1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 #include "opt_bpf.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_pf.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/gsb_crc32.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/sdt.h> 61 #include <sys/socket.h> 62 #include <sys/sysctl.h> 63 #include <sys/taskqueue.h> 64 #include <sys/ucred.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_private.h> 69 #include <net/if_types.h> 70 #include <net/if_vlan_var.h> 71 #include <net/route.h> 72 #include <net/route/nhop.h> 73 #include <net/vnet.h> 74 75 #include <net/pfil.h> 76 #include <net/pfvar.h> 77 #include <net/if_pflog.h> 78 #include <net/if_pfsync.h> 79 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_var.h> 82 #include <netinet/in_fib.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_fw.h> 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp.h> 89 #include <netinet/tcp_fsm.h> 90 #include <netinet/tcp_seq.h> 91 #include <netinet/tcp_timer.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet/udp.h> 94 #include <netinet/udp_var.h> 95 96 /* dummynet */ 97 #include <netinet/ip_dummynet.h> 98 #include <netinet/ip_fw.h> 99 #include <netpfil/ipfw/dn_heap.h> 100 #include <netpfil/ipfw/ip_fw_private.h> 101 #include <netpfil/ipfw/ip_dn_private.h> 102 103 #ifdef INET6 104 #include <netinet/ip6.h> 105 #include <netinet/icmp6.h> 106 #include <netinet6/nd6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet6/in6_pcb.h> 109 #include <netinet6/in6_fib.h> 110 #include <netinet6/scope6_var.h> 111 #endif /* INET6 */ 112 113 #include <netinet/sctp_header.h> 114 #include <netinet/sctp_crc32.h> 115 116 #include <machine/in_cksum.h> 117 #include <security/mac/mac_framework.h> 118 119 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 120 121 SDT_PROVIDER_DEFINE(pf); 122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 123 "struct pf_kstate *"); 124 SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", 125 "struct pf_kstate *"); 126 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 127 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 128 "struct pf_kstate *"); 129 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *", 130 "struct pfi_kkif *"); 131 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *", 132 "struct pf_krule *", "struct mbuf *", "int"); 133 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t", 134 "struct pf_sctp_source *"); 135 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t", 136 "struct pf_kstate *", "struct pf_sctp_source *"); 137 138 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 139 "struct mbuf *"); 140 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 141 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 142 "int", "struct pf_keth_rule *", "char *"); 143 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 144 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 145 "int", "struct pf_keth_rule *"); 146 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t"); 147 148 /* 149 * Global variables 150 */ 151 152 /* state tables */ 153 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 154 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 155 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 156 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 157 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 158 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 159 VNET_DEFINE(struct pf_kstatus, pf_status); 160 161 VNET_DEFINE(u_int32_t, ticket_altqs_active); 162 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 163 VNET_DEFINE(int, altqs_inactive_open); 164 VNET_DEFINE(u_int32_t, ticket_pabuf); 165 166 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 167 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 168 VNET_DEFINE(u_char, pf_tcp_secret[16]); 169 #define V_pf_tcp_secret VNET(pf_tcp_secret) 170 VNET_DEFINE(int, pf_tcp_secret_init); 171 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 172 VNET_DEFINE(int, pf_tcp_iss_off); 173 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 174 VNET_DECLARE(int, pf_vnet_active); 175 #define V_pf_vnet_active VNET(pf_vnet_active) 176 177 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 178 #define V_pf_purge_idx VNET(pf_purge_idx) 179 180 #ifdef PF_WANT_32_TO_64_COUNTER 181 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 182 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 183 184 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 185 VNET_DEFINE(size_t, pf_allrulecount); 186 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 187 #endif 188 189 struct pf_sctp_endpoint; 190 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint); 191 struct pf_sctp_source { 192 sa_family_t af; 193 struct pf_addr addr; 194 TAILQ_ENTRY(pf_sctp_source) entry; 195 }; 196 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source); 197 struct pf_sctp_endpoint 198 { 199 uint32_t v_tag; 200 struct pf_sctp_sources sources; 201 RB_ENTRY(pf_sctp_endpoint) entry; 202 }; 203 static int 204 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b) 205 { 206 return (a->v_tag - b->v_tag); 207 } 208 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 209 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 210 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints); 211 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints) 212 static struct mtx_padalign pf_sctp_endpoints_mtx; 213 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF); 214 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx) 215 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx) 216 217 /* 218 * Queue for pf_intr() sends. 219 */ 220 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 221 struct pf_send_entry { 222 STAILQ_ENTRY(pf_send_entry) pfse_next; 223 struct mbuf *pfse_m; 224 enum { 225 PFSE_IP, 226 PFSE_IP6, 227 PFSE_ICMP, 228 PFSE_ICMP6, 229 } pfse_type; 230 struct { 231 int type; 232 int code; 233 int mtu; 234 } icmpopts; 235 }; 236 237 STAILQ_HEAD(pf_send_head, pf_send_entry); 238 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 239 #define V_pf_sendqueue VNET(pf_sendqueue) 240 241 static struct mtx_padalign pf_sendqueue_mtx; 242 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 243 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 244 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 245 246 /* 247 * Queue for pf_overload_task() tasks. 248 */ 249 struct pf_overload_entry { 250 SLIST_ENTRY(pf_overload_entry) next; 251 struct pf_addr addr; 252 sa_family_t af; 253 uint8_t dir; 254 struct pf_krule *rule; 255 }; 256 257 SLIST_HEAD(pf_overload_head, pf_overload_entry); 258 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 259 #define V_pf_overloadqueue VNET(pf_overloadqueue) 260 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 261 #define V_pf_overloadtask VNET(pf_overloadtask) 262 263 static struct mtx_padalign pf_overloadqueue_mtx; 264 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 265 "pf overload/flush queue", MTX_DEF); 266 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 267 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 268 269 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 270 struct mtx_padalign pf_unlnkdrules_mtx; 271 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 272 MTX_DEF); 273 274 struct sx pf_config_lock; 275 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 276 277 struct mtx_padalign pf_table_stats_lock; 278 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 279 MTX_DEF); 280 281 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 282 #define V_pf_sources_z VNET(pf_sources_z) 283 uma_zone_t pf_mtag_z; 284 VNET_DEFINE(uma_zone_t, pf_state_z); 285 VNET_DEFINE(uma_zone_t, pf_state_key_z); 286 287 VNET_DEFINE(struct unrhdr64, pf_stateid); 288 289 static void pf_src_tree_remove_state(struct pf_kstate *); 290 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 291 u_int32_t); 292 static void pf_add_threshold(struct pf_threshold *); 293 static int pf_check_threshold(struct pf_threshold *); 294 295 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 296 u_int16_t *, u_int16_t *, struct pf_addr *, 297 u_int16_t, u_int8_t, sa_family_t); 298 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 299 struct tcphdr *, struct pf_state_peer *); 300 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 301 struct pf_addr *, struct pf_addr *, u_int16_t, 302 u_int16_t *, u_int16_t *, u_int16_t *, 303 u_int16_t *, u_int8_t, sa_family_t); 304 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 305 sa_family_t, struct pf_krule *, int); 306 static void pf_detach_state(struct pf_kstate *); 307 static int pf_state_key_attach(struct pf_state_key *, 308 struct pf_state_key *, struct pf_kstate *); 309 static void pf_state_key_detach(struct pf_kstate *, int); 310 static int pf_state_key_ctor(void *, int, void *, int); 311 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 312 static __inline void pf_dummynet_flag_remove(struct mbuf *m, 313 struct pf_mtag *pf_mtag); 314 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *, 315 struct pf_krule *, struct mbuf **); 316 static int pf_dummynet_route(struct pf_pdesc *, 317 struct pf_kstate *, struct pf_krule *, 318 struct ifnet *, struct sockaddr *, struct mbuf **); 319 static int pf_test_eth_rule(int, struct pfi_kkif *, 320 struct mbuf **); 321 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 322 struct pfi_kkif *, struct mbuf *, int, 323 struct pf_pdesc *, struct pf_krule **, 324 struct pf_kruleset **, struct inpcb *); 325 static int pf_create_state(struct pf_krule *, struct pf_krule *, 326 struct pf_krule *, struct pf_pdesc *, 327 struct pf_ksrc_node *, struct pf_state_key *, 328 struct pf_state_key *, struct mbuf *, int, 329 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 330 struct pf_kstate **, int, u_int16_t, u_int16_t, 331 int, struct pf_krule_slist *); 332 static int pf_test_fragment(struct pf_krule **, struct pfi_kkif *, 333 struct mbuf *, void *, struct pf_pdesc *, 334 struct pf_krule **, struct pf_kruleset **); 335 static int pf_tcp_track_full(struct pf_kstate **, 336 struct pfi_kkif *, struct mbuf *, int, 337 struct pf_pdesc *, u_short *, int *); 338 static int pf_tcp_track_sloppy(struct pf_kstate **, 339 struct pf_pdesc *, u_short *); 340 static int pf_test_state_tcp(struct pf_kstate **, 341 struct pfi_kkif *, struct mbuf *, int, 342 void *, struct pf_pdesc *, u_short *); 343 static int pf_test_state_udp(struct pf_kstate **, 344 struct pfi_kkif *, struct mbuf *, int, 345 void *, struct pf_pdesc *); 346 static int pf_test_state_icmp(struct pf_kstate **, 347 struct pfi_kkif *, struct mbuf *, int, 348 void *, struct pf_pdesc *, u_short *); 349 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *); 350 static void pf_sctp_multihome_delayed(struct pf_pdesc *, int, 351 struct pfi_kkif *, struct pf_kstate *, int); 352 static int pf_test_state_sctp(struct pf_kstate **, 353 struct pfi_kkif *, struct mbuf *, int, 354 void *, struct pf_pdesc *, u_short *); 355 static int pf_test_state_other(struct pf_kstate **, 356 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 357 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 358 int, u_int16_t); 359 static int pf_check_proto_cksum(struct mbuf *, int, int, 360 u_int8_t, sa_family_t); 361 static void pf_print_state_parts(struct pf_kstate *, 362 struct pf_state_key *, struct pf_state_key *); 363 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 364 bool, u_int8_t); 365 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 366 const struct pf_state_key_cmp *, u_int); 367 static int pf_src_connlimit(struct pf_kstate **); 368 static void pf_overload_task(void *v, int pending); 369 static u_short pf_insert_src_node(struct pf_ksrc_node **, 370 struct pf_krule *, struct pf_addr *, sa_family_t); 371 static u_int pf_purge_expired_states(u_int, int); 372 static void pf_purge_unlinked_rules(void); 373 static int pf_mtag_uminit(void *, int, int); 374 static void pf_mtag_free(struct m_tag *); 375 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 376 int, struct pf_state_key *); 377 #ifdef INET 378 static void pf_route(struct mbuf **, struct pf_krule *, 379 struct ifnet *, struct pf_kstate *, 380 struct pf_pdesc *, struct inpcb *); 381 #endif /* INET */ 382 #ifdef INET6 383 static void pf_change_a6(struct pf_addr *, u_int16_t *, 384 struct pf_addr *, u_int8_t); 385 static void pf_route6(struct mbuf **, struct pf_krule *, 386 struct ifnet *, struct pf_kstate *, 387 struct pf_pdesc *, struct inpcb *); 388 #endif /* INET6 */ 389 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 390 391 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 392 393 extern int pf_end_threads; 394 extern struct proc *pf_purge_proc; 395 396 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 397 398 #define PACKET_UNDO_NAT(_m, _pd, _off, _s) \ 399 do { \ 400 struct pf_state_key *nk; \ 401 if ((pd->dir) == PF_OUT) \ 402 nk = (_s)->key[PF_SK_STACK]; \ 403 else \ 404 nk = (_s)->key[PF_SK_WIRE]; \ 405 pf_packet_rework_nat(_m, _pd, _off, nk); \ 406 } while (0) 407 408 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 409 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED) 410 411 #define STATE_LOOKUP(i, k, s, pd) \ 412 do { \ 413 (s) = pf_find_state((i), (k), (pd->dir)); \ 414 SDT_PROBE5(pf, ip, state, lookup, i, k, (pd->dir), pd, (s)); \ 415 if ((s) == NULL) \ 416 return (PF_DROP); \ 417 if (PACKET_LOOPED(pd)) \ 418 return (PF_PASS); \ 419 } while (0) 420 421 static struct pfi_kkif * 422 BOUND_IFACE(struct pf_kstate *st, struct pfi_kkif *k) 423 { 424 SDT_PROBE2(pf, ip, , bound_iface, st, k); 425 426 /* Floating unless otherwise specified. */ 427 if (! (st->rule.ptr->rule_flag & PFRULE_IFBOUND)) 428 return (V_pfi_all); 429 430 /* 431 * Initially set to all, because we don't know what interface we'll be 432 * sending this out when we create the state. 433 */ 434 if (st->rule.ptr->rt == PF_REPLYTO) 435 return (V_pfi_all); 436 437 /* Don't overrule the interface for states created on incoming packets. */ 438 if (st->direction == PF_IN) 439 return (k); 440 441 /* No route-to, so don't overrule. */ 442 if (st->rt != PF_ROUTETO) 443 return (k); 444 445 /* Bind to the route-to interface. */ 446 return (st->rt_kif); 447 } 448 449 #define STATE_INC_COUNTERS(s) \ 450 do { \ 451 struct pf_krule_item *mrm; \ 452 counter_u64_add(s->rule.ptr->states_cur, 1); \ 453 counter_u64_add(s->rule.ptr->states_tot, 1); \ 454 if (s->anchor.ptr != NULL) { \ 455 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 456 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 457 } \ 458 if (s->nat_rule.ptr != NULL) { \ 459 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 460 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 461 } \ 462 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 463 counter_u64_add(mrm->r->states_cur, 1); \ 464 counter_u64_add(mrm->r->states_tot, 1); \ 465 } \ 466 } while (0) 467 468 #define STATE_DEC_COUNTERS(s) \ 469 do { \ 470 struct pf_krule_item *mrm; \ 471 if (s->nat_rule.ptr != NULL) \ 472 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 473 if (s->anchor.ptr != NULL) \ 474 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 475 counter_u64_add(s->rule.ptr->states_cur, -1); \ 476 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 477 counter_u64_add(mrm->r->states_cur, -1); \ 478 } while (0) 479 480 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 481 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 482 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 483 VNET_DEFINE(struct pf_idhash *, pf_idhash); 484 VNET_DEFINE(struct pf_srchash *, pf_srchash); 485 486 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 487 "pf(4)"); 488 489 u_long pf_hashmask; 490 u_long pf_srchashmask; 491 static u_long pf_hashsize; 492 static u_long pf_srchashsize; 493 u_long pf_ioctl_maxcount = 65535; 494 495 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 496 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 497 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 498 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 499 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 500 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 501 502 VNET_DEFINE(void *, pf_swi_cookie); 503 VNET_DEFINE(struct intr_event *, pf_swi_ie); 504 505 VNET_DEFINE(uint32_t, pf_hashseed); 506 #define V_pf_hashseed VNET(pf_hashseed) 507 508 static void 509 pf_sctp_checksum(struct mbuf *m, int off) 510 { 511 uint32_t sum = 0; 512 513 /* Zero out the checksum, to enable recalculation. */ 514 m_copyback(m, off + offsetof(struct sctphdr, checksum), 515 sizeof(sum), (caddr_t)&sum); 516 517 sum = sctp_calculate_cksum(m, off); 518 519 m_copyback(m, off + offsetof(struct sctphdr, checksum), 520 sizeof(sum), (caddr_t)&sum); 521 } 522 523 int 524 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 525 { 526 527 switch (af) { 528 #ifdef INET 529 case AF_INET: 530 if (a->addr32[0] > b->addr32[0]) 531 return (1); 532 if (a->addr32[0] < b->addr32[0]) 533 return (-1); 534 break; 535 #endif /* INET */ 536 #ifdef INET6 537 case AF_INET6: 538 if (a->addr32[3] > b->addr32[3]) 539 return (1); 540 if (a->addr32[3] < b->addr32[3]) 541 return (-1); 542 if (a->addr32[2] > b->addr32[2]) 543 return (1); 544 if (a->addr32[2] < b->addr32[2]) 545 return (-1); 546 if (a->addr32[1] > b->addr32[1]) 547 return (1); 548 if (a->addr32[1] < b->addr32[1]) 549 return (-1); 550 if (a->addr32[0] > b->addr32[0]) 551 return (1); 552 if (a->addr32[0] < b->addr32[0]) 553 return (-1); 554 break; 555 #endif /* INET6 */ 556 default: 557 panic("%s: unknown address family %u", __func__, af); 558 } 559 return (0); 560 } 561 562 static void 563 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 564 struct pf_state_key *nk) 565 { 566 567 switch (pd->proto) { 568 case IPPROTO_TCP: { 569 struct tcphdr *th = &pd->hdr.tcp; 570 571 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 572 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 573 &th->th_sum, &nk->addr[pd->sidx], 574 nk->port[pd->sidx], 0, pd->af); 575 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 576 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 577 &th->th_sum, &nk->addr[pd->didx], 578 nk->port[pd->didx], 0, pd->af); 579 m_copyback(m, off, sizeof(*th), (caddr_t)th); 580 break; 581 } 582 case IPPROTO_UDP: { 583 struct udphdr *uh = &pd->hdr.udp; 584 585 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 586 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 587 &uh->uh_sum, &nk->addr[pd->sidx], 588 nk->port[pd->sidx], 1, pd->af); 589 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 590 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 591 &uh->uh_sum, &nk->addr[pd->didx], 592 nk->port[pd->didx], 1, pd->af); 593 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 594 break; 595 } 596 case IPPROTO_SCTP: { 597 struct sctphdr *sh = &pd->hdr.sctp; 598 uint16_t checksum = 0; 599 600 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 601 pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum, 602 &checksum, &nk->addr[pd->sidx], 603 nk->port[pd->sidx], 1, pd->af); 604 } 605 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 606 pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum, 607 &checksum, &nk->addr[pd->didx], 608 nk->port[pd->didx], 1, pd->af); 609 } 610 611 break; 612 } 613 case IPPROTO_ICMP: { 614 struct icmp *ih = &pd->hdr.icmp; 615 616 if (nk->port[pd->sidx] != ih->icmp_id) { 617 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 618 ih->icmp_cksum, ih->icmp_id, 619 nk->port[pd->sidx], 0); 620 ih->icmp_id = nk->port[pd->sidx]; 621 pd->sport = &ih->icmp_id; 622 623 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 624 } 625 /* FALLTHROUGH */ 626 } 627 default: 628 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 629 switch (pd->af) { 630 case AF_INET: 631 pf_change_a(&pd->src->v4.s_addr, 632 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 633 0); 634 break; 635 case AF_INET6: 636 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 637 break; 638 } 639 } 640 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 641 switch (pd->af) { 642 case AF_INET: 643 pf_change_a(&pd->dst->v4.s_addr, 644 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 645 0); 646 break; 647 case AF_INET6: 648 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 649 break; 650 } 651 } 652 break; 653 } 654 } 655 656 static __inline uint32_t 657 pf_hashkey(const struct pf_state_key *sk) 658 { 659 uint32_t h; 660 661 h = murmur3_32_hash32((const uint32_t *)sk, 662 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 663 V_pf_hashseed); 664 665 return (h & pf_hashmask); 666 } 667 668 static __inline uint32_t 669 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 670 { 671 uint32_t h; 672 673 switch (af) { 674 case AF_INET: 675 h = murmur3_32_hash32((uint32_t *)&addr->v4, 676 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 677 break; 678 case AF_INET6: 679 h = murmur3_32_hash32((uint32_t *)&addr->v6, 680 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 681 break; 682 default: 683 panic("%s: unknown address family %u", __func__, af); 684 } 685 686 return (h & pf_srchashmask); 687 } 688 689 #ifdef ALTQ 690 static int 691 pf_state_hash(struct pf_kstate *s) 692 { 693 u_int32_t hv = (intptr_t)s / sizeof(*s); 694 695 hv ^= crc32(&s->src, sizeof(s->src)); 696 hv ^= crc32(&s->dst, sizeof(s->dst)); 697 if (hv == 0) 698 hv = 1; 699 return (hv); 700 } 701 #endif 702 703 static __inline void 704 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 705 { 706 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 707 s->dst.state = newstate; 708 if (which == PF_PEER_DST) 709 return; 710 if (s->src.state == newstate) 711 return; 712 if (s->creatorid == V_pf_status.hostid && 713 s->key[PF_SK_STACK] != NULL && 714 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 715 !(TCPS_HAVEESTABLISHED(s->src.state) || 716 s->src.state == TCPS_CLOSED) && 717 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 718 atomic_add_32(&V_pf_status.states_halfopen, -1); 719 720 s->src.state = newstate; 721 } 722 723 #ifdef INET6 724 void 725 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 726 { 727 switch (af) { 728 #ifdef INET 729 case AF_INET: 730 memcpy(&dst->v4, &src->v4, sizeof(dst->v4)); 731 break; 732 #endif /* INET */ 733 case AF_INET6: 734 memcpy(&dst->v6, &src->v6, sizeof(dst->v6)); 735 break; 736 } 737 } 738 #endif /* INET6 */ 739 740 static void 741 pf_init_threshold(struct pf_threshold *threshold, 742 u_int32_t limit, u_int32_t seconds) 743 { 744 threshold->limit = limit * PF_THRESHOLD_MULT; 745 threshold->seconds = seconds; 746 threshold->count = 0; 747 threshold->last = time_uptime; 748 } 749 750 static void 751 pf_add_threshold(struct pf_threshold *threshold) 752 { 753 u_int32_t t = time_uptime, diff = t - threshold->last; 754 755 if (diff >= threshold->seconds) 756 threshold->count = 0; 757 else 758 threshold->count -= threshold->count * diff / 759 threshold->seconds; 760 threshold->count += PF_THRESHOLD_MULT; 761 threshold->last = t; 762 } 763 764 static int 765 pf_check_threshold(struct pf_threshold *threshold) 766 { 767 return (threshold->count > threshold->limit); 768 } 769 770 static int 771 pf_src_connlimit(struct pf_kstate **state) 772 { 773 struct pf_overload_entry *pfoe; 774 int bad = 0; 775 776 PF_STATE_LOCK_ASSERT(*state); 777 /* 778 * XXXKS: The src node is accessed unlocked! 779 * PF_SRC_NODE_LOCK_ASSERT((*state)->src_node); 780 */ 781 782 (*state)->src_node->conn++; 783 (*state)->src.tcp_est = 1; 784 pf_add_threshold(&(*state)->src_node->conn_rate); 785 786 if ((*state)->rule.ptr->max_src_conn && 787 (*state)->rule.ptr->max_src_conn < 788 (*state)->src_node->conn) { 789 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 790 bad++; 791 } 792 793 if ((*state)->rule.ptr->max_src_conn_rate.limit && 794 pf_check_threshold(&(*state)->src_node->conn_rate)) { 795 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 796 bad++; 797 } 798 799 if (!bad) 800 return (0); 801 802 /* Kill this state. */ 803 (*state)->timeout = PFTM_PURGE; 804 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 805 806 if ((*state)->rule.ptr->overload_tbl == NULL) 807 return (1); 808 809 /* Schedule overloading and flushing task. */ 810 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 811 if (pfoe == NULL) 812 return (1); /* too bad :( */ 813 814 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 815 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 816 pfoe->rule = (*state)->rule.ptr; 817 pfoe->dir = (*state)->direction; 818 PF_OVERLOADQ_LOCK(); 819 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 820 PF_OVERLOADQ_UNLOCK(); 821 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 822 823 return (1); 824 } 825 826 static void 827 pf_overload_task(void *v, int pending) 828 { 829 struct pf_overload_head queue; 830 struct pfr_addr p; 831 struct pf_overload_entry *pfoe, *pfoe1; 832 uint32_t killed = 0; 833 834 CURVNET_SET((struct vnet *)v); 835 836 PF_OVERLOADQ_LOCK(); 837 queue = V_pf_overloadqueue; 838 SLIST_INIT(&V_pf_overloadqueue); 839 PF_OVERLOADQ_UNLOCK(); 840 841 bzero(&p, sizeof(p)); 842 SLIST_FOREACH(pfoe, &queue, next) { 843 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 844 if (V_pf_status.debug >= PF_DEBUG_MISC) { 845 printf("%s: blocking address ", __func__); 846 pf_print_host(&pfoe->addr, 0, pfoe->af); 847 printf("\n"); 848 } 849 850 p.pfra_af = pfoe->af; 851 switch (pfoe->af) { 852 #ifdef INET 853 case AF_INET: 854 p.pfra_net = 32; 855 p.pfra_ip4addr = pfoe->addr.v4; 856 break; 857 #endif 858 #ifdef INET6 859 case AF_INET6: 860 p.pfra_net = 128; 861 p.pfra_ip6addr = pfoe->addr.v6; 862 break; 863 #endif 864 } 865 866 PF_RULES_WLOCK(); 867 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 868 PF_RULES_WUNLOCK(); 869 } 870 871 /* 872 * Remove those entries, that don't need flushing. 873 */ 874 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 875 if (pfoe->rule->flush == 0) { 876 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 877 free(pfoe, M_PFTEMP); 878 } else 879 counter_u64_add( 880 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 881 882 /* If nothing to flush, return. */ 883 if (SLIST_EMPTY(&queue)) { 884 CURVNET_RESTORE(); 885 return; 886 } 887 888 for (int i = 0; i <= pf_hashmask; i++) { 889 struct pf_idhash *ih = &V_pf_idhash[i]; 890 struct pf_state_key *sk; 891 struct pf_kstate *s; 892 893 PF_HASHROW_LOCK(ih); 894 LIST_FOREACH(s, &ih->states, entry) { 895 sk = s->key[PF_SK_WIRE]; 896 SLIST_FOREACH(pfoe, &queue, next) 897 if (sk->af == pfoe->af && 898 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 899 pfoe->rule == s->rule.ptr) && 900 ((pfoe->dir == PF_OUT && 901 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 902 (pfoe->dir == PF_IN && 903 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 904 s->timeout = PFTM_PURGE; 905 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 906 killed++; 907 } 908 } 909 PF_HASHROW_UNLOCK(ih); 910 } 911 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 912 free(pfoe, M_PFTEMP); 913 if (V_pf_status.debug >= PF_DEBUG_MISC) 914 printf("%s: %u states killed", __func__, killed); 915 916 CURVNET_RESTORE(); 917 } 918 919 /* 920 * Can return locked on failure, so that we can consistently 921 * allocate and insert a new one. 922 */ 923 struct pf_ksrc_node * 924 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 925 struct pf_srchash **sh, bool returnlocked) 926 { 927 struct pf_ksrc_node *n; 928 929 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 930 931 *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 932 PF_HASHROW_LOCK(*sh); 933 LIST_FOREACH(n, &(*sh)->nodes, entry) 934 if (n->rule.ptr == rule && n->af == af && 935 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 936 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 937 break; 938 939 if (n != NULL) { 940 n->states++; 941 PF_HASHROW_UNLOCK(*sh); 942 } else if (returnlocked == false) 943 PF_HASHROW_UNLOCK(*sh); 944 945 return (n); 946 } 947 948 static void 949 pf_free_src_node(struct pf_ksrc_node *sn) 950 { 951 952 for (int i = 0; i < 2; i++) { 953 counter_u64_free(sn->bytes[i]); 954 counter_u64_free(sn->packets[i]); 955 } 956 uma_zfree(V_pf_sources_z, sn); 957 } 958 959 static u_short 960 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 961 struct pf_addr *src, sa_family_t af) 962 { 963 u_short reason = 0; 964 struct pf_srchash *sh = NULL; 965 966 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 967 rule->rpool.opts & PF_POOL_STICKYADDR), 968 ("%s for non-tracking rule %p", __func__, rule)); 969 970 if (*sn == NULL) 971 *sn = pf_find_src_node(src, rule, af, &sh, true); 972 973 if (*sn == NULL) { 974 PF_HASHROW_ASSERT(sh); 975 976 if (rule->max_src_nodes && 977 counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) { 978 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); 979 PF_HASHROW_UNLOCK(sh); 980 reason = PFRES_SRCLIMIT; 981 goto done; 982 } 983 984 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 985 if ((*sn) == NULL) { 986 PF_HASHROW_UNLOCK(sh); 987 reason = PFRES_MEMORY; 988 goto done; 989 } 990 991 for (int i = 0; i < 2; i++) { 992 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 993 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 994 995 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 996 pf_free_src_node(*sn); 997 PF_HASHROW_UNLOCK(sh); 998 reason = PFRES_MEMORY; 999 goto done; 1000 } 1001 } 1002 1003 pf_init_threshold(&(*sn)->conn_rate, 1004 rule->max_src_conn_rate.limit, 1005 rule->max_src_conn_rate.seconds); 1006 1007 MPASS((*sn)->lock == NULL); 1008 (*sn)->lock = &sh->lock; 1009 1010 (*sn)->af = af; 1011 (*sn)->rule.ptr = rule; 1012 PF_ACPY(&(*sn)->addr, src, af); 1013 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 1014 (*sn)->creation = time_uptime; 1015 (*sn)->ruletype = rule->action; 1016 (*sn)->states = 1; 1017 if ((*sn)->rule.ptr != NULL) 1018 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 1019 PF_HASHROW_UNLOCK(sh); 1020 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 1021 } else { 1022 if (rule->max_src_states && 1023 (*sn)->states >= rule->max_src_states) { 1024 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 1025 1); 1026 reason = PFRES_SRCLIMIT; 1027 goto done; 1028 } 1029 } 1030 done: 1031 return (reason); 1032 } 1033 1034 void 1035 pf_unlink_src_node(struct pf_ksrc_node *src) 1036 { 1037 PF_SRC_NODE_LOCK_ASSERT(src); 1038 1039 LIST_REMOVE(src, entry); 1040 if (src->rule.ptr) 1041 counter_u64_add(src->rule.ptr->src_nodes, -1); 1042 } 1043 1044 u_int 1045 pf_free_src_nodes(struct pf_ksrc_node_list *head) 1046 { 1047 struct pf_ksrc_node *sn, *tmp; 1048 u_int count = 0; 1049 1050 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 1051 pf_free_src_node(sn); 1052 count++; 1053 } 1054 1055 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 1056 1057 return (count); 1058 } 1059 1060 void 1061 pf_mtag_initialize(void) 1062 { 1063 1064 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 1065 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 1066 UMA_ALIGN_PTR, 0); 1067 } 1068 1069 /* Per-vnet data storage structures initialization. */ 1070 void 1071 pf_initialize(void) 1072 { 1073 struct pf_keyhash *kh; 1074 struct pf_idhash *ih; 1075 struct pf_srchash *sh; 1076 u_int i; 1077 1078 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 1079 pf_hashsize = PF_HASHSIZ; 1080 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 1081 pf_srchashsize = PF_SRCHASHSIZ; 1082 1083 V_pf_hashseed = arc4random(); 1084 1085 /* States and state keys storage. */ 1086 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1087 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1088 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1089 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1090 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1091 1092 V_pf_state_key_z = uma_zcreate("pf state keys", 1093 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1094 UMA_ALIGN_PTR, 0); 1095 1096 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 1097 M_PFHASH, M_NOWAIT | M_ZERO); 1098 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 1099 M_PFHASH, M_NOWAIT | M_ZERO); 1100 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1101 printf("pf: Unable to allocate memory for " 1102 "state_hashsize %lu.\n", pf_hashsize); 1103 1104 free(V_pf_keyhash, M_PFHASH); 1105 free(V_pf_idhash, M_PFHASH); 1106 1107 pf_hashsize = PF_HASHSIZ; 1108 V_pf_keyhash = mallocarray(pf_hashsize, 1109 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1110 V_pf_idhash = mallocarray(pf_hashsize, 1111 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1112 } 1113 1114 pf_hashmask = pf_hashsize - 1; 1115 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 1116 i++, kh++, ih++) { 1117 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1118 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1119 } 1120 1121 /* Source nodes. */ 1122 V_pf_sources_z = uma_zcreate("pf source nodes", 1123 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1124 0); 1125 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1126 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1127 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1128 1129 V_pf_srchash = mallocarray(pf_srchashsize, 1130 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1131 if (V_pf_srchash == NULL) { 1132 printf("pf: Unable to allocate memory for " 1133 "source_hashsize %lu.\n", pf_srchashsize); 1134 1135 pf_srchashsize = PF_SRCHASHSIZ; 1136 V_pf_srchash = mallocarray(pf_srchashsize, 1137 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1138 } 1139 1140 pf_srchashmask = pf_srchashsize - 1; 1141 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 1142 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1143 1144 /* ALTQ */ 1145 TAILQ_INIT(&V_pf_altqs[0]); 1146 TAILQ_INIT(&V_pf_altqs[1]); 1147 TAILQ_INIT(&V_pf_altqs[2]); 1148 TAILQ_INIT(&V_pf_altqs[3]); 1149 TAILQ_INIT(&V_pf_pabuf); 1150 V_pf_altqs_active = &V_pf_altqs[0]; 1151 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1152 V_pf_altqs_inactive = &V_pf_altqs[2]; 1153 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1154 1155 /* Send & overload+flush queues. */ 1156 STAILQ_INIT(&V_pf_sendqueue); 1157 SLIST_INIT(&V_pf_overloadqueue); 1158 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1159 1160 /* Unlinked, but may be referenced rules. */ 1161 TAILQ_INIT(&V_pf_unlinked_rules); 1162 } 1163 1164 void 1165 pf_mtag_cleanup(void) 1166 { 1167 1168 uma_zdestroy(pf_mtag_z); 1169 } 1170 1171 void 1172 pf_cleanup(void) 1173 { 1174 struct pf_keyhash *kh; 1175 struct pf_idhash *ih; 1176 struct pf_srchash *sh; 1177 struct pf_send_entry *pfse, *next; 1178 u_int i; 1179 1180 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 1181 i++, kh++, ih++) { 1182 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1183 __func__)); 1184 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1185 __func__)); 1186 mtx_destroy(&kh->lock); 1187 mtx_destroy(&ih->lock); 1188 } 1189 free(V_pf_keyhash, M_PFHASH); 1190 free(V_pf_idhash, M_PFHASH); 1191 1192 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1193 KASSERT(LIST_EMPTY(&sh->nodes), 1194 ("%s: source node hash not empty", __func__)); 1195 mtx_destroy(&sh->lock); 1196 } 1197 free(V_pf_srchash, M_PFHASH); 1198 1199 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1200 m_freem(pfse->pfse_m); 1201 free(pfse, M_PFTEMP); 1202 } 1203 MPASS(RB_EMPTY(&V_pf_sctp_endpoints)); 1204 1205 uma_zdestroy(V_pf_sources_z); 1206 uma_zdestroy(V_pf_state_z); 1207 uma_zdestroy(V_pf_state_key_z); 1208 } 1209 1210 static int 1211 pf_mtag_uminit(void *mem, int size, int how) 1212 { 1213 struct m_tag *t; 1214 1215 t = (struct m_tag *)mem; 1216 t->m_tag_cookie = MTAG_ABI_COMPAT; 1217 t->m_tag_id = PACKET_TAG_PF; 1218 t->m_tag_len = sizeof(struct pf_mtag); 1219 t->m_tag_free = pf_mtag_free; 1220 1221 return (0); 1222 } 1223 1224 static void 1225 pf_mtag_free(struct m_tag *t) 1226 { 1227 1228 uma_zfree(pf_mtag_z, t); 1229 } 1230 1231 struct pf_mtag * 1232 pf_get_mtag(struct mbuf *m) 1233 { 1234 struct m_tag *mtag; 1235 1236 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1237 return ((struct pf_mtag *)(mtag + 1)); 1238 1239 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1240 if (mtag == NULL) 1241 return (NULL); 1242 bzero(mtag + 1, sizeof(struct pf_mtag)); 1243 m_tag_prepend(m, mtag); 1244 1245 return ((struct pf_mtag *)(mtag + 1)); 1246 } 1247 1248 static int 1249 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1250 struct pf_kstate *s) 1251 { 1252 struct pf_keyhash *khs, *khw, *kh; 1253 struct pf_state_key *sk, *cur; 1254 struct pf_kstate *si, *olds = NULL; 1255 int idx; 1256 1257 NET_EPOCH_ASSERT(); 1258 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1259 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1260 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1261 1262 /* 1263 * We need to lock hash slots of both keys. To avoid deadlock 1264 * we always lock the slot with lower address first. Unlock order 1265 * isn't important. 1266 * 1267 * We also need to lock ID hash slot before dropping key 1268 * locks. On success we return with ID hash slot locked. 1269 */ 1270 1271 if (skw == sks) { 1272 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1273 PF_HASHROW_LOCK(khs); 1274 } else { 1275 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1276 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1277 if (khs == khw) { 1278 PF_HASHROW_LOCK(khs); 1279 } else if (khs < khw) { 1280 PF_HASHROW_LOCK(khs); 1281 PF_HASHROW_LOCK(khw); 1282 } else { 1283 PF_HASHROW_LOCK(khw); 1284 PF_HASHROW_LOCK(khs); 1285 } 1286 } 1287 1288 #define KEYS_UNLOCK() do { \ 1289 if (khs != khw) { \ 1290 PF_HASHROW_UNLOCK(khs); \ 1291 PF_HASHROW_UNLOCK(khw); \ 1292 } else \ 1293 PF_HASHROW_UNLOCK(khs); \ 1294 } while (0) 1295 1296 /* 1297 * First run: start with wire key. 1298 */ 1299 sk = skw; 1300 kh = khw; 1301 idx = PF_SK_WIRE; 1302 1303 MPASS(s->lock == NULL); 1304 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1305 1306 keyattach: 1307 LIST_FOREACH(cur, &kh->keys, entry) 1308 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1309 break; 1310 1311 if (cur != NULL) { 1312 /* Key exists. Check for same kif, if none, add to key. */ 1313 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1314 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1315 1316 PF_HASHROW_LOCK(ih); 1317 if (si->kif == s->kif && 1318 si->direction == s->direction) { 1319 if (sk->proto == IPPROTO_TCP && 1320 si->src.state >= TCPS_FIN_WAIT_2 && 1321 si->dst.state >= TCPS_FIN_WAIT_2) { 1322 /* 1323 * New state matches an old >FIN_WAIT_2 1324 * state. We can't drop key hash locks, 1325 * thus we can't unlink it properly. 1326 * 1327 * As a workaround we drop it into 1328 * TCPS_CLOSED state, schedule purge 1329 * ASAP and push it into the very end 1330 * of the slot TAILQ, so that it won't 1331 * conflict with our new state. 1332 */ 1333 pf_set_protostate(si, PF_PEER_BOTH, 1334 TCPS_CLOSED); 1335 si->timeout = PFTM_PURGE; 1336 olds = si; 1337 } else { 1338 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1339 printf("pf: %s key attach " 1340 "failed on %s: ", 1341 (idx == PF_SK_WIRE) ? 1342 "wire" : "stack", 1343 s->kif->pfik_name); 1344 pf_print_state_parts(s, 1345 (idx == PF_SK_WIRE) ? 1346 sk : NULL, 1347 (idx == PF_SK_STACK) ? 1348 sk : NULL); 1349 printf(", existing: "); 1350 pf_print_state_parts(si, 1351 (idx == PF_SK_WIRE) ? 1352 sk : NULL, 1353 (idx == PF_SK_STACK) ? 1354 sk : NULL); 1355 printf("\n"); 1356 } 1357 s->timeout = PFTM_UNLINKED; 1358 PF_HASHROW_UNLOCK(ih); 1359 KEYS_UNLOCK(); 1360 uma_zfree(V_pf_state_key_z, sk); 1361 if (idx == PF_SK_STACK) 1362 pf_detach_state(s); 1363 return (EEXIST); /* collision! */ 1364 } 1365 } 1366 PF_HASHROW_UNLOCK(ih); 1367 } 1368 uma_zfree(V_pf_state_key_z, sk); 1369 s->key[idx] = cur; 1370 } else { 1371 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1372 s->key[idx] = sk; 1373 } 1374 1375 stateattach: 1376 /* List is sorted, if-bound states before floating. */ 1377 if (s->kif == V_pfi_all) 1378 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1379 else 1380 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1381 1382 if (olds) { 1383 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1384 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1385 key_list[idx]); 1386 olds = NULL; 1387 } 1388 1389 /* 1390 * Attach done. See how should we (or should not?) 1391 * attach a second key. 1392 */ 1393 if (sks == skw) { 1394 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1395 idx = PF_SK_STACK; 1396 sks = NULL; 1397 goto stateattach; 1398 } else if (sks != NULL) { 1399 /* 1400 * Continue attaching with stack key. 1401 */ 1402 sk = sks; 1403 kh = khs; 1404 idx = PF_SK_STACK; 1405 sks = NULL; 1406 goto keyattach; 1407 } 1408 1409 PF_STATE_LOCK(s); 1410 KEYS_UNLOCK(); 1411 1412 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1413 ("%s failure", __func__)); 1414 1415 return (0); 1416 #undef KEYS_UNLOCK 1417 } 1418 1419 static void 1420 pf_detach_state(struct pf_kstate *s) 1421 { 1422 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1423 struct pf_keyhash *kh; 1424 1425 NET_EPOCH_ASSERT(); 1426 MPASS(s->timeout >= PFTM_MAX); 1427 1428 pf_sctp_multihome_detach_addr(s); 1429 1430 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr) 1431 V_pflow_export_state_ptr(s); 1432 1433 if (sks != NULL) { 1434 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1435 PF_HASHROW_LOCK(kh); 1436 if (s->key[PF_SK_STACK] != NULL) 1437 pf_state_key_detach(s, PF_SK_STACK); 1438 /* 1439 * If both point to same key, then we are done. 1440 */ 1441 if (sks == s->key[PF_SK_WIRE]) { 1442 pf_state_key_detach(s, PF_SK_WIRE); 1443 PF_HASHROW_UNLOCK(kh); 1444 return; 1445 } 1446 PF_HASHROW_UNLOCK(kh); 1447 } 1448 1449 if (s->key[PF_SK_WIRE] != NULL) { 1450 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1451 PF_HASHROW_LOCK(kh); 1452 if (s->key[PF_SK_WIRE] != NULL) 1453 pf_state_key_detach(s, PF_SK_WIRE); 1454 PF_HASHROW_UNLOCK(kh); 1455 } 1456 } 1457 1458 static void 1459 pf_state_key_detach(struct pf_kstate *s, int idx) 1460 { 1461 struct pf_state_key *sk = s->key[idx]; 1462 #ifdef INVARIANTS 1463 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1464 1465 PF_HASHROW_ASSERT(kh); 1466 #endif 1467 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1468 s->key[idx] = NULL; 1469 1470 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1471 LIST_REMOVE(sk, entry); 1472 uma_zfree(V_pf_state_key_z, sk); 1473 } 1474 } 1475 1476 static int 1477 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1478 { 1479 struct pf_state_key *sk = mem; 1480 1481 bzero(sk, sizeof(struct pf_state_key_cmp)); 1482 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1483 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1484 1485 return (0); 1486 } 1487 1488 struct pf_state_key * 1489 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1490 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1491 { 1492 struct pf_state_key *sk; 1493 1494 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1495 if (sk == NULL) 1496 return (NULL); 1497 1498 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1499 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1500 sk->port[pd->sidx] = sport; 1501 sk->port[pd->didx] = dport; 1502 sk->proto = pd->proto; 1503 sk->af = pd->af; 1504 1505 return (sk); 1506 } 1507 1508 struct pf_state_key * 1509 pf_state_key_clone(const struct pf_state_key *orig) 1510 { 1511 struct pf_state_key *sk; 1512 1513 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1514 if (sk == NULL) 1515 return (NULL); 1516 1517 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1518 1519 return (sk); 1520 } 1521 1522 int 1523 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1524 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1525 { 1526 struct pf_idhash *ih; 1527 struct pf_kstate *cur; 1528 int error; 1529 1530 NET_EPOCH_ASSERT(); 1531 1532 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1533 ("%s: sks not pristine", __func__)); 1534 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1535 ("%s: skw not pristine", __func__)); 1536 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1537 1538 s->kif = kif; 1539 s->orig_kif = orig_kif; 1540 1541 if (s->id == 0 && s->creatorid == 0) { 1542 s->id = alloc_unr64(&V_pf_stateid); 1543 s->id = htobe64(s->id); 1544 s->creatorid = V_pf_status.hostid; 1545 } 1546 1547 /* Returns with ID locked on success. */ 1548 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1549 return (error); 1550 1551 ih = &V_pf_idhash[PF_IDHASH(s)]; 1552 PF_HASHROW_ASSERT(ih); 1553 LIST_FOREACH(cur, &ih->states, entry) 1554 if (cur->id == s->id && cur->creatorid == s->creatorid) 1555 break; 1556 1557 if (cur != NULL) { 1558 s->timeout = PFTM_UNLINKED; 1559 PF_HASHROW_UNLOCK(ih); 1560 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1561 printf("pf: state ID collision: " 1562 "id: %016llx creatorid: %08x\n", 1563 (unsigned long long)be64toh(s->id), 1564 ntohl(s->creatorid)); 1565 } 1566 pf_detach_state(s); 1567 return (EEXIST); 1568 } 1569 LIST_INSERT_HEAD(&ih->states, s, entry); 1570 /* One for keys, one for ID hash. */ 1571 refcount_init(&s->refs, 2); 1572 1573 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1574 if (V_pfsync_insert_state_ptr != NULL) 1575 V_pfsync_insert_state_ptr(s); 1576 1577 /* Returns locked. */ 1578 return (0); 1579 } 1580 1581 /* 1582 * Find state by ID: returns with locked row on success. 1583 */ 1584 struct pf_kstate * 1585 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1586 { 1587 struct pf_idhash *ih; 1588 struct pf_kstate *s; 1589 1590 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1591 1592 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1593 1594 PF_HASHROW_LOCK(ih); 1595 LIST_FOREACH(s, &ih->states, entry) 1596 if (s->id == id && s->creatorid == creatorid) 1597 break; 1598 1599 if (s == NULL) 1600 PF_HASHROW_UNLOCK(ih); 1601 1602 return (s); 1603 } 1604 1605 /* 1606 * Find state by key. 1607 * Returns with ID hash slot locked on success. 1608 */ 1609 static struct pf_kstate * 1610 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key, 1611 u_int dir) 1612 { 1613 struct pf_keyhash *kh; 1614 struct pf_state_key *sk; 1615 struct pf_kstate *s; 1616 int idx; 1617 1618 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1619 1620 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1621 1622 PF_HASHROW_LOCK(kh); 1623 LIST_FOREACH(sk, &kh->keys, entry) 1624 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1625 break; 1626 if (sk == NULL) { 1627 PF_HASHROW_UNLOCK(kh); 1628 return (NULL); 1629 } 1630 1631 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1632 1633 /* List is sorted, if-bound states before floating ones. */ 1634 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1635 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) { 1636 PF_STATE_LOCK(s); 1637 PF_HASHROW_UNLOCK(kh); 1638 if (__predict_false(s->timeout >= PFTM_MAX)) { 1639 /* 1640 * State is either being processed by 1641 * pf_unlink_state() in an other thread, or 1642 * is scheduled for immediate expiry. 1643 */ 1644 PF_STATE_UNLOCK(s); 1645 return (NULL); 1646 } 1647 return (s); 1648 } 1649 PF_HASHROW_UNLOCK(kh); 1650 1651 return (NULL); 1652 } 1653 1654 /* 1655 * Returns with ID hash slot locked on success. 1656 */ 1657 struct pf_kstate * 1658 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more) 1659 { 1660 struct pf_keyhash *kh; 1661 struct pf_state_key *sk; 1662 struct pf_kstate *s, *ret = NULL; 1663 int idx, inout = 0; 1664 1665 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1666 1667 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1668 1669 PF_HASHROW_LOCK(kh); 1670 LIST_FOREACH(sk, &kh->keys, entry) 1671 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1672 break; 1673 if (sk == NULL) { 1674 PF_HASHROW_UNLOCK(kh); 1675 return (NULL); 1676 } 1677 switch (dir) { 1678 case PF_IN: 1679 idx = PF_SK_WIRE; 1680 break; 1681 case PF_OUT: 1682 idx = PF_SK_STACK; 1683 break; 1684 case PF_INOUT: 1685 idx = PF_SK_WIRE; 1686 inout = 1; 1687 break; 1688 default: 1689 panic("%s: dir %u", __func__, dir); 1690 } 1691 second_run: 1692 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1693 if (more == NULL) { 1694 PF_STATE_LOCK(s); 1695 PF_HASHROW_UNLOCK(kh); 1696 return (s); 1697 } 1698 1699 if (ret) 1700 (*more)++; 1701 else { 1702 ret = s; 1703 PF_STATE_LOCK(s); 1704 } 1705 } 1706 if (inout == 1) { 1707 inout = 0; 1708 idx = PF_SK_STACK; 1709 goto second_run; 1710 } 1711 PF_HASHROW_UNLOCK(kh); 1712 1713 return (ret); 1714 } 1715 1716 /* 1717 * FIXME 1718 * This routine is inefficient -- locks the state only to unlock immediately on 1719 * return. 1720 * It is racy -- after the state is unlocked nothing stops other threads from 1721 * removing it. 1722 */ 1723 bool 1724 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir) 1725 { 1726 struct pf_kstate *s; 1727 1728 s = pf_find_state_all(key, dir, NULL); 1729 if (s != NULL) { 1730 PF_STATE_UNLOCK(s); 1731 return (true); 1732 } 1733 return (false); 1734 } 1735 1736 /* END state table stuff */ 1737 1738 static void 1739 pf_send(struct pf_send_entry *pfse) 1740 { 1741 1742 PF_SENDQ_LOCK(); 1743 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1744 PF_SENDQ_UNLOCK(); 1745 swi_sched(V_pf_swi_cookie, 0); 1746 } 1747 1748 static bool 1749 pf_isforlocal(struct mbuf *m, int af) 1750 { 1751 switch (af) { 1752 #ifdef INET 1753 case AF_INET: { 1754 struct ip *ip = mtod(m, struct ip *); 1755 1756 return (in_localip(ip->ip_dst)); 1757 } 1758 #endif 1759 #ifdef INET6 1760 case AF_INET6: { 1761 struct ip6_hdr *ip6; 1762 struct in6_ifaddr *ia; 1763 ip6 = mtod(m, struct ip6_hdr *); 1764 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 1765 if (ia == NULL) 1766 return (false); 1767 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 1768 } 1769 #endif 1770 default: 1771 panic("Unsupported af %d", af); 1772 } 1773 1774 return (false); 1775 } 1776 1777 void 1778 pf_intr(void *v) 1779 { 1780 struct epoch_tracker et; 1781 struct pf_send_head queue; 1782 struct pf_send_entry *pfse, *next; 1783 1784 CURVNET_SET((struct vnet *)v); 1785 1786 PF_SENDQ_LOCK(); 1787 queue = V_pf_sendqueue; 1788 STAILQ_INIT(&V_pf_sendqueue); 1789 PF_SENDQ_UNLOCK(); 1790 1791 NET_EPOCH_ENTER(et); 1792 1793 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1794 switch (pfse->pfse_type) { 1795 #ifdef INET 1796 case PFSE_IP: { 1797 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 1798 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1799 pfse->pfse_m->m_pkthdr.csum_flags |= 1800 CSUM_IP_VALID | CSUM_IP_CHECKED; 1801 ip_input(pfse->pfse_m); 1802 } else { 1803 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1804 NULL); 1805 } 1806 break; 1807 } 1808 case PFSE_ICMP: 1809 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1810 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1811 break; 1812 #endif /* INET */ 1813 #ifdef INET6 1814 case PFSE_IP6: 1815 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 1816 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1817 ip6_input(pfse->pfse_m); 1818 } else { 1819 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1820 NULL, NULL); 1821 } 1822 break; 1823 case PFSE_ICMP6: 1824 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1825 pfse->icmpopts.code, pfse->icmpopts.mtu); 1826 break; 1827 #endif /* INET6 */ 1828 default: 1829 panic("%s: unknown type", __func__); 1830 } 1831 free(pfse, M_PFTEMP); 1832 } 1833 NET_EPOCH_EXIT(et); 1834 CURVNET_RESTORE(); 1835 } 1836 1837 #define pf_purge_thread_period (hz / 10) 1838 1839 #ifdef PF_WANT_32_TO_64_COUNTER 1840 static void 1841 pf_status_counter_u64_periodic(void) 1842 { 1843 1844 PF_RULES_RASSERT(); 1845 1846 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 1847 return; 1848 } 1849 1850 for (int i = 0; i < FCNT_MAX; i++) { 1851 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 1852 } 1853 } 1854 1855 static void 1856 pf_kif_counter_u64_periodic(void) 1857 { 1858 struct pfi_kkif *kif; 1859 size_t r, run; 1860 1861 PF_RULES_RASSERT(); 1862 1863 if (__predict_false(V_pf_allkifcount == 0)) { 1864 return; 1865 } 1866 1867 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1868 return; 1869 } 1870 1871 run = V_pf_allkifcount / 10; 1872 if (run < 5) 1873 run = 5; 1874 1875 for (r = 0; r < run; r++) { 1876 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 1877 if (kif == NULL) { 1878 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1879 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 1880 break; 1881 } 1882 1883 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1884 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 1885 1886 for (int i = 0; i < 2; i++) { 1887 for (int j = 0; j < 2; j++) { 1888 for (int k = 0; k < 2; k++) { 1889 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 1890 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 1891 } 1892 } 1893 } 1894 } 1895 } 1896 1897 static void 1898 pf_rule_counter_u64_periodic(void) 1899 { 1900 struct pf_krule *rule; 1901 size_t r, run; 1902 1903 PF_RULES_RASSERT(); 1904 1905 if (__predict_false(V_pf_allrulecount == 0)) { 1906 return; 1907 } 1908 1909 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1910 return; 1911 } 1912 1913 run = V_pf_allrulecount / 10; 1914 if (run < 5) 1915 run = 5; 1916 1917 for (r = 0; r < run; r++) { 1918 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 1919 if (rule == NULL) { 1920 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1921 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 1922 break; 1923 } 1924 1925 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1926 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 1927 1928 pf_counter_u64_periodic(&rule->evaluations); 1929 for (int i = 0; i < 2; i++) { 1930 pf_counter_u64_periodic(&rule->packets[i]); 1931 pf_counter_u64_periodic(&rule->bytes[i]); 1932 } 1933 } 1934 } 1935 1936 static void 1937 pf_counter_u64_periodic_main(void) 1938 { 1939 PF_RULES_RLOCK_TRACKER; 1940 1941 V_pf_counter_periodic_iter++; 1942 1943 PF_RULES_RLOCK(); 1944 pf_counter_u64_critical_enter(); 1945 pf_status_counter_u64_periodic(); 1946 pf_kif_counter_u64_periodic(); 1947 pf_rule_counter_u64_periodic(); 1948 pf_counter_u64_critical_exit(); 1949 PF_RULES_RUNLOCK(); 1950 } 1951 #else 1952 #define pf_counter_u64_periodic_main() do { } while (0) 1953 #endif 1954 1955 void 1956 pf_purge_thread(void *unused __unused) 1957 { 1958 struct epoch_tracker et; 1959 1960 VNET_ITERATOR_DECL(vnet_iter); 1961 1962 sx_xlock(&pf_end_lock); 1963 while (pf_end_threads == 0) { 1964 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 1965 1966 VNET_LIST_RLOCK(); 1967 NET_EPOCH_ENTER(et); 1968 VNET_FOREACH(vnet_iter) { 1969 CURVNET_SET(vnet_iter); 1970 1971 /* Wait until V_pf_default_rule is initialized. */ 1972 if (V_pf_vnet_active == 0) { 1973 CURVNET_RESTORE(); 1974 continue; 1975 } 1976 1977 pf_counter_u64_periodic_main(); 1978 1979 /* 1980 * Process 1/interval fraction of the state 1981 * table every run. 1982 */ 1983 V_pf_purge_idx = 1984 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1985 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1986 1987 /* 1988 * Purge other expired types every 1989 * PFTM_INTERVAL seconds. 1990 */ 1991 if (V_pf_purge_idx == 0) { 1992 /* 1993 * Order is important: 1994 * - states and src nodes reference rules 1995 * - states and rules reference kifs 1996 */ 1997 pf_purge_expired_fragments(); 1998 pf_purge_expired_src_nodes(); 1999 pf_purge_unlinked_rules(); 2000 pfi_kkif_purge(); 2001 } 2002 CURVNET_RESTORE(); 2003 } 2004 NET_EPOCH_EXIT(et); 2005 VNET_LIST_RUNLOCK(); 2006 } 2007 2008 pf_end_threads++; 2009 sx_xunlock(&pf_end_lock); 2010 kproc_exit(0); 2011 } 2012 2013 void 2014 pf_unload_vnet_purge(void) 2015 { 2016 2017 /* 2018 * To cleanse up all kifs and rules we need 2019 * two runs: first one clears reference flags, 2020 * then pf_purge_expired_states() doesn't 2021 * raise them, and then second run frees. 2022 */ 2023 pf_purge_unlinked_rules(); 2024 pfi_kkif_purge(); 2025 2026 /* 2027 * Now purge everything. 2028 */ 2029 pf_purge_expired_states(0, pf_hashmask); 2030 pf_purge_fragments(UINT_MAX); 2031 pf_purge_expired_src_nodes(); 2032 2033 /* 2034 * Now all kifs & rules should be unreferenced, 2035 * thus should be successfully freed. 2036 */ 2037 pf_purge_unlinked_rules(); 2038 pfi_kkif_purge(); 2039 } 2040 2041 u_int32_t 2042 pf_state_expires(const struct pf_kstate *state) 2043 { 2044 u_int32_t timeout; 2045 u_int32_t start; 2046 u_int32_t end; 2047 u_int32_t states; 2048 2049 /* handle all PFTM_* > PFTM_MAX here */ 2050 if (state->timeout == PFTM_PURGE) 2051 return (time_uptime); 2052 KASSERT(state->timeout != PFTM_UNLINKED, 2053 ("pf_state_expires: timeout == PFTM_UNLINKED")); 2054 KASSERT((state->timeout < PFTM_MAX), 2055 ("pf_state_expires: timeout > PFTM_MAX")); 2056 timeout = state->rule.ptr->timeout[state->timeout]; 2057 if (!timeout) 2058 timeout = V_pf_default_rule.timeout[state->timeout]; 2059 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 2060 if (start && state->rule.ptr != &V_pf_default_rule) { 2061 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 2062 states = counter_u64_fetch(state->rule.ptr->states_cur); 2063 } else { 2064 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 2065 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 2066 states = V_pf_status.states; 2067 } 2068 if (end && states > start && start < end) { 2069 if (states < end) { 2070 timeout = (u_int64_t)timeout * (end - states) / 2071 (end - start); 2072 return ((state->expire / 1000) + timeout); 2073 } 2074 else 2075 return (time_uptime); 2076 } 2077 return ((state->expire / 1000) + timeout); 2078 } 2079 2080 void 2081 pf_purge_expired_src_nodes(void) 2082 { 2083 struct pf_ksrc_node_list freelist; 2084 struct pf_srchash *sh; 2085 struct pf_ksrc_node *cur, *next; 2086 int i; 2087 2088 LIST_INIT(&freelist); 2089 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 2090 PF_HASHROW_LOCK(sh); 2091 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 2092 if (cur->states == 0 && cur->expire <= time_uptime) { 2093 pf_unlink_src_node(cur); 2094 LIST_INSERT_HEAD(&freelist, cur, entry); 2095 } else if (cur->rule.ptr != NULL) 2096 cur->rule.ptr->rule_ref |= PFRULE_REFS; 2097 PF_HASHROW_UNLOCK(sh); 2098 } 2099 2100 pf_free_src_nodes(&freelist); 2101 2102 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2103 } 2104 2105 static void 2106 pf_src_tree_remove_state(struct pf_kstate *s) 2107 { 2108 struct pf_ksrc_node *sn; 2109 uint32_t timeout; 2110 2111 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 2112 s->rule.ptr->timeout[PFTM_SRC_NODE] : 2113 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2114 2115 if (s->src_node != NULL) { 2116 sn = s->src_node; 2117 PF_SRC_NODE_LOCK(sn); 2118 if (s->src.tcp_est) 2119 --sn->conn; 2120 if (--sn->states == 0) 2121 sn->expire = time_uptime + timeout; 2122 PF_SRC_NODE_UNLOCK(sn); 2123 } 2124 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 2125 sn = s->nat_src_node; 2126 PF_SRC_NODE_LOCK(sn); 2127 if (--sn->states == 0) 2128 sn->expire = time_uptime + timeout; 2129 PF_SRC_NODE_UNLOCK(sn); 2130 } 2131 s->src_node = s->nat_src_node = NULL; 2132 } 2133 2134 /* 2135 * Unlink and potentilly free a state. Function may be 2136 * called with ID hash row locked, but always returns 2137 * unlocked, since it needs to go through key hash locking. 2138 */ 2139 int 2140 pf_unlink_state(struct pf_kstate *s) 2141 { 2142 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2143 2144 NET_EPOCH_ASSERT(); 2145 PF_HASHROW_ASSERT(ih); 2146 2147 if (s->timeout == PFTM_UNLINKED) { 2148 /* 2149 * State is being processed 2150 * by pf_unlink_state() in 2151 * an other thread. 2152 */ 2153 PF_HASHROW_UNLOCK(ih); 2154 return (0); /* XXXGL: undefined actually */ 2155 } 2156 2157 if (s->src.state == PF_TCPS_PROXY_DST) { 2158 /* XXX wire key the right one? */ 2159 pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af, 2160 &s->key[PF_SK_WIRE]->addr[1], 2161 &s->key[PF_SK_WIRE]->addr[0], 2162 s->key[PF_SK_WIRE]->port[1], 2163 s->key[PF_SK_WIRE]->port[0], 2164 s->src.seqhi, s->src.seqlo + 1, 2165 TH_RST|TH_ACK, 0, 0, 0, true, s->tag, 0, s->act.rtableid); 2166 } 2167 2168 LIST_REMOVE(s, entry); 2169 pf_src_tree_remove_state(s); 2170 2171 if (V_pfsync_delete_state_ptr != NULL) 2172 V_pfsync_delete_state_ptr(s); 2173 2174 STATE_DEC_COUNTERS(s); 2175 2176 s->timeout = PFTM_UNLINKED; 2177 2178 /* Ensure we remove it from the list of halfopen states, if needed. */ 2179 if (s->key[PF_SK_STACK] != NULL && 2180 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2181 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2182 2183 PF_HASHROW_UNLOCK(ih); 2184 2185 pf_detach_state(s); 2186 /* pf_state_insert() initialises refs to 2 */ 2187 return (pf_release_staten(s, 2)); 2188 } 2189 2190 struct pf_kstate * 2191 pf_alloc_state(int flags) 2192 { 2193 2194 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2195 } 2196 2197 void 2198 pf_free_state(struct pf_kstate *cur) 2199 { 2200 struct pf_krule_item *ri; 2201 2202 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2203 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2204 cur->timeout)); 2205 2206 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2207 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2208 free(ri, M_PF_RULE_ITEM); 2209 } 2210 2211 pf_normalize_tcp_cleanup(cur); 2212 uma_zfree(V_pf_state_z, cur); 2213 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2214 } 2215 2216 /* 2217 * Called only from pf_purge_thread(), thus serialized. 2218 */ 2219 static u_int 2220 pf_purge_expired_states(u_int i, int maxcheck) 2221 { 2222 struct pf_idhash *ih; 2223 struct pf_kstate *s; 2224 struct pf_krule_item *mrm; 2225 size_t count __unused; 2226 2227 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2228 2229 /* 2230 * Go through hash and unlink states that expire now. 2231 */ 2232 while (maxcheck > 0) { 2233 count = 0; 2234 ih = &V_pf_idhash[i]; 2235 2236 /* only take the lock if we expect to do work */ 2237 if (!LIST_EMPTY(&ih->states)) { 2238 relock: 2239 PF_HASHROW_LOCK(ih); 2240 LIST_FOREACH(s, &ih->states, entry) { 2241 if (pf_state_expires(s) <= time_uptime) { 2242 V_pf_status.states -= 2243 pf_unlink_state(s); 2244 goto relock; 2245 } 2246 s->rule.ptr->rule_ref |= PFRULE_REFS; 2247 if (s->nat_rule.ptr != NULL) 2248 s->nat_rule.ptr->rule_ref |= PFRULE_REFS; 2249 if (s->anchor.ptr != NULL) 2250 s->anchor.ptr->rule_ref |= PFRULE_REFS; 2251 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2252 SLIST_FOREACH(mrm, &s->match_rules, entry) 2253 mrm->r->rule_ref |= PFRULE_REFS; 2254 if (s->rt_kif) 2255 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2256 count++; 2257 } 2258 PF_HASHROW_UNLOCK(ih); 2259 } 2260 2261 SDT_PROBE2(pf, purge, state, rowcount, i, count); 2262 2263 /* Return when we hit end of hash. */ 2264 if (++i > pf_hashmask) { 2265 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2266 return (0); 2267 } 2268 2269 maxcheck--; 2270 } 2271 2272 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2273 2274 return (i); 2275 } 2276 2277 static void 2278 pf_purge_unlinked_rules(void) 2279 { 2280 struct pf_krulequeue tmpq; 2281 struct pf_krule *r, *r1; 2282 2283 /* 2284 * If we have overloading task pending, then we'd 2285 * better skip purging this time. There is a tiny 2286 * probability that overloading task references 2287 * an already unlinked rule. 2288 */ 2289 PF_OVERLOADQ_LOCK(); 2290 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2291 PF_OVERLOADQ_UNLOCK(); 2292 return; 2293 } 2294 PF_OVERLOADQ_UNLOCK(); 2295 2296 /* 2297 * Do naive mark-and-sweep garbage collecting of old rules. 2298 * Reference flag is raised by pf_purge_expired_states() 2299 * and pf_purge_expired_src_nodes(). 2300 * 2301 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2302 * use a temporary queue. 2303 */ 2304 TAILQ_INIT(&tmpq); 2305 PF_UNLNKDRULES_LOCK(); 2306 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2307 if (!(r->rule_ref & PFRULE_REFS)) { 2308 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2309 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2310 } else 2311 r->rule_ref &= ~PFRULE_REFS; 2312 } 2313 PF_UNLNKDRULES_UNLOCK(); 2314 2315 if (!TAILQ_EMPTY(&tmpq)) { 2316 PF_CONFIG_LOCK(); 2317 PF_RULES_WLOCK(); 2318 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2319 TAILQ_REMOVE(&tmpq, r, entries); 2320 pf_free_rule(r); 2321 } 2322 PF_RULES_WUNLOCK(); 2323 PF_CONFIG_UNLOCK(); 2324 } 2325 } 2326 2327 void 2328 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2329 { 2330 switch (af) { 2331 #ifdef INET 2332 case AF_INET: { 2333 u_int32_t a = ntohl(addr->addr32[0]); 2334 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2335 (a>>8)&255, a&255); 2336 if (p) { 2337 p = ntohs(p); 2338 printf(":%u", p); 2339 } 2340 break; 2341 } 2342 #endif /* INET */ 2343 #ifdef INET6 2344 case AF_INET6: { 2345 u_int16_t b; 2346 u_int8_t i, curstart, curend, maxstart, maxend; 2347 curstart = curend = maxstart = maxend = 255; 2348 for (i = 0; i < 8; i++) { 2349 if (!addr->addr16[i]) { 2350 if (curstart == 255) 2351 curstart = i; 2352 curend = i; 2353 } else { 2354 if ((curend - curstart) > 2355 (maxend - maxstart)) { 2356 maxstart = curstart; 2357 maxend = curend; 2358 } 2359 curstart = curend = 255; 2360 } 2361 } 2362 if ((curend - curstart) > 2363 (maxend - maxstart)) { 2364 maxstart = curstart; 2365 maxend = curend; 2366 } 2367 for (i = 0; i < 8; i++) { 2368 if (i >= maxstart && i <= maxend) { 2369 if (i == 0) 2370 printf(":"); 2371 if (i == maxend) 2372 printf(":"); 2373 } else { 2374 b = ntohs(addr->addr16[i]); 2375 printf("%x", b); 2376 if (i < 7) 2377 printf(":"); 2378 } 2379 } 2380 if (p) { 2381 p = ntohs(p); 2382 printf("[%u]", p); 2383 } 2384 break; 2385 } 2386 #endif /* INET6 */ 2387 } 2388 } 2389 2390 void 2391 pf_print_state(struct pf_kstate *s) 2392 { 2393 pf_print_state_parts(s, NULL, NULL); 2394 } 2395 2396 static void 2397 pf_print_state_parts(struct pf_kstate *s, 2398 struct pf_state_key *skwp, struct pf_state_key *sksp) 2399 { 2400 struct pf_state_key *skw, *sks; 2401 u_int8_t proto, dir; 2402 2403 /* Do our best to fill these, but they're skipped if NULL */ 2404 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2405 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2406 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2407 dir = s ? s->direction : 0; 2408 2409 switch (proto) { 2410 case IPPROTO_IPV4: 2411 printf("IPv4"); 2412 break; 2413 case IPPROTO_IPV6: 2414 printf("IPv6"); 2415 break; 2416 case IPPROTO_TCP: 2417 printf("TCP"); 2418 break; 2419 case IPPROTO_UDP: 2420 printf("UDP"); 2421 break; 2422 case IPPROTO_ICMP: 2423 printf("ICMP"); 2424 break; 2425 case IPPROTO_ICMPV6: 2426 printf("ICMPv6"); 2427 break; 2428 default: 2429 printf("%u", proto); 2430 break; 2431 } 2432 switch (dir) { 2433 case PF_IN: 2434 printf(" in"); 2435 break; 2436 case PF_OUT: 2437 printf(" out"); 2438 break; 2439 } 2440 if (skw) { 2441 printf(" wire: "); 2442 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2443 printf(" "); 2444 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2445 } 2446 if (sks) { 2447 printf(" stack: "); 2448 if (sks != skw) { 2449 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2450 printf(" "); 2451 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2452 } else 2453 printf("-"); 2454 } 2455 if (s) { 2456 if (proto == IPPROTO_TCP) { 2457 printf(" [lo=%u high=%u win=%u modulator=%u", 2458 s->src.seqlo, s->src.seqhi, 2459 s->src.max_win, s->src.seqdiff); 2460 if (s->src.wscale && s->dst.wscale) 2461 printf(" wscale=%u", 2462 s->src.wscale & PF_WSCALE_MASK); 2463 printf("]"); 2464 printf(" [lo=%u high=%u win=%u modulator=%u", 2465 s->dst.seqlo, s->dst.seqhi, 2466 s->dst.max_win, s->dst.seqdiff); 2467 if (s->src.wscale && s->dst.wscale) 2468 printf(" wscale=%u", 2469 s->dst.wscale & PF_WSCALE_MASK); 2470 printf("]"); 2471 } 2472 printf(" %u:%u", s->src.state, s->dst.state); 2473 } 2474 } 2475 2476 void 2477 pf_print_flags(u_int8_t f) 2478 { 2479 if (f) 2480 printf(" "); 2481 if (f & TH_FIN) 2482 printf("F"); 2483 if (f & TH_SYN) 2484 printf("S"); 2485 if (f & TH_RST) 2486 printf("R"); 2487 if (f & TH_PUSH) 2488 printf("P"); 2489 if (f & TH_ACK) 2490 printf("A"); 2491 if (f & TH_URG) 2492 printf("U"); 2493 if (f & TH_ECE) 2494 printf("E"); 2495 if (f & TH_CWR) 2496 printf("W"); 2497 } 2498 2499 #define PF_SET_SKIP_STEPS(i) \ 2500 do { \ 2501 while (head[i] != cur) { \ 2502 head[i]->skip[i].ptr = cur; \ 2503 head[i] = TAILQ_NEXT(head[i], entries); \ 2504 } \ 2505 } while (0) 2506 2507 void 2508 pf_calc_skip_steps(struct pf_krulequeue *rules) 2509 { 2510 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2511 int i; 2512 2513 cur = TAILQ_FIRST(rules); 2514 prev = cur; 2515 for (i = 0; i < PF_SKIP_COUNT; ++i) 2516 head[i] = cur; 2517 while (cur != NULL) { 2518 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2519 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2520 if (cur->direction != prev->direction) 2521 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2522 if (cur->af != prev->af) 2523 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2524 if (cur->proto != prev->proto) 2525 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2526 if (cur->src.neg != prev->src.neg || 2527 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2528 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2529 if (cur->src.port[0] != prev->src.port[0] || 2530 cur->src.port[1] != prev->src.port[1] || 2531 cur->src.port_op != prev->src.port_op) 2532 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2533 if (cur->dst.neg != prev->dst.neg || 2534 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2535 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2536 if (cur->dst.port[0] != prev->dst.port[0] || 2537 cur->dst.port[1] != prev->dst.port[1] || 2538 cur->dst.port_op != prev->dst.port_op) 2539 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2540 2541 prev = cur; 2542 cur = TAILQ_NEXT(cur, entries); 2543 } 2544 for (i = 0; i < PF_SKIP_COUNT; ++i) 2545 PF_SET_SKIP_STEPS(i); 2546 } 2547 2548 int 2549 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2550 { 2551 if (aw1->type != aw2->type) 2552 return (1); 2553 switch (aw1->type) { 2554 case PF_ADDR_ADDRMASK: 2555 case PF_ADDR_RANGE: 2556 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2557 return (1); 2558 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2559 return (1); 2560 return (0); 2561 case PF_ADDR_DYNIFTL: 2562 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2563 case PF_ADDR_NOROUTE: 2564 case PF_ADDR_URPFFAILED: 2565 return (0); 2566 case PF_ADDR_TABLE: 2567 return (aw1->p.tbl != aw2->p.tbl); 2568 default: 2569 printf("invalid address type: %d\n", aw1->type); 2570 return (1); 2571 } 2572 } 2573 2574 /** 2575 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2576 * header isn't always a full checksum. In some cases (i.e. output) it's a 2577 * pseudo-header checksum, which is a partial checksum over src/dst IP 2578 * addresses, protocol number and length. 2579 * 2580 * That means we have the following cases: 2581 * * Input or forwarding: we don't have TSO, the checksum fields are full 2582 * checksums, we need to update the checksum whenever we change anything. 2583 * * Output (i.e. the checksum is a pseudo-header checksum): 2584 * x The field being updated is src/dst address or affects the length of 2585 * the packet. We need to update the pseudo-header checksum (note that this 2586 * checksum is not ones' complement). 2587 * x Some other field is being modified (e.g. src/dst port numbers): We 2588 * don't have to update anything. 2589 **/ 2590 u_int16_t 2591 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2592 { 2593 u_int32_t x; 2594 2595 x = cksum + old - new; 2596 x = (x + (x >> 16)) & 0xffff; 2597 2598 /* optimise: eliminate a branch when not udp */ 2599 if (udp && cksum == 0x0000) 2600 return cksum; 2601 if (udp && x == 0x0000) 2602 x = 0xffff; 2603 2604 return (u_int16_t)(x); 2605 } 2606 2607 static void 2608 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 2609 u_int8_t udp) 2610 { 2611 u_int16_t old = htons(hi ? (*f << 8) : *f); 2612 u_int16_t new = htons(hi ? ( v << 8) : v); 2613 2614 if (*f == v) 2615 return; 2616 2617 *f = v; 2618 2619 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2620 return; 2621 2622 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 2623 } 2624 2625 void 2626 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 2627 bool hi, u_int8_t udp) 2628 { 2629 u_int8_t *fb = (u_int8_t *)f; 2630 u_int8_t *vb = (u_int8_t *)&v; 2631 2632 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2633 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2634 } 2635 2636 void 2637 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 2638 bool hi, u_int8_t udp) 2639 { 2640 u_int8_t *fb = (u_int8_t *)f; 2641 u_int8_t *vb = (u_int8_t *)&v; 2642 2643 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2644 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2645 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2646 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2647 } 2648 2649 u_int16_t 2650 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2651 u_int16_t new, u_int8_t udp) 2652 { 2653 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2654 return (cksum); 2655 2656 return (pf_cksum_fixup(cksum, old, new, udp)); 2657 } 2658 2659 static void 2660 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2661 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2662 sa_family_t af) 2663 { 2664 struct pf_addr ao; 2665 u_int16_t po = *p; 2666 2667 PF_ACPY(&ao, a, af); 2668 PF_ACPY(a, an, af); 2669 2670 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2671 *pc = ~*pc; 2672 2673 *p = pn; 2674 2675 switch (af) { 2676 #ifdef INET 2677 case AF_INET: 2678 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2679 ao.addr16[0], an->addr16[0], 0), 2680 ao.addr16[1], an->addr16[1], 0); 2681 *p = pn; 2682 2683 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2684 ao.addr16[0], an->addr16[0], u), 2685 ao.addr16[1], an->addr16[1], u); 2686 2687 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2688 break; 2689 #endif /* INET */ 2690 #ifdef INET6 2691 case AF_INET6: 2692 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2693 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2694 pf_cksum_fixup(pf_cksum_fixup(*pc, 2695 ao.addr16[0], an->addr16[0], u), 2696 ao.addr16[1], an->addr16[1], u), 2697 ao.addr16[2], an->addr16[2], u), 2698 ao.addr16[3], an->addr16[3], u), 2699 ao.addr16[4], an->addr16[4], u), 2700 ao.addr16[5], an->addr16[5], u), 2701 ao.addr16[6], an->addr16[6], u), 2702 ao.addr16[7], an->addr16[7], u); 2703 2704 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2705 break; 2706 #endif /* INET6 */ 2707 } 2708 2709 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2710 CSUM_DELAY_DATA_IPV6)) { 2711 *pc = ~*pc; 2712 if (! *pc) 2713 *pc = 0xffff; 2714 } 2715 } 2716 2717 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2718 void 2719 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2720 { 2721 u_int32_t ao; 2722 2723 memcpy(&ao, a, sizeof(ao)); 2724 memcpy(a, &an, sizeof(u_int32_t)); 2725 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2726 ao % 65536, an % 65536, u); 2727 } 2728 2729 void 2730 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2731 { 2732 u_int32_t ao; 2733 2734 memcpy(&ao, a, sizeof(ao)); 2735 memcpy(a, &an, sizeof(u_int32_t)); 2736 2737 *c = pf_proto_cksum_fixup(m, 2738 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2739 ao % 65536, an % 65536, udp); 2740 } 2741 2742 #ifdef INET6 2743 static void 2744 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2745 { 2746 struct pf_addr ao; 2747 2748 PF_ACPY(&ao, a, AF_INET6); 2749 PF_ACPY(a, an, AF_INET6); 2750 2751 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2752 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2753 pf_cksum_fixup(pf_cksum_fixup(*c, 2754 ao.addr16[0], an->addr16[0], u), 2755 ao.addr16[1], an->addr16[1], u), 2756 ao.addr16[2], an->addr16[2], u), 2757 ao.addr16[3], an->addr16[3], u), 2758 ao.addr16[4], an->addr16[4], u), 2759 ao.addr16[5], an->addr16[5], u), 2760 ao.addr16[6], an->addr16[6], u), 2761 ao.addr16[7], an->addr16[7], u); 2762 } 2763 #endif /* INET6 */ 2764 2765 static void 2766 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2767 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2768 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2769 { 2770 struct pf_addr oia, ooa; 2771 2772 PF_ACPY(&oia, ia, af); 2773 if (oa) 2774 PF_ACPY(&ooa, oa, af); 2775 2776 /* Change inner protocol port, fix inner protocol checksum. */ 2777 if (ip != NULL) { 2778 u_int16_t oip = *ip; 2779 u_int32_t opc; 2780 2781 if (pc != NULL) 2782 opc = *pc; 2783 *ip = np; 2784 if (pc != NULL) 2785 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2786 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2787 if (pc != NULL) 2788 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2789 } 2790 /* Change inner ip address, fix inner ip and icmp checksums. */ 2791 PF_ACPY(ia, na, af); 2792 switch (af) { 2793 #ifdef INET 2794 case AF_INET: { 2795 u_int32_t oh2c = *h2c; 2796 2797 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2798 oia.addr16[0], ia->addr16[0], 0), 2799 oia.addr16[1], ia->addr16[1], 0); 2800 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2801 oia.addr16[0], ia->addr16[0], 0), 2802 oia.addr16[1], ia->addr16[1], 0); 2803 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2804 break; 2805 } 2806 #endif /* INET */ 2807 #ifdef INET6 2808 case AF_INET6: 2809 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2810 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2811 pf_cksum_fixup(pf_cksum_fixup(*ic, 2812 oia.addr16[0], ia->addr16[0], u), 2813 oia.addr16[1], ia->addr16[1], u), 2814 oia.addr16[2], ia->addr16[2], u), 2815 oia.addr16[3], ia->addr16[3], u), 2816 oia.addr16[4], ia->addr16[4], u), 2817 oia.addr16[5], ia->addr16[5], u), 2818 oia.addr16[6], ia->addr16[6], u), 2819 oia.addr16[7], ia->addr16[7], u); 2820 break; 2821 #endif /* INET6 */ 2822 } 2823 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2824 if (oa) { 2825 PF_ACPY(oa, na, af); 2826 switch (af) { 2827 #ifdef INET 2828 case AF_INET: 2829 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2830 ooa.addr16[0], oa->addr16[0], 0), 2831 ooa.addr16[1], oa->addr16[1], 0); 2832 break; 2833 #endif /* INET */ 2834 #ifdef INET6 2835 case AF_INET6: 2836 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2837 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2838 pf_cksum_fixup(pf_cksum_fixup(*ic, 2839 ooa.addr16[0], oa->addr16[0], u), 2840 ooa.addr16[1], oa->addr16[1], u), 2841 ooa.addr16[2], oa->addr16[2], u), 2842 ooa.addr16[3], oa->addr16[3], u), 2843 ooa.addr16[4], oa->addr16[4], u), 2844 ooa.addr16[5], oa->addr16[5], u), 2845 ooa.addr16[6], oa->addr16[6], u), 2846 ooa.addr16[7], oa->addr16[7], u); 2847 break; 2848 #endif /* INET6 */ 2849 } 2850 } 2851 } 2852 2853 /* 2854 * Need to modulate the sequence numbers in the TCP SACK option 2855 * (credits to Krzysztof Pfaff for report and patch) 2856 */ 2857 static int 2858 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2859 struct tcphdr *th, struct pf_state_peer *dst) 2860 { 2861 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2862 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2863 int copyback = 0, i, olen; 2864 struct sackblk sack; 2865 2866 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2867 if (hlen < TCPOLEN_SACKLEN || 2868 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2869 return 0; 2870 2871 while (hlen >= TCPOLEN_SACKLEN) { 2872 size_t startoff = opt - opts; 2873 olen = opt[1]; 2874 switch (*opt) { 2875 case TCPOPT_EOL: /* FALLTHROUGH */ 2876 case TCPOPT_NOP: 2877 opt++; 2878 hlen--; 2879 break; 2880 case TCPOPT_SACK: 2881 if (olen > hlen) 2882 olen = hlen; 2883 if (olen >= TCPOLEN_SACKLEN) { 2884 for (i = 2; i + TCPOLEN_SACK <= olen; 2885 i += TCPOLEN_SACK) { 2886 memcpy(&sack, &opt[i], sizeof(sack)); 2887 pf_patch_32_unaligned(m, 2888 &th->th_sum, &sack.start, 2889 htonl(ntohl(sack.start) - dst->seqdiff), 2890 PF_ALGNMNT(startoff), 2891 0); 2892 pf_patch_32_unaligned(m, &th->th_sum, 2893 &sack.end, 2894 htonl(ntohl(sack.end) - dst->seqdiff), 2895 PF_ALGNMNT(startoff), 2896 0); 2897 memcpy(&opt[i], &sack, sizeof(sack)); 2898 } 2899 copyback = 1; 2900 } 2901 /* FALLTHROUGH */ 2902 default: 2903 if (olen < 2) 2904 olen = 2; 2905 hlen -= olen; 2906 opt += olen; 2907 } 2908 } 2909 2910 if (copyback) 2911 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2912 return (copyback); 2913 } 2914 2915 struct mbuf * 2916 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 2917 const struct pf_addr *saddr, const struct pf_addr *daddr, 2918 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2919 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 2920 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 2921 { 2922 struct mbuf *m; 2923 int len, tlen; 2924 #ifdef INET 2925 struct ip *h = NULL; 2926 #endif /* INET */ 2927 #ifdef INET6 2928 struct ip6_hdr *h6 = NULL; 2929 #endif /* INET6 */ 2930 struct tcphdr *th; 2931 char *opt; 2932 struct pf_mtag *pf_mtag; 2933 2934 len = 0; 2935 th = NULL; 2936 2937 /* maximum segment size tcp option */ 2938 tlen = sizeof(struct tcphdr); 2939 if (mss) 2940 tlen += 4; 2941 2942 switch (af) { 2943 #ifdef INET 2944 case AF_INET: 2945 len = sizeof(struct ip) + tlen; 2946 break; 2947 #endif /* INET */ 2948 #ifdef INET6 2949 case AF_INET6: 2950 len = sizeof(struct ip6_hdr) + tlen; 2951 break; 2952 #endif /* INET6 */ 2953 default: 2954 panic("%s: unsupported af %d", __func__, af); 2955 } 2956 2957 m = m_gethdr(M_NOWAIT, MT_DATA); 2958 if (m == NULL) 2959 return (NULL); 2960 2961 #ifdef MAC 2962 mac_netinet_firewall_send(m); 2963 #endif 2964 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2965 m_freem(m); 2966 return (NULL); 2967 } 2968 if (skip_firewall) 2969 m->m_flags |= M_SKIP_FIREWALL; 2970 pf_mtag->tag = mtag_tag; 2971 pf_mtag->flags = mtag_flags; 2972 2973 if (rtableid >= 0) 2974 M_SETFIB(m, rtableid); 2975 2976 #ifdef ALTQ 2977 if (r != NULL && r->qid) { 2978 pf_mtag->qid = r->qid; 2979 2980 /* add hints for ecn */ 2981 pf_mtag->hdr = mtod(m, struct ip *); 2982 } 2983 #endif /* ALTQ */ 2984 m->m_data += max_linkhdr; 2985 m->m_pkthdr.len = m->m_len = len; 2986 /* The rest of the stack assumes a rcvif, so provide one. 2987 * This is a locally generated packet, so .. close enough. */ 2988 m->m_pkthdr.rcvif = V_loif; 2989 bzero(m->m_data, len); 2990 switch (af) { 2991 #ifdef INET 2992 case AF_INET: 2993 h = mtod(m, struct ip *); 2994 2995 /* IP header fields included in the TCP checksum */ 2996 h->ip_p = IPPROTO_TCP; 2997 h->ip_len = htons(tlen); 2998 h->ip_src.s_addr = saddr->v4.s_addr; 2999 h->ip_dst.s_addr = daddr->v4.s_addr; 3000 3001 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 3002 break; 3003 #endif /* INET */ 3004 #ifdef INET6 3005 case AF_INET6: 3006 h6 = mtod(m, struct ip6_hdr *); 3007 3008 /* IP header fields included in the TCP checksum */ 3009 h6->ip6_nxt = IPPROTO_TCP; 3010 h6->ip6_plen = htons(tlen); 3011 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 3012 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 3013 3014 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 3015 break; 3016 #endif /* INET6 */ 3017 } 3018 3019 /* TCP header */ 3020 th->th_sport = sport; 3021 th->th_dport = dport; 3022 th->th_seq = htonl(seq); 3023 th->th_ack = htonl(ack); 3024 th->th_off = tlen >> 2; 3025 th->th_flags = tcp_flags; 3026 th->th_win = htons(win); 3027 3028 if (mss) { 3029 opt = (char *)(th + 1); 3030 opt[0] = TCPOPT_MAXSEG; 3031 opt[1] = 4; 3032 HTONS(mss); 3033 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 3034 } 3035 3036 switch (af) { 3037 #ifdef INET 3038 case AF_INET: 3039 /* TCP checksum */ 3040 th->th_sum = in_cksum(m, len); 3041 3042 /* Finish the IP header */ 3043 h->ip_v = 4; 3044 h->ip_hl = sizeof(*h) >> 2; 3045 h->ip_tos = IPTOS_LOWDELAY; 3046 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 3047 h->ip_len = htons(len); 3048 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3049 h->ip_sum = 0; 3050 break; 3051 #endif /* INET */ 3052 #ifdef INET6 3053 case AF_INET6: 3054 /* TCP checksum */ 3055 th->th_sum = in6_cksum(m, IPPROTO_TCP, 3056 sizeof(struct ip6_hdr), tlen); 3057 3058 h6->ip6_vfc |= IPV6_VERSION; 3059 h6->ip6_hlim = IPV6_DEFHLIM; 3060 break; 3061 #endif /* INET6 */ 3062 } 3063 3064 return (m); 3065 } 3066 3067 static void 3068 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd, 3069 uint8_t ttl, int rtableid) 3070 { 3071 struct mbuf *m; 3072 #ifdef INET 3073 struct ip *h = NULL; 3074 #endif /* INET */ 3075 #ifdef INET6 3076 struct ip6_hdr *h6 = NULL; 3077 #endif /* INET6 */ 3078 struct sctphdr *hdr; 3079 struct sctp_chunkhdr *chunk; 3080 struct pf_send_entry *pfse; 3081 int off = 0; 3082 3083 MPASS(af == pd->af); 3084 3085 m = m_gethdr(M_NOWAIT, MT_DATA); 3086 if (m == NULL) 3087 return; 3088 3089 m->m_data += max_linkhdr; 3090 m->m_flags |= M_SKIP_FIREWALL; 3091 /* The rest of the stack assumes a rcvif, so provide one. 3092 * This is a locally generated packet, so .. close enough. */ 3093 m->m_pkthdr.rcvif = V_loif; 3094 3095 /* IPv4|6 header */ 3096 switch (af) { 3097 #ifdef INET 3098 case AF_INET: 3099 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk)); 3100 3101 h = mtod(m, struct ip *); 3102 3103 /* IP header fields included in the TCP checksum */ 3104 3105 h->ip_p = IPPROTO_SCTP; 3106 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk)); 3107 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3108 h->ip_src = pd->dst->v4; 3109 h->ip_dst = pd->src->v4; 3110 3111 off += sizeof(struct ip); 3112 break; 3113 #endif /* INET */ 3114 #ifdef INET6 3115 case AF_INET6: 3116 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk)); 3117 3118 h6 = mtod(m, struct ip6_hdr *); 3119 3120 /* IP header fields included in the TCP checksum */ 3121 h6->ip6_vfc |= IPV6_VERSION; 3122 h6->ip6_nxt = IPPROTO_SCTP; 3123 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk)); 3124 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim; 3125 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr)); 3126 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr)); 3127 3128 off += sizeof(struct ip6_hdr); 3129 break; 3130 #endif /* INET6 */ 3131 } 3132 3133 /* SCTP header */ 3134 hdr = mtodo(m, off); 3135 3136 hdr->src_port = pd->hdr.sctp.dest_port; 3137 hdr->dest_port = pd->hdr.sctp.src_port; 3138 hdr->v_tag = pd->sctp_initiate_tag; 3139 hdr->checksum = 0; 3140 3141 /* Abort chunk. */ 3142 off += sizeof(struct sctphdr); 3143 chunk = mtodo(m, off); 3144 3145 chunk->chunk_type = SCTP_ABORT_ASSOCIATION; 3146 chunk->chunk_length = htons(sizeof(*chunk)); 3147 3148 /* SCTP checksum */ 3149 off += sizeof(*chunk); 3150 m->m_pkthdr.len = m->m_len = off; 3151 3152 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk)); 3153 3154 if (rtableid >= 0) 3155 M_SETFIB(m, rtableid); 3156 3157 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3158 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3159 if (pfse == NULL) { 3160 m_freem(m); 3161 return; 3162 } 3163 3164 switch (af) { 3165 #ifdef INET 3166 case AF_INET: 3167 pfse->pfse_type = PFSE_IP; 3168 break; 3169 #endif /* INET */ 3170 #ifdef INET6 3171 case AF_INET6: 3172 pfse->pfse_type = PFSE_IP6; 3173 break; 3174 #endif /* INET6 */ 3175 } 3176 3177 pfse->pfse_m = m; 3178 pf_send(pfse); 3179 } 3180 3181 void 3182 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 3183 const struct pf_addr *saddr, const struct pf_addr *daddr, 3184 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3185 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3186 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3187 { 3188 struct pf_send_entry *pfse; 3189 struct mbuf *m; 3190 3191 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags, 3192 win, mss, ttl, skip_firewall, mtag_tag, mtag_flags, rtableid); 3193 if (m == NULL) 3194 return; 3195 3196 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3197 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3198 if (pfse == NULL) { 3199 m_freem(m); 3200 return; 3201 } 3202 3203 switch (af) { 3204 #ifdef INET 3205 case AF_INET: 3206 pfse->pfse_type = PFSE_IP; 3207 break; 3208 #endif /* INET */ 3209 #ifdef INET6 3210 case AF_INET6: 3211 pfse->pfse_type = PFSE_IP6; 3212 break; 3213 #endif /* INET6 */ 3214 } 3215 3216 pfse->pfse_m = m; 3217 pf_send(pfse); 3218 } 3219 3220 static void 3221 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 3222 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 3223 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 3224 u_short *reason, int rtableid) 3225 { 3226 struct pf_addr * const saddr = pd->src; 3227 struct pf_addr * const daddr = pd->dst; 3228 sa_family_t af = pd->af; 3229 3230 /* undo NAT changes, if they have taken place */ 3231 if (nr != NULL) { 3232 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3233 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3234 if (pd->sport) 3235 *pd->sport = sk->port[pd->sidx]; 3236 if (pd->dport) 3237 *pd->dport = sk->port[pd->didx]; 3238 if (pd->proto_sum) 3239 *pd->proto_sum = bproto_sum; 3240 if (pd->ip_sum) 3241 *pd->ip_sum = bip_sum; 3242 m_copyback(m, off, hdrlen, pd->hdr.any); 3243 } 3244 if (pd->proto == IPPROTO_TCP && 3245 ((r->rule_flag & PFRULE_RETURNRST) || 3246 (r->rule_flag & PFRULE_RETURN)) && 3247 !(th->th_flags & TH_RST)) { 3248 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3249 int len = 0; 3250 #ifdef INET 3251 struct ip *h4; 3252 #endif 3253 #ifdef INET6 3254 struct ip6_hdr *h6; 3255 #endif 3256 3257 switch (af) { 3258 #ifdef INET 3259 case AF_INET: 3260 h4 = mtod(m, struct ip *); 3261 len = ntohs(h4->ip_len) - off; 3262 break; 3263 #endif 3264 #ifdef INET6 3265 case AF_INET6: 3266 h6 = mtod(m, struct ip6_hdr *); 3267 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3268 break; 3269 #endif 3270 } 3271 3272 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3273 REASON_SET(reason, PFRES_PROTCKSUM); 3274 else { 3275 if (th->th_flags & TH_SYN) 3276 ack++; 3277 if (th->th_flags & TH_FIN) 3278 ack++; 3279 pf_send_tcp(r, af, pd->dst, 3280 pd->src, th->th_dport, th->th_sport, 3281 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3282 r->return_ttl, true, 0, 0, rtableid); 3283 } 3284 } else if (pd->proto == IPPROTO_SCTP && 3285 (r->rule_flag & PFRULE_RETURN)) { 3286 pf_send_sctp_abort(af, pd, r->return_ttl, rtableid); 3287 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3288 r->return_icmp) 3289 pf_send_icmp(m, r->return_icmp >> 8, 3290 r->return_icmp & 255, af, r, rtableid); 3291 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3292 r->return_icmp6) 3293 pf_send_icmp(m, r->return_icmp6 >> 8, 3294 r->return_icmp6 & 255, af, r, rtableid); 3295 } 3296 3297 static int 3298 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 3299 { 3300 struct m_tag *mtag; 3301 u_int8_t mpcp; 3302 3303 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 3304 if (mtag == NULL) 3305 return (0); 3306 3307 if (prio == PF_PRIO_ZERO) 3308 prio = 0; 3309 3310 mpcp = *(uint8_t *)(mtag + 1); 3311 3312 return (mpcp == prio); 3313 } 3314 3315 static int 3316 pf_icmp_to_bandlim(uint8_t type) 3317 { 3318 switch (type) { 3319 case ICMP_ECHO: 3320 case ICMP_ECHOREPLY: 3321 return (BANDLIM_ICMP_ECHO); 3322 case ICMP_TSTAMP: 3323 case ICMP_TSTAMPREPLY: 3324 return (BANDLIM_ICMP_TSTAMP); 3325 case ICMP_UNREACH: 3326 default: 3327 return (BANDLIM_ICMP_UNREACH); 3328 } 3329 } 3330 3331 static void 3332 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 3333 struct pf_krule *r, int rtableid) 3334 { 3335 struct pf_send_entry *pfse; 3336 struct mbuf *m0; 3337 struct pf_mtag *pf_mtag; 3338 3339 /* ICMP packet rate limitation. */ 3340 #ifdef INET6 3341 if (af == AF_INET6) { 3342 if (icmp6_ratelimit(NULL, type, code)) 3343 return; 3344 } 3345 #endif 3346 #ifdef INET 3347 if (af == AF_INET) { 3348 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 3349 return; 3350 } 3351 #endif 3352 3353 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3354 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3355 if (pfse == NULL) 3356 return; 3357 3358 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 3359 free(pfse, M_PFTEMP); 3360 return; 3361 } 3362 3363 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 3364 free(pfse, M_PFTEMP); 3365 return; 3366 } 3367 /* XXX: revisit */ 3368 m0->m_flags |= M_SKIP_FIREWALL; 3369 3370 if (rtableid >= 0) 3371 M_SETFIB(m0, rtableid); 3372 3373 #ifdef ALTQ 3374 if (r->qid) { 3375 pf_mtag->qid = r->qid; 3376 /* add hints for ecn */ 3377 pf_mtag->hdr = mtod(m0, struct ip *); 3378 } 3379 #endif /* ALTQ */ 3380 3381 switch (af) { 3382 #ifdef INET 3383 case AF_INET: 3384 pfse->pfse_type = PFSE_ICMP; 3385 break; 3386 #endif /* INET */ 3387 #ifdef INET6 3388 case AF_INET6: 3389 pfse->pfse_type = PFSE_ICMP6; 3390 break; 3391 #endif /* INET6 */ 3392 } 3393 pfse->pfse_m = m0; 3394 pfse->icmpopts.type = type; 3395 pfse->icmpopts.code = code; 3396 pf_send(pfse); 3397 } 3398 3399 /* 3400 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 3401 * If n is 0, they match if they are equal. If n is != 0, they match if they 3402 * are different. 3403 */ 3404 int 3405 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 3406 struct pf_addr *b, sa_family_t af) 3407 { 3408 int match = 0; 3409 3410 switch (af) { 3411 #ifdef INET 3412 case AF_INET: 3413 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4)) 3414 match++; 3415 break; 3416 #endif /* INET */ 3417 #ifdef INET6 3418 case AF_INET6: 3419 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6)) 3420 match++; 3421 break; 3422 #endif /* INET6 */ 3423 } 3424 if (match) { 3425 if (n) 3426 return (0); 3427 else 3428 return (1); 3429 } else { 3430 if (n) 3431 return (1); 3432 else 3433 return (0); 3434 } 3435 } 3436 3437 /* 3438 * Return 1 if b <= a <= e, otherwise return 0. 3439 */ 3440 int 3441 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 3442 struct pf_addr *a, sa_family_t af) 3443 { 3444 switch (af) { 3445 #ifdef INET 3446 case AF_INET: 3447 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 3448 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 3449 return (0); 3450 break; 3451 #endif /* INET */ 3452 #ifdef INET6 3453 case AF_INET6: { 3454 int i; 3455 3456 /* check a >= b */ 3457 for (i = 0; i < 4; ++i) 3458 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 3459 break; 3460 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 3461 return (0); 3462 /* check a <= e */ 3463 for (i = 0; i < 4; ++i) 3464 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 3465 break; 3466 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 3467 return (0); 3468 break; 3469 } 3470 #endif /* INET6 */ 3471 } 3472 return (1); 3473 } 3474 3475 static int 3476 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3477 { 3478 switch (op) { 3479 case PF_OP_IRG: 3480 return ((p > a1) && (p < a2)); 3481 case PF_OP_XRG: 3482 return ((p < a1) || (p > a2)); 3483 case PF_OP_RRG: 3484 return ((p >= a1) && (p <= a2)); 3485 case PF_OP_EQ: 3486 return (p == a1); 3487 case PF_OP_NE: 3488 return (p != a1); 3489 case PF_OP_LT: 3490 return (p < a1); 3491 case PF_OP_LE: 3492 return (p <= a1); 3493 case PF_OP_GT: 3494 return (p > a1); 3495 case PF_OP_GE: 3496 return (p >= a1); 3497 } 3498 return (0); /* never reached */ 3499 } 3500 3501 int 3502 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3503 { 3504 NTOHS(a1); 3505 NTOHS(a2); 3506 NTOHS(p); 3507 return (pf_match(op, a1, a2, p)); 3508 } 3509 3510 static int 3511 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3512 { 3513 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3514 return (0); 3515 return (pf_match(op, a1, a2, u)); 3516 } 3517 3518 static int 3519 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3520 { 3521 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3522 return (0); 3523 return (pf_match(op, a1, a2, g)); 3524 } 3525 3526 int 3527 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3528 { 3529 if (*tag == -1) 3530 *tag = mtag; 3531 3532 return ((!r->match_tag_not && r->match_tag == *tag) || 3533 (r->match_tag_not && r->match_tag != *tag)); 3534 } 3535 3536 int 3537 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 3538 { 3539 3540 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 3541 3542 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 3543 return (ENOMEM); 3544 3545 pd->pf_mtag->tag = tag; 3546 3547 return (0); 3548 } 3549 3550 #define PF_ANCHOR_STACKSIZE 32 3551 struct pf_kanchor_stackframe { 3552 struct pf_kruleset *rs; 3553 struct pf_krule *r; /* XXX: + match bit */ 3554 struct pf_kanchor *child; 3555 }; 3556 3557 /* 3558 * XXX: We rely on malloc(9) returning pointer aligned addresses. 3559 */ 3560 #define PF_ANCHORSTACK_MATCH 0x00000001 3561 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 3562 3563 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3564 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 3565 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3566 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3567 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3568 } while (0) 3569 3570 void 3571 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3572 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3573 int *match) 3574 { 3575 struct pf_kanchor_stackframe *f; 3576 3577 PF_RULES_RASSERT(); 3578 3579 if (match) 3580 *match = 0; 3581 if (*depth >= PF_ANCHOR_STACKSIZE) { 3582 printf("%s: anchor stack overflow on %s\n", 3583 __func__, (*r)->anchor->name); 3584 *r = TAILQ_NEXT(*r, entries); 3585 return; 3586 } else if (*depth == 0 && a != NULL) 3587 *a = *r; 3588 f = stack + (*depth)++; 3589 f->rs = *rs; 3590 f->r = *r; 3591 if ((*r)->anchor_wildcard) { 3592 struct pf_kanchor_node *parent = &(*r)->anchor->children; 3593 3594 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 3595 *r = NULL; 3596 return; 3597 } 3598 *rs = &f->child->ruleset; 3599 } else { 3600 f->child = NULL; 3601 *rs = &(*r)->anchor->ruleset; 3602 } 3603 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3604 } 3605 3606 int 3607 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3608 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3609 int *match) 3610 { 3611 struct pf_kanchor_stackframe *f; 3612 struct pf_krule *fr; 3613 int quick = 0; 3614 3615 PF_RULES_RASSERT(); 3616 3617 do { 3618 if (*depth <= 0) 3619 break; 3620 f = stack + *depth - 1; 3621 fr = PF_ANCHOR_RULE(f); 3622 if (f->child != NULL) { 3623 /* 3624 * This block traverses through 3625 * a wildcard anchor. 3626 */ 3627 if (match != NULL && *match) { 3628 /* 3629 * If any of "*" matched, then 3630 * "foo/ *" matched, mark frame 3631 * appropriately. 3632 */ 3633 PF_ANCHOR_SET_MATCH(f); 3634 *match = 0; 3635 } 3636 f->child = RB_NEXT(pf_kanchor_node, 3637 &fr->anchor->children, f->child); 3638 if (f->child != NULL) { 3639 *rs = &f->child->ruleset; 3640 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3641 if (*r == NULL) 3642 continue; 3643 else 3644 break; 3645 } 3646 } 3647 (*depth)--; 3648 if (*depth == 0 && a != NULL) 3649 *a = NULL; 3650 *rs = f->rs; 3651 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 3652 quick = fr->quick; 3653 *r = TAILQ_NEXT(fr, entries); 3654 } while (*r == NULL); 3655 3656 return (quick); 3657 } 3658 3659 struct pf_keth_anchor_stackframe { 3660 struct pf_keth_ruleset *rs; 3661 struct pf_keth_rule *r; /* XXX: + match bit */ 3662 struct pf_keth_anchor *child; 3663 }; 3664 3665 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3666 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 3667 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3668 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3669 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3670 } while (0) 3671 3672 void 3673 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 3674 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 3675 struct pf_keth_rule **a, int *match) 3676 { 3677 struct pf_keth_anchor_stackframe *f; 3678 3679 NET_EPOCH_ASSERT(); 3680 3681 if (match) 3682 *match = 0; 3683 if (*depth >= PF_ANCHOR_STACKSIZE) { 3684 printf("%s: anchor stack overflow on %s\n", 3685 __func__, (*r)->anchor->name); 3686 *r = TAILQ_NEXT(*r, entries); 3687 return; 3688 } else if (*depth == 0 && a != NULL) 3689 *a = *r; 3690 f = stack + (*depth)++; 3691 f->rs = *rs; 3692 f->r = *r; 3693 if ((*r)->anchor_wildcard) { 3694 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 3695 3696 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 3697 *r = NULL; 3698 return; 3699 } 3700 *rs = &f->child->ruleset; 3701 } else { 3702 f->child = NULL; 3703 *rs = &(*r)->anchor->ruleset; 3704 } 3705 *r = TAILQ_FIRST((*rs)->active.rules); 3706 } 3707 3708 int 3709 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 3710 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 3711 struct pf_keth_rule **a, int *match) 3712 { 3713 struct pf_keth_anchor_stackframe *f; 3714 struct pf_keth_rule *fr; 3715 int quick = 0; 3716 3717 NET_EPOCH_ASSERT(); 3718 3719 do { 3720 if (*depth <= 0) 3721 break; 3722 f = stack + *depth - 1; 3723 fr = PF_ETH_ANCHOR_RULE(f); 3724 if (f->child != NULL) { 3725 /* 3726 * This block traverses through 3727 * a wildcard anchor. 3728 */ 3729 if (match != NULL && *match) { 3730 /* 3731 * If any of "*" matched, then 3732 * "foo/ *" matched, mark frame 3733 * appropriately. 3734 */ 3735 PF_ETH_ANCHOR_SET_MATCH(f); 3736 *match = 0; 3737 } 3738 f->child = RB_NEXT(pf_keth_anchor_node, 3739 &fr->anchor->children, f->child); 3740 if (f->child != NULL) { 3741 *rs = &f->child->ruleset; 3742 *r = TAILQ_FIRST((*rs)->active.rules); 3743 if (*r == NULL) 3744 continue; 3745 else 3746 break; 3747 } 3748 } 3749 (*depth)--; 3750 if (*depth == 0 && a != NULL) 3751 *a = NULL; 3752 *rs = f->rs; 3753 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 3754 quick = fr->quick; 3755 *r = TAILQ_NEXT(fr, entries); 3756 } while (*r == NULL); 3757 3758 return (quick); 3759 } 3760 3761 #ifdef INET6 3762 void 3763 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 3764 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 3765 { 3766 switch (af) { 3767 #ifdef INET 3768 case AF_INET: 3769 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3770 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3771 break; 3772 #endif /* INET */ 3773 case AF_INET6: 3774 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3775 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3776 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 3777 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 3778 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 3779 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 3780 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 3781 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 3782 break; 3783 } 3784 } 3785 3786 void 3787 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 3788 { 3789 switch (af) { 3790 #ifdef INET 3791 case AF_INET: 3792 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 3793 break; 3794 #endif /* INET */ 3795 case AF_INET6: 3796 if (addr->addr32[3] == 0xffffffff) { 3797 addr->addr32[3] = 0; 3798 if (addr->addr32[2] == 0xffffffff) { 3799 addr->addr32[2] = 0; 3800 if (addr->addr32[1] == 0xffffffff) { 3801 addr->addr32[1] = 0; 3802 addr->addr32[0] = 3803 htonl(ntohl(addr->addr32[0]) + 1); 3804 } else 3805 addr->addr32[1] = 3806 htonl(ntohl(addr->addr32[1]) + 1); 3807 } else 3808 addr->addr32[2] = 3809 htonl(ntohl(addr->addr32[2]) + 1); 3810 } else 3811 addr->addr32[3] = 3812 htonl(ntohl(addr->addr32[3]) + 1); 3813 break; 3814 } 3815 } 3816 #endif /* INET6 */ 3817 3818 void 3819 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 3820 { 3821 /* 3822 * Modern rules use the same flags in rules as they do in states. 3823 */ 3824 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 3825 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 3826 3827 /* 3828 * Old-style scrub rules have different flags which need to be translated. 3829 */ 3830 if (r->rule_flag & PFRULE_RANDOMID) 3831 a->flags |= PFSTATE_RANDOMID; 3832 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) { 3833 a->flags |= PFSTATE_SETTOS; 3834 a->set_tos = r->set_tos; 3835 } 3836 3837 if (r->qid) 3838 a->qid = r->qid; 3839 if (r->pqid) 3840 a->pqid = r->pqid; 3841 if (r->rtableid >= 0) 3842 a->rtableid = r->rtableid; 3843 a->log |= r->log; 3844 if (r->min_ttl) 3845 a->min_ttl = r->min_ttl; 3846 if (r->max_mss) 3847 a->max_mss = r->max_mss; 3848 if (r->dnpipe) 3849 a->dnpipe = r->dnpipe; 3850 if (r->dnrpipe) 3851 a->dnrpipe = r->dnrpipe; 3852 if (r->dnpipe || r->dnrpipe) { 3853 if (r->free_flags & PFRULE_DN_IS_PIPE) 3854 a->flags |= PFSTATE_DN_IS_PIPE; 3855 else 3856 a->flags &= ~PFSTATE_DN_IS_PIPE; 3857 } 3858 if (r->scrub_flags & PFSTATE_SETPRIO) { 3859 a->set_prio[0] = r->set_prio[0]; 3860 a->set_prio[1] = r->set_prio[1]; 3861 } 3862 } 3863 3864 int 3865 pf_socket_lookup(struct pf_pdesc *pd, struct mbuf *m) 3866 { 3867 struct pf_addr *saddr, *daddr; 3868 u_int16_t sport, dport; 3869 struct inpcbinfo *pi; 3870 struct inpcb *inp; 3871 3872 pd->lookup.uid = UID_MAX; 3873 pd->lookup.gid = GID_MAX; 3874 3875 switch (pd->proto) { 3876 case IPPROTO_TCP: 3877 sport = pd->hdr.tcp.th_sport; 3878 dport = pd->hdr.tcp.th_dport; 3879 pi = &V_tcbinfo; 3880 break; 3881 case IPPROTO_UDP: 3882 sport = pd->hdr.udp.uh_sport; 3883 dport = pd->hdr.udp.uh_dport; 3884 pi = &V_udbinfo; 3885 break; 3886 default: 3887 return (-1); 3888 } 3889 if (pd->dir == PF_IN) { 3890 saddr = pd->src; 3891 daddr = pd->dst; 3892 } else { 3893 u_int16_t p; 3894 3895 p = sport; 3896 sport = dport; 3897 dport = p; 3898 saddr = pd->dst; 3899 daddr = pd->src; 3900 } 3901 switch (pd->af) { 3902 #ifdef INET 3903 case AF_INET: 3904 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3905 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3906 if (inp == NULL) { 3907 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3908 daddr->v4, dport, INPLOOKUP_WILDCARD | 3909 INPLOOKUP_RLOCKPCB, NULL, m); 3910 if (inp == NULL) 3911 return (-1); 3912 } 3913 break; 3914 #endif /* INET */ 3915 #ifdef INET6 3916 case AF_INET6: 3917 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3918 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3919 if (inp == NULL) { 3920 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3921 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3922 INPLOOKUP_RLOCKPCB, NULL, m); 3923 if (inp == NULL) 3924 return (-1); 3925 } 3926 break; 3927 #endif /* INET6 */ 3928 3929 default: 3930 return (-1); 3931 } 3932 INP_RLOCK_ASSERT(inp); 3933 pd->lookup.uid = inp->inp_cred->cr_uid; 3934 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3935 INP_RUNLOCK(inp); 3936 3937 return (1); 3938 } 3939 3940 u_int8_t 3941 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3942 { 3943 int hlen; 3944 u_int8_t hdr[60]; 3945 u_int8_t *opt, optlen; 3946 u_int8_t wscale = 0; 3947 3948 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3949 if (hlen <= sizeof(struct tcphdr)) 3950 return (0); 3951 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3952 return (0); 3953 opt = hdr + sizeof(struct tcphdr); 3954 hlen -= sizeof(struct tcphdr); 3955 while (hlen >= 3) { 3956 switch (*opt) { 3957 case TCPOPT_EOL: 3958 case TCPOPT_NOP: 3959 ++opt; 3960 --hlen; 3961 break; 3962 case TCPOPT_WINDOW: 3963 wscale = opt[2]; 3964 if (wscale > TCP_MAX_WINSHIFT) 3965 wscale = TCP_MAX_WINSHIFT; 3966 wscale |= PF_WSCALE_FLAG; 3967 /* FALLTHROUGH */ 3968 default: 3969 optlen = opt[1]; 3970 if (optlen < 2) 3971 optlen = 2; 3972 hlen -= optlen; 3973 opt += optlen; 3974 break; 3975 } 3976 } 3977 return (wscale); 3978 } 3979 3980 u_int16_t 3981 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3982 { 3983 int hlen; 3984 u_int8_t hdr[60]; 3985 u_int8_t *opt, optlen; 3986 u_int16_t mss = V_tcp_mssdflt; 3987 3988 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3989 if (hlen <= sizeof(struct tcphdr)) 3990 return (0); 3991 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3992 return (0); 3993 opt = hdr + sizeof(struct tcphdr); 3994 hlen -= sizeof(struct tcphdr); 3995 while (hlen >= TCPOLEN_MAXSEG) { 3996 switch (*opt) { 3997 case TCPOPT_EOL: 3998 case TCPOPT_NOP: 3999 ++opt; 4000 --hlen; 4001 break; 4002 case TCPOPT_MAXSEG: 4003 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 4004 NTOHS(mss); 4005 /* FALLTHROUGH */ 4006 default: 4007 optlen = opt[1]; 4008 if (optlen < 2) 4009 optlen = 2; 4010 hlen -= optlen; 4011 opt += optlen; 4012 break; 4013 } 4014 } 4015 return (mss); 4016 } 4017 4018 static u_int16_t 4019 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 4020 { 4021 struct nhop_object *nh; 4022 #ifdef INET6 4023 struct in6_addr dst6; 4024 uint32_t scopeid; 4025 #endif /* INET6 */ 4026 int hlen = 0; 4027 uint16_t mss = 0; 4028 4029 NET_EPOCH_ASSERT(); 4030 4031 switch (af) { 4032 #ifdef INET 4033 case AF_INET: 4034 hlen = sizeof(struct ip); 4035 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 4036 if (nh != NULL) 4037 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4038 break; 4039 #endif /* INET */ 4040 #ifdef INET6 4041 case AF_INET6: 4042 hlen = sizeof(struct ip6_hdr); 4043 in6_splitscope(&addr->v6, &dst6, &scopeid); 4044 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 4045 if (nh != NULL) 4046 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4047 break; 4048 #endif /* INET6 */ 4049 } 4050 4051 mss = max(V_tcp_mssdflt, mss); 4052 mss = min(mss, offer); 4053 mss = max(mss, 64); /* sanity - at least max opt space */ 4054 return (mss); 4055 } 4056 4057 static u_int32_t 4058 pf_tcp_iss(struct pf_pdesc *pd) 4059 { 4060 MD5_CTX ctx; 4061 u_int32_t digest[4]; 4062 4063 if (V_pf_tcp_secret_init == 0) { 4064 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 4065 MD5Init(&V_pf_tcp_secret_ctx); 4066 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 4067 sizeof(V_pf_tcp_secret)); 4068 V_pf_tcp_secret_init = 1; 4069 } 4070 4071 ctx = V_pf_tcp_secret_ctx; 4072 4073 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 4074 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 4075 if (pd->af == AF_INET6) { 4076 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 4077 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 4078 } else { 4079 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 4080 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 4081 } 4082 MD5Final((u_char *)digest, &ctx); 4083 V_pf_tcp_iss_off += 4096; 4084 #define ISN_RANDOM_INCREMENT (4096 - 1) 4085 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 4086 V_pf_tcp_iss_off); 4087 #undef ISN_RANDOM_INCREMENT 4088 } 4089 4090 static bool 4091 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 4092 { 4093 bool match = true; 4094 4095 /* Always matches if not set */ 4096 if (! r->isset) 4097 return (!r->neg); 4098 4099 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 4100 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 4101 match = false; 4102 break; 4103 } 4104 } 4105 4106 return (match ^ r->neg); 4107 } 4108 4109 static int 4110 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 4111 { 4112 if (*tag == -1) 4113 *tag = mtag; 4114 4115 return ((!r->match_tag_not && r->match_tag == *tag) || 4116 (r->match_tag_not && r->match_tag != *tag)); 4117 } 4118 4119 static void 4120 pf_bridge_to(struct ifnet *ifp, struct mbuf *m) 4121 { 4122 /* If we don't have the interface drop the packet. */ 4123 if (ifp == NULL) { 4124 m_freem(m); 4125 return; 4126 } 4127 4128 switch (ifp->if_type) { 4129 case IFT_ETHER: 4130 case IFT_XETHER: 4131 case IFT_L2VLAN: 4132 case IFT_BRIDGE: 4133 case IFT_IEEE8023ADLAG: 4134 break; 4135 default: 4136 m_freem(m); 4137 return; 4138 } 4139 4140 ifp->if_transmit(ifp, m); 4141 } 4142 4143 static int 4144 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 4145 { 4146 #ifdef INET 4147 struct ip ip; 4148 #endif 4149 #ifdef INET6 4150 struct ip6_hdr ip6; 4151 #endif 4152 struct mbuf *m = *m0; 4153 struct ether_header *e; 4154 struct pf_keth_rule *r, *rm, *a = NULL; 4155 struct pf_keth_ruleset *ruleset = NULL; 4156 struct pf_mtag *mtag; 4157 struct pf_keth_ruleq *rules; 4158 struct pf_addr *src = NULL, *dst = NULL; 4159 struct pfi_kkif *bridge_to; 4160 sa_family_t af = 0; 4161 uint16_t proto; 4162 int asd = 0, match = 0; 4163 int tag = -1; 4164 uint8_t action; 4165 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4166 4167 MPASS(kif->pfik_ifp->if_vnet == curvnet); 4168 NET_EPOCH_ASSERT(); 4169 4170 PF_RULES_RLOCK_TRACKER; 4171 4172 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 4173 4174 mtag = pf_find_mtag(m); 4175 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 4176 /* Dummynet re-injects packets after they've 4177 * completed their delay. We've already 4178 * processed them, so pass unconditionally. */ 4179 4180 /* But only once. We may see the packet multiple times (e.g. 4181 * PFIL_IN/PFIL_OUT). */ 4182 pf_dummynet_flag_remove(m, mtag); 4183 4184 return (PF_PASS); 4185 } 4186 4187 ruleset = V_pf_keth; 4188 rules = ck_pr_load_ptr(&ruleset->active.rules); 4189 r = TAILQ_FIRST(rules); 4190 rm = NULL; 4191 4192 e = mtod(m, struct ether_header *); 4193 proto = ntohs(e->ether_type); 4194 4195 switch (proto) { 4196 #ifdef INET 4197 case ETHERTYPE_IP: { 4198 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4199 sizeof(ip))) 4200 return (PF_DROP); 4201 4202 af = AF_INET; 4203 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 4204 (caddr_t)&ip); 4205 src = (struct pf_addr *)&ip.ip_src; 4206 dst = (struct pf_addr *)&ip.ip_dst; 4207 break; 4208 } 4209 #endif /* INET */ 4210 #ifdef INET6 4211 case ETHERTYPE_IPV6: { 4212 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4213 sizeof(ip6))) 4214 return (PF_DROP); 4215 4216 af = AF_INET6; 4217 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 4218 (caddr_t)&ip6); 4219 src = (struct pf_addr *)&ip6.ip6_src; 4220 dst = (struct pf_addr *)&ip6.ip6_dst; 4221 break; 4222 } 4223 #endif /* INET6 */ 4224 } 4225 4226 PF_RULES_RLOCK(); 4227 4228 while (r != NULL) { 4229 counter_u64_add(r->evaluations, 1); 4230 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 4231 4232 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 4233 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4234 "kif"); 4235 r = r->skip[PFE_SKIP_IFP].ptr; 4236 } 4237 else if (r->direction && r->direction != dir) { 4238 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4239 "dir"); 4240 r = r->skip[PFE_SKIP_DIR].ptr; 4241 } 4242 else if (r->proto && r->proto != proto) { 4243 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4244 "proto"); 4245 r = r->skip[PFE_SKIP_PROTO].ptr; 4246 } 4247 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 4248 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4249 "src"); 4250 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 4251 } 4252 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 4253 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4254 "dst"); 4255 r = r->skip[PFE_SKIP_DST_ADDR].ptr; 4256 } 4257 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 4258 r->ipsrc.neg, kif, M_GETFIB(m))) { 4259 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4260 "ip_src"); 4261 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr; 4262 } 4263 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 4264 r->ipdst.neg, kif, M_GETFIB(m))) { 4265 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4266 "ip_dst"); 4267 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr; 4268 } 4269 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 4270 mtag ? mtag->tag : 0)) { 4271 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4272 "match_tag"); 4273 r = TAILQ_NEXT(r, entries); 4274 } 4275 else { 4276 if (r->tag) 4277 tag = r->tag; 4278 if (r->anchor == NULL) { 4279 /* Rule matches */ 4280 rm = r; 4281 4282 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 4283 4284 if (r->quick) 4285 break; 4286 4287 r = TAILQ_NEXT(r, entries); 4288 } else { 4289 pf_step_into_keth_anchor(anchor_stack, &asd, 4290 &ruleset, &r, &a, &match); 4291 } 4292 } 4293 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 4294 &ruleset, &r, &a, &match)) 4295 break; 4296 } 4297 4298 r = rm; 4299 4300 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 4301 4302 /* Default to pass. */ 4303 if (r == NULL) { 4304 PF_RULES_RUNLOCK(); 4305 return (PF_PASS); 4306 } 4307 4308 /* Execute action. */ 4309 counter_u64_add(r->packets[dir == PF_OUT], 1); 4310 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 4311 pf_update_timestamp(r); 4312 4313 /* Shortcut. Don't tag if we're just going to drop anyway. */ 4314 if (r->action == PF_DROP) { 4315 PF_RULES_RUNLOCK(); 4316 return (PF_DROP); 4317 } 4318 4319 if (tag > 0) { 4320 if (mtag == NULL) 4321 mtag = pf_get_mtag(m); 4322 if (mtag == NULL) { 4323 PF_RULES_RUNLOCK(); 4324 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4325 return (PF_DROP); 4326 } 4327 mtag->tag = tag; 4328 } 4329 4330 if (r->qid != 0) { 4331 if (mtag == NULL) 4332 mtag = pf_get_mtag(m); 4333 if (mtag == NULL) { 4334 PF_RULES_RUNLOCK(); 4335 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4336 return (PF_DROP); 4337 } 4338 mtag->qid = r->qid; 4339 } 4340 4341 action = r->action; 4342 bridge_to = r->bridge_to; 4343 4344 /* Dummynet */ 4345 if (r->dnpipe) { 4346 struct ip_fw_args dnflow; 4347 4348 /* Drop packet if dummynet is not loaded. */ 4349 if (ip_dn_io_ptr == NULL) { 4350 PF_RULES_RUNLOCK(); 4351 m_freem(m); 4352 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4353 return (PF_DROP); 4354 } 4355 if (mtag == NULL) 4356 mtag = pf_get_mtag(m); 4357 if (mtag == NULL) { 4358 PF_RULES_RUNLOCK(); 4359 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4360 return (PF_DROP); 4361 } 4362 4363 bzero(&dnflow, sizeof(dnflow)); 4364 4365 /* We don't have port numbers here, so we set 0. That means 4366 * that we'll be somewhat limited in distinguishing flows (i.e. 4367 * only based on IP addresses, not based on port numbers), but 4368 * it's better than nothing. */ 4369 dnflow.f_id.dst_port = 0; 4370 dnflow.f_id.src_port = 0; 4371 dnflow.f_id.proto = 0; 4372 4373 dnflow.rule.info = r->dnpipe; 4374 dnflow.rule.info |= IPFW_IS_DUMMYNET; 4375 if (r->dnflags & PFRULE_DN_IS_PIPE) 4376 dnflow.rule.info |= IPFW_IS_PIPE; 4377 4378 dnflow.f_id.extra = dnflow.rule.info; 4379 4380 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 4381 dnflow.flags |= IPFW_ARGS_ETHER; 4382 dnflow.ifp = kif->pfik_ifp; 4383 4384 switch (af) { 4385 case AF_INET: 4386 dnflow.f_id.addr_type = 4; 4387 dnflow.f_id.src_ip = src->v4.s_addr; 4388 dnflow.f_id.dst_ip = dst->v4.s_addr; 4389 break; 4390 case AF_INET6: 4391 dnflow.flags |= IPFW_ARGS_IP6; 4392 dnflow.f_id.addr_type = 6; 4393 dnflow.f_id.src_ip6 = src->v6; 4394 dnflow.f_id.dst_ip6 = dst->v6; 4395 break; 4396 } 4397 4398 PF_RULES_RUNLOCK(); 4399 4400 mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 4401 ip_dn_io_ptr(m0, &dnflow); 4402 if (*m0 != NULL) 4403 pf_dummynet_flag_remove(m, mtag); 4404 } else { 4405 PF_RULES_RUNLOCK(); 4406 } 4407 4408 if (action == PF_PASS && bridge_to) { 4409 pf_bridge_to(bridge_to->pfik_ifp, *m0); 4410 *m0 = NULL; /* We've eaten the packet. */ 4411 } 4412 4413 return (action); 4414 } 4415 4416 static int 4417 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, struct pfi_kkif *kif, 4418 struct mbuf *m, int off, struct pf_pdesc *pd, struct pf_krule **am, 4419 struct pf_kruleset **rsm, struct inpcb *inp) 4420 { 4421 struct pf_krule *nr = NULL; 4422 struct pf_addr * const saddr = pd->src; 4423 struct pf_addr * const daddr = pd->dst; 4424 sa_family_t af = pd->af; 4425 struct pf_krule *r, *a = NULL; 4426 struct pf_kruleset *ruleset = NULL; 4427 struct pf_krule_slist match_rules; 4428 struct pf_krule_item *ri; 4429 struct pf_ksrc_node *nsn = NULL; 4430 struct tcphdr *th = &pd->hdr.tcp; 4431 struct pf_state_key *sk = NULL, *nk = NULL; 4432 u_short reason; 4433 int rewrite = 0, hdrlen = 0; 4434 int tag = -1; 4435 int asd = 0; 4436 int match = 0; 4437 int state_icmp = 0; 4438 u_int16_t sport = 0, dport = 0; 4439 u_int16_t bproto_sum = 0, bip_sum = 0; 4440 u_int8_t icmptype = 0, icmpcode = 0; 4441 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4442 4443 PF_RULES_RASSERT(); 4444 4445 if (inp != NULL) { 4446 INP_LOCK_ASSERT(inp); 4447 pd->lookup.uid = inp->inp_cred->cr_uid; 4448 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4449 pd->lookup.done = 1; 4450 } 4451 4452 switch (pd->proto) { 4453 case IPPROTO_TCP: 4454 sport = th->th_sport; 4455 dport = th->th_dport; 4456 hdrlen = sizeof(*th); 4457 break; 4458 case IPPROTO_UDP: 4459 sport = pd->hdr.udp.uh_sport; 4460 dport = pd->hdr.udp.uh_dport; 4461 hdrlen = sizeof(pd->hdr.udp); 4462 break; 4463 case IPPROTO_SCTP: 4464 sport = pd->hdr.sctp.src_port; 4465 dport = pd->hdr.sctp.dest_port; 4466 hdrlen = sizeof(pd->hdr.sctp); 4467 break; 4468 #ifdef INET 4469 case IPPROTO_ICMP: 4470 if (pd->af != AF_INET) 4471 break; 4472 sport = dport = pd->hdr.icmp.icmp_id; 4473 hdrlen = sizeof(pd->hdr.icmp); 4474 icmptype = pd->hdr.icmp.icmp_type; 4475 icmpcode = pd->hdr.icmp.icmp_code; 4476 4477 if (icmptype == ICMP_UNREACH || 4478 icmptype == ICMP_SOURCEQUENCH || 4479 icmptype == ICMP_REDIRECT || 4480 icmptype == ICMP_TIMXCEED || 4481 icmptype == ICMP_PARAMPROB) 4482 state_icmp++; 4483 break; 4484 #endif /* INET */ 4485 #ifdef INET6 4486 case IPPROTO_ICMPV6: 4487 if (af != AF_INET6) 4488 break; 4489 sport = dport = pd->hdr.icmp6.icmp6_id; 4490 hdrlen = sizeof(pd->hdr.icmp6); 4491 icmptype = pd->hdr.icmp6.icmp6_type; 4492 icmpcode = pd->hdr.icmp6.icmp6_code; 4493 4494 if (icmptype == ICMP6_DST_UNREACH || 4495 icmptype == ICMP6_PACKET_TOO_BIG || 4496 icmptype == ICMP6_TIME_EXCEEDED || 4497 icmptype == ICMP6_PARAM_PROB) 4498 state_icmp++; 4499 break; 4500 #endif /* INET6 */ 4501 default: 4502 sport = dport = hdrlen = 0; 4503 break; 4504 } 4505 4506 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4507 4508 /* check packet for BINAT/NAT/RDR */ 4509 if ((nr = pf_get_translation(pd, m, off, kif, &nsn, &sk, 4510 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 4511 KASSERT(sk != NULL, ("%s: null sk", __func__)); 4512 KASSERT(nk != NULL, ("%s: null nk", __func__)); 4513 4514 if (nr->log) { 4515 PFLOG_PACKET(kif, m, af, PF_PASS, PFRES_MATCH, nr, a, 4516 ruleset, pd, 1); 4517 } 4518 4519 if (pd->ip_sum) 4520 bip_sum = *pd->ip_sum; 4521 4522 switch (pd->proto) { 4523 case IPPROTO_TCP: 4524 bproto_sum = th->th_sum; 4525 pd->proto_sum = &th->th_sum; 4526 4527 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4528 nk->port[pd->sidx] != sport) { 4529 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 4530 &th->th_sum, &nk->addr[pd->sidx], 4531 nk->port[pd->sidx], 0, af); 4532 pd->sport = &th->th_sport; 4533 sport = th->th_sport; 4534 } 4535 4536 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4537 nk->port[pd->didx] != dport) { 4538 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 4539 &th->th_sum, &nk->addr[pd->didx], 4540 nk->port[pd->didx], 0, af); 4541 dport = th->th_dport; 4542 pd->dport = &th->th_dport; 4543 } 4544 rewrite++; 4545 break; 4546 case IPPROTO_UDP: 4547 bproto_sum = pd->hdr.udp.uh_sum; 4548 pd->proto_sum = &pd->hdr.udp.uh_sum; 4549 4550 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4551 nk->port[pd->sidx] != sport) { 4552 pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, 4553 pd->ip_sum, &pd->hdr.udp.uh_sum, 4554 &nk->addr[pd->sidx], 4555 nk->port[pd->sidx], 1, af); 4556 sport = pd->hdr.udp.uh_sport; 4557 pd->sport = &pd->hdr.udp.uh_sport; 4558 } 4559 4560 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4561 nk->port[pd->didx] != dport) { 4562 pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, 4563 pd->ip_sum, &pd->hdr.udp.uh_sum, 4564 &nk->addr[pd->didx], 4565 nk->port[pd->didx], 1, af); 4566 dport = pd->hdr.udp.uh_dport; 4567 pd->dport = &pd->hdr.udp.uh_dport; 4568 } 4569 rewrite++; 4570 break; 4571 case IPPROTO_SCTP: { 4572 uint16_t checksum = 0; 4573 4574 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4575 nk->port[pd->sidx] != sport) { 4576 pf_change_ap(m, saddr, &pd->hdr.sctp.src_port, 4577 pd->ip_sum, &checksum, 4578 &nk->addr[pd->sidx], 4579 nk->port[pd->sidx], 1, af); 4580 } 4581 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4582 nk->port[pd->didx] != dport) { 4583 pf_change_ap(m, daddr, &pd->hdr.sctp.dest_port, 4584 pd->ip_sum, &checksum, 4585 &nk->addr[pd->didx], 4586 nk->port[pd->didx], 1, af); 4587 } 4588 break; 4589 } 4590 #ifdef INET 4591 case IPPROTO_ICMP: 4592 nk->port[0] = nk->port[1]; 4593 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 4594 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 4595 nk->addr[pd->sidx].v4.s_addr, 0); 4596 4597 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 4598 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 4599 nk->addr[pd->didx].v4.s_addr, 0); 4600 4601 if (nk->port[1] != pd->hdr.icmp.icmp_id) { 4602 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 4603 pd->hdr.icmp.icmp_cksum, sport, 4604 nk->port[1], 0); 4605 pd->hdr.icmp.icmp_id = nk->port[1]; 4606 pd->sport = &pd->hdr.icmp.icmp_id; 4607 } 4608 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 4609 break; 4610 #endif /* INET */ 4611 #ifdef INET6 4612 case IPPROTO_ICMPV6: 4613 nk->port[0] = nk->port[1]; 4614 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 4615 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 4616 &nk->addr[pd->sidx], 0); 4617 4618 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 4619 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 4620 &nk->addr[pd->didx], 0); 4621 rewrite++; 4622 break; 4623 #endif /* INET */ 4624 default: 4625 switch (af) { 4626 #ifdef INET 4627 case AF_INET: 4628 if (PF_ANEQ(saddr, 4629 &nk->addr[pd->sidx], AF_INET)) 4630 pf_change_a(&saddr->v4.s_addr, 4631 pd->ip_sum, 4632 nk->addr[pd->sidx].v4.s_addr, 0); 4633 4634 if (PF_ANEQ(daddr, 4635 &nk->addr[pd->didx], AF_INET)) 4636 pf_change_a(&daddr->v4.s_addr, 4637 pd->ip_sum, 4638 nk->addr[pd->didx].v4.s_addr, 0); 4639 break; 4640 #endif /* INET */ 4641 #ifdef INET6 4642 case AF_INET6: 4643 if (PF_ANEQ(saddr, 4644 &nk->addr[pd->sidx], AF_INET6)) 4645 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 4646 4647 if (PF_ANEQ(daddr, 4648 &nk->addr[pd->didx], AF_INET6)) 4649 PF_ACPY(daddr, &nk->addr[pd->didx], af); 4650 break; 4651 #endif /* INET */ 4652 } 4653 break; 4654 } 4655 if (nr->natpass) 4656 r = NULL; 4657 pd->nat_rule = nr; 4658 } 4659 4660 SLIST_INIT(&match_rules); 4661 while (r != NULL) { 4662 pf_counter_u64_add(&r->evaluations, 1); 4663 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 4664 r = r->skip[PF_SKIP_IFP].ptr; 4665 else if (r->direction && r->direction != pd->dir) 4666 r = r->skip[PF_SKIP_DIR].ptr; 4667 else if (r->af && r->af != af) 4668 r = r->skip[PF_SKIP_AF].ptr; 4669 else if (r->proto && r->proto != pd->proto) 4670 r = r->skip[PF_SKIP_PROTO].ptr; 4671 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 4672 r->src.neg, kif, M_GETFIB(m))) 4673 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4674 /* tcp/udp only. port_op always 0 in other cases */ 4675 else if (r->src.port_op && !pf_match_port(r->src.port_op, 4676 r->src.port[0], r->src.port[1], sport)) 4677 r = r->skip[PF_SKIP_SRC_PORT].ptr; 4678 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 4679 r->dst.neg, NULL, M_GETFIB(m))) 4680 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4681 /* tcp/udp only. port_op always 0 in other cases */ 4682 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 4683 r->dst.port[0], r->dst.port[1], dport)) 4684 r = r->skip[PF_SKIP_DST_PORT].ptr; 4685 /* icmp only. type always 0 in other cases */ 4686 else if (r->type && r->type != icmptype + 1) 4687 r = TAILQ_NEXT(r, entries); 4688 /* icmp only. type always 0 in other cases */ 4689 else if (r->code && r->code != icmpcode + 1) 4690 r = TAILQ_NEXT(r, entries); 4691 else if (r->tos && !(r->tos == pd->tos)) 4692 r = TAILQ_NEXT(r, entries); 4693 else if (r->rule_flag & PFRULE_FRAGMENT) 4694 r = TAILQ_NEXT(r, entries); 4695 else if (pd->proto == IPPROTO_TCP && 4696 (r->flagset & th->th_flags) != r->flags) 4697 r = TAILQ_NEXT(r, entries); 4698 /* tcp/udp only. uid.op always 0 in other cases */ 4699 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 4700 pf_socket_lookup(pd, m), 1)) && 4701 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 4702 pd->lookup.uid)) 4703 r = TAILQ_NEXT(r, entries); 4704 /* tcp/udp only. gid.op always 0 in other cases */ 4705 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 4706 pf_socket_lookup(pd, m), 1)) && 4707 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 4708 pd->lookup.gid)) 4709 r = TAILQ_NEXT(r, entries); 4710 else if (r->prio && 4711 !pf_match_ieee8021q_pcp(r->prio, m)) 4712 r = TAILQ_NEXT(r, entries); 4713 else if (r->prob && 4714 r->prob <= arc4random()) 4715 r = TAILQ_NEXT(r, entries); 4716 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4717 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4718 r = TAILQ_NEXT(r, entries); 4719 else if (r->os_fingerprint != PF_OSFP_ANY && 4720 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 4721 pf_osfp_fingerprint(pd, m, off, th), 4722 r->os_fingerprint))) 4723 r = TAILQ_NEXT(r, entries); 4724 else { 4725 if (r->tag) 4726 tag = r->tag; 4727 if (r->anchor == NULL) { 4728 if (r->action == PF_MATCH) { 4729 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 4730 if (ri == NULL) { 4731 REASON_SET(&reason, PFRES_MEMORY); 4732 goto cleanup; 4733 } 4734 ri->r = r; 4735 SLIST_INSERT_HEAD(&match_rules, ri, entry); 4736 pf_counter_u64_critical_enter(); 4737 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 4738 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 4739 pf_counter_u64_critical_exit(); 4740 pf_rule_to_actions(r, &pd->act); 4741 if (r->log) 4742 PFLOG_PACKET(kif, m, af, 4743 r->action, PFRES_MATCH, r, 4744 a, ruleset, pd, 1); 4745 } else { 4746 match = 1; 4747 *rm = r; 4748 *am = a; 4749 *rsm = ruleset; 4750 } 4751 if ((*rm)->quick) 4752 break; 4753 r = TAILQ_NEXT(r, entries); 4754 } else 4755 pf_step_into_anchor(anchor_stack, &asd, 4756 &ruleset, PF_RULESET_FILTER, &r, &a, 4757 &match); 4758 } 4759 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4760 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4761 break; 4762 } 4763 r = *rm; 4764 a = *am; 4765 ruleset = *rsm; 4766 4767 REASON_SET(&reason, PFRES_MATCH); 4768 4769 /* apply actions for last matching pass/block rule */ 4770 pf_rule_to_actions(r, &pd->act); 4771 4772 if (r->log) { 4773 if (rewrite) 4774 m_copyback(m, off, hdrlen, pd->hdr.any); 4775 PFLOG_PACKET(kif, m, af, r->action, reason, r, a, ruleset, pd, 1); 4776 } 4777 4778 if ((r->action == PF_DROP) && 4779 ((r->rule_flag & PFRULE_RETURNRST) || 4780 (r->rule_flag & PFRULE_RETURNICMP) || 4781 (r->rule_flag & PFRULE_RETURN))) { 4782 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 4783 bip_sum, hdrlen, &reason, r->rtableid); 4784 } 4785 4786 if (r->action == PF_DROP) 4787 goto cleanup; 4788 4789 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4790 REASON_SET(&reason, PFRES_MEMORY); 4791 goto cleanup; 4792 } 4793 if (pd->act.rtableid >= 0) 4794 M_SETFIB(m, pd->act.rtableid); 4795 4796 if (!state_icmp && (r->keep_state || nr != NULL || 4797 (pd->flags & PFDESC_TCP_NORM))) { 4798 int action; 4799 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 4800 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 4801 hdrlen, &match_rules); 4802 if (action != PF_PASS) { 4803 if (action == PF_DROP && 4804 (r->rule_flag & PFRULE_RETURN)) 4805 pf_return(r, nr, pd, sk, off, m, th, kif, 4806 bproto_sum, bip_sum, hdrlen, &reason, 4807 pd->act.rtableid); 4808 return (action); 4809 } 4810 } else { 4811 while ((ri = SLIST_FIRST(&match_rules))) { 4812 SLIST_REMOVE_HEAD(&match_rules, entry); 4813 free(ri, M_PF_RULE_ITEM); 4814 } 4815 4816 uma_zfree(V_pf_state_key_z, sk); 4817 uma_zfree(V_pf_state_key_z, nk); 4818 } 4819 4820 /* copy back packet headers if we performed NAT operations */ 4821 if (rewrite) 4822 m_copyback(m, off, hdrlen, pd->hdr.any); 4823 4824 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 4825 pd->dir == PF_OUT && 4826 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 4827 /* 4828 * We want the state created, but we dont 4829 * want to send this in case a partner 4830 * firewall has to know about it to allow 4831 * replies through it. 4832 */ 4833 return (PF_DEFER); 4834 4835 return (PF_PASS); 4836 4837 cleanup: 4838 while ((ri = SLIST_FIRST(&match_rules))) { 4839 SLIST_REMOVE_HEAD(&match_rules, entry); 4840 free(ri, M_PF_RULE_ITEM); 4841 } 4842 4843 uma_zfree(V_pf_state_key_z, sk); 4844 uma_zfree(V_pf_state_key_z, nk); 4845 return (PF_DROP); 4846 } 4847 4848 static int 4849 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 4850 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 4851 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 4852 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, 4853 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 4854 struct pf_krule_slist *match_rules) 4855 { 4856 struct pf_kstate *s = NULL; 4857 struct pf_ksrc_node *sn = NULL; 4858 struct tcphdr *th = &pd->hdr.tcp; 4859 u_int16_t mss = V_tcp_mssdflt; 4860 u_short reason, sn_reason; 4861 struct pf_krule_item *ri; 4862 4863 /* check maximums */ 4864 if (r->max_states && 4865 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 4866 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 4867 REASON_SET(&reason, PFRES_MAXSTATES); 4868 goto csfailed; 4869 } 4870 /* src node for filter rule */ 4871 if ((r->rule_flag & PFRULE_SRCTRACK || 4872 r->rpool.opts & PF_POOL_STICKYADDR) && 4873 (sn_reason = pf_insert_src_node(&sn, r, pd->src, pd->af)) != 0) { 4874 REASON_SET(&reason, sn_reason); 4875 goto csfailed; 4876 } 4877 /* src node for translation rule */ 4878 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 4879 (sn_reason = pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], 4880 pd->af)) != 0 ) { 4881 REASON_SET(&reason, sn_reason); 4882 goto csfailed; 4883 } 4884 s = pf_alloc_state(M_NOWAIT); 4885 if (s == NULL) { 4886 REASON_SET(&reason, PFRES_MEMORY); 4887 goto csfailed; 4888 } 4889 s->rule.ptr = r; 4890 s->nat_rule.ptr = nr; 4891 s->anchor.ptr = a; 4892 bcopy(match_rules, &s->match_rules, sizeof(s->match_rules)); 4893 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions)); 4894 4895 STATE_INC_COUNTERS(s); 4896 if (r->allow_opts) 4897 s->state_flags |= PFSTATE_ALLOWOPTS; 4898 if (r->rule_flag & PFRULE_STATESLOPPY) 4899 s->state_flags |= PFSTATE_SLOPPY; 4900 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 4901 s->state_flags |= PFSTATE_SCRUB_TCP; 4902 if ((r->rule_flag & PFRULE_PFLOW) || 4903 (nr != NULL && nr->rule_flag & PFRULE_PFLOW)) 4904 s->state_flags |= PFSTATE_PFLOW; 4905 4906 s->act.log = pd->act.log & PF_LOG_ALL; 4907 s->sync_state = PFSYNC_S_NONE; 4908 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */ 4909 4910 if (nr != NULL) 4911 s->act.log |= nr->log & PF_LOG_ALL; 4912 switch (pd->proto) { 4913 case IPPROTO_TCP: 4914 s->src.seqlo = ntohl(th->th_seq); 4915 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 4916 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 4917 r->keep_state == PF_STATE_MODULATE) { 4918 /* Generate sequence number modulator */ 4919 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 4920 0) 4921 s->src.seqdiff = 1; 4922 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 4923 htonl(s->src.seqlo + s->src.seqdiff), 0); 4924 *rewrite = 1; 4925 } else 4926 s->src.seqdiff = 0; 4927 if (th->th_flags & TH_SYN) { 4928 s->src.seqhi++; 4929 s->src.wscale = pf_get_wscale(m, off, 4930 th->th_off, pd->af); 4931 } 4932 s->src.max_win = MAX(ntohs(th->th_win), 1); 4933 if (s->src.wscale & PF_WSCALE_MASK) { 4934 /* Remove scale factor from initial window */ 4935 int win = s->src.max_win; 4936 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 4937 s->src.max_win = (win - 1) >> 4938 (s->src.wscale & PF_WSCALE_MASK); 4939 } 4940 if (th->th_flags & TH_FIN) 4941 s->src.seqhi++; 4942 s->dst.seqhi = 1; 4943 s->dst.max_win = 1; 4944 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 4945 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 4946 s->timeout = PFTM_TCP_FIRST_PACKET; 4947 atomic_add_32(&V_pf_status.states_halfopen, 1); 4948 break; 4949 case IPPROTO_UDP: 4950 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 4951 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 4952 s->timeout = PFTM_UDP_FIRST_PACKET; 4953 break; 4954 case IPPROTO_SCTP: 4955 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT); 4956 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED); 4957 s->timeout = PFTM_SCTP_FIRST_PACKET; 4958 break; 4959 case IPPROTO_ICMP: 4960 #ifdef INET6 4961 case IPPROTO_ICMPV6: 4962 #endif 4963 s->timeout = PFTM_ICMP_FIRST_PACKET; 4964 break; 4965 default: 4966 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 4967 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 4968 s->timeout = PFTM_OTHER_FIRST_PACKET; 4969 } 4970 4971 if (r->rt) { 4972 /* pf_map_addr increases the reason counters */ 4973 if ((reason = pf_map_addr(pd->af, r, pd->src, &s->rt_addr, 4974 &s->rt_kif, NULL, &sn)) != 0) 4975 goto csfailed; 4976 s->rt = r->rt; 4977 } 4978 4979 s->creation = s->expire = pf_get_uptime(); 4980 4981 if (sn != NULL) 4982 s->src_node = sn; 4983 if (nsn != NULL) { 4984 /* XXX We only modify one side for now. */ 4985 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 4986 s->nat_src_node = nsn; 4987 } 4988 if (pd->proto == IPPROTO_TCP) { 4989 if (s->state_flags & PFSTATE_SCRUB_TCP && 4990 pf_normalize_tcp_init(m, off, pd, th, &s->src, &s->dst)) { 4991 REASON_SET(&reason, PFRES_MEMORY); 4992 goto drop; 4993 } 4994 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 4995 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 4996 &s->src, &s->dst, rewrite)) { 4997 /* This really shouldn't happen!!! */ 4998 DPFPRINTF(PF_DEBUG_URGENT, 4999 ("pf_normalize_tcp_stateful failed on first " 5000 "pkt\n")); 5001 goto drop; 5002 } 5003 } else if (pd->proto == IPPROTO_SCTP) { 5004 if (pf_normalize_sctp_init(m, off, pd, &s->src, &s->dst)) 5005 goto drop; 5006 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP))) 5007 goto drop; 5008 } 5009 s->direction = pd->dir; 5010 5011 /* 5012 * sk/nk could already been setup by pf_get_translation(). 5013 */ 5014 if (nr == NULL) { 5015 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 5016 __func__, nr, sk, nk)); 5017 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 5018 if (sk == NULL) 5019 goto csfailed; 5020 nk = sk; 5021 } else 5022 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 5023 __func__, nr, sk, nk)); 5024 5025 /* Swap sk/nk for PF_OUT. */ 5026 if (pf_state_insert(BOUND_IFACE(s, kif), kif, 5027 (pd->dir == PF_IN) ? sk : nk, 5028 (pd->dir == PF_IN) ? nk : sk, s)) { 5029 REASON_SET(&reason, PFRES_STATEINS); 5030 goto drop; 5031 } else 5032 *sm = s; 5033 5034 if (tag > 0) 5035 s->tag = tag; 5036 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 5037 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 5038 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 5039 /* undo NAT changes, if they have taken place */ 5040 if (nr != NULL) { 5041 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 5042 if (pd->dir == PF_OUT) 5043 skt = s->key[PF_SK_STACK]; 5044 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 5045 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 5046 if (pd->sport) 5047 *pd->sport = skt->port[pd->sidx]; 5048 if (pd->dport) 5049 *pd->dport = skt->port[pd->didx]; 5050 if (pd->proto_sum) 5051 *pd->proto_sum = bproto_sum; 5052 if (pd->ip_sum) 5053 *pd->ip_sum = bip_sum; 5054 m_copyback(m, off, hdrlen, pd->hdr.any); 5055 } 5056 s->src.seqhi = htonl(arc4random()); 5057 /* Find mss option */ 5058 int rtid = M_GETFIB(m); 5059 mss = pf_get_mss(m, off, th->th_off, pd->af); 5060 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 5061 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 5062 s->src.mss = mss; 5063 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 5064 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 5065 TH_SYN|TH_ACK, 0, s->src.mss, 0, true, 0, 0, 5066 pd->act.rtableid); 5067 REASON_SET(&reason, PFRES_SYNPROXY); 5068 return (PF_SYNPROXY_DROP); 5069 } 5070 5071 return (PF_PASS); 5072 5073 csfailed: 5074 while ((ri = SLIST_FIRST(match_rules))) { 5075 SLIST_REMOVE_HEAD(match_rules, entry); 5076 free(ri, M_PF_RULE_ITEM); 5077 } 5078 5079 uma_zfree(V_pf_state_key_z, sk); 5080 uma_zfree(V_pf_state_key_z, nk); 5081 5082 if (sn != NULL) { 5083 PF_SRC_NODE_LOCK(sn); 5084 if (--sn->states == 0 && sn->expire == 0) { 5085 pf_unlink_src_node(sn); 5086 uma_zfree(V_pf_sources_z, sn); 5087 counter_u64_add( 5088 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5089 } 5090 PF_SRC_NODE_UNLOCK(sn); 5091 } 5092 5093 if (nsn != sn && nsn != NULL) { 5094 PF_SRC_NODE_LOCK(nsn); 5095 if (--nsn->states == 0 && nsn->expire == 0) { 5096 pf_unlink_src_node(nsn); 5097 uma_zfree(V_pf_sources_z, nsn); 5098 counter_u64_add( 5099 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5100 } 5101 PF_SRC_NODE_UNLOCK(nsn); 5102 } 5103 5104 drop: 5105 if (s != NULL) { 5106 pf_src_tree_remove_state(s); 5107 s->timeout = PFTM_UNLINKED; 5108 STATE_DEC_COUNTERS(s); 5109 pf_free_state(s); 5110 } 5111 5112 return (PF_DROP); 5113 } 5114 5115 static int 5116 pf_test_fragment(struct pf_krule **rm, struct pfi_kkif *kif, 5117 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, 5118 struct pf_kruleset **rsm) 5119 { 5120 struct pf_krule *r, *a = NULL; 5121 struct pf_kruleset *ruleset = NULL; 5122 struct pf_krule_slist match_rules; 5123 struct pf_krule_item *ri; 5124 sa_family_t af = pd->af; 5125 u_short reason; 5126 int tag = -1; 5127 int asd = 0; 5128 int match = 0; 5129 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 5130 5131 PF_RULES_RASSERT(); 5132 5133 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 5134 SLIST_INIT(&match_rules); 5135 while (r != NULL) { 5136 pf_counter_u64_add(&r->evaluations, 1); 5137 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 5138 r = r->skip[PF_SKIP_IFP].ptr; 5139 else if (r->direction && r->direction != pd->dir) 5140 r = r->skip[PF_SKIP_DIR].ptr; 5141 else if (r->af && r->af != af) 5142 r = r->skip[PF_SKIP_AF].ptr; 5143 else if (r->proto && r->proto != pd->proto) 5144 r = r->skip[PF_SKIP_PROTO].ptr; 5145 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 5146 r->src.neg, kif, M_GETFIB(m))) 5147 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 5148 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 5149 r->dst.neg, NULL, M_GETFIB(m))) 5150 r = r->skip[PF_SKIP_DST_ADDR].ptr; 5151 else if (r->tos && !(r->tos == pd->tos)) 5152 r = TAILQ_NEXT(r, entries); 5153 else if (r->os_fingerprint != PF_OSFP_ANY) 5154 r = TAILQ_NEXT(r, entries); 5155 else if (pd->proto == IPPROTO_UDP && 5156 (r->src.port_op || r->dst.port_op)) 5157 r = TAILQ_NEXT(r, entries); 5158 else if (pd->proto == IPPROTO_TCP && 5159 (r->src.port_op || r->dst.port_op || r->flagset)) 5160 r = TAILQ_NEXT(r, entries); 5161 else if ((pd->proto == IPPROTO_ICMP || 5162 pd->proto == IPPROTO_ICMPV6) && 5163 (r->type || r->code)) 5164 r = TAILQ_NEXT(r, entries); 5165 else if (r->prio && 5166 !pf_match_ieee8021q_pcp(r->prio, m)) 5167 r = TAILQ_NEXT(r, entries); 5168 else if (r->prob && r->prob <= 5169 (arc4random() % (UINT_MAX - 1) + 1)) 5170 r = TAILQ_NEXT(r, entries); 5171 else if (r->match_tag && !pf_match_tag(m, r, &tag, 5172 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 5173 r = TAILQ_NEXT(r, entries); 5174 else { 5175 if (r->anchor == NULL) { 5176 if (r->action == PF_MATCH) { 5177 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5178 if (ri == NULL) { 5179 REASON_SET(&reason, PFRES_MEMORY); 5180 goto cleanup; 5181 } 5182 ri->r = r; 5183 SLIST_INSERT_HEAD(&match_rules, ri, entry); 5184 pf_counter_u64_critical_enter(); 5185 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5186 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5187 pf_counter_u64_critical_exit(); 5188 pf_rule_to_actions(r, &pd->act); 5189 if (r->log) 5190 PFLOG_PACKET(kif, m, af, 5191 r->action, PFRES_MATCH, r, 5192 a, ruleset, pd, 1); 5193 } else { 5194 match = 1; 5195 *rm = r; 5196 *am = a; 5197 *rsm = ruleset; 5198 } 5199 if ((*rm)->quick) 5200 break; 5201 r = TAILQ_NEXT(r, entries); 5202 } else 5203 pf_step_into_anchor(anchor_stack, &asd, 5204 &ruleset, PF_RULESET_FILTER, &r, &a, 5205 &match); 5206 } 5207 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 5208 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 5209 break; 5210 } 5211 r = *rm; 5212 a = *am; 5213 ruleset = *rsm; 5214 5215 REASON_SET(&reason, PFRES_MATCH); 5216 5217 /* apply actions for last matching pass/block rule */ 5218 pf_rule_to_actions(r, &pd->act); 5219 5220 if (r->log) 5221 PFLOG_PACKET(kif, m, af, r->action, reason, r, a, ruleset, pd, 1); 5222 5223 if (r->action != PF_PASS) 5224 return (PF_DROP); 5225 5226 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 5227 REASON_SET(&reason, PFRES_MEMORY); 5228 goto cleanup; 5229 } 5230 5231 return (PF_PASS); 5232 5233 cleanup: 5234 while ((ri = SLIST_FIRST(&match_rules))) { 5235 SLIST_REMOVE_HEAD(&match_rules, entry); 5236 free(ri, M_PF_RULE_ITEM); 5237 } 5238 5239 return (PF_DROP); 5240 } 5241 5242 static int 5243 pf_tcp_track_full(struct pf_kstate **state, struct pfi_kkif *kif, 5244 struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason, 5245 int *copyback) 5246 { 5247 struct tcphdr *th = &pd->hdr.tcp; 5248 struct pf_state_peer *src, *dst; 5249 u_int16_t win = ntohs(th->th_win); 5250 u_int32_t ack, end, data_end, seq, orig_seq; 5251 u_int8_t sws, dws, psrc, pdst; 5252 int ackskew; 5253 5254 if (pd->dir == (*state)->direction) { 5255 src = &(*state)->src; 5256 dst = &(*state)->dst; 5257 psrc = PF_PEER_SRC; 5258 pdst = PF_PEER_DST; 5259 } else { 5260 src = &(*state)->dst; 5261 dst = &(*state)->src; 5262 psrc = PF_PEER_DST; 5263 pdst = PF_PEER_SRC; 5264 } 5265 5266 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 5267 sws = src->wscale & PF_WSCALE_MASK; 5268 dws = dst->wscale & PF_WSCALE_MASK; 5269 } else 5270 sws = dws = 0; 5271 5272 /* 5273 * Sequence tracking algorithm from Guido van Rooij's paper: 5274 * http://www.madison-gurkha.com/publications/tcp_filtering/ 5275 * tcp_filtering.ps 5276 */ 5277 5278 orig_seq = seq = ntohl(th->th_seq); 5279 if (src->seqlo == 0) { 5280 /* First packet from this end. Set its state */ 5281 5282 if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 5283 src->scrub == NULL) { 5284 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 5285 REASON_SET(reason, PFRES_MEMORY); 5286 return (PF_DROP); 5287 } 5288 } 5289 5290 /* Deferred generation of sequence number modulator */ 5291 if (dst->seqdiff && !src->seqdiff) { 5292 /* use random iss for the TCP server */ 5293 while ((src->seqdiff = arc4random() - seq) == 0) 5294 ; 5295 ack = ntohl(th->th_ack) - dst->seqdiff; 5296 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5297 src->seqdiff), 0); 5298 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5299 *copyback = 1; 5300 } else { 5301 ack = ntohl(th->th_ack); 5302 } 5303 5304 end = seq + pd->p_len; 5305 if (th->th_flags & TH_SYN) { 5306 end++; 5307 if (dst->wscale & PF_WSCALE_FLAG) { 5308 src->wscale = pf_get_wscale(m, off, th->th_off, 5309 pd->af); 5310 if (src->wscale & PF_WSCALE_FLAG) { 5311 /* Remove scale factor from initial 5312 * window */ 5313 sws = src->wscale & PF_WSCALE_MASK; 5314 win = ((u_int32_t)win + (1 << sws) - 1) 5315 >> sws; 5316 dws = dst->wscale & PF_WSCALE_MASK; 5317 } else { 5318 /* fixup other window */ 5319 dst->max_win = MIN(TCP_MAXWIN, 5320 (u_int32_t)dst->max_win << 5321 (dst->wscale & PF_WSCALE_MASK)); 5322 /* in case of a retrans SYN|ACK */ 5323 dst->wscale = 0; 5324 } 5325 } 5326 } 5327 data_end = end; 5328 if (th->th_flags & TH_FIN) 5329 end++; 5330 5331 src->seqlo = seq; 5332 if (src->state < TCPS_SYN_SENT) 5333 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5334 5335 /* 5336 * May need to slide the window (seqhi may have been set by 5337 * the crappy stack check or if we picked up the connection 5338 * after establishment) 5339 */ 5340 if (src->seqhi == 1 || 5341 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 5342 src->seqhi = end + MAX(1, dst->max_win << dws); 5343 if (win > src->max_win) 5344 src->max_win = win; 5345 5346 } else { 5347 ack = ntohl(th->th_ack) - dst->seqdiff; 5348 if (src->seqdiff) { 5349 /* Modulate sequence numbers */ 5350 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5351 src->seqdiff), 0); 5352 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5353 *copyback = 1; 5354 } 5355 end = seq + pd->p_len; 5356 if (th->th_flags & TH_SYN) 5357 end++; 5358 data_end = end; 5359 if (th->th_flags & TH_FIN) 5360 end++; 5361 } 5362 5363 if ((th->th_flags & TH_ACK) == 0) { 5364 /* Let it pass through the ack skew check */ 5365 ack = dst->seqlo; 5366 } else if ((ack == 0 && 5367 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 5368 /* broken tcp stacks do not set ack */ 5369 (dst->state < TCPS_SYN_SENT)) { 5370 /* 5371 * Many stacks (ours included) will set the ACK number in an 5372 * FIN|ACK if the SYN times out -- no sequence to ACK. 5373 */ 5374 ack = dst->seqlo; 5375 } 5376 5377 if (seq == end) { 5378 /* Ease sequencing restrictions on no data packets */ 5379 seq = src->seqlo; 5380 data_end = end = seq; 5381 } 5382 5383 ackskew = dst->seqlo - ack; 5384 5385 /* 5386 * Need to demodulate the sequence numbers in any TCP SACK options 5387 * (Selective ACK). We could optionally validate the SACK values 5388 * against the current ACK window, either forwards or backwards, but 5389 * I'm not confident that SACK has been implemented properly 5390 * everywhere. It wouldn't surprise me if several stacks accidentally 5391 * SACK too far backwards of previously ACKed data. There really aren't 5392 * any security implications of bad SACKing unless the target stack 5393 * doesn't validate the option length correctly. Someone trying to 5394 * spoof into a TCP connection won't bother blindly sending SACK 5395 * options anyway. 5396 */ 5397 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 5398 if (pf_modulate_sack(m, off, pd, th, dst)) 5399 *copyback = 1; 5400 } 5401 5402 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 5403 if (SEQ_GEQ(src->seqhi, data_end) && 5404 /* Last octet inside other's window space */ 5405 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 5406 /* Retrans: not more than one window back */ 5407 (ackskew >= -MAXACKWINDOW) && 5408 /* Acking not more than one reassembled fragment backwards */ 5409 (ackskew <= (MAXACKWINDOW << sws)) && 5410 /* Acking not more than one window forward */ 5411 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 5412 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) { 5413 /* Require an exact/+1 sequence match on resets when possible */ 5414 5415 if (dst->scrub || src->scrub) { 5416 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5417 *state, src, dst, copyback)) 5418 return (PF_DROP); 5419 } 5420 5421 /* update max window */ 5422 if (src->max_win < win) 5423 src->max_win = win; 5424 /* synchronize sequencing */ 5425 if (SEQ_GT(end, src->seqlo)) 5426 src->seqlo = end; 5427 /* slide the window of what the other end can send */ 5428 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5429 dst->seqhi = ack + MAX((win << sws), 1); 5430 5431 /* update states */ 5432 if (th->th_flags & TH_SYN) 5433 if (src->state < TCPS_SYN_SENT) 5434 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5435 if (th->th_flags & TH_FIN) 5436 if (src->state < TCPS_CLOSING) 5437 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5438 if (th->th_flags & TH_ACK) { 5439 if (dst->state == TCPS_SYN_SENT) { 5440 pf_set_protostate(*state, pdst, 5441 TCPS_ESTABLISHED); 5442 if (src->state == TCPS_ESTABLISHED && 5443 (*state)->src_node != NULL && 5444 pf_src_connlimit(state)) { 5445 REASON_SET(reason, PFRES_SRCLIMIT); 5446 return (PF_DROP); 5447 } 5448 } else if (dst->state == TCPS_CLOSING) 5449 pf_set_protostate(*state, pdst, 5450 TCPS_FIN_WAIT_2); 5451 } 5452 if (th->th_flags & TH_RST) 5453 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5454 5455 /* update expire time */ 5456 (*state)->expire = pf_get_uptime(); 5457 if (src->state >= TCPS_FIN_WAIT_2 && 5458 dst->state >= TCPS_FIN_WAIT_2) 5459 (*state)->timeout = PFTM_TCP_CLOSED; 5460 else if (src->state >= TCPS_CLOSING && 5461 dst->state >= TCPS_CLOSING) 5462 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5463 else if (src->state < TCPS_ESTABLISHED || 5464 dst->state < TCPS_ESTABLISHED) 5465 (*state)->timeout = PFTM_TCP_OPENING; 5466 else if (src->state >= TCPS_CLOSING || 5467 dst->state >= TCPS_CLOSING) 5468 (*state)->timeout = PFTM_TCP_CLOSING; 5469 else 5470 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5471 5472 /* Fall through to PASS packet */ 5473 5474 } else if ((dst->state < TCPS_SYN_SENT || 5475 dst->state >= TCPS_FIN_WAIT_2 || 5476 src->state >= TCPS_FIN_WAIT_2) && 5477 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) && 5478 /* Within a window forward of the originating packet */ 5479 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 5480 /* Within a window backward of the originating packet */ 5481 5482 /* 5483 * This currently handles three situations: 5484 * 1) Stupid stacks will shotgun SYNs before their peer 5485 * replies. 5486 * 2) When PF catches an already established stream (the 5487 * firewall rebooted, the state table was flushed, routes 5488 * changed...) 5489 * 3) Packets get funky immediately after the connection 5490 * closes (this should catch Solaris spurious ACK|FINs 5491 * that web servers like to spew after a close) 5492 * 5493 * This must be a little more careful than the above code 5494 * since packet floods will also be caught here. We don't 5495 * update the TTL here to mitigate the damage of a packet 5496 * flood and so the same code can handle awkward establishment 5497 * and a loosened connection close. 5498 * In the establishment case, a correct peer response will 5499 * validate the connection, go through the normal state code 5500 * and keep updating the state TTL. 5501 */ 5502 5503 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5504 printf("pf: loose state match: "); 5505 pf_print_state(*state); 5506 pf_print_flags(th->th_flags); 5507 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5508 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 5509 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 5510 (unsigned long long)(*state)->packets[1], 5511 pd->dir == PF_IN ? "in" : "out", 5512 pd->dir == (*state)->direction ? "fwd" : "rev"); 5513 } 5514 5515 if (dst->scrub || src->scrub) { 5516 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5517 *state, src, dst, copyback)) 5518 return (PF_DROP); 5519 } 5520 5521 /* update max window */ 5522 if (src->max_win < win) 5523 src->max_win = win; 5524 /* synchronize sequencing */ 5525 if (SEQ_GT(end, src->seqlo)) 5526 src->seqlo = end; 5527 /* slide the window of what the other end can send */ 5528 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5529 dst->seqhi = ack + MAX((win << sws), 1); 5530 5531 /* 5532 * Cannot set dst->seqhi here since this could be a shotgunned 5533 * SYN and not an already established connection. 5534 */ 5535 5536 if (th->th_flags & TH_FIN) 5537 if (src->state < TCPS_CLOSING) 5538 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5539 if (th->th_flags & TH_RST) 5540 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5541 5542 /* Fall through to PASS packet */ 5543 5544 } else { 5545 if ((*state)->dst.state == TCPS_SYN_SENT && 5546 (*state)->src.state == TCPS_SYN_SENT) { 5547 /* Send RST for state mismatches during handshake */ 5548 if (!(th->th_flags & TH_RST)) 5549 pf_send_tcp((*state)->rule.ptr, pd->af, 5550 pd->dst, pd->src, th->th_dport, 5551 th->th_sport, ntohl(th->th_ack), 0, 5552 TH_RST, 0, 0, 5553 (*state)->rule.ptr->return_ttl, true, 0, 0, 5554 (*state)->act.rtableid); 5555 src->seqlo = 0; 5556 src->seqhi = 1; 5557 src->max_win = 1; 5558 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 5559 printf("pf: BAD state: "); 5560 pf_print_state(*state); 5561 pf_print_flags(th->th_flags); 5562 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5563 "pkts=%llu:%llu dir=%s,%s\n", 5564 seq, orig_seq, ack, pd->p_len, ackskew, 5565 (unsigned long long)(*state)->packets[0], 5566 (unsigned long long)(*state)->packets[1], 5567 pd->dir == PF_IN ? "in" : "out", 5568 pd->dir == (*state)->direction ? "fwd" : "rev"); 5569 printf("pf: State failure on: %c %c %c %c | %c %c\n", 5570 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1', 5571 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 5572 ' ': '2', 5573 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 5574 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 5575 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5', 5576 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 5577 } 5578 REASON_SET(reason, PFRES_BADSTATE); 5579 return (PF_DROP); 5580 } 5581 5582 return (PF_PASS); 5583 } 5584 5585 static int 5586 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 5587 { 5588 struct tcphdr *th = &pd->hdr.tcp; 5589 struct pf_state_peer *src, *dst; 5590 u_int8_t psrc, pdst; 5591 5592 if (pd->dir == (*state)->direction) { 5593 src = &(*state)->src; 5594 dst = &(*state)->dst; 5595 psrc = PF_PEER_SRC; 5596 pdst = PF_PEER_DST; 5597 } else { 5598 src = &(*state)->dst; 5599 dst = &(*state)->src; 5600 psrc = PF_PEER_DST; 5601 pdst = PF_PEER_SRC; 5602 } 5603 5604 if (th->th_flags & TH_SYN) 5605 if (src->state < TCPS_SYN_SENT) 5606 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5607 if (th->th_flags & TH_FIN) 5608 if (src->state < TCPS_CLOSING) 5609 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5610 if (th->th_flags & TH_ACK) { 5611 if (dst->state == TCPS_SYN_SENT) { 5612 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 5613 if (src->state == TCPS_ESTABLISHED && 5614 (*state)->src_node != NULL && 5615 pf_src_connlimit(state)) { 5616 REASON_SET(reason, PFRES_SRCLIMIT); 5617 return (PF_DROP); 5618 } 5619 } else if (dst->state == TCPS_CLOSING) { 5620 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 5621 } else if (src->state == TCPS_SYN_SENT && 5622 dst->state < TCPS_SYN_SENT) { 5623 /* 5624 * Handle a special sloppy case where we only see one 5625 * half of the connection. If there is a ACK after 5626 * the initial SYN without ever seeing a packet from 5627 * the destination, set the connection to established. 5628 */ 5629 pf_set_protostate(*state, PF_PEER_BOTH, 5630 TCPS_ESTABLISHED); 5631 dst->state = src->state = TCPS_ESTABLISHED; 5632 if ((*state)->src_node != NULL && 5633 pf_src_connlimit(state)) { 5634 REASON_SET(reason, PFRES_SRCLIMIT); 5635 return (PF_DROP); 5636 } 5637 } else if (src->state == TCPS_CLOSING && 5638 dst->state == TCPS_ESTABLISHED && 5639 dst->seqlo == 0) { 5640 /* 5641 * Handle the closing of half connections where we 5642 * don't see the full bidirectional FIN/ACK+ACK 5643 * handshake. 5644 */ 5645 pf_set_protostate(*state, pdst, TCPS_CLOSING); 5646 } 5647 } 5648 if (th->th_flags & TH_RST) 5649 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5650 5651 /* update expire time */ 5652 (*state)->expire = pf_get_uptime(); 5653 if (src->state >= TCPS_FIN_WAIT_2 && 5654 dst->state >= TCPS_FIN_WAIT_2) 5655 (*state)->timeout = PFTM_TCP_CLOSED; 5656 else if (src->state >= TCPS_CLOSING && 5657 dst->state >= TCPS_CLOSING) 5658 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5659 else if (src->state < TCPS_ESTABLISHED || 5660 dst->state < TCPS_ESTABLISHED) 5661 (*state)->timeout = PFTM_TCP_OPENING; 5662 else if (src->state >= TCPS_CLOSING || 5663 dst->state >= TCPS_CLOSING) 5664 (*state)->timeout = PFTM_TCP_CLOSING; 5665 else 5666 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5667 5668 return (PF_PASS); 5669 } 5670 5671 static int 5672 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 5673 { 5674 struct pf_state_key *sk = (*state)->key[pd->didx]; 5675 struct tcphdr *th = &pd->hdr.tcp; 5676 5677 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 5678 if (pd->dir != (*state)->direction) { 5679 REASON_SET(reason, PFRES_SYNPROXY); 5680 return (PF_SYNPROXY_DROP); 5681 } 5682 if (th->th_flags & TH_SYN) { 5683 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 5684 REASON_SET(reason, PFRES_SYNPROXY); 5685 return (PF_DROP); 5686 } 5687 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 5688 pd->src, th->th_dport, th->th_sport, 5689 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 5690 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, true, 0, 0, 5691 (*state)->act.rtableid); 5692 REASON_SET(reason, PFRES_SYNPROXY); 5693 return (PF_SYNPROXY_DROP); 5694 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 5695 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 5696 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 5697 REASON_SET(reason, PFRES_SYNPROXY); 5698 return (PF_DROP); 5699 } else if ((*state)->src_node != NULL && 5700 pf_src_connlimit(state)) { 5701 REASON_SET(reason, PFRES_SRCLIMIT); 5702 return (PF_DROP); 5703 } else 5704 pf_set_protostate(*state, PF_PEER_SRC, 5705 PF_TCPS_PROXY_DST); 5706 } 5707 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 5708 if (pd->dir == (*state)->direction) { 5709 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 5710 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 5711 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 5712 REASON_SET(reason, PFRES_SYNPROXY); 5713 return (PF_DROP); 5714 } 5715 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 5716 if ((*state)->dst.seqhi == 1) 5717 (*state)->dst.seqhi = htonl(arc4random()); 5718 pf_send_tcp((*state)->rule.ptr, pd->af, 5719 &sk->addr[pd->sidx], &sk->addr[pd->didx], 5720 sk->port[pd->sidx], sk->port[pd->didx], 5721 (*state)->dst.seqhi, 0, TH_SYN, 0, 5722 (*state)->src.mss, 0, false, (*state)->tag, 0, 5723 (*state)->act.rtableid); 5724 REASON_SET(reason, PFRES_SYNPROXY); 5725 return (PF_SYNPROXY_DROP); 5726 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 5727 (TH_SYN|TH_ACK)) || 5728 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 5729 REASON_SET(reason, PFRES_SYNPROXY); 5730 return (PF_DROP); 5731 } else { 5732 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 5733 (*state)->dst.seqlo = ntohl(th->th_seq); 5734 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 5735 pd->src, th->th_dport, th->th_sport, 5736 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 5737 TH_ACK, (*state)->src.max_win, 0, 0, false, 5738 (*state)->tag, 0, (*state)->act.rtableid); 5739 pf_send_tcp((*state)->rule.ptr, pd->af, 5740 &sk->addr[pd->sidx], &sk->addr[pd->didx], 5741 sk->port[pd->sidx], sk->port[pd->didx], 5742 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 5743 TH_ACK, (*state)->dst.max_win, 0, 0, true, 0, 0, 5744 (*state)->act.rtableid); 5745 (*state)->src.seqdiff = (*state)->dst.seqhi - 5746 (*state)->src.seqlo; 5747 (*state)->dst.seqdiff = (*state)->src.seqhi - 5748 (*state)->dst.seqlo; 5749 (*state)->src.seqhi = (*state)->src.seqlo + 5750 (*state)->dst.max_win; 5751 (*state)->dst.seqhi = (*state)->dst.seqlo + 5752 (*state)->src.max_win; 5753 (*state)->src.wscale = (*state)->dst.wscale = 0; 5754 pf_set_protostate(*state, PF_PEER_BOTH, 5755 TCPS_ESTABLISHED); 5756 REASON_SET(reason, PFRES_SYNPROXY); 5757 return (PF_SYNPROXY_DROP); 5758 } 5759 } 5760 5761 return (PF_PASS); 5762 } 5763 5764 static int 5765 pf_test_state_tcp(struct pf_kstate **state, struct pfi_kkif *kif, 5766 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 5767 u_short *reason) 5768 { 5769 struct pf_state_key_cmp key; 5770 struct tcphdr *th = &pd->hdr.tcp; 5771 int copyback = 0; 5772 int action; 5773 struct pf_state_peer *src, *dst; 5774 5775 bzero(&key, sizeof(key)); 5776 key.af = pd->af; 5777 key.proto = IPPROTO_TCP; 5778 if (pd->dir == PF_IN) { /* wire side, straight */ 5779 PF_ACPY(&key.addr[0], pd->src, key.af); 5780 PF_ACPY(&key.addr[1], pd->dst, key.af); 5781 key.port[0] = th->th_sport; 5782 key.port[1] = th->th_dport; 5783 } else { /* stack side, reverse */ 5784 PF_ACPY(&key.addr[1], pd->src, key.af); 5785 PF_ACPY(&key.addr[0], pd->dst, key.af); 5786 key.port[1] = th->th_sport; 5787 key.port[0] = th->th_dport; 5788 } 5789 5790 STATE_LOOKUP(kif, &key, *state, pd); 5791 5792 if (pd->dir == (*state)->direction) { 5793 src = &(*state)->src; 5794 dst = &(*state)->dst; 5795 } else { 5796 src = &(*state)->dst; 5797 dst = &(*state)->src; 5798 } 5799 5800 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 5801 return (action); 5802 5803 if (dst->state >= TCPS_FIN_WAIT_2 && 5804 src->state >= TCPS_FIN_WAIT_2 && 5805 (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) || 5806 ((th->th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK && 5807 pf_syncookie_check(pd) && pd->dir == PF_IN))) { 5808 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5809 printf("pf: state reuse "); 5810 pf_print_state(*state); 5811 pf_print_flags(th->th_flags); 5812 printf("\n"); 5813 } 5814 /* XXX make sure it's the same direction ?? */ 5815 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 5816 pf_unlink_state(*state); 5817 *state = NULL; 5818 return (PF_DROP); 5819 } 5820 5821 if ((*state)->state_flags & PFSTATE_SLOPPY) { 5822 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 5823 return (PF_DROP); 5824 } else { 5825 if (pf_tcp_track_full(state, kif, m, off, pd, reason, 5826 ©back) == PF_DROP) 5827 return (PF_DROP); 5828 } 5829 5830 /* translate source/destination address, if necessary */ 5831 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5832 struct pf_state_key *nk = (*state)->key[pd->didx]; 5833 5834 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5835 nk->port[pd->sidx] != th->th_sport) 5836 pf_change_ap(m, pd->src, &th->th_sport, 5837 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 5838 nk->port[pd->sidx], 0, pd->af); 5839 5840 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5841 nk->port[pd->didx] != th->th_dport) 5842 pf_change_ap(m, pd->dst, &th->th_dport, 5843 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 5844 nk->port[pd->didx], 0, pd->af); 5845 copyback = 1; 5846 } 5847 5848 /* Copyback sequence modulation or stateful scrub changes if needed */ 5849 if (copyback) 5850 m_copyback(m, off, sizeof(*th), (caddr_t)th); 5851 5852 return (PF_PASS); 5853 } 5854 5855 static int 5856 pf_test_state_udp(struct pf_kstate **state, struct pfi_kkif *kif, 5857 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 5858 { 5859 struct pf_state_peer *src, *dst; 5860 struct pf_state_key_cmp key; 5861 struct udphdr *uh = &pd->hdr.udp; 5862 uint8_t psrc, pdst; 5863 5864 bzero(&key, sizeof(key)); 5865 key.af = pd->af; 5866 key.proto = IPPROTO_UDP; 5867 if (pd->dir == PF_IN) { /* wire side, straight */ 5868 PF_ACPY(&key.addr[0], pd->src, key.af); 5869 PF_ACPY(&key.addr[1], pd->dst, key.af); 5870 key.port[0] = uh->uh_sport; 5871 key.port[1] = uh->uh_dport; 5872 } else { /* stack side, reverse */ 5873 PF_ACPY(&key.addr[1], pd->src, key.af); 5874 PF_ACPY(&key.addr[0], pd->dst, key.af); 5875 key.port[1] = uh->uh_sport; 5876 key.port[0] = uh->uh_dport; 5877 } 5878 5879 STATE_LOOKUP(kif, &key, *state, pd); 5880 5881 if (pd->dir == (*state)->direction) { 5882 src = &(*state)->src; 5883 dst = &(*state)->dst; 5884 psrc = PF_PEER_SRC; 5885 pdst = PF_PEER_DST; 5886 } else { 5887 src = &(*state)->dst; 5888 dst = &(*state)->src; 5889 psrc = PF_PEER_DST; 5890 pdst = PF_PEER_SRC; 5891 } 5892 5893 /* update states */ 5894 if (src->state < PFUDPS_SINGLE) 5895 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 5896 if (dst->state == PFUDPS_SINGLE) 5897 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 5898 5899 /* update expire time */ 5900 (*state)->expire = pf_get_uptime(); 5901 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 5902 (*state)->timeout = PFTM_UDP_MULTIPLE; 5903 else 5904 (*state)->timeout = PFTM_UDP_SINGLE; 5905 5906 /* translate source/destination address, if necessary */ 5907 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5908 struct pf_state_key *nk = (*state)->key[pd->didx]; 5909 5910 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5911 nk->port[pd->sidx] != uh->uh_sport) 5912 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 5913 &uh->uh_sum, &nk->addr[pd->sidx], 5914 nk->port[pd->sidx], 1, pd->af); 5915 5916 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5917 nk->port[pd->didx] != uh->uh_dport) 5918 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 5919 &uh->uh_sum, &nk->addr[pd->didx], 5920 nk->port[pd->didx], 1, pd->af); 5921 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 5922 } 5923 5924 return (PF_PASS); 5925 } 5926 5927 static int 5928 pf_test_state_sctp(struct pf_kstate **state, struct pfi_kkif *kif, 5929 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 5930 { 5931 struct pf_state_key_cmp key; 5932 struct pf_state_peer *src, *dst; 5933 struct sctphdr *sh = &pd->hdr.sctp; 5934 u_int8_t psrc; //, pdst; 5935 5936 bzero(&key, sizeof(key)); 5937 key.af = pd->af; 5938 key.proto = IPPROTO_SCTP; 5939 if (pd->dir == PF_IN) { /* wire side, straight */ 5940 PF_ACPY(&key.addr[0], pd->src, key.af); 5941 PF_ACPY(&key.addr[1], pd->dst, key.af); 5942 key.port[0] = sh->src_port; 5943 key.port[1] = sh->dest_port; 5944 } else { /* stack side, reverse */ 5945 PF_ACPY(&key.addr[1], pd->src, key.af); 5946 PF_ACPY(&key.addr[0], pd->dst, key.af); 5947 key.port[1] = sh->src_port; 5948 key.port[0] = sh->dest_port; 5949 } 5950 5951 STATE_LOOKUP(kif, &key, *state, pd); 5952 5953 if (pd->dir == (*state)->direction) { 5954 src = &(*state)->src; 5955 dst = &(*state)->dst; 5956 psrc = PF_PEER_SRC; 5957 } else { 5958 src = &(*state)->dst; 5959 dst = &(*state)->src; 5960 psrc = PF_PEER_DST; 5961 } 5962 5963 /* Track state. */ 5964 if (pd->sctp_flags & PFDESC_SCTP_INIT) { 5965 if (src->state < SCTP_COOKIE_WAIT) { 5966 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT); 5967 (*state)->timeout = PFTM_SCTP_OPENING; 5968 } 5969 } 5970 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) { 5971 MPASS(dst->scrub != NULL); 5972 if (dst->scrub->pfss_v_tag == 0) 5973 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag; 5974 } 5975 5976 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) { 5977 if (src->state < SCTP_ESTABLISHED) { 5978 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED); 5979 (*state)->timeout = PFTM_SCTP_ESTABLISHED; 5980 } 5981 } 5982 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | PFDESC_SCTP_ABORT | 5983 PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 5984 if (src->state < SCTP_SHUTDOWN_PENDING) { 5985 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING); 5986 (*state)->timeout = PFTM_SCTP_CLOSING; 5987 } 5988 } 5989 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 5990 pf_set_protostate(*state, psrc, SCTP_CLOSED); 5991 (*state)->timeout = PFTM_SCTP_CLOSED; 5992 } 5993 5994 if (src->scrub != NULL) { 5995 if (src->scrub->pfss_v_tag == 0) { 5996 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag; 5997 } else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag) 5998 return (PF_DROP); 5999 } 6000 6001 (*state)->expire = pf_get_uptime(); 6002 6003 /* translate source/destination address, if necessary */ 6004 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6005 uint16_t checksum = 0; 6006 struct pf_state_key *nk = (*state)->key[pd->didx]; 6007 6008 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6009 nk->port[pd->sidx] != pd->hdr.sctp.src_port) { 6010 pf_change_ap(m, pd->src, &pd->hdr.sctp.src_port, 6011 pd->ip_sum, &checksum, &nk->addr[pd->sidx], 6012 nk->port[pd->sidx], 1, pd->af); 6013 } 6014 6015 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6016 nk->port[pd->didx] != pd->hdr.sctp.dest_port) { 6017 pf_change_ap(m, pd->dst, &pd->hdr.sctp.dest_port, 6018 pd->ip_sum, &checksum, &nk->addr[pd->didx], 6019 nk->port[pd->didx], 1, pd->af); 6020 } 6021 } 6022 6023 return (PF_PASS); 6024 } 6025 6026 static void 6027 pf_sctp_multihome_detach_addr(const struct pf_kstate *s) 6028 { 6029 struct pf_sctp_endpoint key; 6030 struct pf_sctp_endpoint *ep; 6031 struct pf_state_key *sks = s->key[PF_SK_STACK]; 6032 struct pf_sctp_source *i, *tmp; 6033 6034 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL) 6035 return; 6036 6037 PF_SCTP_ENDPOINTS_LOCK(); 6038 6039 key.v_tag = s->dst.scrub->pfss_v_tag; 6040 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6041 if (ep != NULL) { 6042 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6043 if (pf_addr_cmp(&i->addr, 6044 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT], 6045 s->key[PF_SK_WIRE]->af) == 0) { 6046 SDT_PROBE3(pf, sctp, multihome, remove, 6047 key.v_tag, s, i); 6048 TAILQ_REMOVE(&ep->sources, i, entry); 6049 free(i, M_PFTEMP); 6050 break; 6051 } 6052 } 6053 6054 if (TAILQ_EMPTY(&ep->sources)) { 6055 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6056 free(ep, M_PFTEMP); 6057 } 6058 } 6059 6060 /* Other direction. */ 6061 key.v_tag = s->src.scrub->pfss_v_tag; 6062 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6063 if (ep != NULL) { 6064 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6065 if (pf_addr_cmp(&i->addr, 6066 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN], 6067 s->key[PF_SK_WIRE]->af) == 0) { 6068 SDT_PROBE3(pf, sctp, multihome, remove, 6069 key.v_tag, s, i); 6070 TAILQ_REMOVE(&ep->sources, i, entry); 6071 free(i, M_PFTEMP); 6072 break; 6073 } 6074 } 6075 6076 if (TAILQ_EMPTY(&ep->sources)) { 6077 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6078 free(ep, M_PFTEMP); 6079 } 6080 } 6081 6082 PF_SCTP_ENDPOINTS_UNLOCK(); 6083 } 6084 6085 static void 6086 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag) 6087 { 6088 struct pf_sctp_endpoint key = { 6089 .v_tag = v_tag, 6090 }; 6091 struct pf_sctp_source *i; 6092 struct pf_sctp_endpoint *ep; 6093 6094 PF_SCTP_ENDPOINTS_LOCK(); 6095 6096 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6097 if (ep == NULL) { 6098 ep = malloc(sizeof(struct pf_sctp_endpoint), 6099 M_PFTEMP, M_NOWAIT); 6100 if (ep == NULL) { 6101 PF_SCTP_ENDPOINTS_UNLOCK(); 6102 return; 6103 } 6104 6105 ep->v_tag = v_tag; 6106 TAILQ_INIT(&ep->sources); 6107 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6108 } 6109 6110 /* Avoid inserting duplicates. */ 6111 TAILQ_FOREACH(i, &ep->sources, entry) { 6112 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) { 6113 PF_SCTP_ENDPOINTS_UNLOCK(); 6114 return; 6115 } 6116 } 6117 6118 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT); 6119 if (i == NULL) { 6120 PF_SCTP_ENDPOINTS_UNLOCK(); 6121 return; 6122 } 6123 6124 i->af = pd->af; 6125 memcpy(&i->addr, a, sizeof(*a)); 6126 TAILQ_INSERT_TAIL(&ep->sources, i, entry); 6127 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i); 6128 6129 PF_SCTP_ENDPOINTS_UNLOCK(); 6130 } 6131 6132 static void 6133 pf_sctp_multihome_delayed(struct pf_pdesc *pd, int off, struct pfi_kkif *kif, 6134 struct pf_kstate *s, int action) 6135 { 6136 struct pf_sctp_multihome_job *j, *tmp; 6137 struct pf_sctp_source *i; 6138 int ret __unused; 6139 struct pf_kstate *sm = NULL; 6140 struct pf_krule *ra = NULL; 6141 struct pf_krule *r = &V_pf_default_rule; 6142 struct pf_kruleset *rs = NULL; 6143 bool do_extra = true; 6144 6145 PF_RULES_RLOCK_TRACKER; 6146 6147 again: 6148 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) { 6149 if (s == NULL || action != PF_PASS) 6150 goto free; 6151 6152 /* Confirm we don't recurse here. */ 6153 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP)); 6154 6155 switch (j->op) { 6156 case SCTP_ADD_IP_ADDRESS: { 6157 uint32_t v_tag = pd->sctp_initiate_tag; 6158 6159 if (v_tag == 0) { 6160 if (s->direction == pd->dir) 6161 v_tag = s->src.scrub->pfss_v_tag; 6162 else 6163 v_tag = s->dst.scrub->pfss_v_tag; 6164 } 6165 6166 /* 6167 * Avoid duplicating states. We'll already have 6168 * created a state based on the source address of 6169 * the packet, but SCTP endpoints may also list this 6170 * address again in the INIT(_ACK) parameters. 6171 */ 6172 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) { 6173 break; 6174 } 6175 6176 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP; 6177 PF_RULES_RLOCK(); 6178 sm = NULL; 6179 /* 6180 * New connections need to be floating, because 6181 * we cannot know what interfaces it will use. 6182 * That's why we pass V_pfi_all rather than kif. 6183 */ 6184 ret = pf_test_rule(&r, &sm, V_pfi_all, 6185 j->m, off, &j->pd, &ra, &rs, NULL); 6186 PF_RULES_RUNLOCK(); 6187 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->m, ret); 6188 if (ret != PF_DROP && sm != NULL) { 6189 /* Inherit v_tag values. */ 6190 if (sm->direction == s->direction) { 6191 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6192 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6193 } else { 6194 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6195 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6196 } 6197 PF_STATE_UNLOCK(sm); 6198 } else { 6199 /* If we try duplicate inserts? */ 6200 break; 6201 } 6202 6203 /* Only add the address if we've actually allowed the state. */ 6204 pf_sctp_multihome_add_addr(pd, &j->src, v_tag); 6205 6206 if (! do_extra) { 6207 break; 6208 } 6209 /* 6210 * We need to do this for each of our source addresses. 6211 * Find those based on the verification tag. 6212 */ 6213 struct pf_sctp_endpoint key = { 6214 .v_tag = pd->hdr.sctp.v_tag, 6215 }; 6216 struct pf_sctp_endpoint *ep; 6217 6218 PF_SCTP_ENDPOINTS_LOCK(); 6219 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6220 if (ep == NULL) { 6221 PF_SCTP_ENDPOINTS_UNLOCK(); 6222 break; 6223 } 6224 MPASS(ep != NULL); 6225 6226 TAILQ_FOREACH(i, &ep->sources, entry) { 6227 struct pf_sctp_multihome_job *nj; 6228 6229 /* SCTP can intermingle IPv4 and IPv6. */ 6230 if (i->af != pd->af) 6231 continue; 6232 6233 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO); 6234 if (! nj) { 6235 continue; 6236 } 6237 memcpy(&nj->pd, &j->pd, sizeof(j->pd)); 6238 memcpy(&nj->src, &j->src, sizeof(nj->src)); 6239 nj->pd.src = &nj->src; 6240 // New destination address! 6241 memcpy(&nj->dst, &i->addr, sizeof(nj->dst)); 6242 nj->pd.dst = &nj->dst; 6243 nj->m = j->m; 6244 nj->op = j->op; 6245 6246 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next); 6247 } 6248 PF_SCTP_ENDPOINTS_UNLOCK(); 6249 6250 break; 6251 } 6252 case SCTP_DEL_IP_ADDRESS: { 6253 struct pf_state_key_cmp key; 6254 uint8_t psrc; 6255 6256 bzero(&key, sizeof(key)); 6257 key.af = j->pd.af; 6258 key.proto = IPPROTO_SCTP; 6259 if (j->pd.dir == PF_IN) { /* wire side, straight */ 6260 PF_ACPY(&key.addr[0], j->pd.src, key.af); 6261 PF_ACPY(&key.addr[1], j->pd.dst, key.af); 6262 key.port[0] = j->pd.hdr.sctp.src_port; 6263 key.port[1] = j->pd.hdr.sctp.dest_port; 6264 } else { /* stack side, reverse */ 6265 PF_ACPY(&key.addr[1], j->pd.src, key.af); 6266 PF_ACPY(&key.addr[0], j->pd.dst, key.af); 6267 key.port[1] = j->pd.hdr.sctp.src_port; 6268 key.port[0] = j->pd.hdr.sctp.dest_port; 6269 } 6270 6271 sm = pf_find_state(kif, &key, j->pd.dir); 6272 if (sm != NULL) { 6273 PF_STATE_LOCK_ASSERT(sm); 6274 if (j->pd.dir == sm->direction) { 6275 psrc = PF_PEER_SRC; 6276 } else { 6277 psrc = PF_PEER_DST; 6278 } 6279 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING); 6280 sm->timeout = PFTM_SCTP_CLOSING; 6281 PF_STATE_UNLOCK(sm); 6282 } 6283 break; 6284 default: 6285 panic("Unknown op %#x", j->op); 6286 } 6287 } 6288 6289 free: 6290 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next); 6291 free(j, M_PFTEMP); 6292 } 6293 6294 /* We may have inserted extra work while processing the list. */ 6295 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) { 6296 do_extra = false; 6297 goto again; 6298 } 6299 } 6300 6301 static int 6302 pf_multihome_scan(struct mbuf *m, int start, int len, struct pf_pdesc *pd, 6303 struct pfi_kkif *kif, int op) 6304 { 6305 int off = 0; 6306 struct pf_sctp_multihome_job *job; 6307 6308 while (off < len) { 6309 struct sctp_paramhdr h; 6310 6311 if (!pf_pull_hdr(m, start + off, &h, sizeof(h), NULL, NULL, 6312 pd->af)) 6313 return (PF_DROP); 6314 6315 /* Parameters are at least 4 bytes. */ 6316 if (ntohs(h.param_length) < 4) 6317 return (PF_DROP); 6318 6319 switch (ntohs(h.param_type)) { 6320 case SCTP_IPV4_ADDRESS: { 6321 struct in_addr t; 6322 6323 if (ntohs(h.param_length) != 6324 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6325 return (PF_DROP); 6326 6327 if (!pf_pull_hdr(m, start + off + sizeof(h), &t, sizeof(t), 6328 NULL, NULL, pd->af)) 6329 return (PF_DROP); 6330 6331 if (in_nullhost(t)) 6332 t.s_addr = pd->src->v4.s_addr; 6333 6334 /* 6335 * We hold the state lock (idhash) here, which means 6336 * that we can't acquire the keyhash, or we'll get a 6337 * LOR (and potentially double-lock things too). We also 6338 * can't release the state lock here, so instead we'll 6339 * enqueue this for async handling. 6340 * There's a relatively small race here, in that a 6341 * packet using the new addresses could arrive already, 6342 * but that's just though luck for it. 6343 */ 6344 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6345 if (! job) 6346 return (PF_DROP); 6347 6348 memcpy(&job->pd, pd, sizeof(*pd)); 6349 6350 // New source address! 6351 memcpy(&job->src, &t, sizeof(t)); 6352 job->pd.src = &job->src; 6353 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6354 job->pd.dst = &job->dst; 6355 job->m = m; 6356 job->op = op; 6357 6358 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6359 break; 6360 } 6361 #ifdef INET6 6362 case SCTP_IPV6_ADDRESS: { 6363 struct in6_addr t; 6364 6365 if (ntohs(h.param_length) != 6366 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6367 return (PF_DROP); 6368 6369 if (!pf_pull_hdr(m, start + off + sizeof(h), &t, sizeof(t), 6370 NULL, NULL, pd->af)) 6371 return (PF_DROP); 6372 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0) 6373 break; 6374 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0) 6375 memcpy(&t, &pd->src->v6, sizeof(t)); 6376 6377 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6378 if (! job) 6379 return (PF_DROP); 6380 6381 memcpy(&job->pd, pd, sizeof(*pd)); 6382 memcpy(&job->src, &t, sizeof(t)); 6383 job->pd.src = &job->src; 6384 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6385 job->pd.dst = &job->dst; 6386 job->m = m; 6387 job->op = op; 6388 6389 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6390 break; 6391 } 6392 #endif 6393 case SCTP_ADD_IP_ADDRESS: { 6394 int ret; 6395 struct sctp_asconf_paramhdr ah; 6396 6397 if (!pf_pull_hdr(m, start + off, &ah, sizeof(ah), 6398 NULL, NULL, pd->af)) 6399 return (PF_DROP); 6400 6401 ret = pf_multihome_scan(m, start + off + sizeof(ah), 6402 ntohs(ah.ph.param_length) - sizeof(ah), pd, kif, 6403 SCTP_ADD_IP_ADDRESS); 6404 if (ret != PF_PASS) 6405 return (ret); 6406 break; 6407 } 6408 case SCTP_DEL_IP_ADDRESS: { 6409 int ret; 6410 struct sctp_asconf_paramhdr ah; 6411 6412 if (!pf_pull_hdr(m, start + off, &ah, sizeof(ah), 6413 NULL, NULL, pd->af)) 6414 return (PF_DROP); 6415 ret = pf_multihome_scan(m, start + off + sizeof(ah), 6416 ntohs(ah.ph.param_length) - sizeof(ah), pd, kif, 6417 SCTP_DEL_IP_ADDRESS); 6418 if (ret != PF_PASS) 6419 return (ret); 6420 break; 6421 } 6422 default: 6423 break; 6424 } 6425 6426 off += roundup(ntohs(h.param_length), 4); 6427 } 6428 6429 return (PF_PASS); 6430 } 6431 int 6432 pf_multihome_scan_init(struct mbuf *m, int start, int len, struct pf_pdesc *pd, 6433 struct pfi_kkif *kif) 6434 { 6435 start += sizeof(struct sctp_init_chunk); 6436 len -= sizeof(struct sctp_init_chunk); 6437 6438 return (pf_multihome_scan(m, start, len, pd, kif, SCTP_ADD_IP_ADDRESS)); 6439 } 6440 6441 int 6442 pf_multihome_scan_asconf(struct mbuf *m, int start, int len, 6443 struct pf_pdesc *pd, struct pfi_kkif *kif) 6444 { 6445 start += sizeof(struct sctp_asconf_chunk); 6446 len -= sizeof(struct sctp_asconf_chunk); 6447 6448 return (pf_multihome_scan(m, start, len, pd, kif, SCTP_ADD_IP_ADDRESS)); 6449 } 6450 6451 static int 6452 pf_test_state_icmp(struct pf_kstate **state, struct pfi_kkif *kif, 6453 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 6454 { 6455 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 6456 u_int16_t icmpid = 0, *icmpsum; 6457 u_int8_t icmptype, icmpcode; 6458 int state_icmp = 0; 6459 struct pf_state_key_cmp key; 6460 6461 bzero(&key, sizeof(key)); 6462 switch (pd->proto) { 6463 #ifdef INET 6464 case IPPROTO_ICMP: 6465 icmptype = pd->hdr.icmp.icmp_type; 6466 icmpcode = pd->hdr.icmp.icmp_code; 6467 icmpid = pd->hdr.icmp.icmp_id; 6468 icmpsum = &pd->hdr.icmp.icmp_cksum; 6469 6470 if (icmptype == ICMP_UNREACH || 6471 icmptype == ICMP_SOURCEQUENCH || 6472 icmptype == ICMP_REDIRECT || 6473 icmptype == ICMP_TIMXCEED || 6474 icmptype == ICMP_PARAMPROB) 6475 state_icmp++; 6476 break; 6477 #endif /* INET */ 6478 #ifdef INET6 6479 case IPPROTO_ICMPV6: 6480 icmptype = pd->hdr.icmp6.icmp6_type; 6481 icmpcode = pd->hdr.icmp6.icmp6_code; 6482 icmpid = pd->hdr.icmp6.icmp6_id; 6483 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 6484 6485 if (icmptype == ICMP6_DST_UNREACH || 6486 icmptype == ICMP6_PACKET_TOO_BIG || 6487 icmptype == ICMP6_TIME_EXCEEDED || 6488 icmptype == ICMP6_PARAM_PROB) 6489 state_icmp++; 6490 break; 6491 #endif /* INET6 */ 6492 } 6493 6494 if (!state_icmp) { 6495 /* 6496 * ICMP query/reply message not related to a TCP/UDP packet. 6497 * Search for an ICMP state. 6498 */ 6499 key.af = pd->af; 6500 key.proto = pd->proto; 6501 key.port[0] = key.port[1] = icmpid; 6502 if (pd->dir == PF_IN) { /* wire side, straight */ 6503 PF_ACPY(&key.addr[0], pd->src, key.af); 6504 PF_ACPY(&key.addr[1], pd->dst, key.af); 6505 } else { /* stack side, reverse */ 6506 PF_ACPY(&key.addr[1], pd->src, key.af); 6507 PF_ACPY(&key.addr[0], pd->dst, key.af); 6508 } 6509 6510 STATE_LOOKUP(kif, &key, *state, pd); 6511 6512 (*state)->expire = pf_get_uptime(); 6513 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 6514 6515 /* translate source/destination address, if necessary */ 6516 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6517 struct pf_state_key *nk = (*state)->key[pd->didx]; 6518 6519 switch (pd->af) { 6520 #ifdef INET 6521 case AF_INET: 6522 if (PF_ANEQ(pd->src, 6523 &nk->addr[pd->sidx], AF_INET)) 6524 pf_change_a(&saddr->v4.s_addr, 6525 pd->ip_sum, 6526 nk->addr[pd->sidx].v4.s_addr, 0); 6527 6528 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 6529 AF_INET)) 6530 pf_change_a(&daddr->v4.s_addr, 6531 pd->ip_sum, 6532 nk->addr[pd->didx].v4.s_addr, 0); 6533 6534 if (nk->port[0] != 6535 pd->hdr.icmp.icmp_id) { 6536 pd->hdr.icmp.icmp_cksum = 6537 pf_cksum_fixup( 6538 pd->hdr.icmp.icmp_cksum, icmpid, 6539 nk->port[pd->sidx], 0); 6540 pd->hdr.icmp.icmp_id = 6541 nk->port[pd->sidx]; 6542 } 6543 6544 m_copyback(m, off, ICMP_MINLEN, 6545 (caddr_t )&pd->hdr.icmp); 6546 break; 6547 #endif /* INET */ 6548 #ifdef INET6 6549 case AF_INET6: 6550 if (PF_ANEQ(pd->src, 6551 &nk->addr[pd->sidx], AF_INET6)) 6552 pf_change_a6(saddr, 6553 &pd->hdr.icmp6.icmp6_cksum, 6554 &nk->addr[pd->sidx], 0); 6555 6556 if (PF_ANEQ(pd->dst, 6557 &nk->addr[pd->didx], AF_INET6)) 6558 pf_change_a6(daddr, 6559 &pd->hdr.icmp6.icmp6_cksum, 6560 &nk->addr[pd->didx], 0); 6561 6562 m_copyback(m, off, sizeof(struct icmp6_hdr), 6563 (caddr_t )&pd->hdr.icmp6); 6564 break; 6565 #endif /* INET6 */ 6566 } 6567 } 6568 return (PF_PASS); 6569 6570 } else { 6571 /* 6572 * ICMP error message in response to a TCP/UDP packet. 6573 * Extract the inner TCP/UDP header and search for that state. 6574 */ 6575 6576 struct pf_pdesc pd2; 6577 bzero(&pd2, sizeof pd2); 6578 #ifdef INET 6579 struct ip h2; 6580 #endif /* INET */ 6581 #ifdef INET6 6582 struct ip6_hdr h2_6; 6583 int terminal = 0; 6584 #endif /* INET6 */ 6585 int ipoff2 = 0; 6586 int off2 = 0; 6587 6588 pd2.af = pd->af; 6589 /* Payload packet is from the opposite direction. */ 6590 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0; 6591 pd2.didx = (pd->dir == PF_IN) ? 0 : 1; 6592 switch (pd->af) { 6593 #ifdef INET 6594 case AF_INET: 6595 /* offset of h2 in mbuf chain */ 6596 ipoff2 = off + ICMP_MINLEN; 6597 6598 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 6599 NULL, reason, pd2.af)) { 6600 DPFPRINTF(PF_DEBUG_MISC, 6601 ("pf: ICMP error message too short " 6602 "(ip)\n")); 6603 return (PF_DROP); 6604 } 6605 /* 6606 * ICMP error messages don't refer to non-first 6607 * fragments 6608 */ 6609 if (h2.ip_off & htons(IP_OFFMASK)) { 6610 REASON_SET(reason, PFRES_FRAG); 6611 return (PF_DROP); 6612 } 6613 6614 /* offset of protocol header that follows h2 */ 6615 off2 = ipoff2 + (h2.ip_hl << 2); 6616 6617 pd2.proto = h2.ip_p; 6618 pd2.src = (struct pf_addr *)&h2.ip_src; 6619 pd2.dst = (struct pf_addr *)&h2.ip_dst; 6620 pd2.ip_sum = &h2.ip_sum; 6621 break; 6622 #endif /* INET */ 6623 #ifdef INET6 6624 case AF_INET6: 6625 ipoff2 = off + sizeof(struct icmp6_hdr); 6626 6627 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 6628 NULL, reason, pd2.af)) { 6629 DPFPRINTF(PF_DEBUG_MISC, 6630 ("pf: ICMP error message too short " 6631 "(ip6)\n")); 6632 return (PF_DROP); 6633 } 6634 pd2.proto = h2_6.ip6_nxt; 6635 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 6636 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 6637 pd2.ip_sum = NULL; 6638 off2 = ipoff2 + sizeof(h2_6); 6639 do { 6640 switch (pd2.proto) { 6641 case IPPROTO_FRAGMENT: 6642 /* 6643 * ICMPv6 error messages for 6644 * non-first fragments 6645 */ 6646 REASON_SET(reason, PFRES_FRAG); 6647 return (PF_DROP); 6648 case IPPROTO_AH: 6649 case IPPROTO_HOPOPTS: 6650 case IPPROTO_ROUTING: 6651 case IPPROTO_DSTOPTS: { 6652 /* get next header and header length */ 6653 struct ip6_ext opt6; 6654 6655 if (!pf_pull_hdr(m, off2, &opt6, 6656 sizeof(opt6), NULL, reason, 6657 pd2.af)) { 6658 DPFPRINTF(PF_DEBUG_MISC, 6659 ("pf: ICMPv6 short opt\n")); 6660 return (PF_DROP); 6661 } 6662 if (pd2.proto == IPPROTO_AH) 6663 off2 += (opt6.ip6e_len + 2) * 4; 6664 else 6665 off2 += (opt6.ip6e_len + 1) * 8; 6666 pd2.proto = opt6.ip6e_nxt; 6667 /* goto the next header */ 6668 break; 6669 } 6670 default: 6671 terminal++; 6672 break; 6673 } 6674 } while (!terminal); 6675 break; 6676 #endif /* INET6 */ 6677 } 6678 6679 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 6680 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6681 printf("pf: BAD ICMP %d:%d outer dst: ", 6682 icmptype, icmpcode); 6683 pf_print_host(pd->src, 0, pd->af); 6684 printf(" -> "); 6685 pf_print_host(pd->dst, 0, pd->af); 6686 printf(" inner src: "); 6687 pf_print_host(pd2.src, 0, pd2.af); 6688 printf(" -> "); 6689 pf_print_host(pd2.dst, 0, pd2.af); 6690 printf("\n"); 6691 } 6692 REASON_SET(reason, PFRES_BADSTATE); 6693 return (PF_DROP); 6694 } 6695 6696 switch (pd2.proto) { 6697 case IPPROTO_TCP: { 6698 struct tcphdr th; 6699 u_int32_t seq; 6700 struct pf_state_peer *src, *dst; 6701 u_int8_t dws; 6702 int copyback = 0; 6703 6704 /* 6705 * Only the first 8 bytes of the TCP header can be 6706 * expected. Don't access any TCP header fields after 6707 * th_seq, an ackskew test is not possible. 6708 */ 6709 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 6710 pd2.af)) { 6711 DPFPRINTF(PF_DEBUG_MISC, 6712 ("pf: ICMP error message too short " 6713 "(tcp)\n")); 6714 return (PF_DROP); 6715 } 6716 6717 key.af = pd2.af; 6718 key.proto = IPPROTO_TCP; 6719 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6720 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6721 key.port[pd2.sidx] = th.th_sport; 6722 key.port[pd2.didx] = th.th_dport; 6723 6724 STATE_LOOKUP(kif, &key, *state, pd); 6725 6726 if (pd->dir == (*state)->direction) { 6727 src = &(*state)->dst; 6728 dst = &(*state)->src; 6729 } else { 6730 src = &(*state)->src; 6731 dst = &(*state)->dst; 6732 } 6733 6734 if (src->wscale && dst->wscale) 6735 dws = dst->wscale & PF_WSCALE_MASK; 6736 else 6737 dws = 0; 6738 6739 /* Demodulate sequence number */ 6740 seq = ntohl(th.th_seq) - src->seqdiff; 6741 if (src->seqdiff) { 6742 pf_change_a(&th.th_seq, icmpsum, 6743 htonl(seq), 0); 6744 copyback = 1; 6745 } 6746 6747 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 6748 (!SEQ_GEQ(src->seqhi, seq) || 6749 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 6750 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6751 printf("pf: BAD ICMP %d:%d ", 6752 icmptype, icmpcode); 6753 pf_print_host(pd->src, 0, pd->af); 6754 printf(" -> "); 6755 pf_print_host(pd->dst, 0, pd->af); 6756 printf(" state: "); 6757 pf_print_state(*state); 6758 printf(" seq=%u\n", seq); 6759 } 6760 REASON_SET(reason, PFRES_BADSTATE); 6761 return (PF_DROP); 6762 } else { 6763 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6764 printf("pf: OK ICMP %d:%d ", 6765 icmptype, icmpcode); 6766 pf_print_host(pd->src, 0, pd->af); 6767 printf(" -> "); 6768 pf_print_host(pd->dst, 0, pd->af); 6769 printf(" state: "); 6770 pf_print_state(*state); 6771 printf(" seq=%u\n", seq); 6772 } 6773 } 6774 6775 /* translate source/destination address, if necessary */ 6776 if ((*state)->key[PF_SK_WIRE] != 6777 (*state)->key[PF_SK_STACK]) { 6778 struct pf_state_key *nk = 6779 (*state)->key[pd->didx]; 6780 6781 if (PF_ANEQ(pd2.src, 6782 &nk->addr[pd2.sidx], pd2.af) || 6783 nk->port[pd2.sidx] != th.th_sport) 6784 pf_change_icmp(pd2.src, &th.th_sport, 6785 daddr, &nk->addr[pd2.sidx], 6786 nk->port[pd2.sidx], NULL, 6787 pd2.ip_sum, icmpsum, 6788 pd->ip_sum, 0, pd2.af); 6789 6790 if (PF_ANEQ(pd2.dst, 6791 &nk->addr[pd2.didx], pd2.af) || 6792 nk->port[pd2.didx] != th.th_dport) 6793 pf_change_icmp(pd2.dst, &th.th_dport, 6794 saddr, &nk->addr[pd2.didx], 6795 nk->port[pd2.didx], NULL, 6796 pd2.ip_sum, icmpsum, 6797 pd->ip_sum, 0, pd2.af); 6798 copyback = 1; 6799 } 6800 6801 if (copyback) { 6802 switch (pd2.af) { 6803 #ifdef INET 6804 case AF_INET: 6805 m_copyback(m, off, ICMP_MINLEN, 6806 (caddr_t )&pd->hdr.icmp); 6807 m_copyback(m, ipoff2, sizeof(h2), 6808 (caddr_t )&h2); 6809 break; 6810 #endif /* INET */ 6811 #ifdef INET6 6812 case AF_INET6: 6813 m_copyback(m, off, 6814 sizeof(struct icmp6_hdr), 6815 (caddr_t )&pd->hdr.icmp6); 6816 m_copyback(m, ipoff2, sizeof(h2_6), 6817 (caddr_t )&h2_6); 6818 break; 6819 #endif /* INET6 */ 6820 } 6821 m_copyback(m, off2, 8, (caddr_t)&th); 6822 } 6823 6824 return (PF_PASS); 6825 break; 6826 } 6827 case IPPROTO_UDP: { 6828 struct udphdr uh; 6829 6830 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 6831 NULL, reason, pd2.af)) { 6832 DPFPRINTF(PF_DEBUG_MISC, 6833 ("pf: ICMP error message too short " 6834 "(udp)\n")); 6835 return (PF_DROP); 6836 } 6837 6838 key.af = pd2.af; 6839 key.proto = IPPROTO_UDP; 6840 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6841 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6842 key.port[pd2.sidx] = uh.uh_sport; 6843 key.port[pd2.didx] = uh.uh_dport; 6844 6845 STATE_LOOKUP(kif, &key, *state, pd); 6846 6847 /* translate source/destination address, if necessary */ 6848 if ((*state)->key[PF_SK_WIRE] != 6849 (*state)->key[PF_SK_STACK]) { 6850 struct pf_state_key *nk = 6851 (*state)->key[pd->didx]; 6852 6853 if (PF_ANEQ(pd2.src, 6854 &nk->addr[pd2.sidx], pd2.af) || 6855 nk->port[pd2.sidx] != uh.uh_sport) 6856 pf_change_icmp(pd2.src, &uh.uh_sport, 6857 daddr, &nk->addr[pd2.sidx], 6858 nk->port[pd2.sidx], &uh.uh_sum, 6859 pd2.ip_sum, icmpsum, 6860 pd->ip_sum, 1, pd2.af); 6861 6862 if (PF_ANEQ(pd2.dst, 6863 &nk->addr[pd2.didx], pd2.af) || 6864 nk->port[pd2.didx] != uh.uh_dport) 6865 pf_change_icmp(pd2.dst, &uh.uh_dport, 6866 saddr, &nk->addr[pd2.didx], 6867 nk->port[pd2.didx], &uh.uh_sum, 6868 pd2.ip_sum, icmpsum, 6869 pd->ip_sum, 1, pd2.af); 6870 6871 switch (pd2.af) { 6872 #ifdef INET 6873 case AF_INET: 6874 m_copyback(m, off, ICMP_MINLEN, 6875 (caddr_t )&pd->hdr.icmp); 6876 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6877 break; 6878 #endif /* INET */ 6879 #ifdef INET6 6880 case AF_INET6: 6881 m_copyback(m, off, 6882 sizeof(struct icmp6_hdr), 6883 (caddr_t )&pd->hdr.icmp6); 6884 m_copyback(m, ipoff2, sizeof(h2_6), 6885 (caddr_t )&h2_6); 6886 break; 6887 #endif /* INET6 */ 6888 } 6889 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 6890 } 6891 return (PF_PASS); 6892 break; 6893 } 6894 #ifdef INET 6895 case IPPROTO_ICMP: { 6896 struct icmp iih; 6897 6898 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 6899 NULL, reason, pd2.af)) { 6900 DPFPRINTF(PF_DEBUG_MISC, 6901 ("pf: ICMP error message too short i" 6902 "(icmp)\n")); 6903 return (PF_DROP); 6904 } 6905 6906 key.af = pd2.af; 6907 key.proto = IPPROTO_ICMP; 6908 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6909 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6910 key.port[0] = key.port[1] = iih.icmp_id; 6911 6912 STATE_LOOKUP(kif, &key, *state, pd); 6913 6914 /* translate source/destination address, if necessary */ 6915 if ((*state)->key[PF_SK_WIRE] != 6916 (*state)->key[PF_SK_STACK]) { 6917 struct pf_state_key *nk = 6918 (*state)->key[pd->didx]; 6919 6920 if (PF_ANEQ(pd2.src, 6921 &nk->addr[pd2.sidx], pd2.af) || 6922 nk->port[pd2.sidx] != iih.icmp_id) 6923 pf_change_icmp(pd2.src, &iih.icmp_id, 6924 daddr, &nk->addr[pd2.sidx], 6925 nk->port[pd2.sidx], NULL, 6926 pd2.ip_sum, icmpsum, 6927 pd->ip_sum, 0, AF_INET); 6928 6929 if (PF_ANEQ(pd2.dst, 6930 &nk->addr[pd2.didx], pd2.af) || 6931 nk->port[pd2.didx] != iih.icmp_id) 6932 pf_change_icmp(pd2.dst, &iih.icmp_id, 6933 saddr, &nk->addr[pd2.didx], 6934 nk->port[pd2.didx], NULL, 6935 pd2.ip_sum, icmpsum, 6936 pd->ip_sum, 0, AF_INET); 6937 6938 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 6939 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6940 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 6941 } 6942 return (PF_PASS); 6943 break; 6944 } 6945 #endif /* INET */ 6946 #ifdef INET6 6947 case IPPROTO_ICMPV6: { 6948 struct icmp6_hdr iih; 6949 6950 if (!pf_pull_hdr(m, off2, &iih, 6951 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 6952 DPFPRINTF(PF_DEBUG_MISC, 6953 ("pf: ICMP error message too short " 6954 "(icmp6)\n")); 6955 return (PF_DROP); 6956 } 6957 6958 key.af = pd2.af; 6959 key.proto = IPPROTO_ICMPV6; 6960 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6961 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6962 key.port[0] = key.port[1] = iih.icmp6_id; 6963 6964 STATE_LOOKUP(kif, &key, *state, pd); 6965 6966 /* translate source/destination address, if necessary */ 6967 if ((*state)->key[PF_SK_WIRE] != 6968 (*state)->key[PF_SK_STACK]) { 6969 struct pf_state_key *nk = 6970 (*state)->key[pd->didx]; 6971 6972 if (PF_ANEQ(pd2.src, 6973 &nk->addr[pd2.sidx], pd2.af) || 6974 nk->port[pd2.sidx] != iih.icmp6_id) 6975 pf_change_icmp(pd2.src, &iih.icmp6_id, 6976 daddr, &nk->addr[pd2.sidx], 6977 nk->port[pd2.sidx], NULL, 6978 pd2.ip_sum, icmpsum, 6979 pd->ip_sum, 0, AF_INET6); 6980 6981 if (PF_ANEQ(pd2.dst, 6982 &nk->addr[pd2.didx], pd2.af) || 6983 nk->port[pd2.didx] != iih.icmp6_id) 6984 pf_change_icmp(pd2.dst, &iih.icmp6_id, 6985 saddr, &nk->addr[pd2.didx], 6986 nk->port[pd2.didx], NULL, 6987 pd2.ip_sum, icmpsum, 6988 pd->ip_sum, 0, AF_INET6); 6989 6990 m_copyback(m, off, sizeof(struct icmp6_hdr), 6991 (caddr_t)&pd->hdr.icmp6); 6992 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 6993 m_copyback(m, off2, sizeof(struct icmp6_hdr), 6994 (caddr_t)&iih); 6995 } 6996 return (PF_PASS); 6997 break; 6998 } 6999 #endif /* INET6 */ 7000 default: { 7001 key.af = pd2.af; 7002 key.proto = pd2.proto; 7003 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7004 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7005 key.port[0] = key.port[1] = 0; 7006 7007 STATE_LOOKUP(kif, &key, *state, pd); 7008 7009 /* translate source/destination address, if necessary */ 7010 if ((*state)->key[PF_SK_WIRE] != 7011 (*state)->key[PF_SK_STACK]) { 7012 struct pf_state_key *nk = 7013 (*state)->key[pd->didx]; 7014 7015 if (PF_ANEQ(pd2.src, 7016 &nk->addr[pd2.sidx], pd2.af)) 7017 pf_change_icmp(pd2.src, NULL, daddr, 7018 &nk->addr[pd2.sidx], 0, NULL, 7019 pd2.ip_sum, icmpsum, 7020 pd->ip_sum, 0, pd2.af); 7021 7022 if (PF_ANEQ(pd2.dst, 7023 &nk->addr[pd2.didx], pd2.af)) 7024 pf_change_icmp(pd2.dst, NULL, saddr, 7025 &nk->addr[pd2.didx], 0, NULL, 7026 pd2.ip_sum, icmpsum, 7027 pd->ip_sum, 0, pd2.af); 7028 7029 switch (pd2.af) { 7030 #ifdef INET 7031 case AF_INET: 7032 m_copyback(m, off, ICMP_MINLEN, 7033 (caddr_t)&pd->hdr.icmp); 7034 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 7035 break; 7036 #endif /* INET */ 7037 #ifdef INET6 7038 case AF_INET6: 7039 m_copyback(m, off, 7040 sizeof(struct icmp6_hdr), 7041 (caddr_t )&pd->hdr.icmp6); 7042 m_copyback(m, ipoff2, sizeof(h2_6), 7043 (caddr_t )&h2_6); 7044 break; 7045 #endif /* INET6 */ 7046 } 7047 } 7048 return (PF_PASS); 7049 break; 7050 } 7051 } 7052 } 7053 } 7054 7055 static int 7056 pf_test_state_other(struct pf_kstate **state, struct pfi_kkif *kif, 7057 struct mbuf *m, struct pf_pdesc *pd) 7058 { 7059 struct pf_state_peer *src, *dst; 7060 struct pf_state_key_cmp key; 7061 uint8_t psrc, pdst; 7062 7063 bzero(&key, sizeof(key)); 7064 key.af = pd->af; 7065 key.proto = pd->proto; 7066 if (pd->dir == PF_IN) { 7067 PF_ACPY(&key.addr[0], pd->src, key.af); 7068 PF_ACPY(&key.addr[1], pd->dst, key.af); 7069 key.port[0] = key.port[1] = 0; 7070 } else { 7071 PF_ACPY(&key.addr[1], pd->src, key.af); 7072 PF_ACPY(&key.addr[0], pd->dst, key.af); 7073 key.port[1] = key.port[0] = 0; 7074 } 7075 7076 STATE_LOOKUP(kif, &key, *state, pd); 7077 7078 if (pd->dir == (*state)->direction) { 7079 src = &(*state)->src; 7080 dst = &(*state)->dst; 7081 psrc = PF_PEER_SRC; 7082 pdst = PF_PEER_DST; 7083 } else { 7084 src = &(*state)->dst; 7085 dst = &(*state)->src; 7086 psrc = PF_PEER_DST; 7087 pdst = PF_PEER_SRC; 7088 } 7089 7090 /* update states */ 7091 if (src->state < PFOTHERS_SINGLE) 7092 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 7093 if (dst->state == PFOTHERS_SINGLE) 7094 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 7095 7096 /* update expire time */ 7097 (*state)->expire = pf_get_uptime(); 7098 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 7099 (*state)->timeout = PFTM_OTHER_MULTIPLE; 7100 else 7101 (*state)->timeout = PFTM_OTHER_SINGLE; 7102 7103 /* translate source/destination address, if necessary */ 7104 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7105 struct pf_state_key *nk = (*state)->key[pd->didx]; 7106 7107 KASSERT(nk, ("%s: nk is null", __func__)); 7108 KASSERT(pd, ("%s: pd is null", __func__)); 7109 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 7110 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 7111 switch (pd->af) { 7112 #ifdef INET 7113 case AF_INET: 7114 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 7115 pf_change_a(&pd->src->v4.s_addr, 7116 pd->ip_sum, 7117 nk->addr[pd->sidx].v4.s_addr, 7118 0); 7119 7120 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 7121 pf_change_a(&pd->dst->v4.s_addr, 7122 pd->ip_sum, 7123 nk->addr[pd->didx].v4.s_addr, 7124 0); 7125 7126 break; 7127 #endif /* INET */ 7128 #ifdef INET6 7129 case AF_INET6: 7130 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 7131 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 7132 7133 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 7134 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 7135 #endif /* INET6 */ 7136 } 7137 } 7138 return (PF_PASS); 7139 } 7140 7141 /* 7142 * ipoff and off are measured from the start of the mbuf chain. 7143 * h must be at "ipoff" on the mbuf chain. 7144 */ 7145 void * 7146 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 7147 u_short *actionp, u_short *reasonp, sa_family_t af) 7148 { 7149 switch (af) { 7150 #ifdef INET 7151 case AF_INET: { 7152 struct ip *h = mtod(m, struct ip *); 7153 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 7154 7155 if (fragoff) { 7156 if (fragoff >= len) 7157 ACTION_SET(actionp, PF_PASS); 7158 else { 7159 ACTION_SET(actionp, PF_DROP); 7160 REASON_SET(reasonp, PFRES_FRAG); 7161 } 7162 return (NULL); 7163 } 7164 if (m->m_pkthdr.len < off + len || 7165 ntohs(h->ip_len) < off + len) { 7166 ACTION_SET(actionp, PF_DROP); 7167 REASON_SET(reasonp, PFRES_SHORT); 7168 return (NULL); 7169 } 7170 break; 7171 } 7172 #endif /* INET */ 7173 #ifdef INET6 7174 case AF_INET6: { 7175 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 7176 7177 if (m->m_pkthdr.len < off + len || 7178 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 7179 (unsigned)(off + len)) { 7180 ACTION_SET(actionp, PF_DROP); 7181 REASON_SET(reasonp, PFRES_SHORT); 7182 return (NULL); 7183 } 7184 break; 7185 } 7186 #endif /* INET6 */ 7187 } 7188 m_copydata(m, off, len, p); 7189 return (p); 7190 } 7191 7192 int 7193 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 7194 int rtableid) 7195 { 7196 struct ifnet *ifp; 7197 7198 /* 7199 * Skip check for addresses with embedded interface scope, 7200 * as they would always match anyway. 7201 */ 7202 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 7203 return (1); 7204 7205 if (af != AF_INET && af != AF_INET6) 7206 return (0); 7207 7208 if (kif == V_pfi_all) 7209 return (1); 7210 7211 /* Skip checks for ipsec interfaces */ 7212 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 7213 return (1); 7214 7215 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 7216 7217 switch (af) { 7218 #ifdef INET6 7219 case AF_INET6: 7220 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 7221 ifp)); 7222 #endif 7223 #ifdef INET 7224 case AF_INET: 7225 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 7226 ifp)); 7227 #endif 7228 } 7229 7230 return (0); 7231 } 7232 7233 #ifdef INET 7234 static void 7235 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7236 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7237 { 7238 struct mbuf *m0, *m1, *md; 7239 struct sockaddr_in dst; 7240 struct ip *ip; 7241 struct pfi_kkif *nkif = NULL; 7242 struct ifnet *ifp = NULL; 7243 struct pf_addr naddr; 7244 struct pf_ksrc_node *sn = NULL; 7245 int error = 0; 7246 uint16_t ip_len, ip_off; 7247 uint16_t tmp; 7248 int r_rt, r_dir; 7249 7250 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 7251 7252 if (s) { 7253 r_rt = s->rt; 7254 r_dir = s->direction; 7255 } else { 7256 r_rt = r->rt; 7257 r_dir = r->direction; 7258 } 7259 7260 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7261 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7262 __func__)); 7263 7264 if ((pd->pf_mtag == NULL && 7265 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7266 pd->pf_mtag->routed++ > 3) { 7267 m0 = *m; 7268 *m = NULL; 7269 goto bad_locked; 7270 } 7271 7272 if (r_rt == PF_DUPTO) { 7273 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7274 if (s == NULL) { 7275 ifp = r->rpool.cur->kif ? 7276 r->rpool.cur->kif->pfik_ifp : NULL; 7277 } else { 7278 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7279 /* If pfsync'd */ 7280 if (ifp == NULL && r->rpool.cur != NULL) 7281 ifp = r->rpool.cur->kif ? 7282 r->rpool.cur->kif->pfik_ifp : NULL; 7283 PF_STATE_UNLOCK(s); 7284 } 7285 if (ifp == oifp) { 7286 /* When the 2nd interface is not skipped */ 7287 return; 7288 } else { 7289 m0 = *m; 7290 *m = NULL; 7291 goto bad; 7292 } 7293 } else { 7294 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 7295 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 7296 if (s) 7297 PF_STATE_UNLOCK(s); 7298 return; 7299 } 7300 } 7301 } else { 7302 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 7303 pf_dummynet(pd, s, r, m); 7304 if (s) 7305 PF_STATE_UNLOCK(s); 7306 return; 7307 } 7308 m0 = *m; 7309 } 7310 7311 ip = mtod(m0, struct ip *); 7312 7313 bzero(&dst, sizeof(dst)); 7314 dst.sin_family = AF_INET; 7315 dst.sin_len = sizeof(dst); 7316 dst.sin_addr = ip->ip_dst; 7317 7318 bzero(&naddr, sizeof(naddr)); 7319 7320 if (s == NULL) { 7321 if (TAILQ_EMPTY(&r->rpool.list)) { 7322 DPFPRINTF(PF_DEBUG_URGENT, 7323 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 7324 goto bad_locked; 7325 } 7326 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 7327 &naddr, &nkif, NULL, &sn); 7328 if (!PF_AZERO(&naddr, AF_INET)) 7329 dst.sin_addr.s_addr = naddr.v4.s_addr; 7330 ifp = nkif ? nkif->pfik_ifp : NULL; 7331 } else { 7332 struct pfi_kkif *kif; 7333 7334 if (!PF_AZERO(&s->rt_addr, AF_INET)) 7335 dst.sin_addr.s_addr = 7336 s->rt_addr.v4.s_addr; 7337 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7338 kif = s->rt_kif; 7339 /* If pfsync'd */ 7340 if (ifp == NULL && r->rpool.cur != NULL) { 7341 ifp = r->rpool.cur->kif ? 7342 r->rpool.cur->kif->pfik_ifp : NULL; 7343 kif = r->rpool.cur->kif; 7344 } 7345 if (ifp != NULL && kif != NULL && 7346 r->rule_flag & PFRULE_IFBOUND && 7347 r->rt == PF_REPLYTO && 7348 s->kif == V_pfi_all) { 7349 s->kif = kif; 7350 s->orig_kif = oifp->if_pf_kif; 7351 } 7352 7353 PF_STATE_UNLOCK(s); 7354 } 7355 7356 if (ifp == NULL) 7357 goto bad; 7358 7359 if (pd->dir == PF_IN) { 7360 if (pf_test(PF_OUT, PFIL_FWD, ifp, &m0, inp, &pd->act) != PF_PASS) 7361 goto bad; 7362 else if (m0 == NULL) 7363 goto done; 7364 if (m0->m_len < sizeof(struct ip)) { 7365 DPFPRINTF(PF_DEBUG_URGENT, 7366 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 7367 goto bad; 7368 } 7369 ip = mtod(m0, struct ip *); 7370 } 7371 7372 if (ifp->if_flags & IFF_LOOPBACK) 7373 m0->m_flags |= M_SKIP_FIREWALL; 7374 7375 ip_len = ntohs(ip->ip_len); 7376 ip_off = ntohs(ip->ip_off); 7377 7378 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 7379 m0->m_pkthdr.csum_flags |= CSUM_IP; 7380 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 7381 in_delayed_cksum(m0); 7382 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 7383 } 7384 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 7385 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2)); 7386 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 7387 } 7388 7389 if (pd->dir == PF_IN) { 7390 /* 7391 * Make sure dummynet gets the correct direction, in case it needs to 7392 * re-inject later. 7393 */ 7394 pd->dir = PF_OUT; 7395 7396 /* 7397 * The following processing is actually the rest of the inbound processing, even 7398 * though we've marked it as outbound (so we don't look through dummynet) and it 7399 * happens after the outbound processing (pf_test(PF_OUT) above). 7400 * Swap the dummynet pipe numbers, because it's going to come to the wrong 7401 * conclusion about what direction it's processing, and we can't fix it or it 7402 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 7403 * decision will pick the right pipe, and everything will mostly work as expected. 7404 */ 7405 tmp = pd->act.dnrpipe; 7406 pd->act.dnrpipe = pd->act.dnpipe; 7407 pd->act.dnpipe = tmp; 7408 } 7409 7410 /* 7411 * If small enough for interface, or the interface will take 7412 * care of the fragmentation for us, we can just send directly. 7413 */ 7414 if (ip_len <= ifp->if_mtu || 7415 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 7416 ip->ip_sum = 0; 7417 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 7418 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 7419 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 7420 } 7421 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 7422 7423 md = m0; 7424 error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 7425 if (md != NULL) 7426 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL); 7427 goto done; 7428 } 7429 7430 /* Balk when DF bit is set or the interface didn't support TSO. */ 7431 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 7432 error = EMSGSIZE; 7433 KMOD_IPSTAT_INC(ips_cantfrag); 7434 if (r_rt != PF_DUPTO) { 7435 if (s && pd->nat_rule != NULL) 7436 PACKET_UNDO_NAT(m0, pd, 7437 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 7438 s); 7439 7440 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 7441 ifp->if_mtu); 7442 goto done; 7443 } else 7444 goto bad; 7445 } 7446 7447 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 7448 if (error) 7449 goto bad; 7450 7451 for (; m0; m0 = m1) { 7452 m1 = m0->m_nextpkt; 7453 m0->m_nextpkt = NULL; 7454 if (error == 0) { 7455 m_clrprotoflags(m0); 7456 md = m0; 7457 pd->pf_mtag = pf_find_mtag(md); 7458 error = pf_dummynet_route(pd, s, r, ifp, 7459 sintosa(&dst), &md); 7460 if (md != NULL) 7461 error = (*ifp->if_output)(ifp, md, 7462 sintosa(&dst), NULL); 7463 } else 7464 m_freem(m0); 7465 } 7466 7467 if (error == 0) 7468 KMOD_IPSTAT_INC(ips_fragmented); 7469 7470 done: 7471 if (r_rt != PF_DUPTO) 7472 *m = NULL; 7473 return; 7474 7475 bad_locked: 7476 if (s) 7477 PF_STATE_UNLOCK(s); 7478 bad: 7479 m_freem(m0); 7480 goto done; 7481 } 7482 #endif /* INET */ 7483 7484 #ifdef INET6 7485 static void 7486 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7487 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7488 { 7489 struct mbuf *m0, *md; 7490 struct sockaddr_in6 dst; 7491 struct ip6_hdr *ip6; 7492 struct pfi_kkif *nkif = NULL; 7493 struct ifnet *ifp = NULL; 7494 struct pf_addr naddr; 7495 struct pf_ksrc_node *sn = NULL; 7496 int r_rt, r_dir; 7497 7498 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 7499 7500 if (s) { 7501 r_rt = s->rt; 7502 r_dir = s->direction; 7503 } else { 7504 r_rt = r->rt; 7505 r_dir = r->direction; 7506 } 7507 7508 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7509 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7510 __func__)); 7511 7512 if ((pd->pf_mtag == NULL && 7513 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7514 pd->pf_mtag->routed++ > 3) { 7515 m0 = *m; 7516 *m = NULL; 7517 goto bad_locked; 7518 } 7519 7520 if (r_rt == PF_DUPTO) { 7521 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7522 if (s == NULL) { 7523 ifp = r->rpool.cur->kif ? 7524 r->rpool.cur->kif->pfik_ifp : NULL; 7525 } else { 7526 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7527 /* If pfsync'd */ 7528 if (ifp == NULL && r->rpool.cur != NULL) 7529 ifp = r->rpool.cur->kif ? 7530 r->rpool.cur->kif->pfik_ifp : NULL; 7531 PF_STATE_UNLOCK(s); 7532 } 7533 if (ifp == oifp) { 7534 /* When the 2nd interface is not skipped */ 7535 return; 7536 } else { 7537 m0 = *m; 7538 *m = NULL; 7539 goto bad; 7540 } 7541 } else { 7542 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 7543 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 7544 if (s) 7545 PF_STATE_UNLOCK(s); 7546 return; 7547 } 7548 } 7549 } else { 7550 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 7551 pf_dummynet(pd, s, r, m); 7552 if (s) 7553 PF_STATE_UNLOCK(s); 7554 return; 7555 } 7556 m0 = *m; 7557 } 7558 7559 ip6 = mtod(m0, struct ip6_hdr *); 7560 7561 bzero(&dst, sizeof(dst)); 7562 dst.sin6_family = AF_INET6; 7563 dst.sin6_len = sizeof(dst); 7564 dst.sin6_addr = ip6->ip6_dst; 7565 7566 bzero(&naddr, sizeof(naddr)); 7567 7568 if (s == NULL) { 7569 if (TAILQ_EMPTY(&r->rpool.list)) { 7570 DPFPRINTF(PF_DEBUG_URGENT, 7571 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 7572 goto bad_locked; 7573 } 7574 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 7575 &naddr, &nkif, NULL, &sn); 7576 if (!PF_AZERO(&naddr, AF_INET6)) 7577 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 7578 &naddr, AF_INET6); 7579 ifp = nkif ? nkif->pfik_ifp : NULL; 7580 } else { 7581 struct pfi_kkif *kif; 7582 7583 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 7584 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 7585 &s->rt_addr, AF_INET6); 7586 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7587 kif = s->rt_kif; 7588 /* If pfsync'd */ 7589 if (ifp == NULL && r->rpool.cur != NULL) { 7590 ifp = r->rpool.cur->kif ? 7591 r->rpool.cur->kif->pfik_ifp : NULL; 7592 kif = r->rpool.cur->kif; 7593 } 7594 if (ifp != NULL && kif != NULL && 7595 r->rule_flag & PFRULE_IFBOUND && 7596 r->rt == PF_REPLYTO && 7597 s->kif == V_pfi_all) { 7598 s->kif = kif; 7599 s->orig_kif = oifp->if_pf_kif; 7600 } 7601 } 7602 7603 if (s) 7604 PF_STATE_UNLOCK(s); 7605 7606 if (ifp == NULL) 7607 goto bad; 7608 7609 if (pd->dir == PF_IN) { 7610 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp, &pd->act) != PF_PASS) 7611 goto bad; 7612 else if (m0 == NULL) 7613 goto done; 7614 if (m0->m_len < sizeof(struct ip6_hdr)) { 7615 DPFPRINTF(PF_DEBUG_URGENT, 7616 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 7617 __func__)); 7618 goto bad; 7619 } 7620 ip6 = mtod(m0, struct ip6_hdr *); 7621 } 7622 7623 if (ifp->if_flags & IFF_LOOPBACK) 7624 m0->m_flags |= M_SKIP_FIREWALL; 7625 7626 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 7627 ~ifp->if_hwassist) { 7628 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 7629 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 7630 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 7631 } 7632 7633 /* 7634 * If the packet is too large for the outgoing interface, 7635 * send back an icmp6 error. 7636 */ 7637 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 7638 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 7639 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 7640 md = m0; 7641 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 7642 if (md != NULL) 7643 nd6_output_ifp(ifp, ifp, md, &dst, NULL); 7644 } 7645 else { 7646 in6_ifstat_inc(ifp, ifs6_in_toobig); 7647 if (r_rt != PF_DUPTO) { 7648 if (s && pd->nat_rule != NULL) 7649 PACKET_UNDO_NAT(m0, pd, 7650 ((caddr_t)ip6 - m0->m_data) + 7651 sizeof(struct ip6_hdr), s); 7652 7653 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 7654 } else 7655 goto bad; 7656 } 7657 7658 done: 7659 if (r_rt != PF_DUPTO) 7660 *m = NULL; 7661 return; 7662 7663 bad_locked: 7664 if (s) 7665 PF_STATE_UNLOCK(s); 7666 bad: 7667 m_freem(m0); 7668 goto done; 7669 } 7670 #endif /* INET6 */ 7671 7672 /* 7673 * FreeBSD supports cksum offloads for the following drivers. 7674 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 7675 * 7676 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 7677 * network driver performed cksum including pseudo header, need to verify 7678 * csum_data 7679 * CSUM_DATA_VALID : 7680 * network driver performed cksum, needs to additional pseudo header 7681 * cksum computation with partial csum_data(i.e. lack of H/W support for 7682 * pseudo header, for instance sk(4) and possibly gem(4)) 7683 * 7684 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 7685 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 7686 * TCP/UDP layer. 7687 * Also, set csum_data to 0xffff to force cksum validation. 7688 */ 7689 static int 7690 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 7691 { 7692 u_int16_t sum = 0; 7693 int hw_assist = 0; 7694 struct ip *ip; 7695 7696 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 7697 return (1); 7698 if (m->m_pkthdr.len < off + len) 7699 return (1); 7700 7701 switch (p) { 7702 case IPPROTO_TCP: 7703 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 7704 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 7705 sum = m->m_pkthdr.csum_data; 7706 } else { 7707 ip = mtod(m, struct ip *); 7708 sum = in_pseudo(ip->ip_src.s_addr, 7709 ip->ip_dst.s_addr, htonl((u_short)len + 7710 m->m_pkthdr.csum_data + IPPROTO_TCP)); 7711 } 7712 sum ^= 0xffff; 7713 ++hw_assist; 7714 } 7715 break; 7716 case IPPROTO_UDP: 7717 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 7718 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 7719 sum = m->m_pkthdr.csum_data; 7720 } else { 7721 ip = mtod(m, struct ip *); 7722 sum = in_pseudo(ip->ip_src.s_addr, 7723 ip->ip_dst.s_addr, htonl((u_short)len + 7724 m->m_pkthdr.csum_data + IPPROTO_UDP)); 7725 } 7726 sum ^= 0xffff; 7727 ++hw_assist; 7728 } 7729 break; 7730 case IPPROTO_ICMP: 7731 #ifdef INET6 7732 case IPPROTO_ICMPV6: 7733 #endif /* INET6 */ 7734 break; 7735 default: 7736 return (1); 7737 } 7738 7739 if (!hw_assist) { 7740 switch (af) { 7741 case AF_INET: 7742 if (p == IPPROTO_ICMP) { 7743 if (m->m_len < off) 7744 return (1); 7745 m->m_data += off; 7746 m->m_len -= off; 7747 sum = in_cksum(m, len); 7748 m->m_data -= off; 7749 m->m_len += off; 7750 } else { 7751 if (m->m_len < sizeof(struct ip)) 7752 return (1); 7753 sum = in4_cksum(m, p, off, len); 7754 } 7755 break; 7756 #ifdef INET6 7757 case AF_INET6: 7758 if (m->m_len < sizeof(struct ip6_hdr)) 7759 return (1); 7760 sum = in6_cksum(m, p, off, len); 7761 break; 7762 #endif /* INET6 */ 7763 default: 7764 return (1); 7765 } 7766 } 7767 if (sum) { 7768 switch (p) { 7769 case IPPROTO_TCP: 7770 { 7771 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 7772 break; 7773 } 7774 case IPPROTO_UDP: 7775 { 7776 KMOD_UDPSTAT_INC(udps_badsum); 7777 break; 7778 } 7779 #ifdef INET 7780 case IPPROTO_ICMP: 7781 { 7782 KMOD_ICMPSTAT_INC(icps_checksum); 7783 break; 7784 } 7785 #endif 7786 #ifdef INET6 7787 case IPPROTO_ICMPV6: 7788 { 7789 KMOD_ICMP6STAT_INC(icp6s_checksum); 7790 break; 7791 } 7792 #endif /* INET6 */ 7793 } 7794 return (1); 7795 } else { 7796 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 7797 m->m_pkthdr.csum_flags |= 7798 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 7799 m->m_pkthdr.csum_data = 0xffff; 7800 } 7801 } 7802 return (0); 7803 } 7804 7805 static bool 7806 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r, 7807 const struct pf_kstate *s, struct ip_fw_args *dnflow) 7808 { 7809 int dndir = r->direction; 7810 7811 if (s && dndir == PF_INOUT) { 7812 dndir = s->direction; 7813 } else if (dndir == PF_INOUT) { 7814 /* Assume primary direction. Happens when we've set dnpipe in 7815 * the ethernet level code. */ 7816 dndir = pd->dir; 7817 } 7818 7819 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED) 7820 return (false); 7821 7822 memset(dnflow, 0, sizeof(*dnflow)); 7823 7824 if (pd->dport != NULL) 7825 dnflow->f_id.dst_port = ntohs(*pd->dport); 7826 if (pd->sport != NULL) 7827 dnflow->f_id.src_port = ntohs(*pd->sport); 7828 7829 if (pd->dir == PF_IN) 7830 dnflow->flags |= IPFW_ARGS_IN; 7831 else 7832 dnflow->flags |= IPFW_ARGS_OUT; 7833 7834 if (pd->dir != dndir && pd->act.dnrpipe) { 7835 dnflow->rule.info = pd->act.dnrpipe; 7836 } 7837 else if (pd->dir == dndir && pd->act.dnpipe) { 7838 dnflow->rule.info = pd->act.dnpipe; 7839 } 7840 else { 7841 return (false); 7842 } 7843 7844 dnflow->rule.info |= IPFW_IS_DUMMYNET; 7845 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 7846 dnflow->rule.info |= IPFW_IS_PIPE; 7847 7848 dnflow->f_id.proto = pd->proto; 7849 dnflow->f_id.extra = dnflow->rule.info; 7850 switch (pd->af) { 7851 case AF_INET: 7852 dnflow->f_id.addr_type = 4; 7853 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 7854 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 7855 break; 7856 case AF_INET6: 7857 dnflow->flags |= IPFW_ARGS_IP6; 7858 dnflow->f_id.addr_type = 6; 7859 dnflow->f_id.src_ip6 = pd->src->v6; 7860 dnflow->f_id.dst_ip6 = pd->dst->v6; 7861 break; 7862 default: 7863 panic("Invalid AF"); 7864 break; 7865 } 7866 7867 return (true); 7868 } 7869 7870 int 7871 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 7872 struct inpcb *inp) 7873 { 7874 struct pfi_kkif *kif; 7875 struct mbuf *m = *m0; 7876 7877 M_ASSERTPKTHDR(m); 7878 MPASS(ifp->if_vnet == curvnet); 7879 NET_EPOCH_ASSERT(); 7880 7881 if (!V_pf_status.running) 7882 return (PF_PASS); 7883 7884 kif = (struct pfi_kkif *)ifp->if_pf_kif; 7885 7886 if (kif == NULL) { 7887 DPFPRINTF(PF_DEBUG_URGENT, 7888 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname)); 7889 return (PF_DROP); 7890 } 7891 if (kif->pfik_flags & PFI_IFLAG_SKIP) 7892 return (PF_PASS); 7893 7894 if (m->m_flags & M_SKIP_FIREWALL) 7895 return (PF_PASS); 7896 7897 /* Stateless! */ 7898 return (pf_test_eth_rule(dir, kif, m0)); 7899 } 7900 7901 static __inline void 7902 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag) 7903 { 7904 struct m_tag *mtag; 7905 7906 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 7907 7908 /* dummynet adds this tag, but pf does not need it, 7909 * and keeping it creates unexpected behavior, 7910 * e.g. in case of divert(4) usage right after dummynet. */ 7911 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 7912 if (mtag != NULL) 7913 m_tag_delete(m, mtag); 7914 } 7915 7916 static int 7917 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s, 7918 struct pf_krule *r, struct mbuf **m0) 7919 { 7920 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0)); 7921 } 7922 7923 static int 7924 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s, 7925 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa, 7926 struct mbuf **m0) 7927 { 7928 NET_EPOCH_ASSERT(); 7929 7930 if (pd->act.dnpipe || pd->act.dnrpipe) { 7931 struct ip_fw_args dnflow; 7932 if (ip_dn_io_ptr == NULL) { 7933 m_freem(*m0); 7934 *m0 = NULL; 7935 return (ENOMEM); 7936 } 7937 7938 if (pd->pf_mtag == NULL && 7939 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 7940 m_freem(*m0); 7941 *m0 = NULL; 7942 return (ENOMEM); 7943 } 7944 7945 if (ifp != NULL) { 7946 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO; 7947 7948 pd->pf_mtag->if_index = ifp->if_index; 7949 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 7950 7951 MPASS(sa != NULL); 7952 7953 if (pd->af == AF_INET) 7954 memcpy(&pd->pf_mtag->dst, sa, 7955 sizeof(struct sockaddr_in)); 7956 else 7957 memcpy(&pd->pf_mtag->dst, sa, 7958 sizeof(struct sockaddr_in6)); 7959 } 7960 7961 if (s != NULL && s->nat_rule.ptr != NULL && 7962 s->nat_rule.ptr->action == PF_RDR && 7963 ( 7964 #ifdef INET 7965 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) || 7966 #endif 7967 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) { 7968 /* 7969 * If we're redirecting to loopback mark this packet 7970 * as being local. Otherwise it might get dropped 7971 * if dummynet re-injects. 7972 */ 7973 (*m0)->m_pkthdr.rcvif = V_loif; 7974 } 7975 7976 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) { 7977 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 7978 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED; 7979 ip_dn_io_ptr(m0, &dnflow); 7980 if (*m0 != NULL) { 7981 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 7982 pf_dummynet_flag_remove(*m0, pd->pf_mtag); 7983 } 7984 } 7985 } 7986 7987 return (0); 7988 } 7989 7990 #ifdef INET 7991 int 7992 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 7993 struct inpcb *inp, struct pf_rule_actions *default_actions) 7994 { 7995 struct pfi_kkif *kif; 7996 u_short action, reason = 0; 7997 struct mbuf *m = *m0; 7998 struct ip *h = NULL; 7999 struct m_tag *mtag; 8000 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 8001 struct pf_kstate *s = NULL; 8002 struct pf_kruleset *ruleset = NULL; 8003 struct pf_pdesc pd; 8004 int off, dirndx, use_2nd_queue = 0; 8005 uint16_t tag; 8006 uint8_t rt; 8007 8008 PF_RULES_RLOCK_TRACKER; 8009 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 8010 M_ASSERTPKTHDR(m); 8011 8012 if (!V_pf_status.running) 8013 return (PF_PASS); 8014 8015 PF_RULES_RLOCK(); 8016 8017 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8018 8019 if (__predict_false(kif == NULL)) { 8020 DPFPRINTF(PF_DEBUG_URGENT, 8021 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 8022 PF_RULES_RUNLOCK(); 8023 return (PF_DROP); 8024 } 8025 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 8026 PF_RULES_RUNLOCK(); 8027 return (PF_PASS); 8028 } 8029 8030 if (m->m_flags & M_SKIP_FIREWALL) { 8031 PF_RULES_RUNLOCK(); 8032 return (PF_PASS); 8033 } 8034 8035 memset(&pd, 0, sizeof(pd)); 8036 TAILQ_INIT(&pd.sctp_multihome_jobs); 8037 if (default_actions != NULL) 8038 memcpy(&pd.act, default_actions, sizeof(pd.act)); 8039 pd.pf_mtag = pf_find_mtag(m); 8040 8041 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 8042 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 8043 8044 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 8045 pd.pf_mtag->if_idxgen); 8046 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 8047 PF_RULES_RUNLOCK(); 8048 m_freem(*m0); 8049 *m0 = NULL; 8050 return (PF_PASS); 8051 } 8052 PF_RULES_RUNLOCK(); 8053 (ifp->if_output)(ifp, m, sintosa(&pd.pf_mtag->dst), NULL); 8054 *m0 = NULL; 8055 return (PF_PASS); 8056 } 8057 8058 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 8059 pd.act.dnpipe = pd.pf_mtag->dnpipe; 8060 pd.act.flags = pd.pf_mtag->dnflags; 8061 } 8062 8063 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 8064 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 8065 /* Dummynet re-injects packets after they've 8066 * completed their delay. We've already 8067 * processed them, so pass unconditionally. */ 8068 8069 /* But only once. We may see the packet multiple times (e.g. 8070 * PFIL_IN/PFIL_OUT). */ 8071 pf_dummynet_flag_remove(m, pd.pf_mtag); 8072 PF_RULES_RUNLOCK(); 8073 8074 return (PF_PASS); 8075 } 8076 8077 pd.sport = pd.dport = NULL; 8078 pd.proto_sum = NULL; 8079 pd.dir = dir; 8080 pd.sidx = (dir == PF_IN) ? 0 : 1; 8081 pd.didx = (dir == PF_IN) ? 1 : 0; 8082 pd.af = AF_INET; 8083 pd.act.rtableid = -1; 8084 8085 h = mtod(m, struct ip *); 8086 off = h->ip_hl << 2; 8087 8088 if (__predict_false(ip_divert_ptr != NULL) && 8089 ((mtag = m_tag_locate(m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) { 8090 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1); 8091 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) || 8092 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) { 8093 if (pd.pf_mtag == NULL && 8094 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 8095 action = PF_DROP; 8096 goto done; 8097 } 8098 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED; 8099 } 8100 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) { 8101 m->m_flags |= M_FASTFWD_OURS; 8102 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 8103 } 8104 m_tag_delete(m, mtag); 8105 8106 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 8107 if (mtag != NULL) 8108 m_tag_delete(m, mtag); 8109 } else if (pf_normalize_ip(m0, kif, &reason, &pd) != PF_PASS) { 8110 /* We do IP header normalization and packet reassembly here */ 8111 action = PF_DROP; 8112 goto done; 8113 } 8114 m = *m0; /* pf_normalize messes with m0 */ 8115 h = mtod(m, struct ip *); 8116 8117 off = h->ip_hl << 2; 8118 if (off < (int)sizeof(struct ip)) { 8119 action = PF_DROP; 8120 REASON_SET(&reason, PFRES_SHORT); 8121 pd.act.log = PF_LOG_FORCE; 8122 goto done; 8123 } 8124 8125 pd.src = (struct pf_addr *)&h->ip_src; 8126 pd.dst = (struct pf_addr *)&h->ip_dst; 8127 pd.ip_sum = &h->ip_sum; 8128 pd.proto = h->ip_p; 8129 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 8130 pd.tot_len = ntohs(h->ip_len); 8131 8132 /* handle fragments that didn't get reassembled by normalization */ 8133 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 8134 action = pf_test_fragment(&r, kif, m, h, &pd, &a, &ruleset); 8135 goto done; 8136 } 8137 8138 switch (h->ip_p) { 8139 case IPPROTO_TCP: { 8140 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 8141 &action, &reason, AF_INET)) { 8142 if (action != PF_PASS) 8143 pd.act.log = PF_LOG_FORCE; 8144 goto done; 8145 } 8146 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 8147 8148 pd.sport = &pd.hdr.tcp.th_sport; 8149 pd.dport = &pd.hdr.tcp.th_dport; 8150 8151 /* Respond to SYN with a syncookie. */ 8152 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 8153 pd.dir == PF_IN && pf_synflood_check(&pd)) { 8154 pf_syncookie_send(m, off, &pd); 8155 action = PF_DROP; 8156 break; 8157 } 8158 8159 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 8160 use_2nd_queue = 1; 8161 action = pf_normalize_tcp(kif, m, 0, off, h, &pd); 8162 if (action == PF_DROP) 8163 goto done; 8164 action = pf_test_state_tcp(&s, kif, m, off, h, &pd, &reason); 8165 if (action == PF_PASS) { 8166 if (V_pfsync_update_state_ptr != NULL) 8167 V_pfsync_update_state_ptr(s); 8168 r = s->rule.ptr; 8169 a = s->anchor.ptr; 8170 } else if (s == NULL) { 8171 /* Validate remote SYN|ACK, re-create original SYN if 8172 * valid. */ 8173 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 8174 TH_ACK && pf_syncookie_validate(&pd) && 8175 pd.dir == PF_IN) { 8176 struct mbuf *msyn; 8177 8178 msyn = pf_syncookie_recreate_syn(h->ip_ttl, off, 8179 &pd); 8180 if (msyn == NULL) { 8181 action = PF_DROP; 8182 break; 8183 } 8184 8185 action = pf_test(dir, pflags, ifp, &msyn, inp, 8186 &pd.act); 8187 m_freem(msyn); 8188 if (action != PF_PASS) 8189 break; 8190 8191 action = pf_test_state_tcp(&s, kif, m, off, h, 8192 &pd, &reason); 8193 if (action != PF_PASS || s == NULL) { 8194 action = PF_DROP; 8195 break; 8196 } 8197 8198 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 8199 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 8200 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 8201 action = pf_synproxy(&pd, &s, &reason); 8202 break; 8203 } else { 8204 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8205 &a, &ruleset, inp); 8206 } 8207 } 8208 break; 8209 } 8210 8211 case IPPROTO_UDP: { 8212 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 8213 &action, &reason, AF_INET)) { 8214 if (action != PF_PASS) 8215 pd.act.log = PF_LOG_FORCE; 8216 goto done; 8217 } 8218 pd.sport = &pd.hdr.udp.uh_sport; 8219 pd.dport = &pd.hdr.udp.uh_dport; 8220 if (pd.hdr.udp.uh_dport == 0 || 8221 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 8222 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 8223 action = PF_DROP; 8224 REASON_SET(&reason, PFRES_SHORT); 8225 goto done; 8226 } 8227 action = pf_test_state_udp(&s, kif, m, off, h, &pd); 8228 if (action == PF_PASS) { 8229 if (V_pfsync_update_state_ptr != NULL) 8230 V_pfsync_update_state_ptr(s); 8231 r = s->rule.ptr; 8232 a = s->anchor.ptr; 8233 } else if (s == NULL) 8234 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8235 &a, &ruleset, inp); 8236 break; 8237 } 8238 8239 case IPPROTO_SCTP: { 8240 if (!pf_pull_hdr(m, off, &pd.hdr.sctp, sizeof(pd.hdr.sctp), 8241 &action, &reason, AF_INET)) { 8242 if (action != PF_PASS) 8243 pd.act.log |= PF_LOG_FORCE; 8244 goto done; 8245 } 8246 pd.p_len = pd.tot_len - off; 8247 8248 pd.sport = &pd.hdr.sctp.src_port; 8249 pd.dport = &pd.hdr.sctp.dest_port; 8250 if (pd.hdr.sctp.src_port == 0 || pd.hdr.sctp.dest_port == 0) { 8251 action = PF_DROP; 8252 REASON_SET(&reason, PFRES_SHORT); 8253 goto done; 8254 } 8255 action = pf_normalize_sctp(dir, kif, m, 0, off, h, &pd); 8256 if (action == PF_DROP) 8257 goto done; 8258 action = pf_test_state_sctp(&s, kif, m, off, h, &pd, 8259 &reason); 8260 if (action == PF_PASS) { 8261 if (V_pfsync_update_state_ptr != NULL) 8262 V_pfsync_update_state_ptr(s); 8263 r = s->rule.ptr; 8264 a = s->anchor.ptr; 8265 } else { 8266 action = pf_test_rule(&r, &s, kif, m, off, 8267 &pd, &a, &ruleset, inp); 8268 } 8269 break; 8270 } 8271 8272 case IPPROTO_ICMP: { 8273 if (!pf_pull_hdr(m, off, &pd.hdr.icmp, ICMP_MINLEN, 8274 &action, &reason, AF_INET)) { 8275 if (action != PF_PASS) 8276 pd.act.log = PF_LOG_FORCE; 8277 goto done; 8278 } 8279 action = pf_test_state_icmp(&s, kif, m, off, h, &pd, &reason); 8280 if (action == PF_PASS) { 8281 if (V_pfsync_update_state_ptr != NULL) 8282 V_pfsync_update_state_ptr(s); 8283 r = s->rule.ptr; 8284 a = s->anchor.ptr; 8285 } else if (s == NULL) 8286 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8287 &a, &ruleset, inp); 8288 break; 8289 } 8290 8291 #ifdef INET6 8292 case IPPROTO_ICMPV6: { 8293 action = PF_DROP; 8294 DPFPRINTF(PF_DEBUG_MISC, 8295 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 8296 goto done; 8297 } 8298 #endif 8299 8300 default: 8301 action = pf_test_state_other(&s, kif, m, &pd); 8302 if (action == PF_PASS) { 8303 if (V_pfsync_update_state_ptr != NULL) 8304 V_pfsync_update_state_ptr(s); 8305 r = s->rule.ptr; 8306 a = s->anchor.ptr; 8307 } else if (s == NULL) 8308 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8309 &a, &ruleset, inp); 8310 break; 8311 } 8312 8313 done: 8314 PF_RULES_RUNLOCK(); 8315 if (action == PF_PASS && h->ip_hl > 5 && 8316 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 8317 action = PF_DROP; 8318 REASON_SET(&reason, PFRES_IPOPTIONS); 8319 pd.act.log = PF_LOG_FORCE; 8320 DPFPRINTF(PF_DEBUG_MISC, 8321 ("pf: dropping packet with ip options\n")); 8322 } 8323 8324 if (s) { 8325 uint8_t log = pd.act.log; 8326 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 8327 pd.act.log |= log; 8328 tag = s->tag; 8329 rt = s->rt; 8330 } else { 8331 tag = r->tag; 8332 rt = r->rt; 8333 } 8334 8335 if (tag > 0 && pf_tag_packet(m, &pd, tag)) { 8336 action = PF_DROP; 8337 REASON_SET(&reason, PFRES_MEMORY); 8338 } 8339 8340 pf_scrub_ip(&m, &pd); 8341 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 8342 pf_normalize_mss(m, off, &pd); 8343 8344 if (pd.act.rtableid >= 0) 8345 M_SETFIB(m, pd.act.rtableid); 8346 8347 if (pd.act.flags & PFSTATE_SETPRIO) { 8348 if (pd.tos & IPTOS_LOWDELAY) 8349 use_2nd_queue = 1; 8350 if (vlan_set_pcp(m, pd.act.set_prio[use_2nd_queue])) { 8351 action = PF_DROP; 8352 REASON_SET(&reason, PFRES_MEMORY); 8353 pd.act.log = PF_LOG_FORCE; 8354 DPFPRINTF(PF_DEBUG_MISC, 8355 ("pf: failed to allocate 802.1q mtag\n")); 8356 } 8357 } 8358 8359 #ifdef ALTQ 8360 if (action == PF_PASS && pd.act.qid) { 8361 if (pd.pf_mtag == NULL && 8362 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 8363 action = PF_DROP; 8364 REASON_SET(&reason, PFRES_MEMORY); 8365 } else { 8366 if (s != NULL) 8367 pd.pf_mtag->qid_hash = pf_state_hash(s); 8368 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY)) 8369 pd.pf_mtag->qid = pd.act.pqid; 8370 else 8371 pd.pf_mtag->qid = pd.act.qid; 8372 /* Add hints for ecn. */ 8373 pd.pf_mtag->hdr = h; 8374 } 8375 } 8376 #endif /* ALTQ */ 8377 8378 /* 8379 * connections redirected to loopback should not match sockets 8380 * bound specifically to loopback due to security implications, 8381 * see tcp_input() and in_pcblookup_listen(). 8382 */ 8383 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 8384 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 8385 (s->nat_rule.ptr->action == PF_RDR || 8386 s->nat_rule.ptr->action == PF_BINAT) && 8387 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 8388 m->m_flags |= M_SKIP_FIREWALL; 8389 8390 if (__predict_false(ip_divert_ptr != NULL) && action == PF_PASS && 8391 r->divert.port && !PACKET_LOOPED(&pd)) { 8392 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0, 8393 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO); 8394 if (mtag != NULL) { 8395 ((struct pf_divert_mtag *)(mtag+1))->port = 8396 ntohs(r->divert.port); 8397 ((struct pf_divert_mtag *)(mtag+1))->idir = 8398 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN : 8399 PF_DIVERT_MTAG_DIR_OUT; 8400 8401 if (s) 8402 PF_STATE_UNLOCK(s); 8403 8404 m_tag_prepend(m, mtag); 8405 if (m->m_flags & M_FASTFWD_OURS) { 8406 if (pd.pf_mtag == NULL && 8407 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 8408 action = PF_DROP; 8409 REASON_SET(&reason, PFRES_MEMORY); 8410 pd.act.log = PF_LOG_FORCE; 8411 DPFPRINTF(PF_DEBUG_MISC, 8412 ("pf: failed to allocate tag\n")); 8413 } else { 8414 pd.pf_mtag->flags |= 8415 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 8416 m->m_flags &= ~M_FASTFWD_OURS; 8417 } 8418 } 8419 ip_divert_ptr(*m0, dir == PF_IN); 8420 *m0 = NULL; 8421 8422 return (action); 8423 } else { 8424 /* XXX: ipfw has the same behaviour! */ 8425 action = PF_DROP; 8426 REASON_SET(&reason, PFRES_MEMORY); 8427 pd.act.log = PF_LOG_FORCE; 8428 DPFPRINTF(PF_DEBUG_MISC, 8429 ("pf: failed to allocate divert tag\n")); 8430 } 8431 } 8432 /* this flag will need revising if the pkt is forwarded */ 8433 if (pd.pf_mtag) 8434 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED; 8435 8436 if (pd.act.log) { 8437 struct pf_krule *lr; 8438 struct pf_krule_item *ri; 8439 8440 if (s != NULL && s->nat_rule.ptr != NULL && 8441 s->nat_rule.ptr->log & PF_LOG_ALL) 8442 lr = s->nat_rule.ptr; 8443 else 8444 lr = r; 8445 8446 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 8447 PFLOG_PACKET(kif, m, AF_INET, action, reason, lr, a, 8448 ruleset, &pd, (s == NULL)); 8449 if (s) { 8450 SLIST_FOREACH(ri, &s->match_rules, entry) 8451 if (ri->r->log & PF_LOG_ALL) 8452 PFLOG_PACKET(kif, m, AF_INET, action, 8453 reason, ri->r, a, ruleset, &pd, 0); 8454 } 8455 } 8456 8457 pf_counter_u64_critical_enter(); 8458 pf_counter_u64_add_protected(&kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], 8459 pd.tot_len); 8460 pf_counter_u64_add_protected(&kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 8461 1); 8462 8463 if (action == PF_PASS || r->action == PF_DROP) { 8464 dirndx = (dir == PF_OUT); 8465 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 8466 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 8467 pf_update_timestamp(r); 8468 8469 if (a != NULL) { 8470 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 8471 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 8472 } 8473 if (s != NULL) { 8474 struct pf_krule_item *ri; 8475 8476 if (s->nat_rule.ptr != NULL) { 8477 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 8478 1); 8479 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 8480 pd.tot_len); 8481 } 8482 if (s->src_node != NULL) { 8483 counter_u64_add(s->src_node->packets[dirndx], 8484 1); 8485 counter_u64_add(s->src_node->bytes[dirndx], 8486 pd.tot_len); 8487 } 8488 if (s->nat_src_node != NULL) { 8489 counter_u64_add(s->nat_src_node->packets[dirndx], 8490 1); 8491 counter_u64_add(s->nat_src_node->bytes[dirndx], 8492 pd.tot_len); 8493 } 8494 dirndx = (dir == s->direction) ? 0 : 1; 8495 s->packets[dirndx]++; 8496 s->bytes[dirndx] += pd.tot_len; 8497 SLIST_FOREACH(ri, &s->match_rules, entry) { 8498 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 8499 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd.tot_len); 8500 } 8501 } 8502 tr = r; 8503 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 8504 if (nr != NULL && r == &V_pf_default_rule) 8505 tr = nr; 8506 if (tr->src.addr.type == PF_ADDR_TABLE) 8507 pfr_update_stats(tr->src.addr.p.tbl, 8508 (s == NULL) ? pd.src : 8509 &s->key[(s->direction == PF_IN)]-> 8510 addr[(s->direction == PF_OUT)], 8511 pd.af, pd.tot_len, dir == PF_OUT, 8512 r->action == PF_PASS, tr->src.neg); 8513 if (tr->dst.addr.type == PF_ADDR_TABLE) 8514 pfr_update_stats(tr->dst.addr.p.tbl, 8515 (s == NULL) ? pd.dst : 8516 &s->key[(s->direction == PF_IN)]-> 8517 addr[(s->direction == PF_IN)], 8518 pd.af, pd.tot_len, dir == PF_OUT, 8519 r->action == PF_PASS, tr->dst.neg); 8520 } 8521 pf_counter_u64_critical_exit(); 8522 8523 switch (action) { 8524 case PF_SYNPROXY_DROP: 8525 m_freem(*m0); 8526 case PF_DEFER: 8527 *m0 = NULL; 8528 action = PF_PASS; 8529 break; 8530 case PF_DROP: 8531 m_freem(*m0); 8532 *m0 = NULL; 8533 break; 8534 default: 8535 /* pf_route() returns unlocked. */ 8536 if (rt) { 8537 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp); 8538 goto out; 8539 } 8540 if (pf_dummynet(&pd, s, r, m0) != 0) { 8541 action = PF_DROP; 8542 REASON_SET(&reason, PFRES_MEMORY); 8543 } 8544 break; 8545 } 8546 8547 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 8548 8549 if (s && action != PF_DROP) { 8550 if (!s->if_index_in && dir == PF_IN) 8551 s->if_index_in = ifp->if_index; 8552 else if (!s->if_index_out && dir == PF_OUT) 8553 s->if_index_out = ifp->if_index; 8554 } 8555 8556 if (s) 8557 PF_STATE_UNLOCK(s); 8558 8559 out: 8560 pf_sctp_multihome_delayed(&pd, off, kif, s, action); 8561 8562 return (action); 8563 } 8564 #endif /* INET */ 8565 8566 #ifdef INET6 8567 int 8568 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp, 8569 struct pf_rule_actions *default_actions) 8570 { 8571 struct pfi_kkif *kif; 8572 u_short action, reason = 0; 8573 struct mbuf *m = *m0, *n = NULL; 8574 struct m_tag *mtag; 8575 struct ip6_hdr *h = NULL; 8576 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 8577 struct pf_kstate *s = NULL; 8578 struct pf_kruleset *ruleset = NULL; 8579 struct pf_pdesc pd; 8580 int off, terminal = 0, dirndx, rh_cnt = 0, use_2nd_queue = 0; 8581 uint16_t tag; 8582 uint8_t rt; 8583 8584 PF_RULES_RLOCK_TRACKER; 8585 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 8586 M_ASSERTPKTHDR(m); 8587 8588 if (!V_pf_status.running) 8589 return (PF_PASS); 8590 8591 PF_RULES_RLOCK(); 8592 8593 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8594 if (__predict_false(kif == NULL)) { 8595 DPFPRINTF(PF_DEBUG_URGENT, 8596 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 8597 PF_RULES_RUNLOCK(); 8598 return (PF_DROP); 8599 } 8600 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 8601 PF_RULES_RUNLOCK(); 8602 return (PF_PASS); 8603 } 8604 8605 if (m->m_flags & M_SKIP_FIREWALL) { 8606 PF_RULES_RUNLOCK(); 8607 return (PF_PASS); 8608 } 8609 8610 /* 8611 * If we end up changing IP addresses (e.g. binat) the stack may get 8612 * confused and fail to send the icmp6 packet too big error. Just send 8613 * it here, before we do any NAT. 8614 */ 8615 if (dir == PF_OUT && pflags & PFIL_FWD && IN6_LINKMTU(ifp) < pf_max_frag_size(m)) { 8616 PF_RULES_RUNLOCK(); 8617 *m0 = NULL; 8618 icmp6_error(m, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp)); 8619 return (PF_DROP); 8620 } 8621 8622 memset(&pd, 0, sizeof(pd)); 8623 TAILQ_INIT(&pd.sctp_multihome_jobs); 8624 if (default_actions != NULL) 8625 memcpy(&pd.act, default_actions, sizeof(pd.act)); 8626 pd.pf_mtag = pf_find_mtag(m); 8627 8628 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 8629 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 8630 8631 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 8632 pd.pf_mtag->if_idxgen); 8633 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 8634 PF_RULES_RUNLOCK(); 8635 m_freem(*m0); 8636 *m0 = NULL; 8637 return (PF_PASS); 8638 } 8639 PF_RULES_RUNLOCK(); 8640 nd6_output_ifp(ifp, ifp, m, 8641 (struct sockaddr_in6 *)&pd.pf_mtag->dst, NULL); 8642 *m0 = NULL; 8643 return (PF_PASS); 8644 } 8645 8646 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 8647 pd.act.dnpipe = pd.pf_mtag->dnpipe; 8648 pd.act.flags = pd.pf_mtag->dnflags; 8649 } 8650 8651 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 8652 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 8653 pf_dummynet_flag_remove(m, pd.pf_mtag); 8654 /* Dummynet re-injects packets after they've 8655 * completed their delay. We've already 8656 * processed them, so pass unconditionally. */ 8657 PF_RULES_RUNLOCK(); 8658 return (PF_PASS); 8659 } 8660 8661 pd.sport = pd.dport = NULL; 8662 pd.ip_sum = NULL; 8663 pd.proto_sum = NULL; 8664 pd.dir = dir; 8665 pd.sidx = (dir == PF_IN) ? 0 : 1; 8666 pd.didx = (dir == PF_IN) ? 1 : 0; 8667 pd.af = AF_INET6; 8668 pd.act.rtableid = -1; 8669 8670 h = mtod(m, struct ip6_hdr *); 8671 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 8672 8673 /* We do IP header normalization and packet reassembly here */ 8674 if (pf_normalize_ip6(m0, kif, &reason, &pd) != PF_PASS) { 8675 action = PF_DROP; 8676 goto done; 8677 } 8678 m = *m0; /* pf_normalize messes with m0 */ 8679 h = mtod(m, struct ip6_hdr *); 8680 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 8681 8682 /* 8683 * we do not support jumbogram. if we keep going, zero ip6_plen 8684 * will do something bad, so drop the packet for now. 8685 */ 8686 if (htons(h->ip6_plen) == 0) { 8687 action = PF_DROP; 8688 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 8689 goto done; 8690 } 8691 8692 pd.src = (struct pf_addr *)&h->ip6_src; 8693 pd.dst = (struct pf_addr *)&h->ip6_dst; 8694 pd.tos = IPV6_DSCP(h); 8695 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 8696 8697 pd.proto = h->ip6_nxt; 8698 do { 8699 switch (pd.proto) { 8700 case IPPROTO_FRAGMENT: 8701 action = pf_test_fragment(&r, kif, m, h, &pd, &a, 8702 &ruleset); 8703 if (action == PF_DROP) 8704 REASON_SET(&reason, PFRES_FRAG); 8705 goto done; 8706 case IPPROTO_ROUTING: { 8707 struct ip6_rthdr rthdr; 8708 8709 if (rh_cnt++) { 8710 DPFPRINTF(PF_DEBUG_MISC, 8711 ("pf: IPv6 more than one rthdr\n")); 8712 action = PF_DROP; 8713 REASON_SET(&reason, PFRES_IPOPTIONS); 8714 pd.act.log = PF_LOG_FORCE; 8715 goto done; 8716 } 8717 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 8718 &reason, pd.af)) { 8719 DPFPRINTF(PF_DEBUG_MISC, 8720 ("pf: IPv6 short rthdr\n")); 8721 action = PF_DROP; 8722 REASON_SET(&reason, PFRES_SHORT); 8723 pd.act.log = PF_LOG_FORCE; 8724 goto done; 8725 } 8726 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 8727 DPFPRINTF(PF_DEBUG_MISC, 8728 ("pf: IPv6 rthdr0\n")); 8729 action = PF_DROP; 8730 REASON_SET(&reason, PFRES_IPOPTIONS); 8731 pd.act.log = PF_LOG_FORCE; 8732 goto done; 8733 } 8734 /* FALLTHROUGH */ 8735 } 8736 case IPPROTO_AH: 8737 case IPPROTO_HOPOPTS: 8738 case IPPROTO_DSTOPTS: { 8739 /* get next header and header length */ 8740 struct ip6_ext opt6; 8741 8742 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 8743 NULL, &reason, pd.af)) { 8744 DPFPRINTF(PF_DEBUG_MISC, 8745 ("pf: IPv6 short opt\n")); 8746 action = PF_DROP; 8747 pd.act.log = PF_LOG_FORCE; 8748 goto done; 8749 } 8750 if (pd.proto == IPPROTO_AH) 8751 off += (opt6.ip6e_len + 2) * 4; 8752 else 8753 off += (opt6.ip6e_len + 1) * 8; 8754 pd.proto = opt6.ip6e_nxt; 8755 /* goto the next header */ 8756 break; 8757 } 8758 default: 8759 terminal++; 8760 break; 8761 } 8762 } while (!terminal); 8763 8764 /* if there's no routing header, use unmodified mbuf for checksumming */ 8765 if (!n) 8766 n = m; 8767 8768 switch (pd.proto) { 8769 case IPPROTO_TCP: { 8770 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 8771 &action, &reason, AF_INET6)) { 8772 if (action != PF_PASS) 8773 pd.act.log |= PF_LOG_FORCE; 8774 goto done; 8775 } 8776 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 8777 pd.sport = &pd.hdr.tcp.th_sport; 8778 pd.dport = &pd.hdr.tcp.th_dport; 8779 8780 /* Respond to SYN with a syncookie. */ 8781 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 8782 pd.dir == PF_IN && pf_synflood_check(&pd)) { 8783 pf_syncookie_send(m, off, &pd); 8784 action = PF_DROP; 8785 break; 8786 } 8787 8788 action = pf_normalize_tcp(kif, m, 0, off, h, &pd); 8789 if (action == PF_DROP) 8790 goto done; 8791 action = pf_test_state_tcp(&s, kif, m, off, h, &pd, &reason); 8792 if (action == PF_PASS) { 8793 if (V_pfsync_update_state_ptr != NULL) 8794 V_pfsync_update_state_ptr(s); 8795 r = s->rule.ptr; 8796 a = s->anchor.ptr; 8797 } else if (s == NULL) { 8798 /* Validate remote SYN|ACK, re-create original SYN if 8799 * valid. */ 8800 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 8801 TH_ACK && pf_syncookie_validate(&pd) && 8802 pd.dir == PF_IN) { 8803 struct mbuf *msyn; 8804 8805 msyn = pf_syncookie_recreate_syn(h->ip6_hlim, 8806 off, &pd); 8807 if (msyn == NULL) { 8808 action = PF_DROP; 8809 break; 8810 } 8811 8812 action = pf_test6(dir, pflags, ifp, &msyn, inp, 8813 &pd.act); 8814 m_freem(msyn); 8815 if (action != PF_PASS) 8816 break; 8817 8818 action = pf_test_state_tcp(&s, kif, m, off, h, 8819 &pd, &reason); 8820 if (action != PF_PASS || s == NULL) { 8821 action = PF_DROP; 8822 break; 8823 } 8824 8825 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 8826 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 8827 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 8828 8829 action = pf_synproxy(&pd, &s, &reason); 8830 break; 8831 } else { 8832 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8833 &a, &ruleset, inp); 8834 } 8835 } 8836 break; 8837 } 8838 8839 case IPPROTO_UDP: { 8840 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 8841 &action, &reason, AF_INET6)) { 8842 if (action != PF_PASS) 8843 pd.act.log |= PF_LOG_FORCE; 8844 goto done; 8845 } 8846 pd.sport = &pd.hdr.udp.uh_sport; 8847 pd.dport = &pd.hdr.udp.uh_dport; 8848 if (pd.hdr.udp.uh_dport == 0 || 8849 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 8850 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 8851 action = PF_DROP; 8852 REASON_SET(&reason, PFRES_SHORT); 8853 goto done; 8854 } 8855 action = pf_test_state_udp(&s, kif, m, off, h, &pd); 8856 if (action == PF_PASS) { 8857 if (V_pfsync_update_state_ptr != NULL) 8858 V_pfsync_update_state_ptr(s); 8859 r = s->rule.ptr; 8860 a = s->anchor.ptr; 8861 } else if (s == NULL) 8862 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8863 &a, &ruleset, inp); 8864 break; 8865 } 8866 8867 case IPPROTO_SCTP: { 8868 if (!pf_pull_hdr(m, off, &pd.hdr.sctp, sizeof(pd.hdr.sctp), 8869 &action, &reason, AF_INET6)) { 8870 if (action != PF_PASS) 8871 pd.act.log |= PF_LOG_FORCE; 8872 goto done; 8873 } 8874 pd.sport = &pd.hdr.sctp.src_port; 8875 pd.dport = &pd.hdr.sctp.dest_port; 8876 if (pd.hdr.sctp.src_port == 0 || pd.hdr.sctp.dest_port == 0) { 8877 action = PF_DROP; 8878 REASON_SET(&reason, PFRES_SHORT); 8879 goto done; 8880 } 8881 action = pf_normalize_sctp(dir, kif, m, 0, off, h, &pd); 8882 if (action == PF_DROP) 8883 goto done; 8884 action = pf_test_state_sctp(&s, kif, m, off, h, &pd, 8885 &reason); 8886 if (action == PF_PASS) { 8887 if (V_pfsync_update_state_ptr != NULL) 8888 V_pfsync_update_state_ptr(s); 8889 r = s->rule.ptr; 8890 a = s->anchor.ptr; 8891 } else { 8892 action = pf_test_rule(&r, &s, kif, m, off, 8893 &pd, &a, &ruleset, inp); 8894 } 8895 break; 8896 } 8897 8898 case IPPROTO_ICMP: { 8899 action = PF_DROP; 8900 DPFPRINTF(PF_DEBUG_MISC, 8901 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 8902 goto done; 8903 } 8904 8905 case IPPROTO_ICMPV6: { 8906 if (!pf_pull_hdr(m, off, &pd.hdr.icmp6, sizeof(pd.hdr.icmp6), 8907 &action, &reason, AF_INET6)) { 8908 if (action != PF_PASS) 8909 pd.act.log |= PF_LOG_FORCE; 8910 goto done; 8911 } 8912 action = pf_test_state_icmp(&s, kif, m, off, h, &pd, &reason); 8913 if (action == PF_PASS) { 8914 if (V_pfsync_update_state_ptr != NULL) 8915 V_pfsync_update_state_ptr(s); 8916 r = s->rule.ptr; 8917 a = s->anchor.ptr; 8918 } else if (s == NULL) 8919 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8920 &a, &ruleset, inp); 8921 break; 8922 } 8923 8924 default: 8925 action = pf_test_state_other(&s, kif, m, &pd); 8926 if (action == PF_PASS) { 8927 if (V_pfsync_update_state_ptr != NULL) 8928 V_pfsync_update_state_ptr(s); 8929 r = s->rule.ptr; 8930 a = s->anchor.ptr; 8931 } else if (s == NULL) 8932 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8933 &a, &ruleset, inp); 8934 break; 8935 } 8936 8937 done: 8938 PF_RULES_RUNLOCK(); 8939 if (n != m) { 8940 m_freem(n); 8941 n = NULL; 8942 } 8943 8944 /* handle dangerous IPv6 extension headers. */ 8945 if (action == PF_PASS && rh_cnt && 8946 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 8947 action = PF_DROP; 8948 REASON_SET(&reason, PFRES_IPOPTIONS); 8949 pd.act.log = r->log; 8950 DPFPRINTF(PF_DEBUG_MISC, 8951 ("pf: dropping packet with dangerous v6 headers\n")); 8952 } 8953 8954 if (s) { 8955 uint8_t log = pd.act.log; 8956 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 8957 pd.act.log |= log; 8958 tag = s->tag; 8959 rt = s->rt; 8960 } else { 8961 tag = r->tag; 8962 rt = r->rt; 8963 } 8964 8965 if (tag > 0 && pf_tag_packet(m, &pd, tag)) { 8966 action = PF_DROP; 8967 REASON_SET(&reason, PFRES_MEMORY); 8968 } 8969 8970 pf_scrub_ip6(&m, &pd); 8971 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 8972 pf_normalize_mss(m, off, &pd); 8973 8974 if (pd.act.rtableid >= 0) 8975 M_SETFIB(m, pd.act.rtableid); 8976 8977 if (pd.act.flags & PFSTATE_SETPRIO) { 8978 if (pd.tos & IPTOS_LOWDELAY) 8979 use_2nd_queue = 1; 8980 if (vlan_set_pcp(m, pd.act.set_prio[use_2nd_queue])) { 8981 action = PF_DROP; 8982 REASON_SET(&reason, PFRES_MEMORY); 8983 pd.act.log = PF_LOG_FORCE; 8984 DPFPRINTF(PF_DEBUG_MISC, 8985 ("pf: failed to allocate 802.1q mtag\n")); 8986 } 8987 } 8988 8989 #ifdef ALTQ 8990 if (action == PF_PASS && pd.act.qid) { 8991 if (pd.pf_mtag == NULL && 8992 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 8993 action = PF_DROP; 8994 REASON_SET(&reason, PFRES_MEMORY); 8995 } else { 8996 if (s != NULL) 8997 pd.pf_mtag->qid_hash = pf_state_hash(s); 8998 if (pd.tos & IPTOS_LOWDELAY) 8999 pd.pf_mtag->qid = pd.act.pqid; 9000 else 9001 pd.pf_mtag->qid = pd.act.qid; 9002 /* Add hints for ecn. */ 9003 pd.pf_mtag->hdr = h; 9004 } 9005 } 9006 #endif /* ALTQ */ 9007 9008 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 9009 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 9010 (s->nat_rule.ptr->action == PF_RDR || 9011 s->nat_rule.ptr->action == PF_BINAT) && 9012 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 9013 m->m_flags |= M_SKIP_FIREWALL; 9014 9015 /* XXX: Anybody working on it?! */ 9016 if (r->divert.port) 9017 printf("pf: divert(9) is not supported for IPv6\n"); 9018 9019 if (pd.act.log) { 9020 struct pf_krule *lr; 9021 struct pf_krule_item *ri; 9022 9023 if (s != NULL && s->nat_rule.ptr != NULL && 9024 s->nat_rule.ptr->log & PF_LOG_ALL) 9025 lr = s->nat_rule.ptr; 9026 else 9027 lr = r; 9028 9029 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 9030 PFLOG_PACKET(kif, m, AF_INET6, action, reason, lr, a, ruleset, 9031 &pd, (s == NULL)); 9032 if (s) { 9033 SLIST_FOREACH(ri, &s->match_rules, entry) 9034 if (ri->r->log & PF_LOG_ALL) 9035 PFLOG_PACKET(kif, m, AF_INET6, action, reason, 9036 ri->r, a, ruleset, &pd, 0); 9037 } 9038 } 9039 9040 pf_counter_u64_critical_enter(); 9041 pf_counter_u64_add_protected(&kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], 9042 pd.tot_len); 9043 pf_counter_u64_add_protected(&kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 9044 1); 9045 9046 if (action == PF_PASS || r->action == PF_DROP) { 9047 dirndx = (dir == PF_OUT); 9048 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 9049 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 9050 if (a != NULL) { 9051 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 9052 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 9053 } 9054 if (s != NULL) { 9055 if (s->nat_rule.ptr != NULL) { 9056 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 9057 1); 9058 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 9059 pd.tot_len); 9060 } 9061 if (s->src_node != NULL) { 9062 counter_u64_add(s->src_node->packets[dirndx], 9063 1); 9064 counter_u64_add(s->src_node->bytes[dirndx], 9065 pd.tot_len); 9066 } 9067 if (s->nat_src_node != NULL) { 9068 counter_u64_add(s->nat_src_node->packets[dirndx], 9069 1); 9070 counter_u64_add(s->nat_src_node->bytes[dirndx], 9071 pd.tot_len); 9072 } 9073 dirndx = (dir == s->direction) ? 0 : 1; 9074 s->packets[dirndx]++; 9075 s->bytes[dirndx] += pd.tot_len; 9076 } 9077 tr = r; 9078 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 9079 if (nr != NULL && r == &V_pf_default_rule) 9080 tr = nr; 9081 if (tr->src.addr.type == PF_ADDR_TABLE) 9082 pfr_update_stats(tr->src.addr.p.tbl, 9083 (s == NULL) ? pd.src : 9084 &s->key[(s->direction == PF_IN)]->addr[0], 9085 pd.af, pd.tot_len, dir == PF_OUT, 9086 r->action == PF_PASS, tr->src.neg); 9087 if (tr->dst.addr.type == PF_ADDR_TABLE) 9088 pfr_update_stats(tr->dst.addr.p.tbl, 9089 (s == NULL) ? pd.dst : 9090 &s->key[(s->direction == PF_IN)]->addr[1], 9091 pd.af, pd.tot_len, dir == PF_OUT, 9092 r->action == PF_PASS, tr->dst.neg); 9093 } 9094 pf_counter_u64_critical_exit(); 9095 9096 switch (action) { 9097 case PF_SYNPROXY_DROP: 9098 m_freem(*m0); 9099 case PF_DEFER: 9100 *m0 = NULL; 9101 action = PF_PASS; 9102 break; 9103 case PF_DROP: 9104 m_freem(*m0); 9105 *m0 = NULL; 9106 break; 9107 default: 9108 /* pf_route6() returns unlocked. */ 9109 if (rt) { 9110 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp); 9111 goto out; 9112 } 9113 if (pf_dummynet(&pd, s, r, m0) != 0) { 9114 action = PF_DROP; 9115 REASON_SET(&reason, PFRES_MEMORY); 9116 } 9117 break; 9118 } 9119 9120 if (s && action != PF_DROP) { 9121 if (!s->if_index_in && dir == PF_IN) 9122 s->if_index_in = ifp->if_index; 9123 else if (!s->if_index_out && dir == PF_OUT) 9124 s->if_index_out = ifp->if_index; 9125 } 9126 9127 if (s) 9128 PF_STATE_UNLOCK(s); 9129 9130 /* If reassembled packet passed, create new fragments. */ 9131 if (action == PF_PASS && *m0 && dir == PF_OUT && 9132 (mtag = m_tag_find(m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL) 9133 action = pf_refragment6(ifp, m0, mtag, pflags & PFIL_FWD); 9134 9135 out: 9136 SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); 9137 9138 pf_sctp_multihome_delayed(&pd, off, kif, s, action); 9139 9140 return (action); 9141 } 9142 #endif /* INET6 */ 9143