xref: /freebsd/sys/netpfil/pf/pf.c (revision 91f764172e197c82efa97a66cfbc13d2c744b02b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Daniel Hartmeier
5  * Copyright (c) 2002 - 2008 Henning Brauer
6  * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  *    - Redistributions of source code must retain the above copyright
14  *      notice, this list of conditions and the following disclaimer.
15  *    - Redistributions in binary form must reproduce the above
16  *      copyright notice, this list of conditions and the following
17  *      disclaimer in the documentation and/or other materials provided
18  *      with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
28  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  * Effort sponsored in part by the Defense Advanced Research Projects
34  * Agency (DARPA) and Air Force Research Laboratory, Air Force
35  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
36  *
37  *	$OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_bpf.h"
44 #include "opt_inet.h"
45 #include "opt_inet6.h"
46 #include "opt_pf.h"
47 #include "opt_sctp.h"
48 
49 #include <sys/param.h>
50 #include <sys/bus.h>
51 #include <sys/endian.h>
52 #include <sys/gsb_crc32.h>
53 #include <sys/hash.h>
54 #include <sys/interrupt.h>
55 #include <sys/kernel.h>
56 #include <sys/kthread.h>
57 #include <sys/limits.h>
58 #include <sys/mbuf.h>
59 #include <sys/md5.h>
60 #include <sys/random.h>
61 #include <sys/refcount.h>
62 #include <sys/sdt.h>
63 #include <sys/socket.h>
64 #include <sys/sysctl.h>
65 #include <sys/taskqueue.h>
66 #include <sys/ucred.h>
67 
68 #include <net/if.h>
69 #include <net/if_var.h>
70 #include <net/if_types.h>
71 #include <net/if_vlan_var.h>
72 #include <net/route.h>
73 #include <net/route/nhop.h>
74 #include <net/vnet.h>
75 
76 #include <net/pfil.h>
77 #include <net/pfvar.h>
78 #include <net/if_pflog.h>
79 #include <net/if_pfsync.h>
80 
81 #include <netinet/in_pcb.h>
82 #include <netinet/in_var.h>
83 #include <netinet/in_fib.h>
84 #include <netinet/ip.h>
85 #include <netinet/ip_fw.h>
86 #include <netinet/ip_icmp.h>
87 #include <netinet/icmp_var.h>
88 #include <netinet/ip_var.h>
89 #include <netinet/tcp.h>
90 #include <netinet/tcp_fsm.h>
91 #include <netinet/tcp_seq.h>
92 #include <netinet/tcp_timer.h>
93 #include <netinet/tcp_var.h>
94 #include <netinet/udp.h>
95 #include <netinet/udp_var.h>
96 
97 #ifdef INET6
98 #include <netinet/ip6.h>
99 #include <netinet/icmp6.h>
100 #include <netinet6/nd6.h>
101 #include <netinet6/ip6_var.h>
102 #include <netinet6/in6_pcb.h>
103 #include <netinet6/in6_fib.h>
104 #include <netinet6/scope6_var.h>
105 #endif /* INET6 */
106 
107 #if defined(SCTP) || defined(SCTP_SUPPORT)
108 #include <netinet/sctp_crc32.h>
109 #endif
110 
111 #include <machine/in_cksum.h>
112 #include <security/mac/mac_framework.h>
113 
114 #define	DPFPRINTF(n, x)	if (V_pf_status.debug >= (n)) printf x
115 
116 SDT_PROVIDER_DEFINE(pf);
117 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *",
118     "struct pf_kstate *");
119 SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *",
120     "struct pf_kstate *");
121 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *",
122     "struct pf_state_key_cmp *", "int", "struct pf_pdesc *",
123     "struct pf_kstate *");
124 
125 /*
126  * Global variables
127  */
128 
129 /* state tables */
130 VNET_DEFINE(struct pf_altqqueue,	 pf_altqs[4]);
131 VNET_DEFINE(struct pf_kpalist,		 pf_pabuf);
132 VNET_DEFINE(struct pf_altqqueue *,	 pf_altqs_active);
133 VNET_DEFINE(struct pf_altqqueue *,	 pf_altq_ifs_active);
134 VNET_DEFINE(struct pf_altqqueue *,	 pf_altqs_inactive);
135 VNET_DEFINE(struct pf_altqqueue *,	 pf_altq_ifs_inactive);
136 VNET_DEFINE(struct pf_kstatus,		 pf_status);
137 
138 VNET_DEFINE(u_int32_t,			 ticket_altqs_active);
139 VNET_DEFINE(u_int32_t,			 ticket_altqs_inactive);
140 VNET_DEFINE(int,			 altqs_inactive_open);
141 VNET_DEFINE(u_int32_t,			 ticket_pabuf);
142 
143 VNET_DEFINE(MD5_CTX,			 pf_tcp_secret_ctx);
144 #define	V_pf_tcp_secret_ctx		 VNET(pf_tcp_secret_ctx)
145 VNET_DEFINE(u_char,			 pf_tcp_secret[16]);
146 #define	V_pf_tcp_secret			 VNET(pf_tcp_secret)
147 VNET_DEFINE(int,			 pf_tcp_secret_init);
148 #define	V_pf_tcp_secret_init		 VNET(pf_tcp_secret_init)
149 VNET_DEFINE(int,			 pf_tcp_iss_off);
150 #define	V_pf_tcp_iss_off		 VNET(pf_tcp_iss_off)
151 VNET_DECLARE(int,			 pf_vnet_active);
152 #define	V_pf_vnet_active		 VNET(pf_vnet_active)
153 
154 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx);
155 #define V_pf_purge_idx	VNET(pf_purge_idx)
156 
157 #ifdef PF_WANT_32_TO_64_COUNTER
158 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter);
159 #define	V_pf_counter_periodic_iter	VNET(pf_counter_periodic_iter)
160 
161 VNET_DEFINE(struct allrulelist_head, pf_allrulelist);
162 VNET_DEFINE(size_t, pf_allrulecount);
163 VNET_DEFINE(struct pf_krule *, pf_rulemarker);
164 #endif
165 
166 /*
167  * Queue for pf_intr() sends.
168  */
169 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations");
170 struct pf_send_entry {
171 	STAILQ_ENTRY(pf_send_entry)	pfse_next;
172 	struct mbuf			*pfse_m;
173 	enum {
174 		PFSE_IP,
175 		PFSE_IP6,
176 		PFSE_ICMP,
177 		PFSE_ICMP6,
178 	}				pfse_type;
179 	struct {
180 		int		type;
181 		int		code;
182 		int		mtu;
183 	} icmpopts;
184 };
185 
186 STAILQ_HEAD(pf_send_head, pf_send_entry);
187 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue);
188 #define	V_pf_sendqueue	VNET(pf_sendqueue)
189 
190 static struct mtx_padalign pf_sendqueue_mtx;
191 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF);
192 #define	PF_SENDQ_LOCK()		mtx_lock(&pf_sendqueue_mtx)
193 #define	PF_SENDQ_UNLOCK()	mtx_unlock(&pf_sendqueue_mtx)
194 
195 /*
196  * Queue for pf_overload_task() tasks.
197  */
198 struct pf_overload_entry {
199 	SLIST_ENTRY(pf_overload_entry)	next;
200 	struct pf_addr  		addr;
201 	sa_family_t			af;
202 	uint8_t				dir;
203 	struct pf_krule  		*rule;
204 };
205 
206 SLIST_HEAD(pf_overload_head, pf_overload_entry);
207 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue);
208 #define V_pf_overloadqueue	VNET(pf_overloadqueue)
209 VNET_DEFINE_STATIC(struct task, pf_overloadtask);
210 #define	V_pf_overloadtask	VNET(pf_overloadtask)
211 
212 static struct mtx_padalign pf_overloadqueue_mtx;
213 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx,
214     "pf overload/flush queue", MTX_DEF);
215 #define	PF_OVERLOADQ_LOCK()	mtx_lock(&pf_overloadqueue_mtx)
216 #define	PF_OVERLOADQ_UNLOCK()	mtx_unlock(&pf_overloadqueue_mtx)
217 
218 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules);
219 struct mtx_padalign pf_unlnkdrules_mtx;
220 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules",
221     MTX_DEF);
222 
223 struct mtx_padalign pf_table_stats_lock;
224 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats",
225     MTX_DEF);
226 
227 VNET_DEFINE_STATIC(uma_zone_t,	pf_sources_z);
228 #define	V_pf_sources_z	VNET(pf_sources_z)
229 uma_zone_t		pf_mtag_z;
230 VNET_DEFINE(uma_zone_t,	 pf_state_z);
231 VNET_DEFINE(uma_zone_t,	 pf_state_key_z);
232 
233 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]);
234 #define	PFID_CPUBITS	8
235 #define	PFID_CPUSHIFT	(sizeof(uint64_t) * NBBY - PFID_CPUBITS)
236 #define	PFID_CPUMASK	((uint64_t)((1 << PFID_CPUBITS) - 1) <<	PFID_CPUSHIFT)
237 #define	PFID_MAXID	(~PFID_CPUMASK)
238 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU);
239 
240 static void		 pf_src_tree_remove_state(struct pf_kstate *);
241 static void		 pf_init_threshold(struct pf_threshold *, u_int32_t,
242 			    u_int32_t);
243 static void		 pf_add_threshold(struct pf_threshold *);
244 static int		 pf_check_threshold(struct pf_threshold *);
245 
246 static void		 pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *,
247 			    u_int16_t *, u_int16_t *, struct pf_addr *,
248 			    u_int16_t, u_int8_t, sa_family_t);
249 static int		 pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *,
250 			    struct tcphdr *, struct pf_state_peer *);
251 static void		 pf_change_icmp(struct pf_addr *, u_int16_t *,
252 			    struct pf_addr *, struct pf_addr *, u_int16_t,
253 			    u_int16_t *, u_int16_t *, u_int16_t *,
254 			    u_int16_t *, u_int8_t, sa_family_t);
255 static void		 pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t,
256 			    sa_family_t, struct pf_krule *);
257 static void		 pf_detach_state(struct pf_kstate *);
258 static int		 pf_state_key_attach(struct pf_state_key *,
259 			    struct pf_state_key *, struct pf_kstate *);
260 static void		 pf_state_key_detach(struct pf_kstate *, int);
261 static int		 pf_state_key_ctor(void *, int, void *, int);
262 static u_int32_t	 pf_tcp_iss(struct pf_pdesc *);
263 void			 pf_rule_to_actions(struct pf_krule *,
264 			    struct pf_rule_actions *);
265 static int		 pf_test_rule(struct pf_krule **, struct pf_kstate **,
266 			    int, struct pfi_kkif *, struct mbuf *, int,
267 			    struct pf_pdesc *, struct pf_krule **,
268 			    struct pf_kruleset **, struct inpcb *);
269 static int		 pf_create_state(struct pf_krule *, struct pf_krule *,
270 			    struct pf_krule *, struct pf_pdesc *,
271 			    struct pf_ksrc_node *, struct pf_state_key *,
272 			    struct pf_state_key *, struct mbuf *, int,
273 			    u_int16_t, u_int16_t, int *, struct pfi_kkif *,
274 			    struct pf_kstate **, int, u_int16_t, u_int16_t,
275 			    int);
276 static int		 pf_test_fragment(struct pf_krule **, int,
277 			    struct pfi_kkif *, struct mbuf *, void *,
278 			    struct pf_pdesc *, struct pf_krule **,
279 			    struct pf_kruleset **);
280 static int		 pf_tcp_track_full(struct pf_kstate **,
281 			    struct pfi_kkif *, struct mbuf *, int,
282 			    struct pf_pdesc *, u_short *, int *);
283 static int		 pf_tcp_track_sloppy(struct pf_kstate **,
284 			    struct pf_pdesc *, u_short *);
285 static int		 pf_test_state_tcp(struct pf_kstate **, int,
286 			    struct pfi_kkif *, struct mbuf *, int,
287 			    void *, struct pf_pdesc *, u_short *);
288 static int		 pf_test_state_udp(struct pf_kstate **, int,
289 			    struct pfi_kkif *, struct mbuf *, int,
290 			    void *, struct pf_pdesc *);
291 static int		 pf_test_state_icmp(struct pf_kstate **, int,
292 			    struct pfi_kkif *, struct mbuf *, int,
293 			    void *, struct pf_pdesc *, u_short *);
294 static int		 pf_test_state_other(struct pf_kstate **, int,
295 			    struct pfi_kkif *, struct mbuf *, struct pf_pdesc *);
296 static u_int16_t	 pf_calc_mss(struct pf_addr *, sa_family_t,
297 				int, u_int16_t);
298 static int		 pf_check_proto_cksum(struct mbuf *, int, int,
299 			    u_int8_t, sa_family_t);
300 static void		 pf_print_state_parts(struct pf_kstate *,
301 			    struct pf_state_key *, struct pf_state_key *);
302 static int		 pf_addr_wrap_neq(struct pf_addr_wrap *,
303 			    struct pf_addr_wrap *);
304 static void		 pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t,
305 			    bool, u_int8_t);
306 static struct pf_kstate	*pf_find_state(struct pfi_kkif *,
307 			    struct pf_state_key_cmp *, u_int);
308 static int		 pf_src_connlimit(struct pf_kstate **);
309 static void		 pf_overload_task(void *v, int pending);
310 static int		 pf_insert_src_node(struct pf_ksrc_node **,
311 			    struct pf_krule *, struct pf_addr *, sa_family_t);
312 static u_int		 pf_purge_expired_states(u_int, int);
313 static void		 pf_purge_unlinked_rules(void);
314 static int		 pf_mtag_uminit(void *, int, int);
315 static void		 pf_mtag_free(struct m_tag *);
316 #ifdef INET
317 static void		 pf_route(struct mbuf **, struct pf_krule *, int,
318 			    struct ifnet *, struct pf_kstate *,
319 			    struct pf_pdesc *, struct inpcb *);
320 #endif /* INET */
321 #ifdef INET6
322 static void		 pf_change_a6(struct pf_addr *, u_int16_t *,
323 			    struct pf_addr *, u_int8_t);
324 static void		 pf_route6(struct mbuf **, struct pf_krule *, int,
325 			    struct ifnet *, struct pf_kstate *,
326 			    struct pf_pdesc *, struct inpcb *);
327 #endif /* INET6 */
328 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t);
329 
330 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len);
331 
332 extern int pf_end_threads;
333 extern struct proc *pf_purge_proc;
334 
335 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]);
336 
337 #define	PACKET_LOOPED(pd)	((pd)->pf_mtag &&			\
338 				 (pd)->pf_mtag->flags & PF_PACKET_LOOPED)
339 
340 #define	STATE_LOOKUP(i, k, d, s, pd)					\
341 	do {								\
342 		(s) = pf_find_state((i), (k), (d));			\
343 		SDT_PROBE5(pf, ip, state, lookup, i, k, d, pd, (s));	\
344 		if ((s) == NULL)					\
345 			return (PF_DROP);				\
346 		if (PACKET_LOOPED(pd))					\
347 			return (PF_PASS);				\
348 	} while (0)
349 
350 #define	BOUND_IFACE(r, k) \
351 	((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all
352 
353 #define	STATE_INC_COUNTERS(s)						\
354 	do {								\
355 		counter_u64_add(s->rule.ptr->states_cur, 1);		\
356 		counter_u64_add(s->rule.ptr->states_tot, 1);		\
357 		if (s->anchor.ptr != NULL) {				\
358 			counter_u64_add(s->anchor.ptr->states_cur, 1);	\
359 			counter_u64_add(s->anchor.ptr->states_tot, 1);	\
360 		}							\
361 		if (s->nat_rule.ptr != NULL) {				\
362 			counter_u64_add(s->nat_rule.ptr->states_cur, 1);\
363 			counter_u64_add(s->nat_rule.ptr->states_tot, 1);\
364 		}							\
365 	} while (0)
366 
367 #define	STATE_DEC_COUNTERS(s)						\
368 	do {								\
369 		if (s->nat_rule.ptr != NULL)				\
370 			counter_u64_add(s->nat_rule.ptr->states_cur, -1);\
371 		if (s->anchor.ptr != NULL)				\
372 			counter_u64_add(s->anchor.ptr->states_cur, -1);	\
373 		counter_u64_add(s->rule.ptr->states_cur, -1);		\
374 	} while (0)
375 
376 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures");
377 VNET_DEFINE(struct pf_keyhash *, pf_keyhash);
378 VNET_DEFINE(struct pf_idhash *, pf_idhash);
379 VNET_DEFINE(struct pf_srchash *, pf_srchash);
380 
381 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
382     "pf(4)");
383 
384 u_long	pf_hashmask;
385 u_long	pf_srchashmask;
386 static u_long	pf_hashsize;
387 static u_long	pf_srchashsize;
388 u_long	pf_ioctl_maxcount = 65535;
389 
390 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN,
391     &pf_hashsize, 0, "Size of pf(4) states hashtable");
392 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN,
393     &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable");
394 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN,
395     &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call");
396 
397 VNET_DEFINE(void *, pf_swi_cookie);
398 VNET_DEFINE(struct intr_event *, pf_swi_ie);
399 
400 VNET_DEFINE(uint32_t, pf_hashseed);
401 #define	V_pf_hashseed	VNET(pf_hashseed)
402 
403 int
404 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af)
405 {
406 
407 	switch (af) {
408 #ifdef INET
409 	case AF_INET:
410 		if (a->addr32[0] > b->addr32[0])
411 			return (1);
412 		if (a->addr32[0] < b->addr32[0])
413 			return (-1);
414 		break;
415 #endif /* INET */
416 #ifdef INET6
417 	case AF_INET6:
418 		if (a->addr32[3] > b->addr32[3])
419 			return (1);
420 		if (a->addr32[3] < b->addr32[3])
421 			return (-1);
422 		if (a->addr32[2] > b->addr32[2])
423 			return (1);
424 		if (a->addr32[2] < b->addr32[2])
425 			return (-1);
426 		if (a->addr32[1] > b->addr32[1])
427 			return (1);
428 		if (a->addr32[1] < b->addr32[1])
429 			return (-1);
430 		if (a->addr32[0] > b->addr32[0])
431 			return (1);
432 		if (a->addr32[0] < b->addr32[0])
433 			return (-1);
434 		break;
435 #endif /* INET6 */
436 	default:
437 		panic("%s: unknown address family %u", __func__, af);
438 	}
439 	return (0);
440 }
441 
442 static __inline uint32_t
443 pf_hashkey(struct pf_state_key *sk)
444 {
445 	uint32_t h;
446 
447 	h = murmur3_32_hash32((uint32_t *)sk,
448 	    sizeof(struct pf_state_key_cmp)/sizeof(uint32_t),
449 	    V_pf_hashseed);
450 
451 	return (h & pf_hashmask);
452 }
453 
454 static __inline uint32_t
455 pf_hashsrc(struct pf_addr *addr, sa_family_t af)
456 {
457 	uint32_t h;
458 
459 	switch (af) {
460 	case AF_INET:
461 		h = murmur3_32_hash32((uint32_t *)&addr->v4,
462 		    sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed);
463 		break;
464 	case AF_INET6:
465 		h = murmur3_32_hash32((uint32_t *)&addr->v6,
466 		    sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed);
467 		break;
468 	default:
469 		panic("%s: unknown address family %u", __func__, af);
470 	}
471 
472 	return (h & pf_srchashmask);
473 }
474 
475 #ifdef ALTQ
476 static int
477 pf_state_hash(struct pf_kstate *s)
478 {
479 	u_int32_t hv = (intptr_t)s / sizeof(*s);
480 
481 	hv ^= crc32(&s->src, sizeof(s->src));
482 	hv ^= crc32(&s->dst, sizeof(s->dst));
483 	if (hv == 0)
484 		hv = 1;
485 	return (hv);
486 }
487 #endif
488 
489 static __inline void
490 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate)
491 {
492 	if (which == PF_PEER_DST || which == PF_PEER_BOTH)
493 		s->dst.state = newstate;
494 	if (which == PF_PEER_DST)
495 		return;
496 
497 	s->src.state = newstate;
498 }
499 
500 #ifdef INET6
501 void
502 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af)
503 {
504 	switch (af) {
505 #ifdef INET
506 	case AF_INET:
507 		dst->addr32[0] = src->addr32[0];
508 		break;
509 #endif /* INET */
510 	case AF_INET6:
511 		dst->addr32[0] = src->addr32[0];
512 		dst->addr32[1] = src->addr32[1];
513 		dst->addr32[2] = src->addr32[2];
514 		dst->addr32[3] = src->addr32[3];
515 		break;
516 	}
517 }
518 #endif /* INET6 */
519 
520 static void
521 pf_init_threshold(struct pf_threshold *threshold,
522     u_int32_t limit, u_int32_t seconds)
523 {
524 	threshold->limit = limit * PF_THRESHOLD_MULT;
525 	threshold->seconds = seconds;
526 	threshold->count = 0;
527 	threshold->last = time_uptime;
528 }
529 
530 static void
531 pf_add_threshold(struct pf_threshold *threshold)
532 {
533 	u_int32_t t = time_uptime, diff = t - threshold->last;
534 
535 	if (diff >= threshold->seconds)
536 		threshold->count = 0;
537 	else
538 		threshold->count -= threshold->count * diff /
539 		    threshold->seconds;
540 	threshold->count += PF_THRESHOLD_MULT;
541 	threshold->last = t;
542 }
543 
544 static int
545 pf_check_threshold(struct pf_threshold *threshold)
546 {
547 	return (threshold->count > threshold->limit);
548 }
549 
550 static int
551 pf_src_connlimit(struct pf_kstate **state)
552 {
553 	struct pf_overload_entry *pfoe;
554 	int bad = 0;
555 
556 	PF_STATE_LOCK_ASSERT(*state);
557 
558 	(*state)->src_node->conn++;
559 	(*state)->src.tcp_est = 1;
560 	pf_add_threshold(&(*state)->src_node->conn_rate);
561 
562 	if ((*state)->rule.ptr->max_src_conn &&
563 	    (*state)->rule.ptr->max_src_conn <
564 	    (*state)->src_node->conn) {
565 		counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1);
566 		bad++;
567 	}
568 
569 	if ((*state)->rule.ptr->max_src_conn_rate.limit &&
570 	    pf_check_threshold(&(*state)->src_node->conn_rate)) {
571 		counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1);
572 		bad++;
573 	}
574 
575 	if (!bad)
576 		return (0);
577 
578 	/* Kill this state. */
579 	(*state)->timeout = PFTM_PURGE;
580 	pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED);
581 
582 	if ((*state)->rule.ptr->overload_tbl == NULL)
583 		return (1);
584 
585 	/* Schedule overloading and flushing task. */
586 	pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT);
587 	if (pfoe == NULL)
588 		return (1);	/* too bad :( */
589 
590 	bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr));
591 	pfoe->af = (*state)->key[PF_SK_WIRE]->af;
592 	pfoe->rule = (*state)->rule.ptr;
593 	pfoe->dir = (*state)->direction;
594 	PF_OVERLOADQ_LOCK();
595 	SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next);
596 	PF_OVERLOADQ_UNLOCK();
597 	taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask);
598 
599 	return (1);
600 }
601 
602 static void
603 pf_overload_task(void *v, int pending)
604 {
605 	struct pf_overload_head queue;
606 	struct pfr_addr p;
607 	struct pf_overload_entry *pfoe, *pfoe1;
608 	uint32_t killed = 0;
609 
610 	CURVNET_SET((struct vnet *)v);
611 
612 	PF_OVERLOADQ_LOCK();
613 	queue = V_pf_overloadqueue;
614 	SLIST_INIT(&V_pf_overloadqueue);
615 	PF_OVERLOADQ_UNLOCK();
616 
617 	bzero(&p, sizeof(p));
618 	SLIST_FOREACH(pfoe, &queue, next) {
619 		counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1);
620 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
621 			printf("%s: blocking address ", __func__);
622 			pf_print_host(&pfoe->addr, 0, pfoe->af);
623 			printf("\n");
624 		}
625 
626 		p.pfra_af = pfoe->af;
627 		switch (pfoe->af) {
628 #ifdef INET
629 		case AF_INET:
630 			p.pfra_net = 32;
631 			p.pfra_ip4addr = pfoe->addr.v4;
632 			break;
633 #endif
634 #ifdef INET6
635 		case AF_INET6:
636 			p.pfra_net = 128;
637 			p.pfra_ip6addr = pfoe->addr.v6;
638 			break;
639 #endif
640 		}
641 
642 		PF_RULES_WLOCK();
643 		pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second);
644 		PF_RULES_WUNLOCK();
645 	}
646 
647 	/*
648 	 * Remove those entries, that don't need flushing.
649 	 */
650 	SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
651 		if (pfoe->rule->flush == 0) {
652 			SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next);
653 			free(pfoe, M_PFTEMP);
654 		} else
655 			counter_u64_add(
656 			    V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1);
657 
658 	/* If nothing to flush, return. */
659 	if (SLIST_EMPTY(&queue)) {
660 		CURVNET_RESTORE();
661 		return;
662 	}
663 
664 	for (int i = 0; i <= pf_hashmask; i++) {
665 		struct pf_idhash *ih = &V_pf_idhash[i];
666 		struct pf_state_key *sk;
667 		struct pf_kstate *s;
668 
669 		PF_HASHROW_LOCK(ih);
670 		LIST_FOREACH(s, &ih->states, entry) {
671 		    sk = s->key[PF_SK_WIRE];
672 		    SLIST_FOREACH(pfoe, &queue, next)
673 			if (sk->af == pfoe->af &&
674 			    ((pfoe->rule->flush & PF_FLUSH_GLOBAL) ||
675 			    pfoe->rule == s->rule.ptr) &&
676 			    ((pfoe->dir == PF_OUT &&
677 			    PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) ||
678 			    (pfoe->dir == PF_IN &&
679 			    PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) {
680 				s->timeout = PFTM_PURGE;
681 				pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
682 				killed++;
683 			}
684 		}
685 		PF_HASHROW_UNLOCK(ih);
686 	}
687 	SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
688 		free(pfoe, M_PFTEMP);
689 	if (V_pf_status.debug >= PF_DEBUG_MISC)
690 		printf("%s: %u states killed", __func__, killed);
691 
692 	CURVNET_RESTORE();
693 }
694 
695 /*
696  * Can return locked on failure, so that we can consistently
697  * allocate and insert a new one.
698  */
699 struct pf_ksrc_node *
700 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af,
701 	int returnlocked)
702 {
703 	struct pf_srchash *sh;
704 	struct pf_ksrc_node *n;
705 
706 	counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
707 
708 	sh = &V_pf_srchash[pf_hashsrc(src, af)];
709 	PF_HASHROW_LOCK(sh);
710 	LIST_FOREACH(n, &sh->nodes, entry)
711 		if (n->rule.ptr == rule && n->af == af &&
712 		    ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) ||
713 		    (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0)))
714 			break;
715 	if (n != NULL) {
716 		n->states++;
717 		PF_HASHROW_UNLOCK(sh);
718 	} else if (returnlocked == 0)
719 		PF_HASHROW_UNLOCK(sh);
720 
721 	return (n);
722 }
723 
724 static void
725 pf_free_src_node(struct pf_ksrc_node *sn)
726 {
727 
728 	for (int i = 0; i < 2; i++) {
729 		counter_u64_free(sn->bytes[i]);
730 		counter_u64_free(sn->packets[i]);
731 	}
732 	uma_zfree(V_pf_sources_z, sn);
733 }
734 
735 static int
736 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule,
737     struct pf_addr *src, sa_family_t af)
738 {
739 
740 	KASSERT((rule->rule_flag & PFRULE_SRCTRACK ||
741 	    rule->rpool.opts & PF_POOL_STICKYADDR),
742 	    ("%s for non-tracking rule %p", __func__, rule));
743 
744 	if (*sn == NULL)
745 		*sn = pf_find_src_node(src, rule, af, 1);
746 
747 	if (*sn == NULL) {
748 		struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)];
749 
750 		PF_HASHROW_ASSERT(sh);
751 
752 		if (!rule->max_src_nodes ||
753 		    counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes)
754 			(*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO);
755 		else
756 			counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES],
757 			    1);
758 		if ((*sn) == NULL) {
759 			PF_HASHROW_UNLOCK(sh);
760 			return (-1);
761 		}
762 
763 		for (int i = 0; i < 2; i++) {
764 			(*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT);
765 			(*sn)->packets[i] = counter_u64_alloc(M_NOWAIT);
766 
767 			if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) {
768 				pf_free_src_node(*sn);
769 				PF_HASHROW_UNLOCK(sh);
770 				return (-1);
771 			}
772 		}
773 
774 		pf_init_threshold(&(*sn)->conn_rate,
775 		    rule->max_src_conn_rate.limit,
776 		    rule->max_src_conn_rate.seconds);
777 
778 		(*sn)->af = af;
779 		(*sn)->rule.ptr = rule;
780 		PF_ACPY(&(*sn)->addr, src, af);
781 		LIST_INSERT_HEAD(&sh->nodes, *sn, entry);
782 		(*sn)->creation = time_uptime;
783 		(*sn)->ruletype = rule->action;
784 		(*sn)->states = 1;
785 		if ((*sn)->rule.ptr != NULL)
786 			counter_u64_add((*sn)->rule.ptr->src_nodes, 1);
787 		PF_HASHROW_UNLOCK(sh);
788 		counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1);
789 	} else {
790 		if (rule->max_src_states &&
791 		    (*sn)->states >= rule->max_src_states) {
792 			counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES],
793 			    1);
794 			return (-1);
795 		}
796 	}
797 	return (0);
798 }
799 
800 void
801 pf_unlink_src_node(struct pf_ksrc_node *src)
802 {
803 
804 	PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]);
805 	LIST_REMOVE(src, entry);
806 	if (src->rule.ptr)
807 		counter_u64_add(src->rule.ptr->src_nodes, -1);
808 }
809 
810 u_int
811 pf_free_src_nodes(struct pf_ksrc_node_list *head)
812 {
813 	struct pf_ksrc_node *sn, *tmp;
814 	u_int count = 0;
815 
816 	LIST_FOREACH_SAFE(sn, head, entry, tmp) {
817 		pf_free_src_node(sn);
818 		count++;
819 	}
820 
821 	counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count);
822 
823 	return (count);
824 }
825 
826 void
827 pf_mtag_initialize()
828 {
829 
830 	pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) +
831 	    sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL,
832 	    UMA_ALIGN_PTR, 0);
833 }
834 
835 /* Per-vnet data storage structures initialization. */
836 void
837 pf_initialize()
838 {
839 	struct pf_keyhash	*kh;
840 	struct pf_idhash	*ih;
841 	struct pf_srchash	*sh;
842 	u_int i;
843 
844 	if (pf_hashsize == 0 || !powerof2(pf_hashsize))
845 		pf_hashsize = PF_HASHSIZ;
846 	if (pf_srchashsize == 0 || !powerof2(pf_srchashsize))
847 		pf_srchashsize = PF_SRCHASHSIZ;
848 
849 	V_pf_hashseed = arc4random();
850 
851 	/* States and state keys storage. */
852 	V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate),
853 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
854 	V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z;
855 	uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT);
856 	uma_zone_set_warning(V_pf_state_z, "PF states limit reached");
857 
858 	V_pf_state_key_z = uma_zcreate("pf state keys",
859 	    sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL,
860 	    UMA_ALIGN_PTR, 0);
861 
862 	V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash),
863 	    M_PFHASH, M_NOWAIT | M_ZERO);
864 	V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash),
865 	    M_PFHASH, M_NOWAIT | M_ZERO);
866 	if (V_pf_keyhash == NULL || V_pf_idhash == NULL) {
867 		printf("pf: Unable to allocate memory for "
868 		    "state_hashsize %lu.\n", pf_hashsize);
869 
870 		free(V_pf_keyhash, M_PFHASH);
871 		free(V_pf_idhash, M_PFHASH);
872 
873 		pf_hashsize = PF_HASHSIZ;
874 		V_pf_keyhash = mallocarray(pf_hashsize,
875 		    sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO);
876 		V_pf_idhash = mallocarray(pf_hashsize,
877 		    sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO);
878 	}
879 
880 	pf_hashmask = pf_hashsize - 1;
881 	for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask;
882 	    i++, kh++, ih++) {
883 		mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK);
884 		mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF);
885 	}
886 
887 	/* Source nodes. */
888 	V_pf_sources_z = uma_zcreate("pf source nodes",
889 	    sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
890 	    0);
891 	V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z;
892 	uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT);
893 	uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached");
894 
895 	V_pf_srchash = mallocarray(pf_srchashsize,
896 	    sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO);
897 	if (V_pf_srchash == NULL) {
898 		printf("pf: Unable to allocate memory for "
899 		    "source_hashsize %lu.\n", pf_srchashsize);
900 
901 		pf_srchashsize = PF_SRCHASHSIZ;
902 		V_pf_srchash = mallocarray(pf_srchashsize,
903 		    sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO);
904 	}
905 
906 	pf_srchashmask = pf_srchashsize - 1;
907 	for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++)
908 		mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF);
909 
910 	/* ALTQ */
911 	TAILQ_INIT(&V_pf_altqs[0]);
912 	TAILQ_INIT(&V_pf_altqs[1]);
913 	TAILQ_INIT(&V_pf_altqs[2]);
914 	TAILQ_INIT(&V_pf_altqs[3]);
915 	TAILQ_INIT(&V_pf_pabuf);
916 	V_pf_altqs_active = &V_pf_altqs[0];
917 	V_pf_altq_ifs_active = &V_pf_altqs[1];
918 	V_pf_altqs_inactive = &V_pf_altqs[2];
919 	V_pf_altq_ifs_inactive = &V_pf_altqs[3];
920 
921 	/* Send & overload+flush queues. */
922 	STAILQ_INIT(&V_pf_sendqueue);
923 	SLIST_INIT(&V_pf_overloadqueue);
924 	TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet);
925 
926 	/* Unlinked, but may be referenced rules. */
927 	TAILQ_INIT(&V_pf_unlinked_rules);
928 }
929 
930 void
931 pf_mtag_cleanup()
932 {
933 
934 	uma_zdestroy(pf_mtag_z);
935 }
936 
937 void
938 pf_cleanup()
939 {
940 	struct pf_keyhash	*kh;
941 	struct pf_idhash	*ih;
942 	struct pf_srchash	*sh;
943 	struct pf_send_entry	*pfse, *next;
944 	u_int i;
945 
946 	for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask;
947 	    i++, kh++, ih++) {
948 		KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty",
949 		    __func__));
950 		KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty",
951 		    __func__));
952 		mtx_destroy(&kh->lock);
953 		mtx_destroy(&ih->lock);
954 	}
955 	free(V_pf_keyhash, M_PFHASH);
956 	free(V_pf_idhash, M_PFHASH);
957 
958 	for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) {
959 		KASSERT(LIST_EMPTY(&sh->nodes),
960 		    ("%s: source node hash not empty", __func__));
961 		mtx_destroy(&sh->lock);
962 	}
963 	free(V_pf_srchash, M_PFHASH);
964 
965 	STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) {
966 		m_freem(pfse->pfse_m);
967 		free(pfse, M_PFTEMP);
968 	}
969 
970 	uma_zdestroy(V_pf_sources_z);
971 	uma_zdestroy(V_pf_state_z);
972 	uma_zdestroy(V_pf_state_key_z);
973 }
974 
975 static int
976 pf_mtag_uminit(void *mem, int size, int how)
977 {
978 	struct m_tag *t;
979 
980 	t = (struct m_tag *)mem;
981 	t->m_tag_cookie = MTAG_ABI_COMPAT;
982 	t->m_tag_id = PACKET_TAG_PF;
983 	t->m_tag_len = sizeof(struct pf_mtag);
984 	t->m_tag_free = pf_mtag_free;
985 
986 	return (0);
987 }
988 
989 static void
990 pf_mtag_free(struct m_tag *t)
991 {
992 
993 	uma_zfree(pf_mtag_z, t);
994 }
995 
996 struct pf_mtag *
997 pf_get_mtag(struct mbuf *m)
998 {
999 	struct m_tag *mtag;
1000 
1001 	if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL)
1002 		return ((struct pf_mtag *)(mtag + 1));
1003 
1004 	mtag = uma_zalloc(pf_mtag_z, M_NOWAIT);
1005 	if (mtag == NULL)
1006 		return (NULL);
1007 	bzero(mtag + 1, sizeof(struct pf_mtag));
1008 	m_tag_prepend(m, mtag);
1009 
1010 	return ((struct pf_mtag *)(mtag + 1));
1011 }
1012 
1013 static int
1014 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks,
1015     struct pf_kstate *s)
1016 {
1017 	struct pf_keyhash	*khs, *khw, *kh;
1018 	struct pf_state_key	*sk, *cur;
1019 	struct pf_kstate	*si, *olds = NULL;
1020 	int idx;
1021 
1022 	KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1023 	KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__));
1024 	KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__));
1025 
1026 	/*
1027 	 * We need to lock hash slots of both keys. To avoid deadlock
1028 	 * we always lock the slot with lower address first. Unlock order
1029 	 * isn't important.
1030 	 *
1031 	 * We also need to lock ID hash slot before dropping key
1032 	 * locks. On success we return with ID hash slot locked.
1033 	 */
1034 
1035 	if (skw == sks) {
1036 		khs = khw = &V_pf_keyhash[pf_hashkey(skw)];
1037 		PF_HASHROW_LOCK(khs);
1038 	} else {
1039 		khs = &V_pf_keyhash[pf_hashkey(sks)];
1040 		khw = &V_pf_keyhash[pf_hashkey(skw)];
1041 		if (khs == khw) {
1042 			PF_HASHROW_LOCK(khs);
1043 		} else if (khs < khw) {
1044 			PF_HASHROW_LOCK(khs);
1045 			PF_HASHROW_LOCK(khw);
1046 		} else {
1047 			PF_HASHROW_LOCK(khw);
1048 			PF_HASHROW_LOCK(khs);
1049 		}
1050 	}
1051 
1052 #define	KEYS_UNLOCK()	do {			\
1053 	if (khs != khw) {			\
1054 		PF_HASHROW_UNLOCK(khs);		\
1055 		PF_HASHROW_UNLOCK(khw);		\
1056 	} else					\
1057 		PF_HASHROW_UNLOCK(khs);		\
1058 } while (0)
1059 
1060 	/*
1061 	 * First run: start with wire key.
1062 	 */
1063 	sk = skw;
1064 	kh = khw;
1065 	idx = PF_SK_WIRE;
1066 
1067 	MPASS(s->lock == NULL);
1068 	s->lock = &V_pf_idhash[PF_IDHASH(s)].lock;
1069 
1070 keyattach:
1071 	LIST_FOREACH(cur, &kh->keys, entry)
1072 		if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0)
1073 			break;
1074 
1075 	if (cur != NULL) {
1076 		/* Key exists. Check for same kif, if none, add to key. */
1077 		TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) {
1078 			struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)];
1079 
1080 			PF_HASHROW_LOCK(ih);
1081 			if (si->kif == s->kif &&
1082 			    si->direction == s->direction) {
1083 				if (sk->proto == IPPROTO_TCP &&
1084 				    si->src.state >= TCPS_FIN_WAIT_2 &&
1085 				    si->dst.state >= TCPS_FIN_WAIT_2) {
1086 					/*
1087 					 * New state matches an old >FIN_WAIT_2
1088 					 * state. We can't drop key hash locks,
1089 					 * thus we can't unlink it properly.
1090 					 *
1091 					 * As a workaround we drop it into
1092 					 * TCPS_CLOSED state, schedule purge
1093 					 * ASAP and push it into the very end
1094 					 * of the slot TAILQ, so that it won't
1095 					 * conflict with our new state.
1096 					 */
1097 					pf_set_protostate(si, PF_PEER_BOTH,
1098 					    TCPS_CLOSED);
1099 					si->timeout = PFTM_PURGE;
1100 					olds = si;
1101 				} else {
1102 					if (V_pf_status.debug >= PF_DEBUG_MISC) {
1103 						printf("pf: %s key attach "
1104 						    "failed on %s: ",
1105 						    (idx == PF_SK_WIRE) ?
1106 						    "wire" : "stack",
1107 						    s->kif->pfik_name);
1108 						pf_print_state_parts(s,
1109 						    (idx == PF_SK_WIRE) ?
1110 						    sk : NULL,
1111 						    (idx == PF_SK_STACK) ?
1112 						    sk : NULL);
1113 						printf(", existing: ");
1114 						pf_print_state_parts(si,
1115 						    (idx == PF_SK_WIRE) ?
1116 						    sk : NULL,
1117 						    (idx == PF_SK_STACK) ?
1118 						    sk : NULL);
1119 						printf("\n");
1120 					}
1121 					PF_HASHROW_UNLOCK(ih);
1122 					KEYS_UNLOCK();
1123 					uma_zfree(V_pf_state_key_z, sk);
1124 					if (idx == PF_SK_STACK)
1125 						pf_detach_state(s);
1126 					return (EEXIST); /* collision! */
1127 				}
1128 			}
1129 			PF_HASHROW_UNLOCK(ih);
1130 		}
1131 		uma_zfree(V_pf_state_key_z, sk);
1132 		s->key[idx] = cur;
1133 	} else {
1134 		LIST_INSERT_HEAD(&kh->keys, sk, entry);
1135 		s->key[idx] = sk;
1136 	}
1137 
1138 stateattach:
1139 	/* List is sorted, if-bound states before floating. */
1140 	if (s->kif == V_pfi_all)
1141 		TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]);
1142 	else
1143 		TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]);
1144 
1145 	if (olds) {
1146 		TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]);
1147 		TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds,
1148 		    key_list[idx]);
1149 		olds = NULL;
1150 	}
1151 
1152 	/*
1153 	 * Attach done. See how should we (or should not?)
1154 	 * attach a second key.
1155 	 */
1156 	if (sks == skw) {
1157 		s->key[PF_SK_STACK] = s->key[PF_SK_WIRE];
1158 		idx = PF_SK_STACK;
1159 		sks = NULL;
1160 		goto stateattach;
1161 	} else if (sks != NULL) {
1162 		/*
1163 		 * Continue attaching with stack key.
1164 		 */
1165 		sk = sks;
1166 		kh = khs;
1167 		idx = PF_SK_STACK;
1168 		sks = NULL;
1169 		goto keyattach;
1170 	}
1171 
1172 	PF_STATE_LOCK(s);
1173 	KEYS_UNLOCK();
1174 
1175 	KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL,
1176 	    ("%s failure", __func__));
1177 
1178 	return (0);
1179 #undef	KEYS_UNLOCK
1180 }
1181 
1182 static void
1183 pf_detach_state(struct pf_kstate *s)
1184 {
1185 	struct pf_state_key *sks = s->key[PF_SK_STACK];
1186 	struct pf_keyhash *kh;
1187 
1188 	if (sks != NULL) {
1189 		kh = &V_pf_keyhash[pf_hashkey(sks)];
1190 		PF_HASHROW_LOCK(kh);
1191 		if (s->key[PF_SK_STACK] != NULL)
1192 			pf_state_key_detach(s, PF_SK_STACK);
1193 		/*
1194 		 * If both point to same key, then we are done.
1195 		 */
1196 		if (sks == s->key[PF_SK_WIRE]) {
1197 			pf_state_key_detach(s, PF_SK_WIRE);
1198 			PF_HASHROW_UNLOCK(kh);
1199 			return;
1200 		}
1201 		PF_HASHROW_UNLOCK(kh);
1202 	}
1203 
1204 	if (s->key[PF_SK_WIRE] != NULL) {
1205 		kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])];
1206 		PF_HASHROW_LOCK(kh);
1207 		if (s->key[PF_SK_WIRE] != NULL)
1208 			pf_state_key_detach(s, PF_SK_WIRE);
1209 		PF_HASHROW_UNLOCK(kh);
1210 	}
1211 }
1212 
1213 static void
1214 pf_state_key_detach(struct pf_kstate *s, int idx)
1215 {
1216 	struct pf_state_key *sk = s->key[idx];
1217 #ifdef INVARIANTS
1218 	struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)];
1219 
1220 	PF_HASHROW_ASSERT(kh);
1221 #endif
1222 	TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]);
1223 	s->key[idx] = NULL;
1224 
1225 	if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) {
1226 		LIST_REMOVE(sk, entry);
1227 		uma_zfree(V_pf_state_key_z, sk);
1228 	}
1229 }
1230 
1231 static int
1232 pf_state_key_ctor(void *mem, int size, void *arg, int flags)
1233 {
1234 	struct pf_state_key *sk = mem;
1235 
1236 	bzero(sk, sizeof(struct pf_state_key_cmp));
1237 	TAILQ_INIT(&sk->states[PF_SK_WIRE]);
1238 	TAILQ_INIT(&sk->states[PF_SK_STACK]);
1239 
1240 	return (0);
1241 }
1242 
1243 struct pf_state_key *
1244 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr,
1245 	struct pf_addr *daddr, u_int16_t sport, u_int16_t dport)
1246 {
1247 	struct pf_state_key *sk;
1248 
1249 	sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1250 	if (sk == NULL)
1251 		return (NULL);
1252 
1253 	PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af);
1254 	PF_ACPY(&sk->addr[pd->didx], daddr, pd->af);
1255 	sk->port[pd->sidx] = sport;
1256 	sk->port[pd->didx] = dport;
1257 	sk->proto = pd->proto;
1258 	sk->af = pd->af;
1259 
1260 	return (sk);
1261 }
1262 
1263 struct pf_state_key *
1264 pf_state_key_clone(struct pf_state_key *orig)
1265 {
1266 	struct pf_state_key *sk;
1267 
1268 	sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1269 	if (sk == NULL)
1270 		return (NULL);
1271 
1272 	bcopy(orig, sk, sizeof(struct pf_state_key_cmp));
1273 
1274 	return (sk);
1275 }
1276 
1277 int
1278 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif,
1279     struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s)
1280 {
1281 	struct pf_idhash *ih;
1282 	struct pf_kstate *cur;
1283 	int error;
1284 
1285 	KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]),
1286 	    ("%s: sks not pristine", __func__));
1287 	KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]),
1288 	    ("%s: skw not pristine", __func__));
1289 	KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1290 
1291 	s->kif = kif;
1292 	s->orig_kif = orig_kif;
1293 
1294 	if (s->id == 0 && s->creatorid == 0) {
1295 		/* XXX: should be atomic, but probability of collision low */
1296 		if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID)
1297 			V_pf_stateid[curcpu] = 1;
1298 		s->id |= (uint64_t )curcpu << PFID_CPUSHIFT;
1299 		s->id = htobe64(s->id);
1300 		s->creatorid = V_pf_status.hostid;
1301 	}
1302 
1303 	/* Returns with ID locked on success. */
1304 	if ((error = pf_state_key_attach(skw, sks, s)) != 0)
1305 		return (error);
1306 
1307 	ih = &V_pf_idhash[PF_IDHASH(s)];
1308 	PF_HASHROW_ASSERT(ih);
1309 	LIST_FOREACH(cur, &ih->states, entry)
1310 		if (cur->id == s->id && cur->creatorid == s->creatorid)
1311 			break;
1312 
1313 	if (cur != NULL) {
1314 		PF_HASHROW_UNLOCK(ih);
1315 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1316 			printf("pf: state ID collision: "
1317 			    "id: %016llx creatorid: %08x\n",
1318 			    (unsigned long long)be64toh(s->id),
1319 			    ntohl(s->creatorid));
1320 		}
1321 		pf_detach_state(s);
1322 		return (EEXIST);
1323 	}
1324 	LIST_INSERT_HEAD(&ih->states, s, entry);
1325 	/* One for keys, one for ID hash. */
1326 	refcount_init(&s->refs, 2);
1327 
1328 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1);
1329 	if (V_pfsync_insert_state_ptr != NULL)
1330 		V_pfsync_insert_state_ptr(s);
1331 
1332 	/* Returns locked. */
1333 	return (0);
1334 }
1335 
1336 /*
1337  * Find state by ID: returns with locked row on success.
1338  */
1339 struct pf_kstate *
1340 pf_find_state_byid(uint64_t id, uint32_t creatorid)
1341 {
1342 	struct pf_idhash *ih;
1343 	struct pf_kstate *s;
1344 
1345 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1346 
1347 	ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))];
1348 
1349 	PF_HASHROW_LOCK(ih);
1350 	LIST_FOREACH(s, &ih->states, entry)
1351 		if (s->id == id && s->creatorid == creatorid)
1352 			break;
1353 
1354 	if (s == NULL)
1355 		PF_HASHROW_UNLOCK(ih);
1356 
1357 	return (s);
1358 }
1359 
1360 /*
1361  * Find state by key.
1362  * Returns with ID hash slot locked on success.
1363  */
1364 static struct pf_kstate *
1365 pf_find_state(struct pfi_kkif *kif, struct pf_state_key_cmp *key, u_int dir)
1366 {
1367 	struct pf_keyhash	*kh;
1368 	struct pf_state_key	*sk;
1369 	struct pf_kstate	*s;
1370 	int idx;
1371 
1372 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1373 
1374 	kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)];
1375 
1376 	PF_HASHROW_LOCK(kh);
1377 	LIST_FOREACH(sk, &kh->keys, entry)
1378 		if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1379 			break;
1380 	if (sk == NULL) {
1381 		PF_HASHROW_UNLOCK(kh);
1382 		return (NULL);
1383 	}
1384 
1385 	idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK);
1386 
1387 	/* List is sorted, if-bound states before floating ones. */
1388 	TAILQ_FOREACH(s, &sk->states[idx], key_list[idx])
1389 		if (s->kif == V_pfi_all || s->kif == kif) {
1390 			PF_STATE_LOCK(s);
1391 			PF_HASHROW_UNLOCK(kh);
1392 			if (__predict_false(s->timeout >= PFTM_MAX)) {
1393 				/*
1394 				 * State is either being processed by
1395 				 * pf_unlink_state() in an other thread, or
1396 				 * is scheduled for immediate expiry.
1397 				 */
1398 				PF_STATE_UNLOCK(s);
1399 				return (NULL);
1400 			}
1401 			return (s);
1402 		}
1403 	PF_HASHROW_UNLOCK(kh);
1404 
1405 	return (NULL);
1406 }
1407 
1408 struct pf_kstate *
1409 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more)
1410 {
1411 	struct pf_keyhash	*kh;
1412 	struct pf_state_key	*sk;
1413 	struct pf_kstate	*s, *ret = NULL;
1414 	int			 idx, inout = 0;
1415 
1416 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1417 
1418 	kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)];
1419 
1420 	PF_HASHROW_LOCK(kh);
1421 	LIST_FOREACH(sk, &kh->keys, entry)
1422 		if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1423 			break;
1424 	if (sk == NULL) {
1425 		PF_HASHROW_UNLOCK(kh);
1426 		return (NULL);
1427 	}
1428 	switch (dir) {
1429 	case PF_IN:
1430 		idx = PF_SK_WIRE;
1431 		break;
1432 	case PF_OUT:
1433 		idx = PF_SK_STACK;
1434 		break;
1435 	case PF_INOUT:
1436 		idx = PF_SK_WIRE;
1437 		inout = 1;
1438 		break;
1439 	default:
1440 		panic("%s: dir %u", __func__, dir);
1441 	}
1442 second_run:
1443 	TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
1444 		if (more == NULL) {
1445 			PF_HASHROW_UNLOCK(kh);
1446 			return (s);
1447 		}
1448 
1449 		if (ret)
1450 			(*more)++;
1451 		else
1452 			ret = s;
1453 	}
1454 	if (inout == 1) {
1455 		inout = 0;
1456 		idx = PF_SK_STACK;
1457 		goto second_run;
1458 	}
1459 	PF_HASHROW_UNLOCK(kh);
1460 
1461 	return (ret);
1462 }
1463 
1464 bool
1465 pf_find_state_all_exists(struct pf_state_key_cmp *key, u_int dir)
1466 {
1467 	struct pf_kstate *s;
1468 
1469 	s = pf_find_state_all(key, dir, NULL);
1470 	return (s != NULL);
1471 }
1472 
1473 /* END state table stuff */
1474 
1475 static void
1476 pf_send(struct pf_send_entry *pfse)
1477 {
1478 
1479 	PF_SENDQ_LOCK();
1480 	STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next);
1481 	PF_SENDQ_UNLOCK();
1482 	swi_sched(V_pf_swi_cookie, 0);
1483 }
1484 
1485 static bool
1486 pf_isforlocal(struct mbuf *m, int af)
1487 {
1488 	switch (af) {
1489 #ifdef INET
1490 	case AF_INET: {
1491 		struct rm_priotracker in_ifa_tracker;
1492 		struct ip *ip;
1493 		struct in_ifaddr *ia = NULL;
1494 
1495 		ip = mtod(m, struct ip *);
1496 		IN_IFADDR_RLOCK(&in_ifa_tracker);
1497 		LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
1498 			if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr) {
1499 				IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1500 				return (true);
1501 			}
1502 		}
1503 		IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1504 		break;
1505 	}
1506 #endif
1507 #ifdef INET6
1508 	case AF_INET6: {
1509 		struct ip6_hdr *ip6;
1510 		struct in6_ifaddr *ia;
1511 		ip6 = mtod(m, struct ip6_hdr *);
1512 		ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
1513 		if (ia == NULL)
1514 			return (false);
1515 		return (! (ia->ia6_flags & IN6_IFF_NOTREADY));
1516 	}
1517 #endif
1518 	default:
1519 		panic("Unsupported af %d", af);
1520 	}
1521 
1522 	return (false);
1523 }
1524 
1525 void
1526 pf_intr(void *v)
1527 {
1528 	struct epoch_tracker et;
1529 	struct pf_send_head queue;
1530 	struct pf_send_entry *pfse, *next;
1531 
1532 	CURVNET_SET((struct vnet *)v);
1533 
1534 	PF_SENDQ_LOCK();
1535 	queue = V_pf_sendqueue;
1536 	STAILQ_INIT(&V_pf_sendqueue);
1537 	PF_SENDQ_UNLOCK();
1538 
1539 	NET_EPOCH_ENTER(et);
1540 
1541 	STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) {
1542 		switch (pfse->pfse_type) {
1543 #ifdef INET
1544 		case PFSE_IP: {
1545 			if (pf_isforlocal(pfse->pfse_m, AF_INET)) {
1546 				pfse->pfse_m->m_flags |= M_SKIP_FIREWALL;
1547 				pfse->pfse_m->m_pkthdr.csum_flags |=
1548 				    CSUM_IP_VALID | CSUM_IP_CHECKED;
1549 				ip_input(pfse->pfse_m);
1550 			} else {
1551 				ip_output(pfse->pfse_m, NULL, NULL, 0, NULL,
1552 				    NULL);
1553 			}
1554 			break;
1555 		}
1556 		case PFSE_ICMP:
1557 			icmp_error(pfse->pfse_m, pfse->icmpopts.type,
1558 			    pfse->icmpopts.code, 0, pfse->icmpopts.mtu);
1559 			break;
1560 #endif /* INET */
1561 #ifdef INET6
1562 		case PFSE_IP6:
1563 			if (pf_isforlocal(pfse->pfse_m, AF_INET6)) {
1564 				pfse->pfse_m->m_flags |= M_SKIP_FIREWALL;
1565 				ip6_input(pfse->pfse_m);
1566 			} else {
1567 				ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL,
1568 				    NULL, NULL);
1569 			}
1570 			break;
1571 		case PFSE_ICMP6:
1572 			icmp6_error(pfse->pfse_m, pfse->icmpopts.type,
1573 			    pfse->icmpopts.code, pfse->icmpopts.mtu);
1574 			break;
1575 #endif /* INET6 */
1576 		default:
1577 			panic("%s: unknown type", __func__);
1578 		}
1579 		free(pfse, M_PFTEMP);
1580 	}
1581 	NET_EPOCH_EXIT(et);
1582 	CURVNET_RESTORE();
1583 }
1584 
1585 #define	pf_purge_thread_period	(hz / 10)
1586 
1587 #ifdef PF_WANT_32_TO_64_COUNTER
1588 static void
1589 pf_status_counter_u64_periodic(void)
1590 {
1591 
1592 	PF_RULES_RASSERT();
1593 
1594 	if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) {
1595 		return;
1596 	}
1597 
1598 	for (int i = 0; i < FCNT_MAX; i++) {
1599 		pf_counter_u64_periodic(&V_pf_status.fcounters[i]);
1600 	}
1601 }
1602 
1603 static void
1604 pf_kif_counter_u64_periodic(void)
1605 {
1606 	struct pfi_kkif *kif;
1607 	size_t r, run;
1608 
1609 	PF_RULES_RASSERT();
1610 
1611 	if (__predict_false(V_pf_allkifcount == 0)) {
1612 		return;
1613 	}
1614 
1615 	if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
1616 		return;
1617 	}
1618 
1619 	run = V_pf_allkifcount / 10;
1620 	if (run < 5)
1621 		run = 5;
1622 
1623 	for (r = 0; r < run; r++) {
1624 		kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist);
1625 		if (kif == NULL) {
1626 			LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
1627 			LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist);
1628 			break;
1629 		}
1630 
1631 		LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
1632 		LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist);
1633 
1634 		for (int i = 0; i < 2; i++) {
1635 			for (int j = 0; j < 2; j++) {
1636 				for (int k = 0; k < 2; k++) {
1637 					pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]);
1638 					pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]);
1639 				}
1640 			}
1641 		}
1642 	}
1643 }
1644 
1645 static void
1646 pf_rule_counter_u64_periodic(void)
1647 {
1648 	struct pf_krule *rule;
1649 	size_t r, run;
1650 
1651 	PF_RULES_RASSERT();
1652 
1653 	if (__predict_false(V_pf_allrulecount == 0)) {
1654 		return;
1655 	}
1656 
1657 	if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
1658 		return;
1659 	}
1660 
1661 	run = V_pf_allrulecount / 10;
1662 	if (run < 5)
1663 		run = 5;
1664 
1665 	for (r = 0; r < run; r++) {
1666 		rule = LIST_NEXT(V_pf_rulemarker, allrulelist);
1667 		if (rule == NULL) {
1668 			LIST_REMOVE(V_pf_rulemarker, allrulelist);
1669 			LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist);
1670 			break;
1671 		}
1672 
1673 		LIST_REMOVE(V_pf_rulemarker, allrulelist);
1674 		LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist);
1675 
1676 		pf_counter_u64_periodic(&rule->evaluations);
1677 		for (int i = 0; i < 2; i++) {
1678 			pf_counter_u64_periodic(&rule->packets[i]);
1679 			pf_counter_u64_periodic(&rule->bytes[i]);
1680 		}
1681 	}
1682 }
1683 
1684 static void
1685 pf_counter_u64_periodic_main(void)
1686 {
1687 	PF_RULES_RLOCK_TRACKER;
1688 
1689 	V_pf_counter_periodic_iter++;
1690 
1691 	PF_RULES_RLOCK();
1692 	pf_counter_u64_critical_enter();
1693 	pf_status_counter_u64_periodic();
1694 	pf_kif_counter_u64_periodic();
1695 	pf_rule_counter_u64_periodic();
1696 	pf_counter_u64_critical_exit();
1697 	PF_RULES_RUNLOCK();
1698 }
1699 #else
1700 #define	pf_counter_u64_periodic_main()	do { } while (0)
1701 #endif
1702 
1703 void
1704 pf_purge_thread(void *unused __unused)
1705 {
1706 	VNET_ITERATOR_DECL(vnet_iter);
1707 
1708 	sx_xlock(&pf_end_lock);
1709 	while (pf_end_threads == 0) {
1710 		sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period);
1711 
1712 		VNET_LIST_RLOCK();
1713 		VNET_FOREACH(vnet_iter) {
1714 			CURVNET_SET(vnet_iter);
1715 
1716 			/* Wait until V_pf_default_rule is initialized. */
1717 			if (V_pf_vnet_active == 0) {
1718 				CURVNET_RESTORE();
1719 				continue;
1720 			}
1721 
1722 			pf_counter_u64_periodic_main();
1723 
1724 			/*
1725 			 *  Process 1/interval fraction of the state
1726 			 * table every run.
1727 			 */
1728 			V_pf_purge_idx =
1729 			    pf_purge_expired_states(V_pf_purge_idx, pf_hashmask /
1730 			    (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10));
1731 
1732 			/*
1733 			 * Purge other expired types every
1734 			 * PFTM_INTERVAL seconds.
1735 			 */
1736 			if (V_pf_purge_idx == 0) {
1737 				/*
1738 				 * Order is important:
1739 				 * - states and src nodes reference rules
1740 				 * - states and rules reference kifs
1741 				 */
1742 				pf_purge_expired_fragments();
1743 				pf_purge_expired_src_nodes();
1744 				pf_purge_unlinked_rules();
1745 				pfi_kkif_purge();
1746 			}
1747 			CURVNET_RESTORE();
1748 		}
1749 		VNET_LIST_RUNLOCK();
1750 	}
1751 
1752 	pf_end_threads++;
1753 	sx_xunlock(&pf_end_lock);
1754 	kproc_exit(0);
1755 }
1756 
1757 void
1758 pf_unload_vnet_purge(void)
1759 {
1760 
1761 	/*
1762 	 * To cleanse up all kifs and rules we need
1763 	 * two runs: first one clears reference flags,
1764 	 * then pf_purge_expired_states() doesn't
1765 	 * raise them, and then second run frees.
1766 	 */
1767 	pf_purge_unlinked_rules();
1768 	pfi_kkif_purge();
1769 
1770 	/*
1771 	 * Now purge everything.
1772 	 */
1773 	pf_purge_expired_states(0, pf_hashmask);
1774 	pf_purge_fragments(UINT_MAX);
1775 	pf_purge_expired_src_nodes();
1776 
1777 	/*
1778 	 * Now all kifs & rules should be unreferenced,
1779 	 * thus should be successfully freed.
1780 	 */
1781 	pf_purge_unlinked_rules();
1782 	pfi_kkif_purge();
1783 }
1784 
1785 u_int32_t
1786 pf_state_expires(const struct pf_kstate *state)
1787 {
1788 	u_int32_t	timeout;
1789 	u_int32_t	start;
1790 	u_int32_t	end;
1791 	u_int32_t	states;
1792 
1793 	/* handle all PFTM_* > PFTM_MAX here */
1794 	if (state->timeout == PFTM_PURGE)
1795 		return (time_uptime);
1796 	KASSERT(state->timeout != PFTM_UNLINKED,
1797 	    ("pf_state_expires: timeout == PFTM_UNLINKED"));
1798 	KASSERT((state->timeout < PFTM_MAX),
1799 	    ("pf_state_expires: timeout > PFTM_MAX"));
1800 	timeout = state->rule.ptr->timeout[state->timeout];
1801 	if (!timeout)
1802 		timeout = V_pf_default_rule.timeout[state->timeout];
1803 	start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START];
1804 	if (start && state->rule.ptr != &V_pf_default_rule) {
1805 		end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END];
1806 		states = counter_u64_fetch(state->rule.ptr->states_cur);
1807 	} else {
1808 		start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START];
1809 		end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END];
1810 		states = V_pf_status.states;
1811 	}
1812 	if (end && states > start && start < end) {
1813 		if (states < end) {
1814 			timeout = (u_int64_t)timeout * (end - states) /
1815 			    (end - start);
1816 			return (state->expire + timeout);
1817 		}
1818 		else
1819 			return (time_uptime);
1820 	}
1821 	return (state->expire + timeout);
1822 }
1823 
1824 void
1825 pf_purge_expired_src_nodes()
1826 {
1827 	struct pf_ksrc_node_list	 freelist;
1828 	struct pf_srchash	*sh;
1829 	struct pf_ksrc_node	*cur, *next;
1830 	int i;
1831 
1832 	LIST_INIT(&freelist);
1833 	for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) {
1834 	    PF_HASHROW_LOCK(sh);
1835 	    LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next)
1836 		if (cur->states == 0 && cur->expire <= time_uptime) {
1837 			pf_unlink_src_node(cur);
1838 			LIST_INSERT_HEAD(&freelist, cur, entry);
1839 		} else if (cur->rule.ptr != NULL)
1840 			cur->rule.ptr->rule_ref |= PFRULE_REFS;
1841 	    PF_HASHROW_UNLOCK(sh);
1842 	}
1843 
1844 	pf_free_src_nodes(&freelist);
1845 
1846 	V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z);
1847 }
1848 
1849 static void
1850 pf_src_tree_remove_state(struct pf_kstate *s)
1851 {
1852 	struct pf_ksrc_node *sn;
1853 	struct pf_srchash *sh;
1854 	uint32_t timeout;
1855 
1856 	timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ?
1857 	    s->rule.ptr->timeout[PFTM_SRC_NODE] :
1858 	    V_pf_default_rule.timeout[PFTM_SRC_NODE];
1859 
1860 	if (s->src_node != NULL) {
1861 		sn = s->src_node;
1862 		sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)];
1863 	    	PF_HASHROW_LOCK(sh);
1864 		if (s->src.tcp_est)
1865 			--sn->conn;
1866 		if (--sn->states == 0)
1867 			sn->expire = time_uptime + timeout;
1868 	    	PF_HASHROW_UNLOCK(sh);
1869 	}
1870 	if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) {
1871 		sn = s->nat_src_node;
1872 		sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)];
1873 	    	PF_HASHROW_LOCK(sh);
1874 		if (--sn->states == 0)
1875 			sn->expire = time_uptime + timeout;
1876 	    	PF_HASHROW_UNLOCK(sh);
1877 	}
1878 	s->src_node = s->nat_src_node = NULL;
1879 }
1880 
1881 /*
1882  * Unlink and potentilly free a state. Function may be
1883  * called with ID hash row locked, but always returns
1884  * unlocked, since it needs to go through key hash locking.
1885  */
1886 int
1887 pf_unlink_state(struct pf_kstate *s, u_int flags)
1888 {
1889 	struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)];
1890 
1891 	if ((flags & PF_ENTER_LOCKED) == 0)
1892 		PF_HASHROW_LOCK(ih);
1893 	else
1894 		PF_HASHROW_ASSERT(ih);
1895 
1896 	if (s->timeout == PFTM_UNLINKED) {
1897 		/*
1898 		 * State is being processed
1899 		 * by pf_unlink_state() in
1900 		 * an other thread.
1901 		 */
1902 		PF_HASHROW_UNLOCK(ih);
1903 		return (0);	/* XXXGL: undefined actually */
1904 	}
1905 
1906 	if (s->src.state == PF_TCPS_PROXY_DST) {
1907 		/* XXX wire key the right one? */
1908 		pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af,
1909 		    &s->key[PF_SK_WIRE]->addr[1],
1910 		    &s->key[PF_SK_WIRE]->addr[0],
1911 		    s->key[PF_SK_WIRE]->port[1],
1912 		    s->key[PF_SK_WIRE]->port[0],
1913 		    s->src.seqhi, s->src.seqlo + 1,
1914 		    TH_RST|TH_ACK, 0, 0, 0, 1, s->tag);
1915 	}
1916 
1917 	LIST_REMOVE(s, entry);
1918 	pf_src_tree_remove_state(s);
1919 
1920 	if (V_pfsync_delete_state_ptr != NULL)
1921 		V_pfsync_delete_state_ptr(s);
1922 
1923 	STATE_DEC_COUNTERS(s);
1924 
1925 	s->timeout = PFTM_UNLINKED;
1926 
1927 	PF_HASHROW_UNLOCK(ih);
1928 
1929 	pf_detach_state(s);
1930 	/* pf_state_insert() initialises refs to 2 */
1931 	return (pf_release_staten(s, 2));
1932 }
1933 
1934 struct pf_kstate *
1935 pf_alloc_state(int flags)
1936 {
1937 
1938 	return (uma_zalloc(V_pf_state_z, flags | M_ZERO));
1939 }
1940 
1941 void
1942 pf_free_state(struct pf_kstate *cur)
1943 {
1944 
1945 	KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur));
1946 	KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__,
1947 	    cur->timeout));
1948 
1949 	pf_normalize_tcp_cleanup(cur);
1950 	uma_zfree(V_pf_state_z, cur);
1951 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1);
1952 }
1953 
1954 /*
1955  * Called only from pf_purge_thread(), thus serialized.
1956  */
1957 static u_int
1958 pf_purge_expired_states(u_int i, int maxcheck)
1959 {
1960 	struct pf_idhash *ih;
1961 	struct pf_kstate *s;
1962 
1963 	V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
1964 
1965 	/*
1966 	 * Go through hash and unlink states that expire now.
1967 	 */
1968 	while (maxcheck > 0) {
1969 		ih = &V_pf_idhash[i];
1970 
1971 		/* only take the lock if we expect to do work */
1972 		if (!LIST_EMPTY(&ih->states)) {
1973 relock:
1974 			PF_HASHROW_LOCK(ih);
1975 			LIST_FOREACH(s, &ih->states, entry) {
1976 				if (pf_state_expires(s) <= time_uptime) {
1977 					V_pf_status.states -=
1978 					    pf_unlink_state(s, PF_ENTER_LOCKED);
1979 					goto relock;
1980 				}
1981 				s->rule.ptr->rule_ref |= PFRULE_REFS;
1982 				if (s->nat_rule.ptr != NULL)
1983 					s->nat_rule.ptr->rule_ref |= PFRULE_REFS;
1984 				if (s->anchor.ptr != NULL)
1985 					s->anchor.ptr->rule_ref |= PFRULE_REFS;
1986 				s->kif->pfik_flags |= PFI_IFLAG_REFS;
1987 				if (s->rt_kif)
1988 					s->rt_kif->pfik_flags |= PFI_IFLAG_REFS;
1989 			}
1990 			PF_HASHROW_UNLOCK(ih);
1991 		}
1992 
1993 		/* Return when we hit end of hash. */
1994 		if (++i > pf_hashmask) {
1995 			V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
1996 			return (0);
1997 		}
1998 
1999 		maxcheck--;
2000 	}
2001 
2002 	V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2003 
2004 	return (i);
2005 }
2006 
2007 static void
2008 pf_purge_unlinked_rules()
2009 {
2010 	struct pf_krulequeue tmpq;
2011 	struct pf_krule *r, *r1;
2012 
2013 	/*
2014 	 * If we have overloading task pending, then we'd
2015 	 * better skip purging this time. There is a tiny
2016 	 * probability that overloading task references
2017 	 * an already unlinked rule.
2018 	 */
2019 	PF_OVERLOADQ_LOCK();
2020 	if (!SLIST_EMPTY(&V_pf_overloadqueue)) {
2021 		PF_OVERLOADQ_UNLOCK();
2022 		return;
2023 	}
2024 	PF_OVERLOADQ_UNLOCK();
2025 
2026 	/*
2027 	 * Do naive mark-and-sweep garbage collecting of old rules.
2028 	 * Reference flag is raised by pf_purge_expired_states()
2029 	 * and pf_purge_expired_src_nodes().
2030 	 *
2031 	 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK,
2032 	 * use a temporary queue.
2033 	 */
2034 	TAILQ_INIT(&tmpq);
2035 	PF_UNLNKDRULES_LOCK();
2036 	TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) {
2037 		if (!(r->rule_ref & PFRULE_REFS)) {
2038 			TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries);
2039 			TAILQ_INSERT_TAIL(&tmpq, r, entries);
2040 		} else
2041 			r->rule_ref &= ~PFRULE_REFS;
2042 	}
2043 	PF_UNLNKDRULES_UNLOCK();
2044 
2045 	if (!TAILQ_EMPTY(&tmpq)) {
2046 		PF_RULES_WLOCK();
2047 		TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) {
2048 			TAILQ_REMOVE(&tmpq, r, entries);
2049 			pf_free_rule(r);
2050 		}
2051 		PF_RULES_WUNLOCK();
2052 	}
2053 }
2054 
2055 void
2056 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af)
2057 {
2058 	switch (af) {
2059 #ifdef INET
2060 	case AF_INET: {
2061 		u_int32_t a = ntohl(addr->addr32[0]);
2062 		printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255,
2063 		    (a>>8)&255, a&255);
2064 		if (p) {
2065 			p = ntohs(p);
2066 			printf(":%u", p);
2067 		}
2068 		break;
2069 	}
2070 #endif /* INET */
2071 #ifdef INET6
2072 	case AF_INET6: {
2073 		u_int16_t b;
2074 		u_int8_t i, curstart, curend, maxstart, maxend;
2075 		curstart = curend = maxstart = maxend = 255;
2076 		for (i = 0; i < 8; i++) {
2077 			if (!addr->addr16[i]) {
2078 				if (curstart == 255)
2079 					curstart = i;
2080 				curend = i;
2081 			} else {
2082 				if ((curend - curstart) >
2083 				    (maxend - maxstart)) {
2084 					maxstart = curstart;
2085 					maxend = curend;
2086 				}
2087 				curstart = curend = 255;
2088 			}
2089 		}
2090 		if ((curend - curstart) >
2091 		    (maxend - maxstart)) {
2092 			maxstart = curstart;
2093 			maxend = curend;
2094 		}
2095 		for (i = 0; i < 8; i++) {
2096 			if (i >= maxstart && i <= maxend) {
2097 				if (i == 0)
2098 					printf(":");
2099 				if (i == maxend)
2100 					printf(":");
2101 			} else {
2102 				b = ntohs(addr->addr16[i]);
2103 				printf("%x", b);
2104 				if (i < 7)
2105 					printf(":");
2106 			}
2107 		}
2108 		if (p) {
2109 			p = ntohs(p);
2110 			printf("[%u]", p);
2111 		}
2112 		break;
2113 	}
2114 #endif /* INET6 */
2115 	}
2116 }
2117 
2118 void
2119 pf_print_state(struct pf_kstate *s)
2120 {
2121 	pf_print_state_parts(s, NULL, NULL);
2122 }
2123 
2124 static void
2125 pf_print_state_parts(struct pf_kstate *s,
2126     struct pf_state_key *skwp, struct pf_state_key *sksp)
2127 {
2128 	struct pf_state_key *skw, *sks;
2129 	u_int8_t proto, dir;
2130 
2131 	/* Do our best to fill these, but they're skipped if NULL */
2132 	skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL);
2133 	sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL);
2134 	proto = skw ? skw->proto : (sks ? sks->proto : 0);
2135 	dir = s ? s->direction : 0;
2136 
2137 	switch (proto) {
2138 	case IPPROTO_IPV4:
2139 		printf("IPv4");
2140 		break;
2141 	case IPPROTO_IPV6:
2142 		printf("IPv6");
2143 		break;
2144 	case IPPROTO_TCP:
2145 		printf("TCP");
2146 		break;
2147 	case IPPROTO_UDP:
2148 		printf("UDP");
2149 		break;
2150 	case IPPROTO_ICMP:
2151 		printf("ICMP");
2152 		break;
2153 	case IPPROTO_ICMPV6:
2154 		printf("ICMPv6");
2155 		break;
2156 	default:
2157 		printf("%u", proto);
2158 		break;
2159 	}
2160 	switch (dir) {
2161 	case PF_IN:
2162 		printf(" in");
2163 		break;
2164 	case PF_OUT:
2165 		printf(" out");
2166 		break;
2167 	}
2168 	if (skw) {
2169 		printf(" wire: ");
2170 		pf_print_host(&skw->addr[0], skw->port[0], skw->af);
2171 		printf(" ");
2172 		pf_print_host(&skw->addr[1], skw->port[1], skw->af);
2173 	}
2174 	if (sks) {
2175 		printf(" stack: ");
2176 		if (sks != skw) {
2177 			pf_print_host(&sks->addr[0], sks->port[0], sks->af);
2178 			printf(" ");
2179 			pf_print_host(&sks->addr[1], sks->port[1], sks->af);
2180 		} else
2181 			printf("-");
2182 	}
2183 	if (s) {
2184 		if (proto == IPPROTO_TCP) {
2185 			printf(" [lo=%u high=%u win=%u modulator=%u",
2186 			    s->src.seqlo, s->src.seqhi,
2187 			    s->src.max_win, s->src.seqdiff);
2188 			if (s->src.wscale && s->dst.wscale)
2189 				printf(" wscale=%u",
2190 				    s->src.wscale & PF_WSCALE_MASK);
2191 			printf("]");
2192 			printf(" [lo=%u high=%u win=%u modulator=%u",
2193 			    s->dst.seqlo, s->dst.seqhi,
2194 			    s->dst.max_win, s->dst.seqdiff);
2195 			if (s->src.wscale && s->dst.wscale)
2196 				printf(" wscale=%u",
2197 				s->dst.wscale & PF_WSCALE_MASK);
2198 			printf("]");
2199 		}
2200 		printf(" %u:%u", s->src.state, s->dst.state);
2201 	}
2202 }
2203 
2204 void
2205 pf_print_flags(u_int8_t f)
2206 {
2207 	if (f)
2208 		printf(" ");
2209 	if (f & TH_FIN)
2210 		printf("F");
2211 	if (f & TH_SYN)
2212 		printf("S");
2213 	if (f & TH_RST)
2214 		printf("R");
2215 	if (f & TH_PUSH)
2216 		printf("P");
2217 	if (f & TH_ACK)
2218 		printf("A");
2219 	if (f & TH_URG)
2220 		printf("U");
2221 	if (f & TH_ECE)
2222 		printf("E");
2223 	if (f & TH_CWR)
2224 		printf("W");
2225 }
2226 
2227 #define	PF_SET_SKIP_STEPS(i)					\
2228 	do {							\
2229 		while (head[i] != cur) {			\
2230 			head[i]->skip[i].ptr = cur;		\
2231 			head[i] = TAILQ_NEXT(head[i], entries);	\
2232 		}						\
2233 	} while (0)
2234 
2235 void
2236 pf_calc_skip_steps(struct pf_krulequeue *rules)
2237 {
2238 	struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT];
2239 	int i;
2240 
2241 	cur = TAILQ_FIRST(rules);
2242 	prev = cur;
2243 	for (i = 0; i < PF_SKIP_COUNT; ++i)
2244 		head[i] = cur;
2245 	while (cur != NULL) {
2246 		if (cur->kif != prev->kif || cur->ifnot != prev->ifnot)
2247 			PF_SET_SKIP_STEPS(PF_SKIP_IFP);
2248 		if (cur->direction != prev->direction)
2249 			PF_SET_SKIP_STEPS(PF_SKIP_DIR);
2250 		if (cur->af != prev->af)
2251 			PF_SET_SKIP_STEPS(PF_SKIP_AF);
2252 		if (cur->proto != prev->proto)
2253 			PF_SET_SKIP_STEPS(PF_SKIP_PROTO);
2254 		if (cur->src.neg != prev->src.neg ||
2255 		    pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr))
2256 			PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR);
2257 		if (cur->src.port[0] != prev->src.port[0] ||
2258 		    cur->src.port[1] != prev->src.port[1] ||
2259 		    cur->src.port_op != prev->src.port_op)
2260 			PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT);
2261 		if (cur->dst.neg != prev->dst.neg ||
2262 		    pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr))
2263 			PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR);
2264 		if (cur->dst.port[0] != prev->dst.port[0] ||
2265 		    cur->dst.port[1] != prev->dst.port[1] ||
2266 		    cur->dst.port_op != prev->dst.port_op)
2267 			PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT);
2268 
2269 		prev = cur;
2270 		cur = TAILQ_NEXT(cur, entries);
2271 	}
2272 	for (i = 0; i < PF_SKIP_COUNT; ++i)
2273 		PF_SET_SKIP_STEPS(i);
2274 }
2275 
2276 static int
2277 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2)
2278 {
2279 	if (aw1->type != aw2->type)
2280 		return (1);
2281 	switch (aw1->type) {
2282 	case PF_ADDR_ADDRMASK:
2283 	case PF_ADDR_RANGE:
2284 		if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6))
2285 			return (1);
2286 		if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6))
2287 			return (1);
2288 		return (0);
2289 	case PF_ADDR_DYNIFTL:
2290 		return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt);
2291 	case PF_ADDR_NOROUTE:
2292 	case PF_ADDR_URPFFAILED:
2293 		return (0);
2294 	case PF_ADDR_TABLE:
2295 		return (aw1->p.tbl != aw2->p.tbl);
2296 	default:
2297 		printf("invalid address type: %d\n", aw1->type);
2298 		return (1);
2299 	}
2300 }
2301 
2302 /**
2303  * Checksum updates are a little complicated because the checksum in the TCP/UDP
2304  * header isn't always a full checksum. In some cases (i.e. output) it's a
2305  * pseudo-header checksum, which is a partial checksum over src/dst IP
2306  * addresses, protocol number and length.
2307  *
2308  * That means we have the following cases:
2309  *  * Input or forwarding: we don't have TSO, the checksum fields are full
2310  *  	checksums, we need to update the checksum whenever we change anything.
2311  *  * Output (i.e. the checksum is a pseudo-header checksum):
2312  *  	x The field being updated is src/dst address or affects the length of
2313  *  	the packet. We need to update the pseudo-header checksum (note that this
2314  *  	checksum is not ones' complement).
2315  *  	x Some other field is being modified (e.g. src/dst port numbers): We
2316  *  	don't have to update anything.
2317  **/
2318 u_int16_t
2319 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp)
2320 {
2321 	u_int32_t x;
2322 
2323 	x = cksum + old - new;
2324 	x = (x + (x >> 16)) & 0xffff;
2325 
2326 	/* optimise: eliminate a branch when not udp */
2327 	if (udp && cksum == 0x0000)
2328 		return cksum;
2329 	if (udp && x == 0x0000)
2330 		x = 0xffff;
2331 
2332 	return (u_int16_t)(x);
2333 }
2334 
2335 static void
2336 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi,
2337     u_int8_t udp)
2338 {
2339 	u_int16_t old = htons(hi ? (*f << 8) : *f);
2340 	u_int16_t new = htons(hi ? ( v << 8) :  v);
2341 
2342 	if (*f == v)
2343 		return;
2344 
2345 	*f = v;
2346 
2347 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
2348 		return;
2349 
2350 	*cksum = pf_cksum_fixup(*cksum, old, new, udp);
2351 }
2352 
2353 void
2354 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v,
2355     bool hi, u_int8_t udp)
2356 {
2357 	u_int8_t *fb = (u_int8_t *)f;
2358 	u_int8_t *vb = (u_int8_t *)&v;
2359 
2360 	pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
2361 	pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
2362 }
2363 
2364 void
2365 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v,
2366     bool hi, u_int8_t udp)
2367 {
2368 	u_int8_t *fb = (u_int8_t *)f;
2369 	u_int8_t *vb = (u_int8_t *)&v;
2370 
2371 	pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
2372 	pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
2373 	pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
2374 	pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
2375 }
2376 
2377 u_int16_t
2378 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old,
2379         u_int16_t new, u_int8_t udp)
2380 {
2381 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
2382 		return (cksum);
2383 
2384 	return (pf_cksum_fixup(cksum, old, new, udp));
2385 }
2386 
2387 static void
2388 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic,
2389         u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u,
2390         sa_family_t af)
2391 {
2392 	struct pf_addr	ao;
2393 	u_int16_t	po = *p;
2394 
2395 	PF_ACPY(&ao, a, af);
2396 	PF_ACPY(a, an, af);
2397 
2398 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
2399 		*pc = ~*pc;
2400 
2401 	*p = pn;
2402 
2403 	switch (af) {
2404 #ifdef INET
2405 	case AF_INET:
2406 		*ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
2407 		    ao.addr16[0], an->addr16[0], 0),
2408 		    ao.addr16[1], an->addr16[1], 0);
2409 		*p = pn;
2410 
2411 		*pc = pf_cksum_fixup(pf_cksum_fixup(*pc,
2412 		    ao.addr16[0], an->addr16[0], u),
2413 		    ao.addr16[1], an->addr16[1], u);
2414 
2415 		*pc = pf_proto_cksum_fixup(m, *pc, po, pn, u);
2416 		break;
2417 #endif /* INET */
2418 #ifdef INET6
2419 	case AF_INET6:
2420 		*pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
2421 		    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
2422 		    pf_cksum_fixup(pf_cksum_fixup(*pc,
2423 		    ao.addr16[0], an->addr16[0], u),
2424 		    ao.addr16[1], an->addr16[1], u),
2425 		    ao.addr16[2], an->addr16[2], u),
2426 		    ao.addr16[3], an->addr16[3], u),
2427 		    ao.addr16[4], an->addr16[4], u),
2428 		    ao.addr16[5], an->addr16[5], u),
2429 		    ao.addr16[6], an->addr16[6], u),
2430 		    ao.addr16[7], an->addr16[7], u);
2431 
2432 		*pc = pf_proto_cksum_fixup(m, *pc, po, pn, u);
2433 		break;
2434 #endif /* INET6 */
2435 	}
2436 
2437 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
2438 	    CSUM_DELAY_DATA_IPV6)) {
2439 		*pc = ~*pc;
2440 		if (! *pc)
2441 			*pc = 0xffff;
2442 	}
2443 }
2444 
2445 /* Changes a u_int32_t.  Uses a void * so there are no align restrictions */
2446 void
2447 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u)
2448 {
2449 	u_int32_t	ao;
2450 
2451 	memcpy(&ao, a, sizeof(ao));
2452 	memcpy(a, &an, sizeof(u_int32_t));
2453 	*c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u),
2454 	    ao % 65536, an % 65536, u);
2455 }
2456 
2457 void
2458 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp)
2459 {
2460 	u_int32_t	ao;
2461 
2462 	memcpy(&ao, a, sizeof(ao));
2463 	memcpy(a, &an, sizeof(u_int32_t));
2464 
2465 	*c = pf_proto_cksum_fixup(m,
2466 	    pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp),
2467 	    ao % 65536, an % 65536, udp);
2468 }
2469 
2470 #ifdef INET6
2471 static void
2472 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u)
2473 {
2474 	struct pf_addr	ao;
2475 
2476 	PF_ACPY(&ao, a, AF_INET6);
2477 	PF_ACPY(a, an, AF_INET6);
2478 
2479 	*c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
2480 	    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
2481 	    pf_cksum_fixup(pf_cksum_fixup(*c,
2482 	    ao.addr16[0], an->addr16[0], u),
2483 	    ao.addr16[1], an->addr16[1], u),
2484 	    ao.addr16[2], an->addr16[2], u),
2485 	    ao.addr16[3], an->addr16[3], u),
2486 	    ao.addr16[4], an->addr16[4], u),
2487 	    ao.addr16[5], an->addr16[5], u),
2488 	    ao.addr16[6], an->addr16[6], u),
2489 	    ao.addr16[7], an->addr16[7], u);
2490 }
2491 #endif /* INET6 */
2492 
2493 static void
2494 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa,
2495     struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c,
2496     u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af)
2497 {
2498 	struct pf_addr	oia, ooa;
2499 
2500 	PF_ACPY(&oia, ia, af);
2501 	if (oa)
2502 		PF_ACPY(&ooa, oa, af);
2503 
2504 	/* Change inner protocol port, fix inner protocol checksum. */
2505 	if (ip != NULL) {
2506 		u_int16_t	oip = *ip;
2507 		u_int32_t	opc;
2508 
2509 		if (pc != NULL)
2510 			opc = *pc;
2511 		*ip = np;
2512 		if (pc != NULL)
2513 			*pc = pf_cksum_fixup(*pc, oip, *ip, u);
2514 		*ic = pf_cksum_fixup(*ic, oip, *ip, 0);
2515 		if (pc != NULL)
2516 			*ic = pf_cksum_fixup(*ic, opc, *pc, 0);
2517 	}
2518 	/* Change inner ip address, fix inner ip and icmp checksums. */
2519 	PF_ACPY(ia, na, af);
2520 	switch (af) {
2521 #ifdef INET
2522 	case AF_INET: {
2523 		u_int32_t	 oh2c = *h2c;
2524 
2525 		*h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c,
2526 		    oia.addr16[0], ia->addr16[0], 0),
2527 		    oia.addr16[1], ia->addr16[1], 0);
2528 		*ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
2529 		    oia.addr16[0], ia->addr16[0], 0),
2530 		    oia.addr16[1], ia->addr16[1], 0);
2531 		*ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0);
2532 		break;
2533 	}
2534 #endif /* INET */
2535 #ifdef INET6
2536 	case AF_INET6:
2537 		*ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
2538 		    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
2539 		    pf_cksum_fixup(pf_cksum_fixup(*ic,
2540 		    oia.addr16[0], ia->addr16[0], u),
2541 		    oia.addr16[1], ia->addr16[1], u),
2542 		    oia.addr16[2], ia->addr16[2], u),
2543 		    oia.addr16[3], ia->addr16[3], u),
2544 		    oia.addr16[4], ia->addr16[4], u),
2545 		    oia.addr16[5], ia->addr16[5], u),
2546 		    oia.addr16[6], ia->addr16[6], u),
2547 		    oia.addr16[7], ia->addr16[7], u);
2548 		break;
2549 #endif /* INET6 */
2550 	}
2551 	/* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */
2552 	if (oa) {
2553 		PF_ACPY(oa, na, af);
2554 		switch (af) {
2555 #ifdef INET
2556 		case AF_INET:
2557 			*hc = pf_cksum_fixup(pf_cksum_fixup(*hc,
2558 			    ooa.addr16[0], oa->addr16[0], 0),
2559 			    ooa.addr16[1], oa->addr16[1], 0);
2560 			break;
2561 #endif /* INET */
2562 #ifdef INET6
2563 		case AF_INET6:
2564 			*ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
2565 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
2566 			    pf_cksum_fixup(pf_cksum_fixup(*ic,
2567 			    ooa.addr16[0], oa->addr16[0], u),
2568 			    ooa.addr16[1], oa->addr16[1], u),
2569 			    ooa.addr16[2], oa->addr16[2], u),
2570 			    ooa.addr16[3], oa->addr16[3], u),
2571 			    ooa.addr16[4], oa->addr16[4], u),
2572 			    ooa.addr16[5], oa->addr16[5], u),
2573 			    ooa.addr16[6], oa->addr16[6], u),
2574 			    ooa.addr16[7], oa->addr16[7], u);
2575 			break;
2576 #endif /* INET6 */
2577 		}
2578 	}
2579 }
2580 
2581 /*
2582  * Need to modulate the sequence numbers in the TCP SACK option
2583  * (credits to Krzysztof Pfaff for report and patch)
2584  */
2585 static int
2586 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd,
2587     struct tcphdr *th, struct pf_state_peer *dst)
2588 {
2589 	int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen;
2590 	u_int8_t opts[TCP_MAXOLEN], *opt = opts;
2591 	int copyback = 0, i, olen;
2592 	struct sackblk sack;
2593 
2594 #define	TCPOLEN_SACKLEN	(TCPOLEN_SACK + 2)
2595 	if (hlen < TCPOLEN_SACKLEN ||
2596 	    !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af))
2597 		return 0;
2598 
2599 	while (hlen >= TCPOLEN_SACKLEN) {
2600 		size_t startoff = opt - opts;
2601 		olen = opt[1];
2602 		switch (*opt) {
2603 		case TCPOPT_EOL:	/* FALLTHROUGH */
2604 		case TCPOPT_NOP:
2605 			opt++;
2606 			hlen--;
2607 			break;
2608 		case TCPOPT_SACK:
2609 			if (olen > hlen)
2610 				olen = hlen;
2611 			if (olen >= TCPOLEN_SACKLEN) {
2612 				for (i = 2; i + TCPOLEN_SACK <= olen;
2613 				    i += TCPOLEN_SACK) {
2614 					memcpy(&sack, &opt[i], sizeof(sack));
2615 					pf_patch_32_unaligned(m,
2616 					    &th->th_sum, &sack.start,
2617 					    htonl(ntohl(sack.start) - dst->seqdiff),
2618 					    PF_ALGNMNT(startoff),
2619 					    0);
2620 					pf_patch_32_unaligned(m, &th->th_sum,
2621 					    &sack.end,
2622 					    htonl(ntohl(sack.end) - dst->seqdiff),
2623 					    PF_ALGNMNT(startoff),
2624 					    0);
2625 					memcpy(&opt[i], &sack, sizeof(sack));
2626 				}
2627 				copyback = 1;
2628 			}
2629 			/* FALLTHROUGH */
2630 		default:
2631 			if (olen < 2)
2632 				olen = 2;
2633 			hlen -= olen;
2634 			opt += olen;
2635 		}
2636 	}
2637 
2638 	if (copyback)
2639 		m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts);
2640 	return (copyback);
2641 }
2642 
2643 struct mbuf *
2644 pf_build_tcp(const struct pf_krule *r, sa_family_t af,
2645     const struct pf_addr *saddr, const struct pf_addr *daddr,
2646     u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
2647     u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag,
2648     u_int16_t rtag)
2649 {
2650 	struct mbuf	*m;
2651 	int		 len, tlen;
2652 #ifdef INET
2653 	struct ip	*h = NULL;
2654 #endif /* INET */
2655 #ifdef INET6
2656 	struct ip6_hdr	*h6 = NULL;
2657 #endif /* INET6 */
2658 	struct tcphdr	*th;
2659 	char		*opt;
2660 	struct pf_mtag  *pf_mtag;
2661 
2662 	len = 0;
2663 	th = NULL;
2664 
2665 	/* maximum segment size tcp option */
2666 	tlen = sizeof(struct tcphdr);
2667 	if (mss)
2668 		tlen += 4;
2669 
2670 	switch (af) {
2671 #ifdef INET
2672 	case AF_INET:
2673 		len = sizeof(struct ip) + tlen;
2674 		break;
2675 #endif /* INET */
2676 #ifdef INET6
2677 	case AF_INET6:
2678 		len = sizeof(struct ip6_hdr) + tlen;
2679 		break;
2680 #endif /* INET6 */
2681 	default:
2682 		panic("%s: unsupported af %d", __func__, af);
2683 	}
2684 
2685 	m = m_gethdr(M_NOWAIT, MT_DATA);
2686 	if (m == NULL)
2687 		return (NULL);
2688 
2689 #ifdef MAC
2690 	mac_netinet_firewall_send(m);
2691 #endif
2692 	if ((pf_mtag = pf_get_mtag(m)) == NULL) {
2693 		m_freem(m);
2694 		return (NULL);
2695 	}
2696 	if (tag)
2697 		m->m_flags |= M_SKIP_FIREWALL;
2698 	pf_mtag->tag = rtag;
2699 
2700 	if (r != NULL && r->rtableid >= 0)
2701 		M_SETFIB(m, r->rtableid);
2702 
2703 #ifdef ALTQ
2704 	if (r != NULL && r->qid) {
2705 		pf_mtag->qid = r->qid;
2706 
2707 		/* add hints for ecn */
2708 		pf_mtag->hdr = mtod(m, struct ip *);
2709 	}
2710 #endif /* ALTQ */
2711 	m->m_data += max_linkhdr;
2712 	m->m_pkthdr.len = m->m_len = len;
2713 	/* The rest of the stack assumes a rcvif, so provide one.
2714 	 * This is a locally generated packet, so .. close enough. */
2715 	m->m_pkthdr.rcvif = V_loif;
2716 	bzero(m->m_data, len);
2717 	switch (af) {
2718 #ifdef INET
2719 	case AF_INET:
2720 		h = mtod(m, struct ip *);
2721 
2722 		/* IP header fields included in the TCP checksum */
2723 		h->ip_p = IPPROTO_TCP;
2724 		h->ip_len = htons(tlen);
2725 		h->ip_src.s_addr = saddr->v4.s_addr;
2726 		h->ip_dst.s_addr = daddr->v4.s_addr;
2727 
2728 		th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip));
2729 		break;
2730 #endif /* INET */
2731 #ifdef INET6
2732 	case AF_INET6:
2733 		h6 = mtod(m, struct ip6_hdr *);
2734 
2735 		/* IP header fields included in the TCP checksum */
2736 		h6->ip6_nxt = IPPROTO_TCP;
2737 		h6->ip6_plen = htons(tlen);
2738 		memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr));
2739 		memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr));
2740 
2741 		th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr));
2742 		break;
2743 #endif /* INET6 */
2744 	}
2745 
2746 	/* TCP header */
2747 	th->th_sport = sport;
2748 	th->th_dport = dport;
2749 	th->th_seq = htonl(seq);
2750 	th->th_ack = htonl(ack);
2751 	th->th_off = tlen >> 2;
2752 	th->th_flags = flags;
2753 	th->th_win = htons(win);
2754 
2755 	if (mss) {
2756 		opt = (char *)(th + 1);
2757 		opt[0] = TCPOPT_MAXSEG;
2758 		opt[1] = 4;
2759 		HTONS(mss);
2760 		bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2);
2761 	}
2762 
2763 	switch (af) {
2764 #ifdef INET
2765 	case AF_INET:
2766 		/* TCP checksum */
2767 		th->th_sum = in_cksum(m, len);
2768 
2769 		/* Finish the IP header */
2770 		h->ip_v = 4;
2771 		h->ip_hl = sizeof(*h) >> 2;
2772 		h->ip_tos = IPTOS_LOWDELAY;
2773 		h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0);
2774 		h->ip_len = htons(len);
2775 		h->ip_ttl = ttl ? ttl : V_ip_defttl;
2776 		h->ip_sum = 0;
2777 		break;
2778 #endif /* INET */
2779 #ifdef INET6
2780 	case AF_INET6:
2781 		/* TCP checksum */
2782 		th->th_sum = in6_cksum(m, IPPROTO_TCP,
2783 		    sizeof(struct ip6_hdr), tlen);
2784 
2785 		h6->ip6_vfc |= IPV6_VERSION;
2786 		h6->ip6_hlim = IPV6_DEFHLIM;
2787 		break;
2788 #endif /* INET6 */
2789 	}
2790 
2791 	return (m);
2792 }
2793 
2794 void
2795 pf_send_tcp(const struct pf_krule *r, sa_family_t af,
2796     const struct pf_addr *saddr, const struct pf_addr *daddr,
2797     u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
2798     u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag,
2799     u_int16_t rtag)
2800 {
2801 	struct pf_send_entry *pfse;
2802 	struct mbuf	*m;
2803 
2804 	m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, flags,
2805 	    win, mss, ttl, tag, rtag);
2806 	if (m == NULL)
2807 		return;
2808 
2809 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
2810 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
2811 	if (pfse == NULL) {
2812 		m_freem(m);
2813 		return;
2814 	}
2815 
2816 	switch (af) {
2817 #ifdef INET
2818 	case AF_INET:
2819 		pfse->pfse_type = PFSE_IP;
2820 		break;
2821 #endif /* INET */
2822 #ifdef INET6
2823 	case AF_INET6:
2824 		pfse->pfse_type = PFSE_IP6;
2825 		break;
2826 #endif /* INET6 */
2827 	}
2828 
2829 	pfse->pfse_m = m;
2830 	pf_send(pfse);
2831 }
2832 
2833 static void
2834 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd,
2835     struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th,
2836     struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen,
2837     u_short *reason)
2838 {
2839 	struct pf_addr	* const saddr = pd->src;
2840 	struct pf_addr	* const daddr = pd->dst;
2841 	sa_family_t	 af = pd->af;
2842 
2843 	/* undo NAT changes, if they have taken place */
2844 	if (nr != NULL) {
2845 		PF_ACPY(saddr, &sk->addr[pd->sidx], af);
2846 		PF_ACPY(daddr, &sk->addr[pd->didx], af);
2847 		if (pd->sport)
2848 			*pd->sport = sk->port[pd->sidx];
2849 		if (pd->dport)
2850 			*pd->dport = sk->port[pd->didx];
2851 		if (pd->proto_sum)
2852 			*pd->proto_sum = bproto_sum;
2853 		if (pd->ip_sum)
2854 			*pd->ip_sum = bip_sum;
2855 		m_copyback(m, off, hdrlen, pd->hdr.any);
2856 	}
2857 	if (pd->proto == IPPROTO_TCP &&
2858 	    ((r->rule_flag & PFRULE_RETURNRST) ||
2859 	    (r->rule_flag & PFRULE_RETURN)) &&
2860 	    !(th->th_flags & TH_RST)) {
2861 		u_int32_t	 ack = ntohl(th->th_seq) + pd->p_len;
2862 		int		 len = 0;
2863 #ifdef INET
2864 		struct ip	*h4;
2865 #endif
2866 #ifdef INET6
2867 		struct ip6_hdr	*h6;
2868 #endif
2869 
2870 		switch (af) {
2871 #ifdef INET
2872 		case AF_INET:
2873 			h4 = mtod(m, struct ip *);
2874 			len = ntohs(h4->ip_len) - off;
2875 			break;
2876 #endif
2877 #ifdef INET6
2878 		case AF_INET6:
2879 			h6 = mtod(m, struct ip6_hdr *);
2880 			len = ntohs(h6->ip6_plen) - (off - sizeof(*h6));
2881 			break;
2882 #endif
2883 		}
2884 
2885 		if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af))
2886 			REASON_SET(reason, PFRES_PROTCKSUM);
2887 		else {
2888 			if (th->th_flags & TH_SYN)
2889 				ack++;
2890 			if (th->th_flags & TH_FIN)
2891 				ack++;
2892 			pf_send_tcp(r, af, pd->dst,
2893 				pd->src, th->th_dport, th->th_sport,
2894 				ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0,
2895 				r->return_ttl, 1, 0);
2896 		}
2897 	} else if (pd->proto != IPPROTO_ICMP && af == AF_INET &&
2898 		r->return_icmp)
2899 		pf_send_icmp(m, r->return_icmp >> 8,
2900 			r->return_icmp & 255, af, r);
2901 	else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 &&
2902 		r->return_icmp6)
2903 		pf_send_icmp(m, r->return_icmp6 >> 8,
2904 			r->return_icmp6 & 255, af, r);
2905 }
2906 
2907 static int
2908 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m)
2909 {
2910 	struct m_tag *mtag;
2911 	u_int8_t mpcp;
2912 
2913 	mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
2914 	if (mtag == NULL)
2915 		return (0);
2916 
2917 	if (prio == PF_PRIO_ZERO)
2918 		prio = 0;
2919 
2920 	mpcp = *(uint8_t *)(mtag + 1);
2921 
2922 	return (mpcp == prio);
2923 }
2924 
2925 static void
2926 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af,
2927     struct pf_krule *r)
2928 {
2929 	struct pf_send_entry *pfse;
2930 	struct mbuf *m0;
2931 	struct pf_mtag *pf_mtag;
2932 
2933 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
2934 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
2935 	if (pfse == NULL)
2936 		return;
2937 
2938 	if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) {
2939 		free(pfse, M_PFTEMP);
2940 		return;
2941 	}
2942 
2943 	if ((pf_mtag = pf_get_mtag(m0)) == NULL) {
2944 		free(pfse, M_PFTEMP);
2945 		return;
2946 	}
2947 	/* XXX: revisit */
2948 	m0->m_flags |= M_SKIP_FIREWALL;
2949 
2950 	if (r->rtableid >= 0)
2951 		M_SETFIB(m0, r->rtableid);
2952 
2953 #ifdef ALTQ
2954 	if (r->qid) {
2955 		pf_mtag->qid = r->qid;
2956 		/* add hints for ecn */
2957 		pf_mtag->hdr = mtod(m0, struct ip *);
2958 	}
2959 #endif /* ALTQ */
2960 
2961 	switch (af) {
2962 #ifdef INET
2963 	case AF_INET:
2964 		pfse->pfse_type = PFSE_ICMP;
2965 		break;
2966 #endif /* INET */
2967 #ifdef INET6
2968 	case AF_INET6:
2969 		pfse->pfse_type = PFSE_ICMP6;
2970 		break;
2971 #endif /* INET6 */
2972 	}
2973 	pfse->pfse_m = m0;
2974 	pfse->icmpopts.type = type;
2975 	pfse->icmpopts.code = code;
2976 	pf_send(pfse);
2977 }
2978 
2979 /*
2980  * Return 1 if the addresses a and b match (with mask m), otherwise return 0.
2981  * If n is 0, they match if they are equal. If n is != 0, they match if they
2982  * are different.
2983  */
2984 int
2985 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m,
2986     struct pf_addr *b, sa_family_t af)
2987 {
2988 	int	match = 0;
2989 
2990 	switch (af) {
2991 #ifdef INET
2992 	case AF_INET:
2993 		if ((a->addr32[0] & m->addr32[0]) ==
2994 		    (b->addr32[0] & m->addr32[0]))
2995 			match++;
2996 		break;
2997 #endif /* INET */
2998 #ifdef INET6
2999 	case AF_INET6:
3000 		if (((a->addr32[0] & m->addr32[0]) ==
3001 		     (b->addr32[0] & m->addr32[0])) &&
3002 		    ((a->addr32[1] & m->addr32[1]) ==
3003 		     (b->addr32[1] & m->addr32[1])) &&
3004 		    ((a->addr32[2] & m->addr32[2]) ==
3005 		     (b->addr32[2] & m->addr32[2])) &&
3006 		    ((a->addr32[3] & m->addr32[3]) ==
3007 		     (b->addr32[3] & m->addr32[3])))
3008 			match++;
3009 		break;
3010 #endif /* INET6 */
3011 	}
3012 	if (match) {
3013 		if (n)
3014 			return (0);
3015 		else
3016 			return (1);
3017 	} else {
3018 		if (n)
3019 			return (1);
3020 		else
3021 			return (0);
3022 	}
3023 }
3024 
3025 /*
3026  * Return 1 if b <= a <= e, otherwise return 0.
3027  */
3028 int
3029 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e,
3030     struct pf_addr *a, sa_family_t af)
3031 {
3032 	switch (af) {
3033 #ifdef INET
3034 	case AF_INET:
3035 		if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) ||
3036 		    (ntohl(a->addr32[0]) > ntohl(e->addr32[0])))
3037 			return (0);
3038 		break;
3039 #endif /* INET */
3040 #ifdef INET6
3041 	case AF_INET6: {
3042 		int	i;
3043 
3044 		/* check a >= b */
3045 		for (i = 0; i < 4; ++i)
3046 			if (ntohl(a->addr32[i]) > ntohl(b->addr32[i]))
3047 				break;
3048 			else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i]))
3049 				return (0);
3050 		/* check a <= e */
3051 		for (i = 0; i < 4; ++i)
3052 			if (ntohl(a->addr32[i]) < ntohl(e->addr32[i]))
3053 				break;
3054 			else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i]))
3055 				return (0);
3056 		break;
3057 	}
3058 #endif /* INET6 */
3059 	}
3060 	return (1);
3061 }
3062 
3063 static int
3064 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p)
3065 {
3066 	switch (op) {
3067 	case PF_OP_IRG:
3068 		return ((p > a1) && (p < a2));
3069 	case PF_OP_XRG:
3070 		return ((p < a1) || (p > a2));
3071 	case PF_OP_RRG:
3072 		return ((p >= a1) && (p <= a2));
3073 	case PF_OP_EQ:
3074 		return (p == a1);
3075 	case PF_OP_NE:
3076 		return (p != a1);
3077 	case PF_OP_LT:
3078 		return (p < a1);
3079 	case PF_OP_LE:
3080 		return (p <= a1);
3081 	case PF_OP_GT:
3082 		return (p > a1);
3083 	case PF_OP_GE:
3084 		return (p >= a1);
3085 	}
3086 	return (0); /* never reached */
3087 }
3088 
3089 int
3090 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p)
3091 {
3092 	NTOHS(a1);
3093 	NTOHS(a2);
3094 	NTOHS(p);
3095 	return (pf_match(op, a1, a2, p));
3096 }
3097 
3098 static int
3099 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u)
3100 {
3101 	if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
3102 		return (0);
3103 	return (pf_match(op, a1, a2, u));
3104 }
3105 
3106 static int
3107 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g)
3108 {
3109 	if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
3110 		return (0);
3111 	return (pf_match(op, a1, a2, g));
3112 }
3113 
3114 int
3115 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag)
3116 {
3117 	if (*tag == -1)
3118 		*tag = mtag;
3119 
3120 	return ((!r->match_tag_not && r->match_tag == *tag) ||
3121 	    (r->match_tag_not && r->match_tag != *tag));
3122 }
3123 
3124 int
3125 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag)
3126 {
3127 
3128 	KASSERT(tag > 0, ("%s: tag %d", __func__, tag));
3129 
3130 	if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL))
3131 		return (ENOMEM);
3132 
3133 	pd->pf_mtag->tag = tag;
3134 
3135 	return (0);
3136 }
3137 
3138 #define	PF_ANCHOR_STACKSIZE	32
3139 struct pf_kanchor_stackframe {
3140 	struct pf_kruleset	*rs;
3141 	struct pf_krule		*r;	/* XXX: + match bit */
3142 	struct pf_kanchor	*child;
3143 };
3144 
3145 /*
3146  * XXX: We rely on malloc(9) returning pointer aligned addresses.
3147  */
3148 #define	PF_ANCHORSTACK_MATCH	0x00000001
3149 #define	PF_ANCHORSTACK_MASK	(PF_ANCHORSTACK_MATCH)
3150 
3151 #define	PF_ANCHOR_MATCH(f)	((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
3152 #define	PF_ANCHOR_RULE(f)	(struct pf_krule *)			\
3153 				((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
3154 #define	PF_ANCHOR_SET_MATCH(f)	do { (f)->r = (void *) 			\
3155 				((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH);  \
3156 } while (0)
3157 
3158 void
3159 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth,
3160     struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a,
3161     int *match)
3162 {
3163 	struct pf_kanchor_stackframe	*f;
3164 
3165 	PF_RULES_RASSERT();
3166 
3167 	if (match)
3168 		*match = 0;
3169 	if (*depth >= PF_ANCHOR_STACKSIZE) {
3170 		printf("%s: anchor stack overflow on %s\n",
3171 		    __func__, (*r)->anchor->name);
3172 		*r = TAILQ_NEXT(*r, entries);
3173 		return;
3174 	} else if (*depth == 0 && a != NULL)
3175 		*a = *r;
3176 	f = stack + (*depth)++;
3177 	f->rs = *rs;
3178 	f->r = *r;
3179 	if ((*r)->anchor_wildcard) {
3180 		struct pf_kanchor_node *parent = &(*r)->anchor->children;
3181 
3182 		if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) {
3183 			*r = NULL;
3184 			return;
3185 		}
3186 		*rs = &f->child->ruleset;
3187 	} else {
3188 		f->child = NULL;
3189 		*rs = &(*r)->anchor->ruleset;
3190 	}
3191 	*r = TAILQ_FIRST((*rs)->rules[n].active.ptr);
3192 }
3193 
3194 int
3195 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth,
3196     struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a,
3197     int *match)
3198 {
3199 	struct pf_kanchor_stackframe	*f;
3200 	struct pf_krule *fr;
3201 	int quick = 0;
3202 
3203 	PF_RULES_RASSERT();
3204 
3205 	do {
3206 		if (*depth <= 0)
3207 			break;
3208 		f = stack + *depth - 1;
3209 		fr = PF_ANCHOR_RULE(f);
3210 		if (f->child != NULL) {
3211 			struct pf_kanchor_node *parent;
3212 
3213 			/*
3214 			 * This block traverses through
3215 			 * a wildcard anchor.
3216 			 */
3217 			parent = &fr->anchor->children;
3218 			if (match != NULL && *match) {
3219 				/*
3220 				 * If any of "*" matched, then
3221 				 * "foo/ *" matched, mark frame
3222 				 * appropriately.
3223 				 */
3224 				PF_ANCHOR_SET_MATCH(f);
3225 				*match = 0;
3226 			}
3227 			f->child = RB_NEXT(pf_kanchor_node, parent, f->child);
3228 			if (f->child != NULL) {
3229 				*rs = &f->child->ruleset;
3230 				*r = TAILQ_FIRST((*rs)->rules[n].active.ptr);
3231 				if (*r == NULL)
3232 					continue;
3233 				else
3234 					break;
3235 			}
3236 		}
3237 		(*depth)--;
3238 		if (*depth == 0 && a != NULL)
3239 			*a = NULL;
3240 		*rs = f->rs;
3241 		if (PF_ANCHOR_MATCH(f) || (match != NULL && *match))
3242 			quick = fr->quick;
3243 		*r = TAILQ_NEXT(fr, entries);
3244 	} while (*r == NULL);
3245 
3246 	return (quick);
3247 }
3248 
3249 #ifdef INET6
3250 void
3251 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr,
3252     struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af)
3253 {
3254 	switch (af) {
3255 #ifdef INET
3256 	case AF_INET:
3257 		naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
3258 		((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
3259 		break;
3260 #endif /* INET */
3261 	case AF_INET6:
3262 		naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
3263 		((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
3264 		naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) |
3265 		((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]);
3266 		naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) |
3267 		((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]);
3268 		naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) |
3269 		((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]);
3270 		break;
3271 	}
3272 }
3273 
3274 void
3275 pf_addr_inc(struct pf_addr *addr, sa_family_t af)
3276 {
3277 	switch (af) {
3278 #ifdef INET
3279 	case AF_INET:
3280 		addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1);
3281 		break;
3282 #endif /* INET */
3283 	case AF_INET6:
3284 		if (addr->addr32[3] == 0xffffffff) {
3285 			addr->addr32[3] = 0;
3286 			if (addr->addr32[2] == 0xffffffff) {
3287 				addr->addr32[2] = 0;
3288 				if (addr->addr32[1] == 0xffffffff) {
3289 					addr->addr32[1] = 0;
3290 					addr->addr32[0] =
3291 					    htonl(ntohl(addr->addr32[0]) + 1);
3292 				} else
3293 					addr->addr32[1] =
3294 					    htonl(ntohl(addr->addr32[1]) + 1);
3295 			} else
3296 				addr->addr32[2] =
3297 				    htonl(ntohl(addr->addr32[2]) + 1);
3298 		} else
3299 			addr->addr32[3] =
3300 			    htonl(ntohl(addr->addr32[3]) + 1);
3301 		break;
3302 	}
3303 }
3304 #endif /* INET6 */
3305 
3306 void
3307 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a)
3308 {
3309 	if (r->qid)
3310 		a->qid = r->qid;
3311 	if (r->pqid)
3312 		a->pqid = r->pqid;
3313 }
3314 
3315 int
3316 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m)
3317 {
3318 	struct pf_addr		*saddr, *daddr;
3319 	u_int16_t		 sport, dport;
3320 	struct inpcbinfo	*pi;
3321 	struct inpcb		*inp;
3322 
3323 	pd->lookup.uid = UID_MAX;
3324 	pd->lookup.gid = GID_MAX;
3325 
3326 	switch (pd->proto) {
3327 	case IPPROTO_TCP:
3328 		sport = pd->hdr.tcp.th_sport;
3329 		dport = pd->hdr.tcp.th_dport;
3330 		pi = &V_tcbinfo;
3331 		break;
3332 	case IPPROTO_UDP:
3333 		sport = pd->hdr.udp.uh_sport;
3334 		dport = pd->hdr.udp.uh_dport;
3335 		pi = &V_udbinfo;
3336 		break;
3337 	default:
3338 		return (-1);
3339 	}
3340 	if (direction == PF_IN) {
3341 		saddr = pd->src;
3342 		daddr = pd->dst;
3343 	} else {
3344 		u_int16_t	p;
3345 
3346 		p = sport;
3347 		sport = dport;
3348 		dport = p;
3349 		saddr = pd->dst;
3350 		daddr = pd->src;
3351 	}
3352 	switch (pd->af) {
3353 #ifdef INET
3354 	case AF_INET:
3355 		inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4,
3356 		    dport, INPLOOKUP_RLOCKPCB, NULL, m);
3357 		if (inp == NULL) {
3358 			inp = in_pcblookup_mbuf(pi, saddr->v4, sport,
3359 			   daddr->v4, dport, INPLOOKUP_WILDCARD |
3360 			   INPLOOKUP_RLOCKPCB, NULL, m);
3361 			if (inp == NULL)
3362 				return (-1);
3363 		}
3364 		break;
3365 #endif /* INET */
3366 #ifdef INET6
3367 	case AF_INET6:
3368 		inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6,
3369 		    dport, INPLOOKUP_RLOCKPCB, NULL, m);
3370 		if (inp == NULL) {
3371 			inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport,
3372 			    &daddr->v6, dport, INPLOOKUP_WILDCARD |
3373 			    INPLOOKUP_RLOCKPCB, NULL, m);
3374 			if (inp == NULL)
3375 				return (-1);
3376 		}
3377 		break;
3378 #endif /* INET6 */
3379 
3380 	default:
3381 		return (-1);
3382 	}
3383 	INP_RLOCK_ASSERT(inp);
3384 	pd->lookup.uid = inp->inp_cred->cr_uid;
3385 	pd->lookup.gid = inp->inp_cred->cr_groups[0];
3386 	INP_RUNLOCK(inp);
3387 
3388 	return (1);
3389 }
3390 
3391 u_int8_t
3392 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af)
3393 {
3394 	int		 hlen;
3395 	u_int8_t	 hdr[60];
3396 	u_int8_t	*opt, optlen;
3397 	u_int8_t	 wscale = 0;
3398 
3399 	hlen = th_off << 2;		/* hlen <= sizeof(hdr) */
3400 	if (hlen <= sizeof(struct tcphdr))
3401 		return (0);
3402 	if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af))
3403 		return (0);
3404 	opt = hdr + sizeof(struct tcphdr);
3405 	hlen -= sizeof(struct tcphdr);
3406 	while (hlen >= 3) {
3407 		switch (*opt) {
3408 		case TCPOPT_EOL:
3409 		case TCPOPT_NOP:
3410 			++opt;
3411 			--hlen;
3412 			break;
3413 		case TCPOPT_WINDOW:
3414 			wscale = opt[2];
3415 			if (wscale > TCP_MAX_WINSHIFT)
3416 				wscale = TCP_MAX_WINSHIFT;
3417 			wscale |= PF_WSCALE_FLAG;
3418 			/* FALLTHROUGH */
3419 		default:
3420 			optlen = opt[1];
3421 			if (optlen < 2)
3422 				optlen = 2;
3423 			hlen -= optlen;
3424 			opt += optlen;
3425 			break;
3426 		}
3427 	}
3428 	return (wscale);
3429 }
3430 
3431 u_int16_t
3432 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af)
3433 {
3434 	int		 hlen;
3435 	u_int8_t	 hdr[60];
3436 	u_int8_t	*opt, optlen;
3437 	u_int16_t	 mss = V_tcp_mssdflt;
3438 
3439 	hlen = th_off << 2;	/* hlen <= sizeof(hdr) */
3440 	if (hlen <= sizeof(struct tcphdr))
3441 		return (0);
3442 	if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af))
3443 		return (0);
3444 	opt = hdr + sizeof(struct tcphdr);
3445 	hlen -= sizeof(struct tcphdr);
3446 	while (hlen >= TCPOLEN_MAXSEG) {
3447 		switch (*opt) {
3448 		case TCPOPT_EOL:
3449 		case TCPOPT_NOP:
3450 			++opt;
3451 			--hlen;
3452 			break;
3453 		case TCPOPT_MAXSEG:
3454 			bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2);
3455 			NTOHS(mss);
3456 			/* FALLTHROUGH */
3457 		default:
3458 			optlen = opt[1];
3459 			if (optlen < 2)
3460 				optlen = 2;
3461 			hlen -= optlen;
3462 			opt += optlen;
3463 			break;
3464 		}
3465 	}
3466 	return (mss);
3467 }
3468 
3469 static u_int16_t
3470 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer)
3471 {
3472 	struct nhop_object *nh;
3473 #ifdef INET6
3474 	struct in6_addr		dst6;
3475 	uint32_t		scopeid;
3476 #endif /* INET6 */
3477 	int			 hlen = 0;
3478 	uint16_t		 mss = 0;
3479 
3480 	NET_EPOCH_ASSERT();
3481 
3482 	switch (af) {
3483 #ifdef INET
3484 	case AF_INET:
3485 		hlen = sizeof(struct ip);
3486 		nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0);
3487 		if (nh != NULL)
3488 			mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
3489 		break;
3490 #endif /* INET */
3491 #ifdef INET6
3492 	case AF_INET6:
3493 		hlen = sizeof(struct ip6_hdr);
3494 		in6_splitscope(&addr->v6, &dst6, &scopeid);
3495 		nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0);
3496 		if (nh != NULL)
3497 			mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
3498 		break;
3499 #endif /* INET6 */
3500 	}
3501 
3502 	mss = max(V_tcp_mssdflt, mss);
3503 	mss = min(mss, offer);
3504 	mss = max(mss, 64);		/* sanity - at least max opt space */
3505 	return (mss);
3506 }
3507 
3508 static u_int32_t
3509 pf_tcp_iss(struct pf_pdesc *pd)
3510 {
3511 	MD5_CTX ctx;
3512 	u_int32_t digest[4];
3513 
3514 	if (V_pf_tcp_secret_init == 0) {
3515 		arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret));
3516 		MD5Init(&V_pf_tcp_secret_ctx);
3517 		MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret,
3518 		    sizeof(V_pf_tcp_secret));
3519 		V_pf_tcp_secret_init = 1;
3520 	}
3521 
3522 	ctx = V_pf_tcp_secret_ctx;
3523 
3524 	MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short));
3525 	MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short));
3526 	if (pd->af == AF_INET6) {
3527 		MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr));
3528 		MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr));
3529 	} else {
3530 		MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr));
3531 		MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr));
3532 	}
3533 	MD5Final((u_char *)digest, &ctx);
3534 	V_pf_tcp_iss_off += 4096;
3535 #define	ISN_RANDOM_INCREMENT (4096 - 1)
3536 	return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) +
3537 	    V_pf_tcp_iss_off);
3538 #undef	ISN_RANDOM_INCREMENT
3539 }
3540 
3541 static int
3542 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, int direction,
3543     struct pfi_kkif *kif, struct mbuf *m, int off, struct pf_pdesc *pd,
3544     struct pf_krule **am, struct pf_kruleset **rsm, struct inpcb *inp)
3545 {
3546 	struct pf_krule		*nr = NULL;
3547 	struct pf_addr		* const saddr = pd->src;
3548 	struct pf_addr		* const daddr = pd->dst;
3549 	sa_family_t		 af = pd->af;
3550 	struct pf_krule		*r, *a = NULL;
3551 	struct pf_kruleset	*ruleset = NULL;
3552 	struct pf_ksrc_node	*nsn = NULL;
3553 	struct tcphdr		*th = &pd->hdr.tcp;
3554 	struct pf_state_key	*sk = NULL, *nk = NULL;
3555 	u_short			 reason;
3556 	int			 rewrite = 0, hdrlen = 0;
3557 	int			 tag = -1, rtableid = -1;
3558 	int			 asd = 0;
3559 	int			 match = 0;
3560 	int			 state_icmp = 0;
3561 	u_int16_t		 sport = 0, dport = 0;
3562 	u_int16_t		 bproto_sum = 0, bip_sum = 0;
3563 	u_int8_t		 icmptype = 0, icmpcode = 0;
3564 	struct pf_kanchor_stackframe	anchor_stack[PF_ANCHOR_STACKSIZE];
3565 
3566 	PF_RULES_RASSERT();
3567 
3568 	if (inp != NULL) {
3569 		INP_LOCK_ASSERT(inp);
3570 		pd->lookup.uid = inp->inp_cred->cr_uid;
3571 		pd->lookup.gid = inp->inp_cred->cr_groups[0];
3572 		pd->lookup.done = 1;
3573 	}
3574 
3575 	switch (pd->proto) {
3576 	case IPPROTO_TCP:
3577 		sport = th->th_sport;
3578 		dport = th->th_dport;
3579 		hdrlen = sizeof(*th);
3580 		break;
3581 	case IPPROTO_UDP:
3582 		sport = pd->hdr.udp.uh_sport;
3583 		dport = pd->hdr.udp.uh_dport;
3584 		hdrlen = sizeof(pd->hdr.udp);
3585 		break;
3586 #ifdef INET
3587 	case IPPROTO_ICMP:
3588 		if (pd->af != AF_INET)
3589 			break;
3590 		sport = dport = pd->hdr.icmp.icmp_id;
3591 		hdrlen = sizeof(pd->hdr.icmp);
3592 		icmptype = pd->hdr.icmp.icmp_type;
3593 		icmpcode = pd->hdr.icmp.icmp_code;
3594 
3595 		if (icmptype == ICMP_UNREACH ||
3596 		    icmptype == ICMP_SOURCEQUENCH ||
3597 		    icmptype == ICMP_REDIRECT ||
3598 		    icmptype == ICMP_TIMXCEED ||
3599 		    icmptype == ICMP_PARAMPROB)
3600 			state_icmp++;
3601 		break;
3602 #endif /* INET */
3603 #ifdef INET6
3604 	case IPPROTO_ICMPV6:
3605 		if (af != AF_INET6)
3606 			break;
3607 		sport = dport = pd->hdr.icmp6.icmp6_id;
3608 		hdrlen = sizeof(pd->hdr.icmp6);
3609 		icmptype = pd->hdr.icmp6.icmp6_type;
3610 		icmpcode = pd->hdr.icmp6.icmp6_code;
3611 
3612 		if (icmptype == ICMP6_DST_UNREACH ||
3613 		    icmptype == ICMP6_PACKET_TOO_BIG ||
3614 		    icmptype == ICMP6_TIME_EXCEEDED ||
3615 		    icmptype == ICMP6_PARAM_PROB)
3616 			state_icmp++;
3617 		break;
3618 #endif /* INET6 */
3619 	default:
3620 		sport = dport = hdrlen = 0;
3621 		break;
3622 	}
3623 
3624 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr);
3625 
3626 	/* check packet for BINAT/NAT/RDR */
3627 	if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk,
3628 	    &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) {
3629 		KASSERT(sk != NULL, ("%s: null sk", __func__));
3630 		KASSERT(nk != NULL, ("%s: null nk", __func__));
3631 
3632 		if (nr->log) {
3633 			PFLOG_PACKET(kif, m, af, direction, PFRES_MATCH, nr, a,
3634 			    ruleset, pd, 1);
3635 		}
3636 
3637 		if (pd->ip_sum)
3638 			bip_sum = *pd->ip_sum;
3639 
3640 		switch (pd->proto) {
3641 		case IPPROTO_TCP:
3642 			bproto_sum = th->th_sum;
3643 			pd->proto_sum = &th->th_sum;
3644 
3645 			if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) ||
3646 			    nk->port[pd->sidx] != sport) {
3647 				pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum,
3648 				    &th->th_sum, &nk->addr[pd->sidx],
3649 				    nk->port[pd->sidx], 0, af);
3650 				pd->sport = &th->th_sport;
3651 				sport = th->th_sport;
3652 			}
3653 
3654 			if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) ||
3655 			    nk->port[pd->didx] != dport) {
3656 				pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum,
3657 				    &th->th_sum, &nk->addr[pd->didx],
3658 				    nk->port[pd->didx], 0, af);
3659 				dport = th->th_dport;
3660 				pd->dport = &th->th_dport;
3661 			}
3662 			rewrite++;
3663 			break;
3664 		case IPPROTO_UDP:
3665 			bproto_sum = pd->hdr.udp.uh_sum;
3666 			pd->proto_sum = &pd->hdr.udp.uh_sum;
3667 
3668 			if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) ||
3669 			    nk->port[pd->sidx] != sport) {
3670 				pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport,
3671 				    pd->ip_sum, &pd->hdr.udp.uh_sum,
3672 				    &nk->addr[pd->sidx],
3673 				    nk->port[pd->sidx], 1, af);
3674 				sport = pd->hdr.udp.uh_sport;
3675 				pd->sport = &pd->hdr.udp.uh_sport;
3676 			}
3677 
3678 			if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) ||
3679 			    nk->port[pd->didx] != dport) {
3680 				pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport,
3681 				    pd->ip_sum, &pd->hdr.udp.uh_sum,
3682 				    &nk->addr[pd->didx],
3683 				    nk->port[pd->didx], 1, af);
3684 				dport = pd->hdr.udp.uh_dport;
3685 				pd->dport = &pd->hdr.udp.uh_dport;
3686 			}
3687 			rewrite++;
3688 			break;
3689 #ifdef INET
3690 		case IPPROTO_ICMP:
3691 			nk->port[0] = nk->port[1];
3692 			if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET))
3693 				pf_change_a(&saddr->v4.s_addr, pd->ip_sum,
3694 				    nk->addr[pd->sidx].v4.s_addr, 0);
3695 
3696 			if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET))
3697 				pf_change_a(&daddr->v4.s_addr, pd->ip_sum,
3698 				    nk->addr[pd->didx].v4.s_addr, 0);
3699 
3700 			if (nk->port[1] != pd->hdr.icmp.icmp_id) {
3701 				pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
3702 				    pd->hdr.icmp.icmp_cksum, sport,
3703 				    nk->port[1], 0);
3704 				pd->hdr.icmp.icmp_id = nk->port[1];
3705 				pd->sport = &pd->hdr.icmp.icmp_id;
3706 			}
3707 			m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
3708 			break;
3709 #endif /* INET */
3710 #ifdef INET6
3711 		case IPPROTO_ICMPV6:
3712 			nk->port[0] = nk->port[1];
3713 			if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6))
3714 				pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum,
3715 				    &nk->addr[pd->sidx], 0);
3716 
3717 			if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6))
3718 				pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum,
3719 				    &nk->addr[pd->didx], 0);
3720 			rewrite++;
3721 			break;
3722 #endif /* INET */
3723 		default:
3724 			switch (af) {
3725 #ifdef INET
3726 			case AF_INET:
3727 				if (PF_ANEQ(saddr,
3728 				    &nk->addr[pd->sidx], AF_INET))
3729 					pf_change_a(&saddr->v4.s_addr,
3730 					    pd->ip_sum,
3731 					    nk->addr[pd->sidx].v4.s_addr, 0);
3732 
3733 				if (PF_ANEQ(daddr,
3734 				    &nk->addr[pd->didx], AF_INET))
3735 					pf_change_a(&daddr->v4.s_addr,
3736 					    pd->ip_sum,
3737 					    nk->addr[pd->didx].v4.s_addr, 0);
3738 				break;
3739 #endif /* INET */
3740 #ifdef INET6
3741 			case AF_INET6:
3742 				if (PF_ANEQ(saddr,
3743 				    &nk->addr[pd->sidx], AF_INET6))
3744 					PF_ACPY(saddr, &nk->addr[pd->sidx], af);
3745 
3746 				if (PF_ANEQ(daddr,
3747 				    &nk->addr[pd->didx], AF_INET6))
3748 					PF_ACPY(daddr, &nk->addr[pd->didx], af);
3749 				break;
3750 #endif /* INET */
3751 			}
3752 			break;
3753 		}
3754 		if (nr->natpass)
3755 			r = NULL;
3756 		pd->nat_rule = nr;
3757 	}
3758 
3759 	while (r != NULL) {
3760 		pf_counter_u64_add(&r->evaluations, 1);
3761 		if (pfi_kkif_match(r->kif, kif) == r->ifnot)
3762 			r = r->skip[PF_SKIP_IFP].ptr;
3763 		else if (r->direction && r->direction != direction)
3764 			r = r->skip[PF_SKIP_DIR].ptr;
3765 		else if (r->af && r->af != af)
3766 			r = r->skip[PF_SKIP_AF].ptr;
3767 		else if (r->proto && r->proto != pd->proto)
3768 			r = r->skip[PF_SKIP_PROTO].ptr;
3769 		else if (PF_MISMATCHAW(&r->src.addr, saddr, af,
3770 		    r->src.neg, kif, M_GETFIB(m)))
3771 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
3772 		/* tcp/udp only. port_op always 0 in other cases */
3773 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
3774 		    r->src.port[0], r->src.port[1], sport))
3775 			r = r->skip[PF_SKIP_SRC_PORT].ptr;
3776 		else if (PF_MISMATCHAW(&r->dst.addr, daddr, af,
3777 		    r->dst.neg, NULL, M_GETFIB(m)))
3778 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
3779 		/* tcp/udp only. port_op always 0 in other cases */
3780 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
3781 		    r->dst.port[0], r->dst.port[1], dport))
3782 			r = r->skip[PF_SKIP_DST_PORT].ptr;
3783 		/* icmp only. type always 0 in other cases */
3784 		else if (r->type && r->type != icmptype + 1)
3785 			r = TAILQ_NEXT(r, entries);
3786 		/* icmp only. type always 0 in other cases */
3787 		else if (r->code && r->code != icmpcode + 1)
3788 			r = TAILQ_NEXT(r, entries);
3789 		else if (r->tos && !(r->tos == pd->tos))
3790 			r = TAILQ_NEXT(r, entries);
3791 		else if (r->rule_flag & PFRULE_FRAGMENT)
3792 			r = TAILQ_NEXT(r, entries);
3793 		else if (pd->proto == IPPROTO_TCP &&
3794 		    (r->flagset & th->th_flags) != r->flags)
3795 			r = TAILQ_NEXT(r, entries);
3796 		/* tcp/udp only. uid.op always 0 in other cases */
3797 		else if (r->uid.op && (pd->lookup.done || (pd->lookup.done =
3798 		    pf_socket_lookup(direction, pd, m), 1)) &&
3799 		    !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1],
3800 		    pd->lookup.uid))
3801 			r = TAILQ_NEXT(r, entries);
3802 		/* tcp/udp only. gid.op always 0 in other cases */
3803 		else if (r->gid.op && (pd->lookup.done || (pd->lookup.done =
3804 		    pf_socket_lookup(direction, pd, m), 1)) &&
3805 		    !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1],
3806 		    pd->lookup.gid))
3807 			r = TAILQ_NEXT(r, entries);
3808 		else if (r->prio &&
3809 		    !pf_match_ieee8021q_pcp(r->prio, m))
3810 			r = TAILQ_NEXT(r, entries);
3811 		else if (r->prob &&
3812 		    r->prob <= arc4random())
3813 			r = TAILQ_NEXT(r, entries);
3814 		else if (r->match_tag && !pf_match_tag(m, r, &tag,
3815 		    pd->pf_mtag ? pd->pf_mtag->tag : 0))
3816 			r = TAILQ_NEXT(r, entries);
3817 		else if (r->os_fingerprint != PF_OSFP_ANY &&
3818 		    (pd->proto != IPPROTO_TCP || !pf_osfp_match(
3819 		    pf_osfp_fingerprint(pd, m, off, th),
3820 		    r->os_fingerprint)))
3821 			r = TAILQ_NEXT(r, entries);
3822 		else {
3823 			if (r->tag)
3824 				tag = r->tag;
3825 			if (r->rtableid >= 0)
3826 				rtableid = r->rtableid;
3827 			if (r->anchor == NULL) {
3828 				if (r->action == PF_MATCH) {
3829 					pf_counter_u64_critical_enter();
3830 					pf_counter_u64_add_protected(&r->packets[direction == PF_OUT], 1);
3831 					pf_counter_u64_add_protected(&r->bytes[direction == PF_OUT], pd->tot_len);
3832 					pf_counter_u64_critical_exit();
3833 					pf_rule_to_actions(r, &pd->act);
3834 					if (r->log)
3835 						PFLOG_PACKET(kif, m, af,
3836 						    direction, PFRES_MATCH, r,
3837 						    a, ruleset, pd, 1);
3838 				} else {
3839 					match = 1;
3840 					*rm = r;
3841 					*am = a;
3842 					*rsm = ruleset;
3843 				}
3844 				if ((*rm)->quick)
3845 					break;
3846 				r = TAILQ_NEXT(r, entries);
3847 			} else
3848 				pf_step_into_anchor(anchor_stack, &asd,
3849 				    &ruleset, PF_RULESET_FILTER, &r, &a,
3850 				    &match);
3851 		}
3852 		if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd,
3853 		    &ruleset, PF_RULESET_FILTER, &r, &a, &match))
3854 			break;
3855 	}
3856 	r = *rm;
3857 	a = *am;
3858 	ruleset = *rsm;
3859 
3860 	REASON_SET(&reason, PFRES_MATCH);
3861 
3862 	/* apply actions for last matching pass/block rule */
3863 	pf_rule_to_actions(r, &pd->act);
3864 
3865 	if (r->log) {
3866 		if (rewrite)
3867 			m_copyback(m, off, hdrlen, pd->hdr.any);
3868 		PFLOG_PACKET(kif, m, af, direction, reason, r, a,
3869 		    ruleset, pd, 1);
3870 	}
3871 
3872 	if ((r->action == PF_DROP) &&
3873 	    ((r->rule_flag & PFRULE_RETURNRST) ||
3874 	    (r->rule_flag & PFRULE_RETURNICMP) ||
3875 	    (r->rule_flag & PFRULE_RETURN))) {
3876 		pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum,
3877 		    bip_sum, hdrlen, &reason);
3878 	}
3879 
3880 	if (r->action == PF_DROP)
3881 		goto cleanup;
3882 
3883 	if (tag > 0 && pf_tag_packet(m, pd, tag)) {
3884 		REASON_SET(&reason, PFRES_MEMORY);
3885 		goto cleanup;
3886 	}
3887 	if (rtableid >= 0)
3888 		M_SETFIB(m, rtableid);
3889 
3890 	if (!state_icmp && (r->keep_state || nr != NULL ||
3891 	    (pd->flags & PFDESC_TCP_NORM))) {
3892 		int action;
3893 		action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off,
3894 		    sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum,
3895 		    hdrlen);
3896 		if (action != PF_PASS) {
3897 			if (action == PF_DROP &&
3898 			    (r->rule_flag & PFRULE_RETURN))
3899 				pf_return(r, nr, pd, sk, off, m, th, kif,
3900 				    bproto_sum, bip_sum, hdrlen, &reason);
3901 			return (action);
3902 		}
3903 	} else {
3904 		if (sk != NULL)
3905 			uma_zfree(V_pf_state_key_z, sk);
3906 		if (nk != NULL)
3907 			uma_zfree(V_pf_state_key_z, nk);
3908 	}
3909 
3910 	/* copy back packet headers if we performed NAT operations */
3911 	if (rewrite)
3912 		m_copyback(m, off, hdrlen, pd->hdr.any);
3913 
3914 	if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) &&
3915 	    direction == PF_OUT &&
3916 	    V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m))
3917 		/*
3918 		 * We want the state created, but we dont
3919 		 * want to send this in case a partner
3920 		 * firewall has to know about it to allow
3921 		 * replies through it.
3922 		 */
3923 		return (PF_DEFER);
3924 
3925 	return (PF_PASS);
3926 
3927 cleanup:
3928 	if (sk != NULL)
3929 		uma_zfree(V_pf_state_key_z, sk);
3930 	if (nk != NULL)
3931 		uma_zfree(V_pf_state_key_z, nk);
3932 	return (PF_DROP);
3933 }
3934 
3935 static int
3936 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a,
3937     struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk,
3938     struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport,
3939     u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm,
3940     int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen)
3941 {
3942 	struct pf_kstate	*s = NULL;
3943 	struct pf_ksrc_node	*sn = NULL;
3944 	struct tcphdr		*th = &pd->hdr.tcp;
3945 	u_int16_t		 mss = V_tcp_mssdflt;
3946 	u_short			 reason;
3947 
3948 	/* check maximums */
3949 	if (r->max_states &&
3950 	    (counter_u64_fetch(r->states_cur) >= r->max_states)) {
3951 		counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1);
3952 		REASON_SET(&reason, PFRES_MAXSTATES);
3953 		goto csfailed;
3954 	}
3955 	/* src node for filter rule */
3956 	if ((r->rule_flag & PFRULE_SRCTRACK ||
3957 	    r->rpool.opts & PF_POOL_STICKYADDR) &&
3958 	    pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) {
3959 		REASON_SET(&reason, PFRES_SRCLIMIT);
3960 		goto csfailed;
3961 	}
3962 	/* src node for translation rule */
3963 	if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) &&
3964 	    pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) {
3965 		REASON_SET(&reason, PFRES_SRCLIMIT);
3966 		goto csfailed;
3967 	}
3968 	s = pf_alloc_state(M_NOWAIT);
3969 	if (s == NULL) {
3970 		REASON_SET(&reason, PFRES_MEMORY);
3971 		goto csfailed;
3972 	}
3973 	s->rule.ptr = r;
3974 	s->nat_rule.ptr = nr;
3975 	s->anchor.ptr = a;
3976 	STATE_INC_COUNTERS(s);
3977 	if (r->allow_opts)
3978 		s->state_flags |= PFSTATE_ALLOWOPTS;
3979 	if (r->rule_flag & PFRULE_STATESLOPPY)
3980 		s->state_flags |= PFSTATE_SLOPPY;
3981 	s->log = r->log & PF_LOG_ALL;
3982 	s->sync_state = PFSYNC_S_NONE;
3983 	s->qid = pd->act.qid;
3984 	s->pqid = pd->act.pqid;
3985 	if (nr != NULL)
3986 		s->log |= nr->log & PF_LOG_ALL;
3987 	switch (pd->proto) {
3988 	case IPPROTO_TCP:
3989 		s->src.seqlo = ntohl(th->th_seq);
3990 		s->src.seqhi = s->src.seqlo + pd->p_len + 1;
3991 		if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN &&
3992 		    r->keep_state == PF_STATE_MODULATE) {
3993 			/* Generate sequence number modulator */
3994 			if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) ==
3995 			    0)
3996 				s->src.seqdiff = 1;
3997 			pf_change_proto_a(m, &th->th_seq, &th->th_sum,
3998 			    htonl(s->src.seqlo + s->src.seqdiff), 0);
3999 			*rewrite = 1;
4000 		} else
4001 			s->src.seqdiff = 0;
4002 		if (th->th_flags & TH_SYN) {
4003 			s->src.seqhi++;
4004 			s->src.wscale = pf_get_wscale(m, off,
4005 			    th->th_off, pd->af);
4006 		}
4007 		s->src.max_win = MAX(ntohs(th->th_win), 1);
4008 		if (s->src.wscale & PF_WSCALE_MASK) {
4009 			/* Remove scale factor from initial window */
4010 			int win = s->src.max_win;
4011 			win += 1 << (s->src.wscale & PF_WSCALE_MASK);
4012 			s->src.max_win = (win - 1) >>
4013 			    (s->src.wscale & PF_WSCALE_MASK);
4014 		}
4015 		if (th->th_flags & TH_FIN)
4016 			s->src.seqhi++;
4017 		s->dst.seqhi = 1;
4018 		s->dst.max_win = 1;
4019 		pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT);
4020 		pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED);
4021 		s->timeout = PFTM_TCP_FIRST_PACKET;
4022 		break;
4023 	case IPPROTO_UDP:
4024 		pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE);
4025 		pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC);
4026 		s->timeout = PFTM_UDP_FIRST_PACKET;
4027 		break;
4028 	case IPPROTO_ICMP:
4029 #ifdef INET6
4030 	case IPPROTO_ICMPV6:
4031 #endif
4032 		s->timeout = PFTM_ICMP_FIRST_PACKET;
4033 		break;
4034 	default:
4035 		pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE);
4036 		pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC);
4037 		s->timeout = PFTM_OTHER_FIRST_PACKET;
4038 	}
4039 
4040 	if (r->rt) {
4041 		if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) {
4042 			REASON_SET(&reason, PFRES_MAPFAILED);
4043 			pf_src_tree_remove_state(s);
4044 			s->timeout = PFTM_UNLINKED;
4045 			STATE_DEC_COUNTERS(s);
4046 			pf_free_state(s);
4047 			goto csfailed;
4048 		}
4049 		s->rt_kif = r->rpool.cur->kif;
4050 	}
4051 
4052 	s->creation = time_uptime;
4053 	s->expire = time_uptime;
4054 
4055 	if (sn != NULL)
4056 		s->src_node = sn;
4057 	if (nsn != NULL) {
4058 		/* XXX We only modify one side for now. */
4059 		PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af);
4060 		s->nat_src_node = nsn;
4061 	}
4062 	if (pd->proto == IPPROTO_TCP) {
4063 		if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m,
4064 		    off, pd, th, &s->src, &s->dst)) {
4065 			REASON_SET(&reason, PFRES_MEMORY);
4066 			pf_src_tree_remove_state(s);
4067 			s->timeout = PFTM_UNLINKED;
4068 			STATE_DEC_COUNTERS(s);
4069 			pf_free_state(s);
4070 			return (PF_DROP);
4071 		}
4072 		if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub &&
4073 		    pf_normalize_tcp_stateful(m, off, pd, &reason, th, s,
4074 		    &s->src, &s->dst, rewrite)) {
4075 			/* This really shouldn't happen!!! */
4076 			DPFPRINTF(PF_DEBUG_URGENT,
4077 			    ("pf_normalize_tcp_stateful failed on first "
4078 			     "pkt\n"));
4079 			pf_src_tree_remove_state(s);
4080 			s->timeout = PFTM_UNLINKED;
4081 			STATE_DEC_COUNTERS(s);
4082 			pf_free_state(s);
4083 			return (PF_DROP);
4084 		}
4085 	}
4086 	s->direction = pd->dir;
4087 
4088 	/*
4089 	 * sk/nk could already been setup by pf_get_translation().
4090 	 */
4091 	if (nr == NULL) {
4092 		KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p",
4093 		    __func__, nr, sk, nk));
4094 		sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport);
4095 		if (sk == NULL)
4096 			goto csfailed;
4097 		nk = sk;
4098 	} else
4099 		KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p",
4100 		    __func__, nr, sk, nk));
4101 
4102 	/* Swap sk/nk for PF_OUT. */
4103 	if (pf_state_insert(BOUND_IFACE(r, kif), kif,
4104 	    (pd->dir == PF_IN) ? sk : nk,
4105 	    (pd->dir == PF_IN) ? nk : sk, s)) {
4106 		REASON_SET(&reason, PFRES_STATEINS);
4107 		pf_src_tree_remove_state(s);
4108 		s->timeout = PFTM_UNLINKED;
4109 		STATE_DEC_COUNTERS(s);
4110 		pf_free_state(s);
4111 		return (PF_DROP);
4112 	} else
4113 		*sm = s;
4114 
4115 	if (tag > 0)
4116 		s->tag = tag;
4117 	if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) ==
4118 	    TH_SYN && r->keep_state == PF_STATE_SYNPROXY) {
4119 		pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC);
4120 		/* undo NAT changes, if they have taken place */
4121 		if (nr != NULL) {
4122 			struct pf_state_key *skt = s->key[PF_SK_WIRE];
4123 			if (pd->dir == PF_OUT)
4124 				skt = s->key[PF_SK_STACK];
4125 			PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af);
4126 			PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af);
4127 			if (pd->sport)
4128 				*pd->sport = skt->port[pd->sidx];
4129 			if (pd->dport)
4130 				*pd->dport = skt->port[pd->didx];
4131 			if (pd->proto_sum)
4132 				*pd->proto_sum = bproto_sum;
4133 			if (pd->ip_sum)
4134 				*pd->ip_sum = bip_sum;
4135 			m_copyback(m, off, hdrlen, pd->hdr.any);
4136 		}
4137 		s->src.seqhi = htonl(arc4random());
4138 		/* Find mss option */
4139 		int rtid = M_GETFIB(m);
4140 		mss = pf_get_mss(m, off, th->th_off, pd->af);
4141 		mss = pf_calc_mss(pd->src, pd->af, rtid, mss);
4142 		mss = pf_calc_mss(pd->dst, pd->af, rtid, mss);
4143 		s->src.mss = mss;
4144 		pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport,
4145 		    th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1,
4146 		    TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0);
4147 		REASON_SET(&reason, PFRES_SYNPROXY);
4148 		return (PF_SYNPROXY_DROP);
4149 	}
4150 
4151 	return (PF_PASS);
4152 
4153 csfailed:
4154 	if (sk != NULL)
4155 		uma_zfree(V_pf_state_key_z, sk);
4156 	if (nk != NULL)
4157 		uma_zfree(V_pf_state_key_z, nk);
4158 
4159 	if (sn != NULL) {
4160 		struct pf_srchash *sh;
4161 
4162 		sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)];
4163 		PF_HASHROW_LOCK(sh);
4164 		if (--sn->states == 0 && sn->expire == 0) {
4165 			pf_unlink_src_node(sn);
4166 			uma_zfree(V_pf_sources_z, sn);
4167 			counter_u64_add(
4168 			    V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
4169 		}
4170 		PF_HASHROW_UNLOCK(sh);
4171 	}
4172 
4173 	if (nsn != sn && nsn != NULL) {
4174 		struct pf_srchash *sh;
4175 
4176 		sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)];
4177 		PF_HASHROW_LOCK(sh);
4178 		if (--nsn->states == 0 && nsn->expire == 0) {
4179 			pf_unlink_src_node(nsn);
4180 			uma_zfree(V_pf_sources_z, nsn);
4181 			counter_u64_add(
4182 			    V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
4183 		}
4184 		PF_HASHROW_UNLOCK(sh);
4185 	}
4186 
4187 	return (PF_DROP);
4188 }
4189 
4190 static int
4191 pf_test_fragment(struct pf_krule **rm, int direction, struct pfi_kkif *kif,
4192     struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am,
4193     struct pf_kruleset **rsm)
4194 {
4195 	struct pf_krule		*r, *a = NULL;
4196 	struct pf_kruleset	*ruleset = NULL;
4197 	sa_family_t		 af = pd->af;
4198 	u_short			 reason;
4199 	int			 tag = -1;
4200 	int			 asd = 0;
4201 	int			 match = 0;
4202 	struct pf_kanchor_stackframe	anchor_stack[PF_ANCHOR_STACKSIZE];
4203 
4204 	PF_RULES_RASSERT();
4205 
4206 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr);
4207 	while (r != NULL) {
4208 		pf_counter_u64_add(&r->evaluations, 1);
4209 		if (pfi_kkif_match(r->kif, kif) == r->ifnot)
4210 			r = r->skip[PF_SKIP_IFP].ptr;
4211 		else if (r->direction && r->direction != direction)
4212 			r = r->skip[PF_SKIP_DIR].ptr;
4213 		else if (r->af && r->af != af)
4214 			r = r->skip[PF_SKIP_AF].ptr;
4215 		else if (r->proto && r->proto != pd->proto)
4216 			r = r->skip[PF_SKIP_PROTO].ptr;
4217 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
4218 		    r->src.neg, kif, M_GETFIB(m)))
4219 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
4220 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
4221 		    r->dst.neg, NULL, M_GETFIB(m)))
4222 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
4223 		else if (r->tos && !(r->tos == pd->tos))
4224 			r = TAILQ_NEXT(r, entries);
4225 		else if (r->os_fingerprint != PF_OSFP_ANY)
4226 			r = TAILQ_NEXT(r, entries);
4227 		else if (pd->proto == IPPROTO_UDP &&
4228 		    (r->src.port_op || r->dst.port_op))
4229 			r = TAILQ_NEXT(r, entries);
4230 		else if (pd->proto == IPPROTO_TCP &&
4231 		    (r->src.port_op || r->dst.port_op || r->flagset))
4232 			r = TAILQ_NEXT(r, entries);
4233 		else if ((pd->proto == IPPROTO_ICMP ||
4234 		    pd->proto == IPPROTO_ICMPV6) &&
4235 		    (r->type || r->code))
4236 			r = TAILQ_NEXT(r, entries);
4237 		else if (r->prio &&
4238 		    !pf_match_ieee8021q_pcp(r->prio, m))
4239 			r = TAILQ_NEXT(r, entries);
4240 		else if (r->prob && r->prob <=
4241 		    (arc4random() % (UINT_MAX - 1) + 1))
4242 			r = TAILQ_NEXT(r, entries);
4243 		else if (r->match_tag && !pf_match_tag(m, r, &tag,
4244 		    pd->pf_mtag ? pd->pf_mtag->tag : 0))
4245 			r = TAILQ_NEXT(r, entries);
4246 		else {
4247 			if (r->anchor == NULL) {
4248 				if (r->action == PF_MATCH) {
4249 					pf_counter_u64_critical_enter();
4250 					pf_counter_u64_add_protected(&r->packets[direction == PF_OUT], 1);
4251 					pf_counter_u64_add_protected(&r->bytes[direction == PF_OUT], pd->tot_len);
4252 					pf_counter_u64_critical_exit();
4253 					pf_rule_to_actions(r, &pd->act);
4254 					if (r->log)
4255 						PFLOG_PACKET(kif, m, af,
4256 						    direction, PFRES_MATCH, r,
4257 						    a, ruleset, pd, 1);
4258 				} else {
4259 					match = 1;
4260 					*rm = r;
4261 					*am = a;
4262 					*rsm = ruleset;
4263 				}
4264 				if ((*rm)->quick)
4265 					break;
4266 				r = TAILQ_NEXT(r, entries);
4267 			} else
4268 				pf_step_into_anchor(anchor_stack, &asd,
4269 				    &ruleset, PF_RULESET_FILTER, &r, &a,
4270 				    &match);
4271 		}
4272 		if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd,
4273 		    &ruleset, PF_RULESET_FILTER, &r, &a, &match))
4274 			break;
4275 	}
4276 	r = *rm;
4277 	a = *am;
4278 	ruleset = *rsm;
4279 
4280 	REASON_SET(&reason, PFRES_MATCH);
4281 
4282 	/* apply actions for last matching pass/block rule */
4283 	pf_rule_to_actions(r, &pd->act);
4284 
4285 	if (r->log)
4286 		PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd,
4287 		    1);
4288 
4289 	if (r->action != PF_PASS)
4290 		return (PF_DROP);
4291 
4292 	if (tag > 0 && pf_tag_packet(m, pd, tag)) {
4293 		REASON_SET(&reason, PFRES_MEMORY);
4294 		return (PF_DROP);
4295 	}
4296 
4297 	return (PF_PASS);
4298 }
4299 
4300 static int
4301 pf_tcp_track_full(struct pf_kstate **state, struct pfi_kkif *kif,
4302     struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason,
4303     int *copyback)
4304 {
4305 	struct tcphdr		*th = &pd->hdr.tcp;
4306 	struct pf_state_peer	*src, *dst;
4307 	u_int16_t		 win = ntohs(th->th_win);
4308 	u_int32_t		 ack, end, seq, orig_seq;
4309 	u_int8_t		 sws, dws, psrc, pdst;
4310 	int			 ackskew;
4311 
4312 	if (pd->dir == (*state)->direction) {
4313 		src = &(*state)->src;
4314 		dst = &(*state)->dst;
4315 		psrc = PF_PEER_SRC;
4316 		pdst = PF_PEER_DST;
4317 	} else {
4318 		src = &(*state)->dst;
4319 		dst = &(*state)->src;
4320 		psrc = PF_PEER_DST;
4321 		pdst = PF_PEER_SRC;
4322 	}
4323 
4324 	if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) {
4325 		sws = src->wscale & PF_WSCALE_MASK;
4326 		dws = dst->wscale & PF_WSCALE_MASK;
4327 	} else
4328 		sws = dws = 0;
4329 
4330 	/*
4331 	 * Sequence tracking algorithm from Guido van Rooij's paper:
4332 	 *   http://www.madison-gurkha.com/publications/tcp_filtering/
4333 	 *	tcp_filtering.ps
4334 	 */
4335 
4336 	orig_seq = seq = ntohl(th->th_seq);
4337 	if (src->seqlo == 0) {
4338 		/* First packet from this end. Set its state */
4339 
4340 		if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) &&
4341 		    src->scrub == NULL) {
4342 			if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) {
4343 				REASON_SET(reason, PFRES_MEMORY);
4344 				return (PF_DROP);
4345 			}
4346 		}
4347 
4348 		/* Deferred generation of sequence number modulator */
4349 		if (dst->seqdiff && !src->seqdiff) {
4350 			/* use random iss for the TCP server */
4351 			while ((src->seqdiff = arc4random() - seq) == 0)
4352 				;
4353 			ack = ntohl(th->th_ack) - dst->seqdiff;
4354 			pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq +
4355 			    src->seqdiff), 0);
4356 			pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0);
4357 			*copyback = 1;
4358 		} else {
4359 			ack = ntohl(th->th_ack);
4360 		}
4361 
4362 		end = seq + pd->p_len;
4363 		if (th->th_flags & TH_SYN) {
4364 			end++;
4365 			if (dst->wscale & PF_WSCALE_FLAG) {
4366 				src->wscale = pf_get_wscale(m, off, th->th_off,
4367 				    pd->af);
4368 				if (src->wscale & PF_WSCALE_FLAG) {
4369 					/* Remove scale factor from initial
4370 					 * window */
4371 					sws = src->wscale & PF_WSCALE_MASK;
4372 					win = ((u_int32_t)win + (1 << sws) - 1)
4373 					    >> sws;
4374 					dws = dst->wscale & PF_WSCALE_MASK;
4375 				} else {
4376 					/* fixup other window */
4377 					dst->max_win <<= dst->wscale &
4378 					    PF_WSCALE_MASK;
4379 					/* in case of a retrans SYN|ACK */
4380 					dst->wscale = 0;
4381 				}
4382 			}
4383 		}
4384 		if (th->th_flags & TH_FIN)
4385 			end++;
4386 
4387 		src->seqlo = seq;
4388 		if (src->state < TCPS_SYN_SENT)
4389 			pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
4390 
4391 		/*
4392 		 * May need to slide the window (seqhi may have been set by
4393 		 * the crappy stack check or if we picked up the connection
4394 		 * after establishment)
4395 		 */
4396 		if (src->seqhi == 1 ||
4397 		    SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi))
4398 			src->seqhi = end + MAX(1, dst->max_win << dws);
4399 		if (win > src->max_win)
4400 			src->max_win = win;
4401 
4402 	} else {
4403 		ack = ntohl(th->th_ack) - dst->seqdiff;
4404 		if (src->seqdiff) {
4405 			/* Modulate sequence numbers */
4406 			pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq +
4407 			    src->seqdiff), 0);
4408 			pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0);
4409 			*copyback = 1;
4410 		}
4411 		end = seq + pd->p_len;
4412 		if (th->th_flags & TH_SYN)
4413 			end++;
4414 		if (th->th_flags & TH_FIN)
4415 			end++;
4416 	}
4417 
4418 	if ((th->th_flags & TH_ACK) == 0) {
4419 		/* Let it pass through the ack skew check */
4420 		ack = dst->seqlo;
4421 	} else if ((ack == 0 &&
4422 	    (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) ||
4423 	    /* broken tcp stacks do not set ack */
4424 	    (dst->state < TCPS_SYN_SENT)) {
4425 		/*
4426 		 * Many stacks (ours included) will set the ACK number in an
4427 		 * FIN|ACK if the SYN times out -- no sequence to ACK.
4428 		 */
4429 		ack = dst->seqlo;
4430 	}
4431 
4432 	if (seq == end) {
4433 		/* Ease sequencing restrictions on no data packets */
4434 		seq = src->seqlo;
4435 		end = seq;
4436 	}
4437 
4438 	ackskew = dst->seqlo - ack;
4439 
4440 	/*
4441 	 * Need to demodulate the sequence numbers in any TCP SACK options
4442 	 * (Selective ACK). We could optionally validate the SACK values
4443 	 * against the current ACK window, either forwards or backwards, but
4444 	 * I'm not confident that SACK has been implemented properly
4445 	 * everywhere. It wouldn't surprise me if several stacks accidentally
4446 	 * SACK too far backwards of previously ACKed data. There really aren't
4447 	 * any security implications of bad SACKing unless the target stack
4448 	 * doesn't validate the option length correctly. Someone trying to
4449 	 * spoof into a TCP connection won't bother blindly sending SACK
4450 	 * options anyway.
4451 	 */
4452 	if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) {
4453 		if (pf_modulate_sack(m, off, pd, th, dst))
4454 			*copyback = 1;
4455 	}
4456 
4457 #define	MAXACKWINDOW (0xffff + 1500)	/* 1500 is an arbitrary fudge factor */
4458 	if (SEQ_GEQ(src->seqhi, end) &&
4459 	    /* Last octet inside other's window space */
4460 	    SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) &&
4461 	    /* Retrans: not more than one window back */
4462 	    (ackskew >= -MAXACKWINDOW) &&
4463 	    /* Acking not more than one reassembled fragment backwards */
4464 	    (ackskew <= (MAXACKWINDOW << sws)) &&
4465 	    /* Acking not more than one window forward */
4466 	    ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo ||
4467 	    (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) ||
4468 	    (pd->flags & PFDESC_IP_REAS) == 0)) {
4469 	    /* Require an exact/+1 sequence match on resets when possible */
4470 
4471 		if (dst->scrub || src->scrub) {
4472 			if (pf_normalize_tcp_stateful(m, off, pd, reason, th,
4473 			    *state, src, dst, copyback))
4474 				return (PF_DROP);
4475 		}
4476 
4477 		/* update max window */
4478 		if (src->max_win < win)
4479 			src->max_win = win;
4480 		/* synchronize sequencing */
4481 		if (SEQ_GT(end, src->seqlo))
4482 			src->seqlo = end;
4483 		/* slide the window of what the other end can send */
4484 		if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
4485 			dst->seqhi = ack + MAX((win << sws), 1);
4486 
4487 		/* update states */
4488 		if (th->th_flags & TH_SYN)
4489 			if (src->state < TCPS_SYN_SENT)
4490 				pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
4491 		if (th->th_flags & TH_FIN)
4492 			if (src->state < TCPS_CLOSING)
4493 				pf_set_protostate(*state, psrc, TCPS_CLOSING);
4494 		if (th->th_flags & TH_ACK) {
4495 			if (dst->state == TCPS_SYN_SENT) {
4496 				pf_set_protostate(*state, pdst,
4497 				    TCPS_ESTABLISHED);
4498 				if (src->state == TCPS_ESTABLISHED &&
4499 				    (*state)->src_node != NULL &&
4500 				    pf_src_connlimit(state)) {
4501 					REASON_SET(reason, PFRES_SRCLIMIT);
4502 					return (PF_DROP);
4503 				}
4504 			} else if (dst->state == TCPS_CLOSING)
4505 				pf_set_protostate(*state, pdst,
4506 				    TCPS_FIN_WAIT_2);
4507 		}
4508 		if (th->th_flags & TH_RST)
4509 			pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
4510 
4511 		/* update expire time */
4512 		(*state)->expire = time_uptime;
4513 		if (src->state >= TCPS_FIN_WAIT_2 &&
4514 		    dst->state >= TCPS_FIN_WAIT_2)
4515 			(*state)->timeout = PFTM_TCP_CLOSED;
4516 		else if (src->state >= TCPS_CLOSING &&
4517 		    dst->state >= TCPS_CLOSING)
4518 			(*state)->timeout = PFTM_TCP_FIN_WAIT;
4519 		else if (src->state < TCPS_ESTABLISHED ||
4520 		    dst->state < TCPS_ESTABLISHED)
4521 			(*state)->timeout = PFTM_TCP_OPENING;
4522 		else if (src->state >= TCPS_CLOSING ||
4523 		    dst->state >= TCPS_CLOSING)
4524 			(*state)->timeout = PFTM_TCP_CLOSING;
4525 		else
4526 			(*state)->timeout = PFTM_TCP_ESTABLISHED;
4527 
4528 		/* Fall through to PASS packet */
4529 
4530 	} else if ((dst->state < TCPS_SYN_SENT ||
4531 		dst->state >= TCPS_FIN_WAIT_2 ||
4532 		src->state >= TCPS_FIN_WAIT_2) &&
4533 	    SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) &&
4534 	    /* Within a window forward of the originating packet */
4535 	    SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) {
4536 	    /* Within a window backward of the originating packet */
4537 
4538 		/*
4539 		 * This currently handles three situations:
4540 		 *  1) Stupid stacks will shotgun SYNs before their peer
4541 		 *     replies.
4542 		 *  2) When PF catches an already established stream (the
4543 		 *     firewall rebooted, the state table was flushed, routes
4544 		 *     changed...)
4545 		 *  3) Packets get funky immediately after the connection
4546 		 *     closes (this should catch Solaris spurious ACK|FINs
4547 		 *     that web servers like to spew after a close)
4548 		 *
4549 		 * This must be a little more careful than the above code
4550 		 * since packet floods will also be caught here. We don't
4551 		 * update the TTL here to mitigate the damage of a packet
4552 		 * flood and so the same code can handle awkward establishment
4553 		 * and a loosened connection close.
4554 		 * In the establishment case, a correct peer response will
4555 		 * validate the connection, go through the normal state code
4556 		 * and keep updating the state TTL.
4557 		 */
4558 
4559 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
4560 			printf("pf: loose state match: ");
4561 			pf_print_state(*state);
4562 			pf_print_flags(th->th_flags);
4563 			printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
4564 			    "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack,
4565 			    pd->p_len, ackskew, (unsigned long long)(*state)->packets[0],
4566 			    (unsigned long long)(*state)->packets[1],
4567 			    pd->dir == PF_IN ? "in" : "out",
4568 			    pd->dir == (*state)->direction ? "fwd" : "rev");
4569 		}
4570 
4571 		if (dst->scrub || src->scrub) {
4572 			if (pf_normalize_tcp_stateful(m, off, pd, reason, th,
4573 			    *state, src, dst, copyback))
4574 				return (PF_DROP);
4575 		}
4576 
4577 		/* update max window */
4578 		if (src->max_win < win)
4579 			src->max_win = win;
4580 		/* synchronize sequencing */
4581 		if (SEQ_GT(end, src->seqlo))
4582 			src->seqlo = end;
4583 		/* slide the window of what the other end can send */
4584 		if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
4585 			dst->seqhi = ack + MAX((win << sws), 1);
4586 
4587 		/*
4588 		 * Cannot set dst->seqhi here since this could be a shotgunned
4589 		 * SYN and not an already established connection.
4590 		 */
4591 
4592 		if (th->th_flags & TH_FIN)
4593 			if (src->state < TCPS_CLOSING)
4594 				pf_set_protostate(*state, psrc, TCPS_CLOSING);
4595 		if (th->th_flags & TH_RST)
4596 			pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
4597 
4598 		/* Fall through to PASS packet */
4599 
4600 	} else {
4601 		if ((*state)->dst.state == TCPS_SYN_SENT &&
4602 		    (*state)->src.state == TCPS_SYN_SENT) {
4603 			/* Send RST for state mismatches during handshake */
4604 			if (!(th->th_flags & TH_RST))
4605 				pf_send_tcp((*state)->rule.ptr, pd->af,
4606 				    pd->dst, pd->src, th->th_dport,
4607 				    th->th_sport, ntohl(th->th_ack), 0,
4608 				    TH_RST, 0, 0,
4609 				    (*state)->rule.ptr->return_ttl, 1, 0);
4610 			src->seqlo = 0;
4611 			src->seqhi = 1;
4612 			src->max_win = 1;
4613 		} else if (V_pf_status.debug >= PF_DEBUG_MISC) {
4614 			printf("pf: BAD state: ");
4615 			pf_print_state(*state);
4616 			pf_print_flags(th->th_flags);
4617 			printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
4618 			    "pkts=%llu:%llu dir=%s,%s\n",
4619 			    seq, orig_seq, ack, pd->p_len, ackskew,
4620 			    (unsigned long long)(*state)->packets[0],
4621 			    (unsigned long long)(*state)->packets[1],
4622 			    pd->dir == PF_IN ? "in" : "out",
4623 			    pd->dir == (*state)->direction ? "fwd" : "rev");
4624 			printf("pf: State failure on: %c %c %c %c | %c %c\n",
4625 			    SEQ_GEQ(src->seqhi, end) ? ' ' : '1',
4626 			    SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ?
4627 			    ' ': '2',
4628 			    (ackskew >= -MAXACKWINDOW) ? ' ' : '3',
4629 			    (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4',
4630 			    SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5',
4631 			    SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6');
4632 		}
4633 		REASON_SET(reason, PFRES_BADSTATE);
4634 		return (PF_DROP);
4635 	}
4636 
4637 	return (PF_PASS);
4638 }
4639 
4640 static int
4641 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason)
4642 {
4643 	struct tcphdr		*th = &pd->hdr.tcp;
4644 	struct pf_state_peer	*src, *dst;
4645 	u_int8_t		 psrc, pdst;
4646 
4647 	if (pd->dir == (*state)->direction) {
4648 		src = &(*state)->src;
4649 		dst = &(*state)->dst;
4650 		psrc = PF_PEER_SRC;
4651 		pdst = PF_PEER_DST;
4652 	} else {
4653 		src = &(*state)->dst;
4654 		dst = &(*state)->src;
4655 		psrc = PF_PEER_DST;
4656 		pdst = PF_PEER_SRC;
4657 	}
4658 
4659 	if (th->th_flags & TH_SYN)
4660 		if (src->state < TCPS_SYN_SENT)
4661 			pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
4662 	if (th->th_flags & TH_FIN)
4663 		if (src->state < TCPS_CLOSING)
4664 			pf_set_protostate(*state, psrc, TCPS_CLOSING);
4665 	if (th->th_flags & TH_ACK) {
4666 		if (dst->state == TCPS_SYN_SENT) {
4667 			pf_set_protostate(*state, pdst, TCPS_ESTABLISHED);
4668 			if (src->state == TCPS_ESTABLISHED &&
4669 			    (*state)->src_node != NULL &&
4670 			    pf_src_connlimit(state)) {
4671 				REASON_SET(reason, PFRES_SRCLIMIT);
4672 				return (PF_DROP);
4673 			}
4674 		} else if (dst->state == TCPS_CLOSING) {
4675 			pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2);
4676 		} else if (src->state == TCPS_SYN_SENT &&
4677 		    dst->state < TCPS_SYN_SENT) {
4678 			/*
4679 			 * Handle a special sloppy case where we only see one
4680 			 * half of the connection. If there is a ACK after
4681 			 * the initial SYN without ever seeing a packet from
4682 			 * the destination, set the connection to established.
4683 			 */
4684 			pf_set_protostate(*state, PF_PEER_BOTH,
4685 			    TCPS_ESTABLISHED);
4686 			dst->state = src->state = TCPS_ESTABLISHED;
4687 			if ((*state)->src_node != NULL &&
4688 			    pf_src_connlimit(state)) {
4689 				REASON_SET(reason, PFRES_SRCLIMIT);
4690 				return (PF_DROP);
4691 			}
4692 		} else if (src->state == TCPS_CLOSING &&
4693 		    dst->state == TCPS_ESTABLISHED &&
4694 		    dst->seqlo == 0) {
4695 			/*
4696 			 * Handle the closing of half connections where we
4697 			 * don't see the full bidirectional FIN/ACK+ACK
4698 			 * handshake.
4699 			 */
4700 			pf_set_protostate(*state, pdst, TCPS_CLOSING);
4701 		}
4702 	}
4703 	if (th->th_flags & TH_RST)
4704 		pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
4705 
4706 	/* update expire time */
4707 	(*state)->expire = time_uptime;
4708 	if (src->state >= TCPS_FIN_WAIT_2 &&
4709 	    dst->state >= TCPS_FIN_WAIT_2)
4710 		(*state)->timeout = PFTM_TCP_CLOSED;
4711 	else if (src->state >= TCPS_CLOSING &&
4712 	    dst->state >= TCPS_CLOSING)
4713 		(*state)->timeout = PFTM_TCP_FIN_WAIT;
4714 	else if (src->state < TCPS_ESTABLISHED ||
4715 	    dst->state < TCPS_ESTABLISHED)
4716 		(*state)->timeout = PFTM_TCP_OPENING;
4717 	else if (src->state >= TCPS_CLOSING ||
4718 	    dst->state >= TCPS_CLOSING)
4719 		(*state)->timeout = PFTM_TCP_CLOSING;
4720 	else
4721 		(*state)->timeout = PFTM_TCP_ESTABLISHED;
4722 
4723 	return (PF_PASS);
4724 }
4725 
4726 static int
4727 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason)
4728 {
4729 	struct pf_state_key	*sk = (*state)->key[pd->didx];
4730 	struct tcphdr		*th = &pd->hdr.tcp;
4731 
4732 	if ((*state)->src.state == PF_TCPS_PROXY_SRC) {
4733 		if (pd->dir != (*state)->direction) {
4734 			REASON_SET(reason, PFRES_SYNPROXY);
4735 			return (PF_SYNPROXY_DROP);
4736 		}
4737 		if (th->th_flags & TH_SYN) {
4738 			if (ntohl(th->th_seq) != (*state)->src.seqlo) {
4739 				REASON_SET(reason, PFRES_SYNPROXY);
4740 				return (PF_DROP);
4741 			}
4742 			pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst,
4743 			    pd->src, th->th_dport, th->th_sport,
4744 			    (*state)->src.seqhi, ntohl(th->th_seq) + 1,
4745 			    TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0);
4746 			REASON_SET(reason, PFRES_SYNPROXY);
4747 			return (PF_SYNPROXY_DROP);
4748 		} else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK ||
4749 		    (ntohl(th->th_ack) != (*state)->src.seqhi + 1) ||
4750 		    (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) {
4751 			REASON_SET(reason, PFRES_SYNPROXY);
4752 			return (PF_DROP);
4753 		} else if ((*state)->src_node != NULL &&
4754 		    pf_src_connlimit(state)) {
4755 			REASON_SET(reason, PFRES_SRCLIMIT);
4756 			return (PF_DROP);
4757 		} else
4758 			pf_set_protostate(*state, PF_PEER_SRC,
4759 			    PF_TCPS_PROXY_DST);
4760 	}
4761 	if ((*state)->src.state == PF_TCPS_PROXY_DST) {
4762 		if (pd->dir == (*state)->direction) {
4763 			if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) ||
4764 			    (ntohl(th->th_ack) != (*state)->src.seqhi + 1) ||
4765 			    (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) {
4766 				REASON_SET(reason, PFRES_SYNPROXY);
4767 				return (PF_DROP);
4768 			}
4769 			(*state)->src.max_win = MAX(ntohs(th->th_win), 1);
4770 			if ((*state)->dst.seqhi == 1)
4771 				(*state)->dst.seqhi = htonl(arc4random());
4772 			pf_send_tcp((*state)->rule.ptr, pd->af,
4773 			    &sk->addr[pd->sidx], &sk->addr[pd->didx],
4774 			    sk->port[pd->sidx], sk->port[pd->didx],
4775 			    (*state)->dst.seqhi, 0, TH_SYN, 0,
4776 			    (*state)->src.mss, 0, 0, (*state)->tag);
4777 			REASON_SET(reason, PFRES_SYNPROXY);
4778 			return (PF_SYNPROXY_DROP);
4779 		} else if (((th->th_flags & (TH_SYN|TH_ACK)) !=
4780 		    (TH_SYN|TH_ACK)) ||
4781 		    (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) {
4782 			REASON_SET(reason, PFRES_SYNPROXY);
4783 			return (PF_DROP);
4784 		} else {
4785 			(*state)->dst.max_win = MAX(ntohs(th->th_win), 1);
4786 			(*state)->dst.seqlo = ntohl(th->th_seq);
4787 			pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst,
4788 			    pd->src, th->th_dport, th->th_sport,
4789 			    ntohl(th->th_ack), ntohl(th->th_seq) + 1,
4790 			    TH_ACK, (*state)->src.max_win, 0, 0, 0,
4791 			    (*state)->tag);
4792 			pf_send_tcp((*state)->rule.ptr, pd->af,
4793 			    &sk->addr[pd->sidx], &sk->addr[pd->didx],
4794 			    sk->port[pd->sidx], sk->port[pd->didx],
4795 			    (*state)->src.seqhi + 1, (*state)->src.seqlo + 1,
4796 			    TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0);
4797 			(*state)->src.seqdiff = (*state)->dst.seqhi -
4798 			    (*state)->src.seqlo;
4799 			(*state)->dst.seqdiff = (*state)->src.seqhi -
4800 			    (*state)->dst.seqlo;
4801 			(*state)->src.seqhi = (*state)->src.seqlo +
4802 			    (*state)->dst.max_win;
4803 			(*state)->dst.seqhi = (*state)->dst.seqlo +
4804 			    (*state)->src.max_win;
4805 			(*state)->src.wscale = (*state)->dst.wscale = 0;
4806 			pf_set_protostate(*state, PF_PEER_BOTH,
4807 			    TCPS_ESTABLISHED);
4808 			REASON_SET(reason, PFRES_SYNPROXY);
4809 			return (PF_SYNPROXY_DROP);
4810 		}
4811 	}
4812 
4813 	return (PF_PASS);
4814 }
4815 
4816 static int
4817 pf_test_state_tcp(struct pf_kstate **state, int direction, struct pfi_kkif *kif,
4818     struct mbuf *m, int off, void *h, struct pf_pdesc *pd,
4819     u_short *reason)
4820 {
4821 	struct pf_state_key_cmp	 key;
4822 	struct tcphdr		*th = &pd->hdr.tcp;
4823 	int			 copyback = 0;
4824 	int			 action;
4825 	struct pf_state_peer	*src, *dst;
4826 	struct pf_state_key	*sk;
4827 
4828 	bzero(&key, sizeof(key));
4829 	key.af = pd->af;
4830 	key.proto = IPPROTO_TCP;
4831 	if (direction == PF_IN)	{	/* wire side, straight */
4832 		PF_ACPY(&key.addr[0], pd->src, key.af);
4833 		PF_ACPY(&key.addr[1], pd->dst, key.af);
4834 		key.port[0] = th->th_sport;
4835 		key.port[1] = th->th_dport;
4836 	} else {			/* stack side, reverse */
4837 		PF_ACPY(&key.addr[1], pd->src, key.af);
4838 		PF_ACPY(&key.addr[0], pd->dst, key.af);
4839 		key.port[1] = th->th_sport;
4840 		key.port[0] = th->th_dport;
4841 	}
4842 
4843 	STATE_LOOKUP(kif, &key, direction, *state, pd);
4844 
4845 	if (direction == (*state)->direction) {
4846 		src = &(*state)->src;
4847 		dst = &(*state)->dst;
4848 	} else {
4849 		src = &(*state)->dst;
4850 		dst = &(*state)->src;
4851 	}
4852 
4853 	sk = (*state)->key[pd->didx];
4854 
4855 	if ((action = pf_synproxy(pd, state, reason)) != PF_PASS)
4856 		return (action);
4857 
4858 	if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) &&
4859 	    dst->state >= TCPS_FIN_WAIT_2 &&
4860 	    src->state >= TCPS_FIN_WAIT_2) {
4861 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
4862 			printf("pf: state reuse ");
4863 			pf_print_state(*state);
4864 			pf_print_flags(th->th_flags);
4865 			printf("\n");
4866 		}
4867 		/* XXX make sure it's the same direction ?? */
4868 		pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED);
4869 		pf_unlink_state(*state, PF_ENTER_LOCKED);
4870 		*state = NULL;
4871 		return (PF_DROP);
4872 	}
4873 
4874 	if ((*state)->state_flags & PFSTATE_SLOPPY) {
4875 		if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP)
4876 			return (PF_DROP);
4877 	} else {
4878 		if (pf_tcp_track_full(state, kif, m, off, pd, reason,
4879 		    &copyback) == PF_DROP)
4880 			return (PF_DROP);
4881 	}
4882 
4883 	/* translate source/destination address, if necessary */
4884 	if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
4885 		struct pf_state_key *nk = (*state)->key[pd->didx];
4886 
4887 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) ||
4888 		    nk->port[pd->sidx] != th->th_sport)
4889 			pf_change_ap(m, pd->src, &th->th_sport,
4890 			    pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx],
4891 			    nk->port[pd->sidx], 0, pd->af);
4892 
4893 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) ||
4894 		    nk->port[pd->didx] != th->th_dport)
4895 			pf_change_ap(m, pd->dst, &th->th_dport,
4896 			    pd->ip_sum, &th->th_sum, &nk->addr[pd->didx],
4897 			    nk->port[pd->didx], 0, pd->af);
4898 		copyback = 1;
4899 	}
4900 
4901 	/* Copyback sequence modulation or stateful scrub changes if needed */
4902 	if (copyback)
4903 		m_copyback(m, off, sizeof(*th), (caddr_t)th);
4904 
4905 	return (PF_PASS);
4906 }
4907 
4908 static int
4909 pf_test_state_udp(struct pf_kstate **state, int direction, struct pfi_kkif *kif,
4910     struct mbuf *m, int off, void *h, struct pf_pdesc *pd)
4911 {
4912 	struct pf_state_peer	*src, *dst;
4913 	struct pf_state_key_cmp	 key;
4914 	struct udphdr		*uh = &pd->hdr.udp;
4915 	uint8_t			 psrc, pdst;
4916 
4917 	bzero(&key, sizeof(key));
4918 	key.af = pd->af;
4919 	key.proto = IPPROTO_UDP;
4920 	if (direction == PF_IN)	{	/* wire side, straight */
4921 		PF_ACPY(&key.addr[0], pd->src, key.af);
4922 		PF_ACPY(&key.addr[1], pd->dst, key.af);
4923 		key.port[0] = uh->uh_sport;
4924 		key.port[1] = uh->uh_dport;
4925 	} else {			/* stack side, reverse */
4926 		PF_ACPY(&key.addr[1], pd->src, key.af);
4927 		PF_ACPY(&key.addr[0], pd->dst, key.af);
4928 		key.port[1] = uh->uh_sport;
4929 		key.port[0] = uh->uh_dport;
4930 	}
4931 
4932 	STATE_LOOKUP(kif, &key, direction, *state, pd);
4933 
4934 	if (direction == (*state)->direction) {
4935 		src = &(*state)->src;
4936 		dst = &(*state)->dst;
4937 		psrc = PF_PEER_SRC;
4938 		pdst = PF_PEER_DST;
4939 	} else {
4940 		src = &(*state)->dst;
4941 		dst = &(*state)->src;
4942 		psrc = PF_PEER_DST;
4943 		pdst = PF_PEER_SRC;
4944 	}
4945 
4946 	/* update states */
4947 	if (src->state < PFUDPS_SINGLE)
4948 		pf_set_protostate(*state, psrc, PFUDPS_SINGLE);
4949 	if (dst->state == PFUDPS_SINGLE)
4950 		pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE);
4951 
4952 	/* update expire time */
4953 	(*state)->expire = time_uptime;
4954 	if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE)
4955 		(*state)->timeout = PFTM_UDP_MULTIPLE;
4956 	else
4957 		(*state)->timeout = PFTM_UDP_SINGLE;
4958 
4959 	/* translate source/destination address, if necessary */
4960 	if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
4961 		struct pf_state_key *nk = (*state)->key[pd->didx];
4962 
4963 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) ||
4964 		    nk->port[pd->sidx] != uh->uh_sport)
4965 			pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum,
4966 			    &uh->uh_sum, &nk->addr[pd->sidx],
4967 			    nk->port[pd->sidx], 1, pd->af);
4968 
4969 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) ||
4970 		    nk->port[pd->didx] != uh->uh_dport)
4971 			pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum,
4972 			    &uh->uh_sum, &nk->addr[pd->didx],
4973 			    nk->port[pd->didx], 1, pd->af);
4974 		m_copyback(m, off, sizeof(*uh), (caddr_t)uh);
4975 	}
4976 
4977 	return (PF_PASS);
4978 }
4979 
4980 static int
4981 pf_test_state_icmp(struct pf_kstate **state, int direction, struct pfi_kkif *kif,
4982     struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason)
4983 {
4984 	struct pf_addr  *saddr = pd->src, *daddr = pd->dst;
4985 	u_int16_t	 icmpid = 0, *icmpsum;
4986 	u_int8_t	 icmptype, icmpcode;
4987 	int		 state_icmp = 0;
4988 	struct pf_state_key_cmp key;
4989 
4990 	bzero(&key, sizeof(key));
4991 	switch (pd->proto) {
4992 #ifdef INET
4993 	case IPPROTO_ICMP:
4994 		icmptype = pd->hdr.icmp.icmp_type;
4995 		icmpcode = pd->hdr.icmp.icmp_code;
4996 		icmpid = pd->hdr.icmp.icmp_id;
4997 		icmpsum = &pd->hdr.icmp.icmp_cksum;
4998 
4999 		if (icmptype == ICMP_UNREACH ||
5000 		    icmptype == ICMP_SOURCEQUENCH ||
5001 		    icmptype == ICMP_REDIRECT ||
5002 		    icmptype == ICMP_TIMXCEED ||
5003 		    icmptype == ICMP_PARAMPROB)
5004 			state_icmp++;
5005 		break;
5006 #endif /* INET */
5007 #ifdef INET6
5008 	case IPPROTO_ICMPV6:
5009 		icmptype = pd->hdr.icmp6.icmp6_type;
5010 		icmpcode = pd->hdr.icmp6.icmp6_code;
5011 		icmpid = pd->hdr.icmp6.icmp6_id;
5012 		icmpsum = &pd->hdr.icmp6.icmp6_cksum;
5013 
5014 		if (icmptype == ICMP6_DST_UNREACH ||
5015 		    icmptype == ICMP6_PACKET_TOO_BIG ||
5016 		    icmptype == ICMP6_TIME_EXCEEDED ||
5017 		    icmptype == ICMP6_PARAM_PROB)
5018 			state_icmp++;
5019 		break;
5020 #endif /* INET6 */
5021 	}
5022 
5023 	if (!state_icmp) {
5024 		/*
5025 		 * ICMP query/reply message not related to a TCP/UDP packet.
5026 		 * Search for an ICMP state.
5027 		 */
5028 		key.af = pd->af;
5029 		key.proto = pd->proto;
5030 		key.port[0] = key.port[1] = icmpid;
5031 		if (direction == PF_IN)	{	/* wire side, straight */
5032 			PF_ACPY(&key.addr[0], pd->src, key.af);
5033 			PF_ACPY(&key.addr[1], pd->dst, key.af);
5034 		} else {			/* stack side, reverse */
5035 			PF_ACPY(&key.addr[1], pd->src, key.af);
5036 			PF_ACPY(&key.addr[0], pd->dst, key.af);
5037 		}
5038 
5039 		STATE_LOOKUP(kif, &key, direction, *state, pd);
5040 
5041 		(*state)->expire = time_uptime;
5042 		(*state)->timeout = PFTM_ICMP_ERROR_REPLY;
5043 
5044 		/* translate source/destination address, if necessary */
5045 		if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
5046 			struct pf_state_key *nk = (*state)->key[pd->didx];
5047 
5048 			switch (pd->af) {
5049 #ifdef INET
5050 			case AF_INET:
5051 				if (PF_ANEQ(pd->src,
5052 				    &nk->addr[pd->sidx], AF_INET))
5053 					pf_change_a(&saddr->v4.s_addr,
5054 					    pd->ip_sum,
5055 					    nk->addr[pd->sidx].v4.s_addr, 0);
5056 
5057 				if (PF_ANEQ(pd->dst, &nk->addr[pd->didx],
5058 				    AF_INET))
5059 					pf_change_a(&daddr->v4.s_addr,
5060 					    pd->ip_sum,
5061 					    nk->addr[pd->didx].v4.s_addr, 0);
5062 
5063 				if (nk->port[0] !=
5064 				    pd->hdr.icmp.icmp_id) {
5065 					pd->hdr.icmp.icmp_cksum =
5066 					    pf_cksum_fixup(
5067 					    pd->hdr.icmp.icmp_cksum, icmpid,
5068 					    nk->port[pd->sidx], 0);
5069 					pd->hdr.icmp.icmp_id =
5070 					    nk->port[pd->sidx];
5071 				}
5072 
5073 				m_copyback(m, off, ICMP_MINLEN,
5074 				    (caddr_t )&pd->hdr.icmp);
5075 				break;
5076 #endif /* INET */
5077 #ifdef INET6
5078 			case AF_INET6:
5079 				if (PF_ANEQ(pd->src,
5080 				    &nk->addr[pd->sidx], AF_INET6))
5081 					pf_change_a6(saddr,
5082 					    &pd->hdr.icmp6.icmp6_cksum,
5083 					    &nk->addr[pd->sidx], 0);
5084 
5085 				if (PF_ANEQ(pd->dst,
5086 				    &nk->addr[pd->didx], AF_INET6))
5087 					pf_change_a6(daddr,
5088 					    &pd->hdr.icmp6.icmp6_cksum,
5089 					    &nk->addr[pd->didx], 0);
5090 
5091 				m_copyback(m, off, sizeof(struct icmp6_hdr),
5092 				    (caddr_t )&pd->hdr.icmp6);
5093 				break;
5094 #endif /* INET6 */
5095 			}
5096 		}
5097 		return (PF_PASS);
5098 
5099 	} else {
5100 		/*
5101 		 * ICMP error message in response to a TCP/UDP packet.
5102 		 * Extract the inner TCP/UDP header and search for that state.
5103 		 */
5104 
5105 		struct pf_pdesc	pd2;
5106 		bzero(&pd2, sizeof pd2);
5107 #ifdef INET
5108 		struct ip	h2;
5109 #endif /* INET */
5110 #ifdef INET6
5111 		struct ip6_hdr	h2_6;
5112 		int		terminal = 0;
5113 #endif /* INET6 */
5114 		int		ipoff2 = 0;
5115 		int		off2 = 0;
5116 
5117 		pd2.af = pd->af;
5118 		/* Payload packet is from the opposite direction. */
5119 		pd2.sidx = (direction == PF_IN) ? 1 : 0;
5120 		pd2.didx = (direction == PF_IN) ? 0 : 1;
5121 		switch (pd->af) {
5122 #ifdef INET
5123 		case AF_INET:
5124 			/* offset of h2 in mbuf chain */
5125 			ipoff2 = off + ICMP_MINLEN;
5126 
5127 			if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2),
5128 			    NULL, reason, pd2.af)) {
5129 				DPFPRINTF(PF_DEBUG_MISC,
5130 				    ("pf: ICMP error message too short "
5131 				    "(ip)\n"));
5132 				return (PF_DROP);
5133 			}
5134 			/*
5135 			 * ICMP error messages don't refer to non-first
5136 			 * fragments
5137 			 */
5138 			if (h2.ip_off & htons(IP_OFFMASK)) {
5139 				REASON_SET(reason, PFRES_FRAG);
5140 				return (PF_DROP);
5141 			}
5142 
5143 			/* offset of protocol header that follows h2 */
5144 			off2 = ipoff2 + (h2.ip_hl << 2);
5145 
5146 			pd2.proto = h2.ip_p;
5147 			pd2.src = (struct pf_addr *)&h2.ip_src;
5148 			pd2.dst = (struct pf_addr *)&h2.ip_dst;
5149 			pd2.ip_sum = &h2.ip_sum;
5150 			break;
5151 #endif /* INET */
5152 #ifdef INET6
5153 		case AF_INET6:
5154 			ipoff2 = off + sizeof(struct icmp6_hdr);
5155 
5156 			if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6),
5157 			    NULL, reason, pd2.af)) {
5158 				DPFPRINTF(PF_DEBUG_MISC,
5159 				    ("pf: ICMP error message too short "
5160 				    "(ip6)\n"));
5161 				return (PF_DROP);
5162 			}
5163 			pd2.proto = h2_6.ip6_nxt;
5164 			pd2.src = (struct pf_addr *)&h2_6.ip6_src;
5165 			pd2.dst = (struct pf_addr *)&h2_6.ip6_dst;
5166 			pd2.ip_sum = NULL;
5167 			off2 = ipoff2 + sizeof(h2_6);
5168 			do {
5169 				switch (pd2.proto) {
5170 				case IPPROTO_FRAGMENT:
5171 					/*
5172 					 * ICMPv6 error messages for
5173 					 * non-first fragments
5174 					 */
5175 					REASON_SET(reason, PFRES_FRAG);
5176 					return (PF_DROP);
5177 				case IPPROTO_AH:
5178 				case IPPROTO_HOPOPTS:
5179 				case IPPROTO_ROUTING:
5180 				case IPPROTO_DSTOPTS: {
5181 					/* get next header and header length */
5182 					struct ip6_ext opt6;
5183 
5184 					if (!pf_pull_hdr(m, off2, &opt6,
5185 					    sizeof(opt6), NULL, reason,
5186 					    pd2.af)) {
5187 						DPFPRINTF(PF_DEBUG_MISC,
5188 						    ("pf: ICMPv6 short opt\n"));
5189 						return (PF_DROP);
5190 					}
5191 					if (pd2.proto == IPPROTO_AH)
5192 						off2 += (opt6.ip6e_len + 2) * 4;
5193 					else
5194 						off2 += (opt6.ip6e_len + 1) * 8;
5195 					pd2.proto = opt6.ip6e_nxt;
5196 					/* goto the next header */
5197 					break;
5198 				}
5199 				default:
5200 					terminal++;
5201 					break;
5202 				}
5203 			} while (!terminal);
5204 			break;
5205 #endif /* INET6 */
5206 		}
5207 
5208 		if (PF_ANEQ(pd->dst, pd2.src, pd->af)) {
5209 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
5210 				printf("pf: BAD ICMP %d:%d outer dst: ",
5211 				    icmptype, icmpcode);
5212 				pf_print_host(pd->src, 0, pd->af);
5213 				printf(" -> ");
5214 				pf_print_host(pd->dst, 0, pd->af);
5215 				printf(" inner src: ");
5216 				pf_print_host(pd2.src, 0, pd2.af);
5217 				printf(" -> ");
5218 				pf_print_host(pd2.dst, 0, pd2.af);
5219 				printf("\n");
5220 			}
5221 			REASON_SET(reason, PFRES_BADSTATE);
5222 			return (PF_DROP);
5223 		}
5224 
5225 		switch (pd2.proto) {
5226 		case IPPROTO_TCP: {
5227 			struct tcphdr		 th;
5228 			u_int32_t		 seq;
5229 			struct pf_state_peer	*src, *dst;
5230 			u_int8_t		 dws;
5231 			int			 copyback = 0;
5232 
5233 			/*
5234 			 * Only the first 8 bytes of the TCP header can be
5235 			 * expected. Don't access any TCP header fields after
5236 			 * th_seq, an ackskew test is not possible.
5237 			 */
5238 			if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason,
5239 			    pd2.af)) {
5240 				DPFPRINTF(PF_DEBUG_MISC,
5241 				    ("pf: ICMP error message too short "
5242 				    "(tcp)\n"));
5243 				return (PF_DROP);
5244 			}
5245 
5246 			key.af = pd2.af;
5247 			key.proto = IPPROTO_TCP;
5248 			PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
5249 			PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
5250 			key.port[pd2.sidx] = th.th_sport;
5251 			key.port[pd2.didx] = th.th_dport;
5252 
5253 			STATE_LOOKUP(kif, &key, direction, *state, pd);
5254 
5255 			if (direction == (*state)->direction) {
5256 				src = &(*state)->dst;
5257 				dst = &(*state)->src;
5258 			} else {
5259 				src = &(*state)->src;
5260 				dst = &(*state)->dst;
5261 			}
5262 
5263 			if (src->wscale && dst->wscale)
5264 				dws = dst->wscale & PF_WSCALE_MASK;
5265 			else
5266 				dws = 0;
5267 
5268 			/* Demodulate sequence number */
5269 			seq = ntohl(th.th_seq) - src->seqdiff;
5270 			if (src->seqdiff) {
5271 				pf_change_a(&th.th_seq, icmpsum,
5272 				    htonl(seq), 0);
5273 				copyback = 1;
5274 			}
5275 
5276 			if (!((*state)->state_flags & PFSTATE_SLOPPY) &&
5277 			    (!SEQ_GEQ(src->seqhi, seq) ||
5278 			    !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) {
5279 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
5280 					printf("pf: BAD ICMP %d:%d ",
5281 					    icmptype, icmpcode);
5282 					pf_print_host(pd->src, 0, pd->af);
5283 					printf(" -> ");
5284 					pf_print_host(pd->dst, 0, pd->af);
5285 					printf(" state: ");
5286 					pf_print_state(*state);
5287 					printf(" seq=%u\n", seq);
5288 				}
5289 				REASON_SET(reason, PFRES_BADSTATE);
5290 				return (PF_DROP);
5291 			} else {
5292 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
5293 					printf("pf: OK ICMP %d:%d ",
5294 					    icmptype, icmpcode);
5295 					pf_print_host(pd->src, 0, pd->af);
5296 					printf(" -> ");
5297 					pf_print_host(pd->dst, 0, pd->af);
5298 					printf(" state: ");
5299 					pf_print_state(*state);
5300 					printf(" seq=%u\n", seq);
5301 				}
5302 			}
5303 
5304 			/* translate source/destination address, if necessary */
5305 			if ((*state)->key[PF_SK_WIRE] !=
5306 			    (*state)->key[PF_SK_STACK]) {
5307 				struct pf_state_key *nk =
5308 				    (*state)->key[pd->didx];
5309 
5310 				if (PF_ANEQ(pd2.src,
5311 				    &nk->addr[pd2.sidx], pd2.af) ||
5312 				    nk->port[pd2.sidx] != th.th_sport)
5313 					pf_change_icmp(pd2.src, &th.th_sport,
5314 					    daddr, &nk->addr[pd2.sidx],
5315 					    nk->port[pd2.sidx], NULL,
5316 					    pd2.ip_sum, icmpsum,
5317 					    pd->ip_sum, 0, pd2.af);
5318 
5319 				if (PF_ANEQ(pd2.dst,
5320 				    &nk->addr[pd2.didx], pd2.af) ||
5321 				    nk->port[pd2.didx] != th.th_dport)
5322 					pf_change_icmp(pd2.dst, &th.th_dport,
5323 					    saddr, &nk->addr[pd2.didx],
5324 					    nk->port[pd2.didx], NULL,
5325 					    pd2.ip_sum, icmpsum,
5326 					    pd->ip_sum, 0, pd2.af);
5327 				copyback = 1;
5328 			}
5329 
5330 			if (copyback) {
5331 				switch (pd2.af) {
5332 #ifdef INET
5333 				case AF_INET:
5334 					m_copyback(m, off, ICMP_MINLEN,
5335 					    (caddr_t )&pd->hdr.icmp);
5336 					m_copyback(m, ipoff2, sizeof(h2),
5337 					    (caddr_t )&h2);
5338 					break;
5339 #endif /* INET */
5340 #ifdef INET6
5341 				case AF_INET6:
5342 					m_copyback(m, off,
5343 					    sizeof(struct icmp6_hdr),
5344 					    (caddr_t )&pd->hdr.icmp6);
5345 					m_copyback(m, ipoff2, sizeof(h2_6),
5346 					    (caddr_t )&h2_6);
5347 					break;
5348 #endif /* INET6 */
5349 				}
5350 				m_copyback(m, off2, 8, (caddr_t)&th);
5351 			}
5352 
5353 			return (PF_PASS);
5354 			break;
5355 		}
5356 		case IPPROTO_UDP: {
5357 			struct udphdr		uh;
5358 
5359 			if (!pf_pull_hdr(m, off2, &uh, sizeof(uh),
5360 			    NULL, reason, pd2.af)) {
5361 				DPFPRINTF(PF_DEBUG_MISC,
5362 				    ("pf: ICMP error message too short "
5363 				    "(udp)\n"));
5364 				return (PF_DROP);
5365 			}
5366 
5367 			key.af = pd2.af;
5368 			key.proto = IPPROTO_UDP;
5369 			PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
5370 			PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
5371 			key.port[pd2.sidx] = uh.uh_sport;
5372 			key.port[pd2.didx] = uh.uh_dport;
5373 
5374 			STATE_LOOKUP(kif, &key, direction, *state, pd);
5375 
5376 			/* translate source/destination address, if necessary */
5377 			if ((*state)->key[PF_SK_WIRE] !=
5378 			    (*state)->key[PF_SK_STACK]) {
5379 				struct pf_state_key *nk =
5380 				    (*state)->key[pd->didx];
5381 
5382 				if (PF_ANEQ(pd2.src,
5383 				    &nk->addr[pd2.sidx], pd2.af) ||
5384 				    nk->port[pd2.sidx] != uh.uh_sport)
5385 					pf_change_icmp(pd2.src, &uh.uh_sport,
5386 					    daddr, &nk->addr[pd2.sidx],
5387 					    nk->port[pd2.sidx], &uh.uh_sum,
5388 					    pd2.ip_sum, icmpsum,
5389 					    pd->ip_sum, 1, pd2.af);
5390 
5391 				if (PF_ANEQ(pd2.dst,
5392 				    &nk->addr[pd2.didx], pd2.af) ||
5393 				    nk->port[pd2.didx] != uh.uh_dport)
5394 					pf_change_icmp(pd2.dst, &uh.uh_dport,
5395 					    saddr, &nk->addr[pd2.didx],
5396 					    nk->port[pd2.didx], &uh.uh_sum,
5397 					    pd2.ip_sum, icmpsum,
5398 					    pd->ip_sum, 1, pd2.af);
5399 
5400 				switch (pd2.af) {
5401 #ifdef INET
5402 				case AF_INET:
5403 					m_copyback(m, off, ICMP_MINLEN,
5404 					    (caddr_t )&pd->hdr.icmp);
5405 					m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2);
5406 					break;
5407 #endif /* INET */
5408 #ifdef INET6
5409 				case AF_INET6:
5410 					m_copyback(m, off,
5411 					    sizeof(struct icmp6_hdr),
5412 					    (caddr_t )&pd->hdr.icmp6);
5413 					m_copyback(m, ipoff2, sizeof(h2_6),
5414 					    (caddr_t )&h2_6);
5415 					break;
5416 #endif /* INET6 */
5417 				}
5418 				m_copyback(m, off2, sizeof(uh), (caddr_t)&uh);
5419 			}
5420 			return (PF_PASS);
5421 			break;
5422 		}
5423 #ifdef INET
5424 		case IPPROTO_ICMP: {
5425 			struct icmp		iih;
5426 
5427 			if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN,
5428 			    NULL, reason, pd2.af)) {
5429 				DPFPRINTF(PF_DEBUG_MISC,
5430 				    ("pf: ICMP error message too short i"
5431 				    "(icmp)\n"));
5432 				return (PF_DROP);
5433 			}
5434 
5435 			key.af = pd2.af;
5436 			key.proto = IPPROTO_ICMP;
5437 			PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
5438 			PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
5439 			key.port[0] = key.port[1] = iih.icmp_id;
5440 
5441 			STATE_LOOKUP(kif, &key, direction, *state, pd);
5442 
5443 			/* translate source/destination address, if necessary */
5444 			if ((*state)->key[PF_SK_WIRE] !=
5445 			    (*state)->key[PF_SK_STACK]) {
5446 				struct pf_state_key *nk =
5447 				    (*state)->key[pd->didx];
5448 
5449 				if (PF_ANEQ(pd2.src,
5450 				    &nk->addr[pd2.sidx], pd2.af) ||
5451 				    nk->port[pd2.sidx] != iih.icmp_id)
5452 					pf_change_icmp(pd2.src, &iih.icmp_id,
5453 					    daddr, &nk->addr[pd2.sidx],
5454 					    nk->port[pd2.sidx], NULL,
5455 					    pd2.ip_sum, icmpsum,
5456 					    pd->ip_sum, 0, AF_INET);
5457 
5458 				if (PF_ANEQ(pd2.dst,
5459 				    &nk->addr[pd2.didx], pd2.af) ||
5460 				    nk->port[pd2.didx] != iih.icmp_id)
5461 					pf_change_icmp(pd2.dst, &iih.icmp_id,
5462 					    saddr, &nk->addr[pd2.didx],
5463 					    nk->port[pd2.didx], NULL,
5464 					    pd2.ip_sum, icmpsum,
5465 					    pd->ip_sum, 0, AF_INET);
5466 
5467 				m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
5468 				m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2);
5469 				m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih);
5470 			}
5471 			return (PF_PASS);
5472 			break;
5473 		}
5474 #endif /* INET */
5475 #ifdef INET6
5476 		case IPPROTO_ICMPV6: {
5477 			struct icmp6_hdr	iih;
5478 
5479 			if (!pf_pull_hdr(m, off2, &iih,
5480 			    sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) {
5481 				DPFPRINTF(PF_DEBUG_MISC,
5482 				    ("pf: ICMP error message too short "
5483 				    "(icmp6)\n"));
5484 				return (PF_DROP);
5485 			}
5486 
5487 			key.af = pd2.af;
5488 			key.proto = IPPROTO_ICMPV6;
5489 			PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
5490 			PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
5491 			key.port[0] = key.port[1] = iih.icmp6_id;
5492 
5493 			STATE_LOOKUP(kif, &key, direction, *state, pd);
5494 
5495 			/* translate source/destination address, if necessary */
5496 			if ((*state)->key[PF_SK_WIRE] !=
5497 			    (*state)->key[PF_SK_STACK]) {
5498 				struct pf_state_key *nk =
5499 				    (*state)->key[pd->didx];
5500 
5501 				if (PF_ANEQ(pd2.src,
5502 				    &nk->addr[pd2.sidx], pd2.af) ||
5503 				    nk->port[pd2.sidx] != iih.icmp6_id)
5504 					pf_change_icmp(pd2.src, &iih.icmp6_id,
5505 					    daddr, &nk->addr[pd2.sidx],
5506 					    nk->port[pd2.sidx], NULL,
5507 					    pd2.ip_sum, icmpsum,
5508 					    pd->ip_sum, 0, AF_INET6);
5509 
5510 				if (PF_ANEQ(pd2.dst,
5511 				    &nk->addr[pd2.didx], pd2.af) ||
5512 				    nk->port[pd2.didx] != iih.icmp6_id)
5513 					pf_change_icmp(pd2.dst, &iih.icmp6_id,
5514 					    saddr, &nk->addr[pd2.didx],
5515 					    nk->port[pd2.didx], NULL,
5516 					    pd2.ip_sum, icmpsum,
5517 					    pd->ip_sum, 0, AF_INET6);
5518 
5519 				m_copyback(m, off, sizeof(struct icmp6_hdr),
5520 				    (caddr_t)&pd->hdr.icmp6);
5521 				m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6);
5522 				m_copyback(m, off2, sizeof(struct icmp6_hdr),
5523 				    (caddr_t)&iih);
5524 			}
5525 			return (PF_PASS);
5526 			break;
5527 		}
5528 #endif /* INET6 */
5529 		default: {
5530 			key.af = pd2.af;
5531 			key.proto = pd2.proto;
5532 			PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
5533 			PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
5534 			key.port[0] = key.port[1] = 0;
5535 
5536 			STATE_LOOKUP(kif, &key, direction, *state, pd);
5537 
5538 			/* translate source/destination address, if necessary */
5539 			if ((*state)->key[PF_SK_WIRE] !=
5540 			    (*state)->key[PF_SK_STACK]) {
5541 				struct pf_state_key *nk =
5542 				    (*state)->key[pd->didx];
5543 
5544 				if (PF_ANEQ(pd2.src,
5545 				    &nk->addr[pd2.sidx], pd2.af))
5546 					pf_change_icmp(pd2.src, NULL, daddr,
5547 					    &nk->addr[pd2.sidx], 0, NULL,
5548 					    pd2.ip_sum, icmpsum,
5549 					    pd->ip_sum, 0, pd2.af);
5550 
5551 				if (PF_ANEQ(pd2.dst,
5552 				    &nk->addr[pd2.didx], pd2.af))
5553 					pf_change_icmp(pd2.dst, NULL, saddr,
5554 					    &nk->addr[pd2.didx], 0, NULL,
5555 					    pd2.ip_sum, icmpsum,
5556 					    pd->ip_sum, 0, pd2.af);
5557 
5558 				switch (pd2.af) {
5559 #ifdef INET
5560 				case AF_INET:
5561 					m_copyback(m, off, ICMP_MINLEN,
5562 					    (caddr_t)&pd->hdr.icmp);
5563 					m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2);
5564 					break;
5565 #endif /* INET */
5566 #ifdef INET6
5567 				case AF_INET6:
5568 					m_copyback(m, off,
5569 					    sizeof(struct icmp6_hdr),
5570 					    (caddr_t )&pd->hdr.icmp6);
5571 					m_copyback(m, ipoff2, sizeof(h2_6),
5572 					    (caddr_t )&h2_6);
5573 					break;
5574 #endif /* INET6 */
5575 				}
5576 			}
5577 			return (PF_PASS);
5578 			break;
5579 		}
5580 		}
5581 	}
5582 }
5583 
5584 static int
5585 pf_test_state_other(struct pf_kstate **state, int direction, struct pfi_kkif *kif,
5586     struct mbuf *m, struct pf_pdesc *pd)
5587 {
5588 	struct pf_state_peer	*src, *dst;
5589 	struct pf_state_key_cmp	 key;
5590 	uint8_t			 psrc, pdst;
5591 
5592 	bzero(&key, sizeof(key));
5593 	key.af = pd->af;
5594 	key.proto = pd->proto;
5595 	if (direction == PF_IN)	{
5596 		PF_ACPY(&key.addr[0], pd->src, key.af);
5597 		PF_ACPY(&key.addr[1], pd->dst, key.af);
5598 		key.port[0] = key.port[1] = 0;
5599 	} else {
5600 		PF_ACPY(&key.addr[1], pd->src, key.af);
5601 		PF_ACPY(&key.addr[0], pd->dst, key.af);
5602 		key.port[1] = key.port[0] = 0;
5603 	}
5604 
5605 	STATE_LOOKUP(kif, &key, direction, *state, pd);
5606 
5607 	if (direction == (*state)->direction) {
5608 		src = &(*state)->src;
5609 		dst = &(*state)->dst;
5610 		psrc = PF_PEER_SRC;
5611 		pdst = PF_PEER_DST;
5612 	} else {
5613 		src = &(*state)->dst;
5614 		dst = &(*state)->src;
5615 		psrc = PF_PEER_DST;
5616 		pdst = PF_PEER_SRC;
5617 	}
5618 
5619 	/* update states */
5620 	if (src->state < PFOTHERS_SINGLE)
5621 		pf_set_protostate(*state, psrc, PFOTHERS_SINGLE);
5622 	if (dst->state == PFOTHERS_SINGLE)
5623 		pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE);
5624 
5625 	/* update expire time */
5626 	(*state)->expire = time_uptime;
5627 	if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE)
5628 		(*state)->timeout = PFTM_OTHER_MULTIPLE;
5629 	else
5630 		(*state)->timeout = PFTM_OTHER_SINGLE;
5631 
5632 	/* translate source/destination address, if necessary */
5633 	if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
5634 		struct pf_state_key *nk = (*state)->key[pd->didx];
5635 
5636 		KASSERT(nk, ("%s: nk is null", __func__));
5637 		KASSERT(pd, ("%s: pd is null", __func__));
5638 		KASSERT(pd->src, ("%s: pd->src is null", __func__));
5639 		KASSERT(pd->dst, ("%s: pd->dst is null", __func__));
5640 		switch (pd->af) {
5641 #ifdef INET
5642 		case AF_INET:
5643 			if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET))
5644 				pf_change_a(&pd->src->v4.s_addr,
5645 				    pd->ip_sum,
5646 				    nk->addr[pd->sidx].v4.s_addr,
5647 				    0);
5648 
5649 			if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET))
5650 				pf_change_a(&pd->dst->v4.s_addr,
5651 				    pd->ip_sum,
5652 				    nk->addr[pd->didx].v4.s_addr,
5653 				    0);
5654 
5655 			break;
5656 #endif /* INET */
5657 #ifdef INET6
5658 		case AF_INET6:
5659 			if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET))
5660 				PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
5661 
5662 			if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET))
5663 				PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
5664 #endif /* INET6 */
5665 		}
5666 	}
5667 	return (PF_PASS);
5668 }
5669 
5670 /*
5671  * ipoff and off are measured from the start of the mbuf chain.
5672  * h must be at "ipoff" on the mbuf chain.
5673  */
5674 void *
5675 pf_pull_hdr(struct mbuf *m, int off, void *p, int len,
5676     u_short *actionp, u_short *reasonp, sa_family_t af)
5677 {
5678 	switch (af) {
5679 #ifdef INET
5680 	case AF_INET: {
5681 		struct ip	*h = mtod(m, struct ip *);
5682 		u_int16_t	 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
5683 
5684 		if (fragoff) {
5685 			if (fragoff >= len)
5686 				ACTION_SET(actionp, PF_PASS);
5687 			else {
5688 				ACTION_SET(actionp, PF_DROP);
5689 				REASON_SET(reasonp, PFRES_FRAG);
5690 			}
5691 			return (NULL);
5692 		}
5693 		if (m->m_pkthdr.len < off + len ||
5694 		    ntohs(h->ip_len) < off + len) {
5695 			ACTION_SET(actionp, PF_DROP);
5696 			REASON_SET(reasonp, PFRES_SHORT);
5697 			return (NULL);
5698 		}
5699 		break;
5700 	}
5701 #endif /* INET */
5702 #ifdef INET6
5703 	case AF_INET6: {
5704 		struct ip6_hdr	*h = mtod(m, struct ip6_hdr *);
5705 
5706 		if (m->m_pkthdr.len < off + len ||
5707 		    (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) <
5708 		    (unsigned)(off + len)) {
5709 			ACTION_SET(actionp, PF_DROP);
5710 			REASON_SET(reasonp, PFRES_SHORT);
5711 			return (NULL);
5712 		}
5713 		break;
5714 	}
5715 #endif /* INET6 */
5716 	}
5717 	m_copydata(m, off, len, p);
5718 	return (p);
5719 }
5720 
5721 int
5722 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif,
5723     int rtableid)
5724 {
5725 	struct ifnet		*ifp;
5726 
5727 	/*
5728 	 * Skip check for addresses with embedded interface scope,
5729 	 * as they would always match anyway.
5730 	 */
5731 	if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6))
5732 		return (1);
5733 
5734 	if (af != AF_INET && af != AF_INET6)
5735 		return (0);
5736 
5737 	/* Skip checks for ipsec interfaces */
5738 	if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC)
5739 		return (1);
5740 
5741 	ifp = (kif != NULL) ? kif->pfik_ifp : NULL;
5742 
5743 	switch (af) {
5744 #ifdef INET6
5745 	case AF_INET6:
5746 		return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE,
5747 		    ifp));
5748 #endif
5749 #ifdef INET
5750 	case AF_INET:
5751 		return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE,
5752 		    ifp));
5753 #endif
5754 	}
5755 
5756 	return (0);
5757 }
5758 
5759 #ifdef INET
5760 static void
5761 pf_route(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp,
5762     struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
5763 {
5764 	struct mbuf		*m0, *m1;
5765 	struct sockaddr_in	dst;
5766 	struct ip		*ip;
5767 	struct ifnet		*ifp = NULL;
5768 	struct pf_addr		 naddr;
5769 	struct pf_ksrc_node	*sn = NULL;
5770 	int			 error = 0;
5771 	uint16_t		 ip_len, ip_off;
5772 
5773 	KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__));
5774 	KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction",
5775 	    __func__));
5776 
5777 	if ((pd->pf_mtag == NULL &&
5778 	    ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) ||
5779 	    pd->pf_mtag->routed++ > 3) {
5780 		m0 = *m;
5781 		*m = NULL;
5782 		goto bad_locked;
5783 	}
5784 
5785 	if (r->rt == PF_DUPTO) {
5786 		if ((pd->pf_mtag->flags & PF_DUPLICATED)) {
5787 			if (s == NULL) {
5788 				ifp = r->rpool.cur->kif ?
5789 				    r->rpool.cur->kif->pfik_ifp : NULL;
5790 			} else {
5791 				ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
5792 				PF_STATE_UNLOCK(s);
5793 			}
5794 			if (ifp == oifp) {
5795 				/* When the 2nd interface is not skipped */
5796 				return;
5797 			} else {
5798 				m0 = *m;
5799 				*m = NULL;
5800 				goto bad;
5801 			}
5802 		} else {
5803 			pd->pf_mtag->flags |= PF_DUPLICATED;
5804 			if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) {
5805 				if (s)
5806 					PF_STATE_UNLOCK(s);
5807 				return;
5808 			}
5809 		}
5810 	} else {
5811 		if ((r->rt == PF_REPLYTO) == (r->direction == dir)) {
5812 			if (s)
5813 				PF_STATE_UNLOCK(s);
5814 			return;
5815 		}
5816 		m0 = *m;
5817 	}
5818 
5819 	ip = mtod(m0, struct ip *);
5820 
5821 	bzero(&dst, sizeof(dst));
5822 	dst.sin_family = AF_INET;
5823 	dst.sin_len = sizeof(dst);
5824 	dst.sin_addr = ip->ip_dst;
5825 
5826 	bzero(&naddr, sizeof(naddr));
5827 
5828 	if (TAILQ_EMPTY(&r->rpool.list)) {
5829 		DPFPRINTF(PF_DEBUG_URGENT,
5830 		    ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__));
5831 		goto bad_locked;
5832 	}
5833 	if (s == NULL) {
5834 		pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src,
5835 		    &naddr, NULL, &sn);
5836 		if (!PF_AZERO(&naddr, AF_INET))
5837 			dst.sin_addr.s_addr = naddr.v4.s_addr;
5838 		ifp = r->rpool.cur->kif ?
5839 		    r->rpool.cur->kif->pfik_ifp : NULL;
5840 	} else {
5841 		if (!PF_AZERO(&s->rt_addr, AF_INET))
5842 			dst.sin_addr.s_addr =
5843 			    s->rt_addr.v4.s_addr;
5844 		ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
5845 		PF_STATE_UNLOCK(s);
5846 	}
5847 	if (ifp == NULL)
5848 		goto bad;
5849 
5850 	if (dir == PF_IN) {
5851 		if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS)
5852 			goto bad;
5853 		else if (m0 == NULL)
5854 			goto done;
5855 		if (m0->m_len < sizeof(struct ip)) {
5856 			DPFPRINTF(PF_DEBUG_URGENT,
5857 			    ("%s: m0->m_len < sizeof(struct ip)\n", __func__));
5858 			goto bad;
5859 		}
5860 		ip = mtod(m0, struct ip *);
5861 	}
5862 
5863 	if (ifp->if_flags & IFF_LOOPBACK)
5864 		m0->m_flags |= M_SKIP_FIREWALL;
5865 
5866 	ip_len = ntohs(ip->ip_len);
5867 	ip_off = ntohs(ip->ip_off);
5868 
5869 	/* Copied from FreeBSD 10.0-CURRENT ip_output. */
5870 	m0->m_pkthdr.csum_flags |= CSUM_IP;
5871 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
5872 		m0 = mb_unmapped_to_ext(m0);
5873 		if (m0 == NULL)
5874 			goto done;
5875 		in_delayed_cksum(m0);
5876 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
5877 	}
5878 #if defined(SCTP) || defined(SCTP_SUPPORT)
5879 	if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
5880 		m0 = mb_unmapped_to_ext(m0);
5881 		if (m0 == NULL)
5882 			goto done;
5883 		sctp_delayed_cksum(m0, (uint32_t)(ip->ip_hl << 2));
5884 		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
5885 	}
5886 #endif
5887 
5888 	/*
5889 	 * If small enough for interface, or the interface will take
5890 	 * care of the fragmentation for us, we can just send directly.
5891 	 */
5892 	if (ip_len <= ifp->if_mtu ||
5893 	    (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
5894 		ip->ip_sum = 0;
5895 		if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
5896 			ip->ip_sum = in_cksum(m0, ip->ip_hl << 2);
5897 			m0->m_pkthdr.csum_flags &= ~CSUM_IP;
5898 		}
5899 		m_clrprotoflags(m0);	/* Avoid confusing lower layers. */
5900 		error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL);
5901 		goto done;
5902 	}
5903 
5904 	/* Balk when DF bit is set or the interface didn't support TSO. */
5905 	if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5906 		error = EMSGSIZE;
5907 		KMOD_IPSTAT_INC(ips_cantfrag);
5908 		if (r->rt != PF_DUPTO) {
5909 			icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0,
5910 			    ifp->if_mtu);
5911 			goto done;
5912 		} else
5913 			goto bad;
5914 	}
5915 
5916 	error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist);
5917 	if (error)
5918 		goto bad;
5919 
5920 	for (; m0; m0 = m1) {
5921 		m1 = m0->m_nextpkt;
5922 		m0->m_nextpkt = NULL;
5923 		if (error == 0) {
5924 			m_clrprotoflags(m0);
5925 			error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL);
5926 		} else
5927 			m_freem(m0);
5928 	}
5929 
5930 	if (error == 0)
5931 		KMOD_IPSTAT_INC(ips_fragmented);
5932 
5933 done:
5934 	if (r->rt != PF_DUPTO)
5935 		*m = NULL;
5936 	return;
5937 
5938 bad_locked:
5939 	if (s)
5940 		PF_STATE_UNLOCK(s);
5941 bad:
5942 	m_freem(m0);
5943 	goto done;
5944 }
5945 #endif /* INET */
5946 
5947 #ifdef INET6
5948 static void
5949 pf_route6(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp,
5950     struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
5951 {
5952 	struct mbuf		*m0;
5953 	struct sockaddr_in6	dst;
5954 	struct ip6_hdr		*ip6;
5955 	struct ifnet		*ifp = NULL;
5956 	struct pf_addr		 naddr;
5957 	struct pf_ksrc_node	*sn = NULL;
5958 
5959 	KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__));
5960 	KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction",
5961 	    __func__));
5962 
5963 	if ((pd->pf_mtag == NULL &&
5964 	    ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) ||
5965 	    pd->pf_mtag->routed++ > 3) {
5966 		m0 = *m;
5967 		*m = NULL;
5968 		goto bad_locked;
5969 	}
5970 
5971 	if (r->rt == PF_DUPTO) {
5972 		if ((pd->pf_mtag->flags & PF_DUPLICATED)) {
5973 			if (s == NULL) {
5974 				ifp = r->rpool.cur->kif ?
5975 				    r->rpool.cur->kif->pfik_ifp : NULL;
5976 			} else {
5977 				ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
5978 				PF_STATE_UNLOCK(s);
5979 			}
5980 			if (ifp == oifp) {
5981 				/* When the 2nd interface is not skipped */
5982 				return;
5983 			} else {
5984 				m0 = *m;
5985 				*m = NULL;
5986 				goto bad;
5987 			}
5988 		} else {
5989 			pd->pf_mtag->flags |= PF_DUPLICATED;
5990 			if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) {
5991 				if (s)
5992 					PF_STATE_UNLOCK(s);
5993 				return;
5994 			}
5995 		}
5996 	} else {
5997 		if ((r->rt == PF_REPLYTO) == (r->direction == dir)) {
5998 			if (s)
5999 				PF_STATE_UNLOCK(s);
6000 			return;
6001 		}
6002 		m0 = *m;
6003 	}
6004 
6005 	ip6 = mtod(m0, struct ip6_hdr *);
6006 
6007 	bzero(&dst, sizeof(dst));
6008 	dst.sin6_family = AF_INET6;
6009 	dst.sin6_len = sizeof(dst);
6010 	dst.sin6_addr = ip6->ip6_dst;
6011 
6012 	bzero(&naddr, sizeof(naddr));
6013 
6014 	if (TAILQ_EMPTY(&r->rpool.list)) {
6015 		DPFPRINTF(PF_DEBUG_URGENT,
6016 		    ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__));
6017 		goto bad_locked;
6018 	}
6019 	if (s == NULL) {
6020 		pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src,
6021 		    &naddr, NULL, &sn);
6022 		if (!PF_AZERO(&naddr, AF_INET6))
6023 			PF_ACPY((struct pf_addr *)&dst.sin6_addr,
6024 			    &naddr, AF_INET6);
6025 		ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL;
6026 	} else {
6027 		if (!PF_AZERO(&s->rt_addr, AF_INET6))
6028 			PF_ACPY((struct pf_addr *)&dst.sin6_addr,
6029 			    &s->rt_addr, AF_INET6);
6030 		ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
6031 	}
6032 
6033 	if (s)
6034 		PF_STATE_UNLOCK(s);
6035 
6036 	if (ifp == NULL)
6037 		goto bad;
6038 
6039 	if (dir == PF_IN) {
6040 		if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS)
6041 			goto bad;
6042 		else if (m0 == NULL)
6043 			goto done;
6044 		if (m0->m_len < sizeof(struct ip6_hdr)) {
6045 			DPFPRINTF(PF_DEBUG_URGENT,
6046 			    ("%s: m0->m_len < sizeof(struct ip6_hdr)\n",
6047 			    __func__));
6048 			goto bad;
6049 		}
6050 		ip6 = mtod(m0, struct ip6_hdr *);
6051 	}
6052 
6053 	if (ifp->if_flags & IFF_LOOPBACK)
6054 		m0->m_flags |= M_SKIP_FIREWALL;
6055 
6056 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 &
6057 	    ~ifp->if_hwassist) {
6058 		uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6);
6059 		m0 = mb_unmapped_to_ext(m0);
6060 		if (m0 == NULL)
6061 			goto done;
6062 		in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr));
6063 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
6064 	}
6065 
6066 	/*
6067 	 * If the packet is too large for the outgoing interface,
6068 	 * send back an icmp6 error.
6069 	 */
6070 	if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr))
6071 		dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
6072 	if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu)
6073 		nd6_output_ifp(ifp, ifp, m0, &dst, NULL);
6074 	else {
6075 		in6_ifstat_inc(ifp, ifs6_in_toobig);
6076 		if (r->rt != PF_DUPTO)
6077 			icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu);
6078 		else
6079 			goto bad;
6080 	}
6081 
6082 done:
6083 	if (r->rt != PF_DUPTO)
6084 		*m = NULL;
6085 	return;
6086 
6087 bad_locked:
6088 	if (s)
6089 		PF_STATE_UNLOCK(s);
6090 bad:
6091 	m_freem(m0);
6092 	goto done;
6093 }
6094 #endif /* INET6 */
6095 
6096 /*
6097  * FreeBSD supports cksum offloads for the following drivers.
6098  *  em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4)
6099  *
6100  * CSUM_DATA_VALID | CSUM_PSEUDO_HDR :
6101  *  network driver performed cksum including pseudo header, need to verify
6102  *   csum_data
6103  * CSUM_DATA_VALID :
6104  *  network driver performed cksum, needs to additional pseudo header
6105  *  cksum computation with partial csum_data(i.e. lack of H/W support for
6106  *  pseudo header, for instance sk(4) and possibly gem(4))
6107  *
6108  * After validating the cksum of packet, set both flag CSUM_DATA_VALID and
6109  * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper
6110  * TCP/UDP layer.
6111  * Also, set csum_data to 0xffff to force cksum validation.
6112  */
6113 static int
6114 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af)
6115 {
6116 	u_int16_t sum = 0;
6117 	int hw_assist = 0;
6118 	struct ip *ip;
6119 
6120 	if (off < sizeof(struct ip) || len < sizeof(struct udphdr))
6121 		return (1);
6122 	if (m->m_pkthdr.len < off + len)
6123 		return (1);
6124 
6125 	switch (p) {
6126 	case IPPROTO_TCP:
6127 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
6128 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
6129 				sum = m->m_pkthdr.csum_data;
6130 			} else {
6131 				ip = mtod(m, struct ip *);
6132 				sum = in_pseudo(ip->ip_src.s_addr,
6133 				ip->ip_dst.s_addr, htonl((u_short)len +
6134 				m->m_pkthdr.csum_data + IPPROTO_TCP));
6135 			}
6136 			sum ^= 0xffff;
6137 			++hw_assist;
6138 		}
6139 		break;
6140 	case IPPROTO_UDP:
6141 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
6142 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
6143 				sum = m->m_pkthdr.csum_data;
6144 			} else {
6145 				ip = mtod(m, struct ip *);
6146 				sum = in_pseudo(ip->ip_src.s_addr,
6147 				ip->ip_dst.s_addr, htonl((u_short)len +
6148 				m->m_pkthdr.csum_data + IPPROTO_UDP));
6149 			}
6150 			sum ^= 0xffff;
6151 			++hw_assist;
6152 		}
6153 		break;
6154 	case IPPROTO_ICMP:
6155 #ifdef INET6
6156 	case IPPROTO_ICMPV6:
6157 #endif /* INET6 */
6158 		break;
6159 	default:
6160 		return (1);
6161 	}
6162 
6163 	if (!hw_assist) {
6164 		switch (af) {
6165 		case AF_INET:
6166 			if (p == IPPROTO_ICMP) {
6167 				if (m->m_len < off)
6168 					return (1);
6169 				m->m_data += off;
6170 				m->m_len -= off;
6171 				sum = in_cksum(m, len);
6172 				m->m_data -= off;
6173 				m->m_len += off;
6174 			} else {
6175 				if (m->m_len < sizeof(struct ip))
6176 					return (1);
6177 				sum = in4_cksum(m, p, off, len);
6178 			}
6179 			break;
6180 #ifdef INET6
6181 		case AF_INET6:
6182 			if (m->m_len < sizeof(struct ip6_hdr))
6183 				return (1);
6184 			sum = in6_cksum(m, p, off, len);
6185 			break;
6186 #endif /* INET6 */
6187 		default:
6188 			return (1);
6189 		}
6190 	}
6191 	if (sum) {
6192 		switch (p) {
6193 		case IPPROTO_TCP:
6194 		    {
6195 			KMOD_TCPSTAT_INC(tcps_rcvbadsum);
6196 			break;
6197 		    }
6198 		case IPPROTO_UDP:
6199 		    {
6200 			KMOD_UDPSTAT_INC(udps_badsum);
6201 			break;
6202 		    }
6203 #ifdef INET
6204 		case IPPROTO_ICMP:
6205 		    {
6206 			KMOD_ICMPSTAT_INC(icps_checksum);
6207 			break;
6208 		    }
6209 #endif
6210 #ifdef INET6
6211 		case IPPROTO_ICMPV6:
6212 		    {
6213 			KMOD_ICMP6STAT_INC(icp6s_checksum);
6214 			break;
6215 		    }
6216 #endif /* INET6 */
6217 		}
6218 		return (1);
6219 	} else {
6220 		if (p == IPPROTO_TCP || p == IPPROTO_UDP) {
6221 			m->m_pkthdr.csum_flags |=
6222 			    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
6223 			m->m_pkthdr.csum_data = 0xffff;
6224 		}
6225 	}
6226 	return (0);
6227 }
6228 
6229 #ifdef INET
6230 int
6231 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp)
6232 {
6233 	struct pfi_kkif		*kif;
6234 	u_short			 action, reason = 0, log = 0;
6235 	struct mbuf		*m = *m0;
6236 	struct ip		*h = NULL;
6237 	struct m_tag		*ipfwtag;
6238 	struct pf_krule		*a = NULL, *r = &V_pf_default_rule, *tr, *nr;
6239 	struct pf_kstate	*s = NULL;
6240 	struct pf_kruleset	*ruleset = NULL;
6241 	struct pf_pdesc		 pd;
6242 	int			 off, dirndx, pqid = 0;
6243 
6244 	PF_RULES_RLOCK_TRACKER;
6245 	KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir));
6246 	M_ASSERTPKTHDR(m);
6247 
6248 	if (!V_pf_status.running)
6249 		return (PF_PASS);
6250 
6251 	memset(&pd, 0, sizeof(pd));
6252 
6253 	kif = (struct pfi_kkif *)ifp->if_pf_kif;
6254 
6255 	if (kif == NULL) {
6256 		DPFPRINTF(PF_DEBUG_URGENT,
6257 		    ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname));
6258 		return (PF_DROP);
6259 	}
6260 	if (kif->pfik_flags & PFI_IFLAG_SKIP)
6261 		return (PF_PASS);
6262 
6263 	if (m->m_flags & M_SKIP_FIREWALL)
6264 		return (PF_PASS);
6265 
6266 	pd.pf_mtag = pf_find_mtag(m);
6267 
6268 	PF_RULES_RLOCK();
6269 
6270 	if (__predict_false(ip_divert_ptr != NULL) &&
6271 	    ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) {
6272 		struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1);
6273 		if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) {
6274 			if (pd.pf_mtag == NULL &&
6275 			    ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) {
6276 				action = PF_DROP;
6277 				goto done;
6278 			}
6279 			pd.pf_mtag->flags |= PF_PACKET_LOOPED;
6280 			m_tag_delete(m, ipfwtag);
6281 		}
6282 		if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) {
6283 			m->m_flags |= M_FASTFWD_OURS;
6284 			pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT;
6285 		}
6286 	} else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) {
6287 		/* We do IP header normalization and packet reassembly here */
6288 		action = PF_DROP;
6289 		goto done;
6290 	}
6291 	m = *m0;	/* pf_normalize messes with m0 */
6292 	h = mtod(m, struct ip *);
6293 
6294 	off = h->ip_hl << 2;
6295 	if (off < (int)sizeof(struct ip)) {
6296 		action = PF_DROP;
6297 		REASON_SET(&reason, PFRES_SHORT);
6298 		log = 1;
6299 		goto done;
6300 	}
6301 
6302 	pd.src = (struct pf_addr *)&h->ip_src;
6303 	pd.dst = (struct pf_addr *)&h->ip_dst;
6304 	pd.sport = pd.dport = NULL;
6305 	pd.ip_sum = &h->ip_sum;
6306 	pd.proto_sum = NULL;
6307 	pd.proto = h->ip_p;
6308 	pd.dir = dir;
6309 	pd.sidx = (dir == PF_IN) ? 0 : 1;
6310 	pd.didx = (dir == PF_IN) ? 1 : 0;
6311 	pd.af = AF_INET;
6312 	pd.tos = h->ip_tos & ~IPTOS_ECN_MASK;
6313 	pd.tot_len = ntohs(h->ip_len);
6314 
6315 	/* handle fragments that didn't get reassembled by normalization */
6316 	if (h->ip_off & htons(IP_MF | IP_OFFMASK)) {
6317 		action = pf_test_fragment(&r, dir, kif, m, h,
6318 		    &pd, &a, &ruleset);
6319 		goto done;
6320 	}
6321 
6322 	switch (h->ip_p) {
6323 	case IPPROTO_TCP: {
6324 		if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp),
6325 		    &action, &reason, AF_INET)) {
6326 			log = action != PF_PASS;
6327 			goto done;
6328 		}
6329 		pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2);
6330 
6331 		pd.sport = &pd.hdr.tcp.th_sport;
6332 		pd.dport = &pd.hdr.tcp.th_dport;
6333 
6334 		/* Respond to SYN with a syncookie. */
6335 		if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN &&
6336 		    pd.dir == PF_IN && pf_synflood_check(&pd)) {
6337 			pf_syncookie_send(m, off, &pd);
6338 			action = PF_DROP;
6339 			break;
6340 		}
6341 
6342 		if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0)
6343 			pqid = 1;
6344 		action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd);
6345 		if (action == PF_DROP)
6346 			goto done;
6347 		action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd,
6348 		    &reason);
6349 		if (action == PF_PASS) {
6350 			if (V_pfsync_update_state_ptr != NULL)
6351 				V_pfsync_update_state_ptr(s);
6352 			r = s->rule.ptr;
6353 			a = s->anchor.ptr;
6354 			log = s->log;
6355 		} else if (s == NULL) {
6356 			/* Validate remote SYN|ACK, re-create original SYN if
6357 			 * valid. */
6358 			if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) ==
6359 			    TH_ACK && pf_syncookie_validate(&pd) &&
6360 			    pd.dir == PF_IN) {
6361 				struct mbuf *msyn;
6362 
6363 				msyn = pf_syncookie_recreate_syn(h->ip_ttl,
6364 				    off,&pd);
6365 				if (msyn == NULL) {
6366 					action = PF_DROP;
6367 					break;
6368 				}
6369 
6370 				action = pf_test(dir, pflags, ifp, &msyn, inp);
6371 				m_freem(msyn);
6372 
6373 				if (action == PF_PASS) {
6374 					action = pf_test_state_tcp(&s, dir,
6375 					    kif, m, off, h, &pd, &reason);
6376 					if (action != PF_PASS || s == NULL) {
6377 						action = PF_DROP;
6378 						break;
6379 					}
6380 
6381 					s->src.seqhi = ntohl(pd.hdr.tcp.th_ack)
6382 					    - 1;
6383 					s->src.seqlo = ntohl(pd.hdr.tcp.th_seq)
6384 					    - 1;
6385 					pf_set_protostate(s, PF_PEER_SRC,
6386 					    PF_TCPS_PROXY_DST);
6387 
6388 					action = pf_synproxy(&pd, &s, &reason);
6389 					if (action != PF_PASS)
6390 						break;
6391 				}
6392 				break;
6393 			}
6394 			else {
6395 				action = pf_test_rule(&r, &s, dir, kif, m, off,
6396 				    &pd, &a, &ruleset, inp);
6397 			}
6398 		}
6399 		break;
6400 	}
6401 
6402 	case IPPROTO_UDP: {
6403 		if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp),
6404 		    &action, &reason, AF_INET)) {
6405 			log = action != PF_PASS;
6406 			goto done;
6407 		}
6408 		if (pd.hdr.udp.uh_dport == 0 ||
6409 		    ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off ||
6410 		    ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) {
6411 			action = PF_DROP;
6412 			REASON_SET(&reason, PFRES_SHORT);
6413 			goto done;
6414 		}
6415 		action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd);
6416 		if (action == PF_PASS) {
6417 			if (V_pfsync_update_state_ptr != NULL)
6418 				V_pfsync_update_state_ptr(s);
6419 			r = s->rule.ptr;
6420 			a = s->anchor.ptr;
6421 			log = s->log;
6422 		} else if (s == NULL)
6423 			action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
6424 			    &a, &ruleset, inp);
6425 		break;
6426 	}
6427 
6428 	case IPPROTO_ICMP: {
6429 		if (!pf_pull_hdr(m, off, &pd.hdr.icmp, ICMP_MINLEN,
6430 		    &action, &reason, AF_INET)) {
6431 			log = action != PF_PASS;
6432 			goto done;
6433 		}
6434 		action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd,
6435 		    &reason);
6436 		if (action == PF_PASS) {
6437 			if (V_pfsync_update_state_ptr != NULL)
6438 				V_pfsync_update_state_ptr(s);
6439 			r = s->rule.ptr;
6440 			a = s->anchor.ptr;
6441 			log = s->log;
6442 		} else if (s == NULL)
6443 			action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
6444 			    &a, &ruleset, inp);
6445 		break;
6446 	}
6447 
6448 #ifdef INET6
6449 	case IPPROTO_ICMPV6: {
6450 		action = PF_DROP;
6451 		DPFPRINTF(PF_DEBUG_MISC,
6452 		    ("pf: dropping IPv4 packet with ICMPv6 payload\n"));
6453 		goto done;
6454 	}
6455 #endif
6456 
6457 	default:
6458 		action = pf_test_state_other(&s, dir, kif, m, &pd);
6459 		if (action == PF_PASS) {
6460 			if (V_pfsync_update_state_ptr != NULL)
6461 				V_pfsync_update_state_ptr(s);
6462 			r = s->rule.ptr;
6463 			a = s->anchor.ptr;
6464 			log = s->log;
6465 		} else if (s == NULL)
6466 			action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
6467 			    &a, &ruleset, inp);
6468 		break;
6469 	}
6470 
6471 done:
6472 	PF_RULES_RUNLOCK();
6473 	if (action == PF_PASS && h->ip_hl > 5 &&
6474 	    !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) {
6475 		action = PF_DROP;
6476 		REASON_SET(&reason, PFRES_IPOPTIONS);
6477 		log = r->log;
6478 		DPFPRINTF(PF_DEBUG_MISC,
6479 		    ("pf: dropping packet with ip options\n"));
6480 	}
6481 
6482 	if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) {
6483 		action = PF_DROP;
6484 		REASON_SET(&reason, PFRES_MEMORY);
6485 	}
6486 	if (r->rtableid >= 0)
6487 		M_SETFIB(m, r->rtableid);
6488 
6489 	if (r->scrub_flags & PFSTATE_SETPRIO) {
6490 		if (pd.tos & IPTOS_LOWDELAY)
6491 			pqid = 1;
6492 		if (vlan_set_pcp(m, r->set_prio[pqid])) {
6493 			action = PF_DROP;
6494 			REASON_SET(&reason, PFRES_MEMORY);
6495 			log = 1;
6496 			DPFPRINTF(PF_DEBUG_MISC,
6497 			    ("pf: failed to allocate 802.1q mtag\n"));
6498 		}
6499 	}
6500 
6501 #ifdef ALTQ
6502 	if (s && s->qid) {
6503 		pd.act.pqid = s->pqid;
6504 		pd.act.qid = s->qid;
6505 	} else if (r->qid) {
6506 		pd.act.pqid = r->pqid;
6507 		pd.act.qid = r->qid;
6508 	}
6509 	if (action == PF_PASS && pd.act.qid) {
6510 		if (pd.pf_mtag == NULL &&
6511 		    ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) {
6512 			action = PF_DROP;
6513 			REASON_SET(&reason, PFRES_MEMORY);
6514 		} else {
6515 			if (s != NULL)
6516 				pd.pf_mtag->qid_hash = pf_state_hash(s);
6517 			if (pqid || (pd.tos & IPTOS_LOWDELAY))
6518 				pd.pf_mtag->qid = pd.act.pqid;
6519 			else
6520 				pd.pf_mtag->qid = pd.act.qid;
6521 			/* Add hints for ecn. */
6522 			pd.pf_mtag->hdr = h;
6523 		}
6524 	}
6525 #endif /* ALTQ */
6526 
6527 	/*
6528 	 * connections redirected to loopback should not match sockets
6529 	 * bound specifically to loopback due to security implications,
6530 	 * see tcp_input() and in_pcblookup_listen().
6531 	 */
6532 	if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP ||
6533 	    pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL &&
6534 	    (s->nat_rule.ptr->action == PF_RDR ||
6535 	    s->nat_rule.ptr->action == PF_BINAT) &&
6536 	    IN_LOOPBACK(ntohl(pd.dst->v4.s_addr)))
6537 		m->m_flags |= M_SKIP_FIREWALL;
6538 
6539 	if (__predict_false(ip_divert_ptr != NULL) && action == PF_PASS &&
6540 	    r->divert.port && !PACKET_LOOPED(&pd)) {
6541 		ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0,
6542 		    sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO);
6543 		if (ipfwtag != NULL) {
6544 			((struct ipfw_rule_ref *)(ipfwtag+1))->info =
6545 			    ntohs(r->divert.port);
6546 			((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir;
6547 
6548 			if (s)
6549 				PF_STATE_UNLOCK(s);
6550 
6551 			m_tag_prepend(m, ipfwtag);
6552 			if (m->m_flags & M_FASTFWD_OURS) {
6553 				if (pd.pf_mtag == NULL &&
6554 				    ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) {
6555 					action = PF_DROP;
6556 					REASON_SET(&reason, PFRES_MEMORY);
6557 					log = 1;
6558 					DPFPRINTF(PF_DEBUG_MISC,
6559 					    ("pf: failed to allocate tag\n"));
6560 				} else {
6561 					pd.pf_mtag->flags |=
6562 					    PF_FASTFWD_OURS_PRESENT;
6563 					m->m_flags &= ~M_FASTFWD_OURS;
6564 				}
6565 			}
6566 			ip_divert_ptr(*m0, dir == PF_IN);
6567 			*m0 = NULL;
6568 
6569 			return (action);
6570 		} else {
6571 			/* XXX: ipfw has the same behaviour! */
6572 			action = PF_DROP;
6573 			REASON_SET(&reason, PFRES_MEMORY);
6574 			log = 1;
6575 			DPFPRINTF(PF_DEBUG_MISC,
6576 			    ("pf: failed to allocate divert tag\n"));
6577 		}
6578 	}
6579 
6580 	if (log) {
6581 		struct pf_krule *lr;
6582 
6583 		if (s != NULL && s->nat_rule.ptr != NULL &&
6584 		    s->nat_rule.ptr->log & PF_LOG_ALL)
6585 			lr = s->nat_rule.ptr;
6586 		else
6587 			lr = r;
6588 		PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd,
6589 		    (s == NULL));
6590 	}
6591 
6592 	pf_counter_u64_critical_enter();
6593 	pf_counter_u64_add_protected(&kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS],
6594 	    pd.tot_len);
6595 	pf_counter_u64_add_protected(&kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS],
6596 	    1);
6597 
6598 	if (action == PF_PASS || r->action == PF_DROP) {
6599 		dirndx = (dir == PF_OUT);
6600 		pf_counter_u64_add_protected(&r->packets[dirndx], 1);
6601 		pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len);
6602 		if (a != NULL) {
6603 			pf_counter_u64_add_protected(&a->packets[dirndx], 1);
6604 			pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len);
6605 		}
6606 		if (s != NULL) {
6607 			if (s->nat_rule.ptr != NULL) {
6608 				pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx],
6609 				    1);
6610 				pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx],
6611 				    pd.tot_len);
6612 			}
6613 			if (s->src_node != NULL) {
6614 				counter_u64_add(s->src_node->packets[dirndx],
6615 				    1);
6616 				counter_u64_add(s->src_node->bytes[dirndx],
6617 				    pd.tot_len);
6618 			}
6619 			if (s->nat_src_node != NULL) {
6620 				counter_u64_add(s->nat_src_node->packets[dirndx],
6621 				    1);
6622 				counter_u64_add(s->nat_src_node->bytes[dirndx],
6623 				    pd.tot_len);
6624 			}
6625 			dirndx = (dir == s->direction) ? 0 : 1;
6626 			s->packets[dirndx]++;
6627 			s->bytes[dirndx] += pd.tot_len;
6628 		}
6629 		tr = r;
6630 		nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule;
6631 		if (nr != NULL && r == &V_pf_default_rule)
6632 			tr = nr;
6633 		if (tr->src.addr.type == PF_ADDR_TABLE)
6634 			pfr_update_stats(tr->src.addr.p.tbl,
6635 			    (s == NULL) ? pd.src :
6636 			    &s->key[(s->direction == PF_IN)]->
6637 				addr[(s->direction == PF_OUT)],
6638 			    pd.af, pd.tot_len, dir == PF_OUT,
6639 			    r->action == PF_PASS, tr->src.neg);
6640 		if (tr->dst.addr.type == PF_ADDR_TABLE)
6641 			pfr_update_stats(tr->dst.addr.p.tbl,
6642 			    (s == NULL) ? pd.dst :
6643 			    &s->key[(s->direction == PF_IN)]->
6644 				addr[(s->direction == PF_IN)],
6645 			    pd.af, pd.tot_len, dir == PF_OUT,
6646 			    r->action == PF_PASS, tr->dst.neg);
6647 	}
6648 	pf_counter_u64_critical_exit();
6649 
6650 	switch (action) {
6651 	case PF_SYNPROXY_DROP:
6652 		m_freem(*m0);
6653 	case PF_DEFER:
6654 		*m0 = NULL;
6655 		action = PF_PASS;
6656 		break;
6657 	case PF_DROP:
6658 		m_freem(*m0);
6659 		*m0 = NULL;
6660 		break;
6661 	default:
6662 		/* pf_route() returns unlocked. */
6663 		if (r->rt) {
6664 			pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp);
6665 			return (action);
6666 		}
6667 		break;
6668 	}
6669 
6670 	SDT_PROBE4(pf, ip, test, done, action, reason, r, s);
6671 
6672 	if (s)
6673 		PF_STATE_UNLOCK(s);
6674 
6675 	return (action);
6676 }
6677 #endif /* INET */
6678 
6679 #ifdef INET6
6680 int
6681 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp)
6682 {
6683 	struct pfi_kkif		*kif;
6684 	u_short			 action, reason = 0, log = 0;
6685 	struct mbuf		*m = *m0, *n = NULL;
6686 	struct m_tag		*mtag;
6687 	struct ip6_hdr		*h = NULL;
6688 	struct pf_krule		*a = NULL, *r = &V_pf_default_rule, *tr, *nr;
6689 	struct pf_kstate	*s = NULL;
6690 	struct pf_kruleset	*ruleset = NULL;
6691 	struct pf_pdesc		 pd;
6692 	int			 off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0;
6693 
6694 	PF_RULES_RLOCK_TRACKER;
6695 	KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir));
6696 	M_ASSERTPKTHDR(m);
6697 
6698 	if (!V_pf_status.running)
6699 		return (PF_PASS);
6700 
6701 	memset(&pd, 0, sizeof(pd));
6702 	pd.pf_mtag = pf_find_mtag(m);
6703 
6704 	if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED)
6705 		return (PF_PASS);
6706 
6707 	kif = (struct pfi_kkif *)ifp->if_pf_kif;
6708 	if (kif == NULL) {
6709 		DPFPRINTF(PF_DEBUG_URGENT,
6710 		    ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname));
6711 		return (PF_DROP);
6712 	}
6713 	if (kif->pfik_flags & PFI_IFLAG_SKIP)
6714 		return (PF_PASS);
6715 
6716 	if (m->m_flags & M_SKIP_FIREWALL)
6717 		return (PF_PASS);
6718 
6719 	PF_RULES_RLOCK();
6720 
6721 	/* We do IP header normalization and packet reassembly here */
6722 	if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) {
6723 		action = PF_DROP;
6724 		goto done;
6725 	}
6726 	m = *m0;	/* pf_normalize messes with m0 */
6727 	h = mtod(m, struct ip6_hdr *);
6728 
6729 	/*
6730 	 * we do not support jumbogram.  if we keep going, zero ip6_plen
6731 	 * will do something bad, so drop the packet for now.
6732 	 */
6733 	if (htons(h->ip6_plen) == 0) {
6734 		action = PF_DROP;
6735 		REASON_SET(&reason, PFRES_NORM);	/*XXX*/
6736 		goto done;
6737 	}
6738 
6739 	pd.src = (struct pf_addr *)&h->ip6_src;
6740 	pd.dst = (struct pf_addr *)&h->ip6_dst;
6741 	pd.sport = pd.dport = NULL;
6742 	pd.ip_sum = NULL;
6743 	pd.proto_sum = NULL;
6744 	pd.dir = dir;
6745 	pd.sidx = (dir == PF_IN) ? 0 : 1;
6746 	pd.didx = (dir == PF_IN) ? 1 : 0;
6747 	pd.af = AF_INET6;
6748 	pd.tos = IPV6_DSCP(h);
6749 	pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
6750 
6751 	off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr);
6752 	pd.proto = h->ip6_nxt;
6753 	do {
6754 		switch (pd.proto) {
6755 		case IPPROTO_FRAGMENT:
6756 			action = pf_test_fragment(&r, dir, kif, m, h,
6757 			    &pd, &a, &ruleset);
6758 			if (action == PF_DROP)
6759 				REASON_SET(&reason, PFRES_FRAG);
6760 			goto done;
6761 		case IPPROTO_ROUTING: {
6762 			struct ip6_rthdr rthdr;
6763 
6764 			if (rh_cnt++) {
6765 				DPFPRINTF(PF_DEBUG_MISC,
6766 				    ("pf: IPv6 more than one rthdr\n"));
6767 				action = PF_DROP;
6768 				REASON_SET(&reason, PFRES_IPOPTIONS);
6769 				log = 1;
6770 				goto done;
6771 			}
6772 			if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL,
6773 			    &reason, pd.af)) {
6774 				DPFPRINTF(PF_DEBUG_MISC,
6775 				    ("pf: IPv6 short rthdr\n"));
6776 				action = PF_DROP;
6777 				REASON_SET(&reason, PFRES_SHORT);
6778 				log = 1;
6779 				goto done;
6780 			}
6781 			if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) {
6782 				DPFPRINTF(PF_DEBUG_MISC,
6783 				    ("pf: IPv6 rthdr0\n"));
6784 				action = PF_DROP;
6785 				REASON_SET(&reason, PFRES_IPOPTIONS);
6786 				log = 1;
6787 				goto done;
6788 			}
6789 			/* FALLTHROUGH */
6790 		}
6791 		case IPPROTO_AH:
6792 		case IPPROTO_HOPOPTS:
6793 		case IPPROTO_DSTOPTS: {
6794 			/* get next header and header length */
6795 			struct ip6_ext	opt6;
6796 
6797 			if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6),
6798 			    NULL, &reason, pd.af)) {
6799 				DPFPRINTF(PF_DEBUG_MISC,
6800 				    ("pf: IPv6 short opt\n"));
6801 				action = PF_DROP;
6802 				log = 1;
6803 				goto done;
6804 			}
6805 			if (pd.proto == IPPROTO_AH)
6806 				off += (opt6.ip6e_len + 2) * 4;
6807 			else
6808 				off += (opt6.ip6e_len + 1) * 8;
6809 			pd.proto = opt6.ip6e_nxt;
6810 			/* goto the next header */
6811 			break;
6812 		}
6813 		default:
6814 			terminal++;
6815 			break;
6816 		}
6817 	} while (!terminal);
6818 
6819 	/* if there's no routing header, use unmodified mbuf for checksumming */
6820 	if (!n)
6821 		n = m;
6822 
6823 	switch (pd.proto) {
6824 	case IPPROTO_TCP: {
6825 		if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp),
6826 		    &action, &reason, AF_INET6)) {
6827 			log = action != PF_PASS;
6828 			goto done;
6829 		}
6830 		pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2);
6831 		action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd);
6832 		if (action == PF_DROP)
6833 			goto done;
6834 		action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd,
6835 		    &reason);
6836 		if (action == PF_PASS) {
6837 			if (V_pfsync_update_state_ptr != NULL)
6838 				V_pfsync_update_state_ptr(s);
6839 			r = s->rule.ptr;
6840 			a = s->anchor.ptr;
6841 			log = s->log;
6842 		} else if (s == NULL)
6843 			action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
6844 			    &a, &ruleset, inp);
6845 		break;
6846 	}
6847 
6848 	case IPPROTO_UDP: {
6849 		if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp),
6850 		    &action, &reason, AF_INET6)) {
6851 			log = action != PF_PASS;
6852 			goto done;
6853 		}
6854 		if (pd.hdr.udp.uh_dport == 0 ||
6855 		    ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off ||
6856 		    ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) {
6857 			action = PF_DROP;
6858 			REASON_SET(&reason, PFRES_SHORT);
6859 			goto done;
6860 		}
6861 		action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd);
6862 		if (action == PF_PASS) {
6863 			if (V_pfsync_update_state_ptr != NULL)
6864 				V_pfsync_update_state_ptr(s);
6865 			r = s->rule.ptr;
6866 			a = s->anchor.ptr;
6867 			log = s->log;
6868 		} else if (s == NULL)
6869 			action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
6870 			    &a, &ruleset, inp);
6871 		break;
6872 	}
6873 
6874 	case IPPROTO_ICMP: {
6875 		action = PF_DROP;
6876 		DPFPRINTF(PF_DEBUG_MISC,
6877 		    ("pf: dropping IPv6 packet with ICMPv4 payload\n"));
6878 		goto done;
6879 	}
6880 
6881 	case IPPROTO_ICMPV6: {
6882 		if (!pf_pull_hdr(m, off, &pd.hdr.icmp6, sizeof(pd.hdr.icmp6),
6883 		    &action, &reason, AF_INET6)) {
6884 			log = action != PF_PASS;
6885 			goto done;
6886 		}
6887 		action = pf_test_state_icmp(&s, dir, kif,
6888 		    m, off, h, &pd, &reason);
6889 		if (action == PF_PASS) {
6890 			if (V_pfsync_update_state_ptr != NULL)
6891 				V_pfsync_update_state_ptr(s);
6892 			r = s->rule.ptr;
6893 			a = s->anchor.ptr;
6894 			log = s->log;
6895 		} else if (s == NULL)
6896 			action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
6897 			    &a, &ruleset, inp);
6898 		break;
6899 	}
6900 
6901 	default:
6902 		action = pf_test_state_other(&s, dir, kif, m, &pd);
6903 		if (action == PF_PASS) {
6904 			if (V_pfsync_update_state_ptr != NULL)
6905 				V_pfsync_update_state_ptr(s);
6906 			r = s->rule.ptr;
6907 			a = s->anchor.ptr;
6908 			log = s->log;
6909 		} else if (s == NULL)
6910 			action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
6911 			    &a, &ruleset, inp);
6912 		break;
6913 	}
6914 
6915 done:
6916 	PF_RULES_RUNLOCK();
6917 	if (n != m) {
6918 		m_freem(n);
6919 		n = NULL;
6920 	}
6921 
6922 	/* handle dangerous IPv6 extension headers. */
6923 	if (action == PF_PASS && rh_cnt &&
6924 	    !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) {
6925 		action = PF_DROP;
6926 		REASON_SET(&reason, PFRES_IPOPTIONS);
6927 		log = r->log;
6928 		DPFPRINTF(PF_DEBUG_MISC,
6929 		    ("pf: dropping packet with dangerous v6 headers\n"));
6930 	}
6931 
6932 	if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) {
6933 		action = PF_DROP;
6934 		REASON_SET(&reason, PFRES_MEMORY);
6935 	}
6936 	if (r->rtableid >= 0)
6937 		M_SETFIB(m, r->rtableid);
6938 
6939 	if (r->scrub_flags & PFSTATE_SETPRIO) {
6940 		if (pd.tos & IPTOS_LOWDELAY)
6941 			pqid = 1;
6942 		if (vlan_set_pcp(m, r->set_prio[pqid])) {
6943 			action = PF_DROP;
6944 			REASON_SET(&reason, PFRES_MEMORY);
6945 			log = 1;
6946 			DPFPRINTF(PF_DEBUG_MISC,
6947 			    ("pf: failed to allocate 802.1q mtag\n"));
6948 		}
6949 	}
6950 
6951 #ifdef ALTQ
6952 	if (s && s->qid) {
6953 		pd.act.pqid = s->pqid;
6954 		pd.act.qid = s->qid;
6955 	} else if (r->qid) {
6956 		pd.act.pqid = r->pqid;
6957 		pd.act.qid = r->qid;
6958 	}
6959 	if (action == PF_PASS && pd.act.qid) {
6960 		if (pd.pf_mtag == NULL &&
6961 		    ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) {
6962 			action = PF_DROP;
6963 			REASON_SET(&reason, PFRES_MEMORY);
6964 		} else {
6965 			if (s != NULL)
6966 				pd.pf_mtag->qid_hash = pf_state_hash(s);
6967 			if (pd.tos & IPTOS_LOWDELAY)
6968 				pd.pf_mtag->qid = pd.act.pqid;
6969 			else
6970 				pd.pf_mtag->qid = pd.act.qid;
6971 			/* Add hints for ecn. */
6972 			pd.pf_mtag->hdr = h;
6973 		}
6974 	}
6975 #endif /* ALTQ */
6976 
6977 	if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP ||
6978 	    pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL &&
6979 	    (s->nat_rule.ptr->action == PF_RDR ||
6980 	    s->nat_rule.ptr->action == PF_BINAT) &&
6981 	    IN6_IS_ADDR_LOOPBACK(&pd.dst->v6))
6982 		m->m_flags |= M_SKIP_FIREWALL;
6983 
6984 	/* XXX: Anybody working on it?! */
6985 	if (r->divert.port)
6986 		printf("pf: divert(9) is not supported for IPv6\n");
6987 
6988 	if (log) {
6989 		struct pf_krule *lr;
6990 
6991 		if (s != NULL && s->nat_rule.ptr != NULL &&
6992 		    s->nat_rule.ptr->log & PF_LOG_ALL)
6993 			lr = s->nat_rule.ptr;
6994 		else
6995 			lr = r;
6996 		PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset,
6997 		    &pd, (s == NULL));
6998 	}
6999 
7000 	pf_counter_u64_critical_enter();
7001 	pf_counter_u64_add_protected(&kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS],
7002 	    pd.tot_len);
7003 	pf_counter_u64_add_protected(&kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS],
7004 	    1);
7005 
7006 	if (action == PF_PASS || r->action == PF_DROP) {
7007 		dirndx = (dir == PF_OUT);
7008 		pf_counter_u64_add_protected(&r->packets[dirndx], 1);
7009 		pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len);
7010 		if (a != NULL) {
7011 			pf_counter_u64_add_protected(&a->packets[dirndx], 1);
7012 			pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len);
7013 		}
7014 		if (s != NULL) {
7015 			if (s->nat_rule.ptr != NULL) {
7016 				pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx],
7017 				    1);
7018 				pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx],
7019 				    pd.tot_len);
7020 			}
7021 			if (s->src_node != NULL) {
7022 				counter_u64_add(s->src_node->packets[dirndx],
7023 				    1);
7024 				counter_u64_add(s->src_node->bytes[dirndx],
7025 				    pd.tot_len);
7026 			}
7027 			if (s->nat_src_node != NULL) {
7028 				counter_u64_add(s->nat_src_node->packets[dirndx],
7029 				    1);
7030 				counter_u64_add(s->nat_src_node->bytes[dirndx],
7031 				    pd.tot_len);
7032 			}
7033 			dirndx = (dir == s->direction) ? 0 : 1;
7034 			s->packets[dirndx]++;
7035 			s->bytes[dirndx] += pd.tot_len;
7036 		}
7037 		tr = r;
7038 		nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule;
7039 		if (nr != NULL && r == &V_pf_default_rule)
7040 			tr = nr;
7041 		if (tr->src.addr.type == PF_ADDR_TABLE)
7042 			pfr_update_stats(tr->src.addr.p.tbl,
7043 			    (s == NULL) ? pd.src :
7044 			    &s->key[(s->direction == PF_IN)]->addr[0],
7045 			    pd.af, pd.tot_len, dir == PF_OUT,
7046 			    r->action == PF_PASS, tr->src.neg);
7047 		if (tr->dst.addr.type == PF_ADDR_TABLE)
7048 			pfr_update_stats(tr->dst.addr.p.tbl,
7049 			    (s == NULL) ? pd.dst :
7050 			    &s->key[(s->direction == PF_IN)]->addr[1],
7051 			    pd.af, pd.tot_len, dir == PF_OUT,
7052 			    r->action == PF_PASS, tr->dst.neg);
7053 	}
7054 	pf_counter_u64_critical_exit();
7055 
7056 	switch (action) {
7057 	case PF_SYNPROXY_DROP:
7058 		m_freem(*m0);
7059 	case PF_DEFER:
7060 		*m0 = NULL;
7061 		action = PF_PASS;
7062 		break;
7063 	case PF_DROP:
7064 		m_freem(*m0);
7065 		*m0 = NULL;
7066 		break;
7067 	default:
7068 		/* pf_route6() returns unlocked. */
7069 		if (r->rt) {
7070 			pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp);
7071 			return (action);
7072 		}
7073 		break;
7074 	}
7075 
7076 	if (s)
7077 		PF_STATE_UNLOCK(s);
7078 
7079 	/* If reassembled packet passed, create new fragments. */
7080 	if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) &&
7081 	    (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL)
7082 		action = pf_refragment6(ifp, m0, mtag);
7083 
7084 	SDT_PROBE4(pf, ip, test6, done, action, reason, r, s);
7085 
7086 	return (action);
7087 }
7088 #endif /* INET6 */
7089