1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_bpf.h" 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_pf.h" 47 #include "opt_sctp.h" 48 49 #include <sys/param.h> 50 #include <sys/bus.h> 51 #include <sys/endian.h> 52 #include <sys/gsb_crc32.h> 53 #include <sys/hash.h> 54 #include <sys/interrupt.h> 55 #include <sys/kernel.h> 56 #include <sys/kthread.h> 57 #include <sys/limits.h> 58 #include <sys/mbuf.h> 59 #include <sys/md5.h> 60 #include <sys/random.h> 61 #include <sys/refcount.h> 62 #include <sys/sdt.h> 63 #include <sys/socket.h> 64 #include <sys/sysctl.h> 65 #include <sys/taskqueue.h> 66 #include <sys/ucred.h> 67 68 #include <net/if.h> 69 #include <net/if_var.h> 70 #include <net/if_types.h> 71 #include <net/if_vlan_var.h> 72 #include <net/route.h> 73 #include <net/route/nhop.h> 74 #include <net/vnet.h> 75 76 #include <net/pfil.h> 77 #include <net/pfvar.h> 78 #include <net/if_pflog.h> 79 #include <net/if_pfsync.h> 80 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_var.h> 83 #include <netinet/in_fib.h> 84 #include <netinet/ip.h> 85 #include <netinet/ip_fw.h> 86 #include <netinet/ip_icmp.h> 87 #include <netinet/icmp_var.h> 88 #include <netinet/ip_var.h> 89 #include <netinet/tcp.h> 90 #include <netinet/tcp_fsm.h> 91 #include <netinet/tcp_seq.h> 92 #include <netinet/tcp_timer.h> 93 #include <netinet/tcp_var.h> 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 97 /* dummynet */ 98 #include <netinet/ip_dummynet.h> 99 #include <netinet/ip_fw.h> 100 #include <netpfil/ipfw/dn_heap.h> 101 #include <netpfil/ipfw/ip_fw_private.h> 102 #include <netpfil/ipfw/ip_dn_private.h> 103 104 #ifdef INET6 105 #include <netinet/ip6.h> 106 #include <netinet/icmp6.h> 107 #include <netinet6/nd6.h> 108 #include <netinet6/ip6_var.h> 109 #include <netinet6/in6_pcb.h> 110 #include <netinet6/in6_fib.h> 111 #include <netinet6/scope6_var.h> 112 #endif /* INET6 */ 113 114 #if defined(SCTP) || defined(SCTP_SUPPORT) 115 #include <netinet/sctp_crc32.h> 116 #endif 117 118 #include <machine/in_cksum.h> 119 #include <security/mac/mac_framework.h> 120 121 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 122 123 SDT_PROVIDER_DEFINE(pf); 124 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 125 "struct pf_kstate *"); 126 SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", 127 "struct pf_kstate *"); 128 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 129 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 130 "struct pf_kstate *"); 131 132 /* 133 * Global variables 134 */ 135 136 /* state tables */ 137 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 138 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 139 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 140 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 141 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 142 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 143 VNET_DEFINE(struct pf_kstatus, pf_status); 144 145 VNET_DEFINE(u_int32_t, ticket_altqs_active); 146 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 147 VNET_DEFINE(int, altqs_inactive_open); 148 VNET_DEFINE(u_int32_t, ticket_pabuf); 149 150 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 151 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 152 VNET_DEFINE(u_char, pf_tcp_secret[16]); 153 #define V_pf_tcp_secret VNET(pf_tcp_secret) 154 VNET_DEFINE(int, pf_tcp_secret_init); 155 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 156 VNET_DEFINE(int, pf_tcp_iss_off); 157 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 158 VNET_DECLARE(int, pf_vnet_active); 159 #define V_pf_vnet_active VNET(pf_vnet_active) 160 161 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 162 #define V_pf_purge_idx VNET(pf_purge_idx) 163 164 #ifdef PF_WANT_32_TO_64_COUNTER 165 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 166 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 167 168 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 169 VNET_DEFINE(size_t, pf_allrulecount); 170 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 171 #endif 172 173 /* 174 * Queue for pf_intr() sends. 175 */ 176 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 177 struct pf_send_entry { 178 STAILQ_ENTRY(pf_send_entry) pfse_next; 179 struct mbuf *pfse_m; 180 enum { 181 PFSE_IP, 182 PFSE_IP6, 183 PFSE_ICMP, 184 PFSE_ICMP6, 185 } pfse_type; 186 struct { 187 int type; 188 int code; 189 int mtu; 190 } icmpopts; 191 }; 192 193 STAILQ_HEAD(pf_send_head, pf_send_entry); 194 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 195 #define V_pf_sendqueue VNET(pf_sendqueue) 196 197 static struct mtx_padalign pf_sendqueue_mtx; 198 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 199 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 200 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 201 202 /* 203 * Queue for pf_overload_task() tasks. 204 */ 205 struct pf_overload_entry { 206 SLIST_ENTRY(pf_overload_entry) next; 207 struct pf_addr addr; 208 sa_family_t af; 209 uint8_t dir; 210 struct pf_krule *rule; 211 }; 212 213 SLIST_HEAD(pf_overload_head, pf_overload_entry); 214 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 215 #define V_pf_overloadqueue VNET(pf_overloadqueue) 216 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 217 #define V_pf_overloadtask VNET(pf_overloadtask) 218 219 static struct mtx_padalign pf_overloadqueue_mtx; 220 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 221 "pf overload/flush queue", MTX_DEF); 222 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 223 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 224 225 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 226 struct mtx_padalign pf_unlnkdrules_mtx; 227 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 228 MTX_DEF); 229 230 struct mtx_padalign pf_table_stats_lock; 231 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 232 MTX_DEF); 233 234 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 235 #define V_pf_sources_z VNET(pf_sources_z) 236 uma_zone_t pf_mtag_z; 237 VNET_DEFINE(uma_zone_t, pf_state_z); 238 VNET_DEFINE(uma_zone_t, pf_state_key_z); 239 240 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 241 #define PFID_CPUBITS 8 242 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 243 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 244 #define PFID_MAXID (~PFID_CPUMASK) 245 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 246 247 static void pf_src_tree_remove_state(struct pf_kstate *); 248 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 249 u_int32_t); 250 static void pf_add_threshold(struct pf_threshold *); 251 static int pf_check_threshold(struct pf_threshold *); 252 253 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 254 u_int16_t *, u_int16_t *, struct pf_addr *, 255 u_int16_t, u_int8_t, sa_family_t); 256 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 257 struct tcphdr *, struct pf_state_peer *); 258 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 259 struct pf_addr *, struct pf_addr *, u_int16_t, 260 u_int16_t *, u_int16_t *, u_int16_t *, 261 u_int16_t *, u_int8_t, sa_family_t); 262 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 263 sa_family_t, struct pf_krule *); 264 static void pf_detach_state(struct pf_kstate *); 265 static int pf_state_key_attach(struct pf_state_key *, 266 struct pf_state_key *, struct pf_kstate *); 267 static void pf_state_key_detach(struct pf_kstate *, int); 268 static int pf_state_key_ctor(void *, int, void *, int); 269 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 270 void pf_rule_to_actions(struct pf_krule *, 271 struct pf_rule_actions *); 272 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 273 int, struct pfi_kkif *, struct mbuf *, int, 274 struct pf_pdesc *, struct pf_krule **, 275 struct pf_kruleset **, struct inpcb *); 276 static int pf_create_state(struct pf_krule *, struct pf_krule *, 277 struct pf_krule *, struct pf_pdesc *, 278 struct pf_ksrc_node *, struct pf_state_key *, 279 struct pf_state_key *, struct mbuf *, int, 280 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 281 struct pf_kstate **, int, u_int16_t, u_int16_t, 282 int); 283 static int pf_test_fragment(struct pf_krule **, int, 284 struct pfi_kkif *, struct mbuf *, void *, 285 struct pf_pdesc *, struct pf_krule **, 286 struct pf_kruleset **); 287 static int pf_tcp_track_full(struct pf_kstate **, 288 struct pfi_kkif *, struct mbuf *, int, 289 struct pf_pdesc *, u_short *, int *); 290 static int pf_tcp_track_sloppy(struct pf_kstate **, 291 struct pf_pdesc *, u_short *); 292 static int pf_test_state_tcp(struct pf_kstate **, int, 293 struct pfi_kkif *, struct mbuf *, int, 294 void *, struct pf_pdesc *, u_short *); 295 static int pf_test_state_udp(struct pf_kstate **, int, 296 struct pfi_kkif *, struct mbuf *, int, 297 void *, struct pf_pdesc *); 298 static int pf_test_state_icmp(struct pf_kstate **, int, 299 struct pfi_kkif *, struct mbuf *, int, 300 void *, struct pf_pdesc *, u_short *); 301 static int pf_test_state_other(struct pf_kstate **, int, 302 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 303 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 304 int, u_int16_t); 305 static int pf_check_proto_cksum(struct mbuf *, int, int, 306 u_int8_t, sa_family_t); 307 static void pf_print_state_parts(struct pf_kstate *, 308 struct pf_state_key *, struct pf_state_key *); 309 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 310 struct pf_addr_wrap *); 311 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 312 bool, u_int8_t); 313 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 314 struct pf_state_key_cmp *, u_int); 315 static int pf_src_connlimit(struct pf_kstate **); 316 static void pf_overload_task(void *v, int pending); 317 static int pf_insert_src_node(struct pf_ksrc_node **, 318 struct pf_krule *, struct pf_addr *, sa_family_t); 319 static u_int pf_purge_expired_states(u_int, int); 320 static void pf_purge_unlinked_rules(void); 321 static int pf_mtag_uminit(void *, int, int); 322 static void pf_mtag_free(struct m_tag *); 323 #ifdef INET 324 static void pf_route(struct mbuf **, struct pf_krule *, int, 325 struct ifnet *, struct pf_kstate *, 326 struct pf_pdesc *, struct inpcb *); 327 #endif /* INET */ 328 #ifdef INET6 329 static void pf_change_a6(struct pf_addr *, u_int16_t *, 330 struct pf_addr *, u_int8_t); 331 static void pf_route6(struct mbuf **, struct pf_krule *, int, 332 struct ifnet *, struct pf_kstate *, 333 struct pf_pdesc *, struct inpcb *); 334 #endif /* INET6 */ 335 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 336 337 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 338 339 extern int pf_end_threads; 340 extern struct proc *pf_purge_proc; 341 342 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 343 344 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 345 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 346 347 #define STATE_LOOKUP(i, k, d, s, pd) \ 348 do { \ 349 (s) = pf_find_state((i), (k), (d)); \ 350 SDT_PROBE5(pf, ip, state, lookup, i, k, d, pd, (s)); \ 351 if ((s) == NULL) \ 352 return (PF_DROP); \ 353 if (PACKET_LOOPED(pd)) \ 354 return (PF_PASS); \ 355 } while (0) 356 357 #define BOUND_IFACE(r, k) \ 358 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 359 360 #define STATE_INC_COUNTERS(s) \ 361 do { \ 362 counter_u64_add(s->rule.ptr->states_cur, 1); \ 363 counter_u64_add(s->rule.ptr->states_tot, 1); \ 364 if (s->anchor.ptr != NULL) { \ 365 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 366 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 367 } \ 368 if (s->nat_rule.ptr != NULL) { \ 369 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 370 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 371 } \ 372 } while (0) 373 374 #define STATE_DEC_COUNTERS(s) \ 375 do { \ 376 if (s->nat_rule.ptr != NULL) \ 377 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 378 if (s->anchor.ptr != NULL) \ 379 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 380 counter_u64_add(s->rule.ptr->states_cur, -1); \ 381 } while (0) 382 383 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 384 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 385 VNET_DEFINE(struct pf_idhash *, pf_idhash); 386 VNET_DEFINE(struct pf_srchash *, pf_srchash); 387 388 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 389 "pf(4)"); 390 391 u_long pf_hashmask; 392 u_long pf_srchashmask; 393 static u_long pf_hashsize; 394 static u_long pf_srchashsize; 395 u_long pf_ioctl_maxcount = 65535; 396 397 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 398 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 399 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 400 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 401 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 402 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 403 404 VNET_DEFINE(void *, pf_swi_cookie); 405 VNET_DEFINE(struct intr_event *, pf_swi_ie); 406 407 VNET_DEFINE(uint32_t, pf_hashseed); 408 #define V_pf_hashseed VNET(pf_hashseed) 409 410 int 411 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 412 { 413 414 switch (af) { 415 #ifdef INET 416 case AF_INET: 417 if (a->addr32[0] > b->addr32[0]) 418 return (1); 419 if (a->addr32[0] < b->addr32[0]) 420 return (-1); 421 break; 422 #endif /* INET */ 423 #ifdef INET6 424 case AF_INET6: 425 if (a->addr32[3] > b->addr32[3]) 426 return (1); 427 if (a->addr32[3] < b->addr32[3]) 428 return (-1); 429 if (a->addr32[2] > b->addr32[2]) 430 return (1); 431 if (a->addr32[2] < b->addr32[2]) 432 return (-1); 433 if (a->addr32[1] > b->addr32[1]) 434 return (1); 435 if (a->addr32[1] < b->addr32[1]) 436 return (-1); 437 if (a->addr32[0] > b->addr32[0]) 438 return (1); 439 if (a->addr32[0] < b->addr32[0]) 440 return (-1); 441 break; 442 #endif /* INET6 */ 443 default: 444 panic("%s: unknown address family %u", __func__, af); 445 } 446 return (0); 447 } 448 449 static __inline uint32_t 450 pf_hashkey(struct pf_state_key *sk) 451 { 452 uint32_t h; 453 454 h = murmur3_32_hash32((uint32_t *)sk, 455 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 456 V_pf_hashseed); 457 458 return (h & pf_hashmask); 459 } 460 461 static __inline uint32_t 462 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 463 { 464 uint32_t h; 465 466 switch (af) { 467 case AF_INET: 468 h = murmur3_32_hash32((uint32_t *)&addr->v4, 469 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 470 break; 471 case AF_INET6: 472 h = murmur3_32_hash32((uint32_t *)&addr->v6, 473 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 474 break; 475 default: 476 panic("%s: unknown address family %u", __func__, af); 477 } 478 479 return (h & pf_srchashmask); 480 } 481 482 #ifdef ALTQ 483 static int 484 pf_state_hash(struct pf_kstate *s) 485 { 486 u_int32_t hv = (intptr_t)s / sizeof(*s); 487 488 hv ^= crc32(&s->src, sizeof(s->src)); 489 hv ^= crc32(&s->dst, sizeof(s->dst)); 490 if (hv == 0) 491 hv = 1; 492 return (hv); 493 } 494 #endif 495 496 static __inline void 497 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 498 { 499 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 500 s->dst.state = newstate; 501 if (which == PF_PEER_DST) 502 return; 503 if (s->src.state == newstate) 504 return; 505 if (s->creatorid == V_pf_status.hostid && 506 s->key[PF_SK_STACK] != NULL && 507 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 508 !(TCPS_HAVEESTABLISHED(s->src.state) || 509 s->src.state == TCPS_CLOSED) && 510 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 511 atomic_add_32(&V_pf_status.states_halfopen, -1); 512 513 s->src.state = newstate; 514 } 515 516 #ifdef INET6 517 void 518 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 519 { 520 switch (af) { 521 #ifdef INET 522 case AF_INET: 523 dst->addr32[0] = src->addr32[0]; 524 break; 525 #endif /* INET */ 526 case AF_INET6: 527 dst->addr32[0] = src->addr32[0]; 528 dst->addr32[1] = src->addr32[1]; 529 dst->addr32[2] = src->addr32[2]; 530 dst->addr32[3] = src->addr32[3]; 531 break; 532 } 533 } 534 #endif /* INET6 */ 535 536 static void 537 pf_init_threshold(struct pf_threshold *threshold, 538 u_int32_t limit, u_int32_t seconds) 539 { 540 threshold->limit = limit * PF_THRESHOLD_MULT; 541 threshold->seconds = seconds; 542 threshold->count = 0; 543 threshold->last = time_uptime; 544 } 545 546 static void 547 pf_add_threshold(struct pf_threshold *threshold) 548 { 549 u_int32_t t = time_uptime, diff = t - threshold->last; 550 551 if (diff >= threshold->seconds) 552 threshold->count = 0; 553 else 554 threshold->count -= threshold->count * diff / 555 threshold->seconds; 556 threshold->count += PF_THRESHOLD_MULT; 557 threshold->last = t; 558 } 559 560 static int 561 pf_check_threshold(struct pf_threshold *threshold) 562 { 563 return (threshold->count > threshold->limit); 564 } 565 566 static int 567 pf_src_connlimit(struct pf_kstate **state) 568 { 569 struct pf_overload_entry *pfoe; 570 int bad = 0; 571 572 PF_STATE_LOCK_ASSERT(*state); 573 574 (*state)->src_node->conn++; 575 (*state)->src.tcp_est = 1; 576 pf_add_threshold(&(*state)->src_node->conn_rate); 577 578 if ((*state)->rule.ptr->max_src_conn && 579 (*state)->rule.ptr->max_src_conn < 580 (*state)->src_node->conn) { 581 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 582 bad++; 583 } 584 585 if ((*state)->rule.ptr->max_src_conn_rate.limit && 586 pf_check_threshold(&(*state)->src_node->conn_rate)) { 587 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 588 bad++; 589 } 590 591 if (!bad) 592 return (0); 593 594 /* Kill this state. */ 595 (*state)->timeout = PFTM_PURGE; 596 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 597 598 if ((*state)->rule.ptr->overload_tbl == NULL) 599 return (1); 600 601 /* Schedule overloading and flushing task. */ 602 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 603 if (pfoe == NULL) 604 return (1); /* too bad :( */ 605 606 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 607 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 608 pfoe->rule = (*state)->rule.ptr; 609 pfoe->dir = (*state)->direction; 610 PF_OVERLOADQ_LOCK(); 611 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 612 PF_OVERLOADQ_UNLOCK(); 613 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 614 615 return (1); 616 } 617 618 static void 619 pf_overload_task(void *v, int pending) 620 { 621 struct pf_overload_head queue; 622 struct pfr_addr p; 623 struct pf_overload_entry *pfoe, *pfoe1; 624 uint32_t killed = 0; 625 626 CURVNET_SET((struct vnet *)v); 627 628 PF_OVERLOADQ_LOCK(); 629 queue = V_pf_overloadqueue; 630 SLIST_INIT(&V_pf_overloadqueue); 631 PF_OVERLOADQ_UNLOCK(); 632 633 bzero(&p, sizeof(p)); 634 SLIST_FOREACH(pfoe, &queue, next) { 635 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 636 if (V_pf_status.debug >= PF_DEBUG_MISC) { 637 printf("%s: blocking address ", __func__); 638 pf_print_host(&pfoe->addr, 0, pfoe->af); 639 printf("\n"); 640 } 641 642 p.pfra_af = pfoe->af; 643 switch (pfoe->af) { 644 #ifdef INET 645 case AF_INET: 646 p.pfra_net = 32; 647 p.pfra_ip4addr = pfoe->addr.v4; 648 break; 649 #endif 650 #ifdef INET6 651 case AF_INET6: 652 p.pfra_net = 128; 653 p.pfra_ip6addr = pfoe->addr.v6; 654 break; 655 #endif 656 } 657 658 PF_RULES_WLOCK(); 659 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 660 PF_RULES_WUNLOCK(); 661 } 662 663 /* 664 * Remove those entries, that don't need flushing. 665 */ 666 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 667 if (pfoe->rule->flush == 0) { 668 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 669 free(pfoe, M_PFTEMP); 670 } else 671 counter_u64_add( 672 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 673 674 /* If nothing to flush, return. */ 675 if (SLIST_EMPTY(&queue)) { 676 CURVNET_RESTORE(); 677 return; 678 } 679 680 for (int i = 0; i <= pf_hashmask; i++) { 681 struct pf_idhash *ih = &V_pf_idhash[i]; 682 struct pf_state_key *sk; 683 struct pf_kstate *s; 684 685 PF_HASHROW_LOCK(ih); 686 LIST_FOREACH(s, &ih->states, entry) { 687 sk = s->key[PF_SK_WIRE]; 688 SLIST_FOREACH(pfoe, &queue, next) 689 if (sk->af == pfoe->af && 690 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 691 pfoe->rule == s->rule.ptr) && 692 ((pfoe->dir == PF_OUT && 693 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 694 (pfoe->dir == PF_IN && 695 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 696 s->timeout = PFTM_PURGE; 697 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 698 killed++; 699 } 700 } 701 PF_HASHROW_UNLOCK(ih); 702 } 703 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 704 free(pfoe, M_PFTEMP); 705 if (V_pf_status.debug >= PF_DEBUG_MISC) 706 printf("%s: %u states killed", __func__, killed); 707 708 CURVNET_RESTORE(); 709 } 710 711 /* 712 * Can return locked on failure, so that we can consistently 713 * allocate and insert a new one. 714 */ 715 struct pf_ksrc_node * 716 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 717 int returnlocked) 718 { 719 struct pf_srchash *sh; 720 struct pf_ksrc_node *n; 721 722 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 723 724 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 725 PF_HASHROW_LOCK(sh); 726 LIST_FOREACH(n, &sh->nodes, entry) 727 if (n->rule.ptr == rule && n->af == af && 728 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 729 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 730 break; 731 if (n != NULL) { 732 n->states++; 733 PF_HASHROW_UNLOCK(sh); 734 } else if (returnlocked == 0) 735 PF_HASHROW_UNLOCK(sh); 736 737 return (n); 738 } 739 740 static void 741 pf_free_src_node(struct pf_ksrc_node *sn) 742 { 743 744 for (int i = 0; i < 2; i++) { 745 counter_u64_free(sn->bytes[i]); 746 counter_u64_free(sn->packets[i]); 747 } 748 uma_zfree(V_pf_sources_z, sn); 749 } 750 751 static int 752 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 753 struct pf_addr *src, sa_family_t af) 754 { 755 756 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 757 rule->rpool.opts & PF_POOL_STICKYADDR), 758 ("%s for non-tracking rule %p", __func__, rule)); 759 760 if (*sn == NULL) 761 *sn = pf_find_src_node(src, rule, af, 1); 762 763 if (*sn == NULL) { 764 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 765 766 PF_HASHROW_ASSERT(sh); 767 768 if (!rule->max_src_nodes || 769 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 770 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 771 else 772 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 773 1); 774 if ((*sn) == NULL) { 775 PF_HASHROW_UNLOCK(sh); 776 return (-1); 777 } 778 779 for (int i = 0; i < 2; i++) { 780 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 781 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 782 783 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 784 pf_free_src_node(*sn); 785 PF_HASHROW_UNLOCK(sh); 786 return (-1); 787 } 788 } 789 790 pf_init_threshold(&(*sn)->conn_rate, 791 rule->max_src_conn_rate.limit, 792 rule->max_src_conn_rate.seconds); 793 794 (*sn)->af = af; 795 (*sn)->rule.ptr = rule; 796 PF_ACPY(&(*sn)->addr, src, af); 797 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 798 (*sn)->creation = time_uptime; 799 (*sn)->ruletype = rule->action; 800 (*sn)->states = 1; 801 if ((*sn)->rule.ptr != NULL) 802 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 803 PF_HASHROW_UNLOCK(sh); 804 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 805 } else { 806 if (rule->max_src_states && 807 (*sn)->states >= rule->max_src_states) { 808 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 809 1); 810 return (-1); 811 } 812 } 813 return (0); 814 } 815 816 void 817 pf_unlink_src_node(struct pf_ksrc_node *src) 818 { 819 820 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 821 LIST_REMOVE(src, entry); 822 if (src->rule.ptr) 823 counter_u64_add(src->rule.ptr->src_nodes, -1); 824 } 825 826 u_int 827 pf_free_src_nodes(struct pf_ksrc_node_list *head) 828 { 829 struct pf_ksrc_node *sn, *tmp; 830 u_int count = 0; 831 832 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 833 pf_free_src_node(sn); 834 count++; 835 } 836 837 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 838 839 return (count); 840 } 841 842 void 843 pf_mtag_initialize() 844 { 845 846 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 847 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 848 UMA_ALIGN_PTR, 0); 849 } 850 851 /* Per-vnet data storage structures initialization. */ 852 void 853 pf_initialize() 854 { 855 struct pf_keyhash *kh; 856 struct pf_idhash *ih; 857 struct pf_srchash *sh; 858 u_int i; 859 860 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 861 pf_hashsize = PF_HASHSIZ; 862 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 863 pf_srchashsize = PF_SRCHASHSIZ; 864 865 V_pf_hashseed = arc4random(); 866 867 /* States and state keys storage. */ 868 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 869 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 870 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 871 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 872 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 873 874 V_pf_state_key_z = uma_zcreate("pf state keys", 875 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 876 UMA_ALIGN_PTR, 0); 877 878 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 879 M_PFHASH, M_NOWAIT | M_ZERO); 880 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 881 M_PFHASH, M_NOWAIT | M_ZERO); 882 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 883 printf("pf: Unable to allocate memory for " 884 "state_hashsize %lu.\n", pf_hashsize); 885 886 free(V_pf_keyhash, M_PFHASH); 887 free(V_pf_idhash, M_PFHASH); 888 889 pf_hashsize = PF_HASHSIZ; 890 V_pf_keyhash = mallocarray(pf_hashsize, 891 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 892 V_pf_idhash = mallocarray(pf_hashsize, 893 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 894 } 895 896 pf_hashmask = pf_hashsize - 1; 897 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 898 i++, kh++, ih++) { 899 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 900 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 901 } 902 903 /* Source nodes. */ 904 V_pf_sources_z = uma_zcreate("pf source nodes", 905 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 906 0); 907 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 908 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 909 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 910 911 V_pf_srchash = mallocarray(pf_srchashsize, 912 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 913 if (V_pf_srchash == NULL) { 914 printf("pf: Unable to allocate memory for " 915 "source_hashsize %lu.\n", pf_srchashsize); 916 917 pf_srchashsize = PF_SRCHASHSIZ; 918 V_pf_srchash = mallocarray(pf_srchashsize, 919 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 920 } 921 922 pf_srchashmask = pf_srchashsize - 1; 923 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 924 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 925 926 /* ALTQ */ 927 TAILQ_INIT(&V_pf_altqs[0]); 928 TAILQ_INIT(&V_pf_altqs[1]); 929 TAILQ_INIT(&V_pf_altqs[2]); 930 TAILQ_INIT(&V_pf_altqs[3]); 931 TAILQ_INIT(&V_pf_pabuf); 932 V_pf_altqs_active = &V_pf_altqs[0]; 933 V_pf_altq_ifs_active = &V_pf_altqs[1]; 934 V_pf_altqs_inactive = &V_pf_altqs[2]; 935 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 936 937 /* Send & overload+flush queues. */ 938 STAILQ_INIT(&V_pf_sendqueue); 939 SLIST_INIT(&V_pf_overloadqueue); 940 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 941 942 /* Unlinked, but may be referenced rules. */ 943 TAILQ_INIT(&V_pf_unlinked_rules); 944 } 945 946 void 947 pf_mtag_cleanup() 948 { 949 950 uma_zdestroy(pf_mtag_z); 951 } 952 953 void 954 pf_cleanup() 955 { 956 struct pf_keyhash *kh; 957 struct pf_idhash *ih; 958 struct pf_srchash *sh; 959 struct pf_send_entry *pfse, *next; 960 u_int i; 961 962 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 963 i++, kh++, ih++) { 964 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 965 __func__)); 966 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 967 __func__)); 968 mtx_destroy(&kh->lock); 969 mtx_destroy(&ih->lock); 970 } 971 free(V_pf_keyhash, M_PFHASH); 972 free(V_pf_idhash, M_PFHASH); 973 974 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 975 KASSERT(LIST_EMPTY(&sh->nodes), 976 ("%s: source node hash not empty", __func__)); 977 mtx_destroy(&sh->lock); 978 } 979 free(V_pf_srchash, M_PFHASH); 980 981 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 982 m_freem(pfse->pfse_m); 983 free(pfse, M_PFTEMP); 984 } 985 986 uma_zdestroy(V_pf_sources_z); 987 uma_zdestroy(V_pf_state_z); 988 uma_zdestroy(V_pf_state_key_z); 989 } 990 991 static int 992 pf_mtag_uminit(void *mem, int size, int how) 993 { 994 struct m_tag *t; 995 996 t = (struct m_tag *)mem; 997 t->m_tag_cookie = MTAG_ABI_COMPAT; 998 t->m_tag_id = PACKET_TAG_PF; 999 t->m_tag_len = sizeof(struct pf_mtag); 1000 t->m_tag_free = pf_mtag_free; 1001 1002 return (0); 1003 } 1004 1005 static void 1006 pf_mtag_free(struct m_tag *t) 1007 { 1008 1009 uma_zfree(pf_mtag_z, t); 1010 } 1011 1012 struct pf_mtag * 1013 pf_get_mtag(struct mbuf *m) 1014 { 1015 struct m_tag *mtag; 1016 1017 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1018 return ((struct pf_mtag *)(mtag + 1)); 1019 1020 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1021 if (mtag == NULL) 1022 return (NULL); 1023 bzero(mtag + 1, sizeof(struct pf_mtag)); 1024 m_tag_prepend(m, mtag); 1025 1026 return ((struct pf_mtag *)(mtag + 1)); 1027 } 1028 1029 static int 1030 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1031 struct pf_kstate *s) 1032 { 1033 struct pf_keyhash *khs, *khw, *kh; 1034 struct pf_state_key *sk, *cur; 1035 struct pf_kstate *si, *olds = NULL; 1036 int idx; 1037 1038 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1039 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1040 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1041 1042 /* 1043 * We need to lock hash slots of both keys. To avoid deadlock 1044 * we always lock the slot with lower address first. Unlock order 1045 * isn't important. 1046 * 1047 * We also need to lock ID hash slot before dropping key 1048 * locks. On success we return with ID hash slot locked. 1049 */ 1050 1051 if (skw == sks) { 1052 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1053 PF_HASHROW_LOCK(khs); 1054 } else { 1055 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1056 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1057 if (khs == khw) { 1058 PF_HASHROW_LOCK(khs); 1059 } else if (khs < khw) { 1060 PF_HASHROW_LOCK(khs); 1061 PF_HASHROW_LOCK(khw); 1062 } else { 1063 PF_HASHROW_LOCK(khw); 1064 PF_HASHROW_LOCK(khs); 1065 } 1066 } 1067 1068 #define KEYS_UNLOCK() do { \ 1069 if (khs != khw) { \ 1070 PF_HASHROW_UNLOCK(khs); \ 1071 PF_HASHROW_UNLOCK(khw); \ 1072 } else \ 1073 PF_HASHROW_UNLOCK(khs); \ 1074 } while (0) 1075 1076 /* 1077 * First run: start with wire key. 1078 */ 1079 sk = skw; 1080 kh = khw; 1081 idx = PF_SK_WIRE; 1082 1083 MPASS(s->lock == NULL); 1084 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1085 1086 keyattach: 1087 LIST_FOREACH(cur, &kh->keys, entry) 1088 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1089 break; 1090 1091 if (cur != NULL) { 1092 /* Key exists. Check for same kif, if none, add to key. */ 1093 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1094 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1095 1096 PF_HASHROW_LOCK(ih); 1097 if (si->kif == s->kif && 1098 si->direction == s->direction) { 1099 if (sk->proto == IPPROTO_TCP && 1100 si->src.state >= TCPS_FIN_WAIT_2 && 1101 si->dst.state >= TCPS_FIN_WAIT_2) { 1102 /* 1103 * New state matches an old >FIN_WAIT_2 1104 * state. We can't drop key hash locks, 1105 * thus we can't unlink it properly. 1106 * 1107 * As a workaround we drop it into 1108 * TCPS_CLOSED state, schedule purge 1109 * ASAP and push it into the very end 1110 * of the slot TAILQ, so that it won't 1111 * conflict with our new state. 1112 */ 1113 pf_set_protostate(si, PF_PEER_BOTH, 1114 TCPS_CLOSED); 1115 si->timeout = PFTM_PURGE; 1116 olds = si; 1117 } else { 1118 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1119 printf("pf: %s key attach " 1120 "failed on %s: ", 1121 (idx == PF_SK_WIRE) ? 1122 "wire" : "stack", 1123 s->kif->pfik_name); 1124 pf_print_state_parts(s, 1125 (idx == PF_SK_WIRE) ? 1126 sk : NULL, 1127 (idx == PF_SK_STACK) ? 1128 sk : NULL); 1129 printf(", existing: "); 1130 pf_print_state_parts(si, 1131 (idx == PF_SK_WIRE) ? 1132 sk : NULL, 1133 (idx == PF_SK_STACK) ? 1134 sk : NULL); 1135 printf("\n"); 1136 } 1137 PF_HASHROW_UNLOCK(ih); 1138 KEYS_UNLOCK(); 1139 uma_zfree(V_pf_state_key_z, sk); 1140 if (idx == PF_SK_STACK) 1141 pf_detach_state(s); 1142 return (EEXIST); /* collision! */ 1143 } 1144 } 1145 PF_HASHROW_UNLOCK(ih); 1146 } 1147 uma_zfree(V_pf_state_key_z, sk); 1148 s->key[idx] = cur; 1149 } else { 1150 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1151 s->key[idx] = sk; 1152 } 1153 1154 stateattach: 1155 /* List is sorted, if-bound states before floating. */ 1156 if (s->kif == V_pfi_all) 1157 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1158 else 1159 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1160 1161 if (olds) { 1162 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1163 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1164 key_list[idx]); 1165 olds = NULL; 1166 } 1167 1168 /* 1169 * Attach done. See how should we (or should not?) 1170 * attach a second key. 1171 */ 1172 if (sks == skw) { 1173 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1174 idx = PF_SK_STACK; 1175 sks = NULL; 1176 goto stateattach; 1177 } else if (sks != NULL) { 1178 /* 1179 * Continue attaching with stack key. 1180 */ 1181 sk = sks; 1182 kh = khs; 1183 idx = PF_SK_STACK; 1184 sks = NULL; 1185 goto keyattach; 1186 } 1187 1188 PF_STATE_LOCK(s); 1189 KEYS_UNLOCK(); 1190 1191 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1192 ("%s failure", __func__)); 1193 1194 return (0); 1195 #undef KEYS_UNLOCK 1196 } 1197 1198 static void 1199 pf_detach_state(struct pf_kstate *s) 1200 { 1201 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1202 struct pf_keyhash *kh; 1203 1204 if (sks != NULL) { 1205 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1206 PF_HASHROW_LOCK(kh); 1207 if (s->key[PF_SK_STACK] != NULL) 1208 pf_state_key_detach(s, PF_SK_STACK); 1209 /* 1210 * If both point to same key, then we are done. 1211 */ 1212 if (sks == s->key[PF_SK_WIRE]) { 1213 pf_state_key_detach(s, PF_SK_WIRE); 1214 PF_HASHROW_UNLOCK(kh); 1215 return; 1216 } 1217 PF_HASHROW_UNLOCK(kh); 1218 } 1219 1220 if (s->key[PF_SK_WIRE] != NULL) { 1221 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1222 PF_HASHROW_LOCK(kh); 1223 if (s->key[PF_SK_WIRE] != NULL) 1224 pf_state_key_detach(s, PF_SK_WIRE); 1225 PF_HASHROW_UNLOCK(kh); 1226 } 1227 } 1228 1229 static void 1230 pf_state_key_detach(struct pf_kstate *s, int idx) 1231 { 1232 struct pf_state_key *sk = s->key[idx]; 1233 #ifdef INVARIANTS 1234 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1235 1236 PF_HASHROW_ASSERT(kh); 1237 #endif 1238 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1239 s->key[idx] = NULL; 1240 1241 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1242 LIST_REMOVE(sk, entry); 1243 uma_zfree(V_pf_state_key_z, sk); 1244 } 1245 } 1246 1247 static int 1248 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1249 { 1250 struct pf_state_key *sk = mem; 1251 1252 bzero(sk, sizeof(struct pf_state_key_cmp)); 1253 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1254 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1255 1256 return (0); 1257 } 1258 1259 struct pf_state_key * 1260 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1261 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1262 { 1263 struct pf_state_key *sk; 1264 1265 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1266 if (sk == NULL) 1267 return (NULL); 1268 1269 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1270 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1271 sk->port[pd->sidx] = sport; 1272 sk->port[pd->didx] = dport; 1273 sk->proto = pd->proto; 1274 sk->af = pd->af; 1275 1276 return (sk); 1277 } 1278 1279 struct pf_state_key * 1280 pf_state_key_clone(struct pf_state_key *orig) 1281 { 1282 struct pf_state_key *sk; 1283 1284 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1285 if (sk == NULL) 1286 return (NULL); 1287 1288 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1289 1290 return (sk); 1291 } 1292 1293 int 1294 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1295 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1296 { 1297 struct pf_idhash *ih; 1298 struct pf_kstate *cur; 1299 int error; 1300 1301 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1302 ("%s: sks not pristine", __func__)); 1303 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1304 ("%s: skw not pristine", __func__)); 1305 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1306 1307 s->kif = kif; 1308 s->orig_kif = orig_kif; 1309 1310 if (s->id == 0 && s->creatorid == 0) { 1311 /* XXX: should be atomic, but probability of collision low */ 1312 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1313 V_pf_stateid[curcpu] = 1; 1314 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1315 s->id = htobe64(s->id); 1316 s->creatorid = V_pf_status.hostid; 1317 } 1318 1319 /* Returns with ID locked on success. */ 1320 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1321 return (error); 1322 1323 ih = &V_pf_idhash[PF_IDHASH(s)]; 1324 PF_HASHROW_ASSERT(ih); 1325 LIST_FOREACH(cur, &ih->states, entry) 1326 if (cur->id == s->id && cur->creatorid == s->creatorid) 1327 break; 1328 1329 if (cur != NULL) { 1330 PF_HASHROW_UNLOCK(ih); 1331 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1332 printf("pf: state ID collision: " 1333 "id: %016llx creatorid: %08x\n", 1334 (unsigned long long)be64toh(s->id), 1335 ntohl(s->creatorid)); 1336 } 1337 pf_detach_state(s); 1338 return (EEXIST); 1339 } 1340 LIST_INSERT_HEAD(&ih->states, s, entry); 1341 /* One for keys, one for ID hash. */ 1342 refcount_init(&s->refs, 2); 1343 1344 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1345 if (V_pfsync_insert_state_ptr != NULL) 1346 V_pfsync_insert_state_ptr(s); 1347 1348 /* Returns locked. */ 1349 return (0); 1350 } 1351 1352 /* 1353 * Find state by ID: returns with locked row on success. 1354 */ 1355 struct pf_kstate * 1356 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1357 { 1358 struct pf_idhash *ih; 1359 struct pf_kstate *s; 1360 1361 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1362 1363 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1364 1365 PF_HASHROW_LOCK(ih); 1366 LIST_FOREACH(s, &ih->states, entry) 1367 if (s->id == id && s->creatorid == creatorid) 1368 break; 1369 1370 if (s == NULL) 1371 PF_HASHROW_UNLOCK(ih); 1372 1373 return (s); 1374 } 1375 1376 /* 1377 * Find state by key. 1378 * Returns with ID hash slot locked on success. 1379 */ 1380 static struct pf_kstate * 1381 pf_find_state(struct pfi_kkif *kif, struct pf_state_key_cmp *key, u_int dir) 1382 { 1383 struct pf_keyhash *kh; 1384 struct pf_state_key *sk; 1385 struct pf_kstate *s; 1386 int idx; 1387 1388 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1389 1390 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1391 1392 PF_HASHROW_LOCK(kh); 1393 LIST_FOREACH(sk, &kh->keys, entry) 1394 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1395 break; 1396 if (sk == NULL) { 1397 PF_HASHROW_UNLOCK(kh); 1398 return (NULL); 1399 } 1400 1401 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1402 1403 /* List is sorted, if-bound states before floating ones. */ 1404 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1405 if (s->kif == V_pfi_all || s->kif == kif) { 1406 PF_STATE_LOCK(s); 1407 PF_HASHROW_UNLOCK(kh); 1408 if (__predict_false(s->timeout >= PFTM_MAX)) { 1409 /* 1410 * State is either being processed by 1411 * pf_unlink_state() in an other thread, or 1412 * is scheduled for immediate expiry. 1413 */ 1414 PF_STATE_UNLOCK(s); 1415 return (NULL); 1416 } 1417 return (s); 1418 } 1419 PF_HASHROW_UNLOCK(kh); 1420 1421 return (NULL); 1422 } 1423 1424 struct pf_kstate * 1425 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1426 { 1427 struct pf_keyhash *kh; 1428 struct pf_state_key *sk; 1429 struct pf_kstate *s, *ret = NULL; 1430 int idx, inout = 0; 1431 1432 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1433 1434 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1435 1436 PF_HASHROW_LOCK(kh); 1437 LIST_FOREACH(sk, &kh->keys, entry) 1438 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1439 break; 1440 if (sk == NULL) { 1441 PF_HASHROW_UNLOCK(kh); 1442 return (NULL); 1443 } 1444 switch (dir) { 1445 case PF_IN: 1446 idx = PF_SK_WIRE; 1447 break; 1448 case PF_OUT: 1449 idx = PF_SK_STACK; 1450 break; 1451 case PF_INOUT: 1452 idx = PF_SK_WIRE; 1453 inout = 1; 1454 break; 1455 default: 1456 panic("%s: dir %u", __func__, dir); 1457 } 1458 second_run: 1459 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1460 if (more == NULL) { 1461 PF_HASHROW_UNLOCK(kh); 1462 return (s); 1463 } 1464 1465 if (ret) 1466 (*more)++; 1467 else 1468 ret = s; 1469 } 1470 if (inout == 1) { 1471 inout = 0; 1472 idx = PF_SK_STACK; 1473 goto second_run; 1474 } 1475 PF_HASHROW_UNLOCK(kh); 1476 1477 return (ret); 1478 } 1479 1480 bool 1481 pf_find_state_all_exists(struct pf_state_key_cmp *key, u_int dir) 1482 { 1483 struct pf_kstate *s; 1484 1485 s = pf_find_state_all(key, dir, NULL); 1486 return (s != NULL); 1487 } 1488 1489 /* END state table stuff */ 1490 1491 static void 1492 pf_send(struct pf_send_entry *pfse) 1493 { 1494 1495 PF_SENDQ_LOCK(); 1496 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1497 PF_SENDQ_UNLOCK(); 1498 swi_sched(V_pf_swi_cookie, 0); 1499 } 1500 1501 static bool 1502 pf_isforlocal(struct mbuf *m, int af) 1503 { 1504 switch (af) { 1505 #ifdef INET 1506 case AF_INET: { 1507 struct rm_priotracker in_ifa_tracker; 1508 struct ip *ip; 1509 struct in_ifaddr *ia = NULL; 1510 1511 ip = mtod(m, struct ip *); 1512 IN_IFADDR_RLOCK(&in_ifa_tracker); 1513 LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) { 1514 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr) { 1515 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1516 return (true); 1517 } 1518 } 1519 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1520 break; 1521 } 1522 #endif 1523 #ifdef INET6 1524 case AF_INET6: { 1525 struct ip6_hdr *ip6; 1526 struct in6_ifaddr *ia; 1527 ip6 = mtod(m, struct ip6_hdr *); 1528 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 1529 if (ia == NULL) 1530 return (false); 1531 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 1532 } 1533 #endif 1534 default: 1535 panic("Unsupported af %d", af); 1536 } 1537 1538 return (false); 1539 } 1540 1541 void 1542 pf_intr(void *v) 1543 { 1544 struct epoch_tracker et; 1545 struct pf_send_head queue; 1546 struct pf_send_entry *pfse, *next; 1547 1548 CURVNET_SET((struct vnet *)v); 1549 1550 PF_SENDQ_LOCK(); 1551 queue = V_pf_sendqueue; 1552 STAILQ_INIT(&V_pf_sendqueue); 1553 PF_SENDQ_UNLOCK(); 1554 1555 NET_EPOCH_ENTER(et); 1556 1557 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1558 switch (pfse->pfse_type) { 1559 #ifdef INET 1560 case PFSE_IP: { 1561 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 1562 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1563 pfse->pfse_m->m_pkthdr.csum_flags |= 1564 CSUM_IP_VALID | CSUM_IP_CHECKED; 1565 ip_input(pfse->pfse_m); 1566 } else { 1567 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1568 NULL); 1569 } 1570 break; 1571 } 1572 case PFSE_ICMP: 1573 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1574 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1575 break; 1576 #endif /* INET */ 1577 #ifdef INET6 1578 case PFSE_IP6: 1579 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 1580 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1581 ip6_input(pfse->pfse_m); 1582 } else { 1583 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1584 NULL, NULL); 1585 } 1586 break; 1587 case PFSE_ICMP6: 1588 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1589 pfse->icmpopts.code, pfse->icmpopts.mtu); 1590 break; 1591 #endif /* INET6 */ 1592 default: 1593 panic("%s: unknown type", __func__); 1594 } 1595 free(pfse, M_PFTEMP); 1596 } 1597 NET_EPOCH_EXIT(et); 1598 CURVNET_RESTORE(); 1599 } 1600 1601 #define pf_purge_thread_period (hz / 10) 1602 1603 #ifdef PF_WANT_32_TO_64_COUNTER 1604 static void 1605 pf_status_counter_u64_periodic(void) 1606 { 1607 1608 PF_RULES_RASSERT(); 1609 1610 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 1611 return; 1612 } 1613 1614 for (int i = 0; i < FCNT_MAX; i++) { 1615 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 1616 } 1617 } 1618 1619 static void 1620 pf_kif_counter_u64_periodic(void) 1621 { 1622 struct pfi_kkif *kif; 1623 size_t r, run; 1624 1625 PF_RULES_RASSERT(); 1626 1627 if (__predict_false(V_pf_allkifcount == 0)) { 1628 return; 1629 } 1630 1631 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1632 return; 1633 } 1634 1635 run = V_pf_allkifcount / 10; 1636 if (run < 5) 1637 run = 5; 1638 1639 for (r = 0; r < run; r++) { 1640 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 1641 if (kif == NULL) { 1642 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1643 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 1644 break; 1645 } 1646 1647 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1648 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 1649 1650 for (int i = 0; i < 2; i++) { 1651 for (int j = 0; j < 2; j++) { 1652 for (int k = 0; k < 2; k++) { 1653 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 1654 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 1655 } 1656 } 1657 } 1658 } 1659 } 1660 1661 static void 1662 pf_rule_counter_u64_periodic(void) 1663 { 1664 struct pf_krule *rule; 1665 size_t r, run; 1666 1667 PF_RULES_RASSERT(); 1668 1669 if (__predict_false(V_pf_allrulecount == 0)) { 1670 return; 1671 } 1672 1673 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1674 return; 1675 } 1676 1677 run = V_pf_allrulecount / 10; 1678 if (run < 5) 1679 run = 5; 1680 1681 for (r = 0; r < run; r++) { 1682 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 1683 if (rule == NULL) { 1684 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1685 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 1686 break; 1687 } 1688 1689 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1690 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 1691 1692 pf_counter_u64_periodic(&rule->evaluations); 1693 for (int i = 0; i < 2; i++) { 1694 pf_counter_u64_periodic(&rule->packets[i]); 1695 pf_counter_u64_periodic(&rule->bytes[i]); 1696 } 1697 } 1698 } 1699 1700 static void 1701 pf_counter_u64_periodic_main(void) 1702 { 1703 PF_RULES_RLOCK_TRACKER; 1704 1705 V_pf_counter_periodic_iter++; 1706 1707 PF_RULES_RLOCK(); 1708 pf_counter_u64_critical_enter(); 1709 pf_status_counter_u64_periodic(); 1710 pf_kif_counter_u64_periodic(); 1711 pf_rule_counter_u64_periodic(); 1712 pf_counter_u64_critical_exit(); 1713 PF_RULES_RUNLOCK(); 1714 } 1715 #else 1716 #define pf_counter_u64_periodic_main() do { } while (0) 1717 #endif 1718 1719 void 1720 pf_purge_thread(void *unused __unused) 1721 { 1722 VNET_ITERATOR_DECL(vnet_iter); 1723 1724 sx_xlock(&pf_end_lock); 1725 while (pf_end_threads == 0) { 1726 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 1727 1728 VNET_LIST_RLOCK(); 1729 VNET_FOREACH(vnet_iter) { 1730 CURVNET_SET(vnet_iter); 1731 1732 /* Wait until V_pf_default_rule is initialized. */ 1733 if (V_pf_vnet_active == 0) { 1734 CURVNET_RESTORE(); 1735 continue; 1736 } 1737 1738 pf_counter_u64_periodic_main(); 1739 1740 /* 1741 * Process 1/interval fraction of the state 1742 * table every run. 1743 */ 1744 V_pf_purge_idx = 1745 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1746 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1747 1748 /* 1749 * Purge other expired types every 1750 * PFTM_INTERVAL seconds. 1751 */ 1752 if (V_pf_purge_idx == 0) { 1753 /* 1754 * Order is important: 1755 * - states and src nodes reference rules 1756 * - states and rules reference kifs 1757 */ 1758 pf_purge_expired_fragments(); 1759 pf_purge_expired_src_nodes(); 1760 pf_purge_unlinked_rules(); 1761 pfi_kkif_purge(); 1762 } 1763 CURVNET_RESTORE(); 1764 } 1765 VNET_LIST_RUNLOCK(); 1766 } 1767 1768 pf_end_threads++; 1769 sx_xunlock(&pf_end_lock); 1770 kproc_exit(0); 1771 } 1772 1773 void 1774 pf_unload_vnet_purge(void) 1775 { 1776 1777 /* 1778 * To cleanse up all kifs and rules we need 1779 * two runs: first one clears reference flags, 1780 * then pf_purge_expired_states() doesn't 1781 * raise them, and then second run frees. 1782 */ 1783 pf_purge_unlinked_rules(); 1784 pfi_kkif_purge(); 1785 1786 /* 1787 * Now purge everything. 1788 */ 1789 pf_purge_expired_states(0, pf_hashmask); 1790 pf_purge_fragments(UINT_MAX); 1791 pf_purge_expired_src_nodes(); 1792 1793 /* 1794 * Now all kifs & rules should be unreferenced, 1795 * thus should be successfully freed. 1796 */ 1797 pf_purge_unlinked_rules(); 1798 pfi_kkif_purge(); 1799 } 1800 1801 u_int32_t 1802 pf_state_expires(const struct pf_kstate *state) 1803 { 1804 u_int32_t timeout; 1805 u_int32_t start; 1806 u_int32_t end; 1807 u_int32_t states; 1808 1809 /* handle all PFTM_* > PFTM_MAX here */ 1810 if (state->timeout == PFTM_PURGE) 1811 return (time_uptime); 1812 KASSERT(state->timeout != PFTM_UNLINKED, 1813 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1814 KASSERT((state->timeout < PFTM_MAX), 1815 ("pf_state_expires: timeout > PFTM_MAX")); 1816 timeout = state->rule.ptr->timeout[state->timeout]; 1817 if (!timeout) 1818 timeout = V_pf_default_rule.timeout[state->timeout]; 1819 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1820 if (start && state->rule.ptr != &V_pf_default_rule) { 1821 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1822 states = counter_u64_fetch(state->rule.ptr->states_cur); 1823 } else { 1824 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1825 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1826 states = V_pf_status.states; 1827 } 1828 if (end && states > start && start < end) { 1829 if (states < end) { 1830 timeout = (u_int64_t)timeout * (end - states) / 1831 (end - start); 1832 return (state->expire + timeout); 1833 } 1834 else 1835 return (time_uptime); 1836 } 1837 return (state->expire + timeout); 1838 } 1839 1840 void 1841 pf_purge_expired_src_nodes() 1842 { 1843 struct pf_ksrc_node_list freelist; 1844 struct pf_srchash *sh; 1845 struct pf_ksrc_node *cur, *next; 1846 int i; 1847 1848 LIST_INIT(&freelist); 1849 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1850 PF_HASHROW_LOCK(sh); 1851 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1852 if (cur->states == 0 && cur->expire <= time_uptime) { 1853 pf_unlink_src_node(cur); 1854 LIST_INSERT_HEAD(&freelist, cur, entry); 1855 } else if (cur->rule.ptr != NULL) 1856 cur->rule.ptr->rule_ref |= PFRULE_REFS; 1857 PF_HASHROW_UNLOCK(sh); 1858 } 1859 1860 pf_free_src_nodes(&freelist); 1861 1862 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1863 } 1864 1865 static void 1866 pf_src_tree_remove_state(struct pf_kstate *s) 1867 { 1868 struct pf_ksrc_node *sn; 1869 struct pf_srchash *sh; 1870 uint32_t timeout; 1871 1872 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1873 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1874 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1875 1876 if (s->src_node != NULL) { 1877 sn = s->src_node; 1878 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1879 PF_HASHROW_LOCK(sh); 1880 if (s->src.tcp_est) 1881 --sn->conn; 1882 if (--sn->states == 0) 1883 sn->expire = time_uptime + timeout; 1884 PF_HASHROW_UNLOCK(sh); 1885 } 1886 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1887 sn = s->nat_src_node; 1888 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1889 PF_HASHROW_LOCK(sh); 1890 if (--sn->states == 0) 1891 sn->expire = time_uptime + timeout; 1892 PF_HASHROW_UNLOCK(sh); 1893 } 1894 s->src_node = s->nat_src_node = NULL; 1895 } 1896 1897 /* 1898 * Unlink and potentilly free a state. Function may be 1899 * called with ID hash row locked, but always returns 1900 * unlocked, since it needs to go through key hash locking. 1901 */ 1902 int 1903 pf_unlink_state(struct pf_kstate *s, u_int flags) 1904 { 1905 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1906 1907 if ((flags & PF_ENTER_LOCKED) == 0) 1908 PF_HASHROW_LOCK(ih); 1909 else 1910 PF_HASHROW_ASSERT(ih); 1911 1912 if (s->timeout == PFTM_UNLINKED) { 1913 /* 1914 * State is being processed 1915 * by pf_unlink_state() in 1916 * an other thread. 1917 */ 1918 PF_HASHROW_UNLOCK(ih); 1919 return (0); /* XXXGL: undefined actually */ 1920 } 1921 1922 if (s->src.state == PF_TCPS_PROXY_DST) { 1923 /* XXX wire key the right one? */ 1924 pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af, 1925 &s->key[PF_SK_WIRE]->addr[1], 1926 &s->key[PF_SK_WIRE]->addr[0], 1927 s->key[PF_SK_WIRE]->port[1], 1928 s->key[PF_SK_WIRE]->port[0], 1929 s->src.seqhi, s->src.seqlo + 1, 1930 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag); 1931 } 1932 1933 LIST_REMOVE(s, entry); 1934 pf_src_tree_remove_state(s); 1935 1936 if (V_pfsync_delete_state_ptr != NULL) 1937 V_pfsync_delete_state_ptr(s); 1938 1939 STATE_DEC_COUNTERS(s); 1940 1941 s->timeout = PFTM_UNLINKED; 1942 1943 /* Ensure we remove it from the list of halfopen states, if needed. */ 1944 if (s->key[PF_SK_STACK] != NULL && 1945 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 1946 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 1947 1948 PF_HASHROW_UNLOCK(ih); 1949 1950 pf_detach_state(s); 1951 /* pf_state_insert() initialises refs to 2 */ 1952 return (pf_release_staten(s, 2)); 1953 } 1954 1955 struct pf_kstate * 1956 pf_alloc_state(int flags) 1957 { 1958 1959 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 1960 } 1961 1962 void 1963 pf_free_state(struct pf_kstate *cur) 1964 { 1965 1966 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1967 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1968 cur->timeout)); 1969 1970 pf_normalize_tcp_cleanup(cur); 1971 uma_zfree(V_pf_state_z, cur); 1972 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1973 } 1974 1975 /* 1976 * Called only from pf_purge_thread(), thus serialized. 1977 */ 1978 static u_int 1979 pf_purge_expired_states(u_int i, int maxcheck) 1980 { 1981 struct pf_idhash *ih; 1982 struct pf_kstate *s; 1983 1984 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1985 1986 /* 1987 * Go through hash and unlink states that expire now. 1988 */ 1989 while (maxcheck > 0) { 1990 ih = &V_pf_idhash[i]; 1991 1992 /* only take the lock if we expect to do work */ 1993 if (!LIST_EMPTY(&ih->states)) { 1994 relock: 1995 PF_HASHROW_LOCK(ih); 1996 LIST_FOREACH(s, &ih->states, entry) { 1997 if (pf_state_expires(s) <= time_uptime) { 1998 V_pf_status.states -= 1999 pf_unlink_state(s, PF_ENTER_LOCKED); 2000 goto relock; 2001 } 2002 s->rule.ptr->rule_ref |= PFRULE_REFS; 2003 if (s->nat_rule.ptr != NULL) 2004 s->nat_rule.ptr->rule_ref |= PFRULE_REFS; 2005 if (s->anchor.ptr != NULL) 2006 s->anchor.ptr->rule_ref |= PFRULE_REFS; 2007 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2008 if (s->rt_kif) 2009 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2010 } 2011 PF_HASHROW_UNLOCK(ih); 2012 } 2013 2014 /* Return when we hit end of hash. */ 2015 if (++i > pf_hashmask) { 2016 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2017 return (0); 2018 } 2019 2020 maxcheck--; 2021 } 2022 2023 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2024 2025 return (i); 2026 } 2027 2028 static void 2029 pf_purge_unlinked_rules() 2030 { 2031 struct pf_krulequeue tmpq; 2032 struct pf_krule *r, *r1; 2033 2034 /* 2035 * If we have overloading task pending, then we'd 2036 * better skip purging this time. There is a tiny 2037 * probability that overloading task references 2038 * an already unlinked rule. 2039 */ 2040 PF_OVERLOADQ_LOCK(); 2041 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2042 PF_OVERLOADQ_UNLOCK(); 2043 return; 2044 } 2045 PF_OVERLOADQ_UNLOCK(); 2046 2047 /* 2048 * Do naive mark-and-sweep garbage collecting of old rules. 2049 * Reference flag is raised by pf_purge_expired_states() 2050 * and pf_purge_expired_src_nodes(). 2051 * 2052 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2053 * use a temporary queue. 2054 */ 2055 TAILQ_INIT(&tmpq); 2056 PF_UNLNKDRULES_LOCK(); 2057 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2058 if (!(r->rule_ref & PFRULE_REFS)) { 2059 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2060 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2061 } else 2062 r->rule_ref &= ~PFRULE_REFS; 2063 } 2064 PF_UNLNKDRULES_UNLOCK(); 2065 2066 if (!TAILQ_EMPTY(&tmpq)) { 2067 PF_RULES_WLOCK(); 2068 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2069 TAILQ_REMOVE(&tmpq, r, entries); 2070 pf_free_rule(r); 2071 } 2072 PF_RULES_WUNLOCK(); 2073 } 2074 } 2075 2076 void 2077 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2078 { 2079 switch (af) { 2080 #ifdef INET 2081 case AF_INET: { 2082 u_int32_t a = ntohl(addr->addr32[0]); 2083 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2084 (a>>8)&255, a&255); 2085 if (p) { 2086 p = ntohs(p); 2087 printf(":%u", p); 2088 } 2089 break; 2090 } 2091 #endif /* INET */ 2092 #ifdef INET6 2093 case AF_INET6: { 2094 u_int16_t b; 2095 u_int8_t i, curstart, curend, maxstart, maxend; 2096 curstart = curend = maxstart = maxend = 255; 2097 for (i = 0; i < 8; i++) { 2098 if (!addr->addr16[i]) { 2099 if (curstart == 255) 2100 curstart = i; 2101 curend = i; 2102 } else { 2103 if ((curend - curstart) > 2104 (maxend - maxstart)) { 2105 maxstart = curstart; 2106 maxend = curend; 2107 } 2108 curstart = curend = 255; 2109 } 2110 } 2111 if ((curend - curstart) > 2112 (maxend - maxstart)) { 2113 maxstart = curstart; 2114 maxend = curend; 2115 } 2116 for (i = 0; i < 8; i++) { 2117 if (i >= maxstart && i <= maxend) { 2118 if (i == 0) 2119 printf(":"); 2120 if (i == maxend) 2121 printf(":"); 2122 } else { 2123 b = ntohs(addr->addr16[i]); 2124 printf("%x", b); 2125 if (i < 7) 2126 printf(":"); 2127 } 2128 } 2129 if (p) { 2130 p = ntohs(p); 2131 printf("[%u]", p); 2132 } 2133 break; 2134 } 2135 #endif /* INET6 */ 2136 } 2137 } 2138 2139 void 2140 pf_print_state(struct pf_kstate *s) 2141 { 2142 pf_print_state_parts(s, NULL, NULL); 2143 } 2144 2145 static void 2146 pf_print_state_parts(struct pf_kstate *s, 2147 struct pf_state_key *skwp, struct pf_state_key *sksp) 2148 { 2149 struct pf_state_key *skw, *sks; 2150 u_int8_t proto, dir; 2151 2152 /* Do our best to fill these, but they're skipped if NULL */ 2153 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2154 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2155 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2156 dir = s ? s->direction : 0; 2157 2158 switch (proto) { 2159 case IPPROTO_IPV4: 2160 printf("IPv4"); 2161 break; 2162 case IPPROTO_IPV6: 2163 printf("IPv6"); 2164 break; 2165 case IPPROTO_TCP: 2166 printf("TCP"); 2167 break; 2168 case IPPROTO_UDP: 2169 printf("UDP"); 2170 break; 2171 case IPPROTO_ICMP: 2172 printf("ICMP"); 2173 break; 2174 case IPPROTO_ICMPV6: 2175 printf("ICMPv6"); 2176 break; 2177 default: 2178 printf("%u", proto); 2179 break; 2180 } 2181 switch (dir) { 2182 case PF_IN: 2183 printf(" in"); 2184 break; 2185 case PF_OUT: 2186 printf(" out"); 2187 break; 2188 } 2189 if (skw) { 2190 printf(" wire: "); 2191 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2192 printf(" "); 2193 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2194 } 2195 if (sks) { 2196 printf(" stack: "); 2197 if (sks != skw) { 2198 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2199 printf(" "); 2200 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2201 } else 2202 printf("-"); 2203 } 2204 if (s) { 2205 if (proto == IPPROTO_TCP) { 2206 printf(" [lo=%u high=%u win=%u modulator=%u", 2207 s->src.seqlo, s->src.seqhi, 2208 s->src.max_win, s->src.seqdiff); 2209 if (s->src.wscale && s->dst.wscale) 2210 printf(" wscale=%u", 2211 s->src.wscale & PF_WSCALE_MASK); 2212 printf("]"); 2213 printf(" [lo=%u high=%u win=%u modulator=%u", 2214 s->dst.seqlo, s->dst.seqhi, 2215 s->dst.max_win, s->dst.seqdiff); 2216 if (s->src.wscale && s->dst.wscale) 2217 printf(" wscale=%u", 2218 s->dst.wscale & PF_WSCALE_MASK); 2219 printf("]"); 2220 } 2221 printf(" %u:%u", s->src.state, s->dst.state); 2222 } 2223 } 2224 2225 void 2226 pf_print_flags(u_int8_t f) 2227 { 2228 if (f) 2229 printf(" "); 2230 if (f & TH_FIN) 2231 printf("F"); 2232 if (f & TH_SYN) 2233 printf("S"); 2234 if (f & TH_RST) 2235 printf("R"); 2236 if (f & TH_PUSH) 2237 printf("P"); 2238 if (f & TH_ACK) 2239 printf("A"); 2240 if (f & TH_URG) 2241 printf("U"); 2242 if (f & TH_ECE) 2243 printf("E"); 2244 if (f & TH_CWR) 2245 printf("W"); 2246 } 2247 2248 #define PF_SET_SKIP_STEPS(i) \ 2249 do { \ 2250 while (head[i] != cur) { \ 2251 head[i]->skip[i].ptr = cur; \ 2252 head[i] = TAILQ_NEXT(head[i], entries); \ 2253 } \ 2254 } while (0) 2255 2256 void 2257 pf_calc_skip_steps(struct pf_krulequeue *rules) 2258 { 2259 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2260 int i; 2261 2262 cur = TAILQ_FIRST(rules); 2263 prev = cur; 2264 for (i = 0; i < PF_SKIP_COUNT; ++i) 2265 head[i] = cur; 2266 while (cur != NULL) { 2267 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2268 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2269 if (cur->direction != prev->direction) 2270 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2271 if (cur->af != prev->af) 2272 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2273 if (cur->proto != prev->proto) 2274 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2275 if (cur->src.neg != prev->src.neg || 2276 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2277 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2278 if (cur->src.port[0] != prev->src.port[0] || 2279 cur->src.port[1] != prev->src.port[1] || 2280 cur->src.port_op != prev->src.port_op) 2281 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2282 if (cur->dst.neg != prev->dst.neg || 2283 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2284 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2285 if (cur->dst.port[0] != prev->dst.port[0] || 2286 cur->dst.port[1] != prev->dst.port[1] || 2287 cur->dst.port_op != prev->dst.port_op) 2288 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2289 2290 prev = cur; 2291 cur = TAILQ_NEXT(cur, entries); 2292 } 2293 for (i = 0; i < PF_SKIP_COUNT; ++i) 2294 PF_SET_SKIP_STEPS(i); 2295 } 2296 2297 static int 2298 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2299 { 2300 if (aw1->type != aw2->type) 2301 return (1); 2302 switch (aw1->type) { 2303 case PF_ADDR_ADDRMASK: 2304 case PF_ADDR_RANGE: 2305 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2306 return (1); 2307 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2308 return (1); 2309 return (0); 2310 case PF_ADDR_DYNIFTL: 2311 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2312 case PF_ADDR_NOROUTE: 2313 case PF_ADDR_URPFFAILED: 2314 return (0); 2315 case PF_ADDR_TABLE: 2316 return (aw1->p.tbl != aw2->p.tbl); 2317 default: 2318 printf("invalid address type: %d\n", aw1->type); 2319 return (1); 2320 } 2321 } 2322 2323 /** 2324 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2325 * header isn't always a full checksum. In some cases (i.e. output) it's a 2326 * pseudo-header checksum, which is a partial checksum over src/dst IP 2327 * addresses, protocol number and length. 2328 * 2329 * That means we have the following cases: 2330 * * Input or forwarding: we don't have TSO, the checksum fields are full 2331 * checksums, we need to update the checksum whenever we change anything. 2332 * * Output (i.e. the checksum is a pseudo-header checksum): 2333 * x The field being updated is src/dst address or affects the length of 2334 * the packet. We need to update the pseudo-header checksum (note that this 2335 * checksum is not ones' complement). 2336 * x Some other field is being modified (e.g. src/dst port numbers): We 2337 * don't have to update anything. 2338 **/ 2339 u_int16_t 2340 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2341 { 2342 u_int32_t x; 2343 2344 x = cksum + old - new; 2345 x = (x + (x >> 16)) & 0xffff; 2346 2347 /* optimise: eliminate a branch when not udp */ 2348 if (udp && cksum == 0x0000) 2349 return cksum; 2350 if (udp && x == 0x0000) 2351 x = 0xffff; 2352 2353 return (u_int16_t)(x); 2354 } 2355 2356 static void 2357 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 2358 u_int8_t udp) 2359 { 2360 u_int16_t old = htons(hi ? (*f << 8) : *f); 2361 u_int16_t new = htons(hi ? ( v << 8) : v); 2362 2363 if (*f == v) 2364 return; 2365 2366 *f = v; 2367 2368 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2369 return; 2370 2371 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 2372 } 2373 2374 void 2375 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 2376 bool hi, u_int8_t udp) 2377 { 2378 u_int8_t *fb = (u_int8_t *)f; 2379 u_int8_t *vb = (u_int8_t *)&v; 2380 2381 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2382 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2383 } 2384 2385 void 2386 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 2387 bool hi, u_int8_t udp) 2388 { 2389 u_int8_t *fb = (u_int8_t *)f; 2390 u_int8_t *vb = (u_int8_t *)&v; 2391 2392 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2393 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2394 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2395 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2396 } 2397 2398 u_int16_t 2399 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2400 u_int16_t new, u_int8_t udp) 2401 { 2402 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2403 return (cksum); 2404 2405 return (pf_cksum_fixup(cksum, old, new, udp)); 2406 } 2407 2408 static void 2409 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2410 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2411 sa_family_t af) 2412 { 2413 struct pf_addr ao; 2414 u_int16_t po = *p; 2415 2416 PF_ACPY(&ao, a, af); 2417 PF_ACPY(a, an, af); 2418 2419 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2420 *pc = ~*pc; 2421 2422 *p = pn; 2423 2424 switch (af) { 2425 #ifdef INET 2426 case AF_INET: 2427 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2428 ao.addr16[0], an->addr16[0], 0), 2429 ao.addr16[1], an->addr16[1], 0); 2430 *p = pn; 2431 2432 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2433 ao.addr16[0], an->addr16[0], u), 2434 ao.addr16[1], an->addr16[1], u); 2435 2436 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2437 break; 2438 #endif /* INET */ 2439 #ifdef INET6 2440 case AF_INET6: 2441 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2442 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2443 pf_cksum_fixup(pf_cksum_fixup(*pc, 2444 ao.addr16[0], an->addr16[0], u), 2445 ao.addr16[1], an->addr16[1], u), 2446 ao.addr16[2], an->addr16[2], u), 2447 ao.addr16[3], an->addr16[3], u), 2448 ao.addr16[4], an->addr16[4], u), 2449 ao.addr16[5], an->addr16[5], u), 2450 ao.addr16[6], an->addr16[6], u), 2451 ao.addr16[7], an->addr16[7], u); 2452 2453 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2454 break; 2455 #endif /* INET6 */ 2456 } 2457 2458 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2459 CSUM_DELAY_DATA_IPV6)) { 2460 *pc = ~*pc; 2461 if (! *pc) 2462 *pc = 0xffff; 2463 } 2464 } 2465 2466 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2467 void 2468 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2469 { 2470 u_int32_t ao; 2471 2472 memcpy(&ao, a, sizeof(ao)); 2473 memcpy(a, &an, sizeof(u_int32_t)); 2474 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2475 ao % 65536, an % 65536, u); 2476 } 2477 2478 void 2479 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2480 { 2481 u_int32_t ao; 2482 2483 memcpy(&ao, a, sizeof(ao)); 2484 memcpy(a, &an, sizeof(u_int32_t)); 2485 2486 *c = pf_proto_cksum_fixup(m, 2487 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2488 ao % 65536, an % 65536, udp); 2489 } 2490 2491 #ifdef INET6 2492 static void 2493 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2494 { 2495 struct pf_addr ao; 2496 2497 PF_ACPY(&ao, a, AF_INET6); 2498 PF_ACPY(a, an, AF_INET6); 2499 2500 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2501 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2502 pf_cksum_fixup(pf_cksum_fixup(*c, 2503 ao.addr16[0], an->addr16[0], u), 2504 ao.addr16[1], an->addr16[1], u), 2505 ao.addr16[2], an->addr16[2], u), 2506 ao.addr16[3], an->addr16[3], u), 2507 ao.addr16[4], an->addr16[4], u), 2508 ao.addr16[5], an->addr16[5], u), 2509 ao.addr16[6], an->addr16[6], u), 2510 ao.addr16[7], an->addr16[7], u); 2511 } 2512 #endif /* INET6 */ 2513 2514 static void 2515 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2516 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2517 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2518 { 2519 struct pf_addr oia, ooa; 2520 2521 PF_ACPY(&oia, ia, af); 2522 if (oa) 2523 PF_ACPY(&ooa, oa, af); 2524 2525 /* Change inner protocol port, fix inner protocol checksum. */ 2526 if (ip != NULL) { 2527 u_int16_t oip = *ip; 2528 u_int32_t opc; 2529 2530 if (pc != NULL) 2531 opc = *pc; 2532 *ip = np; 2533 if (pc != NULL) 2534 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2535 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2536 if (pc != NULL) 2537 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2538 } 2539 /* Change inner ip address, fix inner ip and icmp checksums. */ 2540 PF_ACPY(ia, na, af); 2541 switch (af) { 2542 #ifdef INET 2543 case AF_INET: { 2544 u_int32_t oh2c = *h2c; 2545 2546 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2547 oia.addr16[0], ia->addr16[0], 0), 2548 oia.addr16[1], ia->addr16[1], 0); 2549 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2550 oia.addr16[0], ia->addr16[0], 0), 2551 oia.addr16[1], ia->addr16[1], 0); 2552 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2553 break; 2554 } 2555 #endif /* INET */ 2556 #ifdef INET6 2557 case AF_INET6: 2558 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2559 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2560 pf_cksum_fixup(pf_cksum_fixup(*ic, 2561 oia.addr16[0], ia->addr16[0], u), 2562 oia.addr16[1], ia->addr16[1], u), 2563 oia.addr16[2], ia->addr16[2], u), 2564 oia.addr16[3], ia->addr16[3], u), 2565 oia.addr16[4], ia->addr16[4], u), 2566 oia.addr16[5], ia->addr16[5], u), 2567 oia.addr16[6], ia->addr16[6], u), 2568 oia.addr16[7], ia->addr16[7], u); 2569 break; 2570 #endif /* INET6 */ 2571 } 2572 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2573 if (oa) { 2574 PF_ACPY(oa, na, af); 2575 switch (af) { 2576 #ifdef INET 2577 case AF_INET: 2578 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2579 ooa.addr16[0], oa->addr16[0], 0), 2580 ooa.addr16[1], oa->addr16[1], 0); 2581 break; 2582 #endif /* INET */ 2583 #ifdef INET6 2584 case AF_INET6: 2585 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2586 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2587 pf_cksum_fixup(pf_cksum_fixup(*ic, 2588 ooa.addr16[0], oa->addr16[0], u), 2589 ooa.addr16[1], oa->addr16[1], u), 2590 ooa.addr16[2], oa->addr16[2], u), 2591 ooa.addr16[3], oa->addr16[3], u), 2592 ooa.addr16[4], oa->addr16[4], u), 2593 ooa.addr16[5], oa->addr16[5], u), 2594 ooa.addr16[6], oa->addr16[6], u), 2595 ooa.addr16[7], oa->addr16[7], u); 2596 break; 2597 #endif /* INET6 */ 2598 } 2599 } 2600 } 2601 2602 /* 2603 * Need to modulate the sequence numbers in the TCP SACK option 2604 * (credits to Krzysztof Pfaff for report and patch) 2605 */ 2606 static int 2607 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2608 struct tcphdr *th, struct pf_state_peer *dst) 2609 { 2610 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2611 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2612 int copyback = 0, i, olen; 2613 struct sackblk sack; 2614 2615 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2616 if (hlen < TCPOLEN_SACKLEN || 2617 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2618 return 0; 2619 2620 while (hlen >= TCPOLEN_SACKLEN) { 2621 size_t startoff = opt - opts; 2622 olen = opt[1]; 2623 switch (*opt) { 2624 case TCPOPT_EOL: /* FALLTHROUGH */ 2625 case TCPOPT_NOP: 2626 opt++; 2627 hlen--; 2628 break; 2629 case TCPOPT_SACK: 2630 if (olen > hlen) 2631 olen = hlen; 2632 if (olen >= TCPOLEN_SACKLEN) { 2633 for (i = 2; i + TCPOLEN_SACK <= olen; 2634 i += TCPOLEN_SACK) { 2635 memcpy(&sack, &opt[i], sizeof(sack)); 2636 pf_patch_32_unaligned(m, 2637 &th->th_sum, &sack.start, 2638 htonl(ntohl(sack.start) - dst->seqdiff), 2639 PF_ALGNMNT(startoff), 2640 0); 2641 pf_patch_32_unaligned(m, &th->th_sum, 2642 &sack.end, 2643 htonl(ntohl(sack.end) - dst->seqdiff), 2644 PF_ALGNMNT(startoff), 2645 0); 2646 memcpy(&opt[i], &sack, sizeof(sack)); 2647 } 2648 copyback = 1; 2649 } 2650 /* FALLTHROUGH */ 2651 default: 2652 if (olen < 2) 2653 olen = 2; 2654 hlen -= olen; 2655 opt += olen; 2656 } 2657 } 2658 2659 if (copyback) 2660 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2661 return (copyback); 2662 } 2663 2664 struct mbuf * 2665 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 2666 const struct pf_addr *saddr, const struct pf_addr *daddr, 2667 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2668 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2669 u_int16_t rtag) 2670 { 2671 struct mbuf *m; 2672 int len, tlen; 2673 #ifdef INET 2674 struct ip *h = NULL; 2675 #endif /* INET */ 2676 #ifdef INET6 2677 struct ip6_hdr *h6 = NULL; 2678 #endif /* INET6 */ 2679 struct tcphdr *th; 2680 char *opt; 2681 struct pf_mtag *pf_mtag; 2682 2683 len = 0; 2684 th = NULL; 2685 2686 /* maximum segment size tcp option */ 2687 tlen = sizeof(struct tcphdr); 2688 if (mss) 2689 tlen += 4; 2690 2691 switch (af) { 2692 #ifdef INET 2693 case AF_INET: 2694 len = sizeof(struct ip) + tlen; 2695 break; 2696 #endif /* INET */ 2697 #ifdef INET6 2698 case AF_INET6: 2699 len = sizeof(struct ip6_hdr) + tlen; 2700 break; 2701 #endif /* INET6 */ 2702 default: 2703 panic("%s: unsupported af %d", __func__, af); 2704 } 2705 2706 m = m_gethdr(M_NOWAIT, MT_DATA); 2707 if (m == NULL) 2708 return (NULL); 2709 2710 #ifdef MAC 2711 mac_netinet_firewall_send(m); 2712 #endif 2713 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2714 m_freem(m); 2715 return (NULL); 2716 } 2717 if (tag) 2718 m->m_flags |= M_SKIP_FIREWALL; 2719 pf_mtag->tag = rtag; 2720 2721 if (r != NULL && r->rtableid >= 0) 2722 M_SETFIB(m, r->rtableid); 2723 2724 #ifdef ALTQ 2725 if (r != NULL && r->qid) { 2726 pf_mtag->qid = r->qid; 2727 2728 /* add hints for ecn */ 2729 pf_mtag->hdr = mtod(m, struct ip *); 2730 } 2731 #endif /* ALTQ */ 2732 m->m_data += max_linkhdr; 2733 m->m_pkthdr.len = m->m_len = len; 2734 /* The rest of the stack assumes a rcvif, so provide one. 2735 * This is a locally generated packet, so .. close enough. */ 2736 m->m_pkthdr.rcvif = V_loif; 2737 bzero(m->m_data, len); 2738 switch (af) { 2739 #ifdef INET 2740 case AF_INET: 2741 h = mtod(m, struct ip *); 2742 2743 /* IP header fields included in the TCP checksum */ 2744 h->ip_p = IPPROTO_TCP; 2745 h->ip_len = htons(tlen); 2746 h->ip_src.s_addr = saddr->v4.s_addr; 2747 h->ip_dst.s_addr = daddr->v4.s_addr; 2748 2749 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2750 break; 2751 #endif /* INET */ 2752 #ifdef INET6 2753 case AF_INET6: 2754 h6 = mtod(m, struct ip6_hdr *); 2755 2756 /* IP header fields included in the TCP checksum */ 2757 h6->ip6_nxt = IPPROTO_TCP; 2758 h6->ip6_plen = htons(tlen); 2759 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2760 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2761 2762 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2763 break; 2764 #endif /* INET6 */ 2765 } 2766 2767 /* TCP header */ 2768 th->th_sport = sport; 2769 th->th_dport = dport; 2770 th->th_seq = htonl(seq); 2771 th->th_ack = htonl(ack); 2772 th->th_off = tlen >> 2; 2773 th->th_flags = flags; 2774 th->th_win = htons(win); 2775 2776 if (mss) { 2777 opt = (char *)(th + 1); 2778 opt[0] = TCPOPT_MAXSEG; 2779 opt[1] = 4; 2780 HTONS(mss); 2781 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2782 } 2783 2784 switch (af) { 2785 #ifdef INET 2786 case AF_INET: 2787 /* TCP checksum */ 2788 th->th_sum = in_cksum(m, len); 2789 2790 /* Finish the IP header */ 2791 h->ip_v = 4; 2792 h->ip_hl = sizeof(*h) >> 2; 2793 h->ip_tos = IPTOS_LOWDELAY; 2794 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2795 h->ip_len = htons(len); 2796 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2797 h->ip_sum = 0; 2798 break; 2799 #endif /* INET */ 2800 #ifdef INET6 2801 case AF_INET6: 2802 /* TCP checksum */ 2803 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2804 sizeof(struct ip6_hdr), tlen); 2805 2806 h6->ip6_vfc |= IPV6_VERSION; 2807 h6->ip6_hlim = IPV6_DEFHLIM; 2808 break; 2809 #endif /* INET6 */ 2810 } 2811 2812 return (m); 2813 } 2814 2815 void 2816 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 2817 const struct pf_addr *saddr, const struct pf_addr *daddr, 2818 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2819 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2820 u_int16_t rtag) 2821 { 2822 struct pf_send_entry *pfse; 2823 struct mbuf *m; 2824 2825 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, flags, 2826 win, mss, ttl, tag, rtag); 2827 if (m == NULL) 2828 return; 2829 2830 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2831 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2832 if (pfse == NULL) { 2833 m_freem(m); 2834 return; 2835 } 2836 2837 switch (af) { 2838 #ifdef INET 2839 case AF_INET: 2840 pfse->pfse_type = PFSE_IP; 2841 break; 2842 #endif /* INET */ 2843 #ifdef INET6 2844 case AF_INET6: 2845 pfse->pfse_type = PFSE_IP6; 2846 break; 2847 #endif /* INET6 */ 2848 } 2849 2850 pfse->pfse_m = m; 2851 pf_send(pfse); 2852 } 2853 2854 static void 2855 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 2856 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 2857 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 2858 u_short *reason) 2859 { 2860 struct pf_addr * const saddr = pd->src; 2861 struct pf_addr * const daddr = pd->dst; 2862 sa_family_t af = pd->af; 2863 2864 /* undo NAT changes, if they have taken place */ 2865 if (nr != NULL) { 2866 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 2867 PF_ACPY(daddr, &sk->addr[pd->didx], af); 2868 if (pd->sport) 2869 *pd->sport = sk->port[pd->sidx]; 2870 if (pd->dport) 2871 *pd->dport = sk->port[pd->didx]; 2872 if (pd->proto_sum) 2873 *pd->proto_sum = bproto_sum; 2874 if (pd->ip_sum) 2875 *pd->ip_sum = bip_sum; 2876 m_copyback(m, off, hdrlen, pd->hdr.any); 2877 } 2878 if (pd->proto == IPPROTO_TCP && 2879 ((r->rule_flag & PFRULE_RETURNRST) || 2880 (r->rule_flag & PFRULE_RETURN)) && 2881 !(th->th_flags & TH_RST)) { 2882 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 2883 int len = 0; 2884 #ifdef INET 2885 struct ip *h4; 2886 #endif 2887 #ifdef INET6 2888 struct ip6_hdr *h6; 2889 #endif 2890 2891 switch (af) { 2892 #ifdef INET 2893 case AF_INET: 2894 h4 = mtod(m, struct ip *); 2895 len = ntohs(h4->ip_len) - off; 2896 break; 2897 #endif 2898 #ifdef INET6 2899 case AF_INET6: 2900 h6 = mtod(m, struct ip6_hdr *); 2901 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 2902 break; 2903 #endif 2904 } 2905 2906 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 2907 REASON_SET(reason, PFRES_PROTCKSUM); 2908 else { 2909 if (th->th_flags & TH_SYN) 2910 ack++; 2911 if (th->th_flags & TH_FIN) 2912 ack++; 2913 pf_send_tcp(r, af, pd->dst, 2914 pd->src, th->th_dport, th->th_sport, 2915 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 2916 r->return_ttl, 1, 0); 2917 } 2918 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 2919 r->return_icmp) 2920 pf_send_icmp(m, r->return_icmp >> 8, 2921 r->return_icmp & 255, af, r); 2922 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 2923 r->return_icmp6) 2924 pf_send_icmp(m, r->return_icmp6 >> 8, 2925 r->return_icmp6 & 255, af, r); 2926 } 2927 2928 static int 2929 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2930 { 2931 struct m_tag *mtag; 2932 u_int8_t mpcp; 2933 2934 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2935 if (mtag == NULL) 2936 return (0); 2937 2938 if (prio == PF_PRIO_ZERO) 2939 prio = 0; 2940 2941 mpcp = *(uint8_t *)(mtag + 1); 2942 2943 return (mpcp == prio); 2944 } 2945 2946 static void 2947 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2948 struct pf_krule *r) 2949 { 2950 struct pf_send_entry *pfse; 2951 struct mbuf *m0; 2952 struct pf_mtag *pf_mtag; 2953 2954 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2955 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2956 if (pfse == NULL) 2957 return; 2958 2959 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2960 free(pfse, M_PFTEMP); 2961 return; 2962 } 2963 2964 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2965 free(pfse, M_PFTEMP); 2966 return; 2967 } 2968 /* XXX: revisit */ 2969 m0->m_flags |= M_SKIP_FIREWALL; 2970 2971 if (r->rtableid >= 0) 2972 M_SETFIB(m0, r->rtableid); 2973 2974 #ifdef ALTQ 2975 if (r->qid) { 2976 pf_mtag->qid = r->qid; 2977 /* add hints for ecn */ 2978 pf_mtag->hdr = mtod(m0, struct ip *); 2979 } 2980 #endif /* ALTQ */ 2981 2982 switch (af) { 2983 #ifdef INET 2984 case AF_INET: 2985 pfse->pfse_type = PFSE_ICMP; 2986 break; 2987 #endif /* INET */ 2988 #ifdef INET6 2989 case AF_INET6: 2990 pfse->pfse_type = PFSE_ICMP6; 2991 break; 2992 #endif /* INET6 */ 2993 } 2994 pfse->pfse_m = m0; 2995 pfse->icmpopts.type = type; 2996 pfse->icmpopts.code = code; 2997 pf_send(pfse); 2998 } 2999 3000 /* 3001 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 3002 * If n is 0, they match if they are equal. If n is != 0, they match if they 3003 * are different. 3004 */ 3005 int 3006 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 3007 struct pf_addr *b, sa_family_t af) 3008 { 3009 int match = 0; 3010 3011 switch (af) { 3012 #ifdef INET 3013 case AF_INET: 3014 if ((a->addr32[0] & m->addr32[0]) == 3015 (b->addr32[0] & m->addr32[0])) 3016 match++; 3017 break; 3018 #endif /* INET */ 3019 #ifdef INET6 3020 case AF_INET6: 3021 if (((a->addr32[0] & m->addr32[0]) == 3022 (b->addr32[0] & m->addr32[0])) && 3023 ((a->addr32[1] & m->addr32[1]) == 3024 (b->addr32[1] & m->addr32[1])) && 3025 ((a->addr32[2] & m->addr32[2]) == 3026 (b->addr32[2] & m->addr32[2])) && 3027 ((a->addr32[3] & m->addr32[3]) == 3028 (b->addr32[3] & m->addr32[3]))) 3029 match++; 3030 break; 3031 #endif /* INET6 */ 3032 } 3033 if (match) { 3034 if (n) 3035 return (0); 3036 else 3037 return (1); 3038 } else { 3039 if (n) 3040 return (1); 3041 else 3042 return (0); 3043 } 3044 } 3045 3046 /* 3047 * Return 1 if b <= a <= e, otherwise return 0. 3048 */ 3049 int 3050 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 3051 struct pf_addr *a, sa_family_t af) 3052 { 3053 switch (af) { 3054 #ifdef INET 3055 case AF_INET: 3056 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 3057 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 3058 return (0); 3059 break; 3060 #endif /* INET */ 3061 #ifdef INET6 3062 case AF_INET6: { 3063 int i; 3064 3065 /* check a >= b */ 3066 for (i = 0; i < 4; ++i) 3067 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 3068 break; 3069 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 3070 return (0); 3071 /* check a <= e */ 3072 for (i = 0; i < 4; ++i) 3073 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 3074 break; 3075 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 3076 return (0); 3077 break; 3078 } 3079 #endif /* INET6 */ 3080 } 3081 return (1); 3082 } 3083 3084 static int 3085 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3086 { 3087 switch (op) { 3088 case PF_OP_IRG: 3089 return ((p > a1) && (p < a2)); 3090 case PF_OP_XRG: 3091 return ((p < a1) || (p > a2)); 3092 case PF_OP_RRG: 3093 return ((p >= a1) && (p <= a2)); 3094 case PF_OP_EQ: 3095 return (p == a1); 3096 case PF_OP_NE: 3097 return (p != a1); 3098 case PF_OP_LT: 3099 return (p < a1); 3100 case PF_OP_LE: 3101 return (p <= a1); 3102 case PF_OP_GT: 3103 return (p > a1); 3104 case PF_OP_GE: 3105 return (p >= a1); 3106 } 3107 return (0); /* never reached */ 3108 } 3109 3110 int 3111 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3112 { 3113 NTOHS(a1); 3114 NTOHS(a2); 3115 NTOHS(p); 3116 return (pf_match(op, a1, a2, p)); 3117 } 3118 3119 static int 3120 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3121 { 3122 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3123 return (0); 3124 return (pf_match(op, a1, a2, u)); 3125 } 3126 3127 static int 3128 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3129 { 3130 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3131 return (0); 3132 return (pf_match(op, a1, a2, g)); 3133 } 3134 3135 int 3136 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3137 { 3138 if (*tag == -1) 3139 *tag = mtag; 3140 3141 return ((!r->match_tag_not && r->match_tag == *tag) || 3142 (r->match_tag_not && r->match_tag != *tag)); 3143 } 3144 3145 int 3146 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 3147 { 3148 3149 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 3150 3151 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 3152 return (ENOMEM); 3153 3154 pd->pf_mtag->tag = tag; 3155 3156 return (0); 3157 } 3158 3159 #define PF_ANCHOR_STACKSIZE 32 3160 struct pf_kanchor_stackframe { 3161 struct pf_kruleset *rs; 3162 struct pf_krule *r; /* XXX: + match bit */ 3163 struct pf_kanchor *child; 3164 }; 3165 3166 /* 3167 * XXX: We rely on malloc(9) returning pointer aligned addresses. 3168 */ 3169 #define PF_ANCHORSTACK_MATCH 0x00000001 3170 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 3171 3172 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3173 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 3174 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3175 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3176 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3177 } while (0) 3178 3179 void 3180 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3181 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3182 int *match) 3183 { 3184 struct pf_kanchor_stackframe *f; 3185 3186 PF_RULES_RASSERT(); 3187 3188 if (match) 3189 *match = 0; 3190 if (*depth >= PF_ANCHOR_STACKSIZE) { 3191 printf("%s: anchor stack overflow on %s\n", 3192 __func__, (*r)->anchor->name); 3193 *r = TAILQ_NEXT(*r, entries); 3194 return; 3195 } else if (*depth == 0 && a != NULL) 3196 *a = *r; 3197 f = stack + (*depth)++; 3198 f->rs = *rs; 3199 f->r = *r; 3200 if ((*r)->anchor_wildcard) { 3201 struct pf_kanchor_node *parent = &(*r)->anchor->children; 3202 3203 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 3204 *r = NULL; 3205 return; 3206 } 3207 *rs = &f->child->ruleset; 3208 } else { 3209 f->child = NULL; 3210 *rs = &(*r)->anchor->ruleset; 3211 } 3212 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3213 } 3214 3215 int 3216 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3217 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3218 int *match) 3219 { 3220 struct pf_kanchor_stackframe *f; 3221 struct pf_krule *fr; 3222 int quick = 0; 3223 3224 PF_RULES_RASSERT(); 3225 3226 do { 3227 if (*depth <= 0) 3228 break; 3229 f = stack + *depth - 1; 3230 fr = PF_ANCHOR_RULE(f); 3231 if (f->child != NULL) { 3232 struct pf_kanchor_node *parent; 3233 3234 /* 3235 * This block traverses through 3236 * a wildcard anchor. 3237 */ 3238 parent = &fr->anchor->children; 3239 if (match != NULL && *match) { 3240 /* 3241 * If any of "*" matched, then 3242 * "foo/ *" matched, mark frame 3243 * appropriately. 3244 */ 3245 PF_ANCHOR_SET_MATCH(f); 3246 *match = 0; 3247 } 3248 f->child = RB_NEXT(pf_kanchor_node, parent, f->child); 3249 if (f->child != NULL) { 3250 *rs = &f->child->ruleset; 3251 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3252 if (*r == NULL) 3253 continue; 3254 else 3255 break; 3256 } 3257 } 3258 (*depth)--; 3259 if (*depth == 0 && a != NULL) 3260 *a = NULL; 3261 *rs = f->rs; 3262 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 3263 quick = fr->quick; 3264 *r = TAILQ_NEXT(fr, entries); 3265 } while (*r == NULL); 3266 3267 return (quick); 3268 } 3269 3270 #ifdef INET6 3271 void 3272 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 3273 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 3274 { 3275 switch (af) { 3276 #ifdef INET 3277 case AF_INET: 3278 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3279 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3280 break; 3281 #endif /* INET */ 3282 case AF_INET6: 3283 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3284 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3285 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 3286 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 3287 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 3288 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 3289 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 3290 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 3291 break; 3292 } 3293 } 3294 3295 void 3296 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 3297 { 3298 switch (af) { 3299 #ifdef INET 3300 case AF_INET: 3301 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 3302 break; 3303 #endif /* INET */ 3304 case AF_INET6: 3305 if (addr->addr32[3] == 0xffffffff) { 3306 addr->addr32[3] = 0; 3307 if (addr->addr32[2] == 0xffffffff) { 3308 addr->addr32[2] = 0; 3309 if (addr->addr32[1] == 0xffffffff) { 3310 addr->addr32[1] = 0; 3311 addr->addr32[0] = 3312 htonl(ntohl(addr->addr32[0]) + 1); 3313 } else 3314 addr->addr32[1] = 3315 htonl(ntohl(addr->addr32[1]) + 1); 3316 } else 3317 addr->addr32[2] = 3318 htonl(ntohl(addr->addr32[2]) + 1); 3319 } else 3320 addr->addr32[3] = 3321 htonl(ntohl(addr->addr32[3]) + 1); 3322 break; 3323 } 3324 } 3325 #endif /* INET6 */ 3326 3327 void 3328 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 3329 { 3330 if (r->qid) 3331 a->qid = r->qid; 3332 if (r->pqid) 3333 a->pqid = r->pqid; 3334 if (r->dnpipe) 3335 a->dnpipe = r->dnpipe; 3336 if (r->dnrpipe) 3337 a->dnpipe = r->dnrpipe; 3338 if (r->free_flags & PFRULE_DN_IS_PIPE) 3339 a->flags |= PFRULE_DN_IS_PIPE; 3340 } 3341 3342 int 3343 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 3344 { 3345 struct pf_addr *saddr, *daddr; 3346 u_int16_t sport, dport; 3347 struct inpcbinfo *pi; 3348 struct inpcb *inp; 3349 3350 pd->lookup.uid = UID_MAX; 3351 pd->lookup.gid = GID_MAX; 3352 3353 switch (pd->proto) { 3354 case IPPROTO_TCP: 3355 sport = pd->hdr.tcp.th_sport; 3356 dport = pd->hdr.tcp.th_dport; 3357 pi = &V_tcbinfo; 3358 break; 3359 case IPPROTO_UDP: 3360 sport = pd->hdr.udp.uh_sport; 3361 dport = pd->hdr.udp.uh_dport; 3362 pi = &V_udbinfo; 3363 break; 3364 default: 3365 return (-1); 3366 } 3367 if (direction == PF_IN) { 3368 saddr = pd->src; 3369 daddr = pd->dst; 3370 } else { 3371 u_int16_t p; 3372 3373 p = sport; 3374 sport = dport; 3375 dport = p; 3376 saddr = pd->dst; 3377 daddr = pd->src; 3378 } 3379 switch (pd->af) { 3380 #ifdef INET 3381 case AF_INET: 3382 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3383 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3384 if (inp == NULL) { 3385 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3386 daddr->v4, dport, INPLOOKUP_WILDCARD | 3387 INPLOOKUP_RLOCKPCB, NULL, m); 3388 if (inp == NULL) 3389 return (-1); 3390 } 3391 break; 3392 #endif /* INET */ 3393 #ifdef INET6 3394 case AF_INET6: 3395 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3396 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3397 if (inp == NULL) { 3398 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3399 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3400 INPLOOKUP_RLOCKPCB, NULL, m); 3401 if (inp == NULL) 3402 return (-1); 3403 } 3404 break; 3405 #endif /* INET6 */ 3406 3407 default: 3408 return (-1); 3409 } 3410 INP_RLOCK_ASSERT(inp); 3411 pd->lookup.uid = inp->inp_cred->cr_uid; 3412 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3413 INP_RUNLOCK(inp); 3414 3415 return (1); 3416 } 3417 3418 u_int8_t 3419 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3420 { 3421 int hlen; 3422 u_int8_t hdr[60]; 3423 u_int8_t *opt, optlen; 3424 u_int8_t wscale = 0; 3425 3426 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3427 if (hlen <= sizeof(struct tcphdr)) 3428 return (0); 3429 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3430 return (0); 3431 opt = hdr + sizeof(struct tcphdr); 3432 hlen -= sizeof(struct tcphdr); 3433 while (hlen >= 3) { 3434 switch (*opt) { 3435 case TCPOPT_EOL: 3436 case TCPOPT_NOP: 3437 ++opt; 3438 --hlen; 3439 break; 3440 case TCPOPT_WINDOW: 3441 wscale = opt[2]; 3442 if (wscale > TCP_MAX_WINSHIFT) 3443 wscale = TCP_MAX_WINSHIFT; 3444 wscale |= PF_WSCALE_FLAG; 3445 /* FALLTHROUGH */ 3446 default: 3447 optlen = opt[1]; 3448 if (optlen < 2) 3449 optlen = 2; 3450 hlen -= optlen; 3451 opt += optlen; 3452 break; 3453 } 3454 } 3455 return (wscale); 3456 } 3457 3458 u_int16_t 3459 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3460 { 3461 int hlen; 3462 u_int8_t hdr[60]; 3463 u_int8_t *opt, optlen; 3464 u_int16_t mss = V_tcp_mssdflt; 3465 3466 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3467 if (hlen <= sizeof(struct tcphdr)) 3468 return (0); 3469 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3470 return (0); 3471 opt = hdr + sizeof(struct tcphdr); 3472 hlen -= sizeof(struct tcphdr); 3473 while (hlen >= TCPOLEN_MAXSEG) { 3474 switch (*opt) { 3475 case TCPOPT_EOL: 3476 case TCPOPT_NOP: 3477 ++opt; 3478 --hlen; 3479 break; 3480 case TCPOPT_MAXSEG: 3481 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3482 NTOHS(mss); 3483 /* FALLTHROUGH */ 3484 default: 3485 optlen = opt[1]; 3486 if (optlen < 2) 3487 optlen = 2; 3488 hlen -= optlen; 3489 opt += optlen; 3490 break; 3491 } 3492 } 3493 return (mss); 3494 } 3495 3496 static u_int16_t 3497 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3498 { 3499 struct nhop_object *nh; 3500 #ifdef INET6 3501 struct in6_addr dst6; 3502 uint32_t scopeid; 3503 #endif /* INET6 */ 3504 int hlen = 0; 3505 uint16_t mss = 0; 3506 3507 NET_EPOCH_ASSERT(); 3508 3509 switch (af) { 3510 #ifdef INET 3511 case AF_INET: 3512 hlen = sizeof(struct ip); 3513 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 3514 if (nh != NULL) 3515 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3516 break; 3517 #endif /* INET */ 3518 #ifdef INET6 3519 case AF_INET6: 3520 hlen = sizeof(struct ip6_hdr); 3521 in6_splitscope(&addr->v6, &dst6, &scopeid); 3522 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 3523 if (nh != NULL) 3524 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3525 break; 3526 #endif /* INET6 */ 3527 } 3528 3529 mss = max(V_tcp_mssdflt, mss); 3530 mss = min(mss, offer); 3531 mss = max(mss, 64); /* sanity - at least max opt space */ 3532 return (mss); 3533 } 3534 3535 static u_int32_t 3536 pf_tcp_iss(struct pf_pdesc *pd) 3537 { 3538 MD5_CTX ctx; 3539 u_int32_t digest[4]; 3540 3541 if (V_pf_tcp_secret_init == 0) { 3542 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3543 MD5Init(&V_pf_tcp_secret_ctx); 3544 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3545 sizeof(V_pf_tcp_secret)); 3546 V_pf_tcp_secret_init = 1; 3547 } 3548 3549 ctx = V_pf_tcp_secret_ctx; 3550 3551 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 3552 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 3553 if (pd->af == AF_INET6) { 3554 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3555 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3556 } else { 3557 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3558 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3559 } 3560 MD5Final((u_char *)digest, &ctx); 3561 V_pf_tcp_iss_off += 4096; 3562 #define ISN_RANDOM_INCREMENT (4096 - 1) 3563 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3564 V_pf_tcp_iss_off); 3565 #undef ISN_RANDOM_INCREMENT 3566 } 3567 3568 static int 3569 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, int direction, 3570 struct pfi_kkif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3571 struct pf_krule **am, struct pf_kruleset **rsm, struct inpcb *inp) 3572 { 3573 struct pf_krule *nr = NULL; 3574 struct pf_addr * const saddr = pd->src; 3575 struct pf_addr * const daddr = pd->dst; 3576 sa_family_t af = pd->af; 3577 struct pf_krule *r, *a = NULL; 3578 struct pf_kruleset *ruleset = NULL; 3579 struct pf_ksrc_node *nsn = NULL; 3580 struct tcphdr *th = &pd->hdr.tcp; 3581 struct pf_state_key *sk = NULL, *nk = NULL; 3582 u_short reason; 3583 int rewrite = 0, hdrlen = 0; 3584 int tag = -1, rtableid = -1; 3585 int asd = 0; 3586 int match = 0; 3587 int state_icmp = 0; 3588 u_int16_t sport = 0, dport = 0; 3589 u_int16_t bproto_sum = 0, bip_sum = 0; 3590 u_int8_t icmptype = 0, icmpcode = 0; 3591 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3592 3593 PF_RULES_RASSERT(); 3594 3595 if (inp != NULL) { 3596 INP_LOCK_ASSERT(inp); 3597 pd->lookup.uid = inp->inp_cred->cr_uid; 3598 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3599 pd->lookup.done = 1; 3600 } 3601 3602 switch (pd->proto) { 3603 case IPPROTO_TCP: 3604 sport = th->th_sport; 3605 dport = th->th_dport; 3606 hdrlen = sizeof(*th); 3607 break; 3608 case IPPROTO_UDP: 3609 sport = pd->hdr.udp.uh_sport; 3610 dport = pd->hdr.udp.uh_dport; 3611 hdrlen = sizeof(pd->hdr.udp); 3612 break; 3613 #ifdef INET 3614 case IPPROTO_ICMP: 3615 if (pd->af != AF_INET) 3616 break; 3617 sport = dport = pd->hdr.icmp.icmp_id; 3618 hdrlen = sizeof(pd->hdr.icmp); 3619 icmptype = pd->hdr.icmp.icmp_type; 3620 icmpcode = pd->hdr.icmp.icmp_code; 3621 3622 if (icmptype == ICMP_UNREACH || 3623 icmptype == ICMP_SOURCEQUENCH || 3624 icmptype == ICMP_REDIRECT || 3625 icmptype == ICMP_TIMXCEED || 3626 icmptype == ICMP_PARAMPROB) 3627 state_icmp++; 3628 break; 3629 #endif /* INET */ 3630 #ifdef INET6 3631 case IPPROTO_ICMPV6: 3632 if (af != AF_INET6) 3633 break; 3634 sport = dport = pd->hdr.icmp6.icmp6_id; 3635 hdrlen = sizeof(pd->hdr.icmp6); 3636 icmptype = pd->hdr.icmp6.icmp6_type; 3637 icmpcode = pd->hdr.icmp6.icmp6_code; 3638 3639 if (icmptype == ICMP6_DST_UNREACH || 3640 icmptype == ICMP6_PACKET_TOO_BIG || 3641 icmptype == ICMP6_TIME_EXCEEDED || 3642 icmptype == ICMP6_PARAM_PROB) 3643 state_icmp++; 3644 break; 3645 #endif /* INET6 */ 3646 default: 3647 sport = dport = hdrlen = 0; 3648 break; 3649 } 3650 3651 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3652 3653 /* check packet for BINAT/NAT/RDR */ 3654 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3655 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3656 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3657 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3658 3659 if (nr->log) { 3660 PFLOG_PACKET(kif, m, af, direction, PFRES_MATCH, nr, a, 3661 ruleset, pd, 1); 3662 } 3663 3664 if (pd->ip_sum) 3665 bip_sum = *pd->ip_sum; 3666 3667 switch (pd->proto) { 3668 case IPPROTO_TCP: 3669 bproto_sum = th->th_sum; 3670 pd->proto_sum = &th->th_sum; 3671 3672 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3673 nk->port[pd->sidx] != sport) { 3674 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3675 &th->th_sum, &nk->addr[pd->sidx], 3676 nk->port[pd->sidx], 0, af); 3677 pd->sport = &th->th_sport; 3678 sport = th->th_sport; 3679 } 3680 3681 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3682 nk->port[pd->didx] != dport) { 3683 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3684 &th->th_sum, &nk->addr[pd->didx], 3685 nk->port[pd->didx], 0, af); 3686 dport = th->th_dport; 3687 pd->dport = &th->th_dport; 3688 } 3689 rewrite++; 3690 break; 3691 case IPPROTO_UDP: 3692 bproto_sum = pd->hdr.udp.uh_sum; 3693 pd->proto_sum = &pd->hdr.udp.uh_sum; 3694 3695 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3696 nk->port[pd->sidx] != sport) { 3697 pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, 3698 pd->ip_sum, &pd->hdr.udp.uh_sum, 3699 &nk->addr[pd->sidx], 3700 nk->port[pd->sidx], 1, af); 3701 sport = pd->hdr.udp.uh_sport; 3702 pd->sport = &pd->hdr.udp.uh_sport; 3703 } 3704 3705 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3706 nk->port[pd->didx] != dport) { 3707 pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, 3708 pd->ip_sum, &pd->hdr.udp.uh_sum, 3709 &nk->addr[pd->didx], 3710 nk->port[pd->didx], 1, af); 3711 dport = pd->hdr.udp.uh_dport; 3712 pd->dport = &pd->hdr.udp.uh_dport; 3713 } 3714 rewrite++; 3715 break; 3716 #ifdef INET 3717 case IPPROTO_ICMP: 3718 nk->port[0] = nk->port[1]; 3719 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3720 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3721 nk->addr[pd->sidx].v4.s_addr, 0); 3722 3723 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3724 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3725 nk->addr[pd->didx].v4.s_addr, 0); 3726 3727 if (nk->port[1] != pd->hdr.icmp.icmp_id) { 3728 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 3729 pd->hdr.icmp.icmp_cksum, sport, 3730 nk->port[1], 0); 3731 pd->hdr.icmp.icmp_id = nk->port[1]; 3732 pd->sport = &pd->hdr.icmp.icmp_id; 3733 } 3734 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 3735 break; 3736 #endif /* INET */ 3737 #ifdef INET6 3738 case IPPROTO_ICMPV6: 3739 nk->port[0] = nk->port[1]; 3740 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3741 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 3742 &nk->addr[pd->sidx], 0); 3743 3744 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3745 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 3746 &nk->addr[pd->didx], 0); 3747 rewrite++; 3748 break; 3749 #endif /* INET */ 3750 default: 3751 switch (af) { 3752 #ifdef INET 3753 case AF_INET: 3754 if (PF_ANEQ(saddr, 3755 &nk->addr[pd->sidx], AF_INET)) 3756 pf_change_a(&saddr->v4.s_addr, 3757 pd->ip_sum, 3758 nk->addr[pd->sidx].v4.s_addr, 0); 3759 3760 if (PF_ANEQ(daddr, 3761 &nk->addr[pd->didx], AF_INET)) 3762 pf_change_a(&daddr->v4.s_addr, 3763 pd->ip_sum, 3764 nk->addr[pd->didx].v4.s_addr, 0); 3765 break; 3766 #endif /* INET */ 3767 #ifdef INET6 3768 case AF_INET6: 3769 if (PF_ANEQ(saddr, 3770 &nk->addr[pd->sidx], AF_INET6)) 3771 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3772 3773 if (PF_ANEQ(daddr, 3774 &nk->addr[pd->didx], AF_INET6)) 3775 PF_ACPY(daddr, &nk->addr[pd->didx], af); 3776 break; 3777 #endif /* INET */ 3778 } 3779 break; 3780 } 3781 if (nr->natpass) 3782 r = NULL; 3783 pd->nat_rule = nr; 3784 } 3785 3786 while (r != NULL) { 3787 pf_counter_u64_add(&r->evaluations, 1); 3788 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 3789 r = r->skip[PF_SKIP_IFP].ptr; 3790 else if (r->direction && r->direction != direction) 3791 r = r->skip[PF_SKIP_DIR].ptr; 3792 else if (r->af && r->af != af) 3793 r = r->skip[PF_SKIP_AF].ptr; 3794 else if (r->proto && r->proto != pd->proto) 3795 r = r->skip[PF_SKIP_PROTO].ptr; 3796 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3797 r->src.neg, kif, M_GETFIB(m))) 3798 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3799 /* tcp/udp only. port_op always 0 in other cases */ 3800 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3801 r->src.port[0], r->src.port[1], sport)) 3802 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3803 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3804 r->dst.neg, NULL, M_GETFIB(m))) 3805 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3806 /* tcp/udp only. port_op always 0 in other cases */ 3807 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3808 r->dst.port[0], r->dst.port[1], dport)) 3809 r = r->skip[PF_SKIP_DST_PORT].ptr; 3810 /* icmp only. type always 0 in other cases */ 3811 else if (r->type && r->type != icmptype + 1) 3812 r = TAILQ_NEXT(r, entries); 3813 /* icmp only. type always 0 in other cases */ 3814 else if (r->code && r->code != icmpcode + 1) 3815 r = TAILQ_NEXT(r, entries); 3816 else if (r->tos && !(r->tos == pd->tos)) 3817 r = TAILQ_NEXT(r, entries); 3818 else if (r->rule_flag & PFRULE_FRAGMENT) 3819 r = TAILQ_NEXT(r, entries); 3820 else if (pd->proto == IPPROTO_TCP && 3821 (r->flagset & th->th_flags) != r->flags) 3822 r = TAILQ_NEXT(r, entries); 3823 /* tcp/udp only. uid.op always 0 in other cases */ 3824 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3825 pf_socket_lookup(direction, pd, m), 1)) && 3826 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3827 pd->lookup.uid)) 3828 r = TAILQ_NEXT(r, entries); 3829 /* tcp/udp only. gid.op always 0 in other cases */ 3830 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3831 pf_socket_lookup(direction, pd, m), 1)) && 3832 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3833 pd->lookup.gid)) 3834 r = TAILQ_NEXT(r, entries); 3835 else if (r->prio && 3836 !pf_match_ieee8021q_pcp(r->prio, m)) 3837 r = TAILQ_NEXT(r, entries); 3838 else if (r->prob && 3839 r->prob <= arc4random()) 3840 r = TAILQ_NEXT(r, entries); 3841 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3842 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3843 r = TAILQ_NEXT(r, entries); 3844 else if (r->os_fingerprint != PF_OSFP_ANY && 3845 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3846 pf_osfp_fingerprint(pd, m, off, th), 3847 r->os_fingerprint))) 3848 r = TAILQ_NEXT(r, entries); 3849 else { 3850 if (r->tag) 3851 tag = r->tag; 3852 if (r->rtableid >= 0) 3853 rtableid = r->rtableid; 3854 if (r->anchor == NULL) { 3855 if (r->action == PF_MATCH) { 3856 pf_counter_u64_critical_enter(); 3857 pf_counter_u64_add_protected(&r->packets[direction == PF_OUT], 1); 3858 pf_counter_u64_add_protected(&r->bytes[direction == PF_OUT], pd->tot_len); 3859 pf_counter_u64_critical_exit(); 3860 pf_rule_to_actions(r, &pd->act); 3861 if (r->log) 3862 PFLOG_PACKET(kif, m, af, 3863 direction, PFRES_MATCH, r, 3864 a, ruleset, pd, 1); 3865 } else { 3866 match = 1; 3867 *rm = r; 3868 *am = a; 3869 *rsm = ruleset; 3870 } 3871 if ((*rm)->quick) 3872 break; 3873 r = TAILQ_NEXT(r, entries); 3874 } else 3875 pf_step_into_anchor(anchor_stack, &asd, 3876 &ruleset, PF_RULESET_FILTER, &r, &a, 3877 &match); 3878 } 3879 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3880 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3881 break; 3882 } 3883 r = *rm; 3884 a = *am; 3885 ruleset = *rsm; 3886 3887 REASON_SET(&reason, PFRES_MATCH); 3888 3889 /* apply actions for last matching pass/block rule */ 3890 pf_rule_to_actions(r, &pd->act); 3891 3892 if (r->log) { 3893 if (rewrite) 3894 m_copyback(m, off, hdrlen, pd->hdr.any); 3895 PFLOG_PACKET(kif, m, af, direction, reason, r, a, 3896 ruleset, pd, 1); 3897 } 3898 3899 if ((r->action == PF_DROP) && 3900 ((r->rule_flag & PFRULE_RETURNRST) || 3901 (r->rule_flag & PFRULE_RETURNICMP) || 3902 (r->rule_flag & PFRULE_RETURN))) { 3903 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 3904 bip_sum, hdrlen, &reason); 3905 } 3906 3907 if (r->action == PF_DROP) 3908 goto cleanup; 3909 3910 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3911 REASON_SET(&reason, PFRES_MEMORY); 3912 goto cleanup; 3913 } 3914 if (rtableid >= 0) 3915 M_SETFIB(m, rtableid); 3916 3917 if (!state_icmp && (r->keep_state || nr != NULL || 3918 (pd->flags & PFDESC_TCP_NORM))) { 3919 int action; 3920 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3921 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3922 hdrlen); 3923 if (action != PF_PASS) { 3924 if (action == PF_DROP && 3925 (r->rule_flag & PFRULE_RETURN)) 3926 pf_return(r, nr, pd, sk, off, m, th, kif, 3927 bproto_sum, bip_sum, hdrlen, &reason); 3928 return (action); 3929 } 3930 } else { 3931 if (sk != NULL) 3932 uma_zfree(V_pf_state_key_z, sk); 3933 if (nk != NULL) 3934 uma_zfree(V_pf_state_key_z, nk); 3935 } 3936 3937 /* copy back packet headers if we performed NAT operations */ 3938 if (rewrite) 3939 m_copyback(m, off, hdrlen, pd->hdr.any); 3940 3941 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3942 direction == PF_OUT && 3943 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 3944 /* 3945 * We want the state created, but we dont 3946 * want to send this in case a partner 3947 * firewall has to know about it to allow 3948 * replies through it. 3949 */ 3950 return (PF_DEFER); 3951 3952 return (PF_PASS); 3953 3954 cleanup: 3955 if (sk != NULL) 3956 uma_zfree(V_pf_state_key_z, sk); 3957 if (nk != NULL) 3958 uma_zfree(V_pf_state_key_z, nk); 3959 return (PF_DROP); 3960 } 3961 3962 static int 3963 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 3964 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 3965 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3966 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, 3967 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3968 { 3969 struct pf_kstate *s = NULL; 3970 struct pf_ksrc_node *sn = NULL; 3971 struct tcphdr *th = &pd->hdr.tcp; 3972 u_int16_t mss = V_tcp_mssdflt; 3973 u_short reason; 3974 3975 /* check maximums */ 3976 if (r->max_states && 3977 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3978 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3979 REASON_SET(&reason, PFRES_MAXSTATES); 3980 goto csfailed; 3981 } 3982 /* src node for filter rule */ 3983 if ((r->rule_flag & PFRULE_SRCTRACK || 3984 r->rpool.opts & PF_POOL_STICKYADDR) && 3985 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3986 REASON_SET(&reason, PFRES_SRCLIMIT); 3987 goto csfailed; 3988 } 3989 /* src node for translation rule */ 3990 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3991 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3992 REASON_SET(&reason, PFRES_SRCLIMIT); 3993 goto csfailed; 3994 } 3995 s = pf_alloc_state(M_NOWAIT); 3996 if (s == NULL) { 3997 REASON_SET(&reason, PFRES_MEMORY); 3998 goto csfailed; 3999 } 4000 s->rule.ptr = r; 4001 s->nat_rule.ptr = nr; 4002 s->anchor.ptr = a; 4003 STATE_INC_COUNTERS(s); 4004 if (r->allow_opts) 4005 s->state_flags |= PFSTATE_ALLOWOPTS; 4006 if (r->rule_flag & PFRULE_STATESLOPPY) 4007 s->state_flags |= PFSTATE_SLOPPY; 4008 s->log = r->log & PF_LOG_ALL; 4009 s->sync_state = PFSYNC_S_NONE; 4010 s->qid = pd->act.qid; 4011 s->pqid = pd->act.pqid; 4012 s->dnpipe = pd->act.dnpipe; 4013 s->dnrpipe = pd->act.dnrpipe; 4014 s->state_flags |= pd->act.flags; 4015 if (nr != NULL) 4016 s->log |= nr->log & PF_LOG_ALL; 4017 switch (pd->proto) { 4018 case IPPROTO_TCP: 4019 s->src.seqlo = ntohl(th->th_seq); 4020 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 4021 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 4022 r->keep_state == PF_STATE_MODULATE) { 4023 /* Generate sequence number modulator */ 4024 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 4025 0) 4026 s->src.seqdiff = 1; 4027 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 4028 htonl(s->src.seqlo + s->src.seqdiff), 0); 4029 *rewrite = 1; 4030 } else 4031 s->src.seqdiff = 0; 4032 if (th->th_flags & TH_SYN) { 4033 s->src.seqhi++; 4034 s->src.wscale = pf_get_wscale(m, off, 4035 th->th_off, pd->af); 4036 } 4037 s->src.max_win = MAX(ntohs(th->th_win), 1); 4038 if (s->src.wscale & PF_WSCALE_MASK) { 4039 /* Remove scale factor from initial window */ 4040 int win = s->src.max_win; 4041 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 4042 s->src.max_win = (win - 1) >> 4043 (s->src.wscale & PF_WSCALE_MASK); 4044 } 4045 if (th->th_flags & TH_FIN) 4046 s->src.seqhi++; 4047 s->dst.seqhi = 1; 4048 s->dst.max_win = 1; 4049 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 4050 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 4051 s->timeout = PFTM_TCP_FIRST_PACKET; 4052 atomic_add_32(&V_pf_status.states_halfopen, 1); 4053 break; 4054 case IPPROTO_UDP: 4055 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 4056 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 4057 s->timeout = PFTM_UDP_FIRST_PACKET; 4058 break; 4059 case IPPROTO_ICMP: 4060 #ifdef INET6 4061 case IPPROTO_ICMPV6: 4062 #endif 4063 s->timeout = PFTM_ICMP_FIRST_PACKET; 4064 break; 4065 default: 4066 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 4067 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 4068 s->timeout = PFTM_OTHER_FIRST_PACKET; 4069 } 4070 4071 if (r->rt) { 4072 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 4073 REASON_SET(&reason, PFRES_MAPFAILED); 4074 pf_src_tree_remove_state(s); 4075 s->timeout = PFTM_UNLINKED; 4076 STATE_DEC_COUNTERS(s); 4077 pf_free_state(s); 4078 goto csfailed; 4079 } 4080 s->rt_kif = r->rpool.cur->kif; 4081 } 4082 4083 s->creation = time_uptime; 4084 s->expire = time_uptime; 4085 4086 if (sn != NULL) 4087 s->src_node = sn; 4088 if (nsn != NULL) { 4089 /* XXX We only modify one side for now. */ 4090 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 4091 s->nat_src_node = nsn; 4092 } 4093 if (pd->proto == IPPROTO_TCP) { 4094 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 4095 off, pd, th, &s->src, &s->dst)) { 4096 REASON_SET(&reason, PFRES_MEMORY); 4097 pf_src_tree_remove_state(s); 4098 s->timeout = PFTM_UNLINKED; 4099 STATE_DEC_COUNTERS(s); 4100 pf_free_state(s); 4101 return (PF_DROP); 4102 } 4103 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 4104 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 4105 &s->src, &s->dst, rewrite)) { 4106 /* This really shouldn't happen!!! */ 4107 DPFPRINTF(PF_DEBUG_URGENT, 4108 ("pf_normalize_tcp_stateful failed on first " 4109 "pkt\n")); 4110 pf_src_tree_remove_state(s); 4111 s->timeout = PFTM_UNLINKED; 4112 STATE_DEC_COUNTERS(s); 4113 pf_free_state(s); 4114 return (PF_DROP); 4115 } 4116 } 4117 s->direction = pd->dir; 4118 4119 /* 4120 * sk/nk could already been setup by pf_get_translation(). 4121 */ 4122 if (nr == NULL) { 4123 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 4124 __func__, nr, sk, nk)); 4125 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 4126 if (sk == NULL) 4127 goto csfailed; 4128 nk = sk; 4129 } else 4130 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 4131 __func__, nr, sk, nk)); 4132 4133 /* Swap sk/nk for PF_OUT. */ 4134 if (pf_state_insert(BOUND_IFACE(r, kif), kif, 4135 (pd->dir == PF_IN) ? sk : nk, 4136 (pd->dir == PF_IN) ? nk : sk, s)) { 4137 REASON_SET(&reason, PFRES_STATEINS); 4138 pf_src_tree_remove_state(s); 4139 s->timeout = PFTM_UNLINKED; 4140 STATE_DEC_COUNTERS(s); 4141 pf_free_state(s); 4142 return (PF_DROP); 4143 } else 4144 *sm = s; 4145 4146 if (tag > 0) 4147 s->tag = tag; 4148 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 4149 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 4150 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 4151 /* undo NAT changes, if they have taken place */ 4152 if (nr != NULL) { 4153 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 4154 if (pd->dir == PF_OUT) 4155 skt = s->key[PF_SK_STACK]; 4156 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 4157 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 4158 if (pd->sport) 4159 *pd->sport = skt->port[pd->sidx]; 4160 if (pd->dport) 4161 *pd->dport = skt->port[pd->didx]; 4162 if (pd->proto_sum) 4163 *pd->proto_sum = bproto_sum; 4164 if (pd->ip_sum) 4165 *pd->ip_sum = bip_sum; 4166 m_copyback(m, off, hdrlen, pd->hdr.any); 4167 } 4168 s->src.seqhi = htonl(arc4random()); 4169 /* Find mss option */ 4170 int rtid = M_GETFIB(m); 4171 mss = pf_get_mss(m, off, th->th_off, pd->af); 4172 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 4173 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 4174 s->src.mss = mss; 4175 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 4176 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 4177 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0); 4178 REASON_SET(&reason, PFRES_SYNPROXY); 4179 return (PF_SYNPROXY_DROP); 4180 } 4181 4182 return (PF_PASS); 4183 4184 csfailed: 4185 if (sk != NULL) 4186 uma_zfree(V_pf_state_key_z, sk); 4187 if (nk != NULL) 4188 uma_zfree(V_pf_state_key_z, nk); 4189 4190 if (sn != NULL) { 4191 struct pf_srchash *sh; 4192 4193 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 4194 PF_HASHROW_LOCK(sh); 4195 if (--sn->states == 0 && sn->expire == 0) { 4196 pf_unlink_src_node(sn); 4197 uma_zfree(V_pf_sources_z, sn); 4198 counter_u64_add( 4199 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 4200 } 4201 PF_HASHROW_UNLOCK(sh); 4202 } 4203 4204 if (nsn != sn && nsn != NULL) { 4205 struct pf_srchash *sh; 4206 4207 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 4208 PF_HASHROW_LOCK(sh); 4209 if (--nsn->states == 0 && nsn->expire == 0) { 4210 pf_unlink_src_node(nsn); 4211 uma_zfree(V_pf_sources_z, nsn); 4212 counter_u64_add( 4213 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 4214 } 4215 PF_HASHROW_UNLOCK(sh); 4216 } 4217 4218 return (PF_DROP); 4219 } 4220 4221 static int 4222 pf_test_fragment(struct pf_krule **rm, int direction, struct pfi_kkif *kif, 4223 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, 4224 struct pf_kruleset **rsm) 4225 { 4226 struct pf_krule *r, *a = NULL; 4227 struct pf_kruleset *ruleset = NULL; 4228 sa_family_t af = pd->af; 4229 u_short reason; 4230 int tag = -1; 4231 int asd = 0; 4232 int match = 0; 4233 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4234 4235 PF_RULES_RASSERT(); 4236 4237 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4238 while (r != NULL) { 4239 pf_counter_u64_add(&r->evaluations, 1); 4240 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 4241 r = r->skip[PF_SKIP_IFP].ptr; 4242 else if (r->direction && r->direction != direction) 4243 r = r->skip[PF_SKIP_DIR].ptr; 4244 else if (r->af && r->af != af) 4245 r = r->skip[PF_SKIP_AF].ptr; 4246 else if (r->proto && r->proto != pd->proto) 4247 r = r->skip[PF_SKIP_PROTO].ptr; 4248 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 4249 r->src.neg, kif, M_GETFIB(m))) 4250 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4251 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 4252 r->dst.neg, NULL, M_GETFIB(m))) 4253 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4254 else if (r->tos && !(r->tos == pd->tos)) 4255 r = TAILQ_NEXT(r, entries); 4256 else if (r->os_fingerprint != PF_OSFP_ANY) 4257 r = TAILQ_NEXT(r, entries); 4258 else if (pd->proto == IPPROTO_UDP && 4259 (r->src.port_op || r->dst.port_op)) 4260 r = TAILQ_NEXT(r, entries); 4261 else if (pd->proto == IPPROTO_TCP && 4262 (r->src.port_op || r->dst.port_op || r->flagset)) 4263 r = TAILQ_NEXT(r, entries); 4264 else if ((pd->proto == IPPROTO_ICMP || 4265 pd->proto == IPPROTO_ICMPV6) && 4266 (r->type || r->code)) 4267 r = TAILQ_NEXT(r, entries); 4268 else if (r->prio && 4269 !pf_match_ieee8021q_pcp(r->prio, m)) 4270 r = TAILQ_NEXT(r, entries); 4271 else if (r->prob && r->prob <= 4272 (arc4random() % (UINT_MAX - 1) + 1)) 4273 r = TAILQ_NEXT(r, entries); 4274 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4275 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4276 r = TAILQ_NEXT(r, entries); 4277 else { 4278 if (r->anchor == NULL) { 4279 if (r->action == PF_MATCH) { 4280 pf_counter_u64_critical_enter(); 4281 pf_counter_u64_add_protected(&r->packets[direction == PF_OUT], 1); 4282 pf_counter_u64_add_protected(&r->bytes[direction == PF_OUT], pd->tot_len); 4283 pf_counter_u64_critical_exit(); 4284 pf_rule_to_actions(r, &pd->act); 4285 if (r->log) 4286 PFLOG_PACKET(kif, m, af, 4287 direction, PFRES_MATCH, r, 4288 a, ruleset, pd, 1); 4289 } else { 4290 match = 1; 4291 *rm = r; 4292 *am = a; 4293 *rsm = ruleset; 4294 } 4295 if ((*rm)->quick) 4296 break; 4297 r = TAILQ_NEXT(r, entries); 4298 } else 4299 pf_step_into_anchor(anchor_stack, &asd, 4300 &ruleset, PF_RULESET_FILTER, &r, &a, 4301 &match); 4302 } 4303 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4304 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4305 break; 4306 } 4307 r = *rm; 4308 a = *am; 4309 ruleset = *rsm; 4310 4311 REASON_SET(&reason, PFRES_MATCH); 4312 4313 /* apply actions for last matching pass/block rule */ 4314 pf_rule_to_actions(r, &pd->act); 4315 4316 if (r->log) 4317 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 4318 1); 4319 4320 if (r->action != PF_PASS) 4321 return (PF_DROP); 4322 4323 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4324 REASON_SET(&reason, PFRES_MEMORY); 4325 return (PF_DROP); 4326 } 4327 4328 return (PF_PASS); 4329 } 4330 4331 static int 4332 pf_tcp_track_full(struct pf_kstate **state, struct pfi_kkif *kif, 4333 struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason, 4334 int *copyback) 4335 { 4336 struct tcphdr *th = &pd->hdr.tcp; 4337 struct pf_state_peer *src, *dst; 4338 u_int16_t win = ntohs(th->th_win); 4339 u_int32_t ack, end, seq, orig_seq; 4340 u_int8_t sws, dws, psrc, pdst; 4341 int ackskew; 4342 4343 if (pd->dir == (*state)->direction) { 4344 src = &(*state)->src; 4345 dst = &(*state)->dst; 4346 psrc = PF_PEER_SRC; 4347 pdst = PF_PEER_DST; 4348 } else { 4349 src = &(*state)->dst; 4350 dst = &(*state)->src; 4351 psrc = PF_PEER_DST; 4352 pdst = PF_PEER_SRC; 4353 } 4354 4355 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 4356 sws = src->wscale & PF_WSCALE_MASK; 4357 dws = dst->wscale & PF_WSCALE_MASK; 4358 } else 4359 sws = dws = 0; 4360 4361 /* 4362 * Sequence tracking algorithm from Guido van Rooij's paper: 4363 * http://www.madison-gurkha.com/publications/tcp_filtering/ 4364 * tcp_filtering.ps 4365 */ 4366 4367 orig_seq = seq = ntohl(th->th_seq); 4368 if (src->seqlo == 0) { 4369 /* First packet from this end. Set its state */ 4370 4371 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 4372 src->scrub == NULL) { 4373 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 4374 REASON_SET(reason, PFRES_MEMORY); 4375 return (PF_DROP); 4376 } 4377 } 4378 4379 /* Deferred generation of sequence number modulator */ 4380 if (dst->seqdiff && !src->seqdiff) { 4381 /* use random iss for the TCP server */ 4382 while ((src->seqdiff = arc4random() - seq) == 0) 4383 ; 4384 ack = ntohl(th->th_ack) - dst->seqdiff; 4385 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4386 src->seqdiff), 0); 4387 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4388 *copyback = 1; 4389 } else { 4390 ack = ntohl(th->th_ack); 4391 } 4392 4393 end = seq + pd->p_len; 4394 if (th->th_flags & TH_SYN) { 4395 end++; 4396 if (dst->wscale & PF_WSCALE_FLAG) { 4397 src->wscale = pf_get_wscale(m, off, th->th_off, 4398 pd->af); 4399 if (src->wscale & PF_WSCALE_FLAG) { 4400 /* Remove scale factor from initial 4401 * window */ 4402 sws = src->wscale & PF_WSCALE_MASK; 4403 win = ((u_int32_t)win + (1 << sws) - 1) 4404 >> sws; 4405 dws = dst->wscale & PF_WSCALE_MASK; 4406 } else { 4407 /* fixup other window */ 4408 dst->max_win <<= dst->wscale & 4409 PF_WSCALE_MASK; 4410 /* in case of a retrans SYN|ACK */ 4411 dst->wscale = 0; 4412 } 4413 } 4414 } 4415 if (th->th_flags & TH_FIN) 4416 end++; 4417 4418 src->seqlo = seq; 4419 if (src->state < TCPS_SYN_SENT) 4420 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 4421 4422 /* 4423 * May need to slide the window (seqhi may have been set by 4424 * the crappy stack check or if we picked up the connection 4425 * after establishment) 4426 */ 4427 if (src->seqhi == 1 || 4428 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4429 src->seqhi = end + MAX(1, dst->max_win << dws); 4430 if (win > src->max_win) 4431 src->max_win = win; 4432 4433 } else { 4434 ack = ntohl(th->th_ack) - dst->seqdiff; 4435 if (src->seqdiff) { 4436 /* Modulate sequence numbers */ 4437 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4438 src->seqdiff), 0); 4439 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4440 *copyback = 1; 4441 } 4442 end = seq + pd->p_len; 4443 if (th->th_flags & TH_SYN) 4444 end++; 4445 if (th->th_flags & TH_FIN) 4446 end++; 4447 } 4448 4449 if ((th->th_flags & TH_ACK) == 0) { 4450 /* Let it pass through the ack skew check */ 4451 ack = dst->seqlo; 4452 } else if ((ack == 0 && 4453 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4454 /* broken tcp stacks do not set ack */ 4455 (dst->state < TCPS_SYN_SENT)) { 4456 /* 4457 * Many stacks (ours included) will set the ACK number in an 4458 * FIN|ACK if the SYN times out -- no sequence to ACK. 4459 */ 4460 ack = dst->seqlo; 4461 } 4462 4463 if (seq == end) { 4464 /* Ease sequencing restrictions on no data packets */ 4465 seq = src->seqlo; 4466 end = seq; 4467 } 4468 4469 ackskew = dst->seqlo - ack; 4470 4471 /* 4472 * Need to demodulate the sequence numbers in any TCP SACK options 4473 * (Selective ACK). We could optionally validate the SACK values 4474 * against the current ACK window, either forwards or backwards, but 4475 * I'm not confident that SACK has been implemented properly 4476 * everywhere. It wouldn't surprise me if several stacks accidentally 4477 * SACK too far backwards of previously ACKed data. There really aren't 4478 * any security implications of bad SACKing unless the target stack 4479 * doesn't validate the option length correctly. Someone trying to 4480 * spoof into a TCP connection won't bother blindly sending SACK 4481 * options anyway. 4482 */ 4483 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4484 if (pf_modulate_sack(m, off, pd, th, dst)) 4485 *copyback = 1; 4486 } 4487 4488 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4489 if (SEQ_GEQ(src->seqhi, end) && 4490 /* Last octet inside other's window space */ 4491 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4492 /* Retrans: not more than one window back */ 4493 (ackskew >= -MAXACKWINDOW) && 4494 /* Acking not more than one reassembled fragment backwards */ 4495 (ackskew <= (MAXACKWINDOW << sws)) && 4496 /* Acking not more than one window forward */ 4497 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4498 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4499 (pd->flags & PFDESC_IP_REAS) == 0)) { 4500 /* Require an exact/+1 sequence match on resets when possible */ 4501 4502 if (dst->scrub || src->scrub) { 4503 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4504 *state, src, dst, copyback)) 4505 return (PF_DROP); 4506 } 4507 4508 /* update max window */ 4509 if (src->max_win < win) 4510 src->max_win = win; 4511 /* synchronize sequencing */ 4512 if (SEQ_GT(end, src->seqlo)) 4513 src->seqlo = end; 4514 /* slide the window of what the other end can send */ 4515 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4516 dst->seqhi = ack + MAX((win << sws), 1); 4517 4518 /* update states */ 4519 if (th->th_flags & TH_SYN) 4520 if (src->state < TCPS_SYN_SENT) 4521 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 4522 if (th->th_flags & TH_FIN) 4523 if (src->state < TCPS_CLOSING) 4524 pf_set_protostate(*state, psrc, TCPS_CLOSING); 4525 if (th->th_flags & TH_ACK) { 4526 if (dst->state == TCPS_SYN_SENT) { 4527 pf_set_protostate(*state, pdst, 4528 TCPS_ESTABLISHED); 4529 if (src->state == TCPS_ESTABLISHED && 4530 (*state)->src_node != NULL && 4531 pf_src_connlimit(state)) { 4532 REASON_SET(reason, PFRES_SRCLIMIT); 4533 return (PF_DROP); 4534 } 4535 } else if (dst->state == TCPS_CLOSING) 4536 pf_set_protostate(*state, pdst, 4537 TCPS_FIN_WAIT_2); 4538 } 4539 if (th->th_flags & TH_RST) 4540 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 4541 4542 /* update expire time */ 4543 (*state)->expire = time_uptime; 4544 if (src->state >= TCPS_FIN_WAIT_2 && 4545 dst->state >= TCPS_FIN_WAIT_2) 4546 (*state)->timeout = PFTM_TCP_CLOSED; 4547 else if (src->state >= TCPS_CLOSING && 4548 dst->state >= TCPS_CLOSING) 4549 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4550 else if (src->state < TCPS_ESTABLISHED || 4551 dst->state < TCPS_ESTABLISHED) 4552 (*state)->timeout = PFTM_TCP_OPENING; 4553 else if (src->state >= TCPS_CLOSING || 4554 dst->state >= TCPS_CLOSING) 4555 (*state)->timeout = PFTM_TCP_CLOSING; 4556 else 4557 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4558 4559 /* Fall through to PASS packet */ 4560 4561 } else if ((dst->state < TCPS_SYN_SENT || 4562 dst->state >= TCPS_FIN_WAIT_2 || 4563 src->state >= TCPS_FIN_WAIT_2) && 4564 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4565 /* Within a window forward of the originating packet */ 4566 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4567 /* Within a window backward of the originating packet */ 4568 4569 /* 4570 * This currently handles three situations: 4571 * 1) Stupid stacks will shotgun SYNs before their peer 4572 * replies. 4573 * 2) When PF catches an already established stream (the 4574 * firewall rebooted, the state table was flushed, routes 4575 * changed...) 4576 * 3) Packets get funky immediately after the connection 4577 * closes (this should catch Solaris spurious ACK|FINs 4578 * that web servers like to spew after a close) 4579 * 4580 * This must be a little more careful than the above code 4581 * since packet floods will also be caught here. We don't 4582 * update the TTL here to mitigate the damage of a packet 4583 * flood and so the same code can handle awkward establishment 4584 * and a loosened connection close. 4585 * In the establishment case, a correct peer response will 4586 * validate the connection, go through the normal state code 4587 * and keep updating the state TTL. 4588 */ 4589 4590 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4591 printf("pf: loose state match: "); 4592 pf_print_state(*state); 4593 pf_print_flags(th->th_flags); 4594 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4595 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4596 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4597 (unsigned long long)(*state)->packets[1], 4598 pd->dir == PF_IN ? "in" : "out", 4599 pd->dir == (*state)->direction ? "fwd" : "rev"); 4600 } 4601 4602 if (dst->scrub || src->scrub) { 4603 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4604 *state, src, dst, copyback)) 4605 return (PF_DROP); 4606 } 4607 4608 /* update max window */ 4609 if (src->max_win < win) 4610 src->max_win = win; 4611 /* synchronize sequencing */ 4612 if (SEQ_GT(end, src->seqlo)) 4613 src->seqlo = end; 4614 /* slide the window of what the other end can send */ 4615 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4616 dst->seqhi = ack + MAX((win << sws), 1); 4617 4618 /* 4619 * Cannot set dst->seqhi here since this could be a shotgunned 4620 * SYN and not an already established connection. 4621 */ 4622 4623 if (th->th_flags & TH_FIN) 4624 if (src->state < TCPS_CLOSING) 4625 pf_set_protostate(*state, psrc, TCPS_CLOSING); 4626 if (th->th_flags & TH_RST) 4627 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 4628 4629 /* Fall through to PASS packet */ 4630 4631 } else { 4632 if ((*state)->dst.state == TCPS_SYN_SENT && 4633 (*state)->src.state == TCPS_SYN_SENT) { 4634 /* Send RST for state mismatches during handshake */ 4635 if (!(th->th_flags & TH_RST)) 4636 pf_send_tcp((*state)->rule.ptr, pd->af, 4637 pd->dst, pd->src, th->th_dport, 4638 th->th_sport, ntohl(th->th_ack), 0, 4639 TH_RST, 0, 0, 4640 (*state)->rule.ptr->return_ttl, 1, 0); 4641 src->seqlo = 0; 4642 src->seqhi = 1; 4643 src->max_win = 1; 4644 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4645 printf("pf: BAD state: "); 4646 pf_print_state(*state); 4647 pf_print_flags(th->th_flags); 4648 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4649 "pkts=%llu:%llu dir=%s,%s\n", 4650 seq, orig_seq, ack, pd->p_len, ackskew, 4651 (unsigned long long)(*state)->packets[0], 4652 (unsigned long long)(*state)->packets[1], 4653 pd->dir == PF_IN ? "in" : "out", 4654 pd->dir == (*state)->direction ? "fwd" : "rev"); 4655 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4656 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4657 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4658 ' ': '2', 4659 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4660 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4661 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4662 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4663 } 4664 REASON_SET(reason, PFRES_BADSTATE); 4665 return (PF_DROP); 4666 } 4667 4668 return (PF_PASS); 4669 } 4670 4671 static int 4672 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 4673 { 4674 struct tcphdr *th = &pd->hdr.tcp; 4675 struct pf_state_peer *src, *dst; 4676 u_int8_t psrc, pdst; 4677 4678 if (pd->dir == (*state)->direction) { 4679 src = &(*state)->src; 4680 dst = &(*state)->dst; 4681 psrc = PF_PEER_SRC; 4682 pdst = PF_PEER_DST; 4683 } else { 4684 src = &(*state)->dst; 4685 dst = &(*state)->src; 4686 psrc = PF_PEER_DST; 4687 pdst = PF_PEER_SRC; 4688 } 4689 4690 if (th->th_flags & TH_SYN) 4691 if (src->state < TCPS_SYN_SENT) 4692 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 4693 if (th->th_flags & TH_FIN) 4694 if (src->state < TCPS_CLOSING) 4695 pf_set_protostate(*state, psrc, TCPS_CLOSING); 4696 if (th->th_flags & TH_ACK) { 4697 if (dst->state == TCPS_SYN_SENT) { 4698 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 4699 if (src->state == TCPS_ESTABLISHED && 4700 (*state)->src_node != NULL && 4701 pf_src_connlimit(state)) { 4702 REASON_SET(reason, PFRES_SRCLIMIT); 4703 return (PF_DROP); 4704 } 4705 } else if (dst->state == TCPS_CLOSING) { 4706 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 4707 } else if (src->state == TCPS_SYN_SENT && 4708 dst->state < TCPS_SYN_SENT) { 4709 /* 4710 * Handle a special sloppy case where we only see one 4711 * half of the connection. If there is a ACK after 4712 * the initial SYN without ever seeing a packet from 4713 * the destination, set the connection to established. 4714 */ 4715 pf_set_protostate(*state, PF_PEER_BOTH, 4716 TCPS_ESTABLISHED); 4717 dst->state = src->state = TCPS_ESTABLISHED; 4718 if ((*state)->src_node != NULL && 4719 pf_src_connlimit(state)) { 4720 REASON_SET(reason, PFRES_SRCLIMIT); 4721 return (PF_DROP); 4722 } 4723 } else if (src->state == TCPS_CLOSING && 4724 dst->state == TCPS_ESTABLISHED && 4725 dst->seqlo == 0) { 4726 /* 4727 * Handle the closing of half connections where we 4728 * don't see the full bidirectional FIN/ACK+ACK 4729 * handshake. 4730 */ 4731 pf_set_protostate(*state, pdst, TCPS_CLOSING); 4732 } 4733 } 4734 if (th->th_flags & TH_RST) 4735 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 4736 4737 /* update expire time */ 4738 (*state)->expire = time_uptime; 4739 if (src->state >= TCPS_FIN_WAIT_2 && 4740 dst->state >= TCPS_FIN_WAIT_2) 4741 (*state)->timeout = PFTM_TCP_CLOSED; 4742 else if (src->state >= TCPS_CLOSING && 4743 dst->state >= TCPS_CLOSING) 4744 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4745 else if (src->state < TCPS_ESTABLISHED || 4746 dst->state < TCPS_ESTABLISHED) 4747 (*state)->timeout = PFTM_TCP_OPENING; 4748 else if (src->state >= TCPS_CLOSING || 4749 dst->state >= TCPS_CLOSING) 4750 (*state)->timeout = PFTM_TCP_CLOSING; 4751 else 4752 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4753 4754 return (PF_PASS); 4755 } 4756 4757 static int 4758 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 4759 { 4760 struct pf_state_key *sk = (*state)->key[pd->didx]; 4761 struct tcphdr *th = &pd->hdr.tcp; 4762 4763 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4764 if (pd->dir != (*state)->direction) { 4765 REASON_SET(reason, PFRES_SYNPROXY); 4766 return (PF_SYNPROXY_DROP); 4767 } 4768 if (th->th_flags & TH_SYN) { 4769 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4770 REASON_SET(reason, PFRES_SYNPROXY); 4771 return (PF_DROP); 4772 } 4773 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 4774 pd->src, th->th_dport, th->th_sport, 4775 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4776 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0); 4777 REASON_SET(reason, PFRES_SYNPROXY); 4778 return (PF_SYNPROXY_DROP); 4779 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 4780 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4781 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4782 REASON_SET(reason, PFRES_SYNPROXY); 4783 return (PF_DROP); 4784 } else if ((*state)->src_node != NULL && 4785 pf_src_connlimit(state)) { 4786 REASON_SET(reason, PFRES_SRCLIMIT); 4787 return (PF_DROP); 4788 } else 4789 pf_set_protostate(*state, PF_PEER_SRC, 4790 PF_TCPS_PROXY_DST); 4791 } 4792 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4793 if (pd->dir == (*state)->direction) { 4794 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4795 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4796 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4797 REASON_SET(reason, PFRES_SYNPROXY); 4798 return (PF_DROP); 4799 } 4800 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4801 if ((*state)->dst.seqhi == 1) 4802 (*state)->dst.seqhi = htonl(arc4random()); 4803 pf_send_tcp((*state)->rule.ptr, pd->af, 4804 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4805 sk->port[pd->sidx], sk->port[pd->didx], 4806 (*state)->dst.seqhi, 0, TH_SYN, 0, 4807 (*state)->src.mss, 0, 0, (*state)->tag); 4808 REASON_SET(reason, PFRES_SYNPROXY); 4809 return (PF_SYNPROXY_DROP); 4810 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4811 (TH_SYN|TH_ACK)) || 4812 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4813 REASON_SET(reason, PFRES_SYNPROXY); 4814 return (PF_DROP); 4815 } else { 4816 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4817 (*state)->dst.seqlo = ntohl(th->th_seq); 4818 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 4819 pd->src, th->th_dport, th->th_sport, 4820 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4821 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4822 (*state)->tag); 4823 pf_send_tcp((*state)->rule.ptr, pd->af, 4824 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4825 sk->port[pd->sidx], sk->port[pd->didx], 4826 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4827 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0); 4828 (*state)->src.seqdiff = (*state)->dst.seqhi - 4829 (*state)->src.seqlo; 4830 (*state)->dst.seqdiff = (*state)->src.seqhi - 4831 (*state)->dst.seqlo; 4832 (*state)->src.seqhi = (*state)->src.seqlo + 4833 (*state)->dst.max_win; 4834 (*state)->dst.seqhi = (*state)->dst.seqlo + 4835 (*state)->src.max_win; 4836 (*state)->src.wscale = (*state)->dst.wscale = 0; 4837 pf_set_protostate(*state, PF_PEER_BOTH, 4838 TCPS_ESTABLISHED); 4839 REASON_SET(reason, PFRES_SYNPROXY); 4840 return (PF_SYNPROXY_DROP); 4841 } 4842 } 4843 4844 return (PF_PASS); 4845 } 4846 4847 static int 4848 pf_test_state_tcp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 4849 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4850 u_short *reason) 4851 { 4852 struct pf_state_key_cmp key; 4853 struct tcphdr *th = &pd->hdr.tcp; 4854 int copyback = 0; 4855 int action; 4856 struct pf_state_peer *src, *dst; 4857 struct pf_state_key *sk; 4858 4859 bzero(&key, sizeof(key)); 4860 key.af = pd->af; 4861 key.proto = IPPROTO_TCP; 4862 if (direction == PF_IN) { /* wire side, straight */ 4863 PF_ACPY(&key.addr[0], pd->src, key.af); 4864 PF_ACPY(&key.addr[1], pd->dst, key.af); 4865 key.port[0] = th->th_sport; 4866 key.port[1] = th->th_dport; 4867 } else { /* stack side, reverse */ 4868 PF_ACPY(&key.addr[1], pd->src, key.af); 4869 PF_ACPY(&key.addr[0], pd->dst, key.af); 4870 key.port[1] = th->th_sport; 4871 key.port[0] = th->th_dport; 4872 } 4873 4874 STATE_LOOKUP(kif, &key, direction, *state, pd); 4875 4876 if (direction == (*state)->direction) { 4877 src = &(*state)->src; 4878 dst = &(*state)->dst; 4879 } else { 4880 src = &(*state)->dst; 4881 dst = &(*state)->src; 4882 } 4883 4884 sk = (*state)->key[pd->didx]; 4885 4886 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 4887 return (action); 4888 4889 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4890 dst->state >= TCPS_FIN_WAIT_2 && 4891 src->state >= TCPS_FIN_WAIT_2) { 4892 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4893 printf("pf: state reuse "); 4894 pf_print_state(*state); 4895 pf_print_flags(th->th_flags); 4896 printf("\n"); 4897 } 4898 /* XXX make sure it's the same direction ?? */ 4899 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 4900 pf_unlink_state(*state, PF_ENTER_LOCKED); 4901 *state = NULL; 4902 return (PF_DROP); 4903 } 4904 4905 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4906 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 4907 return (PF_DROP); 4908 } else { 4909 if (pf_tcp_track_full(state, kif, m, off, pd, reason, 4910 ©back) == PF_DROP) 4911 return (PF_DROP); 4912 } 4913 4914 /* translate source/destination address, if necessary */ 4915 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4916 struct pf_state_key *nk = (*state)->key[pd->didx]; 4917 4918 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4919 nk->port[pd->sidx] != th->th_sport) 4920 pf_change_ap(m, pd->src, &th->th_sport, 4921 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4922 nk->port[pd->sidx], 0, pd->af); 4923 4924 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4925 nk->port[pd->didx] != th->th_dport) 4926 pf_change_ap(m, pd->dst, &th->th_dport, 4927 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4928 nk->port[pd->didx], 0, pd->af); 4929 copyback = 1; 4930 } 4931 4932 /* Copyback sequence modulation or stateful scrub changes if needed */ 4933 if (copyback) 4934 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4935 4936 return (PF_PASS); 4937 } 4938 4939 static int 4940 pf_test_state_udp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 4941 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4942 { 4943 struct pf_state_peer *src, *dst; 4944 struct pf_state_key_cmp key; 4945 struct udphdr *uh = &pd->hdr.udp; 4946 uint8_t psrc, pdst; 4947 4948 bzero(&key, sizeof(key)); 4949 key.af = pd->af; 4950 key.proto = IPPROTO_UDP; 4951 if (direction == PF_IN) { /* wire side, straight */ 4952 PF_ACPY(&key.addr[0], pd->src, key.af); 4953 PF_ACPY(&key.addr[1], pd->dst, key.af); 4954 key.port[0] = uh->uh_sport; 4955 key.port[1] = uh->uh_dport; 4956 } else { /* stack side, reverse */ 4957 PF_ACPY(&key.addr[1], pd->src, key.af); 4958 PF_ACPY(&key.addr[0], pd->dst, key.af); 4959 key.port[1] = uh->uh_sport; 4960 key.port[0] = uh->uh_dport; 4961 } 4962 4963 STATE_LOOKUP(kif, &key, direction, *state, pd); 4964 4965 if (direction == (*state)->direction) { 4966 src = &(*state)->src; 4967 dst = &(*state)->dst; 4968 psrc = PF_PEER_SRC; 4969 pdst = PF_PEER_DST; 4970 } else { 4971 src = &(*state)->dst; 4972 dst = &(*state)->src; 4973 psrc = PF_PEER_DST; 4974 pdst = PF_PEER_SRC; 4975 } 4976 4977 /* update states */ 4978 if (src->state < PFUDPS_SINGLE) 4979 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 4980 if (dst->state == PFUDPS_SINGLE) 4981 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 4982 4983 /* update expire time */ 4984 (*state)->expire = time_uptime; 4985 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4986 (*state)->timeout = PFTM_UDP_MULTIPLE; 4987 else 4988 (*state)->timeout = PFTM_UDP_SINGLE; 4989 4990 /* translate source/destination address, if necessary */ 4991 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4992 struct pf_state_key *nk = (*state)->key[pd->didx]; 4993 4994 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4995 nk->port[pd->sidx] != uh->uh_sport) 4996 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4997 &uh->uh_sum, &nk->addr[pd->sidx], 4998 nk->port[pd->sidx], 1, pd->af); 4999 5000 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5001 nk->port[pd->didx] != uh->uh_dport) 5002 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 5003 &uh->uh_sum, &nk->addr[pd->didx], 5004 nk->port[pd->didx], 1, pd->af); 5005 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 5006 } 5007 5008 return (PF_PASS); 5009 } 5010 5011 static int 5012 pf_test_state_icmp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 5013 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 5014 { 5015 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 5016 u_int16_t icmpid = 0, *icmpsum; 5017 u_int8_t icmptype, icmpcode; 5018 int state_icmp = 0; 5019 struct pf_state_key_cmp key; 5020 5021 bzero(&key, sizeof(key)); 5022 switch (pd->proto) { 5023 #ifdef INET 5024 case IPPROTO_ICMP: 5025 icmptype = pd->hdr.icmp.icmp_type; 5026 icmpcode = pd->hdr.icmp.icmp_code; 5027 icmpid = pd->hdr.icmp.icmp_id; 5028 icmpsum = &pd->hdr.icmp.icmp_cksum; 5029 5030 if (icmptype == ICMP_UNREACH || 5031 icmptype == ICMP_SOURCEQUENCH || 5032 icmptype == ICMP_REDIRECT || 5033 icmptype == ICMP_TIMXCEED || 5034 icmptype == ICMP_PARAMPROB) 5035 state_icmp++; 5036 break; 5037 #endif /* INET */ 5038 #ifdef INET6 5039 case IPPROTO_ICMPV6: 5040 icmptype = pd->hdr.icmp6.icmp6_type; 5041 icmpcode = pd->hdr.icmp6.icmp6_code; 5042 icmpid = pd->hdr.icmp6.icmp6_id; 5043 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 5044 5045 if (icmptype == ICMP6_DST_UNREACH || 5046 icmptype == ICMP6_PACKET_TOO_BIG || 5047 icmptype == ICMP6_TIME_EXCEEDED || 5048 icmptype == ICMP6_PARAM_PROB) 5049 state_icmp++; 5050 break; 5051 #endif /* INET6 */ 5052 } 5053 5054 if (!state_icmp) { 5055 /* 5056 * ICMP query/reply message not related to a TCP/UDP packet. 5057 * Search for an ICMP state. 5058 */ 5059 key.af = pd->af; 5060 key.proto = pd->proto; 5061 key.port[0] = key.port[1] = icmpid; 5062 if (direction == PF_IN) { /* wire side, straight */ 5063 PF_ACPY(&key.addr[0], pd->src, key.af); 5064 PF_ACPY(&key.addr[1], pd->dst, key.af); 5065 } else { /* stack side, reverse */ 5066 PF_ACPY(&key.addr[1], pd->src, key.af); 5067 PF_ACPY(&key.addr[0], pd->dst, key.af); 5068 } 5069 5070 STATE_LOOKUP(kif, &key, direction, *state, pd); 5071 5072 (*state)->expire = time_uptime; 5073 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 5074 5075 /* translate source/destination address, if necessary */ 5076 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5077 struct pf_state_key *nk = (*state)->key[pd->didx]; 5078 5079 switch (pd->af) { 5080 #ifdef INET 5081 case AF_INET: 5082 if (PF_ANEQ(pd->src, 5083 &nk->addr[pd->sidx], AF_INET)) 5084 pf_change_a(&saddr->v4.s_addr, 5085 pd->ip_sum, 5086 nk->addr[pd->sidx].v4.s_addr, 0); 5087 5088 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 5089 AF_INET)) 5090 pf_change_a(&daddr->v4.s_addr, 5091 pd->ip_sum, 5092 nk->addr[pd->didx].v4.s_addr, 0); 5093 5094 if (nk->port[0] != 5095 pd->hdr.icmp.icmp_id) { 5096 pd->hdr.icmp.icmp_cksum = 5097 pf_cksum_fixup( 5098 pd->hdr.icmp.icmp_cksum, icmpid, 5099 nk->port[pd->sidx], 0); 5100 pd->hdr.icmp.icmp_id = 5101 nk->port[pd->sidx]; 5102 } 5103 5104 m_copyback(m, off, ICMP_MINLEN, 5105 (caddr_t )&pd->hdr.icmp); 5106 break; 5107 #endif /* INET */ 5108 #ifdef INET6 5109 case AF_INET6: 5110 if (PF_ANEQ(pd->src, 5111 &nk->addr[pd->sidx], AF_INET6)) 5112 pf_change_a6(saddr, 5113 &pd->hdr.icmp6.icmp6_cksum, 5114 &nk->addr[pd->sidx], 0); 5115 5116 if (PF_ANEQ(pd->dst, 5117 &nk->addr[pd->didx], AF_INET6)) 5118 pf_change_a6(daddr, 5119 &pd->hdr.icmp6.icmp6_cksum, 5120 &nk->addr[pd->didx], 0); 5121 5122 m_copyback(m, off, sizeof(struct icmp6_hdr), 5123 (caddr_t )&pd->hdr.icmp6); 5124 break; 5125 #endif /* INET6 */ 5126 } 5127 } 5128 return (PF_PASS); 5129 5130 } else { 5131 /* 5132 * ICMP error message in response to a TCP/UDP packet. 5133 * Extract the inner TCP/UDP header and search for that state. 5134 */ 5135 5136 struct pf_pdesc pd2; 5137 bzero(&pd2, sizeof pd2); 5138 #ifdef INET 5139 struct ip h2; 5140 #endif /* INET */ 5141 #ifdef INET6 5142 struct ip6_hdr h2_6; 5143 int terminal = 0; 5144 #endif /* INET6 */ 5145 int ipoff2 = 0; 5146 int off2 = 0; 5147 5148 pd2.af = pd->af; 5149 /* Payload packet is from the opposite direction. */ 5150 pd2.sidx = (direction == PF_IN) ? 1 : 0; 5151 pd2.didx = (direction == PF_IN) ? 0 : 1; 5152 switch (pd->af) { 5153 #ifdef INET 5154 case AF_INET: 5155 /* offset of h2 in mbuf chain */ 5156 ipoff2 = off + ICMP_MINLEN; 5157 5158 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 5159 NULL, reason, pd2.af)) { 5160 DPFPRINTF(PF_DEBUG_MISC, 5161 ("pf: ICMP error message too short " 5162 "(ip)\n")); 5163 return (PF_DROP); 5164 } 5165 /* 5166 * ICMP error messages don't refer to non-first 5167 * fragments 5168 */ 5169 if (h2.ip_off & htons(IP_OFFMASK)) { 5170 REASON_SET(reason, PFRES_FRAG); 5171 return (PF_DROP); 5172 } 5173 5174 /* offset of protocol header that follows h2 */ 5175 off2 = ipoff2 + (h2.ip_hl << 2); 5176 5177 pd2.proto = h2.ip_p; 5178 pd2.src = (struct pf_addr *)&h2.ip_src; 5179 pd2.dst = (struct pf_addr *)&h2.ip_dst; 5180 pd2.ip_sum = &h2.ip_sum; 5181 break; 5182 #endif /* INET */ 5183 #ifdef INET6 5184 case AF_INET6: 5185 ipoff2 = off + sizeof(struct icmp6_hdr); 5186 5187 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 5188 NULL, reason, pd2.af)) { 5189 DPFPRINTF(PF_DEBUG_MISC, 5190 ("pf: ICMP error message too short " 5191 "(ip6)\n")); 5192 return (PF_DROP); 5193 } 5194 pd2.proto = h2_6.ip6_nxt; 5195 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 5196 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 5197 pd2.ip_sum = NULL; 5198 off2 = ipoff2 + sizeof(h2_6); 5199 do { 5200 switch (pd2.proto) { 5201 case IPPROTO_FRAGMENT: 5202 /* 5203 * ICMPv6 error messages for 5204 * non-first fragments 5205 */ 5206 REASON_SET(reason, PFRES_FRAG); 5207 return (PF_DROP); 5208 case IPPROTO_AH: 5209 case IPPROTO_HOPOPTS: 5210 case IPPROTO_ROUTING: 5211 case IPPROTO_DSTOPTS: { 5212 /* get next header and header length */ 5213 struct ip6_ext opt6; 5214 5215 if (!pf_pull_hdr(m, off2, &opt6, 5216 sizeof(opt6), NULL, reason, 5217 pd2.af)) { 5218 DPFPRINTF(PF_DEBUG_MISC, 5219 ("pf: ICMPv6 short opt\n")); 5220 return (PF_DROP); 5221 } 5222 if (pd2.proto == IPPROTO_AH) 5223 off2 += (opt6.ip6e_len + 2) * 4; 5224 else 5225 off2 += (opt6.ip6e_len + 1) * 8; 5226 pd2.proto = opt6.ip6e_nxt; 5227 /* goto the next header */ 5228 break; 5229 } 5230 default: 5231 terminal++; 5232 break; 5233 } 5234 } while (!terminal); 5235 break; 5236 #endif /* INET6 */ 5237 } 5238 5239 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 5240 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5241 printf("pf: BAD ICMP %d:%d outer dst: ", 5242 icmptype, icmpcode); 5243 pf_print_host(pd->src, 0, pd->af); 5244 printf(" -> "); 5245 pf_print_host(pd->dst, 0, pd->af); 5246 printf(" inner src: "); 5247 pf_print_host(pd2.src, 0, pd2.af); 5248 printf(" -> "); 5249 pf_print_host(pd2.dst, 0, pd2.af); 5250 printf("\n"); 5251 } 5252 REASON_SET(reason, PFRES_BADSTATE); 5253 return (PF_DROP); 5254 } 5255 5256 switch (pd2.proto) { 5257 case IPPROTO_TCP: { 5258 struct tcphdr th; 5259 u_int32_t seq; 5260 struct pf_state_peer *src, *dst; 5261 u_int8_t dws; 5262 int copyback = 0; 5263 5264 /* 5265 * Only the first 8 bytes of the TCP header can be 5266 * expected. Don't access any TCP header fields after 5267 * th_seq, an ackskew test is not possible. 5268 */ 5269 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 5270 pd2.af)) { 5271 DPFPRINTF(PF_DEBUG_MISC, 5272 ("pf: ICMP error message too short " 5273 "(tcp)\n")); 5274 return (PF_DROP); 5275 } 5276 5277 key.af = pd2.af; 5278 key.proto = IPPROTO_TCP; 5279 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5280 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5281 key.port[pd2.sidx] = th.th_sport; 5282 key.port[pd2.didx] = th.th_dport; 5283 5284 STATE_LOOKUP(kif, &key, direction, *state, pd); 5285 5286 if (direction == (*state)->direction) { 5287 src = &(*state)->dst; 5288 dst = &(*state)->src; 5289 } else { 5290 src = &(*state)->src; 5291 dst = &(*state)->dst; 5292 } 5293 5294 if (src->wscale && dst->wscale) 5295 dws = dst->wscale & PF_WSCALE_MASK; 5296 else 5297 dws = 0; 5298 5299 /* Demodulate sequence number */ 5300 seq = ntohl(th.th_seq) - src->seqdiff; 5301 if (src->seqdiff) { 5302 pf_change_a(&th.th_seq, icmpsum, 5303 htonl(seq), 0); 5304 copyback = 1; 5305 } 5306 5307 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 5308 (!SEQ_GEQ(src->seqhi, seq) || 5309 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 5310 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5311 printf("pf: BAD ICMP %d:%d ", 5312 icmptype, icmpcode); 5313 pf_print_host(pd->src, 0, pd->af); 5314 printf(" -> "); 5315 pf_print_host(pd->dst, 0, pd->af); 5316 printf(" state: "); 5317 pf_print_state(*state); 5318 printf(" seq=%u\n", seq); 5319 } 5320 REASON_SET(reason, PFRES_BADSTATE); 5321 return (PF_DROP); 5322 } else { 5323 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5324 printf("pf: OK ICMP %d:%d ", 5325 icmptype, icmpcode); 5326 pf_print_host(pd->src, 0, pd->af); 5327 printf(" -> "); 5328 pf_print_host(pd->dst, 0, pd->af); 5329 printf(" state: "); 5330 pf_print_state(*state); 5331 printf(" seq=%u\n", seq); 5332 } 5333 } 5334 5335 /* translate source/destination address, if necessary */ 5336 if ((*state)->key[PF_SK_WIRE] != 5337 (*state)->key[PF_SK_STACK]) { 5338 struct pf_state_key *nk = 5339 (*state)->key[pd->didx]; 5340 5341 if (PF_ANEQ(pd2.src, 5342 &nk->addr[pd2.sidx], pd2.af) || 5343 nk->port[pd2.sidx] != th.th_sport) 5344 pf_change_icmp(pd2.src, &th.th_sport, 5345 daddr, &nk->addr[pd2.sidx], 5346 nk->port[pd2.sidx], NULL, 5347 pd2.ip_sum, icmpsum, 5348 pd->ip_sum, 0, pd2.af); 5349 5350 if (PF_ANEQ(pd2.dst, 5351 &nk->addr[pd2.didx], pd2.af) || 5352 nk->port[pd2.didx] != th.th_dport) 5353 pf_change_icmp(pd2.dst, &th.th_dport, 5354 saddr, &nk->addr[pd2.didx], 5355 nk->port[pd2.didx], NULL, 5356 pd2.ip_sum, icmpsum, 5357 pd->ip_sum, 0, pd2.af); 5358 copyback = 1; 5359 } 5360 5361 if (copyback) { 5362 switch (pd2.af) { 5363 #ifdef INET 5364 case AF_INET: 5365 m_copyback(m, off, ICMP_MINLEN, 5366 (caddr_t )&pd->hdr.icmp); 5367 m_copyback(m, ipoff2, sizeof(h2), 5368 (caddr_t )&h2); 5369 break; 5370 #endif /* INET */ 5371 #ifdef INET6 5372 case AF_INET6: 5373 m_copyback(m, off, 5374 sizeof(struct icmp6_hdr), 5375 (caddr_t )&pd->hdr.icmp6); 5376 m_copyback(m, ipoff2, sizeof(h2_6), 5377 (caddr_t )&h2_6); 5378 break; 5379 #endif /* INET6 */ 5380 } 5381 m_copyback(m, off2, 8, (caddr_t)&th); 5382 } 5383 5384 return (PF_PASS); 5385 break; 5386 } 5387 case IPPROTO_UDP: { 5388 struct udphdr uh; 5389 5390 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 5391 NULL, reason, pd2.af)) { 5392 DPFPRINTF(PF_DEBUG_MISC, 5393 ("pf: ICMP error message too short " 5394 "(udp)\n")); 5395 return (PF_DROP); 5396 } 5397 5398 key.af = pd2.af; 5399 key.proto = IPPROTO_UDP; 5400 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5401 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5402 key.port[pd2.sidx] = uh.uh_sport; 5403 key.port[pd2.didx] = uh.uh_dport; 5404 5405 STATE_LOOKUP(kif, &key, direction, *state, pd); 5406 5407 /* translate source/destination address, if necessary */ 5408 if ((*state)->key[PF_SK_WIRE] != 5409 (*state)->key[PF_SK_STACK]) { 5410 struct pf_state_key *nk = 5411 (*state)->key[pd->didx]; 5412 5413 if (PF_ANEQ(pd2.src, 5414 &nk->addr[pd2.sidx], pd2.af) || 5415 nk->port[pd2.sidx] != uh.uh_sport) 5416 pf_change_icmp(pd2.src, &uh.uh_sport, 5417 daddr, &nk->addr[pd2.sidx], 5418 nk->port[pd2.sidx], &uh.uh_sum, 5419 pd2.ip_sum, icmpsum, 5420 pd->ip_sum, 1, pd2.af); 5421 5422 if (PF_ANEQ(pd2.dst, 5423 &nk->addr[pd2.didx], pd2.af) || 5424 nk->port[pd2.didx] != uh.uh_dport) 5425 pf_change_icmp(pd2.dst, &uh.uh_dport, 5426 saddr, &nk->addr[pd2.didx], 5427 nk->port[pd2.didx], &uh.uh_sum, 5428 pd2.ip_sum, icmpsum, 5429 pd->ip_sum, 1, pd2.af); 5430 5431 switch (pd2.af) { 5432 #ifdef INET 5433 case AF_INET: 5434 m_copyback(m, off, ICMP_MINLEN, 5435 (caddr_t )&pd->hdr.icmp); 5436 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5437 break; 5438 #endif /* INET */ 5439 #ifdef INET6 5440 case AF_INET6: 5441 m_copyback(m, off, 5442 sizeof(struct icmp6_hdr), 5443 (caddr_t )&pd->hdr.icmp6); 5444 m_copyback(m, ipoff2, sizeof(h2_6), 5445 (caddr_t )&h2_6); 5446 break; 5447 #endif /* INET6 */ 5448 } 5449 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 5450 } 5451 return (PF_PASS); 5452 break; 5453 } 5454 #ifdef INET 5455 case IPPROTO_ICMP: { 5456 struct icmp iih; 5457 5458 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 5459 NULL, reason, pd2.af)) { 5460 DPFPRINTF(PF_DEBUG_MISC, 5461 ("pf: ICMP error message too short i" 5462 "(icmp)\n")); 5463 return (PF_DROP); 5464 } 5465 5466 key.af = pd2.af; 5467 key.proto = IPPROTO_ICMP; 5468 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5469 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5470 key.port[0] = key.port[1] = iih.icmp_id; 5471 5472 STATE_LOOKUP(kif, &key, direction, *state, pd); 5473 5474 /* translate source/destination address, if necessary */ 5475 if ((*state)->key[PF_SK_WIRE] != 5476 (*state)->key[PF_SK_STACK]) { 5477 struct pf_state_key *nk = 5478 (*state)->key[pd->didx]; 5479 5480 if (PF_ANEQ(pd2.src, 5481 &nk->addr[pd2.sidx], pd2.af) || 5482 nk->port[pd2.sidx] != iih.icmp_id) 5483 pf_change_icmp(pd2.src, &iih.icmp_id, 5484 daddr, &nk->addr[pd2.sidx], 5485 nk->port[pd2.sidx], NULL, 5486 pd2.ip_sum, icmpsum, 5487 pd->ip_sum, 0, AF_INET); 5488 5489 if (PF_ANEQ(pd2.dst, 5490 &nk->addr[pd2.didx], pd2.af) || 5491 nk->port[pd2.didx] != iih.icmp_id) 5492 pf_change_icmp(pd2.dst, &iih.icmp_id, 5493 saddr, &nk->addr[pd2.didx], 5494 nk->port[pd2.didx], NULL, 5495 pd2.ip_sum, icmpsum, 5496 pd->ip_sum, 0, AF_INET); 5497 5498 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 5499 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5500 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5501 } 5502 return (PF_PASS); 5503 break; 5504 } 5505 #endif /* INET */ 5506 #ifdef INET6 5507 case IPPROTO_ICMPV6: { 5508 struct icmp6_hdr iih; 5509 5510 if (!pf_pull_hdr(m, off2, &iih, 5511 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5512 DPFPRINTF(PF_DEBUG_MISC, 5513 ("pf: ICMP error message too short " 5514 "(icmp6)\n")); 5515 return (PF_DROP); 5516 } 5517 5518 key.af = pd2.af; 5519 key.proto = IPPROTO_ICMPV6; 5520 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5521 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5522 key.port[0] = key.port[1] = iih.icmp6_id; 5523 5524 STATE_LOOKUP(kif, &key, direction, *state, pd); 5525 5526 /* translate source/destination address, if necessary */ 5527 if ((*state)->key[PF_SK_WIRE] != 5528 (*state)->key[PF_SK_STACK]) { 5529 struct pf_state_key *nk = 5530 (*state)->key[pd->didx]; 5531 5532 if (PF_ANEQ(pd2.src, 5533 &nk->addr[pd2.sidx], pd2.af) || 5534 nk->port[pd2.sidx] != iih.icmp6_id) 5535 pf_change_icmp(pd2.src, &iih.icmp6_id, 5536 daddr, &nk->addr[pd2.sidx], 5537 nk->port[pd2.sidx], NULL, 5538 pd2.ip_sum, icmpsum, 5539 pd->ip_sum, 0, AF_INET6); 5540 5541 if (PF_ANEQ(pd2.dst, 5542 &nk->addr[pd2.didx], pd2.af) || 5543 nk->port[pd2.didx] != iih.icmp6_id) 5544 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5545 saddr, &nk->addr[pd2.didx], 5546 nk->port[pd2.didx], NULL, 5547 pd2.ip_sum, icmpsum, 5548 pd->ip_sum, 0, AF_INET6); 5549 5550 m_copyback(m, off, sizeof(struct icmp6_hdr), 5551 (caddr_t)&pd->hdr.icmp6); 5552 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5553 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5554 (caddr_t)&iih); 5555 } 5556 return (PF_PASS); 5557 break; 5558 } 5559 #endif /* INET6 */ 5560 default: { 5561 key.af = pd2.af; 5562 key.proto = pd2.proto; 5563 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5564 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5565 key.port[0] = key.port[1] = 0; 5566 5567 STATE_LOOKUP(kif, &key, direction, *state, pd); 5568 5569 /* translate source/destination address, if necessary */ 5570 if ((*state)->key[PF_SK_WIRE] != 5571 (*state)->key[PF_SK_STACK]) { 5572 struct pf_state_key *nk = 5573 (*state)->key[pd->didx]; 5574 5575 if (PF_ANEQ(pd2.src, 5576 &nk->addr[pd2.sidx], pd2.af)) 5577 pf_change_icmp(pd2.src, NULL, daddr, 5578 &nk->addr[pd2.sidx], 0, NULL, 5579 pd2.ip_sum, icmpsum, 5580 pd->ip_sum, 0, pd2.af); 5581 5582 if (PF_ANEQ(pd2.dst, 5583 &nk->addr[pd2.didx], pd2.af)) 5584 pf_change_icmp(pd2.dst, NULL, saddr, 5585 &nk->addr[pd2.didx], 0, NULL, 5586 pd2.ip_sum, icmpsum, 5587 pd->ip_sum, 0, pd2.af); 5588 5589 switch (pd2.af) { 5590 #ifdef INET 5591 case AF_INET: 5592 m_copyback(m, off, ICMP_MINLEN, 5593 (caddr_t)&pd->hdr.icmp); 5594 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5595 break; 5596 #endif /* INET */ 5597 #ifdef INET6 5598 case AF_INET6: 5599 m_copyback(m, off, 5600 sizeof(struct icmp6_hdr), 5601 (caddr_t )&pd->hdr.icmp6); 5602 m_copyback(m, ipoff2, sizeof(h2_6), 5603 (caddr_t )&h2_6); 5604 break; 5605 #endif /* INET6 */ 5606 } 5607 } 5608 return (PF_PASS); 5609 break; 5610 } 5611 } 5612 } 5613 } 5614 5615 static int 5616 pf_test_state_other(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 5617 struct mbuf *m, struct pf_pdesc *pd) 5618 { 5619 struct pf_state_peer *src, *dst; 5620 struct pf_state_key_cmp key; 5621 uint8_t psrc, pdst; 5622 5623 bzero(&key, sizeof(key)); 5624 key.af = pd->af; 5625 key.proto = pd->proto; 5626 if (direction == PF_IN) { 5627 PF_ACPY(&key.addr[0], pd->src, key.af); 5628 PF_ACPY(&key.addr[1], pd->dst, key.af); 5629 key.port[0] = key.port[1] = 0; 5630 } else { 5631 PF_ACPY(&key.addr[1], pd->src, key.af); 5632 PF_ACPY(&key.addr[0], pd->dst, key.af); 5633 key.port[1] = key.port[0] = 0; 5634 } 5635 5636 STATE_LOOKUP(kif, &key, direction, *state, pd); 5637 5638 if (direction == (*state)->direction) { 5639 src = &(*state)->src; 5640 dst = &(*state)->dst; 5641 psrc = PF_PEER_SRC; 5642 pdst = PF_PEER_DST; 5643 } else { 5644 src = &(*state)->dst; 5645 dst = &(*state)->src; 5646 psrc = PF_PEER_DST; 5647 pdst = PF_PEER_SRC; 5648 } 5649 5650 /* update states */ 5651 if (src->state < PFOTHERS_SINGLE) 5652 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 5653 if (dst->state == PFOTHERS_SINGLE) 5654 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 5655 5656 /* update expire time */ 5657 (*state)->expire = time_uptime; 5658 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5659 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5660 else 5661 (*state)->timeout = PFTM_OTHER_SINGLE; 5662 5663 /* translate source/destination address, if necessary */ 5664 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5665 struct pf_state_key *nk = (*state)->key[pd->didx]; 5666 5667 KASSERT(nk, ("%s: nk is null", __func__)); 5668 KASSERT(pd, ("%s: pd is null", __func__)); 5669 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5670 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5671 switch (pd->af) { 5672 #ifdef INET 5673 case AF_INET: 5674 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5675 pf_change_a(&pd->src->v4.s_addr, 5676 pd->ip_sum, 5677 nk->addr[pd->sidx].v4.s_addr, 5678 0); 5679 5680 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5681 pf_change_a(&pd->dst->v4.s_addr, 5682 pd->ip_sum, 5683 nk->addr[pd->didx].v4.s_addr, 5684 0); 5685 5686 break; 5687 #endif /* INET */ 5688 #ifdef INET6 5689 case AF_INET6: 5690 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5691 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5692 5693 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5694 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5695 #endif /* INET6 */ 5696 } 5697 } 5698 return (PF_PASS); 5699 } 5700 5701 /* 5702 * ipoff and off are measured from the start of the mbuf chain. 5703 * h must be at "ipoff" on the mbuf chain. 5704 */ 5705 void * 5706 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5707 u_short *actionp, u_short *reasonp, sa_family_t af) 5708 { 5709 switch (af) { 5710 #ifdef INET 5711 case AF_INET: { 5712 struct ip *h = mtod(m, struct ip *); 5713 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5714 5715 if (fragoff) { 5716 if (fragoff >= len) 5717 ACTION_SET(actionp, PF_PASS); 5718 else { 5719 ACTION_SET(actionp, PF_DROP); 5720 REASON_SET(reasonp, PFRES_FRAG); 5721 } 5722 return (NULL); 5723 } 5724 if (m->m_pkthdr.len < off + len || 5725 ntohs(h->ip_len) < off + len) { 5726 ACTION_SET(actionp, PF_DROP); 5727 REASON_SET(reasonp, PFRES_SHORT); 5728 return (NULL); 5729 } 5730 break; 5731 } 5732 #endif /* INET */ 5733 #ifdef INET6 5734 case AF_INET6: { 5735 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5736 5737 if (m->m_pkthdr.len < off + len || 5738 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5739 (unsigned)(off + len)) { 5740 ACTION_SET(actionp, PF_DROP); 5741 REASON_SET(reasonp, PFRES_SHORT); 5742 return (NULL); 5743 } 5744 break; 5745 } 5746 #endif /* INET6 */ 5747 } 5748 m_copydata(m, off, len, p); 5749 return (p); 5750 } 5751 5752 int 5753 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 5754 int rtableid) 5755 { 5756 struct ifnet *ifp; 5757 5758 /* 5759 * Skip check for addresses with embedded interface scope, 5760 * as they would always match anyway. 5761 */ 5762 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5763 return (1); 5764 5765 if (af != AF_INET && af != AF_INET6) 5766 return (0); 5767 5768 /* Skip checks for ipsec interfaces */ 5769 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5770 return (1); 5771 5772 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 5773 5774 switch (af) { 5775 #ifdef INET6 5776 case AF_INET6: 5777 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 5778 ifp)); 5779 #endif 5780 #ifdef INET 5781 case AF_INET: 5782 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 5783 ifp)); 5784 #endif 5785 } 5786 5787 return (0); 5788 } 5789 5790 #ifdef INET 5791 static void 5792 pf_route(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 5793 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 5794 { 5795 struct mbuf *m0, *m1; 5796 struct sockaddr_in dst; 5797 struct ip *ip; 5798 struct ifnet *ifp = NULL; 5799 struct pf_addr naddr; 5800 struct pf_ksrc_node *sn = NULL; 5801 int error = 0; 5802 uint16_t ip_len, ip_off; 5803 5804 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5805 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5806 __func__)); 5807 5808 if ((pd->pf_mtag == NULL && 5809 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5810 pd->pf_mtag->routed++ > 3) { 5811 m0 = *m; 5812 *m = NULL; 5813 goto bad_locked; 5814 } 5815 5816 if (r->rt == PF_DUPTO) { 5817 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 5818 if (s == NULL) { 5819 ifp = r->rpool.cur->kif ? 5820 r->rpool.cur->kif->pfik_ifp : NULL; 5821 } else { 5822 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5823 PF_STATE_UNLOCK(s); 5824 } 5825 if (ifp == oifp) { 5826 /* When the 2nd interface is not skipped */ 5827 return; 5828 } else { 5829 m0 = *m; 5830 *m = NULL; 5831 goto bad; 5832 } 5833 } else { 5834 pd->pf_mtag->flags |= PF_DUPLICATED; 5835 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 5836 if (s) 5837 PF_STATE_UNLOCK(s); 5838 return; 5839 } 5840 } 5841 } else { 5842 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5843 if (s) 5844 PF_STATE_UNLOCK(s); 5845 return; 5846 } 5847 m0 = *m; 5848 } 5849 5850 ip = mtod(m0, struct ip *); 5851 5852 bzero(&dst, sizeof(dst)); 5853 dst.sin_family = AF_INET; 5854 dst.sin_len = sizeof(dst); 5855 dst.sin_addr = ip->ip_dst; 5856 5857 bzero(&naddr, sizeof(naddr)); 5858 5859 if (TAILQ_EMPTY(&r->rpool.list)) { 5860 DPFPRINTF(PF_DEBUG_URGENT, 5861 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5862 goto bad_locked; 5863 } 5864 if (s == NULL) { 5865 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5866 &naddr, NULL, &sn); 5867 if (!PF_AZERO(&naddr, AF_INET)) 5868 dst.sin_addr.s_addr = naddr.v4.s_addr; 5869 ifp = r->rpool.cur->kif ? 5870 r->rpool.cur->kif->pfik_ifp : NULL; 5871 } else { 5872 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5873 dst.sin_addr.s_addr = 5874 s->rt_addr.v4.s_addr; 5875 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5876 PF_STATE_UNLOCK(s); 5877 } 5878 if (ifp == NULL) 5879 goto bad; 5880 5881 if (dir == PF_IN) { 5882 if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 5883 goto bad; 5884 else if (m0 == NULL) 5885 goto done; 5886 if (m0->m_len < sizeof(struct ip)) { 5887 DPFPRINTF(PF_DEBUG_URGENT, 5888 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5889 goto bad; 5890 } 5891 ip = mtod(m0, struct ip *); 5892 } 5893 5894 if (ifp->if_flags & IFF_LOOPBACK) 5895 m0->m_flags |= M_SKIP_FIREWALL; 5896 5897 ip_len = ntohs(ip->ip_len); 5898 ip_off = ntohs(ip->ip_off); 5899 5900 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5901 m0->m_pkthdr.csum_flags |= CSUM_IP; 5902 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5903 m0 = mb_unmapped_to_ext(m0); 5904 if (m0 == NULL) 5905 goto done; 5906 in_delayed_cksum(m0); 5907 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5908 } 5909 #if defined(SCTP) || defined(SCTP_SUPPORT) 5910 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5911 m0 = mb_unmapped_to_ext(m0); 5912 if (m0 == NULL) 5913 goto done; 5914 sctp_delayed_cksum(m0, (uint32_t)(ip->ip_hl << 2)); 5915 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5916 } 5917 #endif 5918 5919 /* 5920 * If small enough for interface, or the interface will take 5921 * care of the fragmentation for us, we can just send directly. 5922 */ 5923 if (ip_len <= ifp->if_mtu || 5924 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5925 ip->ip_sum = 0; 5926 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5927 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5928 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5929 } 5930 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5931 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5932 goto done; 5933 } 5934 5935 /* Balk when DF bit is set or the interface didn't support TSO. */ 5936 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5937 error = EMSGSIZE; 5938 KMOD_IPSTAT_INC(ips_cantfrag); 5939 if (r->rt != PF_DUPTO) { 5940 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5941 ifp->if_mtu); 5942 goto done; 5943 } else 5944 goto bad; 5945 } 5946 5947 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5948 if (error) 5949 goto bad; 5950 5951 for (; m0; m0 = m1) { 5952 m1 = m0->m_nextpkt; 5953 m0->m_nextpkt = NULL; 5954 if (error == 0) { 5955 m_clrprotoflags(m0); 5956 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5957 } else 5958 m_freem(m0); 5959 } 5960 5961 if (error == 0) 5962 KMOD_IPSTAT_INC(ips_fragmented); 5963 5964 done: 5965 if (r->rt != PF_DUPTO) 5966 *m = NULL; 5967 return; 5968 5969 bad_locked: 5970 if (s) 5971 PF_STATE_UNLOCK(s); 5972 bad: 5973 m_freem(m0); 5974 goto done; 5975 } 5976 #endif /* INET */ 5977 5978 #ifdef INET6 5979 static void 5980 pf_route6(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 5981 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 5982 { 5983 struct mbuf *m0; 5984 struct sockaddr_in6 dst; 5985 struct ip6_hdr *ip6; 5986 struct ifnet *ifp = NULL; 5987 struct pf_addr naddr; 5988 struct pf_ksrc_node *sn = NULL; 5989 5990 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5991 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5992 __func__)); 5993 5994 if ((pd->pf_mtag == NULL && 5995 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5996 pd->pf_mtag->routed++ > 3) { 5997 m0 = *m; 5998 *m = NULL; 5999 goto bad_locked; 6000 } 6001 6002 if (r->rt == PF_DUPTO) { 6003 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 6004 if (s == NULL) { 6005 ifp = r->rpool.cur->kif ? 6006 r->rpool.cur->kif->pfik_ifp : NULL; 6007 } else { 6008 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6009 PF_STATE_UNLOCK(s); 6010 } 6011 if (ifp == oifp) { 6012 /* When the 2nd interface is not skipped */ 6013 return; 6014 } else { 6015 m0 = *m; 6016 *m = NULL; 6017 goto bad; 6018 } 6019 } else { 6020 pd->pf_mtag->flags |= PF_DUPLICATED; 6021 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 6022 if (s) 6023 PF_STATE_UNLOCK(s); 6024 return; 6025 } 6026 } 6027 } else { 6028 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 6029 if (s) 6030 PF_STATE_UNLOCK(s); 6031 return; 6032 } 6033 m0 = *m; 6034 } 6035 6036 ip6 = mtod(m0, struct ip6_hdr *); 6037 6038 bzero(&dst, sizeof(dst)); 6039 dst.sin6_family = AF_INET6; 6040 dst.sin6_len = sizeof(dst); 6041 dst.sin6_addr = ip6->ip6_dst; 6042 6043 bzero(&naddr, sizeof(naddr)); 6044 6045 if (TAILQ_EMPTY(&r->rpool.list)) { 6046 DPFPRINTF(PF_DEBUG_URGENT, 6047 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 6048 goto bad_locked; 6049 } 6050 if (s == NULL) { 6051 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 6052 &naddr, NULL, &sn); 6053 if (!PF_AZERO(&naddr, AF_INET6)) 6054 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 6055 &naddr, AF_INET6); 6056 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 6057 } else { 6058 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 6059 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 6060 &s->rt_addr, AF_INET6); 6061 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6062 } 6063 6064 if (s) 6065 PF_STATE_UNLOCK(s); 6066 6067 if (ifp == NULL) 6068 goto bad; 6069 6070 if (dir == PF_IN) { 6071 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS) 6072 goto bad; 6073 else if (m0 == NULL) 6074 goto done; 6075 if (m0->m_len < sizeof(struct ip6_hdr)) { 6076 DPFPRINTF(PF_DEBUG_URGENT, 6077 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 6078 __func__)); 6079 goto bad; 6080 } 6081 ip6 = mtod(m0, struct ip6_hdr *); 6082 } 6083 6084 if (ifp->if_flags & IFF_LOOPBACK) 6085 m0->m_flags |= M_SKIP_FIREWALL; 6086 6087 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 6088 ~ifp->if_hwassist) { 6089 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 6090 m0 = mb_unmapped_to_ext(m0); 6091 if (m0 == NULL) 6092 goto done; 6093 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 6094 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 6095 } 6096 6097 /* 6098 * If the packet is too large for the outgoing interface, 6099 * send back an icmp6 error. 6100 */ 6101 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 6102 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 6103 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 6104 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 6105 else { 6106 in6_ifstat_inc(ifp, ifs6_in_toobig); 6107 if (r->rt != PF_DUPTO) 6108 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 6109 else 6110 goto bad; 6111 } 6112 6113 done: 6114 if (r->rt != PF_DUPTO) 6115 *m = NULL; 6116 return; 6117 6118 bad_locked: 6119 if (s) 6120 PF_STATE_UNLOCK(s); 6121 bad: 6122 m_freem(m0); 6123 goto done; 6124 } 6125 #endif /* INET6 */ 6126 6127 /* 6128 * FreeBSD supports cksum offloads for the following drivers. 6129 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 6130 * 6131 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 6132 * network driver performed cksum including pseudo header, need to verify 6133 * csum_data 6134 * CSUM_DATA_VALID : 6135 * network driver performed cksum, needs to additional pseudo header 6136 * cksum computation with partial csum_data(i.e. lack of H/W support for 6137 * pseudo header, for instance sk(4) and possibly gem(4)) 6138 * 6139 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 6140 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 6141 * TCP/UDP layer. 6142 * Also, set csum_data to 0xffff to force cksum validation. 6143 */ 6144 static int 6145 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 6146 { 6147 u_int16_t sum = 0; 6148 int hw_assist = 0; 6149 struct ip *ip; 6150 6151 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 6152 return (1); 6153 if (m->m_pkthdr.len < off + len) 6154 return (1); 6155 6156 switch (p) { 6157 case IPPROTO_TCP: 6158 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 6159 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 6160 sum = m->m_pkthdr.csum_data; 6161 } else { 6162 ip = mtod(m, struct ip *); 6163 sum = in_pseudo(ip->ip_src.s_addr, 6164 ip->ip_dst.s_addr, htonl((u_short)len + 6165 m->m_pkthdr.csum_data + IPPROTO_TCP)); 6166 } 6167 sum ^= 0xffff; 6168 ++hw_assist; 6169 } 6170 break; 6171 case IPPROTO_UDP: 6172 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 6173 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 6174 sum = m->m_pkthdr.csum_data; 6175 } else { 6176 ip = mtod(m, struct ip *); 6177 sum = in_pseudo(ip->ip_src.s_addr, 6178 ip->ip_dst.s_addr, htonl((u_short)len + 6179 m->m_pkthdr.csum_data + IPPROTO_UDP)); 6180 } 6181 sum ^= 0xffff; 6182 ++hw_assist; 6183 } 6184 break; 6185 case IPPROTO_ICMP: 6186 #ifdef INET6 6187 case IPPROTO_ICMPV6: 6188 #endif /* INET6 */ 6189 break; 6190 default: 6191 return (1); 6192 } 6193 6194 if (!hw_assist) { 6195 switch (af) { 6196 case AF_INET: 6197 if (p == IPPROTO_ICMP) { 6198 if (m->m_len < off) 6199 return (1); 6200 m->m_data += off; 6201 m->m_len -= off; 6202 sum = in_cksum(m, len); 6203 m->m_data -= off; 6204 m->m_len += off; 6205 } else { 6206 if (m->m_len < sizeof(struct ip)) 6207 return (1); 6208 sum = in4_cksum(m, p, off, len); 6209 } 6210 break; 6211 #ifdef INET6 6212 case AF_INET6: 6213 if (m->m_len < sizeof(struct ip6_hdr)) 6214 return (1); 6215 sum = in6_cksum(m, p, off, len); 6216 break; 6217 #endif /* INET6 */ 6218 default: 6219 return (1); 6220 } 6221 } 6222 if (sum) { 6223 switch (p) { 6224 case IPPROTO_TCP: 6225 { 6226 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 6227 break; 6228 } 6229 case IPPROTO_UDP: 6230 { 6231 KMOD_UDPSTAT_INC(udps_badsum); 6232 break; 6233 } 6234 #ifdef INET 6235 case IPPROTO_ICMP: 6236 { 6237 KMOD_ICMPSTAT_INC(icps_checksum); 6238 break; 6239 } 6240 #endif 6241 #ifdef INET6 6242 case IPPROTO_ICMPV6: 6243 { 6244 KMOD_ICMP6STAT_INC(icp6s_checksum); 6245 break; 6246 } 6247 #endif /* INET6 */ 6248 } 6249 return (1); 6250 } else { 6251 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 6252 m->m_pkthdr.csum_flags |= 6253 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 6254 m->m_pkthdr.csum_data = 0xffff; 6255 } 6256 } 6257 return (0); 6258 } 6259 6260 static bool 6261 pf_pdesc_to_dnflow(int dir, const struct pf_pdesc *pd, 6262 const struct pf_krule *r, const struct pf_kstate *s, 6263 struct ip_fw_args *dnflow) 6264 { 6265 int dndir = r->direction; 6266 6267 if (s && dndir == PF_INOUT) 6268 dndir = s->direction; 6269 6270 memset(dnflow, 0, sizeof(*dnflow)); 6271 6272 if (pd->dport != NULL) 6273 dnflow->f_id.dst_port = ntohs(*pd->dport); 6274 if (pd->sport != NULL) 6275 dnflow->f_id.src_port = ntohs(*pd->sport); 6276 6277 if (dir == PF_IN) 6278 dnflow->flags |= IPFW_ARGS_IN; 6279 else 6280 dnflow->flags |= IPFW_ARGS_OUT; 6281 6282 if (dir != dndir && pd->act.dnrpipe) { 6283 dnflow->rule.info = pd->act.dnrpipe; 6284 } 6285 else if (dir == dndir) { 6286 dnflow->rule.info = pd->act.dnpipe; 6287 } 6288 else { 6289 return (false); 6290 } 6291 6292 dnflow->rule.info |= IPFW_IS_DUMMYNET; 6293 if (r->free_flags & PFRULE_DN_IS_PIPE) 6294 dnflow->rule.info |= IPFW_IS_PIPE; 6295 6296 dnflow->f_id.proto = pd->proto; 6297 dnflow->f_id.extra = dnflow->rule.info; 6298 switch (pd->af) { 6299 case AF_INET: 6300 dnflow->f_id.addr_type = 4; 6301 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 6302 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 6303 break; 6304 case AF_INET6: 6305 dnflow->flags |= IPFW_ARGS_IP6; 6306 dnflow->f_id.addr_type = 6; 6307 dnflow->f_id.src_ip6 = pd->src->v6; 6308 dnflow->f_id.dst_ip6 = pd->dst->v6; 6309 break; 6310 default: 6311 panic("Invalid AF"); 6312 break; 6313 } 6314 6315 return (true); 6316 } 6317 6318 #ifdef INET 6319 int 6320 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6321 { 6322 struct pfi_kkif *kif; 6323 u_short action, reason = 0, log = 0; 6324 struct mbuf *m = *m0; 6325 struct ip *h = NULL; 6326 struct m_tag *ipfwtag; 6327 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6328 struct pf_kstate *s = NULL; 6329 struct pf_kruleset *ruleset = NULL; 6330 struct pf_pdesc pd; 6331 int off, dirndx, pqid = 0; 6332 6333 PF_RULES_RLOCK_TRACKER; 6334 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 6335 M_ASSERTPKTHDR(m); 6336 6337 if (!V_pf_status.running) 6338 return (PF_PASS); 6339 6340 memset(&pd, 0, sizeof(pd)); 6341 6342 kif = (struct pfi_kkif *)ifp->if_pf_kif; 6343 6344 if (kif == NULL) { 6345 DPFPRINTF(PF_DEBUG_URGENT, 6346 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 6347 return (PF_DROP); 6348 } 6349 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6350 return (PF_PASS); 6351 6352 if (m->m_flags & M_SKIP_FIREWALL) 6353 return (PF_PASS); 6354 6355 pd.pf_mtag = pf_find_mtag(m); 6356 6357 PF_RULES_RLOCK(); 6358 6359 if ((__predict_false(ip_divert_ptr != NULL) || ip_dn_io_ptr != NULL) && 6360 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 6361 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 6362 if ((rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) || 6363 (rr->info & IPFW_IS_DUMMYNET)) { 6364 if (pd.pf_mtag == NULL && 6365 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6366 action = PF_DROP; 6367 goto done; 6368 } 6369 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 6370 m_tag_delete(m, ipfwtag); 6371 } 6372 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 6373 m->m_flags |= M_FASTFWD_OURS; 6374 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 6375 } 6376 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 6377 /* We do IP header normalization and packet reassembly here */ 6378 action = PF_DROP; 6379 goto done; 6380 } 6381 m = *m0; /* pf_normalize messes with m0 */ 6382 h = mtod(m, struct ip *); 6383 6384 off = h->ip_hl << 2; 6385 if (off < (int)sizeof(struct ip)) { 6386 action = PF_DROP; 6387 REASON_SET(&reason, PFRES_SHORT); 6388 log = 1; 6389 goto done; 6390 } 6391 6392 pd.src = (struct pf_addr *)&h->ip_src; 6393 pd.dst = (struct pf_addr *)&h->ip_dst; 6394 pd.sport = pd.dport = NULL; 6395 pd.ip_sum = &h->ip_sum; 6396 pd.proto_sum = NULL; 6397 pd.proto = h->ip_p; 6398 pd.dir = dir; 6399 pd.sidx = (dir == PF_IN) ? 0 : 1; 6400 pd.didx = (dir == PF_IN) ? 1 : 0; 6401 pd.af = AF_INET; 6402 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 6403 pd.tot_len = ntohs(h->ip_len); 6404 6405 /* handle fragments that didn't get reassembled by normalization */ 6406 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 6407 action = pf_test_fragment(&r, dir, kif, m, h, 6408 &pd, &a, &ruleset); 6409 goto done; 6410 } 6411 6412 switch (h->ip_p) { 6413 case IPPROTO_TCP: { 6414 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 6415 &action, &reason, AF_INET)) { 6416 log = action != PF_PASS; 6417 goto done; 6418 } 6419 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 6420 6421 pd.sport = &pd.hdr.tcp.th_sport; 6422 pd.dport = &pd.hdr.tcp.th_dport; 6423 6424 /* Respond to SYN with a syncookie. */ 6425 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 6426 pd.dir == PF_IN && pf_synflood_check(&pd)) { 6427 pf_syncookie_send(m, off, &pd); 6428 action = PF_DROP; 6429 break; 6430 } 6431 6432 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 6433 pqid = 1; 6434 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6435 if (action == PF_DROP) 6436 goto done; 6437 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6438 &reason); 6439 if (action == PF_PASS) { 6440 if (V_pfsync_update_state_ptr != NULL) 6441 V_pfsync_update_state_ptr(s); 6442 r = s->rule.ptr; 6443 a = s->anchor.ptr; 6444 log = s->log; 6445 } else if (s == NULL) { 6446 /* Validate remote SYN|ACK, re-create original SYN if 6447 * valid. */ 6448 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 6449 TH_ACK && pf_syncookie_validate(&pd) && 6450 pd.dir == PF_IN) { 6451 struct mbuf *msyn; 6452 6453 msyn = pf_syncookie_recreate_syn(h->ip_ttl, 6454 off,&pd); 6455 if (msyn == NULL) { 6456 action = PF_DROP; 6457 break; 6458 } 6459 6460 action = pf_test(dir, pflags, ifp, &msyn, inp); 6461 m_freem(msyn); 6462 6463 if (action == PF_PASS) { 6464 action = pf_test_state_tcp(&s, dir, 6465 kif, m, off, h, &pd, &reason); 6466 if (action != PF_PASS || s == NULL) { 6467 action = PF_DROP; 6468 break; 6469 } 6470 6471 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) 6472 - 1; 6473 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) 6474 - 1; 6475 pf_set_protostate(s, PF_PEER_SRC, 6476 PF_TCPS_PROXY_DST); 6477 6478 action = pf_synproxy(&pd, &s, &reason); 6479 if (action != PF_PASS) 6480 break; 6481 } 6482 break; 6483 } 6484 else { 6485 action = pf_test_rule(&r, &s, dir, kif, m, off, 6486 &pd, &a, &ruleset, inp); 6487 } 6488 } 6489 break; 6490 } 6491 6492 case IPPROTO_UDP: { 6493 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 6494 &action, &reason, AF_INET)) { 6495 log = action != PF_PASS; 6496 goto done; 6497 } 6498 pd.sport = &pd.hdr.udp.uh_sport; 6499 pd.dport = &pd.hdr.udp.uh_dport; 6500 if (pd.hdr.udp.uh_dport == 0 || 6501 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 6502 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 6503 action = PF_DROP; 6504 REASON_SET(&reason, PFRES_SHORT); 6505 goto done; 6506 } 6507 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6508 if (action == PF_PASS) { 6509 if (V_pfsync_update_state_ptr != NULL) 6510 V_pfsync_update_state_ptr(s); 6511 r = s->rule.ptr; 6512 a = s->anchor.ptr; 6513 log = s->log; 6514 } else if (s == NULL) 6515 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6516 &a, &ruleset, inp); 6517 break; 6518 } 6519 6520 case IPPROTO_ICMP: { 6521 if (!pf_pull_hdr(m, off, &pd.hdr.icmp, ICMP_MINLEN, 6522 &action, &reason, AF_INET)) { 6523 log = action != PF_PASS; 6524 goto done; 6525 } 6526 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 6527 &reason); 6528 if (action == PF_PASS) { 6529 if (V_pfsync_update_state_ptr != NULL) 6530 V_pfsync_update_state_ptr(s); 6531 r = s->rule.ptr; 6532 a = s->anchor.ptr; 6533 log = s->log; 6534 } else if (s == NULL) 6535 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6536 &a, &ruleset, inp); 6537 break; 6538 } 6539 6540 #ifdef INET6 6541 case IPPROTO_ICMPV6: { 6542 action = PF_DROP; 6543 DPFPRINTF(PF_DEBUG_MISC, 6544 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6545 goto done; 6546 } 6547 #endif 6548 6549 default: 6550 action = pf_test_state_other(&s, dir, kif, m, &pd); 6551 if (action == PF_PASS) { 6552 if (V_pfsync_update_state_ptr != NULL) 6553 V_pfsync_update_state_ptr(s); 6554 r = s->rule.ptr; 6555 a = s->anchor.ptr; 6556 log = s->log; 6557 } else if (s == NULL) 6558 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6559 &a, &ruleset, inp); 6560 break; 6561 } 6562 6563 done: 6564 PF_RULES_RUNLOCK(); 6565 if (action == PF_PASS && h->ip_hl > 5 && 6566 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6567 action = PF_DROP; 6568 REASON_SET(&reason, PFRES_IPOPTIONS); 6569 log = r->log; 6570 DPFPRINTF(PF_DEBUG_MISC, 6571 ("pf: dropping packet with ip options\n")); 6572 } 6573 6574 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6575 action = PF_DROP; 6576 REASON_SET(&reason, PFRES_MEMORY); 6577 } 6578 if (r->rtableid >= 0) 6579 M_SETFIB(m, r->rtableid); 6580 6581 if (r->scrub_flags & PFSTATE_SETPRIO) { 6582 if (pd.tos & IPTOS_LOWDELAY) 6583 pqid = 1; 6584 if (vlan_set_pcp(m, r->set_prio[pqid])) { 6585 action = PF_DROP; 6586 REASON_SET(&reason, PFRES_MEMORY); 6587 log = 1; 6588 DPFPRINTF(PF_DEBUG_MISC, 6589 ("pf: failed to allocate 802.1q mtag\n")); 6590 } 6591 } 6592 6593 #ifdef ALTQ 6594 if (s && s->qid) { 6595 pd.act.pqid = s->pqid; 6596 pd.act.qid = s->qid; 6597 } else if (r->qid) { 6598 pd.act.pqid = r->pqid; 6599 pd.act.qid = r->qid; 6600 } 6601 if (action == PF_PASS && pd.act.qid) { 6602 if (pd.pf_mtag == NULL && 6603 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6604 action = PF_DROP; 6605 REASON_SET(&reason, PFRES_MEMORY); 6606 } else { 6607 if (s != NULL) 6608 pd.pf_mtag->qid_hash = pf_state_hash(s); 6609 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6610 pd.pf_mtag->qid = pd.act.pqid; 6611 else 6612 pd.pf_mtag->qid = pd.act.qid; 6613 /* Add hints for ecn. */ 6614 pd.pf_mtag->hdr = h; 6615 } 6616 } 6617 #endif /* ALTQ */ 6618 6619 if (s && (s->dnpipe || s->dnrpipe)) { 6620 pd.act.dnpipe = s->dnpipe; 6621 pd.act.dnrpipe = s->dnrpipe; 6622 pd.act.flags = s->state_flags; 6623 } else if (r->dnpipe || r->dnrpipe) { 6624 pd.act.dnpipe = r->dnpipe; 6625 pd.act.dnrpipe = r->dnrpipe; 6626 pd.act.flags = r->free_flags; 6627 } 6628 if ((pd.act.dnpipe || pd.act.dnrpipe) && !PACKET_LOOPED(&pd)) { 6629 if (ip_dn_io_ptr == NULL) { 6630 action = PF_DROP; 6631 REASON_SET(&reason, PFRES_MEMORY); 6632 } else { 6633 struct ip_fw_args dnflow; 6634 6635 if (pd.pf_mtag == NULL && 6636 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6637 action = PF_DROP; 6638 REASON_SET(&reason, PFRES_MEMORY); 6639 if (s) 6640 PF_STATE_UNLOCK(s); 6641 return (action); 6642 } 6643 6644 if (pf_pdesc_to_dnflow(dir, &pd, r, s, &dnflow)) { 6645 ip_dn_io_ptr(m0, &dnflow); 6646 6647 if (*m0 == NULL) { 6648 if (s) 6649 PF_STATE_UNLOCK(s); 6650 return (action); 6651 } else { 6652 /* This is dummynet fast io processing */ 6653 m_tag_delete(*m0, m_tag_first(*m0)); 6654 pd.pf_mtag->flags &= ~PF_PACKET_LOOPED; 6655 } 6656 } 6657 } 6658 } 6659 6660 /* 6661 * connections redirected to loopback should not match sockets 6662 * bound specifically to loopback due to security implications, 6663 * see tcp_input() and in_pcblookup_listen(). 6664 */ 6665 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6666 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6667 (s->nat_rule.ptr->action == PF_RDR || 6668 s->nat_rule.ptr->action == PF_BINAT) && 6669 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 6670 m->m_flags |= M_SKIP_FIREWALL; 6671 6672 if (__predict_false(ip_divert_ptr != NULL) && action == PF_PASS && 6673 r->divert.port && !PACKET_LOOPED(&pd)) { 6674 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6675 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6676 if (ipfwtag != NULL) { 6677 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6678 ntohs(r->divert.port); 6679 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6680 6681 if (s) 6682 PF_STATE_UNLOCK(s); 6683 6684 m_tag_prepend(m, ipfwtag); 6685 if (m->m_flags & M_FASTFWD_OURS) { 6686 if (pd.pf_mtag == NULL && 6687 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6688 action = PF_DROP; 6689 REASON_SET(&reason, PFRES_MEMORY); 6690 log = 1; 6691 DPFPRINTF(PF_DEBUG_MISC, 6692 ("pf: failed to allocate tag\n")); 6693 } else { 6694 pd.pf_mtag->flags |= 6695 PF_FASTFWD_OURS_PRESENT; 6696 m->m_flags &= ~M_FASTFWD_OURS; 6697 } 6698 } 6699 ip_divert_ptr(*m0, dir == PF_IN); 6700 *m0 = NULL; 6701 6702 return (action); 6703 } else { 6704 /* XXX: ipfw has the same behaviour! */ 6705 action = PF_DROP; 6706 REASON_SET(&reason, PFRES_MEMORY); 6707 log = 1; 6708 DPFPRINTF(PF_DEBUG_MISC, 6709 ("pf: failed to allocate divert tag\n")); 6710 } 6711 } 6712 6713 if (log) { 6714 struct pf_krule *lr; 6715 6716 if (s != NULL && s->nat_rule.ptr != NULL && 6717 s->nat_rule.ptr->log & PF_LOG_ALL) 6718 lr = s->nat_rule.ptr; 6719 else 6720 lr = r; 6721 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6722 (s == NULL)); 6723 } 6724 6725 pf_counter_u64_critical_enter(); 6726 pf_counter_u64_add_protected(&kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], 6727 pd.tot_len); 6728 pf_counter_u64_add_protected(&kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 6729 1); 6730 6731 if (action == PF_PASS || r->action == PF_DROP) { 6732 dirndx = (dir == PF_OUT); 6733 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 6734 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 6735 if (a != NULL) { 6736 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 6737 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 6738 } 6739 if (s != NULL) { 6740 if (s->nat_rule.ptr != NULL) { 6741 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 6742 1); 6743 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 6744 pd.tot_len); 6745 } 6746 if (s->src_node != NULL) { 6747 counter_u64_add(s->src_node->packets[dirndx], 6748 1); 6749 counter_u64_add(s->src_node->bytes[dirndx], 6750 pd.tot_len); 6751 } 6752 if (s->nat_src_node != NULL) { 6753 counter_u64_add(s->nat_src_node->packets[dirndx], 6754 1); 6755 counter_u64_add(s->nat_src_node->bytes[dirndx], 6756 pd.tot_len); 6757 } 6758 dirndx = (dir == s->direction) ? 0 : 1; 6759 s->packets[dirndx]++; 6760 s->bytes[dirndx] += pd.tot_len; 6761 } 6762 tr = r; 6763 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6764 if (nr != NULL && r == &V_pf_default_rule) 6765 tr = nr; 6766 if (tr->src.addr.type == PF_ADDR_TABLE) 6767 pfr_update_stats(tr->src.addr.p.tbl, 6768 (s == NULL) ? pd.src : 6769 &s->key[(s->direction == PF_IN)]-> 6770 addr[(s->direction == PF_OUT)], 6771 pd.af, pd.tot_len, dir == PF_OUT, 6772 r->action == PF_PASS, tr->src.neg); 6773 if (tr->dst.addr.type == PF_ADDR_TABLE) 6774 pfr_update_stats(tr->dst.addr.p.tbl, 6775 (s == NULL) ? pd.dst : 6776 &s->key[(s->direction == PF_IN)]-> 6777 addr[(s->direction == PF_IN)], 6778 pd.af, pd.tot_len, dir == PF_OUT, 6779 r->action == PF_PASS, tr->dst.neg); 6780 } 6781 pf_counter_u64_critical_exit(); 6782 6783 switch (action) { 6784 case PF_SYNPROXY_DROP: 6785 m_freem(*m0); 6786 case PF_DEFER: 6787 *m0 = NULL; 6788 action = PF_PASS; 6789 break; 6790 case PF_DROP: 6791 m_freem(*m0); 6792 *m0 = NULL; 6793 break; 6794 default: 6795 /* pf_route() returns unlocked. */ 6796 if (r->rt) { 6797 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6798 return (action); 6799 } 6800 break; 6801 } 6802 6803 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 6804 6805 if (s) 6806 PF_STATE_UNLOCK(s); 6807 6808 return (action); 6809 } 6810 #endif /* INET */ 6811 6812 #ifdef INET6 6813 int 6814 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6815 { 6816 struct pfi_kkif *kif; 6817 u_short action, reason = 0, log = 0; 6818 struct mbuf *m = *m0, *n = NULL; 6819 struct m_tag *mtag; 6820 struct m_tag *ipfwtag; 6821 struct ip6_hdr *h = NULL; 6822 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6823 struct pf_kstate *s = NULL; 6824 struct pf_kruleset *ruleset = NULL; 6825 struct pf_pdesc pd; 6826 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6827 6828 PF_RULES_RLOCK_TRACKER; 6829 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 6830 M_ASSERTPKTHDR(m); 6831 6832 if (!V_pf_status.running) 6833 return (PF_PASS); 6834 6835 memset(&pd, 0, sizeof(pd)); 6836 pd.pf_mtag = pf_find_mtag(m); 6837 6838 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6839 return (PF_PASS); 6840 6841 kif = (struct pfi_kkif *)ifp->if_pf_kif; 6842 if (kif == NULL) { 6843 DPFPRINTF(PF_DEBUG_URGENT, 6844 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6845 return (PF_DROP); 6846 } 6847 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6848 return (PF_PASS); 6849 6850 if (m->m_flags & M_SKIP_FIREWALL) 6851 return (PF_PASS); 6852 6853 PF_RULES_RLOCK(); 6854 6855 /* We do IP header normalization and packet reassembly here */ 6856 if (ip_dn_io_ptr != NULL && 6857 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 6858 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 6859 if (rr->info & IPFW_IS_DUMMYNET) { 6860 if (pd.pf_mtag == NULL && 6861 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6862 action = PF_DROP; 6863 goto done; 6864 } 6865 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 6866 m_tag_delete(m, ipfwtag); 6867 } 6868 } else if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6869 action = PF_DROP; 6870 goto done; 6871 } 6872 m = *m0; /* pf_normalize messes with m0 */ 6873 h = mtod(m, struct ip6_hdr *); 6874 6875 /* 6876 * we do not support jumbogram. if we keep going, zero ip6_plen 6877 * will do something bad, so drop the packet for now. 6878 */ 6879 if (htons(h->ip6_plen) == 0) { 6880 action = PF_DROP; 6881 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6882 goto done; 6883 } 6884 6885 pd.src = (struct pf_addr *)&h->ip6_src; 6886 pd.dst = (struct pf_addr *)&h->ip6_dst; 6887 pd.sport = pd.dport = NULL; 6888 pd.ip_sum = NULL; 6889 pd.proto_sum = NULL; 6890 pd.dir = dir; 6891 pd.sidx = (dir == PF_IN) ? 0 : 1; 6892 pd.didx = (dir == PF_IN) ? 1 : 0; 6893 pd.af = AF_INET6; 6894 pd.tos = IPV6_DSCP(h); 6895 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6896 6897 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6898 pd.proto = h->ip6_nxt; 6899 do { 6900 switch (pd.proto) { 6901 case IPPROTO_FRAGMENT: 6902 action = pf_test_fragment(&r, dir, kif, m, h, 6903 &pd, &a, &ruleset); 6904 if (action == PF_DROP) 6905 REASON_SET(&reason, PFRES_FRAG); 6906 goto done; 6907 case IPPROTO_ROUTING: { 6908 struct ip6_rthdr rthdr; 6909 6910 if (rh_cnt++) { 6911 DPFPRINTF(PF_DEBUG_MISC, 6912 ("pf: IPv6 more than one rthdr\n")); 6913 action = PF_DROP; 6914 REASON_SET(&reason, PFRES_IPOPTIONS); 6915 log = 1; 6916 goto done; 6917 } 6918 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6919 &reason, pd.af)) { 6920 DPFPRINTF(PF_DEBUG_MISC, 6921 ("pf: IPv6 short rthdr\n")); 6922 action = PF_DROP; 6923 REASON_SET(&reason, PFRES_SHORT); 6924 log = 1; 6925 goto done; 6926 } 6927 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6928 DPFPRINTF(PF_DEBUG_MISC, 6929 ("pf: IPv6 rthdr0\n")); 6930 action = PF_DROP; 6931 REASON_SET(&reason, PFRES_IPOPTIONS); 6932 log = 1; 6933 goto done; 6934 } 6935 /* FALLTHROUGH */ 6936 } 6937 case IPPROTO_AH: 6938 case IPPROTO_HOPOPTS: 6939 case IPPROTO_DSTOPTS: { 6940 /* get next header and header length */ 6941 struct ip6_ext opt6; 6942 6943 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6944 NULL, &reason, pd.af)) { 6945 DPFPRINTF(PF_DEBUG_MISC, 6946 ("pf: IPv6 short opt\n")); 6947 action = PF_DROP; 6948 log = 1; 6949 goto done; 6950 } 6951 if (pd.proto == IPPROTO_AH) 6952 off += (opt6.ip6e_len + 2) * 4; 6953 else 6954 off += (opt6.ip6e_len + 1) * 8; 6955 pd.proto = opt6.ip6e_nxt; 6956 /* goto the next header */ 6957 break; 6958 } 6959 default: 6960 terminal++; 6961 break; 6962 } 6963 } while (!terminal); 6964 6965 /* if there's no routing header, use unmodified mbuf for checksumming */ 6966 if (!n) 6967 n = m; 6968 6969 switch (pd.proto) { 6970 case IPPROTO_TCP: { 6971 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 6972 &action, &reason, AF_INET6)) { 6973 log = action != PF_PASS; 6974 goto done; 6975 } 6976 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 6977 pd.sport = &pd.hdr.tcp.th_sport; 6978 pd.dport = &pd.hdr.tcp.th_dport; 6979 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6980 if (action == PF_DROP) 6981 goto done; 6982 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6983 &reason); 6984 if (action == PF_PASS) { 6985 if (V_pfsync_update_state_ptr != NULL) 6986 V_pfsync_update_state_ptr(s); 6987 r = s->rule.ptr; 6988 a = s->anchor.ptr; 6989 log = s->log; 6990 } else if (s == NULL) 6991 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6992 &a, &ruleset, inp); 6993 break; 6994 } 6995 6996 case IPPROTO_UDP: { 6997 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 6998 &action, &reason, AF_INET6)) { 6999 log = action != PF_PASS; 7000 goto done; 7001 } 7002 pd.sport = &pd.hdr.udp.uh_sport; 7003 pd.dport = &pd.hdr.udp.uh_dport; 7004 if (pd.hdr.udp.uh_dport == 0 || 7005 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 7006 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 7007 action = PF_DROP; 7008 REASON_SET(&reason, PFRES_SHORT); 7009 goto done; 7010 } 7011 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 7012 if (action == PF_PASS) { 7013 if (V_pfsync_update_state_ptr != NULL) 7014 V_pfsync_update_state_ptr(s); 7015 r = s->rule.ptr; 7016 a = s->anchor.ptr; 7017 log = s->log; 7018 } else if (s == NULL) 7019 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7020 &a, &ruleset, inp); 7021 break; 7022 } 7023 7024 case IPPROTO_ICMP: { 7025 action = PF_DROP; 7026 DPFPRINTF(PF_DEBUG_MISC, 7027 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 7028 goto done; 7029 } 7030 7031 case IPPROTO_ICMPV6: { 7032 if (!pf_pull_hdr(m, off, &pd.hdr.icmp6, sizeof(pd.hdr.icmp6), 7033 &action, &reason, AF_INET6)) { 7034 log = action != PF_PASS; 7035 goto done; 7036 } 7037 action = pf_test_state_icmp(&s, dir, kif, 7038 m, off, h, &pd, &reason); 7039 if (action == PF_PASS) { 7040 if (V_pfsync_update_state_ptr != NULL) 7041 V_pfsync_update_state_ptr(s); 7042 r = s->rule.ptr; 7043 a = s->anchor.ptr; 7044 log = s->log; 7045 } else if (s == NULL) 7046 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7047 &a, &ruleset, inp); 7048 break; 7049 } 7050 7051 default: 7052 action = pf_test_state_other(&s, dir, kif, m, &pd); 7053 if (action == PF_PASS) { 7054 if (V_pfsync_update_state_ptr != NULL) 7055 V_pfsync_update_state_ptr(s); 7056 r = s->rule.ptr; 7057 a = s->anchor.ptr; 7058 log = s->log; 7059 } else if (s == NULL) 7060 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7061 &a, &ruleset, inp); 7062 break; 7063 } 7064 7065 done: 7066 PF_RULES_RUNLOCK(); 7067 if (n != m) { 7068 m_freem(n); 7069 n = NULL; 7070 } 7071 7072 /* handle dangerous IPv6 extension headers. */ 7073 if (action == PF_PASS && rh_cnt && 7074 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 7075 action = PF_DROP; 7076 REASON_SET(&reason, PFRES_IPOPTIONS); 7077 log = r->log; 7078 DPFPRINTF(PF_DEBUG_MISC, 7079 ("pf: dropping packet with dangerous v6 headers\n")); 7080 } 7081 7082 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 7083 action = PF_DROP; 7084 REASON_SET(&reason, PFRES_MEMORY); 7085 } 7086 if (r->rtableid >= 0) 7087 M_SETFIB(m, r->rtableid); 7088 7089 if (r->scrub_flags & PFSTATE_SETPRIO) { 7090 if (pd.tos & IPTOS_LOWDELAY) 7091 pqid = 1; 7092 if (vlan_set_pcp(m, r->set_prio[pqid])) { 7093 action = PF_DROP; 7094 REASON_SET(&reason, PFRES_MEMORY); 7095 log = 1; 7096 DPFPRINTF(PF_DEBUG_MISC, 7097 ("pf: failed to allocate 802.1q mtag\n")); 7098 } 7099 } 7100 7101 #ifdef ALTQ 7102 if (s && s->qid) { 7103 pd.act.pqid = s->pqid; 7104 pd.act.qid = s->qid; 7105 } else if (r->qid) { 7106 pd.act.pqid = r->pqid; 7107 pd.act.qid = r->qid; 7108 } 7109 if (action == PF_PASS && pd.act.qid) { 7110 if (pd.pf_mtag == NULL && 7111 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7112 action = PF_DROP; 7113 REASON_SET(&reason, PFRES_MEMORY); 7114 } else { 7115 if (s != NULL) 7116 pd.pf_mtag->qid_hash = pf_state_hash(s); 7117 if (pd.tos & IPTOS_LOWDELAY) 7118 pd.pf_mtag->qid = pd.act.pqid; 7119 else 7120 pd.pf_mtag->qid = pd.act.qid; 7121 /* Add hints for ecn. */ 7122 pd.pf_mtag->hdr = h; 7123 } 7124 } 7125 #endif /* ALTQ */ 7126 7127 if (s && (s->dnpipe || s->dnrpipe)) { 7128 pd.act.dnpipe = s->dnpipe; 7129 pd.act.dnrpipe = s->dnrpipe; 7130 pd.act.flags = s->state_flags; 7131 } else { 7132 pd.act.dnpipe = r->dnpipe; 7133 pd.act.dnrpipe = r->dnrpipe; 7134 pd.act.flags = r->free_flags; 7135 } 7136 if ((pd.act.dnpipe || pd.act.dnrpipe) && !PACKET_LOOPED(&pd)) { 7137 if (ip_dn_io_ptr == NULL) { 7138 action = PF_DROP; 7139 REASON_SET(&reason, PFRES_MEMORY); 7140 } else { 7141 struct ip_fw_args dnflow; 7142 7143 if (pd.pf_mtag == NULL && 7144 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7145 action = PF_DROP; 7146 REASON_SET(&reason, PFRES_MEMORY); 7147 if (s) 7148 PF_STATE_UNLOCK(s); 7149 return (action); 7150 } 7151 7152 if (pf_pdesc_to_dnflow(dir, &pd, r, s, &dnflow)) { 7153 ip_dn_io_ptr(m0, &dnflow); 7154 7155 if (*m0 == NULL) { 7156 if (s) 7157 PF_STATE_UNLOCK(s); 7158 return (action); 7159 } else { 7160 /* This is dummynet fast io processing */ 7161 m_tag_delete(*m0, m_tag_first(*m0)); 7162 pd.pf_mtag->flags &= ~PF_PACKET_LOOPED; 7163 } 7164 } 7165 } 7166 } 7167 7168 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 7169 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 7170 (s->nat_rule.ptr->action == PF_RDR || 7171 s->nat_rule.ptr->action == PF_BINAT) && 7172 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 7173 m->m_flags |= M_SKIP_FIREWALL; 7174 7175 /* XXX: Anybody working on it?! */ 7176 if (r->divert.port) 7177 printf("pf: divert(9) is not supported for IPv6\n"); 7178 7179 if (log) { 7180 struct pf_krule *lr; 7181 7182 if (s != NULL && s->nat_rule.ptr != NULL && 7183 s->nat_rule.ptr->log & PF_LOG_ALL) 7184 lr = s->nat_rule.ptr; 7185 else 7186 lr = r; 7187 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 7188 &pd, (s == NULL)); 7189 } 7190 7191 pf_counter_u64_critical_enter(); 7192 pf_counter_u64_add_protected(&kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], 7193 pd.tot_len); 7194 pf_counter_u64_add_protected(&kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 7195 1); 7196 7197 if (action == PF_PASS || r->action == PF_DROP) { 7198 dirndx = (dir == PF_OUT); 7199 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 7200 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 7201 if (a != NULL) { 7202 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 7203 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 7204 } 7205 if (s != NULL) { 7206 if (s->nat_rule.ptr != NULL) { 7207 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 7208 1); 7209 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 7210 pd.tot_len); 7211 } 7212 if (s->src_node != NULL) { 7213 counter_u64_add(s->src_node->packets[dirndx], 7214 1); 7215 counter_u64_add(s->src_node->bytes[dirndx], 7216 pd.tot_len); 7217 } 7218 if (s->nat_src_node != NULL) { 7219 counter_u64_add(s->nat_src_node->packets[dirndx], 7220 1); 7221 counter_u64_add(s->nat_src_node->bytes[dirndx], 7222 pd.tot_len); 7223 } 7224 dirndx = (dir == s->direction) ? 0 : 1; 7225 s->packets[dirndx]++; 7226 s->bytes[dirndx] += pd.tot_len; 7227 } 7228 tr = r; 7229 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 7230 if (nr != NULL && r == &V_pf_default_rule) 7231 tr = nr; 7232 if (tr->src.addr.type == PF_ADDR_TABLE) 7233 pfr_update_stats(tr->src.addr.p.tbl, 7234 (s == NULL) ? pd.src : 7235 &s->key[(s->direction == PF_IN)]->addr[0], 7236 pd.af, pd.tot_len, dir == PF_OUT, 7237 r->action == PF_PASS, tr->src.neg); 7238 if (tr->dst.addr.type == PF_ADDR_TABLE) 7239 pfr_update_stats(tr->dst.addr.p.tbl, 7240 (s == NULL) ? pd.dst : 7241 &s->key[(s->direction == PF_IN)]->addr[1], 7242 pd.af, pd.tot_len, dir == PF_OUT, 7243 r->action == PF_PASS, tr->dst.neg); 7244 } 7245 pf_counter_u64_critical_exit(); 7246 7247 switch (action) { 7248 case PF_SYNPROXY_DROP: 7249 m_freem(*m0); 7250 case PF_DEFER: 7251 *m0 = NULL; 7252 action = PF_PASS; 7253 break; 7254 case PF_DROP: 7255 m_freem(*m0); 7256 *m0 = NULL; 7257 break; 7258 default: 7259 /* pf_route6() returns unlocked. */ 7260 if (r->rt) { 7261 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 7262 return (action); 7263 } 7264 break; 7265 } 7266 7267 if (s) 7268 PF_STATE_UNLOCK(s); 7269 7270 /* If reassembled packet passed, create new fragments. */ 7271 if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && 7272 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 7273 action = pf_refragment6(ifp, m0, mtag); 7274 7275 SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); 7276 7277 return (action); 7278 } 7279 #endif /* INET6 */ 7280