1 /* $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ */ 2 3 /* 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * - Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * - Redistributions in binary form must reproduce the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer in the documentation and/or other materials provided 17 * with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 22 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 23 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 27 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 29 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 * 32 * Effort sponsored in part by the Defense Advanced Research Projects 33 * Agency (DARPA) and Air Force Research Laboratory, Air Force 34 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 35 * 36 */ 37 38 #include <sys/cdefs.h> 39 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_bpf.h" 45 #include "opt_pf.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/hash.h> 51 #include <sys/interrupt.h> 52 #include <sys/kernel.h> 53 #include <sys/kthread.h> 54 #include <sys/limits.h> 55 #include <sys/mbuf.h> 56 #include <sys/md5.h> 57 #include <sys/random.h> 58 #include <sys/refcount.h> 59 #include <sys/socket.h> 60 #include <sys/sysctl.h> 61 #include <sys/taskqueue.h> 62 #include <sys/ucred.h> 63 64 #include <net/if.h> 65 #include <net/if_types.h> 66 #include <net/route.h> 67 #include <net/radix_mpath.h> 68 #include <net/vnet.h> 69 70 #include <net/pfvar.h> 71 #include <net/pf_mtag.h> 72 #include <net/if_pflog.h> 73 #include <net/if_pfsync.h> 74 75 #include <netinet/in_pcb.h> 76 #include <netinet/in_var.h> 77 #include <netinet/ip.h> 78 #include <netinet/ip_fw.h> 79 #include <netinet/ip_icmp.h> 80 #include <netinet/icmp_var.h> 81 #include <netinet/ip_var.h> 82 #include <netinet/tcp.h> 83 #include <netinet/tcp_fsm.h> 84 #include <netinet/tcp_seq.h> 85 #include <netinet/tcp_timer.h> 86 #include <netinet/tcp_var.h> 87 #include <netinet/udp.h> 88 #include <netinet/udp_var.h> 89 90 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 91 92 #ifdef INET6 93 #include <netinet/ip6.h> 94 #include <netinet/icmp6.h> 95 #include <netinet6/nd6.h> 96 #include <netinet6/ip6_var.h> 97 #include <netinet6/in6_pcb.h> 98 #endif /* INET6 */ 99 100 #include <machine/in_cksum.h> 101 #include <security/mac/mac_framework.h> 102 103 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 104 105 /* 106 * Global variables 107 */ 108 109 /* state tables */ 110 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 111 VNET_DEFINE(struct pf_palist, pf_pabuf); 112 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 113 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 114 VNET_DEFINE(struct pf_status, pf_status); 115 116 VNET_DEFINE(u_int32_t, ticket_altqs_active); 117 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 118 VNET_DEFINE(int, altqs_inactive_open); 119 VNET_DEFINE(u_int32_t, ticket_pabuf); 120 121 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 122 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 123 VNET_DEFINE(u_char, pf_tcp_secret[16]); 124 #define V_pf_tcp_secret VNET(pf_tcp_secret) 125 VNET_DEFINE(int, pf_tcp_secret_init); 126 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 127 VNET_DEFINE(int, pf_tcp_iss_off); 128 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 129 130 /* 131 * Queue for pf_intr() sends. 132 */ 133 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 134 struct pf_send_entry { 135 STAILQ_ENTRY(pf_send_entry) pfse_next; 136 struct mbuf *pfse_m; 137 enum { 138 PFSE_IP, 139 PFSE_IP6, 140 PFSE_ICMP, 141 PFSE_ICMP6, 142 } pfse_type; 143 union { 144 struct route ro; 145 struct { 146 int type; 147 int code; 148 int mtu; 149 } icmpopts; 150 } u; 151 #define pfse_ro u.ro 152 #define pfse_icmp_type u.icmpopts.type 153 #define pfse_icmp_code u.icmpopts.code 154 #define pfse_icmp_mtu u.icmpopts.mtu 155 }; 156 157 STAILQ_HEAD(pf_send_head, pf_send_entry); 158 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 159 #define V_pf_sendqueue VNET(pf_sendqueue) 160 161 static struct mtx pf_sendqueue_mtx; 162 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 163 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 164 165 /* 166 * Queue for pf_overload_task() tasks. 167 */ 168 struct pf_overload_entry { 169 SLIST_ENTRY(pf_overload_entry) next; 170 struct pf_addr addr; 171 sa_family_t af; 172 uint8_t dir; 173 struct pf_rule *rule; 174 }; 175 176 SLIST_HEAD(pf_overload_head, pf_overload_entry); 177 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 178 #define V_pf_overloadqueue VNET(pf_overloadqueue) 179 static VNET_DEFINE(struct task, pf_overloadtask); 180 #define V_pf_overloadtask VNET(pf_overloadtask) 181 182 static struct mtx pf_overloadqueue_mtx; 183 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 184 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 185 186 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 187 struct mtx pf_unlnkdrules_mtx; 188 189 static VNET_DEFINE(uma_zone_t, pf_sources_z); 190 #define V_pf_sources_z VNET(pf_sources_z) 191 static VNET_DEFINE(uma_zone_t, pf_mtag_z); 192 #define V_pf_mtag_z VNET(pf_mtag_z) 193 VNET_DEFINE(uma_zone_t, pf_state_z); 194 VNET_DEFINE(uma_zone_t, pf_state_key_z); 195 196 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 197 #define PFID_CPUBITS 8 198 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 199 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 200 #define PFID_MAXID (~PFID_CPUMASK) 201 CTASSERT((1 << PFID_CPUBITS) > MAXCPU); 202 203 static void pf_src_tree_remove_state(struct pf_state *); 204 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 205 u_int32_t); 206 static void pf_add_threshold(struct pf_threshold *); 207 static int pf_check_threshold(struct pf_threshold *); 208 209 static void pf_change_ap(struct pf_addr *, u_int16_t *, 210 u_int16_t *, u_int16_t *, struct pf_addr *, 211 u_int16_t, u_int8_t, sa_family_t); 212 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 213 struct tcphdr *, struct pf_state_peer *); 214 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 215 struct pf_addr *, struct pf_addr *, u_int16_t, 216 u_int16_t *, u_int16_t *, u_int16_t *, 217 u_int16_t *, u_int8_t, sa_family_t); 218 static void pf_send_tcp(struct mbuf *, 219 const struct pf_rule *, sa_family_t, 220 const struct pf_addr *, const struct pf_addr *, 221 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 222 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 223 u_int16_t, struct ifnet *); 224 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 225 sa_family_t, struct pf_rule *); 226 static void pf_detach_state(struct pf_state *); 227 static int pf_state_key_attach(struct pf_state_key *, 228 struct pf_state_key *, struct pf_state *); 229 static void pf_state_key_detach(struct pf_state *, int); 230 static int pf_state_key_ctor(void *, int, void *, int); 231 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 232 static int pf_test_rule(struct pf_rule **, struct pf_state **, 233 int, struct pfi_kif *, struct mbuf *, int, 234 struct pf_pdesc *, struct pf_rule **, 235 struct pf_ruleset **, struct inpcb *); 236 static int pf_create_state(struct pf_rule *, struct pf_rule *, 237 struct pf_rule *, struct pf_pdesc *, 238 struct pf_src_node *, struct pf_state_key *, 239 struct pf_state_key *, struct mbuf *, int, 240 u_int16_t, u_int16_t, int *, struct pfi_kif *, 241 struct pf_state **, int, u_int16_t, u_int16_t, 242 int); 243 static int pf_test_fragment(struct pf_rule **, int, 244 struct pfi_kif *, struct mbuf *, void *, 245 struct pf_pdesc *, struct pf_rule **, 246 struct pf_ruleset **); 247 static int pf_tcp_track_full(struct pf_state_peer *, 248 struct pf_state_peer *, struct pf_state **, 249 struct pfi_kif *, struct mbuf *, int, 250 struct pf_pdesc *, u_short *, int *); 251 static int pf_tcp_track_sloppy(struct pf_state_peer *, 252 struct pf_state_peer *, struct pf_state **, 253 struct pf_pdesc *, u_short *); 254 static int pf_test_state_tcp(struct pf_state **, int, 255 struct pfi_kif *, struct mbuf *, int, 256 void *, struct pf_pdesc *, u_short *); 257 static int pf_test_state_udp(struct pf_state **, int, 258 struct pfi_kif *, struct mbuf *, int, 259 void *, struct pf_pdesc *); 260 static int pf_test_state_icmp(struct pf_state **, int, 261 struct pfi_kif *, struct mbuf *, int, 262 void *, struct pf_pdesc *, u_short *); 263 static int pf_test_state_other(struct pf_state **, int, 264 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 265 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 266 sa_family_t); 267 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 268 sa_family_t); 269 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 270 int, u_int16_t); 271 static void pf_set_rt_ifp(struct pf_state *, 272 struct pf_addr *); 273 static int pf_check_proto_cksum(struct mbuf *, int, int, 274 u_int8_t, sa_family_t); 275 static void pf_print_state_parts(struct pf_state *, 276 struct pf_state_key *, struct pf_state_key *); 277 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 278 struct pf_addr_wrap *); 279 static struct pf_state *pf_find_state(struct pfi_kif *, 280 struct pf_state_key_cmp *, u_int); 281 static int pf_src_connlimit(struct pf_state **); 282 static void pf_overload_task(void *c, int pending); 283 static int pf_insert_src_node(struct pf_src_node **, 284 struct pf_rule *, struct pf_addr *, sa_family_t); 285 static u_int pf_purge_expired_states(u_int, int); 286 static void pf_purge_unlinked_rules(void); 287 static int pf_mtag_init(void *, int, int); 288 static void pf_mtag_free(struct m_tag *); 289 #ifdef INET 290 static void pf_route(struct mbuf **, struct pf_rule *, int, 291 struct ifnet *, struct pf_state *, 292 struct pf_pdesc *); 293 #endif /* INET */ 294 #ifdef INET6 295 static void pf_change_a6(struct pf_addr *, u_int16_t *, 296 struct pf_addr *, u_int8_t); 297 static void pf_route6(struct mbuf **, struct pf_rule *, int, 298 struct ifnet *, struct pf_state *, 299 struct pf_pdesc *); 300 #endif /* INET6 */ 301 302 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 303 304 VNET_DECLARE(int, pf_end_threads); 305 306 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 307 308 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 309 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 310 311 #define STATE_LOOKUP(i, k, d, s, pd) \ 312 do { \ 313 (s) = pf_find_state((i), (k), (d)); \ 314 if ((s) == NULL || (s)->timeout == PFTM_PURGE) \ 315 return (PF_DROP); \ 316 if (PACKET_LOOPED(pd)) \ 317 return (PF_PASS); \ 318 if ((d) == PF_OUT && \ 319 (((s)->rule.ptr->rt == PF_ROUTETO && \ 320 (s)->rule.ptr->direction == PF_OUT) || \ 321 ((s)->rule.ptr->rt == PF_REPLYTO && \ 322 (s)->rule.ptr->direction == PF_IN)) && \ 323 (s)->rt_kif != NULL && \ 324 (s)->rt_kif != (i)) \ 325 return (PF_PASS); \ 326 } while (0) 327 328 #define BOUND_IFACE(r, k) \ 329 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 330 331 #define STATE_INC_COUNTERS(s) \ 332 do { \ 333 s->rule.ptr->states_cur++; \ 334 s->rule.ptr->states_tot++; \ 335 if (s->anchor.ptr != NULL) { \ 336 s->anchor.ptr->states_cur++; \ 337 s->anchor.ptr->states_tot++; \ 338 } \ 339 if (s->nat_rule.ptr != NULL) { \ 340 s->nat_rule.ptr->states_cur++; \ 341 s->nat_rule.ptr->states_tot++; \ 342 } \ 343 } while (0) 344 345 #define STATE_DEC_COUNTERS(s) \ 346 do { \ 347 if (s->nat_rule.ptr != NULL) \ 348 s->nat_rule.ptr->states_cur--; \ 349 if (s->anchor.ptr != NULL) \ 350 s->anchor.ptr->states_cur--; \ 351 s->rule.ptr->states_cur--; \ 352 } while (0) 353 354 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 355 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 356 VNET_DEFINE(struct pf_idhash *, pf_idhash); 357 VNET_DEFINE(u_long, pf_hashmask); 358 VNET_DEFINE(struct pf_srchash *, pf_srchash); 359 VNET_DEFINE(u_long, pf_srchashmask); 360 361 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 362 363 VNET_DEFINE(u_long, pf_hashsize); 364 #define V_pf_hashsize VNET(pf_hashsize) 365 SYSCTL_VNET_UINT(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 366 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 367 368 VNET_DEFINE(u_long, pf_srchashsize); 369 #define V_pf_srchashsize VNET(pf_srchashsize) 370 SYSCTL_VNET_UINT(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 371 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 372 373 VNET_DEFINE(void *, pf_swi_cookie); 374 375 VNET_DEFINE(uint32_t, pf_hashseed); 376 #define V_pf_hashseed VNET(pf_hashseed) 377 378 static __inline uint32_t 379 pf_hashkey(struct pf_state_key *sk) 380 { 381 uint32_t h; 382 383 h = jenkins_hash32((uint32_t *)sk, 384 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 385 V_pf_hashseed); 386 387 return (h & V_pf_hashmask); 388 } 389 390 static __inline uint32_t 391 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 392 { 393 uint32_t h; 394 395 switch (af) { 396 case AF_INET: 397 h = jenkins_hash32((uint32_t *)&addr->v4, 398 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 399 break; 400 case AF_INET6: 401 h = jenkins_hash32((uint32_t *)&addr->v6, 402 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 403 break; 404 default: 405 panic("%s: unknown address family %u", __func__, af); 406 } 407 408 return (h & V_pf_srchashmask); 409 } 410 411 #ifdef INET6 412 void 413 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 414 { 415 switch (af) { 416 #ifdef INET 417 case AF_INET: 418 dst->addr32[0] = src->addr32[0]; 419 break; 420 #endif /* INET */ 421 case AF_INET6: 422 dst->addr32[0] = src->addr32[0]; 423 dst->addr32[1] = src->addr32[1]; 424 dst->addr32[2] = src->addr32[2]; 425 dst->addr32[3] = src->addr32[3]; 426 break; 427 } 428 } 429 #endif /* INET6 */ 430 431 static void 432 pf_init_threshold(struct pf_threshold *threshold, 433 u_int32_t limit, u_int32_t seconds) 434 { 435 threshold->limit = limit * PF_THRESHOLD_MULT; 436 threshold->seconds = seconds; 437 threshold->count = 0; 438 threshold->last = time_uptime; 439 } 440 441 static void 442 pf_add_threshold(struct pf_threshold *threshold) 443 { 444 u_int32_t t = time_uptime, diff = t - threshold->last; 445 446 if (diff >= threshold->seconds) 447 threshold->count = 0; 448 else 449 threshold->count -= threshold->count * diff / 450 threshold->seconds; 451 threshold->count += PF_THRESHOLD_MULT; 452 threshold->last = t; 453 } 454 455 static int 456 pf_check_threshold(struct pf_threshold *threshold) 457 { 458 return (threshold->count > threshold->limit); 459 } 460 461 static int 462 pf_src_connlimit(struct pf_state **state) 463 { 464 struct pf_overload_entry *pfoe; 465 int bad = 0; 466 467 PF_STATE_LOCK_ASSERT(*state); 468 469 (*state)->src_node->conn++; 470 (*state)->src.tcp_est = 1; 471 pf_add_threshold(&(*state)->src_node->conn_rate); 472 473 if ((*state)->rule.ptr->max_src_conn && 474 (*state)->rule.ptr->max_src_conn < 475 (*state)->src_node->conn) { 476 V_pf_status.lcounters[LCNT_SRCCONN]++; 477 bad++; 478 } 479 480 if ((*state)->rule.ptr->max_src_conn_rate.limit && 481 pf_check_threshold(&(*state)->src_node->conn_rate)) { 482 V_pf_status.lcounters[LCNT_SRCCONNRATE]++; 483 bad++; 484 } 485 486 if (!bad) 487 return (0); 488 489 /* Kill this state. */ 490 (*state)->timeout = PFTM_PURGE; 491 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 492 493 if ((*state)->rule.ptr->overload_tbl == NULL) 494 return (1); 495 496 /* Schedule overloading and flushing task. */ 497 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 498 if (pfoe == NULL) 499 return (1); /* too bad :( */ 500 501 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 502 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 503 pfoe->rule = (*state)->rule.ptr; 504 pfoe->dir = (*state)->direction; 505 PF_OVERLOADQ_LOCK(); 506 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 507 PF_OVERLOADQ_UNLOCK(); 508 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 509 510 return (1); 511 } 512 513 static void 514 pf_overload_task(void *c, int pending) 515 { 516 struct pf_overload_head queue; 517 struct pfr_addr p; 518 struct pf_overload_entry *pfoe, *pfoe1; 519 uint32_t killed = 0; 520 521 PF_OVERLOADQ_LOCK(); 522 queue = *(struct pf_overload_head *)c; 523 SLIST_INIT((struct pf_overload_head *)c); 524 PF_OVERLOADQ_UNLOCK(); 525 526 bzero(&p, sizeof(p)); 527 SLIST_FOREACH(pfoe, &queue, next) { 528 V_pf_status.lcounters[LCNT_OVERLOAD_TABLE]++; 529 if (V_pf_status.debug >= PF_DEBUG_MISC) { 530 printf("%s: blocking address ", __func__); 531 pf_print_host(&pfoe->addr, 0, pfoe->af); 532 printf("\n"); 533 } 534 535 p.pfra_af = pfoe->af; 536 switch (pfoe->af) { 537 #ifdef INET 538 case AF_INET: 539 p.pfra_net = 32; 540 p.pfra_ip4addr = pfoe->addr.v4; 541 break; 542 #endif 543 #ifdef INET6 544 case AF_INET6: 545 p.pfra_net = 128; 546 p.pfra_ip6addr = pfoe->addr.v6; 547 break; 548 #endif 549 } 550 551 PF_RULES_WLOCK(); 552 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 553 PF_RULES_WUNLOCK(); 554 } 555 556 /* 557 * Remove those entries, that don't need flushing. 558 */ 559 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 560 if (pfoe->rule->flush == 0) { 561 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 562 free(pfoe, M_PFTEMP); 563 } else 564 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH]++; 565 566 /* If nothing to flush, return. */ 567 if (SLIST_EMPTY(&queue)) 568 return; 569 570 for (int i = 0; i <= V_pf_hashmask; i++) { 571 struct pf_idhash *ih = &V_pf_idhash[i]; 572 struct pf_state_key *sk; 573 struct pf_state *s; 574 575 PF_HASHROW_LOCK(ih); 576 LIST_FOREACH(s, &ih->states, entry) { 577 sk = s->key[PF_SK_WIRE]; 578 SLIST_FOREACH(pfoe, &queue, next) 579 if (sk->af == pfoe->af && 580 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 581 pfoe->rule == s->rule.ptr) && 582 ((pfoe->dir == PF_OUT && 583 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 584 (pfoe->dir == PF_IN && 585 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 586 s->timeout = PFTM_PURGE; 587 s->src.state = s->dst.state = TCPS_CLOSED; 588 killed++; 589 } 590 } 591 PF_HASHROW_UNLOCK(ih); 592 } 593 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 594 free(pfoe, M_PFTEMP); 595 if (V_pf_status.debug >= PF_DEBUG_MISC) 596 printf("%s: %u states killed", __func__, killed); 597 } 598 599 /* 600 * Can return locked on failure, so that we can consistently 601 * allocate and insert a new one. 602 */ 603 struct pf_src_node * 604 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 605 int returnlocked) 606 { 607 struct pf_srchash *sh; 608 struct pf_src_node *n; 609 610 V_pf_status.scounters[SCNT_SRC_NODE_SEARCH]++; 611 612 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 613 PF_HASHROW_LOCK(sh); 614 LIST_FOREACH(n, &sh->nodes, entry) 615 if (n->rule.ptr == rule && n->af == af && 616 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 617 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 618 break; 619 if (n != NULL || returnlocked == 0) 620 PF_HASHROW_UNLOCK(sh); 621 622 return (n); 623 } 624 625 static int 626 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 627 struct pf_addr *src, sa_family_t af) 628 { 629 630 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 631 rule->rpool.opts & PF_POOL_STICKYADDR), 632 ("%s for non-tracking rule %p", __func__, rule)); 633 634 if (*sn == NULL) 635 *sn = pf_find_src_node(src, rule, af, 1); 636 637 if (*sn == NULL) { 638 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 639 640 PF_HASHROW_ASSERT(sh); 641 642 if (!rule->max_src_nodes || 643 rule->src_nodes < rule->max_src_nodes) 644 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 645 else 646 V_pf_status.lcounters[LCNT_SRCNODES]++; 647 if ((*sn) == NULL) { 648 PF_HASHROW_UNLOCK(sh); 649 return (-1); 650 } 651 652 pf_init_threshold(&(*sn)->conn_rate, 653 rule->max_src_conn_rate.limit, 654 rule->max_src_conn_rate.seconds); 655 656 (*sn)->af = af; 657 (*sn)->rule.ptr = rule; 658 PF_ACPY(&(*sn)->addr, src, af); 659 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 660 (*sn)->creation = time_uptime; 661 (*sn)->ruletype = rule->action; 662 if ((*sn)->rule.ptr != NULL) 663 (*sn)->rule.ptr->src_nodes++; 664 PF_HASHROW_UNLOCK(sh); 665 V_pf_status.scounters[SCNT_SRC_NODE_INSERT]++; 666 V_pf_status.src_nodes++; 667 } else { 668 if (rule->max_src_states && 669 (*sn)->states >= rule->max_src_states) { 670 V_pf_status.lcounters[LCNT_SRCSTATES]++; 671 return (-1); 672 } 673 } 674 return (0); 675 } 676 677 static void 678 pf_remove_src_node(struct pf_src_node *src) 679 { 680 struct pf_srchash *sh; 681 682 sh = &V_pf_srchash[pf_hashsrc(&src->addr, src->af)]; 683 PF_HASHROW_LOCK(sh); 684 LIST_REMOVE(src, entry); 685 PF_HASHROW_UNLOCK(sh); 686 687 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS]++; 688 V_pf_status.src_nodes--; 689 690 uma_zfree(V_pf_sources_z, src); 691 } 692 693 /* Data storage structures initialization. */ 694 void 695 pf_initialize() 696 { 697 struct pf_keyhash *kh; 698 struct pf_idhash *ih; 699 struct pf_srchash *sh; 700 u_int i; 701 702 TUNABLE_ULONG_FETCH("net.pf.states_hashsize", &V_pf_hashsize); 703 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 704 V_pf_hashsize = PF_HASHSIZ; 705 TUNABLE_ULONG_FETCH("net.pf.source_nodes_hashsize", &V_pf_srchashsize); 706 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 707 V_pf_srchashsize = PF_HASHSIZ / 4; 708 709 V_pf_hashseed = arc4random(); 710 711 /* States and state keys storage. */ 712 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 713 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 714 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 715 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 716 717 V_pf_state_key_z = uma_zcreate("pf state keys", 718 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 719 UMA_ALIGN_PTR, 0); 720 V_pf_keyhash = malloc(V_pf_hashsize * sizeof(struct pf_keyhash), 721 M_PFHASH, M_WAITOK | M_ZERO); 722 V_pf_idhash = malloc(V_pf_hashsize * sizeof(struct pf_idhash), 723 M_PFHASH, M_WAITOK | M_ZERO); 724 V_pf_hashmask = V_pf_hashsize - 1; 725 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 726 i++, kh++, ih++) { 727 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF); 728 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 729 } 730 731 /* Source nodes. */ 732 V_pf_sources_z = uma_zcreate("pf source nodes", 733 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 734 0); 735 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 736 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 737 V_pf_srchash = malloc(V_pf_srchashsize * sizeof(struct pf_srchash), 738 M_PFHASH, M_WAITOK|M_ZERO); 739 V_pf_srchashmask = V_pf_srchashsize - 1; 740 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 741 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 742 743 /* ALTQ */ 744 TAILQ_INIT(&V_pf_altqs[0]); 745 TAILQ_INIT(&V_pf_altqs[1]); 746 TAILQ_INIT(&V_pf_pabuf); 747 V_pf_altqs_active = &V_pf_altqs[0]; 748 V_pf_altqs_inactive = &V_pf_altqs[1]; 749 750 /* Mbuf tags */ 751 V_pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 752 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_init, NULL, 753 UMA_ALIGN_PTR, 0); 754 755 /* Send & overload+flush queues. */ 756 STAILQ_INIT(&V_pf_sendqueue); 757 SLIST_INIT(&V_pf_overloadqueue); 758 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, &V_pf_overloadqueue); 759 mtx_init(&pf_sendqueue_mtx, "pf send queue", NULL, MTX_DEF); 760 mtx_init(&pf_overloadqueue_mtx, "pf overload/flush queue", NULL, 761 MTX_DEF); 762 763 /* Unlinked, but may be referenced rules. */ 764 TAILQ_INIT(&V_pf_unlinked_rules); 765 mtx_init(&pf_unlnkdrules_mtx, "pf unlinked rules", NULL, MTX_DEF); 766 } 767 768 void 769 pf_cleanup() 770 { 771 struct pf_keyhash *kh; 772 struct pf_idhash *ih; 773 struct pf_srchash *sh; 774 struct pf_send_entry *pfse, *next; 775 u_int i; 776 777 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 778 i++, kh++, ih++) { 779 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 780 __func__)); 781 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 782 __func__)); 783 mtx_destroy(&kh->lock); 784 mtx_destroy(&ih->lock); 785 } 786 free(V_pf_keyhash, M_PFHASH); 787 free(V_pf_idhash, M_PFHASH); 788 789 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 790 KASSERT(LIST_EMPTY(&sh->nodes), 791 ("%s: source node hash not empty", __func__)); 792 mtx_destroy(&sh->lock); 793 } 794 free(V_pf_srchash, M_PFHASH); 795 796 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 797 m_freem(pfse->pfse_m); 798 free(pfse, M_PFTEMP); 799 } 800 801 mtx_destroy(&pf_sendqueue_mtx); 802 mtx_destroy(&pf_overloadqueue_mtx); 803 mtx_destroy(&pf_unlnkdrules_mtx); 804 805 uma_zdestroy(V_pf_mtag_z); 806 uma_zdestroy(V_pf_sources_z); 807 uma_zdestroy(V_pf_state_z); 808 uma_zdestroy(V_pf_state_key_z); 809 } 810 811 static int 812 pf_mtag_init(void *mem, int size, int how) 813 { 814 struct m_tag *t; 815 816 t = (struct m_tag *)mem; 817 t->m_tag_cookie = MTAG_ABI_COMPAT; 818 t->m_tag_id = PACKET_TAG_PF; 819 t->m_tag_len = sizeof(struct pf_mtag); 820 t->m_tag_free = pf_mtag_free; 821 822 return (0); 823 } 824 825 static void 826 pf_mtag_free(struct m_tag *t) 827 { 828 829 uma_zfree(V_pf_mtag_z, t); 830 } 831 832 struct pf_mtag * 833 pf_get_mtag(struct mbuf *m) 834 { 835 struct m_tag *mtag; 836 837 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 838 return ((struct pf_mtag *)(mtag + 1)); 839 840 mtag = uma_zalloc(V_pf_mtag_z, M_NOWAIT); 841 if (mtag == NULL) 842 return (NULL); 843 bzero(mtag + 1, sizeof(struct pf_mtag)); 844 m_tag_prepend(m, mtag); 845 846 return ((struct pf_mtag *)(mtag + 1)); 847 } 848 849 static int 850 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 851 struct pf_state *s) 852 { 853 struct pf_keyhash *kh; 854 struct pf_state_key *sk, *cur; 855 struct pf_state *si, *olds = NULL; 856 int idx; 857 858 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 859 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 860 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 861 862 /* 863 * First run: start with wire key. 864 */ 865 sk = skw; 866 idx = PF_SK_WIRE; 867 868 keyattach: 869 kh = &V_pf_keyhash[pf_hashkey(sk)]; 870 871 PF_HASHROW_LOCK(kh); 872 LIST_FOREACH(cur, &kh->keys, entry) 873 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 874 break; 875 876 if (cur != NULL) { 877 /* Key exists. Check for same kif, if none, add to key. */ 878 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 879 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 880 881 PF_HASHROW_LOCK(ih); 882 if (si->kif == s->kif && 883 si->direction == s->direction) { 884 if (sk->proto == IPPROTO_TCP && 885 si->src.state >= TCPS_FIN_WAIT_2 && 886 si->dst.state >= TCPS_FIN_WAIT_2) { 887 si->src.state = si->dst.state = 888 TCPS_CLOSED; 889 /* Unlink later or cur can go away. */ 890 pf_ref_state(si); 891 olds = si; 892 } else { 893 if (V_pf_status.debug >= PF_DEBUG_MISC) { 894 printf("pf: %s key attach " 895 "failed on %s: ", 896 (idx == PF_SK_WIRE) ? 897 "wire" : "stack", 898 s->kif->pfik_name); 899 pf_print_state_parts(s, 900 (idx == PF_SK_WIRE) ? 901 sk : NULL, 902 (idx == PF_SK_STACK) ? 903 sk : NULL); 904 printf(", existing: "); 905 pf_print_state_parts(si, 906 (idx == PF_SK_WIRE) ? 907 sk : NULL, 908 (idx == PF_SK_STACK) ? 909 sk : NULL); 910 printf("\n"); 911 } 912 PF_HASHROW_UNLOCK(ih); 913 PF_HASHROW_UNLOCK(kh); 914 uma_zfree(V_pf_state_key_z, sk); 915 if (idx == PF_SK_STACK) 916 pf_detach_state(s); 917 return (-1); /* collision! */ 918 } 919 } 920 PF_HASHROW_UNLOCK(ih); 921 } 922 uma_zfree(V_pf_state_key_z, sk); 923 s->key[idx] = cur; 924 } else { 925 LIST_INSERT_HEAD(&kh->keys, sk, entry); 926 s->key[idx] = sk; 927 } 928 929 stateattach: 930 /* List is sorted, if-bound states before floating. */ 931 if (s->kif == V_pfi_all) 932 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 933 else 934 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 935 936 /* 937 * Attach done. See how should we (or should not?) 938 * attach a second key. 939 */ 940 if (sks == skw) { 941 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 942 idx = PF_SK_STACK; 943 sks = NULL; 944 goto stateattach; 945 } else if (sks != NULL) { 946 PF_HASHROW_UNLOCK(kh); 947 if (olds) { 948 pf_unlink_state(olds, 0); 949 pf_release_state(olds); 950 olds = NULL; 951 } 952 /* 953 * Continue attaching with stack key. 954 */ 955 sk = sks; 956 idx = PF_SK_STACK; 957 sks = NULL; 958 goto keyattach; 959 } else 960 PF_HASHROW_UNLOCK(kh); 961 962 if (olds) { 963 pf_unlink_state(olds, 0); 964 pf_release_state(olds); 965 } 966 967 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 968 ("%s failure", __func__)); 969 970 return (0); 971 } 972 973 static void 974 pf_detach_state(struct pf_state *s) 975 { 976 struct pf_state_key *sks = s->key[PF_SK_STACK]; 977 struct pf_keyhash *kh; 978 979 if (sks != NULL) { 980 kh = &V_pf_keyhash[pf_hashkey(sks)]; 981 PF_HASHROW_LOCK(kh); 982 if (s->key[PF_SK_STACK] != NULL) 983 pf_state_key_detach(s, PF_SK_STACK); 984 /* 985 * If both point to same key, then we are done. 986 */ 987 if (sks == s->key[PF_SK_WIRE]) { 988 pf_state_key_detach(s, PF_SK_WIRE); 989 PF_HASHROW_UNLOCK(kh); 990 return; 991 } 992 PF_HASHROW_UNLOCK(kh); 993 } 994 995 if (s->key[PF_SK_WIRE] != NULL) { 996 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 997 PF_HASHROW_LOCK(kh); 998 if (s->key[PF_SK_WIRE] != NULL) 999 pf_state_key_detach(s, PF_SK_WIRE); 1000 PF_HASHROW_UNLOCK(kh); 1001 } 1002 } 1003 1004 static void 1005 pf_state_key_detach(struct pf_state *s, int idx) 1006 { 1007 struct pf_state_key *sk = s->key[idx]; 1008 #ifdef INVARIANTS 1009 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1010 1011 PF_HASHROW_ASSERT(kh); 1012 #endif 1013 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1014 s->key[idx] = NULL; 1015 1016 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1017 LIST_REMOVE(sk, entry); 1018 uma_zfree(V_pf_state_key_z, sk); 1019 } 1020 } 1021 1022 static int 1023 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1024 { 1025 struct pf_state_key *sk = mem; 1026 1027 bzero(sk, sizeof(struct pf_state_key_cmp)); 1028 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1029 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1030 1031 return (0); 1032 } 1033 1034 struct pf_state_key * 1035 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1036 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1037 { 1038 struct pf_state_key *sk; 1039 1040 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1041 if (sk == NULL) 1042 return (NULL); 1043 1044 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1045 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1046 sk->port[pd->sidx] = sport; 1047 sk->port[pd->didx] = dport; 1048 sk->proto = pd->proto; 1049 sk->af = pd->af; 1050 1051 return (sk); 1052 } 1053 1054 struct pf_state_key * 1055 pf_state_key_clone(struct pf_state_key *orig) 1056 { 1057 struct pf_state_key *sk; 1058 1059 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1060 if (sk == NULL) 1061 return (NULL); 1062 1063 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1064 1065 return (sk); 1066 } 1067 1068 int 1069 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1070 struct pf_state_key *sks, struct pf_state *s) 1071 { 1072 struct pf_idhash *ih; 1073 struct pf_state *cur; 1074 1075 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1076 ("%s: sks not pristine", __func__)); 1077 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1078 ("%s: skw not pristine", __func__)); 1079 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1080 1081 s->kif = kif; 1082 1083 if (pf_state_key_attach(skw, sks, s)) 1084 return (-1); 1085 1086 if (s->id == 0 && s->creatorid == 0) { 1087 /* XXX: should be atomic, but probability of collision low */ 1088 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1089 V_pf_stateid[curcpu] = 1; 1090 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1091 s->id = htobe64(s->id); 1092 s->creatorid = V_pf_status.hostid; 1093 } 1094 1095 ih = &V_pf_idhash[PF_IDHASH(s)]; 1096 PF_HASHROW_LOCK(ih); 1097 LIST_FOREACH(cur, &ih->states, entry) 1098 if (cur->id == s->id && cur->creatorid == s->creatorid) 1099 break; 1100 1101 if (cur != NULL) { 1102 PF_HASHROW_UNLOCK(ih); 1103 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1104 printf("pf: state insert failed: " 1105 "id: %016llx creatorid: %08x", 1106 (unsigned long long)be64toh(s->id), 1107 ntohl(s->creatorid)); 1108 printf("\n"); 1109 } 1110 pf_detach_state(s); 1111 return (-1); 1112 } 1113 LIST_INSERT_HEAD(&ih->states, s, entry); 1114 /* One for keys, one for ID hash. */ 1115 refcount_init(&s->refs, 2); 1116 1117 V_pf_status.fcounters[FCNT_STATE_INSERT]++; 1118 if (pfsync_insert_state_ptr != NULL) 1119 pfsync_insert_state_ptr(s); 1120 1121 /* Returns locked. */ 1122 return (0); 1123 } 1124 1125 /* 1126 * Find state by ID: returns with locked row on success. 1127 */ 1128 struct pf_state * 1129 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1130 { 1131 struct pf_idhash *ih; 1132 struct pf_state *s; 1133 1134 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1135 1136 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))]; 1137 1138 PF_HASHROW_LOCK(ih); 1139 LIST_FOREACH(s, &ih->states, entry) 1140 if (s->id == id && s->creatorid == creatorid) 1141 break; 1142 1143 if (s == NULL) 1144 PF_HASHROW_UNLOCK(ih); 1145 1146 return (s); 1147 } 1148 1149 /* 1150 * Find state by key. 1151 * Returns with ID hash slot locked on success. 1152 */ 1153 static struct pf_state * 1154 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1155 { 1156 struct pf_keyhash *kh; 1157 struct pf_state_key *sk; 1158 struct pf_state *s; 1159 int idx; 1160 1161 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1162 1163 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1164 1165 PF_HASHROW_LOCK(kh); 1166 LIST_FOREACH(sk, &kh->keys, entry) 1167 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1168 break; 1169 if (sk == NULL) { 1170 PF_HASHROW_UNLOCK(kh); 1171 return (NULL); 1172 } 1173 1174 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1175 1176 /* List is sorted, if-bound states before floating ones. */ 1177 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1178 if (s->kif == V_pfi_all || s->kif == kif) { 1179 PF_STATE_LOCK(s); 1180 PF_HASHROW_UNLOCK(kh); 1181 if (s->timeout == PFTM_UNLINKED) { 1182 /* 1183 * State is being processed 1184 * by pf_unlink_state() in 1185 * an other thread. 1186 */ 1187 PF_STATE_UNLOCK(s); 1188 return (NULL); 1189 } 1190 return (s); 1191 } 1192 PF_HASHROW_UNLOCK(kh); 1193 1194 return (NULL); 1195 } 1196 1197 struct pf_state * 1198 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1199 { 1200 struct pf_keyhash *kh; 1201 struct pf_state_key *sk; 1202 struct pf_state *s, *ret = NULL; 1203 int idx, inout = 0; 1204 1205 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1206 1207 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1208 1209 PF_HASHROW_LOCK(kh); 1210 LIST_FOREACH(sk, &kh->keys, entry) 1211 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1212 break; 1213 if (sk == NULL) { 1214 PF_HASHROW_UNLOCK(kh); 1215 return (NULL); 1216 } 1217 switch (dir) { 1218 case PF_IN: 1219 idx = PF_SK_WIRE; 1220 break; 1221 case PF_OUT: 1222 idx = PF_SK_STACK; 1223 break; 1224 case PF_INOUT: 1225 idx = PF_SK_WIRE; 1226 inout = 1; 1227 break; 1228 default: 1229 panic("%s: dir %u", __func__, dir); 1230 } 1231 second_run: 1232 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1233 if (more == NULL) { 1234 PF_HASHROW_UNLOCK(kh); 1235 return (s); 1236 } 1237 1238 if (ret) 1239 (*more)++; 1240 else 1241 ret = s; 1242 } 1243 if (inout == 1) { 1244 inout = 0; 1245 idx = PF_SK_STACK; 1246 goto second_run; 1247 } 1248 PF_HASHROW_UNLOCK(kh); 1249 1250 return (ret); 1251 } 1252 1253 /* END state table stuff */ 1254 1255 static void 1256 pf_send(struct pf_send_entry *pfse) 1257 { 1258 1259 PF_SENDQ_LOCK(); 1260 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1261 PF_SENDQ_UNLOCK(); 1262 swi_sched(V_pf_swi_cookie, 0); 1263 } 1264 1265 void 1266 pf_intr(void *v) 1267 { 1268 struct pf_send_head queue; 1269 struct pf_send_entry *pfse, *next; 1270 1271 CURVNET_SET((struct vnet *)v); 1272 1273 PF_SENDQ_LOCK(); 1274 queue = V_pf_sendqueue; 1275 STAILQ_INIT(&V_pf_sendqueue); 1276 PF_SENDQ_UNLOCK(); 1277 1278 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1279 switch (pfse->pfse_type) { 1280 #ifdef INET 1281 case PFSE_IP: 1282 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1283 break; 1284 case PFSE_ICMP: 1285 icmp_error(pfse->pfse_m, pfse->pfse_icmp_type, 1286 pfse->pfse_icmp_code, 0, pfse->pfse_icmp_mtu); 1287 break; 1288 #endif /* INET */ 1289 #ifdef INET6 1290 case PFSE_IP6: 1291 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1292 NULL); 1293 break; 1294 case PFSE_ICMP6: 1295 icmp6_error(pfse->pfse_m, pfse->pfse_icmp_type, 1296 pfse->pfse_icmp_code, pfse->pfse_icmp_mtu); 1297 break; 1298 #endif /* INET6 */ 1299 default: 1300 panic("%s: unknown type", __func__); 1301 } 1302 free(pfse, M_PFTEMP); 1303 } 1304 CURVNET_RESTORE(); 1305 } 1306 1307 void 1308 pf_purge_thread(void *v) 1309 { 1310 u_int idx = 0; 1311 1312 CURVNET_SET((struct vnet *)v); 1313 1314 for (;;) { 1315 PF_RULES_RLOCK(); 1316 rw_sleep(pf_purge_thread, &pf_rules_lock, 0, "pftm", hz / 10); 1317 1318 if (V_pf_end_threads) { 1319 /* 1320 * To cleanse up all kifs and rules we need 1321 * two runs: first one clears reference flags, 1322 * then pf_purge_expired_states() doesn't 1323 * raise them, and then second run frees. 1324 */ 1325 PF_RULES_RUNLOCK(); 1326 pf_purge_unlinked_rules(); 1327 pfi_kif_purge(); 1328 1329 /* 1330 * Now purge everything. 1331 */ 1332 pf_purge_expired_states(0, V_pf_hashmask); 1333 pf_purge_expired_fragments(); 1334 pf_purge_expired_src_nodes(); 1335 1336 /* 1337 * Now all kifs & rules should be unreferenced, 1338 * thus should be successfully freed. 1339 */ 1340 pf_purge_unlinked_rules(); 1341 pfi_kif_purge(); 1342 1343 /* 1344 * Announce success and exit. 1345 */ 1346 PF_RULES_RLOCK(); 1347 V_pf_end_threads++; 1348 PF_RULES_RUNLOCK(); 1349 wakeup(pf_purge_thread); 1350 kproc_exit(0); 1351 } 1352 PF_RULES_RUNLOCK(); 1353 1354 /* Process 1/interval fraction of the state table every run. */ 1355 idx = pf_purge_expired_states(idx, V_pf_hashmask / 1356 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1357 1358 /* Purge other expired types every PFTM_INTERVAL seconds. */ 1359 if (idx == 0) { 1360 /* 1361 * Order is important: 1362 * - states and src nodes reference rules 1363 * - states and rules reference kifs 1364 */ 1365 pf_purge_expired_fragments(); 1366 pf_purge_expired_src_nodes(); 1367 pf_purge_unlinked_rules(); 1368 pfi_kif_purge(); 1369 } 1370 } 1371 /* not reached */ 1372 CURVNET_RESTORE(); 1373 } 1374 1375 u_int32_t 1376 pf_state_expires(const struct pf_state *state) 1377 { 1378 u_int32_t timeout; 1379 u_int32_t start; 1380 u_int32_t end; 1381 u_int32_t states; 1382 1383 /* handle all PFTM_* > PFTM_MAX here */ 1384 if (state->timeout == PFTM_PURGE) 1385 return (time_uptime); 1386 if (state->timeout == PFTM_UNTIL_PACKET) 1387 return (0); 1388 KASSERT(state->timeout != PFTM_UNLINKED, 1389 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1390 KASSERT((state->timeout < PFTM_MAX), 1391 ("pf_state_expires: timeout > PFTM_MAX")); 1392 timeout = state->rule.ptr->timeout[state->timeout]; 1393 if (!timeout) 1394 timeout = V_pf_default_rule.timeout[state->timeout]; 1395 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1396 if (start) { 1397 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1398 states = state->rule.ptr->states_cur; /* XXXGL */ 1399 } else { 1400 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1401 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1402 states = V_pf_status.states; 1403 } 1404 if (end && states > start && start < end) { 1405 if (states < end) 1406 return (state->expire + timeout * (end - states) / 1407 (end - start)); 1408 else 1409 return (time_uptime); 1410 } 1411 return (state->expire + timeout); 1412 } 1413 1414 void 1415 pf_purge_expired_src_nodes() 1416 { 1417 struct pf_srchash *sh; 1418 struct pf_src_node *cur, *next; 1419 int i; 1420 1421 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1422 PF_HASHROW_LOCK(sh); 1423 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1424 if (cur->states <= 0 && cur->expire <= time_uptime) { 1425 if (cur->rule.ptr != NULL) 1426 cur->rule.ptr->src_nodes--; 1427 LIST_REMOVE(cur, entry); 1428 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS]++; 1429 V_pf_status.src_nodes--; 1430 uma_zfree(V_pf_sources_z, cur); 1431 } else if (cur->rule.ptr != NULL) 1432 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1433 PF_HASHROW_UNLOCK(sh); 1434 } 1435 } 1436 1437 static void 1438 pf_src_tree_remove_state(struct pf_state *s) 1439 { 1440 u_int32_t timeout; 1441 1442 if (s->src_node != NULL) { 1443 if (s->src.tcp_est) 1444 --s->src_node->conn; 1445 if (--s->src_node->states <= 0) { 1446 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1447 if (!timeout) 1448 timeout = 1449 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1450 s->src_node->expire = time_uptime + timeout; 1451 } 1452 } 1453 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1454 if (--s->nat_src_node->states <= 0) { 1455 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1456 if (!timeout) 1457 timeout = 1458 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1459 s->nat_src_node->expire = time_uptime + timeout; 1460 } 1461 } 1462 s->src_node = s->nat_src_node = NULL; 1463 } 1464 1465 /* 1466 * Unlink and potentilly free a state. Function may be 1467 * called with ID hash row locked, but always returns 1468 * unlocked, since it needs to go through key hash locking. 1469 */ 1470 int 1471 pf_unlink_state(struct pf_state *s, u_int flags) 1472 { 1473 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1474 1475 if ((flags & PF_ENTER_LOCKED) == 0) 1476 PF_HASHROW_LOCK(ih); 1477 else 1478 PF_HASHROW_ASSERT(ih); 1479 1480 if (s->timeout == PFTM_UNLINKED) { 1481 /* 1482 * State is being processed 1483 * by pf_unlink_state() in 1484 * an other thread. 1485 */ 1486 PF_HASHROW_UNLOCK(ih); 1487 return (0); /* XXXGL: undefined actually */ 1488 } 1489 1490 s->timeout = PFTM_UNLINKED; 1491 1492 if (s->src.state == PF_TCPS_PROXY_DST) { 1493 /* XXX wire key the right one? */ 1494 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1495 &s->key[PF_SK_WIRE]->addr[1], 1496 &s->key[PF_SK_WIRE]->addr[0], 1497 s->key[PF_SK_WIRE]->port[1], 1498 s->key[PF_SK_WIRE]->port[0], 1499 s->src.seqhi, s->src.seqlo + 1, 1500 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1501 } 1502 1503 LIST_REMOVE(s, entry); 1504 pf_src_tree_remove_state(s); 1505 PF_HASHROW_UNLOCK(ih); 1506 1507 if (pfsync_delete_state_ptr != NULL) 1508 pfsync_delete_state_ptr(s); 1509 1510 pf_detach_state(s); 1511 refcount_release(&s->refs); 1512 1513 return (pf_release_state(s)); 1514 } 1515 1516 void 1517 pf_free_state(struct pf_state *cur) 1518 { 1519 1520 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1521 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1522 cur->timeout)); 1523 --cur->rule.ptr->states_cur; 1524 if (cur->nat_rule.ptr != NULL) 1525 --cur->nat_rule.ptr->states_cur; 1526 if (cur->anchor.ptr != NULL) 1527 --cur->anchor.ptr->states_cur; 1528 pf_normalize_tcp_cleanup(cur); 1529 uma_zfree(V_pf_state_z, cur); 1530 V_pf_status.fcounters[FCNT_STATE_REMOVALS]++; 1531 } 1532 1533 /* 1534 * Called only from pf_purge_thread(), thus serialized. 1535 */ 1536 static u_int 1537 pf_purge_expired_states(u_int i, int maxcheck) 1538 { 1539 struct pf_idhash *ih; 1540 struct pf_state *s; 1541 1542 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1543 1544 /* 1545 * Go through hash and unlink states that expire now. 1546 */ 1547 while (maxcheck > 0) { 1548 1549 ih = &V_pf_idhash[i]; 1550 relock: 1551 PF_HASHROW_LOCK(ih); 1552 LIST_FOREACH(s, &ih->states, entry) { 1553 if (pf_state_expires(s) <= time_uptime) { 1554 V_pf_status.states -= 1555 pf_unlink_state(s, PF_ENTER_LOCKED); 1556 goto relock; 1557 } 1558 s->rule.ptr->rule_flag |= PFRULE_REFS; 1559 if (s->nat_rule.ptr != NULL) 1560 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1561 if (s->anchor.ptr != NULL) 1562 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1563 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1564 if (s->rt_kif) 1565 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1566 } 1567 PF_HASHROW_UNLOCK(ih); 1568 1569 /* Return when we hit end of hash. */ 1570 if (++i > V_pf_hashmask) { 1571 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1572 return (0); 1573 } 1574 1575 maxcheck--; 1576 } 1577 1578 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1579 1580 return (i); 1581 } 1582 1583 static void 1584 pf_purge_unlinked_rules() 1585 { 1586 struct pf_rulequeue tmpq; 1587 struct pf_rule *r, *r1; 1588 1589 /* 1590 * If we have overloading task pending, then we'd 1591 * better skip purging this time. There is a tiny 1592 * probability that overloading task references 1593 * an already unlinked rule. 1594 */ 1595 PF_OVERLOADQ_LOCK(); 1596 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1597 PF_OVERLOADQ_UNLOCK(); 1598 return; 1599 } 1600 PF_OVERLOADQ_UNLOCK(); 1601 1602 /* 1603 * Do naive mark-and-sweep garbage collecting of old rules. 1604 * Reference flag is raised by pf_purge_expired_states() 1605 * and pf_purge_expired_src_nodes(). 1606 * 1607 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1608 * use a temporary queue. 1609 */ 1610 TAILQ_INIT(&tmpq); 1611 PF_UNLNKDRULES_LOCK(); 1612 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1613 if (!(r->rule_flag & PFRULE_REFS)) { 1614 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1615 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1616 } else 1617 r->rule_flag &= ~PFRULE_REFS; 1618 } 1619 PF_UNLNKDRULES_UNLOCK(); 1620 1621 if (!TAILQ_EMPTY(&tmpq)) { 1622 PF_RULES_WLOCK(); 1623 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1624 TAILQ_REMOVE(&tmpq, r, entries); 1625 pf_free_rule(r); 1626 } 1627 PF_RULES_WUNLOCK(); 1628 } 1629 } 1630 1631 void 1632 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1633 { 1634 switch (af) { 1635 #ifdef INET 1636 case AF_INET: { 1637 u_int32_t a = ntohl(addr->addr32[0]); 1638 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1639 (a>>8)&255, a&255); 1640 if (p) { 1641 p = ntohs(p); 1642 printf(":%u", p); 1643 } 1644 break; 1645 } 1646 #endif /* INET */ 1647 #ifdef INET6 1648 case AF_INET6: { 1649 u_int16_t b; 1650 u_int8_t i, curstart, curend, maxstart, maxend; 1651 curstart = curend = maxstart = maxend = 255; 1652 for (i = 0; i < 8; i++) { 1653 if (!addr->addr16[i]) { 1654 if (curstart == 255) 1655 curstart = i; 1656 curend = i; 1657 } else { 1658 if ((curend - curstart) > 1659 (maxend - maxstart)) { 1660 maxstart = curstart; 1661 maxend = curend; 1662 } 1663 curstart = curend = 255; 1664 } 1665 } 1666 if ((curend - curstart) > 1667 (maxend - maxstart)) { 1668 maxstart = curstart; 1669 maxend = curend; 1670 } 1671 for (i = 0; i < 8; i++) { 1672 if (i >= maxstart && i <= maxend) { 1673 if (i == 0) 1674 printf(":"); 1675 if (i == maxend) 1676 printf(":"); 1677 } else { 1678 b = ntohs(addr->addr16[i]); 1679 printf("%x", b); 1680 if (i < 7) 1681 printf(":"); 1682 } 1683 } 1684 if (p) { 1685 p = ntohs(p); 1686 printf("[%u]", p); 1687 } 1688 break; 1689 } 1690 #endif /* INET6 */ 1691 } 1692 } 1693 1694 void 1695 pf_print_state(struct pf_state *s) 1696 { 1697 pf_print_state_parts(s, NULL, NULL); 1698 } 1699 1700 static void 1701 pf_print_state_parts(struct pf_state *s, 1702 struct pf_state_key *skwp, struct pf_state_key *sksp) 1703 { 1704 struct pf_state_key *skw, *sks; 1705 u_int8_t proto, dir; 1706 1707 /* Do our best to fill these, but they're skipped if NULL */ 1708 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1709 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1710 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1711 dir = s ? s->direction : 0; 1712 1713 switch (proto) { 1714 case IPPROTO_IPV4: 1715 printf("IPv4"); 1716 break; 1717 case IPPROTO_IPV6: 1718 printf("IPv6"); 1719 break; 1720 case IPPROTO_TCP: 1721 printf("TCP"); 1722 break; 1723 case IPPROTO_UDP: 1724 printf("UDP"); 1725 break; 1726 case IPPROTO_ICMP: 1727 printf("ICMP"); 1728 break; 1729 case IPPROTO_ICMPV6: 1730 printf("ICMPv6"); 1731 break; 1732 default: 1733 printf("%u", skw->proto); 1734 break; 1735 } 1736 switch (dir) { 1737 case PF_IN: 1738 printf(" in"); 1739 break; 1740 case PF_OUT: 1741 printf(" out"); 1742 break; 1743 } 1744 if (skw) { 1745 printf(" wire: "); 1746 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1747 printf(" "); 1748 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1749 } 1750 if (sks) { 1751 printf(" stack: "); 1752 if (sks != skw) { 1753 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1754 printf(" "); 1755 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1756 } else 1757 printf("-"); 1758 } 1759 if (s) { 1760 if (proto == IPPROTO_TCP) { 1761 printf(" [lo=%u high=%u win=%u modulator=%u", 1762 s->src.seqlo, s->src.seqhi, 1763 s->src.max_win, s->src.seqdiff); 1764 if (s->src.wscale && s->dst.wscale) 1765 printf(" wscale=%u", 1766 s->src.wscale & PF_WSCALE_MASK); 1767 printf("]"); 1768 printf(" [lo=%u high=%u win=%u modulator=%u", 1769 s->dst.seqlo, s->dst.seqhi, 1770 s->dst.max_win, s->dst.seqdiff); 1771 if (s->src.wscale && s->dst.wscale) 1772 printf(" wscale=%u", 1773 s->dst.wscale & PF_WSCALE_MASK); 1774 printf("]"); 1775 } 1776 printf(" %u:%u", s->src.state, s->dst.state); 1777 } 1778 } 1779 1780 void 1781 pf_print_flags(u_int8_t f) 1782 { 1783 if (f) 1784 printf(" "); 1785 if (f & TH_FIN) 1786 printf("F"); 1787 if (f & TH_SYN) 1788 printf("S"); 1789 if (f & TH_RST) 1790 printf("R"); 1791 if (f & TH_PUSH) 1792 printf("P"); 1793 if (f & TH_ACK) 1794 printf("A"); 1795 if (f & TH_URG) 1796 printf("U"); 1797 if (f & TH_ECE) 1798 printf("E"); 1799 if (f & TH_CWR) 1800 printf("W"); 1801 } 1802 1803 #define PF_SET_SKIP_STEPS(i) \ 1804 do { \ 1805 while (head[i] != cur) { \ 1806 head[i]->skip[i].ptr = cur; \ 1807 head[i] = TAILQ_NEXT(head[i], entries); \ 1808 } \ 1809 } while (0) 1810 1811 void 1812 pf_calc_skip_steps(struct pf_rulequeue *rules) 1813 { 1814 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1815 int i; 1816 1817 cur = TAILQ_FIRST(rules); 1818 prev = cur; 1819 for (i = 0; i < PF_SKIP_COUNT; ++i) 1820 head[i] = cur; 1821 while (cur != NULL) { 1822 1823 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1824 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1825 if (cur->direction != prev->direction) 1826 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1827 if (cur->af != prev->af) 1828 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1829 if (cur->proto != prev->proto) 1830 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1831 if (cur->src.neg != prev->src.neg || 1832 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1833 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1834 if (cur->src.port[0] != prev->src.port[0] || 1835 cur->src.port[1] != prev->src.port[1] || 1836 cur->src.port_op != prev->src.port_op) 1837 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1838 if (cur->dst.neg != prev->dst.neg || 1839 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1840 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1841 if (cur->dst.port[0] != prev->dst.port[0] || 1842 cur->dst.port[1] != prev->dst.port[1] || 1843 cur->dst.port_op != prev->dst.port_op) 1844 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1845 1846 prev = cur; 1847 cur = TAILQ_NEXT(cur, entries); 1848 } 1849 for (i = 0; i < PF_SKIP_COUNT; ++i) 1850 PF_SET_SKIP_STEPS(i); 1851 } 1852 1853 static int 1854 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1855 { 1856 if (aw1->type != aw2->type) 1857 return (1); 1858 switch (aw1->type) { 1859 case PF_ADDR_ADDRMASK: 1860 case PF_ADDR_RANGE: 1861 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, 0)) 1862 return (1); 1863 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, 0)) 1864 return (1); 1865 return (0); 1866 case PF_ADDR_DYNIFTL: 1867 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 1868 case PF_ADDR_NOROUTE: 1869 case PF_ADDR_URPFFAILED: 1870 return (0); 1871 case PF_ADDR_TABLE: 1872 return (aw1->p.tbl != aw2->p.tbl); 1873 default: 1874 printf("invalid address type: %d\n", aw1->type); 1875 return (1); 1876 } 1877 } 1878 1879 u_int16_t 1880 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 1881 { 1882 u_int32_t l; 1883 1884 if (udp && !cksum) 1885 return (0x0000); 1886 l = cksum + old - new; 1887 l = (l >> 16) + (l & 65535); 1888 l = l & 65535; 1889 if (udp && !l) 1890 return (0xFFFF); 1891 return (l); 1892 } 1893 1894 static void 1895 pf_change_ap(struct pf_addr *a, u_int16_t *p, u_int16_t *ic, u_int16_t *pc, 1896 struct pf_addr *an, u_int16_t pn, u_int8_t u, sa_family_t af) 1897 { 1898 struct pf_addr ao; 1899 u_int16_t po = *p; 1900 1901 PF_ACPY(&ao, a, af); 1902 PF_ACPY(a, an, af); 1903 1904 *p = pn; 1905 1906 switch (af) { 1907 #ifdef INET 1908 case AF_INET: 1909 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 1910 ao.addr16[0], an->addr16[0], 0), 1911 ao.addr16[1], an->addr16[1], 0); 1912 *p = pn; 1913 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 1914 ao.addr16[0], an->addr16[0], u), 1915 ao.addr16[1], an->addr16[1], u), 1916 po, pn, u); 1917 break; 1918 #endif /* INET */ 1919 #ifdef INET6 1920 case AF_INET6: 1921 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 1922 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 1923 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 1924 ao.addr16[0], an->addr16[0], u), 1925 ao.addr16[1], an->addr16[1], u), 1926 ao.addr16[2], an->addr16[2], u), 1927 ao.addr16[3], an->addr16[3], u), 1928 ao.addr16[4], an->addr16[4], u), 1929 ao.addr16[5], an->addr16[5], u), 1930 ao.addr16[6], an->addr16[6], u), 1931 ao.addr16[7], an->addr16[7], u), 1932 po, pn, u); 1933 break; 1934 #endif /* INET6 */ 1935 } 1936 } 1937 1938 1939 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 1940 void 1941 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 1942 { 1943 u_int32_t ao; 1944 1945 memcpy(&ao, a, sizeof(ao)); 1946 memcpy(a, &an, sizeof(u_int32_t)); 1947 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 1948 ao % 65536, an % 65536, u); 1949 } 1950 1951 #ifdef INET6 1952 static void 1953 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 1954 { 1955 struct pf_addr ao; 1956 1957 PF_ACPY(&ao, a, AF_INET6); 1958 PF_ACPY(a, an, AF_INET6); 1959 1960 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 1961 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 1962 pf_cksum_fixup(pf_cksum_fixup(*c, 1963 ao.addr16[0], an->addr16[0], u), 1964 ao.addr16[1], an->addr16[1], u), 1965 ao.addr16[2], an->addr16[2], u), 1966 ao.addr16[3], an->addr16[3], u), 1967 ao.addr16[4], an->addr16[4], u), 1968 ao.addr16[5], an->addr16[5], u), 1969 ao.addr16[6], an->addr16[6], u), 1970 ao.addr16[7], an->addr16[7], u); 1971 } 1972 #endif /* INET6 */ 1973 1974 static void 1975 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 1976 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 1977 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 1978 { 1979 struct pf_addr oia, ooa; 1980 1981 PF_ACPY(&oia, ia, af); 1982 if (oa) 1983 PF_ACPY(&ooa, oa, af); 1984 1985 /* Change inner protocol port, fix inner protocol checksum. */ 1986 if (ip != NULL) { 1987 u_int16_t oip = *ip; 1988 u_int32_t opc; 1989 1990 if (pc != NULL) 1991 opc = *pc; 1992 *ip = np; 1993 if (pc != NULL) 1994 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 1995 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 1996 if (pc != NULL) 1997 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 1998 } 1999 /* Change inner ip address, fix inner ip and icmp checksums. */ 2000 PF_ACPY(ia, na, af); 2001 switch (af) { 2002 #ifdef INET 2003 case AF_INET: { 2004 u_int32_t oh2c = *h2c; 2005 2006 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2007 oia.addr16[0], ia->addr16[0], 0), 2008 oia.addr16[1], ia->addr16[1], 0); 2009 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2010 oia.addr16[0], ia->addr16[0], 0), 2011 oia.addr16[1], ia->addr16[1], 0); 2012 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2013 break; 2014 } 2015 #endif /* INET */ 2016 #ifdef INET6 2017 case AF_INET6: 2018 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2019 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2020 pf_cksum_fixup(pf_cksum_fixup(*ic, 2021 oia.addr16[0], ia->addr16[0], u), 2022 oia.addr16[1], ia->addr16[1], u), 2023 oia.addr16[2], ia->addr16[2], u), 2024 oia.addr16[3], ia->addr16[3], u), 2025 oia.addr16[4], ia->addr16[4], u), 2026 oia.addr16[5], ia->addr16[5], u), 2027 oia.addr16[6], ia->addr16[6], u), 2028 oia.addr16[7], ia->addr16[7], u); 2029 break; 2030 #endif /* INET6 */ 2031 } 2032 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2033 if (oa) { 2034 PF_ACPY(oa, na, af); 2035 switch (af) { 2036 #ifdef INET 2037 case AF_INET: 2038 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2039 ooa.addr16[0], oa->addr16[0], 0), 2040 ooa.addr16[1], oa->addr16[1], 0); 2041 break; 2042 #endif /* INET */ 2043 #ifdef INET6 2044 case AF_INET6: 2045 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2046 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2047 pf_cksum_fixup(pf_cksum_fixup(*ic, 2048 ooa.addr16[0], oa->addr16[0], u), 2049 ooa.addr16[1], oa->addr16[1], u), 2050 ooa.addr16[2], oa->addr16[2], u), 2051 ooa.addr16[3], oa->addr16[3], u), 2052 ooa.addr16[4], oa->addr16[4], u), 2053 ooa.addr16[5], oa->addr16[5], u), 2054 ooa.addr16[6], oa->addr16[6], u), 2055 ooa.addr16[7], oa->addr16[7], u); 2056 break; 2057 #endif /* INET6 */ 2058 } 2059 } 2060 } 2061 2062 2063 /* 2064 * Need to modulate the sequence numbers in the TCP SACK option 2065 * (credits to Krzysztof Pfaff for report and patch) 2066 */ 2067 static int 2068 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2069 struct tcphdr *th, struct pf_state_peer *dst) 2070 { 2071 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2072 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2073 int copyback = 0, i, olen; 2074 struct sackblk sack; 2075 2076 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2077 if (hlen < TCPOLEN_SACKLEN || 2078 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2079 return 0; 2080 2081 while (hlen >= TCPOLEN_SACKLEN) { 2082 olen = opt[1]; 2083 switch (*opt) { 2084 case TCPOPT_EOL: /* FALLTHROUGH */ 2085 case TCPOPT_NOP: 2086 opt++; 2087 hlen--; 2088 break; 2089 case TCPOPT_SACK: 2090 if (olen > hlen) 2091 olen = hlen; 2092 if (olen >= TCPOLEN_SACKLEN) { 2093 for (i = 2; i + TCPOLEN_SACK <= olen; 2094 i += TCPOLEN_SACK) { 2095 memcpy(&sack, &opt[i], sizeof(sack)); 2096 pf_change_a(&sack.start, &th->th_sum, 2097 htonl(ntohl(sack.start) - 2098 dst->seqdiff), 0); 2099 pf_change_a(&sack.end, &th->th_sum, 2100 htonl(ntohl(sack.end) - 2101 dst->seqdiff), 0); 2102 memcpy(&opt[i], &sack, sizeof(sack)); 2103 } 2104 copyback = 1; 2105 } 2106 /* FALLTHROUGH */ 2107 default: 2108 if (olen < 2) 2109 olen = 2; 2110 hlen -= olen; 2111 opt += olen; 2112 } 2113 } 2114 2115 if (copyback) 2116 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2117 return (copyback); 2118 } 2119 2120 static void 2121 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2122 const struct pf_addr *saddr, const struct pf_addr *daddr, 2123 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2124 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2125 u_int16_t rtag, struct ifnet *ifp) 2126 { 2127 struct pf_send_entry *pfse; 2128 struct mbuf *m; 2129 int len, tlen; 2130 #ifdef INET 2131 struct ip *h = NULL; 2132 #endif /* INET */ 2133 #ifdef INET6 2134 struct ip6_hdr *h6 = NULL; 2135 #endif /* INET6 */ 2136 struct tcphdr *th; 2137 char *opt; 2138 struct pf_mtag *pf_mtag; 2139 2140 len = 0; 2141 th = NULL; 2142 2143 /* maximum segment size tcp option */ 2144 tlen = sizeof(struct tcphdr); 2145 if (mss) 2146 tlen += 4; 2147 2148 switch (af) { 2149 #ifdef INET 2150 case AF_INET: 2151 len = sizeof(struct ip) + tlen; 2152 break; 2153 #endif /* INET */ 2154 #ifdef INET6 2155 case AF_INET6: 2156 len = sizeof(struct ip6_hdr) + tlen; 2157 break; 2158 #endif /* INET6 */ 2159 default: 2160 panic("%s: unsupported af %d", __func__, af); 2161 } 2162 2163 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2164 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2165 if (pfse == NULL) 2166 return; 2167 m = m_gethdr(M_NOWAIT, MT_HEADER); 2168 if (m == NULL) { 2169 free(pfse, M_PFTEMP); 2170 return; 2171 } 2172 #ifdef MAC 2173 mac_netinet_firewall_send(m); 2174 #endif 2175 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2176 free(pfse, M_PFTEMP); 2177 m_freem(m); 2178 return; 2179 } 2180 if (tag) 2181 m->m_flags |= M_SKIP_FIREWALL; 2182 pf_mtag->tag = rtag; 2183 2184 if (r != NULL && r->rtableid >= 0) 2185 M_SETFIB(m, r->rtableid); 2186 2187 #ifdef ALTQ 2188 if (r != NULL && r->qid) { 2189 pf_mtag->qid = r->qid; 2190 2191 /* add hints for ecn */ 2192 pf_mtag->hdr = mtod(m, struct ip *); 2193 } 2194 #endif /* ALTQ */ 2195 m->m_data += max_linkhdr; 2196 m->m_pkthdr.len = m->m_len = len; 2197 m->m_pkthdr.rcvif = NULL; 2198 bzero(m->m_data, len); 2199 switch (af) { 2200 #ifdef INET 2201 case AF_INET: 2202 h = mtod(m, struct ip *); 2203 2204 /* IP header fields included in the TCP checksum */ 2205 h->ip_p = IPPROTO_TCP; 2206 h->ip_len = htons(tlen); 2207 h->ip_src.s_addr = saddr->v4.s_addr; 2208 h->ip_dst.s_addr = daddr->v4.s_addr; 2209 2210 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2211 break; 2212 #endif /* INET */ 2213 #ifdef INET6 2214 case AF_INET6: 2215 h6 = mtod(m, struct ip6_hdr *); 2216 2217 /* IP header fields included in the TCP checksum */ 2218 h6->ip6_nxt = IPPROTO_TCP; 2219 h6->ip6_plen = htons(tlen); 2220 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2221 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2222 2223 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2224 break; 2225 #endif /* INET6 */ 2226 } 2227 2228 /* TCP header */ 2229 th->th_sport = sport; 2230 th->th_dport = dport; 2231 th->th_seq = htonl(seq); 2232 th->th_ack = htonl(ack); 2233 th->th_off = tlen >> 2; 2234 th->th_flags = flags; 2235 th->th_win = htons(win); 2236 2237 if (mss) { 2238 opt = (char *)(th + 1); 2239 opt[0] = TCPOPT_MAXSEG; 2240 opt[1] = 4; 2241 HTONS(mss); 2242 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2243 } 2244 2245 switch (af) { 2246 #ifdef INET 2247 case AF_INET: 2248 /* TCP checksum */ 2249 th->th_sum = in_cksum(m, len); 2250 2251 /* Finish the IP header */ 2252 h->ip_v = 4; 2253 h->ip_hl = sizeof(*h) >> 2; 2254 h->ip_tos = IPTOS_LOWDELAY; 2255 h->ip_off = V_path_mtu_discovery ? IP_DF : 0; 2256 h->ip_len = len; 2257 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2258 h->ip_sum = 0; 2259 2260 pfse->pfse_type = PFSE_IP; 2261 break; 2262 #endif /* INET */ 2263 #ifdef INET6 2264 case AF_INET6: 2265 /* TCP checksum */ 2266 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2267 sizeof(struct ip6_hdr), tlen); 2268 2269 h6->ip6_vfc |= IPV6_VERSION; 2270 h6->ip6_hlim = IPV6_DEFHLIM; 2271 2272 pfse->pfse_type = PFSE_IP6; 2273 break; 2274 #endif /* INET6 */ 2275 } 2276 pfse->pfse_m = m; 2277 pf_send(pfse); 2278 } 2279 2280 static void 2281 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2282 struct pf_rule *r) 2283 { 2284 struct pf_send_entry *pfse; 2285 struct mbuf *m0; 2286 struct pf_mtag *pf_mtag; 2287 2288 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2289 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2290 if (pfse == NULL) 2291 return; 2292 2293 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2294 free(pfse, M_PFTEMP); 2295 return; 2296 } 2297 2298 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2299 free(pfse, M_PFTEMP); 2300 return; 2301 } 2302 /* XXX: revisit */ 2303 m0->m_flags |= M_SKIP_FIREWALL; 2304 2305 if (r->rtableid >= 0) 2306 M_SETFIB(m0, r->rtableid); 2307 2308 #ifdef ALTQ 2309 if (r->qid) { 2310 pf_mtag->qid = r->qid; 2311 /* add hints for ecn */ 2312 pf_mtag->hdr = mtod(m0, struct ip *); 2313 } 2314 #endif /* ALTQ */ 2315 2316 switch (af) { 2317 #ifdef INET 2318 case AF_INET: 2319 { 2320 struct ip *ip; 2321 2322 /* icmp_error() expects host byte ordering */ 2323 ip = mtod(m0, struct ip *); 2324 NTOHS(ip->ip_len); 2325 NTOHS(ip->ip_off); 2326 2327 pfse->pfse_type = PFSE_ICMP; 2328 break; 2329 } 2330 #endif /* INET */ 2331 #ifdef INET6 2332 case AF_INET6: 2333 pfse->pfse_type = PFSE_ICMP6; 2334 break; 2335 #endif /* INET6 */ 2336 } 2337 pfse->pfse_m = m0; 2338 pfse->pfse_icmp_type = type; 2339 pfse->pfse_icmp_code = code; 2340 pf_send(pfse); 2341 } 2342 2343 /* 2344 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2345 * If n is 0, they match if they are equal. If n is != 0, they match if they 2346 * are different. 2347 */ 2348 int 2349 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2350 struct pf_addr *b, sa_family_t af) 2351 { 2352 int match = 0; 2353 2354 switch (af) { 2355 #ifdef INET 2356 case AF_INET: 2357 if ((a->addr32[0] & m->addr32[0]) == 2358 (b->addr32[0] & m->addr32[0])) 2359 match++; 2360 break; 2361 #endif /* INET */ 2362 #ifdef INET6 2363 case AF_INET6: 2364 if (((a->addr32[0] & m->addr32[0]) == 2365 (b->addr32[0] & m->addr32[0])) && 2366 ((a->addr32[1] & m->addr32[1]) == 2367 (b->addr32[1] & m->addr32[1])) && 2368 ((a->addr32[2] & m->addr32[2]) == 2369 (b->addr32[2] & m->addr32[2])) && 2370 ((a->addr32[3] & m->addr32[3]) == 2371 (b->addr32[3] & m->addr32[3]))) 2372 match++; 2373 break; 2374 #endif /* INET6 */ 2375 } 2376 if (match) { 2377 if (n) 2378 return (0); 2379 else 2380 return (1); 2381 } else { 2382 if (n) 2383 return (1); 2384 else 2385 return (0); 2386 } 2387 } 2388 2389 /* 2390 * Return 1 if b <= a <= e, otherwise return 0. 2391 */ 2392 int 2393 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2394 struct pf_addr *a, sa_family_t af) 2395 { 2396 switch (af) { 2397 #ifdef INET 2398 case AF_INET: 2399 if ((a->addr32[0] < b->addr32[0]) || 2400 (a->addr32[0] > e->addr32[0])) 2401 return (0); 2402 break; 2403 #endif /* INET */ 2404 #ifdef INET6 2405 case AF_INET6: { 2406 int i; 2407 2408 /* check a >= b */ 2409 for (i = 0; i < 4; ++i) 2410 if (a->addr32[i] > b->addr32[i]) 2411 break; 2412 else if (a->addr32[i] < b->addr32[i]) 2413 return (0); 2414 /* check a <= e */ 2415 for (i = 0; i < 4; ++i) 2416 if (a->addr32[i] < e->addr32[i]) 2417 break; 2418 else if (a->addr32[i] > e->addr32[i]) 2419 return (0); 2420 break; 2421 } 2422 #endif /* INET6 */ 2423 } 2424 return (1); 2425 } 2426 2427 static int 2428 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2429 { 2430 switch (op) { 2431 case PF_OP_IRG: 2432 return ((p > a1) && (p < a2)); 2433 case PF_OP_XRG: 2434 return ((p < a1) || (p > a2)); 2435 case PF_OP_RRG: 2436 return ((p >= a1) && (p <= a2)); 2437 case PF_OP_EQ: 2438 return (p == a1); 2439 case PF_OP_NE: 2440 return (p != a1); 2441 case PF_OP_LT: 2442 return (p < a1); 2443 case PF_OP_LE: 2444 return (p <= a1); 2445 case PF_OP_GT: 2446 return (p > a1); 2447 case PF_OP_GE: 2448 return (p >= a1); 2449 } 2450 return (0); /* never reached */ 2451 } 2452 2453 int 2454 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2455 { 2456 NTOHS(a1); 2457 NTOHS(a2); 2458 NTOHS(p); 2459 return (pf_match(op, a1, a2, p)); 2460 } 2461 2462 static int 2463 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2464 { 2465 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2466 return (0); 2467 return (pf_match(op, a1, a2, u)); 2468 } 2469 2470 static int 2471 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2472 { 2473 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2474 return (0); 2475 return (pf_match(op, a1, a2, g)); 2476 } 2477 2478 int 2479 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2480 { 2481 if (*tag == -1) 2482 *tag = mtag; 2483 2484 return ((!r->match_tag_not && r->match_tag == *tag) || 2485 (r->match_tag_not && r->match_tag != *tag)); 2486 } 2487 2488 int 2489 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2490 { 2491 2492 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2493 2494 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2495 return (ENOMEM); 2496 2497 pd->pf_mtag->tag = tag; 2498 2499 return (0); 2500 } 2501 2502 #define PF_ANCHOR_STACKSIZE 32 2503 struct pf_anchor_stackframe { 2504 struct pf_ruleset *rs; 2505 struct pf_rule *r; /* XXX: + match bit */ 2506 struct pf_anchor *child; 2507 }; 2508 2509 /* 2510 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2511 */ 2512 #define PF_ANCHORSTACK_MATCH 0x00000001 2513 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2514 2515 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2516 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2517 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2518 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2519 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2520 } while (0) 2521 2522 void 2523 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2524 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2525 int *match) 2526 { 2527 struct pf_anchor_stackframe *f; 2528 2529 PF_RULES_RASSERT(); 2530 2531 if (match) 2532 *match = 0; 2533 if (*depth >= PF_ANCHOR_STACKSIZE) { 2534 printf("%s: anchor stack overflow on %s\n", 2535 __func__, (*r)->anchor->name); 2536 *r = TAILQ_NEXT(*r, entries); 2537 return; 2538 } else if (*depth == 0 && a != NULL) 2539 *a = *r; 2540 f = stack + (*depth)++; 2541 f->rs = *rs; 2542 f->r = *r; 2543 if ((*r)->anchor_wildcard) { 2544 struct pf_anchor_node *parent = &(*r)->anchor->children; 2545 2546 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2547 *r = NULL; 2548 return; 2549 } 2550 *rs = &f->child->ruleset; 2551 } else { 2552 f->child = NULL; 2553 *rs = &(*r)->anchor->ruleset; 2554 } 2555 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2556 } 2557 2558 int 2559 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2560 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2561 int *match) 2562 { 2563 struct pf_anchor_stackframe *f; 2564 struct pf_rule *fr; 2565 int quick = 0; 2566 2567 PF_RULES_RASSERT(); 2568 2569 do { 2570 if (*depth <= 0) 2571 break; 2572 f = stack + *depth - 1; 2573 fr = PF_ANCHOR_RULE(f); 2574 if (f->child != NULL) { 2575 struct pf_anchor_node *parent; 2576 2577 /* 2578 * This block traverses through 2579 * a wildcard anchor. 2580 */ 2581 parent = &fr->anchor->children; 2582 if (match != NULL && *match) { 2583 /* 2584 * If any of "*" matched, then 2585 * "foo/ *" matched, mark frame 2586 * appropriately. 2587 */ 2588 PF_ANCHOR_SET_MATCH(f); 2589 *match = 0; 2590 } 2591 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2592 if (f->child != NULL) { 2593 *rs = &f->child->ruleset; 2594 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2595 if (*r == NULL) 2596 continue; 2597 else 2598 break; 2599 } 2600 } 2601 (*depth)--; 2602 if (*depth == 0 && a != NULL) 2603 *a = NULL; 2604 *rs = f->rs; 2605 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2606 quick = fr->quick; 2607 *r = TAILQ_NEXT(fr, entries); 2608 } while (*r == NULL); 2609 2610 return (quick); 2611 } 2612 2613 #ifdef INET6 2614 void 2615 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2616 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2617 { 2618 switch (af) { 2619 #ifdef INET 2620 case AF_INET: 2621 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2622 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2623 break; 2624 #endif /* INET */ 2625 case AF_INET6: 2626 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2627 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2628 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2629 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2630 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2631 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2632 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2633 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2634 break; 2635 } 2636 } 2637 2638 void 2639 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2640 { 2641 switch (af) { 2642 #ifdef INET 2643 case AF_INET: 2644 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2645 break; 2646 #endif /* INET */ 2647 case AF_INET6: 2648 if (addr->addr32[3] == 0xffffffff) { 2649 addr->addr32[3] = 0; 2650 if (addr->addr32[2] == 0xffffffff) { 2651 addr->addr32[2] = 0; 2652 if (addr->addr32[1] == 0xffffffff) { 2653 addr->addr32[1] = 0; 2654 addr->addr32[0] = 2655 htonl(ntohl(addr->addr32[0]) + 1); 2656 } else 2657 addr->addr32[1] = 2658 htonl(ntohl(addr->addr32[1]) + 1); 2659 } else 2660 addr->addr32[2] = 2661 htonl(ntohl(addr->addr32[2]) + 1); 2662 } else 2663 addr->addr32[3] = 2664 htonl(ntohl(addr->addr32[3]) + 1); 2665 break; 2666 } 2667 } 2668 #endif /* INET6 */ 2669 2670 int 2671 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2672 { 2673 struct pf_addr *saddr, *daddr; 2674 u_int16_t sport, dport; 2675 struct inpcbinfo *pi; 2676 struct inpcb *inp; 2677 2678 pd->lookup.uid = UID_MAX; 2679 pd->lookup.gid = GID_MAX; 2680 2681 switch (pd->proto) { 2682 case IPPROTO_TCP: 2683 if (pd->hdr.tcp == NULL) 2684 return (-1); 2685 sport = pd->hdr.tcp->th_sport; 2686 dport = pd->hdr.tcp->th_dport; 2687 pi = &V_tcbinfo; 2688 break; 2689 case IPPROTO_UDP: 2690 if (pd->hdr.udp == NULL) 2691 return (-1); 2692 sport = pd->hdr.udp->uh_sport; 2693 dport = pd->hdr.udp->uh_dport; 2694 pi = &V_udbinfo; 2695 break; 2696 default: 2697 return (-1); 2698 } 2699 if (direction == PF_IN) { 2700 saddr = pd->src; 2701 daddr = pd->dst; 2702 } else { 2703 u_int16_t p; 2704 2705 p = sport; 2706 sport = dport; 2707 dport = p; 2708 saddr = pd->dst; 2709 daddr = pd->src; 2710 } 2711 switch (pd->af) { 2712 #ifdef INET 2713 case AF_INET: 2714 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2715 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2716 if (inp == NULL) { 2717 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2718 daddr->v4, dport, INPLOOKUP_WILDCARD | 2719 INPLOOKUP_RLOCKPCB, NULL, m); 2720 if (inp == NULL) 2721 return (-1); 2722 } 2723 break; 2724 #endif /* INET */ 2725 #ifdef INET6 2726 case AF_INET6: 2727 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2728 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2729 if (inp == NULL) { 2730 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2731 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2732 INPLOOKUP_RLOCKPCB, NULL, m); 2733 if (inp == NULL) 2734 return (-1); 2735 } 2736 break; 2737 #endif /* INET6 */ 2738 2739 default: 2740 return (-1); 2741 } 2742 INP_RLOCK_ASSERT(inp); 2743 pd->lookup.uid = inp->inp_cred->cr_uid; 2744 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2745 INP_RUNLOCK(inp); 2746 2747 return (1); 2748 } 2749 2750 static u_int8_t 2751 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2752 { 2753 int hlen; 2754 u_int8_t hdr[60]; 2755 u_int8_t *opt, optlen; 2756 u_int8_t wscale = 0; 2757 2758 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2759 if (hlen <= sizeof(struct tcphdr)) 2760 return (0); 2761 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2762 return (0); 2763 opt = hdr + sizeof(struct tcphdr); 2764 hlen -= sizeof(struct tcphdr); 2765 while (hlen >= 3) { 2766 switch (*opt) { 2767 case TCPOPT_EOL: 2768 case TCPOPT_NOP: 2769 ++opt; 2770 --hlen; 2771 break; 2772 case TCPOPT_WINDOW: 2773 wscale = opt[2]; 2774 if (wscale > TCP_MAX_WINSHIFT) 2775 wscale = TCP_MAX_WINSHIFT; 2776 wscale |= PF_WSCALE_FLAG; 2777 /* FALLTHROUGH */ 2778 default: 2779 optlen = opt[1]; 2780 if (optlen < 2) 2781 optlen = 2; 2782 hlen -= optlen; 2783 opt += optlen; 2784 break; 2785 } 2786 } 2787 return (wscale); 2788 } 2789 2790 static u_int16_t 2791 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2792 { 2793 int hlen; 2794 u_int8_t hdr[60]; 2795 u_int8_t *opt, optlen; 2796 u_int16_t mss = V_tcp_mssdflt; 2797 2798 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2799 if (hlen <= sizeof(struct tcphdr)) 2800 return (0); 2801 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2802 return (0); 2803 opt = hdr + sizeof(struct tcphdr); 2804 hlen -= sizeof(struct tcphdr); 2805 while (hlen >= TCPOLEN_MAXSEG) { 2806 switch (*opt) { 2807 case TCPOPT_EOL: 2808 case TCPOPT_NOP: 2809 ++opt; 2810 --hlen; 2811 break; 2812 case TCPOPT_MAXSEG: 2813 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 2814 NTOHS(mss); 2815 /* FALLTHROUGH */ 2816 default: 2817 optlen = opt[1]; 2818 if (optlen < 2) 2819 optlen = 2; 2820 hlen -= optlen; 2821 opt += optlen; 2822 break; 2823 } 2824 } 2825 return (mss); 2826 } 2827 2828 static u_int16_t 2829 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 2830 { 2831 #ifdef INET 2832 struct sockaddr_in *dst; 2833 struct route ro; 2834 #endif /* INET */ 2835 #ifdef INET6 2836 struct sockaddr_in6 *dst6; 2837 struct route_in6 ro6; 2838 #endif /* INET6 */ 2839 struct rtentry *rt = NULL; 2840 int hlen = 0; 2841 u_int16_t mss = V_tcp_mssdflt; 2842 2843 switch (af) { 2844 #ifdef INET 2845 case AF_INET: 2846 hlen = sizeof(struct ip); 2847 bzero(&ro, sizeof(ro)); 2848 dst = (struct sockaddr_in *)&ro.ro_dst; 2849 dst->sin_family = AF_INET; 2850 dst->sin_len = sizeof(*dst); 2851 dst->sin_addr = addr->v4; 2852 in_rtalloc_ign(&ro, 0, rtableid); 2853 rt = ro.ro_rt; 2854 break; 2855 #endif /* INET */ 2856 #ifdef INET6 2857 case AF_INET6: 2858 hlen = sizeof(struct ip6_hdr); 2859 bzero(&ro6, sizeof(ro6)); 2860 dst6 = (struct sockaddr_in6 *)&ro6.ro_dst; 2861 dst6->sin6_family = AF_INET6; 2862 dst6->sin6_len = sizeof(*dst6); 2863 dst6->sin6_addr = addr->v6; 2864 in6_rtalloc_ign(&ro6, 0, rtableid); 2865 rt = ro6.ro_rt; 2866 break; 2867 #endif /* INET6 */ 2868 } 2869 2870 if (rt && rt->rt_ifp) { 2871 mss = rt->rt_ifp->if_mtu - hlen - sizeof(struct tcphdr); 2872 mss = max(V_tcp_mssdflt, mss); 2873 RTFREE(rt); 2874 } 2875 mss = min(mss, offer); 2876 mss = max(mss, 64); /* sanity - at least max opt space */ 2877 return (mss); 2878 } 2879 2880 static void 2881 pf_set_rt_ifp(struct pf_state *s, struct pf_addr *saddr) 2882 { 2883 struct pf_rule *r = s->rule.ptr; 2884 struct pf_src_node *sn = NULL; 2885 2886 s->rt_kif = NULL; 2887 if (!r->rt || r->rt == PF_FASTROUTE) 2888 return; 2889 switch (s->key[PF_SK_WIRE]->af) { 2890 #ifdef INET 2891 case AF_INET: 2892 pf_map_addr(AF_INET, r, saddr, &s->rt_addr, NULL, &sn); 2893 s->rt_kif = r->rpool.cur->kif; 2894 break; 2895 #endif /* INET */ 2896 #ifdef INET6 2897 case AF_INET6: 2898 pf_map_addr(AF_INET6, r, saddr, &s->rt_addr, NULL, &sn); 2899 s->rt_kif = r->rpool.cur->kif; 2900 break; 2901 #endif /* INET6 */ 2902 } 2903 } 2904 2905 static u_int32_t 2906 pf_tcp_iss(struct pf_pdesc *pd) 2907 { 2908 MD5_CTX ctx; 2909 u_int32_t digest[4]; 2910 2911 if (V_pf_tcp_secret_init == 0) { 2912 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 2913 MD5Init(&V_pf_tcp_secret_ctx); 2914 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 2915 sizeof(V_pf_tcp_secret)); 2916 V_pf_tcp_secret_init = 1; 2917 } 2918 2919 ctx = V_pf_tcp_secret_ctx; 2920 2921 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 2922 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 2923 if (pd->af == AF_INET6) { 2924 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 2925 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 2926 } else { 2927 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 2928 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 2929 } 2930 MD5Final((u_char *)digest, &ctx); 2931 V_pf_tcp_iss_off += 4096; 2932 #define ISN_RANDOM_INCREMENT (4096 - 1) 2933 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 2934 V_pf_tcp_iss_off); 2935 #undef ISN_RANDOM_INCREMENT 2936 } 2937 2938 static int 2939 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 2940 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 2941 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 2942 { 2943 struct pf_rule *nr = NULL; 2944 struct pf_addr * const saddr = pd->src; 2945 struct pf_addr * const daddr = pd->dst; 2946 sa_family_t af = pd->af; 2947 struct pf_rule *r, *a = NULL; 2948 struct pf_ruleset *ruleset = NULL; 2949 struct pf_src_node *nsn = NULL; 2950 struct tcphdr *th = pd->hdr.tcp; 2951 struct pf_state_key *sk = NULL, *nk = NULL; 2952 u_short reason; 2953 int rewrite = 0, hdrlen = 0; 2954 int tag = -1, rtableid = -1; 2955 int asd = 0; 2956 int match = 0; 2957 int state_icmp = 0; 2958 u_int16_t sport = 0, dport = 0; 2959 u_int16_t bproto_sum = 0, bip_sum = 0; 2960 u_int8_t icmptype = 0, icmpcode = 0; 2961 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 2962 2963 PF_RULES_RASSERT(); 2964 2965 if (inp != NULL) { 2966 INP_LOCK_ASSERT(inp); 2967 pd->lookup.uid = inp->inp_cred->cr_uid; 2968 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2969 pd->lookup.done = 1; 2970 } 2971 2972 switch (pd->proto) { 2973 case IPPROTO_TCP: 2974 sport = th->th_sport; 2975 dport = th->th_dport; 2976 hdrlen = sizeof(*th); 2977 break; 2978 case IPPROTO_UDP: 2979 sport = pd->hdr.udp->uh_sport; 2980 dport = pd->hdr.udp->uh_dport; 2981 hdrlen = sizeof(*pd->hdr.udp); 2982 break; 2983 #ifdef INET 2984 case IPPROTO_ICMP: 2985 if (pd->af != AF_INET) 2986 break; 2987 sport = dport = pd->hdr.icmp->icmp_id; 2988 hdrlen = sizeof(*pd->hdr.icmp); 2989 icmptype = pd->hdr.icmp->icmp_type; 2990 icmpcode = pd->hdr.icmp->icmp_code; 2991 2992 if (icmptype == ICMP_UNREACH || 2993 icmptype == ICMP_SOURCEQUENCH || 2994 icmptype == ICMP_REDIRECT || 2995 icmptype == ICMP_TIMXCEED || 2996 icmptype == ICMP_PARAMPROB) 2997 state_icmp++; 2998 break; 2999 #endif /* INET */ 3000 #ifdef INET6 3001 case IPPROTO_ICMPV6: 3002 if (af != AF_INET6) 3003 break; 3004 sport = dport = pd->hdr.icmp6->icmp6_id; 3005 hdrlen = sizeof(*pd->hdr.icmp6); 3006 icmptype = pd->hdr.icmp6->icmp6_type; 3007 icmpcode = pd->hdr.icmp6->icmp6_code; 3008 3009 if (icmptype == ICMP6_DST_UNREACH || 3010 icmptype == ICMP6_PACKET_TOO_BIG || 3011 icmptype == ICMP6_TIME_EXCEEDED || 3012 icmptype == ICMP6_PARAM_PROB) 3013 state_icmp++; 3014 break; 3015 #endif /* INET6 */ 3016 default: 3017 sport = dport = hdrlen = 0; 3018 break; 3019 } 3020 3021 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3022 3023 /* check packet for BINAT/NAT/RDR */ 3024 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3025 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3026 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3027 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3028 3029 if (pd->ip_sum) 3030 bip_sum = *pd->ip_sum; 3031 3032 switch (pd->proto) { 3033 case IPPROTO_TCP: 3034 bproto_sum = th->th_sum; 3035 pd->proto_sum = &th->th_sum; 3036 3037 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3038 nk->port[pd->sidx] != sport) { 3039 pf_change_ap(saddr, &th->th_sport, pd->ip_sum, 3040 &th->th_sum, &nk->addr[pd->sidx], 3041 nk->port[pd->sidx], 0, af); 3042 pd->sport = &th->th_sport; 3043 sport = th->th_sport; 3044 } 3045 3046 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3047 nk->port[pd->didx] != dport) { 3048 pf_change_ap(daddr, &th->th_dport, pd->ip_sum, 3049 &th->th_sum, &nk->addr[pd->didx], 3050 nk->port[pd->didx], 0, af); 3051 dport = th->th_dport; 3052 pd->dport = &th->th_dport; 3053 } 3054 rewrite++; 3055 break; 3056 case IPPROTO_UDP: 3057 bproto_sum = pd->hdr.udp->uh_sum; 3058 pd->proto_sum = &pd->hdr.udp->uh_sum; 3059 3060 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3061 nk->port[pd->sidx] != sport) { 3062 pf_change_ap(saddr, &pd->hdr.udp->uh_sport, 3063 pd->ip_sum, &pd->hdr.udp->uh_sum, 3064 &nk->addr[pd->sidx], 3065 nk->port[pd->sidx], 1, af); 3066 sport = pd->hdr.udp->uh_sport; 3067 pd->sport = &pd->hdr.udp->uh_sport; 3068 } 3069 3070 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3071 nk->port[pd->didx] != dport) { 3072 pf_change_ap(daddr, &pd->hdr.udp->uh_dport, 3073 pd->ip_sum, &pd->hdr.udp->uh_sum, 3074 &nk->addr[pd->didx], 3075 nk->port[pd->didx], 1, af); 3076 dport = pd->hdr.udp->uh_dport; 3077 pd->dport = &pd->hdr.udp->uh_dport; 3078 } 3079 rewrite++; 3080 break; 3081 #ifdef INET 3082 case IPPROTO_ICMP: 3083 nk->port[0] = nk->port[1]; 3084 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3085 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3086 nk->addr[pd->sidx].v4.s_addr, 0); 3087 3088 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3089 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3090 nk->addr[pd->didx].v4.s_addr, 0); 3091 3092 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3093 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3094 pd->hdr.icmp->icmp_cksum, sport, 3095 nk->port[1], 0); 3096 pd->hdr.icmp->icmp_id = nk->port[1]; 3097 pd->sport = &pd->hdr.icmp->icmp_id; 3098 } 3099 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3100 break; 3101 #endif /* INET */ 3102 #ifdef INET6 3103 case IPPROTO_ICMPV6: 3104 nk->port[0] = nk->port[1]; 3105 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3106 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3107 &nk->addr[pd->sidx], 0); 3108 3109 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3110 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3111 &nk->addr[pd->didx], 0); 3112 rewrite++; 3113 break; 3114 #endif /* INET */ 3115 default: 3116 switch (af) { 3117 #ifdef INET 3118 case AF_INET: 3119 if (PF_ANEQ(saddr, 3120 &nk->addr[pd->sidx], AF_INET)) 3121 pf_change_a(&saddr->v4.s_addr, 3122 pd->ip_sum, 3123 nk->addr[pd->sidx].v4.s_addr, 0); 3124 3125 if (PF_ANEQ(daddr, 3126 &nk->addr[pd->didx], AF_INET)) 3127 pf_change_a(&daddr->v4.s_addr, 3128 pd->ip_sum, 3129 nk->addr[pd->didx].v4.s_addr, 0); 3130 break; 3131 #endif /* INET */ 3132 #ifdef INET6 3133 case AF_INET6: 3134 if (PF_ANEQ(saddr, 3135 &nk->addr[pd->sidx], AF_INET6)) 3136 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3137 3138 if (PF_ANEQ(daddr, 3139 &nk->addr[pd->didx], AF_INET6)) 3140 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3141 break; 3142 #endif /* INET */ 3143 } 3144 break; 3145 } 3146 if (nr->natpass) 3147 r = NULL; 3148 pd->nat_rule = nr; 3149 } 3150 3151 while (r != NULL) { 3152 r->evaluations++; 3153 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3154 r = r->skip[PF_SKIP_IFP].ptr; 3155 else if (r->direction && r->direction != direction) 3156 r = r->skip[PF_SKIP_DIR].ptr; 3157 else if (r->af && r->af != af) 3158 r = r->skip[PF_SKIP_AF].ptr; 3159 else if (r->proto && r->proto != pd->proto) 3160 r = r->skip[PF_SKIP_PROTO].ptr; 3161 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3162 r->src.neg, kif, M_GETFIB(m))) 3163 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3164 /* tcp/udp only. port_op always 0 in other cases */ 3165 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3166 r->src.port[0], r->src.port[1], sport)) 3167 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3168 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3169 r->dst.neg, NULL, M_GETFIB(m))) 3170 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3171 /* tcp/udp only. port_op always 0 in other cases */ 3172 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3173 r->dst.port[0], r->dst.port[1], dport)) 3174 r = r->skip[PF_SKIP_DST_PORT].ptr; 3175 /* icmp only. type always 0 in other cases */ 3176 else if (r->type && r->type != icmptype + 1) 3177 r = TAILQ_NEXT(r, entries); 3178 /* icmp only. type always 0 in other cases */ 3179 else if (r->code && r->code != icmpcode + 1) 3180 r = TAILQ_NEXT(r, entries); 3181 else if (r->tos && !(r->tos == pd->tos)) 3182 r = TAILQ_NEXT(r, entries); 3183 else if (r->rule_flag & PFRULE_FRAGMENT) 3184 r = TAILQ_NEXT(r, entries); 3185 else if (pd->proto == IPPROTO_TCP && 3186 (r->flagset & th->th_flags) != r->flags) 3187 r = TAILQ_NEXT(r, entries); 3188 /* tcp/udp only. uid.op always 0 in other cases */ 3189 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3190 pf_socket_lookup(direction, pd, m), 1)) && 3191 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3192 pd->lookup.uid)) 3193 r = TAILQ_NEXT(r, entries); 3194 /* tcp/udp only. gid.op always 0 in other cases */ 3195 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3196 pf_socket_lookup(direction, pd, m), 1)) && 3197 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3198 pd->lookup.gid)) 3199 r = TAILQ_NEXT(r, entries); 3200 else if (r->prob && 3201 r->prob <= arc4random()) 3202 r = TAILQ_NEXT(r, entries); 3203 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3204 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3205 r = TAILQ_NEXT(r, entries); 3206 else if (r->os_fingerprint != PF_OSFP_ANY && 3207 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3208 pf_osfp_fingerprint(pd, m, off, th), 3209 r->os_fingerprint))) 3210 r = TAILQ_NEXT(r, entries); 3211 else { 3212 if (r->tag) 3213 tag = r->tag; 3214 if (r->rtableid >= 0) 3215 rtableid = r->rtableid; 3216 if (r->anchor == NULL) { 3217 match = 1; 3218 *rm = r; 3219 *am = a; 3220 *rsm = ruleset; 3221 if ((*rm)->quick) 3222 break; 3223 r = TAILQ_NEXT(r, entries); 3224 } else 3225 pf_step_into_anchor(anchor_stack, &asd, 3226 &ruleset, PF_RULESET_FILTER, &r, &a, 3227 &match); 3228 } 3229 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3230 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3231 break; 3232 } 3233 r = *rm; 3234 a = *am; 3235 ruleset = *rsm; 3236 3237 REASON_SET(&reason, PFRES_MATCH); 3238 3239 if (r->log || (nr != NULL && nr->log)) { 3240 if (rewrite) 3241 m_copyback(m, off, hdrlen, pd->hdr.any); 3242 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3243 ruleset, pd, 1); 3244 } 3245 3246 if ((r->action == PF_DROP) && 3247 ((r->rule_flag & PFRULE_RETURNRST) || 3248 (r->rule_flag & PFRULE_RETURNICMP) || 3249 (r->rule_flag & PFRULE_RETURN))) { 3250 /* undo NAT changes, if they have taken place */ 3251 if (nr != NULL) { 3252 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3253 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3254 if (pd->sport) 3255 *pd->sport = sk->port[pd->sidx]; 3256 if (pd->dport) 3257 *pd->dport = sk->port[pd->didx]; 3258 if (pd->proto_sum) 3259 *pd->proto_sum = bproto_sum; 3260 if (pd->ip_sum) 3261 *pd->ip_sum = bip_sum; 3262 m_copyback(m, off, hdrlen, pd->hdr.any); 3263 } 3264 if (pd->proto == IPPROTO_TCP && 3265 ((r->rule_flag & PFRULE_RETURNRST) || 3266 (r->rule_flag & PFRULE_RETURN)) && 3267 !(th->th_flags & TH_RST)) { 3268 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3269 int len = 0; 3270 #ifdef INET 3271 struct ip *h4; 3272 #endif 3273 #ifdef INET6 3274 struct ip6_hdr *h6; 3275 #endif 3276 3277 switch (af) { 3278 #ifdef INET 3279 case AF_INET: 3280 h4 = mtod(m, struct ip *); 3281 len = ntohs(h4->ip_len) - off; 3282 break; 3283 #endif 3284 #ifdef INET6 3285 case AF_INET6: 3286 h6 = mtod(m, struct ip6_hdr *); 3287 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3288 break; 3289 #endif 3290 } 3291 3292 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3293 REASON_SET(&reason, PFRES_PROTCKSUM); 3294 else { 3295 if (th->th_flags & TH_SYN) 3296 ack++; 3297 if (th->th_flags & TH_FIN) 3298 ack++; 3299 pf_send_tcp(m, r, af, pd->dst, 3300 pd->src, th->th_dport, th->th_sport, 3301 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3302 r->return_ttl, 1, 0, kif->pfik_ifp); 3303 } 3304 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3305 r->return_icmp) 3306 pf_send_icmp(m, r->return_icmp >> 8, 3307 r->return_icmp & 255, af, r); 3308 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3309 r->return_icmp6) 3310 pf_send_icmp(m, r->return_icmp6 >> 8, 3311 r->return_icmp6 & 255, af, r); 3312 } 3313 3314 if (r->action == PF_DROP) 3315 goto cleanup; 3316 3317 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3318 REASON_SET(&reason, PFRES_MEMORY); 3319 goto cleanup; 3320 } 3321 if (rtableid >= 0) 3322 M_SETFIB(m, rtableid); 3323 3324 if (!state_icmp && (r->keep_state || nr != NULL || 3325 (pd->flags & PFDESC_TCP_NORM))) { 3326 int action; 3327 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3328 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3329 hdrlen); 3330 if (action != PF_PASS) 3331 return (action); 3332 } else { 3333 if (sk != NULL) 3334 uma_zfree(V_pf_state_key_z, sk); 3335 if (nk != NULL) 3336 uma_zfree(V_pf_state_key_z, nk); 3337 } 3338 3339 /* copy back packet headers if we performed NAT operations */ 3340 if (rewrite) 3341 m_copyback(m, off, hdrlen, pd->hdr.any); 3342 3343 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3344 direction == PF_OUT && 3345 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3346 /* 3347 * We want the state created, but we dont 3348 * want to send this in case a partner 3349 * firewall has to know about it to allow 3350 * replies through it. 3351 */ 3352 return (PF_DEFER); 3353 3354 return (PF_PASS); 3355 3356 cleanup: 3357 if (sk != NULL) 3358 uma_zfree(V_pf_state_key_z, sk); 3359 if (nk != NULL) 3360 uma_zfree(V_pf_state_key_z, nk); 3361 return (PF_DROP); 3362 } 3363 3364 static int 3365 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3366 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3367 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3368 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3369 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3370 { 3371 struct pf_state *s = NULL; 3372 struct pf_src_node *sn = NULL; 3373 struct tcphdr *th = pd->hdr.tcp; 3374 u_int16_t mss = V_tcp_mssdflt; 3375 u_short reason; 3376 3377 /* check maximums */ 3378 if (r->max_states && (r->states_cur >= r->max_states)) { 3379 V_pf_status.lcounters[LCNT_STATES]++; 3380 REASON_SET(&reason, PFRES_MAXSTATES); 3381 return (PF_DROP); 3382 } 3383 /* src node for filter rule */ 3384 if ((r->rule_flag & PFRULE_SRCTRACK || 3385 r->rpool.opts & PF_POOL_STICKYADDR) && 3386 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3387 REASON_SET(&reason, PFRES_SRCLIMIT); 3388 goto csfailed; 3389 } 3390 /* src node for translation rule */ 3391 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3392 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3393 REASON_SET(&reason, PFRES_SRCLIMIT); 3394 goto csfailed; 3395 } 3396 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3397 if (s == NULL) { 3398 REASON_SET(&reason, PFRES_MEMORY); 3399 goto csfailed; 3400 } 3401 s->rule.ptr = r; 3402 s->nat_rule.ptr = nr; 3403 s->anchor.ptr = a; 3404 STATE_INC_COUNTERS(s); 3405 if (r->allow_opts) 3406 s->state_flags |= PFSTATE_ALLOWOPTS; 3407 if (r->rule_flag & PFRULE_STATESLOPPY) 3408 s->state_flags |= PFSTATE_SLOPPY; 3409 s->log = r->log & PF_LOG_ALL; 3410 s->sync_state = PFSYNC_S_NONE; 3411 if (nr != NULL) 3412 s->log |= nr->log & PF_LOG_ALL; 3413 switch (pd->proto) { 3414 case IPPROTO_TCP: 3415 s->src.seqlo = ntohl(th->th_seq); 3416 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3417 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3418 r->keep_state == PF_STATE_MODULATE) { 3419 /* Generate sequence number modulator */ 3420 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3421 0) 3422 s->src.seqdiff = 1; 3423 pf_change_a(&th->th_seq, &th->th_sum, 3424 htonl(s->src.seqlo + s->src.seqdiff), 0); 3425 *rewrite = 1; 3426 } else 3427 s->src.seqdiff = 0; 3428 if (th->th_flags & TH_SYN) { 3429 s->src.seqhi++; 3430 s->src.wscale = pf_get_wscale(m, off, 3431 th->th_off, pd->af); 3432 } 3433 s->src.max_win = MAX(ntohs(th->th_win), 1); 3434 if (s->src.wscale & PF_WSCALE_MASK) { 3435 /* Remove scale factor from initial window */ 3436 int win = s->src.max_win; 3437 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3438 s->src.max_win = (win - 1) >> 3439 (s->src.wscale & PF_WSCALE_MASK); 3440 } 3441 if (th->th_flags & TH_FIN) 3442 s->src.seqhi++; 3443 s->dst.seqhi = 1; 3444 s->dst.max_win = 1; 3445 s->src.state = TCPS_SYN_SENT; 3446 s->dst.state = TCPS_CLOSED; 3447 s->timeout = PFTM_TCP_FIRST_PACKET; 3448 break; 3449 case IPPROTO_UDP: 3450 s->src.state = PFUDPS_SINGLE; 3451 s->dst.state = PFUDPS_NO_TRAFFIC; 3452 s->timeout = PFTM_UDP_FIRST_PACKET; 3453 break; 3454 case IPPROTO_ICMP: 3455 #ifdef INET6 3456 case IPPROTO_ICMPV6: 3457 #endif 3458 s->timeout = PFTM_ICMP_FIRST_PACKET; 3459 break; 3460 default: 3461 s->src.state = PFOTHERS_SINGLE; 3462 s->dst.state = PFOTHERS_NO_TRAFFIC; 3463 s->timeout = PFTM_OTHER_FIRST_PACKET; 3464 } 3465 3466 s->creation = time_uptime; 3467 s->expire = time_uptime; 3468 3469 if (sn != NULL) { 3470 s->src_node = sn; 3471 s->src_node->states++; 3472 } 3473 if (nsn != NULL) { 3474 /* XXX We only modify one side for now. */ 3475 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3476 s->nat_src_node = nsn; 3477 s->nat_src_node->states++; 3478 } 3479 if (pd->proto == IPPROTO_TCP) { 3480 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3481 off, pd, th, &s->src, &s->dst)) { 3482 REASON_SET(&reason, PFRES_MEMORY); 3483 pf_src_tree_remove_state(s); 3484 STATE_DEC_COUNTERS(s); 3485 uma_zfree(V_pf_state_z, s); 3486 return (PF_DROP); 3487 } 3488 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3489 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3490 &s->src, &s->dst, rewrite)) { 3491 /* This really shouldn't happen!!! */ 3492 DPFPRINTF(PF_DEBUG_URGENT, 3493 ("pf_normalize_tcp_stateful failed on first pkt")); 3494 pf_normalize_tcp_cleanup(s); 3495 pf_src_tree_remove_state(s); 3496 STATE_DEC_COUNTERS(s); 3497 uma_zfree(V_pf_state_z, s); 3498 return (PF_DROP); 3499 } 3500 } 3501 s->direction = pd->dir; 3502 3503 /* 3504 * sk/nk could already been setup by pf_get_translation(). 3505 */ 3506 if (nr == NULL) { 3507 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3508 __func__, nr, sk, nk)); 3509 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3510 if (sk == NULL) 3511 goto csfailed; 3512 nk = sk; 3513 } else 3514 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3515 __func__, nr, sk, nk)); 3516 3517 /* Swap sk/nk for PF_OUT. */ 3518 if (pf_state_insert(BOUND_IFACE(r, kif), 3519 (pd->dir == PF_IN) ? sk : nk, 3520 (pd->dir == PF_IN) ? nk : sk, s)) { 3521 if (pd->proto == IPPROTO_TCP) 3522 pf_normalize_tcp_cleanup(s); 3523 REASON_SET(&reason, PFRES_STATEINS); 3524 pf_src_tree_remove_state(s); 3525 STATE_DEC_COUNTERS(s); 3526 uma_zfree(V_pf_state_z, s); 3527 return (PF_DROP); 3528 } else 3529 *sm = s; 3530 3531 pf_set_rt_ifp(s, pd->src); /* needs s->state_key set */ 3532 if (tag > 0) 3533 s->tag = tag; 3534 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3535 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3536 s->src.state = PF_TCPS_PROXY_SRC; 3537 /* undo NAT changes, if they have taken place */ 3538 if (nr != NULL) { 3539 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3540 if (pd->dir == PF_OUT) 3541 skt = s->key[PF_SK_STACK]; 3542 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3543 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3544 if (pd->sport) 3545 *pd->sport = skt->port[pd->sidx]; 3546 if (pd->dport) 3547 *pd->dport = skt->port[pd->didx]; 3548 if (pd->proto_sum) 3549 *pd->proto_sum = bproto_sum; 3550 if (pd->ip_sum) 3551 *pd->ip_sum = bip_sum; 3552 m_copyback(m, off, hdrlen, pd->hdr.any); 3553 } 3554 s->src.seqhi = htonl(arc4random()); 3555 /* Find mss option */ 3556 int rtid = M_GETFIB(m); 3557 mss = pf_get_mss(m, off, th->th_off, pd->af); 3558 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3559 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3560 s->src.mss = mss; 3561 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3562 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3563 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3564 REASON_SET(&reason, PFRES_SYNPROXY); 3565 return (PF_SYNPROXY_DROP); 3566 } 3567 3568 return (PF_PASS); 3569 3570 csfailed: 3571 if (sk != NULL) 3572 uma_zfree(V_pf_state_key_z, sk); 3573 if (nk != NULL) 3574 uma_zfree(V_pf_state_key_z, nk); 3575 3576 if (sn != NULL && sn->states == 0 && sn->expire == 0) 3577 pf_remove_src_node(sn); 3578 3579 if (nsn != sn && nsn != NULL && nsn->states == 0 && nsn->expire == 0) 3580 pf_remove_src_node(nsn); 3581 3582 return (PF_DROP); 3583 } 3584 3585 static int 3586 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3587 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3588 struct pf_ruleset **rsm) 3589 { 3590 struct pf_rule *r, *a = NULL; 3591 struct pf_ruleset *ruleset = NULL; 3592 sa_family_t af = pd->af; 3593 u_short reason; 3594 int tag = -1; 3595 int asd = 0; 3596 int match = 0; 3597 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3598 3599 PF_RULES_RASSERT(); 3600 3601 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3602 while (r != NULL) { 3603 r->evaluations++; 3604 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3605 r = r->skip[PF_SKIP_IFP].ptr; 3606 else if (r->direction && r->direction != direction) 3607 r = r->skip[PF_SKIP_DIR].ptr; 3608 else if (r->af && r->af != af) 3609 r = r->skip[PF_SKIP_AF].ptr; 3610 else if (r->proto && r->proto != pd->proto) 3611 r = r->skip[PF_SKIP_PROTO].ptr; 3612 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3613 r->src.neg, kif, M_GETFIB(m))) 3614 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3615 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3616 r->dst.neg, NULL, M_GETFIB(m))) 3617 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3618 else if (r->tos && !(r->tos == pd->tos)) 3619 r = TAILQ_NEXT(r, entries); 3620 else if (r->os_fingerprint != PF_OSFP_ANY) 3621 r = TAILQ_NEXT(r, entries); 3622 else if (pd->proto == IPPROTO_UDP && 3623 (r->src.port_op || r->dst.port_op)) 3624 r = TAILQ_NEXT(r, entries); 3625 else if (pd->proto == IPPROTO_TCP && 3626 (r->src.port_op || r->dst.port_op || r->flagset)) 3627 r = TAILQ_NEXT(r, entries); 3628 else if ((pd->proto == IPPROTO_ICMP || 3629 pd->proto == IPPROTO_ICMPV6) && 3630 (r->type || r->code)) 3631 r = TAILQ_NEXT(r, entries); 3632 else if (r->prob && r->prob <= 3633 (arc4random() % (UINT_MAX - 1) + 1)) 3634 r = TAILQ_NEXT(r, entries); 3635 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3636 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3637 r = TAILQ_NEXT(r, entries); 3638 else { 3639 if (r->anchor == NULL) { 3640 match = 1; 3641 *rm = r; 3642 *am = a; 3643 *rsm = ruleset; 3644 if ((*rm)->quick) 3645 break; 3646 r = TAILQ_NEXT(r, entries); 3647 } else 3648 pf_step_into_anchor(anchor_stack, &asd, 3649 &ruleset, PF_RULESET_FILTER, &r, &a, 3650 &match); 3651 } 3652 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3653 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3654 break; 3655 } 3656 r = *rm; 3657 a = *am; 3658 ruleset = *rsm; 3659 3660 REASON_SET(&reason, PFRES_MATCH); 3661 3662 if (r->log) 3663 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3664 1); 3665 3666 if (r->action != PF_PASS) 3667 return (PF_DROP); 3668 3669 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3670 REASON_SET(&reason, PFRES_MEMORY); 3671 return (PF_DROP); 3672 } 3673 3674 return (PF_PASS); 3675 } 3676 3677 static int 3678 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3679 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3680 struct pf_pdesc *pd, u_short *reason, int *copyback) 3681 { 3682 struct tcphdr *th = pd->hdr.tcp; 3683 u_int16_t win = ntohs(th->th_win); 3684 u_int32_t ack, end, seq, orig_seq; 3685 u_int8_t sws, dws; 3686 int ackskew; 3687 3688 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3689 sws = src->wscale & PF_WSCALE_MASK; 3690 dws = dst->wscale & PF_WSCALE_MASK; 3691 } else 3692 sws = dws = 0; 3693 3694 /* 3695 * Sequence tracking algorithm from Guido van Rooij's paper: 3696 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3697 * tcp_filtering.ps 3698 */ 3699 3700 orig_seq = seq = ntohl(th->th_seq); 3701 if (src->seqlo == 0) { 3702 /* First packet from this end. Set its state */ 3703 3704 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3705 src->scrub == NULL) { 3706 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3707 REASON_SET(reason, PFRES_MEMORY); 3708 return (PF_DROP); 3709 } 3710 } 3711 3712 /* Deferred generation of sequence number modulator */ 3713 if (dst->seqdiff && !src->seqdiff) { 3714 /* use random iss for the TCP server */ 3715 while ((src->seqdiff = arc4random() - seq) == 0) 3716 ; 3717 ack = ntohl(th->th_ack) - dst->seqdiff; 3718 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3719 src->seqdiff), 0); 3720 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3721 *copyback = 1; 3722 } else { 3723 ack = ntohl(th->th_ack); 3724 } 3725 3726 end = seq + pd->p_len; 3727 if (th->th_flags & TH_SYN) { 3728 end++; 3729 if (dst->wscale & PF_WSCALE_FLAG) { 3730 src->wscale = pf_get_wscale(m, off, th->th_off, 3731 pd->af); 3732 if (src->wscale & PF_WSCALE_FLAG) { 3733 /* Remove scale factor from initial 3734 * window */ 3735 sws = src->wscale & PF_WSCALE_MASK; 3736 win = ((u_int32_t)win + (1 << sws) - 1) 3737 >> sws; 3738 dws = dst->wscale & PF_WSCALE_MASK; 3739 } else { 3740 /* fixup other window */ 3741 dst->max_win <<= dst->wscale & 3742 PF_WSCALE_MASK; 3743 /* in case of a retrans SYN|ACK */ 3744 dst->wscale = 0; 3745 } 3746 } 3747 } 3748 if (th->th_flags & TH_FIN) 3749 end++; 3750 3751 src->seqlo = seq; 3752 if (src->state < TCPS_SYN_SENT) 3753 src->state = TCPS_SYN_SENT; 3754 3755 /* 3756 * May need to slide the window (seqhi may have been set by 3757 * the crappy stack check or if we picked up the connection 3758 * after establishment) 3759 */ 3760 if (src->seqhi == 1 || 3761 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3762 src->seqhi = end + MAX(1, dst->max_win << dws); 3763 if (win > src->max_win) 3764 src->max_win = win; 3765 3766 } else { 3767 ack = ntohl(th->th_ack) - dst->seqdiff; 3768 if (src->seqdiff) { 3769 /* Modulate sequence numbers */ 3770 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3771 src->seqdiff), 0); 3772 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3773 *copyback = 1; 3774 } 3775 end = seq + pd->p_len; 3776 if (th->th_flags & TH_SYN) 3777 end++; 3778 if (th->th_flags & TH_FIN) 3779 end++; 3780 } 3781 3782 if ((th->th_flags & TH_ACK) == 0) { 3783 /* Let it pass through the ack skew check */ 3784 ack = dst->seqlo; 3785 } else if ((ack == 0 && 3786 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 3787 /* broken tcp stacks do not set ack */ 3788 (dst->state < TCPS_SYN_SENT)) { 3789 /* 3790 * Many stacks (ours included) will set the ACK number in an 3791 * FIN|ACK if the SYN times out -- no sequence to ACK. 3792 */ 3793 ack = dst->seqlo; 3794 } 3795 3796 if (seq == end) { 3797 /* Ease sequencing restrictions on no data packets */ 3798 seq = src->seqlo; 3799 end = seq; 3800 } 3801 3802 ackskew = dst->seqlo - ack; 3803 3804 3805 /* 3806 * Need to demodulate the sequence numbers in any TCP SACK options 3807 * (Selective ACK). We could optionally validate the SACK values 3808 * against the current ACK window, either forwards or backwards, but 3809 * I'm not confident that SACK has been implemented properly 3810 * everywhere. It wouldn't surprise me if several stacks accidently 3811 * SACK too far backwards of previously ACKed data. There really aren't 3812 * any security implications of bad SACKing unless the target stack 3813 * doesn't validate the option length correctly. Someone trying to 3814 * spoof into a TCP connection won't bother blindly sending SACK 3815 * options anyway. 3816 */ 3817 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 3818 if (pf_modulate_sack(m, off, pd, th, dst)) 3819 *copyback = 1; 3820 } 3821 3822 3823 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 3824 if (SEQ_GEQ(src->seqhi, end) && 3825 /* Last octet inside other's window space */ 3826 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 3827 /* Retrans: not more than one window back */ 3828 (ackskew >= -MAXACKWINDOW) && 3829 /* Acking not more than one reassembled fragment backwards */ 3830 (ackskew <= (MAXACKWINDOW << sws)) && 3831 /* Acking not more than one window forward */ 3832 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 3833 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 3834 (pd->flags & PFDESC_IP_REAS) == 0)) { 3835 /* Require an exact/+1 sequence match on resets when possible */ 3836 3837 if (dst->scrub || src->scrub) { 3838 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 3839 *state, src, dst, copyback)) 3840 return (PF_DROP); 3841 } 3842 3843 /* update max window */ 3844 if (src->max_win < win) 3845 src->max_win = win; 3846 /* synchronize sequencing */ 3847 if (SEQ_GT(end, src->seqlo)) 3848 src->seqlo = end; 3849 /* slide the window of what the other end can send */ 3850 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 3851 dst->seqhi = ack + MAX((win << sws), 1); 3852 3853 3854 /* update states */ 3855 if (th->th_flags & TH_SYN) 3856 if (src->state < TCPS_SYN_SENT) 3857 src->state = TCPS_SYN_SENT; 3858 if (th->th_flags & TH_FIN) 3859 if (src->state < TCPS_CLOSING) 3860 src->state = TCPS_CLOSING; 3861 if (th->th_flags & TH_ACK) { 3862 if (dst->state == TCPS_SYN_SENT) { 3863 dst->state = TCPS_ESTABLISHED; 3864 if (src->state == TCPS_ESTABLISHED && 3865 (*state)->src_node != NULL && 3866 pf_src_connlimit(state)) { 3867 REASON_SET(reason, PFRES_SRCLIMIT); 3868 return (PF_DROP); 3869 } 3870 } else if (dst->state == TCPS_CLOSING) 3871 dst->state = TCPS_FIN_WAIT_2; 3872 } 3873 if (th->th_flags & TH_RST) 3874 src->state = dst->state = TCPS_TIME_WAIT; 3875 3876 /* update expire time */ 3877 (*state)->expire = time_uptime; 3878 if (src->state >= TCPS_FIN_WAIT_2 && 3879 dst->state >= TCPS_FIN_WAIT_2) 3880 (*state)->timeout = PFTM_TCP_CLOSED; 3881 else if (src->state >= TCPS_CLOSING && 3882 dst->state >= TCPS_CLOSING) 3883 (*state)->timeout = PFTM_TCP_FIN_WAIT; 3884 else if (src->state < TCPS_ESTABLISHED || 3885 dst->state < TCPS_ESTABLISHED) 3886 (*state)->timeout = PFTM_TCP_OPENING; 3887 else if (src->state >= TCPS_CLOSING || 3888 dst->state >= TCPS_CLOSING) 3889 (*state)->timeout = PFTM_TCP_CLOSING; 3890 else 3891 (*state)->timeout = PFTM_TCP_ESTABLISHED; 3892 3893 /* Fall through to PASS packet */ 3894 3895 } else if ((dst->state < TCPS_SYN_SENT || 3896 dst->state >= TCPS_FIN_WAIT_2 || 3897 src->state >= TCPS_FIN_WAIT_2) && 3898 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 3899 /* Within a window forward of the originating packet */ 3900 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 3901 /* Within a window backward of the originating packet */ 3902 3903 /* 3904 * This currently handles three situations: 3905 * 1) Stupid stacks will shotgun SYNs before their peer 3906 * replies. 3907 * 2) When PF catches an already established stream (the 3908 * firewall rebooted, the state table was flushed, routes 3909 * changed...) 3910 * 3) Packets get funky immediately after the connection 3911 * closes (this should catch Solaris spurious ACK|FINs 3912 * that web servers like to spew after a close) 3913 * 3914 * This must be a little more careful than the above code 3915 * since packet floods will also be caught here. We don't 3916 * update the TTL here to mitigate the damage of a packet 3917 * flood and so the same code can handle awkward establishment 3918 * and a loosened connection close. 3919 * In the establishment case, a correct peer response will 3920 * validate the connection, go through the normal state code 3921 * and keep updating the state TTL. 3922 */ 3923 3924 if (V_pf_status.debug >= PF_DEBUG_MISC) { 3925 printf("pf: loose state match: "); 3926 pf_print_state(*state); 3927 pf_print_flags(th->th_flags); 3928 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 3929 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 3930 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 3931 (unsigned long long)(*state)->packets[1], 3932 pd->dir == PF_IN ? "in" : "out", 3933 pd->dir == (*state)->direction ? "fwd" : "rev"); 3934 } 3935 3936 if (dst->scrub || src->scrub) { 3937 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 3938 *state, src, dst, copyback)) 3939 return (PF_DROP); 3940 } 3941 3942 /* update max window */ 3943 if (src->max_win < win) 3944 src->max_win = win; 3945 /* synchronize sequencing */ 3946 if (SEQ_GT(end, src->seqlo)) 3947 src->seqlo = end; 3948 /* slide the window of what the other end can send */ 3949 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 3950 dst->seqhi = ack + MAX((win << sws), 1); 3951 3952 /* 3953 * Cannot set dst->seqhi here since this could be a shotgunned 3954 * SYN and not an already established connection. 3955 */ 3956 3957 if (th->th_flags & TH_FIN) 3958 if (src->state < TCPS_CLOSING) 3959 src->state = TCPS_CLOSING; 3960 if (th->th_flags & TH_RST) 3961 src->state = dst->state = TCPS_TIME_WAIT; 3962 3963 /* Fall through to PASS packet */ 3964 3965 } else { 3966 if ((*state)->dst.state == TCPS_SYN_SENT && 3967 (*state)->src.state == TCPS_SYN_SENT) { 3968 /* Send RST for state mismatches during handshake */ 3969 if (!(th->th_flags & TH_RST)) 3970 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 3971 pd->dst, pd->src, th->th_dport, 3972 th->th_sport, ntohl(th->th_ack), 0, 3973 TH_RST, 0, 0, 3974 (*state)->rule.ptr->return_ttl, 1, 0, 3975 kif->pfik_ifp); 3976 src->seqlo = 0; 3977 src->seqhi = 1; 3978 src->max_win = 1; 3979 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 3980 printf("pf: BAD state: "); 3981 pf_print_state(*state); 3982 pf_print_flags(th->th_flags); 3983 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 3984 "pkts=%llu:%llu dir=%s,%s\n", 3985 seq, orig_seq, ack, pd->p_len, ackskew, 3986 (unsigned long long)(*state)->packets[0], 3987 (unsigned long long)(*state)->packets[1], 3988 pd->dir == PF_IN ? "in" : "out", 3989 pd->dir == (*state)->direction ? "fwd" : "rev"); 3990 printf("pf: State failure on: %c %c %c %c | %c %c\n", 3991 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 3992 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 3993 ' ': '2', 3994 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 3995 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 3996 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 3997 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 3998 } 3999 REASON_SET(reason, PFRES_BADSTATE); 4000 return (PF_DROP); 4001 } 4002 4003 return (PF_PASS); 4004 } 4005 4006 static int 4007 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4008 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4009 { 4010 struct tcphdr *th = pd->hdr.tcp; 4011 4012 if (th->th_flags & TH_SYN) 4013 if (src->state < TCPS_SYN_SENT) 4014 src->state = TCPS_SYN_SENT; 4015 if (th->th_flags & TH_FIN) 4016 if (src->state < TCPS_CLOSING) 4017 src->state = TCPS_CLOSING; 4018 if (th->th_flags & TH_ACK) { 4019 if (dst->state == TCPS_SYN_SENT) { 4020 dst->state = TCPS_ESTABLISHED; 4021 if (src->state == TCPS_ESTABLISHED && 4022 (*state)->src_node != NULL && 4023 pf_src_connlimit(state)) { 4024 REASON_SET(reason, PFRES_SRCLIMIT); 4025 return (PF_DROP); 4026 } 4027 } else if (dst->state == TCPS_CLOSING) { 4028 dst->state = TCPS_FIN_WAIT_2; 4029 } else if (src->state == TCPS_SYN_SENT && 4030 dst->state < TCPS_SYN_SENT) { 4031 /* 4032 * Handle a special sloppy case where we only see one 4033 * half of the connection. If there is a ACK after 4034 * the initial SYN without ever seeing a packet from 4035 * the destination, set the connection to established. 4036 */ 4037 dst->state = src->state = TCPS_ESTABLISHED; 4038 if ((*state)->src_node != NULL && 4039 pf_src_connlimit(state)) { 4040 REASON_SET(reason, PFRES_SRCLIMIT); 4041 return (PF_DROP); 4042 } 4043 } else if (src->state == TCPS_CLOSING && 4044 dst->state == TCPS_ESTABLISHED && 4045 dst->seqlo == 0) { 4046 /* 4047 * Handle the closing of half connections where we 4048 * don't see the full bidirectional FIN/ACK+ACK 4049 * handshake. 4050 */ 4051 dst->state = TCPS_CLOSING; 4052 } 4053 } 4054 if (th->th_flags & TH_RST) 4055 src->state = dst->state = TCPS_TIME_WAIT; 4056 4057 /* update expire time */ 4058 (*state)->expire = time_uptime; 4059 if (src->state >= TCPS_FIN_WAIT_2 && 4060 dst->state >= TCPS_FIN_WAIT_2) 4061 (*state)->timeout = PFTM_TCP_CLOSED; 4062 else if (src->state >= TCPS_CLOSING && 4063 dst->state >= TCPS_CLOSING) 4064 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4065 else if (src->state < TCPS_ESTABLISHED || 4066 dst->state < TCPS_ESTABLISHED) 4067 (*state)->timeout = PFTM_TCP_OPENING; 4068 else if (src->state >= TCPS_CLOSING || 4069 dst->state >= TCPS_CLOSING) 4070 (*state)->timeout = PFTM_TCP_CLOSING; 4071 else 4072 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4073 4074 return (PF_PASS); 4075 } 4076 4077 static int 4078 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4079 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4080 u_short *reason) 4081 { 4082 struct pf_state_key_cmp key; 4083 struct tcphdr *th = pd->hdr.tcp; 4084 int copyback = 0; 4085 struct pf_state_peer *src, *dst; 4086 struct pf_state_key *sk; 4087 4088 bzero(&key, sizeof(key)); 4089 key.af = pd->af; 4090 key.proto = IPPROTO_TCP; 4091 if (direction == PF_IN) { /* wire side, straight */ 4092 PF_ACPY(&key.addr[0], pd->src, key.af); 4093 PF_ACPY(&key.addr[1], pd->dst, key.af); 4094 key.port[0] = th->th_sport; 4095 key.port[1] = th->th_dport; 4096 } else { /* stack side, reverse */ 4097 PF_ACPY(&key.addr[1], pd->src, key.af); 4098 PF_ACPY(&key.addr[0], pd->dst, key.af); 4099 key.port[1] = th->th_sport; 4100 key.port[0] = th->th_dport; 4101 } 4102 4103 STATE_LOOKUP(kif, &key, direction, *state, pd); 4104 4105 if (direction == (*state)->direction) { 4106 src = &(*state)->src; 4107 dst = &(*state)->dst; 4108 } else { 4109 src = &(*state)->dst; 4110 dst = &(*state)->src; 4111 } 4112 4113 sk = (*state)->key[pd->didx]; 4114 4115 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4116 if (direction != (*state)->direction) { 4117 REASON_SET(reason, PFRES_SYNPROXY); 4118 return (PF_SYNPROXY_DROP); 4119 } 4120 if (th->th_flags & TH_SYN) { 4121 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4122 REASON_SET(reason, PFRES_SYNPROXY); 4123 return (PF_DROP); 4124 } 4125 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4126 pd->src, th->th_dport, th->th_sport, 4127 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4128 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4129 REASON_SET(reason, PFRES_SYNPROXY); 4130 return (PF_SYNPROXY_DROP); 4131 } else if (!(th->th_flags & TH_ACK) || 4132 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4133 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4134 REASON_SET(reason, PFRES_SYNPROXY); 4135 return (PF_DROP); 4136 } else if ((*state)->src_node != NULL && 4137 pf_src_connlimit(state)) { 4138 REASON_SET(reason, PFRES_SRCLIMIT); 4139 return (PF_DROP); 4140 } else 4141 (*state)->src.state = PF_TCPS_PROXY_DST; 4142 } 4143 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4144 if (direction == (*state)->direction) { 4145 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4146 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4147 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4148 REASON_SET(reason, PFRES_SYNPROXY); 4149 return (PF_DROP); 4150 } 4151 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4152 if ((*state)->dst.seqhi == 1) 4153 (*state)->dst.seqhi = htonl(arc4random()); 4154 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4155 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4156 sk->port[pd->sidx], sk->port[pd->didx], 4157 (*state)->dst.seqhi, 0, TH_SYN, 0, 4158 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4159 REASON_SET(reason, PFRES_SYNPROXY); 4160 return (PF_SYNPROXY_DROP); 4161 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4162 (TH_SYN|TH_ACK)) || 4163 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4164 REASON_SET(reason, PFRES_SYNPROXY); 4165 return (PF_DROP); 4166 } else { 4167 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4168 (*state)->dst.seqlo = ntohl(th->th_seq); 4169 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4170 pd->src, th->th_dport, th->th_sport, 4171 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4172 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4173 (*state)->tag, NULL); 4174 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4175 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4176 sk->port[pd->sidx], sk->port[pd->didx], 4177 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4178 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4179 (*state)->src.seqdiff = (*state)->dst.seqhi - 4180 (*state)->src.seqlo; 4181 (*state)->dst.seqdiff = (*state)->src.seqhi - 4182 (*state)->dst.seqlo; 4183 (*state)->src.seqhi = (*state)->src.seqlo + 4184 (*state)->dst.max_win; 4185 (*state)->dst.seqhi = (*state)->dst.seqlo + 4186 (*state)->src.max_win; 4187 (*state)->src.wscale = (*state)->dst.wscale = 0; 4188 (*state)->src.state = (*state)->dst.state = 4189 TCPS_ESTABLISHED; 4190 REASON_SET(reason, PFRES_SYNPROXY); 4191 return (PF_SYNPROXY_DROP); 4192 } 4193 } 4194 4195 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4196 dst->state >= TCPS_FIN_WAIT_2 && 4197 src->state >= TCPS_FIN_WAIT_2) { 4198 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4199 printf("pf: state reuse "); 4200 pf_print_state(*state); 4201 pf_print_flags(th->th_flags); 4202 printf("\n"); 4203 } 4204 /* XXX make sure it's the same direction ?? */ 4205 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4206 pf_unlink_state(*state, PF_ENTER_LOCKED); 4207 *state = NULL; 4208 return (PF_DROP); 4209 } 4210 4211 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4212 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4213 return (PF_DROP); 4214 } else { 4215 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4216 ©back) == PF_DROP) 4217 return (PF_DROP); 4218 } 4219 4220 /* translate source/destination address, if necessary */ 4221 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4222 struct pf_state_key *nk = (*state)->key[pd->didx]; 4223 4224 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4225 nk->port[pd->sidx] != th->th_sport) 4226 pf_change_ap(pd->src, &th->th_sport, pd->ip_sum, 4227 &th->th_sum, &nk->addr[pd->sidx], 4228 nk->port[pd->sidx], 0, pd->af); 4229 4230 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4231 nk->port[pd->didx] != th->th_dport) 4232 pf_change_ap(pd->dst, &th->th_dport, pd->ip_sum, 4233 &th->th_sum, &nk->addr[pd->didx], 4234 nk->port[pd->didx], 0, pd->af); 4235 copyback = 1; 4236 } 4237 4238 /* Copyback sequence modulation or stateful scrub changes if needed */ 4239 if (copyback) 4240 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4241 4242 return (PF_PASS); 4243 } 4244 4245 static int 4246 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4247 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4248 { 4249 struct pf_state_peer *src, *dst; 4250 struct pf_state_key_cmp key; 4251 struct udphdr *uh = pd->hdr.udp; 4252 4253 bzero(&key, sizeof(key)); 4254 key.af = pd->af; 4255 key.proto = IPPROTO_UDP; 4256 if (direction == PF_IN) { /* wire side, straight */ 4257 PF_ACPY(&key.addr[0], pd->src, key.af); 4258 PF_ACPY(&key.addr[1], pd->dst, key.af); 4259 key.port[0] = uh->uh_sport; 4260 key.port[1] = uh->uh_dport; 4261 } else { /* stack side, reverse */ 4262 PF_ACPY(&key.addr[1], pd->src, key.af); 4263 PF_ACPY(&key.addr[0], pd->dst, key.af); 4264 key.port[1] = uh->uh_sport; 4265 key.port[0] = uh->uh_dport; 4266 } 4267 4268 STATE_LOOKUP(kif, &key, direction, *state, pd); 4269 4270 if (direction == (*state)->direction) { 4271 src = &(*state)->src; 4272 dst = &(*state)->dst; 4273 } else { 4274 src = &(*state)->dst; 4275 dst = &(*state)->src; 4276 } 4277 4278 /* update states */ 4279 if (src->state < PFUDPS_SINGLE) 4280 src->state = PFUDPS_SINGLE; 4281 if (dst->state == PFUDPS_SINGLE) 4282 dst->state = PFUDPS_MULTIPLE; 4283 4284 /* update expire time */ 4285 (*state)->expire = time_uptime; 4286 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4287 (*state)->timeout = PFTM_UDP_MULTIPLE; 4288 else 4289 (*state)->timeout = PFTM_UDP_SINGLE; 4290 4291 /* translate source/destination address, if necessary */ 4292 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4293 struct pf_state_key *nk = (*state)->key[pd->didx]; 4294 4295 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4296 nk->port[pd->sidx] != uh->uh_sport) 4297 pf_change_ap(pd->src, &uh->uh_sport, pd->ip_sum, 4298 &uh->uh_sum, &nk->addr[pd->sidx], 4299 nk->port[pd->sidx], 1, pd->af); 4300 4301 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4302 nk->port[pd->didx] != uh->uh_dport) 4303 pf_change_ap(pd->dst, &uh->uh_dport, pd->ip_sum, 4304 &uh->uh_sum, &nk->addr[pd->didx], 4305 nk->port[pd->didx], 1, pd->af); 4306 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4307 } 4308 4309 return (PF_PASS); 4310 } 4311 4312 static int 4313 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4314 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4315 { 4316 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4317 u_int16_t icmpid = 0, *icmpsum; 4318 u_int8_t icmptype; 4319 int state_icmp = 0; 4320 struct pf_state_key_cmp key; 4321 4322 bzero(&key, sizeof(key)); 4323 switch (pd->proto) { 4324 #ifdef INET 4325 case IPPROTO_ICMP: 4326 icmptype = pd->hdr.icmp->icmp_type; 4327 icmpid = pd->hdr.icmp->icmp_id; 4328 icmpsum = &pd->hdr.icmp->icmp_cksum; 4329 4330 if (icmptype == ICMP_UNREACH || 4331 icmptype == ICMP_SOURCEQUENCH || 4332 icmptype == ICMP_REDIRECT || 4333 icmptype == ICMP_TIMXCEED || 4334 icmptype == ICMP_PARAMPROB) 4335 state_icmp++; 4336 break; 4337 #endif /* INET */ 4338 #ifdef INET6 4339 case IPPROTO_ICMPV6: 4340 icmptype = pd->hdr.icmp6->icmp6_type; 4341 icmpid = pd->hdr.icmp6->icmp6_id; 4342 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4343 4344 if (icmptype == ICMP6_DST_UNREACH || 4345 icmptype == ICMP6_PACKET_TOO_BIG || 4346 icmptype == ICMP6_TIME_EXCEEDED || 4347 icmptype == ICMP6_PARAM_PROB) 4348 state_icmp++; 4349 break; 4350 #endif /* INET6 */ 4351 } 4352 4353 if (!state_icmp) { 4354 4355 /* 4356 * ICMP query/reply message not related to a TCP/UDP packet. 4357 * Search for an ICMP state. 4358 */ 4359 key.af = pd->af; 4360 key.proto = pd->proto; 4361 key.port[0] = key.port[1] = icmpid; 4362 if (direction == PF_IN) { /* wire side, straight */ 4363 PF_ACPY(&key.addr[0], pd->src, key.af); 4364 PF_ACPY(&key.addr[1], pd->dst, key.af); 4365 } else { /* stack side, reverse */ 4366 PF_ACPY(&key.addr[1], pd->src, key.af); 4367 PF_ACPY(&key.addr[0], pd->dst, key.af); 4368 } 4369 4370 STATE_LOOKUP(kif, &key, direction, *state, pd); 4371 4372 (*state)->expire = time_uptime; 4373 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4374 4375 /* translate source/destination address, if necessary */ 4376 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4377 struct pf_state_key *nk = (*state)->key[pd->didx]; 4378 4379 switch (pd->af) { 4380 #ifdef INET 4381 case AF_INET: 4382 if (PF_ANEQ(pd->src, 4383 &nk->addr[pd->sidx], AF_INET)) 4384 pf_change_a(&saddr->v4.s_addr, 4385 pd->ip_sum, 4386 nk->addr[pd->sidx].v4.s_addr, 0); 4387 4388 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4389 AF_INET)) 4390 pf_change_a(&daddr->v4.s_addr, 4391 pd->ip_sum, 4392 nk->addr[pd->didx].v4.s_addr, 0); 4393 4394 if (nk->port[0] != 4395 pd->hdr.icmp->icmp_id) { 4396 pd->hdr.icmp->icmp_cksum = 4397 pf_cksum_fixup( 4398 pd->hdr.icmp->icmp_cksum, icmpid, 4399 nk->port[pd->sidx], 0); 4400 pd->hdr.icmp->icmp_id = 4401 nk->port[pd->sidx]; 4402 } 4403 4404 m_copyback(m, off, ICMP_MINLEN, 4405 (caddr_t )pd->hdr.icmp); 4406 break; 4407 #endif /* INET */ 4408 #ifdef INET6 4409 case AF_INET6: 4410 if (PF_ANEQ(pd->src, 4411 &nk->addr[pd->sidx], AF_INET6)) 4412 pf_change_a6(saddr, 4413 &pd->hdr.icmp6->icmp6_cksum, 4414 &nk->addr[pd->sidx], 0); 4415 4416 if (PF_ANEQ(pd->dst, 4417 &nk->addr[pd->didx], AF_INET6)) 4418 pf_change_a6(daddr, 4419 &pd->hdr.icmp6->icmp6_cksum, 4420 &nk->addr[pd->didx], 0); 4421 4422 m_copyback(m, off, sizeof(struct icmp6_hdr), 4423 (caddr_t )pd->hdr.icmp6); 4424 break; 4425 #endif /* INET6 */ 4426 } 4427 } 4428 return (PF_PASS); 4429 4430 } else { 4431 /* 4432 * ICMP error message in response to a TCP/UDP packet. 4433 * Extract the inner TCP/UDP header and search for that state. 4434 */ 4435 4436 struct pf_pdesc pd2; 4437 bzero(&pd2, sizeof pd2); 4438 #ifdef INET 4439 struct ip h2; 4440 #endif /* INET */ 4441 #ifdef INET6 4442 struct ip6_hdr h2_6; 4443 int terminal = 0; 4444 #endif /* INET6 */ 4445 int ipoff2 = 0; 4446 int off2 = 0; 4447 4448 pd2.af = pd->af; 4449 /* Payload packet is from the opposite direction. */ 4450 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4451 pd2.didx = (direction == PF_IN) ? 0 : 1; 4452 switch (pd->af) { 4453 #ifdef INET 4454 case AF_INET: 4455 /* offset of h2 in mbuf chain */ 4456 ipoff2 = off + ICMP_MINLEN; 4457 4458 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4459 NULL, reason, pd2.af)) { 4460 DPFPRINTF(PF_DEBUG_MISC, 4461 ("pf: ICMP error message too short " 4462 "(ip)\n")); 4463 return (PF_DROP); 4464 } 4465 /* 4466 * ICMP error messages don't refer to non-first 4467 * fragments 4468 */ 4469 if (h2.ip_off & htons(IP_OFFMASK)) { 4470 REASON_SET(reason, PFRES_FRAG); 4471 return (PF_DROP); 4472 } 4473 4474 /* offset of protocol header that follows h2 */ 4475 off2 = ipoff2 + (h2.ip_hl << 2); 4476 4477 pd2.proto = h2.ip_p; 4478 pd2.src = (struct pf_addr *)&h2.ip_src; 4479 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4480 pd2.ip_sum = &h2.ip_sum; 4481 break; 4482 #endif /* INET */ 4483 #ifdef INET6 4484 case AF_INET6: 4485 ipoff2 = off + sizeof(struct icmp6_hdr); 4486 4487 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4488 NULL, reason, pd2.af)) { 4489 DPFPRINTF(PF_DEBUG_MISC, 4490 ("pf: ICMP error message too short " 4491 "(ip6)\n")); 4492 return (PF_DROP); 4493 } 4494 pd2.proto = h2_6.ip6_nxt; 4495 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4496 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4497 pd2.ip_sum = NULL; 4498 off2 = ipoff2 + sizeof(h2_6); 4499 do { 4500 switch (pd2.proto) { 4501 case IPPROTO_FRAGMENT: 4502 /* 4503 * ICMPv6 error messages for 4504 * non-first fragments 4505 */ 4506 REASON_SET(reason, PFRES_FRAG); 4507 return (PF_DROP); 4508 case IPPROTO_AH: 4509 case IPPROTO_HOPOPTS: 4510 case IPPROTO_ROUTING: 4511 case IPPROTO_DSTOPTS: { 4512 /* get next header and header length */ 4513 struct ip6_ext opt6; 4514 4515 if (!pf_pull_hdr(m, off2, &opt6, 4516 sizeof(opt6), NULL, reason, 4517 pd2.af)) { 4518 DPFPRINTF(PF_DEBUG_MISC, 4519 ("pf: ICMPv6 short opt\n")); 4520 return (PF_DROP); 4521 } 4522 if (pd2.proto == IPPROTO_AH) 4523 off2 += (opt6.ip6e_len + 2) * 4; 4524 else 4525 off2 += (opt6.ip6e_len + 1) * 8; 4526 pd2.proto = opt6.ip6e_nxt; 4527 /* goto the next header */ 4528 break; 4529 } 4530 default: 4531 terminal++; 4532 break; 4533 } 4534 } while (!terminal); 4535 break; 4536 #endif /* INET6 */ 4537 } 4538 4539 switch (pd2.proto) { 4540 case IPPROTO_TCP: { 4541 struct tcphdr th; 4542 u_int32_t seq; 4543 struct pf_state_peer *src, *dst; 4544 u_int8_t dws; 4545 int copyback = 0; 4546 4547 /* 4548 * Only the first 8 bytes of the TCP header can be 4549 * expected. Don't access any TCP header fields after 4550 * th_seq, an ackskew test is not possible. 4551 */ 4552 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4553 pd2.af)) { 4554 DPFPRINTF(PF_DEBUG_MISC, 4555 ("pf: ICMP error message too short " 4556 "(tcp)\n")); 4557 return (PF_DROP); 4558 } 4559 4560 key.af = pd2.af; 4561 key.proto = IPPROTO_TCP; 4562 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4563 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4564 key.port[pd2.sidx] = th.th_sport; 4565 key.port[pd2.didx] = th.th_dport; 4566 4567 STATE_LOOKUP(kif, &key, direction, *state, pd); 4568 4569 if (direction == (*state)->direction) { 4570 src = &(*state)->dst; 4571 dst = &(*state)->src; 4572 } else { 4573 src = &(*state)->src; 4574 dst = &(*state)->dst; 4575 } 4576 4577 if (src->wscale && dst->wscale) 4578 dws = dst->wscale & PF_WSCALE_MASK; 4579 else 4580 dws = 0; 4581 4582 /* Demodulate sequence number */ 4583 seq = ntohl(th.th_seq) - src->seqdiff; 4584 if (src->seqdiff) { 4585 pf_change_a(&th.th_seq, icmpsum, 4586 htonl(seq), 0); 4587 copyback = 1; 4588 } 4589 4590 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4591 (!SEQ_GEQ(src->seqhi, seq) || 4592 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4593 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4594 printf("pf: BAD ICMP %d:%d ", 4595 icmptype, pd->hdr.icmp->icmp_code); 4596 pf_print_host(pd->src, 0, pd->af); 4597 printf(" -> "); 4598 pf_print_host(pd->dst, 0, pd->af); 4599 printf(" state: "); 4600 pf_print_state(*state); 4601 printf(" seq=%u\n", seq); 4602 } 4603 REASON_SET(reason, PFRES_BADSTATE); 4604 return (PF_DROP); 4605 } else { 4606 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4607 printf("pf: OK ICMP %d:%d ", 4608 icmptype, pd->hdr.icmp->icmp_code); 4609 pf_print_host(pd->src, 0, pd->af); 4610 printf(" -> "); 4611 pf_print_host(pd->dst, 0, pd->af); 4612 printf(" state: "); 4613 pf_print_state(*state); 4614 printf(" seq=%u\n", seq); 4615 } 4616 } 4617 4618 /* translate source/destination address, if necessary */ 4619 if ((*state)->key[PF_SK_WIRE] != 4620 (*state)->key[PF_SK_STACK]) { 4621 struct pf_state_key *nk = 4622 (*state)->key[pd->didx]; 4623 4624 if (PF_ANEQ(pd2.src, 4625 &nk->addr[pd2.sidx], pd2.af) || 4626 nk->port[pd2.sidx] != th.th_sport) 4627 pf_change_icmp(pd2.src, &th.th_sport, 4628 daddr, &nk->addr[pd2.sidx], 4629 nk->port[pd2.sidx], NULL, 4630 pd2.ip_sum, icmpsum, 4631 pd->ip_sum, 0, pd2.af); 4632 4633 if (PF_ANEQ(pd2.dst, 4634 &nk->addr[pd2.didx], pd2.af) || 4635 nk->port[pd2.didx] != th.th_dport) 4636 pf_change_icmp(pd2.dst, &th.th_dport, 4637 NULL, /* XXX Inbound NAT? */ 4638 &nk->addr[pd2.didx], 4639 nk->port[pd2.didx], NULL, 4640 pd2.ip_sum, icmpsum, 4641 pd->ip_sum, 0, pd2.af); 4642 copyback = 1; 4643 } 4644 4645 if (copyback) { 4646 switch (pd2.af) { 4647 #ifdef INET 4648 case AF_INET: 4649 m_copyback(m, off, ICMP_MINLEN, 4650 (caddr_t )pd->hdr.icmp); 4651 m_copyback(m, ipoff2, sizeof(h2), 4652 (caddr_t )&h2); 4653 break; 4654 #endif /* INET */ 4655 #ifdef INET6 4656 case AF_INET6: 4657 m_copyback(m, off, 4658 sizeof(struct icmp6_hdr), 4659 (caddr_t )pd->hdr.icmp6); 4660 m_copyback(m, ipoff2, sizeof(h2_6), 4661 (caddr_t )&h2_6); 4662 break; 4663 #endif /* INET6 */ 4664 } 4665 m_copyback(m, off2, 8, (caddr_t)&th); 4666 } 4667 4668 return (PF_PASS); 4669 break; 4670 } 4671 case IPPROTO_UDP: { 4672 struct udphdr uh; 4673 4674 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4675 NULL, reason, pd2.af)) { 4676 DPFPRINTF(PF_DEBUG_MISC, 4677 ("pf: ICMP error message too short " 4678 "(udp)\n")); 4679 return (PF_DROP); 4680 } 4681 4682 key.af = pd2.af; 4683 key.proto = IPPROTO_UDP; 4684 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4685 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4686 key.port[pd2.sidx] = uh.uh_sport; 4687 key.port[pd2.didx] = uh.uh_dport; 4688 4689 STATE_LOOKUP(kif, &key, direction, *state, pd); 4690 4691 /* translate source/destination address, if necessary */ 4692 if ((*state)->key[PF_SK_WIRE] != 4693 (*state)->key[PF_SK_STACK]) { 4694 struct pf_state_key *nk = 4695 (*state)->key[pd->didx]; 4696 4697 if (PF_ANEQ(pd2.src, 4698 &nk->addr[pd2.sidx], pd2.af) || 4699 nk->port[pd2.sidx] != uh.uh_sport) 4700 pf_change_icmp(pd2.src, &uh.uh_sport, 4701 daddr, &nk->addr[pd2.sidx], 4702 nk->port[pd2.sidx], &uh.uh_sum, 4703 pd2.ip_sum, icmpsum, 4704 pd->ip_sum, 1, pd2.af); 4705 4706 if (PF_ANEQ(pd2.dst, 4707 &nk->addr[pd2.didx], pd2.af) || 4708 nk->port[pd2.didx] != uh.uh_dport) 4709 pf_change_icmp(pd2.dst, &uh.uh_dport, 4710 NULL, /* XXX Inbound NAT? */ 4711 &nk->addr[pd2.didx], 4712 nk->port[pd2.didx], &uh.uh_sum, 4713 pd2.ip_sum, icmpsum, 4714 pd->ip_sum, 1, pd2.af); 4715 4716 switch (pd2.af) { 4717 #ifdef INET 4718 case AF_INET: 4719 m_copyback(m, off, ICMP_MINLEN, 4720 (caddr_t )pd->hdr.icmp); 4721 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4722 break; 4723 #endif /* INET */ 4724 #ifdef INET6 4725 case AF_INET6: 4726 m_copyback(m, off, 4727 sizeof(struct icmp6_hdr), 4728 (caddr_t )pd->hdr.icmp6); 4729 m_copyback(m, ipoff2, sizeof(h2_6), 4730 (caddr_t )&h2_6); 4731 break; 4732 #endif /* INET6 */ 4733 } 4734 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4735 } 4736 return (PF_PASS); 4737 break; 4738 } 4739 #ifdef INET 4740 case IPPROTO_ICMP: { 4741 struct icmp iih; 4742 4743 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4744 NULL, reason, pd2.af)) { 4745 DPFPRINTF(PF_DEBUG_MISC, 4746 ("pf: ICMP error message too short i" 4747 "(icmp)\n")); 4748 return (PF_DROP); 4749 } 4750 4751 key.af = pd2.af; 4752 key.proto = IPPROTO_ICMP; 4753 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4754 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4755 key.port[0] = key.port[1] = iih.icmp_id; 4756 4757 STATE_LOOKUP(kif, &key, direction, *state, pd); 4758 4759 /* translate source/destination address, if necessary */ 4760 if ((*state)->key[PF_SK_WIRE] != 4761 (*state)->key[PF_SK_STACK]) { 4762 struct pf_state_key *nk = 4763 (*state)->key[pd->didx]; 4764 4765 if (PF_ANEQ(pd2.src, 4766 &nk->addr[pd2.sidx], pd2.af) || 4767 nk->port[pd2.sidx] != iih.icmp_id) 4768 pf_change_icmp(pd2.src, &iih.icmp_id, 4769 daddr, &nk->addr[pd2.sidx], 4770 nk->port[pd2.sidx], NULL, 4771 pd2.ip_sum, icmpsum, 4772 pd->ip_sum, 0, AF_INET); 4773 4774 if (PF_ANEQ(pd2.dst, 4775 &nk->addr[pd2.didx], pd2.af) || 4776 nk->port[pd2.didx] != iih.icmp_id) 4777 pf_change_icmp(pd2.dst, &iih.icmp_id, 4778 NULL, /* XXX Inbound NAT? */ 4779 &nk->addr[pd2.didx], 4780 nk->port[pd2.didx], NULL, 4781 pd2.ip_sum, icmpsum, 4782 pd->ip_sum, 0, AF_INET); 4783 4784 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 4785 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4786 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 4787 } 4788 return (PF_PASS); 4789 break; 4790 } 4791 #endif /* INET */ 4792 #ifdef INET6 4793 case IPPROTO_ICMPV6: { 4794 struct icmp6_hdr iih; 4795 4796 if (!pf_pull_hdr(m, off2, &iih, 4797 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 4798 DPFPRINTF(PF_DEBUG_MISC, 4799 ("pf: ICMP error message too short " 4800 "(icmp6)\n")); 4801 return (PF_DROP); 4802 } 4803 4804 key.af = pd2.af; 4805 key.proto = IPPROTO_ICMPV6; 4806 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4807 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4808 key.port[0] = key.port[1] = iih.icmp6_id; 4809 4810 STATE_LOOKUP(kif, &key, direction, *state, pd); 4811 4812 /* translate source/destination address, if necessary */ 4813 if ((*state)->key[PF_SK_WIRE] != 4814 (*state)->key[PF_SK_STACK]) { 4815 struct pf_state_key *nk = 4816 (*state)->key[pd->didx]; 4817 4818 if (PF_ANEQ(pd2.src, 4819 &nk->addr[pd2.sidx], pd2.af) || 4820 nk->port[pd2.sidx] != iih.icmp6_id) 4821 pf_change_icmp(pd2.src, &iih.icmp6_id, 4822 daddr, &nk->addr[pd2.sidx], 4823 nk->port[pd2.sidx], NULL, 4824 pd2.ip_sum, icmpsum, 4825 pd->ip_sum, 0, AF_INET6); 4826 4827 if (PF_ANEQ(pd2.dst, 4828 &nk->addr[pd2.didx], pd2.af) || 4829 nk->port[pd2.didx] != iih.icmp6_id) 4830 pf_change_icmp(pd2.dst, &iih.icmp6_id, 4831 NULL, /* XXX Inbound NAT? */ 4832 &nk->addr[pd2.didx], 4833 nk->port[pd2.didx], NULL, 4834 pd2.ip_sum, icmpsum, 4835 pd->ip_sum, 0, AF_INET6); 4836 4837 m_copyback(m, off, sizeof(struct icmp6_hdr), 4838 (caddr_t)pd->hdr.icmp6); 4839 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 4840 m_copyback(m, off2, sizeof(struct icmp6_hdr), 4841 (caddr_t)&iih); 4842 } 4843 return (PF_PASS); 4844 break; 4845 } 4846 #endif /* INET6 */ 4847 default: { 4848 key.af = pd2.af; 4849 key.proto = pd2.proto; 4850 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4851 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4852 key.port[0] = key.port[1] = 0; 4853 4854 STATE_LOOKUP(kif, &key, direction, *state, pd); 4855 4856 /* translate source/destination address, if necessary */ 4857 if ((*state)->key[PF_SK_WIRE] != 4858 (*state)->key[PF_SK_STACK]) { 4859 struct pf_state_key *nk = 4860 (*state)->key[pd->didx]; 4861 4862 if (PF_ANEQ(pd2.src, 4863 &nk->addr[pd2.sidx], pd2.af)) 4864 pf_change_icmp(pd2.src, NULL, daddr, 4865 &nk->addr[pd2.sidx], 0, NULL, 4866 pd2.ip_sum, icmpsum, 4867 pd->ip_sum, 0, pd2.af); 4868 4869 if (PF_ANEQ(pd2.dst, 4870 &nk->addr[pd2.didx], pd2.af)) 4871 pf_change_icmp(pd2.src, NULL, 4872 NULL, /* XXX Inbound NAT? */ 4873 &nk->addr[pd2.didx], 0, NULL, 4874 pd2.ip_sum, icmpsum, 4875 pd->ip_sum, 0, pd2.af); 4876 4877 switch (pd2.af) { 4878 #ifdef INET 4879 case AF_INET: 4880 m_copyback(m, off, ICMP_MINLEN, 4881 (caddr_t)pd->hdr.icmp); 4882 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4883 break; 4884 #endif /* INET */ 4885 #ifdef INET6 4886 case AF_INET6: 4887 m_copyback(m, off, 4888 sizeof(struct icmp6_hdr), 4889 (caddr_t )pd->hdr.icmp6); 4890 m_copyback(m, ipoff2, sizeof(h2_6), 4891 (caddr_t )&h2_6); 4892 break; 4893 #endif /* INET6 */ 4894 } 4895 } 4896 return (PF_PASS); 4897 break; 4898 } 4899 } 4900 } 4901 } 4902 4903 static int 4904 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 4905 struct mbuf *m, struct pf_pdesc *pd) 4906 { 4907 struct pf_state_peer *src, *dst; 4908 struct pf_state_key_cmp key; 4909 4910 bzero(&key, sizeof(key)); 4911 key.af = pd->af; 4912 key.proto = pd->proto; 4913 if (direction == PF_IN) { 4914 PF_ACPY(&key.addr[0], pd->src, key.af); 4915 PF_ACPY(&key.addr[1], pd->dst, key.af); 4916 key.port[0] = key.port[1] = 0; 4917 } else { 4918 PF_ACPY(&key.addr[1], pd->src, key.af); 4919 PF_ACPY(&key.addr[0], pd->dst, key.af); 4920 key.port[1] = key.port[0] = 0; 4921 } 4922 4923 STATE_LOOKUP(kif, &key, direction, *state, pd); 4924 4925 if (direction == (*state)->direction) { 4926 src = &(*state)->src; 4927 dst = &(*state)->dst; 4928 } else { 4929 src = &(*state)->dst; 4930 dst = &(*state)->src; 4931 } 4932 4933 /* update states */ 4934 if (src->state < PFOTHERS_SINGLE) 4935 src->state = PFOTHERS_SINGLE; 4936 if (dst->state == PFOTHERS_SINGLE) 4937 dst->state = PFOTHERS_MULTIPLE; 4938 4939 /* update expire time */ 4940 (*state)->expire = time_uptime; 4941 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 4942 (*state)->timeout = PFTM_OTHER_MULTIPLE; 4943 else 4944 (*state)->timeout = PFTM_OTHER_SINGLE; 4945 4946 /* translate source/destination address, if necessary */ 4947 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4948 struct pf_state_key *nk = (*state)->key[pd->didx]; 4949 4950 KASSERT(nk, ("%s: nk is null", __func__)); 4951 KASSERT(pd, ("%s: pd is null", __func__)); 4952 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 4953 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 4954 switch (pd->af) { 4955 #ifdef INET 4956 case AF_INET: 4957 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 4958 pf_change_a(&pd->src->v4.s_addr, 4959 pd->ip_sum, 4960 nk->addr[pd->sidx].v4.s_addr, 4961 0); 4962 4963 4964 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 4965 pf_change_a(&pd->dst->v4.s_addr, 4966 pd->ip_sum, 4967 nk->addr[pd->didx].v4.s_addr, 4968 0); 4969 4970 break; 4971 #endif /* INET */ 4972 #ifdef INET6 4973 case AF_INET6: 4974 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 4975 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 4976 4977 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 4978 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 4979 #endif /* INET6 */ 4980 } 4981 } 4982 return (PF_PASS); 4983 } 4984 4985 /* 4986 * ipoff and off are measured from the start of the mbuf chain. 4987 * h must be at "ipoff" on the mbuf chain. 4988 */ 4989 void * 4990 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 4991 u_short *actionp, u_short *reasonp, sa_family_t af) 4992 { 4993 switch (af) { 4994 #ifdef INET 4995 case AF_INET: { 4996 struct ip *h = mtod(m, struct ip *); 4997 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 4998 4999 if (fragoff) { 5000 if (fragoff >= len) 5001 ACTION_SET(actionp, PF_PASS); 5002 else { 5003 ACTION_SET(actionp, PF_DROP); 5004 REASON_SET(reasonp, PFRES_FRAG); 5005 } 5006 return (NULL); 5007 } 5008 if (m->m_pkthdr.len < off + len || 5009 ntohs(h->ip_len) < off + len) { 5010 ACTION_SET(actionp, PF_DROP); 5011 REASON_SET(reasonp, PFRES_SHORT); 5012 return (NULL); 5013 } 5014 break; 5015 } 5016 #endif /* INET */ 5017 #ifdef INET6 5018 case AF_INET6: { 5019 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5020 5021 if (m->m_pkthdr.len < off + len || 5022 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5023 (unsigned)(off + len)) { 5024 ACTION_SET(actionp, PF_DROP); 5025 REASON_SET(reasonp, PFRES_SHORT); 5026 return (NULL); 5027 } 5028 break; 5029 } 5030 #endif /* INET6 */ 5031 } 5032 m_copydata(m, off, len, p); 5033 return (p); 5034 } 5035 5036 int 5037 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5038 int rtableid) 5039 { 5040 #ifdef RADIX_MPATH 5041 struct radix_node_head *rnh; 5042 #endif 5043 struct sockaddr_in *dst; 5044 int ret = 1; 5045 int check_mpath; 5046 #ifdef INET6 5047 struct sockaddr_in6 *dst6; 5048 struct route_in6 ro; 5049 #else 5050 struct route ro; 5051 #endif 5052 struct radix_node *rn; 5053 struct rtentry *rt; 5054 struct ifnet *ifp; 5055 5056 check_mpath = 0; 5057 #ifdef RADIX_MPATH 5058 /* XXX: stick to table 0 for now */ 5059 rnh = rt_tables_get_rnh(0, af); 5060 if (rnh != NULL && rn_mpath_capable(rnh)) 5061 check_mpath = 1; 5062 #endif 5063 bzero(&ro, sizeof(ro)); 5064 switch (af) { 5065 case AF_INET: 5066 dst = satosin(&ro.ro_dst); 5067 dst->sin_family = AF_INET; 5068 dst->sin_len = sizeof(*dst); 5069 dst->sin_addr = addr->v4; 5070 break; 5071 #ifdef INET6 5072 case AF_INET6: 5073 /* 5074 * Skip check for addresses with embedded interface scope, 5075 * as they would always match anyway. 5076 */ 5077 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5078 goto out; 5079 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5080 dst6->sin6_family = AF_INET6; 5081 dst6->sin6_len = sizeof(*dst6); 5082 dst6->sin6_addr = addr->v6; 5083 break; 5084 #endif /* INET6 */ 5085 default: 5086 return (0); 5087 } 5088 5089 /* Skip checks for ipsec interfaces */ 5090 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5091 goto out; 5092 5093 switch (af) { 5094 #ifdef INET6 5095 case AF_INET6: 5096 in6_rtalloc_ign(&ro, 0, rtableid); 5097 break; 5098 #endif 5099 #ifdef INET 5100 case AF_INET: 5101 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5102 break; 5103 #endif 5104 default: 5105 rtalloc_ign((struct route *)&ro, 0); /* No/default FIB. */ 5106 break; 5107 } 5108 5109 if (ro.ro_rt != NULL) { 5110 /* No interface given, this is a no-route check */ 5111 if (kif == NULL) 5112 goto out; 5113 5114 if (kif->pfik_ifp == NULL) { 5115 ret = 0; 5116 goto out; 5117 } 5118 5119 /* Perform uRPF check if passed input interface */ 5120 ret = 0; 5121 rn = (struct radix_node *)ro.ro_rt; 5122 do { 5123 rt = (struct rtentry *)rn; 5124 ifp = rt->rt_ifp; 5125 5126 if (kif->pfik_ifp == ifp) 5127 ret = 1; 5128 #ifdef RADIX_MPATH 5129 rn = rn_mpath_next(rn); 5130 #endif 5131 } while (check_mpath == 1 && rn != NULL && ret == 0); 5132 } else 5133 ret = 0; 5134 out: 5135 if (ro.ro_rt != NULL) 5136 RTFREE(ro.ro_rt); 5137 return (ret); 5138 } 5139 5140 #ifdef INET 5141 static void 5142 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5143 struct pf_state *s, struct pf_pdesc *pd) 5144 { 5145 struct mbuf *m0, *m1; 5146 struct sockaddr_in dst; 5147 struct ip *ip; 5148 struct ifnet *ifp = NULL; 5149 struct pf_addr naddr; 5150 struct pf_src_node *sn = NULL; 5151 int error = 0; 5152 uint16_t ip_len, ip_off, sw_csum; 5153 5154 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5155 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5156 __func__)); 5157 5158 if ((pd->pf_mtag == NULL && 5159 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5160 pd->pf_mtag->routed++ > 3) { 5161 m0 = *m; 5162 *m = NULL; 5163 goto bad_locked; 5164 } 5165 5166 if (r->rt == PF_DUPTO) { 5167 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5168 if (s) 5169 PF_STATE_UNLOCK(s); 5170 return; 5171 } 5172 } else { 5173 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5174 if (s) 5175 PF_STATE_UNLOCK(s); 5176 return; 5177 } 5178 m0 = *m; 5179 } 5180 5181 ip = mtod(m0, struct ip *); 5182 5183 bzero(&dst, sizeof(dst)); 5184 dst.sin_family = AF_INET; 5185 dst.sin_len = sizeof(dst); 5186 dst.sin_addr = ip->ip_dst; 5187 5188 if (r->rt == PF_FASTROUTE) { 5189 struct rtentry *rt; 5190 5191 if (s) 5192 PF_STATE_UNLOCK(s); 5193 rt = rtalloc1_fib(sintosa(&dst), 0, 0, M_GETFIB(m0)); 5194 if (rt == NULL) { 5195 RTFREE_LOCKED(rt); 5196 KMOD_IPSTAT_INC(ips_noroute); 5197 error = EHOSTUNREACH; 5198 goto bad; 5199 } 5200 5201 ifp = rt->rt_ifp; 5202 rt->rt_rmx.rmx_pksent++; 5203 5204 if (rt->rt_flags & RTF_GATEWAY) 5205 bcopy(satosin(rt->rt_gateway), &dst, sizeof(dst)); 5206 RTFREE_LOCKED(rt); 5207 } else { 5208 if (TAILQ_EMPTY(&r->rpool.list)) { 5209 DPFPRINTF(PF_DEBUG_URGENT, 5210 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5211 goto bad_locked; 5212 } 5213 if (s == NULL) { 5214 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5215 &naddr, NULL, &sn); 5216 if (!PF_AZERO(&naddr, AF_INET)) 5217 dst.sin_addr.s_addr = naddr.v4.s_addr; 5218 ifp = r->rpool.cur->kif ? 5219 r->rpool.cur->kif->pfik_ifp : NULL; 5220 } else { 5221 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5222 dst.sin_addr.s_addr = 5223 s->rt_addr.v4.s_addr; 5224 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5225 PF_STATE_UNLOCK(s); 5226 } 5227 } 5228 if (ifp == NULL) 5229 goto bad; 5230 5231 if (oifp != ifp) { 5232 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5233 goto bad; 5234 else if (m0 == NULL) 5235 goto done; 5236 if (m0->m_len < sizeof(struct ip)) { 5237 DPFPRINTF(PF_DEBUG_URGENT, 5238 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5239 goto bad; 5240 } 5241 ip = mtod(m0, struct ip *); 5242 } 5243 5244 if (ifp->if_flags & IFF_LOOPBACK) 5245 m0->m_flags |= M_SKIP_FIREWALL; 5246 5247 ip_len = ntohs(ip->ip_len); 5248 ip_off = ntohs(ip->ip_off); 5249 5250 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5251 m0->m_pkthdr.csum_flags |= CSUM_IP; 5252 sw_csum = m0->m_pkthdr.csum_flags & ~ifp->if_hwassist; 5253 if (sw_csum & CSUM_DELAY_DATA) { 5254 in_delayed_cksum(m0); 5255 sw_csum &= ~CSUM_DELAY_DATA; 5256 } 5257 #ifdef SCTP 5258 if (sw_csum & CSUM_SCTP) { 5259 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5260 sw_csum &= ~CSUM_SCTP; 5261 } 5262 #endif 5263 m0->m_pkthdr.csum_flags &= ifp->if_hwassist; 5264 5265 /* 5266 * If small enough for interface, or the interface will take 5267 * care of the fragmentation for us, we can just send directly. 5268 */ 5269 if (ip_len <= ifp->if_mtu || 5270 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 || 5271 ((ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) { 5272 ip->ip_sum = 0; 5273 if (sw_csum & CSUM_DELAY_IP) 5274 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5275 m0->m_flags &= ~(M_PROTOFLAGS); 5276 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5277 goto done; 5278 } 5279 5280 /* Balk when DF bit is set or the interface didn't support TSO. */ 5281 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5282 error = EMSGSIZE; 5283 KMOD_IPSTAT_INC(ips_cantfrag); 5284 if (r->rt != PF_DUPTO) { 5285 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5286 ifp->if_mtu); 5287 goto done; 5288 } else 5289 goto bad; 5290 } 5291 5292 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist, sw_csum); 5293 if (error) 5294 goto bad; 5295 5296 for (; m0; m0 = m1) { 5297 m1 = m0->m_nextpkt; 5298 m0->m_nextpkt = NULL; 5299 if (error == 0) { 5300 m0->m_flags &= ~(M_PROTOFLAGS); 5301 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5302 } else 5303 m_freem(m0); 5304 } 5305 5306 if (error == 0) 5307 KMOD_IPSTAT_INC(ips_fragmented); 5308 5309 done: 5310 if (r->rt != PF_DUPTO) 5311 *m = NULL; 5312 return; 5313 5314 bad_locked: 5315 if (s) 5316 PF_STATE_UNLOCK(s); 5317 bad: 5318 m_freem(m0); 5319 goto done; 5320 } 5321 #endif /* INET */ 5322 5323 #ifdef INET6 5324 static void 5325 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5326 struct pf_state *s, struct pf_pdesc *pd) 5327 { 5328 struct mbuf *m0; 5329 struct sockaddr_in6 dst; 5330 struct ip6_hdr *ip6; 5331 struct ifnet *ifp = NULL; 5332 struct pf_addr naddr; 5333 struct pf_src_node *sn = NULL; 5334 5335 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5336 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5337 __func__)); 5338 5339 if ((pd->pf_mtag == NULL && 5340 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5341 pd->pf_mtag->routed++ > 3) { 5342 m0 = *m; 5343 *m = NULL; 5344 goto bad_locked; 5345 } 5346 5347 if (r->rt == PF_DUPTO) { 5348 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5349 if (s) 5350 PF_STATE_UNLOCK(s); 5351 return; 5352 } 5353 } else { 5354 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5355 if (s) 5356 PF_STATE_UNLOCK(s); 5357 return; 5358 } 5359 m0 = *m; 5360 } 5361 5362 ip6 = mtod(m0, struct ip6_hdr *); 5363 5364 bzero(&dst, sizeof(dst)); 5365 dst.sin6_family = AF_INET6; 5366 dst.sin6_len = sizeof(dst); 5367 dst.sin6_addr = ip6->ip6_dst; 5368 5369 /* Cheat. XXX why only in the v6 case??? */ 5370 if (r->rt == PF_FASTROUTE) { 5371 if (s) 5372 PF_STATE_UNLOCK(s); 5373 m0->m_flags |= M_SKIP_FIREWALL; 5374 ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL); 5375 return; 5376 } 5377 5378 if (TAILQ_EMPTY(&r->rpool.list)) { 5379 DPFPRINTF(PF_DEBUG_URGENT, 5380 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5381 goto bad_locked; 5382 } 5383 if (s == NULL) { 5384 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5385 &naddr, NULL, &sn); 5386 if (!PF_AZERO(&naddr, AF_INET6)) 5387 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5388 &naddr, AF_INET6); 5389 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5390 } else { 5391 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5392 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5393 &s->rt_addr, AF_INET6); 5394 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5395 } 5396 5397 if (s) 5398 PF_STATE_UNLOCK(s); 5399 5400 if (ifp == NULL) 5401 goto bad; 5402 5403 if (oifp != ifp) { 5404 if (pf_test6(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5405 goto bad; 5406 else if (m0 == NULL) 5407 goto done; 5408 if (m0->m_len < sizeof(struct ip6_hdr)) { 5409 DPFPRINTF(PF_DEBUG_URGENT, 5410 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5411 __func__)); 5412 goto bad; 5413 } 5414 ip6 = mtod(m0, struct ip6_hdr *); 5415 } 5416 5417 if (ifp->if_flags & IFF_LOOPBACK) 5418 m0->m_flags |= M_SKIP_FIREWALL; 5419 5420 /* 5421 * If the packet is too large for the outgoing interface, 5422 * send back an icmp6 error. 5423 */ 5424 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5425 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5426 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5427 nd6_output(ifp, ifp, m0, &dst, NULL); 5428 else { 5429 in6_ifstat_inc(ifp, ifs6_in_toobig); 5430 if (r->rt != PF_DUPTO) 5431 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5432 else 5433 goto bad; 5434 } 5435 5436 done: 5437 if (r->rt != PF_DUPTO) 5438 *m = NULL; 5439 return; 5440 5441 bad_locked: 5442 if (s) 5443 PF_STATE_UNLOCK(s); 5444 bad: 5445 m_freem(m0); 5446 goto done; 5447 } 5448 #endif /* INET6 */ 5449 5450 /* 5451 * FreeBSD supports cksum offloads for the following drivers. 5452 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5453 * ti(4), txp(4), xl(4) 5454 * 5455 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5456 * network driver performed cksum including pseudo header, need to verify 5457 * csum_data 5458 * CSUM_DATA_VALID : 5459 * network driver performed cksum, needs to additional pseudo header 5460 * cksum computation with partial csum_data(i.e. lack of H/W support for 5461 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5462 * 5463 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5464 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5465 * TCP/UDP layer. 5466 * Also, set csum_data to 0xffff to force cksum validation. 5467 */ 5468 static int 5469 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5470 { 5471 u_int16_t sum = 0; 5472 int hw_assist = 0; 5473 struct ip *ip; 5474 5475 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5476 return (1); 5477 if (m->m_pkthdr.len < off + len) 5478 return (1); 5479 5480 switch (p) { 5481 case IPPROTO_TCP: 5482 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5483 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5484 sum = m->m_pkthdr.csum_data; 5485 } else { 5486 ip = mtod(m, struct ip *); 5487 sum = in_pseudo(ip->ip_src.s_addr, 5488 ip->ip_dst.s_addr, htonl((u_short)len + 5489 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5490 } 5491 sum ^= 0xffff; 5492 ++hw_assist; 5493 } 5494 break; 5495 case IPPROTO_UDP: 5496 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5497 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5498 sum = m->m_pkthdr.csum_data; 5499 } else { 5500 ip = mtod(m, struct ip *); 5501 sum = in_pseudo(ip->ip_src.s_addr, 5502 ip->ip_dst.s_addr, htonl((u_short)len + 5503 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5504 } 5505 sum ^= 0xffff; 5506 ++hw_assist; 5507 } 5508 break; 5509 case IPPROTO_ICMP: 5510 #ifdef INET6 5511 case IPPROTO_ICMPV6: 5512 #endif /* INET6 */ 5513 break; 5514 default: 5515 return (1); 5516 } 5517 5518 if (!hw_assist) { 5519 switch (af) { 5520 case AF_INET: 5521 if (p == IPPROTO_ICMP) { 5522 if (m->m_len < off) 5523 return (1); 5524 m->m_data += off; 5525 m->m_len -= off; 5526 sum = in_cksum(m, len); 5527 m->m_data -= off; 5528 m->m_len += off; 5529 } else { 5530 if (m->m_len < sizeof(struct ip)) 5531 return (1); 5532 sum = in4_cksum(m, p, off, len); 5533 } 5534 break; 5535 #ifdef INET6 5536 case AF_INET6: 5537 if (m->m_len < sizeof(struct ip6_hdr)) 5538 return (1); 5539 sum = in6_cksum(m, p, off, len); 5540 break; 5541 #endif /* INET6 */ 5542 default: 5543 return (1); 5544 } 5545 } 5546 if (sum) { 5547 switch (p) { 5548 case IPPROTO_TCP: 5549 { 5550 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5551 break; 5552 } 5553 case IPPROTO_UDP: 5554 { 5555 KMOD_UDPSTAT_INC(udps_badsum); 5556 break; 5557 } 5558 #ifdef INET 5559 case IPPROTO_ICMP: 5560 { 5561 KMOD_ICMPSTAT_INC(icps_checksum); 5562 break; 5563 } 5564 #endif 5565 #ifdef INET6 5566 case IPPROTO_ICMPV6: 5567 { 5568 KMOD_ICMP6STAT_INC(icp6s_checksum); 5569 break; 5570 } 5571 #endif /* INET6 */ 5572 } 5573 return (1); 5574 } else { 5575 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5576 m->m_pkthdr.csum_flags |= 5577 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5578 m->m_pkthdr.csum_data = 0xffff; 5579 } 5580 } 5581 return (0); 5582 } 5583 5584 5585 #ifdef INET 5586 int 5587 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5588 { 5589 struct pfi_kif *kif; 5590 u_short action, reason = 0, log = 0; 5591 struct mbuf *m = *m0; 5592 struct ip *h = NULL; 5593 struct m_tag *ipfwtag; 5594 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5595 struct pf_state *s = NULL; 5596 struct pf_ruleset *ruleset = NULL; 5597 struct pf_pdesc pd; 5598 int off, dirndx, pqid = 0; 5599 5600 M_ASSERTPKTHDR(m); 5601 5602 if (!V_pf_status.running) 5603 return (PF_PASS); 5604 5605 memset(&pd, 0, sizeof(pd)); 5606 5607 kif = (struct pfi_kif *)ifp->if_pf_kif; 5608 5609 if (kif == NULL) { 5610 DPFPRINTF(PF_DEBUG_URGENT, 5611 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5612 return (PF_DROP); 5613 } 5614 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5615 return (PF_PASS); 5616 5617 if (m->m_flags & M_SKIP_FIREWALL) 5618 return (PF_PASS); 5619 5620 pd.pf_mtag = pf_find_mtag(m); 5621 5622 PF_RULES_RLOCK(); 5623 5624 if (ip_divert_ptr != NULL && 5625 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5626 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5627 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5628 if (pd.pf_mtag == NULL && 5629 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5630 action = PF_DROP; 5631 goto done; 5632 } 5633 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5634 m_tag_delete(m, ipfwtag); 5635 } 5636 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5637 m->m_flags |= M_FASTFWD_OURS; 5638 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5639 } 5640 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5641 /* We do IP header normalization and packet reassembly here */ 5642 action = PF_DROP; 5643 goto done; 5644 } 5645 m = *m0; /* pf_normalize messes with m0 */ 5646 h = mtod(m, struct ip *); 5647 5648 off = h->ip_hl << 2; 5649 if (off < (int)sizeof(struct ip)) { 5650 action = PF_DROP; 5651 REASON_SET(&reason, PFRES_SHORT); 5652 log = 1; 5653 goto done; 5654 } 5655 5656 pd.src = (struct pf_addr *)&h->ip_src; 5657 pd.dst = (struct pf_addr *)&h->ip_dst; 5658 pd.sport = pd.dport = NULL; 5659 pd.ip_sum = &h->ip_sum; 5660 pd.proto_sum = NULL; 5661 pd.proto = h->ip_p; 5662 pd.dir = dir; 5663 pd.sidx = (dir == PF_IN) ? 0 : 1; 5664 pd.didx = (dir == PF_IN) ? 1 : 0; 5665 pd.af = AF_INET; 5666 pd.tos = h->ip_tos; 5667 pd.tot_len = ntohs(h->ip_len); 5668 5669 /* handle fragments that didn't get reassembled by normalization */ 5670 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5671 action = pf_test_fragment(&r, dir, kif, m, h, 5672 &pd, &a, &ruleset); 5673 goto done; 5674 } 5675 5676 switch (h->ip_p) { 5677 5678 case IPPROTO_TCP: { 5679 struct tcphdr th; 5680 5681 pd.hdr.tcp = &th; 5682 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5683 &action, &reason, AF_INET)) { 5684 log = action != PF_PASS; 5685 goto done; 5686 } 5687 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5688 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5689 pqid = 1; 5690 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5691 if (action == PF_DROP) 5692 goto done; 5693 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5694 &reason); 5695 if (action == PF_PASS) { 5696 if (pfsync_update_state_ptr != NULL) 5697 pfsync_update_state_ptr(s); 5698 r = s->rule.ptr; 5699 a = s->anchor.ptr; 5700 log = s->log; 5701 } else if (s == NULL) 5702 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5703 &a, &ruleset, inp); 5704 break; 5705 } 5706 5707 case IPPROTO_UDP: { 5708 struct udphdr uh; 5709 5710 pd.hdr.udp = &uh; 5711 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5712 &action, &reason, AF_INET)) { 5713 log = action != PF_PASS; 5714 goto done; 5715 } 5716 if (uh.uh_dport == 0 || 5717 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5718 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5719 action = PF_DROP; 5720 REASON_SET(&reason, PFRES_SHORT); 5721 goto done; 5722 } 5723 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5724 if (action == PF_PASS) { 5725 if (pfsync_update_state_ptr != NULL) 5726 pfsync_update_state_ptr(s); 5727 r = s->rule.ptr; 5728 a = s->anchor.ptr; 5729 log = s->log; 5730 } else if (s == NULL) 5731 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5732 &a, &ruleset, inp); 5733 break; 5734 } 5735 5736 case IPPROTO_ICMP: { 5737 struct icmp ih; 5738 5739 pd.hdr.icmp = &ih; 5740 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 5741 &action, &reason, AF_INET)) { 5742 log = action != PF_PASS; 5743 goto done; 5744 } 5745 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 5746 &reason); 5747 if (action == PF_PASS) { 5748 if (pfsync_update_state_ptr != NULL) 5749 pfsync_update_state_ptr(s); 5750 r = s->rule.ptr; 5751 a = s->anchor.ptr; 5752 log = s->log; 5753 } else if (s == NULL) 5754 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5755 &a, &ruleset, inp); 5756 break; 5757 } 5758 5759 #ifdef INET6 5760 case IPPROTO_ICMPV6: { 5761 action = PF_DROP; 5762 DPFPRINTF(PF_DEBUG_MISC, 5763 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 5764 goto done; 5765 } 5766 #endif 5767 5768 default: 5769 action = pf_test_state_other(&s, dir, kif, m, &pd); 5770 if (action == PF_PASS) { 5771 if (pfsync_update_state_ptr != NULL) 5772 pfsync_update_state_ptr(s); 5773 r = s->rule.ptr; 5774 a = s->anchor.ptr; 5775 log = s->log; 5776 } else if (s == NULL) 5777 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5778 &a, &ruleset, inp); 5779 break; 5780 } 5781 5782 done: 5783 PF_RULES_RUNLOCK(); 5784 if (action == PF_PASS && h->ip_hl > 5 && 5785 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 5786 action = PF_DROP; 5787 REASON_SET(&reason, PFRES_IPOPTIONS); 5788 log = 1; 5789 DPFPRINTF(PF_DEBUG_MISC, 5790 ("pf: dropping packet with ip options\n")); 5791 } 5792 5793 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 5794 action = PF_DROP; 5795 REASON_SET(&reason, PFRES_MEMORY); 5796 } 5797 if (r->rtableid >= 0) 5798 M_SETFIB(m, r->rtableid); 5799 5800 #ifdef ALTQ 5801 if (action == PF_PASS && r->qid) { 5802 if (pd.pf_mtag == NULL && 5803 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5804 action = PF_DROP; 5805 REASON_SET(&reason, PFRES_MEMORY); 5806 } 5807 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 5808 pd.pf_mtag->qid = r->pqid; 5809 else 5810 pd.pf_mtag->qid = r->qid; 5811 /* add hints for ecn */ 5812 pd.pf_mtag->hdr = h; 5813 5814 } 5815 #endif /* ALTQ */ 5816 5817 /* 5818 * connections redirected to loopback should not match sockets 5819 * bound specifically to loopback due to security implications, 5820 * see tcp_input() and in_pcblookup_listen(). 5821 */ 5822 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 5823 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 5824 (s->nat_rule.ptr->action == PF_RDR || 5825 s->nat_rule.ptr->action == PF_BINAT) && 5826 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 5827 m->m_flags |= M_SKIP_FIREWALL; 5828 5829 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 5830 !PACKET_LOOPED(&pd)) { 5831 5832 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 5833 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 5834 if (ipfwtag != NULL) { 5835 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 5836 ntohs(r->divert.port); 5837 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 5838 5839 if (s) 5840 PF_STATE_UNLOCK(s); 5841 5842 m_tag_prepend(m, ipfwtag); 5843 if (m->m_flags & M_FASTFWD_OURS) { 5844 if (pd.pf_mtag == NULL && 5845 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5846 action = PF_DROP; 5847 REASON_SET(&reason, PFRES_MEMORY); 5848 log = 1; 5849 DPFPRINTF(PF_DEBUG_MISC, 5850 ("pf: failed to allocate tag\n")); 5851 } 5852 pd.pf_mtag->flags |= PF_FASTFWD_OURS_PRESENT; 5853 m->m_flags &= ~M_FASTFWD_OURS; 5854 } 5855 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 5856 *m0 = NULL; 5857 5858 return (action); 5859 } else { 5860 /* XXX: ipfw has the same behaviour! */ 5861 action = PF_DROP; 5862 REASON_SET(&reason, PFRES_MEMORY); 5863 log = 1; 5864 DPFPRINTF(PF_DEBUG_MISC, 5865 ("pf: failed to allocate divert tag\n")); 5866 } 5867 } 5868 5869 if (log) { 5870 struct pf_rule *lr; 5871 5872 if (s != NULL && s->nat_rule.ptr != NULL && 5873 s->nat_rule.ptr->log & PF_LOG_ALL) 5874 lr = s->nat_rule.ptr; 5875 else 5876 lr = r; 5877 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 5878 (s == NULL)); 5879 } 5880 5881 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 5882 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 5883 5884 if (action == PF_PASS || r->action == PF_DROP) { 5885 dirndx = (dir == PF_OUT); 5886 r->packets[dirndx]++; 5887 r->bytes[dirndx] += pd.tot_len; 5888 if (a != NULL) { 5889 a->packets[dirndx]++; 5890 a->bytes[dirndx] += pd.tot_len; 5891 } 5892 if (s != NULL) { 5893 if (s->nat_rule.ptr != NULL) { 5894 s->nat_rule.ptr->packets[dirndx]++; 5895 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 5896 } 5897 if (s->src_node != NULL) { 5898 s->src_node->packets[dirndx]++; 5899 s->src_node->bytes[dirndx] += pd.tot_len; 5900 } 5901 if (s->nat_src_node != NULL) { 5902 s->nat_src_node->packets[dirndx]++; 5903 s->nat_src_node->bytes[dirndx] += pd.tot_len; 5904 } 5905 dirndx = (dir == s->direction) ? 0 : 1; 5906 s->packets[dirndx]++; 5907 s->bytes[dirndx] += pd.tot_len; 5908 } 5909 tr = r; 5910 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 5911 if (nr != NULL && r == &V_pf_default_rule) 5912 tr = nr; 5913 if (tr->src.addr.type == PF_ADDR_TABLE) 5914 pfr_update_stats(tr->src.addr.p.tbl, 5915 (s == NULL) ? pd.src : 5916 &s->key[(s->direction == PF_IN)]-> 5917 addr[(s->direction == PF_OUT)], 5918 pd.af, pd.tot_len, dir == PF_OUT, 5919 r->action == PF_PASS, tr->src.neg); 5920 if (tr->dst.addr.type == PF_ADDR_TABLE) 5921 pfr_update_stats(tr->dst.addr.p.tbl, 5922 (s == NULL) ? pd.dst : 5923 &s->key[(s->direction == PF_IN)]-> 5924 addr[(s->direction == PF_IN)], 5925 pd.af, pd.tot_len, dir == PF_OUT, 5926 r->action == PF_PASS, tr->dst.neg); 5927 } 5928 5929 switch (action) { 5930 case PF_SYNPROXY_DROP: 5931 m_freem(*m0); 5932 case PF_DEFER: 5933 *m0 = NULL; 5934 action = PF_PASS; 5935 break; 5936 default: 5937 /* pf_route() returns unlocked. */ 5938 if (r->rt) { 5939 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 5940 return (action); 5941 } 5942 break; 5943 } 5944 if (s) 5945 PF_STATE_UNLOCK(s); 5946 5947 return (action); 5948 } 5949 #endif /* INET */ 5950 5951 #ifdef INET6 5952 int 5953 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5954 { 5955 struct pfi_kif *kif; 5956 u_short action, reason = 0, log = 0; 5957 struct mbuf *m = *m0, *n = NULL; 5958 struct ip6_hdr *h = NULL; 5959 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5960 struct pf_state *s = NULL; 5961 struct pf_ruleset *ruleset = NULL; 5962 struct pf_pdesc pd; 5963 int off, terminal = 0, dirndx, rh_cnt = 0; 5964 5965 M_ASSERTPKTHDR(m); 5966 5967 if (!V_pf_status.running) 5968 return (PF_PASS); 5969 5970 memset(&pd, 0, sizeof(pd)); 5971 pd.pf_mtag = pf_find_mtag(m); 5972 5973 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 5974 return (PF_PASS); 5975 5976 kif = (struct pfi_kif *)ifp->if_pf_kif; 5977 if (kif == NULL) { 5978 DPFPRINTF(PF_DEBUG_URGENT, 5979 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 5980 return (PF_DROP); 5981 } 5982 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5983 return (PF_PASS); 5984 5985 PF_RULES_RLOCK(); 5986 5987 /* We do IP header normalization and packet reassembly here */ 5988 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 5989 action = PF_DROP; 5990 goto done; 5991 } 5992 m = *m0; /* pf_normalize messes with m0 */ 5993 h = mtod(m, struct ip6_hdr *); 5994 5995 #if 1 5996 /* 5997 * we do not support jumbogram yet. if we keep going, zero ip6_plen 5998 * will do something bad, so drop the packet for now. 5999 */ 6000 if (htons(h->ip6_plen) == 0) { 6001 action = PF_DROP; 6002 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6003 goto done; 6004 } 6005 #endif 6006 6007 pd.src = (struct pf_addr *)&h->ip6_src; 6008 pd.dst = (struct pf_addr *)&h->ip6_dst; 6009 pd.sport = pd.dport = NULL; 6010 pd.ip_sum = NULL; 6011 pd.proto_sum = NULL; 6012 pd.dir = dir; 6013 pd.sidx = (dir == PF_IN) ? 0 : 1; 6014 pd.didx = (dir == PF_IN) ? 1 : 0; 6015 pd.af = AF_INET6; 6016 pd.tos = 0; 6017 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6018 6019 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6020 pd.proto = h->ip6_nxt; 6021 do { 6022 switch (pd.proto) { 6023 case IPPROTO_FRAGMENT: 6024 action = pf_test_fragment(&r, dir, kif, m, h, 6025 &pd, &a, &ruleset); 6026 if (action == PF_DROP) 6027 REASON_SET(&reason, PFRES_FRAG); 6028 goto done; 6029 case IPPROTO_ROUTING: { 6030 struct ip6_rthdr rthdr; 6031 6032 if (rh_cnt++) { 6033 DPFPRINTF(PF_DEBUG_MISC, 6034 ("pf: IPv6 more than one rthdr\n")); 6035 action = PF_DROP; 6036 REASON_SET(&reason, PFRES_IPOPTIONS); 6037 log = 1; 6038 goto done; 6039 } 6040 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6041 &reason, pd.af)) { 6042 DPFPRINTF(PF_DEBUG_MISC, 6043 ("pf: IPv6 short rthdr\n")); 6044 action = PF_DROP; 6045 REASON_SET(&reason, PFRES_SHORT); 6046 log = 1; 6047 goto done; 6048 } 6049 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6050 DPFPRINTF(PF_DEBUG_MISC, 6051 ("pf: IPv6 rthdr0\n")); 6052 action = PF_DROP; 6053 REASON_SET(&reason, PFRES_IPOPTIONS); 6054 log = 1; 6055 goto done; 6056 } 6057 /* FALLTHROUGH */ 6058 } 6059 case IPPROTO_AH: 6060 case IPPROTO_HOPOPTS: 6061 case IPPROTO_DSTOPTS: { 6062 /* get next header and header length */ 6063 struct ip6_ext opt6; 6064 6065 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6066 NULL, &reason, pd.af)) { 6067 DPFPRINTF(PF_DEBUG_MISC, 6068 ("pf: IPv6 short opt\n")); 6069 action = PF_DROP; 6070 log = 1; 6071 goto done; 6072 } 6073 if (pd.proto == IPPROTO_AH) 6074 off += (opt6.ip6e_len + 2) * 4; 6075 else 6076 off += (opt6.ip6e_len + 1) * 8; 6077 pd.proto = opt6.ip6e_nxt; 6078 /* goto the next header */ 6079 break; 6080 } 6081 default: 6082 terminal++; 6083 break; 6084 } 6085 } while (!terminal); 6086 6087 /* if there's no routing header, use unmodified mbuf for checksumming */ 6088 if (!n) 6089 n = m; 6090 6091 switch (pd.proto) { 6092 6093 case IPPROTO_TCP: { 6094 struct tcphdr th; 6095 6096 pd.hdr.tcp = &th; 6097 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6098 &action, &reason, AF_INET6)) { 6099 log = action != PF_PASS; 6100 goto done; 6101 } 6102 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6103 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6104 if (action == PF_DROP) 6105 goto done; 6106 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6107 &reason); 6108 if (action == PF_PASS) { 6109 if (pfsync_update_state_ptr != NULL) 6110 pfsync_update_state_ptr(s); 6111 r = s->rule.ptr; 6112 a = s->anchor.ptr; 6113 log = s->log; 6114 } else if (s == NULL) 6115 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6116 &a, &ruleset, inp); 6117 break; 6118 } 6119 6120 case IPPROTO_UDP: { 6121 struct udphdr uh; 6122 6123 pd.hdr.udp = &uh; 6124 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6125 &action, &reason, AF_INET6)) { 6126 log = action != PF_PASS; 6127 goto done; 6128 } 6129 if (uh.uh_dport == 0 || 6130 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6131 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6132 action = PF_DROP; 6133 REASON_SET(&reason, PFRES_SHORT); 6134 goto done; 6135 } 6136 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6137 if (action == PF_PASS) { 6138 if (pfsync_update_state_ptr != NULL) 6139 pfsync_update_state_ptr(s); 6140 r = s->rule.ptr; 6141 a = s->anchor.ptr; 6142 log = s->log; 6143 } else if (s == NULL) 6144 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6145 &a, &ruleset, inp); 6146 break; 6147 } 6148 6149 case IPPROTO_ICMP: { 6150 action = PF_DROP; 6151 DPFPRINTF(PF_DEBUG_MISC, 6152 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6153 goto done; 6154 } 6155 6156 case IPPROTO_ICMPV6: { 6157 struct icmp6_hdr ih; 6158 6159 pd.hdr.icmp6 = &ih; 6160 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6161 &action, &reason, AF_INET6)) { 6162 log = action != PF_PASS; 6163 goto done; 6164 } 6165 action = pf_test_state_icmp(&s, dir, kif, 6166 m, off, h, &pd, &reason); 6167 if (action == PF_PASS) { 6168 if (pfsync_update_state_ptr != NULL) 6169 pfsync_update_state_ptr(s); 6170 r = s->rule.ptr; 6171 a = s->anchor.ptr; 6172 log = s->log; 6173 } else if (s == NULL) 6174 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6175 &a, &ruleset, inp); 6176 break; 6177 } 6178 6179 default: 6180 action = pf_test_state_other(&s, dir, kif, m, &pd); 6181 if (action == PF_PASS) { 6182 if (pfsync_update_state_ptr != NULL) 6183 pfsync_update_state_ptr(s); 6184 r = s->rule.ptr; 6185 a = s->anchor.ptr; 6186 log = s->log; 6187 } else if (s == NULL) 6188 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6189 &a, &ruleset, inp); 6190 break; 6191 } 6192 6193 done: 6194 PF_RULES_RUNLOCK(); 6195 if (n != m) { 6196 m_freem(n); 6197 n = NULL; 6198 } 6199 6200 /* handle dangerous IPv6 extension headers. */ 6201 if (action == PF_PASS && rh_cnt && 6202 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6203 action = PF_DROP; 6204 REASON_SET(&reason, PFRES_IPOPTIONS); 6205 log = 1; 6206 DPFPRINTF(PF_DEBUG_MISC, 6207 ("pf: dropping packet with dangerous v6 headers\n")); 6208 } 6209 6210 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6211 action = PF_DROP; 6212 REASON_SET(&reason, PFRES_MEMORY); 6213 } 6214 if (r->rtableid >= 0) 6215 M_SETFIB(m, r->rtableid); 6216 6217 #ifdef ALTQ 6218 if (action == PF_PASS && r->qid) { 6219 if (pd.pf_mtag == NULL && 6220 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6221 action = PF_DROP; 6222 REASON_SET(&reason, PFRES_MEMORY); 6223 } 6224 if (pd.tos & IPTOS_LOWDELAY) 6225 pd.pf_mtag->qid = r->pqid; 6226 else 6227 pd.pf_mtag->qid = r->qid; 6228 /* add hints for ecn */ 6229 pd.pf_mtag->hdr = h; 6230 } 6231 #endif /* ALTQ */ 6232 6233 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6234 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6235 (s->nat_rule.ptr->action == PF_RDR || 6236 s->nat_rule.ptr->action == PF_BINAT) && 6237 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6238 m->m_flags |= M_SKIP_FIREWALL; 6239 6240 /* XXX: Anybody working on it?! */ 6241 if (r->divert.port) 6242 printf("pf: divert(9) is not supported for IPv6\n"); 6243 6244 if (log) { 6245 struct pf_rule *lr; 6246 6247 if (s != NULL && s->nat_rule.ptr != NULL && 6248 s->nat_rule.ptr->log & PF_LOG_ALL) 6249 lr = s->nat_rule.ptr; 6250 else 6251 lr = r; 6252 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6253 &pd, (s == NULL)); 6254 } 6255 6256 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6257 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6258 6259 if (action == PF_PASS || r->action == PF_DROP) { 6260 dirndx = (dir == PF_OUT); 6261 r->packets[dirndx]++; 6262 r->bytes[dirndx] += pd.tot_len; 6263 if (a != NULL) { 6264 a->packets[dirndx]++; 6265 a->bytes[dirndx] += pd.tot_len; 6266 } 6267 if (s != NULL) { 6268 if (s->nat_rule.ptr != NULL) { 6269 s->nat_rule.ptr->packets[dirndx]++; 6270 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6271 } 6272 if (s->src_node != NULL) { 6273 s->src_node->packets[dirndx]++; 6274 s->src_node->bytes[dirndx] += pd.tot_len; 6275 } 6276 if (s->nat_src_node != NULL) { 6277 s->nat_src_node->packets[dirndx]++; 6278 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6279 } 6280 dirndx = (dir == s->direction) ? 0 : 1; 6281 s->packets[dirndx]++; 6282 s->bytes[dirndx] += pd.tot_len; 6283 } 6284 tr = r; 6285 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6286 if (nr != NULL && r == &V_pf_default_rule) 6287 tr = nr; 6288 if (tr->src.addr.type == PF_ADDR_TABLE) 6289 pfr_update_stats(tr->src.addr.p.tbl, 6290 (s == NULL) ? pd.src : 6291 &s->key[(s->direction == PF_IN)]->addr[0], 6292 pd.af, pd.tot_len, dir == PF_OUT, 6293 r->action == PF_PASS, tr->src.neg); 6294 if (tr->dst.addr.type == PF_ADDR_TABLE) 6295 pfr_update_stats(tr->dst.addr.p.tbl, 6296 (s == NULL) ? pd.dst : 6297 &s->key[(s->direction == PF_IN)]->addr[1], 6298 pd.af, pd.tot_len, dir == PF_OUT, 6299 r->action == PF_PASS, tr->dst.neg); 6300 } 6301 6302 switch (action) { 6303 case PF_SYNPROXY_DROP: 6304 m_freem(*m0); 6305 case PF_DEFER: 6306 *m0 = NULL; 6307 action = PF_PASS; 6308 break; 6309 default: 6310 /* pf_route6() returns unlocked. */ 6311 if (r->rt) { 6312 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6313 return (action); 6314 } 6315 break; 6316 } 6317 6318 if (s) 6319 PF_STATE_UNLOCK(s); 6320 6321 return (action); 6322 } 6323 #endif /* INET6 */ 6324