1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 #include "opt_bpf.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_pf.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/gsb_crc32.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/sdt.h> 61 #include <sys/socket.h> 62 #include <sys/sysctl.h> 63 #include <sys/taskqueue.h> 64 #include <sys/ucred.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_private.h> 69 #include <net/if_types.h> 70 #include <net/if_vlan_var.h> 71 #include <net/route.h> 72 #include <net/route/nhop.h> 73 #include <net/vnet.h> 74 75 #include <net/pfil.h> 76 #include <net/pfvar.h> 77 #include <net/if_pflog.h> 78 #include <net/if_pfsync.h> 79 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_var.h> 82 #include <netinet/in_fib.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_fw.h> 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp.h> 89 #include <netinet/tcp_fsm.h> 90 #include <netinet/tcp_seq.h> 91 #include <netinet/tcp_timer.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet/udp.h> 94 #include <netinet/udp_var.h> 95 96 /* dummynet */ 97 #include <netinet/ip_dummynet.h> 98 #include <netinet/ip_fw.h> 99 #include <netpfil/ipfw/dn_heap.h> 100 #include <netpfil/ipfw/ip_fw_private.h> 101 #include <netpfil/ipfw/ip_dn_private.h> 102 103 #ifdef INET6 104 #include <netinet/ip6.h> 105 #include <netinet/icmp6.h> 106 #include <netinet6/nd6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet6/in6_pcb.h> 109 #include <netinet6/in6_fib.h> 110 #include <netinet6/scope6_var.h> 111 #endif /* INET6 */ 112 113 #include <netinet/sctp_header.h> 114 #include <netinet/sctp_crc32.h> 115 116 #include <machine/in_cksum.h> 117 #include <security/mac/mac_framework.h> 118 119 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 120 121 SDT_PROVIDER_DEFINE(pf); 122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 123 "struct pf_kstate *"); 124 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 125 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 126 "struct pf_kstate *"); 127 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *", 128 "struct pfi_kkif *"); 129 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *", 130 "struct pf_krule *", "struct mbuf *", "int"); 131 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t", 132 "struct pf_sctp_source *"); 133 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t", 134 "struct pf_kstate *", "struct pf_sctp_source *"); 135 136 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 137 "struct mbuf *"); 138 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 139 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 140 "int", "struct pf_keth_rule *", "char *"); 141 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 142 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 143 "int", "struct pf_keth_rule *"); 144 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t"); 145 146 /* 147 * Global variables 148 */ 149 150 /* state tables */ 151 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 152 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 153 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 154 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 155 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 156 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 157 VNET_DEFINE(struct pf_kstatus, pf_status); 158 159 VNET_DEFINE(u_int32_t, ticket_altqs_active); 160 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 161 VNET_DEFINE(int, altqs_inactive_open); 162 VNET_DEFINE(u_int32_t, ticket_pabuf); 163 164 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 165 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 166 VNET_DEFINE(u_char, pf_tcp_secret[16]); 167 #define V_pf_tcp_secret VNET(pf_tcp_secret) 168 VNET_DEFINE(int, pf_tcp_secret_init); 169 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 170 VNET_DEFINE(int, pf_tcp_iss_off); 171 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 172 VNET_DECLARE(int, pf_vnet_active); 173 #define V_pf_vnet_active VNET(pf_vnet_active) 174 175 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 176 #define V_pf_purge_idx VNET(pf_purge_idx) 177 178 #ifdef PF_WANT_32_TO_64_COUNTER 179 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 180 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 181 182 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 183 VNET_DEFINE(size_t, pf_allrulecount); 184 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 185 #endif 186 187 struct pf_sctp_endpoint; 188 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint); 189 struct pf_sctp_source { 190 sa_family_t af; 191 struct pf_addr addr; 192 TAILQ_ENTRY(pf_sctp_source) entry; 193 }; 194 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source); 195 struct pf_sctp_endpoint 196 { 197 uint32_t v_tag; 198 struct pf_sctp_sources sources; 199 RB_ENTRY(pf_sctp_endpoint) entry; 200 }; 201 static int 202 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b) 203 { 204 return (a->v_tag - b->v_tag); 205 } 206 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 207 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 208 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints); 209 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints) 210 static struct mtx_padalign pf_sctp_endpoints_mtx; 211 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF); 212 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx) 213 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx) 214 215 /* 216 * Queue for pf_intr() sends. 217 */ 218 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 219 struct pf_send_entry { 220 STAILQ_ENTRY(pf_send_entry) pfse_next; 221 struct mbuf *pfse_m; 222 enum { 223 PFSE_IP, 224 PFSE_IP6, 225 PFSE_ICMP, 226 PFSE_ICMP6, 227 } pfse_type; 228 struct { 229 int type; 230 int code; 231 int mtu; 232 } icmpopts; 233 }; 234 235 STAILQ_HEAD(pf_send_head, pf_send_entry); 236 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 237 #define V_pf_sendqueue VNET(pf_sendqueue) 238 239 static struct mtx_padalign pf_sendqueue_mtx; 240 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 241 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 242 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 243 244 /* 245 * Queue for pf_overload_task() tasks. 246 */ 247 struct pf_overload_entry { 248 SLIST_ENTRY(pf_overload_entry) next; 249 struct pf_addr addr; 250 sa_family_t af; 251 uint8_t dir; 252 struct pf_krule *rule; 253 }; 254 255 SLIST_HEAD(pf_overload_head, pf_overload_entry); 256 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 257 #define V_pf_overloadqueue VNET(pf_overloadqueue) 258 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 259 #define V_pf_overloadtask VNET(pf_overloadtask) 260 261 static struct mtx_padalign pf_overloadqueue_mtx; 262 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 263 "pf overload/flush queue", MTX_DEF); 264 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 265 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 266 267 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 268 struct mtx_padalign pf_unlnkdrules_mtx; 269 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 270 MTX_DEF); 271 272 struct sx pf_config_lock; 273 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 274 275 struct mtx_padalign pf_table_stats_lock; 276 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 277 MTX_DEF); 278 279 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 280 #define V_pf_sources_z VNET(pf_sources_z) 281 uma_zone_t pf_mtag_z; 282 VNET_DEFINE(uma_zone_t, pf_state_z); 283 VNET_DEFINE(uma_zone_t, pf_state_key_z); 284 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z); 285 286 VNET_DEFINE(struct unrhdr64, pf_stateid); 287 288 static void pf_src_tree_remove_state(struct pf_kstate *); 289 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 290 u_int32_t); 291 static void pf_add_threshold(struct pf_threshold *); 292 static int pf_check_threshold(struct pf_threshold *); 293 294 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 295 u_int16_t *, u_int16_t *, struct pf_addr *, 296 u_int16_t, u_int8_t, sa_family_t); 297 static int pf_modulate_sack(struct pf_pdesc *, 298 struct tcphdr *, struct pf_state_peer *); 299 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *, 300 int *, u_int16_t *, u_int16_t *); 301 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 302 struct pf_addr *, struct pf_addr *, u_int16_t, 303 u_int16_t *, u_int16_t *, u_int16_t *, 304 u_int16_t *, u_int8_t, sa_family_t); 305 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 306 sa_family_t, struct pf_krule *, int); 307 static void pf_detach_state(struct pf_kstate *); 308 static int pf_state_key_attach(struct pf_state_key *, 309 struct pf_state_key *, struct pf_kstate *); 310 static void pf_state_key_detach(struct pf_kstate *, int); 311 static int pf_state_key_ctor(void *, int, void *, int); 312 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 313 static __inline void pf_dummynet_flag_remove(struct mbuf *m, 314 struct pf_mtag *pf_mtag); 315 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *, 316 struct pf_krule *, struct mbuf **); 317 static int pf_dummynet_route(struct pf_pdesc *, 318 struct pf_kstate *, struct pf_krule *, 319 struct ifnet *, struct sockaddr *, struct mbuf **); 320 static int pf_test_eth_rule(int, struct pfi_kkif *, 321 struct mbuf **); 322 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 323 struct pf_pdesc *, struct pf_krule **, 324 struct pf_kruleset **, struct inpcb *); 325 static int pf_create_state(struct pf_krule *, struct pf_krule *, 326 struct pf_krule *, struct pf_pdesc *, 327 struct pf_ksrc_node *, struct pf_state_key *, 328 struct pf_state_key *, 329 u_int16_t, u_int16_t, int *, 330 struct pf_kstate **, int, u_int16_t, u_int16_t, 331 struct pf_krule_slist *, struct pf_udp_mapping *); 332 static int pf_state_key_addr_setup(struct pf_pdesc *, 333 struct pf_state_key_cmp *, int); 334 static int pf_tcp_track_full(struct pf_kstate **, 335 struct pf_pdesc *, u_short *, int *); 336 static int pf_tcp_track_sloppy(struct pf_kstate **, 337 struct pf_pdesc *, u_short *); 338 static int pf_test_state_tcp(struct pf_kstate **, 339 struct pf_pdesc *, u_short *); 340 static int pf_test_state_udp(struct pf_kstate **, 341 struct pf_pdesc *); 342 int pf_icmp_state_lookup(struct pf_state_key_cmp *, 343 struct pf_pdesc *, struct pf_kstate **, 344 int, u_int16_t, u_int16_t, 345 int, int *, int, int); 346 static int pf_test_state_icmp(struct pf_kstate **, 347 struct pf_pdesc *, u_short *); 348 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *); 349 static void pf_sctp_multihome_delayed(struct pf_pdesc *, 350 struct pfi_kkif *, struct pf_kstate *, int); 351 static int pf_test_state_sctp(struct pf_kstate **, 352 struct pf_pdesc *, u_short *); 353 static int pf_test_state_other(struct pf_kstate **, 354 struct pf_pdesc *); 355 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 356 int, u_int16_t); 357 static int pf_check_proto_cksum(struct mbuf *, int, int, 358 u_int8_t, sa_family_t); 359 static int pf_walk_option6(struct mbuf *, int, int, uint32_t *, 360 u_short *); 361 static void pf_print_state_parts(struct pf_kstate *, 362 struct pf_state_key *, struct pf_state_key *); 363 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 364 bool, u_int8_t); 365 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 366 const struct pf_state_key_cmp *, u_int); 367 static int pf_src_connlimit(struct pf_kstate **); 368 static int pf_match_rcvif(struct mbuf *, struct pf_krule *); 369 static void pf_counters_inc(int, struct pf_pdesc *, 370 struct pf_kstate *, struct pf_krule *, 371 struct pf_krule *); 372 static void pf_overload_task(void *v, int pending); 373 static u_short pf_insert_src_node(struct pf_ksrc_node **, 374 struct pf_krule *, struct pf_addr *, sa_family_t); 375 static u_int pf_purge_expired_states(u_int, int); 376 static void pf_purge_unlinked_rules(void); 377 static int pf_mtag_uminit(void *, int, int); 378 static void pf_mtag_free(struct m_tag *); 379 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 380 int, struct pf_state_key *); 381 #ifdef INET 382 static void pf_route(struct mbuf **, struct pf_krule *, 383 struct ifnet *, struct pf_kstate *, 384 struct pf_pdesc *, struct inpcb *); 385 #endif /* INET */ 386 #ifdef INET6 387 static void pf_change_a6(struct pf_addr *, u_int16_t *, 388 struct pf_addr *, u_int8_t); 389 static void pf_route6(struct mbuf **, struct pf_krule *, 390 struct ifnet *, struct pf_kstate *, 391 struct pf_pdesc *, struct inpcb *); 392 #endif /* INET6 */ 393 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 394 395 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 396 397 extern int pf_end_threads; 398 extern struct proc *pf_purge_proc; 399 400 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 401 402 enum { PF_ICMP_MULTI_NONE, PF_ICMP_MULTI_LINK }; 403 404 #define PACKET_UNDO_NAT(_m, _pd, _off, _s) \ 405 do { \ 406 struct pf_state_key *nk; \ 407 if ((pd->dir) == PF_OUT) \ 408 nk = (_s)->key[PF_SK_STACK]; \ 409 else \ 410 nk = (_s)->key[PF_SK_WIRE]; \ 411 pf_packet_rework_nat(_m, _pd, _off, nk); \ 412 } while (0) 413 414 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 415 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED) 416 417 #define STATE_LOOKUP(k, s, pd) \ 418 do { \ 419 (s) = pf_find_state((pd->kif), (k), (pd->dir)); \ 420 SDT_PROBE5(pf, ip, state, lookup, pd->kif, k, (pd->dir), pd, (s)); \ 421 if ((s) == NULL) \ 422 return (PF_DROP); \ 423 if (PACKET_LOOPED(pd)) \ 424 return (PF_PASS); \ 425 } while (0) 426 427 static struct pfi_kkif * 428 BOUND_IFACE(struct pf_kstate *st, struct pfi_kkif *k) 429 { 430 SDT_PROBE2(pf, ip, , bound_iface, st, k); 431 432 /* Floating unless otherwise specified. */ 433 if (! (st->rule->rule_flag & PFRULE_IFBOUND)) 434 return (V_pfi_all); 435 436 /* 437 * Initially set to all, because we don't know what interface we'll be 438 * sending this out when we create the state. 439 */ 440 if (st->rule->rt == PF_REPLYTO) 441 return (V_pfi_all); 442 443 /* Don't overrule the interface for states created on incoming packets. */ 444 if (st->direction == PF_IN) 445 return (k); 446 447 /* No route-to, so don't overrule. */ 448 if (st->rt != PF_ROUTETO) 449 return (k); 450 451 /* Bind to the route-to interface. */ 452 return (st->rt_kif); 453 } 454 455 #define STATE_INC_COUNTERS(s) \ 456 do { \ 457 struct pf_krule_item *mrm; \ 458 counter_u64_add(s->rule->states_cur, 1); \ 459 counter_u64_add(s->rule->states_tot, 1); \ 460 if (s->anchor != NULL) { \ 461 counter_u64_add(s->anchor->states_cur, 1); \ 462 counter_u64_add(s->anchor->states_tot, 1); \ 463 } \ 464 if (s->nat_rule != NULL) { \ 465 counter_u64_add(s->nat_rule->states_cur, 1);\ 466 counter_u64_add(s->nat_rule->states_tot, 1);\ 467 } \ 468 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 469 counter_u64_add(mrm->r->states_cur, 1); \ 470 counter_u64_add(mrm->r->states_tot, 1); \ 471 } \ 472 } while (0) 473 474 #define STATE_DEC_COUNTERS(s) \ 475 do { \ 476 struct pf_krule_item *mrm; \ 477 if (s->nat_rule != NULL) \ 478 counter_u64_add(s->nat_rule->states_cur, -1);\ 479 if (s->anchor != NULL) \ 480 counter_u64_add(s->anchor->states_cur, -1); \ 481 counter_u64_add(s->rule->states_cur, -1); \ 482 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 483 counter_u64_add(mrm->r->states_cur, -1); \ 484 } while (0) 485 486 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 487 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 488 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 489 VNET_DEFINE(struct pf_idhash *, pf_idhash); 490 VNET_DEFINE(struct pf_srchash *, pf_srchash); 491 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash); 492 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping); 493 494 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 495 "pf(4)"); 496 497 VNET_DEFINE(u_long, pf_hashmask); 498 VNET_DEFINE(u_long, pf_srchashmask); 499 VNET_DEFINE(u_long, pf_udpendpointhashmask); 500 VNET_DEFINE_STATIC(u_long, pf_hashsize); 501 #define V_pf_hashsize VNET(pf_hashsize) 502 VNET_DEFINE_STATIC(u_long, pf_srchashsize); 503 #define V_pf_srchashsize VNET(pf_srchashsize) 504 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize); 505 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize) 506 u_long pf_ioctl_maxcount = 65535; 507 508 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 509 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 510 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 511 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 512 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 513 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable"); 514 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 515 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 516 517 VNET_DEFINE(void *, pf_swi_cookie); 518 VNET_DEFINE(struct intr_event *, pf_swi_ie); 519 520 VNET_DEFINE(uint32_t, pf_hashseed); 521 #define V_pf_hashseed VNET(pf_hashseed) 522 523 static void 524 pf_sctp_checksum(struct mbuf *m, int off) 525 { 526 uint32_t sum = 0; 527 528 /* Zero out the checksum, to enable recalculation. */ 529 m_copyback(m, off + offsetof(struct sctphdr, checksum), 530 sizeof(sum), (caddr_t)&sum); 531 532 sum = sctp_calculate_cksum(m, off); 533 534 m_copyback(m, off + offsetof(struct sctphdr, checksum), 535 sizeof(sum), (caddr_t)&sum); 536 } 537 538 int 539 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 540 { 541 542 switch (af) { 543 #ifdef INET 544 case AF_INET: 545 if (a->addr32[0] > b->addr32[0]) 546 return (1); 547 if (a->addr32[0] < b->addr32[0]) 548 return (-1); 549 break; 550 #endif /* INET */ 551 #ifdef INET6 552 case AF_INET6: 553 if (a->addr32[3] > b->addr32[3]) 554 return (1); 555 if (a->addr32[3] < b->addr32[3]) 556 return (-1); 557 if (a->addr32[2] > b->addr32[2]) 558 return (1); 559 if (a->addr32[2] < b->addr32[2]) 560 return (-1); 561 if (a->addr32[1] > b->addr32[1]) 562 return (1); 563 if (a->addr32[1] < b->addr32[1]) 564 return (-1); 565 if (a->addr32[0] > b->addr32[0]) 566 return (1); 567 if (a->addr32[0] < b->addr32[0]) 568 return (-1); 569 break; 570 #endif /* INET6 */ 571 } 572 return (0); 573 } 574 575 static bool 576 pf_is_loopback(sa_family_t af, struct pf_addr *addr) 577 { 578 switch (af) { 579 case AF_INET: 580 return IN_LOOPBACK(ntohl(addr->v4.s_addr)); 581 case AF_INET6: 582 return IN6_IS_ADDR_LOOPBACK(&addr->v6); 583 default: 584 panic("Unknown af %d", af); 585 } 586 } 587 588 static void 589 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 590 struct pf_state_key *nk) 591 { 592 593 switch (pd->proto) { 594 case IPPROTO_TCP: { 595 struct tcphdr *th = &pd->hdr.tcp; 596 597 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 598 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 599 &th->th_sum, &nk->addr[pd->sidx], 600 nk->port[pd->sidx], 0, pd->af); 601 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 602 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 603 &th->th_sum, &nk->addr[pd->didx], 604 nk->port[pd->didx], 0, pd->af); 605 m_copyback(m, off, sizeof(*th), (caddr_t)th); 606 break; 607 } 608 case IPPROTO_UDP: { 609 struct udphdr *uh = &pd->hdr.udp; 610 611 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 612 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 613 &uh->uh_sum, &nk->addr[pd->sidx], 614 nk->port[pd->sidx], 1, pd->af); 615 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 616 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 617 &uh->uh_sum, &nk->addr[pd->didx], 618 nk->port[pd->didx], 1, pd->af); 619 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 620 break; 621 } 622 case IPPROTO_SCTP: { 623 struct sctphdr *sh = &pd->hdr.sctp; 624 uint16_t checksum = 0; 625 626 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 627 pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum, 628 &checksum, &nk->addr[pd->sidx], 629 nk->port[pd->sidx], 1, pd->af); 630 } 631 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 632 pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum, 633 &checksum, &nk->addr[pd->didx], 634 nk->port[pd->didx], 1, pd->af); 635 } 636 637 break; 638 } 639 case IPPROTO_ICMP: { 640 struct icmp *ih = &pd->hdr.icmp; 641 642 if (nk->port[pd->sidx] != ih->icmp_id) { 643 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 644 ih->icmp_cksum, ih->icmp_id, 645 nk->port[pd->sidx], 0); 646 ih->icmp_id = nk->port[pd->sidx]; 647 pd->sport = &ih->icmp_id; 648 649 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 650 } 651 /* FALLTHROUGH */ 652 } 653 default: 654 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 655 switch (pd->af) { 656 case AF_INET: 657 pf_change_a(&pd->src->v4.s_addr, 658 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 659 0); 660 break; 661 case AF_INET6: 662 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 663 break; 664 } 665 } 666 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 667 switch (pd->af) { 668 case AF_INET: 669 pf_change_a(&pd->dst->v4.s_addr, 670 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 671 0); 672 break; 673 case AF_INET6: 674 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 675 break; 676 } 677 } 678 break; 679 } 680 } 681 682 static __inline uint32_t 683 pf_hashkey(const struct pf_state_key *sk) 684 { 685 uint32_t h; 686 687 h = murmur3_32_hash32((const uint32_t *)sk, 688 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 689 V_pf_hashseed); 690 691 return (h & V_pf_hashmask); 692 } 693 694 static __inline uint32_t 695 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 696 { 697 uint32_t h; 698 699 switch (af) { 700 case AF_INET: 701 h = murmur3_32_hash32((uint32_t *)&addr->v4, 702 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 703 break; 704 case AF_INET6: 705 h = murmur3_32_hash32((uint32_t *)&addr->v6, 706 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 707 break; 708 } 709 710 return (h & V_pf_srchashmask); 711 } 712 713 static inline uint32_t 714 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint) 715 { 716 uint32_t h; 717 718 h = murmur3_32_hash32((uint32_t *)endpoint, 719 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t), 720 V_pf_hashseed); 721 return (h & V_pf_udpendpointhashmask); 722 } 723 724 #ifdef ALTQ 725 static int 726 pf_state_hash(struct pf_kstate *s) 727 { 728 u_int32_t hv = (intptr_t)s / sizeof(*s); 729 730 hv ^= crc32(&s->src, sizeof(s->src)); 731 hv ^= crc32(&s->dst, sizeof(s->dst)); 732 if (hv == 0) 733 hv = 1; 734 return (hv); 735 } 736 #endif 737 738 static __inline void 739 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 740 { 741 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 742 s->dst.state = newstate; 743 if (which == PF_PEER_DST) 744 return; 745 if (s->src.state == newstate) 746 return; 747 if (s->creatorid == V_pf_status.hostid && 748 s->key[PF_SK_STACK] != NULL && 749 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 750 !(TCPS_HAVEESTABLISHED(s->src.state) || 751 s->src.state == TCPS_CLOSED) && 752 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 753 atomic_add_32(&V_pf_status.states_halfopen, -1); 754 755 s->src.state = newstate; 756 } 757 758 #ifdef INET6 759 void 760 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 761 { 762 switch (af) { 763 #ifdef INET 764 case AF_INET: 765 memcpy(&dst->v4, &src->v4, sizeof(dst->v4)); 766 break; 767 #endif /* INET */ 768 case AF_INET6: 769 memcpy(&dst->v6, &src->v6, sizeof(dst->v6)); 770 break; 771 } 772 } 773 #endif /* INET6 */ 774 775 static void 776 pf_init_threshold(struct pf_threshold *threshold, 777 u_int32_t limit, u_int32_t seconds) 778 { 779 threshold->limit = limit * PF_THRESHOLD_MULT; 780 threshold->seconds = seconds; 781 threshold->count = 0; 782 threshold->last = time_uptime; 783 } 784 785 static void 786 pf_add_threshold(struct pf_threshold *threshold) 787 { 788 u_int32_t t = time_uptime, diff = t - threshold->last; 789 790 if (diff >= threshold->seconds) 791 threshold->count = 0; 792 else 793 threshold->count -= threshold->count * diff / 794 threshold->seconds; 795 threshold->count += PF_THRESHOLD_MULT; 796 threshold->last = t; 797 } 798 799 static int 800 pf_check_threshold(struct pf_threshold *threshold) 801 { 802 return (threshold->count > threshold->limit); 803 } 804 805 static int 806 pf_src_connlimit(struct pf_kstate **state) 807 { 808 struct pf_overload_entry *pfoe; 809 int bad = 0; 810 811 PF_STATE_LOCK_ASSERT(*state); 812 /* 813 * XXXKS: The src node is accessed unlocked! 814 * PF_SRC_NODE_LOCK_ASSERT((*state)->src_node); 815 */ 816 817 (*state)->src_node->conn++; 818 (*state)->src.tcp_est = 1; 819 pf_add_threshold(&(*state)->src_node->conn_rate); 820 821 if ((*state)->rule->max_src_conn && 822 (*state)->rule->max_src_conn < 823 (*state)->src_node->conn) { 824 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 825 bad++; 826 } 827 828 if ((*state)->rule->max_src_conn_rate.limit && 829 pf_check_threshold(&(*state)->src_node->conn_rate)) { 830 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 831 bad++; 832 } 833 834 if (!bad) 835 return (0); 836 837 /* Kill this state. */ 838 (*state)->timeout = PFTM_PURGE; 839 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 840 841 if ((*state)->rule->overload_tbl == NULL) 842 return (1); 843 844 /* Schedule overloading and flushing task. */ 845 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 846 if (pfoe == NULL) 847 return (1); /* too bad :( */ 848 849 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 850 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 851 pfoe->rule = (*state)->rule; 852 pfoe->dir = (*state)->direction; 853 PF_OVERLOADQ_LOCK(); 854 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 855 PF_OVERLOADQ_UNLOCK(); 856 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 857 858 return (1); 859 } 860 861 static void 862 pf_overload_task(void *v, int pending) 863 { 864 struct pf_overload_head queue; 865 struct pfr_addr p; 866 struct pf_overload_entry *pfoe, *pfoe1; 867 uint32_t killed = 0; 868 869 CURVNET_SET((struct vnet *)v); 870 871 PF_OVERLOADQ_LOCK(); 872 queue = V_pf_overloadqueue; 873 SLIST_INIT(&V_pf_overloadqueue); 874 PF_OVERLOADQ_UNLOCK(); 875 876 bzero(&p, sizeof(p)); 877 SLIST_FOREACH(pfoe, &queue, next) { 878 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 879 if (V_pf_status.debug >= PF_DEBUG_MISC) { 880 printf("%s: blocking address ", __func__); 881 pf_print_host(&pfoe->addr, 0, pfoe->af); 882 printf("\n"); 883 } 884 885 p.pfra_af = pfoe->af; 886 switch (pfoe->af) { 887 #ifdef INET 888 case AF_INET: 889 p.pfra_net = 32; 890 p.pfra_ip4addr = pfoe->addr.v4; 891 break; 892 #endif 893 #ifdef INET6 894 case AF_INET6: 895 p.pfra_net = 128; 896 p.pfra_ip6addr = pfoe->addr.v6; 897 break; 898 #endif 899 } 900 901 PF_RULES_WLOCK(); 902 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 903 PF_RULES_WUNLOCK(); 904 } 905 906 /* 907 * Remove those entries, that don't need flushing. 908 */ 909 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 910 if (pfoe->rule->flush == 0) { 911 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 912 free(pfoe, M_PFTEMP); 913 } else 914 counter_u64_add( 915 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 916 917 /* If nothing to flush, return. */ 918 if (SLIST_EMPTY(&queue)) { 919 CURVNET_RESTORE(); 920 return; 921 } 922 923 for (int i = 0; i <= V_pf_hashmask; i++) { 924 struct pf_idhash *ih = &V_pf_idhash[i]; 925 struct pf_state_key *sk; 926 struct pf_kstate *s; 927 928 PF_HASHROW_LOCK(ih); 929 LIST_FOREACH(s, &ih->states, entry) { 930 sk = s->key[PF_SK_WIRE]; 931 SLIST_FOREACH(pfoe, &queue, next) 932 if (sk->af == pfoe->af && 933 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 934 pfoe->rule == s->rule) && 935 ((pfoe->dir == PF_OUT && 936 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 937 (pfoe->dir == PF_IN && 938 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 939 s->timeout = PFTM_PURGE; 940 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 941 killed++; 942 } 943 } 944 PF_HASHROW_UNLOCK(ih); 945 } 946 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 947 free(pfoe, M_PFTEMP); 948 if (V_pf_status.debug >= PF_DEBUG_MISC) 949 printf("%s: %u states killed", __func__, killed); 950 951 CURVNET_RESTORE(); 952 } 953 954 /* 955 * Can return locked on failure, so that we can consistently 956 * allocate and insert a new one. 957 */ 958 struct pf_ksrc_node * 959 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 960 struct pf_srchash **sh, bool returnlocked) 961 { 962 struct pf_ksrc_node *n; 963 964 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 965 966 *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 967 PF_HASHROW_LOCK(*sh); 968 LIST_FOREACH(n, &(*sh)->nodes, entry) 969 if (n->rule == rule && n->af == af && 970 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 971 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 972 break; 973 974 if (n != NULL) { 975 n->states++; 976 PF_HASHROW_UNLOCK(*sh); 977 } else if (returnlocked == false) 978 PF_HASHROW_UNLOCK(*sh); 979 980 return (n); 981 } 982 983 static void 984 pf_free_src_node(struct pf_ksrc_node *sn) 985 { 986 987 for (int i = 0; i < 2; i++) { 988 counter_u64_free(sn->bytes[i]); 989 counter_u64_free(sn->packets[i]); 990 } 991 uma_zfree(V_pf_sources_z, sn); 992 } 993 994 static u_short 995 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 996 struct pf_addr *src, sa_family_t af) 997 { 998 u_short reason = 0; 999 struct pf_srchash *sh = NULL; 1000 1001 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 1002 rule->rpool.opts & PF_POOL_STICKYADDR), 1003 ("%s for non-tracking rule %p", __func__, rule)); 1004 1005 if (*sn == NULL) 1006 *sn = pf_find_src_node(src, rule, af, &sh, true); 1007 1008 if (*sn == NULL) { 1009 PF_HASHROW_ASSERT(sh); 1010 1011 if (rule->max_src_nodes && 1012 counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) { 1013 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); 1014 PF_HASHROW_UNLOCK(sh); 1015 reason = PFRES_SRCLIMIT; 1016 goto done; 1017 } 1018 1019 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 1020 if ((*sn) == NULL) { 1021 PF_HASHROW_UNLOCK(sh); 1022 reason = PFRES_MEMORY; 1023 goto done; 1024 } 1025 1026 for (int i = 0; i < 2; i++) { 1027 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 1028 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 1029 1030 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 1031 pf_free_src_node(*sn); 1032 PF_HASHROW_UNLOCK(sh); 1033 reason = PFRES_MEMORY; 1034 goto done; 1035 } 1036 } 1037 1038 pf_init_threshold(&(*sn)->conn_rate, 1039 rule->max_src_conn_rate.limit, 1040 rule->max_src_conn_rate.seconds); 1041 1042 MPASS((*sn)->lock == NULL); 1043 (*sn)->lock = &sh->lock; 1044 1045 (*sn)->af = af; 1046 (*sn)->rule = rule; 1047 PF_ACPY(&(*sn)->addr, src, af); 1048 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 1049 (*sn)->creation = time_uptime; 1050 (*sn)->ruletype = rule->action; 1051 (*sn)->states = 1; 1052 if ((*sn)->rule != NULL) 1053 counter_u64_add((*sn)->rule->src_nodes, 1); 1054 PF_HASHROW_UNLOCK(sh); 1055 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 1056 } else { 1057 if (rule->max_src_states && 1058 (*sn)->states >= rule->max_src_states) { 1059 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 1060 1); 1061 reason = PFRES_SRCLIMIT; 1062 goto done; 1063 } 1064 } 1065 done: 1066 return (reason); 1067 } 1068 1069 void 1070 pf_unlink_src_node(struct pf_ksrc_node *src) 1071 { 1072 PF_SRC_NODE_LOCK_ASSERT(src); 1073 1074 LIST_REMOVE(src, entry); 1075 if (src->rule) 1076 counter_u64_add(src->rule->src_nodes, -1); 1077 } 1078 1079 u_int 1080 pf_free_src_nodes(struct pf_ksrc_node_list *head) 1081 { 1082 struct pf_ksrc_node *sn, *tmp; 1083 u_int count = 0; 1084 1085 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 1086 pf_free_src_node(sn); 1087 count++; 1088 } 1089 1090 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 1091 1092 return (count); 1093 } 1094 1095 void 1096 pf_mtag_initialize(void) 1097 { 1098 1099 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 1100 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 1101 UMA_ALIGN_PTR, 0); 1102 } 1103 1104 /* Per-vnet data storage structures initialization. */ 1105 void 1106 pf_initialize(void) 1107 { 1108 struct pf_keyhash *kh; 1109 struct pf_idhash *ih; 1110 struct pf_srchash *sh; 1111 struct pf_udpendpointhash *uh; 1112 u_int i; 1113 1114 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 1115 V_pf_hashsize = PF_HASHSIZ; 1116 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 1117 V_pf_srchashsize = PF_SRCHASHSIZ; 1118 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize)) 1119 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1120 1121 V_pf_hashseed = arc4random(); 1122 1123 /* States and state keys storage. */ 1124 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1125 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1126 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1127 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1128 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1129 1130 V_pf_state_key_z = uma_zcreate("pf state keys", 1131 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1132 UMA_ALIGN_PTR, 0); 1133 1134 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash), 1135 M_PFHASH, M_NOWAIT | M_ZERO); 1136 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash), 1137 M_PFHASH, M_NOWAIT | M_ZERO); 1138 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1139 printf("pf: Unable to allocate memory for " 1140 "state_hashsize %lu.\n", V_pf_hashsize); 1141 1142 free(V_pf_keyhash, M_PFHASH); 1143 free(V_pf_idhash, M_PFHASH); 1144 1145 V_pf_hashsize = PF_HASHSIZ; 1146 V_pf_keyhash = mallocarray(V_pf_hashsize, 1147 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1148 V_pf_idhash = mallocarray(V_pf_hashsize, 1149 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1150 } 1151 1152 V_pf_hashmask = V_pf_hashsize - 1; 1153 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 1154 i++, kh++, ih++) { 1155 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1156 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1157 } 1158 1159 /* Source nodes. */ 1160 V_pf_sources_z = uma_zcreate("pf source nodes", 1161 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1162 0); 1163 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1164 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1165 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1166 1167 V_pf_srchash = mallocarray(V_pf_srchashsize, 1168 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1169 if (V_pf_srchash == NULL) { 1170 printf("pf: Unable to allocate memory for " 1171 "source_hashsize %lu.\n", V_pf_srchashsize); 1172 1173 V_pf_srchashsize = PF_SRCHASHSIZ; 1174 V_pf_srchash = mallocarray(V_pf_srchashsize, 1175 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1176 } 1177 1178 V_pf_srchashmask = V_pf_srchashsize - 1; 1179 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 1180 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1181 1182 1183 /* UDP endpoint mappings. */ 1184 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings", 1185 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL, 1186 UMA_ALIGN_PTR, 0); 1187 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1188 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO); 1189 if (V_pf_udpendpointhash == NULL) { 1190 printf("pf: Unable to allocate memory for " 1191 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize); 1192 1193 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1194 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1195 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO); 1196 } 1197 1198 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1; 1199 for (i = 0, uh = V_pf_udpendpointhash; 1200 i <= V_pf_udpendpointhashmask; 1201 i++, uh++) { 1202 mtx_init(&uh->lock, "pf_udpendpointhash", NULL, 1203 MTX_DEF | MTX_DUPOK); 1204 } 1205 1206 /* ALTQ */ 1207 TAILQ_INIT(&V_pf_altqs[0]); 1208 TAILQ_INIT(&V_pf_altqs[1]); 1209 TAILQ_INIT(&V_pf_altqs[2]); 1210 TAILQ_INIT(&V_pf_altqs[3]); 1211 TAILQ_INIT(&V_pf_pabuf); 1212 V_pf_altqs_active = &V_pf_altqs[0]; 1213 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1214 V_pf_altqs_inactive = &V_pf_altqs[2]; 1215 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1216 1217 /* Send & overload+flush queues. */ 1218 STAILQ_INIT(&V_pf_sendqueue); 1219 SLIST_INIT(&V_pf_overloadqueue); 1220 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1221 1222 /* Unlinked, but may be referenced rules. */ 1223 TAILQ_INIT(&V_pf_unlinked_rules); 1224 } 1225 1226 void 1227 pf_mtag_cleanup(void) 1228 { 1229 1230 uma_zdestroy(pf_mtag_z); 1231 } 1232 1233 void 1234 pf_cleanup(void) 1235 { 1236 struct pf_keyhash *kh; 1237 struct pf_idhash *ih; 1238 struct pf_srchash *sh; 1239 struct pf_udpendpointhash *uh; 1240 struct pf_send_entry *pfse, *next; 1241 u_int i; 1242 1243 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; 1244 i <= V_pf_hashmask; 1245 i++, kh++, ih++) { 1246 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1247 __func__)); 1248 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1249 __func__)); 1250 mtx_destroy(&kh->lock); 1251 mtx_destroy(&ih->lock); 1252 } 1253 free(V_pf_keyhash, M_PFHASH); 1254 free(V_pf_idhash, M_PFHASH); 1255 1256 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1257 KASSERT(LIST_EMPTY(&sh->nodes), 1258 ("%s: source node hash not empty", __func__)); 1259 mtx_destroy(&sh->lock); 1260 } 1261 free(V_pf_srchash, M_PFHASH); 1262 1263 for (i = 0, uh = V_pf_udpendpointhash; 1264 i <= V_pf_udpendpointhashmask; 1265 i++, uh++) { 1266 KASSERT(LIST_EMPTY(&uh->endpoints), 1267 ("%s: udp endpoint hash not empty", __func__)); 1268 mtx_destroy(&uh->lock); 1269 } 1270 free(V_pf_udpendpointhash, M_PFHASH); 1271 1272 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1273 m_freem(pfse->pfse_m); 1274 free(pfse, M_PFTEMP); 1275 } 1276 MPASS(RB_EMPTY(&V_pf_sctp_endpoints)); 1277 1278 uma_zdestroy(V_pf_sources_z); 1279 uma_zdestroy(V_pf_state_z); 1280 uma_zdestroy(V_pf_state_key_z); 1281 uma_zdestroy(V_pf_udp_mapping_z); 1282 } 1283 1284 static int 1285 pf_mtag_uminit(void *mem, int size, int how) 1286 { 1287 struct m_tag *t; 1288 1289 t = (struct m_tag *)mem; 1290 t->m_tag_cookie = MTAG_ABI_COMPAT; 1291 t->m_tag_id = PACKET_TAG_PF; 1292 t->m_tag_len = sizeof(struct pf_mtag); 1293 t->m_tag_free = pf_mtag_free; 1294 1295 return (0); 1296 } 1297 1298 static void 1299 pf_mtag_free(struct m_tag *t) 1300 { 1301 1302 uma_zfree(pf_mtag_z, t); 1303 } 1304 1305 struct pf_mtag * 1306 pf_get_mtag(struct mbuf *m) 1307 { 1308 struct m_tag *mtag; 1309 1310 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1311 return ((struct pf_mtag *)(mtag + 1)); 1312 1313 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1314 if (mtag == NULL) 1315 return (NULL); 1316 bzero(mtag + 1, sizeof(struct pf_mtag)); 1317 m_tag_prepend(m, mtag); 1318 1319 return ((struct pf_mtag *)(mtag + 1)); 1320 } 1321 1322 static int 1323 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1324 struct pf_kstate *s) 1325 { 1326 struct pf_keyhash *khs, *khw, *kh; 1327 struct pf_state_key *sk, *cur; 1328 struct pf_kstate *si, *olds = NULL; 1329 int idx; 1330 1331 NET_EPOCH_ASSERT(); 1332 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1333 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1334 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1335 1336 /* 1337 * We need to lock hash slots of both keys. To avoid deadlock 1338 * we always lock the slot with lower address first. Unlock order 1339 * isn't important. 1340 * 1341 * We also need to lock ID hash slot before dropping key 1342 * locks. On success we return with ID hash slot locked. 1343 */ 1344 1345 if (skw == sks) { 1346 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1347 PF_HASHROW_LOCK(khs); 1348 } else { 1349 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1350 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1351 if (khs == khw) { 1352 PF_HASHROW_LOCK(khs); 1353 } else if (khs < khw) { 1354 PF_HASHROW_LOCK(khs); 1355 PF_HASHROW_LOCK(khw); 1356 } else { 1357 PF_HASHROW_LOCK(khw); 1358 PF_HASHROW_LOCK(khs); 1359 } 1360 } 1361 1362 #define KEYS_UNLOCK() do { \ 1363 if (khs != khw) { \ 1364 PF_HASHROW_UNLOCK(khs); \ 1365 PF_HASHROW_UNLOCK(khw); \ 1366 } else \ 1367 PF_HASHROW_UNLOCK(khs); \ 1368 } while (0) 1369 1370 /* 1371 * First run: start with wire key. 1372 */ 1373 sk = skw; 1374 kh = khw; 1375 idx = PF_SK_WIRE; 1376 1377 MPASS(s->lock == NULL); 1378 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1379 1380 keyattach: 1381 LIST_FOREACH(cur, &kh->keys, entry) 1382 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1383 break; 1384 1385 if (cur != NULL) { 1386 /* Key exists. Check for same kif, if none, add to key. */ 1387 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1388 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1389 1390 PF_HASHROW_LOCK(ih); 1391 if (si->kif == s->kif && 1392 si->direction == s->direction) { 1393 if (sk->proto == IPPROTO_TCP && 1394 si->src.state >= TCPS_FIN_WAIT_2 && 1395 si->dst.state >= TCPS_FIN_WAIT_2) { 1396 /* 1397 * New state matches an old >FIN_WAIT_2 1398 * state. We can't drop key hash locks, 1399 * thus we can't unlink it properly. 1400 * 1401 * As a workaround we drop it into 1402 * TCPS_CLOSED state, schedule purge 1403 * ASAP and push it into the very end 1404 * of the slot TAILQ, so that it won't 1405 * conflict with our new state. 1406 */ 1407 pf_set_protostate(si, PF_PEER_BOTH, 1408 TCPS_CLOSED); 1409 si->timeout = PFTM_PURGE; 1410 olds = si; 1411 } else { 1412 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1413 printf("pf: %s key attach " 1414 "failed on %s: ", 1415 (idx == PF_SK_WIRE) ? 1416 "wire" : "stack", 1417 s->kif->pfik_name); 1418 pf_print_state_parts(s, 1419 (idx == PF_SK_WIRE) ? 1420 sk : NULL, 1421 (idx == PF_SK_STACK) ? 1422 sk : NULL); 1423 printf(", existing: "); 1424 pf_print_state_parts(si, 1425 (idx == PF_SK_WIRE) ? 1426 sk : NULL, 1427 (idx == PF_SK_STACK) ? 1428 sk : NULL); 1429 printf("\n"); 1430 } 1431 s->timeout = PFTM_UNLINKED; 1432 PF_HASHROW_UNLOCK(ih); 1433 KEYS_UNLOCK(); 1434 uma_zfree(V_pf_state_key_z, sk); 1435 if (idx == PF_SK_STACK) 1436 pf_detach_state(s); 1437 return (EEXIST); /* collision! */ 1438 } 1439 } 1440 PF_HASHROW_UNLOCK(ih); 1441 } 1442 uma_zfree(V_pf_state_key_z, sk); 1443 s->key[idx] = cur; 1444 } else { 1445 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1446 s->key[idx] = sk; 1447 } 1448 1449 stateattach: 1450 /* List is sorted, if-bound states before floating. */ 1451 if (s->kif == V_pfi_all) 1452 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1453 else 1454 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1455 1456 if (olds) { 1457 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1458 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1459 key_list[idx]); 1460 olds = NULL; 1461 } 1462 1463 /* 1464 * Attach done. See how should we (or should not?) 1465 * attach a second key. 1466 */ 1467 if (sks == skw) { 1468 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1469 idx = PF_SK_STACK; 1470 sks = NULL; 1471 goto stateattach; 1472 } else if (sks != NULL) { 1473 /* 1474 * Continue attaching with stack key. 1475 */ 1476 sk = sks; 1477 kh = khs; 1478 idx = PF_SK_STACK; 1479 sks = NULL; 1480 goto keyattach; 1481 } 1482 1483 PF_STATE_LOCK(s); 1484 KEYS_UNLOCK(); 1485 1486 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1487 ("%s failure", __func__)); 1488 1489 return (0); 1490 #undef KEYS_UNLOCK 1491 } 1492 1493 static void 1494 pf_detach_state(struct pf_kstate *s) 1495 { 1496 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1497 struct pf_keyhash *kh; 1498 1499 NET_EPOCH_ASSERT(); 1500 MPASS(s->timeout >= PFTM_MAX); 1501 1502 pf_sctp_multihome_detach_addr(s); 1503 1504 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr) 1505 V_pflow_export_state_ptr(s); 1506 1507 if (sks != NULL) { 1508 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1509 PF_HASHROW_LOCK(kh); 1510 if (s->key[PF_SK_STACK] != NULL) 1511 pf_state_key_detach(s, PF_SK_STACK); 1512 /* 1513 * If both point to same key, then we are done. 1514 */ 1515 if (sks == s->key[PF_SK_WIRE]) { 1516 pf_state_key_detach(s, PF_SK_WIRE); 1517 PF_HASHROW_UNLOCK(kh); 1518 return; 1519 } 1520 PF_HASHROW_UNLOCK(kh); 1521 } 1522 1523 if (s->key[PF_SK_WIRE] != NULL) { 1524 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1525 PF_HASHROW_LOCK(kh); 1526 if (s->key[PF_SK_WIRE] != NULL) 1527 pf_state_key_detach(s, PF_SK_WIRE); 1528 PF_HASHROW_UNLOCK(kh); 1529 } 1530 } 1531 1532 static void 1533 pf_state_key_detach(struct pf_kstate *s, int idx) 1534 { 1535 struct pf_state_key *sk = s->key[idx]; 1536 #ifdef INVARIANTS 1537 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1538 1539 PF_HASHROW_ASSERT(kh); 1540 #endif 1541 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1542 s->key[idx] = NULL; 1543 1544 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1545 LIST_REMOVE(sk, entry); 1546 uma_zfree(V_pf_state_key_z, sk); 1547 } 1548 } 1549 1550 static int 1551 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1552 { 1553 struct pf_state_key *sk = mem; 1554 1555 bzero(sk, sizeof(struct pf_state_key_cmp)); 1556 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1557 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1558 1559 return (0); 1560 } 1561 1562 static int 1563 pf_state_key_addr_setup(struct pf_pdesc *pd, 1564 struct pf_state_key_cmp *key, int multi) 1565 { 1566 struct pf_addr *saddr = pd->src; 1567 struct pf_addr *daddr = pd->dst; 1568 #ifdef INET6 1569 struct nd_neighbor_solicit nd; 1570 struct pf_addr *target; 1571 u_short action, reason; 1572 1573 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6) 1574 goto copy; 1575 1576 switch (pd->hdr.icmp6.icmp6_type) { 1577 case ND_NEIGHBOR_SOLICIT: 1578 if (multi) 1579 return (-1); 1580 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af)) 1581 return (-1); 1582 target = (struct pf_addr *)&nd.nd_ns_target; 1583 daddr = target; 1584 break; 1585 case ND_NEIGHBOR_ADVERT: 1586 if (multi) 1587 return (-1); 1588 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af)) 1589 return (-1); 1590 target = (struct pf_addr *)&nd.nd_ns_target; 1591 saddr = target; 1592 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) { 1593 key->addr[pd->didx].addr32[0] = 0; 1594 key->addr[pd->didx].addr32[1] = 0; 1595 key->addr[pd->didx].addr32[2] = 0; 1596 key->addr[pd->didx].addr32[3] = 0; 1597 daddr = NULL; /* overwritten */ 1598 } 1599 break; 1600 default: 1601 if (multi == PF_ICMP_MULTI_LINK) { 1602 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL; 1603 key->addr[pd->sidx].addr32[1] = 0; 1604 key->addr[pd->sidx].addr32[2] = 0; 1605 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE; 1606 saddr = NULL; /* overwritten */ 1607 } 1608 } 1609 copy: 1610 #endif 1611 if (saddr) 1612 PF_ACPY(&key->addr[pd->sidx], saddr, pd->af); 1613 if (daddr) 1614 PF_ACPY(&key->addr[pd->didx], daddr, pd->af); 1615 1616 return (0); 1617 } 1618 1619 struct pf_state_key * 1620 pf_state_key_setup(struct pf_pdesc *pd, 1621 struct pf_addr *saddr, struct pf_addr *daddr, u_int16_t sport, 1622 u_int16_t dport) 1623 { 1624 struct pf_state_key *sk; 1625 1626 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1627 if (sk == NULL) 1628 return (NULL); 1629 1630 if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)sk, 1631 0)) { 1632 uma_zfree(V_pf_state_key_z, sk); 1633 return (NULL); 1634 } 1635 1636 sk->port[pd->sidx] = sport; 1637 sk->port[pd->didx] = dport; 1638 sk->proto = pd->proto; 1639 sk->af = pd->af; 1640 1641 return (sk); 1642 } 1643 1644 struct pf_state_key * 1645 pf_state_key_clone(const struct pf_state_key *orig) 1646 { 1647 struct pf_state_key *sk; 1648 1649 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1650 if (sk == NULL) 1651 return (NULL); 1652 1653 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1654 1655 return (sk); 1656 } 1657 1658 int 1659 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1660 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1661 { 1662 struct pf_idhash *ih; 1663 struct pf_kstate *cur; 1664 int error; 1665 1666 NET_EPOCH_ASSERT(); 1667 1668 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1669 ("%s: sks not pristine", __func__)); 1670 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1671 ("%s: skw not pristine", __func__)); 1672 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1673 1674 s->kif = kif; 1675 s->orig_kif = orig_kif; 1676 1677 if (s->id == 0 && s->creatorid == 0) { 1678 s->id = alloc_unr64(&V_pf_stateid); 1679 s->id = htobe64(s->id); 1680 s->creatorid = V_pf_status.hostid; 1681 } 1682 1683 /* Returns with ID locked on success. */ 1684 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1685 return (error); 1686 1687 ih = &V_pf_idhash[PF_IDHASH(s)]; 1688 PF_HASHROW_ASSERT(ih); 1689 LIST_FOREACH(cur, &ih->states, entry) 1690 if (cur->id == s->id && cur->creatorid == s->creatorid) 1691 break; 1692 1693 if (cur != NULL) { 1694 s->timeout = PFTM_UNLINKED; 1695 PF_HASHROW_UNLOCK(ih); 1696 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1697 printf("pf: state ID collision: " 1698 "id: %016llx creatorid: %08x\n", 1699 (unsigned long long)be64toh(s->id), 1700 ntohl(s->creatorid)); 1701 } 1702 pf_detach_state(s); 1703 return (EEXIST); 1704 } 1705 LIST_INSERT_HEAD(&ih->states, s, entry); 1706 /* One for keys, one for ID hash. */ 1707 refcount_init(&s->refs, 2); 1708 1709 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1710 if (V_pfsync_insert_state_ptr != NULL) 1711 V_pfsync_insert_state_ptr(s); 1712 1713 /* Returns locked. */ 1714 return (0); 1715 } 1716 1717 /* 1718 * Find state by ID: returns with locked row on success. 1719 */ 1720 struct pf_kstate * 1721 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1722 { 1723 struct pf_idhash *ih; 1724 struct pf_kstate *s; 1725 1726 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1727 1728 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))]; 1729 1730 PF_HASHROW_LOCK(ih); 1731 LIST_FOREACH(s, &ih->states, entry) 1732 if (s->id == id && s->creatorid == creatorid) 1733 break; 1734 1735 if (s == NULL) 1736 PF_HASHROW_UNLOCK(ih); 1737 1738 return (s); 1739 } 1740 1741 /* 1742 * Find state by key. 1743 * Returns with ID hash slot locked on success. 1744 */ 1745 static struct pf_kstate * 1746 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key, 1747 u_int dir) 1748 { 1749 struct pf_keyhash *kh; 1750 struct pf_state_key *sk; 1751 struct pf_kstate *s; 1752 int idx; 1753 1754 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1755 1756 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1757 1758 PF_HASHROW_LOCK(kh); 1759 LIST_FOREACH(sk, &kh->keys, entry) 1760 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1761 break; 1762 if (sk == NULL) { 1763 PF_HASHROW_UNLOCK(kh); 1764 return (NULL); 1765 } 1766 1767 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1768 1769 /* List is sorted, if-bound states before floating ones. */ 1770 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1771 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) { 1772 PF_STATE_LOCK(s); 1773 PF_HASHROW_UNLOCK(kh); 1774 if (__predict_false(s->timeout >= PFTM_MAX)) { 1775 /* 1776 * State is either being processed by 1777 * pf_unlink_state() in an other thread, or 1778 * is scheduled for immediate expiry. 1779 */ 1780 PF_STATE_UNLOCK(s); 1781 return (NULL); 1782 } 1783 return (s); 1784 } 1785 PF_HASHROW_UNLOCK(kh); 1786 1787 return (NULL); 1788 } 1789 1790 /* 1791 * Returns with ID hash slot locked on success. 1792 */ 1793 struct pf_kstate * 1794 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more) 1795 { 1796 struct pf_keyhash *kh; 1797 struct pf_state_key *sk; 1798 struct pf_kstate *s, *ret = NULL; 1799 int idx, inout = 0; 1800 1801 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1802 1803 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1804 1805 PF_HASHROW_LOCK(kh); 1806 LIST_FOREACH(sk, &kh->keys, entry) 1807 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1808 break; 1809 if (sk == NULL) { 1810 PF_HASHROW_UNLOCK(kh); 1811 return (NULL); 1812 } 1813 switch (dir) { 1814 case PF_IN: 1815 idx = PF_SK_WIRE; 1816 break; 1817 case PF_OUT: 1818 idx = PF_SK_STACK; 1819 break; 1820 case PF_INOUT: 1821 idx = PF_SK_WIRE; 1822 inout = 1; 1823 break; 1824 default: 1825 panic("%s: dir %u", __func__, dir); 1826 } 1827 second_run: 1828 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1829 if (more == NULL) { 1830 PF_STATE_LOCK(s); 1831 PF_HASHROW_UNLOCK(kh); 1832 return (s); 1833 } 1834 1835 if (ret) 1836 (*more)++; 1837 else { 1838 ret = s; 1839 PF_STATE_LOCK(s); 1840 } 1841 } 1842 if (inout == 1) { 1843 inout = 0; 1844 idx = PF_SK_STACK; 1845 goto second_run; 1846 } 1847 PF_HASHROW_UNLOCK(kh); 1848 1849 return (ret); 1850 } 1851 1852 /* 1853 * FIXME 1854 * This routine is inefficient -- locks the state only to unlock immediately on 1855 * return. 1856 * It is racy -- after the state is unlocked nothing stops other threads from 1857 * removing it. 1858 */ 1859 bool 1860 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir) 1861 { 1862 struct pf_kstate *s; 1863 1864 s = pf_find_state_all(key, dir, NULL); 1865 if (s != NULL) { 1866 PF_STATE_UNLOCK(s); 1867 return (true); 1868 } 1869 return (false); 1870 } 1871 1872 struct pf_udp_mapping * 1873 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port, 1874 struct pf_addr *nat_addr, uint16_t nat_port) 1875 { 1876 struct pf_udp_mapping *mapping; 1877 1878 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO); 1879 if (mapping == NULL) 1880 return (NULL); 1881 PF_ACPY(&mapping->endpoints[0].addr, src_addr, af); 1882 mapping->endpoints[0].port = src_port; 1883 mapping->endpoints[0].af = af; 1884 mapping->endpoints[0].mapping = mapping; 1885 PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af); 1886 mapping->endpoints[1].port = nat_port; 1887 mapping->endpoints[1].af = af; 1888 mapping->endpoints[1].mapping = mapping; 1889 refcount_init(&mapping->refs, 1); 1890 return (mapping); 1891 } 1892 1893 int 1894 pf_udp_mapping_insert(struct pf_udp_mapping *mapping) 1895 { 1896 struct pf_udpendpointhash *h0, *h1; 1897 struct pf_udp_endpoint *endpoint; 1898 int ret = EEXIST; 1899 1900 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 1901 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 1902 if (h0 == h1) { 1903 PF_HASHROW_LOCK(h0); 1904 } else if (h0 < h1) { 1905 PF_HASHROW_LOCK(h0); 1906 PF_HASHROW_LOCK(h1); 1907 } else { 1908 PF_HASHROW_LOCK(h1); 1909 PF_HASHROW_LOCK(h0); 1910 } 1911 1912 LIST_FOREACH(endpoint, &h0->endpoints, entry) { 1913 if (bcmp(endpoint, &mapping->endpoints[0], 1914 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1915 break; 1916 } 1917 if (endpoint != NULL) 1918 goto cleanup; 1919 LIST_FOREACH(endpoint, &h1->endpoints, entry) { 1920 if (bcmp(endpoint, &mapping->endpoints[1], 1921 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1922 break; 1923 } 1924 if (endpoint != NULL) 1925 goto cleanup; 1926 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry); 1927 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry); 1928 ret = 0; 1929 1930 cleanup: 1931 if (h0 != h1) { 1932 PF_HASHROW_UNLOCK(h0); 1933 PF_HASHROW_UNLOCK(h1); 1934 } else { 1935 PF_HASHROW_UNLOCK(h0); 1936 } 1937 return (ret); 1938 } 1939 1940 void 1941 pf_udp_mapping_release(struct pf_udp_mapping *mapping) 1942 { 1943 /* refcount is synchronized on the source endpoint's row lock */ 1944 struct pf_udpendpointhash *h0, *h1; 1945 1946 if (mapping == NULL) 1947 return; 1948 1949 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 1950 PF_HASHROW_LOCK(h0); 1951 if (refcount_release(&mapping->refs)) { 1952 LIST_REMOVE(&mapping->endpoints[0], entry); 1953 PF_HASHROW_UNLOCK(h0); 1954 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 1955 PF_HASHROW_LOCK(h1); 1956 LIST_REMOVE(&mapping->endpoints[1], entry); 1957 PF_HASHROW_UNLOCK(h1); 1958 1959 uma_zfree(V_pf_udp_mapping_z, mapping); 1960 } else { 1961 PF_HASHROW_UNLOCK(h0); 1962 } 1963 } 1964 1965 1966 struct pf_udp_mapping * 1967 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key) 1968 { 1969 struct pf_udpendpointhash *uh; 1970 struct pf_udp_endpoint *endpoint; 1971 1972 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)]; 1973 1974 PF_HASHROW_LOCK(uh); 1975 LIST_FOREACH(endpoint, &uh->endpoints, entry) { 1976 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 && 1977 bcmp(endpoint, &endpoint->mapping->endpoints[0], 1978 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1979 break; 1980 } 1981 if (endpoint == NULL) { 1982 PF_HASHROW_UNLOCK(uh); 1983 return (NULL); 1984 } 1985 refcount_acquire(&endpoint->mapping->refs); 1986 PF_HASHROW_UNLOCK(uh); 1987 return (endpoint->mapping); 1988 } 1989 /* END state table stuff */ 1990 1991 static void 1992 pf_send(struct pf_send_entry *pfse) 1993 { 1994 1995 PF_SENDQ_LOCK(); 1996 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1997 PF_SENDQ_UNLOCK(); 1998 swi_sched(V_pf_swi_cookie, 0); 1999 } 2000 2001 static bool 2002 pf_isforlocal(struct mbuf *m, int af) 2003 { 2004 switch (af) { 2005 #ifdef INET 2006 case AF_INET: { 2007 struct ip *ip = mtod(m, struct ip *); 2008 2009 return (in_localip(ip->ip_dst)); 2010 } 2011 #endif 2012 #ifdef INET6 2013 case AF_INET6: { 2014 struct ip6_hdr *ip6; 2015 struct in6_ifaddr *ia; 2016 ip6 = mtod(m, struct ip6_hdr *); 2017 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 2018 if (ia == NULL) 2019 return (false); 2020 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 2021 } 2022 #endif 2023 } 2024 2025 return (false); 2026 } 2027 2028 int 2029 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type, 2030 int *icmp_dir, int *multi, u_int16_t *virtual_id, u_int16_t *virtual_type) 2031 { 2032 /* 2033 * ICMP types marked with PF_OUT are typically responses to 2034 * PF_IN, and will match states in the opposite direction. 2035 * PF_IN ICMP types need to match a state with that type. 2036 */ 2037 *icmp_dir = PF_OUT; 2038 *multi = PF_ICMP_MULTI_LINK; 2039 /* Queries (and responses) */ 2040 switch (pd->af) { 2041 #ifdef INET 2042 case AF_INET: 2043 switch (type) { 2044 case ICMP_ECHO: 2045 *icmp_dir = PF_IN; 2046 case ICMP_ECHOREPLY: 2047 *virtual_type = ICMP_ECHO; 2048 *virtual_id = pd->hdr.icmp.icmp_id; 2049 break; 2050 2051 case ICMP_TSTAMP: 2052 *icmp_dir = PF_IN; 2053 case ICMP_TSTAMPREPLY: 2054 *virtual_type = ICMP_TSTAMP; 2055 *virtual_id = pd->hdr.icmp.icmp_id; 2056 break; 2057 2058 case ICMP_IREQ: 2059 *icmp_dir = PF_IN; 2060 case ICMP_IREQREPLY: 2061 *virtual_type = ICMP_IREQ; 2062 *virtual_id = pd->hdr.icmp.icmp_id; 2063 break; 2064 2065 case ICMP_MASKREQ: 2066 *icmp_dir = PF_IN; 2067 case ICMP_MASKREPLY: 2068 *virtual_type = ICMP_MASKREQ; 2069 *virtual_id = pd->hdr.icmp.icmp_id; 2070 break; 2071 2072 case ICMP_IPV6_WHEREAREYOU: 2073 *icmp_dir = PF_IN; 2074 case ICMP_IPV6_IAMHERE: 2075 *virtual_type = ICMP_IPV6_WHEREAREYOU; 2076 *virtual_id = 0; /* Nothing sane to match on! */ 2077 break; 2078 2079 case ICMP_MOBILE_REGREQUEST: 2080 *icmp_dir = PF_IN; 2081 case ICMP_MOBILE_REGREPLY: 2082 *virtual_type = ICMP_MOBILE_REGREQUEST; 2083 *virtual_id = 0; /* Nothing sane to match on! */ 2084 break; 2085 2086 case ICMP_ROUTERSOLICIT: 2087 *icmp_dir = PF_IN; 2088 case ICMP_ROUTERADVERT: 2089 *virtual_type = ICMP_ROUTERSOLICIT; 2090 *virtual_id = 0; /* Nothing sane to match on! */ 2091 break; 2092 2093 /* These ICMP types map to other connections */ 2094 case ICMP_UNREACH: 2095 case ICMP_SOURCEQUENCH: 2096 case ICMP_REDIRECT: 2097 case ICMP_TIMXCEED: 2098 case ICMP_PARAMPROB: 2099 /* These will not be used, but set them anyway */ 2100 *icmp_dir = PF_IN; 2101 *virtual_type = type; 2102 *virtual_id = 0; 2103 HTONS(*virtual_type); 2104 return (1); /* These types match to another state */ 2105 2106 /* 2107 * All remaining ICMP types get their own states, 2108 * and will only match in one direction. 2109 */ 2110 default: 2111 *icmp_dir = PF_IN; 2112 *virtual_type = type; 2113 *virtual_id = 0; 2114 break; 2115 } 2116 break; 2117 #endif /* INET */ 2118 #ifdef INET6 2119 case AF_INET6: 2120 switch (type) { 2121 case ICMP6_ECHO_REQUEST: 2122 *icmp_dir = PF_IN; 2123 case ICMP6_ECHO_REPLY: 2124 *virtual_type = ICMP6_ECHO_REQUEST; 2125 *virtual_id = pd->hdr.icmp6.icmp6_id; 2126 break; 2127 2128 case MLD_LISTENER_QUERY: 2129 case MLD_LISTENER_REPORT: { 2130 /* 2131 * Listener Report can be sent by clients 2132 * without an associated Listener Query. 2133 * In addition to that, when Report is sent as a 2134 * reply to a Query its source and destination 2135 * address are different. 2136 */ 2137 *icmp_dir = PF_IN; 2138 *virtual_type = MLD_LISTENER_QUERY; 2139 *virtual_id = 0; 2140 break; 2141 } 2142 case MLD_MTRACE: 2143 *icmp_dir = PF_IN; 2144 case MLD_MTRACE_RESP: 2145 *virtual_type = MLD_MTRACE; 2146 *virtual_id = 0; /* Nothing sane to match on! */ 2147 break; 2148 2149 case ND_NEIGHBOR_SOLICIT: 2150 *icmp_dir = PF_IN; 2151 case ND_NEIGHBOR_ADVERT: { 2152 *virtual_type = ND_NEIGHBOR_SOLICIT; 2153 *virtual_id = 0; 2154 break; 2155 } 2156 2157 /* 2158 * These ICMP types map to other connections. 2159 * ND_REDIRECT can't be in this list because the triggering 2160 * packet header is optional. 2161 */ 2162 case ICMP6_DST_UNREACH: 2163 case ICMP6_PACKET_TOO_BIG: 2164 case ICMP6_TIME_EXCEEDED: 2165 case ICMP6_PARAM_PROB: 2166 /* These will not be used, but set them anyway */ 2167 *icmp_dir = PF_IN; 2168 *virtual_type = type; 2169 *virtual_id = 0; 2170 HTONS(*virtual_type); 2171 return (1); /* These types match to another state */ 2172 /* 2173 * All remaining ICMP6 types get their own states, 2174 * and will only match in one direction. 2175 */ 2176 default: 2177 *icmp_dir = PF_IN; 2178 *virtual_type = type; 2179 *virtual_id = 0; 2180 break; 2181 } 2182 break; 2183 #endif /* INET6 */ 2184 } 2185 HTONS(*virtual_type); 2186 return (0); /* These types match to their own state */ 2187 } 2188 2189 void 2190 pf_intr(void *v) 2191 { 2192 struct epoch_tracker et; 2193 struct pf_send_head queue; 2194 struct pf_send_entry *pfse, *next; 2195 2196 CURVNET_SET((struct vnet *)v); 2197 2198 PF_SENDQ_LOCK(); 2199 queue = V_pf_sendqueue; 2200 STAILQ_INIT(&V_pf_sendqueue); 2201 PF_SENDQ_UNLOCK(); 2202 2203 NET_EPOCH_ENTER(et); 2204 2205 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 2206 switch (pfse->pfse_type) { 2207 #ifdef INET 2208 case PFSE_IP: { 2209 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 2210 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 2211 pfse->pfse_m->m_pkthdr.csum_flags |= 2212 CSUM_IP_VALID | CSUM_IP_CHECKED; 2213 ip_input(pfse->pfse_m); 2214 } else { 2215 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2216 NULL); 2217 } 2218 break; 2219 } 2220 case PFSE_ICMP: 2221 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 2222 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 2223 break; 2224 #endif /* INET */ 2225 #ifdef INET6 2226 case PFSE_IP6: 2227 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 2228 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 2229 ip6_input(pfse->pfse_m); 2230 } else { 2231 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2232 NULL, NULL); 2233 } 2234 break; 2235 case PFSE_ICMP6: 2236 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 2237 pfse->icmpopts.code, pfse->icmpopts.mtu); 2238 break; 2239 #endif /* INET6 */ 2240 default: 2241 panic("%s: unknown type", __func__); 2242 } 2243 free(pfse, M_PFTEMP); 2244 } 2245 NET_EPOCH_EXIT(et); 2246 CURVNET_RESTORE(); 2247 } 2248 2249 #define pf_purge_thread_period (hz / 10) 2250 2251 #ifdef PF_WANT_32_TO_64_COUNTER 2252 static void 2253 pf_status_counter_u64_periodic(void) 2254 { 2255 2256 PF_RULES_RASSERT(); 2257 2258 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 2259 return; 2260 } 2261 2262 for (int i = 0; i < FCNT_MAX; i++) { 2263 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 2264 } 2265 } 2266 2267 static void 2268 pf_kif_counter_u64_periodic(void) 2269 { 2270 struct pfi_kkif *kif; 2271 size_t r, run; 2272 2273 PF_RULES_RASSERT(); 2274 2275 if (__predict_false(V_pf_allkifcount == 0)) { 2276 return; 2277 } 2278 2279 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2280 return; 2281 } 2282 2283 run = V_pf_allkifcount / 10; 2284 if (run < 5) 2285 run = 5; 2286 2287 for (r = 0; r < run; r++) { 2288 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 2289 if (kif == NULL) { 2290 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2291 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 2292 break; 2293 } 2294 2295 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2296 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 2297 2298 for (int i = 0; i < 2; i++) { 2299 for (int j = 0; j < 2; j++) { 2300 for (int k = 0; k < 2; k++) { 2301 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 2302 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 2303 } 2304 } 2305 } 2306 } 2307 } 2308 2309 static void 2310 pf_rule_counter_u64_periodic(void) 2311 { 2312 struct pf_krule *rule; 2313 size_t r, run; 2314 2315 PF_RULES_RASSERT(); 2316 2317 if (__predict_false(V_pf_allrulecount == 0)) { 2318 return; 2319 } 2320 2321 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2322 return; 2323 } 2324 2325 run = V_pf_allrulecount / 10; 2326 if (run < 5) 2327 run = 5; 2328 2329 for (r = 0; r < run; r++) { 2330 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 2331 if (rule == NULL) { 2332 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2333 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 2334 break; 2335 } 2336 2337 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2338 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 2339 2340 pf_counter_u64_periodic(&rule->evaluations); 2341 for (int i = 0; i < 2; i++) { 2342 pf_counter_u64_periodic(&rule->packets[i]); 2343 pf_counter_u64_periodic(&rule->bytes[i]); 2344 } 2345 } 2346 } 2347 2348 static void 2349 pf_counter_u64_periodic_main(void) 2350 { 2351 PF_RULES_RLOCK_TRACKER; 2352 2353 V_pf_counter_periodic_iter++; 2354 2355 PF_RULES_RLOCK(); 2356 pf_counter_u64_critical_enter(); 2357 pf_status_counter_u64_periodic(); 2358 pf_kif_counter_u64_periodic(); 2359 pf_rule_counter_u64_periodic(); 2360 pf_counter_u64_critical_exit(); 2361 PF_RULES_RUNLOCK(); 2362 } 2363 #else 2364 #define pf_counter_u64_periodic_main() do { } while (0) 2365 #endif 2366 2367 void 2368 pf_purge_thread(void *unused __unused) 2369 { 2370 struct epoch_tracker et; 2371 2372 VNET_ITERATOR_DECL(vnet_iter); 2373 2374 sx_xlock(&pf_end_lock); 2375 while (pf_end_threads == 0) { 2376 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 2377 2378 VNET_LIST_RLOCK(); 2379 NET_EPOCH_ENTER(et); 2380 VNET_FOREACH(vnet_iter) { 2381 CURVNET_SET(vnet_iter); 2382 2383 /* Wait until V_pf_default_rule is initialized. */ 2384 if (V_pf_vnet_active == 0) { 2385 CURVNET_RESTORE(); 2386 continue; 2387 } 2388 2389 pf_counter_u64_periodic_main(); 2390 2391 /* 2392 * Process 1/interval fraction of the state 2393 * table every run. 2394 */ 2395 V_pf_purge_idx = 2396 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask / 2397 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 2398 2399 /* 2400 * Purge other expired types every 2401 * PFTM_INTERVAL seconds. 2402 */ 2403 if (V_pf_purge_idx == 0) { 2404 /* 2405 * Order is important: 2406 * - states and src nodes reference rules 2407 * - states and rules reference kifs 2408 */ 2409 pf_purge_expired_fragments(); 2410 pf_purge_expired_src_nodes(); 2411 pf_purge_unlinked_rules(); 2412 pfi_kkif_purge(); 2413 } 2414 CURVNET_RESTORE(); 2415 } 2416 NET_EPOCH_EXIT(et); 2417 VNET_LIST_RUNLOCK(); 2418 } 2419 2420 pf_end_threads++; 2421 sx_xunlock(&pf_end_lock); 2422 kproc_exit(0); 2423 } 2424 2425 void 2426 pf_unload_vnet_purge(void) 2427 { 2428 2429 /* 2430 * To cleanse up all kifs and rules we need 2431 * two runs: first one clears reference flags, 2432 * then pf_purge_expired_states() doesn't 2433 * raise them, and then second run frees. 2434 */ 2435 pf_purge_unlinked_rules(); 2436 pfi_kkif_purge(); 2437 2438 /* 2439 * Now purge everything. 2440 */ 2441 pf_purge_expired_states(0, V_pf_hashmask); 2442 pf_purge_fragments(UINT_MAX); 2443 pf_purge_expired_src_nodes(); 2444 2445 /* 2446 * Now all kifs & rules should be unreferenced, 2447 * thus should be successfully freed. 2448 */ 2449 pf_purge_unlinked_rules(); 2450 pfi_kkif_purge(); 2451 } 2452 2453 u_int32_t 2454 pf_state_expires(const struct pf_kstate *state) 2455 { 2456 u_int32_t timeout; 2457 u_int32_t start; 2458 u_int32_t end; 2459 u_int32_t states; 2460 2461 /* handle all PFTM_* > PFTM_MAX here */ 2462 if (state->timeout == PFTM_PURGE) 2463 return (time_uptime); 2464 KASSERT(state->timeout != PFTM_UNLINKED, 2465 ("pf_state_expires: timeout == PFTM_UNLINKED")); 2466 KASSERT((state->timeout < PFTM_MAX), 2467 ("pf_state_expires: timeout > PFTM_MAX")); 2468 timeout = state->rule->timeout[state->timeout]; 2469 if (!timeout) 2470 timeout = V_pf_default_rule.timeout[state->timeout]; 2471 start = state->rule->timeout[PFTM_ADAPTIVE_START]; 2472 if (start && state->rule != &V_pf_default_rule) { 2473 end = state->rule->timeout[PFTM_ADAPTIVE_END]; 2474 states = counter_u64_fetch(state->rule->states_cur); 2475 } else { 2476 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 2477 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 2478 states = V_pf_status.states; 2479 } 2480 if (end && states > start && start < end) { 2481 if (states < end) { 2482 timeout = (u_int64_t)timeout * (end - states) / 2483 (end - start); 2484 return ((state->expire / 1000) + timeout); 2485 } 2486 else 2487 return (time_uptime); 2488 } 2489 return ((state->expire / 1000) + timeout); 2490 } 2491 2492 void 2493 pf_purge_expired_src_nodes(void) 2494 { 2495 struct pf_ksrc_node_list freelist; 2496 struct pf_srchash *sh; 2497 struct pf_ksrc_node *cur, *next; 2498 int i; 2499 2500 LIST_INIT(&freelist); 2501 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 2502 PF_HASHROW_LOCK(sh); 2503 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 2504 if (cur->states == 0 && cur->expire <= time_uptime) { 2505 pf_unlink_src_node(cur); 2506 LIST_INSERT_HEAD(&freelist, cur, entry); 2507 } else if (cur->rule != NULL) 2508 cur->rule->rule_ref |= PFRULE_REFS; 2509 PF_HASHROW_UNLOCK(sh); 2510 } 2511 2512 pf_free_src_nodes(&freelist); 2513 2514 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2515 } 2516 2517 static void 2518 pf_src_tree_remove_state(struct pf_kstate *s) 2519 { 2520 struct pf_ksrc_node *sn; 2521 uint32_t timeout; 2522 2523 timeout = s->rule->timeout[PFTM_SRC_NODE] ? 2524 s->rule->timeout[PFTM_SRC_NODE] : 2525 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2526 2527 if (s->src_node != NULL) { 2528 sn = s->src_node; 2529 PF_SRC_NODE_LOCK(sn); 2530 if (s->src.tcp_est) 2531 --sn->conn; 2532 if (--sn->states == 0) 2533 sn->expire = time_uptime + timeout; 2534 PF_SRC_NODE_UNLOCK(sn); 2535 } 2536 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 2537 sn = s->nat_src_node; 2538 PF_SRC_NODE_LOCK(sn); 2539 if (--sn->states == 0) 2540 sn->expire = time_uptime + timeout; 2541 PF_SRC_NODE_UNLOCK(sn); 2542 } 2543 s->src_node = s->nat_src_node = NULL; 2544 } 2545 2546 /* 2547 * Unlink and potentilly free a state. Function may be 2548 * called with ID hash row locked, but always returns 2549 * unlocked, since it needs to go through key hash locking. 2550 */ 2551 int 2552 pf_unlink_state(struct pf_kstate *s) 2553 { 2554 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2555 2556 NET_EPOCH_ASSERT(); 2557 PF_HASHROW_ASSERT(ih); 2558 2559 if (s->timeout == PFTM_UNLINKED) { 2560 /* 2561 * State is being processed 2562 * by pf_unlink_state() in 2563 * an other thread. 2564 */ 2565 PF_HASHROW_UNLOCK(ih); 2566 return (0); /* XXXGL: undefined actually */ 2567 } 2568 2569 if (s->src.state == PF_TCPS_PROXY_DST) { 2570 /* XXX wire key the right one? */ 2571 pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af, 2572 &s->key[PF_SK_WIRE]->addr[1], 2573 &s->key[PF_SK_WIRE]->addr[0], 2574 s->key[PF_SK_WIRE]->port[1], 2575 s->key[PF_SK_WIRE]->port[0], 2576 s->src.seqhi, s->src.seqlo + 1, 2577 TH_RST|TH_ACK, 0, 0, 0, true, s->tag, 0, s->act.rtableid); 2578 } 2579 2580 LIST_REMOVE(s, entry); 2581 pf_src_tree_remove_state(s); 2582 2583 if (V_pfsync_delete_state_ptr != NULL) 2584 V_pfsync_delete_state_ptr(s); 2585 2586 STATE_DEC_COUNTERS(s); 2587 2588 s->timeout = PFTM_UNLINKED; 2589 2590 /* Ensure we remove it from the list of halfopen states, if needed. */ 2591 if (s->key[PF_SK_STACK] != NULL && 2592 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2593 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2594 2595 PF_HASHROW_UNLOCK(ih); 2596 2597 pf_detach_state(s); 2598 2599 pf_udp_mapping_release(s->udp_mapping); 2600 2601 /* pf_state_insert() initialises refs to 2 */ 2602 return (pf_release_staten(s, 2)); 2603 } 2604 2605 struct pf_kstate * 2606 pf_alloc_state(int flags) 2607 { 2608 2609 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2610 } 2611 2612 void 2613 pf_free_state(struct pf_kstate *cur) 2614 { 2615 struct pf_krule_item *ri; 2616 2617 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2618 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2619 cur->timeout)); 2620 2621 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2622 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2623 free(ri, M_PF_RULE_ITEM); 2624 } 2625 2626 pf_normalize_tcp_cleanup(cur); 2627 uma_zfree(V_pf_state_z, cur); 2628 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2629 } 2630 2631 /* 2632 * Called only from pf_purge_thread(), thus serialized. 2633 */ 2634 static u_int 2635 pf_purge_expired_states(u_int i, int maxcheck) 2636 { 2637 struct pf_idhash *ih; 2638 struct pf_kstate *s; 2639 struct pf_krule_item *mrm; 2640 size_t count __unused; 2641 2642 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2643 2644 /* 2645 * Go through hash and unlink states that expire now. 2646 */ 2647 while (maxcheck > 0) { 2648 count = 0; 2649 ih = &V_pf_idhash[i]; 2650 2651 /* only take the lock if we expect to do work */ 2652 if (!LIST_EMPTY(&ih->states)) { 2653 relock: 2654 PF_HASHROW_LOCK(ih); 2655 LIST_FOREACH(s, &ih->states, entry) { 2656 if (pf_state_expires(s) <= time_uptime) { 2657 V_pf_status.states -= 2658 pf_unlink_state(s); 2659 goto relock; 2660 } 2661 s->rule->rule_ref |= PFRULE_REFS; 2662 if (s->nat_rule != NULL) 2663 s->nat_rule->rule_ref |= PFRULE_REFS; 2664 if (s->anchor != NULL) 2665 s->anchor->rule_ref |= PFRULE_REFS; 2666 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2667 SLIST_FOREACH(mrm, &s->match_rules, entry) 2668 mrm->r->rule_ref |= PFRULE_REFS; 2669 if (s->rt_kif) 2670 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2671 count++; 2672 } 2673 PF_HASHROW_UNLOCK(ih); 2674 } 2675 2676 SDT_PROBE2(pf, purge, state, rowcount, i, count); 2677 2678 /* Return when we hit end of hash. */ 2679 if (++i > V_pf_hashmask) { 2680 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2681 return (0); 2682 } 2683 2684 maxcheck--; 2685 } 2686 2687 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2688 2689 return (i); 2690 } 2691 2692 static void 2693 pf_purge_unlinked_rules(void) 2694 { 2695 struct pf_krulequeue tmpq; 2696 struct pf_krule *r, *r1; 2697 2698 /* 2699 * If we have overloading task pending, then we'd 2700 * better skip purging this time. There is a tiny 2701 * probability that overloading task references 2702 * an already unlinked rule. 2703 */ 2704 PF_OVERLOADQ_LOCK(); 2705 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2706 PF_OVERLOADQ_UNLOCK(); 2707 return; 2708 } 2709 PF_OVERLOADQ_UNLOCK(); 2710 2711 /* 2712 * Do naive mark-and-sweep garbage collecting of old rules. 2713 * Reference flag is raised by pf_purge_expired_states() 2714 * and pf_purge_expired_src_nodes(). 2715 * 2716 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2717 * use a temporary queue. 2718 */ 2719 TAILQ_INIT(&tmpq); 2720 PF_UNLNKDRULES_LOCK(); 2721 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2722 if (!(r->rule_ref & PFRULE_REFS)) { 2723 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2724 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2725 } else 2726 r->rule_ref &= ~PFRULE_REFS; 2727 } 2728 PF_UNLNKDRULES_UNLOCK(); 2729 2730 if (!TAILQ_EMPTY(&tmpq)) { 2731 PF_CONFIG_LOCK(); 2732 PF_RULES_WLOCK(); 2733 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2734 TAILQ_REMOVE(&tmpq, r, entries); 2735 pf_free_rule(r); 2736 } 2737 PF_RULES_WUNLOCK(); 2738 PF_CONFIG_UNLOCK(); 2739 } 2740 } 2741 2742 void 2743 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2744 { 2745 switch (af) { 2746 #ifdef INET 2747 case AF_INET: { 2748 u_int32_t a = ntohl(addr->addr32[0]); 2749 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2750 (a>>8)&255, a&255); 2751 if (p) { 2752 p = ntohs(p); 2753 printf(":%u", p); 2754 } 2755 break; 2756 } 2757 #endif /* INET */ 2758 #ifdef INET6 2759 case AF_INET6: { 2760 u_int16_t b; 2761 u_int8_t i, curstart, curend, maxstart, maxend; 2762 curstart = curend = maxstart = maxend = 255; 2763 for (i = 0; i < 8; i++) { 2764 if (!addr->addr16[i]) { 2765 if (curstart == 255) 2766 curstart = i; 2767 curend = i; 2768 } else { 2769 if ((curend - curstart) > 2770 (maxend - maxstart)) { 2771 maxstart = curstart; 2772 maxend = curend; 2773 } 2774 curstart = curend = 255; 2775 } 2776 } 2777 if ((curend - curstart) > 2778 (maxend - maxstart)) { 2779 maxstart = curstart; 2780 maxend = curend; 2781 } 2782 for (i = 0; i < 8; i++) { 2783 if (i >= maxstart && i <= maxend) { 2784 if (i == 0) 2785 printf(":"); 2786 if (i == maxend) 2787 printf(":"); 2788 } else { 2789 b = ntohs(addr->addr16[i]); 2790 printf("%x", b); 2791 if (i < 7) 2792 printf(":"); 2793 } 2794 } 2795 if (p) { 2796 p = ntohs(p); 2797 printf("[%u]", p); 2798 } 2799 break; 2800 } 2801 #endif /* INET6 */ 2802 } 2803 } 2804 2805 void 2806 pf_print_state(struct pf_kstate *s) 2807 { 2808 pf_print_state_parts(s, NULL, NULL); 2809 } 2810 2811 static void 2812 pf_print_state_parts(struct pf_kstate *s, 2813 struct pf_state_key *skwp, struct pf_state_key *sksp) 2814 { 2815 struct pf_state_key *skw, *sks; 2816 u_int8_t proto, dir; 2817 2818 /* Do our best to fill these, but they're skipped if NULL */ 2819 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2820 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2821 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2822 dir = s ? s->direction : 0; 2823 2824 switch (proto) { 2825 case IPPROTO_IPV4: 2826 printf("IPv4"); 2827 break; 2828 case IPPROTO_IPV6: 2829 printf("IPv6"); 2830 break; 2831 case IPPROTO_TCP: 2832 printf("TCP"); 2833 break; 2834 case IPPROTO_UDP: 2835 printf("UDP"); 2836 break; 2837 case IPPROTO_ICMP: 2838 printf("ICMP"); 2839 break; 2840 case IPPROTO_ICMPV6: 2841 printf("ICMPv6"); 2842 break; 2843 default: 2844 printf("%u", proto); 2845 break; 2846 } 2847 switch (dir) { 2848 case PF_IN: 2849 printf(" in"); 2850 break; 2851 case PF_OUT: 2852 printf(" out"); 2853 break; 2854 } 2855 if (skw) { 2856 printf(" wire: "); 2857 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2858 printf(" "); 2859 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2860 } 2861 if (sks) { 2862 printf(" stack: "); 2863 if (sks != skw) { 2864 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2865 printf(" "); 2866 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2867 } else 2868 printf("-"); 2869 } 2870 if (s) { 2871 if (proto == IPPROTO_TCP) { 2872 printf(" [lo=%u high=%u win=%u modulator=%u", 2873 s->src.seqlo, s->src.seqhi, 2874 s->src.max_win, s->src.seqdiff); 2875 if (s->src.wscale && s->dst.wscale) 2876 printf(" wscale=%u", 2877 s->src.wscale & PF_WSCALE_MASK); 2878 printf("]"); 2879 printf(" [lo=%u high=%u win=%u modulator=%u", 2880 s->dst.seqlo, s->dst.seqhi, 2881 s->dst.max_win, s->dst.seqdiff); 2882 if (s->src.wscale && s->dst.wscale) 2883 printf(" wscale=%u", 2884 s->dst.wscale & PF_WSCALE_MASK); 2885 printf("]"); 2886 } 2887 printf(" %u:%u", s->src.state, s->dst.state); 2888 if (s->rule) 2889 printf(" @%d", s->rule->nr); 2890 } 2891 } 2892 2893 void 2894 pf_print_flags(u_int8_t f) 2895 { 2896 if (f) 2897 printf(" "); 2898 if (f & TH_FIN) 2899 printf("F"); 2900 if (f & TH_SYN) 2901 printf("S"); 2902 if (f & TH_RST) 2903 printf("R"); 2904 if (f & TH_PUSH) 2905 printf("P"); 2906 if (f & TH_ACK) 2907 printf("A"); 2908 if (f & TH_URG) 2909 printf("U"); 2910 if (f & TH_ECE) 2911 printf("E"); 2912 if (f & TH_CWR) 2913 printf("W"); 2914 } 2915 2916 #define PF_SET_SKIP_STEPS(i) \ 2917 do { \ 2918 while (head[i] != cur) { \ 2919 head[i]->skip[i] = cur; \ 2920 head[i] = TAILQ_NEXT(head[i], entries); \ 2921 } \ 2922 } while (0) 2923 2924 void 2925 pf_calc_skip_steps(struct pf_krulequeue *rules) 2926 { 2927 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2928 int i; 2929 2930 cur = TAILQ_FIRST(rules); 2931 prev = cur; 2932 for (i = 0; i < PF_SKIP_COUNT; ++i) 2933 head[i] = cur; 2934 while (cur != NULL) { 2935 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2936 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2937 if (cur->direction != prev->direction) 2938 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2939 if (cur->af != prev->af) 2940 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2941 if (cur->proto != prev->proto) 2942 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2943 if (cur->src.neg != prev->src.neg || 2944 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2945 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2946 if (cur->dst.neg != prev->dst.neg || 2947 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2948 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2949 if (cur->src.port[0] != prev->src.port[0] || 2950 cur->src.port[1] != prev->src.port[1] || 2951 cur->src.port_op != prev->src.port_op) 2952 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2953 if (cur->dst.port[0] != prev->dst.port[0] || 2954 cur->dst.port[1] != prev->dst.port[1] || 2955 cur->dst.port_op != prev->dst.port_op) 2956 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2957 2958 prev = cur; 2959 cur = TAILQ_NEXT(cur, entries); 2960 } 2961 for (i = 0; i < PF_SKIP_COUNT; ++i) 2962 PF_SET_SKIP_STEPS(i); 2963 } 2964 2965 int 2966 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2967 { 2968 if (aw1->type != aw2->type) 2969 return (1); 2970 switch (aw1->type) { 2971 case PF_ADDR_ADDRMASK: 2972 case PF_ADDR_RANGE: 2973 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2974 return (1); 2975 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2976 return (1); 2977 return (0); 2978 case PF_ADDR_DYNIFTL: 2979 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2980 case PF_ADDR_NOROUTE: 2981 case PF_ADDR_URPFFAILED: 2982 return (0); 2983 case PF_ADDR_TABLE: 2984 return (aw1->p.tbl != aw2->p.tbl); 2985 default: 2986 printf("invalid address type: %d\n", aw1->type); 2987 return (1); 2988 } 2989 } 2990 2991 /** 2992 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2993 * header isn't always a full checksum. In some cases (i.e. output) it's a 2994 * pseudo-header checksum, which is a partial checksum over src/dst IP 2995 * addresses, protocol number and length. 2996 * 2997 * That means we have the following cases: 2998 * * Input or forwarding: we don't have TSO, the checksum fields are full 2999 * checksums, we need to update the checksum whenever we change anything. 3000 * * Output (i.e. the checksum is a pseudo-header checksum): 3001 * x The field being updated is src/dst address or affects the length of 3002 * the packet. We need to update the pseudo-header checksum (note that this 3003 * checksum is not ones' complement). 3004 * x Some other field is being modified (e.g. src/dst port numbers): We 3005 * don't have to update anything. 3006 **/ 3007 u_int16_t 3008 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 3009 { 3010 u_int32_t x; 3011 3012 x = cksum + old - new; 3013 x = (x + (x >> 16)) & 0xffff; 3014 3015 /* optimise: eliminate a branch when not udp */ 3016 if (udp && cksum == 0x0000) 3017 return cksum; 3018 if (udp && x == 0x0000) 3019 x = 0xffff; 3020 3021 return (u_int16_t)(x); 3022 } 3023 3024 static void 3025 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 3026 u_int8_t udp) 3027 { 3028 u_int16_t old = htons(hi ? (*f << 8) : *f); 3029 u_int16_t new = htons(hi ? ( v << 8) : v); 3030 3031 if (*f == v) 3032 return; 3033 3034 *f = v; 3035 3036 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3037 return; 3038 3039 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 3040 } 3041 3042 void 3043 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 3044 bool hi, u_int8_t udp) 3045 { 3046 u_int8_t *fb = (u_int8_t *)f; 3047 u_int8_t *vb = (u_int8_t *)&v; 3048 3049 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3050 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3051 } 3052 3053 void 3054 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 3055 bool hi, u_int8_t udp) 3056 { 3057 u_int8_t *fb = (u_int8_t *)f; 3058 u_int8_t *vb = (u_int8_t *)&v; 3059 3060 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3061 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3062 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3063 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3064 } 3065 3066 u_int16_t 3067 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 3068 u_int16_t new, u_int8_t udp) 3069 { 3070 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3071 return (cksum); 3072 3073 return (pf_cksum_fixup(cksum, old, new, udp)); 3074 } 3075 3076 static void 3077 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 3078 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 3079 sa_family_t af) 3080 { 3081 struct pf_addr ao; 3082 u_int16_t po = *p; 3083 3084 PF_ACPY(&ao, a, af); 3085 PF_ACPY(a, an, af); 3086 3087 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3088 *pc = ~*pc; 3089 3090 *p = pn; 3091 3092 switch (af) { 3093 #ifdef INET 3094 case AF_INET: 3095 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3096 ao.addr16[0], an->addr16[0], 0), 3097 ao.addr16[1], an->addr16[1], 0); 3098 *p = pn; 3099 3100 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 3101 ao.addr16[0], an->addr16[0], u), 3102 ao.addr16[1], an->addr16[1], u); 3103 3104 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 3105 break; 3106 #endif /* INET */ 3107 #ifdef INET6 3108 case AF_INET6: 3109 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3110 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3111 pf_cksum_fixup(pf_cksum_fixup(*pc, 3112 ao.addr16[0], an->addr16[0], u), 3113 ao.addr16[1], an->addr16[1], u), 3114 ao.addr16[2], an->addr16[2], u), 3115 ao.addr16[3], an->addr16[3], u), 3116 ao.addr16[4], an->addr16[4], u), 3117 ao.addr16[5], an->addr16[5], u), 3118 ao.addr16[6], an->addr16[6], u), 3119 ao.addr16[7], an->addr16[7], u); 3120 3121 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 3122 break; 3123 #endif /* INET6 */ 3124 } 3125 3126 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 3127 CSUM_DELAY_DATA_IPV6)) { 3128 *pc = ~*pc; 3129 if (! *pc) 3130 *pc = 0xffff; 3131 } 3132 } 3133 3134 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 3135 void 3136 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 3137 { 3138 u_int32_t ao; 3139 3140 memcpy(&ao, a, sizeof(ao)); 3141 memcpy(a, &an, sizeof(u_int32_t)); 3142 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 3143 ao % 65536, an % 65536, u); 3144 } 3145 3146 void 3147 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 3148 { 3149 u_int32_t ao; 3150 3151 memcpy(&ao, a, sizeof(ao)); 3152 memcpy(a, &an, sizeof(u_int32_t)); 3153 3154 *c = pf_proto_cksum_fixup(m, 3155 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 3156 ao % 65536, an % 65536, udp); 3157 } 3158 3159 #ifdef INET6 3160 static void 3161 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 3162 { 3163 struct pf_addr ao; 3164 3165 PF_ACPY(&ao, a, AF_INET6); 3166 PF_ACPY(a, an, AF_INET6); 3167 3168 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3169 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3170 pf_cksum_fixup(pf_cksum_fixup(*c, 3171 ao.addr16[0], an->addr16[0], u), 3172 ao.addr16[1], an->addr16[1], u), 3173 ao.addr16[2], an->addr16[2], u), 3174 ao.addr16[3], an->addr16[3], u), 3175 ao.addr16[4], an->addr16[4], u), 3176 ao.addr16[5], an->addr16[5], u), 3177 ao.addr16[6], an->addr16[6], u), 3178 ao.addr16[7], an->addr16[7], u); 3179 } 3180 #endif /* INET6 */ 3181 3182 static void 3183 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 3184 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 3185 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 3186 { 3187 struct pf_addr oia, ooa; 3188 3189 PF_ACPY(&oia, ia, af); 3190 if (oa) 3191 PF_ACPY(&ooa, oa, af); 3192 3193 /* Change inner protocol port, fix inner protocol checksum. */ 3194 if (ip != NULL) { 3195 u_int16_t oip = *ip; 3196 u_int32_t opc; 3197 3198 if (pc != NULL) 3199 opc = *pc; 3200 *ip = np; 3201 if (pc != NULL) 3202 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 3203 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 3204 if (pc != NULL) 3205 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 3206 } 3207 /* Change inner ip address, fix inner ip and icmp checksums. */ 3208 PF_ACPY(ia, na, af); 3209 switch (af) { 3210 #ifdef INET 3211 case AF_INET: { 3212 u_int32_t oh2c = *h2c; 3213 3214 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 3215 oia.addr16[0], ia->addr16[0], 0), 3216 oia.addr16[1], ia->addr16[1], 0); 3217 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3218 oia.addr16[0], ia->addr16[0], 0), 3219 oia.addr16[1], ia->addr16[1], 0); 3220 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 3221 break; 3222 } 3223 #endif /* INET */ 3224 #ifdef INET6 3225 case AF_INET6: 3226 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3227 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3228 pf_cksum_fixup(pf_cksum_fixup(*ic, 3229 oia.addr16[0], ia->addr16[0], u), 3230 oia.addr16[1], ia->addr16[1], u), 3231 oia.addr16[2], ia->addr16[2], u), 3232 oia.addr16[3], ia->addr16[3], u), 3233 oia.addr16[4], ia->addr16[4], u), 3234 oia.addr16[5], ia->addr16[5], u), 3235 oia.addr16[6], ia->addr16[6], u), 3236 oia.addr16[7], ia->addr16[7], u); 3237 break; 3238 #endif /* INET6 */ 3239 } 3240 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 3241 if (oa) { 3242 PF_ACPY(oa, na, af); 3243 switch (af) { 3244 #ifdef INET 3245 case AF_INET: 3246 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 3247 ooa.addr16[0], oa->addr16[0], 0), 3248 ooa.addr16[1], oa->addr16[1], 0); 3249 break; 3250 #endif /* INET */ 3251 #ifdef INET6 3252 case AF_INET6: 3253 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3254 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3255 pf_cksum_fixup(pf_cksum_fixup(*ic, 3256 ooa.addr16[0], oa->addr16[0], u), 3257 ooa.addr16[1], oa->addr16[1], u), 3258 ooa.addr16[2], oa->addr16[2], u), 3259 ooa.addr16[3], oa->addr16[3], u), 3260 ooa.addr16[4], oa->addr16[4], u), 3261 ooa.addr16[5], oa->addr16[5], u), 3262 ooa.addr16[6], oa->addr16[6], u), 3263 ooa.addr16[7], oa->addr16[7], u); 3264 break; 3265 #endif /* INET6 */ 3266 } 3267 } 3268 } 3269 3270 /* 3271 * Need to modulate the sequence numbers in the TCP SACK option 3272 * (credits to Krzysztof Pfaff for report and patch) 3273 */ 3274 static int 3275 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th, 3276 struct pf_state_peer *dst) 3277 { 3278 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 3279 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 3280 int copyback = 0, i, olen; 3281 struct sackblk sack; 3282 3283 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 3284 if (hlen < TCPOLEN_SACKLEN || 3285 !pf_pull_hdr(pd->m, pd->off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 3286 return 0; 3287 3288 while (hlen >= TCPOLEN_SACKLEN) { 3289 size_t startoff = opt - opts; 3290 olen = opt[1]; 3291 switch (*opt) { 3292 case TCPOPT_EOL: /* FALLTHROUGH */ 3293 case TCPOPT_NOP: 3294 opt++; 3295 hlen--; 3296 break; 3297 case TCPOPT_SACK: 3298 if (olen > hlen) 3299 olen = hlen; 3300 if (olen >= TCPOLEN_SACKLEN) { 3301 for (i = 2; i + TCPOLEN_SACK <= olen; 3302 i += TCPOLEN_SACK) { 3303 memcpy(&sack, &opt[i], sizeof(sack)); 3304 pf_patch_32_unaligned(pd->m, 3305 &th->th_sum, &sack.start, 3306 htonl(ntohl(sack.start) - dst->seqdiff), 3307 PF_ALGNMNT(startoff), 3308 0); 3309 pf_patch_32_unaligned(pd->m, &th->th_sum, 3310 &sack.end, 3311 htonl(ntohl(sack.end) - dst->seqdiff), 3312 PF_ALGNMNT(startoff), 3313 0); 3314 memcpy(&opt[i], &sack, sizeof(sack)); 3315 } 3316 copyback = 1; 3317 } 3318 /* FALLTHROUGH */ 3319 default: 3320 if (olen < 2) 3321 olen = 2; 3322 hlen -= olen; 3323 opt += olen; 3324 } 3325 } 3326 3327 if (copyback) 3328 m_copyback(pd->m, pd->off + sizeof(*th), thoptlen, (caddr_t)opts); 3329 return (copyback); 3330 } 3331 3332 struct mbuf * 3333 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 3334 const struct pf_addr *saddr, const struct pf_addr *daddr, 3335 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3336 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3337 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3338 { 3339 struct mbuf *m; 3340 int len, tlen; 3341 #ifdef INET 3342 struct ip *h = NULL; 3343 #endif /* INET */ 3344 #ifdef INET6 3345 struct ip6_hdr *h6 = NULL; 3346 #endif /* INET6 */ 3347 struct tcphdr *th; 3348 char *opt; 3349 struct pf_mtag *pf_mtag; 3350 3351 len = 0; 3352 th = NULL; 3353 3354 /* maximum segment size tcp option */ 3355 tlen = sizeof(struct tcphdr); 3356 if (mss) 3357 tlen += 4; 3358 3359 switch (af) { 3360 #ifdef INET 3361 case AF_INET: 3362 len = sizeof(struct ip) + tlen; 3363 break; 3364 #endif /* INET */ 3365 #ifdef INET6 3366 case AF_INET6: 3367 len = sizeof(struct ip6_hdr) + tlen; 3368 break; 3369 #endif /* INET6 */ 3370 } 3371 3372 m = m_gethdr(M_NOWAIT, MT_DATA); 3373 if (m == NULL) 3374 return (NULL); 3375 3376 #ifdef MAC 3377 mac_netinet_firewall_send(m); 3378 #endif 3379 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 3380 m_freem(m); 3381 return (NULL); 3382 } 3383 if (skip_firewall) 3384 m->m_flags |= M_SKIP_FIREWALL; 3385 pf_mtag->tag = mtag_tag; 3386 pf_mtag->flags = mtag_flags; 3387 3388 if (rtableid >= 0) 3389 M_SETFIB(m, rtableid); 3390 3391 #ifdef ALTQ 3392 if (r != NULL && r->qid) { 3393 pf_mtag->qid = r->qid; 3394 3395 /* add hints for ecn */ 3396 pf_mtag->hdr = mtod(m, struct ip *); 3397 } 3398 #endif /* ALTQ */ 3399 m->m_data += max_linkhdr; 3400 m->m_pkthdr.len = m->m_len = len; 3401 /* The rest of the stack assumes a rcvif, so provide one. 3402 * This is a locally generated packet, so .. close enough. */ 3403 m->m_pkthdr.rcvif = V_loif; 3404 bzero(m->m_data, len); 3405 switch (af) { 3406 #ifdef INET 3407 case AF_INET: 3408 h = mtod(m, struct ip *); 3409 3410 /* IP header fields included in the TCP checksum */ 3411 h->ip_p = IPPROTO_TCP; 3412 h->ip_len = htons(tlen); 3413 h->ip_src.s_addr = saddr->v4.s_addr; 3414 h->ip_dst.s_addr = daddr->v4.s_addr; 3415 3416 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 3417 break; 3418 #endif /* INET */ 3419 #ifdef INET6 3420 case AF_INET6: 3421 h6 = mtod(m, struct ip6_hdr *); 3422 3423 /* IP header fields included in the TCP checksum */ 3424 h6->ip6_nxt = IPPROTO_TCP; 3425 h6->ip6_plen = htons(tlen); 3426 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 3427 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 3428 3429 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 3430 break; 3431 #endif /* INET6 */ 3432 } 3433 3434 /* TCP header */ 3435 th->th_sport = sport; 3436 th->th_dport = dport; 3437 th->th_seq = htonl(seq); 3438 th->th_ack = htonl(ack); 3439 th->th_off = tlen >> 2; 3440 th->th_flags = tcp_flags; 3441 th->th_win = htons(win); 3442 3443 if (mss) { 3444 opt = (char *)(th + 1); 3445 opt[0] = TCPOPT_MAXSEG; 3446 opt[1] = 4; 3447 HTONS(mss); 3448 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 3449 } 3450 3451 switch (af) { 3452 #ifdef INET 3453 case AF_INET: 3454 /* TCP checksum */ 3455 th->th_sum = in_cksum(m, len); 3456 3457 /* Finish the IP header */ 3458 h->ip_v = 4; 3459 h->ip_hl = sizeof(*h) >> 2; 3460 h->ip_tos = IPTOS_LOWDELAY; 3461 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 3462 h->ip_len = htons(len); 3463 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3464 h->ip_sum = 0; 3465 break; 3466 #endif /* INET */ 3467 #ifdef INET6 3468 case AF_INET6: 3469 /* TCP checksum */ 3470 th->th_sum = in6_cksum(m, IPPROTO_TCP, 3471 sizeof(struct ip6_hdr), tlen); 3472 3473 h6->ip6_vfc |= IPV6_VERSION; 3474 h6->ip6_hlim = IPV6_DEFHLIM; 3475 break; 3476 #endif /* INET6 */ 3477 } 3478 3479 return (m); 3480 } 3481 3482 static void 3483 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd, 3484 uint8_t ttl, int rtableid) 3485 { 3486 struct mbuf *m; 3487 #ifdef INET 3488 struct ip *h = NULL; 3489 #endif /* INET */ 3490 #ifdef INET6 3491 struct ip6_hdr *h6 = NULL; 3492 #endif /* INET6 */ 3493 struct sctphdr *hdr; 3494 struct sctp_chunkhdr *chunk; 3495 struct pf_send_entry *pfse; 3496 int off = 0; 3497 3498 MPASS(af == pd->af); 3499 3500 m = m_gethdr(M_NOWAIT, MT_DATA); 3501 if (m == NULL) 3502 return; 3503 3504 m->m_data += max_linkhdr; 3505 m->m_flags |= M_SKIP_FIREWALL; 3506 /* The rest of the stack assumes a rcvif, so provide one. 3507 * This is a locally generated packet, so .. close enough. */ 3508 m->m_pkthdr.rcvif = V_loif; 3509 3510 /* IPv4|6 header */ 3511 switch (af) { 3512 #ifdef INET 3513 case AF_INET: 3514 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk)); 3515 3516 h = mtod(m, struct ip *); 3517 3518 /* IP header fields included in the TCP checksum */ 3519 3520 h->ip_p = IPPROTO_SCTP; 3521 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk)); 3522 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3523 h->ip_src = pd->dst->v4; 3524 h->ip_dst = pd->src->v4; 3525 3526 off += sizeof(struct ip); 3527 break; 3528 #endif /* INET */ 3529 #ifdef INET6 3530 case AF_INET6: 3531 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk)); 3532 3533 h6 = mtod(m, struct ip6_hdr *); 3534 3535 /* IP header fields included in the TCP checksum */ 3536 h6->ip6_vfc |= IPV6_VERSION; 3537 h6->ip6_nxt = IPPROTO_SCTP; 3538 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk)); 3539 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim; 3540 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr)); 3541 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr)); 3542 3543 off += sizeof(struct ip6_hdr); 3544 break; 3545 #endif /* INET6 */ 3546 } 3547 3548 /* SCTP header */ 3549 hdr = mtodo(m, off); 3550 3551 hdr->src_port = pd->hdr.sctp.dest_port; 3552 hdr->dest_port = pd->hdr.sctp.src_port; 3553 hdr->v_tag = pd->sctp_initiate_tag; 3554 hdr->checksum = 0; 3555 3556 /* Abort chunk. */ 3557 off += sizeof(struct sctphdr); 3558 chunk = mtodo(m, off); 3559 3560 chunk->chunk_type = SCTP_ABORT_ASSOCIATION; 3561 chunk->chunk_length = htons(sizeof(*chunk)); 3562 3563 /* SCTP checksum */ 3564 off += sizeof(*chunk); 3565 m->m_pkthdr.len = m->m_len = off; 3566 3567 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk)); 3568 3569 if (rtableid >= 0) 3570 M_SETFIB(m, rtableid); 3571 3572 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3573 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3574 if (pfse == NULL) { 3575 m_freem(m); 3576 return; 3577 } 3578 3579 switch (af) { 3580 #ifdef INET 3581 case AF_INET: 3582 pfse->pfse_type = PFSE_IP; 3583 break; 3584 #endif /* INET */ 3585 #ifdef INET6 3586 case AF_INET6: 3587 pfse->pfse_type = PFSE_IP6; 3588 break; 3589 #endif /* INET6 */ 3590 } 3591 3592 pfse->pfse_m = m; 3593 pf_send(pfse); 3594 } 3595 3596 void 3597 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 3598 const struct pf_addr *saddr, const struct pf_addr *daddr, 3599 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3600 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3601 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3602 { 3603 struct pf_send_entry *pfse; 3604 struct mbuf *m; 3605 3606 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags, 3607 win, mss, ttl, skip_firewall, mtag_tag, mtag_flags, rtableid); 3608 if (m == NULL) 3609 return; 3610 3611 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3612 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3613 if (pfse == NULL) { 3614 m_freem(m); 3615 return; 3616 } 3617 3618 switch (af) { 3619 #ifdef INET 3620 case AF_INET: 3621 pfse->pfse_type = PFSE_IP; 3622 break; 3623 #endif /* INET */ 3624 #ifdef INET6 3625 case AF_INET6: 3626 pfse->pfse_type = PFSE_IP6; 3627 break; 3628 #endif /* INET6 */ 3629 } 3630 3631 pfse->pfse_m = m; 3632 pf_send(pfse); 3633 } 3634 3635 static void 3636 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 3637 struct pf_state_key *sk, struct tcphdr *th, 3638 u_int16_t bproto_sum, u_int16_t bip_sum, 3639 u_short *reason, int rtableid) 3640 { 3641 struct pf_addr * const saddr = pd->src; 3642 struct pf_addr * const daddr = pd->dst; 3643 3644 /* undo NAT changes, if they have taken place */ 3645 if (nr != NULL) { 3646 PF_ACPY(saddr, &sk->addr[pd->sidx], pd->af); 3647 PF_ACPY(daddr, &sk->addr[pd->didx], pd->af); 3648 if (pd->sport) 3649 *pd->sport = sk->port[pd->sidx]; 3650 if (pd->dport) 3651 *pd->dport = sk->port[pd->didx]; 3652 if (pd->proto_sum) 3653 *pd->proto_sum = bproto_sum; 3654 if (pd->ip_sum) 3655 *pd->ip_sum = bip_sum; 3656 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 3657 } 3658 if (pd->proto == IPPROTO_TCP && 3659 ((r->rule_flag & PFRULE_RETURNRST) || 3660 (r->rule_flag & PFRULE_RETURN)) && 3661 !(th->th_flags & TH_RST)) { 3662 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3663 3664 if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off, 3665 IPPROTO_TCP, pd->af)) 3666 REASON_SET(reason, PFRES_PROTCKSUM); 3667 else { 3668 if (th->th_flags & TH_SYN) 3669 ack++; 3670 if (th->th_flags & TH_FIN) 3671 ack++; 3672 pf_send_tcp(r, pd->af, pd->dst, 3673 pd->src, th->th_dport, th->th_sport, 3674 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3675 r->return_ttl, true, 0, 0, rtableid); 3676 } 3677 } else if (pd->proto == IPPROTO_SCTP && 3678 (r->rule_flag & PFRULE_RETURN)) { 3679 pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid); 3680 } else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET && 3681 r->return_icmp) 3682 pf_send_icmp(pd->m, r->return_icmp >> 8, 3683 r->return_icmp & 255, pd->af, r, rtableid); 3684 else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 && 3685 r->return_icmp6) 3686 pf_send_icmp(pd->m, r->return_icmp6 >> 8, 3687 r->return_icmp6 & 255, pd->af, r, rtableid); 3688 } 3689 3690 static int 3691 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 3692 { 3693 struct m_tag *mtag; 3694 u_int8_t mpcp; 3695 3696 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 3697 if (mtag == NULL) 3698 return (0); 3699 3700 if (prio == PF_PRIO_ZERO) 3701 prio = 0; 3702 3703 mpcp = *(uint8_t *)(mtag + 1); 3704 3705 return (mpcp == prio); 3706 } 3707 3708 static int 3709 pf_icmp_to_bandlim(uint8_t type) 3710 { 3711 switch (type) { 3712 case ICMP_ECHO: 3713 case ICMP_ECHOREPLY: 3714 return (BANDLIM_ICMP_ECHO); 3715 case ICMP_TSTAMP: 3716 case ICMP_TSTAMPREPLY: 3717 return (BANDLIM_ICMP_TSTAMP); 3718 case ICMP_UNREACH: 3719 default: 3720 return (BANDLIM_ICMP_UNREACH); 3721 } 3722 } 3723 3724 static void 3725 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 3726 struct pf_krule *r, int rtableid) 3727 { 3728 struct pf_send_entry *pfse; 3729 struct mbuf *m0; 3730 struct pf_mtag *pf_mtag; 3731 3732 /* ICMP packet rate limitation. */ 3733 switch (af) { 3734 #ifdef INET6 3735 case AF_INET6: 3736 if (icmp6_ratelimit(NULL, type, code)) 3737 return; 3738 break; 3739 #endif 3740 #ifdef INET 3741 case AF_INET: 3742 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 3743 return; 3744 break; 3745 #endif 3746 } 3747 3748 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3749 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3750 if (pfse == NULL) 3751 return; 3752 3753 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 3754 free(pfse, M_PFTEMP); 3755 return; 3756 } 3757 3758 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 3759 free(pfse, M_PFTEMP); 3760 return; 3761 } 3762 /* XXX: revisit */ 3763 m0->m_flags |= M_SKIP_FIREWALL; 3764 3765 if (rtableid >= 0) 3766 M_SETFIB(m0, rtableid); 3767 3768 #ifdef ALTQ 3769 if (r->qid) { 3770 pf_mtag->qid = r->qid; 3771 /* add hints for ecn */ 3772 pf_mtag->hdr = mtod(m0, struct ip *); 3773 } 3774 #endif /* ALTQ */ 3775 3776 switch (af) { 3777 #ifdef INET 3778 case AF_INET: 3779 pfse->pfse_type = PFSE_ICMP; 3780 break; 3781 #endif /* INET */ 3782 #ifdef INET6 3783 case AF_INET6: 3784 pfse->pfse_type = PFSE_ICMP6; 3785 break; 3786 #endif /* INET6 */ 3787 } 3788 pfse->pfse_m = m0; 3789 pfse->icmpopts.type = type; 3790 pfse->icmpopts.code = code; 3791 pf_send(pfse); 3792 } 3793 3794 /* 3795 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 3796 * If n is 0, they match if they are equal. If n is != 0, they match if they 3797 * are different. 3798 */ 3799 int 3800 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 3801 struct pf_addr *b, sa_family_t af) 3802 { 3803 int match = 0; 3804 3805 switch (af) { 3806 #ifdef INET 3807 case AF_INET: 3808 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4)) 3809 match++; 3810 break; 3811 #endif /* INET */ 3812 #ifdef INET6 3813 case AF_INET6: 3814 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6)) 3815 match++; 3816 break; 3817 #endif /* INET6 */ 3818 } 3819 if (match) { 3820 if (n) 3821 return (0); 3822 else 3823 return (1); 3824 } else { 3825 if (n) 3826 return (1); 3827 else 3828 return (0); 3829 } 3830 } 3831 3832 /* 3833 * Return 1 if b <= a <= e, otherwise return 0. 3834 */ 3835 int 3836 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 3837 struct pf_addr *a, sa_family_t af) 3838 { 3839 switch (af) { 3840 #ifdef INET 3841 case AF_INET: 3842 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 3843 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 3844 return (0); 3845 break; 3846 #endif /* INET */ 3847 #ifdef INET6 3848 case AF_INET6: { 3849 int i; 3850 3851 /* check a >= b */ 3852 for (i = 0; i < 4; ++i) 3853 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 3854 break; 3855 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 3856 return (0); 3857 /* check a <= e */ 3858 for (i = 0; i < 4; ++i) 3859 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 3860 break; 3861 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 3862 return (0); 3863 break; 3864 } 3865 #endif /* INET6 */ 3866 } 3867 return (1); 3868 } 3869 3870 static int 3871 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3872 { 3873 switch (op) { 3874 case PF_OP_IRG: 3875 return ((p > a1) && (p < a2)); 3876 case PF_OP_XRG: 3877 return ((p < a1) || (p > a2)); 3878 case PF_OP_RRG: 3879 return ((p >= a1) && (p <= a2)); 3880 case PF_OP_EQ: 3881 return (p == a1); 3882 case PF_OP_NE: 3883 return (p != a1); 3884 case PF_OP_LT: 3885 return (p < a1); 3886 case PF_OP_LE: 3887 return (p <= a1); 3888 case PF_OP_GT: 3889 return (p > a1); 3890 case PF_OP_GE: 3891 return (p >= a1); 3892 } 3893 return (0); /* never reached */ 3894 } 3895 3896 int 3897 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3898 { 3899 NTOHS(a1); 3900 NTOHS(a2); 3901 NTOHS(p); 3902 return (pf_match(op, a1, a2, p)); 3903 } 3904 3905 static int 3906 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3907 { 3908 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3909 return (0); 3910 return (pf_match(op, a1, a2, u)); 3911 } 3912 3913 static int 3914 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3915 { 3916 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3917 return (0); 3918 return (pf_match(op, a1, a2, g)); 3919 } 3920 3921 int 3922 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3923 { 3924 if (*tag == -1) 3925 *tag = mtag; 3926 3927 return ((!r->match_tag_not && r->match_tag == *tag) || 3928 (r->match_tag_not && r->match_tag != *tag)); 3929 } 3930 3931 static int 3932 pf_match_rcvif(struct mbuf *m, struct pf_krule *r) 3933 { 3934 struct ifnet *ifp = m->m_pkthdr.rcvif; 3935 struct pfi_kkif *kif; 3936 3937 if (ifp == NULL) 3938 return (0); 3939 3940 kif = (struct pfi_kkif *)ifp->if_pf_kif; 3941 3942 if (kif == NULL) { 3943 DPFPRINTF(PF_DEBUG_URGENT, 3944 ("pf_test_via: kif == NULL, @%d via %s\n", r->nr, 3945 r->rcv_ifname)); 3946 return (0); 3947 } 3948 3949 return (pfi_kkif_match(r->rcv_kif, kif)); 3950 } 3951 3952 int 3953 pf_tag_packet(struct pf_pdesc *pd, int tag) 3954 { 3955 3956 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 3957 3958 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) 3959 return (ENOMEM); 3960 3961 pd->pf_mtag->tag = tag; 3962 3963 return (0); 3964 } 3965 3966 #define PF_ANCHOR_STACKSIZE 32 3967 struct pf_kanchor_stackframe { 3968 struct pf_kruleset *rs; 3969 struct pf_krule *r; /* XXX: + match bit */ 3970 struct pf_kanchor *child; 3971 }; 3972 3973 /* 3974 * XXX: We rely on malloc(9) returning pointer aligned addresses. 3975 */ 3976 #define PF_ANCHORSTACK_MATCH 0x00000001 3977 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 3978 3979 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3980 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 3981 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3982 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3983 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3984 } while (0) 3985 3986 void 3987 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3988 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3989 int *match) 3990 { 3991 struct pf_kanchor_stackframe *f; 3992 3993 PF_RULES_RASSERT(); 3994 3995 if (match) 3996 *match = 0; 3997 if (*depth >= PF_ANCHOR_STACKSIZE) { 3998 printf("%s: anchor stack overflow on %s\n", 3999 __func__, (*r)->anchor->name); 4000 *r = TAILQ_NEXT(*r, entries); 4001 return; 4002 } else if (*depth == 0 && a != NULL) 4003 *a = *r; 4004 f = stack + (*depth)++; 4005 f->rs = *rs; 4006 f->r = *r; 4007 if ((*r)->anchor_wildcard) { 4008 struct pf_kanchor_node *parent = &(*r)->anchor->children; 4009 4010 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 4011 *r = NULL; 4012 return; 4013 } 4014 *rs = &f->child->ruleset; 4015 } else { 4016 f->child = NULL; 4017 *rs = &(*r)->anchor->ruleset; 4018 } 4019 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4020 } 4021 4022 int 4023 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 4024 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 4025 int *match) 4026 { 4027 struct pf_kanchor_stackframe *f; 4028 struct pf_krule *fr; 4029 int quick = 0; 4030 4031 PF_RULES_RASSERT(); 4032 4033 do { 4034 if (*depth <= 0) 4035 break; 4036 f = stack + *depth - 1; 4037 fr = PF_ANCHOR_RULE(f); 4038 if (f->child != NULL) { 4039 /* 4040 * This block traverses through 4041 * a wildcard anchor. 4042 */ 4043 if (match != NULL && *match) { 4044 /* 4045 * If any of "*" matched, then 4046 * "foo/ *" matched, mark frame 4047 * appropriately. 4048 */ 4049 PF_ANCHOR_SET_MATCH(f); 4050 *match = 0; 4051 } 4052 f->child = RB_NEXT(pf_kanchor_node, 4053 &fr->anchor->children, f->child); 4054 if (f->child != NULL) { 4055 *rs = &f->child->ruleset; 4056 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4057 if (*r == NULL) 4058 continue; 4059 else 4060 break; 4061 } 4062 } 4063 (*depth)--; 4064 if (*depth == 0 && a != NULL) 4065 *a = NULL; 4066 *rs = f->rs; 4067 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 4068 quick = fr->quick; 4069 *r = TAILQ_NEXT(fr, entries); 4070 } while (*r == NULL); 4071 4072 return (quick); 4073 } 4074 4075 struct pf_keth_anchor_stackframe { 4076 struct pf_keth_ruleset *rs; 4077 struct pf_keth_rule *r; /* XXX: + match bit */ 4078 struct pf_keth_anchor *child; 4079 }; 4080 4081 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4082 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 4083 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4084 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4085 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4086 } while (0) 4087 4088 void 4089 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4090 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4091 struct pf_keth_rule **a, int *match) 4092 { 4093 struct pf_keth_anchor_stackframe *f; 4094 4095 NET_EPOCH_ASSERT(); 4096 4097 if (match) 4098 *match = 0; 4099 if (*depth >= PF_ANCHOR_STACKSIZE) { 4100 printf("%s: anchor stack overflow on %s\n", 4101 __func__, (*r)->anchor->name); 4102 *r = TAILQ_NEXT(*r, entries); 4103 return; 4104 } else if (*depth == 0 && a != NULL) 4105 *a = *r; 4106 f = stack + (*depth)++; 4107 f->rs = *rs; 4108 f->r = *r; 4109 if ((*r)->anchor_wildcard) { 4110 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 4111 4112 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 4113 *r = NULL; 4114 return; 4115 } 4116 *rs = &f->child->ruleset; 4117 } else { 4118 f->child = NULL; 4119 *rs = &(*r)->anchor->ruleset; 4120 } 4121 *r = TAILQ_FIRST((*rs)->active.rules); 4122 } 4123 4124 int 4125 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4126 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4127 struct pf_keth_rule **a, int *match) 4128 { 4129 struct pf_keth_anchor_stackframe *f; 4130 struct pf_keth_rule *fr; 4131 int quick = 0; 4132 4133 NET_EPOCH_ASSERT(); 4134 4135 do { 4136 if (*depth <= 0) 4137 break; 4138 f = stack + *depth - 1; 4139 fr = PF_ETH_ANCHOR_RULE(f); 4140 if (f->child != NULL) { 4141 /* 4142 * This block traverses through 4143 * a wildcard anchor. 4144 */ 4145 if (match != NULL && *match) { 4146 /* 4147 * If any of "*" matched, then 4148 * "foo/ *" matched, mark frame 4149 * appropriately. 4150 */ 4151 PF_ETH_ANCHOR_SET_MATCH(f); 4152 *match = 0; 4153 } 4154 f->child = RB_NEXT(pf_keth_anchor_node, 4155 &fr->anchor->children, f->child); 4156 if (f->child != NULL) { 4157 *rs = &f->child->ruleset; 4158 *r = TAILQ_FIRST((*rs)->active.rules); 4159 if (*r == NULL) 4160 continue; 4161 else 4162 break; 4163 } 4164 } 4165 (*depth)--; 4166 if (*depth == 0 && a != NULL) 4167 *a = NULL; 4168 *rs = f->rs; 4169 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 4170 quick = fr->quick; 4171 *r = TAILQ_NEXT(fr, entries); 4172 } while (*r == NULL); 4173 4174 return (quick); 4175 } 4176 4177 #ifdef INET6 4178 void 4179 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 4180 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 4181 { 4182 switch (af) { 4183 #ifdef INET 4184 case AF_INET: 4185 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4186 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4187 break; 4188 #endif /* INET */ 4189 case AF_INET6: 4190 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4191 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4192 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 4193 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 4194 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 4195 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 4196 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 4197 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 4198 break; 4199 } 4200 } 4201 4202 void 4203 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 4204 { 4205 switch (af) { 4206 #ifdef INET 4207 case AF_INET: 4208 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 4209 break; 4210 #endif /* INET */ 4211 case AF_INET6: 4212 if (addr->addr32[3] == 0xffffffff) { 4213 addr->addr32[3] = 0; 4214 if (addr->addr32[2] == 0xffffffff) { 4215 addr->addr32[2] = 0; 4216 if (addr->addr32[1] == 0xffffffff) { 4217 addr->addr32[1] = 0; 4218 addr->addr32[0] = 4219 htonl(ntohl(addr->addr32[0]) + 1); 4220 } else 4221 addr->addr32[1] = 4222 htonl(ntohl(addr->addr32[1]) + 1); 4223 } else 4224 addr->addr32[2] = 4225 htonl(ntohl(addr->addr32[2]) + 1); 4226 } else 4227 addr->addr32[3] = 4228 htonl(ntohl(addr->addr32[3]) + 1); 4229 break; 4230 } 4231 } 4232 #endif /* INET6 */ 4233 4234 void 4235 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 4236 { 4237 /* 4238 * Modern rules use the same flags in rules as they do in states. 4239 */ 4240 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 4241 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 4242 4243 /* 4244 * Old-style scrub rules have different flags which need to be translated. 4245 */ 4246 if (r->rule_flag & PFRULE_RANDOMID) 4247 a->flags |= PFSTATE_RANDOMID; 4248 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) { 4249 a->flags |= PFSTATE_SETTOS; 4250 a->set_tos = r->set_tos; 4251 } 4252 4253 if (r->qid) 4254 a->qid = r->qid; 4255 if (r->pqid) 4256 a->pqid = r->pqid; 4257 if (r->rtableid >= 0) 4258 a->rtableid = r->rtableid; 4259 a->log |= r->log; 4260 if (r->min_ttl) 4261 a->min_ttl = r->min_ttl; 4262 if (r->max_mss) 4263 a->max_mss = r->max_mss; 4264 if (r->dnpipe) 4265 a->dnpipe = r->dnpipe; 4266 if (r->dnrpipe) 4267 a->dnrpipe = r->dnrpipe; 4268 if (r->dnpipe || r->dnrpipe) { 4269 if (r->free_flags & PFRULE_DN_IS_PIPE) 4270 a->flags |= PFSTATE_DN_IS_PIPE; 4271 else 4272 a->flags &= ~PFSTATE_DN_IS_PIPE; 4273 } 4274 if (r->scrub_flags & PFSTATE_SETPRIO) { 4275 a->set_prio[0] = r->set_prio[0]; 4276 a->set_prio[1] = r->set_prio[1]; 4277 } 4278 } 4279 4280 int 4281 pf_socket_lookup(struct pf_pdesc *pd) 4282 { 4283 struct pf_addr *saddr, *daddr; 4284 u_int16_t sport, dport; 4285 struct inpcbinfo *pi; 4286 struct inpcb *inp; 4287 4288 pd->lookup.uid = UID_MAX; 4289 pd->lookup.gid = GID_MAX; 4290 4291 switch (pd->proto) { 4292 case IPPROTO_TCP: 4293 sport = pd->hdr.tcp.th_sport; 4294 dport = pd->hdr.tcp.th_dport; 4295 pi = &V_tcbinfo; 4296 break; 4297 case IPPROTO_UDP: 4298 sport = pd->hdr.udp.uh_sport; 4299 dport = pd->hdr.udp.uh_dport; 4300 pi = &V_udbinfo; 4301 break; 4302 default: 4303 return (-1); 4304 } 4305 if (pd->dir == PF_IN) { 4306 saddr = pd->src; 4307 daddr = pd->dst; 4308 } else { 4309 u_int16_t p; 4310 4311 p = sport; 4312 sport = dport; 4313 dport = p; 4314 saddr = pd->dst; 4315 daddr = pd->src; 4316 } 4317 switch (pd->af) { 4318 #ifdef INET 4319 case AF_INET: 4320 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 4321 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m); 4322 if (inp == NULL) { 4323 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 4324 daddr->v4, dport, INPLOOKUP_WILDCARD | 4325 INPLOOKUP_RLOCKPCB, NULL, pd->m); 4326 if (inp == NULL) 4327 return (-1); 4328 } 4329 break; 4330 #endif /* INET */ 4331 #ifdef INET6 4332 case AF_INET6: 4333 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 4334 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m); 4335 if (inp == NULL) { 4336 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 4337 &daddr->v6, dport, INPLOOKUP_WILDCARD | 4338 INPLOOKUP_RLOCKPCB, NULL, pd->m); 4339 if (inp == NULL) 4340 return (-1); 4341 } 4342 break; 4343 #endif /* INET6 */ 4344 } 4345 INP_RLOCK_ASSERT(inp); 4346 pd->lookup.uid = inp->inp_cred->cr_uid; 4347 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4348 INP_RUNLOCK(inp); 4349 4350 return (1); 4351 } 4352 4353 u_int8_t 4354 pf_get_wscale(struct pf_pdesc *pd) 4355 { 4356 struct tcphdr *th = &pd->hdr.tcp; 4357 int hlen; 4358 u_int8_t hdr[60]; 4359 u_int8_t *opt, optlen; 4360 u_int8_t wscale = 0; 4361 4362 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */ 4363 if (hlen <= sizeof(struct tcphdr)) 4364 return (0); 4365 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af)) 4366 return (0); 4367 opt = hdr + sizeof(struct tcphdr); 4368 hlen -= sizeof(struct tcphdr); 4369 while (hlen >= 3) { 4370 switch (*opt) { 4371 case TCPOPT_EOL: 4372 case TCPOPT_NOP: 4373 ++opt; 4374 --hlen; 4375 break; 4376 case TCPOPT_WINDOW: 4377 wscale = opt[2]; 4378 if (wscale > TCP_MAX_WINSHIFT) 4379 wscale = TCP_MAX_WINSHIFT; 4380 wscale |= PF_WSCALE_FLAG; 4381 /* FALLTHROUGH */ 4382 default: 4383 optlen = opt[1]; 4384 if (optlen < 2) 4385 optlen = 2; 4386 hlen -= optlen; 4387 opt += optlen; 4388 break; 4389 } 4390 } 4391 return (wscale); 4392 } 4393 4394 u_int16_t 4395 pf_get_mss(struct pf_pdesc *pd) 4396 { 4397 struct tcphdr *th = &pd->hdr.tcp; 4398 int hlen; 4399 u_int8_t hdr[60]; 4400 u_int8_t *opt, optlen; 4401 u_int16_t mss = V_tcp_mssdflt; 4402 4403 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */ 4404 if (hlen <= sizeof(struct tcphdr)) 4405 return (0); 4406 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af)) 4407 return (0); 4408 opt = hdr + sizeof(struct tcphdr); 4409 hlen -= sizeof(struct tcphdr); 4410 while (hlen >= TCPOLEN_MAXSEG) { 4411 switch (*opt) { 4412 case TCPOPT_EOL: 4413 case TCPOPT_NOP: 4414 ++opt; 4415 --hlen; 4416 break; 4417 case TCPOPT_MAXSEG: 4418 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 4419 NTOHS(mss); 4420 /* FALLTHROUGH */ 4421 default: 4422 optlen = opt[1]; 4423 if (optlen < 2) 4424 optlen = 2; 4425 hlen -= optlen; 4426 opt += optlen; 4427 break; 4428 } 4429 } 4430 return (mss); 4431 } 4432 4433 static u_int16_t 4434 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 4435 { 4436 struct nhop_object *nh; 4437 #ifdef INET6 4438 struct in6_addr dst6; 4439 uint32_t scopeid; 4440 #endif /* INET6 */ 4441 int hlen = 0; 4442 uint16_t mss = 0; 4443 4444 NET_EPOCH_ASSERT(); 4445 4446 switch (af) { 4447 #ifdef INET 4448 case AF_INET: 4449 hlen = sizeof(struct ip); 4450 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 4451 if (nh != NULL) 4452 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4453 break; 4454 #endif /* INET */ 4455 #ifdef INET6 4456 case AF_INET6: 4457 hlen = sizeof(struct ip6_hdr); 4458 in6_splitscope(&addr->v6, &dst6, &scopeid); 4459 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 4460 if (nh != NULL) 4461 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4462 break; 4463 #endif /* INET6 */ 4464 } 4465 4466 mss = max(V_tcp_mssdflt, mss); 4467 mss = min(mss, offer); 4468 mss = max(mss, 64); /* sanity - at least max opt space */ 4469 return (mss); 4470 } 4471 4472 static u_int32_t 4473 pf_tcp_iss(struct pf_pdesc *pd) 4474 { 4475 MD5_CTX ctx; 4476 u_int32_t digest[4]; 4477 4478 if (V_pf_tcp_secret_init == 0) { 4479 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 4480 MD5Init(&V_pf_tcp_secret_ctx); 4481 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 4482 sizeof(V_pf_tcp_secret)); 4483 V_pf_tcp_secret_init = 1; 4484 } 4485 4486 ctx = V_pf_tcp_secret_ctx; 4487 4488 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 4489 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 4490 switch (pd->af) { 4491 case AF_INET6: 4492 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 4493 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 4494 break; 4495 case AF_INET: 4496 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 4497 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 4498 break; 4499 } 4500 MD5Final((u_char *)digest, &ctx); 4501 V_pf_tcp_iss_off += 4096; 4502 #define ISN_RANDOM_INCREMENT (4096 - 1) 4503 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 4504 V_pf_tcp_iss_off); 4505 #undef ISN_RANDOM_INCREMENT 4506 } 4507 4508 static bool 4509 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 4510 { 4511 bool match = true; 4512 4513 /* Always matches if not set */ 4514 if (! r->isset) 4515 return (!r->neg); 4516 4517 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 4518 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 4519 match = false; 4520 break; 4521 } 4522 } 4523 4524 return (match ^ r->neg); 4525 } 4526 4527 static int 4528 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 4529 { 4530 if (*tag == -1) 4531 *tag = mtag; 4532 4533 return ((!r->match_tag_not && r->match_tag == *tag) || 4534 (r->match_tag_not && r->match_tag != *tag)); 4535 } 4536 4537 static void 4538 pf_bridge_to(struct ifnet *ifp, struct mbuf *m) 4539 { 4540 /* If we don't have the interface drop the packet. */ 4541 if (ifp == NULL) { 4542 m_freem(m); 4543 return; 4544 } 4545 4546 switch (ifp->if_type) { 4547 case IFT_ETHER: 4548 case IFT_XETHER: 4549 case IFT_L2VLAN: 4550 case IFT_BRIDGE: 4551 case IFT_IEEE8023ADLAG: 4552 break; 4553 default: 4554 m_freem(m); 4555 return; 4556 } 4557 4558 ifp->if_transmit(ifp, m); 4559 } 4560 4561 static int 4562 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 4563 { 4564 #ifdef INET 4565 struct ip ip; 4566 #endif 4567 #ifdef INET6 4568 struct ip6_hdr ip6; 4569 #endif 4570 struct mbuf *m = *m0; 4571 struct ether_header *e; 4572 struct pf_keth_rule *r, *rm, *a = NULL; 4573 struct pf_keth_ruleset *ruleset = NULL; 4574 struct pf_mtag *mtag; 4575 struct pf_keth_ruleq *rules; 4576 struct pf_addr *src = NULL, *dst = NULL; 4577 struct pfi_kkif *bridge_to; 4578 sa_family_t af = 0; 4579 uint16_t proto; 4580 int asd = 0, match = 0; 4581 int tag = -1; 4582 uint8_t action; 4583 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4584 4585 MPASS(kif->pfik_ifp->if_vnet == curvnet); 4586 NET_EPOCH_ASSERT(); 4587 4588 PF_RULES_RLOCK_TRACKER; 4589 4590 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 4591 4592 mtag = pf_find_mtag(m); 4593 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 4594 /* Dummynet re-injects packets after they've 4595 * completed their delay. We've already 4596 * processed them, so pass unconditionally. */ 4597 4598 /* But only once. We may see the packet multiple times (e.g. 4599 * PFIL_IN/PFIL_OUT). */ 4600 pf_dummynet_flag_remove(m, mtag); 4601 4602 return (PF_PASS); 4603 } 4604 4605 ruleset = V_pf_keth; 4606 rules = ck_pr_load_ptr(&ruleset->active.rules); 4607 r = TAILQ_FIRST(rules); 4608 rm = NULL; 4609 4610 if (__predict_false(m->m_len < sizeof(struct ether_header)) && 4611 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) { 4612 DPFPRINTF(PF_DEBUG_URGENT, 4613 ("pf_test_eth_rule: m_len < sizeof(struct ether_header)" 4614 ", pullup failed\n")); 4615 return (PF_DROP); 4616 } 4617 e = mtod(m, struct ether_header *); 4618 proto = ntohs(e->ether_type); 4619 4620 switch (proto) { 4621 #ifdef INET 4622 case ETHERTYPE_IP: { 4623 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4624 sizeof(ip))) 4625 return (PF_DROP); 4626 4627 af = AF_INET; 4628 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 4629 (caddr_t)&ip); 4630 src = (struct pf_addr *)&ip.ip_src; 4631 dst = (struct pf_addr *)&ip.ip_dst; 4632 break; 4633 } 4634 #endif /* INET */ 4635 #ifdef INET6 4636 case ETHERTYPE_IPV6: { 4637 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4638 sizeof(ip6))) 4639 return (PF_DROP); 4640 4641 af = AF_INET6; 4642 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 4643 (caddr_t)&ip6); 4644 src = (struct pf_addr *)&ip6.ip6_src; 4645 dst = (struct pf_addr *)&ip6.ip6_dst; 4646 break; 4647 } 4648 #endif /* INET6 */ 4649 } 4650 4651 PF_RULES_RLOCK(); 4652 4653 while (r != NULL) { 4654 counter_u64_add(r->evaluations, 1); 4655 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 4656 4657 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 4658 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4659 "kif"); 4660 r = r->skip[PFE_SKIP_IFP].ptr; 4661 } 4662 else if (r->direction && r->direction != dir) { 4663 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4664 "dir"); 4665 r = r->skip[PFE_SKIP_DIR].ptr; 4666 } 4667 else if (r->proto && r->proto != proto) { 4668 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4669 "proto"); 4670 r = r->skip[PFE_SKIP_PROTO].ptr; 4671 } 4672 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 4673 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4674 "src"); 4675 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 4676 } 4677 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 4678 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4679 "dst"); 4680 r = r->skip[PFE_SKIP_DST_ADDR].ptr; 4681 } 4682 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 4683 r->ipsrc.neg, kif, M_GETFIB(m))) { 4684 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4685 "ip_src"); 4686 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr; 4687 } 4688 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 4689 r->ipdst.neg, kif, M_GETFIB(m))) { 4690 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4691 "ip_dst"); 4692 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr; 4693 } 4694 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 4695 mtag ? mtag->tag : 0)) { 4696 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4697 "match_tag"); 4698 r = TAILQ_NEXT(r, entries); 4699 } 4700 else { 4701 if (r->tag) 4702 tag = r->tag; 4703 if (r->anchor == NULL) { 4704 /* Rule matches */ 4705 rm = r; 4706 4707 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 4708 4709 if (r->quick) 4710 break; 4711 4712 r = TAILQ_NEXT(r, entries); 4713 } else { 4714 pf_step_into_keth_anchor(anchor_stack, &asd, 4715 &ruleset, &r, &a, &match); 4716 } 4717 } 4718 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 4719 &ruleset, &r, &a, &match)) 4720 break; 4721 } 4722 4723 r = rm; 4724 4725 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 4726 4727 /* Default to pass. */ 4728 if (r == NULL) { 4729 PF_RULES_RUNLOCK(); 4730 return (PF_PASS); 4731 } 4732 4733 /* Execute action. */ 4734 counter_u64_add(r->packets[dir == PF_OUT], 1); 4735 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 4736 pf_update_timestamp(r); 4737 4738 /* Shortcut. Don't tag if we're just going to drop anyway. */ 4739 if (r->action == PF_DROP) { 4740 PF_RULES_RUNLOCK(); 4741 return (PF_DROP); 4742 } 4743 4744 if (tag > 0) { 4745 if (mtag == NULL) 4746 mtag = pf_get_mtag(m); 4747 if (mtag == NULL) { 4748 PF_RULES_RUNLOCK(); 4749 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4750 return (PF_DROP); 4751 } 4752 mtag->tag = tag; 4753 } 4754 4755 if (r->qid != 0) { 4756 if (mtag == NULL) 4757 mtag = pf_get_mtag(m); 4758 if (mtag == NULL) { 4759 PF_RULES_RUNLOCK(); 4760 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4761 return (PF_DROP); 4762 } 4763 mtag->qid = r->qid; 4764 } 4765 4766 action = r->action; 4767 bridge_to = r->bridge_to; 4768 4769 /* Dummynet */ 4770 if (r->dnpipe) { 4771 struct ip_fw_args dnflow; 4772 4773 /* Drop packet if dummynet is not loaded. */ 4774 if (ip_dn_io_ptr == NULL) { 4775 PF_RULES_RUNLOCK(); 4776 m_freem(m); 4777 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4778 return (PF_DROP); 4779 } 4780 if (mtag == NULL) 4781 mtag = pf_get_mtag(m); 4782 if (mtag == NULL) { 4783 PF_RULES_RUNLOCK(); 4784 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4785 return (PF_DROP); 4786 } 4787 4788 bzero(&dnflow, sizeof(dnflow)); 4789 4790 /* We don't have port numbers here, so we set 0. That means 4791 * that we'll be somewhat limited in distinguishing flows (i.e. 4792 * only based on IP addresses, not based on port numbers), but 4793 * it's better than nothing. */ 4794 dnflow.f_id.dst_port = 0; 4795 dnflow.f_id.src_port = 0; 4796 dnflow.f_id.proto = 0; 4797 4798 dnflow.rule.info = r->dnpipe; 4799 dnflow.rule.info |= IPFW_IS_DUMMYNET; 4800 if (r->dnflags & PFRULE_DN_IS_PIPE) 4801 dnflow.rule.info |= IPFW_IS_PIPE; 4802 4803 dnflow.f_id.extra = dnflow.rule.info; 4804 4805 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 4806 dnflow.flags |= IPFW_ARGS_ETHER; 4807 dnflow.ifp = kif->pfik_ifp; 4808 4809 switch (af) { 4810 case AF_INET: 4811 dnflow.f_id.addr_type = 4; 4812 dnflow.f_id.src_ip = src->v4.s_addr; 4813 dnflow.f_id.dst_ip = dst->v4.s_addr; 4814 break; 4815 case AF_INET6: 4816 dnflow.flags |= IPFW_ARGS_IP6; 4817 dnflow.f_id.addr_type = 6; 4818 dnflow.f_id.src_ip6 = src->v6; 4819 dnflow.f_id.dst_ip6 = dst->v6; 4820 break; 4821 } 4822 4823 PF_RULES_RUNLOCK(); 4824 4825 mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 4826 ip_dn_io_ptr(m0, &dnflow); 4827 if (*m0 != NULL) 4828 pf_dummynet_flag_remove(m, mtag); 4829 } else { 4830 PF_RULES_RUNLOCK(); 4831 } 4832 4833 if (action == PF_PASS && bridge_to) { 4834 pf_bridge_to(bridge_to->pfik_ifp, *m0); 4835 *m0 = NULL; /* We've eaten the packet. */ 4836 } 4837 4838 return (action); 4839 } 4840 4841 #define PF_TEST_ATTRIB(t, a)\ 4842 do { \ 4843 if (t) { \ 4844 r = a; \ 4845 goto nextrule; \ 4846 } \ 4847 } while (0) 4848 4849 static int 4850 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, 4851 struct pf_pdesc *pd, struct pf_krule **am, 4852 struct pf_kruleset **rsm, struct inpcb *inp) 4853 { 4854 struct pf_krule *nr = NULL; 4855 struct pf_addr * const saddr = pd->src; 4856 struct pf_addr * const daddr = pd->dst; 4857 struct pf_krule *r, *a = NULL; 4858 struct pf_kruleset *ruleset = NULL; 4859 struct pf_krule_slist match_rules; 4860 struct pf_krule_item *ri; 4861 struct pf_ksrc_node *nsn = NULL; 4862 struct tcphdr *th = &pd->hdr.tcp; 4863 struct pf_state_key *sk = NULL, *nk = NULL; 4864 u_short reason, transerror; 4865 int rewrite = 0; 4866 int tag = -1; 4867 int asd = 0; 4868 int match = 0; 4869 int state_icmp = 0, icmp_dir, multi; 4870 u_int16_t sport = 0, dport = 0, virtual_type, virtual_id; 4871 u_int16_t bproto_sum = 0, bip_sum = 0; 4872 u_int8_t icmptype = 0, icmpcode = 0; 4873 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4874 struct pf_udp_mapping *udp_mapping = NULL; 4875 4876 PF_RULES_RASSERT(); 4877 4878 SLIST_INIT(&match_rules); 4879 4880 if (inp != NULL) { 4881 INP_LOCK_ASSERT(inp); 4882 pd->lookup.uid = inp->inp_cred->cr_uid; 4883 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4884 pd->lookup.done = 1; 4885 } 4886 4887 switch (pd->virtual_proto) { 4888 case IPPROTO_TCP: 4889 sport = th->th_sport; 4890 dport = th->th_dport; 4891 break; 4892 case IPPROTO_UDP: 4893 sport = pd->hdr.udp.uh_sport; 4894 dport = pd->hdr.udp.uh_dport; 4895 break; 4896 case IPPROTO_SCTP: 4897 sport = pd->hdr.sctp.src_port; 4898 dport = pd->hdr.sctp.dest_port; 4899 break; 4900 #ifdef INET 4901 case IPPROTO_ICMP: 4902 MPASS(pd->af == AF_INET); 4903 icmptype = pd->hdr.icmp.icmp_type; 4904 icmpcode = pd->hdr.icmp.icmp_code; 4905 state_icmp = pf_icmp_mapping(pd, icmptype, 4906 &icmp_dir, &multi, &virtual_id, &virtual_type); 4907 if (icmp_dir == PF_IN) { 4908 sport = virtual_id; 4909 dport = virtual_type; 4910 } else { 4911 sport = virtual_type; 4912 dport = virtual_id; 4913 } 4914 break; 4915 #endif /* INET */ 4916 #ifdef INET6 4917 case IPPROTO_ICMPV6: 4918 MPASS(pd->af == AF_INET6); 4919 icmptype = pd->hdr.icmp6.icmp6_type; 4920 icmpcode = pd->hdr.icmp6.icmp6_code; 4921 state_icmp = pf_icmp_mapping(pd, icmptype, 4922 &icmp_dir, &multi, &virtual_id, &virtual_type); 4923 if (icmp_dir == PF_IN) { 4924 sport = virtual_id; 4925 dport = virtual_type; 4926 } else { 4927 sport = virtual_type; 4928 dport = virtual_id; 4929 } 4930 4931 break; 4932 #endif /* INET6 */ 4933 default: 4934 sport = dport = 0; 4935 break; 4936 } 4937 4938 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4939 4940 /* check packet for BINAT/NAT/RDR */ 4941 transerror = pf_get_translation(pd, pd->off, &nsn, &sk, 4942 &nk, saddr, daddr, sport, dport, anchor_stack, &nr, &udp_mapping); 4943 switch (transerror) { 4944 default: 4945 /* A translation error occurred. */ 4946 REASON_SET(&reason, transerror); 4947 goto cleanup; 4948 case PFRES_MAX: 4949 /* No match. */ 4950 break; 4951 case PFRES_MATCH: 4952 KASSERT(sk != NULL, ("%s: null sk", __func__)); 4953 KASSERT(nk != NULL, ("%s: null nk", __func__)); 4954 4955 if (nr->log) { 4956 PFLOG_PACKET(PF_PASS, PFRES_MATCH, nr, a, 4957 ruleset, pd, 1); 4958 } 4959 4960 if (pd->ip_sum) 4961 bip_sum = *pd->ip_sum; 4962 4963 switch (pd->proto) { 4964 case IPPROTO_TCP: 4965 bproto_sum = th->th_sum; 4966 pd->proto_sum = &th->th_sum; 4967 4968 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) || 4969 nk->port[pd->sidx] != sport) { 4970 pf_change_ap(pd->m, saddr, &th->th_sport, pd->ip_sum, 4971 &th->th_sum, &nk->addr[pd->sidx], 4972 nk->port[pd->sidx], 0, pd->af); 4973 pd->sport = &th->th_sport; 4974 sport = th->th_sport; 4975 } 4976 4977 if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) || 4978 nk->port[pd->didx] != dport) { 4979 pf_change_ap(pd->m, daddr, &th->th_dport, pd->ip_sum, 4980 &th->th_sum, &nk->addr[pd->didx], 4981 nk->port[pd->didx], 0, pd->af); 4982 dport = th->th_dport; 4983 pd->dport = &th->th_dport; 4984 } 4985 rewrite++; 4986 break; 4987 case IPPROTO_UDP: 4988 bproto_sum = pd->hdr.udp.uh_sum; 4989 pd->proto_sum = &pd->hdr.udp.uh_sum; 4990 4991 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) || 4992 nk->port[pd->sidx] != sport) { 4993 pf_change_ap(pd->m, saddr, &pd->hdr.udp.uh_sport, 4994 pd->ip_sum, &pd->hdr.udp.uh_sum, 4995 &nk->addr[pd->sidx], 4996 nk->port[pd->sidx], 1, pd->af); 4997 sport = pd->hdr.udp.uh_sport; 4998 pd->sport = &pd->hdr.udp.uh_sport; 4999 } 5000 5001 if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) || 5002 nk->port[pd->didx] != dport) { 5003 pf_change_ap(pd->m, daddr, &pd->hdr.udp.uh_dport, 5004 pd->ip_sum, &pd->hdr.udp.uh_sum, 5005 &nk->addr[pd->didx], 5006 nk->port[pd->didx], 1, pd->af); 5007 dport = pd->hdr.udp.uh_dport; 5008 pd->dport = &pd->hdr.udp.uh_dport; 5009 } 5010 rewrite++; 5011 break; 5012 case IPPROTO_SCTP: { 5013 uint16_t checksum = 0; 5014 5015 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) || 5016 nk->port[pd->sidx] != sport) { 5017 pf_change_ap(pd->m, saddr, &pd->hdr.sctp.src_port, 5018 pd->ip_sum, &checksum, 5019 &nk->addr[pd->sidx], 5020 nk->port[pd->sidx], 1, pd->af); 5021 } 5022 if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) || 5023 nk->port[pd->didx] != dport) { 5024 pf_change_ap(pd->m, daddr, &pd->hdr.sctp.dest_port, 5025 pd->ip_sum, &checksum, 5026 &nk->addr[pd->didx], 5027 nk->port[pd->didx], 1, pd->af); 5028 } 5029 break; 5030 } 5031 #ifdef INET 5032 case IPPROTO_ICMP: 5033 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 5034 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 5035 nk->addr[pd->sidx].v4.s_addr, 0); 5036 5037 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 5038 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 5039 nk->addr[pd->didx].v4.s_addr, 0); 5040 5041 if (virtual_type == htons(ICMP_ECHO) && 5042 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) { 5043 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 5044 pd->hdr.icmp.icmp_cksum, sport, 5045 nk->port[pd->sidx], 0); 5046 pd->hdr.icmp.icmp_id = nk->port[pd->sidx]; 5047 pd->sport = &pd->hdr.icmp.icmp_id; 5048 } 5049 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 5050 break; 5051 #endif /* INET */ 5052 #ifdef INET6 5053 case IPPROTO_ICMPV6: 5054 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 5055 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 5056 &nk->addr[pd->sidx], 0); 5057 5058 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 5059 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 5060 &nk->addr[pd->didx], 0); 5061 rewrite++; 5062 break; 5063 #endif /* INET */ 5064 default: 5065 switch (pd->af) { 5066 #ifdef INET 5067 case AF_INET: 5068 if (PF_ANEQ(saddr, 5069 &nk->addr[pd->sidx], AF_INET)) 5070 pf_change_a(&saddr->v4.s_addr, 5071 pd->ip_sum, 5072 nk->addr[pd->sidx].v4.s_addr, 0); 5073 5074 if (PF_ANEQ(daddr, 5075 &nk->addr[pd->didx], AF_INET)) 5076 pf_change_a(&daddr->v4.s_addr, 5077 pd->ip_sum, 5078 nk->addr[pd->didx].v4.s_addr, 0); 5079 break; 5080 #endif /* INET */ 5081 #ifdef INET6 5082 case AF_INET6: 5083 if (PF_ANEQ(saddr, 5084 &nk->addr[pd->sidx], AF_INET6)) 5085 PF_ACPY(saddr, &nk->addr[pd->sidx], pd->af); 5086 5087 if (PF_ANEQ(daddr, 5088 &nk->addr[pd->didx], AF_INET6)) 5089 PF_ACPY(daddr, &nk->addr[pd->didx], pd->af); 5090 break; 5091 #endif /* INET */ 5092 } 5093 break; 5094 } 5095 if (nr->natpass) 5096 r = NULL; 5097 } 5098 5099 while (r != NULL) { 5100 pf_counter_u64_add(&r->evaluations, 1); 5101 PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot, 5102 r->skip[PF_SKIP_IFP]); 5103 PF_TEST_ATTRIB(r->direction && r->direction != pd->dir, 5104 r->skip[PF_SKIP_DIR]); 5105 PF_TEST_ATTRIB(r->af && r->af != pd->af, 5106 r->skip[PF_SKIP_AF]); 5107 PF_TEST_ATTRIB(r->proto && r->proto != pd->proto, 5108 r->skip[PF_SKIP_PROTO]); 5109 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, saddr, pd->af, 5110 r->src.neg, pd->kif, M_GETFIB(pd->m)), 5111 r->skip[PF_SKIP_SRC_ADDR]); 5112 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, daddr, pd->af, 5113 r->dst.neg, NULL, M_GETFIB(pd->m)), 5114 r->skip[PF_SKIP_DST_ADDR]); 5115 switch (pd->virtual_proto) { 5116 case PF_VPROTO_FRAGMENT: 5117 /* tcp/udp only. port_op always 0 in other cases */ 5118 PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op), 5119 TAILQ_NEXT(r, entries)); 5120 PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset), 5121 TAILQ_NEXT(r, entries)); 5122 /* icmp only. type/code always 0 in other cases */ 5123 PF_TEST_ATTRIB((r->type || r->code), 5124 TAILQ_NEXT(r, entries)); 5125 /* tcp/udp only. {uid|gid}.op always 0 in other cases */ 5126 PF_TEST_ATTRIB((r->gid.op || r->uid.op), 5127 TAILQ_NEXT(r, entries)); 5128 break; 5129 5130 case IPPROTO_TCP: 5131 PF_TEST_ATTRIB((r->flagset & th->th_flags) != r->flags, 5132 TAILQ_NEXT(r, entries)); 5133 /* FALLTHROUGH */ 5134 case IPPROTO_SCTP: 5135 case IPPROTO_UDP: 5136 /* tcp/udp only. port_op always 0 in other cases */ 5137 PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op, 5138 r->src.port[0], r->src.port[1], sport), 5139 r->skip[PF_SKIP_SRC_PORT]); 5140 /* tcp/udp only. port_op always 0 in other cases */ 5141 PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op, 5142 r->dst.port[0], r->dst.port[1], dport), 5143 r->skip[PF_SKIP_DST_PORT]); 5144 /* tcp/udp only. uid.op always 0 in other cases */ 5145 PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done = 5146 pf_socket_lookup(pd), 1)) && 5147 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 5148 pd->lookup.uid), 5149 TAILQ_NEXT(r, entries)); 5150 /* tcp/udp only. gid.op always 0 in other cases */ 5151 PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done = 5152 pf_socket_lookup(pd), 1)) && 5153 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 5154 pd->lookup.gid), 5155 TAILQ_NEXT(r, entries)); 5156 break; 5157 5158 case IPPROTO_ICMP: 5159 case IPPROTO_ICMPV6: 5160 /* icmp only. type always 0 in other cases */ 5161 PF_TEST_ATTRIB(r->type && r->type != icmptype + 1, 5162 TAILQ_NEXT(r, entries)); 5163 /* icmp only. type always 0 in other cases */ 5164 PF_TEST_ATTRIB(r->code && r->code != icmpcode + 1, 5165 TAILQ_NEXT(r, entries)); 5166 break; 5167 5168 default: 5169 break; 5170 } 5171 PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos), 5172 TAILQ_NEXT(r, entries)); 5173 PF_TEST_ATTRIB(r->prio && 5174 !pf_match_ieee8021q_pcp(r->prio, pd->m), 5175 TAILQ_NEXT(r, entries)); 5176 PF_TEST_ATTRIB(r->prob && 5177 r->prob <= arc4random(), 5178 TAILQ_NEXT(r, entries)); 5179 PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r, &tag, 5180 pd->pf_mtag ? pd->pf_mtag->tag : 0), 5181 TAILQ_NEXT(r, entries)); 5182 PF_TEST_ATTRIB(r->rcv_kif && !pf_match_rcvif(pd->m, r), 5183 TAILQ_NEXT(r, entries)); 5184 PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT && 5185 pd->virtual_proto != PF_VPROTO_FRAGMENT), 5186 TAILQ_NEXT(r, entries)); 5187 PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY && 5188 (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match( 5189 pf_osfp_fingerprint(pd, th), 5190 r->os_fingerprint)), 5191 TAILQ_NEXT(r, entries)); 5192 /* FALLTHROUGH */ 5193 if (r->tag) 5194 tag = r->tag; 5195 if (r->anchor == NULL) { 5196 if (r->action == PF_MATCH) { 5197 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5198 if (ri == NULL) { 5199 REASON_SET(&reason, PFRES_MEMORY); 5200 goto cleanup; 5201 } 5202 ri->r = r; 5203 SLIST_INSERT_HEAD(&match_rules, ri, entry); 5204 pf_counter_u64_critical_enter(); 5205 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5206 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5207 pf_counter_u64_critical_exit(); 5208 pf_rule_to_actions(r, &pd->act); 5209 if (r->log || pd->act.log & PF_LOG_MATCHES) 5210 PFLOG_PACKET(r->action, PFRES_MATCH, r, 5211 a, ruleset, pd, 1); 5212 } else { 5213 match = 1; 5214 *rm = r; 5215 *am = a; 5216 *rsm = ruleset; 5217 if (pd->act.log & PF_LOG_MATCHES) 5218 PFLOG_PACKET(r->action, PFRES_MATCH, r, 5219 a, ruleset, pd, 1); 5220 } 5221 if ((*rm)->quick) 5222 break; 5223 r = TAILQ_NEXT(r, entries); 5224 } else 5225 pf_step_into_anchor(anchor_stack, &asd, 5226 &ruleset, PF_RULESET_FILTER, &r, &a, 5227 &match); 5228 nextrule: 5229 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 5230 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 5231 break; 5232 } 5233 r = *rm; 5234 a = *am; 5235 ruleset = *rsm; 5236 5237 REASON_SET(&reason, PFRES_MATCH); 5238 5239 /* apply actions for last matching pass/block rule */ 5240 pf_rule_to_actions(r, &pd->act); 5241 5242 if (r->log || pd->act.log & PF_LOG_MATCHES) { 5243 if (rewrite) 5244 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5245 PFLOG_PACKET(r->action, reason, r, a, ruleset, pd, 1); 5246 } 5247 5248 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5249 (r->action == PF_DROP) && 5250 ((r->rule_flag & PFRULE_RETURNRST) || 5251 (r->rule_flag & PFRULE_RETURNICMP) || 5252 (r->rule_flag & PFRULE_RETURN))) { 5253 pf_return(r, nr, pd, sk, th, bproto_sum, 5254 bip_sum, &reason, r->rtableid); 5255 } 5256 5257 if (r->action == PF_DROP) 5258 goto cleanup; 5259 5260 if (tag > 0 && pf_tag_packet(pd, tag)) { 5261 REASON_SET(&reason, PFRES_MEMORY); 5262 goto cleanup; 5263 } 5264 if (pd->act.rtableid >= 0) 5265 M_SETFIB(pd->m, pd->act.rtableid); 5266 5267 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5268 (!state_icmp && (r->keep_state || nr != NULL || 5269 (pd->flags & PFDESC_TCP_NORM)))) { 5270 int action; 5271 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, 5272 sport, dport, &rewrite, sm, tag, bproto_sum, bip_sum, 5273 &match_rules, udp_mapping); 5274 if (action != PF_PASS) { 5275 pf_udp_mapping_release(udp_mapping); 5276 if (action == PF_DROP && 5277 (r->rule_flag & PFRULE_RETURN)) 5278 pf_return(r, nr, pd, sk, th, 5279 bproto_sum, bip_sum, &reason, 5280 pd->act.rtableid); 5281 return (action); 5282 } 5283 } else { 5284 while ((ri = SLIST_FIRST(&match_rules))) { 5285 SLIST_REMOVE_HEAD(&match_rules, entry); 5286 free(ri, M_PF_RULE_ITEM); 5287 } 5288 5289 uma_zfree(V_pf_state_key_z, sk); 5290 uma_zfree(V_pf_state_key_z, nk); 5291 pf_udp_mapping_release(udp_mapping); 5292 } 5293 5294 /* copy back packet headers if we performed NAT operations */ 5295 if (rewrite) 5296 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5297 5298 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 5299 pd->dir == PF_OUT && 5300 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m)) 5301 /* 5302 * We want the state created, but we dont 5303 * want to send this in case a partner 5304 * firewall has to know about it to allow 5305 * replies through it. 5306 */ 5307 return (PF_DEFER); 5308 5309 return (PF_PASS); 5310 5311 cleanup: 5312 while ((ri = SLIST_FIRST(&match_rules))) { 5313 SLIST_REMOVE_HEAD(&match_rules, entry); 5314 free(ri, M_PF_RULE_ITEM); 5315 } 5316 5317 uma_zfree(V_pf_state_key_z, sk); 5318 uma_zfree(V_pf_state_key_z, nk); 5319 pf_udp_mapping_release(udp_mapping); 5320 5321 return (PF_DROP); 5322 } 5323 5324 static int 5325 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 5326 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 5327 struct pf_state_key *sk, u_int16_t sport, 5328 u_int16_t dport, int *rewrite, struct pf_kstate **sm, 5329 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, 5330 struct pf_krule_slist *match_rules, struct pf_udp_mapping *udp_mapping) 5331 { 5332 struct pf_kstate *s = NULL; 5333 struct pf_ksrc_node *sn = NULL; 5334 struct tcphdr *th = &pd->hdr.tcp; 5335 u_int16_t mss = V_tcp_mssdflt; 5336 u_short reason, sn_reason; 5337 struct pf_krule_item *ri; 5338 5339 /* check maximums */ 5340 if (r->max_states && 5341 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 5342 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 5343 REASON_SET(&reason, PFRES_MAXSTATES); 5344 goto csfailed; 5345 } 5346 /* src node for filter rule */ 5347 if ((r->rule_flag & PFRULE_SRCTRACK || 5348 r->rpool.opts & PF_POOL_STICKYADDR) && 5349 (sn_reason = pf_insert_src_node(&sn, r, pd->src, pd->af)) != 0) { 5350 REASON_SET(&reason, sn_reason); 5351 goto csfailed; 5352 } 5353 /* src node for translation rule */ 5354 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 5355 (sn_reason = pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], 5356 pd->af)) != 0 ) { 5357 REASON_SET(&reason, sn_reason); 5358 goto csfailed; 5359 } 5360 s = pf_alloc_state(M_NOWAIT); 5361 if (s == NULL) { 5362 REASON_SET(&reason, PFRES_MEMORY); 5363 goto csfailed; 5364 } 5365 s->rule = r; 5366 s->nat_rule = nr; 5367 s->anchor = a; 5368 bcopy(match_rules, &s->match_rules, sizeof(s->match_rules)); 5369 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions)); 5370 5371 STATE_INC_COUNTERS(s); 5372 if (r->allow_opts) 5373 s->state_flags |= PFSTATE_ALLOWOPTS; 5374 if (r->rule_flag & PFRULE_STATESLOPPY) 5375 s->state_flags |= PFSTATE_SLOPPY; 5376 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 5377 s->state_flags |= PFSTATE_SCRUB_TCP; 5378 if ((r->rule_flag & PFRULE_PFLOW) || 5379 (nr != NULL && nr->rule_flag & PFRULE_PFLOW)) 5380 s->state_flags |= PFSTATE_PFLOW; 5381 5382 s->act.log = pd->act.log & PF_LOG_ALL; 5383 s->sync_state = PFSYNC_S_NONE; 5384 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */ 5385 5386 if (nr != NULL) 5387 s->act.log |= nr->log & PF_LOG_ALL; 5388 switch (pd->proto) { 5389 case IPPROTO_TCP: 5390 s->src.seqlo = ntohl(th->th_seq); 5391 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 5392 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 5393 r->keep_state == PF_STATE_MODULATE) { 5394 /* Generate sequence number modulator */ 5395 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 5396 0) 5397 s->src.seqdiff = 1; 5398 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, 5399 htonl(s->src.seqlo + s->src.seqdiff), 0); 5400 *rewrite = 1; 5401 } else 5402 s->src.seqdiff = 0; 5403 if (th->th_flags & TH_SYN) { 5404 s->src.seqhi++; 5405 s->src.wscale = pf_get_wscale(pd); 5406 } 5407 s->src.max_win = MAX(ntohs(th->th_win), 1); 5408 if (s->src.wscale & PF_WSCALE_MASK) { 5409 /* Remove scale factor from initial window */ 5410 int win = s->src.max_win; 5411 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 5412 s->src.max_win = (win - 1) >> 5413 (s->src.wscale & PF_WSCALE_MASK); 5414 } 5415 if (th->th_flags & TH_FIN) 5416 s->src.seqhi++; 5417 s->dst.seqhi = 1; 5418 s->dst.max_win = 1; 5419 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 5420 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 5421 s->timeout = PFTM_TCP_FIRST_PACKET; 5422 atomic_add_32(&V_pf_status.states_halfopen, 1); 5423 break; 5424 case IPPROTO_UDP: 5425 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 5426 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 5427 s->timeout = PFTM_UDP_FIRST_PACKET; 5428 break; 5429 case IPPROTO_SCTP: 5430 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT); 5431 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED); 5432 s->timeout = PFTM_SCTP_FIRST_PACKET; 5433 break; 5434 case IPPROTO_ICMP: 5435 #ifdef INET6 5436 case IPPROTO_ICMPV6: 5437 #endif 5438 s->timeout = PFTM_ICMP_FIRST_PACKET; 5439 break; 5440 default: 5441 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 5442 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 5443 s->timeout = PFTM_OTHER_FIRST_PACKET; 5444 } 5445 5446 if (r->rt) { 5447 /* pf_map_addr increases the reason counters */ 5448 if ((reason = pf_map_addr_sn(pd->af, r, pd->src, &s->rt_addr, 5449 &s->rt_kif, NULL, &sn)) != 0) 5450 goto csfailed; 5451 s->rt = r->rt; 5452 } 5453 5454 s->creation = s->expire = pf_get_uptime(); 5455 5456 if (sn != NULL) 5457 s->src_node = sn; 5458 if (nsn != NULL) { 5459 /* XXX We only modify one side for now. */ 5460 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 5461 s->nat_src_node = nsn; 5462 } 5463 if (pd->proto == IPPROTO_TCP) { 5464 if (s->state_flags & PFSTATE_SCRUB_TCP && 5465 pf_normalize_tcp_init(pd, th, &s->src, &s->dst)) { 5466 REASON_SET(&reason, PFRES_MEMORY); 5467 goto csfailed; 5468 } 5469 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 5470 pf_normalize_tcp_stateful(pd, &reason, th, s, 5471 &s->src, &s->dst, rewrite)) { 5472 /* This really shouldn't happen!!! */ 5473 DPFPRINTF(PF_DEBUG_URGENT, 5474 ("pf_normalize_tcp_stateful failed on first " 5475 "pkt\n")); 5476 goto csfailed; 5477 } 5478 } else if (pd->proto == IPPROTO_SCTP) { 5479 if (pf_normalize_sctp_init(pd, &s->src, &s->dst)) 5480 goto csfailed; 5481 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP))) 5482 goto csfailed; 5483 } 5484 s->direction = pd->dir; 5485 5486 /* 5487 * sk/nk could already been setup by pf_get_translation(). 5488 */ 5489 if (nr == NULL) { 5490 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 5491 __func__, nr, sk, nk)); 5492 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 5493 if (sk == NULL) 5494 goto csfailed; 5495 nk = sk; 5496 } else 5497 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 5498 __func__, nr, sk, nk)); 5499 5500 /* Swap sk/nk for PF_OUT. */ 5501 if (pf_state_insert(BOUND_IFACE(s, pd->kif), pd->kif, 5502 (pd->dir == PF_IN) ? sk : nk, 5503 (pd->dir == PF_IN) ? nk : sk, s)) { 5504 REASON_SET(&reason, PFRES_STATEINS); 5505 goto drop; 5506 } else 5507 *sm = s; 5508 5509 if (tag > 0) 5510 s->tag = tag; 5511 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 5512 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 5513 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 5514 /* undo NAT changes, if they have taken place */ 5515 if (nr != NULL) { 5516 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 5517 if (pd->dir == PF_OUT) 5518 skt = s->key[PF_SK_STACK]; 5519 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 5520 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 5521 if (pd->sport) 5522 *pd->sport = skt->port[pd->sidx]; 5523 if (pd->dport) 5524 *pd->dport = skt->port[pd->didx]; 5525 if (pd->proto_sum) 5526 *pd->proto_sum = bproto_sum; 5527 if (pd->ip_sum) 5528 *pd->ip_sum = bip_sum; 5529 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5530 } 5531 s->src.seqhi = htonl(arc4random()); 5532 /* Find mss option */ 5533 int rtid = M_GETFIB(pd->m); 5534 mss = pf_get_mss(pd); 5535 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 5536 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 5537 s->src.mss = mss; 5538 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 5539 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 5540 TH_SYN|TH_ACK, 0, s->src.mss, 0, true, 0, 0, 5541 pd->act.rtableid); 5542 REASON_SET(&reason, PFRES_SYNPROXY); 5543 return (PF_SYNPROXY_DROP); 5544 } 5545 5546 s->udp_mapping = udp_mapping; 5547 5548 return (PF_PASS); 5549 5550 csfailed: 5551 while ((ri = SLIST_FIRST(match_rules))) { 5552 SLIST_REMOVE_HEAD(match_rules, entry); 5553 free(ri, M_PF_RULE_ITEM); 5554 } 5555 5556 uma_zfree(V_pf_state_key_z, sk); 5557 uma_zfree(V_pf_state_key_z, nk); 5558 5559 if (sn != NULL) { 5560 PF_SRC_NODE_LOCK(sn); 5561 if (--sn->states == 0 && sn->expire == 0) { 5562 pf_unlink_src_node(sn); 5563 uma_zfree(V_pf_sources_z, sn); 5564 counter_u64_add( 5565 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5566 } 5567 PF_SRC_NODE_UNLOCK(sn); 5568 } 5569 5570 if (nsn != sn && nsn != NULL) { 5571 PF_SRC_NODE_LOCK(nsn); 5572 if (--nsn->states == 0 && nsn->expire == 0) { 5573 pf_unlink_src_node(nsn); 5574 uma_zfree(V_pf_sources_z, nsn); 5575 counter_u64_add( 5576 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5577 } 5578 PF_SRC_NODE_UNLOCK(nsn); 5579 } 5580 5581 drop: 5582 if (s != NULL) { 5583 pf_src_tree_remove_state(s); 5584 s->timeout = PFTM_UNLINKED; 5585 STATE_DEC_COUNTERS(s); 5586 pf_free_state(s); 5587 } 5588 5589 return (PF_DROP); 5590 } 5591 5592 static int 5593 pf_tcp_track_full(struct pf_kstate **state, struct pf_pdesc *pd, 5594 u_short *reason, int *copyback) 5595 { 5596 struct tcphdr *th = &pd->hdr.tcp; 5597 struct pf_state_peer *src, *dst; 5598 u_int16_t win = ntohs(th->th_win); 5599 u_int32_t ack, end, data_end, seq, orig_seq; 5600 u_int8_t sws, dws, psrc, pdst; 5601 int ackskew; 5602 5603 if (pd->dir == (*state)->direction) { 5604 src = &(*state)->src; 5605 dst = &(*state)->dst; 5606 psrc = PF_PEER_SRC; 5607 pdst = PF_PEER_DST; 5608 } else { 5609 src = &(*state)->dst; 5610 dst = &(*state)->src; 5611 psrc = PF_PEER_DST; 5612 pdst = PF_PEER_SRC; 5613 } 5614 5615 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 5616 sws = src->wscale & PF_WSCALE_MASK; 5617 dws = dst->wscale & PF_WSCALE_MASK; 5618 } else 5619 sws = dws = 0; 5620 5621 /* 5622 * Sequence tracking algorithm from Guido van Rooij's paper: 5623 * http://www.madison-gurkha.com/publications/tcp_filtering/ 5624 * tcp_filtering.ps 5625 */ 5626 5627 orig_seq = seq = ntohl(th->th_seq); 5628 if (src->seqlo == 0) { 5629 /* First packet from this end. Set its state */ 5630 5631 if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 5632 src->scrub == NULL) { 5633 if (pf_normalize_tcp_init(pd, th, src, dst)) { 5634 REASON_SET(reason, PFRES_MEMORY); 5635 return (PF_DROP); 5636 } 5637 } 5638 5639 /* Deferred generation of sequence number modulator */ 5640 if (dst->seqdiff && !src->seqdiff) { 5641 /* use random iss for the TCP server */ 5642 while ((src->seqdiff = arc4random() - seq) == 0) 5643 ; 5644 ack = ntohl(th->th_ack) - dst->seqdiff; 5645 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq + 5646 src->seqdiff), 0); 5647 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5648 *copyback = 1; 5649 } else { 5650 ack = ntohl(th->th_ack); 5651 } 5652 5653 end = seq + pd->p_len; 5654 if (th->th_flags & TH_SYN) { 5655 end++; 5656 if (dst->wscale & PF_WSCALE_FLAG) { 5657 src->wscale = pf_get_wscale(pd); 5658 if (src->wscale & PF_WSCALE_FLAG) { 5659 /* Remove scale factor from initial 5660 * window */ 5661 sws = src->wscale & PF_WSCALE_MASK; 5662 win = ((u_int32_t)win + (1 << sws) - 1) 5663 >> sws; 5664 dws = dst->wscale & PF_WSCALE_MASK; 5665 } else { 5666 /* fixup other window */ 5667 dst->max_win = MIN(TCP_MAXWIN, 5668 (u_int32_t)dst->max_win << 5669 (dst->wscale & PF_WSCALE_MASK)); 5670 /* in case of a retrans SYN|ACK */ 5671 dst->wscale = 0; 5672 } 5673 } 5674 } 5675 data_end = end; 5676 if (th->th_flags & TH_FIN) 5677 end++; 5678 5679 src->seqlo = seq; 5680 if (src->state < TCPS_SYN_SENT) 5681 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5682 5683 /* 5684 * May need to slide the window (seqhi may have been set by 5685 * the crappy stack check or if we picked up the connection 5686 * after establishment) 5687 */ 5688 if (src->seqhi == 1 || 5689 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 5690 src->seqhi = end + MAX(1, dst->max_win << dws); 5691 if (win > src->max_win) 5692 src->max_win = win; 5693 5694 } else { 5695 ack = ntohl(th->th_ack) - dst->seqdiff; 5696 if (src->seqdiff) { 5697 /* Modulate sequence numbers */ 5698 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq + 5699 src->seqdiff), 0); 5700 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5701 *copyback = 1; 5702 } 5703 end = seq + pd->p_len; 5704 if (th->th_flags & TH_SYN) 5705 end++; 5706 data_end = end; 5707 if (th->th_flags & TH_FIN) 5708 end++; 5709 } 5710 5711 if ((th->th_flags & TH_ACK) == 0) { 5712 /* Let it pass through the ack skew check */ 5713 ack = dst->seqlo; 5714 } else if ((ack == 0 && 5715 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 5716 /* broken tcp stacks do not set ack */ 5717 (dst->state < TCPS_SYN_SENT)) { 5718 /* 5719 * Many stacks (ours included) will set the ACK number in an 5720 * FIN|ACK if the SYN times out -- no sequence to ACK. 5721 */ 5722 ack = dst->seqlo; 5723 } 5724 5725 if (seq == end) { 5726 /* Ease sequencing restrictions on no data packets */ 5727 seq = src->seqlo; 5728 data_end = end = seq; 5729 } 5730 5731 ackskew = dst->seqlo - ack; 5732 5733 /* 5734 * Need to demodulate the sequence numbers in any TCP SACK options 5735 * (Selective ACK). We could optionally validate the SACK values 5736 * against the current ACK window, either forwards or backwards, but 5737 * I'm not confident that SACK has been implemented properly 5738 * everywhere. It wouldn't surprise me if several stacks accidentally 5739 * SACK too far backwards of previously ACKed data. There really aren't 5740 * any security implications of bad SACKing unless the target stack 5741 * doesn't validate the option length correctly. Someone trying to 5742 * spoof into a TCP connection won't bother blindly sending SACK 5743 * options anyway. 5744 */ 5745 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 5746 if (pf_modulate_sack(pd, th, dst)) 5747 *copyback = 1; 5748 } 5749 5750 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 5751 if (SEQ_GEQ(src->seqhi, data_end) && 5752 /* Last octet inside other's window space */ 5753 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 5754 /* Retrans: not more than one window back */ 5755 (ackskew >= -MAXACKWINDOW) && 5756 /* Acking not more than one reassembled fragment backwards */ 5757 (ackskew <= (MAXACKWINDOW << sws)) && 5758 /* Acking not more than one window forward */ 5759 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 5760 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) { 5761 /* Require an exact/+1 sequence match on resets when possible */ 5762 5763 if (dst->scrub || src->scrub) { 5764 if (pf_normalize_tcp_stateful(pd, reason, th, 5765 *state, src, dst, copyback)) 5766 return (PF_DROP); 5767 } 5768 5769 /* update max window */ 5770 if (src->max_win < win) 5771 src->max_win = win; 5772 /* synchronize sequencing */ 5773 if (SEQ_GT(end, src->seqlo)) 5774 src->seqlo = end; 5775 /* slide the window of what the other end can send */ 5776 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5777 dst->seqhi = ack + MAX((win << sws), 1); 5778 5779 /* update states */ 5780 if (th->th_flags & TH_SYN) 5781 if (src->state < TCPS_SYN_SENT) 5782 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5783 if (th->th_flags & TH_FIN) 5784 if (src->state < TCPS_CLOSING) 5785 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5786 if (th->th_flags & TH_ACK) { 5787 if (dst->state == TCPS_SYN_SENT) { 5788 pf_set_protostate(*state, pdst, 5789 TCPS_ESTABLISHED); 5790 if (src->state == TCPS_ESTABLISHED && 5791 (*state)->src_node != NULL && 5792 pf_src_connlimit(state)) { 5793 REASON_SET(reason, PFRES_SRCLIMIT); 5794 return (PF_DROP); 5795 } 5796 } else if (dst->state == TCPS_CLOSING) 5797 pf_set_protostate(*state, pdst, 5798 TCPS_FIN_WAIT_2); 5799 } 5800 if (th->th_flags & TH_RST) 5801 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5802 5803 /* update expire time */ 5804 (*state)->expire = pf_get_uptime(); 5805 if (src->state >= TCPS_FIN_WAIT_2 && 5806 dst->state >= TCPS_FIN_WAIT_2) 5807 (*state)->timeout = PFTM_TCP_CLOSED; 5808 else if (src->state >= TCPS_CLOSING && 5809 dst->state >= TCPS_CLOSING) 5810 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5811 else if (src->state < TCPS_ESTABLISHED || 5812 dst->state < TCPS_ESTABLISHED) 5813 (*state)->timeout = PFTM_TCP_OPENING; 5814 else if (src->state >= TCPS_CLOSING || 5815 dst->state >= TCPS_CLOSING) 5816 (*state)->timeout = PFTM_TCP_CLOSING; 5817 else 5818 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5819 5820 /* Fall through to PASS packet */ 5821 5822 } else if ((dst->state < TCPS_SYN_SENT || 5823 dst->state >= TCPS_FIN_WAIT_2 || 5824 src->state >= TCPS_FIN_WAIT_2) && 5825 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) && 5826 /* Within a window forward of the originating packet */ 5827 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 5828 /* Within a window backward of the originating packet */ 5829 5830 /* 5831 * This currently handles three situations: 5832 * 1) Stupid stacks will shotgun SYNs before their peer 5833 * replies. 5834 * 2) When PF catches an already established stream (the 5835 * firewall rebooted, the state table was flushed, routes 5836 * changed...) 5837 * 3) Packets get funky immediately after the connection 5838 * closes (this should catch Solaris spurious ACK|FINs 5839 * that web servers like to spew after a close) 5840 * 5841 * This must be a little more careful than the above code 5842 * since packet floods will also be caught here. We don't 5843 * update the TTL here to mitigate the damage of a packet 5844 * flood and so the same code can handle awkward establishment 5845 * and a loosened connection close. 5846 * In the establishment case, a correct peer response will 5847 * validate the connection, go through the normal state code 5848 * and keep updating the state TTL. 5849 */ 5850 5851 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5852 printf("pf: loose state match: "); 5853 pf_print_state(*state); 5854 pf_print_flags(th->th_flags); 5855 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5856 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 5857 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 5858 (unsigned long long)(*state)->packets[1], 5859 pd->dir == PF_IN ? "in" : "out", 5860 pd->dir == (*state)->direction ? "fwd" : "rev"); 5861 } 5862 5863 if (dst->scrub || src->scrub) { 5864 if (pf_normalize_tcp_stateful(pd, reason, th, 5865 *state, src, dst, copyback)) 5866 return (PF_DROP); 5867 } 5868 5869 /* update max window */ 5870 if (src->max_win < win) 5871 src->max_win = win; 5872 /* synchronize sequencing */ 5873 if (SEQ_GT(end, src->seqlo)) 5874 src->seqlo = end; 5875 /* slide the window of what the other end can send */ 5876 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5877 dst->seqhi = ack + MAX((win << sws), 1); 5878 5879 /* 5880 * Cannot set dst->seqhi here since this could be a shotgunned 5881 * SYN and not an already established connection. 5882 */ 5883 5884 if (th->th_flags & TH_FIN) 5885 if (src->state < TCPS_CLOSING) 5886 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5887 if (th->th_flags & TH_RST) 5888 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5889 5890 /* Fall through to PASS packet */ 5891 5892 } else { 5893 if ((*state)->dst.state == TCPS_SYN_SENT && 5894 (*state)->src.state == TCPS_SYN_SENT) { 5895 /* Send RST for state mismatches during handshake */ 5896 if (!(th->th_flags & TH_RST)) 5897 pf_send_tcp((*state)->rule, pd->af, 5898 pd->dst, pd->src, th->th_dport, 5899 th->th_sport, ntohl(th->th_ack), 0, 5900 TH_RST, 0, 0, 5901 (*state)->rule->return_ttl, true, 0, 0, 5902 (*state)->act.rtableid); 5903 src->seqlo = 0; 5904 src->seqhi = 1; 5905 src->max_win = 1; 5906 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 5907 printf("pf: BAD state: "); 5908 pf_print_state(*state); 5909 pf_print_flags(th->th_flags); 5910 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5911 "pkts=%llu:%llu dir=%s,%s\n", 5912 seq, orig_seq, ack, pd->p_len, ackskew, 5913 (unsigned long long)(*state)->packets[0], 5914 (unsigned long long)(*state)->packets[1], 5915 pd->dir == PF_IN ? "in" : "out", 5916 pd->dir == (*state)->direction ? "fwd" : "rev"); 5917 printf("pf: State failure on: %c %c %c %c | %c %c\n", 5918 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1', 5919 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 5920 ' ': '2', 5921 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 5922 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 5923 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5', 5924 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 5925 } 5926 REASON_SET(reason, PFRES_BADSTATE); 5927 return (PF_DROP); 5928 } 5929 5930 return (PF_PASS); 5931 } 5932 5933 static int 5934 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 5935 { 5936 struct tcphdr *th = &pd->hdr.tcp; 5937 struct pf_state_peer *src, *dst; 5938 u_int8_t psrc, pdst; 5939 5940 if (pd->dir == (*state)->direction) { 5941 src = &(*state)->src; 5942 dst = &(*state)->dst; 5943 psrc = PF_PEER_SRC; 5944 pdst = PF_PEER_DST; 5945 } else { 5946 src = &(*state)->dst; 5947 dst = &(*state)->src; 5948 psrc = PF_PEER_DST; 5949 pdst = PF_PEER_SRC; 5950 } 5951 5952 if (th->th_flags & TH_SYN) 5953 if (src->state < TCPS_SYN_SENT) 5954 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5955 if (th->th_flags & TH_FIN) 5956 if (src->state < TCPS_CLOSING) 5957 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5958 if (th->th_flags & TH_ACK) { 5959 if (dst->state == TCPS_SYN_SENT) { 5960 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 5961 if (src->state == TCPS_ESTABLISHED && 5962 (*state)->src_node != NULL && 5963 pf_src_connlimit(state)) { 5964 REASON_SET(reason, PFRES_SRCLIMIT); 5965 return (PF_DROP); 5966 } 5967 } else if (dst->state == TCPS_CLOSING) { 5968 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 5969 } else if (src->state == TCPS_SYN_SENT && 5970 dst->state < TCPS_SYN_SENT) { 5971 /* 5972 * Handle a special sloppy case where we only see one 5973 * half of the connection. If there is a ACK after 5974 * the initial SYN without ever seeing a packet from 5975 * the destination, set the connection to established. 5976 */ 5977 pf_set_protostate(*state, PF_PEER_BOTH, 5978 TCPS_ESTABLISHED); 5979 dst->state = src->state = TCPS_ESTABLISHED; 5980 if ((*state)->src_node != NULL && 5981 pf_src_connlimit(state)) { 5982 REASON_SET(reason, PFRES_SRCLIMIT); 5983 return (PF_DROP); 5984 } 5985 } else if (src->state == TCPS_CLOSING && 5986 dst->state == TCPS_ESTABLISHED && 5987 dst->seqlo == 0) { 5988 /* 5989 * Handle the closing of half connections where we 5990 * don't see the full bidirectional FIN/ACK+ACK 5991 * handshake. 5992 */ 5993 pf_set_protostate(*state, pdst, TCPS_CLOSING); 5994 } 5995 } 5996 if (th->th_flags & TH_RST) 5997 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5998 5999 /* update expire time */ 6000 (*state)->expire = pf_get_uptime(); 6001 if (src->state >= TCPS_FIN_WAIT_2 && 6002 dst->state >= TCPS_FIN_WAIT_2) 6003 (*state)->timeout = PFTM_TCP_CLOSED; 6004 else if (src->state >= TCPS_CLOSING && 6005 dst->state >= TCPS_CLOSING) 6006 (*state)->timeout = PFTM_TCP_FIN_WAIT; 6007 else if (src->state < TCPS_ESTABLISHED || 6008 dst->state < TCPS_ESTABLISHED) 6009 (*state)->timeout = PFTM_TCP_OPENING; 6010 else if (src->state >= TCPS_CLOSING || 6011 dst->state >= TCPS_CLOSING) 6012 (*state)->timeout = PFTM_TCP_CLOSING; 6013 else 6014 (*state)->timeout = PFTM_TCP_ESTABLISHED; 6015 6016 return (PF_PASS); 6017 } 6018 6019 static int 6020 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 6021 { 6022 struct pf_state_key *sk = (*state)->key[pd->didx]; 6023 struct tcphdr *th = &pd->hdr.tcp; 6024 6025 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 6026 if (pd->dir != (*state)->direction) { 6027 REASON_SET(reason, PFRES_SYNPROXY); 6028 return (PF_SYNPROXY_DROP); 6029 } 6030 if (th->th_flags & TH_SYN) { 6031 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 6032 REASON_SET(reason, PFRES_SYNPROXY); 6033 return (PF_DROP); 6034 } 6035 pf_send_tcp((*state)->rule, pd->af, pd->dst, 6036 pd->src, th->th_dport, th->th_sport, 6037 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 6038 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, true, 0, 0, 6039 (*state)->act.rtableid); 6040 REASON_SET(reason, PFRES_SYNPROXY); 6041 return (PF_SYNPROXY_DROP); 6042 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 6043 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 6044 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 6045 REASON_SET(reason, PFRES_SYNPROXY); 6046 return (PF_DROP); 6047 } else if ((*state)->src_node != NULL && 6048 pf_src_connlimit(state)) { 6049 REASON_SET(reason, PFRES_SRCLIMIT); 6050 return (PF_DROP); 6051 } else 6052 pf_set_protostate(*state, PF_PEER_SRC, 6053 PF_TCPS_PROXY_DST); 6054 } 6055 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 6056 if (pd->dir == (*state)->direction) { 6057 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 6058 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 6059 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 6060 REASON_SET(reason, PFRES_SYNPROXY); 6061 return (PF_DROP); 6062 } 6063 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 6064 if ((*state)->dst.seqhi == 1) 6065 (*state)->dst.seqhi = htonl(arc4random()); 6066 pf_send_tcp((*state)->rule, pd->af, 6067 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6068 sk->port[pd->sidx], sk->port[pd->didx], 6069 (*state)->dst.seqhi, 0, TH_SYN, 0, 6070 (*state)->src.mss, 0, false, (*state)->tag, 0, 6071 (*state)->act.rtableid); 6072 REASON_SET(reason, PFRES_SYNPROXY); 6073 return (PF_SYNPROXY_DROP); 6074 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 6075 (TH_SYN|TH_ACK)) || 6076 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 6077 REASON_SET(reason, PFRES_SYNPROXY); 6078 return (PF_DROP); 6079 } else { 6080 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 6081 (*state)->dst.seqlo = ntohl(th->th_seq); 6082 pf_send_tcp((*state)->rule, pd->af, pd->dst, 6083 pd->src, th->th_dport, th->th_sport, 6084 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 6085 TH_ACK, (*state)->src.max_win, 0, 0, false, 6086 (*state)->tag, 0, (*state)->act.rtableid); 6087 pf_send_tcp((*state)->rule, pd->af, 6088 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6089 sk->port[pd->sidx], sk->port[pd->didx], 6090 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 6091 TH_ACK, (*state)->dst.max_win, 0, 0, true, 0, 0, 6092 (*state)->act.rtableid); 6093 (*state)->src.seqdiff = (*state)->dst.seqhi - 6094 (*state)->src.seqlo; 6095 (*state)->dst.seqdiff = (*state)->src.seqhi - 6096 (*state)->dst.seqlo; 6097 (*state)->src.seqhi = (*state)->src.seqlo + 6098 (*state)->dst.max_win; 6099 (*state)->dst.seqhi = (*state)->dst.seqlo + 6100 (*state)->src.max_win; 6101 (*state)->src.wscale = (*state)->dst.wscale = 0; 6102 pf_set_protostate(*state, PF_PEER_BOTH, 6103 TCPS_ESTABLISHED); 6104 REASON_SET(reason, PFRES_SYNPROXY); 6105 return (PF_SYNPROXY_DROP); 6106 } 6107 } 6108 6109 return (PF_PASS); 6110 } 6111 6112 static int 6113 pf_test_state_tcp(struct pf_kstate **state, struct pf_pdesc *pd, 6114 u_short *reason) 6115 { 6116 struct pf_state_key_cmp key; 6117 struct tcphdr *th = &pd->hdr.tcp; 6118 int copyback = 0; 6119 int action; 6120 struct pf_state_peer *src, *dst; 6121 6122 bzero(&key, sizeof(key)); 6123 key.af = pd->af; 6124 key.proto = IPPROTO_TCP; 6125 if (pd->dir == PF_IN) { /* wire side, straight */ 6126 PF_ACPY(&key.addr[0], pd->src, key.af); 6127 PF_ACPY(&key.addr[1], pd->dst, key.af); 6128 key.port[0] = th->th_sport; 6129 key.port[1] = th->th_dport; 6130 } else { /* stack side, reverse */ 6131 PF_ACPY(&key.addr[1], pd->src, key.af); 6132 PF_ACPY(&key.addr[0], pd->dst, key.af); 6133 key.port[1] = th->th_sport; 6134 key.port[0] = th->th_dport; 6135 } 6136 6137 STATE_LOOKUP(&key, *state, pd); 6138 6139 if (pd->dir == (*state)->direction) { 6140 src = &(*state)->src; 6141 dst = &(*state)->dst; 6142 } else { 6143 src = &(*state)->dst; 6144 dst = &(*state)->src; 6145 } 6146 6147 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 6148 return (action); 6149 6150 if (dst->state >= TCPS_FIN_WAIT_2 && 6151 src->state >= TCPS_FIN_WAIT_2 && 6152 (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) || 6153 ((th->th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK && 6154 pf_syncookie_check(pd) && pd->dir == PF_IN))) { 6155 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6156 printf("pf: state reuse "); 6157 pf_print_state(*state); 6158 pf_print_flags(th->th_flags); 6159 printf("\n"); 6160 } 6161 /* XXX make sure it's the same direction ?? */ 6162 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 6163 pf_unlink_state(*state); 6164 *state = NULL; 6165 return (PF_DROP); 6166 } 6167 6168 if ((*state)->state_flags & PFSTATE_SLOPPY) { 6169 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 6170 return (PF_DROP); 6171 } else { 6172 if (pf_tcp_track_full(state, pd, reason, 6173 ©back) == PF_DROP) 6174 return (PF_DROP); 6175 } 6176 6177 /* translate source/destination address, if necessary */ 6178 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6179 struct pf_state_key *nk = (*state)->key[pd->didx]; 6180 6181 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6182 nk->port[pd->sidx] != th->th_sport) 6183 pf_change_ap(pd->m, pd->src, &th->th_sport, 6184 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 6185 nk->port[pd->sidx], 0, pd->af); 6186 6187 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6188 nk->port[pd->didx] != th->th_dport) 6189 pf_change_ap(pd->m, pd->dst, &th->th_dport, 6190 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 6191 nk->port[pd->didx], 0, pd->af); 6192 copyback = 1; 6193 } 6194 6195 /* Copyback sequence modulation or stateful scrub changes if needed */ 6196 if (copyback) 6197 m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th); 6198 6199 return (PF_PASS); 6200 } 6201 6202 static int 6203 pf_test_state_udp(struct pf_kstate **state, struct pf_pdesc *pd) 6204 { 6205 struct pf_state_peer *src, *dst; 6206 struct pf_state_key_cmp key; 6207 struct udphdr *uh = &pd->hdr.udp; 6208 uint8_t psrc, pdst; 6209 6210 bzero(&key, sizeof(key)); 6211 key.af = pd->af; 6212 key.proto = IPPROTO_UDP; 6213 if (pd->dir == PF_IN) { /* wire side, straight */ 6214 PF_ACPY(&key.addr[0], pd->src, key.af); 6215 PF_ACPY(&key.addr[1], pd->dst, key.af); 6216 key.port[0] = uh->uh_sport; 6217 key.port[1] = uh->uh_dport; 6218 } else { /* stack side, reverse */ 6219 PF_ACPY(&key.addr[1], pd->src, key.af); 6220 PF_ACPY(&key.addr[0], pd->dst, key.af); 6221 key.port[1] = uh->uh_sport; 6222 key.port[0] = uh->uh_dport; 6223 } 6224 6225 STATE_LOOKUP(&key, *state, pd); 6226 6227 if (pd->dir == (*state)->direction) { 6228 src = &(*state)->src; 6229 dst = &(*state)->dst; 6230 psrc = PF_PEER_SRC; 6231 pdst = PF_PEER_DST; 6232 } else { 6233 src = &(*state)->dst; 6234 dst = &(*state)->src; 6235 psrc = PF_PEER_DST; 6236 pdst = PF_PEER_SRC; 6237 } 6238 6239 /* update states */ 6240 if (src->state < PFUDPS_SINGLE) 6241 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 6242 if (dst->state == PFUDPS_SINGLE) 6243 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 6244 6245 /* update expire time */ 6246 (*state)->expire = pf_get_uptime(); 6247 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 6248 (*state)->timeout = PFTM_UDP_MULTIPLE; 6249 else 6250 (*state)->timeout = PFTM_UDP_SINGLE; 6251 6252 /* translate source/destination address, if necessary */ 6253 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6254 struct pf_state_key *nk = (*state)->key[pd->didx]; 6255 6256 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6257 nk->port[pd->sidx] != uh->uh_sport) 6258 pf_change_ap(pd->m, pd->src, &uh->uh_sport, pd->ip_sum, 6259 &uh->uh_sum, &nk->addr[pd->sidx], 6260 nk->port[pd->sidx], 1, pd->af); 6261 6262 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6263 nk->port[pd->didx] != uh->uh_dport) 6264 pf_change_ap(pd->m, pd->dst, &uh->uh_dport, pd->ip_sum, 6265 &uh->uh_sum, &nk->addr[pd->didx], 6266 nk->port[pd->didx], 1, pd->af); 6267 m_copyback(pd->m, pd->off, sizeof(*uh), (caddr_t)uh); 6268 } 6269 6270 return (PF_PASS); 6271 } 6272 6273 static int 6274 pf_test_state_sctp(struct pf_kstate **state, struct pf_pdesc *pd, 6275 u_short *reason) 6276 { 6277 struct pf_state_key_cmp key; 6278 struct pf_state_peer *src, *dst; 6279 struct sctphdr *sh = &pd->hdr.sctp; 6280 u_int8_t psrc; //, pdst; 6281 6282 bzero(&key, sizeof(key)); 6283 key.af = pd->af; 6284 key.proto = IPPROTO_SCTP; 6285 if (pd->dir == PF_IN) { /* wire side, straight */ 6286 PF_ACPY(&key.addr[0], pd->src, key.af); 6287 PF_ACPY(&key.addr[1], pd->dst, key.af); 6288 key.port[0] = sh->src_port; 6289 key.port[1] = sh->dest_port; 6290 } else { /* stack side, reverse */ 6291 PF_ACPY(&key.addr[1], pd->src, key.af); 6292 PF_ACPY(&key.addr[0], pd->dst, key.af); 6293 key.port[1] = sh->src_port; 6294 key.port[0] = sh->dest_port; 6295 } 6296 6297 STATE_LOOKUP(&key, *state, pd); 6298 6299 if (pd->dir == (*state)->direction) { 6300 src = &(*state)->src; 6301 dst = &(*state)->dst; 6302 psrc = PF_PEER_SRC; 6303 } else { 6304 src = &(*state)->dst; 6305 dst = &(*state)->src; 6306 psrc = PF_PEER_DST; 6307 } 6308 6309 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) && 6310 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) && 6311 pd->sctp_flags & PFDESC_SCTP_INIT) { 6312 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED); 6313 pf_unlink_state(*state); 6314 *state = NULL; 6315 return (PF_DROP); 6316 } 6317 6318 /* Track state. */ 6319 if (pd->sctp_flags & PFDESC_SCTP_INIT) { 6320 if (src->state < SCTP_COOKIE_WAIT) { 6321 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT); 6322 (*state)->timeout = PFTM_SCTP_OPENING; 6323 } 6324 } 6325 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) { 6326 MPASS(dst->scrub != NULL); 6327 if (dst->scrub->pfss_v_tag == 0) 6328 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag; 6329 } 6330 6331 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) { 6332 if (src->state < SCTP_ESTABLISHED) { 6333 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED); 6334 (*state)->timeout = PFTM_SCTP_ESTABLISHED; 6335 } 6336 } 6337 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | PFDESC_SCTP_ABORT | 6338 PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 6339 if (src->state < SCTP_SHUTDOWN_PENDING) { 6340 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING); 6341 (*state)->timeout = PFTM_SCTP_CLOSING; 6342 } 6343 } 6344 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 6345 pf_set_protostate(*state, psrc, SCTP_CLOSED); 6346 (*state)->timeout = PFTM_SCTP_CLOSED; 6347 } 6348 6349 if (src->scrub != NULL) { 6350 if (src->scrub->pfss_v_tag == 0) { 6351 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag; 6352 } else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag) 6353 return (PF_DROP); 6354 } 6355 6356 (*state)->expire = pf_get_uptime(); 6357 6358 /* translate source/destination address, if necessary */ 6359 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6360 uint16_t checksum = 0; 6361 struct pf_state_key *nk = (*state)->key[pd->didx]; 6362 6363 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6364 nk->port[pd->sidx] != pd->hdr.sctp.src_port) { 6365 pf_change_ap(pd->m, pd->src, &pd->hdr.sctp.src_port, 6366 pd->ip_sum, &checksum, &nk->addr[pd->sidx], 6367 nk->port[pd->sidx], 1, pd->af); 6368 } 6369 6370 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6371 nk->port[pd->didx] != pd->hdr.sctp.dest_port) { 6372 pf_change_ap(pd->m, pd->dst, &pd->hdr.sctp.dest_port, 6373 pd->ip_sum, &checksum, &nk->addr[pd->didx], 6374 nk->port[pd->didx], 1, pd->af); 6375 } 6376 } 6377 6378 return (PF_PASS); 6379 } 6380 6381 static void 6382 pf_sctp_multihome_detach_addr(const struct pf_kstate *s) 6383 { 6384 struct pf_sctp_endpoint key; 6385 struct pf_sctp_endpoint *ep; 6386 struct pf_state_key *sks = s->key[PF_SK_STACK]; 6387 struct pf_sctp_source *i, *tmp; 6388 6389 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL) 6390 return; 6391 6392 PF_SCTP_ENDPOINTS_LOCK(); 6393 6394 key.v_tag = s->dst.scrub->pfss_v_tag; 6395 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6396 if (ep != NULL) { 6397 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6398 if (pf_addr_cmp(&i->addr, 6399 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT], 6400 s->key[PF_SK_WIRE]->af) == 0) { 6401 SDT_PROBE3(pf, sctp, multihome, remove, 6402 key.v_tag, s, i); 6403 TAILQ_REMOVE(&ep->sources, i, entry); 6404 free(i, M_PFTEMP); 6405 break; 6406 } 6407 } 6408 6409 if (TAILQ_EMPTY(&ep->sources)) { 6410 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6411 free(ep, M_PFTEMP); 6412 } 6413 } 6414 6415 /* Other direction. */ 6416 key.v_tag = s->src.scrub->pfss_v_tag; 6417 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6418 if (ep != NULL) { 6419 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6420 if (pf_addr_cmp(&i->addr, 6421 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN], 6422 s->key[PF_SK_WIRE]->af) == 0) { 6423 SDT_PROBE3(pf, sctp, multihome, remove, 6424 key.v_tag, s, i); 6425 TAILQ_REMOVE(&ep->sources, i, entry); 6426 free(i, M_PFTEMP); 6427 break; 6428 } 6429 } 6430 6431 if (TAILQ_EMPTY(&ep->sources)) { 6432 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6433 free(ep, M_PFTEMP); 6434 } 6435 } 6436 6437 PF_SCTP_ENDPOINTS_UNLOCK(); 6438 } 6439 6440 static void 6441 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag) 6442 { 6443 struct pf_sctp_endpoint key = { 6444 .v_tag = v_tag, 6445 }; 6446 struct pf_sctp_source *i; 6447 struct pf_sctp_endpoint *ep; 6448 6449 PF_SCTP_ENDPOINTS_LOCK(); 6450 6451 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6452 if (ep == NULL) { 6453 ep = malloc(sizeof(struct pf_sctp_endpoint), 6454 M_PFTEMP, M_NOWAIT); 6455 if (ep == NULL) { 6456 PF_SCTP_ENDPOINTS_UNLOCK(); 6457 return; 6458 } 6459 6460 ep->v_tag = v_tag; 6461 TAILQ_INIT(&ep->sources); 6462 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6463 } 6464 6465 /* Avoid inserting duplicates. */ 6466 TAILQ_FOREACH(i, &ep->sources, entry) { 6467 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) { 6468 PF_SCTP_ENDPOINTS_UNLOCK(); 6469 return; 6470 } 6471 } 6472 6473 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT); 6474 if (i == NULL) { 6475 PF_SCTP_ENDPOINTS_UNLOCK(); 6476 return; 6477 } 6478 6479 i->af = pd->af; 6480 memcpy(&i->addr, a, sizeof(*a)); 6481 TAILQ_INSERT_TAIL(&ep->sources, i, entry); 6482 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i); 6483 6484 PF_SCTP_ENDPOINTS_UNLOCK(); 6485 } 6486 6487 static void 6488 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif, 6489 struct pf_kstate *s, int action) 6490 { 6491 struct pf_sctp_multihome_job *j, *tmp; 6492 struct pf_sctp_source *i; 6493 int ret __unused; 6494 struct pf_kstate *sm = NULL; 6495 struct pf_krule *ra = NULL; 6496 struct pf_krule *r = &V_pf_default_rule; 6497 struct pf_kruleset *rs = NULL; 6498 bool do_extra = true; 6499 6500 PF_RULES_RLOCK_TRACKER; 6501 6502 again: 6503 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) { 6504 if (s == NULL || action != PF_PASS) 6505 goto free; 6506 6507 /* Confirm we don't recurse here. */ 6508 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP)); 6509 6510 switch (j->op) { 6511 case SCTP_ADD_IP_ADDRESS: { 6512 uint32_t v_tag = pd->sctp_initiate_tag; 6513 6514 if (v_tag == 0) { 6515 if (s->direction == pd->dir) 6516 v_tag = s->src.scrub->pfss_v_tag; 6517 else 6518 v_tag = s->dst.scrub->pfss_v_tag; 6519 } 6520 6521 /* 6522 * Avoid duplicating states. We'll already have 6523 * created a state based on the source address of 6524 * the packet, but SCTP endpoints may also list this 6525 * address again in the INIT(_ACK) parameters. 6526 */ 6527 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) { 6528 break; 6529 } 6530 6531 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP; 6532 PF_RULES_RLOCK(); 6533 sm = NULL; 6534 /* 6535 * New connections need to be floating, because 6536 * we cannot know what interfaces it will use. 6537 * That's why we pass V_pfi_all rather than kif. 6538 */ 6539 j->pd.kif = V_pfi_all; 6540 ret = pf_test_rule(&r, &sm, 6541 &j->pd, &ra, &rs, NULL); 6542 PF_RULES_RUNLOCK(); 6543 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret); 6544 if (ret != PF_DROP && sm != NULL) { 6545 /* Inherit v_tag values. */ 6546 if (sm->direction == s->direction) { 6547 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6548 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6549 } else { 6550 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6551 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6552 } 6553 PF_STATE_UNLOCK(sm); 6554 } else { 6555 /* If we try duplicate inserts? */ 6556 break; 6557 } 6558 6559 /* Only add the address if we've actually allowed the state. */ 6560 pf_sctp_multihome_add_addr(pd, &j->src, v_tag); 6561 6562 if (! do_extra) { 6563 break; 6564 } 6565 /* 6566 * We need to do this for each of our source addresses. 6567 * Find those based on the verification tag. 6568 */ 6569 struct pf_sctp_endpoint key = { 6570 .v_tag = pd->hdr.sctp.v_tag, 6571 }; 6572 struct pf_sctp_endpoint *ep; 6573 6574 PF_SCTP_ENDPOINTS_LOCK(); 6575 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6576 if (ep == NULL) { 6577 PF_SCTP_ENDPOINTS_UNLOCK(); 6578 break; 6579 } 6580 MPASS(ep != NULL); 6581 6582 TAILQ_FOREACH(i, &ep->sources, entry) { 6583 struct pf_sctp_multihome_job *nj; 6584 6585 /* SCTP can intermingle IPv4 and IPv6. */ 6586 if (i->af != pd->af) 6587 continue; 6588 6589 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO); 6590 if (! nj) { 6591 continue; 6592 } 6593 memcpy(&nj->pd, &j->pd, sizeof(j->pd)); 6594 memcpy(&nj->src, &j->src, sizeof(nj->src)); 6595 nj->pd.src = &nj->src; 6596 // New destination address! 6597 memcpy(&nj->dst, &i->addr, sizeof(nj->dst)); 6598 nj->pd.dst = &nj->dst; 6599 nj->pd.m = j->pd.m; 6600 nj->op = j->op; 6601 6602 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next); 6603 } 6604 PF_SCTP_ENDPOINTS_UNLOCK(); 6605 6606 break; 6607 } 6608 case SCTP_DEL_IP_ADDRESS: { 6609 struct pf_state_key_cmp key; 6610 uint8_t psrc; 6611 6612 bzero(&key, sizeof(key)); 6613 key.af = j->pd.af; 6614 key.proto = IPPROTO_SCTP; 6615 if (j->pd.dir == PF_IN) { /* wire side, straight */ 6616 PF_ACPY(&key.addr[0], j->pd.src, key.af); 6617 PF_ACPY(&key.addr[1], j->pd.dst, key.af); 6618 key.port[0] = j->pd.hdr.sctp.src_port; 6619 key.port[1] = j->pd.hdr.sctp.dest_port; 6620 } else { /* stack side, reverse */ 6621 PF_ACPY(&key.addr[1], j->pd.src, key.af); 6622 PF_ACPY(&key.addr[0], j->pd.dst, key.af); 6623 key.port[1] = j->pd.hdr.sctp.src_port; 6624 key.port[0] = j->pd.hdr.sctp.dest_port; 6625 } 6626 6627 sm = pf_find_state(kif, &key, j->pd.dir); 6628 if (sm != NULL) { 6629 PF_STATE_LOCK_ASSERT(sm); 6630 if (j->pd.dir == sm->direction) { 6631 psrc = PF_PEER_SRC; 6632 } else { 6633 psrc = PF_PEER_DST; 6634 } 6635 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING); 6636 sm->timeout = PFTM_SCTP_CLOSING; 6637 PF_STATE_UNLOCK(sm); 6638 } 6639 break; 6640 default: 6641 panic("Unknown op %#x", j->op); 6642 } 6643 } 6644 6645 free: 6646 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next); 6647 free(j, M_PFTEMP); 6648 } 6649 6650 /* We may have inserted extra work while processing the list. */ 6651 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) { 6652 do_extra = false; 6653 goto again; 6654 } 6655 } 6656 6657 static int 6658 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op) 6659 { 6660 int off = 0; 6661 struct pf_sctp_multihome_job *job; 6662 6663 while (off < len) { 6664 struct sctp_paramhdr h; 6665 6666 if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL, NULL, 6667 pd->af)) 6668 return (PF_DROP); 6669 6670 /* Parameters are at least 4 bytes. */ 6671 if (ntohs(h.param_length) < 4) 6672 return (PF_DROP); 6673 6674 switch (ntohs(h.param_type)) { 6675 case SCTP_IPV4_ADDRESS: { 6676 struct in_addr t; 6677 6678 if (ntohs(h.param_length) != 6679 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6680 return (PF_DROP); 6681 6682 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t), 6683 NULL, NULL, pd->af)) 6684 return (PF_DROP); 6685 6686 if (in_nullhost(t)) 6687 t.s_addr = pd->src->v4.s_addr; 6688 6689 /* 6690 * We hold the state lock (idhash) here, which means 6691 * that we can't acquire the keyhash, or we'll get a 6692 * LOR (and potentially double-lock things too). We also 6693 * can't release the state lock here, so instead we'll 6694 * enqueue this for async handling. 6695 * There's a relatively small race here, in that a 6696 * packet using the new addresses could arrive already, 6697 * but that's just though luck for it. 6698 */ 6699 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6700 if (! job) 6701 return (PF_DROP); 6702 6703 memcpy(&job->pd, pd, sizeof(*pd)); 6704 6705 // New source address! 6706 memcpy(&job->src, &t, sizeof(t)); 6707 job->pd.src = &job->src; 6708 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6709 job->pd.dst = &job->dst; 6710 job->pd.m = pd->m; 6711 job->op = op; 6712 6713 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6714 break; 6715 } 6716 #ifdef INET6 6717 case SCTP_IPV6_ADDRESS: { 6718 struct in6_addr t; 6719 6720 if (ntohs(h.param_length) != 6721 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6722 return (PF_DROP); 6723 6724 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t), 6725 NULL, NULL, pd->af)) 6726 return (PF_DROP); 6727 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0) 6728 break; 6729 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0) 6730 memcpy(&t, &pd->src->v6, sizeof(t)); 6731 6732 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6733 if (! job) 6734 return (PF_DROP); 6735 6736 memcpy(&job->pd, pd, sizeof(*pd)); 6737 memcpy(&job->src, &t, sizeof(t)); 6738 job->pd.src = &job->src; 6739 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6740 job->pd.dst = &job->dst; 6741 job->pd.m = pd->m; 6742 job->op = op; 6743 6744 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6745 break; 6746 } 6747 #endif 6748 case SCTP_ADD_IP_ADDRESS: { 6749 int ret; 6750 struct sctp_asconf_paramhdr ah; 6751 6752 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah), 6753 NULL, NULL, pd->af)) 6754 return (PF_DROP); 6755 6756 ret = pf_multihome_scan(start + off + sizeof(ah), 6757 ntohs(ah.ph.param_length) - sizeof(ah), pd, 6758 SCTP_ADD_IP_ADDRESS); 6759 if (ret != PF_PASS) 6760 return (ret); 6761 break; 6762 } 6763 case SCTP_DEL_IP_ADDRESS: { 6764 int ret; 6765 struct sctp_asconf_paramhdr ah; 6766 6767 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah), 6768 NULL, NULL, pd->af)) 6769 return (PF_DROP); 6770 ret = pf_multihome_scan(start + off + sizeof(ah), 6771 ntohs(ah.ph.param_length) - sizeof(ah), pd, 6772 SCTP_DEL_IP_ADDRESS); 6773 if (ret != PF_PASS) 6774 return (ret); 6775 break; 6776 } 6777 default: 6778 break; 6779 } 6780 6781 off += roundup(ntohs(h.param_length), 4); 6782 } 6783 6784 return (PF_PASS); 6785 } 6786 int 6787 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd) 6788 { 6789 start += sizeof(struct sctp_init_chunk); 6790 len -= sizeof(struct sctp_init_chunk); 6791 6792 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS)); 6793 } 6794 6795 int 6796 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd) 6797 { 6798 start += sizeof(struct sctp_asconf_chunk); 6799 len -= sizeof(struct sctp_asconf_chunk); 6800 6801 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS)); 6802 } 6803 6804 int 6805 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd, 6806 struct pf_kstate **state, int direction, 6807 u_int16_t icmpid, u_int16_t type, int icmp_dir, 6808 int *iidx, int multi, int inner) 6809 { 6810 key->af = pd->af; 6811 key->proto = pd->proto; 6812 if (icmp_dir == PF_IN) { 6813 *iidx = pd->sidx; 6814 key->port[pd->sidx] = icmpid; 6815 key->port[pd->didx] = type; 6816 } else { 6817 *iidx = pd->didx; 6818 key->port[pd->sidx] = type; 6819 key->port[pd->didx] = icmpid; 6820 } 6821 if (pf_state_key_addr_setup(pd, key, multi)) 6822 return (PF_DROP); 6823 6824 STATE_LOOKUP(key, *state, pd); 6825 6826 if ((*state)->state_flags & PFSTATE_SLOPPY) 6827 return (-1); 6828 6829 /* Is this ICMP message flowing in right direction? */ 6830 if ((*state)->rule->type && 6831 (((!inner && (*state)->direction == direction) || 6832 (inner && (*state)->direction != direction)) ? 6833 PF_IN : PF_OUT) != icmp_dir) { 6834 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6835 printf("pf: icmp type %d in wrong direction (%d): ", 6836 ntohs(type), icmp_dir); 6837 pf_print_state(*state); 6838 printf("\n"); 6839 } 6840 PF_STATE_UNLOCK(*state); 6841 *state = NULL; 6842 return (PF_DROP); 6843 } 6844 return (-1); 6845 } 6846 6847 static int 6848 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd, 6849 u_short *reason) 6850 { 6851 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 6852 u_int16_t *icmpsum, virtual_id, virtual_type; 6853 u_int8_t icmptype, icmpcode; 6854 int icmp_dir, iidx, ret, multi; 6855 struct pf_state_key_cmp key; 6856 #ifdef INET 6857 u_int16_t icmpid; 6858 #endif 6859 6860 MPASS(*state == NULL); 6861 6862 bzero(&key, sizeof(key)); 6863 switch (pd->proto) { 6864 #ifdef INET 6865 case IPPROTO_ICMP: 6866 icmptype = pd->hdr.icmp.icmp_type; 6867 icmpcode = pd->hdr.icmp.icmp_code; 6868 icmpid = pd->hdr.icmp.icmp_id; 6869 icmpsum = &pd->hdr.icmp.icmp_cksum; 6870 break; 6871 #endif /* INET */ 6872 #ifdef INET6 6873 case IPPROTO_ICMPV6: 6874 icmptype = pd->hdr.icmp6.icmp6_type; 6875 icmpcode = pd->hdr.icmp6.icmp6_code; 6876 #ifdef INET 6877 icmpid = pd->hdr.icmp6.icmp6_id; 6878 #endif 6879 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 6880 break; 6881 #endif /* INET6 */ 6882 } 6883 6884 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &multi, 6885 &virtual_id, &virtual_type) == 0) { 6886 /* 6887 * ICMP query/reply message not related to a TCP/UDP packet. 6888 * Search for an ICMP state. 6889 */ 6890 ret = pf_icmp_state_lookup(&key, pd, state, pd->dir, 6891 virtual_id, virtual_type, icmp_dir, &iidx, 6892 PF_ICMP_MULTI_NONE, 0); 6893 if (ret >= 0) { 6894 MPASS(*state == NULL); 6895 if (ret == PF_DROP && pd->af == AF_INET6 && 6896 icmp_dir == PF_OUT) { 6897 ret = pf_icmp_state_lookup(&key, pd, state, 6898 pd->dir, virtual_id, virtual_type, 6899 icmp_dir, &iidx, multi, 0); 6900 if (ret >= 0) { 6901 MPASS(*state == NULL); 6902 return (ret); 6903 } 6904 } else 6905 return (ret); 6906 } 6907 6908 (*state)->expire = pf_get_uptime(); 6909 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 6910 6911 /* translate source/destination address, if necessary */ 6912 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6913 struct pf_state_key *nk = (*state)->key[pd->didx]; 6914 6915 switch (pd->af) { 6916 #ifdef INET 6917 case AF_INET: 6918 if (PF_ANEQ(pd->src, 6919 &nk->addr[pd->sidx], AF_INET)) 6920 pf_change_a(&saddr->v4.s_addr, 6921 pd->ip_sum, 6922 nk->addr[pd->sidx].v4.s_addr, 0); 6923 6924 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 6925 AF_INET)) 6926 pf_change_a(&daddr->v4.s_addr, 6927 pd->ip_sum, 6928 nk->addr[pd->didx].v4.s_addr, 0); 6929 6930 if (nk->port[iidx] != 6931 pd->hdr.icmp.icmp_id) { 6932 pd->hdr.icmp.icmp_cksum = 6933 pf_cksum_fixup( 6934 pd->hdr.icmp.icmp_cksum, icmpid, 6935 nk->port[iidx], 0); 6936 pd->hdr.icmp.icmp_id = 6937 nk->port[iidx]; 6938 } 6939 6940 m_copyback(pd->m, pd->off, ICMP_MINLEN, 6941 (caddr_t )&pd->hdr.icmp); 6942 break; 6943 #endif /* INET */ 6944 #ifdef INET6 6945 case AF_INET6: 6946 if (PF_ANEQ(pd->src, 6947 &nk->addr[pd->sidx], AF_INET6)) 6948 pf_change_a6(saddr, 6949 &pd->hdr.icmp6.icmp6_cksum, 6950 &nk->addr[pd->sidx], 0); 6951 6952 if (PF_ANEQ(pd->dst, 6953 &nk->addr[pd->didx], AF_INET6)) 6954 pf_change_a6(daddr, 6955 &pd->hdr.icmp6.icmp6_cksum, 6956 &nk->addr[pd->didx], 0); 6957 6958 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr), 6959 (caddr_t )&pd->hdr.icmp6); 6960 break; 6961 #endif /* INET6 */ 6962 } 6963 } 6964 return (PF_PASS); 6965 6966 } else { 6967 /* 6968 * ICMP error message in response to a TCP/UDP packet. 6969 * Extract the inner TCP/UDP header and search for that state. 6970 */ 6971 6972 struct pf_pdesc pd2; 6973 bzero(&pd2, sizeof pd2); 6974 #ifdef INET 6975 struct ip h2; 6976 #endif /* INET */ 6977 #ifdef INET6 6978 struct ip6_hdr h2_6; 6979 int fragoff2, extoff2; 6980 u_int32_t jumbolen; 6981 #endif /* INET6 */ 6982 int ipoff2 = 0; 6983 6984 pd2.af = pd->af; 6985 pd2.dir = pd->dir; 6986 /* Payload packet is from the opposite direction. */ 6987 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0; 6988 pd2.didx = (pd->dir == PF_IN) ? 0 : 1; 6989 pd2.m = pd->m; 6990 switch (pd->af) { 6991 #ifdef INET 6992 case AF_INET: 6993 /* offset of h2 in mbuf chain */ 6994 ipoff2 = pd->off + ICMP_MINLEN; 6995 6996 if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2), 6997 NULL, reason, pd2.af)) { 6998 DPFPRINTF(PF_DEBUG_MISC, 6999 ("pf: ICMP error message too short " 7000 "(ip)\n")); 7001 return (PF_DROP); 7002 } 7003 /* 7004 * ICMP error messages don't refer to non-first 7005 * fragments 7006 */ 7007 if (h2.ip_off & htons(IP_OFFMASK)) { 7008 REASON_SET(reason, PFRES_FRAG); 7009 return (PF_DROP); 7010 } 7011 7012 /* offset of protocol header that follows h2 */ 7013 pd2.off = ipoff2 + (h2.ip_hl << 2); 7014 7015 pd2.proto = h2.ip_p; 7016 pd2.src = (struct pf_addr *)&h2.ip_src; 7017 pd2.dst = (struct pf_addr *)&h2.ip_dst; 7018 pd2.ip_sum = &h2.ip_sum; 7019 break; 7020 #endif /* INET */ 7021 #ifdef INET6 7022 case AF_INET6: 7023 ipoff2 = pd->off + sizeof(struct icmp6_hdr); 7024 7025 if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6), 7026 NULL, reason, pd2.af)) { 7027 DPFPRINTF(PF_DEBUG_MISC, 7028 ("pf: ICMP error message too short " 7029 "(ip6)\n")); 7030 return (PF_DROP); 7031 } 7032 pd2.off = ipoff2; 7033 if (pf_walk_header6(pd->m, &h2_6, &pd2.off, &extoff2, 7034 &fragoff2, &pd2.proto, &jumbolen, 7035 reason) != PF_PASS) 7036 return (PF_DROP); 7037 7038 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 7039 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 7040 pd2.ip_sum = NULL; 7041 break; 7042 #endif /* INET6 */ 7043 } 7044 7045 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 7046 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7047 printf("pf: BAD ICMP %d:%d outer dst: ", 7048 icmptype, icmpcode); 7049 pf_print_host(pd->src, 0, pd->af); 7050 printf(" -> "); 7051 pf_print_host(pd->dst, 0, pd->af); 7052 printf(" inner src: "); 7053 pf_print_host(pd2.src, 0, pd2.af); 7054 printf(" -> "); 7055 pf_print_host(pd2.dst, 0, pd2.af); 7056 printf("\n"); 7057 } 7058 REASON_SET(reason, PFRES_BADSTATE); 7059 return (PF_DROP); 7060 } 7061 7062 switch (pd2.proto) { 7063 case IPPROTO_TCP: { 7064 struct tcphdr th; 7065 u_int32_t seq; 7066 struct pf_state_peer *src, *dst; 7067 u_int8_t dws; 7068 int copyback = 0; 7069 7070 /* 7071 * Only the first 8 bytes of the TCP header can be 7072 * expected. Don't access any TCP header fields after 7073 * th_seq, an ackskew test is not possible. 7074 */ 7075 if (!pf_pull_hdr(pd->m, pd2.off, &th, 8, NULL, reason, 7076 pd2.af)) { 7077 DPFPRINTF(PF_DEBUG_MISC, 7078 ("pf: ICMP error message too short " 7079 "(tcp)\n")); 7080 return (PF_DROP); 7081 } 7082 7083 key.af = pd2.af; 7084 key.proto = IPPROTO_TCP; 7085 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7086 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7087 key.port[pd2.sidx] = th.th_sport; 7088 key.port[pd2.didx] = th.th_dport; 7089 7090 STATE_LOOKUP(&key, *state, pd); 7091 7092 if (pd->dir == (*state)->direction) { 7093 src = &(*state)->dst; 7094 dst = &(*state)->src; 7095 } else { 7096 src = &(*state)->src; 7097 dst = &(*state)->dst; 7098 } 7099 7100 if (src->wscale && dst->wscale) 7101 dws = dst->wscale & PF_WSCALE_MASK; 7102 else 7103 dws = 0; 7104 7105 /* Demodulate sequence number */ 7106 seq = ntohl(th.th_seq) - src->seqdiff; 7107 if (src->seqdiff) { 7108 pf_change_a(&th.th_seq, icmpsum, 7109 htonl(seq), 0); 7110 copyback = 1; 7111 } 7112 7113 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 7114 (!SEQ_GEQ(src->seqhi, seq) || 7115 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 7116 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7117 printf("pf: BAD ICMP %d:%d ", 7118 icmptype, icmpcode); 7119 pf_print_host(pd->src, 0, pd->af); 7120 printf(" -> "); 7121 pf_print_host(pd->dst, 0, pd->af); 7122 printf(" state: "); 7123 pf_print_state(*state); 7124 printf(" seq=%u\n", seq); 7125 } 7126 REASON_SET(reason, PFRES_BADSTATE); 7127 return (PF_DROP); 7128 } else { 7129 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7130 printf("pf: OK ICMP %d:%d ", 7131 icmptype, icmpcode); 7132 pf_print_host(pd->src, 0, pd->af); 7133 printf(" -> "); 7134 pf_print_host(pd->dst, 0, pd->af); 7135 printf(" state: "); 7136 pf_print_state(*state); 7137 printf(" seq=%u\n", seq); 7138 } 7139 } 7140 7141 /* translate source/destination address, if necessary */ 7142 if ((*state)->key[PF_SK_WIRE] != 7143 (*state)->key[PF_SK_STACK]) { 7144 struct pf_state_key *nk = 7145 (*state)->key[pd->didx]; 7146 7147 if (PF_ANEQ(pd2.src, 7148 &nk->addr[pd2.sidx], pd2.af) || 7149 nk->port[pd2.sidx] != th.th_sport) 7150 pf_change_icmp(pd2.src, &th.th_sport, 7151 daddr, &nk->addr[pd2.sidx], 7152 nk->port[pd2.sidx], NULL, 7153 pd2.ip_sum, icmpsum, 7154 pd->ip_sum, 0, pd2.af); 7155 7156 if (PF_ANEQ(pd2.dst, 7157 &nk->addr[pd2.didx], pd2.af) || 7158 nk->port[pd2.didx] != th.th_dport) 7159 pf_change_icmp(pd2.dst, &th.th_dport, 7160 saddr, &nk->addr[pd2.didx], 7161 nk->port[pd2.didx], NULL, 7162 pd2.ip_sum, icmpsum, 7163 pd->ip_sum, 0, pd2.af); 7164 copyback = 1; 7165 } 7166 7167 if (copyback) { 7168 switch (pd2.af) { 7169 #ifdef INET 7170 case AF_INET: 7171 m_copyback(pd->m, pd->off, ICMP_MINLEN, 7172 (caddr_t )&pd->hdr.icmp); 7173 m_copyback(pd->m, ipoff2, sizeof(h2), 7174 (caddr_t )&h2); 7175 break; 7176 #endif /* INET */ 7177 #ifdef INET6 7178 case AF_INET6: 7179 m_copyback(pd->m, pd->off, 7180 sizeof(struct icmp6_hdr), 7181 (caddr_t )&pd->hdr.icmp6); 7182 m_copyback(pd->m, ipoff2, sizeof(h2_6), 7183 (caddr_t )&h2_6); 7184 break; 7185 #endif /* INET6 */ 7186 } 7187 m_copyback(pd->m, pd2.off, 8, (caddr_t)&th); 7188 } 7189 7190 return (PF_PASS); 7191 break; 7192 } 7193 case IPPROTO_UDP: { 7194 struct udphdr uh; 7195 7196 if (!pf_pull_hdr(pd->m, pd2.off, &uh, sizeof(uh), 7197 NULL, reason, pd2.af)) { 7198 DPFPRINTF(PF_DEBUG_MISC, 7199 ("pf: ICMP error message too short " 7200 "(udp)\n")); 7201 return (PF_DROP); 7202 } 7203 7204 key.af = pd2.af; 7205 key.proto = IPPROTO_UDP; 7206 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7207 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7208 key.port[pd2.sidx] = uh.uh_sport; 7209 key.port[pd2.didx] = uh.uh_dport; 7210 7211 STATE_LOOKUP(&key, *state, pd); 7212 7213 /* translate source/destination address, if necessary */ 7214 if ((*state)->key[PF_SK_WIRE] != 7215 (*state)->key[PF_SK_STACK]) { 7216 struct pf_state_key *nk = 7217 (*state)->key[pd->didx]; 7218 7219 if (PF_ANEQ(pd2.src, 7220 &nk->addr[pd2.sidx], pd2.af) || 7221 nk->port[pd2.sidx] != uh.uh_sport) 7222 pf_change_icmp(pd2.src, &uh.uh_sport, 7223 daddr, &nk->addr[pd2.sidx], 7224 nk->port[pd2.sidx], &uh.uh_sum, 7225 pd2.ip_sum, icmpsum, 7226 pd->ip_sum, 1, pd2.af); 7227 7228 if (PF_ANEQ(pd2.dst, 7229 &nk->addr[pd2.didx], pd2.af) || 7230 nk->port[pd2.didx] != uh.uh_dport) 7231 pf_change_icmp(pd2.dst, &uh.uh_dport, 7232 saddr, &nk->addr[pd2.didx], 7233 nk->port[pd2.didx], &uh.uh_sum, 7234 pd2.ip_sum, icmpsum, 7235 pd->ip_sum, 1, pd2.af); 7236 7237 switch (pd2.af) { 7238 #ifdef INET 7239 case AF_INET: 7240 m_copyback(pd->m, pd->off, ICMP_MINLEN, 7241 (caddr_t )&pd->hdr.icmp); 7242 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 7243 break; 7244 #endif /* INET */ 7245 #ifdef INET6 7246 case AF_INET6: 7247 m_copyback(pd->m, pd->off, 7248 sizeof(struct icmp6_hdr), 7249 (caddr_t )&pd->hdr.icmp6); 7250 m_copyback(pd->m, ipoff2, sizeof(h2_6), 7251 (caddr_t )&h2_6); 7252 break; 7253 #endif /* INET6 */ 7254 } 7255 m_copyback(pd->m, pd2.off, sizeof(uh), (caddr_t)&uh); 7256 } 7257 return (PF_PASS); 7258 break; 7259 } 7260 #ifdef INET 7261 case IPPROTO_ICMP: { 7262 struct icmp *iih = &pd2.hdr.icmp; 7263 7264 if (pd2.af != AF_INET) { 7265 REASON_SET(reason, PFRES_NORM); 7266 return (PF_DROP); 7267 } 7268 7269 if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN, 7270 NULL, reason, pd2.af)) { 7271 DPFPRINTF(PF_DEBUG_MISC, 7272 ("pf: ICMP error message too short i" 7273 "(icmp)\n")); 7274 return (PF_DROP); 7275 } 7276 7277 icmpid = iih->icmp_id; 7278 pf_icmp_mapping(&pd2, iih->icmp_type, 7279 &icmp_dir, &multi, &virtual_id, &virtual_type); 7280 7281 ret = pf_icmp_state_lookup(&key, &pd2, state, 7282 pd2.dir, virtual_id, virtual_type, 7283 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1); 7284 if (ret >= 0) { 7285 MPASS(*state == NULL); 7286 return (ret); 7287 } 7288 7289 /* translate source/destination address, if necessary */ 7290 if ((*state)->key[PF_SK_WIRE] != 7291 (*state)->key[PF_SK_STACK]) { 7292 struct pf_state_key *nk = 7293 (*state)->key[pd->didx]; 7294 7295 if (PF_ANEQ(pd2.src, 7296 &nk->addr[pd2.sidx], pd2.af) || 7297 (virtual_type == htons(ICMP_ECHO) && 7298 nk->port[iidx] != iih->icmp_id)) 7299 pf_change_icmp(pd2.src, 7300 (virtual_type == htons(ICMP_ECHO)) ? 7301 &iih->icmp_id : NULL, 7302 daddr, &nk->addr[pd2.sidx], 7303 (virtual_type == htons(ICMP_ECHO)) ? 7304 nk->port[iidx] : 0, NULL, 7305 pd2.ip_sum, icmpsum, 7306 pd->ip_sum, 0, AF_INET); 7307 7308 if (PF_ANEQ(pd2.dst, 7309 &nk->addr[pd2.didx], pd2.af)) 7310 pf_change_icmp(pd2.dst, NULL, NULL, 7311 &nk->addr[pd2.didx], 0, NULL, 7312 pd2.ip_sum, icmpsum, pd->ip_sum, 0, 7313 AF_INET); 7314 7315 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 7316 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 7317 m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih); 7318 } 7319 return (PF_PASS); 7320 break; 7321 } 7322 #endif /* INET */ 7323 #ifdef INET6 7324 case IPPROTO_ICMPV6: { 7325 struct icmp6_hdr *iih = &pd2.hdr.icmp6; 7326 7327 if (pd2.af != AF_INET6) { 7328 REASON_SET(reason, PFRES_NORM); 7329 return (PF_DROP); 7330 } 7331 7332 if (!pf_pull_hdr(pd->m, pd2.off, iih, 7333 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 7334 DPFPRINTF(PF_DEBUG_MISC, 7335 ("pf: ICMP error message too short " 7336 "(icmp6)\n")); 7337 return (PF_DROP); 7338 } 7339 7340 pf_icmp_mapping(&pd2, iih->icmp6_type, 7341 &icmp_dir, &multi, &virtual_id, &virtual_type); 7342 7343 ret = pf_icmp_state_lookup(&key, &pd2, state, 7344 pd->dir, virtual_id, virtual_type, 7345 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1); 7346 if (ret >= 0) { 7347 MPASS(*state == NULL); 7348 if (ret == PF_DROP && pd2.af == AF_INET6 && 7349 icmp_dir == PF_OUT) { 7350 ret = pf_icmp_state_lookup(&key, &pd2, 7351 state, pd->dir, 7352 virtual_id, virtual_type, 7353 icmp_dir, &iidx, multi, 1); 7354 if (ret >= 0) { 7355 MPASS(*state == NULL); 7356 return (ret); 7357 } 7358 } else 7359 return (ret); 7360 } 7361 7362 /* translate source/destination address, if necessary */ 7363 if ((*state)->key[PF_SK_WIRE] != 7364 (*state)->key[PF_SK_STACK]) { 7365 struct pf_state_key *nk = 7366 (*state)->key[pd->didx]; 7367 7368 if (PF_ANEQ(pd2.src, 7369 &nk->addr[pd2.sidx], pd2.af) || 7370 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) && 7371 nk->port[pd2.sidx] != iih->icmp6_id)) 7372 pf_change_icmp(pd2.src, 7373 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 7374 ? &iih->icmp6_id : NULL, 7375 daddr, &nk->addr[pd2.sidx], 7376 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 7377 ? nk->port[iidx] : 0, NULL, 7378 pd2.ip_sum, icmpsum, 7379 pd->ip_sum, 0, AF_INET6); 7380 7381 if (PF_ANEQ(pd2.dst, 7382 &nk->addr[pd2.didx], pd2.af)) 7383 pf_change_icmp(pd2.dst, NULL, NULL, 7384 &nk->addr[pd2.didx], 0, NULL, 7385 pd2.ip_sum, icmpsum, 7386 pd->ip_sum, 0, AF_INET6); 7387 7388 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr), 7389 (caddr_t)&pd->hdr.icmp6); 7390 m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 7391 m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr), 7392 (caddr_t)iih); 7393 } 7394 return (PF_PASS); 7395 break; 7396 } 7397 #endif /* INET6 */ 7398 default: { 7399 key.af = pd2.af; 7400 key.proto = pd2.proto; 7401 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7402 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7403 key.port[0] = key.port[1] = 0; 7404 7405 STATE_LOOKUP(&key, *state, pd); 7406 7407 /* translate source/destination address, if necessary */ 7408 if ((*state)->key[PF_SK_WIRE] != 7409 (*state)->key[PF_SK_STACK]) { 7410 struct pf_state_key *nk = 7411 (*state)->key[pd->didx]; 7412 7413 if (PF_ANEQ(pd2.src, 7414 &nk->addr[pd2.sidx], pd2.af)) 7415 pf_change_icmp(pd2.src, NULL, daddr, 7416 &nk->addr[pd2.sidx], 0, NULL, 7417 pd2.ip_sum, icmpsum, 7418 pd->ip_sum, 0, pd2.af); 7419 7420 if (PF_ANEQ(pd2.dst, 7421 &nk->addr[pd2.didx], pd2.af)) 7422 pf_change_icmp(pd2.dst, NULL, saddr, 7423 &nk->addr[pd2.didx], 0, NULL, 7424 pd2.ip_sum, icmpsum, 7425 pd->ip_sum, 0, pd2.af); 7426 7427 switch (pd2.af) { 7428 #ifdef INET 7429 case AF_INET: 7430 m_copyback(pd->m, pd->off, ICMP_MINLEN, 7431 (caddr_t)&pd->hdr.icmp); 7432 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 7433 break; 7434 #endif /* INET */ 7435 #ifdef INET6 7436 case AF_INET6: 7437 m_copyback(pd->m, pd->off, 7438 sizeof(struct icmp6_hdr), 7439 (caddr_t )&pd->hdr.icmp6); 7440 m_copyback(pd->m, ipoff2, sizeof(h2_6), 7441 (caddr_t )&h2_6); 7442 break; 7443 #endif /* INET6 */ 7444 } 7445 } 7446 return (PF_PASS); 7447 break; 7448 } 7449 } 7450 } 7451 } 7452 7453 static int 7454 pf_test_state_other(struct pf_kstate **state, struct pf_pdesc *pd) 7455 { 7456 struct pf_state_peer *src, *dst; 7457 struct pf_state_key_cmp key; 7458 uint8_t psrc, pdst; 7459 7460 bzero(&key, sizeof(key)); 7461 key.af = pd->af; 7462 key.proto = pd->proto; 7463 if (pd->dir == PF_IN) { 7464 PF_ACPY(&key.addr[0], pd->src, key.af); 7465 PF_ACPY(&key.addr[1], pd->dst, key.af); 7466 key.port[0] = key.port[1] = 0; 7467 } else { 7468 PF_ACPY(&key.addr[1], pd->src, key.af); 7469 PF_ACPY(&key.addr[0], pd->dst, key.af); 7470 key.port[1] = key.port[0] = 0; 7471 } 7472 7473 STATE_LOOKUP(&key, *state, pd); 7474 7475 if (pd->dir == (*state)->direction) { 7476 src = &(*state)->src; 7477 dst = &(*state)->dst; 7478 psrc = PF_PEER_SRC; 7479 pdst = PF_PEER_DST; 7480 } else { 7481 src = &(*state)->dst; 7482 dst = &(*state)->src; 7483 psrc = PF_PEER_DST; 7484 pdst = PF_PEER_SRC; 7485 } 7486 7487 /* update states */ 7488 if (src->state < PFOTHERS_SINGLE) 7489 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 7490 if (dst->state == PFOTHERS_SINGLE) 7491 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 7492 7493 /* update expire time */ 7494 (*state)->expire = pf_get_uptime(); 7495 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 7496 (*state)->timeout = PFTM_OTHER_MULTIPLE; 7497 else 7498 (*state)->timeout = PFTM_OTHER_SINGLE; 7499 7500 /* translate source/destination address, if necessary */ 7501 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7502 struct pf_state_key *nk = (*state)->key[pd->didx]; 7503 7504 KASSERT(nk, ("%s: nk is null", __func__)); 7505 KASSERT(pd, ("%s: pd is null", __func__)); 7506 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 7507 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 7508 switch (pd->af) { 7509 #ifdef INET 7510 case AF_INET: 7511 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 7512 pf_change_a(&pd->src->v4.s_addr, 7513 pd->ip_sum, 7514 nk->addr[pd->sidx].v4.s_addr, 7515 0); 7516 7517 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 7518 pf_change_a(&pd->dst->v4.s_addr, 7519 pd->ip_sum, 7520 nk->addr[pd->didx].v4.s_addr, 7521 0); 7522 7523 break; 7524 #endif /* INET */ 7525 #ifdef INET6 7526 case AF_INET6: 7527 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET6)) 7528 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 7529 7530 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET6)) 7531 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 7532 #endif /* INET6 */ 7533 } 7534 } 7535 return (PF_PASS); 7536 } 7537 7538 /* 7539 * ipoff and off are measured from the start of the mbuf chain. 7540 * h must be at "ipoff" on the mbuf chain. 7541 */ 7542 void * 7543 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len, 7544 u_short *actionp, u_short *reasonp, sa_family_t af) 7545 { 7546 switch (af) { 7547 #ifdef INET 7548 case AF_INET: { 7549 const struct ip *h = mtod(m, struct ip *); 7550 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 7551 7552 if (fragoff) { 7553 if (fragoff >= len) 7554 ACTION_SET(actionp, PF_PASS); 7555 else { 7556 ACTION_SET(actionp, PF_DROP); 7557 REASON_SET(reasonp, PFRES_FRAG); 7558 } 7559 return (NULL); 7560 } 7561 if (m->m_pkthdr.len < off + len || 7562 ntohs(h->ip_len) < off + len) { 7563 ACTION_SET(actionp, PF_DROP); 7564 REASON_SET(reasonp, PFRES_SHORT); 7565 return (NULL); 7566 } 7567 break; 7568 } 7569 #endif /* INET */ 7570 #ifdef INET6 7571 case AF_INET6: { 7572 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 7573 7574 if (m->m_pkthdr.len < off + len || 7575 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 7576 (unsigned)(off + len)) { 7577 ACTION_SET(actionp, PF_DROP); 7578 REASON_SET(reasonp, PFRES_SHORT); 7579 return (NULL); 7580 } 7581 break; 7582 } 7583 #endif /* INET6 */ 7584 } 7585 m_copydata(m, off, len, p); 7586 return (p); 7587 } 7588 7589 int 7590 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 7591 int rtableid) 7592 { 7593 struct ifnet *ifp; 7594 7595 /* 7596 * Skip check for addresses with embedded interface scope, 7597 * as they would always match anyway. 7598 */ 7599 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 7600 return (1); 7601 7602 if (af != AF_INET && af != AF_INET6) 7603 return (0); 7604 7605 if (kif == V_pfi_all) 7606 return (1); 7607 7608 /* Skip checks for ipsec interfaces */ 7609 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 7610 return (1); 7611 7612 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 7613 7614 switch (af) { 7615 #ifdef INET6 7616 case AF_INET6: 7617 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 7618 ifp)); 7619 #endif 7620 #ifdef INET 7621 case AF_INET: 7622 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 7623 ifp)); 7624 #endif 7625 } 7626 7627 return (0); 7628 } 7629 7630 #ifdef INET 7631 static void 7632 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7633 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7634 { 7635 struct mbuf *m0, *m1, *md; 7636 struct sockaddr_in dst; 7637 struct ip *ip; 7638 struct pfi_kkif *nkif = NULL; 7639 struct ifnet *ifp = NULL; 7640 struct pf_addr naddr; 7641 int error = 0; 7642 uint16_t ip_len, ip_off; 7643 uint16_t tmp; 7644 int r_rt, r_dir; 7645 7646 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 7647 7648 if (s) { 7649 r_rt = s->rt; 7650 r_dir = s->direction; 7651 } else { 7652 r_rt = r->rt; 7653 r_dir = r->direction; 7654 } 7655 7656 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7657 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7658 __func__)); 7659 7660 if ((pd->pf_mtag == NULL && 7661 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7662 pd->pf_mtag->routed++ > 3) { 7663 m0 = *m; 7664 *m = NULL; 7665 goto bad_locked; 7666 } 7667 7668 if (r_rt == PF_DUPTO) { 7669 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7670 if (s == NULL) { 7671 ifp = r->rpool.cur->kif ? 7672 r->rpool.cur->kif->pfik_ifp : NULL; 7673 } else { 7674 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7675 /* If pfsync'd */ 7676 if (ifp == NULL && r->rpool.cur != NULL) 7677 ifp = r->rpool.cur->kif ? 7678 r->rpool.cur->kif->pfik_ifp : NULL; 7679 PF_STATE_UNLOCK(s); 7680 } 7681 if (ifp == oifp) { 7682 /* When the 2nd interface is not skipped */ 7683 return; 7684 } else { 7685 m0 = *m; 7686 *m = NULL; 7687 goto bad; 7688 } 7689 } else { 7690 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 7691 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 7692 if (s) 7693 PF_STATE_UNLOCK(s); 7694 return; 7695 } 7696 } 7697 } else { 7698 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 7699 pf_dummynet(pd, s, r, m); 7700 if (s) 7701 PF_STATE_UNLOCK(s); 7702 return; 7703 } 7704 m0 = *m; 7705 } 7706 7707 ip = mtod(m0, struct ip *); 7708 7709 bzero(&dst, sizeof(dst)); 7710 dst.sin_family = AF_INET; 7711 dst.sin_len = sizeof(dst); 7712 dst.sin_addr = ip->ip_dst; 7713 7714 bzero(&naddr, sizeof(naddr)); 7715 7716 if (s == NULL) { 7717 if (TAILQ_EMPTY(&r->rpool.list)) { 7718 DPFPRINTF(PF_DEBUG_URGENT, 7719 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 7720 goto bad_locked; 7721 } 7722 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 7723 &naddr, &nkif, NULL); 7724 if (!PF_AZERO(&naddr, AF_INET)) 7725 dst.sin_addr.s_addr = naddr.v4.s_addr; 7726 ifp = nkif ? nkif->pfik_ifp : NULL; 7727 } else { 7728 struct pfi_kkif *kif; 7729 7730 if (!PF_AZERO(&s->rt_addr, AF_INET)) 7731 dst.sin_addr.s_addr = 7732 s->rt_addr.v4.s_addr; 7733 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7734 kif = s->rt_kif; 7735 /* If pfsync'd */ 7736 if (ifp == NULL && r->rpool.cur != NULL) { 7737 ifp = r->rpool.cur->kif ? 7738 r->rpool.cur->kif->pfik_ifp : NULL; 7739 kif = r->rpool.cur->kif; 7740 } 7741 if (ifp != NULL && kif != NULL && 7742 r->rule_flag & PFRULE_IFBOUND && 7743 r->rt == PF_REPLYTO && 7744 s->kif == V_pfi_all) { 7745 s->kif = kif; 7746 s->orig_kif = oifp->if_pf_kif; 7747 } 7748 7749 PF_STATE_UNLOCK(s); 7750 } 7751 7752 if (ifp == NULL) 7753 goto bad; 7754 7755 if (pd->dir == PF_IN) { 7756 if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp, 7757 &pd->act) != PF_PASS) 7758 goto bad; 7759 else if (m0 == NULL) 7760 goto done; 7761 if (m0->m_len < sizeof(struct ip)) { 7762 DPFPRINTF(PF_DEBUG_URGENT, 7763 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 7764 goto bad; 7765 } 7766 ip = mtod(m0, struct ip *); 7767 } 7768 7769 if (ifp->if_flags & IFF_LOOPBACK) 7770 m0->m_flags |= M_SKIP_FIREWALL; 7771 7772 ip_len = ntohs(ip->ip_len); 7773 ip_off = ntohs(ip->ip_off); 7774 7775 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 7776 m0->m_pkthdr.csum_flags |= CSUM_IP; 7777 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 7778 in_delayed_cksum(m0); 7779 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 7780 } 7781 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 7782 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2)); 7783 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 7784 } 7785 7786 if (pd->dir == PF_IN) { 7787 /* 7788 * Make sure dummynet gets the correct direction, in case it needs to 7789 * re-inject later. 7790 */ 7791 pd->dir = PF_OUT; 7792 7793 /* 7794 * The following processing is actually the rest of the inbound processing, even 7795 * though we've marked it as outbound (so we don't look through dummynet) and it 7796 * happens after the outbound processing (pf_test(PF_OUT) above). 7797 * Swap the dummynet pipe numbers, because it's going to come to the wrong 7798 * conclusion about what direction it's processing, and we can't fix it or it 7799 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 7800 * decision will pick the right pipe, and everything will mostly work as expected. 7801 */ 7802 tmp = pd->act.dnrpipe; 7803 pd->act.dnrpipe = pd->act.dnpipe; 7804 pd->act.dnpipe = tmp; 7805 } 7806 7807 /* 7808 * If small enough for interface, or the interface will take 7809 * care of the fragmentation for us, we can just send directly. 7810 */ 7811 if (ip_len <= ifp->if_mtu || 7812 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 7813 ip->ip_sum = 0; 7814 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 7815 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 7816 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 7817 } 7818 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 7819 7820 md = m0; 7821 error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 7822 if (md != NULL) 7823 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL); 7824 goto done; 7825 } 7826 7827 /* Balk when DF bit is set or the interface didn't support TSO. */ 7828 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 7829 error = EMSGSIZE; 7830 KMOD_IPSTAT_INC(ips_cantfrag); 7831 if (r_rt != PF_DUPTO) { 7832 if (s && s->nat_rule != NULL) 7833 PACKET_UNDO_NAT(m0, pd, 7834 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 7835 s); 7836 7837 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 7838 ifp->if_mtu); 7839 goto done; 7840 } else 7841 goto bad; 7842 } 7843 7844 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 7845 if (error) 7846 goto bad; 7847 7848 for (; m0; m0 = m1) { 7849 m1 = m0->m_nextpkt; 7850 m0->m_nextpkt = NULL; 7851 if (error == 0) { 7852 m_clrprotoflags(m0); 7853 md = m0; 7854 pd->pf_mtag = pf_find_mtag(md); 7855 error = pf_dummynet_route(pd, s, r, ifp, 7856 sintosa(&dst), &md); 7857 if (md != NULL) 7858 error = (*ifp->if_output)(ifp, md, 7859 sintosa(&dst), NULL); 7860 } else 7861 m_freem(m0); 7862 } 7863 7864 if (error == 0) 7865 KMOD_IPSTAT_INC(ips_fragmented); 7866 7867 done: 7868 if (r_rt != PF_DUPTO) 7869 *m = NULL; 7870 return; 7871 7872 bad_locked: 7873 if (s) 7874 PF_STATE_UNLOCK(s); 7875 bad: 7876 m_freem(m0); 7877 goto done; 7878 } 7879 #endif /* INET */ 7880 7881 #ifdef INET6 7882 static void 7883 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7884 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7885 { 7886 struct mbuf *m0, *md; 7887 struct sockaddr_in6 dst; 7888 struct ip6_hdr *ip6; 7889 struct pfi_kkif *nkif = NULL; 7890 struct ifnet *ifp = NULL; 7891 struct pf_addr naddr; 7892 int r_rt, r_dir; 7893 7894 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 7895 7896 if (s) { 7897 r_rt = s->rt; 7898 r_dir = s->direction; 7899 } else { 7900 r_rt = r->rt; 7901 r_dir = r->direction; 7902 } 7903 7904 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7905 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7906 __func__)); 7907 7908 if ((pd->pf_mtag == NULL && 7909 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7910 pd->pf_mtag->routed++ > 3) { 7911 m0 = *m; 7912 *m = NULL; 7913 goto bad_locked; 7914 } 7915 7916 if (r_rt == PF_DUPTO) { 7917 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7918 if (s == NULL) { 7919 ifp = r->rpool.cur->kif ? 7920 r->rpool.cur->kif->pfik_ifp : NULL; 7921 } else { 7922 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7923 /* If pfsync'd */ 7924 if (ifp == NULL && r->rpool.cur != NULL) 7925 ifp = r->rpool.cur->kif ? 7926 r->rpool.cur->kif->pfik_ifp : NULL; 7927 PF_STATE_UNLOCK(s); 7928 } 7929 if (ifp == oifp) { 7930 /* When the 2nd interface is not skipped */ 7931 return; 7932 } else { 7933 m0 = *m; 7934 *m = NULL; 7935 goto bad; 7936 } 7937 } else { 7938 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 7939 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 7940 if (s) 7941 PF_STATE_UNLOCK(s); 7942 return; 7943 } 7944 } 7945 } else { 7946 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 7947 pf_dummynet(pd, s, r, m); 7948 if (s) 7949 PF_STATE_UNLOCK(s); 7950 return; 7951 } 7952 m0 = *m; 7953 } 7954 7955 ip6 = mtod(m0, struct ip6_hdr *); 7956 7957 bzero(&dst, sizeof(dst)); 7958 dst.sin6_family = AF_INET6; 7959 dst.sin6_len = sizeof(dst); 7960 dst.sin6_addr = ip6->ip6_dst; 7961 7962 bzero(&naddr, sizeof(naddr)); 7963 7964 if (s == NULL) { 7965 if (TAILQ_EMPTY(&r->rpool.list)) { 7966 DPFPRINTF(PF_DEBUG_URGENT, 7967 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 7968 goto bad_locked; 7969 } 7970 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 7971 &naddr, &nkif, NULL); 7972 if (!PF_AZERO(&naddr, AF_INET6)) 7973 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 7974 &naddr, AF_INET6); 7975 ifp = nkif ? nkif->pfik_ifp : NULL; 7976 } else { 7977 struct pfi_kkif *kif; 7978 7979 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 7980 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 7981 &s->rt_addr, AF_INET6); 7982 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7983 kif = s->rt_kif; 7984 /* If pfsync'd */ 7985 if (ifp == NULL && r->rpool.cur != NULL) { 7986 ifp = r->rpool.cur->kif ? 7987 r->rpool.cur->kif->pfik_ifp : NULL; 7988 kif = r->rpool.cur->kif; 7989 } 7990 if (ifp != NULL && kif != NULL && 7991 r->rule_flag & PFRULE_IFBOUND && 7992 r->rt == PF_REPLYTO && 7993 s->kif == V_pfi_all) { 7994 s->kif = kif; 7995 s->orig_kif = oifp->if_pf_kif; 7996 } 7997 } 7998 7999 if (s) 8000 PF_STATE_UNLOCK(s); 8001 8002 if (ifp == NULL) 8003 goto bad; 8004 8005 if (pd->dir == PF_IN) { 8006 if (pf_test(AF_INET6, PF_OUT, PFIL_FWD, ifp, &m0, inp, 8007 &pd->act) != PF_PASS) 8008 goto bad; 8009 else if (m0 == NULL) 8010 goto done; 8011 if (m0->m_len < sizeof(struct ip6_hdr)) { 8012 DPFPRINTF(PF_DEBUG_URGENT, 8013 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 8014 __func__)); 8015 goto bad; 8016 } 8017 ip6 = mtod(m0, struct ip6_hdr *); 8018 } 8019 8020 if (ifp->if_flags & IFF_LOOPBACK) 8021 m0->m_flags |= M_SKIP_FIREWALL; 8022 8023 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 8024 ~ifp->if_hwassist) { 8025 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 8026 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 8027 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 8028 } 8029 8030 /* 8031 * If the packet is too large for the outgoing interface, 8032 * send back an icmp6 error. 8033 */ 8034 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 8035 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 8036 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 8037 md = m0; 8038 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 8039 if (md != NULL) 8040 nd6_output_ifp(ifp, ifp, md, &dst, NULL); 8041 } 8042 else { 8043 in6_ifstat_inc(ifp, ifs6_in_toobig); 8044 if (r_rt != PF_DUPTO) { 8045 if (s && s->nat_rule != NULL) 8046 PACKET_UNDO_NAT(m0, pd, 8047 ((caddr_t)ip6 - m0->m_data) + 8048 sizeof(struct ip6_hdr), s); 8049 8050 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 8051 } else 8052 goto bad; 8053 } 8054 8055 done: 8056 if (r_rt != PF_DUPTO) 8057 *m = NULL; 8058 return; 8059 8060 bad_locked: 8061 if (s) 8062 PF_STATE_UNLOCK(s); 8063 bad: 8064 m_freem(m0); 8065 goto done; 8066 } 8067 #endif /* INET6 */ 8068 8069 /* 8070 * FreeBSD supports cksum offloads for the following drivers. 8071 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 8072 * 8073 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 8074 * network driver performed cksum including pseudo header, need to verify 8075 * csum_data 8076 * CSUM_DATA_VALID : 8077 * network driver performed cksum, needs to additional pseudo header 8078 * cksum computation with partial csum_data(i.e. lack of H/W support for 8079 * pseudo header, for instance sk(4) and possibly gem(4)) 8080 * 8081 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 8082 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 8083 * TCP/UDP layer. 8084 * Also, set csum_data to 0xffff to force cksum validation. 8085 */ 8086 static int 8087 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 8088 { 8089 u_int16_t sum = 0; 8090 int hw_assist = 0; 8091 struct ip *ip; 8092 8093 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 8094 return (1); 8095 if (m->m_pkthdr.len < off + len) 8096 return (1); 8097 8098 switch (p) { 8099 case IPPROTO_TCP: 8100 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 8101 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 8102 sum = m->m_pkthdr.csum_data; 8103 } else { 8104 ip = mtod(m, struct ip *); 8105 sum = in_pseudo(ip->ip_src.s_addr, 8106 ip->ip_dst.s_addr, htonl((u_short)len + 8107 m->m_pkthdr.csum_data + IPPROTO_TCP)); 8108 } 8109 sum ^= 0xffff; 8110 ++hw_assist; 8111 } 8112 break; 8113 case IPPROTO_UDP: 8114 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 8115 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 8116 sum = m->m_pkthdr.csum_data; 8117 } else { 8118 ip = mtod(m, struct ip *); 8119 sum = in_pseudo(ip->ip_src.s_addr, 8120 ip->ip_dst.s_addr, htonl((u_short)len + 8121 m->m_pkthdr.csum_data + IPPROTO_UDP)); 8122 } 8123 sum ^= 0xffff; 8124 ++hw_assist; 8125 } 8126 break; 8127 case IPPROTO_ICMP: 8128 #ifdef INET6 8129 case IPPROTO_ICMPV6: 8130 #endif /* INET6 */ 8131 break; 8132 default: 8133 return (1); 8134 } 8135 8136 if (!hw_assist) { 8137 switch (af) { 8138 case AF_INET: 8139 if (p == IPPROTO_ICMP) { 8140 if (m->m_len < off) 8141 return (1); 8142 m->m_data += off; 8143 m->m_len -= off; 8144 sum = in_cksum(m, len); 8145 m->m_data -= off; 8146 m->m_len += off; 8147 } else { 8148 if (m->m_len < sizeof(struct ip)) 8149 return (1); 8150 sum = in4_cksum(m, p, off, len); 8151 } 8152 break; 8153 #ifdef INET6 8154 case AF_INET6: 8155 if (m->m_len < sizeof(struct ip6_hdr)) 8156 return (1); 8157 sum = in6_cksum(m, p, off, len); 8158 break; 8159 #endif /* INET6 */ 8160 } 8161 } 8162 if (sum) { 8163 switch (p) { 8164 case IPPROTO_TCP: 8165 { 8166 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 8167 break; 8168 } 8169 case IPPROTO_UDP: 8170 { 8171 KMOD_UDPSTAT_INC(udps_badsum); 8172 break; 8173 } 8174 #ifdef INET 8175 case IPPROTO_ICMP: 8176 { 8177 KMOD_ICMPSTAT_INC(icps_checksum); 8178 break; 8179 } 8180 #endif 8181 #ifdef INET6 8182 case IPPROTO_ICMPV6: 8183 { 8184 KMOD_ICMP6STAT_INC(icp6s_checksum); 8185 break; 8186 } 8187 #endif /* INET6 */ 8188 } 8189 return (1); 8190 } else { 8191 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 8192 m->m_pkthdr.csum_flags |= 8193 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 8194 m->m_pkthdr.csum_data = 0xffff; 8195 } 8196 } 8197 return (0); 8198 } 8199 8200 static bool 8201 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r, 8202 const struct pf_kstate *s, struct ip_fw_args *dnflow) 8203 { 8204 int dndir = r->direction; 8205 8206 if (s && dndir == PF_INOUT) { 8207 dndir = s->direction; 8208 } else if (dndir == PF_INOUT) { 8209 /* Assume primary direction. Happens when we've set dnpipe in 8210 * the ethernet level code. */ 8211 dndir = pd->dir; 8212 } 8213 8214 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED) 8215 return (false); 8216 8217 memset(dnflow, 0, sizeof(*dnflow)); 8218 8219 if (pd->dport != NULL) 8220 dnflow->f_id.dst_port = ntohs(*pd->dport); 8221 if (pd->sport != NULL) 8222 dnflow->f_id.src_port = ntohs(*pd->sport); 8223 8224 if (pd->dir == PF_IN) 8225 dnflow->flags |= IPFW_ARGS_IN; 8226 else 8227 dnflow->flags |= IPFW_ARGS_OUT; 8228 8229 if (pd->dir != dndir && pd->act.dnrpipe) { 8230 dnflow->rule.info = pd->act.dnrpipe; 8231 } 8232 else if (pd->dir == dndir && pd->act.dnpipe) { 8233 dnflow->rule.info = pd->act.dnpipe; 8234 } 8235 else { 8236 return (false); 8237 } 8238 8239 dnflow->rule.info |= IPFW_IS_DUMMYNET; 8240 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 8241 dnflow->rule.info |= IPFW_IS_PIPE; 8242 8243 dnflow->f_id.proto = pd->proto; 8244 dnflow->f_id.extra = dnflow->rule.info; 8245 switch (pd->af) { 8246 case AF_INET: 8247 dnflow->f_id.addr_type = 4; 8248 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 8249 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 8250 break; 8251 case AF_INET6: 8252 dnflow->flags |= IPFW_ARGS_IP6; 8253 dnflow->f_id.addr_type = 6; 8254 dnflow->f_id.src_ip6 = pd->src->v6; 8255 dnflow->f_id.dst_ip6 = pd->dst->v6; 8256 break; 8257 } 8258 8259 return (true); 8260 } 8261 8262 int 8263 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 8264 struct inpcb *inp) 8265 { 8266 struct pfi_kkif *kif; 8267 struct mbuf *m = *m0; 8268 8269 M_ASSERTPKTHDR(m); 8270 MPASS(ifp->if_vnet == curvnet); 8271 NET_EPOCH_ASSERT(); 8272 8273 if (!V_pf_status.running) 8274 return (PF_PASS); 8275 8276 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8277 8278 if (kif == NULL) { 8279 DPFPRINTF(PF_DEBUG_URGENT, 8280 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname)); 8281 return (PF_DROP); 8282 } 8283 if (kif->pfik_flags & PFI_IFLAG_SKIP) 8284 return (PF_PASS); 8285 8286 if (m->m_flags & M_SKIP_FIREWALL) 8287 return (PF_PASS); 8288 8289 if (__predict_false(! M_WRITABLE(*m0))) { 8290 m = *m0 = m_unshare(*m0, M_NOWAIT); 8291 if (*m0 == NULL) 8292 return (PF_DROP); 8293 } 8294 8295 /* Stateless! */ 8296 return (pf_test_eth_rule(dir, kif, m0)); 8297 } 8298 8299 static __inline void 8300 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag) 8301 { 8302 struct m_tag *mtag; 8303 8304 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 8305 8306 /* dummynet adds this tag, but pf does not need it, 8307 * and keeping it creates unexpected behavior, 8308 * e.g. in case of divert(4) usage right after dummynet. */ 8309 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 8310 if (mtag != NULL) 8311 m_tag_delete(m, mtag); 8312 } 8313 8314 static int 8315 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s, 8316 struct pf_krule *r, struct mbuf **m0) 8317 { 8318 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0)); 8319 } 8320 8321 static int 8322 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s, 8323 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa, 8324 struct mbuf **m0) 8325 { 8326 NET_EPOCH_ASSERT(); 8327 8328 if (pd->act.dnpipe || pd->act.dnrpipe) { 8329 struct ip_fw_args dnflow; 8330 if (ip_dn_io_ptr == NULL) { 8331 m_freem(*m0); 8332 *m0 = NULL; 8333 return (ENOMEM); 8334 } 8335 8336 if (pd->pf_mtag == NULL && 8337 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 8338 m_freem(*m0); 8339 *m0 = NULL; 8340 return (ENOMEM); 8341 } 8342 8343 if (ifp != NULL) { 8344 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO; 8345 8346 pd->pf_mtag->if_index = ifp->if_index; 8347 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 8348 8349 MPASS(sa != NULL); 8350 8351 switch (pd->af) { 8352 case AF_INET: 8353 memcpy(&pd->pf_mtag->dst, sa, 8354 sizeof(struct sockaddr_in)); 8355 break; 8356 case AF_INET6: 8357 memcpy(&pd->pf_mtag->dst, sa, 8358 sizeof(struct sockaddr_in6)); 8359 break; 8360 } 8361 } 8362 8363 if (s != NULL && s->nat_rule != NULL && 8364 s->nat_rule->action == PF_RDR && 8365 ( 8366 #ifdef INET 8367 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) || 8368 #endif 8369 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) { 8370 /* 8371 * If we're redirecting to loopback mark this packet 8372 * as being local. Otherwise it might get dropped 8373 * if dummynet re-injects. 8374 */ 8375 (*m0)->m_pkthdr.rcvif = V_loif; 8376 } 8377 8378 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) { 8379 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 8380 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED; 8381 ip_dn_io_ptr(m0, &dnflow); 8382 if (*m0 != NULL) { 8383 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 8384 pf_dummynet_flag_remove(*m0, pd->pf_mtag); 8385 } 8386 } 8387 } 8388 8389 return (0); 8390 } 8391 8392 #ifdef INET6 8393 static int 8394 pf_walk_option6(struct mbuf *m, int off, int end, uint32_t *jumbolen, 8395 u_short *reason) 8396 { 8397 struct ip6_opt opt; 8398 struct ip6_opt_jumbo jumbo; 8399 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 8400 8401 while (off < end) { 8402 if (!pf_pull_hdr(m, off, &opt.ip6o_type, sizeof(opt.ip6o_type), 8403 NULL, reason, AF_INET6)) { 8404 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt type")); 8405 return (PF_DROP); 8406 } 8407 if (opt.ip6o_type == IP6OPT_PAD1) { 8408 off++; 8409 continue; 8410 } 8411 if (!pf_pull_hdr(m, off, &opt, sizeof(opt), NULL, reason, 8412 AF_INET6)) { 8413 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt")); 8414 return (PF_DROP); 8415 } 8416 if (off + sizeof(opt) + opt.ip6o_len > end) { 8417 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 long opt")); 8418 REASON_SET(reason, PFRES_IPOPTIONS); 8419 return (PF_DROP); 8420 } 8421 switch (opt.ip6o_type) { 8422 case IP6OPT_JUMBO: 8423 if (*jumbolen != 0) { 8424 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple jumbo")); 8425 REASON_SET(reason, PFRES_IPOPTIONS); 8426 return (PF_DROP); 8427 } 8428 if (ntohs(h->ip6_plen) != 0) { 8429 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 bad jumbo plen")); 8430 REASON_SET(reason, PFRES_IPOPTIONS); 8431 return (PF_DROP); 8432 } 8433 if (!pf_pull_hdr(m, off, &jumbo, sizeof(jumbo), NULL, 8434 reason, AF_INET6)) { 8435 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbo")); 8436 return (PF_DROP); 8437 } 8438 memcpy(jumbolen, jumbo.ip6oj_jumbo_len, 8439 sizeof(*jumbolen)); 8440 *jumbolen = ntohl(*jumbolen); 8441 if (*jumbolen < IPV6_MAXPACKET) { 8442 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbolen")); 8443 REASON_SET(reason, PFRES_IPOPTIONS); 8444 return (PF_DROP); 8445 } 8446 break; 8447 default: 8448 break; 8449 } 8450 off += sizeof(opt) + opt.ip6o_len; 8451 } 8452 8453 return (PF_PASS); 8454 } 8455 8456 int 8457 pf_walk_header6(struct mbuf *m, struct ip6_hdr *h, int *off, int *extoff, 8458 int *fragoff, uint8_t *nxt, uint32_t *jumbolen, u_short *reason) 8459 { 8460 struct ip6_frag frag; 8461 struct ip6_ext ext; 8462 struct ip6_rthdr rthdr; 8463 int rthdr_cnt = 0; 8464 8465 *off += sizeof(struct ip6_hdr); 8466 *extoff = *fragoff = 0; 8467 *nxt = h->ip6_nxt; 8468 *jumbolen = 0; 8469 for (;;) { 8470 switch (*nxt) { 8471 case IPPROTO_FRAGMENT: 8472 if (*fragoff != 0) { 8473 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple fragment")); 8474 REASON_SET(reason, PFRES_FRAG); 8475 return (PF_DROP); 8476 } 8477 /* jumbo payload packets cannot be fragmented */ 8478 if (*jumbolen != 0) { 8479 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 fragmented jumbo")); 8480 REASON_SET(reason, PFRES_FRAG); 8481 return (PF_DROP); 8482 } 8483 if (!pf_pull_hdr(m, *off, &frag, sizeof(frag), NULL, 8484 reason, AF_INET6)) { 8485 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short fragment")); 8486 return (PF_DROP); 8487 } 8488 *fragoff = *off; 8489 /* stop walking over non initial fragments */ 8490 if ((frag.ip6f_offlg & IP6F_OFF_MASK) != 0) 8491 return (PF_PASS); 8492 *off += sizeof(frag); 8493 *nxt = frag.ip6f_nxt; 8494 break; 8495 case IPPROTO_ROUTING: 8496 if (rthdr_cnt++) { 8497 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple rthdr")); 8498 REASON_SET(reason, PFRES_IPOPTIONS); 8499 return (PF_DROP); 8500 } 8501 if (!pf_pull_hdr(m, *off, &rthdr, sizeof(rthdr), NULL, 8502 reason, AF_INET6)) { 8503 /* fragments may be short */ 8504 if (*fragoff != 0) { 8505 *off = *fragoff; 8506 *nxt = IPPROTO_FRAGMENT; 8507 return (PF_PASS); 8508 } 8509 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short rthdr")); 8510 return (PF_DROP); 8511 } 8512 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 8513 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 rthdr0")); 8514 REASON_SET(reason, PFRES_IPOPTIONS); 8515 return (PF_DROP); 8516 } 8517 /* FALLTHROUGH */ 8518 case IPPROTO_AH: 8519 case IPPROTO_HOPOPTS: 8520 case IPPROTO_DSTOPTS: 8521 if (!pf_pull_hdr(m, *off, &ext, sizeof(ext), NULL, 8522 reason, AF_INET6)) { 8523 /* fragments may be short */ 8524 if (*fragoff != 0) { 8525 *off = *fragoff; 8526 *nxt = IPPROTO_FRAGMENT; 8527 return (PF_PASS); 8528 } 8529 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short exthdr")); 8530 return (PF_DROP); 8531 } 8532 /* reassembly needs the ext header before the frag */ 8533 if (*fragoff == 0) 8534 *extoff = *off; 8535 if (*nxt == IPPROTO_HOPOPTS && *fragoff == 0) { 8536 if (pf_walk_option6(m, *off + sizeof(ext), 8537 *off + (ext.ip6e_len + 1) * 8, jumbolen, 8538 reason) != PF_PASS) 8539 return (PF_DROP); 8540 if (ntohs(h->ip6_plen) == 0 && *jumbolen != 0) { 8541 DPFPRINTF(PF_DEBUG_MISC, 8542 ("IPv6 missing jumbo")); 8543 REASON_SET(reason, PFRES_IPOPTIONS); 8544 return (PF_DROP); 8545 } 8546 } 8547 if (*nxt == IPPROTO_AH) 8548 *off += (ext.ip6e_len + 2) * 4; 8549 else 8550 *off += (ext.ip6e_len + 1) * 8; 8551 *nxt = ext.ip6e_nxt; 8552 break; 8553 case IPPROTO_TCP: 8554 case IPPROTO_UDP: 8555 case IPPROTO_SCTP: 8556 case IPPROTO_ICMPV6: 8557 /* fragments may be short, ignore inner header then */ 8558 if (*fragoff != 0 && ntohs(h->ip6_plen) < *off + 8559 (*nxt == IPPROTO_TCP ? sizeof(struct tcphdr) : 8560 *nxt == IPPROTO_UDP ? sizeof(struct udphdr) : 8561 *nxt == IPPROTO_SCTP ? sizeof(struct sctphdr) : 8562 sizeof(struct icmp6_hdr))) { 8563 *off = *fragoff; 8564 *nxt = IPPROTO_FRAGMENT; 8565 } 8566 /* FALLTHROUGH */ 8567 default: 8568 return (PF_PASS); 8569 } 8570 } 8571 } 8572 #endif 8573 8574 static void 8575 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m) 8576 { 8577 memset(pd, 0, sizeof(*pd)); 8578 pd->pf_mtag = pf_find_mtag(m); 8579 pd->m = m; 8580 } 8581 8582 static int 8583 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0, 8584 u_short *action, u_short *reason, struct pfi_kkif *kif, 8585 struct pf_rule_actions *default_actions) 8586 { 8587 pd->af = af; 8588 pd->dir = dir; 8589 pd->kif = kif; 8590 pd->m = *m0; 8591 pd->sidx = (dir == PF_IN) ? 0 : 1; 8592 pd->didx = (dir == PF_IN) ? 1 : 0; 8593 8594 TAILQ_INIT(&pd->sctp_multihome_jobs); 8595 if (default_actions != NULL) 8596 memcpy(&pd->act, default_actions, sizeof(pd->act)); 8597 8598 if (pd->pf_mtag && pd->pf_mtag->dnpipe) { 8599 pd->act.dnpipe = pd->pf_mtag->dnpipe; 8600 pd->act.flags = pd->pf_mtag->dnflags; 8601 } 8602 8603 switch (af) { 8604 #ifdef INET 8605 case AF_INET: { 8606 struct ip *h; 8607 8608 if (__predict_false((*m0)->m_len < sizeof(struct ip)) && 8609 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) { 8610 DPFPRINTF(PF_DEBUG_URGENT, 8611 ("pf_test: m_len < sizeof(struct ip), pullup failed\n")); 8612 *action = PF_DROP; 8613 REASON_SET(reason, PFRES_SHORT); 8614 return (-1); 8615 } 8616 8617 if (pf_normalize_ip(m0, reason, pd) != PF_PASS) { 8618 /* We do IP header normalization and packet reassembly here */ 8619 *action = PF_DROP; 8620 return (-1); 8621 } 8622 pd->m = *m0; 8623 8624 h = mtod(pd->m, struct ip *); 8625 pd->off = h->ip_hl << 2; 8626 if (pd->off < (int)sizeof(*h)) { 8627 *action = PF_DROP; 8628 REASON_SET(reason, PFRES_SHORT); 8629 return (-1); 8630 } 8631 pd->src = (struct pf_addr *)&h->ip_src; 8632 pd->dst = (struct pf_addr *)&h->ip_dst; 8633 pd->ip_sum = &h->ip_sum; 8634 pd->proto_sum = NULL; 8635 pd->virtual_proto = pd->proto = h->ip_p; 8636 pd->tos = h->ip_tos; 8637 pd->ttl = h->ip_ttl; 8638 pd->tot_len = ntohs(h->ip_len); 8639 pd->act.rtableid = -1; 8640 8641 if (h->ip_hl > 5) /* has options */ 8642 pd->badopts++; 8643 8644 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) 8645 pd->virtual_proto = PF_VPROTO_FRAGMENT; 8646 8647 break; 8648 } 8649 #endif 8650 #ifdef INET6 8651 case AF_INET6: { 8652 struct ip6_hdr *h; 8653 int fragoff; 8654 uint32_t jumbolen; 8655 uint8_t nxt; 8656 8657 if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) && 8658 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) { 8659 DPFPRINTF(PF_DEBUG_URGENT, 8660 ("pf_test6: m_len < sizeof(struct ip6_hdr)" 8661 ", pullup failed\n")); 8662 *action = PF_DROP; 8663 REASON_SET(reason, PFRES_SHORT); 8664 return (-1); 8665 } 8666 8667 h = mtod(pd->m, struct ip6_hdr *); 8668 pd->off = 0; 8669 if (pf_walk_header6(pd->m, h, &pd->off, &pd->extoff, &fragoff, &nxt, 8670 &jumbolen, reason) != PF_PASS) { 8671 *action = PF_DROP; 8672 return (-1); 8673 } 8674 8675 h = mtod(pd->m, struct ip6_hdr *); 8676 pd->src = (struct pf_addr *)&h->ip6_src; 8677 pd->dst = (struct pf_addr *)&h->ip6_dst; 8678 pd->ip_sum = NULL; 8679 pd->proto_sum = NULL; 8680 pd->tos = IPV6_DSCP(h); 8681 pd->ttl = h->ip6_hlim; 8682 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 8683 pd->virtual_proto = pd->proto = h->ip6_nxt; 8684 pd->act.rtableid = -1; 8685 8686 if (fragoff != 0) 8687 pd->virtual_proto = PF_VPROTO_FRAGMENT; 8688 8689 /* 8690 * we do not support jumbogram. if we keep going, zero ip6_plen 8691 * will do something bad, so drop the packet for now. 8692 */ 8693 if (htons(h->ip6_plen) == 0) { 8694 *action = PF_DROP; 8695 return (-1); 8696 } 8697 8698 /* We do IP header normalization and packet reassembly here */ 8699 if (pf_normalize_ip6(m0, fragoff, reason, pd) != 8700 PF_PASS) { 8701 *action = PF_DROP; 8702 return (-1); 8703 } 8704 pd->m = *m0; 8705 if (pd->m == NULL) { 8706 /* packet sits in reassembly queue, no error */ 8707 *action = PF_PASS; 8708 return (-1); 8709 } 8710 8711 /* 8712 * Reassembly may have changed the next protocol from fragment 8713 * to something else, so update. 8714 */ 8715 h = mtod(pd->m, struct ip6_hdr *); 8716 pd->virtual_proto = pd->proto = h->ip6_nxt; 8717 pd->off = 0; 8718 8719 if (pf_walk_header6(pd->m, h, &pd->off, &pd->extoff, &fragoff, &nxt, 8720 &jumbolen, reason) != PF_PASS) { 8721 *action = PF_DROP; 8722 return (-1); 8723 } 8724 8725 if (fragoff != 0) 8726 pd->virtual_proto = PF_VPROTO_FRAGMENT; 8727 8728 break; 8729 } 8730 #endif 8731 default: 8732 panic("pf_setup_pdesc called with illegal af %u", af); 8733 } 8734 8735 switch (pd->virtual_proto) { 8736 case IPPROTO_TCP: { 8737 struct tcphdr *th = &pd->hdr.tcp; 8738 8739 if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th), action, 8740 reason, af)) { 8741 *action = PF_DROP; 8742 REASON_SET(reason, PFRES_SHORT); 8743 return (-1); 8744 } 8745 pd->hdrlen = sizeof(*th); 8746 pd->p_len = pd->tot_len - pd->off - (th->th_off << 2); 8747 pd->sport = &th->th_sport; 8748 pd->dport = &th->th_dport; 8749 break; 8750 } 8751 case IPPROTO_UDP: { 8752 struct udphdr *uh = &pd->hdr.udp; 8753 8754 if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh), action, 8755 reason, af)) { 8756 *action = PF_DROP; 8757 REASON_SET(reason, PFRES_SHORT); 8758 return (-1); 8759 } 8760 pd->hdrlen = sizeof(*uh); 8761 if (uh->uh_dport == 0 || 8762 ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off || 8763 ntohs(uh->uh_ulen) < sizeof(struct udphdr)) { 8764 *action = PF_DROP; 8765 REASON_SET(reason, PFRES_SHORT); 8766 return (-1); 8767 } 8768 pd->sport = &uh->uh_sport; 8769 pd->dport = &uh->uh_dport; 8770 break; 8771 } 8772 case IPPROTO_SCTP: { 8773 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp), 8774 action, reason, af)) { 8775 *action = PF_DROP; 8776 REASON_SET(reason, PFRES_SHORT); 8777 return (-1); 8778 } 8779 pd->hdrlen = sizeof(pd->hdr.sctp); 8780 pd->p_len = pd->tot_len - pd->off; 8781 8782 pd->sport = &pd->hdr.sctp.src_port; 8783 pd->dport = &pd->hdr.sctp.dest_port; 8784 if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) { 8785 *action = PF_DROP; 8786 REASON_SET(reason, PFRES_SHORT); 8787 return (-1); 8788 } 8789 if (pf_scan_sctp(pd) != PF_PASS) { 8790 *action = PF_DROP; 8791 REASON_SET(reason, PFRES_SHORT); 8792 return (-1); 8793 } 8794 break; 8795 } 8796 case IPPROTO_ICMP: { 8797 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN, 8798 action, reason, af)) { 8799 *action = PF_DROP; 8800 REASON_SET(reason, PFRES_SHORT); 8801 return (-1); 8802 } 8803 pd->hdrlen = ICMP_MINLEN; 8804 break; 8805 } 8806 #ifdef INET6 8807 case IPPROTO_ICMPV6: { 8808 size_t icmp_hlen = sizeof(struct icmp6_hdr); 8809 8810 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen, 8811 action, reason, af)) { 8812 *action = PF_DROP; 8813 REASON_SET(reason, PFRES_SHORT); 8814 return (-1); 8815 } 8816 /* ICMP headers we look further into to match state */ 8817 switch (pd->hdr.icmp6.icmp6_type) { 8818 case MLD_LISTENER_QUERY: 8819 case MLD_LISTENER_REPORT: 8820 icmp_hlen = sizeof(struct mld_hdr); 8821 break; 8822 case ND_NEIGHBOR_SOLICIT: 8823 case ND_NEIGHBOR_ADVERT: 8824 icmp_hlen = sizeof(struct nd_neighbor_solicit); 8825 break; 8826 } 8827 if (icmp_hlen > sizeof(struct icmp6_hdr) && 8828 !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen, 8829 action, reason, af)) { 8830 *action = PF_DROP; 8831 REASON_SET(reason, PFRES_SHORT); 8832 return (-1); 8833 } 8834 pd->hdrlen = icmp_hlen; 8835 break; 8836 } 8837 #endif 8838 } 8839 return (0); 8840 } 8841 8842 static void 8843 pf_counters_inc(int action, struct pf_pdesc *pd, 8844 struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a) 8845 { 8846 struct pf_krule *tr; 8847 int dir = pd->dir; 8848 int dirndx; 8849 8850 pf_counter_u64_critical_enter(); 8851 pf_counter_u64_add_protected( 8852 &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 8853 pd->tot_len); 8854 pf_counter_u64_add_protected( 8855 &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 8856 1); 8857 8858 if (action == PF_PASS || r->action == PF_DROP) { 8859 dirndx = (dir == PF_OUT); 8860 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 8861 pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len); 8862 pf_update_timestamp(r); 8863 8864 if (a != NULL) { 8865 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 8866 pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len); 8867 } 8868 if (s != NULL) { 8869 struct pf_krule_item *ri; 8870 8871 if (s->nat_rule != NULL) { 8872 pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx], 8873 1); 8874 pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx], 8875 pd->tot_len); 8876 } 8877 if (s->src_node != NULL) { 8878 counter_u64_add(s->src_node->packets[dirndx], 8879 1); 8880 counter_u64_add(s->src_node->bytes[dirndx], 8881 pd->tot_len); 8882 } 8883 if (s->nat_src_node != NULL) { 8884 counter_u64_add(s->nat_src_node->packets[dirndx], 8885 1); 8886 counter_u64_add(s->nat_src_node->bytes[dirndx], 8887 pd->tot_len); 8888 } 8889 dirndx = (dir == s->direction) ? 0 : 1; 8890 s->packets[dirndx]++; 8891 s->bytes[dirndx] += pd->tot_len; 8892 8893 SLIST_FOREACH(ri, &s->match_rules, entry) { 8894 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 8895 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len); 8896 } 8897 } 8898 8899 tr = r; 8900 if (s != NULL && s->nat_rule != NULL && 8901 r == &V_pf_default_rule) 8902 tr = s->nat_rule; 8903 8904 if (tr->src.addr.type == PF_ADDR_TABLE) 8905 pfr_update_stats(tr->src.addr.p.tbl, 8906 (s == NULL) ? pd->src : 8907 &s->key[(s->direction == PF_IN)]-> 8908 addr[(s->direction == PF_OUT)], 8909 pd->af, pd->tot_len, dir == PF_OUT, 8910 r->action == PF_PASS, tr->src.neg); 8911 if (tr->dst.addr.type == PF_ADDR_TABLE) 8912 pfr_update_stats(tr->dst.addr.p.tbl, 8913 (s == NULL) ? pd->dst : 8914 &s->key[(s->direction == PF_IN)]-> 8915 addr[(s->direction == PF_IN)], 8916 pd->af, pd->tot_len, dir == PF_OUT, 8917 r->action == PF_PASS, tr->dst.neg); 8918 } 8919 pf_counter_u64_critical_exit(); 8920 } 8921 8922 #if defined(INET) || defined(INET6) 8923 int 8924 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 8925 struct inpcb *inp, struct pf_rule_actions *default_actions) 8926 { 8927 struct pfi_kkif *kif; 8928 u_short action, reason = 0; 8929 struct m_tag *mtag; 8930 struct pf_krule *a = NULL, *r = &V_pf_default_rule; 8931 struct pf_kstate *s = NULL; 8932 struct pf_kruleset *ruleset = NULL; 8933 struct pf_pdesc pd; 8934 int use_2nd_queue = 0; 8935 uint16_t tag; 8936 uint8_t rt; 8937 8938 PF_RULES_RLOCK_TRACKER; 8939 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 8940 M_ASSERTPKTHDR(*m0); 8941 8942 if (!V_pf_status.running) 8943 return (PF_PASS); 8944 8945 PF_RULES_RLOCK(); 8946 8947 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8948 8949 if (__predict_false(kif == NULL)) { 8950 DPFPRINTF(PF_DEBUG_URGENT, 8951 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 8952 PF_RULES_RUNLOCK(); 8953 return (PF_DROP); 8954 } 8955 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 8956 PF_RULES_RUNLOCK(); 8957 return (PF_PASS); 8958 } 8959 8960 if ((*m0)->m_flags & M_SKIP_FIREWALL) { 8961 PF_RULES_RUNLOCK(); 8962 return (PF_PASS); 8963 } 8964 8965 #ifdef INET6 8966 /* 8967 * If we end up changing IP addresses (e.g. binat) the stack may get 8968 * confused and fail to send the icmp6 packet too big error. Just send 8969 * it here, before we do any NAT. 8970 */ 8971 if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD && 8972 IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) { 8973 PF_RULES_RUNLOCK(); 8974 icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp)); 8975 *m0 = NULL; 8976 return (PF_DROP); 8977 } 8978 #endif 8979 8980 if (__predict_false(! M_WRITABLE(*m0))) { 8981 *m0 = m_unshare(*m0, M_NOWAIT); 8982 if (*m0 == NULL) 8983 return (PF_DROP); 8984 } 8985 8986 pf_init_pdesc(&pd, *m0); 8987 8988 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 8989 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 8990 8991 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 8992 pd.pf_mtag->if_idxgen); 8993 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 8994 PF_RULES_RUNLOCK(); 8995 m_freem(*m0); 8996 *m0 = NULL; 8997 return (PF_PASS); 8998 } 8999 PF_RULES_RUNLOCK(); 9000 (ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL); 9001 *m0 = NULL; 9002 return (PF_PASS); 9003 } 9004 9005 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 9006 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 9007 /* Dummynet re-injects packets after they've 9008 * completed their delay. We've already 9009 * processed them, so pass unconditionally. */ 9010 9011 /* But only once. We may see the packet multiple times (e.g. 9012 * PFIL_IN/PFIL_OUT). */ 9013 pf_dummynet_flag_remove(pd.m, pd.pf_mtag); 9014 PF_RULES_RUNLOCK(); 9015 9016 return (PF_PASS); 9017 } 9018 9019 if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason, 9020 kif, default_actions) == -1) { 9021 if (action != PF_PASS) 9022 pd.act.log |= PF_LOG_FORCE; 9023 goto done; 9024 } 9025 9026 if (__predict_false(ip_divert_ptr != NULL) && 9027 ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) { 9028 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1); 9029 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) || 9030 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) { 9031 if (pd.pf_mtag == NULL && 9032 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 9033 action = PF_DROP; 9034 goto done; 9035 } 9036 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED; 9037 } 9038 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) { 9039 pd.m->m_flags |= M_FASTFWD_OURS; 9040 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 9041 } 9042 m_tag_delete(pd.m, mtag); 9043 9044 mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL); 9045 if (mtag != NULL) 9046 m_tag_delete(pd.m, mtag); 9047 } 9048 9049 switch (pd.virtual_proto) { 9050 case PF_VPROTO_FRAGMENT: 9051 /* 9052 * handle fragments that aren't reassembled by 9053 * normalization 9054 */ 9055 if (kif == NULL || r == NULL) /* pflog */ 9056 action = PF_DROP; 9057 else 9058 action = pf_test_rule(&r, &s, &pd, &a, 9059 &ruleset, inp); 9060 if (action != PF_PASS) 9061 REASON_SET(&reason, PFRES_FRAG); 9062 break; 9063 9064 case IPPROTO_TCP: { 9065 /* Respond to SYN with a syncookie. */ 9066 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 9067 pd.dir == PF_IN && pf_synflood_check(&pd)) { 9068 pf_syncookie_send(&pd); 9069 action = PF_DROP; 9070 break; 9071 } 9072 9073 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 9074 use_2nd_queue = 1; 9075 action = pf_normalize_tcp(&pd); 9076 if (action == PF_DROP) 9077 goto done; 9078 action = pf_test_state_tcp(&s, &pd, &reason); 9079 if (action == PF_PASS) { 9080 if (V_pfsync_update_state_ptr != NULL) 9081 V_pfsync_update_state_ptr(s); 9082 r = s->rule; 9083 a = s->anchor; 9084 } else if (s == NULL) { 9085 /* Validate remote SYN|ACK, re-create original SYN if 9086 * valid. */ 9087 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 9088 TH_ACK && pf_syncookie_validate(&pd) && 9089 pd.dir == PF_IN) { 9090 struct mbuf *msyn; 9091 9092 msyn = pf_syncookie_recreate_syn(&pd); 9093 if (msyn == NULL) { 9094 action = PF_DROP; 9095 break; 9096 } 9097 9098 action = pf_test(af, dir, pflags, ifp, &msyn, inp, 9099 &pd.act); 9100 m_freem(msyn); 9101 if (action != PF_PASS) 9102 break; 9103 9104 action = pf_test_state_tcp(&s, &pd, &reason); 9105 if (action != PF_PASS || s == NULL) { 9106 action = PF_DROP; 9107 break; 9108 } 9109 9110 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 9111 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 9112 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 9113 action = pf_synproxy(&pd, &s, &reason); 9114 break; 9115 } else { 9116 action = pf_test_rule(&r, &s, &pd, 9117 &a, &ruleset, inp); 9118 } 9119 } 9120 break; 9121 } 9122 9123 case IPPROTO_UDP: { 9124 action = pf_test_state_udp(&s, &pd); 9125 if (action == PF_PASS) { 9126 if (V_pfsync_update_state_ptr != NULL) 9127 V_pfsync_update_state_ptr(s); 9128 r = s->rule; 9129 a = s->anchor; 9130 } else if (s == NULL) 9131 action = pf_test_rule(&r, &s, &pd, 9132 &a, &ruleset, inp); 9133 break; 9134 } 9135 9136 case IPPROTO_SCTP: { 9137 action = pf_normalize_sctp(&pd); 9138 if (action == PF_DROP) 9139 goto done; 9140 action = pf_test_state_sctp(&s, &pd, &reason); 9141 if (action == PF_PASS) { 9142 if (V_pfsync_update_state_ptr != NULL) 9143 V_pfsync_update_state_ptr(s); 9144 r = s->rule; 9145 a = s->anchor; 9146 } else if (s == NULL) { 9147 action = pf_test_rule(&r, &s, 9148 &pd, &a, &ruleset, inp); 9149 } 9150 break; 9151 } 9152 9153 case IPPROTO_ICMP: { 9154 if (af != AF_INET) { 9155 action = PF_DROP; 9156 REASON_SET(&reason, PFRES_NORM); 9157 DPFPRINTF(PF_DEBUG_MISC, 9158 ("dropping IPv6 packet with ICMPv4 payload")); 9159 goto done; 9160 } 9161 action = pf_test_state_icmp(&s, &pd, &reason); 9162 if (action == PF_PASS) { 9163 if (V_pfsync_update_state_ptr != NULL) 9164 V_pfsync_update_state_ptr(s); 9165 r = s->rule; 9166 a = s->anchor; 9167 } else if (s == NULL) 9168 action = pf_test_rule(&r, &s, &pd, 9169 &a, &ruleset, inp); 9170 break; 9171 } 9172 9173 case IPPROTO_ICMPV6: { 9174 if (af != AF_INET6) { 9175 action = PF_DROP; 9176 REASON_SET(&reason, PFRES_NORM); 9177 DPFPRINTF(PF_DEBUG_MISC, 9178 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 9179 goto done; 9180 } 9181 action = pf_test_state_icmp(&s, &pd, &reason); 9182 if (action == PF_PASS) { 9183 if (V_pfsync_update_state_ptr != NULL) 9184 V_pfsync_update_state_ptr(s); 9185 r = s->rule; 9186 a = s->anchor; 9187 } else if (s == NULL) 9188 action = pf_test_rule(&r, &s, &pd, 9189 &a, &ruleset, inp); 9190 break; 9191 } 9192 9193 default: 9194 action = pf_test_state_other(&s, &pd); 9195 if (action == PF_PASS) { 9196 if (V_pfsync_update_state_ptr != NULL) 9197 V_pfsync_update_state_ptr(s); 9198 r = s->rule; 9199 a = s->anchor; 9200 } else if (s == NULL) 9201 action = pf_test_rule(&r, &s, &pd, 9202 &a, &ruleset, inp); 9203 break; 9204 } 9205 9206 done: 9207 PF_RULES_RUNLOCK(); 9208 9209 if (pd.m == NULL) 9210 goto eat_pkt; 9211 9212 if (action == PF_PASS && pd.badopts && 9213 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 9214 action = PF_DROP; 9215 REASON_SET(&reason, PFRES_IPOPTIONS); 9216 pd.act.log = PF_LOG_FORCE; 9217 DPFPRINTF(PF_DEBUG_MISC, 9218 ("pf: dropping packet with dangerous headers\n")); 9219 } 9220 9221 if (s) { 9222 uint8_t log = pd.act.log; 9223 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 9224 pd.act.log |= log; 9225 tag = s->tag; 9226 rt = s->rt; 9227 } else { 9228 tag = r->tag; 9229 rt = r->rt; 9230 } 9231 9232 if (tag > 0 && pf_tag_packet(&pd, tag)) { 9233 action = PF_DROP; 9234 REASON_SET(&reason, PFRES_MEMORY); 9235 } 9236 9237 pf_scrub(&pd); 9238 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 9239 pf_normalize_mss(&pd); 9240 9241 if (pd.act.rtableid >= 0) 9242 M_SETFIB(pd.m, pd.act.rtableid); 9243 9244 if (pd.act.flags & PFSTATE_SETPRIO) { 9245 if (pd.tos & IPTOS_LOWDELAY) 9246 use_2nd_queue = 1; 9247 if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) { 9248 action = PF_DROP; 9249 REASON_SET(&reason, PFRES_MEMORY); 9250 pd.act.log = PF_LOG_FORCE; 9251 DPFPRINTF(PF_DEBUG_MISC, 9252 ("pf: failed to allocate 802.1q mtag\n")); 9253 } 9254 } 9255 9256 #ifdef ALTQ 9257 if (action == PF_PASS && pd.act.qid) { 9258 if (pd.pf_mtag == NULL && 9259 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 9260 action = PF_DROP; 9261 REASON_SET(&reason, PFRES_MEMORY); 9262 } else { 9263 if (s != NULL) 9264 pd.pf_mtag->qid_hash = pf_state_hash(s); 9265 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY)) 9266 pd.pf_mtag->qid = pd.act.pqid; 9267 else 9268 pd.pf_mtag->qid = pd.act.qid; 9269 /* Add hints for ecn. */ 9270 pd.pf_mtag->hdr = mtod(pd.m, void *); 9271 } 9272 } 9273 #endif /* ALTQ */ 9274 9275 /* 9276 * connections redirected to loopback should not match sockets 9277 * bound specifically to loopback due to security implications, 9278 * see tcp_input() and in_pcblookup_listen(). 9279 */ 9280 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 9281 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL && 9282 (s->nat_rule->action == PF_RDR || 9283 s->nat_rule->action == PF_BINAT) && 9284 pf_is_loopback(af, pd.dst)) 9285 pd.m->m_flags |= M_SKIP_FIREWALL; 9286 9287 if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) && 9288 action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) { 9289 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0, 9290 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO); 9291 if (mtag != NULL) { 9292 ((struct pf_divert_mtag *)(mtag+1))->port = 9293 ntohs(r->divert.port); 9294 ((struct pf_divert_mtag *)(mtag+1))->idir = 9295 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN : 9296 PF_DIVERT_MTAG_DIR_OUT; 9297 9298 if (s) 9299 PF_STATE_UNLOCK(s); 9300 9301 m_tag_prepend(pd.m, mtag); 9302 if (pd.m->m_flags & M_FASTFWD_OURS) { 9303 if (pd.pf_mtag == NULL && 9304 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 9305 action = PF_DROP; 9306 REASON_SET(&reason, PFRES_MEMORY); 9307 pd.act.log = PF_LOG_FORCE; 9308 DPFPRINTF(PF_DEBUG_MISC, 9309 ("pf: failed to allocate tag\n")); 9310 } else { 9311 pd.pf_mtag->flags |= 9312 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 9313 pd.m->m_flags &= ~M_FASTFWD_OURS; 9314 } 9315 } 9316 ip_divert_ptr(*m0, dir == PF_IN); 9317 *m0 = NULL; 9318 9319 return (action); 9320 } else { 9321 /* XXX: ipfw has the same behaviour! */ 9322 action = PF_DROP; 9323 REASON_SET(&reason, PFRES_MEMORY); 9324 pd.act.log = PF_LOG_FORCE; 9325 DPFPRINTF(PF_DEBUG_MISC, 9326 ("pf: failed to allocate divert tag\n")); 9327 } 9328 } 9329 /* XXX: Anybody working on it?! */ 9330 if (af == AF_INET6 && r->divert.port) 9331 printf("pf: divert(9) is not supported for IPv6\n"); 9332 9333 /* this flag will need revising if the pkt is forwarded */ 9334 if (pd.pf_mtag) 9335 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED; 9336 9337 if (pd.act.log) { 9338 struct pf_krule *lr; 9339 struct pf_krule_item *ri; 9340 9341 if (s != NULL && s->nat_rule != NULL && 9342 s->nat_rule->log & PF_LOG_ALL) 9343 lr = s->nat_rule; 9344 else 9345 lr = r; 9346 9347 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 9348 PFLOG_PACKET(action, reason, lr, a, 9349 ruleset, &pd, (s == NULL)); 9350 if (s) { 9351 SLIST_FOREACH(ri, &s->match_rules, entry) 9352 if (ri->r->log & PF_LOG_ALL) 9353 PFLOG_PACKET(action, 9354 reason, ri->r, a, ruleset, &pd, 0); 9355 } 9356 } 9357 9358 pf_counters_inc(action, &pd, s, r, a); 9359 9360 switch (action) { 9361 case PF_SYNPROXY_DROP: 9362 m_freem(*m0); 9363 case PF_DEFER: 9364 *m0 = NULL; 9365 action = PF_PASS; 9366 break; 9367 case PF_DROP: 9368 m_freem(*m0); 9369 *m0 = NULL; 9370 break; 9371 default: 9372 if (rt) { 9373 switch (af) { 9374 #ifdef INET 9375 case AF_INET: 9376 /* pf_route() returns unlocked. */ 9377 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp); 9378 break; 9379 #endif 9380 #ifdef INET6 9381 case AF_INET6: 9382 /* pf_route6() returns unlocked. */ 9383 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp); 9384 break; 9385 #endif 9386 } 9387 goto out; 9388 } 9389 if (pf_dummynet(&pd, s, r, m0) != 0) { 9390 action = PF_DROP; 9391 REASON_SET(&reason, PFRES_MEMORY); 9392 } 9393 break; 9394 } 9395 9396 eat_pkt: 9397 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 9398 9399 if (s && action != PF_DROP) { 9400 if (!s->if_index_in && dir == PF_IN) 9401 s->if_index_in = ifp->if_index; 9402 else if (!s->if_index_out && dir == PF_OUT) 9403 s->if_index_out = ifp->if_index; 9404 } 9405 9406 if (s) 9407 PF_STATE_UNLOCK(s); 9408 9409 #ifdef INET6 9410 /* If reassembled packet passed, create new fragments. */ 9411 if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT && 9412 (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL) 9413 action = pf_refragment6(ifp, m0, mtag, pflags & PFIL_FWD); 9414 #endif 9415 9416 out: 9417 pf_sctp_multihome_delayed(&pd, kif, s, action); 9418 9419 return (action); 9420 } 9421 #endif /* INET || INET6 */ 9422