1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_bpf.h" 46 #include "opt_pf.h" 47 48 #include <sys/param.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/socket.h> 61 #include <sys/sysctl.h> 62 #include <sys/taskqueue.h> 63 #include <sys/ucred.h> 64 65 #include <net/if.h> 66 #include <net/if_var.h> 67 #include <net/if_types.h> 68 #include <net/if_vlan_var.h> 69 #include <net/route.h> 70 #include <net/radix_mpath.h> 71 #include <net/vnet.h> 72 73 #include <net/pfil.h> 74 #include <net/pfvar.h> 75 #include <net/if_pflog.h> 76 #include <net/if_pfsync.h> 77 78 #include <netinet/in_pcb.h> 79 #include <netinet/in_var.h> 80 #include <netinet/in_fib.h> 81 #include <netinet/ip.h> 82 #include <netinet/ip_fw.h> 83 #include <netinet/ip_icmp.h> 84 #include <netinet/icmp_var.h> 85 #include <netinet/ip_var.h> 86 #include <netinet/tcp.h> 87 #include <netinet/tcp_fsm.h> 88 #include <netinet/tcp_seq.h> 89 #include <netinet/tcp_timer.h> 90 #include <netinet/tcp_var.h> 91 #include <netinet/udp.h> 92 #include <netinet/udp_var.h> 93 94 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 95 96 #ifdef INET6 97 #include <netinet/ip6.h> 98 #include <netinet/icmp6.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/ip6_var.h> 101 #include <netinet6/in6_pcb.h> 102 #include <netinet6/in6_fib.h> 103 #include <netinet6/scope6_var.h> 104 #endif /* INET6 */ 105 106 #include <machine/in_cksum.h> 107 #include <security/mac/mac_framework.h> 108 109 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 110 111 /* 112 * Global variables 113 */ 114 115 /* state tables */ 116 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 117 VNET_DEFINE(struct pf_palist, pf_pabuf); 118 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 119 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 120 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 121 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 122 VNET_DEFINE(struct pf_kstatus, pf_status); 123 124 VNET_DEFINE(u_int32_t, ticket_altqs_active); 125 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 126 VNET_DEFINE(int, altqs_inactive_open); 127 VNET_DEFINE(u_int32_t, ticket_pabuf); 128 129 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 130 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 131 VNET_DEFINE(u_char, pf_tcp_secret[16]); 132 #define V_pf_tcp_secret VNET(pf_tcp_secret) 133 VNET_DEFINE(int, pf_tcp_secret_init); 134 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 135 VNET_DEFINE(int, pf_tcp_iss_off); 136 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 137 VNET_DECLARE(int, pf_vnet_active); 138 #define V_pf_vnet_active VNET(pf_vnet_active) 139 140 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 141 #define V_pf_purge_idx VNET(pf_purge_idx) 142 143 /* 144 * Queue for pf_intr() sends. 145 */ 146 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 147 struct pf_send_entry { 148 STAILQ_ENTRY(pf_send_entry) pfse_next; 149 struct mbuf *pfse_m; 150 enum { 151 PFSE_IP, 152 PFSE_IP6, 153 PFSE_ICMP, 154 PFSE_ICMP6, 155 } pfse_type; 156 struct { 157 int type; 158 int code; 159 int mtu; 160 } icmpopts; 161 }; 162 163 STAILQ_HEAD(pf_send_head, pf_send_entry); 164 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 165 #define V_pf_sendqueue VNET(pf_sendqueue) 166 167 static struct mtx pf_sendqueue_mtx; 168 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 169 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 170 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 171 172 /* 173 * Queue for pf_overload_task() tasks. 174 */ 175 struct pf_overload_entry { 176 SLIST_ENTRY(pf_overload_entry) next; 177 struct pf_addr addr; 178 sa_family_t af; 179 uint8_t dir; 180 struct pf_rule *rule; 181 }; 182 183 SLIST_HEAD(pf_overload_head, pf_overload_entry); 184 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 185 #define V_pf_overloadqueue VNET(pf_overloadqueue) 186 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 187 #define V_pf_overloadtask VNET(pf_overloadtask) 188 189 static struct mtx pf_overloadqueue_mtx; 190 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 191 "pf overload/flush queue", MTX_DEF); 192 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 193 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 194 195 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 196 struct mtx pf_unlnkdrules_mtx; 197 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 198 MTX_DEF); 199 200 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 201 #define V_pf_sources_z VNET(pf_sources_z) 202 uma_zone_t pf_mtag_z; 203 VNET_DEFINE(uma_zone_t, pf_state_z); 204 VNET_DEFINE(uma_zone_t, pf_state_key_z); 205 206 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 207 #define PFID_CPUBITS 8 208 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 209 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 210 #define PFID_MAXID (~PFID_CPUMASK) 211 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 212 213 static void pf_src_tree_remove_state(struct pf_state *); 214 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 215 u_int32_t); 216 static void pf_add_threshold(struct pf_threshold *); 217 static int pf_check_threshold(struct pf_threshold *); 218 219 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 220 u_int16_t *, u_int16_t *, struct pf_addr *, 221 u_int16_t, u_int8_t, sa_family_t); 222 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 223 struct tcphdr *, struct pf_state_peer *); 224 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 225 struct pf_addr *, struct pf_addr *, u_int16_t, 226 u_int16_t *, u_int16_t *, u_int16_t *, 227 u_int16_t *, u_int8_t, sa_family_t); 228 static void pf_send_tcp(struct mbuf *, 229 const struct pf_rule *, sa_family_t, 230 const struct pf_addr *, const struct pf_addr *, 231 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 232 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 233 u_int16_t, struct ifnet *); 234 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 235 sa_family_t, struct pf_rule *); 236 static void pf_detach_state(struct pf_state *); 237 static int pf_state_key_attach(struct pf_state_key *, 238 struct pf_state_key *, struct pf_state *); 239 static void pf_state_key_detach(struct pf_state *, int); 240 static int pf_state_key_ctor(void *, int, void *, int); 241 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 242 static int pf_test_rule(struct pf_rule **, struct pf_state **, 243 int, struct pfi_kif *, struct mbuf *, int, 244 struct pf_pdesc *, struct pf_rule **, 245 struct pf_ruleset **, struct inpcb *); 246 static int pf_create_state(struct pf_rule *, struct pf_rule *, 247 struct pf_rule *, struct pf_pdesc *, 248 struct pf_src_node *, struct pf_state_key *, 249 struct pf_state_key *, struct mbuf *, int, 250 u_int16_t, u_int16_t, int *, struct pfi_kif *, 251 struct pf_state **, int, u_int16_t, u_int16_t, 252 int); 253 static int pf_test_fragment(struct pf_rule **, int, 254 struct pfi_kif *, struct mbuf *, void *, 255 struct pf_pdesc *, struct pf_rule **, 256 struct pf_ruleset **); 257 static int pf_tcp_track_full(struct pf_state_peer *, 258 struct pf_state_peer *, struct pf_state **, 259 struct pfi_kif *, struct mbuf *, int, 260 struct pf_pdesc *, u_short *, int *); 261 static int pf_tcp_track_sloppy(struct pf_state_peer *, 262 struct pf_state_peer *, struct pf_state **, 263 struct pf_pdesc *, u_short *); 264 static int pf_test_state_tcp(struct pf_state **, int, 265 struct pfi_kif *, struct mbuf *, int, 266 void *, struct pf_pdesc *, u_short *); 267 static int pf_test_state_udp(struct pf_state **, int, 268 struct pfi_kif *, struct mbuf *, int, 269 void *, struct pf_pdesc *); 270 static int pf_test_state_icmp(struct pf_state **, int, 271 struct pfi_kif *, struct mbuf *, int, 272 void *, struct pf_pdesc *, u_short *); 273 static int pf_test_state_other(struct pf_state **, int, 274 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 275 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 276 sa_family_t); 277 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 278 sa_family_t); 279 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 280 int, u_int16_t); 281 static int pf_check_proto_cksum(struct mbuf *, int, int, 282 u_int8_t, sa_family_t); 283 static void pf_print_state_parts(struct pf_state *, 284 struct pf_state_key *, struct pf_state_key *); 285 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 286 struct pf_addr_wrap *); 287 static struct pf_state *pf_find_state(struct pfi_kif *, 288 struct pf_state_key_cmp *, u_int); 289 static int pf_src_connlimit(struct pf_state **); 290 static void pf_overload_task(void *v, int pending); 291 static int pf_insert_src_node(struct pf_src_node **, 292 struct pf_rule *, struct pf_addr *, sa_family_t); 293 static u_int pf_purge_expired_states(u_int, int); 294 static void pf_purge_unlinked_rules(void); 295 static int pf_mtag_uminit(void *, int, int); 296 static void pf_mtag_free(struct m_tag *); 297 #ifdef INET 298 static void pf_route(struct mbuf **, struct pf_rule *, int, 299 struct ifnet *, struct pf_state *, 300 struct pf_pdesc *, struct inpcb *); 301 #endif /* INET */ 302 #ifdef INET6 303 static void pf_change_a6(struct pf_addr *, u_int16_t *, 304 struct pf_addr *, u_int8_t); 305 static void pf_route6(struct mbuf **, struct pf_rule *, int, 306 struct ifnet *, struct pf_state *, 307 struct pf_pdesc *, struct inpcb *); 308 #endif /* INET6 */ 309 310 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 311 312 extern int pf_end_threads; 313 extern struct proc *pf_purge_proc; 314 315 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 316 317 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 318 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 319 320 #define STATE_LOOKUP(i, k, d, s, pd) \ 321 do { \ 322 (s) = pf_find_state((i), (k), (d)); \ 323 if ((s) == NULL) \ 324 return (PF_DROP); \ 325 if (PACKET_LOOPED(pd)) \ 326 return (PF_PASS); \ 327 if ((d) == PF_OUT && \ 328 (((s)->rule.ptr->rt == PF_ROUTETO && \ 329 (s)->rule.ptr->direction == PF_OUT) || \ 330 ((s)->rule.ptr->rt == PF_REPLYTO && \ 331 (s)->rule.ptr->direction == PF_IN)) && \ 332 (s)->rt_kif != NULL && \ 333 (s)->rt_kif != (i)) \ 334 return (PF_PASS); \ 335 } while (0) 336 337 #define BOUND_IFACE(r, k) \ 338 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 339 340 #define STATE_INC_COUNTERS(s) \ 341 do { \ 342 counter_u64_add(s->rule.ptr->states_cur, 1); \ 343 counter_u64_add(s->rule.ptr->states_tot, 1); \ 344 if (s->anchor.ptr != NULL) { \ 345 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 346 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 347 } \ 348 if (s->nat_rule.ptr != NULL) { \ 349 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 350 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 351 } \ 352 } while (0) 353 354 #define STATE_DEC_COUNTERS(s) \ 355 do { \ 356 if (s->nat_rule.ptr != NULL) \ 357 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 358 if (s->anchor.ptr != NULL) \ 359 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 360 counter_u64_add(s->rule.ptr->states_cur, -1); \ 361 } while (0) 362 363 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 364 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 365 VNET_DEFINE(struct pf_idhash *, pf_idhash); 366 VNET_DEFINE(struct pf_srchash *, pf_srchash); 367 368 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 369 370 u_long pf_hashmask; 371 u_long pf_srchashmask; 372 static u_long pf_hashsize; 373 static u_long pf_srchashsize; 374 u_long pf_ioctl_maxcount = 65535; 375 376 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 377 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 378 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 379 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 380 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RDTUN, 381 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 382 383 VNET_DEFINE(void *, pf_swi_cookie); 384 385 VNET_DEFINE(uint32_t, pf_hashseed); 386 #define V_pf_hashseed VNET(pf_hashseed) 387 388 int 389 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 390 { 391 392 switch (af) { 393 #ifdef INET 394 case AF_INET: 395 if (a->addr32[0] > b->addr32[0]) 396 return (1); 397 if (a->addr32[0] < b->addr32[0]) 398 return (-1); 399 break; 400 #endif /* INET */ 401 #ifdef INET6 402 case AF_INET6: 403 if (a->addr32[3] > b->addr32[3]) 404 return (1); 405 if (a->addr32[3] < b->addr32[3]) 406 return (-1); 407 if (a->addr32[2] > b->addr32[2]) 408 return (1); 409 if (a->addr32[2] < b->addr32[2]) 410 return (-1); 411 if (a->addr32[1] > b->addr32[1]) 412 return (1); 413 if (a->addr32[1] < b->addr32[1]) 414 return (-1); 415 if (a->addr32[0] > b->addr32[0]) 416 return (1); 417 if (a->addr32[0] < b->addr32[0]) 418 return (-1); 419 break; 420 #endif /* INET6 */ 421 default: 422 panic("%s: unknown address family %u", __func__, af); 423 } 424 return (0); 425 } 426 427 static __inline uint32_t 428 pf_hashkey(struct pf_state_key *sk) 429 { 430 uint32_t h; 431 432 h = murmur3_32_hash32((uint32_t *)sk, 433 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 434 V_pf_hashseed); 435 436 return (h & pf_hashmask); 437 } 438 439 static __inline uint32_t 440 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 441 { 442 uint32_t h; 443 444 switch (af) { 445 case AF_INET: 446 h = murmur3_32_hash32((uint32_t *)&addr->v4, 447 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 448 break; 449 case AF_INET6: 450 h = murmur3_32_hash32((uint32_t *)&addr->v6, 451 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 452 break; 453 default: 454 panic("%s: unknown address family %u", __func__, af); 455 } 456 457 return (h & pf_srchashmask); 458 } 459 460 #ifdef ALTQ 461 static int 462 pf_state_hash(struct pf_state *s) 463 { 464 u_int32_t hv = (intptr_t)s / sizeof(*s); 465 466 hv ^= crc32(&s->src, sizeof(s->src)); 467 hv ^= crc32(&s->dst, sizeof(s->dst)); 468 if (hv == 0) 469 hv = 1; 470 return (hv); 471 } 472 #endif 473 474 #ifdef INET6 475 void 476 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 477 { 478 switch (af) { 479 #ifdef INET 480 case AF_INET: 481 dst->addr32[0] = src->addr32[0]; 482 break; 483 #endif /* INET */ 484 case AF_INET6: 485 dst->addr32[0] = src->addr32[0]; 486 dst->addr32[1] = src->addr32[1]; 487 dst->addr32[2] = src->addr32[2]; 488 dst->addr32[3] = src->addr32[3]; 489 break; 490 } 491 } 492 #endif /* INET6 */ 493 494 static void 495 pf_init_threshold(struct pf_threshold *threshold, 496 u_int32_t limit, u_int32_t seconds) 497 { 498 threshold->limit = limit * PF_THRESHOLD_MULT; 499 threshold->seconds = seconds; 500 threshold->count = 0; 501 threshold->last = time_uptime; 502 } 503 504 static void 505 pf_add_threshold(struct pf_threshold *threshold) 506 { 507 u_int32_t t = time_uptime, diff = t - threshold->last; 508 509 if (diff >= threshold->seconds) 510 threshold->count = 0; 511 else 512 threshold->count -= threshold->count * diff / 513 threshold->seconds; 514 threshold->count += PF_THRESHOLD_MULT; 515 threshold->last = t; 516 } 517 518 static int 519 pf_check_threshold(struct pf_threshold *threshold) 520 { 521 return (threshold->count > threshold->limit); 522 } 523 524 static int 525 pf_src_connlimit(struct pf_state **state) 526 { 527 struct pf_overload_entry *pfoe; 528 int bad = 0; 529 530 PF_STATE_LOCK_ASSERT(*state); 531 532 (*state)->src_node->conn++; 533 (*state)->src.tcp_est = 1; 534 pf_add_threshold(&(*state)->src_node->conn_rate); 535 536 if ((*state)->rule.ptr->max_src_conn && 537 (*state)->rule.ptr->max_src_conn < 538 (*state)->src_node->conn) { 539 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 540 bad++; 541 } 542 543 if ((*state)->rule.ptr->max_src_conn_rate.limit && 544 pf_check_threshold(&(*state)->src_node->conn_rate)) { 545 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 546 bad++; 547 } 548 549 if (!bad) 550 return (0); 551 552 /* Kill this state. */ 553 (*state)->timeout = PFTM_PURGE; 554 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 555 556 if ((*state)->rule.ptr->overload_tbl == NULL) 557 return (1); 558 559 /* Schedule overloading and flushing task. */ 560 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 561 if (pfoe == NULL) 562 return (1); /* too bad :( */ 563 564 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 565 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 566 pfoe->rule = (*state)->rule.ptr; 567 pfoe->dir = (*state)->direction; 568 PF_OVERLOADQ_LOCK(); 569 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 570 PF_OVERLOADQ_UNLOCK(); 571 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 572 573 return (1); 574 } 575 576 static void 577 pf_overload_task(void *v, int pending) 578 { 579 struct pf_overload_head queue; 580 struct pfr_addr p; 581 struct pf_overload_entry *pfoe, *pfoe1; 582 uint32_t killed = 0; 583 584 CURVNET_SET((struct vnet *)v); 585 586 PF_OVERLOADQ_LOCK(); 587 queue = V_pf_overloadqueue; 588 SLIST_INIT(&V_pf_overloadqueue); 589 PF_OVERLOADQ_UNLOCK(); 590 591 bzero(&p, sizeof(p)); 592 SLIST_FOREACH(pfoe, &queue, next) { 593 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 594 if (V_pf_status.debug >= PF_DEBUG_MISC) { 595 printf("%s: blocking address ", __func__); 596 pf_print_host(&pfoe->addr, 0, pfoe->af); 597 printf("\n"); 598 } 599 600 p.pfra_af = pfoe->af; 601 switch (pfoe->af) { 602 #ifdef INET 603 case AF_INET: 604 p.pfra_net = 32; 605 p.pfra_ip4addr = pfoe->addr.v4; 606 break; 607 #endif 608 #ifdef INET6 609 case AF_INET6: 610 p.pfra_net = 128; 611 p.pfra_ip6addr = pfoe->addr.v6; 612 break; 613 #endif 614 } 615 616 PF_RULES_WLOCK(); 617 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 618 PF_RULES_WUNLOCK(); 619 } 620 621 /* 622 * Remove those entries, that don't need flushing. 623 */ 624 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 625 if (pfoe->rule->flush == 0) { 626 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 627 free(pfoe, M_PFTEMP); 628 } else 629 counter_u64_add( 630 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 631 632 /* If nothing to flush, return. */ 633 if (SLIST_EMPTY(&queue)) { 634 CURVNET_RESTORE(); 635 return; 636 } 637 638 for (int i = 0; i <= pf_hashmask; i++) { 639 struct pf_idhash *ih = &V_pf_idhash[i]; 640 struct pf_state_key *sk; 641 struct pf_state *s; 642 643 PF_HASHROW_LOCK(ih); 644 LIST_FOREACH(s, &ih->states, entry) { 645 sk = s->key[PF_SK_WIRE]; 646 SLIST_FOREACH(pfoe, &queue, next) 647 if (sk->af == pfoe->af && 648 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 649 pfoe->rule == s->rule.ptr) && 650 ((pfoe->dir == PF_OUT && 651 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 652 (pfoe->dir == PF_IN && 653 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 654 s->timeout = PFTM_PURGE; 655 s->src.state = s->dst.state = TCPS_CLOSED; 656 killed++; 657 } 658 } 659 PF_HASHROW_UNLOCK(ih); 660 } 661 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 662 free(pfoe, M_PFTEMP); 663 if (V_pf_status.debug >= PF_DEBUG_MISC) 664 printf("%s: %u states killed", __func__, killed); 665 666 CURVNET_RESTORE(); 667 } 668 669 /* 670 * Can return locked on failure, so that we can consistently 671 * allocate and insert a new one. 672 */ 673 struct pf_src_node * 674 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 675 int returnlocked) 676 { 677 struct pf_srchash *sh; 678 struct pf_src_node *n; 679 680 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 681 682 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 683 PF_HASHROW_LOCK(sh); 684 LIST_FOREACH(n, &sh->nodes, entry) 685 if (n->rule.ptr == rule && n->af == af && 686 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 687 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 688 break; 689 if (n != NULL) { 690 n->states++; 691 PF_HASHROW_UNLOCK(sh); 692 } else if (returnlocked == 0) 693 PF_HASHROW_UNLOCK(sh); 694 695 return (n); 696 } 697 698 static int 699 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 700 struct pf_addr *src, sa_family_t af) 701 { 702 703 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 704 rule->rpool.opts & PF_POOL_STICKYADDR), 705 ("%s for non-tracking rule %p", __func__, rule)); 706 707 if (*sn == NULL) 708 *sn = pf_find_src_node(src, rule, af, 1); 709 710 if (*sn == NULL) { 711 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 712 713 PF_HASHROW_ASSERT(sh); 714 715 if (!rule->max_src_nodes || 716 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 717 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 718 else 719 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 720 1); 721 if ((*sn) == NULL) { 722 PF_HASHROW_UNLOCK(sh); 723 return (-1); 724 } 725 726 pf_init_threshold(&(*sn)->conn_rate, 727 rule->max_src_conn_rate.limit, 728 rule->max_src_conn_rate.seconds); 729 730 (*sn)->af = af; 731 (*sn)->rule.ptr = rule; 732 PF_ACPY(&(*sn)->addr, src, af); 733 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 734 (*sn)->creation = time_uptime; 735 (*sn)->ruletype = rule->action; 736 (*sn)->states = 1; 737 if ((*sn)->rule.ptr != NULL) 738 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 739 PF_HASHROW_UNLOCK(sh); 740 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 741 } else { 742 if (rule->max_src_states && 743 (*sn)->states >= rule->max_src_states) { 744 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 745 1); 746 return (-1); 747 } 748 } 749 return (0); 750 } 751 752 void 753 pf_unlink_src_node(struct pf_src_node *src) 754 { 755 756 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 757 LIST_REMOVE(src, entry); 758 if (src->rule.ptr) 759 counter_u64_add(src->rule.ptr->src_nodes, -1); 760 } 761 762 u_int 763 pf_free_src_nodes(struct pf_src_node_list *head) 764 { 765 struct pf_src_node *sn, *tmp; 766 u_int count = 0; 767 768 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 769 uma_zfree(V_pf_sources_z, sn); 770 count++; 771 } 772 773 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 774 775 return (count); 776 } 777 778 void 779 pf_mtag_initialize() 780 { 781 782 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 783 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 784 UMA_ALIGN_PTR, 0); 785 } 786 787 /* Per-vnet data storage structures initialization. */ 788 void 789 pf_initialize() 790 { 791 struct pf_keyhash *kh; 792 struct pf_idhash *ih; 793 struct pf_srchash *sh; 794 u_int i; 795 796 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 797 pf_hashsize = PF_HASHSIZ; 798 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 799 pf_srchashsize = PF_SRCHASHSIZ; 800 801 V_pf_hashseed = arc4random(); 802 803 /* States and state keys storage. */ 804 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 805 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 806 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 807 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 808 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 809 810 V_pf_state_key_z = uma_zcreate("pf state keys", 811 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 812 UMA_ALIGN_PTR, 0); 813 814 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 815 M_PFHASH, M_NOWAIT | M_ZERO); 816 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 817 M_PFHASH, M_NOWAIT | M_ZERO); 818 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 819 printf("pf: Unable to allocate memory for " 820 "state_hashsize %lu.\n", pf_hashsize); 821 822 free(V_pf_keyhash, M_PFHASH); 823 free(V_pf_idhash, M_PFHASH); 824 825 pf_hashsize = PF_HASHSIZ; 826 V_pf_keyhash = mallocarray(pf_hashsize, 827 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 828 V_pf_idhash = mallocarray(pf_hashsize, 829 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 830 } 831 832 pf_hashmask = pf_hashsize - 1; 833 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 834 i++, kh++, ih++) { 835 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 836 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 837 } 838 839 /* Source nodes. */ 840 V_pf_sources_z = uma_zcreate("pf source nodes", 841 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 842 0); 843 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 844 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 845 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 846 847 V_pf_srchash = mallocarray(pf_srchashsize, 848 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 849 if (V_pf_srchash == NULL) { 850 printf("pf: Unable to allocate memory for " 851 "source_hashsize %lu.\n", pf_srchashsize); 852 853 pf_srchashsize = PF_SRCHASHSIZ; 854 V_pf_srchash = mallocarray(pf_srchashsize, 855 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 856 } 857 858 pf_srchashmask = pf_srchashsize - 1; 859 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 860 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 861 862 /* ALTQ */ 863 TAILQ_INIT(&V_pf_altqs[0]); 864 TAILQ_INIT(&V_pf_altqs[1]); 865 TAILQ_INIT(&V_pf_altqs[2]); 866 TAILQ_INIT(&V_pf_altqs[3]); 867 TAILQ_INIT(&V_pf_pabuf); 868 V_pf_altqs_active = &V_pf_altqs[0]; 869 V_pf_altq_ifs_active = &V_pf_altqs[1]; 870 V_pf_altqs_inactive = &V_pf_altqs[2]; 871 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 872 873 /* Send & overload+flush queues. */ 874 STAILQ_INIT(&V_pf_sendqueue); 875 SLIST_INIT(&V_pf_overloadqueue); 876 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 877 878 /* Unlinked, but may be referenced rules. */ 879 TAILQ_INIT(&V_pf_unlinked_rules); 880 } 881 882 void 883 pf_mtag_cleanup() 884 { 885 886 uma_zdestroy(pf_mtag_z); 887 } 888 889 void 890 pf_cleanup() 891 { 892 struct pf_keyhash *kh; 893 struct pf_idhash *ih; 894 struct pf_srchash *sh; 895 struct pf_send_entry *pfse, *next; 896 u_int i; 897 898 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 899 i++, kh++, ih++) { 900 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 901 __func__)); 902 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 903 __func__)); 904 mtx_destroy(&kh->lock); 905 mtx_destroy(&ih->lock); 906 } 907 free(V_pf_keyhash, M_PFHASH); 908 free(V_pf_idhash, M_PFHASH); 909 910 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 911 KASSERT(LIST_EMPTY(&sh->nodes), 912 ("%s: source node hash not empty", __func__)); 913 mtx_destroy(&sh->lock); 914 } 915 free(V_pf_srchash, M_PFHASH); 916 917 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 918 m_freem(pfse->pfse_m); 919 free(pfse, M_PFTEMP); 920 } 921 922 uma_zdestroy(V_pf_sources_z); 923 uma_zdestroy(V_pf_state_z); 924 uma_zdestroy(V_pf_state_key_z); 925 } 926 927 static int 928 pf_mtag_uminit(void *mem, int size, int how) 929 { 930 struct m_tag *t; 931 932 t = (struct m_tag *)mem; 933 t->m_tag_cookie = MTAG_ABI_COMPAT; 934 t->m_tag_id = PACKET_TAG_PF; 935 t->m_tag_len = sizeof(struct pf_mtag); 936 t->m_tag_free = pf_mtag_free; 937 938 return (0); 939 } 940 941 static void 942 pf_mtag_free(struct m_tag *t) 943 { 944 945 uma_zfree(pf_mtag_z, t); 946 } 947 948 struct pf_mtag * 949 pf_get_mtag(struct mbuf *m) 950 { 951 struct m_tag *mtag; 952 953 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 954 return ((struct pf_mtag *)(mtag + 1)); 955 956 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 957 if (mtag == NULL) 958 return (NULL); 959 bzero(mtag + 1, sizeof(struct pf_mtag)); 960 m_tag_prepend(m, mtag); 961 962 return ((struct pf_mtag *)(mtag + 1)); 963 } 964 965 static int 966 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 967 struct pf_state *s) 968 { 969 struct pf_keyhash *khs, *khw, *kh; 970 struct pf_state_key *sk, *cur; 971 struct pf_state *si, *olds = NULL; 972 int idx; 973 974 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 975 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 976 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 977 978 /* 979 * We need to lock hash slots of both keys. To avoid deadlock 980 * we always lock the slot with lower address first. Unlock order 981 * isn't important. 982 * 983 * We also need to lock ID hash slot before dropping key 984 * locks. On success we return with ID hash slot locked. 985 */ 986 987 if (skw == sks) { 988 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 989 PF_HASHROW_LOCK(khs); 990 } else { 991 khs = &V_pf_keyhash[pf_hashkey(sks)]; 992 khw = &V_pf_keyhash[pf_hashkey(skw)]; 993 if (khs == khw) { 994 PF_HASHROW_LOCK(khs); 995 } else if (khs < khw) { 996 PF_HASHROW_LOCK(khs); 997 PF_HASHROW_LOCK(khw); 998 } else { 999 PF_HASHROW_LOCK(khw); 1000 PF_HASHROW_LOCK(khs); 1001 } 1002 } 1003 1004 #define KEYS_UNLOCK() do { \ 1005 if (khs != khw) { \ 1006 PF_HASHROW_UNLOCK(khs); \ 1007 PF_HASHROW_UNLOCK(khw); \ 1008 } else \ 1009 PF_HASHROW_UNLOCK(khs); \ 1010 } while (0) 1011 1012 /* 1013 * First run: start with wire key. 1014 */ 1015 sk = skw; 1016 kh = khw; 1017 idx = PF_SK_WIRE; 1018 1019 keyattach: 1020 LIST_FOREACH(cur, &kh->keys, entry) 1021 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1022 break; 1023 1024 if (cur != NULL) { 1025 /* Key exists. Check for same kif, if none, add to key. */ 1026 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1027 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1028 1029 PF_HASHROW_LOCK(ih); 1030 if (si->kif == s->kif && 1031 si->direction == s->direction) { 1032 if (sk->proto == IPPROTO_TCP && 1033 si->src.state >= TCPS_FIN_WAIT_2 && 1034 si->dst.state >= TCPS_FIN_WAIT_2) { 1035 /* 1036 * New state matches an old >FIN_WAIT_2 1037 * state. We can't drop key hash locks, 1038 * thus we can't unlink it properly. 1039 * 1040 * As a workaround we drop it into 1041 * TCPS_CLOSED state, schedule purge 1042 * ASAP and push it into the very end 1043 * of the slot TAILQ, so that it won't 1044 * conflict with our new state. 1045 */ 1046 si->src.state = si->dst.state = 1047 TCPS_CLOSED; 1048 si->timeout = PFTM_PURGE; 1049 olds = si; 1050 } else { 1051 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1052 printf("pf: %s key attach " 1053 "failed on %s: ", 1054 (idx == PF_SK_WIRE) ? 1055 "wire" : "stack", 1056 s->kif->pfik_name); 1057 pf_print_state_parts(s, 1058 (idx == PF_SK_WIRE) ? 1059 sk : NULL, 1060 (idx == PF_SK_STACK) ? 1061 sk : NULL); 1062 printf(", existing: "); 1063 pf_print_state_parts(si, 1064 (idx == PF_SK_WIRE) ? 1065 sk : NULL, 1066 (idx == PF_SK_STACK) ? 1067 sk : NULL); 1068 printf("\n"); 1069 } 1070 PF_HASHROW_UNLOCK(ih); 1071 KEYS_UNLOCK(); 1072 uma_zfree(V_pf_state_key_z, sk); 1073 if (idx == PF_SK_STACK) 1074 pf_detach_state(s); 1075 return (EEXIST); /* collision! */ 1076 } 1077 } 1078 PF_HASHROW_UNLOCK(ih); 1079 } 1080 uma_zfree(V_pf_state_key_z, sk); 1081 s->key[idx] = cur; 1082 } else { 1083 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1084 s->key[idx] = sk; 1085 } 1086 1087 stateattach: 1088 /* List is sorted, if-bound states before floating. */ 1089 if (s->kif == V_pfi_all) 1090 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1091 else 1092 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1093 1094 if (olds) { 1095 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1096 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1097 key_list[idx]); 1098 olds = NULL; 1099 } 1100 1101 /* 1102 * Attach done. See how should we (or should not?) 1103 * attach a second key. 1104 */ 1105 if (sks == skw) { 1106 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1107 idx = PF_SK_STACK; 1108 sks = NULL; 1109 goto stateattach; 1110 } else if (sks != NULL) { 1111 /* 1112 * Continue attaching with stack key. 1113 */ 1114 sk = sks; 1115 kh = khs; 1116 idx = PF_SK_STACK; 1117 sks = NULL; 1118 goto keyattach; 1119 } 1120 1121 PF_STATE_LOCK(s); 1122 KEYS_UNLOCK(); 1123 1124 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1125 ("%s failure", __func__)); 1126 1127 return (0); 1128 #undef KEYS_UNLOCK 1129 } 1130 1131 static void 1132 pf_detach_state(struct pf_state *s) 1133 { 1134 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1135 struct pf_keyhash *kh; 1136 1137 if (sks != NULL) { 1138 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1139 PF_HASHROW_LOCK(kh); 1140 if (s->key[PF_SK_STACK] != NULL) 1141 pf_state_key_detach(s, PF_SK_STACK); 1142 /* 1143 * If both point to same key, then we are done. 1144 */ 1145 if (sks == s->key[PF_SK_WIRE]) { 1146 pf_state_key_detach(s, PF_SK_WIRE); 1147 PF_HASHROW_UNLOCK(kh); 1148 return; 1149 } 1150 PF_HASHROW_UNLOCK(kh); 1151 } 1152 1153 if (s->key[PF_SK_WIRE] != NULL) { 1154 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1155 PF_HASHROW_LOCK(kh); 1156 if (s->key[PF_SK_WIRE] != NULL) 1157 pf_state_key_detach(s, PF_SK_WIRE); 1158 PF_HASHROW_UNLOCK(kh); 1159 } 1160 } 1161 1162 static void 1163 pf_state_key_detach(struct pf_state *s, int idx) 1164 { 1165 struct pf_state_key *sk = s->key[idx]; 1166 #ifdef INVARIANTS 1167 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1168 1169 PF_HASHROW_ASSERT(kh); 1170 #endif 1171 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1172 s->key[idx] = NULL; 1173 1174 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1175 LIST_REMOVE(sk, entry); 1176 uma_zfree(V_pf_state_key_z, sk); 1177 } 1178 } 1179 1180 static int 1181 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1182 { 1183 struct pf_state_key *sk = mem; 1184 1185 bzero(sk, sizeof(struct pf_state_key_cmp)); 1186 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1187 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1188 1189 return (0); 1190 } 1191 1192 struct pf_state_key * 1193 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1194 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1195 { 1196 struct pf_state_key *sk; 1197 1198 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1199 if (sk == NULL) 1200 return (NULL); 1201 1202 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1203 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1204 sk->port[pd->sidx] = sport; 1205 sk->port[pd->didx] = dport; 1206 sk->proto = pd->proto; 1207 sk->af = pd->af; 1208 1209 return (sk); 1210 } 1211 1212 struct pf_state_key * 1213 pf_state_key_clone(struct pf_state_key *orig) 1214 { 1215 struct pf_state_key *sk; 1216 1217 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1218 if (sk == NULL) 1219 return (NULL); 1220 1221 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1222 1223 return (sk); 1224 } 1225 1226 int 1227 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1228 struct pf_state_key *sks, struct pf_state *s) 1229 { 1230 struct pf_idhash *ih; 1231 struct pf_state *cur; 1232 int error; 1233 1234 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1235 ("%s: sks not pristine", __func__)); 1236 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1237 ("%s: skw not pristine", __func__)); 1238 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1239 1240 s->kif = kif; 1241 1242 if (s->id == 0 && s->creatorid == 0) { 1243 /* XXX: should be atomic, but probability of collision low */ 1244 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1245 V_pf_stateid[curcpu] = 1; 1246 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1247 s->id = htobe64(s->id); 1248 s->creatorid = V_pf_status.hostid; 1249 } 1250 1251 /* Returns with ID locked on success. */ 1252 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1253 return (error); 1254 1255 ih = &V_pf_idhash[PF_IDHASH(s)]; 1256 PF_HASHROW_ASSERT(ih); 1257 LIST_FOREACH(cur, &ih->states, entry) 1258 if (cur->id == s->id && cur->creatorid == s->creatorid) 1259 break; 1260 1261 if (cur != NULL) { 1262 PF_HASHROW_UNLOCK(ih); 1263 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1264 printf("pf: state ID collision: " 1265 "id: %016llx creatorid: %08x\n", 1266 (unsigned long long)be64toh(s->id), 1267 ntohl(s->creatorid)); 1268 } 1269 pf_detach_state(s); 1270 return (EEXIST); 1271 } 1272 LIST_INSERT_HEAD(&ih->states, s, entry); 1273 /* One for keys, one for ID hash. */ 1274 refcount_init(&s->refs, 2); 1275 1276 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1277 if (V_pfsync_insert_state_ptr != NULL) 1278 V_pfsync_insert_state_ptr(s); 1279 1280 /* Returns locked. */ 1281 return (0); 1282 } 1283 1284 /* 1285 * Find state by ID: returns with locked row on success. 1286 */ 1287 struct pf_state * 1288 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1289 { 1290 struct pf_idhash *ih; 1291 struct pf_state *s; 1292 1293 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1294 1295 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1296 1297 PF_HASHROW_LOCK(ih); 1298 LIST_FOREACH(s, &ih->states, entry) 1299 if (s->id == id && s->creatorid == creatorid) 1300 break; 1301 1302 if (s == NULL) 1303 PF_HASHROW_UNLOCK(ih); 1304 1305 return (s); 1306 } 1307 1308 /* 1309 * Find state by key. 1310 * Returns with ID hash slot locked on success. 1311 */ 1312 static struct pf_state * 1313 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1314 { 1315 struct pf_keyhash *kh; 1316 struct pf_state_key *sk; 1317 struct pf_state *s; 1318 int idx; 1319 1320 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1321 1322 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1323 1324 PF_HASHROW_LOCK(kh); 1325 LIST_FOREACH(sk, &kh->keys, entry) 1326 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1327 break; 1328 if (sk == NULL) { 1329 PF_HASHROW_UNLOCK(kh); 1330 return (NULL); 1331 } 1332 1333 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1334 1335 /* List is sorted, if-bound states before floating ones. */ 1336 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1337 if (s->kif == V_pfi_all || s->kif == kif) { 1338 PF_STATE_LOCK(s); 1339 PF_HASHROW_UNLOCK(kh); 1340 if (s->timeout >= PFTM_MAX) { 1341 /* 1342 * State is either being processed by 1343 * pf_unlink_state() in an other thread, or 1344 * is scheduled for immediate expiry. 1345 */ 1346 PF_STATE_UNLOCK(s); 1347 return (NULL); 1348 } 1349 return (s); 1350 } 1351 PF_HASHROW_UNLOCK(kh); 1352 1353 return (NULL); 1354 } 1355 1356 struct pf_state * 1357 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1358 { 1359 struct pf_keyhash *kh; 1360 struct pf_state_key *sk; 1361 struct pf_state *s, *ret = NULL; 1362 int idx, inout = 0; 1363 1364 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1365 1366 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1367 1368 PF_HASHROW_LOCK(kh); 1369 LIST_FOREACH(sk, &kh->keys, entry) 1370 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1371 break; 1372 if (sk == NULL) { 1373 PF_HASHROW_UNLOCK(kh); 1374 return (NULL); 1375 } 1376 switch (dir) { 1377 case PF_IN: 1378 idx = PF_SK_WIRE; 1379 break; 1380 case PF_OUT: 1381 idx = PF_SK_STACK; 1382 break; 1383 case PF_INOUT: 1384 idx = PF_SK_WIRE; 1385 inout = 1; 1386 break; 1387 default: 1388 panic("%s: dir %u", __func__, dir); 1389 } 1390 second_run: 1391 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1392 if (more == NULL) { 1393 PF_HASHROW_UNLOCK(kh); 1394 return (s); 1395 } 1396 1397 if (ret) 1398 (*more)++; 1399 else 1400 ret = s; 1401 } 1402 if (inout == 1) { 1403 inout = 0; 1404 idx = PF_SK_STACK; 1405 goto second_run; 1406 } 1407 PF_HASHROW_UNLOCK(kh); 1408 1409 return (ret); 1410 } 1411 1412 /* END state table stuff */ 1413 1414 static void 1415 pf_send(struct pf_send_entry *pfse) 1416 { 1417 1418 PF_SENDQ_LOCK(); 1419 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1420 PF_SENDQ_UNLOCK(); 1421 swi_sched(V_pf_swi_cookie, 0); 1422 } 1423 1424 void 1425 pf_intr(void *v) 1426 { 1427 struct pf_send_head queue; 1428 struct pf_send_entry *pfse, *next; 1429 1430 CURVNET_SET((struct vnet *)v); 1431 1432 PF_SENDQ_LOCK(); 1433 queue = V_pf_sendqueue; 1434 STAILQ_INIT(&V_pf_sendqueue); 1435 PF_SENDQ_UNLOCK(); 1436 1437 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1438 switch (pfse->pfse_type) { 1439 #ifdef INET 1440 case PFSE_IP: 1441 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1442 break; 1443 case PFSE_ICMP: 1444 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1445 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1446 break; 1447 #endif /* INET */ 1448 #ifdef INET6 1449 case PFSE_IP6: 1450 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1451 NULL); 1452 break; 1453 case PFSE_ICMP6: 1454 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1455 pfse->icmpopts.code, pfse->icmpopts.mtu); 1456 break; 1457 #endif /* INET6 */ 1458 default: 1459 panic("%s: unknown type", __func__); 1460 } 1461 free(pfse, M_PFTEMP); 1462 } 1463 CURVNET_RESTORE(); 1464 } 1465 1466 void 1467 pf_purge_thread(void *unused __unused) 1468 { 1469 VNET_ITERATOR_DECL(vnet_iter); 1470 1471 sx_xlock(&pf_end_lock); 1472 while (pf_end_threads == 0) { 1473 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", hz / 10); 1474 1475 VNET_LIST_RLOCK(); 1476 VNET_FOREACH(vnet_iter) { 1477 CURVNET_SET(vnet_iter); 1478 1479 1480 /* Wait until V_pf_default_rule is initialized. */ 1481 if (V_pf_vnet_active == 0) { 1482 CURVNET_RESTORE(); 1483 continue; 1484 } 1485 1486 /* 1487 * Process 1/interval fraction of the state 1488 * table every run. 1489 */ 1490 V_pf_purge_idx = 1491 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1492 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1493 1494 /* 1495 * Purge other expired types every 1496 * PFTM_INTERVAL seconds. 1497 */ 1498 if (V_pf_purge_idx == 0) { 1499 /* 1500 * Order is important: 1501 * - states and src nodes reference rules 1502 * - states and rules reference kifs 1503 */ 1504 pf_purge_expired_fragments(); 1505 pf_purge_expired_src_nodes(); 1506 pf_purge_unlinked_rules(); 1507 pfi_kif_purge(); 1508 } 1509 CURVNET_RESTORE(); 1510 } 1511 VNET_LIST_RUNLOCK(); 1512 } 1513 1514 pf_end_threads++; 1515 sx_xunlock(&pf_end_lock); 1516 kproc_exit(0); 1517 } 1518 1519 void 1520 pf_unload_vnet_purge(void) 1521 { 1522 1523 /* 1524 * To cleanse up all kifs and rules we need 1525 * two runs: first one clears reference flags, 1526 * then pf_purge_expired_states() doesn't 1527 * raise them, and then second run frees. 1528 */ 1529 pf_purge_unlinked_rules(); 1530 pfi_kif_purge(); 1531 1532 /* 1533 * Now purge everything. 1534 */ 1535 pf_purge_expired_states(0, pf_hashmask); 1536 pf_purge_fragments(UINT_MAX); 1537 pf_purge_expired_src_nodes(); 1538 1539 /* 1540 * Now all kifs & rules should be unreferenced, 1541 * thus should be successfully freed. 1542 */ 1543 pf_purge_unlinked_rules(); 1544 pfi_kif_purge(); 1545 } 1546 1547 1548 u_int32_t 1549 pf_state_expires(const struct pf_state *state) 1550 { 1551 u_int32_t timeout; 1552 u_int32_t start; 1553 u_int32_t end; 1554 u_int32_t states; 1555 1556 /* handle all PFTM_* > PFTM_MAX here */ 1557 if (state->timeout == PFTM_PURGE) 1558 return (time_uptime); 1559 KASSERT(state->timeout != PFTM_UNLINKED, 1560 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1561 KASSERT((state->timeout < PFTM_MAX), 1562 ("pf_state_expires: timeout > PFTM_MAX")); 1563 timeout = state->rule.ptr->timeout[state->timeout]; 1564 if (!timeout) 1565 timeout = V_pf_default_rule.timeout[state->timeout]; 1566 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1567 if (start && state->rule.ptr != &V_pf_default_rule) { 1568 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1569 states = counter_u64_fetch(state->rule.ptr->states_cur); 1570 } else { 1571 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1572 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1573 states = V_pf_status.states; 1574 } 1575 if (end && states > start && start < end) { 1576 if (states < end) { 1577 timeout = (u_int64_t)timeout * (end - states) / 1578 (end - start); 1579 return (state->expire + timeout); 1580 } 1581 else 1582 return (time_uptime); 1583 } 1584 return (state->expire + timeout); 1585 } 1586 1587 void 1588 pf_purge_expired_src_nodes() 1589 { 1590 struct pf_src_node_list freelist; 1591 struct pf_srchash *sh; 1592 struct pf_src_node *cur, *next; 1593 int i; 1594 1595 LIST_INIT(&freelist); 1596 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1597 PF_HASHROW_LOCK(sh); 1598 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1599 if (cur->states == 0 && cur->expire <= time_uptime) { 1600 pf_unlink_src_node(cur); 1601 LIST_INSERT_HEAD(&freelist, cur, entry); 1602 } else if (cur->rule.ptr != NULL) 1603 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1604 PF_HASHROW_UNLOCK(sh); 1605 } 1606 1607 pf_free_src_nodes(&freelist); 1608 1609 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1610 } 1611 1612 static void 1613 pf_src_tree_remove_state(struct pf_state *s) 1614 { 1615 struct pf_src_node *sn; 1616 struct pf_srchash *sh; 1617 uint32_t timeout; 1618 1619 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1620 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1621 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1622 1623 if (s->src_node != NULL) { 1624 sn = s->src_node; 1625 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1626 PF_HASHROW_LOCK(sh); 1627 if (s->src.tcp_est) 1628 --sn->conn; 1629 if (--sn->states == 0) 1630 sn->expire = time_uptime + timeout; 1631 PF_HASHROW_UNLOCK(sh); 1632 } 1633 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1634 sn = s->nat_src_node; 1635 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1636 PF_HASHROW_LOCK(sh); 1637 if (--sn->states == 0) 1638 sn->expire = time_uptime + timeout; 1639 PF_HASHROW_UNLOCK(sh); 1640 } 1641 s->src_node = s->nat_src_node = NULL; 1642 } 1643 1644 /* 1645 * Unlink and potentilly free a state. Function may be 1646 * called with ID hash row locked, but always returns 1647 * unlocked, since it needs to go through key hash locking. 1648 */ 1649 int 1650 pf_unlink_state(struct pf_state *s, u_int flags) 1651 { 1652 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1653 1654 if ((flags & PF_ENTER_LOCKED) == 0) 1655 PF_HASHROW_LOCK(ih); 1656 else 1657 PF_HASHROW_ASSERT(ih); 1658 1659 if (s->timeout == PFTM_UNLINKED) { 1660 /* 1661 * State is being processed 1662 * by pf_unlink_state() in 1663 * an other thread. 1664 */ 1665 PF_HASHROW_UNLOCK(ih); 1666 return (0); /* XXXGL: undefined actually */ 1667 } 1668 1669 if (s->src.state == PF_TCPS_PROXY_DST) { 1670 /* XXX wire key the right one? */ 1671 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1672 &s->key[PF_SK_WIRE]->addr[1], 1673 &s->key[PF_SK_WIRE]->addr[0], 1674 s->key[PF_SK_WIRE]->port[1], 1675 s->key[PF_SK_WIRE]->port[0], 1676 s->src.seqhi, s->src.seqlo + 1, 1677 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1678 } 1679 1680 LIST_REMOVE(s, entry); 1681 pf_src_tree_remove_state(s); 1682 1683 if (V_pfsync_delete_state_ptr != NULL) 1684 V_pfsync_delete_state_ptr(s); 1685 1686 STATE_DEC_COUNTERS(s); 1687 1688 s->timeout = PFTM_UNLINKED; 1689 1690 PF_HASHROW_UNLOCK(ih); 1691 1692 pf_detach_state(s); 1693 /* pf_state_insert() initialises refs to 2, so we can never release the 1694 * last reference here, only in pf_release_state(). */ 1695 (void)refcount_release(&s->refs); 1696 1697 return (pf_release_state(s)); 1698 } 1699 1700 void 1701 pf_free_state(struct pf_state *cur) 1702 { 1703 1704 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1705 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1706 cur->timeout)); 1707 1708 pf_normalize_tcp_cleanup(cur); 1709 uma_zfree(V_pf_state_z, cur); 1710 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1711 } 1712 1713 /* 1714 * Called only from pf_purge_thread(), thus serialized. 1715 */ 1716 static u_int 1717 pf_purge_expired_states(u_int i, int maxcheck) 1718 { 1719 struct pf_idhash *ih; 1720 struct pf_state *s; 1721 1722 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1723 1724 /* 1725 * Go through hash and unlink states that expire now. 1726 */ 1727 while (maxcheck > 0) { 1728 1729 ih = &V_pf_idhash[i]; 1730 1731 /* only take the lock if we expect to do work */ 1732 if (!LIST_EMPTY(&ih->states)) { 1733 relock: 1734 PF_HASHROW_LOCK(ih); 1735 LIST_FOREACH(s, &ih->states, entry) { 1736 if (pf_state_expires(s) <= time_uptime) { 1737 V_pf_status.states -= 1738 pf_unlink_state(s, PF_ENTER_LOCKED); 1739 goto relock; 1740 } 1741 s->rule.ptr->rule_flag |= PFRULE_REFS; 1742 if (s->nat_rule.ptr != NULL) 1743 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1744 if (s->anchor.ptr != NULL) 1745 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1746 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1747 if (s->rt_kif) 1748 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1749 } 1750 PF_HASHROW_UNLOCK(ih); 1751 } 1752 1753 /* Return when we hit end of hash. */ 1754 if (++i > pf_hashmask) { 1755 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1756 return (0); 1757 } 1758 1759 maxcheck--; 1760 } 1761 1762 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1763 1764 return (i); 1765 } 1766 1767 static void 1768 pf_purge_unlinked_rules() 1769 { 1770 struct pf_rulequeue tmpq; 1771 struct pf_rule *r, *r1; 1772 1773 /* 1774 * If we have overloading task pending, then we'd 1775 * better skip purging this time. There is a tiny 1776 * probability that overloading task references 1777 * an already unlinked rule. 1778 */ 1779 PF_OVERLOADQ_LOCK(); 1780 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1781 PF_OVERLOADQ_UNLOCK(); 1782 return; 1783 } 1784 PF_OVERLOADQ_UNLOCK(); 1785 1786 /* 1787 * Do naive mark-and-sweep garbage collecting of old rules. 1788 * Reference flag is raised by pf_purge_expired_states() 1789 * and pf_purge_expired_src_nodes(). 1790 * 1791 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1792 * use a temporary queue. 1793 */ 1794 TAILQ_INIT(&tmpq); 1795 PF_UNLNKDRULES_LOCK(); 1796 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1797 if (!(r->rule_flag & PFRULE_REFS)) { 1798 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1799 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1800 } else 1801 r->rule_flag &= ~PFRULE_REFS; 1802 } 1803 PF_UNLNKDRULES_UNLOCK(); 1804 1805 if (!TAILQ_EMPTY(&tmpq)) { 1806 PF_RULES_WLOCK(); 1807 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1808 TAILQ_REMOVE(&tmpq, r, entries); 1809 pf_free_rule(r); 1810 } 1811 PF_RULES_WUNLOCK(); 1812 } 1813 } 1814 1815 void 1816 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1817 { 1818 switch (af) { 1819 #ifdef INET 1820 case AF_INET: { 1821 u_int32_t a = ntohl(addr->addr32[0]); 1822 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1823 (a>>8)&255, a&255); 1824 if (p) { 1825 p = ntohs(p); 1826 printf(":%u", p); 1827 } 1828 break; 1829 } 1830 #endif /* INET */ 1831 #ifdef INET6 1832 case AF_INET6: { 1833 u_int16_t b; 1834 u_int8_t i, curstart, curend, maxstart, maxend; 1835 curstart = curend = maxstart = maxend = 255; 1836 for (i = 0; i < 8; i++) { 1837 if (!addr->addr16[i]) { 1838 if (curstart == 255) 1839 curstart = i; 1840 curend = i; 1841 } else { 1842 if ((curend - curstart) > 1843 (maxend - maxstart)) { 1844 maxstart = curstart; 1845 maxend = curend; 1846 } 1847 curstart = curend = 255; 1848 } 1849 } 1850 if ((curend - curstart) > 1851 (maxend - maxstart)) { 1852 maxstart = curstart; 1853 maxend = curend; 1854 } 1855 for (i = 0; i < 8; i++) { 1856 if (i >= maxstart && i <= maxend) { 1857 if (i == 0) 1858 printf(":"); 1859 if (i == maxend) 1860 printf(":"); 1861 } else { 1862 b = ntohs(addr->addr16[i]); 1863 printf("%x", b); 1864 if (i < 7) 1865 printf(":"); 1866 } 1867 } 1868 if (p) { 1869 p = ntohs(p); 1870 printf("[%u]", p); 1871 } 1872 break; 1873 } 1874 #endif /* INET6 */ 1875 } 1876 } 1877 1878 void 1879 pf_print_state(struct pf_state *s) 1880 { 1881 pf_print_state_parts(s, NULL, NULL); 1882 } 1883 1884 static void 1885 pf_print_state_parts(struct pf_state *s, 1886 struct pf_state_key *skwp, struct pf_state_key *sksp) 1887 { 1888 struct pf_state_key *skw, *sks; 1889 u_int8_t proto, dir; 1890 1891 /* Do our best to fill these, but they're skipped if NULL */ 1892 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1893 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1894 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1895 dir = s ? s->direction : 0; 1896 1897 switch (proto) { 1898 case IPPROTO_IPV4: 1899 printf("IPv4"); 1900 break; 1901 case IPPROTO_IPV6: 1902 printf("IPv6"); 1903 break; 1904 case IPPROTO_TCP: 1905 printf("TCP"); 1906 break; 1907 case IPPROTO_UDP: 1908 printf("UDP"); 1909 break; 1910 case IPPROTO_ICMP: 1911 printf("ICMP"); 1912 break; 1913 case IPPROTO_ICMPV6: 1914 printf("ICMPv6"); 1915 break; 1916 default: 1917 printf("%u", proto); 1918 break; 1919 } 1920 switch (dir) { 1921 case PF_IN: 1922 printf(" in"); 1923 break; 1924 case PF_OUT: 1925 printf(" out"); 1926 break; 1927 } 1928 if (skw) { 1929 printf(" wire: "); 1930 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1931 printf(" "); 1932 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1933 } 1934 if (sks) { 1935 printf(" stack: "); 1936 if (sks != skw) { 1937 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1938 printf(" "); 1939 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1940 } else 1941 printf("-"); 1942 } 1943 if (s) { 1944 if (proto == IPPROTO_TCP) { 1945 printf(" [lo=%u high=%u win=%u modulator=%u", 1946 s->src.seqlo, s->src.seqhi, 1947 s->src.max_win, s->src.seqdiff); 1948 if (s->src.wscale && s->dst.wscale) 1949 printf(" wscale=%u", 1950 s->src.wscale & PF_WSCALE_MASK); 1951 printf("]"); 1952 printf(" [lo=%u high=%u win=%u modulator=%u", 1953 s->dst.seqlo, s->dst.seqhi, 1954 s->dst.max_win, s->dst.seqdiff); 1955 if (s->src.wscale && s->dst.wscale) 1956 printf(" wscale=%u", 1957 s->dst.wscale & PF_WSCALE_MASK); 1958 printf("]"); 1959 } 1960 printf(" %u:%u", s->src.state, s->dst.state); 1961 } 1962 } 1963 1964 void 1965 pf_print_flags(u_int8_t f) 1966 { 1967 if (f) 1968 printf(" "); 1969 if (f & TH_FIN) 1970 printf("F"); 1971 if (f & TH_SYN) 1972 printf("S"); 1973 if (f & TH_RST) 1974 printf("R"); 1975 if (f & TH_PUSH) 1976 printf("P"); 1977 if (f & TH_ACK) 1978 printf("A"); 1979 if (f & TH_URG) 1980 printf("U"); 1981 if (f & TH_ECE) 1982 printf("E"); 1983 if (f & TH_CWR) 1984 printf("W"); 1985 } 1986 1987 #define PF_SET_SKIP_STEPS(i) \ 1988 do { \ 1989 while (head[i] != cur) { \ 1990 head[i]->skip[i].ptr = cur; \ 1991 head[i] = TAILQ_NEXT(head[i], entries); \ 1992 } \ 1993 } while (0) 1994 1995 void 1996 pf_calc_skip_steps(struct pf_rulequeue *rules) 1997 { 1998 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1999 int i; 2000 2001 cur = TAILQ_FIRST(rules); 2002 prev = cur; 2003 for (i = 0; i < PF_SKIP_COUNT; ++i) 2004 head[i] = cur; 2005 while (cur != NULL) { 2006 2007 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2008 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2009 if (cur->direction != prev->direction) 2010 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2011 if (cur->af != prev->af) 2012 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2013 if (cur->proto != prev->proto) 2014 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2015 if (cur->src.neg != prev->src.neg || 2016 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2017 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2018 if (cur->src.port[0] != prev->src.port[0] || 2019 cur->src.port[1] != prev->src.port[1] || 2020 cur->src.port_op != prev->src.port_op) 2021 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2022 if (cur->dst.neg != prev->dst.neg || 2023 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2024 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2025 if (cur->dst.port[0] != prev->dst.port[0] || 2026 cur->dst.port[1] != prev->dst.port[1] || 2027 cur->dst.port_op != prev->dst.port_op) 2028 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2029 2030 prev = cur; 2031 cur = TAILQ_NEXT(cur, entries); 2032 } 2033 for (i = 0; i < PF_SKIP_COUNT; ++i) 2034 PF_SET_SKIP_STEPS(i); 2035 } 2036 2037 static int 2038 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2039 { 2040 if (aw1->type != aw2->type) 2041 return (1); 2042 switch (aw1->type) { 2043 case PF_ADDR_ADDRMASK: 2044 case PF_ADDR_RANGE: 2045 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2046 return (1); 2047 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2048 return (1); 2049 return (0); 2050 case PF_ADDR_DYNIFTL: 2051 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2052 case PF_ADDR_NOROUTE: 2053 case PF_ADDR_URPFFAILED: 2054 return (0); 2055 case PF_ADDR_TABLE: 2056 return (aw1->p.tbl != aw2->p.tbl); 2057 default: 2058 printf("invalid address type: %d\n", aw1->type); 2059 return (1); 2060 } 2061 } 2062 2063 /** 2064 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2065 * header isn't always a full checksum. In some cases (i.e. output) it's a 2066 * pseudo-header checksum, which is a partial checksum over src/dst IP 2067 * addresses, protocol number and length. 2068 * 2069 * That means we have the following cases: 2070 * * Input or forwarding: we don't have TSO, the checksum fields are full 2071 * checksums, we need to update the checksum whenever we change anything. 2072 * * Output (i.e. the checksum is a pseudo-header checksum): 2073 * x The field being updated is src/dst address or affects the length of 2074 * the packet. We need to update the pseudo-header checksum (note that this 2075 * checksum is not ones' complement). 2076 * x Some other field is being modified (e.g. src/dst port numbers): We 2077 * don't have to update anything. 2078 **/ 2079 u_int16_t 2080 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2081 { 2082 u_int32_t l; 2083 2084 if (udp && !cksum) 2085 return (0x0000); 2086 l = cksum + old - new; 2087 l = (l >> 16) + (l & 65535); 2088 l = l & 65535; 2089 if (udp && !l) 2090 return (0xFFFF); 2091 return (l); 2092 } 2093 2094 u_int16_t 2095 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2096 u_int16_t new, u_int8_t udp) 2097 { 2098 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2099 return (cksum); 2100 2101 return (pf_cksum_fixup(cksum, old, new, udp)); 2102 } 2103 2104 static void 2105 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2106 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2107 sa_family_t af) 2108 { 2109 struct pf_addr ao; 2110 u_int16_t po = *p; 2111 2112 PF_ACPY(&ao, a, af); 2113 PF_ACPY(a, an, af); 2114 2115 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2116 *pc = ~*pc; 2117 2118 *p = pn; 2119 2120 switch (af) { 2121 #ifdef INET 2122 case AF_INET: 2123 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2124 ao.addr16[0], an->addr16[0], 0), 2125 ao.addr16[1], an->addr16[1], 0); 2126 *p = pn; 2127 2128 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2129 ao.addr16[0], an->addr16[0], u), 2130 ao.addr16[1], an->addr16[1], u); 2131 2132 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2133 break; 2134 #endif /* INET */ 2135 #ifdef INET6 2136 case AF_INET6: 2137 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2138 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2139 pf_cksum_fixup(pf_cksum_fixup(*pc, 2140 ao.addr16[0], an->addr16[0], u), 2141 ao.addr16[1], an->addr16[1], u), 2142 ao.addr16[2], an->addr16[2], u), 2143 ao.addr16[3], an->addr16[3], u), 2144 ao.addr16[4], an->addr16[4], u), 2145 ao.addr16[5], an->addr16[5], u), 2146 ao.addr16[6], an->addr16[6], u), 2147 ao.addr16[7], an->addr16[7], u); 2148 2149 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2150 break; 2151 #endif /* INET6 */ 2152 } 2153 2154 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2155 CSUM_DELAY_DATA_IPV6)) { 2156 *pc = ~*pc; 2157 if (! *pc) 2158 *pc = 0xffff; 2159 } 2160 } 2161 2162 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2163 void 2164 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2165 { 2166 u_int32_t ao; 2167 2168 memcpy(&ao, a, sizeof(ao)); 2169 memcpy(a, &an, sizeof(u_int32_t)); 2170 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2171 ao % 65536, an % 65536, u); 2172 } 2173 2174 void 2175 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2176 { 2177 u_int32_t ao; 2178 2179 memcpy(&ao, a, sizeof(ao)); 2180 memcpy(a, &an, sizeof(u_int32_t)); 2181 2182 *c = pf_proto_cksum_fixup(m, 2183 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2184 ao % 65536, an % 65536, udp); 2185 } 2186 2187 #ifdef INET6 2188 static void 2189 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2190 { 2191 struct pf_addr ao; 2192 2193 PF_ACPY(&ao, a, AF_INET6); 2194 PF_ACPY(a, an, AF_INET6); 2195 2196 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2197 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2198 pf_cksum_fixup(pf_cksum_fixup(*c, 2199 ao.addr16[0], an->addr16[0], u), 2200 ao.addr16[1], an->addr16[1], u), 2201 ao.addr16[2], an->addr16[2], u), 2202 ao.addr16[3], an->addr16[3], u), 2203 ao.addr16[4], an->addr16[4], u), 2204 ao.addr16[5], an->addr16[5], u), 2205 ao.addr16[6], an->addr16[6], u), 2206 ao.addr16[7], an->addr16[7], u); 2207 } 2208 #endif /* INET6 */ 2209 2210 static void 2211 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2212 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2213 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2214 { 2215 struct pf_addr oia, ooa; 2216 2217 PF_ACPY(&oia, ia, af); 2218 if (oa) 2219 PF_ACPY(&ooa, oa, af); 2220 2221 /* Change inner protocol port, fix inner protocol checksum. */ 2222 if (ip != NULL) { 2223 u_int16_t oip = *ip; 2224 u_int32_t opc; 2225 2226 if (pc != NULL) 2227 opc = *pc; 2228 *ip = np; 2229 if (pc != NULL) 2230 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2231 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2232 if (pc != NULL) 2233 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2234 } 2235 /* Change inner ip address, fix inner ip and icmp checksums. */ 2236 PF_ACPY(ia, na, af); 2237 switch (af) { 2238 #ifdef INET 2239 case AF_INET: { 2240 u_int32_t oh2c = *h2c; 2241 2242 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2243 oia.addr16[0], ia->addr16[0], 0), 2244 oia.addr16[1], ia->addr16[1], 0); 2245 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2246 oia.addr16[0], ia->addr16[0], 0), 2247 oia.addr16[1], ia->addr16[1], 0); 2248 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2249 break; 2250 } 2251 #endif /* INET */ 2252 #ifdef INET6 2253 case AF_INET6: 2254 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2255 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2256 pf_cksum_fixup(pf_cksum_fixup(*ic, 2257 oia.addr16[0], ia->addr16[0], u), 2258 oia.addr16[1], ia->addr16[1], u), 2259 oia.addr16[2], ia->addr16[2], u), 2260 oia.addr16[3], ia->addr16[3], u), 2261 oia.addr16[4], ia->addr16[4], u), 2262 oia.addr16[5], ia->addr16[5], u), 2263 oia.addr16[6], ia->addr16[6], u), 2264 oia.addr16[7], ia->addr16[7], u); 2265 break; 2266 #endif /* INET6 */ 2267 } 2268 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2269 if (oa) { 2270 PF_ACPY(oa, na, af); 2271 switch (af) { 2272 #ifdef INET 2273 case AF_INET: 2274 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2275 ooa.addr16[0], oa->addr16[0], 0), 2276 ooa.addr16[1], oa->addr16[1], 0); 2277 break; 2278 #endif /* INET */ 2279 #ifdef INET6 2280 case AF_INET6: 2281 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2282 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2283 pf_cksum_fixup(pf_cksum_fixup(*ic, 2284 ooa.addr16[0], oa->addr16[0], u), 2285 ooa.addr16[1], oa->addr16[1], u), 2286 ooa.addr16[2], oa->addr16[2], u), 2287 ooa.addr16[3], oa->addr16[3], u), 2288 ooa.addr16[4], oa->addr16[4], u), 2289 ooa.addr16[5], oa->addr16[5], u), 2290 ooa.addr16[6], oa->addr16[6], u), 2291 ooa.addr16[7], oa->addr16[7], u); 2292 break; 2293 #endif /* INET6 */ 2294 } 2295 } 2296 } 2297 2298 2299 /* 2300 * Need to modulate the sequence numbers in the TCP SACK option 2301 * (credits to Krzysztof Pfaff for report and patch) 2302 */ 2303 static int 2304 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2305 struct tcphdr *th, struct pf_state_peer *dst) 2306 { 2307 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2308 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2309 int copyback = 0, i, olen; 2310 struct sackblk sack; 2311 2312 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2313 if (hlen < TCPOLEN_SACKLEN || 2314 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2315 return 0; 2316 2317 while (hlen >= TCPOLEN_SACKLEN) { 2318 olen = opt[1]; 2319 switch (*opt) { 2320 case TCPOPT_EOL: /* FALLTHROUGH */ 2321 case TCPOPT_NOP: 2322 opt++; 2323 hlen--; 2324 break; 2325 case TCPOPT_SACK: 2326 if (olen > hlen) 2327 olen = hlen; 2328 if (olen >= TCPOLEN_SACKLEN) { 2329 for (i = 2; i + TCPOLEN_SACK <= olen; 2330 i += TCPOLEN_SACK) { 2331 memcpy(&sack, &opt[i], sizeof(sack)); 2332 pf_change_proto_a(m, &sack.start, &th->th_sum, 2333 htonl(ntohl(sack.start) - dst->seqdiff), 0); 2334 pf_change_proto_a(m, &sack.end, &th->th_sum, 2335 htonl(ntohl(sack.end) - dst->seqdiff), 0); 2336 memcpy(&opt[i], &sack, sizeof(sack)); 2337 } 2338 copyback = 1; 2339 } 2340 /* FALLTHROUGH */ 2341 default: 2342 if (olen < 2) 2343 olen = 2; 2344 hlen -= olen; 2345 opt += olen; 2346 } 2347 } 2348 2349 if (copyback) 2350 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2351 return (copyback); 2352 } 2353 2354 static void 2355 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2356 const struct pf_addr *saddr, const struct pf_addr *daddr, 2357 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2358 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2359 u_int16_t rtag, struct ifnet *ifp) 2360 { 2361 struct pf_send_entry *pfse; 2362 struct mbuf *m; 2363 int len, tlen; 2364 #ifdef INET 2365 struct ip *h = NULL; 2366 #endif /* INET */ 2367 #ifdef INET6 2368 struct ip6_hdr *h6 = NULL; 2369 #endif /* INET6 */ 2370 struct tcphdr *th; 2371 char *opt; 2372 struct pf_mtag *pf_mtag; 2373 2374 len = 0; 2375 th = NULL; 2376 2377 /* maximum segment size tcp option */ 2378 tlen = sizeof(struct tcphdr); 2379 if (mss) 2380 tlen += 4; 2381 2382 switch (af) { 2383 #ifdef INET 2384 case AF_INET: 2385 len = sizeof(struct ip) + tlen; 2386 break; 2387 #endif /* INET */ 2388 #ifdef INET6 2389 case AF_INET6: 2390 len = sizeof(struct ip6_hdr) + tlen; 2391 break; 2392 #endif /* INET6 */ 2393 default: 2394 panic("%s: unsupported af %d", __func__, af); 2395 } 2396 2397 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2398 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2399 if (pfse == NULL) 2400 return; 2401 m = m_gethdr(M_NOWAIT, MT_DATA); 2402 if (m == NULL) { 2403 free(pfse, M_PFTEMP); 2404 return; 2405 } 2406 #ifdef MAC 2407 mac_netinet_firewall_send(m); 2408 #endif 2409 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2410 free(pfse, M_PFTEMP); 2411 m_freem(m); 2412 return; 2413 } 2414 if (tag) 2415 m->m_flags |= M_SKIP_FIREWALL; 2416 pf_mtag->tag = rtag; 2417 2418 if (r != NULL && r->rtableid >= 0) 2419 M_SETFIB(m, r->rtableid); 2420 2421 #ifdef ALTQ 2422 if (r != NULL && r->qid) { 2423 pf_mtag->qid = r->qid; 2424 2425 /* add hints for ecn */ 2426 pf_mtag->hdr = mtod(m, struct ip *); 2427 } 2428 #endif /* ALTQ */ 2429 m->m_data += max_linkhdr; 2430 m->m_pkthdr.len = m->m_len = len; 2431 m->m_pkthdr.rcvif = NULL; 2432 bzero(m->m_data, len); 2433 switch (af) { 2434 #ifdef INET 2435 case AF_INET: 2436 h = mtod(m, struct ip *); 2437 2438 /* IP header fields included in the TCP checksum */ 2439 h->ip_p = IPPROTO_TCP; 2440 h->ip_len = htons(tlen); 2441 h->ip_src.s_addr = saddr->v4.s_addr; 2442 h->ip_dst.s_addr = daddr->v4.s_addr; 2443 2444 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2445 break; 2446 #endif /* INET */ 2447 #ifdef INET6 2448 case AF_INET6: 2449 h6 = mtod(m, struct ip6_hdr *); 2450 2451 /* IP header fields included in the TCP checksum */ 2452 h6->ip6_nxt = IPPROTO_TCP; 2453 h6->ip6_plen = htons(tlen); 2454 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2455 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2456 2457 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2458 break; 2459 #endif /* INET6 */ 2460 } 2461 2462 /* TCP header */ 2463 th->th_sport = sport; 2464 th->th_dport = dport; 2465 th->th_seq = htonl(seq); 2466 th->th_ack = htonl(ack); 2467 th->th_off = tlen >> 2; 2468 th->th_flags = flags; 2469 th->th_win = htons(win); 2470 2471 if (mss) { 2472 opt = (char *)(th + 1); 2473 opt[0] = TCPOPT_MAXSEG; 2474 opt[1] = 4; 2475 HTONS(mss); 2476 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2477 } 2478 2479 switch (af) { 2480 #ifdef INET 2481 case AF_INET: 2482 /* TCP checksum */ 2483 th->th_sum = in_cksum(m, len); 2484 2485 /* Finish the IP header */ 2486 h->ip_v = 4; 2487 h->ip_hl = sizeof(*h) >> 2; 2488 h->ip_tos = IPTOS_LOWDELAY; 2489 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2490 h->ip_len = htons(len); 2491 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2492 h->ip_sum = 0; 2493 2494 pfse->pfse_type = PFSE_IP; 2495 break; 2496 #endif /* INET */ 2497 #ifdef INET6 2498 case AF_INET6: 2499 /* TCP checksum */ 2500 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2501 sizeof(struct ip6_hdr), tlen); 2502 2503 h6->ip6_vfc |= IPV6_VERSION; 2504 h6->ip6_hlim = IPV6_DEFHLIM; 2505 2506 pfse->pfse_type = PFSE_IP6; 2507 break; 2508 #endif /* INET6 */ 2509 } 2510 pfse->pfse_m = m; 2511 pf_send(pfse); 2512 } 2513 2514 static void 2515 pf_return(struct pf_rule *r, struct pf_rule *nr, struct pf_pdesc *pd, 2516 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 2517 struct pfi_kif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 2518 u_short *reason) 2519 { 2520 struct pf_addr * const saddr = pd->src; 2521 struct pf_addr * const daddr = pd->dst; 2522 sa_family_t af = pd->af; 2523 2524 /* undo NAT changes, if they have taken place */ 2525 if (nr != NULL) { 2526 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 2527 PF_ACPY(daddr, &sk->addr[pd->didx], af); 2528 if (pd->sport) 2529 *pd->sport = sk->port[pd->sidx]; 2530 if (pd->dport) 2531 *pd->dport = sk->port[pd->didx]; 2532 if (pd->proto_sum) 2533 *pd->proto_sum = bproto_sum; 2534 if (pd->ip_sum) 2535 *pd->ip_sum = bip_sum; 2536 m_copyback(m, off, hdrlen, pd->hdr.any); 2537 } 2538 if (pd->proto == IPPROTO_TCP && 2539 ((r->rule_flag & PFRULE_RETURNRST) || 2540 (r->rule_flag & PFRULE_RETURN)) && 2541 !(th->th_flags & TH_RST)) { 2542 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 2543 int len = 0; 2544 #ifdef INET 2545 struct ip *h4; 2546 #endif 2547 #ifdef INET6 2548 struct ip6_hdr *h6; 2549 #endif 2550 2551 switch (af) { 2552 #ifdef INET 2553 case AF_INET: 2554 h4 = mtod(m, struct ip *); 2555 len = ntohs(h4->ip_len) - off; 2556 break; 2557 #endif 2558 #ifdef INET6 2559 case AF_INET6: 2560 h6 = mtod(m, struct ip6_hdr *); 2561 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 2562 break; 2563 #endif 2564 } 2565 2566 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 2567 REASON_SET(reason, PFRES_PROTCKSUM); 2568 else { 2569 if (th->th_flags & TH_SYN) 2570 ack++; 2571 if (th->th_flags & TH_FIN) 2572 ack++; 2573 pf_send_tcp(m, r, af, pd->dst, 2574 pd->src, th->th_dport, th->th_sport, 2575 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 2576 r->return_ttl, 1, 0, kif->pfik_ifp); 2577 } 2578 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 2579 r->return_icmp) 2580 pf_send_icmp(m, r->return_icmp >> 8, 2581 r->return_icmp & 255, af, r); 2582 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 2583 r->return_icmp6) 2584 pf_send_icmp(m, r->return_icmp6 >> 8, 2585 r->return_icmp6 & 255, af, r); 2586 } 2587 2588 2589 static int 2590 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2591 { 2592 struct m_tag *mtag; 2593 2594 KASSERT(prio <= PF_PRIO_MAX, 2595 ("%s with invalid pcp", __func__)); 2596 2597 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2598 if (mtag == NULL) { 2599 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2600 sizeof(uint8_t), M_NOWAIT); 2601 if (mtag == NULL) 2602 return (ENOMEM); 2603 m_tag_prepend(m, mtag); 2604 } 2605 2606 *(uint8_t *)(mtag + 1) = prio; 2607 return (0); 2608 } 2609 2610 static int 2611 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2612 { 2613 struct m_tag *mtag; 2614 u_int8_t mpcp; 2615 2616 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2617 if (mtag == NULL) 2618 return (0); 2619 2620 if (prio == PF_PRIO_ZERO) 2621 prio = 0; 2622 2623 mpcp = *(uint8_t *)(mtag + 1); 2624 2625 return (mpcp == prio); 2626 } 2627 2628 static void 2629 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2630 struct pf_rule *r) 2631 { 2632 struct pf_send_entry *pfse; 2633 struct mbuf *m0; 2634 struct pf_mtag *pf_mtag; 2635 2636 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2637 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2638 if (pfse == NULL) 2639 return; 2640 2641 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2642 free(pfse, M_PFTEMP); 2643 return; 2644 } 2645 2646 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2647 free(pfse, M_PFTEMP); 2648 return; 2649 } 2650 /* XXX: revisit */ 2651 m0->m_flags |= M_SKIP_FIREWALL; 2652 2653 if (r->rtableid >= 0) 2654 M_SETFIB(m0, r->rtableid); 2655 2656 #ifdef ALTQ 2657 if (r->qid) { 2658 pf_mtag->qid = r->qid; 2659 /* add hints for ecn */ 2660 pf_mtag->hdr = mtod(m0, struct ip *); 2661 } 2662 #endif /* ALTQ */ 2663 2664 switch (af) { 2665 #ifdef INET 2666 case AF_INET: 2667 pfse->pfse_type = PFSE_ICMP; 2668 break; 2669 #endif /* INET */ 2670 #ifdef INET6 2671 case AF_INET6: 2672 pfse->pfse_type = PFSE_ICMP6; 2673 break; 2674 #endif /* INET6 */ 2675 } 2676 pfse->pfse_m = m0; 2677 pfse->icmpopts.type = type; 2678 pfse->icmpopts.code = code; 2679 pf_send(pfse); 2680 } 2681 2682 /* 2683 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2684 * If n is 0, they match if they are equal. If n is != 0, they match if they 2685 * are different. 2686 */ 2687 int 2688 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2689 struct pf_addr *b, sa_family_t af) 2690 { 2691 int match = 0; 2692 2693 switch (af) { 2694 #ifdef INET 2695 case AF_INET: 2696 if ((a->addr32[0] & m->addr32[0]) == 2697 (b->addr32[0] & m->addr32[0])) 2698 match++; 2699 break; 2700 #endif /* INET */ 2701 #ifdef INET6 2702 case AF_INET6: 2703 if (((a->addr32[0] & m->addr32[0]) == 2704 (b->addr32[0] & m->addr32[0])) && 2705 ((a->addr32[1] & m->addr32[1]) == 2706 (b->addr32[1] & m->addr32[1])) && 2707 ((a->addr32[2] & m->addr32[2]) == 2708 (b->addr32[2] & m->addr32[2])) && 2709 ((a->addr32[3] & m->addr32[3]) == 2710 (b->addr32[3] & m->addr32[3]))) 2711 match++; 2712 break; 2713 #endif /* INET6 */ 2714 } 2715 if (match) { 2716 if (n) 2717 return (0); 2718 else 2719 return (1); 2720 } else { 2721 if (n) 2722 return (1); 2723 else 2724 return (0); 2725 } 2726 } 2727 2728 /* 2729 * Return 1 if b <= a <= e, otherwise return 0. 2730 */ 2731 int 2732 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2733 struct pf_addr *a, sa_family_t af) 2734 { 2735 switch (af) { 2736 #ifdef INET 2737 case AF_INET: 2738 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2739 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2740 return (0); 2741 break; 2742 #endif /* INET */ 2743 #ifdef INET6 2744 case AF_INET6: { 2745 int i; 2746 2747 /* check a >= b */ 2748 for (i = 0; i < 4; ++i) 2749 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2750 break; 2751 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2752 return (0); 2753 /* check a <= e */ 2754 for (i = 0; i < 4; ++i) 2755 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2756 break; 2757 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2758 return (0); 2759 break; 2760 } 2761 #endif /* INET6 */ 2762 } 2763 return (1); 2764 } 2765 2766 static int 2767 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2768 { 2769 switch (op) { 2770 case PF_OP_IRG: 2771 return ((p > a1) && (p < a2)); 2772 case PF_OP_XRG: 2773 return ((p < a1) || (p > a2)); 2774 case PF_OP_RRG: 2775 return ((p >= a1) && (p <= a2)); 2776 case PF_OP_EQ: 2777 return (p == a1); 2778 case PF_OP_NE: 2779 return (p != a1); 2780 case PF_OP_LT: 2781 return (p < a1); 2782 case PF_OP_LE: 2783 return (p <= a1); 2784 case PF_OP_GT: 2785 return (p > a1); 2786 case PF_OP_GE: 2787 return (p >= a1); 2788 } 2789 return (0); /* never reached */ 2790 } 2791 2792 int 2793 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2794 { 2795 NTOHS(a1); 2796 NTOHS(a2); 2797 NTOHS(p); 2798 return (pf_match(op, a1, a2, p)); 2799 } 2800 2801 static int 2802 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2803 { 2804 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2805 return (0); 2806 return (pf_match(op, a1, a2, u)); 2807 } 2808 2809 static int 2810 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2811 { 2812 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2813 return (0); 2814 return (pf_match(op, a1, a2, g)); 2815 } 2816 2817 int 2818 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2819 { 2820 if (*tag == -1) 2821 *tag = mtag; 2822 2823 return ((!r->match_tag_not && r->match_tag == *tag) || 2824 (r->match_tag_not && r->match_tag != *tag)); 2825 } 2826 2827 int 2828 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2829 { 2830 2831 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2832 2833 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2834 return (ENOMEM); 2835 2836 pd->pf_mtag->tag = tag; 2837 2838 return (0); 2839 } 2840 2841 #define PF_ANCHOR_STACKSIZE 32 2842 struct pf_anchor_stackframe { 2843 struct pf_ruleset *rs; 2844 struct pf_rule *r; /* XXX: + match bit */ 2845 struct pf_anchor *child; 2846 }; 2847 2848 /* 2849 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2850 */ 2851 #define PF_ANCHORSTACK_MATCH 0x00000001 2852 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2853 2854 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2855 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2856 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2857 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2858 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2859 } while (0) 2860 2861 void 2862 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2863 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2864 int *match) 2865 { 2866 struct pf_anchor_stackframe *f; 2867 2868 PF_RULES_RASSERT(); 2869 2870 if (match) 2871 *match = 0; 2872 if (*depth >= PF_ANCHOR_STACKSIZE) { 2873 printf("%s: anchor stack overflow on %s\n", 2874 __func__, (*r)->anchor->name); 2875 *r = TAILQ_NEXT(*r, entries); 2876 return; 2877 } else if (*depth == 0 && a != NULL) 2878 *a = *r; 2879 f = stack + (*depth)++; 2880 f->rs = *rs; 2881 f->r = *r; 2882 if ((*r)->anchor_wildcard) { 2883 struct pf_anchor_node *parent = &(*r)->anchor->children; 2884 2885 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2886 *r = NULL; 2887 return; 2888 } 2889 *rs = &f->child->ruleset; 2890 } else { 2891 f->child = NULL; 2892 *rs = &(*r)->anchor->ruleset; 2893 } 2894 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2895 } 2896 2897 int 2898 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2899 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2900 int *match) 2901 { 2902 struct pf_anchor_stackframe *f; 2903 struct pf_rule *fr; 2904 int quick = 0; 2905 2906 PF_RULES_RASSERT(); 2907 2908 do { 2909 if (*depth <= 0) 2910 break; 2911 f = stack + *depth - 1; 2912 fr = PF_ANCHOR_RULE(f); 2913 if (f->child != NULL) { 2914 struct pf_anchor_node *parent; 2915 2916 /* 2917 * This block traverses through 2918 * a wildcard anchor. 2919 */ 2920 parent = &fr->anchor->children; 2921 if (match != NULL && *match) { 2922 /* 2923 * If any of "*" matched, then 2924 * "foo/ *" matched, mark frame 2925 * appropriately. 2926 */ 2927 PF_ANCHOR_SET_MATCH(f); 2928 *match = 0; 2929 } 2930 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2931 if (f->child != NULL) { 2932 *rs = &f->child->ruleset; 2933 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2934 if (*r == NULL) 2935 continue; 2936 else 2937 break; 2938 } 2939 } 2940 (*depth)--; 2941 if (*depth == 0 && a != NULL) 2942 *a = NULL; 2943 *rs = f->rs; 2944 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2945 quick = fr->quick; 2946 *r = TAILQ_NEXT(fr, entries); 2947 } while (*r == NULL); 2948 2949 return (quick); 2950 } 2951 2952 #ifdef INET6 2953 void 2954 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2955 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2956 { 2957 switch (af) { 2958 #ifdef INET 2959 case AF_INET: 2960 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2961 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2962 break; 2963 #endif /* INET */ 2964 case AF_INET6: 2965 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2966 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2967 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2968 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2969 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2970 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2971 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2972 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2973 break; 2974 } 2975 } 2976 2977 void 2978 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2979 { 2980 switch (af) { 2981 #ifdef INET 2982 case AF_INET: 2983 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2984 break; 2985 #endif /* INET */ 2986 case AF_INET6: 2987 if (addr->addr32[3] == 0xffffffff) { 2988 addr->addr32[3] = 0; 2989 if (addr->addr32[2] == 0xffffffff) { 2990 addr->addr32[2] = 0; 2991 if (addr->addr32[1] == 0xffffffff) { 2992 addr->addr32[1] = 0; 2993 addr->addr32[0] = 2994 htonl(ntohl(addr->addr32[0]) + 1); 2995 } else 2996 addr->addr32[1] = 2997 htonl(ntohl(addr->addr32[1]) + 1); 2998 } else 2999 addr->addr32[2] = 3000 htonl(ntohl(addr->addr32[2]) + 1); 3001 } else 3002 addr->addr32[3] = 3003 htonl(ntohl(addr->addr32[3]) + 1); 3004 break; 3005 } 3006 } 3007 #endif /* INET6 */ 3008 3009 int 3010 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 3011 { 3012 struct pf_addr *saddr, *daddr; 3013 u_int16_t sport, dport; 3014 struct inpcbinfo *pi; 3015 struct inpcb *inp; 3016 3017 pd->lookup.uid = UID_MAX; 3018 pd->lookup.gid = GID_MAX; 3019 3020 switch (pd->proto) { 3021 case IPPROTO_TCP: 3022 if (pd->hdr.tcp == NULL) 3023 return (-1); 3024 sport = pd->hdr.tcp->th_sport; 3025 dport = pd->hdr.tcp->th_dport; 3026 pi = &V_tcbinfo; 3027 break; 3028 case IPPROTO_UDP: 3029 if (pd->hdr.udp == NULL) 3030 return (-1); 3031 sport = pd->hdr.udp->uh_sport; 3032 dport = pd->hdr.udp->uh_dport; 3033 pi = &V_udbinfo; 3034 break; 3035 default: 3036 return (-1); 3037 } 3038 if (direction == PF_IN) { 3039 saddr = pd->src; 3040 daddr = pd->dst; 3041 } else { 3042 u_int16_t p; 3043 3044 p = sport; 3045 sport = dport; 3046 dport = p; 3047 saddr = pd->dst; 3048 daddr = pd->src; 3049 } 3050 switch (pd->af) { 3051 #ifdef INET 3052 case AF_INET: 3053 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3054 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3055 if (inp == NULL) { 3056 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3057 daddr->v4, dport, INPLOOKUP_WILDCARD | 3058 INPLOOKUP_RLOCKPCB, NULL, m); 3059 if (inp == NULL) 3060 return (-1); 3061 } 3062 break; 3063 #endif /* INET */ 3064 #ifdef INET6 3065 case AF_INET6: 3066 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3067 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3068 if (inp == NULL) { 3069 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3070 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3071 INPLOOKUP_RLOCKPCB, NULL, m); 3072 if (inp == NULL) 3073 return (-1); 3074 } 3075 break; 3076 #endif /* INET6 */ 3077 3078 default: 3079 return (-1); 3080 } 3081 INP_RLOCK_ASSERT(inp); 3082 pd->lookup.uid = inp->inp_cred->cr_uid; 3083 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3084 INP_RUNLOCK(inp); 3085 3086 return (1); 3087 } 3088 3089 static u_int8_t 3090 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3091 { 3092 int hlen; 3093 u_int8_t hdr[60]; 3094 u_int8_t *opt, optlen; 3095 u_int8_t wscale = 0; 3096 3097 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3098 if (hlen <= sizeof(struct tcphdr)) 3099 return (0); 3100 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3101 return (0); 3102 opt = hdr + sizeof(struct tcphdr); 3103 hlen -= sizeof(struct tcphdr); 3104 while (hlen >= 3) { 3105 switch (*opt) { 3106 case TCPOPT_EOL: 3107 case TCPOPT_NOP: 3108 ++opt; 3109 --hlen; 3110 break; 3111 case TCPOPT_WINDOW: 3112 wscale = opt[2]; 3113 if (wscale > TCP_MAX_WINSHIFT) 3114 wscale = TCP_MAX_WINSHIFT; 3115 wscale |= PF_WSCALE_FLAG; 3116 /* FALLTHROUGH */ 3117 default: 3118 optlen = opt[1]; 3119 if (optlen < 2) 3120 optlen = 2; 3121 hlen -= optlen; 3122 opt += optlen; 3123 break; 3124 } 3125 } 3126 return (wscale); 3127 } 3128 3129 static u_int16_t 3130 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3131 { 3132 int hlen; 3133 u_int8_t hdr[60]; 3134 u_int8_t *opt, optlen; 3135 u_int16_t mss = V_tcp_mssdflt; 3136 3137 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3138 if (hlen <= sizeof(struct tcphdr)) 3139 return (0); 3140 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3141 return (0); 3142 opt = hdr + sizeof(struct tcphdr); 3143 hlen -= sizeof(struct tcphdr); 3144 while (hlen >= TCPOLEN_MAXSEG) { 3145 switch (*opt) { 3146 case TCPOPT_EOL: 3147 case TCPOPT_NOP: 3148 ++opt; 3149 --hlen; 3150 break; 3151 case TCPOPT_MAXSEG: 3152 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3153 NTOHS(mss); 3154 /* FALLTHROUGH */ 3155 default: 3156 optlen = opt[1]; 3157 if (optlen < 2) 3158 optlen = 2; 3159 hlen -= optlen; 3160 opt += optlen; 3161 break; 3162 } 3163 } 3164 return (mss); 3165 } 3166 3167 static u_int16_t 3168 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3169 { 3170 #ifdef INET 3171 struct nhop4_basic nh4; 3172 #endif /* INET */ 3173 #ifdef INET6 3174 struct nhop6_basic nh6; 3175 struct in6_addr dst6; 3176 uint32_t scopeid; 3177 #endif /* INET6 */ 3178 int hlen = 0; 3179 uint16_t mss = 0; 3180 3181 switch (af) { 3182 #ifdef INET 3183 case AF_INET: 3184 hlen = sizeof(struct ip); 3185 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) == 0) 3186 mss = nh4.nh_mtu - hlen - sizeof(struct tcphdr); 3187 break; 3188 #endif /* INET */ 3189 #ifdef INET6 3190 case AF_INET6: 3191 hlen = sizeof(struct ip6_hdr); 3192 in6_splitscope(&addr->v6, &dst6, &scopeid); 3193 if (fib6_lookup_nh_basic(rtableid, &dst6, scopeid, 0,0,&nh6)==0) 3194 mss = nh6.nh_mtu - hlen - sizeof(struct tcphdr); 3195 break; 3196 #endif /* INET6 */ 3197 } 3198 3199 mss = max(V_tcp_mssdflt, mss); 3200 mss = min(mss, offer); 3201 mss = max(mss, 64); /* sanity - at least max opt space */ 3202 return (mss); 3203 } 3204 3205 static u_int32_t 3206 pf_tcp_iss(struct pf_pdesc *pd) 3207 { 3208 MD5_CTX ctx; 3209 u_int32_t digest[4]; 3210 3211 if (V_pf_tcp_secret_init == 0) { 3212 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3213 MD5Init(&V_pf_tcp_secret_ctx); 3214 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3215 sizeof(V_pf_tcp_secret)); 3216 V_pf_tcp_secret_init = 1; 3217 } 3218 3219 ctx = V_pf_tcp_secret_ctx; 3220 3221 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3222 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3223 if (pd->af == AF_INET6) { 3224 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3225 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3226 } else { 3227 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3228 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3229 } 3230 MD5Final((u_char *)digest, &ctx); 3231 V_pf_tcp_iss_off += 4096; 3232 #define ISN_RANDOM_INCREMENT (4096 - 1) 3233 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3234 V_pf_tcp_iss_off); 3235 #undef ISN_RANDOM_INCREMENT 3236 } 3237 3238 static int 3239 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3240 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3241 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3242 { 3243 struct pf_rule *nr = NULL; 3244 struct pf_addr * const saddr = pd->src; 3245 struct pf_addr * const daddr = pd->dst; 3246 sa_family_t af = pd->af; 3247 struct pf_rule *r, *a = NULL; 3248 struct pf_ruleset *ruleset = NULL; 3249 struct pf_src_node *nsn = NULL; 3250 struct tcphdr *th = pd->hdr.tcp; 3251 struct pf_state_key *sk = NULL, *nk = NULL; 3252 u_short reason; 3253 int rewrite = 0, hdrlen = 0; 3254 int tag = -1, rtableid = -1; 3255 int asd = 0; 3256 int match = 0; 3257 int state_icmp = 0; 3258 u_int16_t sport = 0, dport = 0; 3259 u_int16_t bproto_sum = 0, bip_sum = 0; 3260 u_int8_t icmptype = 0, icmpcode = 0; 3261 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3262 3263 PF_RULES_RASSERT(); 3264 3265 if (inp != NULL) { 3266 INP_LOCK_ASSERT(inp); 3267 pd->lookup.uid = inp->inp_cred->cr_uid; 3268 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3269 pd->lookup.done = 1; 3270 } 3271 3272 switch (pd->proto) { 3273 case IPPROTO_TCP: 3274 sport = th->th_sport; 3275 dport = th->th_dport; 3276 hdrlen = sizeof(*th); 3277 break; 3278 case IPPROTO_UDP: 3279 sport = pd->hdr.udp->uh_sport; 3280 dport = pd->hdr.udp->uh_dport; 3281 hdrlen = sizeof(*pd->hdr.udp); 3282 break; 3283 #ifdef INET 3284 case IPPROTO_ICMP: 3285 if (pd->af != AF_INET) 3286 break; 3287 sport = dport = pd->hdr.icmp->icmp_id; 3288 hdrlen = sizeof(*pd->hdr.icmp); 3289 icmptype = pd->hdr.icmp->icmp_type; 3290 icmpcode = pd->hdr.icmp->icmp_code; 3291 3292 if (icmptype == ICMP_UNREACH || 3293 icmptype == ICMP_SOURCEQUENCH || 3294 icmptype == ICMP_REDIRECT || 3295 icmptype == ICMP_TIMXCEED || 3296 icmptype == ICMP_PARAMPROB) 3297 state_icmp++; 3298 break; 3299 #endif /* INET */ 3300 #ifdef INET6 3301 case IPPROTO_ICMPV6: 3302 if (af != AF_INET6) 3303 break; 3304 sport = dport = pd->hdr.icmp6->icmp6_id; 3305 hdrlen = sizeof(*pd->hdr.icmp6); 3306 icmptype = pd->hdr.icmp6->icmp6_type; 3307 icmpcode = pd->hdr.icmp6->icmp6_code; 3308 3309 if (icmptype == ICMP6_DST_UNREACH || 3310 icmptype == ICMP6_PACKET_TOO_BIG || 3311 icmptype == ICMP6_TIME_EXCEEDED || 3312 icmptype == ICMP6_PARAM_PROB) 3313 state_icmp++; 3314 break; 3315 #endif /* INET6 */ 3316 default: 3317 sport = dport = hdrlen = 0; 3318 break; 3319 } 3320 3321 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3322 3323 /* check packet for BINAT/NAT/RDR */ 3324 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3325 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3326 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3327 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3328 3329 if (pd->ip_sum) 3330 bip_sum = *pd->ip_sum; 3331 3332 switch (pd->proto) { 3333 case IPPROTO_TCP: 3334 bproto_sum = th->th_sum; 3335 pd->proto_sum = &th->th_sum; 3336 3337 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3338 nk->port[pd->sidx] != sport) { 3339 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3340 &th->th_sum, &nk->addr[pd->sidx], 3341 nk->port[pd->sidx], 0, af); 3342 pd->sport = &th->th_sport; 3343 sport = th->th_sport; 3344 } 3345 3346 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3347 nk->port[pd->didx] != dport) { 3348 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3349 &th->th_sum, &nk->addr[pd->didx], 3350 nk->port[pd->didx], 0, af); 3351 dport = th->th_dport; 3352 pd->dport = &th->th_dport; 3353 } 3354 rewrite++; 3355 break; 3356 case IPPROTO_UDP: 3357 bproto_sum = pd->hdr.udp->uh_sum; 3358 pd->proto_sum = &pd->hdr.udp->uh_sum; 3359 3360 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3361 nk->port[pd->sidx] != sport) { 3362 pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, 3363 pd->ip_sum, &pd->hdr.udp->uh_sum, 3364 &nk->addr[pd->sidx], 3365 nk->port[pd->sidx], 1, af); 3366 sport = pd->hdr.udp->uh_sport; 3367 pd->sport = &pd->hdr.udp->uh_sport; 3368 } 3369 3370 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3371 nk->port[pd->didx] != dport) { 3372 pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, 3373 pd->ip_sum, &pd->hdr.udp->uh_sum, 3374 &nk->addr[pd->didx], 3375 nk->port[pd->didx], 1, af); 3376 dport = pd->hdr.udp->uh_dport; 3377 pd->dport = &pd->hdr.udp->uh_dport; 3378 } 3379 rewrite++; 3380 break; 3381 #ifdef INET 3382 case IPPROTO_ICMP: 3383 nk->port[0] = nk->port[1]; 3384 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3385 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3386 nk->addr[pd->sidx].v4.s_addr, 0); 3387 3388 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3389 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3390 nk->addr[pd->didx].v4.s_addr, 0); 3391 3392 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3393 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3394 pd->hdr.icmp->icmp_cksum, sport, 3395 nk->port[1], 0); 3396 pd->hdr.icmp->icmp_id = nk->port[1]; 3397 pd->sport = &pd->hdr.icmp->icmp_id; 3398 } 3399 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3400 break; 3401 #endif /* INET */ 3402 #ifdef INET6 3403 case IPPROTO_ICMPV6: 3404 nk->port[0] = nk->port[1]; 3405 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3406 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3407 &nk->addr[pd->sidx], 0); 3408 3409 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3410 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3411 &nk->addr[pd->didx], 0); 3412 rewrite++; 3413 break; 3414 #endif /* INET */ 3415 default: 3416 switch (af) { 3417 #ifdef INET 3418 case AF_INET: 3419 if (PF_ANEQ(saddr, 3420 &nk->addr[pd->sidx], AF_INET)) 3421 pf_change_a(&saddr->v4.s_addr, 3422 pd->ip_sum, 3423 nk->addr[pd->sidx].v4.s_addr, 0); 3424 3425 if (PF_ANEQ(daddr, 3426 &nk->addr[pd->didx], AF_INET)) 3427 pf_change_a(&daddr->v4.s_addr, 3428 pd->ip_sum, 3429 nk->addr[pd->didx].v4.s_addr, 0); 3430 break; 3431 #endif /* INET */ 3432 #ifdef INET6 3433 case AF_INET6: 3434 if (PF_ANEQ(saddr, 3435 &nk->addr[pd->sidx], AF_INET6)) 3436 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3437 3438 if (PF_ANEQ(daddr, 3439 &nk->addr[pd->didx], AF_INET6)) 3440 PF_ACPY(daddr, &nk->addr[pd->didx], af); 3441 break; 3442 #endif /* INET */ 3443 } 3444 break; 3445 } 3446 if (nr->natpass) 3447 r = NULL; 3448 pd->nat_rule = nr; 3449 } 3450 3451 while (r != NULL) { 3452 r->evaluations++; 3453 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3454 r = r->skip[PF_SKIP_IFP].ptr; 3455 else if (r->direction && r->direction != direction) 3456 r = r->skip[PF_SKIP_DIR].ptr; 3457 else if (r->af && r->af != af) 3458 r = r->skip[PF_SKIP_AF].ptr; 3459 else if (r->proto && r->proto != pd->proto) 3460 r = r->skip[PF_SKIP_PROTO].ptr; 3461 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3462 r->src.neg, kif, M_GETFIB(m))) 3463 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3464 /* tcp/udp only. port_op always 0 in other cases */ 3465 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3466 r->src.port[0], r->src.port[1], sport)) 3467 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3468 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3469 r->dst.neg, NULL, M_GETFIB(m))) 3470 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3471 /* tcp/udp only. port_op always 0 in other cases */ 3472 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3473 r->dst.port[0], r->dst.port[1], dport)) 3474 r = r->skip[PF_SKIP_DST_PORT].ptr; 3475 /* icmp only. type always 0 in other cases */ 3476 else if (r->type && r->type != icmptype + 1) 3477 r = TAILQ_NEXT(r, entries); 3478 /* icmp only. type always 0 in other cases */ 3479 else if (r->code && r->code != icmpcode + 1) 3480 r = TAILQ_NEXT(r, entries); 3481 else if (r->tos && !(r->tos == pd->tos)) 3482 r = TAILQ_NEXT(r, entries); 3483 else if (r->rule_flag & PFRULE_FRAGMENT) 3484 r = TAILQ_NEXT(r, entries); 3485 else if (pd->proto == IPPROTO_TCP && 3486 (r->flagset & th->th_flags) != r->flags) 3487 r = TAILQ_NEXT(r, entries); 3488 /* tcp/udp only. uid.op always 0 in other cases */ 3489 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3490 pf_socket_lookup(direction, pd, m), 1)) && 3491 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3492 pd->lookup.uid)) 3493 r = TAILQ_NEXT(r, entries); 3494 /* tcp/udp only. gid.op always 0 in other cases */ 3495 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3496 pf_socket_lookup(direction, pd, m), 1)) && 3497 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3498 pd->lookup.gid)) 3499 r = TAILQ_NEXT(r, entries); 3500 else if (r->prio && 3501 !pf_match_ieee8021q_pcp(r->prio, m)) 3502 r = TAILQ_NEXT(r, entries); 3503 else if (r->prob && 3504 r->prob <= arc4random()) 3505 r = TAILQ_NEXT(r, entries); 3506 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3507 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3508 r = TAILQ_NEXT(r, entries); 3509 else if (r->os_fingerprint != PF_OSFP_ANY && 3510 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3511 pf_osfp_fingerprint(pd, m, off, th), 3512 r->os_fingerprint))) 3513 r = TAILQ_NEXT(r, entries); 3514 else { 3515 if (r->tag) 3516 tag = r->tag; 3517 if (r->rtableid >= 0) 3518 rtableid = r->rtableid; 3519 if (r->anchor == NULL) { 3520 match = 1; 3521 *rm = r; 3522 *am = a; 3523 *rsm = ruleset; 3524 if ((*rm)->quick) 3525 break; 3526 r = TAILQ_NEXT(r, entries); 3527 } else 3528 pf_step_into_anchor(anchor_stack, &asd, 3529 &ruleset, PF_RULESET_FILTER, &r, &a, 3530 &match); 3531 } 3532 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3533 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3534 break; 3535 } 3536 r = *rm; 3537 a = *am; 3538 ruleset = *rsm; 3539 3540 REASON_SET(&reason, PFRES_MATCH); 3541 3542 if (r->log || (nr != NULL && nr->log)) { 3543 if (rewrite) 3544 m_copyback(m, off, hdrlen, pd->hdr.any); 3545 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3546 ruleset, pd, 1); 3547 } 3548 3549 if ((r->action == PF_DROP) && 3550 ((r->rule_flag & PFRULE_RETURNRST) || 3551 (r->rule_flag & PFRULE_RETURNICMP) || 3552 (r->rule_flag & PFRULE_RETURN))) { 3553 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 3554 bip_sum, hdrlen, &reason); 3555 } 3556 3557 if (r->action == PF_DROP) 3558 goto cleanup; 3559 3560 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3561 REASON_SET(&reason, PFRES_MEMORY); 3562 goto cleanup; 3563 } 3564 if (rtableid >= 0) 3565 M_SETFIB(m, rtableid); 3566 3567 if (!state_icmp && (r->keep_state || nr != NULL || 3568 (pd->flags & PFDESC_TCP_NORM))) { 3569 int action; 3570 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3571 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3572 hdrlen); 3573 if (action != PF_PASS) { 3574 if (action == PF_DROP && 3575 (r->rule_flag & PFRULE_RETURN)) 3576 pf_return(r, nr, pd, sk, off, m, th, kif, 3577 bproto_sum, bip_sum, hdrlen, &reason); 3578 return (action); 3579 } 3580 } else { 3581 if (sk != NULL) 3582 uma_zfree(V_pf_state_key_z, sk); 3583 if (nk != NULL) 3584 uma_zfree(V_pf_state_key_z, nk); 3585 } 3586 3587 /* copy back packet headers if we performed NAT operations */ 3588 if (rewrite) 3589 m_copyback(m, off, hdrlen, pd->hdr.any); 3590 3591 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3592 direction == PF_OUT && 3593 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 3594 /* 3595 * We want the state created, but we dont 3596 * want to send this in case a partner 3597 * firewall has to know about it to allow 3598 * replies through it. 3599 */ 3600 return (PF_DEFER); 3601 3602 return (PF_PASS); 3603 3604 cleanup: 3605 if (sk != NULL) 3606 uma_zfree(V_pf_state_key_z, sk); 3607 if (nk != NULL) 3608 uma_zfree(V_pf_state_key_z, nk); 3609 return (PF_DROP); 3610 } 3611 3612 static int 3613 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3614 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3615 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3616 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3617 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3618 { 3619 struct pf_state *s = NULL; 3620 struct pf_src_node *sn = NULL; 3621 struct tcphdr *th = pd->hdr.tcp; 3622 u_int16_t mss = V_tcp_mssdflt; 3623 u_short reason; 3624 3625 /* check maximums */ 3626 if (r->max_states && 3627 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3628 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3629 REASON_SET(&reason, PFRES_MAXSTATES); 3630 goto csfailed; 3631 } 3632 /* src node for filter rule */ 3633 if ((r->rule_flag & PFRULE_SRCTRACK || 3634 r->rpool.opts & PF_POOL_STICKYADDR) && 3635 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3636 REASON_SET(&reason, PFRES_SRCLIMIT); 3637 goto csfailed; 3638 } 3639 /* src node for translation rule */ 3640 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3641 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3642 REASON_SET(&reason, PFRES_SRCLIMIT); 3643 goto csfailed; 3644 } 3645 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3646 if (s == NULL) { 3647 REASON_SET(&reason, PFRES_MEMORY); 3648 goto csfailed; 3649 } 3650 s->rule.ptr = r; 3651 s->nat_rule.ptr = nr; 3652 s->anchor.ptr = a; 3653 STATE_INC_COUNTERS(s); 3654 if (r->allow_opts) 3655 s->state_flags |= PFSTATE_ALLOWOPTS; 3656 if (r->rule_flag & PFRULE_STATESLOPPY) 3657 s->state_flags |= PFSTATE_SLOPPY; 3658 s->log = r->log & PF_LOG_ALL; 3659 s->sync_state = PFSYNC_S_NONE; 3660 if (nr != NULL) 3661 s->log |= nr->log & PF_LOG_ALL; 3662 switch (pd->proto) { 3663 case IPPROTO_TCP: 3664 s->src.seqlo = ntohl(th->th_seq); 3665 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3666 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3667 r->keep_state == PF_STATE_MODULATE) { 3668 /* Generate sequence number modulator */ 3669 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3670 0) 3671 s->src.seqdiff = 1; 3672 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3673 htonl(s->src.seqlo + s->src.seqdiff), 0); 3674 *rewrite = 1; 3675 } else 3676 s->src.seqdiff = 0; 3677 if (th->th_flags & TH_SYN) { 3678 s->src.seqhi++; 3679 s->src.wscale = pf_get_wscale(m, off, 3680 th->th_off, pd->af); 3681 } 3682 s->src.max_win = MAX(ntohs(th->th_win), 1); 3683 if (s->src.wscale & PF_WSCALE_MASK) { 3684 /* Remove scale factor from initial window */ 3685 int win = s->src.max_win; 3686 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3687 s->src.max_win = (win - 1) >> 3688 (s->src.wscale & PF_WSCALE_MASK); 3689 } 3690 if (th->th_flags & TH_FIN) 3691 s->src.seqhi++; 3692 s->dst.seqhi = 1; 3693 s->dst.max_win = 1; 3694 s->src.state = TCPS_SYN_SENT; 3695 s->dst.state = TCPS_CLOSED; 3696 s->timeout = PFTM_TCP_FIRST_PACKET; 3697 break; 3698 case IPPROTO_UDP: 3699 s->src.state = PFUDPS_SINGLE; 3700 s->dst.state = PFUDPS_NO_TRAFFIC; 3701 s->timeout = PFTM_UDP_FIRST_PACKET; 3702 break; 3703 case IPPROTO_ICMP: 3704 #ifdef INET6 3705 case IPPROTO_ICMPV6: 3706 #endif 3707 s->timeout = PFTM_ICMP_FIRST_PACKET; 3708 break; 3709 default: 3710 s->src.state = PFOTHERS_SINGLE; 3711 s->dst.state = PFOTHERS_NO_TRAFFIC; 3712 s->timeout = PFTM_OTHER_FIRST_PACKET; 3713 } 3714 3715 if (r->rt) { 3716 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3717 REASON_SET(&reason, PFRES_MAPFAILED); 3718 pf_src_tree_remove_state(s); 3719 STATE_DEC_COUNTERS(s); 3720 uma_zfree(V_pf_state_z, s); 3721 goto csfailed; 3722 } 3723 s->rt_kif = r->rpool.cur->kif; 3724 } 3725 3726 s->creation = time_uptime; 3727 s->expire = time_uptime; 3728 3729 if (sn != NULL) 3730 s->src_node = sn; 3731 if (nsn != NULL) { 3732 /* XXX We only modify one side for now. */ 3733 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3734 s->nat_src_node = nsn; 3735 } 3736 if (pd->proto == IPPROTO_TCP) { 3737 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3738 off, pd, th, &s->src, &s->dst)) { 3739 REASON_SET(&reason, PFRES_MEMORY); 3740 pf_src_tree_remove_state(s); 3741 STATE_DEC_COUNTERS(s); 3742 uma_zfree(V_pf_state_z, s); 3743 return (PF_DROP); 3744 } 3745 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3746 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3747 &s->src, &s->dst, rewrite)) { 3748 /* This really shouldn't happen!!! */ 3749 DPFPRINTF(PF_DEBUG_URGENT, 3750 ("pf_normalize_tcp_stateful failed on first pkt")); 3751 pf_normalize_tcp_cleanup(s); 3752 pf_src_tree_remove_state(s); 3753 STATE_DEC_COUNTERS(s); 3754 uma_zfree(V_pf_state_z, s); 3755 return (PF_DROP); 3756 } 3757 } 3758 s->direction = pd->dir; 3759 3760 /* 3761 * sk/nk could already been setup by pf_get_translation(). 3762 */ 3763 if (nr == NULL) { 3764 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3765 __func__, nr, sk, nk)); 3766 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3767 if (sk == NULL) 3768 goto csfailed; 3769 nk = sk; 3770 } else 3771 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3772 __func__, nr, sk, nk)); 3773 3774 /* Swap sk/nk for PF_OUT. */ 3775 if (pf_state_insert(BOUND_IFACE(r, kif), 3776 (pd->dir == PF_IN) ? sk : nk, 3777 (pd->dir == PF_IN) ? nk : sk, s)) { 3778 if (pd->proto == IPPROTO_TCP) 3779 pf_normalize_tcp_cleanup(s); 3780 REASON_SET(&reason, PFRES_STATEINS); 3781 pf_src_tree_remove_state(s); 3782 STATE_DEC_COUNTERS(s); 3783 uma_zfree(V_pf_state_z, s); 3784 return (PF_DROP); 3785 } else 3786 *sm = s; 3787 3788 if (tag > 0) 3789 s->tag = tag; 3790 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3791 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3792 s->src.state = PF_TCPS_PROXY_SRC; 3793 /* undo NAT changes, if they have taken place */ 3794 if (nr != NULL) { 3795 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3796 if (pd->dir == PF_OUT) 3797 skt = s->key[PF_SK_STACK]; 3798 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3799 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3800 if (pd->sport) 3801 *pd->sport = skt->port[pd->sidx]; 3802 if (pd->dport) 3803 *pd->dport = skt->port[pd->didx]; 3804 if (pd->proto_sum) 3805 *pd->proto_sum = bproto_sum; 3806 if (pd->ip_sum) 3807 *pd->ip_sum = bip_sum; 3808 m_copyback(m, off, hdrlen, pd->hdr.any); 3809 } 3810 s->src.seqhi = htonl(arc4random()); 3811 /* Find mss option */ 3812 int rtid = M_GETFIB(m); 3813 mss = pf_get_mss(m, off, th->th_off, pd->af); 3814 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3815 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3816 s->src.mss = mss; 3817 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3818 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3819 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3820 REASON_SET(&reason, PFRES_SYNPROXY); 3821 return (PF_SYNPROXY_DROP); 3822 } 3823 3824 return (PF_PASS); 3825 3826 csfailed: 3827 if (sk != NULL) 3828 uma_zfree(V_pf_state_key_z, sk); 3829 if (nk != NULL) 3830 uma_zfree(V_pf_state_key_z, nk); 3831 3832 if (sn != NULL) { 3833 struct pf_srchash *sh; 3834 3835 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3836 PF_HASHROW_LOCK(sh); 3837 if (--sn->states == 0 && sn->expire == 0) { 3838 pf_unlink_src_node(sn); 3839 uma_zfree(V_pf_sources_z, sn); 3840 counter_u64_add( 3841 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3842 } 3843 PF_HASHROW_UNLOCK(sh); 3844 } 3845 3846 if (nsn != sn && nsn != NULL) { 3847 struct pf_srchash *sh; 3848 3849 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3850 PF_HASHROW_LOCK(sh); 3851 if (--nsn->states == 0 && nsn->expire == 0) { 3852 pf_unlink_src_node(nsn); 3853 uma_zfree(V_pf_sources_z, nsn); 3854 counter_u64_add( 3855 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3856 } 3857 PF_HASHROW_UNLOCK(sh); 3858 } 3859 3860 return (PF_DROP); 3861 } 3862 3863 static int 3864 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3865 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3866 struct pf_ruleset **rsm) 3867 { 3868 struct pf_rule *r, *a = NULL; 3869 struct pf_ruleset *ruleset = NULL; 3870 sa_family_t af = pd->af; 3871 u_short reason; 3872 int tag = -1; 3873 int asd = 0; 3874 int match = 0; 3875 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3876 3877 PF_RULES_RASSERT(); 3878 3879 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3880 while (r != NULL) { 3881 r->evaluations++; 3882 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3883 r = r->skip[PF_SKIP_IFP].ptr; 3884 else if (r->direction && r->direction != direction) 3885 r = r->skip[PF_SKIP_DIR].ptr; 3886 else if (r->af && r->af != af) 3887 r = r->skip[PF_SKIP_AF].ptr; 3888 else if (r->proto && r->proto != pd->proto) 3889 r = r->skip[PF_SKIP_PROTO].ptr; 3890 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3891 r->src.neg, kif, M_GETFIB(m))) 3892 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3893 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3894 r->dst.neg, NULL, M_GETFIB(m))) 3895 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3896 else if (r->tos && !(r->tos == pd->tos)) 3897 r = TAILQ_NEXT(r, entries); 3898 else if (r->os_fingerprint != PF_OSFP_ANY) 3899 r = TAILQ_NEXT(r, entries); 3900 else if (pd->proto == IPPROTO_UDP && 3901 (r->src.port_op || r->dst.port_op)) 3902 r = TAILQ_NEXT(r, entries); 3903 else if (pd->proto == IPPROTO_TCP && 3904 (r->src.port_op || r->dst.port_op || r->flagset)) 3905 r = TAILQ_NEXT(r, entries); 3906 else if ((pd->proto == IPPROTO_ICMP || 3907 pd->proto == IPPROTO_ICMPV6) && 3908 (r->type || r->code)) 3909 r = TAILQ_NEXT(r, entries); 3910 else if (r->prio && 3911 !pf_match_ieee8021q_pcp(r->prio, m)) 3912 r = TAILQ_NEXT(r, entries); 3913 else if (r->prob && r->prob <= 3914 (arc4random() % (UINT_MAX - 1) + 1)) 3915 r = TAILQ_NEXT(r, entries); 3916 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3917 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3918 r = TAILQ_NEXT(r, entries); 3919 else { 3920 if (r->anchor == NULL) { 3921 match = 1; 3922 *rm = r; 3923 *am = a; 3924 *rsm = ruleset; 3925 if ((*rm)->quick) 3926 break; 3927 r = TAILQ_NEXT(r, entries); 3928 } else 3929 pf_step_into_anchor(anchor_stack, &asd, 3930 &ruleset, PF_RULESET_FILTER, &r, &a, 3931 &match); 3932 } 3933 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3934 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3935 break; 3936 } 3937 r = *rm; 3938 a = *am; 3939 ruleset = *rsm; 3940 3941 REASON_SET(&reason, PFRES_MATCH); 3942 3943 if (r->log) 3944 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3945 1); 3946 3947 if (r->action != PF_PASS) 3948 return (PF_DROP); 3949 3950 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3951 REASON_SET(&reason, PFRES_MEMORY); 3952 return (PF_DROP); 3953 } 3954 3955 return (PF_PASS); 3956 } 3957 3958 static int 3959 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3960 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3961 struct pf_pdesc *pd, u_short *reason, int *copyback) 3962 { 3963 struct tcphdr *th = pd->hdr.tcp; 3964 u_int16_t win = ntohs(th->th_win); 3965 u_int32_t ack, end, seq, orig_seq; 3966 u_int8_t sws, dws; 3967 int ackskew; 3968 3969 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3970 sws = src->wscale & PF_WSCALE_MASK; 3971 dws = dst->wscale & PF_WSCALE_MASK; 3972 } else 3973 sws = dws = 0; 3974 3975 /* 3976 * Sequence tracking algorithm from Guido van Rooij's paper: 3977 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3978 * tcp_filtering.ps 3979 */ 3980 3981 orig_seq = seq = ntohl(th->th_seq); 3982 if (src->seqlo == 0) { 3983 /* First packet from this end. Set its state */ 3984 3985 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3986 src->scrub == NULL) { 3987 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3988 REASON_SET(reason, PFRES_MEMORY); 3989 return (PF_DROP); 3990 } 3991 } 3992 3993 /* Deferred generation of sequence number modulator */ 3994 if (dst->seqdiff && !src->seqdiff) { 3995 /* use random iss for the TCP server */ 3996 while ((src->seqdiff = arc4random() - seq) == 0) 3997 ; 3998 ack = ntohl(th->th_ack) - dst->seqdiff; 3999 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4000 src->seqdiff), 0); 4001 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4002 *copyback = 1; 4003 } else { 4004 ack = ntohl(th->th_ack); 4005 } 4006 4007 end = seq + pd->p_len; 4008 if (th->th_flags & TH_SYN) { 4009 end++; 4010 if (dst->wscale & PF_WSCALE_FLAG) { 4011 src->wscale = pf_get_wscale(m, off, th->th_off, 4012 pd->af); 4013 if (src->wscale & PF_WSCALE_FLAG) { 4014 /* Remove scale factor from initial 4015 * window */ 4016 sws = src->wscale & PF_WSCALE_MASK; 4017 win = ((u_int32_t)win + (1 << sws) - 1) 4018 >> sws; 4019 dws = dst->wscale & PF_WSCALE_MASK; 4020 } else { 4021 /* fixup other window */ 4022 dst->max_win <<= dst->wscale & 4023 PF_WSCALE_MASK; 4024 /* in case of a retrans SYN|ACK */ 4025 dst->wscale = 0; 4026 } 4027 } 4028 } 4029 if (th->th_flags & TH_FIN) 4030 end++; 4031 4032 src->seqlo = seq; 4033 if (src->state < TCPS_SYN_SENT) 4034 src->state = TCPS_SYN_SENT; 4035 4036 /* 4037 * May need to slide the window (seqhi may have been set by 4038 * the crappy stack check or if we picked up the connection 4039 * after establishment) 4040 */ 4041 if (src->seqhi == 1 || 4042 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4043 src->seqhi = end + MAX(1, dst->max_win << dws); 4044 if (win > src->max_win) 4045 src->max_win = win; 4046 4047 } else { 4048 ack = ntohl(th->th_ack) - dst->seqdiff; 4049 if (src->seqdiff) { 4050 /* Modulate sequence numbers */ 4051 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4052 src->seqdiff), 0); 4053 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4054 *copyback = 1; 4055 } 4056 end = seq + pd->p_len; 4057 if (th->th_flags & TH_SYN) 4058 end++; 4059 if (th->th_flags & TH_FIN) 4060 end++; 4061 } 4062 4063 if ((th->th_flags & TH_ACK) == 0) { 4064 /* Let it pass through the ack skew check */ 4065 ack = dst->seqlo; 4066 } else if ((ack == 0 && 4067 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4068 /* broken tcp stacks do not set ack */ 4069 (dst->state < TCPS_SYN_SENT)) { 4070 /* 4071 * Many stacks (ours included) will set the ACK number in an 4072 * FIN|ACK if the SYN times out -- no sequence to ACK. 4073 */ 4074 ack = dst->seqlo; 4075 } 4076 4077 if (seq == end) { 4078 /* Ease sequencing restrictions on no data packets */ 4079 seq = src->seqlo; 4080 end = seq; 4081 } 4082 4083 ackskew = dst->seqlo - ack; 4084 4085 4086 /* 4087 * Need to demodulate the sequence numbers in any TCP SACK options 4088 * (Selective ACK). We could optionally validate the SACK values 4089 * against the current ACK window, either forwards or backwards, but 4090 * I'm not confident that SACK has been implemented properly 4091 * everywhere. It wouldn't surprise me if several stacks accidentally 4092 * SACK too far backwards of previously ACKed data. There really aren't 4093 * any security implications of bad SACKing unless the target stack 4094 * doesn't validate the option length correctly. Someone trying to 4095 * spoof into a TCP connection won't bother blindly sending SACK 4096 * options anyway. 4097 */ 4098 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4099 if (pf_modulate_sack(m, off, pd, th, dst)) 4100 *copyback = 1; 4101 } 4102 4103 4104 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4105 if (SEQ_GEQ(src->seqhi, end) && 4106 /* Last octet inside other's window space */ 4107 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4108 /* Retrans: not more than one window back */ 4109 (ackskew >= -MAXACKWINDOW) && 4110 /* Acking not more than one reassembled fragment backwards */ 4111 (ackskew <= (MAXACKWINDOW << sws)) && 4112 /* Acking not more than one window forward */ 4113 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4114 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4115 (pd->flags & PFDESC_IP_REAS) == 0)) { 4116 /* Require an exact/+1 sequence match on resets when possible */ 4117 4118 if (dst->scrub || src->scrub) { 4119 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4120 *state, src, dst, copyback)) 4121 return (PF_DROP); 4122 } 4123 4124 /* update max window */ 4125 if (src->max_win < win) 4126 src->max_win = win; 4127 /* synchronize sequencing */ 4128 if (SEQ_GT(end, src->seqlo)) 4129 src->seqlo = end; 4130 /* slide the window of what the other end can send */ 4131 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4132 dst->seqhi = ack + MAX((win << sws), 1); 4133 4134 4135 /* update states */ 4136 if (th->th_flags & TH_SYN) 4137 if (src->state < TCPS_SYN_SENT) 4138 src->state = TCPS_SYN_SENT; 4139 if (th->th_flags & TH_FIN) 4140 if (src->state < TCPS_CLOSING) 4141 src->state = TCPS_CLOSING; 4142 if (th->th_flags & TH_ACK) { 4143 if (dst->state == TCPS_SYN_SENT) { 4144 dst->state = TCPS_ESTABLISHED; 4145 if (src->state == TCPS_ESTABLISHED && 4146 (*state)->src_node != NULL && 4147 pf_src_connlimit(state)) { 4148 REASON_SET(reason, PFRES_SRCLIMIT); 4149 return (PF_DROP); 4150 } 4151 } else if (dst->state == TCPS_CLOSING) 4152 dst->state = TCPS_FIN_WAIT_2; 4153 } 4154 if (th->th_flags & TH_RST) 4155 src->state = dst->state = TCPS_TIME_WAIT; 4156 4157 /* update expire time */ 4158 (*state)->expire = time_uptime; 4159 if (src->state >= TCPS_FIN_WAIT_2 && 4160 dst->state >= TCPS_FIN_WAIT_2) 4161 (*state)->timeout = PFTM_TCP_CLOSED; 4162 else if (src->state >= TCPS_CLOSING && 4163 dst->state >= TCPS_CLOSING) 4164 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4165 else if (src->state < TCPS_ESTABLISHED || 4166 dst->state < TCPS_ESTABLISHED) 4167 (*state)->timeout = PFTM_TCP_OPENING; 4168 else if (src->state >= TCPS_CLOSING || 4169 dst->state >= TCPS_CLOSING) 4170 (*state)->timeout = PFTM_TCP_CLOSING; 4171 else 4172 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4173 4174 /* Fall through to PASS packet */ 4175 4176 } else if ((dst->state < TCPS_SYN_SENT || 4177 dst->state >= TCPS_FIN_WAIT_2 || 4178 src->state >= TCPS_FIN_WAIT_2) && 4179 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4180 /* Within a window forward of the originating packet */ 4181 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4182 /* Within a window backward of the originating packet */ 4183 4184 /* 4185 * This currently handles three situations: 4186 * 1) Stupid stacks will shotgun SYNs before their peer 4187 * replies. 4188 * 2) When PF catches an already established stream (the 4189 * firewall rebooted, the state table was flushed, routes 4190 * changed...) 4191 * 3) Packets get funky immediately after the connection 4192 * closes (this should catch Solaris spurious ACK|FINs 4193 * that web servers like to spew after a close) 4194 * 4195 * This must be a little more careful than the above code 4196 * since packet floods will also be caught here. We don't 4197 * update the TTL here to mitigate the damage of a packet 4198 * flood and so the same code can handle awkward establishment 4199 * and a loosened connection close. 4200 * In the establishment case, a correct peer response will 4201 * validate the connection, go through the normal state code 4202 * and keep updating the state TTL. 4203 */ 4204 4205 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4206 printf("pf: loose state match: "); 4207 pf_print_state(*state); 4208 pf_print_flags(th->th_flags); 4209 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4210 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4211 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4212 (unsigned long long)(*state)->packets[1], 4213 pd->dir == PF_IN ? "in" : "out", 4214 pd->dir == (*state)->direction ? "fwd" : "rev"); 4215 } 4216 4217 if (dst->scrub || src->scrub) { 4218 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4219 *state, src, dst, copyback)) 4220 return (PF_DROP); 4221 } 4222 4223 /* update max window */ 4224 if (src->max_win < win) 4225 src->max_win = win; 4226 /* synchronize sequencing */ 4227 if (SEQ_GT(end, src->seqlo)) 4228 src->seqlo = end; 4229 /* slide the window of what the other end can send */ 4230 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4231 dst->seqhi = ack + MAX((win << sws), 1); 4232 4233 /* 4234 * Cannot set dst->seqhi here since this could be a shotgunned 4235 * SYN and not an already established connection. 4236 */ 4237 4238 if (th->th_flags & TH_FIN) 4239 if (src->state < TCPS_CLOSING) 4240 src->state = TCPS_CLOSING; 4241 if (th->th_flags & TH_RST) 4242 src->state = dst->state = TCPS_TIME_WAIT; 4243 4244 /* Fall through to PASS packet */ 4245 4246 } else { 4247 if ((*state)->dst.state == TCPS_SYN_SENT && 4248 (*state)->src.state == TCPS_SYN_SENT) { 4249 /* Send RST for state mismatches during handshake */ 4250 if (!(th->th_flags & TH_RST)) 4251 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4252 pd->dst, pd->src, th->th_dport, 4253 th->th_sport, ntohl(th->th_ack), 0, 4254 TH_RST, 0, 0, 4255 (*state)->rule.ptr->return_ttl, 1, 0, 4256 kif->pfik_ifp); 4257 src->seqlo = 0; 4258 src->seqhi = 1; 4259 src->max_win = 1; 4260 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4261 printf("pf: BAD state: "); 4262 pf_print_state(*state); 4263 pf_print_flags(th->th_flags); 4264 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4265 "pkts=%llu:%llu dir=%s,%s\n", 4266 seq, orig_seq, ack, pd->p_len, ackskew, 4267 (unsigned long long)(*state)->packets[0], 4268 (unsigned long long)(*state)->packets[1], 4269 pd->dir == PF_IN ? "in" : "out", 4270 pd->dir == (*state)->direction ? "fwd" : "rev"); 4271 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4272 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4273 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4274 ' ': '2', 4275 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4276 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4277 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4278 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4279 } 4280 REASON_SET(reason, PFRES_BADSTATE); 4281 return (PF_DROP); 4282 } 4283 4284 return (PF_PASS); 4285 } 4286 4287 static int 4288 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4289 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4290 { 4291 struct tcphdr *th = pd->hdr.tcp; 4292 4293 if (th->th_flags & TH_SYN) 4294 if (src->state < TCPS_SYN_SENT) 4295 src->state = TCPS_SYN_SENT; 4296 if (th->th_flags & TH_FIN) 4297 if (src->state < TCPS_CLOSING) 4298 src->state = TCPS_CLOSING; 4299 if (th->th_flags & TH_ACK) { 4300 if (dst->state == TCPS_SYN_SENT) { 4301 dst->state = TCPS_ESTABLISHED; 4302 if (src->state == TCPS_ESTABLISHED && 4303 (*state)->src_node != NULL && 4304 pf_src_connlimit(state)) { 4305 REASON_SET(reason, PFRES_SRCLIMIT); 4306 return (PF_DROP); 4307 } 4308 } else if (dst->state == TCPS_CLOSING) { 4309 dst->state = TCPS_FIN_WAIT_2; 4310 } else if (src->state == TCPS_SYN_SENT && 4311 dst->state < TCPS_SYN_SENT) { 4312 /* 4313 * Handle a special sloppy case where we only see one 4314 * half of the connection. If there is a ACK after 4315 * the initial SYN without ever seeing a packet from 4316 * the destination, set the connection to established. 4317 */ 4318 dst->state = src->state = TCPS_ESTABLISHED; 4319 if ((*state)->src_node != NULL && 4320 pf_src_connlimit(state)) { 4321 REASON_SET(reason, PFRES_SRCLIMIT); 4322 return (PF_DROP); 4323 } 4324 } else if (src->state == TCPS_CLOSING && 4325 dst->state == TCPS_ESTABLISHED && 4326 dst->seqlo == 0) { 4327 /* 4328 * Handle the closing of half connections where we 4329 * don't see the full bidirectional FIN/ACK+ACK 4330 * handshake. 4331 */ 4332 dst->state = TCPS_CLOSING; 4333 } 4334 } 4335 if (th->th_flags & TH_RST) 4336 src->state = dst->state = TCPS_TIME_WAIT; 4337 4338 /* update expire time */ 4339 (*state)->expire = time_uptime; 4340 if (src->state >= TCPS_FIN_WAIT_2 && 4341 dst->state >= TCPS_FIN_WAIT_2) 4342 (*state)->timeout = PFTM_TCP_CLOSED; 4343 else if (src->state >= TCPS_CLOSING && 4344 dst->state >= TCPS_CLOSING) 4345 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4346 else if (src->state < TCPS_ESTABLISHED || 4347 dst->state < TCPS_ESTABLISHED) 4348 (*state)->timeout = PFTM_TCP_OPENING; 4349 else if (src->state >= TCPS_CLOSING || 4350 dst->state >= TCPS_CLOSING) 4351 (*state)->timeout = PFTM_TCP_CLOSING; 4352 else 4353 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4354 4355 return (PF_PASS); 4356 } 4357 4358 static int 4359 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4360 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4361 u_short *reason) 4362 { 4363 struct pf_state_key_cmp key; 4364 struct tcphdr *th = pd->hdr.tcp; 4365 int copyback = 0; 4366 struct pf_state_peer *src, *dst; 4367 struct pf_state_key *sk; 4368 4369 bzero(&key, sizeof(key)); 4370 key.af = pd->af; 4371 key.proto = IPPROTO_TCP; 4372 if (direction == PF_IN) { /* wire side, straight */ 4373 PF_ACPY(&key.addr[0], pd->src, key.af); 4374 PF_ACPY(&key.addr[1], pd->dst, key.af); 4375 key.port[0] = th->th_sport; 4376 key.port[1] = th->th_dport; 4377 } else { /* stack side, reverse */ 4378 PF_ACPY(&key.addr[1], pd->src, key.af); 4379 PF_ACPY(&key.addr[0], pd->dst, key.af); 4380 key.port[1] = th->th_sport; 4381 key.port[0] = th->th_dport; 4382 } 4383 4384 STATE_LOOKUP(kif, &key, direction, *state, pd); 4385 4386 if (direction == (*state)->direction) { 4387 src = &(*state)->src; 4388 dst = &(*state)->dst; 4389 } else { 4390 src = &(*state)->dst; 4391 dst = &(*state)->src; 4392 } 4393 4394 sk = (*state)->key[pd->didx]; 4395 4396 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4397 if (direction != (*state)->direction) { 4398 REASON_SET(reason, PFRES_SYNPROXY); 4399 return (PF_SYNPROXY_DROP); 4400 } 4401 if (th->th_flags & TH_SYN) { 4402 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4403 REASON_SET(reason, PFRES_SYNPROXY); 4404 return (PF_DROP); 4405 } 4406 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4407 pd->src, th->th_dport, th->th_sport, 4408 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4409 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4410 REASON_SET(reason, PFRES_SYNPROXY); 4411 return (PF_SYNPROXY_DROP); 4412 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 4413 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4414 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4415 REASON_SET(reason, PFRES_SYNPROXY); 4416 return (PF_DROP); 4417 } else if ((*state)->src_node != NULL && 4418 pf_src_connlimit(state)) { 4419 REASON_SET(reason, PFRES_SRCLIMIT); 4420 return (PF_DROP); 4421 } else 4422 (*state)->src.state = PF_TCPS_PROXY_DST; 4423 } 4424 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4425 if (direction == (*state)->direction) { 4426 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4427 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4428 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4429 REASON_SET(reason, PFRES_SYNPROXY); 4430 return (PF_DROP); 4431 } 4432 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4433 if ((*state)->dst.seqhi == 1) 4434 (*state)->dst.seqhi = htonl(arc4random()); 4435 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4436 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4437 sk->port[pd->sidx], sk->port[pd->didx], 4438 (*state)->dst.seqhi, 0, TH_SYN, 0, 4439 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4440 REASON_SET(reason, PFRES_SYNPROXY); 4441 return (PF_SYNPROXY_DROP); 4442 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4443 (TH_SYN|TH_ACK)) || 4444 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4445 REASON_SET(reason, PFRES_SYNPROXY); 4446 return (PF_DROP); 4447 } else { 4448 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4449 (*state)->dst.seqlo = ntohl(th->th_seq); 4450 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4451 pd->src, th->th_dport, th->th_sport, 4452 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4453 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4454 (*state)->tag, NULL); 4455 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4456 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4457 sk->port[pd->sidx], sk->port[pd->didx], 4458 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4459 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4460 (*state)->src.seqdiff = (*state)->dst.seqhi - 4461 (*state)->src.seqlo; 4462 (*state)->dst.seqdiff = (*state)->src.seqhi - 4463 (*state)->dst.seqlo; 4464 (*state)->src.seqhi = (*state)->src.seqlo + 4465 (*state)->dst.max_win; 4466 (*state)->dst.seqhi = (*state)->dst.seqlo + 4467 (*state)->src.max_win; 4468 (*state)->src.wscale = (*state)->dst.wscale = 0; 4469 (*state)->src.state = (*state)->dst.state = 4470 TCPS_ESTABLISHED; 4471 REASON_SET(reason, PFRES_SYNPROXY); 4472 return (PF_SYNPROXY_DROP); 4473 } 4474 } 4475 4476 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4477 dst->state >= TCPS_FIN_WAIT_2 && 4478 src->state >= TCPS_FIN_WAIT_2) { 4479 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4480 printf("pf: state reuse "); 4481 pf_print_state(*state); 4482 pf_print_flags(th->th_flags); 4483 printf("\n"); 4484 } 4485 /* XXX make sure it's the same direction ?? */ 4486 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4487 pf_unlink_state(*state, PF_ENTER_LOCKED); 4488 *state = NULL; 4489 return (PF_DROP); 4490 } 4491 4492 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4493 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4494 return (PF_DROP); 4495 } else { 4496 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4497 ©back) == PF_DROP) 4498 return (PF_DROP); 4499 } 4500 4501 /* translate source/destination address, if necessary */ 4502 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4503 struct pf_state_key *nk = (*state)->key[pd->didx]; 4504 4505 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4506 nk->port[pd->sidx] != th->th_sport) 4507 pf_change_ap(m, pd->src, &th->th_sport, 4508 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4509 nk->port[pd->sidx], 0, pd->af); 4510 4511 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4512 nk->port[pd->didx] != th->th_dport) 4513 pf_change_ap(m, pd->dst, &th->th_dport, 4514 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4515 nk->port[pd->didx], 0, pd->af); 4516 copyback = 1; 4517 } 4518 4519 /* Copyback sequence modulation or stateful scrub changes if needed */ 4520 if (copyback) 4521 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4522 4523 return (PF_PASS); 4524 } 4525 4526 static int 4527 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4528 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4529 { 4530 struct pf_state_peer *src, *dst; 4531 struct pf_state_key_cmp key; 4532 struct udphdr *uh = pd->hdr.udp; 4533 4534 bzero(&key, sizeof(key)); 4535 key.af = pd->af; 4536 key.proto = IPPROTO_UDP; 4537 if (direction == PF_IN) { /* wire side, straight */ 4538 PF_ACPY(&key.addr[0], pd->src, key.af); 4539 PF_ACPY(&key.addr[1], pd->dst, key.af); 4540 key.port[0] = uh->uh_sport; 4541 key.port[1] = uh->uh_dport; 4542 } else { /* stack side, reverse */ 4543 PF_ACPY(&key.addr[1], pd->src, key.af); 4544 PF_ACPY(&key.addr[0], pd->dst, key.af); 4545 key.port[1] = uh->uh_sport; 4546 key.port[0] = uh->uh_dport; 4547 } 4548 4549 STATE_LOOKUP(kif, &key, direction, *state, pd); 4550 4551 if (direction == (*state)->direction) { 4552 src = &(*state)->src; 4553 dst = &(*state)->dst; 4554 } else { 4555 src = &(*state)->dst; 4556 dst = &(*state)->src; 4557 } 4558 4559 /* update states */ 4560 if (src->state < PFUDPS_SINGLE) 4561 src->state = PFUDPS_SINGLE; 4562 if (dst->state == PFUDPS_SINGLE) 4563 dst->state = PFUDPS_MULTIPLE; 4564 4565 /* update expire time */ 4566 (*state)->expire = time_uptime; 4567 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4568 (*state)->timeout = PFTM_UDP_MULTIPLE; 4569 else 4570 (*state)->timeout = PFTM_UDP_SINGLE; 4571 4572 /* translate source/destination address, if necessary */ 4573 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4574 struct pf_state_key *nk = (*state)->key[pd->didx]; 4575 4576 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4577 nk->port[pd->sidx] != uh->uh_sport) 4578 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4579 &uh->uh_sum, &nk->addr[pd->sidx], 4580 nk->port[pd->sidx], 1, pd->af); 4581 4582 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4583 nk->port[pd->didx] != uh->uh_dport) 4584 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4585 &uh->uh_sum, &nk->addr[pd->didx], 4586 nk->port[pd->didx], 1, pd->af); 4587 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4588 } 4589 4590 return (PF_PASS); 4591 } 4592 4593 static int 4594 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4595 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4596 { 4597 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4598 u_int16_t icmpid = 0, *icmpsum; 4599 u_int8_t icmptype; 4600 int state_icmp = 0; 4601 struct pf_state_key_cmp key; 4602 4603 bzero(&key, sizeof(key)); 4604 switch (pd->proto) { 4605 #ifdef INET 4606 case IPPROTO_ICMP: 4607 icmptype = pd->hdr.icmp->icmp_type; 4608 icmpid = pd->hdr.icmp->icmp_id; 4609 icmpsum = &pd->hdr.icmp->icmp_cksum; 4610 4611 if (icmptype == ICMP_UNREACH || 4612 icmptype == ICMP_SOURCEQUENCH || 4613 icmptype == ICMP_REDIRECT || 4614 icmptype == ICMP_TIMXCEED || 4615 icmptype == ICMP_PARAMPROB) 4616 state_icmp++; 4617 break; 4618 #endif /* INET */ 4619 #ifdef INET6 4620 case IPPROTO_ICMPV6: 4621 icmptype = pd->hdr.icmp6->icmp6_type; 4622 icmpid = pd->hdr.icmp6->icmp6_id; 4623 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4624 4625 if (icmptype == ICMP6_DST_UNREACH || 4626 icmptype == ICMP6_PACKET_TOO_BIG || 4627 icmptype == ICMP6_TIME_EXCEEDED || 4628 icmptype == ICMP6_PARAM_PROB) 4629 state_icmp++; 4630 break; 4631 #endif /* INET6 */ 4632 } 4633 4634 if (!state_icmp) { 4635 4636 /* 4637 * ICMP query/reply message not related to a TCP/UDP packet. 4638 * Search for an ICMP state. 4639 */ 4640 key.af = pd->af; 4641 key.proto = pd->proto; 4642 key.port[0] = key.port[1] = icmpid; 4643 if (direction == PF_IN) { /* wire side, straight */ 4644 PF_ACPY(&key.addr[0], pd->src, key.af); 4645 PF_ACPY(&key.addr[1], pd->dst, key.af); 4646 } else { /* stack side, reverse */ 4647 PF_ACPY(&key.addr[1], pd->src, key.af); 4648 PF_ACPY(&key.addr[0], pd->dst, key.af); 4649 } 4650 4651 STATE_LOOKUP(kif, &key, direction, *state, pd); 4652 4653 (*state)->expire = time_uptime; 4654 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4655 4656 /* translate source/destination address, if necessary */ 4657 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4658 struct pf_state_key *nk = (*state)->key[pd->didx]; 4659 4660 switch (pd->af) { 4661 #ifdef INET 4662 case AF_INET: 4663 if (PF_ANEQ(pd->src, 4664 &nk->addr[pd->sidx], AF_INET)) 4665 pf_change_a(&saddr->v4.s_addr, 4666 pd->ip_sum, 4667 nk->addr[pd->sidx].v4.s_addr, 0); 4668 4669 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4670 AF_INET)) 4671 pf_change_a(&daddr->v4.s_addr, 4672 pd->ip_sum, 4673 nk->addr[pd->didx].v4.s_addr, 0); 4674 4675 if (nk->port[0] != 4676 pd->hdr.icmp->icmp_id) { 4677 pd->hdr.icmp->icmp_cksum = 4678 pf_cksum_fixup( 4679 pd->hdr.icmp->icmp_cksum, icmpid, 4680 nk->port[pd->sidx], 0); 4681 pd->hdr.icmp->icmp_id = 4682 nk->port[pd->sidx]; 4683 } 4684 4685 m_copyback(m, off, ICMP_MINLEN, 4686 (caddr_t )pd->hdr.icmp); 4687 break; 4688 #endif /* INET */ 4689 #ifdef INET6 4690 case AF_INET6: 4691 if (PF_ANEQ(pd->src, 4692 &nk->addr[pd->sidx], AF_INET6)) 4693 pf_change_a6(saddr, 4694 &pd->hdr.icmp6->icmp6_cksum, 4695 &nk->addr[pd->sidx], 0); 4696 4697 if (PF_ANEQ(pd->dst, 4698 &nk->addr[pd->didx], AF_INET6)) 4699 pf_change_a6(daddr, 4700 &pd->hdr.icmp6->icmp6_cksum, 4701 &nk->addr[pd->didx], 0); 4702 4703 m_copyback(m, off, sizeof(struct icmp6_hdr), 4704 (caddr_t )pd->hdr.icmp6); 4705 break; 4706 #endif /* INET6 */ 4707 } 4708 } 4709 return (PF_PASS); 4710 4711 } else { 4712 /* 4713 * ICMP error message in response to a TCP/UDP packet. 4714 * Extract the inner TCP/UDP header and search for that state. 4715 */ 4716 4717 struct pf_pdesc pd2; 4718 bzero(&pd2, sizeof pd2); 4719 #ifdef INET 4720 struct ip h2; 4721 #endif /* INET */ 4722 #ifdef INET6 4723 struct ip6_hdr h2_6; 4724 int terminal = 0; 4725 #endif /* INET6 */ 4726 int ipoff2 = 0; 4727 int off2 = 0; 4728 4729 pd2.af = pd->af; 4730 /* Payload packet is from the opposite direction. */ 4731 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4732 pd2.didx = (direction == PF_IN) ? 0 : 1; 4733 switch (pd->af) { 4734 #ifdef INET 4735 case AF_INET: 4736 /* offset of h2 in mbuf chain */ 4737 ipoff2 = off + ICMP_MINLEN; 4738 4739 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4740 NULL, reason, pd2.af)) { 4741 DPFPRINTF(PF_DEBUG_MISC, 4742 ("pf: ICMP error message too short " 4743 "(ip)\n")); 4744 return (PF_DROP); 4745 } 4746 /* 4747 * ICMP error messages don't refer to non-first 4748 * fragments 4749 */ 4750 if (h2.ip_off & htons(IP_OFFMASK)) { 4751 REASON_SET(reason, PFRES_FRAG); 4752 return (PF_DROP); 4753 } 4754 4755 /* offset of protocol header that follows h2 */ 4756 off2 = ipoff2 + (h2.ip_hl << 2); 4757 4758 pd2.proto = h2.ip_p; 4759 pd2.src = (struct pf_addr *)&h2.ip_src; 4760 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4761 pd2.ip_sum = &h2.ip_sum; 4762 break; 4763 #endif /* INET */ 4764 #ifdef INET6 4765 case AF_INET6: 4766 ipoff2 = off + sizeof(struct icmp6_hdr); 4767 4768 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4769 NULL, reason, pd2.af)) { 4770 DPFPRINTF(PF_DEBUG_MISC, 4771 ("pf: ICMP error message too short " 4772 "(ip6)\n")); 4773 return (PF_DROP); 4774 } 4775 pd2.proto = h2_6.ip6_nxt; 4776 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4777 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4778 pd2.ip_sum = NULL; 4779 off2 = ipoff2 + sizeof(h2_6); 4780 do { 4781 switch (pd2.proto) { 4782 case IPPROTO_FRAGMENT: 4783 /* 4784 * ICMPv6 error messages for 4785 * non-first fragments 4786 */ 4787 REASON_SET(reason, PFRES_FRAG); 4788 return (PF_DROP); 4789 case IPPROTO_AH: 4790 case IPPROTO_HOPOPTS: 4791 case IPPROTO_ROUTING: 4792 case IPPROTO_DSTOPTS: { 4793 /* get next header and header length */ 4794 struct ip6_ext opt6; 4795 4796 if (!pf_pull_hdr(m, off2, &opt6, 4797 sizeof(opt6), NULL, reason, 4798 pd2.af)) { 4799 DPFPRINTF(PF_DEBUG_MISC, 4800 ("pf: ICMPv6 short opt\n")); 4801 return (PF_DROP); 4802 } 4803 if (pd2.proto == IPPROTO_AH) 4804 off2 += (opt6.ip6e_len + 2) * 4; 4805 else 4806 off2 += (opt6.ip6e_len + 1) * 8; 4807 pd2.proto = opt6.ip6e_nxt; 4808 /* goto the next header */ 4809 break; 4810 } 4811 default: 4812 terminal++; 4813 break; 4814 } 4815 } while (!terminal); 4816 break; 4817 #endif /* INET6 */ 4818 } 4819 4820 switch (pd2.proto) { 4821 case IPPROTO_TCP: { 4822 struct tcphdr th; 4823 u_int32_t seq; 4824 struct pf_state_peer *src, *dst; 4825 u_int8_t dws; 4826 int copyback = 0; 4827 4828 /* 4829 * Only the first 8 bytes of the TCP header can be 4830 * expected. Don't access any TCP header fields after 4831 * th_seq, an ackskew test is not possible. 4832 */ 4833 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4834 pd2.af)) { 4835 DPFPRINTF(PF_DEBUG_MISC, 4836 ("pf: ICMP error message too short " 4837 "(tcp)\n")); 4838 return (PF_DROP); 4839 } 4840 4841 key.af = pd2.af; 4842 key.proto = IPPROTO_TCP; 4843 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4844 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4845 key.port[pd2.sidx] = th.th_sport; 4846 key.port[pd2.didx] = th.th_dport; 4847 4848 STATE_LOOKUP(kif, &key, direction, *state, pd); 4849 4850 if (direction == (*state)->direction) { 4851 src = &(*state)->dst; 4852 dst = &(*state)->src; 4853 } else { 4854 src = &(*state)->src; 4855 dst = &(*state)->dst; 4856 } 4857 4858 if (src->wscale && dst->wscale) 4859 dws = dst->wscale & PF_WSCALE_MASK; 4860 else 4861 dws = 0; 4862 4863 /* Demodulate sequence number */ 4864 seq = ntohl(th.th_seq) - src->seqdiff; 4865 if (src->seqdiff) { 4866 pf_change_a(&th.th_seq, icmpsum, 4867 htonl(seq), 0); 4868 copyback = 1; 4869 } 4870 4871 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4872 (!SEQ_GEQ(src->seqhi, seq) || 4873 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4874 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4875 printf("pf: BAD ICMP %d:%d ", 4876 icmptype, pd->hdr.icmp->icmp_code); 4877 pf_print_host(pd->src, 0, pd->af); 4878 printf(" -> "); 4879 pf_print_host(pd->dst, 0, pd->af); 4880 printf(" state: "); 4881 pf_print_state(*state); 4882 printf(" seq=%u\n", seq); 4883 } 4884 REASON_SET(reason, PFRES_BADSTATE); 4885 return (PF_DROP); 4886 } else { 4887 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4888 printf("pf: OK ICMP %d:%d ", 4889 icmptype, pd->hdr.icmp->icmp_code); 4890 pf_print_host(pd->src, 0, pd->af); 4891 printf(" -> "); 4892 pf_print_host(pd->dst, 0, pd->af); 4893 printf(" state: "); 4894 pf_print_state(*state); 4895 printf(" seq=%u\n", seq); 4896 } 4897 } 4898 4899 /* translate source/destination address, if necessary */ 4900 if ((*state)->key[PF_SK_WIRE] != 4901 (*state)->key[PF_SK_STACK]) { 4902 struct pf_state_key *nk = 4903 (*state)->key[pd->didx]; 4904 4905 if (PF_ANEQ(pd2.src, 4906 &nk->addr[pd2.sidx], pd2.af) || 4907 nk->port[pd2.sidx] != th.th_sport) 4908 pf_change_icmp(pd2.src, &th.th_sport, 4909 daddr, &nk->addr[pd2.sidx], 4910 nk->port[pd2.sidx], NULL, 4911 pd2.ip_sum, icmpsum, 4912 pd->ip_sum, 0, pd2.af); 4913 4914 if (PF_ANEQ(pd2.dst, 4915 &nk->addr[pd2.didx], pd2.af) || 4916 nk->port[pd2.didx] != th.th_dport) 4917 pf_change_icmp(pd2.dst, &th.th_dport, 4918 saddr, &nk->addr[pd2.didx], 4919 nk->port[pd2.didx], NULL, 4920 pd2.ip_sum, icmpsum, 4921 pd->ip_sum, 0, pd2.af); 4922 copyback = 1; 4923 } 4924 4925 if (copyback) { 4926 switch (pd2.af) { 4927 #ifdef INET 4928 case AF_INET: 4929 m_copyback(m, off, ICMP_MINLEN, 4930 (caddr_t )pd->hdr.icmp); 4931 m_copyback(m, ipoff2, sizeof(h2), 4932 (caddr_t )&h2); 4933 break; 4934 #endif /* INET */ 4935 #ifdef INET6 4936 case AF_INET6: 4937 m_copyback(m, off, 4938 sizeof(struct icmp6_hdr), 4939 (caddr_t )pd->hdr.icmp6); 4940 m_copyback(m, ipoff2, sizeof(h2_6), 4941 (caddr_t )&h2_6); 4942 break; 4943 #endif /* INET6 */ 4944 } 4945 m_copyback(m, off2, 8, (caddr_t)&th); 4946 } 4947 4948 return (PF_PASS); 4949 break; 4950 } 4951 case IPPROTO_UDP: { 4952 struct udphdr uh; 4953 4954 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4955 NULL, reason, pd2.af)) { 4956 DPFPRINTF(PF_DEBUG_MISC, 4957 ("pf: ICMP error message too short " 4958 "(udp)\n")); 4959 return (PF_DROP); 4960 } 4961 4962 key.af = pd2.af; 4963 key.proto = IPPROTO_UDP; 4964 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4965 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4966 key.port[pd2.sidx] = uh.uh_sport; 4967 key.port[pd2.didx] = uh.uh_dport; 4968 4969 STATE_LOOKUP(kif, &key, direction, *state, pd); 4970 4971 /* translate source/destination address, if necessary */ 4972 if ((*state)->key[PF_SK_WIRE] != 4973 (*state)->key[PF_SK_STACK]) { 4974 struct pf_state_key *nk = 4975 (*state)->key[pd->didx]; 4976 4977 if (PF_ANEQ(pd2.src, 4978 &nk->addr[pd2.sidx], pd2.af) || 4979 nk->port[pd2.sidx] != uh.uh_sport) 4980 pf_change_icmp(pd2.src, &uh.uh_sport, 4981 daddr, &nk->addr[pd2.sidx], 4982 nk->port[pd2.sidx], &uh.uh_sum, 4983 pd2.ip_sum, icmpsum, 4984 pd->ip_sum, 1, pd2.af); 4985 4986 if (PF_ANEQ(pd2.dst, 4987 &nk->addr[pd2.didx], pd2.af) || 4988 nk->port[pd2.didx] != uh.uh_dport) 4989 pf_change_icmp(pd2.dst, &uh.uh_dport, 4990 saddr, &nk->addr[pd2.didx], 4991 nk->port[pd2.didx], &uh.uh_sum, 4992 pd2.ip_sum, icmpsum, 4993 pd->ip_sum, 1, pd2.af); 4994 4995 switch (pd2.af) { 4996 #ifdef INET 4997 case AF_INET: 4998 m_copyback(m, off, ICMP_MINLEN, 4999 (caddr_t )pd->hdr.icmp); 5000 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5001 break; 5002 #endif /* INET */ 5003 #ifdef INET6 5004 case AF_INET6: 5005 m_copyback(m, off, 5006 sizeof(struct icmp6_hdr), 5007 (caddr_t )pd->hdr.icmp6); 5008 m_copyback(m, ipoff2, sizeof(h2_6), 5009 (caddr_t )&h2_6); 5010 break; 5011 #endif /* INET6 */ 5012 } 5013 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 5014 } 5015 return (PF_PASS); 5016 break; 5017 } 5018 #ifdef INET 5019 case IPPROTO_ICMP: { 5020 struct icmp iih; 5021 5022 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 5023 NULL, reason, pd2.af)) { 5024 DPFPRINTF(PF_DEBUG_MISC, 5025 ("pf: ICMP error message too short i" 5026 "(icmp)\n")); 5027 return (PF_DROP); 5028 } 5029 5030 key.af = pd2.af; 5031 key.proto = IPPROTO_ICMP; 5032 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5033 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5034 key.port[0] = key.port[1] = iih.icmp_id; 5035 5036 STATE_LOOKUP(kif, &key, direction, *state, pd); 5037 5038 /* translate source/destination address, if necessary */ 5039 if ((*state)->key[PF_SK_WIRE] != 5040 (*state)->key[PF_SK_STACK]) { 5041 struct pf_state_key *nk = 5042 (*state)->key[pd->didx]; 5043 5044 if (PF_ANEQ(pd2.src, 5045 &nk->addr[pd2.sidx], pd2.af) || 5046 nk->port[pd2.sidx] != iih.icmp_id) 5047 pf_change_icmp(pd2.src, &iih.icmp_id, 5048 daddr, &nk->addr[pd2.sidx], 5049 nk->port[pd2.sidx], NULL, 5050 pd2.ip_sum, icmpsum, 5051 pd->ip_sum, 0, AF_INET); 5052 5053 if (PF_ANEQ(pd2.dst, 5054 &nk->addr[pd2.didx], pd2.af) || 5055 nk->port[pd2.didx] != iih.icmp_id) 5056 pf_change_icmp(pd2.dst, &iih.icmp_id, 5057 saddr, &nk->addr[pd2.didx], 5058 nk->port[pd2.didx], NULL, 5059 pd2.ip_sum, icmpsum, 5060 pd->ip_sum, 0, AF_INET); 5061 5062 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 5063 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5064 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5065 } 5066 return (PF_PASS); 5067 break; 5068 } 5069 #endif /* INET */ 5070 #ifdef INET6 5071 case IPPROTO_ICMPV6: { 5072 struct icmp6_hdr iih; 5073 5074 if (!pf_pull_hdr(m, off2, &iih, 5075 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5076 DPFPRINTF(PF_DEBUG_MISC, 5077 ("pf: ICMP error message too short " 5078 "(icmp6)\n")); 5079 return (PF_DROP); 5080 } 5081 5082 key.af = pd2.af; 5083 key.proto = IPPROTO_ICMPV6; 5084 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5085 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5086 key.port[0] = key.port[1] = iih.icmp6_id; 5087 5088 STATE_LOOKUP(kif, &key, direction, *state, pd); 5089 5090 /* translate source/destination address, if necessary */ 5091 if ((*state)->key[PF_SK_WIRE] != 5092 (*state)->key[PF_SK_STACK]) { 5093 struct pf_state_key *nk = 5094 (*state)->key[pd->didx]; 5095 5096 if (PF_ANEQ(pd2.src, 5097 &nk->addr[pd2.sidx], pd2.af) || 5098 nk->port[pd2.sidx] != iih.icmp6_id) 5099 pf_change_icmp(pd2.src, &iih.icmp6_id, 5100 daddr, &nk->addr[pd2.sidx], 5101 nk->port[pd2.sidx], NULL, 5102 pd2.ip_sum, icmpsum, 5103 pd->ip_sum, 0, AF_INET6); 5104 5105 if (PF_ANEQ(pd2.dst, 5106 &nk->addr[pd2.didx], pd2.af) || 5107 nk->port[pd2.didx] != iih.icmp6_id) 5108 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5109 saddr, &nk->addr[pd2.didx], 5110 nk->port[pd2.didx], NULL, 5111 pd2.ip_sum, icmpsum, 5112 pd->ip_sum, 0, AF_INET6); 5113 5114 m_copyback(m, off, sizeof(struct icmp6_hdr), 5115 (caddr_t)pd->hdr.icmp6); 5116 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5117 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5118 (caddr_t)&iih); 5119 } 5120 return (PF_PASS); 5121 break; 5122 } 5123 #endif /* INET6 */ 5124 default: { 5125 key.af = pd2.af; 5126 key.proto = pd2.proto; 5127 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5128 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5129 key.port[0] = key.port[1] = 0; 5130 5131 STATE_LOOKUP(kif, &key, direction, *state, pd); 5132 5133 /* translate source/destination address, if necessary */ 5134 if ((*state)->key[PF_SK_WIRE] != 5135 (*state)->key[PF_SK_STACK]) { 5136 struct pf_state_key *nk = 5137 (*state)->key[pd->didx]; 5138 5139 if (PF_ANEQ(pd2.src, 5140 &nk->addr[pd2.sidx], pd2.af)) 5141 pf_change_icmp(pd2.src, NULL, daddr, 5142 &nk->addr[pd2.sidx], 0, NULL, 5143 pd2.ip_sum, icmpsum, 5144 pd->ip_sum, 0, pd2.af); 5145 5146 if (PF_ANEQ(pd2.dst, 5147 &nk->addr[pd2.didx], pd2.af)) 5148 pf_change_icmp(pd2.dst, NULL, saddr, 5149 &nk->addr[pd2.didx], 0, NULL, 5150 pd2.ip_sum, icmpsum, 5151 pd->ip_sum, 0, pd2.af); 5152 5153 switch (pd2.af) { 5154 #ifdef INET 5155 case AF_INET: 5156 m_copyback(m, off, ICMP_MINLEN, 5157 (caddr_t)pd->hdr.icmp); 5158 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5159 break; 5160 #endif /* INET */ 5161 #ifdef INET6 5162 case AF_INET6: 5163 m_copyback(m, off, 5164 sizeof(struct icmp6_hdr), 5165 (caddr_t )pd->hdr.icmp6); 5166 m_copyback(m, ipoff2, sizeof(h2_6), 5167 (caddr_t )&h2_6); 5168 break; 5169 #endif /* INET6 */ 5170 } 5171 } 5172 return (PF_PASS); 5173 break; 5174 } 5175 } 5176 } 5177 } 5178 5179 static int 5180 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5181 struct mbuf *m, struct pf_pdesc *pd) 5182 { 5183 struct pf_state_peer *src, *dst; 5184 struct pf_state_key_cmp key; 5185 5186 bzero(&key, sizeof(key)); 5187 key.af = pd->af; 5188 key.proto = pd->proto; 5189 if (direction == PF_IN) { 5190 PF_ACPY(&key.addr[0], pd->src, key.af); 5191 PF_ACPY(&key.addr[1], pd->dst, key.af); 5192 key.port[0] = key.port[1] = 0; 5193 } else { 5194 PF_ACPY(&key.addr[1], pd->src, key.af); 5195 PF_ACPY(&key.addr[0], pd->dst, key.af); 5196 key.port[1] = key.port[0] = 0; 5197 } 5198 5199 STATE_LOOKUP(kif, &key, direction, *state, pd); 5200 5201 if (direction == (*state)->direction) { 5202 src = &(*state)->src; 5203 dst = &(*state)->dst; 5204 } else { 5205 src = &(*state)->dst; 5206 dst = &(*state)->src; 5207 } 5208 5209 /* update states */ 5210 if (src->state < PFOTHERS_SINGLE) 5211 src->state = PFOTHERS_SINGLE; 5212 if (dst->state == PFOTHERS_SINGLE) 5213 dst->state = PFOTHERS_MULTIPLE; 5214 5215 /* update expire time */ 5216 (*state)->expire = time_uptime; 5217 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5218 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5219 else 5220 (*state)->timeout = PFTM_OTHER_SINGLE; 5221 5222 /* translate source/destination address, if necessary */ 5223 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5224 struct pf_state_key *nk = (*state)->key[pd->didx]; 5225 5226 KASSERT(nk, ("%s: nk is null", __func__)); 5227 KASSERT(pd, ("%s: pd is null", __func__)); 5228 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5229 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5230 switch (pd->af) { 5231 #ifdef INET 5232 case AF_INET: 5233 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5234 pf_change_a(&pd->src->v4.s_addr, 5235 pd->ip_sum, 5236 nk->addr[pd->sidx].v4.s_addr, 5237 0); 5238 5239 5240 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5241 pf_change_a(&pd->dst->v4.s_addr, 5242 pd->ip_sum, 5243 nk->addr[pd->didx].v4.s_addr, 5244 0); 5245 5246 break; 5247 #endif /* INET */ 5248 #ifdef INET6 5249 case AF_INET6: 5250 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5251 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5252 5253 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5254 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5255 #endif /* INET6 */ 5256 } 5257 } 5258 return (PF_PASS); 5259 } 5260 5261 /* 5262 * ipoff and off are measured from the start of the mbuf chain. 5263 * h must be at "ipoff" on the mbuf chain. 5264 */ 5265 void * 5266 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5267 u_short *actionp, u_short *reasonp, sa_family_t af) 5268 { 5269 switch (af) { 5270 #ifdef INET 5271 case AF_INET: { 5272 struct ip *h = mtod(m, struct ip *); 5273 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5274 5275 if (fragoff) { 5276 if (fragoff >= len) 5277 ACTION_SET(actionp, PF_PASS); 5278 else { 5279 ACTION_SET(actionp, PF_DROP); 5280 REASON_SET(reasonp, PFRES_FRAG); 5281 } 5282 return (NULL); 5283 } 5284 if (m->m_pkthdr.len < off + len || 5285 ntohs(h->ip_len) < off + len) { 5286 ACTION_SET(actionp, PF_DROP); 5287 REASON_SET(reasonp, PFRES_SHORT); 5288 return (NULL); 5289 } 5290 break; 5291 } 5292 #endif /* INET */ 5293 #ifdef INET6 5294 case AF_INET6: { 5295 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5296 5297 if (m->m_pkthdr.len < off + len || 5298 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5299 (unsigned)(off + len)) { 5300 ACTION_SET(actionp, PF_DROP); 5301 REASON_SET(reasonp, PFRES_SHORT); 5302 return (NULL); 5303 } 5304 break; 5305 } 5306 #endif /* INET6 */ 5307 } 5308 m_copydata(m, off, len, p); 5309 return (p); 5310 } 5311 5312 #ifdef RADIX_MPATH 5313 static int 5314 pf_routable_oldmpath(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5315 int rtableid) 5316 { 5317 struct radix_node_head *rnh; 5318 struct sockaddr_in *dst; 5319 int ret = 1; 5320 int check_mpath; 5321 #ifdef INET6 5322 struct sockaddr_in6 *dst6; 5323 struct route_in6 ro; 5324 #else 5325 struct route ro; 5326 #endif 5327 struct radix_node *rn; 5328 struct rtentry *rt; 5329 struct ifnet *ifp; 5330 5331 check_mpath = 0; 5332 /* XXX: stick to table 0 for now */ 5333 rnh = rt_tables_get_rnh(0, af); 5334 if (rnh != NULL && rn_mpath_capable(rnh)) 5335 check_mpath = 1; 5336 bzero(&ro, sizeof(ro)); 5337 switch (af) { 5338 case AF_INET: 5339 dst = satosin(&ro.ro_dst); 5340 dst->sin_family = AF_INET; 5341 dst->sin_len = sizeof(*dst); 5342 dst->sin_addr = addr->v4; 5343 break; 5344 #ifdef INET6 5345 case AF_INET6: 5346 /* 5347 * Skip check for addresses with embedded interface scope, 5348 * as they would always match anyway. 5349 */ 5350 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5351 goto out; 5352 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5353 dst6->sin6_family = AF_INET6; 5354 dst6->sin6_len = sizeof(*dst6); 5355 dst6->sin6_addr = addr->v6; 5356 break; 5357 #endif /* INET6 */ 5358 default: 5359 return (0); 5360 } 5361 5362 /* Skip checks for ipsec interfaces */ 5363 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5364 goto out; 5365 5366 switch (af) { 5367 #ifdef INET6 5368 case AF_INET6: 5369 in6_rtalloc_ign(&ro, 0, rtableid); 5370 break; 5371 #endif 5372 #ifdef INET 5373 case AF_INET: 5374 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5375 break; 5376 #endif 5377 } 5378 5379 if (ro.ro_rt != NULL) { 5380 /* No interface given, this is a no-route check */ 5381 if (kif == NULL) 5382 goto out; 5383 5384 if (kif->pfik_ifp == NULL) { 5385 ret = 0; 5386 goto out; 5387 } 5388 5389 /* Perform uRPF check if passed input interface */ 5390 ret = 0; 5391 rn = (struct radix_node *)ro.ro_rt; 5392 do { 5393 rt = (struct rtentry *)rn; 5394 ifp = rt->rt_ifp; 5395 5396 if (kif->pfik_ifp == ifp) 5397 ret = 1; 5398 rn = rn_mpath_next(rn); 5399 } while (check_mpath == 1 && rn != NULL && ret == 0); 5400 } else 5401 ret = 0; 5402 out: 5403 if (ro.ro_rt != NULL) 5404 RTFREE(ro.ro_rt); 5405 return (ret); 5406 } 5407 #endif 5408 5409 int 5410 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5411 int rtableid) 5412 { 5413 #ifdef INET 5414 struct nhop4_basic nh4; 5415 #endif 5416 #ifdef INET6 5417 struct nhop6_basic nh6; 5418 #endif 5419 struct ifnet *ifp; 5420 #ifdef RADIX_MPATH 5421 struct radix_node_head *rnh; 5422 5423 /* XXX: stick to table 0 for now */ 5424 rnh = rt_tables_get_rnh(0, af); 5425 if (rnh != NULL && rn_mpath_capable(rnh)) 5426 return (pf_routable_oldmpath(addr, af, kif, rtableid)); 5427 #endif 5428 /* 5429 * Skip check for addresses with embedded interface scope, 5430 * as they would always match anyway. 5431 */ 5432 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5433 return (1); 5434 5435 if (af != AF_INET && af != AF_INET6) 5436 return (0); 5437 5438 /* Skip checks for ipsec interfaces */ 5439 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5440 return (1); 5441 5442 ifp = NULL; 5443 5444 switch (af) { 5445 #ifdef INET6 5446 case AF_INET6: 5447 if (fib6_lookup_nh_basic(rtableid, &addr->v6, 0, 0, 0, &nh6)!=0) 5448 return (0); 5449 ifp = nh6.nh_ifp; 5450 break; 5451 #endif 5452 #ifdef INET 5453 case AF_INET: 5454 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) != 0) 5455 return (0); 5456 ifp = nh4.nh_ifp; 5457 break; 5458 #endif 5459 } 5460 5461 /* No interface given, this is a no-route check */ 5462 if (kif == NULL) 5463 return (1); 5464 5465 if (kif->pfik_ifp == NULL) 5466 return (0); 5467 5468 /* Perform uRPF check if passed input interface */ 5469 if (kif->pfik_ifp == ifp) 5470 return (1); 5471 return (0); 5472 } 5473 5474 #ifdef INET 5475 static void 5476 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5477 struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) 5478 { 5479 struct mbuf *m0, *m1; 5480 struct sockaddr_in dst; 5481 struct ip *ip; 5482 struct ifnet *ifp = NULL; 5483 struct pf_addr naddr; 5484 struct pf_src_node *sn = NULL; 5485 int error = 0; 5486 uint16_t ip_len, ip_off; 5487 5488 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5489 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5490 __func__)); 5491 5492 if ((pd->pf_mtag == NULL && 5493 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5494 pd->pf_mtag->routed++ > 3) { 5495 m0 = *m; 5496 *m = NULL; 5497 goto bad_locked; 5498 } 5499 5500 if (r->rt == PF_DUPTO) { 5501 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5502 if (s) 5503 PF_STATE_UNLOCK(s); 5504 return; 5505 } 5506 } else { 5507 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5508 if (s) 5509 PF_STATE_UNLOCK(s); 5510 return; 5511 } 5512 m0 = *m; 5513 } 5514 5515 ip = mtod(m0, struct ip *); 5516 5517 bzero(&dst, sizeof(dst)); 5518 dst.sin_family = AF_INET; 5519 dst.sin_len = sizeof(dst); 5520 dst.sin_addr = ip->ip_dst; 5521 5522 bzero(&naddr, sizeof(naddr)); 5523 5524 if (TAILQ_EMPTY(&r->rpool.list)) { 5525 DPFPRINTF(PF_DEBUG_URGENT, 5526 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5527 goto bad_locked; 5528 } 5529 if (s == NULL) { 5530 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5531 &naddr, NULL, &sn); 5532 if (!PF_AZERO(&naddr, AF_INET)) 5533 dst.sin_addr.s_addr = naddr.v4.s_addr; 5534 ifp = r->rpool.cur->kif ? 5535 r->rpool.cur->kif->pfik_ifp : NULL; 5536 } else { 5537 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5538 dst.sin_addr.s_addr = 5539 s->rt_addr.v4.s_addr; 5540 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5541 PF_STATE_UNLOCK(s); 5542 } 5543 if (ifp == NULL) 5544 goto bad; 5545 5546 if (oifp != ifp) { 5547 if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 5548 goto bad; 5549 else if (m0 == NULL) 5550 goto done; 5551 if (m0->m_len < sizeof(struct ip)) { 5552 DPFPRINTF(PF_DEBUG_URGENT, 5553 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5554 goto bad; 5555 } 5556 ip = mtod(m0, struct ip *); 5557 } 5558 5559 if (ifp->if_flags & IFF_LOOPBACK) 5560 m0->m_flags |= M_SKIP_FIREWALL; 5561 5562 ip_len = ntohs(ip->ip_len); 5563 ip_off = ntohs(ip->ip_off); 5564 5565 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5566 m0->m_pkthdr.csum_flags |= CSUM_IP; 5567 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5568 in_delayed_cksum(m0); 5569 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5570 } 5571 #ifdef SCTP 5572 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5573 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5574 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5575 } 5576 #endif 5577 5578 /* 5579 * If small enough for interface, or the interface will take 5580 * care of the fragmentation for us, we can just send directly. 5581 */ 5582 if (ip_len <= ifp->if_mtu || 5583 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5584 ip->ip_sum = 0; 5585 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5586 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5587 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5588 } 5589 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5590 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5591 goto done; 5592 } 5593 5594 /* Balk when DF bit is set or the interface didn't support TSO. */ 5595 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5596 error = EMSGSIZE; 5597 KMOD_IPSTAT_INC(ips_cantfrag); 5598 if (r->rt != PF_DUPTO) { 5599 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5600 ifp->if_mtu); 5601 goto done; 5602 } else 5603 goto bad; 5604 } 5605 5606 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5607 if (error) 5608 goto bad; 5609 5610 for (; m0; m0 = m1) { 5611 m1 = m0->m_nextpkt; 5612 m0->m_nextpkt = NULL; 5613 if (error == 0) { 5614 m_clrprotoflags(m0); 5615 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5616 } else 5617 m_freem(m0); 5618 } 5619 5620 if (error == 0) 5621 KMOD_IPSTAT_INC(ips_fragmented); 5622 5623 done: 5624 if (r->rt != PF_DUPTO) 5625 *m = NULL; 5626 return; 5627 5628 bad_locked: 5629 if (s) 5630 PF_STATE_UNLOCK(s); 5631 bad: 5632 m_freem(m0); 5633 goto done; 5634 } 5635 #endif /* INET */ 5636 5637 #ifdef INET6 5638 static void 5639 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5640 struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) 5641 { 5642 struct mbuf *m0; 5643 struct sockaddr_in6 dst; 5644 struct ip6_hdr *ip6; 5645 struct ifnet *ifp = NULL; 5646 struct pf_addr naddr; 5647 struct pf_src_node *sn = NULL; 5648 5649 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5650 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5651 __func__)); 5652 5653 if ((pd->pf_mtag == NULL && 5654 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5655 pd->pf_mtag->routed++ > 3) { 5656 m0 = *m; 5657 *m = NULL; 5658 goto bad_locked; 5659 } 5660 5661 if (r->rt == PF_DUPTO) { 5662 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5663 if (s) 5664 PF_STATE_UNLOCK(s); 5665 return; 5666 } 5667 } else { 5668 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5669 if (s) 5670 PF_STATE_UNLOCK(s); 5671 return; 5672 } 5673 m0 = *m; 5674 } 5675 5676 ip6 = mtod(m0, struct ip6_hdr *); 5677 5678 bzero(&dst, sizeof(dst)); 5679 dst.sin6_family = AF_INET6; 5680 dst.sin6_len = sizeof(dst); 5681 dst.sin6_addr = ip6->ip6_dst; 5682 5683 bzero(&naddr, sizeof(naddr)); 5684 5685 if (TAILQ_EMPTY(&r->rpool.list)) { 5686 DPFPRINTF(PF_DEBUG_URGENT, 5687 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5688 goto bad_locked; 5689 } 5690 if (s == NULL) { 5691 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5692 &naddr, NULL, &sn); 5693 if (!PF_AZERO(&naddr, AF_INET6)) 5694 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5695 &naddr, AF_INET6); 5696 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5697 } else { 5698 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5699 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5700 &s->rt_addr, AF_INET6); 5701 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5702 } 5703 5704 if (s) 5705 PF_STATE_UNLOCK(s); 5706 5707 if (ifp == NULL) 5708 goto bad; 5709 5710 if (oifp != ifp) { 5711 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS) 5712 goto bad; 5713 else if (m0 == NULL) 5714 goto done; 5715 if (m0->m_len < sizeof(struct ip6_hdr)) { 5716 DPFPRINTF(PF_DEBUG_URGENT, 5717 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5718 __func__)); 5719 goto bad; 5720 } 5721 ip6 = mtod(m0, struct ip6_hdr *); 5722 } 5723 5724 if (ifp->if_flags & IFF_LOOPBACK) 5725 m0->m_flags |= M_SKIP_FIREWALL; 5726 5727 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5728 ~ifp->if_hwassist) { 5729 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5730 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5731 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5732 } 5733 5734 /* 5735 * If the packet is too large for the outgoing interface, 5736 * send back an icmp6 error. 5737 */ 5738 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5739 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5740 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5741 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5742 else { 5743 in6_ifstat_inc(ifp, ifs6_in_toobig); 5744 if (r->rt != PF_DUPTO) 5745 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5746 else 5747 goto bad; 5748 } 5749 5750 done: 5751 if (r->rt != PF_DUPTO) 5752 *m = NULL; 5753 return; 5754 5755 bad_locked: 5756 if (s) 5757 PF_STATE_UNLOCK(s); 5758 bad: 5759 m_freem(m0); 5760 goto done; 5761 } 5762 #endif /* INET6 */ 5763 5764 /* 5765 * FreeBSD supports cksum offloads for the following drivers. 5766 * em(4), fxp(4), lge(4), ndis(4), nge(4), re(4), ti(4), txp(4), xl(4) 5767 * 5768 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5769 * network driver performed cksum including pseudo header, need to verify 5770 * csum_data 5771 * CSUM_DATA_VALID : 5772 * network driver performed cksum, needs to additional pseudo header 5773 * cksum computation with partial csum_data(i.e. lack of H/W support for 5774 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5775 * 5776 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5777 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5778 * TCP/UDP layer. 5779 * Also, set csum_data to 0xffff to force cksum validation. 5780 */ 5781 static int 5782 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5783 { 5784 u_int16_t sum = 0; 5785 int hw_assist = 0; 5786 struct ip *ip; 5787 5788 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5789 return (1); 5790 if (m->m_pkthdr.len < off + len) 5791 return (1); 5792 5793 switch (p) { 5794 case IPPROTO_TCP: 5795 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5796 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5797 sum = m->m_pkthdr.csum_data; 5798 } else { 5799 ip = mtod(m, struct ip *); 5800 sum = in_pseudo(ip->ip_src.s_addr, 5801 ip->ip_dst.s_addr, htonl((u_short)len + 5802 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5803 } 5804 sum ^= 0xffff; 5805 ++hw_assist; 5806 } 5807 break; 5808 case IPPROTO_UDP: 5809 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5810 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5811 sum = m->m_pkthdr.csum_data; 5812 } else { 5813 ip = mtod(m, struct ip *); 5814 sum = in_pseudo(ip->ip_src.s_addr, 5815 ip->ip_dst.s_addr, htonl((u_short)len + 5816 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5817 } 5818 sum ^= 0xffff; 5819 ++hw_assist; 5820 } 5821 break; 5822 case IPPROTO_ICMP: 5823 #ifdef INET6 5824 case IPPROTO_ICMPV6: 5825 #endif /* INET6 */ 5826 break; 5827 default: 5828 return (1); 5829 } 5830 5831 if (!hw_assist) { 5832 switch (af) { 5833 case AF_INET: 5834 if (p == IPPROTO_ICMP) { 5835 if (m->m_len < off) 5836 return (1); 5837 m->m_data += off; 5838 m->m_len -= off; 5839 sum = in_cksum(m, len); 5840 m->m_data -= off; 5841 m->m_len += off; 5842 } else { 5843 if (m->m_len < sizeof(struct ip)) 5844 return (1); 5845 sum = in4_cksum(m, p, off, len); 5846 } 5847 break; 5848 #ifdef INET6 5849 case AF_INET6: 5850 if (m->m_len < sizeof(struct ip6_hdr)) 5851 return (1); 5852 sum = in6_cksum(m, p, off, len); 5853 break; 5854 #endif /* INET6 */ 5855 default: 5856 return (1); 5857 } 5858 } 5859 if (sum) { 5860 switch (p) { 5861 case IPPROTO_TCP: 5862 { 5863 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5864 break; 5865 } 5866 case IPPROTO_UDP: 5867 { 5868 KMOD_UDPSTAT_INC(udps_badsum); 5869 break; 5870 } 5871 #ifdef INET 5872 case IPPROTO_ICMP: 5873 { 5874 KMOD_ICMPSTAT_INC(icps_checksum); 5875 break; 5876 } 5877 #endif 5878 #ifdef INET6 5879 case IPPROTO_ICMPV6: 5880 { 5881 KMOD_ICMP6STAT_INC(icp6s_checksum); 5882 break; 5883 } 5884 #endif /* INET6 */ 5885 } 5886 return (1); 5887 } else { 5888 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5889 m->m_pkthdr.csum_flags |= 5890 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5891 m->m_pkthdr.csum_data = 0xffff; 5892 } 5893 } 5894 return (0); 5895 } 5896 5897 5898 #ifdef INET 5899 int 5900 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5901 { 5902 struct pfi_kif *kif; 5903 u_short action, reason = 0, log = 0; 5904 struct mbuf *m = *m0; 5905 struct ip *h = NULL; 5906 struct m_tag *ipfwtag; 5907 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5908 struct pf_state *s = NULL; 5909 struct pf_ruleset *ruleset = NULL; 5910 struct pf_pdesc pd; 5911 int off, dirndx, pqid = 0; 5912 5913 PF_RULES_RLOCK_TRACKER; 5914 5915 M_ASSERTPKTHDR(m); 5916 5917 if (!V_pf_status.running) 5918 return (PF_PASS); 5919 5920 memset(&pd, 0, sizeof(pd)); 5921 5922 kif = (struct pfi_kif *)ifp->if_pf_kif; 5923 5924 if (kif == NULL) { 5925 DPFPRINTF(PF_DEBUG_URGENT, 5926 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5927 return (PF_DROP); 5928 } 5929 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5930 return (PF_PASS); 5931 5932 if (m->m_flags & M_SKIP_FIREWALL) 5933 return (PF_PASS); 5934 5935 pd.pf_mtag = pf_find_mtag(m); 5936 5937 PF_RULES_RLOCK(); 5938 5939 if (ip_divert_ptr != NULL && 5940 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5941 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5942 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5943 if (pd.pf_mtag == NULL && 5944 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5945 action = PF_DROP; 5946 goto done; 5947 } 5948 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5949 m_tag_delete(m, ipfwtag); 5950 } 5951 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5952 m->m_flags |= M_FASTFWD_OURS; 5953 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5954 } 5955 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5956 /* We do IP header normalization and packet reassembly here */ 5957 action = PF_DROP; 5958 goto done; 5959 } 5960 m = *m0; /* pf_normalize messes with m0 */ 5961 h = mtod(m, struct ip *); 5962 5963 off = h->ip_hl << 2; 5964 if (off < (int)sizeof(struct ip)) { 5965 action = PF_DROP; 5966 REASON_SET(&reason, PFRES_SHORT); 5967 log = 1; 5968 goto done; 5969 } 5970 5971 pd.src = (struct pf_addr *)&h->ip_src; 5972 pd.dst = (struct pf_addr *)&h->ip_dst; 5973 pd.sport = pd.dport = NULL; 5974 pd.ip_sum = &h->ip_sum; 5975 pd.proto_sum = NULL; 5976 pd.proto = h->ip_p; 5977 pd.dir = dir; 5978 pd.sidx = (dir == PF_IN) ? 0 : 1; 5979 pd.didx = (dir == PF_IN) ? 1 : 0; 5980 pd.af = AF_INET; 5981 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 5982 pd.tot_len = ntohs(h->ip_len); 5983 5984 /* handle fragments that didn't get reassembled by normalization */ 5985 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5986 action = pf_test_fragment(&r, dir, kif, m, h, 5987 &pd, &a, &ruleset); 5988 goto done; 5989 } 5990 5991 switch (h->ip_p) { 5992 5993 case IPPROTO_TCP: { 5994 struct tcphdr th; 5995 5996 pd.hdr.tcp = &th; 5997 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5998 &action, &reason, AF_INET)) { 5999 log = action != PF_PASS; 6000 goto done; 6001 } 6002 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6003 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 6004 pqid = 1; 6005 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6006 if (action == PF_DROP) 6007 goto done; 6008 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6009 &reason); 6010 if (action == PF_PASS) { 6011 if (V_pfsync_update_state_ptr != NULL) 6012 V_pfsync_update_state_ptr(s); 6013 r = s->rule.ptr; 6014 a = s->anchor.ptr; 6015 log = s->log; 6016 } else if (s == NULL) 6017 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6018 &a, &ruleset, inp); 6019 break; 6020 } 6021 6022 case IPPROTO_UDP: { 6023 struct udphdr uh; 6024 6025 pd.hdr.udp = &uh; 6026 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6027 &action, &reason, AF_INET)) { 6028 log = action != PF_PASS; 6029 goto done; 6030 } 6031 if (uh.uh_dport == 0 || 6032 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6033 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6034 action = PF_DROP; 6035 REASON_SET(&reason, PFRES_SHORT); 6036 goto done; 6037 } 6038 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6039 if (action == PF_PASS) { 6040 if (V_pfsync_update_state_ptr != NULL) 6041 V_pfsync_update_state_ptr(s); 6042 r = s->rule.ptr; 6043 a = s->anchor.ptr; 6044 log = s->log; 6045 } else if (s == NULL) 6046 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6047 &a, &ruleset, inp); 6048 break; 6049 } 6050 6051 case IPPROTO_ICMP: { 6052 struct icmp ih; 6053 6054 pd.hdr.icmp = &ih; 6055 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 6056 &action, &reason, AF_INET)) { 6057 log = action != PF_PASS; 6058 goto done; 6059 } 6060 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 6061 &reason); 6062 if (action == PF_PASS) { 6063 if (V_pfsync_update_state_ptr != NULL) 6064 V_pfsync_update_state_ptr(s); 6065 r = s->rule.ptr; 6066 a = s->anchor.ptr; 6067 log = s->log; 6068 } else if (s == NULL) 6069 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6070 &a, &ruleset, inp); 6071 break; 6072 } 6073 6074 #ifdef INET6 6075 case IPPROTO_ICMPV6: { 6076 action = PF_DROP; 6077 DPFPRINTF(PF_DEBUG_MISC, 6078 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6079 goto done; 6080 } 6081 #endif 6082 6083 default: 6084 action = pf_test_state_other(&s, dir, kif, m, &pd); 6085 if (action == PF_PASS) { 6086 if (V_pfsync_update_state_ptr != NULL) 6087 V_pfsync_update_state_ptr(s); 6088 r = s->rule.ptr; 6089 a = s->anchor.ptr; 6090 log = s->log; 6091 } else if (s == NULL) 6092 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6093 &a, &ruleset, inp); 6094 break; 6095 } 6096 6097 done: 6098 PF_RULES_RUNLOCK(); 6099 if (action == PF_PASS && h->ip_hl > 5 && 6100 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6101 action = PF_DROP; 6102 REASON_SET(&reason, PFRES_IPOPTIONS); 6103 log = r->log; 6104 DPFPRINTF(PF_DEBUG_MISC, 6105 ("pf: dropping packet with ip options\n")); 6106 } 6107 6108 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6109 action = PF_DROP; 6110 REASON_SET(&reason, PFRES_MEMORY); 6111 } 6112 if (r->rtableid >= 0) 6113 M_SETFIB(m, r->rtableid); 6114 6115 if (r->scrub_flags & PFSTATE_SETPRIO) { 6116 if (pd.tos & IPTOS_LOWDELAY) 6117 pqid = 1; 6118 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6119 action = PF_DROP; 6120 REASON_SET(&reason, PFRES_MEMORY); 6121 log = 1; 6122 DPFPRINTF(PF_DEBUG_MISC, 6123 ("pf: failed to allocate 802.1q mtag\n")); 6124 } 6125 } 6126 6127 #ifdef ALTQ 6128 if (action == PF_PASS && r->qid) { 6129 if (pd.pf_mtag == NULL && 6130 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6131 action = PF_DROP; 6132 REASON_SET(&reason, PFRES_MEMORY); 6133 } else { 6134 if (s != NULL) 6135 pd.pf_mtag->qid_hash = pf_state_hash(s); 6136 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6137 pd.pf_mtag->qid = r->pqid; 6138 else 6139 pd.pf_mtag->qid = r->qid; 6140 /* Add hints for ecn. */ 6141 pd.pf_mtag->hdr = h; 6142 } 6143 6144 } 6145 #endif /* ALTQ */ 6146 6147 /* 6148 * connections redirected to loopback should not match sockets 6149 * bound specifically to loopback due to security implications, 6150 * see tcp_input() and in_pcblookup_listen(). 6151 */ 6152 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6153 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6154 (s->nat_rule.ptr->action == PF_RDR || 6155 s->nat_rule.ptr->action == PF_BINAT) && 6156 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 6157 m->m_flags |= M_SKIP_FIREWALL; 6158 6159 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6160 !PACKET_LOOPED(&pd)) { 6161 6162 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6163 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6164 if (ipfwtag != NULL) { 6165 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6166 ntohs(r->divert.port); 6167 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6168 6169 if (s) 6170 PF_STATE_UNLOCK(s); 6171 6172 m_tag_prepend(m, ipfwtag); 6173 if (m->m_flags & M_FASTFWD_OURS) { 6174 if (pd.pf_mtag == NULL && 6175 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6176 action = PF_DROP; 6177 REASON_SET(&reason, PFRES_MEMORY); 6178 log = 1; 6179 DPFPRINTF(PF_DEBUG_MISC, 6180 ("pf: failed to allocate tag\n")); 6181 } else { 6182 pd.pf_mtag->flags |= 6183 PF_FASTFWD_OURS_PRESENT; 6184 m->m_flags &= ~M_FASTFWD_OURS; 6185 } 6186 } 6187 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 6188 *m0 = NULL; 6189 6190 return (action); 6191 } else { 6192 /* XXX: ipfw has the same behaviour! */ 6193 action = PF_DROP; 6194 REASON_SET(&reason, PFRES_MEMORY); 6195 log = 1; 6196 DPFPRINTF(PF_DEBUG_MISC, 6197 ("pf: failed to allocate divert tag\n")); 6198 } 6199 } 6200 6201 if (log) { 6202 struct pf_rule *lr; 6203 6204 if (s != NULL && s->nat_rule.ptr != NULL && 6205 s->nat_rule.ptr->log & PF_LOG_ALL) 6206 lr = s->nat_rule.ptr; 6207 else 6208 lr = r; 6209 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6210 (s == NULL)); 6211 } 6212 6213 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6214 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 6215 6216 if (action == PF_PASS || r->action == PF_DROP) { 6217 dirndx = (dir == PF_OUT); 6218 r->packets[dirndx]++; 6219 r->bytes[dirndx] += pd.tot_len; 6220 if (a != NULL) { 6221 a->packets[dirndx]++; 6222 a->bytes[dirndx] += pd.tot_len; 6223 } 6224 if (s != NULL) { 6225 if (s->nat_rule.ptr != NULL) { 6226 s->nat_rule.ptr->packets[dirndx]++; 6227 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6228 } 6229 if (s->src_node != NULL) { 6230 s->src_node->packets[dirndx]++; 6231 s->src_node->bytes[dirndx] += pd.tot_len; 6232 } 6233 if (s->nat_src_node != NULL) { 6234 s->nat_src_node->packets[dirndx]++; 6235 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6236 } 6237 dirndx = (dir == s->direction) ? 0 : 1; 6238 s->packets[dirndx]++; 6239 s->bytes[dirndx] += pd.tot_len; 6240 } 6241 tr = r; 6242 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6243 if (nr != NULL && r == &V_pf_default_rule) 6244 tr = nr; 6245 if (tr->src.addr.type == PF_ADDR_TABLE) 6246 pfr_update_stats(tr->src.addr.p.tbl, 6247 (s == NULL) ? pd.src : 6248 &s->key[(s->direction == PF_IN)]-> 6249 addr[(s->direction == PF_OUT)], 6250 pd.af, pd.tot_len, dir == PF_OUT, 6251 r->action == PF_PASS, tr->src.neg); 6252 if (tr->dst.addr.type == PF_ADDR_TABLE) 6253 pfr_update_stats(tr->dst.addr.p.tbl, 6254 (s == NULL) ? pd.dst : 6255 &s->key[(s->direction == PF_IN)]-> 6256 addr[(s->direction == PF_IN)], 6257 pd.af, pd.tot_len, dir == PF_OUT, 6258 r->action == PF_PASS, tr->dst.neg); 6259 } 6260 6261 switch (action) { 6262 case PF_SYNPROXY_DROP: 6263 m_freem(*m0); 6264 case PF_DEFER: 6265 *m0 = NULL; 6266 action = PF_PASS; 6267 break; 6268 case PF_DROP: 6269 m_freem(*m0); 6270 *m0 = NULL; 6271 break; 6272 default: 6273 /* pf_route() returns unlocked. */ 6274 if (r->rt) { 6275 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6276 return (action); 6277 } 6278 break; 6279 } 6280 if (s) 6281 PF_STATE_UNLOCK(s); 6282 6283 return (action); 6284 } 6285 #endif /* INET */ 6286 6287 #ifdef INET6 6288 int 6289 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6290 { 6291 struct pfi_kif *kif; 6292 u_short action, reason = 0, log = 0; 6293 struct mbuf *m = *m0, *n = NULL; 6294 struct m_tag *mtag; 6295 struct ip6_hdr *h = NULL; 6296 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6297 struct pf_state *s = NULL; 6298 struct pf_ruleset *ruleset = NULL; 6299 struct pf_pdesc pd; 6300 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6301 6302 PF_RULES_RLOCK_TRACKER; 6303 M_ASSERTPKTHDR(m); 6304 6305 if (!V_pf_status.running) 6306 return (PF_PASS); 6307 6308 memset(&pd, 0, sizeof(pd)); 6309 pd.pf_mtag = pf_find_mtag(m); 6310 6311 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6312 return (PF_PASS); 6313 6314 kif = (struct pfi_kif *)ifp->if_pf_kif; 6315 if (kif == NULL) { 6316 DPFPRINTF(PF_DEBUG_URGENT, 6317 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6318 return (PF_DROP); 6319 } 6320 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6321 return (PF_PASS); 6322 6323 if (m->m_flags & M_SKIP_FIREWALL) 6324 return (PF_PASS); 6325 6326 PF_RULES_RLOCK(); 6327 6328 /* We do IP header normalization and packet reassembly here */ 6329 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6330 action = PF_DROP; 6331 goto done; 6332 } 6333 m = *m0; /* pf_normalize messes with m0 */ 6334 h = mtod(m, struct ip6_hdr *); 6335 6336 #if 1 6337 /* 6338 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6339 * will do something bad, so drop the packet for now. 6340 */ 6341 if (htons(h->ip6_plen) == 0) { 6342 action = PF_DROP; 6343 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6344 goto done; 6345 } 6346 #endif 6347 6348 pd.src = (struct pf_addr *)&h->ip6_src; 6349 pd.dst = (struct pf_addr *)&h->ip6_dst; 6350 pd.sport = pd.dport = NULL; 6351 pd.ip_sum = NULL; 6352 pd.proto_sum = NULL; 6353 pd.dir = dir; 6354 pd.sidx = (dir == PF_IN) ? 0 : 1; 6355 pd.didx = (dir == PF_IN) ? 1 : 0; 6356 pd.af = AF_INET6; 6357 pd.tos = 0; 6358 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6359 6360 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6361 pd.proto = h->ip6_nxt; 6362 do { 6363 switch (pd.proto) { 6364 case IPPROTO_FRAGMENT: 6365 action = pf_test_fragment(&r, dir, kif, m, h, 6366 &pd, &a, &ruleset); 6367 if (action == PF_DROP) 6368 REASON_SET(&reason, PFRES_FRAG); 6369 goto done; 6370 case IPPROTO_ROUTING: { 6371 struct ip6_rthdr rthdr; 6372 6373 if (rh_cnt++) { 6374 DPFPRINTF(PF_DEBUG_MISC, 6375 ("pf: IPv6 more than one rthdr\n")); 6376 action = PF_DROP; 6377 REASON_SET(&reason, PFRES_IPOPTIONS); 6378 log = 1; 6379 goto done; 6380 } 6381 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6382 &reason, pd.af)) { 6383 DPFPRINTF(PF_DEBUG_MISC, 6384 ("pf: IPv6 short rthdr\n")); 6385 action = PF_DROP; 6386 REASON_SET(&reason, PFRES_SHORT); 6387 log = 1; 6388 goto done; 6389 } 6390 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6391 DPFPRINTF(PF_DEBUG_MISC, 6392 ("pf: IPv6 rthdr0\n")); 6393 action = PF_DROP; 6394 REASON_SET(&reason, PFRES_IPOPTIONS); 6395 log = 1; 6396 goto done; 6397 } 6398 /* FALLTHROUGH */ 6399 } 6400 case IPPROTO_AH: 6401 case IPPROTO_HOPOPTS: 6402 case IPPROTO_DSTOPTS: { 6403 /* get next header and header length */ 6404 struct ip6_ext opt6; 6405 6406 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6407 NULL, &reason, pd.af)) { 6408 DPFPRINTF(PF_DEBUG_MISC, 6409 ("pf: IPv6 short opt\n")); 6410 action = PF_DROP; 6411 log = 1; 6412 goto done; 6413 } 6414 if (pd.proto == IPPROTO_AH) 6415 off += (opt6.ip6e_len + 2) * 4; 6416 else 6417 off += (opt6.ip6e_len + 1) * 8; 6418 pd.proto = opt6.ip6e_nxt; 6419 /* goto the next header */ 6420 break; 6421 } 6422 default: 6423 terminal++; 6424 break; 6425 } 6426 } while (!terminal); 6427 6428 /* if there's no routing header, use unmodified mbuf for checksumming */ 6429 if (!n) 6430 n = m; 6431 6432 switch (pd.proto) { 6433 6434 case IPPROTO_TCP: { 6435 struct tcphdr th; 6436 6437 pd.hdr.tcp = &th; 6438 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6439 &action, &reason, AF_INET6)) { 6440 log = action != PF_PASS; 6441 goto done; 6442 } 6443 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6444 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6445 if (action == PF_DROP) 6446 goto done; 6447 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6448 &reason); 6449 if (action == PF_PASS) { 6450 if (V_pfsync_update_state_ptr != NULL) 6451 V_pfsync_update_state_ptr(s); 6452 r = s->rule.ptr; 6453 a = s->anchor.ptr; 6454 log = s->log; 6455 } else if (s == NULL) 6456 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6457 &a, &ruleset, inp); 6458 break; 6459 } 6460 6461 case IPPROTO_UDP: { 6462 struct udphdr uh; 6463 6464 pd.hdr.udp = &uh; 6465 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6466 &action, &reason, AF_INET6)) { 6467 log = action != PF_PASS; 6468 goto done; 6469 } 6470 if (uh.uh_dport == 0 || 6471 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6472 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6473 action = PF_DROP; 6474 REASON_SET(&reason, PFRES_SHORT); 6475 goto done; 6476 } 6477 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6478 if (action == PF_PASS) { 6479 if (V_pfsync_update_state_ptr != NULL) 6480 V_pfsync_update_state_ptr(s); 6481 r = s->rule.ptr; 6482 a = s->anchor.ptr; 6483 log = s->log; 6484 } else if (s == NULL) 6485 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6486 &a, &ruleset, inp); 6487 break; 6488 } 6489 6490 case IPPROTO_ICMP: { 6491 action = PF_DROP; 6492 DPFPRINTF(PF_DEBUG_MISC, 6493 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6494 goto done; 6495 } 6496 6497 case IPPROTO_ICMPV6: { 6498 struct icmp6_hdr ih; 6499 6500 pd.hdr.icmp6 = &ih; 6501 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6502 &action, &reason, AF_INET6)) { 6503 log = action != PF_PASS; 6504 goto done; 6505 } 6506 action = pf_test_state_icmp(&s, dir, kif, 6507 m, off, h, &pd, &reason); 6508 if (action == PF_PASS) { 6509 if (V_pfsync_update_state_ptr != NULL) 6510 V_pfsync_update_state_ptr(s); 6511 r = s->rule.ptr; 6512 a = s->anchor.ptr; 6513 log = s->log; 6514 } else if (s == NULL) 6515 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6516 &a, &ruleset, inp); 6517 break; 6518 } 6519 6520 default: 6521 action = pf_test_state_other(&s, dir, kif, m, &pd); 6522 if (action == PF_PASS) { 6523 if (V_pfsync_update_state_ptr != NULL) 6524 V_pfsync_update_state_ptr(s); 6525 r = s->rule.ptr; 6526 a = s->anchor.ptr; 6527 log = s->log; 6528 } else if (s == NULL) 6529 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6530 &a, &ruleset, inp); 6531 break; 6532 } 6533 6534 done: 6535 PF_RULES_RUNLOCK(); 6536 if (n != m) { 6537 m_freem(n); 6538 n = NULL; 6539 } 6540 6541 /* handle dangerous IPv6 extension headers. */ 6542 if (action == PF_PASS && rh_cnt && 6543 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6544 action = PF_DROP; 6545 REASON_SET(&reason, PFRES_IPOPTIONS); 6546 log = r->log; 6547 DPFPRINTF(PF_DEBUG_MISC, 6548 ("pf: dropping packet with dangerous v6 headers\n")); 6549 } 6550 6551 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6552 action = PF_DROP; 6553 REASON_SET(&reason, PFRES_MEMORY); 6554 } 6555 if (r->rtableid >= 0) 6556 M_SETFIB(m, r->rtableid); 6557 6558 if (r->scrub_flags & PFSTATE_SETPRIO) { 6559 if (pd.tos & IPTOS_LOWDELAY) 6560 pqid = 1; 6561 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6562 action = PF_DROP; 6563 REASON_SET(&reason, PFRES_MEMORY); 6564 log = 1; 6565 DPFPRINTF(PF_DEBUG_MISC, 6566 ("pf: failed to allocate 802.1q mtag\n")); 6567 } 6568 } 6569 6570 #ifdef ALTQ 6571 if (action == PF_PASS && r->qid) { 6572 if (pd.pf_mtag == NULL && 6573 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6574 action = PF_DROP; 6575 REASON_SET(&reason, PFRES_MEMORY); 6576 } else { 6577 if (s != NULL) 6578 pd.pf_mtag->qid_hash = pf_state_hash(s); 6579 if (pd.tos & IPTOS_LOWDELAY) 6580 pd.pf_mtag->qid = r->pqid; 6581 else 6582 pd.pf_mtag->qid = r->qid; 6583 /* Add hints for ecn. */ 6584 pd.pf_mtag->hdr = h; 6585 } 6586 } 6587 #endif /* ALTQ */ 6588 6589 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6590 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6591 (s->nat_rule.ptr->action == PF_RDR || 6592 s->nat_rule.ptr->action == PF_BINAT) && 6593 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6594 m->m_flags |= M_SKIP_FIREWALL; 6595 6596 /* XXX: Anybody working on it?! */ 6597 if (r->divert.port) 6598 printf("pf: divert(9) is not supported for IPv6\n"); 6599 6600 if (log) { 6601 struct pf_rule *lr; 6602 6603 if (s != NULL && s->nat_rule.ptr != NULL && 6604 s->nat_rule.ptr->log & PF_LOG_ALL) 6605 lr = s->nat_rule.ptr; 6606 else 6607 lr = r; 6608 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6609 &pd, (s == NULL)); 6610 } 6611 6612 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6613 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6614 6615 if (action == PF_PASS || r->action == PF_DROP) { 6616 dirndx = (dir == PF_OUT); 6617 r->packets[dirndx]++; 6618 r->bytes[dirndx] += pd.tot_len; 6619 if (a != NULL) { 6620 a->packets[dirndx]++; 6621 a->bytes[dirndx] += pd.tot_len; 6622 } 6623 if (s != NULL) { 6624 if (s->nat_rule.ptr != NULL) { 6625 s->nat_rule.ptr->packets[dirndx]++; 6626 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6627 } 6628 if (s->src_node != NULL) { 6629 s->src_node->packets[dirndx]++; 6630 s->src_node->bytes[dirndx] += pd.tot_len; 6631 } 6632 if (s->nat_src_node != NULL) { 6633 s->nat_src_node->packets[dirndx]++; 6634 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6635 } 6636 dirndx = (dir == s->direction) ? 0 : 1; 6637 s->packets[dirndx]++; 6638 s->bytes[dirndx] += pd.tot_len; 6639 } 6640 tr = r; 6641 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6642 if (nr != NULL && r == &V_pf_default_rule) 6643 tr = nr; 6644 if (tr->src.addr.type == PF_ADDR_TABLE) 6645 pfr_update_stats(tr->src.addr.p.tbl, 6646 (s == NULL) ? pd.src : 6647 &s->key[(s->direction == PF_IN)]->addr[0], 6648 pd.af, pd.tot_len, dir == PF_OUT, 6649 r->action == PF_PASS, tr->src.neg); 6650 if (tr->dst.addr.type == PF_ADDR_TABLE) 6651 pfr_update_stats(tr->dst.addr.p.tbl, 6652 (s == NULL) ? pd.dst : 6653 &s->key[(s->direction == PF_IN)]->addr[1], 6654 pd.af, pd.tot_len, dir == PF_OUT, 6655 r->action == PF_PASS, tr->dst.neg); 6656 } 6657 6658 switch (action) { 6659 case PF_SYNPROXY_DROP: 6660 m_freem(*m0); 6661 case PF_DEFER: 6662 *m0 = NULL; 6663 action = PF_PASS; 6664 break; 6665 case PF_DROP: 6666 m_freem(*m0); 6667 *m0 = NULL; 6668 break; 6669 default: 6670 /* pf_route6() returns unlocked. */ 6671 if (r->rt) { 6672 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6673 return (action); 6674 } 6675 break; 6676 } 6677 6678 if (s) 6679 PF_STATE_UNLOCK(s); 6680 6681 /* If reassembled packet passed, create new fragments. */ 6682 if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && 6683 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6684 action = pf_refragment6(ifp, m0, mtag); 6685 6686 return (action); 6687 } 6688 #endif /* INET6 */ 6689