1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_bpf.h" 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_pf.h" 47 #include "opt_sctp.h" 48 49 #include <sys/param.h> 50 #include <sys/bus.h> 51 #include <sys/endian.h> 52 #include <sys/gsb_crc32.h> 53 #include <sys/hash.h> 54 #include <sys/interrupt.h> 55 #include <sys/kernel.h> 56 #include <sys/kthread.h> 57 #include <sys/limits.h> 58 #include <sys/mbuf.h> 59 #include <sys/md5.h> 60 #include <sys/random.h> 61 #include <sys/refcount.h> 62 #include <sys/sdt.h> 63 #include <sys/socket.h> 64 #include <sys/sysctl.h> 65 #include <sys/taskqueue.h> 66 #include <sys/ucred.h> 67 68 #include <net/if.h> 69 #include <net/if_var.h> 70 #include <net/if_types.h> 71 #include <net/if_vlan_var.h> 72 #include <net/route.h> 73 #include <net/route/nhop.h> 74 #include <net/vnet.h> 75 76 #include <net/pfil.h> 77 #include <net/pfvar.h> 78 #include <net/if_pflog.h> 79 #include <net/if_pfsync.h> 80 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_var.h> 83 #include <netinet/in_fib.h> 84 #include <netinet/ip.h> 85 #include <netinet/ip_fw.h> 86 #include <netinet/ip_icmp.h> 87 #include <netinet/icmp_var.h> 88 #include <netinet/ip_var.h> 89 #include <netinet/tcp.h> 90 #include <netinet/tcp_fsm.h> 91 #include <netinet/tcp_seq.h> 92 #include <netinet/tcp_timer.h> 93 #include <netinet/tcp_var.h> 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 97 #ifdef INET6 98 #include <netinet/ip6.h> 99 #include <netinet/icmp6.h> 100 #include <netinet6/nd6.h> 101 #include <netinet6/ip6_var.h> 102 #include <netinet6/in6_pcb.h> 103 #include <netinet6/in6_fib.h> 104 #include <netinet6/scope6_var.h> 105 #endif /* INET6 */ 106 107 #if defined(SCTP) || defined(SCTP_SUPPORT) 108 #include <netinet/sctp_crc32.h> 109 #endif 110 111 #include <machine/in_cksum.h> 112 #include <security/mac/mac_framework.h> 113 114 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 115 116 SDT_PROVIDER_DEFINE(pf); 117 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 118 "struct pf_state *"); 119 SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", 120 "struct pf_state *"); 121 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 122 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 123 "struct pf_state *"); 124 125 /* 126 * Global variables 127 */ 128 129 /* state tables */ 130 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 131 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 132 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 133 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 134 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 135 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 136 VNET_DEFINE(struct pf_kstatus, pf_status); 137 138 VNET_DEFINE(u_int32_t, ticket_altqs_active); 139 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 140 VNET_DEFINE(int, altqs_inactive_open); 141 VNET_DEFINE(u_int32_t, ticket_pabuf); 142 143 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 144 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 145 VNET_DEFINE(u_char, pf_tcp_secret[16]); 146 #define V_pf_tcp_secret VNET(pf_tcp_secret) 147 VNET_DEFINE(int, pf_tcp_secret_init); 148 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 149 VNET_DEFINE(int, pf_tcp_iss_off); 150 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 151 VNET_DECLARE(int, pf_vnet_active); 152 #define V_pf_vnet_active VNET(pf_vnet_active) 153 154 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 155 #define V_pf_purge_idx VNET(pf_purge_idx) 156 157 /* 158 * Queue for pf_intr() sends. 159 */ 160 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 161 struct pf_send_entry { 162 STAILQ_ENTRY(pf_send_entry) pfse_next; 163 struct mbuf *pfse_m; 164 enum { 165 PFSE_IP, 166 PFSE_IP6, 167 PFSE_ICMP, 168 PFSE_ICMP6, 169 } pfse_type; 170 struct { 171 int type; 172 int code; 173 int mtu; 174 } icmpopts; 175 }; 176 177 STAILQ_HEAD(pf_send_head, pf_send_entry); 178 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 179 #define V_pf_sendqueue VNET(pf_sendqueue) 180 181 static struct mtx pf_sendqueue_mtx; 182 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 183 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 184 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 185 186 /* 187 * Queue for pf_overload_task() tasks. 188 */ 189 struct pf_overload_entry { 190 SLIST_ENTRY(pf_overload_entry) next; 191 struct pf_addr addr; 192 sa_family_t af; 193 uint8_t dir; 194 struct pf_krule *rule; 195 }; 196 197 SLIST_HEAD(pf_overload_head, pf_overload_entry); 198 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 199 #define V_pf_overloadqueue VNET(pf_overloadqueue) 200 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 201 #define V_pf_overloadtask VNET(pf_overloadtask) 202 203 static struct mtx pf_overloadqueue_mtx; 204 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 205 "pf overload/flush queue", MTX_DEF); 206 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 207 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 208 209 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 210 struct mtx pf_unlnkdrules_mtx; 211 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 212 MTX_DEF); 213 214 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 215 #define V_pf_sources_z VNET(pf_sources_z) 216 uma_zone_t pf_mtag_z; 217 VNET_DEFINE(uma_zone_t, pf_state_z); 218 VNET_DEFINE(uma_zone_t, pf_state_key_z); 219 220 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 221 #define PFID_CPUBITS 8 222 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 223 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 224 #define PFID_MAXID (~PFID_CPUMASK) 225 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 226 227 static void pf_src_tree_remove_state(struct pf_state *); 228 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 229 u_int32_t); 230 static void pf_add_threshold(struct pf_threshold *); 231 static int pf_check_threshold(struct pf_threshold *); 232 233 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 234 u_int16_t *, u_int16_t *, struct pf_addr *, 235 u_int16_t, u_int8_t, sa_family_t); 236 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 237 struct tcphdr *, struct pf_state_peer *); 238 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 239 struct pf_addr *, struct pf_addr *, u_int16_t, 240 u_int16_t *, u_int16_t *, u_int16_t *, 241 u_int16_t *, u_int8_t, sa_family_t); 242 static void pf_send_tcp(struct mbuf *, 243 const struct pf_krule *, sa_family_t, 244 const struct pf_addr *, const struct pf_addr *, 245 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 246 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 247 u_int16_t, struct ifnet *); 248 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 249 sa_family_t, struct pf_krule *); 250 static void pf_detach_state(struct pf_state *); 251 static int pf_state_key_attach(struct pf_state_key *, 252 struct pf_state_key *, struct pf_state *); 253 static void pf_state_key_detach(struct pf_state *, int); 254 static int pf_state_key_ctor(void *, int, void *, int); 255 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 256 static int pf_test_rule(struct pf_krule **, struct pf_state **, 257 int, struct pfi_kkif *, struct mbuf *, int, 258 struct pf_pdesc *, struct pf_krule **, 259 struct pf_kruleset **, struct inpcb *); 260 static int pf_create_state(struct pf_krule *, struct pf_krule *, 261 struct pf_krule *, struct pf_pdesc *, 262 struct pf_ksrc_node *, struct pf_state_key *, 263 struct pf_state_key *, struct mbuf *, int, 264 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 265 struct pf_state **, int, u_int16_t, u_int16_t, 266 int); 267 static int pf_test_fragment(struct pf_krule **, int, 268 struct pfi_kkif *, struct mbuf *, void *, 269 struct pf_pdesc *, struct pf_krule **, 270 struct pf_kruleset **); 271 static int pf_tcp_track_full(struct pf_state_peer *, 272 struct pf_state_peer *, struct pf_state **, 273 struct pfi_kkif *, struct mbuf *, int, 274 struct pf_pdesc *, u_short *, int *); 275 static int pf_tcp_track_sloppy(struct pf_state_peer *, 276 struct pf_state_peer *, struct pf_state **, 277 struct pf_pdesc *, u_short *); 278 static int pf_test_state_tcp(struct pf_state **, int, 279 struct pfi_kkif *, struct mbuf *, int, 280 void *, struct pf_pdesc *, u_short *); 281 static int pf_test_state_udp(struct pf_state **, int, 282 struct pfi_kkif *, struct mbuf *, int, 283 void *, struct pf_pdesc *); 284 static int pf_test_state_icmp(struct pf_state **, int, 285 struct pfi_kkif *, struct mbuf *, int, 286 void *, struct pf_pdesc *, u_short *); 287 static int pf_test_state_other(struct pf_state **, int, 288 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 289 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 290 sa_family_t); 291 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 292 sa_family_t); 293 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 294 int, u_int16_t); 295 static int pf_check_proto_cksum(struct mbuf *, int, int, 296 u_int8_t, sa_family_t); 297 static void pf_print_state_parts(struct pf_state *, 298 struct pf_state_key *, struct pf_state_key *); 299 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 300 struct pf_addr_wrap *); 301 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 302 bool, u_int8_t); 303 static struct pf_state *pf_find_state(struct pfi_kkif *, 304 struct pf_state_key_cmp *, u_int); 305 static int pf_src_connlimit(struct pf_state **); 306 static void pf_overload_task(void *v, int pending); 307 static int pf_insert_src_node(struct pf_ksrc_node **, 308 struct pf_krule *, struct pf_addr *, sa_family_t); 309 static u_int pf_purge_expired_states(u_int, int); 310 static void pf_purge_unlinked_rules(void); 311 static int pf_mtag_uminit(void *, int, int); 312 static void pf_mtag_free(struct m_tag *); 313 #ifdef INET 314 static void pf_route(struct mbuf **, struct pf_krule *, int, 315 struct ifnet *, struct pf_state *, 316 struct pf_pdesc *, struct inpcb *); 317 #endif /* INET */ 318 #ifdef INET6 319 static void pf_change_a6(struct pf_addr *, u_int16_t *, 320 struct pf_addr *, u_int8_t); 321 static void pf_route6(struct mbuf **, struct pf_krule *, int, 322 struct ifnet *, struct pf_state *, 323 struct pf_pdesc *, struct inpcb *); 324 #endif /* INET6 */ 325 326 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 327 328 extern int pf_end_threads; 329 extern struct proc *pf_purge_proc; 330 331 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 332 333 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 334 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 335 336 #define STATE_LOOKUP(i, k, d, s, pd) \ 337 do { \ 338 (s) = pf_find_state((i), (k), (d)); \ 339 SDT_PROBE5(pf, ip, state, lookup, i, k, d, pd, (s)); \ 340 if ((s) == NULL) \ 341 return (PF_DROP); \ 342 if (PACKET_LOOPED(pd)) \ 343 return (PF_PASS); \ 344 if ((d) == PF_OUT && \ 345 (((s)->rule.ptr->rt == PF_ROUTETO && \ 346 (s)->rule.ptr->direction == PF_OUT) || \ 347 ((s)->rule.ptr->rt == PF_REPLYTO && \ 348 (s)->rule.ptr->direction == PF_IN)) && \ 349 (s)->rt_kif != NULL && \ 350 (s)->rt_kif != (i)) \ 351 return (PF_PASS); \ 352 } while (0) 353 354 #define BOUND_IFACE(r, k) \ 355 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 356 357 #define STATE_INC_COUNTERS(s) \ 358 do { \ 359 counter_u64_add(s->rule.ptr->states_cur, 1); \ 360 counter_u64_add(s->rule.ptr->states_tot, 1); \ 361 if (s->anchor.ptr != NULL) { \ 362 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 363 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 364 } \ 365 if (s->nat_rule.ptr != NULL) { \ 366 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 367 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 368 } \ 369 } while (0) 370 371 #define STATE_DEC_COUNTERS(s) \ 372 do { \ 373 if (s->nat_rule.ptr != NULL) \ 374 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 375 if (s->anchor.ptr != NULL) \ 376 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 377 counter_u64_add(s->rule.ptr->states_cur, -1); \ 378 } while (0) 379 380 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 381 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 382 VNET_DEFINE(struct pf_idhash *, pf_idhash); 383 VNET_DEFINE(struct pf_srchash *, pf_srchash); 384 385 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 386 "pf(4)"); 387 388 u_long pf_hashmask; 389 u_long pf_srchashmask; 390 static u_long pf_hashsize; 391 static u_long pf_srchashsize; 392 u_long pf_ioctl_maxcount = 65535; 393 394 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 395 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 396 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 397 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 398 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 399 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 400 401 VNET_DEFINE(void *, pf_swi_cookie); 402 VNET_DEFINE(struct intr_event *, pf_swi_ie); 403 404 VNET_DEFINE(uint32_t, pf_hashseed); 405 #define V_pf_hashseed VNET(pf_hashseed) 406 407 int 408 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 409 { 410 411 switch (af) { 412 #ifdef INET 413 case AF_INET: 414 if (a->addr32[0] > b->addr32[0]) 415 return (1); 416 if (a->addr32[0] < b->addr32[0]) 417 return (-1); 418 break; 419 #endif /* INET */ 420 #ifdef INET6 421 case AF_INET6: 422 if (a->addr32[3] > b->addr32[3]) 423 return (1); 424 if (a->addr32[3] < b->addr32[3]) 425 return (-1); 426 if (a->addr32[2] > b->addr32[2]) 427 return (1); 428 if (a->addr32[2] < b->addr32[2]) 429 return (-1); 430 if (a->addr32[1] > b->addr32[1]) 431 return (1); 432 if (a->addr32[1] < b->addr32[1]) 433 return (-1); 434 if (a->addr32[0] > b->addr32[0]) 435 return (1); 436 if (a->addr32[0] < b->addr32[0]) 437 return (-1); 438 break; 439 #endif /* INET6 */ 440 default: 441 panic("%s: unknown address family %u", __func__, af); 442 } 443 return (0); 444 } 445 446 static __inline uint32_t 447 pf_hashkey(struct pf_state_key *sk) 448 { 449 uint32_t h; 450 451 h = murmur3_32_hash32((uint32_t *)sk, 452 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 453 V_pf_hashseed); 454 455 return (h & pf_hashmask); 456 } 457 458 static __inline uint32_t 459 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 460 { 461 uint32_t h; 462 463 switch (af) { 464 case AF_INET: 465 h = murmur3_32_hash32((uint32_t *)&addr->v4, 466 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 467 break; 468 case AF_INET6: 469 h = murmur3_32_hash32((uint32_t *)&addr->v6, 470 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 471 break; 472 default: 473 panic("%s: unknown address family %u", __func__, af); 474 } 475 476 return (h & pf_srchashmask); 477 } 478 479 #ifdef ALTQ 480 static int 481 pf_state_hash(struct pf_state *s) 482 { 483 u_int32_t hv = (intptr_t)s / sizeof(*s); 484 485 hv ^= crc32(&s->src, sizeof(s->src)); 486 hv ^= crc32(&s->dst, sizeof(s->dst)); 487 if (hv == 0) 488 hv = 1; 489 return (hv); 490 } 491 #endif 492 493 #ifdef INET6 494 void 495 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 496 { 497 switch (af) { 498 #ifdef INET 499 case AF_INET: 500 dst->addr32[0] = src->addr32[0]; 501 break; 502 #endif /* INET */ 503 case AF_INET6: 504 dst->addr32[0] = src->addr32[0]; 505 dst->addr32[1] = src->addr32[1]; 506 dst->addr32[2] = src->addr32[2]; 507 dst->addr32[3] = src->addr32[3]; 508 break; 509 } 510 } 511 #endif /* INET6 */ 512 513 static void 514 pf_init_threshold(struct pf_threshold *threshold, 515 u_int32_t limit, u_int32_t seconds) 516 { 517 threshold->limit = limit * PF_THRESHOLD_MULT; 518 threshold->seconds = seconds; 519 threshold->count = 0; 520 threshold->last = time_uptime; 521 } 522 523 static void 524 pf_add_threshold(struct pf_threshold *threshold) 525 { 526 u_int32_t t = time_uptime, diff = t - threshold->last; 527 528 if (diff >= threshold->seconds) 529 threshold->count = 0; 530 else 531 threshold->count -= threshold->count * diff / 532 threshold->seconds; 533 threshold->count += PF_THRESHOLD_MULT; 534 threshold->last = t; 535 } 536 537 static int 538 pf_check_threshold(struct pf_threshold *threshold) 539 { 540 return (threshold->count > threshold->limit); 541 } 542 543 static int 544 pf_src_connlimit(struct pf_state **state) 545 { 546 struct pf_overload_entry *pfoe; 547 int bad = 0; 548 549 PF_STATE_LOCK_ASSERT(*state); 550 551 (*state)->src_node->conn++; 552 (*state)->src.tcp_est = 1; 553 pf_add_threshold(&(*state)->src_node->conn_rate); 554 555 if ((*state)->rule.ptr->max_src_conn && 556 (*state)->rule.ptr->max_src_conn < 557 (*state)->src_node->conn) { 558 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 559 bad++; 560 } 561 562 if ((*state)->rule.ptr->max_src_conn_rate.limit && 563 pf_check_threshold(&(*state)->src_node->conn_rate)) { 564 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 565 bad++; 566 } 567 568 if (!bad) 569 return (0); 570 571 /* Kill this state. */ 572 (*state)->timeout = PFTM_PURGE; 573 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 574 575 if ((*state)->rule.ptr->overload_tbl == NULL) 576 return (1); 577 578 /* Schedule overloading and flushing task. */ 579 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 580 if (pfoe == NULL) 581 return (1); /* too bad :( */ 582 583 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 584 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 585 pfoe->rule = (*state)->rule.ptr; 586 pfoe->dir = (*state)->direction; 587 PF_OVERLOADQ_LOCK(); 588 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 589 PF_OVERLOADQ_UNLOCK(); 590 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 591 592 return (1); 593 } 594 595 static void 596 pf_overload_task(void *v, int pending) 597 { 598 struct pf_overload_head queue; 599 struct pfr_addr p; 600 struct pf_overload_entry *pfoe, *pfoe1; 601 uint32_t killed = 0; 602 603 CURVNET_SET((struct vnet *)v); 604 605 PF_OVERLOADQ_LOCK(); 606 queue = V_pf_overloadqueue; 607 SLIST_INIT(&V_pf_overloadqueue); 608 PF_OVERLOADQ_UNLOCK(); 609 610 bzero(&p, sizeof(p)); 611 SLIST_FOREACH(pfoe, &queue, next) { 612 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 613 if (V_pf_status.debug >= PF_DEBUG_MISC) { 614 printf("%s: blocking address ", __func__); 615 pf_print_host(&pfoe->addr, 0, pfoe->af); 616 printf("\n"); 617 } 618 619 p.pfra_af = pfoe->af; 620 switch (pfoe->af) { 621 #ifdef INET 622 case AF_INET: 623 p.pfra_net = 32; 624 p.pfra_ip4addr = pfoe->addr.v4; 625 break; 626 #endif 627 #ifdef INET6 628 case AF_INET6: 629 p.pfra_net = 128; 630 p.pfra_ip6addr = pfoe->addr.v6; 631 break; 632 #endif 633 } 634 635 PF_RULES_WLOCK(); 636 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 637 PF_RULES_WUNLOCK(); 638 } 639 640 /* 641 * Remove those entries, that don't need flushing. 642 */ 643 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 644 if (pfoe->rule->flush == 0) { 645 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 646 free(pfoe, M_PFTEMP); 647 } else 648 counter_u64_add( 649 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 650 651 /* If nothing to flush, return. */ 652 if (SLIST_EMPTY(&queue)) { 653 CURVNET_RESTORE(); 654 return; 655 } 656 657 for (int i = 0; i <= pf_hashmask; i++) { 658 struct pf_idhash *ih = &V_pf_idhash[i]; 659 struct pf_state_key *sk; 660 struct pf_state *s; 661 662 PF_HASHROW_LOCK(ih); 663 LIST_FOREACH(s, &ih->states, entry) { 664 sk = s->key[PF_SK_WIRE]; 665 SLIST_FOREACH(pfoe, &queue, next) 666 if (sk->af == pfoe->af && 667 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 668 pfoe->rule == s->rule.ptr) && 669 ((pfoe->dir == PF_OUT && 670 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 671 (pfoe->dir == PF_IN && 672 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 673 s->timeout = PFTM_PURGE; 674 s->src.state = s->dst.state = TCPS_CLOSED; 675 killed++; 676 } 677 } 678 PF_HASHROW_UNLOCK(ih); 679 } 680 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 681 free(pfoe, M_PFTEMP); 682 if (V_pf_status.debug >= PF_DEBUG_MISC) 683 printf("%s: %u states killed", __func__, killed); 684 685 CURVNET_RESTORE(); 686 } 687 688 /* 689 * Can return locked on failure, so that we can consistently 690 * allocate and insert a new one. 691 */ 692 struct pf_ksrc_node * 693 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 694 int returnlocked) 695 { 696 struct pf_srchash *sh; 697 struct pf_ksrc_node *n; 698 699 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 700 701 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 702 PF_HASHROW_LOCK(sh); 703 LIST_FOREACH(n, &sh->nodes, entry) 704 if (n->rule.ptr == rule && n->af == af && 705 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 706 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 707 break; 708 if (n != NULL) { 709 n->states++; 710 PF_HASHROW_UNLOCK(sh); 711 } else if (returnlocked == 0) 712 PF_HASHROW_UNLOCK(sh); 713 714 return (n); 715 } 716 717 static void 718 pf_free_src_node(struct pf_ksrc_node *sn) 719 { 720 721 for (int i = 0; i < 2; i++) { 722 counter_u64_free(sn->bytes[i]); 723 counter_u64_free(sn->packets[i]); 724 } 725 uma_zfree(V_pf_sources_z, sn); 726 } 727 728 static int 729 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 730 struct pf_addr *src, sa_family_t af) 731 { 732 733 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 734 rule->rpool.opts & PF_POOL_STICKYADDR), 735 ("%s for non-tracking rule %p", __func__, rule)); 736 737 if (*sn == NULL) 738 *sn = pf_find_src_node(src, rule, af, 1); 739 740 if (*sn == NULL) { 741 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 742 743 PF_HASHROW_ASSERT(sh); 744 745 if (!rule->max_src_nodes || 746 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 747 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 748 else 749 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 750 1); 751 if ((*sn) == NULL) { 752 PF_HASHROW_UNLOCK(sh); 753 return (-1); 754 } 755 756 for (int i = 0; i < 2; i++) { 757 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 758 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 759 760 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 761 pf_free_src_node(*sn); 762 PF_HASHROW_UNLOCK(sh); 763 return (-1); 764 } 765 } 766 767 pf_init_threshold(&(*sn)->conn_rate, 768 rule->max_src_conn_rate.limit, 769 rule->max_src_conn_rate.seconds); 770 771 (*sn)->af = af; 772 (*sn)->rule.ptr = rule; 773 PF_ACPY(&(*sn)->addr, src, af); 774 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 775 (*sn)->creation = time_uptime; 776 (*sn)->ruletype = rule->action; 777 (*sn)->states = 1; 778 if ((*sn)->rule.ptr != NULL) 779 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 780 PF_HASHROW_UNLOCK(sh); 781 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 782 } else { 783 if (rule->max_src_states && 784 (*sn)->states >= rule->max_src_states) { 785 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 786 1); 787 return (-1); 788 } 789 } 790 return (0); 791 } 792 793 void 794 pf_unlink_src_node(struct pf_ksrc_node *src) 795 { 796 797 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 798 LIST_REMOVE(src, entry); 799 if (src->rule.ptr) 800 counter_u64_add(src->rule.ptr->src_nodes, -1); 801 } 802 803 u_int 804 pf_free_src_nodes(struct pf_ksrc_node_list *head) 805 { 806 struct pf_ksrc_node *sn, *tmp; 807 u_int count = 0; 808 809 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 810 pf_free_src_node(sn); 811 count++; 812 } 813 814 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 815 816 return (count); 817 } 818 819 void 820 pf_mtag_initialize() 821 { 822 823 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 824 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 825 UMA_ALIGN_PTR, 0); 826 } 827 828 /* Per-vnet data storage structures initialization. */ 829 void 830 pf_initialize() 831 { 832 struct pf_keyhash *kh; 833 struct pf_idhash *ih; 834 struct pf_srchash *sh; 835 u_int i; 836 837 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 838 pf_hashsize = PF_HASHSIZ; 839 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 840 pf_srchashsize = PF_SRCHASHSIZ; 841 842 V_pf_hashseed = arc4random(); 843 844 /* States and state keys storage. */ 845 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 846 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 847 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 848 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 849 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 850 851 V_pf_state_key_z = uma_zcreate("pf state keys", 852 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 853 UMA_ALIGN_PTR, 0); 854 855 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 856 M_PFHASH, M_NOWAIT | M_ZERO); 857 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 858 M_PFHASH, M_NOWAIT | M_ZERO); 859 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 860 printf("pf: Unable to allocate memory for " 861 "state_hashsize %lu.\n", pf_hashsize); 862 863 free(V_pf_keyhash, M_PFHASH); 864 free(V_pf_idhash, M_PFHASH); 865 866 pf_hashsize = PF_HASHSIZ; 867 V_pf_keyhash = mallocarray(pf_hashsize, 868 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 869 V_pf_idhash = mallocarray(pf_hashsize, 870 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 871 } 872 873 pf_hashmask = pf_hashsize - 1; 874 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 875 i++, kh++, ih++) { 876 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 877 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 878 } 879 880 /* Source nodes. */ 881 V_pf_sources_z = uma_zcreate("pf source nodes", 882 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 883 0); 884 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 885 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 886 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 887 888 V_pf_srchash = mallocarray(pf_srchashsize, 889 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 890 if (V_pf_srchash == NULL) { 891 printf("pf: Unable to allocate memory for " 892 "source_hashsize %lu.\n", pf_srchashsize); 893 894 pf_srchashsize = PF_SRCHASHSIZ; 895 V_pf_srchash = mallocarray(pf_srchashsize, 896 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 897 } 898 899 pf_srchashmask = pf_srchashsize - 1; 900 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 901 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 902 903 /* ALTQ */ 904 TAILQ_INIT(&V_pf_altqs[0]); 905 TAILQ_INIT(&V_pf_altqs[1]); 906 TAILQ_INIT(&V_pf_altqs[2]); 907 TAILQ_INIT(&V_pf_altqs[3]); 908 TAILQ_INIT(&V_pf_pabuf); 909 V_pf_altqs_active = &V_pf_altqs[0]; 910 V_pf_altq_ifs_active = &V_pf_altqs[1]; 911 V_pf_altqs_inactive = &V_pf_altqs[2]; 912 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 913 914 /* Send & overload+flush queues. */ 915 STAILQ_INIT(&V_pf_sendqueue); 916 SLIST_INIT(&V_pf_overloadqueue); 917 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 918 919 /* Unlinked, but may be referenced rules. */ 920 TAILQ_INIT(&V_pf_unlinked_rules); 921 } 922 923 void 924 pf_mtag_cleanup() 925 { 926 927 uma_zdestroy(pf_mtag_z); 928 } 929 930 void 931 pf_cleanup() 932 { 933 struct pf_keyhash *kh; 934 struct pf_idhash *ih; 935 struct pf_srchash *sh; 936 struct pf_send_entry *pfse, *next; 937 u_int i; 938 939 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 940 i++, kh++, ih++) { 941 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 942 __func__)); 943 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 944 __func__)); 945 mtx_destroy(&kh->lock); 946 mtx_destroy(&ih->lock); 947 } 948 free(V_pf_keyhash, M_PFHASH); 949 free(V_pf_idhash, M_PFHASH); 950 951 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 952 KASSERT(LIST_EMPTY(&sh->nodes), 953 ("%s: source node hash not empty", __func__)); 954 mtx_destroy(&sh->lock); 955 } 956 free(V_pf_srchash, M_PFHASH); 957 958 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 959 m_freem(pfse->pfse_m); 960 free(pfse, M_PFTEMP); 961 } 962 963 uma_zdestroy(V_pf_sources_z); 964 uma_zdestroy(V_pf_state_z); 965 uma_zdestroy(V_pf_state_key_z); 966 } 967 968 static int 969 pf_mtag_uminit(void *mem, int size, int how) 970 { 971 struct m_tag *t; 972 973 t = (struct m_tag *)mem; 974 t->m_tag_cookie = MTAG_ABI_COMPAT; 975 t->m_tag_id = PACKET_TAG_PF; 976 t->m_tag_len = sizeof(struct pf_mtag); 977 t->m_tag_free = pf_mtag_free; 978 979 return (0); 980 } 981 982 static void 983 pf_mtag_free(struct m_tag *t) 984 { 985 986 uma_zfree(pf_mtag_z, t); 987 } 988 989 struct pf_mtag * 990 pf_get_mtag(struct mbuf *m) 991 { 992 struct m_tag *mtag; 993 994 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 995 return ((struct pf_mtag *)(mtag + 1)); 996 997 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 998 if (mtag == NULL) 999 return (NULL); 1000 bzero(mtag + 1, sizeof(struct pf_mtag)); 1001 m_tag_prepend(m, mtag); 1002 1003 return ((struct pf_mtag *)(mtag + 1)); 1004 } 1005 1006 static int 1007 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1008 struct pf_state *s) 1009 { 1010 struct pf_keyhash *khs, *khw, *kh; 1011 struct pf_state_key *sk, *cur; 1012 struct pf_state *si, *olds = NULL; 1013 int idx; 1014 1015 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1016 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1017 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1018 1019 /* 1020 * We need to lock hash slots of both keys. To avoid deadlock 1021 * we always lock the slot with lower address first. Unlock order 1022 * isn't important. 1023 * 1024 * We also need to lock ID hash slot before dropping key 1025 * locks. On success we return with ID hash slot locked. 1026 */ 1027 1028 if (skw == sks) { 1029 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1030 PF_HASHROW_LOCK(khs); 1031 } else { 1032 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1033 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1034 if (khs == khw) { 1035 PF_HASHROW_LOCK(khs); 1036 } else if (khs < khw) { 1037 PF_HASHROW_LOCK(khs); 1038 PF_HASHROW_LOCK(khw); 1039 } else { 1040 PF_HASHROW_LOCK(khw); 1041 PF_HASHROW_LOCK(khs); 1042 } 1043 } 1044 1045 #define KEYS_UNLOCK() do { \ 1046 if (khs != khw) { \ 1047 PF_HASHROW_UNLOCK(khs); \ 1048 PF_HASHROW_UNLOCK(khw); \ 1049 } else \ 1050 PF_HASHROW_UNLOCK(khs); \ 1051 } while (0) 1052 1053 /* 1054 * First run: start with wire key. 1055 */ 1056 sk = skw; 1057 kh = khw; 1058 idx = PF_SK_WIRE; 1059 1060 keyattach: 1061 LIST_FOREACH(cur, &kh->keys, entry) 1062 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1063 break; 1064 1065 if (cur != NULL) { 1066 /* Key exists. Check for same kif, if none, add to key. */ 1067 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1068 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1069 1070 PF_HASHROW_LOCK(ih); 1071 if (si->kif == s->kif && 1072 si->direction == s->direction) { 1073 if (sk->proto == IPPROTO_TCP && 1074 si->src.state >= TCPS_FIN_WAIT_2 && 1075 si->dst.state >= TCPS_FIN_WAIT_2) { 1076 /* 1077 * New state matches an old >FIN_WAIT_2 1078 * state. We can't drop key hash locks, 1079 * thus we can't unlink it properly. 1080 * 1081 * As a workaround we drop it into 1082 * TCPS_CLOSED state, schedule purge 1083 * ASAP and push it into the very end 1084 * of the slot TAILQ, so that it won't 1085 * conflict with our new state. 1086 */ 1087 si->src.state = si->dst.state = 1088 TCPS_CLOSED; 1089 si->timeout = PFTM_PURGE; 1090 olds = si; 1091 } else { 1092 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1093 printf("pf: %s key attach " 1094 "failed on %s: ", 1095 (idx == PF_SK_WIRE) ? 1096 "wire" : "stack", 1097 s->kif->pfik_name); 1098 pf_print_state_parts(s, 1099 (idx == PF_SK_WIRE) ? 1100 sk : NULL, 1101 (idx == PF_SK_STACK) ? 1102 sk : NULL); 1103 printf(", existing: "); 1104 pf_print_state_parts(si, 1105 (idx == PF_SK_WIRE) ? 1106 sk : NULL, 1107 (idx == PF_SK_STACK) ? 1108 sk : NULL); 1109 printf("\n"); 1110 } 1111 PF_HASHROW_UNLOCK(ih); 1112 KEYS_UNLOCK(); 1113 uma_zfree(V_pf_state_key_z, sk); 1114 if (idx == PF_SK_STACK) 1115 pf_detach_state(s); 1116 return (EEXIST); /* collision! */ 1117 } 1118 } 1119 PF_HASHROW_UNLOCK(ih); 1120 } 1121 uma_zfree(V_pf_state_key_z, sk); 1122 s->key[idx] = cur; 1123 } else { 1124 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1125 s->key[idx] = sk; 1126 } 1127 1128 stateattach: 1129 /* List is sorted, if-bound states before floating. */ 1130 if (s->kif == V_pfi_all) 1131 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1132 else 1133 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1134 1135 if (olds) { 1136 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1137 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1138 key_list[idx]); 1139 olds = NULL; 1140 } 1141 1142 /* 1143 * Attach done. See how should we (or should not?) 1144 * attach a second key. 1145 */ 1146 if (sks == skw) { 1147 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1148 idx = PF_SK_STACK; 1149 sks = NULL; 1150 goto stateattach; 1151 } else if (sks != NULL) { 1152 /* 1153 * Continue attaching with stack key. 1154 */ 1155 sk = sks; 1156 kh = khs; 1157 idx = PF_SK_STACK; 1158 sks = NULL; 1159 goto keyattach; 1160 } 1161 1162 PF_STATE_LOCK(s); 1163 KEYS_UNLOCK(); 1164 1165 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1166 ("%s failure", __func__)); 1167 1168 return (0); 1169 #undef KEYS_UNLOCK 1170 } 1171 1172 static void 1173 pf_detach_state(struct pf_state *s) 1174 { 1175 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1176 struct pf_keyhash *kh; 1177 1178 if (sks != NULL) { 1179 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1180 PF_HASHROW_LOCK(kh); 1181 if (s->key[PF_SK_STACK] != NULL) 1182 pf_state_key_detach(s, PF_SK_STACK); 1183 /* 1184 * If both point to same key, then we are done. 1185 */ 1186 if (sks == s->key[PF_SK_WIRE]) { 1187 pf_state_key_detach(s, PF_SK_WIRE); 1188 PF_HASHROW_UNLOCK(kh); 1189 return; 1190 } 1191 PF_HASHROW_UNLOCK(kh); 1192 } 1193 1194 if (s->key[PF_SK_WIRE] != NULL) { 1195 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1196 PF_HASHROW_LOCK(kh); 1197 if (s->key[PF_SK_WIRE] != NULL) 1198 pf_state_key_detach(s, PF_SK_WIRE); 1199 PF_HASHROW_UNLOCK(kh); 1200 } 1201 } 1202 1203 static void 1204 pf_state_key_detach(struct pf_state *s, int idx) 1205 { 1206 struct pf_state_key *sk = s->key[idx]; 1207 #ifdef INVARIANTS 1208 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1209 1210 PF_HASHROW_ASSERT(kh); 1211 #endif 1212 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1213 s->key[idx] = NULL; 1214 1215 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1216 LIST_REMOVE(sk, entry); 1217 uma_zfree(V_pf_state_key_z, sk); 1218 } 1219 } 1220 1221 static int 1222 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1223 { 1224 struct pf_state_key *sk = mem; 1225 1226 bzero(sk, sizeof(struct pf_state_key_cmp)); 1227 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1228 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1229 1230 return (0); 1231 } 1232 1233 struct pf_state_key * 1234 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1235 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1236 { 1237 struct pf_state_key *sk; 1238 1239 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1240 if (sk == NULL) 1241 return (NULL); 1242 1243 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1244 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1245 sk->port[pd->sidx] = sport; 1246 sk->port[pd->didx] = dport; 1247 sk->proto = pd->proto; 1248 sk->af = pd->af; 1249 1250 return (sk); 1251 } 1252 1253 struct pf_state_key * 1254 pf_state_key_clone(struct pf_state_key *orig) 1255 { 1256 struct pf_state_key *sk; 1257 1258 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1259 if (sk == NULL) 1260 return (NULL); 1261 1262 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1263 1264 return (sk); 1265 } 1266 1267 int 1268 pf_state_insert(struct pfi_kkif *kif, struct pf_state_key *skw, 1269 struct pf_state_key *sks, struct pf_state *s) 1270 { 1271 struct pf_idhash *ih; 1272 struct pf_state *cur; 1273 int error; 1274 1275 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1276 ("%s: sks not pristine", __func__)); 1277 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1278 ("%s: skw not pristine", __func__)); 1279 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1280 1281 s->kif = kif; 1282 1283 if (s->id == 0 && s->creatorid == 0) { 1284 /* XXX: should be atomic, but probability of collision low */ 1285 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1286 V_pf_stateid[curcpu] = 1; 1287 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1288 s->id = htobe64(s->id); 1289 s->creatorid = V_pf_status.hostid; 1290 } 1291 1292 /* Returns with ID locked on success. */ 1293 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1294 return (error); 1295 1296 ih = &V_pf_idhash[PF_IDHASH(s)]; 1297 PF_HASHROW_ASSERT(ih); 1298 LIST_FOREACH(cur, &ih->states, entry) 1299 if (cur->id == s->id && cur->creatorid == s->creatorid) 1300 break; 1301 1302 if (cur != NULL) { 1303 PF_HASHROW_UNLOCK(ih); 1304 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1305 printf("pf: state ID collision: " 1306 "id: %016llx creatorid: %08x\n", 1307 (unsigned long long)be64toh(s->id), 1308 ntohl(s->creatorid)); 1309 } 1310 pf_detach_state(s); 1311 return (EEXIST); 1312 } 1313 LIST_INSERT_HEAD(&ih->states, s, entry); 1314 /* One for keys, one for ID hash. */ 1315 refcount_init(&s->refs, 2); 1316 1317 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1318 if (V_pfsync_insert_state_ptr != NULL) 1319 V_pfsync_insert_state_ptr(s); 1320 1321 /* Returns locked. */ 1322 return (0); 1323 } 1324 1325 /* 1326 * Find state by ID: returns with locked row on success. 1327 */ 1328 struct pf_state * 1329 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1330 { 1331 struct pf_idhash *ih; 1332 struct pf_state *s; 1333 1334 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1335 1336 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1337 1338 PF_HASHROW_LOCK(ih); 1339 LIST_FOREACH(s, &ih->states, entry) 1340 if (s->id == id && s->creatorid == creatorid) 1341 break; 1342 1343 if (s == NULL) 1344 PF_HASHROW_UNLOCK(ih); 1345 1346 return (s); 1347 } 1348 1349 /* 1350 * Find state by key. 1351 * Returns with ID hash slot locked on success. 1352 */ 1353 static struct pf_state * 1354 pf_find_state(struct pfi_kkif *kif, struct pf_state_key_cmp *key, u_int dir) 1355 { 1356 struct pf_keyhash *kh; 1357 struct pf_state_key *sk; 1358 struct pf_state *s; 1359 int idx; 1360 1361 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1362 1363 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1364 1365 PF_HASHROW_LOCK(kh); 1366 LIST_FOREACH(sk, &kh->keys, entry) 1367 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1368 break; 1369 if (sk == NULL) { 1370 PF_HASHROW_UNLOCK(kh); 1371 return (NULL); 1372 } 1373 1374 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1375 1376 /* List is sorted, if-bound states before floating ones. */ 1377 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1378 if (s->kif == V_pfi_all || s->kif == kif) { 1379 PF_STATE_LOCK(s); 1380 PF_HASHROW_UNLOCK(kh); 1381 if (s->timeout >= PFTM_MAX) { 1382 /* 1383 * State is either being processed by 1384 * pf_unlink_state() in an other thread, or 1385 * is scheduled for immediate expiry. 1386 */ 1387 PF_STATE_UNLOCK(s); 1388 return (NULL); 1389 } 1390 return (s); 1391 } 1392 PF_HASHROW_UNLOCK(kh); 1393 1394 return (NULL); 1395 } 1396 1397 struct pf_state * 1398 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1399 { 1400 struct pf_keyhash *kh; 1401 struct pf_state_key *sk; 1402 struct pf_state *s, *ret = NULL; 1403 int idx, inout = 0; 1404 1405 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1406 1407 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1408 1409 PF_HASHROW_LOCK(kh); 1410 LIST_FOREACH(sk, &kh->keys, entry) 1411 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1412 break; 1413 if (sk == NULL) { 1414 PF_HASHROW_UNLOCK(kh); 1415 return (NULL); 1416 } 1417 switch (dir) { 1418 case PF_IN: 1419 idx = PF_SK_WIRE; 1420 break; 1421 case PF_OUT: 1422 idx = PF_SK_STACK; 1423 break; 1424 case PF_INOUT: 1425 idx = PF_SK_WIRE; 1426 inout = 1; 1427 break; 1428 default: 1429 panic("%s: dir %u", __func__, dir); 1430 } 1431 second_run: 1432 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1433 if (more == NULL) { 1434 PF_HASHROW_UNLOCK(kh); 1435 return (s); 1436 } 1437 1438 if (ret) 1439 (*more)++; 1440 else 1441 ret = s; 1442 } 1443 if (inout == 1) { 1444 inout = 0; 1445 idx = PF_SK_STACK; 1446 goto second_run; 1447 } 1448 PF_HASHROW_UNLOCK(kh); 1449 1450 return (ret); 1451 } 1452 1453 /* END state table stuff */ 1454 1455 static void 1456 pf_send(struct pf_send_entry *pfse) 1457 { 1458 1459 PF_SENDQ_LOCK(); 1460 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1461 PF_SENDQ_UNLOCK(); 1462 swi_sched(V_pf_swi_cookie, 0); 1463 } 1464 1465 void 1466 pf_intr(void *v) 1467 { 1468 struct epoch_tracker et; 1469 struct pf_send_head queue; 1470 struct pf_send_entry *pfse, *next; 1471 1472 CURVNET_SET((struct vnet *)v); 1473 1474 PF_SENDQ_LOCK(); 1475 queue = V_pf_sendqueue; 1476 STAILQ_INIT(&V_pf_sendqueue); 1477 PF_SENDQ_UNLOCK(); 1478 1479 NET_EPOCH_ENTER(et); 1480 1481 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1482 switch (pfse->pfse_type) { 1483 #ifdef INET 1484 case PFSE_IP: 1485 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1486 break; 1487 case PFSE_ICMP: 1488 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1489 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1490 break; 1491 #endif /* INET */ 1492 #ifdef INET6 1493 case PFSE_IP6: 1494 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1495 NULL); 1496 break; 1497 case PFSE_ICMP6: 1498 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1499 pfse->icmpopts.code, pfse->icmpopts.mtu); 1500 break; 1501 #endif /* INET6 */ 1502 default: 1503 panic("%s: unknown type", __func__); 1504 } 1505 free(pfse, M_PFTEMP); 1506 } 1507 NET_EPOCH_EXIT(et); 1508 CURVNET_RESTORE(); 1509 } 1510 1511 void 1512 pf_purge_thread(void *unused __unused) 1513 { 1514 VNET_ITERATOR_DECL(vnet_iter); 1515 1516 sx_xlock(&pf_end_lock); 1517 while (pf_end_threads == 0) { 1518 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", hz / 10); 1519 1520 VNET_LIST_RLOCK(); 1521 VNET_FOREACH(vnet_iter) { 1522 CURVNET_SET(vnet_iter); 1523 1524 /* Wait until V_pf_default_rule is initialized. */ 1525 if (V_pf_vnet_active == 0) { 1526 CURVNET_RESTORE(); 1527 continue; 1528 } 1529 1530 /* 1531 * Process 1/interval fraction of the state 1532 * table every run. 1533 */ 1534 V_pf_purge_idx = 1535 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1536 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1537 1538 /* 1539 * Purge other expired types every 1540 * PFTM_INTERVAL seconds. 1541 */ 1542 if (V_pf_purge_idx == 0) { 1543 /* 1544 * Order is important: 1545 * - states and src nodes reference rules 1546 * - states and rules reference kifs 1547 */ 1548 pf_purge_expired_fragments(); 1549 pf_purge_expired_src_nodes(); 1550 pf_purge_unlinked_rules(); 1551 pfi_kkif_purge(); 1552 } 1553 CURVNET_RESTORE(); 1554 } 1555 VNET_LIST_RUNLOCK(); 1556 } 1557 1558 pf_end_threads++; 1559 sx_xunlock(&pf_end_lock); 1560 kproc_exit(0); 1561 } 1562 1563 void 1564 pf_unload_vnet_purge(void) 1565 { 1566 1567 /* 1568 * To cleanse up all kifs and rules we need 1569 * two runs: first one clears reference flags, 1570 * then pf_purge_expired_states() doesn't 1571 * raise them, and then second run frees. 1572 */ 1573 pf_purge_unlinked_rules(); 1574 pfi_kkif_purge(); 1575 1576 /* 1577 * Now purge everything. 1578 */ 1579 pf_purge_expired_states(0, pf_hashmask); 1580 pf_purge_fragments(UINT_MAX); 1581 pf_purge_expired_src_nodes(); 1582 1583 /* 1584 * Now all kifs & rules should be unreferenced, 1585 * thus should be successfully freed. 1586 */ 1587 pf_purge_unlinked_rules(); 1588 pfi_kkif_purge(); 1589 } 1590 1591 u_int32_t 1592 pf_state_expires(const struct pf_state *state) 1593 { 1594 u_int32_t timeout; 1595 u_int32_t start; 1596 u_int32_t end; 1597 u_int32_t states; 1598 1599 /* handle all PFTM_* > PFTM_MAX here */ 1600 if (state->timeout == PFTM_PURGE) 1601 return (time_uptime); 1602 KASSERT(state->timeout != PFTM_UNLINKED, 1603 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1604 KASSERT((state->timeout < PFTM_MAX), 1605 ("pf_state_expires: timeout > PFTM_MAX")); 1606 timeout = state->rule.ptr->timeout[state->timeout]; 1607 if (!timeout) 1608 timeout = V_pf_default_rule.timeout[state->timeout]; 1609 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1610 if (start && state->rule.ptr != &V_pf_default_rule) { 1611 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1612 states = counter_u64_fetch(state->rule.ptr->states_cur); 1613 } else { 1614 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1615 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1616 states = V_pf_status.states; 1617 } 1618 if (end && states > start && start < end) { 1619 if (states < end) { 1620 timeout = (u_int64_t)timeout * (end - states) / 1621 (end - start); 1622 return (state->expire + timeout); 1623 } 1624 else 1625 return (time_uptime); 1626 } 1627 return (state->expire + timeout); 1628 } 1629 1630 void 1631 pf_purge_expired_src_nodes() 1632 { 1633 struct pf_ksrc_node_list freelist; 1634 struct pf_srchash *sh; 1635 struct pf_ksrc_node *cur, *next; 1636 int i; 1637 1638 LIST_INIT(&freelist); 1639 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1640 PF_HASHROW_LOCK(sh); 1641 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1642 if (cur->states == 0 && cur->expire <= time_uptime) { 1643 pf_unlink_src_node(cur); 1644 LIST_INSERT_HEAD(&freelist, cur, entry); 1645 } else if (cur->rule.ptr != NULL) 1646 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1647 PF_HASHROW_UNLOCK(sh); 1648 } 1649 1650 pf_free_src_nodes(&freelist); 1651 1652 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1653 } 1654 1655 static void 1656 pf_src_tree_remove_state(struct pf_state *s) 1657 { 1658 struct pf_ksrc_node *sn; 1659 struct pf_srchash *sh; 1660 uint32_t timeout; 1661 1662 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1663 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1664 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1665 1666 if (s->src_node != NULL) { 1667 sn = s->src_node; 1668 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1669 PF_HASHROW_LOCK(sh); 1670 if (s->src.tcp_est) 1671 --sn->conn; 1672 if (--sn->states == 0) 1673 sn->expire = time_uptime + timeout; 1674 PF_HASHROW_UNLOCK(sh); 1675 } 1676 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1677 sn = s->nat_src_node; 1678 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1679 PF_HASHROW_LOCK(sh); 1680 if (--sn->states == 0) 1681 sn->expire = time_uptime + timeout; 1682 PF_HASHROW_UNLOCK(sh); 1683 } 1684 s->src_node = s->nat_src_node = NULL; 1685 } 1686 1687 /* 1688 * Unlink and potentilly free a state. Function may be 1689 * called with ID hash row locked, but always returns 1690 * unlocked, since it needs to go through key hash locking. 1691 */ 1692 int 1693 pf_unlink_state(struct pf_state *s, u_int flags) 1694 { 1695 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1696 1697 if ((flags & PF_ENTER_LOCKED) == 0) 1698 PF_HASHROW_LOCK(ih); 1699 else 1700 PF_HASHROW_ASSERT(ih); 1701 1702 if (s->timeout == PFTM_UNLINKED) { 1703 /* 1704 * State is being processed 1705 * by pf_unlink_state() in 1706 * an other thread. 1707 */ 1708 PF_HASHROW_UNLOCK(ih); 1709 return (0); /* XXXGL: undefined actually */ 1710 } 1711 1712 if (s->src.state == PF_TCPS_PROXY_DST) { 1713 /* XXX wire key the right one? */ 1714 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1715 &s->key[PF_SK_WIRE]->addr[1], 1716 &s->key[PF_SK_WIRE]->addr[0], 1717 s->key[PF_SK_WIRE]->port[1], 1718 s->key[PF_SK_WIRE]->port[0], 1719 s->src.seqhi, s->src.seqlo + 1, 1720 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1721 } 1722 1723 LIST_REMOVE(s, entry); 1724 pf_src_tree_remove_state(s); 1725 1726 if (V_pfsync_delete_state_ptr != NULL) 1727 V_pfsync_delete_state_ptr(s); 1728 1729 STATE_DEC_COUNTERS(s); 1730 1731 s->timeout = PFTM_UNLINKED; 1732 1733 PF_HASHROW_UNLOCK(ih); 1734 1735 pf_detach_state(s); 1736 /* pf_state_insert() initialises refs to 2, so we can never release the 1737 * last reference here, only in pf_release_state(). */ 1738 (void)refcount_release(&s->refs); 1739 1740 return (pf_release_state(s)); 1741 } 1742 1743 void 1744 pf_free_state(struct pf_state *cur) 1745 { 1746 1747 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1748 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1749 cur->timeout)); 1750 1751 for (int i = 0; i < 2; i++) { 1752 counter_u64_free(cur->bytes[i]); 1753 counter_u64_free(cur->packets[i]); 1754 } 1755 1756 pf_normalize_tcp_cleanup(cur); 1757 uma_zfree(V_pf_state_z, cur); 1758 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1759 } 1760 1761 /* 1762 * Called only from pf_purge_thread(), thus serialized. 1763 */ 1764 static u_int 1765 pf_purge_expired_states(u_int i, int maxcheck) 1766 { 1767 struct pf_idhash *ih; 1768 struct pf_state *s; 1769 1770 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1771 1772 /* 1773 * Go through hash and unlink states that expire now. 1774 */ 1775 while (maxcheck > 0) { 1776 ih = &V_pf_idhash[i]; 1777 1778 /* only take the lock if we expect to do work */ 1779 if (!LIST_EMPTY(&ih->states)) { 1780 relock: 1781 PF_HASHROW_LOCK(ih); 1782 LIST_FOREACH(s, &ih->states, entry) { 1783 if (pf_state_expires(s) <= time_uptime) { 1784 V_pf_status.states -= 1785 pf_unlink_state(s, PF_ENTER_LOCKED); 1786 goto relock; 1787 } 1788 s->rule.ptr->rule_flag |= PFRULE_REFS; 1789 if (s->nat_rule.ptr != NULL) 1790 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1791 if (s->anchor.ptr != NULL) 1792 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1793 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1794 if (s->rt_kif) 1795 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1796 } 1797 PF_HASHROW_UNLOCK(ih); 1798 } 1799 1800 /* Return when we hit end of hash. */ 1801 if (++i > pf_hashmask) { 1802 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1803 return (0); 1804 } 1805 1806 maxcheck--; 1807 } 1808 1809 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1810 1811 return (i); 1812 } 1813 1814 static void 1815 pf_purge_unlinked_rules() 1816 { 1817 struct pf_krulequeue tmpq; 1818 struct pf_krule *r, *r1; 1819 1820 /* 1821 * If we have overloading task pending, then we'd 1822 * better skip purging this time. There is a tiny 1823 * probability that overloading task references 1824 * an already unlinked rule. 1825 */ 1826 PF_OVERLOADQ_LOCK(); 1827 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1828 PF_OVERLOADQ_UNLOCK(); 1829 return; 1830 } 1831 PF_OVERLOADQ_UNLOCK(); 1832 1833 /* 1834 * Do naive mark-and-sweep garbage collecting of old rules. 1835 * Reference flag is raised by pf_purge_expired_states() 1836 * and pf_purge_expired_src_nodes(). 1837 * 1838 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1839 * use a temporary queue. 1840 */ 1841 TAILQ_INIT(&tmpq); 1842 PF_UNLNKDRULES_LOCK(); 1843 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1844 if (!(r->rule_flag & PFRULE_REFS)) { 1845 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1846 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1847 } else 1848 r->rule_flag &= ~PFRULE_REFS; 1849 } 1850 PF_UNLNKDRULES_UNLOCK(); 1851 1852 if (!TAILQ_EMPTY(&tmpq)) { 1853 PF_RULES_WLOCK(); 1854 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1855 TAILQ_REMOVE(&tmpq, r, entries); 1856 pf_free_rule(r); 1857 } 1858 PF_RULES_WUNLOCK(); 1859 } 1860 } 1861 1862 void 1863 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1864 { 1865 switch (af) { 1866 #ifdef INET 1867 case AF_INET: { 1868 u_int32_t a = ntohl(addr->addr32[0]); 1869 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1870 (a>>8)&255, a&255); 1871 if (p) { 1872 p = ntohs(p); 1873 printf(":%u", p); 1874 } 1875 break; 1876 } 1877 #endif /* INET */ 1878 #ifdef INET6 1879 case AF_INET6: { 1880 u_int16_t b; 1881 u_int8_t i, curstart, curend, maxstart, maxend; 1882 curstart = curend = maxstart = maxend = 255; 1883 for (i = 0; i < 8; i++) { 1884 if (!addr->addr16[i]) { 1885 if (curstart == 255) 1886 curstart = i; 1887 curend = i; 1888 } else { 1889 if ((curend - curstart) > 1890 (maxend - maxstart)) { 1891 maxstart = curstart; 1892 maxend = curend; 1893 } 1894 curstart = curend = 255; 1895 } 1896 } 1897 if ((curend - curstart) > 1898 (maxend - maxstart)) { 1899 maxstart = curstart; 1900 maxend = curend; 1901 } 1902 for (i = 0; i < 8; i++) { 1903 if (i >= maxstart && i <= maxend) { 1904 if (i == 0) 1905 printf(":"); 1906 if (i == maxend) 1907 printf(":"); 1908 } else { 1909 b = ntohs(addr->addr16[i]); 1910 printf("%x", b); 1911 if (i < 7) 1912 printf(":"); 1913 } 1914 } 1915 if (p) { 1916 p = ntohs(p); 1917 printf("[%u]", p); 1918 } 1919 break; 1920 } 1921 #endif /* INET6 */ 1922 } 1923 } 1924 1925 void 1926 pf_print_state(struct pf_state *s) 1927 { 1928 pf_print_state_parts(s, NULL, NULL); 1929 } 1930 1931 static void 1932 pf_print_state_parts(struct pf_state *s, 1933 struct pf_state_key *skwp, struct pf_state_key *sksp) 1934 { 1935 struct pf_state_key *skw, *sks; 1936 u_int8_t proto, dir; 1937 1938 /* Do our best to fill these, but they're skipped if NULL */ 1939 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1940 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1941 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1942 dir = s ? s->direction : 0; 1943 1944 switch (proto) { 1945 case IPPROTO_IPV4: 1946 printf("IPv4"); 1947 break; 1948 case IPPROTO_IPV6: 1949 printf("IPv6"); 1950 break; 1951 case IPPROTO_TCP: 1952 printf("TCP"); 1953 break; 1954 case IPPROTO_UDP: 1955 printf("UDP"); 1956 break; 1957 case IPPROTO_ICMP: 1958 printf("ICMP"); 1959 break; 1960 case IPPROTO_ICMPV6: 1961 printf("ICMPv6"); 1962 break; 1963 default: 1964 printf("%u", proto); 1965 break; 1966 } 1967 switch (dir) { 1968 case PF_IN: 1969 printf(" in"); 1970 break; 1971 case PF_OUT: 1972 printf(" out"); 1973 break; 1974 } 1975 if (skw) { 1976 printf(" wire: "); 1977 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1978 printf(" "); 1979 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1980 } 1981 if (sks) { 1982 printf(" stack: "); 1983 if (sks != skw) { 1984 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1985 printf(" "); 1986 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1987 } else 1988 printf("-"); 1989 } 1990 if (s) { 1991 if (proto == IPPROTO_TCP) { 1992 printf(" [lo=%u high=%u win=%u modulator=%u", 1993 s->src.seqlo, s->src.seqhi, 1994 s->src.max_win, s->src.seqdiff); 1995 if (s->src.wscale && s->dst.wscale) 1996 printf(" wscale=%u", 1997 s->src.wscale & PF_WSCALE_MASK); 1998 printf("]"); 1999 printf(" [lo=%u high=%u win=%u modulator=%u", 2000 s->dst.seqlo, s->dst.seqhi, 2001 s->dst.max_win, s->dst.seqdiff); 2002 if (s->src.wscale && s->dst.wscale) 2003 printf(" wscale=%u", 2004 s->dst.wscale & PF_WSCALE_MASK); 2005 printf("]"); 2006 } 2007 printf(" %u:%u", s->src.state, s->dst.state); 2008 } 2009 } 2010 2011 void 2012 pf_print_flags(u_int8_t f) 2013 { 2014 if (f) 2015 printf(" "); 2016 if (f & TH_FIN) 2017 printf("F"); 2018 if (f & TH_SYN) 2019 printf("S"); 2020 if (f & TH_RST) 2021 printf("R"); 2022 if (f & TH_PUSH) 2023 printf("P"); 2024 if (f & TH_ACK) 2025 printf("A"); 2026 if (f & TH_URG) 2027 printf("U"); 2028 if (f & TH_ECE) 2029 printf("E"); 2030 if (f & TH_CWR) 2031 printf("W"); 2032 } 2033 2034 #define PF_SET_SKIP_STEPS(i) \ 2035 do { \ 2036 while (head[i] != cur) { \ 2037 head[i]->skip[i].ptr = cur; \ 2038 head[i] = TAILQ_NEXT(head[i], entries); \ 2039 } \ 2040 } while (0) 2041 2042 void 2043 pf_calc_skip_steps(struct pf_krulequeue *rules) 2044 { 2045 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2046 int i; 2047 2048 cur = TAILQ_FIRST(rules); 2049 prev = cur; 2050 for (i = 0; i < PF_SKIP_COUNT; ++i) 2051 head[i] = cur; 2052 while (cur != NULL) { 2053 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2054 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2055 if (cur->direction != prev->direction) 2056 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2057 if (cur->af != prev->af) 2058 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2059 if (cur->proto != prev->proto) 2060 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2061 if (cur->src.neg != prev->src.neg || 2062 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2063 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2064 if (cur->src.port[0] != prev->src.port[0] || 2065 cur->src.port[1] != prev->src.port[1] || 2066 cur->src.port_op != prev->src.port_op) 2067 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2068 if (cur->dst.neg != prev->dst.neg || 2069 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2070 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2071 if (cur->dst.port[0] != prev->dst.port[0] || 2072 cur->dst.port[1] != prev->dst.port[1] || 2073 cur->dst.port_op != prev->dst.port_op) 2074 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2075 2076 prev = cur; 2077 cur = TAILQ_NEXT(cur, entries); 2078 } 2079 for (i = 0; i < PF_SKIP_COUNT; ++i) 2080 PF_SET_SKIP_STEPS(i); 2081 } 2082 2083 static int 2084 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2085 { 2086 if (aw1->type != aw2->type) 2087 return (1); 2088 switch (aw1->type) { 2089 case PF_ADDR_ADDRMASK: 2090 case PF_ADDR_RANGE: 2091 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2092 return (1); 2093 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2094 return (1); 2095 return (0); 2096 case PF_ADDR_DYNIFTL: 2097 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2098 case PF_ADDR_NOROUTE: 2099 case PF_ADDR_URPFFAILED: 2100 return (0); 2101 case PF_ADDR_TABLE: 2102 return (aw1->p.tbl != aw2->p.tbl); 2103 default: 2104 printf("invalid address type: %d\n", aw1->type); 2105 return (1); 2106 } 2107 } 2108 2109 /** 2110 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2111 * header isn't always a full checksum. In some cases (i.e. output) it's a 2112 * pseudo-header checksum, which is a partial checksum over src/dst IP 2113 * addresses, protocol number and length. 2114 * 2115 * That means we have the following cases: 2116 * * Input or forwarding: we don't have TSO, the checksum fields are full 2117 * checksums, we need to update the checksum whenever we change anything. 2118 * * Output (i.e. the checksum is a pseudo-header checksum): 2119 * x The field being updated is src/dst address or affects the length of 2120 * the packet. We need to update the pseudo-header checksum (note that this 2121 * checksum is not ones' complement). 2122 * x Some other field is being modified (e.g. src/dst port numbers): We 2123 * don't have to update anything. 2124 **/ 2125 u_int16_t 2126 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2127 { 2128 u_int32_t x; 2129 2130 x = cksum + old - new; 2131 x = (x + (x >> 16)) & 0xffff; 2132 2133 /* optimise: eliminate a branch when not udp */ 2134 if (udp && cksum == 0x0000) 2135 return cksum; 2136 if (udp && x == 0x0000) 2137 x = 0xffff; 2138 2139 return (u_int16_t)(x); 2140 } 2141 2142 static void 2143 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 2144 u_int8_t udp) 2145 { 2146 u_int16_t old = htons(hi ? (*f << 8) : *f); 2147 u_int16_t new = htons(hi ? ( v << 8) : v); 2148 2149 if (*f == v) 2150 return; 2151 2152 *f = v; 2153 2154 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2155 return; 2156 2157 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 2158 } 2159 2160 void 2161 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 2162 bool hi, u_int8_t udp) 2163 { 2164 u_int8_t *fb = (u_int8_t *)f; 2165 u_int8_t *vb = (u_int8_t *)&v; 2166 2167 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2168 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2169 } 2170 2171 void 2172 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 2173 bool hi, u_int8_t udp) 2174 { 2175 u_int8_t *fb = (u_int8_t *)f; 2176 u_int8_t *vb = (u_int8_t *)&v; 2177 2178 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2179 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2180 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2181 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2182 } 2183 2184 u_int16_t 2185 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2186 u_int16_t new, u_int8_t udp) 2187 { 2188 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2189 return (cksum); 2190 2191 return (pf_cksum_fixup(cksum, old, new, udp)); 2192 } 2193 2194 static void 2195 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2196 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2197 sa_family_t af) 2198 { 2199 struct pf_addr ao; 2200 u_int16_t po = *p; 2201 2202 PF_ACPY(&ao, a, af); 2203 PF_ACPY(a, an, af); 2204 2205 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2206 *pc = ~*pc; 2207 2208 *p = pn; 2209 2210 switch (af) { 2211 #ifdef INET 2212 case AF_INET: 2213 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2214 ao.addr16[0], an->addr16[0], 0), 2215 ao.addr16[1], an->addr16[1], 0); 2216 *p = pn; 2217 2218 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2219 ao.addr16[0], an->addr16[0], u), 2220 ao.addr16[1], an->addr16[1], u); 2221 2222 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2223 break; 2224 #endif /* INET */ 2225 #ifdef INET6 2226 case AF_INET6: 2227 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2228 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2229 pf_cksum_fixup(pf_cksum_fixup(*pc, 2230 ao.addr16[0], an->addr16[0], u), 2231 ao.addr16[1], an->addr16[1], u), 2232 ao.addr16[2], an->addr16[2], u), 2233 ao.addr16[3], an->addr16[3], u), 2234 ao.addr16[4], an->addr16[4], u), 2235 ao.addr16[5], an->addr16[5], u), 2236 ao.addr16[6], an->addr16[6], u), 2237 ao.addr16[7], an->addr16[7], u); 2238 2239 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2240 break; 2241 #endif /* INET6 */ 2242 } 2243 2244 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2245 CSUM_DELAY_DATA_IPV6)) { 2246 *pc = ~*pc; 2247 if (! *pc) 2248 *pc = 0xffff; 2249 } 2250 } 2251 2252 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2253 void 2254 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2255 { 2256 u_int32_t ao; 2257 2258 memcpy(&ao, a, sizeof(ao)); 2259 memcpy(a, &an, sizeof(u_int32_t)); 2260 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2261 ao % 65536, an % 65536, u); 2262 } 2263 2264 void 2265 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2266 { 2267 u_int32_t ao; 2268 2269 memcpy(&ao, a, sizeof(ao)); 2270 memcpy(a, &an, sizeof(u_int32_t)); 2271 2272 *c = pf_proto_cksum_fixup(m, 2273 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2274 ao % 65536, an % 65536, udp); 2275 } 2276 2277 #ifdef INET6 2278 static void 2279 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2280 { 2281 struct pf_addr ao; 2282 2283 PF_ACPY(&ao, a, AF_INET6); 2284 PF_ACPY(a, an, AF_INET6); 2285 2286 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2287 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2288 pf_cksum_fixup(pf_cksum_fixup(*c, 2289 ao.addr16[0], an->addr16[0], u), 2290 ao.addr16[1], an->addr16[1], u), 2291 ao.addr16[2], an->addr16[2], u), 2292 ao.addr16[3], an->addr16[3], u), 2293 ao.addr16[4], an->addr16[4], u), 2294 ao.addr16[5], an->addr16[5], u), 2295 ao.addr16[6], an->addr16[6], u), 2296 ao.addr16[7], an->addr16[7], u); 2297 } 2298 #endif /* INET6 */ 2299 2300 static void 2301 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2302 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2303 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2304 { 2305 struct pf_addr oia, ooa; 2306 2307 PF_ACPY(&oia, ia, af); 2308 if (oa) 2309 PF_ACPY(&ooa, oa, af); 2310 2311 /* Change inner protocol port, fix inner protocol checksum. */ 2312 if (ip != NULL) { 2313 u_int16_t oip = *ip; 2314 u_int32_t opc; 2315 2316 if (pc != NULL) 2317 opc = *pc; 2318 *ip = np; 2319 if (pc != NULL) 2320 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2321 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2322 if (pc != NULL) 2323 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2324 } 2325 /* Change inner ip address, fix inner ip and icmp checksums. */ 2326 PF_ACPY(ia, na, af); 2327 switch (af) { 2328 #ifdef INET 2329 case AF_INET: { 2330 u_int32_t oh2c = *h2c; 2331 2332 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2333 oia.addr16[0], ia->addr16[0], 0), 2334 oia.addr16[1], ia->addr16[1], 0); 2335 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2336 oia.addr16[0], ia->addr16[0], 0), 2337 oia.addr16[1], ia->addr16[1], 0); 2338 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2339 break; 2340 } 2341 #endif /* INET */ 2342 #ifdef INET6 2343 case AF_INET6: 2344 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2345 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2346 pf_cksum_fixup(pf_cksum_fixup(*ic, 2347 oia.addr16[0], ia->addr16[0], u), 2348 oia.addr16[1], ia->addr16[1], u), 2349 oia.addr16[2], ia->addr16[2], u), 2350 oia.addr16[3], ia->addr16[3], u), 2351 oia.addr16[4], ia->addr16[4], u), 2352 oia.addr16[5], ia->addr16[5], u), 2353 oia.addr16[6], ia->addr16[6], u), 2354 oia.addr16[7], ia->addr16[7], u); 2355 break; 2356 #endif /* INET6 */ 2357 } 2358 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2359 if (oa) { 2360 PF_ACPY(oa, na, af); 2361 switch (af) { 2362 #ifdef INET 2363 case AF_INET: 2364 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2365 ooa.addr16[0], oa->addr16[0], 0), 2366 ooa.addr16[1], oa->addr16[1], 0); 2367 break; 2368 #endif /* INET */ 2369 #ifdef INET6 2370 case AF_INET6: 2371 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2372 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2373 pf_cksum_fixup(pf_cksum_fixup(*ic, 2374 ooa.addr16[0], oa->addr16[0], u), 2375 ooa.addr16[1], oa->addr16[1], u), 2376 ooa.addr16[2], oa->addr16[2], u), 2377 ooa.addr16[3], oa->addr16[3], u), 2378 ooa.addr16[4], oa->addr16[4], u), 2379 ooa.addr16[5], oa->addr16[5], u), 2380 ooa.addr16[6], oa->addr16[6], u), 2381 ooa.addr16[7], oa->addr16[7], u); 2382 break; 2383 #endif /* INET6 */ 2384 } 2385 } 2386 } 2387 2388 /* 2389 * Need to modulate the sequence numbers in the TCP SACK option 2390 * (credits to Krzysztof Pfaff for report and patch) 2391 */ 2392 static int 2393 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2394 struct tcphdr *th, struct pf_state_peer *dst) 2395 { 2396 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2397 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2398 int copyback = 0, i, olen; 2399 struct sackblk sack; 2400 2401 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2402 if (hlen < TCPOLEN_SACKLEN || 2403 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2404 return 0; 2405 2406 while (hlen >= TCPOLEN_SACKLEN) { 2407 size_t startoff = opt - opts; 2408 olen = opt[1]; 2409 switch (*opt) { 2410 case TCPOPT_EOL: /* FALLTHROUGH */ 2411 case TCPOPT_NOP: 2412 opt++; 2413 hlen--; 2414 break; 2415 case TCPOPT_SACK: 2416 if (olen > hlen) 2417 olen = hlen; 2418 if (olen >= TCPOLEN_SACKLEN) { 2419 for (i = 2; i + TCPOLEN_SACK <= olen; 2420 i += TCPOLEN_SACK) { 2421 memcpy(&sack, &opt[i], sizeof(sack)); 2422 pf_patch_32_unaligned(m, 2423 &th->th_sum, &sack.start, 2424 htonl(ntohl(sack.start) - dst->seqdiff), 2425 PF_ALGNMNT(startoff), 2426 0); 2427 pf_patch_32_unaligned(m, &th->th_sum, 2428 &sack.end, 2429 htonl(ntohl(sack.end) - dst->seqdiff), 2430 PF_ALGNMNT(startoff), 2431 0); 2432 memcpy(&opt[i], &sack, sizeof(sack)); 2433 } 2434 copyback = 1; 2435 } 2436 /* FALLTHROUGH */ 2437 default: 2438 if (olen < 2) 2439 olen = 2; 2440 hlen -= olen; 2441 opt += olen; 2442 } 2443 } 2444 2445 if (copyback) 2446 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2447 return (copyback); 2448 } 2449 2450 static void 2451 pf_send_tcp(struct mbuf *replyto, const struct pf_krule *r, sa_family_t af, 2452 const struct pf_addr *saddr, const struct pf_addr *daddr, 2453 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2454 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2455 u_int16_t rtag, struct ifnet *ifp) 2456 { 2457 struct pf_send_entry *pfse; 2458 struct mbuf *m; 2459 int len, tlen; 2460 #ifdef INET 2461 struct ip *h = NULL; 2462 #endif /* INET */ 2463 #ifdef INET6 2464 struct ip6_hdr *h6 = NULL; 2465 #endif /* INET6 */ 2466 struct tcphdr *th; 2467 char *opt; 2468 struct pf_mtag *pf_mtag; 2469 2470 len = 0; 2471 th = NULL; 2472 2473 /* maximum segment size tcp option */ 2474 tlen = sizeof(struct tcphdr); 2475 if (mss) 2476 tlen += 4; 2477 2478 switch (af) { 2479 #ifdef INET 2480 case AF_INET: 2481 len = sizeof(struct ip) + tlen; 2482 break; 2483 #endif /* INET */ 2484 #ifdef INET6 2485 case AF_INET6: 2486 len = sizeof(struct ip6_hdr) + tlen; 2487 break; 2488 #endif /* INET6 */ 2489 default: 2490 panic("%s: unsupported af %d", __func__, af); 2491 } 2492 2493 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2494 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2495 if (pfse == NULL) 2496 return; 2497 m = m_gethdr(M_NOWAIT, MT_DATA); 2498 if (m == NULL) { 2499 free(pfse, M_PFTEMP); 2500 return; 2501 } 2502 #ifdef MAC 2503 mac_netinet_firewall_send(m); 2504 #endif 2505 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2506 free(pfse, M_PFTEMP); 2507 m_freem(m); 2508 return; 2509 } 2510 if (tag) 2511 m->m_flags |= M_SKIP_FIREWALL; 2512 pf_mtag->tag = rtag; 2513 2514 if (r != NULL && r->rtableid >= 0) 2515 M_SETFIB(m, r->rtableid); 2516 2517 #ifdef ALTQ 2518 if (r != NULL && r->qid) { 2519 pf_mtag->qid = r->qid; 2520 2521 /* add hints for ecn */ 2522 pf_mtag->hdr = mtod(m, struct ip *); 2523 } 2524 #endif /* ALTQ */ 2525 m->m_data += max_linkhdr; 2526 m->m_pkthdr.len = m->m_len = len; 2527 m->m_pkthdr.rcvif = NULL; 2528 bzero(m->m_data, len); 2529 switch (af) { 2530 #ifdef INET 2531 case AF_INET: 2532 h = mtod(m, struct ip *); 2533 2534 /* IP header fields included in the TCP checksum */ 2535 h->ip_p = IPPROTO_TCP; 2536 h->ip_len = htons(tlen); 2537 h->ip_src.s_addr = saddr->v4.s_addr; 2538 h->ip_dst.s_addr = daddr->v4.s_addr; 2539 2540 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2541 break; 2542 #endif /* INET */ 2543 #ifdef INET6 2544 case AF_INET6: 2545 h6 = mtod(m, struct ip6_hdr *); 2546 2547 /* IP header fields included in the TCP checksum */ 2548 h6->ip6_nxt = IPPROTO_TCP; 2549 h6->ip6_plen = htons(tlen); 2550 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2551 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2552 2553 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2554 break; 2555 #endif /* INET6 */ 2556 } 2557 2558 /* TCP header */ 2559 th->th_sport = sport; 2560 th->th_dport = dport; 2561 th->th_seq = htonl(seq); 2562 th->th_ack = htonl(ack); 2563 th->th_off = tlen >> 2; 2564 th->th_flags = flags; 2565 th->th_win = htons(win); 2566 2567 if (mss) { 2568 opt = (char *)(th + 1); 2569 opt[0] = TCPOPT_MAXSEG; 2570 opt[1] = 4; 2571 HTONS(mss); 2572 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2573 } 2574 2575 switch (af) { 2576 #ifdef INET 2577 case AF_INET: 2578 /* TCP checksum */ 2579 th->th_sum = in_cksum(m, len); 2580 2581 /* Finish the IP header */ 2582 h->ip_v = 4; 2583 h->ip_hl = sizeof(*h) >> 2; 2584 h->ip_tos = IPTOS_LOWDELAY; 2585 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2586 h->ip_len = htons(len); 2587 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2588 h->ip_sum = 0; 2589 2590 pfse->pfse_type = PFSE_IP; 2591 break; 2592 #endif /* INET */ 2593 #ifdef INET6 2594 case AF_INET6: 2595 /* TCP checksum */ 2596 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2597 sizeof(struct ip6_hdr), tlen); 2598 2599 h6->ip6_vfc |= IPV6_VERSION; 2600 h6->ip6_hlim = IPV6_DEFHLIM; 2601 2602 pfse->pfse_type = PFSE_IP6; 2603 break; 2604 #endif /* INET6 */ 2605 } 2606 pfse->pfse_m = m; 2607 pf_send(pfse); 2608 } 2609 2610 static void 2611 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 2612 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 2613 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 2614 u_short *reason) 2615 { 2616 struct pf_addr * const saddr = pd->src; 2617 struct pf_addr * const daddr = pd->dst; 2618 sa_family_t af = pd->af; 2619 2620 /* undo NAT changes, if they have taken place */ 2621 if (nr != NULL) { 2622 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 2623 PF_ACPY(daddr, &sk->addr[pd->didx], af); 2624 if (pd->sport) 2625 *pd->sport = sk->port[pd->sidx]; 2626 if (pd->dport) 2627 *pd->dport = sk->port[pd->didx]; 2628 if (pd->proto_sum) 2629 *pd->proto_sum = bproto_sum; 2630 if (pd->ip_sum) 2631 *pd->ip_sum = bip_sum; 2632 m_copyback(m, off, hdrlen, pd->hdr.any); 2633 } 2634 if (pd->proto == IPPROTO_TCP && 2635 ((r->rule_flag & PFRULE_RETURNRST) || 2636 (r->rule_flag & PFRULE_RETURN)) && 2637 !(th->th_flags & TH_RST)) { 2638 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 2639 int len = 0; 2640 #ifdef INET 2641 struct ip *h4; 2642 #endif 2643 #ifdef INET6 2644 struct ip6_hdr *h6; 2645 #endif 2646 2647 switch (af) { 2648 #ifdef INET 2649 case AF_INET: 2650 h4 = mtod(m, struct ip *); 2651 len = ntohs(h4->ip_len) - off; 2652 break; 2653 #endif 2654 #ifdef INET6 2655 case AF_INET6: 2656 h6 = mtod(m, struct ip6_hdr *); 2657 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 2658 break; 2659 #endif 2660 } 2661 2662 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 2663 REASON_SET(reason, PFRES_PROTCKSUM); 2664 else { 2665 if (th->th_flags & TH_SYN) 2666 ack++; 2667 if (th->th_flags & TH_FIN) 2668 ack++; 2669 pf_send_tcp(m, r, af, pd->dst, 2670 pd->src, th->th_dport, th->th_sport, 2671 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 2672 r->return_ttl, 1, 0, kif->pfik_ifp); 2673 } 2674 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 2675 r->return_icmp) 2676 pf_send_icmp(m, r->return_icmp >> 8, 2677 r->return_icmp & 255, af, r); 2678 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 2679 r->return_icmp6) 2680 pf_send_icmp(m, r->return_icmp6 >> 8, 2681 r->return_icmp6 & 255, af, r); 2682 } 2683 2684 static int 2685 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2686 { 2687 struct m_tag *mtag; 2688 2689 KASSERT(prio <= PF_PRIO_MAX, 2690 ("%s with invalid pcp", __func__)); 2691 2692 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2693 if (mtag == NULL) { 2694 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2695 sizeof(uint8_t), M_NOWAIT); 2696 if (mtag == NULL) 2697 return (ENOMEM); 2698 m_tag_prepend(m, mtag); 2699 } 2700 2701 *(uint8_t *)(mtag + 1) = prio; 2702 return (0); 2703 } 2704 2705 static int 2706 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2707 { 2708 struct m_tag *mtag; 2709 u_int8_t mpcp; 2710 2711 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2712 if (mtag == NULL) 2713 return (0); 2714 2715 if (prio == PF_PRIO_ZERO) 2716 prio = 0; 2717 2718 mpcp = *(uint8_t *)(mtag + 1); 2719 2720 return (mpcp == prio); 2721 } 2722 2723 static void 2724 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2725 struct pf_krule *r) 2726 { 2727 struct pf_send_entry *pfse; 2728 struct mbuf *m0; 2729 struct pf_mtag *pf_mtag; 2730 2731 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2732 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2733 if (pfse == NULL) 2734 return; 2735 2736 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2737 free(pfse, M_PFTEMP); 2738 return; 2739 } 2740 2741 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2742 free(pfse, M_PFTEMP); 2743 return; 2744 } 2745 /* XXX: revisit */ 2746 m0->m_flags |= M_SKIP_FIREWALL; 2747 2748 if (r->rtableid >= 0) 2749 M_SETFIB(m0, r->rtableid); 2750 2751 #ifdef ALTQ 2752 if (r->qid) { 2753 pf_mtag->qid = r->qid; 2754 /* add hints for ecn */ 2755 pf_mtag->hdr = mtod(m0, struct ip *); 2756 } 2757 #endif /* ALTQ */ 2758 2759 switch (af) { 2760 #ifdef INET 2761 case AF_INET: 2762 pfse->pfse_type = PFSE_ICMP; 2763 break; 2764 #endif /* INET */ 2765 #ifdef INET6 2766 case AF_INET6: 2767 pfse->pfse_type = PFSE_ICMP6; 2768 break; 2769 #endif /* INET6 */ 2770 } 2771 pfse->pfse_m = m0; 2772 pfse->icmpopts.type = type; 2773 pfse->icmpopts.code = code; 2774 pf_send(pfse); 2775 } 2776 2777 /* 2778 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2779 * If n is 0, they match if they are equal. If n is != 0, they match if they 2780 * are different. 2781 */ 2782 int 2783 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2784 struct pf_addr *b, sa_family_t af) 2785 { 2786 int match = 0; 2787 2788 switch (af) { 2789 #ifdef INET 2790 case AF_INET: 2791 if ((a->addr32[0] & m->addr32[0]) == 2792 (b->addr32[0] & m->addr32[0])) 2793 match++; 2794 break; 2795 #endif /* INET */ 2796 #ifdef INET6 2797 case AF_INET6: 2798 if (((a->addr32[0] & m->addr32[0]) == 2799 (b->addr32[0] & m->addr32[0])) && 2800 ((a->addr32[1] & m->addr32[1]) == 2801 (b->addr32[1] & m->addr32[1])) && 2802 ((a->addr32[2] & m->addr32[2]) == 2803 (b->addr32[2] & m->addr32[2])) && 2804 ((a->addr32[3] & m->addr32[3]) == 2805 (b->addr32[3] & m->addr32[3]))) 2806 match++; 2807 break; 2808 #endif /* INET6 */ 2809 } 2810 if (match) { 2811 if (n) 2812 return (0); 2813 else 2814 return (1); 2815 } else { 2816 if (n) 2817 return (1); 2818 else 2819 return (0); 2820 } 2821 } 2822 2823 /* 2824 * Return 1 if b <= a <= e, otherwise return 0. 2825 */ 2826 int 2827 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2828 struct pf_addr *a, sa_family_t af) 2829 { 2830 switch (af) { 2831 #ifdef INET 2832 case AF_INET: 2833 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2834 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2835 return (0); 2836 break; 2837 #endif /* INET */ 2838 #ifdef INET6 2839 case AF_INET6: { 2840 int i; 2841 2842 /* check a >= b */ 2843 for (i = 0; i < 4; ++i) 2844 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2845 break; 2846 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2847 return (0); 2848 /* check a <= e */ 2849 for (i = 0; i < 4; ++i) 2850 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2851 break; 2852 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2853 return (0); 2854 break; 2855 } 2856 #endif /* INET6 */ 2857 } 2858 return (1); 2859 } 2860 2861 static int 2862 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2863 { 2864 switch (op) { 2865 case PF_OP_IRG: 2866 return ((p > a1) && (p < a2)); 2867 case PF_OP_XRG: 2868 return ((p < a1) || (p > a2)); 2869 case PF_OP_RRG: 2870 return ((p >= a1) && (p <= a2)); 2871 case PF_OP_EQ: 2872 return (p == a1); 2873 case PF_OP_NE: 2874 return (p != a1); 2875 case PF_OP_LT: 2876 return (p < a1); 2877 case PF_OP_LE: 2878 return (p <= a1); 2879 case PF_OP_GT: 2880 return (p > a1); 2881 case PF_OP_GE: 2882 return (p >= a1); 2883 } 2884 return (0); /* never reached */ 2885 } 2886 2887 int 2888 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2889 { 2890 NTOHS(a1); 2891 NTOHS(a2); 2892 NTOHS(p); 2893 return (pf_match(op, a1, a2, p)); 2894 } 2895 2896 static int 2897 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2898 { 2899 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2900 return (0); 2901 return (pf_match(op, a1, a2, u)); 2902 } 2903 2904 static int 2905 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2906 { 2907 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2908 return (0); 2909 return (pf_match(op, a1, a2, g)); 2910 } 2911 2912 int 2913 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 2914 { 2915 if (*tag == -1) 2916 *tag = mtag; 2917 2918 return ((!r->match_tag_not && r->match_tag == *tag) || 2919 (r->match_tag_not && r->match_tag != *tag)); 2920 } 2921 2922 int 2923 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2924 { 2925 2926 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2927 2928 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2929 return (ENOMEM); 2930 2931 pd->pf_mtag->tag = tag; 2932 2933 return (0); 2934 } 2935 2936 #define PF_ANCHOR_STACKSIZE 32 2937 struct pf_kanchor_stackframe { 2938 struct pf_kruleset *rs; 2939 struct pf_krule *r; /* XXX: + match bit */ 2940 struct pf_kanchor *child; 2941 }; 2942 2943 /* 2944 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2945 */ 2946 #define PF_ANCHORSTACK_MATCH 0x00000001 2947 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2948 2949 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2950 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 2951 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2952 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2953 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2954 } while (0) 2955 2956 void 2957 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 2958 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 2959 int *match) 2960 { 2961 struct pf_kanchor_stackframe *f; 2962 2963 PF_RULES_RASSERT(); 2964 2965 if (match) 2966 *match = 0; 2967 if (*depth >= PF_ANCHOR_STACKSIZE) { 2968 printf("%s: anchor stack overflow on %s\n", 2969 __func__, (*r)->anchor->name); 2970 *r = TAILQ_NEXT(*r, entries); 2971 return; 2972 } else if (*depth == 0 && a != NULL) 2973 *a = *r; 2974 f = stack + (*depth)++; 2975 f->rs = *rs; 2976 f->r = *r; 2977 if ((*r)->anchor_wildcard) { 2978 struct pf_kanchor_node *parent = &(*r)->anchor->children; 2979 2980 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 2981 *r = NULL; 2982 return; 2983 } 2984 *rs = &f->child->ruleset; 2985 } else { 2986 f->child = NULL; 2987 *rs = &(*r)->anchor->ruleset; 2988 } 2989 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2990 } 2991 2992 int 2993 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 2994 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 2995 int *match) 2996 { 2997 struct pf_kanchor_stackframe *f; 2998 struct pf_krule *fr; 2999 int quick = 0; 3000 3001 PF_RULES_RASSERT(); 3002 3003 do { 3004 if (*depth <= 0) 3005 break; 3006 f = stack + *depth - 1; 3007 fr = PF_ANCHOR_RULE(f); 3008 if (f->child != NULL) { 3009 struct pf_kanchor_node *parent; 3010 3011 /* 3012 * This block traverses through 3013 * a wildcard anchor. 3014 */ 3015 parent = &fr->anchor->children; 3016 if (match != NULL && *match) { 3017 /* 3018 * If any of "*" matched, then 3019 * "foo/ *" matched, mark frame 3020 * appropriately. 3021 */ 3022 PF_ANCHOR_SET_MATCH(f); 3023 *match = 0; 3024 } 3025 f->child = RB_NEXT(pf_kanchor_node, parent, f->child); 3026 if (f->child != NULL) { 3027 *rs = &f->child->ruleset; 3028 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3029 if (*r == NULL) 3030 continue; 3031 else 3032 break; 3033 } 3034 } 3035 (*depth)--; 3036 if (*depth == 0 && a != NULL) 3037 *a = NULL; 3038 *rs = f->rs; 3039 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 3040 quick = fr->quick; 3041 *r = TAILQ_NEXT(fr, entries); 3042 } while (*r == NULL); 3043 3044 return (quick); 3045 } 3046 3047 #ifdef INET6 3048 void 3049 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 3050 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 3051 { 3052 switch (af) { 3053 #ifdef INET 3054 case AF_INET: 3055 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3056 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3057 break; 3058 #endif /* INET */ 3059 case AF_INET6: 3060 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3061 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3062 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 3063 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 3064 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 3065 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 3066 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 3067 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 3068 break; 3069 } 3070 } 3071 3072 void 3073 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 3074 { 3075 switch (af) { 3076 #ifdef INET 3077 case AF_INET: 3078 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 3079 break; 3080 #endif /* INET */ 3081 case AF_INET6: 3082 if (addr->addr32[3] == 0xffffffff) { 3083 addr->addr32[3] = 0; 3084 if (addr->addr32[2] == 0xffffffff) { 3085 addr->addr32[2] = 0; 3086 if (addr->addr32[1] == 0xffffffff) { 3087 addr->addr32[1] = 0; 3088 addr->addr32[0] = 3089 htonl(ntohl(addr->addr32[0]) + 1); 3090 } else 3091 addr->addr32[1] = 3092 htonl(ntohl(addr->addr32[1]) + 1); 3093 } else 3094 addr->addr32[2] = 3095 htonl(ntohl(addr->addr32[2]) + 1); 3096 } else 3097 addr->addr32[3] = 3098 htonl(ntohl(addr->addr32[3]) + 1); 3099 break; 3100 } 3101 } 3102 #endif /* INET6 */ 3103 3104 int 3105 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 3106 { 3107 struct pf_addr *saddr, *daddr; 3108 u_int16_t sport, dport; 3109 struct inpcbinfo *pi; 3110 struct inpcb *inp; 3111 3112 pd->lookup.uid = UID_MAX; 3113 pd->lookup.gid = GID_MAX; 3114 3115 switch (pd->proto) { 3116 case IPPROTO_TCP: 3117 if (pd->hdr.tcp == NULL) 3118 return (-1); 3119 sport = pd->hdr.tcp->th_sport; 3120 dport = pd->hdr.tcp->th_dport; 3121 pi = &V_tcbinfo; 3122 break; 3123 case IPPROTO_UDP: 3124 if (pd->hdr.udp == NULL) 3125 return (-1); 3126 sport = pd->hdr.udp->uh_sport; 3127 dport = pd->hdr.udp->uh_dport; 3128 pi = &V_udbinfo; 3129 break; 3130 default: 3131 return (-1); 3132 } 3133 if (direction == PF_IN) { 3134 saddr = pd->src; 3135 daddr = pd->dst; 3136 } else { 3137 u_int16_t p; 3138 3139 p = sport; 3140 sport = dport; 3141 dport = p; 3142 saddr = pd->dst; 3143 daddr = pd->src; 3144 } 3145 switch (pd->af) { 3146 #ifdef INET 3147 case AF_INET: 3148 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3149 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3150 if (inp == NULL) { 3151 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3152 daddr->v4, dport, INPLOOKUP_WILDCARD | 3153 INPLOOKUP_RLOCKPCB, NULL, m); 3154 if (inp == NULL) 3155 return (-1); 3156 } 3157 break; 3158 #endif /* INET */ 3159 #ifdef INET6 3160 case AF_INET6: 3161 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3162 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3163 if (inp == NULL) { 3164 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3165 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3166 INPLOOKUP_RLOCKPCB, NULL, m); 3167 if (inp == NULL) 3168 return (-1); 3169 } 3170 break; 3171 #endif /* INET6 */ 3172 3173 default: 3174 return (-1); 3175 } 3176 INP_RLOCK_ASSERT(inp); 3177 pd->lookup.uid = inp->inp_cred->cr_uid; 3178 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3179 INP_RUNLOCK(inp); 3180 3181 return (1); 3182 } 3183 3184 static u_int8_t 3185 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3186 { 3187 int hlen; 3188 u_int8_t hdr[60]; 3189 u_int8_t *opt, optlen; 3190 u_int8_t wscale = 0; 3191 3192 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3193 if (hlen <= sizeof(struct tcphdr)) 3194 return (0); 3195 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3196 return (0); 3197 opt = hdr + sizeof(struct tcphdr); 3198 hlen -= sizeof(struct tcphdr); 3199 while (hlen >= 3) { 3200 switch (*opt) { 3201 case TCPOPT_EOL: 3202 case TCPOPT_NOP: 3203 ++opt; 3204 --hlen; 3205 break; 3206 case TCPOPT_WINDOW: 3207 wscale = opt[2]; 3208 if (wscale > TCP_MAX_WINSHIFT) 3209 wscale = TCP_MAX_WINSHIFT; 3210 wscale |= PF_WSCALE_FLAG; 3211 /* FALLTHROUGH */ 3212 default: 3213 optlen = opt[1]; 3214 if (optlen < 2) 3215 optlen = 2; 3216 hlen -= optlen; 3217 opt += optlen; 3218 break; 3219 } 3220 } 3221 return (wscale); 3222 } 3223 3224 static u_int16_t 3225 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3226 { 3227 int hlen; 3228 u_int8_t hdr[60]; 3229 u_int8_t *opt, optlen; 3230 u_int16_t mss = V_tcp_mssdflt; 3231 3232 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3233 if (hlen <= sizeof(struct tcphdr)) 3234 return (0); 3235 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3236 return (0); 3237 opt = hdr + sizeof(struct tcphdr); 3238 hlen -= sizeof(struct tcphdr); 3239 while (hlen >= TCPOLEN_MAXSEG) { 3240 switch (*opt) { 3241 case TCPOPT_EOL: 3242 case TCPOPT_NOP: 3243 ++opt; 3244 --hlen; 3245 break; 3246 case TCPOPT_MAXSEG: 3247 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3248 NTOHS(mss); 3249 /* FALLTHROUGH */ 3250 default: 3251 optlen = opt[1]; 3252 if (optlen < 2) 3253 optlen = 2; 3254 hlen -= optlen; 3255 opt += optlen; 3256 break; 3257 } 3258 } 3259 return (mss); 3260 } 3261 3262 static u_int16_t 3263 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3264 { 3265 struct nhop_object *nh; 3266 #ifdef INET6 3267 struct in6_addr dst6; 3268 uint32_t scopeid; 3269 #endif /* INET6 */ 3270 int hlen = 0; 3271 uint16_t mss = 0; 3272 3273 NET_EPOCH_ASSERT(); 3274 3275 switch (af) { 3276 #ifdef INET 3277 case AF_INET: 3278 hlen = sizeof(struct ip); 3279 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 3280 if (nh != NULL) 3281 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3282 break; 3283 #endif /* INET */ 3284 #ifdef INET6 3285 case AF_INET6: 3286 hlen = sizeof(struct ip6_hdr); 3287 in6_splitscope(&addr->v6, &dst6, &scopeid); 3288 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 3289 if (nh != NULL) 3290 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3291 break; 3292 #endif /* INET6 */ 3293 } 3294 3295 mss = max(V_tcp_mssdflt, mss); 3296 mss = min(mss, offer); 3297 mss = max(mss, 64); /* sanity - at least max opt space */ 3298 return (mss); 3299 } 3300 3301 static u_int32_t 3302 pf_tcp_iss(struct pf_pdesc *pd) 3303 { 3304 MD5_CTX ctx; 3305 u_int32_t digest[4]; 3306 3307 if (V_pf_tcp_secret_init == 0) { 3308 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3309 MD5Init(&V_pf_tcp_secret_ctx); 3310 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3311 sizeof(V_pf_tcp_secret)); 3312 V_pf_tcp_secret_init = 1; 3313 } 3314 3315 ctx = V_pf_tcp_secret_ctx; 3316 3317 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3318 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3319 if (pd->af == AF_INET6) { 3320 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3321 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3322 } else { 3323 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3324 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3325 } 3326 MD5Final((u_char *)digest, &ctx); 3327 V_pf_tcp_iss_off += 4096; 3328 #define ISN_RANDOM_INCREMENT (4096 - 1) 3329 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3330 V_pf_tcp_iss_off); 3331 #undef ISN_RANDOM_INCREMENT 3332 } 3333 3334 static int 3335 pf_test_rule(struct pf_krule **rm, struct pf_state **sm, int direction, 3336 struct pfi_kkif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3337 struct pf_krule **am, struct pf_kruleset **rsm, struct inpcb *inp) 3338 { 3339 struct pf_krule *nr = NULL; 3340 struct pf_addr * const saddr = pd->src; 3341 struct pf_addr * const daddr = pd->dst; 3342 sa_family_t af = pd->af; 3343 struct pf_krule *r, *a = NULL; 3344 struct pf_kruleset *ruleset = NULL; 3345 struct pf_ksrc_node *nsn = NULL; 3346 struct tcphdr *th = pd->hdr.tcp; 3347 struct pf_state_key *sk = NULL, *nk = NULL; 3348 u_short reason; 3349 int rewrite = 0, hdrlen = 0; 3350 int tag = -1, rtableid = -1; 3351 int asd = 0; 3352 int match = 0; 3353 int state_icmp = 0; 3354 u_int16_t sport = 0, dport = 0; 3355 u_int16_t bproto_sum = 0, bip_sum = 0; 3356 u_int8_t icmptype = 0, icmpcode = 0; 3357 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3358 3359 PF_RULES_RASSERT(); 3360 3361 if (inp != NULL) { 3362 INP_LOCK_ASSERT(inp); 3363 pd->lookup.uid = inp->inp_cred->cr_uid; 3364 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3365 pd->lookup.done = 1; 3366 } 3367 3368 switch (pd->proto) { 3369 case IPPROTO_TCP: 3370 sport = th->th_sport; 3371 dport = th->th_dport; 3372 hdrlen = sizeof(*th); 3373 break; 3374 case IPPROTO_UDP: 3375 sport = pd->hdr.udp->uh_sport; 3376 dport = pd->hdr.udp->uh_dport; 3377 hdrlen = sizeof(*pd->hdr.udp); 3378 break; 3379 #ifdef INET 3380 case IPPROTO_ICMP: 3381 if (pd->af != AF_INET) 3382 break; 3383 sport = dport = pd->hdr.icmp->icmp_id; 3384 hdrlen = sizeof(*pd->hdr.icmp); 3385 icmptype = pd->hdr.icmp->icmp_type; 3386 icmpcode = pd->hdr.icmp->icmp_code; 3387 3388 if (icmptype == ICMP_UNREACH || 3389 icmptype == ICMP_SOURCEQUENCH || 3390 icmptype == ICMP_REDIRECT || 3391 icmptype == ICMP_TIMXCEED || 3392 icmptype == ICMP_PARAMPROB) 3393 state_icmp++; 3394 break; 3395 #endif /* INET */ 3396 #ifdef INET6 3397 case IPPROTO_ICMPV6: 3398 if (af != AF_INET6) 3399 break; 3400 sport = dport = pd->hdr.icmp6->icmp6_id; 3401 hdrlen = sizeof(*pd->hdr.icmp6); 3402 icmptype = pd->hdr.icmp6->icmp6_type; 3403 icmpcode = pd->hdr.icmp6->icmp6_code; 3404 3405 if (icmptype == ICMP6_DST_UNREACH || 3406 icmptype == ICMP6_PACKET_TOO_BIG || 3407 icmptype == ICMP6_TIME_EXCEEDED || 3408 icmptype == ICMP6_PARAM_PROB) 3409 state_icmp++; 3410 break; 3411 #endif /* INET6 */ 3412 default: 3413 sport = dport = hdrlen = 0; 3414 break; 3415 } 3416 3417 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3418 3419 /* check packet for BINAT/NAT/RDR */ 3420 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3421 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3422 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3423 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3424 3425 if (pd->ip_sum) 3426 bip_sum = *pd->ip_sum; 3427 3428 switch (pd->proto) { 3429 case IPPROTO_TCP: 3430 bproto_sum = th->th_sum; 3431 pd->proto_sum = &th->th_sum; 3432 3433 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3434 nk->port[pd->sidx] != sport) { 3435 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3436 &th->th_sum, &nk->addr[pd->sidx], 3437 nk->port[pd->sidx], 0, af); 3438 pd->sport = &th->th_sport; 3439 sport = th->th_sport; 3440 } 3441 3442 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3443 nk->port[pd->didx] != dport) { 3444 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3445 &th->th_sum, &nk->addr[pd->didx], 3446 nk->port[pd->didx], 0, af); 3447 dport = th->th_dport; 3448 pd->dport = &th->th_dport; 3449 } 3450 rewrite++; 3451 break; 3452 case IPPROTO_UDP: 3453 bproto_sum = pd->hdr.udp->uh_sum; 3454 pd->proto_sum = &pd->hdr.udp->uh_sum; 3455 3456 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3457 nk->port[pd->sidx] != sport) { 3458 pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, 3459 pd->ip_sum, &pd->hdr.udp->uh_sum, 3460 &nk->addr[pd->sidx], 3461 nk->port[pd->sidx], 1, af); 3462 sport = pd->hdr.udp->uh_sport; 3463 pd->sport = &pd->hdr.udp->uh_sport; 3464 } 3465 3466 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3467 nk->port[pd->didx] != dport) { 3468 pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, 3469 pd->ip_sum, &pd->hdr.udp->uh_sum, 3470 &nk->addr[pd->didx], 3471 nk->port[pd->didx], 1, af); 3472 dport = pd->hdr.udp->uh_dport; 3473 pd->dport = &pd->hdr.udp->uh_dport; 3474 } 3475 rewrite++; 3476 break; 3477 #ifdef INET 3478 case IPPROTO_ICMP: 3479 nk->port[0] = nk->port[1]; 3480 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3481 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3482 nk->addr[pd->sidx].v4.s_addr, 0); 3483 3484 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3485 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3486 nk->addr[pd->didx].v4.s_addr, 0); 3487 3488 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3489 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3490 pd->hdr.icmp->icmp_cksum, sport, 3491 nk->port[1], 0); 3492 pd->hdr.icmp->icmp_id = nk->port[1]; 3493 pd->sport = &pd->hdr.icmp->icmp_id; 3494 } 3495 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3496 break; 3497 #endif /* INET */ 3498 #ifdef INET6 3499 case IPPROTO_ICMPV6: 3500 nk->port[0] = nk->port[1]; 3501 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3502 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3503 &nk->addr[pd->sidx], 0); 3504 3505 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3506 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3507 &nk->addr[pd->didx], 0); 3508 rewrite++; 3509 break; 3510 #endif /* INET */ 3511 default: 3512 switch (af) { 3513 #ifdef INET 3514 case AF_INET: 3515 if (PF_ANEQ(saddr, 3516 &nk->addr[pd->sidx], AF_INET)) 3517 pf_change_a(&saddr->v4.s_addr, 3518 pd->ip_sum, 3519 nk->addr[pd->sidx].v4.s_addr, 0); 3520 3521 if (PF_ANEQ(daddr, 3522 &nk->addr[pd->didx], AF_INET)) 3523 pf_change_a(&daddr->v4.s_addr, 3524 pd->ip_sum, 3525 nk->addr[pd->didx].v4.s_addr, 0); 3526 break; 3527 #endif /* INET */ 3528 #ifdef INET6 3529 case AF_INET6: 3530 if (PF_ANEQ(saddr, 3531 &nk->addr[pd->sidx], AF_INET6)) 3532 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3533 3534 if (PF_ANEQ(daddr, 3535 &nk->addr[pd->didx], AF_INET6)) 3536 PF_ACPY(daddr, &nk->addr[pd->didx], af); 3537 break; 3538 #endif /* INET */ 3539 } 3540 break; 3541 } 3542 if (nr->natpass) 3543 r = NULL; 3544 pd->nat_rule = nr; 3545 } 3546 3547 while (r != NULL) { 3548 counter_u64_add(r->evaluations, 1); 3549 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 3550 r = r->skip[PF_SKIP_IFP].ptr; 3551 else if (r->direction && r->direction != direction) 3552 r = r->skip[PF_SKIP_DIR].ptr; 3553 else if (r->af && r->af != af) 3554 r = r->skip[PF_SKIP_AF].ptr; 3555 else if (r->proto && r->proto != pd->proto) 3556 r = r->skip[PF_SKIP_PROTO].ptr; 3557 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3558 r->src.neg, kif, M_GETFIB(m))) 3559 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3560 /* tcp/udp only. port_op always 0 in other cases */ 3561 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3562 r->src.port[0], r->src.port[1], sport)) 3563 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3564 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3565 r->dst.neg, NULL, M_GETFIB(m))) 3566 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3567 /* tcp/udp only. port_op always 0 in other cases */ 3568 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3569 r->dst.port[0], r->dst.port[1], dport)) 3570 r = r->skip[PF_SKIP_DST_PORT].ptr; 3571 /* icmp only. type always 0 in other cases */ 3572 else if (r->type && r->type != icmptype + 1) 3573 r = TAILQ_NEXT(r, entries); 3574 /* icmp only. type always 0 in other cases */ 3575 else if (r->code && r->code != icmpcode + 1) 3576 r = TAILQ_NEXT(r, entries); 3577 else if (r->tos && !(r->tos == pd->tos)) 3578 r = TAILQ_NEXT(r, entries); 3579 else if (r->rule_flag & PFRULE_FRAGMENT) 3580 r = TAILQ_NEXT(r, entries); 3581 else if (pd->proto == IPPROTO_TCP && 3582 (r->flagset & th->th_flags) != r->flags) 3583 r = TAILQ_NEXT(r, entries); 3584 /* tcp/udp only. uid.op always 0 in other cases */ 3585 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3586 pf_socket_lookup(direction, pd, m), 1)) && 3587 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3588 pd->lookup.uid)) 3589 r = TAILQ_NEXT(r, entries); 3590 /* tcp/udp only. gid.op always 0 in other cases */ 3591 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3592 pf_socket_lookup(direction, pd, m), 1)) && 3593 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3594 pd->lookup.gid)) 3595 r = TAILQ_NEXT(r, entries); 3596 else if (r->prio && 3597 !pf_match_ieee8021q_pcp(r->prio, m)) 3598 r = TAILQ_NEXT(r, entries); 3599 else if (r->prob && 3600 r->prob <= arc4random()) 3601 r = TAILQ_NEXT(r, entries); 3602 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3603 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3604 r = TAILQ_NEXT(r, entries); 3605 else if (r->os_fingerprint != PF_OSFP_ANY && 3606 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3607 pf_osfp_fingerprint(pd, m, off, th), 3608 r->os_fingerprint))) 3609 r = TAILQ_NEXT(r, entries); 3610 else { 3611 if (r->tag) 3612 tag = r->tag; 3613 if (r->rtableid >= 0) 3614 rtableid = r->rtableid; 3615 if (r->anchor == NULL) { 3616 match = 1; 3617 *rm = r; 3618 *am = a; 3619 *rsm = ruleset; 3620 if ((*rm)->quick) 3621 break; 3622 r = TAILQ_NEXT(r, entries); 3623 } else 3624 pf_step_into_anchor(anchor_stack, &asd, 3625 &ruleset, PF_RULESET_FILTER, &r, &a, 3626 &match); 3627 } 3628 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3629 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3630 break; 3631 } 3632 r = *rm; 3633 a = *am; 3634 ruleset = *rsm; 3635 3636 REASON_SET(&reason, PFRES_MATCH); 3637 3638 if (r->log || (nr != NULL && nr->log)) { 3639 if (rewrite) 3640 m_copyback(m, off, hdrlen, pd->hdr.any); 3641 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3642 ruleset, pd, 1); 3643 } 3644 3645 if ((r->action == PF_DROP) && 3646 ((r->rule_flag & PFRULE_RETURNRST) || 3647 (r->rule_flag & PFRULE_RETURNICMP) || 3648 (r->rule_flag & PFRULE_RETURN))) { 3649 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 3650 bip_sum, hdrlen, &reason); 3651 } 3652 3653 if (r->action == PF_DROP) 3654 goto cleanup; 3655 3656 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3657 REASON_SET(&reason, PFRES_MEMORY); 3658 goto cleanup; 3659 } 3660 if (rtableid >= 0) 3661 M_SETFIB(m, rtableid); 3662 3663 if (!state_icmp && (r->keep_state || nr != NULL || 3664 (pd->flags & PFDESC_TCP_NORM))) { 3665 int action; 3666 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3667 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3668 hdrlen); 3669 if (action != PF_PASS) { 3670 if (action == PF_DROP && 3671 (r->rule_flag & PFRULE_RETURN)) 3672 pf_return(r, nr, pd, sk, off, m, th, kif, 3673 bproto_sum, bip_sum, hdrlen, &reason); 3674 return (action); 3675 } 3676 } else { 3677 if (sk != NULL) 3678 uma_zfree(V_pf_state_key_z, sk); 3679 if (nk != NULL) 3680 uma_zfree(V_pf_state_key_z, nk); 3681 } 3682 3683 /* copy back packet headers if we performed NAT operations */ 3684 if (rewrite) 3685 m_copyback(m, off, hdrlen, pd->hdr.any); 3686 3687 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3688 direction == PF_OUT && 3689 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 3690 /* 3691 * We want the state created, but we dont 3692 * want to send this in case a partner 3693 * firewall has to know about it to allow 3694 * replies through it. 3695 */ 3696 return (PF_DEFER); 3697 3698 return (PF_PASS); 3699 3700 cleanup: 3701 if (sk != NULL) 3702 uma_zfree(V_pf_state_key_z, sk); 3703 if (nk != NULL) 3704 uma_zfree(V_pf_state_key_z, nk); 3705 return (PF_DROP); 3706 } 3707 3708 static int 3709 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 3710 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 3711 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3712 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_state **sm, 3713 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3714 { 3715 struct pf_state *s = NULL; 3716 struct pf_ksrc_node *sn = NULL; 3717 struct tcphdr *th = pd->hdr.tcp; 3718 u_int16_t mss = V_tcp_mssdflt; 3719 u_short reason; 3720 3721 /* check maximums */ 3722 if (r->max_states && 3723 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3724 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3725 REASON_SET(&reason, PFRES_MAXSTATES); 3726 goto csfailed; 3727 } 3728 /* src node for filter rule */ 3729 if ((r->rule_flag & PFRULE_SRCTRACK || 3730 r->rpool.opts & PF_POOL_STICKYADDR) && 3731 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3732 REASON_SET(&reason, PFRES_SRCLIMIT); 3733 goto csfailed; 3734 } 3735 /* src node for translation rule */ 3736 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3737 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3738 REASON_SET(&reason, PFRES_SRCLIMIT); 3739 goto csfailed; 3740 } 3741 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3742 if (s == NULL) { 3743 REASON_SET(&reason, PFRES_MEMORY); 3744 goto csfailed; 3745 } 3746 for (int i = 0; i < 2; i++) { 3747 s->bytes[i] = counter_u64_alloc(M_NOWAIT); 3748 s->packets[i] = counter_u64_alloc(M_NOWAIT); 3749 3750 if (s->bytes[i] == NULL || s->packets[i] == NULL) { 3751 pf_free_state(s); 3752 REASON_SET(&reason, PFRES_MEMORY); 3753 goto csfailed; 3754 } 3755 } 3756 s->rule.ptr = r; 3757 s->nat_rule.ptr = nr; 3758 s->anchor.ptr = a; 3759 STATE_INC_COUNTERS(s); 3760 if (r->allow_opts) 3761 s->state_flags |= PFSTATE_ALLOWOPTS; 3762 if (r->rule_flag & PFRULE_STATESLOPPY) 3763 s->state_flags |= PFSTATE_SLOPPY; 3764 s->log = r->log & PF_LOG_ALL; 3765 s->sync_state = PFSYNC_S_NONE; 3766 if (nr != NULL) 3767 s->log |= nr->log & PF_LOG_ALL; 3768 switch (pd->proto) { 3769 case IPPROTO_TCP: 3770 s->src.seqlo = ntohl(th->th_seq); 3771 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3772 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3773 r->keep_state == PF_STATE_MODULATE) { 3774 /* Generate sequence number modulator */ 3775 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3776 0) 3777 s->src.seqdiff = 1; 3778 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3779 htonl(s->src.seqlo + s->src.seqdiff), 0); 3780 *rewrite = 1; 3781 } else 3782 s->src.seqdiff = 0; 3783 if (th->th_flags & TH_SYN) { 3784 s->src.seqhi++; 3785 s->src.wscale = pf_get_wscale(m, off, 3786 th->th_off, pd->af); 3787 } 3788 s->src.max_win = MAX(ntohs(th->th_win), 1); 3789 if (s->src.wscale & PF_WSCALE_MASK) { 3790 /* Remove scale factor from initial window */ 3791 int win = s->src.max_win; 3792 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3793 s->src.max_win = (win - 1) >> 3794 (s->src.wscale & PF_WSCALE_MASK); 3795 } 3796 if (th->th_flags & TH_FIN) 3797 s->src.seqhi++; 3798 s->dst.seqhi = 1; 3799 s->dst.max_win = 1; 3800 s->src.state = TCPS_SYN_SENT; 3801 s->dst.state = TCPS_CLOSED; 3802 s->timeout = PFTM_TCP_FIRST_PACKET; 3803 break; 3804 case IPPROTO_UDP: 3805 s->src.state = PFUDPS_SINGLE; 3806 s->dst.state = PFUDPS_NO_TRAFFIC; 3807 s->timeout = PFTM_UDP_FIRST_PACKET; 3808 break; 3809 case IPPROTO_ICMP: 3810 #ifdef INET6 3811 case IPPROTO_ICMPV6: 3812 #endif 3813 s->timeout = PFTM_ICMP_FIRST_PACKET; 3814 break; 3815 default: 3816 s->src.state = PFOTHERS_SINGLE; 3817 s->dst.state = PFOTHERS_NO_TRAFFIC; 3818 s->timeout = PFTM_OTHER_FIRST_PACKET; 3819 } 3820 3821 if (r->rt) { 3822 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3823 REASON_SET(&reason, PFRES_MAPFAILED); 3824 pf_src_tree_remove_state(s); 3825 STATE_DEC_COUNTERS(s); 3826 uma_zfree(V_pf_state_z, s); 3827 goto csfailed; 3828 } 3829 s->rt_kif = r->rpool.cur->kif; 3830 } 3831 3832 s->creation = time_uptime; 3833 s->expire = time_uptime; 3834 3835 if (sn != NULL) 3836 s->src_node = sn; 3837 if (nsn != NULL) { 3838 /* XXX We only modify one side for now. */ 3839 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3840 s->nat_src_node = nsn; 3841 } 3842 if (pd->proto == IPPROTO_TCP) { 3843 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3844 off, pd, th, &s->src, &s->dst)) { 3845 REASON_SET(&reason, PFRES_MEMORY); 3846 pf_src_tree_remove_state(s); 3847 STATE_DEC_COUNTERS(s); 3848 uma_zfree(V_pf_state_z, s); 3849 return (PF_DROP); 3850 } 3851 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3852 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3853 &s->src, &s->dst, rewrite)) { 3854 /* This really shouldn't happen!!! */ 3855 DPFPRINTF(PF_DEBUG_URGENT, 3856 ("pf_normalize_tcp_stateful failed on first " 3857 "pkt\n")); 3858 pf_normalize_tcp_cleanup(s); 3859 pf_src_tree_remove_state(s); 3860 STATE_DEC_COUNTERS(s); 3861 uma_zfree(V_pf_state_z, s); 3862 return (PF_DROP); 3863 } 3864 } 3865 s->direction = pd->dir; 3866 3867 /* 3868 * sk/nk could already been setup by pf_get_translation(). 3869 */ 3870 if (nr == NULL) { 3871 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3872 __func__, nr, sk, nk)); 3873 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3874 if (sk == NULL) 3875 goto csfailed; 3876 nk = sk; 3877 } else 3878 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3879 __func__, nr, sk, nk)); 3880 3881 /* Swap sk/nk for PF_OUT. */ 3882 if (pf_state_insert(BOUND_IFACE(r, kif), 3883 (pd->dir == PF_IN) ? sk : nk, 3884 (pd->dir == PF_IN) ? nk : sk, s)) { 3885 if (pd->proto == IPPROTO_TCP) 3886 pf_normalize_tcp_cleanup(s); 3887 REASON_SET(&reason, PFRES_STATEINS); 3888 pf_src_tree_remove_state(s); 3889 STATE_DEC_COUNTERS(s); 3890 uma_zfree(V_pf_state_z, s); 3891 return (PF_DROP); 3892 } else 3893 *sm = s; 3894 3895 if (tag > 0) 3896 s->tag = tag; 3897 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3898 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3899 s->src.state = PF_TCPS_PROXY_SRC; 3900 /* undo NAT changes, if they have taken place */ 3901 if (nr != NULL) { 3902 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3903 if (pd->dir == PF_OUT) 3904 skt = s->key[PF_SK_STACK]; 3905 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3906 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3907 if (pd->sport) 3908 *pd->sport = skt->port[pd->sidx]; 3909 if (pd->dport) 3910 *pd->dport = skt->port[pd->didx]; 3911 if (pd->proto_sum) 3912 *pd->proto_sum = bproto_sum; 3913 if (pd->ip_sum) 3914 *pd->ip_sum = bip_sum; 3915 m_copyback(m, off, hdrlen, pd->hdr.any); 3916 } 3917 s->src.seqhi = htonl(arc4random()); 3918 /* Find mss option */ 3919 int rtid = M_GETFIB(m); 3920 mss = pf_get_mss(m, off, th->th_off, pd->af); 3921 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3922 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3923 s->src.mss = mss; 3924 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3925 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3926 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3927 REASON_SET(&reason, PFRES_SYNPROXY); 3928 return (PF_SYNPROXY_DROP); 3929 } 3930 3931 return (PF_PASS); 3932 3933 csfailed: 3934 if (sk != NULL) 3935 uma_zfree(V_pf_state_key_z, sk); 3936 if (nk != NULL) 3937 uma_zfree(V_pf_state_key_z, nk); 3938 3939 if (sn != NULL) { 3940 struct pf_srchash *sh; 3941 3942 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3943 PF_HASHROW_LOCK(sh); 3944 if (--sn->states == 0 && sn->expire == 0) { 3945 pf_unlink_src_node(sn); 3946 uma_zfree(V_pf_sources_z, sn); 3947 counter_u64_add( 3948 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3949 } 3950 PF_HASHROW_UNLOCK(sh); 3951 } 3952 3953 if (nsn != sn && nsn != NULL) { 3954 struct pf_srchash *sh; 3955 3956 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3957 PF_HASHROW_LOCK(sh); 3958 if (--nsn->states == 0 && nsn->expire == 0) { 3959 pf_unlink_src_node(nsn); 3960 uma_zfree(V_pf_sources_z, nsn); 3961 counter_u64_add( 3962 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3963 } 3964 PF_HASHROW_UNLOCK(sh); 3965 } 3966 3967 return (PF_DROP); 3968 } 3969 3970 static int 3971 pf_test_fragment(struct pf_krule **rm, int direction, struct pfi_kkif *kif, 3972 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, 3973 struct pf_kruleset **rsm) 3974 { 3975 struct pf_krule *r, *a = NULL; 3976 struct pf_kruleset *ruleset = NULL; 3977 sa_family_t af = pd->af; 3978 u_short reason; 3979 int tag = -1; 3980 int asd = 0; 3981 int match = 0; 3982 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3983 3984 PF_RULES_RASSERT(); 3985 3986 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3987 while (r != NULL) { 3988 counter_u64_add(r->evaluations, 1); 3989 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 3990 r = r->skip[PF_SKIP_IFP].ptr; 3991 else if (r->direction && r->direction != direction) 3992 r = r->skip[PF_SKIP_DIR].ptr; 3993 else if (r->af && r->af != af) 3994 r = r->skip[PF_SKIP_AF].ptr; 3995 else if (r->proto && r->proto != pd->proto) 3996 r = r->skip[PF_SKIP_PROTO].ptr; 3997 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3998 r->src.neg, kif, M_GETFIB(m))) 3999 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4000 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 4001 r->dst.neg, NULL, M_GETFIB(m))) 4002 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4003 else if (r->tos && !(r->tos == pd->tos)) 4004 r = TAILQ_NEXT(r, entries); 4005 else if (r->os_fingerprint != PF_OSFP_ANY) 4006 r = TAILQ_NEXT(r, entries); 4007 else if (pd->proto == IPPROTO_UDP && 4008 (r->src.port_op || r->dst.port_op)) 4009 r = TAILQ_NEXT(r, entries); 4010 else if (pd->proto == IPPROTO_TCP && 4011 (r->src.port_op || r->dst.port_op || r->flagset)) 4012 r = TAILQ_NEXT(r, entries); 4013 else if ((pd->proto == IPPROTO_ICMP || 4014 pd->proto == IPPROTO_ICMPV6) && 4015 (r->type || r->code)) 4016 r = TAILQ_NEXT(r, entries); 4017 else if (r->prio && 4018 !pf_match_ieee8021q_pcp(r->prio, m)) 4019 r = TAILQ_NEXT(r, entries); 4020 else if (r->prob && r->prob <= 4021 (arc4random() % (UINT_MAX - 1) + 1)) 4022 r = TAILQ_NEXT(r, entries); 4023 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4024 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4025 r = TAILQ_NEXT(r, entries); 4026 else { 4027 if (r->anchor == NULL) { 4028 match = 1; 4029 *rm = r; 4030 *am = a; 4031 *rsm = ruleset; 4032 if ((*rm)->quick) 4033 break; 4034 r = TAILQ_NEXT(r, entries); 4035 } else 4036 pf_step_into_anchor(anchor_stack, &asd, 4037 &ruleset, PF_RULESET_FILTER, &r, &a, 4038 &match); 4039 } 4040 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4041 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4042 break; 4043 } 4044 r = *rm; 4045 a = *am; 4046 ruleset = *rsm; 4047 4048 REASON_SET(&reason, PFRES_MATCH); 4049 4050 if (r->log) 4051 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 4052 1); 4053 4054 if (r->action != PF_PASS) 4055 return (PF_DROP); 4056 4057 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4058 REASON_SET(&reason, PFRES_MEMORY); 4059 return (PF_DROP); 4060 } 4061 4062 return (PF_PASS); 4063 } 4064 4065 static int 4066 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 4067 struct pf_state **state, struct pfi_kkif *kif, struct mbuf *m, int off, 4068 struct pf_pdesc *pd, u_short *reason, int *copyback) 4069 { 4070 struct tcphdr *th = pd->hdr.tcp; 4071 u_int16_t win = ntohs(th->th_win); 4072 u_int32_t ack, end, seq, orig_seq; 4073 u_int8_t sws, dws; 4074 int ackskew; 4075 4076 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 4077 sws = src->wscale & PF_WSCALE_MASK; 4078 dws = dst->wscale & PF_WSCALE_MASK; 4079 } else 4080 sws = dws = 0; 4081 4082 /* 4083 * Sequence tracking algorithm from Guido van Rooij's paper: 4084 * http://www.madison-gurkha.com/publications/tcp_filtering/ 4085 * tcp_filtering.ps 4086 */ 4087 4088 orig_seq = seq = ntohl(th->th_seq); 4089 if (src->seqlo == 0) { 4090 /* First packet from this end. Set its state */ 4091 4092 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 4093 src->scrub == NULL) { 4094 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 4095 REASON_SET(reason, PFRES_MEMORY); 4096 return (PF_DROP); 4097 } 4098 } 4099 4100 /* Deferred generation of sequence number modulator */ 4101 if (dst->seqdiff && !src->seqdiff) { 4102 /* use random iss for the TCP server */ 4103 while ((src->seqdiff = arc4random() - seq) == 0) 4104 ; 4105 ack = ntohl(th->th_ack) - dst->seqdiff; 4106 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4107 src->seqdiff), 0); 4108 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4109 *copyback = 1; 4110 } else { 4111 ack = ntohl(th->th_ack); 4112 } 4113 4114 end = seq + pd->p_len; 4115 if (th->th_flags & TH_SYN) { 4116 end++; 4117 if (dst->wscale & PF_WSCALE_FLAG) { 4118 src->wscale = pf_get_wscale(m, off, th->th_off, 4119 pd->af); 4120 if (src->wscale & PF_WSCALE_FLAG) { 4121 /* Remove scale factor from initial 4122 * window */ 4123 sws = src->wscale & PF_WSCALE_MASK; 4124 win = ((u_int32_t)win + (1 << sws) - 1) 4125 >> sws; 4126 dws = dst->wscale & PF_WSCALE_MASK; 4127 } else { 4128 /* fixup other window */ 4129 dst->max_win <<= dst->wscale & 4130 PF_WSCALE_MASK; 4131 /* in case of a retrans SYN|ACK */ 4132 dst->wscale = 0; 4133 } 4134 } 4135 } 4136 if (th->th_flags & TH_FIN) 4137 end++; 4138 4139 src->seqlo = seq; 4140 if (src->state < TCPS_SYN_SENT) 4141 src->state = TCPS_SYN_SENT; 4142 4143 /* 4144 * May need to slide the window (seqhi may have been set by 4145 * the crappy stack check or if we picked up the connection 4146 * after establishment) 4147 */ 4148 if (src->seqhi == 1 || 4149 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4150 src->seqhi = end + MAX(1, dst->max_win << dws); 4151 if (win > src->max_win) 4152 src->max_win = win; 4153 4154 } else { 4155 ack = ntohl(th->th_ack) - dst->seqdiff; 4156 if (src->seqdiff) { 4157 /* Modulate sequence numbers */ 4158 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4159 src->seqdiff), 0); 4160 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4161 *copyback = 1; 4162 } 4163 end = seq + pd->p_len; 4164 if (th->th_flags & TH_SYN) 4165 end++; 4166 if (th->th_flags & TH_FIN) 4167 end++; 4168 } 4169 4170 if ((th->th_flags & TH_ACK) == 0) { 4171 /* Let it pass through the ack skew check */ 4172 ack = dst->seqlo; 4173 } else if ((ack == 0 && 4174 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4175 /* broken tcp stacks do not set ack */ 4176 (dst->state < TCPS_SYN_SENT)) { 4177 /* 4178 * Many stacks (ours included) will set the ACK number in an 4179 * FIN|ACK if the SYN times out -- no sequence to ACK. 4180 */ 4181 ack = dst->seqlo; 4182 } 4183 4184 if (seq == end) { 4185 /* Ease sequencing restrictions on no data packets */ 4186 seq = src->seqlo; 4187 end = seq; 4188 } 4189 4190 ackskew = dst->seqlo - ack; 4191 4192 /* 4193 * Need to demodulate the sequence numbers in any TCP SACK options 4194 * (Selective ACK). We could optionally validate the SACK values 4195 * against the current ACK window, either forwards or backwards, but 4196 * I'm not confident that SACK has been implemented properly 4197 * everywhere. It wouldn't surprise me if several stacks accidentally 4198 * SACK too far backwards of previously ACKed data. There really aren't 4199 * any security implications of bad SACKing unless the target stack 4200 * doesn't validate the option length correctly. Someone trying to 4201 * spoof into a TCP connection won't bother blindly sending SACK 4202 * options anyway. 4203 */ 4204 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4205 if (pf_modulate_sack(m, off, pd, th, dst)) 4206 *copyback = 1; 4207 } 4208 4209 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4210 if (SEQ_GEQ(src->seqhi, end) && 4211 /* Last octet inside other's window space */ 4212 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4213 /* Retrans: not more than one window back */ 4214 (ackskew >= -MAXACKWINDOW) && 4215 /* Acking not more than one reassembled fragment backwards */ 4216 (ackskew <= (MAXACKWINDOW << sws)) && 4217 /* Acking not more than one window forward */ 4218 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4219 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4220 (pd->flags & PFDESC_IP_REAS) == 0)) { 4221 /* Require an exact/+1 sequence match on resets when possible */ 4222 4223 if (dst->scrub || src->scrub) { 4224 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4225 *state, src, dst, copyback)) 4226 return (PF_DROP); 4227 } 4228 4229 /* update max window */ 4230 if (src->max_win < win) 4231 src->max_win = win; 4232 /* synchronize sequencing */ 4233 if (SEQ_GT(end, src->seqlo)) 4234 src->seqlo = end; 4235 /* slide the window of what the other end can send */ 4236 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4237 dst->seqhi = ack + MAX((win << sws), 1); 4238 4239 /* update states */ 4240 if (th->th_flags & TH_SYN) 4241 if (src->state < TCPS_SYN_SENT) 4242 src->state = TCPS_SYN_SENT; 4243 if (th->th_flags & TH_FIN) 4244 if (src->state < TCPS_CLOSING) 4245 src->state = TCPS_CLOSING; 4246 if (th->th_flags & TH_ACK) { 4247 if (dst->state == TCPS_SYN_SENT) { 4248 dst->state = TCPS_ESTABLISHED; 4249 if (src->state == TCPS_ESTABLISHED && 4250 (*state)->src_node != NULL && 4251 pf_src_connlimit(state)) { 4252 REASON_SET(reason, PFRES_SRCLIMIT); 4253 return (PF_DROP); 4254 } 4255 } else if (dst->state == TCPS_CLOSING) 4256 dst->state = TCPS_FIN_WAIT_2; 4257 } 4258 if (th->th_flags & TH_RST) 4259 src->state = dst->state = TCPS_TIME_WAIT; 4260 4261 /* update expire time */ 4262 (*state)->expire = time_uptime; 4263 if (src->state >= TCPS_FIN_WAIT_2 && 4264 dst->state >= TCPS_FIN_WAIT_2) 4265 (*state)->timeout = PFTM_TCP_CLOSED; 4266 else if (src->state >= TCPS_CLOSING && 4267 dst->state >= TCPS_CLOSING) 4268 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4269 else if (src->state < TCPS_ESTABLISHED || 4270 dst->state < TCPS_ESTABLISHED) 4271 (*state)->timeout = PFTM_TCP_OPENING; 4272 else if (src->state >= TCPS_CLOSING || 4273 dst->state >= TCPS_CLOSING) 4274 (*state)->timeout = PFTM_TCP_CLOSING; 4275 else 4276 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4277 4278 /* Fall through to PASS packet */ 4279 4280 } else if ((dst->state < TCPS_SYN_SENT || 4281 dst->state >= TCPS_FIN_WAIT_2 || 4282 src->state >= TCPS_FIN_WAIT_2) && 4283 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4284 /* Within a window forward of the originating packet */ 4285 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4286 /* Within a window backward of the originating packet */ 4287 4288 /* 4289 * This currently handles three situations: 4290 * 1) Stupid stacks will shotgun SYNs before their peer 4291 * replies. 4292 * 2) When PF catches an already established stream (the 4293 * firewall rebooted, the state table was flushed, routes 4294 * changed...) 4295 * 3) Packets get funky immediately after the connection 4296 * closes (this should catch Solaris spurious ACK|FINs 4297 * that web servers like to spew after a close) 4298 * 4299 * This must be a little more careful than the above code 4300 * since packet floods will also be caught here. We don't 4301 * update the TTL here to mitigate the damage of a packet 4302 * flood and so the same code can handle awkward establishment 4303 * and a loosened connection close. 4304 * In the establishment case, a correct peer response will 4305 * validate the connection, go through the normal state code 4306 * and keep updating the state TTL. 4307 */ 4308 4309 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4310 printf("pf: loose state match: "); 4311 pf_print_state(*state); 4312 pf_print_flags(th->th_flags); 4313 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4314 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4315 pd->p_len, ackskew, 4316 (unsigned long long)counter_u64_fetch((*state)->packets[0]), 4317 (unsigned long long)counter_u64_fetch((*state)->packets[1]), 4318 pd->dir == PF_IN ? "in" : "out", 4319 pd->dir == (*state)->direction ? "fwd" : "rev"); 4320 } 4321 4322 if (dst->scrub || src->scrub) { 4323 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4324 *state, src, dst, copyback)) 4325 return (PF_DROP); 4326 } 4327 4328 /* update max window */ 4329 if (src->max_win < win) 4330 src->max_win = win; 4331 /* synchronize sequencing */ 4332 if (SEQ_GT(end, src->seqlo)) 4333 src->seqlo = end; 4334 /* slide the window of what the other end can send */ 4335 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4336 dst->seqhi = ack + MAX((win << sws), 1); 4337 4338 /* 4339 * Cannot set dst->seqhi here since this could be a shotgunned 4340 * SYN and not an already established connection. 4341 */ 4342 4343 if (th->th_flags & TH_FIN) 4344 if (src->state < TCPS_CLOSING) 4345 src->state = TCPS_CLOSING; 4346 if (th->th_flags & TH_RST) 4347 src->state = dst->state = TCPS_TIME_WAIT; 4348 4349 /* Fall through to PASS packet */ 4350 4351 } else { 4352 if ((*state)->dst.state == TCPS_SYN_SENT && 4353 (*state)->src.state == TCPS_SYN_SENT) { 4354 /* Send RST for state mismatches during handshake */ 4355 if (!(th->th_flags & TH_RST)) 4356 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4357 pd->dst, pd->src, th->th_dport, 4358 th->th_sport, ntohl(th->th_ack), 0, 4359 TH_RST, 0, 0, 4360 (*state)->rule.ptr->return_ttl, 1, 0, 4361 kif->pfik_ifp); 4362 src->seqlo = 0; 4363 src->seqhi = 1; 4364 src->max_win = 1; 4365 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4366 printf("pf: BAD state: "); 4367 pf_print_state(*state); 4368 pf_print_flags(th->th_flags); 4369 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4370 "pkts=%llu:%llu dir=%s,%s\n", 4371 seq, orig_seq, ack, pd->p_len, ackskew, 4372 (unsigned long long)counter_u64_fetch((*state)->packets[0]), 4373 (unsigned long long)counter_u64_fetch((*state)->packets[1]), 4374 pd->dir == PF_IN ? "in" : "out", 4375 pd->dir == (*state)->direction ? "fwd" : "rev"); 4376 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4377 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4378 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4379 ' ': '2', 4380 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4381 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4382 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4383 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4384 } 4385 REASON_SET(reason, PFRES_BADSTATE); 4386 return (PF_DROP); 4387 } 4388 4389 return (PF_PASS); 4390 } 4391 4392 static int 4393 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4394 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4395 { 4396 struct tcphdr *th = pd->hdr.tcp; 4397 4398 if (th->th_flags & TH_SYN) 4399 if (src->state < TCPS_SYN_SENT) 4400 src->state = TCPS_SYN_SENT; 4401 if (th->th_flags & TH_FIN) 4402 if (src->state < TCPS_CLOSING) 4403 src->state = TCPS_CLOSING; 4404 if (th->th_flags & TH_ACK) { 4405 if (dst->state == TCPS_SYN_SENT) { 4406 dst->state = TCPS_ESTABLISHED; 4407 if (src->state == TCPS_ESTABLISHED && 4408 (*state)->src_node != NULL && 4409 pf_src_connlimit(state)) { 4410 REASON_SET(reason, PFRES_SRCLIMIT); 4411 return (PF_DROP); 4412 } 4413 } else if (dst->state == TCPS_CLOSING) { 4414 dst->state = TCPS_FIN_WAIT_2; 4415 } else if (src->state == TCPS_SYN_SENT && 4416 dst->state < TCPS_SYN_SENT) { 4417 /* 4418 * Handle a special sloppy case where we only see one 4419 * half of the connection. If there is a ACK after 4420 * the initial SYN without ever seeing a packet from 4421 * the destination, set the connection to established. 4422 */ 4423 dst->state = src->state = TCPS_ESTABLISHED; 4424 if ((*state)->src_node != NULL && 4425 pf_src_connlimit(state)) { 4426 REASON_SET(reason, PFRES_SRCLIMIT); 4427 return (PF_DROP); 4428 } 4429 } else if (src->state == TCPS_CLOSING && 4430 dst->state == TCPS_ESTABLISHED && 4431 dst->seqlo == 0) { 4432 /* 4433 * Handle the closing of half connections where we 4434 * don't see the full bidirectional FIN/ACK+ACK 4435 * handshake. 4436 */ 4437 dst->state = TCPS_CLOSING; 4438 } 4439 } 4440 if (th->th_flags & TH_RST) 4441 src->state = dst->state = TCPS_TIME_WAIT; 4442 4443 /* update expire time */ 4444 (*state)->expire = time_uptime; 4445 if (src->state >= TCPS_FIN_WAIT_2 && 4446 dst->state >= TCPS_FIN_WAIT_2) 4447 (*state)->timeout = PFTM_TCP_CLOSED; 4448 else if (src->state >= TCPS_CLOSING && 4449 dst->state >= TCPS_CLOSING) 4450 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4451 else if (src->state < TCPS_ESTABLISHED || 4452 dst->state < TCPS_ESTABLISHED) 4453 (*state)->timeout = PFTM_TCP_OPENING; 4454 else if (src->state >= TCPS_CLOSING || 4455 dst->state >= TCPS_CLOSING) 4456 (*state)->timeout = PFTM_TCP_CLOSING; 4457 else 4458 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4459 4460 return (PF_PASS); 4461 } 4462 4463 static int 4464 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kkif *kif, 4465 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4466 u_short *reason) 4467 { 4468 struct pf_state_key_cmp key; 4469 struct tcphdr *th = pd->hdr.tcp; 4470 int copyback = 0; 4471 struct pf_state_peer *src, *dst; 4472 struct pf_state_key *sk; 4473 4474 bzero(&key, sizeof(key)); 4475 key.af = pd->af; 4476 key.proto = IPPROTO_TCP; 4477 if (direction == PF_IN) { /* wire side, straight */ 4478 PF_ACPY(&key.addr[0], pd->src, key.af); 4479 PF_ACPY(&key.addr[1], pd->dst, key.af); 4480 key.port[0] = th->th_sport; 4481 key.port[1] = th->th_dport; 4482 } else { /* stack side, reverse */ 4483 PF_ACPY(&key.addr[1], pd->src, key.af); 4484 PF_ACPY(&key.addr[0], pd->dst, key.af); 4485 key.port[1] = th->th_sport; 4486 key.port[0] = th->th_dport; 4487 } 4488 4489 STATE_LOOKUP(kif, &key, direction, *state, pd); 4490 4491 if (direction == (*state)->direction) { 4492 src = &(*state)->src; 4493 dst = &(*state)->dst; 4494 } else { 4495 src = &(*state)->dst; 4496 dst = &(*state)->src; 4497 } 4498 4499 sk = (*state)->key[pd->didx]; 4500 4501 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4502 if (direction != (*state)->direction) { 4503 REASON_SET(reason, PFRES_SYNPROXY); 4504 return (PF_SYNPROXY_DROP); 4505 } 4506 if (th->th_flags & TH_SYN) { 4507 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4508 REASON_SET(reason, PFRES_SYNPROXY); 4509 return (PF_DROP); 4510 } 4511 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4512 pd->src, th->th_dport, th->th_sport, 4513 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4514 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4515 REASON_SET(reason, PFRES_SYNPROXY); 4516 return (PF_SYNPROXY_DROP); 4517 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 4518 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4519 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4520 REASON_SET(reason, PFRES_SYNPROXY); 4521 return (PF_DROP); 4522 } else if ((*state)->src_node != NULL && 4523 pf_src_connlimit(state)) { 4524 REASON_SET(reason, PFRES_SRCLIMIT); 4525 return (PF_DROP); 4526 } else 4527 (*state)->src.state = PF_TCPS_PROXY_DST; 4528 } 4529 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4530 if (direction == (*state)->direction) { 4531 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4532 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4533 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4534 REASON_SET(reason, PFRES_SYNPROXY); 4535 return (PF_DROP); 4536 } 4537 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4538 if ((*state)->dst.seqhi == 1) 4539 (*state)->dst.seqhi = htonl(arc4random()); 4540 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4541 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4542 sk->port[pd->sidx], sk->port[pd->didx], 4543 (*state)->dst.seqhi, 0, TH_SYN, 0, 4544 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4545 REASON_SET(reason, PFRES_SYNPROXY); 4546 return (PF_SYNPROXY_DROP); 4547 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4548 (TH_SYN|TH_ACK)) || 4549 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4550 REASON_SET(reason, PFRES_SYNPROXY); 4551 return (PF_DROP); 4552 } else { 4553 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4554 (*state)->dst.seqlo = ntohl(th->th_seq); 4555 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4556 pd->src, th->th_dport, th->th_sport, 4557 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4558 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4559 (*state)->tag, NULL); 4560 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4561 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4562 sk->port[pd->sidx], sk->port[pd->didx], 4563 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4564 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4565 (*state)->src.seqdiff = (*state)->dst.seqhi - 4566 (*state)->src.seqlo; 4567 (*state)->dst.seqdiff = (*state)->src.seqhi - 4568 (*state)->dst.seqlo; 4569 (*state)->src.seqhi = (*state)->src.seqlo + 4570 (*state)->dst.max_win; 4571 (*state)->dst.seqhi = (*state)->dst.seqlo + 4572 (*state)->src.max_win; 4573 (*state)->src.wscale = (*state)->dst.wscale = 0; 4574 (*state)->src.state = (*state)->dst.state = 4575 TCPS_ESTABLISHED; 4576 REASON_SET(reason, PFRES_SYNPROXY); 4577 return (PF_SYNPROXY_DROP); 4578 } 4579 } 4580 4581 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4582 dst->state >= TCPS_FIN_WAIT_2 && 4583 src->state >= TCPS_FIN_WAIT_2) { 4584 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4585 printf("pf: state reuse "); 4586 pf_print_state(*state); 4587 pf_print_flags(th->th_flags); 4588 printf("\n"); 4589 } 4590 /* XXX make sure it's the same direction ?? */ 4591 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4592 pf_unlink_state(*state, PF_ENTER_LOCKED); 4593 *state = NULL; 4594 return (PF_DROP); 4595 } 4596 4597 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4598 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4599 return (PF_DROP); 4600 } else { 4601 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4602 ©back) == PF_DROP) 4603 return (PF_DROP); 4604 } 4605 4606 /* translate source/destination address, if necessary */ 4607 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4608 struct pf_state_key *nk = (*state)->key[pd->didx]; 4609 4610 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4611 nk->port[pd->sidx] != th->th_sport) 4612 pf_change_ap(m, pd->src, &th->th_sport, 4613 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4614 nk->port[pd->sidx], 0, pd->af); 4615 4616 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4617 nk->port[pd->didx] != th->th_dport) 4618 pf_change_ap(m, pd->dst, &th->th_dport, 4619 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4620 nk->port[pd->didx], 0, pd->af); 4621 copyback = 1; 4622 } 4623 4624 /* Copyback sequence modulation or stateful scrub changes if needed */ 4625 if (copyback) 4626 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4627 4628 return (PF_PASS); 4629 } 4630 4631 static int 4632 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kkif *kif, 4633 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4634 { 4635 struct pf_state_peer *src, *dst; 4636 struct pf_state_key_cmp key; 4637 struct udphdr *uh = pd->hdr.udp; 4638 4639 bzero(&key, sizeof(key)); 4640 key.af = pd->af; 4641 key.proto = IPPROTO_UDP; 4642 if (direction == PF_IN) { /* wire side, straight */ 4643 PF_ACPY(&key.addr[0], pd->src, key.af); 4644 PF_ACPY(&key.addr[1], pd->dst, key.af); 4645 key.port[0] = uh->uh_sport; 4646 key.port[1] = uh->uh_dport; 4647 } else { /* stack side, reverse */ 4648 PF_ACPY(&key.addr[1], pd->src, key.af); 4649 PF_ACPY(&key.addr[0], pd->dst, key.af); 4650 key.port[1] = uh->uh_sport; 4651 key.port[0] = uh->uh_dport; 4652 } 4653 4654 STATE_LOOKUP(kif, &key, direction, *state, pd); 4655 4656 if (direction == (*state)->direction) { 4657 src = &(*state)->src; 4658 dst = &(*state)->dst; 4659 } else { 4660 src = &(*state)->dst; 4661 dst = &(*state)->src; 4662 } 4663 4664 /* update states */ 4665 if (src->state < PFUDPS_SINGLE) 4666 src->state = PFUDPS_SINGLE; 4667 if (dst->state == PFUDPS_SINGLE) 4668 dst->state = PFUDPS_MULTIPLE; 4669 4670 /* update expire time */ 4671 (*state)->expire = time_uptime; 4672 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4673 (*state)->timeout = PFTM_UDP_MULTIPLE; 4674 else 4675 (*state)->timeout = PFTM_UDP_SINGLE; 4676 4677 /* translate source/destination address, if necessary */ 4678 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4679 struct pf_state_key *nk = (*state)->key[pd->didx]; 4680 4681 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4682 nk->port[pd->sidx] != uh->uh_sport) 4683 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4684 &uh->uh_sum, &nk->addr[pd->sidx], 4685 nk->port[pd->sidx], 1, pd->af); 4686 4687 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4688 nk->port[pd->didx] != uh->uh_dport) 4689 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4690 &uh->uh_sum, &nk->addr[pd->didx], 4691 nk->port[pd->didx], 1, pd->af); 4692 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4693 } 4694 4695 return (PF_PASS); 4696 } 4697 4698 static int 4699 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kkif *kif, 4700 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4701 { 4702 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4703 u_int16_t icmpid = 0, *icmpsum; 4704 u_int8_t icmptype, icmpcode; 4705 int state_icmp = 0; 4706 struct pf_state_key_cmp key; 4707 4708 bzero(&key, sizeof(key)); 4709 switch (pd->proto) { 4710 #ifdef INET 4711 case IPPROTO_ICMP: 4712 icmptype = pd->hdr.icmp->icmp_type; 4713 icmpcode = pd->hdr.icmp->icmp_code; 4714 icmpid = pd->hdr.icmp->icmp_id; 4715 icmpsum = &pd->hdr.icmp->icmp_cksum; 4716 4717 if (icmptype == ICMP_UNREACH || 4718 icmptype == ICMP_SOURCEQUENCH || 4719 icmptype == ICMP_REDIRECT || 4720 icmptype == ICMP_TIMXCEED || 4721 icmptype == ICMP_PARAMPROB) 4722 state_icmp++; 4723 break; 4724 #endif /* INET */ 4725 #ifdef INET6 4726 case IPPROTO_ICMPV6: 4727 icmptype = pd->hdr.icmp6->icmp6_type; 4728 icmpcode = pd->hdr.icmp6->icmp6_code; 4729 icmpid = pd->hdr.icmp6->icmp6_id; 4730 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4731 4732 if (icmptype == ICMP6_DST_UNREACH || 4733 icmptype == ICMP6_PACKET_TOO_BIG || 4734 icmptype == ICMP6_TIME_EXCEEDED || 4735 icmptype == ICMP6_PARAM_PROB) 4736 state_icmp++; 4737 break; 4738 #endif /* INET6 */ 4739 } 4740 4741 if (!state_icmp) { 4742 /* 4743 * ICMP query/reply message not related to a TCP/UDP packet. 4744 * Search for an ICMP state. 4745 */ 4746 key.af = pd->af; 4747 key.proto = pd->proto; 4748 key.port[0] = key.port[1] = icmpid; 4749 if (direction == PF_IN) { /* wire side, straight */ 4750 PF_ACPY(&key.addr[0], pd->src, key.af); 4751 PF_ACPY(&key.addr[1], pd->dst, key.af); 4752 } else { /* stack side, reverse */ 4753 PF_ACPY(&key.addr[1], pd->src, key.af); 4754 PF_ACPY(&key.addr[0], pd->dst, key.af); 4755 } 4756 4757 STATE_LOOKUP(kif, &key, direction, *state, pd); 4758 4759 (*state)->expire = time_uptime; 4760 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4761 4762 /* translate source/destination address, if necessary */ 4763 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4764 struct pf_state_key *nk = (*state)->key[pd->didx]; 4765 4766 switch (pd->af) { 4767 #ifdef INET 4768 case AF_INET: 4769 if (PF_ANEQ(pd->src, 4770 &nk->addr[pd->sidx], AF_INET)) 4771 pf_change_a(&saddr->v4.s_addr, 4772 pd->ip_sum, 4773 nk->addr[pd->sidx].v4.s_addr, 0); 4774 4775 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4776 AF_INET)) 4777 pf_change_a(&daddr->v4.s_addr, 4778 pd->ip_sum, 4779 nk->addr[pd->didx].v4.s_addr, 0); 4780 4781 if (nk->port[0] != 4782 pd->hdr.icmp->icmp_id) { 4783 pd->hdr.icmp->icmp_cksum = 4784 pf_cksum_fixup( 4785 pd->hdr.icmp->icmp_cksum, icmpid, 4786 nk->port[pd->sidx], 0); 4787 pd->hdr.icmp->icmp_id = 4788 nk->port[pd->sidx]; 4789 } 4790 4791 m_copyback(m, off, ICMP_MINLEN, 4792 (caddr_t )pd->hdr.icmp); 4793 break; 4794 #endif /* INET */ 4795 #ifdef INET6 4796 case AF_INET6: 4797 if (PF_ANEQ(pd->src, 4798 &nk->addr[pd->sidx], AF_INET6)) 4799 pf_change_a6(saddr, 4800 &pd->hdr.icmp6->icmp6_cksum, 4801 &nk->addr[pd->sidx], 0); 4802 4803 if (PF_ANEQ(pd->dst, 4804 &nk->addr[pd->didx], AF_INET6)) 4805 pf_change_a6(daddr, 4806 &pd->hdr.icmp6->icmp6_cksum, 4807 &nk->addr[pd->didx], 0); 4808 4809 m_copyback(m, off, sizeof(struct icmp6_hdr), 4810 (caddr_t )pd->hdr.icmp6); 4811 break; 4812 #endif /* INET6 */ 4813 } 4814 } 4815 return (PF_PASS); 4816 4817 } else { 4818 /* 4819 * ICMP error message in response to a TCP/UDP packet. 4820 * Extract the inner TCP/UDP header and search for that state. 4821 */ 4822 4823 struct pf_pdesc pd2; 4824 bzero(&pd2, sizeof pd2); 4825 #ifdef INET 4826 struct ip h2; 4827 #endif /* INET */ 4828 #ifdef INET6 4829 struct ip6_hdr h2_6; 4830 int terminal = 0; 4831 #endif /* INET6 */ 4832 int ipoff2 = 0; 4833 int off2 = 0; 4834 4835 pd2.af = pd->af; 4836 /* Payload packet is from the opposite direction. */ 4837 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4838 pd2.didx = (direction == PF_IN) ? 0 : 1; 4839 switch (pd->af) { 4840 #ifdef INET 4841 case AF_INET: 4842 /* offset of h2 in mbuf chain */ 4843 ipoff2 = off + ICMP_MINLEN; 4844 4845 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4846 NULL, reason, pd2.af)) { 4847 DPFPRINTF(PF_DEBUG_MISC, 4848 ("pf: ICMP error message too short " 4849 "(ip)\n")); 4850 return (PF_DROP); 4851 } 4852 /* 4853 * ICMP error messages don't refer to non-first 4854 * fragments 4855 */ 4856 if (h2.ip_off & htons(IP_OFFMASK)) { 4857 REASON_SET(reason, PFRES_FRAG); 4858 return (PF_DROP); 4859 } 4860 4861 /* offset of protocol header that follows h2 */ 4862 off2 = ipoff2 + (h2.ip_hl << 2); 4863 4864 pd2.proto = h2.ip_p; 4865 pd2.src = (struct pf_addr *)&h2.ip_src; 4866 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4867 pd2.ip_sum = &h2.ip_sum; 4868 break; 4869 #endif /* INET */ 4870 #ifdef INET6 4871 case AF_INET6: 4872 ipoff2 = off + sizeof(struct icmp6_hdr); 4873 4874 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4875 NULL, reason, pd2.af)) { 4876 DPFPRINTF(PF_DEBUG_MISC, 4877 ("pf: ICMP error message too short " 4878 "(ip6)\n")); 4879 return (PF_DROP); 4880 } 4881 pd2.proto = h2_6.ip6_nxt; 4882 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4883 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4884 pd2.ip_sum = NULL; 4885 off2 = ipoff2 + sizeof(h2_6); 4886 do { 4887 switch (pd2.proto) { 4888 case IPPROTO_FRAGMENT: 4889 /* 4890 * ICMPv6 error messages for 4891 * non-first fragments 4892 */ 4893 REASON_SET(reason, PFRES_FRAG); 4894 return (PF_DROP); 4895 case IPPROTO_AH: 4896 case IPPROTO_HOPOPTS: 4897 case IPPROTO_ROUTING: 4898 case IPPROTO_DSTOPTS: { 4899 /* get next header and header length */ 4900 struct ip6_ext opt6; 4901 4902 if (!pf_pull_hdr(m, off2, &opt6, 4903 sizeof(opt6), NULL, reason, 4904 pd2.af)) { 4905 DPFPRINTF(PF_DEBUG_MISC, 4906 ("pf: ICMPv6 short opt\n")); 4907 return (PF_DROP); 4908 } 4909 if (pd2.proto == IPPROTO_AH) 4910 off2 += (opt6.ip6e_len + 2) * 4; 4911 else 4912 off2 += (opt6.ip6e_len + 1) * 8; 4913 pd2.proto = opt6.ip6e_nxt; 4914 /* goto the next header */ 4915 break; 4916 } 4917 default: 4918 terminal++; 4919 break; 4920 } 4921 } while (!terminal); 4922 break; 4923 #endif /* INET6 */ 4924 } 4925 4926 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 4927 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4928 printf("pf: BAD ICMP %d:%d outer dst: ", 4929 icmptype, icmpcode); 4930 pf_print_host(pd->src, 0, pd->af); 4931 printf(" -> "); 4932 pf_print_host(pd->dst, 0, pd->af); 4933 printf(" inner src: "); 4934 pf_print_host(pd2.src, 0, pd2.af); 4935 printf(" -> "); 4936 pf_print_host(pd2.dst, 0, pd2.af); 4937 printf("\n"); 4938 } 4939 REASON_SET(reason, PFRES_BADSTATE); 4940 return (PF_DROP); 4941 } 4942 4943 switch (pd2.proto) { 4944 case IPPROTO_TCP: { 4945 struct tcphdr th; 4946 u_int32_t seq; 4947 struct pf_state_peer *src, *dst; 4948 u_int8_t dws; 4949 int copyback = 0; 4950 4951 /* 4952 * Only the first 8 bytes of the TCP header can be 4953 * expected. Don't access any TCP header fields after 4954 * th_seq, an ackskew test is not possible. 4955 */ 4956 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4957 pd2.af)) { 4958 DPFPRINTF(PF_DEBUG_MISC, 4959 ("pf: ICMP error message too short " 4960 "(tcp)\n")); 4961 return (PF_DROP); 4962 } 4963 4964 key.af = pd2.af; 4965 key.proto = IPPROTO_TCP; 4966 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4967 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4968 key.port[pd2.sidx] = th.th_sport; 4969 key.port[pd2.didx] = th.th_dport; 4970 4971 STATE_LOOKUP(kif, &key, direction, *state, pd); 4972 4973 if (direction == (*state)->direction) { 4974 src = &(*state)->dst; 4975 dst = &(*state)->src; 4976 } else { 4977 src = &(*state)->src; 4978 dst = &(*state)->dst; 4979 } 4980 4981 if (src->wscale && dst->wscale) 4982 dws = dst->wscale & PF_WSCALE_MASK; 4983 else 4984 dws = 0; 4985 4986 /* Demodulate sequence number */ 4987 seq = ntohl(th.th_seq) - src->seqdiff; 4988 if (src->seqdiff) { 4989 pf_change_a(&th.th_seq, icmpsum, 4990 htonl(seq), 0); 4991 copyback = 1; 4992 } 4993 4994 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4995 (!SEQ_GEQ(src->seqhi, seq) || 4996 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4997 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4998 printf("pf: BAD ICMP %d:%d ", 4999 icmptype, icmpcode); 5000 pf_print_host(pd->src, 0, pd->af); 5001 printf(" -> "); 5002 pf_print_host(pd->dst, 0, pd->af); 5003 printf(" state: "); 5004 pf_print_state(*state); 5005 printf(" seq=%u\n", seq); 5006 } 5007 REASON_SET(reason, PFRES_BADSTATE); 5008 return (PF_DROP); 5009 } else { 5010 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5011 printf("pf: OK ICMP %d:%d ", 5012 icmptype, icmpcode); 5013 pf_print_host(pd->src, 0, pd->af); 5014 printf(" -> "); 5015 pf_print_host(pd->dst, 0, pd->af); 5016 printf(" state: "); 5017 pf_print_state(*state); 5018 printf(" seq=%u\n", seq); 5019 } 5020 } 5021 5022 /* translate source/destination address, if necessary */ 5023 if ((*state)->key[PF_SK_WIRE] != 5024 (*state)->key[PF_SK_STACK]) { 5025 struct pf_state_key *nk = 5026 (*state)->key[pd->didx]; 5027 5028 if (PF_ANEQ(pd2.src, 5029 &nk->addr[pd2.sidx], pd2.af) || 5030 nk->port[pd2.sidx] != th.th_sport) 5031 pf_change_icmp(pd2.src, &th.th_sport, 5032 daddr, &nk->addr[pd2.sidx], 5033 nk->port[pd2.sidx], NULL, 5034 pd2.ip_sum, icmpsum, 5035 pd->ip_sum, 0, pd2.af); 5036 5037 if (PF_ANEQ(pd2.dst, 5038 &nk->addr[pd2.didx], pd2.af) || 5039 nk->port[pd2.didx] != th.th_dport) 5040 pf_change_icmp(pd2.dst, &th.th_dport, 5041 saddr, &nk->addr[pd2.didx], 5042 nk->port[pd2.didx], NULL, 5043 pd2.ip_sum, icmpsum, 5044 pd->ip_sum, 0, pd2.af); 5045 copyback = 1; 5046 } 5047 5048 if (copyback) { 5049 switch (pd2.af) { 5050 #ifdef INET 5051 case AF_INET: 5052 m_copyback(m, off, ICMP_MINLEN, 5053 (caddr_t )pd->hdr.icmp); 5054 m_copyback(m, ipoff2, sizeof(h2), 5055 (caddr_t )&h2); 5056 break; 5057 #endif /* INET */ 5058 #ifdef INET6 5059 case AF_INET6: 5060 m_copyback(m, off, 5061 sizeof(struct icmp6_hdr), 5062 (caddr_t )pd->hdr.icmp6); 5063 m_copyback(m, ipoff2, sizeof(h2_6), 5064 (caddr_t )&h2_6); 5065 break; 5066 #endif /* INET6 */ 5067 } 5068 m_copyback(m, off2, 8, (caddr_t)&th); 5069 } 5070 5071 return (PF_PASS); 5072 break; 5073 } 5074 case IPPROTO_UDP: { 5075 struct udphdr uh; 5076 5077 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 5078 NULL, reason, pd2.af)) { 5079 DPFPRINTF(PF_DEBUG_MISC, 5080 ("pf: ICMP error message too short " 5081 "(udp)\n")); 5082 return (PF_DROP); 5083 } 5084 5085 key.af = pd2.af; 5086 key.proto = IPPROTO_UDP; 5087 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5088 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5089 key.port[pd2.sidx] = uh.uh_sport; 5090 key.port[pd2.didx] = uh.uh_dport; 5091 5092 STATE_LOOKUP(kif, &key, direction, *state, pd); 5093 5094 /* translate source/destination address, if necessary */ 5095 if ((*state)->key[PF_SK_WIRE] != 5096 (*state)->key[PF_SK_STACK]) { 5097 struct pf_state_key *nk = 5098 (*state)->key[pd->didx]; 5099 5100 if (PF_ANEQ(pd2.src, 5101 &nk->addr[pd2.sidx], pd2.af) || 5102 nk->port[pd2.sidx] != uh.uh_sport) 5103 pf_change_icmp(pd2.src, &uh.uh_sport, 5104 daddr, &nk->addr[pd2.sidx], 5105 nk->port[pd2.sidx], &uh.uh_sum, 5106 pd2.ip_sum, icmpsum, 5107 pd->ip_sum, 1, pd2.af); 5108 5109 if (PF_ANEQ(pd2.dst, 5110 &nk->addr[pd2.didx], pd2.af) || 5111 nk->port[pd2.didx] != uh.uh_dport) 5112 pf_change_icmp(pd2.dst, &uh.uh_dport, 5113 saddr, &nk->addr[pd2.didx], 5114 nk->port[pd2.didx], &uh.uh_sum, 5115 pd2.ip_sum, icmpsum, 5116 pd->ip_sum, 1, pd2.af); 5117 5118 switch (pd2.af) { 5119 #ifdef INET 5120 case AF_INET: 5121 m_copyback(m, off, ICMP_MINLEN, 5122 (caddr_t )pd->hdr.icmp); 5123 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5124 break; 5125 #endif /* INET */ 5126 #ifdef INET6 5127 case AF_INET6: 5128 m_copyback(m, off, 5129 sizeof(struct icmp6_hdr), 5130 (caddr_t )pd->hdr.icmp6); 5131 m_copyback(m, ipoff2, sizeof(h2_6), 5132 (caddr_t )&h2_6); 5133 break; 5134 #endif /* INET6 */ 5135 } 5136 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 5137 } 5138 return (PF_PASS); 5139 break; 5140 } 5141 #ifdef INET 5142 case IPPROTO_ICMP: { 5143 struct icmp iih; 5144 5145 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 5146 NULL, reason, pd2.af)) { 5147 DPFPRINTF(PF_DEBUG_MISC, 5148 ("pf: ICMP error message too short i" 5149 "(icmp)\n")); 5150 return (PF_DROP); 5151 } 5152 5153 key.af = pd2.af; 5154 key.proto = IPPROTO_ICMP; 5155 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5156 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5157 key.port[0] = key.port[1] = iih.icmp_id; 5158 5159 STATE_LOOKUP(kif, &key, direction, *state, pd); 5160 5161 /* translate source/destination address, if necessary */ 5162 if ((*state)->key[PF_SK_WIRE] != 5163 (*state)->key[PF_SK_STACK]) { 5164 struct pf_state_key *nk = 5165 (*state)->key[pd->didx]; 5166 5167 if (PF_ANEQ(pd2.src, 5168 &nk->addr[pd2.sidx], pd2.af) || 5169 nk->port[pd2.sidx] != iih.icmp_id) 5170 pf_change_icmp(pd2.src, &iih.icmp_id, 5171 daddr, &nk->addr[pd2.sidx], 5172 nk->port[pd2.sidx], NULL, 5173 pd2.ip_sum, icmpsum, 5174 pd->ip_sum, 0, AF_INET); 5175 5176 if (PF_ANEQ(pd2.dst, 5177 &nk->addr[pd2.didx], pd2.af) || 5178 nk->port[pd2.didx] != iih.icmp_id) 5179 pf_change_icmp(pd2.dst, &iih.icmp_id, 5180 saddr, &nk->addr[pd2.didx], 5181 nk->port[pd2.didx], NULL, 5182 pd2.ip_sum, icmpsum, 5183 pd->ip_sum, 0, AF_INET); 5184 5185 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 5186 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5187 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5188 } 5189 return (PF_PASS); 5190 break; 5191 } 5192 #endif /* INET */ 5193 #ifdef INET6 5194 case IPPROTO_ICMPV6: { 5195 struct icmp6_hdr iih; 5196 5197 if (!pf_pull_hdr(m, off2, &iih, 5198 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5199 DPFPRINTF(PF_DEBUG_MISC, 5200 ("pf: ICMP error message too short " 5201 "(icmp6)\n")); 5202 return (PF_DROP); 5203 } 5204 5205 key.af = pd2.af; 5206 key.proto = IPPROTO_ICMPV6; 5207 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5208 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5209 key.port[0] = key.port[1] = iih.icmp6_id; 5210 5211 STATE_LOOKUP(kif, &key, direction, *state, pd); 5212 5213 /* translate source/destination address, if necessary */ 5214 if ((*state)->key[PF_SK_WIRE] != 5215 (*state)->key[PF_SK_STACK]) { 5216 struct pf_state_key *nk = 5217 (*state)->key[pd->didx]; 5218 5219 if (PF_ANEQ(pd2.src, 5220 &nk->addr[pd2.sidx], pd2.af) || 5221 nk->port[pd2.sidx] != iih.icmp6_id) 5222 pf_change_icmp(pd2.src, &iih.icmp6_id, 5223 daddr, &nk->addr[pd2.sidx], 5224 nk->port[pd2.sidx], NULL, 5225 pd2.ip_sum, icmpsum, 5226 pd->ip_sum, 0, AF_INET6); 5227 5228 if (PF_ANEQ(pd2.dst, 5229 &nk->addr[pd2.didx], pd2.af) || 5230 nk->port[pd2.didx] != iih.icmp6_id) 5231 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5232 saddr, &nk->addr[pd2.didx], 5233 nk->port[pd2.didx], NULL, 5234 pd2.ip_sum, icmpsum, 5235 pd->ip_sum, 0, AF_INET6); 5236 5237 m_copyback(m, off, sizeof(struct icmp6_hdr), 5238 (caddr_t)pd->hdr.icmp6); 5239 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5240 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5241 (caddr_t)&iih); 5242 } 5243 return (PF_PASS); 5244 break; 5245 } 5246 #endif /* INET6 */ 5247 default: { 5248 key.af = pd2.af; 5249 key.proto = pd2.proto; 5250 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5251 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5252 key.port[0] = key.port[1] = 0; 5253 5254 STATE_LOOKUP(kif, &key, direction, *state, pd); 5255 5256 /* translate source/destination address, if necessary */ 5257 if ((*state)->key[PF_SK_WIRE] != 5258 (*state)->key[PF_SK_STACK]) { 5259 struct pf_state_key *nk = 5260 (*state)->key[pd->didx]; 5261 5262 if (PF_ANEQ(pd2.src, 5263 &nk->addr[pd2.sidx], pd2.af)) 5264 pf_change_icmp(pd2.src, NULL, daddr, 5265 &nk->addr[pd2.sidx], 0, NULL, 5266 pd2.ip_sum, icmpsum, 5267 pd->ip_sum, 0, pd2.af); 5268 5269 if (PF_ANEQ(pd2.dst, 5270 &nk->addr[pd2.didx], pd2.af)) 5271 pf_change_icmp(pd2.dst, NULL, saddr, 5272 &nk->addr[pd2.didx], 0, NULL, 5273 pd2.ip_sum, icmpsum, 5274 pd->ip_sum, 0, pd2.af); 5275 5276 switch (pd2.af) { 5277 #ifdef INET 5278 case AF_INET: 5279 m_copyback(m, off, ICMP_MINLEN, 5280 (caddr_t)pd->hdr.icmp); 5281 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5282 break; 5283 #endif /* INET */ 5284 #ifdef INET6 5285 case AF_INET6: 5286 m_copyback(m, off, 5287 sizeof(struct icmp6_hdr), 5288 (caddr_t )pd->hdr.icmp6); 5289 m_copyback(m, ipoff2, sizeof(h2_6), 5290 (caddr_t )&h2_6); 5291 break; 5292 #endif /* INET6 */ 5293 } 5294 } 5295 return (PF_PASS); 5296 break; 5297 } 5298 } 5299 } 5300 } 5301 5302 static int 5303 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kkif *kif, 5304 struct mbuf *m, struct pf_pdesc *pd) 5305 { 5306 struct pf_state_peer *src, *dst; 5307 struct pf_state_key_cmp key; 5308 5309 bzero(&key, sizeof(key)); 5310 key.af = pd->af; 5311 key.proto = pd->proto; 5312 if (direction == PF_IN) { 5313 PF_ACPY(&key.addr[0], pd->src, key.af); 5314 PF_ACPY(&key.addr[1], pd->dst, key.af); 5315 key.port[0] = key.port[1] = 0; 5316 } else { 5317 PF_ACPY(&key.addr[1], pd->src, key.af); 5318 PF_ACPY(&key.addr[0], pd->dst, key.af); 5319 key.port[1] = key.port[0] = 0; 5320 } 5321 5322 STATE_LOOKUP(kif, &key, direction, *state, pd); 5323 5324 if (direction == (*state)->direction) { 5325 src = &(*state)->src; 5326 dst = &(*state)->dst; 5327 } else { 5328 src = &(*state)->dst; 5329 dst = &(*state)->src; 5330 } 5331 5332 /* update states */ 5333 if (src->state < PFOTHERS_SINGLE) 5334 src->state = PFOTHERS_SINGLE; 5335 if (dst->state == PFOTHERS_SINGLE) 5336 dst->state = PFOTHERS_MULTIPLE; 5337 5338 /* update expire time */ 5339 (*state)->expire = time_uptime; 5340 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5341 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5342 else 5343 (*state)->timeout = PFTM_OTHER_SINGLE; 5344 5345 /* translate source/destination address, if necessary */ 5346 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5347 struct pf_state_key *nk = (*state)->key[pd->didx]; 5348 5349 KASSERT(nk, ("%s: nk is null", __func__)); 5350 KASSERT(pd, ("%s: pd is null", __func__)); 5351 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5352 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5353 switch (pd->af) { 5354 #ifdef INET 5355 case AF_INET: 5356 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5357 pf_change_a(&pd->src->v4.s_addr, 5358 pd->ip_sum, 5359 nk->addr[pd->sidx].v4.s_addr, 5360 0); 5361 5362 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5363 pf_change_a(&pd->dst->v4.s_addr, 5364 pd->ip_sum, 5365 nk->addr[pd->didx].v4.s_addr, 5366 0); 5367 5368 break; 5369 #endif /* INET */ 5370 #ifdef INET6 5371 case AF_INET6: 5372 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5373 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5374 5375 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5376 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5377 #endif /* INET6 */ 5378 } 5379 } 5380 return (PF_PASS); 5381 } 5382 5383 /* 5384 * ipoff and off are measured from the start of the mbuf chain. 5385 * h must be at "ipoff" on the mbuf chain. 5386 */ 5387 void * 5388 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5389 u_short *actionp, u_short *reasonp, sa_family_t af) 5390 { 5391 switch (af) { 5392 #ifdef INET 5393 case AF_INET: { 5394 struct ip *h = mtod(m, struct ip *); 5395 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5396 5397 if (fragoff) { 5398 if (fragoff >= len) 5399 ACTION_SET(actionp, PF_PASS); 5400 else { 5401 ACTION_SET(actionp, PF_DROP); 5402 REASON_SET(reasonp, PFRES_FRAG); 5403 } 5404 return (NULL); 5405 } 5406 if (m->m_pkthdr.len < off + len || 5407 ntohs(h->ip_len) < off + len) { 5408 ACTION_SET(actionp, PF_DROP); 5409 REASON_SET(reasonp, PFRES_SHORT); 5410 return (NULL); 5411 } 5412 break; 5413 } 5414 #endif /* INET */ 5415 #ifdef INET6 5416 case AF_INET6: { 5417 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5418 5419 if (m->m_pkthdr.len < off + len || 5420 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5421 (unsigned)(off + len)) { 5422 ACTION_SET(actionp, PF_DROP); 5423 REASON_SET(reasonp, PFRES_SHORT); 5424 return (NULL); 5425 } 5426 break; 5427 } 5428 #endif /* INET6 */ 5429 } 5430 m_copydata(m, off, len, p); 5431 return (p); 5432 } 5433 5434 int 5435 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 5436 int rtableid) 5437 { 5438 struct ifnet *ifp; 5439 5440 /* 5441 * Skip check for addresses with embedded interface scope, 5442 * as they would always match anyway. 5443 */ 5444 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5445 return (1); 5446 5447 if (af != AF_INET && af != AF_INET6) 5448 return (0); 5449 5450 /* Skip checks for ipsec interfaces */ 5451 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5452 return (1); 5453 5454 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 5455 5456 switch (af) { 5457 #ifdef INET6 5458 case AF_INET6: 5459 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 5460 ifp)); 5461 #endif 5462 #ifdef INET 5463 case AF_INET: 5464 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 5465 ifp)); 5466 #endif 5467 } 5468 5469 return (0); 5470 } 5471 5472 #ifdef INET 5473 static void 5474 pf_route(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 5475 struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) 5476 { 5477 struct mbuf *m0, *m1; 5478 struct sockaddr_in dst; 5479 struct ip *ip; 5480 struct ifnet *ifp = NULL; 5481 struct pf_addr naddr; 5482 struct pf_ksrc_node *sn = NULL; 5483 int error = 0; 5484 uint16_t ip_len, ip_off; 5485 5486 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5487 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5488 __func__)); 5489 5490 if ((pd->pf_mtag == NULL && 5491 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5492 pd->pf_mtag->routed++ > 3) { 5493 m0 = *m; 5494 *m = NULL; 5495 goto bad_locked; 5496 } 5497 5498 if (r->rt == PF_DUPTO) { 5499 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 5500 if (s == NULL) { 5501 ifp = r->rpool.cur->kif ? 5502 r->rpool.cur->kif->pfik_ifp : NULL; 5503 } else { 5504 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5505 PF_STATE_UNLOCK(s); 5506 } 5507 if (ifp == oifp) { 5508 /* When the 2nd interface is not skipped */ 5509 return; 5510 } else { 5511 m0 = *m; 5512 *m = NULL; 5513 goto bad; 5514 } 5515 } else { 5516 pd->pf_mtag->flags |= PF_DUPLICATED; 5517 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 5518 if (s) 5519 PF_STATE_UNLOCK(s); 5520 return; 5521 } 5522 } 5523 } else { 5524 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5525 if (s) 5526 PF_STATE_UNLOCK(s); 5527 return; 5528 } 5529 m0 = *m; 5530 } 5531 5532 ip = mtod(m0, struct ip *); 5533 5534 bzero(&dst, sizeof(dst)); 5535 dst.sin_family = AF_INET; 5536 dst.sin_len = sizeof(dst); 5537 dst.sin_addr = ip->ip_dst; 5538 5539 bzero(&naddr, sizeof(naddr)); 5540 5541 if (TAILQ_EMPTY(&r->rpool.list)) { 5542 DPFPRINTF(PF_DEBUG_URGENT, 5543 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5544 goto bad_locked; 5545 } 5546 if (s == NULL) { 5547 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5548 &naddr, NULL, &sn); 5549 if (!PF_AZERO(&naddr, AF_INET)) 5550 dst.sin_addr.s_addr = naddr.v4.s_addr; 5551 ifp = r->rpool.cur->kif ? 5552 r->rpool.cur->kif->pfik_ifp : NULL; 5553 } else { 5554 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5555 dst.sin_addr.s_addr = 5556 s->rt_addr.v4.s_addr; 5557 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5558 PF_STATE_UNLOCK(s); 5559 } 5560 if (ifp == NULL) 5561 goto bad; 5562 5563 if (dir == PF_IN) { 5564 if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 5565 goto bad; 5566 else if (m0 == NULL) 5567 goto done; 5568 if (m0->m_len < sizeof(struct ip)) { 5569 DPFPRINTF(PF_DEBUG_URGENT, 5570 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5571 goto bad; 5572 } 5573 ip = mtod(m0, struct ip *); 5574 } 5575 5576 if (ifp->if_flags & IFF_LOOPBACK) 5577 m0->m_flags |= M_SKIP_FIREWALL; 5578 5579 ip_len = ntohs(ip->ip_len); 5580 ip_off = ntohs(ip->ip_off); 5581 5582 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5583 m0->m_pkthdr.csum_flags |= CSUM_IP; 5584 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5585 m0 = mb_unmapped_to_ext(m0); 5586 if (m0 == NULL) 5587 goto done; 5588 in_delayed_cksum(m0); 5589 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5590 } 5591 #if defined(SCTP) || defined(SCTP_SUPPORT) 5592 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5593 m0 = mb_unmapped_to_ext(m0); 5594 if (m0 == NULL) 5595 goto done; 5596 sctp_delayed_cksum(m0, (uint32_t)(ip->ip_hl << 2)); 5597 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5598 } 5599 #endif 5600 5601 /* 5602 * If small enough for interface, or the interface will take 5603 * care of the fragmentation for us, we can just send directly. 5604 */ 5605 if (ip_len <= ifp->if_mtu || 5606 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5607 ip->ip_sum = 0; 5608 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5609 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5610 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5611 } 5612 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5613 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5614 goto done; 5615 } 5616 5617 /* Balk when DF bit is set or the interface didn't support TSO. */ 5618 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5619 error = EMSGSIZE; 5620 KMOD_IPSTAT_INC(ips_cantfrag); 5621 if (r->rt != PF_DUPTO) { 5622 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5623 ifp->if_mtu); 5624 goto done; 5625 } else 5626 goto bad; 5627 } 5628 5629 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5630 if (error) 5631 goto bad; 5632 5633 for (; m0; m0 = m1) { 5634 m1 = m0->m_nextpkt; 5635 m0->m_nextpkt = NULL; 5636 if (error == 0) { 5637 m_clrprotoflags(m0); 5638 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5639 } else 5640 m_freem(m0); 5641 } 5642 5643 if (error == 0) 5644 KMOD_IPSTAT_INC(ips_fragmented); 5645 5646 done: 5647 if (r->rt != PF_DUPTO) 5648 *m = NULL; 5649 return; 5650 5651 bad_locked: 5652 if (s) 5653 PF_STATE_UNLOCK(s); 5654 bad: 5655 m_freem(m0); 5656 goto done; 5657 } 5658 #endif /* INET */ 5659 5660 #ifdef INET6 5661 static void 5662 pf_route6(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 5663 struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) 5664 { 5665 struct mbuf *m0; 5666 struct sockaddr_in6 dst; 5667 struct ip6_hdr *ip6; 5668 struct ifnet *ifp = NULL; 5669 struct pf_addr naddr; 5670 struct pf_ksrc_node *sn = NULL; 5671 5672 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5673 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5674 __func__)); 5675 5676 if ((pd->pf_mtag == NULL && 5677 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5678 pd->pf_mtag->routed++ > 3) { 5679 m0 = *m; 5680 *m = NULL; 5681 goto bad_locked; 5682 } 5683 5684 if (r->rt == PF_DUPTO) { 5685 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 5686 if (s == NULL) { 5687 ifp = r->rpool.cur->kif ? 5688 r->rpool.cur->kif->pfik_ifp : NULL; 5689 } else { 5690 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5691 PF_STATE_UNLOCK(s); 5692 } 5693 if (ifp == oifp) { 5694 /* When the 2nd interface is not skipped */ 5695 return; 5696 } else { 5697 m0 = *m; 5698 *m = NULL; 5699 goto bad; 5700 } 5701 } else { 5702 pd->pf_mtag->flags |= PF_DUPLICATED; 5703 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 5704 if (s) 5705 PF_STATE_UNLOCK(s); 5706 return; 5707 } 5708 } 5709 } else { 5710 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5711 if (s) 5712 PF_STATE_UNLOCK(s); 5713 return; 5714 } 5715 m0 = *m; 5716 } 5717 5718 ip6 = mtod(m0, struct ip6_hdr *); 5719 5720 bzero(&dst, sizeof(dst)); 5721 dst.sin6_family = AF_INET6; 5722 dst.sin6_len = sizeof(dst); 5723 dst.sin6_addr = ip6->ip6_dst; 5724 5725 bzero(&naddr, sizeof(naddr)); 5726 5727 if (TAILQ_EMPTY(&r->rpool.list)) { 5728 DPFPRINTF(PF_DEBUG_URGENT, 5729 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5730 goto bad_locked; 5731 } 5732 if (s == NULL) { 5733 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5734 &naddr, NULL, &sn); 5735 if (!PF_AZERO(&naddr, AF_INET6)) 5736 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5737 &naddr, AF_INET6); 5738 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5739 } else { 5740 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5741 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5742 &s->rt_addr, AF_INET6); 5743 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5744 } 5745 5746 if (s) 5747 PF_STATE_UNLOCK(s); 5748 5749 if (ifp == NULL) 5750 goto bad; 5751 5752 if (dir == PF_IN) { 5753 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS) 5754 goto bad; 5755 else if (m0 == NULL) 5756 goto done; 5757 if (m0->m_len < sizeof(struct ip6_hdr)) { 5758 DPFPRINTF(PF_DEBUG_URGENT, 5759 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5760 __func__)); 5761 goto bad; 5762 } 5763 ip6 = mtod(m0, struct ip6_hdr *); 5764 } 5765 5766 if (ifp->if_flags & IFF_LOOPBACK) 5767 m0->m_flags |= M_SKIP_FIREWALL; 5768 5769 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5770 ~ifp->if_hwassist) { 5771 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5772 m0 = mb_unmapped_to_ext(m0); 5773 if (m0 == NULL) 5774 goto done; 5775 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5776 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5777 } 5778 5779 /* 5780 * If the packet is too large for the outgoing interface, 5781 * send back an icmp6 error. 5782 */ 5783 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5784 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5785 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5786 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5787 else { 5788 in6_ifstat_inc(ifp, ifs6_in_toobig); 5789 if (r->rt != PF_DUPTO) 5790 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5791 else 5792 goto bad; 5793 } 5794 5795 done: 5796 if (r->rt != PF_DUPTO) 5797 *m = NULL; 5798 return; 5799 5800 bad_locked: 5801 if (s) 5802 PF_STATE_UNLOCK(s); 5803 bad: 5804 m_freem(m0); 5805 goto done; 5806 } 5807 #endif /* INET6 */ 5808 5809 /* 5810 * FreeBSD supports cksum offloads for the following drivers. 5811 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 5812 * 5813 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5814 * network driver performed cksum including pseudo header, need to verify 5815 * csum_data 5816 * CSUM_DATA_VALID : 5817 * network driver performed cksum, needs to additional pseudo header 5818 * cksum computation with partial csum_data(i.e. lack of H/W support for 5819 * pseudo header, for instance sk(4) and possibly gem(4)) 5820 * 5821 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5822 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5823 * TCP/UDP layer. 5824 * Also, set csum_data to 0xffff to force cksum validation. 5825 */ 5826 static int 5827 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5828 { 5829 u_int16_t sum = 0; 5830 int hw_assist = 0; 5831 struct ip *ip; 5832 5833 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5834 return (1); 5835 if (m->m_pkthdr.len < off + len) 5836 return (1); 5837 5838 switch (p) { 5839 case IPPROTO_TCP: 5840 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5841 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5842 sum = m->m_pkthdr.csum_data; 5843 } else { 5844 ip = mtod(m, struct ip *); 5845 sum = in_pseudo(ip->ip_src.s_addr, 5846 ip->ip_dst.s_addr, htonl((u_short)len + 5847 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5848 } 5849 sum ^= 0xffff; 5850 ++hw_assist; 5851 } 5852 break; 5853 case IPPROTO_UDP: 5854 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5855 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5856 sum = m->m_pkthdr.csum_data; 5857 } else { 5858 ip = mtod(m, struct ip *); 5859 sum = in_pseudo(ip->ip_src.s_addr, 5860 ip->ip_dst.s_addr, htonl((u_short)len + 5861 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5862 } 5863 sum ^= 0xffff; 5864 ++hw_assist; 5865 } 5866 break; 5867 case IPPROTO_ICMP: 5868 #ifdef INET6 5869 case IPPROTO_ICMPV6: 5870 #endif /* INET6 */ 5871 break; 5872 default: 5873 return (1); 5874 } 5875 5876 if (!hw_assist) { 5877 switch (af) { 5878 case AF_INET: 5879 if (p == IPPROTO_ICMP) { 5880 if (m->m_len < off) 5881 return (1); 5882 m->m_data += off; 5883 m->m_len -= off; 5884 sum = in_cksum(m, len); 5885 m->m_data -= off; 5886 m->m_len += off; 5887 } else { 5888 if (m->m_len < sizeof(struct ip)) 5889 return (1); 5890 sum = in4_cksum(m, p, off, len); 5891 } 5892 break; 5893 #ifdef INET6 5894 case AF_INET6: 5895 if (m->m_len < sizeof(struct ip6_hdr)) 5896 return (1); 5897 sum = in6_cksum(m, p, off, len); 5898 break; 5899 #endif /* INET6 */ 5900 default: 5901 return (1); 5902 } 5903 } 5904 if (sum) { 5905 switch (p) { 5906 case IPPROTO_TCP: 5907 { 5908 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5909 break; 5910 } 5911 case IPPROTO_UDP: 5912 { 5913 KMOD_UDPSTAT_INC(udps_badsum); 5914 break; 5915 } 5916 #ifdef INET 5917 case IPPROTO_ICMP: 5918 { 5919 KMOD_ICMPSTAT_INC(icps_checksum); 5920 break; 5921 } 5922 #endif 5923 #ifdef INET6 5924 case IPPROTO_ICMPV6: 5925 { 5926 KMOD_ICMP6STAT_INC(icp6s_checksum); 5927 break; 5928 } 5929 #endif /* INET6 */ 5930 } 5931 return (1); 5932 } else { 5933 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5934 m->m_pkthdr.csum_flags |= 5935 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5936 m->m_pkthdr.csum_data = 0xffff; 5937 } 5938 } 5939 return (0); 5940 } 5941 5942 #ifdef INET 5943 int 5944 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5945 { 5946 struct pfi_kkif *kif; 5947 u_short action, reason = 0, log = 0; 5948 struct mbuf *m = *m0; 5949 struct ip *h = NULL; 5950 struct m_tag *ipfwtag; 5951 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5952 struct pf_state *s = NULL; 5953 struct pf_kruleset *ruleset = NULL; 5954 struct pf_pdesc pd; 5955 int off, dirndx, pqid = 0; 5956 5957 PF_RULES_RLOCK_TRACKER; 5958 5959 M_ASSERTPKTHDR(m); 5960 5961 if (!V_pf_status.running) 5962 return (PF_PASS); 5963 5964 memset(&pd, 0, sizeof(pd)); 5965 5966 kif = (struct pfi_kkif *)ifp->if_pf_kif; 5967 5968 if (kif == NULL) { 5969 DPFPRINTF(PF_DEBUG_URGENT, 5970 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5971 return (PF_DROP); 5972 } 5973 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5974 return (PF_PASS); 5975 5976 if (m->m_flags & M_SKIP_FIREWALL) 5977 return (PF_PASS); 5978 5979 pd.pf_mtag = pf_find_mtag(m); 5980 5981 PF_RULES_RLOCK(); 5982 5983 if (ip_divert_ptr != NULL && 5984 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5985 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5986 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5987 if (pd.pf_mtag == NULL && 5988 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5989 action = PF_DROP; 5990 goto done; 5991 } 5992 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5993 m_tag_delete(m, ipfwtag); 5994 } 5995 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5996 m->m_flags |= M_FASTFWD_OURS; 5997 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5998 } 5999 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 6000 /* We do IP header normalization and packet reassembly here */ 6001 action = PF_DROP; 6002 goto done; 6003 } 6004 m = *m0; /* pf_normalize messes with m0 */ 6005 h = mtod(m, struct ip *); 6006 6007 off = h->ip_hl << 2; 6008 if (off < (int)sizeof(struct ip)) { 6009 action = PF_DROP; 6010 REASON_SET(&reason, PFRES_SHORT); 6011 log = 1; 6012 goto done; 6013 } 6014 6015 pd.src = (struct pf_addr *)&h->ip_src; 6016 pd.dst = (struct pf_addr *)&h->ip_dst; 6017 pd.sport = pd.dport = NULL; 6018 pd.ip_sum = &h->ip_sum; 6019 pd.proto_sum = NULL; 6020 pd.proto = h->ip_p; 6021 pd.dir = dir; 6022 pd.sidx = (dir == PF_IN) ? 0 : 1; 6023 pd.didx = (dir == PF_IN) ? 1 : 0; 6024 pd.af = AF_INET; 6025 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 6026 pd.tot_len = ntohs(h->ip_len); 6027 6028 /* handle fragments that didn't get reassembled by normalization */ 6029 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 6030 action = pf_test_fragment(&r, dir, kif, m, h, 6031 &pd, &a, &ruleset); 6032 goto done; 6033 } 6034 6035 switch (h->ip_p) { 6036 case IPPROTO_TCP: { 6037 struct tcphdr th; 6038 6039 pd.hdr.tcp = &th; 6040 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6041 &action, &reason, AF_INET)) { 6042 log = action != PF_PASS; 6043 goto done; 6044 } 6045 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6046 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 6047 pqid = 1; 6048 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6049 if (action == PF_DROP) 6050 goto done; 6051 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6052 &reason); 6053 if (action == PF_PASS) { 6054 if (V_pfsync_update_state_ptr != NULL) 6055 V_pfsync_update_state_ptr(s); 6056 r = s->rule.ptr; 6057 a = s->anchor.ptr; 6058 log = s->log; 6059 } else if (s == NULL) 6060 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6061 &a, &ruleset, inp); 6062 break; 6063 } 6064 6065 case IPPROTO_UDP: { 6066 struct udphdr uh; 6067 6068 pd.hdr.udp = &uh; 6069 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6070 &action, &reason, AF_INET)) { 6071 log = action != PF_PASS; 6072 goto done; 6073 } 6074 if (uh.uh_dport == 0 || 6075 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6076 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6077 action = PF_DROP; 6078 REASON_SET(&reason, PFRES_SHORT); 6079 goto done; 6080 } 6081 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6082 if (action == PF_PASS) { 6083 if (V_pfsync_update_state_ptr != NULL) 6084 V_pfsync_update_state_ptr(s); 6085 r = s->rule.ptr; 6086 a = s->anchor.ptr; 6087 log = s->log; 6088 } else if (s == NULL) 6089 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6090 &a, &ruleset, inp); 6091 break; 6092 } 6093 6094 case IPPROTO_ICMP: { 6095 struct icmp ih; 6096 6097 pd.hdr.icmp = &ih; 6098 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 6099 &action, &reason, AF_INET)) { 6100 log = action != PF_PASS; 6101 goto done; 6102 } 6103 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 6104 &reason); 6105 if (action == PF_PASS) { 6106 if (V_pfsync_update_state_ptr != NULL) 6107 V_pfsync_update_state_ptr(s); 6108 r = s->rule.ptr; 6109 a = s->anchor.ptr; 6110 log = s->log; 6111 } else if (s == NULL) 6112 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6113 &a, &ruleset, inp); 6114 break; 6115 } 6116 6117 #ifdef INET6 6118 case IPPROTO_ICMPV6: { 6119 action = PF_DROP; 6120 DPFPRINTF(PF_DEBUG_MISC, 6121 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6122 goto done; 6123 } 6124 #endif 6125 6126 default: 6127 action = pf_test_state_other(&s, dir, kif, m, &pd); 6128 if (action == PF_PASS) { 6129 if (V_pfsync_update_state_ptr != NULL) 6130 V_pfsync_update_state_ptr(s); 6131 r = s->rule.ptr; 6132 a = s->anchor.ptr; 6133 log = s->log; 6134 } else if (s == NULL) 6135 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6136 &a, &ruleset, inp); 6137 break; 6138 } 6139 6140 done: 6141 PF_RULES_RUNLOCK(); 6142 if (action == PF_PASS && h->ip_hl > 5 && 6143 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6144 action = PF_DROP; 6145 REASON_SET(&reason, PFRES_IPOPTIONS); 6146 log = r->log; 6147 DPFPRINTF(PF_DEBUG_MISC, 6148 ("pf: dropping packet with ip options\n")); 6149 } 6150 6151 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6152 action = PF_DROP; 6153 REASON_SET(&reason, PFRES_MEMORY); 6154 } 6155 if (r->rtableid >= 0) 6156 M_SETFIB(m, r->rtableid); 6157 6158 if (r->scrub_flags & PFSTATE_SETPRIO) { 6159 if (pd.tos & IPTOS_LOWDELAY) 6160 pqid = 1; 6161 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6162 action = PF_DROP; 6163 REASON_SET(&reason, PFRES_MEMORY); 6164 log = 1; 6165 DPFPRINTF(PF_DEBUG_MISC, 6166 ("pf: failed to allocate 802.1q mtag\n")); 6167 } 6168 } 6169 6170 #ifdef ALTQ 6171 if (action == PF_PASS && r->qid) { 6172 if (pd.pf_mtag == NULL && 6173 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6174 action = PF_DROP; 6175 REASON_SET(&reason, PFRES_MEMORY); 6176 } else { 6177 if (s != NULL) 6178 pd.pf_mtag->qid_hash = pf_state_hash(s); 6179 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6180 pd.pf_mtag->qid = r->pqid; 6181 else 6182 pd.pf_mtag->qid = r->qid; 6183 /* Add hints for ecn. */ 6184 pd.pf_mtag->hdr = h; 6185 } 6186 } 6187 #endif /* ALTQ */ 6188 6189 /* 6190 * connections redirected to loopback should not match sockets 6191 * bound specifically to loopback due to security implications, 6192 * see tcp_input() and in_pcblookup_listen(). 6193 */ 6194 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6195 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6196 (s->nat_rule.ptr->action == PF_RDR || 6197 s->nat_rule.ptr->action == PF_BINAT) && 6198 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 6199 m->m_flags |= M_SKIP_FIREWALL; 6200 6201 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6202 !PACKET_LOOPED(&pd)) { 6203 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6204 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6205 if (ipfwtag != NULL) { 6206 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6207 ntohs(r->divert.port); 6208 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6209 6210 if (s) 6211 PF_STATE_UNLOCK(s); 6212 6213 m_tag_prepend(m, ipfwtag); 6214 if (m->m_flags & M_FASTFWD_OURS) { 6215 if (pd.pf_mtag == NULL && 6216 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6217 action = PF_DROP; 6218 REASON_SET(&reason, PFRES_MEMORY); 6219 log = 1; 6220 DPFPRINTF(PF_DEBUG_MISC, 6221 ("pf: failed to allocate tag\n")); 6222 } else { 6223 pd.pf_mtag->flags |= 6224 PF_FASTFWD_OURS_PRESENT; 6225 m->m_flags &= ~M_FASTFWD_OURS; 6226 } 6227 } 6228 ip_divert_ptr(*m0, dir == PF_IN); 6229 *m0 = NULL; 6230 6231 return (action); 6232 } else { 6233 /* XXX: ipfw has the same behaviour! */ 6234 action = PF_DROP; 6235 REASON_SET(&reason, PFRES_MEMORY); 6236 log = 1; 6237 DPFPRINTF(PF_DEBUG_MISC, 6238 ("pf: failed to allocate divert tag\n")); 6239 } 6240 } 6241 6242 if (log) { 6243 struct pf_krule *lr; 6244 6245 if (s != NULL && s->nat_rule.ptr != NULL && 6246 s->nat_rule.ptr->log & PF_LOG_ALL) 6247 lr = s->nat_rule.ptr; 6248 else 6249 lr = r; 6250 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6251 (s == NULL)); 6252 } 6253 6254 counter_u64_add(kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], 6255 pd.tot_len); 6256 counter_u64_add(kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 6257 1); 6258 6259 if (action == PF_PASS || r->action == PF_DROP) { 6260 dirndx = (dir == PF_OUT); 6261 counter_u64_add(r->packets[dirndx], 1); 6262 counter_u64_add(r->bytes[dirndx], pd.tot_len); 6263 if (a != NULL) { 6264 counter_u64_add(a->packets[dirndx], 1); 6265 counter_u64_add(a->bytes[dirndx], pd.tot_len); 6266 } 6267 if (s != NULL) { 6268 if (s->nat_rule.ptr != NULL) { 6269 counter_u64_add(s->nat_rule.ptr->packets[dirndx], 6270 1); 6271 counter_u64_add(s->nat_rule.ptr->bytes[dirndx], 6272 pd.tot_len); 6273 } 6274 if (s->src_node != NULL) { 6275 counter_u64_add(s->src_node->packets[dirndx], 6276 1); 6277 counter_u64_add(s->src_node->bytes[dirndx], 6278 pd.tot_len); 6279 } 6280 if (s->nat_src_node != NULL) { 6281 counter_u64_add(s->nat_src_node->packets[dirndx], 6282 1); 6283 counter_u64_add(s->nat_src_node->bytes[dirndx], 6284 pd.tot_len); 6285 } 6286 dirndx = (dir == s->direction) ? 0 : 1; 6287 counter_u64_add(s->packets[dirndx], 1); 6288 counter_u64_add(s->bytes[dirndx], pd.tot_len); 6289 } 6290 tr = r; 6291 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6292 if (nr != NULL && r == &V_pf_default_rule) 6293 tr = nr; 6294 if (tr->src.addr.type == PF_ADDR_TABLE) 6295 pfr_update_stats(tr->src.addr.p.tbl, 6296 (s == NULL) ? pd.src : 6297 &s->key[(s->direction == PF_IN)]-> 6298 addr[(s->direction == PF_OUT)], 6299 pd.af, pd.tot_len, dir == PF_OUT, 6300 r->action == PF_PASS, tr->src.neg); 6301 if (tr->dst.addr.type == PF_ADDR_TABLE) 6302 pfr_update_stats(tr->dst.addr.p.tbl, 6303 (s == NULL) ? pd.dst : 6304 &s->key[(s->direction == PF_IN)]-> 6305 addr[(s->direction == PF_IN)], 6306 pd.af, pd.tot_len, dir == PF_OUT, 6307 r->action == PF_PASS, tr->dst.neg); 6308 } 6309 6310 switch (action) { 6311 case PF_SYNPROXY_DROP: 6312 m_freem(*m0); 6313 case PF_DEFER: 6314 *m0 = NULL; 6315 action = PF_PASS; 6316 break; 6317 case PF_DROP: 6318 m_freem(*m0); 6319 *m0 = NULL; 6320 break; 6321 default: 6322 /* pf_route() returns unlocked. */ 6323 if (r->rt) { 6324 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6325 return (action); 6326 } 6327 break; 6328 } 6329 if (s) 6330 PF_STATE_UNLOCK(s); 6331 6332 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 6333 6334 return (action); 6335 } 6336 #endif /* INET */ 6337 6338 #ifdef INET6 6339 int 6340 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6341 { 6342 struct pfi_kkif *kif; 6343 u_short action, reason = 0, log = 0; 6344 struct mbuf *m = *m0, *n = NULL; 6345 struct m_tag *mtag; 6346 struct ip6_hdr *h = NULL; 6347 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6348 struct pf_state *s = NULL; 6349 struct pf_kruleset *ruleset = NULL; 6350 struct pf_pdesc pd; 6351 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6352 6353 PF_RULES_RLOCK_TRACKER; 6354 M_ASSERTPKTHDR(m); 6355 6356 if (!V_pf_status.running) 6357 return (PF_PASS); 6358 6359 memset(&pd, 0, sizeof(pd)); 6360 pd.pf_mtag = pf_find_mtag(m); 6361 6362 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6363 return (PF_PASS); 6364 6365 kif = (struct pfi_kkif *)ifp->if_pf_kif; 6366 if (kif == NULL) { 6367 DPFPRINTF(PF_DEBUG_URGENT, 6368 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6369 return (PF_DROP); 6370 } 6371 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6372 return (PF_PASS); 6373 6374 if (m->m_flags & M_SKIP_FIREWALL) 6375 return (PF_PASS); 6376 6377 PF_RULES_RLOCK(); 6378 6379 /* We do IP header normalization and packet reassembly here */ 6380 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6381 action = PF_DROP; 6382 goto done; 6383 } 6384 m = *m0; /* pf_normalize messes with m0 */ 6385 h = mtod(m, struct ip6_hdr *); 6386 6387 /* 6388 * we do not support jumbogram. if we keep going, zero ip6_plen 6389 * will do something bad, so drop the packet for now. 6390 */ 6391 if (htons(h->ip6_plen) == 0) { 6392 action = PF_DROP; 6393 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6394 goto done; 6395 } 6396 6397 pd.src = (struct pf_addr *)&h->ip6_src; 6398 pd.dst = (struct pf_addr *)&h->ip6_dst; 6399 pd.sport = pd.dport = NULL; 6400 pd.ip_sum = NULL; 6401 pd.proto_sum = NULL; 6402 pd.dir = dir; 6403 pd.sidx = (dir == PF_IN) ? 0 : 1; 6404 pd.didx = (dir == PF_IN) ? 1 : 0; 6405 pd.af = AF_INET6; 6406 pd.tos = IPV6_DSCP(h); 6407 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6408 6409 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6410 pd.proto = h->ip6_nxt; 6411 do { 6412 switch (pd.proto) { 6413 case IPPROTO_FRAGMENT: 6414 action = pf_test_fragment(&r, dir, kif, m, h, 6415 &pd, &a, &ruleset); 6416 if (action == PF_DROP) 6417 REASON_SET(&reason, PFRES_FRAG); 6418 goto done; 6419 case IPPROTO_ROUTING: { 6420 struct ip6_rthdr rthdr; 6421 6422 if (rh_cnt++) { 6423 DPFPRINTF(PF_DEBUG_MISC, 6424 ("pf: IPv6 more than one rthdr\n")); 6425 action = PF_DROP; 6426 REASON_SET(&reason, PFRES_IPOPTIONS); 6427 log = 1; 6428 goto done; 6429 } 6430 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6431 &reason, pd.af)) { 6432 DPFPRINTF(PF_DEBUG_MISC, 6433 ("pf: IPv6 short rthdr\n")); 6434 action = PF_DROP; 6435 REASON_SET(&reason, PFRES_SHORT); 6436 log = 1; 6437 goto done; 6438 } 6439 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6440 DPFPRINTF(PF_DEBUG_MISC, 6441 ("pf: IPv6 rthdr0\n")); 6442 action = PF_DROP; 6443 REASON_SET(&reason, PFRES_IPOPTIONS); 6444 log = 1; 6445 goto done; 6446 } 6447 /* FALLTHROUGH */ 6448 } 6449 case IPPROTO_AH: 6450 case IPPROTO_HOPOPTS: 6451 case IPPROTO_DSTOPTS: { 6452 /* get next header and header length */ 6453 struct ip6_ext opt6; 6454 6455 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6456 NULL, &reason, pd.af)) { 6457 DPFPRINTF(PF_DEBUG_MISC, 6458 ("pf: IPv6 short opt\n")); 6459 action = PF_DROP; 6460 log = 1; 6461 goto done; 6462 } 6463 if (pd.proto == IPPROTO_AH) 6464 off += (opt6.ip6e_len + 2) * 4; 6465 else 6466 off += (opt6.ip6e_len + 1) * 8; 6467 pd.proto = opt6.ip6e_nxt; 6468 /* goto the next header */ 6469 break; 6470 } 6471 default: 6472 terminal++; 6473 break; 6474 } 6475 } while (!terminal); 6476 6477 /* if there's no routing header, use unmodified mbuf for checksumming */ 6478 if (!n) 6479 n = m; 6480 6481 switch (pd.proto) { 6482 case IPPROTO_TCP: { 6483 struct tcphdr th; 6484 6485 pd.hdr.tcp = &th; 6486 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6487 &action, &reason, AF_INET6)) { 6488 log = action != PF_PASS; 6489 goto done; 6490 } 6491 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6492 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6493 if (action == PF_DROP) 6494 goto done; 6495 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6496 &reason); 6497 if (action == PF_PASS) { 6498 if (V_pfsync_update_state_ptr != NULL) 6499 V_pfsync_update_state_ptr(s); 6500 r = s->rule.ptr; 6501 a = s->anchor.ptr; 6502 log = s->log; 6503 } else if (s == NULL) 6504 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6505 &a, &ruleset, inp); 6506 break; 6507 } 6508 6509 case IPPROTO_UDP: { 6510 struct udphdr uh; 6511 6512 pd.hdr.udp = &uh; 6513 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6514 &action, &reason, AF_INET6)) { 6515 log = action != PF_PASS; 6516 goto done; 6517 } 6518 if (uh.uh_dport == 0 || 6519 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6520 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6521 action = PF_DROP; 6522 REASON_SET(&reason, PFRES_SHORT); 6523 goto done; 6524 } 6525 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6526 if (action == PF_PASS) { 6527 if (V_pfsync_update_state_ptr != NULL) 6528 V_pfsync_update_state_ptr(s); 6529 r = s->rule.ptr; 6530 a = s->anchor.ptr; 6531 log = s->log; 6532 } else if (s == NULL) 6533 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6534 &a, &ruleset, inp); 6535 break; 6536 } 6537 6538 case IPPROTO_ICMP: { 6539 action = PF_DROP; 6540 DPFPRINTF(PF_DEBUG_MISC, 6541 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6542 goto done; 6543 } 6544 6545 case IPPROTO_ICMPV6: { 6546 struct icmp6_hdr ih; 6547 6548 pd.hdr.icmp6 = &ih; 6549 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6550 &action, &reason, AF_INET6)) { 6551 log = action != PF_PASS; 6552 goto done; 6553 } 6554 action = pf_test_state_icmp(&s, dir, kif, 6555 m, off, h, &pd, &reason); 6556 if (action == PF_PASS) { 6557 if (V_pfsync_update_state_ptr != NULL) 6558 V_pfsync_update_state_ptr(s); 6559 r = s->rule.ptr; 6560 a = s->anchor.ptr; 6561 log = s->log; 6562 } else if (s == NULL) 6563 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6564 &a, &ruleset, inp); 6565 break; 6566 } 6567 6568 default: 6569 action = pf_test_state_other(&s, dir, kif, m, &pd); 6570 if (action == PF_PASS) { 6571 if (V_pfsync_update_state_ptr != NULL) 6572 V_pfsync_update_state_ptr(s); 6573 r = s->rule.ptr; 6574 a = s->anchor.ptr; 6575 log = s->log; 6576 } else if (s == NULL) 6577 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6578 &a, &ruleset, inp); 6579 break; 6580 } 6581 6582 done: 6583 PF_RULES_RUNLOCK(); 6584 if (n != m) { 6585 m_freem(n); 6586 n = NULL; 6587 } 6588 6589 /* handle dangerous IPv6 extension headers. */ 6590 if (action == PF_PASS && rh_cnt && 6591 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6592 action = PF_DROP; 6593 REASON_SET(&reason, PFRES_IPOPTIONS); 6594 log = r->log; 6595 DPFPRINTF(PF_DEBUG_MISC, 6596 ("pf: dropping packet with dangerous v6 headers\n")); 6597 } 6598 6599 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6600 action = PF_DROP; 6601 REASON_SET(&reason, PFRES_MEMORY); 6602 } 6603 if (r->rtableid >= 0) 6604 M_SETFIB(m, r->rtableid); 6605 6606 if (r->scrub_flags & PFSTATE_SETPRIO) { 6607 if (pd.tos & IPTOS_LOWDELAY) 6608 pqid = 1; 6609 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6610 action = PF_DROP; 6611 REASON_SET(&reason, PFRES_MEMORY); 6612 log = 1; 6613 DPFPRINTF(PF_DEBUG_MISC, 6614 ("pf: failed to allocate 802.1q mtag\n")); 6615 } 6616 } 6617 6618 #ifdef ALTQ 6619 if (action == PF_PASS && r->qid) { 6620 if (pd.pf_mtag == NULL && 6621 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6622 action = PF_DROP; 6623 REASON_SET(&reason, PFRES_MEMORY); 6624 } else { 6625 if (s != NULL) 6626 pd.pf_mtag->qid_hash = pf_state_hash(s); 6627 if (pd.tos & IPTOS_LOWDELAY) 6628 pd.pf_mtag->qid = r->pqid; 6629 else 6630 pd.pf_mtag->qid = r->qid; 6631 /* Add hints for ecn. */ 6632 pd.pf_mtag->hdr = h; 6633 } 6634 } 6635 #endif /* ALTQ */ 6636 6637 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6638 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6639 (s->nat_rule.ptr->action == PF_RDR || 6640 s->nat_rule.ptr->action == PF_BINAT) && 6641 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6642 m->m_flags |= M_SKIP_FIREWALL; 6643 6644 /* XXX: Anybody working on it?! */ 6645 if (r->divert.port) 6646 printf("pf: divert(9) is not supported for IPv6\n"); 6647 6648 if (log) { 6649 struct pf_krule *lr; 6650 6651 if (s != NULL && s->nat_rule.ptr != NULL && 6652 s->nat_rule.ptr->log & PF_LOG_ALL) 6653 lr = s->nat_rule.ptr; 6654 else 6655 lr = r; 6656 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6657 &pd, (s == NULL)); 6658 } 6659 6660 counter_u64_add(kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], 6661 pd.tot_len); 6662 counter_u64_add(kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 6663 1); 6664 6665 if (action == PF_PASS || r->action == PF_DROP) { 6666 dirndx = (dir == PF_OUT); 6667 counter_u64_add(r->packets[dirndx], 1); 6668 counter_u64_add(r->bytes[dirndx], pd.tot_len); 6669 if (a != NULL) { 6670 counter_u64_add(a->packets[dirndx], 1); 6671 counter_u64_add(a->bytes[dirndx], pd.tot_len); 6672 } 6673 if (s != NULL) { 6674 if (s->nat_rule.ptr != NULL) { 6675 counter_u64_add(s->nat_rule.ptr->packets[dirndx], 6676 1); 6677 counter_u64_add(s->nat_rule.ptr->bytes[dirndx], 6678 pd.tot_len); 6679 } 6680 if (s->src_node != NULL) { 6681 counter_u64_add(s->src_node->packets[dirndx], 6682 1); 6683 counter_u64_add(s->src_node->bytes[dirndx], 6684 pd.tot_len); 6685 } 6686 if (s->nat_src_node != NULL) { 6687 counter_u64_add(s->nat_src_node->packets[dirndx], 6688 1); 6689 counter_u64_add(s->nat_src_node->bytes[dirndx], 6690 pd.tot_len); 6691 } 6692 dirndx = (dir == s->direction) ? 0 : 1; 6693 counter_u64_add(s->packets[dirndx], 1); 6694 counter_u64_add(s->bytes[dirndx], pd.tot_len); 6695 } 6696 tr = r; 6697 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6698 if (nr != NULL && r == &V_pf_default_rule) 6699 tr = nr; 6700 if (tr->src.addr.type == PF_ADDR_TABLE) 6701 pfr_update_stats(tr->src.addr.p.tbl, 6702 (s == NULL) ? pd.src : 6703 &s->key[(s->direction == PF_IN)]->addr[0], 6704 pd.af, pd.tot_len, dir == PF_OUT, 6705 r->action == PF_PASS, tr->src.neg); 6706 if (tr->dst.addr.type == PF_ADDR_TABLE) 6707 pfr_update_stats(tr->dst.addr.p.tbl, 6708 (s == NULL) ? pd.dst : 6709 &s->key[(s->direction == PF_IN)]->addr[1], 6710 pd.af, pd.tot_len, dir == PF_OUT, 6711 r->action == PF_PASS, tr->dst.neg); 6712 } 6713 6714 switch (action) { 6715 case PF_SYNPROXY_DROP: 6716 m_freem(*m0); 6717 case PF_DEFER: 6718 *m0 = NULL; 6719 action = PF_PASS; 6720 break; 6721 case PF_DROP: 6722 m_freem(*m0); 6723 *m0 = NULL; 6724 break; 6725 default: 6726 /* pf_route6() returns unlocked. */ 6727 if (r->rt) { 6728 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6729 return (action); 6730 } 6731 break; 6732 } 6733 6734 if (s) 6735 PF_STATE_UNLOCK(s); 6736 6737 /* If reassembled packet passed, create new fragments. */ 6738 if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && 6739 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6740 action = pf_refragment6(ifp, m0, mtag); 6741 6742 SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); 6743 6744 return (action); 6745 } 6746 #endif /* INET6 */ 6747