1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_bpf.h" 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_pf.h" 47 #include "opt_sctp.h" 48 49 #include <sys/param.h> 50 #include <sys/bus.h> 51 #include <sys/endian.h> 52 #include <sys/gsb_crc32.h> 53 #include <sys/hash.h> 54 #include <sys/interrupt.h> 55 #include <sys/kernel.h> 56 #include <sys/kthread.h> 57 #include <sys/limits.h> 58 #include <sys/mbuf.h> 59 #include <sys/md5.h> 60 #include <sys/random.h> 61 #include <sys/refcount.h> 62 #include <sys/socket.h> 63 #include <sys/sysctl.h> 64 #include <sys/taskqueue.h> 65 #include <sys/ucred.h> 66 67 #include <net/if.h> 68 #include <net/if_var.h> 69 #include <net/if_types.h> 70 #include <net/if_vlan_var.h> 71 #include <net/route.h> 72 #include <net/route/nhop.h> 73 #include <net/vnet.h> 74 75 #include <net/pfil.h> 76 #include <net/pfvar.h> 77 #include <net/if_pflog.h> 78 #include <net/if_pfsync.h> 79 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_var.h> 82 #include <netinet/in_fib.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_fw.h> 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp.h> 89 #include <netinet/tcp_fsm.h> 90 #include <netinet/tcp_seq.h> 91 #include <netinet/tcp_timer.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet/udp.h> 94 #include <netinet/udp_var.h> 95 96 #ifdef INET6 97 #include <netinet/ip6.h> 98 #include <netinet/icmp6.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/ip6_var.h> 101 #include <netinet6/in6_pcb.h> 102 #include <netinet6/in6_fib.h> 103 #include <netinet6/scope6_var.h> 104 #endif /* INET6 */ 105 106 #if defined(SCTP) || defined(SCTP_SUPPORT) 107 #include <netinet/sctp_crc32.h> 108 #endif 109 110 #include <machine/in_cksum.h> 111 #include <security/mac/mac_framework.h> 112 113 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 114 115 /* 116 * Global variables 117 */ 118 119 /* state tables */ 120 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 121 VNET_DEFINE(struct pf_palist, pf_pabuf); 122 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 123 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 124 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 125 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 126 VNET_DEFINE(struct pf_kstatus, pf_status); 127 128 VNET_DEFINE(u_int32_t, ticket_altqs_active); 129 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 130 VNET_DEFINE(int, altqs_inactive_open); 131 VNET_DEFINE(u_int32_t, ticket_pabuf); 132 133 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 134 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 135 VNET_DEFINE(u_char, pf_tcp_secret[16]); 136 #define V_pf_tcp_secret VNET(pf_tcp_secret) 137 VNET_DEFINE(int, pf_tcp_secret_init); 138 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 139 VNET_DEFINE(int, pf_tcp_iss_off); 140 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 141 VNET_DECLARE(int, pf_vnet_active); 142 #define V_pf_vnet_active VNET(pf_vnet_active) 143 144 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 145 #define V_pf_purge_idx VNET(pf_purge_idx) 146 147 /* 148 * Queue for pf_intr() sends. 149 */ 150 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 151 struct pf_send_entry { 152 STAILQ_ENTRY(pf_send_entry) pfse_next; 153 struct mbuf *pfse_m; 154 enum { 155 PFSE_IP, 156 PFSE_IP6, 157 PFSE_ICMP, 158 PFSE_ICMP6, 159 } pfse_type; 160 struct { 161 int type; 162 int code; 163 int mtu; 164 } icmpopts; 165 }; 166 167 STAILQ_HEAD(pf_send_head, pf_send_entry); 168 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 169 #define V_pf_sendqueue VNET(pf_sendqueue) 170 171 static struct mtx pf_sendqueue_mtx; 172 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 173 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 174 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 175 176 /* 177 * Queue for pf_overload_task() tasks. 178 */ 179 struct pf_overload_entry { 180 SLIST_ENTRY(pf_overload_entry) next; 181 struct pf_addr addr; 182 sa_family_t af; 183 uint8_t dir; 184 struct pf_rule *rule; 185 }; 186 187 SLIST_HEAD(pf_overload_head, pf_overload_entry); 188 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 189 #define V_pf_overloadqueue VNET(pf_overloadqueue) 190 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 191 #define V_pf_overloadtask VNET(pf_overloadtask) 192 193 static struct mtx pf_overloadqueue_mtx; 194 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 195 "pf overload/flush queue", MTX_DEF); 196 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 197 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 198 199 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 200 struct mtx pf_unlnkdrules_mtx; 201 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 202 MTX_DEF); 203 204 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 205 #define V_pf_sources_z VNET(pf_sources_z) 206 uma_zone_t pf_mtag_z; 207 VNET_DEFINE(uma_zone_t, pf_state_z); 208 VNET_DEFINE(uma_zone_t, pf_state_key_z); 209 210 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 211 #define PFID_CPUBITS 8 212 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 213 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 214 #define PFID_MAXID (~PFID_CPUMASK) 215 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 216 217 static void pf_src_tree_remove_state(struct pf_state *); 218 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 219 u_int32_t); 220 static void pf_add_threshold(struct pf_threshold *); 221 static int pf_check_threshold(struct pf_threshold *); 222 223 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 224 u_int16_t *, u_int16_t *, struct pf_addr *, 225 u_int16_t, u_int8_t, sa_family_t); 226 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 227 struct tcphdr *, struct pf_state_peer *); 228 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 229 struct pf_addr *, struct pf_addr *, u_int16_t, 230 u_int16_t *, u_int16_t *, u_int16_t *, 231 u_int16_t *, u_int8_t, sa_family_t); 232 static void pf_send_tcp(struct mbuf *, 233 const struct pf_rule *, sa_family_t, 234 const struct pf_addr *, const struct pf_addr *, 235 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 236 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 237 u_int16_t, struct ifnet *); 238 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 239 sa_family_t, struct pf_rule *); 240 static void pf_detach_state(struct pf_state *); 241 static int pf_state_key_attach(struct pf_state_key *, 242 struct pf_state_key *, struct pf_state *); 243 static void pf_state_key_detach(struct pf_state *, int); 244 static int pf_state_key_ctor(void *, int, void *, int); 245 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 246 static int pf_test_rule(struct pf_rule **, struct pf_state **, 247 int, struct pfi_kif *, struct mbuf *, int, 248 struct pf_pdesc *, struct pf_rule **, 249 struct pf_ruleset **, struct inpcb *); 250 static int pf_create_state(struct pf_rule *, struct pf_rule *, 251 struct pf_rule *, struct pf_pdesc *, 252 struct pf_src_node *, struct pf_state_key *, 253 struct pf_state_key *, struct mbuf *, int, 254 u_int16_t, u_int16_t, int *, struct pfi_kif *, 255 struct pf_state **, int, u_int16_t, u_int16_t, 256 int); 257 static int pf_test_fragment(struct pf_rule **, int, 258 struct pfi_kif *, struct mbuf *, void *, 259 struct pf_pdesc *, struct pf_rule **, 260 struct pf_ruleset **); 261 static int pf_tcp_track_full(struct pf_state_peer *, 262 struct pf_state_peer *, struct pf_state **, 263 struct pfi_kif *, struct mbuf *, int, 264 struct pf_pdesc *, u_short *, int *); 265 static int pf_tcp_track_sloppy(struct pf_state_peer *, 266 struct pf_state_peer *, struct pf_state **, 267 struct pf_pdesc *, u_short *); 268 static int pf_test_state_tcp(struct pf_state **, int, 269 struct pfi_kif *, struct mbuf *, int, 270 void *, struct pf_pdesc *, u_short *); 271 static int pf_test_state_udp(struct pf_state **, int, 272 struct pfi_kif *, struct mbuf *, int, 273 void *, struct pf_pdesc *); 274 static int pf_test_state_icmp(struct pf_state **, int, 275 struct pfi_kif *, struct mbuf *, int, 276 void *, struct pf_pdesc *, u_short *); 277 static int pf_test_state_other(struct pf_state **, int, 278 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 279 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 280 sa_family_t); 281 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 282 sa_family_t); 283 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 284 int, u_int16_t); 285 static int pf_check_proto_cksum(struct mbuf *, int, int, 286 u_int8_t, sa_family_t); 287 static void pf_print_state_parts(struct pf_state *, 288 struct pf_state_key *, struct pf_state_key *); 289 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 290 struct pf_addr_wrap *); 291 static struct pf_state *pf_find_state(struct pfi_kif *, 292 struct pf_state_key_cmp *, u_int); 293 static int pf_src_connlimit(struct pf_state **); 294 static void pf_overload_task(void *v, int pending); 295 static int pf_insert_src_node(struct pf_src_node **, 296 struct pf_rule *, struct pf_addr *, sa_family_t); 297 static u_int pf_purge_expired_states(u_int, int); 298 static void pf_purge_unlinked_rules(void); 299 static int pf_mtag_uminit(void *, int, int); 300 static void pf_mtag_free(struct m_tag *); 301 #ifdef INET 302 static void pf_route(struct mbuf **, struct pf_rule *, int, 303 struct ifnet *, struct pf_state *, 304 struct pf_pdesc *, struct inpcb *); 305 #endif /* INET */ 306 #ifdef INET6 307 static void pf_change_a6(struct pf_addr *, u_int16_t *, 308 struct pf_addr *, u_int8_t); 309 static void pf_route6(struct mbuf **, struct pf_rule *, int, 310 struct ifnet *, struct pf_state *, 311 struct pf_pdesc *, struct inpcb *); 312 #endif /* INET6 */ 313 314 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 315 316 extern int pf_end_threads; 317 extern struct proc *pf_purge_proc; 318 319 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 320 321 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 322 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 323 324 #define STATE_LOOKUP(i, k, d, s, pd) \ 325 do { \ 326 (s) = pf_find_state((i), (k), (d)); \ 327 if ((s) == NULL) \ 328 return (PF_DROP); \ 329 if (PACKET_LOOPED(pd)) \ 330 return (PF_PASS); \ 331 if ((d) == PF_OUT && \ 332 (((s)->rule.ptr->rt == PF_ROUTETO && \ 333 (s)->rule.ptr->direction == PF_OUT) || \ 334 ((s)->rule.ptr->rt == PF_REPLYTO && \ 335 (s)->rule.ptr->direction == PF_IN)) && \ 336 (s)->rt_kif != NULL && \ 337 (s)->rt_kif != (i)) \ 338 return (PF_PASS); \ 339 } while (0) 340 341 #define BOUND_IFACE(r, k) \ 342 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 343 344 #define STATE_INC_COUNTERS(s) \ 345 do { \ 346 counter_u64_add(s->rule.ptr->states_cur, 1); \ 347 counter_u64_add(s->rule.ptr->states_tot, 1); \ 348 if (s->anchor.ptr != NULL) { \ 349 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 350 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 351 } \ 352 if (s->nat_rule.ptr != NULL) { \ 353 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 354 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 355 } \ 356 } while (0) 357 358 #define STATE_DEC_COUNTERS(s) \ 359 do { \ 360 if (s->nat_rule.ptr != NULL) \ 361 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 362 if (s->anchor.ptr != NULL) \ 363 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 364 counter_u64_add(s->rule.ptr->states_cur, -1); \ 365 } while (0) 366 367 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 368 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 369 VNET_DEFINE(struct pf_idhash *, pf_idhash); 370 VNET_DEFINE(struct pf_srchash *, pf_srchash); 371 372 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 373 "pf(4)"); 374 375 u_long pf_hashmask; 376 u_long pf_srchashmask; 377 static u_long pf_hashsize; 378 static u_long pf_srchashsize; 379 u_long pf_ioctl_maxcount = 65535; 380 381 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 382 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 383 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 384 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 385 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RW, 386 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 387 388 VNET_DEFINE(void *, pf_swi_cookie); 389 390 VNET_DEFINE(uint32_t, pf_hashseed); 391 #define V_pf_hashseed VNET(pf_hashseed) 392 393 int 394 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 395 { 396 397 switch (af) { 398 #ifdef INET 399 case AF_INET: 400 if (a->addr32[0] > b->addr32[0]) 401 return (1); 402 if (a->addr32[0] < b->addr32[0]) 403 return (-1); 404 break; 405 #endif /* INET */ 406 #ifdef INET6 407 case AF_INET6: 408 if (a->addr32[3] > b->addr32[3]) 409 return (1); 410 if (a->addr32[3] < b->addr32[3]) 411 return (-1); 412 if (a->addr32[2] > b->addr32[2]) 413 return (1); 414 if (a->addr32[2] < b->addr32[2]) 415 return (-1); 416 if (a->addr32[1] > b->addr32[1]) 417 return (1); 418 if (a->addr32[1] < b->addr32[1]) 419 return (-1); 420 if (a->addr32[0] > b->addr32[0]) 421 return (1); 422 if (a->addr32[0] < b->addr32[0]) 423 return (-1); 424 break; 425 #endif /* INET6 */ 426 default: 427 panic("%s: unknown address family %u", __func__, af); 428 } 429 return (0); 430 } 431 432 static __inline uint32_t 433 pf_hashkey(struct pf_state_key *sk) 434 { 435 uint32_t h; 436 437 h = murmur3_32_hash32((uint32_t *)sk, 438 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 439 V_pf_hashseed); 440 441 return (h & pf_hashmask); 442 } 443 444 static __inline uint32_t 445 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 446 { 447 uint32_t h; 448 449 switch (af) { 450 case AF_INET: 451 h = murmur3_32_hash32((uint32_t *)&addr->v4, 452 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 453 break; 454 case AF_INET6: 455 h = murmur3_32_hash32((uint32_t *)&addr->v6, 456 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 457 break; 458 default: 459 panic("%s: unknown address family %u", __func__, af); 460 } 461 462 return (h & pf_srchashmask); 463 } 464 465 #ifdef ALTQ 466 static int 467 pf_state_hash(struct pf_state *s) 468 { 469 u_int32_t hv = (intptr_t)s / sizeof(*s); 470 471 hv ^= crc32(&s->src, sizeof(s->src)); 472 hv ^= crc32(&s->dst, sizeof(s->dst)); 473 if (hv == 0) 474 hv = 1; 475 return (hv); 476 } 477 #endif 478 479 #ifdef INET6 480 void 481 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 482 { 483 switch (af) { 484 #ifdef INET 485 case AF_INET: 486 dst->addr32[0] = src->addr32[0]; 487 break; 488 #endif /* INET */ 489 case AF_INET6: 490 dst->addr32[0] = src->addr32[0]; 491 dst->addr32[1] = src->addr32[1]; 492 dst->addr32[2] = src->addr32[2]; 493 dst->addr32[3] = src->addr32[3]; 494 break; 495 } 496 } 497 #endif /* INET6 */ 498 499 static void 500 pf_init_threshold(struct pf_threshold *threshold, 501 u_int32_t limit, u_int32_t seconds) 502 { 503 threshold->limit = limit * PF_THRESHOLD_MULT; 504 threshold->seconds = seconds; 505 threshold->count = 0; 506 threshold->last = time_uptime; 507 } 508 509 static void 510 pf_add_threshold(struct pf_threshold *threshold) 511 { 512 u_int32_t t = time_uptime, diff = t - threshold->last; 513 514 if (diff >= threshold->seconds) 515 threshold->count = 0; 516 else 517 threshold->count -= threshold->count * diff / 518 threshold->seconds; 519 threshold->count += PF_THRESHOLD_MULT; 520 threshold->last = t; 521 } 522 523 static int 524 pf_check_threshold(struct pf_threshold *threshold) 525 { 526 return (threshold->count > threshold->limit); 527 } 528 529 static int 530 pf_src_connlimit(struct pf_state **state) 531 { 532 struct pf_overload_entry *pfoe; 533 int bad = 0; 534 535 PF_STATE_LOCK_ASSERT(*state); 536 537 (*state)->src_node->conn++; 538 (*state)->src.tcp_est = 1; 539 pf_add_threshold(&(*state)->src_node->conn_rate); 540 541 if ((*state)->rule.ptr->max_src_conn && 542 (*state)->rule.ptr->max_src_conn < 543 (*state)->src_node->conn) { 544 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 545 bad++; 546 } 547 548 if ((*state)->rule.ptr->max_src_conn_rate.limit && 549 pf_check_threshold(&(*state)->src_node->conn_rate)) { 550 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 551 bad++; 552 } 553 554 if (!bad) 555 return (0); 556 557 /* Kill this state. */ 558 (*state)->timeout = PFTM_PURGE; 559 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 560 561 if ((*state)->rule.ptr->overload_tbl == NULL) 562 return (1); 563 564 /* Schedule overloading and flushing task. */ 565 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 566 if (pfoe == NULL) 567 return (1); /* too bad :( */ 568 569 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 570 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 571 pfoe->rule = (*state)->rule.ptr; 572 pfoe->dir = (*state)->direction; 573 PF_OVERLOADQ_LOCK(); 574 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 575 PF_OVERLOADQ_UNLOCK(); 576 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 577 578 return (1); 579 } 580 581 static void 582 pf_overload_task(void *v, int pending) 583 { 584 struct pf_overload_head queue; 585 struct pfr_addr p; 586 struct pf_overload_entry *pfoe, *pfoe1; 587 uint32_t killed = 0; 588 589 CURVNET_SET((struct vnet *)v); 590 591 PF_OVERLOADQ_LOCK(); 592 queue = V_pf_overloadqueue; 593 SLIST_INIT(&V_pf_overloadqueue); 594 PF_OVERLOADQ_UNLOCK(); 595 596 bzero(&p, sizeof(p)); 597 SLIST_FOREACH(pfoe, &queue, next) { 598 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 599 if (V_pf_status.debug >= PF_DEBUG_MISC) { 600 printf("%s: blocking address ", __func__); 601 pf_print_host(&pfoe->addr, 0, pfoe->af); 602 printf("\n"); 603 } 604 605 p.pfra_af = pfoe->af; 606 switch (pfoe->af) { 607 #ifdef INET 608 case AF_INET: 609 p.pfra_net = 32; 610 p.pfra_ip4addr = pfoe->addr.v4; 611 break; 612 #endif 613 #ifdef INET6 614 case AF_INET6: 615 p.pfra_net = 128; 616 p.pfra_ip6addr = pfoe->addr.v6; 617 break; 618 #endif 619 } 620 621 PF_RULES_WLOCK(); 622 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 623 PF_RULES_WUNLOCK(); 624 } 625 626 /* 627 * Remove those entries, that don't need flushing. 628 */ 629 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 630 if (pfoe->rule->flush == 0) { 631 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 632 free(pfoe, M_PFTEMP); 633 } else 634 counter_u64_add( 635 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 636 637 /* If nothing to flush, return. */ 638 if (SLIST_EMPTY(&queue)) { 639 CURVNET_RESTORE(); 640 return; 641 } 642 643 for (int i = 0; i <= pf_hashmask; i++) { 644 struct pf_idhash *ih = &V_pf_idhash[i]; 645 struct pf_state_key *sk; 646 struct pf_state *s; 647 648 PF_HASHROW_LOCK(ih); 649 LIST_FOREACH(s, &ih->states, entry) { 650 sk = s->key[PF_SK_WIRE]; 651 SLIST_FOREACH(pfoe, &queue, next) 652 if (sk->af == pfoe->af && 653 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 654 pfoe->rule == s->rule.ptr) && 655 ((pfoe->dir == PF_OUT && 656 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 657 (pfoe->dir == PF_IN && 658 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 659 s->timeout = PFTM_PURGE; 660 s->src.state = s->dst.state = TCPS_CLOSED; 661 killed++; 662 } 663 } 664 PF_HASHROW_UNLOCK(ih); 665 } 666 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 667 free(pfoe, M_PFTEMP); 668 if (V_pf_status.debug >= PF_DEBUG_MISC) 669 printf("%s: %u states killed", __func__, killed); 670 671 CURVNET_RESTORE(); 672 } 673 674 /* 675 * Can return locked on failure, so that we can consistently 676 * allocate and insert a new one. 677 */ 678 struct pf_src_node * 679 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 680 int returnlocked) 681 { 682 struct pf_srchash *sh; 683 struct pf_src_node *n; 684 685 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 686 687 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 688 PF_HASHROW_LOCK(sh); 689 LIST_FOREACH(n, &sh->nodes, entry) 690 if (n->rule.ptr == rule && n->af == af && 691 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 692 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 693 break; 694 if (n != NULL) { 695 n->states++; 696 PF_HASHROW_UNLOCK(sh); 697 } else if (returnlocked == 0) 698 PF_HASHROW_UNLOCK(sh); 699 700 return (n); 701 } 702 703 static int 704 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 705 struct pf_addr *src, sa_family_t af) 706 { 707 708 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 709 rule->rpool.opts & PF_POOL_STICKYADDR), 710 ("%s for non-tracking rule %p", __func__, rule)); 711 712 if (*sn == NULL) 713 *sn = pf_find_src_node(src, rule, af, 1); 714 715 if (*sn == NULL) { 716 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 717 718 PF_HASHROW_ASSERT(sh); 719 720 if (!rule->max_src_nodes || 721 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 722 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 723 else 724 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 725 1); 726 if ((*sn) == NULL) { 727 PF_HASHROW_UNLOCK(sh); 728 return (-1); 729 } 730 731 pf_init_threshold(&(*sn)->conn_rate, 732 rule->max_src_conn_rate.limit, 733 rule->max_src_conn_rate.seconds); 734 735 (*sn)->af = af; 736 (*sn)->rule.ptr = rule; 737 PF_ACPY(&(*sn)->addr, src, af); 738 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 739 (*sn)->creation = time_uptime; 740 (*sn)->ruletype = rule->action; 741 (*sn)->states = 1; 742 if ((*sn)->rule.ptr != NULL) 743 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 744 PF_HASHROW_UNLOCK(sh); 745 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 746 } else { 747 if (rule->max_src_states && 748 (*sn)->states >= rule->max_src_states) { 749 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 750 1); 751 return (-1); 752 } 753 } 754 return (0); 755 } 756 757 void 758 pf_unlink_src_node(struct pf_src_node *src) 759 { 760 761 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 762 LIST_REMOVE(src, entry); 763 if (src->rule.ptr) 764 counter_u64_add(src->rule.ptr->src_nodes, -1); 765 } 766 767 u_int 768 pf_free_src_nodes(struct pf_src_node_list *head) 769 { 770 struct pf_src_node *sn, *tmp; 771 u_int count = 0; 772 773 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 774 uma_zfree(V_pf_sources_z, sn); 775 count++; 776 } 777 778 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 779 780 return (count); 781 } 782 783 void 784 pf_mtag_initialize() 785 { 786 787 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 788 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 789 UMA_ALIGN_PTR, 0); 790 } 791 792 /* Per-vnet data storage structures initialization. */ 793 void 794 pf_initialize() 795 { 796 struct pf_keyhash *kh; 797 struct pf_idhash *ih; 798 struct pf_srchash *sh; 799 u_int i; 800 801 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 802 pf_hashsize = PF_HASHSIZ; 803 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 804 pf_srchashsize = PF_SRCHASHSIZ; 805 806 V_pf_hashseed = arc4random(); 807 808 /* States and state keys storage. */ 809 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 810 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 811 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 812 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 813 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 814 815 V_pf_state_key_z = uma_zcreate("pf state keys", 816 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 817 UMA_ALIGN_PTR, 0); 818 819 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 820 M_PFHASH, M_NOWAIT | M_ZERO); 821 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 822 M_PFHASH, M_NOWAIT | M_ZERO); 823 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 824 printf("pf: Unable to allocate memory for " 825 "state_hashsize %lu.\n", pf_hashsize); 826 827 free(V_pf_keyhash, M_PFHASH); 828 free(V_pf_idhash, M_PFHASH); 829 830 pf_hashsize = PF_HASHSIZ; 831 V_pf_keyhash = mallocarray(pf_hashsize, 832 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 833 V_pf_idhash = mallocarray(pf_hashsize, 834 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 835 } 836 837 pf_hashmask = pf_hashsize - 1; 838 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 839 i++, kh++, ih++) { 840 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 841 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 842 } 843 844 /* Source nodes. */ 845 V_pf_sources_z = uma_zcreate("pf source nodes", 846 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 847 0); 848 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 849 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 850 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 851 852 V_pf_srchash = mallocarray(pf_srchashsize, 853 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 854 if (V_pf_srchash == NULL) { 855 printf("pf: Unable to allocate memory for " 856 "source_hashsize %lu.\n", pf_srchashsize); 857 858 pf_srchashsize = PF_SRCHASHSIZ; 859 V_pf_srchash = mallocarray(pf_srchashsize, 860 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 861 } 862 863 pf_srchashmask = pf_srchashsize - 1; 864 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 865 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 866 867 /* ALTQ */ 868 TAILQ_INIT(&V_pf_altqs[0]); 869 TAILQ_INIT(&V_pf_altqs[1]); 870 TAILQ_INIT(&V_pf_altqs[2]); 871 TAILQ_INIT(&V_pf_altqs[3]); 872 TAILQ_INIT(&V_pf_pabuf); 873 V_pf_altqs_active = &V_pf_altqs[0]; 874 V_pf_altq_ifs_active = &V_pf_altqs[1]; 875 V_pf_altqs_inactive = &V_pf_altqs[2]; 876 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 877 878 /* Send & overload+flush queues. */ 879 STAILQ_INIT(&V_pf_sendqueue); 880 SLIST_INIT(&V_pf_overloadqueue); 881 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 882 883 /* Unlinked, but may be referenced rules. */ 884 TAILQ_INIT(&V_pf_unlinked_rules); 885 } 886 887 void 888 pf_mtag_cleanup() 889 { 890 891 uma_zdestroy(pf_mtag_z); 892 } 893 894 void 895 pf_cleanup() 896 { 897 struct pf_keyhash *kh; 898 struct pf_idhash *ih; 899 struct pf_srchash *sh; 900 struct pf_send_entry *pfse, *next; 901 u_int i; 902 903 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 904 i++, kh++, ih++) { 905 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 906 __func__)); 907 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 908 __func__)); 909 mtx_destroy(&kh->lock); 910 mtx_destroy(&ih->lock); 911 } 912 free(V_pf_keyhash, M_PFHASH); 913 free(V_pf_idhash, M_PFHASH); 914 915 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 916 KASSERT(LIST_EMPTY(&sh->nodes), 917 ("%s: source node hash not empty", __func__)); 918 mtx_destroy(&sh->lock); 919 } 920 free(V_pf_srchash, M_PFHASH); 921 922 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 923 m_freem(pfse->pfse_m); 924 free(pfse, M_PFTEMP); 925 } 926 927 uma_zdestroy(V_pf_sources_z); 928 uma_zdestroy(V_pf_state_z); 929 uma_zdestroy(V_pf_state_key_z); 930 } 931 932 static int 933 pf_mtag_uminit(void *mem, int size, int how) 934 { 935 struct m_tag *t; 936 937 t = (struct m_tag *)mem; 938 t->m_tag_cookie = MTAG_ABI_COMPAT; 939 t->m_tag_id = PACKET_TAG_PF; 940 t->m_tag_len = sizeof(struct pf_mtag); 941 t->m_tag_free = pf_mtag_free; 942 943 return (0); 944 } 945 946 static void 947 pf_mtag_free(struct m_tag *t) 948 { 949 950 uma_zfree(pf_mtag_z, t); 951 } 952 953 struct pf_mtag * 954 pf_get_mtag(struct mbuf *m) 955 { 956 struct m_tag *mtag; 957 958 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 959 return ((struct pf_mtag *)(mtag + 1)); 960 961 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 962 if (mtag == NULL) 963 return (NULL); 964 bzero(mtag + 1, sizeof(struct pf_mtag)); 965 m_tag_prepend(m, mtag); 966 967 return ((struct pf_mtag *)(mtag + 1)); 968 } 969 970 static int 971 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 972 struct pf_state *s) 973 { 974 struct pf_keyhash *khs, *khw, *kh; 975 struct pf_state_key *sk, *cur; 976 struct pf_state *si, *olds = NULL; 977 int idx; 978 979 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 980 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 981 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 982 983 /* 984 * We need to lock hash slots of both keys. To avoid deadlock 985 * we always lock the slot with lower address first. Unlock order 986 * isn't important. 987 * 988 * We also need to lock ID hash slot before dropping key 989 * locks. On success we return with ID hash slot locked. 990 */ 991 992 if (skw == sks) { 993 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 994 PF_HASHROW_LOCK(khs); 995 } else { 996 khs = &V_pf_keyhash[pf_hashkey(sks)]; 997 khw = &V_pf_keyhash[pf_hashkey(skw)]; 998 if (khs == khw) { 999 PF_HASHROW_LOCK(khs); 1000 } else if (khs < khw) { 1001 PF_HASHROW_LOCK(khs); 1002 PF_HASHROW_LOCK(khw); 1003 } else { 1004 PF_HASHROW_LOCK(khw); 1005 PF_HASHROW_LOCK(khs); 1006 } 1007 } 1008 1009 #define KEYS_UNLOCK() do { \ 1010 if (khs != khw) { \ 1011 PF_HASHROW_UNLOCK(khs); \ 1012 PF_HASHROW_UNLOCK(khw); \ 1013 } else \ 1014 PF_HASHROW_UNLOCK(khs); \ 1015 } while (0) 1016 1017 /* 1018 * First run: start with wire key. 1019 */ 1020 sk = skw; 1021 kh = khw; 1022 idx = PF_SK_WIRE; 1023 1024 keyattach: 1025 LIST_FOREACH(cur, &kh->keys, entry) 1026 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1027 break; 1028 1029 if (cur != NULL) { 1030 /* Key exists. Check for same kif, if none, add to key. */ 1031 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1032 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1033 1034 PF_HASHROW_LOCK(ih); 1035 if (si->kif == s->kif && 1036 si->direction == s->direction) { 1037 if (sk->proto == IPPROTO_TCP && 1038 si->src.state >= TCPS_FIN_WAIT_2 && 1039 si->dst.state >= TCPS_FIN_WAIT_2) { 1040 /* 1041 * New state matches an old >FIN_WAIT_2 1042 * state. We can't drop key hash locks, 1043 * thus we can't unlink it properly. 1044 * 1045 * As a workaround we drop it into 1046 * TCPS_CLOSED state, schedule purge 1047 * ASAP and push it into the very end 1048 * of the slot TAILQ, so that it won't 1049 * conflict with our new state. 1050 */ 1051 si->src.state = si->dst.state = 1052 TCPS_CLOSED; 1053 si->timeout = PFTM_PURGE; 1054 olds = si; 1055 } else { 1056 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1057 printf("pf: %s key attach " 1058 "failed on %s: ", 1059 (idx == PF_SK_WIRE) ? 1060 "wire" : "stack", 1061 s->kif->pfik_name); 1062 pf_print_state_parts(s, 1063 (idx == PF_SK_WIRE) ? 1064 sk : NULL, 1065 (idx == PF_SK_STACK) ? 1066 sk : NULL); 1067 printf(", existing: "); 1068 pf_print_state_parts(si, 1069 (idx == PF_SK_WIRE) ? 1070 sk : NULL, 1071 (idx == PF_SK_STACK) ? 1072 sk : NULL); 1073 printf("\n"); 1074 } 1075 PF_HASHROW_UNLOCK(ih); 1076 KEYS_UNLOCK(); 1077 uma_zfree(V_pf_state_key_z, sk); 1078 if (idx == PF_SK_STACK) 1079 pf_detach_state(s); 1080 return (EEXIST); /* collision! */ 1081 } 1082 } 1083 PF_HASHROW_UNLOCK(ih); 1084 } 1085 uma_zfree(V_pf_state_key_z, sk); 1086 s->key[idx] = cur; 1087 } else { 1088 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1089 s->key[idx] = sk; 1090 } 1091 1092 stateattach: 1093 /* List is sorted, if-bound states before floating. */ 1094 if (s->kif == V_pfi_all) 1095 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1096 else 1097 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1098 1099 if (olds) { 1100 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1101 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1102 key_list[idx]); 1103 olds = NULL; 1104 } 1105 1106 /* 1107 * Attach done. See how should we (or should not?) 1108 * attach a second key. 1109 */ 1110 if (sks == skw) { 1111 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1112 idx = PF_SK_STACK; 1113 sks = NULL; 1114 goto stateattach; 1115 } else if (sks != NULL) { 1116 /* 1117 * Continue attaching with stack key. 1118 */ 1119 sk = sks; 1120 kh = khs; 1121 idx = PF_SK_STACK; 1122 sks = NULL; 1123 goto keyattach; 1124 } 1125 1126 PF_STATE_LOCK(s); 1127 KEYS_UNLOCK(); 1128 1129 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1130 ("%s failure", __func__)); 1131 1132 return (0); 1133 #undef KEYS_UNLOCK 1134 } 1135 1136 static void 1137 pf_detach_state(struct pf_state *s) 1138 { 1139 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1140 struct pf_keyhash *kh; 1141 1142 if (sks != NULL) { 1143 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1144 PF_HASHROW_LOCK(kh); 1145 if (s->key[PF_SK_STACK] != NULL) 1146 pf_state_key_detach(s, PF_SK_STACK); 1147 /* 1148 * If both point to same key, then we are done. 1149 */ 1150 if (sks == s->key[PF_SK_WIRE]) { 1151 pf_state_key_detach(s, PF_SK_WIRE); 1152 PF_HASHROW_UNLOCK(kh); 1153 return; 1154 } 1155 PF_HASHROW_UNLOCK(kh); 1156 } 1157 1158 if (s->key[PF_SK_WIRE] != NULL) { 1159 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1160 PF_HASHROW_LOCK(kh); 1161 if (s->key[PF_SK_WIRE] != NULL) 1162 pf_state_key_detach(s, PF_SK_WIRE); 1163 PF_HASHROW_UNLOCK(kh); 1164 } 1165 } 1166 1167 static void 1168 pf_state_key_detach(struct pf_state *s, int idx) 1169 { 1170 struct pf_state_key *sk = s->key[idx]; 1171 #ifdef INVARIANTS 1172 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1173 1174 PF_HASHROW_ASSERT(kh); 1175 #endif 1176 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1177 s->key[idx] = NULL; 1178 1179 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1180 LIST_REMOVE(sk, entry); 1181 uma_zfree(V_pf_state_key_z, sk); 1182 } 1183 } 1184 1185 static int 1186 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1187 { 1188 struct pf_state_key *sk = mem; 1189 1190 bzero(sk, sizeof(struct pf_state_key_cmp)); 1191 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1192 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1193 1194 return (0); 1195 } 1196 1197 struct pf_state_key * 1198 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1199 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1200 { 1201 struct pf_state_key *sk; 1202 1203 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1204 if (sk == NULL) 1205 return (NULL); 1206 1207 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1208 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1209 sk->port[pd->sidx] = sport; 1210 sk->port[pd->didx] = dport; 1211 sk->proto = pd->proto; 1212 sk->af = pd->af; 1213 1214 return (sk); 1215 } 1216 1217 struct pf_state_key * 1218 pf_state_key_clone(struct pf_state_key *orig) 1219 { 1220 struct pf_state_key *sk; 1221 1222 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1223 if (sk == NULL) 1224 return (NULL); 1225 1226 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1227 1228 return (sk); 1229 } 1230 1231 int 1232 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1233 struct pf_state_key *sks, struct pf_state *s) 1234 { 1235 struct pf_idhash *ih; 1236 struct pf_state *cur; 1237 int error; 1238 1239 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1240 ("%s: sks not pristine", __func__)); 1241 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1242 ("%s: skw not pristine", __func__)); 1243 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1244 1245 s->kif = kif; 1246 1247 if (s->id == 0 && s->creatorid == 0) { 1248 /* XXX: should be atomic, but probability of collision low */ 1249 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1250 V_pf_stateid[curcpu] = 1; 1251 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1252 s->id = htobe64(s->id); 1253 s->creatorid = V_pf_status.hostid; 1254 } 1255 1256 /* Returns with ID locked on success. */ 1257 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1258 return (error); 1259 1260 ih = &V_pf_idhash[PF_IDHASH(s)]; 1261 PF_HASHROW_ASSERT(ih); 1262 LIST_FOREACH(cur, &ih->states, entry) 1263 if (cur->id == s->id && cur->creatorid == s->creatorid) 1264 break; 1265 1266 if (cur != NULL) { 1267 PF_HASHROW_UNLOCK(ih); 1268 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1269 printf("pf: state ID collision: " 1270 "id: %016llx creatorid: %08x\n", 1271 (unsigned long long)be64toh(s->id), 1272 ntohl(s->creatorid)); 1273 } 1274 pf_detach_state(s); 1275 return (EEXIST); 1276 } 1277 LIST_INSERT_HEAD(&ih->states, s, entry); 1278 /* One for keys, one for ID hash. */ 1279 refcount_init(&s->refs, 2); 1280 1281 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1282 if (V_pfsync_insert_state_ptr != NULL) 1283 V_pfsync_insert_state_ptr(s); 1284 1285 /* Returns locked. */ 1286 return (0); 1287 } 1288 1289 /* 1290 * Find state by ID: returns with locked row on success. 1291 */ 1292 struct pf_state * 1293 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1294 { 1295 struct pf_idhash *ih; 1296 struct pf_state *s; 1297 1298 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1299 1300 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1301 1302 PF_HASHROW_LOCK(ih); 1303 LIST_FOREACH(s, &ih->states, entry) 1304 if (s->id == id && s->creatorid == creatorid) 1305 break; 1306 1307 if (s == NULL) 1308 PF_HASHROW_UNLOCK(ih); 1309 1310 return (s); 1311 } 1312 1313 /* 1314 * Find state by key. 1315 * Returns with ID hash slot locked on success. 1316 */ 1317 static struct pf_state * 1318 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1319 { 1320 struct pf_keyhash *kh; 1321 struct pf_state_key *sk; 1322 struct pf_state *s; 1323 int idx; 1324 1325 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1326 1327 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1328 1329 PF_HASHROW_LOCK(kh); 1330 LIST_FOREACH(sk, &kh->keys, entry) 1331 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1332 break; 1333 if (sk == NULL) { 1334 PF_HASHROW_UNLOCK(kh); 1335 return (NULL); 1336 } 1337 1338 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1339 1340 /* List is sorted, if-bound states before floating ones. */ 1341 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1342 if (s->kif == V_pfi_all || s->kif == kif) { 1343 PF_STATE_LOCK(s); 1344 PF_HASHROW_UNLOCK(kh); 1345 if (s->timeout >= PFTM_MAX) { 1346 /* 1347 * State is either being processed by 1348 * pf_unlink_state() in an other thread, or 1349 * is scheduled for immediate expiry. 1350 */ 1351 PF_STATE_UNLOCK(s); 1352 return (NULL); 1353 } 1354 return (s); 1355 } 1356 PF_HASHROW_UNLOCK(kh); 1357 1358 return (NULL); 1359 } 1360 1361 struct pf_state * 1362 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1363 { 1364 struct pf_keyhash *kh; 1365 struct pf_state_key *sk; 1366 struct pf_state *s, *ret = NULL; 1367 int idx, inout = 0; 1368 1369 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1370 1371 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1372 1373 PF_HASHROW_LOCK(kh); 1374 LIST_FOREACH(sk, &kh->keys, entry) 1375 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1376 break; 1377 if (sk == NULL) { 1378 PF_HASHROW_UNLOCK(kh); 1379 return (NULL); 1380 } 1381 switch (dir) { 1382 case PF_IN: 1383 idx = PF_SK_WIRE; 1384 break; 1385 case PF_OUT: 1386 idx = PF_SK_STACK; 1387 break; 1388 case PF_INOUT: 1389 idx = PF_SK_WIRE; 1390 inout = 1; 1391 break; 1392 default: 1393 panic("%s: dir %u", __func__, dir); 1394 } 1395 second_run: 1396 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1397 if (more == NULL) { 1398 PF_HASHROW_UNLOCK(kh); 1399 return (s); 1400 } 1401 1402 if (ret) 1403 (*more)++; 1404 else 1405 ret = s; 1406 } 1407 if (inout == 1) { 1408 inout = 0; 1409 idx = PF_SK_STACK; 1410 goto second_run; 1411 } 1412 PF_HASHROW_UNLOCK(kh); 1413 1414 return (ret); 1415 } 1416 1417 /* END state table stuff */ 1418 1419 static void 1420 pf_send(struct pf_send_entry *pfse) 1421 { 1422 1423 PF_SENDQ_LOCK(); 1424 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1425 PF_SENDQ_UNLOCK(); 1426 swi_sched(V_pf_swi_cookie, 0); 1427 } 1428 1429 void 1430 pf_intr(void *v) 1431 { 1432 struct epoch_tracker et; 1433 struct pf_send_head queue; 1434 struct pf_send_entry *pfse, *next; 1435 1436 CURVNET_SET((struct vnet *)v); 1437 1438 PF_SENDQ_LOCK(); 1439 queue = V_pf_sendqueue; 1440 STAILQ_INIT(&V_pf_sendqueue); 1441 PF_SENDQ_UNLOCK(); 1442 1443 NET_EPOCH_ENTER(et); 1444 1445 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1446 switch (pfse->pfse_type) { 1447 #ifdef INET 1448 case PFSE_IP: 1449 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1450 break; 1451 case PFSE_ICMP: 1452 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1453 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1454 break; 1455 #endif /* INET */ 1456 #ifdef INET6 1457 case PFSE_IP6: 1458 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1459 NULL); 1460 break; 1461 case PFSE_ICMP6: 1462 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1463 pfse->icmpopts.code, pfse->icmpopts.mtu); 1464 break; 1465 #endif /* INET6 */ 1466 default: 1467 panic("%s: unknown type", __func__); 1468 } 1469 free(pfse, M_PFTEMP); 1470 } 1471 NET_EPOCH_EXIT(et); 1472 CURVNET_RESTORE(); 1473 } 1474 1475 void 1476 pf_purge_thread(void *unused __unused) 1477 { 1478 VNET_ITERATOR_DECL(vnet_iter); 1479 1480 sx_xlock(&pf_end_lock); 1481 while (pf_end_threads == 0) { 1482 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", hz / 10); 1483 1484 VNET_LIST_RLOCK(); 1485 VNET_FOREACH(vnet_iter) { 1486 CURVNET_SET(vnet_iter); 1487 1488 /* Wait until V_pf_default_rule is initialized. */ 1489 if (V_pf_vnet_active == 0) { 1490 CURVNET_RESTORE(); 1491 continue; 1492 } 1493 1494 /* 1495 * Process 1/interval fraction of the state 1496 * table every run. 1497 */ 1498 V_pf_purge_idx = 1499 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1500 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1501 1502 /* 1503 * Purge other expired types every 1504 * PFTM_INTERVAL seconds. 1505 */ 1506 if (V_pf_purge_idx == 0) { 1507 /* 1508 * Order is important: 1509 * - states and src nodes reference rules 1510 * - states and rules reference kifs 1511 */ 1512 pf_purge_expired_fragments(); 1513 pf_purge_expired_src_nodes(); 1514 pf_purge_unlinked_rules(); 1515 pfi_kif_purge(); 1516 } 1517 CURVNET_RESTORE(); 1518 } 1519 VNET_LIST_RUNLOCK(); 1520 } 1521 1522 pf_end_threads++; 1523 sx_xunlock(&pf_end_lock); 1524 kproc_exit(0); 1525 } 1526 1527 void 1528 pf_unload_vnet_purge(void) 1529 { 1530 1531 /* 1532 * To cleanse up all kifs and rules we need 1533 * two runs: first one clears reference flags, 1534 * then pf_purge_expired_states() doesn't 1535 * raise them, and then second run frees. 1536 */ 1537 pf_purge_unlinked_rules(); 1538 pfi_kif_purge(); 1539 1540 /* 1541 * Now purge everything. 1542 */ 1543 pf_purge_expired_states(0, pf_hashmask); 1544 pf_purge_fragments(UINT_MAX); 1545 pf_purge_expired_src_nodes(); 1546 1547 /* 1548 * Now all kifs & rules should be unreferenced, 1549 * thus should be successfully freed. 1550 */ 1551 pf_purge_unlinked_rules(); 1552 pfi_kif_purge(); 1553 } 1554 1555 u_int32_t 1556 pf_state_expires(const struct pf_state *state) 1557 { 1558 u_int32_t timeout; 1559 u_int32_t start; 1560 u_int32_t end; 1561 u_int32_t states; 1562 1563 /* handle all PFTM_* > PFTM_MAX here */ 1564 if (state->timeout == PFTM_PURGE) 1565 return (time_uptime); 1566 KASSERT(state->timeout != PFTM_UNLINKED, 1567 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1568 KASSERT((state->timeout < PFTM_MAX), 1569 ("pf_state_expires: timeout > PFTM_MAX")); 1570 timeout = state->rule.ptr->timeout[state->timeout]; 1571 if (!timeout) 1572 timeout = V_pf_default_rule.timeout[state->timeout]; 1573 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1574 if (start && state->rule.ptr != &V_pf_default_rule) { 1575 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1576 states = counter_u64_fetch(state->rule.ptr->states_cur); 1577 } else { 1578 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1579 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1580 states = V_pf_status.states; 1581 } 1582 if (end && states > start && start < end) { 1583 if (states < end) { 1584 timeout = (u_int64_t)timeout * (end - states) / 1585 (end - start); 1586 return (state->expire + timeout); 1587 } 1588 else 1589 return (time_uptime); 1590 } 1591 return (state->expire + timeout); 1592 } 1593 1594 void 1595 pf_purge_expired_src_nodes() 1596 { 1597 struct pf_src_node_list freelist; 1598 struct pf_srchash *sh; 1599 struct pf_src_node *cur, *next; 1600 int i; 1601 1602 LIST_INIT(&freelist); 1603 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1604 PF_HASHROW_LOCK(sh); 1605 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1606 if (cur->states == 0 && cur->expire <= time_uptime) { 1607 pf_unlink_src_node(cur); 1608 LIST_INSERT_HEAD(&freelist, cur, entry); 1609 } else if (cur->rule.ptr != NULL) 1610 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1611 PF_HASHROW_UNLOCK(sh); 1612 } 1613 1614 pf_free_src_nodes(&freelist); 1615 1616 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1617 } 1618 1619 static void 1620 pf_src_tree_remove_state(struct pf_state *s) 1621 { 1622 struct pf_src_node *sn; 1623 struct pf_srchash *sh; 1624 uint32_t timeout; 1625 1626 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1627 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1628 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1629 1630 if (s->src_node != NULL) { 1631 sn = s->src_node; 1632 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1633 PF_HASHROW_LOCK(sh); 1634 if (s->src.tcp_est) 1635 --sn->conn; 1636 if (--sn->states == 0) 1637 sn->expire = time_uptime + timeout; 1638 PF_HASHROW_UNLOCK(sh); 1639 } 1640 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1641 sn = s->nat_src_node; 1642 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1643 PF_HASHROW_LOCK(sh); 1644 if (--sn->states == 0) 1645 sn->expire = time_uptime + timeout; 1646 PF_HASHROW_UNLOCK(sh); 1647 } 1648 s->src_node = s->nat_src_node = NULL; 1649 } 1650 1651 /* 1652 * Unlink and potentilly free a state. Function may be 1653 * called with ID hash row locked, but always returns 1654 * unlocked, since it needs to go through key hash locking. 1655 */ 1656 int 1657 pf_unlink_state(struct pf_state *s, u_int flags) 1658 { 1659 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1660 1661 if ((flags & PF_ENTER_LOCKED) == 0) 1662 PF_HASHROW_LOCK(ih); 1663 else 1664 PF_HASHROW_ASSERT(ih); 1665 1666 if (s->timeout == PFTM_UNLINKED) { 1667 /* 1668 * State is being processed 1669 * by pf_unlink_state() in 1670 * an other thread. 1671 */ 1672 PF_HASHROW_UNLOCK(ih); 1673 return (0); /* XXXGL: undefined actually */ 1674 } 1675 1676 if (s->src.state == PF_TCPS_PROXY_DST) { 1677 /* XXX wire key the right one? */ 1678 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1679 &s->key[PF_SK_WIRE]->addr[1], 1680 &s->key[PF_SK_WIRE]->addr[0], 1681 s->key[PF_SK_WIRE]->port[1], 1682 s->key[PF_SK_WIRE]->port[0], 1683 s->src.seqhi, s->src.seqlo + 1, 1684 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1685 } 1686 1687 LIST_REMOVE(s, entry); 1688 pf_src_tree_remove_state(s); 1689 1690 if (V_pfsync_delete_state_ptr != NULL) 1691 V_pfsync_delete_state_ptr(s); 1692 1693 STATE_DEC_COUNTERS(s); 1694 1695 s->timeout = PFTM_UNLINKED; 1696 1697 PF_HASHROW_UNLOCK(ih); 1698 1699 pf_detach_state(s); 1700 /* pf_state_insert() initialises refs to 2, so we can never release the 1701 * last reference here, only in pf_release_state(). */ 1702 (void)refcount_release(&s->refs); 1703 1704 return (pf_release_state(s)); 1705 } 1706 1707 void 1708 pf_free_state(struct pf_state *cur) 1709 { 1710 1711 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1712 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1713 cur->timeout)); 1714 1715 pf_normalize_tcp_cleanup(cur); 1716 uma_zfree(V_pf_state_z, cur); 1717 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1718 } 1719 1720 /* 1721 * Called only from pf_purge_thread(), thus serialized. 1722 */ 1723 static u_int 1724 pf_purge_expired_states(u_int i, int maxcheck) 1725 { 1726 struct pf_idhash *ih; 1727 struct pf_state *s; 1728 1729 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1730 1731 /* 1732 * Go through hash and unlink states that expire now. 1733 */ 1734 while (maxcheck > 0) { 1735 ih = &V_pf_idhash[i]; 1736 1737 /* only take the lock if we expect to do work */ 1738 if (!LIST_EMPTY(&ih->states)) { 1739 relock: 1740 PF_HASHROW_LOCK(ih); 1741 LIST_FOREACH(s, &ih->states, entry) { 1742 if (pf_state_expires(s) <= time_uptime) { 1743 V_pf_status.states -= 1744 pf_unlink_state(s, PF_ENTER_LOCKED); 1745 goto relock; 1746 } 1747 s->rule.ptr->rule_flag |= PFRULE_REFS; 1748 if (s->nat_rule.ptr != NULL) 1749 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1750 if (s->anchor.ptr != NULL) 1751 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1752 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1753 if (s->rt_kif) 1754 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1755 } 1756 PF_HASHROW_UNLOCK(ih); 1757 } 1758 1759 /* Return when we hit end of hash. */ 1760 if (++i > pf_hashmask) { 1761 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1762 return (0); 1763 } 1764 1765 maxcheck--; 1766 } 1767 1768 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1769 1770 return (i); 1771 } 1772 1773 static void 1774 pf_purge_unlinked_rules() 1775 { 1776 struct pf_rulequeue tmpq; 1777 struct pf_rule *r, *r1; 1778 1779 /* 1780 * If we have overloading task pending, then we'd 1781 * better skip purging this time. There is a tiny 1782 * probability that overloading task references 1783 * an already unlinked rule. 1784 */ 1785 PF_OVERLOADQ_LOCK(); 1786 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1787 PF_OVERLOADQ_UNLOCK(); 1788 return; 1789 } 1790 PF_OVERLOADQ_UNLOCK(); 1791 1792 /* 1793 * Do naive mark-and-sweep garbage collecting of old rules. 1794 * Reference flag is raised by pf_purge_expired_states() 1795 * and pf_purge_expired_src_nodes(). 1796 * 1797 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1798 * use a temporary queue. 1799 */ 1800 TAILQ_INIT(&tmpq); 1801 PF_UNLNKDRULES_LOCK(); 1802 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1803 if (!(r->rule_flag & PFRULE_REFS)) { 1804 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1805 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1806 } else 1807 r->rule_flag &= ~PFRULE_REFS; 1808 } 1809 PF_UNLNKDRULES_UNLOCK(); 1810 1811 if (!TAILQ_EMPTY(&tmpq)) { 1812 PF_RULES_WLOCK(); 1813 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1814 TAILQ_REMOVE(&tmpq, r, entries); 1815 pf_free_rule(r); 1816 } 1817 PF_RULES_WUNLOCK(); 1818 } 1819 } 1820 1821 void 1822 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1823 { 1824 switch (af) { 1825 #ifdef INET 1826 case AF_INET: { 1827 u_int32_t a = ntohl(addr->addr32[0]); 1828 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1829 (a>>8)&255, a&255); 1830 if (p) { 1831 p = ntohs(p); 1832 printf(":%u", p); 1833 } 1834 break; 1835 } 1836 #endif /* INET */ 1837 #ifdef INET6 1838 case AF_INET6: { 1839 u_int16_t b; 1840 u_int8_t i, curstart, curend, maxstart, maxend; 1841 curstart = curend = maxstart = maxend = 255; 1842 for (i = 0; i < 8; i++) { 1843 if (!addr->addr16[i]) { 1844 if (curstart == 255) 1845 curstart = i; 1846 curend = i; 1847 } else { 1848 if ((curend - curstart) > 1849 (maxend - maxstart)) { 1850 maxstart = curstart; 1851 maxend = curend; 1852 } 1853 curstart = curend = 255; 1854 } 1855 } 1856 if ((curend - curstart) > 1857 (maxend - maxstart)) { 1858 maxstart = curstart; 1859 maxend = curend; 1860 } 1861 for (i = 0; i < 8; i++) { 1862 if (i >= maxstart && i <= maxend) { 1863 if (i == 0) 1864 printf(":"); 1865 if (i == maxend) 1866 printf(":"); 1867 } else { 1868 b = ntohs(addr->addr16[i]); 1869 printf("%x", b); 1870 if (i < 7) 1871 printf(":"); 1872 } 1873 } 1874 if (p) { 1875 p = ntohs(p); 1876 printf("[%u]", p); 1877 } 1878 break; 1879 } 1880 #endif /* INET6 */ 1881 } 1882 } 1883 1884 void 1885 pf_print_state(struct pf_state *s) 1886 { 1887 pf_print_state_parts(s, NULL, NULL); 1888 } 1889 1890 static void 1891 pf_print_state_parts(struct pf_state *s, 1892 struct pf_state_key *skwp, struct pf_state_key *sksp) 1893 { 1894 struct pf_state_key *skw, *sks; 1895 u_int8_t proto, dir; 1896 1897 /* Do our best to fill these, but they're skipped if NULL */ 1898 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1899 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1900 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1901 dir = s ? s->direction : 0; 1902 1903 switch (proto) { 1904 case IPPROTO_IPV4: 1905 printf("IPv4"); 1906 break; 1907 case IPPROTO_IPV6: 1908 printf("IPv6"); 1909 break; 1910 case IPPROTO_TCP: 1911 printf("TCP"); 1912 break; 1913 case IPPROTO_UDP: 1914 printf("UDP"); 1915 break; 1916 case IPPROTO_ICMP: 1917 printf("ICMP"); 1918 break; 1919 case IPPROTO_ICMPV6: 1920 printf("ICMPv6"); 1921 break; 1922 default: 1923 printf("%u", proto); 1924 break; 1925 } 1926 switch (dir) { 1927 case PF_IN: 1928 printf(" in"); 1929 break; 1930 case PF_OUT: 1931 printf(" out"); 1932 break; 1933 } 1934 if (skw) { 1935 printf(" wire: "); 1936 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1937 printf(" "); 1938 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1939 } 1940 if (sks) { 1941 printf(" stack: "); 1942 if (sks != skw) { 1943 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1944 printf(" "); 1945 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1946 } else 1947 printf("-"); 1948 } 1949 if (s) { 1950 if (proto == IPPROTO_TCP) { 1951 printf(" [lo=%u high=%u win=%u modulator=%u", 1952 s->src.seqlo, s->src.seqhi, 1953 s->src.max_win, s->src.seqdiff); 1954 if (s->src.wscale && s->dst.wscale) 1955 printf(" wscale=%u", 1956 s->src.wscale & PF_WSCALE_MASK); 1957 printf("]"); 1958 printf(" [lo=%u high=%u win=%u modulator=%u", 1959 s->dst.seqlo, s->dst.seqhi, 1960 s->dst.max_win, s->dst.seqdiff); 1961 if (s->src.wscale && s->dst.wscale) 1962 printf(" wscale=%u", 1963 s->dst.wscale & PF_WSCALE_MASK); 1964 printf("]"); 1965 } 1966 printf(" %u:%u", s->src.state, s->dst.state); 1967 } 1968 } 1969 1970 void 1971 pf_print_flags(u_int8_t f) 1972 { 1973 if (f) 1974 printf(" "); 1975 if (f & TH_FIN) 1976 printf("F"); 1977 if (f & TH_SYN) 1978 printf("S"); 1979 if (f & TH_RST) 1980 printf("R"); 1981 if (f & TH_PUSH) 1982 printf("P"); 1983 if (f & TH_ACK) 1984 printf("A"); 1985 if (f & TH_URG) 1986 printf("U"); 1987 if (f & TH_ECE) 1988 printf("E"); 1989 if (f & TH_CWR) 1990 printf("W"); 1991 } 1992 1993 #define PF_SET_SKIP_STEPS(i) \ 1994 do { \ 1995 while (head[i] != cur) { \ 1996 head[i]->skip[i].ptr = cur; \ 1997 head[i] = TAILQ_NEXT(head[i], entries); \ 1998 } \ 1999 } while (0) 2000 2001 void 2002 pf_calc_skip_steps(struct pf_rulequeue *rules) 2003 { 2004 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 2005 int i; 2006 2007 cur = TAILQ_FIRST(rules); 2008 prev = cur; 2009 for (i = 0; i < PF_SKIP_COUNT; ++i) 2010 head[i] = cur; 2011 while (cur != NULL) { 2012 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2013 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2014 if (cur->direction != prev->direction) 2015 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2016 if (cur->af != prev->af) 2017 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2018 if (cur->proto != prev->proto) 2019 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2020 if (cur->src.neg != prev->src.neg || 2021 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2022 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2023 if (cur->src.port[0] != prev->src.port[0] || 2024 cur->src.port[1] != prev->src.port[1] || 2025 cur->src.port_op != prev->src.port_op) 2026 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2027 if (cur->dst.neg != prev->dst.neg || 2028 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2029 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2030 if (cur->dst.port[0] != prev->dst.port[0] || 2031 cur->dst.port[1] != prev->dst.port[1] || 2032 cur->dst.port_op != prev->dst.port_op) 2033 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2034 2035 prev = cur; 2036 cur = TAILQ_NEXT(cur, entries); 2037 } 2038 for (i = 0; i < PF_SKIP_COUNT; ++i) 2039 PF_SET_SKIP_STEPS(i); 2040 } 2041 2042 static int 2043 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2044 { 2045 if (aw1->type != aw2->type) 2046 return (1); 2047 switch (aw1->type) { 2048 case PF_ADDR_ADDRMASK: 2049 case PF_ADDR_RANGE: 2050 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2051 return (1); 2052 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2053 return (1); 2054 return (0); 2055 case PF_ADDR_DYNIFTL: 2056 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2057 case PF_ADDR_NOROUTE: 2058 case PF_ADDR_URPFFAILED: 2059 return (0); 2060 case PF_ADDR_TABLE: 2061 return (aw1->p.tbl != aw2->p.tbl); 2062 default: 2063 printf("invalid address type: %d\n", aw1->type); 2064 return (1); 2065 } 2066 } 2067 2068 /** 2069 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2070 * header isn't always a full checksum. In some cases (i.e. output) it's a 2071 * pseudo-header checksum, which is a partial checksum over src/dst IP 2072 * addresses, protocol number and length. 2073 * 2074 * That means we have the following cases: 2075 * * Input or forwarding: we don't have TSO, the checksum fields are full 2076 * checksums, we need to update the checksum whenever we change anything. 2077 * * Output (i.e. the checksum is a pseudo-header checksum): 2078 * x The field being updated is src/dst address or affects the length of 2079 * the packet. We need to update the pseudo-header checksum (note that this 2080 * checksum is not ones' complement). 2081 * x Some other field is being modified (e.g. src/dst port numbers): We 2082 * don't have to update anything. 2083 **/ 2084 u_int16_t 2085 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2086 { 2087 u_int32_t l; 2088 2089 if (udp && !cksum) 2090 return (0x0000); 2091 l = cksum + old - new; 2092 l = (l >> 16) + (l & 65535); 2093 l = l & 65535; 2094 if (udp && !l) 2095 return (0xFFFF); 2096 return (l); 2097 } 2098 2099 u_int16_t 2100 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2101 u_int16_t new, u_int8_t udp) 2102 { 2103 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2104 return (cksum); 2105 2106 return (pf_cksum_fixup(cksum, old, new, udp)); 2107 } 2108 2109 static void 2110 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2111 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2112 sa_family_t af) 2113 { 2114 struct pf_addr ao; 2115 u_int16_t po = *p; 2116 2117 PF_ACPY(&ao, a, af); 2118 PF_ACPY(a, an, af); 2119 2120 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2121 *pc = ~*pc; 2122 2123 *p = pn; 2124 2125 switch (af) { 2126 #ifdef INET 2127 case AF_INET: 2128 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2129 ao.addr16[0], an->addr16[0], 0), 2130 ao.addr16[1], an->addr16[1], 0); 2131 *p = pn; 2132 2133 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2134 ao.addr16[0], an->addr16[0], u), 2135 ao.addr16[1], an->addr16[1], u); 2136 2137 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2138 break; 2139 #endif /* INET */ 2140 #ifdef INET6 2141 case AF_INET6: 2142 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2143 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2144 pf_cksum_fixup(pf_cksum_fixup(*pc, 2145 ao.addr16[0], an->addr16[0], u), 2146 ao.addr16[1], an->addr16[1], u), 2147 ao.addr16[2], an->addr16[2], u), 2148 ao.addr16[3], an->addr16[3], u), 2149 ao.addr16[4], an->addr16[4], u), 2150 ao.addr16[5], an->addr16[5], u), 2151 ao.addr16[6], an->addr16[6], u), 2152 ao.addr16[7], an->addr16[7], u); 2153 2154 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2155 break; 2156 #endif /* INET6 */ 2157 } 2158 2159 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2160 CSUM_DELAY_DATA_IPV6)) { 2161 *pc = ~*pc; 2162 if (! *pc) 2163 *pc = 0xffff; 2164 } 2165 } 2166 2167 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2168 void 2169 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2170 { 2171 u_int32_t ao; 2172 2173 memcpy(&ao, a, sizeof(ao)); 2174 memcpy(a, &an, sizeof(u_int32_t)); 2175 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2176 ao % 65536, an % 65536, u); 2177 } 2178 2179 void 2180 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2181 { 2182 u_int32_t ao; 2183 2184 memcpy(&ao, a, sizeof(ao)); 2185 memcpy(a, &an, sizeof(u_int32_t)); 2186 2187 *c = pf_proto_cksum_fixup(m, 2188 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2189 ao % 65536, an % 65536, udp); 2190 } 2191 2192 #ifdef INET6 2193 static void 2194 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2195 { 2196 struct pf_addr ao; 2197 2198 PF_ACPY(&ao, a, AF_INET6); 2199 PF_ACPY(a, an, AF_INET6); 2200 2201 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2202 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2203 pf_cksum_fixup(pf_cksum_fixup(*c, 2204 ao.addr16[0], an->addr16[0], u), 2205 ao.addr16[1], an->addr16[1], u), 2206 ao.addr16[2], an->addr16[2], u), 2207 ao.addr16[3], an->addr16[3], u), 2208 ao.addr16[4], an->addr16[4], u), 2209 ao.addr16[5], an->addr16[5], u), 2210 ao.addr16[6], an->addr16[6], u), 2211 ao.addr16[7], an->addr16[7], u); 2212 } 2213 #endif /* INET6 */ 2214 2215 static void 2216 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2217 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2218 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2219 { 2220 struct pf_addr oia, ooa; 2221 2222 PF_ACPY(&oia, ia, af); 2223 if (oa) 2224 PF_ACPY(&ooa, oa, af); 2225 2226 /* Change inner protocol port, fix inner protocol checksum. */ 2227 if (ip != NULL) { 2228 u_int16_t oip = *ip; 2229 u_int32_t opc; 2230 2231 if (pc != NULL) 2232 opc = *pc; 2233 *ip = np; 2234 if (pc != NULL) 2235 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2236 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2237 if (pc != NULL) 2238 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2239 } 2240 /* Change inner ip address, fix inner ip and icmp checksums. */ 2241 PF_ACPY(ia, na, af); 2242 switch (af) { 2243 #ifdef INET 2244 case AF_INET: { 2245 u_int32_t oh2c = *h2c; 2246 2247 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2248 oia.addr16[0], ia->addr16[0], 0), 2249 oia.addr16[1], ia->addr16[1], 0); 2250 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2251 oia.addr16[0], ia->addr16[0], 0), 2252 oia.addr16[1], ia->addr16[1], 0); 2253 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2254 break; 2255 } 2256 #endif /* INET */ 2257 #ifdef INET6 2258 case AF_INET6: 2259 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2260 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2261 pf_cksum_fixup(pf_cksum_fixup(*ic, 2262 oia.addr16[0], ia->addr16[0], u), 2263 oia.addr16[1], ia->addr16[1], u), 2264 oia.addr16[2], ia->addr16[2], u), 2265 oia.addr16[3], ia->addr16[3], u), 2266 oia.addr16[4], ia->addr16[4], u), 2267 oia.addr16[5], ia->addr16[5], u), 2268 oia.addr16[6], ia->addr16[6], u), 2269 oia.addr16[7], ia->addr16[7], u); 2270 break; 2271 #endif /* INET6 */ 2272 } 2273 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2274 if (oa) { 2275 PF_ACPY(oa, na, af); 2276 switch (af) { 2277 #ifdef INET 2278 case AF_INET: 2279 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2280 ooa.addr16[0], oa->addr16[0], 0), 2281 ooa.addr16[1], oa->addr16[1], 0); 2282 break; 2283 #endif /* INET */ 2284 #ifdef INET6 2285 case AF_INET6: 2286 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2287 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2288 pf_cksum_fixup(pf_cksum_fixup(*ic, 2289 ooa.addr16[0], oa->addr16[0], u), 2290 ooa.addr16[1], oa->addr16[1], u), 2291 ooa.addr16[2], oa->addr16[2], u), 2292 ooa.addr16[3], oa->addr16[3], u), 2293 ooa.addr16[4], oa->addr16[4], u), 2294 ooa.addr16[5], oa->addr16[5], u), 2295 ooa.addr16[6], oa->addr16[6], u), 2296 ooa.addr16[7], oa->addr16[7], u); 2297 break; 2298 #endif /* INET6 */ 2299 } 2300 } 2301 } 2302 2303 /* 2304 * Need to modulate the sequence numbers in the TCP SACK option 2305 * (credits to Krzysztof Pfaff for report and patch) 2306 */ 2307 static int 2308 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2309 struct tcphdr *th, struct pf_state_peer *dst) 2310 { 2311 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2312 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2313 int copyback = 0, i, olen; 2314 struct sackblk sack; 2315 2316 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2317 if (hlen < TCPOLEN_SACKLEN || 2318 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2319 return 0; 2320 2321 while (hlen >= TCPOLEN_SACKLEN) { 2322 olen = opt[1]; 2323 switch (*opt) { 2324 case TCPOPT_EOL: /* FALLTHROUGH */ 2325 case TCPOPT_NOP: 2326 opt++; 2327 hlen--; 2328 break; 2329 case TCPOPT_SACK: 2330 if (olen > hlen) 2331 olen = hlen; 2332 if (olen >= TCPOLEN_SACKLEN) { 2333 for (i = 2; i + TCPOLEN_SACK <= olen; 2334 i += TCPOLEN_SACK) { 2335 memcpy(&sack, &opt[i], sizeof(sack)); 2336 pf_change_proto_a(m, &sack.start, &th->th_sum, 2337 htonl(ntohl(sack.start) - dst->seqdiff), 0); 2338 pf_change_proto_a(m, &sack.end, &th->th_sum, 2339 htonl(ntohl(sack.end) - dst->seqdiff), 0); 2340 memcpy(&opt[i], &sack, sizeof(sack)); 2341 } 2342 copyback = 1; 2343 } 2344 /* FALLTHROUGH */ 2345 default: 2346 if (olen < 2) 2347 olen = 2; 2348 hlen -= olen; 2349 opt += olen; 2350 } 2351 } 2352 2353 if (copyback) 2354 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2355 return (copyback); 2356 } 2357 2358 static void 2359 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2360 const struct pf_addr *saddr, const struct pf_addr *daddr, 2361 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2362 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2363 u_int16_t rtag, struct ifnet *ifp) 2364 { 2365 struct pf_send_entry *pfse; 2366 struct mbuf *m; 2367 int len, tlen; 2368 #ifdef INET 2369 struct ip *h = NULL; 2370 #endif /* INET */ 2371 #ifdef INET6 2372 struct ip6_hdr *h6 = NULL; 2373 #endif /* INET6 */ 2374 struct tcphdr *th; 2375 char *opt; 2376 struct pf_mtag *pf_mtag; 2377 2378 len = 0; 2379 th = NULL; 2380 2381 /* maximum segment size tcp option */ 2382 tlen = sizeof(struct tcphdr); 2383 if (mss) 2384 tlen += 4; 2385 2386 switch (af) { 2387 #ifdef INET 2388 case AF_INET: 2389 len = sizeof(struct ip) + tlen; 2390 break; 2391 #endif /* INET */ 2392 #ifdef INET6 2393 case AF_INET6: 2394 len = sizeof(struct ip6_hdr) + tlen; 2395 break; 2396 #endif /* INET6 */ 2397 default: 2398 panic("%s: unsupported af %d", __func__, af); 2399 } 2400 2401 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2402 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2403 if (pfse == NULL) 2404 return; 2405 m = m_gethdr(M_NOWAIT, MT_DATA); 2406 if (m == NULL) { 2407 free(pfse, M_PFTEMP); 2408 return; 2409 } 2410 #ifdef MAC 2411 mac_netinet_firewall_send(m); 2412 #endif 2413 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2414 free(pfse, M_PFTEMP); 2415 m_freem(m); 2416 return; 2417 } 2418 if (tag) 2419 m->m_flags |= M_SKIP_FIREWALL; 2420 pf_mtag->tag = rtag; 2421 2422 if (r != NULL && r->rtableid >= 0) 2423 M_SETFIB(m, r->rtableid); 2424 2425 #ifdef ALTQ 2426 if (r != NULL && r->qid) { 2427 pf_mtag->qid = r->qid; 2428 2429 /* add hints for ecn */ 2430 pf_mtag->hdr = mtod(m, struct ip *); 2431 } 2432 #endif /* ALTQ */ 2433 m->m_data += max_linkhdr; 2434 m->m_pkthdr.len = m->m_len = len; 2435 m->m_pkthdr.rcvif = NULL; 2436 bzero(m->m_data, len); 2437 switch (af) { 2438 #ifdef INET 2439 case AF_INET: 2440 h = mtod(m, struct ip *); 2441 2442 /* IP header fields included in the TCP checksum */ 2443 h->ip_p = IPPROTO_TCP; 2444 h->ip_len = htons(tlen); 2445 h->ip_src.s_addr = saddr->v4.s_addr; 2446 h->ip_dst.s_addr = daddr->v4.s_addr; 2447 2448 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2449 break; 2450 #endif /* INET */ 2451 #ifdef INET6 2452 case AF_INET6: 2453 h6 = mtod(m, struct ip6_hdr *); 2454 2455 /* IP header fields included in the TCP checksum */ 2456 h6->ip6_nxt = IPPROTO_TCP; 2457 h6->ip6_plen = htons(tlen); 2458 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2459 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2460 2461 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2462 break; 2463 #endif /* INET6 */ 2464 } 2465 2466 /* TCP header */ 2467 th->th_sport = sport; 2468 th->th_dport = dport; 2469 th->th_seq = htonl(seq); 2470 th->th_ack = htonl(ack); 2471 th->th_off = tlen >> 2; 2472 th->th_flags = flags; 2473 th->th_win = htons(win); 2474 2475 if (mss) { 2476 opt = (char *)(th + 1); 2477 opt[0] = TCPOPT_MAXSEG; 2478 opt[1] = 4; 2479 HTONS(mss); 2480 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2481 } 2482 2483 switch (af) { 2484 #ifdef INET 2485 case AF_INET: 2486 /* TCP checksum */ 2487 th->th_sum = in_cksum(m, len); 2488 2489 /* Finish the IP header */ 2490 h->ip_v = 4; 2491 h->ip_hl = sizeof(*h) >> 2; 2492 h->ip_tos = IPTOS_LOWDELAY; 2493 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2494 h->ip_len = htons(len); 2495 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2496 h->ip_sum = 0; 2497 2498 pfse->pfse_type = PFSE_IP; 2499 break; 2500 #endif /* INET */ 2501 #ifdef INET6 2502 case AF_INET6: 2503 /* TCP checksum */ 2504 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2505 sizeof(struct ip6_hdr), tlen); 2506 2507 h6->ip6_vfc |= IPV6_VERSION; 2508 h6->ip6_hlim = IPV6_DEFHLIM; 2509 2510 pfse->pfse_type = PFSE_IP6; 2511 break; 2512 #endif /* INET6 */ 2513 } 2514 pfse->pfse_m = m; 2515 pf_send(pfse); 2516 } 2517 2518 static void 2519 pf_return(struct pf_rule *r, struct pf_rule *nr, struct pf_pdesc *pd, 2520 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 2521 struct pfi_kif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 2522 u_short *reason) 2523 { 2524 struct pf_addr * const saddr = pd->src; 2525 struct pf_addr * const daddr = pd->dst; 2526 sa_family_t af = pd->af; 2527 2528 /* undo NAT changes, if they have taken place */ 2529 if (nr != NULL) { 2530 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 2531 PF_ACPY(daddr, &sk->addr[pd->didx], af); 2532 if (pd->sport) 2533 *pd->sport = sk->port[pd->sidx]; 2534 if (pd->dport) 2535 *pd->dport = sk->port[pd->didx]; 2536 if (pd->proto_sum) 2537 *pd->proto_sum = bproto_sum; 2538 if (pd->ip_sum) 2539 *pd->ip_sum = bip_sum; 2540 m_copyback(m, off, hdrlen, pd->hdr.any); 2541 } 2542 if (pd->proto == IPPROTO_TCP && 2543 ((r->rule_flag & PFRULE_RETURNRST) || 2544 (r->rule_flag & PFRULE_RETURN)) && 2545 !(th->th_flags & TH_RST)) { 2546 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 2547 int len = 0; 2548 #ifdef INET 2549 struct ip *h4; 2550 #endif 2551 #ifdef INET6 2552 struct ip6_hdr *h6; 2553 #endif 2554 2555 switch (af) { 2556 #ifdef INET 2557 case AF_INET: 2558 h4 = mtod(m, struct ip *); 2559 len = ntohs(h4->ip_len) - off; 2560 break; 2561 #endif 2562 #ifdef INET6 2563 case AF_INET6: 2564 h6 = mtod(m, struct ip6_hdr *); 2565 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 2566 break; 2567 #endif 2568 } 2569 2570 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 2571 REASON_SET(reason, PFRES_PROTCKSUM); 2572 else { 2573 if (th->th_flags & TH_SYN) 2574 ack++; 2575 if (th->th_flags & TH_FIN) 2576 ack++; 2577 pf_send_tcp(m, r, af, pd->dst, 2578 pd->src, th->th_dport, th->th_sport, 2579 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 2580 r->return_ttl, 1, 0, kif->pfik_ifp); 2581 } 2582 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 2583 r->return_icmp) 2584 pf_send_icmp(m, r->return_icmp >> 8, 2585 r->return_icmp & 255, af, r); 2586 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 2587 r->return_icmp6) 2588 pf_send_icmp(m, r->return_icmp6 >> 8, 2589 r->return_icmp6 & 255, af, r); 2590 } 2591 2592 static int 2593 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2594 { 2595 struct m_tag *mtag; 2596 2597 KASSERT(prio <= PF_PRIO_MAX, 2598 ("%s with invalid pcp", __func__)); 2599 2600 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2601 if (mtag == NULL) { 2602 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2603 sizeof(uint8_t), M_NOWAIT); 2604 if (mtag == NULL) 2605 return (ENOMEM); 2606 m_tag_prepend(m, mtag); 2607 } 2608 2609 *(uint8_t *)(mtag + 1) = prio; 2610 return (0); 2611 } 2612 2613 static int 2614 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2615 { 2616 struct m_tag *mtag; 2617 u_int8_t mpcp; 2618 2619 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2620 if (mtag == NULL) 2621 return (0); 2622 2623 if (prio == PF_PRIO_ZERO) 2624 prio = 0; 2625 2626 mpcp = *(uint8_t *)(mtag + 1); 2627 2628 return (mpcp == prio); 2629 } 2630 2631 static void 2632 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2633 struct pf_rule *r) 2634 { 2635 struct pf_send_entry *pfse; 2636 struct mbuf *m0; 2637 struct pf_mtag *pf_mtag; 2638 2639 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2640 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2641 if (pfse == NULL) 2642 return; 2643 2644 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2645 free(pfse, M_PFTEMP); 2646 return; 2647 } 2648 2649 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2650 free(pfse, M_PFTEMP); 2651 return; 2652 } 2653 /* XXX: revisit */ 2654 m0->m_flags |= M_SKIP_FIREWALL; 2655 2656 if (r->rtableid >= 0) 2657 M_SETFIB(m0, r->rtableid); 2658 2659 #ifdef ALTQ 2660 if (r->qid) { 2661 pf_mtag->qid = r->qid; 2662 /* add hints for ecn */ 2663 pf_mtag->hdr = mtod(m0, struct ip *); 2664 } 2665 #endif /* ALTQ */ 2666 2667 switch (af) { 2668 #ifdef INET 2669 case AF_INET: 2670 pfse->pfse_type = PFSE_ICMP; 2671 break; 2672 #endif /* INET */ 2673 #ifdef INET6 2674 case AF_INET6: 2675 pfse->pfse_type = PFSE_ICMP6; 2676 break; 2677 #endif /* INET6 */ 2678 } 2679 pfse->pfse_m = m0; 2680 pfse->icmpopts.type = type; 2681 pfse->icmpopts.code = code; 2682 pf_send(pfse); 2683 } 2684 2685 /* 2686 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2687 * If n is 0, they match if they are equal. If n is != 0, they match if they 2688 * are different. 2689 */ 2690 int 2691 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2692 struct pf_addr *b, sa_family_t af) 2693 { 2694 int match = 0; 2695 2696 switch (af) { 2697 #ifdef INET 2698 case AF_INET: 2699 if ((a->addr32[0] & m->addr32[0]) == 2700 (b->addr32[0] & m->addr32[0])) 2701 match++; 2702 break; 2703 #endif /* INET */ 2704 #ifdef INET6 2705 case AF_INET6: 2706 if (((a->addr32[0] & m->addr32[0]) == 2707 (b->addr32[0] & m->addr32[0])) && 2708 ((a->addr32[1] & m->addr32[1]) == 2709 (b->addr32[1] & m->addr32[1])) && 2710 ((a->addr32[2] & m->addr32[2]) == 2711 (b->addr32[2] & m->addr32[2])) && 2712 ((a->addr32[3] & m->addr32[3]) == 2713 (b->addr32[3] & m->addr32[3]))) 2714 match++; 2715 break; 2716 #endif /* INET6 */ 2717 } 2718 if (match) { 2719 if (n) 2720 return (0); 2721 else 2722 return (1); 2723 } else { 2724 if (n) 2725 return (1); 2726 else 2727 return (0); 2728 } 2729 } 2730 2731 /* 2732 * Return 1 if b <= a <= e, otherwise return 0. 2733 */ 2734 int 2735 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2736 struct pf_addr *a, sa_family_t af) 2737 { 2738 switch (af) { 2739 #ifdef INET 2740 case AF_INET: 2741 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2742 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2743 return (0); 2744 break; 2745 #endif /* INET */ 2746 #ifdef INET6 2747 case AF_INET6: { 2748 int i; 2749 2750 /* check a >= b */ 2751 for (i = 0; i < 4; ++i) 2752 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2753 break; 2754 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2755 return (0); 2756 /* check a <= e */ 2757 for (i = 0; i < 4; ++i) 2758 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2759 break; 2760 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2761 return (0); 2762 break; 2763 } 2764 #endif /* INET6 */ 2765 } 2766 return (1); 2767 } 2768 2769 static int 2770 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2771 { 2772 switch (op) { 2773 case PF_OP_IRG: 2774 return ((p > a1) && (p < a2)); 2775 case PF_OP_XRG: 2776 return ((p < a1) || (p > a2)); 2777 case PF_OP_RRG: 2778 return ((p >= a1) && (p <= a2)); 2779 case PF_OP_EQ: 2780 return (p == a1); 2781 case PF_OP_NE: 2782 return (p != a1); 2783 case PF_OP_LT: 2784 return (p < a1); 2785 case PF_OP_LE: 2786 return (p <= a1); 2787 case PF_OP_GT: 2788 return (p > a1); 2789 case PF_OP_GE: 2790 return (p >= a1); 2791 } 2792 return (0); /* never reached */ 2793 } 2794 2795 int 2796 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2797 { 2798 NTOHS(a1); 2799 NTOHS(a2); 2800 NTOHS(p); 2801 return (pf_match(op, a1, a2, p)); 2802 } 2803 2804 static int 2805 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2806 { 2807 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2808 return (0); 2809 return (pf_match(op, a1, a2, u)); 2810 } 2811 2812 static int 2813 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2814 { 2815 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2816 return (0); 2817 return (pf_match(op, a1, a2, g)); 2818 } 2819 2820 int 2821 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2822 { 2823 if (*tag == -1) 2824 *tag = mtag; 2825 2826 return ((!r->match_tag_not && r->match_tag == *tag) || 2827 (r->match_tag_not && r->match_tag != *tag)); 2828 } 2829 2830 int 2831 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2832 { 2833 2834 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2835 2836 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2837 return (ENOMEM); 2838 2839 pd->pf_mtag->tag = tag; 2840 2841 return (0); 2842 } 2843 2844 #define PF_ANCHOR_STACKSIZE 32 2845 struct pf_anchor_stackframe { 2846 struct pf_ruleset *rs; 2847 struct pf_rule *r; /* XXX: + match bit */ 2848 struct pf_anchor *child; 2849 }; 2850 2851 /* 2852 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2853 */ 2854 #define PF_ANCHORSTACK_MATCH 0x00000001 2855 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2856 2857 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2858 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2859 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2860 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2861 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2862 } while (0) 2863 2864 void 2865 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2866 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2867 int *match) 2868 { 2869 struct pf_anchor_stackframe *f; 2870 2871 PF_RULES_RASSERT(); 2872 2873 if (match) 2874 *match = 0; 2875 if (*depth >= PF_ANCHOR_STACKSIZE) { 2876 printf("%s: anchor stack overflow on %s\n", 2877 __func__, (*r)->anchor->name); 2878 *r = TAILQ_NEXT(*r, entries); 2879 return; 2880 } else if (*depth == 0 && a != NULL) 2881 *a = *r; 2882 f = stack + (*depth)++; 2883 f->rs = *rs; 2884 f->r = *r; 2885 if ((*r)->anchor_wildcard) { 2886 struct pf_anchor_node *parent = &(*r)->anchor->children; 2887 2888 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2889 *r = NULL; 2890 return; 2891 } 2892 *rs = &f->child->ruleset; 2893 } else { 2894 f->child = NULL; 2895 *rs = &(*r)->anchor->ruleset; 2896 } 2897 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2898 } 2899 2900 int 2901 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2902 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2903 int *match) 2904 { 2905 struct pf_anchor_stackframe *f; 2906 struct pf_rule *fr; 2907 int quick = 0; 2908 2909 PF_RULES_RASSERT(); 2910 2911 do { 2912 if (*depth <= 0) 2913 break; 2914 f = stack + *depth - 1; 2915 fr = PF_ANCHOR_RULE(f); 2916 if (f->child != NULL) { 2917 struct pf_anchor_node *parent; 2918 2919 /* 2920 * This block traverses through 2921 * a wildcard anchor. 2922 */ 2923 parent = &fr->anchor->children; 2924 if (match != NULL && *match) { 2925 /* 2926 * If any of "*" matched, then 2927 * "foo/ *" matched, mark frame 2928 * appropriately. 2929 */ 2930 PF_ANCHOR_SET_MATCH(f); 2931 *match = 0; 2932 } 2933 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2934 if (f->child != NULL) { 2935 *rs = &f->child->ruleset; 2936 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2937 if (*r == NULL) 2938 continue; 2939 else 2940 break; 2941 } 2942 } 2943 (*depth)--; 2944 if (*depth == 0 && a != NULL) 2945 *a = NULL; 2946 *rs = f->rs; 2947 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2948 quick = fr->quick; 2949 *r = TAILQ_NEXT(fr, entries); 2950 } while (*r == NULL); 2951 2952 return (quick); 2953 } 2954 2955 #ifdef INET6 2956 void 2957 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2958 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2959 { 2960 switch (af) { 2961 #ifdef INET 2962 case AF_INET: 2963 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2964 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2965 break; 2966 #endif /* INET */ 2967 case AF_INET6: 2968 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2969 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2970 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2971 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2972 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2973 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2974 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2975 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2976 break; 2977 } 2978 } 2979 2980 void 2981 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2982 { 2983 switch (af) { 2984 #ifdef INET 2985 case AF_INET: 2986 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2987 break; 2988 #endif /* INET */ 2989 case AF_INET6: 2990 if (addr->addr32[3] == 0xffffffff) { 2991 addr->addr32[3] = 0; 2992 if (addr->addr32[2] == 0xffffffff) { 2993 addr->addr32[2] = 0; 2994 if (addr->addr32[1] == 0xffffffff) { 2995 addr->addr32[1] = 0; 2996 addr->addr32[0] = 2997 htonl(ntohl(addr->addr32[0]) + 1); 2998 } else 2999 addr->addr32[1] = 3000 htonl(ntohl(addr->addr32[1]) + 1); 3001 } else 3002 addr->addr32[2] = 3003 htonl(ntohl(addr->addr32[2]) + 1); 3004 } else 3005 addr->addr32[3] = 3006 htonl(ntohl(addr->addr32[3]) + 1); 3007 break; 3008 } 3009 } 3010 #endif /* INET6 */ 3011 3012 int 3013 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 3014 { 3015 struct pf_addr *saddr, *daddr; 3016 u_int16_t sport, dport; 3017 struct inpcbinfo *pi; 3018 struct inpcb *inp; 3019 3020 pd->lookup.uid = UID_MAX; 3021 pd->lookup.gid = GID_MAX; 3022 3023 switch (pd->proto) { 3024 case IPPROTO_TCP: 3025 if (pd->hdr.tcp == NULL) 3026 return (-1); 3027 sport = pd->hdr.tcp->th_sport; 3028 dport = pd->hdr.tcp->th_dport; 3029 pi = &V_tcbinfo; 3030 break; 3031 case IPPROTO_UDP: 3032 if (pd->hdr.udp == NULL) 3033 return (-1); 3034 sport = pd->hdr.udp->uh_sport; 3035 dport = pd->hdr.udp->uh_dport; 3036 pi = &V_udbinfo; 3037 break; 3038 default: 3039 return (-1); 3040 } 3041 if (direction == PF_IN) { 3042 saddr = pd->src; 3043 daddr = pd->dst; 3044 } else { 3045 u_int16_t p; 3046 3047 p = sport; 3048 sport = dport; 3049 dport = p; 3050 saddr = pd->dst; 3051 daddr = pd->src; 3052 } 3053 switch (pd->af) { 3054 #ifdef INET 3055 case AF_INET: 3056 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3057 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3058 if (inp == NULL) { 3059 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3060 daddr->v4, dport, INPLOOKUP_WILDCARD | 3061 INPLOOKUP_RLOCKPCB, NULL, m); 3062 if (inp == NULL) 3063 return (-1); 3064 } 3065 break; 3066 #endif /* INET */ 3067 #ifdef INET6 3068 case AF_INET6: 3069 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3070 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3071 if (inp == NULL) { 3072 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3073 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3074 INPLOOKUP_RLOCKPCB, NULL, m); 3075 if (inp == NULL) 3076 return (-1); 3077 } 3078 break; 3079 #endif /* INET6 */ 3080 3081 default: 3082 return (-1); 3083 } 3084 INP_RLOCK_ASSERT(inp); 3085 pd->lookup.uid = inp->inp_cred->cr_uid; 3086 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3087 INP_RUNLOCK(inp); 3088 3089 return (1); 3090 } 3091 3092 static u_int8_t 3093 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3094 { 3095 int hlen; 3096 u_int8_t hdr[60]; 3097 u_int8_t *opt, optlen; 3098 u_int8_t wscale = 0; 3099 3100 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3101 if (hlen <= sizeof(struct tcphdr)) 3102 return (0); 3103 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3104 return (0); 3105 opt = hdr + sizeof(struct tcphdr); 3106 hlen -= sizeof(struct tcphdr); 3107 while (hlen >= 3) { 3108 switch (*opt) { 3109 case TCPOPT_EOL: 3110 case TCPOPT_NOP: 3111 ++opt; 3112 --hlen; 3113 break; 3114 case TCPOPT_WINDOW: 3115 wscale = opt[2]; 3116 if (wscale > TCP_MAX_WINSHIFT) 3117 wscale = TCP_MAX_WINSHIFT; 3118 wscale |= PF_WSCALE_FLAG; 3119 /* FALLTHROUGH */ 3120 default: 3121 optlen = opt[1]; 3122 if (optlen < 2) 3123 optlen = 2; 3124 hlen -= optlen; 3125 opt += optlen; 3126 break; 3127 } 3128 } 3129 return (wscale); 3130 } 3131 3132 static u_int16_t 3133 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3134 { 3135 int hlen; 3136 u_int8_t hdr[60]; 3137 u_int8_t *opt, optlen; 3138 u_int16_t mss = V_tcp_mssdflt; 3139 3140 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3141 if (hlen <= sizeof(struct tcphdr)) 3142 return (0); 3143 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3144 return (0); 3145 opt = hdr + sizeof(struct tcphdr); 3146 hlen -= sizeof(struct tcphdr); 3147 while (hlen >= TCPOLEN_MAXSEG) { 3148 switch (*opt) { 3149 case TCPOPT_EOL: 3150 case TCPOPT_NOP: 3151 ++opt; 3152 --hlen; 3153 break; 3154 case TCPOPT_MAXSEG: 3155 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3156 NTOHS(mss); 3157 /* FALLTHROUGH */ 3158 default: 3159 optlen = opt[1]; 3160 if (optlen < 2) 3161 optlen = 2; 3162 hlen -= optlen; 3163 opt += optlen; 3164 break; 3165 } 3166 } 3167 return (mss); 3168 } 3169 3170 static u_int16_t 3171 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3172 { 3173 struct nhop_object *nh; 3174 #ifdef INET6 3175 struct in6_addr dst6; 3176 uint32_t scopeid; 3177 #endif /* INET6 */ 3178 int hlen = 0; 3179 uint16_t mss = 0; 3180 3181 NET_EPOCH_ASSERT(); 3182 3183 switch (af) { 3184 #ifdef INET 3185 case AF_INET: 3186 hlen = sizeof(struct ip); 3187 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 3188 if (nh != NULL) 3189 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3190 break; 3191 #endif /* INET */ 3192 #ifdef INET6 3193 case AF_INET6: 3194 hlen = sizeof(struct ip6_hdr); 3195 in6_splitscope(&addr->v6, &dst6, &scopeid); 3196 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 3197 if (nh != NULL) 3198 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3199 break; 3200 #endif /* INET6 */ 3201 } 3202 3203 mss = max(V_tcp_mssdflt, mss); 3204 mss = min(mss, offer); 3205 mss = max(mss, 64); /* sanity - at least max opt space */ 3206 return (mss); 3207 } 3208 3209 static u_int32_t 3210 pf_tcp_iss(struct pf_pdesc *pd) 3211 { 3212 MD5_CTX ctx; 3213 u_int32_t digest[4]; 3214 3215 if (V_pf_tcp_secret_init == 0) { 3216 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3217 MD5Init(&V_pf_tcp_secret_ctx); 3218 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3219 sizeof(V_pf_tcp_secret)); 3220 V_pf_tcp_secret_init = 1; 3221 } 3222 3223 ctx = V_pf_tcp_secret_ctx; 3224 3225 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3226 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3227 if (pd->af == AF_INET6) { 3228 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3229 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3230 } else { 3231 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3232 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3233 } 3234 MD5Final((u_char *)digest, &ctx); 3235 V_pf_tcp_iss_off += 4096; 3236 #define ISN_RANDOM_INCREMENT (4096 - 1) 3237 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3238 V_pf_tcp_iss_off); 3239 #undef ISN_RANDOM_INCREMENT 3240 } 3241 3242 static int 3243 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3244 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3245 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3246 { 3247 struct pf_rule *nr = NULL; 3248 struct pf_addr * const saddr = pd->src; 3249 struct pf_addr * const daddr = pd->dst; 3250 sa_family_t af = pd->af; 3251 struct pf_rule *r, *a = NULL; 3252 struct pf_ruleset *ruleset = NULL; 3253 struct pf_src_node *nsn = NULL; 3254 struct tcphdr *th = pd->hdr.tcp; 3255 struct pf_state_key *sk = NULL, *nk = NULL; 3256 u_short reason; 3257 int rewrite = 0, hdrlen = 0; 3258 int tag = -1, rtableid = -1; 3259 int asd = 0; 3260 int match = 0; 3261 int state_icmp = 0; 3262 u_int16_t sport = 0, dport = 0; 3263 u_int16_t bproto_sum = 0, bip_sum = 0; 3264 u_int8_t icmptype = 0, icmpcode = 0; 3265 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3266 3267 PF_RULES_RASSERT(); 3268 3269 if (inp != NULL) { 3270 INP_LOCK_ASSERT(inp); 3271 pd->lookup.uid = inp->inp_cred->cr_uid; 3272 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3273 pd->lookup.done = 1; 3274 } 3275 3276 switch (pd->proto) { 3277 case IPPROTO_TCP: 3278 sport = th->th_sport; 3279 dport = th->th_dport; 3280 hdrlen = sizeof(*th); 3281 break; 3282 case IPPROTO_UDP: 3283 sport = pd->hdr.udp->uh_sport; 3284 dport = pd->hdr.udp->uh_dport; 3285 hdrlen = sizeof(*pd->hdr.udp); 3286 break; 3287 #ifdef INET 3288 case IPPROTO_ICMP: 3289 if (pd->af != AF_INET) 3290 break; 3291 sport = dport = pd->hdr.icmp->icmp_id; 3292 hdrlen = sizeof(*pd->hdr.icmp); 3293 icmptype = pd->hdr.icmp->icmp_type; 3294 icmpcode = pd->hdr.icmp->icmp_code; 3295 3296 if (icmptype == ICMP_UNREACH || 3297 icmptype == ICMP_SOURCEQUENCH || 3298 icmptype == ICMP_REDIRECT || 3299 icmptype == ICMP_TIMXCEED || 3300 icmptype == ICMP_PARAMPROB) 3301 state_icmp++; 3302 break; 3303 #endif /* INET */ 3304 #ifdef INET6 3305 case IPPROTO_ICMPV6: 3306 if (af != AF_INET6) 3307 break; 3308 sport = dport = pd->hdr.icmp6->icmp6_id; 3309 hdrlen = sizeof(*pd->hdr.icmp6); 3310 icmptype = pd->hdr.icmp6->icmp6_type; 3311 icmpcode = pd->hdr.icmp6->icmp6_code; 3312 3313 if (icmptype == ICMP6_DST_UNREACH || 3314 icmptype == ICMP6_PACKET_TOO_BIG || 3315 icmptype == ICMP6_TIME_EXCEEDED || 3316 icmptype == ICMP6_PARAM_PROB) 3317 state_icmp++; 3318 break; 3319 #endif /* INET6 */ 3320 default: 3321 sport = dport = hdrlen = 0; 3322 break; 3323 } 3324 3325 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3326 3327 /* check packet for BINAT/NAT/RDR */ 3328 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3329 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3330 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3331 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3332 3333 if (pd->ip_sum) 3334 bip_sum = *pd->ip_sum; 3335 3336 switch (pd->proto) { 3337 case IPPROTO_TCP: 3338 bproto_sum = th->th_sum; 3339 pd->proto_sum = &th->th_sum; 3340 3341 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3342 nk->port[pd->sidx] != sport) { 3343 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3344 &th->th_sum, &nk->addr[pd->sidx], 3345 nk->port[pd->sidx], 0, af); 3346 pd->sport = &th->th_sport; 3347 sport = th->th_sport; 3348 } 3349 3350 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3351 nk->port[pd->didx] != dport) { 3352 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3353 &th->th_sum, &nk->addr[pd->didx], 3354 nk->port[pd->didx], 0, af); 3355 dport = th->th_dport; 3356 pd->dport = &th->th_dport; 3357 } 3358 rewrite++; 3359 break; 3360 case IPPROTO_UDP: 3361 bproto_sum = pd->hdr.udp->uh_sum; 3362 pd->proto_sum = &pd->hdr.udp->uh_sum; 3363 3364 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3365 nk->port[pd->sidx] != sport) { 3366 pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, 3367 pd->ip_sum, &pd->hdr.udp->uh_sum, 3368 &nk->addr[pd->sidx], 3369 nk->port[pd->sidx], 1, af); 3370 sport = pd->hdr.udp->uh_sport; 3371 pd->sport = &pd->hdr.udp->uh_sport; 3372 } 3373 3374 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3375 nk->port[pd->didx] != dport) { 3376 pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, 3377 pd->ip_sum, &pd->hdr.udp->uh_sum, 3378 &nk->addr[pd->didx], 3379 nk->port[pd->didx], 1, af); 3380 dport = pd->hdr.udp->uh_dport; 3381 pd->dport = &pd->hdr.udp->uh_dport; 3382 } 3383 rewrite++; 3384 break; 3385 #ifdef INET 3386 case IPPROTO_ICMP: 3387 nk->port[0] = nk->port[1]; 3388 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3389 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3390 nk->addr[pd->sidx].v4.s_addr, 0); 3391 3392 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3393 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3394 nk->addr[pd->didx].v4.s_addr, 0); 3395 3396 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3397 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3398 pd->hdr.icmp->icmp_cksum, sport, 3399 nk->port[1], 0); 3400 pd->hdr.icmp->icmp_id = nk->port[1]; 3401 pd->sport = &pd->hdr.icmp->icmp_id; 3402 } 3403 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3404 break; 3405 #endif /* INET */ 3406 #ifdef INET6 3407 case IPPROTO_ICMPV6: 3408 nk->port[0] = nk->port[1]; 3409 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3410 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3411 &nk->addr[pd->sidx], 0); 3412 3413 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3414 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3415 &nk->addr[pd->didx], 0); 3416 rewrite++; 3417 break; 3418 #endif /* INET */ 3419 default: 3420 switch (af) { 3421 #ifdef INET 3422 case AF_INET: 3423 if (PF_ANEQ(saddr, 3424 &nk->addr[pd->sidx], AF_INET)) 3425 pf_change_a(&saddr->v4.s_addr, 3426 pd->ip_sum, 3427 nk->addr[pd->sidx].v4.s_addr, 0); 3428 3429 if (PF_ANEQ(daddr, 3430 &nk->addr[pd->didx], AF_INET)) 3431 pf_change_a(&daddr->v4.s_addr, 3432 pd->ip_sum, 3433 nk->addr[pd->didx].v4.s_addr, 0); 3434 break; 3435 #endif /* INET */ 3436 #ifdef INET6 3437 case AF_INET6: 3438 if (PF_ANEQ(saddr, 3439 &nk->addr[pd->sidx], AF_INET6)) 3440 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3441 3442 if (PF_ANEQ(daddr, 3443 &nk->addr[pd->didx], AF_INET6)) 3444 PF_ACPY(daddr, &nk->addr[pd->didx], af); 3445 break; 3446 #endif /* INET */ 3447 } 3448 break; 3449 } 3450 if (nr->natpass) 3451 r = NULL; 3452 pd->nat_rule = nr; 3453 } 3454 3455 while (r != NULL) { 3456 r->evaluations++; 3457 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3458 r = r->skip[PF_SKIP_IFP].ptr; 3459 else if (r->direction && r->direction != direction) 3460 r = r->skip[PF_SKIP_DIR].ptr; 3461 else if (r->af && r->af != af) 3462 r = r->skip[PF_SKIP_AF].ptr; 3463 else if (r->proto && r->proto != pd->proto) 3464 r = r->skip[PF_SKIP_PROTO].ptr; 3465 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3466 r->src.neg, kif, M_GETFIB(m))) 3467 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3468 /* tcp/udp only. port_op always 0 in other cases */ 3469 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3470 r->src.port[0], r->src.port[1], sport)) 3471 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3472 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3473 r->dst.neg, NULL, M_GETFIB(m))) 3474 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3475 /* tcp/udp only. port_op always 0 in other cases */ 3476 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3477 r->dst.port[0], r->dst.port[1], dport)) 3478 r = r->skip[PF_SKIP_DST_PORT].ptr; 3479 /* icmp only. type always 0 in other cases */ 3480 else if (r->type && r->type != icmptype + 1) 3481 r = TAILQ_NEXT(r, entries); 3482 /* icmp only. type always 0 in other cases */ 3483 else if (r->code && r->code != icmpcode + 1) 3484 r = TAILQ_NEXT(r, entries); 3485 else if (r->tos && !(r->tos == pd->tos)) 3486 r = TAILQ_NEXT(r, entries); 3487 else if (r->rule_flag & PFRULE_FRAGMENT) 3488 r = TAILQ_NEXT(r, entries); 3489 else if (pd->proto == IPPROTO_TCP && 3490 (r->flagset & th->th_flags) != r->flags) 3491 r = TAILQ_NEXT(r, entries); 3492 /* tcp/udp only. uid.op always 0 in other cases */ 3493 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3494 pf_socket_lookup(direction, pd, m), 1)) && 3495 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3496 pd->lookup.uid)) 3497 r = TAILQ_NEXT(r, entries); 3498 /* tcp/udp only. gid.op always 0 in other cases */ 3499 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3500 pf_socket_lookup(direction, pd, m), 1)) && 3501 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3502 pd->lookup.gid)) 3503 r = TAILQ_NEXT(r, entries); 3504 else if (r->prio && 3505 !pf_match_ieee8021q_pcp(r->prio, m)) 3506 r = TAILQ_NEXT(r, entries); 3507 else if (r->prob && 3508 r->prob <= arc4random()) 3509 r = TAILQ_NEXT(r, entries); 3510 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3511 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3512 r = TAILQ_NEXT(r, entries); 3513 else if (r->os_fingerprint != PF_OSFP_ANY && 3514 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3515 pf_osfp_fingerprint(pd, m, off, th), 3516 r->os_fingerprint))) 3517 r = TAILQ_NEXT(r, entries); 3518 else { 3519 if (r->tag) 3520 tag = r->tag; 3521 if (r->rtableid >= 0) 3522 rtableid = r->rtableid; 3523 if (r->anchor == NULL) { 3524 match = 1; 3525 *rm = r; 3526 *am = a; 3527 *rsm = ruleset; 3528 if ((*rm)->quick) 3529 break; 3530 r = TAILQ_NEXT(r, entries); 3531 } else 3532 pf_step_into_anchor(anchor_stack, &asd, 3533 &ruleset, PF_RULESET_FILTER, &r, &a, 3534 &match); 3535 } 3536 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3537 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3538 break; 3539 } 3540 r = *rm; 3541 a = *am; 3542 ruleset = *rsm; 3543 3544 REASON_SET(&reason, PFRES_MATCH); 3545 3546 if (r->log || (nr != NULL && nr->log)) { 3547 if (rewrite) 3548 m_copyback(m, off, hdrlen, pd->hdr.any); 3549 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3550 ruleset, pd, 1); 3551 } 3552 3553 if ((r->action == PF_DROP) && 3554 ((r->rule_flag & PFRULE_RETURNRST) || 3555 (r->rule_flag & PFRULE_RETURNICMP) || 3556 (r->rule_flag & PFRULE_RETURN))) { 3557 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 3558 bip_sum, hdrlen, &reason); 3559 } 3560 3561 if (r->action == PF_DROP) 3562 goto cleanup; 3563 3564 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3565 REASON_SET(&reason, PFRES_MEMORY); 3566 goto cleanup; 3567 } 3568 if (rtableid >= 0) 3569 M_SETFIB(m, rtableid); 3570 3571 if (!state_icmp && (r->keep_state || nr != NULL || 3572 (pd->flags & PFDESC_TCP_NORM))) { 3573 int action; 3574 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3575 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3576 hdrlen); 3577 if (action != PF_PASS) { 3578 if (action == PF_DROP && 3579 (r->rule_flag & PFRULE_RETURN)) 3580 pf_return(r, nr, pd, sk, off, m, th, kif, 3581 bproto_sum, bip_sum, hdrlen, &reason); 3582 return (action); 3583 } 3584 } else { 3585 if (sk != NULL) 3586 uma_zfree(V_pf_state_key_z, sk); 3587 if (nk != NULL) 3588 uma_zfree(V_pf_state_key_z, nk); 3589 } 3590 3591 /* copy back packet headers if we performed NAT operations */ 3592 if (rewrite) 3593 m_copyback(m, off, hdrlen, pd->hdr.any); 3594 3595 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3596 direction == PF_OUT && 3597 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 3598 /* 3599 * We want the state created, but we dont 3600 * want to send this in case a partner 3601 * firewall has to know about it to allow 3602 * replies through it. 3603 */ 3604 return (PF_DEFER); 3605 3606 return (PF_PASS); 3607 3608 cleanup: 3609 if (sk != NULL) 3610 uma_zfree(V_pf_state_key_z, sk); 3611 if (nk != NULL) 3612 uma_zfree(V_pf_state_key_z, nk); 3613 return (PF_DROP); 3614 } 3615 3616 static int 3617 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3618 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3619 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3620 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3621 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3622 { 3623 struct pf_state *s = NULL; 3624 struct pf_src_node *sn = NULL; 3625 struct tcphdr *th = pd->hdr.tcp; 3626 u_int16_t mss = V_tcp_mssdflt; 3627 u_short reason; 3628 3629 /* check maximums */ 3630 if (r->max_states && 3631 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3632 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3633 REASON_SET(&reason, PFRES_MAXSTATES); 3634 goto csfailed; 3635 } 3636 /* src node for filter rule */ 3637 if ((r->rule_flag & PFRULE_SRCTRACK || 3638 r->rpool.opts & PF_POOL_STICKYADDR) && 3639 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3640 REASON_SET(&reason, PFRES_SRCLIMIT); 3641 goto csfailed; 3642 } 3643 /* src node for translation rule */ 3644 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3645 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3646 REASON_SET(&reason, PFRES_SRCLIMIT); 3647 goto csfailed; 3648 } 3649 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3650 if (s == NULL) { 3651 REASON_SET(&reason, PFRES_MEMORY); 3652 goto csfailed; 3653 } 3654 s->rule.ptr = r; 3655 s->nat_rule.ptr = nr; 3656 s->anchor.ptr = a; 3657 STATE_INC_COUNTERS(s); 3658 if (r->allow_opts) 3659 s->state_flags |= PFSTATE_ALLOWOPTS; 3660 if (r->rule_flag & PFRULE_STATESLOPPY) 3661 s->state_flags |= PFSTATE_SLOPPY; 3662 s->log = r->log & PF_LOG_ALL; 3663 s->sync_state = PFSYNC_S_NONE; 3664 if (nr != NULL) 3665 s->log |= nr->log & PF_LOG_ALL; 3666 switch (pd->proto) { 3667 case IPPROTO_TCP: 3668 s->src.seqlo = ntohl(th->th_seq); 3669 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3670 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3671 r->keep_state == PF_STATE_MODULATE) { 3672 /* Generate sequence number modulator */ 3673 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3674 0) 3675 s->src.seqdiff = 1; 3676 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3677 htonl(s->src.seqlo + s->src.seqdiff), 0); 3678 *rewrite = 1; 3679 } else 3680 s->src.seqdiff = 0; 3681 if (th->th_flags & TH_SYN) { 3682 s->src.seqhi++; 3683 s->src.wscale = pf_get_wscale(m, off, 3684 th->th_off, pd->af); 3685 } 3686 s->src.max_win = MAX(ntohs(th->th_win), 1); 3687 if (s->src.wscale & PF_WSCALE_MASK) { 3688 /* Remove scale factor from initial window */ 3689 int win = s->src.max_win; 3690 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3691 s->src.max_win = (win - 1) >> 3692 (s->src.wscale & PF_WSCALE_MASK); 3693 } 3694 if (th->th_flags & TH_FIN) 3695 s->src.seqhi++; 3696 s->dst.seqhi = 1; 3697 s->dst.max_win = 1; 3698 s->src.state = TCPS_SYN_SENT; 3699 s->dst.state = TCPS_CLOSED; 3700 s->timeout = PFTM_TCP_FIRST_PACKET; 3701 break; 3702 case IPPROTO_UDP: 3703 s->src.state = PFUDPS_SINGLE; 3704 s->dst.state = PFUDPS_NO_TRAFFIC; 3705 s->timeout = PFTM_UDP_FIRST_PACKET; 3706 break; 3707 case IPPROTO_ICMP: 3708 #ifdef INET6 3709 case IPPROTO_ICMPV6: 3710 #endif 3711 s->timeout = PFTM_ICMP_FIRST_PACKET; 3712 break; 3713 default: 3714 s->src.state = PFOTHERS_SINGLE; 3715 s->dst.state = PFOTHERS_NO_TRAFFIC; 3716 s->timeout = PFTM_OTHER_FIRST_PACKET; 3717 } 3718 3719 if (r->rt) { 3720 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3721 REASON_SET(&reason, PFRES_MAPFAILED); 3722 pf_src_tree_remove_state(s); 3723 STATE_DEC_COUNTERS(s); 3724 uma_zfree(V_pf_state_z, s); 3725 goto csfailed; 3726 } 3727 s->rt_kif = r->rpool.cur->kif; 3728 } 3729 3730 s->creation = time_uptime; 3731 s->expire = time_uptime; 3732 3733 if (sn != NULL) 3734 s->src_node = sn; 3735 if (nsn != NULL) { 3736 /* XXX We only modify one side for now. */ 3737 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3738 s->nat_src_node = nsn; 3739 } 3740 if (pd->proto == IPPROTO_TCP) { 3741 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3742 off, pd, th, &s->src, &s->dst)) { 3743 REASON_SET(&reason, PFRES_MEMORY); 3744 pf_src_tree_remove_state(s); 3745 STATE_DEC_COUNTERS(s); 3746 uma_zfree(V_pf_state_z, s); 3747 return (PF_DROP); 3748 } 3749 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3750 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3751 &s->src, &s->dst, rewrite)) { 3752 /* This really shouldn't happen!!! */ 3753 DPFPRINTF(PF_DEBUG_URGENT, 3754 ("pf_normalize_tcp_stateful failed on first " 3755 "pkt\n")); 3756 pf_normalize_tcp_cleanup(s); 3757 pf_src_tree_remove_state(s); 3758 STATE_DEC_COUNTERS(s); 3759 uma_zfree(V_pf_state_z, s); 3760 return (PF_DROP); 3761 } 3762 } 3763 s->direction = pd->dir; 3764 3765 /* 3766 * sk/nk could already been setup by pf_get_translation(). 3767 */ 3768 if (nr == NULL) { 3769 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3770 __func__, nr, sk, nk)); 3771 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3772 if (sk == NULL) 3773 goto csfailed; 3774 nk = sk; 3775 } else 3776 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3777 __func__, nr, sk, nk)); 3778 3779 /* Swap sk/nk for PF_OUT. */ 3780 if (pf_state_insert(BOUND_IFACE(r, kif), 3781 (pd->dir == PF_IN) ? sk : nk, 3782 (pd->dir == PF_IN) ? nk : sk, s)) { 3783 if (pd->proto == IPPROTO_TCP) 3784 pf_normalize_tcp_cleanup(s); 3785 REASON_SET(&reason, PFRES_STATEINS); 3786 pf_src_tree_remove_state(s); 3787 STATE_DEC_COUNTERS(s); 3788 uma_zfree(V_pf_state_z, s); 3789 return (PF_DROP); 3790 } else 3791 *sm = s; 3792 3793 if (tag > 0) 3794 s->tag = tag; 3795 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3796 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3797 s->src.state = PF_TCPS_PROXY_SRC; 3798 /* undo NAT changes, if they have taken place */ 3799 if (nr != NULL) { 3800 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3801 if (pd->dir == PF_OUT) 3802 skt = s->key[PF_SK_STACK]; 3803 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3804 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3805 if (pd->sport) 3806 *pd->sport = skt->port[pd->sidx]; 3807 if (pd->dport) 3808 *pd->dport = skt->port[pd->didx]; 3809 if (pd->proto_sum) 3810 *pd->proto_sum = bproto_sum; 3811 if (pd->ip_sum) 3812 *pd->ip_sum = bip_sum; 3813 m_copyback(m, off, hdrlen, pd->hdr.any); 3814 } 3815 s->src.seqhi = htonl(arc4random()); 3816 /* Find mss option */ 3817 int rtid = M_GETFIB(m); 3818 mss = pf_get_mss(m, off, th->th_off, pd->af); 3819 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3820 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3821 s->src.mss = mss; 3822 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3823 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3824 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3825 REASON_SET(&reason, PFRES_SYNPROXY); 3826 return (PF_SYNPROXY_DROP); 3827 } 3828 3829 return (PF_PASS); 3830 3831 csfailed: 3832 if (sk != NULL) 3833 uma_zfree(V_pf_state_key_z, sk); 3834 if (nk != NULL) 3835 uma_zfree(V_pf_state_key_z, nk); 3836 3837 if (sn != NULL) { 3838 struct pf_srchash *sh; 3839 3840 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3841 PF_HASHROW_LOCK(sh); 3842 if (--sn->states == 0 && sn->expire == 0) { 3843 pf_unlink_src_node(sn); 3844 uma_zfree(V_pf_sources_z, sn); 3845 counter_u64_add( 3846 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3847 } 3848 PF_HASHROW_UNLOCK(sh); 3849 } 3850 3851 if (nsn != sn && nsn != NULL) { 3852 struct pf_srchash *sh; 3853 3854 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3855 PF_HASHROW_LOCK(sh); 3856 if (--nsn->states == 0 && nsn->expire == 0) { 3857 pf_unlink_src_node(nsn); 3858 uma_zfree(V_pf_sources_z, nsn); 3859 counter_u64_add( 3860 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3861 } 3862 PF_HASHROW_UNLOCK(sh); 3863 } 3864 3865 return (PF_DROP); 3866 } 3867 3868 static int 3869 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3870 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3871 struct pf_ruleset **rsm) 3872 { 3873 struct pf_rule *r, *a = NULL; 3874 struct pf_ruleset *ruleset = NULL; 3875 sa_family_t af = pd->af; 3876 u_short reason; 3877 int tag = -1; 3878 int asd = 0; 3879 int match = 0; 3880 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3881 3882 PF_RULES_RASSERT(); 3883 3884 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3885 while (r != NULL) { 3886 r->evaluations++; 3887 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3888 r = r->skip[PF_SKIP_IFP].ptr; 3889 else if (r->direction && r->direction != direction) 3890 r = r->skip[PF_SKIP_DIR].ptr; 3891 else if (r->af && r->af != af) 3892 r = r->skip[PF_SKIP_AF].ptr; 3893 else if (r->proto && r->proto != pd->proto) 3894 r = r->skip[PF_SKIP_PROTO].ptr; 3895 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3896 r->src.neg, kif, M_GETFIB(m))) 3897 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3898 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3899 r->dst.neg, NULL, M_GETFIB(m))) 3900 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3901 else if (r->tos && !(r->tos == pd->tos)) 3902 r = TAILQ_NEXT(r, entries); 3903 else if (r->os_fingerprint != PF_OSFP_ANY) 3904 r = TAILQ_NEXT(r, entries); 3905 else if (pd->proto == IPPROTO_UDP && 3906 (r->src.port_op || r->dst.port_op)) 3907 r = TAILQ_NEXT(r, entries); 3908 else if (pd->proto == IPPROTO_TCP && 3909 (r->src.port_op || r->dst.port_op || r->flagset)) 3910 r = TAILQ_NEXT(r, entries); 3911 else if ((pd->proto == IPPROTO_ICMP || 3912 pd->proto == IPPROTO_ICMPV6) && 3913 (r->type || r->code)) 3914 r = TAILQ_NEXT(r, entries); 3915 else if (r->prio && 3916 !pf_match_ieee8021q_pcp(r->prio, m)) 3917 r = TAILQ_NEXT(r, entries); 3918 else if (r->prob && r->prob <= 3919 (arc4random() % (UINT_MAX - 1) + 1)) 3920 r = TAILQ_NEXT(r, entries); 3921 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3922 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3923 r = TAILQ_NEXT(r, entries); 3924 else { 3925 if (r->anchor == NULL) { 3926 match = 1; 3927 *rm = r; 3928 *am = a; 3929 *rsm = ruleset; 3930 if ((*rm)->quick) 3931 break; 3932 r = TAILQ_NEXT(r, entries); 3933 } else 3934 pf_step_into_anchor(anchor_stack, &asd, 3935 &ruleset, PF_RULESET_FILTER, &r, &a, 3936 &match); 3937 } 3938 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3939 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3940 break; 3941 } 3942 r = *rm; 3943 a = *am; 3944 ruleset = *rsm; 3945 3946 REASON_SET(&reason, PFRES_MATCH); 3947 3948 if (r->log) 3949 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3950 1); 3951 3952 if (r->action != PF_PASS) 3953 return (PF_DROP); 3954 3955 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3956 REASON_SET(&reason, PFRES_MEMORY); 3957 return (PF_DROP); 3958 } 3959 3960 return (PF_PASS); 3961 } 3962 3963 static int 3964 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3965 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3966 struct pf_pdesc *pd, u_short *reason, int *copyback) 3967 { 3968 struct tcphdr *th = pd->hdr.tcp; 3969 u_int16_t win = ntohs(th->th_win); 3970 u_int32_t ack, end, seq, orig_seq; 3971 u_int8_t sws, dws; 3972 int ackskew; 3973 3974 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3975 sws = src->wscale & PF_WSCALE_MASK; 3976 dws = dst->wscale & PF_WSCALE_MASK; 3977 } else 3978 sws = dws = 0; 3979 3980 /* 3981 * Sequence tracking algorithm from Guido van Rooij's paper: 3982 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3983 * tcp_filtering.ps 3984 */ 3985 3986 orig_seq = seq = ntohl(th->th_seq); 3987 if (src->seqlo == 0) { 3988 /* First packet from this end. Set its state */ 3989 3990 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3991 src->scrub == NULL) { 3992 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3993 REASON_SET(reason, PFRES_MEMORY); 3994 return (PF_DROP); 3995 } 3996 } 3997 3998 /* Deferred generation of sequence number modulator */ 3999 if (dst->seqdiff && !src->seqdiff) { 4000 /* use random iss for the TCP server */ 4001 while ((src->seqdiff = arc4random() - seq) == 0) 4002 ; 4003 ack = ntohl(th->th_ack) - dst->seqdiff; 4004 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4005 src->seqdiff), 0); 4006 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4007 *copyback = 1; 4008 } else { 4009 ack = ntohl(th->th_ack); 4010 } 4011 4012 end = seq + pd->p_len; 4013 if (th->th_flags & TH_SYN) { 4014 end++; 4015 if (dst->wscale & PF_WSCALE_FLAG) { 4016 src->wscale = pf_get_wscale(m, off, th->th_off, 4017 pd->af); 4018 if (src->wscale & PF_WSCALE_FLAG) { 4019 /* Remove scale factor from initial 4020 * window */ 4021 sws = src->wscale & PF_WSCALE_MASK; 4022 win = ((u_int32_t)win + (1 << sws) - 1) 4023 >> sws; 4024 dws = dst->wscale & PF_WSCALE_MASK; 4025 } else { 4026 /* fixup other window */ 4027 dst->max_win <<= dst->wscale & 4028 PF_WSCALE_MASK; 4029 /* in case of a retrans SYN|ACK */ 4030 dst->wscale = 0; 4031 } 4032 } 4033 } 4034 if (th->th_flags & TH_FIN) 4035 end++; 4036 4037 src->seqlo = seq; 4038 if (src->state < TCPS_SYN_SENT) 4039 src->state = TCPS_SYN_SENT; 4040 4041 /* 4042 * May need to slide the window (seqhi may have been set by 4043 * the crappy stack check or if we picked up the connection 4044 * after establishment) 4045 */ 4046 if (src->seqhi == 1 || 4047 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4048 src->seqhi = end + MAX(1, dst->max_win << dws); 4049 if (win > src->max_win) 4050 src->max_win = win; 4051 4052 } else { 4053 ack = ntohl(th->th_ack) - dst->seqdiff; 4054 if (src->seqdiff) { 4055 /* Modulate sequence numbers */ 4056 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4057 src->seqdiff), 0); 4058 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4059 *copyback = 1; 4060 } 4061 end = seq + pd->p_len; 4062 if (th->th_flags & TH_SYN) 4063 end++; 4064 if (th->th_flags & TH_FIN) 4065 end++; 4066 } 4067 4068 if ((th->th_flags & TH_ACK) == 0) { 4069 /* Let it pass through the ack skew check */ 4070 ack = dst->seqlo; 4071 } else if ((ack == 0 && 4072 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4073 /* broken tcp stacks do not set ack */ 4074 (dst->state < TCPS_SYN_SENT)) { 4075 /* 4076 * Many stacks (ours included) will set the ACK number in an 4077 * FIN|ACK if the SYN times out -- no sequence to ACK. 4078 */ 4079 ack = dst->seqlo; 4080 } 4081 4082 if (seq == end) { 4083 /* Ease sequencing restrictions on no data packets */ 4084 seq = src->seqlo; 4085 end = seq; 4086 } 4087 4088 ackskew = dst->seqlo - ack; 4089 4090 /* 4091 * Need to demodulate the sequence numbers in any TCP SACK options 4092 * (Selective ACK). We could optionally validate the SACK values 4093 * against the current ACK window, either forwards or backwards, but 4094 * I'm not confident that SACK has been implemented properly 4095 * everywhere. It wouldn't surprise me if several stacks accidentally 4096 * SACK too far backwards of previously ACKed data. There really aren't 4097 * any security implications of bad SACKing unless the target stack 4098 * doesn't validate the option length correctly. Someone trying to 4099 * spoof into a TCP connection won't bother blindly sending SACK 4100 * options anyway. 4101 */ 4102 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4103 if (pf_modulate_sack(m, off, pd, th, dst)) 4104 *copyback = 1; 4105 } 4106 4107 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4108 if (SEQ_GEQ(src->seqhi, end) && 4109 /* Last octet inside other's window space */ 4110 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4111 /* Retrans: not more than one window back */ 4112 (ackskew >= -MAXACKWINDOW) && 4113 /* Acking not more than one reassembled fragment backwards */ 4114 (ackskew <= (MAXACKWINDOW << sws)) && 4115 /* Acking not more than one window forward */ 4116 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4117 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4118 (pd->flags & PFDESC_IP_REAS) == 0)) { 4119 /* Require an exact/+1 sequence match on resets when possible */ 4120 4121 if (dst->scrub || src->scrub) { 4122 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4123 *state, src, dst, copyback)) 4124 return (PF_DROP); 4125 } 4126 4127 /* update max window */ 4128 if (src->max_win < win) 4129 src->max_win = win; 4130 /* synchronize sequencing */ 4131 if (SEQ_GT(end, src->seqlo)) 4132 src->seqlo = end; 4133 /* slide the window of what the other end can send */ 4134 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4135 dst->seqhi = ack + MAX((win << sws), 1); 4136 4137 /* update states */ 4138 if (th->th_flags & TH_SYN) 4139 if (src->state < TCPS_SYN_SENT) 4140 src->state = TCPS_SYN_SENT; 4141 if (th->th_flags & TH_FIN) 4142 if (src->state < TCPS_CLOSING) 4143 src->state = TCPS_CLOSING; 4144 if (th->th_flags & TH_ACK) { 4145 if (dst->state == TCPS_SYN_SENT) { 4146 dst->state = TCPS_ESTABLISHED; 4147 if (src->state == TCPS_ESTABLISHED && 4148 (*state)->src_node != NULL && 4149 pf_src_connlimit(state)) { 4150 REASON_SET(reason, PFRES_SRCLIMIT); 4151 return (PF_DROP); 4152 } 4153 } else if (dst->state == TCPS_CLOSING) 4154 dst->state = TCPS_FIN_WAIT_2; 4155 } 4156 if (th->th_flags & TH_RST) 4157 src->state = dst->state = TCPS_TIME_WAIT; 4158 4159 /* update expire time */ 4160 (*state)->expire = time_uptime; 4161 if (src->state >= TCPS_FIN_WAIT_2 && 4162 dst->state >= TCPS_FIN_WAIT_2) 4163 (*state)->timeout = PFTM_TCP_CLOSED; 4164 else if (src->state >= TCPS_CLOSING && 4165 dst->state >= TCPS_CLOSING) 4166 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4167 else if (src->state < TCPS_ESTABLISHED || 4168 dst->state < TCPS_ESTABLISHED) 4169 (*state)->timeout = PFTM_TCP_OPENING; 4170 else if (src->state >= TCPS_CLOSING || 4171 dst->state >= TCPS_CLOSING) 4172 (*state)->timeout = PFTM_TCP_CLOSING; 4173 else 4174 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4175 4176 /* Fall through to PASS packet */ 4177 4178 } else if ((dst->state < TCPS_SYN_SENT || 4179 dst->state >= TCPS_FIN_WAIT_2 || 4180 src->state >= TCPS_FIN_WAIT_2) && 4181 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4182 /* Within a window forward of the originating packet */ 4183 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4184 /* Within a window backward of the originating packet */ 4185 4186 /* 4187 * This currently handles three situations: 4188 * 1) Stupid stacks will shotgun SYNs before their peer 4189 * replies. 4190 * 2) When PF catches an already established stream (the 4191 * firewall rebooted, the state table was flushed, routes 4192 * changed...) 4193 * 3) Packets get funky immediately after the connection 4194 * closes (this should catch Solaris spurious ACK|FINs 4195 * that web servers like to spew after a close) 4196 * 4197 * This must be a little more careful than the above code 4198 * since packet floods will also be caught here. We don't 4199 * update the TTL here to mitigate the damage of a packet 4200 * flood and so the same code can handle awkward establishment 4201 * and a loosened connection close. 4202 * In the establishment case, a correct peer response will 4203 * validate the connection, go through the normal state code 4204 * and keep updating the state TTL. 4205 */ 4206 4207 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4208 printf("pf: loose state match: "); 4209 pf_print_state(*state); 4210 pf_print_flags(th->th_flags); 4211 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4212 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4213 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4214 (unsigned long long)(*state)->packets[1], 4215 pd->dir == PF_IN ? "in" : "out", 4216 pd->dir == (*state)->direction ? "fwd" : "rev"); 4217 } 4218 4219 if (dst->scrub || src->scrub) { 4220 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4221 *state, src, dst, copyback)) 4222 return (PF_DROP); 4223 } 4224 4225 /* update max window */ 4226 if (src->max_win < win) 4227 src->max_win = win; 4228 /* synchronize sequencing */ 4229 if (SEQ_GT(end, src->seqlo)) 4230 src->seqlo = end; 4231 /* slide the window of what the other end can send */ 4232 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4233 dst->seqhi = ack + MAX((win << sws), 1); 4234 4235 /* 4236 * Cannot set dst->seqhi here since this could be a shotgunned 4237 * SYN and not an already established connection. 4238 */ 4239 4240 if (th->th_flags & TH_FIN) 4241 if (src->state < TCPS_CLOSING) 4242 src->state = TCPS_CLOSING; 4243 if (th->th_flags & TH_RST) 4244 src->state = dst->state = TCPS_TIME_WAIT; 4245 4246 /* Fall through to PASS packet */ 4247 4248 } else { 4249 if ((*state)->dst.state == TCPS_SYN_SENT && 4250 (*state)->src.state == TCPS_SYN_SENT) { 4251 /* Send RST for state mismatches during handshake */ 4252 if (!(th->th_flags & TH_RST)) 4253 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4254 pd->dst, pd->src, th->th_dport, 4255 th->th_sport, ntohl(th->th_ack), 0, 4256 TH_RST, 0, 0, 4257 (*state)->rule.ptr->return_ttl, 1, 0, 4258 kif->pfik_ifp); 4259 src->seqlo = 0; 4260 src->seqhi = 1; 4261 src->max_win = 1; 4262 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4263 printf("pf: BAD state: "); 4264 pf_print_state(*state); 4265 pf_print_flags(th->th_flags); 4266 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4267 "pkts=%llu:%llu dir=%s,%s\n", 4268 seq, orig_seq, ack, pd->p_len, ackskew, 4269 (unsigned long long)(*state)->packets[0], 4270 (unsigned long long)(*state)->packets[1], 4271 pd->dir == PF_IN ? "in" : "out", 4272 pd->dir == (*state)->direction ? "fwd" : "rev"); 4273 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4274 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4275 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4276 ' ': '2', 4277 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4278 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4279 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4280 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4281 } 4282 REASON_SET(reason, PFRES_BADSTATE); 4283 return (PF_DROP); 4284 } 4285 4286 return (PF_PASS); 4287 } 4288 4289 static int 4290 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4291 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4292 { 4293 struct tcphdr *th = pd->hdr.tcp; 4294 4295 if (th->th_flags & TH_SYN) 4296 if (src->state < TCPS_SYN_SENT) 4297 src->state = TCPS_SYN_SENT; 4298 if (th->th_flags & TH_FIN) 4299 if (src->state < TCPS_CLOSING) 4300 src->state = TCPS_CLOSING; 4301 if (th->th_flags & TH_ACK) { 4302 if (dst->state == TCPS_SYN_SENT) { 4303 dst->state = TCPS_ESTABLISHED; 4304 if (src->state == TCPS_ESTABLISHED && 4305 (*state)->src_node != NULL && 4306 pf_src_connlimit(state)) { 4307 REASON_SET(reason, PFRES_SRCLIMIT); 4308 return (PF_DROP); 4309 } 4310 } else if (dst->state == TCPS_CLOSING) { 4311 dst->state = TCPS_FIN_WAIT_2; 4312 } else if (src->state == TCPS_SYN_SENT && 4313 dst->state < TCPS_SYN_SENT) { 4314 /* 4315 * Handle a special sloppy case where we only see one 4316 * half of the connection. If there is a ACK after 4317 * the initial SYN without ever seeing a packet from 4318 * the destination, set the connection to established. 4319 */ 4320 dst->state = src->state = TCPS_ESTABLISHED; 4321 if ((*state)->src_node != NULL && 4322 pf_src_connlimit(state)) { 4323 REASON_SET(reason, PFRES_SRCLIMIT); 4324 return (PF_DROP); 4325 } 4326 } else if (src->state == TCPS_CLOSING && 4327 dst->state == TCPS_ESTABLISHED && 4328 dst->seqlo == 0) { 4329 /* 4330 * Handle the closing of half connections where we 4331 * don't see the full bidirectional FIN/ACK+ACK 4332 * handshake. 4333 */ 4334 dst->state = TCPS_CLOSING; 4335 } 4336 } 4337 if (th->th_flags & TH_RST) 4338 src->state = dst->state = TCPS_TIME_WAIT; 4339 4340 /* update expire time */ 4341 (*state)->expire = time_uptime; 4342 if (src->state >= TCPS_FIN_WAIT_2 && 4343 dst->state >= TCPS_FIN_WAIT_2) 4344 (*state)->timeout = PFTM_TCP_CLOSED; 4345 else if (src->state >= TCPS_CLOSING && 4346 dst->state >= TCPS_CLOSING) 4347 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4348 else if (src->state < TCPS_ESTABLISHED || 4349 dst->state < TCPS_ESTABLISHED) 4350 (*state)->timeout = PFTM_TCP_OPENING; 4351 else if (src->state >= TCPS_CLOSING || 4352 dst->state >= TCPS_CLOSING) 4353 (*state)->timeout = PFTM_TCP_CLOSING; 4354 else 4355 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4356 4357 return (PF_PASS); 4358 } 4359 4360 static int 4361 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4362 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4363 u_short *reason) 4364 { 4365 struct pf_state_key_cmp key; 4366 struct tcphdr *th = pd->hdr.tcp; 4367 int copyback = 0; 4368 struct pf_state_peer *src, *dst; 4369 struct pf_state_key *sk; 4370 4371 bzero(&key, sizeof(key)); 4372 key.af = pd->af; 4373 key.proto = IPPROTO_TCP; 4374 if (direction == PF_IN) { /* wire side, straight */ 4375 PF_ACPY(&key.addr[0], pd->src, key.af); 4376 PF_ACPY(&key.addr[1], pd->dst, key.af); 4377 key.port[0] = th->th_sport; 4378 key.port[1] = th->th_dport; 4379 } else { /* stack side, reverse */ 4380 PF_ACPY(&key.addr[1], pd->src, key.af); 4381 PF_ACPY(&key.addr[0], pd->dst, key.af); 4382 key.port[1] = th->th_sport; 4383 key.port[0] = th->th_dport; 4384 } 4385 4386 STATE_LOOKUP(kif, &key, direction, *state, pd); 4387 4388 if (direction == (*state)->direction) { 4389 src = &(*state)->src; 4390 dst = &(*state)->dst; 4391 } else { 4392 src = &(*state)->dst; 4393 dst = &(*state)->src; 4394 } 4395 4396 sk = (*state)->key[pd->didx]; 4397 4398 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4399 if (direction != (*state)->direction) { 4400 REASON_SET(reason, PFRES_SYNPROXY); 4401 return (PF_SYNPROXY_DROP); 4402 } 4403 if (th->th_flags & TH_SYN) { 4404 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4405 REASON_SET(reason, PFRES_SYNPROXY); 4406 return (PF_DROP); 4407 } 4408 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4409 pd->src, th->th_dport, th->th_sport, 4410 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4411 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4412 REASON_SET(reason, PFRES_SYNPROXY); 4413 return (PF_SYNPROXY_DROP); 4414 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 4415 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4416 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4417 REASON_SET(reason, PFRES_SYNPROXY); 4418 return (PF_DROP); 4419 } else if ((*state)->src_node != NULL && 4420 pf_src_connlimit(state)) { 4421 REASON_SET(reason, PFRES_SRCLIMIT); 4422 return (PF_DROP); 4423 } else 4424 (*state)->src.state = PF_TCPS_PROXY_DST; 4425 } 4426 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4427 if (direction == (*state)->direction) { 4428 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4429 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4430 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4431 REASON_SET(reason, PFRES_SYNPROXY); 4432 return (PF_DROP); 4433 } 4434 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4435 if ((*state)->dst.seqhi == 1) 4436 (*state)->dst.seqhi = htonl(arc4random()); 4437 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4438 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4439 sk->port[pd->sidx], sk->port[pd->didx], 4440 (*state)->dst.seqhi, 0, TH_SYN, 0, 4441 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4442 REASON_SET(reason, PFRES_SYNPROXY); 4443 return (PF_SYNPROXY_DROP); 4444 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4445 (TH_SYN|TH_ACK)) || 4446 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4447 REASON_SET(reason, PFRES_SYNPROXY); 4448 return (PF_DROP); 4449 } else { 4450 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4451 (*state)->dst.seqlo = ntohl(th->th_seq); 4452 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4453 pd->src, th->th_dport, th->th_sport, 4454 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4455 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4456 (*state)->tag, NULL); 4457 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4458 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4459 sk->port[pd->sidx], sk->port[pd->didx], 4460 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4461 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4462 (*state)->src.seqdiff = (*state)->dst.seqhi - 4463 (*state)->src.seqlo; 4464 (*state)->dst.seqdiff = (*state)->src.seqhi - 4465 (*state)->dst.seqlo; 4466 (*state)->src.seqhi = (*state)->src.seqlo + 4467 (*state)->dst.max_win; 4468 (*state)->dst.seqhi = (*state)->dst.seqlo + 4469 (*state)->src.max_win; 4470 (*state)->src.wscale = (*state)->dst.wscale = 0; 4471 (*state)->src.state = (*state)->dst.state = 4472 TCPS_ESTABLISHED; 4473 REASON_SET(reason, PFRES_SYNPROXY); 4474 return (PF_SYNPROXY_DROP); 4475 } 4476 } 4477 4478 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4479 dst->state >= TCPS_FIN_WAIT_2 && 4480 src->state >= TCPS_FIN_WAIT_2) { 4481 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4482 printf("pf: state reuse "); 4483 pf_print_state(*state); 4484 pf_print_flags(th->th_flags); 4485 printf("\n"); 4486 } 4487 /* XXX make sure it's the same direction ?? */ 4488 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4489 pf_unlink_state(*state, PF_ENTER_LOCKED); 4490 *state = NULL; 4491 return (PF_DROP); 4492 } 4493 4494 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4495 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4496 return (PF_DROP); 4497 } else { 4498 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4499 ©back) == PF_DROP) 4500 return (PF_DROP); 4501 } 4502 4503 /* translate source/destination address, if necessary */ 4504 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4505 struct pf_state_key *nk = (*state)->key[pd->didx]; 4506 4507 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4508 nk->port[pd->sidx] != th->th_sport) 4509 pf_change_ap(m, pd->src, &th->th_sport, 4510 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4511 nk->port[pd->sidx], 0, pd->af); 4512 4513 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4514 nk->port[pd->didx] != th->th_dport) 4515 pf_change_ap(m, pd->dst, &th->th_dport, 4516 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4517 nk->port[pd->didx], 0, pd->af); 4518 copyback = 1; 4519 } 4520 4521 /* Copyback sequence modulation or stateful scrub changes if needed */ 4522 if (copyback) 4523 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4524 4525 return (PF_PASS); 4526 } 4527 4528 static int 4529 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4530 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4531 { 4532 struct pf_state_peer *src, *dst; 4533 struct pf_state_key_cmp key; 4534 struct udphdr *uh = pd->hdr.udp; 4535 4536 bzero(&key, sizeof(key)); 4537 key.af = pd->af; 4538 key.proto = IPPROTO_UDP; 4539 if (direction == PF_IN) { /* wire side, straight */ 4540 PF_ACPY(&key.addr[0], pd->src, key.af); 4541 PF_ACPY(&key.addr[1], pd->dst, key.af); 4542 key.port[0] = uh->uh_sport; 4543 key.port[1] = uh->uh_dport; 4544 } else { /* stack side, reverse */ 4545 PF_ACPY(&key.addr[1], pd->src, key.af); 4546 PF_ACPY(&key.addr[0], pd->dst, key.af); 4547 key.port[1] = uh->uh_sport; 4548 key.port[0] = uh->uh_dport; 4549 } 4550 4551 STATE_LOOKUP(kif, &key, direction, *state, pd); 4552 4553 if (direction == (*state)->direction) { 4554 src = &(*state)->src; 4555 dst = &(*state)->dst; 4556 } else { 4557 src = &(*state)->dst; 4558 dst = &(*state)->src; 4559 } 4560 4561 /* update states */ 4562 if (src->state < PFUDPS_SINGLE) 4563 src->state = PFUDPS_SINGLE; 4564 if (dst->state == PFUDPS_SINGLE) 4565 dst->state = PFUDPS_MULTIPLE; 4566 4567 /* update expire time */ 4568 (*state)->expire = time_uptime; 4569 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4570 (*state)->timeout = PFTM_UDP_MULTIPLE; 4571 else 4572 (*state)->timeout = PFTM_UDP_SINGLE; 4573 4574 /* translate source/destination address, if necessary */ 4575 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4576 struct pf_state_key *nk = (*state)->key[pd->didx]; 4577 4578 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4579 nk->port[pd->sidx] != uh->uh_sport) 4580 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4581 &uh->uh_sum, &nk->addr[pd->sidx], 4582 nk->port[pd->sidx], 1, pd->af); 4583 4584 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4585 nk->port[pd->didx] != uh->uh_dport) 4586 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4587 &uh->uh_sum, &nk->addr[pd->didx], 4588 nk->port[pd->didx], 1, pd->af); 4589 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4590 } 4591 4592 return (PF_PASS); 4593 } 4594 4595 static int 4596 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4597 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4598 { 4599 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4600 u_int16_t icmpid = 0, *icmpsum; 4601 u_int8_t icmptype, icmpcode; 4602 int state_icmp = 0; 4603 struct pf_state_key_cmp key; 4604 4605 bzero(&key, sizeof(key)); 4606 switch (pd->proto) { 4607 #ifdef INET 4608 case IPPROTO_ICMP: 4609 icmptype = pd->hdr.icmp->icmp_type; 4610 icmpcode = pd->hdr.icmp->icmp_code; 4611 icmpid = pd->hdr.icmp->icmp_id; 4612 icmpsum = &pd->hdr.icmp->icmp_cksum; 4613 4614 if (icmptype == ICMP_UNREACH || 4615 icmptype == ICMP_SOURCEQUENCH || 4616 icmptype == ICMP_REDIRECT || 4617 icmptype == ICMP_TIMXCEED || 4618 icmptype == ICMP_PARAMPROB) 4619 state_icmp++; 4620 break; 4621 #endif /* INET */ 4622 #ifdef INET6 4623 case IPPROTO_ICMPV6: 4624 icmptype = pd->hdr.icmp6->icmp6_type; 4625 icmpcode = pd->hdr.icmp6->icmp6_code; 4626 icmpid = pd->hdr.icmp6->icmp6_id; 4627 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4628 4629 if (icmptype == ICMP6_DST_UNREACH || 4630 icmptype == ICMP6_PACKET_TOO_BIG || 4631 icmptype == ICMP6_TIME_EXCEEDED || 4632 icmptype == ICMP6_PARAM_PROB) 4633 state_icmp++; 4634 break; 4635 #endif /* INET6 */ 4636 } 4637 4638 if (!state_icmp) { 4639 /* 4640 * ICMP query/reply message not related to a TCP/UDP packet. 4641 * Search for an ICMP state. 4642 */ 4643 key.af = pd->af; 4644 key.proto = pd->proto; 4645 key.port[0] = key.port[1] = icmpid; 4646 if (direction == PF_IN) { /* wire side, straight */ 4647 PF_ACPY(&key.addr[0], pd->src, key.af); 4648 PF_ACPY(&key.addr[1], pd->dst, key.af); 4649 } else { /* stack side, reverse */ 4650 PF_ACPY(&key.addr[1], pd->src, key.af); 4651 PF_ACPY(&key.addr[0], pd->dst, key.af); 4652 } 4653 4654 STATE_LOOKUP(kif, &key, direction, *state, pd); 4655 4656 (*state)->expire = time_uptime; 4657 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4658 4659 /* translate source/destination address, if necessary */ 4660 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4661 struct pf_state_key *nk = (*state)->key[pd->didx]; 4662 4663 switch (pd->af) { 4664 #ifdef INET 4665 case AF_INET: 4666 if (PF_ANEQ(pd->src, 4667 &nk->addr[pd->sidx], AF_INET)) 4668 pf_change_a(&saddr->v4.s_addr, 4669 pd->ip_sum, 4670 nk->addr[pd->sidx].v4.s_addr, 0); 4671 4672 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4673 AF_INET)) 4674 pf_change_a(&daddr->v4.s_addr, 4675 pd->ip_sum, 4676 nk->addr[pd->didx].v4.s_addr, 0); 4677 4678 if (nk->port[0] != 4679 pd->hdr.icmp->icmp_id) { 4680 pd->hdr.icmp->icmp_cksum = 4681 pf_cksum_fixup( 4682 pd->hdr.icmp->icmp_cksum, icmpid, 4683 nk->port[pd->sidx], 0); 4684 pd->hdr.icmp->icmp_id = 4685 nk->port[pd->sidx]; 4686 } 4687 4688 m_copyback(m, off, ICMP_MINLEN, 4689 (caddr_t )pd->hdr.icmp); 4690 break; 4691 #endif /* INET */ 4692 #ifdef INET6 4693 case AF_INET6: 4694 if (PF_ANEQ(pd->src, 4695 &nk->addr[pd->sidx], AF_INET6)) 4696 pf_change_a6(saddr, 4697 &pd->hdr.icmp6->icmp6_cksum, 4698 &nk->addr[pd->sidx], 0); 4699 4700 if (PF_ANEQ(pd->dst, 4701 &nk->addr[pd->didx], AF_INET6)) 4702 pf_change_a6(daddr, 4703 &pd->hdr.icmp6->icmp6_cksum, 4704 &nk->addr[pd->didx], 0); 4705 4706 m_copyback(m, off, sizeof(struct icmp6_hdr), 4707 (caddr_t )pd->hdr.icmp6); 4708 break; 4709 #endif /* INET6 */ 4710 } 4711 } 4712 return (PF_PASS); 4713 4714 } else { 4715 /* 4716 * ICMP error message in response to a TCP/UDP packet. 4717 * Extract the inner TCP/UDP header and search for that state. 4718 */ 4719 4720 struct pf_pdesc pd2; 4721 bzero(&pd2, sizeof pd2); 4722 #ifdef INET 4723 struct ip h2; 4724 #endif /* INET */ 4725 #ifdef INET6 4726 struct ip6_hdr h2_6; 4727 int terminal = 0; 4728 #endif /* INET6 */ 4729 int ipoff2 = 0; 4730 int off2 = 0; 4731 4732 pd2.af = pd->af; 4733 /* Payload packet is from the opposite direction. */ 4734 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4735 pd2.didx = (direction == PF_IN) ? 0 : 1; 4736 switch (pd->af) { 4737 #ifdef INET 4738 case AF_INET: 4739 /* offset of h2 in mbuf chain */ 4740 ipoff2 = off + ICMP_MINLEN; 4741 4742 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4743 NULL, reason, pd2.af)) { 4744 DPFPRINTF(PF_DEBUG_MISC, 4745 ("pf: ICMP error message too short " 4746 "(ip)\n")); 4747 return (PF_DROP); 4748 } 4749 /* 4750 * ICMP error messages don't refer to non-first 4751 * fragments 4752 */ 4753 if (h2.ip_off & htons(IP_OFFMASK)) { 4754 REASON_SET(reason, PFRES_FRAG); 4755 return (PF_DROP); 4756 } 4757 4758 /* offset of protocol header that follows h2 */ 4759 off2 = ipoff2 + (h2.ip_hl << 2); 4760 4761 pd2.proto = h2.ip_p; 4762 pd2.src = (struct pf_addr *)&h2.ip_src; 4763 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4764 pd2.ip_sum = &h2.ip_sum; 4765 break; 4766 #endif /* INET */ 4767 #ifdef INET6 4768 case AF_INET6: 4769 ipoff2 = off + sizeof(struct icmp6_hdr); 4770 4771 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4772 NULL, reason, pd2.af)) { 4773 DPFPRINTF(PF_DEBUG_MISC, 4774 ("pf: ICMP error message too short " 4775 "(ip6)\n")); 4776 return (PF_DROP); 4777 } 4778 pd2.proto = h2_6.ip6_nxt; 4779 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4780 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4781 pd2.ip_sum = NULL; 4782 off2 = ipoff2 + sizeof(h2_6); 4783 do { 4784 switch (pd2.proto) { 4785 case IPPROTO_FRAGMENT: 4786 /* 4787 * ICMPv6 error messages for 4788 * non-first fragments 4789 */ 4790 REASON_SET(reason, PFRES_FRAG); 4791 return (PF_DROP); 4792 case IPPROTO_AH: 4793 case IPPROTO_HOPOPTS: 4794 case IPPROTO_ROUTING: 4795 case IPPROTO_DSTOPTS: { 4796 /* get next header and header length */ 4797 struct ip6_ext opt6; 4798 4799 if (!pf_pull_hdr(m, off2, &opt6, 4800 sizeof(opt6), NULL, reason, 4801 pd2.af)) { 4802 DPFPRINTF(PF_DEBUG_MISC, 4803 ("pf: ICMPv6 short opt\n")); 4804 return (PF_DROP); 4805 } 4806 if (pd2.proto == IPPROTO_AH) 4807 off2 += (opt6.ip6e_len + 2) * 4; 4808 else 4809 off2 += (opt6.ip6e_len + 1) * 8; 4810 pd2.proto = opt6.ip6e_nxt; 4811 /* goto the next header */ 4812 break; 4813 } 4814 default: 4815 terminal++; 4816 break; 4817 } 4818 } while (!terminal); 4819 break; 4820 #endif /* INET6 */ 4821 } 4822 4823 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 4824 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4825 printf("pf: BAD ICMP %d:%d outer dst: ", 4826 icmptype, icmpcode); 4827 pf_print_host(pd->src, 0, pd->af); 4828 printf(" -> "); 4829 pf_print_host(pd->dst, 0, pd->af); 4830 printf(" inner src: "); 4831 pf_print_host(pd2.src, 0, pd2.af); 4832 printf(" -> "); 4833 pf_print_host(pd2.dst, 0, pd2.af); 4834 printf("\n"); 4835 } 4836 REASON_SET(reason, PFRES_BADSTATE); 4837 return (PF_DROP); 4838 } 4839 4840 switch (pd2.proto) { 4841 case IPPROTO_TCP: { 4842 struct tcphdr th; 4843 u_int32_t seq; 4844 struct pf_state_peer *src, *dst; 4845 u_int8_t dws; 4846 int copyback = 0; 4847 4848 /* 4849 * Only the first 8 bytes of the TCP header can be 4850 * expected. Don't access any TCP header fields after 4851 * th_seq, an ackskew test is not possible. 4852 */ 4853 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4854 pd2.af)) { 4855 DPFPRINTF(PF_DEBUG_MISC, 4856 ("pf: ICMP error message too short " 4857 "(tcp)\n")); 4858 return (PF_DROP); 4859 } 4860 4861 key.af = pd2.af; 4862 key.proto = IPPROTO_TCP; 4863 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4864 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4865 key.port[pd2.sidx] = th.th_sport; 4866 key.port[pd2.didx] = th.th_dport; 4867 4868 STATE_LOOKUP(kif, &key, direction, *state, pd); 4869 4870 if (direction == (*state)->direction) { 4871 src = &(*state)->dst; 4872 dst = &(*state)->src; 4873 } else { 4874 src = &(*state)->src; 4875 dst = &(*state)->dst; 4876 } 4877 4878 if (src->wscale && dst->wscale) 4879 dws = dst->wscale & PF_WSCALE_MASK; 4880 else 4881 dws = 0; 4882 4883 /* Demodulate sequence number */ 4884 seq = ntohl(th.th_seq) - src->seqdiff; 4885 if (src->seqdiff) { 4886 pf_change_a(&th.th_seq, icmpsum, 4887 htonl(seq), 0); 4888 copyback = 1; 4889 } 4890 4891 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4892 (!SEQ_GEQ(src->seqhi, seq) || 4893 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4894 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4895 printf("pf: BAD ICMP %d:%d ", 4896 icmptype, icmpcode); 4897 pf_print_host(pd->src, 0, pd->af); 4898 printf(" -> "); 4899 pf_print_host(pd->dst, 0, pd->af); 4900 printf(" state: "); 4901 pf_print_state(*state); 4902 printf(" seq=%u\n", seq); 4903 } 4904 REASON_SET(reason, PFRES_BADSTATE); 4905 return (PF_DROP); 4906 } else { 4907 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4908 printf("pf: OK ICMP %d:%d ", 4909 icmptype, icmpcode); 4910 pf_print_host(pd->src, 0, pd->af); 4911 printf(" -> "); 4912 pf_print_host(pd->dst, 0, pd->af); 4913 printf(" state: "); 4914 pf_print_state(*state); 4915 printf(" seq=%u\n", seq); 4916 } 4917 } 4918 4919 /* translate source/destination address, if necessary */ 4920 if ((*state)->key[PF_SK_WIRE] != 4921 (*state)->key[PF_SK_STACK]) { 4922 struct pf_state_key *nk = 4923 (*state)->key[pd->didx]; 4924 4925 if (PF_ANEQ(pd2.src, 4926 &nk->addr[pd2.sidx], pd2.af) || 4927 nk->port[pd2.sidx] != th.th_sport) 4928 pf_change_icmp(pd2.src, &th.th_sport, 4929 daddr, &nk->addr[pd2.sidx], 4930 nk->port[pd2.sidx], NULL, 4931 pd2.ip_sum, icmpsum, 4932 pd->ip_sum, 0, pd2.af); 4933 4934 if (PF_ANEQ(pd2.dst, 4935 &nk->addr[pd2.didx], pd2.af) || 4936 nk->port[pd2.didx] != th.th_dport) 4937 pf_change_icmp(pd2.dst, &th.th_dport, 4938 saddr, &nk->addr[pd2.didx], 4939 nk->port[pd2.didx], NULL, 4940 pd2.ip_sum, icmpsum, 4941 pd->ip_sum, 0, pd2.af); 4942 copyback = 1; 4943 } 4944 4945 if (copyback) { 4946 switch (pd2.af) { 4947 #ifdef INET 4948 case AF_INET: 4949 m_copyback(m, off, ICMP_MINLEN, 4950 (caddr_t )pd->hdr.icmp); 4951 m_copyback(m, ipoff2, sizeof(h2), 4952 (caddr_t )&h2); 4953 break; 4954 #endif /* INET */ 4955 #ifdef INET6 4956 case AF_INET6: 4957 m_copyback(m, off, 4958 sizeof(struct icmp6_hdr), 4959 (caddr_t )pd->hdr.icmp6); 4960 m_copyback(m, ipoff2, sizeof(h2_6), 4961 (caddr_t )&h2_6); 4962 break; 4963 #endif /* INET6 */ 4964 } 4965 m_copyback(m, off2, 8, (caddr_t)&th); 4966 } 4967 4968 return (PF_PASS); 4969 break; 4970 } 4971 case IPPROTO_UDP: { 4972 struct udphdr uh; 4973 4974 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4975 NULL, reason, pd2.af)) { 4976 DPFPRINTF(PF_DEBUG_MISC, 4977 ("pf: ICMP error message too short " 4978 "(udp)\n")); 4979 return (PF_DROP); 4980 } 4981 4982 key.af = pd2.af; 4983 key.proto = IPPROTO_UDP; 4984 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4985 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4986 key.port[pd2.sidx] = uh.uh_sport; 4987 key.port[pd2.didx] = uh.uh_dport; 4988 4989 STATE_LOOKUP(kif, &key, direction, *state, pd); 4990 4991 /* translate source/destination address, if necessary */ 4992 if ((*state)->key[PF_SK_WIRE] != 4993 (*state)->key[PF_SK_STACK]) { 4994 struct pf_state_key *nk = 4995 (*state)->key[pd->didx]; 4996 4997 if (PF_ANEQ(pd2.src, 4998 &nk->addr[pd2.sidx], pd2.af) || 4999 nk->port[pd2.sidx] != uh.uh_sport) 5000 pf_change_icmp(pd2.src, &uh.uh_sport, 5001 daddr, &nk->addr[pd2.sidx], 5002 nk->port[pd2.sidx], &uh.uh_sum, 5003 pd2.ip_sum, icmpsum, 5004 pd->ip_sum, 1, pd2.af); 5005 5006 if (PF_ANEQ(pd2.dst, 5007 &nk->addr[pd2.didx], pd2.af) || 5008 nk->port[pd2.didx] != uh.uh_dport) 5009 pf_change_icmp(pd2.dst, &uh.uh_dport, 5010 saddr, &nk->addr[pd2.didx], 5011 nk->port[pd2.didx], &uh.uh_sum, 5012 pd2.ip_sum, icmpsum, 5013 pd->ip_sum, 1, pd2.af); 5014 5015 switch (pd2.af) { 5016 #ifdef INET 5017 case AF_INET: 5018 m_copyback(m, off, ICMP_MINLEN, 5019 (caddr_t )pd->hdr.icmp); 5020 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5021 break; 5022 #endif /* INET */ 5023 #ifdef INET6 5024 case AF_INET6: 5025 m_copyback(m, off, 5026 sizeof(struct icmp6_hdr), 5027 (caddr_t )pd->hdr.icmp6); 5028 m_copyback(m, ipoff2, sizeof(h2_6), 5029 (caddr_t )&h2_6); 5030 break; 5031 #endif /* INET6 */ 5032 } 5033 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 5034 } 5035 return (PF_PASS); 5036 break; 5037 } 5038 #ifdef INET 5039 case IPPROTO_ICMP: { 5040 struct icmp iih; 5041 5042 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 5043 NULL, reason, pd2.af)) { 5044 DPFPRINTF(PF_DEBUG_MISC, 5045 ("pf: ICMP error message too short i" 5046 "(icmp)\n")); 5047 return (PF_DROP); 5048 } 5049 5050 key.af = pd2.af; 5051 key.proto = IPPROTO_ICMP; 5052 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5053 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5054 key.port[0] = key.port[1] = iih.icmp_id; 5055 5056 STATE_LOOKUP(kif, &key, direction, *state, pd); 5057 5058 /* translate source/destination address, if necessary */ 5059 if ((*state)->key[PF_SK_WIRE] != 5060 (*state)->key[PF_SK_STACK]) { 5061 struct pf_state_key *nk = 5062 (*state)->key[pd->didx]; 5063 5064 if (PF_ANEQ(pd2.src, 5065 &nk->addr[pd2.sidx], pd2.af) || 5066 nk->port[pd2.sidx] != iih.icmp_id) 5067 pf_change_icmp(pd2.src, &iih.icmp_id, 5068 daddr, &nk->addr[pd2.sidx], 5069 nk->port[pd2.sidx], NULL, 5070 pd2.ip_sum, icmpsum, 5071 pd->ip_sum, 0, AF_INET); 5072 5073 if (PF_ANEQ(pd2.dst, 5074 &nk->addr[pd2.didx], pd2.af) || 5075 nk->port[pd2.didx] != iih.icmp_id) 5076 pf_change_icmp(pd2.dst, &iih.icmp_id, 5077 saddr, &nk->addr[pd2.didx], 5078 nk->port[pd2.didx], NULL, 5079 pd2.ip_sum, icmpsum, 5080 pd->ip_sum, 0, AF_INET); 5081 5082 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 5083 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5084 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5085 } 5086 return (PF_PASS); 5087 break; 5088 } 5089 #endif /* INET */ 5090 #ifdef INET6 5091 case IPPROTO_ICMPV6: { 5092 struct icmp6_hdr iih; 5093 5094 if (!pf_pull_hdr(m, off2, &iih, 5095 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5096 DPFPRINTF(PF_DEBUG_MISC, 5097 ("pf: ICMP error message too short " 5098 "(icmp6)\n")); 5099 return (PF_DROP); 5100 } 5101 5102 key.af = pd2.af; 5103 key.proto = IPPROTO_ICMPV6; 5104 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5105 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5106 key.port[0] = key.port[1] = iih.icmp6_id; 5107 5108 STATE_LOOKUP(kif, &key, direction, *state, pd); 5109 5110 /* translate source/destination address, if necessary */ 5111 if ((*state)->key[PF_SK_WIRE] != 5112 (*state)->key[PF_SK_STACK]) { 5113 struct pf_state_key *nk = 5114 (*state)->key[pd->didx]; 5115 5116 if (PF_ANEQ(pd2.src, 5117 &nk->addr[pd2.sidx], pd2.af) || 5118 nk->port[pd2.sidx] != iih.icmp6_id) 5119 pf_change_icmp(pd2.src, &iih.icmp6_id, 5120 daddr, &nk->addr[pd2.sidx], 5121 nk->port[pd2.sidx], NULL, 5122 pd2.ip_sum, icmpsum, 5123 pd->ip_sum, 0, AF_INET6); 5124 5125 if (PF_ANEQ(pd2.dst, 5126 &nk->addr[pd2.didx], pd2.af) || 5127 nk->port[pd2.didx] != iih.icmp6_id) 5128 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5129 saddr, &nk->addr[pd2.didx], 5130 nk->port[pd2.didx], NULL, 5131 pd2.ip_sum, icmpsum, 5132 pd->ip_sum, 0, AF_INET6); 5133 5134 m_copyback(m, off, sizeof(struct icmp6_hdr), 5135 (caddr_t)pd->hdr.icmp6); 5136 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5137 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5138 (caddr_t)&iih); 5139 } 5140 return (PF_PASS); 5141 break; 5142 } 5143 #endif /* INET6 */ 5144 default: { 5145 key.af = pd2.af; 5146 key.proto = pd2.proto; 5147 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5148 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5149 key.port[0] = key.port[1] = 0; 5150 5151 STATE_LOOKUP(kif, &key, direction, *state, pd); 5152 5153 /* translate source/destination address, if necessary */ 5154 if ((*state)->key[PF_SK_WIRE] != 5155 (*state)->key[PF_SK_STACK]) { 5156 struct pf_state_key *nk = 5157 (*state)->key[pd->didx]; 5158 5159 if (PF_ANEQ(pd2.src, 5160 &nk->addr[pd2.sidx], pd2.af)) 5161 pf_change_icmp(pd2.src, NULL, daddr, 5162 &nk->addr[pd2.sidx], 0, NULL, 5163 pd2.ip_sum, icmpsum, 5164 pd->ip_sum, 0, pd2.af); 5165 5166 if (PF_ANEQ(pd2.dst, 5167 &nk->addr[pd2.didx], pd2.af)) 5168 pf_change_icmp(pd2.dst, NULL, saddr, 5169 &nk->addr[pd2.didx], 0, NULL, 5170 pd2.ip_sum, icmpsum, 5171 pd->ip_sum, 0, pd2.af); 5172 5173 switch (pd2.af) { 5174 #ifdef INET 5175 case AF_INET: 5176 m_copyback(m, off, ICMP_MINLEN, 5177 (caddr_t)pd->hdr.icmp); 5178 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5179 break; 5180 #endif /* INET */ 5181 #ifdef INET6 5182 case AF_INET6: 5183 m_copyback(m, off, 5184 sizeof(struct icmp6_hdr), 5185 (caddr_t )pd->hdr.icmp6); 5186 m_copyback(m, ipoff2, sizeof(h2_6), 5187 (caddr_t )&h2_6); 5188 break; 5189 #endif /* INET6 */ 5190 } 5191 } 5192 return (PF_PASS); 5193 break; 5194 } 5195 } 5196 } 5197 } 5198 5199 static int 5200 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5201 struct mbuf *m, struct pf_pdesc *pd) 5202 { 5203 struct pf_state_peer *src, *dst; 5204 struct pf_state_key_cmp key; 5205 5206 bzero(&key, sizeof(key)); 5207 key.af = pd->af; 5208 key.proto = pd->proto; 5209 if (direction == PF_IN) { 5210 PF_ACPY(&key.addr[0], pd->src, key.af); 5211 PF_ACPY(&key.addr[1], pd->dst, key.af); 5212 key.port[0] = key.port[1] = 0; 5213 } else { 5214 PF_ACPY(&key.addr[1], pd->src, key.af); 5215 PF_ACPY(&key.addr[0], pd->dst, key.af); 5216 key.port[1] = key.port[0] = 0; 5217 } 5218 5219 STATE_LOOKUP(kif, &key, direction, *state, pd); 5220 5221 if (direction == (*state)->direction) { 5222 src = &(*state)->src; 5223 dst = &(*state)->dst; 5224 } else { 5225 src = &(*state)->dst; 5226 dst = &(*state)->src; 5227 } 5228 5229 /* update states */ 5230 if (src->state < PFOTHERS_SINGLE) 5231 src->state = PFOTHERS_SINGLE; 5232 if (dst->state == PFOTHERS_SINGLE) 5233 dst->state = PFOTHERS_MULTIPLE; 5234 5235 /* update expire time */ 5236 (*state)->expire = time_uptime; 5237 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5238 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5239 else 5240 (*state)->timeout = PFTM_OTHER_SINGLE; 5241 5242 /* translate source/destination address, if necessary */ 5243 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5244 struct pf_state_key *nk = (*state)->key[pd->didx]; 5245 5246 KASSERT(nk, ("%s: nk is null", __func__)); 5247 KASSERT(pd, ("%s: pd is null", __func__)); 5248 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5249 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5250 switch (pd->af) { 5251 #ifdef INET 5252 case AF_INET: 5253 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5254 pf_change_a(&pd->src->v4.s_addr, 5255 pd->ip_sum, 5256 nk->addr[pd->sidx].v4.s_addr, 5257 0); 5258 5259 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5260 pf_change_a(&pd->dst->v4.s_addr, 5261 pd->ip_sum, 5262 nk->addr[pd->didx].v4.s_addr, 5263 0); 5264 5265 break; 5266 #endif /* INET */ 5267 #ifdef INET6 5268 case AF_INET6: 5269 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5270 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5271 5272 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5273 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5274 #endif /* INET6 */ 5275 } 5276 } 5277 return (PF_PASS); 5278 } 5279 5280 /* 5281 * ipoff and off are measured from the start of the mbuf chain. 5282 * h must be at "ipoff" on the mbuf chain. 5283 */ 5284 void * 5285 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5286 u_short *actionp, u_short *reasonp, sa_family_t af) 5287 { 5288 switch (af) { 5289 #ifdef INET 5290 case AF_INET: { 5291 struct ip *h = mtod(m, struct ip *); 5292 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5293 5294 if (fragoff) { 5295 if (fragoff >= len) 5296 ACTION_SET(actionp, PF_PASS); 5297 else { 5298 ACTION_SET(actionp, PF_DROP); 5299 REASON_SET(reasonp, PFRES_FRAG); 5300 } 5301 return (NULL); 5302 } 5303 if (m->m_pkthdr.len < off + len || 5304 ntohs(h->ip_len) < off + len) { 5305 ACTION_SET(actionp, PF_DROP); 5306 REASON_SET(reasonp, PFRES_SHORT); 5307 return (NULL); 5308 } 5309 break; 5310 } 5311 #endif /* INET */ 5312 #ifdef INET6 5313 case AF_INET6: { 5314 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5315 5316 if (m->m_pkthdr.len < off + len || 5317 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5318 (unsigned)(off + len)) { 5319 ACTION_SET(actionp, PF_DROP); 5320 REASON_SET(reasonp, PFRES_SHORT); 5321 return (NULL); 5322 } 5323 break; 5324 } 5325 #endif /* INET6 */ 5326 } 5327 m_copydata(m, off, len, p); 5328 return (p); 5329 } 5330 5331 int 5332 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5333 int rtableid) 5334 { 5335 struct ifnet *ifp; 5336 5337 /* 5338 * Skip check for addresses with embedded interface scope, 5339 * as they would always match anyway. 5340 */ 5341 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5342 return (1); 5343 5344 if (af != AF_INET && af != AF_INET6) 5345 return (0); 5346 5347 /* Skip checks for ipsec interfaces */ 5348 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5349 return (1); 5350 5351 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 5352 5353 switch (af) { 5354 #ifdef INET6 5355 case AF_INET6: 5356 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 5357 ifp)); 5358 #endif 5359 #ifdef INET 5360 case AF_INET: 5361 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 5362 ifp)); 5363 #endif 5364 } 5365 5366 return (0); 5367 } 5368 5369 #ifdef INET 5370 static void 5371 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5372 struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) 5373 { 5374 struct mbuf *m0, *m1; 5375 struct sockaddr_in dst; 5376 struct ip *ip; 5377 struct ifnet *ifp = NULL; 5378 struct pf_addr naddr; 5379 struct pf_src_node *sn = NULL; 5380 int error = 0; 5381 uint16_t ip_len, ip_off; 5382 5383 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5384 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5385 __func__)); 5386 5387 if ((pd->pf_mtag == NULL && 5388 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5389 pd->pf_mtag->routed++ > 3) { 5390 m0 = *m; 5391 *m = NULL; 5392 goto bad_locked; 5393 } 5394 5395 if (r->rt == PF_DUPTO) { 5396 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5397 if (s) 5398 PF_STATE_UNLOCK(s); 5399 return; 5400 } 5401 } else { 5402 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5403 if (s) 5404 PF_STATE_UNLOCK(s); 5405 return; 5406 } 5407 m0 = *m; 5408 } 5409 5410 ip = mtod(m0, struct ip *); 5411 5412 bzero(&dst, sizeof(dst)); 5413 dst.sin_family = AF_INET; 5414 dst.sin_len = sizeof(dst); 5415 dst.sin_addr = ip->ip_dst; 5416 5417 bzero(&naddr, sizeof(naddr)); 5418 5419 if (TAILQ_EMPTY(&r->rpool.list)) { 5420 DPFPRINTF(PF_DEBUG_URGENT, 5421 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5422 goto bad_locked; 5423 } 5424 if (s == NULL) { 5425 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5426 &naddr, NULL, &sn); 5427 if (!PF_AZERO(&naddr, AF_INET)) 5428 dst.sin_addr.s_addr = naddr.v4.s_addr; 5429 ifp = r->rpool.cur->kif ? 5430 r->rpool.cur->kif->pfik_ifp : NULL; 5431 } else { 5432 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5433 dst.sin_addr.s_addr = 5434 s->rt_addr.v4.s_addr; 5435 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5436 PF_STATE_UNLOCK(s); 5437 } 5438 if (ifp == NULL) 5439 goto bad; 5440 5441 if (oifp != ifp) { 5442 if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 5443 goto bad; 5444 else if (m0 == NULL) 5445 goto done; 5446 if (m0->m_len < sizeof(struct ip)) { 5447 DPFPRINTF(PF_DEBUG_URGENT, 5448 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5449 goto bad; 5450 } 5451 ip = mtod(m0, struct ip *); 5452 } 5453 5454 if (ifp->if_flags & IFF_LOOPBACK) 5455 m0->m_flags |= M_SKIP_FIREWALL; 5456 5457 ip_len = ntohs(ip->ip_len); 5458 ip_off = ntohs(ip->ip_off); 5459 5460 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5461 m0->m_pkthdr.csum_flags |= CSUM_IP; 5462 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5463 in_delayed_cksum(m0); 5464 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5465 } 5466 #if defined(SCTP) || defined(SCTP_SUPPORT) 5467 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5468 sctp_delayed_cksum(m0, (uint32_t)(ip->ip_hl << 2)); 5469 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5470 } 5471 #endif 5472 5473 /* 5474 * If small enough for interface, or the interface will take 5475 * care of the fragmentation for us, we can just send directly. 5476 */ 5477 if (ip_len <= ifp->if_mtu || 5478 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5479 ip->ip_sum = 0; 5480 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5481 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5482 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5483 } 5484 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5485 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5486 goto done; 5487 } 5488 5489 /* Balk when DF bit is set or the interface didn't support TSO. */ 5490 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5491 error = EMSGSIZE; 5492 KMOD_IPSTAT_INC(ips_cantfrag); 5493 if (r->rt != PF_DUPTO) { 5494 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5495 ifp->if_mtu); 5496 goto done; 5497 } else 5498 goto bad; 5499 } 5500 5501 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5502 if (error) 5503 goto bad; 5504 5505 for (; m0; m0 = m1) { 5506 m1 = m0->m_nextpkt; 5507 m0->m_nextpkt = NULL; 5508 if (error == 0) { 5509 m_clrprotoflags(m0); 5510 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5511 } else 5512 m_freem(m0); 5513 } 5514 5515 if (error == 0) 5516 KMOD_IPSTAT_INC(ips_fragmented); 5517 5518 done: 5519 if (r->rt != PF_DUPTO) 5520 *m = NULL; 5521 return; 5522 5523 bad_locked: 5524 if (s) 5525 PF_STATE_UNLOCK(s); 5526 bad: 5527 m_freem(m0); 5528 goto done; 5529 } 5530 #endif /* INET */ 5531 5532 #ifdef INET6 5533 static void 5534 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5535 struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) 5536 { 5537 struct mbuf *m0; 5538 struct sockaddr_in6 dst; 5539 struct ip6_hdr *ip6; 5540 struct ifnet *ifp = NULL; 5541 struct pf_addr naddr; 5542 struct pf_src_node *sn = NULL; 5543 5544 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5545 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5546 __func__)); 5547 5548 if ((pd->pf_mtag == NULL && 5549 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5550 pd->pf_mtag->routed++ > 3) { 5551 m0 = *m; 5552 *m = NULL; 5553 goto bad_locked; 5554 } 5555 5556 if (r->rt == PF_DUPTO) { 5557 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5558 if (s) 5559 PF_STATE_UNLOCK(s); 5560 return; 5561 } 5562 } else { 5563 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5564 if (s) 5565 PF_STATE_UNLOCK(s); 5566 return; 5567 } 5568 m0 = *m; 5569 } 5570 5571 ip6 = mtod(m0, struct ip6_hdr *); 5572 5573 bzero(&dst, sizeof(dst)); 5574 dst.sin6_family = AF_INET6; 5575 dst.sin6_len = sizeof(dst); 5576 dst.sin6_addr = ip6->ip6_dst; 5577 5578 bzero(&naddr, sizeof(naddr)); 5579 5580 if (TAILQ_EMPTY(&r->rpool.list)) { 5581 DPFPRINTF(PF_DEBUG_URGENT, 5582 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5583 goto bad_locked; 5584 } 5585 if (s == NULL) { 5586 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5587 &naddr, NULL, &sn); 5588 if (!PF_AZERO(&naddr, AF_INET6)) 5589 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5590 &naddr, AF_INET6); 5591 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5592 } else { 5593 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5594 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5595 &s->rt_addr, AF_INET6); 5596 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5597 } 5598 5599 if (s) 5600 PF_STATE_UNLOCK(s); 5601 5602 if (ifp == NULL) 5603 goto bad; 5604 5605 if (oifp != ifp) { 5606 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS) 5607 goto bad; 5608 else if (m0 == NULL) 5609 goto done; 5610 if (m0->m_len < sizeof(struct ip6_hdr)) { 5611 DPFPRINTF(PF_DEBUG_URGENT, 5612 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5613 __func__)); 5614 goto bad; 5615 } 5616 ip6 = mtod(m0, struct ip6_hdr *); 5617 } 5618 5619 if (ifp->if_flags & IFF_LOOPBACK) 5620 m0->m_flags |= M_SKIP_FIREWALL; 5621 5622 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5623 ~ifp->if_hwassist) { 5624 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5625 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5626 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5627 } 5628 5629 /* 5630 * If the packet is too large for the outgoing interface, 5631 * send back an icmp6 error. 5632 */ 5633 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5634 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5635 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5636 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5637 else { 5638 in6_ifstat_inc(ifp, ifs6_in_toobig); 5639 if (r->rt != PF_DUPTO) 5640 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5641 else 5642 goto bad; 5643 } 5644 5645 done: 5646 if (r->rt != PF_DUPTO) 5647 *m = NULL; 5648 return; 5649 5650 bad_locked: 5651 if (s) 5652 PF_STATE_UNLOCK(s); 5653 bad: 5654 m_freem(m0); 5655 goto done; 5656 } 5657 #endif /* INET6 */ 5658 5659 /* 5660 * FreeBSD supports cksum offloads for the following drivers. 5661 * em(4), fxp(4), lge(4), ndis(4), nge(4), re(4), ti(4), txp(4), xl(4) 5662 * 5663 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5664 * network driver performed cksum including pseudo header, need to verify 5665 * csum_data 5666 * CSUM_DATA_VALID : 5667 * network driver performed cksum, needs to additional pseudo header 5668 * cksum computation with partial csum_data(i.e. lack of H/W support for 5669 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5670 * 5671 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5672 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5673 * TCP/UDP layer. 5674 * Also, set csum_data to 0xffff to force cksum validation. 5675 */ 5676 static int 5677 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5678 { 5679 u_int16_t sum = 0; 5680 int hw_assist = 0; 5681 struct ip *ip; 5682 5683 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5684 return (1); 5685 if (m->m_pkthdr.len < off + len) 5686 return (1); 5687 5688 switch (p) { 5689 case IPPROTO_TCP: 5690 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5691 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5692 sum = m->m_pkthdr.csum_data; 5693 } else { 5694 ip = mtod(m, struct ip *); 5695 sum = in_pseudo(ip->ip_src.s_addr, 5696 ip->ip_dst.s_addr, htonl((u_short)len + 5697 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5698 } 5699 sum ^= 0xffff; 5700 ++hw_assist; 5701 } 5702 break; 5703 case IPPROTO_UDP: 5704 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5705 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5706 sum = m->m_pkthdr.csum_data; 5707 } else { 5708 ip = mtod(m, struct ip *); 5709 sum = in_pseudo(ip->ip_src.s_addr, 5710 ip->ip_dst.s_addr, htonl((u_short)len + 5711 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5712 } 5713 sum ^= 0xffff; 5714 ++hw_assist; 5715 } 5716 break; 5717 case IPPROTO_ICMP: 5718 #ifdef INET6 5719 case IPPROTO_ICMPV6: 5720 #endif /* INET6 */ 5721 break; 5722 default: 5723 return (1); 5724 } 5725 5726 if (!hw_assist) { 5727 switch (af) { 5728 case AF_INET: 5729 if (p == IPPROTO_ICMP) { 5730 if (m->m_len < off) 5731 return (1); 5732 m->m_data += off; 5733 m->m_len -= off; 5734 sum = in_cksum(m, len); 5735 m->m_data -= off; 5736 m->m_len += off; 5737 } else { 5738 if (m->m_len < sizeof(struct ip)) 5739 return (1); 5740 sum = in4_cksum(m, p, off, len); 5741 } 5742 break; 5743 #ifdef INET6 5744 case AF_INET6: 5745 if (m->m_len < sizeof(struct ip6_hdr)) 5746 return (1); 5747 sum = in6_cksum(m, p, off, len); 5748 break; 5749 #endif /* INET6 */ 5750 default: 5751 return (1); 5752 } 5753 } 5754 if (sum) { 5755 switch (p) { 5756 case IPPROTO_TCP: 5757 { 5758 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5759 break; 5760 } 5761 case IPPROTO_UDP: 5762 { 5763 KMOD_UDPSTAT_INC(udps_badsum); 5764 break; 5765 } 5766 #ifdef INET 5767 case IPPROTO_ICMP: 5768 { 5769 KMOD_ICMPSTAT_INC(icps_checksum); 5770 break; 5771 } 5772 #endif 5773 #ifdef INET6 5774 case IPPROTO_ICMPV6: 5775 { 5776 KMOD_ICMP6STAT_INC(icp6s_checksum); 5777 break; 5778 } 5779 #endif /* INET6 */ 5780 } 5781 return (1); 5782 } else { 5783 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5784 m->m_pkthdr.csum_flags |= 5785 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5786 m->m_pkthdr.csum_data = 0xffff; 5787 } 5788 } 5789 return (0); 5790 } 5791 5792 #ifdef INET 5793 int 5794 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5795 { 5796 struct pfi_kif *kif; 5797 u_short action, reason = 0, log = 0; 5798 struct mbuf *m = *m0; 5799 struct ip *h = NULL; 5800 struct m_tag *ipfwtag; 5801 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5802 struct pf_state *s = NULL; 5803 struct pf_ruleset *ruleset = NULL; 5804 struct pf_pdesc pd; 5805 int off, dirndx, pqid = 0; 5806 5807 PF_RULES_RLOCK_TRACKER; 5808 5809 M_ASSERTPKTHDR(m); 5810 5811 if (!V_pf_status.running) 5812 return (PF_PASS); 5813 5814 memset(&pd, 0, sizeof(pd)); 5815 5816 kif = (struct pfi_kif *)ifp->if_pf_kif; 5817 5818 if (kif == NULL) { 5819 DPFPRINTF(PF_DEBUG_URGENT, 5820 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5821 return (PF_DROP); 5822 } 5823 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5824 return (PF_PASS); 5825 5826 if (m->m_flags & M_SKIP_FIREWALL) 5827 return (PF_PASS); 5828 5829 pd.pf_mtag = pf_find_mtag(m); 5830 5831 PF_RULES_RLOCK(); 5832 5833 if (ip_divert_ptr != NULL && 5834 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5835 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5836 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5837 if (pd.pf_mtag == NULL && 5838 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5839 action = PF_DROP; 5840 goto done; 5841 } 5842 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5843 m_tag_delete(m, ipfwtag); 5844 } 5845 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5846 m->m_flags |= M_FASTFWD_OURS; 5847 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5848 } 5849 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5850 /* We do IP header normalization and packet reassembly here */ 5851 action = PF_DROP; 5852 goto done; 5853 } 5854 m = *m0; /* pf_normalize messes with m0 */ 5855 h = mtod(m, struct ip *); 5856 5857 off = h->ip_hl << 2; 5858 if (off < (int)sizeof(struct ip)) { 5859 action = PF_DROP; 5860 REASON_SET(&reason, PFRES_SHORT); 5861 log = 1; 5862 goto done; 5863 } 5864 5865 pd.src = (struct pf_addr *)&h->ip_src; 5866 pd.dst = (struct pf_addr *)&h->ip_dst; 5867 pd.sport = pd.dport = NULL; 5868 pd.ip_sum = &h->ip_sum; 5869 pd.proto_sum = NULL; 5870 pd.proto = h->ip_p; 5871 pd.dir = dir; 5872 pd.sidx = (dir == PF_IN) ? 0 : 1; 5873 pd.didx = (dir == PF_IN) ? 1 : 0; 5874 pd.af = AF_INET; 5875 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 5876 pd.tot_len = ntohs(h->ip_len); 5877 5878 /* handle fragments that didn't get reassembled by normalization */ 5879 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5880 action = pf_test_fragment(&r, dir, kif, m, h, 5881 &pd, &a, &ruleset); 5882 goto done; 5883 } 5884 5885 switch (h->ip_p) { 5886 case IPPROTO_TCP: { 5887 struct tcphdr th; 5888 5889 pd.hdr.tcp = &th; 5890 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5891 &action, &reason, AF_INET)) { 5892 log = action != PF_PASS; 5893 goto done; 5894 } 5895 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5896 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5897 pqid = 1; 5898 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5899 if (action == PF_DROP) 5900 goto done; 5901 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5902 &reason); 5903 if (action == PF_PASS) { 5904 if (V_pfsync_update_state_ptr != NULL) 5905 V_pfsync_update_state_ptr(s); 5906 r = s->rule.ptr; 5907 a = s->anchor.ptr; 5908 log = s->log; 5909 } else if (s == NULL) 5910 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5911 &a, &ruleset, inp); 5912 break; 5913 } 5914 5915 case IPPROTO_UDP: { 5916 struct udphdr uh; 5917 5918 pd.hdr.udp = &uh; 5919 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5920 &action, &reason, AF_INET)) { 5921 log = action != PF_PASS; 5922 goto done; 5923 } 5924 if (uh.uh_dport == 0 || 5925 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5926 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5927 action = PF_DROP; 5928 REASON_SET(&reason, PFRES_SHORT); 5929 goto done; 5930 } 5931 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5932 if (action == PF_PASS) { 5933 if (V_pfsync_update_state_ptr != NULL) 5934 V_pfsync_update_state_ptr(s); 5935 r = s->rule.ptr; 5936 a = s->anchor.ptr; 5937 log = s->log; 5938 } else if (s == NULL) 5939 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5940 &a, &ruleset, inp); 5941 break; 5942 } 5943 5944 case IPPROTO_ICMP: { 5945 struct icmp ih; 5946 5947 pd.hdr.icmp = &ih; 5948 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 5949 &action, &reason, AF_INET)) { 5950 log = action != PF_PASS; 5951 goto done; 5952 } 5953 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 5954 &reason); 5955 if (action == PF_PASS) { 5956 if (V_pfsync_update_state_ptr != NULL) 5957 V_pfsync_update_state_ptr(s); 5958 r = s->rule.ptr; 5959 a = s->anchor.ptr; 5960 log = s->log; 5961 } else if (s == NULL) 5962 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5963 &a, &ruleset, inp); 5964 break; 5965 } 5966 5967 #ifdef INET6 5968 case IPPROTO_ICMPV6: { 5969 action = PF_DROP; 5970 DPFPRINTF(PF_DEBUG_MISC, 5971 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 5972 goto done; 5973 } 5974 #endif 5975 5976 default: 5977 action = pf_test_state_other(&s, dir, kif, m, &pd); 5978 if (action == PF_PASS) { 5979 if (V_pfsync_update_state_ptr != NULL) 5980 V_pfsync_update_state_ptr(s); 5981 r = s->rule.ptr; 5982 a = s->anchor.ptr; 5983 log = s->log; 5984 } else if (s == NULL) 5985 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5986 &a, &ruleset, inp); 5987 break; 5988 } 5989 5990 done: 5991 PF_RULES_RUNLOCK(); 5992 if (action == PF_PASS && h->ip_hl > 5 && 5993 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 5994 action = PF_DROP; 5995 REASON_SET(&reason, PFRES_IPOPTIONS); 5996 log = r->log; 5997 DPFPRINTF(PF_DEBUG_MISC, 5998 ("pf: dropping packet with ip options\n")); 5999 } 6000 6001 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6002 action = PF_DROP; 6003 REASON_SET(&reason, PFRES_MEMORY); 6004 } 6005 if (r->rtableid >= 0) 6006 M_SETFIB(m, r->rtableid); 6007 6008 if (r->scrub_flags & PFSTATE_SETPRIO) { 6009 if (pd.tos & IPTOS_LOWDELAY) 6010 pqid = 1; 6011 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6012 action = PF_DROP; 6013 REASON_SET(&reason, PFRES_MEMORY); 6014 log = 1; 6015 DPFPRINTF(PF_DEBUG_MISC, 6016 ("pf: failed to allocate 802.1q mtag\n")); 6017 } 6018 } 6019 6020 #ifdef ALTQ 6021 if (action == PF_PASS && r->qid) { 6022 if (pd.pf_mtag == NULL && 6023 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6024 action = PF_DROP; 6025 REASON_SET(&reason, PFRES_MEMORY); 6026 } else { 6027 if (s != NULL) 6028 pd.pf_mtag->qid_hash = pf_state_hash(s); 6029 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6030 pd.pf_mtag->qid = r->pqid; 6031 else 6032 pd.pf_mtag->qid = r->qid; 6033 /* Add hints for ecn. */ 6034 pd.pf_mtag->hdr = h; 6035 } 6036 } 6037 #endif /* ALTQ */ 6038 6039 /* 6040 * connections redirected to loopback should not match sockets 6041 * bound specifically to loopback due to security implications, 6042 * see tcp_input() and in_pcblookup_listen(). 6043 */ 6044 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6045 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6046 (s->nat_rule.ptr->action == PF_RDR || 6047 s->nat_rule.ptr->action == PF_BINAT) && 6048 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 6049 m->m_flags |= M_SKIP_FIREWALL; 6050 6051 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6052 !PACKET_LOOPED(&pd)) { 6053 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6054 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6055 if (ipfwtag != NULL) { 6056 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6057 ntohs(r->divert.port); 6058 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6059 6060 if (s) 6061 PF_STATE_UNLOCK(s); 6062 6063 m_tag_prepend(m, ipfwtag); 6064 if (m->m_flags & M_FASTFWD_OURS) { 6065 if (pd.pf_mtag == NULL && 6066 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6067 action = PF_DROP; 6068 REASON_SET(&reason, PFRES_MEMORY); 6069 log = 1; 6070 DPFPRINTF(PF_DEBUG_MISC, 6071 ("pf: failed to allocate tag\n")); 6072 } else { 6073 pd.pf_mtag->flags |= 6074 PF_FASTFWD_OURS_PRESENT; 6075 m->m_flags &= ~M_FASTFWD_OURS; 6076 } 6077 } 6078 ip_divert_ptr(*m0, dir == PF_IN); 6079 *m0 = NULL; 6080 6081 return (action); 6082 } else { 6083 /* XXX: ipfw has the same behaviour! */ 6084 action = PF_DROP; 6085 REASON_SET(&reason, PFRES_MEMORY); 6086 log = 1; 6087 DPFPRINTF(PF_DEBUG_MISC, 6088 ("pf: failed to allocate divert tag\n")); 6089 } 6090 } 6091 6092 if (log) { 6093 struct pf_rule *lr; 6094 6095 if (s != NULL && s->nat_rule.ptr != NULL && 6096 s->nat_rule.ptr->log & PF_LOG_ALL) 6097 lr = s->nat_rule.ptr; 6098 else 6099 lr = r; 6100 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6101 (s == NULL)); 6102 } 6103 6104 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6105 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 6106 6107 if (action == PF_PASS || r->action == PF_DROP) { 6108 dirndx = (dir == PF_OUT); 6109 r->packets[dirndx]++; 6110 r->bytes[dirndx] += pd.tot_len; 6111 if (a != NULL) { 6112 a->packets[dirndx]++; 6113 a->bytes[dirndx] += pd.tot_len; 6114 } 6115 if (s != NULL) { 6116 if (s->nat_rule.ptr != NULL) { 6117 s->nat_rule.ptr->packets[dirndx]++; 6118 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6119 } 6120 if (s->src_node != NULL) { 6121 s->src_node->packets[dirndx]++; 6122 s->src_node->bytes[dirndx] += pd.tot_len; 6123 } 6124 if (s->nat_src_node != NULL) { 6125 s->nat_src_node->packets[dirndx]++; 6126 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6127 } 6128 dirndx = (dir == s->direction) ? 0 : 1; 6129 s->packets[dirndx]++; 6130 s->bytes[dirndx] += pd.tot_len; 6131 } 6132 tr = r; 6133 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6134 if (nr != NULL && r == &V_pf_default_rule) 6135 tr = nr; 6136 if (tr->src.addr.type == PF_ADDR_TABLE) 6137 pfr_update_stats(tr->src.addr.p.tbl, 6138 (s == NULL) ? pd.src : 6139 &s->key[(s->direction == PF_IN)]-> 6140 addr[(s->direction == PF_OUT)], 6141 pd.af, pd.tot_len, dir == PF_OUT, 6142 r->action == PF_PASS, tr->src.neg); 6143 if (tr->dst.addr.type == PF_ADDR_TABLE) 6144 pfr_update_stats(tr->dst.addr.p.tbl, 6145 (s == NULL) ? pd.dst : 6146 &s->key[(s->direction == PF_IN)]-> 6147 addr[(s->direction == PF_IN)], 6148 pd.af, pd.tot_len, dir == PF_OUT, 6149 r->action == PF_PASS, tr->dst.neg); 6150 } 6151 6152 switch (action) { 6153 case PF_SYNPROXY_DROP: 6154 m_freem(*m0); 6155 case PF_DEFER: 6156 *m0 = NULL; 6157 action = PF_PASS; 6158 break; 6159 case PF_DROP: 6160 m_freem(*m0); 6161 *m0 = NULL; 6162 break; 6163 default: 6164 /* pf_route() returns unlocked. */ 6165 if (r->rt) { 6166 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6167 return (action); 6168 } 6169 break; 6170 } 6171 if (s) 6172 PF_STATE_UNLOCK(s); 6173 6174 return (action); 6175 } 6176 #endif /* INET */ 6177 6178 #ifdef INET6 6179 int 6180 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6181 { 6182 struct pfi_kif *kif; 6183 u_short action, reason = 0, log = 0; 6184 struct mbuf *m = *m0, *n = NULL; 6185 struct m_tag *mtag; 6186 struct ip6_hdr *h = NULL; 6187 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6188 struct pf_state *s = NULL; 6189 struct pf_ruleset *ruleset = NULL; 6190 struct pf_pdesc pd; 6191 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6192 6193 PF_RULES_RLOCK_TRACKER; 6194 M_ASSERTPKTHDR(m); 6195 6196 if (!V_pf_status.running) 6197 return (PF_PASS); 6198 6199 memset(&pd, 0, sizeof(pd)); 6200 pd.pf_mtag = pf_find_mtag(m); 6201 6202 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6203 return (PF_PASS); 6204 6205 kif = (struct pfi_kif *)ifp->if_pf_kif; 6206 if (kif == NULL) { 6207 DPFPRINTF(PF_DEBUG_URGENT, 6208 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6209 return (PF_DROP); 6210 } 6211 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6212 return (PF_PASS); 6213 6214 if (m->m_flags & M_SKIP_FIREWALL) 6215 return (PF_PASS); 6216 6217 PF_RULES_RLOCK(); 6218 6219 /* We do IP header normalization and packet reassembly here */ 6220 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6221 action = PF_DROP; 6222 goto done; 6223 } 6224 m = *m0; /* pf_normalize messes with m0 */ 6225 h = mtod(m, struct ip6_hdr *); 6226 6227 /* 6228 * we do not support jumbogram. if we keep going, zero ip6_plen 6229 * will do something bad, so drop the packet for now. 6230 */ 6231 if (htons(h->ip6_plen) == 0) { 6232 action = PF_DROP; 6233 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6234 goto done; 6235 } 6236 6237 pd.src = (struct pf_addr *)&h->ip6_src; 6238 pd.dst = (struct pf_addr *)&h->ip6_dst; 6239 pd.sport = pd.dport = NULL; 6240 pd.ip_sum = NULL; 6241 pd.proto_sum = NULL; 6242 pd.dir = dir; 6243 pd.sidx = (dir == PF_IN) ? 0 : 1; 6244 pd.didx = (dir == PF_IN) ? 1 : 0; 6245 pd.af = AF_INET6; 6246 pd.tos = 0; 6247 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6248 6249 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6250 pd.proto = h->ip6_nxt; 6251 do { 6252 switch (pd.proto) { 6253 case IPPROTO_FRAGMENT: 6254 action = pf_test_fragment(&r, dir, kif, m, h, 6255 &pd, &a, &ruleset); 6256 if (action == PF_DROP) 6257 REASON_SET(&reason, PFRES_FRAG); 6258 goto done; 6259 case IPPROTO_ROUTING: { 6260 struct ip6_rthdr rthdr; 6261 6262 if (rh_cnt++) { 6263 DPFPRINTF(PF_DEBUG_MISC, 6264 ("pf: IPv6 more than one rthdr\n")); 6265 action = PF_DROP; 6266 REASON_SET(&reason, PFRES_IPOPTIONS); 6267 log = 1; 6268 goto done; 6269 } 6270 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6271 &reason, pd.af)) { 6272 DPFPRINTF(PF_DEBUG_MISC, 6273 ("pf: IPv6 short rthdr\n")); 6274 action = PF_DROP; 6275 REASON_SET(&reason, PFRES_SHORT); 6276 log = 1; 6277 goto done; 6278 } 6279 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6280 DPFPRINTF(PF_DEBUG_MISC, 6281 ("pf: IPv6 rthdr0\n")); 6282 action = PF_DROP; 6283 REASON_SET(&reason, PFRES_IPOPTIONS); 6284 log = 1; 6285 goto done; 6286 } 6287 /* FALLTHROUGH */ 6288 } 6289 case IPPROTO_AH: 6290 case IPPROTO_HOPOPTS: 6291 case IPPROTO_DSTOPTS: { 6292 /* get next header and header length */ 6293 struct ip6_ext opt6; 6294 6295 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6296 NULL, &reason, pd.af)) { 6297 DPFPRINTF(PF_DEBUG_MISC, 6298 ("pf: IPv6 short opt\n")); 6299 action = PF_DROP; 6300 log = 1; 6301 goto done; 6302 } 6303 if (pd.proto == IPPROTO_AH) 6304 off += (opt6.ip6e_len + 2) * 4; 6305 else 6306 off += (opt6.ip6e_len + 1) * 8; 6307 pd.proto = opt6.ip6e_nxt; 6308 /* goto the next header */ 6309 break; 6310 } 6311 default: 6312 terminal++; 6313 break; 6314 } 6315 } while (!terminal); 6316 6317 /* if there's no routing header, use unmodified mbuf for checksumming */ 6318 if (!n) 6319 n = m; 6320 6321 switch (pd.proto) { 6322 case IPPROTO_TCP: { 6323 struct tcphdr th; 6324 6325 pd.hdr.tcp = &th; 6326 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6327 &action, &reason, AF_INET6)) { 6328 log = action != PF_PASS; 6329 goto done; 6330 } 6331 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6332 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6333 if (action == PF_DROP) 6334 goto done; 6335 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6336 &reason); 6337 if (action == PF_PASS) { 6338 if (V_pfsync_update_state_ptr != NULL) 6339 V_pfsync_update_state_ptr(s); 6340 r = s->rule.ptr; 6341 a = s->anchor.ptr; 6342 log = s->log; 6343 } else if (s == NULL) 6344 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6345 &a, &ruleset, inp); 6346 break; 6347 } 6348 6349 case IPPROTO_UDP: { 6350 struct udphdr uh; 6351 6352 pd.hdr.udp = &uh; 6353 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6354 &action, &reason, AF_INET6)) { 6355 log = action != PF_PASS; 6356 goto done; 6357 } 6358 if (uh.uh_dport == 0 || 6359 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6360 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6361 action = PF_DROP; 6362 REASON_SET(&reason, PFRES_SHORT); 6363 goto done; 6364 } 6365 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6366 if (action == PF_PASS) { 6367 if (V_pfsync_update_state_ptr != NULL) 6368 V_pfsync_update_state_ptr(s); 6369 r = s->rule.ptr; 6370 a = s->anchor.ptr; 6371 log = s->log; 6372 } else if (s == NULL) 6373 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6374 &a, &ruleset, inp); 6375 break; 6376 } 6377 6378 case IPPROTO_ICMP: { 6379 action = PF_DROP; 6380 DPFPRINTF(PF_DEBUG_MISC, 6381 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6382 goto done; 6383 } 6384 6385 case IPPROTO_ICMPV6: { 6386 struct icmp6_hdr ih; 6387 6388 pd.hdr.icmp6 = &ih; 6389 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6390 &action, &reason, AF_INET6)) { 6391 log = action != PF_PASS; 6392 goto done; 6393 } 6394 action = pf_test_state_icmp(&s, dir, kif, 6395 m, off, h, &pd, &reason); 6396 if (action == PF_PASS) { 6397 if (V_pfsync_update_state_ptr != NULL) 6398 V_pfsync_update_state_ptr(s); 6399 r = s->rule.ptr; 6400 a = s->anchor.ptr; 6401 log = s->log; 6402 } else if (s == NULL) 6403 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6404 &a, &ruleset, inp); 6405 break; 6406 } 6407 6408 default: 6409 action = pf_test_state_other(&s, dir, kif, m, &pd); 6410 if (action == PF_PASS) { 6411 if (V_pfsync_update_state_ptr != NULL) 6412 V_pfsync_update_state_ptr(s); 6413 r = s->rule.ptr; 6414 a = s->anchor.ptr; 6415 log = s->log; 6416 } else if (s == NULL) 6417 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6418 &a, &ruleset, inp); 6419 break; 6420 } 6421 6422 done: 6423 PF_RULES_RUNLOCK(); 6424 if (n != m) { 6425 m_freem(n); 6426 n = NULL; 6427 } 6428 6429 /* handle dangerous IPv6 extension headers. */ 6430 if (action == PF_PASS && rh_cnt && 6431 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6432 action = PF_DROP; 6433 REASON_SET(&reason, PFRES_IPOPTIONS); 6434 log = r->log; 6435 DPFPRINTF(PF_DEBUG_MISC, 6436 ("pf: dropping packet with dangerous v6 headers\n")); 6437 } 6438 6439 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6440 action = PF_DROP; 6441 REASON_SET(&reason, PFRES_MEMORY); 6442 } 6443 if (r->rtableid >= 0) 6444 M_SETFIB(m, r->rtableid); 6445 6446 if (r->scrub_flags & PFSTATE_SETPRIO) { 6447 if (pd.tos & IPTOS_LOWDELAY) 6448 pqid = 1; 6449 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6450 action = PF_DROP; 6451 REASON_SET(&reason, PFRES_MEMORY); 6452 log = 1; 6453 DPFPRINTF(PF_DEBUG_MISC, 6454 ("pf: failed to allocate 802.1q mtag\n")); 6455 } 6456 } 6457 6458 #ifdef ALTQ 6459 if (action == PF_PASS && r->qid) { 6460 if (pd.pf_mtag == NULL && 6461 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6462 action = PF_DROP; 6463 REASON_SET(&reason, PFRES_MEMORY); 6464 } else { 6465 if (s != NULL) 6466 pd.pf_mtag->qid_hash = pf_state_hash(s); 6467 if (pd.tos & IPTOS_LOWDELAY) 6468 pd.pf_mtag->qid = r->pqid; 6469 else 6470 pd.pf_mtag->qid = r->qid; 6471 /* Add hints for ecn. */ 6472 pd.pf_mtag->hdr = h; 6473 } 6474 } 6475 #endif /* ALTQ */ 6476 6477 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6478 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6479 (s->nat_rule.ptr->action == PF_RDR || 6480 s->nat_rule.ptr->action == PF_BINAT) && 6481 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6482 m->m_flags |= M_SKIP_FIREWALL; 6483 6484 /* XXX: Anybody working on it?! */ 6485 if (r->divert.port) 6486 printf("pf: divert(9) is not supported for IPv6\n"); 6487 6488 if (log) { 6489 struct pf_rule *lr; 6490 6491 if (s != NULL && s->nat_rule.ptr != NULL && 6492 s->nat_rule.ptr->log & PF_LOG_ALL) 6493 lr = s->nat_rule.ptr; 6494 else 6495 lr = r; 6496 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6497 &pd, (s == NULL)); 6498 } 6499 6500 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6501 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6502 6503 if (action == PF_PASS || r->action == PF_DROP) { 6504 dirndx = (dir == PF_OUT); 6505 r->packets[dirndx]++; 6506 r->bytes[dirndx] += pd.tot_len; 6507 if (a != NULL) { 6508 a->packets[dirndx]++; 6509 a->bytes[dirndx] += pd.tot_len; 6510 } 6511 if (s != NULL) { 6512 if (s->nat_rule.ptr != NULL) { 6513 s->nat_rule.ptr->packets[dirndx]++; 6514 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6515 } 6516 if (s->src_node != NULL) { 6517 s->src_node->packets[dirndx]++; 6518 s->src_node->bytes[dirndx] += pd.tot_len; 6519 } 6520 if (s->nat_src_node != NULL) { 6521 s->nat_src_node->packets[dirndx]++; 6522 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6523 } 6524 dirndx = (dir == s->direction) ? 0 : 1; 6525 s->packets[dirndx]++; 6526 s->bytes[dirndx] += pd.tot_len; 6527 } 6528 tr = r; 6529 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6530 if (nr != NULL && r == &V_pf_default_rule) 6531 tr = nr; 6532 if (tr->src.addr.type == PF_ADDR_TABLE) 6533 pfr_update_stats(tr->src.addr.p.tbl, 6534 (s == NULL) ? pd.src : 6535 &s->key[(s->direction == PF_IN)]->addr[0], 6536 pd.af, pd.tot_len, dir == PF_OUT, 6537 r->action == PF_PASS, tr->src.neg); 6538 if (tr->dst.addr.type == PF_ADDR_TABLE) 6539 pfr_update_stats(tr->dst.addr.p.tbl, 6540 (s == NULL) ? pd.dst : 6541 &s->key[(s->direction == PF_IN)]->addr[1], 6542 pd.af, pd.tot_len, dir == PF_OUT, 6543 r->action == PF_PASS, tr->dst.neg); 6544 } 6545 6546 switch (action) { 6547 case PF_SYNPROXY_DROP: 6548 m_freem(*m0); 6549 case PF_DEFER: 6550 *m0 = NULL; 6551 action = PF_PASS; 6552 break; 6553 case PF_DROP: 6554 m_freem(*m0); 6555 *m0 = NULL; 6556 break; 6557 default: 6558 /* pf_route6() returns unlocked. */ 6559 if (r->rt) { 6560 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6561 return (action); 6562 } 6563 break; 6564 } 6565 6566 if (s) 6567 PF_STATE_UNLOCK(s); 6568 6569 /* If reassembled packet passed, create new fragments. */ 6570 if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && 6571 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6572 action = pf_refragment6(ifp, m0, mtag); 6573 6574 return (action); 6575 } 6576 #endif /* INET6 */ 6577