1 /*- 2 * Copyright (c) 2001 Daniel Hartmeier 3 * Copyright (c) 2002 - 2008 Henning Brauer 4 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * - Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * - Redistributions in binary form must reproduce the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer in the documentation and/or other materials provided 16 * with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 26 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Effort sponsored in part by the Defense Advanced Research Projects 32 * Agency (DARPA) and Air Force Research Laboratory, Air Force 33 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 34 * 35 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_inet.h" 42 #include "opt_inet6.h" 43 #include "opt_bpf.h" 44 #include "opt_pf.h" 45 46 #include <sys/param.h> 47 #include <sys/bus.h> 48 #include <sys/endian.h> 49 #include <sys/hash.h> 50 #include <sys/interrupt.h> 51 #include <sys/kernel.h> 52 #include <sys/kthread.h> 53 #include <sys/limits.h> 54 #include <sys/mbuf.h> 55 #include <sys/md5.h> 56 #include <sys/random.h> 57 #include <sys/refcount.h> 58 #include <sys/socket.h> 59 #include <sys/sysctl.h> 60 #include <sys/taskqueue.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_types.h> 66 #include <net/if_vlan_var.h> 67 #include <net/route.h> 68 #include <net/radix_mpath.h> 69 #include <net/vnet.h> 70 71 #include <net/pfvar.h> 72 #include <net/if_pflog.h> 73 #include <net/if_pfsync.h> 74 75 #include <netinet/in_pcb.h> 76 #include <netinet/in_var.h> 77 #include <netinet/in_fib.h> 78 #include <netinet/ip.h> 79 #include <netinet/ip_fw.h> 80 #include <netinet/ip_icmp.h> 81 #include <netinet/icmp_var.h> 82 #include <netinet/ip_var.h> 83 #include <netinet/tcp.h> 84 #include <netinet/tcp_fsm.h> 85 #include <netinet/tcp_seq.h> 86 #include <netinet/tcp_timer.h> 87 #include <netinet/tcp_var.h> 88 #include <netinet/udp.h> 89 #include <netinet/udp_var.h> 90 91 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 92 93 #ifdef INET6 94 #include <netinet/ip6.h> 95 #include <netinet/icmp6.h> 96 #include <netinet6/nd6.h> 97 #include <netinet6/ip6_var.h> 98 #include <netinet6/in6_pcb.h> 99 #include <netinet6/in6_fib.h> 100 #include <netinet6/scope6_var.h> 101 #endif /* INET6 */ 102 103 #include <machine/in_cksum.h> 104 #include <security/mac/mac_framework.h> 105 106 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 107 108 /* 109 * Global variables 110 */ 111 112 /* state tables */ 113 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 114 VNET_DEFINE(struct pf_palist, pf_pabuf); 115 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 116 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 117 VNET_DEFINE(struct pf_kstatus, pf_status); 118 119 VNET_DEFINE(u_int32_t, ticket_altqs_active); 120 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 121 VNET_DEFINE(int, altqs_inactive_open); 122 VNET_DEFINE(u_int32_t, ticket_pabuf); 123 124 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 125 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 126 VNET_DEFINE(u_char, pf_tcp_secret[16]); 127 #define V_pf_tcp_secret VNET(pf_tcp_secret) 128 VNET_DEFINE(int, pf_tcp_secret_init); 129 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 130 VNET_DEFINE(int, pf_tcp_iss_off); 131 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 132 VNET_DECLARE(int, pf_vnet_active); 133 #define V_pf_vnet_active VNET(pf_vnet_active) 134 135 /* 136 * Queue for pf_intr() sends. 137 */ 138 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 139 struct pf_send_entry { 140 STAILQ_ENTRY(pf_send_entry) pfse_next; 141 struct mbuf *pfse_m; 142 enum { 143 PFSE_IP, 144 PFSE_IP6, 145 PFSE_ICMP, 146 PFSE_ICMP6, 147 } pfse_type; 148 struct { 149 int type; 150 int code; 151 int mtu; 152 } icmpopts; 153 }; 154 155 STAILQ_HEAD(pf_send_head, pf_send_entry); 156 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 157 #define V_pf_sendqueue VNET(pf_sendqueue) 158 159 static struct mtx pf_sendqueue_mtx; 160 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 161 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 162 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 163 164 /* 165 * Queue for pf_overload_task() tasks. 166 */ 167 struct pf_overload_entry { 168 SLIST_ENTRY(pf_overload_entry) next; 169 struct pf_addr addr; 170 sa_family_t af; 171 uint8_t dir; 172 struct pf_rule *rule; 173 }; 174 175 SLIST_HEAD(pf_overload_head, pf_overload_entry); 176 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 177 #define V_pf_overloadqueue VNET(pf_overloadqueue) 178 static VNET_DEFINE(struct task, pf_overloadtask); 179 #define V_pf_overloadtask VNET(pf_overloadtask) 180 181 static struct mtx pf_overloadqueue_mtx; 182 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 183 "pf overload/flush queue", MTX_DEF); 184 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 185 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 186 187 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 188 struct mtx pf_unlnkdrules_mtx; 189 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 190 MTX_DEF); 191 192 static VNET_DEFINE(uma_zone_t, pf_sources_z); 193 #define V_pf_sources_z VNET(pf_sources_z) 194 uma_zone_t pf_mtag_z; 195 VNET_DEFINE(uma_zone_t, pf_state_z); 196 VNET_DEFINE(uma_zone_t, pf_state_key_z); 197 198 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 199 #define PFID_CPUBITS 8 200 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 201 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 202 #define PFID_MAXID (~PFID_CPUMASK) 203 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 204 205 static void pf_src_tree_remove_state(struct pf_state *); 206 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 207 u_int32_t); 208 static void pf_add_threshold(struct pf_threshold *); 209 static int pf_check_threshold(struct pf_threshold *); 210 211 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 212 u_int16_t *, u_int16_t *, struct pf_addr *, 213 u_int16_t, u_int8_t, sa_family_t); 214 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 215 struct tcphdr *, struct pf_state_peer *); 216 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 217 struct pf_addr *, struct pf_addr *, u_int16_t, 218 u_int16_t *, u_int16_t *, u_int16_t *, 219 u_int16_t *, u_int8_t, sa_family_t); 220 static void pf_send_tcp(struct mbuf *, 221 const struct pf_rule *, sa_family_t, 222 const struct pf_addr *, const struct pf_addr *, 223 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 224 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 225 u_int16_t, struct ifnet *); 226 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 227 sa_family_t, struct pf_rule *); 228 static void pf_detach_state(struct pf_state *); 229 static int pf_state_key_attach(struct pf_state_key *, 230 struct pf_state_key *, struct pf_state *); 231 static void pf_state_key_detach(struct pf_state *, int); 232 static int pf_state_key_ctor(void *, int, void *, int); 233 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 234 static int pf_test_rule(struct pf_rule **, struct pf_state **, 235 int, struct pfi_kif *, struct mbuf *, int, 236 struct pf_pdesc *, struct pf_rule **, 237 struct pf_ruleset **, struct inpcb *); 238 static int pf_create_state(struct pf_rule *, struct pf_rule *, 239 struct pf_rule *, struct pf_pdesc *, 240 struct pf_src_node *, struct pf_state_key *, 241 struct pf_state_key *, struct mbuf *, int, 242 u_int16_t, u_int16_t, int *, struct pfi_kif *, 243 struct pf_state **, int, u_int16_t, u_int16_t, 244 int); 245 static int pf_test_fragment(struct pf_rule **, int, 246 struct pfi_kif *, struct mbuf *, void *, 247 struct pf_pdesc *, struct pf_rule **, 248 struct pf_ruleset **); 249 static int pf_tcp_track_full(struct pf_state_peer *, 250 struct pf_state_peer *, struct pf_state **, 251 struct pfi_kif *, struct mbuf *, int, 252 struct pf_pdesc *, u_short *, int *); 253 static int pf_tcp_track_sloppy(struct pf_state_peer *, 254 struct pf_state_peer *, struct pf_state **, 255 struct pf_pdesc *, u_short *); 256 static int pf_test_state_tcp(struct pf_state **, int, 257 struct pfi_kif *, struct mbuf *, int, 258 void *, struct pf_pdesc *, u_short *); 259 static int pf_test_state_udp(struct pf_state **, int, 260 struct pfi_kif *, struct mbuf *, int, 261 void *, struct pf_pdesc *); 262 static int pf_test_state_icmp(struct pf_state **, int, 263 struct pfi_kif *, struct mbuf *, int, 264 void *, struct pf_pdesc *, u_short *); 265 static int pf_test_state_other(struct pf_state **, int, 266 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 267 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 268 sa_family_t); 269 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 270 sa_family_t); 271 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 272 int, u_int16_t); 273 static int pf_check_proto_cksum(struct mbuf *, int, int, 274 u_int8_t, sa_family_t); 275 static void pf_print_state_parts(struct pf_state *, 276 struct pf_state_key *, struct pf_state_key *); 277 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 278 struct pf_addr_wrap *); 279 static struct pf_state *pf_find_state(struct pfi_kif *, 280 struct pf_state_key_cmp *, u_int); 281 static int pf_src_connlimit(struct pf_state **); 282 static void pf_overload_task(void *v, int pending); 283 static int pf_insert_src_node(struct pf_src_node **, 284 struct pf_rule *, struct pf_addr *, sa_family_t); 285 static u_int pf_purge_expired_states(u_int, int); 286 static void pf_purge_unlinked_rules(void); 287 static int pf_mtag_uminit(void *, int, int); 288 static void pf_mtag_free(struct m_tag *); 289 #ifdef INET 290 static void pf_route(struct mbuf **, struct pf_rule *, int, 291 struct ifnet *, struct pf_state *, 292 struct pf_pdesc *); 293 #endif /* INET */ 294 #ifdef INET6 295 static void pf_change_a6(struct pf_addr *, u_int16_t *, 296 struct pf_addr *, u_int8_t); 297 static void pf_route6(struct mbuf **, struct pf_rule *, int, 298 struct ifnet *, struct pf_state *, 299 struct pf_pdesc *); 300 #endif /* INET6 */ 301 302 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 303 304 extern int pf_end_threads; 305 306 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 307 308 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 309 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 310 311 #define STATE_LOOKUP(i, k, d, s, pd) \ 312 do { \ 313 (s) = pf_find_state((i), (k), (d)); \ 314 if ((s) == NULL) \ 315 return (PF_DROP); \ 316 if (PACKET_LOOPED(pd)) \ 317 return (PF_PASS); \ 318 if ((d) == PF_OUT && \ 319 (((s)->rule.ptr->rt == PF_ROUTETO && \ 320 (s)->rule.ptr->direction == PF_OUT) || \ 321 ((s)->rule.ptr->rt == PF_REPLYTO && \ 322 (s)->rule.ptr->direction == PF_IN)) && \ 323 (s)->rt_kif != NULL && \ 324 (s)->rt_kif != (i)) \ 325 return (PF_PASS); \ 326 } while (0) 327 328 #define BOUND_IFACE(r, k) \ 329 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 330 331 #define STATE_INC_COUNTERS(s) \ 332 do { \ 333 counter_u64_add(s->rule.ptr->states_cur, 1); \ 334 counter_u64_add(s->rule.ptr->states_tot, 1); \ 335 if (s->anchor.ptr != NULL) { \ 336 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 337 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 338 } \ 339 if (s->nat_rule.ptr != NULL) { \ 340 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 341 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 342 } \ 343 } while (0) 344 345 #define STATE_DEC_COUNTERS(s) \ 346 do { \ 347 if (s->nat_rule.ptr != NULL) \ 348 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 349 if (s->anchor.ptr != NULL) \ 350 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 351 counter_u64_add(s->rule.ptr->states_cur, -1); \ 352 } while (0) 353 354 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 355 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 356 VNET_DEFINE(struct pf_idhash *, pf_idhash); 357 VNET_DEFINE(struct pf_srchash *, pf_srchash); 358 359 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 360 361 u_long pf_hashmask; 362 u_long pf_srchashmask; 363 static u_long pf_hashsize; 364 static u_long pf_srchashsize; 365 366 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 367 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 368 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 369 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 370 371 VNET_DEFINE(void *, pf_swi_cookie); 372 373 VNET_DEFINE(uint32_t, pf_hashseed); 374 #define V_pf_hashseed VNET(pf_hashseed) 375 376 int 377 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 378 { 379 380 switch (af) { 381 #ifdef INET 382 case AF_INET: 383 if (a->addr32[0] > b->addr32[0]) 384 return (1); 385 if (a->addr32[0] < b->addr32[0]) 386 return (-1); 387 break; 388 #endif /* INET */ 389 #ifdef INET6 390 case AF_INET6: 391 if (a->addr32[3] > b->addr32[3]) 392 return (1); 393 if (a->addr32[3] < b->addr32[3]) 394 return (-1); 395 if (a->addr32[2] > b->addr32[2]) 396 return (1); 397 if (a->addr32[2] < b->addr32[2]) 398 return (-1); 399 if (a->addr32[1] > b->addr32[1]) 400 return (1); 401 if (a->addr32[1] < b->addr32[1]) 402 return (-1); 403 if (a->addr32[0] > b->addr32[0]) 404 return (1); 405 if (a->addr32[0] < b->addr32[0]) 406 return (-1); 407 break; 408 #endif /* INET6 */ 409 default: 410 panic("%s: unknown address family %u", __func__, af); 411 } 412 return (0); 413 } 414 415 static __inline uint32_t 416 pf_hashkey(struct pf_state_key *sk) 417 { 418 uint32_t h; 419 420 h = murmur3_32_hash32((uint32_t *)sk, 421 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 422 V_pf_hashseed); 423 424 return (h & pf_hashmask); 425 } 426 427 static __inline uint32_t 428 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 429 { 430 uint32_t h; 431 432 switch (af) { 433 case AF_INET: 434 h = murmur3_32_hash32((uint32_t *)&addr->v4, 435 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 436 break; 437 case AF_INET6: 438 h = murmur3_32_hash32((uint32_t *)&addr->v6, 439 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 440 break; 441 default: 442 panic("%s: unknown address family %u", __func__, af); 443 } 444 445 return (h & pf_srchashmask); 446 } 447 448 #ifdef ALTQ 449 static int 450 pf_state_hash(struct pf_state *s) 451 { 452 u_int32_t hv = (intptr_t)s / sizeof(*s); 453 454 hv ^= crc32(&s->src, sizeof(s->src)); 455 hv ^= crc32(&s->dst, sizeof(s->dst)); 456 if (hv == 0) 457 hv = 1; 458 return (hv); 459 } 460 #endif 461 462 #ifdef INET6 463 void 464 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 465 { 466 switch (af) { 467 #ifdef INET 468 case AF_INET: 469 dst->addr32[0] = src->addr32[0]; 470 break; 471 #endif /* INET */ 472 case AF_INET6: 473 dst->addr32[0] = src->addr32[0]; 474 dst->addr32[1] = src->addr32[1]; 475 dst->addr32[2] = src->addr32[2]; 476 dst->addr32[3] = src->addr32[3]; 477 break; 478 } 479 } 480 #endif /* INET6 */ 481 482 static void 483 pf_init_threshold(struct pf_threshold *threshold, 484 u_int32_t limit, u_int32_t seconds) 485 { 486 threshold->limit = limit * PF_THRESHOLD_MULT; 487 threshold->seconds = seconds; 488 threshold->count = 0; 489 threshold->last = time_uptime; 490 } 491 492 static void 493 pf_add_threshold(struct pf_threshold *threshold) 494 { 495 u_int32_t t = time_uptime, diff = t - threshold->last; 496 497 if (diff >= threshold->seconds) 498 threshold->count = 0; 499 else 500 threshold->count -= threshold->count * diff / 501 threshold->seconds; 502 threshold->count += PF_THRESHOLD_MULT; 503 threshold->last = t; 504 } 505 506 static int 507 pf_check_threshold(struct pf_threshold *threshold) 508 { 509 return (threshold->count > threshold->limit); 510 } 511 512 static int 513 pf_src_connlimit(struct pf_state **state) 514 { 515 struct pf_overload_entry *pfoe; 516 int bad = 0; 517 518 PF_STATE_LOCK_ASSERT(*state); 519 520 (*state)->src_node->conn++; 521 (*state)->src.tcp_est = 1; 522 pf_add_threshold(&(*state)->src_node->conn_rate); 523 524 if ((*state)->rule.ptr->max_src_conn && 525 (*state)->rule.ptr->max_src_conn < 526 (*state)->src_node->conn) { 527 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 528 bad++; 529 } 530 531 if ((*state)->rule.ptr->max_src_conn_rate.limit && 532 pf_check_threshold(&(*state)->src_node->conn_rate)) { 533 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 534 bad++; 535 } 536 537 if (!bad) 538 return (0); 539 540 /* Kill this state. */ 541 (*state)->timeout = PFTM_PURGE; 542 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 543 544 if ((*state)->rule.ptr->overload_tbl == NULL) 545 return (1); 546 547 /* Schedule overloading and flushing task. */ 548 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 549 if (pfoe == NULL) 550 return (1); /* too bad :( */ 551 552 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 553 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 554 pfoe->rule = (*state)->rule.ptr; 555 pfoe->dir = (*state)->direction; 556 PF_OVERLOADQ_LOCK(); 557 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 558 PF_OVERLOADQ_UNLOCK(); 559 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 560 561 return (1); 562 } 563 564 static void 565 pf_overload_task(void *v, int pending) 566 { 567 struct pf_overload_head queue; 568 struct pfr_addr p; 569 struct pf_overload_entry *pfoe, *pfoe1; 570 uint32_t killed = 0; 571 572 CURVNET_SET((struct vnet *)v); 573 574 PF_OVERLOADQ_LOCK(); 575 queue = V_pf_overloadqueue; 576 SLIST_INIT(&V_pf_overloadqueue); 577 PF_OVERLOADQ_UNLOCK(); 578 579 bzero(&p, sizeof(p)); 580 SLIST_FOREACH(pfoe, &queue, next) { 581 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 582 if (V_pf_status.debug >= PF_DEBUG_MISC) { 583 printf("%s: blocking address ", __func__); 584 pf_print_host(&pfoe->addr, 0, pfoe->af); 585 printf("\n"); 586 } 587 588 p.pfra_af = pfoe->af; 589 switch (pfoe->af) { 590 #ifdef INET 591 case AF_INET: 592 p.pfra_net = 32; 593 p.pfra_ip4addr = pfoe->addr.v4; 594 break; 595 #endif 596 #ifdef INET6 597 case AF_INET6: 598 p.pfra_net = 128; 599 p.pfra_ip6addr = pfoe->addr.v6; 600 break; 601 #endif 602 } 603 604 PF_RULES_WLOCK(); 605 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 606 PF_RULES_WUNLOCK(); 607 } 608 609 /* 610 * Remove those entries, that don't need flushing. 611 */ 612 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 613 if (pfoe->rule->flush == 0) { 614 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 615 free(pfoe, M_PFTEMP); 616 } else 617 counter_u64_add( 618 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 619 620 /* If nothing to flush, return. */ 621 if (SLIST_EMPTY(&queue)) { 622 CURVNET_RESTORE(); 623 return; 624 } 625 626 for (int i = 0; i <= pf_hashmask; i++) { 627 struct pf_idhash *ih = &V_pf_idhash[i]; 628 struct pf_state_key *sk; 629 struct pf_state *s; 630 631 PF_HASHROW_LOCK(ih); 632 LIST_FOREACH(s, &ih->states, entry) { 633 sk = s->key[PF_SK_WIRE]; 634 SLIST_FOREACH(pfoe, &queue, next) 635 if (sk->af == pfoe->af && 636 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 637 pfoe->rule == s->rule.ptr) && 638 ((pfoe->dir == PF_OUT && 639 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 640 (pfoe->dir == PF_IN && 641 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 642 s->timeout = PFTM_PURGE; 643 s->src.state = s->dst.state = TCPS_CLOSED; 644 killed++; 645 } 646 } 647 PF_HASHROW_UNLOCK(ih); 648 } 649 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 650 free(pfoe, M_PFTEMP); 651 if (V_pf_status.debug >= PF_DEBUG_MISC) 652 printf("%s: %u states killed", __func__, killed); 653 654 CURVNET_RESTORE(); 655 } 656 657 /* 658 * Can return locked on failure, so that we can consistently 659 * allocate and insert a new one. 660 */ 661 struct pf_src_node * 662 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 663 int returnlocked) 664 { 665 struct pf_srchash *sh; 666 struct pf_src_node *n; 667 668 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 669 670 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 671 PF_HASHROW_LOCK(sh); 672 LIST_FOREACH(n, &sh->nodes, entry) 673 if (n->rule.ptr == rule && n->af == af && 674 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 675 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 676 break; 677 if (n != NULL) { 678 n->states++; 679 PF_HASHROW_UNLOCK(sh); 680 } else if (returnlocked == 0) 681 PF_HASHROW_UNLOCK(sh); 682 683 return (n); 684 } 685 686 static int 687 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 688 struct pf_addr *src, sa_family_t af) 689 { 690 691 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 692 rule->rpool.opts & PF_POOL_STICKYADDR), 693 ("%s for non-tracking rule %p", __func__, rule)); 694 695 if (*sn == NULL) 696 *sn = pf_find_src_node(src, rule, af, 1); 697 698 if (*sn == NULL) { 699 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 700 701 PF_HASHROW_ASSERT(sh); 702 703 if (!rule->max_src_nodes || 704 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 705 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 706 else 707 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 708 1); 709 if ((*sn) == NULL) { 710 PF_HASHROW_UNLOCK(sh); 711 return (-1); 712 } 713 714 pf_init_threshold(&(*sn)->conn_rate, 715 rule->max_src_conn_rate.limit, 716 rule->max_src_conn_rate.seconds); 717 718 (*sn)->af = af; 719 (*sn)->rule.ptr = rule; 720 PF_ACPY(&(*sn)->addr, src, af); 721 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 722 (*sn)->creation = time_uptime; 723 (*sn)->ruletype = rule->action; 724 (*sn)->states = 1; 725 if ((*sn)->rule.ptr != NULL) 726 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 727 PF_HASHROW_UNLOCK(sh); 728 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 729 } else { 730 if (rule->max_src_states && 731 (*sn)->states >= rule->max_src_states) { 732 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 733 1); 734 return (-1); 735 } 736 } 737 return (0); 738 } 739 740 void 741 pf_unlink_src_node(struct pf_src_node *src) 742 { 743 744 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 745 LIST_REMOVE(src, entry); 746 if (src->rule.ptr) 747 counter_u64_add(src->rule.ptr->src_nodes, -1); 748 } 749 750 u_int 751 pf_free_src_nodes(struct pf_src_node_list *head) 752 { 753 struct pf_src_node *sn, *tmp; 754 u_int count = 0; 755 756 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 757 uma_zfree(V_pf_sources_z, sn); 758 count++; 759 } 760 761 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 762 763 return (count); 764 } 765 766 void 767 pf_mtag_initialize() 768 { 769 770 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 771 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 772 UMA_ALIGN_PTR, 0); 773 } 774 775 /* Per-vnet data storage structures initialization. */ 776 void 777 pf_initialize() 778 { 779 struct pf_keyhash *kh; 780 struct pf_idhash *ih; 781 struct pf_srchash *sh; 782 u_int i; 783 784 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 785 pf_hashsize = PF_HASHSIZ; 786 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 787 pf_srchashsize = PF_HASHSIZ / 4; 788 789 V_pf_hashseed = arc4random(); 790 791 /* States and state keys storage. */ 792 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 793 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 794 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 795 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 796 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 797 798 V_pf_state_key_z = uma_zcreate("pf state keys", 799 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 800 UMA_ALIGN_PTR, 0); 801 V_pf_keyhash = malloc(pf_hashsize * sizeof(struct pf_keyhash), 802 M_PFHASH, M_WAITOK | M_ZERO); 803 V_pf_idhash = malloc(pf_hashsize * sizeof(struct pf_idhash), 804 M_PFHASH, M_WAITOK | M_ZERO); 805 pf_hashmask = pf_hashsize - 1; 806 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 807 i++, kh++, ih++) { 808 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 809 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 810 } 811 812 /* Source nodes. */ 813 V_pf_sources_z = uma_zcreate("pf source nodes", 814 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 815 0); 816 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 817 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 818 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 819 V_pf_srchash = malloc(pf_srchashsize * sizeof(struct pf_srchash), 820 M_PFHASH, M_WAITOK|M_ZERO); 821 pf_srchashmask = pf_srchashsize - 1; 822 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 823 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 824 825 /* ALTQ */ 826 TAILQ_INIT(&V_pf_altqs[0]); 827 TAILQ_INIT(&V_pf_altqs[1]); 828 TAILQ_INIT(&V_pf_pabuf); 829 V_pf_altqs_active = &V_pf_altqs[0]; 830 V_pf_altqs_inactive = &V_pf_altqs[1]; 831 832 /* Send & overload+flush queues. */ 833 STAILQ_INIT(&V_pf_sendqueue); 834 SLIST_INIT(&V_pf_overloadqueue); 835 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 836 837 /* Unlinked, but may be referenced rules. */ 838 TAILQ_INIT(&V_pf_unlinked_rules); 839 } 840 841 void 842 pf_mtag_cleanup() 843 { 844 845 uma_zdestroy(pf_mtag_z); 846 } 847 848 void 849 pf_cleanup() 850 { 851 struct pf_keyhash *kh; 852 struct pf_idhash *ih; 853 struct pf_srchash *sh; 854 struct pf_send_entry *pfse, *next; 855 u_int i; 856 857 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 858 i++, kh++, ih++) { 859 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 860 __func__)); 861 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 862 __func__)); 863 mtx_destroy(&kh->lock); 864 mtx_destroy(&ih->lock); 865 } 866 free(V_pf_keyhash, M_PFHASH); 867 free(V_pf_idhash, M_PFHASH); 868 869 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 870 KASSERT(LIST_EMPTY(&sh->nodes), 871 ("%s: source node hash not empty", __func__)); 872 mtx_destroy(&sh->lock); 873 } 874 free(V_pf_srchash, M_PFHASH); 875 876 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 877 m_freem(pfse->pfse_m); 878 free(pfse, M_PFTEMP); 879 } 880 881 uma_zdestroy(V_pf_sources_z); 882 uma_zdestroy(V_pf_state_z); 883 uma_zdestroy(V_pf_state_key_z); 884 } 885 886 static int 887 pf_mtag_uminit(void *mem, int size, int how) 888 { 889 struct m_tag *t; 890 891 t = (struct m_tag *)mem; 892 t->m_tag_cookie = MTAG_ABI_COMPAT; 893 t->m_tag_id = PACKET_TAG_PF; 894 t->m_tag_len = sizeof(struct pf_mtag); 895 t->m_tag_free = pf_mtag_free; 896 897 return (0); 898 } 899 900 static void 901 pf_mtag_free(struct m_tag *t) 902 { 903 904 uma_zfree(pf_mtag_z, t); 905 } 906 907 struct pf_mtag * 908 pf_get_mtag(struct mbuf *m) 909 { 910 struct m_tag *mtag; 911 912 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 913 return ((struct pf_mtag *)(mtag + 1)); 914 915 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 916 if (mtag == NULL) 917 return (NULL); 918 bzero(mtag + 1, sizeof(struct pf_mtag)); 919 m_tag_prepend(m, mtag); 920 921 return ((struct pf_mtag *)(mtag + 1)); 922 } 923 924 static int 925 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 926 struct pf_state *s) 927 { 928 struct pf_keyhash *khs, *khw, *kh; 929 struct pf_state_key *sk, *cur; 930 struct pf_state *si, *olds = NULL; 931 int idx; 932 933 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 934 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 935 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 936 937 /* 938 * We need to lock hash slots of both keys. To avoid deadlock 939 * we always lock the slot with lower address first. Unlock order 940 * isn't important. 941 * 942 * We also need to lock ID hash slot before dropping key 943 * locks. On success we return with ID hash slot locked. 944 */ 945 946 if (skw == sks) { 947 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 948 PF_HASHROW_LOCK(khs); 949 } else { 950 khs = &V_pf_keyhash[pf_hashkey(sks)]; 951 khw = &V_pf_keyhash[pf_hashkey(skw)]; 952 if (khs == khw) { 953 PF_HASHROW_LOCK(khs); 954 } else if (khs < khw) { 955 PF_HASHROW_LOCK(khs); 956 PF_HASHROW_LOCK(khw); 957 } else { 958 PF_HASHROW_LOCK(khw); 959 PF_HASHROW_LOCK(khs); 960 } 961 } 962 963 #define KEYS_UNLOCK() do { \ 964 if (khs != khw) { \ 965 PF_HASHROW_UNLOCK(khs); \ 966 PF_HASHROW_UNLOCK(khw); \ 967 } else \ 968 PF_HASHROW_UNLOCK(khs); \ 969 } while (0) 970 971 /* 972 * First run: start with wire key. 973 */ 974 sk = skw; 975 kh = khw; 976 idx = PF_SK_WIRE; 977 978 keyattach: 979 LIST_FOREACH(cur, &kh->keys, entry) 980 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 981 break; 982 983 if (cur != NULL) { 984 /* Key exists. Check for same kif, if none, add to key. */ 985 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 986 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 987 988 PF_HASHROW_LOCK(ih); 989 if (si->kif == s->kif && 990 si->direction == s->direction) { 991 if (sk->proto == IPPROTO_TCP && 992 si->src.state >= TCPS_FIN_WAIT_2 && 993 si->dst.state >= TCPS_FIN_WAIT_2) { 994 /* 995 * New state matches an old >FIN_WAIT_2 996 * state. We can't drop key hash locks, 997 * thus we can't unlink it properly. 998 * 999 * As a workaround we drop it into 1000 * TCPS_CLOSED state, schedule purge 1001 * ASAP and push it into the very end 1002 * of the slot TAILQ, so that it won't 1003 * conflict with our new state. 1004 */ 1005 si->src.state = si->dst.state = 1006 TCPS_CLOSED; 1007 si->timeout = PFTM_PURGE; 1008 olds = si; 1009 } else { 1010 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1011 printf("pf: %s key attach " 1012 "failed on %s: ", 1013 (idx == PF_SK_WIRE) ? 1014 "wire" : "stack", 1015 s->kif->pfik_name); 1016 pf_print_state_parts(s, 1017 (idx == PF_SK_WIRE) ? 1018 sk : NULL, 1019 (idx == PF_SK_STACK) ? 1020 sk : NULL); 1021 printf(", existing: "); 1022 pf_print_state_parts(si, 1023 (idx == PF_SK_WIRE) ? 1024 sk : NULL, 1025 (idx == PF_SK_STACK) ? 1026 sk : NULL); 1027 printf("\n"); 1028 } 1029 PF_HASHROW_UNLOCK(ih); 1030 KEYS_UNLOCK(); 1031 uma_zfree(V_pf_state_key_z, sk); 1032 if (idx == PF_SK_STACK) 1033 pf_detach_state(s); 1034 return (EEXIST); /* collision! */ 1035 } 1036 } 1037 PF_HASHROW_UNLOCK(ih); 1038 } 1039 uma_zfree(V_pf_state_key_z, sk); 1040 s->key[idx] = cur; 1041 } else { 1042 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1043 s->key[idx] = sk; 1044 } 1045 1046 stateattach: 1047 /* List is sorted, if-bound states before floating. */ 1048 if (s->kif == V_pfi_all) 1049 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1050 else 1051 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1052 1053 if (olds) { 1054 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1055 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1056 key_list[idx]); 1057 olds = NULL; 1058 } 1059 1060 /* 1061 * Attach done. See how should we (or should not?) 1062 * attach a second key. 1063 */ 1064 if (sks == skw) { 1065 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1066 idx = PF_SK_STACK; 1067 sks = NULL; 1068 goto stateattach; 1069 } else if (sks != NULL) { 1070 /* 1071 * Continue attaching with stack key. 1072 */ 1073 sk = sks; 1074 kh = khs; 1075 idx = PF_SK_STACK; 1076 sks = NULL; 1077 goto keyattach; 1078 } 1079 1080 PF_STATE_LOCK(s); 1081 KEYS_UNLOCK(); 1082 1083 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1084 ("%s failure", __func__)); 1085 1086 return (0); 1087 #undef KEYS_UNLOCK 1088 } 1089 1090 static void 1091 pf_detach_state(struct pf_state *s) 1092 { 1093 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1094 struct pf_keyhash *kh; 1095 1096 if (sks != NULL) { 1097 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1098 PF_HASHROW_LOCK(kh); 1099 if (s->key[PF_SK_STACK] != NULL) 1100 pf_state_key_detach(s, PF_SK_STACK); 1101 /* 1102 * If both point to same key, then we are done. 1103 */ 1104 if (sks == s->key[PF_SK_WIRE]) { 1105 pf_state_key_detach(s, PF_SK_WIRE); 1106 PF_HASHROW_UNLOCK(kh); 1107 return; 1108 } 1109 PF_HASHROW_UNLOCK(kh); 1110 } 1111 1112 if (s->key[PF_SK_WIRE] != NULL) { 1113 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1114 PF_HASHROW_LOCK(kh); 1115 if (s->key[PF_SK_WIRE] != NULL) 1116 pf_state_key_detach(s, PF_SK_WIRE); 1117 PF_HASHROW_UNLOCK(kh); 1118 } 1119 } 1120 1121 static void 1122 pf_state_key_detach(struct pf_state *s, int idx) 1123 { 1124 struct pf_state_key *sk = s->key[idx]; 1125 #ifdef INVARIANTS 1126 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1127 1128 PF_HASHROW_ASSERT(kh); 1129 #endif 1130 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1131 s->key[idx] = NULL; 1132 1133 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1134 LIST_REMOVE(sk, entry); 1135 uma_zfree(V_pf_state_key_z, sk); 1136 } 1137 } 1138 1139 static int 1140 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1141 { 1142 struct pf_state_key *sk = mem; 1143 1144 bzero(sk, sizeof(struct pf_state_key_cmp)); 1145 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1146 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1147 1148 return (0); 1149 } 1150 1151 struct pf_state_key * 1152 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1153 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1154 { 1155 struct pf_state_key *sk; 1156 1157 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1158 if (sk == NULL) 1159 return (NULL); 1160 1161 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1162 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1163 sk->port[pd->sidx] = sport; 1164 sk->port[pd->didx] = dport; 1165 sk->proto = pd->proto; 1166 sk->af = pd->af; 1167 1168 return (sk); 1169 } 1170 1171 struct pf_state_key * 1172 pf_state_key_clone(struct pf_state_key *orig) 1173 { 1174 struct pf_state_key *sk; 1175 1176 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1177 if (sk == NULL) 1178 return (NULL); 1179 1180 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1181 1182 return (sk); 1183 } 1184 1185 int 1186 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1187 struct pf_state_key *sks, struct pf_state *s) 1188 { 1189 struct pf_idhash *ih; 1190 struct pf_state *cur; 1191 int error; 1192 1193 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1194 ("%s: sks not pristine", __func__)); 1195 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1196 ("%s: skw not pristine", __func__)); 1197 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1198 1199 s->kif = kif; 1200 1201 if (s->id == 0 && s->creatorid == 0) { 1202 /* XXX: should be atomic, but probability of collision low */ 1203 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1204 V_pf_stateid[curcpu] = 1; 1205 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1206 s->id = htobe64(s->id); 1207 s->creatorid = V_pf_status.hostid; 1208 } 1209 1210 /* Returns with ID locked on success. */ 1211 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1212 return (error); 1213 1214 ih = &V_pf_idhash[PF_IDHASH(s)]; 1215 PF_HASHROW_ASSERT(ih); 1216 LIST_FOREACH(cur, &ih->states, entry) 1217 if (cur->id == s->id && cur->creatorid == s->creatorid) 1218 break; 1219 1220 if (cur != NULL) { 1221 PF_HASHROW_UNLOCK(ih); 1222 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1223 printf("pf: state ID collision: " 1224 "id: %016llx creatorid: %08x\n", 1225 (unsigned long long)be64toh(s->id), 1226 ntohl(s->creatorid)); 1227 } 1228 pf_detach_state(s); 1229 return (EEXIST); 1230 } 1231 LIST_INSERT_HEAD(&ih->states, s, entry); 1232 /* One for keys, one for ID hash. */ 1233 refcount_init(&s->refs, 2); 1234 1235 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1236 if (pfsync_insert_state_ptr != NULL) 1237 pfsync_insert_state_ptr(s); 1238 1239 /* Returns locked. */ 1240 return (0); 1241 } 1242 1243 /* 1244 * Find state by ID: returns with locked row on success. 1245 */ 1246 struct pf_state * 1247 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1248 { 1249 struct pf_idhash *ih; 1250 struct pf_state *s; 1251 1252 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1253 1254 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1255 1256 PF_HASHROW_LOCK(ih); 1257 LIST_FOREACH(s, &ih->states, entry) 1258 if (s->id == id && s->creatorid == creatorid) 1259 break; 1260 1261 if (s == NULL) 1262 PF_HASHROW_UNLOCK(ih); 1263 1264 return (s); 1265 } 1266 1267 /* 1268 * Find state by key. 1269 * Returns with ID hash slot locked on success. 1270 */ 1271 static struct pf_state * 1272 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1273 { 1274 struct pf_keyhash *kh; 1275 struct pf_state_key *sk; 1276 struct pf_state *s; 1277 int idx; 1278 1279 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1280 1281 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1282 1283 PF_HASHROW_LOCK(kh); 1284 LIST_FOREACH(sk, &kh->keys, entry) 1285 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1286 break; 1287 if (sk == NULL) { 1288 PF_HASHROW_UNLOCK(kh); 1289 return (NULL); 1290 } 1291 1292 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1293 1294 /* List is sorted, if-bound states before floating ones. */ 1295 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1296 if (s->kif == V_pfi_all || s->kif == kif) { 1297 PF_STATE_LOCK(s); 1298 PF_HASHROW_UNLOCK(kh); 1299 if (s->timeout >= PFTM_MAX) { 1300 /* 1301 * State is either being processed by 1302 * pf_unlink_state() in an other thread, or 1303 * is scheduled for immediate expiry. 1304 */ 1305 PF_STATE_UNLOCK(s); 1306 return (NULL); 1307 } 1308 return (s); 1309 } 1310 PF_HASHROW_UNLOCK(kh); 1311 1312 return (NULL); 1313 } 1314 1315 struct pf_state * 1316 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1317 { 1318 struct pf_keyhash *kh; 1319 struct pf_state_key *sk; 1320 struct pf_state *s, *ret = NULL; 1321 int idx, inout = 0; 1322 1323 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1324 1325 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1326 1327 PF_HASHROW_LOCK(kh); 1328 LIST_FOREACH(sk, &kh->keys, entry) 1329 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1330 break; 1331 if (sk == NULL) { 1332 PF_HASHROW_UNLOCK(kh); 1333 return (NULL); 1334 } 1335 switch (dir) { 1336 case PF_IN: 1337 idx = PF_SK_WIRE; 1338 break; 1339 case PF_OUT: 1340 idx = PF_SK_STACK; 1341 break; 1342 case PF_INOUT: 1343 idx = PF_SK_WIRE; 1344 inout = 1; 1345 break; 1346 default: 1347 panic("%s: dir %u", __func__, dir); 1348 } 1349 second_run: 1350 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1351 if (more == NULL) { 1352 PF_HASHROW_UNLOCK(kh); 1353 return (s); 1354 } 1355 1356 if (ret) 1357 (*more)++; 1358 else 1359 ret = s; 1360 } 1361 if (inout == 1) { 1362 inout = 0; 1363 idx = PF_SK_STACK; 1364 goto second_run; 1365 } 1366 PF_HASHROW_UNLOCK(kh); 1367 1368 return (ret); 1369 } 1370 1371 /* END state table stuff */ 1372 1373 static void 1374 pf_send(struct pf_send_entry *pfse) 1375 { 1376 1377 PF_SENDQ_LOCK(); 1378 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1379 PF_SENDQ_UNLOCK(); 1380 swi_sched(V_pf_swi_cookie, 0); 1381 } 1382 1383 void 1384 pf_intr(void *v) 1385 { 1386 struct pf_send_head queue; 1387 struct pf_send_entry *pfse, *next; 1388 1389 CURVNET_SET((struct vnet *)v); 1390 1391 PF_SENDQ_LOCK(); 1392 queue = V_pf_sendqueue; 1393 STAILQ_INIT(&V_pf_sendqueue); 1394 PF_SENDQ_UNLOCK(); 1395 1396 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1397 switch (pfse->pfse_type) { 1398 #ifdef INET 1399 case PFSE_IP: 1400 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1401 break; 1402 case PFSE_ICMP: 1403 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1404 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1405 break; 1406 #endif /* INET */ 1407 #ifdef INET6 1408 case PFSE_IP6: 1409 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1410 NULL); 1411 break; 1412 case PFSE_ICMP6: 1413 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1414 pfse->icmpopts.code, pfse->icmpopts.mtu); 1415 break; 1416 #endif /* INET6 */ 1417 default: 1418 panic("%s: unknown type", __func__); 1419 } 1420 free(pfse, M_PFTEMP); 1421 } 1422 CURVNET_RESTORE(); 1423 } 1424 1425 void 1426 pf_purge_thread(void *unused __unused) 1427 { 1428 VNET_ITERATOR_DECL(vnet_iter); 1429 u_int idx = 0; 1430 1431 for (;;) { 1432 PF_RULES_RLOCK(); 1433 rw_sleep(pf_purge_thread, &pf_rules_lock, 0, "pftm", hz / 10); 1434 PF_RULES_RUNLOCK(); 1435 1436 VNET_LIST_RLOCK(); 1437 VNET_FOREACH(vnet_iter) { 1438 CURVNET_SET(vnet_iter); 1439 1440 if (pf_end_threads) { 1441 pf_end_threads++; 1442 wakeup(pf_purge_thread); 1443 kproc_exit(0); 1444 } 1445 1446 /* Wait while V_pf_default_rule.timeout is initialized. */ 1447 if (V_pf_vnet_active == 0) { 1448 CURVNET_RESTORE(); 1449 continue; 1450 } 1451 1452 /* Process 1/interval fraction of the state table every run. */ 1453 idx = pf_purge_expired_states(idx, pf_hashmask / 1454 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1455 1456 /* Purge other expired types every PFTM_INTERVAL seconds. */ 1457 if (idx == 0) { 1458 /* 1459 * Order is important: 1460 * - states and src nodes reference rules 1461 * - states and rules reference kifs 1462 */ 1463 pf_purge_expired_fragments(); 1464 pf_purge_expired_src_nodes(); 1465 pf_purge_unlinked_rules(); 1466 pfi_kif_purge(); 1467 } 1468 CURVNET_RESTORE(); 1469 } 1470 VNET_LIST_RUNLOCK(); 1471 } 1472 /* not reached */ 1473 } 1474 1475 void 1476 pf_unload_vnet_purge(void) 1477 { 1478 1479 /* 1480 * To cleanse up all kifs and rules we need 1481 * two runs: first one clears reference flags, 1482 * then pf_purge_expired_states() doesn't 1483 * raise them, and then second run frees. 1484 */ 1485 pf_purge_unlinked_rules(); 1486 pfi_kif_purge(); 1487 1488 /* 1489 * Now purge everything. 1490 */ 1491 pf_purge_expired_states(0, pf_hashmask); 1492 pf_purge_expired_fragments(); 1493 pf_purge_expired_src_nodes(); 1494 1495 /* 1496 * Now all kifs & rules should be unreferenced, 1497 * thus should be successfully freed. 1498 */ 1499 pf_purge_unlinked_rules(); 1500 pfi_kif_purge(); 1501 } 1502 1503 1504 u_int32_t 1505 pf_state_expires(const struct pf_state *state) 1506 { 1507 u_int32_t timeout; 1508 u_int32_t start; 1509 u_int32_t end; 1510 u_int32_t states; 1511 1512 /* handle all PFTM_* > PFTM_MAX here */ 1513 if (state->timeout == PFTM_PURGE) 1514 return (time_uptime); 1515 KASSERT(state->timeout != PFTM_UNLINKED, 1516 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1517 KASSERT((state->timeout < PFTM_MAX), 1518 ("pf_state_expires: timeout > PFTM_MAX")); 1519 timeout = state->rule.ptr->timeout[state->timeout]; 1520 if (!timeout) 1521 timeout = V_pf_default_rule.timeout[state->timeout]; 1522 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1523 if (start) { 1524 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1525 states = counter_u64_fetch(state->rule.ptr->states_cur); 1526 } else { 1527 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1528 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1529 states = V_pf_status.states; 1530 } 1531 if (end && states > start && start < end) { 1532 if (states < end) 1533 return (state->expire + timeout * (end - states) / 1534 (end - start)); 1535 else 1536 return (time_uptime); 1537 } 1538 return (state->expire + timeout); 1539 } 1540 1541 void 1542 pf_purge_expired_src_nodes() 1543 { 1544 struct pf_src_node_list freelist; 1545 struct pf_srchash *sh; 1546 struct pf_src_node *cur, *next; 1547 int i; 1548 1549 LIST_INIT(&freelist); 1550 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1551 PF_HASHROW_LOCK(sh); 1552 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1553 if (cur->states == 0 && cur->expire <= time_uptime) { 1554 pf_unlink_src_node(cur); 1555 LIST_INSERT_HEAD(&freelist, cur, entry); 1556 } else if (cur->rule.ptr != NULL) 1557 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1558 PF_HASHROW_UNLOCK(sh); 1559 } 1560 1561 pf_free_src_nodes(&freelist); 1562 1563 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1564 } 1565 1566 static void 1567 pf_src_tree_remove_state(struct pf_state *s) 1568 { 1569 struct pf_src_node *sn; 1570 struct pf_srchash *sh; 1571 uint32_t timeout; 1572 1573 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1574 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1575 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1576 1577 if (s->src_node != NULL) { 1578 sn = s->src_node; 1579 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1580 PF_HASHROW_LOCK(sh); 1581 if (s->src.tcp_est) 1582 --sn->conn; 1583 if (--sn->states == 0) 1584 sn->expire = time_uptime + timeout; 1585 PF_HASHROW_UNLOCK(sh); 1586 } 1587 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1588 sn = s->nat_src_node; 1589 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1590 PF_HASHROW_LOCK(sh); 1591 if (--sn->states == 0) 1592 sn->expire = time_uptime + timeout; 1593 PF_HASHROW_UNLOCK(sh); 1594 } 1595 s->src_node = s->nat_src_node = NULL; 1596 } 1597 1598 /* 1599 * Unlink and potentilly free a state. Function may be 1600 * called with ID hash row locked, but always returns 1601 * unlocked, since it needs to go through key hash locking. 1602 */ 1603 int 1604 pf_unlink_state(struct pf_state *s, u_int flags) 1605 { 1606 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1607 1608 if ((flags & PF_ENTER_LOCKED) == 0) 1609 PF_HASHROW_LOCK(ih); 1610 else 1611 PF_HASHROW_ASSERT(ih); 1612 1613 if (s->timeout == PFTM_UNLINKED) { 1614 /* 1615 * State is being processed 1616 * by pf_unlink_state() in 1617 * an other thread. 1618 */ 1619 PF_HASHROW_UNLOCK(ih); 1620 return (0); /* XXXGL: undefined actually */ 1621 } 1622 1623 if (s->src.state == PF_TCPS_PROXY_DST) { 1624 /* XXX wire key the right one? */ 1625 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1626 &s->key[PF_SK_WIRE]->addr[1], 1627 &s->key[PF_SK_WIRE]->addr[0], 1628 s->key[PF_SK_WIRE]->port[1], 1629 s->key[PF_SK_WIRE]->port[0], 1630 s->src.seqhi, s->src.seqlo + 1, 1631 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1632 } 1633 1634 LIST_REMOVE(s, entry); 1635 pf_src_tree_remove_state(s); 1636 1637 if (pfsync_delete_state_ptr != NULL) 1638 pfsync_delete_state_ptr(s); 1639 1640 STATE_DEC_COUNTERS(s); 1641 1642 s->timeout = PFTM_UNLINKED; 1643 1644 PF_HASHROW_UNLOCK(ih); 1645 1646 pf_detach_state(s); 1647 refcount_release(&s->refs); 1648 1649 return (pf_release_state(s)); 1650 } 1651 1652 void 1653 pf_free_state(struct pf_state *cur) 1654 { 1655 1656 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1657 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1658 cur->timeout)); 1659 1660 pf_normalize_tcp_cleanup(cur); 1661 uma_zfree(V_pf_state_z, cur); 1662 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1663 } 1664 1665 /* 1666 * Called only from pf_purge_thread(), thus serialized. 1667 */ 1668 static u_int 1669 pf_purge_expired_states(u_int i, int maxcheck) 1670 { 1671 struct pf_idhash *ih; 1672 struct pf_state *s; 1673 1674 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1675 1676 /* 1677 * Go through hash and unlink states that expire now. 1678 */ 1679 while (maxcheck > 0) { 1680 1681 ih = &V_pf_idhash[i]; 1682 relock: 1683 PF_HASHROW_LOCK(ih); 1684 LIST_FOREACH(s, &ih->states, entry) { 1685 if (pf_state_expires(s) <= time_uptime) { 1686 V_pf_status.states -= 1687 pf_unlink_state(s, PF_ENTER_LOCKED); 1688 goto relock; 1689 } 1690 s->rule.ptr->rule_flag |= PFRULE_REFS; 1691 if (s->nat_rule.ptr != NULL) 1692 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1693 if (s->anchor.ptr != NULL) 1694 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1695 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1696 if (s->rt_kif) 1697 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1698 } 1699 PF_HASHROW_UNLOCK(ih); 1700 1701 /* Return when we hit end of hash. */ 1702 if (++i > pf_hashmask) { 1703 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1704 return (0); 1705 } 1706 1707 maxcheck--; 1708 } 1709 1710 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1711 1712 return (i); 1713 } 1714 1715 static void 1716 pf_purge_unlinked_rules() 1717 { 1718 struct pf_rulequeue tmpq; 1719 struct pf_rule *r, *r1; 1720 1721 /* 1722 * If we have overloading task pending, then we'd 1723 * better skip purging this time. There is a tiny 1724 * probability that overloading task references 1725 * an already unlinked rule. 1726 */ 1727 PF_OVERLOADQ_LOCK(); 1728 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1729 PF_OVERLOADQ_UNLOCK(); 1730 return; 1731 } 1732 PF_OVERLOADQ_UNLOCK(); 1733 1734 /* 1735 * Do naive mark-and-sweep garbage collecting of old rules. 1736 * Reference flag is raised by pf_purge_expired_states() 1737 * and pf_purge_expired_src_nodes(). 1738 * 1739 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1740 * use a temporary queue. 1741 */ 1742 TAILQ_INIT(&tmpq); 1743 PF_UNLNKDRULES_LOCK(); 1744 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1745 if (!(r->rule_flag & PFRULE_REFS)) { 1746 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1747 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1748 } else 1749 r->rule_flag &= ~PFRULE_REFS; 1750 } 1751 PF_UNLNKDRULES_UNLOCK(); 1752 1753 if (!TAILQ_EMPTY(&tmpq)) { 1754 PF_RULES_WLOCK(); 1755 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1756 TAILQ_REMOVE(&tmpq, r, entries); 1757 pf_free_rule(r); 1758 } 1759 PF_RULES_WUNLOCK(); 1760 } 1761 } 1762 1763 void 1764 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1765 { 1766 switch (af) { 1767 #ifdef INET 1768 case AF_INET: { 1769 u_int32_t a = ntohl(addr->addr32[0]); 1770 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1771 (a>>8)&255, a&255); 1772 if (p) { 1773 p = ntohs(p); 1774 printf(":%u", p); 1775 } 1776 break; 1777 } 1778 #endif /* INET */ 1779 #ifdef INET6 1780 case AF_INET6: { 1781 u_int16_t b; 1782 u_int8_t i, curstart, curend, maxstart, maxend; 1783 curstart = curend = maxstart = maxend = 255; 1784 for (i = 0; i < 8; i++) { 1785 if (!addr->addr16[i]) { 1786 if (curstart == 255) 1787 curstart = i; 1788 curend = i; 1789 } else { 1790 if ((curend - curstart) > 1791 (maxend - maxstart)) { 1792 maxstart = curstart; 1793 maxend = curend; 1794 } 1795 curstart = curend = 255; 1796 } 1797 } 1798 if ((curend - curstart) > 1799 (maxend - maxstart)) { 1800 maxstart = curstart; 1801 maxend = curend; 1802 } 1803 for (i = 0; i < 8; i++) { 1804 if (i >= maxstart && i <= maxend) { 1805 if (i == 0) 1806 printf(":"); 1807 if (i == maxend) 1808 printf(":"); 1809 } else { 1810 b = ntohs(addr->addr16[i]); 1811 printf("%x", b); 1812 if (i < 7) 1813 printf(":"); 1814 } 1815 } 1816 if (p) { 1817 p = ntohs(p); 1818 printf("[%u]", p); 1819 } 1820 break; 1821 } 1822 #endif /* INET6 */ 1823 } 1824 } 1825 1826 void 1827 pf_print_state(struct pf_state *s) 1828 { 1829 pf_print_state_parts(s, NULL, NULL); 1830 } 1831 1832 static void 1833 pf_print_state_parts(struct pf_state *s, 1834 struct pf_state_key *skwp, struct pf_state_key *sksp) 1835 { 1836 struct pf_state_key *skw, *sks; 1837 u_int8_t proto, dir; 1838 1839 /* Do our best to fill these, but they're skipped if NULL */ 1840 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1841 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1842 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1843 dir = s ? s->direction : 0; 1844 1845 switch (proto) { 1846 case IPPROTO_IPV4: 1847 printf("IPv4"); 1848 break; 1849 case IPPROTO_IPV6: 1850 printf("IPv6"); 1851 break; 1852 case IPPROTO_TCP: 1853 printf("TCP"); 1854 break; 1855 case IPPROTO_UDP: 1856 printf("UDP"); 1857 break; 1858 case IPPROTO_ICMP: 1859 printf("ICMP"); 1860 break; 1861 case IPPROTO_ICMPV6: 1862 printf("ICMPv6"); 1863 break; 1864 default: 1865 printf("%u", proto); 1866 break; 1867 } 1868 switch (dir) { 1869 case PF_IN: 1870 printf(" in"); 1871 break; 1872 case PF_OUT: 1873 printf(" out"); 1874 break; 1875 } 1876 if (skw) { 1877 printf(" wire: "); 1878 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1879 printf(" "); 1880 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1881 } 1882 if (sks) { 1883 printf(" stack: "); 1884 if (sks != skw) { 1885 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1886 printf(" "); 1887 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1888 } else 1889 printf("-"); 1890 } 1891 if (s) { 1892 if (proto == IPPROTO_TCP) { 1893 printf(" [lo=%u high=%u win=%u modulator=%u", 1894 s->src.seqlo, s->src.seqhi, 1895 s->src.max_win, s->src.seqdiff); 1896 if (s->src.wscale && s->dst.wscale) 1897 printf(" wscale=%u", 1898 s->src.wscale & PF_WSCALE_MASK); 1899 printf("]"); 1900 printf(" [lo=%u high=%u win=%u modulator=%u", 1901 s->dst.seqlo, s->dst.seqhi, 1902 s->dst.max_win, s->dst.seqdiff); 1903 if (s->src.wscale && s->dst.wscale) 1904 printf(" wscale=%u", 1905 s->dst.wscale & PF_WSCALE_MASK); 1906 printf("]"); 1907 } 1908 printf(" %u:%u", s->src.state, s->dst.state); 1909 } 1910 } 1911 1912 void 1913 pf_print_flags(u_int8_t f) 1914 { 1915 if (f) 1916 printf(" "); 1917 if (f & TH_FIN) 1918 printf("F"); 1919 if (f & TH_SYN) 1920 printf("S"); 1921 if (f & TH_RST) 1922 printf("R"); 1923 if (f & TH_PUSH) 1924 printf("P"); 1925 if (f & TH_ACK) 1926 printf("A"); 1927 if (f & TH_URG) 1928 printf("U"); 1929 if (f & TH_ECE) 1930 printf("E"); 1931 if (f & TH_CWR) 1932 printf("W"); 1933 } 1934 1935 #define PF_SET_SKIP_STEPS(i) \ 1936 do { \ 1937 while (head[i] != cur) { \ 1938 head[i]->skip[i].ptr = cur; \ 1939 head[i] = TAILQ_NEXT(head[i], entries); \ 1940 } \ 1941 } while (0) 1942 1943 void 1944 pf_calc_skip_steps(struct pf_rulequeue *rules) 1945 { 1946 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1947 int i; 1948 1949 cur = TAILQ_FIRST(rules); 1950 prev = cur; 1951 for (i = 0; i < PF_SKIP_COUNT; ++i) 1952 head[i] = cur; 1953 while (cur != NULL) { 1954 1955 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1956 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1957 if (cur->direction != prev->direction) 1958 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1959 if (cur->af != prev->af) 1960 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1961 if (cur->proto != prev->proto) 1962 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1963 if (cur->src.neg != prev->src.neg || 1964 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1965 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1966 if (cur->src.port[0] != prev->src.port[0] || 1967 cur->src.port[1] != prev->src.port[1] || 1968 cur->src.port_op != prev->src.port_op) 1969 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1970 if (cur->dst.neg != prev->dst.neg || 1971 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1972 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1973 if (cur->dst.port[0] != prev->dst.port[0] || 1974 cur->dst.port[1] != prev->dst.port[1] || 1975 cur->dst.port_op != prev->dst.port_op) 1976 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1977 1978 prev = cur; 1979 cur = TAILQ_NEXT(cur, entries); 1980 } 1981 for (i = 0; i < PF_SKIP_COUNT; ++i) 1982 PF_SET_SKIP_STEPS(i); 1983 } 1984 1985 static int 1986 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1987 { 1988 if (aw1->type != aw2->type) 1989 return (1); 1990 switch (aw1->type) { 1991 case PF_ADDR_ADDRMASK: 1992 case PF_ADDR_RANGE: 1993 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 1994 return (1); 1995 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 1996 return (1); 1997 return (0); 1998 case PF_ADDR_DYNIFTL: 1999 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2000 case PF_ADDR_NOROUTE: 2001 case PF_ADDR_URPFFAILED: 2002 return (0); 2003 case PF_ADDR_TABLE: 2004 return (aw1->p.tbl != aw2->p.tbl); 2005 default: 2006 printf("invalid address type: %d\n", aw1->type); 2007 return (1); 2008 } 2009 } 2010 2011 /** 2012 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2013 * header isn't always a full checksum. In some cases (i.e. output) it's a 2014 * pseudo-header checksum, which is a partial checksum over src/dst IP 2015 * addresses, protocol number and length. 2016 * 2017 * That means we have the following cases: 2018 * * Input or forwarding: we don't have TSO, the checksum fields are full 2019 * checksums, we need to update the checksum whenever we change anything. 2020 * * Output (i.e. the checksum is a pseudo-header checksum): 2021 * x The field being updated is src/dst address or affects the length of 2022 * the packet. We need to update the pseudo-header checksum (note that this 2023 * checksum is not ones' complement). 2024 * x Some other field is being modified (e.g. src/dst port numbers): We 2025 * don't have to update anything. 2026 **/ 2027 u_int16_t 2028 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2029 { 2030 u_int32_t l; 2031 2032 if (udp && !cksum) 2033 return (0x0000); 2034 l = cksum + old - new; 2035 l = (l >> 16) + (l & 65535); 2036 l = l & 65535; 2037 if (udp && !l) 2038 return (0xFFFF); 2039 return (l); 2040 } 2041 2042 u_int16_t 2043 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2044 u_int16_t new, u_int8_t udp) 2045 { 2046 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2047 return (cksum); 2048 2049 return (pf_cksum_fixup(cksum, old, new, udp)); 2050 } 2051 2052 static void 2053 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2054 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2055 sa_family_t af) 2056 { 2057 struct pf_addr ao; 2058 u_int16_t po = *p; 2059 2060 PF_ACPY(&ao, a, af); 2061 PF_ACPY(a, an, af); 2062 2063 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2064 *pc = ~*pc; 2065 2066 *p = pn; 2067 2068 switch (af) { 2069 #ifdef INET 2070 case AF_INET: 2071 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2072 ao.addr16[0], an->addr16[0], 0), 2073 ao.addr16[1], an->addr16[1], 0); 2074 *p = pn; 2075 2076 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2077 ao.addr16[0], an->addr16[0], u), 2078 ao.addr16[1], an->addr16[1], u); 2079 2080 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2081 break; 2082 #endif /* INET */ 2083 #ifdef INET6 2084 case AF_INET6: 2085 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2086 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2087 pf_cksum_fixup(pf_cksum_fixup(*pc, 2088 ao.addr16[0], an->addr16[0], u), 2089 ao.addr16[1], an->addr16[1], u), 2090 ao.addr16[2], an->addr16[2], u), 2091 ao.addr16[3], an->addr16[3], u), 2092 ao.addr16[4], an->addr16[4], u), 2093 ao.addr16[5], an->addr16[5], u), 2094 ao.addr16[6], an->addr16[6], u), 2095 ao.addr16[7], an->addr16[7], u); 2096 2097 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2098 break; 2099 #endif /* INET6 */ 2100 } 2101 2102 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2103 CSUM_DELAY_DATA_IPV6)) { 2104 *pc = ~*pc; 2105 if (! *pc) 2106 *pc = 0xffff; 2107 } 2108 } 2109 2110 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2111 void 2112 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2113 { 2114 u_int32_t ao; 2115 2116 memcpy(&ao, a, sizeof(ao)); 2117 memcpy(a, &an, sizeof(u_int32_t)); 2118 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2119 ao % 65536, an % 65536, u); 2120 } 2121 2122 void 2123 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2124 { 2125 u_int32_t ao; 2126 2127 memcpy(&ao, a, sizeof(ao)); 2128 memcpy(a, &an, sizeof(u_int32_t)); 2129 2130 *c = pf_proto_cksum_fixup(m, 2131 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2132 ao % 65536, an % 65536, udp); 2133 } 2134 2135 #ifdef INET6 2136 static void 2137 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2138 { 2139 struct pf_addr ao; 2140 2141 PF_ACPY(&ao, a, AF_INET6); 2142 PF_ACPY(a, an, AF_INET6); 2143 2144 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2145 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2146 pf_cksum_fixup(pf_cksum_fixup(*c, 2147 ao.addr16[0], an->addr16[0], u), 2148 ao.addr16[1], an->addr16[1], u), 2149 ao.addr16[2], an->addr16[2], u), 2150 ao.addr16[3], an->addr16[3], u), 2151 ao.addr16[4], an->addr16[4], u), 2152 ao.addr16[5], an->addr16[5], u), 2153 ao.addr16[6], an->addr16[6], u), 2154 ao.addr16[7], an->addr16[7], u); 2155 } 2156 #endif /* INET6 */ 2157 2158 static void 2159 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2160 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2161 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2162 { 2163 struct pf_addr oia, ooa; 2164 2165 PF_ACPY(&oia, ia, af); 2166 if (oa) 2167 PF_ACPY(&ooa, oa, af); 2168 2169 /* Change inner protocol port, fix inner protocol checksum. */ 2170 if (ip != NULL) { 2171 u_int16_t oip = *ip; 2172 u_int32_t opc; 2173 2174 if (pc != NULL) 2175 opc = *pc; 2176 *ip = np; 2177 if (pc != NULL) 2178 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2179 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2180 if (pc != NULL) 2181 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2182 } 2183 /* Change inner ip address, fix inner ip and icmp checksums. */ 2184 PF_ACPY(ia, na, af); 2185 switch (af) { 2186 #ifdef INET 2187 case AF_INET: { 2188 u_int32_t oh2c = *h2c; 2189 2190 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2191 oia.addr16[0], ia->addr16[0], 0), 2192 oia.addr16[1], ia->addr16[1], 0); 2193 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2194 oia.addr16[0], ia->addr16[0], 0), 2195 oia.addr16[1], ia->addr16[1], 0); 2196 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2197 break; 2198 } 2199 #endif /* INET */ 2200 #ifdef INET6 2201 case AF_INET6: 2202 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2203 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2204 pf_cksum_fixup(pf_cksum_fixup(*ic, 2205 oia.addr16[0], ia->addr16[0], u), 2206 oia.addr16[1], ia->addr16[1], u), 2207 oia.addr16[2], ia->addr16[2], u), 2208 oia.addr16[3], ia->addr16[3], u), 2209 oia.addr16[4], ia->addr16[4], u), 2210 oia.addr16[5], ia->addr16[5], u), 2211 oia.addr16[6], ia->addr16[6], u), 2212 oia.addr16[7], ia->addr16[7], u); 2213 break; 2214 #endif /* INET6 */ 2215 } 2216 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2217 if (oa) { 2218 PF_ACPY(oa, na, af); 2219 switch (af) { 2220 #ifdef INET 2221 case AF_INET: 2222 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2223 ooa.addr16[0], oa->addr16[0], 0), 2224 ooa.addr16[1], oa->addr16[1], 0); 2225 break; 2226 #endif /* INET */ 2227 #ifdef INET6 2228 case AF_INET6: 2229 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2230 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2231 pf_cksum_fixup(pf_cksum_fixup(*ic, 2232 ooa.addr16[0], oa->addr16[0], u), 2233 ooa.addr16[1], oa->addr16[1], u), 2234 ooa.addr16[2], oa->addr16[2], u), 2235 ooa.addr16[3], oa->addr16[3], u), 2236 ooa.addr16[4], oa->addr16[4], u), 2237 ooa.addr16[5], oa->addr16[5], u), 2238 ooa.addr16[6], oa->addr16[6], u), 2239 ooa.addr16[7], oa->addr16[7], u); 2240 break; 2241 #endif /* INET6 */ 2242 } 2243 } 2244 } 2245 2246 2247 /* 2248 * Need to modulate the sequence numbers in the TCP SACK option 2249 * (credits to Krzysztof Pfaff for report and patch) 2250 */ 2251 static int 2252 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2253 struct tcphdr *th, struct pf_state_peer *dst) 2254 { 2255 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2256 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2257 int copyback = 0, i, olen; 2258 struct sackblk sack; 2259 2260 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2261 if (hlen < TCPOLEN_SACKLEN || 2262 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2263 return 0; 2264 2265 while (hlen >= TCPOLEN_SACKLEN) { 2266 olen = opt[1]; 2267 switch (*opt) { 2268 case TCPOPT_EOL: /* FALLTHROUGH */ 2269 case TCPOPT_NOP: 2270 opt++; 2271 hlen--; 2272 break; 2273 case TCPOPT_SACK: 2274 if (olen > hlen) 2275 olen = hlen; 2276 if (olen >= TCPOLEN_SACKLEN) { 2277 for (i = 2; i + TCPOLEN_SACK <= olen; 2278 i += TCPOLEN_SACK) { 2279 memcpy(&sack, &opt[i], sizeof(sack)); 2280 pf_change_proto_a(m, &sack.start, &th->th_sum, 2281 htonl(ntohl(sack.start) - dst->seqdiff), 0); 2282 pf_change_proto_a(m, &sack.end, &th->th_sum, 2283 htonl(ntohl(sack.end) - dst->seqdiff), 0); 2284 memcpy(&opt[i], &sack, sizeof(sack)); 2285 } 2286 copyback = 1; 2287 } 2288 /* FALLTHROUGH */ 2289 default: 2290 if (olen < 2) 2291 olen = 2; 2292 hlen -= olen; 2293 opt += olen; 2294 } 2295 } 2296 2297 if (copyback) 2298 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2299 return (copyback); 2300 } 2301 2302 static void 2303 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2304 const struct pf_addr *saddr, const struct pf_addr *daddr, 2305 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2306 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2307 u_int16_t rtag, struct ifnet *ifp) 2308 { 2309 struct pf_send_entry *pfse; 2310 struct mbuf *m; 2311 int len, tlen; 2312 #ifdef INET 2313 struct ip *h = NULL; 2314 #endif /* INET */ 2315 #ifdef INET6 2316 struct ip6_hdr *h6 = NULL; 2317 #endif /* INET6 */ 2318 struct tcphdr *th; 2319 char *opt; 2320 struct pf_mtag *pf_mtag; 2321 2322 len = 0; 2323 th = NULL; 2324 2325 /* maximum segment size tcp option */ 2326 tlen = sizeof(struct tcphdr); 2327 if (mss) 2328 tlen += 4; 2329 2330 switch (af) { 2331 #ifdef INET 2332 case AF_INET: 2333 len = sizeof(struct ip) + tlen; 2334 break; 2335 #endif /* INET */ 2336 #ifdef INET6 2337 case AF_INET6: 2338 len = sizeof(struct ip6_hdr) + tlen; 2339 break; 2340 #endif /* INET6 */ 2341 default: 2342 panic("%s: unsupported af %d", __func__, af); 2343 } 2344 2345 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2346 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2347 if (pfse == NULL) 2348 return; 2349 m = m_gethdr(M_NOWAIT, MT_DATA); 2350 if (m == NULL) { 2351 free(pfse, M_PFTEMP); 2352 return; 2353 } 2354 #ifdef MAC 2355 mac_netinet_firewall_send(m); 2356 #endif 2357 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2358 free(pfse, M_PFTEMP); 2359 m_freem(m); 2360 return; 2361 } 2362 if (tag) 2363 m->m_flags |= M_SKIP_FIREWALL; 2364 pf_mtag->tag = rtag; 2365 2366 if (r != NULL && r->rtableid >= 0) 2367 M_SETFIB(m, r->rtableid); 2368 2369 #ifdef ALTQ 2370 if (r != NULL && r->qid) { 2371 pf_mtag->qid = r->qid; 2372 2373 /* add hints for ecn */ 2374 pf_mtag->hdr = mtod(m, struct ip *); 2375 } 2376 #endif /* ALTQ */ 2377 m->m_data += max_linkhdr; 2378 m->m_pkthdr.len = m->m_len = len; 2379 m->m_pkthdr.rcvif = NULL; 2380 bzero(m->m_data, len); 2381 switch (af) { 2382 #ifdef INET 2383 case AF_INET: 2384 h = mtod(m, struct ip *); 2385 2386 /* IP header fields included in the TCP checksum */ 2387 h->ip_p = IPPROTO_TCP; 2388 h->ip_len = htons(tlen); 2389 h->ip_src.s_addr = saddr->v4.s_addr; 2390 h->ip_dst.s_addr = daddr->v4.s_addr; 2391 2392 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2393 break; 2394 #endif /* INET */ 2395 #ifdef INET6 2396 case AF_INET6: 2397 h6 = mtod(m, struct ip6_hdr *); 2398 2399 /* IP header fields included in the TCP checksum */ 2400 h6->ip6_nxt = IPPROTO_TCP; 2401 h6->ip6_plen = htons(tlen); 2402 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2403 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2404 2405 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2406 break; 2407 #endif /* INET6 */ 2408 } 2409 2410 /* TCP header */ 2411 th->th_sport = sport; 2412 th->th_dport = dport; 2413 th->th_seq = htonl(seq); 2414 th->th_ack = htonl(ack); 2415 th->th_off = tlen >> 2; 2416 th->th_flags = flags; 2417 th->th_win = htons(win); 2418 2419 if (mss) { 2420 opt = (char *)(th + 1); 2421 opt[0] = TCPOPT_MAXSEG; 2422 opt[1] = 4; 2423 HTONS(mss); 2424 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2425 } 2426 2427 switch (af) { 2428 #ifdef INET 2429 case AF_INET: 2430 /* TCP checksum */ 2431 th->th_sum = in_cksum(m, len); 2432 2433 /* Finish the IP header */ 2434 h->ip_v = 4; 2435 h->ip_hl = sizeof(*h) >> 2; 2436 h->ip_tos = IPTOS_LOWDELAY; 2437 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2438 h->ip_len = htons(len); 2439 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2440 h->ip_sum = 0; 2441 2442 pfse->pfse_type = PFSE_IP; 2443 break; 2444 #endif /* INET */ 2445 #ifdef INET6 2446 case AF_INET6: 2447 /* TCP checksum */ 2448 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2449 sizeof(struct ip6_hdr), tlen); 2450 2451 h6->ip6_vfc |= IPV6_VERSION; 2452 h6->ip6_hlim = IPV6_DEFHLIM; 2453 2454 pfse->pfse_type = PFSE_IP6; 2455 break; 2456 #endif /* INET6 */ 2457 } 2458 pfse->pfse_m = m; 2459 pf_send(pfse); 2460 } 2461 2462 static int 2463 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2464 { 2465 struct m_tag *mtag; 2466 2467 KASSERT(prio <= PF_PRIO_MAX, 2468 ("%s with invalid pcp", __func__)); 2469 2470 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2471 if (mtag == NULL) { 2472 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2473 sizeof(uint8_t), M_NOWAIT); 2474 if (mtag == NULL) 2475 return (ENOMEM); 2476 m_tag_prepend(m, mtag); 2477 } 2478 2479 *(uint8_t *)(mtag + 1) = prio; 2480 return (0); 2481 } 2482 2483 static int 2484 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2485 { 2486 struct m_tag *mtag; 2487 u_int8_t mpcp; 2488 2489 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2490 if (mtag == NULL) 2491 return (0); 2492 2493 if (prio == PF_PRIO_ZERO) 2494 prio = 0; 2495 2496 mpcp = *(uint8_t *)(mtag + 1); 2497 2498 return (mpcp == prio); 2499 } 2500 2501 static void 2502 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2503 struct pf_rule *r) 2504 { 2505 struct pf_send_entry *pfse; 2506 struct mbuf *m0; 2507 struct pf_mtag *pf_mtag; 2508 2509 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2510 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2511 if (pfse == NULL) 2512 return; 2513 2514 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2515 free(pfse, M_PFTEMP); 2516 return; 2517 } 2518 2519 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2520 free(pfse, M_PFTEMP); 2521 return; 2522 } 2523 /* XXX: revisit */ 2524 m0->m_flags |= M_SKIP_FIREWALL; 2525 2526 if (r->rtableid >= 0) 2527 M_SETFIB(m0, r->rtableid); 2528 2529 #ifdef ALTQ 2530 if (r->qid) { 2531 pf_mtag->qid = r->qid; 2532 /* add hints for ecn */ 2533 pf_mtag->hdr = mtod(m0, struct ip *); 2534 } 2535 #endif /* ALTQ */ 2536 2537 switch (af) { 2538 #ifdef INET 2539 case AF_INET: 2540 pfse->pfse_type = PFSE_ICMP; 2541 break; 2542 #endif /* INET */ 2543 #ifdef INET6 2544 case AF_INET6: 2545 pfse->pfse_type = PFSE_ICMP6; 2546 break; 2547 #endif /* INET6 */ 2548 } 2549 pfse->pfse_m = m0; 2550 pfse->icmpopts.type = type; 2551 pfse->icmpopts.code = code; 2552 pf_send(pfse); 2553 } 2554 2555 /* 2556 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2557 * If n is 0, they match if they are equal. If n is != 0, they match if they 2558 * are different. 2559 */ 2560 int 2561 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2562 struct pf_addr *b, sa_family_t af) 2563 { 2564 int match = 0; 2565 2566 switch (af) { 2567 #ifdef INET 2568 case AF_INET: 2569 if ((a->addr32[0] & m->addr32[0]) == 2570 (b->addr32[0] & m->addr32[0])) 2571 match++; 2572 break; 2573 #endif /* INET */ 2574 #ifdef INET6 2575 case AF_INET6: 2576 if (((a->addr32[0] & m->addr32[0]) == 2577 (b->addr32[0] & m->addr32[0])) && 2578 ((a->addr32[1] & m->addr32[1]) == 2579 (b->addr32[1] & m->addr32[1])) && 2580 ((a->addr32[2] & m->addr32[2]) == 2581 (b->addr32[2] & m->addr32[2])) && 2582 ((a->addr32[3] & m->addr32[3]) == 2583 (b->addr32[3] & m->addr32[3]))) 2584 match++; 2585 break; 2586 #endif /* INET6 */ 2587 } 2588 if (match) { 2589 if (n) 2590 return (0); 2591 else 2592 return (1); 2593 } else { 2594 if (n) 2595 return (1); 2596 else 2597 return (0); 2598 } 2599 } 2600 2601 /* 2602 * Return 1 if b <= a <= e, otherwise return 0. 2603 */ 2604 int 2605 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2606 struct pf_addr *a, sa_family_t af) 2607 { 2608 switch (af) { 2609 #ifdef INET 2610 case AF_INET: 2611 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2612 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2613 return (0); 2614 break; 2615 #endif /* INET */ 2616 #ifdef INET6 2617 case AF_INET6: { 2618 int i; 2619 2620 /* check a >= b */ 2621 for (i = 0; i < 4; ++i) 2622 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2623 break; 2624 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2625 return (0); 2626 /* check a <= e */ 2627 for (i = 0; i < 4; ++i) 2628 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2629 break; 2630 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2631 return (0); 2632 break; 2633 } 2634 #endif /* INET6 */ 2635 } 2636 return (1); 2637 } 2638 2639 static int 2640 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2641 { 2642 switch (op) { 2643 case PF_OP_IRG: 2644 return ((p > a1) && (p < a2)); 2645 case PF_OP_XRG: 2646 return ((p < a1) || (p > a2)); 2647 case PF_OP_RRG: 2648 return ((p >= a1) && (p <= a2)); 2649 case PF_OP_EQ: 2650 return (p == a1); 2651 case PF_OP_NE: 2652 return (p != a1); 2653 case PF_OP_LT: 2654 return (p < a1); 2655 case PF_OP_LE: 2656 return (p <= a1); 2657 case PF_OP_GT: 2658 return (p > a1); 2659 case PF_OP_GE: 2660 return (p >= a1); 2661 } 2662 return (0); /* never reached */ 2663 } 2664 2665 int 2666 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2667 { 2668 NTOHS(a1); 2669 NTOHS(a2); 2670 NTOHS(p); 2671 return (pf_match(op, a1, a2, p)); 2672 } 2673 2674 static int 2675 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2676 { 2677 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2678 return (0); 2679 return (pf_match(op, a1, a2, u)); 2680 } 2681 2682 static int 2683 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2684 { 2685 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2686 return (0); 2687 return (pf_match(op, a1, a2, g)); 2688 } 2689 2690 int 2691 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2692 { 2693 if (*tag == -1) 2694 *tag = mtag; 2695 2696 return ((!r->match_tag_not && r->match_tag == *tag) || 2697 (r->match_tag_not && r->match_tag != *tag)); 2698 } 2699 2700 int 2701 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2702 { 2703 2704 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2705 2706 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2707 return (ENOMEM); 2708 2709 pd->pf_mtag->tag = tag; 2710 2711 return (0); 2712 } 2713 2714 #define PF_ANCHOR_STACKSIZE 32 2715 struct pf_anchor_stackframe { 2716 struct pf_ruleset *rs; 2717 struct pf_rule *r; /* XXX: + match bit */ 2718 struct pf_anchor *child; 2719 }; 2720 2721 /* 2722 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2723 */ 2724 #define PF_ANCHORSTACK_MATCH 0x00000001 2725 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2726 2727 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2728 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2729 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2730 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2731 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2732 } while (0) 2733 2734 void 2735 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2736 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2737 int *match) 2738 { 2739 struct pf_anchor_stackframe *f; 2740 2741 PF_RULES_RASSERT(); 2742 2743 if (match) 2744 *match = 0; 2745 if (*depth >= PF_ANCHOR_STACKSIZE) { 2746 printf("%s: anchor stack overflow on %s\n", 2747 __func__, (*r)->anchor->name); 2748 *r = TAILQ_NEXT(*r, entries); 2749 return; 2750 } else if (*depth == 0 && a != NULL) 2751 *a = *r; 2752 f = stack + (*depth)++; 2753 f->rs = *rs; 2754 f->r = *r; 2755 if ((*r)->anchor_wildcard) { 2756 struct pf_anchor_node *parent = &(*r)->anchor->children; 2757 2758 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2759 *r = NULL; 2760 return; 2761 } 2762 *rs = &f->child->ruleset; 2763 } else { 2764 f->child = NULL; 2765 *rs = &(*r)->anchor->ruleset; 2766 } 2767 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2768 } 2769 2770 int 2771 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2772 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2773 int *match) 2774 { 2775 struct pf_anchor_stackframe *f; 2776 struct pf_rule *fr; 2777 int quick = 0; 2778 2779 PF_RULES_RASSERT(); 2780 2781 do { 2782 if (*depth <= 0) 2783 break; 2784 f = stack + *depth - 1; 2785 fr = PF_ANCHOR_RULE(f); 2786 if (f->child != NULL) { 2787 struct pf_anchor_node *parent; 2788 2789 /* 2790 * This block traverses through 2791 * a wildcard anchor. 2792 */ 2793 parent = &fr->anchor->children; 2794 if (match != NULL && *match) { 2795 /* 2796 * If any of "*" matched, then 2797 * "foo/ *" matched, mark frame 2798 * appropriately. 2799 */ 2800 PF_ANCHOR_SET_MATCH(f); 2801 *match = 0; 2802 } 2803 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2804 if (f->child != NULL) { 2805 *rs = &f->child->ruleset; 2806 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2807 if (*r == NULL) 2808 continue; 2809 else 2810 break; 2811 } 2812 } 2813 (*depth)--; 2814 if (*depth == 0 && a != NULL) 2815 *a = NULL; 2816 *rs = f->rs; 2817 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2818 quick = fr->quick; 2819 *r = TAILQ_NEXT(fr, entries); 2820 } while (*r == NULL); 2821 2822 return (quick); 2823 } 2824 2825 #ifdef INET6 2826 void 2827 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2828 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2829 { 2830 switch (af) { 2831 #ifdef INET 2832 case AF_INET: 2833 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2834 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2835 break; 2836 #endif /* INET */ 2837 case AF_INET6: 2838 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2839 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2840 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2841 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2842 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2843 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2844 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2845 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2846 break; 2847 } 2848 } 2849 2850 void 2851 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2852 { 2853 switch (af) { 2854 #ifdef INET 2855 case AF_INET: 2856 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2857 break; 2858 #endif /* INET */ 2859 case AF_INET6: 2860 if (addr->addr32[3] == 0xffffffff) { 2861 addr->addr32[3] = 0; 2862 if (addr->addr32[2] == 0xffffffff) { 2863 addr->addr32[2] = 0; 2864 if (addr->addr32[1] == 0xffffffff) { 2865 addr->addr32[1] = 0; 2866 addr->addr32[0] = 2867 htonl(ntohl(addr->addr32[0]) + 1); 2868 } else 2869 addr->addr32[1] = 2870 htonl(ntohl(addr->addr32[1]) + 1); 2871 } else 2872 addr->addr32[2] = 2873 htonl(ntohl(addr->addr32[2]) + 1); 2874 } else 2875 addr->addr32[3] = 2876 htonl(ntohl(addr->addr32[3]) + 1); 2877 break; 2878 } 2879 } 2880 #endif /* INET6 */ 2881 2882 int 2883 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2884 { 2885 struct pf_addr *saddr, *daddr; 2886 u_int16_t sport, dport; 2887 struct inpcbinfo *pi; 2888 struct inpcb *inp; 2889 2890 pd->lookup.uid = UID_MAX; 2891 pd->lookup.gid = GID_MAX; 2892 2893 switch (pd->proto) { 2894 case IPPROTO_TCP: 2895 if (pd->hdr.tcp == NULL) 2896 return (-1); 2897 sport = pd->hdr.tcp->th_sport; 2898 dport = pd->hdr.tcp->th_dport; 2899 pi = &V_tcbinfo; 2900 break; 2901 case IPPROTO_UDP: 2902 if (pd->hdr.udp == NULL) 2903 return (-1); 2904 sport = pd->hdr.udp->uh_sport; 2905 dport = pd->hdr.udp->uh_dport; 2906 pi = &V_udbinfo; 2907 break; 2908 default: 2909 return (-1); 2910 } 2911 if (direction == PF_IN) { 2912 saddr = pd->src; 2913 daddr = pd->dst; 2914 } else { 2915 u_int16_t p; 2916 2917 p = sport; 2918 sport = dport; 2919 dport = p; 2920 saddr = pd->dst; 2921 daddr = pd->src; 2922 } 2923 switch (pd->af) { 2924 #ifdef INET 2925 case AF_INET: 2926 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2927 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2928 if (inp == NULL) { 2929 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2930 daddr->v4, dport, INPLOOKUP_WILDCARD | 2931 INPLOOKUP_RLOCKPCB, NULL, m); 2932 if (inp == NULL) 2933 return (-1); 2934 } 2935 break; 2936 #endif /* INET */ 2937 #ifdef INET6 2938 case AF_INET6: 2939 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2940 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2941 if (inp == NULL) { 2942 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2943 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2944 INPLOOKUP_RLOCKPCB, NULL, m); 2945 if (inp == NULL) 2946 return (-1); 2947 } 2948 break; 2949 #endif /* INET6 */ 2950 2951 default: 2952 return (-1); 2953 } 2954 INP_RLOCK_ASSERT(inp); 2955 pd->lookup.uid = inp->inp_cred->cr_uid; 2956 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2957 INP_RUNLOCK(inp); 2958 2959 return (1); 2960 } 2961 2962 static u_int8_t 2963 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2964 { 2965 int hlen; 2966 u_int8_t hdr[60]; 2967 u_int8_t *opt, optlen; 2968 u_int8_t wscale = 0; 2969 2970 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2971 if (hlen <= sizeof(struct tcphdr)) 2972 return (0); 2973 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2974 return (0); 2975 opt = hdr + sizeof(struct tcphdr); 2976 hlen -= sizeof(struct tcphdr); 2977 while (hlen >= 3) { 2978 switch (*opt) { 2979 case TCPOPT_EOL: 2980 case TCPOPT_NOP: 2981 ++opt; 2982 --hlen; 2983 break; 2984 case TCPOPT_WINDOW: 2985 wscale = opt[2]; 2986 if (wscale > TCP_MAX_WINSHIFT) 2987 wscale = TCP_MAX_WINSHIFT; 2988 wscale |= PF_WSCALE_FLAG; 2989 /* FALLTHROUGH */ 2990 default: 2991 optlen = opt[1]; 2992 if (optlen < 2) 2993 optlen = 2; 2994 hlen -= optlen; 2995 opt += optlen; 2996 break; 2997 } 2998 } 2999 return (wscale); 3000 } 3001 3002 static u_int16_t 3003 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3004 { 3005 int hlen; 3006 u_int8_t hdr[60]; 3007 u_int8_t *opt, optlen; 3008 u_int16_t mss = V_tcp_mssdflt; 3009 3010 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3011 if (hlen <= sizeof(struct tcphdr)) 3012 return (0); 3013 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3014 return (0); 3015 opt = hdr + sizeof(struct tcphdr); 3016 hlen -= sizeof(struct tcphdr); 3017 while (hlen >= TCPOLEN_MAXSEG) { 3018 switch (*opt) { 3019 case TCPOPT_EOL: 3020 case TCPOPT_NOP: 3021 ++opt; 3022 --hlen; 3023 break; 3024 case TCPOPT_MAXSEG: 3025 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3026 NTOHS(mss); 3027 /* FALLTHROUGH */ 3028 default: 3029 optlen = opt[1]; 3030 if (optlen < 2) 3031 optlen = 2; 3032 hlen -= optlen; 3033 opt += optlen; 3034 break; 3035 } 3036 } 3037 return (mss); 3038 } 3039 3040 static u_int16_t 3041 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3042 { 3043 #ifdef INET 3044 struct nhop4_basic nh4; 3045 #endif /* INET */ 3046 #ifdef INET6 3047 struct nhop6_basic nh6; 3048 struct in6_addr dst6; 3049 uint32_t scopeid; 3050 #endif /* INET6 */ 3051 int hlen = 0; 3052 uint16_t mss = 0; 3053 3054 switch (af) { 3055 #ifdef INET 3056 case AF_INET: 3057 hlen = sizeof(struct ip); 3058 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) == 0) 3059 mss = nh4.nh_mtu - hlen - sizeof(struct tcphdr); 3060 break; 3061 #endif /* INET */ 3062 #ifdef INET6 3063 case AF_INET6: 3064 hlen = sizeof(struct ip6_hdr); 3065 in6_splitscope(&addr->v6, &dst6, &scopeid); 3066 if (fib6_lookup_nh_basic(rtableid, &dst6, scopeid, 0,0,&nh6)==0) 3067 mss = nh6.nh_mtu - hlen - sizeof(struct tcphdr); 3068 break; 3069 #endif /* INET6 */ 3070 } 3071 3072 mss = max(V_tcp_mssdflt, mss); 3073 mss = min(mss, offer); 3074 mss = max(mss, 64); /* sanity - at least max opt space */ 3075 return (mss); 3076 } 3077 3078 static u_int32_t 3079 pf_tcp_iss(struct pf_pdesc *pd) 3080 { 3081 MD5_CTX ctx; 3082 u_int32_t digest[4]; 3083 3084 if (V_pf_tcp_secret_init == 0) { 3085 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3086 MD5Init(&V_pf_tcp_secret_ctx); 3087 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3088 sizeof(V_pf_tcp_secret)); 3089 V_pf_tcp_secret_init = 1; 3090 } 3091 3092 ctx = V_pf_tcp_secret_ctx; 3093 3094 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3095 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3096 if (pd->af == AF_INET6) { 3097 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3098 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3099 } else { 3100 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3101 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3102 } 3103 MD5Final((u_char *)digest, &ctx); 3104 V_pf_tcp_iss_off += 4096; 3105 #define ISN_RANDOM_INCREMENT (4096 - 1) 3106 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3107 V_pf_tcp_iss_off); 3108 #undef ISN_RANDOM_INCREMENT 3109 } 3110 3111 static int 3112 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3113 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3114 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3115 { 3116 struct pf_rule *nr = NULL; 3117 struct pf_addr * const saddr = pd->src; 3118 struct pf_addr * const daddr = pd->dst; 3119 sa_family_t af = pd->af; 3120 struct pf_rule *r, *a = NULL; 3121 struct pf_ruleset *ruleset = NULL; 3122 struct pf_src_node *nsn = NULL; 3123 struct tcphdr *th = pd->hdr.tcp; 3124 struct pf_state_key *sk = NULL, *nk = NULL; 3125 u_short reason; 3126 int rewrite = 0, hdrlen = 0; 3127 int tag = -1, rtableid = -1; 3128 int asd = 0; 3129 int match = 0; 3130 int state_icmp = 0; 3131 u_int16_t sport = 0, dport = 0; 3132 u_int16_t bproto_sum = 0, bip_sum = 0; 3133 u_int8_t icmptype = 0, icmpcode = 0; 3134 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3135 3136 PF_RULES_RASSERT(); 3137 3138 if (inp != NULL) { 3139 INP_LOCK_ASSERT(inp); 3140 pd->lookup.uid = inp->inp_cred->cr_uid; 3141 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3142 pd->lookup.done = 1; 3143 } 3144 3145 switch (pd->proto) { 3146 case IPPROTO_TCP: 3147 sport = th->th_sport; 3148 dport = th->th_dport; 3149 hdrlen = sizeof(*th); 3150 break; 3151 case IPPROTO_UDP: 3152 sport = pd->hdr.udp->uh_sport; 3153 dport = pd->hdr.udp->uh_dport; 3154 hdrlen = sizeof(*pd->hdr.udp); 3155 break; 3156 #ifdef INET 3157 case IPPROTO_ICMP: 3158 if (pd->af != AF_INET) 3159 break; 3160 sport = dport = pd->hdr.icmp->icmp_id; 3161 hdrlen = sizeof(*pd->hdr.icmp); 3162 icmptype = pd->hdr.icmp->icmp_type; 3163 icmpcode = pd->hdr.icmp->icmp_code; 3164 3165 if (icmptype == ICMP_UNREACH || 3166 icmptype == ICMP_SOURCEQUENCH || 3167 icmptype == ICMP_REDIRECT || 3168 icmptype == ICMP_TIMXCEED || 3169 icmptype == ICMP_PARAMPROB) 3170 state_icmp++; 3171 break; 3172 #endif /* INET */ 3173 #ifdef INET6 3174 case IPPROTO_ICMPV6: 3175 if (af != AF_INET6) 3176 break; 3177 sport = dport = pd->hdr.icmp6->icmp6_id; 3178 hdrlen = sizeof(*pd->hdr.icmp6); 3179 icmptype = pd->hdr.icmp6->icmp6_type; 3180 icmpcode = pd->hdr.icmp6->icmp6_code; 3181 3182 if (icmptype == ICMP6_DST_UNREACH || 3183 icmptype == ICMP6_PACKET_TOO_BIG || 3184 icmptype == ICMP6_TIME_EXCEEDED || 3185 icmptype == ICMP6_PARAM_PROB) 3186 state_icmp++; 3187 break; 3188 #endif /* INET6 */ 3189 default: 3190 sport = dport = hdrlen = 0; 3191 break; 3192 } 3193 3194 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3195 3196 /* check packet for BINAT/NAT/RDR */ 3197 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3198 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3199 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3200 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3201 3202 if (pd->ip_sum) 3203 bip_sum = *pd->ip_sum; 3204 3205 switch (pd->proto) { 3206 case IPPROTO_TCP: 3207 bproto_sum = th->th_sum; 3208 pd->proto_sum = &th->th_sum; 3209 3210 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3211 nk->port[pd->sidx] != sport) { 3212 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3213 &th->th_sum, &nk->addr[pd->sidx], 3214 nk->port[pd->sidx], 0, af); 3215 pd->sport = &th->th_sport; 3216 sport = th->th_sport; 3217 } 3218 3219 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3220 nk->port[pd->didx] != dport) { 3221 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3222 &th->th_sum, &nk->addr[pd->didx], 3223 nk->port[pd->didx], 0, af); 3224 dport = th->th_dport; 3225 pd->dport = &th->th_dport; 3226 } 3227 rewrite++; 3228 break; 3229 case IPPROTO_UDP: 3230 bproto_sum = pd->hdr.udp->uh_sum; 3231 pd->proto_sum = &pd->hdr.udp->uh_sum; 3232 3233 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3234 nk->port[pd->sidx] != sport) { 3235 pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, 3236 pd->ip_sum, &pd->hdr.udp->uh_sum, 3237 &nk->addr[pd->sidx], 3238 nk->port[pd->sidx], 1, af); 3239 sport = pd->hdr.udp->uh_sport; 3240 pd->sport = &pd->hdr.udp->uh_sport; 3241 } 3242 3243 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3244 nk->port[pd->didx] != dport) { 3245 pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, 3246 pd->ip_sum, &pd->hdr.udp->uh_sum, 3247 &nk->addr[pd->didx], 3248 nk->port[pd->didx], 1, af); 3249 dport = pd->hdr.udp->uh_dport; 3250 pd->dport = &pd->hdr.udp->uh_dport; 3251 } 3252 rewrite++; 3253 break; 3254 #ifdef INET 3255 case IPPROTO_ICMP: 3256 nk->port[0] = nk->port[1]; 3257 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3258 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3259 nk->addr[pd->sidx].v4.s_addr, 0); 3260 3261 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3262 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3263 nk->addr[pd->didx].v4.s_addr, 0); 3264 3265 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3266 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3267 pd->hdr.icmp->icmp_cksum, sport, 3268 nk->port[1], 0); 3269 pd->hdr.icmp->icmp_id = nk->port[1]; 3270 pd->sport = &pd->hdr.icmp->icmp_id; 3271 } 3272 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3273 break; 3274 #endif /* INET */ 3275 #ifdef INET6 3276 case IPPROTO_ICMPV6: 3277 nk->port[0] = nk->port[1]; 3278 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3279 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3280 &nk->addr[pd->sidx], 0); 3281 3282 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3283 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3284 &nk->addr[pd->didx], 0); 3285 rewrite++; 3286 break; 3287 #endif /* INET */ 3288 default: 3289 switch (af) { 3290 #ifdef INET 3291 case AF_INET: 3292 if (PF_ANEQ(saddr, 3293 &nk->addr[pd->sidx], AF_INET)) 3294 pf_change_a(&saddr->v4.s_addr, 3295 pd->ip_sum, 3296 nk->addr[pd->sidx].v4.s_addr, 0); 3297 3298 if (PF_ANEQ(daddr, 3299 &nk->addr[pd->didx], AF_INET)) 3300 pf_change_a(&daddr->v4.s_addr, 3301 pd->ip_sum, 3302 nk->addr[pd->didx].v4.s_addr, 0); 3303 break; 3304 #endif /* INET */ 3305 #ifdef INET6 3306 case AF_INET6: 3307 if (PF_ANEQ(saddr, 3308 &nk->addr[pd->sidx], AF_INET6)) 3309 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3310 3311 if (PF_ANEQ(daddr, 3312 &nk->addr[pd->didx], AF_INET6)) 3313 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3314 break; 3315 #endif /* INET */ 3316 } 3317 break; 3318 } 3319 if (nr->natpass) 3320 r = NULL; 3321 pd->nat_rule = nr; 3322 } 3323 3324 while (r != NULL) { 3325 r->evaluations++; 3326 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3327 r = r->skip[PF_SKIP_IFP].ptr; 3328 else if (r->direction && r->direction != direction) 3329 r = r->skip[PF_SKIP_DIR].ptr; 3330 else if (r->af && r->af != af) 3331 r = r->skip[PF_SKIP_AF].ptr; 3332 else if (r->proto && r->proto != pd->proto) 3333 r = r->skip[PF_SKIP_PROTO].ptr; 3334 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3335 r->src.neg, kif, M_GETFIB(m))) 3336 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3337 /* tcp/udp only. port_op always 0 in other cases */ 3338 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3339 r->src.port[0], r->src.port[1], sport)) 3340 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3341 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3342 r->dst.neg, NULL, M_GETFIB(m))) 3343 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3344 /* tcp/udp only. port_op always 0 in other cases */ 3345 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3346 r->dst.port[0], r->dst.port[1], dport)) 3347 r = r->skip[PF_SKIP_DST_PORT].ptr; 3348 /* icmp only. type always 0 in other cases */ 3349 else if (r->type && r->type != icmptype + 1) 3350 r = TAILQ_NEXT(r, entries); 3351 /* icmp only. type always 0 in other cases */ 3352 else if (r->code && r->code != icmpcode + 1) 3353 r = TAILQ_NEXT(r, entries); 3354 else if (r->tos && !(r->tos == pd->tos)) 3355 r = TAILQ_NEXT(r, entries); 3356 else if (r->rule_flag & PFRULE_FRAGMENT) 3357 r = TAILQ_NEXT(r, entries); 3358 else if (pd->proto == IPPROTO_TCP && 3359 (r->flagset & th->th_flags) != r->flags) 3360 r = TAILQ_NEXT(r, entries); 3361 /* tcp/udp only. uid.op always 0 in other cases */ 3362 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3363 pf_socket_lookup(direction, pd, m), 1)) && 3364 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3365 pd->lookup.uid)) 3366 r = TAILQ_NEXT(r, entries); 3367 /* tcp/udp only. gid.op always 0 in other cases */ 3368 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3369 pf_socket_lookup(direction, pd, m), 1)) && 3370 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3371 pd->lookup.gid)) 3372 r = TAILQ_NEXT(r, entries); 3373 else if (r->prio && 3374 !pf_match_ieee8021q_pcp(r->prio, m)) 3375 r = TAILQ_NEXT(r, entries); 3376 else if (r->prob && 3377 r->prob <= arc4random()) 3378 r = TAILQ_NEXT(r, entries); 3379 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3380 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3381 r = TAILQ_NEXT(r, entries); 3382 else if (r->os_fingerprint != PF_OSFP_ANY && 3383 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3384 pf_osfp_fingerprint(pd, m, off, th), 3385 r->os_fingerprint))) 3386 r = TAILQ_NEXT(r, entries); 3387 else { 3388 if (r->tag) 3389 tag = r->tag; 3390 if (r->rtableid >= 0) 3391 rtableid = r->rtableid; 3392 if (r->anchor == NULL) { 3393 match = 1; 3394 *rm = r; 3395 *am = a; 3396 *rsm = ruleset; 3397 if ((*rm)->quick) 3398 break; 3399 r = TAILQ_NEXT(r, entries); 3400 } else 3401 pf_step_into_anchor(anchor_stack, &asd, 3402 &ruleset, PF_RULESET_FILTER, &r, &a, 3403 &match); 3404 } 3405 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3406 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3407 break; 3408 } 3409 r = *rm; 3410 a = *am; 3411 ruleset = *rsm; 3412 3413 REASON_SET(&reason, PFRES_MATCH); 3414 3415 if (r->log || (nr != NULL && nr->log)) { 3416 if (rewrite) 3417 m_copyback(m, off, hdrlen, pd->hdr.any); 3418 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3419 ruleset, pd, 1); 3420 } 3421 3422 if ((r->action == PF_DROP) && 3423 ((r->rule_flag & PFRULE_RETURNRST) || 3424 (r->rule_flag & PFRULE_RETURNICMP) || 3425 (r->rule_flag & PFRULE_RETURN))) { 3426 /* undo NAT changes, if they have taken place */ 3427 if (nr != NULL) { 3428 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3429 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3430 if (pd->sport) 3431 *pd->sport = sk->port[pd->sidx]; 3432 if (pd->dport) 3433 *pd->dport = sk->port[pd->didx]; 3434 if (pd->proto_sum) 3435 *pd->proto_sum = bproto_sum; 3436 if (pd->ip_sum) 3437 *pd->ip_sum = bip_sum; 3438 m_copyback(m, off, hdrlen, pd->hdr.any); 3439 } 3440 if (pd->proto == IPPROTO_TCP && 3441 ((r->rule_flag & PFRULE_RETURNRST) || 3442 (r->rule_flag & PFRULE_RETURN)) && 3443 !(th->th_flags & TH_RST)) { 3444 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3445 int len = 0; 3446 #ifdef INET 3447 struct ip *h4; 3448 #endif 3449 #ifdef INET6 3450 struct ip6_hdr *h6; 3451 #endif 3452 3453 switch (af) { 3454 #ifdef INET 3455 case AF_INET: 3456 h4 = mtod(m, struct ip *); 3457 len = ntohs(h4->ip_len) - off; 3458 break; 3459 #endif 3460 #ifdef INET6 3461 case AF_INET6: 3462 h6 = mtod(m, struct ip6_hdr *); 3463 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3464 break; 3465 #endif 3466 } 3467 3468 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3469 REASON_SET(&reason, PFRES_PROTCKSUM); 3470 else { 3471 if (th->th_flags & TH_SYN) 3472 ack++; 3473 if (th->th_flags & TH_FIN) 3474 ack++; 3475 pf_send_tcp(m, r, af, pd->dst, 3476 pd->src, th->th_dport, th->th_sport, 3477 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3478 r->return_ttl, 1, 0, kif->pfik_ifp); 3479 } 3480 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3481 r->return_icmp) 3482 pf_send_icmp(m, r->return_icmp >> 8, 3483 r->return_icmp & 255, af, r); 3484 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3485 r->return_icmp6) 3486 pf_send_icmp(m, r->return_icmp6 >> 8, 3487 r->return_icmp6 & 255, af, r); 3488 } 3489 3490 if (r->action == PF_DROP) 3491 goto cleanup; 3492 3493 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3494 REASON_SET(&reason, PFRES_MEMORY); 3495 goto cleanup; 3496 } 3497 if (rtableid >= 0) 3498 M_SETFIB(m, rtableid); 3499 3500 if (!state_icmp && (r->keep_state || nr != NULL || 3501 (pd->flags & PFDESC_TCP_NORM))) { 3502 int action; 3503 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3504 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3505 hdrlen); 3506 if (action != PF_PASS) 3507 return (action); 3508 } else { 3509 if (sk != NULL) 3510 uma_zfree(V_pf_state_key_z, sk); 3511 if (nk != NULL) 3512 uma_zfree(V_pf_state_key_z, nk); 3513 } 3514 3515 /* copy back packet headers if we performed NAT operations */ 3516 if (rewrite) 3517 m_copyback(m, off, hdrlen, pd->hdr.any); 3518 3519 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3520 direction == PF_OUT && 3521 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3522 /* 3523 * We want the state created, but we dont 3524 * want to send this in case a partner 3525 * firewall has to know about it to allow 3526 * replies through it. 3527 */ 3528 return (PF_DEFER); 3529 3530 return (PF_PASS); 3531 3532 cleanup: 3533 if (sk != NULL) 3534 uma_zfree(V_pf_state_key_z, sk); 3535 if (nk != NULL) 3536 uma_zfree(V_pf_state_key_z, nk); 3537 return (PF_DROP); 3538 } 3539 3540 static int 3541 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3542 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3543 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3544 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3545 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3546 { 3547 struct pf_state *s = NULL; 3548 struct pf_src_node *sn = NULL; 3549 struct tcphdr *th = pd->hdr.tcp; 3550 u_int16_t mss = V_tcp_mssdflt; 3551 u_short reason; 3552 3553 /* check maximums */ 3554 if (r->max_states && 3555 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3556 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3557 REASON_SET(&reason, PFRES_MAXSTATES); 3558 return (PF_DROP); 3559 } 3560 /* src node for filter rule */ 3561 if ((r->rule_flag & PFRULE_SRCTRACK || 3562 r->rpool.opts & PF_POOL_STICKYADDR) && 3563 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3564 REASON_SET(&reason, PFRES_SRCLIMIT); 3565 goto csfailed; 3566 } 3567 /* src node for translation rule */ 3568 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3569 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3570 REASON_SET(&reason, PFRES_SRCLIMIT); 3571 goto csfailed; 3572 } 3573 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3574 if (s == NULL) { 3575 REASON_SET(&reason, PFRES_MEMORY); 3576 goto csfailed; 3577 } 3578 s->rule.ptr = r; 3579 s->nat_rule.ptr = nr; 3580 s->anchor.ptr = a; 3581 STATE_INC_COUNTERS(s); 3582 if (r->allow_opts) 3583 s->state_flags |= PFSTATE_ALLOWOPTS; 3584 if (r->rule_flag & PFRULE_STATESLOPPY) 3585 s->state_flags |= PFSTATE_SLOPPY; 3586 s->log = r->log & PF_LOG_ALL; 3587 s->sync_state = PFSYNC_S_NONE; 3588 if (nr != NULL) 3589 s->log |= nr->log & PF_LOG_ALL; 3590 switch (pd->proto) { 3591 case IPPROTO_TCP: 3592 s->src.seqlo = ntohl(th->th_seq); 3593 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3594 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3595 r->keep_state == PF_STATE_MODULATE) { 3596 /* Generate sequence number modulator */ 3597 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3598 0) 3599 s->src.seqdiff = 1; 3600 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3601 htonl(s->src.seqlo + s->src.seqdiff), 0); 3602 *rewrite = 1; 3603 } else 3604 s->src.seqdiff = 0; 3605 if (th->th_flags & TH_SYN) { 3606 s->src.seqhi++; 3607 s->src.wscale = pf_get_wscale(m, off, 3608 th->th_off, pd->af); 3609 } 3610 s->src.max_win = MAX(ntohs(th->th_win), 1); 3611 if (s->src.wscale & PF_WSCALE_MASK) { 3612 /* Remove scale factor from initial window */ 3613 int win = s->src.max_win; 3614 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3615 s->src.max_win = (win - 1) >> 3616 (s->src.wscale & PF_WSCALE_MASK); 3617 } 3618 if (th->th_flags & TH_FIN) 3619 s->src.seqhi++; 3620 s->dst.seqhi = 1; 3621 s->dst.max_win = 1; 3622 s->src.state = TCPS_SYN_SENT; 3623 s->dst.state = TCPS_CLOSED; 3624 s->timeout = PFTM_TCP_FIRST_PACKET; 3625 break; 3626 case IPPROTO_UDP: 3627 s->src.state = PFUDPS_SINGLE; 3628 s->dst.state = PFUDPS_NO_TRAFFIC; 3629 s->timeout = PFTM_UDP_FIRST_PACKET; 3630 break; 3631 case IPPROTO_ICMP: 3632 #ifdef INET6 3633 case IPPROTO_ICMPV6: 3634 #endif 3635 s->timeout = PFTM_ICMP_FIRST_PACKET; 3636 break; 3637 default: 3638 s->src.state = PFOTHERS_SINGLE; 3639 s->dst.state = PFOTHERS_NO_TRAFFIC; 3640 s->timeout = PFTM_OTHER_FIRST_PACKET; 3641 } 3642 3643 if (r->rt) { 3644 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3645 REASON_SET(&reason, PFRES_MAPFAILED); 3646 pf_src_tree_remove_state(s); 3647 STATE_DEC_COUNTERS(s); 3648 uma_zfree(V_pf_state_z, s); 3649 goto csfailed; 3650 } 3651 s->rt_kif = r->rpool.cur->kif; 3652 } 3653 3654 s->creation = time_uptime; 3655 s->expire = time_uptime; 3656 3657 if (sn != NULL) 3658 s->src_node = sn; 3659 if (nsn != NULL) { 3660 /* XXX We only modify one side for now. */ 3661 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3662 s->nat_src_node = nsn; 3663 } 3664 if (pd->proto == IPPROTO_TCP) { 3665 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3666 off, pd, th, &s->src, &s->dst)) { 3667 REASON_SET(&reason, PFRES_MEMORY); 3668 pf_src_tree_remove_state(s); 3669 STATE_DEC_COUNTERS(s); 3670 uma_zfree(V_pf_state_z, s); 3671 return (PF_DROP); 3672 } 3673 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3674 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3675 &s->src, &s->dst, rewrite)) { 3676 /* This really shouldn't happen!!! */ 3677 DPFPRINTF(PF_DEBUG_URGENT, 3678 ("pf_normalize_tcp_stateful failed on first pkt")); 3679 pf_normalize_tcp_cleanup(s); 3680 pf_src_tree_remove_state(s); 3681 STATE_DEC_COUNTERS(s); 3682 uma_zfree(V_pf_state_z, s); 3683 return (PF_DROP); 3684 } 3685 } 3686 s->direction = pd->dir; 3687 3688 /* 3689 * sk/nk could already been setup by pf_get_translation(). 3690 */ 3691 if (nr == NULL) { 3692 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3693 __func__, nr, sk, nk)); 3694 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3695 if (sk == NULL) 3696 goto csfailed; 3697 nk = sk; 3698 } else 3699 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3700 __func__, nr, sk, nk)); 3701 3702 /* Swap sk/nk for PF_OUT. */ 3703 if (pf_state_insert(BOUND_IFACE(r, kif), 3704 (pd->dir == PF_IN) ? sk : nk, 3705 (pd->dir == PF_IN) ? nk : sk, s)) { 3706 if (pd->proto == IPPROTO_TCP) 3707 pf_normalize_tcp_cleanup(s); 3708 REASON_SET(&reason, PFRES_STATEINS); 3709 pf_src_tree_remove_state(s); 3710 STATE_DEC_COUNTERS(s); 3711 uma_zfree(V_pf_state_z, s); 3712 return (PF_DROP); 3713 } else 3714 *sm = s; 3715 3716 if (tag > 0) 3717 s->tag = tag; 3718 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3719 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3720 s->src.state = PF_TCPS_PROXY_SRC; 3721 /* undo NAT changes, if they have taken place */ 3722 if (nr != NULL) { 3723 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3724 if (pd->dir == PF_OUT) 3725 skt = s->key[PF_SK_STACK]; 3726 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3727 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3728 if (pd->sport) 3729 *pd->sport = skt->port[pd->sidx]; 3730 if (pd->dport) 3731 *pd->dport = skt->port[pd->didx]; 3732 if (pd->proto_sum) 3733 *pd->proto_sum = bproto_sum; 3734 if (pd->ip_sum) 3735 *pd->ip_sum = bip_sum; 3736 m_copyback(m, off, hdrlen, pd->hdr.any); 3737 } 3738 s->src.seqhi = htonl(arc4random()); 3739 /* Find mss option */ 3740 int rtid = M_GETFIB(m); 3741 mss = pf_get_mss(m, off, th->th_off, pd->af); 3742 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3743 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3744 s->src.mss = mss; 3745 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3746 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3747 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3748 REASON_SET(&reason, PFRES_SYNPROXY); 3749 return (PF_SYNPROXY_DROP); 3750 } 3751 3752 return (PF_PASS); 3753 3754 csfailed: 3755 if (sk != NULL) 3756 uma_zfree(V_pf_state_key_z, sk); 3757 if (nk != NULL) 3758 uma_zfree(V_pf_state_key_z, nk); 3759 3760 if (sn != NULL) { 3761 struct pf_srchash *sh; 3762 3763 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3764 PF_HASHROW_LOCK(sh); 3765 if (--sn->states == 0 && sn->expire == 0) { 3766 pf_unlink_src_node(sn); 3767 uma_zfree(V_pf_sources_z, sn); 3768 counter_u64_add( 3769 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3770 } 3771 PF_HASHROW_UNLOCK(sh); 3772 } 3773 3774 if (nsn != sn && nsn != NULL) { 3775 struct pf_srchash *sh; 3776 3777 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3778 PF_HASHROW_LOCK(sh); 3779 if (--nsn->states == 0 && nsn->expire == 0) { 3780 pf_unlink_src_node(nsn); 3781 uma_zfree(V_pf_sources_z, nsn); 3782 counter_u64_add( 3783 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3784 } 3785 PF_HASHROW_UNLOCK(sh); 3786 } 3787 3788 return (PF_DROP); 3789 } 3790 3791 static int 3792 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3793 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3794 struct pf_ruleset **rsm) 3795 { 3796 struct pf_rule *r, *a = NULL; 3797 struct pf_ruleset *ruleset = NULL; 3798 sa_family_t af = pd->af; 3799 u_short reason; 3800 int tag = -1; 3801 int asd = 0; 3802 int match = 0; 3803 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3804 3805 PF_RULES_RASSERT(); 3806 3807 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3808 while (r != NULL) { 3809 r->evaluations++; 3810 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3811 r = r->skip[PF_SKIP_IFP].ptr; 3812 else if (r->direction && r->direction != direction) 3813 r = r->skip[PF_SKIP_DIR].ptr; 3814 else if (r->af && r->af != af) 3815 r = r->skip[PF_SKIP_AF].ptr; 3816 else if (r->proto && r->proto != pd->proto) 3817 r = r->skip[PF_SKIP_PROTO].ptr; 3818 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3819 r->src.neg, kif, M_GETFIB(m))) 3820 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3821 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3822 r->dst.neg, NULL, M_GETFIB(m))) 3823 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3824 else if (r->tos && !(r->tos == pd->tos)) 3825 r = TAILQ_NEXT(r, entries); 3826 else if (r->os_fingerprint != PF_OSFP_ANY) 3827 r = TAILQ_NEXT(r, entries); 3828 else if (pd->proto == IPPROTO_UDP && 3829 (r->src.port_op || r->dst.port_op)) 3830 r = TAILQ_NEXT(r, entries); 3831 else if (pd->proto == IPPROTO_TCP && 3832 (r->src.port_op || r->dst.port_op || r->flagset)) 3833 r = TAILQ_NEXT(r, entries); 3834 else if ((pd->proto == IPPROTO_ICMP || 3835 pd->proto == IPPROTO_ICMPV6) && 3836 (r->type || r->code)) 3837 r = TAILQ_NEXT(r, entries); 3838 else if (r->prio && 3839 !pf_match_ieee8021q_pcp(r->prio, m)) 3840 r = TAILQ_NEXT(r, entries); 3841 else if (r->prob && r->prob <= 3842 (arc4random() % (UINT_MAX - 1) + 1)) 3843 r = TAILQ_NEXT(r, entries); 3844 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3845 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3846 r = TAILQ_NEXT(r, entries); 3847 else { 3848 if (r->anchor == NULL) { 3849 match = 1; 3850 *rm = r; 3851 *am = a; 3852 *rsm = ruleset; 3853 if ((*rm)->quick) 3854 break; 3855 r = TAILQ_NEXT(r, entries); 3856 } else 3857 pf_step_into_anchor(anchor_stack, &asd, 3858 &ruleset, PF_RULESET_FILTER, &r, &a, 3859 &match); 3860 } 3861 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3862 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3863 break; 3864 } 3865 r = *rm; 3866 a = *am; 3867 ruleset = *rsm; 3868 3869 REASON_SET(&reason, PFRES_MATCH); 3870 3871 if (r->log) 3872 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3873 1); 3874 3875 if (r->action != PF_PASS) 3876 return (PF_DROP); 3877 3878 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3879 REASON_SET(&reason, PFRES_MEMORY); 3880 return (PF_DROP); 3881 } 3882 3883 return (PF_PASS); 3884 } 3885 3886 static int 3887 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3888 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3889 struct pf_pdesc *pd, u_short *reason, int *copyback) 3890 { 3891 struct tcphdr *th = pd->hdr.tcp; 3892 u_int16_t win = ntohs(th->th_win); 3893 u_int32_t ack, end, seq, orig_seq; 3894 u_int8_t sws, dws; 3895 int ackskew; 3896 3897 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3898 sws = src->wscale & PF_WSCALE_MASK; 3899 dws = dst->wscale & PF_WSCALE_MASK; 3900 } else 3901 sws = dws = 0; 3902 3903 /* 3904 * Sequence tracking algorithm from Guido van Rooij's paper: 3905 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3906 * tcp_filtering.ps 3907 */ 3908 3909 orig_seq = seq = ntohl(th->th_seq); 3910 if (src->seqlo == 0) { 3911 /* First packet from this end. Set its state */ 3912 3913 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3914 src->scrub == NULL) { 3915 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3916 REASON_SET(reason, PFRES_MEMORY); 3917 return (PF_DROP); 3918 } 3919 } 3920 3921 /* Deferred generation of sequence number modulator */ 3922 if (dst->seqdiff && !src->seqdiff) { 3923 /* use random iss for the TCP server */ 3924 while ((src->seqdiff = arc4random() - seq) == 0) 3925 ; 3926 ack = ntohl(th->th_ack) - dst->seqdiff; 3927 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3928 src->seqdiff), 0); 3929 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 3930 *copyback = 1; 3931 } else { 3932 ack = ntohl(th->th_ack); 3933 } 3934 3935 end = seq + pd->p_len; 3936 if (th->th_flags & TH_SYN) { 3937 end++; 3938 if (dst->wscale & PF_WSCALE_FLAG) { 3939 src->wscale = pf_get_wscale(m, off, th->th_off, 3940 pd->af); 3941 if (src->wscale & PF_WSCALE_FLAG) { 3942 /* Remove scale factor from initial 3943 * window */ 3944 sws = src->wscale & PF_WSCALE_MASK; 3945 win = ((u_int32_t)win + (1 << sws) - 1) 3946 >> sws; 3947 dws = dst->wscale & PF_WSCALE_MASK; 3948 } else { 3949 /* fixup other window */ 3950 dst->max_win <<= dst->wscale & 3951 PF_WSCALE_MASK; 3952 /* in case of a retrans SYN|ACK */ 3953 dst->wscale = 0; 3954 } 3955 } 3956 } 3957 if (th->th_flags & TH_FIN) 3958 end++; 3959 3960 src->seqlo = seq; 3961 if (src->state < TCPS_SYN_SENT) 3962 src->state = TCPS_SYN_SENT; 3963 3964 /* 3965 * May need to slide the window (seqhi may have been set by 3966 * the crappy stack check or if we picked up the connection 3967 * after establishment) 3968 */ 3969 if (src->seqhi == 1 || 3970 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3971 src->seqhi = end + MAX(1, dst->max_win << dws); 3972 if (win > src->max_win) 3973 src->max_win = win; 3974 3975 } else { 3976 ack = ntohl(th->th_ack) - dst->seqdiff; 3977 if (src->seqdiff) { 3978 /* Modulate sequence numbers */ 3979 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3980 src->seqdiff), 0); 3981 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 3982 *copyback = 1; 3983 } 3984 end = seq + pd->p_len; 3985 if (th->th_flags & TH_SYN) 3986 end++; 3987 if (th->th_flags & TH_FIN) 3988 end++; 3989 } 3990 3991 if ((th->th_flags & TH_ACK) == 0) { 3992 /* Let it pass through the ack skew check */ 3993 ack = dst->seqlo; 3994 } else if ((ack == 0 && 3995 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 3996 /* broken tcp stacks do not set ack */ 3997 (dst->state < TCPS_SYN_SENT)) { 3998 /* 3999 * Many stacks (ours included) will set the ACK number in an 4000 * FIN|ACK if the SYN times out -- no sequence to ACK. 4001 */ 4002 ack = dst->seqlo; 4003 } 4004 4005 if (seq == end) { 4006 /* Ease sequencing restrictions on no data packets */ 4007 seq = src->seqlo; 4008 end = seq; 4009 } 4010 4011 ackskew = dst->seqlo - ack; 4012 4013 4014 /* 4015 * Need to demodulate the sequence numbers in any TCP SACK options 4016 * (Selective ACK). We could optionally validate the SACK values 4017 * against the current ACK window, either forwards or backwards, but 4018 * I'm not confident that SACK has been implemented properly 4019 * everywhere. It wouldn't surprise me if several stacks accidentally 4020 * SACK too far backwards of previously ACKed data. There really aren't 4021 * any security implications of bad SACKing unless the target stack 4022 * doesn't validate the option length correctly. Someone trying to 4023 * spoof into a TCP connection won't bother blindly sending SACK 4024 * options anyway. 4025 */ 4026 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4027 if (pf_modulate_sack(m, off, pd, th, dst)) 4028 *copyback = 1; 4029 } 4030 4031 4032 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4033 if (SEQ_GEQ(src->seqhi, end) && 4034 /* Last octet inside other's window space */ 4035 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4036 /* Retrans: not more than one window back */ 4037 (ackskew >= -MAXACKWINDOW) && 4038 /* Acking not more than one reassembled fragment backwards */ 4039 (ackskew <= (MAXACKWINDOW << sws)) && 4040 /* Acking not more than one window forward */ 4041 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4042 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4043 (pd->flags & PFDESC_IP_REAS) == 0)) { 4044 /* Require an exact/+1 sequence match on resets when possible */ 4045 4046 if (dst->scrub || src->scrub) { 4047 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4048 *state, src, dst, copyback)) 4049 return (PF_DROP); 4050 } 4051 4052 /* update max window */ 4053 if (src->max_win < win) 4054 src->max_win = win; 4055 /* synchronize sequencing */ 4056 if (SEQ_GT(end, src->seqlo)) 4057 src->seqlo = end; 4058 /* slide the window of what the other end can send */ 4059 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4060 dst->seqhi = ack + MAX((win << sws), 1); 4061 4062 4063 /* update states */ 4064 if (th->th_flags & TH_SYN) 4065 if (src->state < TCPS_SYN_SENT) 4066 src->state = TCPS_SYN_SENT; 4067 if (th->th_flags & TH_FIN) 4068 if (src->state < TCPS_CLOSING) 4069 src->state = TCPS_CLOSING; 4070 if (th->th_flags & TH_ACK) { 4071 if (dst->state == TCPS_SYN_SENT) { 4072 dst->state = TCPS_ESTABLISHED; 4073 if (src->state == TCPS_ESTABLISHED && 4074 (*state)->src_node != NULL && 4075 pf_src_connlimit(state)) { 4076 REASON_SET(reason, PFRES_SRCLIMIT); 4077 return (PF_DROP); 4078 } 4079 } else if (dst->state == TCPS_CLOSING) 4080 dst->state = TCPS_FIN_WAIT_2; 4081 } 4082 if (th->th_flags & TH_RST) 4083 src->state = dst->state = TCPS_TIME_WAIT; 4084 4085 /* update expire time */ 4086 (*state)->expire = time_uptime; 4087 if (src->state >= TCPS_FIN_WAIT_2 && 4088 dst->state >= TCPS_FIN_WAIT_2) 4089 (*state)->timeout = PFTM_TCP_CLOSED; 4090 else if (src->state >= TCPS_CLOSING && 4091 dst->state >= TCPS_CLOSING) 4092 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4093 else if (src->state < TCPS_ESTABLISHED || 4094 dst->state < TCPS_ESTABLISHED) 4095 (*state)->timeout = PFTM_TCP_OPENING; 4096 else if (src->state >= TCPS_CLOSING || 4097 dst->state >= TCPS_CLOSING) 4098 (*state)->timeout = PFTM_TCP_CLOSING; 4099 else 4100 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4101 4102 /* Fall through to PASS packet */ 4103 4104 } else if ((dst->state < TCPS_SYN_SENT || 4105 dst->state >= TCPS_FIN_WAIT_2 || 4106 src->state >= TCPS_FIN_WAIT_2) && 4107 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4108 /* Within a window forward of the originating packet */ 4109 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4110 /* Within a window backward of the originating packet */ 4111 4112 /* 4113 * This currently handles three situations: 4114 * 1) Stupid stacks will shotgun SYNs before their peer 4115 * replies. 4116 * 2) When PF catches an already established stream (the 4117 * firewall rebooted, the state table was flushed, routes 4118 * changed...) 4119 * 3) Packets get funky immediately after the connection 4120 * closes (this should catch Solaris spurious ACK|FINs 4121 * that web servers like to spew after a close) 4122 * 4123 * This must be a little more careful than the above code 4124 * since packet floods will also be caught here. We don't 4125 * update the TTL here to mitigate the damage of a packet 4126 * flood and so the same code can handle awkward establishment 4127 * and a loosened connection close. 4128 * In the establishment case, a correct peer response will 4129 * validate the connection, go through the normal state code 4130 * and keep updating the state TTL. 4131 */ 4132 4133 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4134 printf("pf: loose state match: "); 4135 pf_print_state(*state); 4136 pf_print_flags(th->th_flags); 4137 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4138 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4139 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4140 (unsigned long long)(*state)->packets[1], 4141 pd->dir == PF_IN ? "in" : "out", 4142 pd->dir == (*state)->direction ? "fwd" : "rev"); 4143 } 4144 4145 if (dst->scrub || src->scrub) { 4146 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4147 *state, src, dst, copyback)) 4148 return (PF_DROP); 4149 } 4150 4151 /* update max window */ 4152 if (src->max_win < win) 4153 src->max_win = win; 4154 /* synchronize sequencing */ 4155 if (SEQ_GT(end, src->seqlo)) 4156 src->seqlo = end; 4157 /* slide the window of what the other end can send */ 4158 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4159 dst->seqhi = ack + MAX((win << sws), 1); 4160 4161 /* 4162 * Cannot set dst->seqhi here since this could be a shotgunned 4163 * SYN and not an already established connection. 4164 */ 4165 4166 if (th->th_flags & TH_FIN) 4167 if (src->state < TCPS_CLOSING) 4168 src->state = TCPS_CLOSING; 4169 if (th->th_flags & TH_RST) 4170 src->state = dst->state = TCPS_TIME_WAIT; 4171 4172 /* Fall through to PASS packet */ 4173 4174 } else { 4175 if ((*state)->dst.state == TCPS_SYN_SENT && 4176 (*state)->src.state == TCPS_SYN_SENT) { 4177 /* Send RST for state mismatches during handshake */ 4178 if (!(th->th_flags & TH_RST)) 4179 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4180 pd->dst, pd->src, th->th_dport, 4181 th->th_sport, ntohl(th->th_ack), 0, 4182 TH_RST, 0, 0, 4183 (*state)->rule.ptr->return_ttl, 1, 0, 4184 kif->pfik_ifp); 4185 src->seqlo = 0; 4186 src->seqhi = 1; 4187 src->max_win = 1; 4188 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4189 printf("pf: BAD state: "); 4190 pf_print_state(*state); 4191 pf_print_flags(th->th_flags); 4192 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4193 "pkts=%llu:%llu dir=%s,%s\n", 4194 seq, orig_seq, ack, pd->p_len, ackskew, 4195 (unsigned long long)(*state)->packets[0], 4196 (unsigned long long)(*state)->packets[1], 4197 pd->dir == PF_IN ? "in" : "out", 4198 pd->dir == (*state)->direction ? "fwd" : "rev"); 4199 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4200 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4201 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4202 ' ': '2', 4203 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4204 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4205 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4206 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4207 } 4208 REASON_SET(reason, PFRES_BADSTATE); 4209 return (PF_DROP); 4210 } 4211 4212 return (PF_PASS); 4213 } 4214 4215 static int 4216 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4217 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4218 { 4219 struct tcphdr *th = pd->hdr.tcp; 4220 4221 if (th->th_flags & TH_SYN) 4222 if (src->state < TCPS_SYN_SENT) 4223 src->state = TCPS_SYN_SENT; 4224 if (th->th_flags & TH_FIN) 4225 if (src->state < TCPS_CLOSING) 4226 src->state = TCPS_CLOSING; 4227 if (th->th_flags & TH_ACK) { 4228 if (dst->state == TCPS_SYN_SENT) { 4229 dst->state = TCPS_ESTABLISHED; 4230 if (src->state == TCPS_ESTABLISHED && 4231 (*state)->src_node != NULL && 4232 pf_src_connlimit(state)) { 4233 REASON_SET(reason, PFRES_SRCLIMIT); 4234 return (PF_DROP); 4235 } 4236 } else if (dst->state == TCPS_CLOSING) { 4237 dst->state = TCPS_FIN_WAIT_2; 4238 } else if (src->state == TCPS_SYN_SENT && 4239 dst->state < TCPS_SYN_SENT) { 4240 /* 4241 * Handle a special sloppy case where we only see one 4242 * half of the connection. If there is a ACK after 4243 * the initial SYN without ever seeing a packet from 4244 * the destination, set the connection to established. 4245 */ 4246 dst->state = src->state = TCPS_ESTABLISHED; 4247 if ((*state)->src_node != NULL && 4248 pf_src_connlimit(state)) { 4249 REASON_SET(reason, PFRES_SRCLIMIT); 4250 return (PF_DROP); 4251 } 4252 } else if (src->state == TCPS_CLOSING && 4253 dst->state == TCPS_ESTABLISHED && 4254 dst->seqlo == 0) { 4255 /* 4256 * Handle the closing of half connections where we 4257 * don't see the full bidirectional FIN/ACK+ACK 4258 * handshake. 4259 */ 4260 dst->state = TCPS_CLOSING; 4261 } 4262 } 4263 if (th->th_flags & TH_RST) 4264 src->state = dst->state = TCPS_TIME_WAIT; 4265 4266 /* update expire time */ 4267 (*state)->expire = time_uptime; 4268 if (src->state >= TCPS_FIN_WAIT_2 && 4269 dst->state >= TCPS_FIN_WAIT_2) 4270 (*state)->timeout = PFTM_TCP_CLOSED; 4271 else if (src->state >= TCPS_CLOSING && 4272 dst->state >= TCPS_CLOSING) 4273 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4274 else if (src->state < TCPS_ESTABLISHED || 4275 dst->state < TCPS_ESTABLISHED) 4276 (*state)->timeout = PFTM_TCP_OPENING; 4277 else if (src->state >= TCPS_CLOSING || 4278 dst->state >= TCPS_CLOSING) 4279 (*state)->timeout = PFTM_TCP_CLOSING; 4280 else 4281 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4282 4283 return (PF_PASS); 4284 } 4285 4286 static int 4287 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4288 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4289 u_short *reason) 4290 { 4291 struct pf_state_key_cmp key; 4292 struct tcphdr *th = pd->hdr.tcp; 4293 int copyback = 0; 4294 struct pf_state_peer *src, *dst; 4295 struct pf_state_key *sk; 4296 4297 bzero(&key, sizeof(key)); 4298 key.af = pd->af; 4299 key.proto = IPPROTO_TCP; 4300 if (direction == PF_IN) { /* wire side, straight */ 4301 PF_ACPY(&key.addr[0], pd->src, key.af); 4302 PF_ACPY(&key.addr[1], pd->dst, key.af); 4303 key.port[0] = th->th_sport; 4304 key.port[1] = th->th_dport; 4305 } else { /* stack side, reverse */ 4306 PF_ACPY(&key.addr[1], pd->src, key.af); 4307 PF_ACPY(&key.addr[0], pd->dst, key.af); 4308 key.port[1] = th->th_sport; 4309 key.port[0] = th->th_dport; 4310 } 4311 4312 STATE_LOOKUP(kif, &key, direction, *state, pd); 4313 4314 if (direction == (*state)->direction) { 4315 src = &(*state)->src; 4316 dst = &(*state)->dst; 4317 } else { 4318 src = &(*state)->dst; 4319 dst = &(*state)->src; 4320 } 4321 4322 sk = (*state)->key[pd->didx]; 4323 4324 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4325 if (direction != (*state)->direction) { 4326 REASON_SET(reason, PFRES_SYNPROXY); 4327 return (PF_SYNPROXY_DROP); 4328 } 4329 if (th->th_flags & TH_SYN) { 4330 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4331 REASON_SET(reason, PFRES_SYNPROXY); 4332 return (PF_DROP); 4333 } 4334 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4335 pd->src, th->th_dport, th->th_sport, 4336 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4337 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4338 REASON_SET(reason, PFRES_SYNPROXY); 4339 return (PF_SYNPROXY_DROP); 4340 } else if (!(th->th_flags & TH_ACK) || 4341 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4342 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4343 REASON_SET(reason, PFRES_SYNPROXY); 4344 return (PF_DROP); 4345 } else if ((*state)->src_node != NULL && 4346 pf_src_connlimit(state)) { 4347 REASON_SET(reason, PFRES_SRCLIMIT); 4348 return (PF_DROP); 4349 } else 4350 (*state)->src.state = PF_TCPS_PROXY_DST; 4351 } 4352 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4353 if (direction == (*state)->direction) { 4354 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4355 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4356 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4357 REASON_SET(reason, PFRES_SYNPROXY); 4358 return (PF_DROP); 4359 } 4360 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4361 if ((*state)->dst.seqhi == 1) 4362 (*state)->dst.seqhi = htonl(arc4random()); 4363 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4364 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4365 sk->port[pd->sidx], sk->port[pd->didx], 4366 (*state)->dst.seqhi, 0, TH_SYN, 0, 4367 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4368 REASON_SET(reason, PFRES_SYNPROXY); 4369 return (PF_SYNPROXY_DROP); 4370 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4371 (TH_SYN|TH_ACK)) || 4372 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4373 REASON_SET(reason, PFRES_SYNPROXY); 4374 return (PF_DROP); 4375 } else { 4376 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4377 (*state)->dst.seqlo = ntohl(th->th_seq); 4378 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4379 pd->src, th->th_dport, th->th_sport, 4380 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4381 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4382 (*state)->tag, NULL); 4383 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4384 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4385 sk->port[pd->sidx], sk->port[pd->didx], 4386 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4387 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4388 (*state)->src.seqdiff = (*state)->dst.seqhi - 4389 (*state)->src.seqlo; 4390 (*state)->dst.seqdiff = (*state)->src.seqhi - 4391 (*state)->dst.seqlo; 4392 (*state)->src.seqhi = (*state)->src.seqlo + 4393 (*state)->dst.max_win; 4394 (*state)->dst.seqhi = (*state)->dst.seqlo + 4395 (*state)->src.max_win; 4396 (*state)->src.wscale = (*state)->dst.wscale = 0; 4397 (*state)->src.state = (*state)->dst.state = 4398 TCPS_ESTABLISHED; 4399 REASON_SET(reason, PFRES_SYNPROXY); 4400 return (PF_SYNPROXY_DROP); 4401 } 4402 } 4403 4404 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4405 dst->state >= TCPS_FIN_WAIT_2 && 4406 src->state >= TCPS_FIN_WAIT_2) { 4407 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4408 printf("pf: state reuse "); 4409 pf_print_state(*state); 4410 pf_print_flags(th->th_flags); 4411 printf("\n"); 4412 } 4413 /* XXX make sure it's the same direction ?? */ 4414 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4415 pf_unlink_state(*state, PF_ENTER_LOCKED); 4416 *state = NULL; 4417 return (PF_DROP); 4418 } 4419 4420 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4421 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4422 return (PF_DROP); 4423 } else { 4424 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4425 ©back) == PF_DROP) 4426 return (PF_DROP); 4427 } 4428 4429 /* translate source/destination address, if necessary */ 4430 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4431 struct pf_state_key *nk = (*state)->key[pd->didx]; 4432 4433 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4434 nk->port[pd->sidx] != th->th_sport) 4435 pf_change_ap(m, pd->src, &th->th_sport, 4436 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4437 nk->port[pd->sidx], 0, pd->af); 4438 4439 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4440 nk->port[pd->didx] != th->th_dport) 4441 pf_change_ap(m, pd->dst, &th->th_dport, 4442 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4443 nk->port[pd->didx], 0, pd->af); 4444 copyback = 1; 4445 } 4446 4447 /* Copyback sequence modulation or stateful scrub changes if needed */ 4448 if (copyback) 4449 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4450 4451 return (PF_PASS); 4452 } 4453 4454 static int 4455 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4456 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4457 { 4458 struct pf_state_peer *src, *dst; 4459 struct pf_state_key_cmp key; 4460 struct udphdr *uh = pd->hdr.udp; 4461 4462 bzero(&key, sizeof(key)); 4463 key.af = pd->af; 4464 key.proto = IPPROTO_UDP; 4465 if (direction == PF_IN) { /* wire side, straight */ 4466 PF_ACPY(&key.addr[0], pd->src, key.af); 4467 PF_ACPY(&key.addr[1], pd->dst, key.af); 4468 key.port[0] = uh->uh_sport; 4469 key.port[1] = uh->uh_dport; 4470 } else { /* stack side, reverse */ 4471 PF_ACPY(&key.addr[1], pd->src, key.af); 4472 PF_ACPY(&key.addr[0], pd->dst, key.af); 4473 key.port[1] = uh->uh_sport; 4474 key.port[0] = uh->uh_dport; 4475 } 4476 4477 STATE_LOOKUP(kif, &key, direction, *state, pd); 4478 4479 if (direction == (*state)->direction) { 4480 src = &(*state)->src; 4481 dst = &(*state)->dst; 4482 } else { 4483 src = &(*state)->dst; 4484 dst = &(*state)->src; 4485 } 4486 4487 /* update states */ 4488 if (src->state < PFUDPS_SINGLE) 4489 src->state = PFUDPS_SINGLE; 4490 if (dst->state == PFUDPS_SINGLE) 4491 dst->state = PFUDPS_MULTIPLE; 4492 4493 /* update expire time */ 4494 (*state)->expire = time_uptime; 4495 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4496 (*state)->timeout = PFTM_UDP_MULTIPLE; 4497 else 4498 (*state)->timeout = PFTM_UDP_SINGLE; 4499 4500 /* translate source/destination address, if necessary */ 4501 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4502 struct pf_state_key *nk = (*state)->key[pd->didx]; 4503 4504 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4505 nk->port[pd->sidx] != uh->uh_sport) 4506 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4507 &uh->uh_sum, &nk->addr[pd->sidx], 4508 nk->port[pd->sidx], 1, pd->af); 4509 4510 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4511 nk->port[pd->didx] != uh->uh_dport) 4512 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4513 &uh->uh_sum, &nk->addr[pd->didx], 4514 nk->port[pd->didx], 1, pd->af); 4515 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4516 } 4517 4518 return (PF_PASS); 4519 } 4520 4521 static int 4522 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4523 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4524 { 4525 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4526 u_int16_t icmpid = 0, *icmpsum; 4527 u_int8_t icmptype; 4528 int state_icmp = 0; 4529 struct pf_state_key_cmp key; 4530 4531 bzero(&key, sizeof(key)); 4532 switch (pd->proto) { 4533 #ifdef INET 4534 case IPPROTO_ICMP: 4535 icmptype = pd->hdr.icmp->icmp_type; 4536 icmpid = pd->hdr.icmp->icmp_id; 4537 icmpsum = &pd->hdr.icmp->icmp_cksum; 4538 4539 if (icmptype == ICMP_UNREACH || 4540 icmptype == ICMP_SOURCEQUENCH || 4541 icmptype == ICMP_REDIRECT || 4542 icmptype == ICMP_TIMXCEED || 4543 icmptype == ICMP_PARAMPROB) 4544 state_icmp++; 4545 break; 4546 #endif /* INET */ 4547 #ifdef INET6 4548 case IPPROTO_ICMPV6: 4549 icmptype = pd->hdr.icmp6->icmp6_type; 4550 icmpid = pd->hdr.icmp6->icmp6_id; 4551 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4552 4553 if (icmptype == ICMP6_DST_UNREACH || 4554 icmptype == ICMP6_PACKET_TOO_BIG || 4555 icmptype == ICMP6_TIME_EXCEEDED || 4556 icmptype == ICMP6_PARAM_PROB) 4557 state_icmp++; 4558 break; 4559 #endif /* INET6 */ 4560 } 4561 4562 if (!state_icmp) { 4563 4564 /* 4565 * ICMP query/reply message not related to a TCP/UDP packet. 4566 * Search for an ICMP state. 4567 */ 4568 key.af = pd->af; 4569 key.proto = pd->proto; 4570 key.port[0] = key.port[1] = icmpid; 4571 if (direction == PF_IN) { /* wire side, straight */ 4572 PF_ACPY(&key.addr[0], pd->src, key.af); 4573 PF_ACPY(&key.addr[1], pd->dst, key.af); 4574 } else { /* stack side, reverse */ 4575 PF_ACPY(&key.addr[1], pd->src, key.af); 4576 PF_ACPY(&key.addr[0], pd->dst, key.af); 4577 } 4578 4579 STATE_LOOKUP(kif, &key, direction, *state, pd); 4580 4581 (*state)->expire = time_uptime; 4582 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4583 4584 /* translate source/destination address, if necessary */ 4585 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4586 struct pf_state_key *nk = (*state)->key[pd->didx]; 4587 4588 switch (pd->af) { 4589 #ifdef INET 4590 case AF_INET: 4591 if (PF_ANEQ(pd->src, 4592 &nk->addr[pd->sidx], AF_INET)) 4593 pf_change_a(&saddr->v4.s_addr, 4594 pd->ip_sum, 4595 nk->addr[pd->sidx].v4.s_addr, 0); 4596 4597 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4598 AF_INET)) 4599 pf_change_a(&daddr->v4.s_addr, 4600 pd->ip_sum, 4601 nk->addr[pd->didx].v4.s_addr, 0); 4602 4603 if (nk->port[0] != 4604 pd->hdr.icmp->icmp_id) { 4605 pd->hdr.icmp->icmp_cksum = 4606 pf_cksum_fixup( 4607 pd->hdr.icmp->icmp_cksum, icmpid, 4608 nk->port[pd->sidx], 0); 4609 pd->hdr.icmp->icmp_id = 4610 nk->port[pd->sidx]; 4611 } 4612 4613 m_copyback(m, off, ICMP_MINLEN, 4614 (caddr_t )pd->hdr.icmp); 4615 break; 4616 #endif /* INET */ 4617 #ifdef INET6 4618 case AF_INET6: 4619 if (PF_ANEQ(pd->src, 4620 &nk->addr[pd->sidx], AF_INET6)) 4621 pf_change_a6(saddr, 4622 &pd->hdr.icmp6->icmp6_cksum, 4623 &nk->addr[pd->sidx], 0); 4624 4625 if (PF_ANEQ(pd->dst, 4626 &nk->addr[pd->didx], AF_INET6)) 4627 pf_change_a6(daddr, 4628 &pd->hdr.icmp6->icmp6_cksum, 4629 &nk->addr[pd->didx], 0); 4630 4631 m_copyback(m, off, sizeof(struct icmp6_hdr), 4632 (caddr_t )pd->hdr.icmp6); 4633 break; 4634 #endif /* INET6 */ 4635 } 4636 } 4637 return (PF_PASS); 4638 4639 } else { 4640 /* 4641 * ICMP error message in response to a TCP/UDP packet. 4642 * Extract the inner TCP/UDP header and search for that state. 4643 */ 4644 4645 struct pf_pdesc pd2; 4646 bzero(&pd2, sizeof pd2); 4647 #ifdef INET 4648 struct ip h2; 4649 #endif /* INET */ 4650 #ifdef INET6 4651 struct ip6_hdr h2_6; 4652 int terminal = 0; 4653 #endif /* INET6 */ 4654 int ipoff2 = 0; 4655 int off2 = 0; 4656 4657 pd2.af = pd->af; 4658 /* Payload packet is from the opposite direction. */ 4659 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4660 pd2.didx = (direction == PF_IN) ? 0 : 1; 4661 switch (pd->af) { 4662 #ifdef INET 4663 case AF_INET: 4664 /* offset of h2 in mbuf chain */ 4665 ipoff2 = off + ICMP_MINLEN; 4666 4667 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4668 NULL, reason, pd2.af)) { 4669 DPFPRINTF(PF_DEBUG_MISC, 4670 ("pf: ICMP error message too short " 4671 "(ip)\n")); 4672 return (PF_DROP); 4673 } 4674 /* 4675 * ICMP error messages don't refer to non-first 4676 * fragments 4677 */ 4678 if (h2.ip_off & htons(IP_OFFMASK)) { 4679 REASON_SET(reason, PFRES_FRAG); 4680 return (PF_DROP); 4681 } 4682 4683 /* offset of protocol header that follows h2 */ 4684 off2 = ipoff2 + (h2.ip_hl << 2); 4685 4686 pd2.proto = h2.ip_p; 4687 pd2.src = (struct pf_addr *)&h2.ip_src; 4688 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4689 pd2.ip_sum = &h2.ip_sum; 4690 break; 4691 #endif /* INET */ 4692 #ifdef INET6 4693 case AF_INET6: 4694 ipoff2 = off + sizeof(struct icmp6_hdr); 4695 4696 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4697 NULL, reason, pd2.af)) { 4698 DPFPRINTF(PF_DEBUG_MISC, 4699 ("pf: ICMP error message too short " 4700 "(ip6)\n")); 4701 return (PF_DROP); 4702 } 4703 pd2.proto = h2_6.ip6_nxt; 4704 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4705 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4706 pd2.ip_sum = NULL; 4707 off2 = ipoff2 + sizeof(h2_6); 4708 do { 4709 switch (pd2.proto) { 4710 case IPPROTO_FRAGMENT: 4711 /* 4712 * ICMPv6 error messages for 4713 * non-first fragments 4714 */ 4715 REASON_SET(reason, PFRES_FRAG); 4716 return (PF_DROP); 4717 case IPPROTO_AH: 4718 case IPPROTO_HOPOPTS: 4719 case IPPROTO_ROUTING: 4720 case IPPROTO_DSTOPTS: { 4721 /* get next header and header length */ 4722 struct ip6_ext opt6; 4723 4724 if (!pf_pull_hdr(m, off2, &opt6, 4725 sizeof(opt6), NULL, reason, 4726 pd2.af)) { 4727 DPFPRINTF(PF_DEBUG_MISC, 4728 ("pf: ICMPv6 short opt\n")); 4729 return (PF_DROP); 4730 } 4731 if (pd2.proto == IPPROTO_AH) 4732 off2 += (opt6.ip6e_len + 2) * 4; 4733 else 4734 off2 += (opt6.ip6e_len + 1) * 8; 4735 pd2.proto = opt6.ip6e_nxt; 4736 /* goto the next header */ 4737 break; 4738 } 4739 default: 4740 terminal++; 4741 break; 4742 } 4743 } while (!terminal); 4744 break; 4745 #endif /* INET6 */ 4746 } 4747 4748 switch (pd2.proto) { 4749 case IPPROTO_TCP: { 4750 struct tcphdr th; 4751 u_int32_t seq; 4752 struct pf_state_peer *src, *dst; 4753 u_int8_t dws; 4754 int copyback = 0; 4755 4756 /* 4757 * Only the first 8 bytes of the TCP header can be 4758 * expected. Don't access any TCP header fields after 4759 * th_seq, an ackskew test is not possible. 4760 */ 4761 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4762 pd2.af)) { 4763 DPFPRINTF(PF_DEBUG_MISC, 4764 ("pf: ICMP error message too short " 4765 "(tcp)\n")); 4766 return (PF_DROP); 4767 } 4768 4769 key.af = pd2.af; 4770 key.proto = IPPROTO_TCP; 4771 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4772 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4773 key.port[pd2.sidx] = th.th_sport; 4774 key.port[pd2.didx] = th.th_dport; 4775 4776 STATE_LOOKUP(kif, &key, direction, *state, pd); 4777 4778 if (direction == (*state)->direction) { 4779 src = &(*state)->dst; 4780 dst = &(*state)->src; 4781 } else { 4782 src = &(*state)->src; 4783 dst = &(*state)->dst; 4784 } 4785 4786 if (src->wscale && dst->wscale) 4787 dws = dst->wscale & PF_WSCALE_MASK; 4788 else 4789 dws = 0; 4790 4791 /* Demodulate sequence number */ 4792 seq = ntohl(th.th_seq) - src->seqdiff; 4793 if (src->seqdiff) { 4794 pf_change_a(&th.th_seq, icmpsum, 4795 htonl(seq), 0); 4796 copyback = 1; 4797 } 4798 4799 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4800 (!SEQ_GEQ(src->seqhi, seq) || 4801 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4802 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4803 printf("pf: BAD ICMP %d:%d ", 4804 icmptype, pd->hdr.icmp->icmp_code); 4805 pf_print_host(pd->src, 0, pd->af); 4806 printf(" -> "); 4807 pf_print_host(pd->dst, 0, pd->af); 4808 printf(" state: "); 4809 pf_print_state(*state); 4810 printf(" seq=%u\n", seq); 4811 } 4812 REASON_SET(reason, PFRES_BADSTATE); 4813 return (PF_DROP); 4814 } else { 4815 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4816 printf("pf: OK ICMP %d:%d ", 4817 icmptype, pd->hdr.icmp->icmp_code); 4818 pf_print_host(pd->src, 0, pd->af); 4819 printf(" -> "); 4820 pf_print_host(pd->dst, 0, pd->af); 4821 printf(" state: "); 4822 pf_print_state(*state); 4823 printf(" seq=%u\n", seq); 4824 } 4825 } 4826 4827 /* translate source/destination address, if necessary */ 4828 if ((*state)->key[PF_SK_WIRE] != 4829 (*state)->key[PF_SK_STACK]) { 4830 struct pf_state_key *nk = 4831 (*state)->key[pd->didx]; 4832 4833 if (PF_ANEQ(pd2.src, 4834 &nk->addr[pd2.sidx], pd2.af) || 4835 nk->port[pd2.sidx] != th.th_sport) 4836 pf_change_icmp(pd2.src, &th.th_sport, 4837 daddr, &nk->addr[pd2.sidx], 4838 nk->port[pd2.sidx], NULL, 4839 pd2.ip_sum, icmpsum, 4840 pd->ip_sum, 0, pd2.af); 4841 4842 if (PF_ANEQ(pd2.dst, 4843 &nk->addr[pd2.didx], pd2.af) || 4844 nk->port[pd2.didx] != th.th_dport) 4845 pf_change_icmp(pd2.dst, &th.th_dport, 4846 saddr, &nk->addr[pd2.didx], 4847 nk->port[pd2.didx], NULL, 4848 pd2.ip_sum, icmpsum, 4849 pd->ip_sum, 0, pd2.af); 4850 copyback = 1; 4851 } 4852 4853 if (copyback) { 4854 switch (pd2.af) { 4855 #ifdef INET 4856 case AF_INET: 4857 m_copyback(m, off, ICMP_MINLEN, 4858 (caddr_t )pd->hdr.icmp); 4859 m_copyback(m, ipoff2, sizeof(h2), 4860 (caddr_t )&h2); 4861 break; 4862 #endif /* INET */ 4863 #ifdef INET6 4864 case AF_INET6: 4865 m_copyback(m, off, 4866 sizeof(struct icmp6_hdr), 4867 (caddr_t )pd->hdr.icmp6); 4868 m_copyback(m, ipoff2, sizeof(h2_6), 4869 (caddr_t )&h2_6); 4870 break; 4871 #endif /* INET6 */ 4872 } 4873 m_copyback(m, off2, 8, (caddr_t)&th); 4874 } 4875 4876 return (PF_PASS); 4877 break; 4878 } 4879 case IPPROTO_UDP: { 4880 struct udphdr uh; 4881 4882 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4883 NULL, reason, pd2.af)) { 4884 DPFPRINTF(PF_DEBUG_MISC, 4885 ("pf: ICMP error message too short " 4886 "(udp)\n")); 4887 return (PF_DROP); 4888 } 4889 4890 key.af = pd2.af; 4891 key.proto = IPPROTO_UDP; 4892 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4893 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4894 key.port[pd2.sidx] = uh.uh_sport; 4895 key.port[pd2.didx] = uh.uh_dport; 4896 4897 STATE_LOOKUP(kif, &key, direction, *state, pd); 4898 4899 /* translate source/destination address, if necessary */ 4900 if ((*state)->key[PF_SK_WIRE] != 4901 (*state)->key[PF_SK_STACK]) { 4902 struct pf_state_key *nk = 4903 (*state)->key[pd->didx]; 4904 4905 if (PF_ANEQ(pd2.src, 4906 &nk->addr[pd2.sidx], pd2.af) || 4907 nk->port[pd2.sidx] != uh.uh_sport) 4908 pf_change_icmp(pd2.src, &uh.uh_sport, 4909 daddr, &nk->addr[pd2.sidx], 4910 nk->port[pd2.sidx], &uh.uh_sum, 4911 pd2.ip_sum, icmpsum, 4912 pd->ip_sum, 1, pd2.af); 4913 4914 if (PF_ANEQ(pd2.dst, 4915 &nk->addr[pd2.didx], pd2.af) || 4916 nk->port[pd2.didx] != uh.uh_dport) 4917 pf_change_icmp(pd2.dst, &uh.uh_dport, 4918 saddr, &nk->addr[pd2.didx], 4919 nk->port[pd2.didx], &uh.uh_sum, 4920 pd2.ip_sum, icmpsum, 4921 pd->ip_sum, 1, pd2.af); 4922 4923 switch (pd2.af) { 4924 #ifdef INET 4925 case AF_INET: 4926 m_copyback(m, off, ICMP_MINLEN, 4927 (caddr_t )pd->hdr.icmp); 4928 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4929 break; 4930 #endif /* INET */ 4931 #ifdef INET6 4932 case AF_INET6: 4933 m_copyback(m, off, 4934 sizeof(struct icmp6_hdr), 4935 (caddr_t )pd->hdr.icmp6); 4936 m_copyback(m, ipoff2, sizeof(h2_6), 4937 (caddr_t )&h2_6); 4938 break; 4939 #endif /* INET6 */ 4940 } 4941 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4942 } 4943 return (PF_PASS); 4944 break; 4945 } 4946 #ifdef INET 4947 case IPPROTO_ICMP: { 4948 struct icmp iih; 4949 4950 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4951 NULL, reason, pd2.af)) { 4952 DPFPRINTF(PF_DEBUG_MISC, 4953 ("pf: ICMP error message too short i" 4954 "(icmp)\n")); 4955 return (PF_DROP); 4956 } 4957 4958 key.af = pd2.af; 4959 key.proto = IPPROTO_ICMP; 4960 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4961 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4962 key.port[0] = key.port[1] = iih.icmp_id; 4963 4964 STATE_LOOKUP(kif, &key, direction, *state, pd); 4965 4966 /* translate source/destination address, if necessary */ 4967 if ((*state)->key[PF_SK_WIRE] != 4968 (*state)->key[PF_SK_STACK]) { 4969 struct pf_state_key *nk = 4970 (*state)->key[pd->didx]; 4971 4972 if (PF_ANEQ(pd2.src, 4973 &nk->addr[pd2.sidx], pd2.af) || 4974 nk->port[pd2.sidx] != iih.icmp_id) 4975 pf_change_icmp(pd2.src, &iih.icmp_id, 4976 daddr, &nk->addr[pd2.sidx], 4977 nk->port[pd2.sidx], NULL, 4978 pd2.ip_sum, icmpsum, 4979 pd->ip_sum, 0, AF_INET); 4980 4981 if (PF_ANEQ(pd2.dst, 4982 &nk->addr[pd2.didx], pd2.af) || 4983 nk->port[pd2.didx] != iih.icmp_id) 4984 pf_change_icmp(pd2.dst, &iih.icmp_id, 4985 saddr, &nk->addr[pd2.didx], 4986 nk->port[pd2.didx], NULL, 4987 pd2.ip_sum, icmpsum, 4988 pd->ip_sum, 0, AF_INET); 4989 4990 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 4991 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4992 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 4993 } 4994 return (PF_PASS); 4995 break; 4996 } 4997 #endif /* INET */ 4998 #ifdef INET6 4999 case IPPROTO_ICMPV6: { 5000 struct icmp6_hdr iih; 5001 5002 if (!pf_pull_hdr(m, off2, &iih, 5003 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5004 DPFPRINTF(PF_DEBUG_MISC, 5005 ("pf: ICMP error message too short " 5006 "(icmp6)\n")); 5007 return (PF_DROP); 5008 } 5009 5010 key.af = pd2.af; 5011 key.proto = IPPROTO_ICMPV6; 5012 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5013 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5014 key.port[0] = key.port[1] = iih.icmp6_id; 5015 5016 STATE_LOOKUP(kif, &key, direction, *state, pd); 5017 5018 /* translate source/destination address, if necessary */ 5019 if ((*state)->key[PF_SK_WIRE] != 5020 (*state)->key[PF_SK_STACK]) { 5021 struct pf_state_key *nk = 5022 (*state)->key[pd->didx]; 5023 5024 if (PF_ANEQ(pd2.src, 5025 &nk->addr[pd2.sidx], pd2.af) || 5026 nk->port[pd2.sidx] != iih.icmp6_id) 5027 pf_change_icmp(pd2.src, &iih.icmp6_id, 5028 daddr, &nk->addr[pd2.sidx], 5029 nk->port[pd2.sidx], NULL, 5030 pd2.ip_sum, icmpsum, 5031 pd->ip_sum, 0, AF_INET6); 5032 5033 if (PF_ANEQ(pd2.dst, 5034 &nk->addr[pd2.didx], pd2.af) || 5035 nk->port[pd2.didx] != iih.icmp6_id) 5036 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5037 saddr, &nk->addr[pd2.didx], 5038 nk->port[pd2.didx], NULL, 5039 pd2.ip_sum, icmpsum, 5040 pd->ip_sum, 0, AF_INET6); 5041 5042 m_copyback(m, off, sizeof(struct icmp6_hdr), 5043 (caddr_t)pd->hdr.icmp6); 5044 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5045 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5046 (caddr_t)&iih); 5047 } 5048 return (PF_PASS); 5049 break; 5050 } 5051 #endif /* INET6 */ 5052 default: { 5053 key.af = pd2.af; 5054 key.proto = pd2.proto; 5055 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5056 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5057 key.port[0] = key.port[1] = 0; 5058 5059 STATE_LOOKUP(kif, &key, direction, *state, pd); 5060 5061 /* translate source/destination address, if necessary */ 5062 if ((*state)->key[PF_SK_WIRE] != 5063 (*state)->key[PF_SK_STACK]) { 5064 struct pf_state_key *nk = 5065 (*state)->key[pd->didx]; 5066 5067 if (PF_ANEQ(pd2.src, 5068 &nk->addr[pd2.sidx], pd2.af)) 5069 pf_change_icmp(pd2.src, NULL, daddr, 5070 &nk->addr[pd2.sidx], 0, NULL, 5071 pd2.ip_sum, icmpsum, 5072 pd->ip_sum, 0, pd2.af); 5073 5074 if (PF_ANEQ(pd2.dst, 5075 &nk->addr[pd2.didx], pd2.af)) 5076 pf_change_icmp(pd2.dst, NULL, saddr, 5077 &nk->addr[pd2.didx], 0, NULL, 5078 pd2.ip_sum, icmpsum, 5079 pd->ip_sum, 0, pd2.af); 5080 5081 switch (pd2.af) { 5082 #ifdef INET 5083 case AF_INET: 5084 m_copyback(m, off, ICMP_MINLEN, 5085 (caddr_t)pd->hdr.icmp); 5086 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5087 break; 5088 #endif /* INET */ 5089 #ifdef INET6 5090 case AF_INET6: 5091 m_copyback(m, off, 5092 sizeof(struct icmp6_hdr), 5093 (caddr_t )pd->hdr.icmp6); 5094 m_copyback(m, ipoff2, sizeof(h2_6), 5095 (caddr_t )&h2_6); 5096 break; 5097 #endif /* INET6 */ 5098 } 5099 } 5100 return (PF_PASS); 5101 break; 5102 } 5103 } 5104 } 5105 } 5106 5107 static int 5108 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5109 struct mbuf *m, struct pf_pdesc *pd) 5110 { 5111 struct pf_state_peer *src, *dst; 5112 struct pf_state_key_cmp key; 5113 5114 bzero(&key, sizeof(key)); 5115 key.af = pd->af; 5116 key.proto = pd->proto; 5117 if (direction == PF_IN) { 5118 PF_ACPY(&key.addr[0], pd->src, key.af); 5119 PF_ACPY(&key.addr[1], pd->dst, key.af); 5120 key.port[0] = key.port[1] = 0; 5121 } else { 5122 PF_ACPY(&key.addr[1], pd->src, key.af); 5123 PF_ACPY(&key.addr[0], pd->dst, key.af); 5124 key.port[1] = key.port[0] = 0; 5125 } 5126 5127 STATE_LOOKUP(kif, &key, direction, *state, pd); 5128 5129 if (direction == (*state)->direction) { 5130 src = &(*state)->src; 5131 dst = &(*state)->dst; 5132 } else { 5133 src = &(*state)->dst; 5134 dst = &(*state)->src; 5135 } 5136 5137 /* update states */ 5138 if (src->state < PFOTHERS_SINGLE) 5139 src->state = PFOTHERS_SINGLE; 5140 if (dst->state == PFOTHERS_SINGLE) 5141 dst->state = PFOTHERS_MULTIPLE; 5142 5143 /* update expire time */ 5144 (*state)->expire = time_uptime; 5145 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5146 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5147 else 5148 (*state)->timeout = PFTM_OTHER_SINGLE; 5149 5150 /* translate source/destination address, if necessary */ 5151 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5152 struct pf_state_key *nk = (*state)->key[pd->didx]; 5153 5154 KASSERT(nk, ("%s: nk is null", __func__)); 5155 KASSERT(pd, ("%s: pd is null", __func__)); 5156 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5157 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5158 switch (pd->af) { 5159 #ifdef INET 5160 case AF_INET: 5161 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5162 pf_change_a(&pd->src->v4.s_addr, 5163 pd->ip_sum, 5164 nk->addr[pd->sidx].v4.s_addr, 5165 0); 5166 5167 5168 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5169 pf_change_a(&pd->dst->v4.s_addr, 5170 pd->ip_sum, 5171 nk->addr[pd->didx].v4.s_addr, 5172 0); 5173 5174 break; 5175 #endif /* INET */ 5176 #ifdef INET6 5177 case AF_INET6: 5178 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5179 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5180 5181 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5182 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5183 #endif /* INET6 */ 5184 } 5185 } 5186 return (PF_PASS); 5187 } 5188 5189 /* 5190 * ipoff and off are measured from the start of the mbuf chain. 5191 * h must be at "ipoff" on the mbuf chain. 5192 */ 5193 void * 5194 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5195 u_short *actionp, u_short *reasonp, sa_family_t af) 5196 { 5197 switch (af) { 5198 #ifdef INET 5199 case AF_INET: { 5200 struct ip *h = mtod(m, struct ip *); 5201 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5202 5203 if (fragoff) { 5204 if (fragoff >= len) 5205 ACTION_SET(actionp, PF_PASS); 5206 else { 5207 ACTION_SET(actionp, PF_DROP); 5208 REASON_SET(reasonp, PFRES_FRAG); 5209 } 5210 return (NULL); 5211 } 5212 if (m->m_pkthdr.len < off + len || 5213 ntohs(h->ip_len) < off + len) { 5214 ACTION_SET(actionp, PF_DROP); 5215 REASON_SET(reasonp, PFRES_SHORT); 5216 return (NULL); 5217 } 5218 break; 5219 } 5220 #endif /* INET */ 5221 #ifdef INET6 5222 case AF_INET6: { 5223 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5224 5225 if (m->m_pkthdr.len < off + len || 5226 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5227 (unsigned)(off + len)) { 5228 ACTION_SET(actionp, PF_DROP); 5229 REASON_SET(reasonp, PFRES_SHORT); 5230 return (NULL); 5231 } 5232 break; 5233 } 5234 #endif /* INET6 */ 5235 } 5236 m_copydata(m, off, len, p); 5237 return (p); 5238 } 5239 5240 #ifdef RADIX_MPATH 5241 static int 5242 pf_routable_oldmpath(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5243 int rtableid) 5244 { 5245 struct radix_node_head *rnh; 5246 struct sockaddr_in *dst; 5247 int ret = 1; 5248 int check_mpath; 5249 #ifdef INET6 5250 struct sockaddr_in6 *dst6; 5251 struct route_in6 ro; 5252 #else 5253 struct route ro; 5254 #endif 5255 struct radix_node *rn; 5256 struct rtentry *rt; 5257 struct ifnet *ifp; 5258 5259 check_mpath = 0; 5260 /* XXX: stick to table 0 for now */ 5261 rnh = rt_tables_get_rnh(0, af); 5262 if (rnh != NULL && rn_mpath_capable(rnh)) 5263 check_mpath = 1; 5264 bzero(&ro, sizeof(ro)); 5265 switch (af) { 5266 case AF_INET: 5267 dst = satosin(&ro.ro_dst); 5268 dst->sin_family = AF_INET; 5269 dst->sin_len = sizeof(*dst); 5270 dst->sin_addr = addr->v4; 5271 break; 5272 #ifdef INET6 5273 case AF_INET6: 5274 /* 5275 * Skip check for addresses with embedded interface scope, 5276 * as they would always match anyway. 5277 */ 5278 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5279 goto out; 5280 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5281 dst6->sin6_family = AF_INET6; 5282 dst6->sin6_len = sizeof(*dst6); 5283 dst6->sin6_addr = addr->v6; 5284 break; 5285 #endif /* INET6 */ 5286 default: 5287 return (0); 5288 } 5289 5290 /* Skip checks for ipsec interfaces */ 5291 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5292 goto out; 5293 5294 switch (af) { 5295 #ifdef INET6 5296 case AF_INET6: 5297 in6_rtalloc_ign(&ro, 0, rtableid); 5298 break; 5299 #endif 5300 #ifdef INET 5301 case AF_INET: 5302 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5303 break; 5304 #endif 5305 } 5306 5307 if (ro.ro_rt != NULL) { 5308 /* No interface given, this is a no-route check */ 5309 if (kif == NULL) 5310 goto out; 5311 5312 if (kif->pfik_ifp == NULL) { 5313 ret = 0; 5314 goto out; 5315 } 5316 5317 /* Perform uRPF check if passed input interface */ 5318 ret = 0; 5319 rn = (struct radix_node *)ro.ro_rt; 5320 do { 5321 rt = (struct rtentry *)rn; 5322 ifp = rt->rt_ifp; 5323 5324 if (kif->pfik_ifp == ifp) 5325 ret = 1; 5326 rn = rn_mpath_next(rn); 5327 } while (check_mpath == 1 && rn != NULL && ret == 0); 5328 } else 5329 ret = 0; 5330 out: 5331 if (ro.ro_rt != NULL) 5332 RTFREE(ro.ro_rt); 5333 return (ret); 5334 } 5335 #endif 5336 5337 int 5338 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5339 int rtableid) 5340 { 5341 #ifdef INET 5342 struct nhop4_basic nh4; 5343 #endif 5344 #ifdef INET6 5345 struct nhop6_basic nh6; 5346 #endif 5347 struct ifnet *ifp; 5348 #ifdef RADIX_MPATH 5349 struct radix_node_head *rnh; 5350 5351 /* XXX: stick to table 0 for now */ 5352 rnh = rt_tables_get_rnh(0, af); 5353 if (rnh != NULL && rn_mpath_capable(rnh)) 5354 return (pf_routable_oldmpath(addr, af, kif, rtableid)); 5355 #endif 5356 /* 5357 * Skip check for addresses with embedded interface scope, 5358 * as they would always match anyway. 5359 */ 5360 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5361 return (1); 5362 5363 if (af != AF_INET && af != AF_INET6) 5364 return (0); 5365 5366 /* Skip checks for ipsec interfaces */ 5367 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5368 return (1); 5369 5370 ifp = NULL; 5371 5372 switch (af) { 5373 #ifdef INET6 5374 case AF_INET6: 5375 if (fib6_lookup_nh_basic(rtableid, &addr->v6, 0, 0, 0, &nh6)!=0) 5376 return (0); 5377 ifp = nh6.nh_ifp; 5378 break; 5379 #endif 5380 #ifdef INET 5381 case AF_INET: 5382 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) != 0) 5383 return (0); 5384 ifp = nh4.nh_ifp; 5385 break; 5386 #endif 5387 } 5388 5389 /* No interface given, this is a no-route check */ 5390 if (kif == NULL) 5391 return (1); 5392 5393 if (kif->pfik_ifp == NULL) 5394 return (0); 5395 5396 /* Perform uRPF check if passed input interface */ 5397 if (kif->pfik_ifp == ifp) 5398 return (1); 5399 return (0); 5400 } 5401 5402 #ifdef INET 5403 static void 5404 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5405 struct pf_state *s, struct pf_pdesc *pd) 5406 { 5407 struct mbuf *m0, *m1; 5408 struct sockaddr_in dst; 5409 struct ip *ip; 5410 struct ifnet *ifp = NULL; 5411 struct pf_addr naddr; 5412 struct pf_src_node *sn = NULL; 5413 int error = 0; 5414 uint16_t ip_len, ip_off; 5415 5416 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5417 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5418 __func__)); 5419 5420 if ((pd->pf_mtag == NULL && 5421 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5422 pd->pf_mtag->routed++ > 3) { 5423 m0 = *m; 5424 *m = NULL; 5425 goto bad_locked; 5426 } 5427 5428 if (r->rt == PF_DUPTO) { 5429 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5430 if (s) 5431 PF_STATE_UNLOCK(s); 5432 return; 5433 } 5434 } else { 5435 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5436 if (s) 5437 PF_STATE_UNLOCK(s); 5438 return; 5439 } 5440 m0 = *m; 5441 } 5442 5443 ip = mtod(m0, struct ip *); 5444 5445 bzero(&dst, sizeof(dst)); 5446 dst.sin_family = AF_INET; 5447 dst.sin_len = sizeof(dst); 5448 dst.sin_addr = ip->ip_dst; 5449 5450 if (TAILQ_EMPTY(&r->rpool.list)) { 5451 DPFPRINTF(PF_DEBUG_URGENT, 5452 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5453 goto bad_locked; 5454 } 5455 if (s == NULL) { 5456 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5457 &naddr, NULL, &sn); 5458 if (!PF_AZERO(&naddr, AF_INET)) 5459 dst.sin_addr.s_addr = naddr.v4.s_addr; 5460 ifp = r->rpool.cur->kif ? 5461 r->rpool.cur->kif->pfik_ifp : NULL; 5462 } else { 5463 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5464 dst.sin_addr.s_addr = 5465 s->rt_addr.v4.s_addr; 5466 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5467 PF_STATE_UNLOCK(s); 5468 } 5469 if (ifp == NULL) 5470 goto bad; 5471 5472 if (oifp != ifp) { 5473 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5474 goto bad; 5475 else if (m0 == NULL) 5476 goto done; 5477 if (m0->m_len < sizeof(struct ip)) { 5478 DPFPRINTF(PF_DEBUG_URGENT, 5479 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5480 goto bad; 5481 } 5482 ip = mtod(m0, struct ip *); 5483 } 5484 5485 if (ifp->if_flags & IFF_LOOPBACK) 5486 m0->m_flags |= M_SKIP_FIREWALL; 5487 5488 ip_len = ntohs(ip->ip_len); 5489 ip_off = ntohs(ip->ip_off); 5490 5491 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5492 m0->m_pkthdr.csum_flags |= CSUM_IP; 5493 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5494 in_delayed_cksum(m0); 5495 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5496 } 5497 #ifdef SCTP 5498 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5499 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5500 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5501 } 5502 #endif 5503 5504 /* 5505 * If small enough for interface, or the interface will take 5506 * care of the fragmentation for us, we can just send directly. 5507 */ 5508 if (ip_len <= ifp->if_mtu || 5509 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5510 ip->ip_sum = 0; 5511 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5512 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5513 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5514 } 5515 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5516 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5517 goto done; 5518 } 5519 5520 /* Balk when DF bit is set or the interface didn't support TSO. */ 5521 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5522 error = EMSGSIZE; 5523 KMOD_IPSTAT_INC(ips_cantfrag); 5524 if (r->rt != PF_DUPTO) { 5525 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5526 ifp->if_mtu); 5527 goto done; 5528 } else 5529 goto bad; 5530 } 5531 5532 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5533 if (error) 5534 goto bad; 5535 5536 for (; m0; m0 = m1) { 5537 m1 = m0->m_nextpkt; 5538 m0->m_nextpkt = NULL; 5539 if (error == 0) { 5540 m_clrprotoflags(m0); 5541 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5542 } else 5543 m_freem(m0); 5544 } 5545 5546 if (error == 0) 5547 KMOD_IPSTAT_INC(ips_fragmented); 5548 5549 done: 5550 if (r->rt != PF_DUPTO) 5551 *m = NULL; 5552 return; 5553 5554 bad_locked: 5555 if (s) 5556 PF_STATE_UNLOCK(s); 5557 bad: 5558 m_freem(m0); 5559 goto done; 5560 } 5561 #endif /* INET */ 5562 5563 #ifdef INET6 5564 static void 5565 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5566 struct pf_state *s, struct pf_pdesc *pd) 5567 { 5568 struct mbuf *m0; 5569 struct sockaddr_in6 dst; 5570 struct ip6_hdr *ip6; 5571 struct ifnet *ifp = NULL; 5572 struct pf_addr naddr; 5573 struct pf_src_node *sn = NULL; 5574 5575 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5576 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5577 __func__)); 5578 5579 if ((pd->pf_mtag == NULL && 5580 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5581 pd->pf_mtag->routed++ > 3) { 5582 m0 = *m; 5583 *m = NULL; 5584 goto bad_locked; 5585 } 5586 5587 if (r->rt == PF_DUPTO) { 5588 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5589 if (s) 5590 PF_STATE_UNLOCK(s); 5591 return; 5592 } 5593 } else { 5594 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5595 if (s) 5596 PF_STATE_UNLOCK(s); 5597 return; 5598 } 5599 m0 = *m; 5600 } 5601 5602 ip6 = mtod(m0, struct ip6_hdr *); 5603 5604 bzero(&dst, sizeof(dst)); 5605 dst.sin6_family = AF_INET6; 5606 dst.sin6_len = sizeof(dst); 5607 dst.sin6_addr = ip6->ip6_dst; 5608 5609 if (TAILQ_EMPTY(&r->rpool.list)) { 5610 DPFPRINTF(PF_DEBUG_URGENT, 5611 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5612 goto bad_locked; 5613 } 5614 if (s == NULL) { 5615 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5616 &naddr, NULL, &sn); 5617 if (!PF_AZERO(&naddr, AF_INET6)) 5618 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5619 &naddr, AF_INET6); 5620 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5621 } else { 5622 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5623 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5624 &s->rt_addr, AF_INET6); 5625 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5626 } 5627 5628 if (s) 5629 PF_STATE_UNLOCK(s); 5630 5631 if (ifp == NULL) 5632 goto bad; 5633 5634 if (oifp != ifp) { 5635 if (pf_test6(PF_FWD, ifp, &m0, NULL) != PF_PASS) 5636 goto bad; 5637 else if (m0 == NULL) 5638 goto done; 5639 if (m0->m_len < sizeof(struct ip6_hdr)) { 5640 DPFPRINTF(PF_DEBUG_URGENT, 5641 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5642 __func__)); 5643 goto bad; 5644 } 5645 ip6 = mtod(m0, struct ip6_hdr *); 5646 } 5647 5648 if (ifp->if_flags & IFF_LOOPBACK) 5649 m0->m_flags |= M_SKIP_FIREWALL; 5650 5651 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5652 ~ifp->if_hwassist) { 5653 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5654 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5655 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5656 } 5657 5658 /* 5659 * If the packet is too large for the outgoing interface, 5660 * send back an icmp6 error. 5661 */ 5662 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5663 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5664 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5665 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5666 else { 5667 in6_ifstat_inc(ifp, ifs6_in_toobig); 5668 if (r->rt != PF_DUPTO) 5669 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5670 else 5671 goto bad; 5672 } 5673 5674 done: 5675 if (r->rt != PF_DUPTO) 5676 *m = NULL; 5677 return; 5678 5679 bad_locked: 5680 if (s) 5681 PF_STATE_UNLOCK(s); 5682 bad: 5683 m_freem(m0); 5684 goto done; 5685 } 5686 #endif /* INET6 */ 5687 5688 /* 5689 * FreeBSD supports cksum offloads for the following drivers. 5690 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5691 * ti(4), txp(4), xl(4) 5692 * 5693 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5694 * network driver performed cksum including pseudo header, need to verify 5695 * csum_data 5696 * CSUM_DATA_VALID : 5697 * network driver performed cksum, needs to additional pseudo header 5698 * cksum computation with partial csum_data(i.e. lack of H/W support for 5699 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5700 * 5701 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5702 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5703 * TCP/UDP layer. 5704 * Also, set csum_data to 0xffff to force cksum validation. 5705 */ 5706 static int 5707 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5708 { 5709 u_int16_t sum = 0; 5710 int hw_assist = 0; 5711 struct ip *ip; 5712 5713 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5714 return (1); 5715 if (m->m_pkthdr.len < off + len) 5716 return (1); 5717 5718 switch (p) { 5719 case IPPROTO_TCP: 5720 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5721 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5722 sum = m->m_pkthdr.csum_data; 5723 } else { 5724 ip = mtod(m, struct ip *); 5725 sum = in_pseudo(ip->ip_src.s_addr, 5726 ip->ip_dst.s_addr, htonl((u_short)len + 5727 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5728 } 5729 sum ^= 0xffff; 5730 ++hw_assist; 5731 } 5732 break; 5733 case IPPROTO_UDP: 5734 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5735 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5736 sum = m->m_pkthdr.csum_data; 5737 } else { 5738 ip = mtod(m, struct ip *); 5739 sum = in_pseudo(ip->ip_src.s_addr, 5740 ip->ip_dst.s_addr, htonl((u_short)len + 5741 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5742 } 5743 sum ^= 0xffff; 5744 ++hw_assist; 5745 } 5746 break; 5747 case IPPROTO_ICMP: 5748 #ifdef INET6 5749 case IPPROTO_ICMPV6: 5750 #endif /* INET6 */ 5751 break; 5752 default: 5753 return (1); 5754 } 5755 5756 if (!hw_assist) { 5757 switch (af) { 5758 case AF_INET: 5759 if (p == IPPROTO_ICMP) { 5760 if (m->m_len < off) 5761 return (1); 5762 m->m_data += off; 5763 m->m_len -= off; 5764 sum = in_cksum(m, len); 5765 m->m_data -= off; 5766 m->m_len += off; 5767 } else { 5768 if (m->m_len < sizeof(struct ip)) 5769 return (1); 5770 sum = in4_cksum(m, p, off, len); 5771 } 5772 break; 5773 #ifdef INET6 5774 case AF_INET6: 5775 if (m->m_len < sizeof(struct ip6_hdr)) 5776 return (1); 5777 sum = in6_cksum(m, p, off, len); 5778 break; 5779 #endif /* INET6 */ 5780 default: 5781 return (1); 5782 } 5783 } 5784 if (sum) { 5785 switch (p) { 5786 case IPPROTO_TCP: 5787 { 5788 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5789 break; 5790 } 5791 case IPPROTO_UDP: 5792 { 5793 KMOD_UDPSTAT_INC(udps_badsum); 5794 break; 5795 } 5796 #ifdef INET 5797 case IPPROTO_ICMP: 5798 { 5799 KMOD_ICMPSTAT_INC(icps_checksum); 5800 break; 5801 } 5802 #endif 5803 #ifdef INET6 5804 case IPPROTO_ICMPV6: 5805 { 5806 KMOD_ICMP6STAT_INC(icp6s_checksum); 5807 break; 5808 } 5809 #endif /* INET6 */ 5810 } 5811 return (1); 5812 } else { 5813 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5814 m->m_pkthdr.csum_flags |= 5815 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5816 m->m_pkthdr.csum_data = 0xffff; 5817 } 5818 } 5819 return (0); 5820 } 5821 5822 5823 #ifdef INET 5824 int 5825 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5826 { 5827 struct pfi_kif *kif; 5828 u_short action, reason = 0, log = 0; 5829 struct mbuf *m = *m0; 5830 struct ip *h = NULL; 5831 struct m_tag *ipfwtag; 5832 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5833 struct pf_state *s = NULL; 5834 struct pf_ruleset *ruleset = NULL; 5835 struct pf_pdesc pd; 5836 int off, dirndx, pqid = 0; 5837 5838 M_ASSERTPKTHDR(m); 5839 5840 if (!V_pf_status.running) 5841 return (PF_PASS); 5842 5843 memset(&pd, 0, sizeof(pd)); 5844 5845 kif = (struct pfi_kif *)ifp->if_pf_kif; 5846 5847 if (kif == NULL) { 5848 DPFPRINTF(PF_DEBUG_URGENT, 5849 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5850 return (PF_DROP); 5851 } 5852 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5853 return (PF_PASS); 5854 5855 if (m->m_flags & M_SKIP_FIREWALL) 5856 return (PF_PASS); 5857 5858 pd.pf_mtag = pf_find_mtag(m); 5859 5860 PF_RULES_RLOCK(); 5861 5862 if (ip_divert_ptr != NULL && 5863 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5864 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5865 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5866 if (pd.pf_mtag == NULL && 5867 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5868 action = PF_DROP; 5869 goto done; 5870 } 5871 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5872 m_tag_delete(m, ipfwtag); 5873 } 5874 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5875 m->m_flags |= M_FASTFWD_OURS; 5876 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5877 } 5878 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5879 /* We do IP header normalization and packet reassembly here */ 5880 action = PF_DROP; 5881 goto done; 5882 } 5883 m = *m0; /* pf_normalize messes with m0 */ 5884 h = mtod(m, struct ip *); 5885 5886 off = h->ip_hl << 2; 5887 if (off < (int)sizeof(struct ip)) { 5888 action = PF_DROP; 5889 REASON_SET(&reason, PFRES_SHORT); 5890 log = 1; 5891 goto done; 5892 } 5893 5894 pd.src = (struct pf_addr *)&h->ip_src; 5895 pd.dst = (struct pf_addr *)&h->ip_dst; 5896 pd.sport = pd.dport = NULL; 5897 pd.ip_sum = &h->ip_sum; 5898 pd.proto_sum = NULL; 5899 pd.proto = h->ip_p; 5900 pd.dir = dir; 5901 pd.sidx = (dir == PF_IN) ? 0 : 1; 5902 pd.didx = (dir == PF_IN) ? 1 : 0; 5903 pd.af = AF_INET; 5904 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 5905 pd.tot_len = ntohs(h->ip_len); 5906 5907 /* handle fragments that didn't get reassembled by normalization */ 5908 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5909 action = pf_test_fragment(&r, dir, kif, m, h, 5910 &pd, &a, &ruleset); 5911 goto done; 5912 } 5913 5914 switch (h->ip_p) { 5915 5916 case IPPROTO_TCP: { 5917 struct tcphdr th; 5918 5919 pd.hdr.tcp = &th; 5920 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5921 &action, &reason, AF_INET)) { 5922 log = action != PF_PASS; 5923 goto done; 5924 } 5925 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5926 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5927 pqid = 1; 5928 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5929 if (action == PF_DROP) 5930 goto done; 5931 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5932 &reason); 5933 if (action == PF_PASS) { 5934 if (pfsync_update_state_ptr != NULL) 5935 pfsync_update_state_ptr(s); 5936 r = s->rule.ptr; 5937 a = s->anchor.ptr; 5938 log = s->log; 5939 } else if (s == NULL) 5940 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5941 &a, &ruleset, inp); 5942 break; 5943 } 5944 5945 case IPPROTO_UDP: { 5946 struct udphdr uh; 5947 5948 pd.hdr.udp = &uh; 5949 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5950 &action, &reason, AF_INET)) { 5951 log = action != PF_PASS; 5952 goto done; 5953 } 5954 if (uh.uh_dport == 0 || 5955 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5956 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5957 action = PF_DROP; 5958 REASON_SET(&reason, PFRES_SHORT); 5959 goto done; 5960 } 5961 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5962 if (action == PF_PASS) { 5963 if (pfsync_update_state_ptr != NULL) 5964 pfsync_update_state_ptr(s); 5965 r = s->rule.ptr; 5966 a = s->anchor.ptr; 5967 log = s->log; 5968 } else if (s == NULL) 5969 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5970 &a, &ruleset, inp); 5971 break; 5972 } 5973 5974 case IPPROTO_ICMP: { 5975 struct icmp ih; 5976 5977 pd.hdr.icmp = &ih; 5978 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 5979 &action, &reason, AF_INET)) { 5980 log = action != PF_PASS; 5981 goto done; 5982 } 5983 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 5984 &reason); 5985 if (action == PF_PASS) { 5986 if (pfsync_update_state_ptr != NULL) 5987 pfsync_update_state_ptr(s); 5988 r = s->rule.ptr; 5989 a = s->anchor.ptr; 5990 log = s->log; 5991 } else if (s == NULL) 5992 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5993 &a, &ruleset, inp); 5994 break; 5995 } 5996 5997 #ifdef INET6 5998 case IPPROTO_ICMPV6: { 5999 action = PF_DROP; 6000 DPFPRINTF(PF_DEBUG_MISC, 6001 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6002 goto done; 6003 } 6004 #endif 6005 6006 default: 6007 action = pf_test_state_other(&s, dir, kif, m, &pd); 6008 if (action == PF_PASS) { 6009 if (pfsync_update_state_ptr != NULL) 6010 pfsync_update_state_ptr(s); 6011 r = s->rule.ptr; 6012 a = s->anchor.ptr; 6013 log = s->log; 6014 } else if (s == NULL) 6015 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6016 &a, &ruleset, inp); 6017 break; 6018 } 6019 6020 done: 6021 PF_RULES_RUNLOCK(); 6022 if (action == PF_PASS && h->ip_hl > 5 && 6023 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6024 action = PF_DROP; 6025 REASON_SET(&reason, PFRES_IPOPTIONS); 6026 log = r->log; 6027 DPFPRINTF(PF_DEBUG_MISC, 6028 ("pf: dropping packet with ip options\n")); 6029 } 6030 6031 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6032 action = PF_DROP; 6033 REASON_SET(&reason, PFRES_MEMORY); 6034 } 6035 if (r->rtableid >= 0) 6036 M_SETFIB(m, r->rtableid); 6037 6038 if (r->scrub_flags & PFSTATE_SETPRIO) { 6039 if (pd.tos & IPTOS_LOWDELAY) 6040 pqid = 1; 6041 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6042 action = PF_DROP; 6043 REASON_SET(&reason, PFRES_MEMORY); 6044 log = 1; 6045 DPFPRINTF(PF_DEBUG_MISC, 6046 ("pf: failed to allocate 802.1q mtag\n")); 6047 } 6048 } 6049 6050 #ifdef ALTQ 6051 if (action == PF_PASS && r->qid) { 6052 if (pd.pf_mtag == NULL && 6053 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6054 action = PF_DROP; 6055 REASON_SET(&reason, PFRES_MEMORY); 6056 } else { 6057 if (s != NULL) 6058 pd.pf_mtag->qid_hash = pf_state_hash(s); 6059 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6060 pd.pf_mtag->qid = r->pqid; 6061 else 6062 pd.pf_mtag->qid = r->qid; 6063 /* Add hints for ecn. */ 6064 pd.pf_mtag->hdr = h; 6065 } 6066 6067 } 6068 #endif /* ALTQ */ 6069 6070 /* 6071 * connections redirected to loopback should not match sockets 6072 * bound specifically to loopback due to security implications, 6073 * see tcp_input() and in_pcblookup_listen(). 6074 */ 6075 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6076 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6077 (s->nat_rule.ptr->action == PF_RDR || 6078 s->nat_rule.ptr->action == PF_BINAT) && 6079 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 6080 m->m_flags |= M_SKIP_FIREWALL; 6081 6082 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6083 !PACKET_LOOPED(&pd)) { 6084 6085 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6086 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6087 if (ipfwtag != NULL) { 6088 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6089 ntohs(r->divert.port); 6090 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6091 6092 if (s) 6093 PF_STATE_UNLOCK(s); 6094 6095 m_tag_prepend(m, ipfwtag); 6096 if (m->m_flags & M_FASTFWD_OURS) { 6097 if (pd.pf_mtag == NULL && 6098 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6099 action = PF_DROP; 6100 REASON_SET(&reason, PFRES_MEMORY); 6101 log = 1; 6102 DPFPRINTF(PF_DEBUG_MISC, 6103 ("pf: failed to allocate tag\n")); 6104 } else { 6105 pd.pf_mtag->flags |= 6106 PF_FASTFWD_OURS_PRESENT; 6107 m->m_flags &= ~M_FASTFWD_OURS; 6108 } 6109 } 6110 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 6111 *m0 = NULL; 6112 6113 return (action); 6114 } else { 6115 /* XXX: ipfw has the same behaviour! */ 6116 action = PF_DROP; 6117 REASON_SET(&reason, PFRES_MEMORY); 6118 log = 1; 6119 DPFPRINTF(PF_DEBUG_MISC, 6120 ("pf: failed to allocate divert tag\n")); 6121 } 6122 } 6123 6124 if (log) { 6125 struct pf_rule *lr; 6126 6127 if (s != NULL && s->nat_rule.ptr != NULL && 6128 s->nat_rule.ptr->log & PF_LOG_ALL) 6129 lr = s->nat_rule.ptr; 6130 else 6131 lr = r; 6132 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6133 (s == NULL)); 6134 } 6135 6136 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6137 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 6138 6139 if (action == PF_PASS || r->action == PF_DROP) { 6140 dirndx = (dir == PF_OUT); 6141 r->packets[dirndx]++; 6142 r->bytes[dirndx] += pd.tot_len; 6143 if (a != NULL) { 6144 a->packets[dirndx]++; 6145 a->bytes[dirndx] += pd.tot_len; 6146 } 6147 if (s != NULL) { 6148 if (s->nat_rule.ptr != NULL) { 6149 s->nat_rule.ptr->packets[dirndx]++; 6150 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6151 } 6152 if (s->src_node != NULL) { 6153 s->src_node->packets[dirndx]++; 6154 s->src_node->bytes[dirndx] += pd.tot_len; 6155 } 6156 if (s->nat_src_node != NULL) { 6157 s->nat_src_node->packets[dirndx]++; 6158 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6159 } 6160 dirndx = (dir == s->direction) ? 0 : 1; 6161 s->packets[dirndx]++; 6162 s->bytes[dirndx] += pd.tot_len; 6163 } 6164 tr = r; 6165 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6166 if (nr != NULL && r == &V_pf_default_rule) 6167 tr = nr; 6168 if (tr->src.addr.type == PF_ADDR_TABLE) 6169 pfr_update_stats(tr->src.addr.p.tbl, 6170 (s == NULL) ? pd.src : 6171 &s->key[(s->direction == PF_IN)]-> 6172 addr[(s->direction == PF_OUT)], 6173 pd.af, pd.tot_len, dir == PF_OUT, 6174 r->action == PF_PASS, tr->src.neg); 6175 if (tr->dst.addr.type == PF_ADDR_TABLE) 6176 pfr_update_stats(tr->dst.addr.p.tbl, 6177 (s == NULL) ? pd.dst : 6178 &s->key[(s->direction == PF_IN)]-> 6179 addr[(s->direction == PF_IN)], 6180 pd.af, pd.tot_len, dir == PF_OUT, 6181 r->action == PF_PASS, tr->dst.neg); 6182 } 6183 6184 switch (action) { 6185 case PF_SYNPROXY_DROP: 6186 m_freem(*m0); 6187 case PF_DEFER: 6188 *m0 = NULL; 6189 action = PF_PASS; 6190 break; 6191 case PF_DROP: 6192 m_freem(*m0); 6193 *m0 = NULL; 6194 break; 6195 default: 6196 /* pf_route() returns unlocked. */ 6197 if (r->rt) { 6198 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 6199 return (action); 6200 } 6201 break; 6202 } 6203 if (s) 6204 PF_STATE_UNLOCK(s); 6205 6206 return (action); 6207 } 6208 #endif /* INET */ 6209 6210 #ifdef INET6 6211 int 6212 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6213 { 6214 struct pfi_kif *kif; 6215 u_short action, reason = 0, log = 0; 6216 struct mbuf *m = *m0, *n = NULL; 6217 struct m_tag *mtag; 6218 struct ip6_hdr *h = NULL; 6219 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6220 struct pf_state *s = NULL; 6221 struct pf_ruleset *ruleset = NULL; 6222 struct pf_pdesc pd; 6223 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6224 int fwdir = dir; 6225 6226 M_ASSERTPKTHDR(m); 6227 6228 /* Detect packet forwarding. 6229 * If the input interface is different from the output interface we're 6230 * forwarding. 6231 * We do need to be careful about bridges. If the 6232 * net.link.bridge.pfil_bridge sysctl is set we can be filtering on a 6233 * bridge, so if the input interface is a bridge member and the output 6234 * interface is its bridge or a member of the same bridge we're not 6235 * actually forwarding but bridging. 6236 */ 6237 if (dir == PF_OUT && m->m_pkthdr.rcvif && ifp != m->m_pkthdr.rcvif && 6238 (m->m_pkthdr.rcvif->if_bridge == NULL || 6239 (m->m_pkthdr.rcvif->if_bridge != ifp->if_softc && 6240 m->m_pkthdr.rcvif->if_bridge != ifp->if_bridge))) 6241 fwdir = PF_FWD; 6242 6243 if (!V_pf_status.running) 6244 return (PF_PASS); 6245 6246 memset(&pd, 0, sizeof(pd)); 6247 pd.pf_mtag = pf_find_mtag(m); 6248 6249 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6250 return (PF_PASS); 6251 6252 kif = (struct pfi_kif *)ifp->if_pf_kif; 6253 if (kif == NULL) { 6254 DPFPRINTF(PF_DEBUG_URGENT, 6255 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6256 return (PF_DROP); 6257 } 6258 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6259 return (PF_PASS); 6260 6261 if (m->m_flags & M_SKIP_FIREWALL) 6262 return (PF_PASS); 6263 6264 PF_RULES_RLOCK(); 6265 6266 /* We do IP header normalization and packet reassembly here */ 6267 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6268 action = PF_DROP; 6269 goto done; 6270 } 6271 m = *m0; /* pf_normalize messes with m0 */ 6272 h = mtod(m, struct ip6_hdr *); 6273 6274 #if 1 6275 /* 6276 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6277 * will do something bad, so drop the packet for now. 6278 */ 6279 if (htons(h->ip6_plen) == 0) { 6280 action = PF_DROP; 6281 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6282 goto done; 6283 } 6284 #endif 6285 6286 pd.src = (struct pf_addr *)&h->ip6_src; 6287 pd.dst = (struct pf_addr *)&h->ip6_dst; 6288 pd.sport = pd.dport = NULL; 6289 pd.ip_sum = NULL; 6290 pd.proto_sum = NULL; 6291 pd.dir = dir; 6292 pd.sidx = (dir == PF_IN) ? 0 : 1; 6293 pd.didx = (dir == PF_IN) ? 1 : 0; 6294 pd.af = AF_INET6; 6295 pd.tos = 0; 6296 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6297 6298 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6299 pd.proto = h->ip6_nxt; 6300 do { 6301 switch (pd.proto) { 6302 case IPPROTO_FRAGMENT: 6303 action = pf_test_fragment(&r, dir, kif, m, h, 6304 &pd, &a, &ruleset); 6305 if (action == PF_DROP) 6306 REASON_SET(&reason, PFRES_FRAG); 6307 goto done; 6308 case IPPROTO_ROUTING: { 6309 struct ip6_rthdr rthdr; 6310 6311 if (rh_cnt++) { 6312 DPFPRINTF(PF_DEBUG_MISC, 6313 ("pf: IPv6 more than one rthdr\n")); 6314 action = PF_DROP; 6315 REASON_SET(&reason, PFRES_IPOPTIONS); 6316 log = 1; 6317 goto done; 6318 } 6319 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6320 &reason, pd.af)) { 6321 DPFPRINTF(PF_DEBUG_MISC, 6322 ("pf: IPv6 short rthdr\n")); 6323 action = PF_DROP; 6324 REASON_SET(&reason, PFRES_SHORT); 6325 log = 1; 6326 goto done; 6327 } 6328 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6329 DPFPRINTF(PF_DEBUG_MISC, 6330 ("pf: IPv6 rthdr0\n")); 6331 action = PF_DROP; 6332 REASON_SET(&reason, PFRES_IPOPTIONS); 6333 log = 1; 6334 goto done; 6335 } 6336 /* FALLTHROUGH */ 6337 } 6338 case IPPROTO_AH: 6339 case IPPROTO_HOPOPTS: 6340 case IPPROTO_DSTOPTS: { 6341 /* get next header and header length */ 6342 struct ip6_ext opt6; 6343 6344 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6345 NULL, &reason, pd.af)) { 6346 DPFPRINTF(PF_DEBUG_MISC, 6347 ("pf: IPv6 short opt\n")); 6348 action = PF_DROP; 6349 log = 1; 6350 goto done; 6351 } 6352 if (pd.proto == IPPROTO_AH) 6353 off += (opt6.ip6e_len + 2) * 4; 6354 else 6355 off += (opt6.ip6e_len + 1) * 8; 6356 pd.proto = opt6.ip6e_nxt; 6357 /* goto the next header */ 6358 break; 6359 } 6360 default: 6361 terminal++; 6362 break; 6363 } 6364 } while (!terminal); 6365 6366 /* if there's no routing header, use unmodified mbuf for checksumming */ 6367 if (!n) 6368 n = m; 6369 6370 switch (pd.proto) { 6371 6372 case IPPROTO_TCP: { 6373 struct tcphdr th; 6374 6375 pd.hdr.tcp = &th; 6376 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6377 &action, &reason, AF_INET6)) { 6378 log = action != PF_PASS; 6379 goto done; 6380 } 6381 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6382 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6383 if (action == PF_DROP) 6384 goto done; 6385 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6386 &reason); 6387 if (action == PF_PASS) { 6388 if (pfsync_update_state_ptr != NULL) 6389 pfsync_update_state_ptr(s); 6390 r = s->rule.ptr; 6391 a = s->anchor.ptr; 6392 log = s->log; 6393 } else if (s == NULL) 6394 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6395 &a, &ruleset, inp); 6396 break; 6397 } 6398 6399 case IPPROTO_UDP: { 6400 struct udphdr uh; 6401 6402 pd.hdr.udp = &uh; 6403 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6404 &action, &reason, AF_INET6)) { 6405 log = action != PF_PASS; 6406 goto done; 6407 } 6408 if (uh.uh_dport == 0 || 6409 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6410 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6411 action = PF_DROP; 6412 REASON_SET(&reason, PFRES_SHORT); 6413 goto done; 6414 } 6415 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6416 if (action == PF_PASS) { 6417 if (pfsync_update_state_ptr != NULL) 6418 pfsync_update_state_ptr(s); 6419 r = s->rule.ptr; 6420 a = s->anchor.ptr; 6421 log = s->log; 6422 } else if (s == NULL) 6423 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6424 &a, &ruleset, inp); 6425 break; 6426 } 6427 6428 case IPPROTO_ICMP: { 6429 action = PF_DROP; 6430 DPFPRINTF(PF_DEBUG_MISC, 6431 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6432 goto done; 6433 } 6434 6435 case IPPROTO_ICMPV6: { 6436 struct icmp6_hdr ih; 6437 6438 pd.hdr.icmp6 = &ih; 6439 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6440 &action, &reason, AF_INET6)) { 6441 log = action != PF_PASS; 6442 goto done; 6443 } 6444 action = pf_test_state_icmp(&s, dir, kif, 6445 m, off, h, &pd, &reason); 6446 if (action == PF_PASS) { 6447 if (pfsync_update_state_ptr != NULL) 6448 pfsync_update_state_ptr(s); 6449 r = s->rule.ptr; 6450 a = s->anchor.ptr; 6451 log = s->log; 6452 } else if (s == NULL) 6453 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6454 &a, &ruleset, inp); 6455 break; 6456 } 6457 6458 default: 6459 action = pf_test_state_other(&s, dir, kif, m, &pd); 6460 if (action == PF_PASS) { 6461 if (pfsync_update_state_ptr != NULL) 6462 pfsync_update_state_ptr(s); 6463 r = s->rule.ptr; 6464 a = s->anchor.ptr; 6465 log = s->log; 6466 } else if (s == NULL) 6467 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6468 &a, &ruleset, inp); 6469 break; 6470 } 6471 6472 done: 6473 PF_RULES_RUNLOCK(); 6474 if (n != m) { 6475 m_freem(n); 6476 n = NULL; 6477 } 6478 6479 /* handle dangerous IPv6 extension headers. */ 6480 if (action == PF_PASS && rh_cnt && 6481 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6482 action = PF_DROP; 6483 REASON_SET(&reason, PFRES_IPOPTIONS); 6484 log = r->log; 6485 DPFPRINTF(PF_DEBUG_MISC, 6486 ("pf: dropping packet with dangerous v6 headers\n")); 6487 } 6488 6489 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6490 action = PF_DROP; 6491 REASON_SET(&reason, PFRES_MEMORY); 6492 } 6493 if (r->rtableid >= 0) 6494 M_SETFIB(m, r->rtableid); 6495 6496 if (r->scrub_flags & PFSTATE_SETPRIO) { 6497 if (pd.tos & IPTOS_LOWDELAY) 6498 pqid = 1; 6499 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6500 action = PF_DROP; 6501 REASON_SET(&reason, PFRES_MEMORY); 6502 log = 1; 6503 DPFPRINTF(PF_DEBUG_MISC, 6504 ("pf: failed to allocate 802.1q mtag\n")); 6505 } 6506 } 6507 6508 #ifdef ALTQ 6509 if (action == PF_PASS && r->qid) { 6510 if (pd.pf_mtag == NULL && 6511 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6512 action = PF_DROP; 6513 REASON_SET(&reason, PFRES_MEMORY); 6514 } else { 6515 if (s != NULL) 6516 pd.pf_mtag->qid_hash = pf_state_hash(s); 6517 if (pd.tos & IPTOS_LOWDELAY) 6518 pd.pf_mtag->qid = r->pqid; 6519 else 6520 pd.pf_mtag->qid = r->qid; 6521 /* Add hints for ecn. */ 6522 pd.pf_mtag->hdr = h; 6523 } 6524 } 6525 #endif /* ALTQ */ 6526 6527 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6528 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6529 (s->nat_rule.ptr->action == PF_RDR || 6530 s->nat_rule.ptr->action == PF_BINAT) && 6531 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6532 m->m_flags |= M_SKIP_FIREWALL; 6533 6534 /* XXX: Anybody working on it?! */ 6535 if (r->divert.port) 6536 printf("pf: divert(9) is not supported for IPv6\n"); 6537 6538 if (log) { 6539 struct pf_rule *lr; 6540 6541 if (s != NULL && s->nat_rule.ptr != NULL && 6542 s->nat_rule.ptr->log & PF_LOG_ALL) 6543 lr = s->nat_rule.ptr; 6544 else 6545 lr = r; 6546 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6547 &pd, (s == NULL)); 6548 } 6549 6550 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6551 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6552 6553 if (action == PF_PASS || r->action == PF_DROP) { 6554 dirndx = (dir == PF_OUT); 6555 r->packets[dirndx]++; 6556 r->bytes[dirndx] += pd.tot_len; 6557 if (a != NULL) { 6558 a->packets[dirndx]++; 6559 a->bytes[dirndx] += pd.tot_len; 6560 } 6561 if (s != NULL) { 6562 if (s->nat_rule.ptr != NULL) { 6563 s->nat_rule.ptr->packets[dirndx]++; 6564 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6565 } 6566 if (s->src_node != NULL) { 6567 s->src_node->packets[dirndx]++; 6568 s->src_node->bytes[dirndx] += pd.tot_len; 6569 } 6570 if (s->nat_src_node != NULL) { 6571 s->nat_src_node->packets[dirndx]++; 6572 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6573 } 6574 dirndx = (dir == s->direction) ? 0 : 1; 6575 s->packets[dirndx]++; 6576 s->bytes[dirndx] += pd.tot_len; 6577 } 6578 tr = r; 6579 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6580 if (nr != NULL && r == &V_pf_default_rule) 6581 tr = nr; 6582 if (tr->src.addr.type == PF_ADDR_TABLE) 6583 pfr_update_stats(tr->src.addr.p.tbl, 6584 (s == NULL) ? pd.src : 6585 &s->key[(s->direction == PF_IN)]->addr[0], 6586 pd.af, pd.tot_len, dir == PF_OUT, 6587 r->action == PF_PASS, tr->src.neg); 6588 if (tr->dst.addr.type == PF_ADDR_TABLE) 6589 pfr_update_stats(tr->dst.addr.p.tbl, 6590 (s == NULL) ? pd.dst : 6591 &s->key[(s->direction == PF_IN)]->addr[1], 6592 pd.af, pd.tot_len, dir == PF_OUT, 6593 r->action == PF_PASS, tr->dst.neg); 6594 } 6595 6596 switch (action) { 6597 case PF_SYNPROXY_DROP: 6598 m_freem(*m0); 6599 case PF_DEFER: 6600 *m0 = NULL; 6601 action = PF_PASS; 6602 break; 6603 case PF_DROP: 6604 m_freem(*m0); 6605 *m0 = NULL; 6606 break; 6607 default: 6608 /* pf_route6() returns unlocked. */ 6609 if (r->rt) { 6610 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6611 return (action); 6612 } 6613 break; 6614 } 6615 6616 if (s) 6617 PF_STATE_UNLOCK(s); 6618 6619 /* If reassembled packet passed, create new fragments. */ 6620 if (action == PF_PASS && *m0 && fwdir == PF_FWD && 6621 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6622 action = pf_refragment6(ifp, m0, mtag); 6623 6624 return (action); 6625 } 6626 #endif /* INET6 */ 6627