> "); 4695 pf_print_host(pd->dst, 0, pd->af); 4696 printf(" state: "); 4697 pf_print_state(*state); 4698 printf(" seq=%u\n", seq); 4699 } 4700 } 4701 4702 /* translate source/destination address, if necessary */ 4703 if ((*state)->key[PF_SK_WIRE] != 4704 (*state)->key[PF_SK_STACK]) { 4705 struct pf_state_key *nk = 4706 (*state)->key[pd->didx]; 4707 4708 if (PF_ANEQ(pd2.src, 4709 &nk->addr[pd2.sidx], pd2.af) || 4710 nk->port[pd2.sidx] != th.th_sport) 4711 pf_change_icmp(pd2.src, &th.th_sport, 4712 daddr, &nk->addr[pd2.sidx], 4713 nk->port[pd2.sidx], NULL, 4714 pd2.ip_sum, icmpsum, 4715 pd->ip_sum, 0, pd2.af); 4716 4717 if (PF_ANEQ(pd2.dst, 4718 &nk->addr[pd2.didx], pd2.af) || 4719 nk->port[pd2.didx] != th.th_dport) 4720 pf_change_icmp(pd2.dst, &th.th_dport, 4721 NULL, /* XXX Inbound NAT? */ 4722 &nk->addr[pd2.didx], 4723 nk->port[pd2.didx], NULL, 4724 pd2.ip_sum, icmpsum, 4725 pd->ip_sum, 0, pd2.af); 4726 copyback = 1; 4727 } 4728 4729 if (copyback) { 4730 switch (pd2.af) { 4731 #ifdef INET 4732 case AF_INET: 4733 m_copyback(m, off, ICMP_MINLEN, 4734 (caddr_t )pd->hdr.icmp); 4735 m_copyback(m, ipoff2, sizeof(h2), 4736 (caddr_t )&h2); 4737 break; 4738 #endif /* INET */ 4739 #ifdef INET6 4740 case AF_INET6: 4741 m_copyback(m, off, 4742 sizeof(struct icmp6_hdr), 4743 (caddr_t )pd->hdr.icmp6); 4744 m_copyback(m, ipoff2, sizeof(h2_6), 4745 (caddr_t )&h2_6); 4746 break; 4747 #endif /* INET6 */ 4748 } 4749 m_copyback(m, off2, 8, (caddr_t)&th); 4750 } 4751 4752 return (PF_PASS); 4753 break; 4754 } 4755 case IPPROTO_UDP: { 4756 struct udphdr uh; 4757 4758 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4759 NULL, reason, pd2.af)) { 4760 DPFPRINTF(PF_DEBUG_MISC, 4761 ("pf: ICMP error message too short " 4762 "(udp)\n")); 4763 return (PF_DROP); 4764 } 4765 4766 key.af = pd2.af; 4767 key.proto = IPPROTO_UDP; 4768 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4769 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4770 key.port[pd2.sidx] = uh.uh_sport; 4771 key.port[pd2.didx] = uh.uh_dport; 4772 4773 STATE_LOOKUP(kif, &key, direction, *state, pd); 4774 4775 /* translate source/destination address, if necessary */ 4776 if ((*state)->key[PF_SK_WIRE] != 4777 (*state)->key[PF_SK_STACK]) { 4778 struct pf_state_key *nk = 4779 (*state)->key[pd->didx]; 4780 4781 if (PF_ANEQ(pd2.src, 4782 &nk->addr[pd2.sidx], pd2.af) || 4783 nk->port[pd2.sidx] != uh.uh_sport) 4784 pf_change_icmp(pd2.src, &uh.uh_sport, 4785 daddr, &nk->addr[pd2.sidx], 4786 nk->port[pd2.sidx], &uh.uh_sum, 4787 pd2.ip_sum, icmpsum, 4788 pd->ip_sum, 1, pd2.af); 4789 4790 if (PF_ANEQ(pd2.dst, 4791 &nk->addr[pd2.didx], pd2.af) || 4792 nk->port[pd2.didx] != uh.uh_dport) 4793 pf_change_icmp(pd2.dst, &uh.uh_dport, 4794 NULL, /* XXX Inbound NAT? */ 4795 &nk->addr[pd2.didx], 4796 nk->port[pd2.didx], &uh.uh_sum, 4797 pd2.ip_sum, icmpsum, 4798 pd->ip_sum, 1, pd2.af); 4799 4800 switch (pd2.af) { 4801 #ifdef INET 4802 case AF_INET: 4803 m_copyback(m, off, ICMP_MINLEN, 4804 (caddr_t )pd->hdr.icmp); 4805 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4806 break; 4807 #endif /* INET */ 4808 #ifdef INET6 4809 case AF_INET6: 4810 m_copyback(m, off, 4811 sizeof(struct icmp6_hdr), 4812 (caddr_t )pd->hdr.icmp6); 4813 m_copyback(m, ipoff2, sizeof(h2_6), 4814 (caddr_t )&h2_6); 4815 break; 4816 #endif /* INET6 */ 4817 } 4818 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4819 } 4820 return (PF_PASS); 4821 break; 4822 } 4823 #ifdef INET 4824 case IPPROTO_ICMP: { 4825 struct icmp iih; 4826 4827 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4828 NULL, reason, pd2.af)) { 4829 DPFPRINTF(PF_DEBUG_MISC, 4830 ("pf: ICMP error message too short i" 4831 "(icmp)\n")); 4832 return (PF_DROP); 4833 } 4834 4835 key.af = pd2.af; 4836 key.proto = IPPROTO_ICMP; 4837 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4838 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4839 key.port[0] = key.port[1] = iih.icmp_id; 4840 4841 STATE_LOOKUP(kif, &key, direction, *state, pd); 4842 4843 /* translate source/destination address, if necessary */ 4844 if ((*state)->key[PF_SK_WIRE] != 4845 (*state)->key[PF_SK_STACK]) { 4846 struct pf_state_key *nk = 4847 (*state)->key[pd->didx]; 4848 4849 if (PF_ANEQ(pd2.src, 4850 &nk->addr[pd2.sidx], pd2.af) || 4851 nk->port[pd2.sidx] != iih.icmp_id) 4852 pf_change_icmp(pd2.src, &iih.icmp_id, 4853 daddr, &nk->addr[pd2.sidx], 4854 nk->port[pd2.sidx], NULL, 4855 pd2.ip_sum, icmpsum, 4856 pd->ip_sum, 0, AF_INET); 4857 4858 if (PF_ANEQ(pd2.dst, 4859 &nk->addr[pd2.didx], pd2.af) || 4860 nk->port[pd2.didx] != iih.icmp_id) 4861 pf_change_icmp(pd2.dst, &iih.icmp_id, 4862 NULL, /* XXX Inbound NAT? */ 4863 &nk->addr[pd2.didx], 4864 nk->port[pd2.didx], NULL, 4865 pd2.ip_sum, icmpsum, 4866 pd->ip_sum, 0, AF_INET); 4867 4868 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 4869 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4870 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 4871 } 4872 return (PF_PASS); 4873 break; 4874 } 4875 #endif /* INET */ 4876 #ifdef INET6 4877 case IPPROTO_ICMPV6: { 4878 struct icmp6_hdr iih; 4879 4880 if (!pf_pull_hdr(m, off2, &iih, 4881 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 4882 DPFPRINTF(PF_DEBUG_MISC, 4883 ("pf: ICMP error message too short " 4884 "(icmp6)\n")); 4885 return (PF_DROP); 4886 } 4887 4888 key.af = pd2.af; 4889 key.proto = IPPROTO_ICMPV6; 4890 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4891 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4892 key.port[0] = key.port[1] = iih.icmp6_id; 4893 4894 STATE_LOOKUP(kif, &key, direction, *state, pd); 4895 4896 /* translate source/destination address, if necessary */ 4897 if ((*state)->key[PF_SK_WIRE] != 4898 (*state)->key[PF_SK_STACK]) { 4899 struct pf_state_key *nk = 4900 (*state)->key[pd->didx]; 4901 4902 if (PF_ANEQ(pd2.src, 4903 &nk->addr[pd2.sidx], pd2.af) || 4904 nk->port[pd2.sidx] != iih.icmp6_id) 4905 pf_change_icmp(pd2.src, &iih.icmp6_id, 4906 daddr, &nk->addr[pd2.sidx], 4907 nk->port[pd2.sidx], NULL, 4908 pd2.ip_sum, icmpsum, 4909 pd->ip_sum, 0, AF_INET6); 4910 4911 if (PF_ANEQ(pd2.dst, 4912 &nk->addr[pd2.didx], pd2.af) || 4913 nk->port[pd2.didx] != iih.icmp6_id) 4914 pf_change_icmp(pd2.dst, &iih.icmp6_id, 4915 NULL, /* XXX Inbound NAT? */ 4916 &nk->addr[pd2.didx], 4917 nk->port[pd2.didx], NULL, 4918 pd2.ip_sum, icmpsum, 4919 pd->ip_sum, 0, AF_INET6); 4920 4921 m_copyback(m, off, sizeof(struct icmp6_hdr), 4922 (caddr_t)pd->hdr.icmp6); 4923 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 4924 m_copyback(m, off2, sizeof(struct icmp6_hdr), 4925 (caddr_t)&iih); 4926 } 4927 return (PF_PASS); 4928 break; 4929 } 4930 #endif /* INET6 */ 4931 default: { 4932 key.af = pd2.af; 4933 key.proto = pd2.proto; 4934 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4935 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4936 key.port[0] = key.port[1] = 0; 4937 4938 STATE_LOOKUP(kif, &key, direction, *state, pd); 4939 4940 /* translate source/destination address, if necessary */ 4941 if ((*state)->key[PF_SK_WIRE] != 4942 (*state)->key[PF_SK_STACK]) { 4943 struct pf_state_key *nk = 4944 (*state)->key[pd->didx]; 4945 4946 if (PF_ANEQ(pd2.src, 4947 &nk->addr[pd2.sidx], pd2.af)) 4948 pf_change_icmp(pd2.src, NULL, daddr, 4949 &nk->addr[pd2.sidx], 0, NULL, 4950 pd2.ip_sum, icmpsum, 4951 pd->ip_sum, 0, pd2.af); 4952 4953 if (PF_ANEQ(pd2.dst, 4954 &nk->addr[pd2.didx], pd2.af)) 4955 pf_change_icmp(pd2.src, NULL, 4956 NULL, /* XXX Inbound NAT? */ 4957 &nk->addr[pd2.didx], 0, NULL, 4958 pd2.ip_sum, icmpsum, 4959 pd->ip_sum, 0, pd2.af); 4960 4961 switch (pd2.af) { 4962 #ifdef INET 4963 case AF_INET: 4964 m_copyback(m, off, ICMP_MINLEN, 4965 (caddr_t)pd->hdr.icmp); 4966 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4967 break; 4968 #endif /* INET */ 4969 #ifdef INET6 4970 case AF_INET6: 4971 m_copyback(m, off, 4972 sizeof(struct icmp6_hdr), 4973 (caddr_t )pd->hdr.icmp6); 4974 m_copyback(m, ipoff2, sizeof(h2_6), 4975 (caddr_t )&h2_6); 4976 break; 4977 #endif /* INET6 */ 4978 } 4979 } 4980 return (PF_PASS); 4981 break; 4982 } 4983 } 4984 } 4985 } 4986 4987 static int 4988 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 4989 struct mbuf *m, struct pf_pdesc *pd) 4990 { 4991 struct pf_state_peer *src, *dst; 4992 struct pf_state_key_cmp key; 4993 4994 bzero(&key, sizeof(key)); 4995 key.af = pd->af; 4996 key.proto = pd->proto; 4997 if (direction == PF_IN) { 4998 PF_ACPY(&key.addr[0], pd->src, key.af); 4999 PF_ACPY(&key.addr[1], pd->dst, key.af); 5000 key.port[0] = key.port[1] = 0; 5001 } else { 5002 PF_ACPY(&key.addr[1], pd->src, key.af); 5003 PF_ACPY(&key.addr[0], pd->dst, key.af); 5004 key.port[1] = key.port[0] = 0; 5005 } 5006 5007 STATE_LOOKUP(kif, &key, direction, *state, pd); 5008 5009 if (direction == (*state)->direction) { 5010 src = &(*state)->src; 5011 dst = &(*state)->dst; 5012 } else { 5013 src = &(*state)->dst; 5014 dst = &(*state)->src; 5015 } 5016 5017 /* update states */ 5018 if (src->state < PFOTHERS_SINGLE) 5019 src->state = PFOTHERS_SINGLE; 5020 if (dst->state == PFOTHERS_SINGLE) 5021 dst->state = PFOTHERS_MULTIPLE; 5022 5023 /* update expire time */ 5024 (*state)->expire = time_uptime; 5025 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5026 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5027 else 5028 (*state)->timeout = PFTM_OTHER_SINGLE; 5029 5030 /* translate source/destination address, if necessary */ 5031 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5032 struct pf_state_key *nk = (*state)->key[pd->didx]; 5033 5034 KASSERT(nk, ("%s: nk is null", __func__)); 5035 KASSERT(pd, ("%s: pd is null", __func__)); 5036 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5037 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5038 switch (pd->af) { 5039 #ifdef INET 5040 case AF_INET: 5041 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5042 pf_change_a(&pd->src->v4.s_addr, 5043 pd->ip_sum, 5044 nk->addr[pd->sidx].v4.s_addr, 5045 0); 5046 5047 5048 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5049 pf_change_a(&pd->dst->v4.s_addr, 5050 pd->ip_sum, 5051 nk->addr[pd->didx].v4.s_addr, 5052 0); 5053 5054 break; 5055 #endif /* INET */ 5056 #ifdef INET6 5057 case AF_INET6: 5058 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5059 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5060 5061 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5062 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5063 #endif /* INET6 */ 5064 } 5065 } 5066 return (PF_PASS); 5067 } 5068 5069 /* 5070 * ipoff and off are measured from the start of the mbuf chain. 5071 * h must be at "ipoff" on the mbuf chain. 5072 */ 5073 void * 5074 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5075 u_short *actionp, u_short *reasonp, sa_family_t af) 5076 { 5077 switch (af) { 5078 #ifdef INET 5079 case AF_INET: { 5080 struct ip *h = mtod(m, struct ip *); 5081 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5082 5083 if (fragoff) { 5084 if (fragoff >= len) 5085 ACTION_SET(actionp, PF_PASS); 5086 else { 5087 ACTION_SET(actionp, PF_DROP); 5088 REASON_SET(reasonp, PFRES_FRAG); 5089 } 5090 return (NULL); 5091 } 5092 if (m->m_pkthdr.len < off + len || 5093 ntohs(h->ip_len) < off + len) { 5094 ACTION_SET(actionp, PF_DROP); 5095 REASON_SET(reasonp, PFRES_SHORT); 5096 return (NULL); 5097 } 5098 break; 5099 } 5100 #endif /* INET */ 5101 #ifdef INET6 5102 case AF_INET6: { 5103 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5104 5105 if (m->m_pkthdr.len < off + len || 5106 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5107 (unsigned)(off + len)) { 5108 ACTION_SET(actionp, PF_DROP); 5109 REASON_SET(reasonp, PFRES_SHORT); 5110 return (NULL); 5111 } 5112 break; 5113 } 5114 #endif /* INET6 */ 5115 } 5116 m_copydata(m, off, len, p); 5117 return (p); 5118 } 5119 5120 int 5121 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5122 int rtableid) 5123 { 5124 #ifdef RADIX_MPATH 5125 struct radix_node_head *rnh; 5126 #endif 5127 struct sockaddr_in *dst; 5128 int ret = 1; 5129 int check_mpath; 5130 #ifdef INET6 5131 struct sockaddr_in6 *dst6; 5132 struct route_in6 ro; 5133 #else 5134 struct route ro; 5135 #endif 5136 struct radix_node *rn; 5137 struct rtentry *rt; 5138 struct ifnet *ifp; 5139 5140 check_mpath = 0; 5141 #ifdef RADIX_MPATH 5142 /* XXX: stick to table 0 for now */ 5143 rnh = rt_tables_get_rnh(0, af); 5144 if (rnh != NULL && rn_mpath_capable(rnh)) 5145 check_mpath = 1; 5146 #endif 5147 bzero(&ro, sizeof(ro)); 5148 switch (af) { 5149 case AF_INET: 5150 dst = satosin(&ro.ro_dst); 5151 dst->sin_family = AF_INET; 5152 dst->sin_len = sizeof(*dst); 5153 dst->sin_addr = addr->v4; 5154 break; 5155 #ifdef INET6 5156 case AF_INET6: 5157 /* 5158 * Skip check for addresses with embedded interface scope, 5159 * as they would always match anyway. 5160 */ 5161 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5162 goto out; 5163 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5164 dst6->sin6_family = AF_INET6; 5165 dst6->sin6_len = sizeof(*dst6); 5166 dst6->sin6_addr = addr->v6; 5167 break; 5168 #endif /* INET6 */ 5169 default: 5170 return (0); 5171 } 5172 5173 /* Skip checks for ipsec interfaces */ 5174 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5175 goto out; 5176 5177 switch (af) { 5178 #ifdef INET6 5179 case AF_INET6: 5180 in6_rtalloc_ign(&ro, 0, rtableid); 5181 break; 5182 #endif 5183 #ifdef INET 5184 case AF_INET: 5185 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5186 break; 5187 #endif 5188 default: 5189 rtalloc_ign((struct route *)&ro, 0); /* No/default FIB. */ 5190 break; 5191 } 5192 5193 if (ro.ro_rt != NULL) { 5194 /* No interface given, this is a no-route check */ 5195 if (kif == NULL) 5196 goto out; 5197 5198 if (kif->pfik_ifp == NULL) { 5199 ret = 0; 5200 goto out; 5201 } 5202 5203 /* Perform uRPF check if passed input interface */ 5204 ret = 0; 5205 rn = (struct radix_node *)ro.ro_rt; 5206 do { 5207 rt = (struct rtentry *)rn; 5208 ifp = rt->rt_ifp; 5209 5210 if (kif->pfik_ifp == ifp) 5211 ret = 1; 5212 #ifdef RADIX_MPATH 5213 rn = rn_mpath_next(rn); 5214 #endif 5215 } while (check_mpath == 1 && rn != NULL && ret == 0); 5216 } else 5217 ret = 0; 5218 out: 5219 if (ro.ro_rt != NULL) 5220 RTFREE(ro.ro_rt); 5221 return (ret); 5222 } 5223 5224 #ifdef INET 5225 static void 5226 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5227 struct pf_state *s, struct pf_pdesc *pd) 5228 { 5229 struct mbuf *m0, *m1; 5230 struct sockaddr_in dst; 5231 struct ip *ip; 5232 struct ifnet *ifp = NULL; 5233 struct pf_addr naddr; 5234 struct pf_src_node *sn = NULL; 5235 int error = 0; 5236 uint16_t ip_len, ip_off; 5237 5238 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5239 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5240 __func__)); 5241 5242 if ((pd->pf_mtag == NULL && 5243 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5244 pd->pf_mtag->routed++ > 3) { 5245 m0 = *m; 5246 *m = NULL; 5247 goto bad_locked; 5248 } 5249 5250 if (r->rt == PF_DUPTO) { 5251 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5252 if (s) 5253 PF_STATE_UNLOCK(s); 5254 return; 5255 } 5256 } else { 5257 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5258 if (s) 5259 PF_STATE_UNLOCK(s); 5260 return; 5261 } 5262 m0 = *m; 5263 } 5264 5265 ip = mtod(m0, struct ip *); 5266 5267 bzero(&dst, sizeof(dst)); 5268 dst.sin_family = AF_INET; 5269 dst.sin_len = sizeof(dst); 5270 dst.sin_addr = ip->ip_dst; 5271 5272 if (r->rt == PF_FASTROUTE) { 5273 struct rtentry *rt; 5274 5275 if (s) 5276 PF_STATE_UNLOCK(s); 5277 rt = rtalloc1_fib(sintosa(&dst), 0, 0, M_GETFIB(m0)); 5278 if (rt == NULL) { 5279 KMOD_IPSTAT_INC(ips_noroute); 5280 error = EHOSTUNREACH; 5281 goto bad; 5282 } 5283 5284 ifp = rt->rt_ifp; 5285 counter_u64_add(rt->rt_pksent, 1); 5286 5287 if (rt->rt_flags & RTF_GATEWAY) 5288 bcopy(satosin(rt->rt_gateway), &dst, sizeof(dst)); 5289 RTFREE_LOCKED(rt); 5290 } else { 5291 if (TAILQ_EMPTY(&r->rpool.list)) { 5292 DPFPRINTF(PF_DEBUG_URGENT, 5293 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5294 goto bad_locked; 5295 } 5296 if (s == NULL) { 5297 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5298 &naddr, NULL, &sn); 5299 if (!PF_AZERO(&naddr, AF_INET)) 5300 dst.sin_addr.s_addr = naddr.v4.s_addr; 5301 ifp = r->rpool.cur->kif ? 5302 r->rpool.cur->kif->pfik_ifp : NULL; 5303 } else { 5304 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5305 dst.sin_addr.s_addr = 5306 s->rt_addr.v4.s_addr; 5307 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5308 PF_STATE_UNLOCK(s); 5309 } 5310 } 5311 if (ifp == NULL) 5312 goto bad; 5313 5314 if (oifp != ifp) { 5315 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5316 goto bad; 5317 else if (m0 == NULL) 5318 goto done; 5319 if (m0->m_len < sizeof(struct ip)) { 5320 DPFPRINTF(PF_DEBUG_URGENT, 5321 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5322 goto bad; 5323 } 5324 ip = mtod(m0, struct ip *); 5325 } 5326 5327 if (ifp->if_flags & IFF_LOOPBACK) 5328 m0->m_flags |= M_SKIP_FIREWALL; 5329 5330 ip_len = ntohs(ip->ip_len); 5331 ip_off = ntohs(ip->ip_off); 5332 5333 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5334 m0->m_pkthdr.csum_flags |= CSUM_IP; 5335 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5336 in_delayed_cksum(m0); 5337 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5338 } 5339 #ifdef SCTP 5340 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5341 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5342 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5343 } 5344 #endif 5345 5346 /* 5347 * If small enough for interface, or the interface will take 5348 * care of the fragmentation for us, we can just send directly. 5349 */ 5350 if (ip_len <= ifp->if_mtu || 5351 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 || 5352 ((ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) { 5353 ip->ip_sum = 0; 5354 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5355 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5356 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5357 } 5358 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5359 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5360 goto done; 5361 } 5362 5363 /* Balk when DF bit is set or the interface didn't support TSO. */ 5364 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5365 error = EMSGSIZE; 5366 KMOD_IPSTAT_INC(ips_cantfrag); 5367 if (r->rt != PF_DUPTO) { 5368 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5369 ifp->if_mtu); 5370 goto done; 5371 } else 5372 goto bad; 5373 } 5374 5375 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5376 if (error) 5377 goto bad; 5378 5379 for (; m0; m0 = m1) { 5380 m1 = m0->m_nextpkt; 5381 m0->m_nextpkt = NULL; 5382 if (error == 0) { 5383 m_clrprotoflags(m0); 5384 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5385 } else 5386 m_freem(m0); 5387 } 5388 5389 if (error == 0) 5390 KMOD_IPSTAT_INC(ips_fragmented); 5391 5392 done: 5393 if (r->rt != PF_DUPTO) 5394 *m = NULL; 5395 return; 5396 5397 bad_locked: 5398 if (s) 5399 PF_STATE_UNLOCK(s); 5400 bad: 5401 m_freem(m0); 5402 goto done; 5403 } 5404 #endif /* INET */ 5405 5406 #ifdef INET6 5407 static void 5408 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5409 struct pf_state *s, struct pf_pdesc *pd) 5410 { 5411 struct mbuf *m0; 5412 struct sockaddr_in6 dst; 5413 struct ip6_hdr *ip6; 5414 struct ifnet *ifp = NULL; 5415 struct pf_addr naddr; 5416 struct pf_src_node *sn = NULL; 5417 5418 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5419 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5420 __func__)); 5421 5422 if ((pd->pf_mtag == NULL && 5423 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5424 pd->pf_mtag->routed++ > 3) { 5425 m0 = *m; 5426 *m = NULL; 5427 goto bad_locked; 5428 } 5429 5430 if (r->rt == PF_DUPTO) { 5431 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5432 if (s) 5433 PF_STATE_UNLOCK(s); 5434 return; 5435 } 5436 } else { 5437 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5438 if (s) 5439 PF_STATE_UNLOCK(s); 5440 return; 5441 } 5442 m0 = *m; 5443 } 5444 5445 ip6 = mtod(m0, struct ip6_hdr *); 5446 5447 bzero(&dst, sizeof(dst)); 5448 dst.sin6_family = AF_INET6; 5449 dst.sin6_len = sizeof(dst); 5450 dst.sin6_addr = ip6->ip6_dst; 5451 5452 /* Cheat. XXX why only in the v6 case??? */ 5453 if (r->rt == PF_FASTROUTE) { 5454 if (s) 5455 PF_STATE_UNLOCK(s); 5456 m0->m_flags |= M_SKIP_FIREWALL; 5457 ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL); 5458 return; 5459 } 5460 5461 if (TAILQ_EMPTY(&r->rpool.list)) { 5462 DPFPRINTF(PF_DEBUG_URGENT, 5463 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5464 goto bad_locked; 5465 } 5466 if (s == NULL) { 5467 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5468 &naddr, NULL, &sn); 5469 if (!PF_AZERO(&naddr, AF_INET6)) 5470 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5471 &naddr, AF_INET6); 5472 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5473 } else { 5474 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5475 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5476 &s->rt_addr, AF_INET6); 5477 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5478 } 5479 5480 if (s) 5481 PF_STATE_UNLOCK(s); 5482 5483 if (ifp == NULL) 5484 goto bad; 5485 5486 if (oifp != ifp) { 5487 if (pf_test6(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5488 goto bad; 5489 else if (m0 == NULL) 5490 goto done; 5491 if (m0->m_len < sizeof(struct ip6_hdr)) { 5492 DPFPRINTF(PF_DEBUG_URGENT, 5493 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5494 __func__)); 5495 goto bad; 5496 } 5497 ip6 = mtod(m0, struct ip6_hdr *); 5498 } 5499 5500 if (ifp->if_flags & IFF_LOOPBACK) 5501 m0->m_flags |= M_SKIP_FIREWALL; 5502 5503 /* 5504 * If the packet is too large for the outgoing interface, 5505 * send back an icmp6 error. 5506 */ 5507 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5508 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5509 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5510 nd6_output(ifp, ifp, m0, &dst, NULL); 5511 else { 5512 in6_ifstat_inc(ifp, ifs6_in_toobig); 5513 if (r->rt != PF_DUPTO) 5514 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5515 else 5516 goto bad; 5517 } 5518 5519 done: 5520 if (r->rt != PF_DUPTO) 5521 *m = NULL; 5522 return; 5523 5524 bad_locked: 5525 if (s) 5526 PF_STATE_UNLOCK(s); 5527 bad: 5528 m_freem(m0); 5529 goto done; 5530 } 5531 #endif /* INET6 */ 5532 5533 /* 5534 * FreeBSD supports cksum offloads for the following drivers. 5535 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5536 * ti(4), txp(4), xl(4) 5537 * 5538 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5539 * network driver performed cksum including pseudo header, need to verify 5540 * csum_data 5541 * CSUM_DATA_VALID : 5542 * network driver performed cksum, needs to additional pseudo header 5543 * cksum computation with partial csum_data(i.e. lack of H/W support for 5544 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5545 * 5546 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5547 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5548 * TCP/UDP layer. 5549 * Also, set csum_data to 0xffff to force cksum validation. 5550 */ 5551 static int 5552 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5553 { 5554 u_int16_t sum = 0; 5555 int hw_assist = 0; 5556 struct ip *ip; 5557 5558 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5559 return (1); 5560 if (m->m_pkthdr.len < off + len) 5561 return (1); 5562 5563 switch (p) { 5564 case IPPROTO_TCP: 5565 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5566 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5567 sum = m->m_pkthdr.csum_data; 5568 } else { 5569 ip = mtod(m, struct ip *); 5570 sum = in_pseudo(ip->ip_src.s_addr, 5571 ip->ip_dst.s_addr, htonl((u_short)len + 5572 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5573 } 5574 sum ^= 0xffff; 5575 ++hw_assist; 5576 } 5577 break; 5578 case IPPROTO_UDP: 5579 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5580 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5581 sum = m->m_pkthdr.csum_data; 5582 } else { 5583 ip = mtod(m, struct ip *); 5584 sum = in_pseudo(ip->ip_src.s_addr, 5585 ip->ip_dst.s_addr, htonl((u_short)len + 5586 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5587 } 5588 sum ^= 0xffff; 5589 ++hw_assist; 5590 } 5591 break; 5592 case IPPROTO_ICMP: 5593 #ifdef INET6 5594 case IPPROTO_ICMPV6: 5595 #endif /* INET6 */ 5596 break; 5597 default: 5598 return (1); 5599 } 5600 5601 if (!hw_assist) { 5602 switch (af) { 5603 case AF_INET: 5604 if (p == IPPROTO_ICMP) { 5605 if (m->m_len < off) 5606 return (1); 5607 m->m_data += off; 5608 m->m_len -= off; 5609 sum = in_cksum(m, len); 5610 m->m_data -= off; 5611 m->m_len += off; 5612 } else { 5613 if (m->m_len < sizeof(struct ip)) 5614 return (1); 5615 sum = in4_cksum(m, p, off, len); 5616 } 5617 break; 5618 #ifdef INET6 5619 case AF_INET6: 5620 if (m->m_len < sizeof(struct ip6_hdr)) 5621 return (1); 5622 sum = in6_cksum(m, p, off, len); 5623 break; 5624 #endif /* INET6 */ 5625 default: 5626 return (1); 5627 } 5628 } 5629 if (sum) { 5630 switch (p) { 5631 case IPPROTO_TCP: 5632 { 5633 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5634 break; 5635 } 5636 case IPPROTO_UDP: 5637 { 5638 KMOD_UDPSTAT_INC(udps_badsum); 5639 break; 5640 } 5641 #ifdef INET 5642 case IPPROTO_ICMP: 5643 { 5644 KMOD_ICMPSTAT_INC(icps_checksum); 5645 break; 5646 } 5647 #endif 5648 #ifdef INET6 5649 case IPPROTO_ICMPV6: 5650 { 5651 KMOD_ICMP6STAT_INC(icp6s_checksum); 5652 break; 5653 } 5654 #endif /* INET6 */ 5655 } 5656 return (1); 5657 } else { 5658 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5659 m->m_pkthdr.csum_flags |= 5660 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5661 m->m_pkthdr.csum_data = 0xffff; 5662 } 5663 } 5664 return (0); 5665 } 5666 5667 5668 #ifdef INET 5669 int 5670 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5671 { 5672 struct pfi_kif *kif; 5673 u_short action, reason = 0, log = 0; 5674 struct mbuf *m = *m0; 5675 struct ip *h = NULL; 5676 struct m_tag *ipfwtag; 5677 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5678 struct pf_state *s = NULL; 5679 struct pf_ruleset *ruleset = NULL; 5680 struct pf_pdesc pd; 5681 int off, dirndx, pqid = 0; 5682 5683 M_ASSERTPKTHDR(m); 5684 5685 if (!V_pf_status.running) 5686 return (PF_PASS); 5687 5688 memset(&pd, 0, sizeof(pd)); 5689 5690 kif = (struct pfi_kif *)ifp->if_pf_kif; 5691 5692 if (kif == NULL) { 5693 DPFPRINTF(PF_DEBUG_URGENT, 5694 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5695 return (PF_DROP); 5696 } 5697 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5698 return (PF_PASS); 5699 5700 if (m->m_flags & M_SKIP_FIREWALL) 5701 return (PF_PASS); 5702 5703 pd.pf_mtag = pf_find_mtag(m); 5704 5705 PF_RULES_RLOCK(); 5706 5707 if (ip_divert_ptr != NULL && 5708 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5709 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5710 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5711 if (pd.pf_mtag == NULL && 5712 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5713 action = PF_DROP; 5714 goto done; 5715 } 5716 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5717 m_tag_delete(m, ipfwtag); 5718 } 5719 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5720 m->m_flags |= M_FASTFWD_OURS; 5721 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5722 } 5723 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5724 /* We do IP header normalization and packet reassembly here */ 5725 action = PF_DROP; 5726 goto done; 5727 } 5728 m = *m0; /* pf_normalize messes with m0 */ 5729 h = mtod(m, struct ip *); 5730 5731 off = h->ip_hl << 2; 5732 if (off < (int)sizeof(struct ip)) { 5733 action = PF_DROP; 5734 REASON_SET(&reason, PFRES_SHORT); 5735 log = 1; 5736 goto done; 5737 } 5738 5739 pd.src = (struct pf_addr *)&h->ip_src; 5740 pd.dst = (struct pf_addr *)&h->ip_dst; 5741 pd.sport = pd.dport = NULL; 5742 pd.ip_sum = &h->ip_sum; 5743 pd.proto_sum = NULL; 5744 pd.proto = h->ip_p; 5745 pd.dir = dir; 5746 pd.sidx = (dir == PF_IN) ? 0 : 1; 5747 pd.didx = (dir == PF_IN) ? 1 : 0; 5748 pd.af = AF_INET; 5749 pd.tos = h->ip_tos; 5750 pd.tot_len = ntohs(h->ip_len); 5751 5752 /* handle fragments that didn't get reassembled by normalization */ 5753 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5754 action = pf_test_fragment(&r, dir, kif, m, h, 5755 &pd, &a, &ruleset); 5756 goto done; 5757 } 5758 5759 switch (h->ip_p) { 5760 5761 case IPPROTO_TCP: { 5762 struct tcphdr th; 5763 5764 pd.hdr.tcp = &th; 5765 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5766 &action, &reason, AF_INET)) { 5767 log = action != PF_PASS; 5768 goto done; 5769 } 5770 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5771 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5772 pqid = 1; 5773 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5774 if (action == PF_DROP) 5775 goto done; 5776 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5777 &reason); 5778 if (action == PF_PASS) { 5779 if (pfsync_update_state_ptr != NULL) 5780 pfsync_update_state_ptr(s); 5781 r = s->rule.ptr; 5782 a = s->anchor.ptr; 5783 log = s->log; 5784 } else if (s == NULL) 5785 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5786 &a, &ruleset, inp); 5787 break; 5788 } 5789 5790 case IPPROTO_UDP: { 5791 struct udphdr uh; 5792 5793 pd.hdr.udp = &uh; 5794 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5795 &action, &reason, AF_INET)) { 5796 log = action != PF_PASS; 5797 goto done; 5798 } 5799 if (uh.uh_dport == 0 || 5800 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5801 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5802 action = PF_DROP; 5803 REASON_SET(&reason, PFRES_SHORT); 5804 goto done; 5805 } 5806 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5807 if (action == PF_PASS) { 5808 if (pfsync_update_state_ptr != NULL) 5809 pfsync_update_state_ptr(s); 5810 r = s->rule.ptr; 5811 a = s->anchor.ptr; 5812 log = s->log; 5813 } else if (s == NULL) 5814 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5815 &a, &ruleset, inp); 5816 break; 5817 } 5818 5819 case IPPROTO_ICMP: { 5820 struct icmp ih; 5821 5822 pd.hdr.icmp = &ih; 5823 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 5824 &action, &reason, AF_INET)) { 5825 log = action != PF_PASS; 5826 goto done; 5827 } 5828 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 5829 &reason); 5830 if (action == PF_PASS) { 5831 if (pfsync_update_state_ptr != NULL) 5832 pfsync_update_state_ptr(s); 5833 r = s->rule.ptr; 5834 a = s->anchor.ptr; 5835 log = s->log; 5836 } else if (s == NULL) 5837 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5838 &a, &ruleset, inp); 5839 break; 5840 } 5841 5842 #ifdef INET6 5843 case IPPROTO_ICMPV6: { 5844 action = PF_DROP; 5845 DPFPRINTF(PF_DEBUG_MISC, 5846 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 5847 goto done; 5848 } 5849 #endif 5850 5851 default: 5852 action = pf_test_state_other(&s, dir, kif, m, &pd); 5853 if (action == PF_PASS) { 5854 if (pfsync_update_state_ptr != NULL) 5855 pfsync_update_state_ptr(s); 5856 r = s->rule.ptr; 5857 a = s->anchor.ptr; 5858 log = s->log; 5859 } else if (s == NULL) 5860 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5861 &a, &ruleset, inp); 5862 break; 5863 } 5864 5865 done: 5866 PF_RULES_RUNLOCK(); 5867 if (action == PF_PASS && h->ip_hl > 5 && 5868 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 5869 action = PF_DROP; 5870 REASON_SET(&reason, PFRES_IPOPTIONS); 5871 log = 1; 5872 DPFPRINTF(PF_DEBUG_MISC, 5873 ("pf: dropping packet with ip options\n")); 5874 } 5875 5876 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 5877 action = PF_DROP; 5878 REASON_SET(&reason, PFRES_MEMORY); 5879 } 5880 if (r->rtableid >= 0) 5881 M_SETFIB(m, r->rtableid); 5882 5883 #ifdef ALTQ 5884 if (action == PF_PASS && r->qid) { 5885 if (pd.pf_mtag == NULL && 5886 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5887 action = PF_DROP; 5888 REASON_SET(&reason, PFRES_MEMORY); 5889 } 5890 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 5891 pd.pf_mtag->qid = r->pqid; 5892 else 5893 pd.pf_mtag->qid = r->qid; 5894 /* add hints for ecn */ 5895 pd.pf_mtag->hdr = h; 5896 5897 } 5898 #endif /* ALTQ */ 5899 5900 /* 5901 * connections redirected to loopback should not match sockets 5902 * bound specifically to loopback due to security implications, 5903 * see tcp_input() and in_pcblookup_listen(). 5904 */ 5905 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 5906 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 5907 (s->nat_rule.ptr->action == PF_RDR || 5908 s->nat_rule.ptr->action == PF_BINAT) && 5909 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 5910 m->m_flags |= M_SKIP_FIREWALL; 5911 5912 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 5913 !PACKET_LOOPED(&pd)) { 5914 5915 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 5916 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 5917 if (ipfwtag != NULL) { 5918 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 5919 ntohs(r->divert.port); 5920 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 5921 5922 if (s) 5923 PF_STATE_UNLOCK(s); 5924 5925 m_tag_prepend(m, ipfwtag); 5926 if (m->m_flags & M_FASTFWD_OURS) { 5927 if (pd.pf_mtag == NULL && 5928 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5929 action = PF_DROP; 5930 REASON_SET(&reason, PFRES_MEMORY); 5931 log = 1; 5932 DPFPRINTF(PF_DEBUG_MISC, 5933 ("pf: failed to allocate tag\n")); 5934 } 5935 pd.pf_mtag->flags |= PF_FASTFWD_OURS_PRESENT; 5936 m->m_flags &= ~M_FASTFWD_OURS; 5937 } 5938 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 5939 *m0 = NULL; 5940 5941 return (action); 5942 } else { 5943 /* XXX: ipfw has the same behaviour! */ 5944 action = PF_DROP; 5945 REASON_SET(&reason, PFRES_MEMORY); 5946 log = 1; 5947 DPFPRINTF(PF_DEBUG_MISC, 5948 ("pf: failed to allocate divert tag\n")); 5949 } 5950 } 5951 5952 if (log) { 5953 struct pf_rule *lr; 5954 5955 if (s != NULL && s->nat_rule.ptr != NULL && 5956 s->nat_rule.ptr->log & PF_LOG_ALL) 5957 lr = s->nat_rule.ptr; 5958 else 5959 lr = r; 5960 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 5961 (s == NULL)); 5962 } 5963 5964 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 5965 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 5966 5967 if (action == PF_PASS || r->action == PF_DROP) { 5968 dirndx = (dir == PF_OUT); 5969 r->packets[dirndx]++; 5970 r->bytes[dirndx] += pd.tot_len; 5971 if (a != NULL) { 5972 a->packets[dirndx]++; 5973 a->bytes[dirndx] += pd.tot_len; 5974 } 5975 if (s != NULL) { 5976 if (s->nat_rule.ptr != NULL) { 5977 s->nat_rule.ptr->packets[dirndx]++; 5978 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 5979 } 5980 if (s->src_node != NULL) { 5981 s->src_node->packets[dirndx]++; 5982 s->src_node->bytes[dirndx] += pd.tot_len; 5983 } 5984 if (s->nat_src_node != NULL) { 5985 s->nat_src_node->packets[dirndx]++; 5986 s->nat_src_node->bytes[dirndx] += pd.tot_len; 5987 } 5988 dirndx = (dir == s->direction) ? 0 : 1; 5989 s->packets[dirndx]++; 5990 s->bytes[dirndx] += pd.tot_len; 5991 } 5992 tr = r; 5993 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 5994 if (nr != NULL && r == &V_pf_default_rule) 5995 tr = nr; 5996 if (tr->src.addr.type == PF_ADDR_TABLE) 5997 pfr_update_stats(tr->src.addr.p.tbl, 5998 (s == NULL) ? pd.src : 5999 &s->key[(s->direction == PF_IN)]-> 6000 addr[(s->direction == PF_OUT)], 6001 pd.af, pd.tot_len, dir == PF_OUT, 6002 r->action == PF_PASS, tr->src.neg); 6003 if (tr->dst.addr.type == PF_ADDR_TABLE) 6004 pfr_update_stats(tr->dst.addr.p.tbl, 6005 (s == NULL) ? pd.dst : 6006 &s->key[(s->direction == PF_IN)]-> 6007 addr[(s->direction == PF_IN)], 6008 pd.af, pd.tot_len, dir == PF_OUT, 6009 r->action == PF_PASS, tr->dst.neg); 6010 } 6011 6012 switch (action) { 6013 case PF_SYNPROXY_DROP: 6014 m_freem(*m0); 6015 case PF_DEFER: 6016 *m0 = NULL; 6017 action = PF_PASS; 6018 break; 6019 default: 6020 /* pf_route() returns unlocked. */ 6021 if (r->rt) { 6022 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 6023 return (action); 6024 } 6025 break; 6026 } 6027 if (s) 6028 PF_STATE_UNLOCK(s); 6029 6030 return (action); 6031 } 6032 #endif /* INET */ 6033 6034 #ifdef INET6 6035 int 6036 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6037 { 6038 struct pfi_kif *kif; 6039 u_short action, reason = 0, log = 0; 6040 struct mbuf *m = *m0, *n = NULL; 6041 struct ip6_hdr *h = NULL; 6042 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6043 struct pf_state *s = NULL; 6044 struct pf_ruleset *ruleset = NULL; 6045 struct pf_pdesc pd; 6046 int off, terminal = 0, dirndx, rh_cnt = 0; 6047 6048 M_ASSERTPKTHDR(m); 6049 6050 if (!V_pf_status.running) 6051 return (PF_PASS); 6052 6053 memset(&pd, 0, sizeof(pd)); 6054 pd.pf_mtag = pf_find_mtag(m); 6055 6056 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6057 return (PF_PASS); 6058 6059 kif = (struct pfi_kif *)ifp->if_pf_kif; 6060 if (kif == NULL) { 6061 DPFPRINTF(PF_DEBUG_URGENT, 6062 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6063 return (PF_DROP); 6064 } 6065 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6066 return (PF_PASS); 6067 6068 PF_RULES_RLOCK(); 6069 6070 /* We do IP header normalization and packet reassembly here */ 6071 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6072 action = PF_DROP; 6073 goto done; 6074 } 6075 m = *m0; /* pf_normalize messes with m0 */ 6076 h = mtod(m, struct ip6_hdr *); 6077 6078 #if 1 6079 /* 6080 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6081 * will do something bad, so drop the packet for now. 6082 */ 6083 if (htons(h->ip6_plen) == 0) { 6084 action = PF_DROP; 6085 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6086 goto done; 6087 } 6088 #endif 6089 6090 pd.src = (struct pf_addr *)&h->ip6_src; 6091 pd.dst = (struct pf_addr *)&h->ip6_dst; 6092 pd.sport = pd.dport = NULL; 6093 pd.ip_sum = NULL; 6094 pd.proto_sum = NULL; 6095 pd.dir = dir; 6096 pd.sidx = (dir == PF_IN) ? 0 : 1; 6097 pd.didx = (dir == PF_IN) ? 1 : 0; 6098 pd.af = AF_INET6; 6099 pd.tos = 0; 6100 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6101 6102 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6103 pd.proto = h->ip6_nxt; 6104 do { 6105 switch (pd.proto) { 6106 case IPPROTO_FRAGMENT: 6107 action = pf_test_fragment(&r, dir, kif, m, h, 6108 &pd, &a, &ruleset); 6109 if (action == PF_DROP) 6110 REASON_SET(&reason, PFRES_FRAG); 6111 goto done; 6112 case IPPROTO_ROUTING: { 6113 struct ip6_rthdr rthdr; 6114 6115 if (rh_cnt++) { 6116 DPFPRINTF(PF_DEBUG_MISC, 6117 ("pf: IPv6 more than one rthdr\n")); 6118 action = PF_DROP; 6119 REASON_SET(&reason, PFRES_IPOPTIONS); 6120 log = 1; 6121 goto done; 6122 } 6123 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6124 &reason, pd.af)) { 6125 DPFPRINTF(PF_DEBUG_MISC, 6126 ("pf: IPv6 short rthdr\n")); 6127 action = PF_DROP; 6128 REASON_SET(&reason, PFRES_SHORT); 6129 log = 1; 6130 goto done; 6131 } 6132 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6133 DPFPRINTF(PF_DEBUG_MISC, 6134 ("pf: IPv6 rthdr0\n")); 6135 action = PF_DROP; 6136 REASON_SET(&reason, PFRES_IPOPTIONS); 6137 log = 1; 6138 goto done; 6139 } 6140 /* FALLTHROUGH */ 6141 } 6142 case IPPROTO_AH: 6143 case IPPROTO_HOPOPTS: 6144 case IPPROTO_DSTOPTS: { 6145 /* get next header and header length */ 6146 struct ip6_ext opt6; 6147 6148 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6149 NULL, &reason, pd.af)) { 6150 DPFPRINTF(PF_DEBUG_MISC, 6151 ("pf: IPv6 short opt\n")); 6152 action = PF_DROP; 6153 log = 1; 6154 goto done; 6155 } 6156 if (pd.proto == IPPROTO_AH) 6157 off += (opt6.ip6e_len + 2) * 4; 6158 else 6159 off += (opt6.ip6e_len + 1) * 8; 6160 pd.proto = opt6.ip6e_nxt; 6161 /* goto the next header */ 6162 break; 6163 } 6164 default: 6165 terminal++; 6166 break; 6167 } 6168 } while (!terminal); 6169 6170 /* if there's no routing header, use unmodified mbuf for checksumming */ 6171 if (!n) 6172 n = m; 6173 6174 switch (pd.proto) { 6175 6176 case IPPROTO_TCP: { 6177 struct tcphdr th; 6178 6179 pd.hdr.tcp = &th; 6180 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6181 &action, &reason, AF_INET6)) { 6182 log = action != PF_PASS; 6183 goto done; 6184 } 6185 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6186 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6187 if (action == PF_DROP) 6188 goto done; 6189 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6190 &reason); 6191 if (action == PF_PASS) { 6192 if (pfsync_update_state_ptr != NULL) 6193 pfsync_update_state_ptr(s); 6194 r = s->rule.ptr; 6195 a = s->anchor.ptr; 6196 log = s->log; 6197 } else if (s == NULL) 6198 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6199 &a, &ruleset, inp); 6200 break; 6201 } 6202 6203 case IPPROTO_UDP: { 6204 struct udphdr uh; 6205 6206 pd.hdr.udp = &uh; 6207 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6208 &action, &reason, AF_INET6)) { 6209 log = action != PF_PASS; 6210 goto done; 6211 } 6212 if (uh.uh_dport == 0 || 6213 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6214 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6215 action = PF_DROP; 6216 REASON_SET(&reason, PFRES_SHORT); 6217 goto done; 6218 } 6219 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6220 if (action == PF_PASS) { 6221 if (pfsync_update_state_ptr != NULL) 6222 pfsync_update_state_ptr(s); 6223 r = s->rule.ptr; 6224 a = s->anchor.ptr; 6225 log = s->log; 6226 } else if (s == NULL) 6227 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6228 &a, &ruleset, inp); 6229 break; 6230 } 6231 6232 case IPPROTO_ICMP: { 6233 action = PF_DROP; 6234 DPFPRINTF(PF_DEBUG_MISC, 6235 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6236 goto done; 6237 } 6238 6239 case IPPROTO_ICMPV6: { 6240 struct icmp6_hdr ih; 6241 6242 pd.hdr.icmp6 = &ih; 6243 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6244 &action, &reason, AF_INET6)) { 6245 log = action != PF_PASS; 6246 goto done; 6247 } 6248 action = pf_test_state_icmp(&s, dir, kif, 6249 m, off, h, &pd, &reason); 6250 if (action == PF_PASS) { 6251 if (pfsync_update_state_ptr != NULL) 6252 pfsync_update_state_ptr(s); 6253 r = s->rule.ptr; 6254 a = s->anchor.ptr; 6255 log = s->log; 6256 } else if (s == NULL) 6257 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6258 &a, &ruleset, inp); 6259 break; 6260 } 6261 6262 default: 6263 action = pf_test_state_other(&s, dir, kif, m, &pd); 6264 if (action == PF_PASS) { 6265 if (pfsync_update_state_ptr != NULL) 6266 pfsync_update_state_ptr(s); 6267 r = s->rule.ptr; 6268 a = s->anchor.ptr; 6269 log = s->log; 6270 } else if (s == NULL) 6271 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6272 &a, &ruleset, inp); 6273 break; 6274 } 6275 6276 done: 6277 PF_RULES_RUNLOCK(); 6278 if (n != m) { 6279 m_freem(n); 6280 n = NULL; 6281 } 6282 6283 /* handle dangerous IPv6 extension headers. */ 6284 if (action == PF_PASS && rh_cnt && 6285 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6286 action = PF_DROP; 6287 REASON_SET(&reason, PFRES_IPOPTIONS); 6288 log = 1; 6289 DPFPRINTF(PF_DEBUG_MISC, 6290 ("pf: dropping packet with dangerous v6 headers\n")); 6291 } 6292 6293 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6294 action = PF_DROP; 6295 REASON_SET(&reason, PFRES_MEMORY); 6296 } 6297 if (r->rtableid >= 0) 6298 M_SETFIB(m, r->rtableid); 6299 6300 #ifdef ALTQ 6301 if (action == PF_PASS && r->qid) { 6302 if (pd.pf_mtag == NULL && 6303 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6304 action = PF_DROP; 6305 REASON_SET(&reason, PFRES_MEMORY); 6306 } 6307 if (pd.tos & IPTOS_LOWDELAY) 6308 pd.pf_mtag->qid = r->pqid; 6309 else 6310 pd.pf_mtag->qid = r->qid; 6311 /* add hints for ecn */ 6312 pd.pf_mtag->hdr = h; 6313 } 6314 #endif /* ALTQ */ 6315 6316 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6317 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6318 (s->nat_rule.ptr->action == PF_RDR || 6319 s->nat_rule.ptr->action == PF_BINAT) && 6320 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6321 m->m_flags |= M_SKIP_FIREWALL; 6322 6323 /* XXX: Anybody working on it?! */ 6324 if (r->divert.port) 6325 printf("pf: divert(9) is not supported for IPv6\n"); 6326 6327 if (log) { 6328 struct pf_rule *lr; 6329 6330 if (s != NULL && s->nat_rule.ptr != NULL && 6331 s->nat_rule.ptr->log & PF_LOG_ALL) 6332 lr = s->nat_rule.ptr; 6333 else 6334 lr = r; 6335 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6336 &pd, (s == NULL)); 6337 } 6338 6339 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6340 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6341 6342 if (action == PF_PASS || r->action == PF_DROP) { 6343 dirndx = (dir == PF_OUT); 6344 r->packets[dirndx]++; 6345 r->bytes[dirndx] += pd.tot_len; 6346 if (a != NULL) { 6347 a->packets[dirndx]++; 6348 a->bytes[dirndx] += pd.tot_len; 6349 } 6350 if (s != NULL) { 6351 if (s->nat_rule.ptr != NULL) { 6352 s->nat_rule.ptr->packets[dirndx]++; 6353 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6354 } 6355 if (s->src_node != NULL) { 6356 s->src_node->packets[dirndx]++; 6357 s->src_node->bytes[dirndx] += pd.tot_len; 6358 } 6359 if (s->nat_src_node != NULL) { 6360 s->nat_src_node->packets[dirndx]++; 6361 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6362 } 6363 dirndx = (dir == s->direction) ? 0 : 1; 6364 s->packets[dirndx]++; 6365 s->bytes[dirndx] += pd.tot_len; 6366 } 6367 tr = r; 6368 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6369 if (nr != NULL && r == &V_pf_default_rule) 6370 tr = nr; 6371 if (tr->src.addr.type == PF_ADDR_TABLE) 6372 pfr_update_stats(tr->src.addr.p.tbl, 6373 (s == NULL) ? pd.src : 6374 &s->key[(s->direction == PF_IN)]->addr[0], 6375 pd.af, pd.tot_len, dir == PF_OUT, 6376 r->action == PF_PASS, tr->src.neg); 6377 if (tr->dst.addr.type == PF_ADDR_TABLE) 6378 pfr_update_stats(tr->dst.addr.p.tbl, 6379 (s == NULL) ? pd.dst : 6380 &s->key[(s->direction == PF_IN)]->addr[1], 6381 pd.af, pd.tot_len, dir == PF_OUT, 6382 r->action == PF_PASS, tr->dst.neg); 6383 } 6384 6385 switch (action) { 6386 case PF_SYNPROXY_DROP: 6387 m_freem(*m0); 6388 case PF_DEFER: 6389 *m0 = NULL; 6390 action = PF_PASS; 6391 break; 6392 default: 6393 /* pf_route6() returns unlocked. */ 6394 if (r->rt) { 6395 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6396 return (action); 6397 } 6398 break; 6399 } 6400 6401 if (s) 6402 PF_STATE_UNLOCK(s); 6403 6404 return (action); 6405 } 6406 #endif /* INET6 */ 6407