1 /*- 2 * Copyright (c) 2001 Daniel Hartmeier 3 * Copyright (c) 2002 - 2008 Henning Brauer 4 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * - Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * - Redistributions in binary form must reproduce the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer in the documentation and/or other materials provided 16 * with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 26 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Effort sponsored in part by the Defense Advanced Research Projects 32 * Agency (DARPA) and Air Force Research Laboratory, Air Force 33 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 34 * 35 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_inet.h" 42 #include "opt_inet6.h" 43 #include "opt_bpf.h" 44 #include "opt_pf.h" 45 46 #include <sys/param.h> 47 #include <sys/bus.h> 48 #include <sys/endian.h> 49 #include <sys/hash.h> 50 #include <sys/interrupt.h> 51 #include <sys/kernel.h> 52 #include <sys/kthread.h> 53 #include <sys/limits.h> 54 #include <sys/mbuf.h> 55 #include <sys/md5.h> 56 #include <sys/random.h> 57 #include <sys/refcount.h> 58 #include <sys/socket.h> 59 #include <sys/sysctl.h> 60 #include <sys/taskqueue.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_types.h> 66 #include <net/route.h> 67 #include <net/radix_mpath.h> 68 #include <net/vnet.h> 69 70 #include <net/pfvar.h> 71 #include <net/if_pflog.h> 72 #include <net/if_pfsync.h> 73 74 #include <netinet/in_pcb.h> 75 #include <netinet/in_var.h> 76 #include <netinet/ip.h> 77 #include <netinet/ip_fw.h> 78 #include <netinet/ip_icmp.h> 79 #include <netinet/icmp_var.h> 80 #include <netinet/ip_var.h> 81 #include <netinet/tcp.h> 82 #include <netinet/tcp_fsm.h> 83 #include <netinet/tcp_seq.h> 84 #include <netinet/tcp_timer.h> 85 #include <netinet/tcp_var.h> 86 #include <netinet/udp.h> 87 #include <netinet/udp_var.h> 88 89 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 90 91 #ifdef INET6 92 #include <netinet/ip6.h> 93 #include <netinet/icmp6.h> 94 #include <netinet6/nd6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/in6_pcb.h> 97 #endif /* INET6 */ 98 99 #include <machine/in_cksum.h> 100 #include <security/mac/mac_framework.h> 101 102 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 103 104 /* 105 * Global variables 106 */ 107 108 /* state tables */ 109 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 110 VNET_DEFINE(struct pf_palist, pf_pabuf); 111 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 112 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 113 VNET_DEFINE(struct pf_status, pf_status); 114 115 VNET_DEFINE(u_int32_t, ticket_altqs_active); 116 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 117 VNET_DEFINE(int, altqs_inactive_open); 118 VNET_DEFINE(u_int32_t, ticket_pabuf); 119 120 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 121 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 122 VNET_DEFINE(u_char, pf_tcp_secret[16]); 123 #define V_pf_tcp_secret VNET(pf_tcp_secret) 124 VNET_DEFINE(int, pf_tcp_secret_init); 125 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 126 VNET_DEFINE(int, pf_tcp_iss_off); 127 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 128 129 /* 130 * Queue for pf_intr() sends. 131 */ 132 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 133 struct pf_send_entry { 134 STAILQ_ENTRY(pf_send_entry) pfse_next; 135 struct mbuf *pfse_m; 136 enum { 137 PFSE_IP, 138 PFSE_IP6, 139 PFSE_ICMP, 140 PFSE_ICMP6, 141 } pfse_type; 142 union { 143 struct route ro; 144 struct { 145 int type; 146 int code; 147 int mtu; 148 } icmpopts; 149 } u; 150 #define pfse_ro u.ro 151 #define pfse_icmp_type u.icmpopts.type 152 #define pfse_icmp_code u.icmpopts.code 153 #define pfse_icmp_mtu u.icmpopts.mtu 154 }; 155 156 STAILQ_HEAD(pf_send_head, pf_send_entry); 157 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 158 #define V_pf_sendqueue VNET(pf_sendqueue) 159 160 static struct mtx pf_sendqueue_mtx; 161 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 162 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 163 164 /* 165 * Queue for pf_overload_task() tasks. 166 */ 167 struct pf_overload_entry { 168 SLIST_ENTRY(pf_overload_entry) next; 169 struct pf_addr addr; 170 sa_family_t af; 171 uint8_t dir; 172 struct pf_rule *rule; 173 }; 174 175 SLIST_HEAD(pf_overload_head, pf_overload_entry); 176 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 177 #define V_pf_overloadqueue VNET(pf_overloadqueue) 178 static VNET_DEFINE(struct task, pf_overloadtask); 179 #define V_pf_overloadtask VNET(pf_overloadtask) 180 181 static struct mtx pf_overloadqueue_mtx; 182 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 183 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 184 185 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 186 struct mtx pf_unlnkdrules_mtx; 187 188 static VNET_DEFINE(uma_zone_t, pf_sources_z); 189 #define V_pf_sources_z VNET(pf_sources_z) 190 uma_zone_t pf_mtag_z; 191 VNET_DEFINE(uma_zone_t, pf_state_z); 192 VNET_DEFINE(uma_zone_t, pf_state_key_z); 193 194 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 195 #define PFID_CPUBITS 8 196 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 197 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 198 #define PFID_MAXID (~PFID_CPUMASK) 199 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 200 201 static void pf_src_tree_remove_state(struct pf_state *); 202 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 203 u_int32_t); 204 static void pf_add_threshold(struct pf_threshold *); 205 static int pf_check_threshold(struct pf_threshold *); 206 207 static void pf_change_ap(struct pf_addr *, u_int16_t *, 208 u_int16_t *, u_int16_t *, struct pf_addr *, 209 u_int16_t, u_int8_t, sa_family_t); 210 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 211 struct tcphdr *, struct pf_state_peer *); 212 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 213 struct pf_addr *, struct pf_addr *, u_int16_t, 214 u_int16_t *, u_int16_t *, u_int16_t *, 215 u_int16_t *, u_int8_t, sa_family_t); 216 static void pf_send_tcp(struct mbuf *, 217 const struct pf_rule *, sa_family_t, 218 const struct pf_addr *, const struct pf_addr *, 219 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 220 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 221 u_int16_t, struct ifnet *); 222 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 223 sa_family_t, struct pf_rule *); 224 static void pf_detach_state(struct pf_state *); 225 static int pf_state_key_attach(struct pf_state_key *, 226 struct pf_state_key *, struct pf_state *); 227 static void pf_state_key_detach(struct pf_state *, int); 228 static int pf_state_key_ctor(void *, int, void *, int); 229 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 230 static int pf_test_rule(struct pf_rule **, struct pf_state **, 231 int, struct pfi_kif *, struct mbuf *, int, 232 struct pf_pdesc *, struct pf_rule **, 233 struct pf_ruleset **, struct inpcb *); 234 static int pf_create_state(struct pf_rule *, struct pf_rule *, 235 struct pf_rule *, struct pf_pdesc *, 236 struct pf_src_node *, struct pf_state_key *, 237 struct pf_state_key *, struct mbuf *, int, 238 u_int16_t, u_int16_t, int *, struct pfi_kif *, 239 struct pf_state **, int, u_int16_t, u_int16_t, 240 int); 241 static int pf_test_fragment(struct pf_rule **, int, 242 struct pfi_kif *, struct mbuf *, void *, 243 struct pf_pdesc *, struct pf_rule **, 244 struct pf_ruleset **); 245 static int pf_tcp_track_full(struct pf_state_peer *, 246 struct pf_state_peer *, struct pf_state **, 247 struct pfi_kif *, struct mbuf *, int, 248 struct pf_pdesc *, u_short *, int *); 249 static int pf_tcp_track_sloppy(struct pf_state_peer *, 250 struct pf_state_peer *, struct pf_state **, 251 struct pf_pdesc *, u_short *); 252 static int pf_test_state_tcp(struct pf_state **, int, 253 struct pfi_kif *, struct mbuf *, int, 254 void *, struct pf_pdesc *, u_short *); 255 static int pf_test_state_udp(struct pf_state **, int, 256 struct pfi_kif *, struct mbuf *, int, 257 void *, struct pf_pdesc *); 258 static int pf_test_state_icmp(struct pf_state **, int, 259 struct pfi_kif *, struct mbuf *, int, 260 void *, struct pf_pdesc *, u_short *); 261 static int pf_test_state_other(struct pf_state **, int, 262 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 263 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 264 sa_family_t); 265 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 266 sa_family_t); 267 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 268 int, u_int16_t); 269 static void pf_set_rt_ifp(struct pf_state *, 270 struct pf_addr *); 271 static int pf_check_proto_cksum(struct mbuf *, int, int, 272 u_int8_t, sa_family_t); 273 static void pf_print_state_parts(struct pf_state *, 274 struct pf_state_key *, struct pf_state_key *); 275 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 276 struct pf_addr_wrap *); 277 static struct pf_state *pf_find_state(struct pfi_kif *, 278 struct pf_state_key_cmp *, u_int); 279 static int pf_src_connlimit(struct pf_state **); 280 static void pf_overload_task(void *v, int pending); 281 static int pf_insert_src_node(struct pf_src_node **, 282 struct pf_rule *, struct pf_addr *, sa_family_t); 283 static u_int pf_purge_expired_states(u_int, int); 284 static void pf_purge_unlinked_rules(void); 285 static int pf_mtag_uminit(void *, int, int); 286 static void pf_mtag_free(struct m_tag *); 287 #ifdef INET 288 static void pf_route(struct mbuf **, struct pf_rule *, int, 289 struct ifnet *, struct pf_state *, 290 struct pf_pdesc *); 291 #endif /* INET */ 292 #ifdef INET6 293 static void pf_change_a6(struct pf_addr *, u_int16_t *, 294 struct pf_addr *, u_int8_t); 295 static void pf_route6(struct mbuf **, struct pf_rule *, int, 296 struct ifnet *, struct pf_state *, 297 struct pf_pdesc *); 298 #endif /* INET6 */ 299 300 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 301 302 VNET_DECLARE(int, pf_end_threads); 303 304 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 305 306 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 307 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 308 309 #define STATE_LOOKUP(i, k, d, s, pd) \ 310 do { \ 311 (s) = pf_find_state((i), (k), (d)); \ 312 if ((s) == NULL) \ 313 return (PF_DROP); \ 314 if (PACKET_LOOPED(pd)) \ 315 return (PF_PASS); \ 316 if ((d) == PF_OUT && \ 317 (((s)->rule.ptr->rt == PF_ROUTETO && \ 318 (s)->rule.ptr->direction == PF_OUT) || \ 319 ((s)->rule.ptr->rt == PF_REPLYTO && \ 320 (s)->rule.ptr->direction == PF_IN)) && \ 321 (s)->rt_kif != NULL && \ 322 (s)->rt_kif != (i)) \ 323 return (PF_PASS); \ 324 } while (0) 325 326 #define BOUND_IFACE(r, k) \ 327 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 328 329 #define STATE_INC_COUNTERS(s) \ 330 do { \ 331 counter_u64_add(s->rule.ptr->states_cur, 1); \ 332 counter_u64_add(s->rule.ptr->states_tot, 1); \ 333 if (s->anchor.ptr != NULL) { \ 334 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 335 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 336 } \ 337 if (s->nat_rule.ptr != NULL) { \ 338 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 339 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 340 } \ 341 } while (0) 342 343 #define STATE_DEC_COUNTERS(s) \ 344 do { \ 345 if (s->nat_rule.ptr != NULL) \ 346 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 347 if (s->anchor.ptr != NULL) \ 348 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 349 counter_u64_add(s->rule.ptr->states_cur, -1); \ 350 } while (0) 351 352 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 353 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 354 VNET_DEFINE(struct pf_idhash *, pf_idhash); 355 VNET_DEFINE(struct pf_srchash *, pf_srchash); 356 357 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 358 359 u_long pf_hashmask; 360 u_long pf_srchashmask; 361 static u_long pf_hashsize; 362 static u_long pf_srchashsize; 363 364 SYSCTL_UINT(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 365 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 366 SYSCTL_UINT(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 367 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 368 369 VNET_DEFINE(void *, pf_swi_cookie); 370 371 VNET_DEFINE(uint32_t, pf_hashseed); 372 #define V_pf_hashseed VNET(pf_hashseed) 373 374 static __inline uint32_t 375 pf_hashkey(struct pf_state_key *sk) 376 { 377 uint32_t h; 378 379 h = jenkins_hash32((uint32_t *)sk, 380 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 381 V_pf_hashseed); 382 383 return (h & pf_hashmask); 384 } 385 386 static __inline uint32_t 387 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 388 { 389 uint32_t h; 390 391 switch (af) { 392 case AF_INET: 393 h = jenkins_hash32((uint32_t *)&addr->v4, 394 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 395 break; 396 case AF_INET6: 397 h = jenkins_hash32((uint32_t *)&addr->v6, 398 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 399 break; 400 default: 401 panic("%s: unknown address family %u", __func__, af); 402 } 403 404 return (h & pf_srchashmask); 405 } 406 407 #ifdef INET6 408 void 409 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 410 { 411 switch (af) { 412 #ifdef INET 413 case AF_INET: 414 dst->addr32[0] = src->addr32[0]; 415 break; 416 #endif /* INET */ 417 case AF_INET6: 418 dst->addr32[0] = src->addr32[0]; 419 dst->addr32[1] = src->addr32[1]; 420 dst->addr32[2] = src->addr32[2]; 421 dst->addr32[3] = src->addr32[3]; 422 break; 423 } 424 } 425 #endif /* INET6 */ 426 427 static void 428 pf_init_threshold(struct pf_threshold *threshold, 429 u_int32_t limit, u_int32_t seconds) 430 { 431 threshold->limit = limit * PF_THRESHOLD_MULT; 432 threshold->seconds = seconds; 433 threshold->count = 0; 434 threshold->last = time_uptime; 435 } 436 437 static void 438 pf_add_threshold(struct pf_threshold *threshold) 439 { 440 u_int32_t t = time_uptime, diff = t - threshold->last; 441 442 if (diff >= threshold->seconds) 443 threshold->count = 0; 444 else 445 threshold->count -= threshold->count * diff / 446 threshold->seconds; 447 threshold->count += PF_THRESHOLD_MULT; 448 threshold->last = t; 449 } 450 451 static int 452 pf_check_threshold(struct pf_threshold *threshold) 453 { 454 return (threshold->count > threshold->limit); 455 } 456 457 static int 458 pf_src_connlimit(struct pf_state **state) 459 { 460 struct pf_overload_entry *pfoe; 461 int bad = 0; 462 463 PF_STATE_LOCK_ASSERT(*state); 464 465 (*state)->src_node->conn++; 466 (*state)->src.tcp_est = 1; 467 pf_add_threshold(&(*state)->src_node->conn_rate); 468 469 if ((*state)->rule.ptr->max_src_conn && 470 (*state)->rule.ptr->max_src_conn < 471 (*state)->src_node->conn) { 472 V_pf_status.lcounters[LCNT_SRCCONN]++; 473 bad++; 474 } 475 476 if ((*state)->rule.ptr->max_src_conn_rate.limit && 477 pf_check_threshold(&(*state)->src_node->conn_rate)) { 478 V_pf_status.lcounters[LCNT_SRCCONNRATE]++; 479 bad++; 480 } 481 482 if (!bad) 483 return (0); 484 485 /* Kill this state. */ 486 (*state)->timeout = PFTM_PURGE; 487 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 488 489 if ((*state)->rule.ptr->overload_tbl == NULL) 490 return (1); 491 492 /* Schedule overloading and flushing task. */ 493 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 494 if (pfoe == NULL) 495 return (1); /* too bad :( */ 496 497 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 498 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 499 pfoe->rule = (*state)->rule.ptr; 500 pfoe->dir = (*state)->direction; 501 PF_OVERLOADQ_LOCK(); 502 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 503 PF_OVERLOADQ_UNLOCK(); 504 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 505 506 return (1); 507 } 508 509 static void 510 pf_overload_task(void *v, int pending) 511 { 512 struct pf_overload_head queue; 513 struct pfr_addr p; 514 struct pf_overload_entry *pfoe, *pfoe1; 515 uint32_t killed = 0; 516 517 CURVNET_SET((struct vnet *)v); 518 519 PF_OVERLOADQ_LOCK(); 520 queue = V_pf_overloadqueue; 521 SLIST_INIT(&V_pf_overloadqueue); 522 PF_OVERLOADQ_UNLOCK(); 523 524 bzero(&p, sizeof(p)); 525 SLIST_FOREACH(pfoe, &queue, next) { 526 V_pf_status.lcounters[LCNT_OVERLOAD_TABLE]++; 527 if (V_pf_status.debug >= PF_DEBUG_MISC) { 528 printf("%s: blocking address ", __func__); 529 pf_print_host(&pfoe->addr, 0, pfoe->af); 530 printf("\n"); 531 } 532 533 p.pfra_af = pfoe->af; 534 switch (pfoe->af) { 535 #ifdef INET 536 case AF_INET: 537 p.pfra_net = 32; 538 p.pfra_ip4addr = pfoe->addr.v4; 539 break; 540 #endif 541 #ifdef INET6 542 case AF_INET6: 543 p.pfra_net = 128; 544 p.pfra_ip6addr = pfoe->addr.v6; 545 break; 546 #endif 547 } 548 549 PF_RULES_WLOCK(); 550 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 551 PF_RULES_WUNLOCK(); 552 } 553 554 /* 555 * Remove those entries, that don't need flushing. 556 */ 557 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 558 if (pfoe->rule->flush == 0) { 559 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 560 free(pfoe, M_PFTEMP); 561 } else 562 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH]++; 563 564 /* If nothing to flush, return. */ 565 if (SLIST_EMPTY(&queue)) { 566 CURVNET_RESTORE(); 567 return; 568 } 569 570 for (int i = 0; i <= pf_hashmask; i++) { 571 struct pf_idhash *ih = &V_pf_idhash[i]; 572 struct pf_state_key *sk; 573 struct pf_state *s; 574 575 PF_HASHROW_LOCK(ih); 576 LIST_FOREACH(s, &ih->states, entry) { 577 sk = s->key[PF_SK_WIRE]; 578 SLIST_FOREACH(pfoe, &queue, next) 579 if (sk->af == pfoe->af && 580 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 581 pfoe->rule == s->rule.ptr) && 582 ((pfoe->dir == PF_OUT && 583 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 584 (pfoe->dir == PF_IN && 585 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 586 s->timeout = PFTM_PURGE; 587 s->src.state = s->dst.state = TCPS_CLOSED; 588 killed++; 589 } 590 } 591 PF_HASHROW_UNLOCK(ih); 592 } 593 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 594 free(pfoe, M_PFTEMP); 595 if (V_pf_status.debug >= PF_DEBUG_MISC) 596 printf("%s: %u states killed", __func__, killed); 597 598 CURVNET_RESTORE(); 599 } 600 601 /* 602 * Can return locked on failure, so that we can consistently 603 * allocate and insert a new one. 604 */ 605 struct pf_src_node * 606 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 607 int returnlocked) 608 { 609 struct pf_srchash *sh; 610 struct pf_src_node *n; 611 612 V_pf_status.scounters[SCNT_SRC_NODE_SEARCH]++; 613 614 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 615 PF_HASHROW_LOCK(sh); 616 LIST_FOREACH(n, &sh->nodes, entry) 617 if (n->rule.ptr == rule && n->af == af && 618 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 619 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 620 break; 621 if (n != NULL || returnlocked == 0) 622 PF_HASHROW_UNLOCK(sh); 623 624 return (n); 625 } 626 627 static int 628 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 629 struct pf_addr *src, sa_family_t af) 630 { 631 632 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 633 rule->rpool.opts & PF_POOL_STICKYADDR), 634 ("%s for non-tracking rule %p", __func__, rule)); 635 636 if (*sn == NULL) 637 *sn = pf_find_src_node(src, rule, af, 1); 638 639 if (*sn == NULL) { 640 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 641 642 PF_HASHROW_ASSERT(sh); 643 644 if (!rule->max_src_nodes || 645 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 646 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 647 else 648 V_pf_status.lcounters[LCNT_SRCNODES]++; 649 if ((*sn) == NULL) { 650 PF_HASHROW_UNLOCK(sh); 651 return (-1); 652 } 653 654 pf_init_threshold(&(*sn)->conn_rate, 655 rule->max_src_conn_rate.limit, 656 rule->max_src_conn_rate.seconds); 657 658 (*sn)->af = af; 659 (*sn)->rule.ptr = rule; 660 PF_ACPY(&(*sn)->addr, src, af); 661 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 662 (*sn)->creation = time_uptime; 663 (*sn)->ruletype = rule->action; 664 if ((*sn)->rule.ptr != NULL) 665 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 666 PF_HASHROW_UNLOCK(sh); 667 V_pf_status.scounters[SCNT_SRC_NODE_INSERT]++; 668 V_pf_status.src_nodes++; 669 } else { 670 if (rule->max_src_states && 671 (*sn)->states >= rule->max_src_states) { 672 V_pf_status.lcounters[LCNT_SRCSTATES]++; 673 return (-1); 674 } 675 } 676 return (0); 677 } 678 679 void 680 pf_unlink_src_node_locked(struct pf_src_node *src) 681 { 682 #ifdef INVARIANTS 683 struct pf_srchash *sh; 684 685 sh = &V_pf_srchash[pf_hashsrc(&src->addr, src->af)]; 686 PF_HASHROW_ASSERT(sh); 687 #endif 688 LIST_REMOVE(src, entry); 689 if (src->rule.ptr) 690 counter_u64_add(src->rule.ptr->src_nodes, -1); 691 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS]++; 692 V_pf_status.src_nodes--; 693 } 694 695 void 696 pf_unlink_src_node(struct pf_src_node *src) 697 { 698 struct pf_srchash *sh; 699 700 sh = &V_pf_srchash[pf_hashsrc(&src->addr, src->af)]; 701 PF_HASHROW_LOCK(sh); 702 pf_unlink_src_node_locked(src); 703 PF_HASHROW_UNLOCK(sh); 704 } 705 706 static void 707 pf_free_src_node(struct pf_src_node *sn) 708 { 709 710 KASSERT(sn->states == 0, ("%s: %p has refs", __func__, sn)); 711 uma_zfree(V_pf_sources_z, sn); 712 } 713 714 u_int 715 pf_free_src_nodes(struct pf_src_node_list *head) 716 { 717 struct pf_src_node *sn, *tmp; 718 u_int count = 0; 719 720 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 721 pf_free_src_node(sn); 722 count++; 723 } 724 725 return (count); 726 } 727 728 void 729 pf_mtag_initialize() 730 { 731 732 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 733 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 734 UMA_ALIGN_PTR, 0); 735 } 736 737 /* Per-vnet data storage structures initialization. */ 738 void 739 pf_initialize() 740 { 741 struct pf_keyhash *kh; 742 struct pf_idhash *ih; 743 struct pf_srchash *sh; 744 u_int i; 745 746 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 747 pf_hashsize = PF_HASHSIZ; 748 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 749 pf_srchashsize = PF_HASHSIZ / 4; 750 751 V_pf_hashseed = arc4random(); 752 753 /* States and state keys storage. */ 754 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 755 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 756 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 757 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 758 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 759 760 V_pf_state_key_z = uma_zcreate("pf state keys", 761 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 762 UMA_ALIGN_PTR, 0); 763 V_pf_keyhash = malloc(pf_hashsize * sizeof(struct pf_keyhash), 764 M_PFHASH, M_WAITOK | M_ZERO); 765 V_pf_idhash = malloc(pf_hashsize * sizeof(struct pf_idhash), 766 M_PFHASH, M_WAITOK | M_ZERO); 767 pf_hashmask = pf_hashsize - 1; 768 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 769 i++, kh++, ih++) { 770 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 771 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 772 } 773 774 /* Source nodes. */ 775 V_pf_sources_z = uma_zcreate("pf source nodes", 776 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 777 0); 778 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 779 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 780 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 781 V_pf_srchash = malloc(pf_srchashsize * sizeof(struct pf_srchash), 782 M_PFHASH, M_WAITOK|M_ZERO); 783 pf_srchashmask = pf_srchashsize - 1; 784 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 785 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 786 787 /* ALTQ */ 788 TAILQ_INIT(&V_pf_altqs[0]); 789 TAILQ_INIT(&V_pf_altqs[1]); 790 TAILQ_INIT(&V_pf_pabuf); 791 V_pf_altqs_active = &V_pf_altqs[0]; 792 V_pf_altqs_inactive = &V_pf_altqs[1]; 793 794 795 /* Send & overload+flush queues. */ 796 STAILQ_INIT(&V_pf_sendqueue); 797 SLIST_INIT(&V_pf_overloadqueue); 798 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 799 mtx_init(&pf_sendqueue_mtx, "pf send queue", NULL, MTX_DEF); 800 mtx_init(&pf_overloadqueue_mtx, "pf overload/flush queue", NULL, 801 MTX_DEF); 802 803 /* Unlinked, but may be referenced rules. */ 804 TAILQ_INIT(&V_pf_unlinked_rules); 805 mtx_init(&pf_unlnkdrules_mtx, "pf unlinked rules", NULL, MTX_DEF); 806 } 807 808 void 809 pf_mtag_cleanup() 810 { 811 812 uma_zdestroy(pf_mtag_z); 813 } 814 815 void 816 pf_cleanup() 817 { 818 struct pf_keyhash *kh; 819 struct pf_idhash *ih; 820 struct pf_srchash *sh; 821 struct pf_send_entry *pfse, *next; 822 u_int i; 823 824 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 825 i++, kh++, ih++) { 826 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 827 __func__)); 828 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 829 __func__)); 830 mtx_destroy(&kh->lock); 831 mtx_destroy(&ih->lock); 832 } 833 free(V_pf_keyhash, M_PFHASH); 834 free(V_pf_idhash, M_PFHASH); 835 836 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 837 KASSERT(LIST_EMPTY(&sh->nodes), 838 ("%s: source node hash not empty", __func__)); 839 mtx_destroy(&sh->lock); 840 } 841 free(V_pf_srchash, M_PFHASH); 842 843 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 844 m_freem(pfse->pfse_m); 845 free(pfse, M_PFTEMP); 846 } 847 848 mtx_destroy(&pf_sendqueue_mtx); 849 mtx_destroy(&pf_overloadqueue_mtx); 850 mtx_destroy(&pf_unlnkdrules_mtx); 851 852 uma_zdestroy(V_pf_sources_z); 853 uma_zdestroy(V_pf_state_z); 854 uma_zdestroy(V_pf_state_key_z); 855 } 856 857 static int 858 pf_mtag_uminit(void *mem, int size, int how) 859 { 860 struct m_tag *t; 861 862 t = (struct m_tag *)mem; 863 t->m_tag_cookie = MTAG_ABI_COMPAT; 864 t->m_tag_id = PACKET_TAG_PF; 865 t->m_tag_len = sizeof(struct pf_mtag); 866 t->m_tag_free = pf_mtag_free; 867 868 return (0); 869 } 870 871 static void 872 pf_mtag_free(struct m_tag *t) 873 { 874 875 uma_zfree(pf_mtag_z, t); 876 } 877 878 struct pf_mtag * 879 pf_get_mtag(struct mbuf *m) 880 { 881 struct m_tag *mtag; 882 883 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 884 return ((struct pf_mtag *)(mtag + 1)); 885 886 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 887 if (mtag == NULL) 888 return (NULL); 889 bzero(mtag + 1, sizeof(struct pf_mtag)); 890 m_tag_prepend(m, mtag); 891 892 return ((struct pf_mtag *)(mtag + 1)); 893 } 894 895 static int 896 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 897 struct pf_state *s) 898 { 899 struct pf_keyhash *khs, *khw, *kh; 900 struct pf_state_key *sk, *cur; 901 struct pf_state *si, *olds = NULL; 902 int idx; 903 904 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 905 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 906 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 907 908 /* 909 * We need to lock hash slots of both keys. To avoid deadlock 910 * we always lock the slot with lower address first. Unlock order 911 * isn't important. 912 * 913 * We also need to lock ID hash slot before dropping key 914 * locks. On success we return with ID hash slot locked. 915 */ 916 917 if (skw == sks) { 918 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 919 PF_HASHROW_LOCK(khs); 920 } else { 921 khs = &V_pf_keyhash[pf_hashkey(sks)]; 922 khw = &V_pf_keyhash[pf_hashkey(skw)]; 923 if (khs == khw) { 924 PF_HASHROW_LOCK(khs); 925 } else if (khs < khw) { 926 PF_HASHROW_LOCK(khs); 927 PF_HASHROW_LOCK(khw); 928 } else { 929 PF_HASHROW_LOCK(khw); 930 PF_HASHROW_LOCK(khs); 931 } 932 } 933 934 #define KEYS_UNLOCK() do { \ 935 if (khs != khw) { \ 936 PF_HASHROW_UNLOCK(khs); \ 937 PF_HASHROW_UNLOCK(khw); \ 938 } else \ 939 PF_HASHROW_UNLOCK(khs); \ 940 } while (0) 941 942 /* 943 * First run: start with wire key. 944 */ 945 sk = skw; 946 kh = khw; 947 idx = PF_SK_WIRE; 948 949 keyattach: 950 LIST_FOREACH(cur, &kh->keys, entry) 951 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 952 break; 953 954 if (cur != NULL) { 955 /* Key exists. Check for same kif, if none, add to key. */ 956 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 957 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 958 959 PF_HASHROW_LOCK(ih); 960 if (si->kif == s->kif && 961 si->direction == s->direction) { 962 if (sk->proto == IPPROTO_TCP && 963 si->src.state >= TCPS_FIN_WAIT_2 && 964 si->dst.state >= TCPS_FIN_WAIT_2) { 965 /* 966 * New state matches an old >FIN_WAIT_2 967 * state. We can't drop key hash locks, 968 * thus we can't unlink it properly. 969 * 970 * As a workaround we drop it into 971 * TCPS_CLOSED state, schedule purge 972 * ASAP and push it into the very end 973 * of the slot TAILQ, so that it won't 974 * conflict with our new state. 975 */ 976 si->src.state = si->dst.state = 977 TCPS_CLOSED; 978 si->timeout = PFTM_PURGE; 979 olds = si; 980 } else { 981 if (V_pf_status.debug >= PF_DEBUG_MISC) { 982 printf("pf: %s key attach " 983 "failed on %s: ", 984 (idx == PF_SK_WIRE) ? 985 "wire" : "stack", 986 s->kif->pfik_name); 987 pf_print_state_parts(s, 988 (idx == PF_SK_WIRE) ? 989 sk : NULL, 990 (idx == PF_SK_STACK) ? 991 sk : NULL); 992 printf(", existing: "); 993 pf_print_state_parts(si, 994 (idx == PF_SK_WIRE) ? 995 sk : NULL, 996 (idx == PF_SK_STACK) ? 997 sk : NULL); 998 printf("\n"); 999 } 1000 PF_HASHROW_UNLOCK(ih); 1001 KEYS_UNLOCK(); 1002 uma_zfree(V_pf_state_key_z, sk); 1003 if (idx == PF_SK_STACK) 1004 pf_detach_state(s); 1005 return (EEXIST); /* collision! */ 1006 } 1007 } 1008 PF_HASHROW_UNLOCK(ih); 1009 } 1010 uma_zfree(V_pf_state_key_z, sk); 1011 s->key[idx] = cur; 1012 } else { 1013 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1014 s->key[idx] = sk; 1015 } 1016 1017 stateattach: 1018 /* List is sorted, if-bound states before floating. */ 1019 if (s->kif == V_pfi_all) 1020 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1021 else 1022 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1023 1024 if (olds) { 1025 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1026 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1027 key_list[idx]); 1028 olds = NULL; 1029 } 1030 1031 /* 1032 * Attach done. See how should we (or should not?) 1033 * attach a second key. 1034 */ 1035 if (sks == skw) { 1036 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1037 idx = PF_SK_STACK; 1038 sks = NULL; 1039 goto stateattach; 1040 } else if (sks != NULL) { 1041 /* 1042 * Continue attaching with stack key. 1043 */ 1044 sk = sks; 1045 kh = khs; 1046 idx = PF_SK_STACK; 1047 sks = NULL; 1048 goto keyattach; 1049 } 1050 1051 PF_STATE_LOCK(s); 1052 KEYS_UNLOCK(); 1053 1054 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1055 ("%s failure", __func__)); 1056 1057 return (0); 1058 #undef KEYS_UNLOCK 1059 } 1060 1061 static void 1062 pf_detach_state(struct pf_state *s) 1063 { 1064 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1065 struct pf_keyhash *kh; 1066 1067 if (sks != NULL) { 1068 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1069 PF_HASHROW_LOCK(kh); 1070 if (s->key[PF_SK_STACK] != NULL) 1071 pf_state_key_detach(s, PF_SK_STACK); 1072 /* 1073 * If both point to same key, then we are done. 1074 */ 1075 if (sks == s->key[PF_SK_WIRE]) { 1076 pf_state_key_detach(s, PF_SK_WIRE); 1077 PF_HASHROW_UNLOCK(kh); 1078 return; 1079 } 1080 PF_HASHROW_UNLOCK(kh); 1081 } 1082 1083 if (s->key[PF_SK_WIRE] != NULL) { 1084 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1085 PF_HASHROW_LOCK(kh); 1086 if (s->key[PF_SK_WIRE] != NULL) 1087 pf_state_key_detach(s, PF_SK_WIRE); 1088 PF_HASHROW_UNLOCK(kh); 1089 } 1090 } 1091 1092 static void 1093 pf_state_key_detach(struct pf_state *s, int idx) 1094 { 1095 struct pf_state_key *sk = s->key[idx]; 1096 #ifdef INVARIANTS 1097 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1098 1099 PF_HASHROW_ASSERT(kh); 1100 #endif 1101 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1102 s->key[idx] = NULL; 1103 1104 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1105 LIST_REMOVE(sk, entry); 1106 uma_zfree(V_pf_state_key_z, sk); 1107 } 1108 } 1109 1110 static int 1111 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1112 { 1113 struct pf_state_key *sk = mem; 1114 1115 bzero(sk, sizeof(struct pf_state_key_cmp)); 1116 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1117 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1118 1119 return (0); 1120 } 1121 1122 struct pf_state_key * 1123 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1124 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1125 { 1126 struct pf_state_key *sk; 1127 1128 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1129 if (sk == NULL) 1130 return (NULL); 1131 1132 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1133 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1134 sk->port[pd->sidx] = sport; 1135 sk->port[pd->didx] = dport; 1136 sk->proto = pd->proto; 1137 sk->af = pd->af; 1138 1139 return (sk); 1140 } 1141 1142 struct pf_state_key * 1143 pf_state_key_clone(struct pf_state_key *orig) 1144 { 1145 struct pf_state_key *sk; 1146 1147 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1148 if (sk == NULL) 1149 return (NULL); 1150 1151 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1152 1153 return (sk); 1154 } 1155 1156 int 1157 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1158 struct pf_state_key *sks, struct pf_state *s) 1159 { 1160 struct pf_idhash *ih; 1161 struct pf_state *cur; 1162 int error; 1163 1164 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1165 ("%s: sks not pristine", __func__)); 1166 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1167 ("%s: skw not pristine", __func__)); 1168 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1169 1170 s->kif = kif; 1171 1172 if (s->id == 0 && s->creatorid == 0) { 1173 /* XXX: should be atomic, but probability of collision low */ 1174 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1175 V_pf_stateid[curcpu] = 1; 1176 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1177 s->id = htobe64(s->id); 1178 s->creatorid = V_pf_status.hostid; 1179 } 1180 1181 /* Returns with ID locked on success. */ 1182 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1183 return (error); 1184 1185 ih = &V_pf_idhash[PF_IDHASH(s)]; 1186 PF_HASHROW_ASSERT(ih); 1187 LIST_FOREACH(cur, &ih->states, entry) 1188 if (cur->id == s->id && cur->creatorid == s->creatorid) 1189 break; 1190 1191 if (cur != NULL) { 1192 PF_HASHROW_UNLOCK(ih); 1193 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1194 printf("pf: state ID collision: " 1195 "id: %016llx creatorid: %08x\n", 1196 (unsigned long long)be64toh(s->id), 1197 ntohl(s->creatorid)); 1198 } 1199 pf_detach_state(s); 1200 return (EEXIST); 1201 } 1202 LIST_INSERT_HEAD(&ih->states, s, entry); 1203 /* One for keys, one for ID hash. */ 1204 refcount_init(&s->refs, 2); 1205 1206 V_pf_status.fcounters[FCNT_STATE_INSERT]++; 1207 if (pfsync_insert_state_ptr != NULL) 1208 pfsync_insert_state_ptr(s); 1209 1210 /* Returns locked. */ 1211 return (0); 1212 } 1213 1214 /* 1215 * Find state by ID: returns with locked row on success. 1216 */ 1217 struct pf_state * 1218 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1219 { 1220 struct pf_idhash *ih; 1221 struct pf_state *s; 1222 1223 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1224 1225 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1226 1227 PF_HASHROW_LOCK(ih); 1228 LIST_FOREACH(s, &ih->states, entry) 1229 if (s->id == id && s->creatorid == creatorid) 1230 break; 1231 1232 if (s == NULL) 1233 PF_HASHROW_UNLOCK(ih); 1234 1235 return (s); 1236 } 1237 1238 /* 1239 * Find state by key. 1240 * Returns with ID hash slot locked on success. 1241 */ 1242 static struct pf_state * 1243 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1244 { 1245 struct pf_keyhash *kh; 1246 struct pf_state_key *sk; 1247 struct pf_state *s; 1248 int idx; 1249 1250 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1251 1252 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1253 1254 PF_HASHROW_LOCK(kh); 1255 LIST_FOREACH(sk, &kh->keys, entry) 1256 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1257 break; 1258 if (sk == NULL) { 1259 PF_HASHROW_UNLOCK(kh); 1260 return (NULL); 1261 } 1262 1263 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1264 1265 /* List is sorted, if-bound states before floating ones. */ 1266 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1267 if (s->kif == V_pfi_all || s->kif == kif) { 1268 PF_STATE_LOCK(s); 1269 PF_HASHROW_UNLOCK(kh); 1270 if (s->timeout >= PFTM_MAX) { 1271 /* 1272 * State is either being processed by 1273 * pf_unlink_state() in an other thread, or 1274 * is scheduled for immediate expiry. 1275 */ 1276 PF_STATE_UNLOCK(s); 1277 return (NULL); 1278 } 1279 return (s); 1280 } 1281 PF_HASHROW_UNLOCK(kh); 1282 1283 return (NULL); 1284 } 1285 1286 struct pf_state * 1287 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1288 { 1289 struct pf_keyhash *kh; 1290 struct pf_state_key *sk; 1291 struct pf_state *s, *ret = NULL; 1292 int idx, inout = 0; 1293 1294 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1295 1296 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1297 1298 PF_HASHROW_LOCK(kh); 1299 LIST_FOREACH(sk, &kh->keys, entry) 1300 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1301 break; 1302 if (sk == NULL) { 1303 PF_HASHROW_UNLOCK(kh); 1304 return (NULL); 1305 } 1306 switch (dir) { 1307 case PF_IN: 1308 idx = PF_SK_WIRE; 1309 break; 1310 case PF_OUT: 1311 idx = PF_SK_STACK; 1312 break; 1313 case PF_INOUT: 1314 idx = PF_SK_WIRE; 1315 inout = 1; 1316 break; 1317 default: 1318 panic("%s: dir %u", __func__, dir); 1319 } 1320 second_run: 1321 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1322 if (more == NULL) { 1323 PF_HASHROW_UNLOCK(kh); 1324 return (s); 1325 } 1326 1327 if (ret) 1328 (*more)++; 1329 else 1330 ret = s; 1331 } 1332 if (inout == 1) { 1333 inout = 0; 1334 idx = PF_SK_STACK; 1335 goto second_run; 1336 } 1337 PF_HASHROW_UNLOCK(kh); 1338 1339 return (ret); 1340 } 1341 1342 /* END state table stuff */ 1343 1344 static void 1345 pf_send(struct pf_send_entry *pfse) 1346 { 1347 1348 PF_SENDQ_LOCK(); 1349 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1350 PF_SENDQ_UNLOCK(); 1351 swi_sched(V_pf_swi_cookie, 0); 1352 } 1353 1354 void 1355 pf_intr(void *v) 1356 { 1357 struct pf_send_head queue; 1358 struct pf_send_entry *pfse, *next; 1359 1360 CURVNET_SET((struct vnet *)v); 1361 1362 PF_SENDQ_LOCK(); 1363 queue = V_pf_sendqueue; 1364 STAILQ_INIT(&V_pf_sendqueue); 1365 PF_SENDQ_UNLOCK(); 1366 1367 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1368 switch (pfse->pfse_type) { 1369 #ifdef INET 1370 case PFSE_IP: 1371 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1372 break; 1373 case PFSE_ICMP: 1374 icmp_error(pfse->pfse_m, pfse->pfse_icmp_type, 1375 pfse->pfse_icmp_code, 0, pfse->pfse_icmp_mtu); 1376 break; 1377 #endif /* INET */ 1378 #ifdef INET6 1379 case PFSE_IP6: 1380 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1381 NULL); 1382 break; 1383 case PFSE_ICMP6: 1384 icmp6_error(pfse->pfse_m, pfse->pfse_icmp_type, 1385 pfse->pfse_icmp_code, pfse->pfse_icmp_mtu); 1386 break; 1387 #endif /* INET6 */ 1388 default: 1389 panic("%s: unknown type", __func__); 1390 } 1391 free(pfse, M_PFTEMP); 1392 } 1393 CURVNET_RESTORE(); 1394 } 1395 1396 void 1397 pf_purge_thread(void *v) 1398 { 1399 u_int idx = 0; 1400 1401 CURVNET_SET((struct vnet *)v); 1402 1403 for (;;) { 1404 PF_RULES_RLOCK(); 1405 rw_sleep(pf_purge_thread, &pf_rules_lock, 0, "pftm", hz / 10); 1406 1407 if (V_pf_end_threads) { 1408 /* 1409 * To cleanse up all kifs and rules we need 1410 * two runs: first one clears reference flags, 1411 * then pf_purge_expired_states() doesn't 1412 * raise them, and then second run frees. 1413 */ 1414 PF_RULES_RUNLOCK(); 1415 pf_purge_unlinked_rules(); 1416 pfi_kif_purge(); 1417 1418 /* 1419 * Now purge everything. 1420 */ 1421 pf_purge_expired_states(0, pf_hashmask); 1422 pf_purge_expired_fragments(); 1423 pf_purge_expired_src_nodes(); 1424 1425 /* 1426 * Now all kifs & rules should be unreferenced, 1427 * thus should be successfully freed. 1428 */ 1429 pf_purge_unlinked_rules(); 1430 pfi_kif_purge(); 1431 1432 /* 1433 * Announce success and exit. 1434 */ 1435 PF_RULES_RLOCK(); 1436 V_pf_end_threads++; 1437 PF_RULES_RUNLOCK(); 1438 wakeup(pf_purge_thread); 1439 kproc_exit(0); 1440 } 1441 PF_RULES_RUNLOCK(); 1442 1443 /* Process 1/interval fraction of the state table every run. */ 1444 idx = pf_purge_expired_states(idx, pf_hashmask / 1445 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1446 1447 /* Purge other expired types every PFTM_INTERVAL seconds. */ 1448 if (idx == 0) { 1449 /* 1450 * Order is important: 1451 * - states and src nodes reference rules 1452 * - states and rules reference kifs 1453 */ 1454 pf_purge_expired_fragments(); 1455 pf_purge_expired_src_nodes(); 1456 pf_purge_unlinked_rules(); 1457 pfi_kif_purge(); 1458 } 1459 } 1460 /* not reached */ 1461 CURVNET_RESTORE(); 1462 } 1463 1464 u_int32_t 1465 pf_state_expires(const struct pf_state *state) 1466 { 1467 u_int32_t timeout; 1468 u_int32_t start; 1469 u_int32_t end; 1470 u_int32_t states; 1471 1472 /* handle all PFTM_* > PFTM_MAX here */ 1473 if (state->timeout == PFTM_PURGE) 1474 return (time_uptime); 1475 KASSERT(state->timeout != PFTM_UNLINKED, 1476 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1477 KASSERT((state->timeout < PFTM_MAX), 1478 ("pf_state_expires: timeout > PFTM_MAX")); 1479 timeout = state->rule.ptr->timeout[state->timeout]; 1480 if (!timeout) 1481 timeout = V_pf_default_rule.timeout[state->timeout]; 1482 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1483 if (start) { 1484 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1485 states = counter_u64_fetch(state->rule.ptr->states_cur); 1486 } else { 1487 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1488 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1489 states = V_pf_status.states; 1490 } 1491 if (end && states > start && start < end) { 1492 if (states < end) 1493 return (state->expire + timeout * (end - states) / 1494 (end - start)); 1495 else 1496 return (time_uptime); 1497 } 1498 return (state->expire + timeout); 1499 } 1500 1501 void 1502 pf_purge_expired_src_nodes() 1503 { 1504 struct pf_src_node_list freelist; 1505 struct pf_srchash *sh; 1506 struct pf_src_node *cur, *next; 1507 int i; 1508 1509 LIST_INIT(&freelist); 1510 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1511 PF_HASHROW_LOCK(sh); 1512 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1513 if (cur->states == 0 && cur->expire <= time_uptime) { 1514 pf_unlink_src_node_locked(cur); 1515 LIST_INSERT_HEAD(&freelist, cur, entry); 1516 } else if (cur->rule.ptr != NULL) 1517 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1518 PF_HASHROW_UNLOCK(sh); 1519 } 1520 1521 pf_free_src_nodes(&freelist); 1522 } 1523 1524 static void 1525 pf_src_tree_remove_state(struct pf_state *s) 1526 { 1527 u_int32_t timeout; 1528 1529 if (s->src_node != NULL) { 1530 if (s->src.tcp_est) 1531 --s->src_node->conn; 1532 if (--s->src_node->states == 0) { 1533 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1534 if (!timeout) 1535 timeout = 1536 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1537 s->src_node->expire = time_uptime + timeout; 1538 } 1539 } 1540 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1541 if (--s->nat_src_node->states == 0) { 1542 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1543 if (!timeout) 1544 timeout = 1545 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1546 s->nat_src_node->expire = time_uptime + timeout; 1547 } 1548 } 1549 s->src_node = s->nat_src_node = NULL; 1550 } 1551 1552 /* 1553 * Unlink and potentilly free a state. Function may be 1554 * called with ID hash row locked, but always returns 1555 * unlocked, since it needs to go through key hash locking. 1556 */ 1557 int 1558 pf_unlink_state(struct pf_state *s, u_int flags) 1559 { 1560 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1561 1562 if ((flags & PF_ENTER_LOCKED) == 0) 1563 PF_HASHROW_LOCK(ih); 1564 else 1565 PF_HASHROW_ASSERT(ih); 1566 1567 if (s->timeout == PFTM_UNLINKED) { 1568 /* 1569 * State is being processed 1570 * by pf_unlink_state() in 1571 * an other thread. 1572 */ 1573 PF_HASHROW_UNLOCK(ih); 1574 return (0); /* XXXGL: undefined actually */ 1575 } 1576 1577 if (s->src.state == PF_TCPS_PROXY_DST) { 1578 /* XXX wire key the right one? */ 1579 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1580 &s->key[PF_SK_WIRE]->addr[1], 1581 &s->key[PF_SK_WIRE]->addr[0], 1582 s->key[PF_SK_WIRE]->port[1], 1583 s->key[PF_SK_WIRE]->port[0], 1584 s->src.seqhi, s->src.seqlo + 1, 1585 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1586 } 1587 1588 LIST_REMOVE(s, entry); 1589 pf_src_tree_remove_state(s); 1590 1591 if (pfsync_delete_state_ptr != NULL) 1592 pfsync_delete_state_ptr(s); 1593 1594 STATE_DEC_COUNTERS(s); 1595 1596 s->timeout = PFTM_UNLINKED; 1597 1598 PF_HASHROW_UNLOCK(ih); 1599 1600 pf_detach_state(s); 1601 refcount_release(&s->refs); 1602 1603 return (pf_release_state(s)); 1604 } 1605 1606 void 1607 pf_free_state(struct pf_state *cur) 1608 { 1609 1610 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1611 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1612 cur->timeout)); 1613 1614 pf_normalize_tcp_cleanup(cur); 1615 uma_zfree(V_pf_state_z, cur); 1616 V_pf_status.fcounters[FCNT_STATE_REMOVALS]++; 1617 } 1618 1619 /* 1620 * Called only from pf_purge_thread(), thus serialized. 1621 */ 1622 static u_int 1623 pf_purge_expired_states(u_int i, int maxcheck) 1624 { 1625 struct pf_idhash *ih; 1626 struct pf_state *s; 1627 1628 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1629 1630 /* 1631 * Go through hash and unlink states that expire now. 1632 */ 1633 while (maxcheck > 0) { 1634 1635 ih = &V_pf_idhash[i]; 1636 relock: 1637 PF_HASHROW_LOCK(ih); 1638 LIST_FOREACH(s, &ih->states, entry) { 1639 if (pf_state_expires(s) <= time_uptime) { 1640 V_pf_status.states -= 1641 pf_unlink_state(s, PF_ENTER_LOCKED); 1642 goto relock; 1643 } 1644 s->rule.ptr->rule_flag |= PFRULE_REFS; 1645 if (s->nat_rule.ptr != NULL) 1646 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1647 if (s->anchor.ptr != NULL) 1648 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1649 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1650 if (s->rt_kif) 1651 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1652 } 1653 PF_HASHROW_UNLOCK(ih); 1654 1655 /* Return when we hit end of hash. */ 1656 if (++i > pf_hashmask) { 1657 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1658 return (0); 1659 } 1660 1661 maxcheck--; 1662 } 1663 1664 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1665 1666 return (i); 1667 } 1668 1669 static void 1670 pf_purge_unlinked_rules() 1671 { 1672 struct pf_rulequeue tmpq; 1673 struct pf_rule *r, *r1; 1674 1675 /* 1676 * If we have overloading task pending, then we'd 1677 * better skip purging this time. There is a tiny 1678 * probability that overloading task references 1679 * an already unlinked rule. 1680 */ 1681 PF_OVERLOADQ_LOCK(); 1682 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1683 PF_OVERLOADQ_UNLOCK(); 1684 return; 1685 } 1686 PF_OVERLOADQ_UNLOCK(); 1687 1688 /* 1689 * Do naive mark-and-sweep garbage collecting of old rules. 1690 * Reference flag is raised by pf_purge_expired_states() 1691 * and pf_purge_expired_src_nodes(). 1692 * 1693 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1694 * use a temporary queue. 1695 */ 1696 TAILQ_INIT(&tmpq); 1697 PF_UNLNKDRULES_LOCK(); 1698 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1699 if (!(r->rule_flag & PFRULE_REFS)) { 1700 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1701 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1702 } else 1703 r->rule_flag &= ~PFRULE_REFS; 1704 } 1705 PF_UNLNKDRULES_UNLOCK(); 1706 1707 if (!TAILQ_EMPTY(&tmpq)) { 1708 PF_RULES_WLOCK(); 1709 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1710 TAILQ_REMOVE(&tmpq, r, entries); 1711 pf_free_rule(r); 1712 } 1713 PF_RULES_WUNLOCK(); 1714 } 1715 } 1716 1717 void 1718 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1719 { 1720 switch (af) { 1721 #ifdef INET 1722 case AF_INET: { 1723 u_int32_t a = ntohl(addr->addr32[0]); 1724 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1725 (a>>8)&255, a&255); 1726 if (p) { 1727 p = ntohs(p); 1728 printf(":%u", p); 1729 } 1730 break; 1731 } 1732 #endif /* INET */ 1733 #ifdef INET6 1734 case AF_INET6: { 1735 u_int16_t b; 1736 u_int8_t i, curstart, curend, maxstart, maxend; 1737 curstart = curend = maxstart = maxend = 255; 1738 for (i = 0; i < 8; i++) { 1739 if (!addr->addr16[i]) { 1740 if (curstart == 255) 1741 curstart = i; 1742 curend = i; 1743 } else { 1744 if ((curend - curstart) > 1745 (maxend - maxstart)) { 1746 maxstart = curstart; 1747 maxend = curend; 1748 } 1749 curstart = curend = 255; 1750 } 1751 } 1752 if ((curend - curstart) > 1753 (maxend - maxstart)) { 1754 maxstart = curstart; 1755 maxend = curend; 1756 } 1757 for (i = 0; i < 8; i++) { 1758 if (i >= maxstart && i <= maxend) { 1759 if (i == 0) 1760 printf(":"); 1761 if (i == maxend) 1762 printf(":"); 1763 } else { 1764 b = ntohs(addr->addr16[i]); 1765 printf("%x", b); 1766 if (i < 7) 1767 printf(":"); 1768 } 1769 } 1770 if (p) { 1771 p = ntohs(p); 1772 printf("[%u]", p); 1773 } 1774 break; 1775 } 1776 #endif /* INET6 */ 1777 } 1778 } 1779 1780 void 1781 pf_print_state(struct pf_state *s) 1782 { 1783 pf_print_state_parts(s, NULL, NULL); 1784 } 1785 1786 static void 1787 pf_print_state_parts(struct pf_state *s, 1788 struct pf_state_key *skwp, struct pf_state_key *sksp) 1789 { 1790 struct pf_state_key *skw, *sks; 1791 u_int8_t proto, dir; 1792 1793 /* Do our best to fill these, but they're skipped if NULL */ 1794 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1795 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1796 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1797 dir = s ? s->direction : 0; 1798 1799 switch (proto) { 1800 case IPPROTO_IPV4: 1801 printf("IPv4"); 1802 break; 1803 case IPPROTO_IPV6: 1804 printf("IPv6"); 1805 break; 1806 case IPPROTO_TCP: 1807 printf("TCP"); 1808 break; 1809 case IPPROTO_UDP: 1810 printf("UDP"); 1811 break; 1812 case IPPROTO_ICMP: 1813 printf("ICMP"); 1814 break; 1815 case IPPROTO_ICMPV6: 1816 printf("ICMPv6"); 1817 break; 1818 default: 1819 printf("%u", skw->proto); 1820 break; 1821 } 1822 switch (dir) { 1823 case PF_IN: 1824 printf(" in"); 1825 break; 1826 case PF_OUT: 1827 printf(" out"); 1828 break; 1829 } 1830 if (skw) { 1831 printf(" wire: "); 1832 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1833 printf(" "); 1834 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1835 } 1836 if (sks) { 1837 printf(" stack: "); 1838 if (sks != skw) { 1839 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1840 printf(" "); 1841 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1842 } else 1843 printf("-"); 1844 } 1845 if (s) { 1846 if (proto == IPPROTO_TCP) { 1847 printf(" [lo=%u high=%u win=%u modulator=%u", 1848 s->src.seqlo, s->src.seqhi, 1849 s->src.max_win, s->src.seqdiff); 1850 if (s->src.wscale && s->dst.wscale) 1851 printf(" wscale=%u", 1852 s->src.wscale & PF_WSCALE_MASK); 1853 printf("]"); 1854 printf(" [lo=%u high=%u win=%u modulator=%u", 1855 s->dst.seqlo, s->dst.seqhi, 1856 s->dst.max_win, s->dst.seqdiff); 1857 if (s->src.wscale && s->dst.wscale) 1858 printf(" wscale=%u", 1859 s->dst.wscale & PF_WSCALE_MASK); 1860 printf("]"); 1861 } 1862 printf(" %u:%u", s->src.state, s->dst.state); 1863 } 1864 } 1865 1866 void 1867 pf_print_flags(u_int8_t f) 1868 { 1869 if (f) 1870 printf(" "); 1871 if (f & TH_FIN) 1872 printf("F"); 1873 if (f & TH_SYN) 1874 printf("S"); 1875 if (f & TH_RST) 1876 printf("R"); 1877 if (f & TH_PUSH) 1878 printf("P"); 1879 if (f & TH_ACK) 1880 printf("A"); 1881 if (f & TH_URG) 1882 printf("U"); 1883 if (f & TH_ECE) 1884 printf("E"); 1885 if (f & TH_CWR) 1886 printf("W"); 1887 } 1888 1889 #define PF_SET_SKIP_STEPS(i) \ 1890 do { \ 1891 while (head[i] != cur) { \ 1892 head[i]->skip[i].ptr = cur; \ 1893 head[i] = TAILQ_NEXT(head[i], entries); \ 1894 } \ 1895 } while (0) 1896 1897 void 1898 pf_calc_skip_steps(struct pf_rulequeue *rules) 1899 { 1900 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1901 int i; 1902 1903 cur = TAILQ_FIRST(rules); 1904 prev = cur; 1905 for (i = 0; i < PF_SKIP_COUNT; ++i) 1906 head[i] = cur; 1907 while (cur != NULL) { 1908 1909 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1910 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1911 if (cur->direction != prev->direction) 1912 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1913 if (cur->af != prev->af) 1914 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1915 if (cur->proto != prev->proto) 1916 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1917 if (cur->src.neg != prev->src.neg || 1918 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1919 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1920 if (cur->src.port[0] != prev->src.port[0] || 1921 cur->src.port[1] != prev->src.port[1] || 1922 cur->src.port_op != prev->src.port_op) 1923 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1924 if (cur->dst.neg != prev->dst.neg || 1925 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1926 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1927 if (cur->dst.port[0] != prev->dst.port[0] || 1928 cur->dst.port[1] != prev->dst.port[1] || 1929 cur->dst.port_op != prev->dst.port_op) 1930 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1931 1932 prev = cur; 1933 cur = TAILQ_NEXT(cur, entries); 1934 } 1935 for (i = 0; i < PF_SKIP_COUNT; ++i) 1936 PF_SET_SKIP_STEPS(i); 1937 } 1938 1939 static int 1940 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1941 { 1942 if (aw1->type != aw2->type) 1943 return (1); 1944 switch (aw1->type) { 1945 case PF_ADDR_ADDRMASK: 1946 case PF_ADDR_RANGE: 1947 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, 0)) 1948 return (1); 1949 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, 0)) 1950 return (1); 1951 return (0); 1952 case PF_ADDR_DYNIFTL: 1953 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 1954 case PF_ADDR_NOROUTE: 1955 case PF_ADDR_URPFFAILED: 1956 return (0); 1957 case PF_ADDR_TABLE: 1958 return (aw1->p.tbl != aw2->p.tbl); 1959 default: 1960 printf("invalid address type: %d\n", aw1->type); 1961 return (1); 1962 } 1963 } 1964 1965 u_int16_t 1966 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 1967 { 1968 u_int32_t l; 1969 1970 if (udp && !cksum) 1971 return (0x0000); 1972 l = cksum + old - new; 1973 l = (l >> 16) + (l & 65535); 1974 l = l & 65535; 1975 if (udp && !l) 1976 return (0xFFFF); 1977 return (l); 1978 } 1979 1980 static void 1981 pf_change_ap(struct pf_addr *a, u_int16_t *p, u_int16_t *ic, u_int16_t *pc, 1982 struct pf_addr *an, u_int16_t pn, u_int8_t u, sa_family_t af) 1983 { 1984 struct pf_addr ao; 1985 u_int16_t po = *p; 1986 1987 PF_ACPY(&ao, a, af); 1988 PF_ACPY(a, an, af); 1989 1990 *p = pn; 1991 1992 switch (af) { 1993 #ifdef INET 1994 case AF_INET: 1995 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 1996 ao.addr16[0], an->addr16[0], 0), 1997 ao.addr16[1], an->addr16[1], 0); 1998 *p = pn; 1999 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 2000 ao.addr16[0], an->addr16[0], u), 2001 ao.addr16[1], an->addr16[1], u), 2002 po, pn, u); 2003 break; 2004 #endif /* INET */ 2005 #ifdef INET6 2006 case AF_INET6: 2007 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2008 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2009 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 2010 ao.addr16[0], an->addr16[0], u), 2011 ao.addr16[1], an->addr16[1], u), 2012 ao.addr16[2], an->addr16[2], u), 2013 ao.addr16[3], an->addr16[3], u), 2014 ao.addr16[4], an->addr16[4], u), 2015 ao.addr16[5], an->addr16[5], u), 2016 ao.addr16[6], an->addr16[6], u), 2017 ao.addr16[7], an->addr16[7], u), 2018 po, pn, u); 2019 break; 2020 #endif /* INET6 */ 2021 } 2022 } 2023 2024 2025 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2026 void 2027 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2028 { 2029 u_int32_t ao; 2030 2031 memcpy(&ao, a, sizeof(ao)); 2032 memcpy(a, &an, sizeof(u_int32_t)); 2033 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2034 ao % 65536, an % 65536, u); 2035 } 2036 2037 #ifdef INET6 2038 static void 2039 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2040 { 2041 struct pf_addr ao; 2042 2043 PF_ACPY(&ao, a, AF_INET6); 2044 PF_ACPY(a, an, AF_INET6); 2045 2046 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2047 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2048 pf_cksum_fixup(pf_cksum_fixup(*c, 2049 ao.addr16[0], an->addr16[0], u), 2050 ao.addr16[1], an->addr16[1], u), 2051 ao.addr16[2], an->addr16[2], u), 2052 ao.addr16[3], an->addr16[3], u), 2053 ao.addr16[4], an->addr16[4], u), 2054 ao.addr16[5], an->addr16[5], u), 2055 ao.addr16[6], an->addr16[6], u), 2056 ao.addr16[7], an->addr16[7], u); 2057 } 2058 #endif /* INET6 */ 2059 2060 static void 2061 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2062 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2063 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2064 { 2065 struct pf_addr oia, ooa; 2066 2067 PF_ACPY(&oia, ia, af); 2068 if (oa) 2069 PF_ACPY(&ooa, oa, af); 2070 2071 /* Change inner protocol port, fix inner protocol checksum. */ 2072 if (ip != NULL) { 2073 u_int16_t oip = *ip; 2074 u_int32_t opc; 2075 2076 if (pc != NULL) 2077 opc = *pc; 2078 *ip = np; 2079 if (pc != NULL) 2080 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2081 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2082 if (pc != NULL) 2083 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2084 } 2085 /* Change inner ip address, fix inner ip and icmp checksums. */ 2086 PF_ACPY(ia, na, af); 2087 switch (af) { 2088 #ifdef INET 2089 case AF_INET: { 2090 u_int32_t oh2c = *h2c; 2091 2092 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2093 oia.addr16[0], ia->addr16[0], 0), 2094 oia.addr16[1], ia->addr16[1], 0); 2095 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2096 oia.addr16[0], ia->addr16[0], 0), 2097 oia.addr16[1], ia->addr16[1], 0); 2098 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2099 break; 2100 } 2101 #endif /* INET */ 2102 #ifdef INET6 2103 case AF_INET6: 2104 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2105 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2106 pf_cksum_fixup(pf_cksum_fixup(*ic, 2107 oia.addr16[0], ia->addr16[0], u), 2108 oia.addr16[1], ia->addr16[1], u), 2109 oia.addr16[2], ia->addr16[2], u), 2110 oia.addr16[3], ia->addr16[3], u), 2111 oia.addr16[4], ia->addr16[4], u), 2112 oia.addr16[5], ia->addr16[5], u), 2113 oia.addr16[6], ia->addr16[6], u), 2114 oia.addr16[7], ia->addr16[7], u); 2115 break; 2116 #endif /* INET6 */ 2117 } 2118 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2119 if (oa) { 2120 PF_ACPY(oa, na, af); 2121 switch (af) { 2122 #ifdef INET 2123 case AF_INET: 2124 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2125 ooa.addr16[0], oa->addr16[0], 0), 2126 ooa.addr16[1], oa->addr16[1], 0); 2127 break; 2128 #endif /* INET */ 2129 #ifdef INET6 2130 case AF_INET6: 2131 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2132 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2133 pf_cksum_fixup(pf_cksum_fixup(*ic, 2134 ooa.addr16[0], oa->addr16[0], u), 2135 ooa.addr16[1], oa->addr16[1], u), 2136 ooa.addr16[2], oa->addr16[2], u), 2137 ooa.addr16[3], oa->addr16[3], u), 2138 ooa.addr16[4], oa->addr16[4], u), 2139 ooa.addr16[5], oa->addr16[5], u), 2140 ooa.addr16[6], oa->addr16[6], u), 2141 ooa.addr16[7], oa->addr16[7], u); 2142 break; 2143 #endif /* INET6 */ 2144 } 2145 } 2146 } 2147 2148 2149 /* 2150 * Need to modulate the sequence numbers in the TCP SACK option 2151 * (credits to Krzysztof Pfaff for report and patch) 2152 */ 2153 static int 2154 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2155 struct tcphdr *th, struct pf_state_peer *dst) 2156 { 2157 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2158 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2159 int copyback = 0, i, olen; 2160 struct sackblk sack; 2161 2162 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2163 if (hlen < TCPOLEN_SACKLEN || 2164 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2165 return 0; 2166 2167 while (hlen >= TCPOLEN_SACKLEN) { 2168 olen = opt[1]; 2169 switch (*opt) { 2170 case TCPOPT_EOL: /* FALLTHROUGH */ 2171 case TCPOPT_NOP: 2172 opt++; 2173 hlen--; 2174 break; 2175 case TCPOPT_SACK: 2176 if (olen > hlen) 2177 olen = hlen; 2178 if (olen >= TCPOLEN_SACKLEN) { 2179 for (i = 2; i + TCPOLEN_SACK <= olen; 2180 i += TCPOLEN_SACK) { 2181 memcpy(&sack, &opt[i], sizeof(sack)); 2182 pf_change_a(&sack.start, &th->th_sum, 2183 htonl(ntohl(sack.start) - 2184 dst->seqdiff), 0); 2185 pf_change_a(&sack.end, &th->th_sum, 2186 htonl(ntohl(sack.end) - 2187 dst->seqdiff), 0); 2188 memcpy(&opt[i], &sack, sizeof(sack)); 2189 } 2190 copyback = 1; 2191 } 2192 /* FALLTHROUGH */ 2193 default: 2194 if (olen < 2) 2195 olen = 2; 2196 hlen -= olen; 2197 opt += olen; 2198 } 2199 } 2200 2201 if (copyback) 2202 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2203 return (copyback); 2204 } 2205 2206 static void 2207 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2208 const struct pf_addr *saddr, const struct pf_addr *daddr, 2209 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2210 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2211 u_int16_t rtag, struct ifnet *ifp) 2212 { 2213 struct pf_send_entry *pfse; 2214 struct mbuf *m; 2215 int len, tlen; 2216 #ifdef INET 2217 struct ip *h = NULL; 2218 #endif /* INET */ 2219 #ifdef INET6 2220 struct ip6_hdr *h6 = NULL; 2221 #endif /* INET6 */ 2222 struct tcphdr *th; 2223 char *opt; 2224 struct pf_mtag *pf_mtag; 2225 2226 len = 0; 2227 th = NULL; 2228 2229 /* maximum segment size tcp option */ 2230 tlen = sizeof(struct tcphdr); 2231 if (mss) 2232 tlen += 4; 2233 2234 switch (af) { 2235 #ifdef INET 2236 case AF_INET: 2237 len = sizeof(struct ip) + tlen; 2238 break; 2239 #endif /* INET */ 2240 #ifdef INET6 2241 case AF_INET6: 2242 len = sizeof(struct ip6_hdr) + tlen; 2243 break; 2244 #endif /* INET6 */ 2245 default: 2246 panic("%s: unsupported af %d", __func__, af); 2247 } 2248 2249 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2250 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2251 if (pfse == NULL) 2252 return; 2253 m = m_gethdr(M_NOWAIT, MT_DATA); 2254 if (m == NULL) { 2255 free(pfse, M_PFTEMP); 2256 return; 2257 } 2258 #ifdef MAC 2259 mac_netinet_firewall_send(m); 2260 #endif 2261 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2262 free(pfse, M_PFTEMP); 2263 m_freem(m); 2264 return; 2265 } 2266 if (tag) 2267 m->m_flags |= M_SKIP_FIREWALL; 2268 pf_mtag->tag = rtag; 2269 2270 if (r != NULL && r->rtableid >= 0) 2271 M_SETFIB(m, r->rtableid); 2272 2273 #ifdef ALTQ 2274 if (r != NULL && r->qid) { 2275 pf_mtag->qid = r->qid; 2276 2277 /* add hints for ecn */ 2278 pf_mtag->hdr = mtod(m, struct ip *); 2279 } 2280 #endif /* ALTQ */ 2281 m->m_data += max_linkhdr; 2282 m->m_pkthdr.len = m->m_len = len; 2283 m->m_pkthdr.rcvif = NULL; 2284 bzero(m->m_data, len); 2285 switch (af) { 2286 #ifdef INET 2287 case AF_INET: 2288 h = mtod(m, struct ip *); 2289 2290 /* IP header fields included in the TCP checksum */ 2291 h->ip_p = IPPROTO_TCP; 2292 h->ip_len = htons(tlen); 2293 h->ip_src.s_addr = saddr->v4.s_addr; 2294 h->ip_dst.s_addr = daddr->v4.s_addr; 2295 2296 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2297 break; 2298 #endif /* INET */ 2299 #ifdef INET6 2300 case AF_INET6: 2301 h6 = mtod(m, struct ip6_hdr *); 2302 2303 /* IP header fields included in the TCP checksum */ 2304 h6->ip6_nxt = IPPROTO_TCP; 2305 h6->ip6_plen = htons(tlen); 2306 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2307 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2308 2309 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2310 break; 2311 #endif /* INET6 */ 2312 } 2313 2314 /* TCP header */ 2315 th->th_sport = sport; 2316 th->th_dport = dport; 2317 th->th_seq = htonl(seq); 2318 th->th_ack = htonl(ack); 2319 th->th_off = tlen >> 2; 2320 th->th_flags = flags; 2321 th->th_win = htons(win); 2322 2323 if (mss) { 2324 opt = (char *)(th + 1); 2325 opt[0] = TCPOPT_MAXSEG; 2326 opt[1] = 4; 2327 HTONS(mss); 2328 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2329 } 2330 2331 switch (af) { 2332 #ifdef INET 2333 case AF_INET: 2334 /* TCP checksum */ 2335 th->th_sum = in_cksum(m, len); 2336 2337 /* Finish the IP header */ 2338 h->ip_v = 4; 2339 h->ip_hl = sizeof(*h) >> 2; 2340 h->ip_tos = IPTOS_LOWDELAY; 2341 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2342 h->ip_len = htons(len); 2343 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2344 h->ip_sum = 0; 2345 2346 pfse->pfse_type = PFSE_IP; 2347 break; 2348 #endif /* INET */ 2349 #ifdef INET6 2350 case AF_INET6: 2351 /* TCP checksum */ 2352 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2353 sizeof(struct ip6_hdr), tlen); 2354 2355 h6->ip6_vfc |= IPV6_VERSION; 2356 h6->ip6_hlim = IPV6_DEFHLIM; 2357 2358 pfse->pfse_type = PFSE_IP6; 2359 break; 2360 #endif /* INET6 */ 2361 } 2362 pfse->pfse_m = m; 2363 pf_send(pfse); 2364 } 2365 2366 static void 2367 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2368 struct pf_rule *r) 2369 { 2370 struct pf_send_entry *pfse; 2371 struct mbuf *m0; 2372 struct pf_mtag *pf_mtag; 2373 2374 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2375 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2376 if (pfse == NULL) 2377 return; 2378 2379 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2380 free(pfse, M_PFTEMP); 2381 return; 2382 } 2383 2384 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2385 free(pfse, M_PFTEMP); 2386 return; 2387 } 2388 /* XXX: revisit */ 2389 m0->m_flags |= M_SKIP_FIREWALL; 2390 2391 if (r->rtableid >= 0) 2392 M_SETFIB(m0, r->rtableid); 2393 2394 #ifdef ALTQ 2395 if (r->qid) { 2396 pf_mtag->qid = r->qid; 2397 /* add hints for ecn */ 2398 pf_mtag->hdr = mtod(m0, struct ip *); 2399 } 2400 #endif /* ALTQ */ 2401 2402 switch (af) { 2403 #ifdef INET 2404 case AF_INET: 2405 pfse->pfse_type = PFSE_ICMP; 2406 break; 2407 #endif /* INET */ 2408 #ifdef INET6 2409 case AF_INET6: 2410 pfse->pfse_type = PFSE_ICMP6; 2411 break; 2412 #endif /* INET6 */ 2413 } 2414 pfse->pfse_m = m0; 2415 pfse->pfse_icmp_type = type; 2416 pfse->pfse_icmp_code = code; 2417 pf_send(pfse); 2418 } 2419 2420 /* 2421 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2422 * If n is 0, they match if they are equal. If n is != 0, they match if they 2423 * are different. 2424 */ 2425 int 2426 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2427 struct pf_addr *b, sa_family_t af) 2428 { 2429 int match = 0; 2430 2431 switch (af) { 2432 #ifdef INET 2433 case AF_INET: 2434 if ((a->addr32[0] & m->addr32[0]) == 2435 (b->addr32[0] & m->addr32[0])) 2436 match++; 2437 break; 2438 #endif /* INET */ 2439 #ifdef INET6 2440 case AF_INET6: 2441 if (((a->addr32[0] & m->addr32[0]) == 2442 (b->addr32[0] & m->addr32[0])) && 2443 ((a->addr32[1] & m->addr32[1]) == 2444 (b->addr32[1] & m->addr32[1])) && 2445 ((a->addr32[2] & m->addr32[2]) == 2446 (b->addr32[2] & m->addr32[2])) && 2447 ((a->addr32[3] & m->addr32[3]) == 2448 (b->addr32[3] & m->addr32[3]))) 2449 match++; 2450 break; 2451 #endif /* INET6 */ 2452 } 2453 if (match) { 2454 if (n) 2455 return (0); 2456 else 2457 return (1); 2458 } else { 2459 if (n) 2460 return (1); 2461 else 2462 return (0); 2463 } 2464 } 2465 2466 /* 2467 * Return 1 if b <= a <= e, otherwise return 0. 2468 */ 2469 int 2470 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2471 struct pf_addr *a, sa_family_t af) 2472 { 2473 switch (af) { 2474 #ifdef INET 2475 case AF_INET: 2476 if ((a->addr32[0] < b->addr32[0]) || 2477 (a->addr32[0] > e->addr32[0])) 2478 return (0); 2479 break; 2480 #endif /* INET */ 2481 #ifdef INET6 2482 case AF_INET6: { 2483 int i; 2484 2485 /* check a >= b */ 2486 for (i = 0; i < 4; ++i) 2487 if (a->addr32[i] > b->addr32[i]) 2488 break; 2489 else if (a->addr32[i] < b->addr32[i]) 2490 return (0); 2491 /* check a <= e */ 2492 for (i = 0; i < 4; ++i) 2493 if (a->addr32[i] < e->addr32[i]) 2494 break; 2495 else if (a->addr32[i] > e->addr32[i]) 2496 return (0); 2497 break; 2498 } 2499 #endif /* INET6 */ 2500 } 2501 return (1); 2502 } 2503 2504 static int 2505 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2506 { 2507 switch (op) { 2508 case PF_OP_IRG: 2509 return ((p > a1) && (p < a2)); 2510 case PF_OP_XRG: 2511 return ((p < a1) || (p > a2)); 2512 case PF_OP_RRG: 2513 return ((p >= a1) && (p <= a2)); 2514 case PF_OP_EQ: 2515 return (p == a1); 2516 case PF_OP_NE: 2517 return (p != a1); 2518 case PF_OP_LT: 2519 return (p < a1); 2520 case PF_OP_LE: 2521 return (p <= a1); 2522 case PF_OP_GT: 2523 return (p > a1); 2524 case PF_OP_GE: 2525 return (p >= a1); 2526 } 2527 return (0); /* never reached */ 2528 } 2529 2530 int 2531 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2532 { 2533 NTOHS(a1); 2534 NTOHS(a2); 2535 NTOHS(p); 2536 return (pf_match(op, a1, a2, p)); 2537 } 2538 2539 static int 2540 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2541 { 2542 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2543 return (0); 2544 return (pf_match(op, a1, a2, u)); 2545 } 2546 2547 static int 2548 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2549 { 2550 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2551 return (0); 2552 return (pf_match(op, a1, a2, g)); 2553 } 2554 2555 int 2556 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2557 { 2558 if (*tag == -1) 2559 *tag = mtag; 2560 2561 return ((!r->match_tag_not && r->match_tag == *tag) || 2562 (r->match_tag_not && r->match_tag != *tag)); 2563 } 2564 2565 int 2566 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2567 { 2568 2569 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2570 2571 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2572 return (ENOMEM); 2573 2574 pd->pf_mtag->tag = tag; 2575 2576 return (0); 2577 } 2578 2579 #define PF_ANCHOR_STACKSIZE 32 2580 struct pf_anchor_stackframe { 2581 struct pf_ruleset *rs; 2582 struct pf_rule *r; /* XXX: + match bit */ 2583 struct pf_anchor *child; 2584 }; 2585 2586 /* 2587 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2588 */ 2589 #define PF_ANCHORSTACK_MATCH 0x00000001 2590 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2591 2592 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2593 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2594 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2595 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2596 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2597 } while (0) 2598 2599 void 2600 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2601 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2602 int *match) 2603 { 2604 struct pf_anchor_stackframe *f; 2605 2606 PF_RULES_RASSERT(); 2607 2608 if (match) 2609 *match = 0; 2610 if (*depth >= PF_ANCHOR_STACKSIZE) { 2611 printf("%s: anchor stack overflow on %s\n", 2612 __func__, (*r)->anchor->name); 2613 *r = TAILQ_NEXT(*r, entries); 2614 return; 2615 } else if (*depth == 0 && a != NULL) 2616 *a = *r; 2617 f = stack + (*depth)++; 2618 f->rs = *rs; 2619 f->r = *r; 2620 if ((*r)->anchor_wildcard) { 2621 struct pf_anchor_node *parent = &(*r)->anchor->children; 2622 2623 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2624 *r = NULL; 2625 return; 2626 } 2627 *rs = &f->child->ruleset; 2628 } else { 2629 f->child = NULL; 2630 *rs = &(*r)->anchor->ruleset; 2631 } 2632 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2633 } 2634 2635 int 2636 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2637 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2638 int *match) 2639 { 2640 struct pf_anchor_stackframe *f; 2641 struct pf_rule *fr; 2642 int quick = 0; 2643 2644 PF_RULES_RASSERT(); 2645 2646 do { 2647 if (*depth <= 0) 2648 break; 2649 f = stack + *depth - 1; 2650 fr = PF_ANCHOR_RULE(f); 2651 if (f->child != NULL) { 2652 struct pf_anchor_node *parent; 2653 2654 /* 2655 * This block traverses through 2656 * a wildcard anchor. 2657 */ 2658 parent = &fr->anchor->children; 2659 if (match != NULL && *match) { 2660 /* 2661 * If any of "*" matched, then 2662 * "foo/ *" matched, mark frame 2663 * appropriately. 2664 */ 2665 PF_ANCHOR_SET_MATCH(f); 2666 *match = 0; 2667 } 2668 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2669 if (f->child != NULL) { 2670 *rs = &f->child->ruleset; 2671 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2672 if (*r == NULL) 2673 continue; 2674 else 2675 break; 2676 } 2677 } 2678 (*depth)--; 2679 if (*depth == 0 && a != NULL) 2680 *a = NULL; 2681 *rs = f->rs; 2682 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2683 quick = fr->quick; 2684 *r = TAILQ_NEXT(fr, entries); 2685 } while (*r == NULL); 2686 2687 return (quick); 2688 } 2689 2690 #ifdef INET6 2691 void 2692 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2693 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2694 { 2695 switch (af) { 2696 #ifdef INET 2697 case AF_INET: 2698 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2699 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2700 break; 2701 #endif /* INET */ 2702 case AF_INET6: 2703 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2704 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2705 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2706 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2707 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2708 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2709 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2710 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2711 break; 2712 } 2713 } 2714 2715 void 2716 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2717 { 2718 switch (af) { 2719 #ifdef INET 2720 case AF_INET: 2721 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2722 break; 2723 #endif /* INET */ 2724 case AF_INET6: 2725 if (addr->addr32[3] == 0xffffffff) { 2726 addr->addr32[3] = 0; 2727 if (addr->addr32[2] == 0xffffffff) { 2728 addr->addr32[2] = 0; 2729 if (addr->addr32[1] == 0xffffffff) { 2730 addr->addr32[1] = 0; 2731 addr->addr32[0] = 2732 htonl(ntohl(addr->addr32[0]) + 1); 2733 } else 2734 addr->addr32[1] = 2735 htonl(ntohl(addr->addr32[1]) + 1); 2736 } else 2737 addr->addr32[2] = 2738 htonl(ntohl(addr->addr32[2]) + 1); 2739 } else 2740 addr->addr32[3] = 2741 htonl(ntohl(addr->addr32[3]) + 1); 2742 break; 2743 } 2744 } 2745 #endif /* INET6 */ 2746 2747 int 2748 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2749 { 2750 struct pf_addr *saddr, *daddr; 2751 u_int16_t sport, dport; 2752 struct inpcbinfo *pi; 2753 struct inpcb *inp; 2754 2755 pd->lookup.uid = UID_MAX; 2756 pd->lookup.gid = GID_MAX; 2757 2758 switch (pd->proto) { 2759 case IPPROTO_TCP: 2760 if (pd->hdr.tcp == NULL) 2761 return (-1); 2762 sport = pd->hdr.tcp->th_sport; 2763 dport = pd->hdr.tcp->th_dport; 2764 pi = &V_tcbinfo; 2765 break; 2766 case IPPROTO_UDP: 2767 if (pd->hdr.udp == NULL) 2768 return (-1); 2769 sport = pd->hdr.udp->uh_sport; 2770 dport = pd->hdr.udp->uh_dport; 2771 pi = &V_udbinfo; 2772 break; 2773 default: 2774 return (-1); 2775 } 2776 if (direction == PF_IN) { 2777 saddr = pd->src; 2778 daddr = pd->dst; 2779 } else { 2780 u_int16_t p; 2781 2782 p = sport; 2783 sport = dport; 2784 dport = p; 2785 saddr = pd->dst; 2786 daddr = pd->src; 2787 } 2788 switch (pd->af) { 2789 #ifdef INET 2790 case AF_INET: 2791 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2792 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2793 if (inp == NULL) { 2794 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2795 daddr->v4, dport, INPLOOKUP_WILDCARD | 2796 INPLOOKUP_RLOCKPCB, NULL, m); 2797 if (inp == NULL) 2798 return (-1); 2799 } 2800 break; 2801 #endif /* INET */ 2802 #ifdef INET6 2803 case AF_INET6: 2804 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2805 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2806 if (inp == NULL) { 2807 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2808 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2809 INPLOOKUP_RLOCKPCB, NULL, m); 2810 if (inp == NULL) 2811 return (-1); 2812 } 2813 break; 2814 #endif /* INET6 */ 2815 2816 default: 2817 return (-1); 2818 } 2819 INP_RLOCK_ASSERT(inp); 2820 pd->lookup.uid = inp->inp_cred->cr_uid; 2821 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2822 INP_RUNLOCK(inp); 2823 2824 return (1); 2825 } 2826 2827 static u_int8_t 2828 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2829 { 2830 int hlen; 2831 u_int8_t hdr[60]; 2832 u_int8_t *opt, optlen; 2833 u_int8_t wscale = 0; 2834 2835 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2836 if (hlen <= sizeof(struct tcphdr)) 2837 return (0); 2838 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2839 return (0); 2840 opt = hdr + sizeof(struct tcphdr); 2841 hlen -= sizeof(struct tcphdr); 2842 while (hlen >= 3) { 2843 switch (*opt) { 2844 case TCPOPT_EOL: 2845 case TCPOPT_NOP: 2846 ++opt; 2847 --hlen; 2848 break; 2849 case TCPOPT_WINDOW: 2850 wscale = opt[2]; 2851 if (wscale > TCP_MAX_WINSHIFT) 2852 wscale = TCP_MAX_WINSHIFT; 2853 wscale |= PF_WSCALE_FLAG; 2854 /* FALLTHROUGH */ 2855 default: 2856 optlen = opt[1]; 2857 if (optlen < 2) 2858 optlen = 2; 2859 hlen -= optlen; 2860 opt += optlen; 2861 break; 2862 } 2863 } 2864 return (wscale); 2865 } 2866 2867 static u_int16_t 2868 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2869 { 2870 int hlen; 2871 u_int8_t hdr[60]; 2872 u_int8_t *opt, optlen; 2873 u_int16_t mss = V_tcp_mssdflt; 2874 2875 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2876 if (hlen <= sizeof(struct tcphdr)) 2877 return (0); 2878 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2879 return (0); 2880 opt = hdr + sizeof(struct tcphdr); 2881 hlen -= sizeof(struct tcphdr); 2882 while (hlen >= TCPOLEN_MAXSEG) { 2883 switch (*opt) { 2884 case TCPOPT_EOL: 2885 case TCPOPT_NOP: 2886 ++opt; 2887 --hlen; 2888 break; 2889 case TCPOPT_MAXSEG: 2890 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 2891 NTOHS(mss); 2892 /* FALLTHROUGH */ 2893 default: 2894 optlen = opt[1]; 2895 if (optlen < 2) 2896 optlen = 2; 2897 hlen -= optlen; 2898 opt += optlen; 2899 break; 2900 } 2901 } 2902 return (mss); 2903 } 2904 2905 static u_int16_t 2906 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 2907 { 2908 #ifdef INET 2909 struct sockaddr_in *dst; 2910 struct route ro; 2911 #endif /* INET */ 2912 #ifdef INET6 2913 struct sockaddr_in6 *dst6; 2914 struct route_in6 ro6; 2915 #endif /* INET6 */ 2916 struct rtentry *rt = NULL; 2917 int hlen = 0; 2918 u_int16_t mss = V_tcp_mssdflt; 2919 2920 switch (af) { 2921 #ifdef INET 2922 case AF_INET: 2923 hlen = sizeof(struct ip); 2924 bzero(&ro, sizeof(ro)); 2925 dst = (struct sockaddr_in *)&ro.ro_dst; 2926 dst->sin_family = AF_INET; 2927 dst->sin_len = sizeof(*dst); 2928 dst->sin_addr = addr->v4; 2929 in_rtalloc_ign(&ro, 0, rtableid); 2930 rt = ro.ro_rt; 2931 break; 2932 #endif /* INET */ 2933 #ifdef INET6 2934 case AF_INET6: 2935 hlen = sizeof(struct ip6_hdr); 2936 bzero(&ro6, sizeof(ro6)); 2937 dst6 = (struct sockaddr_in6 *)&ro6.ro_dst; 2938 dst6->sin6_family = AF_INET6; 2939 dst6->sin6_len = sizeof(*dst6); 2940 dst6->sin6_addr = addr->v6; 2941 in6_rtalloc_ign(&ro6, 0, rtableid); 2942 rt = ro6.ro_rt; 2943 break; 2944 #endif /* INET6 */ 2945 } 2946 2947 if (rt && rt->rt_ifp) { 2948 mss = rt->rt_ifp->if_mtu - hlen - sizeof(struct tcphdr); 2949 mss = max(V_tcp_mssdflt, mss); 2950 RTFREE(rt); 2951 } 2952 mss = min(mss, offer); 2953 mss = max(mss, 64); /* sanity - at least max opt space */ 2954 return (mss); 2955 } 2956 2957 static void 2958 pf_set_rt_ifp(struct pf_state *s, struct pf_addr *saddr) 2959 { 2960 struct pf_rule *r = s->rule.ptr; 2961 struct pf_src_node *sn = NULL; 2962 2963 s->rt_kif = NULL; 2964 if (!r->rt || r->rt == PF_FASTROUTE) 2965 return; 2966 switch (s->key[PF_SK_WIRE]->af) { 2967 #ifdef INET 2968 case AF_INET: 2969 pf_map_addr(AF_INET, r, saddr, &s->rt_addr, NULL, &sn); 2970 s->rt_kif = r->rpool.cur->kif; 2971 break; 2972 #endif /* INET */ 2973 #ifdef INET6 2974 case AF_INET6: 2975 pf_map_addr(AF_INET6, r, saddr, &s->rt_addr, NULL, &sn); 2976 s->rt_kif = r->rpool.cur->kif; 2977 break; 2978 #endif /* INET6 */ 2979 } 2980 } 2981 2982 static u_int32_t 2983 pf_tcp_iss(struct pf_pdesc *pd) 2984 { 2985 MD5_CTX ctx; 2986 u_int32_t digest[4]; 2987 2988 if (V_pf_tcp_secret_init == 0) { 2989 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 2990 MD5Init(&V_pf_tcp_secret_ctx); 2991 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 2992 sizeof(V_pf_tcp_secret)); 2993 V_pf_tcp_secret_init = 1; 2994 } 2995 2996 ctx = V_pf_tcp_secret_ctx; 2997 2998 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 2999 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3000 if (pd->af == AF_INET6) { 3001 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3002 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3003 } else { 3004 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3005 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3006 } 3007 MD5Final((u_char *)digest, &ctx); 3008 V_pf_tcp_iss_off += 4096; 3009 #define ISN_RANDOM_INCREMENT (4096 - 1) 3010 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3011 V_pf_tcp_iss_off); 3012 #undef ISN_RANDOM_INCREMENT 3013 } 3014 3015 static int 3016 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3017 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3018 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3019 { 3020 struct pf_rule *nr = NULL; 3021 struct pf_addr * const saddr = pd->src; 3022 struct pf_addr * const daddr = pd->dst; 3023 sa_family_t af = pd->af; 3024 struct pf_rule *r, *a = NULL; 3025 struct pf_ruleset *ruleset = NULL; 3026 struct pf_src_node *nsn = NULL; 3027 struct tcphdr *th = pd->hdr.tcp; 3028 struct pf_state_key *sk = NULL, *nk = NULL; 3029 u_short reason; 3030 int rewrite = 0, hdrlen = 0; 3031 int tag = -1, rtableid = -1; 3032 int asd = 0; 3033 int match = 0; 3034 int state_icmp = 0; 3035 u_int16_t sport = 0, dport = 0; 3036 u_int16_t bproto_sum = 0, bip_sum = 0; 3037 u_int8_t icmptype = 0, icmpcode = 0; 3038 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3039 3040 PF_RULES_RASSERT(); 3041 3042 if (inp != NULL) { 3043 INP_LOCK_ASSERT(inp); 3044 pd->lookup.uid = inp->inp_cred->cr_uid; 3045 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3046 pd->lookup.done = 1; 3047 } 3048 3049 switch (pd->proto) { 3050 case IPPROTO_TCP: 3051 sport = th->th_sport; 3052 dport = th->th_dport; 3053 hdrlen = sizeof(*th); 3054 break; 3055 case IPPROTO_UDP: 3056 sport = pd->hdr.udp->uh_sport; 3057 dport = pd->hdr.udp->uh_dport; 3058 hdrlen = sizeof(*pd->hdr.udp); 3059 break; 3060 #ifdef INET 3061 case IPPROTO_ICMP: 3062 if (pd->af != AF_INET) 3063 break; 3064 sport = dport = pd->hdr.icmp->icmp_id; 3065 hdrlen = sizeof(*pd->hdr.icmp); 3066 icmptype = pd->hdr.icmp->icmp_type; 3067 icmpcode = pd->hdr.icmp->icmp_code; 3068 3069 if (icmptype == ICMP_UNREACH || 3070 icmptype == ICMP_SOURCEQUENCH || 3071 icmptype == ICMP_REDIRECT || 3072 icmptype == ICMP_TIMXCEED || 3073 icmptype == ICMP_PARAMPROB) 3074 state_icmp++; 3075 break; 3076 #endif /* INET */ 3077 #ifdef INET6 3078 case IPPROTO_ICMPV6: 3079 if (af != AF_INET6) 3080 break; 3081 sport = dport = pd->hdr.icmp6->icmp6_id; 3082 hdrlen = sizeof(*pd->hdr.icmp6); 3083 icmptype = pd->hdr.icmp6->icmp6_type; 3084 icmpcode = pd->hdr.icmp6->icmp6_code; 3085 3086 if (icmptype == ICMP6_DST_UNREACH || 3087 icmptype == ICMP6_PACKET_TOO_BIG || 3088 icmptype == ICMP6_TIME_EXCEEDED || 3089 icmptype == ICMP6_PARAM_PROB) 3090 state_icmp++; 3091 break; 3092 #endif /* INET6 */ 3093 default: 3094 sport = dport = hdrlen = 0; 3095 break; 3096 } 3097 3098 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3099 3100 /* check packet for BINAT/NAT/RDR */ 3101 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3102 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3103 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3104 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3105 3106 if (pd->ip_sum) 3107 bip_sum = *pd->ip_sum; 3108 3109 switch (pd->proto) { 3110 case IPPROTO_TCP: 3111 bproto_sum = th->th_sum; 3112 pd->proto_sum = &th->th_sum; 3113 3114 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3115 nk->port[pd->sidx] != sport) { 3116 pf_change_ap(saddr, &th->th_sport, pd->ip_sum, 3117 &th->th_sum, &nk->addr[pd->sidx], 3118 nk->port[pd->sidx], 0, af); 3119 pd->sport = &th->th_sport; 3120 sport = th->th_sport; 3121 } 3122 3123 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3124 nk->port[pd->didx] != dport) { 3125 pf_change_ap(daddr, &th->th_dport, pd->ip_sum, 3126 &th->th_sum, &nk->addr[pd->didx], 3127 nk->port[pd->didx], 0, af); 3128 dport = th->th_dport; 3129 pd->dport = &th->th_dport; 3130 } 3131 rewrite++; 3132 break; 3133 case IPPROTO_UDP: 3134 bproto_sum = pd->hdr.udp->uh_sum; 3135 pd->proto_sum = &pd->hdr.udp->uh_sum; 3136 3137 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3138 nk->port[pd->sidx] != sport) { 3139 pf_change_ap(saddr, &pd->hdr.udp->uh_sport, 3140 pd->ip_sum, &pd->hdr.udp->uh_sum, 3141 &nk->addr[pd->sidx], 3142 nk->port[pd->sidx], 1, af); 3143 sport = pd->hdr.udp->uh_sport; 3144 pd->sport = &pd->hdr.udp->uh_sport; 3145 } 3146 3147 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3148 nk->port[pd->didx] != dport) { 3149 pf_change_ap(daddr, &pd->hdr.udp->uh_dport, 3150 pd->ip_sum, &pd->hdr.udp->uh_sum, 3151 &nk->addr[pd->didx], 3152 nk->port[pd->didx], 1, af); 3153 dport = pd->hdr.udp->uh_dport; 3154 pd->dport = &pd->hdr.udp->uh_dport; 3155 } 3156 rewrite++; 3157 break; 3158 #ifdef INET 3159 case IPPROTO_ICMP: 3160 nk->port[0] = nk->port[1]; 3161 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3162 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3163 nk->addr[pd->sidx].v4.s_addr, 0); 3164 3165 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3166 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3167 nk->addr[pd->didx].v4.s_addr, 0); 3168 3169 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3170 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3171 pd->hdr.icmp->icmp_cksum, sport, 3172 nk->port[1], 0); 3173 pd->hdr.icmp->icmp_id = nk->port[1]; 3174 pd->sport = &pd->hdr.icmp->icmp_id; 3175 } 3176 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3177 break; 3178 #endif /* INET */ 3179 #ifdef INET6 3180 case IPPROTO_ICMPV6: 3181 nk->port[0] = nk->port[1]; 3182 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3183 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3184 &nk->addr[pd->sidx], 0); 3185 3186 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3187 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3188 &nk->addr[pd->didx], 0); 3189 rewrite++; 3190 break; 3191 #endif /* INET */ 3192 default: 3193 switch (af) { 3194 #ifdef INET 3195 case AF_INET: 3196 if (PF_ANEQ(saddr, 3197 &nk->addr[pd->sidx], AF_INET)) 3198 pf_change_a(&saddr->v4.s_addr, 3199 pd->ip_sum, 3200 nk->addr[pd->sidx].v4.s_addr, 0); 3201 3202 if (PF_ANEQ(daddr, 3203 &nk->addr[pd->didx], AF_INET)) 3204 pf_change_a(&daddr->v4.s_addr, 3205 pd->ip_sum, 3206 nk->addr[pd->didx].v4.s_addr, 0); 3207 break; 3208 #endif /* INET */ 3209 #ifdef INET6 3210 case AF_INET6: 3211 if (PF_ANEQ(saddr, 3212 &nk->addr[pd->sidx], AF_INET6)) 3213 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3214 3215 if (PF_ANEQ(daddr, 3216 &nk->addr[pd->didx], AF_INET6)) 3217 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3218 break; 3219 #endif /* INET */ 3220 } 3221 break; 3222 } 3223 if (nr->natpass) 3224 r = NULL; 3225 pd->nat_rule = nr; 3226 } 3227 3228 while (r != NULL) { 3229 r->evaluations++; 3230 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3231 r = r->skip[PF_SKIP_IFP].ptr; 3232 else if (r->direction && r->direction != direction) 3233 r = r->skip[PF_SKIP_DIR].ptr; 3234 else if (r->af && r->af != af) 3235 r = r->skip[PF_SKIP_AF].ptr; 3236 else if (r->proto && r->proto != pd->proto) 3237 r = r->skip[PF_SKIP_PROTO].ptr; 3238 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3239 r->src.neg, kif, M_GETFIB(m))) 3240 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3241 /* tcp/udp only. port_op always 0 in other cases */ 3242 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3243 r->src.port[0], r->src.port[1], sport)) 3244 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3245 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3246 r->dst.neg, NULL, M_GETFIB(m))) 3247 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3248 /* tcp/udp only. port_op always 0 in other cases */ 3249 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3250 r->dst.port[0], r->dst.port[1], dport)) 3251 r = r->skip[PF_SKIP_DST_PORT].ptr; 3252 /* icmp only. type always 0 in other cases */ 3253 else if (r->type && r->type != icmptype + 1) 3254 r = TAILQ_NEXT(r, entries); 3255 /* icmp only. type always 0 in other cases */ 3256 else if (r->code && r->code != icmpcode + 1) 3257 r = TAILQ_NEXT(r, entries); 3258 else if (r->tos && !(r->tos == pd->tos)) 3259 r = TAILQ_NEXT(r, entries); 3260 else if (r->rule_flag & PFRULE_FRAGMENT) 3261 r = TAILQ_NEXT(r, entries); 3262 else if (pd->proto == IPPROTO_TCP && 3263 (r->flagset & th->th_flags) != r->flags) 3264 r = TAILQ_NEXT(r, entries); 3265 /* tcp/udp only. uid.op always 0 in other cases */ 3266 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3267 pf_socket_lookup(direction, pd, m), 1)) && 3268 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3269 pd->lookup.uid)) 3270 r = TAILQ_NEXT(r, entries); 3271 /* tcp/udp only. gid.op always 0 in other cases */ 3272 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3273 pf_socket_lookup(direction, pd, m), 1)) && 3274 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3275 pd->lookup.gid)) 3276 r = TAILQ_NEXT(r, entries); 3277 else if (r->prob && 3278 r->prob <= arc4random()) 3279 r = TAILQ_NEXT(r, entries); 3280 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3281 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3282 r = TAILQ_NEXT(r, entries); 3283 else if (r->os_fingerprint != PF_OSFP_ANY && 3284 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3285 pf_osfp_fingerprint(pd, m, off, th), 3286 r->os_fingerprint))) 3287 r = TAILQ_NEXT(r, entries); 3288 else { 3289 if (r->tag) 3290 tag = r->tag; 3291 if (r->rtableid >= 0) 3292 rtableid = r->rtableid; 3293 if (r->anchor == NULL) { 3294 match = 1; 3295 *rm = r; 3296 *am = a; 3297 *rsm = ruleset; 3298 if ((*rm)->quick) 3299 break; 3300 r = TAILQ_NEXT(r, entries); 3301 } else 3302 pf_step_into_anchor(anchor_stack, &asd, 3303 &ruleset, PF_RULESET_FILTER, &r, &a, 3304 &match); 3305 } 3306 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3307 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3308 break; 3309 } 3310 r = *rm; 3311 a = *am; 3312 ruleset = *rsm; 3313 3314 REASON_SET(&reason, PFRES_MATCH); 3315 3316 if (r->log || (nr != NULL && nr->log)) { 3317 if (rewrite) 3318 m_copyback(m, off, hdrlen, pd->hdr.any); 3319 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3320 ruleset, pd, 1); 3321 } 3322 3323 if ((r->action == PF_DROP) && 3324 ((r->rule_flag & PFRULE_RETURNRST) || 3325 (r->rule_flag & PFRULE_RETURNICMP) || 3326 (r->rule_flag & PFRULE_RETURN))) { 3327 /* undo NAT changes, if they have taken place */ 3328 if (nr != NULL) { 3329 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3330 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3331 if (pd->sport) 3332 *pd->sport = sk->port[pd->sidx]; 3333 if (pd->dport) 3334 *pd->dport = sk->port[pd->didx]; 3335 if (pd->proto_sum) 3336 *pd->proto_sum = bproto_sum; 3337 if (pd->ip_sum) 3338 *pd->ip_sum = bip_sum; 3339 m_copyback(m, off, hdrlen, pd->hdr.any); 3340 } 3341 if (pd->proto == IPPROTO_TCP && 3342 ((r->rule_flag & PFRULE_RETURNRST) || 3343 (r->rule_flag & PFRULE_RETURN)) && 3344 !(th->th_flags & TH_RST)) { 3345 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3346 int len = 0; 3347 #ifdef INET 3348 struct ip *h4; 3349 #endif 3350 #ifdef INET6 3351 struct ip6_hdr *h6; 3352 #endif 3353 3354 switch (af) { 3355 #ifdef INET 3356 case AF_INET: 3357 h4 = mtod(m, struct ip *); 3358 len = ntohs(h4->ip_len) - off; 3359 break; 3360 #endif 3361 #ifdef INET6 3362 case AF_INET6: 3363 h6 = mtod(m, struct ip6_hdr *); 3364 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3365 break; 3366 #endif 3367 } 3368 3369 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3370 REASON_SET(&reason, PFRES_PROTCKSUM); 3371 else { 3372 if (th->th_flags & TH_SYN) 3373 ack++; 3374 if (th->th_flags & TH_FIN) 3375 ack++; 3376 pf_send_tcp(m, r, af, pd->dst, 3377 pd->src, th->th_dport, th->th_sport, 3378 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3379 r->return_ttl, 1, 0, kif->pfik_ifp); 3380 } 3381 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3382 r->return_icmp) 3383 pf_send_icmp(m, r->return_icmp >> 8, 3384 r->return_icmp & 255, af, r); 3385 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3386 r->return_icmp6) 3387 pf_send_icmp(m, r->return_icmp6 >> 8, 3388 r->return_icmp6 & 255, af, r); 3389 } 3390 3391 if (r->action == PF_DROP) 3392 goto cleanup; 3393 3394 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3395 REASON_SET(&reason, PFRES_MEMORY); 3396 goto cleanup; 3397 } 3398 if (rtableid >= 0) 3399 M_SETFIB(m, rtableid); 3400 3401 if (!state_icmp && (r->keep_state || nr != NULL || 3402 (pd->flags & PFDESC_TCP_NORM))) { 3403 int action; 3404 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3405 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3406 hdrlen); 3407 if (action != PF_PASS) 3408 return (action); 3409 } else { 3410 if (sk != NULL) 3411 uma_zfree(V_pf_state_key_z, sk); 3412 if (nk != NULL) 3413 uma_zfree(V_pf_state_key_z, nk); 3414 } 3415 3416 /* copy back packet headers if we performed NAT operations */ 3417 if (rewrite) 3418 m_copyback(m, off, hdrlen, pd->hdr.any); 3419 3420 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3421 direction == PF_OUT && 3422 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3423 /* 3424 * We want the state created, but we dont 3425 * want to send this in case a partner 3426 * firewall has to know about it to allow 3427 * replies through it. 3428 */ 3429 return (PF_DEFER); 3430 3431 return (PF_PASS); 3432 3433 cleanup: 3434 if (sk != NULL) 3435 uma_zfree(V_pf_state_key_z, sk); 3436 if (nk != NULL) 3437 uma_zfree(V_pf_state_key_z, nk); 3438 return (PF_DROP); 3439 } 3440 3441 static int 3442 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3443 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3444 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3445 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3446 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3447 { 3448 struct pf_state *s = NULL; 3449 struct pf_src_node *sn = NULL; 3450 struct tcphdr *th = pd->hdr.tcp; 3451 u_int16_t mss = V_tcp_mssdflt; 3452 u_short reason; 3453 3454 /* check maximums */ 3455 if (r->max_states && 3456 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3457 V_pf_status.lcounters[LCNT_STATES]++; 3458 REASON_SET(&reason, PFRES_MAXSTATES); 3459 return (PF_DROP); 3460 } 3461 /* src node for filter rule */ 3462 if ((r->rule_flag & PFRULE_SRCTRACK || 3463 r->rpool.opts & PF_POOL_STICKYADDR) && 3464 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3465 REASON_SET(&reason, PFRES_SRCLIMIT); 3466 goto csfailed; 3467 } 3468 /* src node for translation rule */ 3469 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3470 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3471 REASON_SET(&reason, PFRES_SRCLIMIT); 3472 goto csfailed; 3473 } 3474 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3475 if (s == NULL) { 3476 REASON_SET(&reason, PFRES_MEMORY); 3477 goto csfailed; 3478 } 3479 s->rule.ptr = r; 3480 s->nat_rule.ptr = nr; 3481 s->anchor.ptr = a; 3482 STATE_INC_COUNTERS(s); 3483 if (r->allow_opts) 3484 s->state_flags |= PFSTATE_ALLOWOPTS; 3485 if (r->rule_flag & PFRULE_STATESLOPPY) 3486 s->state_flags |= PFSTATE_SLOPPY; 3487 s->log = r->log & PF_LOG_ALL; 3488 s->sync_state = PFSYNC_S_NONE; 3489 if (nr != NULL) 3490 s->log |= nr->log & PF_LOG_ALL; 3491 switch (pd->proto) { 3492 case IPPROTO_TCP: 3493 s->src.seqlo = ntohl(th->th_seq); 3494 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3495 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3496 r->keep_state == PF_STATE_MODULATE) { 3497 /* Generate sequence number modulator */ 3498 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3499 0) 3500 s->src.seqdiff = 1; 3501 pf_change_a(&th->th_seq, &th->th_sum, 3502 htonl(s->src.seqlo + s->src.seqdiff), 0); 3503 *rewrite = 1; 3504 } else 3505 s->src.seqdiff = 0; 3506 if (th->th_flags & TH_SYN) { 3507 s->src.seqhi++; 3508 s->src.wscale = pf_get_wscale(m, off, 3509 th->th_off, pd->af); 3510 } 3511 s->src.max_win = MAX(ntohs(th->th_win), 1); 3512 if (s->src.wscale & PF_WSCALE_MASK) { 3513 /* Remove scale factor from initial window */ 3514 int win = s->src.max_win; 3515 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3516 s->src.max_win = (win - 1) >> 3517 (s->src.wscale & PF_WSCALE_MASK); 3518 } 3519 if (th->th_flags & TH_FIN) 3520 s->src.seqhi++; 3521 s->dst.seqhi = 1; 3522 s->dst.max_win = 1; 3523 s->src.state = TCPS_SYN_SENT; 3524 s->dst.state = TCPS_CLOSED; 3525 s->timeout = PFTM_TCP_FIRST_PACKET; 3526 break; 3527 case IPPROTO_UDP: 3528 s->src.state = PFUDPS_SINGLE; 3529 s->dst.state = PFUDPS_NO_TRAFFIC; 3530 s->timeout = PFTM_UDP_FIRST_PACKET; 3531 break; 3532 case IPPROTO_ICMP: 3533 #ifdef INET6 3534 case IPPROTO_ICMPV6: 3535 #endif 3536 s->timeout = PFTM_ICMP_FIRST_PACKET; 3537 break; 3538 default: 3539 s->src.state = PFOTHERS_SINGLE; 3540 s->dst.state = PFOTHERS_NO_TRAFFIC; 3541 s->timeout = PFTM_OTHER_FIRST_PACKET; 3542 } 3543 3544 s->creation = time_uptime; 3545 s->expire = time_uptime; 3546 3547 if (sn != NULL) { 3548 s->src_node = sn; 3549 s->src_node->states++; 3550 } 3551 if (nsn != NULL) { 3552 /* XXX We only modify one side for now. */ 3553 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3554 s->nat_src_node = nsn; 3555 s->nat_src_node->states++; 3556 } 3557 if (pd->proto == IPPROTO_TCP) { 3558 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3559 off, pd, th, &s->src, &s->dst)) { 3560 REASON_SET(&reason, PFRES_MEMORY); 3561 pf_src_tree_remove_state(s); 3562 STATE_DEC_COUNTERS(s); 3563 uma_zfree(V_pf_state_z, s); 3564 return (PF_DROP); 3565 } 3566 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3567 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3568 &s->src, &s->dst, rewrite)) { 3569 /* This really shouldn't happen!!! */ 3570 DPFPRINTF(PF_DEBUG_URGENT, 3571 ("pf_normalize_tcp_stateful failed on first pkt")); 3572 pf_normalize_tcp_cleanup(s); 3573 pf_src_tree_remove_state(s); 3574 STATE_DEC_COUNTERS(s); 3575 uma_zfree(V_pf_state_z, s); 3576 return (PF_DROP); 3577 } 3578 } 3579 s->direction = pd->dir; 3580 3581 /* 3582 * sk/nk could already been setup by pf_get_translation(). 3583 */ 3584 if (nr == NULL) { 3585 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3586 __func__, nr, sk, nk)); 3587 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3588 if (sk == NULL) 3589 goto csfailed; 3590 nk = sk; 3591 } else 3592 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3593 __func__, nr, sk, nk)); 3594 3595 /* Swap sk/nk for PF_OUT. */ 3596 if (pf_state_insert(BOUND_IFACE(r, kif), 3597 (pd->dir == PF_IN) ? sk : nk, 3598 (pd->dir == PF_IN) ? nk : sk, s)) { 3599 if (pd->proto == IPPROTO_TCP) 3600 pf_normalize_tcp_cleanup(s); 3601 REASON_SET(&reason, PFRES_STATEINS); 3602 pf_src_tree_remove_state(s); 3603 STATE_DEC_COUNTERS(s); 3604 uma_zfree(V_pf_state_z, s); 3605 return (PF_DROP); 3606 } else 3607 *sm = s; 3608 3609 pf_set_rt_ifp(s, pd->src); /* needs s->state_key set */ 3610 if (tag > 0) 3611 s->tag = tag; 3612 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3613 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3614 s->src.state = PF_TCPS_PROXY_SRC; 3615 /* undo NAT changes, if they have taken place */ 3616 if (nr != NULL) { 3617 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3618 if (pd->dir == PF_OUT) 3619 skt = s->key[PF_SK_STACK]; 3620 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3621 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3622 if (pd->sport) 3623 *pd->sport = skt->port[pd->sidx]; 3624 if (pd->dport) 3625 *pd->dport = skt->port[pd->didx]; 3626 if (pd->proto_sum) 3627 *pd->proto_sum = bproto_sum; 3628 if (pd->ip_sum) 3629 *pd->ip_sum = bip_sum; 3630 m_copyback(m, off, hdrlen, pd->hdr.any); 3631 } 3632 s->src.seqhi = htonl(arc4random()); 3633 /* Find mss option */ 3634 int rtid = M_GETFIB(m); 3635 mss = pf_get_mss(m, off, th->th_off, pd->af); 3636 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3637 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3638 s->src.mss = mss; 3639 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3640 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3641 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3642 REASON_SET(&reason, PFRES_SYNPROXY); 3643 return (PF_SYNPROXY_DROP); 3644 } 3645 3646 return (PF_PASS); 3647 3648 csfailed: 3649 if (sk != NULL) 3650 uma_zfree(V_pf_state_key_z, sk); 3651 if (nk != NULL) 3652 uma_zfree(V_pf_state_key_z, nk); 3653 3654 if (sn != NULL && sn->states == 0 && sn->expire == 0) { 3655 pf_unlink_src_node(sn); 3656 pf_free_src_node(sn); 3657 } 3658 3659 if (nsn != sn && nsn != NULL && nsn->states == 0 && nsn->expire == 0) { 3660 pf_unlink_src_node(nsn); 3661 pf_free_src_node(nsn); 3662 } 3663 3664 return (PF_DROP); 3665 } 3666 3667 static int 3668 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3669 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3670 struct pf_ruleset **rsm) 3671 { 3672 struct pf_rule *r, *a = NULL; 3673 struct pf_ruleset *ruleset = NULL; 3674 sa_family_t af = pd->af; 3675 u_short reason; 3676 int tag = -1; 3677 int asd = 0; 3678 int match = 0; 3679 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3680 3681 PF_RULES_RASSERT(); 3682 3683 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3684 while (r != NULL) { 3685 r->evaluations++; 3686 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3687 r = r->skip[PF_SKIP_IFP].ptr; 3688 else if (r->direction && r->direction != direction) 3689 r = r->skip[PF_SKIP_DIR].ptr; 3690 else if (r->af && r->af != af) 3691 r = r->skip[PF_SKIP_AF].ptr; 3692 else if (r->proto && r->proto != pd->proto) 3693 r = r->skip[PF_SKIP_PROTO].ptr; 3694 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3695 r->src.neg, kif, M_GETFIB(m))) 3696 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3697 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3698 r->dst.neg, NULL, M_GETFIB(m))) 3699 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3700 else if (r->tos && !(r->tos == pd->tos)) 3701 r = TAILQ_NEXT(r, entries); 3702 else if (r->os_fingerprint != PF_OSFP_ANY) 3703 r = TAILQ_NEXT(r, entries); 3704 else if (pd->proto == IPPROTO_UDP && 3705 (r->src.port_op || r->dst.port_op)) 3706 r = TAILQ_NEXT(r, entries); 3707 else if (pd->proto == IPPROTO_TCP && 3708 (r->src.port_op || r->dst.port_op || r->flagset)) 3709 r = TAILQ_NEXT(r, entries); 3710 else if ((pd->proto == IPPROTO_ICMP || 3711 pd->proto == IPPROTO_ICMPV6) && 3712 (r->type || r->code)) 3713 r = TAILQ_NEXT(r, entries); 3714 else if (r->prob && r->prob <= 3715 (arc4random() % (UINT_MAX - 1) + 1)) 3716 r = TAILQ_NEXT(r, entries); 3717 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3718 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3719 r = TAILQ_NEXT(r, entries); 3720 else { 3721 if (r->anchor == NULL) { 3722 match = 1; 3723 *rm = r; 3724 *am = a; 3725 *rsm = ruleset; 3726 if ((*rm)->quick) 3727 break; 3728 r = TAILQ_NEXT(r, entries); 3729 } else 3730 pf_step_into_anchor(anchor_stack, &asd, 3731 &ruleset, PF_RULESET_FILTER, &r, &a, 3732 &match); 3733 } 3734 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3735 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3736 break; 3737 } 3738 r = *rm; 3739 a = *am; 3740 ruleset = *rsm; 3741 3742 REASON_SET(&reason, PFRES_MATCH); 3743 3744 if (r->log) 3745 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3746 1); 3747 3748 if (r->action != PF_PASS) 3749 return (PF_DROP); 3750 3751 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3752 REASON_SET(&reason, PFRES_MEMORY); 3753 return (PF_DROP); 3754 } 3755 3756 return (PF_PASS); 3757 } 3758 3759 static int 3760 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3761 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3762 struct pf_pdesc *pd, u_short *reason, int *copyback) 3763 { 3764 struct tcphdr *th = pd->hdr.tcp; 3765 u_int16_t win = ntohs(th->th_win); 3766 u_int32_t ack, end, seq, orig_seq; 3767 u_int8_t sws, dws; 3768 int ackskew; 3769 3770 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3771 sws = src->wscale & PF_WSCALE_MASK; 3772 dws = dst->wscale & PF_WSCALE_MASK; 3773 } else 3774 sws = dws = 0; 3775 3776 /* 3777 * Sequence tracking algorithm from Guido van Rooij's paper: 3778 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3779 * tcp_filtering.ps 3780 */ 3781 3782 orig_seq = seq = ntohl(th->th_seq); 3783 if (src->seqlo == 0) { 3784 /* First packet from this end. Set its state */ 3785 3786 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3787 src->scrub == NULL) { 3788 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3789 REASON_SET(reason, PFRES_MEMORY); 3790 return (PF_DROP); 3791 } 3792 } 3793 3794 /* Deferred generation of sequence number modulator */ 3795 if (dst->seqdiff && !src->seqdiff) { 3796 /* use random iss for the TCP server */ 3797 while ((src->seqdiff = arc4random() - seq) == 0) 3798 ; 3799 ack = ntohl(th->th_ack) - dst->seqdiff; 3800 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3801 src->seqdiff), 0); 3802 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3803 *copyback = 1; 3804 } else { 3805 ack = ntohl(th->th_ack); 3806 } 3807 3808 end = seq + pd->p_len; 3809 if (th->th_flags & TH_SYN) { 3810 end++; 3811 if (dst->wscale & PF_WSCALE_FLAG) { 3812 src->wscale = pf_get_wscale(m, off, th->th_off, 3813 pd->af); 3814 if (src->wscale & PF_WSCALE_FLAG) { 3815 /* Remove scale factor from initial 3816 * window */ 3817 sws = src->wscale & PF_WSCALE_MASK; 3818 win = ((u_int32_t)win + (1 << sws) - 1) 3819 >> sws; 3820 dws = dst->wscale & PF_WSCALE_MASK; 3821 } else { 3822 /* fixup other window */ 3823 dst->max_win <<= dst->wscale & 3824 PF_WSCALE_MASK; 3825 /* in case of a retrans SYN|ACK */ 3826 dst->wscale = 0; 3827 } 3828 } 3829 } 3830 if (th->th_flags & TH_FIN) 3831 end++; 3832 3833 src->seqlo = seq; 3834 if (src->state < TCPS_SYN_SENT) 3835 src->state = TCPS_SYN_SENT; 3836 3837 /* 3838 * May need to slide the window (seqhi may have been set by 3839 * the crappy stack check or if we picked up the connection 3840 * after establishment) 3841 */ 3842 if (src->seqhi == 1 || 3843 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3844 src->seqhi = end + MAX(1, dst->max_win << dws); 3845 if (win > src->max_win) 3846 src->max_win = win; 3847 3848 } else { 3849 ack = ntohl(th->th_ack) - dst->seqdiff; 3850 if (src->seqdiff) { 3851 /* Modulate sequence numbers */ 3852 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3853 src->seqdiff), 0); 3854 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3855 *copyback = 1; 3856 } 3857 end = seq + pd->p_len; 3858 if (th->th_flags & TH_SYN) 3859 end++; 3860 if (th->th_flags & TH_FIN) 3861 end++; 3862 } 3863 3864 if ((th->th_flags & TH_ACK) == 0) { 3865 /* Let it pass through the ack skew check */ 3866 ack = dst->seqlo; 3867 } else if ((ack == 0 && 3868 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 3869 /* broken tcp stacks do not set ack */ 3870 (dst->state < TCPS_SYN_SENT)) { 3871 /* 3872 * Many stacks (ours included) will set the ACK number in an 3873 * FIN|ACK if the SYN times out -- no sequence to ACK. 3874 */ 3875 ack = dst->seqlo; 3876 } 3877 3878 if (seq == end) { 3879 /* Ease sequencing restrictions on no data packets */ 3880 seq = src->seqlo; 3881 end = seq; 3882 } 3883 3884 ackskew = dst->seqlo - ack; 3885 3886 3887 /* 3888 * Need to demodulate the sequence numbers in any TCP SACK options 3889 * (Selective ACK). We could optionally validate the SACK values 3890 * against the current ACK window, either forwards or backwards, but 3891 * I'm not confident that SACK has been implemented properly 3892 * everywhere. It wouldn't surprise me if several stacks accidently 3893 * SACK too far backwards of previously ACKed data. There really aren't 3894 * any security implications of bad SACKing unless the target stack 3895 * doesn't validate the option length correctly. Someone trying to 3896 * spoof into a TCP connection won't bother blindly sending SACK 3897 * options anyway. 3898 */ 3899 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 3900 if (pf_modulate_sack(m, off, pd, th, dst)) 3901 *copyback = 1; 3902 } 3903 3904 3905 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 3906 if (SEQ_GEQ(src->seqhi, end) && 3907 /* Last octet inside other's window space */ 3908 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 3909 /* Retrans: not more than one window back */ 3910 (ackskew >= -MAXACKWINDOW) && 3911 /* Acking not more than one reassembled fragment backwards */ 3912 (ackskew <= (MAXACKWINDOW << sws)) && 3913 /* Acking not more than one window forward */ 3914 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 3915 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 3916 (pd->flags & PFDESC_IP_REAS) == 0)) { 3917 /* Require an exact/+1 sequence match on resets when possible */ 3918 3919 if (dst->scrub || src->scrub) { 3920 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 3921 *state, src, dst, copyback)) 3922 return (PF_DROP); 3923 } 3924 3925 /* update max window */ 3926 if (src->max_win < win) 3927 src->max_win = win; 3928 /* synchronize sequencing */ 3929 if (SEQ_GT(end, src->seqlo)) 3930 src->seqlo = end; 3931 /* slide the window of what the other end can send */ 3932 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 3933 dst->seqhi = ack + MAX((win << sws), 1); 3934 3935 3936 /* update states */ 3937 if (th->th_flags & TH_SYN) 3938 if (src->state < TCPS_SYN_SENT) 3939 src->state = TCPS_SYN_SENT; 3940 if (th->th_flags & TH_FIN) 3941 if (src->state < TCPS_CLOSING) 3942 src->state = TCPS_CLOSING; 3943 if (th->th_flags & TH_ACK) { 3944 if (dst->state == TCPS_SYN_SENT) { 3945 dst->state = TCPS_ESTABLISHED; 3946 if (src->state == TCPS_ESTABLISHED && 3947 (*state)->src_node != NULL && 3948 pf_src_connlimit(state)) { 3949 REASON_SET(reason, PFRES_SRCLIMIT); 3950 return (PF_DROP); 3951 } 3952 } else if (dst->state == TCPS_CLOSING) 3953 dst->state = TCPS_FIN_WAIT_2; 3954 } 3955 if (th->th_flags & TH_RST) 3956 src->state = dst->state = TCPS_TIME_WAIT; 3957 3958 /* update expire time */ 3959 (*state)->expire = time_uptime; 3960 if (src->state >= TCPS_FIN_WAIT_2 && 3961 dst->state >= TCPS_FIN_WAIT_2) 3962 (*state)->timeout = PFTM_TCP_CLOSED; 3963 else if (src->state >= TCPS_CLOSING && 3964 dst->state >= TCPS_CLOSING) 3965 (*state)->timeout = PFTM_TCP_FIN_WAIT; 3966 else if (src->state < TCPS_ESTABLISHED || 3967 dst->state < TCPS_ESTABLISHED) 3968 (*state)->timeout = PFTM_TCP_OPENING; 3969 else if (src->state >= TCPS_CLOSING || 3970 dst->state >= TCPS_CLOSING) 3971 (*state)->timeout = PFTM_TCP_CLOSING; 3972 else 3973 (*state)->timeout = PFTM_TCP_ESTABLISHED; 3974 3975 /* Fall through to PASS packet */ 3976 3977 } else if ((dst->state < TCPS_SYN_SENT || 3978 dst->state >= TCPS_FIN_WAIT_2 || 3979 src->state >= TCPS_FIN_WAIT_2) && 3980 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 3981 /* Within a window forward of the originating packet */ 3982 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 3983 /* Within a window backward of the originating packet */ 3984 3985 /* 3986 * This currently handles three situations: 3987 * 1) Stupid stacks will shotgun SYNs before their peer 3988 * replies. 3989 * 2) When PF catches an already established stream (the 3990 * firewall rebooted, the state table was flushed, routes 3991 * changed...) 3992 * 3) Packets get funky immediately after the connection 3993 * closes (this should catch Solaris spurious ACK|FINs 3994 * that web servers like to spew after a close) 3995 * 3996 * This must be a little more careful than the above code 3997 * since packet floods will also be caught here. We don't 3998 * update the TTL here to mitigate the damage of a packet 3999 * flood and so the same code can handle awkward establishment 4000 * and a loosened connection close. 4001 * In the establishment case, a correct peer response will 4002 * validate the connection, go through the normal state code 4003 * and keep updating the state TTL. 4004 */ 4005 4006 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4007 printf("pf: loose state match: "); 4008 pf_print_state(*state); 4009 pf_print_flags(th->th_flags); 4010 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4011 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4012 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4013 (unsigned long long)(*state)->packets[1], 4014 pd->dir == PF_IN ? "in" : "out", 4015 pd->dir == (*state)->direction ? "fwd" : "rev"); 4016 } 4017 4018 if (dst->scrub || src->scrub) { 4019 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4020 *state, src, dst, copyback)) 4021 return (PF_DROP); 4022 } 4023 4024 /* update max window */ 4025 if (src->max_win < win) 4026 src->max_win = win; 4027 /* synchronize sequencing */ 4028 if (SEQ_GT(end, src->seqlo)) 4029 src->seqlo = end; 4030 /* slide the window of what the other end can send */ 4031 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4032 dst->seqhi = ack + MAX((win << sws), 1); 4033 4034 /* 4035 * Cannot set dst->seqhi here since this could be a shotgunned 4036 * SYN and not an already established connection. 4037 */ 4038 4039 if (th->th_flags & TH_FIN) 4040 if (src->state < TCPS_CLOSING) 4041 src->state = TCPS_CLOSING; 4042 if (th->th_flags & TH_RST) 4043 src->state = dst->state = TCPS_TIME_WAIT; 4044 4045 /* Fall through to PASS packet */ 4046 4047 } else { 4048 if ((*state)->dst.state == TCPS_SYN_SENT && 4049 (*state)->src.state == TCPS_SYN_SENT) { 4050 /* Send RST for state mismatches during handshake */ 4051 if (!(th->th_flags & TH_RST)) 4052 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4053 pd->dst, pd->src, th->th_dport, 4054 th->th_sport, ntohl(th->th_ack), 0, 4055 TH_RST, 0, 0, 4056 (*state)->rule.ptr->return_ttl, 1, 0, 4057 kif->pfik_ifp); 4058 src->seqlo = 0; 4059 src->seqhi = 1; 4060 src->max_win = 1; 4061 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4062 printf("pf: BAD state: "); 4063 pf_print_state(*state); 4064 pf_print_flags(th->th_flags); 4065 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4066 "pkts=%llu:%llu dir=%s,%s\n", 4067 seq, orig_seq, ack, pd->p_len, ackskew, 4068 (unsigned long long)(*state)->packets[0], 4069 (unsigned long long)(*state)->packets[1], 4070 pd->dir == PF_IN ? "in" : "out", 4071 pd->dir == (*state)->direction ? "fwd" : "rev"); 4072 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4073 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4074 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4075 ' ': '2', 4076 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4077 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4078 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4079 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4080 } 4081 REASON_SET(reason, PFRES_BADSTATE); 4082 return (PF_DROP); 4083 } 4084 4085 return (PF_PASS); 4086 } 4087 4088 static int 4089 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4090 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4091 { 4092 struct tcphdr *th = pd->hdr.tcp; 4093 4094 if (th->th_flags & TH_SYN) 4095 if (src->state < TCPS_SYN_SENT) 4096 src->state = TCPS_SYN_SENT; 4097 if (th->th_flags & TH_FIN) 4098 if (src->state < TCPS_CLOSING) 4099 src->state = TCPS_CLOSING; 4100 if (th->th_flags & TH_ACK) { 4101 if (dst->state == TCPS_SYN_SENT) { 4102 dst->state = TCPS_ESTABLISHED; 4103 if (src->state == TCPS_ESTABLISHED && 4104 (*state)->src_node != NULL && 4105 pf_src_connlimit(state)) { 4106 REASON_SET(reason, PFRES_SRCLIMIT); 4107 return (PF_DROP); 4108 } 4109 } else if (dst->state == TCPS_CLOSING) { 4110 dst->state = TCPS_FIN_WAIT_2; 4111 } else if (src->state == TCPS_SYN_SENT && 4112 dst->state < TCPS_SYN_SENT) { 4113 /* 4114 * Handle a special sloppy case where we only see one 4115 * half of the connection. If there is a ACK after 4116 * the initial SYN without ever seeing a packet from 4117 * the destination, set the connection to established. 4118 */ 4119 dst->state = src->state = TCPS_ESTABLISHED; 4120 if ((*state)->src_node != NULL && 4121 pf_src_connlimit(state)) { 4122 REASON_SET(reason, PFRES_SRCLIMIT); 4123 return (PF_DROP); 4124 } 4125 } else if (src->state == TCPS_CLOSING && 4126 dst->state == TCPS_ESTABLISHED && 4127 dst->seqlo == 0) { 4128 /* 4129 * Handle the closing of half connections where we 4130 * don't see the full bidirectional FIN/ACK+ACK 4131 * handshake. 4132 */ 4133 dst->state = TCPS_CLOSING; 4134 } 4135 } 4136 if (th->th_flags & TH_RST) 4137 src->state = dst->state = TCPS_TIME_WAIT; 4138 4139 /* update expire time */ 4140 (*state)->expire = time_uptime; 4141 if (src->state >= TCPS_FIN_WAIT_2 && 4142 dst->state >= TCPS_FIN_WAIT_2) 4143 (*state)->timeout = PFTM_TCP_CLOSED; 4144 else if (src->state >= TCPS_CLOSING && 4145 dst->state >= TCPS_CLOSING) 4146 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4147 else if (src->state < TCPS_ESTABLISHED || 4148 dst->state < TCPS_ESTABLISHED) 4149 (*state)->timeout = PFTM_TCP_OPENING; 4150 else if (src->state >= TCPS_CLOSING || 4151 dst->state >= TCPS_CLOSING) 4152 (*state)->timeout = PFTM_TCP_CLOSING; 4153 else 4154 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4155 4156 return (PF_PASS); 4157 } 4158 4159 static int 4160 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4161 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4162 u_short *reason) 4163 { 4164 struct pf_state_key_cmp key; 4165 struct tcphdr *th = pd->hdr.tcp; 4166 int copyback = 0; 4167 struct pf_state_peer *src, *dst; 4168 struct pf_state_key *sk; 4169 4170 bzero(&key, sizeof(key)); 4171 key.af = pd->af; 4172 key.proto = IPPROTO_TCP; 4173 if (direction == PF_IN) { /* wire side, straight */ 4174 PF_ACPY(&key.addr[0], pd->src, key.af); 4175 PF_ACPY(&key.addr[1], pd->dst, key.af); 4176 key.port[0] = th->th_sport; 4177 key.port[1] = th->th_dport; 4178 } else { /* stack side, reverse */ 4179 PF_ACPY(&key.addr[1], pd->src, key.af); 4180 PF_ACPY(&key.addr[0], pd->dst, key.af); 4181 key.port[1] = th->th_sport; 4182 key.port[0] = th->th_dport; 4183 } 4184 4185 STATE_LOOKUP(kif, &key, direction, *state, pd); 4186 4187 if (direction == (*state)->direction) { 4188 src = &(*state)->src; 4189 dst = &(*state)->dst; 4190 } else { 4191 src = &(*state)->dst; 4192 dst = &(*state)->src; 4193 } 4194 4195 sk = (*state)->key[pd->didx]; 4196 4197 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4198 if (direction != (*state)->direction) { 4199 REASON_SET(reason, PFRES_SYNPROXY); 4200 return (PF_SYNPROXY_DROP); 4201 } 4202 if (th->th_flags & TH_SYN) { 4203 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4204 REASON_SET(reason, PFRES_SYNPROXY); 4205 return (PF_DROP); 4206 } 4207 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4208 pd->src, th->th_dport, th->th_sport, 4209 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4210 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4211 REASON_SET(reason, PFRES_SYNPROXY); 4212 return (PF_SYNPROXY_DROP); 4213 } else if (!(th->th_flags & TH_ACK) || 4214 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4215 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4216 REASON_SET(reason, PFRES_SYNPROXY); 4217 return (PF_DROP); 4218 } else if ((*state)->src_node != NULL && 4219 pf_src_connlimit(state)) { 4220 REASON_SET(reason, PFRES_SRCLIMIT); 4221 return (PF_DROP); 4222 } else 4223 (*state)->src.state = PF_TCPS_PROXY_DST; 4224 } 4225 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4226 if (direction == (*state)->direction) { 4227 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4228 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4229 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4230 REASON_SET(reason, PFRES_SYNPROXY); 4231 return (PF_DROP); 4232 } 4233 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4234 if ((*state)->dst.seqhi == 1) 4235 (*state)->dst.seqhi = htonl(arc4random()); 4236 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4237 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4238 sk->port[pd->sidx], sk->port[pd->didx], 4239 (*state)->dst.seqhi, 0, TH_SYN, 0, 4240 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4241 REASON_SET(reason, PFRES_SYNPROXY); 4242 return (PF_SYNPROXY_DROP); 4243 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4244 (TH_SYN|TH_ACK)) || 4245 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4246 REASON_SET(reason, PFRES_SYNPROXY); 4247 return (PF_DROP); 4248 } else { 4249 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4250 (*state)->dst.seqlo = ntohl(th->th_seq); 4251 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4252 pd->src, th->th_dport, th->th_sport, 4253 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4254 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4255 (*state)->tag, NULL); 4256 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4257 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4258 sk->port[pd->sidx], sk->port[pd->didx], 4259 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4260 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4261 (*state)->src.seqdiff = (*state)->dst.seqhi - 4262 (*state)->src.seqlo; 4263 (*state)->dst.seqdiff = (*state)->src.seqhi - 4264 (*state)->dst.seqlo; 4265 (*state)->src.seqhi = (*state)->src.seqlo + 4266 (*state)->dst.max_win; 4267 (*state)->dst.seqhi = (*state)->dst.seqlo + 4268 (*state)->src.max_win; 4269 (*state)->src.wscale = (*state)->dst.wscale = 0; 4270 (*state)->src.state = (*state)->dst.state = 4271 TCPS_ESTABLISHED; 4272 REASON_SET(reason, PFRES_SYNPROXY); 4273 return (PF_SYNPROXY_DROP); 4274 } 4275 } 4276 4277 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4278 dst->state >= TCPS_FIN_WAIT_2 && 4279 src->state >= TCPS_FIN_WAIT_2) { 4280 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4281 printf("pf: state reuse "); 4282 pf_print_state(*state); 4283 pf_print_flags(th->th_flags); 4284 printf("\n"); 4285 } 4286 /* XXX make sure it's the same direction ?? */ 4287 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4288 pf_unlink_state(*state, PF_ENTER_LOCKED); 4289 *state = NULL; 4290 return (PF_DROP); 4291 } 4292 4293 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4294 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4295 return (PF_DROP); 4296 } else { 4297 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4298 ©back) == PF_DROP) 4299 return (PF_DROP); 4300 } 4301 4302 /* translate source/destination address, if necessary */ 4303 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4304 struct pf_state_key *nk = (*state)->key[pd->didx]; 4305 4306 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4307 nk->port[pd->sidx] != th->th_sport) 4308 pf_change_ap(pd->src, &th->th_sport, pd->ip_sum, 4309 &th->th_sum, &nk->addr[pd->sidx], 4310 nk->port[pd->sidx], 0, pd->af); 4311 4312 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4313 nk->port[pd->didx] != th->th_dport) 4314 pf_change_ap(pd->dst, &th->th_dport, pd->ip_sum, 4315 &th->th_sum, &nk->addr[pd->didx], 4316 nk->port[pd->didx], 0, pd->af); 4317 copyback = 1; 4318 } 4319 4320 /* Copyback sequence modulation or stateful scrub changes if needed */ 4321 if (copyback) 4322 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4323 4324 return (PF_PASS); 4325 } 4326 4327 static int 4328 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4329 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4330 { 4331 struct pf_state_peer *src, *dst; 4332 struct pf_state_key_cmp key; 4333 struct udphdr *uh = pd->hdr.udp; 4334 4335 bzero(&key, sizeof(key)); 4336 key.af = pd->af; 4337 key.proto = IPPROTO_UDP; 4338 if (direction == PF_IN) { /* wire side, straight */ 4339 PF_ACPY(&key.addr[0], pd->src, key.af); 4340 PF_ACPY(&key.addr[1], pd->dst, key.af); 4341 key.port[0] = uh->uh_sport; 4342 key.port[1] = uh->uh_dport; 4343 } else { /* stack side, reverse */ 4344 PF_ACPY(&key.addr[1], pd->src, key.af); 4345 PF_ACPY(&key.addr[0], pd->dst, key.af); 4346 key.port[1] = uh->uh_sport; 4347 key.port[0] = uh->uh_dport; 4348 } 4349 4350 STATE_LOOKUP(kif, &key, direction, *state, pd); 4351 4352 if (direction == (*state)->direction) { 4353 src = &(*state)->src; 4354 dst = &(*state)->dst; 4355 } else { 4356 src = &(*state)->dst; 4357 dst = &(*state)->src; 4358 } 4359 4360 /* update states */ 4361 if (src->state < PFUDPS_SINGLE) 4362 src->state = PFUDPS_SINGLE; 4363 if (dst->state == PFUDPS_SINGLE) 4364 dst->state = PFUDPS_MULTIPLE; 4365 4366 /* update expire time */ 4367 (*state)->expire = time_uptime; 4368 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4369 (*state)->timeout = PFTM_UDP_MULTIPLE; 4370 else 4371 (*state)->timeout = PFTM_UDP_SINGLE; 4372 4373 /* translate source/destination address, if necessary */ 4374 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4375 struct pf_state_key *nk = (*state)->key[pd->didx]; 4376 4377 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4378 nk->port[pd->sidx] != uh->uh_sport) 4379 pf_change_ap(pd->src, &uh->uh_sport, pd->ip_sum, 4380 &uh->uh_sum, &nk->addr[pd->sidx], 4381 nk->port[pd->sidx], 1, pd->af); 4382 4383 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4384 nk->port[pd->didx] != uh->uh_dport) 4385 pf_change_ap(pd->dst, &uh->uh_dport, pd->ip_sum, 4386 &uh->uh_sum, &nk->addr[pd->didx], 4387 nk->port[pd->didx], 1, pd->af); 4388 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4389 } 4390 4391 return (PF_PASS); 4392 } 4393 4394 static int 4395 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4396 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4397 { 4398 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4399 u_int16_t icmpid = 0, *icmpsum; 4400 u_int8_t icmptype; 4401 int state_icmp = 0; 4402 struct pf_state_key_cmp key; 4403 4404 bzero(&key, sizeof(key)); 4405 switch (pd->proto) { 4406 #ifdef INET 4407 case IPPROTO_ICMP: 4408 icmptype = pd->hdr.icmp->icmp_type; 4409 icmpid = pd->hdr.icmp->icmp_id; 4410 icmpsum = &pd->hdr.icmp->icmp_cksum; 4411 4412 if (icmptype == ICMP_UNREACH || 4413 icmptype == ICMP_SOURCEQUENCH || 4414 icmptype == ICMP_REDIRECT || 4415 icmptype == ICMP_TIMXCEED || 4416 icmptype == ICMP_PARAMPROB) 4417 state_icmp++; 4418 break; 4419 #endif /* INET */ 4420 #ifdef INET6 4421 case IPPROTO_ICMPV6: 4422 icmptype = pd->hdr.icmp6->icmp6_type; 4423 icmpid = pd->hdr.icmp6->icmp6_id; 4424 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4425 4426 if (icmptype == ICMP6_DST_UNREACH || 4427 icmptype == ICMP6_PACKET_TOO_BIG || 4428 icmptype == ICMP6_TIME_EXCEEDED || 4429 icmptype == ICMP6_PARAM_PROB) 4430 state_icmp++; 4431 break; 4432 #endif /* INET6 */ 4433 } 4434 4435 if (!state_icmp) { 4436 4437 /* 4438 * ICMP query/reply message not related to a TCP/UDP packet. 4439 * Search for an ICMP state. 4440 */ 4441 key.af = pd->af; 4442 key.proto = pd->proto; 4443 key.port[0] = key.port[1] = icmpid; 4444 if (direction == PF_IN) { /* wire side, straight */ 4445 PF_ACPY(&key.addr[0], pd->src, key.af); 4446 PF_ACPY(&key.addr[1], pd->dst, key.af); 4447 } else { /* stack side, reverse */ 4448 PF_ACPY(&key.addr[1], pd->src, key.af); 4449 PF_ACPY(&key.addr[0], pd->dst, key.af); 4450 } 4451 4452 STATE_LOOKUP(kif, &key, direction, *state, pd); 4453 4454 (*state)->expire = time_uptime; 4455 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4456 4457 /* translate source/destination address, if necessary */ 4458 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4459 struct pf_state_key *nk = (*state)->key[pd->didx]; 4460 4461 switch (pd->af) { 4462 #ifdef INET 4463 case AF_INET: 4464 if (PF_ANEQ(pd->src, 4465 &nk->addr[pd->sidx], AF_INET)) 4466 pf_change_a(&saddr->v4.s_addr, 4467 pd->ip_sum, 4468 nk->addr[pd->sidx].v4.s_addr, 0); 4469 4470 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4471 AF_INET)) 4472 pf_change_a(&daddr->v4.s_addr, 4473 pd->ip_sum, 4474 nk->addr[pd->didx].v4.s_addr, 0); 4475 4476 if (nk->port[0] != 4477 pd->hdr.icmp->icmp_id) { 4478 pd->hdr.icmp->icmp_cksum = 4479 pf_cksum_fixup( 4480 pd->hdr.icmp->icmp_cksum, icmpid, 4481 nk->port[pd->sidx], 0); 4482 pd->hdr.icmp->icmp_id = 4483 nk->port[pd->sidx]; 4484 } 4485 4486 m_copyback(m, off, ICMP_MINLEN, 4487 (caddr_t )pd->hdr.icmp); 4488 break; 4489 #endif /* INET */ 4490 #ifdef INET6 4491 case AF_INET6: 4492 if (PF_ANEQ(pd->src, 4493 &nk->addr[pd->sidx], AF_INET6)) 4494 pf_change_a6(saddr, 4495 &pd->hdr.icmp6->icmp6_cksum, 4496 &nk->addr[pd->sidx], 0); 4497 4498 if (PF_ANEQ(pd->dst, 4499 &nk->addr[pd->didx], AF_INET6)) 4500 pf_change_a6(daddr, 4501 &pd->hdr.icmp6->icmp6_cksum, 4502 &nk->addr[pd->didx], 0); 4503 4504 m_copyback(m, off, sizeof(struct icmp6_hdr), 4505 (caddr_t )pd->hdr.icmp6); 4506 break; 4507 #endif /* INET6 */ 4508 } 4509 } 4510 return (PF_PASS); 4511 4512 } else { 4513 /* 4514 * ICMP error message in response to a TCP/UDP packet. 4515 * Extract the inner TCP/UDP header and search for that state. 4516 */ 4517 4518 struct pf_pdesc pd2; 4519 bzero(&pd2, sizeof pd2); 4520 #ifdef INET 4521 struct ip h2; 4522 #endif /* INET */ 4523 #ifdef INET6 4524 struct ip6_hdr h2_6; 4525 int terminal = 0; 4526 #endif /* INET6 */ 4527 int ipoff2 = 0; 4528 int off2 = 0; 4529 4530 pd2.af = pd->af; 4531 /* Payload packet is from the opposite direction. */ 4532 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4533 pd2.didx = (direction == PF_IN) ? 0 : 1; 4534 switch (pd->af) { 4535 #ifdef INET 4536 case AF_INET: 4537 /* offset of h2 in mbuf chain */ 4538 ipoff2 = off + ICMP_MINLEN; 4539 4540 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4541 NULL, reason, pd2.af)) { 4542 DPFPRINTF(PF_DEBUG_MISC, 4543 ("pf: ICMP error message too short " 4544 "(ip)\n")); 4545 return (PF_DROP); 4546 } 4547 /* 4548 * ICMP error messages don't refer to non-first 4549 * fragments 4550 */ 4551 if (h2.ip_off & htons(IP_OFFMASK)) { 4552 REASON_SET(reason, PFRES_FRAG); 4553 return (PF_DROP); 4554 } 4555 4556 /* offset of protocol header that follows h2 */ 4557 off2 = ipoff2 + (h2.ip_hl << 2); 4558 4559 pd2.proto = h2.ip_p; 4560 pd2.src = (struct pf_addr *)&h2.ip_src; 4561 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4562 pd2.ip_sum = &h2.ip_sum; 4563 break; 4564 #endif /* INET */ 4565 #ifdef INET6 4566 case AF_INET6: 4567 ipoff2 = off + sizeof(struct icmp6_hdr); 4568 4569 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4570 NULL, reason, pd2.af)) { 4571 DPFPRINTF(PF_DEBUG_MISC, 4572 ("pf: ICMP error message too short " 4573 "(ip6)\n")); 4574 return (PF_DROP); 4575 } 4576 pd2.proto = h2_6.ip6_nxt; 4577 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4578 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4579 pd2.ip_sum = NULL; 4580 off2 = ipoff2 + sizeof(h2_6); 4581 do { 4582 switch (pd2.proto) { 4583 case IPPROTO_FRAGMENT: 4584 /* 4585 * ICMPv6 error messages for 4586 * non-first fragments 4587 */ 4588 REASON_SET(reason, PFRES_FRAG); 4589 return (PF_DROP); 4590 case IPPROTO_AH: 4591 case IPPROTO_HOPOPTS: 4592 case IPPROTO_ROUTING: 4593 case IPPROTO_DSTOPTS: { 4594 /* get next header and header length */ 4595 struct ip6_ext opt6; 4596 4597 if (!pf_pull_hdr(m, off2, &opt6, 4598 sizeof(opt6), NULL, reason, 4599 pd2.af)) { 4600 DPFPRINTF(PF_DEBUG_MISC, 4601 ("pf: ICMPv6 short opt\n")); 4602 return (PF_DROP); 4603 } 4604 if (pd2.proto == IPPROTO_AH) 4605 off2 += (opt6.ip6e_len + 2) * 4; 4606 else 4607 off2 += (opt6.ip6e_len + 1) * 8; 4608 pd2.proto = opt6.ip6e_nxt; 4609 /* goto the next header */ 4610 break; 4611 } 4612 default: 4613 terminal++; 4614 break; 4615 } 4616 } while (!terminal); 4617 break; 4618 #endif /* INET6 */ 4619 } 4620 4621 switch (pd2.proto) { 4622 case IPPROTO_TCP: { 4623 struct tcphdr th; 4624 u_int32_t seq; 4625 struct pf_state_peer *src, *dst; 4626 u_int8_t dws; 4627 int copyback = 0; 4628 4629 /* 4630 * Only the first 8 bytes of the TCP header can be 4631 * expected. Don't access any TCP header fields after 4632 * th_seq, an ackskew test is not possible. 4633 */ 4634 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4635 pd2.af)) { 4636 DPFPRINTF(PF_DEBUG_MISC, 4637 ("pf: ICMP error message too short " 4638 "(tcp)\n")); 4639 return (PF_DROP); 4640 } 4641 4642 key.af = pd2.af; 4643 key.proto = IPPROTO_TCP; 4644 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4645 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4646 key.port[pd2.sidx] = th.th_sport; 4647 key.port[pd2.didx] = th.th_dport; 4648 4649 STATE_LOOKUP(kif, &key, direction, *state, pd); 4650 4651 if (direction == (*state)->direction) { 4652 src = &(*state)->dst; 4653 dst = &(*state)->src; 4654 } else { 4655 src = &(*state)->src; 4656 dst = &(*state)->dst; 4657 } 4658 4659 if (src->wscale && dst->wscale) 4660 dws = dst->wscale & PF_WSCALE_MASK; 4661 else 4662 dws = 0; 4663 4664 /* Demodulate sequence number */ 4665 seq = ntohl(th.th_seq) - src->seqdiff; 4666 if (src->seqdiff) { 4667 pf_change_a(&th.th_seq, icmpsum, 4668 htonl(seq), 0); 4669 copyback = 1; 4670 } 4671 4672 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4673 (!SEQ_GEQ(src->seqhi, seq) || 4674 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4675 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4676 printf("pf: BAD ICMP %d:%d ", 4677 icmptype, pd->hdr.icmp->icmp_code); 4678 pf_print_host(pd->src, 0, pd->af); 4679 printf(" -> "); 4680 pf_print_host(pd->dst, 0, pd->af); 4681 printf(" state: "); 4682 pf_print_state(*state); 4683 printf(" seq=%u\n", seq); 4684 } 4685 REASON_SET(reason, PFRES_BADSTATE); 4686 return (PF_DROP); 4687 } else { 4688 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4689 printf("pf: OK ICMP %d:%d ", 4690 icmptype, pd->hdr.icmp->icmp_code); 4691 pf_print_host(pd->src, 0, pd->af); 4692 printf(" -> "); 4693 pf_print_host(pd->dst, 0, pd->af); 4694 printf(" state: "); 4695 pf_print_state(*state); 4696 printf(" seq=%u\n", seq); 4697 } 4698 } 4699 4700 /* translate source/destination address, if necessary */ 4701 if ((*state)->key[PF_SK_WIRE] != 4702 (*state)->key[PF_SK_STACK]) { 4703 struct pf_state_key *nk = 4704 (*state)->key[pd->didx]; 4705 4706 if (PF_ANEQ(pd2.src, 4707 &nk->addr[pd2.sidx], pd2.af) || 4708 nk->port[pd2.sidx] != th.th_sport) 4709 pf_change_icmp(pd2.src, &th.th_sport, 4710 daddr, &nk->addr[pd2.sidx], 4711 nk->port[pd2.sidx], NULL, 4712 pd2.ip_sum, icmpsum, 4713 pd->ip_sum, 0, pd2.af); 4714 4715 if (PF_ANEQ(pd2.dst, 4716 &nk->addr[pd2.didx], pd2.af) || 4717 nk->port[pd2.didx] != th.th_dport) 4718 pf_change_icmp(pd2.dst, &th.th_dport, 4719 NULL, /* XXX Inbound NAT? */ 4720 &nk->addr[pd2.didx], 4721 nk->port[pd2.didx], NULL, 4722 pd2.ip_sum, icmpsum, 4723 pd->ip_sum, 0, pd2.af); 4724 copyback = 1; 4725 } 4726 4727 if (copyback) { 4728 switch (pd2.af) { 4729 #ifdef INET 4730 case AF_INET: 4731 m_copyback(m, off, ICMP_MINLEN, 4732 (caddr_t )pd->hdr.icmp); 4733 m_copyback(m, ipoff2, sizeof(h2), 4734 (caddr_t )&h2); 4735 break; 4736 #endif /* INET */ 4737 #ifdef INET6 4738 case AF_INET6: 4739 m_copyback(m, off, 4740 sizeof(struct icmp6_hdr), 4741 (caddr_t )pd->hdr.icmp6); 4742 m_copyback(m, ipoff2, sizeof(h2_6), 4743 (caddr_t )&h2_6); 4744 break; 4745 #endif /* INET6 */ 4746 } 4747 m_copyback(m, off2, 8, (caddr_t)&th); 4748 } 4749 4750 return (PF_PASS); 4751 break; 4752 } 4753 case IPPROTO_UDP: { 4754 struct udphdr uh; 4755 4756 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4757 NULL, reason, pd2.af)) { 4758 DPFPRINTF(PF_DEBUG_MISC, 4759 ("pf: ICMP error message too short " 4760 "(udp)\n")); 4761 return (PF_DROP); 4762 } 4763 4764 key.af = pd2.af; 4765 key.proto = IPPROTO_UDP; 4766 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4767 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4768 key.port[pd2.sidx] = uh.uh_sport; 4769 key.port[pd2.didx] = uh.uh_dport; 4770 4771 STATE_LOOKUP(kif, &key, direction, *state, pd); 4772 4773 /* translate source/destination address, if necessary */ 4774 if ((*state)->key[PF_SK_WIRE] != 4775 (*state)->key[PF_SK_STACK]) { 4776 struct pf_state_key *nk = 4777 (*state)->key[pd->didx]; 4778 4779 if (PF_ANEQ(pd2.src, 4780 &nk->addr[pd2.sidx], pd2.af) || 4781 nk->port[pd2.sidx] != uh.uh_sport) 4782 pf_change_icmp(pd2.src, &uh.uh_sport, 4783 daddr, &nk->addr[pd2.sidx], 4784 nk->port[pd2.sidx], &uh.uh_sum, 4785 pd2.ip_sum, icmpsum, 4786 pd->ip_sum, 1, pd2.af); 4787 4788 if (PF_ANEQ(pd2.dst, 4789 &nk->addr[pd2.didx], pd2.af) || 4790 nk->port[pd2.didx] != uh.uh_dport) 4791 pf_change_icmp(pd2.dst, &uh.uh_dport, 4792 NULL, /* XXX Inbound NAT? */ 4793 &nk->addr[pd2.didx], 4794 nk->port[pd2.didx], &uh.uh_sum, 4795 pd2.ip_sum, icmpsum, 4796 pd->ip_sum, 1, pd2.af); 4797 4798 switch (pd2.af) { 4799 #ifdef INET 4800 case AF_INET: 4801 m_copyback(m, off, ICMP_MINLEN, 4802 (caddr_t )pd->hdr.icmp); 4803 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4804 break; 4805 #endif /* INET */ 4806 #ifdef INET6 4807 case AF_INET6: 4808 m_copyback(m, off, 4809 sizeof(struct icmp6_hdr), 4810 (caddr_t )pd->hdr.icmp6); 4811 m_copyback(m, ipoff2, sizeof(h2_6), 4812 (caddr_t )&h2_6); 4813 break; 4814 #endif /* INET6 */ 4815 } 4816 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4817 } 4818 return (PF_PASS); 4819 break; 4820 } 4821 #ifdef INET 4822 case IPPROTO_ICMP: { 4823 struct icmp iih; 4824 4825 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4826 NULL, reason, pd2.af)) { 4827 DPFPRINTF(PF_DEBUG_MISC, 4828 ("pf: ICMP error message too short i" 4829 "(icmp)\n")); 4830 return (PF_DROP); 4831 } 4832 4833 key.af = pd2.af; 4834 key.proto = IPPROTO_ICMP; 4835 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4836 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4837 key.port[0] = key.port[1] = iih.icmp_id; 4838 4839 STATE_LOOKUP(kif, &key, direction, *state, pd); 4840 4841 /* translate source/destination address, if necessary */ 4842 if ((*state)->key[PF_SK_WIRE] != 4843 (*state)->key[PF_SK_STACK]) { 4844 struct pf_state_key *nk = 4845 (*state)->key[pd->didx]; 4846 4847 if (PF_ANEQ(pd2.src, 4848 &nk->addr[pd2.sidx], pd2.af) || 4849 nk->port[pd2.sidx] != iih.icmp_id) 4850 pf_change_icmp(pd2.src, &iih.icmp_id, 4851 daddr, &nk->addr[pd2.sidx], 4852 nk->port[pd2.sidx], NULL, 4853 pd2.ip_sum, icmpsum, 4854 pd->ip_sum, 0, AF_INET); 4855 4856 if (PF_ANEQ(pd2.dst, 4857 &nk->addr[pd2.didx], pd2.af) || 4858 nk->port[pd2.didx] != iih.icmp_id) 4859 pf_change_icmp(pd2.dst, &iih.icmp_id, 4860 NULL, /* XXX Inbound NAT? */ 4861 &nk->addr[pd2.didx], 4862 nk->port[pd2.didx], NULL, 4863 pd2.ip_sum, icmpsum, 4864 pd->ip_sum, 0, AF_INET); 4865 4866 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 4867 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4868 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 4869 } 4870 return (PF_PASS); 4871 break; 4872 } 4873 #endif /* INET */ 4874 #ifdef INET6 4875 case IPPROTO_ICMPV6: { 4876 struct icmp6_hdr iih; 4877 4878 if (!pf_pull_hdr(m, off2, &iih, 4879 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 4880 DPFPRINTF(PF_DEBUG_MISC, 4881 ("pf: ICMP error message too short " 4882 "(icmp6)\n")); 4883 return (PF_DROP); 4884 } 4885 4886 key.af = pd2.af; 4887 key.proto = IPPROTO_ICMPV6; 4888 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4889 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4890 key.port[0] = key.port[1] = iih.icmp6_id; 4891 4892 STATE_LOOKUP(kif, &key, direction, *state, pd); 4893 4894 /* translate source/destination address, if necessary */ 4895 if ((*state)->key[PF_SK_WIRE] != 4896 (*state)->key[PF_SK_STACK]) { 4897 struct pf_state_key *nk = 4898 (*state)->key[pd->didx]; 4899 4900 if (PF_ANEQ(pd2.src, 4901 &nk->addr[pd2.sidx], pd2.af) || 4902 nk->port[pd2.sidx] != iih.icmp6_id) 4903 pf_change_icmp(pd2.src, &iih.icmp6_id, 4904 daddr, &nk->addr[pd2.sidx], 4905 nk->port[pd2.sidx], NULL, 4906 pd2.ip_sum, icmpsum, 4907 pd->ip_sum, 0, AF_INET6); 4908 4909 if (PF_ANEQ(pd2.dst, 4910 &nk->addr[pd2.didx], pd2.af) || 4911 nk->port[pd2.didx] != iih.icmp6_id) 4912 pf_change_icmp(pd2.dst, &iih.icmp6_id, 4913 NULL, /* XXX Inbound NAT? */ 4914 &nk->addr[pd2.didx], 4915 nk->port[pd2.didx], NULL, 4916 pd2.ip_sum, icmpsum, 4917 pd->ip_sum, 0, AF_INET6); 4918 4919 m_copyback(m, off, sizeof(struct icmp6_hdr), 4920 (caddr_t)pd->hdr.icmp6); 4921 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 4922 m_copyback(m, off2, sizeof(struct icmp6_hdr), 4923 (caddr_t)&iih); 4924 } 4925 return (PF_PASS); 4926 break; 4927 } 4928 #endif /* INET6 */ 4929 default: { 4930 key.af = pd2.af; 4931 key.proto = pd2.proto; 4932 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4933 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4934 key.port[0] = key.port[1] = 0; 4935 4936 STATE_LOOKUP(kif, &key, direction, *state, pd); 4937 4938 /* translate source/destination address, if necessary */ 4939 if ((*state)->key[PF_SK_WIRE] != 4940 (*state)->key[PF_SK_STACK]) { 4941 struct pf_state_key *nk = 4942 (*state)->key[pd->didx]; 4943 4944 if (PF_ANEQ(pd2.src, 4945 &nk->addr[pd2.sidx], pd2.af)) 4946 pf_change_icmp(pd2.src, NULL, daddr, 4947 &nk->addr[pd2.sidx], 0, NULL, 4948 pd2.ip_sum, icmpsum, 4949 pd->ip_sum, 0, pd2.af); 4950 4951 if (PF_ANEQ(pd2.dst, 4952 &nk->addr[pd2.didx], pd2.af)) 4953 pf_change_icmp(pd2.src, NULL, 4954 NULL, /* XXX Inbound NAT? */ 4955 &nk->addr[pd2.didx], 0, NULL, 4956 pd2.ip_sum, icmpsum, 4957 pd->ip_sum, 0, pd2.af); 4958 4959 switch (pd2.af) { 4960 #ifdef INET 4961 case AF_INET: 4962 m_copyback(m, off, ICMP_MINLEN, 4963 (caddr_t)pd->hdr.icmp); 4964 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4965 break; 4966 #endif /* INET */ 4967 #ifdef INET6 4968 case AF_INET6: 4969 m_copyback(m, off, 4970 sizeof(struct icmp6_hdr), 4971 (caddr_t )pd->hdr.icmp6); 4972 m_copyback(m, ipoff2, sizeof(h2_6), 4973 (caddr_t )&h2_6); 4974 break; 4975 #endif /* INET6 */ 4976 } 4977 } 4978 return (PF_PASS); 4979 break; 4980 } 4981 } 4982 } 4983 } 4984 4985 static int 4986 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 4987 struct mbuf *m, struct pf_pdesc *pd) 4988 { 4989 struct pf_state_peer *src, *dst; 4990 struct pf_state_key_cmp key; 4991 4992 bzero(&key, sizeof(key)); 4993 key.af = pd->af; 4994 key.proto = pd->proto; 4995 if (direction == PF_IN) { 4996 PF_ACPY(&key.addr[0], pd->src, key.af); 4997 PF_ACPY(&key.addr[1], pd->dst, key.af); 4998 key.port[0] = key.port[1] = 0; 4999 } else { 5000 PF_ACPY(&key.addr[1], pd->src, key.af); 5001 PF_ACPY(&key.addr[0], pd->dst, key.af); 5002 key.port[1] = key.port[0] = 0; 5003 } 5004 5005 STATE_LOOKUP(kif, &key, direction, *state, pd); 5006 5007 if (direction == (*state)->direction) { 5008 src = &(*state)->src; 5009 dst = &(*state)->dst; 5010 } else { 5011 src = &(*state)->dst; 5012 dst = &(*state)->src; 5013 } 5014 5015 /* update states */ 5016 if (src->state < PFOTHERS_SINGLE) 5017 src->state = PFOTHERS_SINGLE; 5018 if (dst->state == PFOTHERS_SINGLE) 5019 dst->state = PFOTHERS_MULTIPLE; 5020 5021 /* update expire time */ 5022 (*state)->expire = time_uptime; 5023 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5024 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5025 else 5026 (*state)->timeout = PFTM_OTHER_SINGLE; 5027 5028 /* translate source/destination address, if necessary */ 5029 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5030 struct pf_state_key *nk = (*state)->key[pd->didx]; 5031 5032 KASSERT(nk, ("%s: nk is null", __func__)); 5033 KASSERT(pd, ("%s: pd is null", __func__)); 5034 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5035 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5036 switch (pd->af) { 5037 #ifdef INET 5038 case AF_INET: 5039 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5040 pf_change_a(&pd->src->v4.s_addr, 5041 pd->ip_sum, 5042 nk->addr[pd->sidx].v4.s_addr, 5043 0); 5044 5045 5046 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5047 pf_change_a(&pd->dst->v4.s_addr, 5048 pd->ip_sum, 5049 nk->addr[pd->didx].v4.s_addr, 5050 0); 5051 5052 break; 5053 #endif /* INET */ 5054 #ifdef INET6 5055 case AF_INET6: 5056 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5057 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5058 5059 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5060 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5061 #endif /* INET6 */ 5062 } 5063 } 5064 return (PF_PASS); 5065 } 5066 5067 /* 5068 * ipoff and off are measured from the start of the mbuf chain. 5069 * h must be at "ipoff" on the mbuf chain. 5070 */ 5071 void * 5072 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5073 u_short *actionp, u_short *reasonp, sa_family_t af) 5074 { 5075 switch (af) { 5076 #ifdef INET 5077 case AF_INET: { 5078 struct ip *h = mtod(m, struct ip *); 5079 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5080 5081 if (fragoff) { 5082 if (fragoff >= len) 5083 ACTION_SET(actionp, PF_PASS); 5084 else { 5085 ACTION_SET(actionp, PF_DROP); 5086 REASON_SET(reasonp, PFRES_FRAG); 5087 } 5088 return (NULL); 5089 } 5090 if (m->m_pkthdr.len < off + len || 5091 ntohs(h->ip_len) < off + len) { 5092 ACTION_SET(actionp, PF_DROP); 5093 REASON_SET(reasonp, PFRES_SHORT); 5094 return (NULL); 5095 } 5096 break; 5097 } 5098 #endif /* INET */ 5099 #ifdef INET6 5100 case AF_INET6: { 5101 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5102 5103 if (m->m_pkthdr.len < off + len || 5104 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5105 (unsigned)(off + len)) { 5106 ACTION_SET(actionp, PF_DROP); 5107 REASON_SET(reasonp, PFRES_SHORT); 5108 return (NULL); 5109 } 5110 break; 5111 } 5112 #endif /* INET6 */ 5113 } 5114 m_copydata(m, off, len, p); 5115 return (p); 5116 } 5117 5118 int 5119 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5120 int rtableid) 5121 { 5122 #ifdef RADIX_MPATH 5123 struct radix_node_head *rnh; 5124 #endif 5125 struct sockaddr_in *dst; 5126 int ret = 1; 5127 int check_mpath; 5128 #ifdef INET6 5129 struct sockaddr_in6 *dst6; 5130 struct route_in6 ro; 5131 #else 5132 struct route ro; 5133 #endif 5134 struct radix_node *rn; 5135 struct rtentry *rt; 5136 struct ifnet *ifp; 5137 5138 check_mpath = 0; 5139 #ifdef RADIX_MPATH 5140 /* XXX: stick to table 0 for now */ 5141 rnh = rt_tables_get_rnh(0, af); 5142 if (rnh != NULL && rn_mpath_capable(rnh)) 5143 check_mpath = 1; 5144 #endif 5145 bzero(&ro, sizeof(ro)); 5146 switch (af) { 5147 case AF_INET: 5148 dst = satosin(&ro.ro_dst); 5149 dst->sin_family = AF_INET; 5150 dst->sin_len = sizeof(*dst); 5151 dst->sin_addr = addr->v4; 5152 break; 5153 #ifdef INET6 5154 case AF_INET6: 5155 /* 5156 * Skip check for addresses with embedded interface scope, 5157 * as they would always match anyway. 5158 */ 5159 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5160 goto out; 5161 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5162 dst6->sin6_family = AF_INET6; 5163 dst6->sin6_len = sizeof(*dst6); 5164 dst6->sin6_addr = addr->v6; 5165 break; 5166 #endif /* INET6 */ 5167 default: 5168 return (0); 5169 } 5170 5171 /* Skip checks for ipsec interfaces */ 5172 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5173 goto out; 5174 5175 switch (af) { 5176 #ifdef INET6 5177 case AF_INET6: 5178 in6_rtalloc_ign(&ro, 0, rtableid); 5179 break; 5180 #endif 5181 #ifdef INET 5182 case AF_INET: 5183 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5184 break; 5185 #endif 5186 default: 5187 rtalloc_ign((struct route *)&ro, 0); /* No/default FIB. */ 5188 break; 5189 } 5190 5191 if (ro.ro_rt != NULL) { 5192 /* No interface given, this is a no-route check */ 5193 if (kif == NULL) 5194 goto out; 5195 5196 if (kif->pfik_ifp == NULL) { 5197 ret = 0; 5198 goto out; 5199 } 5200 5201 /* Perform uRPF check if passed input interface */ 5202 ret = 0; 5203 rn = (struct radix_node *)ro.ro_rt; 5204 do { 5205 rt = (struct rtentry *)rn; 5206 ifp = rt->rt_ifp; 5207 5208 if (kif->pfik_ifp == ifp) 5209 ret = 1; 5210 #ifdef RADIX_MPATH 5211 rn = rn_mpath_next(rn); 5212 #endif 5213 } while (check_mpath == 1 && rn != NULL && ret == 0); 5214 } else 5215 ret = 0; 5216 out: 5217 if (ro.ro_rt != NULL) 5218 RTFREE(ro.ro_rt); 5219 return (ret); 5220 } 5221 5222 #ifdef INET 5223 static void 5224 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5225 struct pf_state *s, struct pf_pdesc *pd) 5226 { 5227 struct mbuf *m0, *m1; 5228 struct sockaddr_in dst; 5229 struct ip *ip; 5230 struct ifnet *ifp = NULL; 5231 struct pf_addr naddr; 5232 struct pf_src_node *sn = NULL; 5233 int error = 0; 5234 uint16_t ip_len, ip_off; 5235 5236 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5237 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5238 __func__)); 5239 5240 if ((pd->pf_mtag == NULL && 5241 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5242 pd->pf_mtag->routed++ > 3) { 5243 m0 = *m; 5244 *m = NULL; 5245 goto bad_locked; 5246 } 5247 5248 if (r->rt == PF_DUPTO) { 5249 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5250 if (s) 5251 PF_STATE_UNLOCK(s); 5252 return; 5253 } 5254 } else { 5255 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5256 if (s) 5257 PF_STATE_UNLOCK(s); 5258 return; 5259 } 5260 m0 = *m; 5261 } 5262 5263 ip = mtod(m0, struct ip *); 5264 5265 bzero(&dst, sizeof(dst)); 5266 dst.sin_family = AF_INET; 5267 dst.sin_len = sizeof(dst); 5268 dst.sin_addr = ip->ip_dst; 5269 5270 if (r->rt == PF_FASTROUTE) { 5271 struct rtentry *rt; 5272 5273 if (s) 5274 PF_STATE_UNLOCK(s); 5275 rt = rtalloc1_fib(sintosa(&dst), 0, 0, M_GETFIB(m0)); 5276 if (rt == NULL) { 5277 KMOD_IPSTAT_INC(ips_noroute); 5278 error = EHOSTUNREACH; 5279 goto bad; 5280 } 5281 5282 ifp = rt->rt_ifp; 5283 counter_u64_add(rt->rt_pksent, 1); 5284 5285 if (rt->rt_flags & RTF_GATEWAY) 5286 bcopy(satosin(rt->rt_gateway), &dst, sizeof(dst)); 5287 RTFREE_LOCKED(rt); 5288 } else { 5289 if (TAILQ_EMPTY(&r->rpool.list)) { 5290 DPFPRINTF(PF_DEBUG_URGENT, 5291 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5292 goto bad_locked; 5293 } 5294 if (s == NULL) { 5295 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5296 &naddr, NULL, &sn); 5297 if (!PF_AZERO(&naddr, AF_INET)) 5298 dst.sin_addr.s_addr = naddr.v4.s_addr; 5299 ifp = r->rpool.cur->kif ? 5300 r->rpool.cur->kif->pfik_ifp : NULL; 5301 } else { 5302 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5303 dst.sin_addr.s_addr = 5304 s->rt_addr.v4.s_addr; 5305 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5306 PF_STATE_UNLOCK(s); 5307 } 5308 } 5309 if (ifp == NULL) 5310 goto bad; 5311 5312 if (oifp != ifp) { 5313 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5314 goto bad; 5315 else if (m0 == NULL) 5316 goto done; 5317 if (m0->m_len < sizeof(struct ip)) { 5318 DPFPRINTF(PF_DEBUG_URGENT, 5319 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5320 goto bad; 5321 } 5322 ip = mtod(m0, struct ip *); 5323 } 5324 5325 if (ifp->if_flags & IFF_LOOPBACK) 5326 m0->m_flags |= M_SKIP_FIREWALL; 5327 5328 ip_len = ntohs(ip->ip_len); 5329 ip_off = ntohs(ip->ip_off); 5330 5331 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5332 m0->m_pkthdr.csum_flags |= CSUM_IP; 5333 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5334 in_delayed_cksum(m0); 5335 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5336 } 5337 #ifdef SCTP 5338 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5339 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5340 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5341 } 5342 #endif 5343 5344 /* 5345 * If small enough for interface, or the interface will take 5346 * care of the fragmentation for us, we can just send directly. 5347 */ 5348 if (ip_len <= ifp->if_mtu || 5349 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 || 5350 ((ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) { 5351 ip->ip_sum = 0; 5352 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5353 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5354 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5355 } 5356 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5357 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5358 goto done; 5359 } 5360 5361 /* Balk when DF bit is set or the interface didn't support TSO. */ 5362 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5363 error = EMSGSIZE; 5364 KMOD_IPSTAT_INC(ips_cantfrag); 5365 if (r->rt != PF_DUPTO) { 5366 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5367 ifp->if_mtu); 5368 goto done; 5369 } else 5370 goto bad; 5371 } 5372 5373 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5374 if (error) 5375 goto bad; 5376 5377 for (; m0; m0 = m1) { 5378 m1 = m0->m_nextpkt; 5379 m0->m_nextpkt = NULL; 5380 if (error == 0) { 5381 m_clrprotoflags(m0); 5382 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5383 } else 5384 m_freem(m0); 5385 } 5386 5387 if (error == 0) 5388 KMOD_IPSTAT_INC(ips_fragmented); 5389 5390 done: 5391 if (r->rt != PF_DUPTO) 5392 *m = NULL; 5393 return; 5394 5395 bad_locked: 5396 if (s) 5397 PF_STATE_UNLOCK(s); 5398 bad: 5399 m_freem(m0); 5400 goto done; 5401 } 5402 #endif /* INET */ 5403 5404 #ifdef INET6 5405 static void 5406 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5407 struct pf_state *s, struct pf_pdesc *pd) 5408 { 5409 struct mbuf *m0; 5410 struct sockaddr_in6 dst; 5411 struct ip6_hdr *ip6; 5412 struct ifnet *ifp = NULL; 5413 struct pf_addr naddr; 5414 struct pf_src_node *sn = NULL; 5415 5416 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5417 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5418 __func__)); 5419 5420 if ((pd->pf_mtag == NULL && 5421 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5422 pd->pf_mtag->routed++ > 3) { 5423 m0 = *m; 5424 *m = NULL; 5425 goto bad_locked; 5426 } 5427 5428 if (r->rt == PF_DUPTO) { 5429 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5430 if (s) 5431 PF_STATE_UNLOCK(s); 5432 return; 5433 } 5434 } else { 5435 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5436 if (s) 5437 PF_STATE_UNLOCK(s); 5438 return; 5439 } 5440 m0 = *m; 5441 } 5442 5443 ip6 = mtod(m0, struct ip6_hdr *); 5444 5445 bzero(&dst, sizeof(dst)); 5446 dst.sin6_family = AF_INET6; 5447 dst.sin6_len = sizeof(dst); 5448 dst.sin6_addr = ip6->ip6_dst; 5449 5450 /* Cheat. XXX why only in the v6 case??? */ 5451 if (r->rt == PF_FASTROUTE) { 5452 if (s) 5453 PF_STATE_UNLOCK(s); 5454 m0->m_flags |= M_SKIP_FIREWALL; 5455 ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL); 5456 return; 5457 } 5458 5459 if (TAILQ_EMPTY(&r->rpool.list)) { 5460 DPFPRINTF(PF_DEBUG_URGENT, 5461 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5462 goto bad_locked; 5463 } 5464 if (s == NULL) { 5465 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5466 &naddr, NULL, &sn); 5467 if (!PF_AZERO(&naddr, AF_INET6)) 5468 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5469 &naddr, AF_INET6); 5470 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5471 } else { 5472 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5473 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5474 &s->rt_addr, AF_INET6); 5475 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5476 } 5477 5478 if (s) 5479 PF_STATE_UNLOCK(s); 5480 5481 if (ifp == NULL) 5482 goto bad; 5483 5484 if (oifp != ifp) { 5485 if (pf_test6(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5486 goto bad; 5487 else if (m0 == NULL) 5488 goto done; 5489 if (m0->m_len < sizeof(struct ip6_hdr)) { 5490 DPFPRINTF(PF_DEBUG_URGENT, 5491 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5492 __func__)); 5493 goto bad; 5494 } 5495 ip6 = mtod(m0, struct ip6_hdr *); 5496 } 5497 5498 if (ifp->if_flags & IFF_LOOPBACK) 5499 m0->m_flags |= M_SKIP_FIREWALL; 5500 5501 /* 5502 * If the packet is too large for the outgoing interface, 5503 * send back an icmp6 error. 5504 */ 5505 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5506 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5507 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5508 nd6_output(ifp, ifp, m0, &dst, NULL); 5509 else { 5510 in6_ifstat_inc(ifp, ifs6_in_toobig); 5511 if (r->rt != PF_DUPTO) 5512 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5513 else 5514 goto bad; 5515 } 5516 5517 done: 5518 if (r->rt != PF_DUPTO) 5519 *m = NULL; 5520 return; 5521 5522 bad_locked: 5523 if (s) 5524 PF_STATE_UNLOCK(s); 5525 bad: 5526 m_freem(m0); 5527 goto done; 5528 } 5529 #endif /* INET6 */ 5530 5531 /* 5532 * FreeBSD supports cksum offloads for the following drivers. 5533 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5534 * ti(4), txp(4), xl(4) 5535 * 5536 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5537 * network driver performed cksum including pseudo header, need to verify 5538 * csum_data 5539 * CSUM_DATA_VALID : 5540 * network driver performed cksum, needs to additional pseudo header 5541 * cksum computation with partial csum_data(i.e. lack of H/W support for 5542 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5543 * 5544 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5545 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5546 * TCP/UDP layer. 5547 * Also, set csum_data to 0xffff to force cksum validation. 5548 */ 5549 static int 5550 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5551 { 5552 u_int16_t sum = 0; 5553 int hw_assist = 0; 5554 struct ip *ip; 5555 5556 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5557 return (1); 5558 if (m->m_pkthdr.len < off + len) 5559 return (1); 5560 5561 switch (p) { 5562 case IPPROTO_TCP: 5563 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5564 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5565 sum = m->m_pkthdr.csum_data; 5566 } else { 5567 ip = mtod(m, struct ip *); 5568 sum = in_pseudo(ip->ip_src.s_addr, 5569 ip->ip_dst.s_addr, htonl((u_short)len + 5570 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5571 } 5572 sum ^= 0xffff; 5573 ++hw_assist; 5574 } 5575 break; 5576 case IPPROTO_UDP: 5577 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5578 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5579 sum = m->m_pkthdr.csum_data; 5580 } else { 5581 ip = mtod(m, struct ip *); 5582 sum = in_pseudo(ip->ip_src.s_addr, 5583 ip->ip_dst.s_addr, htonl((u_short)len + 5584 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5585 } 5586 sum ^= 0xffff; 5587 ++hw_assist; 5588 } 5589 break; 5590 case IPPROTO_ICMP: 5591 #ifdef INET6 5592 case IPPROTO_ICMPV6: 5593 #endif /* INET6 */ 5594 break; 5595 default: 5596 return (1); 5597 } 5598 5599 if (!hw_assist) { 5600 switch (af) { 5601 case AF_INET: 5602 if (p == IPPROTO_ICMP) { 5603 if (m->m_len < off) 5604 return (1); 5605 m->m_data += off; 5606 m->m_len -= off; 5607 sum = in_cksum(m, len); 5608 m->m_data -= off; 5609 m->m_len += off; 5610 } else { 5611 if (m->m_len < sizeof(struct ip)) 5612 return (1); 5613 sum = in4_cksum(m, p, off, len); 5614 } 5615 break; 5616 #ifdef INET6 5617 case AF_INET6: 5618 if (m->m_len < sizeof(struct ip6_hdr)) 5619 return (1); 5620 sum = in6_cksum(m, p, off, len); 5621 break; 5622 #endif /* INET6 */ 5623 default: 5624 return (1); 5625 } 5626 } 5627 if (sum) { 5628 switch (p) { 5629 case IPPROTO_TCP: 5630 { 5631 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5632 break; 5633 } 5634 case IPPROTO_UDP: 5635 { 5636 KMOD_UDPSTAT_INC(udps_badsum); 5637 break; 5638 } 5639 #ifdef INET 5640 case IPPROTO_ICMP: 5641 { 5642 KMOD_ICMPSTAT_INC(icps_checksum); 5643 break; 5644 } 5645 #endif 5646 #ifdef INET6 5647 case IPPROTO_ICMPV6: 5648 { 5649 KMOD_ICMP6STAT_INC(icp6s_checksum); 5650 break; 5651 } 5652 #endif /* INET6 */ 5653 } 5654 return (1); 5655 } else { 5656 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5657 m->m_pkthdr.csum_flags |= 5658 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5659 m->m_pkthdr.csum_data = 0xffff; 5660 } 5661 } 5662 return (0); 5663 } 5664 5665 5666 #ifdef INET 5667 int 5668 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5669 { 5670 struct pfi_kif *kif; 5671 u_short action, reason = 0, log = 0; 5672 struct mbuf *m = *m0; 5673 struct ip *h = NULL; 5674 struct m_tag *ipfwtag; 5675 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5676 struct pf_state *s = NULL; 5677 struct pf_ruleset *ruleset = NULL; 5678 struct pf_pdesc pd; 5679 int off, dirndx, pqid = 0; 5680 5681 M_ASSERTPKTHDR(m); 5682 5683 if (!V_pf_status.running) 5684 return (PF_PASS); 5685 5686 memset(&pd, 0, sizeof(pd)); 5687 5688 kif = (struct pfi_kif *)ifp->if_pf_kif; 5689 5690 if (kif == NULL) { 5691 DPFPRINTF(PF_DEBUG_URGENT, 5692 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5693 return (PF_DROP); 5694 } 5695 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5696 return (PF_PASS); 5697 5698 if (m->m_flags & M_SKIP_FIREWALL) 5699 return (PF_PASS); 5700 5701 pd.pf_mtag = pf_find_mtag(m); 5702 5703 PF_RULES_RLOCK(); 5704 5705 if (ip_divert_ptr != NULL && 5706 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5707 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5708 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5709 if (pd.pf_mtag == NULL && 5710 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5711 action = PF_DROP; 5712 goto done; 5713 } 5714 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5715 m_tag_delete(m, ipfwtag); 5716 } 5717 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5718 m->m_flags |= M_FASTFWD_OURS; 5719 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5720 } 5721 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5722 /* We do IP header normalization and packet reassembly here */ 5723 action = PF_DROP; 5724 goto done; 5725 } 5726 m = *m0; /* pf_normalize messes with m0 */ 5727 h = mtod(m, struct ip *); 5728 5729 off = h->ip_hl << 2; 5730 if (off < (int)sizeof(struct ip)) { 5731 action = PF_DROP; 5732 REASON_SET(&reason, PFRES_SHORT); 5733 log = 1; 5734 goto done; 5735 } 5736 5737 pd.src = (struct pf_addr *)&h->ip_src; 5738 pd.dst = (struct pf_addr *)&h->ip_dst; 5739 pd.sport = pd.dport = NULL; 5740 pd.ip_sum = &h->ip_sum; 5741 pd.proto_sum = NULL; 5742 pd.proto = h->ip_p; 5743 pd.dir = dir; 5744 pd.sidx = (dir == PF_IN) ? 0 : 1; 5745 pd.didx = (dir == PF_IN) ? 1 : 0; 5746 pd.af = AF_INET; 5747 pd.tos = h->ip_tos; 5748 pd.tot_len = ntohs(h->ip_len); 5749 5750 /* handle fragments that didn't get reassembled by normalization */ 5751 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5752 action = pf_test_fragment(&r, dir, kif, m, h, 5753 &pd, &a, &ruleset); 5754 goto done; 5755 } 5756 5757 switch (h->ip_p) { 5758 5759 case IPPROTO_TCP: { 5760 struct tcphdr th; 5761 5762 pd.hdr.tcp = &th; 5763 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5764 &action, &reason, AF_INET)) { 5765 log = action != PF_PASS; 5766 goto done; 5767 } 5768 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5769 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5770 pqid = 1; 5771 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5772 if (action == PF_DROP) 5773 goto done; 5774 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5775 &reason); 5776 if (action == PF_PASS) { 5777 if (pfsync_update_state_ptr != NULL) 5778 pfsync_update_state_ptr(s); 5779 r = s->rule.ptr; 5780 a = s->anchor.ptr; 5781 log = s->log; 5782 } else if (s == NULL) 5783 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5784 &a, &ruleset, inp); 5785 break; 5786 } 5787 5788 case IPPROTO_UDP: { 5789 struct udphdr uh; 5790 5791 pd.hdr.udp = &uh; 5792 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5793 &action, &reason, AF_INET)) { 5794 log = action != PF_PASS; 5795 goto done; 5796 } 5797 if (uh.uh_dport == 0 || 5798 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5799 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5800 action = PF_DROP; 5801 REASON_SET(&reason, PFRES_SHORT); 5802 goto done; 5803 } 5804 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5805 if (action == PF_PASS) { 5806 if (pfsync_update_state_ptr != NULL) 5807 pfsync_update_state_ptr(s); 5808 r = s->rule.ptr; 5809 a = s->anchor.ptr; 5810 log = s->log; 5811 } else if (s == NULL) 5812 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5813 &a, &ruleset, inp); 5814 break; 5815 } 5816 5817 case IPPROTO_ICMP: { 5818 struct icmp ih; 5819 5820 pd.hdr.icmp = &ih; 5821 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 5822 &action, &reason, AF_INET)) { 5823 log = action != PF_PASS; 5824 goto done; 5825 } 5826 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 5827 &reason); 5828 if (action == PF_PASS) { 5829 if (pfsync_update_state_ptr != NULL) 5830 pfsync_update_state_ptr(s); 5831 r = s->rule.ptr; 5832 a = s->anchor.ptr; 5833 log = s->log; 5834 } else if (s == NULL) 5835 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5836 &a, &ruleset, inp); 5837 break; 5838 } 5839 5840 #ifdef INET6 5841 case IPPROTO_ICMPV6: { 5842 action = PF_DROP; 5843 DPFPRINTF(PF_DEBUG_MISC, 5844 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 5845 goto done; 5846 } 5847 #endif 5848 5849 default: 5850 action = pf_test_state_other(&s, dir, kif, m, &pd); 5851 if (action == PF_PASS) { 5852 if (pfsync_update_state_ptr != NULL) 5853 pfsync_update_state_ptr(s); 5854 r = s->rule.ptr; 5855 a = s->anchor.ptr; 5856 log = s->log; 5857 } else if (s == NULL) 5858 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5859 &a, &ruleset, inp); 5860 break; 5861 } 5862 5863 done: 5864 PF_RULES_RUNLOCK(); 5865 if (action == PF_PASS && h->ip_hl > 5 && 5866 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 5867 action = PF_DROP; 5868 REASON_SET(&reason, PFRES_IPOPTIONS); 5869 log = 1; 5870 DPFPRINTF(PF_DEBUG_MISC, 5871 ("pf: dropping packet with ip options\n")); 5872 } 5873 5874 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 5875 action = PF_DROP; 5876 REASON_SET(&reason, PFRES_MEMORY); 5877 } 5878 if (r->rtableid >= 0) 5879 M_SETFIB(m, r->rtableid); 5880 5881 #ifdef ALTQ 5882 if (action == PF_PASS && r->qid) { 5883 if (pd.pf_mtag == NULL && 5884 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5885 action = PF_DROP; 5886 REASON_SET(&reason, PFRES_MEMORY); 5887 } 5888 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 5889 pd.pf_mtag->qid = r->pqid; 5890 else 5891 pd.pf_mtag->qid = r->qid; 5892 /* add hints for ecn */ 5893 pd.pf_mtag->hdr = h; 5894 5895 } 5896 #endif /* ALTQ */ 5897 5898 /* 5899 * connections redirected to loopback should not match sockets 5900 * bound specifically to loopback due to security implications, 5901 * see tcp_input() and in_pcblookup_listen(). 5902 */ 5903 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 5904 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 5905 (s->nat_rule.ptr->action == PF_RDR || 5906 s->nat_rule.ptr->action == PF_BINAT) && 5907 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 5908 m->m_flags |= M_SKIP_FIREWALL; 5909 5910 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 5911 !PACKET_LOOPED(&pd)) { 5912 5913 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 5914 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 5915 if (ipfwtag != NULL) { 5916 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 5917 ntohs(r->divert.port); 5918 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 5919 5920 if (s) 5921 PF_STATE_UNLOCK(s); 5922 5923 m_tag_prepend(m, ipfwtag); 5924 if (m->m_flags & M_FASTFWD_OURS) { 5925 if (pd.pf_mtag == NULL && 5926 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5927 action = PF_DROP; 5928 REASON_SET(&reason, PFRES_MEMORY); 5929 log = 1; 5930 DPFPRINTF(PF_DEBUG_MISC, 5931 ("pf: failed to allocate tag\n")); 5932 } 5933 pd.pf_mtag->flags |= PF_FASTFWD_OURS_PRESENT; 5934 m->m_flags &= ~M_FASTFWD_OURS; 5935 } 5936 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 5937 *m0 = NULL; 5938 5939 return (action); 5940 } else { 5941 /* XXX: ipfw has the same behaviour! */ 5942 action = PF_DROP; 5943 REASON_SET(&reason, PFRES_MEMORY); 5944 log = 1; 5945 DPFPRINTF(PF_DEBUG_MISC, 5946 ("pf: failed to allocate divert tag\n")); 5947 } 5948 } 5949 5950 if (log) { 5951 struct pf_rule *lr; 5952 5953 if (s != NULL && s->nat_rule.ptr != NULL && 5954 s->nat_rule.ptr->log & PF_LOG_ALL) 5955 lr = s->nat_rule.ptr; 5956 else 5957 lr = r; 5958 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 5959 (s == NULL)); 5960 } 5961 5962 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 5963 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 5964 5965 if (action == PF_PASS || r->action == PF_DROP) { 5966 dirndx = (dir == PF_OUT); 5967 r->packets[dirndx]++; 5968 r->bytes[dirndx] += pd.tot_len; 5969 if (a != NULL) { 5970 a->packets[dirndx]++; 5971 a->bytes[dirndx] += pd.tot_len; 5972 } 5973 if (s != NULL) { 5974 if (s->nat_rule.ptr != NULL) { 5975 s->nat_rule.ptr->packets[dirndx]++; 5976 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 5977 } 5978 if (s->src_node != NULL) { 5979 s->src_node->packets[dirndx]++; 5980 s->src_node->bytes[dirndx] += pd.tot_len; 5981 } 5982 if (s->nat_src_node != NULL) { 5983 s->nat_src_node->packets[dirndx]++; 5984 s->nat_src_node->bytes[dirndx] += pd.tot_len; 5985 } 5986 dirndx = (dir == s->direction) ? 0 : 1; 5987 s->packets[dirndx]++; 5988 s->bytes[dirndx] += pd.tot_len; 5989 } 5990 tr = r; 5991 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 5992 if (nr != NULL && r == &V_pf_default_rule) 5993 tr = nr; 5994 if (tr->src.addr.type == PF_ADDR_TABLE) 5995 pfr_update_stats(tr->src.addr.p.tbl, 5996 (s == NULL) ? pd.src : 5997 &s->key[(s->direction == PF_IN)]-> 5998 addr[(s->direction == PF_OUT)], 5999 pd.af, pd.tot_len, dir == PF_OUT, 6000 r->action == PF_PASS, tr->src.neg); 6001 if (tr->dst.addr.type == PF_ADDR_TABLE) 6002 pfr_update_stats(tr->dst.addr.p.tbl, 6003 (s == NULL) ? pd.dst : 6004 &s->key[(s->direction == PF_IN)]-> 6005 addr[(s->direction == PF_IN)], 6006 pd.af, pd.tot_len, dir == PF_OUT, 6007 r->action == PF_PASS, tr->dst.neg); 6008 } 6009 6010 switch (action) { 6011 case PF_SYNPROXY_DROP: 6012 m_freem(*m0); 6013 case PF_DEFER: 6014 *m0 = NULL; 6015 action = PF_PASS; 6016 break; 6017 default: 6018 /* pf_route() returns unlocked. */ 6019 if (r->rt) { 6020 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 6021 return (action); 6022 } 6023 break; 6024 } 6025 if (s) 6026 PF_STATE_UNLOCK(s); 6027 6028 return (action); 6029 } 6030 #endif /* INET */ 6031 6032 #ifdef INET6 6033 int 6034 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6035 { 6036 struct pfi_kif *kif; 6037 u_short action, reason = 0, log = 0; 6038 struct mbuf *m = *m0, *n = NULL; 6039 struct ip6_hdr *h = NULL; 6040 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6041 struct pf_state *s = NULL; 6042 struct pf_ruleset *ruleset = NULL; 6043 struct pf_pdesc pd; 6044 int off, terminal = 0, dirndx, rh_cnt = 0; 6045 6046 M_ASSERTPKTHDR(m); 6047 6048 if (!V_pf_status.running) 6049 return (PF_PASS); 6050 6051 memset(&pd, 0, sizeof(pd)); 6052 pd.pf_mtag = pf_find_mtag(m); 6053 6054 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6055 return (PF_PASS); 6056 6057 kif = (struct pfi_kif *)ifp->if_pf_kif; 6058 if (kif == NULL) { 6059 DPFPRINTF(PF_DEBUG_URGENT, 6060 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6061 return (PF_DROP); 6062 } 6063 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6064 return (PF_PASS); 6065 6066 PF_RULES_RLOCK(); 6067 6068 /* We do IP header normalization and packet reassembly here */ 6069 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6070 action = PF_DROP; 6071 goto done; 6072 } 6073 m = *m0; /* pf_normalize messes with m0 */ 6074 h = mtod(m, struct ip6_hdr *); 6075 6076 #if 1 6077 /* 6078 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6079 * will do something bad, so drop the packet for now. 6080 */ 6081 if (htons(h->ip6_plen) == 0) { 6082 action = PF_DROP; 6083 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6084 goto done; 6085 } 6086 #endif 6087 6088 pd.src = (struct pf_addr *)&h->ip6_src; 6089 pd.dst = (struct pf_addr *)&h->ip6_dst; 6090 pd.sport = pd.dport = NULL; 6091 pd.ip_sum = NULL; 6092 pd.proto_sum = NULL; 6093 pd.dir = dir; 6094 pd.sidx = (dir == PF_IN) ? 0 : 1; 6095 pd.didx = (dir == PF_IN) ? 1 : 0; 6096 pd.af = AF_INET6; 6097 pd.tos = 0; 6098 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6099 6100 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6101 pd.proto = h->ip6_nxt; 6102 do { 6103 switch (pd.proto) { 6104 case IPPROTO_FRAGMENT: 6105 action = pf_test_fragment(&r, dir, kif, m, h, 6106 &pd, &a, &ruleset); 6107 if (action == PF_DROP) 6108 REASON_SET(&reason, PFRES_FRAG); 6109 goto done; 6110 case IPPROTO_ROUTING: { 6111 struct ip6_rthdr rthdr; 6112 6113 if (rh_cnt++) { 6114 DPFPRINTF(PF_DEBUG_MISC, 6115 ("pf: IPv6 more than one rthdr\n")); 6116 action = PF_DROP; 6117 REASON_SET(&reason, PFRES_IPOPTIONS); 6118 log = 1; 6119 goto done; 6120 } 6121 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6122 &reason, pd.af)) { 6123 DPFPRINTF(PF_DEBUG_MISC, 6124 ("pf: IPv6 short rthdr\n")); 6125 action = PF_DROP; 6126 REASON_SET(&reason, PFRES_SHORT); 6127 log = 1; 6128 goto done; 6129 } 6130 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6131 DPFPRINTF(PF_DEBUG_MISC, 6132 ("pf: IPv6 rthdr0\n")); 6133 action = PF_DROP; 6134 REASON_SET(&reason, PFRES_IPOPTIONS); 6135 log = 1; 6136 goto done; 6137 } 6138 /* FALLTHROUGH */ 6139 } 6140 case IPPROTO_AH: 6141 case IPPROTO_HOPOPTS: 6142 case IPPROTO_DSTOPTS: { 6143 /* get next header and header length */ 6144 struct ip6_ext opt6; 6145 6146 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6147 NULL, &reason, pd.af)) { 6148 DPFPRINTF(PF_DEBUG_MISC, 6149 ("pf: IPv6 short opt\n")); 6150 action = PF_DROP; 6151 log = 1; 6152 goto done; 6153 } 6154 if (pd.proto == IPPROTO_AH) 6155 off += (opt6.ip6e_len + 2) * 4; 6156 else 6157 off += (opt6.ip6e_len + 1) * 8; 6158 pd.proto = opt6.ip6e_nxt; 6159 /* goto the next header */ 6160 break; 6161 } 6162 default: 6163 terminal++; 6164 break; 6165 } 6166 } while (!terminal); 6167 6168 /* if there's no routing header, use unmodified mbuf for checksumming */ 6169 if (!n) 6170 n = m; 6171 6172 switch (pd.proto) { 6173 6174 case IPPROTO_TCP: { 6175 struct tcphdr th; 6176 6177 pd.hdr.tcp = &th; 6178 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6179 &action, &reason, AF_INET6)) { 6180 log = action != PF_PASS; 6181 goto done; 6182 } 6183 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6184 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6185 if (action == PF_DROP) 6186 goto done; 6187 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6188 &reason); 6189 if (action == PF_PASS) { 6190 if (pfsync_update_state_ptr != NULL) 6191 pfsync_update_state_ptr(s); 6192 r = s->rule.ptr; 6193 a = s->anchor.ptr; 6194 log = s->log; 6195 } else if (s == NULL) 6196 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6197 &a, &ruleset, inp); 6198 break; 6199 } 6200 6201 case IPPROTO_UDP: { 6202 struct udphdr uh; 6203 6204 pd.hdr.udp = &uh; 6205 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6206 &action, &reason, AF_INET6)) { 6207 log = action != PF_PASS; 6208 goto done; 6209 } 6210 if (uh.uh_dport == 0 || 6211 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6212 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6213 action = PF_DROP; 6214 REASON_SET(&reason, PFRES_SHORT); 6215 goto done; 6216 } 6217 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6218 if (action == PF_PASS) { 6219 if (pfsync_update_state_ptr != NULL) 6220 pfsync_update_state_ptr(s); 6221 r = s->rule.ptr; 6222 a = s->anchor.ptr; 6223 log = s->log; 6224 } else if (s == NULL) 6225 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6226 &a, &ruleset, inp); 6227 break; 6228 } 6229 6230 case IPPROTO_ICMP: { 6231 action = PF_DROP; 6232 DPFPRINTF(PF_DEBUG_MISC, 6233 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6234 goto done; 6235 } 6236 6237 case IPPROTO_ICMPV6: { 6238 struct icmp6_hdr ih; 6239 6240 pd.hdr.icmp6 = &ih; 6241 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6242 &action, &reason, AF_INET6)) { 6243 log = action != PF_PASS; 6244 goto done; 6245 } 6246 action = pf_test_state_icmp(&s, dir, kif, 6247 m, off, h, &pd, &reason); 6248 if (action == PF_PASS) { 6249 if (pfsync_update_state_ptr != NULL) 6250 pfsync_update_state_ptr(s); 6251 r = s->rule.ptr; 6252 a = s->anchor.ptr; 6253 log = s->log; 6254 } else if (s == NULL) 6255 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6256 &a, &ruleset, inp); 6257 break; 6258 } 6259 6260 default: 6261 action = pf_test_state_other(&s, dir, kif, m, &pd); 6262 if (action == PF_PASS) { 6263 if (pfsync_update_state_ptr != NULL) 6264 pfsync_update_state_ptr(s); 6265 r = s->rule.ptr; 6266 a = s->anchor.ptr; 6267 log = s->log; 6268 } else if (s == NULL) 6269 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6270 &a, &ruleset, inp); 6271 break; 6272 } 6273 6274 done: 6275 PF_RULES_RUNLOCK(); 6276 if (n != m) { 6277 m_freem(n); 6278 n = NULL; 6279 } 6280 6281 /* handle dangerous IPv6 extension headers. */ 6282 if (action == PF_PASS && rh_cnt && 6283 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6284 action = PF_DROP; 6285 REASON_SET(&reason, PFRES_IPOPTIONS); 6286 log = 1; 6287 DPFPRINTF(PF_DEBUG_MISC, 6288 ("pf: dropping packet with dangerous v6 headers\n")); 6289 } 6290 6291 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6292 action = PF_DROP; 6293 REASON_SET(&reason, PFRES_MEMORY); 6294 } 6295 if (r->rtableid >= 0) 6296 M_SETFIB(m, r->rtableid); 6297 6298 #ifdef ALTQ 6299 if (action == PF_PASS && r->qid) { 6300 if (pd.pf_mtag == NULL && 6301 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6302 action = PF_DROP; 6303 REASON_SET(&reason, PFRES_MEMORY); 6304 } 6305 if (pd.tos & IPTOS_LOWDELAY) 6306 pd.pf_mtag->qid = r->pqid; 6307 else 6308 pd.pf_mtag->qid = r->qid; 6309 /* add hints for ecn */ 6310 pd.pf_mtag->hdr = h; 6311 } 6312 #endif /* ALTQ */ 6313 6314 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6315 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6316 (s->nat_rule.ptr->action == PF_RDR || 6317 s->nat_rule.ptr->action == PF_BINAT) && 6318 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6319 m->m_flags |= M_SKIP_FIREWALL; 6320 6321 /* XXX: Anybody working on it?! */ 6322 if (r->divert.port) 6323 printf("pf: divert(9) is not supported for IPv6\n"); 6324 6325 if (log) { 6326 struct pf_rule *lr; 6327 6328 if (s != NULL && s->nat_rule.ptr != NULL && 6329 s->nat_rule.ptr->log & PF_LOG_ALL) 6330 lr = s->nat_rule.ptr; 6331 else 6332 lr = r; 6333 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6334 &pd, (s == NULL)); 6335 } 6336 6337 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6338 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6339 6340 if (action == PF_PASS || r->action == PF_DROP) { 6341 dirndx = (dir == PF_OUT); 6342 r->packets[dirndx]++; 6343 r->bytes[dirndx] += pd.tot_len; 6344 if (a != NULL) { 6345 a->packets[dirndx]++; 6346 a->bytes[dirndx] += pd.tot_len; 6347 } 6348 if (s != NULL) { 6349 if (s->nat_rule.ptr != NULL) { 6350 s->nat_rule.ptr->packets[dirndx]++; 6351 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6352 } 6353 if (s->src_node != NULL) { 6354 s->src_node->packets[dirndx]++; 6355 s->src_node->bytes[dirndx] += pd.tot_len; 6356 } 6357 if (s->nat_src_node != NULL) { 6358 s->nat_src_node->packets[dirndx]++; 6359 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6360 } 6361 dirndx = (dir == s->direction) ? 0 : 1; 6362 s->packets[dirndx]++; 6363 s->bytes[dirndx] += pd.tot_len; 6364 } 6365 tr = r; 6366 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6367 if (nr != NULL && r == &V_pf_default_rule) 6368 tr = nr; 6369 if (tr->src.addr.type == PF_ADDR_TABLE) 6370 pfr_update_stats(tr->src.addr.p.tbl, 6371 (s == NULL) ? pd.src : 6372 &s->key[(s->direction == PF_IN)]->addr[0], 6373 pd.af, pd.tot_len, dir == PF_OUT, 6374 r->action == PF_PASS, tr->src.neg); 6375 if (tr->dst.addr.type == PF_ADDR_TABLE) 6376 pfr_update_stats(tr->dst.addr.p.tbl, 6377 (s == NULL) ? pd.dst : 6378 &s->key[(s->direction == PF_IN)]->addr[1], 6379 pd.af, pd.tot_len, dir == PF_OUT, 6380 r->action == PF_PASS, tr->dst.neg); 6381 } 6382 6383 switch (action) { 6384 case PF_SYNPROXY_DROP: 6385 m_freem(*m0); 6386 case PF_DEFER: 6387 *m0 = NULL; 6388 action = PF_PASS; 6389 break; 6390 default: 6391 /* pf_route6() returns unlocked. */ 6392 if (r->rt) { 6393 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6394 return (action); 6395 } 6396 break; 6397 } 6398 6399 if (s) 6400 PF_STATE_UNLOCK(s); 6401 6402 return (action); 6403 } 6404 #endif /* INET6 */ 6405