1 /*- 2 * Copyright (c) 2001 Daniel Hartmeier 3 * Copyright (c) 2002 - 2008 Henning Brauer 4 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * - Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * - Redistributions in binary form must reproduce the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer in the documentation and/or other materials provided 16 * with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 26 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Effort sponsored in part by the Defense Advanced Research Projects 32 * Agency (DARPA) and Air Force Research Laboratory, Air Force 33 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 34 * 35 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_inet.h" 42 #include "opt_inet6.h" 43 #include "opt_bpf.h" 44 #include "opt_pf.h" 45 46 #include <sys/param.h> 47 #include <sys/bus.h> 48 #include <sys/endian.h> 49 #include <sys/hash.h> 50 #include <sys/interrupt.h> 51 #include <sys/kernel.h> 52 #include <sys/kthread.h> 53 #include <sys/limits.h> 54 #include <sys/mbuf.h> 55 #include <sys/md5.h> 56 #include <sys/random.h> 57 #include <sys/refcount.h> 58 #include <sys/socket.h> 59 #include <sys/sysctl.h> 60 #include <sys/taskqueue.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_types.h> 65 #include <net/route.h> 66 #include <net/radix_mpath.h> 67 #include <net/vnet.h> 68 69 #include <net/pfvar.h> 70 #include <net/pf_mtag.h> 71 #include <net/if_pflog.h> 72 #include <net/if_pfsync.h> 73 74 #include <netinet/in_pcb.h> 75 #include <netinet/in_var.h> 76 #include <netinet/ip.h> 77 #include <netinet/ip_fw.h> 78 #include <netinet/ip_icmp.h> 79 #include <netinet/icmp_var.h> 80 #include <netinet/ip_var.h> 81 #include <netinet/tcp.h> 82 #include <netinet/tcp_fsm.h> 83 #include <netinet/tcp_seq.h> 84 #include <netinet/tcp_timer.h> 85 #include <netinet/tcp_var.h> 86 #include <netinet/udp.h> 87 #include <netinet/udp_var.h> 88 89 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 90 91 #ifdef INET6 92 #include <netinet/ip6.h> 93 #include <netinet/icmp6.h> 94 #include <netinet6/nd6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/in6_pcb.h> 97 #endif /* INET6 */ 98 99 #include <machine/in_cksum.h> 100 #include <security/mac/mac_framework.h> 101 102 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 103 104 /* 105 * Global variables 106 */ 107 108 /* state tables */ 109 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 110 VNET_DEFINE(struct pf_palist, pf_pabuf); 111 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 112 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 113 VNET_DEFINE(struct pf_status, pf_status); 114 115 VNET_DEFINE(u_int32_t, ticket_altqs_active); 116 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 117 VNET_DEFINE(int, altqs_inactive_open); 118 VNET_DEFINE(u_int32_t, ticket_pabuf); 119 120 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 121 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 122 VNET_DEFINE(u_char, pf_tcp_secret[16]); 123 #define V_pf_tcp_secret VNET(pf_tcp_secret) 124 VNET_DEFINE(int, pf_tcp_secret_init); 125 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 126 VNET_DEFINE(int, pf_tcp_iss_off); 127 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 128 129 /* 130 * Queue for pf_intr() sends. 131 */ 132 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 133 struct pf_send_entry { 134 STAILQ_ENTRY(pf_send_entry) pfse_next; 135 struct mbuf *pfse_m; 136 enum { 137 PFSE_IP, 138 PFSE_IP6, 139 PFSE_ICMP, 140 PFSE_ICMP6, 141 } pfse_type; 142 union { 143 struct route ro; 144 struct { 145 int type; 146 int code; 147 int mtu; 148 } icmpopts; 149 } u; 150 #define pfse_ro u.ro 151 #define pfse_icmp_type u.icmpopts.type 152 #define pfse_icmp_code u.icmpopts.code 153 #define pfse_icmp_mtu u.icmpopts.mtu 154 }; 155 156 STAILQ_HEAD(pf_send_head, pf_send_entry); 157 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 158 #define V_pf_sendqueue VNET(pf_sendqueue) 159 160 static struct mtx pf_sendqueue_mtx; 161 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 162 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 163 164 /* 165 * Queue for pf_overload_task() tasks. 166 */ 167 struct pf_overload_entry { 168 SLIST_ENTRY(pf_overload_entry) next; 169 struct pf_addr addr; 170 sa_family_t af; 171 uint8_t dir; 172 struct pf_rule *rule; 173 }; 174 175 SLIST_HEAD(pf_overload_head, pf_overload_entry); 176 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 177 #define V_pf_overloadqueue VNET(pf_overloadqueue) 178 static VNET_DEFINE(struct task, pf_overloadtask); 179 #define V_pf_overloadtask VNET(pf_overloadtask) 180 181 static struct mtx pf_overloadqueue_mtx; 182 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 183 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 184 185 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 186 struct mtx pf_unlnkdrules_mtx; 187 188 static VNET_DEFINE(uma_zone_t, pf_sources_z); 189 #define V_pf_sources_z VNET(pf_sources_z) 190 static VNET_DEFINE(uma_zone_t, pf_mtag_z); 191 #define V_pf_mtag_z VNET(pf_mtag_z) 192 VNET_DEFINE(uma_zone_t, pf_state_z); 193 VNET_DEFINE(uma_zone_t, pf_state_key_z); 194 195 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 196 #define PFID_CPUBITS 8 197 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 198 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 199 #define PFID_MAXID (~PFID_CPUMASK) 200 CTASSERT((1 << PFID_CPUBITS) > MAXCPU); 201 202 static void pf_src_tree_remove_state(struct pf_state *); 203 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 204 u_int32_t); 205 static void pf_add_threshold(struct pf_threshold *); 206 static int pf_check_threshold(struct pf_threshold *); 207 208 static void pf_change_ap(struct pf_addr *, u_int16_t *, 209 u_int16_t *, u_int16_t *, struct pf_addr *, 210 u_int16_t, u_int8_t, sa_family_t); 211 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 212 struct tcphdr *, struct pf_state_peer *); 213 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 214 struct pf_addr *, struct pf_addr *, u_int16_t, 215 u_int16_t *, u_int16_t *, u_int16_t *, 216 u_int16_t *, u_int8_t, sa_family_t); 217 static void pf_send_tcp(struct mbuf *, 218 const struct pf_rule *, sa_family_t, 219 const struct pf_addr *, const struct pf_addr *, 220 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 221 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 222 u_int16_t, struct ifnet *); 223 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 224 sa_family_t, struct pf_rule *); 225 static void pf_detach_state(struct pf_state *); 226 static int pf_state_key_attach(struct pf_state_key *, 227 struct pf_state_key *, struct pf_state *); 228 static void pf_state_key_detach(struct pf_state *, int); 229 static int pf_state_key_ctor(void *, int, void *, int); 230 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 231 static int pf_test_rule(struct pf_rule **, struct pf_state **, 232 int, struct pfi_kif *, struct mbuf *, int, 233 struct pf_pdesc *, struct pf_rule **, 234 struct pf_ruleset **, struct inpcb *); 235 static int pf_create_state(struct pf_rule *, struct pf_rule *, 236 struct pf_rule *, struct pf_pdesc *, 237 struct pf_src_node *, struct pf_state_key *, 238 struct pf_state_key *, struct mbuf *, int, 239 u_int16_t, u_int16_t, int *, struct pfi_kif *, 240 struct pf_state **, int, u_int16_t, u_int16_t, 241 int); 242 static int pf_test_fragment(struct pf_rule **, int, 243 struct pfi_kif *, struct mbuf *, void *, 244 struct pf_pdesc *, struct pf_rule **, 245 struct pf_ruleset **); 246 static int pf_tcp_track_full(struct pf_state_peer *, 247 struct pf_state_peer *, struct pf_state **, 248 struct pfi_kif *, struct mbuf *, int, 249 struct pf_pdesc *, u_short *, int *); 250 static int pf_tcp_track_sloppy(struct pf_state_peer *, 251 struct pf_state_peer *, struct pf_state **, 252 struct pf_pdesc *, u_short *); 253 static int pf_test_state_tcp(struct pf_state **, int, 254 struct pfi_kif *, struct mbuf *, int, 255 void *, struct pf_pdesc *, u_short *); 256 static int pf_test_state_udp(struct pf_state **, int, 257 struct pfi_kif *, struct mbuf *, int, 258 void *, struct pf_pdesc *); 259 static int pf_test_state_icmp(struct pf_state **, int, 260 struct pfi_kif *, struct mbuf *, int, 261 void *, struct pf_pdesc *, u_short *); 262 static int pf_test_state_other(struct pf_state **, int, 263 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 264 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 265 sa_family_t); 266 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 267 sa_family_t); 268 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 269 int, u_int16_t); 270 static void pf_set_rt_ifp(struct pf_state *, 271 struct pf_addr *); 272 static int pf_check_proto_cksum(struct mbuf *, int, int, 273 u_int8_t, sa_family_t); 274 static void pf_print_state_parts(struct pf_state *, 275 struct pf_state_key *, struct pf_state_key *); 276 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 277 struct pf_addr_wrap *); 278 static struct pf_state *pf_find_state(struct pfi_kif *, 279 struct pf_state_key_cmp *, u_int); 280 static int pf_src_connlimit(struct pf_state **); 281 static void pf_overload_task(void *c, int pending); 282 static int pf_insert_src_node(struct pf_src_node **, 283 struct pf_rule *, struct pf_addr *, sa_family_t); 284 static u_int pf_purge_expired_states(u_int, int); 285 static void pf_purge_unlinked_rules(void); 286 static int pf_mtag_init(void *, int, int); 287 static void pf_mtag_free(struct m_tag *); 288 #ifdef INET 289 static void pf_route(struct mbuf **, struct pf_rule *, int, 290 struct ifnet *, struct pf_state *, 291 struct pf_pdesc *); 292 #endif /* INET */ 293 #ifdef INET6 294 static void pf_change_a6(struct pf_addr *, u_int16_t *, 295 struct pf_addr *, u_int8_t); 296 static void pf_route6(struct mbuf **, struct pf_rule *, int, 297 struct ifnet *, struct pf_state *, 298 struct pf_pdesc *); 299 #endif /* INET6 */ 300 301 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 302 303 VNET_DECLARE(int, pf_end_threads); 304 305 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 306 307 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 308 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 309 310 #define STATE_LOOKUP(i, k, d, s, pd) \ 311 do { \ 312 (s) = pf_find_state((i), (k), (d)); \ 313 if ((s) == NULL || (s)->timeout == PFTM_PURGE) \ 314 return (PF_DROP); \ 315 if (PACKET_LOOPED(pd)) \ 316 return (PF_PASS); \ 317 if ((d) == PF_OUT && \ 318 (((s)->rule.ptr->rt == PF_ROUTETO && \ 319 (s)->rule.ptr->direction == PF_OUT) || \ 320 ((s)->rule.ptr->rt == PF_REPLYTO && \ 321 (s)->rule.ptr->direction == PF_IN)) && \ 322 (s)->rt_kif != NULL && \ 323 (s)->rt_kif != (i)) \ 324 return (PF_PASS); \ 325 } while (0) 326 327 #define BOUND_IFACE(r, k) \ 328 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 329 330 #define STATE_INC_COUNTERS(s) \ 331 do { \ 332 s->rule.ptr->states_cur++; \ 333 s->rule.ptr->states_tot++; \ 334 if (s->anchor.ptr != NULL) { \ 335 s->anchor.ptr->states_cur++; \ 336 s->anchor.ptr->states_tot++; \ 337 } \ 338 if (s->nat_rule.ptr != NULL) { \ 339 s->nat_rule.ptr->states_cur++; \ 340 s->nat_rule.ptr->states_tot++; \ 341 } \ 342 } while (0) 343 344 #define STATE_DEC_COUNTERS(s) \ 345 do { \ 346 if (s->nat_rule.ptr != NULL) \ 347 s->nat_rule.ptr->states_cur--; \ 348 if (s->anchor.ptr != NULL) \ 349 s->anchor.ptr->states_cur--; \ 350 s->rule.ptr->states_cur--; \ 351 } while (0) 352 353 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 354 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 355 VNET_DEFINE(struct pf_idhash *, pf_idhash); 356 VNET_DEFINE(u_long, pf_hashmask); 357 VNET_DEFINE(struct pf_srchash *, pf_srchash); 358 VNET_DEFINE(u_long, pf_srchashmask); 359 360 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 361 362 VNET_DEFINE(u_long, pf_hashsize); 363 #define V_pf_hashsize VNET(pf_hashsize) 364 SYSCTL_VNET_UINT(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 365 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 366 367 VNET_DEFINE(u_long, pf_srchashsize); 368 #define V_pf_srchashsize VNET(pf_srchashsize) 369 SYSCTL_VNET_UINT(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 370 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 371 372 VNET_DEFINE(void *, pf_swi_cookie); 373 374 VNET_DEFINE(uint32_t, pf_hashseed); 375 #define V_pf_hashseed VNET(pf_hashseed) 376 377 static __inline uint32_t 378 pf_hashkey(struct pf_state_key *sk) 379 { 380 uint32_t h; 381 382 h = jenkins_hash32((uint32_t *)sk, 383 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 384 V_pf_hashseed); 385 386 return (h & V_pf_hashmask); 387 } 388 389 static __inline uint32_t 390 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 391 { 392 uint32_t h; 393 394 switch (af) { 395 case AF_INET: 396 h = jenkins_hash32((uint32_t *)&addr->v4, 397 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 398 break; 399 case AF_INET6: 400 h = jenkins_hash32((uint32_t *)&addr->v6, 401 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 402 break; 403 default: 404 panic("%s: unknown address family %u", __func__, af); 405 } 406 407 return (h & V_pf_srchashmask); 408 } 409 410 #ifdef INET6 411 void 412 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 413 { 414 switch (af) { 415 #ifdef INET 416 case AF_INET: 417 dst->addr32[0] = src->addr32[0]; 418 break; 419 #endif /* INET */ 420 case AF_INET6: 421 dst->addr32[0] = src->addr32[0]; 422 dst->addr32[1] = src->addr32[1]; 423 dst->addr32[2] = src->addr32[2]; 424 dst->addr32[3] = src->addr32[3]; 425 break; 426 } 427 } 428 #endif /* INET6 */ 429 430 static void 431 pf_init_threshold(struct pf_threshold *threshold, 432 u_int32_t limit, u_int32_t seconds) 433 { 434 threshold->limit = limit * PF_THRESHOLD_MULT; 435 threshold->seconds = seconds; 436 threshold->count = 0; 437 threshold->last = time_uptime; 438 } 439 440 static void 441 pf_add_threshold(struct pf_threshold *threshold) 442 { 443 u_int32_t t = time_uptime, diff = t - threshold->last; 444 445 if (diff >= threshold->seconds) 446 threshold->count = 0; 447 else 448 threshold->count -= threshold->count * diff / 449 threshold->seconds; 450 threshold->count += PF_THRESHOLD_MULT; 451 threshold->last = t; 452 } 453 454 static int 455 pf_check_threshold(struct pf_threshold *threshold) 456 { 457 return (threshold->count > threshold->limit); 458 } 459 460 static int 461 pf_src_connlimit(struct pf_state **state) 462 { 463 struct pf_overload_entry *pfoe; 464 int bad = 0; 465 466 PF_STATE_LOCK_ASSERT(*state); 467 468 (*state)->src_node->conn++; 469 (*state)->src.tcp_est = 1; 470 pf_add_threshold(&(*state)->src_node->conn_rate); 471 472 if ((*state)->rule.ptr->max_src_conn && 473 (*state)->rule.ptr->max_src_conn < 474 (*state)->src_node->conn) { 475 V_pf_status.lcounters[LCNT_SRCCONN]++; 476 bad++; 477 } 478 479 if ((*state)->rule.ptr->max_src_conn_rate.limit && 480 pf_check_threshold(&(*state)->src_node->conn_rate)) { 481 V_pf_status.lcounters[LCNT_SRCCONNRATE]++; 482 bad++; 483 } 484 485 if (!bad) 486 return (0); 487 488 /* Kill this state. */ 489 (*state)->timeout = PFTM_PURGE; 490 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 491 492 if ((*state)->rule.ptr->overload_tbl == NULL) 493 return (1); 494 495 /* Schedule overloading and flushing task. */ 496 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 497 if (pfoe == NULL) 498 return (1); /* too bad :( */ 499 500 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 501 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 502 pfoe->rule = (*state)->rule.ptr; 503 pfoe->dir = (*state)->direction; 504 PF_OVERLOADQ_LOCK(); 505 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 506 PF_OVERLOADQ_UNLOCK(); 507 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 508 509 return (1); 510 } 511 512 static void 513 pf_overload_task(void *c, int pending) 514 { 515 struct pf_overload_head queue; 516 struct pfr_addr p; 517 struct pf_overload_entry *pfoe, *pfoe1; 518 uint32_t killed = 0; 519 520 PF_OVERLOADQ_LOCK(); 521 queue = *(struct pf_overload_head *)c; 522 SLIST_INIT((struct pf_overload_head *)c); 523 PF_OVERLOADQ_UNLOCK(); 524 525 bzero(&p, sizeof(p)); 526 SLIST_FOREACH(pfoe, &queue, next) { 527 V_pf_status.lcounters[LCNT_OVERLOAD_TABLE]++; 528 if (V_pf_status.debug >= PF_DEBUG_MISC) { 529 printf("%s: blocking address ", __func__); 530 pf_print_host(&pfoe->addr, 0, pfoe->af); 531 printf("\n"); 532 } 533 534 p.pfra_af = pfoe->af; 535 switch (pfoe->af) { 536 #ifdef INET 537 case AF_INET: 538 p.pfra_net = 32; 539 p.pfra_ip4addr = pfoe->addr.v4; 540 break; 541 #endif 542 #ifdef INET6 543 case AF_INET6: 544 p.pfra_net = 128; 545 p.pfra_ip6addr = pfoe->addr.v6; 546 break; 547 #endif 548 } 549 550 PF_RULES_WLOCK(); 551 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 552 PF_RULES_WUNLOCK(); 553 } 554 555 /* 556 * Remove those entries, that don't need flushing. 557 */ 558 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 559 if (pfoe->rule->flush == 0) { 560 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 561 free(pfoe, M_PFTEMP); 562 } else 563 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH]++; 564 565 /* If nothing to flush, return. */ 566 if (SLIST_EMPTY(&queue)) 567 return; 568 569 for (int i = 0; i <= V_pf_hashmask; i++) { 570 struct pf_idhash *ih = &V_pf_idhash[i]; 571 struct pf_state_key *sk; 572 struct pf_state *s; 573 574 PF_HASHROW_LOCK(ih); 575 LIST_FOREACH(s, &ih->states, entry) { 576 sk = s->key[PF_SK_WIRE]; 577 SLIST_FOREACH(pfoe, &queue, next) 578 if (sk->af == pfoe->af && 579 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 580 pfoe->rule == s->rule.ptr) && 581 ((pfoe->dir == PF_OUT && 582 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 583 (pfoe->dir == PF_IN && 584 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 585 s->timeout = PFTM_PURGE; 586 s->src.state = s->dst.state = TCPS_CLOSED; 587 killed++; 588 } 589 } 590 PF_HASHROW_UNLOCK(ih); 591 } 592 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 593 free(pfoe, M_PFTEMP); 594 if (V_pf_status.debug >= PF_DEBUG_MISC) 595 printf("%s: %u states killed", __func__, killed); 596 } 597 598 /* 599 * Can return locked on failure, so that we can consistently 600 * allocate and insert a new one. 601 */ 602 struct pf_src_node * 603 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 604 int returnlocked) 605 { 606 struct pf_srchash *sh; 607 struct pf_src_node *n; 608 609 V_pf_status.scounters[SCNT_SRC_NODE_SEARCH]++; 610 611 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 612 PF_HASHROW_LOCK(sh); 613 LIST_FOREACH(n, &sh->nodes, entry) 614 if (n->rule.ptr == rule && n->af == af && 615 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 616 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 617 break; 618 if (n != NULL || returnlocked == 0) 619 PF_HASHROW_UNLOCK(sh); 620 621 return (n); 622 } 623 624 static int 625 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 626 struct pf_addr *src, sa_family_t af) 627 { 628 629 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 630 rule->rpool.opts & PF_POOL_STICKYADDR), 631 ("%s for non-tracking rule %p", __func__, rule)); 632 633 if (*sn == NULL) 634 *sn = pf_find_src_node(src, rule, af, 1); 635 636 if (*sn == NULL) { 637 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 638 639 PF_HASHROW_ASSERT(sh); 640 641 if (!rule->max_src_nodes || 642 rule->src_nodes < rule->max_src_nodes) 643 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 644 else 645 V_pf_status.lcounters[LCNT_SRCNODES]++; 646 if ((*sn) == NULL) { 647 PF_HASHROW_UNLOCK(sh); 648 return (-1); 649 } 650 651 pf_init_threshold(&(*sn)->conn_rate, 652 rule->max_src_conn_rate.limit, 653 rule->max_src_conn_rate.seconds); 654 655 (*sn)->af = af; 656 (*sn)->rule.ptr = rule; 657 PF_ACPY(&(*sn)->addr, src, af); 658 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 659 (*sn)->creation = time_uptime; 660 (*sn)->ruletype = rule->action; 661 if ((*sn)->rule.ptr != NULL) 662 (*sn)->rule.ptr->src_nodes++; 663 PF_HASHROW_UNLOCK(sh); 664 V_pf_status.scounters[SCNT_SRC_NODE_INSERT]++; 665 V_pf_status.src_nodes++; 666 } else { 667 if (rule->max_src_states && 668 (*sn)->states >= rule->max_src_states) { 669 V_pf_status.lcounters[LCNT_SRCSTATES]++; 670 return (-1); 671 } 672 } 673 return (0); 674 } 675 676 static void 677 pf_remove_src_node(struct pf_src_node *src) 678 { 679 struct pf_srchash *sh; 680 681 sh = &V_pf_srchash[pf_hashsrc(&src->addr, src->af)]; 682 PF_HASHROW_LOCK(sh); 683 LIST_REMOVE(src, entry); 684 PF_HASHROW_UNLOCK(sh); 685 686 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS]++; 687 V_pf_status.src_nodes--; 688 689 uma_zfree(V_pf_sources_z, src); 690 } 691 692 /* Data storage structures initialization. */ 693 void 694 pf_initialize() 695 { 696 struct pf_keyhash *kh; 697 struct pf_idhash *ih; 698 struct pf_srchash *sh; 699 u_int i; 700 701 TUNABLE_ULONG_FETCH("net.pf.states_hashsize", &V_pf_hashsize); 702 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 703 V_pf_hashsize = PF_HASHSIZ; 704 TUNABLE_ULONG_FETCH("net.pf.source_nodes_hashsize", &V_pf_srchashsize); 705 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 706 V_pf_srchashsize = PF_HASHSIZ / 4; 707 708 V_pf_hashseed = arc4random(); 709 710 /* States and state keys storage. */ 711 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 712 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 713 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 714 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 715 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 716 717 V_pf_state_key_z = uma_zcreate("pf state keys", 718 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 719 UMA_ALIGN_PTR, 0); 720 V_pf_keyhash = malloc(V_pf_hashsize * sizeof(struct pf_keyhash), 721 M_PFHASH, M_WAITOK | M_ZERO); 722 V_pf_idhash = malloc(V_pf_hashsize * sizeof(struct pf_idhash), 723 M_PFHASH, M_WAITOK | M_ZERO); 724 V_pf_hashmask = V_pf_hashsize - 1; 725 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 726 i++, kh++, ih++) { 727 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF); 728 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 729 } 730 731 /* Source nodes. */ 732 V_pf_sources_z = uma_zcreate("pf source nodes", 733 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 734 0); 735 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 736 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 737 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 738 V_pf_srchash = malloc(V_pf_srchashsize * sizeof(struct pf_srchash), 739 M_PFHASH, M_WAITOK|M_ZERO); 740 V_pf_srchashmask = V_pf_srchashsize - 1; 741 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 742 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 743 744 /* ALTQ */ 745 TAILQ_INIT(&V_pf_altqs[0]); 746 TAILQ_INIT(&V_pf_altqs[1]); 747 TAILQ_INIT(&V_pf_pabuf); 748 V_pf_altqs_active = &V_pf_altqs[0]; 749 V_pf_altqs_inactive = &V_pf_altqs[1]; 750 751 /* Mbuf tags */ 752 V_pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 753 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_init, NULL, 754 UMA_ALIGN_PTR, 0); 755 756 /* Send & overload+flush queues. */ 757 STAILQ_INIT(&V_pf_sendqueue); 758 SLIST_INIT(&V_pf_overloadqueue); 759 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, &V_pf_overloadqueue); 760 mtx_init(&pf_sendqueue_mtx, "pf send queue", NULL, MTX_DEF); 761 mtx_init(&pf_overloadqueue_mtx, "pf overload/flush queue", NULL, 762 MTX_DEF); 763 764 /* Unlinked, but may be referenced rules. */ 765 TAILQ_INIT(&V_pf_unlinked_rules); 766 mtx_init(&pf_unlnkdrules_mtx, "pf unlinked rules", NULL, MTX_DEF); 767 } 768 769 void 770 pf_cleanup() 771 { 772 struct pf_keyhash *kh; 773 struct pf_idhash *ih; 774 struct pf_srchash *sh; 775 struct pf_send_entry *pfse, *next; 776 u_int i; 777 778 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 779 i++, kh++, ih++) { 780 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 781 __func__)); 782 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 783 __func__)); 784 mtx_destroy(&kh->lock); 785 mtx_destroy(&ih->lock); 786 } 787 free(V_pf_keyhash, M_PFHASH); 788 free(V_pf_idhash, M_PFHASH); 789 790 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 791 KASSERT(LIST_EMPTY(&sh->nodes), 792 ("%s: source node hash not empty", __func__)); 793 mtx_destroy(&sh->lock); 794 } 795 free(V_pf_srchash, M_PFHASH); 796 797 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 798 m_freem(pfse->pfse_m); 799 free(pfse, M_PFTEMP); 800 } 801 802 mtx_destroy(&pf_sendqueue_mtx); 803 mtx_destroy(&pf_overloadqueue_mtx); 804 mtx_destroy(&pf_unlnkdrules_mtx); 805 806 uma_zdestroy(V_pf_mtag_z); 807 uma_zdestroy(V_pf_sources_z); 808 uma_zdestroy(V_pf_state_z); 809 uma_zdestroy(V_pf_state_key_z); 810 } 811 812 static int 813 pf_mtag_init(void *mem, int size, int how) 814 { 815 struct m_tag *t; 816 817 t = (struct m_tag *)mem; 818 t->m_tag_cookie = MTAG_ABI_COMPAT; 819 t->m_tag_id = PACKET_TAG_PF; 820 t->m_tag_len = sizeof(struct pf_mtag); 821 t->m_tag_free = pf_mtag_free; 822 823 return (0); 824 } 825 826 static void 827 pf_mtag_free(struct m_tag *t) 828 { 829 830 uma_zfree(V_pf_mtag_z, t); 831 } 832 833 struct pf_mtag * 834 pf_get_mtag(struct mbuf *m) 835 { 836 struct m_tag *mtag; 837 838 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 839 return ((struct pf_mtag *)(mtag + 1)); 840 841 mtag = uma_zalloc(V_pf_mtag_z, M_NOWAIT); 842 if (mtag == NULL) 843 return (NULL); 844 bzero(mtag + 1, sizeof(struct pf_mtag)); 845 m_tag_prepend(m, mtag); 846 847 return ((struct pf_mtag *)(mtag + 1)); 848 } 849 850 static int 851 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 852 struct pf_state *s) 853 { 854 struct pf_keyhash *kh; 855 struct pf_state_key *sk, *cur; 856 struct pf_state *si, *olds = NULL; 857 int idx; 858 859 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 860 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 861 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 862 863 /* 864 * First run: start with wire key. 865 */ 866 sk = skw; 867 idx = PF_SK_WIRE; 868 869 keyattach: 870 kh = &V_pf_keyhash[pf_hashkey(sk)]; 871 872 PF_HASHROW_LOCK(kh); 873 LIST_FOREACH(cur, &kh->keys, entry) 874 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 875 break; 876 877 if (cur != NULL) { 878 /* Key exists. Check for same kif, if none, add to key. */ 879 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 880 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 881 882 PF_HASHROW_LOCK(ih); 883 if (si->kif == s->kif && 884 si->direction == s->direction) { 885 if (sk->proto == IPPROTO_TCP && 886 si->src.state >= TCPS_FIN_WAIT_2 && 887 si->dst.state >= TCPS_FIN_WAIT_2) { 888 si->src.state = si->dst.state = 889 TCPS_CLOSED; 890 /* Unlink later or cur can go away. */ 891 pf_ref_state(si); 892 olds = si; 893 } else { 894 if (V_pf_status.debug >= PF_DEBUG_MISC) { 895 printf("pf: %s key attach " 896 "failed on %s: ", 897 (idx == PF_SK_WIRE) ? 898 "wire" : "stack", 899 s->kif->pfik_name); 900 pf_print_state_parts(s, 901 (idx == PF_SK_WIRE) ? 902 sk : NULL, 903 (idx == PF_SK_STACK) ? 904 sk : NULL); 905 printf(", existing: "); 906 pf_print_state_parts(si, 907 (idx == PF_SK_WIRE) ? 908 sk : NULL, 909 (idx == PF_SK_STACK) ? 910 sk : NULL); 911 printf("\n"); 912 } 913 PF_HASHROW_UNLOCK(ih); 914 PF_HASHROW_UNLOCK(kh); 915 uma_zfree(V_pf_state_key_z, sk); 916 if (idx == PF_SK_STACK) 917 pf_detach_state(s); 918 return (-1); /* collision! */ 919 } 920 } 921 PF_HASHROW_UNLOCK(ih); 922 } 923 uma_zfree(V_pf_state_key_z, sk); 924 s->key[idx] = cur; 925 } else { 926 LIST_INSERT_HEAD(&kh->keys, sk, entry); 927 s->key[idx] = sk; 928 } 929 930 stateattach: 931 /* List is sorted, if-bound states before floating. */ 932 if (s->kif == V_pfi_all) 933 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 934 else 935 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 936 937 /* 938 * Attach done. See how should we (or should not?) 939 * attach a second key. 940 */ 941 if (sks == skw) { 942 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 943 idx = PF_SK_STACK; 944 sks = NULL; 945 goto stateattach; 946 } else if (sks != NULL) { 947 PF_HASHROW_UNLOCK(kh); 948 if (olds) { 949 pf_unlink_state(olds, 0); 950 pf_release_state(olds); 951 olds = NULL; 952 } 953 /* 954 * Continue attaching with stack key. 955 */ 956 sk = sks; 957 idx = PF_SK_STACK; 958 sks = NULL; 959 goto keyattach; 960 } else 961 PF_HASHROW_UNLOCK(kh); 962 963 if (olds) { 964 pf_unlink_state(olds, 0); 965 pf_release_state(olds); 966 } 967 968 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 969 ("%s failure", __func__)); 970 971 return (0); 972 } 973 974 static void 975 pf_detach_state(struct pf_state *s) 976 { 977 struct pf_state_key *sks = s->key[PF_SK_STACK]; 978 struct pf_keyhash *kh; 979 980 if (sks != NULL) { 981 kh = &V_pf_keyhash[pf_hashkey(sks)]; 982 PF_HASHROW_LOCK(kh); 983 if (s->key[PF_SK_STACK] != NULL) 984 pf_state_key_detach(s, PF_SK_STACK); 985 /* 986 * If both point to same key, then we are done. 987 */ 988 if (sks == s->key[PF_SK_WIRE]) { 989 pf_state_key_detach(s, PF_SK_WIRE); 990 PF_HASHROW_UNLOCK(kh); 991 return; 992 } 993 PF_HASHROW_UNLOCK(kh); 994 } 995 996 if (s->key[PF_SK_WIRE] != NULL) { 997 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 998 PF_HASHROW_LOCK(kh); 999 if (s->key[PF_SK_WIRE] != NULL) 1000 pf_state_key_detach(s, PF_SK_WIRE); 1001 PF_HASHROW_UNLOCK(kh); 1002 } 1003 } 1004 1005 static void 1006 pf_state_key_detach(struct pf_state *s, int idx) 1007 { 1008 struct pf_state_key *sk = s->key[idx]; 1009 #ifdef INVARIANTS 1010 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1011 1012 PF_HASHROW_ASSERT(kh); 1013 #endif 1014 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1015 s->key[idx] = NULL; 1016 1017 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1018 LIST_REMOVE(sk, entry); 1019 uma_zfree(V_pf_state_key_z, sk); 1020 } 1021 } 1022 1023 static int 1024 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1025 { 1026 struct pf_state_key *sk = mem; 1027 1028 bzero(sk, sizeof(struct pf_state_key_cmp)); 1029 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1030 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1031 1032 return (0); 1033 } 1034 1035 struct pf_state_key * 1036 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1037 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1038 { 1039 struct pf_state_key *sk; 1040 1041 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1042 if (sk == NULL) 1043 return (NULL); 1044 1045 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1046 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1047 sk->port[pd->sidx] = sport; 1048 sk->port[pd->didx] = dport; 1049 sk->proto = pd->proto; 1050 sk->af = pd->af; 1051 1052 return (sk); 1053 } 1054 1055 struct pf_state_key * 1056 pf_state_key_clone(struct pf_state_key *orig) 1057 { 1058 struct pf_state_key *sk; 1059 1060 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1061 if (sk == NULL) 1062 return (NULL); 1063 1064 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1065 1066 return (sk); 1067 } 1068 1069 int 1070 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1071 struct pf_state_key *sks, struct pf_state *s) 1072 { 1073 struct pf_idhash *ih; 1074 struct pf_state *cur; 1075 1076 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1077 ("%s: sks not pristine", __func__)); 1078 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1079 ("%s: skw not pristine", __func__)); 1080 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1081 1082 s->kif = kif; 1083 1084 if (s->id == 0 && s->creatorid == 0) { 1085 /* XXX: should be atomic, but probability of collision low */ 1086 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1087 V_pf_stateid[curcpu] = 1; 1088 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1089 s->id = htobe64(s->id); 1090 s->creatorid = V_pf_status.hostid; 1091 } 1092 1093 if (pf_state_key_attach(skw, sks, s)) 1094 return (-1); 1095 1096 ih = &V_pf_idhash[PF_IDHASH(s)]; 1097 PF_HASHROW_LOCK(ih); 1098 LIST_FOREACH(cur, &ih->states, entry) 1099 if (cur->id == s->id && cur->creatorid == s->creatorid) 1100 break; 1101 1102 if (cur != NULL) { 1103 PF_HASHROW_UNLOCK(ih); 1104 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1105 printf("pf: state insert failed: " 1106 "id: %016llx creatorid: %08x\n", 1107 (unsigned long long)be64toh(s->id), 1108 ntohl(s->creatorid)); 1109 } 1110 pf_detach_state(s); 1111 return (-1); 1112 } 1113 LIST_INSERT_HEAD(&ih->states, s, entry); 1114 /* One for keys, one for ID hash. */ 1115 refcount_init(&s->refs, 2); 1116 1117 V_pf_status.fcounters[FCNT_STATE_INSERT]++; 1118 if (pfsync_insert_state_ptr != NULL) 1119 pfsync_insert_state_ptr(s); 1120 1121 /* Returns locked. */ 1122 return (0); 1123 } 1124 1125 /* 1126 * Find state by ID: returns with locked row on success. 1127 */ 1128 struct pf_state * 1129 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1130 { 1131 struct pf_idhash *ih; 1132 struct pf_state *s; 1133 1134 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1135 1136 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))]; 1137 1138 PF_HASHROW_LOCK(ih); 1139 LIST_FOREACH(s, &ih->states, entry) 1140 if (s->id == id && s->creatorid == creatorid) 1141 break; 1142 1143 if (s == NULL) 1144 PF_HASHROW_UNLOCK(ih); 1145 1146 return (s); 1147 } 1148 1149 /* 1150 * Find state by key. 1151 * Returns with ID hash slot locked on success. 1152 */ 1153 static struct pf_state * 1154 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1155 { 1156 struct pf_keyhash *kh; 1157 struct pf_state_key *sk; 1158 struct pf_state *s; 1159 int idx; 1160 1161 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1162 1163 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1164 1165 PF_HASHROW_LOCK(kh); 1166 LIST_FOREACH(sk, &kh->keys, entry) 1167 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1168 break; 1169 if (sk == NULL) { 1170 PF_HASHROW_UNLOCK(kh); 1171 return (NULL); 1172 } 1173 1174 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1175 1176 /* List is sorted, if-bound states before floating ones. */ 1177 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1178 if (s->kif == V_pfi_all || s->kif == kif) { 1179 PF_STATE_LOCK(s); 1180 PF_HASHROW_UNLOCK(kh); 1181 if (s->timeout == PFTM_UNLINKED) { 1182 /* 1183 * State is being processed 1184 * by pf_unlink_state() in 1185 * an other thread. 1186 */ 1187 PF_STATE_UNLOCK(s); 1188 return (NULL); 1189 } 1190 return (s); 1191 } 1192 PF_HASHROW_UNLOCK(kh); 1193 1194 return (NULL); 1195 } 1196 1197 struct pf_state * 1198 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1199 { 1200 struct pf_keyhash *kh; 1201 struct pf_state_key *sk; 1202 struct pf_state *s, *ret = NULL; 1203 int idx, inout = 0; 1204 1205 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1206 1207 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1208 1209 PF_HASHROW_LOCK(kh); 1210 LIST_FOREACH(sk, &kh->keys, entry) 1211 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1212 break; 1213 if (sk == NULL) { 1214 PF_HASHROW_UNLOCK(kh); 1215 return (NULL); 1216 } 1217 switch (dir) { 1218 case PF_IN: 1219 idx = PF_SK_WIRE; 1220 break; 1221 case PF_OUT: 1222 idx = PF_SK_STACK; 1223 break; 1224 case PF_INOUT: 1225 idx = PF_SK_WIRE; 1226 inout = 1; 1227 break; 1228 default: 1229 panic("%s: dir %u", __func__, dir); 1230 } 1231 second_run: 1232 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1233 if (more == NULL) { 1234 PF_HASHROW_UNLOCK(kh); 1235 return (s); 1236 } 1237 1238 if (ret) 1239 (*more)++; 1240 else 1241 ret = s; 1242 } 1243 if (inout == 1) { 1244 inout = 0; 1245 idx = PF_SK_STACK; 1246 goto second_run; 1247 } 1248 PF_HASHROW_UNLOCK(kh); 1249 1250 return (ret); 1251 } 1252 1253 /* END state table stuff */ 1254 1255 static void 1256 pf_send(struct pf_send_entry *pfse) 1257 { 1258 1259 PF_SENDQ_LOCK(); 1260 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1261 PF_SENDQ_UNLOCK(); 1262 swi_sched(V_pf_swi_cookie, 0); 1263 } 1264 1265 void 1266 pf_intr(void *v) 1267 { 1268 struct pf_send_head queue; 1269 struct pf_send_entry *pfse, *next; 1270 1271 CURVNET_SET((struct vnet *)v); 1272 1273 PF_SENDQ_LOCK(); 1274 queue = V_pf_sendqueue; 1275 STAILQ_INIT(&V_pf_sendqueue); 1276 PF_SENDQ_UNLOCK(); 1277 1278 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1279 switch (pfse->pfse_type) { 1280 #ifdef INET 1281 case PFSE_IP: 1282 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1283 break; 1284 case PFSE_ICMP: 1285 icmp_error(pfse->pfse_m, pfse->pfse_icmp_type, 1286 pfse->pfse_icmp_code, 0, pfse->pfse_icmp_mtu); 1287 break; 1288 #endif /* INET */ 1289 #ifdef INET6 1290 case PFSE_IP6: 1291 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1292 NULL); 1293 break; 1294 case PFSE_ICMP6: 1295 icmp6_error(pfse->pfse_m, pfse->pfse_icmp_type, 1296 pfse->pfse_icmp_code, pfse->pfse_icmp_mtu); 1297 break; 1298 #endif /* INET6 */ 1299 default: 1300 panic("%s: unknown type", __func__); 1301 } 1302 free(pfse, M_PFTEMP); 1303 } 1304 CURVNET_RESTORE(); 1305 } 1306 1307 void 1308 pf_purge_thread(void *v) 1309 { 1310 u_int idx = 0; 1311 1312 CURVNET_SET((struct vnet *)v); 1313 1314 for (;;) { 1315 PF_RULES_RLOCK(); 1316 rw_sleep(pf_purge_thread, &pf_rules_lock, 0, "pftm", hz / 10); 1317 1318 if (V_pf_end_threads) { 1319 /* 1320 * To cleanse up all kifs and rules we need 1321 * two runs: first one clears reference flags, 1322 * then pf_purge_expired_states() doesn't 1323 * raise them, and then second run frees. 1324 */ 1325 PF_RULES_RUNLOCK(); 1326 pf_purge_unlinked_rules(); 1327 pfi_kif_purge(); 1328 1329 /* 1330 * Now purge everything. 1331 */ 1332 pf_purge_expired_states(0, V_pf_hashmask); 1333 pf_purge_expired_fragments(); 1334 pf_purge_expired_src_nodes(); 1335 1336 /* 1337 * Now all kifs & rules should be unreferenced, 1338 * thus should be successfully freed. 1339 */ 1340 pf_purge_unlinked_rules(); 1341 pfi_kif_purge(); 1342 1343 /* 1344 * Announce success and exit. 1345 */ 1346 PF_RULES_RLOCK(); 1347 V_pf_end_threads++; 1348 PF_RULES_RUNLOCK(); 1349 wakeup(pf_purge_thread); 1350 kproc_exit(0); 1351 } 1352 PF_RULES_RUNLOCK(); 1353 1354 /* Process 1/interval fraction of the state table every run. */ 1355 idx = pf_purge_expired_states(idx, V_pf_hashmask / 1356 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1357 1358 /* Purge other expired types every PFTM_INTERVAL seconds. */ 1359 if (idx == 0) { 1360 /* 1361 * Order is important: 1362 * - states and src nodes reference rules 1363 * - states and rules reference kifs 1364 */ 1365 pf_purge_expired_fragments(); 1366 pf_purge_expired_src_nodes(); 1367 pf_purge_unlinked_rules(); 1368 pfi_kif_purge(); 1369 } 1370 } 1371 /* not reached */ 1372 CURVNET_RESTORE(); 1373 } 1374 1375 u_int32_t 1376 pf_state_expires(const struct pf_state *state) 1377 { 1378 u_int32_t timeout; 1379 u_int32_t start; 1380 u_int32_t end; 1381 u_int32_t states; 1382 1383 /* handle all PFTM_* > PFTM_MAX here */ 1384 if (state->timeout == PFTM_PURGE) 1385 return (time_uptime); 1386 if (state->timeout == PFTM_UNTIL_PACKET) 1387 return (0); 1388 KASSERT(state->timeout != PFTM_UNLINKED, 1389 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1390 KASSERT((state->timeout < PFTM_MAX), 1391 ("pf_state_expires: timeout > PFTM_MAX")); 1392 timeout = state->rule.ptr->timeout[state->timeout]; 1393 if (!timeout) 1394 timeout = V_pf_default_rule.timeout[state->timeout]; 1395 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1396 if (start) { 1397 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1398 states = state->rule.ptr->states_cur; /* XXXGL */ 1399 } else { 1400 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1401 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1402 states = V_pf_status.states; 1403 } 1404 if (end && states > start && start < end) { 1405 if (states < end) 1406 return (state->expire + timeout * (end - states) / 1407 (end - start)); 1408 else 1409 return (time_uptime); 1410 } 1411 return (state->expire + timeout); 1412 } 1413 1414 void 1415 pf_purge_expired_src_nodes() 1416 { 1417 struct pf_srchash *sh; 1418 struct pf_src_node *cur, *next; 1419 int i; 1420 1421 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1422 PF_HASHROW_LOCK(sh); 1423 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1424 if (cur->states <= 0 && cur->expire <= time_uptime) { 1425 if (cur->rule.ptr != NULL) 1426 cur->rule.ptr->src_nodes--; 1427 LIST_REMOVE(cur, entry); 1428 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS]++; 1429 V_pf_status.src_nodes--; 1430 uma_zfree(V_pf_sources_z, cur); 1431 } else if (cur->rule.ptr != NULL) 1432 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1433 PF_HASHROW_UNLOCK(sh); 1434 } 1435 } 1436 1437 static void 1438 pf_src_tree_remove_state(struct pf_state *s) 1439 { 1440 u_int32_t timeout; 1441 1442 if (s->src_node != NULL) { 1443 if (s->src.tcp_est) 1444 --s->src_node->conn; 1445 if (--s->src_node->states <= 0) { 1446 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1447 if (!timeout) 1448 timeout = 1449 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1450 s->src_node->expire = time_uptime + timeout; 1451 } 1452 } 1453 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1454 if (--s->nat_src_node->states <= 0) { 1455 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1456 if (!timeout) 1457 timeout = 1458 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1459 s->nat_src_node->expire = time_uptime + timeout; 1460 } 1461 } 1462 s->src_node = s->nat_src_node = NULL; 1463 } 1464 1465 /* 1466 * Unlink and potentilly free a state. Function may be 1467 * called with ID hash row locked, but always returns 1468 * unlocked, since it needs to go through key hash locking. 1469 */ 1470 int 1471 pf_unlink_state(struct pf_state *s, u_int flags) 1472 { 1473 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1474 1475 if ((flags & PF_ENTER_LOCKED) == 0) 1476 PF_HASHROW_LOCK(ih); 1477 else 1478 PF_HASHROW_ASSERT(ih); 1479 1480 if (s->timeout == PFTM_UNLINKED) { 1481 /* 1482 * State is being processed 1483 * by pf_unlink_state() in 1484 * an other thread. 1485 */ 1486 PF_HASHROW_UNLOCK(ih); 1487 return (0); /* XXXGL: undefined actually */ 1488 } 1489 1490 if (s->src.state == PF_TCPS_PROXY_DST) { 1491 /* XXX wire key the right one? */ 1492 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1493 &s->key[PF_SK_WIRE]->addr[1], 1494 &s->key[PF_SK_WIRE]->addr[0], 1495 s->key[PF_SK_WIRE]->port[1], 1496 s->key[PF_SK_WIRE]->port[0], 1497 s->src.seqhi, s->src.seqlo + 1, 1498 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1499 } 1500 1501 LIST_REMOVE(s, entry); 1502 pf_src_tree_remove_state(s); 1503 1504 if (pfsync_delete_state_ptr != NULL) 1505 pfsync_delete_state_ptr(s); 1506 1507 --s->rule.ptr->states_cur; 1508 if (s->nat_rule.ptr != NULL) 1509 --s->nat_rule.ptr->states_cur; 1510 if (s->anchor.ptr != NULL) 1511 --s->anchor.ptr->states_cur; 1512 1513 s->timeout = PFTM_UNLINKED; 1514 1515 PF_HASHROW_UNLOCK(ih); 1516 1517 pf_detach_state(s); 1518 refcount_release(&s->refs); 1519 1520 return (pf_release_state(s)); 1521 } 1522 1523 void 1524 pf_free_state(struct pf_state *cur) 1525 { 1526 1527 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1528 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1529 cur->timeout)); 1530 1531 pf_normalize_tcp_cleanup(cur); 1532 uma_zfree(V_pf_state_z, cur); 1533 V_pf_status.fcounters[FCNT_STATE_REMOVALS]++; 1534 } 1535 1536 /* 1537 * Called only from pf_purge_thread(), thus serialized. 1538 */ 1539 static u_int 1540 pf_purge_expired_states(u_int i, int maxcheck) 1541 { 1542 struct pf_idhash *ih; 1543 struct pf_state *s; 1544 1545 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1546 1547 /* 1548 * Go through hash and unlink states that expire now. 1549 */ 1550 while (maxcheck > 0) { 1551 1552 ih = &V_pf_idhash[i]; 1553 relock: 1554 PF_HASHROW_LOCK(ih); 1555 LIST_FOREACH(s, &ih->states, entry) { 1556 if (pf_state_expires(s) <= time_uptime) { 1557 V_pf_status.states -= 1558 pf_unlink_state(s, PF_ENTER_LOCKED); 1559 goto relock; 1560 } 1561 s->rule.ptr->rule_flag |= PFRULE_REFS; 1562 if (s->nat_rule.ptr != NULL) 1563 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1564 if (s->anchor.ptr != NULL) 1565 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1566 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1567 if (s->rt_kif) 1568 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1569 } 1570 PF_HASHROW_UNLOCK(ih); 1571 1572 /* Return when we hit end of hash. */ 1573 if (++i > V_pf_hashmask) { 1574 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1575 return (0); 1576 } 1577 1578 maxcheck--; 1579 } 1580 1581 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1582 1583 return (i); 1584 } 1585 1586 static void 1587 pf_purge_unlinked_rules() 1588 { 1589 struct pf_rulequeue tmpq; 1590 struct pf_rule *r, *r1; 1591 1592 /* 1593 * If we have overloading task pending, then we'd 1594 * better skip purging this time. There is a tiny 1595 * probability that overloading task references 1596 * an already unlinked rule. 1597 */ 1598 PF_OVERLOADQ_LOCK(); 1599 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1600 PF_OVERLOADQ_UNLOCK(); 1601 return; 1602 } 1603 PF_OVERLOADQ_UNLOCK(); 1604 1605 /* 1606 * Do naive mark-and-sweep garbage collecting of old rules. 1607 * Reference flag is raised by pf_purge_expired_states() 1608 * and pf_purge_expired_src_nodes(). 1609 * 1610 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1611 * use a temporary queue. 1612 */ 1613 TAILQ_INIT(&tmpq); 1614 PF_UNLNKDRULES_LOCK(); 1615 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1616 if (!(r->rule_flag & PFRULE_REFS)) { 1617 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1618 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1619 } else 1620 r->rule_flag &= ~PFRULE_REFS; 1621 } 1622 PF_UNLNKDRULES_UNLOCK(); 1623 1624 if (!TAILQ_EMPTY(&tmpq)) { 1625 PF_RULES_WLOCK(); 1626 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1627 TAILQ_REMOVE(&tmpq, r, entries); 1628 pf_free_rule(r); 1629 } 1630 PF_RULES_WUNLOCK(); 1631 } 1632 } 1633 1634 void 1635 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1636 { 1637 switch (af) { 1638 #ifdef INET 1639 case AF_INET: { 1640 u_int32_t a = ntohl(addr->addr32[0]); 1641 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1642 (a>>8)&255, a&255); 1643 if (p) { 1644 p = ntohs(p); 1645 printf(":%u", p); 1646 } 1647 break; 1648 } 1649 #endif /* INET */ 1650 #ifdef INET6 1651 case AF_INET6: { 1652 u_int16_t b; 1653 u_int8_t i, curstart, curend, maxstart, maxend; 1654 curstart = curend = maxstart = maxend = 255; 1655 for (i = 0; i < 8; i++) { 1656 if (!addr->addr16[i]) { 1657 if (curstart == 255) 1658 curstart = i; 1659 curend = i; 1660 } else { 1661 if ((curend - curstart) > 1662 (maxend - maxstart)) { 1663 maxstart = curstart; 1664 maxend = curend; 1665 } 1666 curstart = curend = 255; 1667 } 1668 } 1669 if ((curend - curstart) > 1670 (maxend - maxstart)) { 1671 maxstart = curstart; 1672 maxend = curend; 1673 } 1674 for (i = 0; i < 8; i++) { 1675 if (i >= maxstart && i <= maxend) { 1676 if (i == 0) 1677 printf(":"); 1678 if (i == maxend) 1679 printf(":"); 1680 } else { 1681 b = ntohs(addr->addr16[i]); 1682 printf("%x", b); 1683 if (i < 7) 1684 printf(":"); 1685 } 1686 } 1687 if (p) { 1688 p = ntohs(p); 1689 printf("[%u]", p); 1690 } 1691 break; 1692 } 1693 #endif /* INET6 */ 1694 } 1695 } 1696 1697 void 1698 pf_print_state(struct pf_state *s) 1699 { 1700 pf_print_state_parts(s, NULL, NULL); 1701 } 1702 1703 static void 1704 pf_print_state_parts(struct pf_state *s, 1705 struct pf_state_key *skwp, struct pf_state_key *sksp) 1706 { 1707 struct pf_state_key *skw, *sks; 1708 u_int8_t proto, dir; 1709 1710 /* Do our best to fill these, but they're skipped if NULL */ 1711 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1712 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1713 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1714 dir = s ? s->direction : 0; 1715 1716 switch (proto) { 1717 case IPPROTO_IPV4: 1718 printf("IPv4"); 1719 break; 1720 case IPPROTO_IPV6: 1721 printf("IPv6"); 1722 break; 1723 case IPPROTO_TCP: 1724 printf("TCP"); 1725 break; 1726 case IPPROTO_UDP: 1727 printf("UDP"); 1728 break; 1729 case IPPROTO_ICMP: 1730 printf("ICMP"); 1731 break; 1732 case IPPROTO_ICMPV6: 1733 printf("ICMPv6"); 1734 break; 1735 default: 1736 printf("%u", skw->proto); 1737 break; 1738 } 1739 switch (dir) { 1740 case PF_IN: 1741 printf(" in"); 1742 break; 1743 case PF_OUT: 1744 printf(" out"); 1745 break; 1746 } 1747 if (skw) { 1748 printf(" wire: "); 1749 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1750 printf(" "); 1751 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1752 } 1753 if (sks) { 1754 printf(" stack: "); 1755 if (sks != skw) { 1756 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1757 printf(" "); 1758 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1759 } else 1760 printf("-"); 1761 } 1762 if (s) { 1763 if (proto == IPPROTO_TCP) { 1764 printf(" [lo=%u high=%u win=%u modulator=%u", 1765 s->src.seqlo, s->src.seqhi, 1766 s->src.max_win, s->src.seqdiff); 1767 if (s->src.wscale && s->dst.wscale) 1768 printf(" wscale=%u", 1769 s->src.wscale & PF_WSCALE_MASK); 1770 printf("]"); 1771 printf(" [lo=%u high=%u win=%u modulator=%u", 1772 s->dst.seqlo, s->dst.seqhi, 1773 s->dst.max_win, s->dst.seqdiff); 1774 if (s->src.wscale && s->dst.wscale) 1775 printf(" wscale=%u", 1776 s->dst.wscale & PF_WSCALE_MASK); 1777 printf("]"); 1778 } 1779 printf(" %u:%u", s->src.state, s->dst.state); 1780 } 1781 } 1782 1783 void 1784 pf_print_flags(u_int8_t f) 1785 { 1786 if (f) 1787 printf(" "); 1788 if (f & TH_FIN) 1789 printf("F"); 1790 if (f & TH_SYN) 1791 printf("S"); 1792 if (f & TH_RST) 1793 printf("R"); 1794 if (f & TH_PUSH) 1795 printf("P"); 1796 if (f & TH_ACK) 1797 printf("A"); 1798 if (f & TH_URG) 1799 printf("U"); 1800 if (f & TH_ECE) 1801 printf("E"); 1802 if (f & TH_CWR) 1803 printf("W"); 1804 } 1805 1806 #define PF_SET_SKIP_STEPS(i) \ 1807 do { \ 1808 while (head[i] != cur) { \ 1809 head[i]->skip[i].ptr = cur; \ 1810 head[i] = TAILQ_NEXT(head[i], entries); \ 1811 } \ 1812 } while (0) 1813 1814 void 1815 pf_calc_skip_steps(struct pf_rulequeue *rules) 1816 { 1817 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1818 int i; 1819 1820 cur = TAILQ_FIRST(rules); 1821 prev = cur; 1822 for (i = 0; i < PF_SKIP_COUNT; ++i) 1823 head[i] = cur; 1824 while (cur != NULL) { 1825 1826 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1827 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1828 if (cur->direction != prev->direction) 1829 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1830 if (cur->af != prev->af) 1831 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1832 if (cur->proto != prev->proto) 1833 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1834 if (cur->src.neg != prev->src.neg || 1835 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1836 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1837 if (cur->src.port[0] != prev->src.port[0] || 1838 cur->src.port[1] != prev->src.port[1] || 1839 cur->src.port_op != prev->src.port_op) 1840 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1841 if (cur->dst.neg != prev->dst.neg || 1842 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1843 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1844 if (cur->dst.port[0] != prev->dst.port[0] || 1845 cur->dst.port[1] != prev->dst.port[1] || 1846 cur->dst.port_op != prev->dst.port_op) 1847 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1848 1849 prev = cur; 1850 cur = TAILQ_NEXT(cur, entries); 1851 } 1852 for (i = 0; i < PF_SKIP_COUNT; ++i) 1853 PF_SET_SKIP_STEPS(i); 1854 } 1855 1856 static int 1857 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1858 { 1859 if (aw1->type != aw2->type) 1860 return (1); 1861 switch (aw1->type) { 1862 case PF_ADDR_ADDRMASK: 1863 case PF_ADDR_RANGE: 1864 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, 0)) 1865 return (1); 1866 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, 0)) 1867 return (1); 1868 return (0); 1869 case PF_ADDR_DYNIFTL: 1870 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 1871 case PF_ADDR_NOROUTE: 1872 case PF_ADDR_URPFFAILED: 1873 return (0); 1874 case PF_ADDR_TABLE: 1875 return (aw1->p.tbl != aw2->p.tbl); 1876 default: 1877 printf("invalid address type: %d\n", aw1->type); 1878 return (1); 1879 } 1880 } 1881 1882 u_int16_t 1883 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 1884 { 1885 u_int32_t l; 1886 1887 if (udp && !cksum) 1888 return (0x0000); 1889 l = cksum + old - new; 1890 l = (l >> 16) + (l & 65535); 1891 l = l & 65535; 1892 if (udp && !l) 1893 return (0xFFFF); 1894 return (l); 1895 } 1896 1897 static void 1898 pf_change_ap(struct pf_addr *a, u_int16_t *p, u_int16_t *ic, u_int16_t *pc, 1899 struct pf_addr *an, u_int16_t pn, u_int8_t u, sa_family_t af) 1900 { 1901 struct pf_addr ao; 1902 u_int16_t po = *p; 1903 1904 PF_ACPY(&ao, a, af); 1905 PF_ACPY(a, an, af); 1906 1907 *p = pn; 1908 1909 switch (af) { 1910 #ifdef INET 1911 case AF_INET: 1912 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 1913 ao.addr16[0], an->addr16[0], 0), 1914 ao.addr16[1], an->addr16[1], 0); 1915 *p = pn; 1916 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 1917 ao.addr16[0], an->addr16[0], u), 1918 ao.addr16[1], an->addr16[1], u), 1919 po, pn, u); 1920 break; 1921 #endif /* INET */ 1922 #ifdef INET6 1923 case AF_INET6: 1924 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 1925 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 1926 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 1927 ao.addr16[0], an->addr16[0], u), 1928 ao.addr16[1], an->addr16[1], u), 1929 ao.addr16[2], an->addr16[2], u), 1930 ao.addr16[3], an->addr16[3], u), 1931 ao.addr16[4], an->addr16[4], u), 1932 ao.addr16[5], an->addr16[5], u), 1933 ao.addr16[6], an->addr16[6], u), 1934 ao.addr16[7], an->addr16[7], u), 1935 po, pn, u); 1936 break; 1937 #endif /* INET6 */ 1938 } 1939 } 1940 1941 1942 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 1943 void 1944 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 1945 { 1946 u_int32_t ao; 1947 1948 memcpy(&ao, a, sizeof(ao)); 1949 memcpy(a, &an, sizeof(u_int32_t)); 1950 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 1951 ao % 65536, an % 65536, u); 1952 } 1953 1954 #ifdef INET6 1955 static void 1956 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 1957 { 1958 struct pf_addr ao; 1959 1960 PF_ACPY(&ao, a, AF_INET6); 1961 PF_ACPY(a, an, AF_INET6); 1962 1963 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 1964 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 1965 pf_cksum_fixup(pf_cksum_fixup(*c, 1966 ao.addr16[0], an->addr16[0], u), 1967 ao.addr16[1], an->addr16[1], u), 1968 ao.addr16[2], an->addr16[2], u), 1969 ao.addr16[3], an->addr16[3], u), 1970 ao.addr16[4], an->addr16[4], u), 1971 ao.addr16[5], an->addr16[5], u), 1972 ao.addr16[6], an->addr16[6], u), 1973 ao.addr16[7], an->addr16[7], u); 1974 } 1975 #endif /* INET6 */ 1976 1977 static void 1978 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 1979 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 1980 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 1981 { 1982 struct pf_addr oia, ooa; 1983 1984 PF_ACPY(&oia, ia, af); 1985 if (oa) 1986 PF_ACPY(&ooa, oa, af); 1987 1988 /* Change inner protocol port, fix inner protocol checksum. */ 1989 if (ip != NULL) { 1990 u_int16_t oip = *ip; 1991 u_int32_t opc; 1992 1993 if (pc != NULL) 1994 opc = *pc; 1995 *ip = np; 1996 if (pc != NULL) 1997 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 1998 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 1999 if (pc != NULL) 2000 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2001 } 2002 /* Change inner ip address, fix inner ip and icmp checksums. */ 2003 PF_ACPY(ia, na, af); 2004 switch (af) { 2005 #ifdef INET 2006 case AF_INET: { 2007 u_int32_t oh2c = *h2c; 2008 2009 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2010 oia.addr16[0], ia->addr16[0], 0), 2011 oia.addr16[1], ia->addr16[1], 0); 2012 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2013 oia.addr16[0], ia->addr16[0], 0), 2014 oia.addr16[1], ia->addr16[1], 0); 2015 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2016 break; 2017 } 2018 #endif /* INET */ 2019 #ifdef INET6 2020 case AF_INET6: 2021 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2022 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2023 pf_cksum_fixup(pf_cksum_fixup(*ic, 2024 oia.addr16[0], ia->addr16[0], u), 2025 oia.addr16[1], ia->addr16[1], u), 2026 oia.addr16[2], ia->addr16[2], u), 2027 oia.addr16[3], ia->addr16[3], u), 2028 oia.addr16[4], ia->addr16[4], u), 2029 oia.addr16[5], ia->addr16[5], u), 2030 oia.addr16[6], ia->addr16[6], u), 2031 oia.addr16[7], ia->addr16[7], u); 2032 break; 2033 #endif /* INET6 */ 2034 } 2035 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2036 if (oa) { 2037 PF_ACPY(oa, na, af); 2038 switch (af) { 2039 #ifdef INET 2040 case AF_INET: 2041 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2042 ooa.addr16[0], oa->addr16[0], 0), 2043 ooa.addr16[1], oa->addr16[1], 0); 2044 break; 2045 #endif /* INET */ 2046 #ifdef INET6 2047 case AF_INET6: 2048 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2049 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2050 pf_cksum_fixup(pf_cksum_fixup(*ic, 2051 ooa.addr16[0], oa->addr16[0], u), 2052 ooa.addr16[1], oa->addr16[1], u), 2053 ooa.addr16[2], oa->addr16[2], u), 2054 ooa.addr16[3], oa->addr16[3], u), 2055 ooa.addr16[4], oa->addr16[4], u), 2056 ooa.addr16[5], oa->addr16[5], u), 2057 ooa.addr16[6], oa->addr16[6], u), 2058 ooa.addr16[7], oa->addr16[7], u); 2059 break; 2060 #endif /* INET6 */ 2061 } 2062 } 2063 } 2064 2065 2066 /* 2067 * Need to modulate the sequence numbers in the TCP SACK option 2068 * (credits to Krzysztof Pfaff for report and patch) 2069 */ 2070 static int 2071 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2072 struct tcphdr *th, struct pf_state_peer *dst) 2073 { 2074 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2075 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2076 int copyback = 0, i, olen; 2077 struct sackblk sack; 2078 2079 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2080 if (hlen < TCPOLEN_SACKLEN || 2081 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2082 return 0; 2083 2084 while (hlen >= TCPOLEN_SACKLEN) { 2085 olen = opt[1]; 2086 switch (*opt) { 2087 case TCPOPT_EOL: /* FALLTHROUGH */ 2088 case TCPOPT_NOP: 2089 opt++; 2090 hlen--; 2091 break; 2092 case TCPOPT_SACK: 2093 if (olen > hlen) 2094 olen = hlen; 2095 if (olen >= TCPOLEN_SACKLEN) { 2096 for (i = 2; i + TCPOLEN_SACK <= olen; 2097 i += TCPOLEN_SACK) { 2098 memcpy(&sack, &opt[i], sizeof(sack)); 2099 pf_change_a(&sack.start, &th->th_sum, 2100 htonl(ntohl(sack.start) - 2101 dst->seqdiff), 0); 2102 pf_change_a(&sack.end, &th->th_sum, 2103 htonl(ntohl(sack.end) - 2104 dst->seqdiff), 0); 2105 memcpy(&opt[i], &sack, sizeof(sack)); 2106 } 2107 copyback = 1; 2108 } 2109 /* FALLTHROUGH */ 2110 default: 2111 if (olen < 2) 2112 olen = 2; 2113 hlen -= olen; 2114 opt += olen; 2115 } 2116 } 2117 2118 if (copyback) 2119 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2120 return (copyback); 2121 } 2122 2123 static void 2124 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2125 const struct pf_addr *saddr, const struct pf_addr *daddr, 2126 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2127 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2128 u_int16_t rtag, struct ifnet *ifp) 2129 { 2130 struct pf_send_entry *pfse; 2131 struct mbuf *m; 2132 int len, tlen; 2133 #ifdef INET 2134 struct ip *h = NULL; 2135 #endif /* INET */ 2136 #ifdef INET6 2137 struct ip6_hdr *h6 = NULL; 2138 #endif /* INET6 */ 2139 struct tcphdr *th; 2140 char *opt; 2141 struct pf_mtag *pf_mtag; 2142 2143 len = 0; 2144 th = NULL; 2145 2146 /* maximum segment size tcp option */ 2147 tlen = sizeof(struct tcphdr); 2148 if (mss) 2149 tlen += 4; 2150 2151 switch (af) { 2152 #ifdef INET 2153 case AF_INET: 2154 len = sizeof(struct ip) + tlen; 2155 break; 2156 #endif /* INET */ 2157 #ifdef INET6 2158 case AF_INET6: 2159 len = sizeof(struct ip6_hdr) + tlen; 2160 break; 2161 #endif /* INET6 */ 2162 default: 2163 panic("%s: unsupported af %d", __func__, af); 2164 } 2165 2166 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2167 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2168 if (pfse == NULL) 2169 return; 2170 m = m_gethdr(M_NOWAIT, MT_DATA); 2171 if (m == NULL) { 2172 free(pfse, M_PFTEMP); 2173 return; 2174 } 2175 #ifdef MAC 2176 mac_netinet_firewall_send(m); 2177 #endif 2178 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2179 free(pfse, M_PFTEMP); 2180 m_freem(m); 2181 return; 2182 } 2183 if (tag) 2184 m->m_flags |= M_SKIP_FIREWALL; 2185 pf_mtag->tag = rtag; 2186 2187 if (r != NULL && r->rtableid >= 0) 2188 M_SETFIB(m, r->rtableid); 2189 2190 #ifdef ALTQ 2191 if (r != NULL && r->qid) { 2192 pf_mtag->qid = r->qid; 2193 2194 /* add hints for ecn */ 2195 pf_mtag->hdr = mtod(m, struct ip *); 2196 } 2197 #endif /* ALTQ */ 2198 m->m_data += max_linkhdr; 2199 m->m_pkthdr.len = m->m_len = len; 2200 m->m_pkthdr.rcvif = NULL; 2201 bzero(m->m_data, len); 2202 switch (af) { 2203 #ifdef INET 2204 case AF_INET: 2205 h = mtod(m, struct ip *); 2206 2207 /* IP header fields included in the TCP checksum */ 2208 h->ip_p = IPPROTO_TCP; 2209 h->ip_len = htons(tlen); 2210 h->ip_src.s_addr = saddr->v4.s_addr; 2211 h->ip_dst.s_addr = daddr->v4.s_addr; 2212 2213 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2214 break; 2215 #endif /* INET */ 2216 #ifdef INET6 2217 case AF_INET6: 2218 h6 = mtod(m, struct ip6_hdr *); 2219 2220 /* IP header fields included in the TCP checksum */ 2221 h6->ip6_nxt = IPPROTO_TCP; 2222 h6->ip6_plen = htons(tlen); 2223 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2224 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2225 2226 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2227 break; 2228 #endif /* INET6 */ 2229 } 2230 2231 /* TCP header */ 2232 th->th_sport = sport; 2233 th->th_dport = dport; 2234 th->th_seq = htonl(seq); 2235 th->th_ack = htonl(ack); 2236 th->th_off = tlen >> 2; 2237 th->th_flags = flags; 2238 th->th_win = htons(win); 2239 2240 if (mss) { 2241 opt = (char *)(th + 1); 2242 opt[0] = TCPOPT_MAXSEG; 2243 opt[1] = 4; 2244 HTONS(mss); 2245 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2246 } 2247 2248 switch (af) { 2249 #ifdef INET 2250 case AF_INET: 2251 /* TCP checksum */ 2252 th->th_sum = in_cksum(m, len); 2253 2254 /* Finish the IP header */ 2255 h->ip_v = 4; 2256 h->ip_hl = sizeof(*h) >> 2; 2257 h->ip_tos = IPTOS_LOWDELAY; 2258 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2259 h->ip_len = htons(len); 2260 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2261 h->ip_sum = 0; 2262 2263 pfse->pfse_type = PFSE_IP; 2264 break; 2265 #endif /* INET */ 2266 #ifdef INET6 2267 case AF_INET6: 2268 /* TCP checksum */ 2269 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2270 sizeof(struct ip6_hdr), tlen); 2271 2272 h6->ip6_vfc |= IPV6_VERSION; 2273 h6->ip6_hlim = IPV6_DEFHLIM; 2274 2275 pfse->pfse_type = PFSE_IP6; 2276 break; 2277 #endif /* INET6 */ 2278 } 2279 pfse->pfse_m = m; 2280 pf_send(pfse); 2281 } 2282 2283 static void 2284 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2285 struct pf_rule *r) 2286 { 2287 struct pf_send_entry *pfse; 2288 struct mbuf *m0; 2289 struct pf_mtag *pf_mtag; 2290 2291 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2292 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2293 if (pfse == NULL) 2294 return; 2295 2296 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2297 free(pfse, M_PFTEMP); 2298 return; 2299 } 2300 2301 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2302 free(pfse, M_PFTEMP); 2303 return; 2304 } 2305 /* XXX: revisit */ 2306 m0->m_flags |= M_SKIP_FIREWALL; 2307 2308 if (r->rtableid >= 0) 2309 M_SETFIB(m0, r->rtableid); 2310 2311 #ifdef ALTQ 2312 if (r->qid) { 2313 pf_mtag->qid = r->qid; 2314 /* add hints for ecn */ 2315 pf_mtag->hdr = mtod(m0, struct ip *); 2316 } 2317 #endif /* ALTQ */ 2318 2319 switch (af) { 2320 #ifdef INET 2321 case AF_INET: 2322 pfse->pfse_type = PFSE_ICMP; 2323 break; 2324 #endif /* INET */ 2325 #ifdef INET6 2326 case AF_INET6: 2327 pfse->pfse_type = PFSE_ICMP6; 2328 break; 2329 #endif /* INET6 */ 2330 } 2331 pfse->pfse_m = m0; 2332 pfse->pfse_icmp_type = type; 2333 pfse->pfse_icmp_code = code; 2334 pf_send(pfse); 2335 } 2336 2337 /* 2338 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2339 * If n is 0, they match if they are equal. If n is != 0, they match if they 2340 * are different. 2341 */ 2342 int 2343 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2344 struct pf_addr *b, sa_family_t af) 2345 { 2346 int match = 0; 2347 2348 switch (af) { 2349 #ifdef INET 2350 case AF_INET: 2351 if ((a->addr32[0] & m->addr32[0]) == 2352 (b->addr32[0] & m->addr32[0])) 2353 match++; 2354 break; 2355 #endif /* INET */ 2356 #ifdef INET6 2357 case AF_INET6: 2358 if (((a->addr32[0] & m->addr32[0]) == 2359 (b->addr32[0] & m->addr32[0])) && 2360 ((a->addr32[1] & m->addr32[1]) == 2361 (b->addr32[1] & m->addr32[1])) && 2362 ((a->addr32[2] & m->addr32[2]) == 2363 (b->addr32[2] & m->addr32[2])) && 2364 ((a->addr32[3] & m->addr32[3]) == 2365 (b->addr32[3] & m->addr32[3]))) 2366 match++; 2367 break; 2368 #endif /* INET6 */ 2369 } 2370 if (match) { 2371 if (n) 2372 return (0); 2373 else 2374 return (1); 2375 } else { 2376 if (n) 2377 return (1); 2378 else 2379 return (0); 2380 } 2381 } 2382 2383 /* 2384 * Return 1 if b <= a <= e, otherwise return 0. 2385 */ 2386 int 2387 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2388 struct pf_addr *a, sa_family_t af) 2389 { 2390 switch (af) { 2391 #ifdef INET 2392 case AF_INET: 2393 if ((a->addr32[0] < b->addr32[0]) || 2394 (a->addr32[0] > e->addr32[0])) 2395 return (0); 2396 break; 2397 #endif /* INET */ 2398 #ifdef INET6 2399 case AF_INET6: { 2400 int i; 2401 2402 /* check a >= b */ 2403 for (i = 0; i < 4; ++i) 2404 if (a->addr32[i] > b->addr32[i]) 2405 break; 2406 else if (a->addr32[i] < b->addr32[i]) 2407 return (0); 2408 /* check a <= e */ 2409 for (i = 0; i < 4; ++i) 2410 if (a->addr32[i] < e->addr32[i]) 2411 break; 2412 else if (a->addr32[i] > e->addr32[i]) 2413 return (0); 2414 break; 2415 } 2416 #endif /* INET6 */ 2417 } 2418 return (1); 2419 } 2420 2421 static int 2422 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2423 { 2424 switch (op) { 2425 case PF_OP_IRG: 2426 return ((p > a1) && (p < a2)); 2427 case PF_OP_XRG: 2428 return ((p < a1) || (p > a2)); 2429 case PF_OP_RRG: 2430 return ((p >= a1) && (p <= a2)); 2431 case PF_OP_EQ: 2432 return (p == a1); 2433 case PF_OP_NE: 2434 return (p != a1); 2435 case PF_OP_LT: 2436 return (p < a1); 2437 case PF_OP_LE: 2438 return (p <= a1); 2439 case PF_OP_GT: 2440 return (p > a1); 2441 case PF_OP_GE: 2442 return (p >= a1); 2443 } 2444 return (0); /* never reached */ 2445 } 2446 2447 int 2448 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2449 { 2450 NTOHS(a1); 2451 NTOHS(a2); 2452 NTOHS(p); 2453 return (pf_match(op, a1, a2, p)); 2454 } 2455 2456 static int 2457 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2458 { 2459 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2460 return (0); 2461 return (pf_match(op, a1, a2, u)); 2462 } 2463 2464 static int 2465 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2466 { 2467 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2468 return (0); 2469 return (pf_match(op, a1, a2, g)); 2470 } 2471 2472 int 2473 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2474 { 2475 if (*tag == -1) 2476 *tag = mtag; 2477 2478 return ((!r->match_tag_not && r->match_tag == *tag) || 2479 (r->match_tag_not && r->match_tag != *tag)); 2480 } 2481 2482 int 2483 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2484 { 2485 2486 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2487 2488 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2489 return (ENOMEM); 2490 2491 pd->pf_mtag->tag = tag; 2492 2493 return (0); 2494 } 2495 2496 #define PF_ANCHOR_STACKSIZE 32 2497 struct pf_anchor_stackframe { 2498 struct pf_ruleset *rs; 2499 struct pf_rule *r; /* XXX: + match bit */ 2500 struct pf_anchor *child; 2501 }; 2502 2503 /* 2504 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2505 */ 2506 #define PF_ANCHORSTACK_MATCH 0x00000001 2507 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2508 2509 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2510 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2511 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2512 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2513 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2514 } while (0) 2515 2516 void 2517 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2518 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2519 int *match) 2520 { 2521 struct pf_anchor_stackframe *f; 2522 2523 PF_RULES_RASSERT(); 2524 2525 if (match) 2526 *match = 0; 2527 if (*depth >= PF_ANCHOR_STACKSIZE) { 2528 printf("%s: anchor stack overflow on %s\n", 2529 __func__, (*r)->anchor->name); 2530 *r = TAILQ_NEXT(*r, entries); 2531 return; 2532 } else if (*depth == 0 && a != NULL) 2533 *a = *r; 2534 f = stack + (*depth)++; 2535 f->rs = *rs; 2536 f->r = *r; 2537 if ((*r)->anchor_wildcard) { 2538 struct pf_anchor_node *parent = &(*r)->anchor->children; 2539 2540 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2541 *r = NULL; 2542 return; 2543 } 2544 *rs = &f->child->ruleset; 2545 } else { 2546 f->child = NULL; 2547 *rs = &(*r)->anchor->ruleset; 2548 } 2549 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2550 } 2551 2552 int 2553 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2554 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2555 int *match) 2556 { 2557 struct pf_anchor_stackframe *f; 2558 struct pf_rule *fr; 2559 int quick = 0; 2560 2561 PF_RULES_RASSERT(); 2562 2563 do { 2564 if (*depth <= 0) 2565 break; 2566 f = stack + *depth - 1; 2567 fr = PF_ANCHOR_RULE(f); 2568 if (f->child != NULL) { 2569 struct pf_anchor_node *parent; 2570 2571 /* 2572 * This block traverses through 2573 * a wildcard anchor. 2574 */ 2575 parent = &fr->anchor->children; 2576 if (match != NULL && *match) { 2577 /* 2578 * If any of "*" matched, then 2579 * "foo/ *" matched, mark frame 2580 * appropriately. 2581 */ 2582 PF_ANCHOR_SET_MATCH(f); 2583 *match = 0; 2584 } 2585 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2586 if (f->child != NULL) { 2587 *rs = &f->child->ruleset; 2588 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2589 if (*r == NULL) 2590 continue; 2591 else 2592 break; 2593 } 2594 } 2595 (*depth)--; 2596 if (*depth == 0 && a != NULL) 2597 *a = NULL; 2598 *rs = f->rs; 2599 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2600 quick = fr->quick; 2601 *r = TAILQ_NEXT(fr, entries); 2602 } while (*r == NULL); 2603 2604 return (quick); 2605 } 2606 2607 #ifdef INET6 2608 void 2609 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2610 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2611 { 2612 switch (af) { 2613 #ifdef INET 2614 case AF_INET: 2615 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2616 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2617 break; 2618 #endif /* INET */ 2619 case AF_INET6: 2620 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2621 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2622 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2623 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2624 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2625 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2626 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2627 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2628 break; 2629 } 2630 } 2631 2632 void 2633 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2634 { 2635 switch (af) { 2636 #ifdef INET 2637 case AF_INET: 2638 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2639 break; 2640 #endif /* INET */ 2641 case AF_INET6: 2642 if (addr->addr32[3] == 0xffffffff) { 2643 addr->addr32[3] = 0; 2644 if (addr->addr32[2] == 0xffffffff) { 2645 addr->addr32[2] = 0; 2646 if (addr->addr32[1] == 0xffffffff) { 2647 addr->addr32[1] = 0; 2648 addr->addr32[0] = 2649 htonl(ntohl(addr->addr32[0]) + 1); 2650 } else 2651 addr->addr32[1] = 2652 htonl(ntohl(addr->addr32[1]) + 1); 2653 } else 2654 addr->addr32[2] = 2655 htonl(ntohl(addr->addr32[2]) + 1); 2656 } else 2657 addr->addr32[3] = 2658 htonl(ntohl(addr->addr32[3]) + 1); 2659 break; 2660 } 2661 } 2662 #endif /* INET6 */ 2663 2664 int 2665 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2666 { 2667 struct pf_addr *saddr, *daddr; 2668 u_int16_t sport, dport; 2669 struct inpcbinfo *pi; 2670 struct inpcb *inp; 2671 2672 pd->lookup.uid = UID_MAX; 2673 pd->lookup.gid = GID_MAX; 2674 2675 switch (pd->proto) { 2676 case IPPROTO_TCP: 2677 if (pd->hdr.tcp == NULL) 2678 return (-1); 2679 sport = pd->hdr.tcp->th_sport; 2680 dport = pd->hdr.tcp->th_dport; 2681 pi = &V_tcbinfo; 2682 break; 2683 case IPPROTO_UDP: 2684 if (pd->hdr.udp == NULL) 2685 return (-1); 2686 sport = pd->hdr.udp->uh_sport; 2687 dport = pd->hdr.udp->uh_dport; 2688 pi = &V_udbinfo; 2689 break; 2690 default: 2691 return (-1); 2692 } 2693 if (direction == PF_IN) { 2694 saddr = pd->src; 2695 daddr = pd->dst; 2696 } else { 2697 u_int16_t p; 2698 2699 p = sport; 2700 sport = dport; 2701 dport = p; 2702 saddr = pd->dst; 2703 daddr = pd->src; 2704 } 2705 switch (pd->af) { 2706 #ifdef INET 2707 case AF_INET: 2708 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2709 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2710 if (inp == NULL) { 2711 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2712 daddr->v4, dport, INPLOOKUP_WILDCARD | 2713 INPLOOKUP_RLOCKPCB, NULL, m); 2714 if (inp == NULL) 2715 return (-1); 2716 } 2717 break; 2718 #endif /* INET */ 2719 #ifdef INET6 2720 case AF_INET6: 2721 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2722 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2723 if (inp == NULL) { 2724 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2725 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2726 INPLOOKUP_RLOCKPCB, NULL, m); 2727 if (inp == NULL) 2728 return (-1); 2729 } 2730 break; 2731 #endif /* INET6 */ 2732 2733 default: 2734 return (-1); 2735 } 2736 INP_RLOCK_ASSERT(inp); 2737 pd->lookup.uid = inp->inp_cred->cr_uid; 2738 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2739 INP_RUNLOCK(inp); 2740 2741 return (1); 2742 } 2743 2744 static u_int8_t 2745 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2746 { 2747 int hlen; 2748 u_int8_t hdr[60]; 2749 u_int8_t *opt, optlen; 2750 u_int8_t wscale = 0; 2751 2752 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2753 if (hlen <= sizeof(struct tcphdr)) 2754 return (0); 2755 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2756 return (0); 2757 opt = hdr + sizeof(struct tcphdr); 2758 hlen -= sizeof(struct tcphdr); 2759 while (hlen >= 3) { 2760 switch (*opt) { 2761 case TCPOPT_EOL: 2762 case TCPOPT_NOP: 2763 ++opt; 2764 --hlen; 2765 break; 2766 case TCPOPT_WINDOW: 2767 wscale = opt[2]; 2768 if (wscale > TCP_MAX_WINSHIFT) 2769 wscale = TCP_MAX_WINSHIFT; 2770 wscale |= PF_WSCALE_FLAG; 2771 /* FALLTHROUGH */ 2772 default: 2773 optlen = opt[1]; 2774 if (optlen < 2) 2775 optlen = 2; 2776 hlen -= optlen; 2777 opt += optlen; 2778 break; 2779 } 2780 } 2781 return (wscale); 2782 } 2783 2784 static u_int16_t 2785 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2786 { 2787 int hlen; 2788 u_int8_t hdr[60]; 2789 u_int8_t *opt, optlen; 2790 u_int16_t mss = V_tcp_mssdflt; 2791 2792 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2793 if (hlen <= sizeof(struct tcphdr)) 2794 return (0); 2795 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2796 return (0); 2797 opt = hdr + sizeof(struct tcphdr); 2798 hlen -= sizeof(struct tcphdr); 2799 while (hlen >= TCPOLEN_MAXSEG) { 2800 switch (*opt) { 2801 case TCPOPT_EOL: 2802 case TCPOPT_NOP: 2803 ++opt; 2804 --hlen; 2805 break; 2806 case TCPOPT_MAXSEG: 2807 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 2808 NTOHS(mss); 2809 /* FALLTHROUGH */ 2810 default: 2811 optlen = opt[1]; 2812 if (optlen < 2) 2813 optlen = 2; 2814 hlen -= optlen; 2815 opt += optlen; 2816 break; 2817 } 2818 } 2819 return (mss); 2820 } 2821 2822 static u_int16_t 2823 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 2824 { 2825 #ifdef INET 2826 struct sockaddr_in *dst; 2827 struct route ro; 2828 #endif /* INET */ 2829 #ifdef INET6 2830 struct sockaddr_in6 *dst6; 2831 struct route_in6 ro6; 2832 #endif /* INET6 */ 2833 struct rtentry *rt = NULL; 2834 int hlen = 0; 2835 u_int16_t mss = V_tcp_mssdflt; 2836 2837 switch (af) { 2838 #ifdef INET 2839 case AF_INET: 2840 hlen = sizeof(struct ip); 2841 bzero(&ro, sizeof(ro)); 2842 dst = (struct sockaddr_in *)&ro.ro_dst; 2843 dst->sin_family = AF_INET; 2844 dst->sin_len = sizeof(*dst); 2845 dst->sin_addr = addr->v4; 2846 in_rtalloc_ign(&ro, 0, rtableid); 2847 rt = ro.ro_rt; 2848 break; 2849 #endif /* INET */ 2850 #ifdef INET6 2851 case AF_INET6: 2852 hlen = sizeof(struct ip6_hdr); 2853 bzero(&ro6, sizeof(ro6)); 2854 dst6 = (struct sockaddr_in6 *)&ro6.ro_dst; 2855 dst6->sin6_family = AF_INET6; 2856 dst6->sin6_len = sizeof(*dst6); 2857 dst6->sin6_addr = addr->v6; 2858 in6_rtalloc_ign(&ro6, 0, rtableid); 2859 rt = ro6.ro_rt; 2860 break; 2861 #endif /* INET6 */ 2862 } 2863 2864 if (rt && rt->rt_ifp) { 2865 mss = rt->rt_ifp->if_mtu - hlen - sizeof(struct tcphdr); 2866 mss = max(V_tcp_mssdflt, mss); 2867 RTFREE(rt); 2868 } 2869 mss = min(mss, offer); 2870 mss = max(mss, 64); /* sanity - at least max opt space */ 2871 return (mss); 2872 } 2873 2874 static void 2875 pf_set_rt_ifp(struct pf_state *s, struct pf_addr *saddr) 2876 { 2877 struct pf_rule *r = s->rule.ptr; 2878 struct pf_src_node *sn = NULL; 2879 2880 s->rt_kif = NULL; 2881 if (!r->rt || r->rt == PF_FASTROUTE) 2882 return; 2883 switch (s->key[PF_SK_WIRE]->af) { 2884 #ifdef INET 2885 case AF_INET: 2886 pf_map_addr(AF_INET, r, saddr, &s->rt_addr, NULL, &sn); 2887 s->rt_kif = r->rpool.cur->kif; 2888 break; 2889 #endif /* INET */ 2890 #ifdef INET6 2891 case AF_INET6: 2892 pf_map_addr(AF_INET6, r, saddr, &s->rt_addr, NULL, &sn); 2893 s->rt_kif = r->rpool.cur->kif; 2894 break; 2895 #endif /* INET6 */ 2896 } 2897 } 2898 2899 static u_int32_t 2900 pf_tcp_iss(struct pf_pdesc *pd) 2901 { 2902 MD5_CTX ctx; 2903 u_int32_t digest[4]; 2904 2905 if (V_pf_tcp_secret_init == 0) { 2906 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 2907 MD5Init(&V_pf_tcp_secret_ctx); 2908 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 2909 sizeof(V_pf_tcp_secret)); 2910 V_pf_tcp_secret_init = 1; 2911 } 2912 2913 ctx = V_pf_tcp_secret_ctx; 2914 2915 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 2916 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 2917 if (pd->af == AF_INET6) { 2918 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 2919 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 2920 } else { 2921 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 2922 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 2923 } 2924 MD5Final((u_char *)digest, &ctx); 2925 V_pf_tcp_iss_off += 4096; 2926 #define ISN_RANDOM_INCREMENT (4096 - 1) 2927 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 2928 V_pf_tcp_iss_off); 2929 #undef ISN_RANDOM_INCREMENT 2930 } 2931 2932 static int 2933 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 2934 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 2935 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 2936 { 2937 struct pf_rule *nr = NULL; 2938 struct pf_addr * const saddr = pd->src; 2939 struct pf_addr * const daddr = pd->dst; 2940 sa_family_t af = pd->af; 2941 struct pf_rule *r, *a = NULL; 2942 struct pf_ruleset *ruleset = NULL; 2943 struct pf_src_node *nsn = NULL; 2944 struct tcphdr *th = pd->hdr.tcp; 2945 struct pf_state_key *sk = NULL, *nk = NULL; 2946 u_short reason; 2947 int rewrite = 0, hdrlen = 0; 2948 int tag = -1, rtableid = -1; 2949 int asd = 0; 2950 int match = 0; 2951 int state_icmp = 0; 2952 u_int16_t sport = 0, dport = 0; 2953 u_int16_t bproto_sum = 0, bip_sum = 0; 2954 u_int8_t icmptype = 0, icmpcode = 0; 2955 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 2956 2957 PF_RULES_RASSERT(); 2958 2959 if (inp != NULL) { 2960 INP_LOCK_ASSERT(inp); 2961 pd->lookup.uid = inp->inp_cred->cr_uid; 2962 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2963 pd->lookup.done = 1; 2964 } 2965 2966 switch (pd->proto) { 2967 case IPPROTO_TCP: 2968 sport = th->th_sport; 2969 dport = th->th_dport; 2970 hdrlen = sizeof(*th); 2971 break; 2972 case IPPROTO_UDP: 2973 sport = pd->hdr.udp->uh_sport; 2974 dport = pd->hdr.udp->uh_dport; 2975 hdrlen = sizeof(*pd->hdr.udp); 2976 break; 2977 #ifdef INET 2978 case IPPROTO_ICMP: 2979 if (pd->af != AF_INET) 2980 break; 2981 sport = dport = pd->hdr.icmp->icmp_id; 2982 hdrlen = sizeof(*pd->hdr.icmp); 2983 icmptype = pd->hdr.icmp->icmp_type; 2984 icmpcode = pd->hdr.icmp->icmp_code; 2985 2986 if (icmptype == ICMP_UNREACH || 2987 icmptype == ICMP_SOURCEQUENCH || 2988 icmptype == ICMP_REDIRECT || 2989 icmptype == ICMP_TIMXCEED || 2990 icmptype == ICMP_PARAMPROB) 2991 state_icmp++; 2992 break; 2993 #endif /* INET */ 2994 #ifdef INET6 2995 case IPPROTO_ICMPV6: 2996 if (af != AF_INET6) 2997 break; 2998 sport = dport = pd->hdr.icmp6->icmp6_id; 2999 hdrlen = sizeof(*pd->hdr.icmp6); 3000 icmptype = pd->hdr.icmp6->icmp6_type; 3001 icmpcode = pd->hdr.icmp6->icmp6_code; 3002 3003 if (icmptype == ICMP6_DST_UNREACH || 3004 icmptype == ICMP6_PACKET_TOO_BIG || 3005 icmptype == ICMP6_TIME_EXCEEDED || 3006 icmptype == ICMP6_PARAM_PROB) 3007 state_icmp++; 3008 break; 3009 #endif /* INET6 */ 3010 default: 3011 sport = dport = hdrlen = 0; 3012 break; 3013 } 3014 3015 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3016 3017 /* check packet for BINAT/NAT/RDR */ 3018 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3019 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3020 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3021 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3022 3023 if (pd->ip_sum) 3024 bip_sum = *pd->ip_sum; 3025 3026 switch (pd->proto) { 3027 case IPPROTO_TCP: 3028 bproto_sum = th->th_sum; 3029 pd->proto_sum = &th->th_sum; 3030 3031 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3032 nk->port[pd->sidx] != sport) { 3033 pf_change_ap(saddr, &th->th_sport, pd->ip_sum, 3034 &th->th_sum, &nk->addr[pd->sidx], 3035 nk->port[pd->sidx], 0, af); 3036 pd->sport = &th->th_sport; 3037 sport = th->th_sport; 3038 } 3039 3040 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3041 nk->port[pd->didx] != dport) { 3042 pf_change_ap(daddr, &th->th_dport, pd->ip_sum, 3043 &th->th_sum, &nk->addr[pd->didx], 3044 nk->port[pd->didx], 0, af); 3045 dport = th->th_dport; 3046 pd->dport = &th->th_dport; 3047 } 3048 rewrite++; 3049 break; 3050 case IPPROTO_UDP: 3051 bproto_sum = pd->hdr.udp->uh_sum; 3052 pd->proto_sum = &pd->hdr.udp->uh_sum; 3053 3054 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3055 nk->port[pd->sidx] != sport) { 3056 pf_change_ap(saddr, &pd->hdr.udp->uh_sport, 3057 pd->ip_sum, &pd->hdr.udp->uh_sum, 3058 &nk->addr[pd->sidx], 3059 nk->port[pd->sidx], 1, af); 3060 sport = pd->hdr.udp->uh_sport; 3061 pd->sport = &pd->hdr.udp->uh_sport; 3062 } 3063 3064 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3065 nk->port[pd->didx] != dport) { 3066 pf_change_ap(daddr, &pd->hdr.udp->uh_dport, 3067 pd->ip_sum, &pd->hdr.udp->uh_sum, 3068 &nk->addr[pd->didx], 3069 nk->port[pd->didx], 1, af); 3070 dport = pd->hdr.udp->uh_dport; 3071 pd->dport = &pd->hdr.udp->uh_dport; 3072 } 3073 rewrite++; 3074 break; 3075 #ifdef INET 3076 case IPPROTO_ICMP: 3077 nk->port[0] = nk->port[1]; 3078 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3079 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3080 nk->addr[pd->sidx].v4.s_addr, 0); 3081 3082 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3083 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3084 nk->addr[pd->didx].v4.s_addr, 0); 3085 3086 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3087 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3088 pd->hdr.icmp->icmp_cksum, sport, 3089 nk->port[1], 0); 3090 pd->hdr.icmp->icmp_id = nk->port[1]; 3091 pd->sport = &pd->hdr.icmp->icmp_id; 3092 } 3093 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3094 break; 3095 #endif /* INET */ 3096 #ifdef INET6 3097 case IPPROTO_ICMPV6: 3098 nk->port[0] = nk->port[1]; 3099 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3100 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3101 &nk->addr[pd->sidx], 0); 3102 3103 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3104 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3105 &nk->addr[pd->didx], 0); 3106 rewrite++; 3107 break; 3108 #endif /* INET */ 3109 default: 3110 switch (af) { 3111 #ifdef INET 3112 case AF_INET: 3113 if (PF_ANEQ(saddr, 3114 &nk->addr[pd->sidx], AF_INET)) 3115 pf_change_a(&saddr->v4.s_addr, 3116 pd->ip_sum, 3117 nk->addr[pd->sidx].v4.s_addr, 0); 3118 3119 if (PF_ANEQ(daddr, 3120 &nk->addr[pd->didx], AF_INET)) 3121 pf_change_a(&daddr->v4.s_addr, 3122 pd->ip_sum, 3123 nk->addr[pd->didx].v4.s_addr, 0); 3124 break; 3125 #endif /* INET */ 3126 #ifdef INET6 3127 case AF_INET6: 3128 if (PF_ANEQ(saddr, 3129 &nk->addr[pd->sidx], AF_INET6)) 3130 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3131 3132 if (PF_ANEQ(daddr, 3133 &nk->addr[pd->didx], AF_INET6)) 3134 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3135 break; 3136 #endif /* INET */ 3137 } 3138 break; 3139 } 3140 if (nr->natpass) 3141 r = NULL; 3142 pd->nat_rule = nr; 3143 } 3144 3145 while (r != NULL) { 3146 r->evaluations++; 3147 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3148 r = r->skip[PF_SKIP_IFP].ptr; 3149 else if (r->direction && r->direction != direction) 3150 r = r->skip[PF_SKIP_DIR].ptr; 3151 else if (r->af && r->af != af) 3152 r = r->skip[PF_SKIP_AF].ptr; 3153 else if (r->proto && r->proto != pd->proto) 3154 r = r->skip[PF_SKIP_PROTO].ptr; 3155 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3156 r->src.neg, kif, M_GETFIB(m))) 3157 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3158 /* tcp/udp only. port_op always 0 in other cases */ 3159 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3160 r->src.port[0], r->src.port[1], sport)) 3161 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3162 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3163 r->dst.neg, NULL, M_GETFIB(m))) 3164 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3165 /* tcp/udp only. port_op always 0 in other cases */ 3166 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3167 r->dst.port[0], r->dst.port[1], dport)) 3168 r = r->skip[PF_SKIP_DST_PORT].ptr; 3169 /* icmp only. type always 0 in other cases */ 3170 else if (r->type && r->type != icmptype + 1) 3171 r = TAILQ_NEXT(r, entries); 3172 /* icmp only. type always 0 in other cases */ 3173 else if (r->code && r->code != icmpcode + 1) 3174 r = TAILQ_NEXT(r, entries); 3175 else if (r->tos && !(r->tos == pd->tos)) 3176 r = TAILQ_NEXT(r, entries); 3177 else if (r->rule_flag & PFRULE_FRAGMENT) 3178 r = TAILQ_NEXT(r, entries); 3179 else if (pd->proto == IPPROTO_TCP && 3180 (r->flagset & th->th_flags) != r->flags) 3181 r = TAILQ_NEXT(r, entries); 3182 /* tcp/udp only. uid.op always 0 in other cases */ 3183 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3184 pf_socket_lookup(direction, pd, m), 1)) && 3185 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3186 pd->lookup.uid)) 3187 r = TAILQ_NEXT(r, entries); 3188 /* tcp/udp only. gid.op always 0 in other cases */ 3189 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3190 pf_socket_lookup(direction, pd, m), 1)) && 3191 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3192 pd->lookup.gid)) 3193 r = TAILQ_NEXT(r, entries); 3194 else if (r->prob && 3195 r->prob <= arc4random()) 3196 r = TAILQ_NEXT(r, entries); 3197 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3198 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3199 r = TAILQ_NEXT(r, entries); 3200 else if (r->os_fingerprint != PF_OSFP_ANY && 3201 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3202 pf_osfp_fingerprint(pd, m, off, th), 3203 r->os_fingerprint))) 3204 r = TAILQ_NEXT(r, entries); 3205 else { 3206 if (r->tag) 3207 tag = r->tag; 3208 if (r->rtableid >= 0) 3209 rtableid = r->rtableid; 3210 if (r->anchor == NULL) { 3211 match = 1; 3212 *rm = r; 3213 *am = a; 3214 *rsm = ruleset; 3215 if ((*rm)->quick) 3216 break; 3217 r = TAILQ_NEXT(r, entries); 3218 } else 3219 pf_step_into_anchor(anchor_stack, &asd, 3220 &ruleset, PF_RULESET_FILTER, &r, &a, 3221 &match); 3222 } 3223 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3224 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3225 break; 3226 } 3227 r = *rm; 3228 a = *am; 3229 ruleset = *rsm; 3230 3231 REASON_SET(&reason, PFRES_MATCH); 3232 3233 if (r->log || (nr != NULL && nr->log)) { 3234 if (rewrite) 3235 m_copyback(m, off, hdrlen, pd->hdr.any); 3236 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3237 ruleset, pd, 1); 3238 } 3239 3240 if ((r->action == PF_DROP) && 3241 ((r->rule_flag & PFRULE_RETURNRST) || 3242 (r->rule_flag & PFRULE_RETURNICMP) || 3243 (r->rule_flag & PFRULE_RETURN))) { 3244 /* undo NAT changes, if they have taken place */ 3245 if (nr != NULL) { 3246 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3247 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3248 if (pd->sport) 3249 *pd->sport = sk->port[pd->sidx]; 3250 if (pd->dport) 3251 *pd->dport = sk->port[pd->didx]; 3252 if (pd->proto_sum) 3253 *pd->proto_sum = bproto_sum; 3254 if (pd->ip_sum) 3255 *pd->ip_sum = bip_sum; 3256 m_copyback(m, off, hdrlen, pd->hdr.any); 3257 } 3258 if (pd->proto == IPPROTO_TCP && 3259 ((r->rule_flag & PFRULE_RETURNRST) || 3260 (r->rule_flag & PFRULE_RETURN)) && 3261 !(th->th_flags & TH_RST)) { 3262 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3263 int len = 0; 3264 #ifdef INET 3265 struct ip *h4; 3266 #endif 3267 #ifdef INET6 3268 struct ip6_hdr *h6; 3269 #endif 3270 3271 switch (af) { 3272 #ifdef INET 3273 case AF_INET: 3274 h4 = mtod(m, struct ip *); 3275 len = ntohs(h4->ip_len) - off; 3276 break; 3277 #endif 3278 #ifdef INET6 3279 case AF_INET6: 3280 h6 = mtod(m, struct ip6_hdr *); 3281 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3282 break; 3283 #endif 3284 } 3285 3286 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3287 REASON_SET(&reason, PFRES_PROTCKSUM); 3288 else { 3289 if (th->th_flags & TH_SYN) 3290 ack++; 3291 if (th->th_flags & TH_FIN) 3292 ack++; 3293 pf_send_tcp(m, r, af, pd->dst, 3294 pd->src, th->th_dport, th->th_sport, 3295 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3296 r->return_ttl, 1, 0, kif->pfik_ifp); 3297 } 3298 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3299 r->return_icmp) 3300 pf_send_icmp(m, r->return_icmp >> 8, 3301 r->return_icmp & 255, af, r); 3302 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3303 r->return_icmp6) 3304 pf_send_icmp(m, r->return_icmp6 >> 8, 3305 r->return_icmp6 & 255, af, r); 3306 } 3307 3308 if (r->action == PF_DROP) 3309 goto cleanup; 3310 3311 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3312 REASON_SET(&reason, PFRES_MEMORY); 3313 goto cleanup; 3314 } 3315 if (rtableid >= 0) 3316 M_SETFIB(m, rtableid); 3317 3318 if (!state_icmp && (r->keep_state || nr != NULL || 3319 (pd->flags & PFDESC_TCP_NORM))) { 3320 int action; 3321 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3322 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3323 hdrlen); 3324 if (action != PF_PASS) 3325 return (action); 3326 } else { 3327 if (sk != NULL) 3328 uma_zfree(V_pf_state_key_z, sk); 3329 if (nk != NULL) 3330 uma_zfree(V_pf_state_key_z, nk); 3331 } 3332 3333 /* copy back packet headers if we performed NAT operations */ 3334 if (rewrite) 3335 m_copyback(m, off, hdrlen, pd->hdr.any); 3336 3337 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3338 direction == PF_OUT && 3339 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3340 /* 3341 * We want the state created, but we dont 3342 * want to send this in case a partner 3343 * firewall has to know about it to allow 3344 * replies through it. 3345 */ 3346 return (PF_DEFER); 3347 3348 return (PF_PASS); 3349 3350 cleanup: 3351 if (sk != NULL) 3352 uma_zfree(V_pf_state_key_z, sk); 3353 if (nk != NULL) 3354 uma_zfree(V_pf_state_key_z, nk); 3355 return (PF_DROP); 3356 } 3357 3358 static int 3359 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3360 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3361 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3362 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3363 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3364 { 3365 struct pf_state *s = NULL; 3366 struct pf_src_node *sn = NULL; 3367 struct tcphdr *th = pd->hdr.tcp; 3368 u_int16_t mss = V_tcp_mssdflt; 3369 u_short reason; 3370 3371 /* check maximums */ 3372 if (r->max_states && (r->states_cur >= r->max_states)) { 3373 V_pf_status.lcounters[LCNT_STATES]++; 3374 REASON_SET(&reason, PFRES_MAXSTATES); 3375 return (PF_DROP); 3376 } 3377 /* src node for filter rule */ 3378 if ((r->rule_flag & PFRULE_SRCTRACK || 3379 r->rpool.opts & PF_POOL_STICKYADDR) && 3380 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3381 REASON_SET(&reason, PFRES_SRCLIMIT); 3382 goto csfailed; 3383 } 3384 /* src node for translation rule */ 3385 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3386 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3387 REASON_SET(&reason, PFRES_SRCLIMIT); 3388 goto csfailed; 3389 } 3390 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3391 if (s == NULL) { 3392 REASON_SET(&reason, PFRES_MEMORY); 3393 goto csfailed; 3394 } 3395 s->rule.ptr = r; 3396 s->nat_rule.ptr = nr; 3397 s->anchor.ptr = a; 3398 STATE_INC_COUNTERS(s); 3399 if (r->allow_opts) 3400 s->state_flags |= PFSTATE_ALLOWOPTS; 3401 if (r->rule_flag & PFRULE_STATESLOPPY) 3402 s->state_flags |= PFSTATE_SLOPPY; 3403 s->log = r->log & PF_LOG_ALL; 3404 s->sync_state = PFSYNC_S_NONE; 3405 if (nr != NULL) 3406 s->log |= nr->log & PF_LOG_ALL; 3407 switch (pd->proto) { 3408 case IPPROTO_TCP: 3409 s->src.seqlo = ntohl(th->th_seq); 3410 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3411 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3412 r->keep_state == PF_STATE_MODULATE) { 3413 /* Generate sequence number modulator */ 3414 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3415 0) 3416 s->src.seqdiff = 1; 3417 pf_change_a(&th->th_seq, &th->th_sum, 3418 htonl(s->src.seqlo + s->src.seqdiff), 0); 3419 *rewrite = 1; 3420 } else 3421 s->src.seqdiff = 0; 3422 if (th->th_flags & TH_SYN) { 3423 s->src.seqhi++; 3424 s->src.wscale = pf_get_wscale(m, off, 3425 th->th_off, pd->af); 3426 } 3427 s->src.max_win = MAX(ntohs(th->th_win), 1); 3428 if (s->src.wscale & PF_WSCALE_MASK) { 3429 /* Remove scale factor from initial window */ 3430 int win = s->src.max_win; 3431 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3432 s->src.max_win = (win - 1) >> 3433 (s->src.wscale & PF_WSCALE_MASK); 3434 } 3435 if (th->th_flags & TH_FIN) 3436 s->src.seqhi++; 3437 s->dst.seqhi = 1; 3438 s->dst.max_win = 1; 3439 s->src.state = TCPS_SYN_SENT; 3440 s->dst.state = TCPS_CLOSED; 3441 s->timeout = PFTM_TCP_FIRST_PACKET; 3442 break; 3443 case IPPROTO_UDP: 3444 s->src.state = PFUDPS_SINGLE; 3445 s->dst.state = PFUDPS_NO_TRAFFIC; 3446 s->timeout = PFTM_UDP_FIRST_PACKET; 3447 break; 3448 case IPPROTO_ICMP: 3449 #ifdef INET6 3450 case IPPROTO_ICMPV6: 3451 #endif 3452 s->timeout = PFTM_ICMP_FIRST_PACKET; 3453 break; 3454 default: 3455 s->src.state = PFOTHERS_SINGLE; 3456 s->dst.state = PFOTHERS_NO_TRAFFIC; 3457 s->timeout = PFTM_OTHER_FIRST_PACKET; 3458 } 3459 3460 s->creation = time_uptime; 3461 s->expire = time_uptime; 3462 3463 if (sn != NULL) { 3464 s->src_node = sn; 3465 s->src_node->states++; 3466 } 3467 if (nsn != NULL) { 3468 /* XXX We only modify one side for now. */ 3469 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3470 s->nat_src_node = nsn; 3471 s->nat_src_node->states++; 3472 } 3473 if (pd->proto == IPPROTO_TCP) { 3474 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3475 off, pd, th, &s->src, &s->dst)) { 3476 REASON_SET(&reason, PFRES_MEMORY); 3477 pf_src_tree_remove_state(s); 3478 STATE_DEC_COUNTERS(s); 3479 uma_zfree(V_pf_state_z, s); 3480 return (PF_DROP); 3481 } 3482 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3483 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3484 &s->src, &s->dst, rewrite)) { 3485 /* This really shouldn't happen!!! */ 3486 DPFPRINTF(PF_DEBUG_URGENT, 3487 ("pf_normalize_tcp_stateful failed on first pkt")); 3488 pf_normalize_tcp_cleanup(s); 3489 pf_src_tree_remove_state(s); 3490 STATE_DEC_COUNTERS(s); 3491 uma_zfree(V_pf_state_z, s); 3492 return (PF_DROP); 3493 } 3494 } 3495 s->direction = pd->dir; 3496 3497 /* 3498 * sk/nk could already been setup by pf_get_translation(). 3499 */ 3500 if (nr == NULL) { 3501 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3502 __func__, nr, sk, nk)); 3503 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3504 if (sk == NULL) 3505 goto csfailed; 3506 nk = sk; 3507 } else 3508 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3509 __func__, nr, sk, nk)); 3510 3511 /* Swap sk/nk for PF_OUT. */ 3512 if (pf_state_insert(BOUND_IFACE(r, kif), 3513 (pd->dir == PF_IN) ? sk : nk, 3514 (pd->dir == PF_IN) ? nk : sk, s)) { 3515 if (pd->proto == IPPROTO_TCP) 3516 pf_normalize_tcp_cleanup(s); 3517 REASON_SET(&reason, PFRES_STATEINS); 3518 pf_src_tree_remove_state(s); 3519 STATE_DEC_COUNTERS(s); 3520 uma_zfree(V_pf_state_z, s); 3521 return (PF_DROP); 3522 } else 3523 *sm = s; 3524 3525 pf_set_rt_ifp(s, pd->src); /* needs s->state_key set */ 3526 if (tag > 0) 3527 s->tag = tag; 3528 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3529 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3530 s->src.state = PF_TCPS_PROXY_SRC; 3531 /* undo NAT changes, if they have taken place */ 3532 if (nr != NULL) { 3533 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3534 if (pd->dir == PF_OUT) 3535 skt = s->key[PF_SK_STACK]; 3536 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3537 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3538 if (pd->sport) 3539 *pd->sport = skt->port[pd->sidx]; 3540 if (pd->dport) 3541 *pd->dport = skt->port[pd->didx]; 3542 if (pd->proto_sum) 3543 *pd->proto_sum = bproto_sum; 3544 if (pd->ip_sum) 3545 *pd->ip_sum = bip_sum; 3546 m_copyback(m, off, hdrlen, pd->hdr.any); 3547 } 3548 s->src.seqhi = htonl(arc4random()); 3549 /* Find mss option */ 3550 int rtid = M_GETFIB(m); 3551 mss = pf_get_mss(m, off, th->th_off, pd->af); 3552 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3553 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3554 s->src.mss = mss; 3555 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3556 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3557 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3558 REASON_SET(&reason, PFRES_SYNPROXY); 3559 return (PF_SYNPROXY_DROP); 3560 } 3561 3562 return (PF_PASS); 3563 3564 csfailed: 3565 if (sk != NULL) 3566 uma_zfree(V_pf_state_key_z, sk); 3567 if (nk != NULL) 3568 uma_zfree(V_pf_state_key_z, nk); 3569 3570 if (sn != NULL && sn->states == 0 && sn->expire == 0) 3571 pf_remove_src_node(sn); 3572 3573 if (nsn != sn && nsn != NULL && nsn->states == 0 && nsn->expire == 0) 3574 pf_remove_src_node(nsn); 3575 3576 return (PF_DROP); 3577 } 3578 3579 static int 3580 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3581 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3582 struct pf_ruleset **rsm) 3583 { 3584 struct pf_rule *r, *a = NULL; 3585 struct pf_ruleset *ruleset = NULL; 3586 sa_family_t af = pd->af; 3587 u_short reason; 3588 int tag = -1; 3589 int asd = 0; 3590 int match = 0; 3591 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3592 3593 PF_RULES_RASSERT(); 3594 3595 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3596 while (r != NULL) { 3597 r->evaluations++; 3598 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3599 r = r->skip[PF_SKIP_IFP].ptr; 3600 else if (r->direction && r->direction != direction) 3601 r = r->skip[PF_SKIP_DIR].ptr; 3602 else if (r->af && r->af != af) 3603 r = r->skip[PF_SKIP_AF].ptr; 3604 else if (r->proto && r->proto != pd->proto) 3605 r = r->skip[PF_SKIP_PROTO].ptr; 3606 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3607 r->src.neg, kif, M_GETFIB(m))) 3608 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3609 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3610 r->dst.neg, NULL, M_GETFIB(m))) 3611 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3612 else if (r->tos && !(r->tos == pd->tos)) 3613 r = TAILQ_NEXT(r, entries); 3614 else if (r->os_fingerprint != PF_OSFP_ANY) 3615 r = TAILQ_NEXT(r, entries); 3616 else if (pd->proto == IPPROTO_UDP && 3617 (r->src.port_op || r->dst.port_op)) 3618 r = TAILQ_NEXT(r, entries); 3619 else if (pd->proto == IPPROTO_TCP && 3620 (r->src.port_op || r->dst.port_op || r->flagset)) 3621 r = TAILQ_NEXT(r, entries); 3622 else if ((pd->proto == IPPROTO_ICMP || 3623 pd->proto == IPPROTO_ICMPV6) && 3624 (r->type || r->code)) 3625 r = TAILQ_NEXT(r, entries); 3626 else if (r->prob && r->prob <= 3627 (arc4random() % (UINT_MAX - 1) + 1)) 3628 r = TAILQ_NEXT(r, entries); 3629 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3630 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3631 r = TAILQ_NEXT(r, entries); 3632 else { 3633 if (r->anchor == NULL) { 3634 match = 1; 3635 *rm = r; 3636 *am = a; 3637 *rsm = ruleset; 3638 if ((*rm)->quick) 3639 break; 3640 r = TAILQ_NEXT(r, entries); 3641 } else 3642 pf_step_into_anchor(anchor_stack, &asd, 3643 &ruleset, PF_RULESET_FILTER, &r, &a, 3644 &match); 3645 } 3646 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3647 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3648 break; 3649 } 3650 r = *rm; 3651 a = *am; 3652 ruleset = *rsm; 3653 3654 REASON_SET(&reason, PFRES_MATCH); 3655 3656 if (r->log) 3657 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3658 1); 3659 3660 if (r->action != PF_PASS) 3661 return (PF_DROP); 3662 3663 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3664 REASON_SET(&reason, PFRES_MEMORY); 3665 return (PF_DROP); 3666 } 3667 3668 return (PF_PASS); 3669 } 3670 3671 static int 3672 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3673 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3674 struct pf_pdesc *pd, u_short *reason, int *copyback) 3675 { 3676 struct tcphdr *th = pd->hdr.tcp; 3677 u_int16_t win = ntohs(th->th_win); 3678 u_int32_t ack, end, seq, orig_seq; 3679 u_int8_t sws, dws; 3680 int ackskew; 3681 3682 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3683 sws = src->wscale & PF_WSCALE_MASK; 3684 dws = dst->wscale & PF_WSCALE_MASK; 3685 } else 3686 sws = dws = 0; 3687 3688 /* 3689 * Sequence tracking algorithm from Guido van Rooij's paper: 3690 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3691 * tcp_filtering.ps 3692 */ 3693 3694 orig_seq = seq = ntohl(th->th_seq); 3695 if (src->seqlo == 0) { 3696 /* First packet from this end. Set its state */ 3697 3698 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3699 src->scrub == NULL) { 3700 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3701 REASON_SET(reason, PFRES_MEMORY); 3702 return (PF_DROP); 3703 } 3704 } 3705 3706 /* Deferred generation of sequence number modulator */ 3707 if (dst->seqdiff && !src->seqdiff) { 3708 /* use random iss for the TCP server */ 3709 while ((src->seqdiff = arc4random() - seq) == 0) 3710 ; 3711 ack = ntohl(th->th_ack) - dst->seqdiff; 3712 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3713 src->seqdiff), 0); 3714 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3715 *copyback = 1; 3716 } else { 3717 ack = ntohl(th->th_ack); 3718 } 3719 3720 end = seq + pd->p_len; 3721 if (th->th_flags & TH_SYN) { 3722 end++; 3723 if (dst->wscale & PF_WSCALE_FLAG) { 3724 src->wscale = pf_get_wscale(m, off, th->th_off, 3725 pd->af); 3726 if (src->wscale & PF_WSCALE_FLAG) { 3727 /* Remove scale factor from initial 3728 * window */ 3729 sws = src->wscale & PF_WSCALE_MASK; 3730 win = ((u_int32_t)win + (1 << sws) - 1) 3731 >> sws; 3732 dws = dst->wscale & PF_WSCALE_MASK; 3733 } else { 3734 /* fixup other window */ 3735 dst->max_win <<= dst->wscale & 3736 PF_WSCALE_MASK; 3737 /* in case of a retrans SYN|ACK */ 3738 dst->wscale = 0; 3739 } 3740 } 3741 } 3742 if (th->th_flags & TH_FIN) 3743 end++; 3744 3745 src->seqlo = seq; 3746 if (src->state < TCPS_SYN_SENT) 3747 src->state = TCPS_SYN_SENT; 3748 3749 /* 3750 * May need to slide the window (seqhi may have been set by 3751 * the crappy stack check or if we picked up the connection 3752 * after establishment) 3753 */ 3754 if (src->seqhi == 1 || 3755 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3756 src->seqhi = end + MAX(1, dst->max_win << dws); 3757 if (win > src->max_win) 3758 src->max_win = win; 3759 3760 } else { 3761 ack = ntohl(th->th_ack) - dst->seqdiff; 3762 if (src->seqdiff) { 3763 /* Modulate sequence numbers */ 3764 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3765 src->seqdiff), 0); 3766 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3767 *copyback = 1; 3768 } 3769 end = seq + pd->p_len; 3770 if (th->th_flags & TH_SYN) 3771 end++; 3772 if (th->th_flags & TH_FIN) 3773 end++; 3774 } 3775 3776 if ((th->th_flags & TH_ACK) == 0) { 3777 /* Let it pass through the ack skew check */ 3778 ack = dst->seqlo; 3779 } else if ((ack == 0 && 3780 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 3781 /* broken tcp stacks do not set ack */ 3782 (dst->state < TCPS_SYN_SENT)) { 3783 /* 3784 * Many stacks (ours included) will set the ACK number in an 3785 * FIN|ACK if the SYN times out -- no sequence to ACK. 3786 */ 3787 ack = dst->seqlo; 3788 } 3789 3790 if (seq == end) { 3791 /* Ease sequencing restrictions on no data packets */ 3792 seq = src->seqlo; 3793 end = seq; 3794 } 3795 3796 ackskew = dst->seqlo - ack; 3797 3798 3799 /* 3800 * Need to demodulate the sequence numbers in any TCP SACK options 3801 * (Selective ACK). We could optionally validate the SACK values 3802 * against the current ACK window, either forwards or backwards, but 3803 * I'm not confident that SACK has been implemented properly 3804 * everywhere. It wouldn't surprise me if several stacks accidently 3805 * SACK too far backwards of previously ACKed data. There really aren't 3806 * any security implications of bad SACKing unless the target stack 3807 * doesn't validate the option length correctly. Someone trying to 3808 * spoof into a TCP connection won't bother blindly sending SACK 3809 * options anyway. 3810 */ 3811 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 3812 if (pf_modulate_sack(m, off, pd, th, dst)) 3813 *copyback = 1; 3814 } 3815 3816 3817 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 3818 if (SEQ_GEQ(src->seqhi, end) && 3819 /* Last octet inside other's window space */ 3820 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 3821 /* Retrans: not more than one window back */ 3822 (ackskew >= -MAXACKWINDOW) && 3823 /* Acking not more than one reassembled fragment backwards */ 3824 (ackskew <= (MAXACKWINDOW << sws)) && 3825 /* Acking not more than one window forward */ 3826 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 3827 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 3828 (pd->flags & PFDESC_IP_REAS) == 0)) { 3829 /* Require an exact/+1 sequence match on resets when possible */ 3830 3831 if (dst->scrub || src->scrub) { 3832 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 3833 *state, src, dst, copyback)) 3834 return (PF_DROP); 3835 } 3836 3837 /* update max window */ 3838 if (src->max_win < win) 3839 src->max_win = win; 3840 /* synchronize sequencing */ 3841 if (SEQ_GT(end, src->seqlo)) 3842 src->seqlo = end; 3843 /* slide the window of what the other end can send */ 3844 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 3845 dst->seqhi = ack + MAX((win << sws), 1); 3846 3847 3848 /* update states */ 3849 if (th->th_flags & TH_SYN) 3850 if (src->state < TCPS_SYN_SENT) 3851 src->state = TCPS_SYN_SENT; 3852 if (th->th_flags & TH_FIN) 3853 if (src->state < TCPS_CLOSING) 3854 src->state = TCPS_CLOSING; 3855 if (th->th_flags & TH_ACK) { 3856 if (dst->state == TCPS_SYN_SENT) { 3857 dst->state = TCPS_ESTABLISHED; 3858 if (src->state == TCPS_ESTABLISHED && 3859 (*state)->src_node != NULL && 3860 pf_src_connlimit(state)) { 3861 REASON_SET(reason, PFRES_SRCLIMIT); 3862 return (PF_DROP); 3863 } 3864 } else if (dst->state == TCPS_CLOSING) 3865 dst->state = TCPS_FIN_WAIT_2; 3866 } 3867 if (th->th_flags & TH_RST) 3868 src->state = dst->state = TCPS_TIME_WAIT; 3869 3870 /* update expire time */ 3871 (*state)->expire = time_uptime; 3872 if (src->state >= TCPS_FIN_WAIT_2 && 3873 dst->state >= TCPS_FIN_WAIT_2) 3874 (*state)->timeout = PFTM_TCP_CLOSED; 3875 else if (src->state >= TCPS_CLOSING && 3876 dst->state >= TCPS_CLOSING) 3877 (*state)->timeout = PFTM_TCP_FIN_WAIT; 3878 else if (src->state < TCPS_ESTABLISHED || 3879 dst->state < TCPS_ESTABLISHED) 3880 (*state)->timeout = PFTM_TCP_OPENING; 3881 else if (src->state >= TCPS_CLOSING || 3882 dst->state >= TCPS_CLOSING) 3883 (*state)->timeout = PFTM_TCP_CLOSING; 3884 else 3885 (*state)->timeout = PFTM_TCP_ESTABLISHED; 3886 3887 /* Fall through to PASS packet */ 3888 3889 } else if ((dst->state < TCPS_SYN_SENT || 3890 dst->state >= TCPS_FIN_WAIT_2 || 3891 src->state >= TCPS_FIN_WAIT_2) && 3892 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 3893 /* Within a window forward of the originating packet */ 3894 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 3895 /* Within a window backward of the originating packet */ 3896 3897 /* 3898 * This currently handles three situations: 3899 * 1) Stupid stacks will shotgun SYNs before their peer 3900 * replies. 3901 * 2) When PF catches an already established stream (the 3902 * firewall rebooted, the state table was flushed, routes 3903 * changed...) 3904 * 3) Packets get funky immediately after the connection 3905 * closes (this should catch Solaris spurious ACK|FINs 3906 * that web servers like to spew after a close) 3907 * 3908 * This must be a little more careful than the above code 3909 * since packet floods will also be caught here. We don't 3910 * update the TTL here to mitigate the damage of a packet 3911 * flood and so the same code can handle awkward establishment 3912 * and a loosened connection close. 3913 * In the establishment case, a correct peer response will 3914 * validate the connection, go through the normal state code 3915 * and keep updating the state TTL. 3916 */ 3917 3918 if (V_pf_status.debug >= PF_DEBUG_MISC) { 3919 printf("pf: loose state match: "); 3920 pf_print_state(*state); 3921 pf_print_flags(th->th_flags); 3922 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 3923 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 3924 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 3925 (unsigned long long)(*state)->packets[1], 3926 pd->dir == PF_IN ? "in" : "out", 3927 pd->dir == (*state)->direction ? "fwd" : "rev"); 3928 } 3929 3930 if (dst->scrub || src->scrub) { 3931 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 3932 *state, src, dst, copyback)) 3933 return (PF_DROP); 3934 } 3935 3936 /* update max window */ 3937 if (src->max_win < win) 3938 src->max_win = win; 3939 /* synchronize sequencing */ 3940 if (SEQ_GT(end, src->seqlo)) 3941 src->seqlo = end; 3942 /* slide the window of what the other end can send */ 3943 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 3944 dst->seqhi = ack + MAX((win << sws), 1); 3945 3946 /* 3947 * Cannot set dst->seqhi here since this could be a shotgunned 3948 * SYN and not an already established connection. 3949 */ 3950 3951 if (th->th_flags & TH_FIN) 3952 if (src->state < TCPS_CLOSING) 3953 src->state = TCPS_CLOSING; 3954 if (th->th_flags & TH_RST) 3955 src->state = dst->state = TCPS_TIME_WAIT; 3956 3957 /* Fall through to PASS packet */ 3958 3959 } else { 3960 if ((*state)->dst.state == TCPS_SYN_SENT && 3961 (*state)->src.state == TCPS_SYN_SENT) { 3962 /* Send RST for state mismatches during handshake */ 3963 if (!(th->th_flags & TH_RST)) 3964 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 3965 pd->dst, pd->src, th->th_dport, 3966 th->th_sport, ntohl(th->th_ack), 0, 3967 TH_RST, 0, 0, 3968 (*state)->rule.ptr->return_ttl, 1, 0, 3969 kif->pfik_ifp); 3970 src->seqlo = 0; 3971 src->seqhi = 1; 3972 src->max_win = 1; 3973 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 3974 printf("pf: BAD state: "); 3975 pf_print_state(*state); 3976 pf_print_flags(th->th_flags); 3977 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 3978 "pkts=%llu:%llu dir=%s,%s\n", 3979 seq, orig_seq, ack, pd->p_len, ackskew, 3980 (unsigned long long)(*state)->packets[0], 3981 (unsigned long long)(*state)->packets[1], 3982 pd->dir == PF_IN ? "in" : "out", 3983 pd->dir == (*state)->direction ? "fwd" : "rev"); 3984 printf("pf: State failure on: %c %c %c %c | %c %c\n", 3985 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 3986 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 3987 ' ': '2', 3988 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 3989 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 3990 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 3991 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 3992 } 3993 REASON_SET(reason, PFRES_BADSTATE); 3994 return (PF_DROP); 3995 } 3996 3997 return (PF_PASS); 3998 } 3999 4000 static int 4001 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4002 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4003 { 4004 struct tcphdr *th = pd->hdr.tcp; 4005 4006 if (th->th_flags & TH_SYN) 4007 if (src->state < TCPS_SYN_SENT) 4008 src->state = TCPS_SYN_SENT; 4009 if (th->th_flags & TH_FIN) 4010 if (src->state < TCPS_CLOSING) 4011 src->state = TCPS_CLOSING; 4012 if (th->th_flags & TH_ACK) { 4013 if (dst->state == TCPS_SYN_SENT) { 4014 dst->state = TCPS_ESTABLISHED; 4015 if (src->state == TCPS_ESTABLISHED && 4016 (*state)->src_node != NULL && 4017 pf_src_connlimit(state)) { 4018 REASON_SET(reason, PFRES_SRCLIMIT); 4019 return (PF_DROP); 4020 } 4021 } else if (dst->state == TCPS_CLOSING) { 4022 dst->state = TCPS_FIN_WAIT_2; 4023 } else if (src->state == TCPS_SYN_SENT && 4024 dst->state < TCPS_SYN_SENT) { 4025 /* 4026 * Handle a special sloppy case where we only see one 4027 * half of the connection. If there is a ACK after 4028 * the initial SYN without ever seeing a packet from 4029 * the destination, set the connection to established. 4030 */ 4031 dst->state = src->state = TCPS_ESTABLISHED; 4032 if ((*state)->src_node != NULL && 4033 pf_src_connlimit(state)) { 4034 REASON_SET(reason, PFRES_SRCLIMIT); 4035 return (PF_DROP); 4036 } 4037 } else if (src->state == TCPS_CLOSING && 4038 dst->state == TCPS_ESTABLISHED && 4039 dst->seqlo == 0) { 4040 /* 4041 * Handle the closing of half connections where we 4042 * don't see the full bidirectional FIN/ACK+ACK 4043 * handshake. 4044 */ 4045 dst->state = TCPS_CLOSING; 4046 } 4047 } 4048 if (th->th_flags & TH_RST) 4049 src->state = dst->state = TCPS_TIME_WAIT; 4050 4051 /* update expire time */ 4052 (*state)->expire = time_uptime; 4053 if (src->state >= TCPS_FIN_WAIT_2 && 4054 dst->state >= TCPS_FIN_WAIT_2) 4055 (*state)->timeout = PFTM_TCP_CLOSED; 4056 else if (src->state >= TCPS_CLOSING && 4057 dst->state >= TCPS_CLOSING) 4058 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4059 else if (src->state < TCPS_ESTABLISHED || 4060 dst->state < TCPS_ESTABLISHED) 4061 (*state)->timeout = PFTM_TCP_OPENING; 4062 else if (src->state >= TCPS_CLOSING || 4063 dst->state >= TCPS_CLOSING) 4064 (*state)->timeout = PFTM_TCP_CLOSING; 4065 else 4066 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4067 4068 return (PF_PASS); 4069 } 4070 4071 static int 4072 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4073 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4074 u_short *reason) 4075 { 4076 struct pf_state_key_cmp key; 4077 struct tcphdr *th = pd->hdr.tcp; 4078 int copyback = 0; 4079 struct pf_state_peer *src, *dst; 4080 struct pf_state_key *sk; 4081 4082 bzero(&key, sizeof(key)); 4083 key.af = pd->af; 4084 key.proto = IPPROTO_TCP; 4085 if (direction == PF_IN) { /* wire side, straight */ 4086 PF_ACPY(&key.addr[0], pd->src, key.af); 4087 PF_ACPY(&key.addr[1], pd->dst, key.af); 4088 key.port[0] = th->th_sport; 4089 key.port[1] = th->th_dport; 4090 } else { /* stack side, reverse */ 4091 PF_ACPY(&key.addr[1], pd->src, key.af); 4092 PF_ACPY(&key.addr[0], pd->dst, key.af); 4093 key.port[1] = th->th_sport; 4094 key.port[0] = th->th_dport; 4095 } 4096 4097 STATE_LOOKUP(kif, &key, direction, *state, pd); 4098 4099 if (direction == (*state)->direction) { 4100 src = &(*state)->src; 4101 dst = &(*state)->dst; 4102 } else { 4103 src = &(*state)->dst; 4104 dst = &(*state)->src; 4105 } 4106 4107 sk = (*state)->key[pd->didx]; 4108 4109 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4110 if (direction != (*state)->direction) { 4111 REASON_SET(reason, PFRES_SYNPROXY); 4112 return (PF_SYNPROXY_DROP); 4113 } 4114 if (th->th_flags & TH_SYN) { 4115 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4116 REASON_SET(reason, PFRES_SYNPROXY); 4117 return (PF_DROP); 4118 } 4119 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4120 pd->src, th->th_dport, th->th_sport, 4121 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4122 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4123 REASON_SET(reason, PFRES_SYNPROXY); 4124 return (PF_SYNPROXY_DROP); 4125 } else if (!(th->th_flags & TH_ACK) || 4126 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4127 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4128 REASON_SET(reason, PFRES_SYNPROXY); 4129 return (PF_DROP); 4130 } else if ((*state)->src_node != NULL && 4131 pf_src_connlimit(state)) { 4132 REASON_SET(reason, PFRES_SRCLIMIT); 4133 return (PF_DROP); 4134 } else 4135 (*state)->src.state = PF_TCPS_PROXY_DST; 4136 } 4137 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4138 if (direction == (*state)->direction) { 4139 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4140 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4141 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4142 REASON_SET(reason, PFRES_SYNPROXY); 4143 return (PF_DROP); 4144 } 4145 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4146 if ((*state)->dst.seqhi == 1) 4147 (*state)->dst.seqhi = htonl(arc4random()); 4148 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4149 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4150 sk->port[pd->sidx], sk->port[pd->didx], 4151 (*state)->dst.seqhi, 0, TH_SYN, 0, 4152 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4153 REASON_SET(reason, PFRES_SYNPROXY); 4154 return (PF_SYNPROXY_DROP); 4155 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4156 (TH_SYN|TH_ACK)) || 4157 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4158 REASON_SET(reason, PFRES_SYNPROXY); 4159 return (PF_DROP); 4160 } else { 4161 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4162 (*state)->dst.seqlo = ntohl(th->th_seq); 4163 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4164 pd->src, th->th_dport, th->th_sport, 4165 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4166 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4167 (*state)->tag, NULL); 4168 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4169 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4170 sk->port[pd->sidx], sk->port[pd->didx], 4171 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4172 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4173 (*state)->src.seqdiff = (*state)->dst.seqhi - 4174 (*state)->src.seqlo; 4175 (*state)->dst.seqdiff = (*state)->src.seqhi - 4176 (*state)->dst.seqlo; 4177 (*state)->src.seqhi = (*state)->src.seqlo + 4178 (*state)->dst.max_win; 4179 (*state)->dst.seqhi = (*state)->dst.seqlo + 4180 (*state)->src.max_win; 4181 (*state)->src.wscale = (*state)->dst.wscale = 0; 4182 (*state)->src.state = (*state)->dst.state = 4183 TCPS_ESTABLISHED; 4184 REASON_SET(reason, PFRES_SYNPROXY); 4185 return (PF_SYNPROXY_DROP); 4186 } 4187 } 4188 4189 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4190 dst->state >= TCPS_FIN_WAIT_2 && 4191 src->state >= TCPS_FIN_WAIT_2) { 4192 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4193 printf("pf: state reuse "); 4194 pf_print_state(*state); 4195 pf_print_flags(th->th_flags); 4196 printf("\n"); 4197 } 4198 /* XXX make sure it's the same direction ?? */ 4199 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4200 pf_unlink_state(*state, PF_ENTER_LOCKED); 4201 *state = NULL; 4202 return (PF_DROP); 4203 } 4204 4205 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4206 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4207 return (PF_DROP); 4208 } else { 4209 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4210 ©back) == PF_DROP) 4211 return (PF_DROP); 4212 } 4213 4214 /* translate source/destination address, if necessary */ 4215 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4216 struct pf_state_key *nk = (*state)->key[pd->didx]; 4217 4218 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4219 nk->port[pd->sidx] != th->th_sport) 4220 pf_change_ap(pd->src, &th->th_sport, pd->ip_sum, 4221 &th->th_sum, &nk->addr[pd->sidx], 4222 nk->port[pd->sidx], 0, pd->af); 4223 4224 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4225 nk->port[pd->didx] != th->th_dport) 4226 pf_change_ap(pd->dst, &th->th_dport, pd->ip_sum, 4227 &th->th_sum, &nk->addr[pd->didx], 4228 nk->port[pd->didx], 0, pd->af); 4229 copyback = 1; 4230 } 4231 4232 /* Copyback sequence modulation or stateful scrub changes if needed */ 4233 if (copyback) 4234 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4235 4236 return (PF_PASS); 4237 } 4238 4239 static int 4240 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4241 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4242 { 4243 struct pf_state_peer *src, *dst; 4244 struct pf_state_key_cmp key; 4245 struct udphdr *uh = pd->hdr.udp; 4246 4247 bzero(&key, sizeof(key)); 4248 key.af = pd->af; 4249 key.proto = IPPROTO_UDP; 4250 if (direction == PF_IN) { /* wire side, straight */ 4251 PF_ACPY(&key.addr[0], pd->src, key.af); 4252 PF_ACPY(&key.addr[1], pd->dst, key.af); 4253 key.port[0] = uh->uh_sport; 4254 key.port[1] = uh->uh_dport; 4255 } else { /* stack side, reverse */ 4256 PF_ACPY(&key.addr[1], pd->src, key.af); 4257 PF_ACPY(&key.addr[0], pd->dst, key.af); 4258 key.port[1] = uh->uh_sport; 4259 key.port[0] = uh->uh_dport; 4260 } 4261 4262 STATE_LOOKUP(kif, &key, direction, *state, pd); 4263 4264 if (direction == (*state)->direction) { 4265 src = &(*state)->src; 4266 dst = &(*state)->dst; 4267 } else { 4268 src = &(*state)->dst; 4269 dst = &(*state)->src; 4270 } 4271 4272 /* update states */ 4273 if (src->state < PFUDPS_SINGLE) 4274 src->state = PFUDPS_SINGLE; 4275 if (dst->state == PFUDPS_SINGLE) 4276 dst->state = PFUDPS_MULTIPLE; 4277 4278 /* update expire time */ 4279 (*state)->expire = time_uptime; 4280 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4281 (*state)->timeout = PFTM_UDP_MULTIPLE; 4282 else 4283 (*state)->timeout = PFTM_UDP_SINGLE; 4284 4285 /* translate source/destination address, if necessary */ 4286 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4287 struct pf_state_key *nk = (*state)->key[pd->didx]; 4288 4289 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4290 nk->port[pd->sidx] != uh->uh_sport) 4291 pf_change_ap(pd->src, &uh->uh_sport, pd->ip_sum, 4292 &uh->uh_sum, &nk->addr[pd->sidx], 4293 nk->port[pd->sidx], 1, pd->af); 4294 4295 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4296 nk->port[pd->didx] != uh->uh_dport) 4297 pf_change_ap(pd->dst, &uh->uh_dport, pd->ip_sum, 4298 &uh->uh_sum, &nk->addr[pd->didx], 4299 nk->port[pd->didx], 1, pd->af); 4300 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4301 } 4302 4303 return (PF_PASS); 4304 } 4305 4306 static int 4307 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4308 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4309 { 4310 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4311 u_int16_t icmpid = 0, *icmpsum; 4312 u_int8_t icmptype; 4313 int state_icmp = 0; 4314 struct pf_state_key_cmp key; 4315 4316 bzero(&key, sizeof(key)); 4317 switch (pd->proto) { 4318 #ifdef INET 4319 case IPPROTO_ICMP: 4320 icmptype = pd->hdr.icmp->icmp_type; 4321 icmpid = pd->hdr.icmp->icmp_id; 4322 icmpsum = &pd->hdr.icmp->icmp_cksum; 4323 4324 if (icmptype == ICMP_UNREACH || 4325 icmptype == ICMP_SOURCEQUENCH || 4326 icmptype == ICMP_REDIRECT || 4327 icmptype == ICMP_TIMXCEED || 4328 icmptype == ICMP_PARAMPROB) 4329 state_icmp++; 4330 break; 4331 #endif /* INET */ 4332 #ifdef INET6 4333 case IPPROTO_ICMPV6: 4334 icmptype = pd->hdr.icmp6->icmp6_type; 4335 icmpid = pd->hdr.icmp6->icmp6_id; 4336 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4337 4338 if (icmptype == ICMP6_DST_UNREACH || 4339 icmptype == ICMP6_PACKET_TOO_BIG || 4340 icmptype == ICMP6_TIME_EXCEEDED || 4341 icmptype == ICMP6_PARAM_PROB) 4342 state_icmp++; 4343 break; 4344 #endif /* INET6 */ 4345 } 4346 4347 if (!state_icmp) { 4348 4349 /* 4350 * ICMP query/reply message not related to a TCP/UDP packet. 4351 * Search for an ICMP state. 4352 */ 4353 key.af = pd->af; 4354 key.proto = pd->proto; 4355 key.port[0] = key.port[1] = icmpid; 4356 if (direction == PF_IN) { /* wire side, straight */ 4357 PF_ACPY(&key.addr[0], pd->src, key.af); 4358 PF_ACPY(&key.addr[1], pd->dst, key.af); 4359 } else { /* stack side, reverse */ 4360 PF_ACPY(&key.addr[1], pd->src, key.af); 4361 PF_ACPY(&key.addr[0], pd->dst, key.af); 4362 } 4363 4364 STATE_LOOKUP(kif, &key, direction, *state, pd); 4365 4366 (*state)->expire = time_uptime; 4367 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4368 4369 /* translate source/destination address, if necessary */ 4370 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4371 struct pf_state_key *nk = (*state)->key[pd->didx]; 4372 4373 switch (pd->af) { 4374 #ifdef INET 4375 case AF_INET: 4376 if (PF_ANEQ(pd->src, 4377 &nk->addr[pd->sidx], AF_INET)) 4378 pf_change_a(&saddr->v4.s_addr, 4379 pd->ip_sum, 4380 nk->addr[pd->sidx].v4.s_addr, 0); 4381 4382 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4383 AF_INET)) 4384 pf_change_a(&daddr->v4.s_addr, 4385 pd->ip_sum, 4386 nk->addr[pd->didx].v4.s_addr, 0); 4387 4388 if (nk->port[0] != 4389 pd->hdr.icmp->icmp_id) { 4390 pd->hdr.icmp->icmp_cksum = 4391 pf_cksum_fixup( 4392 pd->hdr.icmp->icmp_cksum, icmpid, 4393 nk->port[pd->sidx], 0); 4394 pd->hdr.icmp->icmp_id = 4395 nk->port[pd->sidx]; 4396 } 4397 4398 m_copyback(m, off, ICMP_MINLEN, 4399 (caddr_t )pd->hdr.icmp); 4400 break; 4401 #endif /* INET */ 4402 #ifdef INET6 4403 case AF_INET6: 4404 if (PF_ANEQ(pd->src, 4405 &nk->addr[pd->sidx], AF_INET6)) 4406 pf_change_a6(saddr, 4407 &pd->hdr.icmp6->icmp6_cksum, 4408 &nk->addr[pd->sidx], 0); 4409 4410 if (PF_ANEQ(pd->dst, 4411 &nk->addr[pd->didx], AF_INET6)) 4412 pf_change_a6(daddr, 4413 &pd->hdr.icmp6->icmp6_cksum, 4414 &nk->addr[pd->didx], 0); 4415 4416 m_copyback(m, off, sizeof(struct icmp6_hdr), 4417 (caddr_t )pd->hdr.icmp6); 4418 break; 4419 #endif /* INET6 */ 4420 } 4421 } 4422 return (PF_PASS); 4423 4424 } else { 4425 /* 4426 * ICMP error message in response to a TCP/UDP packet. 4427 * Extract the inner TCP/UDP header and search for that state. 4428 */ 4429 4430 struct pf_pdesc pd2; 4431 bzero(&pd2, sizeof pd2); 4432 #ifdef INET 4433 struct ip h2; 4434 #endif /* INET */ 4435 #ifdef INET6 4436 struct ip6_hdr h2_6; 4437 int terminal = 0; 4438 #endif /* INET6 */ 4439 int ipoff2 = 0; 4440 int off2 = 0; 4441 4442 pd2.af = pd->af; 4443 /* Payload packet is from the opposite direction. */ 4444 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4445 pd2.didx = (direction == PF_IN) ? 0 : 1; 4446 switch (pd->af) { 4447 #ifdef INET 4448 case AF_INET: 4449 /* offset of h2 in mbuf chain */ 4450 ipoff2 = off + ICMP_MINLEN; 4451 4452 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4453 NULL, reason, pd2.af)) { 4454 DPFPRINTF(PF_DEBUG_MISC, 4455 ("pf: ICMP error message too short " 4456 "(ip)\n")); 4457 return (PF_DROP); 4458 } 4459 /* 4460 * ICMP error messages don't refer to non-first 4461 * fragments 4462 */ 4463 if (h2.ip_off & htons(IP_OFFMASK)) { 4464 REASON_SET(reason, PFRES_FRAG); 4465 return (PF_DROP); 4466 } 4467 4468 /* offset of protocol header that follows h2 */ 4469 off2 = ipoff2 + (h2.ip_hl << 2); 4470 4471 pd2.proto = h2.ip_p; 4472 pd2.src = (struct pf_addr *)&h2.ip_src; 4473 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4474 pd2.ip_sum = &h2.ip_sum; 4475 break; 4476 #endif /* INET */ 4477 #ifdef INET6 4478 case AF_INET6: 4479 ipoff2 = off + sizeof(struct icmp6_hdr); 4480 4481 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4482 NULL, reason, pd2.af)) { 4483 DPFPRINTF(PF_DEBUG_MISC, 4484 ("pf: ICMP error message too short " 4485 "(ip6)\n")); 4486 return (PF_DROP); 4487 } 4488 pd2.proto = h2_6.ip6_nxt; 4489 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4490 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4491 pd2.ip_sum = NULL; 4492 off2 = ipoff2 + sizeof(h2_6); 4493 do { 4494 switch (pd2.proto) { 4495 case IPPROTO_FRAGMENT: 4496 /* 4497 * ICMPv6 error messages for 4498 * non-first fragments 4499 */ 4500 REASON_SET(reason, PFRES_FRAG); 4501 return (PF_DROP); 4502 case IPPROTO_AH: 4503 case IPPROTO_HOPOPTS: 4504 case IPPROTO_ROUTING: 4505 case IPPROTO_DSTOPTS: { 4506 /* get next header and header length */ 4507 struct ip6_ext opt6; 4508 4509 if (!pf_pull_hdr(m, off2, &opt6, 4510 sizeof(opt6), NULL, reason, 4511 pd2.af)) { 4512 DPFPRINTF(PF_DEBUG_MISC, 4513 ("pf: ICMPv6 short opt\n")); 4514 return (PF_DROP); 4515 } 4516 if (pd2.proto == IPPROTO_AH) 4517 off2 += (opt6.ip6e_len + 2) * 4; 4518 else 4519 off2 += (opt6.ip6e_len + 1) * 8; 4520 pd2.proto = opt6.ip6e_nxt; 4521 /* goto the next header */ 4522 break; 4523 } 4524 default: 4525 terminal++; 4526 break; 4527 } 4528 } while (!terminal); 4529 break; 4530 #endif /* INET6 */ 4531 } 4532 4533 switch (pd2.proto) { 4534 case IPPROTO_TCP: { 4535 struct tcphdr th; 4536 u_int32_t seq; 4537 struct pf_state_peer *src, *dst; 4538 u_int8_t dws; 4539 int copyback = 0; 4540 4541 /* 4542 * Only the first 8 bytes of the TCP header can be 4543 * expected. Don't access any TCP header fields after 4544 * th_seq, an ackskew test is not possible. 4545 */ 4546 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4547 pd2.af)) { 4548 DPFPRINTF(PF_DEBUG_MISC, 4549 ("pf: ICMP error message too short " 4550 "(tcp)\n")); 4551 return (PF_DROP); 4552 } 4553 4554 key.af = pd2.af; 4555 key.proto = IPPROTO_TCP; 4556 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4557 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4558 key.port[pd2.sidx] = th.th_sport; 4559 key.port[pd2.didx] = th.th_dport; 4560 4561 STATE_LOOKUP(kif, &key, direction, *state, pd); 4562 4563 if (direction == (*state)->direction) { 4564 src = &(*state)->dst; 4565 dst = &(*state)->src; 4566 } else { 4567 src = &(*state)->src; 4568 dst = &(*state)->dst; 4569 } 4570 4571 if (src->wscale && dst->wscale) 4572 dws = dst->wscale & PF_WSCALE_MASK; 4573 else 4574 dws = 0; 4575 4576 /* Demodulate sequence number */ 4577 seq = ntohl(th.th_seq) - src->seqdiff; 4578 if (src->seqdiff) { 4579 pf_change_a(&th.th_seq, icmpsum, 4580 htonl(seq), 0); 4581 copyback = 1; 4582 } 4583 4584 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4585 (!SEQ_GEQ(src->seqhi, seq) || 4586 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4587 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4588 printf("pf: BAD ICMP %d:%d ", 4589 icmptype, pd->hdr.icmp->icmp_code); 4590 pf_print_host(pd->src, 0, pd->af); 4591 printf(" -> "); 4592 pf_print_host(pd->dst, 0, pd->af); 4593 printf(" state: "); 4594 pf_print_state(*state); 4595 printf(" seq=%u\n", seq); 4596 } 4597 REASON_SET(reason, PFRES_BADSTATE); 4598 return (PF_DROP); 4599 } else { 4600 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4601 printf("pf: OK ICMP %d:%d ", 4602 icmptype, pd->hdr.icmp->icmp_code); 4603 pf_print_host(pd->src, 0, pd->af); 4604 printf(" -> "); 4605 pf_print_host(pd->dst, 0, pd->af); 4606 printf(" state: "); 4607 pf_print_state(*state); 4608 printf(" seq=%u\n", seq); 4609 } 4610 } 4611 4612 /* translate source/destination address, if necessary */ 4613 if ((*state)->key[PF_SK_WIRE] != 4614 (*state)->key[PF_SK_STACK]) { 4615 struct pf_state_key *nk = 4616 (*state)->key[pd->didx]; 4617 4618 if (PF_ANEQ(pd2.src, 4619 &nk->addr[pd2.sidx], pd2.af) || 4620 nk->port[pd2.sidx] != th.th_sport) 4621 pf_change_icmp(pd2.src, &th.th_sport, 4622 daddr, &nk->addr[pd2.sidx], 4623 nk->port[pd2.sidx], NULL, 4624 pd2.ip_sum, icmpsum, 4625 pd->ip_sum, 0, pd2.af); 4626 4627 if (PF_ANEQ(pd2.dst, 4628 &nk->addr[pd2.didx], pd2.af) || 4629 nk->port[pd2.didx] != th.th_dport) 4630 pf_change_icmp(pd2.dst, &th.th_dport, 4631 NULL, /* XXX Inbound NAT? */ 4632 &nk->addr[pd2.didx], 4633 nk->port[pd2.didx], NULL, 4634 pd2.ip_sum, icmpsum, 4635 pd->ip_sum, 0, pd2.af); 4636 copyback = 1; 4637 } 4638 4639 if (copyback) { 4640 switch (pd2.af) { 4641 #ifdef INET 4642 case AF_INET: 4643 m_copyback(m, off, ICMP_MINLEN, 4644 (caddr_t )pd->hdr.icmp); 4645 m_copyback(m, ipoff2, sizeof(h2), 4646 (caddr_t )&h2); 4647 break; 4648 #endif /* INET */ 4649 #ifdef INET6 4650 case AF_INET6: 4651 m_copyback(m, off, 4652 sizeof(struct icmp6_hdr), 4653 (caddr_t )pd->hdr.icmp6); 4654 m_copyback(m, ipoff2, sizeof(h2_6), 4655 (caddr_t )&h2_6); 4656 break; 4657 #endif /* INET6 */ 4658 } 4659 m_copyback(m, off2, 8, (caddr_t)&th); 4660 } 4661 4662 return (PF_PASS); 4663 break; 4664 } 4665 case IPPROTO_UDP: { 4666 struct udphdr uh; 4667 4668 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4669 NULL, reason, pd2.af)) { 4670 DPFPRINTF(PF_DEBUG_MISC, 4671 ("pf: ICMP error message too short " 4672 "(udp)\n")); 4673 return (PF_DROP); 4674 } 4675 4676 key.af = pd2.af; 4677 key.proto = IPPROTO_UDP; 4678 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4679 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4680 key.port[pd2.sidx] = uh.uh_sport; 4681 key.port[pd2.didx] = uh.uh_dport; 4682 4683 STATE_LOOKUP(kif, &key, direction, *state, pd); 4684 4685 /* translate source/destination address, if necessary */ 4686 if ((*state)->key[PF_SK_WIRE] != 4687 (*state)->key[PF_SK_STACK]) { 4688 struct pf_state_key *nk = 4689 (*state)->key[pd->didx]; 4690 4691 if (PF_ANEQ(pd2.src, 4692 &nk->addr[pd2.sidx], pd2.af) || 4693 nk->port[pd2.sidx] != uh.uh_sport) 4694 pf_change_icmp(pd2.src, &uh.uh_sport, 4695 daddr, &nk->addr[pd2.sidx], 4696 nk->port[pd2.sidx], &uh.uh_sum, 4697 pd2.ip_sum, icmpsum, 4698 pd->ip_sum, 1, pd2.af); 4699 4700 if (PF_ANEQ(pd2.dst, 4701 &nk->addr[pd2.didx], pd2.af) || 4702 nk->port[pd2.didx] != uh.uh_dport) 4703 pf_change_icmp(pd2.dst, &uh.uh_dport, 4704 NULL, /* XXX Inbound NAT? */ 4705 &nk->addr[pd2.didx], 4706 nk->port[pd2.didx], &uh.uh_sum, 4707 pd2.ip_sum, icmpsum, 4708 pd->ip_sum, 1, pd2.af); 4709 4710 switch (pd2.af) { 4711 #ifdef INET 4712 case AF_INET: 4713 m_copyback(m, off, ICMP_MINLEN, 4714 (caddr_t )pd->hdr.icmp); 4715 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4716 break; 4717 #endif /* INET */ 4718 #ifdef INET6 4719 case AF_INET6: 4720 m_copyback(m, off, 4721 sizeof(struct icmp6_hdr), 4722 (caddr_t )pd->hdr.icmp6); 4723 m_copyback(m, ipoff2, sizeof(h2_6), 4724 (caddr_t )&h2_6); 4725 break; 4726 #endif /* INET6 */ 4727 } 4728 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4729 } 4730 return (PF_PASS); 4731 break; 4732 } 4733 #ifdef INET 4734 case IPPROTO_ICMP: { 4735 struct icmp iih; 4736 4737 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4738 NULL, reason, pd2.af)) { 4739 DPFPRINTF(PF_DEBUG_MISC, 4740 ("pf: ICMP error message too short i" 4741 "(icmp)\n")); 4742 return (PF_DROP); 4743 } 4744 4745 key.af = pd2.af; 4746 key.proto = IPPROTO_ICMP; 4747 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4748 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4749 key.port[0] = key.port[1] = iih.icmp_id; 4750 4751 STATE_LOOKUP(kif, &key, direction, *state, pd); 4752 4753 /* translate source/destination address, if necessary */ 4754 if ((*state)->key[PF_SK_WIRE] != 4755 (*state)->key[PF_SK_STACK]) { 4756 struct pf_state_key *nk = 4757 (*state)->key[pd->didx]; 4758 4759 if (PF_ANEQ(pd2.src, 4760 &nk->addr[pd2.sidx], pd2.af) || 4761 nk->port[pd2.sidx] != iih.icmp_id) 4762 pf_change_icmp(pd2.src, &iih.icmp_id, 4763 daddr, &nk->addr[pd2.sidx], 4764 nk->port[pd2.sidx], NULL, 4765 pd2.ip_sum, icmpsum, 4766 pd->ip_sum, 0, AF_INET); 4767 4768 if (PF_ANEQ(pd2.dst, 4769 &nk->addr[pd2.didx], pd2.af) || 4770 nk->port[pd2.didx] != iih.icmp_id) 4771 pf_change_icmp(pd2.dst, &iih.icmp_id, 4772 NULL, /* XXX Inbound NAT? */ 4773 &nk->addr[pd2.didx], 4774 nk->port[pd2.didx], NULL, 4775 pd2.ip_sum, icmpsum, 4776 pd->ip_sum, 0, AF_INET); 4777 4778 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 4779 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4780 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 4781 } 4782 return (PF_PASS); 4783 break; 4784 } 4785 #endif /* INET */ 4786 #ifdef INET6 4787 case IPPROTO_ICMPV6: { 4788 struct icmp6_hdr iih; 4789 4790 if (!pf_pull_hdr(m, off2, &iih, 4791 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 4792 DPFPRINTF(PF_DEBUG_MISC, 4793 ("pf: ICMP error message too short " 4794 "(icmp6)\n")); 4795 return (PF_DROP); 4796 } 4797 4798 key.af = pd2.af; 4799 key.proto = IPPROTO_ICMPV6; 4800 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4801 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4802 key.port[0] = key.port[1] = iih.icmp6_id; 4803 4804 STATE_LOOKUP(kif, &key, direction, *state, pd); 4805 4806 /* translate source/destination address, if necessary */ 4807 if ((*state)->key[PF_SK_WIRE] != 4808 (*state)->key[PF_SK_STACK]) { 4809 struct pf_state_key *nk = 4810 (*state)->key[pd->didx]; 4811 4812 if (PF_ANEQ(pd2.src, 4813 &nk->addr[pd2.sidx], pd2.af) || 4814 nk->port[pd2.sidx] != iih.icmp6_id) 4815 pf_change_icmp(pd2.src, &iih.icmp6_id, 4816 daddr, &nk->addr[pd2.sidx], 4817 nk->port[pd2.sidx], NULL, 4818 pd2.ip_sum, icmpsum, 4819 pd->ip_sum, 0, AF_INET6); 4820 4821 if (PF_ANEQ(pd2.dst, 4822 &nk->addr[pd2.didx], pd2.af) || 4823 nk->port[pd2.didx] != iih.icmp6_id) 4824 pf_change_icmp(pd2.dst, &iih.icmp6_id, 4825 NULL, /* XXX Inbound NAT? */ 4826 &nk->addr[pd2.didx], 4827 nk->port[pd2.didx], NULL, 4828 pd2.ip_sum, icmpsum, 4829 pd->ip_sum, 0, AF_INET6); 4830 4831 m_copyback(m, off, sizeof(struct icmp6_hdr), 4832 (caddr_t)pd->hdr.icmp6); 4833 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 4834 m_copyback(m, off2, sizeof(struct icmp6_hdr), 4835 (caddr_t)&iih); 4836 } 4837 return (PF_PASS); 4838 break; 4839 } 4840 #endif /* INET6 */ 4841 default: { 4842 key.af = pd2.af; 4843 key.proto = pd2.proto; 4844 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4845 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4846 key.port[0] = key.port[1] = 0; 4847 4848 STATE_LOOKUP(kif, &key, direction, *state, pd); 4849 4850 /* translate source/destination address, if necessary */ 4851 if ((*state)->key[PF_SK_WIRE] != 4852 (*state)->key[PF_SK_STACK]) { 4853 struct pf_state_key *nk = 4854 (*state)->key[pd->didx]; 4855 4856 if (PF_ANEQ(pd2.src, 4857 &nk->addr[pd2.sidx], pd2.af)) 4858 pf_change_icmp(pd2.src, NULL, daddr, 4859 &nk->addr[pd2.sidx], 0, NULL, 4860 pd2.ip_sum, icmpsum, 4861 pd->ip_sum, 0, pd2.af); 4862 4863 if (PF_ANEQ(pd2.dst, 4864 &nk->addr[pd2.didx], pd2.af)) 4865 pf_change_icmp(pd2.src, NULL, 4866 NULL, /* XXX Inbound NAT? */ 4867 &nk->addr[pd2.didx], 0, NULL, 4868 pd2.ip_sum, icmpsum, 4869 pd->ip_sum, 0, pd2.af); 4870 4871 switch (pd2.af) { 4872 #ifdef INET 4873 case AF_INET: 4874 m_copyback(m, off, ICMP_MINLEN, 4875 (caddr_t)pd->hdr.icmp); 4876 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4877 break; 4878 #endif /* INET */ 4879 #ifdef INET6 4880 case AF_INET6: 4881 m_copyback(m, off, 4882 sizeof(struct icmp6_hdr), 4883 (caddr_t )pd->hdr.icmp6); 4884 m_copyback(m, ipoff2, sizeof(h2_6), 4885 (caddr_t )&h2_6); 4886 break; 4887 #endif /* INET6 */ 4888 } 4889 } 4890 return (PF_PASS); 4891 break; 4892 } 4893 } 4894 } 4895 } 4896 4897 static int 4898 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 4899 struct mbuf *m, struct pf_pdesc *pd) 4900 { 4901 struct pf_state_peer *src, *dst; 4902 struct pf_state_key_cmp key; 4903 4904 bzero(&key, sizeof(key)); 4905 key.af = pd->af; 4906 key.proto = pd->proto; 4907 if (direction == PF_IN) { 4908 PF_ACPY(&key.addr[0], pd->src, key.af); 4909 PF_ACPY(&key.addr[1], pd->dst, key.af); 4910 key.port[0] = key.port[1] = 0; 4911 } else { 4912 PF_ACPY(&key.addr[1], pd->src, key.af); 4913 PF_ACPY(&key.addr[0], pd->dst, key.af); 4914 key.port[1] = key.port[0] = 0; 4915 } 4916 4917 STATE_LOOKUP(kif, &key, direction, *state, pd); 4918 4919 if (direction == (*state)->direction) { 4920 src = &(*state)->src; 4921 dst = &(*state)->dst; 4922 } else { 4923 src = &(*state)->dst; 4924 dst = &(*state)->src; 4925 } 4926 4927 /* update states */ 4928 if (src->state < PFOTHERS_SINGLE) 4929 src->state = PFOTHERS_SINGLE; 4930 if (dst->state == PFOTHERS_SINGLE) 4931 dst->state = PFOTHERS_MULTIPLE; 4932 4933 /* update expire time */ 4934 (*state)->expire = time_uptime; 4935 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 4936 (*state)->timeout = PFTM_OTHER_MULTIPLE; 4937 else 4938 (*state)->timeout = PFTM_OTHER_SINGLE; 4939 4940 /* translate source/destination address, if necessary */ 4941 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4942 struct pf_state_key *nk = (*state)->key[pd->didx]; 4943 4944 KASSERT(nk, ("%s: nk is null", __func__)); 4945 KASSERT(pd, ("%s: pd is null", __func__)); 4946 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 4947 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 4948 switch (pd->af) { 4949 #ifdef INET 4950 case AF_INET: 4951 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 4952 pf_change_a(&pd->src->v4.s_addr, 4953 pd->ip_sum, 4954 nk->addr[pd->sidx].v4.s_addr, 4955 0); 4956 4957 4958 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 4959 pf_change_a(&pd->dst->v4.s_addr, 4960 pd->ip_sum, 4961 nk->addr[pd->didx].v4.s_addr, 4962 0); 4963 4964 break; 4965 #endif /* INET */ 4966 #ifdef INET6 4967 case AF_INET6: 4968 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 4969 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 4970 4971 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 4972 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 4973 #endif /* INET6 */ 4974 } 4975 } 4976 return (PF_PASS); 4977 } 4978 4979 /* 4980 * ipoff and off are measured from the start of the mbuf chain. 4981 * h must be at "ipoff" on the mbuf chain. 4982 */ 4983 void * 4984 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 4985 u_short *actionp, u_short *reasonp, sa_family_t af) 4986 { 4987 switch (af) { 4988 #ifdef INET 4989 case AF_INET: { 4990 struct ip *h = mtod(m, struct ip *); 4991 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 4992 4993 if (fragoff) { 4994 if (fragoff >= len) 4995 ACTION_SET(actionp, PF_PASS); 4996 else { 4997 ACTION_SET(actionp, PF_DROP); 4998 REASON_SET(reasonp, PFRES_FRAG); 4999 } 5000 return (NULL); 5001 } 5002 if (m->m_pkthdr.len < off + len || 5003 ntohs(h->ip_len) < off + len) { 5004 ACTION_SET(actionp, PF_DROP); 5005 REASON_SET(reasonp, PFRES_SHORT); 5006 return (NULL); 5007 } 5008 break; 5009 } 5010 #endif /* INET */ 5011 #ifdef INET6 5012 case AF_INET6: { 5013 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5014 5015 if (m->m_pkthdr.len < off + len || 5016 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5017 (unsigned)(off + len)) { 5018 ACTION_SET(actionp, PF_DROP); 5019 REASON_SET(reasonp, PFRES_SHORT); 5020 return (NULL); 5021 } 5022 break; 5023 } 5024 #endif /* INET6 */ 5025 } 5026 m_copydata(m, off, len, p); 5027 return (p); 5028 } 5029 5030 int 5031 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5032 int rtableid) 5033 { 5034 #ifdef RADIX_MPATH 5035 struct radix_node_head *rnh; 5036 #endif 5037 struct sockaddr_in *dst; 5038 int ret = 1; 5039 int check_mpath; 5040 #ifdef INET6 5041 struct sockaddr_in6 *dst6; 5042 struct route_in6 ro; 5043 #else 5044 struct route ro; 5045 #endif 5046 struct radix_node *rn; 5047 struct rtentry *rt; 5048 struct ifnet *ifp; 5049 5050 check_mpath = 0; 5051 #ifdef RADIX_MPATH 5052 /* XXX: stick to table 0 for now */ 5053 rnh = rt_tables_get_rnh(0, af); 5054 if (rnh != NULL && rn_mpath_capable(rnh)) 5055 check_mpath = 1; 5056 #endif 5057 bzero(&ro, sizeof(ro)); 5058 switch (af) { 5059 case AF_INET: 5060 dst = satosin(&ro.ro_dst); 5061 dst->sin_family = AF_INET; 5062 dst->sin_len = sizeof(*dst); 5063 dst->sin_addr = addr->v4; 5064 break; 5065 #ifdef INET6 5066 case AF_INET6: 5067 /* 5068 * Skip check for addresses with embedded interface scope, 5069 * as they would always match anyway. 5070 */ 5071 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5072 goto out; 5073 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5074 dst6->sin6_family = AF_INET6; 5075 dst6->sin6_len = sizeof(*dst6); 5076 dst6->sin6_addr = addr->v6; 5077 break; 5078 #endif /* INET6 */ 5079 default: 5080 return (0); 5081 } 5082 5083 /* Skip checks for ipsec interfaces */ 5084 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5085 goto out; 5086 5087 switch (af) { 5088 #ifdef INET6 5089 case AF_INET6: 5090 in6_rtalloc_ign(&ro, 0, rtableid); 5091 break; 5092 #endif 5093 #ifdef INET 5094 case AF_INET: 5095 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5096 break; 5097 #endif 5098 default: 5099 rtalloc_ign((struct route *)&ro, 0); /* No/default FIB. */ 5100 break; 5101 } 5102 5103 if (ro.ro_rt != NULL) { 5104 /* No interface given, this is a no-route check */ 5105 if (kif == NULL) 5106 goto out; 5107 5108 if (kif->pfik_ifp == NULL) { 5109 ret = 0; 5110 goto out; 5111 } 5112 5113 /* Perform uRPF check if passed input interface */ 5114 ret = 0; 5115 rn = (struct radix_node *)ro.ro_rt; 5116 do { 5117 rt = (struct rtentry *)rn; 5118 ifp = rt->rt_ifp; 5119 5120 if (kif->pfik_ifp == ifp) 5121 ret = 1; 5122 #ifdef RADIX_MPATH 5123 rn = rn_mpath_next(rn); 5124 #endif 5125 } while (check_mpath == 1 && rn != NULL && ret == 0); 5126 } else 5127 ret = 0; 5128 out: 5129 if (ro.ro_rt != NULL) 5130 RTFREE(ro.ro_rt); 5131 return (ret); 5132 } 5133 5134 #ifdef INET 5135 static void 5136 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5137 struct pf_state *s, struct pf_pdesc *pd) 5138 { 5139 struct mbuf *m0, *m1; 5140 struct sockaddr_in dst; 5141 struct ip *ip; 5142 struct ifnet *ifp = NULL; 5143 struct pf_addr naddr; 5144 struct pf_src_node *sn = NULL; 5145 int error = 0; 5146 uint16_t ip_len, ip_off; 5147 5148 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5149 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5150 __func__)); 5151 5152 if ((pd->pf_mtag == NULL && 5153 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5154 pd->pf_mtag->routed++ > 3) { 5155 m0 = *m; 5156 *m = NULL; 5157 goto bad_locked; 5158 } 5159 5160 if (r->rt == PF_DUPTO) { 5161 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5162 if (s) 5163 PF_STATE_UNLOCK(s); 5164 return; 5165 } 5166 } else { 5167 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5168 if (s) 5169 PF_STATE_UNLOCK(s); 5170 return; 5171 } 5172 m0 = *m; 5173 } 5174 5175 ip = mtod(m0, struct ip *); 5176 5177 bzero(&dst, sizeof(dst)); 5178 dst.sin_family = AF_INET; 5179 dst.sin_len = sizeof(dst); 5180 dst.sin_addr = ip->ip_dst; 5181 5182 if (r->rt == PF_FASTROUTE) { 5183 struct rtentry *rt; 5184 5185 if (s) 5186 PF_STATE_UNLOCK(s); 5187 rt = rtalloc1_fib(sintosa(&dst), 0, 0, M_GETFIB(m0)); 5188 if (rt == NULL) { 5189 RTFREE_LOCKED(rt); 5190 KMOD_IPSTAT_INC(ips_noroute); 5191 error = EHOSTUNREACH; 5192 goto bad; 5193 } 5194 5195 ifp = rt->rt_ifp; 5196 rt->rt_rmx.rmx_pksent++; 5197 5198 if (rt->rt_flags & RTF_GATEWAY) 5199 bcopy(satosin(rt->rt_gateway), &dst, sizeof(dst)); 5200 RTFREE_LOCKED(rt); 5201 } else { 5202 if (TAILQ_EMPTY(&r->rpool.list)) { 5203 DPFPRINTF(PF_DEBUG_URGENT, 5204 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5205 goto bad_locked; 5206 } 5207 if (s == NULL) { 5208 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5209 &naddr, NULL, &sn); 5210 if (!PF_AZERO(&naddr, AF_INET)) 5211 dst.sin_addr.s_addr = naddr.v4.s_addr; 5212 ifp = r->rpool.cur->kif ? 5213 r->rpool.cur->kif->pfik_ifp : NULL; 5214 } else { 5215 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5216 dst.sin_addr.s_addr = 5217 s->rt_addr.v4.s_addr; 5218 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5219 PF_STATE_UNLOCK(s); 5220 } 5221 } 5222 if (ifp == NULL) 5223 goto bad; 5224 5225 if (oifp != ifp) { 5226 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5227 goto bad; 5228 else if (m0 == NULL) 5229 goto done; 5230 if (m0->m_len < sizeof(struct ip)) { 5231 DPFPRINTF(PF_DEBUG_URGENT, 5232 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5233 goto bad; 5234 } 5235 ip = mtod(m0, struct ip *); 5236 } 5237 5238 if (ifp->if_flags & IFF_LOOPBACK) 5239 m0->m_flags |= M_SKIP_FIREWALL; 5240 5241 ip_len = ntohs(ip->ip_len); 5242 ip_off = ntohs(ip->ip_off); 5243 5244 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5245 m0->m_pkthdr.csum_flags |= CSUM_IP; 5246 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5247 in_delayed_cksum(m0); 5248 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5249 } 5250 #ifdef SCTP 5251 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5252 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5253 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5254 } 5255 #endif 5256 5257 /* 5258 * If small enough for interface, or the interface will take 5259 * care of the fragmentation for us, we can just send directly. 5260 */ 5261 if (ip_len <= ifp->if_mtu || 5262 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 || 5263 ((ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) { 5264 ip->ip_sum = 0; 5265 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5266 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5267 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5268 } 5269 m0->m_flags &= ~(M_PROTOFLAGS); 5270 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5271 goto done; 5272 } 5273 5274 /* Balk when DF bit is set or the interface didn't support TSO. */ 5275 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5276 error = EMSGSIZE; 5277 KMOD_IPSTAT_INC(ips_cantfrag); 5278 if (r->rt != PF_DUPTO) { 5279 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5280 ifp->if_mtu); 5281 goto done; 5282 } else 5283 goto bad; 5284 } 5285 5286 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5287 if (error) 5288 goto bad; 5289 5290 for (; m0; m0 = m1) { 5291 m1 = m0->m_nextpkt; 5292 m0->m_nextpkt = NULL; 5293 if (error == 0) { 5294 m0->m_flags &= ~(M_PROTOFLAGS); 5295 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5296 } else 5297 m_freem(m0); 5298 } 5299 5300 if (error == 0) 5301 KMOD_IPSTAT_INC(ips_fragmented); 5302 5303 done: 5304 if (r->rt != PF_DUPTO) 5305 *m = NULL; 5306 return; 5307 5308 bad_locked: 5309 if (s) 5310 PF_STATE_UNLOCK(s); 5311 bad: 5312 m_freem(m0); 5313 goto done; 5314 } 5315 #endif /* INET */ 5316 5317 #ifdef INET6 5318 static void 5319 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5320 struct pf_state *s, struct pf_pdesc *pd) 5321 { 5322 struct mbuf *m0; 5323 struct sockaddr_in6 dst; 5324 struct ip6_hdr *ip6; 5325 struct ifnet *ifp = NULL; 5326 struct pf_addr naddr; 5327 struct pf_src_node *sn = NULL; 5328 5329 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5330 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5331 __func__)); 5332 5333 if ((pd->pf_mtag == NULL && 5334 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5335 pd->pf_mtag->routed++ > 3) { 5336 m0 = *m; 5337 *m = NULL; 5338 goto bad_locked; 5339 } 5340 5341 if (r->rt == PF_DUPTO) { 5342 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5343 if (s) 5344 PF_STATE_UNLOCK(s); 5345 return; 5346 } 5347 } else { 5348 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5349 if (s) 5350 PF_STATE_UNLOCK(s); 5351 return; 5352 } 5353 m0 = *m; 5354 } 5355 5356 ip6 = mtod(m0, struct ip6_hdr *); 5357 5358 bzero(&dst, sizeof(dst)); 5359 dst.sin6_family = AF_INET6; 5360 dst.sin6_len = sizeof(dst); 5361 dst.sin6_addr = ip6->ip6_dst; 5362 5363 /* Cheat. XXX why only in the v6 case??? */ 5364 if (r->rt == PF_FASTROUTE) { 5365 if (s) 5366 PF_STATE_UNLOCK(s); 5367 m0->m_flags |= M_SKIP_FIREWALL; 5368 ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL); 5369 return; 5370 } 5371 5372 if (TAILQ_EMPTY(&r->rpool.list)) { 5373 DPFPRINTF(PF_DEBUG_URGENT, 5374 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5375 goto bad_locked; 5376 } 5377 if (s == NULL) { 5378 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5379 &naddr, NULL, &sn); 5380 if (!PF_AZERO(&naddr, AF_INET6)) 5381 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5382 &naddr, AF_INET6); 5383 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5384 } else { 5385 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5386 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5387 &s->rt_addr, AF_INET6); 5388 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5389 } 5390 5391 if (s) 5392 PF_STATE_UNLOCK(s); 5393 5394 if (ifp == NULL) 5395 goto bad; 5396 5397 if (oifp != ifp) { 5398 if (pf_test6(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5399 goto bad; 5400 else if (m0 == NULL) 5401 goto done; 5402 if (m0->m_len < sizeof(struct ip6_hdr)) { 5403 DPFPRINTF(PF_DEBUG_URGENT, 5404 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5405 __func__)); 5406 goto bad; 5407 } 5408 ip6 = mtod(m0, struct ip6_hdr *); 5409 } 5410 5411 if (ifp->if_flags & IFF_LOOPBACK) 5412 m0->m_flags |= M_SKIP_FIREWALL; 5413 5414 /* 5415 * If the packet is too large for the outgoing interface, 5416 * send back an icmp6 error. 5417 */ 5418 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5419 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5420 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5421 nd6_output(ifp, ifp, m0, &dst, NULL); 5422 else { 5423 in6_ifstat_inc(ifp, ifs6_in_toobig); 5424 if (r->rt != PF_DUPTO) 5425 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5426 else 5427 goto bad; 5428 } 5429 5430 done: 5431 if (r->rt != PF_DUPTO) 5432 *m = NULL; 5433 return; 5434 5435 bad_locked: 5436 if (s) 5437 PF_STATE_UNLOCK(s); 5438 bad: 5439 m_freem(m0); 5440 goto done; 5441 } 5442 #endif /* INET6 */ 5443 5444 /* 5445 * FreeBSD supports cksum offloads for the following drivers. 5446 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5447 * ti(4), txp(4), xl(4) 5448 * 5449 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5450 * network driver performed cksum including pseudo header, need to verify 5451 * csum_data 5452 * CSUM_DATA_VALID : 5453 * network driver performed cksum, needs to additional pseudo header 5454 * cksum computation with partial csum_data(i.e. lack of H/W support for 5455 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5456 * 5457 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5458 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5459 * TCP/UDP layer. 5460 * Also, set csum_data to 0xffff to force cksum validation. 5461 */ 5462 static int 5463 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5464 { 5465 u_int16_t sum = 0; 5466 int hw_assist = 0; 5467 struct ip *ip; 5468 5469 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5470 return (1); 5471 if (m->m_pkthdr.len < off + len) 5472 return (1); 5473 5474 switch (p) { 5475 case IPPROTO_TCP: 5476 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5477 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5478 sum = m->m_pkthdr.csum_data; 5479 } else { 5480 ip = mtod(m, struct ip *); 5481 sum = in_pseudo(ip->ip_src.s_addr, 5482 ip->ip_dst.s_addr, htonl((u_short)len + 5483 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5484 } 5485 sum ^= 0xffff; 5486 ++hw_assist; 5487 } 5488 break; 5489 case IPPROTO_UDP: 5490 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5491 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5492 sum = m->m_pkthdr.csum_data; 5493 } else { 5494 ip = mtod(m, struct ip *); 5495 sum = in_pseudo(ip->ip_src.s_addr, 5496 ip->ip_dst.s_addr, htonl((u_short)len + 5497 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5498 } 5499 sum ^= 0xffff; 5500 ++hw_assist; 5501 } 5502 break; 5503 case IPPROTO_ICMP: 5504 #ifdef INET6 5505 case IPPROTO_ICMPV6: 5506 #endif /* INET6 */ 5507 break; 5508 default: 5509 return (1); 5510 } 5511 5512 if (!hw_assist) { 5513 switch (af) { 5514 case AF_INET: 5515 if (p == IPPROTO_ICMP) { 5516 if (m->m_len < off) 5517 return (1); 5518 m->m_data += off; 5519 m->m_len -= off; 5520 sum = in_cksum(m, len); 5521 m->m_data -= off; 5522 m->m_len += off; 5523 } else { 5524 if (m->m_len < sizeof(struct ip)) 5525 return (1); 5526 sum = in4_cksum(m, p, off, len); 5527 } 5528 break; 5529 #ifdef INET6 5530 case AF_INET6: 5531 if (m->m_len < sizeof(struct ip6_hdr)) 5532 return (1); 5533 sum = in6_cksum(m, p, off, len); 5534 break; 5535 #endif /* INET6 */ 5536 default: 5537 return (1); 5538 } 5539 } 5540 if (sum) { 5541 switch (p) { 5542 case IPPROTO_TCP: 5543 { 5544 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5545 break; 5546 } 5547 case IPPROTO_UDP: 5548 { 5549 KMOD_UDPSTAT_INC(udps_badsum); 5550 break; 5551 } 5552 #ifdef INET 5553 case IPPROTO_ICMP: 5554 { 5555 KMOD_ICMPSTAT_INC(icps_checksum); 5556 break; 5557 } 5558 #endif 5559 #ifdef INET6 5560 case IPPROTO_ICMPV6: 5561 { 5562 KMOD_ICMP6STAT_INC(icp6s_checksum); 5563 break; 5564 } 5565 #endif /* INET6 */ 5566 } 5567 return (1); 5568 } else { 5569 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5570 m->m_pkthdr.csum_flags |= 5571 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5572 m->m_pkthdr.csum_data = 0xffff; 5573 } 5574 } 5575 return (0); 5576 } 5577 5578 5579 #ifdef INET 5580 int 5581 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5582 { 5583 struct pfi_kif *kif; 5584 u_short action, reason = 0, log = 0; 5585 struct mbuf *m = *m0; 5586 struct ip *h = NULL; 5587 struct m_tag *ipfwtag; 5588 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5589 struct pf_state *s = NULL; 5590 struct pf_ruleset *ruleset = NULL; 5591 struct pf_pdesc pd; 5592 int off, dirndx, pqid = 0; 5593 5594 M_ASSERTPKTHDR(m); 5595 5596 if (!V_pf_status.running) 5597 return (PF_PASS); 5598 5599 memset(&pd, 0, sizeof(pd)); 5600 5601 kif = (struct pfi_kif *)ifp->if_pf_kif; 5602 5603 if (kif == NULL) { 5604 DPFPRINTF(PF_DEBUG_URGENT, 5605 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5606 return (PF_DROP); 5607 } 5608 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5609 return (PF_PASS); 5610 5611 if (m->m_flags & M_SKIP_FIREWALL) 5612 return (PF_PASS); 5613 5614 pd.pf_mtag = pf_find_mtag(m); 5615 5616 PF_RULES_RLOCK(); 5617 5618 if (ip_divert_ptr != NULL && 5619 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5620 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5621 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5622 if (pd.pf_mtag == NULL && 5623 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5624 action = PF_DROP; 5625 goto done; 5626 } 5627 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5628 m_tag_delete(m, ipfwtag); 5629 } 5630 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5631 m->m_flags |= M_FASTFWD_OURS; 5632 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5633 } 5634 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5635 /* We do IP header normalization and packet reassembly here */ 5636 action = PF_DROP; 5637 goto done; 5638 } 5639 m = *m0; /* pf_normalize messes with m0 */ 5640 h = mtod(m, struct ip *); 5641 5642 off = h->ip_hl << 2; 5643 if (off < (int)sizeof(struct ip)) { 5644 action = PF_DROP; 5645 REASON_SET(&reason, PFRES_SHORT); 5646 log = 1; 5647 goto done; 5648 } 5649 5650 pd.src = (struct pf_addr *)&h->ip_src; 5651 pd.dst = (struct pf_addr *)&h->ip_dst; 5652 pd.sport = pd.dport = NULL; 5653 pd.ip_sum = &h->ip_sum; 5654 pd.proto_sum = NULL; 5655 pd.proto = h->ip_p; 5656 pd.dir = dir; 5657 pd.sidx = (dir == PF_IN) ? 0 : 1; 5658 pd.didx = (dir == PF_IN) ? 1 : 0; 5659 pd.af = AF_INET; 5660 pd.tos = h->ip_tos; 5661 pd.tot_len = ntohs(h->ip_len); 5662 5663 /* handle fragments that didn't get reassembled by normalization */ 5664 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5665 action = pf_test_fragment(&r, dir, kif, m, h, 5666 &pd, &a, &ruleset); 5667 goto done; 5668 } 5669 5670 switch (h->ip_p) { 5671 5672 case IPPROTO_TCP: { 5673 struct tcphdr th; 5674 5675 pd.hdr.tcp = &th; 5676 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5677 &action, &reason, AF_INET)) { 5678 log = action != PF_PASS; 5679 goto done; 5680 } 5681 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5682 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5683 pqid = 1; 5684 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5685 if (action == PF_DROP) 5686 goto done; 5687 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5688 &reason); 5689 if (action == PF_PASS) { 5690 if (pfsync_update_state_ptr != NULL) 5691 pfsync_update_state_ptr(s); 5692 r = s->rule.ptr; 5693 a = s->anchor.ptr; 5694 log = s->log; 5695 } else if (s == NULL) 5696 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5697 &a, &ruleset, inp); 5698 break; 5699 } 5700 5701 case IPPROTO_UDP: { 5702 struct udphdr uh; 5703 5704 pd.hdr.udp = &uh; 5705 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5706 &action, &reason, AF_INET)) { 5707 log = action != PF_PASS; 5708 goto done; 5709 } 5710 if (uh.uh_dport == 0 || 5711 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5712 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5713 action = PF_DROP; 5714 REASON_SET(&reason, PFRES_SHORT); 5715 goto done; 5716 } 5717 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5718 if (action == PF_PASS) { 5719 if (pfsync_update_state_ptr != NULL) 5720 pfsync_update_state_ptr(s); 5721 r = s->rule.ptr; 5722 a = s->anchor.ptr; 5723 log = s->log; 5724 } else if (s == NULL) 5725 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5726 &a, &ruleset, inp); 5727 break; 5728 } 5729 5730 case IPPROTO_ICMP: { 5731 struct icmp ih; 5732 5733 pd.hdr.icmp = &ih; 5734 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 5735 &action, &reason, AF_INET)) { 5736 log = action != PF_PASS; 5737 goto done; 5738 } 5739 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 5740 &reason); 5741 if (action == PF_PASS) { 5742 if (pfsync_update_state_ptr != NULL) 5743 pfsync_update_state_ptr(s); 5744 r = s->rule.ptr; 5745 a = s->anchor.ptr; 5746 log = s->log; 5747 } else if (s == NULL) 5748 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5749 &a, &ruleset, inp); 5750 break; 5751 } 5752 5753 #ifdef INET6 5754 case IPPROTO_ICMPV6: { 5755 action = PF_DROP; 5756 DPFPRINTF(PF_DEBUG_MISC, 5757 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 5758 goto done; 5759 } 5760 #endif 5761 5762 default: 5763 action = pf_test_state_other(&s, dir, kif, m, &pd); 5764 if (action == PF_PASS) { 5765 if (pfsync_update_state_ptr != NULL) 5766 pfsync_update_state_ptr(s); 5767 r = s->rule.ptr; 5768 a = s->anchor.ptr; 5769 log = s->log; 5770 } else if (s == NULL) 5771 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5772 &a, &ruleset, inp); 5773 break; 5774 } 5775 5776 done: 5777 PF_RULES_RUNLOCK(); 5778 if (action == PF_PASS && h->ip_hl > 5 && 5779 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 5780 action = PF_DROP; 5781 REASON_SET(&reason, PFRES_IPOPTIONS); 5782 log = 1; 5783 DPFPRINTF(PF_DEBUG_MISC, 5784 ("pf: dropping packet with ip options\n")); 5785 } 5786 5787 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 5788 action = PF_DROP; 5789 REASON_SET(&reason, PFRES_MEMORY); 5790 } 5791 if (r->rtableid >= 0) 5792 M_SETFIB(m, r->rtableid); 5793 5794 #ifdef ALTQ 5795 if (action == PF_PASS && r->qid) { 5796 if (pd.pf_mtag == NULL && 5797 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5798 action = PF_DROP; 5799 REASON_SET(&reason, PFRES_MEMORY); 5800 } 5801 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 5802 pd.pf_mtag->qid = r->pqid; 5803 else 5804 pd.pf_mtag->qid = r->qid; 5805 /* add hints for ecn */ 5806 pd.pf_mtag->hdr = h; 5807 5808 } 5809 #endif /* ALTQ */ 5810 5811 /* 5812 * connections redirected to loopback should not match sockets 5813 * bound specifically to loopback due to security implications, 5814 * see tcp_input() and in_pcblookup_listen(). 5815 */ 5816 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 5817 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 5818 (s->nat_rule.ptr->action == PF_RDR || 5819 s->nat_rule.ptr->action == PF_BINAT) && 5820 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 5821 m->m_flags |= M_SKIP_FIREWALL; 5822 5823 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 5824 !PACKET_LOOPED(&pd)) { 5825 5826 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 5827 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 5828 if (ipfwtag != NULL) { 5829 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 5830 ntohs(r->divert.port); 5831 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 5832 5833 if (s) 5834 PF_STATE_UNLOCK(s); 5835 5836 m_tag_prepend(m, ipfwtag); 5837 if (m->m_flags & M_FASTFWD_OURS) { 5838 if (pd.pf_mtag == NULL && 5839 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5840 action = PF_DROP; 5841 REASON_SET(&reason, PFRES_MEMORY); 5842 log = 1; 5843 DPFPRINTF(PF_DEBUG_MISC, 5844 ("pf: failed to allocate tag\n")); 5845 } 5846 pd.pf_mtag->flags |= PF_FASTFWD_OURS_PRESENT; 5847 m->m_flags &= ~M_FASTFWD_OURS; 5848 } 5849 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 5850 *m0 = NULL; 5851 5852 return (action); 5853 } else { 5854 /* XXX: ipfw has the same behaviour! */ 5855 action = PF_DROP; 5856 REASON_SET(&reason, PFRES_MEMORY); 5857 log = 1; 5858 DPFPRINTF(PF_DEBUG_MISC, 5859 ("pf: failed to allocate divert tag\n")); 5860 } 5861 } 5862 5863 if (log) { 5864 struct pf_rule *lr; 5865 5866 if (s != NULL && s->nat_rule.ptr != NULL && 5867 s->nat_rule.ptr->log & PF_LOG_ALL) 5868 lr = s->nat_rule.ptr; 5869 else 5870 lr = r; 5871 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 5872 (s == NULL)); 5873 } 5874 5875 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 5876 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 5877 5878 if (action == PF_PASS || r->action == PF_DROP) { 5879 dirndx = (dir == PF_OUT); 5880 r->packets[dirndx]++; 5881 r->bytes[dirndx] += pd.tot_len; 5882 if (a != NULL) { 5883 a->packets[dirndx]++; 5884 a->bytes[dirndx] += pd.tot_len; 5885 } 5886 if (s != NULL) { 5887 if (s->nat_rule.ptr != NULL) { 5888 s->nat_rule.ptr->packets[dirndx]++; 5889 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 5890 } 5891 if (s->src_node != NULL) { 5892 s->src_node->packets[dirndx]++; 5893 s->src_node->bytes[dirndx] += pd.tot_len; 5894 } 5895 if (s->nat_src_node != NULL) { 5896 s->nat_src_node->packets[dirndx]++; 5897 s->nat_src_node->bytes[dirndx] += pd.tot_len; 5898 } 5899 dirndx = (dir == s->direction) ? 0 : 1; 5900 s->packets[dirndx]++; 5901 s->bytes[dirndx] += pd.tot_len; 5902 } 5903 tr = r; 5904 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 5905 if (nr != NULL && r == &V_pf_default_rule) 5906 tr = nr; 5907 if (tr->src.addr.type == PF_ADDR_TABLE) 5908 pfr_update_stats(tr->src.addr.p.tbl, 5909 (s == NULL) ? pd.src : 5910 &s->key[(s->direction == PF_IN)]-> 5911 addr[(s->direction == PF_OUT)], 5912 pd.af, pd.tot_len, dir == PF_OUT, 5913 r->action == PF_PASS, tr->src.neg); 5914 if (tr->dst.addr.type == PF_ADDR_TABLE) 5915 pfr_update_stats(tr->dst.addr.p.tbl, 5916 (s == NULL) ? pd.dst : 5917 &s->key[(s->direction == PF_IN)]-> 5918 addr[(s->direction == PF_IN)], 5919 pd.af, pd.tot_len, dir == PF_OUT, 5920 r->action == PF_PASS, tr->dst.neg); 5921 } 5922 5923 switch (action) { 5924 case PF_SYNPROXY_DROP: 5925 m_freem(*m0); 5926 case PF_DEFER: 5927 *m0 = NULL; 5928 action = PF_PASS; 5929 break; 5930 default: 5931 /* pf_route() returns unlocked. */ 5932 if (r->rt) { 5933 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 5934 return (action); 5935 } 5936 break; 5937 } 5938 if (s) 5939 PF_STATE_UNLOCK(s); 5940 5941 return (action); 5942 } 5943 #endif /* INET */ 5944 5945 #ifdef INET6 5946 int 5947 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5948 { 5949 struct pfi_kif *kif; 5950 u_short action, reason = 0, log = 0; 5951 struct mbuf *m = *m0, *n = NULL; 5952 struct ip6_hdr *h = NULL; 5953 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5954 struct pf_state *s = NULL; 5955 struct pf_ruleset *ruleset = NULL; 5956 struct pf_pdesc pd; 5957 int off, terminal = 0, dirndx, rh_cnt = 0; 5958 5959 M_ASSERTPKTHDR(m); 5960 5961 if (!V_pf_status.running) 5962 return (PF_PASS); 5963 5964 memset(&pd, 0, sizeof(pd)); 5965 pd.pf_mtag = pf_find_mtag(m); 5966 5967 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 5968 return (PF_PASS); 5969 5970 kif = (struct pfi_kif *)ifp->if_pf_kif; 5971 if (kif == NULL) { 5972 DPFPRINTF(PF_DEBUG_URGENT, 5973 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 5974 return (PF_DROP); 5975 } 5976 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5977 return (PF_PASS); 5978 5979 PF_RULES_RLOCK(); 5980 5981 /* We do IP header normalization and packet reassembly here */ 5982 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 5983 action = PF_DROP; 5984 goto done; 5985 } 5986 m = *m0; /* pf_normalize messes with m0 */ 5987 h = mtod(m, struct ip6_hdr *); 5988 5989 #if 1 5990 /* 5991 * we do not support jumbogram yet. if we keep going, zero ip6_plen 5992 * will do something bad, so drop the packet for now. 5993 */ 5994 if (htons(h->ip6_plen) == 0) { 5995 action = PF_DROP; 5996 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 5997 goto done; 5998 } 5999 #endif 6000 6001 pd.src = (struct pf_addr *)&h->ip6_src; 6002 pd.dst = (struct pf_addr *)&h->ip6_dst; 6003 pd.sport = pd.dport = NULL; 6004 pd.ip_sum = NULL; 6005 pd.proto_sum = NULL; 6006 pd.dir = dir; 6007 pd.sidx = (dir == PF_IN) ? 0 : 1; 6008 pd.didx = (dir == PF_IN) ? 1 : 0; 6009 pd.af = AF_INET6; 6010 pd.tos = 0; 6011 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6012 6013 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6014 pd.proto = h->ip6_nxt; 6015 do { 6016 switch (pd.proto) { 6017 case IPPROTO_FRAGMENT: 6018 action = pf_test_fragment(&r, dir, kif, m, h, 6019 &pd, &a, &ruleset); 6020 if (action == PF_DROP) 6021 REASON_SET(&reason, PFRES_FRAG); 6022 goto done; 6023 case IPPROTO_ROUTING: { 6024 struct ip6_rthdr rthdr; 6025 6026 if (rh_cnt++) { 6027 DPFPRINTF(PF_DEBUG_MISC, 6028 ("pf: IPv6 more than one rthdr\n")); 6029 action = PF_DROP; 6030 REASON_SET(&reason, PFRES_IPOPTIONS); 6031 log = 1; 6032 goto done; 6033 } 6034 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6035 &reason, pd.af)) { 6036 DPFPRINTF(PF_DEBUG_MISC, 6037 ("pf: IPv6 short rthdr\n")); 6038 action = PF_DROP; 6039 REASON_SET(&reason, PFRES_SHORT); 6040 log = 1; 6041 goto done; 6042 } 6043 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6044 DPFPRINTF(PF_DEBUG_MISC, 6045 ("pf: IPv6 rthdr0\n")); 6046 action = PF_DROP; 6047 REASON_SET(&reason, PFRES_IPOPTIONS); 6048 log = 1; 6049 goto done; 6050 } 6051 /* FALLTHROUGH */ 6052 } 6053 case IPPROTO_AH: 6054 case IPPROTO_HOPOPTS: 6055 case IPPROTO_DSTOPTS: { 6056 /* get next header and header length */ 6057 struct ip6_ext opt6; 6058 6059 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6060 NULL, &reason, pd.af)) { 6061 DPFPRINTF(PF_DEBUG_MISC, 6062 ("pf: IPv6 short opt\n")); 6063 action = PF_DROP; 6064 log = 1; 6065 goto done; 6066 } 6067 if (pd.proto == IPPROTO_AH) 6068 off += (opt6.ip6e_len + 2) * 4; 6069 else 6070 off += (opt6.ip6e_len + 1) * 8; 6071 pd.proto = opt6.ip6e_nxt; 6072 /* goto the next header */ 6073 break; 6074 } 6075 default: 6076 terminal++; 6077 break; 6078 } 6079 } while (!terminal); 6080 6081 /* if there's no routing header, use unmodified mbuf for checksumming */ 6082 if (!n) 6083 n = m; 6084 6085 switch (pd.proto) { 6086 6087 case IPPROTO_TCP: { 6088 struct tcphdr th; 6089 6090 pd.hdr.tcp = &th; 6091 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6092 &action, &reason, AF_INET6)) { 6093 log = action != PF_PASS; 6094 goto done; 6095 } 6096 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6097 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6098 if (action == PF_DROP) 6099 goto done; 6100 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6101 &reason); 6102 if (action == PF_PASS) { 6103 if (pfsync_update_state_ptr != NULL) 6104 pfsync_update_state_ptr(s); 6105 r = s->rule.ptr; 6106 a = s->anchor.ptr; 6107 log = s->log; 6108 } else if (s == NULL) 6109 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6110 &a, &ruleset, inp); 6111 break; 6112 } 6113 6114 case IPPROTO_UDP: { 6115 struct udphdr uh; 6116 6117 pd.hdr.udp = &uh; 6118 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6119 &action, &reason, AF_INET6)) { 6120 log = action != PF_PASS; 6121 goto done; 6122 } 6123 if (uh.uh_dport == 0 || 6124 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6125 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6126 action = PF_DROP; 6127 REASON_SET(&reason, PFRES_SHORT); 6128 goto done; 6129 } 6130 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6131 if (action == PF_PASS) { 6132 if (pfsync_update_state_ptr != NULL) 6133 pfsync_update_state_ptr(s); 6134 r = s->rule.ptr; 6135 a = s->anchor.ptr; 6136 log = s->log; 6137 } else if (s == NULL) 6138 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6139 &a, &ruleset, inp); 6140 break; 6141 } 6142 6143 case IPPROTO_ICMP: { 6144 action = PF_DROP; 6145 DPFPRINTF(PF_DEBUG_MISC, 6146 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6147 goto done; 6148 } 6149 6150 case IPPROTO_ICMPV6: { 6151 struct icmp6_hdr ih; 6152 6153 pd.hdr.icmp6 = &ih; 6154 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6155 &action, &reason, AF_INET6)) { 6156 log = action != PF_PASS; 6157 goto done; 6158 } 6159 action = pf_test_state_icmp(&s, dir, kif, 6160 m, off, h, &pd, &reason); 6161 if (action == PF_PASS) { 6162 if (pfsync_update_state_ptr != NULL) 6163 pfsync_update_state_ptr(s); 6164 r = s->rule.ptr; 6165 a = s->anchor.ptr; 6166 log = s->log; 6167 } else if (s == NULL) 6168 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6169 &a, &ruleset, inp); 6170 break; 6171 } 6172 6173 default: 6174 action = pf_test_state_other(&s, dir, kif, m, &pd); 6175 if (action == PF_PASS) { 6176 if (pfsync_update_state_ptr != NULL) 6177 pfsync_update_state_ptr(s); 6178 r = s->rule.ptr; 6179 a = s->anchor.ptr; 6180 log = s->log; 6181 } else if (s == NULL) 6182 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6183 &a, &ruleset, inp); 6184 break; 6185 } 6186 6187 done: 6188 PF_RULES_RUNLOCK(); 6189 if (n != m) { 6190 m_freem(n); 6191 n = NULL; 6192 } 6193 6194 /* handle dangerous IPv6 extension headers. */ 6195 if (action == PF_PASS && rh_cnt && 6196 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6197 action = PF_DROP; 6198 REASON_SET(&reason, PFRES_IPOPTIONS); 6199 log = 1; 6200 DPFPRINTF(PF_DEBUG_MISC, 6201 ("pf: dropping packet with dangerous v6 headers\n")); 6202 } 6203 6204 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6205 action = PF_DROP; 6206 REASON_SET(&reason, PFRES_MEMORY); 6207 } 6208 if (r->rtableid >= 0) 6209 M_SETFIB(m, r->rtableid); 6210 6211 #ifdef ALTQ 6212 if (action == PF_PASS && r->qid) { 6213 if (pd.pf_mtag == NULL && 6214 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6215 action = PF_DROP; 6216 REASON_SET(&reason, PFRES_MEMORY); 6217 } 6218 if (pd.tos & IPTOS_LOWDELAY) 6219 pd.pf_mtag->qid = r->pqid; 6220 else 6221 pd.pf_mtag->qid = r->qid; 6222 /* add hints for ecn */ 6223 pd.pf_mtag->hdr = h; 6224 } 6225 #endif /* ALTQ */ 6226 6227 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6228 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6229 (s->nat_rule.ptr->action == PF_RDR || 6230 s->nat_rule.ptr->action == PF_BINAT) && 6231 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6232 m->m_flags |= M_SKIP_FIREWALL; 6233 6234 /* XXX: Anybody working on it?! */ 6235 if (r->divert.port) 6236 printf("pf: divert(9) is not supported for IPv6\n"); 6237 6238 if (log) { 6239 struct pf_rule *lr; 6240 6241 if (s != NULL && s->nat_rule.ptr != NULL && 6242 s->nat_rule.ptr->log & PF_LOG_ALL) 6243 lr = s->nat_rule.ptr; 6244 else 6245 lr = r; 6246 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6247 &pd, (s == NULL)); 6248 } 6249 6250 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6251 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6252 6253 if (action == PF_PASS || r->action == PF_DROP) { 6254 dirndx = (dir == PF_OUT); 6255 r->packets[dirndx]++; 6256 r->bytes[dirndx] += pd.tot_len; 6257 if (a != NULL) { 6258 a->packets[dirndx]++; 6259 a->bytes[dirndx] += pd.tot_len; 6260 } 6261 if (s != NULL) { 6262 if (s->nat_rule.ptr != NULL) { 6263 s->nat_rule.ptr->packets[dirndx]++; 6264 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6265 } 6266 if (s->src_node != NULL) { 6267 s->src_node->packets[dirndx]++; 6268 s->src_node->bytes[dirndx] += pd.tot_len; 6269 } 6270 if (s->nat_src_node != NULL) { 6271 s->nat_src_node->packets[dirndx]++; 6272 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6273 } 6274 dirndx = (dir == s->direction) ? 0 : 1; 6275 s->packets[dirndx]++; 6276 s->bytes[dirndx] += pd.tot_len; 6277 } 6278 tr = r; 6279 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6280 if (nr != NULL && r == &V_pf_default_rule) 6281 tr = nr; 6282 if (tr->src.addr.type == PF_ADDR_TABLE) 6283 pfr_update_stats(tr->src.addr.p.tbl, 6284 (s == NULL) ? pd.src : 6285 &s->key[(s->direction == PF_IN)]->addr[0], 6286 pd.af, pd.tot_len, dir == PF_OUT, 6287 r->action == PF_PASS, tr->src.neg); 6288 if (tr->dst.addr.type == PF_ADDR_TABLE) 6289 pfr_update_stats(tr->dst.addr.p.tbl, 6290 (s == NULL) ? pd.dst : 6291 &s->key[(s->direction == PF_IN)]->addr[1], 6292 pd.af, pd.tot_len, dir == PF_OUT, 6293 r->action == PF_PASS, tr->dst.neg); 6294 } 6295 6296 switch (action) { 6297 case PF_SYNPROXY_DROP: 6298 m_freem(*m0); 6299 case PF_DEFER: 6300 *m0 = NULL; 6301 action = PF_PASS; 6302 break; 6303 default: 6304 /* pf_route6() returns unlocked. */ 6305 if (r->rt) { 6306 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6307 return (action); 6308 } 6309 break; 6310 } 6311 6312 if (s) 6313 PF_STATE_UNLOCK(s); 6314 6315 return (action); 6316 } 6317 #endif /* INET6 */ 6318