xref: /freebsd/sys/netpfil/pf/pf.c (revision 7ebc7d1ab76b9d06be9400d6c9fc74fcc43603a1)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Daniel Hartmeier
5  * Copyright (c) 2002 - 2008 Henning Brauer
6  * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  *    - Redistributions of source code must retain the above copyright
14  *      notice, this list of conditions and the following disclaimer.
15  *    - Redistributions in binary form must reproduce the above
16  *      copyright notice, this list of conditions and the following
17  *      disclaimer in the documentation and/or other materials provided
18  *      with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
28  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  * Effort sponsored in part by the Defense Advanced Research Projects
34  * Agency (DARPA) and Air Force Research Laboratory, Air Force
35  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
36  *
37  *	$OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $
38  */
39 
40 #include <sys/cdefs.h>
41 #include "opt_bpf.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_pf.h"
45 #include "opt_sctp.h"
46 
47 #include <sys/param.h>
48 #include <sys/bus.h>
49 #include <sys/endian.h>
50 #include <sys/gsb_crc32.h>
51 #include <sys/hash.h>
52 #include <sys/interrupt.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/limits.h>
56 #include <sys/mbuf.h>
57 #include <sys/md5.h>
58 #include <sys/random.h>
59 #include <sys/refcount.h>
60 #include <sys/sdt.h>
61 #include <sys/socket.h>
62 #include <sys/sysctl.h>
63 #include <sys/taskqueue.h>
64 #include <sys/ucred.h>
65 
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/if_private.h>
69 #include <net/if_types.h>
70 #include <net/if_vlan_var.h>
71 #include <net/route.h>
72 #include <net/route/nhop.h>
73 #include <net/vnet.h>
74 
75 #include <net/pfil.h>
76 #include <net/pfvar.h>
77 #include <net/if_pflog.h>
78 #include <net/if_pfsync.h>
79 
80 #include <netinet/in_pcb.h>
81 #include <netinet/in_var.h>
82 #include <netinet/in_fib.h>
83 #include <netinet/ip.h>
84 #include <netinet/ip_fw.h>
85 #include <netinet/ip_icmp.h>
86 #include <netinet/icmp_var.h>
87 #include <netinet/ip_var.h>
88 #include <netinet/tcp.h>
89 #include <netinet/tcp_fsm.h>
90 #include <netinet/tcp_seq.h>
91 #include <netinet/tcp_timer.h>
92 #include <netinet/tcp_var.h>
93 #include <netinet/udp.h>
94 #include <netinet/udp_var.h>
95 
96 /* dummynet */
97 #include <netinet/ip_dummynet.h>
98 #include <netinet/ip_fw.h>
99 #include <netpfil/ipfw/dn_heap.h>
100 #include <netpfil/ipfw/ip_fw_private.h>
101 #include <netpfil/ipfw/ip_dn_private.h>
102 
103 #ifdef INET6
104 #include <netinet/ip6.h>
105 #include <netinet/icmp6.h>
106 #include <netinet6/nd6.h>
107 #include <netinet6/ip6_var.h>
108 #include <netinet6/in6_pcb.h>
109 #include <netinet6/in6_fib.h>
110 #include <netinet6/scope6_var.h>
111 #endif /* INET6 */
112 
113 #include <netinet/sctp_header.h>
114 #include <netinet/sctp_crc32.h>
115 
116 #include <machine/in_cksum.h>
117 #include <security/mac/mac_framework.h>
118 
119 #define	DPFPRINTF(n, x)	if (V_pf_status.debug >= (n)) printf x
120 
121 SDT_PROVIDER_DEFINE(pf);
122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *",
123     "struct pf_kstate *");
124 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *",
125     "struct pf_state_key_cmp *", "int", "struct pf_pdesc *",
126     "struct pf_kstate *");
127 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *",
128     "struct pfi_kkif *");
129 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *",
130     "struct pf_krule *", "struct mbuf *", "int");
131 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t",
132     "struct pf_sctp_source *");
133 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t",
134     "struct pf_kstate *", "struct pf_sctp_source *");
135 
136 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *",
137     "struct mbuf *");
138 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *");
139 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch,
140     "int", "struct pf_keth_rule *", "char *");
141 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *");
142 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match,
143     "int", "struct pf_keth_rule *");
144 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t");
145 
146 /*
147  * Global variables
148  */
149 
150 /* state tables */
151 VNET_DEFINE(struct pf_altqqueue,	 pf_altqs[4]);
152 VNET_DEFINE(struct pf_kpalist,		 pf_pabuf);
153 VNET_DEFINE(struct pf_altqqueue *,	 pf_altqs_active);
154 VNET_DEFINE(struct pf_altqqueue *,	 pf_altq_ifs_active);
155 VNET_DEFINE(struct pf_altqqueue *,	 pf_altqs_inactive);
156 VNET_DEFINE(struct pf_altqqueue *,	 pf_altq_ifs_inactive);
157 VNET_DEFINE(struct pf_kstatus,		 pf_status);
158 
159 VNET_DEFINE(u_int32_t,			 ticket_altqs_active);
160 VNET_DEFINE(u_int32_t,			 ticket_altqs_inactive);
161 VNET_DEFINE(int,			 altqs_inactive_open);
162 VNET_DEFINE(u_int32_t,			 ticket_pabuf);
163 
164 VNET_DEFINE(MD5_CTX,			 pf_tcp_secret_ctx);
165 #define	V_pf_tcp_secret_ctx		 VNET(pf_tcp_secret_ctx)
166 VNET_DEFINE(u_char,			 pf_tcp_secret[16]);
167 #define	V_pf_tcp_secret			 VNET(pf_tcp_secret)
168 VNET_DEFINE(int,			 pf_tcp_secret_init);
169 #define	V_pf_tcp_secret_init		 VNET(pf_tcp_secret_init)
170 VNET_DEFINE(int,			 pf_tcp_iss_off);
171 #define	V_pf_tcp_iss_off		 VNET(pf_tcp_iss_off)
172 VNET_DECLARE(int,			 pf_vnet_active);
173 #define	V_pf_vnet_active		 VNET(pf_vnet_active)
174 
175 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx);
176 #define V_pf_purge_idx	VNET(pf_purge_idx)
177 
178 #ifdef PF_WANT_32_TO_64_COUNTER
179 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter);
180 #define	V_pf_counter_periodic_iter	VNET(pf_counter_periodic_iter)
181 
182 VNET_DEFINE(struct allrulelist_head, pf_allrulelist);
183 VNET_DEFINE(size_t, pf_allrulecount);
184 VNET_DEFINE(struct pf_krule *, pf_rulemarker);
185 #endif
186 
187 struct pf_sctp_endpoint;
188 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint);
189 struct pf_sctp_source {
190 	sa_family_t			af;
191 	struct pf_addr			addr;
192 	TAILQ_ENTRY(pf_sctp_source)	entry;
193 };
194 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source);
195 struct pf_sctp_endpoint
196 {
197 	uint32_t		 v_tag;
198 	struct pf_sctp_sources	 sources;
199 	RB_ENTRY(pf_sctp_endpoint)	entry;
200 };
201 static int
202 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b)
203 {
204 	return (a->v_tag - b->v_tag);
205 }
206 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
207 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
208 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints);
209 #define V_pf_sctp_endpoints	VNET(pf_sctp_endpoints)
210 static struct mtx_padalign pf_sctp_endpoints_mtx;
211 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF);
212 #define	PF_SCTP_ENDPOINTS_LOCK()	mtx_lock(&pf_sctp_endpoints_mtx)
213 #define	PF_SCTP_ENDPOINTS_UNLOCK()	mtx_unlock(&pf_sctp_endpoints_mtx)
214 
215 /*
216  * Queue for pf_intr() sends.
217  */
218 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations");
219 struct pf_send_entry {
220 	STAILQ_ENTRY(pf_send_entry)	pfse_next;
221 	struct mbuf			*pfse_m;
222 	enum {
223 		PFSE_IP,
224 		PFSE_IP6,
225 		PFSE_ICMP,
226 		PFSE_ICMP6,
227 	}				pfse_type;
228 	struct {
229 		int		type;
230 		int		code;
231 		int		mtu;
232 	} icmpopts;
233 };
234 
235 STAILQ_HEAD(pf_send_head, pf_send_entry);
236 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue);
237 #define	V_pf_sendqueue	VNET(pf_sendqueue)
238 
239 static struct mtx_padalign pf_sendqueue_mtx;
240 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF);
241 #define	PF_SENDQ_LOCK()		mtx_lock(&pf_sendqueue_mtx)
242 #define	PF_SENDQ_UNLOCK()	mtx_unlock(&pf_sendqueue_mtx)
243 
244 /*
245  * Queue for pf_overload_task() tasks.
246  */
247 struct pf_overload_entry {
248 	SLIST_ENTRY(pf_overload_entry)	next;
249 	struct pf_addr  		addr;
250 	sa_family_t			af;
251 	uint8_t				dir;
252 	struct pf_krule  		*rule;
253 };
254 
255 SLIST_HEAD(pf_overload_head, pf_overload_entry);
256 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue);
257 #define V_pf_overloadqueue	VNET(pf_overloadqueue)
258 VNET_DEFINE_STATIC(struct task, pf_overloadtask);
259 #define	V_pf_overloadtask	VNET(pf_overloadtask)
260 
261 static struct mtx_padalign pf_overloadqueue_mtx;
262 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx,
263     "pf overload/flush queue", MTX_DEF);
264 #define	PF_OVERLOADQ_LOCK()	mtx_lock(&pf_overloadqueue_mtx)
265 #define	PF_OVERLOADQ_UNLOCK()	mtx_unlock(&pf_overloadqueue_mtx)
266 
267 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules);
268 struct mtx_padalign pf_unlnkdrules_mtx;
269 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules",
270     MTX_DEF);
271 
272 struct sx pf_config_lock;
273 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config");
274 
275 struct mtx_padalign pf_table_stats_lock;
276 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats",
277     MTX_DEF);
278 
279 VNET_DEFINE_STATIC(uma_zone_t,	pf_sources_z);
280 #define	V_pf_sources_z	VNET(pf_sources_z)
281 uma_zone_t		pf_mtag_z;
282 VNET_DEFINE(uma_zone_t,	 pf_state_z);
283 VNET_DEFINE(uma_zone_t,	 pf_state_key_z);
284 VNET_DEFINE(uma_zone_t,	 pf_udp_mapping_z);
285 
286 VNET_DEFINE(struct unrhdr64, pf_stateid);
287 
288 static void		 pf_src_tree_remove_state(struct pf_kstate *);
289 static void		 pf_init_threshold(struct pf_threshold *, u_int32_t,
290 			    u_int32_t);
291 static void		 pf_add_threshold(struct pf_threshold *);
292 static int		 pf_check_threshold(struct pf_threshold *);
293 
294 static void		 pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *,
295 			    u_int16_t *, u_int16_t *, struct pf_addr *,
296 			    u_int16_t, u_int8_t, sa_family_t);
297 static int		 pf_modulate_sack(struct pf_pdesc *,
298 			    struct tcphdr *, struct pf_state_peer *);
299 int			 pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *,
300 			    int *, u_int16_t *, u_int16_t *);
301 static void		 pf_change_icmp(struct pf_addr *, u_int16_t *,
302 			    struct pf_addr *, struct pf_addr *, u_int16_t,
303 			    u_int16_t *, u_int16_t *, u_int16_t *,
304 			    u_int16_t *, u_int8_t, sa_family_t);
305 static void		 pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t,
306 			    sa_family_t, struct pf_krule *, int);
307 static void		 pf_detach_state(struct pf_kstate *);
308 static int		 pf_state_key_attach(struct pf_state_key *,
309 			    struct pf_state_key *, struct pf_kstate *);
310 static void		 pf_state_key_detach(struct pf_kstate *, int);
311 static int		 pf_state_key_ctor(void *, int, void *, int);
312 static u_int32_t	 pf_tcp_iss(struct pf_pdesc *);
313 static __inline void	 pf_dummynet_flag_remove(struct mbuf *m,
314 			    struct pf_mtag *pf_mtag);
315 static int		 pf_dummynet(struct pf_pdesc *, struct pf_kstate *,
316 			    struct pf_krule *, struct mbuf **);
317 static int		 pf_dummynet_route(struct pf_pdesc *,
318 			    struct pf_kstate *, struct pf_krule *,
319 			    struct ifnet *, struct sockaddr *, struct mbuf **);
320 static int		 pf_test_eth_rule(int, struct pfi_kkif *,
321 			    struct mbuf **);
322 static int		 pf_test_rule(struct pf_krule **, struct pf_kstate **,
323 			    struct pf_pdesc *, struct pf_krule **,
324 			    struct pf_kruleset **, struct inpcb *);
325 static int		 pf_create_state(struct pf_krule *, struct pf_krule *,
326 			    struct pf_krule *, struct pf_pdesc *,
327 			    struct pf_ksrc_node *, struct pf_state_key *,
328 			    struct pf_state_key *,
329 			    u_int16_t, u_int16_t, int *,
330 			    struct pf_kstate **, int, u_int16_t, u_int16_t,
331 			    struct pf_krule_slist *, struct pf_udp_mapping *);
332 static int		 pf_state_key_addr_setup(struct pf_pdesc *,
333 			    struct pf_state_key_cmp *, int);
334 static int		 pf_tcp_track_full(struct pf_kstate **,
335 			    struct pf_pdesc *, u_short *, int *);
336 static int		 pf_tcp_track_sloppy(struct pf_kstate **,
337 			    struct pf_pdesc *, u_short *);
338 static int		 pf_test_state_tcp(struct pf_kstate **,
339 			    struct pf_pdesc *, u_short *);
340 static int		 pf_test_state_udp(struct pf_kstate **,
341 			    struct pf_pdesc *);
342 int			 pf_icmp_state_lookup(struct pf_state_key_cmp *,
343 			    struct pf_pdesc *, struct pf_kstate **,
344 			    int, u_int16_t, u_int16_t,
345 			    int, int *, int, int);
346 static int		 pf_test_state_icmp(struct pf_kstate **,
347 			    struct pf_pdesc *, u_short *);
348 static void		 pf_sctp_multihome_detach_addr(const struct pf_kstate *);
349 static void		 pf_sctp_multihome_delayed(struct pf_pdesc *,
350 			    struct pfi_kkif *, struct pf_kstate *, int);
351 static int		 pf_test_state_sctp(struct pf_kstate **,
352 			    struct pf_pdesc *, u_short *);
353 static int		 pf_test_state_other(struct pf_kstate **,
354 			    struct pf_pdesc *);
355 static u_int16_t	 pf_calc_mss(struct pf_addr *, sa_family_t,
356 				int, u_int16_t);
357 static int		 pf_check_proto_cksum(struct mbuf *, int, int,
358 			    u_int8_t, sa_family_t);
359 static int		 pf_walk_option6(struct mbuf *, int, int, uint32_t *,
360 			    u_short *);
361 static void		 pf_print_state_parts(struct pf_kstate *,
362 			    struct pf_state_key *, struct pf_state_key *);
363 static void		 pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t,
364 			    bool, u_int8_t);
365 static struct pf_kstate	*pf_find_state(struct pfi_kkif *,
366 			    const struct pf_state_key_cmp *, u_int);
367 static int		 pf_src_connlimit(struct pf_kstate **);
368 static int		 pf_match_rcvif(struct mbuf *, struct pf_krule *);
369 static void		 pf_counters_inc(int, struct pf_pdesc *,
370 			    struct pf_kstate *, struct pf_krule *,
371 			    struct pf_krule *);
372 static void		 pf_overload_task(void *v, int pending);
373 static u_short		 pf_insert_src_node(struct pf_ksrc_node **,
374 			    struct pf_krule *, struct pf_addr *, sa_family_t);
375 static u_int		 pf_purge_expired_states(u_int, int);
376 static void		 pf_purge_unlinked_rules(void);
377 static int		 pf_mtag_uminit(void *, int, int);
378 static void		 pf_mtag_free(struct m_tag *);
379 static void		 pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *,
380 			    int, struct pf_state_key *);
381 #ifdef INET
382 static void		 pf_route(struct mbuf **, struct pf_krule *,
383 			    struct ifnet *, struct pf_kstate *,
384 			    struct pf_pdesc *, struct inpcb *);
385 #endif /* INET */
386 #ifdef INET6
387 static void		 pf_change_a6(struct pf_addr *, u_int16_t *,
388 			    struct pf_addr *, u_int8_t);
389 static void		 pf_route6(struct mbuf **, struct pf_krule *,
390 			    struct ifnet *, struct pf_kstate *,
391 			    struct pf_pdesc *, struct inpcb *);
392 #endif /* INET6 */
393 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t);
394 
395 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len);
396 
397 extern int pf_end_threads;
398 extern struct proc *pf_purge_proc;
399 
400 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]);
401 
402 enum { PF_ICMP_MULTI_NONE, PF_ICMP_MULTI_LINK };
403 
404 #define	PACKET_UNDO_NAT(_m, _pd, _off, _s)		\
405 	do {								\
406 		struct pf_state_key *nk;				\
407 		if ((pd->dir) == PF_OUT)					\
408 			nk = (_s)->key[PF_SK_STACK];			\
409 		else							\
410 			nk = (_s)->key[PF_SK_WIRE];			\
411 		pf_packet_rework_nat(_m, _pd, _off, nk);		\
412 	} while (0)
413 
414 #define	PACKET_LOOPED(pd)	((pd)->pf_mtag &&			\
415 				 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED)
416 
417 #define	STATE_LOOKUP(k, s, pd)						\
418 	do {								\
419 		(s) = pf_find_state((pd->kif), (k), (pd->dir));		\
420 		SDT_PROBE5(pf, ip, state, lookup, pd->kif, k, (pd->dir), pd, (s));	\
421 		if ((s) == NULL)					\
422 			return (PF_DROP);				\
423 		if (PACKET_LOOPED(pd))					\
424 			return (PF_PASS);				\
425 	} while (0)
426 
427 static struct pfi_kkif *
428 BOUND_IFACE(struct pf_kstate *st, struct pfi_kkif *k)
429 {
430 	SDT_PROBE2(pf, ip, , bound_iface, st, k);
431 
432 	/* Floating unless otherwise specified. */
433 	if (! (st->rule->rule_flag & PFRULE_IFBOUND))
434 		return (V_pfi_all);
435 
436 	/*
437 	 * Initially set to all, because we don't know what interface we'll be
438 	 * sending this out when we create the state.
439 	 */
440 	if (st->rule->rt == PF_REPLYTO)
441 		return (V_pfi_all);
442 
443 	/* Don't overrule the interface for states created on incoming packets. */
444 	if (st->direction == PF_IN)
445 		return (k);
446 
447 	/* No route-to, so don't overrule. */
448 	if (st->rt != PF_ROUTETO)
449 		return (k);
450 
451 	/* Bind to the route-to interface. */
452 	return (st->rt_kif);
453 }
454 
455 #define	STATE_INC_COUNTERS(s)						\
456 	do {								\
457 		struct pf_krule_item *mrm;				\
458 		counter_u64_add(s->rule->states_cur, 1);		\
459 		counter_u64_add(s->rule->states_tot, 1);		\
460 		if (s->anchor != NULL) {				\
461 			counter_u64_add(s->anchor->states_cur, 1);	\
462 			counter_u64_add(s->anchor->states_tot, 1);	\
463 		}							\
464 		if (s->nat_rule != NULL) {				\
465 			counter_u64_add(s->nat_rule->states_cur, 1);\
466 			counter_u64_add(s->nat_rule->states_tot, 1);\
467 		}							\
468 		SLIST_FOREACH(mrm, &s->match_rules, entry) {		\
469 			counter_u64_add(mrm->r->states_cur, 1);		\
470 			counter_u64_add(mrm->r->states_tot, 1);		\
471 		}							\
472 	} while (0)
473 
474 #define	STATE_DEC_COUNTERS(s)						\
475 	do {								\
476 		struct pf_krule_item *mrm;				\
477 		if (s->nat_rule != NULL)				\
478 			counter_u64_add(s->nat_rule->states_cur, -1);\
479 		if (s->anchor != NULL)				\
480 			counter_u64_add(s->anchor->states_cur, -1);	\
481 		counter_u64_add(s->rule->states_cur, -1);		\
482 		SLIST_FOREACH(mrm, &s->match_rules, entry)		\
483 			counter_u64_add(mrm->r->states_cur, -1);	\
484 	} while (0)
485 
486 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures");
487 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items");
488 VNET_DEFINE(struct pf_keyhash *, pf_keyhash);
489 VNET_DEFINE(struct pf_idhash *, pf_idhash);
490 VNET_DEFINE(struct pf_srchash *, pf_srchash);
491 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash);
492 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping);
493 
494 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
495     "pf(4)");
496 
497 VNET_DEFINE(u_long, pf_hashmask);
498 VNET_DEFINE(u_long, pf_srchashmask);
499 VNET_DEFINE(u_long, pf_udpendpointhashmask);
500 VNET_DEFINE_STATIC(u_long, pf_hashsize);
501 #define V_pf_hashsize	VNET(pf_hashsize)
502 VNET_DEFINE_STATIC(u_long, pf_srchashsize);
503 #define V_pf_srchashsize	VNET(pf_srchashsize)
504 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize);
505 #define V_pf_udpendpointhashsize	VNET(pf_udpendpointhashsize)
506 u_long	pf_ioctl_maxcount = 65535;
507 
508 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
509     &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable");
510 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
511     &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable");
512 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
513     &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable");
514 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN,
515     &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call");
516 
517 VNET_DEFINE(void *, pf_swi_cookie);
518 VNET_DEFINE(struct intr_event *, pf_swi_ie);
519 
520 VNET_DEFINE(uint32_t, pf_hashseed);
521 #define	V_pf_hashseed	VNET(pf_hashseed)
522 
523 static void
524 pf_sctp_checksum(struct mbuf *m, int off)
525 {
526 	uint32_t sum = 0;
527 
528 	/* Zero out the checksum, to enable recalculation. */
529 	m_copyback(m, off + offsetof(struct sctphdr, checksum),
530 	    sizeof(sum), (caddr_t)&sum);
531 
532 	sum = sctp_calculate_cksum(m, off);
533 
534 	m_copyback(m, off + offsetof(struct sctphdr, checksum),
535 	    sizeof(sum), (caddr_t)&sum);
536 }
537 
538 int
539 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af)
540 {
541 
542 	switch (af) {
543 #ifdef INET
544 	case AF_INET:
545 		if (a->addr32[0] > b->addr32[0])
546 			return (1);
547 		if (a->addr32[0] < b->addr32[0])
548 			return (-1);
549 		break;
550 #endif /* INET */
551 #ifdef INET6
552 	case AF_INET6:
553 		if (a->addr32[3] > b->addr32[3])
554 			return (1);
555 		if (a->addr32[3] < b->addr32[3])
556 			return (-1);
557 		if (a->addr32[2] > b->addr32[2])
558 			return (1);
559 		if (a->addr32[2] < b->addr32[2])
560 			return (-1);
561 		if (a->addr32[1] > b->addr32[1])
562 			return (1);
563 		if (a->addr32[1] < b->addr32[1])
564 			return (-1);
565 		if (a->addr32[0] > b->addr32[0])
566 			return (1);
567 		if (a->addr32[0] < b->addr32[0])
568 			return (-1);
569 		break;
570 #endif /* INET6 */
571 	}
572 	return (0);
573 }
574 
575 static bool
576 pf_is_loopback(sa_family_t af, struct pf_addr *addr)
577 {
578 	switch (af) {
579 #ifdef INET
580 	case AF_INET:
581 		return IN_LOOPBACK(ntohl(addr->v4.s_addr));
582 #endif
583 	case AF_INET6:
584 		return IN6_IS_ADDR_LOOPBACK(&addr->v6);
585 	default:
586 		panic("Unknown af %d", af);
587 	}
588 }
589 
590 static void
591 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off,
592 	struct pf_state_key *nk)
593 {
594 
595 	switch (pd->proto) {
596 	case IPPROTO_TCP: {
597 		struct tcphdr *th = &pd->hdr.tcp;
598 
599 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
600 			pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum,
601 			    &th->th_sum, &nk->addr[pd->sidx],
602 			    nk->port[pd->sidx], 0, pd->af);
603 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
604 			pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum,
605 			    &th->th_sum, &nk->addr[pd->didx],
606 			    nk->port[pd->didx], 0, pd->af);
607 		m_copyback(m, off, sizeof(*th), (caddr_t)th);
608 		break;
609 	}
610 	case IPPROTO_UDP: {
611 		struct udphdr *uh = &pd->hdr.udp;
612 
613 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
614 			pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum,
615 			    &uh->uh_sum, &nk->addr[pd->sidx],
616 			    nk->port[pd->sidx], 1, pd->af);
617 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
618 			pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum,
619 			    &uh->uh_sum, &nk->addr[pd->didx],
620 			    nk->port[pd->didx], 1, pd->af);
621 		m_copyback(m, off, sizeof(*uh), (caddr_t)uh);
622 		break;
623 	}
624 	case IPPROTO_SCTP: {
625 		struct sctphdr *sh = &pd->hdr.sctp;
626 		uint16_t checksum = 0;
627 
628 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
629 			pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum,
630 			    &checksum, &nk->addr[pd->sidx],
631 			    nk->port[pd->sidx], 1, pd->af);
632 		}
633 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
634 			pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum,
635 			    &checksum, &nk->addr[pd->didx],
636 			    nk->port[pd->didx], 1, pd->af);
637 		}
638 
639 		break;
640 	}
641 	case IPPROTO_ICMP: {
642 		struct icmp *ih = &pd->hdr.icmp;
643 
644 		if (nk->port[pd->sidx] != ih->icmp_id) {
645 			pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
646 			    ih->icmp_cksum, ih->icmp_id,
647 			    nk->port[pd->sidx], 0);
648 			ih->icmp_id = nk->port[pd->sidx];
649 			pd->sport = &ih->icmp_id;
650 
651 			m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih);
652 		}
653 		/* FALLTHROUGH */
654 	}
655 	default:
656 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
657 			switch (pd->af) {
658 			case AF_INET:
659 				pf_change_a(&pd->src->v4.s_addr,
660 				    pd->ip_sum, nk->addr[pd->sidx].v4.s_addr,
661 				    0);
662 				break;
663 			case AF_INET6:
664 				PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
665 				break;
666 			}
667 		}
668 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
669 			switch (pd->af) {
670 			case AF_INET:
671 				pf_change_a(&pd->dst->v4.s_addr,
672 				    pd->ip_sum, nk->addr[pd->didx].v4.s_addr,
673 				    0);
674 				break;
675 			case AF_INET6:
676 				PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
677 				break;
678 			}
679 		}
680 		break;
681 	}
682 }
683 
684 static __inline uint32_t
685 pf_hashkey(const struct pf_state_key *sk)
686 {
687 	uint32_t h;
688 
689 	h = murmur3_32_hash32((const uint32_t *)sk,
690 	    sizeof(struct pf_state_key_cmp)/sizeof(uint32_t),
691 	    V_pf_hashseed);
692 
693 	return (h & V_pf_hashmask);
694 }
695 
696 static __inline uint32_t
697 pf_hashsrc(struct pf_addr *addr, sa_family_t af)
698 {
699 	uint32_t h;
700 
701 	switch (af) {
702 	case AF_INET:
703 		h = murmur3_32_hash32((uint32_t *)&addr->v4,
704 		    sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed);
705 		break;
706 	case AF_INET6:
707 		h = murmur3_32_hash32((uint32_t *)&addr->v6,
708 		    sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed);
709 		break;
710 	}
711 
712 	return (h & V_pf_srchashmask);
713 }
714 
715 static inline uint32_t
716 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint)
717 {
718 	uint32_t h;
719 
720 	h = murmur3_32_hash32((uint32_t *)endpoint,
721 	    sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t),
722 	    V_pf_hashseed);
723 	return (h & V_pf_udpendpointhashmask);
724 }
725 
726 #ifdef ALTQ
727 static int
728 pf_state_hash(struct pf_kstate *s)
729 {
730 	u_int32_t hv = (intptr_t)s / sizeof(*s);
731 
732 	hv ^= crc32(&s->src, sizeof(s->src));
733 	hv ^= crc32(&s->dst, sizeof(s->dst));
734 	if (hv == 0)
735 		hv = 1;
736 	return (hv);
737 }
738 #endif
739 
740 static __inline void
741 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate)
742 {
743 	if (which == PF_PEER_DST || which == PF_PEER_BOTH)
744 		s->dst.state = newstate;
745 	if (which == PF_PEER_DST)
746 		return;
747 	if (s->src.state == newstate)
748 		return;
749 	if (s->creatorid == V_pf_status.hostid &&
750 	    s->key[PF_SK_STACK] != NULL &&
751 	    s->key[PF_SK_STACK]->proto == IPPROTO_TCP &&
752 	    !(TCPS_HAVEESTABLISHED(s->src.state) ||
753 	    s->src.state == TCPS_CLOSED) &&
754 	    (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED))
755 		atomic_add_32(&V_pf_status.states_halfopen, -1);
756 
757 	s->src.state = newstate;
758 }
759 
760 #ifdef INET6
761 void
762 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af)
763 {
764 	switch (af) {
765 #ifdef INET
766 	case AF_INET:
767 		memcpy(&dst->v4, &src->v4, sizeof(dst->v4));
768 		break;
769 #endif /* INET */
770 	case AF_INET6:
771 		memcpy(&dst->v6, &src->v6, sizeof(dst->v6));
772 		break;
773 	}
774 }
775 #endif /* INET6 */
776 
777 static void
778 pf_init_threshold(struct pf_threshold *threshold,
779     u_int32_t limit, u_int32_t seconds)
780 {
781 	threshold->limit = limit * PF_THRESHOLD_MULT;
782 	threshold->seconds = seconds;
783 	threshold->count = 0;
784 	threshold->last = time_uptime;
785 }
786 
787 static void
788 pf_add_threshold(struct pf_threshold *threshold)
789 {
790 	u_int32_t t = time_uptime, diff = t - threshold->last;
791 
792 	if (diff >= threshold->seconds)
793 		threshold->count = 0;
794 	else
795 		threshold->count -= threshold->count * diff /
796 		    threshold->seconds;
797 	threshold->count += PF_THRESHOLD_MULT;
798 	threshold->last = t;
799 }
800 
801 static int
802 pf_check_threshold(struct pf_threshold *threshold)
803 {
804 	return (threshold->count > threshold->limit);
805 }
806 
807 static int
808 pf_src_connlimit(struct pf_kstate **state)
809 {
810 	struct pf_overload_entry *pfoe;
811 	int bad = 0;
812 
813 	PF_STATE_LOCK_ASSERT(*state);
814 	/*
815 	 * XXXKS: The src node is accessed unlocked!
816 	 * PF_SRC_NODE_LOCK_ASSERT((*state)->src_node);
817 	 */
818 
819 	(*state)->src_node->conn++;
820 	(*state)->src.tcp_est = 1;
821 	pf_add_threshold(&(*state)->src_node->conn_rate);
822 
823 	if ((*state)->rule->max_src_conn &&
824 	    (*state)->rule->max_src_conn <
825 	    (*state)->src_node->conn) {
826 		counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1);
827 		bad++;
828 	}
829 
830 	if ((*state)->rule->max_src_conn_rate.limit &&
831 	    pf_check_threshold(&(*state)->src_node->conn_rate)) {
832 		counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1);
833 		bad++;
834 	}
835 
836 	if (!bad)
837 		return (0);
838 
839 	/* Kill this state. */
840 	(*state)->timeout = PFTM_PURGE;
841 	pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED);
842 
843 	if ((*state)->rule->overload_tbl == NULL)
844 		return (1);
845 
846 	/* Schedule overloading and flushing task. */
847 	pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT);
848 	if (pfoe == NULL)
849 		return (1);	/* too bad :( */
850 
851 	bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr));
852 	pfoe->af = (*state)->key[PF_SK_WIRE]->af;
853 	pfoe->rule = (*state)->rule;
854 	pfoe->dir = (*state)->direction;
855 	PF_OVERLOADQ_LOCK();
856 	SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next);
857 	PF_OVERLOADQ_UNLOCK();
858 	taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask);
859 
860 	return (1);
861 }
862 
863 static void
864 pf_overload_task(void *v, int pending)
865 {
866 	struct pf_overload_head queue;
867 	struct pfr_addr p;
868 	struct pf_overload_entry *pfoe, *pfoe1;
869 	uint32_t killed = 0;
870 
871 	CURVNET_SET((struct vnet *)v);
872 
873 	PF_OVERLOADQ_LOCK();
874 	queue = V_pf_overloadqueue;
875 	SLIST_INIT(&V_pf_overloadqueue);
876 	PF_OVERLOADQ_UNLOCK();
877 
878 	bzero(&p, sizeof(p));
879 	SLIST_FOREACH(pfoe, &queue, next) {
880 		counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1);
881 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
882 			printf("%s: blocking address ", __func__);
883 			pf_print_host(&pfoe->addr, 0, pfoe->af);
884 			printf("\n");
885 		}
886 
887 		p.pfra_af = pfoe->af;
888 		switch (pfoe->af) {
889 #ifdef INET
890 		case AF_INET:
891 			p.pfra_net = 32;
892 			p.pfra_ip4addr = pfoe->addr.v4;
893 			break;
894 #endif
895 #ifdef INET6
896 		case AF_INET6:
897 			p.pfra_net = 128;
898 			p.pfra_ip6addr = pfoe->addr.v6;
899 			break;
900 #endif
901 		}
902 
903 		PF_RULES_WLOCK();
904 		pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second);
905 		PF_RULES_WUNLOCK();
906 	}
907 
908 	/*
909 	 * Remove those entries, that don't need flushing.
910 	 */
911 	SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
912 		if (pfoe->rule->flush == 0) {
913 			SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next);
914 			free(pfoe, M_PFTEMP);
915 		} else
916 			counter_u64_add(
917 			    V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1);
918 
919 	/* If nothing to flush, return. */
920 	if (SLIST_EMPTY(&queue)) {
921 		CURVNET_RESTORE();
922 		return;
923 	}
924 
925 	for (int i = 0; i <= V_pf_hashmask; i++) {
926 		struct pf_idhash *ih = &V_pf_idhash[i];
927 		struct pf_state_key *sk;
928 		struct pf_kstate *s;
929 
930 		PF_HASHROW_LOCK(ih);
931 		LIST_FOREACH(s, &ih->states, entry) {
932 		    sk = s->key[PF_SK_WIRE];
933 		    SLIST_FOREACH(pfoe, &queue, next)
934 			if (sk->af == pfoe->af &&
935 			    ((pfoe->rule->flush & PF_FLUSH_GLOBAL) ||
936 			    pfoe->rule == s->rule) &&
937 			    ((pfoe->dir == PF_OUT &&
938 			    PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) ||
939 			    (pfoe->dir == PF_IN &&
940 			    PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) {
941 				s->timeout = PFTM_PURGE;
942 				pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
943 				killed++;
944 			}
945 		}
946 		PF_HASHROW_UNLOCK(ih);
947 	}
948 	SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
949 		free(pfoe, M_PFTEMP);
950 	if (V_pf_status.debug >= PF_DEBUG_MISC)
951 		printf("%s: %u states killed", __func__, killed);
952 
953 	CURVNET_RESTORE();
954 }
955 
956 /*
957  * Can return locked on failure, so that we can consistently
958  * allocate and insert a new one.
959  */
960 struct pf_ksrc_node *
961 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af,
962 	struct pf_srchash **sh, bool returnlocked)
963 {
964 	struct pf_ksrc_node *n;
965 
966 	counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
967 
968 	*sh = &V_pf_srchash[pf_hashsrc(src, af)];
969 	PF_HASHROW_LOCK(*sh);
970 	LIST_FOREACH(n, &(*sh)->nodes, entry)
971 		if (n->rule == rule && n->af == af &&
972 		    ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) ||
973 		    (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0)))
974 			break;
975 
976 	if (n != NULL) {
977 		n->states++;
978 		PF_HASHROW_UNLOCK(*sh);
979 	} else if (returnlocked == false)
980 		PF_HASHROW_UNLOCK(*sh);
981 
982 	return (n);
983 }
984 
985 static void
986 pf_free_src_node(struct pf_ksrc_node *sn)
987 {
988 
989 	for (int i = 0; i < 2; i++) {
990 		counter_u64_free(sn->bytes[i]);
991 		counter_u64_free(sn->packets[i]);
992 	}
993 	uma_zfree(V_pf_sources_z, sn);
994 }
995 
996 static u_short
997 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule,
998     struct pf_addr *src, sa_family_t af)
999 {
1000 	u_short			 reason = 0;
1001 	struct pf_srchash	*sh = NULL;
1002 
1003 	KASSERT((rule->rule_flag & PFRULE_SRCTRACK ||
1004 	    rule->rpool.opts & PF_POOL_STICKYADDR),
1005 	    ("%s for non-tracking rule %p", __func__, rule));
1006 
1007 	if (*sn == NULL)
1008 		*sn = pf_find_src_node(src, rule, af, &sh, true);
1009 
1010 	if (*sn == NULL) {
1011 		PF_HASHROW_ASSERT(sh);
1012 
1013 		if (rule->max_src_nodes &&
1014 		    counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) {
1015 			counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1);
1016 			PF_HASHROW_UNLOCK(sh);
1017 			reason = PFRES_SRCLIMIT;
1018 			goto done;
1019 		}
1020 
1021 		(*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO);
1022 		if ((*sn) == NULL) {
1023 			PF_HASHROW_UNLOCK(sh);
1024 			reason = PFRES_MEMORY;
1025 			goto done;
1026 		}
1027 
1028 		for (int i = 0; i < 2; i++) {
1029 			(*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT);
1030 			(*sn)->packets[i] = counter_u64_alloc(M_NOWAIT);
1031 
1032 			if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) {
1033 				pf_free_src_node(*sn);
1034 				PF_HASHROW_UNLOCK(sh);
1035 				reason = PFRES_MEMORY;
1036 				goto done;
1037 			}
1038 		}
1039 
1040 		pf_init_threshold(&(*sn)->conn_rate,
1041 		    rule->max_src_conn_rate.limit,
1042 		    rule->max_src_conn_rate.seconds);
1043 
1044 		MPASS((*sn)->lock == NULL);
1045 		(*sn)->lock = &sh->lock;
1046 
1047 		(*sn)->af = af;
1048 		(*sn)->rule = rule;
1049 		PF_ACPY(&(*sn)->addr, src, af);
1050 		LIST_INSERT_HEAD(&sh->nodes, *sn, entry);
1051 		(*sn)->creation = time_uptime;
1052 		(*sn)->ruletype = rule->action;
1053 		(*sn)->states = 1;
1054 		if ((*sn)->rule != NULL)
1055 			counter_u64_add((*sn)->rule->src_nodes, 1);
1056 		PF_HASHROW_UNLOCK(sh);
1057 		counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1);
1058 	} else {
1059 		if (rule->max_src_states &&
1060 		    (*sn)->states >= rule->max_src_states) {
1061 			counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES],
1062 			    1);
1063 			reason = PFRES_SRCLIMIT;
1064 			goto done;
1065 		}
1066 	}
1067 done:
1068 	return (reason);
1069 }
1070 
1071 void
1072 pf_unlink_src_node(struct pf_ksrc_node *src)
1073 {
1074 	PF_SRC_NODE_LOCK_ASSERT(src);
1075 
1076 	LIST_REMOVE(src, entry);
1077 	if (src->rule)
1078 		counter_u64_add(src->rule->src_nodes, -1);
1079 }
1080 
1081 u_int
1082 pf_free_src_nodes(struct pf_ksrc_node_list *head)
1083 {
1084 	struct pf_ksrc_node *sn, *tmp;
1085 	u_int count = 0;
1086 
1087 	LIST_FOREACH_SAFE(sn, head, entry, tmp) {
1088 		pf_free_src_node(sn);
1089 		count++;
1090 	}
1091 
1092 	counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count);
1093 
1094 	return (count);
1095 }
1096 
1097 void
1098 pf_mtag_initialize(void)
1099 {
1100 
1101 	pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) +
1102 	    sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL,
1103 	    UMA_ALIGN_PTR, 0);
1104 }
1105 
1106 /* Per-vnet data storage structures initialization. */
1107 void
1108 pf_initialize(void)
1109 {
1110 	struct pf_keyhash	*kh;
1111 	struct pf_idhash	*ih;
1112 	struct pf_srchash	*sh;
1113 	struct pf_udpendpointhash	*uh;
1114 	u_int i;
1115 
1116 	if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize))
1117 		V_pf_hashsize = PF_HASHSIZ;
1118 	if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize))
1119 		V_pf_srchashsize = PF_SRCHASHSIZ;
1120 	if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize))
1121 		V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1122 
1123 	V_pf_hashseed = arc4random();
1124 
1125 	/* States and state keys storage. */
1126 	V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate),
1127 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1128 	V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z;
1129 	uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT);
1130 	uma_zone_set_warning(V_pf_state_z, "PF states limit reached");
1131 
1132 	V_pf_state_key_z = uma_zcreate("pf state keys",
1133 	    sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL,
1134 	    UMA_ALIGN_PTR, 0);
1135 
1136 	V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash),
1137 	    M_PFHASH, M_NOWAIT | M_ZERO);
1138 	V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash),
1139 	    M_PFHASH, M_NOWAIT | M_ZERO);
1140 	if (V_pf_keyhash == NULL || V_pf_idhash == NULL) {
1141 		printf("pf: Unable to allocate memory for "
1142 		    "state_hashsize %lu.\n", V_pf_hashsize);
1143 
1144 		free(V_pf_keyhash, M_PFHASH);
1145 		free(V_pf_idhash, M_PFHASH);
1146 
1147 		V_pf_hashsize = PF_HASHSIZ;
1148 		V_pf_keyhash = mallocarray(V_pf_hashsize,
1149 		    sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO);
1150 		V_pf_idhash = mallocarray(V_pf_hashsize,
1151 		    sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO);
1152 	}
1153 
1154 	V_pf_hashmask = V_pf_hashsize - 1;
1155 	for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask;
1156 	    i++, kh++, ih++) {
1157 		mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK);
1158 		mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF);
1159 	}
1160 
1161 	/* Source nodes. */
1162 	V_pf_sources_z = uma_zcreate("pf source nodes",
1163 	    sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1164 	    0);
1165 	V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z;
1166 	uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT);
1167 	uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached");
1168 
1169 	V_pf_srchash = mallocarray(V_pf_srchashsize,
1170 	    sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO);
1171 	if (V_pf_srchash == NULL) {
1172 		printf("pf: Unable to allocate memory for "
1173 		    "source_hashsize %lu.\n", V_pf_srchashsize);
1174 
1175 		V_pf_srchashsize = PF_SRCHASHSIZ;
1176 		V_pf_srchash = mallocarray(V_pf_srchashsize,
1177 		    sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO);
1178 	}
1179 
1180 	V_pf_srchashmask = V_pf_srchashsize - 1;
1181 	for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++)
1182 		mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF);
1183 
1184 
1185 	/* UDP endpoint mappings. */
1186 	V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings",
1187 	    sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL,
1188 	    UMA_ALIGN_PTR, 0);
1189 	V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1190 	    sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO);
1191 	if (V_pf_udpendpointhash == NULL) {
1192 		printf("pf: Unable to allocate memory for "
1193 		    "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize);
1194 
1195 		V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1196 		V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1197 		    sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO);
1198 	}
1199 
1200 	V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1;
1201 	for (i = 0, uh = V_pf_udpendpointhash;
1202 	    i <= V_pf_udpendpointhashmask;
1203 	    i++, uh++) {
1204 		mtx_init(&uh->lock, "pf_udpendpointhash", NULL,
1205 		    MTX_DEF | MTX_DUPOK);
1206 	}
1207 
1208 	/* ALTQ */
1209 	TAILQ_INIT(&V_pf_altqs[0]);
1210 	TAILQ_INIT(&V_pf_altqs[1]);
1211 	TAILQ_INIT(&V_pf_altqs[2]);
1212 	TAILQ_INIT(&V_pf_altqs[3]);
1213 	TAILQ_INIT(&V_pf_pabuf);
1214 	V_pf_altqs_active = &V_pf_altqs[0];
1215 	V_pf_altq_ifs_active = &V_pf_altqs[1];
1216 	V_pf_altqs_inactive = &V_pf_altqs[2];
1217 	V_pf_altq_ifs_inactive = &V_pf_altqs[3];
1218 
1219 	/* Send & overload+flush queues. */
1220 	STAILQ_INIT(&V_pf_sendqueue);
1221 	SLIST_INIT(&V_pf_overloadqueue);
1222 	TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet);
1223 
1224 	/* Unlinked, but may be referenced rules. */
1225 	TAILQ_INIT(&V_pf_unlinked_rules);
1226 }
1227 
1228 void
1229 pf_mtag_cleanup(void)
1230 {
1231 
1232 	uma_zdestroy(pf_mtag_z);
1233 }
1234 
1235 void
1236 pf_cleanup(void)
1237 {
1238 	struct pf_keyhash	*kh;
1239 	struct pf_idhash	*ih;
1240 	struct pf_srchash	*sh;
1241 	struct pf_udpendpointhash	*uh;
1242 	struct pf_send_entry	*pfse, *next;
1243 	u_int i;
1244 
1245 	for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash;
1246 	    i <= V_pf_hashmask;
1247 	    i++, kh++, ih++) {
1248 		KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty",
1249 		    __func__));
1250 		KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty",
1251 		    __func__));
1252 		mtx_destroy(&kh->lock);
1253 		mtx_destroy(&ih->lock);
1254 	}
1255 	free(V_pf_keyhash, M_PFHASH);
1256 	free(V_pf_idhash, M_PFHASH);
1257 
1258 	for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
1259 		KASSERT(LIST_EMPTY(&sh->nodes),
1260 		    ("%s: source node hash not empty", __func__));
1261 		mtx_destroy(&sh->lock);
1262 	}
1263 	free(V_pf_srchash, M_PFHASH);
1264 
1265 	for (i = 0, uh = V_pf_udpendpointhash;
1266 	    i <= V_pf_udpendpointhashmask;
1267 	    i++, uh++) {
1268 		KASSERT(LIST_EMPTY(&uh->endpoints),
1269 		    ("%s: udp endpoint hash not empty", __func__));
1270 		mtx_destroy(&uh->lock);
1271 	}
1272 	free(V_pf_udpendpointhash, M_PFHASH);
1273 
1274 	STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) {
1275 		m_freem(pfse->pfse_m);
1276 		free(pfse, M_PFTEMP);
1277 	}
1278 	MPASS(RB_EMPTY(&V_pf_sctp_endpoints));
1279 
1280 	uma_zdestroy(V_pf_sources_z);
1281 	uma_zdestroy(V_pf_state_z);
1282 	uma_zdestroy(V_pf_state_key_z);
1283 	uma_zdestroy(V_pf_udp_mapping_z);
1284 }
1285 
1286 static int
1287 pf_mtag_uminit(void *mem, int size, int how)
1288 {
1289 	struct m_tag *t;
1290 
1291 	t = (struct m_tag *)mem;
1292 	t->m_tag_cookie = MTAG_ABI_COMPAT;
1293 	t->m_tag_id = PACKET_TAG_PF;
1294 	t->m_tag_len = sizeof(struct pf_mtag);
1295 	t->m_tag_free = pf_mtag_free;
1296 
1297 	return (0);
1298 }
1299 
1300 static void
1301 pf_mtag_free(struct m_tag *t)
1302 {
1303 
1304 	uma_zfree(pf_mtag_z, t);
1305 }
1306 
1307 struct pf_mtag *
1308 pf_get_mtag(struct mbuf *m)
1309 {
1310 	struct m_tag *mtag;
1311 
1312 	if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL)
1313 		return ((struct pf_mtag *)(mtag + 1));
1314 
1315 	mtag = uma_zalloc(pf_mtag_z, M_NOWAIT);
1316 	if (mtag == NULL)
1317 		return (NULL);
1318 	bzero(mtag + 1, sizeof(struct pf_mtag));
1319 	m_tag_prepend(m, mtag);
1320 
1321 	return ((struct pf_mtag *)(mtag + 1));
1322 }
1323 
1324 static int
1325 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks,
1326     struct pf_kstate *s)
1327 {
1328 	struct pf_keyhash	*khs, *khw, *kh;
1329 	struct pf_state_key	*sk, *cur;
1330 	struct pf_kstate	*si, *olds = NULL;
1331 	int idx;
1332 
1333 	NET_EPOCH_ASSERT();
1334 	KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1335 	KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__));
1336 	KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__));
1337 
1338 	/*
1339 	 * We need to lock hash slots of both keys. To avoid deadlock
1340 	 * we always lock the slot with lower address first. Unlock order
1341 	 * isn't important.
1342 	 *
1343 	 * We also need to lock ID hash slot before dropping key
1344 	 * locks. On success we return with ID hash slot locked.
1345 	 */
1346 
1347 	if (skw == sks) {
1348 		khs = khw = &V_pf_keyhash[pf_hashkey(skw)];
1349 		PF_HASHROW_LOCK(khs);
1350 	} else {
1351 		khs = &V_pf_keyhash[pf_hashkey(sks)];
1352 		khw = &V_pf_keyhash[pf_hashkey(skw)];
1353 		if (khs == khw) {
1354 			PF_HASHROW_LOCK(khs);
1355 		} else if (khs < khw) {
1356 			PF_HASHROW_LOCK(khs);
1357 			PF_HASHROW_LOCK(khw);
1358 		} else {
1359 			PF_HASHROW_LOCK(khw);
1360 			PF_HASHROW_LOCK(khs);
1361 		}
1362 	}
1363 
1364 #define	KEYS_UNLOCK()	do {			\
1365 	if (khs != khw) {			\
1366 		PF_HASHROW_UNLOCK(khs);		\
1367 		PF_HASHROW_UNLOCK(khw);		\
1368 	} else					\
1369 		PF_HASHROW_UNLOCK(khs);		\
1370 } while (0)
1371 
1372 	/*
1373 	 * First run: start with wire key.
1374 	 */
1375 	sk = skw;
1376 	kh = khw;
1377 	idx = PF_SK_WIRE;
1378 
1379 	MPASS(s->lock == NULL);
1380 	s->lock = &V_pf_idhash[PF_IDHASH(s)].lock;
1381 
1382 keyattach:
1383 	LIST_FOREACH(cur, &kh->keys, entry)
1384 		if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0)
1385 			break;
1386 
1387 	if (cur != NULL) {
1388 		/* Key exists. Check for same kif, if none, add to key. */
1389 		TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) {
1390 			struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)];
1391 
1392 			PF_HASHROW_LOCK(ih);
1393 			if (si->kif == s->kif &&
1394 			    si->direction == s->direction) {
1395 				if (sk->proto == IPPROTO_TCP &&
1396 				    si->src.state >= TCPS_FIN_WAIT_2 &&
1397 				    si->dst.state >= TCPS_FIN_WAIT_2) {
1398 					/*
1399 					 * New state matches an old >FIN_WAIT_2
1400 					 * state. We can't drop key hash locks,
1401 					 * thus we can't unlink it properly.
1402 					 *
1403 					 * As a workaround we drop it into
1404 					 * TCPS_CLOSED state, schedule purge
1405 					 * ASAP and push it into the very end
1406 					 * of the slot TAILQ, so that it won't
1407 					 * conflict with our new state.
1408 					 */
1409 					pf_set_protostate(si, PF_PEER_BOTH,
1410 					    TCPS_CLOSED);
1411 					si->timeout = PFTM_PURGE;
1412 					olds = si;
1413 				} else {
1414 					if (V_pf_status.debug >= PF_DEBUG_MISC) {
1415 						printf("pf: %s key attach "
1416 						    "failed on %s: ",
1417 						    (idx == PF_SK_WIRE) ?
1418 						    "wire" : "stack",
1419 						    s->kif->pfik_name);
1420 						pf_print_state_parts(s,
1421 						    (idx == PF_SK_WIRE) ?
1422 						    sk : NULL,
1423 						    (idx == PF_SK_STACK) ?
1424 						    sk : NULL);
1425 						printf(", existing: ");
1426 						pf_print_state_parts(si,
1427 						    (idx == PF_SK_WIRE) ?
1428 						    sk : NULL,
1429 						    (idx == PF_SK_STACK) ?
1430 						    sk : NULL);
1431 						printf("\n");
1432 					}
1433 					s->timeout = PFTM_UNLINKED;
1434 					PF_HASHROW_UNLOCK(ih);
1435 					KEYS_UNLOCK();
1436 					uma_zfree(V_pf_state_key_z, sk);
1437 					if (idx == PF_SK_STACK)
1438 						pf_detach_state(s);
1439 					return (EEXIST); /* collision! */
1440 				}
1441 			}
1442 			PF_HASHROW_UNLOCK(ih);
1443 		}
1444 		uma_zfree(V_pf_state_key_z, sk);
1445 		s->key[idx] = cur;
1446 	} else {
1447 		LIST_INSERT_HEAD(&kh->keys, sk, entry);
1448 		s->key[idx] = sk;
1449 	}
1450 
1451 stateattach:
1452 	/* List is sorted, if-bound states before floating. */
1453 	if (s->kif == V_pfi_all)
1454 		TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]);
1455 	else
1456 		TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]);
1457 
1458 	if (olds) {
1459 		TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]);
1460 		TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds,
1461 		    key_list[idx]);
1462 		olds = NULL;
1463 	}
1464 
1465 	/*
1466 	 * Attach done. See how should we (or should not?)
1467 	 * attach a second key.
1468 	 */
1469 	if (sks == skw) {
1470 		s->key[PF_SK_STACK] = s->key[PF_SK_WIRE];
1471 		idx = PF_SK_STACK;
1472 		sks = NULL;
1473 		goto stateattach;
1474 	} else if (sks != NULL) {
1475 		/*
1476 		 * Continue attaching with stack key.
1477 		 */
1478 		sk = sks;
1479 		kh = khs;
1480 		idx = PF_SK_STACK;
1481 		sks = NULL;
1482 		goto keyattach;
1483 	}
1484 
1485 	PF_STATE_LOCK(s);
1486 	KEYS_UNLOCK();
1487 
1488 	KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL,
1489 	    ("%s failure", __func__));
1490 
1491 	return (0);
1492 #undef	KEYS_UNLOCK
1493 }
1494 
1495 static void
1496 pf_detach_state(struct pf_kstate *s)
1497 {
1498 	struct pf_state_key *sks = s->key[PF_SK_STACK];
1499 	struct pf_keyhash *kh;
1500 
1501 	NET_EPOCH_ASSERT();
1502 	MPASS(s->timeout >= PFTM_MAX);
1503 
1504 	pf_sctp_multihome_detach_addr(s);
1505 
1506 	if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr)
1507 		V_pflow_export_state_ptr(s);
1508 
1509 	if (sks != NULL) {
1510 		kh = &V_pf_keyhash[pf_hashkey(sks)];
1511 		PF_HASHROW_LOCK(kh);
1512 		if (s->key[PF_SK_STACK] != NULL)
1513 			pf_state_key_detach(s, PF_SK_STACK);
1514 		/*
1515 		 * If both point to same key, then we are done.
1516 		 */
1517 		if (sks == s->key[PF_SK_WIRE]) {
1518 			pf_state_key_detach(s, PF_SK_WIRE);
1519 			PF_HASHROW_UNLOCK(kh);
1520 			return;
1521 		}
1522 		PF_HASHROW_UNLOCK(kh);
1523 	}
1524 
1525 	if (s->key[PF_SK_WIRE] != NULL) {
1526 		kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])];
1527 		PF_HASHROW_LOCK(kh);
1528 		if (s->key[PF_SK_WIRE] != NULL)
1529 			pf_state_key_detach(s, PF_SK_WIRE);
1530 		PF_HASHROW_UNLOCK(kh);
1531 	}
1532 }
1533 
1534 static void
1535 pf_state_key_detach(struct pf_kstate *s, int idx)
1536 {
1537 	struct pf_state_key *sk = s->key[idx];
1538 #ifdef INVARIANTS
1539 	struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)];
1540 
1541 	PF_HASHROW_ASSERT(kh);
1542 #endif
1543 	TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]);
1544 	s->key[idx] = NULL;
1545 
1546 	if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) {
1547 		LIST_REMOVE(sk, entry);
1548 		uma_zfree(V_pf_state_key_z, sk);
1549 	}
1550 }
1551 
1552 static int
1553 pf_state_key_ctor(void *mem, int size, void *arg, int flags)
1554 {
1555 	struct pf_state_key *sk = mem;
1556 
1557 	bzero(sk, sizeof(struct pf_state_key_cmp));
1558 	TAILQ_INIT(&sk->states[PF_SK_WIRE]);
1559 	TAILQ_INIT(&sk->states[PF_SK_STACK]);
1560 
1561 	return (0);
1562 }
1563 
1564 static int
1565 pf_state_key_addr_setup(struct pf_pdesc *pd,
1566     struct pf_state_key_cmp *key, int multi)
1567 {
1568 	struct pf_addr *saddr = pd->src;
1569 	struct pf_addr *daddr = pd->dst;
1570 #ifdef INET6
1571 	struct nd_neighbor_solicit nd;
1572 	struct pf_addr *target;
1573 	u_short action, reason;
1574 
1575 	if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6)
1576 		goto copy;
1577 
1578 	switch (pd->hdr.icmp6.icmp6_type) {
1579 	case ND_NEIGHBOR_SOLICIT:
1580 		if (multi)
1581 			return (-1);
1582 		if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af))
1583 			return (-1);
1584 		target = (struct pf_addr *)&nd.nd_ns_target;
1585 		daddr = target;
1586 		break;
1587 	case ND_NEIGHBOR_ADVERT:
1588 		if (multi)
1589 			return (-1);
1590 		if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af))
1591 			return (-1);
1592 		target = (struct pf_addr *)&nd.nd_ns_target;
1593 		saddr = target;
1594 		if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) {
1595 			key->addr[pd->didx].addr32[0] = 0;
1596 			key->addr[pd->didx].addr32[1] = 0;
1597 			key->addr[pd->didx].addr32[2] = 0;
1598 			key->addr[pd->didx].addr32[3] = 0;
1599 			daddr = NULL; /* overwritten */
1600 		}
1601 		break;
1602 	default:
1603 		if (multi == PF_ICMP_MULTI_LINK) {
1604 			key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL;
1605 			key->addr[pd->sidx].addr32[1] = 0;
1606 			key->addr[pd->sidx].addr32[2] = 0;
1607 			key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE;
1608 			saddr = NULL; /* overwritten */
1609 		}
1610 	}
1611 copy:
1612 #endif
1613 	if (saddr)
1614 		PF_ACPY(&key->addr[pd->sidx], saddr, pd->af);
1615 	if (daddr)
1616 		PF_ACPY(&key->addr[pd->didx], daddr, pd->af);
1617 
1618 	return (0);
1619 }
1620 
1621 struct pf_state_key *
1622 pf_state_key_setup(struct pf_pdesc *pd,
1623     struct pf_addr *saddr, struct pf_addr *daddr, u_int16_t sport,
1624     u_int16_t dport)
1625 {
1626 	struct pf_state_key *sk;
1627 
1628 	sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1629 	if (sk == NULL)
1630 		return (NULL);
1631 
1632 	if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)sk,
1633 	    0)) {
1634 		uma_zfree(V_pf_state_key_z, sk);
1635 		return (NULL);
1636 	}
1637 
1638 	sk->port[pd->sidx] = sport;
1639 	sk->port[pd->didx] = dport;
1640 	sk->proto = pd->proto;
1641 	sk->af = pd->af;
1642 
1643 	return (sk);
1644 }
1645 
1646 struct pf_state_key *
1647 pf_state_key_clone(const struct pf_state_key *orig)
1648 {
1649 	struct pf_state_key *sk;
1650 
1651 	sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1652 	if (sk == NULL)
1653 		return (NULL);
1654 
1655 	bcopy(orig, sk, sizeof(struct pf_state_key_cmp));
1656 
1657 	return (sk);
1658 }
1659 
1660 int
1661 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif,
1662     struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s)
1663 {
1664 	struct pf_idhash *ih;
1665 	struct pf_kstate *cur;
1666 	int error;
1667 
1668 	NET_EPOCH_ASSERT();
1669 
1670 	KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]),
1671 	    ("%s: sks not pristine", __func__));
1672 	KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]),
1673 	    ("%s: skw not pristine", __func__));
1674 	KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1675 
1676 	s->kif = kif;
1677 	s->orig_kif = orig_kif;
1678 
1679 	if (s->id == 0 && s->creatorid == 0) {
1680 		s->id = alloc_unr64(&V_pf_stateid);
1681 		s->id = htobe64(s->id);
1682 		s->creatorid = V_pf_status.hostid;
1683 	}
1684 
1685 	/* Returns with ID locked on success. */
1686 	if ((error = pf_state_key_attach(skw, sks, s)) != 0)
1687 		return (error);
1688 
1689 	ih = &V_pf_idhash[PF_IDHASH(s)];
1690 	PF_HASHROW_ASSERT(ih);
1691 	LIST_FOREACH(cur, &ih->states, entry)
1692 		if (cur->id == s->id && cur->creatorid == s->creatorid)
1693 			break;
1694 
1695 	if (cur != NULL) {
1696 		s->timeout = PFTM_UNLINKED;
1697 		PF_HASHROW_UNLOCK(ih);
1698 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1699 			printf("pf: state ID collision: "
1700 			    "id: %016llx creatorid: %08x\n",
1701 			    (unsigned long long)be64toh(s->id),
1702 			    ntohl(s->creatorid));
1703 		}
1704 		pf_detach_state(s);
1705 		return (EEXIST);
1706 	}
1707 	LIST_INSERT_HEAD(&ih->states, s, entry);
1708 	/* One for keys, one for ID hash. */
1709 	refcount_init(&s->refs, 2);
1710 
1711 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1);
1712 	if (V_pfsync_insert_state_ptr != NULL)
1713 		V_pfsync_insert_state_ptr(s);
1714 
1715 	/* Returns locked. */
1716 	return (0);
1717 }
1718 
1719 /*
1720  * Find state by ID: returns with locked row on success.
1721  */
1722 struct pf_kstate *
1723 pf_find_state_byid(uint64_t id, uint32_t creatorid)
1724 {
1725 	struct pf_idhash *ih;
1726 	struct pf_kstate *s;
1727 
1728 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1729 
1730 	ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))];
1731 
1732 	PF_HASHROW_LOCK(ih);
1733 	LIST_FOREACH(s, &ih->states, entry)
1734 		if (s->id == id && s->creatorid == creatorid)
1735 			break;
1736 
1737 	if (s == NULL)
1738 		PF_HASHROW_UNLOCK(ih);
1739 
1740 	return (s);
1741 }
1742 
1743 /*
1744  * Find state by key.
1745  * Returns with ID hash slot locked on success.
1746  */
1747 static struct pf_kstate *
1748 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key,
1749     u_int dir)
1750 {
1751 	struct pf_keyhash	*kh;
1752 	struct pf_state_key	*sk;
1753 	struct pf_kstate	*s;
1754 	int idx;
1755 
1756 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1757 
1758 	kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1759 
1760 	PF_HASHROW_LOCK(kh);
1761 	LIST_FOREACH(sk, &kh->keys, entry)
1762 		if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1763 			break;
1764 	if (sk == NULL) {
1765 		PF_HASHROW_UNLOCK(kh);
1766 		return (NULL);
1767 	}
1768 
1769 	idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK);
1770 
1771 	/* List is sorted, if-bound states before floating ones. */
1772 	TAILQ_FOREACH(s, &sk->states[idx], key_list[idx])
1773 		if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) {
1774 			PF_STATE_LOCK(s);
1775 			PF_HASHROW_UNLOCK(kh);
1776 			if (__predict_false(s->timeout >= PFTM_MAX)) {
1777 				/*
1778 				 * State is either being processed by
1779 				 * pf_unlink_state() in an other thread, or
1780 				 * is scheduled for immediate expiry.
1781 				 */
1782 				PF_STATE_UNLOCK(s);
1783 				return (NULL);
1784 			}
1785 			return (s);
1786 		}
1787 	PF_HASHROW_UNLOCK(kh);
1788 
1789 	return (NULL);
1790 }
1791 
1792 /*
1793  * Returns with ID hash slot locked on success.
1794  */
1795 struct pf_kstate *
1796 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more)
1797 {
1798 	struct pf_keyhash	*kh;
1799 	struct pf_state_key	*sk;
1800 	struct pf_kstate	*s, *ret = NULL;
1801 	int			 idx, inout = 0;
1802 
1803 	if (more != NULL)
1804 		*more = 0;
1805 
1806 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1807 
1808 	kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1809 
1810 	PF_HASHROW_LOCK(kh);
1811 	LIST_FOREACH(sk, &kh->keys, entry)
1812 		if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1813 			break;
1814 	if (sk == NULL) {
1815 		PF_HASHROW_UNLOCK(kh);
1816 		return (NULL);
1817 	}
1818 	switch (dir) {
1819 	case PF_IN:
1820 		idx = PF_SK_WIRE;
1821 		break;
1822 	case PF_OUT:
1823 		idx = PF_SK_STACK;
1824 		break;
1825 	case PF_INOUT:
1826 		idx = PF_SK_WIRE;
1827 		inout = 1;
1828 		break;
1829 	default:
1830 		panic("%s: dir %u", __func__, dir);
1831 	}
1832 second_run:
1833 	TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
1834 		if (more == NULL) {
1835 			PF_STATE_LOCK(s);
1836 			PF_HASHROW_UNLOCK(kh);
1837 			return (s);
1838 		}
1839 
1840 		if (ret)
1841 			(*more)++;
1842 		else {
1843 			ret = s;
1844 			PF_STATE_LOCK(s);
1845 		}
1846 	}
1847 	if (inout == 1) {
1848 		inout = 0;
1849 		idx = PF_SK_STACK;
1850 		goto second_run;
1851 	}
1852 	PF_HASHROW_UNLOCK(kh);
1853 
1854 	return (ret);
1855 }
1856 
1857 /*
1858  * FIXME
1859  * This routine is inefficient -- locks the state only to unlock immediately on
1860  * return.
1861  * It is racy -- after the state is unlocked nothing stops other threads from
1862  * removing it.
1863  */
1864 bool
1865 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir)
1866 {
1867 	struct pf_kstate *s;
1868 
1869 	s = pf_find_state_all(key, dir, NULL);
1870 	if (s != NULL) {
1871 		PF_STATE_UNLOCK(s);
1872 		return (true);
1873 	}
1874 	return (false);
1875 }
1876 
1877 struct pf_udp_mapping *
1878 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port,
1879     struct pf_addr *nat_addr, uint16_t nat_port)
1880 {
1881 	struct pf_udp_mapping *mapping;
1882 
1883 	mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO);
1884 	if (mapping == NULL)
1885 		return (NULL);
1886 	PF_ACPY(&mapping->endpoints[0].addr, src_addr, af);
1887 	mapping->endpoints[0].port = src_port;
1888 	mapping->endpoints[0].af = af;
1889 	mapping->endpoints[0].mapping = mapping;
1890 	PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af);
1891 	mapping->endpoints[1].port = nat_port;
1892 	mapping->endpoints[1].af = af;
1893 	mapping->endpoints[1].mapping = mapping;
1894 	refcount_init(&mapping->refs, 1);
1895 	return (mapping);
1896 }
1897 
1898 int
1899 pf_udp_mapping_insert(struct pf_udp_mapping *mapping)
1900 {
1901 	struct pf_udpendpointhash *h0, *h1;
1902 	struct pf_udp_endpoint *endpoint;
1903 	int ret = EEXIST;
1904 
1905 	h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
1906 	h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
1907 	if (h0 == h1) {
1908 		PF_HASHROW_LOCK(h0);
1909 	} else if (h0 < h1) {
1910 		PF_HASHROW_LOCK(h0);
1911 		PF_HASHROW_LOCK(h1);
1912 	} else {
1913 		PF_HASHROW_LOCK(h1);
1914 		PF_HASHROW_LOCK(h0);
1915 	}
1916 
1917 	LIST_FOREACH(endpoint, &h0->endpoints, entry) {
1918 		if (bcmp(endpoint, &mapping->endpoints[0],
1919 		    sizeof(struct pf_udp_endpoint_cmp)) == 0)
1920 			break;
1921 	}
1922 	if (endpoint != NULL)
1923 		goto cleanup;
1924 	LIST_FOREACH(endpoint, &h1->endpoints, entry) {
1925 		if (bcmp(endpoint, &mapping->endpoints[1],
1926 		    sizeof(struct pf_udp_endpoint_cmp)) == 0)
1927 			break;
1928 	}
1929 	if (endpoint != NULL)
1930 		goto cleanup;
1931 	LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry);
1932 	LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry);
1933 	ret = 0;
1934 
1935 cleanup:
1936 	if (h0 != h1) {
1937 		PF_HASHROW_UNLOCK(h0);
1938 		PF_HASHROW_UNLOCK(h1);
1939 	} else {
1940 		PF_HASHROW_UNLOCK(h0);
1941 	}
1942 	return (ret);
1943 }
1944 
1945 void
1946 pf_udp_mapping_release(struct pf_udp_mapping *mapping)
1947 {
1948 	/* refcount is synchronized on the source endpoint's row lock */
1949 	struct pf_udpendpointhash *h0, *h1;
1950 
1951 	if (mapping == NULL)
1952 		return;
1953 
1954 	h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
1955 	PF_HASHROW_LOCK(h0);
1956 	if (refcount_release(&mapping->refs)) {
1957 		LIST_REMOVE(&mapping->endpoints[0], entry);
1958 		PF_HASHROW_UNLOCK(h0);
1959 		h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
1960 		PF_HASHROW_LOCK(h1);
1961 		LIST_REMOVE(&mapping->endpoints[1], entry);
1962 		PF_HASHROW_UNLOCK(h1);
1963 
1964 		uma_zfree(V_pf_udp_mapping_z, mapping);
1965 	} else {
1966 			PF_HASHROW_UNLOCK(h0);
1967 	}
1968 }
1969 
1970 
1971 struct pf_udp_mapping *
1972 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key)
1973 {
1974 	struct pf_udpendpointhash *uh;
1975 	struct pf_udp_endpoint *endpoint;
1976 
1977 	uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)];
1978 
1979 	PF_HASHROW_LOCK(uh);
1980 	LIST_FOREACH(endpoint, &uh->endpoints, entry) {
1981 		if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 &&
1982 			bcmp(endpoint, &endpoint->mapping->endpoints[0],
1983 			    sizeof(struct pf_udp_endpoint_cmp)) == 0)
1984 			break;
1985 	}
1986 	if (endpoint == NULL) {
1987 		PF_HASHROW_UNLOCK(uh);
1988 		return (NULL);
1989 	}
1990 	refcount_acquire(&endpoint->mapping->refs);
1991 	PF_HASHROW_UNLOCK(uh);
1992 	return (endpoint->mapping);
1993 }
1994 /* END state table stuff */
1995 
1996 static void
1997 pf_send(struct pf_send_entry *pfse)
1998 {
1999 
2000 	PF_SENDQ_LOCK();
2001 	STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next);
2002 	PF_SENDQ_UNLOCK();
2003 	swi_sched(V_pf_swi_cookie, 0);
2004 }
2005 
2006 static bool
2007 pf_isforlocal(struct mbuf *m, int af)
2008 {
2009 	switch (af) {
2010 #ifdef INET
2011 	case AF_INET: {
2012 		struct ip *ip = mtod(m, struct ip *);
2013 
2014 		return (in_localip(ip->ip_dst));
2015 	}
2016 #endif
2017 #ifdef INET6
2018 	case AF_INET6: {
2019 		struct ip6_hdr *ip6;
2020 		struct in6_ifaddr *ia;
2021 		ip6 = mtod(m, struct ip6_hdr *);
2022 		ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
2023 		if (ia == NULL)
2024 			return (false);
2025 		return (! (ia->ia6_flags & IN6_IFF_NOTREADY));
2026 	}
2027 #endif
2028 	}
2029 
2030 	return (false);
2031 }
2032 
2033 int
2034 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type,
2035     int *icmp_dir, int *multi, u_int16_t *virtual_id, u_int16_t *virtual_type)
2036 {
2037 	/*
2038 	 * ICMP types marked with PF_OUT are typically responses to
2039 	 * PF_IN, and will match states in the opposite direction.
2040 	 * PF_IN ICMP types need to match a state with that type.
2041 	 */
2042 	*icmp_dir = PF_OUT;
2043 	*multi = PF_ICMP_MULTI_LINK;
2044 	/* Queries (and responses) */
2045 	switch (pd->af) {
2046 #ifdef INET
2047 	case AF_INET:
2048 		switch (type) {
2049 		case ICMP_ECHO:
2050 			*icmp_dir = PF_IN;
2051 		case ICMP_ECHOREPLY:
2052 			*virtual_type = ICMP_ECHO;
2053 			*virtual_id = pd->hdr.icmp.icmp_id;
2054 			break;
2055 
2056 		case ICMP_TSTAMP:
2057 			*icmp_dir = PF_IN;
2058 		case ICMP_TSTAMPREPLY:
2059 			*virtual_type = ICMP_TSTAMP;
2060 			*virtual_id = pd->hdr.icmp.icmp_id;
2061 			break;
2062 
2063 		case ICMP_IREQ:
2064 			*icmp_dir = PF_IN;
2065 		case ICMP_IREQREPLY:
2066 			*virtual_type = ICMP_IREQ;
2067 			*virtual_id = pd->hdr.icmp.icmp_id;
2068 			break;
2069 
2070 		case ICMP_MASKREQ:
2071 			*icmp_dir = PF_IN;
2072 		case ICMP_MASKREPLY:
2073 			*virtual_type = ICMP_MASKREQ;
2074 			*virtual_id = pd->hdr.icmp.icmp_id;
2075 			break;
2076 
2077 		case ICMP_IPV6_WHEREAREYOU:
2078 			*icmp_dir = PF_IN;
2079 		case ICMP_IPV6_IAMHERE:
2080 			*virtual_type = ICMP_IPV6_WHEREAREYOU;
2081 			*virtual_id = 0; /* Nothing sane to match on! */
2082 			break;
2083 
2084 		case ICMP_MOBILE_REGREQUEST:
2085 			*icmp_dir = PF_IN;
2086 		case ICMP_MOBILE_REGREPLY:
2087 			*virtual_type = ICMP_MOBILE_REGREQUEST;
2088 			*virtual_id = 0; /* Nothing sane to match on! */
2089 			break;
2090 
2091 		case ICMP_ROUTERSOLICIT:
2092 			*icmp_dir = PF_IN;
2093 		case ICMP_ROUTERADVERT:
2094 			*virtual_type = ICMP_ROUTERSOLICIT;
2095 			*virtual_id = 0; /* Nothing sane to match on! */
2096 			break;
2097 
2098 		/* These ICMP types map to other connections */
2099 		case ICMP_UNREACH:
2100 		case ICMP_SOURCEQUENCH:
2101 		case ICMP_REDIRECT:
2102 		case ICMP_TIMXCEED:
2103 		case ICMP_PARAMPROB:
2104 			/* These will not be used, but set them anyway */
2105 			*icmp_dir = PF_IN;
2106 			*virtual_type = type;
2107 			*virtual_id = 0;
2108 			HTONS(*virtual_type);
2109 			return (1);  /* These types match to another state */
2110 
2111 		/*
2112 		 * All remaining ICMP types get their own states,
2113 		 * and will only match in one direction.
2114 		 */
2115 		default:
2116 			*icmp_dir = PF_IN;
2117 			*virtual_type = type;
2118 			*virtual_id = 0;
2119 			break;
2120 		}
2121 		break;
2122 #endif /* INET */
2123 #ifdef INET6
2124 	case AF_INET6:
2125 		switch (type) {
2126 		case ICMP6_ECHO_REQUEST:
2127 			*icmp_dir = PF_IN;
2128 		case ICMP6_ECHO_REPLY:
2129 			*virtual_type = ICMP6_ECHO_REQUEST;
2130 			*virtual_id = pd->hdr.icmp6.icmp6_id;
2131 			break;
2132 
2133 		case MLD_LISTENER_QUERY:
2134 		case MLD_LISTENER_REPORT: {
2135 			/*
2136 			 * Listener Report can be sent by clients
2137 			 * without an associated Listener Query.
2138 			 * In addition to that, when Report is sent as a
2139 			 * reply to a Query its source and destination
2140 			 * address are different.
2141 			 */
2142 			*icmp_dir = PF_IN;
2143 			*virtual_type = MLD_LISTENER_QUERY;
2144 			*virtual_id = 0;
2145 			break;
2146 		}
2147 		case MLD_MTRACE:
2148 			*icmp_dir = PF_IN;
2149 		case MLD_MTRACE_RESP:
2150 			*virtual_type = MLD_MTRACE;
2151 			*virtual_id = 0; /* Nothing sane to match on! */
2152 			break;
2153 
2154 		case ND_NEIGHBOR_SOLICIT:
2155 			*icmp_dir = PF_IN;
2156 		case ND_NEIGHBOR_ADVERT: {
2157 			*virtual_type = ND_NEIGHBOR_SOLICIT;
2158 			*virtual_id = 0;
2159 			break;
2160 		}
2161 
2162 		/*
2163 		 * These ICMP types map to other connections.
2164 		 * ND_REDIRECT can't be in this list because the triggering
2165 		 * packet header is optional.
2166 		 */
2167 		case ICMP6_DST_UNREACH:
2168 		case ICMP6_PACKET_TOO_BIG:
2169 		case ICMP6_TIME_EXCEEDED:
2170 		case ICMP6_PARAM_PROB:
2171 			/* These will not be used, but set them anyway */
2172 			*icmp_dir = PF_IN;
2173 			*virtual_type = type;
2174 			*virtual_id = 0;
2175 			HTONS(*virtual_type);
2176 			return (1);  /* These types match to another state */
2177 		/*
2178 		 * All remaining ICMP6 types get their own states,
2179 		 * and will only match in one direction.
2180 		 */
2181 		default:
2182 			*icmp_dir = PF_IN;
2183 			*virtual_type = type;
2184 			*virtual_id = 0;
2185 			break;
2186 		}
2187 		break;
2188 #endif /* INET6 */
2189 	}
2190 	HTONS(*virtual_type);
2191 	return (0);  /* These types match to their own state */
2192 }
2193 
2194 void
2195 pf_intr(void *v)
2196 {
2197 	struct epoch_tracker et;
2198 	struct pf_send_head queue;
2199 	struct pf_send_entry *pfse, *next;
2200 
2201 	CURVNET_SET((struct vnet *)v);
2202 
2203 	PF_SENDQ_LOCK();
2204 	queue = V_pf_sendqueue;
2205 	STAILQ_INIT(&V_pf_sendqueue);
2206 	PF_SENDQ_UNLOCK();
2207 
2208 	NET_EPOCH_ENTER(et);
2209 
2210 	STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) {
2211 		switch (pfse->pfse_type) {
2212 #ifdef INET
2213 		case PFSE_IP: {
2214 			if (pf_isforlocal(pfse->pfse_m, AF_INET)) {
2215 				KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2216 				    ("%s: rcvif != loif", __func__));
2217 
2218 				pfse->pfse_m->m_flags |= M_SKIP_FIREWALL;
2219 				pfse->pfse_m->m_pkthdr.csum_flags |=
2220 				    CSUM_IP_VALID | CSUM_IP_CHECKED;
2221 				ip_input(pfse->pfse_m);
2222 			} else {
2223 				ip_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2224 				    NULL);
2225 			}
2226 			break;
2227 		}
2228 		case PFSE_ICMP:
2229 			icmp_error(pfse->pfse_m, pfse->icmpopts.type,
2230 			    pfse->icmpopts.code, 0, pfse->icmpopts.mtu);
2231 			break;
2232 #endif /* INET */
2233 #ifdef INET6
2234 		case PFSE_IP6:
2235 			if (pf_isforlocal(pfse->pfse_m, AF_INET6)) {
2236 				KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2237 				    ("%s: rcvif != loif", __func__));
2238 
2239 				pfse->pfse_m->m_flags |= M_SKIP_FIREWALL |
2240 				    M_LOOP;
2241 				ip6_input(pfse->pfse_m);
2242 			} else {
2243 				ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2244 				    NULL, NULL);
2245 			}
2246 			break;
2247 		case PFSE_ICMP6:
2248 			icmp6_error(pfse->pfse_m, pfse->icmpopts.type,
2249 			    pfse->icmpopts.code, pfse->icmpopts.mtu);
2250 			break;
2251 #endif /* INET6 */
2252 		default:
2253 			panic("%s: unknown type", __func__);
2254 		}
2255 		free(pfse, M_PFTEMP);
2256 	}
2257 	NET_EPOCH_EXIT(et);
2258 	CURVNET_RESTORE();
2259 }
2260 
2261 #define	pf_purge_thread_period	(hz / 10)
2262 
2263 #ifdef PF_WANT_32_TO_64_COUNTER
2264 static void
2265 pf_status_counter_u64_periodic(void)
2266 {
2267 
2268 	PF_RULES_RASSERT();
2269 
2270 	if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) {
2271 		return;
2272 	}
2273 
2274 	for (int i = 0; i < FCNT_MAX; i++) {
2275 		pf_counter_u64_periodic(&V_pf_status.fcounters[i]);
2276 	}
2277 }
2278 
2279 static void
2280 pf_kif_counter_u64_periodic(void)
2281 {
2282 	struct pfi_kkif *kif;
2283 	size_t r, run;
2284 
2285 	PF_RULES_RASSERT();
2286 
2287 	if (__predict_false(V_pf_allkifcount == 0)) {
2288 		return;
2289 	}
2290 
2291 	if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2292 		return;
2293 	}
2294 
2295 	run = V_pf_allkifcount / 10;
2296 	if (run < 5)
2297 		run = 5;
2298 
2299 	for (r = 0; r < run; r++) {
2300 		kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist);
2301 		if (kif == NULL) {
2302 			LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2303 			LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist);
2304 			break;
2305 		}
2306 
2307 		LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2308 		LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist);
2309 
2310 		for (int i = 0; i < 2; i++) {
2311 			for (int j = 0; j < 2; j++) {
2312 				for (int k = 0; k < 2; k++) {
2313 					pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]);
2314 					pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]);
2315 				}
2316 			}
2317 		}
2318 	}
2319 }
2320 
2321 static void
2322 pf_rule_counter_u64_periodic(void)
2323 {
2324 	struct pf_krule *rule;
2325 	size_t r, run;
2326 
2327 	PF_RULES_RASSERT();
2328 
2329 	if (__predict_false(V_pf_allrulecount == 0)) {
2330 		return;
2331 	}
2332 
2333 	if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2334 		return;
2335 	}
2336 
2337 	run = V_pf_allrulecount / 10;
2338 	if (run < 5)
2339 		run = 5;
2340 
2341 	for (r = 0; r < run; r++) {
2342 		rule = LIST_NEXT(V_pf_rulemarker, allrulelist);
2343 		if (rule == NULL) {
2344 			LIST_REMOVE(V_pf_rulemarker, allrulelist);
2345 			LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist);
2346 			break;
2347 		}
2348 
2349 		LIST_REMOVE(V_pf_rulemarker, allrulelist);
2350 		LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist);
2351 
2352 		pf_counter_u64_periodic(&rule->evaluations);
2353 		for (int i = 0; i < 2; i++) {
2354 			pf_counter_u64_periodic(&rule->packets[i]);
2355 			pf_counter_u64_periodic(&rule->bytes[i]);
2356 		}
2357 	}
2358 }
2359 
2360 static void
2361 pf_counter_u64_periodic_main(void)
2362 {
2363 	PF_RULES_RLOCK_TRACKER;
2364 
2365 	V_pf_counter_periodic_iter++;
2366 
2367 	PF_RULES_RLOCK();
2368 	pf_counter_u64_critical_enter();
2369 	pf_status_counter_u64_periodic();
2370 	pf_kif_counter_u64_periodic();
2371 	pf_rule_counter_u64_periodic();
2372 	pf_counter_u64_critical_exit();
2373 	PF_RULES_RUNLOCK();
2374 }
2375 #else
2376 #define	pf_counter_u64_periodic_main()	do { } while (0)
2377 #endif
2378 
2379 void
2380 pf_purge_thread(void *unused __unused)
2381 {
2382 	struct epoch_tracker	 et;
2383 
2384 	VNET_ITERATOR_DECL(vnet_iter);
2385 
2386 	sx_xlock(&pf_end_lock);
2387 	while (pf_end_threads == 0) {
2388 		sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period);
2389 
2390 		VNET_LIST_RLOCK();
2391 		NET_EPOCH_ENTER(et);
2392 		VNET_FOREACH(vnet_iter) {
2393 			CURVNET_SET(vnet_iter);
2394 
2395 			/* Wait until V_pf_default_rule is initialized. */
2396 			if (V_pf_vnet_active == 0) {
2397 				CURVNET_RESTORE();
2398 				continue;
2399 			}
2400 
2401 			pf_counter_u64_periodic_main();
2402 
2403 			/*
2404 			 *  Process 1/interval fraction of the state
2405 			 * table every run.
2406 			 */
2407 			V_pf_purge_idx =
2408 			    pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask /
2409 			    (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10));
2410 
2411 			/*
2412 			 * Purge other expired types every
2413 			 * PFTM_INTERVAL seconds.
2414 			 */
2415 			if (V_pf_purge_idx == 0) {
2416 				/*
2417 				 * Order is important:
2418 				 * - states and src nodes reference rules
2419 				 * - states and rules reference kifs
2420 				 */
2421 				pf_purge_expired_fragments();
2422 				pf_purge_expired_src_nodes();
2423 				pf_purge_unlinked_rules();
2424 				pfi_kkif_purge();
2425 			}
2426 			CURVNET_RESTORE();
2427 		}
2428 		NET_EPOCH_EXIT(et);
2429 		VNET_LIST_RUNLOCK();
2430 	}
2431 
2432 	pf_end_threads++;
2433 	sx_xunlock(&pf_end_lock);
2434 	kproc_exit(0);
2435 }
2436 
2437 void
2438 pf_unload_vnet_purge(void)
2439 {
2440 
2441 	/*
2442 	 * To cleanse up all kifs and rules we need
2443 	 * two runs: first one clears reference flags,
2444 	 * then pf_purge_expired_states() doesn't
2445 	 * raise them, and then second run frees.
2446 	 */
2447 	pf_purge_unlinked_rules();
2448 	pfi_kkif_purge();
2449 
2450 	/*
2451 	 * Now purge everything.
2452 	 */
2453 	pf_purge_expired_states(0, V_pf_hashmask);
2454 	pf_purge_fragments(UINT_MAX);
2455 	pf_purge_expired_src_nodes();
2456 
2457 	/*
2458 	 * Now all kifs & rules should be unreferenced,
2459 	 * thus should be successfully freed.
2460 	 */
2461 	pf_purge_unlinked_rules();
2462 	pfi_kkif_purge();
2463 }
2464 
2465 u_int32_t
2466 pf_state_expires(const struct pf_kstate *state)
2467 {
2468 	u_int32_t	timeout;
2469 	u_int32_t	start;
2470 	u_int32_t	end;
2471 	u_int32_t	states;
2472 
2473 	/* handle all PFTM_* > PFTM_MAX here */
2474 	if (state->timeout == PFTM_PURGE)
2475 		return (time_uptime);
2476 	KASSERT(state->timeout != PFTM_UNLINKED,
2477 	    ("pf_state_expires: timeout == PFTM_UNLINKED"));
2478 	KASSERT((state->timeout < PFTM_MAX),
2479 	    ("pf_state_expires: timeout > PFTM_MAX"));
2480 	timeout = state->rule->timeout[state->timeout];
2481 	if (!timeout)
2482 		timeout = V_pf_default_rule.timeout[state->timeout];
2483 	start = state->rule->timeout[PFTM_ADAPTIVE_START];
2484 	if (start && state->rule != &V_pf_default_rule) {
2485 		end = state->rule->timeout[PFTM_ADAPTIVE_END];
2486 		states = counter_u64_fetch(state->rule->states_cur);
2487 	} else {
2488 		start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START];
2489 		end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END];
2490 		states = V_pf_status.states;
2491 	}
2492 	if (end && states > start && start < end) {
2493 		if (states < end) {
2494 			timeout = (u_int64_t)timeout * (end - states) /
2495 			    (end - start);
2496 			return ((state->expire / 1000) + timeout);
2497 		}
2498 		else
2499 			return (time_uptime);
2500 	}
2501 	return ((state->expire / 1000) + timeout);
2502 }
2503 
2504 void
2505 pf_purge_expired_src_nodes(void)
2506 {
2507 	struct pf_ksrc_node_list	 freelist;
2508 	struct pf_srchash	*sh;
2509 	struct pf_ksrc_node	*cur, *next;
2510 	int i;
2511 
2512 	LIST_INIT(&freelist);
2513 	for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
2514 	    PF_HASHROW_LOCK(sh);
2515 	    LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next)
2516 		if (cur->states == 0 && cur->expire <= time_uptime) {
2517 			pf_unlink_src_node(cur);
2518 			LIST_INSERT_HEAD(&freelist, cur, entry);
2519 		} else if (cur->rule != NULL)
2520 			cur->rule->rule_ref |= PFRULE_REFS;
2521 	    PF_HASHROW_UNLOCK(sh);
2522 	}
2523 
2524 	pf_free_src_nodes(&freelist);
2525 
2526 	V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z);
2527 }
2528 
2529 static void
2530 pf_src_tree_remove_state(struct pf_kstate *s)
2531 {
2532 	struct pf_ksrc_node *sn;
2533 	uint32_t timeout;
2534 
2535 	timeout = s->rule->timeout[PFTM_SRC_NODE] ?
2536 	    s->rule->timeout[PFTM_SRC_NODE] :
2537 	    V_pf_default_rule.timeout[PFTM_SRC_NODE];
2538 
2539 	if (s->src_node != NULL) {
2540 		sn = s->src_node;
2541 		PF_SRC_NODE_LOCK(sn);
2542 		if (s->src.tcp_est)
2543 			--sn->conn;
2544 		if (--sn->states == 0)
2545 			sn->expire = time_uptime + timeout;
2546 		PF_SRC_NODE_UNLOCK(sn);
2547 	}
2548 	if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) {
2549 		sn = s->nat_src_node;
2550 		PF_SRC_NODE_LOCK(sn);
2551 		if (--sn->states == 0)
2552 			sn->expire = time_uptime + timeout;
2553 		PF_SRC_NODE_UNLOCK(sn);
2554 	}
2555 	s->src_node = s->nat_src_node = NULL;
2556 }
2557 
2558 /*
2559  * Unlink and potentilly free a state. Function may be
2560  * called with ID hash row locked, but always returns
2561  * unlocked, since it needs to go through key hash locking.
2562  */
2563 int
2564 pf_unlink_state(struct pf_kstate *s)
2565 {
2566 	struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)];
2567 
2568 	NET_EPOCH_ASSERT();
2569 	PF_HASHROW_ASSERT(ih);
2570 
2571 	if (s->timeout == PFTM_UNLINKED) {
2572 		/*
2573 		 * State is being processed
2574 		 * by pf_unlink_state() in
2575 		 * an other thread.
2576 		 */
2577 		PF_HASHROW_UNLOCK(ih);
2578 		return (0);	/* XXXGL: undefined actually */
2579 	}
2580 
2581 	if (s->src.state == PF_TCPS_PROXY_DST) {
2582 		/* XXX wire key the right one? */
2583 		pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af,
2584 		    &s->key[PF_SK_WIRE]->addr[1],
2585 		    &s->key[PF_SK_WIRE]->addr[0],
2586 		    s->key[PF_SK_WIRE]->port[1],
2587 		    s->key[PF_SK_WIRE]->port[0],
2588 		    s->src.seqhi, s->src.seqlo + 1,
2589 		    TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0,
2590 		    s->act.rtableid);
2591 	}
2592 
2593 	LIST_REMOVE(s, entry);
2594 	pf_src_tree_remove_state(s);
2595 
2596 	if (V_pfsync_delete_state_ptr != NULL)
2597 		V_pfsync_delete_state_ptr(s);
2598 
2599 	STATE_DEC_COUNTERS(s);
2600 
2601 	s->timeout = PFTM_UNLINKED;
2602 
2603 	/* Ensure we remove it from the list of halfopen states, if needed. */
2604 	if (s->key[PF_SK_STACK] != NULL &&
2605 	    s->key[PF_SK_STACK]->proto == IPPROTO_TCP)
2606 		pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
2607 
2608 	PF_HASHROW_UNLOCK(ih);
2609 
2610 	pf_detach_state(s);
2611 
2612 	pf_udp_mapping_release(s->udp_mapping);
2613 
2614 	/* pf_state_insert() initialises refs to 2 */
2615 	return (pf_release_staten(s, 2));
2616 }
2617 
2618 struct pf_kstate *
2619 pf_alloc_state(int flags)
2620 {
2621 
2622 	return (uma_zalloc(V_pf_state_z, flags | M_ZERO));
2623 }
2624 
2625 void
2626 pf_free_state(struct pf_kstate *cur)
2627 {
2628 	struct pf_krule_item *ri;
2629 
2630 	KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur));
2631 	KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__,
2632 	    cur->timeout));
2633 
2634 	while ((ri = SLIST_FIRST(&cur->match_rules))) {
2635 		SLIST_REMOVE_HEAD(&cur->match_rules, entry);
2636 		free(ri, M_PF_RULE_ITEM);
2637 	}
2638 
2639 	pf_normalize_tcp_cleanup(cur);
2640 	uma_zfree(V_pf_state_z, cur);
2641 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1);
2642 }
2643 
2644 /*
2645  * Called only from pf_purge_thread(), thus serialized.
2646  */
2647 static u_int
2648 pf_purge_expired_states(u_int i, int maxcheck)
2649 {
2650 	struct pf_idhash *ih;
2651 	struct pf_kstate *s;
2652 	struct pf_krule_item *mrm;
2653 	size_t count __unused;
2654 
2655 	V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2656 
2657 	/*
2658 	 * Go through hash and unlink states that expire now.
2659 	 */
2660 	while (maxcheck > 0) {
2661 		count = 0;
2662 		ih = &V_pf_idhash[i];
2663 
2664 		/* only take the lock if we expect to do work */
2665 		if (!LIST_EMPTY(&ih->states)) {
2666 relock:
2667 			PF_HASHROW_LOCK(ih);
2668 			LIST_FOREACH(s, &ih->states, entry) {
2669 				if (pf_state_expires(s) <= time_uptime) {
2670 					V_pf_status.states -=
2671 					    pf_unlink_state(s);
2672 					goto relock;
2673 				}
2674 				s->rule->rule_ref |= PFRULE_REFS;
2675 				if (s->nat_rule != NULL)
2676 					s->nat_rule->rule_ref |= PFRULE_REFS;
2677 				if (s->anchor != NULL)
2678 					s->anchor->rule_ref |= PFRULE_REFS;
2679 				s->kif->pfik_flags |= PFI_IFLAG_REFS;
2680 				SLIST_FOREACH(mrm, &s->match_rules, entry)
2681 					mrm->r->rule_ref |= PFRULE_REFS;
2682 				if (s->rt_kif)
2683 					s->rt_kif->pfik_flags |= PFI_IFLAG_REFS;
2684 				count++;
2685 			}
2686 			PF_HASHROW_UNLOCK(ih);
2687 		}
2688 
2689 		SDT_PROBE2(pf, purge, state, rowcount, i, count);
2690 
2691 		/* Return when we hit end of hash. */
2692 		if (++i > V_pf_hashmask) {
2693 			V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2694 			return (0);
2695 		}
2696 
2697 		maxcheck--;
2698 	}
2699 
2700 	V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2701 
2702 	return (i);
2703 }
2704 
2705 static void
2706 pf_purge_unlinked_rules(void)
2707 {
2708 	struct pf_krulequeue tmpq;
2709 	struct pf_krule *r, *r1;
2710 
2711 	/*
2712 	 * If we have overloading task pending, then we'd
2713 	 * better skip purging this time. There is a tiny
2714 	 * probability that overloading task references
2715 	 * an already unlinked rule.
2716 	 */
2717 	PF_OVERLOADQ_LOCK();
2718 	if (!SLIST_EMPTY(&V_pf_overloadqueue)) {
2719 		PF_OVERLOADQ_UNLOCK();
2720 		return;
2721 	}
2722 	PF_OVERLOADQ_UNLOCK();
2723 
2724 	/*
2725 	 * Do naive mark-and-sweep garbage collecting of old rules.
2726 	 * Reference flag is raised by pf_purge_expired_states()
2727 	 * and pf_purge_expired_src_nodes().
2728 	 *
2729 	 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK,
2730 	 * use a temporary queue.
2731 	 */
2732 	TAILQ_INIT(&tmpq);
2733 	PF_UNLNKDRULES_LOCK();
2734 	TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) {
2735 		if (!(r->rule_ref & PFRULE_REFS)) {
2736 			TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries);
2737 			TAILQ_INSERT_TAIL(&tmpq, r, entries);
2738 		} else
2739 			r->rule_ref &= ~PFRULE_REFS;
2740 	}
2741 	PF_UNLNKDRULES_UNLOCK();
2742 
2743 	if (!TAILQ_EMPTY(&tmpq)) {
2744 		PF_CONFIG_LOCK();
2745 		PF_RULES_WLOCK();
2746 		TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) {
2747 			TAILQ_REMOVE(&tmpq, r, entries);
2748 			pf_free_rule(r);
2749 		}
2750 		PF_RULES_WUNLOCK();
2751 		PF_CONFIG_UNLOCK();
2752 	}
2753 }
2754 
2755 void
2756 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af)
2757 {
2758 	switch (af) {
2759 #ifdef INET
2760 	case AF_INET: {
2761 		u_int32_t a = ntohl(addr->addr32[0]);
2762 		printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255,
2763 		    (a>>8)&255, a&255);
2764 		if (p) {
2765 			p = ntohs(p);
2766 			printf(":%u", p);
2767 		}
2768 		break;
2769 	}
2770 #endif /* INET */
2771 #ifdef INET6
2772 	case AF_INET6: {
2773 		u_int16_t b;
2774 		u_int8_t i, curstart, curend, maxstart, maxend;
2775 		curstart = curend = maxstart = maxend = 255;
2776 		for (i = 0; i < 8; i++) {
2777 			if (!addr->addr16[i]) {
2778 				if (curstart == 255)
2779 					curstart = i;
2780 				curend = i;
2781 			} else {
2782 				if ((curend - curstart) >
2783 				    (maxend - maxstart)) {
2784 					maxstart = curstart;
2785 					maxend = curend;
2786 				}
2787 				curstart = curend = 255;
2788 			}
2789 		}
2790 		if ((curend - curstart) >
2791 		    (maxend - maxstart)) {
2792 			maxstart = curstart;
2793 			maxend = curend;
2794 		}
2795 		for (i = 0; i < 8; i++) {
2796 			if (i >= maxstart && i <= maxend) {
2797 				if (i == 0)
2798 					printf(":");
2799 				if (i == maxend)
2800 					printf(":");
2801 			} else {
2802 				b = ntohs(addr->addr16[i]);
2803 				printf("%x", b);
2804 				if (i < 7)
2805 					printf(":");
2806 			}
2807 		}
2808 		if (p) {
2809 			p = ntohs(p);
2810 			printf("[%u]", p);
2811 		}
2812 		break;
2813 	}
2814 #endif /* INET6 */
2815 	}
2816 }
2817 
2818 void
2819 pf_print_state(struct pf_kstate *s)
2820 {
2821 	pf_print_state_parts(s, NULL, NULL);
2822 }
2823 
2824 static void
2825 pf_print_state_parts(struct pf_kstate *s,
2826     struct pf_state_key *skwp, struct pf_state_key *sksp)
2827 {
2828 	struct pf_state_key *skw, *sks;
2829 	u_int8_t proto, dir;
2830 
2831 	/* Do our best to fill these, but they're skipped if NULL */
2832 	skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL);
2833 	sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL);
2834 	proto = skw ? skw->proto : (sks ? sks->proto : 0);
2835 	dir = s ? s->direction : 0;
2836 
2837 	switch (proto) {
2838 	case IPPROTO_IPV4:
2839 		printf("IPv4");
2840 		break;
2841 	case IPPROTO_IPV6:
2842 		printf("IPv6");
2843 		break;
2844 	case IPPROTO_TCP:
2845 		printf("TCP");
2846 		break;
2847 	case IPPROTO_UDP:
2848 		printf("UDP");
2849 		break;
2850 	case IPPROTO_ICMP:
2851 		printf("ICMP");
2852 		break;
2853 	case IPPROTO_ICMPV6:
2854 		printf("ICMPv6");
2855 		break;
2856 	default:
2857 		printf("%u", proto);
2858 		break;
2859 	}
2860 	switch (dir) {
2861 	case PF_IN:
2862 		printf(" in");
2863 		break;
2864 	case PF_OUT:
2865 		printf(" out");
2866 		break;
2867 	}
2868 	if (skw) {
2869 		printf(" wire: ");
2870 		pf_print_host(&skw->addr[0], skw->port[0], skw->af);
2871 		printf(" ");
2872 		pf_print_host(&skw->addr[1], skw->port[1], skw->af);
2873 	}
2874 	if (sks) {
2875 		printf(" stack: ");
2876 		if (sks != skw) {
2877 			pf_print_host(&sks->addr[0], sks->port[0], sks->af);
2878 			printf(" ");
2879 			pf_print_host(&sks->addr[1], sks->port[1], sks->af);
2880 		} else
2881 			printf("-");
2882 	}
2883 	if (s) {
2884 		if (proto == IPPROTO_TCP) {
2885 			printf(" [lo=%u high=%u win=%u modulator=%u",
2886 			    s->src.seqlo, s->src.seqhi,
2887 			    s->src.max_win, s->src.seqdiff);
2888 			if (s->src.wscale && s->dst.wscale)
2889 				printf(" wscale=%u",
2890 				    s->src.wscale & PF_WSCALE_MASK);
2891 			printf("]");
2892 			printf(" [lo=%u high=%u win=%u modulator=%u",
2893 			    s->dst.seqlo, s->dst.seqhi,
2894 			    s->dst.max_win, s->dst.seqdiff);
2895 			if (s->src.wscale && s->dst.wscale)
2896 				printf(" wscale=%u",
2897 				s->dst.wscale & PF_WSCALE_MASK);
2898 			printf("]");
2899 		}
2900 		printf(" %u:%u", s->src.state, s->dst.state);
2901 		if (s->rule)
2902 			printf(" @%d", s->rule->nr);
2903 	}
2904 }
2905 
2906 void
2907 pf_print_flags(u_int8_t f)
2908 {
2909 	if (f)
2910 		printf(" ");
2911 	if (f & TH_FIN)
2912 		printf("F");
2913 	if (f & TH_SYN)
2914 		printf("S");
2915 	if (f & TH_RST)
2916 		printf("R");
2917 	if (f & TH_PUSH)
2918 		printf("P");
2919 	if (f & TH_ACK)
2920 		printf("A");
2921 	if (f & TH_URG)
2922 		printf("U");
2923 	if (f & TH_ECE)
2924 		printf("E");
2925 	if (f & TH_CWR)
2926 		printf("W");
2927 }
2928 
2929 #define	PF_SET_SKIP_STEPS(i)					\
2930 	do {							\
2931 		while (head[i] != cur) {			\
2932 			head[i]->skip[i] = cur;			\
2933 			head[i] = TAILQ_NEXT(head[i], entries);	\
2934 		}						\
2935 	} while (0)
2936 
2937 void
2938 pf_calc_skip_steps(struct pf_krulequeue *rules)
2939 {
2940 	struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT];
2941 	int i;
2942 
2943 	cur = TAILQ_FIRST(rules);
2944 	prev = cur;
2945 	for (i = 0; i < PF_SKIP_COUNT; ++i)
2946 		head[i] = cur;
2947 	while (cur != NULL) {
2948 		if (cur->kif != prev->kif || cur->ifnot != prev->ifnot)
2949 			PF_SET_SKIP_STEPS(PF_SKIP_IFP);
2950 		if (cur->direction != prev->direction)
2951 			PF_SET_SKIP_STEPS(PF_SKIP_DIR);
2952 		if (cur->af != prev->af)
2953 			PF_SET_SKIP_STEPS(PF_SKIP_AF);
2954 		if (cur->proto != prev->proto)
2955 			PF_SET_SKIP_STEPS(PF_SKIP_PROTO);
2956 		if (cur->src.neg != prev->src.neg ||
2957 		    pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr))
2958 			PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR);
2959 		if (cur->dst.neg != prev->dst.neg ||
2960 		    pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr))
2961 			PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR);
2962 		if (cur->src.port[0] != prev->src.port[0] ||
2963 		    cur->src.port[1] != prev->src.port[1] ||
2964 		    cur->src.port_op != prev->src.port_op)
2965 			PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT);
2966 		if (cur->dst.port[0] != prev->dst.port[0] ||
2967 		    cur->dst.port[1] != prev->dst.port[1] ||
2968 		    cur->dst.port_op != prev->dst.port_op)
2969 			PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT);
2970 
2971 		prev = cur;
2972 		cur = TAILQ_NEXT(cur, entries);
2973 	}
2974 	for (i = 0; i < PF_SKIP_COUNT; ++i)
2975 		PF_SET_SKIP_STEPS(i);
2976 }
2977 
2978 int
2979 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2)
2980 {
2981 	if (aw1->type != aw2->type)
2982 		return (1);
2983 	switch (aw1->type) {
2984 	case PF_ADDR_ADDRMASK:
2985 	case PF_ADDR_RANGE:
2986 		if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6))
2987 			return (1);
2988 		if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6))
2989 			return (1);
2990 		return (0);
2991 	case PF_ADDR_DYNIFTL:
2992 		return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt);
2993 	case PF_ADDR_NOROUTE:
2994 	case PF_ADDR_URPFFAILED:
2995 		return (0);
2996 	case PF_ADDR_TABLE:
2997 		return (aw1->p.tbl != aw2->p.tbl);
2998 	default:
2999 		printf("invalid address type: %d\n", aw1->type);
3000 		return (1);
3001 	}
3002 }
3003 
3004 /**
3005  * Checksum updates are a little complicated because the checksum in the TCP/UDP
3006  * header isn't always a full checksum. In some cases (i.e. output) it's a
3007  * pseudo-header checksum, which is a partial checksum over src/dst IP
3008  * addresses, protocol number and length.
3009  *
3010  * That means we have the following cases:
3011  *  * Input or forwarding: we don't have TSO, the checksum fields are full
3012  *  	checksums, we need to update the checksum whenever we change anything.
3013  *  * Output (i.e. the checksum is a pseudo-header checksum):
3014  *  	x The field being updated is src/dst address or affects the length of
3015  *  	the packet. We need to update the pseudo-header checksum (note that this
3016  *  	checksum is not ones' complement).
3017  *  	x Some other field is being modified (e.g. src/dst port numbers): We
3018  *  	don't have to update anything.
3019  **/
3020 u_int16_t
3021 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp)
3022 {
3023 	u_int32_t x;
3024 
3025 	x = cksum + old - new;
3026 	x = (x + (x >> 16)) & 0xffff;
3027 
3028 	/* optimise: eliminate a branch when not udp */
3029 	if (udp && cksum == 0x0000)
3030 		return cksum;
3031 	if (udp && x == 0x0000)
3032 		x = 0xffff;
3033 
3034 	return (u_int16_t)(x);
3035 }
3036 
3037 static void
3038 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi,
3039     u_int8_t udp)
3040 {
3041 	u_int16_t old = htons(hi ? (*f << 8) : *f);
3042 	u_int16_t new = htons(hi ? ( v << 8) :  v);
3043 
3044 	if (*f == v)
3045 		return;
3046 
3047 	*f = v;
3048 
3049 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3050 		return;
3051 
3052 	*cksum = pf_cksum_fixup(*cksum, old, new, udp);
3053 }
3054 
3055 void
3056 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v,
3057     bool hi, u_int8_t udp)
3058 {
3059 	u_int8_t *fb = (u_int8_t *)f;
3060 	u_int8_t *vb = (u_int8_t *)&v;
3061 
3062 	pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
3063 	pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
3064 }
3065 
3066 void
3067 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v,
3068     bool hi, u_int8_t udp)
3069 {
3070 	u_int8_t *fb = (u_int8_t *)f;
3071 	u_int8_t *vb = (u_int8_t *)&v;
3072 
3073 	pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
3074 	pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
3075 	pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
3076 	pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
3077 }
3078 
3079 u_int16_t
3080 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old,
3081         u_int16_t new, u_int8_t udp)
3082 {
3083 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3084 		return (cksum);
3085 
3086 	return (pf_cksum_fixup(cksum, old, new, udp));
3087 }
3088 
3089 static void
3090 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic,
3091         u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u,
3092         sa_family_t af)
3093 {
3094 	struct pf_addr	ao;
3095 	u_int16_t	po = *p;
3096 
3097 	PF_ACPY(&ao, a, af);
3098 	PF_ACPY(a, an, af);
3099 
3100 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3101 		*pc = ~*pc;
3102 
3103 	*p = pn;
3104 
3105 	switch (af) {
3106 #ifdef INET
3107 	case AF_INET:
3108 		*ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
3109 		    ao.addr16[0], an->addr16[0], 0),
3110 		    ao.addr16[1], an->addr16[1], 0);
3111 		*p = pn;
3112 
3113 		*pc = pf_cksum_fixup(pf_cksum_fixup(*pc,
3114 		    ao.addr16[0], an->addr16[0], u),
3115 		    ao.addr16[1], an->addr16[1], u);
3116 
3117 		*pc = pf_proto_cksum_fixup(m, *pc, po, pn, u);
3118 		break;
3119 #endif /* INET */
3120 #ifdef INET6
3121 	case AF_INET6:
3122 		*pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3123 		    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3124 		    pf_cksum_fixup(pf_cksum_fixup(*pc,
3125 		    ao.addr16[0], an->addr16[0], u),
3126 		    ao.addr16[1], an->addr16[1], u),
3127 		    ao.addr16[2], an->addr16[2], u),
3128 		    ao.addr16[3], an->addr16[3], u),
3129 		    ao.addr16[4], an->addr16[4], u),
3130 		    ao.addr16[5], an->addr16[5], u),
3131 		    ao.addr16[6], an->addr16[6], u),
3132 		    ao.addr16[7], an->addr16[7], u);
3133 
3134 		*pc = pf_proto_cksum_fixup(m, *pc, po, pn, u);
3135 		break;
3136 #endif /* INET6 */
3137 	}
3138 
3139 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
3140 	    CSUM_DELAY_DATA_IPV6)) {
3141 		*pc = ~*pc;
3142 		if (! *pc)
3143 			*pc = 0xffff;
3144 	}
3145 }
3146 
3147 /* Changes a u_int32_t.  Uses a void * so there are no align restrictions */
3148 void
3149 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u)
3150 {
3151 	u_int32_t	ao;
3152 
3153 	memcpy(&ao, a, sizeof(ao));
3154 	memcpy(a, &an, sizeof(u_int32_t));
3155 	*c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u),
3156 	    ao % 65536, an % 65536, u);
3157 }
3158 
3159 void
3160 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp)
3161 {
3162 	u_int32_t	ao;
3163 
3164 	memcpy(&ao, a, sizeof(ao));
3165 	memcpy(a, &an, sizeof(u_int32_t));
3166 
3167 	*c = pf_proto_cksum_fixup(m,
3168 	    pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp),
3169 	    ao % 65536, an % 65536, udp);
3170 }
3171 
3172 #ifdef INET6
3173 static void
3174 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u)
3175 {
3176 	struct pf_addr	ao;
3177 
3178 	PF_ACPY(&ao, a, AF_INET6);
3179 	PF_ACPY(a, an, AF_INET6);
3180 
3181 	*c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3182 	    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3183 	    pf_cksum_fixup(pf_cksum_fixup(*c,
3184 	    ao.addr16[0], an->addr16[0], u),
3185 	    ao.addr16[1], an->addr16[1], u),
3186 	    ao.addr16[2], an->addr16[2], u),
3187 	    ao.addr16[3], an->addr16[3], u),
3188 	    ao.addr16[4], an->addr16[4], u),
3189 	    ao.addr16[5], an->addr16[5], u),
3190 	    ao.addr16[6], an->addr16[6], u),
3191 	    ao.addr16[7], an->addr16[7], u);
3192 }
3193 #endif /* INET6 */
3194 
3195 static void
3196 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa,
3197     struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c,
3198     u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af)
3199 {
3200 	struct pf_addr	oia, ooa;
3201 
3202 	PF_ACPY(&oia, ia, af);
3203 	if (oa)
3204 		PF_ACPY(&ooa, oa, af);
3205 
3206 	/* Change inner protocol port, fix inner protocol checksum. */
3207 	if (ip != NULL) {
3208 		u_int16_t	oip = *ip;
3209 		u_int32_t	opc;
3210 
3211 		if (pc != NULL)
3212 			opc = *pc;
3213 		*ip = np;
3214 		if (pc != NULL)
3215 			*pc = pf_cksum_fixup(*pc, oip, *ip, u);
3216 		*ic = pf_cksum_fixup(*ic, oip, *ip, 0);
3217 		if (pc != NULL)
3218 			*ic = pf_cksum_fixup(*ic, opc, *pc, 0);
3219 	}
3220 	/* Change inner ip address, fix inner ip and icmp checksums. */
3221 	PF_ACPY(ia, na, af);
3222 	switch (af) {
3223 #ifdef INET
3224 	case AF_INET: {
3225 		u_int32_t	 oh2c = *h2c;
3226 
3227 		*h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c,
3228 		    oia.addr16[0], ia->addr16[0], 0),
3229 		    oia.addr16[1], ia->addr16[1], 0);
3230 		*ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
3231 		    oia.addr16[0], ia->addr16[0], 0),
3232 		    oia.addr16[1], ia->addr16[1], 0);
3233 		*ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0);
3234 		break;
3235 	}
3236 #endif /* INET */
3237 #ifdef INET6
3238 	case AF_INET6:
3239 		*ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3240 		    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3241 		    pf_cksum_fixup(pf_cksum_fixup(*ic,
3242 		    oia.addr16[0], ia->addr16[0], u),
3243 		    oia.addr16[1], ia->addr16[1], u),
3244 		    oia.addr16[2], ia->addr16[2], u),
3245 		    oia.addr16[3], ia->addr16[3], u),
3246 		    oia.addr16[4], ia->addr16[4], u),
3247 		    oia.addr16[5], ia->addr16[5], u),
3248 		    oia.addr16[6], ia->addr16[6], u),
3249 		    oia.addr16[7], ia->addr16[7], u);
3250 		break;
3251 #endif /* INET6 */
3252 	}
3253 	/* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */
3254 	if (oa) {
3255 		PF_ACPY(oa, na, af);
3256 		switch (af) {
3257 #ifdef INET
3258 		case AF_INET:
3259 			*hc = pf_cksum_fixup(pf_cksum_fixup(*hc,
3260 			    ooa.addr16[0], oa->addr16[0], 0),
3261 			    ooa.addr16[1], oa->addr16[1], 0);
3262 			break;
3263 #endif /* INET */
3264 #ifdef INET6
3265 		case AF_INET6:
3266 			*ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3267 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3268 			    pf_cksum_fixup(pf_cksum_fixup(*ic,
3269 			    ooa.addr16[0], oa->addr16[0], u),
3270 			    ooa.addr16[1], oa->addr16[1], u),
3271 			    ooa.addr16[2], oa->addr16[2], u),
3272 			    ooa.addr16[3], oa->addr16[3], u),
3273 			    ooa.addr16[4], oa->addr16[4], u),
3274 			    ooa.addr16[5], oa->addr16[5], u),
3275 			    ooa.addr16[6], oa->addr16[6], u),
3276 			    ooa.addr16[7], oa->addr16[7], u);
3277 			break;
3278 #endif /* INET6 */
3279 		}
3280 	}
3281 }
3282 
3283 /*
3284  * Need to modulate the sequence numbers in the TCP SACK option
3285  * (credits to Krzysztof Pfaff for report and patch)
3286  */
3287 static int
3288 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th,
3289     struct pf_state_peer *dst)
3290 {
3291 	int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen;
3292 	u_int8_t opts[TCP_MAXOLEN], *opt = opts;
3293 	int copyback = 0, i, olen;
3294 	struct sackblk sack;
3295 
3296 #define	TCPOLEN_SACKLEN	(TCPOLEN_SACK + 2)
3297 	if (hlen < TCPOLEN_SACKLEN ||
3298 	    !pf_pull_hdr(pd->m, pd->off + sizeof(*th), opts, hlen, NULL, NULL, pd->af))
3299 		return 0;
3300 
3301 	while (hlen >= TCPOLEN_SACKLEN) {
3302 		size_t startoff = opt - opts;
3303 		olen = opt[1];
3304 		switch (*opt) {
3305 		case TCPOPT_EOL:	/* FALLTHROUGH */
3306 		case TCPOPT_NOP:
3307 			opt++;
3308 			hlen--;
3309 			break;
3310 		case TCPOPT_SACK:
3311 			if (olen > hlen)
3312 				olen = hlen;
3313 			if (olen >= TCPOLEN_SACKLEN) {
3314 				for (i = 2; i + TCPOLEN_SACK <= olen;
3315 				    i += TCPOLEN_SACK) {
3316 					memcpy(&sack, &opt[i], sizeof(sack));
3317 					pf_patch_32_unaligned(pd->m,
3318 					    &th->th_sum, &sack.start,
3319 					    htonl(ntohl(sack.start) - dst->seqdiff),
3320 					    PF_ALGNMNT(startoff),
3321 					    0);
3322 					pf_patch_32_unaligned(pd->m, &th->th_sum,
3323 					    &sack.end,
3324 					    htonl(ntohl(sack.end) - dst->seqdiff),
3325 					    PF_ALGNMNT(startoff),
3326 					    0);
3327 					memcpy(&opt[i], &sack, sizeof(sack));
3328 				}
3329 				copyback = 1;
3330 			}
3331 			/* FALLTHROUGH */
3332 		default:
3333 			if (olen < 2)
3334 				olen = 2;
3335 			hlen -= olen;
3336 			opt += olen;
3337 		}
3338 	}
3339 
3340 	if (copyback)
3341 		m_copyback(pd->m, pd->off + sizeof(*th), thoptlen, (caddr_t)opts);
3342 	return (copyback);
3343 }
3344 
3345 struct mbuf *
3346 pf_build_tcp(const struct pf_krule *r, sa_family_t af,
3347     const struct pf_addr *saddr, const struct pf_addr *daddr,
3348     u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
3349     u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
3350     int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid)
3351 {
3352 	struct mbuf	*m;
3353 	int		 len, tlen;
3354 #ifdef INET
3355 	struct ip	*h = NULL;
3356 #endif /* INET */
3357 #ifdef INET6
3358 	struct ip6_hdr	*h6 = NULL;
3359 #endif /* INET6 */
3360 	struct tcphdr	*th;
3361 	char		*opt;
3362 	struct pf_mtag  *pf_mtag;
3363 
3364 	len = 0;
3365 	th = NULL;
3366 
3367 	/* maximum segment size tcp option */
3368 	tlen = sizeof(struct tcphdr);
3369 	if (mss)
3370 		tlen += 4;
3371 
3372 	switch (af) {
3373 #ifdef INET
3374 	case AF_INET:
3375 		len = sizeof(struct ip) + tlen;
3376 		break;
3377 #endif /* INET */
3378 #ifdef INET6
3379 	case AF_INET6:
3380 		len = sizeof(struct ip6_hdr) + tlen;
3381 		break;
3382 #endif /* INET6 */
3383 	}
3384 
3385 	m = m_gethdr(M_NOWAIT, MT_DATA);
3386 	if (m == NULL)
3387 		return (NULL);
3388 
3389 #ifdef MAC
3390 	mac_netinet_firewall_send(m);
3391 #endif
3392 	if ((pf_mtag = pf_get_mtag(m)) == NULL) {
3393 		m_freem(m);
3394 		return (NULL);
3395 	}
3396 	m->m_flags |= mbuf_flags;
3397 	pf_mtag->tag = mtag_tag;
3398 	pf_mtag->flags = mtag_flags;
3399 
3400 	if (rtableid >= 0)
3401 		M_SETFIB(m, rtableid);
3402 
3403 #ifdef ALTQ
3404 	if (r != NULL && r->qid) {
3405 		pf_mtag->qid = r->qid;
3406 
3407 		/* add hints for ecn */
3408 		pf_mtag->hdr = mtod(m, struct ip *);
3409 	}
3410 #endif /* ALTQ */
3411 	m->m_data += max_linkhdr;
3412 	m->m_pkthdr.len = m->m_len = len;
3413 	/* The rest of the stack assumes a rcvif, so provide one.
3414 	 * This is a locally generated packet, so .. close enough. */
3415 	m->m_pkthdr.rcvif = V_loif;
3416 	bzero(m->m_data, len);
3417 	switch (af) {
3418 #ifdef INET
3419 	case AF_INET:
3420 		h = mtod(m, struct ip *);
3421 
3422 		/* IP header fields included in the TCP checksum */
3423 		h->ip_p = IPPROTO_TCP;
3424 		h->ip_len = htons(tlen);
3425 		h->ip_src.s_addr = saddr->v4.s_addr;
3426 		h->ip_dst.s_addr = daddr->v4.s_addr;
3427 
3428 		th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip));
3429 		break;
3430 #endif /* INET */
3431 #ifdef INET6
3432 	case AF_INET6:
3433 		h6 = mtod(m, struct ip6_hdr *);
3434 
3435 		/* IP header fields included in the TCP checksum */
3436 		h6->ip6_nxt = IPPROTO_TCP;
3437 		h6->ip6_plen = htons(tlen);
3438 		memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr));
3439 		memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr));
3440 
3441 		th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr));
3442 		break;
3443 #endif /* INET6 */
3444 	}
3445 
3446 	/* TCP header */
3447 	th->th_sport = sport;
3448 	th->th_dport = dport;
3449 	th->th_seq = htonl(seq);
3450 	th->th_ack = htonl(ack);
3451 	th->th_off = tlen >> 2;
3452 	th->th_flags = tcp_flags;
3453 	th->th_win = htons(win);
3454 
3455 	if (mss) {
3456 		opt = (char *)(th + 1);
3457 		opt[0] = TCPOPT_MAXSEG;
3458 		opt[1] = 4;
3459 		HTONS(mss);
3460 		bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2);
3461 	}
3462 
3463 	switch (af) {
3464 #ifdef INET
3465 	case AF_INET:
3466 		/* TCP checksum */
3467 		th->th_sum = in_cksum(m, len);
3468 
3469 		/* Finish the IP header */
3470 		h->ip_v = 4;
3471 		h->ip_hl = sizeof(*h) >> 2;
3472 		h->ip_tos = IPTOS_LOWDELAY;
3473 		h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0);
3474 		h->ip_len = htons(len);
3475 		h->ip_ttl = ttl ? ttl : V_ip_defttl;
3476 		h->ip_sum = 0;
3477 		break;
3478 #endif /* INET */
3479 #ifdef INET6
3480 	case AF_INET6:
3481 		/* TCP checksum */
3482 		th->th_sum = in6_cksum(m, IPPROTO_TCP,
3483 		    sizeof(struct ip6_hdr), tlen);
3484 
3485 		h6->ip6_vfc |= IPV6_VERSION;
3486 		h6->ip6_hlim = IPV6_DEFHLIM;
3487 		break;
3488 #endif /* INET6 */
3489 	}
3490 
3491 	return (m);
3492 }
3493 
3494 static void
3495 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd,
3496     uint8_t ttl, int rtableid)
3497 {
3498 	struct mbuf		*m;
3499 #ifdef INET
3500 	struct ip		*h = NULL;
3501 #endif /* INET */
3502 #ifdef INET6
3503 	struct ip6_hdr		*h6 = NULL;
3504 #endif /* INET6 */
3505 	struct sctphdr		*hdr;
3506 	struct sctp_chunkhdr	*chunk;
3507 	struct pf_send_entry	*pfse;
3508 	int			 off = 0;
3509 
3510 	MPASS(af == pd->af);
3511 
3512 	m = m_gethdr(M_NOWAIT, MT_DATA);
3513 	if (m == NULL)
3514 		return;
3515 
3516 	m->m_data += max_linkhdr;
3517 	m->m_flags |= M_SKIP_FIREWALL;
3518 	/* The rest of the stack assumes a rcvif, so provide one.
3519 	 * This is a locally generated packet, so .. close enough. */
3520 	m->m_pkthdr.rcvif = V_loif;
3521 
3522 	/* IPv4|6 header */
3523 	switch (af) {
3524 #ifdef INET
3525 	case AF_INET:
3526 		bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk));
3527 
3528 		h = mtod(m, struct ip *);
3529 
3530 		/* IP header fields included in the TCP checksum */
3531 
3532 		h->ip_p = IPPROTO_SCTP;
3533 		h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk));
3534 		h->ip_ttl = ttl ? ttl : V_ip_defttl;
3535 		h->ip_src = pd->dst->v4;
3536 		h->ip_dst = pd->src->v4;
3537 
3538 		off += sizeof(struct ip);
3539 		break;
3540 #endif /* INET */
3541 #ifdef INET6
3542 	case AF_INET6:
3543 		bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk));
3544 
3545 		h6 = mtod(m, struct ip6_hdr *);
3546 
3547 		/* IP header fields included in the TCP checksum */
3548 		h6->ip6_vfc |= IPV6_VERSION;
3549 		h6->ip6_nxt = IPPROTO_SCTP;
3550 		h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk));
3551 		h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim;
3552 		memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr));
3553 		memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr));
3554 
3555 		off += sizeof(struct ip6_hdr);
3556 		break;
3557 #endif /* INET6 */
3558 	}
3559 
3560 	/* SCTP header */
3561 	hdr = mtodo(m, off);
3562 
3563 	hdr->src_port = pd->hdr.sctp.dest_port;
3564 	hdr->dest_port = pd->hdr.sctp.src_port;
3565 	hdr->v_tag = pd->sctp_initiate_tag;
3566 	hdr->checksum = 0;
3567 
3568 	/* Abort chunk. */
3569 	off += sizeof(struct sctphdr);
3570 	chunk = mtodo(m, off);
3571 
3572 	chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
3573 	chunk->chunk_length = htons(sizeof(*chunk));
3574 
3575 	/* SCTP checksum */
3576 	off += sizeof(*chunk);
3577 	m->m_pkthdr.len = m->m_len = off;
3578 
3579 	pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk));
3580 
3581 	if (rtableid >= 0)
3582 		M_SETFIB(m, rtableid);
3583 
3584 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
3585 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
3586 	if (pfse == NULL) {
3587 		m_freem(m);
3588 		return;
3589 	}
3590 
3591 	switch (af) {
3592 #ifdef INET
3593 	case AF_INET:
3594 		pfse->pfse_type = PFSE_IP;
3595 		break;
3596 #endif /* INET */
3597 #ifdef INET6
3598 	case AF_INET6:
3599 		pfse->pfse_type = PFSE_IP6;
3600 		break;
3601 #endif /* INET6 */
3602 	}
3603 
3604 	pfse->pfse_m = m;
3605 	pf_send(pfse);
3606 }
3607 
3608 void
3609 pf_send_tcp(const struct pf_krule *r, sa_family_t af,
3610     const struct pf_addr *saddr, const struct pf_addr *daddr,
3611     u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
3612     u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
3613     int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid)
3614 {
3615 	struct pf_send_entry *pfse;
3616 	struct mbuf	*m;
3617 
3618 	m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags,
3619 	    win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, rtableid);
3620 	if (m == NULL)
3621 		return;
3622 
3623 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
3624 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
3625 	if (pfse == NULL) {
3626 		m_freem(m);
3627 		return;
3628 	}
3629 
3630 	switch (af) {
3631 #ifdef INET
3632 	case AF_INET:
3633 		pfse->pfse_type = PFSE_IP;
3634 		break;
3635 #endif /* INET */
3636 #ifdef INET6
3637 	case AF_INET6:
3638 		pfse->pfse_type = PFSE_IP6;
3639 		break;
3640 #endif /* INET6 */
3641 	}
3642 
3643 	pfse->pfse_m = m;
3644 	pf_send(pfse);
3645 }
3646 
3647 static void
3648 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd,
3649     struct pf_state_key *sk, struct tcphdr *th,
3650     u_int16_t bproto_sum, u_int16_t bip_sum,
3651     u_short *reason, int rtableid)
3652 {
3653 	struct pf_addr	* const saddr = pd->src;
3654 	struct pf_addr	* const daddr = pd->dst;
3655 
3656 	/* undo NAT changes, if they have taken place */
3657 	if (nr != NULL) {
3658 		PF_ACPY(saddr, &sk->addr[pd->sidx], pd->af);
3659 		PF_ACPY(daddr, &sk->addr[pd->didx], pd->af);
3660 		if (pd->sport)
3661 			*pd->sport = sk->port[pd->sidx];
3662 		if (pd->dport)
3663 			*pd->dport = sk->port[pd->didx];
3664 		if (pd->proto_sum)
3665 			*pd->proto_sum = bproto_sum;
3666 		if (pd->ip_sum)
3667 			*pd->ip_sum = bip_sum;
3668 		m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
3669 	}
3670 	if (pd->proto == IPPROTO_TCP &&
3671 	    ((r->rule_flag & PFRULE_RETURNRST) ||
3672 	    (r->rule_flag & PFRULE_RETURN)) &&
3673 	    !(th->th_flags & TH_RST)) {
3674 		u_int32_t	 ack = ntohl(th->th_seq) + pd->p_len;
3675 
3676 		if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off,
3677 		    IPPROTO_TCP, pd->af))
3678 			REASON_SET(reason, PFRES_PROTCKSUM);
3679 		else {
3680 			if (th->th_flags & TH_SYN)
3681 				ack++;
3682 			if (th->th_flags & TH_FIN)
3683 				ack++;
3684 			pf_send_tcp(r, pd->af, pd->dst,
3685 				pd->src, th->th_dport, th->th_sport,
3686 				ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0,
3687 				r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid);
3688 		}
3689 	} else if (pd->proto == IPPROTO_SCTP &&
3690 	    (r->rule_flag & PFRULE_RETURN)) {
3691 		pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid);
3692 	} else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET &&
3693 		r->return_icmp)
3694 		pf_send_icmp(pd->m, r->return_icmp >> 8,
3695 			r->return_icmp & 255, pd->af, r, rtableid);
3696 	else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 &&
3697 		r->return_icmp6)
3698 		pf_send_icmp(pd->m, r->return_icmp6 >> 8,
3699 			r->return_icmp6 & 255, pd->af, r, rtableid);
3700 }
3701 
3702 static int
3703 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m)
3704 {
3705 	struct m_tag *mtag;
3706 	u_int8_t mpcp;
3707 
3708 	mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
3709 	if (mtag == NULL)
3710 		return (0);
3711 
3712 	if (prio == PF_PRIO_ZERO)
3713 		prio = 0;
3714 
3715 	mpcp = *(uint8_t *)(mtag + 1);
3716 
3717 	return (mpcp == prio);
3718 }
3719 
3720 static int
3721 pf_icmp_to_bandlim(uint8_t type)
3722 {
3723 	switch (type) {
3724 		case ICMP_ECHO:
3725 		case ICMP_ECHOREPLY:
3726 			return (BANDLIM_ICMP_ECHO);
3727 		case ICMP_TSTAMP:
3728 		case ICMP_TSTAMPREPLY:
3729 			return (BANDLIM_ICMP_TSTAMP);
3730 		case ICMP_UNREACH:
3731 		default:
3732 			return (BANDLIM_ICMP_UNREACH);
3733 	}
3734 }
3735 
3736 static void
3737 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af,
3738     struct pf_krule *r, int rtableid)
3739 {
3740 	struct pf_send_entry *pfse;
3741 	struct mbuf *m0;
3742 	struct pf_mtag *pf_mtag;
3743 
3744 	/* ICMP packet rate limitation. */
3745 	switch (af) {
3746 #ifdef INET6
3747 	case AF_INET6:
3748 		if (icmp6_ratelimit(NULL, type, code))
3749 			return;
3750 		break;
3751 #endif
3752 #ifdef INET
3753 	case AF_INET:
3754 		if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0)
3755 			return;
3756 		break;
3757 #endif
3758 	}
3759 
3760 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
3761 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
3762 	if (pfse == NULL)
3763 		return;
3764 
3765 	if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) {
3766 		free(pfse, M_PFTEMP);
3767 		return;
3768 	}
3769 
3770 	if ((pf_mtag = pf_get_mtag(m0)) == NULL) {
3771 		free(pfse, M_PFTEMP);
3772 		return;
3773 	}
3774 	/* XXX: revisit */
3775 	m0->m_flags |= M_SKIP_FIREWALL;
3776 
3777 	if (rtableid >= 0)
3778 		M_SETFIB(m0, rtableid);
3779 
3780 #ifdef ALTQ
3781 	if (r->qid) {
3782 		pf_mtag->qid = r->qid;
3783 		/* add hints for ecn */
3784 		pf_mtag->hdr = mtod(m0, struct ip *);
3785 	}
3786 #endif /* ALTQ */
3787 
3788 	switch (af) {
3789 #ifdef INET
3790 	case AF_INET:
3791 		pfse->pfse_type = PFSE_ICMP;
3792 		break;
3793 #endif /* INET */
3794 #ifdef INET6
3795 	case AF_INET6:
3796 		pfse->pfse_type = PFSE_ICMP6;
3797 		break;
3798 #endif /* INET6 */
3799 	}
3800 	pfse->pfse_m = m0;
3801 	pfse->icmpopts.type = type;
3802 	pfse->icmpopts.code = code;
3803 	pf_send(pfse);
3804 }
3805 
3806 /*
3807  * Return 1 if the addresses a and b match (with mask m), otherwise return 0.
3808  * If n is 0, they match if they are equal. If n is != 0, they match if they
3809  * are different.
3810  */
3811 int
3812 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m,
3813     struct pf_addr *b, sa_family_t af)
3814 {
3815 	int	match = 0;
3816 
3817 	switch (af) {
3818 #ifdef INET
3819 	case AF_INET:
3820 		if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4))
3821 			match++;
3822 		break;
3823 #endif /* INET */
3824 #ifdef INET6
3825 	case AF_INET6:
3826 		if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6))
3827 			match++;
3828 		break;
3829 #endif /* INET6 */
3830 	}
3831 	if (match) {
3832 		if (n)
3833 			return (0);
3834 		else
3835 			return (1);
3836 	} else {
3837 		if (n)
3838 			return (1);
3839 		else
3840 			return (0);
3841 	}
3842 }
3843 
3844 /*
3845  * Return 1 if b <= a <= e, otherwise return 0.
3846  */
3847 int
3848 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e,
3849     struct pf_addr *a, sa_family_t af)
3850 {
3851 	switch (af) {
3852 #ifdef INET
3853 	case AF_INET:
3854 		if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) ||
3855 		    (ntohl(a->addr32[0]) > ntohl(e->addr32[0])))
3856 			return (0);
3857 		break;
3858 #endif /* INET */
3859 #ifdef INET6
3860 	case AF_INET6: {
3861 		int	i;
3862 
3863 		/* check a >= b */
3864 		for (i = 0; i < 4; ++i)
3865 			if (ntohl(a->addr32[i]) > ntohl(b->addr32[i]))
3866 				break;
3867 			else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i]))
3868 				return (0);
3869 		/* check a <= e */
3870 		for (i = 0; i < 4; ++i)
3871 			if (ntohl(a->addr32[i]) < ntohl(e->addr32[i]))
3872 				break;
3873 			else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i]))
3874 				return (0);
3875 		break;
3876 	}
3877 #endif /* INET6 */
3878 	}
3879 	return (1);
3880 }
3881 
3882 static int
3883 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p)
3884 {
3885 	switch (op) {
3886 	case PF_OP_IRG:
3887 		return ((p > a1) && (p < a2));
3888 	case PF_OP_XRG:
3889 		return ((p < a1) || (p > a2));
3890 	case PF_OP_RRG:
3891 		return ((p >= a1) && (p <= a2));
3892 	case PF_OP_EQ:
3893 		return (p == a1);
3894 	case PF_OP_NE:
3895 		return (p != a1);
3896 	case PF_OP_LT:
3897 		return (p < a1);
3898 	case PF_OP_LE:
3899 		return (p <= a1);
3900 	case PF_OP_GT:
3901 		return (p > a1);
3902 	case PF_OP_GE:
3903 		return (p >= a1);
3904 	}
3905 	return (0); /* never reached */
3906 }
3907 
3908 int
3909 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p)
3910 {
3911 	NTOHS(a1);
3912 	NTOHS(a2);
3913 	NTOHS(p);
3914 	return (pf_match(op, a1, a2, p));
3915 }
3916 
3917 static int
3918 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u)
3919 {
3920 	if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
3921 		return (0);
3922 	return (pf_match(op, a1, a2, u));
3923 }
3924 
3925 static int
3926 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g)
3927 {
3928 	if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
3929 		return (0);
3930 	return (pf_match(op, a1, a2, g));
3931 }
3932 
3933 int
3934 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag)
3935 {
3936 	if (*tag == -1)
3937 		*tag = mtag;
3938 
3939 	return ((!r->match_tag_not && r->match_tag == *tag) ||
3940 	    (r->match_tag_not && r->match_tag != *tag));
3941 }
3942 
3943 static int
3944 pf_match_rcvif(struct mbuf *m, struct pf_krule *r)
3945 {
3946 	struct ifnet *ifp = m->m_pkthdr.rcvif;
3947 	struct pfi_kkif *kif;
3948 
3949 	if (ifp == NULL)
3950 		return (0);
3951 
3952 	kif = (struct pfi_kkif *)ifp->if_pf_kif;
3953 
3954 	if (kif == NULL) {
3955 		DPFPRINTF(PF_DEBUG_URGENT,
3956 		    ("pf_test_via: kif == NULL, @%d via %s\n", r->nr,
3957 			r->rcv_ifname));
3958 		return (0);
3959 	}
3960 
3961 	return (pfi_kkif_match(r->rcv_kif, kif));
3962 }
3963 
3964 int
3965 pf_tag_packet(struct pf_pdesc *pd, int tag)
3966 {
3967 
3968 	KASSERT(tag > 0, ("%s: tag %d", __func__, tag));
3969 
3970 	if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL))
3971 		return (ENOMEM);
3972 
3973 	pd->pf_mtag->tag = tag;
3974 
3975 	return (0);
3976 }
3977 
3978 #define	PF_ANCHOR_STACKSIZE	32
3979 struct pf_kanchor_stackframe {
3980 	struct pf_kruleset	*rs;
3981 	struct pf_krule		*r;	/* XXX: + match bit */
3982 	struct pf_kanchor	*child;
3983 };
3984 
3985 /*
3986  * XXX: We rely on malloc(9) returning pointer aligned addresses.
3987  */
3988 #define	PF_ANCHORSTACK_MATCH	0x00000001
3989 #define	PF_ANCHORSTACK_MASK	(PF_ANCHORSTACK_MATCH)
3990 
3991 #define	PF_ANCHOR_MATCH(f)	((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
3992 #define	PF_ANCHOR_RULE(f)	(struct pf_krule *)			\
3993 				((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
3994 #define	PF_ANCHOR_SET_MATCH(f)	do { (f)->r = (void *) 			\
3995 				((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH);  \
3996 } while (0)
3997 
3998 void
3999 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth,
4000     struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a,
4001     int *match)
4002 {
4003 	struct pf_kanchor_stackframe	*f;
4004 
4005 	PF_RULES_RASSERT();
4006 
4007 	if (match)
4008 		*match = 0;
4009 	if (*depth >= PF_ANCHOR_STACKSIZE) {
4010 		printf("%s: anchor stack overflow on %s\n",
4011 		    __func__, (*r)->anchor->name);
4012 		*r = TAILQ_NEXT(*r, entries);
4013 		return;
4014 	} else if (*depth == 0 && a != NULL)
4015 		*a = *r;
4016 	f = stack + (*depth)++;
4017 	f->rs = *rs;
4018 	f->r = *r;
4019 	if ((*r)->anchor_wildcard) {
4020 		struct pf_kanchor_node *parent = &(*r)->anchor->children;
4021 
4022 		if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) {
4023 			*r = NULL;
4024 			return;
4025 		}
4026 		*rs = &f->child->ruleset;
4027 	} else {
4028 		f->child = NULL;
4029 		*rs = &(*r)->anchor->ruleset;
4030 	}
4031 	*r = TAILQ_FIRST((*rs)->rules[n].active.ptr);
4032 }
4033 
4034 int
4035 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth,
4036     struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a,
4037     int *match)
4038 {
4039 	struct pf_kanchor_stackframe	*f;
4040 	struct pf_krule *fr;
4041 	int quick = 0;
4042 
4043 	PF_RULES_RASSERT();
4044 
4045 	do {
4046 		if (*depth <= 0)
4047 			break;
4048 		f = stack + *depth - 1;
4049 		fr = PF_ANCHOR_RULE(f);
4050 		if (f->child != NULL) {
4051 			/*
4052 			 * This block traverses through
4053 			 * a wildcard anchor.
4054 			 */
4055 			if (match != NULL && *match) {
4056 				/*
4057 				 * If any of "*" matched, then
4058 				 * "foo/ *" matched, mark frame
4059 				 * appropriately.
4060 				 */
4061 				PF_ANCHOR_SET_MATCH(f);
4062 				*match = 0;
4063 			}
4064 			f->child = RB_NEXT(pf_kanchor_node,
4065 			    &fr->anchor->children, f->child);
4066 			if (f->child != NULL) {
4067 				*rs = &f->child->ruleset;
4068 				*r = TAILQ_FIRST((*rs)->rules[n].active.ptr);
4069 				if (*r == NULL)
4070 					continue;
4071 				else
4072 					break;
4073 			}
4074 		}
4075 		(*depth)--;
4076 		if (*depth == 0 && a != NULL)
4077 			*a = NULL;
4078 		*rs = f->rs;
4079 		if (PF_ANCHOR_MATCH(f) || (match != NULL && *match))
4080 			quick = fr->quick;
4081 		*r = TAILQ_NEXT(fr, entries);
4082 	} while (*r == NULL);
4083 
4084 	return (quick);
4085 }
4086 
4087 struct pf_keth_anchor_stackframe {
4088 	struct pf_keth_ruleset	*rs;
4089 	struct pf_keth_rule	*r;	/* XXX: + match bit */
4090 	struct pf_keth_anchor	*child;
4091 };
4092 
4093 #define	PF_ETH_ANCHOR_MATCH(f)	((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4094 #define	PF_ETH_ANCHOR_RULE(f)	(struct pf_keth_rule *)			\
4095 				((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4096 #define	PF_ETH_ANCHOR_SET_MATCH(f)	do { (f)->r = (void *) 		\
4097 				((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH);  \
4098 } while (0)
4099 
4100 void
4101 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4102     struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4103     struct pf_keth_rule **a, int *match)
4104 {
4105 	struct pf_keth_anchor_stackframe	*f;
4106 
4107 	NET_EPOCH_ASSERT();
4108 
4109 	if (match)
4110 		*match = 0;
4111 	if (*depth >= PF_ANCHOR_STACKSIZE) {
4112 		printf("%s: anchor stack overflow on %s\n",
4113 		    __func__, (*r)->anchor->name);
4114 		*r = TAILQ_NEXT(*r, entries);
4115 		return;
4116 	} else if (*depth == 0 && a != NULL)
4117 		*a = *r;
4118 	f = stack + (*depth)++;
4119 	f->rs = *rs;
4120 	f->r = *r;
4121 	if ((*r)->anchor_wildcard) {
4122 		struct pf_keth_anchor_node *parent = &(*r)->anchor->children;
4123 
4124 		if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) {
4125 			*r = NULL;
4126 			return;
4127 		}
4128 		*rs = &f->child->ruleset;
4129 	} else {
4130 		f->child = NULL;
4131 		*rs = &(*r)->anchor->ruleset;
4132 	}
4133 	*r = TAILQ_FIRST((*rs)->active.rules);
4134 }
4135 
4136 int
4137 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4138     struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4139     struct pf_keth_rule **a, int *match)
4140 {
4141 	struct pf_keth_anchor_stackframe	*f;
4142 	struct pf_keth_rule *fr;
4143 	int quick = 0;
4144 
4145 	NET_EPOCH_ASSERT();
4146 
4147 	do {
4148 		if (*depth <= 0)
4149 			break;
4150 		f = stack + *depth - 1;
4151 		fr = PF_ETH_ANCHOR_RULE(f);
4152 		if (f->child != NULL) {
4153 			/*
4154 			 * This block traverses through
4155 			 * a wildcard anchor.
4156 			 */
4157 			if (match != NULL && *match) {
4158 				/*
4159 				 * If any of "*" matched, then
4160 				 * "foo/ *" matched, mark frame
4161 				 * appropriately.
4162 				 */
4163 				PF_ETH_ANCHOR_SET_MATCH(f);
4164 				*match = 0;
4165 			}
4166 			f->child = RB_NEXT(pf_keth_anchor_node,
4167 			    &fr->anchor->children, f->child);
4168 			if (f->child != NULL) {
4169 				*rs = &f->child->ruleset;
4170 				*r = TAILQ_FIRST((*rs)->active.rules);
4171 				if (*r == NULL)
4172 					continue;
4173 				else
4174 					break;
4175 			}
4176 		}
4177 		(*depth)--;
4178 		if (*depth == 0 && a != NULL)
4179 			*a = NULL;
4180 		*rs = f->rs;
4181 		if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match))
4182 			quick = fr->quick;
4183 		*r = TAILQ_NEXT(fr, entries);
4184 	} while (*r == NULL);
4185 
4186 	return (quick);
4187 }
4188 
4189 #ifdef INET6
4190 void
4191 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr,
4192     struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af)
4193 {
4194 	switch (af) {
4195 #ifdef INET
4196 	case AF_INET:
4197 		naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4198 		((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4199 		break;
4200 #endif /* INET */
4201 	case AF_INET6:
4202 		naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4203 		((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4204 		naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) |
4205 		((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]);
4206 		naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) |
4207 		((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]);
4208 		naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) |
4209 		((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]);
4210 		break;
4211 	}
4212 }
4213 
4214 void
4215 pf_addr_inc(struct pf_addr *addr, sa_family_t af)
4216 {
4217 	switch (af) {
4218 #ifdef INET
4219 	case AF_INET:
4220 		addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1);
4221 		break;
4222 #endif /* INET */
4223 	case AF_INET6:
4224 		if (addr->addr32[3] == 0xffffffff) {
4225 			addr->addr32[3] = 0;
4226 			if (addr->addr32[2] == 0xffffffff) {
4227 				addr->addr32[2] = 0;
4228 				if (addr->addr32[1] == 0xffffffff) {
4229 					addr->addr32[1] = 0;
4230 					addr->addr32[0] =
4231 					    htonl(ntohl(addr->addr32[0]) + 1);
4232 				} else
4233 					addr->addr32[1] =
4234 					    htonl(ntohl(addr->addr32[1]) + 1);
4235 			} else
4236 				addr->addr32[2] =
4237 				    htonl(ntohl(addr->addr32[2]) + 1);
4238 		} else
4239 			addr->addr32[3] =
4240 			    htonl(ntohl(addr->addr32[3]) + 1);
4241 		break;
4242 	}
4243 }
4244 #endif /* INET6 */
4245 
4246 void
4247 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a)
4248 {
4249 	/*
4250 	 * Modern rules use the same flags in rules as they do in states.
4251 	 */
4252 	a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID|
4253 	    PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO));
4254 
4255 	/*
4256 	 * Old-style scrub rules have different flags which need to be translated.
4257 	 */
4258 	if (r->rule_flag & PFRULE_RANDOMID)
4259 		a->flags |= PFSTATE_RANDOMID;
4260 	if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) {
4261 		a->flags |= PFSTATE_SETTOS;
4262 		a->set_tos = r->set_tos;
4263 	}
4264 
4265 	if (r->qid)
4266 		a->qid = r->qid;
4267 	if (r->pqid)
4268 		a->pqid = r->pqid;
4269 	if (r->rtableid >= 0)
4270 		a->rtableid = r->rtableid;
4271 	a->log |= r->log;
4272 	if (r->min_ttl)
4273 		a->min_ttl = r->min_ttl;
4274 	if (r->max_mss)
4275 		a->max_mss = r->max_mss;
4276 	if (r->dnpipe)
4277 		a->dnpipe = r->dnpipe;
4278 	if (r->dnrpipe)
4279 		a->dnrpipe = r->dnrpipe;
4280 	if (r->dnpipe || r->dnrpipe) {
4281 		if (r->free_flags & PFRULE_DN_IS_PIPE)
4282 			a->flags |= PFSTATE_DN_IS_PIPE;
4283 		else
4284 			a->flags &= ~PFSTATE_DN_IS_PIPE;
4285 	}
4286 	if (r->scrub_flags & PFSTATE_SETPRIO) {
4287 		a->set_prio[0] = r->set_prio[0];
4288 		a->set_prio[1] = r->set_prio[1];
4289 	}
4290 }
4291 
4292 int
4293 pf_socket_lookup(struct pf_pdesc *pd)
4294 {
4295 	struct pf_addr		*saddr, *daddr;
4296 	u_int16_t		 sport, dport;
4297 	struct inpcbinfo	*pi;
4298 	struct inpcb		*inp;
4299 
4300 	pd->lookup.uid = UID_MAX;
4301 	pd->lookup.gid = GID_MAX;
4302 
4303 	switch (pd->proto) {
4304 	case IPPROTO_TCP:
4305 		sport = pd->hdr.tcp.th_sport;
4306 		dport = pd->hdr.tcp.th_dport;
4307 		pi = &V_tcbinfo;
4308 		break;
4309 	case IPPROTO_UDP:
4310 		sport = pd->hdr.udp.uh_sport;
4311 		dport = pd->hdr.udp.uh_dport;
4312 		pi = &V_udbinfo;
4313 		break;
4314 	default:
4315 		return (-1);
4316 	}
4317 	if (pd->dir == PF_IN) {
4318 		saddr = pd->src;
4319 		daddr = pd->dst;
4320 	} else {
4321 		u_int16_t	p;
4322 
4323 		p = sport;
4324 		sport = dport;
4325 		dport = p;
4326 		saddr = pd->dst;
4327 		daddr = pd->src;
4328 	}
4329 	switch (pd->af) {
4330 #ifdef INET
4331 	case AF_INET:
4332 		inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4,
4333 		    dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
4334 		if (inp == NULL) {
4335 			inp = in_pcblookup_mbuf(pi, saddr->v4, sport,
4336 			   daddr->v4, dport, INPLOOKUP_WILDCARD |
4337 			   INPLOOKUP_RLOCKPCB, NULL, pd->m);
4338 			if (inp == NULL)
4339 				return (-1);
4340 		}
4341 		break;
4342 #endif /* INET */
4343 #ifdef INET6
4344 	case AF_INET6:
4345 		inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6,
4346 		    dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
4347 		if (inp == NULL) {
4348 			inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport,
4349 			    &daddr->v6, dport, INPLOOKUP_WILDCARD |
4350 			    INPLOOKUP_RLOCKPCB, NULL, pd->m);
4351 			if (inp == NULL)
4352 				return (-1);
4353 		}
4354 		break;
4355 #endif /* INET6 */
4356 	}
4357 	INP_RLOCK_ASSERT(inp);
4358 	pd->lookup.uid = inp->inp_cred->cr_uid;
4359 	pd->lookup.gid = inp->inp_cred->cr_groups[0];
4360 	INP_RUNLOCK(inp);
4361 
4362 	return (1);
4363 }
4364 
4365 u_int8_t
4366 pf_get_wscale(struct pf_pdesc *pd)
4367 {
4368 	struct tcphdr	*th = &pd->hdr.tcp;
4369 	int		 hlen;
4370 	u_int8_t	 hdr[60];
4371 	u_int8_t	*opt, optlen;
4372 	u_int8_t	 wscale = 0;
4373 
4374 	hlen = th->th_off << 2;		/* hlen <= sizeof(hdr) */
4375 	if (hlen <= sizeof(struct tcphdr))
4376 		return (0);
4377 	if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af))
4378 		return (0);
4379 	opt = hdr + sizeof(struct tcphdr);
4380 	hlen -= sizeof(struct tcphdr);
4381 	while (hlen >= 3) {
4382 		switch (*opt) {
4383 		case TCPOPT_EOL:
4384 		case TCPOPT_NOP:
4385 			++opt;
4386 			--hlen;
4387 			break;
4388 		case TCPOPT_WINDOW:
4389 			wscale = opt[2];
4390 			if (wscale > TCP_MAX_WINSHIFT)
4391 				wscale = TCP_MAX_WINSHIFT;
4392 			wscale |= PF_WSCALE_FLAG;
4393 			/* FALLTHROUGH */
4394 		default:
4395 			optlen = opt[1];
4396 			if (optlen < 2)
4397 				optlen = 2;
4398 			hlen -= optlen;
4399 			opt += optlen;
4400 			break;
4401 		}
4402 	}
4403 	return (wscale);
4404 }
4405 
4406 u_int16_t
4407 pf_get_mss(struct pf_pdesc *pd)
4408 {
4409 	struct tcphdr	*th = &pd->hdr.tcp;
4410 	int		 hlen;
4411 	u_int8_t	 hdr[60];
4412 	u_int8_t	*opt, optlen;
4413 	u_int16_t	 mss = V_tcp_mssdflt;
4414 
4415 	hlen = th->th_off << 2;	/* hlen <= sizeof(hdr) */
4416 	if (hlen <= sizeof(struct tcphdr))
4417 		return (0);
4418 	if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af))
4419 		return (0);
4420 	opt = hdr + sizeof(struct tcphdr);
4421 	hlen -= sizeof(struct tcphdr);
4422 	while (hlen >= TCPOLEN_MAXSEG) {
4423 		switch (*opt) {
4424 		case TCPOPT_EOL:
4425 		case TCPOPT_NOP:
4426 			++opt;
4427 			--hlen;
4428 			break;
4429 		case TCPOPT_MAXSEG:
4430 			bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2);
4431 			NTOHS(mss);
4432 			/* FALLTHROUGH */
4433 		default:
4434 			optlen = opt[1];
4435 			if (optlen < 2)
4436 				optlen = 2;
4437 			hlen -= optlen;
4438 			opt += optlen;
4439 			break;
4440 		}
4441 	}
4442 	return (mss);
4443 }
4444 
4445 static u_int16_t
4446 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer)
4447 {
4448 	struct nhop_object *nh;
4449 #ifdef INET6
4450 	struct in6_addr		dst6;
4451 	uint32_t		scopeid;
4452 #endif /* INET6 */
4453 	int			 hlen = 0;
4454 	uint16_t		 mss = 0;
4455 
4456 	NET_EPOCH_ASSERT();
4457 
4458 	switch (af) {
4459 #ifdef INET
4460 	case AF_INET:
4461 		hlen = sizeof(struct ip);
4462 		nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0);
4463 		if (nh != NULL)
4464 			mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
4465 		break;
4466 #endif /* INET */
4467 #ifdef INET6
4468 	case AF_INET6:
4469 		hlen = sizeof(struct ip6_hdr);
4470 		in6_splitscope(&addr->v6, &dst6, &scopeid);
4471 		nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0);
4472 		if (nh != NULL)
4473 			mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
4474 		break;
4475 #endif /* INET6 */
4476 	}
4477 
4478 	mss = max(V_tcp_mssdflt, mss);
4479 	mss = min(mss, offer);
4480 	mss = max(mss, 64);		/* sanity - at least max opt space */
4481 	return (mss);
4482 }
4483 
4484 static u_int32_t
4485 pf_tcp_iss(struct pf_pdesc *pd)
4486 {
4487 	MD5_CTX ctx;
4488 	u_int32_t digest[4];
4489 
4490 	if (V_pf_tcp_secret_init == 0) {
4491 		arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret));
4492 		MD5Init(&V_pf_tcp_secret_ctx);
4493 		MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret,
4494 		    sizeof(V_pf_tcp_secret));
4495 		V_pf_tcp_secret_init = 1;
4496 	}
4497 
4498 	ctx = V_pf_tcp_secret_ctx;
4499 
4500 	MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short));
4501 	MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short));
4502 	switch (pd->af) {
4503 	case AF_INET6:
4504 		MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr));
4505 		MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr));
4506 		break;
4507 	case AF_INET:
4508 		MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr));
4509 		MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr));
4510 		break;
4511 	}
4512 	MD5Final((u_char *)digest, &ctx);
4513 	V_pf_tcp_iss_off += 4096;
4514 #define	ISN_RANDOM_INCREMENT (4096 - 1)
4515 	return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) +
4516 	    V_pf_tcp_iss_off);
4517 #undef	ISN_RANDOM_INCREMENT
4518 }
4519 
4520 static bool
4521 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r)
4522 {
4523 	bool match = true;
4524 
4525 	/* Always matches if not set */
4526 	if (! r->isset)
4527 		return (!r->neg);
4528 
4529 	for (int i = 0; i < ETHER_ADDR_LEN; i++) {
4530 		if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) {
4531 			match = false;
4532 			break;
4533 		}
4534 	}
4535 
4536 	return (match ^ r->neg);
4537 }
4538 
4539 static int
4540 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag)
4541 {
4542 	if (*tag == -1)
4543 		*tag = mtag;
4544 
4545 	return ((!r->match_tag_not && r->match_tag == *tag) ||
4546 	    (r->match_tag_not && r->match_tag != *tag));
4547 }
4548 
4549 static void
4550 pf_bridge_to(struct ifnet *ifp, struct mbuf *m)
4551 {
4552 	/* If we don't have the interface drop the packet. */
4553 	if (ifp == NULL) {
4554 		m_freem(m);
4555 		return;
4556 	}
4557 
4558 	switch (ifp->if_type) {
4559 	case IFT_ETHER:
4560 	case IFT_XETHER:
4561 	case IFT_L2VLAN:
4562 	case IFT_BRIDGE:
4563 	case IFT_IEEE8023ADLAG:
4564 		break;
4565 	default:
4566 		m_freem(m);
4567 		return;
4568 	}
4569 
4570 	ifp->if_transmit(ifp, m);
4571 }
4572 
4573 static int
4574 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0)
4575 {
4576 #ifdef INET
4577 	struct ip ip;
4578 #endif
4579 #ifdef INET6
4580 	struct ip6_hdr ip6;
4581 #endif
4582 	struct mbuf *m = *m0;
4583 	struct ether_header *e;
4584 	struct pf_keth_rule *r, *rm, *a = NULL;
4585 	struct pf_keth_ruleset *ruleset = NULL;
4586 	struct pf_mtag *mtag;
4587 	struct pf_keth_ruleq *rules;
4588 	struct pf_addr *src = NULL, *dst = NULL;
4589 	struct pfi_kkif *bridge_to;
4590 	sa_family_t af = 0;
4591 	uint16_t proto;
4592 	int asd = 0, match = 0;
4593 	int tag = -1;
4594 	uint8_t action;
4595 	struct pf_keth_anchor_stackframe	anchor_stack[PF_ANCHOR_STACKSIZE];
4596 
4597 	MPASS(kif->pfik_ifp->if_vnet == curvnet);
4598 	NET_EPOCH_ASSERT();
4599 
4600 	PF_RULES_RLOCK_TRACKER;
4601 
4602 	SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m);
4603 
4604 	mtag = pf_find_mtag(m);
4605 	if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
4606 		/* Dummynet re-injects packets after they've
4607 		 * completed their delay. We've already
4608 		 * processed them, so pass unconditionally. */
4609 
4610 		/* But only once. We may see the packet multiple times (e.g.
4611 		 * PFIL_IN/PFIL_OUT). */
4612 		pf_dummynet_flag_remove(m, mtag);
4613 
4614 		return (PF_PASS);
4615 	}
4616 
4617 	ruleset = V_pf_keth;
4618 	rules = ck_pr_load_ptr(&ruleset->active.rules);
4619 	r = TAILQ_FIRST(rules);
4620 	rm = NULL;
4621 
4622 	if (__predict_false(m->m_len < sizeof(struct ether_header)) &&
4623 	    (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) {
4624 		DPFPRINTF(PF_DEBUG_URGENT,
4625 		    ("pf_test_eth_rule: m_len < sizeof(struct ether_header)"
4626 		     ", pullup failed\n"));
4627 		return (PF_DROP);
4628 	}
4629 	e = mtod(m, struct ether_header *);
4630 	proto = ntohs(e->ether_type);
4631 
4632 	switch (proto) {
4633 #ifdef INET
4634 	case ETHERTYPE_IP: {
4635 		if (m_length(m, NULL) < (sizeof(struct ether_header) +
4636 		    sizeof(ip)))
4637 			return (PF_DROP);
4638 
4639 		af = AF_INET;
4640 		m_copydata(m, sizeof(struct ether_header), sizeof(ip),
4641 		    (caddr_t)&ip);
4642 		src = (struct pf_addr *)&ip.ip_src;
4643 		dst = (struct pf_addr *)&ip.ip_dst;
4644 		break;
4645 	}
4646 #endif /* INET */
4647 #ifdef INET6
4648 	case ETHERTYPE_IPV6: {
4649 		if (m_length(m, NULL) < (sizeof(struct ether_header) +
4650 		    sizeof(ip6)))
4651 			return (PF_DROP);
4652 
4653 		af = AF_INET6;
4654 		m_copydata(m, sizeof(struct ether_header), sizeof(ip6),
4655 		    (caddr_t)&ip6);
4656 		src = (struct pf_addr *)&ip6.ip6_src;
4657 		dst = (struct pf_addr *)&ip6.ip6_dst;
4658 		break;
4659 	}
4660 #endif /* INET6 */
4661 	}
4662 
4663 	PF_RULES_RLOCK();
4664 
4665 	while (r != NULL) {
4666 		counter_u64_add(r->evaluations, 1);
4667 		SDT_PROBE2(pf, eth, test_rule, test, r->nr, r);
4668 
4669 		if (pfi_kkif_match(r->kif, kif) == r->ifnot) {
4670 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4671 			    "kif");
4672 			r = r->skip[PFE_SKIP_IFP].ptr;
4673 		}
4674 		else if (r->direction && r->direction != dir) {
4675 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4676 			    "dir");
4677 			r = r->skip[PFE_SKIP_DIR].ptr;
4678 		}
4679 		else if (r->proto && r->proto != proto) {
4680 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4681 			    "proto");
4682 			r = r->skip[PFE_SKIP_PROTO].ptr;
4683 		}
4684 		else if (! pf_match_eth_addr(e->ether_shost, &r->src)) {
4685 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4686 			    "src");
4687 			r = r->skip[PFE_SKIP_SRC_ADDR].ptr;
4688 		}
4689 		else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) {
4690 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4691 			    "dst");
4692 			r = r->skip[PFE_SKIP_DST_ADDR].ptr;
4693 		}
4694 		else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af,
4695 		    r->ipsrc.neg, kif, M_GETFIB(m))) {
4696 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4697 			    "ip_src");
4698 			r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr;
4699 		}
4700 		else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af,
4701 		    r->ipdst.neg, kif, M_GETFIB(m))) {
4702 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4703 			    "ip_dst");
4704 			r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr;
4705 		}
4706 		else if (r->match_tag && !pf_match_eth_tag(m, r, &tag,
4707 		    mtag ? mtag->tag : 0)) {
4708 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4709 			    "match_tag");
4710 			r = TAILQ_NEXT(r, entries);
4711 		}
4712 		else {
4713 			if (r->tag)
4714 				tag = r->tag;
4715 			if (r->anchor == NULL) {
4716 				/* Rule matches */
4717 				rm = r;
4718 
4719 				SDT_PROBE2(pf, eth, test_rule, match, r->nr, r);
4720 
4721 				if (r->quick)
4722 					break;
4723 
4724 				r = TAILQ_NEXT(r, entries);
4725 			} else {
4726 				pf_step_into_keth_anchor(anchor_stack, &asd,
4727 				    &ruleset, &r, &a, &match);
4728 			}
4729 		}
4730 		if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd,
4731 		    &ruleset, &r, &a, &match))
4732 			break;
4733 	}
4734 
4735 	r = rm;
4736 
4737 	SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r);
4738 
4739 	/* Default to pass. */
4740 	if (r == NULL) {
4741 		PF_RULES_RUNLOCK();
4742 		return (PF_PASS);
4743 	}
4744 
4745 	/* Execute action. */
4746 	counter_u64_add(r->packets[dir == PF_OUT], 1);
4747 	counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL));
4748 	pf_update_timestamp(r);
4749 
4750 	/* Shortcut. Don't tag if we're just going to drop anyway. */
4751 	if (r->action == PF_DROP) {
4752 		PF_RULES_RUNLOCK();
4753 		return (PF_DROP);
4754 	}
4755 
4756 	if (tag > 0) {
4757 		if (mtag == NULL)
4758 			mtag = pf_get_mtag(m);
4759 		if (mtag == NULL) {
4760 			PF_RULES_RUNLOCK();
4761 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
4762 			return (PF_DROP);
4763 		}
4764 		mtag->tag = tag;
4765 	}
4766 
4767 	if (r->qid != 0) {
4768 		if (mtag == NULL)
4769 			mtag = pf_get_mtag(m);
4770 		if (mtag == NULL) {
4771 			PF_RULES_RUNLOCK();
4772 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
4773 			return (PF_DROP);
4774 		}
4775 		mtag->qid = r->qid;
4776 	}
4777 
4778 	action = r->action;
4779 	bridge_to = r->bridge_to;
4780 
4781 	/* Dummynet */
4782 	if (r->dnpipe) {
4783 		struct ip_fw_args dnflow;
4784 
4785 		/* Drop packet if dummynet is not loaded. */
4786 		if (ip_dn_io_ptr == NULL) {
4787 			PF_RULES_RUNLOCK();
4788 			m_freem(m);
4789 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
4790 			return (PF_DROP);
4791 		}
4792 		if (mtag == NULL)
4793 			mtag = pf_get_mtag(m);
4794 		if (mtag == NULL) {
4795 			PF_RULES_RUNLOCK();
4796 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
4797 			return (PF_DROP);
4798 		}
4799 
4800 		bzero(&dnflow, sizeof(dnflow));
4801 
4802 		/* We don't have port numbers here, so we set 0.  That means
4803 		 * that we'll be somewhat limited in distinguishing flows (i.e.
4804 		 * only based on IP addresses, not based on port numbers), but
4805 		 * it's better than nothing. */
4806 		dnflow.f_id.dst_port = 0;
4807 		dnflow.f_id.src_port = 0;
4808 		dnflow.f_id.proto = 0;
4809 
4810 		dnflow.rule.info = r->dnpipe;
4811 		dnflow.rule.info |= IPFW_IS_DUMMYNET;
4812 		if (r->dnflags & PFRULE_DN_IS_PIPE)
4813 			dnflow.rule.info |= IPFW_IS_PIPE;
4814 
4815 		dnflow.f_id.extra = dnflow.rule.info;
4816 
4817 		dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT;
4818 		dnflow.flags |= IPFW_ARGS_ETHER;
4819 		dnflow.ifp = kif->pfik_ifp;
4820 
4821 		switch (af) {
4822 		case AF_INET:
4823 			dnflow.f_id.addr_type = 4;
4824 			dnflow.f_id.src_ip = src->v4.s_addr;
4825 			dnflow.f_id.dst_ip = dst->v4.s_addr;
4826 			break;
4827 		case AF_INET6:
4828 			dnflow.flags |= IPFW_ARGS_IP6;
4829 			dnflow.f_id.addr_type = 6;
4830 			dnflow.f_id.src_ip6 = src->v6;
4831 			dnflow.f_id.dst_ip6 = dst->v6;
4832 			break;
4833 		}
4834 
4835 		PF_RULES_RUNLOCK();
4836 
4837 		mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
4838 		ip_dn_io_ptr(m0, &dnflow);
4839 		if (*m0 != NULL)
4840 			pf_dummynet_flag_remove(m, mtag);
4841 	} else {
4842 		PF_RULES_RUNLOCK();
4843 	}
4844 
4845 	if (action == PF_PASS && bridge_to) {
4846 		pf_bridge_to(bridge_to->pfik_ifp, *m0);
4847 		*m0 = NULL; /* We've eaten the packet. */
4848 	}
4849 
4850 	return (action);
4851 }
4852 
4853 #define PF_TEST_ATTRIB(t, a)\
4854 	do {				\
4855 		if (t) {		\
4856 			r = a;		\
4857 			goto nextrule;	\
4858 		}			\
4859 	} while (0)
4860 
4861 static int
4862 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm,
4863     struct pf_pdesc *pd, struct pf_krule **am,
4864     struct pf_kruleset **rsm, struct inpcb *inp)
4865 {
4866 	struct pf_krule		*nr = NULL;
4867 	struct pf_addr		* const saddr = pd->src;
4868 	struct pf_addr		* const daddr = pd->dst;
4869 	struct pf_krule		*r, *a = NULL;
4870 	struct pf_kruleset	*ruleset = NULL;
4871 	struct pf_krule_slist	 match_rules;
4872 	struct pf_krule_item	*ri;
4873 	struct pf_ksrc_node	*nsn = NULL;
4874 	struct tcphdr		*th = &pd->hdr.tcp;
4875 	struct pf_state_key	*sk = NULL, *nk = NULL;
4876 	u_short			 reason, transerror;
4877 	int			 rewrite = 0;
4878 	int			 tag = -1;
4879 	int			 asd = 0;
4880 	int			 match = 0;
4881 	int			 state_icmp = 0, icmp_dir, multi;
4882 	u_int16_t		 sport = 0, dport = 0, virtual_type, virtual_id;
4883 	u_int16_t		 bproto_sum = 0, bip_sum = 0;
4884 	u_int8_t		 icmptype = 0, icmpcode = 0;
4885 	struct pf_kanchor_stackframe	anchor_stack[PF_ANCHOR_STACKSIZE];
4886 	struct pf_udp_mapping	*udp_mapping = NULL;
4887 
4888 	PF_RULES_RASSERT();
4889 
4890 	SLIST_INIT(&match_rules);
4891 
4892 	if (inp != NULL) {
4893 		INP_LOCK_ASSERT(inp);
4894 		pd->lookup.uid = inp->inp_cred->cr_uid;
4895 		pd->lookup.gid = inp->inp_cred->cr_groups[0];
4896 		pd->lookup.done = 1;
4897 	}
4898 
4899 	switch (pd->virtual_proto) {
4900 	case IPPROTO_TCP:
4901 		sport = th->th_sport;
4902 		dport = th->th_dport;
4903 		break;
4904 	case IPPROTO_UDP:
4905 		sport = pd->hdr.udp.uh_sport;
4906 		dport = pd->hdr.udp.uh_dport;
4907 		break;
4908 	case IPPROTO_SCTP:
4909 		sport = pd->hdr.sctp.src_port;
4910 		dport = pd->hdr.sctp.dest_port;
4911 		break;
4912 #ifdef INET
4913 	case IPPROTO_ICMP:
4914 		MPASS(pd->af == AF_INET);
4915 		icmptype = pd->hdr.icmp.icmp_type;
4916 		icmpcode = pd->hdr.icmp.icmp_code;
4917 		state_icmp = pf_icmp_mapping(pd, icmptype,
4918 		    &icmp_dir, &multi, &virtual_id, &virtual_type);
4919 		if (icmp_dir == PF_IN) {
4920 			sport = virtual_id;
4921 			dport = virtual_type;
4922 		} else {
4923 			sport = virtual_type;
4924 			dport = virtual_id;
4925 		}
4926 		break;
4927 #endif /* INET */
4928 #ifdef INET6
4929 	case IPPROTO_ICMPV6:
4930 		MPASS(pd->af == AF_INET6);
4931 		icmptype = pd->hdr.icmp6.icmp6_type;
4932 		icmpcode = pd->hdr.icmp6.icmp6_code;
4933 		state_icmp = pf_icmp_mapping(pd, icmptype,
4934 		    &icmp_dir, &multi, &virtual_id, &virtual_type);
4935 		if (icmp_dir == PF_IN) {
4936 			sport = virtual_id;
4937 			dport = virtual_type;
4938 		} else {
4939 			sport = virtual_type;
4940 			dport = virtual_id;
4941 		}
4942 
4943 		break;
4944 #endif /* INET6 */
4945 	default:
4946 		sport = dport = 0;
4947 		break;
4948 	}
4949 
4950 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr);
4951 
4952 	/* check packet for BINAT/NAT/RDR */
4953 	transerror = pf_get_translation(pd, pd->off, &nsn, &sk,
4954 	    &nk, saddr, daddr, sport, dport, anchor_stack, &nr, &udp_mapping);
4955 	switch (transerror) {
4956 	default:
4957 		/* A translation error occurred. */
4958 		REASON_SET(&reason, transerror);
4959 		goto cleanup;
4960 	case PFRES_MAX:
4961 		/* No match. */
4962 		break;
4963 	case PFRES_MATCH:
4964 		KASSERT(sk != NULL, ("%s: null sk", __func__));
4965 		KASSERT(nk != NULL, ("%s: null nk", __func__));
4966 
4967 		if (nr->log) {
4968 			PFLOG_PACKET(PF_PASS, PFRES_MATCH, nr, a,
4969 			    ruleset, pd, 1);
4970 		}
4971 
4972 		if (pd->ip_sum)
4973 			bip_sum = *pd->ip_sum;
4974 
4975 		switch (pd->proto) {
4976 		case IPPROTO_TCP:
4977 			bproto_sum = th->th_sum;
4978 			pd->proto_sum = &th->th_sum;
4979 
4980 			if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) ||
4981 			    nk->port[pd->sidx] != sport) {
4982 				pf_change_ap(pd->m, saddr, &th->th_sport, pd->ip_sum,
4983 				    &th->th_sum, &nk->addr[pd->sidx],
4984 				    nk->port[pd->sidx], 0, pd->af);
4985 				pd->sport = &th->th_sport;
4986 				sport = th->th_sport;
4987 			}
4988 
4989 			if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) ||
4990 			    nk->port[pd->didx] != dport) {
4991 				pf_change_ap(pd->m, daddr, &th->th_dport, pd->ip_sum,
4992 				    &th->th_sum, &nk->addr[pd->didx],
4993 				    nk->port[pd->didx], 0, pd->af);
4994 				dport = th->th_dport;
4995 				pd->dport = &th->th_dport;
4996 			}
4997 			rewrite++;
4998 			break;
4999 		case IPPROTO_UDP:
5000 			bproto_sum = pd->hdr.udp.uh_sum;
5001 			pd->proto_sum = &pd->hdr.udp.uh_sum;
5002 
5003 			if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) ||
5004 			    nk->port[pd->sidx] != sport) {
5005 				pf_change_ap(pd->m, saddr, &pd->hdr.udp.uh_sport,
5006 				    pd->ip_sum, &pd->hdr.udp.uh_sum,
5007 				    &nk->addr[pd->sidx],
5008 				    nk->port[pd->sidx], 1, pd->af);
5009 				sport = pd->hdr.udp.uh_sport;
5010 				pd->sport = &pd->hdr.udp.uh_sport;
5011 			}
5012 
5013 			if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) ||
5014 			    nk->port[pd->didx] != dport) {
5015 				pf_change_ap(pd->m, daddr, &pd->hdr.udp.uh_dport,
5016 				    pd->ip_sum, &pd->hdr.udp.uh_sum,
5017 				    &nk->addr[pd->didx],
5018 				    nk->port[pd->didx], 1, pd->af);
5019 				dport = pd->hdr.udp.uh_dport;
5020 				pd->dport = &pd->hdr.udp.uh_dport;
5021 			}
5022 			rewrite++;
5023 			break;
5024 		case IPPROTO_SCTP: {
5025 			uint16_t checksum = 0;
5026 
5027 			if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) ||
5028 			    nk->port[pd->sidx] != sport) {
5029 				pf_change_ap(pd->m, saddr, &pd->hdr.sctp.src_port,
5030 				    pd->ip_sum, &checksum,
5031 				    &nk->addr[pd->sidx],
5032 				    nk->port[pd->sidx], 1, pd->af);
5033 			}
5034 			if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) ||
5035 			    nk->port[pd->didx] != dport) {
5036 				pf_change_ap(pd->m, daddr, &pd->hdr.sctp.dest_port,
5037 				    pd->ip_sum, &checksum,
5038 				    &nk->addr[pd->didx],
5039 				    nk->port[pd->didx], 1, pd->af);
5040 			}
5041 			break;
5042 		}
5043 #ifdef INET
5044 		case IPPROTO_ICMP:
5045 			if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET))
5046 				pf_change_a(&saddr->v4.s_addr, pd->ip_sum,
5047 				    nk->addr[pd->sidx].v4.s_addr, 0);
5048 
5049 			if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET))
5050 				pf_change_a(&daddr->v4.s_addr, pd->ip_sum,
5051 				    nk->addr[pd->didx].v4.s_addr, 0);
5052 
5053 			if (virtual_type == htons(ICMP_ECHO) &&
5054 			     nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) {
5055 				pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
5056 				    pd->hdr.icmp.icmp_cksum, sport,
5057 				    nk->port[pd->sidx], 0);
5058 				pd->hdr.icmp.icmp_id = nk->port[pd->sidx];
5059 				pd->sport = &pd->hdr.icmp.icmp_id;
5060 			}
5061 			m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
5062 			break;
5063 #endif /* INET */
5064 #ifdef INET6
5065 		case IPPROTO_ICMPV6:
5066 			if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6))
5067 				pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum,
5068 				    &nk->addr[pd->sidx], 0);
5069 
5070 			if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6))
5071 				pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum,
5072 				    &nk->addr[pd->didx], 0);
5073 			rewrite++;
5074 			break;
5075 #endif /* INET */
5076 		default:
5077 			switch (pd->af) {
5078 #ifdef INET
5079 			case AF_INET:
5080 				if (PF_ANEQ(saddr,
5081 				    &nk->addr[pd->sidx], AF_INET))
5082 					pf_change_a(&saddr->v4.s_addr,
5083 					    pd->ip_sum,
5084 					    nk->addr[pd->sidx].v4.s_addr, 0);
5085 
5086 				if (PF_ANEQ(daddr,
5087 				    &nk->addr[pd->didx], AF_INET))
5088 					pf_change_a(&daddr->v4.s_addr,
5089 					    pd->ip_sum,
5090 					    nk->addr[pd->didx].v4.s_addr, 0);
5091 				break;
5092 #endif /* INET */
5093 #ifdef INET6
5094 			case AF_INET6:
5095 				if (PF_ANEQ(saddr,
5096 				    &nk->addr[pd->sidx], AF_INET6))
5097 					PF_ACPY(saddr, &nk->addr[pd->sidx], pd->af);
5098 
5099 				if (PF_ANEQ(daddr,
5100 				    &nk->addr[pd->didx], AF_INET6))
5101 					PF_ACPY(daddr, &nk->addr[pd->didx], pd->af);
5102 				break;
5103 #endif /* INET */
5104 			}
5105 			break;
5106 		}
5107 		if (nr->natpass)
5108 			r = NULL;
5109 	}
5110 
5111 	while (r != NULL) {
5112 		pf_counter_u64_add(&r->evaluations, 1);
5113 		PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot,
5114 			r->skip[PF_SKIP_IFP]);
5115 		PF_TEST_ATTRIB(r->direction && r->direction != pd->dir,
5116 			r->skip[PF_SKIP_DIR]);
5117 		PF_TEST_ATTRIB(r->af && r->af != pd->af,
5118 			r->skip[PF_SKIP_AF]);
5119 		PF_TEST_ATTRIB(r->proto && r->proto != pd->proto,
5120 			r->skip[PF_SKIP_PROTO]);
5121 		PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, saddr, pd->af,
5122 		    r->src.neg, pd->kif, M_GETFIB(pd->m)),
5123 			r->skip[PF_SKIP_SRC_ADDR]);
5124 		PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, daddr, pd->af,
5125 		    r->dst.neg, NULL, M_GETFIB(pd->m)),
5126 			r->skip[PF_SKIP_DST_ADDR]);
5127 		switch (pd->virtual_proto) {
5128 		case PF_VPROTO_FRAGMENT:
5129 			/* tcp/udp only. port_op always 0 in other cases */
5130 			PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op),
5131 				TAILQ_NEXT(r, entries));
5132 			PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset),
5133 				TAILQ_NEXT(r, entries));
5134 			/* icmp only. type/code always 0 in other cases */
5135 			PF_TEST_ATTRIB((r->type || r->code),
5136 				TAILQ_NEXT(r, entries));
5137 			/* tcp/udp only. {uid|gid}.op always 0 in other cases */
5138 			PF_TEST_ATTRIB((r->gid.op || r->uid.op),
5139 				TAILQ_NEXT(r, entries));
5140 			break;
5141 
5142 		case IPPROTO_TCP:
5143 			PF_TEST_ATTRIB((r->flagset & th->th_flags) != r->flags,
5144 				TAILQ_NEXT(r, entries));
5145 			/* FALLTHROUGH */
5146 		case IPPROTO_SCTP:
5147 		case IPPROTO_UDP:
5148 			/* tcp/udp only. port_op always 0 in other cases */
5149 			PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op,
5150 			    r->src.port[0], r->src.port[1], sport),
5151 				r->skip[PF_SKIP_SRC_PORT]);
5152 			/* tcp/udp only. port_op always 0 in other cases */
5153 			PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op,
5154 			    r->dst.port[0], r->dst.port[1], dport),
5155 				r->skip[PF_SKIP_DST_PORT]);
5156 			/* tcp/udp only. uid.op always 0 in other cases */
5157 			PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done =
5158 			    pf_socket_lookup(pd), 1)) &&
5159 			    !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1],
5160 			    pd->lookup.uid),
5161 				TAILQ_NEXT(r, entries));
5162 			/* tcp/udp only. gid.op always 0 in other cases */
5163 			PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done =
5164 			    pf_socket_lookup(pd), 1)) &&
5165 			    !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1],
5166 			    pd->lookup.gid),
5167 				TAILQ_NEXT(r, entries));
5168 			break;
5169 
5170 		case IPPROTO_ICMP:
5171 		case IPPROTO_ICMPV6:
5172 			/* icmp only. type always 0 in other cases */
5173 			PF_TEST_ATTRIB(r->type && r->type != icmptype + 1,
5174 				TAILQ_NEXT(r, entries));
5175 			/* icmp only. type always 0 in other cases */
5176 			PF_TEST_ATTRIB(r->code && r->code != icmpcode + 1,
5177 				TAILQ_NEXT(r, entries));
5178 			break;
5179 
5180 		default:
5181 			break;
5182 		}
5183 		PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos),
5184 			TAILQ_NEXT(r, entries));
5185 		PF_TEST_ATTRIB(r->prio &&
5186 		    !pf_match_ieee8021q_pcp(r->prio, pd->m),
5187 			TAILQ_NEXT(r, entries));
5188 		PF_TEST_ATTRIB(r->prob &&
5189 		    r->prob <= arc4random(),
5190 			TAILQ_NEXT(r, entries));
5191 		PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r, &tag,
5192 		    pd->pf_mtag ? pd->pf_mtag->tag : 0),
5193 			TAILQ_NEXT(r, entries));
5194 		PF_TEST_ATTRIB(r->rcv_kif && !pf_match_rcvif(pd->m, r),
5195 			TAILQ_NEXT(r, entries));
5196 		PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT &&
5197 		    pd->virtual_proto != PF_VPROTO_FRAGMENT),
5198 			TAILQ_NEXT(r, entries));
5199 		PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY &&
5200 		    (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match(
5201 		    pf_osfp_fingerprint(pd, th),
5202 		    r->os_fingerprint)),
5203 			TAILQ_NEXT(r, entries));
5204 		/* FALLTHROUGH */
5205 		if (r->tag)
5206 			tag = r->tag;
5207 		if (r->anchor == NULL) {
5208 			if (r->action == PF_MATCH) {
5209 				ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO);
5210 				if (ri == NULL) {
5211 					REASON_SET(&reason, PFRES_MEMORY);
5212 					goto cleanup;
5213 				}
5214 				ri->r = r;
5215 				SLIST_INSERT_HEAD(&match_rules, ri, entry);
5216 				pf_counter_u64_critical_enter();
5217 				pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
5218 				pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
5219 				pf_counter_u64_critical_exit();
5220 				pf_rule_to_actions(r, &pd->act);
5221 				if (r->log || pd->act.log & PF_LOG_MATCHES)
5222 					PFLOG_PACKET(r->action, PFRES_MATCH, r,
5223 					    a, ruleset, pd, 1);
5224 			} else {
5225 				match = 1;
5226 				*rm = r;
5227 				*am = a;
5228 				*rsm = ruleset;
5229 				if (pd->act.log & PF_LOG_MATCHES)
5230 					PFLOG_PACKET(r->action, PFRES_MATCH, r,
5231 					    a, ruleset, pd, 1);
5232 			}
5233 			if ((*rm)->quick)
5234 				break;
5235 			r = TAILQ_NEXT(r, entries);
5236 		} else
5237 			pf_step_into_anchor(anchor_stack, &asd,
5238 			    &ruleset, PF_RULESET_FILTER, &r, &a,
5239 			    &match);
5240 nextrule:
5241 		if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd,
5242 		    &ruleset, PF_RULESET_FILTER, &r, &a, &match))
5243 			break;
5244 	}
5245 	r = *rm;
5246 	a = *am;
5247 	ruleset = *rsm;
5248 
5249 	REASON_SET(&reason, PFRES_MATCH);
5250 
5251 	/* apply actions for last matching pass/block rule */
5252 	pf_rule_to_actions(r, &pd->act);
5253 
5254 	if (r->log || pd->act.log & PF_LOG_MATCHES) {
5255 		if (rewrite)
5256 			m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5257 		PFLOG_PACKET(r->action, reason, r, a, ruleset, pd, 1);
5258 	}
5259 
5260 	if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5261 	   (r->action == PF_DROP) &&
5262 	    ((r->rule_flag & PFRULE_RETURNRST) ||
5263 	    (r->rule_flag & PFRULE_RETURNICMP) ||
5264 	    (r->rule_flag & PFRULE_RETURN))) {
5265 		pf_return(r, nr, pd, sk, th, bproto_sum,
5266 		    bip_sum, &reason, r->rtableid);
5267 	}
5268 
5269 	if (r->action == PF_DROP)
5270 		goto cleanup;
5271 
5272 	if (tag > 0 && pf_tag_packet(pd, tag)) {
5273 		REASON_SET(&reason, PFRES_MEMORY);
5274 		goto cleanup;
5275 	}
5276 	if (pd->act.rtableid >= 0)
5277 		M_SETFIB(pd->m, pd->act.rtableid);
5278 
5279 	if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5280 	   (!state_icmp && (r->keep_state || nr != NULL ||
5281 	    (pd->flags & PFDESC_TCP_NORM)))) {
5282 		int action;
5283 		action = pf_create_state(r, nr, a, pd, nsn, nk, sk,
5284 		    sport, dport, &rewrite, sm, tag, bproto_sum, bip_sum,
5285 		    &match_rules, udp_mapping);
5286 		if (action != PF_PASS) {
5287 			pf_udp_mapping_release(udp_mapping);
5288 			if (action == PF_DROP &&
5289 			    (r->rule_flag & PFRULE_RETURN))
5290 				pf_return(r, nr, pd, sk, th,
5291 				    bproto_sum, bip_sum, &reason,
5292 				    pd->act.rtableid);
5293 			return (action);
5294 		}
5295 	} else {
5296 		while ((ri = SLIST_FIRST(&match_rules))) {
5297 			SLIST_REMOVE_HEAD(&match_rules, entry);
5298 			free(ri, M_PF_RULE_ITEM);
5299 		}
5300 
5301 		uma_zfree(V_pf_state_key_z, sk);
5302 		uma_zfree(V_pf_state_key_z, nk);
5303 		pf_udp_mapping_release(udp_mapping);
5304 	}
5305 
5306 	/* copy back packet headers if we performed NAT operations */
5307 	if (rewrite)
5308 		m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5309 
5310 	if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) &&
5311 	    pd->dir == PF_OUT &&
5312 	    V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m))
5313 		/*
5314 		 * We want the state created, but we dont
5315 		 * want to send this in case a partner
5316 		 * firewall has to know about it to allow
5317 		 * replies through it.
5318 		 */
5319 		return (PF_DEFER);
5320 
5321 	return (PF_PASS);
5322 
5323 cleanup:
5324 	while ((ri = SLIST_FIRST(&match_rules))) {
5325 		SLIST_REMOVE_HEAD(&match_rules, entry);
5326 		free(ri, M_PF_RULE_ITEM);
5327 	}
5328 
5329 	uma_zfree(V_pf_state_key_z, sk);
5330 	uma_zfree(V_pf_state_key_z, nk);
5331 	pf_udp_mapping_release(udp_mapping);
5332 
5333 	return (PF_DROP);
5334 }
5335 
5336 static int
5337 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a,
5338     struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk,
5339     struct pf_state_key *sk, u_int16_t sport,
5340     u_int16_t dport, int *rewrite, struct pf_kstate **sm,
5341     int tag, u_int16_t bproto_sum, u_int16_t bip_sum,
5342     struct pf_krule_slist *match_rules, struct pf_udp_mapping *udp_mapping)
5343 {
5344 	struct pf_kstate	*s = NULL;
5345 	struct pf_ksrc_node	*sn = NULL;
5346 	struct tcphdr		*th = &pd->hdr.tcp;
5347 	u_int16_t		 mss = V_tcp_mssdflt;
5348 	u_short			 reason, sn_reason;
5349 	struct pf_krule_item	*ri;
5350 
5351 	/* check maximums */
5352 	if (r->max_states &&
5353 	    (counter_u64_fetch(r->states_cur) >= r->max_states)) {
5354 		counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1);
5355 		REASON_SET(&reason, PFRES_MAXSTATES);
5356 		goto csfailed;
5357 	}
5358 	/* src node for filter rule */
5359 	if ((r->rule_flag & PFRULE_SRCTRACK ||
5360 	    r->rpool.opts & PF_POOL_STICKYADDR) &&
5361 	    (sn_reason = pf_insert_src_node(&sn, r, pd->src, pd->af)) != 0) {
5362 		REASON_SET(&reason, sn_reason);
5363 		goto csfailed;
5364 	}
5365 	/* src node for translation rule */
5366 	if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) &&
5367 	    (sn_reason = pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx],
5368 	    pd->af)) != 0 ) {
5369 		REASON_SET(&reason, sn_reason);
5370 		goto csfailed;
5371 	}
5372 	s = pf_alloc_state(M_NOWAIT);
5373 	if (s == NULL) {
5374 		REASON_SET(&reason, PFRES_MEMORY);
5375 		goto csfailed;
5376 	}
5377 	s->rule = r;
5378 	s->nat_rule = nr;
5379 	s->anchor = a;
5380 	bcopy(match_rules, &s->match_rules, sizeof(s->match_rules));
5381 	memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions));
5382 
5383 	STATE_INC_COUNTERS(s);
5384 	if (r->allow_opts)
5385 		s->state_flags |= PFSTATE_ALLOWOPTS;
5386 	if (r->rule_flag & PFRULE_STATESLOPPY)
5387 		s->state_flags |= PFSTATE_SLOPPY;
5388 	if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */
5389 		s->state_flags |= PFSTATE_SCRUB_TCP;
5390 	if ((r->rule_flag & PFRULE_PFLOW) ||
5391 	    (nr != NULL && nr->rule_flag & PFRULE_PFLOW))
5392 		s->state_flags |= PFSTATE_PFLOW;
5393 
5394 	s->act.log = pd->act.log & PF_LOG_ALL;
5395 	s->sync_state = PFSYNC_S_NONE;
5396 	s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */
5397 
5398 	if (nr != NULL)
5399 		s->act.log |= nr->log & PF_LOG_ALL;
5400 	switch (pd->proto) {
5401 	case IPPROTO_TCP:
5402 		s->src.seqlo = ntohl(th->th_seq);
5403 		s->src.seqhi = s->src.seqlo + pd->p_len + 1;
5404 		if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN &&
5405 		    r->keep_state == PF_STATE_MODULATE) {
5406 			/* Generate sequence number modulator */
5407 			if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) ==
5408 			    0)
5409 				s->src.seqdiff = 1;
5410 			pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum,
5411 			    htonl(s->src.seqlo + s->src.seqdiff), 0);
5412 			*rewrite = 1;
5413 		} else
5414 			s->src.seqdiff = 0;
5415 		if (th->th_flags & TH_SYN) {
5416 			s->src.seqhi++;
5417 			s->src.wscale = pf_get_wscale(pd);
5418 		}
5419 		s->src.max_win = MAX(ntohs(th->th_win), 1);
5420 		if (s->src.wscale & PF_WSCALE_MASK) {
5421 			/* Remove scale factor from initial window */
5422 			int win = s->src.max_win;
5423 			win += 1 << (s->src.wscale & PF_WSCALE_MASK);
5424 			s->src.max_win = (win - 1) >>
5425 			    (s->src.wscale & PF_WSCALE_MASK);
5426 		}
5427 		if (th->th_flags & TH_FIN)
5428 			s->src.seqhi++;
5429 		s->dst.seqhi = 1;
5430 		s->dst.max_win = 1;
5431 		pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT);
5432 		pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED);
5433 		s->timeout = PFTM_TCP_FIRST_PACKET;
5434 		atomic_add_32(&V_pf_status.states_halfopen, 1);
5435 		break;
5436 	case IPPROTO_UDP:
5437 		pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE);
5438 		pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC);
5439 		s->timeout = PFTM_UDP_FIRST_PACKET;
5440 		break;
5441 	case IPPROTO_SCTP:
5442 		pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT);
5443 		pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED);
5444 		s->timeout = PFTM_SCTP_FIRST_PACKET;
5445 		break;
5446 	case IPPROTO_ICMP:
5447 #ifdef INET6
5448 	case IPPROTO_ICMPV6:
5449 #endif
5450 		s->timeout = PFTM_ICMP_FIRST_PACKET;
5451 		break;
5452 	default:
5453 		pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE);
5454 		pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC);
5455 		s->timeout = PFTM_OTHER_FIRST_PACKET;
5456 	}
5457 
5458 	if (r->rt) {
5459 		/* pf_map_addr increases the reason counters */
5460 		if ((reason = pf_map_addr_sn(pd->af, r, pd->src, &s->rt_addr,
5461 		    &s->rt_kif, NULL, &sn)) != 0)
5462 			goto csfailed;
5463 		s->rt = r->rt;
5464 	}
5465 
5466 	s->creation = s->expire = pf_get_uptime();
5467 
5468 	if (sn != NULL)
5469 		s->src_node = sn;
5470 	if (nsn != NULL) {
5471 		/* XXX We only modify one side for now. */
5472 		PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af);
5473 		s->nat_src_node = nsn;
5474 	}
5475 	if (pd->proto == IPPROTO_TCP) {
5476 		if (s->state_flags & PFSTATE_SCRUB_TCP &&
5477 		    pf_normalize_tcp_init(pd, th, &s->src, &s->dst)) {
5478 			REASON_SET(&reason, PFRES_MEMORY);
5479 			goto csfailed;
5480 		}
5481 		if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub &&
5482 		    pf_normalize_tcp_stateful(pd, &reason, th, s,
5483 		    &s->src, &s->dst, rewrite)) {
5484 			/* This really shouldn't happen!!! */
5485 			DPFPRINTF(PF_DEBUG_URGENT,
5486 			    ("pf_normalize_tcp_stateful failed on first "
5487 			     "pkt\n"));
5488 			goto csfailed;
5489 		}
5490 	} else if (pd->proto == IPPROTO_SCTP) {
5491 		if (pf_normalize_sctp_init(pd, &s->src, &s->dst))
5492 			goto csfailed;
5493 		if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP)))
5494 			goto csfailed;
5495 	}
5496 	s->direction = pd->dir;
5497 
5498 	/*
5499 	 * sk/nk could already been setup by pf_get_translation().
5500 	 */
5501 	if (nr == NULL) {
5502 		KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p",
5503 		    __func__, nr, sk, nk));
5504 		sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport);
5505 		if (sk == NULL)
5506 			goto csfailed;
5507 		nk = sk;
5508 	} else
5509 		KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p",
5510 		    __func__, nr, sk, nk));
5511 
5512 	/* Swap sk/nk for PF_OUT. */
5513 	if (pf_state_insert(BOUND_IFACE(s, pd->kif), pd->kif,
5514 	    (pd->dir == PF_IN) ? sk : nk,
5515 	    (pd->dir == PF_IN) ? nk : sk, s)) {
5516 		REASON_SET(&reason, PFRES_STATEINS);
5517 		goto drop;
5518 	} else
5519 		*sm = s;
5520 
5521 	if (tag > 0)
5522 		s->tag = tag;
5523 	if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) ==
5524 	    TH_SYN && r->keep_state == PF_STATE_SYNPROXY) {
5525 		pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC);
5526 		/* undo NAT changes, if they have taken place */
5527 		if (nr != NULL) {
5528 			struct pf_state_key *skt = s->key[PF_SK_WIRE];
5529 			if (pd->dir == PF_OUT)
5530 				skt = s->key[PF_SK_STACK];
5531 			PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af);
5532 			PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af);
5533 			if (pd->sport)
5534 				*pd->sport = skt->port[pd->sidx];
5535 			if (pd->dport)
5536 				*pd->dport = skt->port[pd->didx];
5537 			if (pd->proto_sum)
5538 				*pd->proto_sum = bproto_sum;
5539 			if (pd->ip_sum)
5540 				*pd->ip_sum = bip_sum;
5541 			m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5542 		}
5543 		s->src.seqhi = htonl(arc4random());
5544 		/* Find mss option */
5545 		int rtid = M_GETFIB(pd->m);
5546 		mss = pf_get_mss(pd);
5547 		mss = pf_calc_mss(pd->src, pd->af, rtid, mss);
5548 		mss = pf_calc_mss(pd->dst, pd->af, rtid, mss);
5549 		s->src.mss = mss;
5550 		pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport,
5551 		    th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1,
5552 		    TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0,
5553 		    pd->act.rtableid);
5554 		REASON_SET(&reason, PFRES_SYNPROXY);
5555 		return (PF_SYNPROXY_DROP);
5556 	}
5557 
5558 	s->udp_mapping = udp_mapping;
5559 
5560 	return (PF_PASS);
5561 
5562 csfailed:
5563 	while ((ri = SLIST_FIRST(match_rules))) {
5564 		SLIST_REMOVE_HEAD(match_rules, entry);
5565 		free(ri, M_PF_RULE_ITEM);
5566 	}
5567 
5568 	uma_zfree(V_pf_state_key_z, sk);
5569 	uma_zfree(V_pf_state_key_z, nk);
5570 
5571 	if (sn != NULL) {
5572 		PF_SRC_NODE_LOCK(sn);
5573 		if (--sn->states == 0 && sn->expire == 0) {
5574 			pf_unlink_src_node(sn);
5575 			uma_zfree(V_pf_sources_z, sn);
5576 			counter_u64_add(
5577 			    V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
5578 		}
5579 		PF_SRC_NODE_UNLOCK(sn);
5580 	}
5581 
5582 	if (nsn != sn && nsn != NULL) {
5583 		PF_SRC_NODE_LOCK(nsn);
5584 		if (--nsn->states == 0 && nsn->expire == 0) {
5585 			pf_unlink_src_node(nsn);
5586 			uma_zfree(V_pf_sources_z, nsn);
5587 			counter_u64_add(
5588 			    V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
5589 		}
5590 		PF_SRC_NODE_UNLOCK(nsn);
5591 	}
5592 
5593 drop:
5594 	if (s != NULL) {
5595 		pf_src_tree_remove_state(s);
5596 		s->timeout = PFTM_UNLINKED;
5597 		STATE_DEC_COUNTERS(s);
5598 		pf_free_state(s);
5599 	}
5600 
5601 	return (PF_DROP);
5602 }
5603 
5604 static int
5605 pf_tcp_track_full(struct pf_kstate **state, struct pf_pdesc *pd,
5606     u_short *reason, int *copyback)
5607 {
5608 	struct tcphdr		*th = &pd->hdr.tcp;
5609 	struct pf_state_peer	*src, *dst;
5610 	u_int16_t		 win = ntohs(th->th_win);
5611 	u_int32_t		 ack, end, data_end, seq, orig_seq;
5612 	u_int8_t		 sws, dws, psrc, pdst;
5613 	int			 ackskew;
5614 
5615 	if (pd->dir == (*state)->direction) {
5616 		src = &(*state)->src;
5617 		dst = &(*state)->dst;
5618 		psrc = PF_PEER_SRC;
5619 		pdst = PF_PEER_DST;
5620 	} else {
5621 		src = &(*state)->dst;
5622 		dst = &(*state)->src;
5623 		psrc = PF_PEER_DST;
5624 		pdst = PF_PEER_SRC;
5625 	}
5626 
5627 	if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) {
5628 		sws = src->wscale & PF_WSCALE_MASK;
5629 		dws = dst->wscale & PF_WSCALE_MASK;
5630 	} else
5631 		sws = dws = 0;
5632 
5633 	/*
5634 	 * Sequence tracking algorithm from Guido van Rooij's paper:
5635 	 *   http://www.madison-gurkha.com/publications/tcp_filtering/
5636 	 *	tcp_filtering.ps
5637 	 */
5638 
5639 	orig_seq = seq = ntohl(th->th_seq);
5640 	if (src->seqlo == 0) {
5641 		/* First packet from this end. Set its state */
5642 
5643 		if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) &&
5644 		    src->scrub == NULL) {
5645 			if (pf_normalize_tcp_init(pd, th, src, dst)) {
5646 				REASON_SET(reason, PFRES_MEMORY);
5647 				return (PF_DROP);
5648 			}
5649 		}
5650 
5651 		/* Deferred generation of sequence number modulator */
5652 		if (dst->seqdiff && !src->seqdiff) {
5653 			/* use random iss for the TCP server */
5654 			while ((src->seqdiff = arc4random() - seq) == 0)
5655 				;
5656 			ack = ntohl(th->th_ack) - dst->seqdiff;
5657 			pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
5658 			    src->seqdiff), 0);
5659 			pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
5660 			*copyback = 1;
5661 		} else {
5662 			ack = ntohl(th->th_ack);
5663 		}
5664 
5665 		end = seq + pd->p_len;
5666 		if (th->th_flags & TH_SYN) {
5667 			end++;
5668 			if (dst->wscale & PF_WSCALE_FLAG) {
5669 				src->wscale = pf_get_wscale(pd);
5670 				if (src->wscale & PF_WSCALE_FLAG) {
5671 					/* Remove scale factor from initial
5672 					 * window */
5673 					sws = src->wscale & PF_WSCALE_MASK;
5674 					win = ((u_int32_t)win + (1 << sws) - 1)
5675 					    >> sws;
5676 					dws = dst->wscale & PF_WSCALE_MASK;
5677 				} else {
5678 					/* fixup other window */
5679 					dst->max_win = MIN(TCP_MAXWIN,
5680 					    (u_int32_t)dst->max_win <<
5681 					    (dst->wscale & PF_WSCALE_MASK));
5682 					/* in case of a retrans SYN|ACK */
5683 					dst->wscale = 0;
5684 				}
5685 			}
5686 		}
5687 		data_end = end;
5688 		if (th->th_flags & TH_FIN)
5689 			end++;
5690 
5691 		src->seqlo = seq;
5692 		if (src->state < TCPS_SYN_SENT)
5693 			pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
5694 
5695 		/*
5696 		 * May need to slide the window (seqhi may have been set by
5697 		 * the crappy stack check or if we picked up the connection
5698 		 * after establishment)
5699 		 */
5700 		if (src->seqhi == 1 ||
5701 		    SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi))
5702 			src->seqhi = end + MAX(1, dst->max_win << dws);
5703 		if (win > src->max_win)
5704 			src->max_win = win;
5705 
5706 	} else {
5707 		ack = ntohl(th->th_ack) - dst->seqdiff;
5708 		if (src->seqdiff) {
5709 			/* Modulate sequence numbers */
5710 			pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
5711 			    src->seqdiff), 0);
5712 			pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
5713 			*copyback = 1;
5714 		}
5715 		end = seq + pd->p_len;
5716 		if (th->th_flags & TH_SYN)
5717 			end++;
5718 		data_end = end;
5719 		if (th->th_flags & TH_FIN)
5720 			end++;
5721 	}
5722 
5723 	if ((th->th_flags & TH_ACK) == 0) {
5724 		/* Let it pass through the ack skew check */
5725 		ack = dst->seqlo;
5726 	} else if ((ack == 0 &&
5727 	    (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) ||
5728 	    /* broken tcp stacks do not set ack */
5729 	    (dst->state < TCPS_SYN_SENT)) {
5730 		/*
5731 		 * Many stacks (ours included) will set the ACK number in an
5732 		 * FIN|ACK if the SYN times out -- no sequence to ACK.
5733 		 */
5734 		ack = dst->seqlo;
5735 	}
5736 
5737 	if (seq == end) {
5738 		/* Ease sequencing restrictions on no data packets */
5739 		seq = src->seqlo;
5740 		data_end = end = seq;
5741 	}
5742 
5743 	ackskew = dst->seqlo - ack;
5744 
5745 	/*
5746 	 * Need to demodulate the sequence numbers in any TCP SACK options
5747 	 * (Selective ACK). We could optionally validate the SACK values
5748 	 * against the current ACK window, either forwards or backwards, but
5749 	 * I'm not confident that SACK has been implemented properly
5750 	 * everywhere. It wouldn't surprise me if several stacks accidentally
5751 	 * SACK too far backwards of previously ACKed data. There really aren't
5752 	 * any security implications of bad SACKing unless the target stack
5753 	 * doesn't validate the option length correctly. Someone trying to
5754 	 * spoof into a TCP connection won't bother blindly sending SACK
5755 	 * options anyway.
5756 	 */
5757 	if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) {
5758 		if (pf_modulate_sack(pd, th, dst))
5759 			*copyback = 1;
5760 	}
5761 
5762 #define	MAXACKWINDOW (0xffff + 1500)	/* 1500 is an arbitrary fudge factor */
5763 	if (SEQ_GEQ(src->seqhi, data_end) &&
5764 	    /* Last octet inside other's window space */
5765 	    SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) &&
5766 	    /* Retrans: not more than one window back */
5767 	    (ackskew >= -MAXACKWINDOW) &&
5768 	    /* Acking not more than one reassembled fragment backwards */
5769 	    (ackskew <= (MAXACKWINDOW << sws)) &&
5770 	    /* Acking not more than one window forward */
5771 	    ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo ||
5772 	    (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) {
5773 	    /* Require an exact/+1 sequence match on resets when possible */
5774 
5775 		if (dst->scrub || src->scrub) {
5776 			if (pf_normalize_tcp_stateful(pd, reason, th,
5777 			    *state, src, dst, copyback))
5778 				return (PF_DROP);
5779 		}
5780 
5781 		/* update max window */
5782 		if (src->max_win < win)
5783 			src->max_win = win;
5784 		/* synchronize sequencing */
5785 		if (SEQ_GT(end, src->seqlo))
5786 			src->seqlo = end;
5787 		/* slide the window of what the other end can send */
5788 		if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
5789 			dst->seqhi = ack + MAX((win << sws), 1);
5790 
5791 		/* update states */
5792 		if (th->th_flags & TH_SYN)
5793 			if (src->state < TCPS_SYN_SENT)
5794 				pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
5795 		if (th->th_flags & TH_FIN)
5796 			if (src->state < TCPS_CLOSING)
5797 				pf_set_protostate(*state, psrc, TCPS_CLOSING);
5798 		if (th->th_flags & TH_ACK) {
5799 			if (dst->state == TCPS_SYN_SENT) {
5800 				pf_set_protostate(*state, pdst,
5801 				    TCPS_ESTABLISHED);
5802 				if (src->state == TCPS_ESTABLISHED &&
5803 				    (*state)->src_node != NULL &&
5804 				    pf_src_connlimit(state)) {
5805 					REASON_SET(reason, PFRES_SRCLIMIT);
5806 					return (PF_DROP);
5807 				}
5808 			} else if (dst->state == TCPS_CLOSING)
5809 				pf_set_protostate(*state, pdst,
5810 				    TCPS_FIN_WAIT_2);
5811 		}
5812 		if (th->th_flags & TH_RST)
5813 			pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
5814 
5815 		/* update expire time */
5816 		(*state)->expire = pf_get_uptime();
5817 		if (src->state >= TCPS_FIN_WAIT_2 &&
5818 		    dst->state >= TCPS_FIN_WAIT_2)
5819 			(*state)->timeout = PFTM_TCP_CLOSED;
5820 		else if (src->state >= TCPS_CLOSING &&
5821 		    dst->state >= TCPS_CLOSING)
5822 			(*state)->timeout = PFTM_TCP_FIN_WAIT;
5823 		else if (src->state < TCPS_ESTABLISHED ||
5824 		    dst->state < TCPS_ESTABLISHED)
5825 			(*state)->timeout = PFTM_TCP_OPENING;
5826 		else if (src->state >= TCPS_CLOSING ||
5827 		    dst->state >= TCPS_CLOSING)
5828 			(*state)->timeout = PFTM_TCP_CLOSING;
5829 		else
5830 			(*state)->timeout = PFTM_TCP_ESTABLISHED;
5831 
5832 		/* Fall through to PASS packet */
5833 
5834 	} else if ((dst->state < TCPS_SYN_SENT ||
5835 		dst->state >= TCPS_FIN_WAIT_2 ||
5836 		src->state >= TCPS_FIN_WAIT_2) &&
5837 	    SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) &&
5838 	    /* Within a window forward of the originating packet */
5839 	    SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) {
5840 	    /* Within a window backward of the originating packet */
5841 
5842 		/*
5843 		 * This currently handles three situations:
5844 		 *  1) Stupid stacks will shotgun SYNs before their peer
5845 		 *     replies.
5846 		 *  2) When PF catches an already established stream (the
5847 		 *     firewall rebooted, the state table was flushed, routes
5848 		 *     changed...)
5849 		 *  3) Packets get funky immediately after the connection
5850 		 *     closes (this should catch Solaris spurious ACK|FINs
5851 		 *     that web servers like to spew after a close)
5852 		 *
5853 		 * This must be a little more careful than the above code
5854 		 * since packet floods will also be caught here. We don't
5855 		 * update the TTL here to mitigate the damage of a packet
5856 		 * flood and so the same code can handle awkward establishment
5857 		 * and a loosened connection close.
5858 		 * In the establishment case, a correct peer response will
5859 		 * validate the connection, go through the normal state code
5860 		 * and keep updating the state TTL.
5861 		 */
5862 
5863 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
5864 			printf("pf: loose state match: ");
5865 			pf_print_state(*state);
5866 			pf_print_flags(th->th_flags);
5867 			printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
5868 			    "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack,
5869 			    pd->p_len, ackskew, (unsigned long long)(*state)->packets[0],
5870 			    (unsigned long long)(*state)->packets[1],
5871 			    pd->dir == PF_IN ? "in" : "out",
5872 			    pd->dir == (*state)->direction ? "fwd" : "rev");
5873 		}
5874 
5875 		if (dst->scrub || src->scrub) {
5876 			if (pf_normalize_tcp_stateful(pd, reason, th,
5877 			    *state, src, dst, copyback))
5878 				return (PF_DROP);
5879 		}
5880 
5881 		/* update max window */
5882 		if (src->max_win < win)
5883 			src->max_win = win;
5884 		/* synchronize sequencing */
5885 		if (SEQ_GT(end, src->seqlo))
5886 			src->seqlo = end;
5887 		/* slide the window of what the other end can send */
5888 		if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
5889 			dst->seqhi = ack + MAX((win << sws), 1);
5890 
5891 		/*
5892 		 * Cannot set dst->seqhi here since this could be a shotgunned
5893 		 * SYN and not an already established connection.
5894 		 */
5895 
5896 		if (th->th_flags & TH_FIN)
5897 			if (src->state < TCPS_CLOSING)
5898 				pf_set_protostate(*state, psrc, TCPS_CLOSING);
5899 		if (th->th_flags & TH_RST)
5900 			pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
5901 
5902 		/* Fall through to PASS packet */
5903 
5904 	} else {
5905 		if ((*state)->dst.state == TCPS_SYN_SENT &&
5906 		    (*state)->src.state == TCPS_SYN_SENT) {
5907 			/* Send RST for state mismatches during handshake */
5908 			if (!(th->th_flags & TH_RST))
5909 				pf_send_tcp((*state)->rule, pd->af,
5910 				    pd->dst, pd->src, th->th_dport,
5911 				    th->th_sport, ntohl(th->th_ack), 0,
5912 				    TH_RST, 0, 0,
5913 				    (*state)->rule->return_ttl, M_SKIP_FIREWALL,
5914 				    0, 0, (*state)->act.rtableid);
5915 			src->seqlo = 0;
5916 			src->seqhi = 1;
5917 			src->max_win = 1;
5918 		} else if (V_pf_status.debug >= PF_DEBUG_MISC) {
5919 			printf("pf: BAD state: ");
5920 			pf_print_state(*state);
5921 			pf_print_flags(th->th_flags);
5922 			printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
5923 			    "pkts=%llu:%llu dir=%s,%s\n",
5924 			    seq, orig_seq, ack, pd->p_len, ackskew,
5925 			    (unsigned long long)(*state)->packets[0],
5926 			    (unsigned long long)(*state)->packets[1],
5927 			    pd->dir == PF_IN ? "in" : "out",
5928 			    pd->dir == (*state)->direction ? "fwd" : "rev");
5929 			printf("pf: State failure on: %c %c %c %c | %c %c\n",
5930 			    SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1',
5931 			    SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ?
5932 			    ' ': '2',
5933 			    (ackskew >= -MAXACKWINDOW) ? ' ' : '3',
5934 			    (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4',
5935 			    SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5',
5936 			    SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6');
5937 		}
5938 		REASON_SET(reason, PFRES_BADSTATE);
5939 		return (PF_DROP);
5940 	}
5941 
5942 	return (PF_PASS);
5943 }
5944 
5945 static int
5946 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason)
5947 {
5948 	struct tcphdr		*th = &pd->hdr.tcp;
5949 	struct pf_state_peer	*src, *dst;
5950 	u_int8_t		 psrc, pdst;
5951 
5952 	if (pd->dir == (*state)->direction) {
5953 		src = &(*state)->src;
5954 		dst = &(*state)->dst;
5955 		psrc = PF_PEER_SRC;
5956 		pdst = PF_PEER_DST;
5957 	} else {
5958 		src = &(*state)->dst;
5959 		dst = &(*state)->src;
5960 		psrc = PF_PEER_DST;
5961 		pdst = PF_PEER_SRC;
5962 	}
5963 
5964 	if (th->th_flags & TH_SYN)
5965 		if (src->state < TCPS_SYN_SENT)
5966 			pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
5967 	if (th->th_flags & TH_FIN)
5968 		if (src->state < TCPS_CLOSING)
5969 			pf_set_protostate(*state, psrc, TCPS_CLOSING);
5970 	if (th->th_flags & TH_ACK) {
5971 		if (dst->state == TCPS_SYN_SENT) {
5972 			pf_set_protostate(*state, pdst, TCPS_ESTABLISHED);
5973 			if (src->state == TCPS_ESTABLISHED &&
5974 			    (*state)->src_node != NULL &&
5975 			    pf_src_connlimit(state)) {
5976 				REASON_SET(reason, PFRES_SRCLIMIT);
5977 				return (PF_DROP);
5978 			}
5979 		} else if (dst->state == TCPS_CLOSING) {
5980 			pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2);
5981 		} else if (src->state == TCPS_SYN_SENT &&
5982 		    dst->state < TCPS_SYN_SENT) {
5983 			/*
5984 			 * Handle a special sloppy case where we only see one
5985 			 * half of the connection. If there is a ACK after
5986 			 * the initial SYN without ever seeing a packet from
5987 			 * the destination, set the connection to established.
5988 			 */
5989 			pf_set_protostate(*state, PF_PEER_BOTH,
5990 			    TCPS_ESTABLISHED);
5991 			dst->state = src->state = TCPS_ESTABLISHED;
5992 			if ((*state)->src_node != NULL &&
5993 			    pf_src_connlimit(state)) {
5994 				REASON_SET(reason, PFRES_SRCLIMIT);
5995 				return (PF_DROP);
5996 			}
5997 		} else if (src->state == TCPS_CLOSING &&
5998 		    dst->state == TCPS_ESTABLISHED &&
5999 		    dst->seqlo == 0) {
6000 			/*
6001 			 * Handle the closing of half connections where we
6002 			 * don't see the full bidirectional FIN/ACK+ACK
6003 			 * handshake.
6004 			 */
6005 			pf_set_protostate(*state, pdst, TCPS_CLOSING);
6006 		}
6007 	}
6008 	if (th->th_flags & TH_RST)
6009 		pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6010 
6011 	/* update expire time */
6012 	(*state)->expire = pf_get_uptime();
6013 	if (src->state >= TCPS_FIN_WAIT_2 &&
6014 	    dst->state >= TCPS_FIN_WAIT_2)
6015 		(*state)->timeout = PFTM_TCP_CLOSED;
6016 	else if (src->state >= TCPS_CLOSING &&
6017 	    dst->state >= TCPS_CLOSING)
6018 		(*state)->timeout = PFTM_TCP_FIN_WAIT;
6019 	else if (src->state < TCPS_ESTABLISHED ||
6020 	    dst->state < TCPS_ESTABLISHED)
6021 		(*state)->timeout = PFTM_TCP_OPENING;
6022 	else if (src->state >= TCPS_CLOSING ||
6023 	    dst->state >= TCPS_CLOSING)
6024 		(*state)->timeout = PFTM_TCP_CLOSING;
6025 	else
6026 		(*state)->timeout = PFTM_TCP_ESTABLISHED;
6027 
6028 	return (PF_PASS);
6029 }
6030 
6031 static int
6032 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason)
6033 {
6034 	struct pf_state_key	*sk = (*state)->key[pd->didx];
6035 	struct tcphdr		*th = &pd->hdr.tcp;
6036 
6037 	if ((*state)->src.state == PF_TCPS_PROXY_SRC) {
6038 		if (pd->dir != (*state)->direction) {
6039 			REASON_SET(reason, PFRES_SYNPROXY);
6040 			return (PF_SYNPROXY_DROP);
6041 		}
6042 		if (th->th_flags & TH_SYN) {
6043 			if (ntohl(th->th_seq) != (*state)->src.seqlo) {
6044 				REASON_SET(reason, PFRES_SYNPROXY);
6045 				return (PF_DROP);
6046 			}
6047 			pf_send_tcp((*state)->rule, pd->af, pd->dst,
6048 			    pd->src, th->th_dport, th->th_sport,
6049 			    (*state)->src.seqhi, ntohl(th->th_seq) + 1,
6050 			    TH_SYN|TH_ACK, 0, (*state)->src.mss, 0,
6051 			    M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid);
6052 			REASON_SET(reason, PFRES_SYNPROXY);
6053 			return (PF_SYNPROXY_DROP);
6054 		} else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK ||
6055 		    (ntohl(th->th_ack) != (*state)->src.seqhi + 1) ||
6056 		    (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) {
6057 			REASON_SET(reason, PFRES_SYNPROXY);
6058 			return (PF_DROP);
6059 		} else if ((*state)->src_node != NULL &&
6060 		    pf_src_connlimit(state)) {
6061 			REASON_SET(reason, PFRES_SRCLIMIT);
6062 			return (PF_DROP);
6063 		} else
6064 			pf_set_protostate(*state, PF_PEER_SRC,
6065 			    PF_TCPS_PROXY_DST);
6066 	}
6067 	if ((*state)->src.state == PF_TCPS_PROXY_DST) {
6068 		if (pd->dir == (*state)->direction) {
6069 			if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) ||
6070 			    (ntohl(th->th_ack) != (*state)->src.seqhi + 1) ||
6071 			    (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) {
6072 				REASON_SET(reason, PFRES_SYNPROXY);
6073 				return (PF_DROP);
6074 			}
6075 			(*state)->src.max_win = MAX(ntohs(th->th_win), 1);
6076 			if ((*state)->dst.seqhi == 1)
6077 				(*state)->dst.seqhi = htonl(arc4random());
6078 			pf_send_tcp((*state)->rule, pd->af,
6079 			    &sk->addr[pd->sidx], &sk->addr[pd->didx],
6080 			    sk->port[pd->sidx], sk->port[pd->didx],
6081 			    (*state)->dst.seqhi, 0, TH_SYN, 0,
6082 			    (*state)->src.mss, 0,
6083 			    (*state)->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0,
6084 			    (*state)->tag, 0, (*state)->act.rtableid);
6085 			REASON_SET(reason, PFRES_SYNPROXY);
6086 			return (PF_SYNPROXY_DROP);
6087 		} else if (((th->th_flags & (TH_SYN|TH_ACK)) !=
6088 		    (TH_SYN|TH_ACK)) ||
6089 		    (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) {
6090 			REASON_SET(reason, PFRES_SYNPROXY);
6091 			return (PF_DROP);
6092 		} else {
6093 			(*state)->dst.max_win = MAX(ntohs(th->th_win), 1);
6094 			(*state)->dst.seqlo = ntohl(th->th_seq);
6095 			pf_send_tcp((*state)->rule, pd->af, pd->dst,
6096 			    pd->src, th->th_dport, th->th_sport,
6097 			    ntohl(th->th_ack), ntohl(th->th_seq) + 1,
6098 			    TH_ACK, (*state)->src.max_win, 0, 0, 0,
6099 			    (*state)->tag, 0, (*state)->act.rtableid);
6100 			pf_send_tcp((*state)->rule, pd->af,
6101 			    &sk->addr[pd->sidx], &sk->addr[pd->didx],
6102 			    sk->port[pd->sidx], sk->port[pd->didx],
6103 			    (*state)->src.seqhi + 1, (*state)->src.seqlo + 1,
6104 			    TH_ACK, (*state)->dst.max_win, 0, 0,
6105 			    M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid);
6106 			(*state)->src.seqdiff = (*state)->dst.seqhi -
6107 			    (*state)->src.seqlo;
6108 			(*state)->dst.seqdiff = (*state)->src.seqhi -
6109 			    (*state)->dst.seqlo;
6110 			(*state)->src.seqhi = (*state)->src.seqlo +
6111 			    (*state)->dst.max_win;
6112 			(*state)->dst.seqhi = (*state)->dst.seqlo +
6113 			    (*state)->src.max_win;
6114 			(*state)->src.wscale = (*state)->dst.wscale = 0;
6115 			pf_set_protostate(*state, PF_PEER_BOTH,
6116 			    TCPS_ESTABLISHED);
6117 			REASON_SET(reason, PFRES_SYNPROXY);
6118 			return (PF_SYNPROXY_DROP);
6119 		}
6120 	}
6121 
6122 	return (PF_PASS);
6123 }
6124 
6125 static int
6126 pf_test_state_tcp(struct pf_kstate **state, struct pf_pdesc *pd,
6127     u_short *reason)
6128 {
6129 	struct pf_state_key_cmp	 key;
6130 	struct tcphdr		*th = &pd->hdr.tcp;
6131 	int			 copyback = 0;
6132 	int			 action;
6133 	struct pf_state_peer	*src, *dst;
6134 
6135 	bzero(&key, sizeof(key));
6136 	key.af = pd->af;
6137 	key.proto = IPPROTO_TCP;
6138 	if (pd->dir == PF_IN)	{	/* wire side, straight */
6139 		PF_ACPY(&key.addr[0], pd->src, key.af);
6140 		PF_ACPY(&key.addr[1], pd->dst, key.af);
6141 		key.port[0] = th->th_sport;
6142 		key.port[1] = th->th_dport;
6143 	} else {			/* stack side, reverse */
6144 		PF_ACPY(&key.addr[1], pd->src, key.af);
6145 		PF_ACPY(&key.addr[0], pd->dst, key.af);
6146 		key.port[1] = th->th_sport;
6147 		key.port[0] = th->th_dport;
6148 	}
6149 
6150 	STATE_LOOKUP(&key, *state, pd);
6151 
6152 	if (pd->dir == (*state)->direction) {
6153 		src = &(*state)->src;
6154 		dst = &(*state)->dst;
6155 	} else {
6156 		src = &(*state)->dst;
6157 		dst = &(*state)->src;
6158 	}
6159 
6160 	if ((action = pf_synproxy(pd, state, reason)) != PF_PASS)
6161 		return (action);
6162 
6163 	if (dst->state >= TCPS_FIN_WAIT_2 &&
6164 	    src->state >= TCPS_FIN_WAIT_2 &&
6165 	    (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) ||
6166 	    ((th->th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK &&
6167 	    pf_syncookie_check(pd) && pd->dir == PF_IN))) {
6168 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
6169 			printf("pf: state reuse ");
6170 			pf_print_state(*state);
6171 			pf_print_flags(th->th_flags);
6172 			printf("\n");
6173 		}
6174 		/* XXX make sure it's the same direction ?? */
6175 		pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED);
6176 		pf_unlink_state(*state);
6177 		*state = NULL;
6178 		return (PF_DROP);
6179 	}
6180 
6181 	if ((*state)->state_flags & PFSTATE_SLOPPY) {
6182 		if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP)
6183 			return (PF_DROP);
6184 	} else {
6185 		if (pf_tcp_track_full(state, pd, reason,
6186 		    &copyback) == PF_DROP)
6187 			return (PF_DROP);
6188 	}
6189 
6190 	/* translate source/destination address, if necessary */
6191 	if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
6192 		struct pf_state_key *nk = (*state)->key[pd->didx];
6193 
6194 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) ||
6195 		    nk->port[pd->sidx] != th->th_sport)
6196 			pf_change_ap(pd->m, pd->src, &th->th_sport,
6197 			    pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx],
6198 			    nk->port[pd->sidx], 0, pd->af);
6199 
6200 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) ||
6201 		    nk->port[pd->didx] != th->th_dport)
6202 			pf_change_ap(pd->m, pd->dst, &th->th_dport,
6203 			    pd->ip_sum, &th->th_sum, &nk->addr[pd->didx],
6204 			    nk->port[pd->didx], 0, pd->af);
6205 		copyback = 1;
6206 	}
6207 
6208 	/* Copyback sequence modulation or stateful scrub changes if needed */
6209 	if (copyback)
6210 		m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th);
6211 
6212 	return (PF_PASS);
6213 }
6214 
6215 static int
6216 pf_test_state_udp(struct pf_kstate **state, struct pf_pdesc *pd)
6217 {
6218 	struct pf_state_peer	*src, *dst;
6219 	struct pf_state_key_cmp	 key;
6220 	struct udphdr		*uh = &pd->hdr.udp;
6221 	uint8_t			 psrc, pdst;
6222 
6223 	bzero(&key, sizeof(key));
6224 	key.af = pd->af;
6225 	key.proto = IPPROTO_UDP;
6226 	if (pd->dir == PF_IN)	{	/* wire side, straight */
6227 		PF_ACPY(&key.addr[0], pd->src, key.af);
6228 		PF_ACPY(&key.addr[1], pd->dst, key.af);
6229 		key.port[0] = uh->uh_sport;
6230 		key.port[1] = uh->uh_dport;
6231 	} else {			/* stack side, reverse */
6232 		PF_ACPY(&key.addr[1], pd->src, key.af);
6233 		PF_ACPY(&key.addr[0], pd->dst, key.af);
6234 		key.port[1] = uh->uh_sport;
6235 		key.port[0] = uh->uh_dport;
6236 	}
6237 
6238 	STATE_LOOKUP(&key, *state, pd);
6239 
6240 	if (pd->dir == (*state)->direction) {
6241 		src = &(*state)->src;
6242 		dst = &(*state)->dst;
6243 		psrc = PF_PEER_SRC;
6244 		pdst = PF_PEER_DST;
6245 	} else {
6246 		src = &(*state)->dst;
6247 		dst = &(*state)->src;
6248 		psrc = PF_PEER_DST;
6249 		pdst = PF_PEER_SRC;
6250 	}
6251 
6252 	/* update states */
6253 	if (src->state < PFUDPS_SINGLE)
6254 		pf_set_protostate(*state, psrc, PFUDPS_SINGLE);
6255 	if (dst->state == PFUDPS_SINGLE)
6256 		pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE);
6257 
6258 	/* update expire time */
6259 	(*state)->expire = pf_get_uptime();
6260 	if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE)
6261 		(*state)->timeout = PFTM_UDP_MULTIPLE;
6262 	else
6263 		(*state)->timeout = PFTM_UDP_SINGLE;
6264 
6265 	/* translate source/destination address, if necessary */
6266 	if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
6267 		struct pf_state_key *nk = (*state)->key[pd->didx];
6268 
6269 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) ||
6270 		    nk->port[pd->sidx] != uh->uh_sport)
6271 			pf_change_ap(pd->m, pd->src, &uh->uh_sport, pd->ip_sum,
6272 			    &uh->uh_sum, &nk->addr[pd->sidx],
6273 			    nk->port[pd->sidx], 1, pd->af);
6274 
6275 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) ||
6276 		    nk->port[pd->didx] != uh->uh_dport)
6277 			pf_change_ap(pd->m, pd->dst, &uh->uh_dport, pd->ip_sum,
6278 			    &uh->uh_sum, &nk->addr[pd->didx],
6279 			    nk->port[pd->didx], 1, pd->af);
6280 		m_copyback(pd->m, pd->off, sizeof(*uh), (caddr_t)uh);
6281 	}
6282 
6283 	return (PF_PASS);
6284 }
6285 
6286 static int
6287 pf_test_state_sctp(struct pf_kstate **state, struct pf_pdesc *pd,
6288     u_short *reason)
6289 {
6290 	struct pf_state_key_cmp	 key;
6291 	struct pf_state_peer	*src, *dst;
6292 	struct sctphdr		*sh = &pd->hdr.sctp;
6293 	u_int8_t		 psrc; //, pdst;
6294 
6295 	bzero(&key, sizeof(key));
6296 	key.af = pd->af;
6297 	key.proto = IPPROTO_SCTP;
6298 	if (pd->dir == PF_IN)	{	/* wire side, straight */
6299 		PF_ACPY(&key.addr[0], pd->src, key.af);
6300 		PF_ACPY(&key.addr[1], pd->dst, key.af);
6301 		key.port[0] = sh->src_port;
6302 		key.port[1] = sh->dest_port;
6303 	} else {			/* stack side, reverse */
6304 		PF_ACPY(&key.addr[1], pd->src, key.af);
6305 		PF_ACPY(&key.addr[0], pd->dst, key.af);
6306 		key.port[1] = sh->src_port;
6307 		key.port[0] = sh->dest_port;
6308 	}
6309 
6310 	STATE_LOOKUP(&key, *state, pd);
6311 
6312 	if (pd->dir == (*state)->direction) {
6313 		src = &(*state)->src;
6314 		dst = &(*state)->dst;
6315 		psrc = PF_PEER_SRC;
6316 	} else {
6317 		src = &(*state)->dst;
6318 		dst = &(*state)->src;
6319 		psrc = PF_PEER_DST;
6320 	}
6321 
6322 	if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) &&
6323 	    (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) &&
6324 	    pd->sctp_flags & PFDESC_SCTP_INIT) {
6325 		pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED);
6326 		pf_unlink_state(*state);
6327 		*state = NULL;
6328 		return (PF_DROP);
6329 	}
6330 
6331 	/* Track state. */
6332 	if (pd->sctp_flags & PFDESC_SCTP_INIT) {
6333 		if (src->state < SCTP_COOKIE_WAIT) {
6334 			pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT);
6335 			(*state)->timeout = PFTM_SCTP_OPENING;
6336 		}
6337 	}
6338 	if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) {
6339 		MPASS(dst->scrub != NULL);
6340 		if (dst->scrub->pfss_v_tag == 0)
6341 			dst->scrub->pfss_v_tag = pd->sctp_initiate_tag;
6342 	}
6343 
6344 	if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) {
6345 		if (src->state < SCTP_ESTABLISHED) {
6346 			pf_set_protostate(*state, psrc, SCTP_ESTABLISHED);
6347 			(*state)->timeout = PFTM_SCTP_ESTABLISHED;
6348 		}
6349 	}
6350 	if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | PFDESC_SCTP_ABORT |
6351 	    PFDESC_SCTP_SHUTDOWN_COMPLETE)) {
6352 		if (src->state < SCTP_SHUTDOWN_PENDING) {
6353 			pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING);
6354 			(*state)->timeout = PFTM_SCTP_CLOSING;
6355 		}
6356 	}
6357 	if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE)) {
6358 		pf_set_protostate(*state, psrc, SCTP_CLOSED);
6359 		(*state)->timeout = PFTM_SCTP_CLOSED;
6360 	}
6361 
6362 	if (src->scrub != NULL) {
6363 		if (src->scrub->pfss_v_tag == 0) {
6364 			src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag;
6365 		} else  if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag)
6366 			return (PF_DROP);
6367 	}
6368 
6369 	(*state)->expire = pf_get_uptime();
6370 
6371 	/* translate source/destination address, if necessary */
6372 	if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
6373 		uint16_t checksum = 0;
6374 		struct pf_state_key *nk = (*state)->key[pd->didx];
6375 
6376 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) ||
6377 		    nk->port[pd->sidx] != pd->hdr.sctp.src_port) {
6378 			pf_change_ap(pd->m, pd->src, &pd->hdr.sctp.src_port,
6379 			    pd->ip_sum, &checksum, &nk->addr[pd->sidx],
6380 			    nk->port[pd->sidx], 1, pd->af);
6381 		}
6382 
6383 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) ||
6384 		    nk->port[pd->didx] != pd->hdr.sctp.dest_port) {
6385 			pf_change_ap(pd->m, pd->dst, &pd->hdr.sctp.dest_port,
6386 			    pd->ip_sum, &checksum, &nk->addr[pd->didx],
6387 			    nk->port[pd->didx], 1, pd->af);
6388 		}
6389 	}
6390 
6391 	return (PF_PASS);
6392 }
6393 
6394 static void
6395 pf_sctp_multihome_detach_addr(const struct pf_kstate *s)
6396 {
6397 	struct pf_sctp_endpoint key;
6398 	struct pf_sctp_endpoint *ep;
6399 	struct pf_state_key *sks = s->key[PF_SK_STACK];
6400 	struct pf_sctp_source *i, *tmp;
6401 
6402 	if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL)
6403 		return;
6404 
6405 	PF_SCTP_ENDPOINTS_LOCK();
6406 
6407 	key.v_tag = s->dst.scrub->pfss_v_tag;
6408 	ep  = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
6409 	if (ep != NULL) {
6410 		TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
6411 			if (pf_addr_cmp(&i->addr,
6412 			    &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT],
6413 			    s->key[PF_SK_WIRE]->af) == 0) {
6414 				SDT_PROBE3(pf, sctp, multihome, remove,
6415 				    key.v_tag, s, i);
6416 				TAILQ_REMOVE(&ep->sources, i, entry);
6417 				free(i, M_PFTEMP);
6418 				break;
6419 			}
6420 		}
6421 
6422 		if (TAILQ_EMPTY(&ep->sources)) {
6423 			RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
6424 			free(ep, M_PFTEMP);
6425 		}
6426 	}
6427 
6428 	/* Other direction. */
6429 	key.v_tag = s->src.scrub->pfss_v_tag;
6430 	ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
6431 	if (ep != NULL) {
6432 		TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
6433 			if (pf_addr_cmp(&i->addr,
6434 			    &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN],
6435 			    s->key[PF_SK_WIRE]->af) == 0) {
6436 				SDT_PROBE3(pf, sctp, multihome, remove,
6437 				    key.v_tag, s, i);
6438 				TAILQ_REMOVE(&ep->sources, i, entry);
6439 				free(i, M_PFTEMP);
6440 				break;
6441 			}
6442 		}
6443 
6444 		if (TAILQ_EMPTY(&ep->sources)) {
6445 			RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
6446 			free(ep, M_PFTEMP);
6447 		}
6448 	}
6449 
6450 	PF_SCTP_ENDPOINTS_UNLOCK();
6451 }
6452 
6453 static void
6454 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag)
6455 {
6456 	struct pf_sctp_endpoint key = {
6457 		.v_tag = v_tag,
6458 	};
6459 	struct pf_sctp_source *i;
6460 	struct pf_sctp_endpoint *ep;
6461 
6462 	PF_SCTP_ENDPOINTS_LOCK();
6463 
6464 	ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
6465 	if (ep == NULL) {
6466 		ep = malloc(sizeof(struct pf_sctp_endpoint),
6467 		    M_PFTEMP, M_NOWAIT);
6468 		if (ep == NULL) {
6469 			PF_SCTP_ENDPOINTS_UNLOCK();
6470 			return;
6471 		}
6472 
6473 		ep->v_tag = v_tag;
6474 		TAILQ_INIT(&ep->sources);
6475 		RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
6476 	}
6477 
6478 	/* Avoid inserting duplicates. */
6479 	TAILQ_FOREACH(i, &ep->sources, entry) {
6480 		if (pf_addr_cmp(&i->addr, a, pd->af) == 0) {
6481 			PF_SCTP_ENDPOINTS_UNLOCK();
6482 			return;
6483 		}
6484 	}
6485 
6486 	i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT);
6487 	if (i == NULL) {
6488 		PF_SCTP_ENDPOINTS_UNLOCK();
6489 		return;
6490 	}
6491 
6492 	i->af = pd->af;
6493 	memcpy(&i->addr, a, sizeof(*a));
6494 	TAILQ_INSERT_TAIL(&ep->sources, i, entry);
6495 	SDT_PROBE2(pf, sctp, multihome, add, v_tag, i);
6496 
6497 	PF_SCTP_ENDPOINTS_UNLOCK();
6498 }
6499 
6500 static void
6501 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif,
6502     struct pf_kstate *s, int action)
6503 {
6504 	struct pf_sctp_multihome_job	*j, *tmp;
6505 	struct pf_sctp_source		*i;
6506 	int			 ret __unused;
6507 	struct pf_kstate	*sm = NULL;
6508 	struct pf_krule		*ra = NULL;
6509 	struct pf_krule		*r = &V_pf_default_rule;
6510 	struct pf_kruleset	*rs = NULL;
6511 	bool do_extra = true;
6512 
6513 	PF_RULES_RLOCK_TRACKER;
6514 
6515 again:
6516 	TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) {
6517 		if (s == NULL || action != PF_PASS)
6518 			goto free;
6519 
6520 		/* Confirm we don't recurse here. */
6521 		MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP));
6522 
6523 		switch (j->op) {
6524 		case  SCTP_ADD_IP_ADDRESS: {
6525 			uint32_t v_tag = pd->sctp_initiate_tag;
6526 
6527 			if (v_tag == 0) {
6528 				if (s->direction == pd->dir)
6529 					v_tag = s->src.scrub->pfss_v_tag;
6530 				else
6531 					v_tag = s->dst.scrub->pfss_v_tag;
6532 			}
6533 
6534 			/*
6535 			 * Avoid duplicating states. We'll already have
6536 			 * created a state based on the source address of
6537 			 * the packet, but SCTP endpoints may also list this
6538 			 * address again in the INIT(_ACK) parameters.
6539 			 */
6540 			if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) {
6541 				break;
6542 			}
6543 
6544 			j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP;
6545 			PF_RULES_RLOCK();
6546 			sm = NULL;
6547 			/*
6548 			 * New connections need to be floating, because
6549 			 * we cannot know what interfaces it will use.
6550 			 * That's why we pass V_pfi_all rather than kif.
6551 			 */
6552 			j->pd.kif = V_pfi_all;
6553 			ret = pf_test_rule(&r, &sm,
6554 			    &j->pd, &ra, &rs, NULL);
6555 			PF_RULES_RUNLOCK();
6556 			SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret);
6557 			if (ret != PF_DROP && sm != NULL) {
6558 				/* Inherit v_tag values. */
6559 				if (sm->direction == s->direction) {
6560 					sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
6561 					sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
6562 				} else {
6563 					sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
6564 					sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
6565 				}
6566 				PF_STATE_UNLOCK(sm);
6567 			} else {
6568 				/* If we try duplicate inserts? */
6569 				break;
6570 			}
6571 
6572 			/* Only add the address if we've actually allowed the state. */
6573 			pf_sctp_multihome_add_addr(pd, &j->src, v_tag);
6574 
6575 			if (! do_extra) {
6576 				break;
6577 			}
6578 			/*
6579 			 * We need to do this for each of our source addresses.
6580 			 * Find those based on the verification tag.
6581 			 */
6582 			struct pf_sctp_endpoint key = {
6583 				.v_tag = pd->hdr.sctp.v_tag,
6584 			};
6585 			struct pf_sctp_endpoint *ep;
6586 
6587 			PF_SCTP_ENDPOINTS_LOCK();
6588 			ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
6589 			if (ep == NULL) {
6590 				PF_SCTP_ENDPOINTS_UNLOCK();
6591 				break;
6592 			}
6593 			MPASS(ep != NULL);
6594 
6595 			TAILQ_FOREACH(i, &ep->sources, entry) {
6596 				struct pf_sctp_multihome_job *nj;
6597 
6598 				/* SCTP can intermingle IPv4 and IPv6. */
6599 				if (i->af != pd->af)
6600 					continue;
6601 
6602 				nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO);
6603 				if (! nj) {
6604 					continue;
6605 				}
6606 				memcpy(&nj->pd, &j->pd, sizeof(j->pd));
6607 				memcpy(&nj->src, &j->src, sizeof(nj->src));
6608 				nj->pd.src = &nj->src;
6609 				// New destination address!
6610 				memcpy(&nj->dst, &i->addr, sizeof(nj->dst));
6611 				nj->pd.dst = &nj->dst;
6612 				nj->pd.m = j->pd.m;
6613 				nj->op = j->op;
6614 
6615 				TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next);
6616 			}
6617 			PF_SCTP_ENDPOINTS_UNLOCK();
6618 
6619 			break;
6620 		}
6621 		case SCTP_DEL_IP_ADDRESS: {
6622 			struct pf_state_key_cmp key;
6623 			uint8_t psrc;
6624 
6625 			bzero(&key, sizeof(key));
6626 			key.af = j->pd.af;
6627 			key.proto = IPPROTO_SCTP;
6628 			if (j->pd.dir == PF_IN)	{	/* wire side, straight */
6629 				PF_ACPY(&key.addr[0], j->pd.src, key.af);
6630 				PF_ACPY(&key.addr[1], j->pd.dst, key.af);
6631 				key.port[0] = j->pd.hdr.sctp.src_port;
6632 				key.port[1] = j->pd.hdr.sctp.dest_port;
6633 			} else {			/* stack side, reverse */
6634 				PF_ACPY(&key.addr[1], j->pd.src, key.af);
6635 				PF_ACPY(&key.addr[0], j->pd.dst, key.af);
6636 				key.port[1] = j->pd.hdr.sctp.src_port;
6637 				key.port[0] = j->pd.hdr.sctp.dest_port;
6638 			}
6639 
6640 			sm = pf_find_state(kif, &key, j->pd.dir);
6641 			if (sm != NULL) {
6642 				PF_STATE_LOCK_ASSERT(sm);
6643 				if (j->pd.dir == sm->direction) {
6644 					psrc = PF_PEER_SRC;
6645 				} else {
6646 					psrc = PF_PEER_DST;
6647 				}
6648 				pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING);
6649 				sm->timeout = PFTM_SCTP_CLOSING;
6650 				PF_STATE_UNLOCK(sm);
6651 			}
6652 			break;
6653 		default:
6654 			panic("Unknown op %#x", j->op);
6655 		}
6656 	}
6657 
6658 	free:
6659 		TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next);
6660 		free(j, M_PFTEMP);
6661 	}
6662 
6663 	/* We may have inserted extra work while processing the list. */
6664 	if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) {
6665 		do_extra = false;
6666 		goto again;
6667 	}
6668 }
6669 
6670 static int
6671 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op)
6672 {
6673 	int			 off = 0;
6674 	struct pf_sctp_multihome_job	*job;
6675 
6676 	while (off < len) {
6677 		struct sctp_paramhdr h;
6678 
6679 		if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL, NULL,
6680 		    pd->af))
6681 			return (PF_DROP);
6682 
6683 		/* Parameters are at least 4 bytes. */
6684 		if (ntohs(h.param_length) < 4)
6685 			return (PF_DROP);
6686 
6687 		switch (ntohs(h.param_type)) {
6688 		case  SCTP_IPV4_ADDRESS: {
6689 			struct in_addr t;
6690 
6691 			if (ntohs(h.param_length) !=
6692 			    (sizeof(struct sctp_paramhdr) + sizeof(t)))
6693 				return (PF_DROP);
6694 
6695 			if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
6696 			    NULL, NULL, pd->af))
6697 				return (PF_DROP);
6698 
6699 			if (in_nullhost(t))
6700 				t.s_addr = pd->src->v4.s_addr;
6701 
6702 			/*
6703 			 * We hold the state lock (idhash) here, which means
6704 			 * that we can't acquire the keyhash, or we'll get a
6705 			 * LOR (and potentially double-lock things too). We also
6706 			 * can't release the state lock here, so instead we'll
6707 			 * enqueue this for async handling.
6708 			 * There's a relatively small race here, in that a
6709 			 * packet using the new addresses could arrive already,
6710 			 * but that's just though luck for it.
6711 			 */
6712 			job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
6713 			if (! job)
6714 				return (PF_DROP);
6715 
6716 			memcpy(&job->pd, pd, sizeof(*pd));
6717 
6718 			// New source address!
6719 			memcpy(&job->src, &t, sizeof(t));
6720 			job->pd.src = &job->src;
6721 			memcpy(&job->dst, pd->dst, sizeof(job->dst));
6722 			job->pd.dst = &job->dst;
6723 			job->pd.m = pd->m;
6724 			job->op = op;
6725 
6726 			TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
6727 			break;
6728 		}
6729 #ifdef INET6
6730 		case SCTP_IPV6_ADDRESS: {
6731 			struct in6_addr t;
6732 
6733 			if (ntohs(h.param_length) !=
6734 			    (sizeof(struct sctp_paramhdr) + sizeof(t)))
6735 				return (PF_DROP);
6736 
6737 			if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
6738 			    NULL, NULL, pd->af))
6739 				return (PF_DROP);
6740 			if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0)
6741 				break;
6742 			if (memcmp(&t, &in6addr_any, sizeof(t)) == 0)
6743 				memcpy(&t, &pd->src->v6, sizeof(t));
6744 
6745 			job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
6746 			if (! job)
6747 				return (PF_DROP);
6748 
6749 			memcpy(&job->pd, pd, sizeof(*pd));
6750 			memcpy(&job->src, &t, sizeof(t));
6751 			job->pd.src = &job->src;
6752 			memcpy(&job->dst, pd->dst, sizeof(job->dst));
6753 			job->pd.dst = &job->dst;
6754 			job->pd.m = pd->m;
6755 			job->op = op;
6756 
6757 			TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
6758 			break;
6759 		}
6760 #endif
6761 		case SCTP_ADD_IP_ADDRESS: {
6762 			int ret;
6763 			struct sctp_asconf_paramhdr ah;
6764 
6765 			if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
6766 			    NULL, NULL, pd->af))
6767 				return (PF_DROP);
6768 
6769 			ret = pf_multihome_scan(start + off + sizeof(ah),
6770 			    ntohs(ah.ph.param_length) - sizeof(ah), pd,
6771 			    SCTP_ADD_IP_ADDRESS);
6772 			if (ret != PF_PASS)
6773 				return (ret);
6774 			break;
6775 		}
6776 		case SCTP_DEL_IP_ADDRESS: {
6777 			int ret;
6778 			struct sctp_asconf_paramhdr ah;
6779 
6780 			if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
6781 			    NULL, NULL, pd->af))
6782 				return (PF_DROP);
6783 			ret = pf_multihome_scan(start + off + sizeof(ah),
6784 			    ntohs(ah.ph.param_length) - sizeof(ah), pd,
6785 			    SCTP_DEL_IP_ADDRESS);
6786 			if (ret != PF_PASS)
6787 				return (ret);
6788 			break;
6789 		}
6790 		default:
6791 			break;
6792 		}
6793 
6794 		off += roundup(ntohs(h.param_length), 4);
6795 	}
6796 
6797 	return (PF_PASS);
6798 }
6799 int
6800 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd)
6801 {
6802 	start += sizeof(struct sctp_init_chunk);
6803 	len -= sizeof(struct sctp_init_chunk);
6804 
6805 	return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
6806 }
6807 
6808 int
6809 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd)
6810 {
6811 	start += sizeof(struct sctp_asconf_chunk);
6812 	len -= sizeof(struct sctp_asconf_chunk);
6813 
6814 	return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
6815 }
6816 
6817 int
6818 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd,
6819     struct pf_kstate **state, int direction,
6820     u_int16_t icmpid, u_int16_t type, int icmp_dir,
6821     int *iidx, int multi, int inner)
6822 {
6823 	key->af = pd->af;
6824 	key->proto = pd->proto;
6825 	if (icmp_dir == PF_IN) {
6826 		*iidx = pd->sidx;
6827 		key->port[pd->sidx] = icmpid;
6828 		key->port[pd->didx] = type;
6829 	} else {
6830 		*iidx = pd->didx;
6831 		key->port[pd->sidx] = type;
6832 		key->port[pd->didx] = icmpid;
6833 	}
6834 	if (pf_state_key_addr_setup(pd, key, multi))
6835 		return (PF_DROP);
6836 
6837 	STATE_LOOKUP(key, *state, pd);
6838 
6839 	if ((*state)->state_flags & PFSTATE_SLOPPY)
6840 		return (-1);
6841 
6842 	/* Is this ICMP message flowing in right direction? */
6843 	if ((*state)->rule->type &&
6844 	    (((!inner && (*state)->direction == direction) ||
6845 	    (inner && (*state)->direction != direction)) ?
6846 	    PF_IN : PF_OUT) != icmp_dir) {
6847 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
6848 			printf("pf: icmp type %d in wrong direction (%d): ",
6849 			    ntohs(type), icmp_dir);
6850 			pf_print_state(*state);
6851 			printf("\n");
6852 		}
6853 		PF_STATE_UNLOCK(*state);
6854 		*state = NULL;
6855 		return (PF_DROP);
6856 	}
6857 	return (-1);
6858 }
6859 
6860 static int
6861 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd,
6862     u_short *reason)
6863 {
6864 	struct pf_addr  *saddr = pd->src, *daddr = pd->dst;
6865 	u_int16_t	*icmpsum, virtual_id, virtual_type;
6866 	u_int8_t	 icmptype, icmpcode;
6867 	int		 icmp_dir, iidx, ret, multi;
6868 	struct pf_state_key_cmp key;
6869 #ifdef INET
6870 	u_int16_t	 icmpid;
6871 #endif
6872 
6873 	MPASS(*state == NULL);
6874 
6875 	bzero(&key, sizeof(key));
6876 	switch (pd->proto) {
6877 #ifdef INET
6878 	case IPPROTO_ICMP:
6879 		icmptype = pd->hdr.icmp.icmp_type;
6880 		icmpcode = pd->hdr.icmp.icmp_code;
6881 		icmpid = pd->hdr.icmp.icmp_id;
6882 		icmpsum = &pd->hdr.icmp.icmp_cksum;
6883 		break;
6884 #endif /* INET */
6885 #ifdef INET6
6886 	case IPPROTO_ICMPV6:
6887 		icmptype = pd->hdr.icmp6.icmp6_type;
6888 		icmpcode = pd->hdr.icmp6.icmp6_code;
6889 #ifdef INET
6890 		icmpid = pd->hdr.icmp6.icmp6_id;
6891 #endif
6892 		icmpsum = &pd->hdr.icmp6.icmp6_cksum;
6893 		break;
6894 #endif /* INET6 */
6895 	}
6896 
6897 	if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &multi,
6898 	    &virtual_id, &virtual_type) == 0) {
6899 		/*
6900 		 * ICMP query/reply message not related to a TCP/UDP packet.
6901 		 * Search for an ICMP state.
6902 		 */
6903 		ret = pf_icmp_state_lookup(&key, pd, state, pd->dir,
6904 		    virtual_id, virtual_type, icmp_dir, &iidx,
6905 		    PF_ICMP_MULTI_NONE, 0);
6906 		if (ret >= 0) {
6907 			MPASS(*state == NULL);
6908 			if (ret == PF_DROP && pd->af == AF_INET6 &&
6909 			    icmp_dir == PF_OUT) {
6910 				ret = pf_icmp_state_lookup(&key, pd, state,
6911 				    pd->dir, virtual_id, virtual_type,
6912 				    icmp_dir, &iidx, multi, 0);
6913 				if (ret >= 0) {
6914 					MPASS(*state == NULL);
6915 					return (ret);
6916 				}
6917 			} else
6918 				return (ret);
6919 		}
6920 
6921 		(*state)->expire = pf_get_uptime();
6922 		(*state)->timeout = PFTM_ICMP_ERROR_REPLY;
6923 
6924 		/* translate source/destination address, if necessary */
6925 		if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
6926 			struct pf_state_key *nk = (*state)->key[pd->didx];
6927 
6928 			switch (pd->af) {
6929 #ifdef INET
6930 			case AF_INET:
6931 				if (PF_ANEQ(pd->src,
6932 				    &nk->addr[pd->sidx], AF_INET))
6933 					pf_change_a(&saddr->v4.s_addr,
6934 					    pd->ip_sum,
6935 					    nk->addr[pd->sidx].v4.s_addr, 0);
6936 
6937 				if (PF_ANEQ(pd->dst, &nk->addr[pd->didx],
6938 				    AF_INET))
6939 					pf_change_a(&daddr->v4.s_addr,
6940 					    pd->ip_sum,
6941 					    nk->addr[pd->didx].v4.s_addr, 0);
6942 
6943 				if (nk->port[iidx] !=
6944 				    pd->hdr.icmp.icmp_id) {
6945 					pd->hdr.icmp.icmp_cksum =
6946 					    pf_cksum_fixup(
6947 					    pd->hdr.icmp.icmp_cksum, icmpid,
6948 					    nk->port[iidx], 0);
6949 					pd->hdr.icmp.icmp_id =
6950 					    nk->port[iidx];
6951 				}
6952 
6953 				m_copyback(pd->m, pd->off, ICMP_MINLEN,
6954 				    (caddr_t )&pd->hdr.icmp);
6955 				break;
6956 #endif /* INET */
6957 #ifdef INET6
6958 			case AF_INET6:
6959 				if (PF_ANEQ(pd->src,
6960 				    &nk->addr[pd->sidx], AF_INET6))
6961 					pf_change_a6(saddr,
6962 					    &pd->hdr.icmp6.icmp6_cksum,
6963 					    &nk->addr[pd->sidx], 0);
6964 
6965 				if (PF_ANEQ(pd->dst,
6966 				    &nk->addr[pd->didx], AF_INET6))
6967 					pf_change_a6(daddr,
6968 					    &pd->hdr.icmp6.icmp6_cksum,
6969 					    &nk->addr[pd->didx], 0);
6970 
6971 				m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
6972 				    (caddr_t )&pd->hdr.icmp6);
6973 				break;
6974 #endif /* INET6 */
6975 			}
6976 		}
6977 		return (PF_PASS);
6978 
6979 	} else {
6980 		/*
6981 		 * ICMP error message in response to a TCP/UDP packet.
6982 		 * Extract the inner TCP/UDP header and search for that state.
6983 		 */
6984 
6985 		struct pf_pdesc	pd2;
6986 		bzero(&pd2, sizeof pd2);
6987 #ifdef INET
6988 		struct ip	h2;
6989 #endif /* INET */
6990 #ifdef INET6
6991 		struct ip6_hdr	h2_6;
6992 		int		fragoff2, extoff2;
6993 		u_int32_t	jumbolen;
6994 #endif /* INET6 */
6995 		int		ipoff2 = 0;
6996 
6997 		pd2.af = pd->af;
6998 		pd2.dir = pd->dir;
6999 		/* Payload packet is from the opposite direction. */
7000 		pd2.sidx = (pd->dir == PF_IN) ? 1 : 0;
7001 		pd2.didx = (pd->dir == PF_IN) ? 0 : 1;
7002 		pd2.m = pd->m;
7003 		switch (pd->af) {
7004 #ifdef INET
7005 		case AF_INET:
7006 			/* offset of h2 in mbuf chain */
7007 			ipoff2 = pd->off + ICMP_MINLEN;
7008 
7009 			if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2),
7010 			    NULL, reason, pd2.af)) {
7011 				DPFPRINTF(PF_DEBUG_MISC,
7012 				    ("pf: ICMP error message too short "
7013 				    "(ip)\n"));
7014 				return (PF_DROP);
7015 			}
7016 			/*
7017 			 * ICMP error messages don't refer to non-first
7018 			 * fragments
7019 			 */
7020 			if (h2.ip_off & htons(IP_OFFMASK)) {
7021 				REASON_SET(reason, PFRES_FRAG);
7022 				return (PF_DROP);
7023 			}
7024 
7025 			/* offset of protocol header that follows h2 */
7026 			pd2.off = ipoff2 + (h2.ip_hl << 2);
7027 
7028 			pd2.proto = h2.ip_p;
7029 			pd2.src = (struct pf_addr *)&h2.ip_src;
7030 			pd2.dst = (struct pf_addr *)&h2.ip_dst;
7031 			pd2.ip_sum = &h2.ip_sum;
7032 			break;
7033 #endif /* INET */
7034 #ifdef INET6
7035 		case AF_INET6:
7036 			ipoff2 = pd->off + sizeof(struct icmp6_hdr);
7037 
7038 			if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6),
7039 			    NULL, reason, pd2.af)) {
7040 				DPFPRINTF(PF_DEBUG_MISC,
7041 				    ("pf: ICMP error message too short "
7042 				    "(ip6)\n"));
7043 				return (PF_DROP);
7044 			}
7045 			pd2.off = ipoff2;
7046 			if (pf_walk_header6(pd->m, &h2_6, &pd2.off, &extoff2,
7047 				&fragoff2, &pd2.proto, &jumbolen,
7048 				reason) != PF_PASS)
7049 				return (PF_DROP);
7050 
7051 			pd2.src = (struct pf_addr *)&h2_6.ip6_src;
7052 			pd2.dst = (struct pf_addr *)&h2_6.ip6_dst;
7053 			pd2.ip_sum = NULL;
7054 			break;
7055 #endif /* INET6 */
7056 		}
7057 
7058 		if (PF_ANEQ(pd->dst, pd2.src, pd->af)) {
7059 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
7060 				printf("pf: BAD ICMP %d:%d outer dst: ",
7061 				    icmptype, icmpcode);
7062 				pf_print_host(pd->src, 0, pd->af);
7063 				printf(" -> ");
7064 				pf_print_host(pd->dst, 0, pd->af);
7065 				printf(" inner src: ");
7066 				pf_print_host(pd2.src, 0, pd2.af);
7067 				printf(" -> ");
7068 				pf_print_host(pd2.dst, 0, pd2.af);
7069 				printf("\n");
7070 			}
7071 			REASON_SET(reason, PFRES_BADSTATE);
7072 			return (PF_DROP);
7073 		}
7074 
7075 		switch (pd2.proto) {
7076 		case IPPROTO_TCP: {
7077 			struct tcphdr		 th;
7078 			u_int32_t		 seq;
7079 			struct pf_state_peer	*src, *dst;
7080 			u_int8_t		 dws;
7081 			int			 copyback = 0;
7082 
7083 			/*
7084 			 * Only the first 8 bytes of the TCP header can be
7085 			 * expected. Don't access any TCP header fields after
7086 			 * th_seq, an ackskew test is not possible.
7087 			 */
7088 			if (!pf_pull_hdr(pd->m, pd2.off, &th, 8, NULL, reason,
7089 			    pd2.af)) {
7090 				DPFPRINTF(PF_DEBUG_MISC,
7091 				    ("pf: ICMP error message too short "
7092 				    "(tcp)\n"));
7093 				return (PF_DROP);
7094 			}
7095 
7096 			key.af = pd2.af;
7097 			key.proto = IPPROTO_TCP;
7098 			PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
7099 			PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
7100 			key.port[pd2.sidx] = th.th_sport;
7101 			key.port[pd2.didx] = th.th_dport;
7102 
7103 			STATE_LOOKUP(&key, *state, pd);
7104 
7105 			if (pd->dir == (*state)->direction) {
7106 				src = &(*state)->dst;
7107 				dst = &(*state)->src;
7108 			} else {
7109 				src = &(*state)->src;
7110 				dst = &(*state)->dst;
7111 			}
7112 
7113 			if (src->wscale && dst->wscale)
7114 				dws = dst->wscale & PF_WSCALE_MASK;
7115 			else
7116 				dws = 0;
7117 
7118 			/* Demodulate sequence number */
7119 			seq = ntohl(th.th_seq) - src->seqdiff;
7120 			if (src->seqdiff) {
7121 				pf_change_a(&th.th_seq, icmpsum,
7122 				    htonl(seq), 0);
7123 				copyback = 1;
7124 			}
7125 
7126 			if (!((*state)->state_flags & PFSTATE_SLOPPY) &&
7127 			    (!SEQ_GEQ(src->seqhi, seq) ||
7128 			    !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) {
7129 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
7130 					printf("pf: BAD ICMP %d:%d ",
7131 					    icmptype, icmpcode);
7132 					pf_print_host(pd->src, 0, pd->af);
7133 					printf(" -> ");
7134 					pf_print_host(pd->dst, 0, pd->af);
7135 					printf(" state: ");
7136 					pf_print_state(*state);
7137 					printf(" seq=%u\n", seq);
7138 				}
7139 				REASON_SET(reason, PFRES_BADSTATE);
7140 				return (PF_DROP);
7141 			} else {
7142 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
7143 					printf("pf: OK ICMP %d:%d ",
7144 					    icmptype, icmpcode);
7145 					pf_print_host(pd->src, 0, pd->af);
7146 					printf(" -> ");
7147 					pf_print_host(pd->dst, 0, pd->af);
7148 					printf(" state: ");
7149 					pf_print_state(*state);
7150 					printf(" seq=%u\n", seq);
7151 				}
7152 			}
7153 
7154 			/* translate source/destination address, if necessary */
7155 			if ((*state)->key[PF_SK_WIRE] !=
7156 			    (*state)->key[PF_SK_STACK]) {
7157 				struct pf_state_key *nk =
7158 				    (*state)->key[pd->didx];
7159 
7160 				if (PF_ANEQ(pd2.src,
7161 				    &nk->addr[pd2.sidx], pd2.af) ||
7162 				    nk->port[pd2.sidx] != th.th_sport)
7163 					pf_change_icmp(pd2.src, &th.th_sport,
7164 					    daddr, &nk->addr[pd2.sidx],
7165 					    nk->port[pd2.sidx], NULL,
7166 					    pd2.ip_sum, icmpsum,
7167 					    pd->ip_sum, 0, pd2.af);
7168 
7169 				if (PF_ANEQ(pd2.dst,
7170 				    &nk->addr[pd2.didx], pd2.af) ||
7171 				    nk->port[pd2.didx] != th.th_dport)
7172 					pf_change_icmp(pd2.dst, &th.th_dport,
7173 					    saddr, &nk->addr[pd2.didx],
7174 					    nk->port[pd2.didx], NULL,
7175 					    pd2.ip_sum, icmpsum,
7176 					    pd->ip_sum, 0, pd2.af);
7177 				copyback = 1;
7178 			}
7179 
7180 			if (copyback) {
7181 				switch (pd2.af) {
7182 #ifdef INET
7183 				case AF_INET:
7184 					m_copyback(pd->m, pd->off, ICMP_MINLEN,
7185 					    (caddr_t )&pd->hdr.icmp);
7186 					m_copyback(pd->m, ipoff2, sizeof(h2),
7187 					    (caddr_t )&h2);
7188 					break;
7189 #endif /* INET */
7190 #ifdef INET6
7191 				case AF_INET6:
7192 					m_copyback(pd->m, pd->off,
7193 					    sizeof(struct icmp6_hdr),
7194 					    (caddr_t )&pd->hdr.icmp6);
7195 					m_copyback(pd->m, ipoff2, sizeof(h2_6),
7196 					    (caddr_t )&h2_6);
7197 					break;
7198 #endif /* INET6 */
7199 				}
7200 				m_copyback(pd->m, pd2.off, 8, (caddr_t)&th);
7201 			}
7202 
7203 			return (PF_PASS);
7204 			break;
7205 		}
7206 		case IPPROTO_UDP: {
7207 			struct udphdr		uh;
7208 
7209 			if (!pf_pull_hdr(pd->m, pd2.off, &uh, sizeof(uh),
7210 			    NULL, reason, pd2.af)) {
7211 				DPFPRINTF(PF_DEBUG_MISC,
7212 				    ("pf: ICMP error message too short "
7213 				    "(udp)\n"));
7214 				return (PF_DROP);
7215 			}
7216 
7217 			key.af = pd2.af;
7218 			key.proto = IPPROTO_UDP;
7219 			PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
7220 			PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
7221 			key.port[pd2.sidx] = uh.uh_sport;
7222 			key.port[pd2.didx] = uh.uh_dport;
7223 
7224 			STATE_LOOKUP(&key, *state, pd);
7225 
7226 			/* translate source/destination address, if necessary */
7227 			if ((*state)->key[PF_SK_WIRE] !=
7228 			    (*state)->key[PF_SK_STACK]) {
7229 				struct pf_state_key *nk =
7230 				    (*state)->key[pd->didx];
7231 
7232 				if (PF_ANEQ(pd2.src,
7233 				    &nk->addr[pd2.sidx], pd2.af) ||
7234 				    nk->port[pd2.sidx] != uh.uh_sport)
7235 					pf_change_icmp(pd2.src, &uh.uh_sport,
7236 					    daddr, &nk->addr[pd2.sidx],
7237 					    nk->port[pd2.sidx], &uh.uh_sum,
7238 					    pd2.ip_sum, icmpsum,
7239 					    pd->ip_sum, 1, pd2.af);
7240 
7241 				if (PF_ANEQ(pd2.dst,
7242 				    &nk->addr[pd2.didx], pd2.af) ||
7243 				    nk->port[pd2.didx] != uh.uh_dport)
7244 					pf_change_icmp(pd2.dst, &uh.uh_dport,
7245 					    saddr, &nk->addr[pd2.didx],
7246 					    nk->port[pd2.didx], &uh.uh_sum,
7247 					    pd2.ip_sum, icmpsum,
7248 					    pd->ip_sum, 1, pd2.af);
7249 
7250 				switch (pd2.af) {
7251 #ifdef INET
7252 				case AF_INET:
7253 					m_copyback(pd->m, pd->off, ICMP_MINLEN,
7254 					    (caddr_t )&pd->hdr.icmp);
7255 					m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
7256 					break;
7257 #endif /* INET */
7258 #ifdef INET6
7259 				case AF_INET6:
7260 					m_copyback(pd->m, pd->off,
7261 					    sizeof(struct icmp6_hdr),
7262 					    (caddr_t )&pd->hdr.icmp6);
7263 					m_copyback(pd->m, ipoff2, sizeof(h2_6),
7264 					    (caddr_t )&h2_6);
7265 					break;
7266 #endif /* INET6 */
7267 				}
7268 				m_copyback(pd->m, pd2.off, sizeof(uh), (caddr_t)&uh);
7269 			}
7270 			return (PF_PASS);
7271 			break;
7272 		}
7273 #ifdef INET
7274 		case IPPROTO_ICMP: {
7275 			struct icmp	*iih = &pd2.hdr.icmp;
7276 
7277 			if (pd2.af != AF_INET) {
7278 				REASON_SET(reason, PFRES_NORM);
7279 				return (PF_DROP);
7280 			}
7281 
7282 			if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN,
7283 			    NULL, reason, pd2.af)) {
7284 				DPFPRINTF(PF_DEBUG_MISC,
7285 				    ("pf: ICMP error message too short i"
7286 				    "(icmp)\n"));
7287 				return (PF_DROP);
7288 			}
7289 
7290 			icmpid = iih->icmp_id;
7291 			pf_icmp_mapping(&pd2, iih->icmp_type,
7292 			    &icmp_dir, &multi, &virtual_id, &virtual_type);
7293 
7294 			ret = pf_icmp_state_lookup(&key, &pd2, state,
7295 			    pd2.dir, virtual_id, virtual_type,
7296 			    icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1);
7297 			if (ret >= 0) {
7298 				MPASS(*state == NULL);
7299 				return (ret);
7300 			}
7301 
7302 			/* translate source/destination address, if necessary */
7303 			if ((*state)->key[PF_SK_WIRE] !=
7304 			    (*state)->key[PF_SK_STACK]) {
7305 				struct pf_state_key *nk =
7306 				    (*state)->key[pd->didx];
7307 
7308 				if (PF_ANEQ(pd2.src,
7309 				    &nk->addr[pd2.sidx], pd2.af) ||
7310 				    (virtual_type == htons(ICMP_ECHO) &&
7311 				    nk->port[iidx] != iih->icmp_id))
7312 					pf_change_icmp(pd2.src,
7313 					    (virtual_type == htons(ICMP_ECHO)) ?
7314 					    &iih->icmp_id : NULL,
7315 					    daddr, &nk->addr[pd2.sidx],
7316 					    (virtual_type == htons(ICMP_ECHO)) ?
7317 					    nk->port[iidx] : 0, NULL,
7318 					    pd2.ip_sum, icmpsum,
7319 					    pd->ip_sum, 0, AF_INET);
7320 
7321 				if (PF_ANEQ(pd2.dst,
7322 				    &nk->addr[pd2.didx], pd2.af))
7323 					pf_change_icmp(pd2.dst, NULL, NULL,
7324 					    &nk->addr[pd2.didx], 0, NULL,
7325 					    pd2.ip_sum, icmpsum, pd->ip_sum, 0,
7326 					    AF_INET);
7327 
7328 				m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
7329 				m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
7330 				m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih);
7331 			}
7332 			return (PF_PASS);
7333 			break;
7334 		}
7335 #endif /* INET */
7336 #ifdef INET6
7337 		case IPPROTO_ICMPV6: {
7338 			struct icmp6_hdr	*iih = &pd2.hdr.icmp6;
7339 
7340 			if (pd2.af != AF_INET6) {
7341 				REASON_SET(reason, PFRES_NORM);
7342 				return (PF_DROP);
7343 			}
7344 
7345 			if (!pf_pull_hdr(pd->m, pd2.off, iih,
7346 			    sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) {
7347 				DPFPRINTF(PF_DEBUG_MISC,
7348 				    ("pf: ICMP error message too short "
7349 				    "(icmp6)\n"));
7350 				return (PF_DROP);
7351 			}
7352 
7353 			pf_icmp_mapping(&pd2, iih->icmp6_type,
7354 			    &icmp_dir, &multi, &virtual_id, &virtual_type);
7355 
7356 			ret = pf_icmp_state_lookup(&key, &pd2, state,
7357 			    pd->dir, virtual_id, virtual_type,
7358 			    icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1);
7359 			if (ret >= 0) {
7360 				MPASS(*state == NULL);
7361 				if (ret == PF_DROP && pd2.af == AF_INET6 &&
7362 				    icmp_dir == PF_OUT) {
7363 					ret = pf_icmp_state_lookup(&key, &pd2,
7364 					    state, pd->dir,
7365 					    virtual_id, virtual_type,
7366 					    icmp_dir, &iidx, multi, 1);
7367 					if (ret >= 0) {
7368 						MPASS(*state == NULL);
7369 						return (ret);
7370 					}
7371 				} else
7372 					return (ret);
7373 			}
7374 
7375 			/* translate source/destination address, if necessary */
7376 			if ((*state)->key[PF_SK_WIRE] !=
7377 			    (*state)->key[PF_SK_STACK]) {
7378 				struct pf_state_key *nk =
7379 				    (*state)->key[pd->didx];
7380 
7381 				if (PF_ANEQ(pd2.src,
7382 				    &nk->addr[pd2.sidx], pd2.af) ||
7383 				    ((virtual_type == htons(ICMP6_ECHO_REQUEST)) &&
7384 				    nk->port[pd2.sidx] != iih->icmp6_id))
7385 					pf_change_icmp(pd2.src,
7386 					    (virtual_type == htons(ICMP6_ECHO_REQUEST))
7387 					    ? &iih->icmp6_id : NULL,
7388 					    daddr, &nk->addr[pd2.sidx],
7389 					    (virtual_type == htons(ICMP6_ECHO_REQUEST))
7390 					    ? nk->port[iidx] : 0, NULL,
7391 					    pd2.ip_sum, icmpsum,
7392 					    pd->ip_sum, 0, AF_INET6);
7393 
7394 				if (PF_ANEQ(pd2.dst,
7395 				    &nk->addr[pd2.didx], pd2.af))
7396 					pf_change_icmp(pd2.dst, NULL, NULL,
7397 					    &nk->addr[pd2.didx], 0, NULL,
7398 					    pd2.ip_sum, icmpsum,
7399 					    pd->ip_sum, 0, AF_INET6);
7400 
7401 				m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
7402 				    (caddr_t)&pd->hdr.icmp6);
7403 				m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6);
7404 				m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr),
7405 				    (caddr_t)iih);
7406 			}
7407 			return (PF_PASS);
7408 			break;
7409 		}
7410 #endif /* INET6 */
7411 		default: {
7412 			key.af = pd2.af;
7413 			key.proto = pd2.proto;
7414 			PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
7415 			PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
7416 			key.port[0] = key.port[1] = 0;
7417 
7418 			STATE_LOOKUP(&key, *state, pd);
7419 
7420 			/* translate source/destination address, if necessary */
7421 			if ((*state)->key[PF_SK_WIRE] !=
7422 			    (*state)->key[PF_SK_STACK]) {
7423 				struct pf_state_key *nk =
7424 				    (*state)->key[pd->didx];
7425 
7426 				if (PF_ANEQ(pd2.src,
7427 				    &nk->addr[pd2.sidx], pd2.af))
7428 					pf_change_icmp(pd2.src, NULL, daddr,
7429 					    &nk->addr[pd2.sidx], 0, NULL,
7430 					    pd2.ip_sum, icmpsum,
7431 					    pd->ip_sum, 0, pd2.af);
7432 
7433 				if (PF_ANEQ(pd2.dst,
7434 				    &nk->addr[pd2.didx], pd2.af))
7435 					pf_change_icmp(pd2.dst, NULL, saddr,
7436 					    &nk->addr[pd2.didx], 0, NULL,
7437 					    pd2.ip_sum, icmpsum,
7438 					    pd->ip_sum, 0, pd2.af);
7439 
7440 				switch (pd2.af) {
7441 #ifdef INET
7442 				case AF_INET:
7443 					m_copyback(pd->m, pd->off, ICMP_MINLEN,
7444 					    (caddr_t)&pd->hdr.icmp);
7445 					m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
7446 					break;
7447 #endif /* INET */
7448 #ifdef INET6
7449 				case AF_INET6:
7450 					m_copyback(pd->m, pd->off,
7451 					    sizeof(struct icmp6_hdr),
7452 					    (caddr_t )&pd->hdr.icmp6);
7453 					m_copyback(pd->m, ipoff2, sizeof(h2_6),
7454 					    (caddr_t )&h2_6);
7455 					break;
7456 #endif /* INET6 */
7457 				}
7458 			}
7459 			return (PF_PASS);
7460 			break;
7461 		}
7462 		}
7463 	}
7464 }
7465 
7466 static int
7467 pf_test_state_other(struct pf_kstate **state, struct pf_pdesc *pd)
7468 {
7469 	struct pf_state_peer	*src, *dst;
7470 	struct pf_state_key_cmp	 key;
7471 	uint8_t			 psrc, pdst;
7472 
7473 	bzero(&key, sizeof(key));
7474 	key.af = pd->af;
7475 	key.proto = pd->proto;
7476 	if (pd->dir == PF_IN)	{
7477 		PF_ACPY(&key.addr[0], pd->src, key.af);
7478 		PF_ACPY(&key.addr[1], pd->dst, key.af);
7479 		key.port[0] = key.port[1] = 0;
7480 	} else {
7481 		PF_ACPY(&key.addr[1], pd->src, key.af);
7482 		PF_ACPY(&key.addr[0], pd->dst, key.af);
7483 		key.port[1] = key.port[0] = 0;
7484 	}
7485 
7486 	STATE_LOOKUP(&key, *state, pd);
7487 
7488 	if (pd->dir == (*state)->direction) {
7489 		src = &(*state)->src;
7490 		dst = &(*state)->dst;
7491 		psrc = PF_PEER_SRC;
7492 		pdst = PF_PEER_DST;
7493 	} else {
7494 		src = &(*state)->dst;
7495 		dst = &(*state)->src;
7496 		psrc = PF_PEER_DST;
7497 		pdst = PF_PEER_SRC;
7498 	}
7499 
7500 	/* update states */
7501 	if (src->state < PFOTHERS_SINGLE)
7502 		pf_set_protostate(*state, psrc, PFOTHERS_SINGLE);
7503 	if (dst->state == PFOTHERS_SINGLE)
7504 		pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE);
7505 
7506 	/* update expire time */
7507 	(*state)->expire = pf_get_uptime();
7508 	if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE)
7509 		(*state)->timeout = PFTM_OTHER_MULTIPLE;
7510 	else
7511 		(*state)->timeout = PFTM_OTHER_SINGLE;
7512 
7513 	/* translate source/destination address, if necessary */
7514 	if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7515 		struct pf_state_key *nk = (*state)->key[pd->didx];
7516 
7517 		KASSERT(nk, ("%s: nk is null", __func__));
7518 		KASSERT(pd, ("%s: pd is null", __func__));
7519 		KASSERT(pd->src, ("%s: pd->src is null", __func__));
7520 		KASSERT(pd->dst, ("%s: pd->dst is null", __func__));
7521 		switch (pd->af) {
7522 #ifdef INET
7523 		case AF_INET:
7524 			if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET))
7525 				pf_change_a(&pd->src->v4.s_addr,
7526 				    pd->ip_sum,
7527 				    nk->addr[pd->sidx].v4.s_addr,
7528 				    0);
7529 
7530 			if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET))
7531 				pf_change_a(&pd->dst->v4.s_addr,
7532 				    pd->ip_sum,
7533 				    nk->addr[pd->didx].v4.s_addr,
7534 				    0);
7535 
7536 			break;
7537 #endif /* INET */
7538 #ifdef INET6
7539 		case AF_INET6:
7540 			if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET6))
7541 				PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
7542 
7543 			if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET6))
7544 				PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
7545 #endif /* INET6 */
7546 		}
7547 	}
7548 	return (PF_PASS);
7549 }
7550 
7551 /*
7552  * ipoff and off are measured from the start of the mbuf chain.
7553  * h must be at "ipoff" on the mbuf chain.
7554  */
7555 void *
7556 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len,
7557     u_short *actionp, u_short *reasonp, sa_family_t af)
7558 {
7559 	switch (af) {
7560 #ifdef INET
7561 	case AF_INET: {
7562 		const struct ip	*h = mtod(m, struct ip *);
7563 		u_int16_t	 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
7564 
7565 		if (fragoff) {
7566 			if (fragoff >= len)
7567 				ACTION_SET(actionp, PF_PASS);
7568 			else {
7569 				ACTION_SET(actionp, PF_DROP);
7570 				REASON_SET(reasonp, PFRES_FRAG);
7571 			}
7572 			return (NULL);
7573 		}
7574 		if (m->m_pkthdr.len < off + len ||
7575 		    ntohs(h->ip_len) < off + len) {
7576 			ACTION_SET(actionp, PF_DROP);
7577 			REASON_SET(reasonp, PFRES_SHORT);
7578 			return (NULL);
7579 		}
7580 		break;
7581 	}
7582 #endif /* INET */
7583 #ifdef INET6
7584 	case AF_INET6: {
7585 		const struct ip6_hdr	*h = mtod(m, struct ip6_hdr *);
7586 
7587 		if (m->m_pkthdr.len < off + len ||
7588 		    (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) <
7589 		    (unsigned)(off + len)) {
7590 			ACTION_SET(actionp, PF_DROP);
7591 			REASON_SET(reasonp, PFRES_SHORT);
7592 			return (NULL);
7593 		}
7594 		break;
7595 	}
7596 #endif /* INET6 */
7597 	}
7598 	m_copydata(m, off, len, p);
7599 	return (p);
7600 }
7601 
7602 int
7603 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif,
7604     int rtableid)
7605 {
7606 	struct ifnet		*ifp;
7607 
7608 	/*
7609 	 * Skip check for addresses with embedded interface scope,
7610 	 * as they would always match anyway.
7611 	 */
7612 	if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6))
7613 		return (1);
7614 
7615 	if (af != AF_INET && af != AF_INET6)
7616 		return (0);
7617 
7618 	if (kif == V_pfi_all)
7619 		return (1);
7620 
7621 	/* Skip checks for ipsec interfaces */
7622 	if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC)
7623 		return (1);
7624 
7625 	ifp = (kif != NULL) ? kif->pfik_ifp : NULL;
7626 
7627 	switch (af) {
7628 #ifdef INET6
7629 	case AF_INET6:
7630 		return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE,
7631 		    ifp));
7632 #endif
7633 #ifdef INET
7634 	case AF_INET:
7635 		return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE,
7636 		    ifp));
7637 #endif
7638 	}
7639 
7640 	return (0);
7641 }
7642 
7643 #ifdef INET
7644 static void
7645 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp,
7646     struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
7647 {
7648 	struct mbuf		*m0, *m1, *md;
7649 	struct sockaddr_in	dst;
7650 	struct ip		*ip;
7651 	struct pfi_kkif		*nkif = NULL;
7652 	struct ifnet		*ifp = NULL;
7653 	struct pf_addr		 naddr;
7654 	int			 error = 0;
7655 	uint16_t		 ip_len, ip_off;
7656 	uint16_t		 tmp;
7657 	int			 r_rt, r_dir;
7658 
7659 	KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__));
7660 
7661 	if (s) {
7662 		r_rt = s->rt;
7663 		r_dir = s->direction;
7664 	} else {
7665 		r_rt = r->rt;
7666 		r_dir = r->direction;
7667 	}
7668 
7669 	KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
7670 	    r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
7671 	    __func__));
7672 
7673 	if ((pd->pf_mtag == NULL &&
7674 	    ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) ||
7675 	    pd->pf_mtag->routed++ > 3) {
7676 		m0 = *m;
7677 		*m = NULL;
7678 		goto bad_locked;
7679 	}
7680 
7681 	if (r_rt == PF_DUPTO) {
7682 		if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
7683 			if (s == NULL) {
7684 				ifp = r->rpool.cur->kif ?
7685 				    r->rpool.cur->kif->pfik_ifp : NULL;
7686 			} else {
7687 				ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
7688 				/* If pfsync'd */
7689 				if (ifp == NULL && r->rpool.cur != NULL)
7690 					ifp = r->rpool.cur->kif ?
7691 					    r->rpool.cur->kif->pfik_ifp : NULL;
7692 				PF_STATE_UNLOCK(s);
7693 			}
7694 			if (ifp == oifp) {
7695 				/* When the 2nd interface is not skipped */
7696 				return;
7697 			} else {
7698 				m0 = *m;
7699 				*m = NULL;
7700 				goto bad;
7701 			}
7702 		} else {
7703 			pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
7704 			if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) {
7705 				if (s)
7706 					PF_STATE_UNLOCK(s);
7707 				return;
7708 			}
7709 		}
7710 	} else {
7711 		if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) {
7712 			pf_dummynet(pd, s, r, m);
7713 			if (s)
7714 				PF_STATE_UNLOCK(s);
7715 			return;
7716 		}
7717 		m0 = *m;
7718 	}
7719 
7720 	ip = mtod(m0, struct ip *);
7721 
7722 	bzero(&dst, sizeof(dst));
7723 	dst.sin_family = AF_INET;
7724 	dst.sin_len = sizeof(dst);
7725 	dst.sin_addr = ip->ip_dst;
7726 
7727 	bzero(&naddr, sizeof(naddr));
7728 
7729 	if (s == NULL) {
7730 		if (TAILQ_EMPTY(&r->rpool.list)) {
7731 			DPFPRINTF(PF_DEBUG_URGENT,
7732 			    ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__));
7733 			goto bad_locked;
7734 		}
7735 		pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src,
7736 		    &naddr, &nkif, NULL);
7737 		if (!PF_AZERO(&naddr, AF_INET))
7738 			dst.sin_addr.s_addr = naddr.v4.s_addr;
7739 		ifp = nkif ? nkif->pfik_ifp : NULL;
7740 	} else {
7741 		struct pfi_kkif *kif;
7742 
7743 		if (!PF_AZERO(&s->rt_addr, AF_INET))
7744 			dst.sin_addr.s_addr =
7745 			    s->rt_addr.v4.s_addr;
7746 		ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
7747 		kif = s->rt_kif;
7748 		/* If pfsync'd */
7749 		if (ifp == NULL && r->rpool.cur != NULL) {
7750 			ifp = r->rpool.cur->kif ?
7751 			    r->rpool.cur->kif->pfik_ifp : NULL;
7752 			kif = r->rpool.cur->kif;
7753 		}
7754 		if (ifp != NULL && kif != NULL &&
7755 		    r->rule_flag & PFRULE_IFBOUND &&
7756 		    r->rt == PF_REPLYTO &&
7757 		    s->kif == V_pfi_all) {
7758 			s->kif = kif;
7759 			s->orig_kif = oifp->if_pf_kif;
7760 		}
7761 
7762 		PF_STATE_UNLOCK(s);
7763 	}
7764 
7765 	if (ifp == NULL)
7766 		goto bad;
7767 
7768 	if (pd->dir == PF_IN) {
7769 		if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp,
7770 		    &pd->act) != PF_PASS)
7771 			goto bad;
7772 		else if (m0 == NULL)
7773 			goto done;
7774 		if (m0->m_len < sizeof(struct ip)) {
7775 			DPFPRINTF(PF_DEBUG_URGENT,
7776 			    ("%s: m0->m_len < sizeof(struct ip)\n", __func__));
7777 			goto bad;
7778 		}
7779 		ip = mtod(m0, struct ip *);
7780 	}
7781 
7782 	if (ifp->if_flags & IFF_LOOPBACK)
7783 		m0->m_flags |= M_SKIP_FIREWALL;
7784 
7785 	ip_len = ntohs(ip->ip_len);
7786 	ip_off = ntohs(ip->ip_off);
7787 
7788 	/* Copied from FreeBSD 10.0-CURRENT ip_output. */
7789 	m0->m_pkthdr.csum_flags |= CSUM_IP;
7790 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
7791 		in_delayed_cksum(m0);
7792 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
7793 	}
7794 	if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
7795 		pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2));
7796 		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
7797 	}
7798 
7799 	if (pd->dir == PF_IN) {
7800 		/*
7801 		 * Make sure dummynet gets the correct direction, in case it needs to
7802 		 * re-inject later.
7803 		 */
7804 		pd->dir = PF_OUT;
7805 
7806 		/*
7807 		 * The following processing is actually the rest of the inbound processing, even
7808 		 * though we've marked it as outbound (so we don't look through dummynet) and it
7809 		 * happens after the outbound processing (pf_test(PF_OUT) above).
7810 		 * Swap the dummynet pipe numbers, because it's going to come to the wrong
7811 		 * conclusion about what direction it's processing, and we can't fix it or it
7812 		 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
7813 		 * decision will pick the right pipe, and everything will mostly work as expected.
7814 		 */
7815 		tmp = pd->act.dnrpipe;
7816 		pd->act.dnrpipe = pd->act.dnpipe;
7817 		pd->act.dnpipe = tmp;
7818 	}
7819 
7820 	/*
7821 	 * If small enough for interface, or the interface will take
7822 	 * care of the fragmentation for us, we can just send directly.
7823 	 */
7824 	if (ip_len <= ifp->if_mtu ||
7825 	    (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
7826 		ip->ip_sum = 0;
7827 		if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
7828 			ip->ip_sum = in_cksum(m0, ip->ip_hl << 2);
7829 			m0->m_pkthdr.csum_flags &= ~CSUM_IP;
7830 		}
7831 		m_clrprotoflags(m0);	/* Avoid confusing lower layers. */
7832 
7833 		md = m0;
7834 		error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md);
7835 		if (md != NULL)
7836 			error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL);
7837 		goto done;
7838 	}
7839 
7840 	/* Balk when DF bit is set or the interface didn't support TSO. */
7841 	if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
7842 		error = EMSGSIZE;
7843 		KMOD_IPSTAT_INC(ips_cantfrag);
7844 		if (r_rt != PF_DUPTO) {
7845 			if (s && s->nat_rule != NULL)
7846 				PACKET_UNDO_NAT(m0, pd,
7847 				    (ip->ip_hl << 2) + (ip_off & IP_OFFMASK),
7848 				    s);
7849 
7850 			icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0,
7851 			    ifp->if_mtu);
7852 			goto done;
7853 		} else
7854 			goto bad;
7855 	}
7856 
7857 	error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist);
7858 	if (error)
7859 		goto bad;
7860 
7861 	for (; m0; m0 = m1) {
7862 		m1 = m0->m_nextpkt;
7863 		m0->m_nextpkt = NULL;
7864 		if (error == 0) {
7865 			m_clrprotoflags(m0);
7866 			md = m0;
7867 			pd->pf_mtag = pf_find_mtag(md);
7868 			error = pf_dummynet_route(pd, s, r, ifp,
7869 			    sintosa(&dst), &md);
7870 			if (md != NULL)
7871 				error = (*ifp->if_output)(ifp, md,
7872 				    sintosa(&dst), NULL);
7873 		} else
7874 			m_freem(m0);
7875 	}
7876 
7877 	if (error == 0)
7878 		KMOD_IPSTAT_INC(ips_fragmented);
7879 
7880 done:
7881 	if (r_rt != PF_DUPTO)
7882 		*m = NULL;
7883 	return;
7884 
7885 bad_locked:
7886 	if (s)
7887 		PF_STATE_UNLOCK(s);
7888 bad:
7889 	m_freem(m0);
7890 	goto done;
7891 }
7892 #endif /* INET */
7893 
7894 #ifdef INET6
7895 static void
7896 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp,
7897     struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
7898 {
7899 	struct mbuf		*m0, *md;
7900 	struct sockaddr_in6	dst;
7901 	struct ip6_hdr		*ip6;
7902 	struct pfi_kkif		*nkif = NULL;
7903 	struct ifnet		*ifp = NULL;
7904 	struct pf_addr		 naddr;
7905 	int			 r_rt, r_dir;
7906 
7907 	KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__));
7908 
7909 	if (s) {
7910 		r_rt = s->rt;
7911 		r_dir = s->direction;
7912 	} else {
7913 		r_rt = r->rt;
7914 		r_dir = r->direction;
7915 	}
7916 
7917 	KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
7918 	    r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
7919 	    __func__));
7920 
7921 	if ((pd->pf_mtag == NULL &&
7922 	    ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) ||
7923 	    pd->pf_mtag->routed++ > 3) {
7924 		m0 = *m;
7925 		*m = NULL;
7926 		goto bad_locked;
7927 	}
7928 
7929 	if (r_rt == PF_DUPTO) {
7930 		if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
7931 			if (s == NULL) {
7932 				ifp = r->rpool.cur->kif ?
7933 				    r->rpool.cur->kif->pfik_ifp : NULL;
7934 			} else {
7935 				ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
7936 				/* If pfsync'd */
7937 				if (ifp == NULL && r->rpool.cur != NULL)
7938 					ifp = r->rpool.cur->kif ?
7939 					    r->rpool.cur->kif->pfik_ifp : NULL;
7940 				PF_STATE_UNLOCK(s);
7941 			}
7942 			if (ifp == oifp) {
7943 				/* When the 2nd interface is not skipped */
7944 				return;
7945 			} else {
7946 				m0 = *m;
7947 				*m = NULL;
7948 				goto bad;
7949 			}
7950 		} else {
7951 			pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
7952 			if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) {
7953 				if (s)
7954 					PF_STATE_UNLOCK(s);
7955 				return;
7956 			}
7957 		}
7958 	} else {
7959 		if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) {
7960 			pf_dummynet(pd, s, r, m);
7961 			if (s)
7962 				PF_STATE_UNLOCK(s);
7963 			return;
7964 		}
7965 		m0 = *m;
7966 	}
7967 
7968 	ip6 = mtod(m0, struct ip6_hdr *);
7969 
7970 	bzero(&dst, sizeof(dst));
7971 	dst.sin6_family = AF_INET6;
7972 	dst.sin6_len = sizeof(dst);
7973 	dst.sin6_addr = ip6->ip6_dst;
7974 
7975 	bzero(&naddr, sizeof(naddr));
7976 
7977 	if (s == NULL) {
7978 		if (TAILQ_EMPTY(&r->rpool.list)) {
7979 			DPFPRINTF(PF_DEBUG_URGENT,
7980 			    ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__));
7981 			goto bad_locked;
7982 		}
7983 		pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src,
7984 		    &naddr, &nkif, NULL);
7985 		if (!PF_AZERO(&naddr, AF_INET6))
7986 			PF_ACPY((struct pf_addr *)&dst.sin6_addr,
7987 			    &naddr, AF_INET6);
7988 		ifp = nkif ? nkif->pfik_ifp : NULL;
7989 	} else {
7990 		struct pfi_kkif *kif;
7991 
7992 		if (!PF_AZERO(&s->rt_addr, AF_INET6))
7993 			PF_ACPY((struct pf_addr *)&dst.sin6_addr,
7994 			    &s->rt_addr, AF_INET6);
7995 		ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
7996 		kif = s->rt_kif;
7997 		/* If pfsync'd */
7998 		if (ifp == NULL && r->rpool.cur != NULL) {
7999 			ifp = r->rpool.cur->kif ?
8000 			    r->rpool.cur->kif->pfik_ifp : NULL;
8001 			kif = r->rpool.cur->kif;
8002 		}
8003 		if (ifp != NULL && kif != NULL &&
8004 		    r->rule_flag & PFRULE_IFBOUND &&
8005 		    r->rt == PF_REPLYTO &&
8006 		    s->kif == V_pfi_all) {
8007 			s->kif = kif;
8008 			s->orig_kif = oifp->if_pf_kif;
8009 		}
8010 	}
8011 
8012 	if (s)
8013 		PF_STATE_UNLOCK(s);
8014 
8015 	if (ifp == NULL)
8016 		goto bad;
8017 
8018 	if (pd->dir == PF_IN) {
8019 		if (pf_test(AF_INET6, PF_OUT, PFIL_FWD, ifp, &m0, inp,
8020 		    &pd->act) != PF_PASS)
8021 			goto bad;
8022 		else if (m0 == NULL)
8023 			goto done;
8024 		if (m0->m_len < sizeof(struct ip6_hdr)) {
8025 			DPFPRINTF(PF_DEBUG_URGENT,
8026 			    ("%s: m0->m_len < sizeof(struct ip6_hdr)\n",
8027 			    __func__));
8028 			goto bad;
8029 		}
8030 		ip6 = mtod(m0, struct ip6_hdr *);
8031 	}
8032 
8033 	if (ifp->if_flags & IFF_LOOPBACK)
8034 		m0->m_flags |= M_SKIP_FIREWALL;
8035 
8036 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 &
8037 	    ~ifp->if_hwassist) {
8038 		uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6);
8039 		in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr));
8040 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
8041 	}
8042 
8043 	/*
8044 	 * If the packet is too large for the outgoing interface,
8045 	 * send back an icmp6 error.
8046 	 */
8047 	if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr))
8048 		dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
8049 	if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) {
8050 		md = m0;
8051 		pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md);
8052 		if (md != NULL)
8053 			nd6_output_ifp(ifp, ifp, md, &dst, NULL);
8054 	}
8055 	else {
8056 		in6_ifstat_inc(ifp, ifs6_in_toobig);
8057 		if (r_rt != PF_DUPTO) {
8058 			if (s && s->nat_rule != NULL)
8059 				PACKET_UNDO_NAT(m0, pd,
8060 				    ((caddr_t)ip6 - m0->m_data) +
8061 				    sizeof(struct ip6_hdr), s);
8062 
8063 			icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu);
8064 		} else
8065 			goto bad;
8066 	}
8067 
8068 done:
8069 	if (r_rt != PF_DUPTO)
8070 		*m = NULL;
8071 	return;
8072 
8073 bad_locked:
8074 	if (s)
8075 		PF_STATE_UNLOCK(s);
8076 bad:
8077 	m_freem(m0);
8078 	goto done;
8079 }
8080 #endif /* INET6 */
8081 
8082 /*
8083  * FreeBSD supports cksum offloads for the following drivers.
8084  *  em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4)
8085  *
8086  * CSUM_DATA_VALID | CSUM_PSEUDO_HDR :
8087  *  network driver performed cksum including pseudo header, need to verify
8088  *   csum_data
8089  * CSUM_DATA_VALID :
8090  *  network driver performed cksum, needs to additional pseudo header
8091  *  cksum computation with partial csum_data(i.e. lack of H/W support for
8092  *  pseudo header, for instance sk(4) and possibly gem(4))
8093  *
8094  * After validating the cksum of packet, set both flag CSUM_DATA_VALID and
8095  * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper
8096  * TCP/UDP layer.
8097  * Also, set csum_data to 0xffff to force cksum validation.
8098  */
8099 static int
8100 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af)
8101 {
8102 	u_int16_t sum = 0;
8103 	int hw_assist = 0;
8104 	struct ip *ip;
8105 
8106 	if (off < sizeof(struct ip) || len < sizeof(struct udphdr))
8107 		return (1);
8108 	if (m->m_pkthdr.len < off + len)
8109 		return (1);
8110 
8111 	switch (p) {
8112 	case IPPROTO_TCP:
8113 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
8114 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
8115 				sum = m->m_pkthdr.csum_data;
8116 			} else {
8117 				ip = mtod(m, struct ip *);
8118 				sum = in_pseudo(ip->ip_src.s_addr,
8119 				ip->ip_dst.s_addr, htonl((u_short)len +
8120 				m->m_pkthdr.csum_data + IPPROTO_TCP));
8121 			}
8122 			sum ^= 0xffff;
8123 			++hw_assist;
8124 		}
8125 		break;
8126 	case IPPROTO_UDP:
8127 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
8128 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
8129 				sum = m->m_pkthdr.csum_data;
8130 			} else {
8131 				ip = mtod(m, struct ip *);
8132 				sum = in_pseudo(ip->ip_src.s_addr,
8133 				ip->ip_dst.s_addr, htonl((u_short)len +
8134 				m->m_pkthdr.csum_data + IPPROTO_UDP));
8135 			}
8136 			sum ^= 0xffff;
8137 			++hw_assist;
8138 		}
8139 		break;
8140 	case IPPROTO_ICMP:
8141 #ifdef INET6
8142 	case IPPROTO_ICMPV6:
8143 #endif /* INET6 */
8144 		break;
8145 	default:
8146 		return (1);
8147 	}
8148 
8149 	if (!hw_assist) {
8150 		switch (af) {
8151 		case AF_INET:
8152 			if (p == IPPROTO_ICMP) {
8153 				if (m->m_len < off)
8154 					return (1);
8155 				m->m_data += off;
8156 				m->m_len -= off;
8157 				sum = in_cksum(m, len);
8158 				m->m_data -= off;
8159 				m->m_len += off;
8160 			} else {
8161 				if (m->m_len < sizeof(struct ip))
8162 					return (1);
8163 				sum = in4_cksum(m, p, off, len);
8164 			}
8165 			break;
8166 #ifdef INET6
8167 		case AF_INET6:
8168 			if (m->m_len < sizeof(struct ip6_hdr))
8169 				return (1);
8170 			sum = in6_cksum(m, p, off, len);
8171 			break;
8172 #endif /* INET6 */
8173 		}
8174 	}
8175 	if (sum) {
8176 		switch (p) {
8177 		case IPPROTO_TCP:
8178 		    {
8179 			KMOD_TCPSTAT_INC(tcps_rcvbadsum);
8180 			break;
8181 		    }
8182 		case IPPROTO_UDP:
8183 		    {
8184 			KMOD_UDPSTAT_INC(udps_badsum);
8185 			break;
8186 		    }
8187 #ifdef INET
8188 		case IPPROTO_ICMP:
8189 		    {
8190 			KMOD_ICMPSTAT_INC(icps_checksum);
8191 			break;
8192 		    }
8193 #endif
8194 #ifdef INET6
8195 		case IPPROTO_ICMPV6:
8196 		    {
8197 			KMOD_ICMP6STAT_INC(icp6s_checksum);
8198 			break;
8199 		    }
8200 #endif /* INET6 */
8201 		}
8202 		return (1);
8203 	} else {
8204 		if (p == IPPROTO_TCP || p == IPPROTO_UDP) {
8205 			m->m_pkthdr.csum_flags |=
8206 			    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
8207 			m->m_pkthdr.csum_data = 0xffff;
8208 		}
8209 	}
8210 	return (0);
8211 }
8212 
8213 static bool
8214 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r,
8215     const struct pf_kstate *s, struct ip_fw_args *dnflow)
8216 {
8217 	int dndir = r->direction;
8218 
8219 	if (s && dndir == PF_INOUT) {
8220 		dndir = s->direction;
8221 	} else if (dndir == PF_INOUT) {
8222 		/* Assume primary direction. Happens when we've set dnpipe in
8223 		 * the ethernet level code. */
8224 		dndir = pd->dir;
8225 	}
8226 
8227 	if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED)
8228 		return (false);
8229 
8230 	memset(dnflow, 0, sizeof(*dnflow));
8231 
8232 	if (pd->dport != NULL)
8233 		dnflow->f_id.dst_port = ntohs(*pd->dport);
8234 	if (pd->sport != NULL)
8235 		dnflow->f_id.src_port = ntohs(*pd->sport);
8236 
8237 	if (pd->dir == PF_IN)
8238 		dnflow->flags |= IPFW_ARGS_IN;
8239 	else
8240 		dnflow->flags |= IPFW_ARGS_OUT;
8241 
8242 	if (pd->dir != dndir && pd->act.dnrpipe) {
8243 		dnflow->rule.info = pd->act.dnrpipe;
8244 	}
8245 	else if (pd->dir == dndir && pd->act.dnpipe) {
8246 		dnflow->rule.info = pd->act.dnpipe;
8247 	}
8248 	else {
8249 		return (false);
8250 	}
8251 
8252 	dnflow->rule.info |= IPFW_IS_DUMMYNET;
8253 	if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE)
8254 		dnflow->rule.info |= IPFW_IS_PIPE;
8255 
8256 	dnflow->f_id.proto = pd->proto;
8257 	dnflow->f_id.extra = dnflow->rule.info;
8258 	switch (pd->af) {
8259 	case AF_INET:
8260 		dnflow->f_id.addr_type = 4;
8261 		dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr);
8262 		dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr);
8263 		break;
8264 	case AF_INET6:
8265 		dnflow->flags |= IPFW_ARGS_IP6;
8266 		dnflow->f_id.addr_type = 6;
8267 		dnflow->f_id.src_ip6 = pd->src->v6;
8268 		dnflow->f_id.dst_ip6 = pd->dst->v6;
8269 		break;
8270 	}
8271 
8272 	return (true);
8273 }
8274 
8275 int
8276 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
8277     struct inpcb *inp)
8278 {
8279 	struct pfi_kkif		*kif;
8280 	struct mbuf		*m = *m0;
8281 
8282 	M_ASSERTPKTHDR(m);
8283 	MPASS(ifp->if_vnet == curvnet);
8284 	NET_EPOCH_ASSERT();
8285 
8286 	if (!V_pf_status.running)
8287 		return (PF_PASS);
8288 
8289 	kif = (struct pfi_kkif *)ifp->if_pf_kif;
8290 
8291 	if (kif == NULL) {
8292 		DPFPRINTF(PF_DEBUG_URGENT,
8293 		    ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname));
8294 		return (PF_DROP);
8295 	}
8296 	if (kif->pfik_flags & PFI_IFLAG_SKIP)
8297 		return (PF_PASS);
8298 
8299 	if (m->m_flags & M_SKIP_FIREWALL)
8300 		return (PF_PASS);
8301 
8302 	if (__predict_false(! M_WRITABLE(*m0))) {
8303 		m = *m0 = m_unshare(*m0, M_NOWAIT);
8304 		if (*m0 == NULL)
8305 			return (PF_DROP);
8306 	}
8307 
8308 	/* Stateless! */
8309 	return (pf_test_eth_rule(dir, kif, m0));
8310 }
8311 
8312 static __inline void
8313 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag)
8314 {
8315 	struct m_tag *mtag;
8316 
8317 	pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET;
8318 
8319 	/* dummynet adds this tag, but pf does not need it,
8320 	 * and keeping it creates unexpected behavior,
8321 	 * e.g. in case of divert(4) usage right after dummynet. */
8322 	mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL);
8323 	if (mtag != NULL)
8324 		m_tag_delete(m, mtag);
8325 }
8326 
8327 static int
8328 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s,
8329     struct pf_krule *r, struct mbuf **m0)
8330 {
8331 	return (pf_dummynet_route(pd, s, r, NULL, NULL, m0));
8332 }
8333 
8334 static int
8335 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s,
8336     struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa,
8337     struct mbuf **m0)
8338 {
8339 	NET_EPOCH_ASSERT();
8340 
8341 	if (pd->act.dnpipe || pd->act.dnrpipe) {
8342 		struct ip_fw_args dnflow;
8343 		if (ip_dn_io_ptr == NULL) {
8344 			m_freem(*m0);
8345 			*m0 = NULL;
8346 			return (ENOMEM);
8347 		}
8348 
8349 		if (pd->pf_mtag == NULL &&
8350 		    ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) {
8351 			m_freem(*m0);
8352 			*m0 = NULL;
8353 			return (ENOMEM);
8354 		}
8355 
8356 		if (ifp != NULL) {
8357 			pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO;
8358 
8359 			pd->pf_mtag->if_index = ifp->if_index;
8360 			pd->pf_mtag->if_idxgen = ifp->if_idxgen;
8361 
8362 			MPASS(sa != NULL);
8363 
8364 			switch (pd->af) {
8365 			case AF_INET:
8366 				memcpy(&pd->pf_mtag->dst, sa,
8367 				    sizeof(struct sockaddr_in));
8368 				break;
8369 			case AF_INET6:
8370 				memcpy(&pd->pf_mtag->dst, sa,
8371 				    sizeof(struct sockaddr_in6));
8372 				break;
8373 			}
8374 		}
8375 
8376 		if (s != NULL && s->nat_rule != NULL &&
8377 		    s->nat_rule->action == PF_RDR &&
8378 		    (
8379 #ifdef INET
8380 		    (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) ||
8381 #endif
8382 		    (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) {
8383 			/*
8384 			 * If we're redirecting to loopback mark this packet
8385 			 * as being local. Otherwise it might get dropped
8386 			 * if dummynet re-injects.
8387 			 */
8388 			(*m0)->m_pkthdr.rcvif = V_loif;
8389 		}
8390 
8391 		if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) {
8392 			pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
8393 			pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED;
8394 			ip_dn_io_ptr(m0, &dnflow);
8395 			if (*m0 != NULL) {
8396 				pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
8397 				pf_dummynet_flag_remove(*m0, pd->pf_mtag);
8398 			}
8399 		}
8400 	}
8401 
8402 	return (0);
8403 }
8404 
8405 #ifdef INET6
8406 static int
8407 pf_walk_option6(struct mbuf *m, int off, int end, uint32_t *jumbolen,
8408     u_short *reason)
8409 {
8410 	struct ip6_opt		 opt;
8411 	struct ip6_opt_jumbo	 jumbo;
8412 	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
8413 
8414 	while (off < end) {
8415 		if (!pf_pull_hdr(m, off, &opt.ip6o_type, sizeof(opt.ip6o_type),
8416 			NULL, reason, AF_INET6)) {
8417 			DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt type"));
8418 			return (PF_DROP);
8419 		}
8420 		if (opt.ip6o_type == IP6OPT_PAD1) {
8421 			off++;
8422 			continue;
8423 		}
8424 		if (!pf_pull_hdr(m, off, &opt, sizeof(opt), NULL, reason,
8425 			AF_INET6)) {
8426 			DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt"));
8427 			return (PF_DROP);
8428 		}
8429 		if (off + sizeof(opt) + opt.ip6o_len > end) {
8430 			DPFPRINTF(PF_DEBUG_MISC, ("IPv6 long opt"));
8431 			REASON_SET(reason, PFRES_IPOPTIONS);
8432 			return (PF_DROP);
8433 		}
8434 		switch (opt.ip6o_type) {
8435 		case IP6OPT_JUMBO:
8436 			if (*jumbolen != 0) {
8437 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple jumbo"));
8438 				REASON_SET(reason, PFRES_IPOPTIONS);
8439 				return (PF_DROP);
8440 			}
8441 			if (ntohs(h->ip6_plen) != 0) {
8442 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 bad jumbo plen"));
8443 				REASON_SET(reason, PFRES_IPOPTIONS);
8444 				return (PF_DROP);
8445 			}
8446 			if (!pf_pull_hdr(m, off, &jumbo, sizeof(jumbo), NULL,
8447 				reason, AF_INET6)) {
8448 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbo"));
8449 				return (PF_DROP);
8450 			}
8451 			memcpy(jumbolen, jumbo.ip6oj_jumbo_len,
8452 			    sizeof(*jumbolen));
8453 			*jumbolen = ntohl(*jumbolen);
8454 			if (*jumbolen < IPV6_MAXPACKET) {
8455 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbolen"));
8456 				REASON_SET(reason, PFRES_IPOPTIONS);
8457 				return (PF_DROP);
8458 			}
8459 			break;
8460 		default:
8461 			break;
8462 		}
8463 		off += sizeof(opt) + opt.ip6o_len;
8464 	}
8465 
8466 	return (PF_PASS);
8467 }
8468 
8469 int
8470 pf_walk_header6(struct mbuf *m, struct ip6_hdr *h, int *off, int *extoff,
8471     int *fragoff, uint8_t *nxt, uint32_t *jumbolen, u_short *reason)
8472 {
8473 	struct ip6_frag		 frag;
8474 	struct ip6_ext		 ext;
8475 	struct ip6_rthdr	 rthdr;
8476 	int			 rthdr_cnt = 0;
8477 
8478 	*off += sizeof(struct ip6_hdr);
8479 	*extoff = *fragoff = 0;
8480 	*nxt = h->ip6_nxt;
8481 	*jumbolen = 0;
8482 	for (;;) {
8483 		switch (*nxt) {
8484 		case IPPROTO_FRAGMENT:
8485 			if (*fragoff != 0) {
8486 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple fragment"));
8487 				REASON_SET(reason, PFRES_FRAG);
8488 				return (PF_DROP);
8489 			}
8490 			/* jumbo payload packets cannot be fragmented */
8491 			if (*jumbolen != 0) {
8492 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 fragmented jumbo"));
8493 				REASON_SET(reason, PFRES_FRAG);
8494 				return (PF_DROP);
8495 			}
8496 			if (!pf_pull_hdr(m, *off, &frag, sizeof(frag), NULL,
8497 				reason, AF_INET6)) {
8498 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short fragment"));
8499 				return (PF_DROP);
8500 			}
8501 			*fragoff = *off;
8502 			/* stop walking over non initial fragments */
8503 			if ((frag.ip6f_offlg & IP6F_OFF_MASK) != 0)
8504 				return (PF_PASS);
8505 			*off += sizeof(frag);
8506 			*nxt = frag.ip6f_nxt;
8507 			break;
8508 		case IPPROTO_ROUTING:
8509 			if (rthdr_cnt++) {
8510 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple rthdr"));
8511 				REASON_SET(reason, PFRES_IPOPTIONS);
8512 				return (PF_DROP);
8513 			}
8514 			if (!pf_pull_hdr(m, *off, &rthdr, sizeof(rthdr), NULL,
8515 				reason, AF_INET6)) {
8516 				/* fragments may be short */
8517 				if (*fragoff != 0) {
8518 					*off = *fragoff;
8519 					*nxt = IPPROTO_FRAGMENT;
8520 					return (PF_PASS);
8521 				}
8522 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short rthdr"));
8523 				return (PF_DROP);
8524 			}
8525 			if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) {
8526 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 rthdr0"));
8527 				REASON_SET(reason, PFRES_IPOPTIONS);
8528 				return (PF_DROP);
8529 			}
8530 			/* FALLTHROUGH */
8531 		case IPPROTO_AH:
8532 		case IPPROTO_HOPOPTS:
8533 		case IPPROTO_DSTOPTS:
8534 			if (!pf_pull_hdr(m, *off, &ext, sizeof(ext), NULL,
8535 				reason, AF_INET6)) {
8536 				/* fragments may be short */
8537 				if (*fragoff != 0) {
8538 					*off = *fragoff;
8539 					*nxt = IPPROTO_FRAGMENT;
8540 					return (PF_PASS);
8541 				}
8542 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short exthdr"));
8543 				return (PF_DROP);
8544 			}
8545 			/* reassembly needs the ext header before the frag */
8546 			if (*fragoff == 0)
8547 				*extoff = *off;
8548 			if (*nxt == IPPROTO_HOPOPTS && *fragoff == 0) {
8549 				if (pf_walk_option6(m, *off + sizeof(ext),
8550 					*off + (ext.ip6e_len + 1) * 8, jumbolen,
8551 					reason) != PF_PASS)
8552 					return (PF_DROP);
8553 				if (ntohs(h->ip6_plen) == 0 && *jumbolen != 0) {
8554 					DPFPRINTF(PF_DEBUG_MISC,
8555 					    ("IPv6 missing jumbo"));
8556 					REASON_SET(reason, PFRES_IPOPTIONS);
8557 					return (PF_DROP);
8558 				}
8559 			}
8560 			if (*nxt == IPPROTO_AH)
8561 				*off += (ext.ip6e_len + 2) * 4;
8562 			else
8563 				*off += (ext.ip6e_len + 1) * 8;
8564 			*nxt = ext.ip6e_nxt;
8565 			break;
8566 		case IPPROTO_TCP:
8567 		case IPPROTO_UDP:
8568 		case IPPROTO_SCTP:
8569 		case IPPROTO_ICMPV6:
8570 			/* fragments may be short, ignore inner header then */
8571 			if (*fragoff != 0 && ntohs(h->ip6_plen) < *off +
8572 			    (*nxt == IPPROTO_TCP ? sizeof(struct tcphdr) :
8573 			    *nxt == IPPROTO_UDP ? sizeof(struct udphdr) :
8574 			    *nxt == IPPROTO_SCTP ? sizeof(struct sctphdr) :
8575 			    sizeof(struct icmp6_hdr))) {
8576 				*off = *fragoff;
8577 				*nxt = IPPROTO_FRAGMENT;
8578 			}
8579 			/* FALLTHROUGH */
8580 		default:
8581 			return (PF_PASS);
8582 		}
8583 	}
8584 }
8585 #endif
8586 
8587 static void
8588 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m)
8589 {
8590 	memset(pd, 0, sizeof(*pd));
8591 	pd->pf_mtag = pf_find_mtag(m);
8592 	pd->m = m;
8593 }
8594 
8595 static int
8596 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0,
8597     u_short *action, u_short *reason, struct pfi_kkif *kif,
8598     struct pf_rule_actions *default_actions)
8599 {
8600 	pd->af = af;
8601 	pd->dir = dir;
8602 	pd->kif = kif;
8603 	pd->m = *m0;
8604 	pd->sidx = (dir == PF_IN) ? 0 : 1;
8605 	pd->didx = (dir == PF_IN) ? 1 : 0;
8606 
8607 	TAILQ_INIT(&pd->sctp_multihome_jobs);
8608 	if (default_actions != NULL)
8609 		memcpy(&pd->act, default_actions, sizeof(pd->act));
8610 
8611 	if (pd->pf_mtag && pd->pf_mtag->dnpipe) {
8612 		pd->act.dnpipe = pd->pf_mtag->dnpipe;
8613 		pd->act.flags = pd->pf_mtag->dnflags;
8614 	}
8615 
8616 	switch (af) {
8617 #ifdef INET
8618 	case AF_INET: {
8619 		struct ip *h;
8620 
8621 		if (__predict_false((*m0)->m_len < sizeof(struct ip)) &&
8622 		    (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) {
8623 			DPFPRINTF(PF_DEBUG_URGENT,
8624 			    ("pf_test: m_len < sizeof(struct ip), pullup failed\n"));
8625 			*action = PF_DROP;
8626 			REASON_SET(reason, PFRES_SHORT);
8627 			return (-1);
8628 		}
8629 
8630 		if (pf_normalize_ip(m0, reason, pd) != PF_PASS) {
8631 			/* We do IP header normalization and packet reassembly here */
8632 			*action = PF_DROP;
8633 			return (-1);
8634 		}
8635 		pd->m = *m0;
8636 
8637 		h = mtod(pd->m, struct ip *);
8638 		pd->off = h->ip_hl << 2;
8639 		if (pd->off < (int)sizeof(*h)) {
8640 			*action = PF_DROP;
8641 			REASON_SET(reason, PFRES_SHORT);
8642 			return (-1);
8643 		}
8644 		pd->src = (struct pf_addr *)&h->ip_src;
8645 		pd->dst = (struct pf_addr *)&h->ip_dst;
8646 		pd->ip_sum = &h->ip_sum;
8647 		pd->proto_sum = NULL;
8648 		pd->virtual_proto = pd->proto = h->ip_p;
8649 		pd->tos = h->ip_tos;
8650 		pd->ttl = h->ip_ttl;
8651 		pd->tot_len = ntohs(h->ip_len);
8652 		pd->act.rtableid = -1;
8653 
8654 		if (h->ip_hl > 5)	/* has options */
8655 			pd->badopts++;
8656 
8657 		if (h->ip_off & htons(IP_MF | IP_OFFMASK))
8658 			pd->virtual_proto = PF_VPROTO_FRAGMENT;
8659 
8660 		break;
8661 	}
8662 #endif
8663 #ifdef INET6
8664 	case AF_INET6: {
8665 		struct ip6_hdr *h;
8666 		int fragoff;
8667 		uint32_t jumbolen;
8668 		uint8_t nxt;
8669 
8670 		if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) &&
8671 		    (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) {
8672 			DPFPRINTF(PF_DEBUG_URGENT,
8673 			    ("pf_test6: m_len < sizeof(struct ip6_hdr)"
8674 			     ", pullup failed\n"));
8675 			*action = PF_DROP;
8676 			REASON_SET(reason, PFRES_SHORT);
8677 			return (-1);
8678 		}
8679 
8680 		h = mtod(pd->m, struct ip6_hdr *);
8681 		pd->off = 0;
8682 		if (pf_walk_header6(pd->m, h, &pd->off, &pd->extoff, &fragoff, &nxt,
8683 		    &jumbolen, reason) != PF_PASS) {
8684 			*action = PF_DROP;
8685 			return (-1);
8686 		}
8687 
8688 		h = mtod(pd->m, struct ip6_hdr *);
8689 		pd->src = (struct pf_addr *)&h->ip6_src;
8690 		pd->dst = (struct pf_addr *)&h->ip6_dst;
8691 		pd->ip_sum = NULL;
8692 		pd->proto_sum = NULL;
8693 		pd->tos = IPV6_DSCP(h);
8694 		pd->ttl = h->ip6_hlim;
8695 		pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
8696 		pd->virtual_proto = pd->proto = h->ip6_nxt;
8697 		pd->act.rtableid = -1;
8698 
8699 		if (fragoff != 0)
8700 			pd->virtual_proto = PF_VPROTO_FRAGMENT;
8701 
8702 		/*
8703 		 * we do not support jumbogram.  if we keep going, zero ip6_plen
8704 		 * will do something bad, so drop the packet for now.
8705 		 */
8706 		if (htons(h->ip6_plen) == 0) {
8707 			*action = PF_DROP;
8708 			return (-1);
8709 		}
8710 
8711 		/* We do IP header normalization and packet reassembly here */
8712 		if (pf_normalize_ip6(m0, fragoff, reason, pd) !=
8713 		    PF_PASS) {
8714 			*action = PF_DROP;
8715 			return (-1);
8716 		}
8717 		pd->m = *m0;
8718 		if (pd->m == NULL) {
8719 			/* packet sits in reassembly queue, no error */
8720 			*action = PF_PASS;
8721 			return (-1);
8722 		}
8723 
8724 		/* Update pointers into the packet. */
8725 		h = mtod(pd->m, struct ip6_hdr *);
8726 		pd->src = (struct pf_addr *)&h->ip6_src;
8727 		pd->dst = (struct pf_addr *)&h->ip6_dst;
8728 
8729 		/*
8730 		 * Reassembly may have changed the next protocol from fragment
8731 		 * to something else, so update.
8732 		 */
8733 		pd->virtual_proto = pd->proto = h->ip6_nxt;
8734 		pd->off = 0;
8735 
8736 		if (pf_walk_header6(pd->m, h, &pd->off, &pd->extoff, &fragoff, &nxt,
8737 			&jumbolen, reason) != PF_PASS) {
8738 			*action = PF_DROP;
8739 			return (-1);
8740 		}
8741 
8742 		if (fragoff != 0)
8743 			pd->virtual_proto = PF_VPROTO_FRAGMENT;
8744 
8745 		break;
8746 	}
8747 #endif
8748 	default:
8749 		panic("pf_setup_pdesc called with illegal af %u", af);
8750 	}
8751 
8752 	switch (pd->virtual_proto) {
8753 	case IPPROTO_TCP: {
8754 		struct tcphdr *th = &pd->hdr.tcp;
8755 
8756 		if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th), action,
8757 			reason, af)) {
8758 			*action = PF_DROP;
8759 			REASON_SET(reason, PFRES_SHORT);
8760 			return (-1);
8761 		}
8762 		pd->hdrlen = sizeof(*th);
8763 		pd->p_len = pd->tot_len - pd->off - (th->th_off << 2);
8764 		pd->sport = &th->th_sport;
8765 		pd->dport = &th->th_dport;
8766 		break;
8767 	}
8768 	case IPPROTO_UDP: {
8769 		struct udphdr *uh = &pd->hdr.udp;
8770 
8771 		if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh), action,
8772 			reason, af)) {
8773 			*action = PF_DROP;
8774 			REASON_SET(reason, PFRES_SHORT);
8775 			return (-1);
8776 		}
8777 		pd->hdrlen = sizeof(*uh);
8778 		if (uh->uh_dport == 0 ||
8779 		    ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off ||
8780 		    ntohs(uh->uh_ulen) < sizeof(struct udphdr)) {
8781 			*action = PF_DROP;
8782 			REASON_SET(reason, PFRES_SHORT);
8783 			return (-1);
8784 		}
8785 		pd->sport = &uh->uh_sport;
8786 		pd->dport = &uh->uh_dport;
8787 		break;
8788 	}
8789 	case IPPROTO_SCTP: {
8790 		if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp),
8791 		    action, reason, af)) {
8792 			*action = PF_DROP;
8793 			REASON_SET(reason, PFRES_SHORT);
8794 			return (-1);
8795 		}
8796 		pd->hdrlen = sizeof(pd->hdr.sctp);
8797 		pd->p_len = pd->tot_len - pd->off;
8798 
8799 		pd->sport = &pd->hdr.sctp.src_port;
8800 		pd->dport = &pd->hdr.sctp.dest_port;
8801 		if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) {
8802 			*action = PF_DROP;
8803 			REASON_SET(reason, PFRES_SHORT);
8804 			return (-1);
8805 		}
8806 		if (pf_scan_sctp(pd) != PF_PASS) {
8807 			*action = PF_DROP;
8808 			REASON_SET(reason, PFRES_SHORT);
8809 			return (-1);
8810 		}
8811 		break;
8812 	}
8813 	case IPPROTO_ICMP: {
8814 		if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN,
8815 			action, reason, af)) {
8816 			*action = PF_DROP;
8817 			REASON_SET(reason, PFRES_SHORT);
8818 			return (-1);
8819 		}
8820 		pd->hdrlen = ICMP_MINLEN;
8821 		break;
8822 	}
8823 #ifdef INET6
8824 	case IPPROTO_ICMPV6: {
8825 		size_t icmp_hlen = sizeof(struct icmp6_hdr);
8826 
8827 		if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
8828 			action, reason, af)) {
8829 			*action = PF_DROP;
8830 			REASON_SET(reason, PFRES_SHORT);
8831 			return (-1);
8832 		}
8833 		/* ICMP headers we look further into to match state */
8834 		switch (pd->hdr.icmp6.icmp6_type) {
8835 		case MLD_LISTENER_QUERY:
8836 		case MLD_LISTENER_REPORT:
8837 			icmp_hlen = sizeof(struct mld_hdr);
8838 			break;
8839 		case ND_NEIGHBOR_SOLICIT:
8840 		case ND_NEIGHBOR_ADVERT:
8841 			icmp_hlen = sizeof(struct nd_neighbor_solicit);
8842 			break;
8843 		}
8844 		if (icmp_hlen > sizeof(struct icmp6_hdr) &&
8845 		    !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
8846 			action, reason, af)) {
8847 			*action = PF_DROP;
8848 			REASON_SET(reason, PFRES_SHORT);
8849 			return (-1);
8850 		}
8851 		pd->hdrlen = icmp_hlen;
8852 		break;
8853 	}
8854 #endif
8855 	}
8856 	return (0);
8857 }
8858 
8859 static void
8860 pf_counters_inc(int action, struct pf_pdesc *pd,
8861     struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a)
8862 {
8863 	struct pf_krule		*tr;
8864 	int			 dir = pd->dir;
8865 	int			 dirndx;
8866 
8867 	pf_counter_u64_critical_enter();
8868 	pf_counter_u64_add_protected(
8869 	    &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
8870 	    pd->tot_len);
8871 	pf_counter_u64_add_protected(
8872 	    &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
8873 	    1);
8874 
8875 	if (action == PF_PASS || r->action == PF_DROP) {
8876 		dirndx = (dir == PF_OUT);
8877 		pf_counter_u64_add_protected(&r->packets[dirndx], 1);
8878 		pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len);
8879 		pf_update_timestamp(r);
8880 
8881 		if (a != NULL) {
8882 			pf_counter_u64_add_protected(&a->packets[dirndx], 1);
8883 			pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len);
8884 		}
8885 		if (s != NULL) {
8886 			struct pf_krule_item	*ri;
8887 
8888 			if (s->nat_rule != NULL) {
8889 				pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx],
8890 				    1);
8891 				pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx],
8892 				    pd->tot_len);
8893 			}
8894 			if (s->src_node != NULL) {
8895 				counter_u64_add(s->src_node->packets[dirndx],
8896 				    1);
8897 				counter_u64_add(s->src_node->bytes[dirndx],
8898 				    pd->tot_len);
8899 			}
8900 			if (s->nat_src_node != NULL) {
8901 				counter_u64_add(s->nat_src_node->packets[dirndx],
8902 				    1);
8903 				counter_u64_add(s->nat_src_node->bytes[dirndx],
8904 				    pd->tot_len);
8905 			}
8906 			dirndx = (dir == s->direction) ? 0 : 1;
8907 			s->packets[dirndx]++;
8908 			s->bytes[dirndx] += pd->tot_len;
8909 
8910 			SLIST_FOREACH(ri, &s->match_rules, entry) {
8911 				pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1);
8912 				pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len);
8913 			}
8914 		}
8915 
8916 		tr = r;
8917 		if (s != NULL && s->nat_rule != NULL &&
8918 		    r == &V_pf_default_rule)
8919 			tr = s->nat_rule;
8920 
8921 		if (tr->src.addr.type == PF_ADDR_TABLE)
8922 			pfr_update_stats(tr->src.addr.p.tbl,
8923 			    (s == NULL) ? pd->src :
8924 			    &s->key[(s->direction == PF_IN)]->
8925 				addr[(s->direction == PF_OUT)],
8926 			    pd->af, pd->tot_len, dir == PF_OUT,
8927 			    r->action == PF_PASS, tr->src.neg);
8928 		if (tr->dst.addr.type == PF_ADDR_TABLE)
8929 			pfr_update_stats(tr->dst.addr.p.tbl,
8930 			    (s == NULL) ? pd->dst :
8931 			    &s->key[(s->direction == PF_IN)]->
8932 				addr[(s->direction == PF_IN)],
8933 			    pd->af, pd->tot_len, dir == PF_OUT,
8934 			    r->action == PF_PASS, tr->dst.neg);
8935 	}
8936 	pf_counter_u64_critical_exit();
8937 }
8938 
8939 #if defined(INET) || defined(INET6)
8940 int
8941 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
8942     struct inpcb *inp, struct pf_rule_actions *default_actions)
8943 {
8944 	struct pfi_kkif		*kif;
8945 	u_short			 action, reason = 0;
8946 	struct m_tag		*mtag;
8947 	struct pf_krule		*a = NULL, *r = &V_pf_default_rule;
8948 	struct pf_kstate	*s = NULL;
8949 	struct pf_kruleset	*ruleset = NULL;
8950 	struct pf_pdesc		 pd;
8951 	int			 use_2nd_queue = 0;
8952 	uint16_t		 tag;
8953 	uint8_t			 rt;
8954 
8955 	PF_RULES_RLOCK_TRACKER;
8956 	KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir));
8957 	M_ASSERTPKTHDR(*m0);
8958 
8959 	if (!V_pf_status.running)
8960 		return (PF_PASS);
8961 
8962 	PF_RULES_RLOCK();
8963 
8964 	kif = (struct pfi_kkif *)ifp->if_pf_kif;
8965 
8966 	if (__predict_false(kif == NULL)) {
8967 		DPFPRINTF(PF_DEBUG_URGENT,
8968 		    ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname));
8969 		PF_RULES_RUNLOCK();
8970 		return (PF_DROP);
8971 	}
8972 	if (kif->pfik_flags & PFI_IFLAG_SKIP) {
8973 		PF_RULES_RUNLOCK();
8974 		return (PF_PASS);
8975 	}
8976 
8977 	if ((*m0)->m_flags & M_SKIP_FIREWALL) {
8978 		PF_RULES_RUNLOCK();
8979 		return (PF_PASS);
8980 	}
8981 
8982 #ifdef INET6
8983 	/*
8984 	 * If we end up changing IP addresses (e.g. binat) the stack may get
8985 	 * confused and fail to send the icmp6 packet too big error. Just send
8986 	 * it here, before we do any NAT.
8987 	 */
8988 	if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD &&
8989 	    IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) {
8990 		PF_RULES_RUNLOCK();
8991 		icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp));
8992 		*m0 = NULL;
8993 		return (PF_DROP);
8994 	}
8995 #endif
8996 
8997 	if (__predict_false(! M_WRITABLE(*m0))) {
8998 		*m0 = m_unshare(*m0, M_NOWAIT);
8999 		if (*m0 == NULL)
9000 			return (PF_DROP);
9001 	}
9002 
9003 	pf_init_pdesc(&pd, *m0);
9004 
9005 	if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) {
9006 		pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
9007 
9008 		ifp = ifnet_byindexgen(pd.pf_mtag->if_index,
9009 		    pd.pf_mtag->if_idxgen);
9010 		if (ifp == NULL || ifp->if_flags & IFF_DYING) {
9011 			PF_RULES_RUNLOCK();
9012 			m_freem(*m0);
9013 			*m0 = NULL;
9014 			return (PF_PASS);
9015 		}
9016 		PF_RULES_RUNLOCK();
9017 		(ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL);
9018 		*m0 = NULL;
9019 		return (PF_PASS);
9020 	}
9021 
9022 	if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL &&
9023 	    pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
9024 		/* Dummynet re-injects packets after they've
9025 		 * completed their delay. We've already
9026 		 * processed them, so pass unconditionally. */
9027 
9028 		/* But only once. We may see the packet multiple times (e.g.
9029 		 * PFIL_IN/PFIL_OUT). */
9030 		pf_dummynet_flag_remove(pd.m, pd.pf_mtag);
9031 		PF_RULES_RUNLOCK();
9032 
9033 		return (PF_PASS);
9034 	}
9035 
9036 	if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason,
9037 		kif, default_actions) == -1) {
9038 		if (action != PF_PASS)
9039 			pd.act.log |= PF_LOG_FORCE;
9040 		goto done;
9041 	}
9042 
9043 	if (__predict_false(ip_divert_ptr != NULL) &&
9044 	    ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) {
9045 		struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1);
9046 		if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) ||
9047 		    (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) {
9048 			if (pd.pf_mtag == NULL &&
9049 			    ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
9050 				action = PF_DROP;
9051 				goto done;
9052 			}
9053 			pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED;
9054 		}
9055 		if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) {
9056 			pd.m->m_flags |= M_FASTFWD_OURS;
9057 			pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
9058 		}
9059 		m_tag_delete(pd.m, mtag);
9060 
9061 		mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL);
9062 		if (mtag != NULL)
9063 			m_tag_delete(pd.m, mtag);
9064 	}
9065 
9066 	switch (pd.virtual_proto) {
9067 	case PF_VPROTO_FRAGMENT:
9068 		/*
9069 		 * handle fragments that aren't reassembled by
9070 		 * normalization
9071 		 */
9072 		if (kif == NULL || r == NULL) /* pflog */
9073 			action = PF_DROP;
9074 		else
9075 			action = pf_test_rule(&r, &s, &pd, &a,
9076 			    &ruleset, inp);
9077 		if (action != PF_PASS)
9078 			REASON_SET(&reason, PFRES_FRAG);
9079 		break;
9080 
9081 	case IPPROTO_TCP: {
9082 		/* Respond to SYN with a syncookie. */
9083 		if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN &&
9084 		    pd.dir == PF_IN && pf_synflood_check(&pd)) {
9085 			pf_syncookie_send(&pd);
9086 			action = PF_DROP;
9087 			break;
9088 		}
9089 
9090 		if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0)
9091 			use_2nd_queue = 1;
9092 		action = pf_normalize_tcp(&pd);
9093 		if (action == PF_DROP)
9094 			goto done;
9095 		action = pf_test_state_tcp(&s, &pd, &reason);
9096 		if (action == PF_PASS) {
9097 			if (V_pfsync_update_state_ptr != NULL)
9098 				V_pfsync_update_state_ptr(s);
9099 			r = s->rule;
9100 			a = s->anchor;
9101 		} else if (s == NULL) {
9102 			/* Validate remote SYN|ACK, re-create original SYN if
9103 			 * valid. */
9104 			if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) ==
9105 			    TH_ACK && pf_syncookie_validate(&pd) &&
9106 			    pd.dir == PF_IN) {
9107 				struct mbuf *msyn;
9108 
9109 				msyn = pf_syncookie_recreate_syn(&pd);
9110 				if (msyn == NULL) {
9111 					action = PF_DROP;
9112 					break;
9113 				}
9114 
9115 				action = pf_test(af, dir, pflags, ifp, &msyn, inp,
9116 				    &pd.act);
9117 				m_freem(msyn);
9118 				if (action != PF_PASS)
9119 					break;
9120 
9121 				action = pf_test_state_tcp(&s, &pd, &reason);
9122 				if (action != PF_PASS || s == NULL) {
9123 					action = PF_DROP;
9124 					break;
9125 				}
9126 
9127 				s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1;
9128 				s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1;
9129 				pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST);
9130 				action = pf_synproxy(&pd, &s, &reason);
9131 				break;
9132 			} else {
9133 				action = pf_test_rule(&r, &s, &pd,
9134 				    &a, &ruleset, inp);
9135 			}
9136 		}
9137 		break;
9138 	}
9139 
9140 	case IPPROTO_UDP: {
9141 		action = pf_test_state_udp(&s, &pd);
9142 		if (action == PF_PASS) {
9143 			if (V_pfsync_update_state_ptr != NULL)
9144 				V_pfsync_update_state_ptr(s);
9145 			r = s->rule;
9146 			a = s->anchor;
9147 		} else if (s == NULL)
9148 			action = pf_test_rule(&r, &s, &pd,
9149 			    &a, &ruleset, inp);
9150 		break;
9151 	}
9152 
9153 	case IPPROTO_SCTP: {
9154 		action = pf_normalize_sctp(&pd);
9155 		if (action == PF_DROP)
9156 			goto done;
9157 		action = pf_test_state_sctp(&s, &pd, &reason);
9158 		if (action == PF_PASS) {
9159 			if (V_pfsync_update_state_ptr != NULL)
9160 				V_pfsync_update_state_ptr(s);
9161 			r = s->rule;
9162 			a = s->anchor;
9163 		} else if (s == NULL) {
9164 			action = pf_test_rule(&r, &s,
9165 			    &pd, &a, &ruleset, inp);
9166 		}
9167 		break;
9168 	}
9169 
9170 	case IPPROTO_ICMP: {
9171 		if (af != AF_INET) {
9172 			action = PF_DROP;
9173 			REASON_SET(&reason, PFRES_NORM);
9174 			DPFPRINTF(PF_DEBUG_MISC,
9175 			    ("dropping IPv6 packet with ICMPv4 payload"));
9176 			goto done;
9177 		}
9178 		action = pf_test_state_icmp(&s, &pd, &reason);
9179 		if (action == PF_PASS) {
9180 			if (V_pfsync_update_state_ptr != NULL)
9181 				V_pfsync_update_state_ptr(s);
9182 			r = s->rule;
9183 			a = s->anchor;
9184 		} else if (s == NULL)
9185 			action = pf_test_rule(&r, &s, &pd,
9186 			    &a, &ruleset, inp);
9187 		break;
9188 	}
9189 
9190 	case IPPROTO_ICMPV6: {
9191 		if (af != AF_INET6) {
9192 			action = PF_DROP;
9193 			REASON_SET(&reason, PFRES_NORM);
9194 			DPFPRINTF(PF_DEBUG_MISC,
9195 			    ("pf: dropping IPv4 packet with ICMPv6 payload\n"));
9196 			goto done;
9197 		}
9198 		action = pf_test_state_icmp(&s, &pd, &reason);
9199 		if (action == PF_PASS) {
9200 			if (V_pfsync_update_state_ptr != NULL)
9201 				V_pfsync_update_state_ptr(s);
9202 			r = s->rule;
9203 			a = s->anchor;
9204 		} else if (s == NULL)
9205 			action = pf_test_rule(&r, &s, &pd,
9206 			    &a, &ruleset, inp);
9207 		break;
9208 	}
9209 
9210 	default:
9211 		action = pf_test_state_other(&s, &pd);
9212 		if (action == PF_PASS) {
9213 			if (V_pfsync_update_state_ptr != NULL)
9214 				V_pfsync_update_state_ptr(s);
9215 			r = s->rule;
9216 			a = s->anchor;
9217 		} else if (s == NULL)
9218 			action = pf_test_rule(&r, &s, &pd,
9219 			    &a, &ruleset, inp);
9220 		break;
9221 	}
9222 
9223 done:
9224 	PF_RULES_RUNLOCK();
9225 
9226 	if (pd.m == NULL)
9227 		goto eat_pkt;
9228 
9229 	if (action == PF_PASS && pd.badopts &&
9230 	    !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) {
9231 		action = PF_DROP;
9232 		REASON_SET(&reason, PFRES_IPOPTIONS);
9233 		pd.act.log = PF_LOG_FORCE;
9234 		DPFPRINTF(PF_DEBUG_MISC,
9235 		    ("pf: dropping packet with dangerous headers\n"));
9236 	}
9237 
9238 	if (s) {
9239 		uint8_t log = pd.act.log;
9240 		memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions));
9241 		pd.act.log |= log;
9242 		tag = s->tag;
9243 		rt = s->rt;
9244 	} else {
9245 		tag = r->tag;
9246 		rt = r->rt;
9247 	}
9248 
9249 	if (tag > 0 && pf_tag_packet(&pd, tag)) {
9250 		action = PF_DROP;
9251 		REASON_SET(&reason, PFRES_MEMORY);
9252 	}
9253 
9254 	pf_scrub(&pd);
9255 	if (pd.proto == IPPROTO_TCP && pd.act.max_mss)
9256 		pf_normalize_mss(&pd);
9257 
9258 	if (pd.act.rtableid >= 0)
9259 		M_SETFIB(pd.m, pd.act.rtableid);
9260 
9261 	if (pd.act.flags & PFSTATE_SETPRIO) {
9262 		if (pd.tos & IPTOS_LOWDELAY)
9263 			use_2nd_queue = 1;
9264 		if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) {
9265 			action = PF_DROP;
9266 			REASON_SET(&reason, PFRES_MEMORY);
9267 			pd.act.log = PF_LOG_FORCE;
9268 			DPFPRINTF(PF_DEBUG_MISC,
9269 			    ("pf: failed to allocate 802.1q mtag\n"));
9270 		}
9271 	}
9272 
9273 #ifdef ALTQ
9274 	if (action == PF_PASS && pd.act.qid) {
9275 		if (pd.pf_mtag == NULL &&
9276 		    ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
9277 			action = PF_DROP;
9278 			REASON_SET(&reason, PFRES_MEMORY);
9279 		} else {
9280 			if (s != NULL)
9281 				pd.pf_mtag->qid_hash = pf_state_hash(s);
9282 			if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY))
9283 				pd.pf_mtag->qid = pd.act.pqid;
9284 			else
9285 				pd.pf_mtag->qid = pd.act.qid;
9286 			/* Add hints for ecn. */
9287 			pd.pf_mtag->hdr = mtod(pd.m, void *);
9288 		}
9289 	}
9290 #endif /* ALTQ */
9291 
9292 	/*
9293 	 * connections redirected to loopback should not match sockets
9294 	 * bound specifically to loopback due to security implications,
9295 	 * see tcp_input() and in_pcblookup_listen().
9296 	 */
9297 	if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP ||
9298 	    pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL &&
9299 	    (s->nat_rule->action == PF_RDR ||
9300 	    s->nat_rule->action == PF_BINAT) &&
9301 	    pf_is_loopback(af, pd.dst))
9302 		pd.m->m_flags |= M_SKIP_FIREWALL;
9303 
9304 	if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) &&
9305 	    action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) {
9306 		mtag = m_tag_alloc(MTAG_PF_DIVERT, 0,
9307 		    sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO);
9308 		if (mtag != NULL) {
9309 			((struct pf_divert_mtag *)(mtag+1))->port =
9310 			    ntohs(r->divert.port);
9311 			((struct pf_divert_mtag *)(mtag+1))->idir =
9312 			    (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN :
9313 			    PF_DIVERT_MTAG_DIR_OUT;
9314 
9315 			if (s)
9316 				PF_STATE_UNLOCK(s);
9317 
9318 			m_tag_prepend(pd.m, mtag);
9319 			if (pd.m->m_flags & M_FASTFWD_OURS) {
9320 				if (pd.pf_mtag == NULL &&
9321 				    ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
9322 					action = PF_DROP;
9323 					REASON_SET(&reason, PFRES_MEMORY);
9324 					pd.act.log = PF_LOG_FORCE;
9325 					DPFPRINTF(PF_DEBUG_MISC,
9326 					    ("pf: failed to allocate tag\n"));
9327 				} else {
9328 					pd.pf_mtag->flags |=
9329 					    PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
9330 					pd.m->m_flags &= ~M_FASTFWD_OURS;
9331 				}
9332 			}
9333 			ip_divert_ptr(*m0, dir == PF_IN);
9334 			*m0 = NULL;
9335 
9336 			return (action);
9337 		} else {
9338 			/* XXX: ipfw has the same behaviour! */
9339 			action = PF_DROP;
9340 			REASON_SET(&reason, PFRES_MEMORY);
9341 			pd.act.log = PF_LOG_FORCE;
9342 			DPFPRINTF(PF_DEBUG_MISC,
9343 			    ("pf: failed to allocate divert tag\n"));
9344 		}
9345 	}
9346 	/* XXX: Anybody working on it?! */
9347 	if (af == AF_INET6 && r->divert.port)
9348 		printf("pf: divert(9) is not supported for IPv6\n");
9349 
9350 	/* this flag will need revising if the pkt is forwarded */
9351 	if (pd.pf_mtag)
9352 		pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED;
9353 
9354 	if (pd.act.log) {
9355 		struct pf_krule		*lr;
9356 		struct pf_krule_item	*ri;
9357 
9358 		if (s != NULL && s->nat_rule != NULL &&
9359 		    s->nat_rule->log & PF_LOG_ALL)
9360 			lr = s->nat_rule;
9361 		else
9362 			lr = r;
9363 
9364 		if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL)
9365 			PFLOG_PACKET(action, reason, lr, a,
9366 			    ruleset, &pd, (s == NULL));
9367 		if (s) {
9368 			SLIST_FOREACH(ri, &s->match_rules, entry)
9369 				if (ri->r->log & PF_LOG_ALL)
9370 					PFLOG_PACKET(action,
9371 					    reason, ri->r, a, ruleset, &pd, 0);
9372 		}
9373 	}
9374 
9375 	pf_counters_inc(action, &pd, s, r, a);
9376 
9377 	switch (action) {
9378 	case PF_SYNPROXY_DROP:
9379 		m_freem(*m0);
9380 	case PF_DEFER:
9381 		*m0 = NULL;
9382 		action = PF_PASS;
9383 		break;
9384 	case PF_DROP:
9385 		m_freem(*m0);
9386 		*m0 = NULL;
9387 		break;
9388 	default:
9389 		if (rt) {
9390 			switch (af) {
9391 #ifdef INET
9392 			case AF_INET:
9393 				/* pf_route() returns unlocked. */
9394 				pf_route(m0, r, kif->pfik_ifp, s, &pd, inp);
9395 				break;
9396 #endif
9397 #ifdef INET6
9398 			case AF_INET6:
9399 				/* pf_route6() returns unlocked. */
9400 				pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp);
9401 				break;
9402 #endif
9403 			}
9404 			goto out;
9405 		}
9406 		if (pf_dummynet(&pd, s, r, m0) != 0) {
9407 			action = PF_DROP;
9408 			REASON_SET(&reason, PFRES_MEMORY);
9409 		}
9410 		break;
9411 	}
9412 
9413 eat_pkt:
9414 	SDT_PROBE4(pf, ip, test, done, action, reason, r, s);
9415 
9416 	if (s && action != PF_DROP) {
9417 		if (!s->if_index_in && dir == PF_IN)
9418 			s->if_index_in = ifp->if_index;
9419 		else if (!s->if_index_out && dir == PF_OUT)
9420 			s->if_index_out = ifp->if_index;
9421 	}
9422 
9423 	if (s)
9424 		PF_STATE_UNLOCK(s);
9425 
9426 #ifdef INET6
9427 	/* If reassembled packet passed, create new fragments. */
9428 	if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT &&
9429 	    (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL)
9430 		action = pf_refragment6(ifp, m0, mtag, pflags & PFIL_FWD);
9431 #endif
9432 
9433 out:
9434 	pf_sctp_multihome_delayed(&pd, kif, s, action);
9435 
9436 	return (action);
9437 }
9438 #endif /* INET || INET6 */
9439