1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_bpf.h" 46 #include "opt_pf.h" 47 #include "opt_sctp.h" 48 49 #include <sys/param.h> 50 #include <sys/bus.h> 51 #include <sys/endian.h> 52 #include <sys/gsb_crc32.h> 53 #include <sys/hash.h> 54 #include <sys/interrupt.h> 55 #include <sys/kernel.h> 56 #include <sys/kthread.h> 57 #include <sys/limits.h> 58 #include <sys/mbuf.h> 59 #include <sys/md5.h> 60 #include <sys/random.h> 61 #include <sys/refcount.h> 62 #include <sys/socket.h> 63 #include <sys/sysctl.h> 64 #include <sys/taskqueue.h> 65 #include <sys/ucred.h> 66 67 #include <net/if.h> 68 #include <net/if_var.h> 69 #include <net/if_types.h> 70 #include <net/if_vlan_var.h> 71 #include <net/route.h> 72 #include <net/radix_mpath.h> 73 #include <net/vnet.h> 74 75 #include <net/pfil.h> 76 #include <net/pfvar.h> 77 #include <net/if_pflog.h> 78 #include <net/if_pfsync.h> 79 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_var.h> 82 #include <netinet/in_fib.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_fw.h> 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp.h> 89 #include <netinet/tcp_fsm.h> 90 #include <netinet/tcp_seq.h> 91 #include <netinet/tcp_timer.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet/udp.h> 94 #include <netinet/udp_var.h> 95 96 #ifdef INET6 97 #include <netinet/ip6.h> 98 #include <netinet/icmp6.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/ip6_var.h> 101 #include <netinet6/in6_pcb.h> 102 #include <netinet6/in6_fib.h> 103 #include <netinet6/scope6_var.h> 104 #endif /* INET6 */ 105 106 #ifdef SCTP 107 #include <netinet/sctp_crc32.h> 108 #endif 109 110 #include <machine/in_cksum.h> 111 #include <security/mac/mac_framework.h> 112 113 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 114 115 /* 116 * Global variables 117 */ 118 119 /* state tables */ 120 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 121 VNET_DEFINE(struct pf_palist, pf_pabuf); 122 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 123 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 124 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 125 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 126 VNET_DEFINE(struct pf_kstatus, pf_status); 127 128 VNET_DEFINE(u_int32_t, ticket_altqs_active); 129 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 130 VNET_DEFINE(int, altqs_inactive_open); 131 VNET_DEFINE(u_int32_t, ticket_pabuf); 132 133 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 134 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 135 VNET_DEFINE(u_char, pf_tcp_secret[16]); 136 #define V_pf_tcp_secret VNET(pf_tcp_secret) 137 VNET_DEFINE(int, pf_tcp_secret_init); 138 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 139 VNET_DEFINE(int, pf_tcp_iss_off); 140 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 141 VNET_DECLARE(int, pf_vnet_active); 142 #define V_pf_vnet_active VNET(pf_vnet_active) 143 144 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 145 #define V_pf_purge_idx VNET(pf_purge_idx) 146 147 /* 148 * Queue for pf_intr() sends. 149 */ 150 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 151 struct pf_send_entry { 152 STAILQ_ENTRY(pf_send_entry) pfse_next; 153 struct mbuf *pfse_m; 154 enum { 155 PFSE_IP, 156 PFSE_IP6, 157 PFSE_ICMP, 158 PFSE_ICMP6, 159 } pfse_type; 160 struct { 161 int type; 162 int code; 163 int mtu; 164 } icmpopts; 165 }; 166 167 STAILQ_HEAD(pf_send_head, pf_send_entry); 168 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 169 #define V_pf_sendqueue VNET(pf_sendqueue) 170 171 static struct mtx pf_sendqueue_mtx; 172 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 173 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 174 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 175 176 /* 177 * Queue for pf_overload_task() tasks. 178 */ 179 struct pf_overload_entry { 180 SLIST_ENTRY(pf_overload_entry) next; 181 struct pf_addr addr; 182 sa_family_t af; 183 uint8_t dir; 184 struct pf_rule *rule; 185 }; 186 187 SLIST_HEAD(pf_overload_head, pf_overload_entry); 188 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 189 #define V_pf_overloadqueue VNET(pf_overloadqueue) 190 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 191 #define V_pf_overloadtask VNET(pf_overloadtask) 192 193 static struct mtx pf_overloadqueue_mtx; 194 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 195 "pf overload/flush queue", MTX_DEF); 196 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 197 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 198 199 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 200 struct mtx pf_unlnkdrules_mtx; 201 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 202 MTX_DEF); 203 204 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 205 #define V_pf_sources_z VNET(pf_sources_z) 206 uma_zone_t pf_mtag_z; 207 VNET_DEFINE(uma_zone_t, pf_state_z); 208 VNET_DEFINE(uma_zone_t, pf_state_key_z); 209 210 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 211 #define PFID_CPUBITS 8 212 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 213 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 214 #define PFID_MAXID (~PFID_CPUMASK) 215 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 216 217 static void pf_src_tree_remove_state(struct pf_state *); 218 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 219 u_int32_t); 220 static void pf_add_threshold(struct pf_threshold *); 221 static int pf_check_threshold(struct pf_threshold *); 222 223 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 224 u_int16_t *, u_int16_t *, struct pf_addr *, 225 u_int16_t, u_int8_t, sa_family_t); 226 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 227 struct tcphdr *, struct pf_state_peer *); 228 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 229 struct pf_addr *, struct pf_addr *, u_int16_t, 230 u_int16_t *, u_int16_t *, u_int16_t *, 231 u_int16_t *, u_int8_t, sa_family_t); 232 static void pf_send_tcp(struct mbuf *, 233 const struct pf_rule *, sa_family_t, 234 const struct pf_addr *, const struct pf_addr *, 235 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 236 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 237 u_int16_t, struct ifnet *); 238 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 239 sa_family_t, struct pf_rule *); 240 static void pf_detach_state(struct pf_state *); 241 static int pf_state_key_attach(struct pf_state_key *, 242 struct pf_state_key *, struct pf_state *); 243 static void pf_state_key_detach(struct pf_state *, int); 244 static int pf_state_key_ctor(void *, int, void *, int); 245 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 246 static int pf_test_rule(struct pf_rule **, struct pf_state **, 247 int, struct pfi_kif *, struct mbuf *, int, 248 struct pf_pdesc *, struct pf_rule **, 249 struct pf_ruleset **, struct inpcb *); 250 static int pf_create_state(struct pf_rule *, struct pf_rule *, 251 struct pf_rule *, struct pf_pdesc *, 252 struct pf_src_node *, struct pf_state_key *, 253 struct pf_state_key *, struct mbuf *, int, 254 u_int16_t, u_int16_t, int *, struct pfi_kif *, 255 struct pf_state **, int, u_int16_t, u_int16_t, 256 int); 257 static int pf_test_fragment(struct pf_rule **, int, 258 struct pfi_kif *, struct mbuf *, void *, 259 struct pf_pdesc *, struct pf_rule **, 260 struct pf_ruleset **); 261 static int pf_tcp_track_full(struct pf_state_peer *, 262 struct pf_state_peer *, struct pf_state **, 263 struct pfi_kif *, struct mbuf *, int, 264 struct pf_pdesc *, u_short *, int *); 265 static int pf_tcp_track_sloppy(struct pf_state_peer *, 266 struct pf_state_peer *, struct pf_state **, 267 struct pf_pdesc *, u_short *); 268 static int pf_test_state_tcp(struct pf_state **, int, 269 struct pfi_kif *, struct mbuf *, int, 270 void *, struct pf_pdesc *, u_short *); 271 static int pf_test_state_udp(struct pf_state **, int, 272 struct pfi_kif *, struct mbuf *, int, 273 void *, struct pf_pdesc *); 274 static int pf_test_state_icmp(struct pf_state **, int, 275 struct pfi_kif *, struct mbuf *, int, 276 void *, struct pf_pdesc *, u_short *); 277 static int pf_test_state_other(struct pf_state **, int, 278 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 279 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 280 sa_family_t); 281 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 282 sa_family_t); 283 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 284 int, u_int16_t); 285 static int pf_check_proto_cksum(struct mbuf *, int, int, 286 u_int8_t, sa_family_t); 287 static void pf_print_state_parts(struct pf_state *, 288 struct pf_state_key *, struct pf_state_key *); 289 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 290 struct pf_addr_wrap *); 291 static struct pf_state *pf_find_state(struct pfi_kif *, 292 struct pf_state_key_cmp *, u_int); 293 static int pf_src_connlimit(struct pf_state **); 294 static void pf_overload_task(void *v, int pending); 295 static int pf_insert_src_node(struct pf_src_node **, 296 struct pf_rule *, struct pf_addr *, sa_family_t); 297 static u_int pf_purge_expired_states(u_int, int); 298 static void pf_purge_unlinked_rules(void); 299 static int pf_mtag_uminit(void *, int, int); 300 static void pf_mtag_free(struct m_tag *); 301 #ifdef INET 302 static void pf_route(struct mbuf **, struct pf_rule *, int, 303 struct ifnet *, struct pf_state *, 304 struct pf_pdesc *, struct inpcb *); 305 #endif /* INET */ 306 #ifdef INET6 307 static void pf_change_a6(struct pf_addr *, u_int16_t *, 308 struct pf_addr *, u_int8_t); 309 static void pf_route6(struct mbuf **, struct pf_rule *, int, 310 struct ifnet *, struct pf_state *, 311 struct pf_pdesc *, struct inpcb *); 312 #endif /* INET6 */ 313 314 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 315 316 extern int pf_end_threads; 317 extern struct proc *pf_purge_proc; 318 319 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 320 321 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 322 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 323 324 #define STATE_LOOKUP(i, k, d, s, pd) \ 325 do { \ 326 (s) = pf_find_state((i), (k), (d)); \ 327 if ((s) == NULL) \ 328 return (PF_DROP); \ 329 if (PACKET_LOOPED(pd)) \ 330 return (PF_PASS); \ 331 if ((d) == PF_OUT && \ 332 (((s)->rule.ptr->rt == PF_ROUTETO && \ 333 (s)->rule.ptr->direction == PF_OUT) || \ 334 ((s)->rule.ptr->rt == PF_REPLYTO && \ 335 (s)->rule.ptr->direction == PF_IN)) && \ 336 (s)->rt_kif != NULL && \ 337 (s)->rt_kif != (i)) \ 338 return (PF_PASS); \ 339 } while (0) 340 341 #define BOUND_IFACE(r, k) \ 342 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 343 344 #define STATE_INC_COUNTERS(s) \ 345 do { \ 346 counter_u64_add(s->rule.ptr->states_cur, 1); \ 347 counter_u64_add(s->rule.ptr->states_tot, 1); \ 348 if (s->anchor.ptr != NULL) { \ 349 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 350 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 351 } \ 352 if (s->nat_rule.ptr != NULL) { \ 353 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 354 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 355 } \ 356 } while (0) 357 358 #define STATE_DEC_COUNTERS(s) \ 359 do { \ 360 if (s->nat_rule.ptr != NULL) \ 361 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 362 if (s->anchor.ptr != NULL) \ 363 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 364 counter_u64_add(s->rule.ptr->states_cur, -1); \ 365 } while (0) 366 367 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 368 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 369 VNET_DEFINE(struct pf_idhash *, pf_idhash); 370 VNET_DEFINE(struct pf_srchash *, pf_srchash); 371 372 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 373 374 u_long pf_hashmask; 375 u_long pf_srchashmask; 376 static u_long pf_hashsize; 377 static u_long pf_srchashsize; 378 u_long pf_ioctl_maxcount = 65535; 379 380 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 381 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 382 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 383 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 384 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RDTUN, 385 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 386 387 VNET_DEFINE(void *, pf_swi_cookie); 388 389 VNET_DEFINE(uint32_t, pf_hashseed); 390 #define V_pf_hashseed VNET(pf_hashseed) 391 392 int 393 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 394 { 395 396 switch (af) { 397 #ifdef INET 398 case AF_INET: 399 if (a->addr32[0] > b->addr32[0]) 400 return (1); 401 if (a->addr32[0] < b->addr32[0]) 402 return (-1); 403 break; 404 #endif /* INET */ 405 #ifdef INET6 406 case AF_INET6: 407 if (a->addr32[3] > b->addr32[3]) 408 return (1); 409 if (a->addr32[3] < b->addr32[3]) 410 return (-1); 411 if (a->addr32[2] > b->addr32[2]) 412 return (1); 413 if (a->addr32[2] < b->addr32[2]) 414 return (-1); 415 if (a->addr32[1] > b->addr32[1]) 416 return (1); 417 if (a->addr32[1] < b->addr32[1]) 418 return (-1); 419 if (a->addr32[0] > b->addr32[0]) 420 return (1); 421 if (a->addr32[0] < b->addr32[0]) 422 return (-1); 423 break; 424 #endif /* INET6 */ 425 default: 426 panic("%s: unknown address family %u", __func__, af); 427 } 428 return (0); 429 } 430 431 static __inline uint32_t 432 pf_hashkey(struct pf_state_key *sk) 433 { 434 uint32_t h; 435 436 h = murmur3_32_hash32((uint32_t *)sk, 437 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 438 V_pf_hashseed); 439 440 return (h & pf_hashmask); 441 } 442 443 static __inline uint32_t 444 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 445 { 446 uint32_t h; 447 448 switch (af) { 449 case AF_INET: 450 h = murmur3_32_hash32((uint32_t *)&addr->v4, 451 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 452 break; 453 case AF_INET6: 454 h = murmur3_32_hash32((uint32_t *)&addr->v6, 455 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 456 break; 457 default: 458 panic("%s: unknown address family %u", __func__, af); 459 } 460 461 return (h & pf_srchashmask); 462 } 463 464 #ifdef ALTQ 465 static int 466 pf_state_hash(struct pf_state *s) 467 { 468 u_int32_t hv = (intptr_t)s / sizeof(*s); 469 470 hv ^= crc32(&s->src, sizeof(s->src)); 471 hv ^= crc32(&s->dst, sizeof(s->dst)); 472 if (hv == 0) 473 hv = 1; 474 return (hv); 475 } 476 #endif 477 478 #ifdef INET6 479 void 480 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 481 { 482 switch (af) { 483 #ifdef INET 484 case AF_INET: 485 dst->addr32[0] = src->addr32[0]; 486 break; 487 #endif /* INET */ 488 case AF_INET6: 489 dst->addr32[0] = src->addr32[0]; 490 dst->addr32[1] = src->addr32[1]; 491 dst->addr32[2] = src->addr32[2]; 492 dst->addr32[3] = src->addr32[3]; 493 break; 494 } 495 } 496 #endif /* INET6 */ 497 498 static void 499 pf_init_threshold(struct pf_threshold *threshold, 500 u_int32_t limit, u_int32_t seconds) 501 { 502 threshold->limit = limit * PF_THRESHOLD_MULT; 503 threshold->seconds = seconds; 504 threshold->count = 0; 505 threshold->last = time_uptime; 506 } 507 508 static void 509 pf_add_threshold(struct pf_threshold *threshold) 510 { 511 u_int32_t t = time_uptime, diff = t - threshold->last; 512 513 if (diff >= threshold->seconds) 514 threshold->count = 0; 515 else 516 threshold->count -= threshold->count * diff / 517 threshold->seconds; 518 threshold->count += PF_THRESHOLD_MULT; 519 threshold->last = t; 520 } 521 522 static int 523 pf_check_threshold(struct pf_threshold *threshold) 524 { 525 return (threshold->count > threshold->limit); 526 } 527 528 static int 529 pf_src_connlimit(struct pf_state **state) 530 { 531 struct pf_overload_entry *pfoe; 532 int bad = 0; 533 534 PF_STATE_LOCK_ASSERT(*state); 535 536 (*state)->src_node->conn++; 537 (*state)->src.tcp_est = 1; 538 pf_add_threshold(&(*state)->src_node->conn_rate); 539 540 if ((*state)->rule.ptr->max_src_conn && 541 (*state)->rule.ptr->max_src_conn < 542 (*state)->src_node->conn) { 543 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 544 bad++; 545 } 546 547 if ((*state)->rule.ptr->max_src_conn_rate.limit && 548 pf_check_threshold(&(*state)->src_node->conn_rate)) { 549 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 550 bad++; 551 } 552 553 if (!bad) 554 return (0); 555 556 /* Kill this state. */ 557 (*state)->timeout = PFTM_PURGE; 558 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 559 560 if ((*state)->rule.ptr->overload_tbl == NULL) 561 return (1); 562 563 /* Schedule overloading and flushing task. */ 564 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 565 if (pfoe == NULL) 566 return (1); /* too bad :( */ 567 568 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 569 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 570 pfoe->rule = (*state)->rule.ptr; 571 pfoe->dir = (*state)->direction; 572 PF_OVERLOADQ_LOCK(); 573 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 574 PF_OVERLOADQ_UNLOCK(); 575 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 576 577 return (1); 578 } 579 580 static void 581 pf_overload_task(void *v, int pending) 582 { 583 struct pf_overload_head queue; 584 struct pfr_addr p; 585 struct pf_overload_entry *pfoe, *pfoe1; 586 uint32_t killed = 0; 587 588 CURVNET_SET((struct vnet *)v); 589 590 PF_OVERLOADQ_LOCK(); 591 queue = V_pf_overloadqueue; 592 SLIST_INIT(&V_pf_overloadqueue); 593 PF_OVERLOADQ_UNLOCK(); 594 595 bzero(&p, sizeof(p)); 596 SLIST_FOREACH(pfoe, &queue, next) { 597 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 598 if (V_pf_status.debug >= PF_DEBUG_MISC) { 599 printf("%s: blocking address ", __func__); 600 pf_print_host(&pfoe->addr, 0, pfoe->af); 601 printf("\n"); 602 } 603 604 p.pfra_af = pfoe->af; 605 switch (pfoe->af) { 606 #ifdef INET 607 case AF_INET: 608 p.pfra_net = 32; 609 p.pfra_ip4addr = pfoe->addr.v4; 610 break; 611 #endif 612 #ifdef INET6 613 case AF_INET6: 614 p.pfra_net = 128; 615 p.pfra_ip6addr = pfoe->addr.v6; 616 break; 617 #endif 618 } 619 620 PF_RULES_WLOCK(); 621 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 622 PF_RULES_WUNLOCK(); 623 } 624 625 /* 626 * Remove those entries, that don't need flushing. 627 */ 628 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 629 if (pfoe->rule->flush == 0) { 630 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 631 free(pfoe, M_PFTEMP); 632 } else 633 counter_u64_add( 634 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 635 636 /* If nothing to flush, return. */ 637 if (SLIST_EMPTY(&queue)) { 638 CURVNET_RESTORE(); 639 return; 640 } 641 642 for (int i = 0; i <= pf_hashmask; i++) { 643 struct pf_idhash *ih = &V_pf_idhash[i]; 644 struct pf_state_key *sk; 645 struct pf_state *s; 646 647 PF_HASHROW_LOCK(ih); 648 LIST_FOREACH(s, &ih->states, entry) { 649 sk = s->key[PF_SK_WIRE]; 650 SLIST_FOREACH(pfoe, &queue, next) 651 if (sk->af == pfoe->af && 652 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 653 pfoe->rule == s->rule.ptr) && 654 ((pfoe->dir == PF_OUT && 655 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 656 (pfoe->dir == PF_IN && 657 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 658 s->timeout = PFTM_PURGE; 659 s->src.state = s->dst.state = TCPS_CLOSED; 660 killed++; 661 } 662 } 663 PF_HASHROW_UNLOCK(ih); 664 } 665 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 666 free(pfoe, M_PFTEMP); 667 if (V_pf_status.debug >= PF_DEBUG_MISC) 668 printf("%s: %u states killed", __func__, killed); 669 670 CURVNET_RESTORE(); 671 } 672 673 /* 674 * Can return locked on failure, so that we can consistently 675 * allocate and insert a new one. 676 */ 677 struct pf_src_node * 678 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 679 int returnlocked) 680 { 681 struct pf_srchash *sh; 682 struct pf_src_node *n; 683 684 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 685 686 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 687 PF_HASHROW_LOCK(sh); 688 LIST_FOREACH(n, &sh->nodes, entry) 689 if (n->rule.ptr == rule && n->af == af && 690 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 691 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 692 break; 693 if (n != NULL) { 694 n->states++; 695 PF_HASHROW_UNLOCK(sh); 696 } else if (returnlocked == 0) 697 PF_HASHROW_UNLOCK(sh); 698 699 return (n); 700 } 701 702 static int 703 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 704 struct pf_addr *src, sa_family_t af) 705 { 706 707 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 708 rule->rpool.opts & PF_POOL_STICKYADDR), 709 ("%s for non-tracking rule %p", __func__, rule)); 710 711 if (*sn == NULL) 712 *sn = pf_find_src_node(src, rule, af, 1); 713 714 if (*sn == NULL) { 715 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 716 717 PF_HASHROW_ASSERT(sh); 718 719 if (!rule->max_src_nodes || 720 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 721 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 722 else 723 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 724 1); 725 if ((*sn) == NULL) { 726 PF_HASHROW_UNLOCK(sh); 727 return (-1); 728 } 729 730 pf_init_threshold(&(*sn)->conn_rate, 731 rule->max_src_conn_rate.limit, 732 rule->max_src_conn_rate.seconds); 733 734 (*sn)->af = af; 735 (*sn)->rule.ptr = rule; 736 PF_ACPY(&(*sn)->addr, src, af); 737 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 738 (*sn)->creation = time_uptime; 739 (*sn)->ruletype = rule->action; 740 (*sn)->states = 1; 741 if ((*sn)->rule.ptr != NULL) 742 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 743 PF_HASHROW_UNLOCK(sh); 744 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 745 } else { 746 if (rule->max_src_states && 747 (*sn)->states >= rule->max_src_states) { 748 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 749 1); 750 return (-1); 751 } 752 } 753 return (0); 754 } 755 756 void 757 pf_unlink_src_node(struct pf_src_node *src) 758 { 759 760 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 761 LIST_REMOVE(src, entry); 762 if (src->rule.ptr) 763 counter_u64_add(src->rule.ptr->src_nodes, -1); 764 } 765 766 u_int 767 pf_free_src_nodes(struct pf_src_node_list *head) 768 { 769 struct pf_src_node *sn, *tmp; 770 u_int count = 0; 771 772 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 773 uma_zfree(V_pf_sources_z, sn); 774 count++; 775 } 776 777 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 778 779 return (count); 780 } 781 782 void 783 pf_mtag_initialize() 784 { 785 786 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 787 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 788 UMA_ALIGN_PTR, 0); 789 } 790 791 /* Per-vnet data storage structures initialization. */ 792 void 793 pf_initialize() 794 { 795 struct pf_keyhash *kh; 796 struct pf_idhash *ih; 797 struct pf_srchash *sh; 798 u_int i; 799 800 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 801 pf_hashsize = PF_HASHSIZ; 802 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 803 pf_srchashsize = PF_SRCHASHSIZ; 804 805 V_pf_hashseed = arc4random(); 806 807 /* States and state keys storage. */ 808 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 809 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 810 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 811 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 812 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 813 814 V_pf_state_key_z = uma_zcreate("pf state keys", 815 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 816 UMA_ALIGN_PTR, 0); 817 818 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 819 M_PFHASH, M_NOWAIT | M_ZERO); 820 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 821 M_PFHASH, M_NOWAIT | M_ZERO); 822 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 823 printf("pf: Unable to allocate memory for " 824 "state_hashsize %lu.\n", pf_hashsize); 825 826 free(V_pf_keyhash, M_PFHASH); 827 free(V_pf_idhash, M_PFHASH); 828 829 pf_hashsize = PF_HASHSIZ; 830 V_pf_keyhash = mallocarray(pf_hashsize, 831 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 832 V_pf_idhash = mallocarray(pf_hashsize, 833 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 834 } 835 836 pf_hashmask = pf_hashsize - 1; 837 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 838 i++, kh++, ih++) { 839 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 840 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 841 } 842 843 /* Source nodes. */ 844 V_pf_sources_z = uma_zcreate("pf source nodes", 845 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 846 0); 847 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 848 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 849 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 850 851 V_pf_srchash = mallocarray(pf_srchashsize, 852 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 853 if (V_pf_srchash == NULL) { 854 printf("pf: Unable to allocate memory for " 855 "source_hashsize %lu.\n", pf_srchashsize); 856 857 pf_srchashsize = PF_SRCHASHSIZ; 858 V_pf_srchash = mallocarray(pf_srchashsize, 859 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 860 } 861 862 pf_srchashmask = pf_srchashsize - 1; 863 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 864 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 865 866 /* ALTQ */ 867 TAILQ_INIT(&V_pf_altqs[0]); 868 TAILQ_INIT(&V_pf_altqs[1]); 869 TAILQ_INIT(&V_pf_altqs[2]); 870 TAILQ_INIT(&V_pf_altqs[3]); 871 TAILQ_INIT(&V_pf_pabuf); 872 V_pf_altqs_active = &V_pf_altqs[0]; 873 V_pf_altq_ifs_active = &V_pf_altqs[1]; 874 V_pf_altqs_inactive = &V_pf_altqs[2]; 875 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 876 877 /* Send & overload+flush queues. */ 878 STAILQ_INIT(&V_pf_sendqueue); 879 SLIST_INIT(&V_pf_overloadqueue); 880 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 881 882 /* Unlinked, but may be referenced rules. */ 883 TAILQ_INIT(&V_pf_unlinked_rules); 884 } 885 886 void 887 pf_mtag_cleanup() 888 { 889 890 uma_zdestroy(pf_mtag_z); 891 } 892 893 void 894 pf_cleanup() 895 { 896 struct pf_keyhash *kh; 897 struct pf_idhash *ih; 898 struct pf_srchash *sh; 899 struct pf_send_entry *pfse, *next; 900 u_int i; 901 902 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 903 i++, kh++, ih++) { 904 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 905 __func__)); 906 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 907 __func__)); 908 mtx_destroy(&kh->lock); 909 mtx_destroy(&ih->lock); 910 } 911 free(V_pf_keyhash, M_PFHASH); 912 free(V_pf_idhash, M_PFHASH); 913 914 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 915 KASSERT(LIST_EMPTY(&sh->nodes), 916 ("%s: source node hash not empty", __func__)); 917 mtx_destroy(&sh->lock); 918 } 919 free(V_pf_srchash, M_PFHASH); 920 921 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 922 m_freem(pfse->pfse_m); 923 free(pfse, M_PFTEMP); 924 } 925 926 uma_zdestroy(V_pf_sources_z); 927 uma_zdestroy(V_pf_state_z); 928 uma_zdestroy(V_pf_state_key_z); 929 } 930 931 static int 932 pf_mtag_uminit(void *mem, int size, int how) 933 { 934 struct m_tag *t; 935 936 t = (struct m_tag *)mem; 937 t->m_tag_cookie = MTAG_ABI_COMPAT; 938 t->m_tag_id = PACKET_TAG_PF; 939 t->m_tag_len = sizeof(struct pf_mtag); 940 t->m_tag_free = pf_mtag_free; 941 942 return (0); 943 } 944 945 static void 946 pf_mtag_free(struct m_tag *t) 947 { 948 949 uma_zfree(pf_mtag_z, t); 950 } 951 952 struct pf_mtag * 953 pf_get_mtag(struct mbuf *m) 954 { 955 struct m_tag *mtag; 956 957 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 958 return ((struct pf_mtag *)(mtag + 1)); 959 960 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 961 if (mtag == NULL) 962 return (NULL); 963 bzero(mtag + 1, sizeof(struct pf_mtag)); 964 m_tag_prepend(m, mtag); 965 966 return ((struct pf_mtag *)(mtag + 1)); 967 } 968 969 static int 970 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 971 struct pf_state *s) 972 { 973 struct pf_keyhash *khs, *khw, *kh; 974 struct pf_state_key *sk, *cur; 975 struct pf_state *si, *olds = NULL; 976 int idx; 977 978 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 979 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 980 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 981 982 /* 983 * We need to lock hash slots of both keys. To avoid deadlock 984 * we always lock the slot with lower address first. Unlock order 985 * isn't important. 986 * 987 * We also need to lock ID hash slot before dropping key 988 * locks. On success we return with ID hash slot locked. 989 */ 990 991 if (skw == sks) { 992 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 993 PF_HASHROW_LOCK(khs); 994 } else { 995 khs = &V_pf_keyhash[pf_hashkey(sks)]; 996 khw = &V_pf_keyhash[pf_hashkey(skw)]; 997 if (khs == khw) { 998 PF_HASHROW_LOCK(khs); 999 } else if (khs < khw) { 1000 PF_HASHROW_LOCK(khs); 1001 PF_HASHROW_LOCK(khw); 1002 } else { 1003 PF_HASHROW_LOCK(khw); 1004 PF_HASHROW_LOCK(khs); 1005 } 1006 } 1007 1008 #define KEYS_UNLOCK() do { \ 1009 if (khs != khw) { \ 1010 PF_HASHROW_UNLOCK(khs); \ 1011 PF_HASHROW_UNLOCK(khw); \ 1012 } else \ 1013 PF_HASHROW_UNLOCK(khs); \ 1014 } while (0) 1015 1016 /* 1017 * First run: start with wire key. 1018 */ 1019 sk = skw; 1020 kh = khw; 1021 idx = PF_SK_WIRE; 1022 1023 keyattach: 1024 LIST_FOREACH(cur, &kh->keys, entry) 1025 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1026 break; 1027 1028 if (cur != NULL) { 1029 /* Key exists. Check for same kif, if none, add to key. */ 1030 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1031 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1032 1033 PF_HASHROW_LOCK(ih); 1034 if (si->kif == s->kif && 1035 si->direction == s->direction) { 1036 if (sk->proto == IPPROTO_TCP && 1037 si->src.state >= TCPS_FIN_WAIT_2 && 1038 si->dst.state >= TCPS_FIN_WAIT_2) { 1039 /* 1040 * New state matches an old >FIN_WAIT_2 1041 * state. We can't drop key hash locks, 1042 * thus we can't unlink it properly. 1043 * 1044 * As a workaround we drop it into 1045 * TCPS_CLOSED state, schedule purge 1046 * ASAP and push it into the very end 1047 * of the slot TAILQ, so that it won't 1048 * conflict with our new state. 1049 */ 1050 si->src.state = si->dst.state = 1051 TCPS_CLOSED; 1052 si->timeout = PFTM_PURGE; 1053 olds = si; 1054 } else { 1055 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1056 printf("pf: %s key attach " 1057 "failed on %s: ", 1058 (idx == PF_SK_WIRE) ? 1059 "wire" : "stack", 1060 s->kif->pfik_name); 1061 pf_print_state_parts(s, 1062 (idx == PF_SK_WIRE) ? 1063 sk : NULL, 1064 (idx == PF_SK_STACK) ? 1065 sk : NULL); 1066 printf(", existing: "); 1067 pf_print_state_parts(si, 1068 (idx == PF_SK_WIRE) ? 1069 sk : NULL, 1070 (idx == PF_SK_STACK) ? 1071 sk : NULL); 1072 printf("\n"); 1073 } 1074 PF_HASHROW_UNLOCK(ih); 1075 KEYS_UNLOCK(); 1076 uma_zfree(V_pf_state_key_z, sk); 1077 if (idx == PF_SK_STACK) 1078 pf_detach_state(s); 1079 return (EEXIST); /* collision! */ 1080 } 1081 } 1082 PF_HASHROW_UNLOCK(ih); 1083 } 1084 uma_zfree(V_pf_state_key_z, sk); 1085 s->key[idx] = cur; 1086 } else { 1087 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1088 s->key[idx] = sk; 1089 } 1090 1091 stateattach: 1092 /* List is sorted, if-bound states before floating. */ 1093 if (s->kif == V_pfi_all) 1094 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1095 else 1096 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1097 1098 if (olds) { 1099 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1100 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1101 key_list[idx]); 1102 olds = NULL; 1103 } 1104 1105 /* 1106 * Attach done. See how should we (or should not?) 1107 * attach a second key. 1108 */ 1109 if (sks == skw) { 1110 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1111 idx = PF_SK_STACK; 1112 sks = NULL; 1113 goto stateattach; 1114 } else if (sks != NULL) { 1115 /* 1116 * Continue attaching with stack key. 1117 */ 1118 sk = sks; 1119 kh = khs; 1120 idx = PF_SK_STACK; 1121 sks = NULL; 1122 goto keyattach; 1123 } 1124 1125 PF_STATE_LOCK(s); 1126 KEYS_UNLOCK(); 1127 1128 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1129 ("%s failure", __func__)); 1130 1131 return (0); 1132 #undef KEYS_UNLOCK 1133 } 1134 1135 static void 1136 pf_detach_state(struct pf_state *s) 1137 { 1138 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1139 struct pf_keyhash *kh; 1140 1141 if (sks != NULL) { 1142 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1143 PF_HASHROW_LOCK(kh); 1144 if (s->key[PF_SK_STACK] != NULL) 1145 pf_state_key_detach(s, PF_SK_STACK); 1146 /* 1147 * If both point to same key, then we are done. 1148 */ 1149 if (sks == s->key[PF_SK_WIRE]) { 1150 pf_state_key_detach(s, PF_SK_WIRE); 1151 PF_HASHROW_UNLOCK(kh); 1152 return; 1153 } 1154 PF_HASHROW_UNLOCK(kh); 1155 } 1156 1157 if (s->key[PF_SK_WIRE] != NULL) { 1158 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1159 PF_HASHROW_LOCK(kh); 1160 if (s->key[PF_SK_WIRE] != NULL) 1161 pf_state_key_detach(s, PF_SK_WIRE); 1162 PF_HASHROW_UNLOCK(kh); 1163 } 1164 } 1165 1166 static void 1167 pf_state_key_detach(struct pf_state *s, int idx) 1168 { 1169 struct pf_state_key *sk = s->key[idx]; 1170 #ifdef INVARIANTS 1171 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1172 1173 PF_HASHROW_ASSERT(kh); 1174 #endif 1175 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1176 s->key[idx] = NULL; 1177 1178 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1179 LIST_REMOVE(sk, entry); 1180 uma_zfree(V_pf_state_key_z, sk); 1181 } 1182 } 1183 1184 static int 1185 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1186 { 1187 struct pf_state_key *sk = mem; 1188 1189 bzero(sk, sizeof(struct pf_state_key_cmp)); 1190 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1191 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1192 1193 return (0); 1194 } 1195 1196 struct pf_state_key * 1197 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1198 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1199 { 1200 struct pf_state_key *sk; 1201 1202 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1203 if (sk == NULL) 1204 return (NULL); 1205 1206 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1207 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1208 sk->port[pd->sidx] = sport; 1209 sk->port[pd->didx] = dport; 1210 sk->proto = pd->proto; 1211 sk->af = pd->af; 1212 1213 return (sk); 1214 } 1215 1216 struct pf_state_key * 1217 pf_state_key_clone(struct pf_state_key *orig) 1218 { 1219 struct pf_state_key *sk; 1220 1221 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1222 if (sk == NULL) 1223 return (NULL); 1224 1225 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1226 1227 return (sk); 1228 } 1229 1230 int 1231 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1232 struct pf_state_key *sks, struct pf_state *s) 1233 { 1234 struct pf_idhash *ih; 1235 struct pf_state *cur; 1236 int error; 1237 1238 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1239 ("%s: sks not pristine", __func__)); 1240 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1241 ("%s: skw not pristine", __func__)); 1242 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1243 1244 s->kif = kif; 1245 1246 if (s->id == 0 && s->creatorid == 0) { 1247 /* XXX: should be atomic, but probability of collision low */ 1248 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1249 V_pf_stateid[curcpu] = 1; 1250 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1251 s->id = htobe64(s->id); 1252 s->creatorid = V_pf_status.hostid; 1253 } 1254 1255 /* Returns with ID locked on success. */ 1256 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1257 return (error); 1258 1259 ih = &V_pf_idhash[PF_IDHASH(s)]; 1260 PF_HASHROW_ASSERT(ih); 1261 LIST_FOREACH(cur, &ih->states, entry) 1262 if (cur->id == s->id && cur->creatorid == s->creatorid) 1263 break; 1264 1265 if (cur != NULL) { 1266 PF_HASHROW_UNLOCK(ih); 1267 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1268 printf("pf: state ID collision: " 1269 "id: %016llx creatorid: %08x\n", 1270 (unsigned long long)be64toh(s->id), 1271 ntohl(s->creatorid)); 1272 } 1273 pf_detach_state(s); 1274 return (EEXIST); 1275 } 1276 LIST_INSERT_HEAD(&ih->states, s, entry); 1277 /* One for keys, one for ID hash. */ 1278 refcount_init(&s->refs, 2); 1279 1280 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1281 if (V_pfsync_insert_state_ptr != NULL) 1282 V_pfsync_insert_state_ptr(s); 1283 1284 /* Returns locked. */ 1285 return (0); 1286 } 1287 1288 /* 1289 * Find state by ID: returns with locked row on success. 1290 */ 1291 struct pf_state * 1292 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1293 { 1294 struct pf_idhash *ih; 1295 struct pf_state *s; 1296 1297 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1298 1299 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1300 1301 PF_HASHROW_LOCK(ih); 1302 LIST_FOREACH(s, &ih->states, entry) 1303 if (s->id == id && s->creatorid == creatorid) 1304 break; 1305 1306 if (s == NULL) 1307 PF_HASHROW_UNLOCK(ih); 1308 1309 return (s); 1310 } 1311 1312 /* 1313 * Find state by key. 1314 * Returns with ID hash slot locked on success. 1315 */ 1316 static struct pf_state * 1317 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1318 { 1319 struct pf_keyhash *kh; 1320 struct pf_state_key *sk; 1321 struct pf_state *s; 1322 int idx; 1323 1324 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1325 1326 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1327 1328 PF_HASHROW_LOCK(kh); 1329 LIST_FOREACH(sk, &kh->keys, entry) 1330 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1331 break; 1332 if (sk == NULL) { 1333 PF_HASHROW_UNLOCK(kh); 1334 return (NULL); 1335 } 1336 1337 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1338 1339 /* List is sorted, if-bound states before floating ones. */ 1340 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1341 if (s->kif == V_pfi_all || s->kif == kif) { 1342 PF_STATE_LOCK(s); 1343 PF_HASHROW_UNLOCK(kh); 1344 if (s->timeout >= PFTM_MAX) { 1345 /* 1346 * State is either being processed by 1347 * pf_unlink_state() in an other thread, or 1348 * is scheduled for immediate expiry. 1349 */ 1350 PF_STATE_UNLOCK(s); 1351 return (NULL); 1352 } 1353 return (s); 1354 } 1355 PF_HASHROW_UNLOCK(kh); 1356 1357 return (NULL); 1358 } 1359 1360 struct pf_state * 1361 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1362 { 1363 struct pf_keyhash *kh; 1364 struct pf_state_key *sk; 1365 struct pf_state *s, *ret = NULL; 1366 int idx, inout = 0; 1367 1368 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1369 1370 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1371 1372 PF_HASHROW_LOCK(kh); 1373 LIST_FOREACH(sk, &kh->keys, entry) 1374 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1375 break; 1376 if (sk == NULL) { 1377 PF_HASHROW_UNLOCK(kh); 1378 return (NULL); 1379 } 1380 switch (dir) { 1381 case PF_IN: 1382 idx = PF_SK_WIRE; 1383 break; 1384 case PF_OUT: 1385 idx = PF_SK_STACK; 1386 break; 1387 case PF_INOUT: 1388 idx = PF_SK_WIRE; 1389 inout = 1; 1390 break; 1391 default: 1392 panic("%s: dir %u", __func__, dir); 1393 } 1394 second_run: 1395 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1396 if (more == NULL) { 1397 PF_HASHROW_UNLOCK(kh); 1398 return (s); 1399 } 1400 1401 if (ret) 1402 (*more)++; 1403 else 1404 ret = s; 1405 } 1406 if (inout == 1) { 1407 inout = 0; 1408 idx = PF_SK_STACK; 1409 goto second_run; 1410 } 1411 PF_HASHROW_UNLOCK(kh); 1412 1413 return (ret); 1414 } 1415 1416 /* END state table stuff */ 1417 1418 static void 1419 pf_send(struct pf_send_entry *pfse) 1420 { 1421 1422 PF_SENDQ_LOCK(); 1423 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1424 PF_SENDQ_UNLOCK(); 1425 swi_sched(V_pf_swi_cookie, 0); 1426 } 1427 1428 void 1429 pf_intr(void *v) 1430 { 1431 struct epoch_tracker et; 1432 struct pf_send_head queue; 1433 struct pf_send_entry *pfse, *next; 1434 1435 CURVNET_SET((struct vnet *)v); 1436 1437 PF_SENDQ_LOCK(); 1438 queue = V_pf_sendqueue; 1439 STAILQ_INIT(&V_pf_sendqueue); 1440 PF_SENDQ_UNLOCK(); 1441 1442 NET_EPOCH_ENTER(et); 1443 1444 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1445 switch (pfse->pfse_type) { 1446 #ifdef INET 1447 case PFSE_IP: 1448 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1449 break; 1450 case PFSE_ICMP: 1451 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1452 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1453 break; 1454 #endif /* INET */ 1455 #ifdef INET6 1456 case PFSE_IP6: 1457 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1458 NULL); 1459 break; 1460 case PFSE_ICMP6: 1461 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1462 pfse->icmpopts.code, pfse->icmpopts.mtu); 1463 break; 1464 #endif /* INET6 */ 1465 default: 1466 panic("%s: unknown type", __func__); 1467 } 1468 free(pfse, M_PFTEMP); 1469 } 1470 NET_EPOCH_EXIT(et); 1471 CURVNET_RESTORE(); 1472 } 1473 1474 void 1475 pf_purge_thread(void *unused __unused) 1476 { 1477 VNET_ITERATOR_DECL(vnet_iter); 1478 1479 sx_xlock(&pf_end_lock); 1480 while (pf_end_threads == 0) { 1481 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", hz / 10); 1482 1483 VNET_LIST_RLOCK(); 1484 VNET_FOREACH(vnet_iter) { 1485 CURVNET_SET(vnet_iter); 1486 1487 1488 /* Wait until V_pf_default_rule is initialized. */ 1489 if (V_pf_vnet_active == 0) { 1490 CURVNET_RESTORE(); 1491 continue; 1492 } 1493 1494 /* 1495 * Process 1/interval fraction of the state 1496 * table every run. 1497 */ 1498 V_pf_purge_idx = 1499 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1500 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1501 1502 /* 1503 * Purge other expired types every 1504 * PFTM_INTERVAL seconds. 1505 */ 1506 if (V_pf_purge_idx == 0) { 1507 /* 1508 * Order is important: 1509 * - states and src nodes reference rules 1510 * - states and rules reference kifs 1511 */ 1512 pf_purge_expired_fragments(); 1513 pf_purge_expired_src_nodes(); 1514 pf_purge_unlinked_rules(); 1515 pfi_kif_purge(); 1516 } 1517 CURVNET_RESTORE(); 1518 } 1519 VNET_LIST_RUNLOCK(); 1520 } 1521 1522 pf_end_threads++; 1523 sx_xunlock(&pf_end_lock); 1524 kproc_exit(0); 1525 } 1526 1527 void 1528 pf_unload_vnet_purge(void) 1529 { 1530 1531 /* 1532 * To cleanse up all kifs and rules we need 1533 * two runs: first one clears reference flags, 1534 * then pf_purge_expired_states() doesn't 1535 * raise them, and then second run frees. 1536 */ 1537 pf_purge_unlinked_rules(); 1538 pfi_kif_purge(); 1539 1540 /* 1541 * Now purge everything. 1542 */ 1543 pf_purge_expired_states(0, pf_hashmask); 1544 pf_purge_fragments(UINT_MAX); 1545 pf_purge_expired_src_nodes(); 1546 1547 /* 1548 * Now all kifs & rules should be unreferenced, 1549 * thus should be successfully freed. 1550 */ 1551 pf_purge_unlinked_rules(); 1552 pfi_kif_purge(); 1553 } 1554 1555 1556 u_int32_t 1557 pf_state_expires(const struct pf_state *state) 1558 { 1559 u_int32_t timeout; 1560 u_int32_t start; 1561 u_int32_t end; 1562 u_int32_t states; 1563 1564 /* handle all PFTM_* > PFTM_MAX here */ 1565 if (state->timeout == PFTM_PURGE) 1566 return (time_uptime); 1567 KASSERT(state->timeout != PFTM_UNLINKED, 1568 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1569 KASSERT((state->timeout < PFTM_MAX), 1570 ("pf_state_expires: timeout > PFTM_MAX")); 1571 timeout = state->rule.ptr->timeout[state->timeout]; 1572 if (!timeout) 1573 timeout = V_pf_default_rule.timeout[state->timeout]; 1574 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1575 if (start && state->rule.ptr != &V_pf_default_rule) { 1576 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1577 states = counter_u64_fetch(state->rule.ptr->states_cur); 1578 } else { 1579 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1580 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1581 states = V_pf_status.states; 1582 } 1583 if (end && states > start && start < end) { 1584 if (states < end) { 1585 timeout = (u_int64_t)timeout * (end - states) / 1586 (end - start); 1587 return (state->expire + timeout); 1588 } 1589 else 1590 return (time_uptime); 1591 } 1592 return (state->expire + timeout); 1593 } 1594 1595 void 1596 pf_purge_expired_src_nodes() 1597 { 1598 struct pf_src_node_list freelist; 1599 struct pf_srchash *sh; 1600 struct pf_src_node *cur, *next; 1601 int i; 1602 1603 LIST_INIT(&freelist); 1604 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1605 PF_HASHROW_LOCK(sh); 1606 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1607 if (cur->states == 0 && cur->expire <= time_uptime) { 1608 pf_unlink_src_node(cur); 1609 LIST_INSERT_HEAD(&freelist, cur, entry); 1610 } else if (cur->rule.ptr != NULL) 1611 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1612 PF_HASHROW_UNLOCK(sh); 1613 } 1614 1615 pf_free_src_nodes(&freelist); 1616 1617 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1618 } 1619 1620 static void 1621 pf_src_tree_remove_state(struct pf_state *s) 1622 { 1623 struct pf_src_node *sn; 1624 struct pf_srchash *sh; 1625 uint32_t timeout; 1626 1627 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1628 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1629 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1630 1631 if (s->src_node != NULL) { 1632 sn = s->src_node; 1633 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1634 PF_HASHROW_LOCK(sh); 1635 if (s->src.tcp_est) 1636 --sn->conn; 1637 if (--sn->states == 0) 1638 sn->expire = time_uptime + timeout; 1639 PF_HASHROW_UNLOCK(sh); 1640 } 1641 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1642 sn = s->nat_src_node; 1643 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1644 PF_HASHROW_LOCK(sh); 1645 if (--sn->states == 0) 1646 sn->expire = time_uptime + timeout; 1647 PF_HASHROW_UNLOCK(sh); 1648 } 1649 s->src_node = s->nat_src_node = NULL; 1650 } 1651 1652 /* 1653 * Unlink and potentilly free a state. Function may be 1654 * called with ID hash row locked, but always returns 1655 * unlocked, since it needs to go through key hash locking. 1656 */ 1657 int 1658 pf_unlink_state(struct pf_state *s, u_int flags) 1659 { 1660 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1661 1662 if ((flags & PF_ENTER_LOCKED) == 0) 1663 PF_HASHROW_LOCK(ih); 1664 else 1665 PF_HASHROW_ASSERT(ih); 1666 1667 if (s->timeout == PFTM_UNLINKED) { 1668 /* 1669 * State is being processed 1670 * by pf_unlink_state() in 1671 * an other thread. 1672 */ 1673 PF_HASHROW_UNLOCK(ih); 1674 return (0); /* XXXGL: undefined actually */ 1675 } 1676 1677 if (s->src.state == PF_TCPS_PROXY_DST) { 1678 /* XXX wire key the right one? */ 1679 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1680 &s->key[PF_SK_WIRE]->addr[1], 1681 &s->key[PF_SK_WIRE]->addr[0], 1682 s->key[PF_SK_WIRE]->port[1], 1683 s->key[PF_SK_WIRE]->port[0], 1684 s->src.seqhi, s->src.seqlo + 1, 1685 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1686 } 1687 1688 LIST_REMOVE(s, entry); 1689 pf_src_tree_remove_state(s); 1690 1691 if (V_pfsync_delete_state_ptr != NULL) 1692 V_pfsync_delete_state_ptr(s); 1693 1694 STATE_DEC_COUNTERS(s); 1695 1696 s->timeout = PFTM_UNLINKED; 1697 1698 PF_HASHROW_UNLOCK(ih); 1699 1700 pf_detach_state(s); 1701 /* pf_state_insert() initialises refs to 2, so we can never release the 1702 * last reference here, only in pf_release_state(). */ 1703 (void)refcount_release(&s->refs); 1704 1705 return (pf_release_state(s)); 1706 } 1707 1708 void 1709 pf_free_state(struct pf_state *cur) 1710 { 1711 1712 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1713 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1714 cur->timeout)); 1715 1716 pf_normalize_tcp_cleanup(cur); 1717 uma_zfree(V_pf_state_z, cur); 1718 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1719 } 1720 1721 /* 1722 * Called only from pf_purge_thread(), thus serialized. 1723 */ 1724 static u_int 1725 pf_purge_expired_states(u_int i, int maxcheck) 1726 { 1727 struct pf_idhash *ih; 1728 struct pf_state *s; 1729 1730 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1731 1732 /* 1733 * Go through hash and unlink states that expire now. 1734 */ 1735 while (maxcheck > 0) { 1736 1737 ih = &V_pf_idhash[i]; 1738 1739 /* only take the lock if we expect to do work */ 1740 if (!LIST_EMPTY(&ih->states)) { 1741 relock: 1742 PF_HASHROW_LOCK(ih); 1743 LIST_FOREACH(s, &ih->states, entry) { 1744 if (pf_state_expires(s) <= time_uptime) { 1745 V_pf_status.states -= 1746 pf_unlink_state(s, PF_ENTER_LOCKED); 1747 goto relock; 1748 } 1749 s->rule.ptr->rule_flag |= PFRULE_REFS; 1750 if (s->nat_rule.ptr != NULL) 1751 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1752 if (s->anchor.ptr != NULL) 1753 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1754 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1755 if (s->rt_kif) 1756 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1757 } 1758 PF_HASHROW_UNLOCK(ih); 1759 } 1760 1761 /* Return when we hit end of hash. */ 1762 if (++i > pf_hashmask) { 1763 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1764 return (0); 1765 } 1766 1767 maxcheck--; 1768 } 1769 1770 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1771 1772 return (i); 1773 } 1774 1775 static void 1776 pf_purge_unlinked_rules() 1777 { 1778 struct pf_rulequeue tmpq; 1779 struct pf_rule *r, *r1; 1780 1781 /* 1782 * If we have overloading task pending, then we'd 1783 * better skip purging this time. There is a tiny 1784 * probability that overloading task references 1785 * an already unlinked rule. 1786 */ 1787 PF_OVERLOADQ_LOCK(); 1788 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1789 PF_OVERLOADQ_UNLOCK(); 1790 return; 1791 } 1792 PF_OVERLOADQ_UNLOCK(); 1793 1794 /* 1795 * Do naive mark-and-sweep garbage collecting of old rules. 1796 * Reference flag is raised by pf_purge_expired_states() 1797 * and pf_purge_expired_src_nodes(). 1798 * 1799 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1800 * use a temporary queue. 1801 */ 1802 TAILQ_INIT(&tmpq); 1803 PF_UNLNKDRULES_LOCK(); 1804 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1805 if (!(r->rule_flag & PFRULE_REFS)) { 1806 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1807 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1808 } else 1809 r->rule_flag &= ~PFRULE_REFS; 1810 } 1811 PF_UNLNKDRULES_UNLOCK(); 1812 1813 if (!TAILQ_EMPTY(&tmpq)) { 1814 PF_RULES_WLOCK(); 1815 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1816 TAILQ_REMOVE(&tmpq, r, entries); 1817 pf_free_rule(r); 1818 } 1819 PF_RULES_WUNLOCK(); 1820 } 1821 } 1822 1823 void 1824 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1825 { 1826 switch (af) { 1827 #ifdef INET 1828 case AF_INET: { 1829 u_int32_t a = ntohl(addr->addr32[0]); 1830 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1831 (a>>8)&255, a&255); 1832 if (p) { 1833 p = ntohs(p); 1834 printf(":%u", p); 1835 } 1836 break; 1837 } 1838 #endif /* INET */ 1839 #ifdef INET6 1840 case AF_INET6: { 1841 u_int16_t b; 1842 u_int8_t i, curstart, curend, maxstart, maxend; 1843 curstart = curend = maxstart = maxend = 255; 1844 for (i = 0; i < 8; i++) { 1845 if (!addr->addr16[i]) { 1846 if (curstart == 255) 1847 curstart = i; 1848 curend = i; 1849 } else { 1850 if ((curend - curstart) > 1851 (maxend - maxstart)) { 1852 maxstart = curstart; 1853 maxend = curend; 1854 } 1855 curstart = curend = 255; 1856 } 1857 } 1858 if ((curend - curstart) > 1859 (maxend - maxstart)) { 1860 maxstart = curstart; 1861 maxend = curend; 1862 } 1863 for (i = 0; i < 8; i++) { 1864 if (i >= maxstart && i <= maxend) { 1865 if (i == 0) 1866 printf(":"); 1867 if (i == maxend) 1868 printf(":"); 1869 } else { 1870 b = ntohs(addr->addr16[i]); 1871 printf("%x", b); 1872 if (i < 7) 1873 printf(":"); 1874 } 1875 } 1876 if (p) { 1877 p = ntohs(p); 1878 printf("[%u]", p); 1879 } 1880 break; 1881 } 1882 #endif /* INET6 */ 1883 } 1884 } 1885 1886 void 1887 pf_print_state(struct pf_state *s) 1888 { 1889 pf_print_state_parts(s, NULL, NULL); 1890 } 1891 1892 static void 1893 pf_print_state_parts(struct pf_state *s, 1894 struct pf_state_key *skwp, struct pf_state_key *sksp) 1895 { 1896 struct pf_state_key *skw, *sks; 1897 u_int8_t proto, dir; 1898 1899 /* Do our best to fill these, but they're skipped if NULL */ 1900 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1901 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1902 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1903 dir = s ? s->direction : 0; 1904 1905 switch (proto) { 1906 case IPPROTO_IPV4: 1907 printf("IPv4"); 1908 break; 1909 case IPPROTO_IPV6: 1910 printf("IPv6"); 1911 break; 1912 case IPPROTO_TCP: 1913 printf("TCP"); 1914 break; 1915 case IPPROTO_UDP: 1916 printf("UDP"); 1917 break; 1918 case IPPROTO_ICMP: 1919 printf("ICMP"); 1920 break; 1921 case IPPROTO_ICMPV6: 1922 printf("ICMPv6"); 1923 break; 1924 default: 1925 printf("%u", proto); 1926 break; 1927 } 1928 switch (dir) { 1929 case PF_IN: 1930 printf(" in"); 1931 break; 1932 case PF_OUT: 1933 printf(" out"); 1934 break; 1935 } 1936 if (skw) { 1937 printf(" wire: "); 1938 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1939 printf(" "); 1940 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1941 } 1942 if (sks) { 1943 printf(" stack: "); 1944 if (sks != skw) { 1945 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1946 printf(" "); 1947 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1948 } else 1949 printf("-"); 1950 } 1951 if (s) { 1952 if (proto == IPPROTO_TCP) { 1953 printf(" [lo=%u high=%u win=%u modulator=%u", 1954 s->src.seqlo, s->src.seqhi, 1955 s->src.max_win, s->src.seqdiff); 1956 if (s->src.wscale && s->dst.wscale) 1957 printf(" wscale=%u", 1958 s->src.wscale & PF_WSCALE_MASK); 1959 printf("]"); 1960 printf(" [lo=%u high=%u win=%u modulator=%u", 1961 s->dst.seqlo, s->dst.seqhi, 1962 s->dst.max_win, s->dst.seqdiff); 1963 if (s->src.wscale && s->dst.wscale) 1964 printf(" wscale=%u", 1965 s->dst.wscale & PF_WSCALE_MASK); 1966 printf("]"); 1967 } 1968 printf(" %u:%u", s->src.state, s->dst.state); 1969 } 1970 } 1971 1972 void 1973 pf_print_flags(u_int8_t f) 1974 { 1975 if (f) 1976 printf(" "); 1977 if (f & TH_FIN) 1978 printf("F"); 1979 if (f & TH_SYN) 1980 printf("S"); 1981 if (f & TH_RST) 1982 printf("R"); 1983 if (f & TH_PUSH) 1984 printf("P"); 1985 if (f & TH_ACK) 1986 printf("A"); 1987 if (f & TH_URG) 1988 printf("U"); 1989 if (f & TH_ECE) 1990 printf("E"); 1991 if (f & TH_CWR) 1992 printf("W"); 1993 } 1994 1995 #define PF_SET_SKIP_STEPS(i) \ 1996 do { \ 1997 while (head[i] != cur) { \ 1998 head[i]->skip[i].ptr = cur; \ 1999 head[i] = TAILQ_NEXT(head[i], entries); \ 2000 } \ 2001 } while (0) 2002 2003 void 2004 pf_calc_skip_steps(struct pf_rulequeue *rules) 2005 { 2006 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 2007 int i; 2008 2009 cur = TAILQ_FIRST(rules); 2010 prev = cur; 2011 for (i = 0; i < PF_SKIP_COUNT; ++i) 2012 head[i] = cur; 2013 while (cur != NULL) { 2014 2015 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2016 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2017 if (cur->direction != prev->direction) 2018 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2019 if (cur->af != prev->af) 2020 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2021 if (cur->proto != prev->proto) 2022 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2023 if (cur->src.neg != prev->src.neg || 2024 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2025 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2026 if (cur->src.port[0] != prev->src.port[0] || 2027 cur->src.port[1] != prev->src.port[1] || 2028 cur->src.port_op != prev->src.port_op) 2029 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2030 if (cur->dst.neg != prev->dst.neg || 2031 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2032 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2033 if (cur->dst.port[0] != prev->dst.port[0] || 2034 cur->dst.port[1] != prev->dst.port[1] || 2035 cur->dst.port_op != prev->dst.port_op) 2036 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2037 2038 prev = cur; 2039 cur = TAILQ_NEXT(cur, entries); 2040 } 2041 for (i = 0; i < PF_SKIP_COUNT; ++i) 2042 PF_SET_SKIP_STEPS(i); 2043 } 2044 2045 static int 2046 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2047 { 2048 if (aw1->type != aw2->type) 2049 return (1); 2050 switch (aw1->type) { 2051 case PF_ADDR_ADDRMASK: 2052 case PF_ADDR_RANGE: 2053 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2054 return (1); 2055 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2056 return (1); 2057 return (0); 2058 case PF_ADDR_DYNIFTL: 2059 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2060 case PF_ADDR_NOROUTE: 2061 case PF_ADDR_URPFFAILED: 2062 return (0); 2063 case PF_ADDR_TABLE: 2064 return (aw1->p.tbl != aw2->p.tbl); 2065 default: 2066 printf("invalid address type: %d\n", aw1->type); 2067 return (1); 2068 } 2069 } 2070 2071 /** 2072 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2073 * header isn't always a full checksum. In some cases (i.e. output) it's a 2074 * pseudo-header checksum, which is a partial checksum over src/dst IP 2075 * addresses, protocol number and length. 2076 * 2077 * That means we have the following cases: 2078 * * Input or forwarding: we don't have TSO, the checksum fields are full 2079 * checksums, we need to update the checksum whenever we change anything. 2080 * * Output (i.e. the checksum is a pseudo-header checksum): 2081 * x The field being updated is src/dst address or affects the length of 2082 * the packet. We need to update the pseudo-header checksum (note that this 2083 * checksum is not ones' complement). 2084 * x Some other field is being modified (e.g. src/dst port numbers): We 2085 * don't have to update anything. 2086 **/ 2087 u_int16_t 2088 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2089 { 2090 u_int32_t l; 2091 2092 if (udp && !cksum) 2093 return (0x0000); 2094 l = cksum + old - new; 2095 l = (l >> 16) + (l & 65535); 2096 l = l & 65535; 2097 if (udp && !l) 2098 return (0xFFFF); 2099 return (l); 2100 } 2101 2102 u_int16_t 2103 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2104 u_int16_t new, u_int8_t udp) 2105 { 2106 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2107 return (cksum); 2108 2109 return (pf_cksum_fixup(cksum, old, new, udp)); 2110 } 2111 2112 static void 2113 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2114 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2115 sa_family_t af) 2116 { 2117 struct pf_addr ao; 2118 u_int16_t po = *p; 2119 2120 PF_ACPY(&ao, a, af); 2121 PF_ACPY(a, an, af); 2122 2123 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2124 *pc = ~*pc; 2125 2126 *p = pn; 2127 2128 switch (af) { 2129 #ifdef INET 2130 case AF_INET: 2131 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2132 ao.addr16[0], an->addr16[0], 0), 2133 ao.addr16[1], an->addr16[1], 0); 2134 *p = pn; 2135 2136 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2137 ao.addr16[0], an->addr16[0], u), 2138 ao.addr16[1], an->addr16[1], u); 2139 2140 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2141 break; 2142 #endif /* INET */ 2143 #ifdef INET6 2144 case AF_INET6: 2145 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2146 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2147 pf_cksum_fixup(pf_cksum_fixup(*pc, 2148 ao.addr16[0], an->addr16[0], u), 2149 ao.addr16[1], an->addr16[1], u), 2150 ao.addr16[2], an->addr16[2], u), 2151 ao.addr16[3], an->addr16[3], u), 2152 ao.addr16[4], an->addr16[4], u), 2153 ao.addr16[5], an->addr16[5], u), 2154 ao.addr16[6], an->addr16[6], u), 2155 ao.addr16[7], an->addr16[7], u); 2156 2157 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2158 break; 2159 #endif /* INET6 */ 2160 } 2161 2162 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2163 CSUM_DELAY_DATA_IPV6)) { 2164 *pc = ~*pc; 2165 if (! *pc) 2166 *pc = 0xffff; 2167 } 2168 } 2169 2170 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2171 void 2172 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2173 { 2174 u_int32_t ao; 2175 2176 memcpy(&ao, a, sizeof(ao)); 2177 memcpy(a, &an, sizeof(u_int32_t)); 2178 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2179 ao % 65536, an % 65536, u); 2180 } 2181 2182 void 2183 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2184 { 2185 u_int32_t ao; 2186 2187 memcpy(&ao, a, sizeof(ao)); 2188 memcpy(a, &an, sizeof(u_int32_t)); 2189 2190 *c = pf_proto_cksum_fixup(m, 2191 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2192 ao % 65536, an % 65536, udp); 2193 } 2194 2195 #ifdef INET6 2196 static void 2197 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2198 { 2199 struct pf_addr ao; 2200 2201 PF_ACPY(&ao, a, AF_INET6); 2202 PF_ACPY(a, an, AF_INET6); 2203 2204 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2205 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2206 pf_cksum_fixup(pf_cksum_fixup(*c, 2207 ao.addr16[0], an->addr16[0], u), 2208 ao.addr16[1], an->addr16[1], u), 2209 ao.addr16[2], an->addr16[2], u), 2210 ao.addr16[3], an->addr16[3], u), 2211 ao.addr16[4], an->addr16[4], u), 2212 ao.addr16[5], an->addr16[5], u), 2213 ao.addr16[6], an->addr16[6], u), 2214 ao.addr16[7], an->addr16[7], u); 2215 } 2216 #endif /* INET6 */ 2217 2218 static void 2219 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2220 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2221 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2222 { 2223 struct pf_addr oia, ooa; 2224 2225 PF_ACPY(&oia, ia, af); 2226 if (oa) 2227 PF_ACPY(&ooa, oa, af); 2228 2229 /* Change inner protocol port, fix inner protocol checksum. */ 2230 if (ip != NULL) { 2231 u_int16_t oip = *ip; 2232 u_int32_t opc; 2233 2234 if (pc != NULL) 2235 opc = *pc; 2236 *ip = np; 2237 if (pc != NULL) 2238 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2239 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2240 if (pc != NULL) 2241 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2242 } 2243 /* Change inner ip address, fix inner ip and icmp checksums. */ 2244 PF_ACPY(ia, na, af); 2245 switch (af) { 2246 #ifdef INET 2247 case AF_INET: { 2248 u_int32_t oh2c = *h2c; 2249 2250 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2251 oia.addr16[0], ia->addr16[0], 0), 2252 oia.addr16[1], ia->addr16[1], 0); 2253 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2254 oia.addr16[0], ia->addr16[0], 0), 2255 oia.addr16[1], ia->addr16[1], 0); 2256 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2257 break; 2258 } 2259 #endif /* INET */ 2260 #ifdef INET6 2261 case AF_INET6: 2262 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2263 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2264 pf_cksum_fixup(pf_cksum_fixup(*ic, 2265 oia.addr16[0], ia->addr16[0], u), 2266 oia.addr16[1], ia->addr16[1], u), 2267 oia.addr16[2], ia->addr16[2], u), 2268 oia.addr16[3], ia->addr16[3], u), 2269 oia.addr16[4], ia->addr16[4], u), 2270 oia.addr16[5], ia->addr16[5], u), 2271 oia.addr16[6], ia->addr16[6], u), 2272 oia.addr16[7], ia->addr16[7], u); 2273 break; 2274 #endif /* INET6 */ 2275 } 2276 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2277 if (oa) { 2278 PF_ACPY(oa, na, af); 2279 switch (af) { 2280 #ifdef INET 2281 case AF_INET: 2282 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2283 ooa.addr16[0], oa->addr16[0], 0), 2284 ooa.addr16[1], oa->addr16[1], 0); 2285 break; 2286 #endif /* INET */ 2287 #ifdef INET6 2288 case AF_INET6: 2289 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2290 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2291 pf_cksum_fixup(pf_cksum_fixup(*ic, 2292 ooa.addr16[0], oa->addr16[0], u), 2293 ooa.addr16[1], oa->addr16[1], u), 2294 ooa.addr16[2], oa->addr16[2], u), 2295 ooa.addr16[3], oa->addr16[3], u), 2296 ooa.addr16[4], oa->addr16[4], u), 2297 ooa.addr16[5], oa->addr16[5], u), 2298 ooa.addr16[6], oa->addr16[6], u), 2299 ooa.addr16[7], oa->addr16[7], u); 2300 break; 2301 #endif /* INET6 */ 2302 } 2303 } 2304 } 2305 2306 2307 /* 2308 * Need to modulate the sequence numbers in the TCP SACK option 2309 * (credits to Krzysztof Pfaff for report and patch) 2310 */ 2311 static int 2312 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2313 struct tcphdr *th, struct pf_state_peer *dst) 2314 { 2315 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2316 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2317 int copyback = 0, i, olen; 2318 struct sackblk sack; 2319 2320 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2321 if (hlen < TCPOLEN_SACKLEN || 2322 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2323 return 0; 2324 2325 while (hlen >= TCPOLEN_SACKLEN) { 2326 olen = opt[1]; 2327 switch (*opt) { 2328 case TCPOPT_EOL: /* FALLTHROUGH */ 2329 case TCPOPT_NOP: 2330 opt++; 2331 hlen--; 2332 break; 2333 case TCPOPT_SACK: 2334 if (olen > hlen) 2335 olen = hlen; 2336 if (olen >= TCPOLEN_SACKLEN) { 2337 for (i = 2; i + TCPOLEN_SACK <= olen; 2338 i += TCPOLEN_SACK) { 2339 memcpy(&sack, &opt[i], sizeof(sack)); 2340 pf_change_proto_a(m, &sack.start, &th->th_sum, 2341 htonl(ntohl(sack.start) - dst->seqdiff), 0); 2342 pf_change_proto_a(m, &sack.end, &th->th_sum, 2343 htonl(ntohl(sack.end) - dst->seqdiff), 0); 2344 memcpy(&opt[i], &sack, sizeof(sack)); 2345 } 2346 copyback = 1; 2347 } 2348 /* FALLTHROUGH */ 2349 default: 2350 if (olen < 2) 2351 olen = 2; 2352 hlen -= olen; 2353 opt += olen; 2354 } 2355 } 2356 2357 if (copyback) 2358 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2359 return (copyback); 2360 } 2361 2362 static void 2363 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2364 const struct pf_addr *saddr, const struct pf_addr *daddr, 2365 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2366 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2367 u_int16_t rtag, struct ifnet *ifp) 2368 { 2369 struct pf_send_entry *pfse; 2370 struct mbuf *m; 2371 int len, tlen; 2372 #ifdef INET 2373 struct ip *h = NULL; 2374 #endif /* INET */ 2375 #ifdef INET6 2376 struct ip6_hdr *h6 = NULL; 2377 #endif /* INET6 */ 2378 struct tcphdr *th; 2379 char *opt; 2380 struct pf_mtag *pf_mtag; 2381 2382 len = 0; 2383 th = NULL; 2384 2385 /* maximum segment size tcp option */ 2386 tlen = sizeof(struct tcphdr); 2387 if (mss) 2388 tlen += 4; 2389 2390 switch (af) { 2391 #ifdef INET 2392 case AF_INET: 2393 len = sizeof(struct ip) + tlen; 2394 break; 2395 #endif /* INET */ 2396 #ifdef INET6 2397 case AF_INET6: 2398 len = sizeof(struct ip6_hdr) + tlen; 2399 break; 2400 #endif /* INET6 */ 2401 default: 2402 panic("%s: unsupported af %d", __func__, af); 2403 } 2404 2405 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2406 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2407 if (pfse == NULL) 2408 return; 2409 m = m_gethdr(M_NOWAIT, MT_DATA); 2410 if (m == NULL) { 2411 free(pfse, M_PFTEMP); 2412 return; 2413 } 2414 #ifdef MAC 2415 mac_netinet_firewall_send(m); 2416 #endif 2417 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2418 free(pfse, M_PFTEMP); 2419 m_freem(m); 2420 return; 2421 } 2422 if (tag) 2423 m->m_flags |= M_SKIP_FIREWALL; 2424 pf_mtag->tag = rtag; 2425 2426 if (r != NULL && r->rtableid >= 0) 2427 M_SETFIB(m, r->rtableid); 2428 2429 #ifdef ALTQ 2430 if (r != NULL && r->qid) { 2431 pf_mtag->qid = r->qid; 2432 2433 /* add hints for ecn */ 2434 pf_mtag->hdr = mtod(m, struct ip *); 2435 } 2436 #endif /* ALTQ */ 2437 m->m_data += max_linkhdr; 2438 m->m_pkthdr.len = m->m_len = len; 2439 m->m_pkthdr.rcvif = NULL; 2440 bzero(m->m_data, len); 2441 switch (af) { 2442 #ifdef INET 2443 case AF_INET: 2444 h = mtod(m, struct ip *); 2445 2446 /* IP header fields included in the TCP checksum */ 2447 h->ip_p = IPPROTO_TCP; 2448 h->ip_len = htons(tlen); 2449 h->ip_src.s_addr = saddr->v4.s_addr; 2450 h->ip_dst.s_addr = daddr->v4.s_addr; 2451 2452 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2453 break; 2454 #endif /* INET */ 2455 #ifdef INET6 2456 case AF_INET6: 2457 h6 = mtod(m, struct ip6_hdr *); 2458 2459 /* IP header fields included in the TCP checksum */ 2460 h6->ip6_nxt = IPPROTO_TCP; 2461 h6->ip6_plen = htons(tlen); 2462 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2463 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2464 2465 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2466 break; 2467 #endif /* INET6 */ 2468 } 2469 2470 /* TCP header */ 2471 th->th_sport = sport; 2472 th->th_dport = dport; 2473 th->th_seq = htonl(seq); 2474 th->th_ack = htonl(ack); 2475 th->th_off = tlen >> 2; 2476 th->th_flags = flags; 2477 th->th_win = htons(win); 2478 2479 if (mss) { 2480 opt = (char *)(th + 1); 2481 opt[0] = TCPOPT_MAXSEG; 2482 opt[1] = 4; 2483 HTONS(mss); 2484 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2485 } 2486 2487 switch (af) { 2488 #ifdef INET 2489 case AF_INET: 2490 /* TCP checksum */ 2491 th->th_sum = in_cksum(m, len); 2492 2493 /* Finish the IP header */ 2494 h->ip_v = 4; 2495 h->ip_hl = sizeof(*h) >> 2; 2496 h->ip_tos = IPTOS_LOWDELAY; 2497 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2498 h->ip_len = htons(len); 2499 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2500 h->ip_sum = 0; 2501 2502 pfse->pfse_type = PFSE_IP; 2503 break; 2504 #endif /* INET */ 2505 #ifdef INET6 2506 case AF_INET6: 2507 /* TCP checksum */ 2508 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2509 sizeof(struct ip6_hdr), tlen); 2510 2511 h6->ip6_vfc |= IPV6_VERSION; 2512 h6->ip6_hlim = IPV6_DEFHLIM; 2513 2514 pfse->pfse_type = PFSE_IP6; 2515 break; 2516 #endif /* INET6 */ 2517 } 2518 pfse->pfse_m = m; 2519 pf_send(pfse); 2520 } 2521 2522 static void 2523 pf_return(struct pf_rule *r, struct pf_rule *nr, struct pf_pdesc *pd, 2524 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 2525 struct pfi_kif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 2526 u_short *reason) 2527 { 2528 struct pf_addr * const saddr = pd->src; 2529 struct pf_addr * const daddr = pd->dst; 2530 sa_family_t af = pd->af; 2531 2532 /* undo NAT changes, if they have taken place */ 2533 if (nr != NULL) { 2534 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 2535 PF_ACPY(daddr, &sk->addr[pd->didx], af); 2536 if (pd->sport) 2537 *pd->sport = sk->port[pd->sidx]; 2538 if (pd->dport) 2539 *pd->dport = sk->port[pd->didx]; 2540 if (pd->proto_sum) 2541 *pd->proto_sum = bproto_sum; 2542 if (pd->ip_sum) 2543 *pd->ip_sum = bip_sum; 2544 m_copyback(m, off, hdrlen, pd->hdr.any); 2545 } 2546 if (pd->proto == IPPROTO_TCP && 2547 ((r->rule_flag & PFRULE_RETURNRST) || 2548 (r->rule_flag & PFRULE_RETURN)) && 2549 !(th->th_flags & TH_RST)) { 2550 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 2551 int len = 0; 2552 #ifdef INET 2553 struct ip *h4; 2554 #endif 2555 #ifdef INET6 2556 struct ip6_hdr *h6; 2557 #endif 2558 2559 switch (af) { 2560 #ifdef INET 2561 case AF_INET: 2562 h4 = mtod(m, struct ip *); 2563 len = ntohs(h4->ip_len) - off; 2564 break; 2565 #endif 2566 #ifdef INET6 2567 case AF_INET6: 2568 h6 = mtod(m, struct ip6_hdr *); 2569 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 2570 break; 2571 #endif 2572 } 2573 2574 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 2575 REASON_SET(reason, PFRES_PROTCKSUM); 2576 else { 2577 if (th->th_flags & TH_SYN) 2578 ack++; 2579 if (th->th_flags & TH_FIN) 2580 ack++; 2581 pf_send_tcp(m, r, af, pd->dst, 2582 pd->src, th->th_dport, th->th_sport, 2583 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 2584 r->return_ttl, 1, 0, kif->pfik_ifp); 2585 } 2586 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 2587 r->return_icmp) 2588 pf_send_icmp(m, r->return_icmp >> 8, 2589 r->return_icmp & 255, af, r); 2590 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 2591 r->return_icmp6) 2592 pf_send_icmp(m, r->return_icmp6 >> 8, 2593 r->return_icmp6 & 255, af, r); 2594 } 2595 2596 2597 static int 2598 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2599 { 2600 struct m_tag *mtag; 2601 2602 KASSERT(prio <= PF_PRIO_MAX, 2603 ("%s with invalid pcp", __func__)); 2604 2605 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2606 if (mtag == NULL) { 2607 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2608 sizeof(uint8_t), M_NOWAIT); 2609 if (mtag == NULL) 2610 return (ENOMEM); 2611 m_tag_prepend(m, mtag); 2612 } 2613 2614 *(uint8_t *)(mtag + 1) = prio; 2615 return (0); 2616 } 2617 2618 static int 2619 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2620 { 2621 struct m_tag *mtag; 2622 u_int8_t mpcp; 2623 2624 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2625 if (mtag == NULL) 2626 return (0); 2627 2628 if (prio == PF_PRIO_ZERO) 2629 prio = 0; 2630 2631 mpcp = *(uint8_t *)(mtag + 1); 2632 2633 return (mpcp == prio); 2634 } 2635 2636 static void 2637 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2638 struct pf_rule *r) 2639 { 2640 struct pf_send_entry *pfse; 2641 struct mbuf *m0; 2642 struct pf_mtag *pf_mtag; 2643 2644 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2645 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2646 if (pfse == NULL) 2647 return; 2648 2649 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2650 free(pfse, M_PFTEMP); 2651 return; 2652 } 2653 2654 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2655 free(pfse, M_PFTEMP); 2656 return; 2657 } 2658 /* XXX: revisit */ 2659 m0->m_flags |= M_SKIP_FIREWALL; 2660 2661 if (r->rtableid >= 0) 2662 M_SETFIB(m0, r->rtableid); 2663 2664 #ifdef ALTQ 2665 if (r->qid) { 2666 pf_mtag->qid = r->qid; 2667 /* add hints for ecn */ 2668 pf_mtag->hdr = mtod(m0, struct ip *); 2669 } 2670 #endif /* ALTQ */ 2671 2672 switch (af) { 2673 #ifdef INET 2674 case AF_INET: 2675 pfse->pfse_type = PFSE_ICMP; 2676 break; 2677 #endif /* INET */ 2678 #ifdef INET6 2679 case AF_INET6: 2680 pfse->pfse_type = PFSE_ICMP6; 2681 break; 2682 #endif /* INET6 */ 2683 } 2684 pfse->pfse_m = m0; 2685 pfse->icmpopts.type = type; 2686 pfse->icmpopts.code = code; 2687 pf_send(pfse); 2688 } 2689 2690 /* 2691 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2692 * If n is 0, they match if they are equal. If n is != 0, they match if they 2693 * are different. 2694 */ 2695 int 2696 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2697 struct pf_addr *b, sa_family_t af) 2698 { 2699 int match = 0; 2700 2701 switch (af) { 2702 #ifdef INET 2703 case AF_INET: 2704 if ((a->addr32[0] & m->addr32[0]) == 2705 (b->addr32[0] & m->addr32[0])) 2706 match++; 2707 break; 2708 #endif /* INET */ 2709 #ifdef INET6 2710 case AF_INET6: 2711 if (((a->addr32[0] & m->addr32[0]) == 2712 (b->addr32[0] & m->addr32[0])) && 2713 ((a->addr32[1] & m->addr32[1]) == 2714 (b->addr32[1] & m->addr32[1])) && 2715 ((a->addr32[2] & m->addr32[2]) == 2716 (b->addr32[2] & m->addr32[2])) && 2717 ((a->addr32[3] & m->addr32[3]) == 2718 (b->addr32[3] & m->addr32[3]))) 2719 match++; 2720 break; 2721 #endif /* INET6 */ 2722 } 2723 if (match) { 2724 if (n) 2725 return (0); 2726 else 2727 return (1); 2728 } else { 2729 if (n) 2730 return (1); 2731 else 2732 return (0); 2733 } 2734 } 2735 2736 /* 2737 * Return 1 if b <= a <= e, otherwise return 0. 2738 */ 2739 int 2740 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2741 struct pf_addr *a, sa_family_t af) 2742 { 2743 switch (af) { 2744 #ifdef INET 2745 case AF_INET: 2746 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2747 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2748 return (0); 2749 break; 2750 #endif /* INET */ 2751 #ifdef INET6 2752 case AF_INET6: { 2753 int i; 2754 2755 /* check a >= b */ 2756 for (i = 0; i < 4; ++i) 2757 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2758 break; 2759 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2760 return (0); 2761 /* check a <= e */ 2762 for (i = 0; i < 4; ++i) 2763 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2764 break; 2765 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2766 return (0); 2767 break; 2768 } 2769 #endif /* INET6 */ 2770 } 2771 return (1); 2772 } 2773 2774 static int 2775 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2776 { 2777 switch (op) { 2778 case PF_OP_IRG: 2779 return ((p > a1) && (p < a2)); 2780 case PF_OP_XRG: 2781 return ((p < a1) || (p > a2)); 2782 case PF_OP_RRG: 2783 return ((p >= a1) && (p <= a2)); 2784 case PF_OP_EQ: 2785 return (p == a1); 2786 case PF_OP_NE: 2787 return (p != a1); 2788 case PF_OP_LT: 2789 return (p < a1); 2790 case PF_OP_LE: 2791 return (p <= a1); 2792 case PF_OP_GT: 2793 return (p > a1); 2794 case PF_OP_GE: 2795 return (p >= a1); 2796 } 2797 return (0); /* never reached */ 2798 } 2799 2800 int 2801 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2802 { 2803 NTOHS(a1); 2804 NTOHS(a2); 2805 NTOHS(p); 2806 return (pf_match(op, a1, a2, p)); 2807 } 2808 2809 static int 2810 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2811 { 2812 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2813 return (0); 2814 return (pf_match(op, a1, a2, u)); 2815 } 2816 2817 static int 2818 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2819 { 2820 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2821 return (0); 2822 return (pf_match(op, a1, a2, g)); 2823 } 2824 2825 int 2826 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2827 { 2828 if (*tag == -1) 2829 *tag = mtag; 2830 2831 return ((!r->match_tag_not && r->match_tag == *tag) || 2832 (r->match_tag_not && r->match_tag != *tag)); 2833 } 2834 2835 int 2836 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2837 { 2838 2839 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2840 2841 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2842 return (ENOMEM); 2843 2844 pd->pf_mtag->tag = tag; 2845 2846 return (0); 2847 } 2848 2849 #define PF_ANCHOR_STACKSIZE 32 2850 struct pf_anchor_stackframe { 2851 struct pf_ruleset *rs; 2852 struct pf_rule *r; /* XXX: + match bit */ 2853 struct pf_anchor *child; 2854 }; 2855 2856 /* 2857 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2858 */ 2859 #define PF_ANCHORSTACK_MATCH 0x00000001 2860 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2861 2862 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2863 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2864 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2865 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2866 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2867 } while (0) 2868 2869 void 2870 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2871 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2872 int *match) 2873 { 2874 struct pf_anchor_stackframe *f; 2875 2876 PF_RULES_RASSERT(); 2877 2878 if (match) 2879 *match = 0; 2880 if (*depth >= PF_ANCHOR_STACKSIZE) { 2881 printf("%s: anchor stack overflow on %s\n", 2882 __func__, (*r)->anchor->name); 2883 *r = TAILQ_NEXT(*r, entries); 2884 return; 2885 } else if (*depth == 0 && a != NULL) 2886 *a = *r; 2887 f = stack + (*depth)++; 2888 f->rs = *rs; 2889 f->r = *r; 2890 if ((*r)->anchor_wildcard) { 2891 struct pf_anchor_node *parent = &(*r)->anchor->children; 2892 2893 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2894 *r = NULL; 2895 return; 2896 } 2897 *rs = &f->child->ruleset; 2898 } else { 2899 f->child = NULL; 2900 *rs = &(*r)->anchor->ruleset; 2901 } 2902 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2903 } 2904 2905 int 2906 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2907 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2908 int *match) 2909 { 2910 struct pf_anchor_stackframe *f; 2911 struct pf_rule *fr; 2912 int quick = 0; 2913 2914 PF_RULES_RASSERT(); 2915 2916 do { 2917 if (*depth <= 0) 2918 break; 2919 f = stack + *depth - 1; 2920 fr = PF_ANCHOR_RULE(f); 2921 if (f->child != NULL) { 2922 struct pf_anchor_node *parent; 2923 2924 /* 2925 * This block traverses through 2926 * a wildcard anchor. 2927 */ 2928 parent = &fr->anchor->children; 2929 if (match != NULL && *match) { 2930 /* 2931 * If any of "*" matched, then 2932 * "foo/ *" matched, mark frame 2933 * appropriately. 2934 */ 2935 PF_ANCHOR_SET_MATCH(f); 2936 *match = 0; 2937 } 2938 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2939 if (f->child != NULL) { 2940 *rs = &f->child->ruleset; 2941 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2942 if (*r == NULL) 2943 continue; 2944 else 2945 break; 2946 } 2947 } 2948 (*depth)--; 2949 if (*depth == 0 && a != NULL) 2950 *a = NULL; 2951 *rs = f->rs; 2952 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2953 quick = fr->quick; 2954 *r = TAILQ_NEXT(fr, entries); 2955 } while (*r == NULL); 2956 2957 return (quick); 2958 } 2959 2960 #ifdef INET6 2961 void 2962 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2963 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2964 { 2965 switch (af) { 2966 #ifdef INET 2967 case AF_INET: 2968 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2969 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2970 break; 2971 #endif /* INET */ 2972 case AF_INET6: 2973 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2974 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2975 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2976 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2977 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2978 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2979 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2980 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2981 break; 2982 } 2983 } 2984 2985 void 2986 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2987 { 2988 switch (af) { 2989 #ifdef INET 2990 case AF_INET: 2991 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2992 break; 2993 #endif /* INET */ 2994 case AF_INET6: 2995 if (addr->addr32[3] == 0xffffffff) { 2996 addr->addr32[3] = 0; 2997 if (addr->addr32[2] == 0xffffffff) { 2998 addr->addr32[2] = 0; 2999 if (addr->addr32[1] == 0xffffffff) { 3000 addr->addr32[1] = 0; 3001 addr->addr32[0] = 3002 htonl(ntohl(addr->addr32[0]) + 1); 3003 } else 3004 addr->addr32[1] = 3005 htonl(ntohl(addr->addr32[1]) + 1); 3006 } else 3007 addr->addr32[2] = 3008 htonl(ntohl(addr->addr32[2]) + 1); 3009 } else 3010 addr->addr32[3] = 3011 htonl(ntohl(addr->addr32[3]) + 1); 3012 break; 3013 } 3014 } 3015 #endif /* INET6 */ 3016 3017 int 3018 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 3019 { 3020 struct pf_addr *saddr, *daddr; 3021 u_int16_t sport, dport; 3022 struct inpcbinfo *pi; 3023 struct inpcb *inp; 3024 3025 pd->lookup.uid = UID_MAX; 3026 pd->lookup.gid = GID_MAX; 3027 3028 switch (pd->proto) { 3029 case IPPROTO_TCP: 3030 if (pd->hdr.tcp == NULL) 3031 return (-1); 3032 sport = pd->hdr.tcp->th_sport; 3033 dport = pd->hdr.tcp->th_dport; 3034 pi = &V_tcbinfo; 3035 break; 3036 case IPPROTO_UDP: 3037 if (pd->hdr.udp == NULL) 3038 return (-1); 3039 sport = pd->hdr.udp->uh_sport; 3040 dport = pd->hdr.udp->uh_dport; 3041 pi = &V_udbinfo; 3042 break; 3043 default: 3044 return (-1); 3045 } 3046 if (direction == PF_IN) { 3047 saddr = pd->src; 3048 daddr = pd->dst; 3049 } else { 3050 u_int16_t p; 3051 3052 p = sport; 3053 sport = dport; 3054 dport = p; 3055 saddr = pd->dst; 3056 daddr = pd->src; 3057 } 3058 switch (pd->af) { 3059 #ifdef INET 3060 case AF_INET: 3061 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3062 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3063 if (inp == NULL) { 3064 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3065 daddr->v4, dport, INPLOOKUP_WILDCARD | 3066 INPLOOKUP_RLOCKPCB, NULL, m); 3067 if (inp == NULL) 3068 return (-1); 3069 } 3070 break; 3071 #endif /* INET */ 3072 #ifdef INET6 3073 case AF_INET6: 3074 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3075 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3076 if (inp == NULL) { 3077 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3078 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3079 INPLOOKUP_RLOCKPCB, NULL, m); 3080 if (inp == NULL) 3081 return (-1); 3082 } 3083 break; 3084 #endif /* INET6 */ 3085 3086 default: 3087 return (-1); 3088 } 3089 INP_RLOCK_ASSERT(inp); 3090 pd->lookup.uid = inp->inp_cred->cr_uid; 3091 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3092 INP_RUNLOCK(inp); 3093 3094 return (1); 3095 } 3096 3097 static u_int8_t 3098 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3099 { 3100 int hlen; 3101 u_int8_t hdr[60]; 3102 u_int8_t *opt, optlen; 3103 u_int8_t wscale = 0; 3104 3105 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3106 if (hlen <= sizeof(struct tcphdr)) 3107 return (0); 3108 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3109 return (0); 3110 opt = hdr + sizeof(struct tcphdr); 3111 hlen -= sizeof(struct tcphdr); 3112 while (hlen >= 3) { 3113 switch (*opt) { 3114 case TCPOPT_EOL: 3115 case TCPOPT_NOP: 3116 ++opt; 3117 --hlen; 3118 break; 3119 case TCPOPT_WINDOW: 3120 wscale = opt[2]; 3121 if (wscale > TCP_MAX_WINSHIFT) 3122 wscale = TCP_MAX_WINSHIFT; 3123 wscale |= PF_WSCALE_FLAG; 3124 /* FALLTHROUGH */ 3125 default: 3126 optlen = opt[1]; 3127 if (optlen < 2) 3128 optlen = 2; 3129 hlen -= optlen; 3130 opt += optlen; 3131 break; 3132 } 3133 } 3134 return (wscale); 3135 } 3136 3137 static u_int16_t 3138 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3139 { 3140 int hlen; 3141 u_int8_t hdr[60]; 3142 u_int8_t *opt, optlen; 3143 u_int16_t mss = V_tcp_mssdflt; 3144 3145 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3146 if (hlen <= sizeof(struct tcphdr)) 3147 return (0); 3148 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3149 return (0); 3150 opt = hdr + sizeof(struct tcphdr); 3151 hlen -= sizeof(struct tcphdr); 3152 while (hlen >= TCPOLEN_MAXSEG) { 3153 switch (*opt) { 3154 case TCPOPT_EOL: 3155 case TCPOPT_NOP: 3156 ++opt; 3157 --hlen; 3158 break; 3159 case TCPOPT_MAXSEG: 3160 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3161 NTOHS(mss); 3162 /* FALLTHROUGH */ 3163 default: 3164 optlen = opt[1]; 3165 if (optlen < 2) 3166 optlen = 2; 3167 hlen -= optlen; 3168 opt += optlen; 3169 break; 3170 } 3171 } 3172 return (mss); 3173 } 3174 3175 static u_int16_t 3176 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3177 { 3178 #ifdef INET 3179 struct nhop4_basic nh4; 3180 #endif /* INET */ 3181 #ifdef INET6 3182 struct nhop6_basic nh6; 3183 struct in6_addr dst6; 3184 uint32_t scopeid; 3185 #endif /* INET6 */ 3186 int hlen = 0; 3187 uint16_t mss = 0; 3188 3189 switch (af) { 3190 #ifdef INET 3191 case AF_INET: 3192 hlen = sizeof(struct ip); 3193 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) == 0) 3194 mss = nh4.nh_mtu - hlen - sizeof(struct tcphdr); 3195 break; 3196 #endif /* INET */ 3197 #ifdef INET6 3198 case AF_INET6: 3199 hlen = sizeof(struct ip6_hdr); 3200 in6_splitscope(&addr->v6, &dst6, &scopeid); 3201 if (fib6_lookup_nh_basic(rtableid, &dst6, scopeid, 0,0,&nh6)==0) 3202 mss = nh6.nh_mtu - hlen - sizeof(struct tcphdr); 3203 break; 3204 #endif /* INET6 */ 3205 } 3206 3207 mss = max(V_tcp_mssdflt, mss); 3208 mss = min(mss, offer); 3209 mss = max(mss, 64); /* sanity - at least max opt space */ 3210 return (mss); 3211 } 3212 3213 static u_int32_t 3214 pf_tcp_iss(struct pf_pdesc *pd) 3215 { 3216 MD5_CTX ctx; 3217 u_int32_t digest[4]; 3218 3219 if (V_pf_tcp_secret_init == 0) { 3220 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3221 MD5Init(&V_pf_tcp_secret_ctx); 3222 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3223 sizeof(V_pf_tcp_secret)); 3224 V_pf_tcp_secret_init = 1; 3225 } 3226 3227 ctx = V_pf_tcp_secret_ctx; 3228 3229 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3230 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3231 if (pd->af == AF_INET6) { 3232 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3233 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3234 } else { 3235 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3236 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3237 } 3238 MD5Final((u_char *)digest, &ctx); 3239 V_pf_tcp_iss_off += 4096; 3240 #define ISN_RANDOM_INCREMENT (4096 - 1) 3241 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3242 V_pf_tcp_iss_off); 3243 #undef ISN_RANDOM_INCREMENT 3244 } 3245 3246 static int 3247 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3248 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3249 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3250 { 3251 struct pf_rule *nr = NULL; 3252 struct pf_addr * const saddr = pd->src; 3253 struct pf_addr * const daddr = pd->dst; 3254 sa_family_t af = pd->af; 3255 struct pf_rule *r, *a = NULL; 3256 struct pf_ruleset *ruleset = NULL; 3257 struct pf_src_node *nsn = NULL; 3258 struct tcphdr *th = pd->hdr.tcp; 3259 struct pf_state_key *sk = NULL, *nk = NULL; 3260 u_short reason; 3261 int rewrite = 0, hdrlen = 0; 3262 int tag = -1, rtableid = -1; 3263 int asd = 0; 3264 int match = 0; 3265 int state_icmp = 0; 3266 u_int16_t sport = 0, dport = 0; 3267 u_int16_t bproto_sum = 0, bip_sum = 0; 3268 u_int8_t icmptype = 0, icmpcode = 0; 3269 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3270 3271 PF_RULES_RASSERT(); 3272 3273 if (inp != NULL) { 3274 INP_LOCK_ASSERT(inp); 3275 pd->lookup.uid = inp->inp_cred->cr_uid; 3276 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3277 pd->lookup.done = 1; 3278 } 3279 3280 switch (pd->proto) { 3281 case IPPROTO_TCP: 3282 sport = th->th_sport; 3283 dport = th->th_dport; 3284 hdrlen = sizeof(*th); 3285 break; 3286 case IPPROTO_UDP: 3287 sport = pd->hdr.udp->uh_sport; 3288 dport = pd->hdr.udp->uh_dport; 3289 hdrlen = sizeof(*pd->hdr.udp); 3290 break; 3291 #ifdef INET 3292 case IPPROTO_ICMP: 3293 if (pd->af != AF_INET) 3294 break; 3295 sport = dport = pd->hdr.icmp->icmp_id; 3296 hdrlen = sizeof(*pd->hdr.icmp); 3297 icmptype = pd->hdr.icmp->icmp_type; 3298 icmpcode = pd->hdr.icmp->icmp_code; 3299 3300 if (icmptype == ICMP_UNREACH || 3301 icmptype == ICMP_SOURCEQUENCH || 3302 icmptype == ICMP_REDIRECT || 3303 icmptype == ICMP_TIMXCEED || 3304 icmptype == ICMP_PARAMPROB) 3305 state_icmp++; 3306 break; 3307 #endif /* INET */ 3308 #ifdef INET6 3309 case IPPROTO_ICMPV6: 3310 if (af != AF_INET6) 3311 break; 3312 sport = dport = pd->hdr.icmp6->icmp6_id; 3313 hdrlen = sizeof(*pd->hdr.icmp6); 3314 icmptype = pd->hdr.icmp6->icmp6_type; 3315 icmpcode = pd->hdr.icmp6->icmp6_code; 3316 3317 if (icmptype == ICMP6_DST_UNREACH || 3318 icmptype == ICMP6_PACKET_TOO_BIG || 3319 icmptype == ICMP6_TIME_EXCEEDED || 3320 icmptype == ICMP6_PARAM_PROB) 3321 state_icmp++; 3322 break; 3323 #endif /* INET6 */ 3324 default: 3325 sport = dport = hdrlen = 0; 3326 break; 3327 } 3328 3329 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3330 3331 /* check packet for BINAT/NAT/RDR */ 3332 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3333 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3334 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3335 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3336 3337 if (pd->ip_sum) 3338 bip_sum = *pd->ip_sum; 3339 3340 switch (pd->proto) { 3341 case IPPROTO_TCP: 3342 bproto_sum = th->th_sum; 3343 pd->proto_sum = &th->th_sum; 3344 3345 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3346 nk->port[pd->sidx] != sport) { 3347 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3348 &th->th_sum, &nk->addr[pd->sidx], 3349 nk->port[pd->sidx], 0, af); 3350 pd->sport = &th->th_sport; 3351 sport = th->th_sport; 3352 } 3353 3354 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3355 nk->port[pd->didx] != dport) { 3356 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3357 &th->th_sum, &nk->addr[pd->didx], 3358 nk->port[pd->didx], 0, af); 3359 dport = th->th_dport; 3360 pd->dport = &th->th_dport; 3361 } 3362 rewrite++; 3363 break; 3364 case IPPROTO_UDP: 3365 bproto_sum = pd->hdr.udp->uh_sum; 3366 pd->proto_sum = &pd->hdr.udp->uh_sum; 3367 3368 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3369 nk->port[pd->sidx] != sport) { 3370 pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, 3371 pd->ip_sum, &pd->hdr.udp->uh_sum, 3372 &nk->addr[pd->sidx], 3373 nk->port[pd->sidx], 1, af); 3374 sport = pd->hdr.udp->uh_sport; 3375 pd->sport = &pd->hdr.udp->uh_sport; 3376 } 3377 3378 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3379 nk->port[pd->didx] != dport) { 3380 pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, 3381 pd->ip_sum, &pd->hdr.udp->uh_sum, 3382 &nk->addr[pd->didx], 3383 nk->port[pd->didx], 1, af); 3384 dport = pd->hdr.udp->uh_dport; 3385 pd->dport = &pd->hdr.udp->uh_dport; 3386 } 3387 rewrite++; 3388 break; 3389 #ifdef INET 3390 case IPPROTO_ICMP: 3391 nk->port[0] = nk->port[1]; 3392 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3393 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3394 nk->addr[pd->sidx].v4.s_addr, 0); 3395 3396 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3397 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3398 nk->addr[pd->didx].v4.s_addr, 0); 3399 3400 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3401 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3402 pd->hdr.icmp->icmp_cksum, sport, 3403 nk->port[1], 0); 3404 pd->hdr.icmp->icmp_id = nk->port[1]; 3405 pd->sport = &pd->hdr.icmp->icmp_id; 3406 } 3407 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3408 break; 3409 #endif /* INET */ 3410 #ifdef INET6 3411 case IPPROTO_ICMPV6: 3412 nk->port[0] = nk->port[1]; 3413 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3414 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3415 &nk->addr[pd->sidx], 0); 3416 3417 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3418 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3419 &nk->addr[pd->didx], 0); 3420 rewrite++; 3421 break; 3422 #endif /* INET */ 3423 default: 3424 switch (af) { 3425 #ifdef INET 3426 case AF_INET: 3427 if (PF_ANEQ(saddr, 3428 &nk->addr[pd->sidx], AF_INET)) 3429 pf_change_a(&saddr->v4.s_addr, 3430 pd->ip_sum, 3431 nk->addr[pd->sidx].v4.s_addr, 0); 3432 3433 if (PF_ANEQ(daddr, 3434 &nk->addr[pd->didx], AF_INET)) 3435 pf_change_a(&daddr->v4.s_addr, 3436 pd->ip_sum, 3437 nk->addr[pd->didx].v4.s_addr, 0); 3438 break; 3439 #endif /* INET */ 3440 #ifdef INET6 3441 case AF_INET6: 3442 if (PF_ANEQ(saddr, 3443 &nk->addr[pd->sidx], AF_INET6)) 3444 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3445 3446 if (PF_ANEQ(daddr, 3447 &nk->addr[pd->didx], AF_INET6)) 3448 PF_ACPY(daddr, &nk->addr[pd->didx], af); 3449 break; 3450 #endif /* INET */ 3451 } 3452 break; 3453 } 3454 if (nr->natpass) 3455 r = NULL; 3456 pd->nat_rule = nr; 3457 } 3458 3459 while (r != NULL) { 3460 r->evaluations++; 3461 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3462 r = r->skip[PF_SKIP_IFP].ptr; 3463 else if (r->direction && r->direction != direction) 3464 r = r->skip[PF_SKIP_DIR].ptr; 3465 else if (r->af && r->af != af) 3466 r = r->skip[PF_SKIP_AF].ptr; 3467 else if (r->proto && r->proto != pd->proto) 3468 r = r->skip[PF_SKIP_PROTO].ptr; 3469 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3470 r->src.neg, kif, M_GETFIB(m))) 3471 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3472 /* tcp/udp only. port_op always 0 in other cases */ 3473 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3474 r->src.port[0], r->src.port[1], sport)) 3475 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3476 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3477 r->dst.neg, NULL, M_GETFIB(m))) 3478 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3479 /* tcp/udp only. port_op always 0 in other cases */ 3480 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3481 r->dst.port[0], r->dst.port[1], dport)) 3482 r = r->skip[PF_SKIP_DST_PORT].ptr; 3483 /* icmp only. type always 0 in other cases */ 3484 else if (r->type && r->type != icmptype + 1) 3485 r = TAILQ_NEXT(r, entries); 3486 /* icmp only. type always 0 in other cases */ 3487 else if (r->code && r->code != icmpcode + 1) 3488 r = TAILQ_NEXT(r, entries); 3489 else if (r->tos && !(r->tos == pd->tos)) 3490 r = TAILQ_NEXT(r, entries); 3491 else if (r->rule_flag & PFRULE_FRAGMENT) 3492 r = TAILQ_NEXT(r, entries); 3493 else if (pd->proto == IPPROTO_TCP && 3494 (r->flagset & th->th_flags) != r->flags) 3495 r = TAILQ_NEXT(r, entries); 3496 /* tcp/udp only. uid.op always 0 in other cases */ 3497 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3498 pf_socket_lookup(direction, pd, m), 1)) && 3499 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3500 pd->lookup.uid)) 3501 r = TAILQ_NEXT(r, entries); 3502 /* tcp/udp only. gid.op always 0 in other cases */ 3503 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3504 pf_socket_lookup(direction, pd, m), 1)) && 3505 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3506 pd->lookup.gid)) 3507 r = TAILQ_NEXT(r, entries); 3508 else if (r->prio && 3509 !pf_match_ieee8021q_pcp(r->prio, m)) 3510 r = TAILQ_NEXT(r, entries); 3511 else if (r->prob && 3512 r->prob <= arc4random()) 3513 r = TAILQ_NEXT(r, entries); 3514 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3515 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3516 r = TAILQ_NEXT(r, entries); 3517 else if (r->os_fingerprint != PF_OSFP_ANY && 3518 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3519 pf_osfp_fingerprint(pd, m, off, th), 3520 r->os_fingerprint))) 3521 r = TAILQ_NEXT(r, entries); 3522 else { 3523 if (r->tag) 3524 tag = r->tag; 3525 if (r->rtableid >= 0) 3526 rtableid = r->rtableid; 3527 if (r->anchor == NULL) { 3528 match = 1; 3529 *rm = r; 3530 *am = a; 3531 *rsm = ruleset; 3532 if ((*rm)->quick) 3533 break; 3534 r = TAILQ_NEXT(r, entries); 3535 } else 3536 pf_step_into_anchor(anchor_stack, &asd, 3537 &ruleset, PF_RULESET_FILTER, &r, &a, 3538 &match); 3539 } 3540 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3541 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3542 break; 3543 } 3544 r = *rm; 3545 a = *am; 3546 ruleset = *rsm; 3547 3548 REASON_SET(&reason, PFRES_MATCH); 3549 3550 if (r->log || (nr != NULL && nr->log)) { 3551 if (rewrite) 3552 m_copyback(m, off, hdrlen, pd->hdr.any); 3553 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3554 ruleset, pd, 1); 3555 } 3556 3557 if ((r->action == PF_DROP) && 3558 ((r->rule_flag & PFRULE_RETURNRST) || 3559 (r->rule_flag & PFRULE_RETURNICMP) || 3560 (r->rule_flag & PFRULE_RETURN))) { 3561 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 3562 bip_sum, hdrlen, &reason); 3563 } 3564 3565 if (r->action == PF_DROP) 3566 goto cleanup; 3567 3568 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3569 REASON_SET(&reason, PFRES_MEMORY); 3570 goto cleanup; 3571 } 3572 if (rtableid >= 0) 3573 M_SETFIB(m, rtableid); 3574 3575 if (!state_icmp && (r->keep_state || nr != NULL || 3576 (pd->flags & PFDESC_TCP_NORM))) { 3577 int action; 3578 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3579 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3580 hdrlen); 3581 if (action != PF_PASS) { 3582 if (action == PF_DROP && 3583 (r->rule_flag & PFRULE_RETURN)) 3584 pf_return(r, nr, pd, sk, off, m, th, kif, 3585 bproto_sum, bip_sum, hdrlen, &reason); 3586 return (action); 3587 } 3588 } else { 3589 if (sk != NULL) 3590 uma_zfree(V_pf_state_key_z, sk); 3591 if (nk != NULL) 3592 uma_zfree(V_pf_state_key_z, nk); 3593 } 3594 3595 /* copy back packet headers if we performed NAT operations */ 3596 if (rewrite) 3597 m_copyback(m, off, hdrlen, pd->hdr.any); 3598 3599 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3600 direction == PF_OUT && 3601 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 3602 /* 3603 * We want the state created, but we dont 3604 * want to send this in case a partner 3605 * firewall has to know about it to allow 3606 * replies through it. 3607 */ 3608 return (PF_DEFER); 3609 3610 return (PF_PASS); 3611 3612 cleanup: 3613 if (sk != NULL) 3614 uma_zfree(V_pf_state_key_z, sk); 3615 if (nk != NULL) 3616 uma_zfree(V_pf_state_key_z, nk); 3617 return (PF_DROP); 3618 } 3619 3620 static int 3621 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3622 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3623 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3624 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3625 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3626 { 3627 struct pf_state *s = NULL; 3628 struct pf_src_node *sn = NULL; 3629 struct tcphdr *th = pd->hdr.tcp; 3630 u_int16_t mss = V_tcp_mssdflt; 3631 u_short reason; 3632 3633 /* check maximums */ 3634 if (r->max_states && 3635 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3636 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3637 REASON_SET(&reason, PFRES_MAXSTATES); 3638 goto csfailed; 3639 } 3640 /* src node for filter rule */ 3641 if ((r->rule_flag & PFRULE_SRCTRACK || 3642 r->rpool.opts & PF_POOL_STICKYADDR) && 3643 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3644 REASON_SET(&reason, PFRES_SRCLIMIT); 3645 goto csfailed; 3646 } 3647 /* src node for translation rule */ 3648 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3649 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3650 REASON_SET(&reason, PFRES_SRCLIMIT); 3651 goto csfailed; 3652 } 3653 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3654 if (s == NULL) { 3655 REASON_SET(&reason, PFRES_MEMORY); 3656 goto csfailed; 3657 } 3658 s->rule.ptr = r; 3659 s->nat_rule.ptr = nr; 3660 s->anchor.ptr = a; 3661 STATE_INC_COUNTERS(s); 3662 if (r->allow_opts) 3663 s->state_flags |= PFSTATE_ALLOWOPTS; 3664 if (r->rule_flag & PFRULE_STATESLOPPY) 3665 s->state_flags |= PFSTATE_SLOPPY; 3666 s->log = r->log & PF_LOG_ALL; 3667 s->sync_state = PFSYNC_S_NONE; 3668 if (nr != NULL) 3669 s->log |= nr->log & PF_LOG_ALL; 3670 switch (pd->proto) { 3671 case IPPROTO_TCP: 3672 s->src.seqlo = ntohl(th->th_seq); 3673 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3674 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3675 r->keep_state == PF_STATE_MODULATE) { 3676 /* Generate sequence number modulator */ 3677 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3678 0) 3679 s->src.seqdiff = 1; 3680 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3681 htonl(s->src.seqlo + s->src.seqdiff), 0); 3682 *rewrite = 1; 3683 } else 3684 s->src.seqdiff = 0; 3685 if (th->th_flags & TH_SYN) { 3686 s->src.seqhi++; 3687 s->src.wscale = pf_get_wscale(m, off, 3688 th->th_off, pd->af); 3689 } 3690 s->src.max_win = MAX(ntohs(th->th_win), 1); 3691 if (s->src.wscale & PF_WSCALE_MASK) { 3692 /* Remove scale factor from initial window */ 3693 int win = s->src.max_win; 3694 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3695 s->src.max_win = (win - 1) >> 3696 (s->src.wscale & PF_WSCALE_MASK); 3697 } 3698 if (th->th_flags & TH_FIN) 3699 s->src.seqhi++; 3700 s->dst.seqhi = 1; 3701 s->dst.max_win = 1; 3702 s->src.state = TCPS_SYN_SENT; 3703 s->dst.state = TCPS_CLOSED; 3704 s->timeout = PFTM_TCP_FIRST_PACKET; 3705 break; 3706 case IPPROTO_UDP: 3707 s->src.state = PFUDPS_SINGLE; 3708 s->dst.state = PFUDPS_NO_TRAFFIC; 3709 s->timeout = PFTM_UDP_FIRST_PACKET; 3710 break; 3711 case IPPROTO_ICMP: 3712 #ifdef INET6 3713 case IPPROTO_ICMPV6: 3714 #endif 3715 s->timeout = PFTM_ICMP_FIRST_PACKET; 3716 break; 3717 default: 3718 s->src.state = PFOTHERS_SINGLE; 3719 s->dst.state = PFOTHERS_NO_TRAFFIC; 3720 s->timeout = PFTM_OTHER_FIRST_PACKET; 3721 } 3722 3723 if (r->rt) { 3724 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3725 REASON_SET(&reason, PFRES_MAPFAILED); 3726 pf_src_tree_remove_state(s); 3727 STATE_DEC_COUNTERS(s); 3728 uma_zfree(V_pf_state_z, s); 3729 goto csfailed; 3730 } 3731 s->rt_kif = r->rpool.cur->kif; 3732 } 3733 3734 s->creation = time_uptime; 3735 s->expire = time_uptime; 3736 3737 if (sn != NULL) 3738 s->src_node = sn; 3739 if (nsn != NULL) { 3740 /* XXX We only modify one side for now. */ 3741 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3742 s->nat_src_node = nsn; 3743 } 3744 if (pd->proto == IPPROTO_TCP) { 3745 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3746 off, pd, th, &s->src, &s->dst)) { 3747 REASON_SET(&reason, PFRES_MEMORY); 3748 pf_src_tree_remove_state(s); 3749 STATE_DEC_COUNTERS(s); 3750 uma_zfree(V_pf_state_z, s); 3751 return (PF_DROP); 3752 } 3753 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3754 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3755 &s->src, &s->dst, rewrite)) { 3756 /* This really shouldn't happen!!! */ 3757 DPFPRINTF(PF_DEBUG_URGENT, 3758 ("pf_normalize_tcp_stateful failed on first " 3759 "pkt\n")); 3760 pf_normalize_tcp_cleanup(s); 3761 pf_src_tree_remove_state(s); 3762 STATE_DEC_COUNTERS(s); 3763 uma_zfree(V_pf_state_z, s); 3764 return (PF_DROP); 3765 } 3766 } 3767 s->direction = pd->dir; 3768 3769 /* 3770 * sk/nk could already been setup by pf_get_translation(). 3771 */ 3772 if (nr == NULL) { 3773 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3774 __func__, nr, sk, nk)); 3775 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3776 if (sk == NULL) 3777 goto csfailed; 3778 nk = sk; 3779 } else 3780 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3781 __func__, nr, sk, nk)); 3782 3783 /* Swap sk/nk for PF_OUT. */ 3784 if (pf_state_insert(BOUND_IFACE(r, kif), 3785 (pd->dir == PF_IN) ? sk : nk, 3786 (pd->dir == PF_IN) ? nk : sk, s)) { 3787 if (pd->proto == IPPROTO_TCP) 3788 pf_normalize_tcp_cleanup(s); 3789 REASON_SET(&reason, PFRES_STATEINS); 3790 pf_src_tree_remove_state(s); 3791 STATE_DEC_COUNTERS(s); 3792 uma_zfree(V_pf_state_z, s); 3793 return (PF_DROP); 3794 } else 3795 *sm = s; 3796 3797 if (tag > 0) 3798 s->tag = tag; 3799 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3800 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3801 s->src.state = PF_TCPS_PROXY_SRC; 3802 /* undo NAT changes, if they have taken place */ 3803 if (nr != NULL) { 3804 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3805 if (pd->dir == PF_OUT) 3806 skt = s->key[PF_SK_STACK]; 3807 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3808 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3809 if (pd->sport) 3810 *pd->sport = skt->port[pd->sidx]; 3811 if (pd->dport) 3812 *pd->dport = skt->port[pd->didx]; 3813 if (pd->proto_sum) 3814 *pd->proto_sum = bproto_sum; 3815 if (pd->ip_sum) 3816 *pd->ip_sum = bip_sum; 3817 m_copyback(m, off, hdrlen, pd->hdr.any); 3818 } 3819 s->src.seqhi = htonl(arc4random()); 3820 /* Find mss option */ 3821 int rtid = M_GETFIB(m); 3822 mss = pf_get_mss(m, off, th->th_off, pd->af); 3823 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3824 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3825 s->src.mss = mss; 3826 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3827 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3828 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3829 REASON_SET(&reason, PFRES_SYNPROXY); 3830 return (PF_SYNPROXY_DROP); 3831 } 3832 3833 return (PF_PASS); 3834 3835 csfailed: 3836 if (sk != NULL) 3837 uma_zfree(V_pf_state_key_z, sk); 3838 if (nk != NULL) 3839 uma_zfree(V_pf_state_key_z, nk); 3840 3841 if (sn != NULL) { 3842 struct pf_srchash *sh; 3843 3844 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3845 PF_HASHROW_LOCK(sh); 3846 if (--sn->states == 0 && sn->expire == 0) { 3847 pf_unlink_src_node(sn); 3848 uma_zfree(V_pf_sources_z, sn); 3849 counter_u64_add( 3850 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3851 } 3852 PF_HASHROW_UNLOCK(sh); 3853 } 3854 3855 if (nsn != sn && nsn != NULL) { 3856 struct pf_srchash *sh; 3857 3858 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3859 PF_HASHROW_LOCK(sh); 3860 if (--nsn->states == 0 && nsn->expire == 0) { 3861 pf_unlink_src_node(nsn); 3862 uma_zfree(V_pf_sources_z, nsn); 3863 counter_u64_add( 3864 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3865 } 3866 PF_HASHROW_UNLOCK(sh); 3867 } 3868 3869 return (PF_DROP); 3870 } 3871 3872 static int 3873 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3874 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3875 struct pf_ruleset **rsm) 3876 { 3877 struct pf_rule *r, *a = NULL; 3878 struct pf_ruleset *ruleset = NULL; 3879 sa_family_t af = pd->af; 3880 u_short reason; 3881 int tag = -1; 3882 int asd = 0; 3883 int match = 0; 3884 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3885 3886 PF_RULES_RASSERT(); 3887 3888 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3889 while (r != NULL) { 3890 r->evaluations++; 3891 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3892 r = r->skip[PF_SKIP_IFP].ptr; 3893 else if (r->direction && r->direction != direction) 3894 r = r->skip[PF_SKIP_DIR].ptr; 3895 else if (r->af && r->af != af) 3896 r = r->skip[PF_SKIP_AF].ptr; 3897 else if (r->proto && r->proto != pd->proto) 3898 r = r->skip[PF_SKIP_PROTO].ptr; 3899 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3900 r->src.neg, kif, M_GETFIB(m))) 3901 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3902 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3903 r->dst.neg, NULL, M_GETFIB(m))) 3904 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3905 else if (r->tos && !(r->tos == pd->tos)) 3906 r = TAILQ_NEXT(r, entries); 3907 else if (r->os_fingerprint != PF_OSFP_ANY) 3908 r = TAILQ_NEXT(r, entries); 3909 else if (pd->proto == IPPROTO_UDP && 3910 (r->src.port_op || r->dst.port_op)) 3911 r = TAILQ_NEXT(r, entries); 3912 else if (pd->proto == IPPROTO_TCP && 3913 (r->src.port_op || r->dst.port_op || r->flagset)) 3914 r = TAILQ_NEXT(r, entries); 3915 else if ((pd->proto == IPPROTO_ICMP || 3916 pd->proto == IPPROTO_ICMPV6) && 3917 (r->type || r->code)) 3918 r = TAILQ_NEXT(r, entries); 3919 else if (r->prio && 3920 !pf_match_ieee8021q_pcp(r->prio, m)) 3921 r = TAILQ_NEXT(r, entries); 3922 else if (r->prob && r->prob <= 3923 (arc4random() % (UINT_MAX - 1) + 1)) 3924 r = TAILQ_NEXT(r, entries); 3925 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3926 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3927 r = TAILQ_NEXT(r, entries); 3928 else { 3929 if (r->anchor == NULL) { 3930 match = 1; 3931 *rm = r; 3932 *am = a; 3933 *rsm = ruleset; 3934 if ((*rm)->quick) 3935 break; 3936 r = TAILQ_NEXT(r, entries); 3937 } else 3938 pf_step_into_anchor(anchor_stack, &asd, 3939 &ruleset, PF_RULESET_FILTER, &r, &a, 3940 &match); 3941 } 3942 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3943 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3944 break; 3945 } 3946 r = *rm; 3947 a = *am; 3948 ruleset = *rsm; 3949 3950 REASON_SET(&reason, PFRES_MATCH); 3951 3952 if (r->log) 3953 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3954 1); 3955 3956 if (r->action != PF_PASS) 3957 return (PF_DROP); 3958 3959 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3960 REASON_SET(&reason, PFRES_MEMORY); 3961 return (PF_DROP); 3962 } 3963 3964 return (PF_PASS); 3965 } 3966 3967 static int 3968 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3969 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3970 struct pf_pdesc *pd, u_short *reason, int *copyback) 3971 { 3972 struct tcphdr *th = pd->hdr.tcp; 3973 u_int16_t win = ntohs(th->th_win); 3974 u_int32_t ack, end, seq, orig_seq; 3975 u_int8_t sws, dws; 3976 int ackskew; 3977 3978 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3979 sws = src->wscale & PF_WSCALE_MASK; 3980 dws = dst->wscale & PF_WSCALE_MASK; 3981 } else 3982 sws = dws = 0; 3983 3984 /* 3985 * Sequence tracking algorithm from Guido van Rooij's paper: 3986 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3987 * tcp_filtering.ps 3988 */ 3989 3990 orig_seq = seq = ntohl(th->th_seq); 3991 if (src->seqlo == 0) { 3992 /* First packet from this end. Set its state */ 3993 3994 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3995 src->scrub == NULL) { 3996 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3997 REASON_SET(reason, PFRES_MEMORY); 3998 return (PF_DROP); 3999 } 4000 } 4001 4002 /* Deferred generation of sequence number modulator */ 4003 if (dst->seqdiff && !src->seqdiff) { 4004 /* use random iss for the TCP server */ 4005 while ((src->seqdiff = arc4random() - seq) == 0) 4006 ; 4007 ack = ntohl(th->th_ack) - dst->seqdiff; 4008 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4009 src->seqdiff), 0); 4010 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4011 *copyback = 1; 4012 } else { 4013 ack = ntohl(th->th_ack); 4014 } 4015 4016 end = seq + pd->p_len; 4017 if (th->th_flags & TH_SYN) { 4018 end++; 4019 if (dst->wscale & PF_WSCALE_FLAG) { 4020 src->wscale = pf_get_wscale(m, off, th->th_off, 4021 pd->af); 4022 if (src->wscale & PF_WSCALE_FLAG) { 4023 /* Remove scale factor from initial 4024 * window */ 4025 sws = src->wscale & PF_WSCALE_MASK; 4026 win = ((u_int32_t)win + (1 << sws) - 1) 4027 >> sws; 4028 dws = dst->wscale & PF_WSCALE_MASK; 4029 } else { 4030 /* fixup other window */ 4031 dst->max_win <<= dst->wscale & 4032 PF_WSCALE_MASK; 4033 /* in case of a retrans SYN|ACK */ 4034 dst->wscale = 0; 4035 } 4036 } 4037 } 4038 if (th->th_flags & TH_FIN) 4039 end++; 4040 4041 src->seqlo = seq; 4042 if (src->state < TCPS_SYN_SENT) 4043 src->state = TCPS_SYN_SENT; 4044 4045 /* 4046 * May need to slide the window (seqhi may have been set by 4047 * the crappy stack check or if we picked up the connection 4048 * after establishment) 4049 */ 4050 if (src->seqhi == 1 || 4051 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4052 src->seqhi = end + MAX(1, dst->max_win << dws); 4053 if (win > src->max_win) 4054 src->max_win = win; 4055 4056 } else { 4057 ack = ntohl(th->th_ack) - dst->seqdiff; 4058 if (src->seqdiff) { 4059 /* Modulate sequence numbers */ 4060 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4061 src->seqdiff), 0); 4062 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4063 *copyback = 1; 4064 } 4065 end = seq + pd->p_len; 4066 if (th->th_flags & TH_SYN) 4067 end++; 4068 if (th->th_flags & TH_FIN) 4069 end++; 4070 } 4071 4072 if ((th->th_flags & TH_ACK) == 0) { 4073 /* Let it pass through the ack skew check */ 4074 ack = dst->seqlo; 4075 } else if ((ack == 0 && 4076 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4077 /* broken tcp stacks do not set ack */ 4078 (dst->state < TCPS_SYN_SENT)) { 4079 /* 4080 * Many stacks (ours included) will set the ACK number in an 4081 * FIN|ACK if the SYN times out -- no sequence to ACK. 4082 */ 4083 ack = dst->seqlo; 4084 } 4085 4086 if (seq == end) { 4087 /* Ease sequencing restrictions on no data packets */ 4088 seq = src->seqlo; 4089 end = seq; 4090 } 4091 4092 ackskew = dst->seqlo - ack; 4093 4094 4095 /* 4096 * Need to demodulate the sequence numbers in any TCP SACK options 4097 * (Selective ACK). We could optionally validate the SACK values 4098 * against the current ACK window, either forwards or backwards, but 4099 * I'm not confident that SACK has been implemented properly 4100 * everywhere. It wouldn't surprise me if several stacks accidentally 4101 * SACK too far backwards of previously ACKed data. There really aren't 4102 * any security implications of bad SACKing unless the target stack 4103 * doesn't validate the option length correctly. Someone trying to 4104 * spoof into a TCP connection won't bother blindly sending SACK 4105 * options anyway. 4106 */ 4107 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4108 if (pf_modulate_sack(m, off, pd, th, dst)) 4109 *copyback = 1; 4110 } 4111 4112 4113 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4114 if (SEQ_GEQ(src->seqhi, end) && 4115 /* Last octet inside other's window space */ 4116 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4117 /* Retrans: not more than one window back */ 4118 (ackskew >= -MAXACKWINDOW) && 4119 /* Acking not more than one reassembled fragment backwards */ 4120 (ackskew <= (MAXACKWINDOW << sws)) && 4121 /* Acking not more than one window forward */ 4122 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4123 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4124 (pd->flags & PFDESC_IP_REAS) == 0)) { 4125 /* Require an exact/+1 sequence match on resets when possible */ 4126 4127 if (dst->scrub || src->scrub) { 4128 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4129 *state, src, dst, copyback)) 4130 return (PF_DROP); 4131 } 4132 4133 /* update max window */ 4134 if (src->max_win < win) 4135 src->max_win = win; 4136 /* synchronize sequencing */ 4137 if (SEQ_GT(end, src->seqlo)) 4138 src->seqlo = end; 4139 /* slide the window of what the other end can send */ 4140 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4141 dst->seqhi = ack + MAX((win << sws), 1); 4142 4143 4144 /* update states */ 4145 if (th->th_flags & TH_SYN) 4146 if (src->state < TCPS_SYN_SENT) 4147 src->state = TCPS_SYN_SENT; 4148 if (th->th_flags & TH_FIN) 4149 if (src->state < TCPS_CLOSING) 4150 src->state = TCPS_CLOSING; 4151 if (th->th_flags & TH_ACK) { 4152 if (dst->state == TCPS_SYN_SENT) { 4153 dst->state = TCPS_ESTABLISHED; 4154 if (src->state == TCPS_ESTABLISHED && 4155 (*state)->src_node != NULL && 4156 pf_src_connlimit(state)) { 4157 REASON_SET(reason, PFRES_SRCLIMIT); 4158 return (PF_DROP); 4159 } 4160 } else if (dst->state == TCPS_CLOSING) 4161 dst->state = TCPS_FIN_WAIT_2; 4162 } 4163 if (th->th_flags & TH_RST) 4164 src->state = dst->state = TCPS_TIME_WAIT; 4165 4166 /* update expire time */ 4167 (*state)->expire = time_uptime; 4168 if (src->state >= TCPS_FIN_WAIT_2 && 4169 dst->state >= TCPS_FIN_WAIT_2) 4170 (*state)->timeout = PFTM_TCP_CLOSED; 4171 else if (src->state >= TCPS_CLOSING && 4172 dst->state >= TCPS_CLOSING) 4173 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4174 else if (src->state < TCPS_ESTABLISHED || 4175 dst->state < TCPS_ESTABLISHED) 4176 (*state)->timeout = PFTM_TCP_OPENING; 4177 else if (src->state >= TCPS_CLOSING || 4178 dst->state >= TCPS_CLOSING) 4179 (*state)->timeout = PFTM_TCP_CLOSING; 4180 else 4181 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4182 4183 /* Fall through to PASS packet */ 4184 4185 } else if ((dst->state < TCPS_SYN_SENT || 4186 dst->state >= TCPS_FIN_WAIT_2 || 4187 src->state >= TCPS_FIN_WAIT_2) && 4188 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4189 /* Within a window forward of the originating packet */ 4190 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4191 /* Within a window backward of the originating packet */ 4192 4193 /* 4194 * This currently handles three situations: 4195 * 1) Stupid stacks will shotgun SYNs before their peer 4196 * replies. 4197 * 2) When PF catches an already established stream (the 4198 * firewall rebooted, the state table was flushed, routes 4199 * changed...) 4200 * 3) Packets get funky immediately after the connection 4201 * closes (this should catch Solaris spurious ACK|FINs 4202 * that web servers like to spew after a close) 4203 * 4204 * This must be a little more careful than the above code 4205 * since packet floods will also be caught here. We don't 4206 * update the TTL here to mitigate the damage of a packet 4207 * flood and so the same code can handle awkward establishment 4208 * and a loosened connection close. 4209 * In the establishment case, a correct peer response will 4210 * validate the connection, go through the normal state code 4211 * and keep updating the state TTL. 4212 */ 4213 4214 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4215 printf("pf: loose state match: "); 4216 pf_print_state(*state); 4217 pf_print_flags(th->th_flags); 4218 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4219 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4220 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4221 (unsigned long long)(*state)->packets[1], 4222 pd->dir == PF_IN ? "in" : "out", 4223 pd->dir == (*state)->direction ? "fwd" : "rev"); 4224 } 4225 4226 if (dst->scrub || src->scrub) { 4227 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4228 *state, src, dst, copyback)) 4229 return (PF_DROP); 4230 } 4231 4232 /* update max window */ 4233 if (src->max_win < win) 4234 src->max_win = win; 4235 /* synchronize sequencing */ 4236 if (SEQ_GT(end, src->seqlo)) 4237 src->seqlo = end; 4238 /* slide the window of what the other end can send */ 4239 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4240 dst->seqhi = ack + MAX((win << sws), 1); 4241 4242 /* 4243 * Cannot set dst->seqhi here since this could be a shotgunned 4244 * SYN and not an already established connection. 4245 */ 4246 4247 if (th->th_flags & TH_FIN) 4248 if (src->state < TCPS_CLOSING) 4249 src->state = TCPS_CLOSING; 4250 if (th->th_flags & TH_RST) 4251 src->state = dst->state = TCPS_TIME_WAIT; 4252 4253 /* Fall through to PASS packet */ 4254 4255 } else { 4256 if ((*state)->dst.state == TCPS_SYN_SENT && 4257 (*state)->src.state == TCPS_SYN_SENT) { 4258 /* Send RST for state mismatches during handshake */ 4259 if (!(th->th_flags & TH_RST)) 4260 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4261 pd->dst, pd->src, th->th_dport, 4262 th->th_sport, ntohl(th->th_ack), 0, 4263 TH_RST, 0, 0, 4264 (*state)->rule.ptr->return_ttl, 1, 0, 4265 kif->pfik_ifp); 4266 src->seqlo = 0; 4267 src->seqhi = 1; 4268 src->max_win = 1; 4269 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4270 printf("pf: BAD state: "); 4271 pf_print_state(*state); 4272 pf_print_flags(th->th_flags); 4273 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4274 "pkts=%llu:%llu dir=%s,%s\n", 4275 seq, orig_seq, ack, pd->p_len, ackskew, 4276 (unsigned long long)(*state)->packets[0], 4277 (unsigned long long)(*state)->packets[1], 4278 pd->dir == PF_IN ? "in" : "out", 4279 pd->dir == (*state)->direction ? "fwd" : "rev"); 4280 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4281 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4282 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4283 ' ': '2', 4284 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4285 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4286 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4287 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4288 } 4289 REASON_SET(reason, PFRES_BADSTATE); 4290 return (PF_DROP); 4291 } 4292 4293 return (PF_PASS); 4294 } 4295 4296 static int 4297 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4298 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4299 { 4300 struct tcphdr *th = pd->hdr.tcp; 4301 4302 if (th->th_flags & TH_SYN) 4303 if (src->state < TCPS_SYN_SENT) 4304 src->state = TCPS_SYN_SENT; 4305 if (th->th_flags & TH_FIN) 4306 if (src->state < TCPS_CLOSING) 4307 src->state = TCPS_CLOSING; 4308 if (th->th_flags & TH_ACK) { 4309 if (dst->state == TCPS_SYN_SENT) { 4310 dst->state = TCPS_ESTABLISHED; 4311 if (src->state == TCPS_ESTABLISHED && 4312 (*state)->src_node != NULL && 4313 pf_src_connlimit(state)) { 4314 REASON_SET(reason, PFRES_SRCLIMIT); 4315 return (PF_DROP); 4316 } 4317 } else if (dst->state == TCPS_CLOSING) { 4318 dst->state = TCPS_FIN_WAIT_2; 4319 } else if (src->state == TCPS_SYN_SENT && 4320 dst->state < TCPS_SYN_SENT) { 4321 /* 4322 * Handle a special sloppy case where we only see one 4323 * half of the connection. If there is a ACK after 4324 * the initial SYN without ever seeing a packet from 4325 * the destination, set the connection to established. 4326 */ 4327 dst->state = src->state = TCPS_ESTABLISHED; 4328 if ((*state)->src_node != NULL && 4329 pf_src_connlimit(state)) { 4330 REASON_SET(reason, PFRES_SRCLIMIT); 4331 return (PF_DROP); 4332 } 4333 } else if (src->state == TCPS_CLOSING && 4334 dst->state == TCPS_ESTABLISHED && 4335 dst->seqlo == 0) { 4336 /* 4337 * Handle the closing of half connections where we 4338 * don't see the full bidirectional FIN/ACK+ACK 4339 * handshake. 4340 */ 4341 dst->state = TCPS_CLOSING; 4342 } 4343 } 4344 if (th->th_flags & TH_RST) 4345 src->state = dst->state = TCPS_TIME_WAIT; 4346 4347 /* update expire time */ 4348 (*state)->expire = time_uptime; 4349 if (src->state >= TCPS_FIN_WAIT_2 && 4350 dst->state >= TCPS_FIN_WAIT_2) 4351 (*state)->timeout = PFTM_TCP_CLOSED; 4352 else if (src->state >= TCPS_CLOSING && 4353 dst->state >= TCPS_CLOSING) 4354 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4355 else if (src->state < TCPS_ESTABLISHED || 4356 dst->state < TCPS_ESTABLISHED) 4357 (*state)->timeout = PFTM_TCP_OPENING; 4358 else if (src->state >= TCPS_CLOSING || 4359 dst->state >= TCPS_CLOSING) 4360 (*state)->timeout = PFTM_TCP_CLOSING; 4361 else 4362 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4363 4364 return (PF_PASS); 4365 } 4366 4367 static int 4368 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4369 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4370 u_short *reason) 4371 { 4372 struct pf_state_key_cmp key; 4373 struct tcphdr *th = pd->hdr.tcp; 4374 int copyback = 0; 4375 struct pf_state_peer *src, *dst; 4376 struct pf_state_key *sk; 4377 4378 bzero(&key, sizeof(key)); 4379 key.af = pd->af; 4380 key.proto = IPPROTO_TCP; 4381 if (direction == PF_IN) { /* wire side, straight */ 4382 PF_ACPY(&key.addr[0], pd->src, key.af); 4383 PF_ACPY(&key.addr[1], pd->dst, key.af); 4384 key.port[0] = th->th_sport; 4385 key.port[1] = th->th_dport; 4386 } else { /* stack side, reverse */ 4387 PF_ACPY(&key.addr[1], pd->src, key.af); 4388 PF_ACPY(&key.addr[0], pd->dst, key.af); 4389 key.port[1] = th->th_sport; 4390 key.port[0] = th->th_dport; 4391 } 4392 4393 STATE_LOOKUP(kif, &key, direction, *state, pd); 4394 4395 if (direction == (*state)->direction) { 4396 src = &(*state)->src; 4397 dst = &(*state)->dst; 4398 } else { 4399 src = &(*state)->dst; 4400 dst = &(*state)->src; 4401 } 4402 4403 sk = (*state)->key[pd->didx]; 4404 4405 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4406 if (direction != (*state)->direction) { 4407 REASON_SET(reason, PFRES_SYNPROXY); 4408 return (PF_SYNPROXY_DROP); 4409 } 4410 if (th->th_flags & TH_SYN) { 4411 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4412 REASON_SET(reason, PFRES_SYNPROXY); 4413 return (PF_DROP); 4414 } 4415 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4416 pd->src, th->th_dport, th->th_sport, 4417 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4418 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4419 REASON_SET(reason, PFRES_SYNPROXY); 4420 return (PF_SYNPROXY_DROP); 4421 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 4422 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4423 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4424 REASON_SET(reason, PFRES_SYNPROXY); 4425 return (PF_DROP); 4426 } else if ((*state)->src_node != NULL && 4427 pf_src_connlimit(state)) { 4428 REASON_SET(reason, PFRES_SRCLIMIT); 4429 return (PF_DROP); 4430 } else 4431 (*state)->src.state = PF_TCPS_PROXY_DST; 4432 } 4433 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4434 if (direction == (*state)->direction) { 4435 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4436 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4437 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4438 REASON_SET(reason, PFRES_SYNPROXY); 4439 return (PF_DROP); 4440 } 4441 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4442 if ((*state)->dst.seqhi == 1) 4443 (*state)->dst.seqhi = htonl(arc4random()); 4444 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4445 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4446 sk->port[pd->sidx], sk->port[pd->didx], 4447 (*state)->dst.seqhi, 0, TH_SYN, 0, 4448 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4449 REASON_SET(reason, PFRES_SYNPROXY); 4450 return (PF_SYNPROXY_DROP); 4451 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4452 (TH_SYN|TH_ACK)) || 4453 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4454 REASON_SET(reason, PFRES_SYNPROXY); 4455 return (PF_DROP); 4456 } else { 4457 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4458 (*state)->dst.seqlo = ntohl(th->th_seq); 4459 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4460 pd->src, th->th_dport, th->th_sport, 4461 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4462 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4463 (*state)->tag, NULL); 4464 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4465 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4466 sk->port[pd->sidx], sk->port[pd->didx], 4467 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4468 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4469 (*state)->src.seqdiff = (*state)->dst.seqhi - 4470 (*state)->src.seqlo; 4471 (*state)->dst.seqdiff = (*state)->src.seqhi - 4472 (*state)->dst.seqlo; 4473 (*state)->src.seqhi = (*state)->src.seqlo + 4474 (*state)->dst.max_win; 4475 (*state)->dst.seqhi = (*state)->dst.seqlo + 4476 (*state)->src.max_win; 4477 (*state)->src.wscale = (*state)->dst.wscale = 0; 4478 (*state)->src.state = (*state)->dst.state = 4479 TCPS_ESTABLISHED; 4480 REASON_SET(reason, PFRES_SYNPROXY); 4481 return (PF_SYNPROXY_DROP); 4482 } 4483 } 4484 4485 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4486 dst->state >= TCPS_FIN_WAIT_2 && 4487 src->state >= TCPS_FIN_WAIT_2) { 4488 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4489 printf("pf: state reuse "); 4490 pf_print_state(*state); 4491 pf_print_flags(th->th_flags); 4492 printf("\n"); 4493 } 4494 /* XXX make sure it's the same direction ?? */ 4495 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4496 pf_unlink_state(*state, PF_ENTER_LOCKED); 4497 *state = NULL; 4498 return (PF_DROP); 4499 } 4500 4501 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4502 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4503 return (PF_DROP); 4504 } else { 4505 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4506 ©back) == PF_DROP) 4507 return (PF_DROP); 4508 } 4509 4510 /* translate source/destination address, if necessary */ 4511 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4512 struct pf_state_key *nk = (*state)->key[pd->didx]; 4513 4514 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4515 nk->port[pd->sidx] != th->th_sport) 4516 pf_change_ap(m, pd->src, &th->th_sport, 4517 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4518 nk->port[pd->sidx], 0, pd->af); 4519 4520 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4521 nk->port[pd->didx] != th->th_dport) 4522 pf_change_ap(m, pd->dst, &th->th_dport, 4523 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4524 nk->port[pd->didx], 0, pd->af); 4525 copyback = 1; 4526 } 4527 4528 /* Copyback sequence modulation or stateful scrub changes if needed */ 4529 if (copyback) 4530 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4531 4532 return (PF_PASS); 4533 } 4534 4535 static int 4536 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4537 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4538 { 4539 struct pf_state_peer *src, *dst; 4540 struct pf_state_key_cmp key; 4541 struct udphdr *uh = pd->hdr.udp; 4542 4543 bzero(&key, sizeof(key)); 4544 key.af = pd->af; 4545 key.proto = IPPROTO_UDP; 4546 if (direction == PF_IN) { /* wire side, straight */ 4547 PF_ACPY(&key.addr[0], pd->src, key.af); 4548 PF_ACPY(&key.addr[1], pd->dst, key.af); 4549 key.port[0] = uh->uh_sport; 4550 key.port[1] = uh->uh_dport; 4551 } else { /* stack side, reverse */ 4552 PF_ACPY(&key.addr[1], pd->src, key.af); 4553 PF_ACPY(&key.addr[0], pd->dst, key.af); 4554 key.port[1] = uh->uh_sport; 4555 key.port[0] = uh->uh_dport; 4556 } 4557 4558 STATE_LOOKUP(kif, &key, direction, *state, pd); 4559 4560 if (direction == (*state)->direction) { 4561 src = &(*state)->src; 4562 dst = &(*state)->dst; 4563 } else { 4564 src = &(*state)->dst; 4565 dst = &(*state)->src; 4566 } 4567 4568 /* update states */ 4569 if (src->state < PFUDPS_SINGLE) 4570 src->state = PFUDPS_SINGLE; 4571 if (dst->state == PFUDPS_SINGLE) 4572 dst->state = PFUDPS_MULTIPLE; 4573 4574 /* update expire time */ 4575 (*state)->expire = time_uptime; 4576 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4577 (*state)->timeout = PFTM_UDP_MULTIPLE; 4578 else 4579 (*state)->timeout = PFTM_UDP_SINGLE; 4580 4581 /* translate source/destination address, if necessary */ 4582 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4583 struct pf_state_key *nk = (*state)->key[pd->didx]; 4584 4585 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4586 nk->port[pd->sidx] != uh->uh_sport) 4587 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4588 &uh->uh_sum, &nk->addr[pd->sidx], 4589 nk->port[pd->sidx], 1, pd->af); 4590 4591 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4592 nk->port[pd->didx] != uh->uh_dport) 4593 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4594 &uh->uh_sum, &nk->addr[pd->didx], 4595 nk->port[pd->didx], 1, pd->af); 4596 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4597 } 4598 4599 return (PF_PASS); 4600 } 4601 4602 static int 4603 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4604 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4605 { 4606 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4607 u_int16_t icmpid = 0, *icmpsum; 4608 u_int8_t icmptype, icmpcode; 4609 int state_icmp = 0; 4610 struct pf_state_key_cmp key; 4611 4612 bzero(&key, sizeof(key)); 4613 switch (pd->proto) { 4614 #ifdef INET 4615 case IPPROTO_ICMP: 4616 icmptype = pd->hdr.icmp->icmp_type; 4617 icmpcode = pd->hdr.icmp->icmp_code; 4618 icmpid = pd->hdr.icmp->icmp_id; 4619 icmpsum = &pd->hdr.icmp->icmp_cksum; 4620 4621 if (icmptype == ICMP_UNREACH || 4622 icmptype == ICMP_SOURCEQUENCH || 4623 icmptype == ICMP_REDIRECT || 4624 icmptype == ICMP_TIMXCEED || 4625 icmptype == ICMP_PARAMPROB) 4626 state_icmp++; 4627 break; 4628 #endif /* INET */ 4629 #ifdef INET6 4630 case IPPROTO_ICMPV6: 4631 icmptype = pd->hdr.icmp6->icmp6_type; 4632 icmpcode = pd->hdr.icmp6->icmp6_code; 4633 icmpid = pd->hdr.icmp6->icmp6_id; 4634 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4635 4636 if (icmptype == ICMP6_DST_UNREACH || 4637 icmptype == ICMP6_PACKET_TOO_BIG || 4638 icmptype == ICMP6_TIME_EXCEEDED || 4639 icmptype == ICMP6_PARAM_PROB) 4640 state_icmp++; 4641 break; 4642 #endif /* INET6 */ 4643 } 4644 4645 if (!state_icmp) { 4646 4647 /* 4648 * ICMP query/reply message not related to a TCP/UDP packet. 4649 * Search for an ICMP state. 4650 */ 4651 key.af = pd->af; 4652 key.proto = pd->proto; 4653 key.port[0] = key.port[1] = icmpid; 4654 if (direction == PF_IN) { /* wire side, straight */ 4655 PF_ACPY(&key.addr[0], pd->src, key.af); 4656 PF_ACPY(&key.addr[1], pd->dst, key.af); 4657 } else { /* stack side, reverse */ 4658 PF_ACPY(&key.addr[1], pd->src, key.af); 4659 PF_ACPY(&key.addr[0], pd->dst, key.af); 4660 } 4661 4662 STATE_LOOKUP(kif, &key, direction, *state, pd); 4663 4664 (*state)->expire = time_uptime; 4665 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4666 4667 /* translate source/destination address, if necessary */ 4668 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4669 struct pf_state_key *nk = (*state)->key[pd->didx]; 4670 4671 switch (pd->af) { 4672 #ifdef INET 4673 case AF_INET: 4674 if (PF_ANEQ(pd->src, 4675 &nk->addr[pd->sidx], AF_INET)) 4676 pf_change_a(&saddr->v4.s_addr, 4677 pd->ip_sum, 4678 nk->addr[pd->sidx].v4.s_addr, 0); 4679 4680 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4681 AF_INET)) 4682 pf_change_a(&daddr->v4.s_addr, 4683 pd->ip_sum, 4684 nk->addr[pd->didx].v4.s_addr, 0); 4685 4686 if (nk->port[0] != 4687 pd->hdr.icmp->icmp_id) { 4688 pd->hdr.icmp->icmp_cksum = 4689 pf_cksum_fixup( 4690 pd->hdr.icmp->icmp_cksum, icmpid, 4691 nk->port[pd->sidx], 0); 4692 pd->hdr.icmp->icmp_id = 4693 nk->port[pd->sidx]; 4694 } 4695 4696 m_copyback(m, off, ICMP_MINLEN, 4697 (caddr_t )pd->hdr.icmp); 4698 break; 4699 #endif /* INET */ 4700 #ifdef INET6 4701 case AF_INET6: 4702 if (PF_ANEQ(pd->src, 4703 &nk->addr[pd->sidx], AF_INET6)) 4704 pf_change_a6(saddr, 4705 &pd->hdr.icmp6->icmp6_cksum, 4706 &nk->addr[pd->sidx], 0); 4707 4708 if (PF_ANEQ(pd->dst, 4709 &nk->addr[pd->didx], AF_INET6)) 4710 pf_change_a6(daddr, 4711 &pd->hdr.icmp6->icmp6_cksum, 4712 &nk->addr[pd->didx], 0); 4713 4714 m_copyback(m, off, sizeof(struct icmp6_hdr), 4715 (caddr_t )pd->hdr.icmp6); 4716 break; 4717 #endif /* INET6 */ 4718 } 4719 } 4720 return (PF_PASS); 4721 4722 } else { 4723 /* 4724 * ICMP error message in response to a TCP/UDP packet. 4725 * Extract the inner TCP/UDP header and search for that state. 4726 */ 4727 4728 struct pf_pdesc pd2; 4729 bzero(&pd2, sizeof pd2); 4730 #ifdef INET 4731 struct ip h2; 4732 #endif /* INET */ 4733 #ifdef INET6 4734 struct ip6_hdr h2_6; 4735 int terminal = 0; 4736 #endif /* INET6 */ 4737 int ipoff2 = 0; 4738 int off2 = 0; 4739 4740 pd2.af = pd->af; 4741 /* Payload packet is from the opposite direction. */ 4742 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4743 pd2.didx = (direction == PF_IN) ? 0 : 1; 4744 switch (pd->af) { 4745 #ifdef INET 4746 case AF_INET: 4747 /* offset of h2 in mbuf chain */ 4748 ipoff2 = off + ICMP_MINLEN; 4749 4750 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4751 NULL, reason, pd2.af)) { 4752 DPFPRINTF(PF_DEBUG_MISC, 4753 ("pf: ICMP error message too short " 4754 "(ip)\n")); 4755 return (PF_DROP); 4756 } 4757 /* 4758 * ICMP error messages don't refer to non-first 4759 * fragments 4760 */ 4761 if (h2.ip_off & htons(IP_OFFMASK)) { 4762 REASON_SET(reason, PFRES_FRAG); 4763 return (PF_DROP); 4764 } 4765 4766 /* offset of protocol header that follows h2 */ 4767 off2 = ipoff2 + (h2.ip_hl << 2); 4768 4769 pd2.proto = h2.ip_p; 4770 pd2.src = (struct pf_addr *)&h2.ip_src; 4771 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4772 pd2.ip_sum = &h2.ip_sum; 4773 break; 4774 #endif /* INET */ 4775 #ifdef INET6 4776 case AF_INET6: 4777 ipoff2 = off + sizeof(struct icmp6_hdr); 4778 4779 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4780 NULL, reason, pd2.af)) { 4781 DPFPRINTF(PF_DEBUG_MISC, 4782 ("pf: ICMP error message too short " 4783 "(ip6)\n")); 4784 return (PF_DROP); 4785 } 4786 pd2.proto = h2_6.ip6_nxt; 4787 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4788 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4789 pd2.ip_sum = NULL; 4790 off2 = ipoff2 + sizeof(h2_6); 4791 do { 4792 switch (pd2.proto) { 4793 case IPPROTO_FRAGMENT: 4794 /* 4795 * ICMPv6 error messages for 4796 * non-first fragments 4797 */ 4798 REASON_SET(reason, PFRES_FRAG); 4799 return (PF_DROP); 4800 case IPPROTO_AH: 4801 case IPPROTO_HOPOPTS: 4802 case IPPROTO_ROUTING: 4803 case IPPROTO_DSTOPTS: { 4804 /* get next header and header length */ 4805 struct ip6_ext opt6; 4806 4807 if (!pf_pull_hdr(m, off2, &opt6, 4808 sizeof(opt6), NULL, reason, 4809 pd2.af)) { 4810 DPFPRINTF(PF_DEBUG_MISC, 4811 ("pf: ICMPv6 short opt\n")); 4812 return (PF_DROP); 4813 } 4814 if (pd2.proto == IPPROTO_AH) 4815 off2 += (opt6.ip6e_len + 2) * 4; 4816 else 4817 off2 += (opt6.ip6e_len + 1) * 8; 4818 pd2.proto = opt6.ip6e_nxt; 4819 /* goto the next header */ 4820 break; 4821 } 4822 default: 4823 terminal++; 4824 break; 4825 } 4826 } while (!terminal); 4827 break; 4828 #endif /* INET6 */ 4829 } 4830 4831 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 4832 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4833 printf("pf: BAD ICMP %d:%d outer dst: ", 4834 icmptype, icmpcode); 4835 pf_print_host(pd->src, 0, pd->af); 4836 printf(" -> "); 4837 pf_print_host(pd->dst, 0, pd->af); 4838 printf(" inner src: "); 4839 pf_print_host(pd2.src, 0, pd2.af); 4840 printf(" -> "); 4841 pf_print_host(pd2.dst, 0, pd2.af); 4842 printf("\n"); 4843 } 4844 REASON_SET(reason, PFRES_BADSTATE); 4845 return (PF_DROP); 4846 } 4847 4848 switch (pd2.proto) { 4849 case IPPROTO_TCP: { 4850 struct tcphdr th; 4851 u_int32_t seq; 4852 struct pf_state_peer *src, *dst; 4853 u_int8_t dws; 4854 int copyback = 0; 4855 4856 /* 4857 * Only the first 8 bytes of the TCP header can be 4858 * expected. Don't access any TCP header fields after 4859 * th_seq, an ackskew test is not possible. 4860 */ 4861 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4862 pd2.af)) { 4863 DPFPRINTF(PF_DEBUG_MISC, 4864 ("pf: ICMP error message too short " 4865 "(tcp)\n")); 4866 return (PF_DROP); 4867 } 4868 4869 key.af = pd2.af; 4870 key.proto = IPPROTO_TCP; 4871 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4872 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4873 key.port[pd2.sidx] = th.th_sport; 4874 key.port[pd2.didx] = th.th_dport; 4875 4876 STATE_LOOKUP(kif, &key, direction, *state, pd); 4877 4878 if (direction == (*state)->direction) { 4879 src = &(*state)->dst; 4880 dst = &(*state)->src; 4881 } else { 4882 src = &(*state)->src; 4883 dst = &(*state)->dst; 4884 } 4885 4886 if (src->wscale && dst->wscale) 4887 dws = dst->wscale & PF_WSCALE_MASK; 4888 else 4889 dws = 0; 4890 4891 /* Demodulate sequence number */ 4892 seq = ntohl(th.th_seq) - src->seqdiff; 4893 if (src->seqdiff) { 4894 pf_change_a(&th.th_seq, icmpsum, 4895 htonl(seq), 0); 4896 copyback = 1; 4897 } 4898 4899 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4900 (!SEQ_GEQ(src->seqhi, seq) || 4901 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4902 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4903 printf("pf: BAD ICMP %d:%d ", 4904 icmptype, icmpcode); 4905 pf_print_host(pd->src, 0, pd->af); 4906 printf(" -> "); 4907 pf_print_host(pd->dst, 0, pd->af); 4908 printf(" state: "); 4909 pf_print_state(*state); 4910 printf(" seq=%u\n", seq); 4911 } 4912 REASON_SET(reason, PFRES_BADSTATE); 4913 return (PF_DROP); 4914 } else { 4915 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4916 printf("pf: OK ICMP %d:%d ", 4917 icmptype, icmpcode); 4918 pf_print_host(pd->src, 0, pd->af); 4919 printf(" -> "); 4920 pf_print_host(pd->dst, 0, pd->af); 4921 printf(" state: "); 4922 pf_print_state(*state); 4923 printf(" seq=%u\n", seq); 4924 } 4925 } 4926 4927 /* translate source/destination address, if necessary */ 4928 if ((*state)->key[PF_SK_WIRE] != 4929 (*state)->key[PF_SK_STACK]) { 4930 struct pf_state_key *nk = 4931 (*state)->key[pd->didx]; 4932 4933 if (PF_ANEQ(pd2.src, 4934 &nk->addr[pd2.sidx], pd2.af) || 4935 nk->port[pd2.sidx] != th.th_sport) 4936 pf_change_icmp(pd2.src, &th.th_sport, 4937 daddr, &nk->addr[pd2.sidx], 4938 nk->port[pd2.sidx], NULL, 4939 pd2.ip_sum, icmpsum, 4940 pd->ip_sum, 0, pd2.af); 4941 4942 if (PF_ANEQ(pd2.dst, 4943 &nk->addr[pd2.didx], pd2.af) || 4944 nk->port[pd2.didx] != th.th_dport) 4945 pf_change_icmp(pd2.dst, &th.th_dport, 4946 saddr, &nk->addr[pd2.didx], 4947 nk->port[pd2.didx], NULL, 4948 pd2.ip_sum, icmpsum, 4949 pd->ip_sum, 0, pd2.af); 4950 copyback = 1; 4951 } 4952 4953 if (copyback) { 4954 switch (pd2.af) { 4955 #ifdef INET 4956 case AF_INET: 4957 m_copyback(m, off, ICMP_MINLEN, 4958 (caddr_t )pd->hdr.icmp); 4959 m_copyback(m, ipoff2, sizeof(h2), 4960 (caddr_t )&h2); 4961 break; 4962 #endif /* INET */ 4963 #ifdef INET6 4964 case AF_INET6: 4965 m_copyback(m, off, 4966 sizeof(struct icmp6_hdr), 4967 (caddr_t )pd->hdr.icmp6); 4968 m_copyback(m, ipoff2, sizeof(h2_6), 4969 (caddr_t )&h2_6); 4970 break; 4971 #endif /* INET6 */ 4972 } 4973 m_copyback(m, off2, 8, (caddr_t)&th); 4974 } 4975 4976 return (PF_PASS); 4977 break; 4978 } 4979 case IPPROTO_UDP: { 4980 struct udphdr uh; 4981 4982 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4983 NULL, reason, pd2.af)) { 4984 DPFPRINTF(PF_DEBUG_MISC, 4985 ("pf: ICMP error message too short " 4986 "(udp)\n")); 4987 return (PF_DROP); 4988 } 4989 4990 key.af = pd2.af; 4991 key.proto = IPPROTO_UDP; 4992 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4993 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4994 key.port[pd2.sidx] = uh.uh_sport; 4995 key.port[pd2.didx] = uh.uh_dport; 4996 4997 STATE_LOOKUP(kif, &key, direction, *state, pd); 4998 4999 /* translate source/destination address, if necessary */ 5000 if ((*state)->key[PF_SK_WIRE] != 5001 (*state)->key[PF_SK_STACK]) { 5002 struct pf_state_key *nk = 5003 (*state)->key[pd->didx]; 5004 5005 if (PF_ANEQ(pd2.src, 5006 &nk->addr[pd2.sidx], pd2.af) || 5007 nk->port[pd2.sidx] != uh.uh_sport) 5008 pf_change_icmp(pd2.src, &uh.uh_sport, 5009 daddr, &nk->addr[pd2.sidx], 5010 nk->port[pd2.sidx], &uh.uh_sum, 5011 pd2.ip_sum, icmpsum, 5012 pd->ip_sum, 1, pd2.af); 5013 5014 if (PF_ANEQ(pd2.dst, 5015 &nk->addr[pd2.didx], pd2.af) || 5016 nk->port[pd2.didx] != uh.uh_dport) 5017 pf_change_icmp(pd2.dst, &uh.uh_dport, 5018 saddr, &nk->addr[pd2.didx], 5019 nk->port[pd2.didx], &uh.uh_sum, 5020 pd2.ip_sum, icmpsum, 5021 pd->ip_sum, 1, pd2.af); 5022 5023 switch (pd2.af) { 5024 #ifdef INET 5025 case AF_INET: 5026 m_copyback(m, off, ICMP_MINLEN, 5027 (caddr_t )pd->hdr.icmp); 5028 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5029 break; 5030 #endif /* INET */ 5031 #ifdef INET6 5032 case AF_INET6: 5033 m_copyback(m, off, 5034 sizeof(struct icmp6_hdr), 5035 (caddr_t )pd->hdr.icmp6); 5036 m_copyback(m, ipoff2, sizeof(h2_6), 5037 (caddr_t )&h2_6); 5038 break; 5039 #endif /* INET6 */ 5040 } 5041 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 5042 } 5043 return (PF_PASS); 5044 break; 5045 } 5046 #ifdef INET 5047 case IPPROTO_ICMP: { 5048 struct icmp iih; 5049 5050 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 5051 NULL, reason, pd2.af)) { 5052 DPFPRINTF(PF_DEBUG_MISC, 5053 ("pf: ICMP error message too short i" 5054 "(icmp)\n")); 5055 return (PF_DROP); 5056 } 5057 5058 key.af = pd2.af; 5059 key.proto = IPPROTO_ICMP; 5060 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5061 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5062 key.port[0] = key.port[1] = iih.icmp_id; 5063 5064 STATE_LOOKUP(kif, &key, direction, *state, pd); 5065 5066 /* translate source/destination address, if necessary */ 5067 if ((*state)->key[PF_SK_WIRE] != 5068 (*state)->key[PF_SK_STACK]) { 5069 struct pf_state_key *nk = 5070 (*state)->key[pd->didx]; 5071 5072 if (PF_ANEQ(pd2.src, 5073 &nk->addr[pd2.sidx], pd2.af) || 5074 nk->port[pd2.sidx] != iih.icmp_id) 5075 pf_change_icmp(pd2.src, &iih.icmp_id, 5076 daddr, &nk->addr[pd2.sidx], 5077 nk->port[pd2.sidx], NULL, 5078 pd2.ip_sum, icmpsum, 5079 pd->ip_sum, 0, AF_INET); 5080 5081 if (PF_ANEQ(pd2.dst, 5082 &nk->addr[pd2.didx], pd2.af) || 5083 nk->port[pd2.didx] != iih.icmp_id) 5084 pf_change_icmp(pd2.dst, &iih.icmp_id, 5085 saddr, &nk->addr[pd2.didx], 5086 nk->port[pd2.didx], NULL, 5087 pd2.ip_sum, icmpsum, 5088 pd->ip_sum, 0, AF_INET); 5089 5090 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 5091 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5092 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5093 } 5094 return (PF_PASS); 5095 break; 5096 } 5097 #endif /* INET */ 5098 #ifdef INET6 5099 case IPPROTO_ICMPV6: { 5100 struct icmp6_hdr iih; 5101 5102 if (!pf_pull_hdr(m, off2, &iih, 5103 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5104 DPFPRINTF(PF_DEBUG_MISC, 5105 ("pf: ICMP error message too short " 5106 "(icmp6)\n")); 5107 return (PF_DROP); 5108 } 5109 5110 key.af = pd2.af; 5111 key.proto = IPPROTO_ICMPV6; 5112 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5113 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5114 key.port[0] = key.port[1] = iih.icmp6_id; 5115 5116 STATE_LOOKUP(kif, &key, direction, *state, pd); 5117 5118 /* translate source/destination address, if necessary */ 5119 if ((*state)->key[PF_SK_WIRE] != 5120 (*state)->key[PF_SK_STACK]) { 5121 struct pf_state_key *nk = 5122 (*state)->key[pd->didx]; 5123 5124 if (PF_ANEQ(pd2.src, 5125 &nk->addr[pd2.sidx], pd2.af) || 5126 nk->port[pd2.sidx] != iih.icmp6_id) 5127 pf_change_icmp(pd2.src, &iih.icmp6_id, 5128 daddr, &nk->addr[pd2.sidx], 5129 nk->port[pd2.sidx], NULL, 5130 pd2.ip_sum, icmpsum, 5131 pd->ip_sum, 0, AF_INET6); 5132 5133 if (PF_ANEQ(pd2.dst, 5134 &nk->addr[pd2.didx], pd2.af) || 5135 nk->port[pd2.didx] != iih.icmp6_id) 5136 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5137 saddr, &nk->addr[pd2.didx], 5138 nk->port[pd2.didx], NULL, 5139 pd2.ip_sum, icmpsum, 5140 pd->ip_sum, 0, AF_INET6); 5141 5142 m_copyback(m, off, sizeof(struct icmp6_hdr), 5143 (caddr_t)pd->hdr.icmp6); 5144 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5145 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5146 (caddr_t)&iih); 5147 } 5148 return (PF_PASS); 5149 break; 5150 } 5151 #endif /* INET6 */ 5152 default: { 5153 key.af = pd2.af; 5154 key.proto = pd2.proto; 5155 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5156 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5157 key.port[0] = key.port[1] = 0; 5158 5159 STATE_LOOKUP(kif, &key, direction, *state, pd); 5160 5161 /* translate source/destination address, if necessary */ 5162 if ((*state)->key[PF_SK_WIRE] != 5163 (*state)->key[PF_SK_STACK]) { 5164 struct pf_state_key *nk = 5165 (*state)->key[pd->didx]; 5166 5167 if (PF_ANEQ(pd2.src, 5168 &nk->addr[pd2.sidx], pd2.af)) 5169 pf_change_icmp(pd2.src, NULL, daddr, 5170 &nk->addr[pd2.sidx], 0, NULL, 5171 pd2.ip_sum, icmpsum, 5172 pd->ip_sum, 0, pd2.af); 5173 5174 if (PF_ANEQ(pd2.dst, 5175 &nk->addr[pd2.didx], pd2.af)) 5176 pf_change_icmp(pd2.dst, NULL, saddr, 5177 &nk->addr[pd2.didx], 0, NULL, 5178 pd2.ip_sum, icmpsum, 5179 pd->ip_sum, 0, pd2.af); 5180 5181 switch (pd2.af) { 5182 #ifdef INET 5183 case AF_INET: 5184 m_copyback(m, off, ICMP_MINLEN, 5185 (caddr_t)pd->hdr.icmp); 5186 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5187 break; 5188 #endif /* INET */ 5189 #ifdef INET6 5190 case AF_INET6: 5191 m_copyback(m, off, 5192 sizeof(struct icmp6_hdr), 5193 (caddr_t )pd->hdr.icmp6); 5194 m_copyback(m, ipoff2, sizeof(h2_6), 5195 (caddr_t )&h2_6); 5196 break; 5197 #endif /* INET6 */ 5198 } 5199 } 5200 return (PF_PASS); 5201 break; 5202 } 5203 } 5204 } 5205 } 5206 5207 static int 5208 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5209 struct mbuf *m, struct pf_pdesc *pd) 5210 { 5211 struct pf_state_peer *src, *dst; 5212 struct pf_state_key_cmp key; 5213 5214 bzero(&key, sizeof(key)); 5215 key.af = pd->af; 5216 key.proto = pd->proto; 5217 if (direction == PF_IN) { 5218 PF_ACPY(&key.addr[0], pd->src, key.af); 5219 PF_ACPY(&key.addr[1], pd->dst, key.af); 5220 key.port[0] = key.port[1] = 0; 5221 } else { 5222 PF_ACPY(&key.addr[1], pd->src, key.af); 5223 PF_ACPY(&key.addr[0], pd->dst, key.af); 5224 key.port[1] = key.port[0] = 0; 5225 } 5226 5227 STATE_LOOKUP(kif, &key, direction, *state, pd); 5228 5229 if (direction == (*state)->direction) { 5230 src = &(*state)->src; 5231 dst = &(*state)->dst; 5232 } else { 5233 src = &(*state)->dst; 5234 dst = &(*state)->src; 5235 } 5236 5237 /* update states */ 5238 if (src->state < PFOTHERS_SINGLE) 5239 src->state = PFOTHERS_SINGLE; 5240 if (dst->state == PFOTHERS_SINGLE) 5241 dst->state = PFOTHERS_MULTIPLE; 5242 5243 /* update expire time */ 5244 (*state)->expire = time_uptime; 5245 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5246 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5247 else 5248 (*state)->timeout = PFTM_OTHER_SINGLE; 5249 5250 /* translate source/destination address, if necessary */ 5251 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5252 struct pf_state_key *nk = (*state)->key[pd->didx]; 5253 5254 KASSERT(nk, ("%s: nk is null", __func__)); 5255 KASSERT(pd, ("%s: pd is null", __func__)); 5256 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5257 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5258 switch (pd->af) { 5259 #ifdef INET 5260 case AF_INET: 5261 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5262 pf_change_a(&pd->src->v4.s_addr, 5263 pd->ip_sum, 5264 nk->addr[pd->sidx].v4.s_addr, 5265 0); 5266 5267 5268 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5269 pf_change_a(&pd->dst->v4.s_addr, 5270 pd->ip_sum, 5271 nk->addr[pd->didx].v4.s_addr, 5272 0); 5273 5274 break; 5275 #endif /* INET */ 5276 #ifdef INET6 5277 case AF_INET6: 5278 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5279 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5280 5281 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5282 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5283 #endif /* INET6 */ 5284 } 5285 } 5286 return (PF_PASS); 5287 } 5288 5289 /* 5290 * ipoff and off are measured from the start of the mbuf chain. 5291 * h must be at "ipoff" on the mbuf chain. 5292 */ 5293 void * 5294 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5295 u_short *actionp, u_short *reasonp, sa_family_t af) 5296 { 5297 switch (af) { 5298 #ifdef INET 5299 case AF_INET: { 5300 struct ip *h = mtod(m, struct ip *); 5301 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5302 5303 if (fragoff) { 5304 if (fragoff >= len) 5305 ACTION_SET(actionp, PF_PASS); 5306 else { 5307 ACTION_SET(actionp, PF_DROP); 5308 REASON_SET(reasonp, PFRES_FRAG); 5309 } 5310 return (NULL); 5311 } 5312 if (m->m_pkthdr.len < off + len || 5313 ntohs(h->ip_len) < off + len) { 5314 ACTION_SET(actionp, PF_DROP); 5315 REASON_SET(reasonp, PFRES_SHORT); 5316 return (NULL); 5317 } 5318 break; 5319 } 5320 #endif /* INET */ 5321 #ifdef INET6 5322 case AF_INET6: { 5323 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5324 5325 if (m->m_pkthdr.len < off + len || 5326 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5327 (unsigned)(off + len)) { 5328 ACTION_SET(actionp, PF_DROP); 5329 REASON_SET(reasonp, PFRES_SHORT); 5330 return (NULL); 5331 } 5332 break; 5333 } 5334 #endif /* INET6 */ 5335 } 5336 m_copydata(m, off, len, p); 5337 return (p); 5338 } 5339 5340 #ifdef RADIX_MPATH 5341 static int 5342 pf_routable_oldmpath(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5343 int rtableid) 5344 { 5345 struct radix_node_head *rnh; 5346 struct sockaddr_in *dst; 5347 int ret = 1; 5348 int check_mpath; 5349 #ifdef INET6 5350 struct sockaddr_in6 *dst6; 5351 struct route_in6 ro; 5352 #else 5353 struct route ro; 5354 #endif 5355 struct radix_node *rn; 5356 struct rtentry *rt; 5357 struct ifnet *ifp; 5358 5359 check_mpath = 0; 5360 /* XXX: stick to table 0 for now */ 5361 rnh = rt_tables_get_rnh(0, af); 5362 if (rnh != NULL && rn_mpath_capable(rnh)) 5363 check_mpath = 1; 5364 bzero(&ro, sizeof(ro)); 5365 switch (af) { 5366 case AF_INET: 5367 dst = satosin(&ro.ro_dst); 5368 dst->sin_family = AF_INET; 5369 dst->sin_len = sizeof(*dst); 5370 dst->sin_addr = addr->v4; 5371 break; 5372 #ifdef INET6 5373 case AF_INET6: 5374 /* 5375 * Skip check for addresses with embedded interface scope, 5376 * as they would always match anyway. 5377 */ 5378 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5379 goto out; 5380 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5381 dst6->sin6_family = AF_INET6; 5382 dst6->sin6_len = sizeof(*dst6); 5383 dst6->sin6_addr = addr->v6; 5384 break; 5385 #endif /* INET6 */ 5386 default: 5387 return (0); 5388 } 5389 5390 /* Skip checks for ipsec interfaces */ 5391 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5392 goto out; 5393 5394 switch (af) { 5395 #ifdef INET6 5396 case AF_INET6: 5397 in6_rtalloc_ign(&ro, 0, rtableid); 5398 break; 5399 #endif 5400 #ifdef INET 5401 case AF_INET: 5402 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5403 break; 5404 #endif 5405 } 5406 5407 if (ro.ro_rt != NULL) { 5408 /* No interface given, this is a no-route check */ 5409 if (kif == NULL) 5410 goto out; 5411 5412 if (kif->pfik_ifp == NULL) { 5413 ret = 0; 5414 goto out; 5415 } 5416 5417 /* Perform uRPF check if passed input interface */ 5418 ret = 0; 5419 rn = (struct radix_node *)ro.ro_rt; 5420 do { 5421 rt = (struct rtentry *)rn; 5422 ifp = rt->rt_ifp; 5423 5424 if (kif->pfik_ifp == ifp) 5425 ret = 1; 5426 rn = rn_mpath_next(rn); 5427 } while (check_mpath == 1 && rn != NULL && ret == 0); 5428 } else 5429 ret = 0; 5430 out: 5431 if (ro.ro_rt != NULL) 5432 RTFREE(ro.ro_rt); 5433 return (ret); 5434 } 5435 #endif 5436 5437 int 5438 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5439 int rtableid) 5440 { 5441 #ifdef INET 5442 struct nhop4_basic nh4; 5443 #endif 5444 #ifdef INET6 5445 struct nhop6_basic nh6; 5446 #endif 5447 struct ifnet *ifp; 5448 #ifdef RADIX_MPATH 5449 struct radix_node_head *rnh; 5450 5451 /* XXX: stick to table 0 for now */ 5452 rnh = rt_tables_get_rnh(0, af); 5453 if (rnh != NULL && rn_mpath_capable(rnh)) 5454 return (pf_routable_oldmpath(addr, af, kif, rtableid)); 5455 #endif 5456 /* 5457 * Skip check for addresses with embedded interface scope, 5458 * as they would always match anyway. 5459 */ 5460 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5461 return (1); 5462 5463 if (af != AF_INET && af != AF_INET6) 5464 return (0); 5465 5466 /* Skip checks for ipsec interfaces */ 5467 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5468 return (1); 5469 5470 ifp = NULL; 5471 5472 switch (af) { 5473 #ifdef INET6 5474 case AF_INET6: 5475 if (fib6_lookup_nh_basic(rtableid, &addr->v6, 0, 0, 0, &nh6)!=0) 5476 return (0); 5477 ifp = nh6.nh_ifp; 5478 break; 5479 #endif 5480 #ifdef INET 5481 case AF_INET: 5482 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) != 0) 5483 return (0); 5484 ifp = nh4.nh_ifp; 5485 break; 5486 #endif 5487 } 5488 5489 /* No interface given, this is a no-route check */ 5490 if (kif == NULL) 5491 return (1); 5492 5493 if (kif->pfik_ifp == NULL) 5494 return (0); 5495 5496 /* Perform uRPF check if passed input interface */ 5497 if (kif->pfik_ifp == ifp) 5498 return (1); 5499 return (0); 5500 } 5501 5502 #ifdef INET 5503 static void 5504 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5505 struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) 5506 { 5507 struct mbuf *m0, *m1; 5508 struct sockaddr_in dst; 5509 struct ip *ip; 5510 struct ifnet *ifp = NULL; 5511 struct pf_addr naddr; 5512 struct pf_src_node *sn = NULL; 5513 int error = 0; 5514 uint16_t ip_len, ip_off; 5515 5516 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5517 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5518 __func__)); 5519 5520 if ((pd->pf_mtag == NULL && 5521 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5522 pd->pf_mtag->routed++ > 3) { 5523 m0 = *m; 5524 *m = NULL; 5525 goto bad_locked; 5526 } 5527 5528 if (r->rt == PF_DUPTO) { 5529 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5530 if (s) 5531 PF_STATE_UNLOCK(s); 5532 return; 5533 } 5534 } else { 5535 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5536 if (s) 5537 PF_STATE_UNLOCK(s); 5538 return; 5539 } 5540 m0 = *m; 5541 } 5542 5543 ip = mtod(m0, struct ip *); 5544 5545 bzero(&dst, sizeof(dst)); 5546 dst.sin_family = AF_INET; 5547 dst.sin_len = sizeof(dst); 5548 dst.sin_addr = ip->ip_dst; 5549 5550 bzero(&naddr, sizeof(naddr)); 5551 5552 if (TAILQ_EMPTY(&r->rpool.list)) { 5553 DPFPRINTF(PF_DEBUG_URGENT, 5554 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5555 goto bad_locked; 5556 } 5557 if (s == NULL) { 5558 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5559 &naddr, NULL, &sn); 5560 if (!PF_AZERO(&naddr, AF_INET)) 5561 dst.sin_addr.s_addr = naddr.v4.s_addr; 5562 ifp = r->rpool.cur->kif ? 5563 r->rpool.cur->kif->pfik_ifp : NULL; 5564 } else { 5565 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5566 dst.sin_addr.s_addr = 5567 s->rt_addr.v4.s_addr; 5568 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5569 PF_STATE_UNLOCK(s); 5570 } 5571 if (ifp == NULL) 5572 goto bad; 5573 5574 if (oifp != ifp) { 5575 if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 5576 goto bad; 5577 else if (m0 == NULL) 5578 goto done; 5579 if (m0->m_len < sizeof(struct ip)) { 5580 DPFPRINTF(PF_DEBUG_URGENT, 5581 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5582 goto bad; 5583 } 5584 ip = mtod(m0, struct ip *); 5585 } 5586 5587 if (ifp->if_flags & IFF_LOOPBACK) 5588 m0->m_flags |= M_SKIP_FIREWALL; 5589 5590 ip_len = ntohs(ip->ip_len); 5591 ip_off = ntohs(ip->ip_off); 5592 5593 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5594 m0->m_pkthdr.csum_flags |= CSUM_IP; 5595 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5596 in_delayed_cksum(m0); 5597 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5598 } 5599 #ifdef SCTP 5600 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5601 sctp_delayed_cksum(m0, (uint32_t)(ip->ip_hl << 2)); 5602 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5603 } 5604 #endif 5605 5606 /* 5607 * If small enough for interface, or the interface will take 5608 * care of the fragmentation for us, we can just send directly. 5609 */ 5610 if (ip_len <= ifp->if_mtu || 5611 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5612 ip->ip_sum = 0; 5613 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5614 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5615 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5616 } 5617 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5618 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5619 goto done; 5620 } 5621 5622 /* Balk when DF bit is set or the interface didn't support TSO. */ 5623 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5624 error = EMSGSIZE; 5625 KMOD_IPSTAT_INC(ips_cantfrag); 5626 if (r->rt != PF_DUPTO) { 5627 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5628 ifp->if_mtu); 5629 goto done; 5630 } else 5631 goto bad; 5632 } 5633 5634 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5635 if (error) 5636 goto bad; 5637 5638 for (; m0; m0 = m1) { 5639 m1 = m0->m_nextpkt; 5640 m0->m_nextpkt = NULL; 5641 if (error == 0) { 5642 m_clrprotoflags(m0); 5643 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5644 } else 5645 m_freem(m0); 5646 } 5647 5648 if (error == 0) 5649 KMOD_IPSTAT_INC(ips_fragmented); 5650 5651 done: 5652 if (r->rt != PF_DUPTO) 5653 *m = NULL; 5654 return; 5655 5656 bad_locked: 5657 if (s) 5658 PF_STATE_UNLOCK(s); 5659 bad: 5660 m_freem(m0); 5661 goto done; 5662 } 5663 #endif /* INET */ 5664 5665 #ifdef INET6 5666 static void 5667 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5668 struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) 5669 { 5670 struct mbuf *m0; 5671 struct sockaddr_in6 dst; 5672 struct ip6_hdr *ip6; 5673 struct ifnet *ifp = NULL; 5674 struct pf_addr naddr; 5675 struct pf_src_node *sn = NULL; 5676 5677 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5678 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5679 __func__)); 5680 5681 if ((pd->pf_mtag == NULL && 5682 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5683 pd->pf_mtag->routed++ > 3) { 5684 m0 = *m; 5685 *m = NULL; 5686 goto bad_locked; 5687 } 5688 5689 if (r->rt == PF_DUPTO) { 5690 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5691 if (s) 5692 PF_STATE_UNLOCK(s); 5693 return; 5694 } 5695 } else { 5696 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5697 if (s) 5698 PF_STATE_UNLOCK(s); 5699 return; 5700 } 5701 m0 = *m; 5702 } 5703 5704 ip6 = mtod(m0, struct ip6_hdr *); 5705 5706 bzero(&dst, sizeof(dst)); 5707 dst.sin6_family = AF_INET6; 5708 dst.sin6_len = sizeof(dst); 5709 dst.sin6_addr = ip6->ip6_dst; 5710 5711 bzero(&naddr, sizeof(naddr)); 5712 5713 if (TAILQ_EMPTY(&r->rpool.list)) { 5714 DPFPRINTF(PF_DEBUG_URGENT, 5715 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5716 goto bad_locked; 5717 } 5718 if (s == NULL) { 5719 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5720 &naddr, NULL, &sn); 5721 if (!PF_AZERO(&naddr, AF_INET6)) 5722 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5723 &naddr, AF_INET6); 5724 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5725 } else { 5726 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5727 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5728 &s->rt_addr, AF_INET6); 5729 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5730 } 5731 5732 if (s) 5733 PF_STATE_UNLOCK(s); 5734 5735 if (ifp == NULL) 5736 goto bad; 5737 5738 if (oifp != ifp) { 5739 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS) 5740 goto bad; 5741 else if (m0 == NULL) 5742 goto done; 5743 if (m0->m_len < sizeof(struct ip6_hdr)) { 5744 DPFPRINTF(PF_DEBUG_URGENT, 5745 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5746 __func__)); 5747 goto bad; 5748 } 5749 ip6 = mtod(m0, struct ip6_hdr *); 5750 } 5751 5752 if (ifp->if_flags & IFF_LOOPBACK) 5753 m0->m_flags |= M_SKIP_FIREWALL; 5754 5755 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5756 ~ifp->if_hwassist) { 5757 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5758 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5759 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5760 } 5761 5762 /* 5763 * If the packet is too large for the outgoing interface, 5764 * send back an icmp6 error. 5765 */ 5766 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5767 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5768 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5769 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5770 else { 5771 in6_ifstat_inc(ifp, ifs6_in_toobig); 5772 if (r->rt != PF_DUPTO) 5773 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5774 else 5775 goto bad; 5776 } 5777 5778 done: 5779 if (r->rt != PF_DUPTO) 5780 *m = NULL; 5781 return; 5782 5783 bad_locked: 5784 if (s) 5785 PF_STATE_UNLOCK(s); 5786 bad: 5787 m_freem(m0); 5788 goto done; 5789 } 5790 #endif /* INET6 */ 5791 5792 /* 5793 * FreeBSD supports cksum offloads for the following drivers. 5794 * em(4), fxp(4), lge(4), ndis(4), nge(4), re(4), ti(4), txp(4), xl(4) 5795 * 5796 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5797 * network driver performed cksum including pseudo header, need to verify 5798 * csum_data 5799 * CSUM_DATA_VALID : 5800 * network driver performed cksum, needs to additional pseudo header 5801 * cksum computation with partial csum_data(i.e. lack of H/W support for 5802 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5803 * 5804 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5805 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5806 * TCP/UDP layer. 5807 * Also, set csum_data to 0xffff to force cksum validation. 5808 */ 5809 static int 5810 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5811 { 5812 u_int16_t sum = 0; 5813 int hw_assist = 0; 5814 struct ip *ip; 5815 5816 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5817 return (1); 5818 if (m->m_pkthdr.len < off + len) 5819 return (1); 5820 5821 switch (p) { 5822 case IPPROTO_TCP: 5823 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5824 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5825 sum = m->m_pkthdr.csum_data; 5826 } else { 5827 ip = mtod(m, struct ip *); 5828 sum = in_pseudo(ip->ip_src.s_addr, 5829 ip->ip_dst.s_addr, htonl((u_short)len + 5830 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5831 } 5832 sum ^= 0xffff; 5833 ++hw_assist; 5834 } 5835 break; 5836 case IPPROTO_UDP: 5837 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5838 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5839 sum = m->m_pkthdr.csum_data; 5840 } else { 5841 ip = mtod(m, struct ip *); 5842 sum = in_pseudo(ip->ip_src.s_addr, 5843 ip->ip_dst.s_addr, htonl((u_short)len + 5844 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5845 } 5846 sum ^= 0xffff; 5847 ++hw_assist; 5848 } 5849 break; 5850 case IPPROTO_ICMP: 5851 #ifdef INET6 5852 case IPPROTO_ICMPV6: 5853 #endif /* INET6 */ 5854 break; 5855 default: 5856 return (1); 5857 } 5858 5859 if (!hw_assist) { 5860 switch (af) { 5861 case AF_INET: 5862 if (p == IPPROTO_ICMP) { 5863 if (m->m_len < off) 5864 return (1); 5865 m->m_data += off; 5866 m->m_len -= off; 5867 sum = in_cksum(m, len); 5868 m->m_data -= off; 5869 m->m_len += off; 5870 } else { 5871 if (m->m_len < sizeof(struct ip)) 5872 return (1); 5873 sum = in4_cksum(m, p, off, len); 5874 } 5875 break; 5876 #ifdef INET6 5877 case AF_INET6: 5878 if (m->m_len < sizeof(struct ip6_hdr)) 5879 return (1); 5880 sum = in6_cksum(m, p, off, len); 5881 break; 5882 #endif /* INET6 */ 5883 default: 5884 return (1); 5885 } 5886 } 5887 if (sum) { 5888 switch (p) { 5889 case IPPROTO_TCP: 5890 { 5891 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5892 break; 5893 } 5894 case IPPROTO_UDP: 5895 { 5896 KMOD_UDPSTAT_INC(udps_badsum); 5897 break; 5898 } 5899 #ifdef INET 5900 case IPPROTO_ICMP: 5901 { 5902 KMOD_ICMPSTAT_INC(icps_checksum); 5903 break; 5904 } 5905 #endif 5906 #ifdef INET6 5907 case IPPROTO_ICMPV6: 5908 { 5909 KMOD_ICMP6STAT_INC(icp6s_checksum); 5910 break; 5911 } 5912 #endif /* INET6 */ 5913 } 5914 return (1); 5915 } else { 5916 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5917 m->m_pkthdr.csum_flags |= 5918 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5919 m->m_pkthdr.csum_data = 0xffff; 5920 } 5921 } 5922 return (0); 5923 } 5924 5925 5926 #ifdef INET 5927 int 5928 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5929 { 5930 struct pfi_kif *kif; 5931 u_short action, reason = 0, log = 0; 5932 struct mbuf *m = *m0; 5933 struct ip *h = NULL; 5934 struct m_tag *ipfwtag; 5935 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5936 struct pf_state *s = NULL; 5937 struct pf_ruleset *ruleset = NULL; 5938 struct pf_pdesc pd; 5939 int off, dirndx, pqid = 0; 5940 5941 PF_RULES_RLOCK_TRACKER; 5942 5943 M_ASSERTPKTHDR(m); 5944 5945 if (!V_pf_status.running) 5946 return (PF_PASS); 5947 5948 memset(&pd, 0, sizeof(pd)); 5949 5950 kif = (struct pfi_kif *)ifp->if_pf_kif; 5951 5952 if (kif == NULL) { 5953 DPFPRINTF(PF_DEBUG_URGENT, 5954 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5955 return (PF_DROP); 5956 } 5957 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5958 return (PF_PASS); 5959 5960 if (m->m_flags & M_SKIP_FIREWALL) 5961 return (PF_PASS); 5962 5963 pd.pf_mtag = pf_find_mtag(m); 5964 5965 PF_RULES_RLOCK(); 5966 5967 if (ip_divert_ptr != NULL && 5968 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5969 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5970 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5971 if (pd.pf_mtag == NULL && 5972 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5973 action = PF_DROP; 5974 goto done; 5975 } 5976 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5977 m_tag_delete(m, ipfwtag); 5978 } 5979 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5980 m->m_flags |= M_FASTFWD_OURS; 5981 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5982 } 5983 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5984 /* We do IP header normalization and packet reassembly here */ 5985 action = PF_DROP; 5986 goto done; 5987 } 5988 m = *m0; /* pf_normalize messes with m0 */ 5989 h = mtod(m, struct ip *); 5990 5991 off = h->ip_hl << 2; 5992 if (off < (int)sizeof(struct ip)) { 5993 action = PF_DROP; 5994 REASON_SET(&reason, PFRES_SHORT); 5995 log = 1; 5996 goto done; 5997 } 5998 5999 pd.src = (struct pf_addr *)&h->ip_src; 6000 pd.dst = (struct pf_addr *)&h->ip_dst; 6001 pd.sport = pd.dport = NULL; 6002 pd.ip_sum = &h->ip_sum; 6003 pd.proto_sum = NULL; 6004 pd.proto = h->ip_p; 6005 pd.dir = dir; 6006 pd.sidx = (dir == PF_IN) ? 0 : 1; 6007 pd.didx = (dir == PF_IN) ? 1 : 0; 6008 pd.af = AF_INET; 6009 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 6010 pd.tot_len = ntohs(h->ip_len); 6011 6012 /* handle fragments that didn't get reassembled by normalization */ 6013 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 6014 action = pf_test_fragment(&r, dir, kif, m, h, 6015 &pd, &a, &ruleset); 6016 goto done; 6017 } 6018 6019 switch (h->ip_p) { 6020 6021 case IPPROTO_TCP: { 6022 struct tcphdr th; 6023 6024 pd.hdr.tcp = &th; 6025 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6026 &action, &reason, AF_INET)) { 6027 log = action != PF_PASS; 6028 goto done; 6029 } 6030 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6031 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 6032 pqid = 1; 6033 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6034 if (action == PF_DROP) 6035 goto done; 6036 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6037 &reason); 6038 if (action == PF_PASS) { 6039 if (V_pfsync_update_state_ptr != NULL) 6040 V_pfsync_update_state_ptr(s); 6041 r = s->rule.ptr; 6042 a = s->anchor.ptr; 6043 log = s->log; 6044 } else if (s == NULL) 6045 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6046 &a, &ruleset, inp); 6047 break; 6048 } 6049 6050 case IPPROTO_UDP: { 6051 struct udphdr uh; 6052 6053 pd.hdr.udp = &uh; 6054 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6055 &action, &reason, AF_INET)) { 6056 log = action != PF_PASS; 6057 goto done; 6058 } 6059 if (uh.uh_dport == 0 || 6060 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6061 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6062 action = PF_DROP; 6063 REASON_SET(&reason, PFRES_SHORT); 6064 goto done; 6065 } 6066 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6067 if (action == PF_PASS) { 6068 if (V_pfsync_update_state_ptr != NULL) 6069 V_pfsync_update_state_ptr(s); 6070 r = s->rule.ptr; 6071 a = s->anchor.ptr; 6072 log = s->log; 6073 } else if (s == NULL) 6074 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6075 &a, &ruleset, inp); 6076 break; 6077 } 6078 6079 case IPPROTO_ICMP: { 6080 struct icmp ih; 6081 6082 pd.hdr.icmp = &ih; 6083 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 6084 &action, &reason, AF_INET)) { 6085 log = action != PF_PASS; 6086 goto done; 6087 } 6088 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 6089 &reason); 6090 if (action == PF_PASS) { 6091 if (V_pfsync_update_state_ptr != NULL) 6092 V_pfsync_update_state_ptr(s); 6093 r = s->rule.ptr; 6094 a = s->anchor.ptr; 6095 log = s->log; 6096 } else if (s == NULL) 6097 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6098 &a, &ruleset, inp); 6099 break; 6100 } 6101 6102 #ifdef INET6 6103 case IPPROTO_ICMPV6: { 6104 action = PF_DROP; 6105 DPFPRINTF(PF_DEBUG_MISC, 6106 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6107 goto done; 6108 } 6109 #endif 6110 6111 default: 6112 action = pf_test_state_other(&s, dir, kif, m, &pd); 6113 if (action == PF_PASS) { 6114 if (V_pfsync_update_state_ptr != NULL) 6115 V_pfsync_update_state_ptr(s); 6116 r = s->rule.ptr; 6117 a = s->anchor.ptr; 6118 log = s->log; 6119 } else if (s == NULL) 6120 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6121 &a, &ruleset, inp); 6122 break; 6123 } 6124 6125 done: 6126 PF_RULES_RUNLOCK(); 6127 if (action == PF_PASS && h->ip_hl > 5 && 6128 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6129 action = PF_DROP; 6130 REASON_SET(&reason, PFRES_IPOPTIONS); 6131 log = r->log; 6132 DPFPRINTF(PF_DEBUG_MISC, 6133 ("pf: dropping packet with ip options\n")); 6134 } 6135 6136 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6137 action = PF_DROP; 6138 REASON_SET(&reason, PFRES_MEMORY); 6139 } 6140 if (r->rtableid >= 0) 6141 M_SETFIB(m, r->rtableid); 6142 6143 if (r->scrub_flags & PFSTATE_SETPRIO) { 6144 if (pd.tos & IPTOS_LOWDELAY) 6145 pqid = 1; 6146 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6147 action = PF_DROP; 6148 REASON_SET(&reason, PFRES_MEMORY); 6149 log = 1; 6150 DPFPRINTF(PF_DEBUG_MISC, 6151 ("pf: failed to allocate 802.1q mtag\n")); 6152 } 6153 } 6154 6155 #ifdef ALTQ 6156 if (action == PF_PASS && r->qid) { 6157 if (pd.pf_mtag == NULL && 6158 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6159 action = PF_DROP; 6160 REASON_SET(&reason, PFRES_MEMORY); 6161 } else { 6162 if (s != NULL) 6163 pd.pf_mtag->qid_hash = pf_state_hash(s); 6164 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6165 pd.pf_mtag->qid = r->pqid; 6166 else 6167 pd.pf_mtag->qid = r->qid; 6168 /* Add hints for ecn. */ 6169 pd.pf_mtag->hdr = h; 6170 } 6171 6172 } 6173 #endif /* ALTQ */ 6174 6175 /* 6176 * connections redirected to loopback should not match sockets 6177 * bound specifically to loopback due to security implications, 6178 * see tcp_input() and in_pcblookup_listen(). 6179 */ 6180 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6181 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6182 (s->nat_rule.ptr->action == PF_RDR || 6183 s->nat_rule.ptr->action == PF_BINAT) && 6184 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 6185 m->m_flags |= M_SKIP_FIREWALL; 6186 6187 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6188 !PACKET_LOOPED(&pd)) { 6189 6190 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6191 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6192 if (ipfwtag != NULL) { 6193 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6194 ntohs(r->divert.port); 6195 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6196 6197 if (s) 6198 PF_STATE_UNLOCK(s); 6199 6200 m_tag_prepend(m, ipfwtag); 6201 if (m->m_flags & M_FASTFWD_OURS) { 6202 if (pd.pf_mtag == NULL && 6203 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6204 action = PF_DROP; 6205 REASON_SET(&reason, PFRES_MEMORY); 6206 log = 1; 6207 DPFPRINTF(PF_DEBUG_MISC, 6208 ("pf: failed to allocate tag\n")); 6209 } else { 6210 pd.pf_mtag->flags |= 6211 PF_FASTFWD_OURS_PRESENT; 6212 m->m_flags &= ~M_FASTFWD_OURS; 6213 } 6214 } 6215 ip_divert_ptr(*m0, dir == PF_IN); 6216 *m0 = NULL; 6217 6218 return (action); 6219 } else { 6220 /* XXX: ipfw has the same behaviour! */ 6221 action = PF_DROP; 6222 REASON_SET(&reason, PFRES_MEMORY); 6223 log = 1; 6224 DPFPRINTF(PF_DEBUG_MISC, 6225 ("pf: failed to allocate divert tag\n")); 6226 } 6227 } 6228 6229 if (log) { 6230 struct pf_rule *lr; 6231 6232 if (s != NULL && s->nat_rule.ptr != NULL && 6233 s->nat_rule.ptr->log & PF_LOG_ALL) 6234 lr = s->nat_rule.ptr; 6235 else 6236 lr = r; 6237 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6238 (s == NULL)); 6239 } 6240 6241 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6242 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 6243 6244 if (action == PF_PASS || r->action == PF_DROP) { 6245 dirndx = (dir == PF_OUT); 6246 r->packets[dirndx]++; 6247 r->bytes[dirndx] += pd.tot_len; 6248 if (a != NULL) { 6249 a->packets[dirndx]++; 6250 a->bytes[dirndx] += pd.tot_len; 6251 } 6252 if (s != NULL) { 6253 if (s->nat_rule.ptr != NULL) { 6254 s->nat_rule.ptr->packets[dirndx]++; 6255 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6256 } 6257 if (s->src_node != NULL) { 6258 s->src_node->packets[dirndx]++; 6259 s->src_node->bytes[dirndx] += pd.tot_len; 6260 } 6261 if (s->nat_src_node != NULL) { 6262 s->nat_src_node->packets[dirndx]++; 6263 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6264 } 6265 dirndx = (dir == s->direction) ? 0 : 1; 6266 s->packets[dirndx]++; 6267 s->bytes[dirndx] += pd.tot_len; 6268 } 6269 tr = r; 6270 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6271 if (nr != NULL && r == &V_pf_default_rule) 6272 tr = nr; 6273 if (tr->src.addr.type == PF_ADDR_TABLE) 6274 pfr_update_stats(tr->src.addr.p.tbl, 6275 (s == NULL) ? pd.src : 6276 &s->key[(s->direction == PF_IN)]-> 6277 addr[(s->direction == PF_OUT)], 6278 pd.af, pd.tot_len, dir == PF_OUT, 6279 r->action == PF_PASS, tr->src.neg); 6280 if (tr->dst.addr.type == PF_ADDR_TABLE) 6281 pfr_update_stats(tr->dst.addr.p.tbl, 6282 (s == NULL) ? pd.dst : 6283 &s->key[(s->direction == PF_IN)]-> 6284 addr[(s->direction == PF_IN)], 6285 pd.af, pd.tot_len, dir == PF_OUT, 6286 r->action == PF_PASS, tr->dst.neg); 6287 } 6288 6289 switch (action) { 6290 case PF_SYNPROXY_DROP: 6291 m_freem(*m0); 6292 case PF_DEFER: 6293 *m0 = NULL; 6294 action = PF_PASS; 6295 break; 6296 case PF_DROP: 6297 m_freem(*m0); 6298 *m0 = NULL; 6299 break; 6300 default: 6301 /* pf_route() returns unlocked. */ 6302 if (r->rt) { 6303 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6304 return (action); 6305 } 6306 break; 6307 } 6308 if (s) 6309 PF_STATE_UNLOCK(s); 6310 6311 return (action); 6312 } 6313 #endif /* INET */ 6314 6315 #ifdef INET6 6316 int 6317 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6318 { 6319 struct pfi_kif *kif; 6320 u_short action, reason = 0, log = 0; 6321 struct mbuf *m = *m0, *n = NULL; 6322 struct m_tag *mtag; 6323 struct ip6_hdr *h = NULL; 6324 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6325 struct pf_state *s = NULL; 6326 struct pf_ruleset *ruleset = NULL; 6327 struct pf_pdesc pd; 6328 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6329 6330 PF_RULES_RLOCK_TRACKER; 6331 M_ASSERTPKTHDR(m); 6332 6333 if (!V_pf_status.running) 6334 return (PF_PASS); 6335 6336 memset(&pd, 0, sizeof(pd)); 6337 pd.pf_mtag = pf_find_mtag(m); 6338 6339 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6340 return (PF_PASS); 6341 6342 kif = (struct pfi_kif *)ifp->if_pf_kif; 6343 if (kif == NULL) { 6344 DPFPRINTF(PF_DEBUG_URGENT, 6345 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6346 return (PF_DROP); 6347 } 6348 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6349 return (PF_PASS); 6350 6351 if (m->m_flags & M_SKIP_FIREWALL) 6352 return (PF_PASS); 6353 6354 PF_RULES_RLOCK(); 6355 6356 /* We do IP header normalization and packet reassembly here */ 6357 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6358 action = PF_DROP; 6359 goto done; 6360 } 6361 m = *m0; /* pf_normalize messes with m0 */ 6362 h = mtod(m, struct ip6_hdr *); 6363 6364 /* 6365 * we do not support jumbogram. if we keep going, zero ip6_plen 6366 * will do something bad, so drop the packet for now. 6367 */ 6368 if (htons(h->ip6_plen) == 0) { 6369 action = PF_DROP; 6370 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6371 goto done; 6372 } 6373 6374 pd.src = (struct pf_addr *)&h->ip6_src; 6375 pd.dst = (struct pf_addr *)&h->ip6_dst; 6376 pd.sport = pd.dport = NULL; 6377 pd.ip_sum = NULL; 6378 pd.proto_sum = NULL; 6379 pd.dir = dir; 6380 pd.sidx = (dir == PF_IN) ? 0 : 1; 6381 pd.didx = (dir == PF_IN) ? 1 : 0; 6382 pd.af = AF_INET6; 6383 pd.tos = 0; 6384 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6385 6386 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6387 pd.proto = h->ip6_nxt; 6388 do { 6389 switch (pd.proto) { 6390 case IPPROTO_FRAGMENT: 6391 action = pf_test_fragment(&r, dir, kif, m, h, 6392 &pd, &a, &ruleset); 6393 if (action == PF_DROP) 6394 REASON_SET(&reason, PFRES_FRAG); 6395 goto done; 6396 case IPPROTO_ROUTING: { 6397 struct ip6_rthdr rthdr; 6398 6399 if (rh_cnt++) { 6400 DPFPRINTF(PF_DEBUG_MISC, 6401 ("pf: IPv6 more than one rthdr\n")); 6402 action = PF_DROP; 6403 REASON_SET(&reason, PFRES_IPOPTIONS); 6404 log = 1; 6405 goto done; 6406 } 6407 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6408 &reason, pd.af)) { 6409 DPFPRINTF(PF_DEBUG_MISC, 6410 ("pf: IPv6 short rthdr\n")); 6411 action = PF_DROP; 6412 REASON_SET(&reason, PFRES_SHORT); 6413 log = 1; 6414 goto done; 6415 } 6416 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6417 DPFPRINTF(PF_DEBUG_MISC, 6418 ("pf: IPv6 rthdr0\n")); 6419 action = PF_DROP; 6420 REASON_SET(&reason, PFRES_IPOPTIONS); 6421 log = 1; 6422 goto done; 6423 } 6424 /* FALLTHROUGH */ 6425 } 6426 case IPPROTO_AH: 6427 case IPPROTO_HOPOPTS: 6428 case IPPROTO_DSTOPTS: { 6429 /* get next header and header length */ 6430 struct ip6_ext opt6; 6431 6432 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6433 NULL, &reason, pd.af)) { 6434 DPFPRINTF(PF_DEBUG_MISC, 6435 ("pf: IPv6 short opt\n")); 6436 action = PF_DROP; 6437 log = 1; 6438 goto done; 6439 } 6440 if (pd.proto == IPPROTO_AH) 6441 off += (opt6.ip6e_len + 2) * 4; 6442 else 6443 off += (opt6.ip6e_len + 1) * 8; 6444 pd.proto = opt6.ip6e_nxt; 6445 /* goto the next header */ 6446 break; 6447 } 6448 default: 6449 terminal++; 6450 break; 6451 } 6452 } while (!terminal); 6453 6454 /* if there's no routing header, use unmodified mbuf for checksumming */ 6455 if (!n) 6456 n = m; 6457 6458 switch (pd.proto) { 6459 6460 case IPPROTO_TCP: { 6461 struct tcphdr th; 6462 6463 pd.hdr.tcp = &th; 6464 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6465 &action, &reason, AF_INET6)) { 6466 log = action != PF_PASS; 6467 goto done; 6468 } 6469 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6470 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6471 if (action == PF_DROP) 6472 goto done; 6473 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6474 &reason); 6475 if (action == PF_PASS) { 6476 if (V_pfsync_update_state_ptr != NULL) 6477 V_pfsync_update_state_ptr(s); 6478 r = s->rule.ptr; 6479 a = s->anchor.ptr; 6480 log = s->log; 6481 } else if (s == NULL) 6482 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6483 &a, &ruleset, inp); 6484 break; 6485 } 6486 6487 case IPPROTO_UDP: { 6488 struct udphdr uh; 6489 6490 pd.hdr.udp = &uh; 6491 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6492 &action, &reason, AF_INET6)) { 6493 log = action != PF_PASS; 6494 goto done; 6495 } 6496 if (uh.uh_dport == 0 || 6497 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6498 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6499 action = PF_DROP; 6500 REASON_SET(&reason, PFRES_SHORT); 6501 goto done; 6502 } 6503 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6504 if (action == PF_PASS) { 6505 if (V_pfsync_update_state_ptr != NULL) 6506 V_pfsync_update_state_ptr(s); 6507 r = s->rule.ptr; 6508 a = s->anchor.ptr; 6509 log = s->log; 6510 } else if (s == NULL) 6511 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6512 &a, &ruleset, inp); 6513 break; 6514 } 6515 6516 case IPPROTO_ICMP: { 6517 action = PF_DROP; 6518 DPFPRINTF(PF_DEBUG_MISC, 6519 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6520 goto done; 6521 } 6522 6523 case IPPROTO_ICMPV6: { 6524 struct icmp6_hdr ih; 6525 6526 pd.hdr.icmp6 = &ih; 6527 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6528 &action, &reason, AF_INET6)) { 6529 log = action != PF_PASS; 6530 goto done; 6531 } 6532 action = pf_test_state_icmp(&s, dir, kif, 6533 m, off, h, &pd, &reason); 6534 if (action == PF_PASS) { 6535 if (V_pfsync_update_state_ptr != NULL) 6536 V_pfsync_update_state_ptr(s); 6537 r = s->rule.ptr; 6538 a = s->anchor.ptr; 6539 log = s->log; 6540 } else if (s == NULL) 6541 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6542 &a, &ruleset, inp); 6543 break; 6544 } 6545 6546 default: 6547 action = pf_test_state_other(&s, dir, kif, m, &pd); 6548 if (action == PF_PASS) { 6549 if (V_pfsync_update_state_ptr != NULL) 6550 V_pfsync_update_state_ptr(s); 6551 r = s->rule.ptr; 6552 a = s->anchor.ptr; 6553 log = s->log; 6554 } else if (s == NULL) 6555 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6556 &a, &ruleset, inp); 6557 break; 6558 } 6559 6560 done: 6561 PF_RULES_RUNLOCK(); 6562 if (n != m) { 6563 m_freem(n); 6564 n = NULL; 6565 } 6566 6567 /* handle dangerous IPv6 extension headers. */ 6568 if (action == PF_PASS && rh_cnt && 6569 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6570 action = PF_DROP; 6571 REASON_SET(&reason, PFRES_IPOPTIONS); 6572 log = r->log; 6573 DPFPRINTF(PF_DEBUG_MISC, 6574 ("pf: dropping packet with dangerous v6 headers\n")); 6575 } 6576 6577 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6578 action = PF_DROP; 6579 REASON_SET(&reason, PFRES_MEMORY); 6580 } 6581 if (r->rtableid >= 0) 6582 M_SETFIB(m, r->rtableid); 6583 6584 if (r->scrub_flags & PFSTATE_SETPRIO) { 6585 if (pd.tos & IPTOS_LOWDELAY) 6586 pqid = 1; 6587 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6588 action = PF_DROP; 6589 REASON_SET(&reason, PFRES_MEMORY); 6590 log = 1; 6591 DPFPRINTF(PF_DEBUG_MISC, 6592 ("pf: failed to allocate 802.1q mtag\n")); 6593 } 6594 } 6595 6596 #ifdef ALTQ 6597 if (action == PF_PASS && r->qid) { 6598 if (pd.pf_mtag == NULL && 6599 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6600 action = PF_DROP; 6601 REASON_SET(&reason, PFRES_MEMORY); 6602 } else { 6603 if (s != NULL) 6604 pd.pf_mtag->qid_hash = pf_state_hash(s); 6605 if (pd.tos & IPTOS_LOWDELAY) 6606 pd.pf_mtag->qid = r->pqid; 6607 else 6608 pd.pf_mtag->qid = r->qid; 6609 /* Add hints for ecn. */ 6610 pd.pf_mtag->hdr = h; 6611 } 6612 } 6613 #endif /* ALTQ */ 6614 6615 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6616 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6617 (s->nat_rule.ptr->action == PF_RDR || 6618 s->nat_rule.ptr->action == PF_BINAT) && 6619 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6620 m->m_flags |= M_SKIP_FIREWALL; 6621 6622 /* XXX: Anybody working on it?! */ 6623 if (r->divert.port) 6624 printf("pf: divert(9) is not supported for IPv6\n"); 6625 6626 if (log) { 6627 struct pf_rule *lr; 6628 6629 if (s != NULL && s->nat_rule.ptr != NULL && 6630 s->nat_rule.ptr->log & PF_LOG_ALL) 6631 lr = s->nat_rule.ptr; 6632 else 6633 lr = r; 6634 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6635 &pd, (s == NULL)); 6636 } 6637 6638 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6639 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6640 6641 if (action == PF_PASS || r->action == PF_DROP) { 6642 dirndx = (dir == PF_OUT); 6643 r->packets[dirndx]++; 6644 r->bytes[dirndx] += pd.tot_len; 6645 if (a != NULL) { 6646 a->packets[dirndx]++; 6647 a->bytes[dirndx] += pd.tot_len; 6648 } 6649 if (s != NULL) { 6650 if (s->nat_rule.ptr != NULL) { 6651 s->nat_rule.ptr->packets[dirndx]++; 6652 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6653 } 6654 if (s->src_node != NULL) { 6655 s->src_node->packets[dirndx]++; 6656 s->src_node->bytes[dirndx] += pd.tot_len; 6657 } 6658 if (s->nat_src_node != NULL) { 6659 s->nat_src_node->packets[dirndx]++; 6660 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6661 } 6662 dirndx = (dir == s->direction) ? 0 : 1; 6663 s->packets[dirndx]++; 6664 s->bytes[dirndx] += pd.tot_len; 6665 } 6666 tr = r; 6667 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6668 if (nr != NULL && r == &V_pf_default_rule) 6669 tr = nr; 6670 if (tr->src.addr.type == PF_ADDR_TABLE) 6671 pfr_update_stats(tr->src.addr.p.tbl, 6672 (s == NULL) ? pd.src : 6673 &s->key[(s->direction == PF_IN)]->addr[0], 6674 pd.af, pd.tot_len, dir == PF_OUT, 6675 r->action == PF_PASS, tr->src.neg); 6676 if (tr->dst.addr.type == PF_ADDR_TABLE) 6677 pfr_update_stats(tr->dst.addr.p.tbl, 6678 (s == NULL) ? pd.dst : 6679 &s->key[(s->direction == PF_IN)]->addr[1], 6680 pd.af, pd.tot_len, dir == PF_OUT, 6681 r->action == PF_PASS, tr->dst.neg); 6682 } 6683 6684 switch (action) { 6685 case PF_SYNPROXY_DROP: 6686 m_freem(*m0); 6687 case PF_DEFER: 6688 *m0 = NULL; 6689 action = PF_PASS; 6690 break; 6691 case PF_DROP: 6692 m_freem(*m0); 6693 *m0 = NULL; 6694 break; 6695 default: 6696 /* pf_route6() returns unlocked. */ 6697 if (r->rt) { 6698 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6699 return (action); 6700 } 6701 break; 6702 } 6703 6704 if (s) 6705 PF_STATE_UNLOCK(s); 6706 6707 /* If reassembled packet passed, create new fragments. */ 6708 if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && 6709 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6710 action = pf_refragment6(ifp, m0, mtag); 6711 6712 return (action); 6713 } 6714 #endif /* INET6 */ 6715