1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 #include "opt_bpf.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_pf.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/gsb_crc32.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/sdt.h> 61 #include <sys/socket.h> 62 #include <sys/sysctl.h> 63 #include <sys/taskqueue.h> 64 #include <sys/ucred.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_private.h> 69 #include <net/if_types.h> 70 #include <net/if_vlan_var.h> 71 #include <net/route.h> 72 #include <net/route/nhop.h> 73 #include <net/vnet.h> 74 75 #include <net/pfil.h> 76 #include <net/pfvar.h> 77 #include <net/if_pflog.h> 78 #include <net/if_pfsync.h> 79 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_var.h> 82 #include <netinet/in_fib.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_fw.h> 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp.h> 89 #include <netinet/tcp_fsm.h> 90 #include <netinet/tcp_seq.h> 91 #include <netinet/tcp_timer.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet/udp.h> 94 #include <netinet/udp_var.h> 95 96 /* dummynet */ 97 #include <netinet/ip_dummynet.h> 98 #include <netinet/ip_fw.h> 99 #include <netpfil/ipfw/dn_heap.h> 100 #include <netpfil/ipfw/ip_fw_private.h> 101 #include <netpfil/ipfw/ip_dn_private.h> 102 103 #ifdef INET6 104 #include <netinet/ip6.h> 105 #include <netinet/icmp6.h> 106 #include <netinet6/nd6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet6/in6_pcb.h> 109 #include <netinet6/in6_fib.h> 110 #include <netinet6/scope6_var.h> 111 #endif /* INET6 */ 112 113 #include <netinet/sctp_header.h> 114 #include <netinet/sctp_crc32.h> 115 116 #include <machine/in_cksum.h> 117 #include <security/mac/mac_framework.h> 118 119 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 120 121 SDT_PROVIDER_DEFINE(pf); 122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 123 "struct pf_kstate *"); 124 SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", 125 "struct pf_kstate *"); 126 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 127 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 128 "struct pf_kstate *"); 129 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *", 130 "struct pf_krule *", "struct mbuf *", "int"); 131 132 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 133 "struct mbuf *"); 134 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 135 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 136 "int", "struct pf_keth_rule *", "char *"); 137 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 138 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 139 "int", "struct pf_keth_rule *"); 140 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t"); 141 142 /* 143 * Global variables 144 */ 145 146 /* state tables */ 147 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 148 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 149 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 150 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 151 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 152 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 153 VNET_DEFINE(struct pf_kstatus, pf_status); 154 155 VNET_DEFINE(u_int32_t, ticket_altqs_active); 156 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 157 VNET_DEFINE(int, altqs_inactive_open); 158 VNET_DEFINE(u_int32_t, ticket_pabuf); 159 160 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 161 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 162 VNET_DEFINE(u_char, pf_tcp_secret[16]); 163 #define V_pf_tcp_secret VNET(pf_tcp_secret) 164 VNET_DEFINE(int, pf_tcp_secret_init); 165 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 166 VNET_DEFINE(int, pf_tcp_iss_off); 167 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 168 VNET_DECLARE(int, pf_vnet_active); 169 #define V_pf_vnet_active VNET(pf_vnet_active) 170 171 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 172 #define V_pf_purge_idx VNET(pf_purge_idx) 173 174 #ifdef PF_WANT_32_TO_64_COUNTER 175 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 176 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 177 178 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 179 VNET_DEFINE(size_t, pf_allrulecount); 180 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 181 #endif 182 183 struct pf_sctp_endpoint; 184 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint); 185 struct pf_sctp_source { 186 sa_family_t af; 187 struct pf_addr addr; 188 TAILQ_ENTRY(pf_sctp_source) entry; 189 }; 190 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source); 191 struct pf_sctp_endpoint 192 { 193 uint32_t v_tag; 194 struct pf_sctp_sources sources; 195 RB_ENTRY(pf_sctp_endpoint) entry; 196 }; 197 static int 198 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b) 199 { 200 return (a->v_tag - b->v_tag); 201 } 202 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 203 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 204 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints); 205 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints) 206 static struct mtx_padalign pf_sctp_endpoints_mtx; 207 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF); 208 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx) 209 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx) 210 211 /* 212 * Queue for pf_intr() sends. 213 */ 214 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 215 struct pf_send_entry { 216 STAILQ_ENTRY(pf_send_entry) pfse_next; 217 struct mbuf *pfse_m; 218 enum { 219 PFSE_IP, 220 PFSE_IP6, 221 PFSE_ICMP, 222 PFSE_ICMP6, 223 } pfse_type; 224 struct { 225 int type; 226 int code; 227 int mtu; 228 } icmpopts; 229 }; 230 231 STAILQ_HEAD(pf_send_head, pf_send_entry); 232 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 233 #define V_pf_sendqueue VNET(pf_sendqueue) 234 235 static struct mtx_padalign pf_sendqueue_mtx; 236 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 237 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 238 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 239 240 /* 241 * Queue for pf_overload_task() tasks. 242 */ 243 struct pf_overload_entry { 244 SLIST_ENTRY(pf_overload_entry) next; 245 struct pf_addr addr; 246 sa_family_t af; 247 uint8_t dir; 248 struct pf_krule *rule; 249 }; 250 251 SLIST_HEAD(pf_overload_head, pf_overload_entry); 252 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 253 #define V_pf_overloadqueue VNET(pf_overloadqueue) 254 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 255 #define V_pf_overloadtask VNET(pf_overloadtask) 256 257 static struct mtx_padalign pf_overloadqueue_mtx; 258 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 259 "pf overload/flush queue", MTX_DEF); 260 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 261 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 262 263 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 264 struct mtx_padalign pf_unlnkdrules_mtx; 265 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 266 MTX_DEF); 267 268 struct sx pf_config_lock; 269 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 270 271 struct mtx_padalign pf_table_stats_lock; 272 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 273 MTX_DEF); 274 275 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 276 #define V_pf_sources_z VNET(pf_sources_z) 277 uma_zone_t pf_mtag_z; 278 VNET_DEFINE(uma_zone_t, pf_state_z); 279 VNET_DEFINE(uma_zone_t, pf_state_key_z); 280 281 VNET_DEFINE(struct unrhdr64, pf_stateid); 282 283 static void pf_src_tree_remove_state(struct pf_kstate *); 284 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 285 u_int32_t); 286 static void pf_add_threshold(struct pf_threshold *); 287 static int pf_check_threshold(struct pf_threshold *); 288 289 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 290 u_int16_t *, u_int16_t *, struct pf_addr *, 291 u_int16_t, u_int8_t, sa_family_t); 292 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 293 struct tcphdr *, struct pf_state_peer *); 294 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 295 struct pf_addr *, struct pf_addr *, u_int16_t, 296 u_int16_t *, u_int16_t *, u_int16_t *, 297 u_int16_t *, u_int8_t, sa_family_t); 298 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 299 sa_family_t, struct pf_krule *, int); 300 static void pf_detach_state(struct pf_kstate *); 301 static int pf_state_key_attach(struct pf_state_key *, 302 struct pf_state_key *, struct pf_kstate *); 303 static void pf_state_key_detach(struct pf_kstate *, int); 304 static int pf_state_key_ctor(void *, int, void *, int); 305 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 306 static __inline void pf_dummynet_flag_remove(struct mbuf *m, 307 struct pf_mtag *pf_mtag); 308 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *, 309 struct pf_krule *, struct mbuf **); 310 static int pf_dummynet_route(struct pf_pdesc *, 311 struct pf_kstate *, struct pf_krule *, 312 struct ifnet *, struct sockaddr *, struct mbuf **); 313 static int pf_test_eth_rule(int, struct pfi_kkif *, 314 struct mbuf **); 315 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 316 struct pfi_kkif *, struct mbuf *, int, 317 struct pf_pdesc *, struct pf_krule **, 318 struct pf_kruleset **, struct inpcb *); 319 static int pf_create_state(struct pf_krule *, struct pf_krule *, 320 struct pf_krule *, struct pf_pdesc *, 321 struct pf_ksrc_node *, struct pf_state_key *, 322 struct pf_state_key *, struct mbuf *, int, 323 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 324 struct pf_kstate **, int, u_int16_t, u_int16_t, 325 int, struct pf_krule_slist *); 326 static int pf_test_fragment(struct pf_krule **, struct pfi_kkif *, 327 struct mbuf *, void *, struct pf_pdesc *, 328 struct pf_krule **, struct pf_kruleset **); 329 static int pf_tcp_track_full(struct pf_kstate **, 330 struct pfi_kkif *, struct mbuf *, int, 331 struct pf_pdesc *, u_short *, int *); 332 static int pf_tcp_track_sloppy(struct pf_kstate **, 333 struct pf_pdesc *, u_short *); 334 static int pf_test_state_tcp(struct pf_kstate **, 335 struct pfi_kkif *, struct mbuf *, int, 336 void *, struct pf_pdesc *, u_short *); 337 static int pf_test_state_udp(struct pf_kstate **, 338 struct pfi_kkif *, struct mbuf *, int, 339 void *, struct pf_pdesc *); 340 static int pf_test_state_icmp(struct pf_kstate **, 341 struct pfi_kkif *, struct mbuf *, int, 342 void *, struct pf_pdesc *, u_short *); 343 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *); 344 static void pf_sctp_multihome_delayed(struct pf_pdesc *, int, 345 struct pfi_kkif *, struct pf_kstate *, int); 346 static int pf_test_state_sctp(struct pf_kstate **, 347 struct pfi_kkif *, struct mbuf *, int, 348 void *, struct pf_pdesc *, u_short *); 349 static int pf_test_state_other(struct pf_kstate **, 350 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 351 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 352 int, u_int16_t); 353 static int pf_check_proto_cksum(struct mbuf *, int, int, 354 u_int8_t, sa_family_t); 355 static void pf_print_state_parts(struct pf_kstate *, 356 struct pf_state_key *, struct pf_state_key *); 357 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 358 bool, u_int8_t); 359 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 360 struct pf_state_key_cmp *, u_int); 361 static int pf_src_connlimit(struct pf_kstate **); 362 static void pf_overload_task(void *v, int pending); 363 static u_short pf_insert_src_node(struct pf_ksrc_node **, 364 struct pf_krule *, struct pf_addr *, sa_family_t); 365 static u_int pf_purge_expired_states(u_int, int); 366 static void pf_purge_unlinked_rules(void); 367 static int pf_mtag_uminit(void *, int, int); 368 static void pf_mtag_free(struct m_tag *); 369 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 370 int, struct pf_state_key *); 371 #ifdef INET 372 static void pf_route(struct mbuf **, struct pf_krule *, 373 struct ifnet *, struct pf_kstate *, 374 struct pf_pdesc *, struct inpcb *); 375 #endif /* INET */ 376 #ifdef INET6 377 static void pf_change_a6(struct pf_addr *, u_int16_t *, 378 struct pf_addr *, u_int8_t); 379 static void pf_route6(struct mbuf **, struct pf_krule *, 380 struct ifnet *, struct pf_kstate *, 381 struct pf_pdesc *, struct inpcb *); 382 #endif /* INET6 */ 383 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 384 385 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 386 387 extern int pf_end_threads; 388 extern struct proc *pf_purge_proc; 389 390 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 391 392 #define PACKET_UNDO_NAT(_m, _pd, _off, _s) \ 393 do { \ 394 struct pf_state_key *nk; \ 395 if ((pd->dir) == PF_OUT) \ 396 nk = (_s)->key[PF_SK_STACK]; \ 397 else \ 398 nk = (_s)->key[PF_SK_WIRE]; \ 399 pf_packet_rework_nat(_m, _pd, _off, nk); \ 400 } while (0) 401 402 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 403 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED) 404 405 #define STATE_LOOKUP(i, k, s, pd) \ 406 do { \ 407 (s) = pf_find_state((i), (k), (pd->dir)); \ 408 SDT_PROBE5(pf, ip, state, lookup, i, k, (pd->dir), pd, (s)); \ 409 if ((s) == NULL) \ 410 return (PF_DROP); \ 411 if (PACKET_LOOPED(pd)) \ 412 return (PF_PASS); \ 413 } while (0) 414 415 #define BOUND_IFACE(r, k) \ 416 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 417 418 #define STATE_INC_COUNTERS(s) \ 419 do { \ 420 struct pf_krule_item *mrm; \ 421 counter_u64_add(s->rule.ptr->states_cur, 1); \ 422 counter_u64_add(s->rule.ptr->states_tot, 1); \ 423 if (s->anchor.ptr != NULL) { \ 424 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 425 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 426 } \ 427 if (s->nat_rule.ptr != NULL) { \ 428 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 429 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 430 } \ 431 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 432 counter_u64_add(mrm->r->states_cur, 1); \ 433 counter_u64_add(mrm->r->states_tot, 1); \ 434 } \ 435 } while (0) 436 437 #define STATE_DEC_COUNTERS(s) \ 438 do { \ 439 struct pf_krule_item *mrm; \ 440 if (s->nat_rule.ptr != NULL) \ 441 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 442 if (s->anchor.ptr != NULL) \ 443 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 444 counter_u64_add(s->rule.ptr->states_cur, -1); \ 445 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 446 counter_u64_add(mrm->r->states_cur, -1); \ 447 } while (0) 448 449 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 450 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 451 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 452 VNET_DEFINE(struct pf_idhash *, pf_idhash); 453 VNET_DEFINE(struct pf_srchash *, pf_srchash); 454 455 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 456 "pf(4)"); 457 458 u_long pf_hashmask; 459 u_long pf_srchashmask; 460 static u_long pf_hashsize; 461 static u_long pf_srchashsize; 462 u_long pf_ioctl_maxcount = 65535; 463 464 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 465 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 466 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 467 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 468 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 469 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 470 471 VNET_DEFINE(void *, pf_swi_cookie); 472 VNET_DEFINE(struct intr_event *, pf_swi_ie); 473 474 VNET_DEFINE(uint32_t, pf_hashseed); 475 #define V_pf_hashseed VNET(pf_hashseed) 476 477 static void 478 pf_sctp_checksum(struct mbuf *m, int off) 479 { 480 uint32_t sum = 0; 481 482 /* Zero out the checksum, to enable recalculation. */ 483 m_copyback(m, off + offsetof(struct sctphdr, checksum), 484 sizeof(sum), (caddr_t)&sum); 485 486 sum = sctp_calculate_cksum(m, off); 487 488 m_copyback(m, off + offsetof(struct sctphdr, checksum), 489 sizeof(sum), (caddr_t)&sum); 490 } 491 492 int 493 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 494 { 495 496 switch (af) { 497 #ifdef INET 498 case AF_INET: 499 if (a->addr32[0] > b->addr32[0]) 500 return (1); 501 if (a->addr32[0] < b->addr32[0]) 502 return (-1); 503 break; 504 #endif /* INET */ 505 #ifdef INET6 506 case AF_INET6: 507 if (a->addr32[3] > b->addr32[3]) 508 return (1); 509 if (a->addr32[3] < b->addr32[3]) 510 return (-1); 511 if (a->addr32[2] > b->addr32[2]) 512 return (1); 513 if (a->addr32[2] < b->addr32[2]) 514 return (-1); 515 if (a->addr32[1] > b->addr32[1]) 516 return (1); 517 if (a->addr32[1] < b->addr32[1]) 518 return (-1); 519 if (a->addr32[0] > b->addr32[0]) 520 return (1); 521 if (a->addr32[0] < b->addr32[0]) 522 return (-1); 523 break; 524 #endif /* INET6 */ 525 default: 526 panic("%s: unknown address family %u", __func__, af); 527 } 528 return (0); 529 } 530 531 static void 532 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 533 struct pf_state_key *nk) 534 { 535 536 switch (pd->proto) { 537 case IPPROTO_TCP: { 538 struct tcphdr *th = &pd->hdr.tcp; 539 540 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 541 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 542 &th->th_sum, &nk->addr[pd->sidx], 543 nk->port[pd->sidx], 0, pd->af); 544 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 545 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 546 &th->th_sum, &nk->addr[pd->didx], 547 nk->port[pd->didx], 0, pd->af); 548 m_copyback(m, off, sizeof(*th), (caddr_t)th); 549 break; 550 } 551 case IPPROTO_UDP: { 552 struct udphdr *uh = &pd->hdr.udp; 553 554 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 555 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 556 &uh->uh_sum, &nk->addr[pd->sidx], 557 nk->port[pd->sidx], 1, pd->af); 558 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 559 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 560 &uh->uh_sum, &nk->addr[pd->didx], 561 nk->port[pd->didx], 1, pd->af); 562 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 563 break; 564 } 565 case IPPROTO_SCTP: { 566 struct sctphdr *sh = &pd->hdr.sctp; 567 uint16_t checksum = 0; 568 569 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 570 pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum, 571 &checksum, &nk->addr[pd->sidx], 572 nk->port[pd->sidx], 1, pd->af); 573 } 574 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 575 pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum, 576 &checksum, &nk->addr[pd->didx], 577 nk->port[pd->didx], 1, pd->af); 578 } 579 580 break; 581 } 582 case IPPROTO_ICMP: { 583 struct icmp *ih = &pd->hdr.icmp; 584 585 if (nk->port[pd->sidx] != ih->icmp_id) { 586 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 587 ih->icmp_cksum, ih->icmp_id, 588 nk->port[pd->sidx], 0); 589 ih->icmp_id = nk->port[pd->sidx]; 590 pd->sport = &ih->icmp_id; 591 592 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 593 } 594 /* FALLTHROUGH */ 595 } 596 default: 597 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 598 switch (pd->af) { 599 case AF_INET: 600 pf_change_a(&pd->src->v4.s_addr, 601 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 602 0); 603 break; 604 case AF_INET6: 605 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 606 break; 607 } 608 } 609 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 610 switch (pd->af) { 611 case AF_INET: 612 pf_change_a(&pd->dst->v4.s_addr, 613 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 614 0); 615 break; 616 case AF_INET6: 617 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 618 break; 619 } 620 } 621 break; 622 } 623 } 624 625 static __inline uint32_t 626 pf_hashkey(struct pf_state_key *sk) 627 { 628 uint32_t h; 629 630 h = murmur3_32_hash32((uint32_t *)sk, 631 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 632 V_pf_hashseed); 633 634 return (h & pf_hashmask); 635 } 636 637 static __inline uint32_t 638 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 639 { 640 uint32_t h; 641 642 switch (af) { 643 case AF_INET: 644 h = murmur3_32_hash32((uint32_t *)&addr->v4, 645 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 646 break; 647 case AF_INET6: 648 h = murmur3_32_hash32((uint32_t *)&addr->v6, 649 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 650 break; 651 default: 652 panic("%s: unknown address family %u", __func__, af); 653 } 654 655 return (h & pf_srchashmask); 656 } 657 658 #ifdef ALTQ 659 static int 660 pf_state_hash(struct pf_kstate *s) 661 { 662 u_int32_t hv = (intptr_t)s / sizeof(*s); 663 664 hv ^= crc32(&s->src, sizeof(s->src)); 665 hv ^= crc32(&s->dst, sizeof(s->dst)); 666 if (hv == 0) 667 hv = 1; 668 return (hv); 669 } 670 #endif 671 672 static __inline void 673 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 674 { 675 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 676 s->dst.state = newstate; 677 if (which == PF_PEER_DST) 678 return; 679 if (s->src.state == newstate) 680 return; 681 if (s->creatorid == V_pf_status.hostid && 682 s->key[PF_SK_STACK] != NULL && 683 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 684 !(TCPS_HAVEESTABLISHED(s->src.state) || 685 s->src.state == TCPS_CLOSED) && 686 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 687 atomic_add_32(&V_pf_status.states_halfopen, -1); 688 689 s->src.state = newstate; 690 } 691 692 #ifdef INET6 693 void 694 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 695 { 696 switch (af) { 697 #ifdef INET 698 case AF_INET: 699 dst->addr32[0] = src->addr32[0]; 700 break; 701 #endif /* INET */ 702 case AF_INET6: 703 dst->addr32[0] = src->addr32[0]; 704 dst->addr32[1] = src->addr32[1]; 705 dst->addr32[2] = src->addr32[2]; 706 dst->addr32[3] = src->addr32[3]; 707 break; 708 } 709 } 710 #endif /* INET6 */ 711 712 static void 713 pf_init_threshold(struct pf_threshold *threshold, 714 u_int32_t limit, u_int32_t seconds) 715 { 716 threshold->limit = limit * PF_THRESHOLD_MULT; 717 threshold->seconds = seconds; 718 threshold->count = 0; 719 threshold->last = time_uptime; 720 } 721 722 static void 723 pf_add_threshold(struct pf_threshold *threshold) 724 { 725 u_int32_t t = time_uptime, diff = t - threshold->last; 726 727 if (diff >= threshold->seconds) 728 threshold->count = 0; 729 else 730 threshold->count -= threshold->count * diff / 731 threshold->seconds; 732 threshold->count += PF_THRESHOLD_MULT; 733 threshold->last = t; 734 } 735 736 static int 737 pf_check_threshold(struct pf_threshold *threshold) 738 { 739 return (threshold->count > threshold->limit); 740 } 741 742 static int 743 pf_src_connlimit(struct pf_kstate **state) 744 { 745 struct pf_overload_entry *pfoe; 746 int bad = 0; 747 748 PF_STATE_LOCK_ASSERT(*state); 749 /* 750 * XXXKS: The src node is accessed unlocked! 751 * PF_SRC_NODE_LOCK_ASSERT((*state)->src_node); 752 */ 753 754 (*state)->src_node->conn++; 755 (*state)->src.tcp_est = 1; 756 pf_add_threshold(&(*state)->src_node->conn_rate); 757 758 if ((*state)->rule.ptr->max_src_conn && 759 (*state)->rule.ptr->max_src_conn < 760 (*state)->src_node->conn) { 761 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 762 bad++; 763 } 764 765 if ((*state)->rule.ptr->max_src_conn_rate.limit && 766 pf_check_threshold(&(*state)->src_node->conn_rate)) { 767 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 768 bad++; 769 } 770 771 if (!bad) 772 return (0); 773 774 /* Kill this state. */ 775 (*state)->timeout = PFTM_PURGE; 776 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 777 778 if ((*state)->rule.ptr->overload_tbl == NULL) 779 return (1); 780 781 /* Schedule overloading and flushing task. */ 782 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 783 if (pfoe == NULL) 784 return (1); /* too bad :( */ 785 786 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 787 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 788 pfoe->rule = (*state)->rule.ptr; 789 pfoe->dir = (*state)->direction; 790 PF_OVERLOADQ_LOCK(); 791 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 792 PF_OVERLOADQ_UNLOCK(); 793 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 794 795 return (1); 796 } 797 798 static void 799 pf_overload_task(void *v, int pending) 800 { 801 struct pf_overload_head queue; 802 struct pfr_addr p; 803 struct pf_overload_entry *pfoe, *pfoe1; 804 uint32_t killed = 0; 805 806 CURVNET_SET((struct vnet *)v); 807 808 PF_OVERLOADQ_LOCK(); 809 queue = V_pf_overloadqueue; 810 SLIST_INIT(&V_pf_overloadqueue); 811 PF_OVERLOADQ_UNLOCK(); 812 813 bzero(&p, sizeof(p)); 814 SLIST_FOREACH(pfoe, &queue, next) { 815 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 816 if (V_pf_status.debug >= PF_DEBUG_MISC) { 817 printf("%s: blocking address ", __func__); 818 pf_print_host(&pfoe->addr, 0, pfoe->af); 819 printf("\n"); 820 } 821 822 p.pfra_af = pfoe->af; 823 switch (pfoe->af) { 824 #ifdef INET 825 case AF_INET: 826 p.pfra_net = 32; 827 p.pfra_ip4addr = pfoe->addr.v4; 828 break; 829 #endif 830 #ifdef INET6 831 case AF_INET6: 832 p.pfra_net = 128; 833 p.pfra_ip6addr = pfoe->addr.v6; 834 break; 835 #endif 836 } 837 838 PF_RULES_WLOCK(); 839 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 840 PF_RULES_WUNLOCK(); 841 } 842 843 /* 844 * Remove those entries, that don't need flushing. 845 */ 846 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 847 if (pfoe->rule->flush == 0) { 848 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 849 free(pfoe, M_PFTEMP); 850 } else 851 counter_u64_add( 852 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 853 854 /* If nothing to flush, return. */ 855 if (SLIST_EMPTY(&queue)) { 856 CURVNET_RESTORE(); 857 return; 858 } 859 860 for (int i = 0; i <= pf_hashmask; i++) { 861 struct pf_idhash *ih = &V_pf_idhash[i]; 862 struct pf_state_key *sk; 863 struct pf_kstate *s; 864 865 PF_HASHROW_LOCK(ih); 866 LIST_FOREACH(s, &ih->states, entry) { 867 sk = s->key[PF_SK_WIRE]; 868 SLIST_FOREACH(pfoe, &queue, next) 869 if (sk->af == pfoe->af && 870 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 871 pfoe->rule == s->rule.ptr) && 872 ((pfoe->dir == PF_OUT && 873 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 874 (pfoe->dir == PF_IN && 875 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 876 s->timeout = PFTM_PURGE; 877 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 878 killed++; 879 } 880 } 881 PF_HASHROW_UNLOCK(ih); 882 } 883 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 884 free(pfoe, M_PFTEMP); 885 if (V_pf_status.debug >= PF_DEBUG_MISC) 886 printf("%s: %u states killed", __func__, killed); 887 888 CURVNET_RESTORE(); 889 } 890 891 /* 892 * Can return locked on failure, so that we can consistently 893 * allocate and insert a new one. 894 */ 895 struct pf_ksrc_node * 896 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 897 struct pf_srchash **sh, bool returnlocked) 898 { 899 struct pf_ksrc_node *n; 900 901 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 902 903 *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 904 PF_HASHROW_LOCK(*sh); 905 LIST_FOREACH(n, &(*sh)->nodes, entry) 906 if (n->rule.ptr == rule && n->af == af && 907 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 908 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 909 break; 910 911 if (n != NULL) { 912 n->states++; 913 PF_HASHROW_UNLOCK(*sh); 914 } else if (returnlocked == false) 915 PF_HASHROW_UNLOCK(*sh); 916 917 return (n); 918 } 919 920 static void 921 pf_free_src_node(struct pf_ksrc_node *sn) 922 { 923 924 for (int i = 0; i < 2; i++) { 925 counter_u64_free(sn->bytes[i]); 926 counter_u64_free(sn->packets[i]); 927 } 928 uma_zfree(V_pf_sources_z, sn); 929 } 930 931 static u_short 932 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 933 struct pf_addr *src, sa_family_t af) 934 { 935 u_short reason = 0; 936 struct pf_srchash *sh = NULL; 937 938 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 939 rule->rpool.opts & PF_POOL_STICKYADDR), 940 ("%s for non-tracking rule %p", __func__, rule)); 941 942 if (*sn == NULL) 943 *sn = pf_find_src_node(src, rule, af, &sh, true); 944 945 if (*sn == NULL) { 946 PF_HASHROW_ASSERT(sh); 947 948 if (rule->max_src_nodes && 949 counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) { 950 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); 951 PF_HASHROW_UNLOCK(sh); 952 reason = PFRES_SRCLIMIT; 953 goto done; 954 } 955 956 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 957 if ((*sn) == NULL) { 958 PF_HASHROW_UNLOCK(sh); 959 reason = PFRES_MEMORY; 960 goto done; 961 } 962 963 for (int i = 0; i < 2; i++) { 964 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 965 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 966 967 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 968 pf_free_src_node(*sn); 969 PF_HASHROW_UNLOCK(sh); 970 reason = PFRES_MEMORY; 971 goto done; 972 } 973 } 974 975 pf_init_threshold(&(*sn)->conn_rate, 976 rule->max_src_conn_rate.limit, 977 rule->max_src_conn_rate.seconds); 978 979 MPASS((*sn)->lock == NULL); 980 (*sn)->lock = &sh->lock; 981 982 (*sn)->af = af; 983 (*sn)->rule.ptr = rule; 984 PF_ACPY(&(*sn)->addr, src, af); 985 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 986 (*sn)->creation = time_uptime; 987 (*sn)->ruletype = rule->action; 988 (*sn)->states = 1; 989 if ((*sn)->rule.ptr != NULL) 990 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 991 PF_HASHROW_UNLOCK(sh); 992 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 993 } else { 994 if (rule->max_src_states && 995 (*sn)->states >= rule->max_src_states) { 996 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 997 1); 998 reason = PFRES_SRCLIMIT; 999 goto done; 1000 } 1001 } 1002 done: 1003 return (reason); 1004 } 1005 1006 void 1007 pf_unlink_src_node(struct pf_ksrc_node *src) 1008 { 1009 PF_SRC_NODE_LOCK_ASSERT(src); 1010 1011 LIST_REMOVE(src, entry); 1012 if (src->rule.ptr) 1013 counter_u64_add(src->rule.ptr->src_nodes, -1); 1014 } 1015 1016 u_int 1017 pf_free_src_nodes(struct pf_ksrc_node_list *head) 1018 { 1019 struct pf_ksrc_node *sn, *tmp; 1020 u_int count = 0; 1021 1022 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 1023 pf_free_src_node(sn); 1024 count++; 1025 } 1026 1027 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 1028 1029 return (count); 1030 } 1031 1032 void 1033 pf_mtag_initialize(void) 1034 { 1035 1036 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 1037 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 1038 UMA_ALIGN_PTR, 0); 1039 } 1040 1041 /* Per-vnet data storage structures initialization. */ 1042 void 1043 pf_initialize(void) 1044 { 1045 struct pf_keyhash *kh; 1046 struct pf_idhash *ih; 1047 struct pf_srchash *sh; 1048 u_int i; 1049 1050 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 1051 pf_hashsize = PF_HASHSIZ; 1052 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 1053 pf_srchashsize = PF_SRCHASHSIZ; 1054 1055 V_pf_hashseed = arc4random(); 1056 1057 /* States and state keys storage. */ 1058 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1059 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1060 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1061 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1062 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1063 1064 V_pf_state_key_z = uma_zcreate("pf state keys", 1065 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1066 UMA_ALIGN_PTR, 0); 1067 1068 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 1069 M_PFHASH, M_NOWAIT | M_ZERO); 1070 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 1071 M_PFHASH, M_NOWAIT | M_ZERO); 1072 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1073 printf("pf: Unable to allocate memory for " 1074 "state_hashsize %lu.\n", pf_hashsize); 1075 1076 free(V_pf_keyhash, M_PFHASH); 1077 free(V_pf_idhash, M_PFHASH); 1078 1079 pf_hashsize = PF_HASHSIZ; 1080 V_pf_keyhash = mallocarray(pf_hashsize, 1081 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1082 V_pf_idhash = mallocarray(pf_hashsize, 1083 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1084 } 1085 1086 pf_hashmask = pf_hashsize - 1; 1087 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 1088 i++, kh++, ih++) { 1089 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1090 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1091 } 1092 1093 /* Source nodes. */ 1094 V_pf_sources_z = uma_zcreate("pf source nodes", 1095 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1096 0); 1097 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1098 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1099 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1100 1101 V_pf_srchash = mallocarray(pf_srchashsize, 1102 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1103 if (V_pf_srchash == NULL) { 1104 printf("pf: Unable to allocate memory for " 1105 "source_hashsize %lu.\n", pf_srchashsize); 1106 1107 pf_srchashsize = PF_SRCHASHSIZ; 1108 V_pf_srchash = mallocarray(pf_srchashsize, 1109 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1110 } 1111 1112 pf_srchashmask = pf_srchashsize - 1; 1113 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 1114 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1115 1116 /* ALTQ */ 1117 TAILQ_INIT(&V_pf_altqs[0]); 1118 TAILQ_INIT(&V_pf_altqs[1]); 1119 TAILQ_INIT(&V_pf_altqs[2]); 1120 TAILQ_INIT(&V_pf_altqs[3]); 1121 TAILQ_INIT(&V_pf_pabuf); 1122 V_pf_altqs_active = &V_pf_altqs[0]; 1123 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1124 V_pf_altqs_inactive = &V_pf_altqs[2]; 1125 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1126 1127 /* Send & overload+flush queues. */ 1128 STAILQ_INIT(&V_pf_sendqueue); 1129 SLIST_INIT(&V_pf_overloadqueue); 1130 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1131 1132 /* Unlinked, but may be referenced rules. */ 1133 TAILQ_INIT(&V_pf_unlinked_rules); 1134 } 1135 1136 void 1137 pf_mtag_cleanup(void) 1138 { 1139 1140 uma_zdestroy(pf_mtag_z); 1141 } 1142 1143 void 1144 pf_cleanup(void) 1145 { 1146 struct pf_keyhash *kh; 1147 struct pf_idhash *ih; 1148 struct pf_srchash *sh; 1149 struct pf_send_entry *pfse, *next; 1150 u_int i; 1151 1152 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 1153 i++, kh++, ih++) { 1154 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1155 __func__)); 1156 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1157 __func__)); 1158 mtx_destroy(&kh->lock); 1159 mtx_destroy(&ih->lock); 1160 } 1161 free(V_pf_keyhash, M_PFHASH); 1162 free(V_pf_idhash, M_PFHASH); 1163 1164 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1165 KASSERT(LIST_EMPTY(&sh->nodes), 1166 ("%s: source node hash not empty", __func__)); 1167 mtx_destroy(&sh->lock); 1168 } 1169 free(V_pf_srchash, M_PFHASH); 1170 1171 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1172 m_freem(pfse->pfse_m); 1173 free(pfse, M_PFTEMP); 1174 } 1175 MPASS(RB_EMPTY(&V_pf_sctp_endpoints)); 1176 1177 uma_zdestroy(V_pf_sources_z); 1178 uma_zdestroy(V_pf_state_z); 1179 uma_zdestroy(V_pf_state_key_z); 1180 } 1181 1182 static int 1183 pf_mtag_uminit(void *mem, int size, int how) 1184 { 1185 struct m_tag *t; 1186 1187 t = (struct m_tag *)mem; 1188 t->m_tag_cookie = MTAG_ABI_COMPAT; 1189 t->m_tag_id = PACKET_TAG_PF; 1190 t->m_tag_len = sizeof(struct pf_mtag); 1191 t->m_tag_free = pf_mtag_free; 1192 1193 return (0); 1194 } 1195 1196 static void 1197 pf_mtag_free(struct m_tag *t) 1198 { 1199 1200 uma_zfree(pf_mtag_z, t); 1201 } 1202 1203 struct pf_mtag * 1204 pf_get_mtag(struct mbuf *m) 1205 { 1206 struct m_tag *mtag; 1207 1208 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1209 return ((struct pf_mtag *)(mtag + 1)); 1210 1211 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1212 if (mtag == NULL) 1213 return (NULL); 1214 bzero(mtag + 1, sizeof(struct pf_mtag)); 1215 m_tag_prepend(m, mtag); 1216 1217 return ((struct pf_mtag *)(mtag + 1)); 1218 } 1219 1220 static int 1221 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1222 struct pf_kstate *s) 1223 { 1224 struct pf_keyhash *khs, *khw, *kh; 1225 struct pf_state_key *sk, *cur; 1226 struct pf_kstate *si, *olds = NULL; 1227 int idx; 1228 1229 NET_EPOCH_ASSERT(); 1230 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1231 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1232 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1233 1234 /* 1235 * We need to lock hash slots of both keys. To avoid deadlock 1236 * we always lock the slot with lower address first. Unlock order 1237 * isn't important. 1238 * 1239 * We also need to lock ID hash slot before dropping key 1240 * locks. On success we return with ID hash slot locked. 1241 */ 1242 1243 if (skw == sks) { 1244 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1245 PF_HASHROW_LOCK(khs); 1246 } else { 1247 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1248 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1249 if (khs == khw) { 1250 PF_HASHROW_LOCK(khs); 1251 } else if (khs < khw) { 1252 PF_HASHROW_LOCK(khs); 1253 PF_HASHROW_LOCK(khw); 1254 } else { 1255 PF_HASHROW_LOCK(khw); 1256 PF_HASHROW_LOCK(khs); 1257 } 1258 } 1259 1260 #define KEYS_UNLOCK() do { \ 1261 if (khs != khw) { \ 1262 PF_HASHROW_UNLOCK(khs); \ 1263 PF_HASHROW_UNLOCK(khw); \ 1264 } else \ 1265 PF_HASHROW_UNLOCK(khs); \ 1266 } while (0) 1267 1268 /* 1269 * First run: start with wire key. 1270 */ 1271 sk = skw; 1272 kh = khw; 1273 idx = PF_SK_WIRE; 1274 1275 MPASS(s->lock == NULL); 1276 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1277 1278 keyattach: 1279 LIST_FOREACH(cur, &kh->keys, entry) 1280 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1281 break; 1282 1283 if (cur != NULL) { 1284 /* Key exists. Check for same kif, if none, add to key. */ 1285 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1286 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1287 1288 PF_HASHROW_LOCK(ih); 1289 if (si->kif == s->kif && 1290 si->direction == s->direction) { 1291 if (sk->proto == IPPROTO_TCP && 1292 si->src.state >= TCPS_FIN_WAIT_2 && 1293 si->dst.state >= TCPS_FIN_WAIT_2) { 1294 /* 1295 * New state matches an old >FIN_WAIT_2 1296 * state. We can't drop key hash locks, 1297 * thus we can't unlink it properly. 1298 * 1299 * As a workaround we drop it into 1300 * TCPS_CLOSED state, schedule purge 1301 * ASAP and push it into the very end 1302 * of the slot TAILQ, so that it won't 1303 * conflict with our new state. 1304 */ 1305 pf_set_protostate(si, PF_PEER_BOTH, 1306 TCPS_CLOSED); 1307 si->timeout = PFTM_PURGE; 1308 olds = si; 1309 } else { 1310 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1311 printf("pf: %s key attach " 1312 "failed on %s: ", 1313 (idx == PF_SK_WIRE) ? 1314 "wire" : "stack", 1315 s->kif->pfik_name); 1316 pf_print_state_parts(s, 1317 (idx == PF_SK_WIRE) ? 1318 sk : NULL, 1319 (idx == PF_SK_STACK) ? 1320 sk : NULL); 1321 printf(", existing: "); 1322 pf_print_state_parts(si, 1323 (idx == PF_SK_WIRE) ? 1324 sk : NULL, 1325 (idx == PF_SK_STACK) ? 1326 sk : NULL); 1327 printf("\n"); 1328 } 1329 PF_HASHROW_UNLOCK(ih); 1330 KEYS_UNLOCK(); 1331 uma_zfree(V_pf_state_key_z, sk); 1332 if (idx == PF_SK_STACK) 1333 pf_detach_state(s); 1334 return (EEXIST); /* collision! */ 1335 } 1336 } 1337 PF_HASHROW_UNLOCK(ih); 1338 } 1339 uma_zfree(V_pf_state_key_z, sk); 1340 s->key[idx] = cur; 1341 } else { 1342 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1343 s->key[idx] = sk; 1344 } 1345 1346 stateattach: 1347 /* List is sorted, if-bound states before floating. */ 1348 if (s->kif == V_pfi_all) 1349 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1350 else 1351 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1352 1353 if (olds) { 1354 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1355 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1356 key_list[idx]); 1357 olds = NULL; 1358 } 1359 1360 /* 1361 * Attach done. See how should we (or should not?) 1362 * attach a second key. 1363 */ 1364 if (sks == skw) { 1365 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1366 idx = PF_SK_STACK; 1367 sks = NULL; 1368 goto stateattach; 1369 } else if (sks != NULL) { 1370 /* 1371 * Continue attaching with stack key. 1372 */ 1373 sk = sks; 1374 kh = khs; 1375 idx = PF_SK_STACK; 1376 sks = NULL; 1377 goto keyattach; 1378 } 1379 1380 PF_STATE_LOCK(s); 1381 KEYS_UNLOCK(); 1382 1383 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1384 ("%s failure", __func__)); 1385 1386 return (0); 1387 #undef KEYS_UNLOCK 1388 } 1389 1390 static void 1391 pf_detach_state(struct pf_kstate *s) 1392 { 1393 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1394 struct pf_keyhash *kh; 1395 1396 NET_EPOCH_ASSERT(); 1397 1398 pf_sctp_multihome_detach_addr(s); 1399 1400 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr) 1401 V_pflow_export_state_ptr(s); 1402 1403 if (sks != NULL) { 1404 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1405 PF_HASHROW_LOCK(kh); 1406 if (s->key[PF_SK_STACK] != NULL) 1407 pf_state_key_detach(s, PF_SK_STACK); 1408 /* 1409 * If both point to same key, then we are done. 1410 */ 1411 if (sks == s->key[PF_SK_WIRE]) { 1412 pf_state_key_detach(s, PF_SK_WIRE); 1413 PF_HASHROW_UNLOCK(kh); 1414 return; 1415 } 1416 PF_HASHROW_UNLOCK(kh); 1417 } 1418 1419 if (s->key[PF_SK_WIRE] != NULL) { 1420 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1421 PF_HASHROW_LOCK(kh); 1422 if (s->key[PF_SK_WIRE] != NULL) 1423 pf_state_key_detach(s, PF_SK_WIRE); 1424 PF_HASHROW_UNLOCK(kh); 1425 } 1426 } 1427 1428 static void 1429 pf_state_key_detach(struct pf_kstate *s, int idx) 1430 { 1431 struct pf_state_key *sk = s->key[idx]; 1432 #ifdef INVARIANTS 1433 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1434 1435 PF_HASHROW_ASSERT(kh); 1436 #endif 1437 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1438 s->key[idx] = NULL; 1439 1440 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1441 LIST_REMOVE(sk, entry); 1442 uma_zfree(V_pf_state_key_z, sk); 1443 } 1444 } 1445 1446 static int 1447 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1448 { 1449 struct pf_state_key *sk = mem; 1450 1451 bzero(sk, sizeof(struct pf_state_key_cmp)); 1452 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1453 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1454 1455 return (0); 1456 } 1457 1458 struct pf_state_key * 1459 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1460 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1461 { 1462 struct pf_state_key *sk; 1463 1464 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1465 if (sk == NULL) 1466 return (NULL); 1467 1468 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1469 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1470 sk->port[pd->sidx] = sport; 1471 sk->port[pd->didx] = dport; 1472 sk->proto = pd->proto; 1473 sk->af = pd->af; 1474 1475 return (sk); 1476 } 1477 1478 struct pf_state_key * 1479 pf_state_key_clone(struct pf_state_key *orig) 1480 { 1481 struct pf_state_key *sk; 1482 1483 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1484 if (sk == NULL) 1485 return (NULL); 1486 1487 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1488 1489 return (sk); 1490 } 1491 1492 int 1493 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1494 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1495 { 1496 struct pf_idhash *ih; 1497 struct pf_kstate *cur; 1498 int error; 1499 1500 NET_EPOCH_ASSERT(); 1501 1502 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1503 ("%s: sks not pristine", __func__)); 1504 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1505 ("%s: skw not pristine", __func__)); 1506 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1507 1508 s->kif = kif; 1509 s->orig_kif = orig_kif; 1510 1511 if (s->id == 0 && s->creatorid == 0) { 1512 s->id = alloc_unr64(&V_pf_stateid); 1513 s->id = htobe64(s->id); 1514 s->creatorid = V_pf_status.hostid; 1515 } 1516 1517 /* Returns with ID locked on success. */ 1518 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1519 return (error); 1520 1521 ih = &V_pf_idhash[PF_IDHASH(s)]; 1522 PF_HASHROW_ASSERT(ih); 1523 LIST_FOREACH(cur, &ih->states, entry) 1524 if (cur->id == s->id && cur->creatorid == s->creatorid) 1525 break; 1526 1527 if (cur != NULL) { 1528 PF_HASHROW_UNLOCK(ih); 1529 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1530 printf("pf: state ID collision: " 1531 "id: %016llx creatorid: %08x\n", 1532 (unsigned long long)be64toh(s->id), 1533 ntohl(s->creatorid)); 1534 } 1535 pf_detach_state(s); 1536 return (EEXIST); 1537 } 1538 LIST_INSERT_HEAD(&ih->states, s, entry); 1539 /* One for keys, one for ID hash. */ 1540 refcount_init(&s->refs, 2); 1541 1542 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1543 if (V_pfsync_insert_state_ptr != NULL) 1544 V_pfsync_insert_state_ptr(s); 1545 1546 /* Returns locked. */ 1547 return (0); 1548 } 1549 1550 /* 1551 * Find state by ID: returns with locked row on success. 1552 */ 1553 struct pf_kstate * 1554 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1555 { 1556 struct pf_idhash *ih; 1557 struct pf_kstate *s; 1558 1559 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1560 1561 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1562 1563 PF_HASHROW_LOCK(ih); 1564 LIST_FOREACH(s, &ih->states, entry) 1565 if (s->id == id && s->creatorid == creatorid) 1566 break; 1567 1568 if (s == NULL) 1569 PF_HASHROW_UNLOCK(ih); 1570 1571 return (s); 1572 } 1573 1574 /* 1575 * Find state by key. 1576 * Returns with ID hash slot locked on success. 1577 */ 1578 static struct pf_kstate * 1579 pf_find_state(struct pfi_kkif *kif, struct pf_state_key_cmp *key, u_int dir) 1580 { 1581 struct pf_keyhash *kh; 1582 struct pf_state_key *sk; 1583 struct pf_kstate *s; 1584 int idx; 1585 1586 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1587 1588 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1589 1590 PF_HASHROW_LOCK(kh); 1591 LIST_FOREACH(sk, &kh->keys, entry) 1592 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1593 break; 1594 if (sk == NULL) { 1595 PF_HASHROW_UNLOCK(kh); 1596 return (NULL); 1597 } 1598 1599 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1600 1601 /* List is sorted, if-bound states before floating ones. */ 1602 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1603 if (s->kif == V_pfi_all || s->kif == kif) { 1604 PF_STATE_LOCK(s); 1605 PF_HASHROW_UNLOCK(kh); 1606 if (__predict_false(s->timeout >= PFTM_MAX)) { 1607 /* 1608 * State is either being processed by 1609 * pf_unlink_state() in an other thread, or 1610 * is scheduled for immediate expiry. 1611 */ 1612 PF_STATE_UNLOCK(s); 1613 return (NULL); 1614 } 1615 return (s); 1616 } 1617 PF_HASHROW_UNLOCK(kh); 1618 1619 return (NULL); 1620 } 1621 1622 /* 1623 * Returns with ID hash slot locked on success. 1624 */ 1625 struct pf_kstate * 1626 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1627 { 1628 struct pf_keyhash *kh; 1629 struct pf_state_key *sk; 1630 struct pf_kstate *s, *ret = NULL; 1631 int idx, inout = 0; 1632 1633 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1634 1635 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1636 1637 PF_HASHROW_LOCK(kh); 1638 LIST_FOREACH(sk, &kh->keys, entry) 1639 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1640 break; 1641 if (sk == NULL) { 1642 PF_HASHROW_UNLOCK(kh); 1643 return (NULL); 1644 } 1645 switch (dir) { 1646 case PF_IN: 1647 idx = PF_SK_WIRE; 1648 break; 1649 case PF_OUT: 1650 idx = PF_SK_STACK; 1651 break; 1652 case PF_INOUT: 1653 idx = PF_SK_WIRE; 1654 inout = 1; 1655 break; 1656 default: 1657 panic("%s: dir %u", __func__, dir); 1658 } 1659 second_run: 1660 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1661 if (more == NULL) { 1662 PF_STATE_LOCK(s); 1663 PF_HASHROW_UNLOCK(kh); 1664 return (s); 1665 } 1666 1667 if (ret) 1668 (*more)++; 1669 else { 1670 ret = s; 1671 PF_STATE_LOCK(s); 1672 } 1673 } 1674 if (inout == 1) { 1675 inout = 0; 1676 idx = PF_SK_STACK; 1677 goto second_run; 1678 } 1679 PF_HASHROW_UNLOCK(kh); 1680 1681 return (ret); 1682 } 1683 1684 /* 1685 * FIXME 1686 * This routine is inefficient -- locks the state only to unlock immediately on 1687 * return. 1688 * It is racy -- after the state is unlocked nothing stops other threads from 1689 * removing it. 1690 */ 1691 bool 1692 pf_find_state_all_exists(struct pf_state_key_cmp *key, u_int dir) 1693 { 1694 struct pf_kstate *s; 1695 1696 s = pf_find_state_all(key, dir, NULL); 1697 if (s != NULL) { 1698 PF_STATE_UNLOCK(s); 1699 return (true); 1700 } 1701 return (false); 1702 } 1703 1704 /* END state table stuff */ 1705 1706 static void 1707 pf_send(struct pf_send_entry *pfse) 1708 { 1709 1710 PF_SENDQ_LOCK(); 1711 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1712 PF_SENDQ_UNLOCK(); 1713 swi_sched(V_pf_swi_cookie, 0); 1714 } 1715 1716 static bool 1717 pf_isforlocal(struct mbuf *m, int af) 1718 { 1719 switch (af) { 1720 #ifdef INET 1721 case AF_INET: { 1722 struct ip *ip = mtod(m, struct ip *); 1723 1724 return (in_localip(ip->ip_dst)); 1725 } 1726 #endif 1727 #ifdef INET6 1728 case AF_INET6: { 1729 struct ip6_hdr *ip6; 1730 struct in6_ifaddr *ia; 1731 ip6 = mtod(m, struct ip6_hdr *); 1732 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 1733 if (ia == NULL) 1734 return (false); 1735 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 1736 } 1737 #endif 1738 default: 1739 panic("Unsupported af %d", af); 1740 } 1741 1742 return (false); 1743 } 1744 1745 void 1746 pf_intr(void *v) 1747 { 1748 struct epoch_tracker et; 1749 struct pf_send_head queue; 1750 struct pf_send_entry *pfse, *next; 1751 1752 CURVNET_SET((struct vnet *)v); 1753 1754 PF_SENDQ_LOCK(); 1755 queue = V_pf_sendqueue; 1756 STAILQ_INIT(&V_pf_sendqueue); 1757 PF_SENDQ_UNLOCK(); 1758 1759 NET_EPOCH_ENTER(et); 1760 1761 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1762 switch (pfse->pfse_type) { 1763 #ifdef INET 1764 case PFSE_IP: { 1765 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 1766 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1767 pfse->pfse_m->m_pkthdr.csum_flags |= 1768 CSUM_IP_VALID | CSUM_IP_CHECKED; 1769 ip_input(pfse->pfse_m); 1770 } else { 1771 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1772 NULL); 1773 } 1774 break; 1775 } 1776 case PFSE_ICMP: 1777 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1778 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1779 break; 1780 #endif /* INET */ 1781 #ifdef INET6 1782 case PFSE_IP6: 1783 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 1784 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1785 ip6_input(pfse->pfse_m); 1786 } else { 1787 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1788 NULL, NULL); 1789 } 1790 break; 1791 case PFSE_ICMP6: 1792 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1793 pfse->icmpopts.code, pfse->icmpopts.mtu); 1794 break; 1795 #endif /* INET6 */ 1796 default: 1797 panic("%s: unknown type", __func__); 1798 } 1799 free(pfse, M_PFTEMP); 1800 } 1801 NET_EPOCH_EXIT(et); 1802 CURVNET_RESTORE(); 1803 } 1804 1805 #define pf_purge_thread_period (hz / 10) 1806 1807 #ifdef PF_WANT_32_TO_64_COUNTER 1808 static void 1809 pf_status_counter_u64_periodic(void) 1810 { 1811 1812 PF_RULES_RASSERT(); 1813 1814 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 1815 return; 1816 } 1817 1818 for (int i = 0; i < FCNT_MAX; i++) { 1819 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 1820 } 1821 } 1822 1823 static void 1824 pf_kif_counter_u64_periodic(void) 1825 { 1826 struct pfi_kkif *kif; 1827 size_t r, run; 1828 1829 PF_RULES_RASSERT(); 1830 1831 if (__predict_false(V_pf_allkifcount == 0)) { 1832 return; 1833 } 1834 1835 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1836 return; 1837 } 1838 1839 run = V_pf_allkifcount / 10; 1840 if (run < 5) 1841 run = 5; 1842 1843 for (r = 0; r < run; r++) { 1844 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 1845 if (kif == NULL) { 1846 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1847 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 1848 break; 1849 } 1850 1851 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1852 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 1853 1854 for (int i = 0; i < 2; i++) { 1855 for (int j = 0; j < 2; j++) { 1856 for (int k = 0; k < 2; k++) { 1857 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 1858 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 1859 } 1860 } 1861 } 1862 } 1863 } 1864 1865 static void 1866 pf_rule_counter_u64_periodic(void) 1867 { 1868 struct pf_krule *rule; 1869 size_t r, run; 1870 1871 PF_RULES_RASSERT(); 1872 1873 if (__predict_false(V_pf_allrulecount == 0)) { 1874 return; 1875 } 1876 1877 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1878 return; 1879 } 1880 1881 run = V_pf_allrulecount / 10; 1882 if (run < 5) 1883 run = 5; 1884 1885 for (r = 0; r < run; r++) { 1886 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 1887 if (rule == NULL) { 1888 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1889 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 1890 break; 1891 } 1892 1893 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1894 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 1895 1896 pf_counter_u64_periodic(&rule->evaluations); 1897 for (int i = 0; i < 2; i++) { 1898 pf_counter_u64_periodic(&rule->packets[i]); 1899 pf_counter_u64_periodic(&rule->bytes[i]); 1900 } 1901 } 1902 } 1903 1904 static void 1905 pf_counter_u64_periodic_main(void) 1906 { 1907 PF_RULES_RLOCK_TRACKER; 1908 1909 V_pf_counter_periodic_iter++; 1910 1911 PF_RULES_RLOCK(); 1912 pf_counter_u64_critical_enter(); 1913 pf_status_counter_u64_periodic(); 1914 pf_kif_counter_u64_periodic(); 1915 pf_rule_counter_u64_periodic(); 1916 pf_counter_u64_critical_exit(); 1917 PF_RULES_RUNLOCK(); 1918 } 1919 #else 1920 #define pf_counter_u64_periodic_main() do { } while (0) 1921 #endif 1922 1923 void 1924 pf_purge_thread(void *unused __unused) 1925 { 1926 struct epoch_tracker et; 1927 1928 VNET_ITERATOR_DECL(vnet_iter); 1929 1930 sx_xlock(&pf_end_lock); 1931 while (pf_end_threads == 0) { 1932 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 1933 1934 VNET_LIST_RLOCK(); 1935 NET_EPOCH_ENTER(et); 1936 VNET_FOREACH(vnet_iter) { 1937 CURVNET_SET(vnet_iter); 1938 1939 /* Wait until V_pf_default_rule is initialized. */ 1940 if (V_pf_vnet_active == 0) { 1941 CURVNET_RESTORE(); 1942 continue; 1943 } 1944 1945 pf_counter_u64_periodic_main(); 1946 1947 /* 1948 * Process 1/interval fraction of the state 1949 * table every run. 1950 */ 1951 V_pf_purge_idx = 1952 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1953 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1954 1955 /* 1956 * Purge other expired types every 1957 * PFTM_INTERVAL seconds. 1958 */ 1959 if (V_pf_purge_idx == 0) { 1960 /* 1961 * Order is important: 1962 * - states and src nodes reference rules 1963 * - states and rules reference kifs 1964 */ 1965 pf_purge_expired_fragments(); 1966 pf_purge_expired_src_nodes(); 1967 pf_purge_unlinked_rules(); 1968 pfi_kkif_purge(); 1969 } 1970 CURVNET_RESTORE(); 1971 } 1972 NET_EPOCH_EXIT(et); 1973 VNET_LIST_RUNLOCK(); 1974 } 1975 1976 pf_end_threads++; 1977 sx_xunlock(&pf_end_lock); 1978 kproc_exit(0); 1979 } 1980 1981 void 1982 pf_unload_vnet_purge(void) 1983 { 1984 1985 /* 1986 * To cleanse up all kifs and rules we need 1987 * two runs: first one clears reference flags, 1988 * then pf_purge_expired_states() doesn't 1989 * raise them, and then second run frees. 1990 */ 1991 pf_purge_unlinked_rules(); 1992 pfi_kkif_purge(); 1993 1994 /* 1995 * Now purge everything. 1996 */ 1997 pf_purge_expired_states(0, pf_hashmask); 1998 pf_purge_fragments(UINT_MAX); 1999 pf_purge_expired_src_nodes(); 2000 2001 /* 2002 * Now all kifs & rules should be unreferenced, 2003 * thus should be successfully freed. 2004 */ 2005 pf_purge_unlinked_rules(); 2006 pfi_kkif_purge(); 2007 } 2008 2009 u_int32_t 2010 pf_state_expires(const struct pf_kstate *state) 2011 { 2012 u_int32_t timeout; 2013 u_int32_t start; 2014 u_int32_t end; 2015 u_int32_t states; 2016 2017 /* handle all PFTM_* > PFTM_MAX here */ 2018 if (state->timeout == PFTM_PURGE) 2019 return (time_uptime); 2020 KASSERT(state->timeout != PFTM_UNLINKED, 2021 ("pf_state_expires: timeout == PFTM_UNLINKED")); 2022 KASSERT((state->timeout < PFTM_MAX), 2023 ("pf_state_expires: timeout > PFTM_MAX")); 2024 timeout = state->rule.ptr->timeout[state->timeout]; 2025 if (!timeout) 2026 timeout = V_pf_default_rule.timeout[state->timeout]; 2027 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 2028 if (start && state->rule.ptr != &V_pf_default_rule) { 2029 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 2030 states = counter_u64_fetch(state->rule.ptr->states_cur); 2031 } else { 2032 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 2033 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 2034 states = V_pf_status.states; 2035 } 2036 if (end && states > start && start < end) { 2037 if (states < end) { 2038 timeout = (u_int64_t)timeout * (end - states) / 2039 (end - start); 2040 return ((state->expire / 1000) + timeout); 2041 } 2042 else 2043 return (time_uptime); 2044 } 2045 return ((state->expire / 1000) + timeout); 2046 } 2047 2048 void 2049 pf_purge_expired_src_nodes(void) 2050 { 2051 struct pf_ksrc_node_list freelist; 2052 struct pf_srchash *sh; 2053 struct pf_ksrc_node *cur, *next; 2054 int i; 2055 2056 LIST_INIT(&freelist); 2057 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 2058 PF_HASHROW_LOCK(sh); 2059 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 2060 if (cur->states == 0 && cur->expire <= time_uptime) { 2061 pf_unlink_src_node(cur); 2062 LIST_INSERT_HEAD(&freelist, cur, entry); 2063 } else if (cur->rule.ptr != NULL) 2064 cur->rule.ptr->rule_ref |= PFRULE_REFS; 2065 PF_HASHROW_UNLOCK(sh); 2066 } 2067 2068 pf_free_src_nodes(&freelist); 2069 2070 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2071 } 2072 2073 static void 2074 pf_src_tree_remove_state(struct pf_kstate *s) 2075 { 2076 struct pf_ksrc_node *sn; 2077 uint32_t timeout; 2078 2079 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 2080 s->rule.ptr->timeout[PFTM_SRC_NODE] : 2081 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2082 2083 if (s->src_node != NULL) { 2084 sn = s->src_node; 2085 PF_SRC_NODE_LOCK(sn); 2086 if (s->src.tcp_est) 2087 --sn->conn; 2088 if (--sn->states == 0) 2089 sn->expire = time_uptime + timeout; 2090 PF_SRC_NODE_UNLOCK(sn); 2091 } 2092 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 2093 sn = s->nat_src_node; 2094 PF_SRC_NODE_LOCK(sn); 2095 if (--sn->states == 0) 2096 sn->expire = time_uptime + timeout; 2097 PF_SRC_NODE_UNLOCK(sn); 2098 } 2099 s->src_node = s->nat_src_node = NULL; 2100 } 2101 2102 /* 2103 * Unlink and potentilly free a state. Function may be 2104 * called with ID hash row locked, but always returns 2105 * unlocked, since it needs to go through key hash locking. 2106 */ 2107 int 2108 pf_unlink_state(struct pf_kstate *s) 2109 { 2110 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2111 2112 NET_EPOCH_ASSERT(); 2113 PF_HASHROW_ASSERT(ih); 2114 2115 if (s->timeout == PFTM_UNLINKED) { 2116 /* 2117 * State is being processed 2118 * by pf_unlink_state() in 2119 * an other thread. 2120 */ 2121 PF_HASHROW_UNLOCK(ih); 2122 return (0); /* XXXGL: undefined actually */ 2123 } 2124 2125 if (s->src.state == PF_TCPS_PROXY_DST) { 2126 /* XXX wire key the right one? */ 2127 pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af, 2128 &s->key[PF_SK_WIRE]->addr[1], 2129 &s->key[PF_SK_WIRE]->addr[0], 2130 s->key[PF_SK_WIRE]->port[1], 2131 s->key[PF_SK_WIRE]->port[0], 2132 s->src.seqhi, s->src.seqlo + 1, 2133 TH_RST|TH_ACK, 0, 0, 0, true, s->tag, 0, s->act.rtableid); 2134 } 2135 2136 LIST_REMOVE(s, entry); 2137 pf_src_tree_remove_state(s); 2138 2139 if (V_pfsync_delete_state_ptr != NULL) 2140 V_pfsync_delete_state_ptr(s); 2141 2142 STATE_DEC_COUNTERS(s); 2143 2144 s->timeout = PFTM_UNLINKED; 2145 2146 /* Ensure we remove it from the list of halfopen states, if needed. */ 2147 if (s->key[PF_SK_STACK] != NULL && 2148 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2149 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2150 2151 PF_HASHROW_UNLOCK(ih); 2152 2153 pf_detach_state(s); 2154 /* pf_state_insert() initialises refs to 2 */ 2155 return (pf_release_staten(s, 2)); 2156 } 2157 2158 struct pf_kstate * 2159 pf_alloc_state(int flags) 2160 { 2161 2162 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2163 } 2164 2165 void 2166 pf_free_state(struct pf_kstate *cur) 2167 { 2168 struct pf_krule_item *ri; 2169 2170 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2171 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2172 cur->timeout)); 2173 2174 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2175 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2176 free(ri, M_PF_RULE_ITEM); 2177 } 2178 2179 pf_normalize_tcp_cleanup(cur); 2180 uma_zfree(V_pf_state_z, cur); 2181 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2182 } 2183 2184 /* 2185 * Called only from pf_purge_thread(), thus serialized. 2186 */ 2187 static u_int 2188 pf_purge_expired_states(u_int i, int maxcheck) 2189 { 2190 struct pf_idhash *ih; 2191 struct pf_kstate *s; 2192 struct pf_krule_item *mrm; 2193 size_t count __unused; 2194 2195 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2196 2197 /* 2198 * Go through hash and unlink states that expire now. 2199 */ 2200 while (maxcheck > 0) { 2201 count = 0; 2202 ih = &V_pf_idhash[i]; 2203 2204 /* only take the lock if we expect to do work */ 2205 if (!LIST_EMPTY(&ih->states)) { 2206 relock: 2207 PF_HASHROW_LOCK(ih); 2208 LIST_FOREACH(s, &ih->states, entry) { 2209 if (pf_state_expires(s) <= time_uptime) { 2210 V_pf_status.states -= 2211 pf_unlink_state(s); 2212 goto relock; 2213 } 2214 s->rule.ptr->rule_ref |= PFRULE_REFS; 2215 if (s->nat_rule.ptr != NULL) 2216 s->nat_rule.ptr->rule_ref |= PFRULE_REFS; 2217 if (s->anchor.ptr != NULL) 2218 s->anchor.ptr->rule_ref |= PFRULE_REFS; 2219 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2220 SLIST_FOREACH(mrm, &s->match_rules, entry) 2221 mrm->r->rule_ref |= PFRULE_REFS; 2222 if (s->rt_kif) 2223 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2224 count++; 2225 } 2226 PF_HASHROW_UNLOCK(ih); 2227 } 2228 2229 SDT_PROBE2(pf, purge, state, rowcount, i, count); 2230 2231 /* Return when we hit end of hash. */ 2232 if (++i > pf_hashmask) { 2233 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2234 return (0); 2235 } 2236 2237 maxcheck--; 2238 } 2239 2240 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2241 2242 return (i); 2243 } 2244 2245 static void 2246 pf_purge_unlinked_rules(void) 2247 { 2248 struct pf_krulequeue tmpq; 2249 struct pf_krule *r, *r1; 2250 2251 /* 2252 * If we have overloading task pending, then we'd 2253 * better skip purging this time. There is a tiny 2254 * probability that overloading task references 2255 * an already unlinked rule. 2256 */ 2257 PF_OVERLOADQ_LOCK(); 2258 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2259 PF_OVERLOADQ_UNLOCK(); 2260 return; 2261 } 2262 PF_OVERLOADQ_UNLOCK(); 2263 2264 /* 2265 * Do naive mark-and-sweep garbage collecting of old rules. 2266 * Reference flag is raised by pf_purge_expired_states() 2267 * and pf_purge_expired_src_nodes(). 2268 * 2269 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2270 * use a temporary queue. 2271 */ 2272 TAILQ_INIT(&tmpq); 2273 PF_UNLNKDRULES_LOCK(); 2274 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2275 if (!(r->rule_ref & PFRULE_REFS)) { 2276 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2277 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2278 } else 2279 r->rule_ref &= ~PFRULE_REFS; 2280 } 2281 PF_UNLNKDRULES_UNLOCK(); 2282 2283 if (!TAILQ_EMPTY(&tmpq)) { 2284 PF_CONFIG_LOCK(); 2285 PF_RULES_WLOCK(); 2286 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2287 TAILQ_REMOVE(&tmpq, r, entries); 2288 pf_free_rule(r); 2289 } 2290 PF_RULES_WUNLOCK(); 2291 PF_CONFIG_UNLOCK(); 2292 } 2293 } 2294 2295 void 2296 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2297 { 2298 switch (af) { 2299 #ifdef INET 2300 case AF_INET: { 2301 u_int32_t a = ntohl(addr->addr32[0]); 2302 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2303 (a>>8)&255, a&255); 2304 if (p) { 2305 p = ntohs(p); 2306 printf(":%u", p); 2307 } 2308 break; 2309 } 2310 #endif /* INET */ 2311 #ifdef INET6 2312 case AF_INET6: { 2313 u_int16_t b; 2314 u_int8_t i, curstart, curend, maxstart, maxend; 2315 curstart = curend = maxstart = maxend = 255; 2316 for (i = 0; i < 8; i++) { 2317 if (!addr->addr16[i]) { 2318 if (curstart == 255) 2319 curstart = i; 2320 curend = i; 2321 } else { 2322 if ((curend - curstart) > 2323 (maxend - maxstart)) { 2324 maxstart = curstart; 2325 maxend = curend; 2326 } 2327 curstart = curend = 255; 2328 } 2329 } 2330 if ((curend - curstart) > 2331 (maxend - maxstart)) { 2332 maxstart = curstart; 2333 maxend = curend; 2334 } 2335 for (i = 0; i < 8; i++) { 2336 if (i >= maxstart && i <= maxend) { 2337 if (i == 0) 2338 printf(":"); 2339 if (i == maxend) 2340 printf(":"); 2341 } else { 2342 b = ntohs(addr->addr16[i]); 2343 printf("%x", b); 2344 if (i < 7) 2345 printf(":"); 2346 } 2347 } 2348 if (p) { 2349 p = ntohs(p); 2350 printf("[%u]", p); 2351 } 2352 break; 2353 } 2354 #endif /* INET6 */ 2355 } 2356 } 2357 2358 void 2359 pf_print_state(struct pf_kstate *s) 2360 { 2361 pf_print_state_parts(s, NULL, NULL); 2362 } 2363 2364 static void 2365 pf_print_state_parts(struct pf_kstate *s, 2366 struct pf_state_key *skwp, struct pf_state_key *sksp) 2367 { 2368 struct pf_state_key *skw, *sks; 2369 u_int8_t proto, dir; 2370 2371 /* Do our best to fill these, but they're skipped if NULL */ 2372 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2373 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2374 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2375 dir = s ? s->direction : 0; 2376 2377 switch (proto) { 2378 case IPPROTO_IPV4: 2379 printf("IPv4"); 2380 break; 2381 case IPPROTO_IPV6: 2382 printf("IPv6"); 2383 break; 2384 case IPPROTO_TCP: 2385 printf("TCP"); 2386 break; 2387 case IPPROTO_UDP: 2388 printf("UDP"); 2389 break; 2390 case IPPROTO_ICMP: 2391 printf("ICMP"); 2392 break; 2393 case IPPROTO_ICMPV6: 2394 printf("ICMPv6"); 2395 break; 2396 default: 2397 printf("%u", proto); 2398 break; 2399 } 2400 switch (dir) { 2401 case PF_IN: 2402 printf(" in"); 2403 break; 2404 case PF_OUT: 2405 printf(" out"); 2406 break; 2407 } 2408 if (skw) { 2409 printf(" wire: "); 2410 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2411 printf(" "); 2412 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2413 } 2414 if (sks) { 2415 printf(" stack: "); 2416 if (sks != skw) { 2417 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2418 printf(" "); 2419 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2420 } else 2421 printf("-"); 2422 } 2423 if (s) { 2424 if (proto == IPPROTO_TCP) { 2425 printf(" [lo=%u high=%u win=%u modulator=%u", 2426 s->src.seqlo, s->src.seqhi, 2427 s->src.max_win, s->src.seqdiff); 2428 if (s->src.wscale && s->dst.wscale) 2429 printf(" wscale=%u", 2430 s->src.wscale & PF_WSCALE_MASK); 2431 printf("]"); 2432 printf(" [lo=%u high=%u win=%u modulator=%u", 2433 s->dst.seqlo, s->dst.seqhi, 2434 s->dst.max_win, s->dst.seqdiff); 2435 if (s->src.wscale && s->dst.wscale) 2436 printf(" wscale=%u", 2437 s->dst.wscale & PF_WSCALE_MASK); 2438 printf("]"); 2439 } 2440 printf(" %u:%u", s->src.state, s->dst.state); 2441 } 2442 } 2443 2444 void 2445 pf_print_flags(u_int8_t f) 2446 { 2447 if (f) 2448 printf(" "); 2449 if (f & TH_FIN) 2450 printf("F"); 2451 if (f & TH_SYN) 2452 printf("S"); 2453 if (f & TH_RST) 2454 printf("R"); 2455 if (f & TH_PUSH) 2456 printf("P"); 2457 if (f & TH_ACK) 2458 printf("A"); 2459 if (f & TH_URG) 2460 printf("U"); 2461 if (f & TH_ECE) 2462 printf("E"); 2463 if (f & TH_CWR) 2464 printf("W"); 2465 } 2466 2467 #define PF_SET_SKIP_STEPS(i) \ 2468 do { \ 2469 while (head[i] != cur) { \ 2470 head[i]->skip[i].ptr = cur; \ 2471 head[i] = TAILQ_NEXT(head[i], entries); \ 2472 } \ 2473 } while (0) 2474 2475 void 2476 pf_calc_skip_steps(struct pf_krulequeue *rules) 2477 { 2478 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2479 int i; 2480 2481 cur = TAILQ_FIRST(rules); 2482 prev = cur; 2483 for (i = 0; i < PF_SKIP_COUNT; ++i) 2484 head[i] = cur; 2485 while (cur != NULL) { 2486 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2487 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2488 if (cur->direction != prev->direction) 2489 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2490 if (cur->af != prev->af) 2491 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2492 if (cur->proto != prev->proto) 2493 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2494 if (cur->src.neg != prev->src.neg || 2495 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2496 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2497 if (cur->src.port[0] != prev->src.port[0] || 2498 cur->src.port[1] != prev->src.port[1] || 2499 cur->src.port_op != prev->src.port_op) 2500 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2501 if (cur->dst.neg != prev->dst.neg || 2502 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2503 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2504 if (cur->dst.port[0] != prev->dst.port[0] || 2505 cur->dst.port[1] != prev->dst.port[1] || 2506 cur->dst.port_op != prev->dst.port_op) 2507 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2508 2509 prev = cur; 2510 cur = TAILQ_NEXT(cur, entries); 2511 } 2512 for (i = 0; i < PF_SKIP_COUNT; ++i) 2513 PF_SET_SKIP_STEPS(i); 2514 } 2515 2516 int 2517 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2518 { 2519 if (aw1->type != aw2->type) 2520 return (1); 2521 switch (aw1->type) { 2522 case PF_ADDR_ADDRMASK: 2523 case PF_ADDR_RANGE: 2524 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2525 return (1); 2526 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2527 return (1); 2528 return (0); 2529 case PF_ADDR_DYNIFTL: 2530 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2531 case PF_ADDR_NOROUTE: 2532 case PF_ADDR_URPFFAILED: 2533 return (0); 2534 case PF_ADDR_TABLE: 2535 return (aw1->p.tbl != aw2->p.tbl); 2536 default: 2537 printf("invalid address type: %d\n", aw1->type); 2538 return (1); 2539 } 2540 } 2541 2542 /** 2543 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2544 * header isn't always a full checksum. In some cases (i.e. output) it's a 2545 * pseudo-header checksum, which is a partial checksum over src/dst IP 2546 * addresses, protocol number and length. 2547 * 2548 * That means we have the following cases: 2549 * * Input or forwarding: we don't have TSO, the checksum fields are full 2550 * checksums, we need to update the checksum whenever we change anything. 2551 * * Output (i.e. the checksum is a pseudo-header checksum): 2552 * x The field being updated is src/dst address or affects the length of 2553 * the packet. We need to update the pseudo-header checksum (note that this 2554 * checksum is not ones' complement). 2555 * x Some other field is being modified (e.g. src/dst port numbers): We 2556 * don't have to update anything. 2557 **/ 2558 u_int16_t 2559 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2560 { 2561 u_int32_t x; 2562 2563 x = cksum + old - new; 2564 x = (x + (x >> 16)) & 0xffff; 2565 2566 /* optimise: eliminate a branch when not udp */ 2567 if (udp && cksum == 0x0000) 2568 return cksum; 2569 if (udp && x == 0x0000) 2570 x = 0xffff; 2571 2572 return (u_int16_t)(x); 2573 } 2574 2575 static void 2576 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 2577 u_int8_t udp) 2578 { 2579 u_int16_t old = htons(hi ? (*f << 8) : *f); 2580 u_int16_t new = htons(hi ? ( v << 8) : v); 2581 2582 if (*f == v) 2583 return; 2584 2585 *f = v; 2586 2587 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2588 return; 2589 2590 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 2591 } 2592 2593 void 2594 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 2595 bool hi, u_int8_t udp) 2596 { 2597 u_int8_t *fb = (u_int8_t *)f; 2598 u_int8_t *vb = (u_int8_t *)&v; 2599 2600 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2601 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2602 } 2603 2604 void 2605 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 2606 bool hi, u_int8_t udp) 2607 { 2608 u_int8_t *fb = (u_int8_t *)f; 2609 u_int8_t *vb = (u_int8_t *)&v; 2610 2611 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2612 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2613 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2614 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2615 } 2616 2617 u_int16_t 2618 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2619 u_int16_t new, u_int8_t udp) 2620 { 2621 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2622 return (cksum); 2623 2624 return (pf_cksum_fixup(cksum, old, new, udp)); 2625 } 2626 2627 static void 2628 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2629 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2630 sa_family_t af) 2631 { 2632 struct pf_addr ao; 2633 u_int16_t po = *p; 2634 2635 PF_ACPY(&ao, a, af); 2636 PF_ACPY(a, an, af); 2637 2638 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2639 *pc = ~*pc; 2640 2641 *p = pn; 2642 2643 switch (af) { 2644 #ifdef INET 2645 case AF_INET: 2646 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2647 ao.addr16[0], an->addr16[0], 0), 2648 ao.addr16[1], an->addr16[1], 0); 2649 *p = pn; 2650 2651 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2652 ao.addr16[0], an->addr16[0], u), 2653 ao.addr16[1], an->addr16[1], u); 2654 2655 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2656 break; 2657 #endif /* INET */ 2658 #ifdef INET6 2659 case AF_INET6: 2660 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2661 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2662 pf_cksum_fixup(pf_cksum_fixup(*pc, 2663 ao.addr16[0], an->addr16[0], u), 2664 ao.addr16[1], an->addr16[1], u), 2665 ao.addr16[2], an->addr16[2], u), 2666 ao.addr16[3], an->addr16[3], u), 2667 ao.addr16[4], an->addr16[4], u), 2668 ao.addr16[5], an->addr16[5], u), 2669 ao.addr16[6], an->addr16[6], u), 2670 ao.addr16[7], an->addr16[7], u); 2671 2672 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2673 break; 2674 #endif /* INET6 */ 2675 } 2676 2677 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2678 CSUM_DELAY_DATA_IPV6)) { 2679 *pc = ~*pc; 2680 if (! *pc) 2681 *pc = 0xffff; 2682 } 2683 } 2684 2685 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2686 void 2687 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2688 { 2689 u_int32_t ao; 2690 2691 memcpy(&ao, a, sizeof(ao)); 2692 memcpy(a, &an, sizeof(u_int32_t)); 2693 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2694 ao % 65536, an % 65536, u); 2695 } 2696 2697 void 2698 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2699 { 2700 u_int32_t ao; 2701 2702 memcpy(&ao, a, sizeof(ao)); 2703 memcpy(a, &an, sizeof(u_int32_t)); 2704 2705 *c = pf_proto_cksum_fixup(m, 2706 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2707 ao % 65536, an % 65536, udp); 2708 } 2709 2710 #ifdef INET6 2711 static void 2712 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2713 { 2714 struct pf_addr ao; 2715 2716 PF_ACPY(&ao, a, AF_INET6); 2717 PF_ACPY(a, an, AF_INET6); 2718 2719 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2720 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2721 pf_cksum_fixup(pf_cksum_fixup(*c, 2722 ao.addr16[0], an->addr16[0], u), 2723 ao.addr16[1], an->addr16[1], u), 2724 ao.addr16[2], an->addr16[2], u), 2725 ao.addr16[3], an->addr16[3], u), 2726 ao.addr16[4], an->addr16[4], u), 2727 ao.addr16[5], an->addr16[5], u), 2728 ao.addr16[6], an->addr16[6], u), 2729 ao.addr16[7], an->addr16[7], u); 2730 } 2731 #endif /* INET6 */ 2732 2733 static void 2734 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2735 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2736 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2737 { 2738 struct pf_addr oia, ooa; 2739 2740 PF_ACPY(&oia, ia, af); 2741 if (oa) 2742 PF_ACPY(&ooa, oa, af); 2743 2744 /* Change inner protocol port, fix inner protocol checksum. */ 2745 if (ip != NULL) { 2746 u_int16_t oip = *ip; 2747 u_int32_t opc; 2748 2749 if (pc != NULL) 2750 opc = *pc; 2751 *ip = np; 2752 if (pc != NULL) 2753 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2754 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2755 if (pc != NULL) 2756 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2757 } 2758 /* Change inner ip address, fix inner ip and icmp checksums. */ 2759 PF_ACPY(ia, na, af); 2760 switch (af) { 2761 #ifdef INET 2762 case AF_INET: { 2763 u_int32_t oh2c = *h2c; 2764 2765 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2766 oia.addr16[0], ia->addr16[0], 0), 2767 oia.addr16[1], ia->addr16[1], 0); 2768 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2769 oia.addr16[0], ia->addr16[0], 0), 2770 oia.addr16[1], ia->addr16[1], 0); 2771 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2772 break; 2773 } 2774 #endif /* INET */ 2775 #ifdef INET6 2776 case AF_INET6: 2777 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2778 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2779 pf_cksum_fixup(pf_cksum_fixup(*ic, 2780 oia.addr16[0], ia->addr16[0], u), 2781 oia.addr16[1], ia->addr16[1], u), 2782 oia.addr16[2], ia->addr16[2], u), 2783 oia.addr16[3], ia->addr16[3], u), 2784 oia.addr16[4], ia->addr16[4], u), 2785 oia.addr16[5], ia->addr16[5], u), 2786 oia.addr16[6], ia->addr16[6], u), 2787 oia.addr16[7], ia->addr16[7], u); 2788 break; 2789 #endif /* INET6 */ 2790 } 2791 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2792 if (oa) { 2793 PF_ACPY(oa, na, af); 2794 switch (af) { 2795 #ifdef INET 2796 case AF_INET: 2797 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2798 ooa.addr16[0], oa->addr16[0], 0), 2799 ooa.addr16[1], oa->addr16[1], 0); 2800 break; 2801 #endif /* INET */ 2802 #ifdef INET6 2803 case AF_INET6: 2804 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2805 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2806 pf_cksum_fixup(pf_cksum_fixup(*ic, 2807 ooa.addr16[0], oa->addr16[0], u), 2808 ooa.addr16[1], oa->addr16[1], u), 2809 ooa.addr16[2], oa->addr16[2], u), 2810 ooa.addr16[3], oa->addr16[3], u), 2811 ooa.addr16[4], oa->addr16[4], u), 2812 ooa.addr16[5], oa->addr16[5], u), 2813 ooa.addr16[6], oa->addr16[6], u), 2814 ooa.addr16[7], oa->addr16[7], u); 2815 break; 2816 #endif /* INET6 */ 2817 } 2818 } 2819 } 2820 2821 /* 2822 * Need to modulate the sequence numbers in the TCP SACK option 2823 * (credits to Krzysztof Pfaff for report and patch) 2824 */ 2825 static int 2826 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2827 struct tcphdr *th, struct pf_state_peer *dst) 2828 { 2829 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2830 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2831 int copyback = 0, i, olen; 2832 struct sackblk sack; 2833 2834 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2835 if (hlen < TCPOLEN_SACKLEN || 2836 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2837 return 0; 2838 2839 while (hlen >= TCPOLEN_SACKLEN) { 2840 size_t startoff = opt - opts; 2841 olen = opt[1]; 2842 switch (*opt) { 2843 case TCPOPT_EOL: /* FALLTHROUGH */ 2844 case TCPOPT_NOP: 2845 opt++; 2846 hlen--; 2847 break; 2848 case TCPOPT_SACK: 2849 if (olen > hlen) 2850 olen = hlen; 2851 if (olen >= TCPOLEN_SACKLEN) { 2852 for (i = 2; i + TCPOLEN_SACK <= olen; 2853 i += TCPOLEN_SACK) { 2854 memcpy(&sack, &opt[i], sizeof(sack)); 2855 pf_patch_32_unaligned(m, 2856 &th->th_sum, &sack.start, 2857 htonl(ntohl(sack.start) - dst->seqdiff), 2858 PF_ALGNMNT(startoff), 2859 0); 2860 pf_patch_32_unaligned(m, &th->th_sum, 2861 &sack.end, 2862 htonl(ntohl(sack.end) - dst->seqdiff), 2863 PF_ALGNMNT(startoff), 2864 0); 2865 memcpy(&opt[i], &sack, sizeof(sack)); 2866 } 2867 copyback = 1; 2868 } 2869 /* FALLTHROUGH */ 2870 default: 2871 if (olen < 2) 2872 olen = 2; 2873 hlen -= olen; 2874 opt += olen; 2875 } 2876 } 2877 2878 if (copyback) 2879 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2880 return (copyback); 2881 } 2882 2883 struct mbuf * 2884 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 2885 const struct pf_addr *saddr, const struct pf_addr *daddr, 2886 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2887 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 2888 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 2889 { 2890 struct mbuf *m; 2891 int len, tlen; 2892 #ifdef INET 2893 struct ip *h = NULL; 2894 #endif /* INET */ 2895 #ifdef INET6 2896 struct ip6_hdr *h6 = NULL; 2897 #endif /* INET6 */ 2898 struct tcphdr *th; 2899 char *opt; 2900 struct pf_mtag *pf_mtag; 2901 2902 len = 0; 2903 th = NULL; 2904 2905 /* maximum segment size tcp option */ 2906 tlen = sizeof(struct tcphdr); 2907 if (mss) 2908 tlen += 4; 2909 2910 switch (af) { 2911 #ifdef INET 2912 case AF_INET: 2913 len = sizeof(struct ip) + tlen; 2914 break; 2915 #endif /* INET */ 2916 #ifdef INET6 2917 case AF_INET6: 2918 len = sizeof(struct ip6_hdr) + tlen; 2919 break; 2920 #endif /* INET6 */ 2921 default: 2922 panic("%s: unsupported af %d", __func__, af); 2923 } 2924 2925 m = m_gethdr(M_NOWAIT, MT_DATA); 2926 if (m == NULL) 2927 return (NULL); 2928 2929 #ifdef MAC 2930 mac_netinet_firewall_send(m); 2931 #endif 2932 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2933 m_freem(m); 2934 return (NULL); 2935 } 2936 if (skip_firewall) 2937 m->m_flags |= M_SKIP_FIREWALL; 2938 pf_mtag->tag = mtag_tag; 2939 pf_mtag->flags = mtag_flags; 2940 2941 if (rtableid >= 0) 2942 M_SETFIB(m, rtableid); 2943 2944 #ifdef ALTQ 2945 if (r != NULL && r->qid) { 2946 pf_mtag->qid = r->qid; 2947 2948 /* add hints for ecn */ 2949 pf_mtag->hdr = mtod(m, struct ip *); 2950 } 2951 #endif /* ALTQ */ 2952 m->m_data += max_linkhdr; 2953 m->m_pkthdr.len = m->m_len = len; 2954 /* The rest of the stack assumes a rcvif, so provide one. 2955 * This is a locally generated packet, so .. close enough. */ 2956 m->m_pkthdr.rcvif = V_loif; 2957 bzero(m->m_data, len); 2958 switch (af) { 2959 #ifdef INET 2960 case AF_INET: 2961 h = mtod(m, struct ip *); 2962 2963 /* IP header fields included in the TCP checksum */ 2964 h->ip_p = IPPROTO_TCP; 2965 h->ip_len = htons(tlen); 2966 h->ip_src.s_addr = saddr->v4.s_addr; 2967 h->ip_dst.s_addr = daddr->v4.s_addr; 2968 2969 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2970 break; 2971 #endif /* INET */ 2972 #ifdef INET6 2973 case AF_INET6: 2974 h6 = mtod(m, struct ip6_hdr *); 2975 2976 /* IP header fields included in the TCP checksum */ 2977 h6->ip6_nxt = IPPROTO_TCP; 2978 h6->ip6_plen = htons(tlen); 2979 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2980 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2981 2982 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2983 break; 2984 #endif /* INET6 */ 2985 } 2986 2987 /* TCP header */ 2988 th->th_sport = sport; 2989 th->th_dport = dport; 2990 th->th_seq = htonl(seq); 2991 th->th_ack = htonl(ack); 2992 th->th_off = tlen >> 2; 2993 th->th_flags = tcp_flags; 2994 th->th_win = htons(win); 2995 2996 if (mss) { 2997 opt = (char *)(th + 1); 2998 opt[0] = TCPOPT_MAXSEG; 2999 opt[1] = 4; 3000 HTONS(mss); 3001 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 3002 } 3003 3004 switch (af) { 3005 #ifdef INET 3006 case AF_INET: 3007 /* TCP checksum */ 3008 th->th_sum = in_cksum(m, len); 3009 3010 /* Finish the IP header */ 3011 h->ip_v = 4; 3012 h->ip_hl = sizeof(*h) >> 2; 3013 h->ip_tos = IPTOS_LOWDELAY; 3014 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 3015 h->ip_len = htons(len); 3016 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3017 h->ip_sum = 0; 3018 break; 3019 #endif /* INET */ 3020 #ifdef INET6 3021 case AF_INET6: 3022 /* TCP checksum */ 3023 th->th_sum = in6_cksum(m, IPPROTO_TCP, 3024 sizeof(struct ip6_hdr), tlen); 3025 3026 h6->ip6_vfc |= IPV6_VERSION; 3027 h6->ip6_hlim = IPV6_DEFHLIM; 3028 break; 3029 #endif /* INET6 */ 3030 } 3031 3032 return (m); 3033 } 3034 3035 static void 3036 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd, 3037 uint8_t ttl, int rtableid) 3038 { 3039 struct mbuf *m; 3040 #ifdef INET 3041 struct ip *h = NULL; 3042 #endif /* INET */ 3043 #ifdef INET6 3044 struct ip6_hdr *h6 = NULL; 3045 #endif /* INET6 */ 3046 struct sctphdr *hdr; 3047 struct sctp_chunkhdr *chunk; 3048 struct pf_send_entry *pfse; 3049 int off = 0; 3050 3051 MPASS(af == pd->af); 3052 3053 m = m_gethdr(M_NOWAIT, MT_DATA); 3054 if (m == NULL) 3055 return; 3056 3057 m->m_data += max_linkhdr; 3058 m->m_flags |= M_SKIP_FIREWALL; 3059 /* The rest of the stack assumes a rcvif, so provide one. 3060 * This is a locally generated packet, so .. close enough. */ 3061 m->m_pkthdr.rcvif = V_loif; 3062 3063 /* IPv4|6 header */ 3064 switch (af) { 3065 #ifdef INET 3066 case AF_INET: 3067 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk)); 3068 3069 h = mtod(m, struct ip *); 3070 3071 /* IP header fields included in the TCP checksum */ 3072 3073 h->ip_p = IPPROTO_SCTP; 3074 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk)); 3075 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3076 h->ip_src = pd->dst->v4; 3077 h->ip_dst = pd->src->v4; 3078 3079 off += sizeof(struct ip); 3080 break; 3081 #endif /* INET */ 3082 #ifdef INET6 3083 case AF_INET6: 3084 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk)); 3085 3086 h6 = mtod(m, struct ip6_hdr *); 3087 3088 /* IP header fields included in the TCP checksum */ 3089 h6->ip6_vfc |= IPV6_VERSION; 3090 h6->ip6_nxt = IPPROTO_SCTP; 3091 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk)); 3092 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim; 3093 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr)); 3094 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr)); 3095 3096 off += sizeof(struct ip6_hdr); 3097 break; 3098 #endif /* INET6 */ 3099 } 3100 3101 /* SCTP header */ 3102 hdr = mtodo(m, off); 3103 3104 hdr->src_port = pd->hdr.sctp.dest_port; 3105 hdr->dest_port = pd->hdr.sctp.src_port; 3106 hdr->v_tag = pd->sctp_initiate_tag; 3107 hdr->checksum = 0; 3108 3109 /* Abort chunk. */ 3110 off += sizeof(struct sctphdr); 3111 chunk = mtodo(m, off); 3112 3113 chunk->chunk_type = SCTP_ABORT_ASSOCIATION; 3114 chunk->chunk_length = htons(sizeof(*chunk)); 3115 3116 /* SCTP checksum */ 3117 off += sizeof(*chunk); 3118 m->m_pkthdr.len = m->m_len = off; 3119 3120 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk));; 3121 3122 if (rtableid >= 0) 3123 M_SETFIB(m, rtableid); 3124 3125 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3126 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3127 if (pfse == NULL) { 3128 m_freem(m); 3129 return; 3130 } 3131 3132 switch (af) { 3133 #ifdef INET 3134 case AF_INET: 3135 pfse->pfse_type = PFSE_IP; 3136 break; 3137 #endif /* INET */ 3138 #ifdef INET6 3139 case AF_INET6: 3140 pfse->pfse_type = PFSE_IP6; 3141 break; 3142 #endif /* INET6 */ 3143 } 3144 3145 pfse->pfse_m = m; 3146 pf_send(pfse); 3147 } 3148 3149 void 3150 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 3151 const struct pf_addr *saddr, const struct pf_addr *daddr, 3152 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3153 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3154 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3155 { 3156 struct pf_send_entry *pfse; 3157 struct mbuf *m; 3158 3159 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags, 3160 win, mss, ttl, skip_firewall, mtag_tag, mtag_flags, rtableid); 3161 if (m == NULL) 3162 return; 3163 3164 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3165 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3166 if (pfse == NULL) { 3167 m_freem(m); 3168 return; 3169 } 3170 3171 switch (af) { 3172 #ifdef INET 3173 case AF_INET: 3174 pfse->pfse_type = PFSE_IP; 3175 break; 3176 #endif /* INET */ 3177 #ifdef INET6 3178 case AF_INET6: 3179 pfse->pfse_type = PFSE_IP6; 3180 break; 3181 #endif /* INET6 */ 3182 } 3183 3184 pfse->pfse_m = m; 3185 pf_send(pfse); 3186 } 3187 3188 static void 3189 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 3190 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 3191 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 3192 u_short *reason, int rtableid) 3193 { 3194 struct pf_addr * const saddr = pd->src; 3195 struct pf_addr * const daddr = pd->dst; 3196 sa_family_t af = pd->af; 3197 3198 /* undo NAT changes, if they have taken place */ 3199 if (nr != NULL) { 3200 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3201 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3202 if (pd->sport) 3203 *pd->sport = sk->port[pd->sidx]; 3204 if (pd->dport) 3205 *pd->dport = sk->port[pd->didx]; 3206 if (pd->proto_sum) 3207 *pd->proto_sum = bproto_sum; 3208 if (pd->ip_sum) 3209 *pd->ip_sum = bip_sum; 3210 m_copyback(m, off, hdrlen, pd->hdr.any); 3211 } 3212 if (pd->proto == IPPROTO_TCP && 3213 ((r->rule_flag & PFRULE_RETURNRST) || 3214 (r->rule_flag & PFRULE_RETURN)) && 3215 !(th->th_flags & TH_RST)) { 3216 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3217 int len = 0; 3218 #ifdef INET 3219 struct ip *h4; 3220 #endif 3221 #ifdef INET6 3222 struct ip6_hdr *h6; 3223 #endif 3224 3225 switch (af) { 3226 #ifdef INET 3227 case AF_INET: 3228 h4 = mtod(m, struct ip *); 3229 len = ntohs(h4->ip_len) - off; 3230 break; 3231 #endif 3232 #ifdef INET6 3233 case AF_INET6: 3234 h6 = mtod(m, struct ip6_hdr *); 3235 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3236 break; 3237 #endif 3238 } 3239 3240 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3241 REASON_SET(reason, PFRES_PROTCKSUM); 3242 else { 3243 if (th->th_flags & TH_SYN) 3244 ack++; 3245 if (th->th_flags & TH_FIN) 3246 ack++; 3247 pf_send_tcp(r, af, pd->dst, 3248 pd->src, th->th_dport, th->th_sport, 3249 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3250 r->return_ttl, true, 0, 0, rtableid); 3251 } 3252 } else if (pd->proto == IPPROTO_SCTP && 3253 (r->rule_flag & PFRULE_RETURN)) { 3254 pf_send_sctp_abort(af, pd, r->return_ttl, rtableid); 3255 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3256 r->return_icmp) 3257 pf_send_icmp(m, r->return_icmp >> 8, 3258 r->return_icmp & 255, af, r, rtableid); 3259 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3260 r->return_icmp6) 3261 pf_send_icmp(m, r->return_icmp6 >> 8, 3262 r->return_icmp6 & 255, af, r, rtableid); 3263 } 3264 3265 static int 3266 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 3267 { 3268 struct m_tag *mtag; 3269 u_int8_t mpcp; 3270 3271 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 3272 if (mtag == NULL) 3273 return (0); 3274 3275 if (prio == PF_PRIO_ZERO) 3276 prio = 0; 3277 3278 mpcp = *(uint8_t *)(mtag + 1); 3279 3280 return (mpcp == prio); 3281 } 3282 3283 static int 3284 pf_icmp_to_bandlim(uint8_t type) 3285 { 3286 switch (type) { 3287 case ICMP_ECHO: 3288 case ICMP_ECHOREPLY: 3289 return (BANDLIM_ICMP_ECHO); 3290 case ICMP_TSTAMP: 3291 case ICMP_TSTAMPREPLY: 3292 return (BANDLIM_ICMP_TSTAMP); 3293 case ICMP_UNREACH: 3294 default: 3295 return (BANDLIM_ICMP_UNREACH); 3296 } 3297 } 3298 3299 static void 3300 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 3301 struct pf_krule *r, int rtableid) 3302 { 3303 struct pf_send_entry *pfse; 3304 struct mbuf *m0; 3305 struct pf_mtag *pf_mtag; 3306 3307 /* ICMP packet rate limitation. */ 3308 #ifdef INET6 3309 if (af == AF_INET6) { 3310 if (icmp6_ratelimit(NULL, type, code)) 3311 return; 3312 } 3313 #endif 3314 #ifdef INET 3315 if (af == AF_INET) { 3316 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 3317 return; 3318 } 3319 #endif 3320 3321 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3322 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3323 if (pfse == NULL) 3324 return; 3325 3326 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 3327 free(pfse, M_PFTEMP); 3328 return; 3329 } 3330 3331 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 3332 free(pfse, M_PFTEMP); 3333 return; 3334 } 3335 /* XXX: revisit */ 3336 m0->m_flags |= M_SKIP_FIREWALL; 3337 3338 if (rtableid >= 0) 3339 M_SETFIB(m0, rtableid); 3340 3341 #ifdef ALTQ 3342 if (r->qid) { 3343 pf_mtag->qid = r->qid; 3344 /* add hints for ecn */ 3345 pf_mtag->hdr = mtod(m0, struct ip *); 3346 } 3347 #endif /* ALTQ */ 3348 3349 switch (af) { 3350 #ifdef INET 3351 case AF_INET: 3352 pfse->pfse_type = PFSE_ICMP; 3353 break; 3354 #endif /* INET */ 3355 #ifdef INET6 3356 case AF_INET6: 3357 pfse->pfse_type = PFSE_ICMP6; 3358 break; 3359 #endif /* INET6 */ 3360 } 3361 pfse->pfse_m = m0; 3362 pfse->icmpopts.type = type; 3363 pfse->icmpopts.code = code; 3364 pf_send(pfse); 3365 } 3366 3367 /* 3368 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 3369 * If n is 0, they match if they are equal. If n is != 0, they match if they 3370 * are different. 3371 */ 3372 int 3373 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 3374 struct pf_addr *b, sa_family_t af) 3375 { 3376 int match = 0; 3377 3378 switch (af) { 3379 #ifdef INET 3380 case AF_INET: 3381 if ((a->addr32[0] & m->addr32[0]) == 3382 (b->addr32[0] & m->addr32[0])) 3383 match++; 3384 break; 3385 #endif /* INET */ 3386 #ifdef INET6 3387 case AF_INET6: 3388 if (((a->addr32[0] & m->addr32[0]) == 3389 (b->addr32[0] & m->addr32[0])) && 3390 ((a->addr32[1] & m->addr32[1]) == 3391 (b->addr32[1] & m->addr32[1])) && 3392 ((a->addr32[2] & m->addr32[2]) == 3393 (b->addr32[2] & m->addr32[2])) && 3394 ((a->addr32[3] & m->addr32[3]) == 3395 (b->addr32[3] & m->addr32[3]))) 3396 match++; 3397 break; 3398 #endif /* INET6 */ 3399 } 3400 if (match) { 3401 if (n) 3402 return (0); 3403 else 3404 return (1); 3405 } else { 3406 if (n) 3407 return (1); 3408 else 3409 return (0); 3410 } 3411 } 3412 3413 /* 3414 * Return 1 if b <= a <= e, otherwise return 0. 3415 */ 3416 int 3417 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 3418 struct pf_addr *a, sa_family_t af) 3419 { 3420 switch (af) { 3421 #ifdef INET 3422 case AF_INET: 3423 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 3424 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 3425 return (0); 3426 break; 3427 #endif /* INET */ 3428 #ifdef INET6 3429 case AF_INET6: { 3430 int i; 3431 3432 /* check a >= b */ 3433 for (i = 0; i < 4; ++i) 3434 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 3435 break; 3436 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 3437 return (0); 3438 /* check a <= e */ 3439 for (i = 0; i < 4; ++i) 3440 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 3441 break; 3442 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 3443 return (0); 3444 break; 3445 } 3446 #endif /* INET6 */ 3447 } 3448 return (1); 3449 } 3450 3451 static int 3452 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3453 { 3454 switch (op) { 3455 case PF_OP_IRG: 3456 return ((p > a1) && (p < a2)); 3457 case PF_OP_XRG: 3458 return ((p < a1) || (p > a2)); 3459 case PF_OP_RRG: 3460 return ((p >= a1) && (p <= a2)); 3461 case PF_OP_EQ: 3462 return (p == a1); 3463 case PF_OP_NE: 3464 return (p != a1); 3465 case PF_OP_LT: 3466 return (p < a1); 3467 case PF_OP_LE: 3468 return (p <= a1); 3469 case PF_OP_GT: 3470 return (p > a1); 3471 case PF_OP_GE: 3472 return (p >= a1); 3473 } 3474 return (0); /* never reached */ 3475 } 3476 3477 int 3478 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3479 { 3480 NTOHS(a1); 3481 NTOHS(a2); 3482 NTOHS(p); 3483 return (pf_match(op, a1, a2, p)); 3484 } 3485 3486 static int 3487 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3488 { 3489 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3490 return (0); 3491 return (pf_match(op, a1, a2, u)); 3492 } 3493 3494 static int 3495 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3496 { 3497 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3498 return (0); 3499 return (pf_match(op, a1, a2, g)); 3500 } 3501 3502 int 3503 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3504 { 3505 if (*tag == -1) 3506 *tag = mtag; 3507 3508 return ((!r->match_tag_not && r->match_tag == *tag) || 3509 (r->match_tag_not && r->match_tag != *tag)); 3510 } 3511 3512 int 3513 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 3514 { 3515 3516 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 3517 3518 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 3519 return (ENOMEM); 3520 3521 pd->pf_mtag->tag = tag; 3522 3523 return (0); 3524 } 3525 3526 #define PF_ANCHOR_STACKSIZE 32 3527 struct pf_kanchor_stackframe { 3528 struct pf_kruleset *rs; 3529 struct pf_krule *r; /* XXX: + match bit */ 3530 struct pf_kanchor *child; 3531 }; 3532 3533 /* 3534 * XXX: We rely on malloc(9) returning pointer aligned addresses. 3535 */ 3536 #define PF_ANCHORSTACK_MATCH 0x00000001 3537 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 3538 3539 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3540 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 3541 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3542 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3543 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3544 } while (0) 3545 3546 void 3547 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3548 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3549 int *match) 3550 { 3551 struct pf_kanchor_stackframe *f; 3552 3553 PF_RULES_RASSERT(); 3554 3555 if (match) 3556 *match = 0; 3557 if (*depth >= PF_ANCHOR_STACKSIZE) { 3558 printf("%s: anchor stack overflow on %s\n", 3559 __func__, (*r)->anchor->name); 3560 *r = TAILQ_NEXT(*r, entries); 3561 return; 3562 } else if (*depth == 0 && a != NULL) 3563 *a = *r; 3564 f = stack + (*depth)++; 3565 f->rs = *rs; 3566 f->r = *r; 3567 if ((*r)->anchor_wildcard) { 3568 struct pf_kanchor_node *parent = &(*r)->anchor->children; 3569 3570 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 3571 *r = NULL; 3572 return; 3573 } 3574 *rs = &f->child->ruleset; 3575 } else { 3576 f->child = NULL; 3577 *rs = &(*r)->anchor->ruleset; 3578 } 3579 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3580 } 3581 3582 int 3583 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3584 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3585 int *match) 3586 { 3587 struct pf_kanchor_stackframe *f; 3588 struct pf_krule *fr; 3589 int quick = 0; 3590 3591 PF_RULES_RASSERT(); 3592 3593 do { 3594 if (*depth <= 0) 3595 break; 3596 f = stack + *depth - 1; 3597 fr = PF_ANCHOR_RULE(f); 3598 if (f->child != NULL) { 3599 /* 3600 * This block traverses through 3601 * a wildcard anchor. 3602 */ 3603 if (match != NULL && *match) { 3604 /* 3605 * If any of "*" matched, then 3606 * "foo/ *" matched, mark frame 3607 * appropriately. 3608 */ 3609 PF_ANCHOR_SET_MATCH(f); 3610 *match = 0; 3611 } 3612 f->child = RB_NEXT(pf_kanchor_node, 3613 &fr->anchor->children, f->child); 3614 if (f->child != NULL) { 3615 *rs = &f->child->ruleset; 3616 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3617 if (*r == NULL) 3618 continue; 3619 else 3620 break; 3621 } 3622 } 3623 (*depth)--; 3624 if (*depth == 0 && a != NULL) 3625 *a = NULL; 3626 *rs = f->rs; 3627 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 3628 quick = fr->quick; 3629 *r = TAILQ_NEXT(fr, entries); 3630 } while (*r == NULL); 3631 3632 return (quick); 3633 } 3634 3635 struct pf_keth_anchor_stackframe { 3636 struct pf_keth_ruleset *rs; 3637 struct pf_keth_rule *r; /* XXX: + match bit */ 3638 struct pf_keth_anchor *child; 3639 }; 3640 3641 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3642 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 3643 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3644 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3645 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3646 } while (0) 3647 3648 void 3649 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 3650 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 3651 struct pf_keth_rule **a, int *match) 3652 { 3653 struct pf_keth_anchor_stackframe *f; 3654 3655 NET_EPOCH_ASSERT(); 3656 3657 if (match) 3658 *match = 0; 3659 if (*depth >= PF_ANCHOR_STACKSIZE) { 3660 printf("%s: anchor stack overflow on %s\n", 3661 __func__, (*r)->anchor->name); 3662 *r = TAILQ_NEXT(*r, entries); 3663 return; 3664 } else if (*depth == 0 && a != NULL) 3665 *a = *r; 3666 f = stack + (*depth)++; 3667 f->rs = *rs; 3668 f->r = *r; 3669 if ((*r)->anchor_wildcard) { 3670 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 3671 3672 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 3673 *r = NULL; 3674 return; 3675 } 3676 *rs = &f->child->ruleset; 3677 } else { 3678 f->child = NULL; 3679 *rs = &(*r)->anchor->ruleset; 3680 } 3681 *r = TAILQ_FIRST((*rs)->active.rules); 3682 } 3683 3684 int 3685 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 3686 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 3687 struct pf_keth_rule **a, int *match) 3688 { 3689 struct pf_keth_anchor_stackframe *f; 3690 struct pf_keth_rule *fr; 3691 int quick = 0; 3692 3693 NET_EPOCH_ASSERT(); 3694 3695 do { 3696 if (*depth <= 0) 3697 break; 3698 f = stack + *depth - 1; 3699 fr = PF_ETH_ANCHOR_RULE(f); 3700 if (f->child != NULL) { 3701 /* 3702 * This block traverses through 3703 * a wildcard anchor. 3704 */ 3705 if (match != NULL && *match) { 3706 /* 3707 * If any of "*" matched, then 3708 * "foo/ *" matched, mark frame 3709 * appropriately. 3710 */ 3711 PF_ETH_ANCHOR_SET_MATCH(f); 3712 *match = 0; 3713 } 3714 f->child = RB_NEXT(pf_keth_anchor_node, 3715 &fr->anchor->children, f->child); 3716 if (f->child != NULL) { 3717 *rs = &f->child->ruleset; 3718 *r = TAILQ_FIRST((*rs)->active.rules); 3719 if (*r == NULL) 3720 continue; 3721 else 3722 break; 3723 } 3724 } 3725 (*depth)--; 3726 if (*depth == 0 && a != NULL) 3727 *a = NULL; 3728 *rs = f->rs; 3729 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 3730 quick = fr->quick; 3731 *r = TAILQ_NEXT(fr, entries); 3732 } while (*r == NULL); 3733 3734 return (quick); 3735 } 3736 3737 #ifdef INET6 3738 void 3739 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 3740 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 3741 { 3742 switch (af) { 3743 #ifdef INET 3744 case AF_INET: 3745 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3746 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3747 break; 3748 #endif /* INET */ 3749 case AF_INET6: 3750 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3751 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3752 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 3753 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 3754 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 3755 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 3756 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 3757 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 3758 break; 3759 } 3760 } 3761 3762 void 3763 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 3764 { 3765 switch (af) { 3766 #ifdef INET 3767 case AF_INET: 3768 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 3769 break; 3770 #endif /* INET */ 3771 case AF_INET6: 3772 if (addr->addr32[3] == 0xffffffff) { 3773 addr->addr32[3] = 0; 3774 if (addr->addr32[2] == 0xffffffff) { 3775 addr->addr32[2] = 0; 3776 if (addr->addr32[1] == 0xffffffff) { 3777 addr->addr32[1] = 0; 3778 addr->addr32[0] = 3779 htonl(ntohl(addr->addr32[0]) + 1); 3780 } else 3781 addr->addr32[1] = 3782 htonl(ntohl(addr->addr32[1]) + 1); 3783 } else 3784 addr->addr32[2] = 3785 htonl(ntohl(addr->addr32[2]) + 1); 3786 } else 3787 addr->addr32[3] = 3788 htonl(ntohl(addr->addr32[3]) + 1); 3789 break; 3790 } 3791 } 3792 #endif /* INET6 */ 3793 3794 void 3795 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 3796 { 3797 /* 3798 * Modern rules use the same flags in rules as they do in states. 3799 */ 3800 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 3801 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 3802 3803 /* 3804 * Old-style scrub rules have different flags which need to be translated. 3805 */ 3806 if (r->rule_flag & PFRULE_RANDOMID) 3807 a->flags |= PFSTATE_RANDOMID; 3808 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) { 3809 a->flags |= PFSTATE_SETTOS; 3810 a->set_tos = r->set_tos; 3811 } 3812 3813 if (r->qid) 3814 a->qid = r->qid; 3815 if (r->pqid) 3816 a->pqid = r->pqid; 3817 if (r->rtableid >= 0) 3818 a->rtableid = r->rtableid; 3819 a->log |= r->log; 3820 if (r->min_ttl) 3821 a->min_ttl = r->min_ttl; 3822 if (r->max_mss) 3823 a->max_mss = r->max_mss; 3824 if (r->dnpipe) 3825 a->dnpipe = r->dnpipe; 3826 if (r->dnrpipe) 3827 a->dnrpipe = r->dnrpipe; 3828 if (r->dnpipe || r->dnrpipe) { 3829 if (r->free_flags & PFRULE_DN_IS_PIPE) 3830 a->flags |= PFSTATE_DN_IS_PIPE; 3831 else 3832 a->flags &= ~PFSTATE_DN_IS_PIPE; 3833 } 3834 if (r->scrub_flags & PFSTATE_SETPRIO) { 3835 a->set_prio[0] = r->set_prio[0]; 3836 a->set_prio[1] = r->set_prio[1]; 3837 } 3838 } 3839 3840 int 3841 pf_socket_lookup(struct pf_pdesc *pd, struct mbuf *m) 3842 { 3843 struct pf_addr *saddr, *daddr; 3844 u_int16_t sport, dport; 3845 struct inpcbinfo *pi; 3846 struct inpcb *inp; 3847 3848 pd->lookup.uid = UID_MAX; 3849 pd->lookup.gid = GID_MAX; 3850 3851 switch (pd->proto) { 3852 case IPPROTO_TCP: 3853 sport = pd->hdr.tcp.th_sport; 3854 dport = pd->hdr.tcp.th_dport; 3855 pi = &V_tcbinfo; 3856 break; 3857 case IPPROTO_UDP: 3858 sport = pd->hdr.udp.uh_sport; 3859 dport = pd->hdr.udp.uh_dport; 3860 pi = &V_udbinfo; 3861 break; 3862 default: 3863 return (-1); 3864 } 3865 if (pd->dir == PF_IN) { 3866 saddr = pd->src; 3867 daddr = pd->dst; 3868 } else { 3869 u_int16_t p; 3870 3871 p = sport; 3872 sport = dport; 3873 dport = p; 3874 saddr = pd->dst; 3875 daddr = pd->src; 3876 } 3877 switch (pd->af) { 3878 #ifdef INET 3879 case AF_INET: 3880 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3881 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3882 if (inp == NULL) { 3883 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3884 daddr->v4, dport, INPLOOKUP_WILDCARD | 3885 INPLOOKUP_RLOCKPCB, NULL, m); 3886 if (inp == NULL) 3887 return (-1); 3888 } 3889 break; 3890 #endif /* INET */ 3891 #ifdef INET6 3892 case AF_INET6: 3893 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3894 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3895 if (inp == NULL) { 3896 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3897 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3898 INPLOOKUP_RLOCKPCB, NULL, m); 3899 if (inp == NULL) 3900 return (-1); 3901 } 3902 break; 3903 #endif /* INET6 */ 3904 3905 default: 3906 return (-1); 3907 } 3908 INP_RLOCK_ASSERT(inp); 3909 pd->lookup.uid = inp->inp_cred->cr_uid; 3910 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3911 INP_RUNLOCK(inp); 3912 3913 return (1); 3914 } 3915 3916 u_int8_t 3917 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3918 { 3919 int hlen; 3920 u_int8_t hdr[60]; 3921 u_int8_t *opt, optlen; 3922 u_int8_t wscale = 0; 3923 3924 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3925 if (hlen <= sizeof(struct tcphdr)) 3926 return (0); 3927 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3928 return (0); 3929 opt = hdr + sizeof(struct tcphdr); 3930 hlen -= sizeof(struct tcphdr); 3931 while (hlen >= 3) { 3932 switch (*opt) { 3933 case TCPOPT_EOL: 3934 case TCPOPT_NOP: 3935 ++opt; 3936 --hlen; 3937 break; 3938 case TCPOPT_WINDOW: 3939 wscale = opt[2]; 3940 if (wscale > TCP_MAX_WINSHIFT) 3941 wscale = TCP_MAX_WINSHIFT; 3942 wscale |= PF_WSCALE_FLAG; 3943 /* FALLTHROUGH */ 3944 default: 3945 optlen = opt[1]; 3946 if (optlen < 2) 3947 optlen = 2; 3948 hlen -= optlen; 3949 opt += optlen; 3950 break; 3951 } 3952 } 3953 return (wscale); 3954 } 3955 3956 u_int16_t 3957 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3958 { 3959 int hlen; 3960 u_int8_t hdr[60]; 3961 u_int8_t *opt, optlen; 3962 u_int16_t mss = V_tcp_mssdflt; 3963 3964 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3965 if (hlen <= sizeof(struct tcphdr)) 3966 return (0); 3967 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3968 return (0); 3969 opt = hdr + sizeof(struct tcphdr); 3970 hlen -= sizeof(struct tcphdr); 3971 while (hlen >= TCPOLEN_MAXSEG) { 3972 switch (*opt) { 3973 case TCPOPT_EOL: 3974 case TCPOPT_NOP: 3975 ++opt; 3976 --hlen; 3977 break; 3978 case TCPOPT_MAXSEG: 3979 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3980 NTOHS(mss); 3981 /* FALLTHROUGH */ 3982 default: 3983 optlen = opt[1]; 3984 if (optlen < 2) 3985 optlen = 2; 3986 hlen -= optlen; 3987 opt += optlen; 3988 break; 3989 } 3990 } 3991 return (mss); 3992 } 3993 3994 static u_int16_t 3995 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3996 { 3997 struct nhop_object *nh; 3998 #ifdef INET6 3999 struct in6_addr dst6; 4000 uint32_t scopeid; 4001 #endif /* INET6 */ 4002 int hlen = 0; 4003 uint16_t mss = 0; 4004 4005 NET_EPOCH_ASSERT(); 4006 4007 switch (af) { 4008 #ifdef INET 4009 case AF_INET: 4010 hlen = sizeof(struct ip); 4011 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 4012 if (nh != NULL) 4013 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4014 break; 4015 #endif /* INET */ 4016 #ifdef INET6 4017 case AF_INET6: 4018 hlen = sizeof(struct ip6_hdr); 4019 in6_splitscope(&addr->v6, &dst6, &scopeid); 4020 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 4021 if (nh != NULL) 4022 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4023 break; 4024 #endif /* INET6 */ 4025 } 4026 4027 mss = max(V_tcp_mssdflt, mss); 4028 mss = min(mss, offer); 4029 mss = max(mss, 64); /* sanity - at least max opt space */ 4030 return (mss); 4031 } 4032 4033 static u_int32_t 4034 pf_tcp_iss(struct pf_pdesc *pd) 4035 { 4036 MD5_CTX ctx; 4037 u_int32_t digest[4]; 4038 4039 if (V_pf_tcp_secret_init == 0) { 4040 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 4041 MD5Init(&V_pf_tcp_secret_ctx); 4042 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 4043 sizeof(V_pf_tcp_secret)); 4044 V_pf_tcp_secret_init = 1; 4045 } 4046 4047 ctx = V_pf_tcp_secret_ctx; 4048 4049 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 4050 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 4051 if (pd->af == AF_INET6) { 4052 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 4053 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 4054 } else { 4055 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 4056 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 4057 } 4058 MD5Final((u_char *)digest, &ctx); 4059 V_pf_tcp_iss_off += 4096; 4060 #define ISN_RANDOM_INCREMENT (4096 - 1) 4061 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 4062 V_pf_tcp_iss_off); 4063 #undef ISN_RANDOM_INCREMENT 4064 } 4065 4066 static bool 4067 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 4068 { 4069 bool match = true; 4070 4071 /* Always matches if not set */ 4072 if (! r->isset) 4073 return (!r->neg); 4074 4075 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 4076 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 4077 match = false; 4078 break; 4079 } 4080 } 4081 4082 return (match ^ r->neg); 4083 } 4084 4085 static int 4086 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 4087 { 4088 if (*tag == -1) 4089 *tag = mtag; 4090 4091 return ((!r->match_tag_not && r->match_tag == *tag) || 4092 (r->match_tag_not && r->match_tag != *tag)); 4093 } 4094 4095 static void 4096 pf_bridge_to(struct ifnet *ifp, struct mbuf *m) 4097 { 4098 /* If we don't have the interface drop the packet. */ 4099 if (ifp == NULL) { 4100 m_freem(m); 4101 return; 4102 } 4103 4104 switch (ifp->if_type) { 4105 case IFT_ETHER: 4106 case IFT_XETHER: 4107 case IFT_L2VLAN: 4108 case IFT_BRIDGE: 4109 case IFT_IEEE8023ADLAG: 4110 break; 4111 default: 4112 m_freem(m); 4113 return; 4114 } 4115 4116 ifp->if_transmit(ifp, m); 4117 } 4118 4119 static int 4120 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 4121 { 4122 #ifdef INET 4123 struct ip ip; 4124 #endif 4125 #ifdef INET6 4126 struct ip6_hdr ip6; 4127 #endif 4128 struct mbuf *m = *m0; 4129 struct ether_header *e; 4130 struct pf_keth_rule *r, *rm, *a = NULL; 4131 struct pf_keth_ruleset *ruleset = NULL; 4132 struct pf_mtag *mtag; 4133 struct pf_keth_ruleq *rules; 4134 struct pf_addr *src = NULL, *dst = NULL; 4135 struct pfi_kkif *bridge_to; 4136 sa_family_t af = 0; 4137 uint16_t proto; 4138 int asd = 0, match = 0; 4139 int tag = -1; 4140 uint8_t action; 4141 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4142 4143 MPASS(kif->pfik_ifp->if_vnet == curvnet); 4144 NET_EPOCH_ASSERT(); 4145 4146 PF_RULES_RLOCK_TRACKER; 4147 4148 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 4149 4150 mtag = pf_find_mtag(m); 4151 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 4152 /* Dummynet re-injects packets after they've 4153 * completed their delay. We've already 4154 * processed them, so pass unconditionally. */ 4155 4156 /* But only once. We may see the packet multiple times (e.g. 4157 * PFIL_IN/PFIL_OUT). */ 4158 pf_dummynet_flag_remove(m, mtag); 4159 4160 return (PF_PASS); 4161 } 4162 4163 ruleset = V_pf_keth; 4164 rules = ck_pr_load_ptr(&ruleset->active.rules); 4165 r = TAILQ_FIRST(rules); 4166 rm = NULL; 4167 4168 e = mtod(m, struct ether_header *); 4169 proto = ntohs(e->ether_type); 4170 4171 switch (proto) { 4172 #ifdef INET 4173 case ETHERTYPE_IP: { 4174 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4175 sizeof(ip))) 4176 return (PF_DROP); 4177 4178 af = AF_INET; 4179 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 4180 (caddr_t)&ip); 4181 src = (struct pf_addr *)&ip.ip_src; 4182 dst = (struct pf_addr *)&ip.ip_dst; 4183 break; 4184 } 4185 #endif /* INET */ 4186 #ifdef INET6 4187 case ETHERTYPE_IPV6: { 4188 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4189 sizeof(ip6))) 4190 return (PF_DROP); 4191 4192 af = AF_INET6; 4193 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 4194 (caddr_t)&ip6); 4195 src = (struct pf_addr *)&ip6.ip6_src; 4196 dst = (struct pf_addr *)&ip6.ip6_dst; 4197 break; 4198 } 4199 #endif /* INET6 */ 4200 } 4201 4202 PF_RULES_RLOCK(); 4203 4204 while (r != NULL) { 4205 counter_u64_add(r->evaluations, 1); 4206 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 4207 4208 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 4209 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4210 "kif"); 4211 r = r->skip[PFE_SKIP_IFP].ptr; 4212 } 4213 else if (r->direction && r->direction != dir) { 4214 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4215 "dir"); 4216 r = r->skip[PFE_SKIP_DIR].ptr; 4217 } 4218 else if (r->proto && r->proto != proto) { 4219 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4220 "proto"); 4221 r = r->skip[PFE_SKIP_PROTO].ptr; 4222 } 4223 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 4224 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4225 "src"); 4226 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 4227 } 4228 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 4229 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4230 "dst"); 4231 r = r->skip[PFE_SKIP_DST_ADDR].ptr; 4232 } 4233 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 4234 r->ipsrc.neg, kif, M_GETFIB(m))) { 4235 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4236 "ip_src"); 4237 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr; 4238 } 4239 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 4240 r->ipdst.neg, kif, M_GETFIB(m))) { 4241 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4242 "ip_dst"); 4243 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr; 4244 } 4245 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 4246 mtag ? mtag->tag : 0)) { 4247 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4248 "match_tag"); 4249 r = TAILQ_NEXT(r, entries); 4250 } 4251 else { 4252 if (r->tag) 4253 tag = r->tag; 4254 if (r->anchor == NULL) { 4255 /* Rule matches */ 4256 rm = r; 4257 4258 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 4259 4260 if (r->quick) 4261 break; 4262 4263 r = TAILQ_NEXT(r, entries); 4264 } else { 4265 pf_step_into_keth_anchor(anchor_stack, &asd, 4266 &ruleset, &r, &a, &match); 4267 } 4268 } 4269 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 4270 &ruleset, &r, &a, &match)) 4271 break; 4272 } 4273 4274 r = rm; 4275 4276 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 4277 4278 /* Default to pass. */ 4279 if (r == NULL) { 4280 PF_RULES_RUNLOCK(); 4281 return (PF_PASS); 4282 } 4283 4284 /* Execute action. */ 4285 counter_u64_add(r->packets[dir == PF_OUT], 1); 4286 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 4287 pf_update_timestamp(r); 4288 4289 /* Shortcut. Don't tag if we're just going to drop anyway. */ 4290 if (r->action == PF_DROP) { 4291 PF_RULES_RUNLOCK(); 4292 return (PF_DROP); 4293 } 4294 4295 if (tag > 0) { 4296 if (mtag == NULL) 4297 mtag = pf_get_mtag(m); 4298 if (mtag == NULL) { 4299 PF_RULES_RUNLOCK(); 4300 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4301 return (PF_DROP); 4302 } 4303 mtag->tag = tag; 4304 } 4305 4306 if (r->qid != 0) { 4307 if (mtag == NULL) 4308 mtag = pf_get_mtag(m); 4309 if (mtag == NULL) { 4310 PF_RULES_RUNLOCK(); 4311 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4312 return (PF_DROP); 4313 } 4314 mtag->qid = r->qid; 4315 } 4316 4317 action = r->action; 4318 bridge_to = r->bridge_to; 4319 4320 /* Dummynet */ 4321 if (r->dnpipe) { 4322 struct ip_fw_args dnflow; 4323 4324 /* Drop packet if dummynet is not loaded. */ 4325 if (ip_dn_io_ptr == NULL) { 4326 PF_RULES_RUNLOCK(); 4327 m_freem(m); 4328 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4329 return (PF_DROP); 4330 } 4331 if (mtag == NULL) 4332 mtag = pf_get_mtag(m); 4333 if (mtag == NULL) { 4334 PF_RULES_RUNLOCK(); 4335 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4336 return (PF_DROP); 4337 } 4338 4339 bzero(&dnflow, sizeof(dnflow)); 4340 4341 /* We don't have port numbers here, so we set 0. That means 4342 * that we'll be somewhat limited in distinguishing flows (i.e. 4343 * only based on IP addresses, not based on port numbers), but 4344 * it's better than nothing. */ 4345 dnflow.f_id.dst_port = 0; 4346 dnflow.f_id.src_port = 0; 4347 dnflow.f_id.proto = 0; 4348 4349 dnflow.rule.info = r->dnpipe; 4350 dnflow.rule.info |= IPFW_IS_DUMMYNET; 4351 if (r->dnflags & PFRULE_DN_IS_PIPE) 4352 dnflow.rule.info |= IPFW_IS_PIPE; 4353 4354 dnflow.f_id.extra = dnflow.rule.info; 4355 4356 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 4357 dnflow.flags |= IPFW_ARGS_ETHER; 4358 dnflow.ifp = kif->pfik_ifp; 4359 4360 switch (af) { 4361 case AF_INET: 4362 dnflow.f_id.addr_type = 4; 4363 dnflow.f_id.src_ip = src->v4.s_addr; 4364 dnflow.f_id.dst_ip = dst->v4.s_addr; 4365 break; 4366 case AF_INET6: 4367 dnflow.flags |= IPFW_ARGS_IP6; 4368 dnflow.f_id.addr_type = 6; 4369 dnflow.f_id.src_ip6 = src->v6; 4370 dnflow.f_id.dst_ip6 = dst->v6; 4371 break; 4372 } 4373 4374 PF_RULES_RUNLOCK(); 4375 4376 mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 4377 ip_dn_io_ptr(m0, &dnflow); 4378 if (*m0 != NULL) 4379 pf_dummynet_flag_remove(m, mtag); 4380 } else { 4381 PF_RULES_RUNLOCK(); 4382 } 4383 4384 if (action == PF_PASS && bridge_to) { 4385 pf_bridge_to(bridge_to->pfik_ifp, *m0); 4386 *m0 = NULL; /* We've eaten the packet. */ 4387 } 4388 4389 return (action); 4390 } 4391 4392 static int 4393 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, struct pfi_kkif *kif, 4394 struct mbuf *m, int off, struct pf_pdesc *pd, struct pf_krule **am, 4395 struct pf_kruleset **rsm, struct inpcb *inp) 4396 { 4397 struct pf_krule *nr = NULL; 4398 struct pf_addr * const saddr = pd->src; 4399 struct pf_addr * const daddr = pd->dst; 4400 sa_family_t af = pd->af; 4401 struct pf_krule *r, *a = NULL; 4402 struct pf_kruleset *ruleset = NULL; 4403 struct pf_krule_slist match_rules; 4404 struct pf_krule_item *ri; 4405 struct pf_ksrc_node *nsn = NULL; 4406 struct tcphdr *th = &pd->hdr.tcp; 4407 struct pf_state_key *sk = NULL, *nk = NULL; 4408 u_short reason; 4409 int rewrite = 0, hdrlen = 0; 4410 int tag = -1; 4411 int asd = 0; 4412 int match = 0; 4413 int state_icmp = 0; 4414 u_int16_t sport = 0, dport = 0; 4415 u_int16_t bproto_sum = 0, bip_sum = 0; 4416 u_int8_t icmptype = 0, icmpcode = 0; 4417 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4418 4419 PF_RULES_RASSERT(); 4420 4421 if (inp != NULL) { 4422 INP_LOCK_ASSERT(inp); 4423 pd->lookup.uid = inp->inp_cred->cr_uid; 4424 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4425 pd->lookup.done = 1; 4426 } 4427 4428 switch (pd->proto) { 4429 case IPPROTO_TCP: 4430 sport = th->th_sport; 4431 dport = th->th_dport; 4432 hdrlen = sizeof(*th); 4433 break; 4434 case IPPROTO_UDP: 4435 sport = pd->hdr.udp.uh_sport; 4436 dport = pd->hdr.udp.uh_dport; 4437 hdrlen = sizeof(pd->hdr.udp); 4438 break; 4439 case IPPROTO_SCTP: 4440 sport = pd->hdr.sctp.src_port; 4441 dport = pd->hdr.sctp.dest_port; 4442 hdrlen = sizeof(pd->hdr.sctp); 4443 break; 4444 #ifdef INET 4445 case IPPROTO_ICMP: 4446 if (pd->af != AF_INET) 4447 break; 4448 sport = dport = pd->hdr.icmp.icmp_id; 4449 hdrlen = sizeof(pd->hdr.icmp); 4450 icmptype = pd->hdr.icmp.icmp_type; 4451 icmpcode = pd->hdr.icmp.icmp_code; 4452 4453 if (icmptype == ICMP_UNREACH || 4454 icmptype == ICMP_SOURCEQUENCH || 4455 icmptype == ICMP_REDIRECT || 4456 icmptype == ICMP_TIMXCEED || 4457 icmptype == ICMP_PARAMPROB) 4458 state_icmp++; 4459 break; 4460 #endif /* INET */ 4461 #ifdef INET6 4462 case IPPROTO_ICMPV6: 4463 if (af != AF_INET6) 4464 break; 4465 sport = dport = pd->hdr.icmp6.icmp6_id; 4466 hdrlen = sizeof(pd->hdr.icmp6); 4467 icmptype = pd->hdr.icmp6.icmp6_type; 4468 icmpcode = pd->hdr.icmp6.icmp6_code; 4469 4470 if (icmptype == ICMP6_DST_UNREACH || 4471 icmptype == ICMP6_PACKET_TOO_BIG || 4472 icmptype == ICMP6_TIME_EXCEEDED || 4473 icmptype == ICMP6_PARAM_PROB) 4474 state_icmp++; 4475 break; 4476 #endif /* INET6 */ 4477 default: 4478 sport = dport = hdrlen = 0; 4479 break; 4480 } 4481 4482 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4483 4484 /* check packet for BINAT/NAT/RDR */ 4485 if ((nr = pf_get_translation(pd, m, off, kif, &nsn, &sk, 4486 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 4487 KASSERT(sk != NULL, ("%s: null sk", __func__)); 4488 KASSERT(nk != NULL, ("%s: null nk", __func__)); 4489 4490 if (nr->log) { 4491 PFLOG_PACKET(kif, m, af, PF_PASS, PFRES_MATCH, nr, a, 4492 ruleset, pd, 1); 4493 } 4494 4495 if (pd->ip_sum) 4496 bip_sum = *pd->ip_sum; 4497 4498 switch (pd->proto) { 4499 case IPPROTO_TCP: 4500 bproto_sum = th->th_sum; 4501 pd->proto_sum = &th->th_sum; 4502 4503 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4504 nk->port[pd->sidx] != sport) { 4505 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 4506 &th->th_sum, &nk->addr[pd->sidx], 4507 nk->port[pd->sidx], 0, af); 4508 pd->sport = &th->th_sport; 4509 sport = th->th_sport; 4510 } 4511 4512 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4513 nk->port[pd->didx] != dport) { 4514 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 4515 &th->th_sum, &nk->addr[pd->didx], 4516 nk->port[pd->didx], 0, af); 4517 dport = th->th_dport; 4518 pd->dport = &th->th_dport; 4519 } 4520 rewrite++; 4521 break; 4522 case IPPROTO_UDP: 4523 bproto_sum = pd->hdr.udp.uh_sum; 4524 pd->proto_sum = &pd->hdr.udp.uh_sum; 4525 4526 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4527 nk->port[pd->sidx] != sport) { 4528 pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, 4529 pd->ip_sum, &pd->hdr.udp.uh_sum, 4530 &nk->addr[pd->sidx], 4531 nk->port[pd->sidx], 1, af); 4532 sport = pd->hdr.udp.uh_sport; 4533 pd->sport = &pd->hdr.udp.uh_sport; 4534 } 4535 4536 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4537 nk->port[pd->didx] != dport) { 4538 pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, 4539 pd->ip_sum, &pd->hdr.udp.uh_sum, 4540 &nk->addr[pd->didx], 4541 nk->port[pd->didx], 1, af); 4542 dport = pd->hdr.udp.uh_dport; 4543 pd->dport = &pd->hdr.udp.uh_dport; 4544 } 4545 rewrite++; 4546 break; 4547 case IPPROTO_SCTP: { 4548 uint16_t checksum = 0; 4549 4550 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4551 nk->port[pd->sidx] != sport) { 4552 pf_change_ap(m, saddr, &pd->hdr.sctp.src_port, 4553 pd->ip_sum, &checksum, 4554 &nk->addr[pd->sidx], 4555 nk->port[pd->sidx], 1, af); 4556 } 4557 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4558 nk->port[pd->didx] != dport) { 4559 pf_change_ap(m, daddr, &pd->hdr.sctp.dest_port, 4560 pd->ip_sum, &checksum, 4561 &nk->addr[pd->didx], 4562 nk->port[pd->didx], 1, af); 4563 } 4564 break; 4565 } 4566 #ifdef INET 4567 case IPPROTO_ICMP: 4568 nk->port[0] = nk->port[1]; 4569 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 4570 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 4571 nk->addr[pd->sidx].v4.s_addr, 0); 4572 4573 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 4574 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 4575 nk->addr[pd->didx].v4.s_addr, 0); 4576 4577 if (nk->port[1] != pd->hdr.icmp.icmp_id) { 4578 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 4579 pd->hdr.icmp.icmp_cksum, sport, 4580 nk->port[1], 0); 4581 pd->hdr.icmp.icmp_id = nk->port[1]; 4582 pd->sport = &pd->hdr.icmp.icmp_id; 4583 } 4584 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 4585 break; 4586 #endif /* INET */ 4587 #ifdef INET6 4588 case IPPROTO_ICMPV6: 4589 nk->port[0] = nk->port[1]; 4590 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 4591 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 4592 &nk->addr[pd->sidx], 0); 4593 4594 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 4595 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 4596 &nk->addr[pd->didx], 0); 4597 rewrite++; 4598 break; 4599 #endif /* INET */ 4600 default: 4601 switch (af) { 4602 #ifdef INET 4603 case AF_INET: 4604 if (PF_ANEQ(saddr, 4605 &nk->addr[pd->sidx], AF_INET)) 4606 pf_change_a(&saddr->v4.s_addr, 4607 pd->ip_sum, 4608 nk->addr[pd->sidx].v4.s_addr, 0); 4609 4610 if (PF_ANEQ(daddr, 4611 &nk->addr[pd->didx], AF_INET)) 4612 pf_change_a(&daddr->v4.s_addr, 4613 pd->ip_sum, 4614 nk->addr[pd->didx].v4.s_addr, 0); 4615 break; 4616 #endif /* INET */ 4617 #ifdef INET6 4618 case AF_INET6: 4619 if (PF_ANEQ(saddr, 4620 &nk->addr[pd->sidx], AF_INET6)) 4621 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 4622 4623 if (PF_ANEQ(daddr, 4624 &nk->addr[pd->didx], AF_INET6)) 4625 PF_ACPY(daddr, &nk->addr[pd->didx], af); 4626 break; 4627 #endif /* INET */ 4628 } 4629 break; 4630 } 4631 if (nr->natpass) 4632 r = NULL; 4633 pd->nat_rule = nr; 4634 } 4635 4636 SLIST_INIT(&match_rules); 4637 while (r != NULL) { 4638 pf_counter_u64_add(&r->evaluations, 1); 4639 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 4640 r = r->skip[PF_SKIP_IFP].ptr; 4641 else if (r->direction && r->direction != pd->dir) 4642 r = r->skip[PF_SKIP_DIR].ptr; 4643 else if (r->af && r->af != af) 4644 r = r->skip[PF_SKIP_AF].ptr; 4645 else if (r->proto && r->proto != pd->proto) 4646 r = r->skip[PF_SKIP_PROTO].ptr; 4647 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 4648 r->src.neg, kif, M_GETFIB(m))) 4649 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4650 /* tcp/udp only. port_op always 0 in other cases */ 4651 else if (r->src.port_op && !pf_match_port(r->src.port_op, 4652 r->src.port[0], r->src.port[1], sport)) 4653 r = r->skip[PF_SKIP_SRC_PORT].ptr; 4654 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 4655 r->dst.neg, NULL, M_GETFIB(m))) 4656 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4657 /* tcp/udp only. port_op always 0 in other cases */ 4658 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 4659 r->dst.port[0], r->dst.port[1], dport)) 4660 r = r->skip[PF_SKIP_DST_PORT].ptr; 4661 /* icmp only. type always 0 in other cases */ 4662 else if (r->type && r->type != icmptype + 1) 4663 r = TAILQ_NEXT(r, entries); 4664 /* icmp only. type always 0 in other cases */ 4665 else if (r->code && r->code != icmpcode + 1) 4666 r = TAILQ_NEXT(r, entries); 4667 else if (r->tos && !(r->tos == pd->tos)) 4668 r = TAILQ_NEXT(r, entries); 4669 else if (r->rule_flag & PFRULE_FRAGMENT) 4670 r = TAILQ_NEXT(r, entries); 4671 else if (pd->proto == IPPROTO_TCP && 4672 (r->flagset & th->th_flags) != r->flags) 4673 r = TAILQ_NEXT(r, entries); 4674 /* tcp/udp only. uid.op always 0 in other cases */ 4675 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 4676 pf_socket_lookup(pd, m), 1)) && 4677 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 4678 pd->lookup.uid)) 4679 r = TAILQ_NEXT(r, entries); 4680 /* tcp/udp only. gid.op always 0 in other cases */ 4681 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 4682 pf_socket_lookup(pd, m), 1)) && 4683 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 4684 pd->lookup.gid)) 4685 r = TAILQ_NEXT(r, entries); 4686 else if (r->prio && 4687 !pf_match_ieee8021q_pcp(r->prio, m)) 4688 r = TAILQ_NEXT(r, entries); 4689 else if (r->prob && 4690 r->prob <= arc4random()) 4691 r = TAILQ_NEXT(r, entries); 4692 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4693 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4694 r = TAILQ_NEXT(r, entries); 4695 else if (r->os_fingerprint != PF_OSFP_ANY && 4696 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 4697 pf_osfp_fingerprint(pd, m, off, th), 4698 r->os_fingerprint))) 4699 r = TAILQ_NEXT(r, entries); 4700 else { 4701 if (r->tag) 4702 tag = r->tag; 4703 if (r->anchor == NULL) { 4704 if (r->action == PF_MATCH) { 4705 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 4706 if (ri == NULL) { 4707 REASON_SET(&reason, PFRES_MEMORY); 4708 goto cleanup; 4709 } 4710 ri->r = r; 4711 SLIST_INSERT_HEAD(&match_rules, ri, entry); 4712 pf_counter_u64_critical_enter(); 4713 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 4714 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 4715 pf_counter_u64_critical_exit(); 4716 pf_rule_to_actions(r, &pd->act); 4717 if (r->log) 4718 PFLOG_PACKET(kif, m, af, 4719 r->action, PFRES_MATCH, r, 4720 a, ruleset, pd, 1); 4721 } else { 4722 match = 1; 4723 *rm = r; 4724 *am = a; 4725 *rsm = ruleset; 4726 } 4727 if ((*rm)->quick) 4728 break; 4729 r = TAILQ_NEXT(r, entries); 4730 } else 4731 pf_step_into_anchor(anchor_stack, &asd, 4732 &ruleset, PF_RULESET_FILTER, &r, &a, 4733 &match); 4734 } 4735 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4736 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4737 break; 4738 } 4739 r = *rm; 4740 a = *am; 4741 ruleset = *rsm; 4742 4743 REASON_SET(&reason, PFRES_MATCH); 4744 4745 /* apply actions for last matching pass/block rule */ 4746 pf_rule_to_actions(r, &pd->act); 4747 4748 if (r->log) { 4749 if (rewrite) 4750 m_copyback(m, off, hdrlen, pd->hdr.any); 4751 PFLOG_PACKET(kif, m, af, r->action, reason, r, a, ruleset, pd, 1); 4752 } 4753 4754 if ((r->action == PF_DROP) && 4755 ((r->rule_flag & PFRULE_RETURNRST) || 4756 (r->rule_flag & PFRULE_RETURNICMP) || 4757 (r->rule_flag & PFRULE_RETURN))) { 4758 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 4759 bip_sum, hdrlen, &reason, r->rtableid); 4760 } 4761 4762 if (r->action == PF_DROP) 4763 goto cleanup; 4764 4765 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4766 REASON_SET(&reason, PFRES_MEMORY); 4767 goto cleanup; 4768 } 4769 if (pd->act.rtableid >= 0) 4770 M_SETFIB(m, pd->act.rtableid); 4771 4772 if (!state_icmp && (r->keep_state || nr != NULL || 4773 (pd->flags & PFDESC_TCP_NORM))) { 4774 int action; 4775 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 4776 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 4777 hdrlen, &match_rules); 4778 if (action != PF_PASS) { 4779 if (action == PF_DROP && 4780 (r->rule_flag & PFRULE_RETURN)) 4781 pf_return(r, nr, pd, sk, off, m, th, kif, 4782 bproto_sum, bip_sum, hdrlen, &reason, 4783 pd->act.rtableid); 4784 return (action); 4785 } 4786 } else { 4787 while ((ri = SLIST_FIRST(&match_rules))) { 4788 SLIST_REMOVE_HEAD(&match_rules, entry); 4789 free(ri, M_PF_RULE_ITEM); 4790 } 4791 4792 uma_zfree(V_pf_state_key_z, sk); 4793 uma_zfree(V_pf_state_key_z, nk); 4794 } 4795 4796 /* copy back packet headers if we performed NAT operations */ 4797 if (rewrite) 4798 m_copyback(m, off, hdrlen, pd->hdr.any); 4799 4800 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 4801 pd->dir == PF_OUT && 4802 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 4803 /* 4804 * We want the state created, but we dont 4805 * want to send this in case a partner 4806 * firewall has to know about it to allow 4807 * replies through it. 4808 */ 4809 return (PF_DEFER); 4810 4811 return (PF_PASS); 4812 4813 cleanup: 4814 while ((ri = SLIST_FIRST(&match_rules))) { 4815 SLIST_REMOVE_HEAD(&match_rules, entry); 4816 free(ri, M_PF_RULE_ITEM); 4817 } 4818 4819 uma_zfree(V_pf_state_key_z, sk); 4820 uma_zfree(V_pf_state_key_z, nk); 4821 return (PF_DROP); 4822 } 4823 4824 static int 4825 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 4826 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 4827 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 4828 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, 4829 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 4830 struct pf_krule_slist *match_rules) 4831 { 4832 struct pf_kstate *s = NULL; 4833 struct pf_ksrc_node *sn = NULL; 4834 struct tcphdr *th = &pd->hdr.tcp; 4835 u_int16_t mss = V_tcp_mssdflt; 4836 u_short reason, sn_reason; 4837 struct pf_krule_item *ri; 4838 4839 /* check maximums */ 4840 if (r->max_states && 4841 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 4842 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 4843 REASON_SET(&reason, PFRES_MAXSTATES); 4844 goto csfailed; 4845 } 4846 /* src node for filter rule */ 4847 if ((r->rule_flag & PFRULE_SRCTRACK || 4848 r->rpool.opts & PF_POOL_STICKYADDR) && 4849 (sn_reason = pf_insert_src_node(&sn, r, pd->src, pd->af)) != 0) { 4850 REASON_SET(&reason, sn_reason); 4851 goto csfailed; 4852 } 4853 /* src node for translation rule */ 4854 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 4855 (sn_reason = pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], 4856 pd->af)) != 0 ) { 4857 REASON_SET(&reason, sn_reason); 4858 goto csfailed; 4859 } 4860 s = pf_alloc_state(M_NOWAIT); 4861 if (s == NULL) { 4862 REASON_SET(&reason, PFRES_MEMORY); 4863 goto csfailed; 4864 } 4865 s->rule.ptr = r; 4866 s->nat_rule.ptr = nr; 4867 s->anchor.ptr = a; 4868 bcopy(match_rules, &s->match_rules, sizeof(s->match_rules)); 4869 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions)); 4870 4871 STATE_INC_COUNTERS(s); 4872 if (r->allow_opts) 4873 s->state_flags |= PFSTATE_ALLOWOPTS; 4874 if (r->rule_flag & PFRULE_STATESLOPPY) 4875 s->state_flags |= PFSTATE_SLOPPY; 4876 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 4877 s->state_flags |= PFSTATE_SCRUB_TCP; 4878 if (r->rule_flag & PFRULE_PFLOW) 4879 s->state_flags |= PFSTATE_PFLOW; 4880 4881 s->act.log = pd->act.log & PF_LOG_ALL; 4882 s->sync_state = PFSYNC_S_NONE; 4883 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */ 4884 4885 if (nr != NULL) 4886 s->act.log |= nr->log & PF_LOG_ALL; 4887 switch (pd->proto) { 4888 case IPPROTO_TCP: 4889 s->src.seqlo = ntohl(th->th_seq); 4890 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 4891 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 4892 r->keep_state == PF_STATE_MODULATE) { 4893 /* Generate sequence number modulator */ 4894 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 4895 0) 4896 s->src.seqdiff = 1; 4897 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 4898 htonl(s->src.seqlo + s->src.seqdiff), 0); 4899 *rewrite = 1; 4900 } else 4901 s->src.seqdiff = 0; 4902 if (th->th_flags & TH_SYN) { 4903 s->src.seqhi++; 4904 s->src.wscale = pf_get_wscale(m, off, 4905 th->th_off, pd->af); 4906 } 4907 s->src.max_win = MAX(ntohs(th->th_win), 1); 4908 if (s->src.wscale & PF_WSCALE_MASK) { 4909 /* Remove scale factor from initial window */ 4910 int win = s->src.max_win; 4911 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 4912 s->src.max_win = (win - 1) >> 4913 (s->src.wscale & PF_WSCALE_MASK); 4914 } 4915 if (th->th_flags & TH_FIN) 4916 s->src.seqhi++; 4917 s->dst.seqhi = 1; 4918 s->dst.max_win = 1; 4919 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 4920 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 4921 s->timeout = PFTM_TCP_FIRST_PACKET; 4922 atomic_add_32(&V_pf_status.states_halfopen, 1); 4923 break; 4924 case IPPROTO_UDP: 4925 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 4926 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 4927 s->timeout = PFTM_UDP_FIRST_PACKET; 4928 break; 4929 case IPPROTO_SCTP: 4930 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT); 4931 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED); 4932 s->timeout = PFTM_SCTP_FIRST_PACKET; 4933 break; 4934 case IPPROTO_ICMP: 4935 #ifdef INET6 4936 case IPPROTO_ICMPV6: 4937 #endif 4938 s->timeout = PFTM_ICMP_FIRST_PACKET; 4939 break; 4940 default: 4941 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 4942 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 4943 s->timeout = PFTM_OTHER_FIRST_PACKET; 4944 } 4945 4946 if (r->rt) { 4947 /* pf_map_addr increases the reason counters */ 4948 if ((reason = pf_map_addr(pd->af, r, pd->src, &s->rt_addr, 4949 &s->rt_kif, NULL, &sn)) != 0) 4950 goto csfailed; 4951 s->rt = r->rt; 4952 } 4953 4954 s->creation = s->expire = pf_get_uptime(); 4955 4956 if (sn != NULL) 4957 s->src_node = sn; 4958 if (nsn != NULL) { 4959 /* XXX We only modify one side for now. */ 4960 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 4961 s->nat_src_node = nsn; 4962 } 4963 if (pd->proto == IPPROTO_TCP) { 4964 if (s->state_flags & PFSTATE_SCRUB_TCP && 4965 pf_normalize_tcp_init(m, off, pd, th, &s->src, &s->dst)) { 4966 REASON_SET(&reason, PFRES_MEMORY); 4967 goto drop; 4968 } 4969 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 4970 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 4971 &s->src, &s->dst, rewrite)) { 4972 /* This really shouldn't happen!!! */ 4973 DPFPRINTF(PF_DEBUG_URGENT, 4974 ("pf_normalize_tcp_stateful failed on first " 4975 "pkt\n")); 4976 goto drop; 4977 } 4978 } else if (pd->proto == IPPROTO_SCTP) { 4979 if (pf_normalize_sctp_init(m, off, pd, &s->src, &s->dst)) 4980 goto drop; 4981 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP))) 4982 goto drop; 4983 } 4984 s->direction = pd->dir; 4985 4986 /* 4987 * sk/nk could already been setup by pf_get_translation(). 4988 */ 4989 if (nr == NULL) { 4990 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 4991 __func__, nr, sk, nk)); 4992 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 4993 if (sk == NULL) 4994 goto csfailed; 4995 nk = sk; 4996 } else 4997 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 4998 __func__, nr, sk, nk)); 4999 5000 /* Swap sk/nk for PF_OUT. */ 5001 if (pf_state_insert(BOUND_IFACE(r, kif), kif, 5002 (pd->dir == PF_IN) ? sk : nk, 5003 (pd->dir == PF_IN) ? nk : sk, s)) { 5004 REASON_SET(&reason, PFRES_STATEINS); 5005 goto drop; 5006 } else 5007 *sm = s; 5008 5009 if (tag > 0) 5010 s->tag = tag; 5011 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 5012 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 5013 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 5014 /* undo NAT changes, if they have taken place */ 5015 if (nr != NULL) { 5016 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 5017 if (pd->dir == PF_OUT) 5018 skt = s->key[PF_SK_STACK]; 5019 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 5020 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 5021 if (pd->sport) 5022 *pd->sport = skt->port[pd->sidx]; 5023 if (pd->dport) 5024 *pd->dport = skt->port[pd->didx]; 5025 if (pd->proto_sum) 5026 *pd->proto_sum = bproto_sum; 5027 if (pd->ip_sum) 5028 *pd->ip_sum = bip_sum; 5029 m_copyback(m, off, hdrlen, pd->hdr.any); 5030 } 5031 s->src.seqhi = htonl(arc4random()); 5032 /* Find mss option */ 5033 int rtid = M_GETFIB(m); 5034 mss = pf_get_mss(m, off, th->th_off, pd->af); 5035 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 5036 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 5037 s->src.mss = mss; 5038 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 5039 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 5040 TH_SYN|TH_ACK, 0, s->src.mss, 0, true, 0, 0, 5041 pd->act.rtableid); 5042 REASON_SET(&reason, PFRES_SYNPROXY); 5043 return (PF_SYNPROXY_DROP); 5044 } 5045 5046 return (PF_PASS); 5047 5048 csfailed: 5049 while ((ri = SLIST_FIRST(match_rules))) { 5050 SLIST_REMOVE_HEAD(match_rules, entry); 5051 free(ri, M_PF_RULE_ITEM); 5052 } 5053 5054 uma_zfree(V_pf_state_key_z, sk); 5055 uma_zfree(V_pf_state_key_z, nk); 5056 5057 if (sn != NULL) { 5058 PF_SRC_NODE_LOCK(sn); 5059 if (--sn->states == 0 && sn->expire == 0) { 5060 pf_unlink_src_node(sn); 5061 uma_zfree(V_pf_sources_z, sn); 5062 counter_u64_add( 5063 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5064 } 5065 PF_SRC_NODE_UNLOCK(sn); 5066 } 5067 5068 if (nsn != sn && nsn != NULL) { 5069 PF_SRC_NODE_LOCK(nsn); 5070 if (--nsn->states == 0 && nsn->expire == 0) { 5071 pf_unlink_src_node(nsn); 5072 uma_zfree(V_pf_sources_z, nsn); 5073 counter_u64_add( 5074 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5075 } 5076 PF_SRC_NODE_UNLOCK(nsn); 5077 } 5078 5079 drop: 5080 if (s != NULL) { 5081 pf_src_tree_remove_state(s); 5082 s->timeout = PFTM_UNLINKED; 5083 STATE_DEC_COUNTERS(s); 5084 pf_free_state(s); 5085 } 5086 5087 return (PF_DROP); 5088 } 5089 5090 static int 5091 pf_test_fragment(struct pf_krule **rm, struct pfi_kkif *kif, 5092 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, 5093 struct pf_kruleset **rsm) 5094 { 5095 struct pf_krule *r, *a = NULL; 5096 struct pf_kruleset *ruleset = NULL; 5097 struct pf_krule_slist match_rules; 5098 struct pf_krule_item *ri; 5099 sa_family_t af = pd->af; 5100 u_short reason; 5101 int tag = -1; 5102 int asd = 0; 5103 int match = 0; 5104 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 5105 5106 PF_RULES_RASSERT(); 5107 5108 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 5109 SLIST_INIT(&match_rules); 5110 while (r != NULL) { 5111 pf_counter_u64_add(&r->evaluations, 1); 5112 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 5113 r = r->skip[PF_SKIP_IFP].ptr; 5114 else if (r->direction && r->direction != pd->dir) 5115 r = r->skip[PF_SKIP_DIR].ptr; 5116 else if (r->af && r->af != af) 5117 r = r->skip[PF_SKIP_AF].ptr; 5118 else if (r->proto && r->proto != pd->proto) 5119 r = r->skip[PF_SKIP_PROTO].ptr; 5120 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 5121 r->src.neg, kif, M_GETFIB(m))) 5122 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 5123 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 5124 r->dst.neg, NULL, M_GETFIB(m))) 5125 r = r->skip[PF_SKIP_DST_ADDR].ptr; 5126 else if (r->tos && !(r->tos == pd->tos)) 5127 r = TAILQ_NEXT(r, entries); 5128 else if (r->os_fingerprint != PF_OSFP_ANY) 5129 r = TAILQ_NEXT(r, entries); 5130 else if (pd->proto == IPPROTO_UDP && 5131 (r->src.port_op || r->dst.port_op)) 5132 r = TAILQ_NEXT(r, entries); 5133 else if (pd->proto == IPPROTO_TCP && 5134 (r->src.port_op || r->dst.port_op || r->flagset)) 5135 r = TAILQ_NEXT(r, entries); 5136 else if ((pd->proto == IPPROTO_ICMP || 5137 pd->proto == IPPROTO_ICMPV6) && 5138 (r->type || r->code)) 5139 r = TAILQ_NEXT(r, entries); 5140 else if (r->prio && 5141 !pf_match_ieee8021q_pcp(r->prio, m)) 5142 r = TAILQ_NEXT(r, entries); 5143 else if (r->prob && r->prob <= 5144 (arc4random() % (UINT_MAX - 1) + 1)) 5145 r = TAILQ_NEXT(r, entries); 5146 else if (r->match_tag && !pf_match_tag(m, r, &tag, 5147 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 5148 r = TAILQ_NEXT(r, entries); 5149 else { 5150 if (r->anchor == NULL) { 5151 if (r->action == PF_MATCH) { 5152 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5153 if (ri == NULL) { 5154 REASON_SET(&reason, PFRES_MEMORY); 5155 goto cleanup; 5156 } 5157 ri->r = r; 5158 SLIST_INSERT_HEAD(&match_rules, ri, entry); 5159 pf_counter_u64_critical_enter(); 5160 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5161 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5162 pf_counter_u64_critical_exit(); 5163 pf_rule_to_actions(r, &pd->act); 5164 if (r->log) 5165 PFLOG_PACKET(kif, m, af, 5166 r->action, PFRES_MATCH, r, 5167 a, ruleset, pd, 1); 5168 } else { 5169 match = 1; 5170 *rm = r; 5171 *am = a; 5172 *rsm = ruleset; 5173 } 5174 if ((*rm)->quick) 5175 break; 5176 r = TAILQ_NEXT(r, entries); 5177 } else 5178 pf_step_into_anchor(anchor_stack, &asd, 5179 &ruleset, PF_RULESET_FILTER, &r, &a, 5180 &match); 5181 } 5182 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 5183 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 5184 break; 5185 } 5186 r = *rm; 5187 a = *am; 5188 ruleset = *rsm; 5189 5190 REASON_SET(&reason, PFRES_MATCH); 5191 5192 /* apply actions for last matching pass/block rule */ 5193 pf_rule_to_actions(r, &pd->act); 5194 5195 if (r->log) 5196 PFLOG_PACKET(kif, m, af, r->action, reason, r, a, ruleset, pd, 1); 5197 5198 if (r->action != PF_PASS) 5199 return (PF_DROP); 5200 5201 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 5202 REASON_SET(&reason, PFRES_MEMORY); 5203 goto cleanup; 5204 } 5205 5206 return (PF_PASS); 5207 5208 cleanup: 5209 while ((ri = SLIST_FIRST(&match_rules))) { 5210 SLIST_REMOVE_HEAD(&match_rules, entry); 5211 free(ri, M_PF_RULE_ITEM); 5212 } 5213 5214 return (PF_DROP); 5215 } 5216 5217 static int 5218 pf_tcp_track_full(struct pf_kstate **state, struct pfi_kkif *kif, 5219 struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason, 5220 int *copyback) 5221 { 5222 struct tcphdr *th = &pd->hdr.tcp; 5223 struct pf_state_peer *src, *dst; 5224 u_int16_t win = ntohs(th->th_win); 5225 u_int32_t ack, end, seq, orig_seq; 5226 u_int8_t sws, dws, psrc, pdst; 5227 int ackskew; 5228 5229 if (pd->dir == (*state)->direction) { 5230 src = &(*state)->src; 5231 dst = &(*state)->dst; 5232 psrc = PF_PEER_SRC; 5233 pdst = PF_PEER_DST; 5234 } else { 5235 src = &(*state)->dst; 5236 dst = &(*state)->src; 5237 psrc = PF_PEER_DST; 5238 pdst = PF_PEER_SRC; 5239 } 5240 5241 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 5242 sws = src->wscale & PF_WSCALE_MASK; 5243 dws = dst->wscale & PF_WSCALE_MASK; 5244 } else 5245 sws = dws = 0; 5246 5247 /* 5248 * Sequence tracking algorithm from Guido van Rooij's paper: 5249 * http://www.madison-gurkha.com/publications/tcp_filtering/ 5250 * tcp_filtering.ps 5251 */ 5252 5253 orig_seq = seq = ntohl(th->th_seq); 5254 if (src->seqlo == 0) { 5255 /* First packet from this end. Set its state */ 5256 5257 if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 5258 src->scrub == NULL) { 5259 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 5260 REASON_SET(reason, PFRES_MEMORY); 5261 return (PF_DROP); 5262 } 5263 } 5264 5265 /* Deferred generation of sequence number modulator */ 5266 if (dst->seqdiff && !src->seqdiff) { 5267 /* use random iss for the TCP server */ 5268 while ((src->seqdiff = arc4random() - seq) == 0) 5269 ; 5270 ack = ntohl(th->th_ack) - dst->seqdiff; 5271 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5272 src->seqdiff), 0); 5273 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5274 *copyback = 1; 5275 } else { 5276 ack = ntohl(th->th_ack); 5277 } 5278 5279 end = seq + pd->p_len; 5280 if (th->th_flags & TH_SYN) { 5281 end++; 5282 if (dst->wscale & PF_WSCALE_FLAG) { 5283 src->wscale = pf_get_wscale(m, off, th->th_off, 5284 pd->af); 5285 if (src->wscale & PF_WSCALE_FLAG) { 5286 /* Remove scale factor from initial 5287 * window */ 5288 sws = src->wscale & PF_WSCALE_MASK; 5289 win = ((u_int32_t)win + (1 << sws) - 1) 5290 >> sws; 5291 dws = dst->wscale & PF_WSCALE_MASK; 5292 } else { 5293 /* fixup other window */ 5294 dst->max_win <<= dst->wscale & 5295 PF_WSCALE_MASK; 5296 /* in case of a retrans SYN|ACK */ 5297 dst->wscale = 0; 5298 } 5299 } 5300 } 5301 if (th->th_flags & TH_FIN) 5302 end++; 5303 5304 src->seqlo = seq; 5305 if (src->state < TCPS_SYN_SENT) 5306 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5307 5308 /* 5309 * May need to slide the window (seqhi may have been set by 5310 * the crappy stack check or if we picked up the connection 5311 * after establishment) 5312 */ 5313 if (src->seqhi == 1 || 5314 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 5315 src->seqhi = end + MAX(1, dst->max_win << dws); 5316 if (win > src->max_win) 5317 src->max_win = win; 5318 5319 } else { 5320 ack = ntohl(th->th_ack) - dst->seqdiff; 5321 if (src->seqdiff) { 5322 /* Modulate sequence numbers */ 5323 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5324 src->seqdiff), 0); 5325 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5326 *copyback = 1; 5327 } 5328 end = seq + pd->p_len; 5329 if (th->th_flags & TH_SYN) 5330 end++; 5331 if (th->th_flags & TH_FIN) 5332 end++; 5333 } 5334 5335 if ((th->th_flags & TH_ACK) == 0) { 5336 /* Let it pass through the ack skew check */ 5337 ack = dst->seqlo; 5338 } else if ((ack == 0 && 5339 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 5340 /* broken tcp stacks do not set ack */ 5341 (dst->state < TCPS_SYN_SENT)) { 5342 /* 5343 * Many stacks (ours included) will set the ACK number in an 5344 * FIN|ACK if the SYN times out -- no sequence to ACK. 5345 */ 5346 ack = dst->seqlo; 5347 } 5348 5349 if (seq == end) { 5350 /* Ease sequencing restrictions on no data packets */ 5351 seq = src->seqlo; 5352 end = seq; 5353 } 5354 5355 ackskew = dst->seqlo - ack; 5356 5357 /* 5358 * Need to demodulate the sequence numbers in any TCP SACK options 5359 * (Selective ACK). We could optionally validate the SACK values 5360 * against the current ACK window, either forwards or backwards, but 5361 * I'm not confident that SACK has been implemented properly 5362 * everywhere. It wouldn't surprise me if several stacks accidentally 5363 * SACK too far backwards of previously ACKed data. There really aren't 5364 * any security implications of bad SACKing unless the target stack 5365 * doesn't validate the option length correctly. Someone trying to 5366 * spoof into a TCP connection won't bother blindly sending SACK 5367 * options anyway. 5368 */ 5369 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 5370 if (pf_modulate_sack(m, off, pd, th, dst)) 5371 *copyback = 1; 5372 } 5373 5374 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 5375 if (SEQ_GEQ(src->seqhi, end) && 5376 /* Last octet inside other's window space */ 5377 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 5378 /* Retrans: not more than one window back */ 5379 (ackskew >= -MAXACKWINDOW) && 5380 /* Acking not more than one reassembled fragment backwards */ 5381 (ackskew <= (MAXACKWINDOW << sws)) && 5382 /* Acking not more than one window forward */ 5383 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 5384 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) { 5385 /* Require an exact/+1 sequence match on resets when possible */ 5386 5387 if (dst->scrub || src->scrub) { 5388 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5389 *state, src, dst, copyback)) 5390 return (PF_DROP); 5391 } 5392 5393 /* update max window */ 5394 if (src->max_win < win) 5395 src->max_win = win; 5396 /* synchronize sequencing */ 5397 if (SEQ_GT(end, src->seqlo)) 5398 src->seqlo = end; 5399 /* slide the window of what the other end can send */ 5400 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5401 dst->seqhi = ack + MAX((win << sws), 1); 5402 5403 /* update states */ 5404 if (th->th_flags & TH_SYN) 5405 if (src->state < TCPS_SYN_SENT) 5406 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5407 if (th->th_flags & TH_FIN) 5408 if (src->state < TCPS_CLOSING) 5409 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5410 if (th->th_flags & TH_ACK) { 5411 if (dst->state == TCPS_SYN_SENT) { 5412 pf_set_protostate(*state, pdst, 5413 TCPS_ESTABLISHED); 5414 if (src->state == TCPS_ESTABLISHED && 5415 (*state)->src_node != NULL && 5416 pf_src_connlimit(state)) { 5417 REASON_SET(reason, PFRES_SRCLIMIT); 5418 return (PF_DROP); 5419 } 5420 } else if (dst->state == TCPS_CLOSING) 5421 pf_set_protostate(*state, pdst, 5422 TCPS_FIN_WAIT_2); 5423 } 5424 if (th->th_flags & TH_RST) 5425 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5426 5427 /* update expire time */ 5428 (*state)->expire = pf_get_uptime(); 5429 if (src->state >= TCPS_FIN_WAIT_2 && 5430 dst->state >= TCPS_FIN_WAIT_2) 5431 (*state)->timeout = PFTM_TCP_CLOSED; 5432 else if (src->state >= TCPS_CLOSING && 5433 dst->state >= TCPS_CLOSING) 5434 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5435 else if (src->state < TCPS_ESTABLISHED || 5436 dst->state < TCPS_ESTABLISHED) 5437 (*state)->timeout = PFTM_TCP_OPENING; 5438 else if (src->state >= TCPS_CLOSING || 5439 dst->state >= TCPS_CLOSING) 5440 (*state)->timeout = PFTM_TCP_CLOSING; 5441 else 5442 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5443 5444 /* Fall through to PASS packet */ 5445 5446 } else if ((dst->state < TCPS_SYN_SENT || 5447 dst->state >= TCPS_FIN_WAIT_2 || 5448 src->state >= TCPS_FIN_WAIT_2) && 5449 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 5450 /* Within a window forward of the originating packet */ 5451 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 5452 /* Within a window backward of the originating packet */ 5453 5454 /* 5455 * This currently handles three situations: 5456 * 1) Stupid stacks will shotgun SYNs before their peer 5457 * replies. 5458 * 2) When PF catches an already established stream (the 5459 * firewall rebooted, the state table was flushed, routes 5460 * changed...) 5461 * 3) Packets get funky immediately after the connection 5462 * closes (this should catch Solaris spurious ACK|FINs 5463 * that web servers like to spew after a close) 5464 * 5465 * This must be a little more careful than the above code 5466 * since packet floods will also be caught here. We don't 5467 * update the TTL here to mitigate the damage of a packet 5468 * flood and so the same code can handle awkward establishment 5469 * and a loosened connection close. 5470 * In the establishment case, a correct peer response will 5471 * validate the connection, go through the normal state code 5472 * and keep updating the state TTL. 5473 */ 5474 5475 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5476 printf("pf: loose state match: "); 5477 pf_print_state(*state); 5478 pf_print_flags(th->th_flags); 5479 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5480 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 5481 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 5482 (unsigned long long)(*state)->packets[1], 5483 pd->dir == PF_IN ? "in" : "out", 5484 pd->dir == (*state)->direction ? "fwd" : "rev"); 5485 } 5486 5487 if (dst->scrub || src->scrub) { 5488 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5489 *state, src, dst, copyback)) 5490 return (PF_DROP); 5491 } 5492 5493 /* update max window */ 5494 if (src->max_win < win) 5495 src->max_win = win; 5496 /* synchronize sequencing */ 5497 if (SEQ_GT(end, src->seqlo)) 5498 src->seqlo = end; 5499 /* slide the window of what the other end can send */ 5500 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5501 dst->seqhi = ack + MAX((win << sws), 1); 5502 5503 /* 5504 * Cannot set dst->seqhi here since this could be a shotgunned 5505 * SYN and not an already established connection. 5506 */ 5507 5508 if (th->th_flags & TH_FIN) 5509 if (src->state < TCPS_CLOSING) 5510 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5511 if (th->th_flags & TH_RST) 5512 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5513 5514 /* Fall through to PASS packet */ 5515 5516 } else { 5517 if ((*state)->dst.state == TCPS_SYN_SENT && 5518 (*state)->src.state == TCPS_SYN_SENT) { 5519 /* Send RST for state mismatches during handshake */ 5520 if (!(th->th_flags & TH_RST)) 5521 pf_send_tcp((*state)->rule.ptr, pd->af, 5522 pd->dst, pd->src, th->th_dport, 5523 th->th_sport, ntohl(th->th_ack), 0, 5524 TH_RST, 0, 0, 5525 (*state)->rule.ptr->return_ttl, true, 0, 0, 5526 (*state)->act.rtableid); 5527 src->seqlo = 0; 5528 src->seqhi = 1; 5529 src->max_win = 1; 5530 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 5531 printf("pf: BAD state: "); 5532 pf_print_state(*state); 5533 pf_print_flags(th->th_flags); 5534 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5535 "pkts=%llu:%llu dir=%s,%s\n", 5536 seq, orig_seq, ack, pd->p_len, ackskew, 5537 (unsigned long long)(*state)->packets[0], 5538 (unsigned long long)(*state)->packets[1], 5539 pd->dir == PF_IN ? "in" : "out", 5540 pd->dir == (*state)->direction ? "fwd" : "rev"); 5541 printf("pf: State failure on: %c %c %c %c | %c %c\n", 5542 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 5543 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 5544 ' ': '2', 5545 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 5546 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 5547 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 5548 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 5549 } 5550 REASON_SET(reason, PFRES_BADSTATE); 5551 return (PF_DROP); 5552 } 5553 5554 return (PF_PASS); 5555 } 5556 5557 static int 5558 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 5559 { 5560 struct tcphdr *th = &pd->hdr.tcp; 5561 struct pf_state_peer *src, *dst; 5562 u_int8_t psrc, pdst; 5563 5564 if (pd->dir == (*state)->direction) { 5565 src = &(*state)->src; 5566 dst = &(*state)->dst; 5567 psrc = PF_PEER_SRC; 5568 pdst = PF_PEER_DST; 5569 } else { 5570 src = &(*state)->dst; 5571 dst = &(*state)->src; 5572 psrc = PF_PEER_DST; 5573 pdst = PF_PEER_SRC; 5574 } 5575 5576 if (th->th_flags & TH_SYN) 5577 if (src->state < TCPS_SYN_SENT) 5578 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5579 if (th->th_flags & TH_FIN) 5580 if (src->state < TCPS_CLOSING) 5581 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5582 if (th->th_flags & TH_ACK) { 5583 if (dst->state == TCPS_SYN_SENT) { 5584 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 5585 if (src->state == TCPS_ESTABLISHED && 5586 (*state)->src_node != NULL && 5587 pf_src_connlimit(state)) { 5588 REASON_SET(reason, PFRES_SRCLIMIT); 5589 return (PF_DROP); 5590 } 5591 } else if (dst->state == TCPS_CLOSING) { 5592 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 5593 } else if (src->state == TCPS_SYN_SENT && 5594 dst->state < TCPS_SYN_SENT) { 5595 /* 5596 * Handle a special sloppy case where we only see one 5597 * half of the connection. If there is a ACK after 5598 * the initial SYN without ever seeing a packet from 5599 * the destination, set the connection to established. 5600 */ 5601 pf_set_protostate(*state, PF_PEER_BOTH, 5602 TCPS_ESTABLISHED); 5603 dst->state = src->state = TCPS_ESTABLISHED; 5604 if ((*state)->src_node != NULL && 5605 pf_src_connlimit(state)) { 5606 REASON_SET(reason, PFRES_SRCLIMIT); 5607 return (PF_DROP); 5608 } 5609 } else if (src->state == TCPS_CLOSING && 5610 dst->state == TCPS_ESTABLISHED && 5611 dst->seqlo == 0) { 5612 /* 5613 * Handle the closing of half connections where we 5614 * don't see the full bidirectional FIN/ACK+ACK 5615 * handshake. 5616 */ 5617 pf_set_protostate(*state, pdst, TCPS_CLOSING); 5618 } 5619 } 5620 if (th->th_flags & TH_RST) 5621 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5622 5623 /* update expire time */ 5624 (*state)->expire = pf_get_uptime(); 5625 if (src->state >= TCPS_FIN_WAIT_2 && 5626 dst->state >= TCPS_FIN_WAIT_2) 5627 (*state)->timeout = PFTM_TCP_CLOSED; 5628 else if (src->state >= TCPS_CLOSING && 5629 dst->state >= TCPS_CLOSING) 5630 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5631 else if (src->state < TCPS_ESTABLISHED || 5632 dst->state < TCPS_ESTABLISHED) 5633 (*state)->timeout = PFTM_TCP_OPENING; 5634 else if (src->state >= TCPS_CLOSING || 5635 dst->state >= TCPS_CLOSING) 5636 (*state)->timeout = PFTM_TCP_CLOSING; 5637 else 5638 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5639 5640 return (PF_PASS); 5641 } 5642 5643 static int 5644 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 5645 { 5646 struct pf_state_key *sk = (*state)->key[pd->didx]; 5647 struct tcphdr *th = &pd->hdr.tcp; 5648 5649 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 5650 if (pd->dir != (*state)->direction) { 5651 REASON_SET(reason, PFRES_SYNPROXY); 5652 return (PF_SYNPROXY_DROP); 5653 } 5654 if (th->th_flags & TH_SYN) { 5655 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 5656 REASON_SET(reason, PFRES_SYNPROXY); 5657 return (PF_DROP); 5658 } 5659 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 5660 pd->src, th->th_dport, th->th_sport, 5661 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 5662 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, true, 0, 0, 5663 (*state)->act.rtableid); 5664 REASON_SET(reason, PFRES_SYNPROXY); 5665 return (PF_SYNPROXY_DROP); 5666 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 5667 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 5668 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 5669 REASON_SET(reason, PFRES_SYNPROXY); 5670 return (PF_DROP); 5671 } else if ((*state)->src_node != NULL && 5672 pf_src_connlimit(state)) { 5673 REASON_SET(reason, PFRES_SRCLIMIT); 5674 return (PF_DROP); 5675 } else 5676 pf_set_protostate(*state, PF_PEER_SRC, 5677 PF_TCPS_PROXY_DST); 5678 } 5679 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 5680 if (pd->dir == (*state)->direction) { 5681 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 5682 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 5683 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 5684 REASON_SET(reason, PFRES_SYNPROXY); 5685 return (PF_DROP); 5686 } 5687 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 5688 if ((*state)->dst.seqhi == 1) 5689 (*state)->dst.seqhi = htonl(arc4random()); 5690 pf_send_tcp((*state)->rule.ptr, pd->af, 5691 &sk->addr[pd->sidx], &sk->addr[pd->didx], 5692 sk->port[pd->sidx], sk->port[pd->didx], 5693 (*state)->dst.seqhi, 0, TH_SYN, 0, 5694 (*state)->src.mss, 0, false, (*state)->tag, 0, 5695 (*state)->act.rtableid); 5696 REASON_SET(reason, PFRES_SYNPROXY); 5697 return (PF_SYNPROXY_DROP); 5698 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 5699 (TH_SYN|TH_ACK)) || 5700 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 5701 REASON_SET(reason, PFRES_SYNPROXY); 5702 return (PF_DROP); 5703 } else { 5704 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 5705 (*state)->dst.seqlo = ntohl(th->th_seq); 5706 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 5707 pd->src, th->th_dport, th->th_sport, 5708 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 5709 TH_ACK, (*state)->src.max_win, 0, 0, false, 5710 (*state)->tag, 0, (*state)->act.rtableid); 5711 pf_send_tcp((*state)->rule.ptr, pd->af, 5712 &sk->addr[pd->sidx], &sk->addr[pd->didx], 5713 sk->port[pd->sidx], sk->port[pd->didx], 5714 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 5715 TH_ACK, (*state)->dst.max_win, 0, 0, true, 0, 0, 5716 (*state)->act.rtableid); 5717 (*state)->src.seqdiff = (*state)->dst.seqhi - 5718 (*state)->src.seqlo; 5719 (*state)->dst.seqdiff = (*state)->src.seqhi - 5720 (*state)->dst.seqlo; 5721 (*state)->src.seqhi = (*state)->src.seqlo + 5722 (*state)->dst.max_win; 5723 (*state)->dst.seqhi = (*state)->dst.seqlo + 5724 (*state)->src.max_win; 5725 (*state)->src.wscale = (*state)->dst.wscale = 0; 5726 pf_set_protostate(*state, PF_PEER_BOTH, 5727 TCPS_ESTABLISHED); 5728 REASON_SET(reason, PFRES_SYNPROXY); 5729 return (PF_SYNPROXY_DROP); 5730 } 5731 } 5732 5733 return (PF_PASS); 5734 } 5735 5736 static int 5737 pf_test_state_tcp(struct pf_kstate **state, struct pfi_kkif *kif, 5738 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 5739 u_short *reason) 5740 { 5741 struct pf_state_key_cmp key; 5742 struct tcphdr *th = &pd->hdr.tcp; 5743 int copyback = 0; 5744 int action; 5745 struct pf_state_peer *src, *dst; 5746 5747 bzero(&key, sizeof(key)); 5748 key.af = pd->af; 5749 key.proto = IPPROTO_TCP; 5750 if (pd->dir == PF_IN) { /* wire side, straight */ 5751 PF_ACPY(&key.addr[0], pd->src, key.af); 5752 PF_ACPY(&key.addr[1], pd->dst, key.af); 5753 key.port[0] = th->th_sport; 5754 key.port[1] = th->th_dport; 5755 } else { /* stack side, reverse */ 5756 PF_ACPY(&key.addr[1], pd->src, key.af); 5757 PF_ACPY(&key.addr[0], pd->dst, key.af); 5758 key.port[1] = th->th_sport; 5759 key.port[0] = th->th_dport; 5760 } 5761 5762 STATE_LOOKUP(kif, &key, *state, pd); 5763 5764 if (pd->dir == (*state)->direction) { 5765 src = &(*state)->src; 5766 dst = &(*state)->dst; 5767 } else { 5768 src = &(*state)->dst; 5769 dst = &(*state)->src; 5770 } 5771 5772 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 5773 return (action); 5774 5775 if (dst->state >= TCPS_FIN_WAIT_2 && 5776 src->state >= TCPS_FIN_WAIT_2 && 5777 (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) || 5778 ((th->th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK && 5779 pf_syncookie_check(pd) && pd->dir == PF_IN))) { 5780 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5781 printf("pf: state reuse "); 5782 pf_print_state(*state); 5783 pf_print_flags(th->th_flags); 5784 printf("\n"); 5785 } 5786 /* XXX make sure it's the same direction ?? */ 5787 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 5788 pf_unlink_state(*state); 5789 *state = NULL; 5790 return (PF_DROP); 5791 } 5792 5793 if ((*state)->state_flags & PFSTATE_SLOPPY) { 5794 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 5795 return (PF_DROP); 5796 } else { 5797 if (pf_tcp_track_full(state, kif, m, off, pd, reason, 5798 ©back) == PF_DROP) 5799 return (PF_DROP); 5800 } 5801 5802 /* translate source/destination address, if necessary */ 5803 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5804 struct pf_state_key *nk = (*state)->key[pd->didx]; 5805 5806 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5807 nk->port[pd->sidx] != th->th_sport) 5808 pf_change_ap(m, pd->src, &th->th_sport, 5809 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 5810 nk->port[pd->sidx], 0, pd->af); 5811 5812 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5813 nk->port[pd->didx] != th->th_dport) 5814 pf_change_ap(m, pd->dst, &th->th_dport, 5815 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 5816 nk->port[pd->didx], 0, pd->af); 5817 copyback = 1; 5818 } 5819 5820 /* Copyback sequence modulation or stateful scrub changes if needed */ 5821 if (copyback) 5822 m_copyback(m, off, sizeof(*th), (caddr_t)th); 5823 5824 return (PF_PASS); 5825 } 5826 5827 static int 5828 pf_test_state_udp(struct pf_kstate **state, struct pfi_kkif *kif, 5829 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 5830 { 5831 struct pf_state_peer *src, *dst; 5832 struct pf_state_key_cmp key; 5833 struct udphdr *uh = &pd->hdr.udp; 5834 uint8_t psrc, pdst; 5835 5836 bzero(&key, sizeof(key)); 5837 key.af = pd->af; 5838 key.proto = IPPROTO_UDP; 5839 if (pd->dir == PF_IN) { /* wire side, straight */ 5840 PF_ACPY(&key.addr[0], pd->src, key.af); 5841 PF_ACPY(&key.addr[1], pd->dst, key.af); 5842 key.port[0] = uh->uh_sport; 5843 key.port[1] = uh->uh_dport; 5844 } else { /* stack side, reverse */ 5845 PF_ACPY(&key.addr[1], pd->src, key.af); 5846 PF_ACPY(&key.addr[0], pd->dst, key.af); 5847 key.port[1] = uh->uh_sport; 5848 key.port[0] = uh->uh_dport; 5849 } 5850 5851 STATE_LOOKUP(kif, &key, *state, pd); 5852 5853 if (pd->dir == (*state)->direction) { 5854 src = &(*state)->src; 5855 dst = &(*state)->dst; 5856 psrc = PF_PEER_SRC; 5857 pdst = PF_PEER_DST; 5858 } else { 5859 src = &(*state)->dst; 5860 dst = &(*state)->src; 5861 psrc = PF_PEER_DST; 5862 pdst = PF_PEER_SRC; 5863 } 5864 5865 /* update states */ 5866 if (src->state < PFUDPS_SINGLE) 5867 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 5868 if (dst->state == PFUDPS_SINGLE) 5869 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 5870 5871 /* update expire time */ 5872 (*state)->expire = pf_get_uptime(); 5873 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 5874 (*state)->timeout = PFTM_UDP_MULTIPLE; 5875 else 5876 (*state)->timeout = PFTM_UDP_SINGLE; 5877 5878 /* translate source/destination address, if necessary */ 5879 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5880 struct pf_state_key *nk = (*state)->key[pd->didx]; 5881 5882 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5883 nk->port[pd->sidx] != uh->uh_sport) 5884 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 5885 &uh->uh_sum, &nk->addr[pd->sidx], 5886 nk->port[pd->sidx], 1, pd->af); 5887 5888 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5889 nk->port[pd->didx] != uh->uh_dport) 5890 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 5891 &uh->uh_sum, &nk->addr[pd->didx], 5892 nk->port[pd->didx], 1, pd->af); 5893 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 5894 } 5895 5896 return (PF_PASS); 5897 } 5898 5899 static int 5900 pf_test_state_sctp(struct pf_kstate **state, struct pfi_kkif *kif, 5901 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 5902 { 5903 struct pf_state_key_cmp key; 5904 struct pf_state_peer *src, *dst; 5905 struct sctphdr *sh = &pd->hdr.sctp; 5906 u_int8_t psrc; //, pdst; 5907 5908 bzero(&key, sizeof(key)); 5909 key.af = pd->af; 5910 key.proto = IPPROTO_SCTP; 5911 if (pd->dir == PF_IN) { /* wire side, straight */ 5912 PF_ACPY(&key.addr[0], pd->src, key.af); 5913 PF_ACPY(&key.addr[1], pd->dst, key.af); 5914 key.port[0] = sh->src_port; 5915 key.port[1] = sh->dest_port; 5916 } else { /* stack side, reverse */ 5917 PF_ACPY(&key.addr[1], pd->src, key.af); 5918 PF_ACPY(&key.addr[0], pd->dst, key.af); 5919 key.port[1] = sh->src_port; 5920 key.port[0] = sh->dest_port; 5921 } 5922 5923 STATE_LOOKUP(kif, &key, *state, pd); 5924 5925 if (pd->dir == (*state)->direction) { 5926 src = &(*state)->src; 5927 dst = &(*state)->dst; 5928 psrc = PF_PEER_SRC; 5929 } else { 5930 src = &(*state)->dst; 5931 dst = &(*state)->src; 5932 psrc = PF_PEER_DST; 5933 } 5934 5935 /* Track state. */ 5936 if (pd->sctp_flags & PFDESC_SCTP_INIT) { 5937 if (src->state < SCTP_COOKIE_WAIT) { 5938 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT); 5939 (*state)->timeout = PFTM_SCTP_OPENING; 5940 } 5941 } 5942 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) { 5943 MPASS(dst->scrub != NULL); 5944 if (dst->scrub->pfss_v_tag == 0) 5945 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag; 5946 } 5947 5948 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) { 5949 if (src->state < SCTP_ESTABLISHED) { 5950 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED); 5951 (*state)->timeout = PFTM_SCTP_ESTABLISHED; 5952 } 5953 } 5954 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | PFDESC_SCTP_ABORT | 5955 PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 5956 if (src->state < SCTP_SHUTDOWN_PENDING) { 5957 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING); 5958 (*state)->timeout = PFTM_SCTP_CLOSING; 5959 } 5960 } 5961 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 5962 pf_set_protostate(*state, psrc, SCTP_CLOSED); 5963 (*state)->timeout = PFTM_SCTP_CLOSED; 5964 } 5965 5966 if (src->scrub != NULL) { 5967 if (src->scrub->pfss_v_tag == 0) { 5968 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag; 5969 } else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag) 5970 return (PF_DROP); 5971 } 5972 5973 (*state)->expire = pf_get_uptime(); 5974 5975 /* translate source/destination address, if necessary */ 5976 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5977 uint16_t checksum = 0; 5978 struct pf_state_key *nk = (*state)->key[pd->didx]; 5979 5980 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5981 nk->port[pd->sidx] != pd->hdr.sctp.src_port) { 5982 pf_change_ap(m, pd->src, &pd->hdr.sctp.src_port, 5983 pd->ip_sum, &checksum, &nk->addr[pd->sidx], 5984 nk->port[pd->sidx], 1, pd->af); 5985 } 5986 5987 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5988 nk->port[pd->didx] != pd->hdr.sctp.dest_port) { 5989 pf_change_ap(m, pd->dst, &pd->hdr.sctp.dest_port, 5990 pd->ip_sum, &checksum, &nk->addr[pd->didx], 5991 nk->port[pd->didx], 1, pd->af); 5992 } 5993 } 5994 5995 return (PF_PASS); 5996 } 5997 5998 static void 5999 pf_sctp_multihome_detach_addr(const struct pf_kstate *s) 6000 { 6001 struct pf_sctp_endpoint key; 6002 struct pf_sctp_endpoint *ep; 6003 struct pf_state_key *sks = s->key[PF_SK_STACK]; 6004 struct pf_sctp_source *i, *tmp; 6005 6006 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL) 6007 return; 6008 6009 PF_SCTP_ENDPOINTS_LOCK(); 6010 6011 key.v_tag = s->dst.scrub->pfss_v_tag; 6012 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6013 if (ep != NULL) { 6014 /* XXX Actually remove! */ 6015 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6016 if (pf_addr_cmp(&i->addr, 6017 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT], 6018 s->key[PF_SK_WIRE]->af) == 0) { 6019 TAILQ_REMOVE(&ep->sources, i, entry); 6020 free(i, M_PFTEMP); 6021 break; 6022 } 6023 } 6024 6025 if (TAILQ_EMPTY(&ep->sources)) { 6026 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6027 free(ep, M_PFTEMP); 6028 } 6029 } 6030 6031 /* Other direction. */ 6032 key.v_tag = s->src.scrub->pfss_v_tag; 6033 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6034 if (ep != NULL) { 6035 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6036 if (pf_addr_cmp(&i->addr, 6037 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN], 6038 s->key[PF_SK_WIRE]->af) == 0) { 6039 TAILQ_REMOVE(&ep->sources, i, entry); 6040 free(i, M_PFTEMP); 6041 break; 6042 } 6043 } 6044 6045 if (TAILQ_EMPTY(&ep->sources)) { 6046 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6047 free(ep, M_PFTEMP); 6048 } 6049 } 6050 6051 PF_SCTP_ENDPOINTS_UNLOCK(); 6052 } 6053 6054 static void 6055 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag) 6056 { 6057 struct pf_sctp_endpoint key = { 6058 .v_tag = v_tag, 6059 }; 6060 struct pf_sctp_source *i; 6061 struct pf_sctp_endpoint *ep; 6062 6063 PF_SCTP_ENDPOINTS_LOCK(); 6064 6065 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6066 if (ep == NULL) { 6067 ep = malloc(sizeof(struct pf_sctp_endpoint), 6068 M_PFTEMP, M_NOWAIT); 6069 if (ep == NULL) { 6070 PF_SCTP_ENDPOINTS_UNLOCK(); 6071 return; 6072 } 6073 6074 ep->v_tag = v_tag; 6075 TAILQ_INIT(&ep->sources); 6076 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6077 } 6078 6079 /* Avoid inserting duplicates. */ 6080 TAILQ_FOREACH(i, &ep->sources, entry) { 6081 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) { 6082 PF_SCTP_ENDPOINTS_UNLOCK(); 6083 return; 6084 } 6085 } 6086 6087 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT); 6088 if (i == NULL) { 6089 PF_SCTP_ENDPOINTS_UNLOCK(); 6090 return; 6091 } 6092 6093 i->af = pd->af; 6094 memcpy(&i->addr, a, sizeof(*a)); 6095 TAILQ_INSERT_TAIL(&ep->sources, i, entry); 6096 6097 PF_SCTP_ENDPOINTS_UNLOCK(); 6098 } 6099 6100 static void 6101 pf_sctp_multihome_delayed(struct pf_pdesc *pd, int off, struct pfi_kkif *kif, 6102 struct pf_kstate *s, int action) 6103 { 6104 struct pf_sctp_multihome_job *j, *tmp; 6105 struct pf_sctp_source *i; 6106 int ret __unused;; 6107 struct pf_kstate *sm = NULL; 6108 struct pf_krule *ra = NULL; 6109 struct pf_krule *r = &V_pf_default_rule; 6110 struct pf_kruleset *rs = NULL; 6111 bool do_extra = true; 6112 6113 PF_RULES_RLOCK_TRACKER; 6114 6115 again: 6116 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) { 6117 if (s == NULL || action != PF_PASS) 6118 goto free; 6119 6120 /* Confirm we don't recurse here. */ 6121 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP)); 6122 6123 switch (j->op) { 6124 case SCTP_ADD_IP_ADDRESS: { 6125 uint32_t v_tag = pd->sctp_initiate_tag; 6126 6127 if (v_tag == 0) { 6128 if (s->direction == pd->dir) 6129 v_tag = s->src.scrub->pfss_v_tag; 6130 else 6131 v_tag = s->dst.scrub->pfss_v_tag; 6132 } 6133 6134 /* 6135 * Avoid duplicating states. We'll already have 6136 * created a state based on the source address of 6137 * the packet, but SCTP endpoints may also list this 6138 * address again in the INIT(_ACK) parameters. 6139 */ 6140 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) { 6141 break; 6142 } 6143 6144 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP; 6145 PF_RULES_RLOCK(); 6146 sm = NULL; 6147 /* 6148 * New connections need to be floating, because 6149 * we cannot know what interfaces it will use. 6150 * That's why we pass V_pfi_all rather than kif. 6151 */ 6152 ret = pf_test_rule(&r, &sm, V_pfi_all, 6153 j->m, off, &j->pd, &ra, &rs, NULL); 6154 PF_RULES_RUNLOCK(); 6155 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->m, ret); 6156 if (ret != PF_DROP && sm != NULL) { 6157 /* Inherit v_tag values. */ 6158 if (sm->direction == s->direction) { 6159 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6160 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6161 } else { 6162 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6163 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6164 } 6165 PF_STATE_UNLOCK(sm); 6166 } else { 6167 /* If we try duplicate inserts? */ 6168 break; 6169 } 6170 6171 /* Only add the addres if we've actually allowed the state. */ 6172 pf_sctp_multihome_add_addr(pd, &j->src, v_tag); 6173 6174 if (! do_extra) { 6175 break; 6176 } 6177 /* 6178 * We need to do this for each of our source addresses. 6179 * Find those based on the verification tag. 6180 */ 6181 struct pf_sctp_endpoint key = { 6182 .v_tag = pd->hdr.sctp.v_tag, 6183 }; 6184 struct pf_sctp_endpoint *ep; 6185 6186 PF_SCTP_ENDPOINTS_LOCK(); 6187 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6188 if (ep == NULL) { 6189 PF_SCTP_ENDPOINTS_UNLOCK(); 6190 break; 6191 } 6192 MPASS(ep != NULL); 6193 6194 TAILQ_FOREACH(i, &ep->sources, entry) { 6195 struct pf_sctp_multihome_job *nj; 6196 6197 /* SCTP can intermingle IPv4 and IPv6. */ 6198 if (i->af != pd->af) 6199 continue; 6200 6201 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO); 6202 if (! nj) { 6203 continue; 6204 } 6205 memcpy(&nj->pd, &j->pd, sizeof(j->pd)); 6206 memcpy(&nj->src, &j->src, sizeof(nj->src)); 6207 nj->pd.src = &nj->src; 6208 // New destination address! 6209 memcpy(&nj->dst, &i->addr, sizeof(nj->dst)); 6210 nj->pd.dst = &nj->dst; 6211 nj->m = j->m; 6212 nj->op = j->op; 6213 6214 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next); 6215 } 6216 PF_SCTP_ENDPOINTS_UNLOCK(); 6217 6218 break; 6219 } 6220 case SCTP_DEL_IP_ADDRESS: { 6221 struct pf_state_key_cmp key; 6222 uint8_t psrc; 6223 6224 bzero(&key, sizeof(key)); 6225 key.af = j->pd.af; 6226 key.proto = IPPROTO_SCTP; 6227 if (j->pd.dir == PF_IN) { /* wire side, straight */ 6228 PF_ACPY(&key.addr[0], j->pd.src, key.af); 6229 PF_ACPY(&key.addr[1], j->pd.dst, key.af); 6230 key.port[0] = j->pd.hdr.sctp.src_port; 6231 key.port[1] = j->pd.hdr.sctp.dest_port; 6232 } else { /* stack side, reverse */ 6233 PF_ACPY(&key.addr[1], j->pd.src, key.af); 6234 PF_ACPY(&key.addr[0], j->pd.dst, key.af); 6235 key.port[1] = j->pd.hdr.sctp.src_port; 6236 key.port[0] = j->pd.hdr.sctp.dest_port; 6237 } 6238 6239 sm = pf_find_state(kif, &key, j->pd.dir); 6240 if (sm != NULL) { 6241 PF_STATE_LOCK_ASSERT(sm); 6242 if (j->pd.dir == sm->direction) { 6243 psrc = PF_PEER_SRC; 6244 } else { 6245 psrc = PF_PEER_DST; 6246 } 6247 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING); 6248 sm->timeout = PFTM_SCTP_CLOSING; 6249 PF_STATE_UNLOCK(sm); 6250 } 6251 break; 6252 default: 6253 panic("Unknown op %#x", j->op); 6254 } 6255 } 6256 6257 free: 6258 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next); 6259 free(j, M_PFTEMP); 6260 } 6261 6262 /* We may have inserted extra work while processing the list. */ 6263 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) { 6264 do_extra = false; 6265 goto again; 6266 } 6267 } 6268 6269 static int 6270 pf_multihome_scan(struct mbuf *m, int start, int len, struct pf_pdesc *pd, 6271 struct pfi_kkif *kif, int op) 6272 { 6273 int off = 0; 6274 struct pf_sctp_multihome_job *job; 6275 6276 while (off < len) { 6277 struct sctp_paramhdr h; 6278 6279 if (!pf_pull_hdr(m, start + off, &h, sizeof(h), NULL, NULL, 6280 pd->af)) 6281 return (PF_DROP); 6282 6283 /* Parameters are at least 4 bytes. */ 6284 if (ntohs(h.param_length) < 4) 6285 return (PF_DROP); 6286 6287 switch (ntohs(h.param_type)) { 6288 case SCTP_IPV4_ADDRESS: { 6289 struct in_addr t; 6290 6291 if (ntohs(h.param_length) != 6292 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6293 return (PF_DROP); 6294 6295 if (!pf_pull_hdr(m, start + off + sizeof(h), &t, sizeof(t), 6296 NULL, NULL, pd->af)) 6297 return (PF_DROP); 6298 6299 if (in_nullhost(t)) 6300 t.s_addr = pd->src->v4.s_addr; 6301 6302 /* 6303 * We hold the state lock (idhash) here, which means 6304 * that we can't acquire the keyhash, or we'll get a 6305 * LOR (and potentially double-lock things too). We also 6306 * can't release the state lock here, so instead we'll 6307 * enqueue this for async handling. 6308 * There's a relatively small race here, in that a 6309 * packet using the new addresses could arrive already, 6310 * but that's just though luck for it. 6311 */ 6312 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6313 if (! job) 6314 return (PF_DROP); 6315 6316 memcpy(&job->pd, pd, sizeof(*pd)); 6317 6318 // New source address! 6319 memcpy(&job->src, &t, sizeof(t)); 6320 job->pd.src = &job->src; 6321 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6322 job->pd.dst = &job->dst; 6323 job->m = m; 6324 job->op = op; 6325 6326 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6327 break; 6328 } 6329 #ifdef INET6 6330 case SCTP_IPV6_ADDRESS: { 6331 struct in6_addr t; 6332 6333 if (ntohs(h.param_length) != 6334 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6335 return (PF_DROP); 6336 6337 if (!pf_pull_hdr(m, start + off + sizeof(h), &t, sizeof(t), 6338 NULL, NULL, pd->af)) 6339 return (PF_DROP); 6340 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0) 6341 break; 6342 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0) 6343 memcpy(&t, &pd->src->v6, sizeof(t)); 6344 6345 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6346 if (! job) 6347 return (PF_DROP); 6348 6349 memcpy(&job->pd, pd, sizeof(*pd)); 6350 memcpy(&job->src, &t, sizeof(t)); 6351 job->pd.src = &job->src; 6352 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6353 job->pd.dst = &job->dst; 6354 job->m = m; 6355 job->op = op; 6356 6357 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6358 break; 6359 } 6360 #endif 6361 case SCTP_ADD_IP_ADDRESS: { 6362 int ret; 6363 struct sctp_asconf_paramhdr ah; 6364 6365 if (!pf_pull_hdr(m, start + off, &ah, sizeof(ah), 6366 NULL, NULL, pd->af)) 6367 return (PF_DROP); 6368 6369 ret = pf_multihome_scan(m, start + off + sizeof(ah), 6370 ntohs(ah.ph.param_length) - sizeof(ah), pd, kif, 6371 SCTP_ADD_IP_ADDRESS); 6372 if (ret != PF_PASS) 6373 return (ret); 6374 break; 6375 } 6376 case SCTP_DEL_IP_ADDRESS: { 6377 int ret; 6378 struct sctp_asconf_paramhdr ah; 6379 6380 if (!pf_pull_hdr(m, start + off, &ah, sizeof(ah), 6381 NULL, NULL, pd->af)) 6382 return (PF_DROP); 6383 ret = pf_multihome_scan(m, start + off + sizeof(ah), 6384 ntohs(ah.ph.param_length) - sizeof(ah), pd, kif, 6385 SCTP_DEL_IP_ADDRESS); 6386 if (ret != PF_PASS) 6387 return (ret); 6388 break; 6389 } 6390 default: 6391 break; 6392 } 6393 6394 off += roundup(ntohs(h.param_length), 4); 6395 } 6396 6397 return (PF_PASS); 6398 } 6399 int 6400 pf_multihome_scan_init(struct mbuf *m, int start, int len, struct pf_pdesc *pd, 6401 struct pfi_kkif *kif) 6402 { 6403 start += sizeof(struct sctp_init_chunk); 6404 len -= sizeof(struct sctp_init_chunk); 6405 6406 return (pf_multihome_scan(m, start, len, pd, kif, SCTP_ADD_IP_ADDRESS)); 6407 } 6408 6409 int 6410 pf_multihome_scan_asconf(struct mbuf *m, int start, int len, 6411 struct pf_pdesc *pd, struct pfi_kkif *kif) 6412 { 6413 start += sizeof(struct sctp_asconf_chunk); 6414 len -= sizeof(struct sctp_asconf_chunk); 6415 6416 return (pf_multihome_scan(m, start, len, pd, kif, SCTP_ADD_IP_ADDRESS)); 6417 } 6418 6419 static int 6420 pf_test_state_icmp(struct pf_kstate **state, struct pfi_kkif *kif, 6421 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 6422 { 6423 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 6424 u_int16_t icmpid = 0, *icmpsum; 6425 u_int8_t icmptype, icmpcode; 6426 int state_icmp = 0; 6427 struct pf_state_key_cmp key; 6428 6429 bzero(&key, sizeof(key)); 6430 switch (pd->proto) { 6431 #ifdef INET 6432 case IPPROTO_ICMP: 6433 icmptype = pd->hdr.icmp.icmp_type; 6434 icmpcode = pd->hdr.icmp.icmp_code; 6435 icmpid = pd->hdr.icmp.icmp_id; 6436 icmpsum = &pd->hdr.icmp.icmp_cksum; 6437 6438 if (icmptype == ICMP_UNREACH || 6439 icmptype == ICMP_SOURCEQUENCH || 6440 icmptype == ICMP_REDIRECT || 6441 icmptype == ICMP_TIMXCEED || 6442 icmptype == ICMP_PARAMPROB) 6443 state_icmp++; 6444 break; 6445 #endif /* INET */ 6446 #ifdef INET6 6447 case IPPROTO_ICMPV6: 6448 icmptype = pd->hdr.icmp6.icmp6_type; 6449 icmpcode = pd->hdr.icmp6.icmp6_code; 6450 icmpid = pd->hdr.icmp6.icmp6_id; 6451 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 6452 6453 if (icmptype == ICMP6_DST_UNREACH || 6454 icmptype == ICMP6_PACKET_TOO_BIG || 6455 icmptype == ICMP6_TIME_EXCEEDED || 6456 icmptype == ICMP6_PARAM_PROB) 6457 state_icmp++; 6458 break; 6459 #endif /* INET6 */ 6460 } 6461 6462 if (!state_icmp) { 6463 /* 6464 * ICMP query/reply message not related to a TCP/UDP packet. 6465 * Search for an ICMP state. 6466 */ 6467 key.af = pd->af; 6468 key.proto = pd->proto; 6469 key.port[0] = key.port[1] = icmpid; 6470 if (pd->dir == PF_IN) { /* wire side, straight */ 6471 PF_ACPY(&key.addr[0], pd->src, key.af); 6472 PF_ACPY(&key.addr[1], pd->dst, key.af); 6473 } else { /* stack side, reverse */ 6474 PF_ACPY(&key.addr[1], pd->src, key.af); 6475 PF_ACPY(&key.addr[0], pd->dst, key.af); 6476 } 6477 6478 STATE_LOOKUP(kif, &key, *state, pd); 6479 6480 (*state)->expire = pf_get_uptime(); 6481 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 6482 6483 /* translate source/destination address, if necessary */ 6484 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6485 struct pf_state_key *nk = (*state)->key[pd->didx]; 6486 6487 switch (pd->af) { 6488 #ifdef INET 6489 case AF_INET: 6490 if (PF_ANEQ(pd->src, 6491 &nk->addr[pd->sidx], AF_INET)) 6492 pf_change_a(&saddr->v4.s_addr, 6493 pd->ip_sum, 6494 nk->addr[pd->sidx].v4.s_addr, 0); 6495 6496 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 6497 AF_INET)) 6498 pf_change_a(&daddr->v4.s_addr, 6499 pd->ip_sum, 6500 nk->addr[pd->didx].v4.s_addr, 0); 6501 6502 if (nk->port[0] != 6503 pd->hdr.icmp.icmp_id) { 6504 pd->hdr.icmp.icmp_cksum = 6505 pf_cksum_fixup( 6506 pd->hdr.icmp.icmp_cksum, icmpid, 6507 nk->port[pd->sidx], 0); 6508 pd->hdr.icmp.icmp_id = 6509 nk->port[pd->sidx]; 6510 } 6511 6512 m_copyback(m, off, ICMP_MINLEN, 6513 (caddr_t )&pd->hdr.icmp); 6514 break; 6515 #endif /* INET */ 6516 #ifdef INET6 6517 case AF_INET6: 6518 if (PF_ANEQ(pd->src, 6519 &nk->addr[pd->sidx], AF_INET6)) 6520 pf_change_a6(saddr, 6521 &pd->hdr.icmp6.icmp6_cksum, 6522 &nk->addr[pd->sidx], 0); 6523 6524 if (PF_ANEQ(pd->dst, 6525 &nk->addr[pd->didx], AF_INET6)) 6526 pf_change_a6(daddr, 6527 &pd->hdr.icmp6.icmp6_cksum, 6528 &nk->addr[pd->didx], 0); 6529 6530 m_copyback(m, off, sizeof(struct icmp6_hdr), 6531 (caddr_t )&pd->hdr.icmp6); 6532 break; 6533 #endif /* INET6 */ 6534 } 6535 } 6536 return (PF_PASS); 6537 6538 } else { 6539 /* 6540 * ICMP error message in response to a TCP/UDP packet. 6541 * Extract the inner TCP/UDP header and search for that state. 6542 */ 6543 6544 struct pf_pdesc pd2; 6545 bzero(&pd2, sizeof pd2); 6546 #ifdef INET 6547 struct ip h2; 6548 #endif /* INET */ 6549 #ifdef INET6 6550 struct ip6_hdr h2_6; 6551 int terminal = 0; 6552 #endif /* INET6 */ 6553 int ipoff2 = 0; 6554 int off2 = 0; 6555 6556 pd2.af = pd->af; 6557 /* Payload packet is from the opposite direction. */ 6558 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0; 6559 pd2.didx = (pd->dir == PF_IN) ? 0 : 1; 6560 switch (pd->af) { 6561 #ifdef INET 6562 case AF_INET: 6563 /* offset of h2 in mbuf chain */ 6564 ipoff2 = off + ICMP_MINLEN; 6565 6566 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 6567 NULL, reason, pd2.af)) { 6568 DPFPRINTF(PF_DEBUG_MISC, 6569 ("pf: ICMP error message too short " 6570 "(ip)\n")); 6571 return (PF_DROP); 6572 } 6573 /* 6574 * ICMP error messages don't refer to non-first 6575 * fragments 6576 */ 6577 if (h2.ip_off & htons(IP_OFFMASK)) { 6578 REASON_SET(reason, PFRES_FRAG); 6579 return (PF_DROP); 6580 } 6581 6582 /* offset of protocol header that follows h2 */ 6583 off2 = ipoff2 + (h2.ip_hl << 2); 6584 6585 pd2.proto = h2.ip_p; 6586 pd2.src = (struct pf_addr *)&h2.ip_src; 6587 pd2.dst = (struct pf_addr *)&h2.ip_dst; 6588 pd2.ip_sum = &h2.ip_sum; 6589 break; 6590 #endif /* INET */ 6591 #ifdef INET6 6592 case AF_INET6: 6593 ipoff2 = off + sizeof(struct icmp6_hdr); 6594 6595 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 6596 NULL, reason, pd2.af)) { 6597 DPFPRINTF(PF_DEBUG_MISC, 6598 ("pf: ICMP error message too short " 6599 "(ip6)\n")); 6600 return (PF_DROP); 6601 } 6602 pd2.proto = h2_6.ip6_nxt; 6603 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 6604 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 6605 pd2.ip_sum = NULL; 6606 off2 = ipoff2 + sizeof(h2_6); 6607 do { 6608 switch (pd2.proto) { 6609 case IPPROTO_FRAGMENT: 6610 /* 6611 * ICMPv6 error messages for 6612 * non-first fragments 6613 */ 6614 REASON_SET(reason, PFRES_FRAG); 6615 return (PF_DROP); 6616 case IPPROTO_AH: 6617 case IPPROTO_HOPOPTS: 6618 case IPPROTO_ROUTING: 6619 case IPPROTO_DSTOPTS: { 6620 /* get next header and header length */ 6621 struct ip6_ext opt6; 6622 6623 if (!pf_pull_hdr(m, off2, &opt6, 6624 sizeof(opt6), NULL, reason, 6625 pd2.af)) { 6626 DPFPRINTF(PF_DEBUG_MISC, 6627 ("pf: ICMPv6 short opt\n")); 6628 return (PF_DROP); 6629 } 6630 if (pd2.proto == IPPROTO_AH) 6631 off2 += (opt6.ip6e_len + 2) * 4; 6632 else 6633 off2 += (opt6.ip6e_len + 1) * 8; 6634 pd2.proto = opt6.ip6e_nxt; 6635 /* goto the next header */ 6636 break; 6637 } 6638 default: 6639 terminal++; 6640 break; 6641 } 6642 } while (!terminal); 6643 break; 6644 #endif /* INET6 */ 6645 } 6646 6647 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 6648 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6649 printf("pf: BAD ICMP %d:%d outer dst: ", 6650 icmptype, icmpcode); 6651 pf_print_host(pd->src, 0, pd->af); 6652 printf(" -> "); 6653 pf_print_host(pd->dst, 0, pd->af); 6654 printf(" inner src: "); 6655 pf_print_host(pd2.src, 0, pd2.af); 6656 printf(" -> "); 6657 pf_print_host(pd2.dst, 0, pd2.af); 6658 printf("\n"); 6659 } 6660 REASON_SET(reason, PFRES_BADSTATE); 6661 return (PF_DROP); 6662 } 6663 6664 switch (pd2.proto) { 6665 case IPPROTO_TCP: { 6666 struct tcphdr th; 6667 u_int32_t seq; 6668 struct pf_state_peer *src, *dst; 6669 u_int8_t dws; 6670 int copyback = 0; 6671 6672 /* 6673 * Only the first 8 bytes of the TCP header can be 6674 * expected. Don't access any TCP header fields after 6675 * th_seq, an ackskew test is not possible. 6676 */ 6677 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 6678 pd2.af)) { 6679 DPFPRINTF(PF_DEBUG_MISC, 6680 ("pf: ICMP error message too short " 6681 "(tcp)\n")); 6682 return (PF_DROP); 6683 } 6684 6685 key.af = pd2.af; 6686 key.proto = IPPROTO_TCP; 6687 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6688 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6689 key.port[pd2.sidx] = th.th_sport; 6690 key.port[pd2.didx] = th.th_dport; 6691 6692 STATE_LOOKUP(kif, &key, *state, pd); 6693 6694 if (pd->dir == (*state)->direction) { 6695 src = &(*state)->dst; 6696 dst = &(*state)->src; 6697 } else { 6698 src = &(*state)->src; 6699 dst = &(*state)->dst; 6700 } 6701 6702 if (src->wscale && dst->wscale) 6703 dws = dst->wscale & PF_WSCALE_MASK; 6704 else 6705 dws = 0; 6706 6707 /* Demodulate sequence number */ 6708 seq = ntohl(th.th_seq) - src->seqdiff; 6709 if (src->seqdiff) { 6710 pf_change_a(&th.th_seq, icmpsum, 6711 htonl(seq), 0); 6712 copyback = 1; 6713 } 6714 6715 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 6716 (!SEQ_GEQ(src->seqhi, seq) || 6717 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 6718 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6719 printf("pf: BAD ICMP %d:%d ", 6720 icmptype, icmpcode); 6721 pf_print_host(pd->src, 0, pd->af); 6722 printf(" -> "); 6723 pf_print_host(pd->dst, 0, pd->af); 6724 printf(" state: "); 6725 pf_print_state(*state); 6726 printf(" seq=%u\n", seq); 6727 } 6728 REASON_SET(reason, PFRES_BADSTATE); 6729 return (PF_DROP); 6730 } else { 6731 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6732 printf("pf: OK ICMP %d:%d ", 6733 icmptype, icmpcode); 6734 pf_print_host(pd->src, 0, pd->af); 6735 printf(" -> "); 6736 pf_print_host(pd->dst, 0, pd->af); 6737 printf(" state: "); 6738 pf_print_state(*state); 6739 printf(" seq=%u\n", seq); 6740 } 6741 } 6742 6743 /* translate source/destination address, if necessary */ 6744 if ((*state)->key[PF_SK_WIRE] != 6745 (*state)->key[PF_SK_STACK]) { 6746 struct pf_state_key *nk = 6747 (*state)->key[pd->didx]; 6748 6749 if (PF_ANEQ(pd2.src, 6750 &nk->addr[pd2.sidx], pd2.af) || 6751 nk->port[pd2.sidx] != th.th_sport) 6752 pf_change_icmp(pd2.src, &th.th_sport, 6753 daddr, &nk->addr[pd2.sidx], 6754 nk->port[pd2.sidx], NULL, 6755 pd2.ip_sum, icmpsum, 6756 pd->ip_sum, 0, pd2.af); 6757 6758 if (PF_ANEQ(pd2.dst, 6759 &nk->addr[pd2.didx], pd2.af) || 6760 nk->port[pd2.didx] != th.th_dport) 6761 pf_change_icmp(pd2.dst, &th.th_dport, 6762 saddr, &nk->addr[pd2.didx], 6763 nk->port[pd2.didx], NULL, 6764 pd2.ip_sum, icmpsum, 6765 pd->ip_sum, 0, pd2.af); 6766 copyback = 1; 6767 } 6768 6769 if (copyback) { 6770 switch (pd2.af) { 6771 #ifdef INET 6772 case AF_INET: 6773 m_copyback(m, off, ICMP_MINLEN, 6774 (caddr_t )&pd->hdr.icmp); 6775 m_copyback(m, ipoff2, sizeof(h2), 6776 (caddr_t )&h2); 6777 break; 6778 #endif /* INET */ 6779 #ifdef INET6 6780 case AF_INET6: 6781 m_copyback(m, off, 6782 sizeof(struct icmp6_hdr), 6783 (caddr_t )&pd->hdr.icmp6); 6784 m_copyback(m, ipoff2, sizeof(h2_6), 6785 (caddr_t )&h2_6); 6786 break; 6787 #endif /* INET6 */ 6788 } 6789 m_copyback(m, off2, 8, (caddr_t)&th); 6790 } 6791 6792 return (PF_PASS); 6793 break; 6794 } 6795 case IPPROTO_UDP: { 6796 struct udphdr uh; 6797 6798 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 6799 NULL, reason, pd2.af)) { 6800 DPFPRINTF(PF_DEBUG_MISC, 6801 ("pf: ICMP error message too short " 6802 "(udp)\n")); 6803 return (PF_DROP); 6804 } 6805 6806 key.af = pd2.af; 6807 key.proto = IPPROTO_UDP; 6808 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6809 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6810 key.port[pd2.sidx] = uh.uh_sport; 6811 key.port[pd2.didx] = uh.uh_dport; 6812 6813 STATE_LOOKUP(kif, &key, *state, pd); 6814 6815 /* translate source/destination address, if necessary */ 6816 if ((*state)->key[PF_SK_WIRE] != 6817 (*state)->key[PF_SK_STACK]) { 6818 struct pf_state_key *nk = 6819 (*state)->key[pd->didx]; 6820 6821 if (PF_ANEQ(pd2.src, 6822 &nk->addr[pd2.sidx], pd2.af) || 6823 nk->port[pd2.sidx] != uh.uh_sport) 6824 pf_change_icmp(pd2.src, &uh.uh_sport, 6825 daddr, &nk->addr[pd2.sidx], 6826 nk->port[pd2.sidx], &uh.uh_sum, 6827 pd2.ip_sum, icmpsum, 6828 pd->ip_sum, 1, pd2.af); 6829 6830 if (PF_ANEQ(pd2.dst, 6831 &nk->addr[pd2.didx], pd2.af) || 6832 nk->port[pd2.didx] != uh.uh_dport) 6833 pf_change_icmp(pd2.dst, &uh.uh_dport, 6834 saddr, &nk->addr[pd2.didx], 6835 nk->port[pd2.didx], &uh.uh_sum, 6836 pd2.ip_sum, icmpsum, 6837 pd->ip_sum, 1, pd2.af); 6838 6839 switch (pd2.af) { 6840 #ifdef INET 6841 case AF_INET: 6842 m_copyback(m, off, ICMP_MINLEN, 6843 (caddr_t )&pd->hdr.icmp); 6844 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6845 break; 6846 #endif /* INET */ 6847 #ifdef INET6 6848 case AF_INET6: 6849 m_copyback(m, off, 6850 sizeof(struct icmp6_hdr), 6851 (caddr_t )&pd->hdr.icmp6); 6852 m_copyback(m, ipoff2, sizeof(h2_6), 6853 (caddr_t )&h2_6); 6854 break; 6855 #endif /* INET6 */ 6856 } 6857 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 6858 } 6859 return (PF_PASS); 6860 break; 6861 } 6862 #ifdef INET 6863 case IPPROTO_ICMP: { 6864 struct icmp iih; 6865 6866 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 6867 NULL, reason, pd2.af)) { 6868 DPFPRINTF(PF_DEBUG_MISC, 6869 ("pf: ICMP error message too short i" 6870 "(icmp)\n")); 6871 return (PF_DROP); 6872 } 6873 6874 key.af = pd2.af; 6875 key.proto = IPPROTO_ICMP; 6876 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6877 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6878 key.port[0] = key.port[1] = iih.icmp_id; 6879 6880 STATE_LOOKUP(kif, &key, *state, pd); 6881 6882 /* translate source/destination address, if necessary */ 6883 if ((*state)->key[PF_SK_WIRE] != 6884 (*state)->key[PF_SK_STACK]) { 6885 struct pf_state_key *nk = 6886 (*state)->key[pd->didx]; 6887 6888 if (PF_ANEQ(pd2.src, 6889 &nk->addr[pd2.sidx], pd2.af) || 6890 nk->port[pd2.sidx] != iih.icmp_id) 6891 pf_change_icmp(pd2.src, &iih.icmp_id, 6892 daddr, &nk->addr[pd2.sidx], 6893 nk->port[pd2.sidx], NULL, 6894 pd2.ip_sum, icmpsum, 6895 pd->ip_sum, 0, AF_INET); 6896 6897 if (PF_ANEQ(pd2.dst, 6898 &nk->addr[pd2.didx], pd2.af) || 6899 nk->port[pd2.didx] != iih.icmp_id) 6900 pf_change_icmp(pd2.dst, &iih.icmp_id, 6901 saddr, &nk->addr[pd2.didx], 6902 nk->port[pd2.didx], NULL, 6903 pd2.ip_sum, icmpsum, 6904 pd->ip_sum, 0, AF_INET); 6905 6906 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 6907 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6908 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 6909 } 6910 return (PF_PASS); 6911 break; 6912 } 6913 #endif /* INET */ 6914 #ifdef INET6 6915 case IPPROTO_ICMPV6: { 6916 struct icmp6_hdr iih; 6917 6918 if (!pf_pull_hdr(m, off2, &iih, 6919 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 6920 DPFPRINTF(PF_DEBUG_MISC, 6921 ("pf: ICMP error message too short " 6922 "(icmp6)\n")); 6923 return (PF_DROP); 6924 } 6925 6926 key.af = pd2.af; 6927 key.proto = IPPROTO_ICMPV6; 6928 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6929 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6930 key.port[0] = key.port[1] = iih.icmp6_id; 6931 6932 STATE_LOOKUP(kif, &key, *state, pd); 6933 6934 /* translate source/destination address, if necessary */ 6935 if ((*state)->key[PF_SK_WIRE] != 6936 (*state)->key[PF_SK_STACK]) { 6937 struct pf_state_key *nk = 6938 (*state)->key[pd->didx]; 6939 6940 if (PF_ANEQ(pd2.src, 6941 &nk->addr[pd2.sidx], pd2.af) || 6942 nk->port[pd2.sidx] != iih.icmp6_id) 6943 pf_change_icmp(pd2.src, &iih.icmp6_id, 6944 daddr, &nk->addr[pd2.sidx], 6945 nk->port[pd2.sidx], NULL, 6946 pd2.ip_sum, icmpsum, 6947 pd->ip_sum, 0, AF_INET6); 6948 6949 if (PF_ANEQ(pd2.dst, 6950 &nk->addr[pd2.didx], pd2.af) || 6951 nk->port[pd2.didx] != iih.icmp6_id) 6952 pf_change_icmp(pd2.dst, &iih.icmp6_id, 6953 saddr, &nk->addr[pd2.didx], 6954 nk->port[pd2.didx], NULL, 6955 pd2.ip_sum, icmpsum, 6956 pd->ip_sum, 0, AF_INET6); 6957 6958 m_copyback(m, off, sizeof(struct icmp6_hdr), 6959 (caddr_t)&pd->hdr.icmp6); 6960 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 6961 m_copyback(m, off2, sizeof(struct icmp6_hdr), 6962 (caddr_t)&iih); 6963 } 6964 return (PF_PASS); 6965 break; 6966 } 6967 #endif /* INET6 */ 6968 default: { 6969 key.af = pd2.af; 6970 key.proto = pd2.proto; 6971 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6972 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6973 key.port[0] = key.port[1] = 0; 6974 6975 STATE_LOOKUP(kif, &key, *state, pd); 6976 6977 /* translate source/destination address, if necessary */ 6978 if ((*state)->key[PF_SK_WIRE] != 6979 (*state)->key[PF_SK_STACK]) { 6980 struct pf_state_key *nk = 6981 (*state)->key[pd->didx]; 6982 6983 if (PF_ANEQ(pd2.src, 6984 &nk->addr[pd2.sidx], pd2.af)) 6985 pf_change_icmp(pd2.src, NULL, daddr, 6986 &nk->addr[pd2.sidx], 0, NULL, 6987 pd2.ip_sum, icmpsum, 6988 pd->ip_sum, 0, pd2.af); 6989 6990 if (PF_ANEQ(pd2.dst, 6991 &nk->addr[pd2.didx], pd2.af)) 6992 pf_change_icmp(pd2.dst, NULL, saddr, 6993 &nk->addr[pd2.didx], 0, NULL, 6994 pd2.ip_sum, icmpsum, 6995 pd->ip_sum, 0, pd2.af); 6996 6997 switch (pd2.af) { 6998 #ifdef INET 6999 case AF_INET: 7000 m_copyback(m, off, ICMP_MINLEN, 7001 (caddr_t)&pd->hdr.icmp); 7002 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 7003 break; 7004 #endif /* INET */ 7005 #ifdef INET6 7006 case AF_INET6: 7007 m_copyback(m, off, 7008 sizeof(struct icmp6_hdr), 7009 (caddr_t )&pd->hdr.icmp6); 7010 m_copyback(m, ipoff2, sizeof(h2_6), 7011 (caddr_t )&h2_6); 7012 break; 7013 #endif /* INET6 */ 7014 } 7015 } 7016 return (PF_PASS); 7017 break; 7018 } 7019 } 7020 } 7021 } 7022 7023 static int 7024 pf_test_state_other(struct pf_kstate **state, struct pfi_kkif *kif, 7025 struct mbuf *m, struct pf_pdesc *pd) 7026 { 7027 struct pf_state_peer *src, *dst; 7028 struct pf_state_key_cmp key; 7029 uint8_t psrc, pdst; 7030 7031 bzero(&key, sizeof(key)); 7032 key.af = pd->af; 7033 key.proto = pd->proto; 7034 if (pd->dir == PF_IN) { 7035 PF_ACPY(&key.addr[0], pd->src, key.af); 7036 PF_ACPY(&key.addr[1], pd->dst, key.af); 7037 key.port[0] = key.port[1] = 0; 7038 } else { 7039 PF_ACPY(&key.addr[1], pd->src, key.af); 7040 PF_ACPY(&key.addr[0], pd->dst, key.af); 7041 key.port[1] = key.port[0] = 0; 7042 } 7043 7044 STATE_LOOKUP(kif, &key, *state, pd); 7045 7046 if (pd->dir == (*state)->direction) { 7047 src = &(*state)->src; 7048 dst = &(*state)->dst; 7049 psrc = PF_PEER_SRC; 7050 pdst = PF_PEER_DST; 7051 } else { 7052 src = &(*state)->dst; 7053 dst = &(*state)->src; 7054 psrc = PF_PEER_DST; 7055 pdst = PF_PEER_SRC; 7056 } 7057 7058 /* update states */ 7059 if (src->state < PFOTHERS_SINGLE) 7060 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 7061 if (dst->state == PFOTHERS_SINGLE) 7062 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 7063 7064 /* update expire time */ 7065 (*state)->expire = pf_get_uptime(); 7066 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 7067 (*state)->timeout = PFTM_OTHER_MULTIPLE; 7068 else 7069 (*state)->timeout = PFTM_OTHER_SINGLE; 7070 7071 /* translate source/destination address, if necessary */ 7072 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7073 struct pf_state_key *nk = (*state)->key[pd->didx]; 7074 7075 KASSERT(nk, ("%s: nk is null", __func__)); 7076 KASSERT(pd, ("%s: pd is null", __func__)); 7077 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 7078 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 7079 switch (pd->af) { 7080 #ifdef INET 7081 case AF_INET: 7082 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 7083 pf_change_a(&pd->src->v4.s_addr, 7084 pd->ip_sum, 7085 nk->addr[pd->sidx].v4.s_addr, 7086 0); 7087 7088 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 7089 pf_change_a(&pd->dst->v4.s_addr, 7090 pd->ip_sum, 7091 nk->addr[pd->didx].v4.s_addr, 7092 0); 7093 7094 break; 7095 #endif /* INET */ 7096 #ifdef INET6 7097 case AF_INET6: 7098 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 7099 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 7100 7101 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 7102 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 7103 #endif /* INET6 */ 7104 } 7105 } 7106 return (PF_PASS); 7107 } 7108 7109 /* 7110 * ipoff and off are measured from the start of the mbuf chain. 7111 * h must be at "ipoff" on the mbuf chain. 7112 */ 7113 void * 7114 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 7115 u_short *actionp, u_short *reasonp, sa_family_t af) 7116 { 7117 switch (af) { 7118 #ifdef INET 7119 case AF_INET: { 7120 struct ip *h = mtod(m, struct ip *); 7121 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 7122 7123 if (fragoff) { 7124 if (fragoff >= len) 7125 ACTION_SET(actionp, PF_PASS); 7126 else { 7127 ACTION_SET(actionp, PF_DROP); 7128 REASON_SET(reasonp, PFRES_FRAG); 7129 } 7130 return (NULL); 7131 } 7132 if (m->m_pkthdr.len < off + len || 7133 ntohs(h->ip_len) < off + len) { 7134 ACTION_SET(actionp, PF_DROP); 7135 REASON_SET(reasonp, PFRES_SHORT); 7136 return (NULL); 7137 } 7138 break; 7139 } 7140 #endif /* INET */ 7141 #ifdef INET6 7142 case AF_INET6: { 7143 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 7144 7145 if (m->m_pkthdr.len < off + len || 7146 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 7147 (unsigned)(off + len)) { 7148 ACTION_SET(actionp, PF_DROP); 7149 REASON_SET(reasonp, PFRES_SHORT); 7150 return (NULL); 7151 } 7152 break; 7153 } 7154 #endif /* INET6 */ 7155 } 7156 m_copydata(m, off, len, p); 7157 return (p); 7158 } 7159 7160 int 7161 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 7162 int rtableid) 7163 { 7164 struct ifnet *ifp; 7165 7166 /* 7167 * Skip check for addresses with embedded interface scope, 7168 * as they would always match anyway. 7169 */ 7170 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 7171 return (1); 7172 7173 if (af != AF_INET && af != AF_INET6) 7174 return (0); 7175 7176 if (kif == V_pfi_all) 7177 return (1); 7178 7179 /* Skip checks for ipsec interfaces */ 7180 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 7181 return (1); 7182 7183 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 7184 7185 switch (af) { 7186 #ifdef INET6 7187 case AF_INET6: 7188 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 7189 ifp)); 7190 #endif 7191 #ifdef INET 7192 case AF_INET: 7193 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 7194 ifp)); 7195 #endif 7196 } 7197 7198 return (0); 7199 } 7200 7201 #ifdef INET 7202 static void 7203 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7204 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7205 { 7206 struct mbuf *m0, *m1, *md; 7207 struct sockaddr_in dst; 7208 struct ip *ip; 7209 struct pfi_kkif *nkif = NULL; 7210 struct ifnet *ifp = NULL; 7211 struct pf_addr naddr; 7212 struct pf_ksrc_node *sn = NULL; 7213 int error = 0; 7214 uint16_t ip_len, ip_off; 7215 int r_rt, r_dir; 7216 7217 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 7218 7219 if (s) { 7220 r_rt = s->rt; 7221 r_dir = s->direction; 7222 } else { 7223 r_rt = r->rt; 7224 r_dir = r->direction; 7225 } 7226 7227 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7228 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7229 __func__)); 7230 7231 if ((pd->pf_mtag == NULL && 7232 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7233 pd->pf_mtag->routed++ > 3) { 7234 m0 = *m; 7235 *m = NULL; 7236 goto bad_locked; 7237 } 7238 7239 if (r_rt == PF_DUPTO) { 7240 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7241 if (s == NULL) { 7242 ifp = r->rpool.cur->kif ? 7243 r->rpool.cur->kif->pfik_ifp : NULL; 7244 } else { 7245 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7246 /* If pfsync'd */ 7247 if (ifp == NULL && r->rpool.cur != NULL) 7248 ifp = r->rpool.cur->kif ? 7249 r->rpool.cur->kif->pfik_ifp : NULL; 7250 PF_STATE_UNLOCK(s); 7251 } 7252 if (ifp == oifp) { 7253 /* When the 2nd interface is not skipped */ 7254 return; 7255 } else { 7256 m0 = *m; 7257 *m = NULL; 7258 goto bad; 7259 } 7260 } else { 7261 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 7262 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 7263 if (s) 7264 PF_STATE_UNLOCK(s); 7265 return; 7266 } 7267 } 7268 } else { 7269 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 7270 pf_dummynet(pd, s, r, m); 7271 if (s) 7272 PF_STATE_UNLOCK(s); 7273 return; 7274 } 7275 m0 = *m; 7276 } 7277 7278 ip = mtod(m0, struct ip *); 7279 7280 bzero(&dst, sizeof(dst)); 7281 dst.sin_family = AF_INET; 7282 dst.sin_len = sizeof(dst); 7283 dst.sin_addr = ip->ip_dst; 7284 7285 bzero(&naddr, sizeof(naddr)); 7286 7287 if (s == NULL) { 7288 if (TAILQ_EMPTY(&r->rpool.list)) { 7289 DPFPRINTF(PF_DEBUG_URGENT, 7290 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 7291 goto bad_locked; 7292 } 7293 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 7294 &naddr, &nkif, NULL, &sn); 7295 if (!PF_AZERO(&naddr, AF_INET)) 7296 dst.sin_addr.s_addr = naddr.v4.s_addr; 7297 ifp = nkif ? nkif->pfik_ifp : NULL; 7298 } else { 7299 if (!PF_AZERO(&s->rt_addr, AF_INET)) 7300 dst.sin_addr.s_addr = 7301 s->rt_addr.v4.s_addr; 7302 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7303 /* If pfsync'd */ 7304 if (ifp == NULL && r->rpool.cur != NULL) { 7305 ifp = r->rpool.cur->kif ? 7306 r->rpool.cur->kif->pfik_ifp : NULL; 7307 } 7308 PF_STATE_UNLOCK(s); 7309 } 7310 7311 if (ifp == NULL) 7312 goto bad; 7313 7314 if (pd->dir == PF_IN) { 7315 if (pf_test(PF_OUT, 0, ifp, &m0, inp, &pd->act) != PF_PASS) 7316 goto bad; 7317 else if (m0 == NULL) 7318 goto done; 7319 if (m0->m_len < sizeof(struct ip)) { 7320 DPFPRINTF(PF_DEBUG_URGENT, 7321 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 7322 goto bad; 7323 } 7324 ip = mtod(m0, struct ip *); 7325 } 7326 7327 if (ifp->if_flags & IFF_LOOPBACK) 7328 m0->m_flags |= M_SKIP_FIREWALL; 7329 7330 ip_len = ntohs(ip->ip_len); 7331 ip_off = ntohs(ip->ip_off); 7332 7333 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 7334 m0->m_pkthdr.csum_flags |= CSUM_IP; 7335 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 7336 in_delayed_cksum(m0); 7337 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 7338 } 7339 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 7340 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2)); 7341 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 7342 } 7343 7344 /* 7345 * If small enough for interface, or the interface will take 7346 * care of the fragmentation for us, we can just send directly. 7347 */ 7348 if (ip_len <= ifp->if_mtu || 7349 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 7350 ip->ip_sum = 0; 7351 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 7352 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 7353 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 7354 } 7355 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 7356 7357 md = m0; 7358 error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 7359 if (md != NULL) 7360 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL); 7361 goto done; 7362 } 7363 7364 /* Balk when DF bit is set or the interface didn't support TSO. */ 7365 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 7366 error = EMSGSIZE; 7367 KMOD_IPSTAT_INC(ips_cantfrag); 7368 if (r_rt != PF_DUPTO) { 7369 if (s && pd->nat_rule != NULL) 7370 PACKET_UNDO_NAT(m0, pd, 7371 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 7372 s); 7373 7374 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 7375 ifp->if_mtu); 7376 goto done; 7377 } else 7378 goto bad; 7379 } 7380 7381 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 7382 if (error) 7383 goto bad; 7384 7385 for (; m0; m0 = m1) { 7386 m1 = m0->m_nextpkt; 7387 m0->m_nextpkt = NULL; 7388 if (error == 0) { 7389 m_clrprotoflags(m0); 7390 md = m0; 7391 error = pf_dummynet_route(pd, s, r, ifp, 7392 sintosa(&dst), &md); 7393 if (md != NULL) 7394 error = (*ifp->if_output)(ifp, md, 7395 sintosa(&dst), NULL); 7396 } else 7397 m_freem(m0); 7398 } 7399 7400 if (error == 0) 7401 KMOD_IPSTAT_INC(ips_fragmented); 7402 7403 done: 7404 if (r_rt != PF_DUPTO) 7405 *m = NULL; 7406 return; 7407 7408 bad_locked: 7409 if (s) 7410 PF_STATE_UNLOCK(s); 7411 bad: 7412 m_freem(m0); 7413 goto done; 7414 } 7415 #endif /* INET */ 7416 7417 #ifdef INET6 7418 static void 7419 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7420 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7421 { 7422 struct mbuf *m0, *md; 7423 struct sockaddr_in6 dst; 7424 struct ip6_hdr *ip6; 7425 struct pfi_kkif *nkif = NULL; 7426 struct ifnet *ifp = NULL; 7427 struct pf_addr naddr; 7428 struct pf_ksrc_node *sn = NULL; 7429 int r_rt, r_dir; 7430 7431 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 7432 7433 if (s) { 7434 r_rt = s->rt; 7435 r_dir = s->direction; 7436 } else { 7437 r_rt = r->rt; 7438 r_dir = r->direction; 7439 } 7440 7441 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7442 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7443 __func__)); 7444 7445 if ((pd->pf_mtag == NULL && 7446 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7447 pd->pf_mtag->routed++ > 3) { 7448 m0 = *m; 7449 *m = NULL; 7450 goto bad_locked; 7451 } 7452 7453 if (r_rt == PF_DUPTO) { 7454 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7455 if (s == NULL) { 7456 ifp = r->rpool.cur->kif ? 7457 r->rpool.cur->kif->pfik_ifp : NULL; 7458 } else { 7459 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7460 /* If pfsync'd */ 7461 if (ifp == NULL && r->rpool.cur != NULL) 7462 ifp = r->rpool.cur->kif ? 7463 r->rpool.cur->kif->pfik_ifp : NULL; 7464 PF_STATE_UNLOCK(s); 7465 } 7466 if (ifp == oifp) { 7467 /* When the 2nd interface is not skipped */ 7468 return; 7469 } else { 7470 m0 = *m; 7471 *m = NULL; 7472 goto bad; 7473 } 7474 } else { 7475 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 7476 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 7477 if (s) 7478 PF_STATE_UNLOCK(s); 7479 return; 7480 } 7481 } 7482 } else { 7483 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 7484 pf_dummynet(pd, s, r, m); 7485 if (s) 7486 PF_STATE_UNLOCK(s); 7487 return; 7488 } 7489 m0 = *m; 7490 } 7491 7492 ip6 = mtod(m0, struct ip6_hdr *); 7493 7494 bzero(&dst, sizeof(dst)); 7495 dst.sin6_family = AF_INET6; 7496 dst.sin6_len = sizeof(dst); 7497 dst.sin6_addr = ip6->ip6_dst; 7498 7499 bzero(&naddr, sizeof(naddr)); 7500 7501 if (s == NULL) { 7502 if (TAILQ_EMPTY(&r->rpool.list)) { 7503 DPFPRINTF(PF_DEBUG_URGENT, 7504 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 7505 goto bad_locked; 7506 } 7507 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 7508 &naddr, &nkif, NULL, &sn); 7509 if (!PF_AZERO(&naddr, AF_INET6)) 7510 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 7511 &naddr, AF_INET6); 7512 ifp = nkif ? nkif->pfik_ifp : NULL; 7513 } else { 7514 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 7515 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 7516 &s->rt_addr, AF_INET6); 7517 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7518 /* If pfsync'd */ 7519 if (ifp == NULL && r->rpool.cur != NULL) 7520 ifp = r->rpool.cur->kif ? 7521 r->rpool.cur->kif->pfik_ifp : NULL; 7522 } 7523 7524 if (s) 7525 PF_STATE_UNLOCK(s); 7526 7527 if (ifp == NULL) 7528 goto bad; 7529 7530 if (pd->dir == PF_IN) { 7531 if (pf_test6(PF_OUT, 0, ifp, &m0, inp, &pd->act) != PF_PASS) 7532 goto bad; 7533 else if (m0 == NULL) 7534 goto done; 7535 if (m0->m_len < sizeof(struct ip6_hdr)) { 7536 DPFPRINTF(PF_DEBUG_URGENT, 7537 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 7538 __func__)); 7539 goto bad; 7540 } 7541 ip6 = mtod(m0, struct ip6_hdr *); 7542 } 7543 7544 if (ifp->if_flags & IFF_LOOPBACK) 7545 m0->m_flags |= M_SKIP_FIREWALL; 7546 7547 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 7548 ~ifp->if_hwassist) { 7549 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 7550 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 7551 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 7552 } 7553 7554 /* 7555 * If the packet is too large for the outgoing interface, 7556 * send back an icmp6 error. 7557 */ 7558 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 7559 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 7560 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 7561 md = m0; 7562 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 7563 if (md != NULL) 7564 nd6_output_ifp(ifp, ifp, md, &dst, NULL); 7565 } 7566 else { 7567 in6_ifstat_inc(ifp, ifs6_in_toobig); 7568 if (r_rt != PF_DUPTO) { 7569 if (s && pd->nat_rule != NULL) 7570 PACKET_UNDO_NAT(m0, pd, 7571 ((caddr_t)ip6 - m0->m_data) + 7572 sizeof(struct ip6_hdr), s); 7573 7574 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 7575 } else 7576 goto bad; 7577 } 7578 7579 done: 7580 if (r_rt != PF_DUPTO) 7581 *m = NULL; 7582 return; 7583 7584 bad_locked: 7585 if (s) 7586 PF_STATE_UNLOCK(s); 7587 bad: 7588 m_freem(m0); 7589 goto done; 7590 } 7591 #endif /* INET6 */ 7592 7593 /* 7594 * FreeBSD supports cksum offloads for the following drivers. 7595 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 7596 * 7597 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 7598 * network driver performed cksum including pseudo header, need to verify 7599 * csum_data 7600 * CSUM_DATA_VALID : 7601 * network driver performed cksum, needs to additional pseudo header 7602 * cksum computation with partial csum_data(i.e. lack of H/W support for 7603 * pseudo header, for instance sk(4) and possibly gem(4)) 7604 * 7605 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 7606 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 7607 * TCP/UDP layer. 7608 * Also, set csum_data to 0xffff to force cksum validation. 7609 */ 7610 static int 7611 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 7612 { 7613 u_int16_t sum = 0; 7614 int hw_assist = 0; 7615 struct ip *ip; 7616 7617 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 7618 return (1); 7619 if (m->m_pkthdr.len < off + len) 7620 return (1); 7621 7622 switch (p) { 7623 case IPPROTO_TCP: 7624 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 7625 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 7626 sum = m->m_pkthdr.csum_data; 7627 } else { 7628 ip = mtod(m, struct ip *); 7629 sum = in_pseudo(ip->ip_src.s_addr, 7630 ip->ip_dst.s_addr, htonl((u_short)len + 7631 m->m_pkthdr.csum_data + IPPROTO_TCP)); 7632 } 7633 sum ^= 0xffff; 7634 ++hw_assist; 7635 } 7636 break; 7637 case IPPROTO_UDP: 7638 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 7639 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 7640 sum = m->m_pkthdr.csum_data; 7641 } else { 7642 ip = mtod(m, struct ip *); 7643 sum = in_pseudo(ip->ip_src.s_addr, 7644 ip->ip_dst.s_addr, htonl((u_short)len + 7645 m->m_pkthdr.csum_data + IPPROTO_UDP)); 7646 } 7647 sum ^= 0xffff; 7648 ++hw_assist; 7649 } 7650 break; 7651 case IPPROTO_ICMP: 7652 #ifdef INET6 7653 case IPPROTO_ICMPV6: 7654 #endif /* INET6 */ 7655 break; 7656 default: 7657 return (1); 7658 } 7659 7660 if (!hw_assist) { 7661 switch (af) { 7662 case AF_INET: 7663 if (p == IPPROTO_ICMP) { 7664 if (m->m_len < off) 7665 return (1); 7666 m->m_data += off; 7667 m->m_len -= off; 7668 sum = in_cksum(m, len); 7669 m->m_data -= off; 7670 m->m_len += off; 7671 } else { 7672 if (m->m_len < sizeof(struct ip)) 7673 return (1); 7674 sum = in4_cksum(m, p, off, len); 7675 } 7676 break; 7677 #ifdef INET6 7678 case AF_INET6: 7679 if (m->m_len < sizeof(struct ip6_hdr)) 7680 return (1); 7681 sum = in6_cksum(m, p, off, len); 7682 break; 7683 #endif /* INET6 */ 7684 default: 7685 return (1); 7686 } 7687 } 7688 if (sum) { 7689 switch (p) { 7690 case IPPROTO_TCP: 7691 { 7692 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 7693 break; 7694 } 7695 case IPPROTO_UDP: 7696 { 7697 KMOD_UDPSTAT_INC(udps_badsum); 7698 break; 7699 } 7700 #ifdef INET 7701 case IPPROTO_ICMP: 7702 { 7703 KMOD_ICMPSTAT_INC(icps_checksum); 7704 break; 7705 } 7706 #endif 7707 #ifdef INET6 7708 case IPPROTO_ICMPV6: 7709 { 7710 KMOD_ICMP6STAT_INC(icp6s_checksum); 7711 break; 7712 } 7713 #endif /* INET6 */ 7714 } 7715 return (1); 7716 } else { 7717 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 7718 m->m_pkthdr.csum_flags |= 7719 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 7720 m->m_pkthdr.csum_data = 0xffff; 7721 } 7722 } 7723 return (0); 7724 } 7725 7726 static bool 7727 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r, 7728 const struct pf_kstate *s, struct ip_fw_args *dnflow) 7729 { 7730 int dndir = r->direction; 7731 7732 if (s && dndir == PF_INOUT) { 7733 dndir = s->direction; 7734 } else if (dndir == PF_INOUT) { 7735 /* Assume primary direction. Happens when we've set dnpipe in 7736 * the ethernet level code. */ 7737 dndir = pd->dir; 7738 } 7739 7740 memset(dnflow, 0, sizeof(*dnflow)); 7741 7742 if (pd->dport != NULL) 7743 dnflow->f_id.dst_port = ntohs(*pd->dport); 7744 if (pd->sport != NULL) 7745 dnflow->f_id.src_port = ntohs(*pd->sport); 7746 7747 if (pd->dir == PF_IN) 7748 dnflow->flags |= IPFW_ARGS_IN; 7749 else 7750 dnflow->flags |= IPFW_ARGS_OUT; 7751 7752 if (pd->dir != dndir && pd->act.dnrpipe) { 7753 dnflow->rule.info = pd->act.dnrpipe; 7754 } 7755 else if (pd->dir == dndir && pd->act.dnpipe) { 7756 dnflow->rule.info = pd->act.dnpipe; 7757 } 7758 else { 7759 return (false); 7760 } 7761 7762 dnflow->rule.info |= IPFW_IS_DUMMYNET; 7763 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 7764 dnflow->rule.info |= IPFW_IS_PIPE; 7765 7766 dnflow->f_id.proto = pd->proto; 7767 dnflow->f_id.extra = dnflow->rule.info; 7768 switch (pd->af) { 7769 case AF_INET: 7770 dnflow->f_id.addr_type = 4; 7771 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 7772 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 7773 break; 7774 case AF_INET6: 7775 dnflow->flags |= IPFW_ARGS_IP6; 7776 dnflow->f_id.addr_type = 6; 7777 dnflow->f_id.src_ip6 = pd->src->v6; 7778 dnflow->f_id.dst_ip6 = pd->dst->v6; 7779 break; 7780 default: 7781 panic("Invalid AF"); 7782 break; 7783 } 7784 7785 return (true); 7786 } 7787 7788 int 7789 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 7790 struct inpcb *inp) 7791 { 7792 struct pfi_kkif *kif; 7793 struct mbuf *m = *m0; 7794 7795 M_ASSERTPKTHDR(m); 7796 MPASS(ifp->if_vnet == curvnet); 7797 NET_EPOCH_ASSERT(); 7798 7799 if (!V_pf_status.running) 7800 return (PF_PASS); 7801 7802 kif = (struct pfi_kkif *)ifp->if_pf_kif; 7803 7804 if (kif == NULL) { 7805 DPFPRINTF(PF_DEBUG_URGENT, 7806 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname)); 7807 return (PF_DROP); 7808 } 7809 if (kif->pfik_flags & PFI_IFLAG_SKIP) 7810 return (PF_PASS); 7811 7812 if (m->m_flags & M_SKIP_FIREWALL) 7813 return (PF_PASS); 7814 7815 /* Stateless! */ 7816 return (pf_test_eth_rule(dir, kif, m0)); 7817 } 7818 7819 static __inline void 7820 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag) 7821 { 7822 struct m_tag *mtag; 7823 7824 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 7825 7826 /* dummynet adds this tag, but pf does not need it, 7827 * and keeping it creates unexpected behavior, 7828 * e.g. in case of divert(4) usage right after dummynet. */ 7829 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 7830 if (mtag != NULL) 7831 m_tag_delete(m, mtag); 7832 } 7833 7834 static int 7835 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s, 7836 struct pf_krule *r, struct mbuf **m0) 7837 { 7838 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0)); 7839 } 7840 7841 static int 7842 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s, 7843 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa, 7844 struct mbuf **m0) 7845 { 7846 NET_EPOCH_ASSERT(); 7847 7848 if (pd->act.dnpipe || pd->act.dnrpipe) { 7849 struct ip_fw_args dnflow; 7850 if (ip_dn_io_ptr == NULL) { 7851 m_freem(*m0); 7852 *m0 = NULL; 7853 return (ENOMEM); 7854 } 7855 7856 if (pd->pf_mtag == NULL && 7857 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 7858 m_freem(*m0); 7859 *m0 = NULL; 7860 return (ENOMEM); 7861 } 7862 7863 if (ifp != NULL) { 7864 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO; 7865 7866 pd->pf_mtag->if_index = ifp->if_index; 7867 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 7868 7869 MPASS(sa != NULL); 7870 7871 if (pd->af == AF_INET) 7872 memcpy(&pd->pf_mtag->dst, sa, 7873 sizeof(struct sockaddr_in)); 7874 else 7875 memcpy(&pd->pf_mtag->dst, sa, 7876 sizeof(struct sockaddr_in6)); 7877 } 7878 7879 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) { 7880 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 7881 ip_dn_io_ptr(m0, &dnflow); 7882 if (*m0 != NULL) { 7883 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 7884 pf_dummynet_flag_remove(*m0, pd->pf_mtag); 7885 } 7886 } 7887 } 7888 7889 return (0); 7890 } 7891 7892 #ifdef INET 7893 int 7894 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 7895 struct inpcb *inp, struct pf_rule_actions *default_actions) 7896 { 7897 struct pfi_kkif *kif; 7898 u_short action, reason = 0; 7899 struct mbuf *m = *m0; 7900 struct ip *h = NULL; 7901 struct m_tag *mtag; 7902 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 7903 struct pf_kstate *s = NULL; 7904 struct pf_kruleset *ruleset = NULL; 7905 struct pf_pdesc pd; 7906 int off, dirndx, use_2nd_queue = 0; 7907 uint16_t tag; 7908 uint8_t rt; 7909 7910 PF_RULES_RLOCK_TRACKER; 7911 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 7912 M_ASSERTPKTHDR(m); 7913 7914 if (!V_pf_status.running) 7915 return (PF_PASS); 7916 7917 PF_RULES_RLOCK(); 7918 7919 kif = (struct pfi_kkif *)ifp->if_pf_kif; 7920 7921 if (__predict_false(kif == NULL)) { 7922 DPFPRINTF(PF_DEBUG_URGENT, 7923 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 7924 PF_RULES_RUNLOCK(); 7925 return (PF_DROP); 7926 } 7927 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 7928 PF_RULES_RUNLOCK(); 7929 return (PF_PASS); 7930 } 7931 7932 if (m->m_flags & M_SKIP_FIREWALL) { 7933 PF_RULES_RUNLOCK(); 7934 return (PF_PASS); 7935 } 7936 7937 memset(&pd, 0, sizeof(pd)); 7938 TAILQ_INIT(&pd.sctp_multihome_jobs); 7939 if (default_actions != NULL) 7940 memcpy(&pd.act, default_actions, sizeof(pd.act)); 7941 pd.pf_mtag = pf_find_mtag(m); 7942 7943 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 7944 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 7945 7946 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 7947 pd.pf_mtag->if_idxgen); 7948 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 7949 PF_RULES_RUNLOCK(); 7950 m_freem(*m0); 7951 *m0 = NULL; 7952 return (PF_PASS); 7953 } 7954 PF_RULES_RUNLOCK(); 7955 (ifp->if_output)(ifp, m, sintosa(&pd.pf_mtag->dst), NULL); 7956 *m0 = NULL; 7957 return (PF_PASS); 7958 } 7959 7960 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 7961 pd.act.dnpipe = pd.pf_mtag->dnpipe; 7962 pd.act.flags = pd.pf_mtag->dnflags; 7963 } 7964 7965 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 7966 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 7967 /* Dummynet re-injects packets after they've 7968 * completed their delay. We've already 7969 * processed them, so pass unconditionally. */ 7970 7971 /* But only once. We may see the packet multiple times (e.g. 7972 * PFIL_IN/PFIL_OUT). */ 7973 pf_dummynet_flag_remove(m, pd.pf_mtag); 7974 PF_RULES_RUNLOCK(); 7975 7976 return (PF_PASS); 7977 } 7978 7979 pd.sport = pd.dport = NULL; 7980 pd.proto_sum = NULL; 7981 pd.dir = dir; 7982 pd.sidx = (dir == PF_IN) ? 0 : 1; 7983 pd.didx = (dir == PF_IN) ? 1 : 0; 7984 pd.af = AF_INET; 7985 pd.act.rtableid = -1; 7986 7987 h = mtod(m, struct ip *); 7988 off = h->ip_hl << 2; 7989 7990 if (__predict_false(ip_divert_ptr != NULL) && 7991 ((mtag = m_tag_locate(m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) { 7992 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1); 7993 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) || 7994 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) { 7995 if (pd.pf_mtag == NULL && 7996 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7997 action = PF_DROP; 7998 goto done; 7999 } 8000 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED; 8001 } 8002 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) { 8003 m->m_flags |= M_FASTFWD_OURS; 8004 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 8005 } 8006 m_tag_delete(m, mtag); 8007 8008 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 8009 if (mtag != NULL) 8010 m_tag_delete(m, mtag); 8011 } else if (pf_normalize_ip(m0, kif, &reason, &pd) != PF_PASS) { 8012 /* We do IP header normalization and packet reassembly here */ 8013 action = PF_DROP; 8014 goto done; 8015 } 8016 m = *m0; /* pf_normalize messes with m0 */ 8017 h = mtod(m, struct ip *); 8018 8019 off = h->ip_hl << 2; 8020 if (off < (int)sizeof(struct ip)) { 8021 action = PF_DROP; 8022 REASON_SET(&reason, PFRES_SHORT); 8023 pd.act.log = PF_LOG_FORCE; 8024 goto done; 8025 } 8026 8027 pd.src = (struct pf_addr *)&h->ip_src; 8028 pd.dst = (struct pf_addr *)&h->ip_dst; 8029 pd.ip_sum = &h->ip_sum; 8030 pd.proto = h->ip_p; 8031 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 8032 pd.tot_len = ntohs(h->ip_len); 8033 8034 /* handle fragments that didn't get reassembled by normalization */ 8035 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 8036 action = pf_test_fragment(&r, kif, m, h, &pd, &a, &ruleset); 8037 goto done; 8038 } 8039 8040 switch (h->ip_p) { 8041 case IPPROTO_TCP: { 8042 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 8043 &action, &reason, AF_INET)) { 8044 if (action != PF_PASS) 8045 pd.act.log = PF_LOG_FORCE; 8046 goto done; 8047 } 8048 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 8049 8050 pd.sport = &pd.hdr.tcp.th_sport; 8051 pd.dport = &pd.hdr.tcp.th_dport; 8052 8053 /* Respond to SYN with a syncookie. */ 8054 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 8055 pd.dir == PF_IN && pf_synflood_check(&pd)) { 8056 pf_syncookie_send(m, off, &pd); 8057 action = PF_DROP; 8058 break; 8059 } 8060 8061 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 8062 use_2nd_queue = 1; 8063 action = pf_normalize_tcp(kif, m, 0, off, h, &pd); 8064 if (action == PF_DROP) 8065 goto done; 8066 action = pf_test_state_tcp(&s, kif, m, off, h, &pd, &reason); 8067 if (action == PF_PASS) { 8068 if (V_pfsync_update_state_ptr != NULL) 8069 V_pfsync_update_state_ptr(s); 8070 r = s->rule.ptr; 8071 a = s->anchor.ptr; 8072 } else if (s == NULL) { 8073 /* Validate remote SYN|ACK, re-create original SYN if 8074 * valid. */ 8075 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 8076 TH_ACK && pf_syncookie_validate(&pd) && 8077 pd.dir == PF_IN) { 8078 struct mbuf *msyn; 8079 8080 msyn = pf_syncookie_recreate_syn(h->ip_ttl, off, 8081 &pd); 8082 if (msyn == NULL) { 8083 action = PF_DROP; 8084 break; 8085 } 8086 8087 action = pf_test(dir, pflags, ifp, &msyn, inp, 8088 &pd.act); 8089 m_freem(msyn); 8090 if (action != PF_PASS) 8091 break; 8092 8093 action = pf_test_state_tcp(&s, kif, m, off, h, 8094 &pd, &reason); 8095 if (action != PF_PASS || s == NULL) { 8096 action = PF_DROP; 8097 break; 8098 } 8099 8100 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 8101 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 8102 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 8103 action = pf_synproxy(&pd, &s, &reason); 8104 break; 8105 } else { 8106 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8107 &a, &ruleset, inp); 8108 } 8109 } 8110 break; 8111 } 8112 8113 case IPPROTO_UDP: { 8114 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 8115 &action, &reason, AF_INET)) { 8116 if (action != PF_PASS) 8117 pd.act.log = PF_LOG_FORCE; 8118 goto done; 8119 } 8120 pd.sport = &pd.hdr.udp.uh_sport; 8121 pd.dport = &pd.hdr.udp.uh_dport; 8122 if (pd.hdr.udp.uh_dport == 0 || 8123 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 8124 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 8125 action = PF_DROP; 8126 REASON_SET(&reason, PFRES_SHORT); 8127 goto done; 8128 } 8129 action = pf_test_state_udp(&s, kif, m, off, h, &pd); 8130 if (action == PF_PASS) { 8131 if (V_pfsync_update_state_ptr != NULL) 8132 V_pfsync_update_state_ptr(s); 8133 r = s->rule.ptr; 8134 a = s->anchor.ptr; 8135 } else if (s == NULL) 8136 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8137 &a, &ruleset, inp); 8138 break; 8139 } 8140 8141 case IPPROTO_SCTP: { 8142 if (!pf_pull_hdr(m, off, &pd.hdr.sctp, sizeof(pd.hdr.sctp), 8143 &action, &reason, AF_INET)) { 8144 if (action != PF_PASS) 8145 pd.act.log |= PF_LOG_FORCE; 8146 goto done; 8147 } 8148 pd.p_len = pd.tot_len - off; 8149 8150 pd.sport = &pd.hdr.sctp.src_port; 8151 pd.dport = &pd.hdr.sctp.dest_port; 8152 if (pd.hdr.sctp.src_port == 0 || pd.hdr.sctp.dest_port == 0) { 8153 action = PF_DROP; 8154 REASON_SET(&reason, PFRES_SHORT); 8155 goto done; 8156 } 8157 action = pf_normalize_sctp(dir, kif, m, 0, off, h, &pd); 8158 if (action == PF_DROP) 8159 goto done; 8160 action = pf_test_state_sctp(&s, kif, m, off, h, &pd, 8161 &reason); 8162 if (action == PF_PASS) { 8163 if (V_pfsync_update_state_ptr != NULL) 8164 V_pfsync_update_state_ptr(s); 8165 r = s->rule.ptr; 8166 a = s->anchor.ptr; 8167 } else { 8168 action = pf_test_rule(&r, &s, kif, m, off, 8169 &pd, &a, &ruleset, inp); 8170 } 8171 break; 8172 } 8173 8174 case IPPROTO_ICMP: { 8175 if (!pf_pull_hdr(m, off, &pd.hdr.icmp, ICMP_MINLEN, 8176 &action, &reason, AF_INET)) { 8177 if (action != PF_PASS) 8178 pd.act.log = PF_LOG_FORCE; 8179 goto done; 8180 } 8181 action = pf_test_state_icmp(&s, kif, m, off, h, &pd, &reason); 8182 if (action == PF_PASS) { 8183 if (V_pfsync_update_state_ptr != NULL) 8184 V_pfsync_update_state_ptr(s); 8185 r = s->rule.ptr; 8186 a = s->anchor.ptr; 8187 } else if (s == NULL) 8188 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8189 &a, &ruleset, inp); 8190 break; 8191 } 8192 8193 #ifdef INET6 8194 case IPPROTO_ICMPV6: { 8195 action = PF_DROP; 8196 DPFPRINTF(PF_DEBUG_MISC, 8197 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 8198 goto done; 8199 } 8200 #endif 8201 8202 default: 8203 action = pf_test_state_other(&s, kif, m, &pd); 8204 if (action == PF_PASS) { 8205 if (V_pfsync_update_state_ptr != NULL) 8206 V_pfsync_update_state_ptr(s); 8207 r = s->rule.ptr; 8208 a = s->anchor.ptr; 8209 } else if (s == NULL) 8210 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8211 &a, &ruleset, inp); 8212 break; 8213 } 8214 8215 done: 8216 PF_RULES_RUNLOCK(); 8217 if (action == PF_PASS && h->ip_hl > 5 && 8218 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 8219 action = PF_DROP; 8220 REASON_SET(&reason, PFRES_IPOPTIONS); 8221 pd.act.log = PF_LOG_FORCE; 8222 DPFPRINTF(PF_DEBUG_MISC, 8223 ("pf: dropping packet with ip options\n")); 8224 } 8225 8226 if (s) { 8227 uint8_t log = pd.act.log; 8228 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 8229 pd.act.log |= log; 8230 tag = s->tag; 8231 rt = s->rt; 8232 } else { 8233 tag = r->tag; 8234 rt = r->rt; 8235 } 8236 8237 if (tag > 0 && pf_tag_packet(m, &pd, tag)) { 8238 action = PF_DROP; 8239 REASON_SET(&reason, PFRES_MEMORY); 8240 } 8241 8242 pf_scrub_ip(&m, &pd); 8243 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 8244 pf_normalize_mss(m, off, &pd); 8245 8246 if (pd.act.rtableid >= 0) 8247 M_SETFIB(m, pd.act.rtableid); 8248 8249 if (pd.act.flags & PFSTATE_SETPRIO) { 8250 if (pd.tos & IPTOS_LOWDELAY) 8251 use_2nd_queue = 1; 8252 if (vlan_set_pcp(m, pd.act.set_prio[use_2nd_queue])) { 8253 action = PF_DROP; 8254 REASON_SET(&reason, PFRES_MEMORY); 8255 pd.act.log = PF_LOG_FORCE; 8256 DPFPRINTF(PF_DEBUG_MISC, 8257 ("pf: failed to allocate 802.1q mtag\n")); 8258 } 8259 } 8260 8261 #ifdef ALTQ 8262 if (action == PF_PASS && pd.act.qid) { 8263 if (pd.pf_mtag == NULL && 8264 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 8265 action = PF_DROP; 8266 REASON_SET(&reason, PFRES_MEMORY); 8267 } else { 8268 if (s != NULL) 8269 pd.pf_mtag->qid_hash = pf_state_hash(s); 8270 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY)) 8271 pd.pf_mtag->qid = pd.act.pqid; 8272 else 8273 pd.pf_mtag->qid = pd.act.qid; 8274 /* Add hints for ecn. */ 8275 pd.pf_mtag->hdr = h; 8276 } 8277 } 8278 #endif /* ALTQ */ 8279 8280 /* 8281 * connections redirected to loopback should not match sockets 8282 * bound specifically to loopback due to security implications, 8283 * see tcp_input() and in_pcblookup_listen(). 8284 */ 8285 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 8286 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 8287 (s->nat_rule.ptr->action == PF_RDR || 8288 s->nat_rule.ptr->action == PF_BINAT) && 8289 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 8290 m->m_flags |= M_SKIP_FIREWALL; 8291 8292 if (__predict_false(ip_divert_ptr != NULL) && action == PF_PASS && 8293 r->divert.port && !PACKET_LOOPED(&pd)) { 8294 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0, 8295 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO); 8296 if (mtag != NULL) { 8297 ((struct pf_divert_mtag *)(mtag+1))->port = 8298 ntohs(r->divert.port); 8299 ((struct pf_divert_mtag *)(mtag+1))->idir = 8300 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN : 8301 PF_DIVERT_MTAG_DIR_OUT; 8302 8303 if (s) 8304 PF_STATE_UNLOCK(s); 8305 8306 m_tag_prepend(m, mtag); 8307 if (m->m_flags & M_FASTFWD_OURS) { 8308 if (pd.pf_mtag == NULL && 8309 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 8310 action = PF_DROP; 8311 REASON_SET(&reason, PFRES_MEMORY); 8312 pd.act.log = PF_LOG_FORCE; 8313 DPFPRINTF(PF_DEBUG_MISC, 8314 ("pf: failed to allocate tag\n")); 8315 } else { 8316 pd.pf_mtag->flags |= 8317 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 8318 m->m_flags &= ~M_FASTFWD_OURS; 8319 } 8320 } 8321 ip_divert_ptr(*m0, dir == PF_IN); 8322 *m0 = NULL; 8323 8324 return (action); 8325 } else { 8326 /* XXX: ipfw has the same behaviour! */ 8327 action = PF_DROP; 8328 REASON_SET(&reason, PFRES_MEMORY); 8329 pd.act.log = PF_LOG_FORCE; 8330 DPFPRINTF(PF_DEBUG_MISC, 8331 ("pf: failed to allocate divert tag\n")); 8332 } 8333 } 8334 /* this flag will need revising if the pkt is forwarded */ 8335 if (pd.pf_mtag) 8336 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED; 8337 8338 if (pd.act.log) { 8339 struct pf_krule *lr; 8340 struct pf_krule_item *ri; 8341 8342 if (s != NULL && s->nat_rule.ptr != NULL && 8343 s->nat_rule.ptr->log & PF_LOG_ALL) 8344 lr = s->nat_rule.ptr; 8345 else 8346 lr = r; 8347 8348 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 8349 PFLOG_PACKET(kif, m, AF_INET, action, reason, lr, a, 8350 ruleset, &pd, (s == NULL)); 8351 if (s) { 8352 SLIST_FOREACH(ri, &s->match_rules, entry) 8353 if (ri->r->log & PF_LOG_ALL) 8354 PFLOG_PACKET(kif, m, AF_INET, action, 8355 reason, ri->r, a, ruleset, &pd, 0); 8356 } 8357 } 8358 8359 pf_counter_u64_critical_enter(); 8360 pf_counter_u64_add_protected(&kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], 8361 pd.tot_len); 8362 pf_counter_u64_add_protected(&kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 8363 1); 8364 8365 if (action == PF_PASS || r->action == PF_DROP) { 8366 dirndx = (dir == PF_OUT); 8367 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 8368 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 8369 pf_update_timestamp(r); 8370 8371 if (a != NULL) { 8372 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 8373 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 8374 } 8375 if (s != NULL) { 8376 struct pf_krule_item *ri; 8377 8378 if (s->nat_rule.ptr != NULL) { 8379 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 8380 1); 8381 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 8382 pd.tot_len); 8383 } 8384 if (s->src_node != NULL) { 8385 counter_u64_add(s->src_node->packets[dirndx], 8386 1); 8387 counter_u64_add(s->src_node->bytes[dirndx], 8388 pd.tot_len); 8389 } 8390 if (s->nat_src_node != NULL) { 8391 counter_u64_add(s->nat_src_node->packets[dirndx], 8392 1); 8393 counter_u64_add(s->nat_src_node->bytes[dirndx], 8394 pd.tot_len); 8395 } 8396 dirndx = (dir == s->direction) ? 0 : 1; 8397 s->packets[dirndx]++; 8398 s->bytes[dirndx] += pd.tot_len; 8399 SLIST_FOREACH(ri, &s->match_rules, entry) { 8400 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 8401 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd.tot_len); 8402 } 8403 } 8404 tr = r; 8405 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 8406 if (nr != NULL && r == &V_pf_default_rule) 8407 tr = nr; 8408 if (tr->src.addr.type == PF_ADDR_TABLE) 8409 pfr_update_stats(tr->src.addr.p.tbl, 8410 (s == NULL) ? pd.src : 8411 &s->key[(s->direction == PF_IN)]-> 8412 addr[(s->direction == PF_OUT)], 8413 pd.af, pd.tot_len, dir == PF_OUT, 8414 r->action == PF_PASS, tr->src.neg); 8415 if (tr->dst.addr.type == PF_ADDR_TABLE) 8416 pfr_update_stats(tr->dst.addr.p.tbl, 8417 (s == NULL) ? pd.dst : 8418 &s->key[(s->direction == PF_IN)]-> 8419 addr[(s->direction == PF_IN)], 8420 pd.af, pd.tot_len, dir == PF_OUT, 8421 r->action == PF_PASS, tr->dst.neg); 8422 } 8423 pf_counter_u64_critical_exit(); 8424 8425 switch (action) { 8426 case PF_SYNPROXY_DROP: 8427 m_freem(*m0); 8428 case PF_DEFER: 8429 *m0 = NULL; 8430 action = PF_PASS; 8431 break; 8432 case PF_DROP: 8433 m_freem(*m0); 8434 *m0 = NULL; 8435 break; 8436 default: 8437 /* pf_route() returns unlocked. */ 8438 if (rt) { 8439 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp); 8440 goto out; 8441 } 8442 if (pf_dummynet(&pd, s, r, m0) != 0) { 8443 action = PF_DROP; 8444 REASON_SET(&reason, PFRES_MEMORY); 8445 } 8446 break; 8447 } 8448 8449 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 8450 8451 if (s && action != PF_DROP) { 8452 if (!s->if_index_in && dir == PF_IN) 8453 s->if_index_in = ifp->if_index; 8454 else if (!s->if_index_out && dir == PF_OUT) 8455 s->if_index_out = ifp->if_index; 8456 } 8457 8458 if (s) 8459 PF_STATE_UNLOCK(s); 8460 8461 out: 8462 pf_sctp_multihome_delayed(&pd, off, kif, s, action); 8463 8464 return (action); 8465 } 8466 #endif /* INET */ 8467 8468 #ifdef INET6 8469 int 8470 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp, 8471 struct pf_rule_actions *default_actions) 8472 { 8473 struct pfi_kkif *kif; 8474 u_short action, reason = 0; 8475 struct mbuf *m = *m0, *n = NULL; 8476 struct m_tag *mtag; 8477 struct ip6_hdr *h = NULL; 8478 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 8479 struct pf_kstate *s = NULL; 8480 struct pf_kruleset *ruleset = NULL; 8481 struct pf_pdesc pd; 8482 int off, terminal = 0, dirndx, rh_cnt = 0, use_2nd_queue = 0; 8483 uint16_t tag; 8484 uint8_t rt; 8485 8486 PF_RULES_RLOCK_TRACKER; 8487 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 8488 M_ASSERTPKTHDR(m); 8489 8490 if (!V_pf_status.running) 8491 return (PF_PASS); 8492 8493 PF_RULES_RLOCK(); 8494 8495 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8496 if (__predict_false(kif == NULL)) { 8497 DPFPRINTF(PF_DEBUG_URGENT, 8498 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 8499 PF_RULES_RUNLOCK(); 8500 return (PF_DROP); 8501 } 8502 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 8503 PF_RULES_RUNLOCK(); 8504 return (PF_PASS); 8505 } 8506 8507 if (m->m_flags & M_SKIP_FIREWALL) { 8508 PF_RULES_RUNLOCK(); 8509 return (PF_PASS); 8510 } 8511 8512 memset(&pd, 0, sizeof(pd)); 8513 TAILQ_INIT(&pd.sctp_multihome_jobs); 8514 if (default_actions != NULL) 8515 memcpy(&pd.act, default_actions, sizeof(pd.act)); 8516 pd.pf_mtag = pf_find_mtag(m); 8517 8518 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 8519 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 8520 8521 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 8522 pd.pf_mtag->if_idxgen); 8523 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 8524 PF_RULES_RUNLOCK(); 8525 m_freem(*m0); 8526 *m0 = NULL; 8527 return (PF_PASS); 8528 } 8529 PF_RULES_RUNLOCK(); 8530 nd6_output_ifp(ifp, ifp, m, 8531 (struct sockaddr_in6 *)&pd.pf_mtag->dst, NULL); 8532 *m0 = NULL; 8533 return (PF_PASS); 8534 } 8535 8536 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 8537 pd.act.dnpipe = pd.pf_mtag->dnpipe; 8538 pd.act.flags = pd.pf_mtag->dnflags; 8539 } 8540 8541 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 8542 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 8543 pf_dummynet_flag_remove(m, pd.pf_mtag); 8544 /* Dummynet re-injects packets after they've 8545 * completed their delay. We've already 8546 * processed them, so pass unconditionally. */ 8547 PF_RULES_RUNLOCK(); 8548 return (PF_PASS); 8549 } 8550 8551 pd.sport = pd.dport = NULL; 8552 pd.ip_sum = NULL; 8553 pd.proto_sum = NULL; 8554 pd.dir = dir; 8555 pd.sidx = (dir == PF_IN) ? 0 : 1; 8556 pd.didx = (dir == PF_IN) ? 1 : 0; 8557 pd.af = AF_INET6; 8558 pd.act.rtableid = -1; 8559 8560 h = mtod(m, struct ip6_hdr *); 8561 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 8562 8563 /* We do IP header normalization and packet reassembly here */ 8564 if (pf_normalize_ip6(m0, kif, &reason, &pd) != PF_PASS) { 8565 action = PF_DROP; 8566 goto done; 8567 } 8568 m = *m0; /* pf_normalize messes with m0 */ 8569 h = mtod(m, struct ip6_hdr *); 8570 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 8571 8572 /* 8573 * we do not support jumbogram. if we keep going, zero ip6_plen 8574 * will do something bad, so drop the packet for now. 8575 */ 8576 if (htons(h->ip6_plen) == 0) { 8577 action = PF_DROP; 8578 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 8579 goto done; 8580 } 8581 8582 pd.src = (struct pf_addr *)&h->ip6_src; 8583 pd.dst = (struct pf_addr *)&h->ip6_dst; 8584 pd.tos = IPV6_DSCP(h); 8585 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 8586 8587 pd.proto = h->ip6_nxt; 8588 do { 8589 switch (pd.proto) { 8590 case IPPROTO_FRAGMENT: 8591 action = pf_test_fragment(&r, kif, m, h, &pd, &a, 8592 &ruleset); 8593 if (action == PF_DROP) 8594 REASON_SET(&reason, PFRES_FRAG); 8595 goto done; 8596 case IPPROTO_ROUTING: { 8597 struct ip6_rthdr rthdr; 8598 8599 if (rh_cnt++) { 8600 DPFPRINTF(PF_DEBUG_MISC, 8601 ("pf: IPv6 more than one rthdr\n")); 8602 action = PF_DROP; 8603 REASON_SET(&reason, PFRES_IPOPTIONS); 8604 pd.act.log = PF_LOG_FORCE; 8605 goto done; 8606 } 8607 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 8608 &reason, pd.af)) { 8609 DPFPRINTF(PF_DEBUG_MISC, 8610 ("pf: IPv6 short rthdr\n")); 8611 action = PF_DROP; 8612 REASON_SET(&reason, PFRES_SHORT); 8613 pd.act.log = PF_LOG_FORCE; 8614 goto done; 8615 } 8616 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 8617 DPFPRINTF(PF_DEBUG_MISC, 8618 ("pf: IPv6 rthdr0\n")); 8619 action = PF_DROP; 8620 REASON_SET(&reason, PFRES_IPOPTIONS); 8621 pd.act.log = PF_LOG_FORCE; 8622 goto done; 8623 } 8624 /* FALLTHROUGH */ 8625 } 8626 case IPPROTO_AH: 8627 case IPPROTO_HOPOPTS: 8628 case IPPROTO_DSTOPTS: { 8629 /* get next header and header length */ 8630 struct ip6_ext opt6; 8631 8632 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 8633 NULL, &reason, pd.af)) { 8634 DPFPRINTF(PF_DEBUG_MISC, 8635 ("pf: IPv6 short opt\n")); 8636 action = PF_DROP; 8637 pd.act.log = PF_LOG_FORCE; 8638 goto done; 8639 } 8640 if (pd.proto == IPPROTO_AH) 8641 off += (opt6.ip6e_len + 2) * 4; 8642 else 8643 off += (opt6.ip6e_len + 1) * 8; 8644 pd.proto = opt6.ip6e_nxt; 8645 /* goto the next header */ 8646 break; 8647 } 8648 default: 8649 terminal++; 8650 break; 8651 } 8652 } while (!terminal); 8653 8654 /* if there's no routing header, use unmodified mbuf for checksumming */ 8655 if (!n) 8656 n = m; 8657 8658 switch (pd.proto) { 8659 case IPPROTO_TCP: { 8660 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 8661 &action, &reason, AF_INET6)) { 8662 if (action != PF_PASS) 8663 pd.act.log |= PF_LOG_FORCE; 8664 goto done; 8665 } 8666 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 8667 pd.sport = &pd.hdr.tcp.th_sport; 8668 pd.dport = &pd.hdr.tcp.th_dport; 8669 8670 /* Respond to SYN with a syncookie. */ 8671 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 8672 pd.dir == PF_IN && pf_synflood_check(&pd)) { 8673 pf_syncookie_send(m, off, &pd); 8674 action = PF_DROP; 8675 break; 8676 } 8677 8678 action = pf_normalize_tcp(kif, m, 0, off, h, &pd); 8679 if (action == PF_DROP) 8680 goto done; 8681 action = pf_test_state_tcp(&s, kif, m, off, h, &pd, &reason); 8682 if (action == PF_PASS) { 8683 if (V_pfsync_update_state_ptr != NULL) 8684 V_pfsync_update_state_ptr(s); 8685 r = s->rule.ptr; 8686 a = s->anchor.ptr; 8687 } else if (s == NULL) { 8688 /* Validate remote SYN|ACK, re-create original SYN if 8689 * valid. */ 8690 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 8691 TH_ACK && pf_syncookie_validate(&pd) && 8692 pd.dir == PF_IN) { 8693 struct mbuf *msyn; 8694 8695 msyn = pf_syncookie_recreate_syn(h->ip6_hlim, 8696 off, &pd); 8697 if (msyn == NULL) { 8698 action = PF_DROP; 8699 break; 8700 } 8701 8702 action = pf_test6(dir, pflags, ifp, &msyn, inp, 8703 &pd.act); 8704 m_freem(msyn); 8705 if (action != PF_PASS) 8706 break; 8707 8708 action = pf_test_state_tcp(&s, kif, m, off, h, 8709 &pd, &reason); 8710 if (action != PF_PASS || s == NULL) { 8711 action = PF_DROP; 8712 break; 8713 } 8714 8715 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 8716 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 8717 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 8718 8719 action = pf_synproxy(&pd, &s, &reason); 8720 break; 8721 } else { 8722 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8723 &a, &ruleset, inp); 8724 } 8725 } 8726 break; 8727 } 8728 8729 case IPPROTO_UDP: { 8730 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 8731 &action, &reason, AF_INET6)) { 8732 if (action != PF_PASS) 8733 pd.act.log |= PF_LOG_FORCE; 8734 goto done; 8735 } 8736 pd.sport = &pd.hdr.udp.uh_sport; 8737 pd.dport = &pd.hdr.udp.uh_dport; 8738 if (pd.hdr.udp.uh_dport == 0 || 8739 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 8740 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 8741 action = PF_DROP; 8742 REASON_SET(&reason, PFRES_SHORT); 8743 goto done; 8744 } 8745 action = pf_test_state_udp(&s, kif, m, off, h, &pd); 8746 if (action == PF_PASS) { 8747 if (V_pfsync_update_state_ptr != NULL) 8748 V_pfsync_update_state_ptr(s); 8749 r = s->rule.ptr; 8750 a = s->anchor.ptr; 8751 } else if (s == NULL) 8752 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8753 &a, &ruleset, inp); 8754 break; 8755 } 8756 8757 case IPPROTO_SCTP: { 8758 if (!pf_pull_hdr(m, off, &pd.hdr.sctp, sizeof(pd.hdr.sctp), 8759 &action, &reason, AF_INET6)) { 8760 if (action != PF_PASS) 8761 pd.act.log |= PF_LOG_FORCE; 8762 goto done; 8763 } 8764 pd.sport = &pd.hdr.sctp.src_port; 8765 pd.dport = &pd.hdr.sctp.dest_port; 8766 if (pd.hdr.sctp.src_port == 0 || pd.hdr.sctp.dest_port == 0) { 8767 action = PF_DROP; 8768 REASON_SET(&reason, PFRES_SHORT); 8769 goto done; 8770 } 8771 action = pf_normalize_sctp(dir, kif, m, 0, off, h, &pd); 8772 if (action == PF_DROP) 8773 goto done; 8774 action = pf_test_state_sctp(&s, kif, m, off, h, &pd, 8775 &reason); 8776 if (action == PF_PASS) { 8777 if (V_pfsync_update_state_ptr != NULL) 8778 V_pfsync_update_state_ptr(s); 8779 r = s->rule.ptr; 8780 a = s->anchor.ptr; 8781 } else { 8782 action = pf_test_rule(&r, &s, kif, m, off, 8783 &pd, &a, &ruleset, inp); 8784 } 8785 break; 8786 } 8787 8788 case IPPROTO_ICMP: { 8789 action = PF_DROP; 8790 DPFPRINTF(PF_DEBUG_MISC, 8791 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 8792 goto done; 8793 } 8794 8795 case IPPROTO_ICMPV6: { 8796 if (!pf_pull_hdr(m, off, &pd.hdr.icmp6, sizeof(pd.hdr.icmp6), 8797 &action, &reason, AF_INET6)) { 8798 if (action != PF_PASS) 8799 pd.act.log |= PF_LOG_FORCE; 8800 goto done; 8801 } 8802 action = pf_test_state_icmp(&s, kif, m, off, h, &pd, &reason); 8803 if (action == PF_PASS) { 8804 if (V_pfsync_update_state_ptr != NULL) 8805 V_pfsync_update_state_ptr(s); 8806 r = s->rule.ptr; 8807 a = s->anchor.ptr; 8808 } else if (s == NULL) 8809 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8810 &a, &ruleset, inp); 8811 break; 8812 } 8813 8814 default: 8815 action = pf_test_state_other(&s, kif, m, &pd); 8816 if (action == PF_PASS) { 8817 if (V_pfsync_update_state_ptr != NULL) 8818 V_pfsync_update_state_ptr(s); 8819 r = s->rule.ptr; 8820 a = s->anchor.ptr; 8821 } else if (s == NULL) 8822 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8823 &a, &ruleset, inp); 8824 break; 8825 } 8826 8827 done: 8828 PF_RULES_RUNLOCK(); 8829 if (n != m) { 8830 m_freem(n); 8831 n = NULL; 8832 } 8833 8834 /* handle dangerous IPv6 extension headers. */ 8835 if (action == PF_PASS && rh_cnt && 8836 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 8837 action = PF_DROP; 8838 REASON_SET(&reason, PFRES_IPOPTIONS); 8839 pd.act.log = r->log; 8840 DPFPRINTF(PF_DEBUG_MISC, 8841 ("pf: dropping packet with dangerous v6 headers\n")); 8842 } 8843 8844 if (s) { 8845 uint8_t log = pd.act.log; 8846 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 8847 pd.act.log |= log; 8848 tag = s->tag; 8849 rt = s->rt; 8850 } else { 8851 tag = r->tag; 8852 rt = r->rt; 8853 } 8854 8855 if (tag > 0 && pf_tag_packet(m, &pd, tag)) { 8856 action = PF_DROP; 8857 REASON_SET(&reason, PFRES_MEMORY); 8858 } 8859 8860 pf_scrub_ip6(&m, &pd); 8861 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 8862 pf_normalize_mss(m, off, &pd); 8863 8864 if (pd.act.rtableid >= 0) 8865 M_SETFIB(m, pd.act.rtableid); 8866 8867 if (pd.act.flags & PFSTATE_SETPRIO) { 8868 if (pd.tos & IPTOS_LOWDELAY) 8869 use_2nd_queue = 1; 8870 if (vlan_set_pcp(m, pd.act.set_prio[use_2nd_queue])) { 8871 action = PF_DROP; 8872 REASON_SET(&reason, PFRES_MEMORY); 8873 pd.act.log = PF_LOG_FORCE; 8874 DPFPRINTF(PF_DEBUG_MISC, 8875 ("pf: failed to allocate 802.1q mtag\n")); 8876 } 8877 } 8878 8879 #ifdef ALTQ 8880 if (action == PF_PASS && pd.act.qid) { 8881 if (pd.pf_mtag == NULL && 8882 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 8883 action = PF_DROP; 8884 REASON_SET(&reason, PFRES_MEMORY); 8885 } else { 8886 if (s != NULL) 8887 pd.pf_mtag->qid_hash = pf_state_hash(s); 8888 if (pd.tos & IPTOS_LOWDELAY) 8889 pd.pf_mtag->qid = pd.act.pqid; 8890 else 8891 pd.pf_mtag->qid = pd.act.qid; 8892 /* Add hints for ecn. */ 8893 pd.pf_mtag->hdr = h; 8894 } 8895 } 8896 #endif /* ALTQ */ 8897 8898 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 8899 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 8900 (s->nat_rule.ptr->action == PF_RDR || 8901 s->nat_rule.ptr->action == PF_BINAT) && 8902 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 8903 m->m_flags |= M_SKIP_FIREWALL; 8904 8905 /* XXX: Anybody working on it?! */ 8906 if (r->divert.port) 8907 printf("pf: divert(9) is not supported for IPv6\n"); 8908 8909 if (pd.act.log) { 8910 struct pf_krule *lr; 8911 struct pf_krule_item *ri; 8912 8913 if (s != NULL && s->nat_rule.ptr != NULL && 8914 s->nat_rule.ptr->log & PF_LOG_ALL) 8915 lr = s->nat_rule.ptr; 8916 else 8917 lr = r; 8918 8919 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 8920 PFLOG_PACKET(kif, m, AF_INET6, action, reason, lr, a, ruleset, 8921 &pd, (s == NULL)); 8922 if (s) { 8923 SLIST_FOREACH(ri, &s->match_rules, entry) 8924 if (ri->r->log & PF_LOG_ALL) 8925 PFLOG_PACKET(kif, m, AF_INET6, action, reason, 8926 ri->r, a, ruleset, &pd, 0); 8927 } 8928 } 8929 8930 pf_counter_u64_critical_enter(); 8931 pf_counter_u64_add_protected(&kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], 8932 pd.tot_len); 8933 pf_counter_u64_add_protected(&kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 8934 1); 8935 8936 if (action == PF_PASS || r->action == PF_DROP) { 8937 dirndx = (dir == PF_OUT); 8938 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 8939 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 8940 if (a != NULL) { 8941 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 8942 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 8943 } 8944 if (s != NULL) { 8945 if (s->nat_rule.ptr != NULL) { 8946 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 8947 1); 8948 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 8949 pd.tot_len); 8950 } 8951 if (s->src_node != NULL) { 8952 counter_u64_add(s->src_node->packets[dirndx], 8953 1); 8954 counter_u64_add(s->src_node->bytes[dirndx], 8955 pd.tot_len); 8956 } 8957 if (s->nat_src_node != NULL) { 8958 counter_u64_add(s->nat_src_node->packets[dirndx], 8959 1); 8960 counter_u64_add(s->nat_src_node->bytes[dirndx], 8961 pd.tot_len); 8962 } 8963 dirndx = (dir == s->direction) ? 0 : 1; 8964 s->packets[dirndx]++; 8965 s->bytes[dirndx] += pd.tot_len; 8966 } 8967 tr = r; 8968 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 8969 if (nr != NULL && r == &V_pf_default_rule) 8970 tr = nr; 8971 if (tr->src.addr.type == PF_ADDR_TABLE) 8972 pfr_update_stats(tr->src.addr.p.tbl, 8973 (s == NULL) ? pd.src : 8974 &s->key[(s->direction == PF_IN)]->addr[0], 8975 pd.af, pd.tot_len, dir == PF_OUT, 8976 r->action == PF_PASS, tr->src.neg); 8977 if (tr->dst.addr.type == PF_ADDR_TABLE) 8978 pfr_update_stats(tr->dst.addr.p.tbl, 8979 (s == NULL) ? pd.dst : 8980 &s->key[(s->direction == PF_IN)]->addr[1], 8981 pd.af, pd.tot_len, dir == PF_OUT, 8982 r->action == PF_PASS, tr->dst.neg); 8983 } 8984 pf_counter_u64_critical_exit(); 8985 8986 switch (action) { 8987 case PF_SYNPROXY_DROP: 8988 m_freem(*m0); 8989 case PF_DEFER: 8990 *m0 = NULL; 8991 action = PF_PASS; 8992 break; 8993 case PF_DROP: 8994 m_freem(*m0); 8995 *m0 = NULL; 8996 break; 8997 default: 8998 /* pf_route6() returns unlocked. */ 8999 if (rt) { 9000 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp); 9001 goto out; 9002 } 9003 if (pf_dummynet(&pd, s, r, m0) != 0) { 9004 action = PF_DROP; 9005 REASON_SET(&reason, PFRES_MEMORY); 9006 } 9007 break; 9008 } 9009 9010 if (s && action != PF_DROP) { 9011 if (!s->if_index_in && dir == PF_IN) 9012 s->if_index_in = ifp->if_index; 9013 else if (!s->if_index_out && dir == PF_OUT) 9014 s->if_index_out = ifp->if_index; 9015 } 9016 9017 if (s) 9018 PF_STATE_UNLOCK(s); 9019 9020 /* If reassembled packet passed, create new fragments. */ 9021 if (action == PF_PASS && *m0 && dir == PF_OUT && 9022 (mtag = m_tag_find(m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL) 9023 action = pf_refragment6(ifp, m0, mtag, pflags & PFIL_FWD); 9024 9025 out: 9026 SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); 9027 9028 pf_sctp_multihome_delayed(&pd, off, kif, s, action); 9029 9030 return (action); 9031 } 9032 #endif /* INET6 */ 9033