1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 #include "opt_bpf.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_pf.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/gsb_crc32.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/sdt.h> 61 #include <sys/socket.h> 62 #include <sys/sysctl.h> 63 #include <sys/taskqueue.h> 64 #include <sys/ucred.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_private.h> 69 #include <net/if_types.h> 70 #include <net/if_vlan_var.h> 71 #include <net/route.h> 72 #include <net/route/nhop.h> 73 #include <net/vnet.h> 74 75 #include <net/pfil.h> 76 #include <net/pfvar.h> 77 #include <net/if_pflog.h> 78 #include <net/if_pfsync.h> 79 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_var.h> 82 #include <netinet/in_fib.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_fw.h> 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp.h> 89 #include <netinet/tcp_fsm.h> 90 #include <netinet/tcp_seq.h> 91 #include <netinet/tcp_timer.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet/udp.h> 94 #include <netinet/udp_var.h> 95 96 /* dummynet */ 97 #include <netinet/ip_dummynet.h> 98 #include <netinet/ip_fw.h> 99 #include <netpfil/ipfw/dn_heap.h> 100 #include <netpfil/ipfw/ip_fw_private.h> 101 #include <netpfil/ipfw/ip_dn_private.h> 102 103 #ifdef INET6 104 #include <netinet/ip6.h> 105 #include <netinet/icmp6.h> 106 #include <netinet6/nd6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet6/in6_pcb.h> 109 #include <netinet6/in6_fib.h> 110 #include <netinet6/scope6_var.h> 111 #endif /* INET6 */ 112 113 #include <netinet/sctp_header.h> 114 #include <netinet/sctp_crc32.h> 115 116 #include <machine/in_cksum.h> 117 #include <security/mac/mac_framework.h> 118 119 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 120 121 SDT_PROVIDER_DEFINE(pf); 122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 123 "struct pf_kstate *"); 124 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 125 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 126 "struct pf_kstate *"); 127 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *", 128 "struct pfi_kkif *"); 129 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *", 130 "struct pf_krule *", "struct mbuf *", "int"); 131 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t", 132 "struct pf_sctp_source *"); 133 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t", 134 "struct pf_kstate *", "struct pf_sctp_source *"); 135 136 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 137 "struct mbuf *"); 138 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 139 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 140 "int", "struct pf_keth_rule *", "char *"); 141 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 142 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 143 "int", "struct pf_keth_rule *"); 144 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t"); 145 146 /* 147 * Global variables 148 */ 149 150 /* state tables */ 151 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 152 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 153 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 154 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 155 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 156 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 157 VNET_DEFINE(struct pf_kstatus, pf_status); 158 159 VNET_DEFINE(u_int32_t, ticket_altqs_active); 160 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 161 VNET_DEFINE(int, altqs_inactive_open); 162 VNET_DEFINE(u_int32_t, ticket_pabuf); 163 164 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 165 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 166 VNET_DEFINE(u_char, pf_tcp_secret[16]); 167 #define V_pf_tcp_secret VNET(pf_tcp_secret) 168 VNET_DEFINE(int, pf_tcp_secret_init); 169 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 170 VNET_DEFINE(int, pf_tcp_iss_off); 171 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 172 VNET_DECLARE(int, pf_vnet_active); 173 #define V_pf_vnet_active VNET(pf_vnet_active) 174 175 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 176 #define V_pf_purge_idx VNET(pf_purge_idx) 177 178 #ifdef PF_WANT_32_TO_64_COUNTER 179 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 180 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 181 182 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 183 VNET_DEFINE(size_t, pf_allrulecount); 184 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 185 #endif 186 187 struct pf_sctp_endpoint; 188 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint); 189 struct pf_sctp_source { 190 sa_family_t af; 191 struct pf_addr addr; 192 TAILQ_ENTRY(pf_sctp_source) entry; 193 }; 194 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source); 195 struct pf_sctp_endpoint 196 { 197 uint32_t v_tag; 198 struct pf_sctp_sources sources; 199 RB_ENTRY(pf_sctp_endpoint) entry; 200 }; 201 static int 202 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b) 203 { 204 return (a->v_tag - b->v_tag); 205 } 206 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 207 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 208 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints); 209 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints) 210 static struct mtx_padalign pf_sctp_endpoints_mtx; 211 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF); 212 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx) 213 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx) 214 215 /* 216 * Queue for pf_intr() sends. 217 */ 218 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 219 struct pf_send_entry { 220 STAILQ_ENTRY(pf_send_entry) pfse_next; 221 struct mbuf *pfse_m; 222 enum { 223 PFSE_IP, 224 PFSE_IP6, 225 PFSE_ICMP, 226 PFSE_ICMP6, 227 } pfse_type; 228 struct { 229 int type; 230 int code; 231 int mtu; 232 } icmpopts; 233 }; 234 235 STAILQ_HEAD(pf_send_head, pf_send_entry); 236 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 237 #define V_pf_sendqueue VNET(pf_sendqueue) 238 239 static struct mtx_padalign pf_sendqueue_mtx; 240 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 241 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 242 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 243 244 /* 245 * Queue for pf_overload_task() tasks. 246 */ 247 struct pf_overload_entry { 248 SLIST_ENTRY(pf_overload_entry) next; 249 struct pf_addr addr; 250 sa_family_t af; 251 uint8_t dir; 252 struct pf_krule *rule; 253 }; 254 255 SLIST_HEAD(pf_overload_head, pf_overload_entry); 256 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 257 #define V_pf_overloadqueue VNET(pf_overloadqueue) 258 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 259 #define V_pf_overloadtask VNET(pf_overloadtask) 260 261 static struct mtx_padalign pf_overloadqueue_mtx; 262 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 263 "pf overload/flush queue", MTX_DEF); 264 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 265 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 266 267 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 268 struct mtx_padalign pf_unlnkdrules_mtx; 269 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 270 MTX_DEF); 271 272 struct sx pf_config_lock; 273 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 274 275 struct mtx_padalign pf_table_stats_lock; 276 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 277 MTX_DEF); 278 279 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 280 #define V_pf_sources_z VNET(pf_sources_z) 281 uma_zone_t pf_mtag_z; 282 VNET_DEFINE(uma_zone_t, pf_state_z); 283 VNET_DEFINE(uma_zone_t, pf_state_key_z); 284 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z); 285 286 VNET_DEFINE(struct unrhdr64, pf_stateid); 287 288 static void pf_src_tree_remove_state(struct pf_kstate *); 289 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 290 u_int32_t); 291 static void pf_add_threshold(struct pf_threshold *); 292 static int pf_check_threshold(struct pf_threshold *); 293 294 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 295 u_int16_t *, u_int16_t *, struct pf_addr *, 296 u_int16_t, u_int8_t, sa_family_t); 297 static int pf_modulate_sack(struct pf_pdesc *, 298 struct tcphdr *, struct pf_state_peer *); 299 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *, 300 int *, u_int16_t *, u_int16_t *); 301 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 302 struct pf_addr *, struct pf_addr *, u_int16_t, 303 u_int16_t *, u_int16_t *, u_int16_t *, 304 u_int16_t *, u_int8_t, sa_family_t); 305 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 306 sa_family_t, struct pf_krule *, int); 307 static void pf_detach_state(struct pf_kstate *); 308 static int pf_state_key_attach(struct pf_state_key *, 309 struct pf_state_key *, struct pf_kstate *); 310 static void pf_state_key_detach(struct pf_kstate *, int); 311 static int pf_state_key_ctor(void *, int, void *, int); 312 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 313 static __inline void pf_dummynet_flag_remove(struct mbuf *m, 314 struct pf_mtag *pf_mtag); 315 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *, 316 struct pf_krule *, struct mbuf **); 317 static int pf_dummynet_route(struct pf_pdesc *, 318 struct pf_kstate *, struct pf_krule *, 319 struct ifnet *, struct sockaddr *, struct mbuf **); 320 static int pf_test_eth_rule(int, struct pfi_kkif *, 321 struct mbuf **); 322 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 323 struct pf_pdesc *, struct pf_krule **, 324 struct pf_kruleset **, struct inpcb *); 325 static int pf_create_state(struct pf_krule *, struct pf_krule *, 326 struct pf_krule *, struct pf_pdesc *, 327 struct pf_ksrc_node *, struct pf_state_key *, 328 struct pf_state_key *, 329 u_int16_t, u_int16_t, int *, 330 struct pf_kstate **, int, u_int16_t, u_int16_t, 331 struct pf_krule_slist *, struct pf_udp_mapping *); 332 static int pf_state_key_addr_setup(struct pf_pdesc *, 333 struct pf_state_key_cmp *, int); 334 static int pf_tcp_track_full(struct pf_kstate **, 335 struct pf_pdesc *, u_short *, int *); 336 static int pf_tcp_track_sloppy(struct pf_kstate **, 337 struct pf_pdesc *, u_short *); 338 static int pf_test_state_tcp(struct pf_kstate **, 339 struct pf_pdesc *, u_short *); 340 static int pf_test_state_udp(struct pf_kstate **, 341 struct pf_pdesc *); 342 int pf_icmp_state_lookup(struct pf_state_key_cmp *, 343 struct pf_pdesc *, struct pf_kstate **, 344 int, u_int16_t, u_int16_t, 345 int, int *, int, int); 346 static int pf_test_state_icmp(struct pf_kstate **, 347 struct pf_pdesc *, u_short *); 348 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *); 349 static void pf_sctp_multihome_delayed(struct pf_pdesc *, 350 struct pfi_kkif *, struct pf_kstate *, int); 351 static int pf_test_state_sctp(struct pf_kstate **, 352 struct pf_pdesc *, u_short *); 353 static int pf_test_state_other(struct pf_kstate **, 354 struct pf_pdesc *); 355 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 356 int, u_int16_t); 357 static int pf_check_proto_cksum(struct mbuf *, int, int, 358 u_int8_t, sa_family_t); 359 static int pf_walk_option6(struct mbuf *, int, int, uint32_t *, 360 u_short *); 361 static void pf_print_state_parts(struct pf_kstate *, 362 struct pf_state_key *, struct pf_state_key *); 363 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 364 bool, u_int8_t); 365 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 366 const struct pf_state_key_cmp *, u_int); 367 static int pf_src_connlimit(struct pf_kstate **); 368 static int pf_match_rcvif(struct mbuf *, struct pf_krule *); 369 static void pf_counters_inc(int, struct pf_pdesc *, 370 struct pf_kstate *, struct pf_krule *, 371 struct pf_krule *); 372 static void pf_overload_task(void *v, int pending); 373 static u_short pf_insert_src_node(struct pf_ksrc_node **, 374 struct pf_krule *, struct pf_addr *, sa_family_t); 375 static u_int pf_purge_expired_states(u_int, int); 376 static void pf_purge_unlinked_rules(void); 377 static int pf_mtag_uminit(void *, int, int); 378 static void pf_mtag_free(struct m_tag *); 379 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 380 int, struct pf_state_key *); 381 #ifdef INET 382 static void pf_route(struct mbuf **, struct pf_krule *, 383 struct ifnet *, struct pf_kstate *, 384 struct pf_pdesc *, struct inpcb *); 385 #endif /* INET */ 386 #ifdef INET6 387 static void pf_change_a6(struct pf_addr *, u_int16_t *, 388 struct pf_addr *, u_int8_t); 389 static void pf_route6(struct mbuf **, struct pf_krule *, 390 struct ifnet *, struct pf_kstate *, 391 struct pf_pdesc *, struct inpcb *); 392 #endif /* INET6 */ 393 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 394 395 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 396 397 extern int pf_end_threads; 398 extern struct proc *pf_purge_proc; 399 400 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 401 402 enum { PF_ICMP_MULTI_NONE, PF_ICMP_MULTI_LINK }; 403 404 #define PACKET_UNDO_NAT(_m, _pd, _off, _s) \ 405 do { \ 406 struct pf_state_key *nk; \ 407 if ((pd->dir) == PF_OUT) \ 408 nk = (_s)->key[PF_SK_STACK]; \ 409 else \ 410 nk = (_s)->key[PF_SK_WIRE]; \ 411 pf_packet_rework_nat(_m, _pd, _off, nk); \ 412 } while (0) 413 414 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 415 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED) 416 417 #define STATE_LOOKUP(k, s, pd) \ 418 do { \ 419 (s) = pf_find_state((pd->kif), (k), (pd->dir)); \ 420 SDT_PROBE5(pf, ip, state, lookup, pd->kif, k, (pd->dir), pd, (s)); \ 421 if ((s) == NULL) \ 422 return (PF_DROP); \ 423 if (PACKET_LOOPED(pd)) \ 424 return (PF_PASS); \ 425 } while (0) 426 427 static struct pfi_kkif * 428 BOUND_IFACE(struct pf_kstate *st, struct pfi_kkif *k) 429 { 430 SDT_PROBE2(pf, ip, , bound_iface, st, k); 431 432 /* Floating unless otherwise specified. */ 433 if (! (st->rule->rule_flag & PFRULE_IFBOUND)) 434 return (V_pfi_all); 435 436 /* 437 * Initially set to all, because we don't know what interface we'll be 438 * sending this out when we create the state. 439 */ 440 if (st->rule->rt == PF_REPLYTO) 441 return (V_pfi_all); 442 443 /* Don't overrule the interface for states created on incoming packets. */ 444 if (st->direction == PF_IN) 445 return (k); 446 447 /* No route-to, so don't overrule. */ 448 if (st->rt != PF_ROUTETO) 449 return (k); 450 451 /* Bind to the route-to interface. */ 452 return (st->rt_kif); 453 } 454 455 #define STATE_INC_COUNTERS(s) \ 456 do { \ 457 struct pf_krule_item *mrm; \ 458 counter_u64_add(s->rule->states_cur, 1); \ 459 counter_u64_add(s->rule->states_tot, 1); \ 460 if (s->anchor != NULL) { \ 461 counter_u64_add(s->anchor->states_cur, 1); \ 462 counter_u64_add(s->anchor->states_tot, 1); \ 463 } \ 464 if (s->nat_rule != NULL) { \ 465 counter_u64_add(s->nat_rule->states_cur, 1);\ 466 counter_u64_add(s->nat_rule->states_tot, 1);\ 467 } \ 468 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 469 counter_u64_add(mrm->r->states_cur, 1); \ 470 counter_u64_add(mrm->r->states_tot, 1); \ 471 } \ 472 } while (0) 473 474 #define STATE_DEC_COUNTERS(s) \ 475 do { \ 476 struct pf_krule_item *mrm; \ 477 if (s->nat_rule != NULL) \ 478 counter_u64_add(s->nat_rule->states_cur, -1);\ 479 if (s->anchor != NULL) \ 480 counter_u64_add(s->anchor->states_cur, -1); \ 481 counter_u64_add(s->rule->states_cur, -1); \ 482 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 483 counter_u64_add(mrm->r->states_cur, -1); \ 484 } while (0) 485 486 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 487 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 488 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 489 VNET_DEFINE(struct pf_idhash *, pf_idhash); 490 VNET_DEFINE(struct pf_srchash *, pf_srchash); 491 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash); 492 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping); 493 494 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 495 "pf(4)"); 496 497 VNET_DEFINE(u_long, pf_hashmask); 498 VNET_DEFINE(u_long, pf_srchashmask); 499 VNET_DEFINE(u_long, pf_udpendpointhashmask); 500 VNET_DEFINE_STATIC(u_long, pf_hashsize); 501 #define V_pf_hashsize VNET(pf_hashsize) 502 VNET_DEFINE_STATIC(u_long, pf_srchashsize); 503 #define V_pf_srchashsize VNET(pf_srchashsize) 504 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize); 505 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize) 506 u_long pf_ioctl_maxcount = 65535; 507 508 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 509 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 510 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 511 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 512 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 513 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable"); 514 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 515 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 516 517 VNET_DEFINE(void *, pf_swi_cookie); 518 VNET_DEFINE(struct intr_event *, pf_swi_ie); 519 520 VNET_DEFINE(uint32_t, pf_hashseed); 521 #define V_pf_hashseed VNET(pf_hashseed) 522 523 static void 524 pf_sctp_checksum(struct mbuf *m, int off) 525 { 526 uint32_t sum = 0; 527 528 /* Zero out the checksum, to enable recalculation. */ 529 m_copyback(m, off + offsetof(struct sctphdr, checksum), 530 sizeof(sum), (caddr_t)&sum); 531 532 sum = sctp_calculate_cksum(m, off); 533 534 m_copyback(m, off + offsetof(struct sctphdr, checksum), 535 sizeof(sum), (caddr_t)&sum); 536 } 537 538 int 539 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 540 { 541 542 switch (af) { 543 #ifdef INET 544 case AF_INET: 545 if (a->addr32[0] > b->addr32[0]) 546 return (1); 547 if (a->addr32[0] < b->addr32[0]) 548 return (-1); 549 break; 550 #endif /* INET */ 551 #ifdef INET6 552 case AF_INET6: 553 if (a->addr32[3] > b->addr32[3]) 554 return (1); 555 if (a->addr32[3] < b->addr32[3]) 556 return (-1); 557 if (a->addr32[2] > b->addr32[2]) 558 return (1); 559 if (a->addr32[2] < b->addr32[2]) 560 return (-1); 561 if (a->addr32[1] > b->addr32[1]) 562 return (1); 563 if (a->addr32[1] < b->addr32[1]) 564 return (-1); 565 if (a->addr32[0] > b->addr32[0]) 566 return (1); 567 if (a->addr32[0] < b->addr32[0]) 568 return (-1); 569 break; 570 #endif /* INET6 */ 571 } 572 return (0); 573 } 574 575 static bool 576 pf_is_loopback(sa_family_t af, struct pf_addr *addr) 577 { 578 switch (af) { 579 case AF_INET: 580 return IN_LOOPBACK(ntohl(addr->v4.s_addr)); 581 case AF_INET6: 582 return IN6_IS_ADDR_LOOPBACK(&addr->v6); 583 default: 584 panic("Unknown af %d", af); 585 } 586 } 587 588 static void 589 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 590 struct pf_state_key *nk) 591 { 592 593 switch (pd->proto) { 594 case IPPROTO_TCP: { 595 struct tcphdr *th = &pd->hdr.tcp; 596 597 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 598 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 599 &th->th_sum, &nk->addr[pd->sidx], 600 nk->port[pd->sidx], 0, pd->af); 601 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 602 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 603 &th->th_sum, &nk->addr[pd->didx], 604 nk->port[pd->didx], 0, pd->af); 605 m_copyback(m, off, sizeof(*th), (caddr_t)th); 606 break; 607 } 608 case IPPROTO_UDP: { 609 struct udphdr *uh = &pd->hdr.udp; 610 611 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 612 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 613 &uh->uh_sum, &nk->addr[pd->sidx], 614 nk->port[pd->sidx], 1, pd->af); 615 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 616 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 617 &uh->uh_sum, &nk->addr[pd->didx], 618 nk->port[pd->didx], 1, pd->af); 619 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 620 break; 621 } 622 case IPPROTO_SCTP: { 623 struct sctphdr *sh = &pd->hdr.sctp; 624 uint16_t checksum = 0; 625 626 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 627 pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum, 628 &checksum, &nk->addr[pd->sidx], 629 nk->port[pd->sidx], 1, pd->af); 630 } 631 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 632 pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum, 633 &checksum, &nk->addr[pd->didx], 634 nk->port[pd->didx], 1, pd->af); 635 } 636 637 break; 638 } 639 case IPPROTO_ICMP: { 640 struct icmp *ih = &pd->hdr.icmp; 641 642 if (nk->port[pd->sidx] != ih->icmp_id) { 643 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 644 ih->icmp_cksum, ih->icmp_id, 645 nk->port[pd->sidx], 0); 646 ih->icmp_id = nk->port[pd->sidx]; 647 pd->sport = &ih->icmp_id; 648 649 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 650 } 651 /* FALLTHROUGH */ 652 } 653 default: 654 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 655 switch (pd->af) { 656 case AF_INET: 657 pf_change_a(&pd->src->v4.s_addr, 658 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 659 0); 660 break; 661 case AF_INET6: 662 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 663 break; 664 } 665 } 666 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 667 switch (pd->af) { 668 case AF_INET: 669 pf_change_a(&pd->dst->v4.s_addr, 670 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 671 0); 672 break; 673 case AF_INET6: 674 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 675 break; 676 } 677 } 678 break; 679 } 680 } 681 682 static __inline uint32_t 683 pf_hashkey(const struct pf_state_key *sk) 684 { 685 uint32_t h; 686 687 h = murmur3_32_hash32((const uint32_t *)sk, 688 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 689 V_pf_hashseed); 690 691 return (h & V_pf_hashmask); 692 } 693 694 static __inline uint32_t 695 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 696 { 697 uint32_t h; 698 699 switch (af) { 700 case AF_INET: 701 h = murmur3_32_hash32((uint32_t *)&addr->v4, 702 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 703 break; 704 case AF_INET6: 705 h = murmur3_32_hash32((uint32_t *)&addr->v6, 706 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 707 break; 708 } 709 710 return (h & V_pf_srchashmask); 711 } 712 713 static inline uint32_t 714 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint) 715 { 716 uint32_t h; 717 718 h = murmur3_32_hash32((uint32_t *)endpoint, 719 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t), 720 V_pf_hashseed); 721 return (h & V_pf_udpendpointhashmask); 722 } 723 724 #ifdef ALTQ 725 static int 726 pf_state_hash(struct pf_kstate *s) 727 { 728 u_int32_t hv = (intptr_t)s / sizeof(*s); 729 730 hv ^= crc32(&s->src, sizeof(s->src)); 731 hv ^= crc32(&s->dst, sizeof(s->dst)); 732 if (hv == 0) 733 hv = 1; 734 return (hv); 735 } 736 #endif 737 738 static __inline void 739 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 740 { 741 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 742 s->dst.state = newstate; 743 if (which == PF_PEER_DST) 744 return; 745 if (s->src.state == newstate) 746 return; 747 if (s->creatorid == V_pf_status.hostid && 748 s->key[PF_SK_STACK] != NULL && 749 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 750 !(TCPS_HAVEESTABLISHED(s->src.state) || 751 s->src.state == TCPS_CLOSED) && 752 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 753 atomic_add_32(&V_pf_status.states_halfopen, -1); 754 755 s->src.state = newstate; 756 } 757 758 #ifdef INET6 759 void 760 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 761 { 762 switch (af) { 763 #ifdef INET 764 case AF_INET: 765 memcpy(&dst->v4, &src->v4, sizeof(dst->v4)); 766 break; 767 #endif /* INET */ 768 case AF_INET6: 769 memcpy(&dst->v6, &src->v6, sizeof(dst->v6)); 770 break; 771 } 772 } 773 #endif /* INET6 */ 774 775 static void 776 pf_init_threshold(struct pf_threshold *threshold, 777 u_int32_t limit, u_int32_t seconds) 778 { 779 threshold->limit = limit * PF_THRESHOLD_MULT; 780 threshold->seconds = seconds; 781 threshold->count = 0; 782 threshold->last = time_uptime; 783 } 784 785 static void 786 pf_add_threshold(struct pf_threshold *threshold) 787 { 788 u_int32_t t = time_uptime, diff = t - threshold->last; 789 790 if (diff >= threshold->seconds) 791 threshold->count = 0; 792 else 793 threshold->count -= threshold->count * diff / 794 threshold->seconds; 795 threshold->count += PF_THRESHOLD_MULT; 796 threshold->last = t; 797 } 798 799 static int 800 pf_check_threshold(struct pf_threshold *threshold) 801 { 802 return (threshold->count > threshold->limit); 803 } 804 805 static int 806 pf_src_connlimit(struct pf_kstate **state) 807 { 808 struct pf_overload_entry *pfoe; 809 int bad = 0; 810 811 PF_STATE_LOCK_ASSERT(*state); 812 /* 813 * XXXKS: The src node is accessed unlocked! 814 * PF_SRC_NODE_LOCK_ASSERT((*state)->src_node); 815 */ 816 817 (*state)->src_node->conn++; 818 (*state)->src.tcp_est = 1; 819 pf_add_threshold(&(*state)->src_node->conn_rate); 820 821 if ((*state)->rule->max_src_conn && 822 (*state)->rule->max_src_conn < 823 (*state)->src_node->conn) { 824 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 825 bad++; 826 } 827 828 if ((*state)->rule->max_src_conn_rate.limit && 829 pf_check_threshold(&(*state)->src_node->conn_rate)) { 830 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 831 bad++; 832 } 833 834 if (!bad) 835 return (0); 836 837 /* Kill this state. */ 838 (*state)->timeout = PFTM_PURGE; 839 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 840 841 if ((*state)->rule->overload_tbl == NULL) 842 return (1); 843 844 /* Schedule overloading and flushing task. */ 845 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 846 if (pfoe == NULL) 847 return (1); /* too bad :( */ 848 849 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 850 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 851 pfoe->rule = (*state)->rule; 852 pfoe->dir = (*state)->direction; 853 PF_OVERLOADQ_LOCK(); 854 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 855 PF_OVERLOADQ_UNLOCK(); 856 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 857 858 return (1); 859 } 860 861 static void 862 pf_overload_task(void *v, int pending) 863 { 864 struct pf_overload_head queue; 865 struct pfr_addr p; 866 struct pf_overload_entry *pfoe, *pfoe1; 867 uint32_t killed = 0; 868 869 CURVNET_SET((struct vnet *)v); 870 871 PF_OVERLOADQ_LOCK(); 872 queue = V_pf_overloadqueue; 873 SLIST_INIT(&V_pf_overloadqueue); 874 PF_OVERLOADQ_UNLOCK(); 875 876 bzero(&p, sizeof(p)); 877 SLIST_FOREACH(pfoe, &queue, next) { 878 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 879 if (V_pf_status.debug >= PF_DEBUG_MISC) { 880 printf("%s: blocking address ", __func__); 881 pf_print_host(&pfoe->addr, 0, pfoe->af); 882 printf("\n"); 883 } 884 885 p.pfra_af = pfoe->af; 886 switch (pfoe->af) { 887 #ifdef INET 888 case AF_INET: 889 p.pfra_net = 32; 890 p.pfra_ip4addr = pfoe->addr.v4; 891 break; 892 #endif 893 #ifdef INET6 894 case AF_INET6: 895 p.pfra_net = 128; 896 p.pfra_ip6addr = pfoe->addr.v6; 897 break; 898 #endif 899 } 900 901 PF_RULES_WLOCK(); 902 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 903 PF_RULES_WUNLOCK(); 904 } 905 906 /* 907 * Remove those entries, that don't need flushing. 908 */ 909 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 910 if (pfoe->rule->flush == 0) { 911 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 912 free(pfoe, M_PFTEMP); 913 } else 914 counter_u64_add( 915 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 916 917 /* If nothing to flush, return. */ 918 if (SLIST_EMPTY(&queue)) { 919 CURVNET_RESTORE(); 920 return; 921 } 922 923 for (int i = 0; i <= V_pf_hashmask; i++) { 924 struct pf_idhash *ih = &V_pf_idhash[i]; 925 struct pf_state_key *sk; 926 struct pf_kstate *s; 927 928 PF_HASHROW_LOCK(ih); 929 LIST_FOREACH(s, &ih->states, entry) { 930 sk = s->key[PF_SK_WIRE]; 931 SLIST_FOREACH(pfoe, &queue, next) 932 if (sk->af == pfoe->af && 933 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 934 pfoe->rule == s->rule) && 935 ((pfoe->dir == PF_OUT && 936 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 937 (pfoe->dir == PF_IN && 938 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 939 s->timeout = PFTM_PURGE; 940 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 941 killed++; 942 } 943 } 944 PF_HASHROW_UNLOCK(ih); 945 } 946 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 947 free(pfoe, M_PFTEMP); 948 if (V_pf_status.debug >= PF_DEBUG_MISC) 949 printf("%s: %u states killed", __func__, killed); 950 951 CURVNET_RESTORE(); 952 } 953 954 /* 955 * Can return locked on failure, so that we can consistently 956 * allocate and insert a new one. 957 */ 958 struct pf_ksrc_node * 959 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 960 struct pf_srchash **sh, bool returnlocked) 961 { 962 struct pf_ksrc_node *n; 963 964 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 965 966 *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 967 PF_HASHROW_LOCK(*sh); 968 LIST_FOREACH(n, &(*sh)->nodes, entry) 969 if (n->rule == rule && n->af == af && 970 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 971 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 972 break; 973 974 if (n != NULL) { 975 n->states++; 976 PF_HASHROW_UNLOCK(*sh); 977 } else if (returnlocked == false) 978 PF_HASHROW_UNLOCK(*sh); 979 980 return (n); 981 } 982 983 static void 984 pf_free_src_node(struct pf_ksrc_node *sn) 985 { 986 987 for (int i = 0; i < 2; i++) { 988 counter_u64_free(sn->bytes[i]); 989 counter_u64_free(sn->packets[i]); 990 } 991 uma_zfree(V_pf_sources_z, sn); 992 } 993 994 static u_short 995 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 996 struct pf_addr *src, sa_family_t af) 997 { 998 u_short reason = 0; 999 struct pf_srchash *sh = NULL; 1000 1001 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 1002 rule->rpool.opts & PF_POOL_STICKYADDR), 1003 ("%s for non-tracking rule %p", __func__, rule)); 1004 1005 if (*sn == NULL) 1006 *sn = pf_find_src_node(src, rule, af, &sh, true); 1007 1008 if (*sn == NULL) { 1009 PF_HASHROW_ASSERT(sh); 1010 1011 if (rule->max_src_nodes && 1012 counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) { 1013 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); 1014 PF_HASHROW_UNLOCK(sh); 1015 reason = PFRES_SRCLIMIT; 1016 goto done; 1017 } 1018 1019 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 1020 if ((*sn) == NULL) { 1021 PF_HASHROW_UNLOCK(sh); 1022 reason = PFRES_MEMORY; 1023 goto done; 1024 } 1025 1026 for (int i = 0; i < 2; i++) { 1027 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 1028 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 1029 1030 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 1031 pf_free_src_node(*sn); 1032 PF_HASHROW_UNLOCK(sh); 1033 reason = PFRES_MEMORY; 1034 goto done; 1035 } 1036 } 1037 1038 pf_init_threshold(&(*sn)->conn_rate, 1039 rule->max_src_conn_rate.limit, 1040 rule->max_src_conn_rate.seconds); 1041 1042 MPASS((*sn)->lock == NULL); 1043 (*sn)->lock = &sh->lock; 1044 1045 (*sn)->af = af; 1046 (*sn)->rule = rule; 1047 PF_ACPY(&(*sn)->addr, src, af); 1048 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 1049 (*sn)->creation = time_uptime; 1050 (*sn)->ruletype = rule->action; 1051 (*sn)->states = 1; 1052 if ((*sn)->rule != NULL) 1053 counter_u64_add((*sn)->rule->src_nodes, 1); 1054 PF_HASHROW_UNLOCK(sh); 1055 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 1056 } else { 1057 if (rule->max_src_states && 1058 (*sn)->states >= rule->max_src_states) { 1059 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 1060 1); 1061 reason = PFRES_SRCLIMIT; 1062 goto done; 1063 } 1064 } 1065 done: 1066 return (reason); 1067 } 1068 1069 void 1070 pf_unlink_src_node(struct pf_ksrc_node *src) 1071 { 1072 PF_SRC_NODE_LOCK_ASSERT(src); 1073 1074 LIST_REMOVE(src, entry); 1075 if (src->rule) 1076 counter_u64_add(src->rule->src_nodes, -1); 1077 } 1078 1079 u_int 1080 pf_free_src_nodes(struct pf_ksrc_node_list *head) 1081 { 1082 struct pf_ksrc_node *sn, *tmp; 1083 u_int count = 0; 1084 1085 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 1086 pf_free_src_node(sn); 1087 count++; 1088 } 1089 1090 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 1091 1092 return (count); 1093 } 1094 1095 void 1096 pf_mtag_initialize(void) 1097 { 1098 1099 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 1100 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 1101 UMA_ALIGN_PTR, 0); 1102 } 1103 1104 /* Per-vnet data storage structures initialization. */ 1105 void 1106 pf_initialize(void) 1107 { 1108 struct pf_keyhash *kh; 1109 struct pf_idhash *ih; 1110 struct pf_srchash *sh; 1111 struct pf_udpendpointhash *uh; 1112 u_int i; 1113 1114 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 1115 V_pf_hashsize = PF_HASHSIZ; 1116 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 1117 V_pf_srchashsize = PF_SRCHASHSIZ; 1118 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize)) 1119 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1120 1121 V_pf_hashseed = arc4random(); 1122 1123 /* States and state keys storage. */ 1124 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1125 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1126 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1127 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1128 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1129 1130 V_pf_state_key_z = uma_zcreate("pf state keys", 1131 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1132 UMA_ALIGN_PTR, 0); 1133 1134 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash), 1135 M_PFHASH, M_NOWAIT | M_ZERO); 1136 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash), 1137 M_PFHASH, M_NOWAIT | M_ZERO); 1138 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1139 printf("pf: Unable to allocate memory for " 1140 "state_hashsize %lu.\n", V_pf_hashsize); 1141 1142 free(V_pf_keyhash, M_PFHASH); 1143 free(V_pf_idhash, M_PFHASH); 1144 1145 V_pf_hashsize = PF_HASHSIZ; 1146 V_pf_keyhash = mallocarray(V_pf_hashsize, 1147 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1148 V_pf_idhash = mallocarray(V_pf_hashsize, 1149 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1150 } 1151 1152 V_pf_hashmask = V_pf_hashsize - 1; 1153 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 1154 i++, kh++, ih++) { 1155 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1156 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1157 } 1158 1159 /* Source nodes. */ 1160 V_pf_sources_z = uma_zcreate("pf source nodes", 1161 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1162 0); 1163 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1164 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1165 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1166 1167 V_pf_srchash = mallocarray(V_pf_srchashsize, 1168 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1169 if (V_pf_srchash == NULL) { 1170 printf("pf: Unable to allocate memory for " 1171 "source_hashsize %lu.\n", V_pf_srchashsize); 1172 1173 V_pf_srchashsize = PF_SRCHASHSIZ; 1174 V_pf_srchash = mallocarray(V_pf_srchashsize, 1175 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1176 } 1177 1178 V_pf_srchashmask = V_pf_srchashsize - 1; 1179 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 1180 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1181 1182 1183 /* UDP endpoint mappings. */ 1184 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings", 1185 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL, 1186 UMA_ALIGN_PTR, 0); 1187 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1188 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO); 1189 if (V_pf_udpendpointhash == NULL) { 1190 printf("pf: Unable to allocate memory for " 1191 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize); 1192 1193 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1194 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1195 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO); 1196 } 1197 1198 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1; 1199 for (i = 0, uh = V_pf_udpendpointhash; 1200 i <= V_pf_udpendpointhashmask; 1201 i++, uh++) { 1202 mtx_init(&uh->lock, "pf_udpendpointhash", NULL, 1203 MTX_DEF | MTX_DUPOK); 1204 } 1205 1206 /* ALTQ */ 1207 TAILQ_INIT(&V_pf_altqs[0]); 1208 TAILQ_INIT(&V_pf_altqs[1]); 1209 TAILQ_INIT(&V_pf_altqs[2]); 1210 TAILQ_INIT(&V_pf_altqs[3]); 1211 TAILQ_INIT(&V_pf_pabuf); 1212 V_pf_altqs_active = &V_pf_altqs[0]; 1213 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1214 V_pf_altqs_inactive = &V_pf_altqs[2]; 1215 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1216 1217 /* Send & overload+flush queues. */ 1218 STAILQ_INIT(&V_pf_sendqueue); 1219 SLIST_INIT(&V_pf_overloadqueue); 1220 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1221 1222 /* Unlinked, but may be referenced rules. */ 1223 TAILQ_INIT(&V_pf_unlinked_rules); 1224 } 1225 1226 void 1227 pf_mtag_cleanup(void) 1228 { 1229 1230 uma_zdestroy(pf_mtag_z); 1231 } 1232 1233 void 1234 pf_cleanup(void) 1235 { 1236 struct pf_keyhash *kh; 1237 struct pf_idhash *ih; 1238 struct pf_srchash *sh; 1239 struct pf_udpendpointhash *uh; 1240 struct pf_send_entry *pfse, *next; 1241 u_int i; 1242 1243 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; 1244 i <= V_pf_hashmask; 1245 i++, kh++, ih++) { 1246 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1247 __func__)); 1248 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1249 __func__)); 1250 mtx_destroy(&kh->lock); 1251 mtx_destroy(&ih->lock); 1252 } 1253 free(V_pf_keyhash, M_PFHASH); 1254 free(V_pf_idhash, M_PFHASH); 1255 1256 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1257 KASSERT(LIST_EMPTY(&sh->nodes), 1258 ("%s: source node hash not empty", __func__)); 1259 mtx_destroy(&sh->lock); 1260 } 1261 free(V_pf_srchash, M_PFHASH); 1262 1263 for (i = 0, uh = V_pf_udpendpointhash; 1264 i <= V_pf_udpendpointhashmask; 1265 i++, uh++) { 1266 KASSERT(LIST_EMPTY(&uh->endpoints), 1267 ("%s: udp endpoint hash not empty", __func__)); 1268 mtx_destroy(&uh->lock); 1269 } 1270 free(V_pf_udpendpointhash, M_PFHASH); 1271 1272 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1273 m_freem(pfse->pfse_m); 1274 free(pfse, M_PFTEMP); 1275 } 1276 MPASS(RB_EMPTY(&V_pf_sctp_endpoints)); 1277 1278 uma_zdestroy(V_pf_sources_z); 1279 uma_zdestroy(V_pf_state_z); 1280 uma_zdestroy(V_pf_state_key_z); 1281 uma_zdestroy(V_pf_udp_mapping_z); 1282 } 1283 1284 static int 1285 pf_mtag_uminit(void *mem, int size, int how) 1286 { 1287 struct m_tag *t; 1288 1289 t = (struct m_tag *)mem; 1290 t->m_tag_cookie = MTAG_ABI_COMPAT; 1291 t->m_tag_id = PACKET_TAG_PF; 1292 t->m_tag_len = sizeof(struct pf_mtag); 1293 t->m_tag_free = pf_mtag_free; 1294 1295 return (0); 1296 } 1297 1298 static void 1299 pf_mtag_free(struct m_tag *t) 1300 { 1301 1302 uma_zfree(pf_mtag_z, t); 1303 } 1304 1305 struct pf_mtag * 1306 pf_get_mtag(struct mbuf *m) 1307 { 1308 struct m_tag *mtag; 1309 1310 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1311 return ((struct pf_mtag *)(mtag + 1)); 1312 1313 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1314 if (mtag == NULL) 1315 return (NULL); 1316 bzero(mtag + 1, sizeof(struct pf_mtag)); 1317 m_tag_prepend(m, mtag); 1318 1319 return ((struct pf_mtag *)(mtag + 1)); 1320 } 1321 1322 static int 1323 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1324 struct pf_kstate *s) 1325 { 1326 struct pf_keyhash *khs, *khw, *kh; 1327 struct pf_state_key *sk, *cur; 1328 struct pf_kstate *si, *olds = NULL; 1329 int idx; 1330 1331 NET_EPOCH_ASSERT(); 1332 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1333 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1334 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1335 1336 /* 1337 * We need to lock hash slots of both keys. To avoid deadlock 1338 * we always lock the slot with lower address first. Unlock order 1339 * isn't important. 1340 * 1341 * We also need to lock ID hash slot before dropping key 1342 * locks. On success we return with ID hash slot locked. 1343 */ 1344 1345 if (skw == sks) { 1346 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1347 PF_HASHROW_LOCK(khs); 1348 } else { 1349 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1350 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1351 if (khs == khw) { 1352 PF_HASHROW_LOCK(khs); 1353 } else if (khs < khw) { 1354 PF_HASHROW_LOCK(khs); 1355 PF_HASHROW_LOCK(khw); 1356 } else { 1357 PF_HASHROW_LOCK(khw); 1358 PF_HASHROW_LOCK(khs); 1359 } 1360 } 1361 1362 #define KEYS_UNLOCK() do { \ 1363 if (khs != khw) { \ 1364 PF_HASHROW_UNLOCK(khs); \ 1365 PF_HASHROW_UNLOCK(khw); \ 1366 } else \ 1367 PF_HASHROW_UNLOCK(khs); \ 1368 } while (0) 1369 1370 /* 1371 * First run: start with wire key. 1372 */ 1373 sk = skw; 1374 kh = khw; 1375 idx = PF_SK_WIRE; 1376 1377 MPASS(s->lock == NULL); 1378 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1379 1380 keyattach: 1381 LIST_FOREACH(cur, &kh->keys, entry) 1382 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1383 break; 1384 1385 if (cur != NULL) { 1386 /* Key exists. Check for same kif, if none, add to key. */ 1387 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1388 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1389 1390 PF_HASHROW_LOCK(ih); 1391 if (si->kif == s->kif && 1392 si->direction == s->direction) { 1393 if (sk->proto == IPPROTO_TCP && 1394 si->src.state >= TCPS_FIN_WAIT_2 && 1395 si->dst.state >= TCPS_FIN_WAIT_2) { 1396 /* 1397 * New state matches an old >FIN_WAIT_2 1398 * state. We can't drop key hash locks, 1399 * thus we can't unlink it properly. 1400 * 1401 * As a workaround we drop it into 1402 * TCPS_CLOSED state, schedule purge 1403 * ASAP and push it into the very end 1404 * of the slot TAILQ, so that it won't 1405 * conflict with our new state. 1406 */ 1407 pf_set_protostate(si, PF_PEER_BOTH, 1408 TCPS_CLOSED); 1409 si->timeout = PFTM_PURGE; 1410 olds = si; 1411 } else { 1412 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1413 printf("pf: %s key attach " 1414 "failed on %s: ", 1415 (idx == PF_SK_WIRE) ? 1416 "wire" : "stack", 1417 s->kif->pfik_name); 1418 pf_print_state_parts(s, 1419 (idx == PF_SK_WIRE) ? 1420 sk : NULL, 1421 (idx == PF_SK_STACK) ? 1422 sk : NULL); 1423 printf(", existing: "); 1424 pf_print_state_parts(si, 1425 (idx == PF_SK_WIRE) ? 1426 sk : NULL, 1427 (idx == PF_SK_STACK) ? 1428 sk : NULL); 1429 printf("\n"); 1430 } 1431 s->timeout = PFTM_UNLINKED; 1432 PF_HASHROW_UNLOCK(ih); 1433 KEYS_UNLOCK(); 1434 uma_zfree(V_pf_state_key_z, sk); 1435 if (idx == PF_SK_STACK) 1436 pf_detach_state(s); 1437 return (EEXIST); /* collision! */ 1438 } 1439 } 1440 PF_HASHROW_UNLOCK(ih); 1441 } 1442 uma_zfree(V_pf_state_key_z, sk); 1443 s->key[idx] = cur; 1444 } else { 1445 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1446 s->key[idx] = sk; 1447 } 1448 1449 stateattach: 1450 /* List is sorted, if-bound states before floating. */ 1451 if (s->kif == V_pfi_all) 1452 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1453 else 1454 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1455 1456 if (olds) { 1457 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1458 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1459 key_list[idx]); 1460 olds = NULL; 1461 } 1462 1463 /* 1464 * Attach done. See how should we (or should not?) 1465 * attach a second key. 1466 */ 1467 if (sks == skw) { 1468 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1469 idx = PF_SK_STACK; 1470 sks = NULL; 1471 goto stateattach; 1472 } else if (sks != NULL) { 1473 /* 1474 * Continue attaching with stack key. 1475 */ 1476 sk = sks; 1477 kh = khs; 1478 idx = PF_SK_STACK; 1479 sks = NULL; 1480 goto keyattach; 1481 } 1482 1483 PF_STATE_LOCK(s); 1484 KEYS_UNLOCK(); 1485 1486 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1487 ("%s failure", __func__)); 1488 1489 return (0); 1490 #undef KEYS_UNLOCK 1491 } 1492 1493 static void 1494 pf_detach_state(struct pf_kstate *s) 1495 { 1496 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1497 struct pf_keyhash *kh; 1498 1499 NET_EPOCH_ASSERT(); 1500 MPASS(s->timeout >= PFTM_MAX); 1501 1502 pf_sctp_multihome_detach_addr(s); 1503 1504 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr) 1505 V_pflow_export_state_ptr(s); 1506 1507 if (sks != NULL) { 1508 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1509 PF_HASHROW_LOCK(kh); 1510 if (s->key[PF_SK_STACK] != NULL) 1511 pf_state_key_detach(s, PF_SK_STACK); 1512 /* 1513 * If both point to same key, then we are done. 1514 */ 1515 if (sks == s->key[PF_SK_WIRE]) { 1516 pf_state_key_detach(s, PF_SK_WIRE); 1517 PF_HASHROW_UNLOCK(kh); 1518 return; 1519 } 1520 PF_HASHROW_UNLOCK(kh); 1521 } 1522 1523 if (s->key[PF_SK_WIRE] != NULL) { 1524 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1525 PF_HASHROW_LOCK(kh); 1526 if (s->key[PF_SK_WIRE] != NULL) 1527 pf_state_key_detach(s, PF_SK_WIRE); 1528 PF_HASHROW_UNLOCK(kh); 1529 } 1530 } 1531 1532 static void 1533 pf_state_key_detach(struct pf_kstate *s, int idx) 1534 { 1535 struct pf_state_key *sk = s->key[idx]; 1536 #ifdef INVARIANTS 1537 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1538 1539 PF_HASHROW_ASSERT(kh); 1540 #endif 1541 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1542 s->key[idx] = NULL; 1543 1544 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1545 LIST_REMOVE(sk, entry); 1546 uma_zfree(V_pf_state_key_z, sk); 1547 } 1548 } 1549 1550 static int 1551 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1552 { 1553 struct pf_state_key *sk = mem; 1554 1555 bzero(sk, sizeof(struct pf_state_key_cmp)); 1556 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1557 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1558 1559 return (0); 1560 } 1561 1562 static int 1563 pf_state_key_addr_setup(struct pf_pdesc *pd, 1564 struct pf_state_key_cmp *key, int multi) 1565 { 1566 struct pf_addr *saddr = pd->src; 1567 struct pf_addr *daddr = pd->dst; 1568 #ifdef INET6 1569 struct nd_neighbor_solicit nd; 1570 struct pf_addr *target; 1571 u_short action, reason; 1572 1573 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6) 1574 goto copy; 1575 1576 switch (pd->hdr.icmp6.icmp6_type) { 1577 case ND_NEIGHBOR_SOLICIT: 1578 if (multi) 1579 return (-1); 1580 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af)) 1581 return (-1); 1582 target = (struct pf_addr *)&nd.nd_ns_target; 1583 daddr = target; 1584 break; 1585 case ND_NEIGHBOR_ADVERT: 1586 if (multi) 1587 return (-1); 1588 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af)) 1589 return (-1); 1590 target = (struct pf_addr *)&nd.nd_ns_target; 1591 saddr = target; 1592 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) { 1593 key->addr[pd->didx].addr32[0] = 0; 1594 key->addr[pd->didx].addr32[1] = 0; 1595 key->addr[pd->didx].addr32[2] = 0; 1596 key->addr[pd->didx].addr32[3] = 0; 1597 daddr = NULL; /* overwritten */ 1598 } 1599 break; 1600 default: 1601 if (multi == PF_ICMP_MULTI_LINK) { 1602 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL; 1603 key->addr[pd->sidx].addr32[1] = 0; 1604 key->addr[pd->sidx].addr32[2] = 0; 1605 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE; 1606 saddr = NULL; /* overwritten */ 1607 } 1608 } 1609 copy: 1610 #endif 1611 if (saddr) 1612 PF_ACPY(&key->addr[pd->sidx], saddr, pd->af); 1613 if (daddr) 1614 PF_ACPY(&key->addr[pd->didx], daddr, pd->af); 1615 1616 return (0); 1617 } 1618 1619 struct pf_state_key * 1620 pf_state_key_setup(struct pf_pdesc *pd, 1621 struct pf_addr *saddr, struct pf_addr *daddr, u_int16_t sport, 1622 u_int16_t dport) 1623 { 1624 struct pf_state_key *sk; 1625 1626 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1627 if (sk == NULL) 1628 return (NULL); 1629 1630 if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)sk, 1631 0)) { 1632 uma_zfree(V_pf_state_key_z, sk); 1633 return (NULL); 1634 } 1635 1636 sk->port[pd->sidx] = sport; 1637 sk->port[pd->didx] = dport; 1638 sk->proto = pd->proto; 1639 sk->af = pd->af; 1640 1641 return (sk); 1642 } 1643 1644 struct pf_state_key * 1645 pf_state_key_clone(const struct pf_state_key *orig) 1646 { 1647 struct pf_state_key *sk; 1648 1649 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1650 if (sk == NULL) 1651 return (NULL); 1652 1653 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1654 1655 return (sk); 1656 } 1657 1658 int 1659 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1660 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1661 { 1662 struct pf_idhash *ih; 1663 struct pf_kstate *cur; 1664 int error; 1665 1666 NET_EPOCH_ASSERT(); 1667 1668 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1669 ("%s: sks not pristine", __func__)); 1670 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1671 ("%s: skw not pristine", __func__)); 1672 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1673 1674 s->kif = kif; 1675 s->orig_kif = orig_kif; 1676 1677 if (s->id == 0 && s->creatorid == 0) { 1678 s->id = alloc_unr64(&V_pf_stateid); 1679 s->id = htobe64(s->id); 1680 s->creatorid = V_pf_status.hostid; 1681 } 1682 1683 /* Returns with ID locked on success. */ 1684 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1685 return (error); 1686 1687 ih = &V_pf_idhash[PF_IDHASH(s)]; 1688 PF_HASHROW_ASSERT(ih); 1689 LIST_FOREACH(cur, &ih->states, entry) 1690 if (cur->id == s->id && cur->creatorid == s->creatorid) 1691 break; 1692 1693 if (cur != NULL) { 1694 s->timeout = PFTM_UNLINKED; 1695 PF_HASHROW_UNLOCK(ih); 1696 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1697 printf("pf: state ID collision: " 1698 "id: %016llx creatorid: %08x\n", 1699 (unsigned long long)be64toh(s->id), 1700 ntohl(s->creatorid)); 1701 } 1702 pf_detach_state(s); 1703 return (EEXIST); 1704 } 1705 LIST_INSERT_HEAD(&ih->states, s, entry); 1706 /* One for keys, one for ID hash. */ 1707 refcount_init(&s->refs, 2); 1708 1709 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1710 if (V_pfsync_insert_state_ptr != NULL) 1711 V_pfsync_insert_state_ptr(s); 1712 1713 /* Returns locked. */ 1714 return (0); 1715 } 1716 1717 /* 1718 * Find state by ID: returns with locked row on success. 1719 */ 1720 struct pf_kstate * 1721 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1722 { 1723 struct pf_idhash *ih; 1724 struct pf_kstate *s; 1725 1726 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1727 1728 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))]; 1729 1730 PF_HASHROW_LOCK(ih); 1731 LIST_FOREACH(s, &ih->states, entry) 1732 if (s->id == id && s->creatorid == creatorid) 1733 break; 1734 1735 if (s == NULL) 1736 PF_HASHROW_UNLOCK(ih); 1737 1738 return (s); 1739 } 1740 1741 /* 1742 * Find state by key. 1743 * Returns with ID hash slot locked on success. 1744 */ 1745 static struct pf_kstate * 1746 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key, 1747 u_int dir) 1748 { 1749 struct pf_keyhash *kh; 1750 struct pf_state_key *sk; 1751 struct pf_kstate *s; 1752 int idx; 1753 1754 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1755 1756 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1757 1758 PF_HASHROW_LOCK(kh); 1759 LIST_FOREACH(sk, &kh->keys, entry) 1760 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1761 break; 1762 if (sk == NULL) { 1763 PF_HASHROW_UNLOCK(kh); 1764 return (NULL); 1765 } 1766 1767 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1768 1769 /* List is sorted, if-bound states before floating ones. */ 1770 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1771 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) { 1772 PF_STATE_LOCK(s); 1773 PF_HASHROW_UNLOCK(kh); 1774 if (__predict_false(s->timeout >= PFTM_MAX)) { 1775 /* 1776 * State is either being processed by 1777 * pf_unlink_state() in an other thread, or 1778 * is scheduled for immediate expiry. 1779 */ 1780 PF_STATE_UNLOCK(s); 1781 return (NULL); 1782 } 1783 return (s); 1784 } 1785 PF_HASHROW_UNLOCK(kh); 1786 1787 return (NULL); 1788 } 1789 1790 /* 1791 * Returns with ID hash slot locked on success. 1792 */ 1793 struct pf_kstate * 1794 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more) 1795 { 1796 struct pf_keyhash *kh; 1797 struct pf_state_key *sk; 1798 struct pf_kstate *s, *ret = NULL; 1799 int idx, inout = 0; 1800 1801 if (more != NULL) 1802 *more = 0; 1803 1804 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1805 1806 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1807 1808 PF_HASHROW_LOCK(kh); 1809 LIST_FOREACH(sk, &kh->keys, entry) 1810 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1811 break; 1812 if (sk == NULL) { 1813 PF_HASHROW_UNLOCK(kh); 1814 return (NULL); 1815 } 1816 switch (dir) { 1817 case PF_IN: 1818 idx = PF_SK_WIRE; 1819 break; 1820 case PF_OUT: 1821 idx = PF_SK_STACK; 1822 break; 1823 case PF_INOUT: 1824 idx = PF_SK_WIRE; 1825 inout = 1; 1826 break; 1827 default: 1828 panic("%s: dir %u", __func__, dir); 1829 } 1830 second_run: 1831 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1832 if (more == NULL) { 1833 PF_STATE_LOCK(s); 1834 PF_HASHROW_UNLOCK(kh); 1835 return (s); 1836 } 1837 1838 if (ret) 1839 (*more)++; 1840 else { 1841 ret = s; 1842 PF_STATE_LOCK(s); 1843 } 1844 } 1845 if (inout == 1) { 1846 inout = 0; 1847 idx = PF_SK_STACK; 1848 goto second_run; 1849 } 1850 PF_HASHROW_UNLOCK(kh); 1851 1852 return (ret); 1853 } 1854 1855 /* 1856 * FIXME 1857 * This routine is inefficient -- locks the state only to unlock immediately on 1858 * return. 1859 * It is racy -- after the state is unlocked nothing stops other threads from 1860 * removing it. 1861 */ 1862 bool 1863 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir) 1864 { 1865 struct pf_kstate *s; 1866 1867 s = pf_find_state_all(key, dir, NULL); 1868 if (s != NULL) { 1869 PF_STATE_UNLOCK(s); 1870 return (true); 1871 } 1872 return (false); 1873 } 1874 1875 struct pf_udp_mapping * 1876 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port, 1877 struct pf_addr *nat_addr, uint16_t nat_port) 1878 { 1879 struct pf_udp_mapping *mapping; 1880 1881 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO); 1882 if (mapping == NULL) 1883 return (NULL); 1884 PF_ACPY(&mapping->endpoints[0].addr, src_addr, af); 1885 mapping->endpoints[0].port = src_port; 1886 mapping->endpoints[0].af = af; 1887 mapping->endpoints[0].mapping = mapping; 1888 PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af); 1889 mapping->endpoints[1].port = nat_port; 1890 mapping->endpoints[1].af = af; 1891 mapping->endpoints[1].mapping = mapping; 1892 refcount_init(&mapping->refs, 1); 1893 return (mapping); 1894 } 1895 1896 int 1897 pf_udp_mapping_insert(struct pf_udp_mapping *mapping) 1898 { 1899 struct pf_udpendpointhash *h0, *h1; 1900 struct pf_udp_endpoint *endpoint; 1901 int ret = EEXIST; 1902 1903 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 1904 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 1905 if (h0 == h1) { 1906 PF_HASHROW_LOCK(h0); 1907 } else if (h0 < h1) { 1908 PF_HASHROW_LOCK(h0); 1909 PF_HASHROW_LOCK(h1); 1910 } else { 1911 PF_HASHROW_LOCK(h1); 1912 PF_HASHROW_LOCK(h0); 1913 } 1914 1915 LIST_FOREACH(endpoint, &h0->endpoints, entry) { 1916 if (bcmp(endpoint, &mapping->endpoints[0], 1917 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1918 break; 1919 } 1920 if (endpoint != NULL) 1921 goto cleanup; 1922 LIST_FOREACH(endpoint, &h1->endpoints, entry) { 1923 if (bcmp(endpoint, &mapping->endpoints[1], 1924 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1925 break; 1926 } 1927 if (endpoint != NULL) 1928 goto cleanup; 1929 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry); 1930 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry); 1931 ret = 0; 1932 1933 cleanup: 1934 if (h0 != h1) { 1935 PF_HASHROW_UNLOCK(h0); 1936 PF_HASHROW_UNLOCK(h1); 1937 } else { 1938 PF_HASHROW_UNLOCK(h0); 1939 } 1940 return (ret); 1941 } 1942 1943 void 1944 pf_udp_mapping_release(struct pf_udp_mapping *mapping) 1945 { 1946 /* refcount is synchronized on the source endpoint's row lock */ 1947 struct pf_udpendpointhash *h0, *h1; 1948 1949 if (mapping == NULL) 1950 return; 1951 1952 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 1953 PF_HASHROW_LOCK(h0); 1954 if (refcount_release(&mapping->refs)) { 1955 LIST_REMOVE(&mapping->endpoints[0], entry); 1956 PF_HASHROW_UNLOCK(h0); 1957 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 1958 PF_HASHROW_LOCK(h1); 1959 LIST_REMOVE(&mapping->endpoints[1], entry); 1960 PF_HASHROW_UNLOCK(h1); 1961 1962 uma_zfree(V_pf_udp_mapping_z, mapping); 1963 } else { 1964 PF_HASHROW_UNLOCK(h0); 1965 } 1966 } 1967 1968 1969 struct pf_udp_mapping * 1970 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key) 1971 { 1972 struct pf_udpendpointhash *uh; 1973 struct pf_udp_endpoint *endpoint; 1974 1975 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)]; 1976 1977 PF_HASHROW_LOCK(uh); 1978 LIST_FOREACH(endpoint, &uh->endpoints, entry) { 1979 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 && 1980 bcmp(endpoint, &endpoint->mapping->endpoints[0], 1981 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1982 break; 1983 } 1984 if (endpoint == NULL) { 1985 PF_HASHROW_UNLOCK(uh); 1986 return (NULL); 1987 } 1988 refcount_acquire(&endpoint->mapping->refs); 1989 PF_HASHROW_UNLOCK(uh); 1990 return (endpoint->mapping); 1991 } 1992 /* END state table stuff */ 1993 1994 static void 1995 pf_send(struct pf_send_entry *pfse) 1996 { 1997 1998 PF_SENDQ_LOCK(); 1999 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 2000 PF_SENDQ_UNLOCK(); 2001 swi_sched(V_pf_swi_cookie, 0); 2002 } 2003 2004 static bool 2005 pf_isforlocal(struct mbuf *m, int af) 2006 { 2007 switch (af) { 2008 #ifdef INET 2009 case AF_INET: { 2010 struct ip *ip = mtod(m, struct ip *); 2011 2012 return (in_localip(ip->ip_dst)); 2013 } 2014 #endif 2015 #ifdef INET6 2016 case AF_INET6: { 2017 struct ip6_hdr *ip6; 2018 struct in6_ifaddr *ia; 2019 ip6 = mtod(m, struct ip6_hdr *); 2020 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 2021 if (ia == NULL) 2022 return (false); 2023 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 2024 } 2025 #endif 2026 } 2027 2028 return (false); 2029 } 2030 2031 int 2032 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type, 2033 int *icmp_dir, int *multi, u_int16_t *virtual_id, u_int16_t *virtual_type) 2034 { 2035 /* 2036 * ICMP types marked with PF_OUT are typically responses to 2037 * PF_IN, and will match states in the opposite direction. 2038 * PF_IN ICMP types need to match a state with that type. 2039 */ 2040 *icmp_dir = PF_OUT; 2041 *multi = PF_ICMP_MULTI_LINK; 2042 /* Queries (and responses) */ 2043 switch (pd->af) { 2044 #ifdef INET 2045 case AF_INET: 2046 switch (type) { 2047 case ICMP_ECHO: 2048 *icmp_dir = PF_IN; 2049 case ICMP_ECHOREPLY: 2050 *virtual_type = ICMP_ECHO; 2051 *virtual_id = pd->hdr.icmp.icmp_id; 2052 break; 2053 2054 case ICMP_TSTAMP: 2055 *icmp_dir = PF_IN; 2056 case ICMP_TSTAMPREPLY: 2057 *virtual_type = ICMP_TSTAMP; 2058 *virtual_id = pd->hdr.icmp.icmp_id; 2059 break; 2060 2061 case ICMP_IREQ: 2062 *icmp_dir = PF_IN; 2063 case ICMP_IREQREPLY: 2064 *virtual_type = ICMP_IREQ; 2065 *virtual_id = pd->hdr.icmp.icmp_id; 2066 break; 2067 2068 case ICMP_MASKREQ: 2069 *icmp_dir = PF_IN; 2070 case ICMP_MASKREPLY: 2071 *virtual_type = ICMP_MASKREQ; 2072 *virtual_id = pd->hdr.icmp.icmp_id; 2073 break; 2074 2075 case ICMP_IPV6_WHEREAREYOU: 2076 *icmp_dir = PF_IN; 2077 case ICMP_IPV6_IAMHERE: 2078 *virtual_type = ICMP_IPV6_WHEREAREYOU; 2079 *virtual_id = 0; /* Nothing sane to match on! */ 2080 break; 2081 2082 case ICMP_MOBILE_REGREQUEST: 2083 *icmp_dir = PF_IN; 2084 case ICMP_MOBILE_REGREPLY: 2085 *virtual_type = ICMP_MOBILE_REGREQUEST; 2086 *virtual_id = 0; /* Nothing sane to match on! */ 2087 break; 2088 2089 case ICMP_ROUTERSOLICIT: 2090 *icmp_dir = PF_IN; 2091 case ICMP_ROUTERADVERT: 2092 *virtual_type = ICMP_ROUTERSOLICIT; 2093 *virtual_id = 0; /* Nothing sane to match on! */ 2094 break; 2095 2096 /* These ICMP types map to other connections */ 2097 case ICMP_UNREACH: 2098 case ICMP_SOURCEQUENCH: 2099 case ICMP_REDIRECT: 2100 case ICMP_TIMXCEED: 2101 case ICMP_PARAMPROB: 2102 /* These will not be used, but set them anyway */ 2103 *icmp_dir = PF_IN; 2104 *virtual_type = type; 2105 *virtual_id = 0; 2106 HTONS(*virtual_type); 2107 return (1); /* These types match to another state */ 2108 2109 /* 2110 * All remaining ICMP types get their own states, 2111 * and will only match in one direction. 2112 */ 2113 default: 2114 *icmp_dir = PF_IN; 2115 *virtual_type = type; 2116 *virtual_id = 0; 2117 break; 2118 } 2119 break; 2120 #endif /* INET */ 2121 #ifdef INET6 2122 case AF_INET6: 2123 switch (type) { 2124 case ICMP6_ECHO_REQUEST: 2125 *icmp_dir = PF_IN; 2126 case ICMP6_ECHO_REPLY: 2127 *virtual_type = ICMP6_ECHO_REQUEST; 2128 *virtual_id = pd->hdr.icmp6.icmp6_id; 2129 break; 2130 2131 case MLD_LISTENER_QUERY: 2132 case MLD_LISTENER_REPORT: { 2133 /* 2134 * Listener Report can be sent by clients 2135 * without an associated Listener Query. 2136 * In addition to that, when Report is sent as a 2137 * reply to a Query its source and destination 2138 * address are different. 2139 */ 2140 *icmp_dir = PF_IN; 2141 *virtual_type = MLD_LISTENER_QUERY; 2142 *virtual_id = 0; 2143 break; 2144 } 2145 case MLD_MTRACE: 2146 *icmp_dir = PF_IN; 2147 case MLD_MTRACE_RESP: 2148 *virtual_type = MLD_MTRACE; 2149 *virtual_id = 0; /* Nothing sane to match on! */ 2150 break; 2151 2152 case ND_NEIGHBOR_SOLICIT: 2153 *icmp_dir = PF_IN; 2154 case ND_NEIGHBOR_ADVERT: { 2155 *virtual_type = ND_NEIGHBOR_SOLICIT; 2156 *virtual_id = 0; 2157 break; 2158 } 2159 2160 /* 2161 * These ICMP types map to other connections. 2162 * ND_REDIRECT can't be in this list because the triggering 2163 * packet header is optional. 2164 */ 2165 case ICMP6_DST_UNREACH: 2166 case ICMP6_PACKET_TOO_BIG: 2167 case ICMP6_TIME_EXCEEDED: 2168 case ICMP6_PARAM_PROB: 2169 /* These will not be used, but set them anyway */ 2170 *icmp_dir = PF_IN; 2171 *virtual_type = type; 2172 *virtual_id = 0; 2173 HTONS(*virtual_type); 2174 return (1); /* These types match to another state */ 2175 /* 2176 * All remaining ICMP6 types get their own states, 2177 * and will only match in one direction. 2178 */ 2179 default: 2180 *icmp_dir = PF_IN; 2181 *virtual_type = type; 2182 *virtual_id = 0; 2183 break; 2184 } 2185 break; 2186 #endif /* INET6 */ 2187 } 2188 HTONS(*virtual_type); 2189 return (0); /* These types match to their own state */ 2190 } 2191 2192 void 2193 pf_intr(void *v) 2194 { 2195 struct epoch_tracker et; 2196 struct pf_send_head queue; 2197 struct pf_send_entry *pfse, *next; 2198 2199 CURVNET_SET((struct vnet *)v); 2200 2201 PF_SENDQ_LOCK(); 2202 queue = V_pf_sendqueue; 2203 STAILQ_INIT(&V_pf_sendqueue); 2204 PF_SENDQ_UNLOCK(); 2205 2206 NET_EPOCH_ENTER(et); 2207 2208 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 2209 switch (pfse->pfse_type) { 2210 #ifdef INET 2211 case PFSE_IP: { 2212 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 2213 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif, 2214 ("%s: rcvif != loif", __func__)); 2215 2216 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 2217 pfse->pfse_m->m_pkthdr.csum_flags |= 2218 CSUM_IP_VALID | CSUM_IP_CHECKED; 2219 ip_input(pfse->pfse_m); 2220 } else { 2221 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2222 NULL); 2223 } 2224 break; 2225 } 2226 case PFSE_ICMP: 2227 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 2228 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 2229 break; 2230 #endif /* INET */ 2231 #ifdef INET6 2232 case PFSE_IP6: 2233 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 2234 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif, 2235 ("%s: rcvif != loif", __func__)); 2236 2237 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL | 2238 M_LOOP; 2239 ip6_input(pfse->pfse_m); 2240 } else { 2241 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2242 NULL, NULL); 2243 } 2244 break; 2245 case PFSE_ICMP6: 2246 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 2247 pfse->icmpopts.code, pfse->icmpopts.mtu); 2248 break; 2249 #endif /* INET6 */ 2250 default: 2251 panic("%s: unknown type", __func__); 2252 } 2253 free(pfse, M_PFTEMP); 2254 } 2255 NET_EPOCH_EXIT(et); 2256 CURVNET_RESTORE(); 2257 } 2258 2259 #define pf_purge_thread_period (hz / 10) 2260 2261 #ifdef PF_WANT_32_TO_64_COUNTER 2262 static void 2263 pf_status_counter_u64_periodic(void) 2264 { 2265 2266 PF_RULES_RASSERT(); 2267 2268 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 2269 return; 2270 } 2271 2272 for (int i = 0; i < FCNT_MAX; i++) { 2273 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 2274 } 2275 } 2276 2277 static void 2278 pf_kif_counter_u64_periodic(void) 2279 { 2280 struct pfi_kkif *kif; 2281 size_t r, run; 2282 2283 PF_RULES_RASSERT(); 2284 2285 if (__predict_false(V_pf_allkifcount == 0)) { 2286 return; 2287 } 2288 2289 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2290 return; 2291 } 2292 2293 run = V_pf_allkifcount / 10; 2294 if (run < 5) 2295 run = 5; 2296 2297 for (r = 0; r < run; r++) { 2298 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 2299 if (kif == NULL) { 2300 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2301 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 2302 break; 2303 } 2304 2305 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2306 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 2307 2308 for (int i = 0; i < 2; i++) { 2309 for (int j = 0; j < 2; j++) { 2310 for (int k = 0; k < 2; k++) { 2311 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 2312 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 2313 } 2314 } 2315 } 2316 } 2317 } 2318 2319 static void 2320 pf_rule_counter_u64_periodic(void) 2321 { 2322 struct pf_krule *rule; 2323 size_t r, run; 2324 2325 PF_RULES_RASSERT(); 2326 2327 if (__predict_false(V_pf_allrulecount == 0)) { 2328 return; 2329 } 2330 2331 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2332 return; 2333 } 2334 2335 run = V_pf_allrulecount / 10; 2336 if (run < 5) 2337 run = 5; 2338 2339 for (r = 0; r < run; r++) { 2340 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 2341 if (rule == NULL) { 2342 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2343 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 2344 break; 2345 } 2346 2347 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2348 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 2349 2350 pf_counter_u64_periodic(&rule->evaluations); 2351 for (int i = 0; i < 2; i++) { 2352 pf_counter_u64_periodic(&rule->packets[i]); 2353 pf_counter_u64_periodic(&rule->bytes[i]); 2354 } 2355 } 2356 } 2357 2358 static void 2359 pf_counter_u64_periodic_main(void) 2360 { 2361 PF_RULES_RLOCK_TRACKER; 2362 2363 V_pf_counter_periodic_iter++; 2364 2365 PF_RULES_RLOCK(); 2366 pf_counter_u64_critical_enter(); 2367 pf_status_counter_u64_periodic(); 2368 pf_kif_counter_u64_periodic(); 2369 pf_rule_counter_u64_periodic(); 2370 pf_counter_u64_critical_exit(); 2371 PF_RULES_RUNLOCK(); 2372 } 2373 #else 2374 #define pf_counter_u64_periodic_main() do { } while (0) 2375 #endif 2376 2377 void 2378 pf_purge_thread(void *unused __unused) 2379 { 2380 struct epoch_tracker et; 2381 2382 VNET_ITERATOR_DECL(vnet_iter); 2383 2384 sx_xlock(&pf_end_lock); 2385 while (pf_end_threads == 0) { 2386 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 2387 2388 VNET_LIST_RLOCK(); 2389 NET_EPOCH_ENTER(et); 2390 VNET_FOREACH(vnet_iter) { 2391 CURVNET_SET(vnet_iter); 2392 2393 /* Wait until V_pf_default_rule is initialized. */ 2394 if (V_pf_vnet_active == 0) { 2395 CURVNET_RESTORE(); 2396 continue; 2397 } 2398 2399 pf_counter_u64_periodic_main(); 2400 2401 /* 2402 * Process 1/interval fraction of the state 2403 * table every run. 2404 */ 2405 V_pf_purge_idx = 2406 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask / 2407 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 2408 2409 /* 2410 * Purge other expired types every 2411 * PFTM_INTERVAL seconds. 2412 */ 2413 if (V_pf_purge_idx == 0) { 2414 /* 2415 * Order is important: 2416 * - states and src nodes reference rules 2417 * - states and rules reference kifs 2418 */ 2419 pf_purge_expired_fragments(); 2420 pf_purge_expired_src_nodes(); 2421 pf_purge_unlinked_rules(); 2422 pfi_kkif_purge(); 2423 } 2424 CURVNET_RESTORE(); 2425 } 2426 NET_EPOCH_EXIT(et); 2427 VNET_LIST_RUNLOCK(); 2428 } 2429 2430 pf_end_threads++; 2431 sx_xunlock(&pf_end_lock); 2432 kproc_exit(0); 2433 } 2434 2435 void 2436 pf_unload_vnet_purge(void) 2437 { 2438 2439 /* 2440 * To cleanse up all kifs and rules we need 2441 * two runs: first one clears reference flags, 2442 * then pf_purge_expired_states() doesn't 2443 * raise them, and then second run frees. 2444 */ 2445 pf_purge_unlinked_rules(); 2446 pfi_kkif_purge(); 2447 2448 /* 2449 * Now purge everything. 2450 */ 2451 pf_purge_expired_states(0, V_pf_hashmask); 2452 pf_purge_fragments(UINT_MAX); 2453 pf_purge_expired_src_nodes(); 2454 2455 /* 2456 * Now all kifs & rules should be unreferenced, 2457 * thus should be successfully freed. 2458 */ 2459 pf_purge_unlinked_rules(); 2460 pfi_kkif_purge(); 2461 } 2462 2463 u_int32_t 2464 pf_state_expires(const struct pf_kstate *state) 2465 { 2466 u_int32_t timeout; 2467 u_int32_t start; 2468 u_int32_t end; 2469 u_int32_t states; 2470 2471 /* handle all PFTM_* > PFTM_MAX here */ 2472 if (state->timeout == PFTM_PURGE) 2473 return (time_uptime); 2474 KASSERT(state->timeout != PFTM_UNLINKED, 2475 ("pf_state_expires: timeout == PFTM_UNLINKED")); 2476 KASSERT((state->timeout < PFTM_MAX), 2477 ("pf_state_expires: timeout > PFTM_MAX")); 2478 timeout = state->rule->timeout[state->timeout]; 2479 if (!timeout) 2480 timeout = V_pf_default_rule.timeout[state->timeout]; 2481 start = state->rule->timeout[PFTM_ADAPTIVE_START]; 2482 if (start && state->rule != &V_pf_default_rule) { 2483 end = state->rule->timeout[PFTM_ADAPTIVE_END]; 2484 states = counter_u64_fetch(state->rule->states_cur); 2485 } else { 2486 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 2487 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 2488 states = V_pf_status.states; 2489 } 2490 if (end && states > start && start < end) { 2491 if (states < end) { 2492 timeout = (u_int64_t)timeout * (end - states) / 2493 (end - start); 2494 return ((state->expire / 1000) + timeout); 2495 } 2496 else 2497 return (time_uptime); 2498 } 2499 return ((state->expire / 1000) + timeout); 2500 } 2501 2502 void 2503 pf_purge_expired_src_nodes(void) 2504 { 2505 struct pf_ksrc_node_list freelist; 2506 struct pf_srchash *sh; 2507 struct pf_ksrc_node *cur, *next; 2508 int i; 2509 2510 LIST_INIT(&freelist); 2511 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 2512 PF_HASHROW_LOCK(sh); 2513 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 2514 if (cur->states == 0 && cur->expire <= time_uptime) { 2515 pf_unlink_src_node(cur); 2516 LIST_INSERT_HEAD(&freelist, cur, entry); 2517 } else if (cur->rule != NULL) 2518 cur->rule->rule_ref |= PFRULE_REFS; 2519 PF_HASHROW_UNLOCK(sh); 2520 } 2521 2522 pf_free_src_nodes(&freelist); 2523 2524 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2525 } 2526 2527 static void 2528 pf_src_tree_remove_state(struct pf_kstate *s) 2529 { 2530 struct pf_ksrc_node *sn; 2531 uint32_t timeout; 2532 2533 timeout = s->rule->timeout[PFTM_SRC_NODE] ? 2534 s->rule->timeout[PFTM_SRC_NODE] : 2535 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2536 2537 if (s->src_node != NULL) { 2538 sn = s->src_node; 2539 PF_SRC_NODE_LOCK(sn); 2540 if (s->src.tcp_est) 2541 --sn->conn; 2542 if (--sn->states == 0) 2543 sn->expire = time_uptime + timeout; 2544 PF_SRC_NODE_UNLOCK(sn); 2545 } 2546 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 2547 sn = s->nat_src_node; 2548 PF_SRC_NODE_LOCK(sn); 2549 if (--sn->states == 0) 2550 sn->expire = time_uptime + timeout; 2551 PF_SRC_NODE_UNLOCK(sn); 2552 } 2553 s->src_node = s->nat_src_node = NULL; 2554 } 2555 2556 /* 2557 * Unlink and potentilly free a state. Function may be 2558 * called with ID hash row locked, but always returns 2559 * unlocked, since it needs to go through key hash locking. 2560 */ 2561 int 2562 pf_unlink_state(struct pf_kstate *s) 2563 { 2564 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2565 2566 NET_EPOCH_ASSERT(); 2567 PF_HASHROW_ASSERT(ih); 2568 2569 if (s->timeout == PFTM_UNLINKED) { 2570 /* 2571 * State is being processed 2572 * by pf_unlink_state() in 2573 * an other thread. 2574 */ 2575 PF_HASHROW_UNLOCK(ih); 2576 return (0); /* XXXGL: undefined actually */ 2577 } 2578 2579 if (s->src.state == PF_TCPS_PROXY_DST) { 2580 /* XXX wire key the right one? */ 2581 pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af, 2582 &s->key[PF_SK_WIRE]->addr[1], 2583 &s->key[PF_SK_WIRE]->addr[0], 2584 s->key[PF_SK_WIRE]->port[1], 2585 s->key[PF_SK_WIRE]->port[0], 2586 s->src.seqhi, s->src.seqlo + 1, 2587 TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0, 2588 s->act.rtableid); 2589 } 2590 2591 LIST_REMOVE(s, entry); 2592 pf_src_tree_remove_state(s); 2593 2594 if (V_pfsync_delete_state_ptr != NULL) 2595 V_pfsync_delete_state_ptr(s); 2596 2597 STATE_DEC_COUNTERS(s); 2598 2599 s->timeout = PFTM_UNLINKED; 2600 2601 /* Ensure we remove it from the list of halfopen states, if needed. */ 2602 if (s->key[PF_SK_STACK] != NULL && 2603 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2604 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2605 2606 PF_HASHROW_UNLOCK(ih); 2607 2608 pf_detach_state(s); 2609 2610 pf_udp_mapping_release(s->udp_mapping); 2611 2612 /* pf_state_insert() initialises refs to 2 */ 2613 return (pf_release_staten(s, 2)); 2614 } 2615 2616 struct pf_kstate * 2617 pf_alloc_state(int flags) 2618 { 2619 2620 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2621 } 2622 2623 void 2624 pf_free_state(struct pf_kstate *cur) 2625 { 2626 struct pf_krule_item *ri; 2627 2628 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2629 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2630 cur->timeout)); 2631 2632 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2633 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2634 free(ri, M_PF_RULE_ITEM); 2635 } 2636 2637 pf_normalize_tcp_cleanup(cur); 2638 uma_zfree(V_pf_state_z, cur); 2639 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2640 } 2641 2642 /* 2643 * Called only from pf_purge_thread(), thus serialized. 2644 */ 2645 static u_int 2646 pf_purge_expired_states(u_int i, int maxcheck) 2647 { 2648 struct pf_idhash *ih; 2649 struct pf_kstate *s; 2650 struct pf_krule_item *mrm; 2651 size_t count __unused; 2652 2653 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2654 2655 /* 2656 * Go through hash and unlink states that expire now. 2657 */ 2658 while (maxcheck > 0) { 2659 count = 0; 2660 ih = &V_pf_idhash[i]; 2661 2662 /* only take the lock if we expect to do work */ 2663 if (!LIST_EMPTY(&ih->states)) { 2664 relock: 2665 PF_HASHROW_LOCK(ih); 2666 LIST_FOREACH(s, &ih->states, entry) { 2667 if (pf_state_expires(s) <= time_uptime) { 2668 V_pf_status.states -= 2669 pf_unlink_state(s); 2670 goto relock; 2671 } 2672 s->rule->rule_ref |= PFRULE_REFS; 2673 if (s->nat_rule != NULL) 2674 s->nat_rule->rule_ref |= PFRULE_REFS; 2675 if (s->anchor != NULL) 2676 s->anchor->rule_ref |= PFRULE_REFS; 2677 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2678 SLIST_FOREACH(mrm, &s->match_rules, entry) 2679 mrm->r->rule_ref |= PFRULE_REFS; 2680 if (s->rt_kif) 2681 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2682 count++; 2683 } 2684 PF_HASHROW_UNLOCK(ih); 2685 } 2686 2687 SDT_PROBE2(pf, purge, state, rowcount, i, count); 2688 2689 /* Return when we hit end of hash. */ 2690 if (++i > V_pf_hashmask) { 2691 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2692 return (0); 2693 } 2694 2695 maxcheck--; 2696 } 2697 2698 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2699 2700 return (i); 2701 } 2702 2703 static void 2704 pf_purge_unlinked_rules(void) 2705 { 2706 struct pf_krulequeue tmpq; 2707 struct pf_krule *r, *r1; 2708 2709 /* 2710 * If we have overloading task pending, then we'd 2711 * better skip purging this time. There is a tiny 2712 * probability that overloading task references 2713 * an already unlinked rule. 2714 */ 2715 PF_OVERLOADQ_LOCK(); 2716 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2717 PF_OVERLOADQ_UNLOCK(); 2718 return; 2719 } 2720 PF_OVERLOADQ_UNLOCK(); 2721 2722 /* 2723 * Do naive mark-and-sweep garbage collecting of old rules. 2724 * Reference flag is raised by pf_purge_expired_states() 2725 * and pf_purge_expired_src_nodes(). 2726 * 2727 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2728 * use a temporary queue. 2729 */ 2730 TAILQ_INIT(&tmpq); 2731 PF_UNLNKDRULES_LOCK(); 2732 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2733 if (!(r->rule_ref & PFRULE_REFS)) { 2734 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2735 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2736 } else 2737 r->rule_ref &= ~PFRULE_REFS; 2738 } 2739 PF_UNLNKDRULES_UNLOCK(); 2740 2741 if (!TAILQ_EMPTY(&tmpq)) { 2742 PF_CONFIG_LOCK(); 2743 PF_RULES_WLOCK(); 2744 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2745 TAILQ_REMOVE(&tmpq, r, entries); 2746 pf_free_rule(r); 2747 } 2748 PF_RULES_WUNLOCK(); 2749 PF_CONFIG_UNLOCK(); 2750 } 2751 } 2752 2753 void 2754 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2755 { 2756 switch (af) { 2757 #ifdef INET 2758 case AF_INET: { 2759 u_int32_t a = ntohl(addr->addr32[0]); 2760 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2761 (a>>8)&255, a&255); 2762 if (p) { 2763 p = ntohs(p); 2764 printf(":%u", p); 2765 } 2766 break; 2767 } 2768 #endif /* INET */ 2769 #ifdef INET6 2770 case AF_INET6: { 2771 u_int16_t b; 2772 u_int8_t i, curstart, curend, maxstart, maxend; 2773 curstart = curend = maxstart = maxend = 255; 2774 for (i = 0; i < 8; i++) { 2775 if (!addr->addr16[i]) { 2776 if (curstart == 255) 2777 curstart = i; 2778 curend = i; 2779 } else { 2780 if ((curend - curstart) > 2781 (maxend - maxstart)) { 2782 maxstart = curstart; 2783 maxend = curend; 2784 } 2785 curstart = curend = 255; 2786 } 2787 } 2788 if ((curend - curstart) > 2789 (maxend - maxstart)) { 2790 maxstart = curstart; 2791 maxend = curend; 2792 } 2793 for (i = 0; i < 8; i++) { 2794 if (i >= maxstart && i <= maxend) { 2795 if (i == 0) 2796 printf(":"); 2797 if (i == maxend) 2798 printf(":"); 2799 } else { 2800 b = ntohs(addr->addr16[i]); 2801 printf("%x", b); 2802 if (i < 7) 2803 printf(":"); 2804 } 2805 } 2806 if (p) { 2807 p = ntohs(p); 2808 printf("[%u]", p); 2809 } 2810 break; 2811 } 2812 #endif /* INET6 */ 2813 } 2814 } 2815 2816 void 2817 pf_print_state(struct pf_kstate *s) 2818 { 2819 pf_print_state_parts(s, NULL, NULL); 2820 } 2821 2822 static void 2823 pf_print_state_parts(struct pf_kstate *s, 2824 struct pf_state_key *skwp, struct pf_state_key *sksp) 2825 { 2826 struct pf_state_key *skw, *sks; 2827 u_int8_t proto, dir; 2828 2829 /* Do our best to fill these, but they're skipped if NULL */ 2830 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2831 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2832 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2833 dir = s ? s->direction : 0; 2834 2835 switch (proto) { 2836 case IPPROTO_IPV4: 2837 printf("IPv4"); 2838 break; 2839 case IPPROTO_IPV6: 2840 printf("IPv6"); 2841 break; 2842 case IPPROTO_TCP: 2843 printf("TCP"); 2844 break; 2845 case IPPROTO_UDP: 2846 printf("UDP"); 2847 break; 2848 case IPPROTO_ICMP: 2849 printf("ICMP"); 2850 break; 2851 case IPPROTO_ICMPV6: 2852 printf("ICMPv6"); 2853 break; 2854 default: 2855 printf("%u", proto); 2856 break; 2857 } 2858 switch (dir) { 2859 case PF_IN: 2860 printf(" in"); 2861 break; 2862 case PF_OUT: 2863 printf(" out"); 2864 break; 2865 } 2866 if (skw) { 2867 printf(" wire: "); 2868 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2869 printf(" "); 2870 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2871 } 2872 if (sks) { 2873 printf(" stack: "); 2874 if (sks != skw) { 2875 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2876 printf(" "); 2877 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2878 } else 2879 printf("-"); 2880 } 2881 if (s) { 2882 if (proto == IPPROTO_TCP) { 2883 printf(" [lo=%u high=%u win=%u modulator=%u", 2884 s->src.seqlo, s->src.seqhi, 2885 s->src.max_win, s->src.seqdiff); 2886 if (s->src.wscale && s->dst.wscale) 2887 printf(" wscale=%u", 2888 s->src.wscale & PF_WSCALE_MASK); 2889 printf("]"); 2890 printf(" [lo=%u high=%u win=%u modulator=%u", 2891 s->dst.seqlo, s->dst.seqhi, 2892 s->dst.max_win, s->dst.seqdiff); 2893 if (s->src.wscale && s->dst.wscale) 2894 printf(" wscale=%u", 2895 s->dst.wscale & PF_WSCALE_MASK); 2896 printf("]"); 2897 } 2898 printf(" %u:%u", s->src.state, s->dst.state); 2899 if (s->rule) 2900 printf(" @%d", s->rule->nr); 2901 } 2902 } 2903 2904 void 2905 pf_print_flags(u_int8_t f) 2906 { 2907 if (f) 2908 printf(" "); 2909 if (f & TH_FIN) 2910 printf("F"); 2911 if (f & TH_SYN) 2912 printf("S"); 2913 if (f & TH_RST) 2914 printf("R"); 2915 if (f & TH_PUSH) 2916 printf("P"); 2917 if (f & TH_ACK) 2918 printf("A"); 2919 if (f & TH_URG) 2920 printf("U"); 2921 if (f & TH_ECE) 2922 printf("E"); 2923 if (f & TH_CWR) 2924 printf("W"); 2925 } 2926 2927 #define PF_SET_SKIP_STEPS(i) \ 2928 do { \ 2929 while (head[i] != cur) { \ 2930 head[i]->skip[i] = cur; \ 2931 head[i] = TAILQ_NEXT(head[i], entries); \ 2932 } \ 2933 } while (0) 2934 2935 void 2936 pf_calc_skip_steps(struct pf_krulequeue *rules) 2937 { 2938 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2939 int i; 2940 2941 cur = TAILQ_FIRST(rules); 2942 prev = cur; 2943 for (i = 0; i < PF_SKIP_COUNT; ++i) 2944 head[i] = cur; 2945 while (cur != NULL) { 2946 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2947 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2948 if (cur->direction != prev->direction) 2949 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2950 if (cur->af != prev->af) 2951 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2952 if (cur->proto != prev->proto) 2953 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2954 if (cur->src.neg != prev->src.neg || 2955 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2956 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2957 if (cur->dst.neg != prev->dst.neg || 2958 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2959 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2960 if (cur->src.port[0] != prev->src.port[0] || 2961 cur->src.port[1] != prev->src.port[1] || 2962 cur->src.port_op != prev->src.port_op) 2963 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2964 if (cur->dst.port[0] != prev->dst.port[0] || 2965 cur->dst.port[1] != prev->dst.port[1] || 2966 cur->dst.port_op != prev->dst.port_op) 2967 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2968 2969 prev = cur; 2970 cur = TAILQ_NEXT(cur, entries); 2971 } 2972 for (i = 0; i < PF_SKIP_COUNT; ++i) 2973 PF_SET_SKIP_STEPS(i); 2974 } 2975 2976 int 2977 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2978 { 2979 if (aw1->type != aw2->type) 2980 return (1); 2981 switch (aw1->type) { 2982 case PF_ADDR_ADDRMASK: 2983 case PF_ADDR_RANGE: 2984 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2985 return (1); 2986 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2987 return (1); 2988 return (0); 2989 case PF_ADDR_DYNIFTL: 2990 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2991 case PF_ADDR_NOROUTE: 2992 case PF_ADDR_URPFFAILED: 2993 return (0); 2994 case PF_ADDR_TABLE: 2995 return (aw1->p.tbl != aw2->p.tbl); 2996 default: 2997 printf("invalid address type: %d\n", aw1->type); 2998 return (1); 2999 } 3000 } 3001 3002 /** 3003 * Checksum updates are a little complicated because the checksum in the TCP/UDP 3004 * header isn't always a full checksum. In some cases (i.e. output) it's a 3005 * pseudo-header checksum, which is a partial checksum over src/dst IP 3006 * addresses, protocol number and length. 3007 * 3008 * That means we have the following cases: 3009 * * Input or forwarding: we don't have TSO, the checksum fields are full 3010 * checksums, we need to update the checksum whenever we change anything. 3011 * * Output (i.e. the checksum is a pseudo-header checksum): 3012 * x The field being updated is src/dst address or affects the length of 3013 * the packet. We need to update the pseudo-header checksum (note that this 3014 * checksum is not ones' complement). 3015 * x Some other field is being modified (e.g. src/dst port numbers): We 3016 * don't have to update anything. 3017 **/ 3018 u_int16_t 3019 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 3020 { 3021 u_int32_t x; 3022 3023 x = cksum + old - new; 3024 x = (x + (x >> 16)) & 0xffff; 3025 3026 /* optimise: eliminate a branch when not udp */ 3027 if (udp && cksum == 0x0000) 3028 return cksum; 3029 if (udp && x == 0x0000) 3030 x = 0xffff; 3031 3032 return (u_int16_t)(x); 3033 } 3034 3035 static void 3036 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 3037 u_int8_t udp) 3038 { 3039 u_int16_t old = htons(hi ? (*f << 8) : *f); 3040 u_int16_t new = htons(hi ? ( v << 8) : v); 3041 3042 if (*f == v) 3043 return; 3044 3045 *f = v; 3046 3047 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3048 return; 3049 3050 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 3051 } 3052 3053 void 3054 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 3055 bool hi, u_int8_t udp) 3056 { 3057 u_int8_t *fb = (u_int8_t *)f; 3058 u_int8_t *vb = (u_int8_t *)&v; 3059 3060 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3061 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3062 } 3063 3064 void 3065 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 3066 bool hi, u_int8_t udp) 3067 { 3068 u_int8_t *fb = (u_int8_t *)f; 3069 u_int8_t *vb = (u_int8_t *)&v; 3070 3071 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3072 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3073 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3074 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3075 } 3076 3077 u_int16_t 3078 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 3079 u_int16_t new, u_int8_t udp) 3080 { 3081 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3082 return (cksum); 3083 3084 return (pf_cksum_fixup(cksum, old, new, udp)); 3085 } 3086 3087 static void 3088 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 3089 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 3090 sa_family_t af) 3091 { 3092 struct pf_addr ao; 3093 u_int16_t po = *p; 3094 3095 PF_ACPY(&ao, a, af); 3096 PF_ACPY(a, an, af); 3097 3098 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3099 *pc = ~*pc; 3100 3101 *p = pn; 3102 3103 switch (af) { 3104 #ifdef INET 3105 case AF_INET: 3106 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3107 ao.addr16[0], an->addr16[0], 0), 3108 ao.addr16[1], an->addr16[1], 0); 3109 *p = pn; 3110 3111 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 3112 ao.addr16[0], an->addr16[0], u), 3113 ao.addr16[1], an->addr16[1], u); 3114 3115 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 3116 break; 3117 #endif /* INET */ 3118 #ifdef INET6 3119 case AF_INET6: 3120 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3121 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3122 pf_cksum_fixup(pf_cksum_fixup(*pc, 3123 ao.addr16[0], an->addr16[0], u), 3124 ao.addr16[1], an->addr16[1], u), 3125 ao.addr16[2], an->addr16[2], u), 3126 ao.addr16[3], an->addr16[3], u), 3127 ao.addr16[4], an->addr16[4], u), 3128 ao.addr16[5], an->addr16[5], u), 3129 ao.addr16[6], an->addr16[6], u), 3130 ao.addr16[7], an->addr16[7], u); 3131 3132 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 3133 break; 3134 #endif /* INET6 */ 3135 } 3136 3137 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 3138 CSUM_DELAY_DATA_IPV6)) { 3139 *pc = ~*pc; 3140 if (! *pc) 3141 *pc = 0xffff; 3142 } 3143 } 3144 3145 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 3146 void 3147 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 3148 { 3149 u_int32_t ao; 3150 3151 memcpy(&ao, a, sizeof(ao)); 3152 memcpy(a, &an, sizeof(u_int32_t)); 3153 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 3154 ao % 65536, an % 65536, u); 3155 } 3156 3157 void 3158 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 3159 { 3160 u_int32_t ao; 3161 3162 memcpy(&ao, a, sizeof(ao)); 3163 memcpy(a, &an, sizeof(u_int32_t)); 3164 3165 *c = pf_proto_cksum_fixup(m, 3166 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 3167 ao % 65536, an % 65536, udp); 3168 } 3169 3170 #ifdef INET6 3171 static void 3172 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 3173 { 3174 struct pf_addr ao; 3175 3176 PF_ACPY(&ao, a, AF_INET6); 3177 PF_ACPY(a, an, AF_INET6); 3178 3179 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3180 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3181 pf_cksum_fixup(pf_cksum_fixup(*c, 3182 ao.addr16[0], an->addr16[0], u), 3183 ao.addr16[1], an->addr16[1], u), 3184 ao.addr16[2], an->addr16[2], u), 3185 ao.addr16[3], an->addr16[3], u), 3186 ao.addr16[4], an->addr16[4], u), 3187 ao.addr16[5], an->addr16[5], u), 3188 ao.addr16[6], an->addr16[6], u), 3189 ao.addr16[7], an->addr16[7], u); 3190 } 3191 #endif /* INET6 */ 3192 3193 static void 3194 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 3195 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 3196 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 3197 { 3198 struct pf_addr oia, ooa; 3199 3200 PF_ACPY(&oia, ia, af); 3201 if (oa) 3202 PF_ACPY(&ooa, oa, af); 3203 3204 /* Change inner protocol port, fix inner protocol checksum. */ 3205 if (ip != NULL) { 3206 u_int16_t oip = *ip; 3207 u_int32_t opc; 3208 3209 if (pc != NULL) 3210 opc = *pc; 3211 *ip = np; 3212 if (pc != NULL) 3213 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 3214 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 3215 if (pc != NULL) 3216 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 3217 } 3218 /* Change inner ip address, fix inner ip and icmp checksums. */ 3219 PF_ACPY(ia, na, af); 3220 switch (af) { 3221 #ifdef INET 3222 case AF_INET: { 3223 u_int32_t oh2c = *h2c; 3224 3225 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 3226 oia.addr16[0], ia->addr16[0], 0), 3227 oia.addr16[1], ia->addr16[1], 0); 3228 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3229 oia.addr16[0], ia->addr16[0], 0), 3230 oia.addr16[1], ia->addr16[1], 0); 3231 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 3232 break; 3233 } 3234 #endif /* INET */ 3235 #ifdef INET6 3236 case AF_INET6: 3237 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3238 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3239 pf_cksum_fixup(pf_cksum_fixup(*ic, 3240 oia.addr16[0], ia->addr16[0], u), 3241 oia.addr16[1], ia->addr16[1], u), 3242 oia.addr16[2], ia->addr16[2], u), 3243 oia.addr16[3], ia->addr16[3], u), 3244 oia.addr16[4], ia->addr16[4], u), 3245 oia.addr16[5], ia->addr16[5], u), 3246 oia.addr16[6], ia->addr16[6], u), 3247 oia.addr16[7], ia->addr16[7], u); 3248 break; 3249 #endif /* INET6 */ 3250 } 3251 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 3252 if (oa) { 3253 PF_ACPY(oa, na, af); 3254 switch (af) { 3255 #ifdef INET 3256 case AF_INET: 3257 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 3258 ooa.addr16[0], oa->addr16[0], 0), 3259 ooa.addr16[1], oa->addr16[1], 0); 3260 break; 3261 #endif /* INET */ 3262 #ifdef INET6 3263 case AF_INET6: 3264 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3265 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3266 pf_cksum_fixup(pf_cksum_fixup(*ic, 3267 ooa.addr16[0], oa->addr16[0], u), 3268 ooa.addr16[1], oa->addr16[1], u), 3269 ooa.addr16[2], oa->addr16[2], u), 3270 ooa.addr16[3], oa->addr16[3], u), 3271 ooa.addr16[4], oa->addr16[4], u), 3272 ooa.addr16[5], oa->addr16[5], u), 3273 ooa.addr16[6], oa->addr16[6], u), 3274 ooa.addr16[7], oa->addr16[7], u); 3275 break; 3276 #endif /* INET6 */ 3277 } 3278 } 3279 } 3280 3281 /* 3282 * Need to modulate the sequence numbers in the TCP SACK option 3283 * (credits to Krzysztof Pfaff for report and patch) 3284 */ 3285 static int 3286 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th, 3287 struct pf_state_peer *dst) 3288 { 3289 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 3290 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 3291 int copyback = 0, i, olen; 3292 struct sackblk sack; 3293 3294 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 3295 if (hlen < TCPOLEN_SACKLEN || 3296 !pf_pull_hdr(pd->m, pd->off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 3297 return 0; 3298 3299 while (hlen >= TCPOLEN_SACKLEN) { 3300 size_t startoff = opt - opts; 3301 olen = opt[1]; 3302 switch (*opt) { 3303 case TCPOPT_EOL: /* FALLTHROUGH */ 3304 case TCPOPT_NOP: 3305 opt++; 3306 hlen--; 3307 break; 3308 case TCPOPT_SACK: 3309 if (olen > hlen) 3310 olen = hlen; 3311 if (olen >= TCPOLEN_SACKLEN) { 3312 for (i = 2; i + TCPOLEN_SACK <= olen; 3313 i += TCPOLEN_SACK) { 3314 memcpy(&sack, &opt[i], sizeof(sack)); 3315 pf_patch_32_unaligned(pd->m, 3316 &th->th_sum, &sack.start, 3317 htonl(ntohl(sack.start) - dst->seqdiff), 3318 PF_ALGNMNT(startoff), 3319 0); 3320 pf_patch_32_unaligned(pd->m, &th->th_sum, 3321 &sack.end, 3322 htonl(ntohl(sack.end) - dst->seqdiff), 3323 PF_ALGNMNT(startoff), 3324 0); 3325 memcpy(&opt[i], &sack, sizeof(sack)); 3326 } 3327 copyback = 1; 3328 } 3329 /* FALLTHROUGH */ 3330 default: 3331 if (olen < 2) 3332 olen = 2; 3333 hlen -= olen; 3334 opt += olen; 3335 } 3336 } 3337 3338 if (copyback) 3339 m_copyback(pd->m, pd->off + sizeof(*th), thoptlen, (caddr_t)opts); 3340 return (copyback); 3341 } 3342 3343 struct mbuf * 3344 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 3345 const struct pf_addr *saddr, const struct pf_addr *daddr, 3346 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3347 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3348 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3349 { 3350 struct mbuf *m; 3351 int len, tlen; 3352 #ifdef INET 3353 struct ip *h = NULL; 3354 #endif /* INET */ 3355 #ifdef INET6 3356 struct ip6_hdr *h6 = NULL; 3357 #endif /* INET6 */ 3358 struct tcphdr *th; 3359 char *opt; 3360 struct pf_mtag *pf_mtag; 3361 3362 len = 0; 3363 th = NULL; 3364 3365 /* maximum segment size tcp option */ 3366 tlen = sizeof(struct tcphdr); 3367 if (mss) 3368 tlen += 4; 3369 3370 switch (af) { 3371 #ifdef INET 3372 case AF_INET: 3373 len = sizeof(struct ip) + tlen; 3374 break; 3375 #endif /* INET */ 3376 #ifdef INET6 3377 case AF_INET6: 3378 len = sizeof(struct ip6_hdr) + tlen; 3379 break; 3380 #endif /* INET6 */ 3381 } 3382 3383 m = m_gethdr(M_NOWAIT, MT_DATA); 3384 if (m == NULL) 3385 return (NULL); 3386 3387 #ifdef MAC 3388 mac_netinet_firewall_send(m); 3389 #endif 3390 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 3391 m_freem(m); 3392 return (NULL); 3393 } 3394 m->m_flags |= mbuf_flags; 3395 pf_mtag->tag = mtag_tag; 3396 pf_mtag->flags = mtag_flags; 3397 3398 if (rtableid >= 0) 3399 M_SETFIB(m, rtableid); 3400 3401 #ifdef ALTQ 3402 if (r != NULL && r->qid) { 3403 pf_mtag->qid = r->qid; 3404 3405 /* add hints for ecn */ 3406 pf_mtag->hdr = mtod(m, struct ip *); 3407 } 3408 #endif /* ALTQ */ 3409 m->m_data += max_linkhdr; 3410 m->m_pkthdr.len = m->m_len = len; 3411 /* The rest of the stack assumes a rcvif, so provide one. 3412 * This is a locally generated packet, so .. close enough. */ 3413 m->m_pkthdr.rcvif = V_loif; 3414 bzero(m->m_data, len); 3415 switch (af) { 3416 #ifdef INET 3417 case AF_INET: 3418 h = mtod(m, struct ip *); 3419 3420 /* IP header fields included in the TCP checksum */ 3421 h->ip_p = IPPROTO_TCP; 3422 h->ip_len = htons(tlen); 3423 h->ip_src.s_addr = saddr->v4.s_addr; 3424 h->ip_dst.s_addr = daddr->v4.s_addr; 3425 3426 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 3427 break; 3428 #endif /* INET */ 3429 #ifdef INET6 3430 case AF_INET6: 3431 h6 = mtod(m, struct ip6_hdr *); 3432 3433 /* IP header fields included in the TCP checksum */ 3434 h6->ip6_nxt = IPPROTO_TCP; 3435 h6->ip6_plen = htons(tlen); 3436 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 3437 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 3438 3439 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 3440 break; 3441 #endif /* INET6 */ 3442 } 3443 3444 /* TCP header */ 3445 th->th_sport = sport; 3446 th->th_dport = dport; 3447 th->th_seq = htonl(seq); 3448 th->th_ack = htonl(ack); 3449 th->th_off = tlen >> 2; 3450 th->th_flags = tcp_flags; 3451 th->th_win = htons(win); 3452 3453 if (mss) { 3454 opt = (char *)(th + 1); 3455 opt[0] = TCPOPT_MAXSEG; 3456 opt[1] = 4; 3457 HTONS(mss); 3458 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 3459 } 3460 3461 switch (af) { 3462 #ifdef INET 3463 case AF_INET: 3464 /* TCP checksum */ 3465 th->th_sum = in_cksum(m, len); 3466 3467 /* Finish the IP header */ 3468 h->ip_v = 4; 3469 h->ip_hl = sizeof(*h) >> 2; 3470 h->ip_tos = IPTOS_LOWDELAY; 3471 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 3472 h->ip_len = htons(len); 3473 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3474 h->ip_sum = 0; 3475 break; 3476 #endif /* INET */ 3477 #ifdef INET6 3478 case AF_INET6: 3479 /* TCP checksum */ 3480 th->th_sum = in6_cksum(m, IPPROTO_TCP, 3481 sizeof(struct ip6_hdr), tlen); 3482 3483 h6->ip6_vfc |= IPV6_VERSION; 3484 h6->ip6_hlim = IPV6_DEFHLIM; 3485 break; 3486 #endif /* INET6 */ 3487 } 3488 3489 return (m); 3490 } 3491 3492 static void 3493 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd, 3494 uint8_t ttl, int rtableid) 3495 { 3496 struct mbuf *m; 3497 #ifdef INET 3498 struct ip *h = NULL; 3499 #endif /* INET */ 3500 #ifdef INET6 3501 struct ip6_hdr *h6 = NULL; 3502 #endif /* INET6 */ 3503 struct sctphdr *hdr; 3504 struct sctp_chunkhdr *chunk; 3505 struct pf_send_entry *pfse; 3506 int off = 0; 3507 3508 MPASS(af == pd->af); 3509 3510 m = m_gethdr(M_NOWAIT, MT_DATA); 3511 if (m == NULL) 3512 return; 3513 3514 m->m_data += max_linkhdr; 3515 m->m_flags |= M_SKIP_FIREWALL; 3516 /* The rest of the stack assumes a rcvif, so provide one. 3517 * This is a locally generated packet, so .. close enough. */ 3518 m->m_pkthdr.rcvif = V_loif; 3519 3520 /* IPv4|6 header */ 3521 switch (af) { 3522 #ifdef INET 3523 case AF_INET: 3524 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk)); 3525 3526 h = mtod(m, struct ip *); 3527 3528 /* IP header fields included in the TCP checksum */ 3529 3530 h->ip_p = IPPROTO_SCTP; 3531 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk)); 3532 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3533 h->ip_src = pd->dst->v4; 3534 h->ip_dst = pd->src->v4; 3535 3536 off += sizeof(struct ip); 3537 break; 3538 #endif /* INET */ 3539 #ifdef INET6 3540 case AF_INET6: 3541 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk)); 3542 3543 h6 = mtod(m, struct ip6_hdr *); 3544 3545 /* IP header fields included in the TCP checksum */ 3546 h6->ip6_vfc |= IPV6_VERSION; 3547 h6->ip6_nxt = IPPROTO_SCTP; 3548 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk)); 3549 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim; 3550 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr)); 3551 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr)); 3552 3553 off += sizeof(struct ip6_hdr); 3554 break; 3555 #endif /* INET6 */ 3556 } 3557 3558 /* SCTP header */ 3559 hdr = mtodo(m, off); 3560 3561 hdr->src_port = pd->hdr.sctp.dest_port; 3562 hdr->dest_port = pd->hdr.sctp.src_port; 3563 hdr->v_tag = pd->sctp_initiate_tag; 3564 hdr->checksum = 0; 3565 3566 /* Abort chunk. */ 3567 off += sizeof(struct sctphdr); 3568 chunk = mtodo(m, off); 3569 3570 chunk->chunk_type = SCTP_ABORT_ASSOCIATION; 3571 chunk->chunk_length = htons(sizeof(*chunk)); 3572 3573 /* SCTP checksum */ 3574 off += sizeof(*chunk); 3575 m->m_pkthdr.len = m->m_len = off; 3576 3577 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk)); 3578 3579 if (rtableid >= 0) 3580 M_SETFIB(m, rtableid); 3581 3582 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3583 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3584 if (pfse == NULL) { 3585 m_freem(m); 3586 return; 3587 } 3588 3589 switch (af) { 3590 #ifdef INET 3591 case AF_INET: 3592 pfse->pfse_type = PFSE_IP; 3593 break; 3594 #endif /* INET */ 3595 #ifdef INET6 3596 case AF_INET6: 3597 pfse->pfse_type = PFSE_IP6; 3598 break; 3599 #endif /* INET6 */ 3600 } 3601 3602 pfse->pfse_m = m; 3603 pf_send(pfse); 3604 } 3605 3606 void 3607 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 3608 const struct pf_addr *saddr, const struct pf_addr *daddr, 3609 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3610 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3611 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3612 { 3613 struct pf_send_entry *pfse; 3614 struct mbuf *m; 3615 3616 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags, 3617 win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, rtableid); 3618 if (m == NULL) 3619 return; 3620 3621 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3622 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3623 if (pfse == NULL) { 3624 m_freem(m); 3625 return; 3626 } 3627 3628 switch (af) { 3629 #ifdef INET 3630 case AF_INET: 3631 pfse->pfse_type = PFSE_IP; 3632 break; 3633 #endif /* INET */ 3634 #ifdef INET6 3635 case AF_INET6: 3636 pfse->pfse_type = PFSE_IP6; 3637 break; 3638 #endif /* INET6 */ 3639 } 3640 3641 pfse->pfse_m = m; 3642 pf_send(pfse); 3643 } 3644 3645 static void 3646 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 3647 struct pf_state_key *sk, struct tcphdr *th, 3648 u_int16_t bproto_sum, u_int16_t bip_sum, 3649 u_short *reason, int rtableid) 3650 { 3651 struct pf_addr * const saddr = pd->src; 3652 struct pf_addr * const daddr = pd->dst; 3653 3654 /* undo NAT changes, if they have taken place */ 3655 if (nr != NULL) { 3656 PF_ACPY(saddr, &sk->addr[pd->sidx], pd->af); 3657 PF_ACPY(daddr, &sk->addr[pd->didx], pd->af); 3658 if (pd->sport) 3659 *pd->sport = sk->port[pd->sidx]; 3660 if (pd->dport) 3661 *pd->dport = sk->port[pd->didx]; 3662 if (pd->proto_sum) 3663 *pd->proto_sum = bproto_sum; 3664 if (pd->ip_sum) 3665 *pd->ip_sum = bip_sum; 3666 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 3667 } 3668 if (pd->proto == IPPROTO_TCP && 3669 ((r->rule_flag & PFRULE_RETURNRST) || 3670 (r->rule_flag & PFRULE_RETURN)) && 3671 !(th->th_flags & TH_RST)) { 3672 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3673 3674 if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off, 3675 IPPROTO_TCP, pd->af)) 3676 REASON_SET(reason, PFRES_PROTCKSUM); 3677 else { 3678 if (th->th_flags & TH_SYN) 3679 ack++; 3680 if (th->th_flags & TH_FIN) 3681 ack++; 3682 pf_send_tcp(r, pd->af, pd->dst, 3683 pd->src, th->th_dport, th->th_sport, 3684 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3685 r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid); 3686 } 3687 } else if (pd->proto == IPPROTO_SCTP && 3688 (r->rule_flag & PFRULE_RETURN)) { 3689 pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid); 3690 } else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET && 3691 r->return_icmp) 3692 pf_send_icmp(pd->m, r->return_icmp >> 8, 3693 r->return_icmp & 255, pd->af, r, rtableid); 3694 else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 && 3695 r->return_icmp6) 3696 pf_send_icmp(pd->m, r->return_icmp6 >> 8, 3697 r->return_icmp6 & 255, pd->af, r, rtableid); 3698 } 3699 3700 static int 3701 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 3702 { 3703 struct m_tag *mtag; 3704 u_int8_t mpcp; 3705 3706 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 3707 if (mtag == NULL) 3708 return (0); 3709 3710 if (prio == PF_PRIO_ZERO) 3711 prio = 0; 3712 3713 mpcp = *(uint8_t *)(mtag + 1); 3714 3715 return (mpcp == prio); 3716 } 3717 3718 static int 3719 pf_icmp_to_bandlim(uint8_t type) 3720 { 3721 switch (type) { 3722 case ICMP_ECHO: 3723 case ICMP_ECHOREPLY: 3724 return (BANDLIM_ICMP_ECHO); 3725 case ICMP_TSTAMP: 3726 case ICMP_TSTAMPREPLY: 3727 return (BANDLIM_ICMP_TSTAMP); 3728 case ICMP_UNREACH: 3729 default: 3730 return (BANDLIM_ICMP_UNREACH); 3731 } 3732 } 3733 3734 static void 3735 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 3736 struct pf_krule *r, int rtableid) 3737 { 3738 struct pf_send_entry *pfse; 3739 struct mbuf *m0; 3740 struct pf_mtag *pf_mtag; 3741 3742 /* ICMP packet rate limitation. */ 3743 switch (af) { 3744 #ifdef INET6 3745 case AF_INET6: 3746 if (icmp6_ratelimit(NULL, type, code)) 3747 return; 3748 break; 3749 #endif 3750 #ifdef INET 3751 case AF_INET: 3752 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 3753 return; 3754 break; 3755 #endif 3756 } 3757 3758 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3759 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3760 if (pfse == NULL) 3761 return; 3762 3763 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 3764 free(pfse, M_PFTEMP); 3765 return; 3766 } 3767 3768 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 3769 free(pfse, M_PFTEMP); 3770 return; 3771 } 3772 /* XXX: revisit */ 3773 m0->m_flags |= M_SKIP_FIREWALL; 3774 3775 if (rtableid >= 0) 3776 M_SETFIB(m0, rtableid); 3777 3778 #ifdef ALTQ 3779 if (r->qid) { 3780 pf_mtag->qid = r->qid; 3781 /* add hints for ecn */ 3782 pf_mtag->hdr = mtod(m0, struct ip *); 3783 } 3784 #endif /* ALTQ */ 3785 3786 switch (af) { 3787 #ifdef INET 3788 case AF_INET: 3789 pfse->pfse_type = PFSE_ICMP; 3790 break; 3791 #endif /* INET */ 3792 #ifdef INET6 3793 case AF_INET6: 3794 pfse->pfse_type = PFSE_ICMP6; 3795 break; 3796 #endif /* INET6 */ 3797 } 3798 pfse->pfse_m = m0; 3799 pfse->icmpopts.type = type; 3800 pfse->icmpopts.code = code; 3801 pf_send(pfse); 3802 } 3803 3804 /* 3805 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 3806 * If n is 0, they match if they are equal. If n is != 0, they match if they 3807 * are different. 3808 */ 3809 int 3810 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 3811 struct pf_addr *b, sa_family_t af) 3812 { 3813 int match = 0; 3814 3815 switch (af) { 3816 #ifdef INET 3817 case AF_INET: 3818 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4)) 3819 match++; 3820 break; 3821 #endif /* INET */ 3822 #ifdef INET6 3823 case AF_INET6: 3824 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6)) 3825 match++; 3826 break; 3827 #endif /* INET6 */ 3828 } 3829 if (match) { 3830 if (n) 3831 return (0); 3832 else 3833 return (1); 3834 } else { 3835 if (n) 3836 return (1); 3837 else 3838 return (0); 3839 } 3840 } 3841 3842 /* 3843 * Return 1 if b <= a <= e, otherwise return 0. 3844 */ 3845 int 3846 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 3847 struct pf_addr *a, sa_family_t af) 3848 { 3849 switch (af) { 3850 #ifdef INET 3851 case AF_INET: 3852 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 3853 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 3854 return (0); 3855 break; 3856 #endif /* INET */ 3857 #ifdef INET6 3858 case AF_INET6: { 3859 int i; 3860 3861 /* check a >= b */ 3862 for (i = 0; i < 4; ++i) 3863 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 3864 break; 3865 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 3866 return (0); 3867 /* check a <= e */ 3868 for (i = 0; i < 4; ++i) 3869 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 3870 break; 3871 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 3872 return (0); 3873 break; 3874 } 3875 #endif /* INET6 */ 3876 } 3877 return (1); 3878 } 3879 3880 static int 3881 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3882 { 3883 switch (op) { 3884 case PF_OP_IRG: 3885 return ((p > a1) && (p < a2)); 3886 case PF_OP_XRG: 3887 return ((p < a1) || (p > a2)); 3888 case PF_OP_RRG: 3889 return ((p >= a1) && (p <= a2)); 3890 case PF_OP_EQ: 3891 return (p == a1); 3892 case PF_OP_NE: 3893 return (p != a1); 3894 case PF_OP_LT: 3895 return (p < a1); 3896 case PF_OP_LE: 3897 return (p <= a1); 3898 case PF_OP_GT: 3899 return (p > a1); 3900 case PF_OP_GE: 3901 return (p >= a1); 3902 } 3903 return (0); /* never reached */ 3904 } 3905 3906 int 3907 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3908 { 3909 NTOHS(a1); 3910 NTOHS(a2); 3911 NTOHS(p); 3912 return (pf_match(op, a1, a2, p)); 3913 } 3914 3915 static int 3916 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3917 { 3918 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3919 return (0); 3920 return (pf_match(op, a1, a2, u)); 3921 } 3922 3923 static int 3924 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3925 { 3926 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3927 return (0); 3928 return (pf_match(op, a1, a2, g)); 3929 } 3930 3931 int 3932 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3933 { 3934 if (*tag == -1) 3935 *tag = mtag; 3936 3937 return ((!r->match_tag_not && r->match_tag == *tag) || 3938 (r->match_tag_not && r->match_tag != *tag)); 3939 } 3940 3941 static int 3942 pf_match_rcvif(struct mbuf *m, struct pf_krule *r) 3943 { 3944 struct ifnet *ifp = m->m_pkthdr.rcvif; 3945 struct pfi_kkif *kif; 3946 3947 if (ifp == NULL) 3948 return (0); 3949 3950 kif = (struct pfi_kkif *)ifp->if_pf_kif; 3951 3952 if (kif == NULL) { 3953 DPFPRINTF(PF_DEBUG_URGENT, 3954 ("pf_test_via: kif == NULL, @%d via %s\n", r->nr, 3955 r->rcv_ifname)); 3956 return (0); 3957 } 3958 3959 return (pfi_kkif_match(r->rcv_kif, kif)); 3960 } 3961 3962 int 3963 pf_tag_packet(struct pf_pdesc *pd, int tag) 3964 { 3965 3966 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 3967 3968 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) 3969 return (ENOMEM); 3970 3971 pd->pf_mtag->tag = tag; 3972 3973 return (0); 3974 } 3975 3976 #define PF_ANCHOR_STACKSIZE 32 3977 struct pf_kanchor_stackframe { 3978 struct pf_kruleset *rs; 3979 struct pf_krule *r; /* XXX: + match bit */ 3980 struct pf_kanchor *child; 3981 }; 3982 3983 /* 3984 * XXX: We rely on malloc(9) returning pointer aligned addresses. 3985 */ 3986 #define PF_ANCHORSTACK_MATCH 0x00000001 3987 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 3988 3989 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3990 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 3991 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3992 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3993 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3994 } while (0) 3995 3996 void 3997 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3998 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3999 int *match) 4000 { 4001 struct pf_kanchor_stackframe *f; 4002 4003 PF_RULES_RASSERT(); 4004 4005 if (match) 4006 *match = 0; 4007 if (*depth >= PF_ANCHOR_STACKSIZE) { 4008 printf("%s: anchor stack overflow on %s\n", 4009 __func__, (*r)->anchor->name); 4010 *r = TAILQ_NEXT(*r, entries); 4011 return; 4012 } else if (*depth == 0 && a != NULL) 4013 *a = *r; 4014 f = stack + (*depth)++; 4015 f->rs = *rs; 4016 f->r = *r; 4017 if ((*r)->anchor_wildcard) { 4018 struct pf_kanchor_node *parent = &(*r)->anchor->children; 4019 4020 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 4021 *r = NULL; 4022 return; 4023 } 4024 *rs = &f->child->ruleset; 4025 } else { 4026 f->child = NULL; 4027 *rs = &(*r)->anchor->ruleset; 4028 } 4029 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4030 } 4031 4032 int 4033 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 4034 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 4035 int *match) 4036 { 4037 struct pf_kanchor_stackframe *f; 4038 struct pf_krule *fr; 4039 int quick = 0; 4040 4041 PF_RULES_RASSERT(); 4042 4043 do { 4044 if (*depth <= 0) 4045 break; 4046 f = stack + *depth - 1; 4047 fr = PF_ANCHOR_RULE(f); 4048 if (f->child != NULL) { 4049 /* 4050 * This block traverses through 4051 * a wildcard anchor. 4052 */ 4053 if (match != NULL && *match) { 4054 /* 4055 * If any of "*" matched, then 4056 * "foo/ *" matched, mark frame 4057 * appropriately. 4058 */ 4059 PF_ANCHOR_SET_MATCH(f); 4060 *match = 0; 4061 } 4062 f->child = RB_NEXT(pf_kanchor_node, 4063 &fr->anchor->children, f->child); 4064 if (f->child != NULL) { 4065 *rs = &f->child->ruleset; 4066 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4067 if (*r == NULL) 4068 continue; 4069 else 4070 break; 4071 } 4072 } 4073 (*depth)--; 4074 if (*depth == 0 && a != NULL) 4075 *a = NULL; 4076 *rs = f->rs; 4077 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 4078 quick = fr->quick; 4079 *r = TAILQ_NEXT(fr, entries); 4080 } while (*r == NULL); 4081 4082 return (quick); 4083 } 4084 4085 struct pf_keth_anchor_stackframe { 4086 struct pf_keth_ruleset *rs; 4087 struct pf_keth_rule *r; /* XXX: + match bit */ 4088 struct pf_keth_anchor *child; 4089 }; 4090 4091 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4092 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 4093 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4094 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4095 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4096 } while (0) 4097 4098 void 4099 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4100 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4101 struct pf_keth_rule **a, int *match) 4102 { 4103 struct pf_keth_anchor_stackframe *f; 4104 4105 NET_EPOCH_ASSERT(); 4106 4107 if (match) 4108 *match = 0; 4109 if (*depth >= PF_ANCHOR_STACKSIZE) { 4110 printf("%s: anchor stack overflow on %s\n", 4111 __func__, (*r)->anchor->name); 4112 *r = TAILQ_NEXT(*r, entries); 4113 return; 4114 } else if (*depth == 0 && a != NULL) 4115 *a = *r; 4116 f = stack + (*depth)++; 4117 f->rs = *rs; 4118 f->r = *r; 4119 if ((*r)->anchor_wildcard) { 4120 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 4121 4122 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 4123 *r = NULL; 4124 return; 4125 } 4126 *rs = &f->child->ruleset; 4127 } else { 4128 f->child = NULL; 4129 *rs = &(*r)->anchor->ruleset; 4130 } 4131 *r = TAILQ_FIRST((*rs)->active.rules); 4132 } 4133 4134 int 4135 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4136 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4137 struct pf_keth_rule **a, int *match) 4138 { 4139 struct pf_keth_anchor_stackframe *f; 4140 struct pf_keth_rule *fr; 4141 int quick = 0; 4142 4143 NET_EPOCH_ASSERT(); 4144 4145 do { 4146 if (*depth <= 0) 4147 break; 4148 f = stack + *depth - 1; 4149 fr = PF_ETH_ANCHOR_RULE(f); 4150 if (f->child != NULL) { 4151 /* 4152 * This block traverses through 4153 * a wildcard anchor. 4154 */ 4155 if (match != NULL && *match) { 4156 /* 4157 * If any of "*" matched, then 4158 * "foo/ *" matched, mark frame 4159 * appropriately. 4160 */ 4161 PF_ETH_ANCHOR_SET_MATCH(f); 4162 *match = 0; 4163 } 4164 f->child = RB_NEXT(pf_keth_anchor_node, 4165 &fr->anchor->children, f->child); 4166 if (f->child != NULL) { 4167 *rs = &f->child->ruleset; 4168 *r = TAILQ_FIRST((*rs)->active.rules); 4169 if (*r == NULL) 4170 continue; 4171 else 4172 break; 4173 } 4174 } 4175 (*depth)--; 4176 if (*depth == 0 && a != NULL) 4177 *a = NULL; 4178 *rs = f->rs; 4179 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 4180 quick = fr->quick; 4181 *r = TAILQ_NEXT(fr, entries); 4182 } while (*r == NULL); 4183 4184 return (quick); 4185 } 4186 4187 #ifdef INET6 4188 void 4189 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 4190 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 4191 { 4192 switch (af) { 4193 #ifdef INET 4194 case AF_INET: 4195 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4196 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4197 break; 4198 #endif /* INET */ 4199 case AF_INET6: 4200 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4201 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4202 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 4203 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 4204 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 4205 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 4206 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 4207 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 4208 break; 4209 } 4210 } 4211 4212 void 4213 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 4214 { 4215 switch (af) { 4216 #ifdef INET 4217 case AF_INET: 4218 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 4219 break; 4220 #endif /* INET */ 4221 case AF_INET6: 4222 if (addr->addr32[3] == 0xffffffff) { 4223 addr->addr32[3] = 0; 4224 if (addr->addr32[2] == 0xffffffff) { 4225 addr->addr32[2] = 0; 4226 if (addr->addr32[1] == 0xffffffff) { 4227 addr->addr32[1] = 0; 4228 addr->addr32[0] = 4229 htonl(ntohl(addr->addr32[0]) + 1); 4230 } else 4231 addr->addr32[1] = 4232 htonl(ntohl(addr->addr32[1]) + 1); 4233 } else 4234 addr->addr32[2] = 4235 htonl(ntohl(addr->addr32[2]) + 1); 4236 } else 4237 addr->addr32[3] = 4238 htonl(ntohl(addr->addr32[3]) + 1); 4239 break; 4240 } 4241 } 4242 #endif /* INET6 */ 4243 4244 void 4245 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 4246 { 4247 /* 4248 * Modern rules use the same flags in rules as they do in states. 4249 */ 4250 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 4251 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 4252 4253 /* 4254 * Old-style scrub rules have different flags which need to be translated. 4255 */ 4256 if (r->rule_flag & PFRULE_RANDOMID) 4257 a->flags |= PFSTATE_RANDOMID; 4258 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) { 4259 a->flags |= PFSTATE_SETTOS; 4260 a->set_tos = r->set_tos; 4261 } 4262 4263 if (r->qid) 4264 a->qid = r->qid; 4265 if (r->pqid) 4266 a->pqid = r->pqid; 4267 if (r->rtableid >= 0) 4268 a->rtableid = r->rtableid; 4269 a->log |= r->log; 4270 if (r->min_ttl) 4271 a->min_ttl = r->min_ttl; 4272 if (r->max_mss) 4273 a->max_mss = r->max_mss; 4274 if (r->dnpipe) 4275 a->dnpipe = r->dnpipe; 4276 if (r->dnrpipe) 4277 a->dnrpipe = r->dnrpipe; 4278 if (r->dnpipe || r->dnrpipe) { 4279 if (r->free_flags & PFRULE_DN_IS_PIPE) 4280 a->flags |= PFSTATE_DN_IS_PIPE; 4281 else 4282 a->flags &= ~PFSTATE_DN_IS_PIPE; 4283 } 4284 if (r->scrub_flags & PFSTATE_SETPRIO) { 4285 a->set_prio[0] = r->set_prio[0]; 4286 a->set_prio[1] = r->set_prio[1]; 4287 } 4288 } 4289 4290 int 4291 pf_socket_lookup(struct pf_pdesc *pd) 4292 { 4293 struct pf_addr *saddr, *daddr; 4294 u_int16_t sport, dport; 4295 struct inpcbinfo *pi; 4296 struct inpcb *inp; 4297 4298 pd->lookup.uid = UID_MAX; 4299 pd->lookup.gid = GID_MAX; 4300 4301 switch (pd->proto) { 4302 case IPPROTO_TCP: 4303 sport = pd->hdr.tcp.th_sport; 4304 dport = pd->hdr.tcp.th_dport; 4305 pi = &V_tcbinfo; 4306 break; 4307 case IPPROTO_UDP: 4308 sport = pd->hdr.udp.uh_sport; 4309 dport = pd->hdr.udp.uh_dport; 4310 pi = &V_udbinfo; 4311 break; 4312 default: 4313 return (-1); 4314 } 4315 if (pd->dir == PF_IN) { 4316 saddr = pd->src; 4317 daddr = pd->dst; 4318 } else { 4319 u_int16_t p; 4320 4321 p = sport; 4322 sport = dport; 4323 dport = p; 4324 saddr = pd->dst; 4325 daddr = pd->src; 4326 } 4327 switch (pd->af) { 4328 #ifdef INET 4329 case AF_INET: 4330 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 4331 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m); 4332 if (inp == NULL) { 4333 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 4334 daddr->v4, dport, INPLOOKUP_WILDCARD | 4335 INPLOOKUP_RLOCKPCB, NULL, pd->m); 4336 if (inp == NULL) 4337 return (-1); 4338 } 4339 break; 4340 #endif /* INET */ 4341 #ifdef INET6 4342 case AF_INET6: 4343 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 4344 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m); 4345 if (inp == NULL) { 4346 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 4347 &daddr->v6, dport, INPLOOKUP_WILDCARD | 4348 INPLOOKUP_RLOCKPCB, NULL, pd->m); 4349 if (inp == NULL) 4350 return (-1); 4351 } 4352 break; 4353 #endif /* INET6 */ 4354 } 4355 INP_RLOCK_ASSERT(inp); 4356 pd->lookup.uid = inp->inp_cred->cr_uid; 4357 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4358 INP_RUNLOCK(inp); 4359 4360 return (1); 4361 } 4362 4363 u_int8_t 4364 pf_get_wscale(struct pf_pdesc *pd) 4365 { 4366 struct tcphdr *th = &pd->hdr.tcp; 4367 int hlen; 4368 u_int8_t hdr[60]; 4369 u_int8_t *opt, optlen; 4370 u_int8_t wscale = 0; 4371 4372 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */ 4373 if (hlen <= sizeof(struct tcphdr)) 4374 return (0); 4375 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af)) 4376 return (0); 4377 opt = hdr + sizeof(struct tcphdr); 4378 hlen -= sizeof(struct tcphdr); 4379 while (hlen >= 3) { 4380 switch (*opt) { 4381 case TCPOPT_EOL: 4382 case TCPOPT_NOP: 4383 ++opt; 4384 --hlen; 4385 break; 4386 case TCPOPT_WINDOW: 4387 wscale = opt[2]; 4388 if (wscale > TCP_MAX_WINSHIFT) 4389 wscale = TCP_MAX_WINSHIFT; 4390 wscale |= PF_WSCALE_FLAG; 4391 /* FALLTHROUGH */ 4392 default: 4393 optlen = opt[1]; 4394 if (optlen < 2) 4395 optlen = 2; 4396 hlen -= optlen; 4397 opt += optlen; 4398 break; 4399 } 4400 } 4401 return (wscale); 4402 } 4403 4404 u_int16_t 4405 pf_get_mss(struct pf_pdesc *pd) 4406 { 4407 struct tcphdr *th = &pd->hdr.tcp; 4408 int hlen; 4409 u_int8_t hdr[60]; 4410 u_int8_t *opt, optlen; 4411 u_int16_t mss = V_tcp_mssdflt; 4412 4413 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */ 4414 if (hlen <= sizeof(struct tcphdr)) 4415 return (0); 4416 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af)) 4417 return (0); 4418 opt = hdr + sizeof(struct tcphdr); 4419 hlen -= sizeof(struct tcphdr); 4420 while (hlen >= TCPOLEN_MAXSEG) { 4421 switch (*opt) { 4422 case TCPOPT_EOL: 4423 case TCPOPT_NOP: 4424 ++opt; 4425 --hlen; 4426 break; 4427 case TCPOPT_MAXSEG: 4428 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 4429 NTOHS(mss); 4430 /* FALLTHROUGH */ 4431 default: 4432 optlen = opt[1]; 4433 if (optlen < 2) 4434 optlen = 2; 4435 hlen -= optlen; 4436 opt += optlen; 4437 break; 4438 } 4439 } 4440 return (mss); 4441 } 4442 4443 static u_int16_t 4444 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 4445 { 4446 struct nhop_object *nh; 4447 #ifdef INET6 4448 struct in6_addr dst6; 4449 uint32_t scopeid; 4450 #endif /* INET6 */ 4451 int hlen = 0; 4452 uint16_t mss = 0; 4453 4454 NET_EPOCH_ASSERT(); 4455 4456 switch (af) { 4457 #ifdef INET 4458 case AF_INET: 4459 hlen = sizeof(struct ip); 4460 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 4461 if (nh != NULL) 4462 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4463 break; 4464 #endif /* INET */ 4465 #ifdef INET6 4466 case AF_INET6: 4467 hlen = sizeof(struct ip6_hdr); 4468 in6_splitscope(&addr->v6, &dst6, &scopeid); 4469 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 4470 if (nh != NULL) 4471 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4472 break; 4473 #endif /* INET6 */ 4474 } 4475 4476 mss = max(V_tcp_mssdflt, mss); 4477 mss = min(mss, offer); 4478 mss = max(mss, 64); /* sanity - at least max opt space */ 4479 return (mss); 4480 } 4481 4482 static u_int32_t 4483 pf_tcp_iss(struct pf_pdesc *pd) 4484 { 4485 MD5_CTX ctx; 4486 u_int32_t digest[4]; 4487 4488 if (V_pf_tcp_secret_init == 0) { 4489 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 4490 MD5Init(&V_pf_tcp_secret_ctx); 4491 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 4492 sizeof(V_pf_tcp_secret)); 4493 V_pf_tcp_secret_init = 1; 4494 } 4495 4496 ctx = V_pf_tcp_secret_ctx; 4497 4498 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 4499 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 4500 switch (pd->af) { 4501 case AF_INET6: 4502 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 4503 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 4504 break; 4505 case AF_INET: 4506 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 4507 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 4508 break; 4509 } 4510 MD5Final((u_char *)digest, &ctx); 4511 V_pf_tcp_iss_off += 4096; 4512 #define ISN_RANDOM_INCREMENT (4096 - 1) 4513 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 4514 V_pf_tcp_iss_off); 4515 #undef ISN_RANDOM_INCREMENT 4516 } 4517 4518 static bool 4519 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 4520 { 4521 bool match = true; 4522 4523 /* Always matches if not set */ 4524 if (! r->isset) 4525 return (!r->neg); 4526 4527 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 4528 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 4529 match = false; 4530 break; 4531 } 4532 } 4533 4534 return (match ^ r->neg); 4535 } 4536 4537 static int 4538 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 4539 { 4540 if (*tag == -1) 4541 *tag = mtag; 4542 4543 return ((!r->match_tag_not && r->match_tag == *tag) || 4544 (r->match_tag_not && r->match_tag != *tag)); 4545 } 4546 4547 static void 4548 pf_bridge_to(struct ifnet *ifp, struct mbuf *m) 4549 { 4550 /* If we don't have the interface drop the packet. */ 4551 if (ifp == NULL) { 4552 m_freem(m); 4553 return; 4554 } 4555 4556 switch (ifp->if_type) { 4557 case IFT_ETHER: 4558 case IFT_XETHER: 4559 case IFT_L2VLAN: 4560 case IFT_BRIDGE: 4561 case IFT_IEEE8023ADLAG: 4562 break; 4563 default: 4564 m_freem(m); 4565 return; 4566 } 4567 4568 ifp->if_transmit(ifp, m); 4569 } 4570 4571 static int 4572 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 4573 { 4574 #ifdef INET 4575 struct ip ip; 4576 #endif 4577 #ifdef INET6 4578 struct ip6_hdr ip6; 4579 #endif 4580 struct mbuf *m = *m0; 4581 struct ether_header *e; 4582 struct pf_keth_rule *r, *rm, *a = NULL; 4583 struct pf_keth_ruleset *ruleset = NULL; 4584 struct pf_mtag *mtag; 4585 struct pf_keth_ruleq *rules; 4586 struct pf_addr *src = NULL, *dst = NULL; 4587 struct pfi_kkif *bridge_to; 4588 sa_family_t af = 0; 4589 uint16_t proto; 4590 int asd = 0, match = 0; 4591 int tag = -1; 4592 uint8_t action; 4593 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4594 4595 MPASS(kif->pfik_ifp->if_vnet == curvnet); 4596 NET_EPOCH_ASSERT(); 4597 4598 PF_RULES_RLOCK_TRACKER; 4599 4600 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 4601 4602 mtag = pf_find_mtag(m); 4603 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 4604 /* Dummynet re-injects packets after they've 4605 * completed their delay. We've already 4606 * processed them, so pass unconditionally. */ 4607 4608 /* But only once. We may see the packet multiple times (e.g. 4609 * PFIL_IN/PFIL_OUT). */ 4610 pf_dummynet_flag_remove(m, mtag); 4611 4612 return (PF_PASS); 4613 } 4614 4615 ruleset = V_pf_keth; 4616 rules = ck_pr_load_ptr(&ruleset->active.rules); 4617 r = TAILQ_FIRST(rules); 4618 rm = NULL; 4619 4620 if (__predict_false(m->m_len < sizeof(struct ether_header)) && 4621 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) { 4622 DPFPRINTF(PF_DEBUG_URGENT, 4623 ("pf_test_eth_rule: m_len < sizeof(struct ether_header)" 4624 ", pullup failed\n")); 4625 return (PF_DROP); 4626 } 4627 e = mtod(m, struct ether_header *); 4628 proto = ntohs(e->ether_type); 4629 4630 switch (proto) { 4631 #ifdef INET 4632 case ETHERTYPE_IP: { 4633 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4634 sizeof(ip))) 4635 return (PF_DROP); 4636 4637 af = AF_INET; 4638 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 4639 (caddr_t)&ip); 4640 src = (struct pf_addr *)&ip.ip_src; 4641 dst = (struct pf_addr *)&ip.ip_dst; 4642 break; 4643 } 4644 #endif /* INET */ 4645 #ifdef INET6 4646 case ETHERTYPE_IPV6: { 4647 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4648 sizeof(ip6))) 4649 return (PF_DROP); 4650 4651 af = AF_INET6; 4652 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 4653 (caddr_t)&ip6); 4654 src = (struct pf_addr *)&ip6.ip6_src; 4655 dst = (struct pf_addr *)&ip6.ip6_dst; 4656 break; 4657 } 4658 #endif /* INET6 */ 4659 } 4660 4661 PF_RULES_RLOCK(); 4662 4663 while (r != NULL) { 4664 counter_u64_add(r->evaluations, 1); 4665 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 4666 4667 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 4668 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4669 "kif"); 4670 r = r->skip[PFE_SKIP_IFP].ptr; 4671 } 4672 else if (r->direction && r->direction != dir) { 4673 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4674 "dir"); 4675 r = r->skip[PFE_SKIP_DIR].ptr; 4676 } 4677 else if (r->proto && r->proto != proto) { 4678 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4679 "proto"); 4680 r = r->skip[PFE_SKIP_PROTO].ptr; 4681 } 4682 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 4683 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4684 "src"); 4685 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 4686 } 4687 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 4688 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4689 "dst"); 4690 r = r->skip[PFE_SKIP_DST_ADDR].ptr; 4691 } 4692 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 4693 r->ipsrc.neg, kif, M_GETFIB(m))) { 4694 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4695 "ip_src"); 4696 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr; 4697 } 4698 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 4699 r->ipdst.neg, kif, M_GETFIB(m))) { 4700 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4701 "ip_dst"); 4702 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr; 4703 } 4704 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 4705 mtag ? mtag->tag : 0)) { 4706 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4707 "match_tag"); 4708 r = TAILQ_NEXT(r, entries); 4709 } 4710 else { 4711 if (r->tag) 4712 tag = r->tag; 4713 if (r->anchor == NULL) { 4714 /* Rule matches */ 4715 rm = r; 4716 4717 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 4718 4719 if (r->quick) 4720 break; 4721 4722 r = TAILQ_NEXT(r, entries); 4723 } else { 4724 pf_step_into_keth_anchor(anchor_stack, &asd, 4725 &ruleset, &r, &a, &match); 4726 } 4727 } 4728 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 4729 &ruleset, &r, &a, &match)) 4730 break; 4731 } 4732 4733 r = rm; 4734 4735 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 4736 4737 /* Default to pass. */ 4738 if (r == NULL) { 4739 PF_RULES_RUNLOCK(); 4740 return (PF_PASS); 4741 } 4742 4743 /* Execute action. */ 4744 counter_u64_add(r->packets[dir == PF_OUT], 1); 4745 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 4746 pf_update_timestamp(r); 4747 4748 /* Shortcut. Don't tag if we're just going to drop anyway. */ 4749 if (r->action == PF_DROP) { 4750 PF_RULES_RUNLOCK(); 4751 return (PF_DROP); 4752 } 4753 4754 if (tag > 0) { 4755 if (mtag == NULL) 4756 mtag = pf_get_mtag(m); 4757 if (mtag == NULL) { 4758 PF_RULES_RUNLOCK(); 4759 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4760 return (PF_DROP); 4761 } 4762 mtag->tag = tag; 4763 } 4764 4765 if (r->qid != 0) { 4766 if (mtag == NULL) 4767 mtag = pf_get_mtag(m); 4768 if (mtag == NULL) { 4769 PF_RULES_RUNLOCK(); 4770 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4771 return (PF_DROP); 4772 } 4773 mtag->qid = r->qid; 4774 } 4775 4776 action = r->action; 4777 bridge_to = r->bridge_to; 4778 4779 /* Dummynet */ 4780 if (r->dnpipe) { 4781 struct ip_fw_args dnflow; 4782 4783 /* Drop packet if dummynet is not loaded. */ 4784 if (ip_dn_io_ptr == NULL) { 4785 PF_RULES_RUNLOCK(); 4786 m_freem(m); 4787 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4788 return (PF_DROP); 4789 } 4790 if (mtag == NULL) 4791 mtag = pf_get_mtag(m); 4792 if (mtag == NULL) { 4793 PF_RULES_RUNLOCK(); 4794 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4795 return (PF_DROP); 4796 } 4797 4798 bzero(&dnflow, sizeof(dnflow)); 4799 4800 /* We don't have port numbers here, so we set 0. That means 4801 * that we'll be somewhat limited in distinguishing flows (i.e. 4802 * only based on IP addresses, not based on port numbers), but 4803 * it's better than nothing. */ 4804 dnflow.f_id.dst_port = 0; 4805 dnflow.f_id.src_port = 0; 4806 dnflow.f_id.proto = 0; 4807 4808 dnflow.rule.info = r->dnpipe; 4809 dnflow.rule.info |= IPFW_IS_DUMMYNET; 4810 if (r->dnflags & PFRULE_DN_IS_PIPE) 4811 dnflow.rule.info |= IPFW_IS_PIPE; 4812 4813 dnflow.f_id.extra = dnflow.rule.info; 4814 4815 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 4816 dnflow.flags |= IPFW_ARGS_ETHER; 4817 dnflow.ifp = kif->pfik_ifp; 4818 4819 switch (af) { 4820 case AF_INET: 4821 dnflow.f_id.addr_type = 4; 4822 dnflow.f_id.src_ip = src->v4.s_addr; 4823 dnflow.f_id.dst_ip = dst->v4.s_addr; 4824 break; 4825 case AF_INET6: 4826 dnflow.flags |= IPFW_ARGS_IP6; 4827 dnflow.f_id.addr_type = 6; 4828 dnflow.f_id.src_ip6 = src->v6; 4829 dnflow.f_id.dst_ip6 = dst->v6; 4830 break; 4831 } 4832 4833 PF_RULES_RUNLOCK(); 4834 4835 mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 4836 ip_dn_io_ptr(m0, &dnflow); 4837 if (*m0 != NULL) 4838 pf_dummynet_flag_remove(m, mtag); 4839 } else { 4840 PF_RULES_RUNLOCK(); 4841 } 4842 4843 if (action == PF_PASS && bridge_to) { 4844 pf_bridge_to(bridge_to->pfik_ifp, *m0); 4845 *m0 = NULL; /* We've eaten the packet. */ 4846 } 4847 4848 return (action); 4849 } 4850 4851 #define PF_TEST_ATTRIB(t, a)\ 4852 do { \ 4853 if (t) { \ 4854 r = a; \ 4855 goto nextrule; \ 4856 } \ 4857 } while (0) 4858 4859 static int 4860 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, 4861 struct pf_pdesc *pd, struct pf_krule **am, 4862 struct pf_kruleset **rsm, struct inpcb *inp) 4863 { 4864 struct pf_krule *nr = NULL; 4865 struct pf_addr * const saddr = pd->src; 4866 struct pf_addr * const daddr = pd->dst; 4867 struct pf_krule *r, *a = NULL; 4868 struct pf_kruleset *ruleset = NULL; 4869 struct pf_krule_slist match_rules; 4870 struct pf_krule_item *ri; 4871 struct pf_ksrc_node *nsn = NULL; 4872 struct tcphdr *th = &pd->hdr.tcp; 4873 struct pf_state_key *sk = NULL, *nk = NULL; 4874 u_short reason, transerror; 4875 int rewrite = 0; 4876 int tag = -1; 4877 int asd = 0; 4878 int match = 0; 4879 int state_icmp = 0, icmp_dir, multi; 4880 u_int16_t sport = 0, dport = 0, virtual_type, virtual_id; 4881 u_int16_t bproto_sum = 0, bip_sum = 0; 4882 u_int8_t icmptype = 0, icmpcode = 0; 4883 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4884 struct pf_udp_mapping *udp_mapping = NULL; 4885 4886 PF_RULES_RASSERT(); 4887 4888 SLIST_INIT(&match_rules); 4889 4890 if (inp != NULL) { 4891 INP_LOCK_ASSERT(inp); 4892 pd->lookup.uid = inp->inp_cred->cr_uid; 4893 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4894 pd->lookup.done = 1; 4895 } 4896 4897 switch (pd->virtual_proto) { 4898 case IPPROTO_TCP: 4899 sport = th->th_sport; 4900 dport = th->th_dport; 4901 break; 4902 case IPPROTO_UDP: 4903 sport = pd->hdr.udp.uh_sport; 4904 dport = pd->hdr.udp.uh_dport; 4905 break; 4906 case IPPROTO_SCTP: 4907 sport = pd->hdr.sctp.src_port; 4908 dport = pd->hdr.sctp.dest_port; 4909 break; 4910 #ifdef INET 4911 case IPPROTO_ICMP: 4912 MPASS(pd->af == AF_INET); 4913 icmptype = pd->hdr.icmp.icmp_type; 4914 icmpcode = pd->hdr.icmp.icmp_code; 4915 state_icmp = pf_icmp_mapping(pd, icmptype, 4916 &icmp_dir, &multi, &virtual_id, &virtual_type); 4917 if (icmp_dir == PF_IN) { 4918 sport = virtual_id; 4919 dport = virtual_type; 4920 } else { 4921 sport = virtual_type; 4922 dport = virtual_id; 4923 } 4924 break; 4925 #endif /* INET */ 4926 #ifdef INET6 4927 case IPPROTO_ICMPV6: 4928 MPASS(pd->af == AF_INET6); 4929 icmptype = pd->hdr.icmp6.icmp6_type; 4930 icmpcode = pd->hdr.icmp6.icmp6_code; 4931 state_icmp = pf_icmp_mapping(pd, icmptype, 4932 &icmp_dir, &multi, &virtual_id, &virtual_type); 4933 if (icmp_dir == PF_IN) { 4934 sport = virtual_id; 4935 dport = virtual_type; 4936 } else { 4937 sport = virtual_type; 4938 dport = virtual_id; 4939 } 4940 4941 break; 4942 #endif /* INET6 */ 4943 default: 4944 sport = dport = 0; 4945 break; 4946 } 4947 4948 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4949 4950 /* check packet for BINAT/NAT/RDR */ 4951 transerror = pf_get_translation(pd, pd->off, &nsn, &sk, 4952 &nk, saddr, daddr, sport, dport, anchor_stack, &nr, &udp_mapping); 4953 switch (transerror) { 4954 default: 4955 /* A translation error occurred. */ 4956 REASON_SET(&reason, transerror); 4957 goto cleanup; 4958 case PFRES_MAX: 4959 /* No match. */ 4960 break; 4961 case PFRES_MATCH: 4962 KASSERT(sk != NULL, ("%s: null sk", __func__)); 4963 KASSERT(nk != NULL, ("%s: null nk", __func__)); 4964 4965 if (nr->log) { 4966 PFLOG_PACKET(PF_PASS, PFRES_MATCH, nr, a, 4967 ruleset, pd, 1); 4968 } 4969 4970 if (pd->ip_sum) 4971 bip_sum = *pd->ip_sum; 4972 4973 switch (pd->proto) { 4974 case IPPROTO_TCP: 4975 bproto_sum = th->th_sum; 4976 pd->proto_sum = &th->th_sum; 4977 4978 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) || 4979 nk->port[pd->sidx] != sport) { 4980 pf_change_ap(pd->m, saddr, &th->th_sport, pd->ip_sum, 4981 &th->th_sum, &nk->addr[pd->sidx], 4982 nk->port[pd->sidx], 0, pd->af); 4983 pd->sport = &th->th_sport; 4984 sport = th->th_sport; 4985 } 4986 4987 if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) || 4988 nk->port[pd->didx] != dport) { 4989 pf_change_ap(pd->m, daddr, &th->th_dport, pd->ip_sum, 4990 &th->th_sum, &nk->addr[pd->didx], 4991 nk->port[pd->didx], 0, pd->af); 4992 dport = th->th_dport; 4993 pd->dport = &th->th_dport; 4994 } 4995 rewrite++; 4996 break; 4997 case IPPROTO_UDP: 4998 bproto_sum = pd->hdr.udp.uh_sum; 4999 pd->proto_sum = &pd->hdr.udp.uh_sum; 5000 5001 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) || 5002 nk->port[pd->sidx] != sport) { 5003 pf_change_ap(pd->m, saddr, &pd->hdr.udp.uh_sport, 5004 pd->ip_sum, &pd->hdr.udp.uh_sum, 5005 &nk->addr[pd->sidx], 5006 nk->port[pd->sidx], 1, pd->af); 5007 sport = pd->hdr.udp.uh_sport; 5008 pd->sport = &pd->hdr.udp.uh_sport; 5009 } 5010 5011 if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) || 5012 nk->port[pd->didx] != dport) { 5013 pf_change_ap(pd->m, daddr, &pd->hdr.udp.uh_dport, 5014 pd->ip_sum, &pd->hdr.udp.uh_sum, 5015 &nk->addr[pd->didx], 5016 nk->port[pd->didx], 1, pd->af); 5017 dport = pd->hdr.udp.uh_dport; 5018 pd->dport = &pd->hdr.udp.uh_dport; 5019 } 5020 rewrite++; 5021 break; 5022 case IPPROTO_SCTP: { 5023 uint16_t checksum = 0; 5024 5025 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) || 5026 nk->port[pd->sidx] != sport) { 5027 pf_change_ap(pd->m, saddr, &pd->hdr.sctp.src_port, 5028 pd->ip_sum, &checksum, 5029 &nk->addr[pd->sidx], 5030 nk->port[pd->sidx], 1, pd->af); 5031 } 5032 if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) || 5033 nk->port[pd->didx] != dport) { 5034 pf_change_ap(pd->m, daddr, &pd->hdr.sctp.dest_port, 5035 pd->ip_sum, &checksum, 5036 &nk->addr[pd->didx], 5037 nk->port[pd->didx], 1, pd->af); 5038 } 5039 break; 5040 } 5041 #ifdef INET 5042 case IPPROTO_ICMP: 5043 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 5044 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 5045 nk->addr[pd->sidx].v4.s_addr, 0); 5046 5047 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 5048 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 5049 nk->addr[pd->didx].v4.s_addr, 0); 5050 5051 if (virtual_type == htons(ICMP_ECHO) && 5052 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) { 5053 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 5054 pd->hdr.icmp.icmp_cksum, sport, 5055 nk->port[pd->sidx], 0); 5056 pd->hdr.icmp.icmp_id = nk->port[pd->sidx]; 5057 pd->sport = &pd->hdr.icmp.icmp_id; 5058 } 5059 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 5060 break; 5061 #endif /* INET */ 5062 #ifdef INET6 5063 case IPPROTO_ICMPV6: 5064 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 5065 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 5066 &nk->addr[pd->sidx], 0); 5067 5068 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 5069 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 5070 &nk->addr[pd->didx], 0); 5071 rewrite++; 5072 break; 5073 #endif /* INET */ 5074 default: 5075 switch (pd->af) { 5076 #ifdef INET 5077 case AF_INET: 5078 if (PF_ANEQ(saddr, 5079 &nk->addr[pd->sidx], AF_INET)) 5080 pf_change_a(&saddr->v4.s_addr, 5081 pd->ip_sum, 5082 nk->addr[pd->sidx].v4.s_addr, 0); 5083 5084 if (PF_ANEQ(daddr, 5085 &nk->addr[pd->didx], AF_INET)) 5086 pf_change_a(&daddr->v4.s_addr, 5087 pd->ip_sum, 5088 nk->addr[pd->didx].v4.s_addr, 0); 5089 break; 5090 #endif /* INET */ 5091 #ifdef INET6 5092 case AF_INET6: 5093 if (PF_ANEQ(saddr, 5094 &nk->addr[pd->sidx], AF_INET6)) 5095 PF_ACPY(saddr, &nk->addr[pd->sidx], pd->af); 5096 5097 if (PF_ANEQ(daddr, 5098 &nk->addr[pd->didx], AF_INET6)) 5099 PF_ACPY(daddr, &nk->addr[pd->didx], pd->af); 5100 break; 5101 #endif /* INET */ 5102 } 5103 break; 5104 } 5105 if (nr->natpass) 5106 r = NULL; 5107 } 5108 5109 while (r != NULL) { 5110 pf_counter_u64_add(&r->evaluations, 1); 5111 PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot, 5112 r->skip[PF_SKIP_IFP]); 5113 PF_TEST_ATTRIB(r->direction && r->direction != pd->dir, 5114 r->skip[PF_SKIP_DIR]); 5115 PF_TEST_ATTRIB(r->af && r->af != pd->af, 5116 r->skip[PF_SKIP_AF]); 5117 PF_TEST_ATTRIB(r->proto && r->proto != pd->proto, 5118 r->skip[PF_SKIP_PROTO]); 5119 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, saddr, pd->af, 5120 r->src.neg, pd->kif, M_GETFIB(pd->m)), 5121 r->skip[PF_SKIP_SRC_ADDR]); 5122 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, daddr, pd->af, 5123 r->dst.neg, NULL, M_GETFIB(pd->m)), 5124 r->skip[PF_SKIP_DST_ADDR]); 5125 switch (pd->virtual_proto) { 5126 case PF_VPROTO_FRAGMENT: 5127 /* tcp/udp only. port_op always 0 in other cases */ 5128 PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op), 5129 TAILQ_NEXT(r, entries)); 5130 PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset), 5131 TAILQ_NEXT(r, entries)); 5132 /* icmp only. type/code always 0 in other cases */ 5133 PF_TEST_ATTRIB((r->type || r->code), 5134 TAILQ_NEXT(r, entries)); 5135 /* tcp/udp only. {uid|gid}.op always 0 in other cases */ 5136 PF_TEST_ATTRIB((r->gid.op || r->uid.op), 5137 TAILQ_NEXT(r, entries)); 5138 break; 5139 5140 case IPPROTO_TCP: 5141 PF_TEST_ATTRIB((r->flagset & th->th_flags) != r->flags, 5142 TAILQ_NEXT(r, entries)); 5143 /* FALLTHROUGH */ 5144 case IPPROTO_SCTP: 5145 case IPPROTO_UDP: 5146 /* tcp/udp only. port_op always 0 in other cases */ 5147 PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op, 5148 r->src.port[0], r->src.port[1], sport), 5149 r->skip[PF_SKIP_SRC_PORT]); 5150 /* tcp/udp only. port_op always 0 in other cases */ 5151 PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op, 5152 r->dst.port[0], r->dst.port[1], dport), 5153 r->skip[PF_SKIP_DST_PORT]); 5154 /* tcp/udp only. uid.op always 0 in other cases */ 5155 PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done = 5156 pf_socket_lookup(pd), 1)) && 5157 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 5158 pd->lookup.uid), 5159 TAILQ_NEXT(r, entries)); 5160 /* tcp/udp only. gid.op always 0 in other cases */ 5161 PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done = 5162 pf_socket_lookup(pd), 1)) && 5163 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 5164 pd->lookup.gid), 5165 TAILQ_NEXT(r, entries)); 5166 break; 5167 5168 case IPPROTO_ICMP: 5169 case IPPROTO_ICMPV6: 5170 /* icmp only. type always 0 in other cases */ 5171 PF_TEST_ATTRIB(r->type && r->type != icmptype + 1, 5172 TAILQ_NEXT(r, entries)); 5173 /* icmp only. type always 0 in other cases */ 5174 PF_TEST_ATTRIB(r->code && r->code != icmpcode + 1, 5175 TAILQ_NEXT(r, entries)); 5176 break; 5177 5178 default: 5179 break; 5180 } 5181 PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos), 5182 TAILQ_NEXT(r, entries)); 5183 PF_TEST_ATTRIB(r->prio && 5184 !pf_match_ieee8021q_pcp(r->prio, pd->m), 5185 TAILQ_NEXT(r, entries)); 5186 PF_TEST_ATTRIB(r->prob && 5187 r->prob <= arc4random(), 5188 TAILQ_NEXT(r, entries)); 5189 PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r, &tag, 5190 pd->pf_mtag ? pd->pf_mtag->tag : 0), 5191 TAILQ_NEXT(r, entries)); 5192 PF_TEST_ATTRIB(r->rcv_kif && !pf_match_rcvif(pd->m, r), 5193 TAILQ_NEXT(r, entries)); 5194 PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT && 5195 pd->virtual_proto != PF_VPROTO_FRAGMENT), 5196 TAILQ_NEXT(r, entries)); 5197 PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY && 5198 (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match( 5199 pf_osfp_fingerprint(pd, th), 5200 r->os_fingerprint)), 5201 TAILQ_NEXT(r, entries)); 5202 /* FALLTHROUGH */ 5203 if (r->tag) 5204 tag = r->tag; 5205 if (r->anchor == NULL) { 5206 if (r->action == PF_MATCH) { 5207 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5208 if (ri == NULL) { 5209 REASON_SET(&reason, PFRES_MEMORY); 5210 goto cleanup; 5211 } 5212 ri->r = r; 5213 SLIST_INSERT_HEAD(&match_rules, ri, entry); 5214 pf_counter_u64_critical_enter(); 5215 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5216 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5217 pf_counter_u64_critical_exit(); 5218 pf_rule_to_actions(r, &pd->act); 5219 if (r->log || pd->act.log & PF_LOG_MATCHES) 5220 PFLOG_PACKET(r->action, PFRES_MATCH, r, 5221 a, ruleset, pd, 1); 5222 } else { 5223 match = 1; 5224 *rm = r; 5225 *am = a; 5226 *rsm = ruleset; 5227 if (pd->act.log & PF_LOG_MATCHES) 5228 PFLOG_PACKET(r->action, PFRES_MATCH, r, 5229 a, ruleset, pd, 1); 5230 } 5231 if ((*rm)->quick) 5232 break; 5233 r = TAILQ_NEXT(r, entries); 5234 } else 5235 pf_step_into_anchor(anchor_stack, &asd, 5236 &ruleset, PF_RULESET_FILTER, &r, &a, 5237 &match); 5238 nextrule: 5239 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 5240 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 5241 break; 5242 } 5243 r = *rm; 5244 a = *am; 5245 ruleset = *rsm; 5246 5247 REASON_SET(&reason, PFRES_MATCH); 5248 5249 /* apply actions for last matching pass/block rule */ 5250 pf_rule_to_actions(r, &pd->act); 5251 5252 if (r->log || pd->act.log & PF_LOG_MATCHES) { 5253 if (rewrite) 5254 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5255 PFLOG_PACKET(r->action, reason, r, a, ruleset, pd, 1); 5256 } 5257 5258 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5259 (r->action == PF_DROP) && 5260 ((r->rule_flag & PFRULE_RETURNRST) || 5261 (r->rule_flag & PFRULE_RETURNICMP) || 5262 (r->rule_flag & PFRULE_RETURN))) { 5263 pf_return(r, nr, pd, sk, th, bproto_sum, 5264 bip_sum, &reason, r->rtableid); 5265 } 5266 5267 if (r->action == PF_DROP) 5268 goto cleanup; 5269 5270 if (tag > 0 && pf_tag_packet(pd, tag)) { 5271 REASON_SET(&reason, PFRES_MEMORY); 5272 goto cleanup; 5273 } 5274 if (pd->act.rtableid >= 0) 5275 M_SETFIB(pd->m, pd->act.rtableid); 5276 5277 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5278 (!state_icmp && (r->keep_state || nr != NULL || 5279 (pd->flags & PFDESC_TCP_NORM)))) { 5280 int action; 5281 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, 5282 sport, dport, &rewrite, sm, tag, bproto_sum, bip_sum, 5283 &match_rules, udp_mapping); 5284 if (action != PF_PASS) { 5285 pf_udp_mapping_release(udp_mapping); 5286 if (action == PF_DROP && 5287 (r->rule_flag & PFRULE_RETURN)) 5288 pf_return(r, nr, pd, sk, th, 5289 bproto_sum, bip_sum, &reason, 5290 pd->act.rtableid); 5291 return (action); 5292 } 5293 } else { 5294 while ((ri = SLIST_FIRST(&match_rules))) { 5295 SLIST_REMOVE_HEAD(&match_rules, entry); 5296 free(ri, M_PF_RULE_ITEM); 5297 } 5298 5299 uma_zfree(V_pf_state_key_z, sk); 5300 uma_zfree(V_pf_state_key_z, nk); 5301 pf_udp_mapping_release(udp_mapping); 5302 } 5303 5304 /* copy back packet headers if we performed NAT operations */ 5305 if (rewrite) 5306 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5307 5308 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 5309 pd->dir == PF_OUT && 5310 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m)) 5311 /* 5312 * We want the state created, but we dont 5313 * want to send this in case a partner 5314 * firewall has to know about it to allow 5315 * replies through it. 5316 */ 5317 return (PF_DEFER); 5318 5319 return (PF_PASS); 5320 5321 cleanup: 5322 while ((ri = SLIST_FIRST(&match_rules))) { 5323 SLIST_REMOVE_HEAD(&match_rules, entry); 5324 free(ri, M_PF_RULE_ITEM); 5325 } 5326 5327 uma_zfree(V_pf_state_key_z, sk); 5328 uma_zfree(V_pf_state_key_z, nk); 5329 pf_udp_mapping_release(udp_mapping); 5330 5331 return (PF_DROP); 5332 } 5333 5334 static int 5335 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 5336 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 5337 struct pf_state_key *sk, u_int16_t sport, 5338 u_int16_t dport, int *rewrite, struct pf_kstate **sm, 5339 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, 5340 struct pf_krule_slist *match_rules, struct pf_udp_mapping *udp_mapping) 5341 { 5342 struct pf_kstate *s = NULL; 5343 struct pf_ksrc_node *sn = NULL; 5344 struct tcphdr *th = &pd->hdr.tcp; 5345 u_int16_t mss = V_tcp_mssdflt; 5346 u_short reason, sn_reason; 5347 struct pf_krule_item *ri; 5348 5349 /* check maximums */ 5350 if (r->max_states && 5351 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 5352 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 5353 REASON_SET(&reason, PFRES_MAXSTATES); 5354 goto csfailed; 5355 } 5356 /* src node for filter rule */ 5357 if ((r->rule_flag & PFRULE_SRCTRACK || 5358 r->rpool.opts & PF_POOL_STICKYADDR) && 5359 (sn_reason = pf_insert_src_node(&sn, r, pd->src, pd->af)) != 0) { 5360 REASON_SET(&reason, sn_reason); 5361 goto csfailed; 5362 } 5363 /* src node for translation rule */ 5364 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 5365 (sn_reason = pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], 5366 pd->af)) != 0 ) { 5367 REASON_SET(&reason, sn_reason); 5368 goto csfailed; 5369 } 5370 s = pf_alloc_state(M_NOWAIT); 5371 if (s == NULL) { 5372 REASON_SET(&reason, PFRES_MEMORY); 5373 goto csfailed; 5374 } 5375 s->rule = r; 5376 s->nat_rule = nr; 5377 s->anchor = a; 5378 bcopy(match_rules, &s->match_rules, sizeof(s->match_rules)); 5379 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions)); 5380 5381 STATE_INC_COUNTERS(s); 5382 if (r->allow_opts) 5383 s->state_flags |= PFSTATE_ALLOWOPTS; 5384 if (r->rule_flag & PFRULE_STATESLOPPY) 5385 s->state_flags |= PFSTATE_SLOPPY; 5386 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 5387 s->state_flags |= PFSTATE_SCRUB_TCP; 5388 if ((r->rule_flag & PFRULE_PFLOW) || 5389 (nr != NULL && nr->rule_flag & PFRULE_PFLOW)) 5390 s->state_flags |= PFSTATE_PFLOW; 5391 5392 s->act.log = pd->act.log & PF_LOG_ALL; 5393 s->sync_state = PFSYNC_S_NONE; 5394 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */ 5395 5396 if (nr != NULL) 5397 s->act.log |= nr->log & PF_LOG_ALL; 5398 switch (pd->proto) { 5399 case IPPROTO_TCP: 5400 s->src.seqlo = ntohl(th->th_seq); 5401 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 5402 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 5403 r->keep_state == PF_STATE_MODULATE) { 5404 /* Generate sequence number modulator */ 5405 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 5406 0) 5407 s->src.seqdiff = 1; 5408 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, 5409 htonl(s->src.seqlo + s->src.seqdiff), 0); 5410 *rewrite = 1; 5411 } else 5412 s->src.seqdiff = 0; 5413 if (th->th_flags & TH_SYN) { 5414 s->src.seqhi++; 5415 s->src.wscale = pf_get_wscale(pd); 5416 } 5417 s->src.max_win = MAX(ntohs(th->th_win), 1); 5418 if (s->src.wscale & PF_WSCALE_MASK) { 5419 /* Remove scale factor from initial window */ 5420 int win = s->src.max_win; 5421 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 5422 s->src.max_win = (win - 1) >> 5423 (s->src.wscale & PF_WSCALE_MASK); 5424 } 5425 if (th->th_flags & TH_FIN) 5426 s->src.seqhi++; 5427 s->dst.seqhi = 1; 5428 s->dst.max_win = 1; 5429 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 5430 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 5431 s->timeout = PFTM_TCP_FIRST_PACKET; 5432 atomic_add_32(&V_pf_status.states_halfopen, 1); 5433 break; 5434 case IPPROTO_UDP: 5435 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 5436 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 5437 s->timeout = PFTM_UDP_FIRST_PACKET; 5438 break; 5439 case IPPROTO_SCTP: 5440 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT); 5441 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED); 5442 s->timeout = PFTM_SCTP_FIRST_PACKET; 5443 break; 5444 case IPPROTO_ICMP: 5445 #ifdef INET6 5446 case IPPROTO_ICMPV6: 5447 #endif 5448 s->timeout = PFTM_ICMP_FIRST_PACKET; 5449 break; 5450 default: 5451 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 5452 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 5453 s->timeout = PFTM_OTHER_FIRST_PACKET; 5454 } 5455 5456 if (r->rt) { 5457 /* pf_map_addr increases the reason counters */ 5458 if ((reason = pf_map_addr_sn(pd->af, r, pd->src, &s->rt_addr, 5459 &s->rt_kif, NULL, &sn)) != 0) 5460 goto csfailed; 5461 s->rt = r->rt; 5462 } 5463 5464 s->creation = s->expire = pf_get_uptime(); 5465 5466 if (sn != NULL) 5467 s->src_node = sn; 5468 if (nsn != NULL) { 5469 /* XXX We only modify one side for now. */ 5470 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 5471 s->nat_src_node = nsn; 5472 } 5473 if (pd->proto == IPPROTO_TCP) { 5474 if (s->state_flags & PFSTATE_SCRUB_TCP && 5475 pf_normalize_tcp_init(pd, th, &s->src, &s->dst)) { 5476 REASON_SET(&reason, PFRES_MEMORY); 5477 goto csfailed; 5478 } 5479 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 5480 pf_normalize_tcp_stateful(pd, &reason, th, s, 5481 &s->src, &s->dst, rewrite)) { 5482 /* This really shouldn't happen!!! */ 5483 DPFPRINTF(PF_DEBUG_URGENT, 5484 ("pf_normalize_tcp_stateful failed on first " 5485 "pkt\n")); 5486 goto csfailed; 5487 } 5488 } else if (pd->proto == IPPROTO_SCTP) { 5489 if (pf_normalize_sctp_init(pd, &s->src, &s->dst)) 5490 goto csfailed; 5491 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP))) 5492 goto csfailed; 5493 } 5494 s->direction = pd->dir; 5495 5496 /* 5497 * sk/nk could already been setup by pf_get_translation(). 5498 */ 5499 if (nr == NULL) { 5500 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 5501 __func__, nr, sk, nk)); 5502 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 5503 if (sk == NULL) 5504 goto csfailed; 5505 nk = sk; 5506 } else 5507 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 5508 __func__, nr, sk, nk)); 5509 5510 /* Swap sk/nk for PF_OUT. */ 5511 if (pf_state_insert(BOUND_IFACE(s, pd->kif), pd->kif, 5512 (pd->dir == PF_IN) ? sk : nk, 5513 (pd->dir == PF_IN) ? nk : sk, s)) { 5514 REASON_SET(&reason, PFRES_STATEINS); 5515 goto drop; 5516 } else 5517 *sm = s; 5518 5519 if (tag > 0) 5520 s->tag = tag; 5521 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 5522 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 5523 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 5524 /* undo NAT changes, if they have taken place */ 5525 if (nr != NULL) { 5526 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 5527 if (pd->dir == PF_OUT) 5528 skt = s->key[PF_SK_STACK]; 5529 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 5530 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 5531 if (pd->sport) 5532 *pd->sport = skt->port[pd->sidx]; 5533 if (pd->dport) 5534 *pd->dport = skt->port[pd->didx]; 5535 if (pd->proto_sum) 5536 *pd->proto_sum = bproto_sum; 5537 if (pd->ip_sum) 5538 *pd->ip_sum = bip_sum; 5539 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5540 } 5541 s->src.seqhi = htonl(arc4random()); 5542 /* Find mss option */ 5543 int rtid = M_GETFIB(pd->m); 5544 mss = pf_get_mss(pd); 5545 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 5546 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 5547 s->src.mss = mss; 5548 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 5549 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 5550 TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0, 5551 pd->act.rtableid); 5552 REASON_SET(&reason, PFRES_SYNPROXY); 5553 return (PF_SYNPROXY_DROP); 5554 } 5555 5556 s->udp_mapping = udp_mapping; 5557 5558 return (PF_PASS); 5559 5560 csfailed: 5561 while ((ri = SLIST_FIRST(match_rules))) { 5562 SLIST_REMOVE_HEAD(match_rules, entry); 5563 free(ri, M_PF_RULE_ITEM); 5564 } 5565 5566 uma_zfree(V_pf_state_key_z, sk); 5567 uma_zfree(V_pf_state_key_z, nk); 5568 5569 if (sn != NULL) { 5570 PF_SRC_NODE_LOCK(sn); 5571 if (--sn->states == 0 && sn->expire == 0) { 5572 pf_unlink_src_node(sn); 5573 uma_zfree(V_pf_sources_z, sn); 5574 counter_u64_add( 5575 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5576 } 5577 PF_SRC_NODE_UNLOCK(sn); 5578 } 5579 5580 if (nsn != sn && nsn != NULL) { 5581 PF_SRC_NODE_LOCK(nsn); 5582 if (--nsn->states == 0 && nsn->expire == 0) { 5583 pf_unlink_src_node(nsn); 5584 uma_zfree(V_pf_sources_z, nsn); 5585 counter_u64_add( 5586 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5587 } 5588 PF_SRC_NODE_UNLOCK(nsn); 5589 } 5590 5591 drop: 5592 if (s != NULL) { 5593 pf_src_tree_remove_state(s); 5594 s->timeout = PFTM_UNLINKED; 5595 STATE_DEC_COUNTERS(s); 5596 pf_free_state(s); 5597 } 5598 5599 return (PF_DROP); 5600 } 5601 5602 static int 5603 pf_tcp_track_full(struct pf_kstate **state, struct pf_pdesc *pd, 5604 u_short *reason, int *copyback) 5605 { 5606 struct tcphdr *th = &pd->hdr.tcp; 5607 struct pf_state_peer *src, *dst; 5608 u_int16_t win = ntohs(th->th_win); 5609 u_int32_t ack, end, data_end, seq, orig_seq; 5610 u_int8_t sws, dws, psrc, pdst; 5611 int ackskew; 5612 5613 if (pd->dir == (*state)->direction) { 5614 src = &(*state)->src; 5615 dst = &(*state)->dst; 5616 psrc = PF_PEER_SRC; 5617 pdst = PF_PEER_DST; 5618 } else { 5619 src = &(*state)->dst; 5620 dst = &(*state)->src; 5621 psrc = PF_PEER_DST; 5622 pdst = PF_PEER_SRC; 5623 } 5624 5625 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 5626 sws = src->wscale & PF_WSCALE_MASK; 5627 dws = dst->wscale & PF_WSCALE_MASK; 5628 } else 5629 sws = dws = 0; 5630 5631 /* 5632 * Sequence tracking algorithm from Guido van Rooij's paper: 5633 * http://www.madison-gurkha.com/publications/tcp_filtering/ 5634 * tcp_filtering.ps 5635 */ 5636 5637 orig_seq = seq = ntohl(th->th_seq); 5638 if (src->seqlo == 0) { 5639 /* First packet from this end. Set its state */ 5640 5641 if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 5642 src->scrub == NULL) { 5643 if (pf_normalize_tcp_init(pd, th, src, dst)) { 5644 REASON_SET(reason, PFRES_MEMORY); 5645 return (PF_DROP); 5646 } 5647 } 5648 5649 /* Deferred generation of sequence number modulator */ 5650 if (dst->seqdiff && !src->seqdiff) { 5651 /* use random iss for the TCP server */ 5652 while ((src->seqdiff = arc4random() - seq) == 0) 5653 ; 5654 ack = ntohl(th->th_ack) - dst->seqdiff; 5655 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq + 5656 src->seqdiff), 0); 5657 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5658 *copyback = 1; 5659 } else { 5660 ack = ntohl(th->th_ack); 5661 } 5662 5663 end = seq + pd->p_len; 5664 if (th->th_flags & TH_SYN) { 5665 end++; 5666 if (dst->wscale & PF_WSCALE_FLAG) { 5667 src->wscale = pf_get_wscale(pd); 5668 if (src->wscale & PF_WSCALE_FLAG) { 5669 /* Remove scale factor from initial 5670 * window */ 5671 sws = src->wscale & PF_WSCALE_MASK; 5672 win = ((u_int32_t)win + (1 << sws) - 1) 5673 >> sws; 5674 dws = dst->wscale & PF_WSCALE_MASK; 5675 } else { 5676 /* fixup other window */ 5677 dst->max_win = MIN(TCP_MAXWIN, 5678 (u_int32_t)dst->max_win << 5679 (dst->wscale & PF_WSCALE_MASK)); 5680 /* in case of a retrans SYN|ACK */ 5681 dst->wscale = 0; 5682 } 5683 } 5684 } 5685 data_end = end; 5686 if (th->th_flags & TH_FIN) 5687 end++; 5688 5689 src->seqlo = seq; 5690 if (src->state < TCPS_SYN_SENT) 5691 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5692 5693 /* 5694 * May need to slide the window (seqhi may have been set by 5695 * the crappy stack check or if we picked up the connection 5696 * after establishment) 5697 */ 5698 if (src->seqhi == 1 || 5699 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 5700 src->seqhi = end + MAX(1, dst->max_win << dws); 5701 if (win > src->max_win) 5702 src->max_win = win; 5703 5704 } else { 5705 ack = ntohl(th->th_ack) - dst->seqdiff; 5706 if (src->seqdiff) { 5707 /* Modulate sequence numbers */ 5708 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq + 5709 src->seqdiff), 0); 5710 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5711 *copyback = 1; 5712 } 5713 end = seq + pd->p_len; 5714 if (th->th_flags & TH_SYN) 5715 end++; 5716 data_end = end; 5717 if (th->th_flags & TH_FIN) 5718 end++; 5719 } 5720 5721 if ((th->th_flags & TH_ACK) == 0) { 5722 /* Let it pass through the ack skew check */ 5723 ack = dst->seqlo; 5724 } else if ((ack == 0 && 5725 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 5726 /* broken tcp stacks do not set ack */ 5727 (dst->state < TCPS_SYN_SENT)) { 5728 /* 5729 * Many stacks (ours included) will set the ACK number in an 5730 * FIN|ACK if the SYN times out -- no sequence to ACK. 5731 */ 5732 ack = dst->seqlo; 5733 } 5734 5735 if (seq == end) { 5736 /* Ease sequencing restrictions on no data packets */ 5737 seq = src->seqlo; 5738 data_end = end = seq; 5739 } 5740 5741 ackskew = dst->seqlo - ack; 5742 5743 /* 5744 * Need to demodulate the sequence numbers in any TCP SACK options 5745 * (Selective ACK). We could optionally validate the SACK values 5746 * against the current ACK window, either forwards or backwards, but 5747 * I'm not confident that SACK has been implemented properly 5748 * everywhere. It wouldn't surprise me if several stacks accidentally 5749 * SACK too far backwards of previously ACKed data. There really aren't 5750 * any security implications of bad SACKing unless the target stack 5751 * doesn't validate the option length correctly. Someone trying to 5752 * spoof into a TCP connection won't bother blindly sending SACK 5753 * options anyway. 5754 */ 5755 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 5756 if (pf_modulate_sack(pd, th, dst)) 5757 *copyback = 1; 5758 } 5759 5760 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 5761 if (SEQ_GEQ(src->seqhi, data_end) && 5762 /* Last octet inside other's window space */ 5763 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 5764 /* Retrans: not more than one window back */ 5765 (ackskew >= -MAXACKWINDOW) && 5766 /* Acking not more than one reassembled fragment backwards */ 5767 (ackskew <= (MAXACKWINDOW << sws)) && 5768 /* Acking not more than one window forward */ 5769 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 5770 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) { 5771 /* Require an exact/+1 sequence match on resets when possible */ 5772 5773 if (dst->scrub || src->scrub) { 5774 if (pf_normalize_tcp_stateful(pd, reason, th, 5775 *state, src, dst, copyback)) 5776 return (PF_DROP); 5777 } 5778 5779 /* update max window */ 5780 if (src->max_win < win) 5781 src->max_win = win; 5782 /* synchronize sequencing */ 5783 if (SEQ_GT(end, src->seqlo)) 5784 src->seqlo = end; 5785 /* slide the window of what the other end can send */ 5786 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5787 dst->seqhi = ack + MAX((win << sws), 1); 5788 5789 /* update states */ 5790 if (th->th_flags & TH_SYN) 5791 if (src->state < TCPS_SYN_SENT) 5792 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5793 if (th->th_flags & TH_FIN) 5794 if (src->state < TCPS_CLOSING) 5795 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5796 if (th->th_flags & TH_ACK) { 5797 if (dst->state == TCPS_SYN_SENT) { 5798 pf_set_protostate(*state, pdst, 5799 TCPS_ESTABLISHED); 5800 if (src->state == TCPS_ESTABLISHED && 5801 (*state)->src_node != NULL && 5802 pf_src_connlimit(state)) { 5803 REASON_SET(reason, PFRES_SRCLIMIT); 5804 return (PF_DROP); 5805 } 5806 } else if (dst->state == TCPS_CLOSING) 5807 pf_set_protostate(*state, pdst, 5808 TCPS_FIN_WAIT_2); 5809 } 5810 if (th->th_flags & TH_RST) 5811 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5812 5813 /* update expire time */ 5814 (*state)->expire = pf_get_uptime(); 5815 if (src->state >= TCPS_FIN_WAIT_2 && 5816 dst->state >= TCPS_FIN_WAIT_2) 5817 (*state)->timeout = PFTM_TCP_CLOSED; 5818 else if (src->state >= TCPS_CLOSING && 5819 dst->state >= TCPS_CLOSING) 5820 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5821 else if (src->state < TCPS_ESTABLISHED || 5822 dst->state < TCPS_ESTABLISHED) 5823 (*state)->timeout = PFTM_TCP_OPENING; 5824 else if (src->state >= TCPS_CLOSING || 5825 dst->state >= TCPS_CLOSING) 5826 (*state)->timeout = PFTM_TCP_CLOSING; 5827 else 5828 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5829 5830 /* Fall through to PASS packet */ 5831 5832 } else if ((dst->state < TCPS_SYN_SENT || 5833 dst->state >= TCPS_FIN_WAIT_2 || 5834 src->state >= TCPS_FIN_WAIT_2) && 5835 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) && 5836 /* Within a window forward of the originating packet */ 5837 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 5838 /* Within a window backward of the originating packet */ 5839 5840 /* 5841 * This currently handles three situations: 5842 * 1) Stupid stacks will shotgun SYNs before their peer 5843 * replies. 5844 * 2) When PF catches an already established stream (the 5845 * firewall rebooted, the state table was flushed, routes 5846 * changed...) 5847 * 3) Packets get funky immediately after the connection 5848 * closes (this should catch Solaris spurious ACK|FINs 5849 * that web servers like to spew after a close) 5850 * 5851 * This must be a little more careful than the above code 5852 * since packet floods will also be caught here. We don't 5853 * update the TTL here to mitigate the damage of a packet 5854 * flood and so the same code can handle awkward establishment 5855 * and a loosened connection close. 5856 * In the establishment case, a correct peer response will 5857 * validate the connection, go through the normal state code 5858 * and keep updating the state TTL. 5859 */ 5860 5861 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5862 printf("pf: loose state match: "); 5863 pf_print_state(*state); 5864 pf_print_flags(th->th_flags); 5865 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5866 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 5867 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 5868 (unsigned long long)(*state)->packets[1], 5869 pd->dir == PF_IN ? "in" : "out", 5870 pd->dir == (*state)->direction ? "fwd" : "rev"); 5871 } 5872 5873 if (dst->scrub || src->scrub) { 5874 if (pf_normalize_tcp_stateful(pd, reason, th, 5875 *state, src, dst, copyback)) 5876 return (PF_DROP); 5877 } 5878 5879 /* update max window */ 5880 if (src->max_win < win) 5881 src->max_win = win; 5882 /* synchronize sequencing */ 5883 if (SEQ_GT(end, src->seqlo)) 5884 src->seqlo = end; 5885 /* slide the window of what the other end can send */ 5886 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5887 dst->seqhi = ack + MAX((win << sws), 1); 5888 5889 /* 5890 * Cannot set dst->seqhi here since this could be a shotgunned 5891 * SYN and not an already established connection. 5892 */ 5893 5894 if (th->th_flags & TH_FIN) 5895 if (src->state < TCPS_CLOSING) 5896 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5897 if (th->th_flags & TH_RST) 5898 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5899 5900 /* Fall through to PASS packet */ 5901 5902 } else { 5903 if ((*state)->dst.state == TCPS_SYN_SENT && 5904 (*state)->src.state == TCPS_SYN_SENT) { 5905 /* Send RST for state mismatches during handshake */ 5906 if (!(th->th_flags & TH_RST)) 5907 pf_send_tcp((*state)->rule, pd->af, 5908 pd->dst, pd->src, th->th_dport, 5909 th->th_sport, ntohl(th->th_ack), 0, 5910 TH_RST, 0, 0, 5911 (*state)->rule->return_ttl, M_SKIP_FIREWALL, 5912 0, 0, (*state)->act.rtableid); 5913 src->seqlo = 0; 5914 src->seqhi = 1; 5915 src->max_win = 1; 5916 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 5917 printf("pf: BAD state: "); 5918 pf_print_state(*state); 5919 pf_print_flags(th->th_flags); 5920 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5921 "pkts=%llu:%llu dir=%s,%s\n", 5922 seq, orig_seq, ack, pd->p_len, ackskew, 5923 (unsigned long long)(*state)->packets[0], 5924 (unsigned long long)(*state)->packets[1], 5925 pd->dir == PF_IN ? "in" : "out", 5926 pd->dir == (*state)->direction ? "fwd" : "rev"); 5927 printf("pf: State failure on: %c %c %c %c | %c %c\n", 5928 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1', 5929 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 5930 ' ': '2', 5931 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 5932 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 5933 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5', 5934 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 5935 } 5936 REASON_SET(reason, PFRES_BADSTATE); 5937 return (PF_DROP); 5938 } 5939 5940 return (PF_PASS); 5941 } 5942 5943 static int 5944 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 5945 { 5946 struct tcphdr *th = &pd->hdr.tcp; 5947 struct pf_state_peer *src, *dst; 5948 u_int8_t psrc, pdst; 5949 5950 if (pd->dir == (*state)->direction) { 5951 src = &(*state)->src; 5952 dst = &(*state)->dst; 5953 psrc = PF_PEER_SRC; 5954 pdst = PF_PEER_DST; 5955 } else { 5956 src = &(*state)->dst; 5957 dst = &(*state)->src; 5958 psrc = PF_PEER_DST; 5959 pdst = PF_PEER_SRC; 5960 } 5961 5962 if (th->th_flags & TH_SYN) 5963 if (src->state < TCPS_SYN_SENT) 5964 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5965 if (th->th_flags & TH_FIN) 5966 if (src->state < TCPS_CLOSING) 5967 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5968 if (th->th_flags & TH_ACK) { 5969 if (dst->state == TCPS_SYN_SENT) { 5970 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 5971 if (src->state == TCPS_ESTABLISHED && 5972 (*state)->src_node != NULL && 5973 pf_src_connlimit(state)) { 5974 REASON_SET(reason, PFRES_SRCLIMIT); 5975 return (PF_DROP); 5976 } 5977 } else if (dst->state == TCPS_CLOSING) { 5978 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 5979 } else if (src->state == TCPS_SYN_SENT && 5980 dst->state < TCPS_SYN_SENT) { 5981 /* 5982 * Handle a special sloppy case where we only see one 5983 * half of the connection. If there is a ACK after 5984 * the initial SYN without ever seeing a packet from 5985 * the destination, set the connection to established. 5986 */ 5987 pf_set_protostate(*state, PF_PEER_BOTH, 5988 TCPS_ESTABLISHED); 5989 dst->state = src->state = TCPS_ESTABLISHED; 5990 if ((*state)->src_node != NULL && 5991 pf_src_connlimit(state)) { 5992 REASON_SET(reason, PFRES_SRCLIMIT); 5993 return (PF_DROP); 5994 } 5995 } else if (src->state == TCPS_CLOSING && 5996 dst->state == TCPS_ESTABLISHED && 5997 dst->seqlo == 0) { 5998 /* 5999 * Handle the closing of half connections where we 6000 * don't see the full bidirectional FIN/ACK+ACK 6001 * handshake. 6002 */ 6003 pf_set_protostate(*state, pdst, TCPS_CLOSING); 6004 } 6005 } 6006 if (th->th_flags & TH_RST) 6007 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6008 6009 /* update expire time */ 6010 (*state)->expire = pf_get_uptime(); 6011 if (src->state >= TCPS_FIN_WAIT_2 && 6012 dst->state >= TCPS_FIN_WAIT_2) 6013 (*state)->timeout = PFTM_TCP_CLOSED; 6014 else if (src->state >= TCPS_CLOSING && 6015 dst->state >= TCPS_CLOSING) 6016 (*state)->timeout = PFTM_TCP_FIN_WAIT; 6017 else if (src->state < TCPS_ESTABLISHED || 6018 dst->state < TCPS_ESTABLISHED) 6019 (*state)->timeout = PFTM_TCP_OPENING; 6020 else if (src->state >= TCPS_CLOSING || 6021 dst->state >= TCPS_CLOSING) 6022 (*state)->timeout = PFTM_TCP_CLOSING; 6023 else 6024 (*state)->timeout = PFTM_TCP_ESTABLISHED; 6025 6026 return (PF_PASS); 6027 } 6028 6029 static int 6030 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 6031 { 6032 struct pf_state_key *sk = (*state)->key[pd->didx]; 6033 struct tcphdr *th = &pd->hdr.tcp; 6034 6035 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 6036 if (pd->dir != (*state)->direction) { 6037 REASON_SET(reason, PFRES_SYNPROXY); 6038 return (PF_SYNPROXY_DROP); 6039 } 6040 if (th->th_flags & TH_SYN) { 6041 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 6042 REASON_SET(reason, PFRES_SYNPROXY); 6043 return (PF_DROP); 6044 } 6045 pf_send_tcp((*state)->rule, pd->af, pd->dst, 6046 pd->src, th->th_dport, th->th_sport, 6047 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 6048 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 6049 M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid); 6050 REASON_SET(reason, PFRES_SYNPROXY); 6051 return (PF_SYNPROXY_DROP); 6052 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 6053 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 6054 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 6055 REASON_SET(reason, PFRES_SYNPROXY); 6056 return (PF_DROP); 6057 } else if ((*state)->src_node != NULL && 6058 pf_src_connlimit(state)) { 6059 REASON_SET(reason, PFRES_SRCLIMIT); 6060 return (PF_DROP); 6061 } else 6062 pf_set_protostate(*state, PF_PEER_SRC, 6063 PF_TCPS_PROXY_DST); 6064 } 6065 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 6066 if (pd->dir == (*state)->direction) { 6067 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 6068 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 6069 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 6070 REASON_SET(reason, PFRES_SYNPROXY); 6071 return (PF_DROP); 6072 } 6073 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 6074 if ((*state)->dst.seqhi == 1) 6075 (*state)->dst.seqhi = htonl(arc4random()); 6076 pf_send_tcp((*state)->rule, pd->af, 6077 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6078 sk->port[pd->sidx], sk->port[pd->didx], 6079 (*state)->dst.seqhi, 0, TH_SYN, 0, 6080 (*state)->src.mss, 0, 6081 (*state)->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0, 6082 (*state)->tag, 0, (*state)->act.rtableid); 6083 REASON_SET(reason, PFRES_SYNPROXY); 6084 return (PF_SYNPROXY_DROP); 6085 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 6086 (TH_SYN|TH_ACK)) || 6087 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 6088 REASON_SET(reason, PFRES_SYNPROXY); 6089 return (PF_DROP); 6090 } else { 6091 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 6092 (*state)->dst.seqlo = ntohl(th->th_seq); 6093 pf_send_tcp((*state)->rule, pd->af, pd->dst, 6094 pd->src, th->th_dport, th->th_sport, 6095 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 6096 TH_ACK, (*state)->src.max_win, 0, 0, 0, 6097 (*state)->tag, 0, (*state)->act.rtableid); 6098 pf_send_tcp((*state)->rule, pd->af, 6099 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6100 sk->port[pd->sidx], sk->port[pd->didx], 6101 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 6102 TH_ACK, (*state)->dst.max_win, 0, 0, 6103 M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid); 6104 (*state)->src.seqdiff = (*state)->dst.seqhi - 6105 (*state)->src.seqlo; 6106 (*state)->dst.seqdiff = (*state)->src.seqhi - 6107 (*state)->dst.seqlo; 6108 (*state)->src.seqhi = (*state)->src.seqlo + 6109 (*state)->dst.max_win; 6110 (*state)->dst.seqhi = (*state)->dst.seqlo + 6111 (*state)->src.max_win; 6112 (*state)->src.wscale = (*state)->dst.wscale = 0; 6113 pf_set_protostate(*state, PF_PEER_BOTH, 6114 TCPS_ESTABLISHED); 6115 REASON_SET(reason, PFRES_SYNPROXY); 6116 return (PF_SYNPROXY_DROP); 6117 } 6118 } 6119 6120 return (PF_PASS); 6121 } 6122 6123 static int 6124 pf_test_state_tcp(struct pf_kstate **state, struct pf_pdesc *pd, 6125 u_short *reason) 6126 { 6127 struct pf_state_key_cmp key; 6128 struct tcphdr *th = &pd->hdr.tcp; 6129 int copyback = 0; 6130 int action; 6131 struct pf_state_peer *src, *dst; 6132 6133 bzero(&key, sizeof(key)); 6134 key.af = pd->af; 6135 key.proto = IPPROTO_TCP; 6136 if (pd->dir == PF_IN) { /* wire side, straight */ 6137 PF_ACPY(&key.addr[0], pd->src, key.af); 6138 PF_ACPY(&key.addr[1], pd->dst, key.af); 6139 key.port[0] = th->th_sport; 6140 key.port[1] = th->th_dport; 6141 } else { /* stack side, reverse */ 6142 PF_ACPY(&key.addr[1], pd->src, key.af); 6143 PF_ACPY(&key.addr[0], pd->dst, key.af); 6144 key.port[1] = th->th_sport; 6145 key.port[0] = th->th_dport; 6146 } 6147 6148 STATE_LOOKUP(&key, *state, pd); 6149 6150 if (pd->dir == (*state)->direction) { 6151 src = &(*state)->src; 6152 dst = &(*state)->dst; 6153 } else { 6154 src = &(*state)->dst; 6155 dst = &(*state)->src; 6156 } 6157 6158 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 6159 return (action); 6160 6161 if (dst->state >= TCPS_FIN_WAIT_2 && 6162 src->state >= TCPS_FIN_WAIT_2 && 6163 (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) || 6164 ((th->th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK && 6165 pf_syncookie_check(pd) && pd->dir == PF_IN))) { 6166 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6167 printf("pf: state reuse "); 6168 pf_print_state(*state); 6169 pf_print_flags(th->th_flags); 6170 printf("\n"); 6171 } 6172 /* XXX make sure it's the same direction ?? */ 6173 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 6174 pf_unlink_state(*state); 6175 *state = NULL; 6176 return (PF_DROP); 6177 } 6178 6179 if ((*state)->state_flags & PFSTATE_SLOPPY) { 6180 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 6181 return (PF_DROP); 6182 } else { 6183 if (pf_tcp_track_full(state, pd, reason, 6184 ©back) == PF_DROP) 6185 return (PF_DROP); 6186 } 6187 6188 /* translate source/destination address, if necessary */ 6189 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6190 struct pf_state_key *nk = (*state)->key[pd->didx]; 6191 6192 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6193 nk->port[pd->sidx] != th->th_sport) 6194 pf_change_ap(pd->m, pd->src, &th->th_sport, 6195 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 6196 nk->port[pd->sidx], 0, pd->af); 6197 6198 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6199 nk->port[pd->didx] != th->th_dport) 6200 pf_change_ap(pd->m, pd->dst, &th->th_dport, 6201 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 6202 nk->port[pd->didx], 0, pd->af); 6203 copyback = 1; 6204 } 6205 6206 /* Copyback sequence modulation or stateful scrub changes if needed */ 6207 if (copyback) 6208 m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th); 6209 6210 return (PF_PASS); 6211 } 6212 6213 static int 6214 pf_test_state_udp(struct pf_kstate **state, struct pf_pdesc *pd) 6215 { 6216 struct pf_state_peer *src, *dst; 6217 struct pf_state_key_cmp key; 6218 struct udphdr *uh = &pd->hdr.udp; 6219 uint8_t psrc, pdst; 6220 6221 bzero(&key, sizeof(key)); 6222 key.af = pd->af; 6223 key.proto = IPPROTO_UDP; 6224 if (pd->dir == PF_IN) { /* wire side, straight */ 6225 PF_ACPY(&key.addr[0], pd->src, key.af); 6226 PF_ACPY(&key.addr[1], pd->dst, key.af); 6227 key.port[0] = uh->uh_sport; 6228 key.port[1] = uh->uh_dport; 6229 } else { /* stack side, reverse */ 6230 PF_ACPY(&key.addr[1], pd->src, key.af); 6231 PF_ACPY(&key.addr[0], pd->dst, key.af); 6232 key.port[1] = uh->uh_sport; 6233 key.port[0] = uh->uh_dport; 6234 } 6235 6236 STATE_LOOKUP(&key, *state, pd); 6237 6238 if (pd->dir == (*state)->direction) { 6239 src = &(*state)->src; 6240 dst = &(*state)->dst; 6241 psrc = PF_PEER_SRC; 6242 pdst = PF_PEER_DST; 6243 } else { 6244 src = &(*state)->dst; 6245 dst = &(*state)->src; 6246 psrc = PF_PEER_DST; 6247 pdst = PF_PEER_SRC; 6248 } 6249 6250 /* update states */ 6251 if (src->state < PFUDPS_SINGLE) 6252 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 6253 if (dst->state == PFUDPS_SINGLE) 6254 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 6255 6256 /* update expire time */ 6257 (*state)->expire = pf_get_uptime(); 6258 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 6259 (*state)->timeout = PFTM_UDP_MULTIPLE; 6260 else 6261 (*state)->timeout = PFTM_UDP_SINGLE; 6262 6263 /* translate source/destination address, if necessary */ 6264 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6265 struct pf_state_key *nk = (*state)->key[pd->didx]; 6266 6267 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6268 nk->port[pd->sidx] != uh->uh_sport) 6269 pf_change_ap(pd->m, pd->src, &uh->uh_sport, pd->ip_sum, 6270 &uh->uh_sum, &nk->addr[pd->sidx], 6271 nk->port[pd->sidx], 1, pd->af); 6272 6273 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6274 nk->port[pd->didx] != uh->uh_dport) 6275 pf_change_ap(pd->m, pd->dst, &uh->uh_dport, pd->ip_sum, 6276 &uh->uh_sum, &nk->addr[pd->didx], 6277 nk->port[pd->didx], 1, pd->af); 6278 m_copyback(pd->m, pd->off, sizeof(*uh), (caddr_t)uh); 6279 } 6280 6281 return (PF_PASS); 6282 } 6283 6284 static int 6285 pf_test_state_sctp(struct pf_kstate **state, struct pf_pdesc *pd, 6286 u_short *reason) 6287 { 6288 struct pf_state_key_cmp key; 6289 struct pf_state_peer *src, *dst; 6290 struct sctphdr *sh = &pd->hdr.sctp; 6291 u_int8_t psrc; //, pdst; 6292 6293 bzero(&key, sizeof(key)); 6294 key.af = pd->af; 6295 key.proto = IPPROTO_SCTP; 6296 if (pd->dir == PF_IN) { /* wire side, straight */ 6297 PF_ACPY(&key.addr[0], pd->src, key.af); 6298 PF_ACPY(&key.addr[1], pd->dst, key.af); 6299 key.port[0] = sh->src_port; 6300 key.port[1] = sh->dest_port; 6301 } else { /* stack side, reverse */ 6302 PF_ACPY(&key.addr[1], pd->src, key.af); 6303 PF_ACPY(&key.addr[0], pd->dst, key.af); 6304 key.port[1] = sh->src_port; 6305 key.port[0] = sh->dest_port; 6306 } 6307 6308 STATE_LOOKUP(&key, *state, pd); 6309 6310 if (pd->dir == (*state)->direction) { 6311 src = &(*state)->src; 6312 dst = &(*state)->dst; 6313 psrc = PF_PEER_SRC; 6314 } else { 6315 src = &(*state)->dst; 6316 dst = &(*state)->src; 6317 psrc = PF_PEER_DST; 6318 } 6319 6320 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) && 6321 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) && 6322 pd->sctp_flags & PFDESC_SCTP_INIT) { 6323 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED); 6324 pf_unlink_state(*state); 6325 *state = NULL; 6326 return (PF_DROP); 6327 } 6328 6329 /* Track state. */ 6330 if (pd->sctp_flags & PFDESC_SCTP_INIT) { 6331 if (src->state < SCTP_COOKIE_WAIT) { 6332 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT); 6333 (*state)->timeout = PFTM_SCTP_OPENING; 6334 } 6335 } 6336 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) { 6337 MPASS(dst->scrub != NULL); 6338 if (dst->scrub->pfss_v_tag == 0) 6339 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag; 6340 } 6341 6342 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) { 6343 if (src->state < SCTP_ESTABLISHED) { 6344 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED); 6345 (*state)->timeout = PFTM_SCTP_ESTABLISHED; 6346 } 6347 } 6348 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | PFDESC_SCTP_ABORT | 6349 PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 6350 if (src->state < SCTP_SHUTDOWN_PENDING) { 6351 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING); 6352 (*state)->timeout = PFTM_SCTP_CLOSING; 6353 } 6354 } 6355 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 6356 pf_set_protostate(*state, psrc, SCTP_CLOSED); 6357 (*state)->timeout = PFTM_SCTP_CLOSED; 6358 } 6359 6360 if (src->scrub != NULL) { 6361 if (src->scrub->pfss_v_tag == 0) { 6362 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag; 6363 } else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag) 6364 return (PF_DROP); 6365 } 6366 6367 (*state)->expire = pf_get_uptime(); 6368 6369 /* translate source/destination address, if necessary */ 6370 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6371 uint16_t checksum = 0; 6372 struct pf_state_key *nk = (*state)->key[pd->didx]; 6373 6374 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6375 nk->port[pd->sidx] != pd->hdr.sctp.src_port) { 6376 pf_change_ap(pd->m, pd->src, &pd->hdr.sctp.src_port, 6377 pd->ip_sum, &checksum, &nk->addr[pd->sidx], 6378 nk->port[pd->sidx], 1, pd->af); 6379 } 6380 6381 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6382 nk->port[pd->didx] != pd->hdr.sctp.dest_port) { 6383 pf_change_ap(pd->m, pd->dst, &pd->hdr.sctp.dest_port, 6384 pd->ip_sum, &checksum, &nk->addr[pd->didx], 6385 nk->port[pd->didx], 1, pd->af); 6386 } 6387 } 6388 6389 return (PF_PASS); 6390 } 6391 6392 static void 6393 pf_sctp_multihome_detach_addr(const struct pf_kstate *s) 6394 { 6395 struct pf_sctp_endpoint key; 6396 struct pf_sctp_endpoint *ep; 6397 struct pf_state_key *sks = s->key[PF_SK_STACK]; 6398 struct pf_sctp_source *i, *tmp; 6399 6400 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL) 6401 return; 6402 6403 PF_SCTP_ENDPOINTS_LOCK(); 6404 6405 key.v_tag = s->dst.scrub->pfss_v_tag; 6406 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6407 if (ep != NULL) { 6408 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6409 if (pf_addr_cmp(&i->addr, 6410 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT], 6411 s->key[PF_SK_WIRE]->af) == 0) { 6412 SDT_PROBE3(pf, sctp, multihome, remove, 6413 key.v_tag, s, i); 6414 TAILQ_REMOVE(&ep->sources, i, entry); 6415 free(i, M_PFTEMP); 6416 break; 6417 } 6418 } 6419 6420 if (TAILQ_EMPTY(&ep->sources)) { 6421 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6422 free(ep, M_PFTEMP); 6423 } 6424 } 6425 6426 /* Other direction. */ 6427 key.v_tag = s->src.scrub->pfss_v_tag; 6428 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6429 if (ep != NULL) { 6430 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6431 if (pf_addr_cmp(&i->addr, 6432 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN], 6433 s->key[PF_SK_WIRE]->af) == 0) { 6434 SDT_PROBE3(pf, sctp, multihome, remove, 6435 key.v_tag, s, i); 6436 TAILQ_REMOVE(&ep->sources, i, entry); 6437 free(i, M_PFTEMP); 6438 break; 6439 } 6440 } 6441 6442 if (TAILQ_EMPTY(&ep->sources)) { 6443 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6444 free(ep, M_PFTEMP); 6445 } 6446 } 6447 6448 PF_SCTP_ENDPOINTS_UNLOCK(); 6449 } 6450 6451 static void 6452 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag) 6453 { 6454 struct pf_sctp_endpoint key = { 6455 .v_tag = v_tag, 6456 }; 6457 struct pf_sctp_source *i; 6458 struct pf_sctp_endpoint *ep; 6459 6460 PF_SCTP_ENDPOINTS_LOCK(); 6461 6462 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6463 if (ep == NULL) { 6464 ep = malloc(sizeof(struct pf_sctp_endpoint), 6465 M_PFTEMP, M_NOWAIT); 6466 if (ep == NULL) { 6467 PF_SCTP_ENDPOINTS_UNLOCK(); 6468 return; 6469 } 6470 6471 ep->v_tag = v_tag; 6472 TAILQ_INIT(&ep->sources); 6473 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6474 } 6475 6476 /* Avoid inserting duplicates. */ 6477 TAILQ_FOREACH(i, &ep->sources, entry) { 6478 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) { 6479 PF_SCTP_ENDPOINTS_UNLOCK(); 6480 return; 6481 } 6482 } 6483 6484 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT); 6485 if (i == NULL) { 6486 PF_SCTP_ENDPOINTS_UNLOCK(); 6487 return; 6488 } 6489 6490 i->af = pd->af; 6491 memcpy(&i->addr, a, sizeof(*a)); 6492 TAILQ_INSERT_TAIL(&ep->sources, i, entry); 6493 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i); 6494 6495 PF_SCTP_ENDPOINTS_UNLOCK(); 6496 } 6497 6498 static void 6499 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif, 6500 struct pf_kstate *s, int action) 6501 { 6502 struct pf_sctp_multihome_job *j, *tmp; 6503 struct pf_sctp_source *i; 6504 int ret __unused; 6505 struct pf_kstate *sm = NULL; 6506 struct pf_krule *ra = NULL; 6507 struct pf_krule *r = &V_pf_default_rule; 6508 struct pf_kruleset *rs = NULL; 6509 bool do_extra = true; 6510 6511 PF_RULES_RLOCK_TRACKER; 6512 6513 again: 6514 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) { 6515 if (s == NULL || action != PF_PASS) 6516 goto free; 6517 6518 /* Confirm we don't recurse here. */ 6519 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP)); 6520 6521 switch (j->op) { 6522 case SCTP_ADD_IP_ADDRESS: { 6523 uint32_t v_tag = pd->sctp_initiate_tag; 6524 6525 if (v_tag == 0) { 6526 if (s->direction == pd->dir) 6527 v_tag = s->src.scrub->pfss_v_tag; 6528 else 6529 v_tag = s->dst.scrub->pfss_v_tag; 6530 } 6531 6532 /* 6533 * Avoid duplicating states. We'll already have 6534 * created a state based on the source address of 6535 * the packet, but SCTP endpoints may also list this 6536 * address again in the INIT(_ACK) parameters. 6537 */ 6538 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) { 6539 break; 6540 } 6541 6542 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP; 6543 PF_RULES_RLOCK(); 6544 sm = NULL; 6545 /* 6546 * New connections need to be floating, because 6547 * we cannot know what interfaces it will use. 6548 * That's why we pass V_pfi_all rather than kif. 6549 */ 6550 j->pd.kif = V_pfi_all; 6551 ret = pf_test_rule(&r, &sm, 6552 &j->pd, &ra, &rs, NULL); 6553 PF_RULES_RUNLOCK(); 6554 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret); 6555 if (ret != PF_DROP && sm != NULL) { 6556 /* Inherit v_tag values. */ 6557 if (sm->direction == s->direction) { 6558 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6559 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6560 } else { 6561 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6562 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6563 } 6564 PF_STATE_UNLOCK(sm); 6565 } else { 6566 /* If we try duplicate inserts? */ 6567 break; 6568 } 6569 6570 /* Only add the address if we've actually allowed the state. */ 6571 pf_sctp_multihome_add_addr(pd, &j->src, v_tag); 6572 6573 if (! do_extra) { 6574 break; 6575 } 6576 /* 6577 * We need to do this for each of our source addresses. 6578 * Find those based on the verification tag. 6579 */ 6580 struct pf_sctp_endpoint key = { 6581 .v_tag = pd->hdr.sctp.v_tag, 6582 }; 6583 struct pf_sctp_endpoint *ep; 6584 6585 PF_SCTP_ENDPOINTS_LOCK(); 6586 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6587 if (ep == NULL) { 6588 PF_SCTP_ENDPOINTS_UNLOCK(); 6589 break; 6590 } 6591 MPASS(ep != NULL); 6592 6593 TAILQ_FOREACH(i, &ep->sources, entry) { 6594 struct pf_sctp_multihome_job *nj; 6595 6596 /* SCTP can intermingle IPv4 and IPv6. */ 6597 if (i->af != pd->af) 6598 continue; 6599 6600 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO); 6601 if (! nj) { 6602 continue; 6603 } 6604 memcpy(&nj->pd, &j->pd, sizeof(j->pd)); 6605 memcpy(&nj->src, &j->src, sizeof(nj->src)); 6606 nj->pd.src = &nj->src; 6607 // New destination address! 6608 memcpy(&nj->dst, &i->addr, sizeof(nj->dst)); 6609 nj->pd.dst = &nj->dst; 6610 nj->pd.m = j->pd.m; 6611 nj->op = j->op; 6612 6613 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next); 6614 } 6615 PF_SCTP_ENDPOINTS_UNLOCK(); 6616 6617 break; 6618 } 6619 case SCTP_DEL_IP_ADDRESS: { 6620 struct pf_state_key_cmp key; 6621 uint8_t psrc; 6622 6623 bzero(&key, sizeof(key)); 6624 key.af = j->pd.af; 6625 key.proto = IPPROTO_SCTP; 6626 if (j->pd.dir == PF_IN) { /* wire side, straight */ 6627 PF_ACPY(&key.addr[0], j->pd.src, key.af); 6628 PF_ACPY(&key.addr[1], j->pd.dst, key.af); 6629 key.port[0] = j->pd.hdr.sctp.src_port; 6630 key.port[1] = j->pd.hdr.sctp.dest_port; 6631 } else { /* stack side, reverse */ 6632 PF_ACPY(&key.addr[1], j->pd.src, key.af); 6633 PF_ACPY(&key.addr[0], j->pd.dst, key.af); 6634 key.port[1] = j->pd.hdr.sctp.src_port; 6635 key.port[0] = j->pd.hdr.sctp.dest_port; 6636 } 6637 6638 sm = pf_find_state(kif, &key, j->pd.dir); 6639 if (sm != NULL) { 6640 PF_STATE_LOCK_ASSERT(sm); 6641 if (j->pd.dir == sm->direction) { 6642 psrc = PF_PEER_SRC; 6643 } else { 6644 psrc = PF_PEER_DST; 6645 } 6646 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING); 6647 sm->timeout = PFTM_SCTP_CLOSING; 6648 PF_STATE_UNLOCK(sm); 6649 } 6650 break; 6651 default: 6652 panic("Unknown op %#x", j->op); 6653 } 6654 } 6655 6656 free: 6657 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next); 6658 free(j, M_PFTEMP); 6659 } 6660 6661 /* We may have inserted extra work while processing the list. */ 6662 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) { 6663 do_extra = false; 6664 goto again; 6665 } 6666 } 6667 6668 static int 6669 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op) 6670 { 6671 int off = 0; 6672 struct pf_sctp_multihome_job *job; 6673 6674 while (off < len) { 6675 struct sctp_paramhdr h; 6676 6677 if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL, NULL, 6678 pd->af)) 6679 return (PF_DROP); 6680 6681 /* Parameters are at least 4 bytes. */ 6682 if (ntohs(h.param_length) < 4) 6683 return (PF_DROP); 6684 6685 switch (ntohs(h.param_type)) { 6686 case SCTP_IPV4_ADDRESS: { 6687 struct in_addr t; 6688 6689 if (ntohs(h.param_length) != 6690 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6691 return (PF_DROP); 6692 6693 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t), 6694 NULL, NULL, pd->af)) 6695 return (PF_DROP); 6696 6697 if (in_nullhost(t)) 6698 t.s_addr = pd->src->v4.s_addr; 6699 6700 /* 6701 * We hold the state lock (idhash) here, which means 6702 * that we can't acquire the keyhash, or we'll get a 6703 * LOR (and potentially double-lock things too). We also 6704 * can't release the state lock here, so instead we'll 6705 * enqueue this for async handling. 6706 * There's a relatively small race here, in that a 6707 * packet using the new addresses could arrive already, 6708 * but that's just though luck for it. 6709 */ 6710 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6711 if (! job) 6712 return (PF_DROP); 6713 6714 memcpy(&job->pd, pd, sizeof(*pd)); 6715 6716 // New source address! 6717 memcpy(&job->src, &t, sizeof(t)); 6718 job->pd.src = &job->src; 6719 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6720 job->pd.dst = &job->dst; 6721 job->pd.m = pd->m; 6722 job->op = op; 6723 6724 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6725 break; 6726 } 6727 #ifdef INET6 6728 case SCTP_IPV6_ADDRESS: { 6729 struct in6_addr t; 6730 6731 if (ntohs(h.param_length) != 6732 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6733 return (PF_DROP); 6734 6735 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t), 6736 NULL, NULL, pd->af)) 6737 return (PF_DROP); 6738 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0) 6739 break; 6740 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0) 6741 memcpy(&t, &pd->src->v6, sizeof(t)); 6742 6743 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6744 if (! job) 6745 return (PF_DROP); 6746 6747 memcpy(&job->pd, pd, sizeof(*pd)); 6748 memcpy(&job->src, &t, sizeof(t)); 6749 job->pd.src = &job->src; 6750 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6751 job->pd.dst = &job->dst; 6752 job->pd.m = pd->m; 6753 job->op = op; 6754 6755 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6756 break; 6757 } 6758 #endif 6759 case SCTP_ADD_IP_ADDRESS: { 6760 int ret; 6761 struct sctp_asconf_paramhdr ah; 6762 6763 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah), 6764 NULL, NULL, pd->af)) 6765 return (PF_DROP); 6766 6767 ret = pf_multihome_scan(start + off + sizeof(ah), 6768 ntohs(ah.ph.param_length) - sizeof(ah), pd, 6769 SCTP_ADD_IP_ADDRESS); 6770 if (ret != PF_PASS) 6771 return (ret); 6772 break; 6773 } 6774 case SCTP_DEL_IP_ADDRESS: { 6775 int ret; 6776 struct sctp_asconf_paramhdr ah; 6777 6778 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah), 6779 NULL, NULL, pd->af)) 6780 return (PF_DROP); 6781 ret = pf_multihome_scan(start + off + sizeof(ah), 6782 ntohs(ah.ph.param_length) - sizeof(ah), pd, 6783 SCTP_DEL_IP_ADDRESS); 6784 if (ret != PF_PASS) 6785 return (ret); 6786 break; 6787 } 6788 default: 6789 break; 6790 } 6791 6792 off += roundup(ntohs(h.param_length), 4); 6793 } 6794 6795 return (PF_PASS); 6796 } 6797 int 6798 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd) 6799 { 6800 start += sizeof(struct sctp_init_chunk); 6801 len -= sizeof(struct sctp_init_chunk); 6802 6803 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS)); 6804 } 6805 6806 int 6807 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd) 6808 { 6809 start += sizeof(struct sctp_asconf_chunk); 6810 len -= sizeof(struct sctp_asconf_chunk); 6811 6812 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS)); 6813 } 6814 6815 int 6816 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd, 6817 struct pf_kstate **state, int direction, 6818 u_int16_t icmpid, u_int16_t type, int icmp_dir, 6819 int *iidx, int multi, int inner) 6820 { 6821 key->af = pd->af; 6822 key->proto = pd->proto; 6823 if (icmp_dir == PF_IN) { 6824 *iidx = pd->sidx; 6825 key->port[pd->sidx] = icmpid; 6826 key->port[pd->didx] = type; 6827 } else { 6828 *iidx = pd->didx; 6829 key->port[pd->sidx] = type; 6830 key->port[pd->didx] = icmpid; 6831 } 6832 if (pf_state_key_addr_setup(pd, key, multi)) 6833 return (PF_DROP); 6834 6835 STATE_LOOKUP(key, *state, pd); 6836 6837 if ((*state)->state_flags & PFSTATE_SLOPPY) 6838 return (-1); 6839 6840 /* Is this ICMP message flowing in right direction? */ 6841 if ((*state)->rule->type && 6842 (((!inner && (*state)->direction == direction) || 6843 (inner && (*state)->direction != direction)) ? 6844 PF_IN : PF_OUT) != icmp_dir) { 6845 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6846 printf("pf: icmp type %d in wrong direction (%d): ", 6847 ntohs(type), icmp_dir); 6848 pf_print_state(*state); 6849 printf("\n"); 6850 } 6851 PF_STATE_UNLOCK(*state); 6852 *state = NULL; 6853 return (PF_DROP); 6854 } 6855 return (-1); 6856 } 6857 6858 static int 6859 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd, 6860 u_short *reason) 6861 { 6862 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 6863 u_int16_t *icmpsum, virtual_id, virtual_type; 6864 u_int8_t icmptype, icmpcode; 6865 int icmp_dir, iidx, ret, multi; 6866 struct pf_state_key_cmp key; 6867 #ifdef INET 6868 u_int16_t icmpid; 6869 #endif 6870 6871 MPASS(*state == NULL); 6872 6873 bzero(&key, sizeof(key)); 6874 switch (pd->proto) { 6875 #ifdef INET 6876 case IPPROTO_ICMP: 6877 icmptype = pd->hdr.icmp.icmp_type; 6878 icmpcode = pd->hdr.icmp.icmp_code; 6879 icmpid = pd->hdr.icmp.icmp_id; 6880 icmpsum = &pd->hdr.icmp.icmp_cksum; 6881 break; 6882 #endif /* INET */ 6883 #ifdef INET6 6884 case IPPROTO_ICMPV6: 6885 icmptype = pd->hdr.icmp6.icmp6_type; 6886 icmpcode = pd->hdr.icmp6.icmp6_code; 6887 #ifdef INET 6888 icmpid = pd->hdr.icmp6.icmp6_id; 6889 #endif 6890 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 6891 break; 6892 #endif /* INET6 */ 6893 } 6894 6895 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &multi, 6896 &virtual_id, &virtual_type) == 0) { 6897 /* 6898 * ICMP query/reply message not related to a TCP/UDP packet. 6899 * Search for an ICMP state. 6900 */ 6901 ret = pf_icmp_state_lookup(&key, pd, state, pd->dir, 6902 virtual_id, virtual_type, icmp_dir, &iidx, 6903 PF_ICMP_MULTI_NONE, 0); 6904 if (ret >= 0) { 6905 MPASS(*state == NULL); 6906 if (ret == PF_DROP && pd->af == AF_INET6 && 6907 icmp_dir == PF_OUT) { 6908 ret = pf_icmp_state_lookup(&key, pd, state, 6909 pd->dir, virtual_id, virtual_type, 6910 icmp_dir, &iidx, multi, 0); 6911 if (ret >= 0) { 6912 MPASS(*state == NULL); 6913 return (ret); 6914 } 6915 } else 6916 return (ret); 6917 } 6918 6919 (*state)->expire = pf_get_uptime(); 6920 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 6921 6922 /* translate source/destination address, if necessary */ 6923 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6924 struct pf_state_key *nk = (*state)->key[pd->didx]; 6925 6926 switch (pd->af) { 6927 #ifdef INET 6928 case AF_INET: 6929 if (PF_ANEQ(pd->src, 6930 &nk->addr[pd->sidx], AF_INET)) 6931 pf_change_a(&saddr->v4.s_addr, 6932 pd->ip_sum, 6933 nk->addr[pd->sidx].v4.s_addr, 0); 6934 6935 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 6936 AF_INET)) 6937 pf_change_a(&daddr->v4.s_addr, 6938 pd->ip_sum, 6939 nk->addr[pd->didx].v4.s_addr, 0); 6940 6941 if (nk->port[iidx] != 6942 pd->hdr.icmp.icmp_id) { 6943 pd->hdr.icmp.icmp_cksum = 6944 pf_cksum_fixup( 6945 pd->hdr.icmp.icmp_cksum, icmpid, 6946 nk->port[iidx], 0); 6947 pd->hdr.icmp.icmp_id = 6948 nk->port[iidx]; 6949 } 6950 6951 m_copyback(pd->m, pd->off, ICMP_MINLEN, 6952 (caddr_t )&pd->hdr.icmp); 6953 break; 6954 #endif /* INET */ 6955 #ifdef INET6 6956 case AF_INET6: 6957 if (PF_ANEQ(pd->src, 6958 &nk->addr[pd->sidx], AF_INET6)) 6959 pf_change_a6(saddr, 6960 &pd->hdr.icmp6.icmp6_cksum, 6961 &nk->addr[pd->sidx], 0); 6962 6963 if (PF_ANEQ(pd->dst, 6964 &nk->addr[pd->didx], AF_INET6)) 6965 pf_change_a6(daddr, 6966 &pd->hdr.icmp6.icmp6_cksum, 6967 &nk->addr[pd->didx], 0); 6968 6969 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr), 6970 (caddr_t )&pd->hdr.icmp6); 6971 break; 6972 #endif /* INET6 */ 6973 } 6974 } 6975 return (PF_PASS); 6976 6977 } else { 6978 /* 6979 * ICMP error message in response to a TCP/UDP packet. 6980 * Extract the inner TCP/UDP header and search for that state. 6981 */ 6982 6983 struct pf_pdesc pd2; 6984 bzero(&pd2, sizeof pd2); 6985 #ifdef INET 6986 struct ip h2; 6987 #endif /* INET */ 6988 #ifdef INET6 6989 struct ip6_hdr h2_6; 6990 int fragoff2, extoff2; 6991 u_int32_t jumbolen; 6992 #endif /* INET6 */ 6993 int ipoff2 = 0; 6994 6995 pd2.af = pd->af; 6996 pd2.dir = pd->dir; 6997 /* Payload packet is from the opposite direction. */ 6998 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0; 6999 pd2.didx = (pd->dir == PF_IN) ? 0 : 1; 7000 pd2.m = pd->m; 7001 switch (pd->af) { 7002 #ifdef INET 7003 case AF_INET: 7004 /* offset of h2 in mbuf chain */ 7005 ipoff2 = pd->off + ICMP_MINLEN; 7006 7007 if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2), 7008 NULL, reason, pd2.af)) { 7009 DPFPRINTF(PF_DEBUG_MISC, 7010 ("pf: ICMP error message too short " 7011 "(ip)\n")); 7012 return (PF_DROP); 7013 } 7014 /* 7015 * ICMP error messages don't refer to non-first 7016 * fragments 7017 */ 7018 if (h2.ip_off & htons(IP_OFFMASK)) { 7019 REASON_SET(reason, PFRES_FRAG); 7020 return (PF_DROP); 7021 } 7022 7023 /* offset of protocol header that follows h2 */ 7024 pd2.off = ipoff2 + (h2.ip_hl << 2); 7025 7026 pd2.proto = h2.ip_p; 7027 pd2.src = (struct pf_addr *)&h2.ip_src; 7028 pd2.dst = (struct pf_addr *)&h2.ip_dst; 7029 pd2.ip_sum = &h2.ip_sum; 7030 break; 7031 #endif /* INET */ 7032 #ifdef INET6 7033 case AF_INET6: 7034 ipoff2 = pd->off + sizeof(struct icmp6_hdr); 7035 7036 if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6), 7037 NULL, reason, pd2.af)) { 7038 DPFPRINTF(PF_DEBUG_MISC, 7039 ("pf: ICMP error message too short " 7040 "(ip6)\n")); 7041 return (PF_DROP); 7042 } 7043 pd2.off = ipoff2; 7044 if (pf_walk_header6(pd->m, &h2_6, &pd2.off, &extoff2, 7045 &fragoff2, &pd2.proto, &jumbolen, 7046 reason) != PF_PASS) 7047 return (PF_DROP); 7048 7049 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 7050 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 7051 pd2.ip_sum = NULL; 7052 break; 7053 #endif /* INET6 */ 7054 } 7055 7056 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 7057 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7058 printf("pf: BAD ICMP %d:%d outer dst: ", 7059 icmptype, icmpcode); 7060 pf_print_host(pd->src, 0, pd->af); 7061 printf(" -> "); 7062 pf_print_host(pd->dst, 0, pd->af); 7063 printf(" inner src: "); 7064 pf_print_host(pd2.src, 0, pd2.af); 7065 printf(" -> "); 7066 pf_print_host(pd2.dst, 0, pd2.af); 7067 printf("\n"); 7068 } 7069 REASON_SET(reason, PFRES_BADSTATE); 7070 return (PF_DROP); 7071 } 7072 7073 switch (pd2.proto) { 7074 case IPPROTO_TCP: { 7075 struct tcphdr th; 7076 u_int32_t seq; 7077 struct pf_state_peer *src, *dst; 7078 u_int8_t dws; 7079 int copyback = 0; 7080 7081 /* 7082 * Only the first 8 bytes of the TCP header can be 7083 * expected. Don't access any TCP header fields after 7084 * th_seq, an ackskew test is not possible. 7085 */ 7086 if (!pf_pull_hdr(pd->m, pd2.off, &th, 8, NULL, reason, 7087 pd2.af)) { 7088 DPFPRINTF(PF_DEBUG_MISC, 7089 ("pf: ICMP error message too short " 7090 "(tcp)\n")); 7091 return (PF_DROP); 7092 } 7093 7094 key.af = pd2.af; 7095 key.proto = IPPROTO_TCP; 7096 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7097 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7098 key.port[pd2.sidx] = th.th_sport; 7099 key.port[pd2.didx] = th.th_dport; 7100 7101 STATE_LOOKUP(&key, *state, pd); 7102 7103 if (pd->dir == (*state)->direction) { 7104 src = &(*state)->dst; 7105 dst = &(*state)->src; 7106 } else { 7107 src = &(*state)->src; 7108 dst = &(*state)->dst; 7109 } 7110 7111 if (src->wscale && dst->wscale) 7112 dws = dst->wscale & PF_WSCALE_MASK; 7113 else 7114 dws = 0; 7115 7116 /* Demodulate sequence number */ 7117 seq = ntohl(th.th_seq) - src->seqdiff; 7118 if (src->seqdiff) { 7119 pf_change_a(&th.th_seq, icmpsum, 7120 htonl(seq), 0); 7121 copyback = 1; 7122 } 7123 7124 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 7125 (!SEQ_GEQ(src->seqhi, seq) || 7126 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 7127 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7128 printf("pf: BAD ICMP %d:%d ", 7129 icmptype, icmpcode); 7130 pf_print_host(pd->src, 0, pd->af); 7131 printf(" -> "); 7132 pf_print_host(pd->dst, 0, pd->af); 7133 printf(" state: "); 7134 pf_print_state(*state); 7135 printf(" seq=%u\n", seq); 7136 } 7137 REASON_SET(reason, PFRES_BADSTATE); 7138 return (PF_DROP); 7139 } else { 7140 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7141 printf("pf: OK ICMP %d:%d ", 7142 icmptype, icmpcode); 7143 pf_print_host(pd->src, 0, pd->af); 7144 printf(" -> "); 7145 pf_print_host(pd->dst, 0, pd->af); 7146 printf(" state: "); 7147 pf_print_state(*state); 7148 printf(" seq=%u\n", seq); 7149 } 7150 } 7151 7152 /* translate source/destination address, if necessary */ 7153 if ((*state)->key[PF_SK_WIRE] != 7154 (*state)->key[PF_SK_STACK]) { 7155 struct pf_state_key *nk = 7156 (*state)->key[pd->didx]; 7157 7158 if (PF_ANEQ(pd2.src, 7159 &nk->addr[pd2.sidx], pd2.af) || 7160 nk->port[pd2.sidx] != th.th_sport) 7161 pf_change_icmp(pd2.src, &th.th_sport, 7162 daddr, &nk->addr[pd2.sidx], 7163 nk->port[pd2.sidx], NULL, 7164 pd2.ip_sum, icmpsum, 7165 pd->ip_sum, 0, pd2.af); 7166 7167 if (PF_ANEQ(pd2.dst, 7168 &nk->addr[pd2.didx], pd2.af) || 7169 nk->port[pd2.didx] != th.th_dport) 7170 pf_change_icmp(pd2.dst, &th.th_dport, 7171 saddr, &nk->addr[pd2.didx], 7172 nk->port[pd2.didx], NULL, 7173 pd2.ip_sum, icmpsum, 7174 pd->ip_sum, 0, pd2.af); 7175 copyback = 1; 7176 } 7177 7178 if (copyback) { 7179 switch (pd2.af) { 7180 #ifdef INET 7181 case AF_INET: 7182 m_copyback(pd->m, pd->off, ICMP_MINLEN, 7183 (caddr_t )&pd->hdr.icmp); 7184 m_copyback(pd->m, ipoff2, sizeof(h2), 7185 (caddr_t )&h2); 7186 break; 7187 #endif /* INET */ 7188 #ifdef INET6 7189 case AF_INET6: 7190 m_copyback(pd->m, pd->off, 7191 sizeof(struct icmp6_hdr), 7192 (caddr_t )&pd->hdr.icmp6); 7193 m_copyback(pd->m, ipoff2, sizeof(h2_6), 7194 (caddr_t )&h2_6); 7195 break; 7196 #endif /* INET6 */ 7197 } 7198 m_copyback(pd->m, pd2.off, 8, (caddr_t)&th); 7199 } 7200 7201 return (PF_PASS); 7202 break; 7203 } 7204 case IPPROTO_UDP: { 7205 struct udphdr uh; 7206 7207 if (!pf_pull_hdr(pd->m, pd2.off, &uh, sizeof(uh), 7208 NULL, reason, pd2.af)) { 7209 DPFPRINTF(PF_DEBUG_MISC, 7210 ("pf: ICMP error message too short " 7211 "(udp)\n")); 7212 return (PF_DROP); 7213 } 7214 7215 key.af = pd2.af; 7216 key.proto = IPPROTO_UDP; 7217 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7218 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7219 key.port[pd2.sidx] = uh.uh_sport; 7220 key.port[pd2.didx] = uh.uh_dport; 7221 7222 STATE_LOOKUP(&key, *state, pd); 7223 7224 /* translate source/destination address, if necessary */ 7225 if ((*state)->key[PF_SK_WIRE] != 7226 (*state)->key[PF_SK_STACK]) { 7227 struct pf_state_key *nk = 7228 (*state)->key[pd->didx]; 7229 7230 if (PF_ANEQ(pd2.src, 7231 &nk->addr[pd2.sidx], pd2.af) || 7232 nk->port[pd2.sidx] != uh.uh_sport) 7233 pf_change_icmp(pd2.src, &uh.uh_sport, 7234 daddr, &nk->addr[pd2.sidx], 7235 nk->port[pd2.sidx], &uh.uh_sum, 7236 pd2.ip_sum, icmpsum, 7237 pd->ip_sum, 1, pd2.af); 7238 7239 if (PF_ANEQ(pd2.dst, 7240 &nk->addr[pd2.didx], pd2.af) || 7241 nk->port[pd2.didx] != uh.uh_dport) 7242 pf_change_icmp(pd2.dst, &uh.uh_dport, 7243 saddr, &nk->addr[pd2.didx], 7244 nk->port[pd2.didx], &uh.uh_sum, 7245 pd2.ip_sum, icmpsum, 7246 pd->ip_sum, 1, pd2.af); 7247 7248 switch (pd2.af) { 7249 #ifdef INET 7250 case AF_INET: 7251 m_copyback(pd->m, pd->off, ICMP_MINLEN, 7252 (caddr_t )&pd->hdr.icmp); 7253 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 7254 break; 7255 #endif /* INET */ 7256 #ifdef INET6 7257 case AF_INET6: 7258 m_copyback(pd->m, pd->off, 7259 sizeof(struct icmp6_hdr), 7260 (caddr_t )&pd->hdr.icmp6); 7261 m_copyback(pd->m, ipoff2, sizeof(h2_6), 7262 (caddr_t )&h2_6); 7263 break; 7264 #endif /* INET6 */ 7265 } 7266 m_copyback(pd->m, pd2.off, sizeof(uh), (caddr_t)&uh); 7267 } 7268 return (PF_PASS); 7269 break; 7270 } 7271 #ifdef INET 7272 case IPPROTO_ICMP: { 7273 struct icmp *iih = &pd2.hdr.icmp; 7274 7275 if (pd2.af != AF_INET) { 7276 REASON_SET(reason, PFRES_NORM); 7277 return (PF_DROP); 7278 } 7279 7280 if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN, 7281 NULL, reason, pd2.af)) { 7282 DPFPRINTF(PF_DEBUG_MISC, 7283 ("pf: ICMP error message too short i" 7284 "(icmp)\n")); 7285 return (PF_DROP); 7286 } 7287 7288 icmpid = iih->icmp_id; 7289 pf_icmp_mapping(&pd2, iih->icmp_type, 7290 &icmp_dir, &multi, &virtual_id, &virtual_type); 7291 7292 ret = pf_icmp_state_lookup(&key, &pd2, state, 7293 pd2.dir, virtual_id, virtual_type, 7294 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1); 7295 if (ret >= 0) { 7296 MPASS(*state == NULL); 7297 return (ret); 7298 } 7299 7300 /* translate source/destination address, if necessary */ 7301 if ((*state)->key[PF_SK_WIRE] != 7302 (*state)->key[PF_SK_STACK]) { 7303 struct pf_state_key *nk = 7304 (*state)->key[pd->didx]; 7305 7306 if (PF_ANEQ(pd2.src, 7307 &nk->addr[pd2.sidx], pd2.af) || 7308 (virtual_type == htons(ICMP_ECHO) && 7309 nk->port[iidx] != iih->icmp_id)) 7310 pf_change_icmp(pd2.src, 7311 (virtual_type == htons(ICMP_ECHO)) ? 7312 &iih->icmp_id : NULL, 7313 daddr, &nk->addr[pd2.sidx], 7314 (virtual_type == htons(ICMP_ECHO)) ? 7315 nk->port[iidx] : 0, NULL, 7316 pd2.ip_sum, icmpsum, 7317 pd->ip_sum, 0, AF_INET); 7318 7319 if (PF_ANEQ(pd2.dst, 7320 &nk->addr[pd2.didx], pd2.af)) 7321 pf_change_icmp(pd2.dst, NULL, NULL, 7322 &nk->addr[pd2.didx], 0, NULL, 7323 pd2.ip_sum, icmpsum, pd->ip_sum, 0, 7324 AF_INET); 7325 7326 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 7327 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 7328 m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih); 7329 } 7330 return (PF_PASS); 7331 break; 7332 } 7333 #endif /* INET */ 7334 #ifdef INET6 7335 case IPPROTO_ICMPV6: { 7336 struct icmp6_hdr *iih = &pd2.hdr.icmp6; 7337 7338 if (pd2.af != AF_INET6) { 7339 REASON_SET(reason, PFRES_NORM); 7340 return (PF_DROP); 7341 } 7342 7343 if (!pf_pull_hdr(pd->m, pd2.off, iih, 7344 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 7345 DPFPRINTF(PF_DEBUG_MISC, 7346 ("pf: ICMP error message too short " 7347 "(icmp6)\n")); 7348 return (PF_DROP); 7349 } 7350 7351 pf_icmp_mapping(&pd2, iih->icmp6_type, 7352 &icmp_dir, &multi, &virtual_id, &virtual_type); 7353 7354 ret = pf_icmp_state_lookup(&key, &pd2, state, 7355 pd->dir, virtual_id, virtual_type, 7356 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1); 7357 if (ret >= 0) { 7358 MPASS(*state == NULL); 7359 if (ret == PF_DROP && pd2.af == AF_INET6 && 7360 icmp_dir == PF_OUT) { 7361 ret = pf_icmp_state_lookup(&key, &pd2, 7362 state, pd->dir, 7363 virtual_id, virtual_type, 7364 icmp_dir, &iidx, multi, 1); 7365 if (ret >= 0) { 7366 MPASS(*state == NULL); 7367 return (ret); 7368 } 7369 } else 7370 return (ret); 7371 } 7372 7373 /* translate source/destination address, if necessary */ 7374 if ((*state)->key[PF_SK_WIRE] != 7375 (*state)->key[PF_SK_STACK]) { 7376 struct pf_state_key *nk = 7377 (*state)->key[pd->didx]; 7378 7379 if (PF_ANEQ(pd2.src, 7380 &nk->addr[pd2.sidx], pd2.af) || 7381 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) && 7382 nk->port[pd2.sidx] != iih->icmp6_id)) 7383 pf_change_icmp(pd2.src, 7384 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 7385 ? &iih->icmp6_id : NULL, 7386 daddr, &nk->addr[pd2.sidx], 7387 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 7388 ? nk->port[iidx] : 0, NULL, 7389 pd2.ip_sum, icmpsum, 7390 pd->ip_sum, 0, AF_INET6); 7391 7392 if (PF_ANEQ(pd2.dst, 7393 &nk->addr[pd2.didx], pd2.af)) 7394 pf_change_icmp(pd2.dst, NULL, NULL, 7395 &nk->addr[pd2.didx], 0, NULL, 7396 pd2.ip_sum, icmpsum, 7397 pd->ip_sum, 0, AF_INET6); 7398 7399 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr), 7400 (caddr_t)&pd->hdr.icmp6); 7401 m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 7402 m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr), 7403 (caddr_t)iih); 7404 } 7405 return (PF_PASS); 7406 break; 7407 } 7408 #endif /* INET6 */ 7409 default: { 7410 key.af = pd2.af; 7411 key.proto = pd2.proto; 7412 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7413 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7414 key.port[0] = key.port[1] = 0; 7415 7416 STATE_LOOKUP(&key, *state, pd); 7417 7418 /* translate source/destination address, if necessary */ 7419 if ((*state)->key[PF_SK_WIRE] != 7420 (*state)->key[PF_SK_STACK]) { 7421 struct pf_state_key *nk = 7422 (*state)->key[pd->didx]; 7423 7424 if (PF_ANEQ(pd2.src, 7425 &nk->addr[pd2.sidx], pd2.af)) 7426 pf_change_icmp(pd2.src, NULL, daddr, 7427 &nk->addr[pd2.sidx], 0, NULL, 7428 pd2.ip_sum, icmpsum, 7429 pd->ip_sum, 0, pd2.af); 7430 7431 if (PF_ANEQ(pd2.dst, 7432 &nk->addr[pd2.didx], pd2.af)) 7433 pf_change_icmp(pd2.dst, NULL, saddr, 7434 &nk->addr[pd2.didx], 0, NULL, 7435 pd2.ip_sum, icmpsum, 7436 pd->ip_sum, 0, pd2.af); 7437 7438 switch (pd2.af) { 7439 #ifdef INET 7440 case AF_INET: 7441 m_copyback(pd->m, pd->off, ICMP_MINLEN, 7442 (caddr_t)&pd->hdr.icmp); 7443 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 7444 break; 7445 #endif /* INET */ 7446 #ifdef INET6 7447 case AF_INET6: 7448 m_copyback(pd->m, pd->off, 7449 sizeof(struct icmp6_hdr), 7450 (caddr_t )&pd->hdr.icmp6); 7451 m_copyback(pd->m, ipoff2, sizeof(h2_6), 7452 (caddr_t )&h2_6); 7453 break; 7454 #endif /* INET6 */ 7455 } 7456 } 7457 return (PF_PASS); 7458 break; 7459 } 7460 } 7461 } 7462 } 7463 7464 static int 7465 pf_test_state_other(struct pf_kstate **state, struct pf_pdesc *pd) 7466 { 7467 struct pf_state_peer *src, *dst; 7468 struct pf_state_key_cmp key; 7469 uint8_t psrc, pdst; 7470 7471 bzero(&key, sizeof(key)); 7472 key.af = pd->af; 7473 key.proto = pd->proto; 7474 if (pd->dir == PF_IN) { 7475 PF_ACPY(&key.addr[0], pd->src, key.af); 7476 PF_ACPY(&key.addr[1], pd->dst, key.af); 7477 key.port[0] = key.port[1] = 0; 7478 } else { 7479 PF_ACPY(&key.addr[1], pd->src, key.af); 7480 PF_ACPY(&key.addr[0], pd->dst, key.af); 7481 key.port[1] = key.port[0] = 0; 7482 } 7483 7484 STATE_LOOKUP(&key, *state, pd); 7485 7486 if (pd->dir == (*state)->direction) { 7487 src = &(*state)->src; 7488 dst = &(*state)->dst; 7489 psrc = PF_PEER_SRC; 7490 pdst = PF_PEER_DST; 7491 } else { 7492 src = &(*state)->dst; 7493 dst = &(*state)->src; 7494 psrc = PF_PEER_DST; 7495 pdst = PF_PEER_SRC; 7496 } 7497 7498 /* update states */ 7499 if (src->state < PFOTHERS_SINGLE) 7500 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 7501 if (dst->state == PFOTHERS_SINGLE) 7502 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 7503 7504 /* update expire time */ 7505 (*state)->expire = pf_get_uptime(); 7506 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 7507 (*state)->timeout = PFTM_OTHER_MULTIPLE; 7508 else 7509 (*state)->timeout = PFTM_OTHER_SINGLE; 7510 7511 /* translate source/destination address, if necessary */ 7512 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7513 struct pf_state_key *nk = (*state)->key[pd->didx]; 7514 7515 KASSERT(nk, ("%s: nk is null", __func__)); 7516 KASSERT(pd, ("%s: pd is null", __func__)); 7517 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 7518 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 7519 switch (pd->af) { 7520 #ifdef INET 7521 case AF_INET: 7522 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 7523 pf_change_a(&pd->src->v4.s_addr, 7524 pd->ip_sum, 7525 nk->addr[pd->sidx].v4.s_addr, 7526 0); 7527 7528 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 7529 pf_change_a(&pd->dst->v4.s_addr, 7530 pd->ip_sum, 7531 nk->addr[pd->didx].v4.s_addr, 7532 0); 7533 7534 break; 7535 #endif /* INET */ 7536 #ifdef INET6 7537 case AF_INET6: 7538 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET6)) 7539 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 7540 7541 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET6)) 7542 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 7543 #endif /* INET6 */ 7544 } 7545 } 7546 return (PF_PASS); 7547 } 7548 7549 /* 7550 * ipoff and off are measured from the start of the mbuf chain. 7551 * h must be at "ipoff" on the mbuf chain. 7552 */ 7553 void * 7554 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len, 7555 u_short *actionp, u_short *reasonp, sa_family_t af) 7556 { 7557 switch (af) { 7558 #ifdef INET 7559 case AF_INET: { 7560 const struct ip *h = mtod(m, struct ip *); 7561 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 7562 7563 if (fragoff) { 7564 if (fragoff >= len) 7565 ACTION_SET(actionp, PF_PASS); 7566 else { 7567 ACTION_SET(actionp, PF_DROP); 7568 REASON_SET(reasonp, PFRES_FRAG); 7569 } 7570 return (NULL); 7571 } 7572 if (m->m_pkthdr.len < off + len || 7573 ntohs(h->ip_len) < off + len) { 7574 ACTION_SET(actionp, PF_DROP); 7575 REASON_SET(reasonp, PFRES_SHORT); 7576 return (NULL); 7577 } 7578 break; 7579 } 7580 #endif /* INET */ 7581 #ifdef INET6 7582 case AF_INET6: { 7583 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 7584 7585 if (m->m_pkthdr.len < off + len || 7586 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 7587 (unsigned)(off + len)) { 7588 ACTION_SET(actionp, PF_DROP); 7589 REASON_SET(reasonp, PFRES_SHORT); 7590 return (NULL); 7591 } 7592 break; 7593 } 7594 #endif /* INET6 */ 7595 } 7596 m_copydata(m, off, len, p); 7597 return (p); 7598 } 7599 7600 int 7601 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 7602 int rtableid) 7603 { 7604 struct ifnet *ifp; 7605 7606 /* 7607 * Skip check for addresses with embedded interface scope, 7608 * as they would always match anyway. 7609 */ 7610 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 7611 return (1); 7612 7613 if (af != AF_INET && af != AF_INET6) 7614 return (0); 7615 7616 if (kif == V_pfi_all) 7617 return (1); 7618 7619 /* Skip checks for ipsec interfaces */ 7620 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 7621 return (1); 7622 7623 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 7624 7625 switch (af) { 7626 #ifdef INET6 7627 case AF_INET6: 7628 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 7629 ifp)); 7630 #endif 7631 #ifdef INET 7632 case AF_INET: 7633 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 7634 ifp)); 7635 #endif 7636 } 7637 7638 return (0); 7639 } 7640 7641 #ifdef INET 7642 static void 7643 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7644 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7645 { 7646 struct mbuf *m0, *m1, *md; 7647 struct sockaddr_in dst; 7648 struct ip *ip; 7649 struct pfi_kkif *nkif = NULL; 7650 struct ifnet *ifp = NULL; 7651 struct pf_addr naddr; 7652 int error = 0; 7653 uint16_t ip_len, ip_off; 7654 uint16_t tmp; 7655 int r_rt, r_dir; 7656 7657 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 7658 7659 if (s) { 7660 r_rt = s->rt; 7661 r_dir = s->direction; 7662 } else { 7663 r_rt = r->rt; 7664 r_dir = r->direction; 7665 } 7666 7667 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7668 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7669 __func__)); 7670 7671 if ((pd->pf_mtag == NULL && 7672 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7673 pd->pf_mtag->routed++ > 3) { 7674 m0 = *m; 7675 *m = NULL; 7676 goto bad_locked; 7677 } 7678 7679 if (r_rt == PF_DUPTO) { 7680 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7681 if (s == NULL) { 7682 ifp = r->rpool.cur->kif ? 7683 r->rpool.cur->kif->pfik_ifp : NULL; 7684 } else { 7685 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7686 /* If pfsync'd */ 7687 if (ifp == NULL && r->rpool.cur != NULL) 7688 ifp = r->rpool.cur->kif ? 7689 r->rpool.cur->kif->pfik_ifp : NULL; 7690 PF_STATE_UNLOCK(s); 7691 } 7692 if (ifp == oifp) { 7693 /* When the 2nd interface is not skipped */ 7694 return; 7695 } else { 7696 m0 = *m; 7697 *m = NULL; 7698 goto bad; 7699 } 7700 } else { 7701 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 7702 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 7703 if (s) 7704 PF_STATE_UNLOCK(s); 7705 return; 7706 } 7707 } 7708 } else { 7709 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 7710 pf_dummynet(pd, s, r, m); 7711 if (s) 7712 PF_STATE_UNLOCK(s); 7713 return; 7714 } 7715 m0 = *m; 7716 } 7717 7718 ip = mtod(m0, struct ip *); 7719 7720 bzero(&dst, sizeof(dst)); 7721 dst.sin_family = AF_INET; 7722 dst.sin_len = sizeof(dst); 7723 dst.sin_addr = ip->ip_dst; 7724 7725 bzero(&naddr, sizeof(naddr)); 7726 7727 if (s == NULL) { 7728 if (TAILQ_EMPTY(&r->rpool.list)) { 7729 DPFPRINTF(PF_DEBUG_URGENT, 7730 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 7731 goto bad_locked; 7732 } 7733 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 7734 &naddr, &nkif, NULL); 7735 if (!PF_AZERO(&naddr, AF_INET)) 7736 dst.sin_addr.s_addr = naddr.v4.s_addr; 7737 ifp = nkif ? nkif->pfik_ifp : NULL; 7738 } else { 7739 struct pfi_kkif *kif; 7740 7741 if (!PF_AZERO(&s->rt_addr, AF_INET)) 7742 dst.sin_addr.s_addr = 7743 s->rt_addr.v4.s_addr; 7744 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7745 kif = s->rt_kif; 7746 /* If pfsync'd */ 7747 if (ifp == NULL && r->rpool.cur != NULL) { 7748 ifp = r->rpool.cur->kif ? 7749 r->rpool.cur->kif->pfik_ifp : NULL; 7750 kif = r->rpool.cur->kif; 7751 } 7752 if (ifp != NULL && kif != NULL && 7753 r->rule_flag & PFRULE_IFBOUND && 7754 r->rt == PF_REPLYTO && 7755 s->kif == V_pfi_all) { 7756 s->kif = kif; 7757 s->orig_kif = oifp->if_pf_kif; 7758 } 7759 7760 PF_STATE_UNLOCK(s); 7761 } 7762 7763 if (ifp == NULL) 7764 goto bad; 7765 7766 if (pd->dir == PF_IN) { 7767 if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp, 7768 &pd->act) != PF_PASS) 7769 goto bad; 7770 else if (m0 == NULL) 7771 goto done; 7772 if (m0->m_len < sizeof(struct ip)) { 7773 DPFPRINTF(PF_DEBUG_URGENT, 7774 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 7775 goto bad; 7776 } 7777 ip = mtod(m0, struct ip *); 7778 } 7779 7780 if (ifp->if_flags & IFF_LOOPBACK) 7781 m0->m_flags |= M_SKIP_FIREWALL; 7782 7783 ip_len = ntohs(ip->ip_len); 7784 ip_off = ntohs(ip->ip_off); 7785 7786 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 7787 m0->m_pkthdr.csum_flags |= CSUM_IP; 7788 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 7789 in_delayed_cksum(m0); 7790 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 7791 } 7792 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 7793 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2)); 7794 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 7795 } 7796 7797 if (pd->dir == PF_IN) { 7798 /* 7799 * Make sure dummynet gets the correct direction, in case it needs to 7800 * re-inject later. 7801 */ 7802 pd->dir = PF_OUT; 7803 7804 /* 7805 * The following processing is actually the rest of the inbound processing, even 7806 * though we've marked it as outbound (so we don't look through dummynet) and it 7807 * happens after the outbound processing (pf_test(PF_OUT) above). 7808 * Swap the dummynet pipe numbers, because it's going to come to the wrong 7809 * conclusion about what direction it's processing, and we can't fix it or it 7810 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 7811 * decision will pick the right pipe, and everything will mostly work as expected. 7812 */ 7813 tmp = pd->act.dnrpipe; 7814 pd->act.dnrpipe = pd->act.dnpipe; 7815 pd->act.dnpipe = tmp; 7816 } 7817 7818 /* 7819 * If small enough for interface, or the interface will take 7820 * care of the fragmentation for us, we can just send directly. 7821 */ 7822 if (ip_len <= ifp->if_mtu || 7823 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 7824 ip->ip_sum = 0; 7825 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 7826 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 7827 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 7828 } 7829 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 7830 7831 md = m0; 7832 error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 7833 if (md != NULL) 7834 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL); 7835 goto done; 7836 } 7837 7838 /* Balk when DF bit is set or the interface didn't support TSO. */ 7839 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 7840 error = EMSGSIZE; 7841 KMOD_IPSTAT_INC(ips_cantfrag); 7842 if (r_rt != PF_DUPTO) { 7843 if (s && s->nat_rule != NULL) 7844 PACKET_UNDO_NAT(m0, pd, 7845 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 7846 s); 7847 7848 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 7849 ifp->if_mtu); 7850 goto done; 7851 } else 7852 goto bad; 7853 } 7854 7855 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 7856 if (error) 7857 goto bad; 7858 7859 for (; m0; m0 = m1) { 7860 m1 = m0->m_nextpkt; 7861 m0->m_nextpkt = NULL; 7862 if (error == 0) { 7863 m_clrprotoflags(m0); 7864 md = m0; 7865 pd->pf_mtag = pf_find_mtag(md); 7866 error = pf_dummynet_route(pd, s, r, ifp, 7867 sintosa(&dst), &md); 7868 if (md != NULL) 7869 error = (*ifp->if_output)(ifp, md, 7870 sintosa(&dst), NULL); 7871 } else 7872 m_freem(m0); 7873 } 7874 7875 if (error == 0) 7876 KMOD_IPSTAT_INC(ips_fragmented); 7877 7878 done: 7879 if (r_rt != PF_DUPTO) 7880 *m = NULL; 7881 return; 7882 7883 bad_locked: 7884 if (s) 7885 PF_STATE_UNLOCK(s); 7886 bad: 7887 m_freem(m0); 7888 goto done; 7889 } 7890 #endif /* INET */ 7891 7892 #ifdef INET6 7893 static void 7894 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7895 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7896 { 7897 struct mbuf *m0, *md; 7898 struct sockaddr_in6 dst; 7899 struct ip6_hdr *ip6; 7900 struct pfi_kkif *nkif = NULL; 7901 struct ifnet *ifp = NULL; 7902 struct pf_addr naddr; 7903 int r_rt, r_dir; 7904 7905 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 7906 7907 if (s) { 7908 r_rt = s->rt; 7909 r_dir = s->direction; 7910 } else { 7911 r_rt = r->rt; 7912 r_dir = r->direction; 7913 } 7914 7915 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7916 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7917 __func__)); 7918 7919 if ((pd->pf_mtag == NULL && 7920 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7921 pd->pf_mtag->routed++ > 3) { 7922 m0 = *m; 7923 *m = NULL; 7924 goto bad_locked; 7925 } 7926 7927 if (r_rt == PF_DUPTO) { 7928 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7929 if (s == NULL) { 7930 ifp = r->rpool.cur->kif ? 7931 r->rpool.cur->kif->pfik_ifp : NULL; 7932 } else { 7933 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7934 /* If pfsync'd */ 7935 if (ifp == NULL && r->rpool.cur != NULL) 7936 ifp = r->rpool.cur->kif ? 7937 r->rpool.cur->kif->pfik_ifp : NULL; 7938 PF_STATE_UNLOCK(s); 7939 } 7940 if (ifp == oifp) { 7941 /* When the 2nd interface is not skipped */ 7942 return; 7943 } else { 7944 m0 = *m; 7945 *m = NULL; 7946 goto bad; 7947 } 7948 } else { 7949 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 7950 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 7951 if (s) 7952 PF_STATE_UNLOCK(s); 7953 return; 7954 } 7955 } 7956 } else { 7957 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 7958 pf_dummynet(pd, s, r, m); 7959 if (s) 7960 PF_STATE_UNLOCK(s); 7961 return; 7962 } 7963 m0 = *m; 7964 } 7965 7966 ip6 = mtod(m0, struct ip6_hdr *); 7967 7968 bzero(&dst, sizeof(dst)); 7969 dst.sin6_family = AF_INET6; 7970 dst.sin6_len = sizeof(dst); 7971 dst.sin6_addr = ip6->ip6_dst; 7972 7973 bzero(&naddr, sizeof(naddr)); 7974 7975 if (s == NULL) { 7976 if (TAILQ_EMPTY(&r->rpool.list)) { 7977 DPFPRINTF(PF_DEBUG_URGENT, 7978 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 7979 goto bad_locked; 7980 } 7981 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 7982 &naddr, &nkif, NULL); 7983 if (!PF_AZERO(&naddr, AF_INET6)) 7984 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 7985 &naddr, AF_INET6); 7986 ifp = nkif ? nkif->pfik_ifp : NULL; 7987 } else { 7988 struct pfi_kkif *kif; 7989 7990 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 7991 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 7992 &s->rt_addr, AF_INET6); 7993 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7994 kif = s->rt_kif; 7995 /* If pfsync'd */ 7996 if (ifp == NULL && r->rpool.cur != NULL) { 7997 ifp = r->rpool.cur->kif ? 7998 r->rpool.cur->kif->pfik_ifp : NULL; 7999 kif = r->rpool.cur->kif; 8000 } 8001 if (ifp != NULL && kif != NULL && 8002 r->rule_flag & PFRULE_IFBOUND && 8003 r->rt == PF_REPLYTO && 8004 s->kif == V_pfi_all) { 8005 s->kif = kif; 8006 s->orig_kif = oifp->if_pf_kif; 8007 } 8008 } 8009 8010 if (s) 8011 PF_STATE_UNLOCK(s); 8012 8013 if (ifp == NULL) 8014 goto bad; 8015 8016 if (pd->dir == PF_IN) { 8017 if (pf_test(AF_INET6, PF_OUT, PFIL_FWD, ifp, &m0, inp, 8018 &pd->act) != PF_PASS) 8019 goto bad; 8020 else if (m0 == NULL) 8021 goto done; 8022 if (m0->m_len < sizeof(struct ip6_hdr)) { 8023 DPFPRINTF(PF_DEBUG_URGENT, 8024 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 8025 __func__)); 8026 goto bad; 8027 } 8028 ip6 = mtod(m0, struct ip6_hdr *); 8029 } 8030 8031 if (ifp->if_flags & IFF_LOOPBACK) 8032 m0->m_flags |= M_SKIP_FIREWALL; 8033 8034 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 8035 ~ifp->if_hwassist) { 8036 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 8037 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 8038 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 8039 } 8040 8041 /* 8042 * If the packet is too large for the outgoing interface, 8043 * send back an icmp6 error. 8044 */ 8045 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 8046 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 8047 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 8048 md = m0; 8049 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 8050 if (md != NULL) 8051 nd6_output_ifp(ifp, ifp, md, &dst, NULL); 8052 } 8053 else { 8054 in6_ifstat_inc(ifp, ifs6_in_toobig); 8055 if (r_rt != PF_DUPTO) { 8056 if (s && s->nat_rule != NULL) 8057 PACKET_UNDO_NAT(m0, pd, 8058 ((caddr_t)ip6 - m0->m_data) + 8059 sizeof(struct ip6_hdr), s); 8060 8061 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 8062 } else 8063 goto bad; 8064 } 8065 8066 done: 8067 if (r_rt != PF_DUPTO) 8068 *m = NULL; 8069 return; 8070 8071 bad_locked: 8072 if (s) 8073 PF_STATE_UNLOCK(s); 8074 bad: 8075 m_freem(m0); 8076 goto done; 8077 } 8078 #endif /* INET6 */ 8079 8080 /* 8081 * FreeBSD supports cksum offloads for the following drivers. 8082 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 8083 * 8084 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 8085 * network driver performed cksum including pseudo header, need to verify 8086 * csum_data 8087 * CSUM_DATA_VALID : 8088 * network driver performed cksum, needs to additional pseudo header 8089 * cksum computation with partial csum_data(i.e. lack of H/W support for 8090 * pseudo header, for instance sk(4) and possibly gem(4)) 8091 * 8092 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 8093 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 8094 * TCP/UDP layer. 8095 * Also, set csum_data to 0xffff to force cksum validation. 8096 */ 8097 static int 8098 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 8099 { 8100 u_int16_t sum = 0; 8101 int hw_assist = 0; 8102 struct ip *ip; 8103 8104 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 8105 return (1); 8106 if (m->m_pkthdr.len < off + len) 8107 return (1); 8108 8109 switch (p) { 8110 case IPPROTO_TCP: 8111 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 8112 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 8113 sum = m->m_pkthdr.csum_data; 8114 } else { 8115 ip = mtod(m, struct ip *); 8116 sum = in_pseudo(ip->ip_src.s_addr, 8117 ip->ip_dst.s_addr, htonl((u_short)len + 8118 m->m_pkthdr.csum_data + IPPROTO_TCP)); 8119 } 8120 sum ^= 0xffff; 8121 ++hw_assist; 8122 } 8123 break; 8124 case IPPROTO_UDP: 8125 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 8126 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 8127 sum = m->m_pkthdr.csum_data; 8128 } else { 8129 ip = mtod(m, struct ip *); 8130 sum = in_pseudo(ip->ip_src.s_addr, 8131 ip->ip_dst.s_addr, htonl((u_short)len + 8132 m->m_pkthdr.csum_data + IPPROTO_UDP)); 8133 } 8134 sum ^= 0xffff; 8135 ++hw_assist; 8136 } 8137 break; 8138 case IPPROTO_ICMP: 8139 #ifdef INET6 8140 case IPPROTO_ICMPV6: 8141 #endif /* INET6 */ 8142 break; 8143 default: 8144 return (1); 8145 } 8146 8147 if (!hw_assist) { 8148 switch (af) { 8149 case AF_INET: 8150 if (p == IPPROTO_ICMP) { 8151 if (m->m_len < off) 8152 return (1); 8153 m->m_data += off; 8154 m->m_len -= off; 8155 sum = in_cksum(m, len); 8156 m->m_data -= off; 8157 m->m_len += off; 8158 } else { 8159 if (m->m_len < sizeof(struct ip)) 8160 return (1); 8161 sum = in4_cksum(m, p, off, len); 8162 } 8163 break; 8164 #ifdef INET6 8165 case AF_INET6: 8166 if (m->m_len < sizeof(struct ip6_hdr)) 8167 return (1); 8168 sum = in6_cksum(m, p, off, len); 8169 break; 8170 #endif /* INET6 */ 8171 } 8172 } 8173 if (sum) { 8174 switch (p) { 8175 case IPPROTO_TCP: 8176 { 8177 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 8178 break; 8179 } 8180 case IPPROTO_UDP: 8181 { 8182 KMOD_UDPSTAT_INC(udps_badsum); 8183 break; 8184 } 8185 #ifdef INET 8186 case IPPROTO_ICMP: 8187 { 8188 KMOD_ICMPSTAT_INC(icps_checksum); 8189 break; 8190 } 8191 #endif 8192 #ifdef INET6 8193 case IPPROTO_ICMPV6: 8194 { 8195 KMOD_ICMP6STAT_INC(icp6s_checksum); 8196 break; 8197 } 8198 #endif /* INET6 */ 8199 } 8200 return (1); 8201 } else { 8202 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 8203 m->m_pkthdr.csum_flags |= 8204 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 8205 m->m_pkthdr.csum_data = 0xffff; 8206 } 8207 } 8208 return (0); 8209 } 8210 8211 static bool 8212 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r, 8213 const struct pf_kstate *s, struct ip_fw_args *dnflow) 8214 { 8215 int dndir = r->direction; 8216 8217 if (s && dndir == PF_INOUT) { 8218 dndir = s->direction; 8219 } else if (dndir == PF_INOUT) { 8220 /* Assume primary direction. Happens when we've set dnpipe in 8221 * the ethernet level code. */ 8222 dndir = pd->dir; 8223 } 8224 8225 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED) 8226 return (false); 8227 8228 memset(dnflow, 0, sizeof(*dnflow)); 8229 8230 if (pd->dport != NULL) 8231 dnflow->f_id.dst_port = ntohs(*pd->dport); 8232 if (pd->sport != NULL) 8233 dnflow->f_id.src_port = ntohs(*pd->sport); 8234 8235 if (pd->dir == PF_IN) 8236 dnflow->flags |= IPFW_ARGS_IN; 8237 else 8238 dnflow->flags |= IPFW_ARGS_OUT; 8239 8240 if (pd->dir != dndir && pd->act.dnrpipe) { 8241 dnflow->rule.info = pd->act.dnrpipe; 8242 } 8243 else if (pd->dir == dndir && pd->act.dnpipe) { 8244 dnflow->rule.info = pd->act.dnpipe; 8245 } 8246 else { 8247 return (false); 8248 } 8249 8250 dnflow->rule.info |= IPFW_IS_DUMMYNET; 8251 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 8252 dnflow->rule.info |= IPFW_IS_PIPE; 8253 8254 dnflow->f_id.proto = pd->proto; 8255 dnflow->f_id.extra = dnflow->rule.info; 8256 switch (pd->af) { 8257 case AF_INET: 8258 dnflow->f_id.addr_type = 4; 8259 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 8260 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 8261 break; 8262 case AF_INET6: 8263 dnflow->flags |= IPFW_ARGS_IP6; 8264 dnflow->f_id.addr_type = 6; 8265 dnflow->f_id.src_ip6 = pd->src->v6; 8266 dnflow->f_id.dst_ip6 = pd->dst->v6; 8267 break; 8268 } 8269 8270 return (true); 8271 } 8272 8273 int 8274 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 8275 struct inpcb *inp) 8276 { 8277 struct pfi_kkif *kif; 8278 struct mbuf *m = *m0; 8279 8280 M_ASSERTPKTHDR(m); 8281 MPASS(ifp->if_vnet == curvnet); 8282 NET_EPOCH_ASSERT(); 8283 8284 if (!V_pf_status.running) 8285 return (PF_PASS); 8286 8287 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8288 8289 if (kif == NULL) { 8290 DPFPRINTF(PF_DEBUG_URGENT, 8291 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname)); 8292 return (PF_DROP); 8293 } 8294 if (kif->pfik_flags & PFI_IFLAG_SKIP) 8295 return (PF_PASS); 8296 8297 if (m->m_flags & M_SKIP_FIREWALL) 8298 return (PF_PASS); 8299 8300 if (__predict_false(! M_WRITABLE(*m0))) { 8301 m = *m0 = m_unshare(*m0, M_NOWAIT); 8302 if (*m0 == NULL) 8303 return (PF_DROP); 8304 } 8305 8306 /* Stateless! */ 8307 return (pf_test_eth_rule(dir, kif, m0)); 8308 } 8309 8310 static __inline void 8311 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag) 8312 { 8313 struct m_tag *mtag; 8314 8315 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 8316 8317 /* dummynet adds this tag, but pf does not need it, 8318 * and keeping it creates unexpected behavior, 8319 * e.g. in case of divert(4) usage right after dummynet. */ 8320 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 8321 if (mtag != NULL) 8322 m_tag_delete(m, mtag); 8323 } 8324 8325 static int 8326 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s, 8327 struct pf_krule *r, struct mbuf **m0) 8328 { 8329 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0)); 8330 } 8331 8332 static int 8333 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s, 8334 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa, 8335 struct mbuf **m0) 8336 { 8337 NET_EPOCH_ASSERT(); 8338 8339 if (pd->act.dnpipe || pd->act.dnrpipe) { 8340 struct ip_fw_args dnflow; 8341 if (ip_dn_io_ptr == NULL) { 8342 m_freem(*m0); 8343 *m0 = NULL; 8344 return (ENOMEM); 8345 } 8346 8347 if (pd->pf_mtag == NULL && 8348 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 8349 m_freem(*m0); 8350 *m0 = NULL; 8351 return (ENOMEM); 8352 } 8353 8354 if (ifp != NULL) { 8355 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO; 8356 8357 pd->pf_mtag->if_index = ifp->if_index; 8358 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 8359 8360 MPASS(sa != NULL); 8361 8362 switch (pd->af) { 8363 case AF_INET: 8364 memcpy(&pd->pf_mtag->dst, sa, 8365 sizeof(struct sockaddr_in)); 8366 break; 8367 case AF_INET6: 8368 memcpy(&pd->pf_mtag->dst, sa, 8369 sizeof(struct sockaddr_in6)); 8370 break; 8371 } 8372 } 8373 8374 if (s != NULL && s->nat_rule != NULL && 8375 s->nat_rule->action == PF_RDR && 8376 ( 8377 #ifdef INET 8378 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) || 8379 #endif 8380 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) { 8381 /* 8382 * If we're redirecting to loopback mark this packet 8383 * as being local. Otherwise it might get dropped 8384 * if dummynet re-injects. 8385 */ 8386 (*m0)->m_pkthdr.rcvif = V_loif; 8387 } 8388 8389 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) { 8390 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 8391 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED; 8392 ip_dn_io_ptr(m0, &dnflow); 8393 if (*m0 != NULL) { 8394 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 8395 pf_dummynet_flag_remove(*m0, pd->pf_mtag); 8396 } 8397 } 8398 } 8399 8400 return (0); 8401 } 8402 8403 #ifdef INET6 8404 static int 8405 pf_walk_option6(struct mbuf *m, int off, int end, uint32_t *jumbolen, 8406 u_short *reason) 8407 { 8408 struct ip6_opt opt; 8409 struct ip6_opt_jumbo jumbo; 8410 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 8411 8412 while (off < end) { 8413 if (!pf_pull_hdr(m, off, &opt.ip6o_type, sizeof(opt.ip6o_type), 8414 NULL, reason, AF_INET6)) { 8415 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt type")); 8416 return (PF_DROP); 8417 } 8418 if (opt.ip6o_type == IP6OPT_PAD1) { 8419 off++; 8420 continue; 8421 } 8422 if (!pf_pull_hdr(m, off, &opt, sizeof(opt), NULL, reason, 8423 AF_INET6)) { 8424 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt")); 8425 return (PF_DROP); 8426 } 8427 if (off + sizeof(opt) + opt.ip6o_len > end) { 8428 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 long opt")); 8429 REASON_SET(reason, PFRES_IPOPTIONS); 8430 return (PF_DROP); 8431 } 8432 switch (opt.ip6o_type) { 8433 case IP6OPT_JUMBO: 8434 if (*jumbolen != 0) { 8435 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple jumbo")); 8436 REASON_SET(reason, PFRES_IPOPTIONS); 8437 return (PF_DROP); 8438 } 8439 if (ntohs(h->ip6_plen) != 0) { 8440 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 bad jumbo plen")); 8441 REASON_SET(reason, PFRES_IPOPTIONS); 8442 return (PF_DROP); 8443 } 8444 if (!pf_pull_hdr(m, off, &jumbo, sizeof(jumbo), NULL, 8445 reason, AF_INET6)) { 8446 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbo")); 8447 return (PF_DROP); 8448 } 8449 memcpy(jumbolen, jumbo.ip6oj_jumbo_len, 8450 sizeof(*jumbolen)); 8451 *jumbolen = ntohl(*jumbolen); 8452 if (*jumbolen < IPV6_MAXPACKET) { 8453 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbolen")); 8454 REASON_SET(reason, PFRES_IPOPTIONS); 8455 return (PF_DROP); 8456 } 8457 break; 8458 default: 8459 break; 8460 } 8461 off += sizeof(opt) + opt.ip6o_len; 8462 } 8463 8464 return (PF_PASS); 8465 } 8466 8467 int 8468 pf_walk_header6(struct mbuf *m, struct ip6_hdr *h, int *off, int *extoff, 8469 int *fragoff, uint8_t *nxt, uint32_t *jumbolen, u_short *reason) 8470 { 8471 struct ip6_frag frag; 8472 struct ip6_ext ext; 8473 struct ip6_rthdr rthdr; 8474 int rthdr_cnt = 0; 8475 8476 *off += sizeof(struct ip6_hdr); 8477 *extoff = *fragoff = 0; 8478 *nxt = h->ip6_nxt; 8479 *jumbolen = 0; 8480 for (;;) { 8481 switch (*nxt) { 8482 case IPPROTO_FRAGMENT: 8483 if (*fragoff != 0) { 8484 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple fragment")); 8485 REASON_SET(reason, PFRES_FRAG); 8486 return (PF_DROP); 8487 } 8488 /* jumbo payload packets cannot be fragmented */ 8489 if (*jumbolen != 0) { 8490 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 fragmented jumbo")); 8491 REASON_SET(reason, PFRES_FRAG); 8492 return (PF_DROP); 8493 } 8494 if (!pf_pull_hdr(m, *off, &frag, sizeof(frag), NULL, 8495 reason, AF_INET6)) { 8496 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short fragment")); 8497 return (PF_DROP); 8498 } 8499 *fragoff = *off; 8500 /* stop walking over non initial fragments */ 8501 if ((frag.ip6f_offlg & IP6F_OFF_MASK) != 0) 8502 return (PF_PASS); 8503 *off += sizeof(frag); 8504 *nxt = frag.ip6f_nxt; 8505 break; 8506 case IPPROTO_ROUTING: 8507 if (rthdr_cnt++) { 8508 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple rthdr")); 8509 REASON_SET(reason, PFRES_IPOPTIONS); 8510 return (PF_DROP); 8511 } 8512 if (!pf_pull_hdr(m, *off, &rthdr, sizeof(rthdr), NULL, 8513 reason, AF_INET6)) { 8514 /* fragments may be short */ 8515 if (*fragoff != 0) { 8516 *off = *fragoff; 8517 *nxt = IPPROTO_FRAGMENT; 8518 return (PF_PASS); 8519 } 8520 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short rthdr")); 8521 return (PF_DROP); 8522 } 8523 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 8524 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 rthdr0")); 8525 REASON_SET(reason, PFRES_IPOPTIONS); 8526 return (PF_DROP); 8527 } 8528 /* FALLTHROUGH */ 8529 case IPPROTO_AH: 8530 case IPPROTO_HOPOPTS: 8531 case IPPROTO_DSTOPTS: 8532 if (!pf_pull_hdr(m, *off, &ext, sizeof(ext), NULL, 8533 reason, AF_INET6)) { 8534 /* fragments may be short */ 8535 if (*fragoff != 0) { 8536 *off = *fragoff; 8537 *nxt = IPPROTO_FRAGMENT; 8538 return (PF_PASS); 8539 } 8540 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short exthdr")); 8541 return (PF_DROP); 8542 } 8543 /* reassembly needs the ext header before the frag */ 8544 if (*fragoff == 0) 8545 *extoff = *off; 8546 if (*nxt == IPPROTO_HOPOPTS && *fragoff == 0) { 8547 if (pf_walk_option6(m, *off + sizeof(ext), 8548 *off + (ext.ip6e_len + 1) * 8, jumbolen, 8549 reason) != PF_PASS) 8550 return (PF_DROP); 8551 if (ntohs(h->ip6_plen) == 0 && *jumbolen != 0) { 8552 DPFPRINTF(PF_DEBUG_MISC, 8553 ("IPv6 missing jumbo")); 8554 REASON_SET(reason, PFRES_IPOPTIONS); 8555 return (PF_DROP); 8556 } 8557 } 8558 if (*nxt == IPPROTO_AH) 8559 *off += (ext.ip6e_len + 2) * 4; 8560 else 8561 *off += (ext.ip6e_len + 1) * 8; 8562 *nxt = ext.ip6e_nxt; 8563 break; 8564 case IPPROTO_TCP: 8565 case IPPROTO_UDP: 8566 case IPPROTO_SCTP: 8567 case IPPROTO_ICMPV6: 8568 /* fragments may be short, ignore inner header then */ 8569 if (*fragoff != 0 && ntohs(h->ip6_plen) < *off + 8570 (*nxt == IPPROTO_TCP ? sizeof(struct tcphdr) : 8571 *nxt == IPPROTO_UDP ? sizeof(struct udphdr) : 8572 *nxt == IPPROTO_SCTP ? sizeof(struct sctphdr) : 8573 sizeof(struct icmp6_hdr))) { 8574 *off = *fragoff; 8575 *nxt = IPPROTO_FRAGMENT; 8576 } 8577 /* FALLTHROUGH */ 8578 default: 8579 return (PF_PASS); 8580 } 8581 } 8582 } 8583 #endif 8584 8585 static void 8586 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m) 8587 { 8588 memset(pd, 0, sizeof(*pd)); 8589 pd->pf_mtag = pf_find_mtag(m); 8590 pd->m = m; 8591 } 8592 8593 static int 8594 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0, 8595 u_short *action, u_short *reason, struct pfi_kkif *kif, 8596 struct pf_rule_actions *default_actions) 8597 { 8598 pd->af = af; 8599 pd->dir = dir; 8600 pd->kif = kif; 8601 pd->m = *m0; 8602 pd->sidx = (dir == PF_IN) ? 0 : 1; 8603 pd->didx = (dir == PF_IN) ? 1 : 0; 8604 8605 TAILQ_INIT(&pd->sctp_multihome_jobs); 8606 if (default_actions != NULL) 8607 memcpy(&pd->act, default_actions, sizeof(pd->act)); 8608 8609 if (pd->pf_mtag && pd->pf_mtag->dnpipe) { 8610 pd->act.dnpipe = pd->pf_mtag->dnpipe; 8611 pd->act.flags = pd->pf_mtag->dnflags; 8612 } 8613 8614 switch (af) { 8615 #ifdef INET 8616 case AF_INET: { 8617 struct ip *h; 8618 8619 if (__predict_false((*m0)->m_len < sizeof(struct ip)) && 8620 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) { 8621 DPFPRINTF(PF_DEBUG_URGENT, 8622 ("pf_test: m_len < sizeof(struct ip), pullup failed\n")); 8623 *action = PF_DROP; 8624 REASON_SET(reason, PFRES_SHORT); 8625 return (-1); 8626 } 8627 8628 if (pf_normalize_ip(m0, reason, pd) != PF_PASS) { 8629 /* We do IP header normalization and packet reassembly here */ 8630 *action = PF_DROP; 8631 return (-1); 8632 } 8633 pd->m = *m0; 8634 8635 h = mtod(pd->m, struct ip *); 8636 pd->off = h->ip_hl << 2; 8637 if (pd->off < (int)sizeof(*h)) { 8638 *action = PF_DROP; 8639 REASON_SET(reason, PFRES_SHORT); 8640 return (-1); 8641 } 8642 pd->src = (struct pf_addr *)&h->ip_src; 8643 pd->dst = (struct pf_addr *)&h->ip_dst; 8644 pd->ip_sum = &h->ip_sum; 8645 pd->proto_sum = NULL; 8646 pd->virtual_proto = pd->proto = h->ip_p; 8647 pd->tos = h->ip_tos; 8648 pd->ttl = h->ip_ttl; 8649 pd->tot_len = ntohs(h->ip_len); 8650 pd->act.rtableid = -1; 8651 8652 if (h->ip_hl > 5) /* has options */ 8653 pd->badopts++; 8654 8655 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) 8656 pd->virtual_proto = PF_VPROTO_FRAGMENT; 8657 8658 break; 8659 } 8660 #endif 8661 #ifdef INET6 8662 case AF_INET6: { 8663 struct ip6_hdr *h; 8664 int fragoff; 8665 uint32_t jumbolen; 8666 uint8_t nxt; 8667 8668 if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) && 8669 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) { 8670 DPFPRINTF(PF_DEBUG_URGENT, 8671 ("pf_test6: m_len < sizeof(struct ip6_hdr)" 8672 ", pullup failed\n")); 8673 *action = PF_DROP; 8674 REASON_SET(reason, PFRES_SHORT); 8675 return (-1); 8676 } 8677 8678 h = mtod(pd->m, struct ip6_hdr *); 8679 pd->off = 0; 8680 if (pf_walk_header6(pd->m, h, &pd->off, &pd->extoff, &fragoff, &nxt, 8681 &jumbolen, reason) != PF_PASS) { 8682 *action = PF_DROP; 8683 return (-1); 8684 } 8685 8686 h = mtod(pd->m, struct ip6_hdr *); 8687 pd->src = (struct pf_addr *)&h->ip6_src; 8688 pd->dst = (struct pf_addr *)&h->ip6_dst; 8689 pd->ip_sum = NULL; 8690 pd->proto_sum = NULL; 8691 pd->tos = IPV6_DSCP(h); 8692 pd->ttl = h->ip6_hlim; 8693 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 8694 pd->virtual_proto = pd->proto = h->ip6_nxt; 8695 pd->act.rtableid = -1; 8696 8697 if (fragoff != 0) 8698 pd->virtual_proto = PF_VPROTO_FRAGMENT; 8699 8700 /* 8701 * we do not support jumbogram. if we keep going, zero ip6_plen 8702 * will do something bad, so drop the packet for now. 8703 */ 8704 if (htons(h->ip6_plen) == 0) { 8705 *action = PF_DROP; 8706 return (-1); 8707 } 8708 8709 /* We do IP header normalization and packet reassembly here */ 8710 if (pf_normalize_ip6(m0, fragoff, reason, pd) != 8711 PF_PASS) { 8712 *action = PF_DROP; 8713 return (-1); 8714 } 8715 pd->m = *m0; 8716 if (pd->m == NULL) { 8717 /* packet sits in reassembly queue, no error */ 8718 *action = PF_PASS; 8719 return (-1); 8720 } 8721 8722 /* Update pointers into the packet. */ 8723 h = mtod(pd->m, struct ip6_hdr *); 8724 pd->src = (struct pf_addr *)&h->ip6_src; 8725 pd->dst = (struct pf_addr *)&h->ip6_dst; 8726 8727 /* 8728 * Reassembly may have changed the next protocol from fragment 8729 * to something else, so update. 8730 */ 8731 pd->virtual_proto = pd->proto = h->ip6_nxt; 8732 pd->off = 0; 8733 8734 if (pf_walk_header6(pd->m, h, &pd->off, &pd->extoff, &fragoff, &nxt, 8735 &jumbolen, reason) != PF_PASS) { 8736 *action = PF_DROP; 8737 return (-1); 8738 } 8739 8740 if (fragoff != 0) 8741 pd->virtual_proto = PF_VPROTO_FRAGMENT; 8742 8743 break; 8744 } 8745 #endif 8746 default: 8747 panic("pf_setup_pdesc called with illegal af %u", af); 8748 } 8749 8750 switch (pd->virtual_proto) { 8751 case IPPROTO_TCP: { 8752 struct tcphdr *th = &pd->hdr.tcp; 8753 8754 if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th), action, 8755 reason, af)) { 8756 *action = PF_DROP; 8757 REASON_SET(reason, PFRES_SHORT); 8758 return (-1); 8759 } 8760 pd->hdrlen = sizeof(*th); 8761 pd->p_len = pd->tot_len - pd->off - (th->th_off << 2); 8762 pd->sport = &th->th_sport; 8763 pd->dport = &th->th_dport; 8764 break; 8765 } 8766 case IPPROTO_UDP: { 8767 struct udphdr *uh = &pd->hdr.udp; 8768 8769 if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh), action, 8770 reason, af)) { 8771 *action = PF_DROP; 8772 REASON_SET(reason, PFRES_SHORT); 8773 return (-1); 8774 } 8775 pd->hdrlen = sizeof(*uh); 8776 if (uh->uh_dport == 0 || 8777 ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off || 8778 ntohs(uh->uh_ulen) < sizeof(struct udphdr)) { 8779 *action = PF_DROP; 8780 REASON_SET(reason, PFRES_SHORT); 8781 return (-1); 8782 } 8783 pd->sport = &uh->uh_sport; 8784 pd->dport = &uh->uh_dport; 8785 break; 8786 } 8787 case IPPROTO_SCTP: { 8788 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp), 8789 action, reason, af)) { 8790 *action = PF_DROP; 8791 REASON_SET(reason, PFRES_SHORT); 8792 return (-1); 8793 } 8794 pd->hdrlen = sizeof(pd->hdr.sctp); 8795 pd->p_len = pd->tot_len - pd->off; 8796 8797 pd->sport = &pd->hdr.sctp.src_port; 8798 pd->dport = &pd->hdr.sctp.dest_port; 8799 if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) { 8800 *action = PF_DROP; 8801 REASON_SET(reason, PFRES_SHORT); 8802 return (-1); 8803 } 8804 if (pf_scan_sctp(pd) != PF_PASS) { 8805 *action = PF_DROP; 8806 REASON_SET(reason, PFRES_SHORT); 8807 return (-1); 8808 } 8809 break; 8810 } 8811 case IPPROTO_ICMP: { 8812 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN, 8813 action, reason, af)) { 8814 *action = PF_DROP; 8815 REASON_SET(reason, PFRES_SHORT); 8816 return (-1); 8817 } 8818 pd->hdrlen = ICMP_MINLEN; 8819 break; 8820 } 8821 #ifdef INET6 8822 case IPPROTO_ICMPV6: { 8823 size_t icmp_hlen = sizeof(struct icmp6_hdr); 8824 8825 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen, 8826 action, reason, af)) { 8827 *action = PF_DROP; 8828 REASON_SET(reason, PFRES_SHORT); 8829 return (-1); 8830 } 8831 /* ICMP headers we look further into to match state */ 8832 switch (pd->hdr.icmp6.icmp6_type) { 8833 case MLD_LISTENER_QUERY: 8834 case MLD_LISTENER_REPORT: 8835 icmp_hlen = sizeof(struct mld_hdr); 8836 break; 8837 case ND_NEIGHBOR_SOLICIT: 8838 case ND_NEIGHBOR_ADVERT: 8839 icmp_hlen = sizeof(struct nd_neighbor_solicit); 8840 break; 8841 } 8842 if (icmp_hlen > sizeof(struct icmp6_hdr) && 8843 !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen, 8844 action, reason, af)) { 8845 *action = PF_DROP; 8846 REASON_SET(reason, PFRES_SHORT); 8847 return (-1); 8848 } 8849 pd->hdrlen = icmp_hlen; 8850 break; 8851 } 8852 #endif 8853 } 8854 return (0); 8855 } 8856 8857 static void 8858 pf_counters_inc(int action, struct pf_pdesc *pd, 8859 struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a) 8860 { 8861 struct pf_krule *tr; 8862 int dir = pd->dir; 8863 int dirndx; 8864 8865 pf_counter_u64_critical_enter(); 8866 pf_counter_u64_add_protected( 8867 &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 8868 pd->tot_len); 8869 pf_counter_u64_add_protected( 8870 &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 8871 1); 8872 8873 if (action == PF_PASS || r->action == PF_DROP) { 8874 dirndx = (dir == PF_OUT); 8875 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 8876 pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len); 8877 pf_update_timestamp(r); 8878 8879 if (a != NULL) { 8880 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 8881 pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len); 8882 } 8883 if (s != NULL) { 8884 struct pf_krule_item *ri; 8885 8886 if (s->nat_rule != NULL) { 8887 pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx], 8888 1); 8889 pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx], 8890 pd->tot_len); 8891 } 8892 if (s->src_node != NULL) { 8893 counter_u64_add(s->src_node->packets[dirndx], 8894 1); 8895 counter_u64_add(s->src_node->bytes[dirndx], 8896 pd->tot_len); 8897 } 8898 if (s->nat_src_node != NULL) { 8899 counter_u64_add(s->nat_src_node->packets[dirndx], 8900 1); 8901 counter_u64_add(s->nat_src_node->bytes[dirndx], 8902 pd->tot_len); 8903 } 8904 dirndx = (dir == s->direction) ? 0 : 1; 8905 s->packets[dirndx]++; 8906 s->bytes[dirndx] += pd->tot_len; 8907 8908 SLIST_FOREACH(ri, &s->match_rules, entry) { 8909 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 8910 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len); 8911 } 8912 } 8913 8914 tr = r; 8915 if (s != NULL && s->nat_rule != NULL && 8916 r == &V_pf_default_rule) 8917 tr = s->nat_rule; 8918 8919 if (tr->src.addr.type == PF_ADDR_TABLE) 8920 pfr_update_stats(tr->src.addr.p.tbl, 8921 (s == NULL) ? pd->src : 8922 &s->key[(s->direction == PF_IN)]-> 8923 addr[(s->direction == PF_OUT)], 8924 pd->af, pd->tot_len, dir == PF_OUT, 8925 r->action == PF_PASS, tr->src.neg); 8926 if (tr->dst.addr.type == PF_ADDR_TABLE) 8927 pfr_update_stats(tr->dst.addr.p.tbl, 8928 (s == NULL) ? pd->dst : 8929 &s->key[(s->direction == PF_IN)]-> 8930 addr[(s->direction == PF_IN)], 8931 pd->af, pd->tot_len, dir == PF_OUT, 8932 r->action == PF_PASS, tr->dst.neg); 8933 } 8934 pf_counter_u64_critical_exit(); 8935 } 8936 8937 #if defined(INET) || defined(INET6) 8938 int 8939 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 8940 struct inpcb *inp, struct pf_rule_actions *default_actions) 8941 { 8942 struct pfi_kkif *kif; 8943 u_short action, reason = 0; 8944 struct m_tag *mtag; 8945 struct pf_krule *a = NULL, *r = &V_pf_default_rule; 8946 struct pf_kstate *s = NULL; 8947 struct pf_kruleset *ruleset = NULL; 8948 struct pf_pdesc pd; 8949 int use_2nd_queue = 0; 8950 uint16_t tag; 8951 uint8_t rt; 8952 8953 PF_RULES_RLOCK_TRACKER; 8954 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 8955 M_ASSERTPKTHDR(*m0); 8956 8957 if (!V_pf_status.running) 8958 return (PF_PASS); 8959 8960 PF_RULES_RLOCK(); 8961 8962 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8963 8964 if (__predict_false(kif == NULL)) { 8965 DPFPRINTF(PF_DEBUG_URGENT, 8966 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 8967 PF_RULES_RUNLOCK(); 8968 return (PF_DROP); 8969 } 8970 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 8971 PF_RULES_RUNLOCK(); 8972 return (PF_PASS); 8973 } 8974 8975 if ((*m0)->m_flags & M_SKIP_FIREWALL) { 8976 PF_RULES_RUNLOCK(); 8977 return (PF_PASS); 8978 } 8979 8980 #ifdef INET6 8981 /* 8982 * If we end up changing IP addresses (e.g. binat) the stack may get 8983 * confused and fail to send the icmp6 packet too big error. Just send 8984 * it here, before we do any NAT. 8985 */ 8986 if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD && 8987 IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) { 8988 PF_RULES_RUNLOCK(); 8989 icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp)); 8990 *m0 = NULL; 8991 return (PF_DROP); 8992 } 8993 #endif 8994 8995 if (__predict_false(! M_WRITABLE(*m0))) { 8996 *m0 = m_unshare(*m0, M_NOWAIT); 8997 if (*m0 == NULL) 8998 return (PF_DROP); 8999 } 9000 9001 pf_init_pdesc(&pd, *m0); 9002 9003 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 9004 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 9005 9006 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 9007 pd.pf_mtag->if_idxgen); 9008 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 9009 PF_RULES_RUNLOCK(); 9010 m_freem(*m0); 9011 *m0 = NULL; 9012 return (PF_PASS); 9013 } 9014 PF_RULES_RUNLOCK(); 9015 (ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL); 9016 *m0 = NULL; 9017 return (PF_PASS); 9018 } 9019 9020 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 9021 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 9022 /* Dummynet re-injects packets after they've 9023 * completed their delay. We've already 9024 * processed them, so pass unconditionally. */ 9025 9026 /* But only once. We may see the packet multiple times (e.g. 9027 * PFIL_IN/PFIL_OUT). */ 9028 pf_dummynet_flag_remove(pd.m, pd.pf_mtag); 9029 PF_RULES_RUNLOCK(); 9030 9031 return (PF_PASS); 9032 } 9033 9034 if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason, 9035 kif, default_actions) == -1) { 9036 if (action != PF_PASS) 9037 pd.act.log |= PF_LOG_FORCE; 9038 goto done; 9039 } 9040 9041 if (__predict_false(ip_divert_ptr != NULL) && 9042 ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) { 9043 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1); 9044 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) || 9045 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) { 9046 if (pd.pf_mtag == NULL && 9047 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 9048 action = PF_DROP; 9049 goto done; 9050 } 9051 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED; 9052 } 9053 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) { 9054 pd.m->m_flags |= M_FASTFWD_OURS; 9055 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 9056 } 9057 m_tag_delete(pd.m, mtag); 9058 9059 mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL); 9060 if (mtag != NULL) 9061 m_tag_delete(pd.m, mtag); 9062 } 9063 9064 switch (pd.virtual_proto) { 9065 case PF_VPROTO_FRAGMENT: 9066 /* 9067 * handle fragments that aren't reassembled by 9068 * normalization 9069 */ 9070 if (kif == NULL || r == NULL) /* pflog */ 9071 action = PF_DROP; 9072 else 9073 action = pf_test_rule(&r, &s, &pd, &a, 9074 &ruleset, inp); 9075 if (action != PF_PASS) 9076 REASON_SET(&reason, PFRES_FRAG); 9077 break; 9078 9079 case IPPROTO_TCP: { 9080 /* Respond to SYN with a syncookie. */ 9081 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 9082 pd.dir == PF_IN && pf_synflood_check(&pd)) { 9083 pf_syncookie_send(&pd); 9084 action = PF_DROP; 9085 break; 9086 } 9087 9088 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 9089 use_2nd_queue = 1; 9090 action = pf_normalize_tcp(&pd); 9091 if (action == PF_DROP) 9092 goto done; 9093 action = pf_test_state_tcp(&s, &pd, &reason); 9094 if (action == PF_PASS) { 9095 if (V_pfsync_update_state_ptr != NULL) 9096 V_pfsync_update_state_ptr(s); 9097 r = s->rule; 9098 a = s->anchor; 9099 } else if (s == NULL) { 9100 /* Validate remote SYN|ACK, re-create original SYN if 9101 * valid. */ 9102 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 9103 TH_ACK && pf_syncookie_validate(&pd) && 9104 pd.dir == PF_IN) { 9105 struct mbuf *msyn; 9106 9107 msyn = pf_syncookie_recreate_syn(&pd); 9108 if (msyn == NULL) { 9109 action = PF_DROP; 9110 break; 9111 } 9112 9113 action = pf_test(af, dir, pflags, ifp, &msyn, inp, 9114 &pd.act); 9115 m_freem(msyn); 9116 if (action != PF_PASS) 9117 break; 9118 9119 action = pf_test_state_tcp(&s, &pd, &reason); 9120 if (action != PF_PASS || s == NULL) { 9121 action = PF_DROP; 9122 break; 9123 } 9124 9125 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 9126 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 9127 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 9128 action = pf_synproxy(&pd, &s, &reason); 9129 break; 9130 } else { 9131 action = pf_test_rule(&r, &s, &pd, 9132 &a, &ruleset, inp); 9133 } 9134 } 9135 break; 9136 } 9137 9138 case IPPROTO_UDP: { 9139 action = pf_test_state_udp(&s, &pd); 9140 if (action == PF_PASS) { 9141 if (V_pfsync_update_state_ptr != NULL) 9142 V_pfsync_update_state_ptr(s); 9143 r = s->rule; 9144 a = s->anchor; 9145 } else if (s == NULL) 9146 action = pf_test_rule(&r, &s, &pd, 9147 &a, &ruleset, inp); 9148 break; 9149 } 9150 9151 case IPPROTO_SCTP: { 9152 action = pf_normalize_sctp(&pd); 9153 if (action == PF_DROP) 9154 goto done; 9155 action = pf_test_state_sctp(&s, &pd, &reason); 9156 if (action == PF_PASS) { 9157 if (V_pfsync_update_state_ptr != NULL) 9158 V_pfsync_update_state_ptr(s); 9159 r = s->rule; 9160 a = s->anchor; 9161 } else if (s == NULL) { 9162 action = pf_test_rule(&r, &s, 9163 &pd, &a, &ruleset, inp); 9164 } 9165 break; 9166 } 9167 9168 case IPPROTO_ICMP: { 9169 if (af != AF_INET) { 9170 action = PF_DROP; 9171 REASON_SET(&reason, PFRES_NORM); 9172 DPFPRINTF(PF_DEBUG_MISC, 9173 ("dropping IPv6 packet with ICMPv4 payload")); 9174 goto done; 9175 } 9176 action = pf_test_state_icmp(&s, &pd, &reason); 9177 if (action == PF_PASS) { 9178 if (V_pfsync_update_state_ptr != NULL) 9179 V_pfsync_update_state_ptr(s); 9180 r = s->rule; 9181 a = s->anchor; 9182 } else if (s == NULL) 9183 action = pf_test_rule(&r, &s, &pd, 9184 &a, &ruleset, inp); 9185 break; 9186 } 9187 9188 case IPPROTO_ICMPV6: { 9189 if (af != AF_INET6) { 9190 action = PF_DROP; 9191 REASON_SET(&reason, PFRES_NORM); 9192 DPFPRINTF(PF_DEBUG_MISC, 9193 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 9194 goto done; 9195 } 9196 action = pf_test_state_icmp(&s, &pd, &reason); 9197 if (action == PF_PASS) { 9198 if (V_pfsync_update_state_ptr != NULL) 9199 V_pfsync_update_state_ptr(s); 9200 r = s->rule; 9201 a = s->anchor; 9202 } else if (s == NULL) 9203 action = pf_test_rule(&r, &s, &pd, 9204 &a, &ruleset, inp); 9205 break; 9206 } 9207 9208 default: 9209 action = pf_test_state_other(&s, &pd); 9210 if (action == PF_PASS) { 9211 if (V_pfsync_update_state_ptr != NULL) 9212 V_pfsync_update_state_ptr(s); 9213 r = s->rule; 9214 a = s->anchor; 9215 } else if (s == NULL) 9216 action = pf_test_rule(&r, &s, &pd, 9217 &a, &ruleset, inp); 9218 break; 9219 } 9220 9221 done: 9222 PF_RULES_RUNLOCK(); 9223 9224 if (pd.m == NULL) 9225 goto eat_pkt; 9226 9227 if (action == PF_PASS && pd.badopts && 9228 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 9229 action = PF_DROP; 9230 REASON_SET(&reason, PFRES_IPOPTIONS); 9231 pd.act.log = PF_LOG_FORCE; 9232 DPFPRINTF(PF_DEBUG_MISC, 9233 ("pf: dropping packet with dangerous headers\n")); 9234 } 9235 9236 if (s) { 9237 uint8_t log = pd.act.log; 9238 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 9239 pd.act.log |= log; 9240 tag = s->tag; 9241 rt = s->rt; 9242 } else { 9243 tag = r->tag; 9244 rt = r->rt; 9245 } 9246 9247 if (tag > 0 && pf_tag_packet(&pd, tag)) { 9248 action = PF_DROP; 9249 REASON_SET(&reason, PFRES_MEMORY); 9250 } 9251 9252 pf_scrub(&pd); 9253 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 9254 pf_normalize_mss(&pd); 9255 9256 if (pd.act.rtableid >= 0) 9257 M_SETFIB(pd.m, pd.act.rtableid); 9258 9259 if (pd.act.flags & PFSTATE_SETPRIO) { 9260 if (pd.tos & IPTOS_LOWDELAY) 9261 use_2nd_queue = 1; 9262 if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) { 9263 action = PF_DROP; 9264 REASON_SET(&reason, PFRES_MEMORY); 9265 pd.act.log = PF_LOG_FORCE; 9266 DPFPRINTF(PF_DEBUG_MISC, 9267 ("pf: failed to allocate 802.1q mtag\n")); 9268 } 9269 } 9270 9271 #ifdef ALTQ 9272 if (action == PF_PASS && pd.act.qid) { 9273 if (pd.pf_mtag == NULL && 9274 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 9275 action = PF_DROP; 9276 REASON_SET(&reason, PFRES_MEMORY); 9277 } else { 9278 if (s != NULL) 9279 pd.pf_mtag->qid_hash = pf_state_hash(s); 9280 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY)) 9281 pd.pf_mtag->qid = pd.act.pqid; 9282 else 9283 pd.pf_mtag->qid = pd.act.qid; 9284 /* Add hints for ecn. */ 9285 pd.pf_mtag->hdr = mtod(pd.m, void *); 9286 } 9287 } 9288 #endif /* ALTQ */ 9289 9290 /* 9291 * connections redirected to loopback should not match sockets 9292 * bound specifically to loopback due to security implications, 9293 * see tcp_input() and in_pcblookup_listen(). 9294 */ 9295 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 9296 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL && 9297 (s->nat_rule->action == PF_RDR || 9298 s->nat_rule->action == PF_BINAT) && 9299 pf_is_loopback(af, pd.dst)) 9300 pd.m->m_flags |= M_SKIP_FIREWALL; 9301 9302 if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) && 9303 action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) { 9304 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0, 9305 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO); 9306 if (mtag != NULL) { 9307 ((struct pf_divert_mtag *)(mtag+1))->port = 9308 ntohs(r->divert.port); 9309 ((struct pf_divert_mtag *)(mtag+1))->idir = 9310 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN : 9311 PF_DIVERT_MTAG_DIR_OUT; 9312 9313 if (s) 9314 PF_STATE_UNLOCK(s); 9315 9316 m_tag_prepend(pd.m, mtag); 9317 if (pd.m->m_flags & M_FASTFWD_OURS) { 9318 if (pd.pf_mtag == NULL && 9319 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 9320 action = PF_DROP; 9321 REASON_SET(&reason, PFRES_MEMORY); 9322 pd.act.log = PF_LOG_FORCE; 9323 DPFPRINTF(PF_DEBUG_MISC, 9324 ("pf: failed to allocate tag\n")); 9325 } else { 9326 pd.pf_mtag->flags |= 9327 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 9328 pd.m->m_flags &= ~M_FASTFWD_OURS; 9329 } 9330 } 9331 ip_divert_ptr(*m0, dir == PF_IN); 9332 *m0 = NULL; 9333 9334 return (action); 9335 } else { 9336 /* XXX: ipfw has the same behaviour! */ 9337 action = PF_DROP; 9338 REASON_SET(&reason, PFRES_MEMORY); 9339 pd.act.log = PF_LOG_FORCE; 9340 DPFPRINTF(PF_DEBUG_MISC, 9341 ("pf: failed to allocate divert tag\n")); 9342 } 9343 } 9344 /* XXX: Anybody working on it?! */ 9345 if (af == AF_INET6 && r->divert.port) 9346 printf("pf: divert(9) is not supported for IPv6\n"); 9347 9348 /* this flag will need revising if the pkt is forwarded */ 9349 if (pd.pf_mtag) 9350 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED; 9351 9352 if (pd.act.log) { 9353 struct pf_krule *lr; 9354 struct pf_krule_item *ri; 9355 9356 if (s != NULL && s->nat_rule != NULL && 9357 s->nat_rule->log & PF_LOG_ALL) 9358 lr = s->nat_rule; 9359 else 9360 lr = r; 9361 9362 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 9363 PFLOG_PACKET(action, reason, lr, a, 9364 ruleset, &pd, (s == NULL)); 9365 if (s) { 9366 SLIST_FOREACH(ri, &s->match_rules, entry) 9367 if (ri->r->log & PF_LOG_ALL) 9368 PFLOG_PACKET(action, 9369 reason, ri->r, a, ruleset, &pd, 0); 9370 } 9371 } 9372 9373 pf_counters_inc(action, &pd, s, r, a); 9374 9375 switch (action) { 9376 case PF_SYNPROXY_DROP: 9377 m_freem(*m0); 9378 case PF_DEFER: 9379 *m0 = NULL; 9380 action = PF_PASS; 9381 break; 9382 case PF_DROP: 9383 m_freem(*m0); 9384 *m0 = NULL; 9385 break; 9386 default: 9387 if (rt) { 9388 switch (af) { 9389 #ifdef INET 9390 case AF_INET: 9391 /* pf_route() returns unlocked. */ 9392 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp); 9393 break; 9394 #endif 9395 #ifdef INET6 9396 case AF_INET6: 9397 /* pf_route6() returns unlocked. */ 9398 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp); 9399 break; 9400 #endif 9401 } 9402 goto out; 9403 } 9404 if (pf_dummynet(&pd, s, r, m0) != 0) { 9405 action = PF_DROP; 9406 REASON_SET(&reason, PFRES_MEMORY); 9407 } 9408 break; 9409 } 9410 9411 eat_pkt: 9412 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 9413 9414 if (s && action != PF_DROP) { 9415 if (!s->if_index_in && dir == PF_IN) 9416 s->if_index_in = ifp->if_index; 9417 else if (!s->if_index_out && dir == PF_OUT) 9418 s->if_index_out = ifp->if_index; 9419 } 9420 9421 if (s) 9422 PF_STATE_UNLOCK(s); 9423 9424 #ifdef INET6 9425 /* If reassembled packet passed, create new fragments. */ 9426 if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT && 9427 (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL) 9428 action = pf_refragment6(ifp, m0, mtag, pflags & PFIL_FWD); 9429 #endif 9430 9431 out: 9432 pf_sctp_multihome_delayed(&pd, kif, s, action); 9433 9434 return (action); 9435 } 9436 #endif /* INET || INET6 */ 9437