1 /* $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ */ 2 3 /* 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * - Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * - Redistributions in binary form must reproduce the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer in the documentation and/or other materials provided 17 * with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 22 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 23 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 27 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 29 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 * 32 * Effort sponsored in part by the Defense Advanced Research Projects 33 * Agency (DARPA) and Air Force Research Laboratory, Air Force 34 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 35 * 36 */ 37 38 #include <sys/cdefs.h> 39 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_bpf.h" 45 #include "opt_pf.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/hash.h> 51 #include <sys/interrupt.h> 52 #include <sys/kernel.h> 53 #include <sys/kthread.h> 54 #include <sys/limits.h> 55 #include <sys/mbuf.h> 56 #include <sys/md5.h> 57 #include <sys/random.h> 58 #include <sys/refcount.h> 59 #include <sys/socket.h> 60 #include <sys/sysctl.h> 61 #include <sys/taskqueue.h> 62 #include <sys/ucred.h> 63 64 #include <net/if.h> 65 #include <net/if_types.h> 66 #include <net/route.h> 67 #include <net/radix_mpath.h> 68 #include <net/vnet.h> 69 70 #include <net/pfvar.h> 71 #include <net/pf_mtag.h> 72 #include <net/if_pflog.h> 73 #include <net/if_pfsync.h> 74 75 #include <netinet/in_pcb.h> 76 #include <netinet/in_var.h> 77 #include <netinet/ip.h> 78 #include <netinet/ip_fw.h> 79 #include <netinet/ip_icmp.h> 80 #include <netinet/icmp_var.h> 81 #include <netinet/ip_var.h> 82 #include <netinet/tcp.h> 83 #include <netinet/tcp_fsm.h> 84 #include <netinet/tcp_seq.h> 85 #include <netinet/tcp_timer.h> 86 #include <netinet/tcp_var.h> 87 #include <netinet/udp.h> 88 #include <netinet/udp_var.h> 89 90 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 91 92 #ifdef INET6 93 #include <netinet/ip6.h> 94 #include <netinet/icmp6.h> 95 #include <netinet6/nd6.h> 96 #include <netinet6/ip6_var.h> 97 #include <netinet6/in6_pcb.h> 98 #endif /* INET6 */ 99 100 #include <machine/in_cksum.h> 101 #include <security/mac/mac_framework.h> 102 103 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 104 105 /* 106 * Global variables 107 */ 108 109 /* state tables */ 110 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 111 VNET_DEFINE(struct pf_palist, pf_pabuf); 112 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 113 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 114 VNET_DEFINE(struct pf_status, pf_status); 115 116 VNET_DEFINE(u_int32_t, ticket_altqs_active); 117 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 118 VNET_DEFINE(int, altqs_inactive_open); 119 VNET_DEFINE(u_int32_t, ticket_pabuf); 120 121 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 122 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 123 VNET_DEFINE(u_char, pf_tcp_secret[16]); 124 #define V_pf_tcp_secret VNET(pf_tcp_secret) 125 VNET_DEFINE(int, pf_tcp_secret_init); 126 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 127 VNET_DEFINE(int, pf_tcp_iss_off); 128 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 129 130 /* 131 * Queue for pf_intr() sends. 132 */ 133 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 134 struct pf_send_entry { 135 STAILQ_ENTRY(pf_send_entry) pfse_next; 136 struct mbuf *pfse_m; 137 enum { 138 PFSE_IP, 139 PFSE_IP6, 140 PFSE_ICMP, 141 PFSE_ICMP6, 142 } pfse_type; 143 union { 144 struct route ro; 145 struct { 146 int type; 147 int code; 148 int mtu; 149 } icmpopts; 150 } u; 151 #define pfse_ro u.ro 152 #define pfse_icmp_type u.icmpopts.type 153 #define pfse_icmp_code u.icmpopts.code 154 #define pfse_icmp_mtu u.icmpopts.mtu 155 }; 156 157 STAILQ_HEAD(pf_send_head, pf_send_entry); 158 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 159 #define V_pf_sendqueue VNET(pf_sendqueue) 160 161 static struct mtx pf_sendqueue_mtx; 162 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 163 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 164 165 /* 166 * Queue for pf_overload_task() tasks. 167 */ 168 struct pf_overload_entry { 169 SLIST_ENTRY(pf_overload_entry) next; 170 struct pf_addr addr; 171 sa_family_t af; 172 uint8_t dir; 173 struct pf_rule *rule; 174 }; 175 176 SLIST_HEAD(pf_overload_head, pf_overload_entry); 177 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 178 #define V_pf_overloadqueue VNET(pf_overloadqueue) 179 static VNET_DEFINE(struct task, pf_overloadtask); 180 #define V_pf_overloadtask VNET(pf_overloadtask) 181 182 static struct mtx pf_overloadqueue_mtx; 183 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 184 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 185 186 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 187 struct mtx pf_unlnkdrules_mtx; 188 189 static VNET_DEFINE(uma_zone_t, pf_sources_z); 190 #define V_pf_sources_z VNET(pf_sources_z) 191 static VNET_DEFINE(uma_zone_t, pf_mtag_z); 192 #define V_pf_mtag_z VNET(pf_mtag_z) 193 VNET_DEFINE(uma_zone_t, pf_state_z); 194 VNET_DEFINE(uma_zone_t, pf_state_key_z); 195 196 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 197 #define PFID_CPUBITS 8 198 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 199 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 200 #define PFID_MAXID (~PFID_CPUMASK) 201 CTASSERT((1 << PFID_CPUBITS) > MAXCPU); 202 203 static void pf_src_tree_remove_state(struct pf_state *); 204 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 205 u_int32_t); 206 static void pf_add_threshold(struct pf_threshold *); 207 static int pf_check_threshold(struct pf_threshold *); 208 209 static void pf_change_ap(struct pf_addr *, u_int16_t *, 210 u_int16_t *, u_int16_t *, struct pf_addr *, 211 u_int16_t, u_int8_t, sa_family_t); 212 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 213 struct tcphdr *, struct pf_state_peer *); 214 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 215 struct pf_addr *, struct pf_addr *, u_int16_t, 216 u_int16_t *, u_int16_t *, u_int16_t *, 217 u_int16_t *, u_int8_t, sa_family_t); 218 static void pf_send_tcp(struct mbuf *, 219 const struct pf_rule *, sa_family_t, 220 const struct pf_addr *, const struct pf_addr *, 221 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 222 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 223 u_int16_t, struct ifnet *); 224 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 225 sa_family_t, struct pf_rule *); 226 static void pf_detach_state(struct pf_state *); 227 static int pf_state_key_attach(struct pf_state_key *, 228 struct pf_state_key *, struct pf_state *); 229 static void pf_state_key_detach(struct pf_state *, int); 230 static int pf_state_key_ctor(void *, int, void *, int); 231 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 232 static int pf_test_rule(struct pf_rule **, struct pf_state **, 233 int, struct pfi_kif *, struct mbuf *, int, 234 struct pf_pdesc *, struct pf_rule **, 235 struct pf_ruleset **, struct inpcb *); 236 static int pf_create_state(struct pf_rule *, struct pf_rule *, 237 struct pf_rule *, struct pf_pdesc *, 238 struct pf_src_node *, struct pf_state_key *, 239 struct pf_state_key *, struct mbuf *, int, 240 u_int16_t, u_int16_t, int *, struct pfi_kif *, 241 struct pf_state **, int, u_int16_t, u_int16_t, 242 int); 243 static int pf_test_fragment(struct pf_rule **, int, 244 struct pfi_kif *, struct mbuf *, void *, 245 struct pf_pdesc *, struct pf_rule **, 246 struct pf_ruleset **); 247 static int pf_tcp_track_full(struct pf_state_peer *, 248 struct pf_state_peer *, struct pf_state **, 249 struct pfi_kif *, struct mbuf *, int, 250 struct pf_pdesc *, u_short *, int *); 251 static int pf_tcp_track_sloppy(struct pf_state_peer *, 252 struct pf_state_peer *, struct pf_state **, 253 struct pf_pdesc *, u_short *); 254 static int pf_test_state_tcp(struct pf_state **, int, 255 struct pfi_kif *, struct mbuf *, int, 256 void *, struct pf_pdesc *, u_short *); 257 static int pf_test_state_udp(struct pf_state **, int, 258 struct pfi_kif *, struct mbuf *, int, 259 void *, struct pf_pdesc *); 260 static int pf_test_state_icmp(struct pf_state **, int, 261 struct pfi_kif *, struct mbuf *, int, 262 void *, struct pf_pdesc *, u_short *); 263 static int pf_test_state_other(struct pf_state **, int, 264 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 265 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 266 sa_family_t); 267 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 268 sa_family_t); 269 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 270 int, u_int16_t); 271 static void pf_set_rt_ifp(struct pf_state *, 272 struct pf_addr *); 273 static int pf_check_proto_cksum(struct mbuf *, int, int, 274 u_int8_t, sa_family_t); 275 static void pf_print_state_parts(struct pf_state *, 276 struct pf_state_key *, struct pf_state_key *); 277 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 278 struct pf_addr_wrap *); 279 static struct pf_state *pf_find_state(struct pfi_kif *, 280 struct pf_state_key_cmp *, u_int); 281 static int pf_src_connlimit(struct pf_state **); 282 static void pf_overload_task(void *c, int pending); 283 static int pf_insert_src_node(struct pf_src_node **, 284 struct pf_rule *, struct pf_addr *, sa_family_t); 285 static u_int pf_purge_expired_states(u_int, int); 286 static void pf_purge_unlinked_rules(void); 287 static int pf_mtag_init(void *, int, int); 288 static void pf_mtag_free(struct m_tag *); 289 #ifdef INET 290 static void pf_route(struct mbuf **, struct pf_rule *, int, 291 struct ifnet *, struct pf_state *, 292 struct pf_pdesc *); 293 #endif /* INET */ 294 #ifdef INET6 295 static void pf_change_a6(struct pf_addr *, u_int16_t *, 296 struct pf_addr *, u_int8_t); 297 static void pf_route6(struct mbuf **, struct pf_rule *, int, 298 struct ifnet *, struct pf_state *, 299 struct pf_pdesc *); 300 #endif /* INET6 */ 301 302 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 303 304 VNET_DECLARE(int, pf_end_threads); 305 306 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 307 308 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 309 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 310 311 #define STATE_LOOKUP(i, k, d, s, pd) \ 312 do { \ 313 (s) = pf_find_state((i), (k), (d)); \ 314 if ((s) == NULL || (s)->timeout == PFTM_PURGE) \ 315 return (PF_DROP); \ 316 if (PACKET_LOOPED(pd)) \ 317 return (PF_PASS); \ 318 if ((d) == PF_OUT && \ 319 (((s)->rule.ptr->rt == PF_ROUTETO && \ 320 (s)->rule.ptr->direction == PF_OUT) || \ 321 ((s)->rule.ptr->rt == PF_REPLYTO && \ 322 (s)->rule.ptr->direction == PF_IN)) && \ 323 (s)->rt_kif != NULL && \ 324 (s)->rt_kif != (i)) \ 325 return (PF_PASS); \ 326 } while (0) 327 328 #define BOUND_IFACE(r, k) \ 329 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 330 331 #define STATE_INC_COUNTERS(s) \ 332 do { \ 333 s->rule.ptr->states_cur++; \ 334 s->rule.ptr->states_tot++; \ 335 if (s->anchor.ptr != NULL) { \ 336 s->anchor.ptr->states_cur++; \ 337 s->anchor.ptr->states_tot++; \ 338 } \ 339 if (s->nat_rule.ptr != NULL) { \ 340 s->nat_rule.ptr->states_cur++; \ 341 s->nat_rule.ptr->states_tot++; \ 342 } \ 343 } while (0) 344 345 #define STATE_DEC_COUNTERS(s) \ 346 do { \ 347 if (s->nat_rule.ptr != NULL) \ 348 s->nat_rule.ptr->states_cur--; \ 349 if (s->anchor.ptr != NULL) \ 350 s->anchor.ptr->states_cur--; \ 351 s->rule.ptr->states_cur--; \ 352 } while (0) 353 354 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 355 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 356 VNET_DEFINE(struct pf_idhash *, pf_idhash); 357 VNET_DEFINE(u_long, pf_hashmask); 358 VNET_DEFINE(struct pf_srchash *, pf_srchash); 359 VNET_DEFINE(u_long, pf_srchashmask); 360 361 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 362 363 VNET_DEFINE(u_long, pf_hashsize); 364 #define V_pf_hashsize VNET(pf_hashsize) 365 SYSCTL_VNET_UINT(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 366 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 367 368 VNET_DEFINE(u_long, pf_srchashsize); 369 #define V_pf_srchashsize VNET(pf_srchashsize) 370 SYSCTL_VNET_UINT(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 371 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 372 373 VNET_DEFINE(void *, pf_swi_cookie); 374 375 VNET_DEFINE(uint32_t, pf_hashseed); 376 #define V_pf_hashseed VNET(pf_hashseed) 377 378 static __inline uint32_t 379 pf_hashkey(struct pf_state_key *sk) 380 { 381 uint32_t h; 382 383 h = jenkins_hash32((uint32_t *)sk, 384 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 385 V_pf_hashseed); 386 387 return (h & V_pf_hashmask); 388 } 389 390 static __inline uint32_t 391 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 392 { 393 uint32_t h; 394 395 switch (af) { 396 case AF_INET: 397 h = jenkins_hash32((uint32_t *)&addr->v4, 398 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 399 break; 400 case AF_INET6: 401 h = jenkins_hash32((uint32_t *)&addr->v6, 402 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 403 break; 404 default: 405 panic("%s: unknown address family %u", __func__, af); 406 } 407 408 return (h & V_pf_srchashmask); 409 } 410 411 #ifdef INET6 412 void 413 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 414 { 415 switch (af) { 416 #ifdef INET 417 case AF_INET: 418 dst->addr32[0] = src->addr32[0]; 419 break; 420 #endif /* INET */ 421 case AF_INET6: 422 dst->addr32[0] = src->addr32[0]; 423 dst->addr32[1] = src->addr32[1]; 424 dst->addr32[2] = src->addr32[2]; 425 dst->addr32[3] = src->addr32[3]; 426 break; 427 } 428 } 429 #endif /* INET6 */ 430 431 static void 432 pf_init_threshold(struct pf_threshold *threshold, 433 u_int32_t limit, u_int32_t seconds) 434 { 435 threshold->limit = limit * PF_THRESHOLD_MULT; 436 threshold->seconds = seconds; 437 threshold->count = 0; 438 threshold->last = time_uptime; 439 } 440 441 static void 442 pf_add_threshold(struct pf_threshold *threshold) 443 { 444 u_int32_t t = time_uptime, diff = t - threshold->last; 445 446 if (diff >= threshold->seconds) 447 threshold->count = 0; 448 else 449 threshold->count -= threshold->count * diff / 450 threshold->seconds; 451 threshold->count += PF_THRESHOLD_MULT; 452 threshold->last = t; 453 } 454 455 static int 456 pf_check_threshold(struct pf_threshold *threshold) 457 { 458 return (threshold->count > threshold->limit); 459 } 460 461 static int 462 pf_src_connlimit(struct pf_state **state) 463 { 464 struct pf_overload_entry *pfoe; 465 int bad = 0; 466 467 PF_STATE_LOCK_ASSERT(*state); 468 469 (*state)->src_node->conn++; 470 (*state)->src.tcp_est = 1; 471 pf_add_threshold(&(*state)->src_node->conn_rate); 472 473 if ((*state)->rule.ptr->max_src_conn && 474 (*state)->rule.ptr->max_src_conn < 475 (*state)->src_node->conn) { 476 V_pf_status.lcounters[LCNT_SRCCONN]++; 477 bad++; 478 } 479 480 if ((*state)->rule.ptr->max_src_conn_rate.limit && 481 pf_check_threshold(&(*state)->src_node->conn_rate)) { 482 V_pf_status.lcounters[LCNT_SRCCONNRATE]++; 483 bad++; 484 } 485 486 if (!bad) 487 return (0); 488 489 /* Kill this state. */ 490 (*state)->timeout = PFTM_PURGE; 491 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 492 493 if ((*state)->rule.ptr->overload_tbl == NULL) 494 return (1); 495 496 /* Schedule overloading and flushing task. */ 497 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 498 if (pfoe == NULL) 499 return (1); /* too bad :( */ 500 501 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 502 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 503 pfoe->rule = (*state)->rule.ptr; 504 pfoe->dir = (*state)->direction; 505 PF_OVERLOADQ_LOCK(); 506 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 507 PF_OVERLOADQ_UNLOCK(); 508 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 509 510 return (1); 511 } 512 513 static void 514 pf_overload_task(void *c, int pending) 515 { 516 struct pf_overload_head queue; 517 struct pfr_addr p; 518 struct pf_overload_entry *pfoe, *pfoe1; 519 uint32_t killed = 0; 520 521 PF_OVERLOADQ_LOCK(); 522 queue = *(struct pf_overload_head *)c; 523 SLIST_INIT((struct pf_overload_head *)c); 524 PF_OVERLOADQ_UNLOCK(); 525 526 bzero(&p, sizeof(p)); 527 SLIST_FOREACH(pfoe, &queue, next) { 528 V_pf_status.lcounters[LCNT_OVERLOAD_TABLE]++; 529 if (V_pf_status.debug >= PF_DEBUG_MISC) { 530 printf("%s: blocking address ", __func__); 531 pf_print_host(&pfoe->addr, 0, pfoe->af); 532 printf("\n"); 533 } 534 535 p.pfra_af = pfoe->af; 536 switch (pfoe->af) { 537 #ifdef INET 538 case AF_INET: 539 p.pfra_net = 32; 540 p.pfra_ip4addr = pfoe->addr.v4; 541 break; 542 #endif 543 #ifdef INET6 544 case AF_INET6: 545 p.pfra_net = 128; 546 p.pfra_ip6addr = pfoe->addr.v6; 547 break; 548 #endif 549 } 550 551 PF_RULES_WLOCK(); 552 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 553 PF_RULES_WUNLOCK(); 554 } 555 556 /* 557 * Remove those entries, that don't need flushing. 558 */ 559 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 560 if (pfoe->rule->flush == 0) { 561 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 562 free(pfoe, M_PFTEMP); 563 } else 564 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH]++; 565 566 /* If nothing to flush, return. */ 567 if (SLIST_EMPTY(&queue)) 568 return; 569 570 for (int i = 0; i <= V_pf_hashmask; i++) { 571 struct pf_idhash *ih = &V_pf_idhash[i]; 572 struct pf_state_key *sk; 573 struct pf_state *s; 574 575 PF_HASHROW_LOCK(ih); 576 LIST_FOREACH(s, &ih->states, entry) { 577 sk = s->key[PF_SK_WIRE]; 578 SLIST_FOREACH(pfoe, &queue, next) 579 if (sk->af == pfoe->af && 580 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 581 pfoe->rule == s->rule.ptr) && 582 ((pfoe->dir == PF_OUT && 583 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 584 (pfoe->dir == PF_IN && 585 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 586 s->timeout = PFTM_PURGE; 587 s->src.state = s->dst.state = TCPS_CLOSED; 588 killed++; 589 } 590 } 591 PF_HASHROW_UNLOCK(ih); 592 } 593 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 594 free(pfoe, M_PFTEMP); 595 if (V_pf_status.debug >= PF_DEBUG_MISC) 596 printf("%s: %u states killed", __func__, killed); 597 } 598 599 /* 600 * Can return locked on failure, so that we can consistently 601 * allocate and insert a new one. 602 */ 603 struct pf_src_node * 604 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 605 int returnlocked) 606 { 607 struct pf_srchash *sh; 608 struct pf_src_node *n; 609 610 V_pf_status.scounters[SCNT_SRC_NODE_SEARCH]++; 611 612 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 613 PF_HASHROW_LOCK(sh); 614 LIST_FOREACH(n, &sh->nodes, entry) 615 if (n->rule.ptr == rule && n->af == af && 616 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 617 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 618 break; 619 if (n != NULL || returnlocked == 0) 620 PF_HASHROW_UNLOCK(sh); 621 622 return (n); 623 } 624 625 static int 626 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 627 struct pf_addr *src, sa_family_t af) 628 { 629 630 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 631 rule->rpool.opts & PF_POOL_STICKYADDR), 632 ("%s for non-tracking rule %p", __func__, rule)); 633 634 if (*sn == NULL) 635 *sn = pf_find_src_node(src, rule, af, 1); 636 637 if (*sn == NULL) { 638 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 639 640 PF_HASHROW_ASSERT(sh); 641 642 if (!rule->max_src_nodes || 643 rule->src_nodes < rule->max_src_nodes) 644 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 645 else 646 V_pf_status.lcounters[LCNT_SRCNODES]++; 647 if ((*sn) == NULL) { 648 PF_HASHROW_UNLOCK(sh); 649 return (-1); 650 } 651 652 pf_init_threshold(&(*sn)->conn_rate, 653 rule->max_src_conn_rate.limit, 654 rule->max_src_conn_rate.seconds); 655 656 (*sn)->af = af; 657 (*sn)->rule.ptr = rule; 658 PF_ACPY(&(*sn)->addr, src, af); 659 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 660 (*sn)->creation = time_uptime; 661 (*sn)->ruletype = rule->action; 662 if ((*sn)->rule.ptr != NULL) 663 (*sn)->rule.ptr->src_nodes++; 664 PF_HASHROW_UNLOCK(sh); 665 V_pf_status.scounters[SCNT_SRC_NODE_INSERT]++; 666 V_pf_status.src_nodes++; 667 } else { 668 if (rule->max_src_states && 669 (*sn)->states >= rule->max_src_states) { 670 V_pf_status.lcounters[LCNT_SRCSTATES]++; 671 return (-1); 672 } 673 } 674 return (0); 675 } 676 677 static void 678 pf_remove_src_node(struct pf_src_node *src) 679 { 680 struct pf_srchash *sh; 681 682 sh = &V_pf_srchash[pf_hashsrc(&src->addr, src->af)]; 683 PF_HASHROW_LOCK(sh); 684 LIST_REMOVE(src, entry); 685 PF_HASHROW_UNLOCK(sh); 686 687 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS]++; 688 V_pf_status.src_nodes--; 689 690 uma_zfree(V_pf_sources_z, src); 691 } 692 693 /* Data storage structures initialization. */ 694 void 695 pf_initialize() 696 { 697 struct pf_keyhash *kh; 698 struct pf_idhash *ih; 699 struct pf_srchash *sh; 700 u_int i; 701 702 TUNABLE_ULONG_FETCH("net.pf.states_hashsize", &V_pf_hashsize); 703 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 704 V_pf_hashsize = PF_HASHSIZ; 705 TUNABLE_ULONG_FETCH("net.pf.source_nodes_hashsize", &V_pf_srchashsize); 706 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 707 V_pf_srchashsize = PF_HASHSIZ / 4; 708 709 V_pf_hashseed = arc4random(); 710 711 /* States and state keys storage. */ 712 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 713 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 714 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 715 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 716 717 V_pf_state_key_z = uma_zcreate("pf state keys", 718 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 719 UMA_ALIGN_PTR, 0); 720 V_pf_keyhash = malloc(V_pf_hashsize * sizeof(struct pf_keyhash), 721 M_PFHASH, M_WAITOK | M_ZERO); 722 V_pf_idhash = malloc(V_pf_hashsize * sizeof(struct pf_idhash), 723 M_PFHASH, M_WAITOK | M_ZERO); 724 V_pf_hashmask = V_pf_hashsize - 1; 725 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 726 i++, kh++, ih++) { 727 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF); 728 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 729 } 730 731 /* Source nodes. */ 732 V_pf_sources_z = uma_zcreate("pf source nodes", 733 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 734 0); 735 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 736 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 737 V_pf_srchash = malloc(V_pf_srchashsize * sizeof(struct pf_srchash), 738 M_PFHASH, M_WAITOK|M_ZERO); 739 V_pf_srchashmask = V_pf_srchashsize - 1; 740 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 741 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 742 743 /* ALTQ */ 744 TAILQ_INIT(&V_pf_altqs[0]); 745 TAILQ_INIT(&V_pf_altqs[1]); 746 TAILQ_INIT(&V_pf_pabuf); 747 V_pf_altqs_active = &V_pf_altqs[0]; 748 V_pf_altqs_inactive = &V_pf_altqs[1]; 749 750 /* Mbuf tags */ 751 V_pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 752 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_init, NULL, 753 UMA_ALIGN_PTR, 0); 754 755 /* Send & overload+flush queues. */ 756 STAILQ_INIT(&V_pf_sendqueue); 757 SLIST_INIT(&V_pf_overloadqueue); 758 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, &V_pf_overloadqueue); 759 mtx_init(&pf_sendqueue_mtx, "pf send queue", NULL, MTX_DEF); 760 mtx_init(&pf_overloadqueue_mtx, "pf overload/flush queue", NULL, 761 MTX_DEF); 762 763 /* Unlinked, but may be referenced rules. */ 764 TAILQ_INIT(&V_pf_unlinked_rules); 765 mtx_init(&pf_unlnkdrules_mtx, "pf unlinked rules", NULL, MTX_DEF); 766 } 767 768 void 769 pf_cleanup() 770 { 771 struct pf_keyhash *kh; 772 struct pf_idhash *ih; 773 struct pf_srchash *sh; 774 struct pf_send_entry *pfse, *next; 775 u_int i; 776 777 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 778 i++, kh++, ih++) { 779 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 780 __func__)); 781 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 782 __func__)); 783 mtx_destroy(&kh->lock); 784 mtx_destroy(&ih->lock); 785 } 786 free(V_pf_keyhash, M_PFHASH); 787 free(V_pf_idhash, M_PFHASH); 788 789 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 790 KASSERT(LIST_EMPTY(&sh->nodes), 791 ("%s: source node hash not empty", __func__)); 792 mtx_destroy(&sh->lock); 793 } 794 free(V_pf_srchash, M_PFHASH); 795 796 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 797 m_freem(pfse->pfse_m); 798 free(pfse, M_PFTEMP); 799 } 800 801 mtx_destroy(&pf_sendqueue_mtx); 802 mtx_destroy(&pf_overloadqueue_mtx); 803 mtx_destroy(&pf_unlnkdrules_mtx); 804 805 uma_zdestroy(V_pf_mtag_z); 806 uma_zdestroy(V_pf_sources_z); 807 uma_zdestroy(V_pf_state_z); 808 uma_zdestroy(V_pf_state_key_z); 809 } 810 811 static int 812 pf_mtag_init(void *mem, int size, int how) 813 { 814 struct m_tag *t; 815 816 t = (struct m_tag *)mem; 817 t->m_tag_cookie = MTAG_ABI_COMPAT; 818 t->m_tag_id = PACKET_TAG_PF; 819 t->m_tag_len = sizeof(struct pf_mtag); 820 t->m_tag_free = pf_mtag_free; 821 822 return (0); 823 } 824 825 static void 826 pf_mtag_free(struct m_tag *t) 827 { 828 829 uma_zfree(V_pf_mtag_z, t); 830 } 831 832 struct pf_mtag * 833 pf_get_mtag(struct mbuf *m) 834 { 835 struct m_tag *mtag; 836 837 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 838 return ((struct pf_mtag *)(mtag + 1)); 839 840 mtag = uma_zalloc(V_pf_mtag_z, M_NOWAIT); 841 if (mtag == NULL) 842 return (NULL); 843 bzero(mtag + 1, sizeof(struct pf_mtag)); 844 m_tag_prepend(m, mtag); 845 846 return ((struct pf_mtag *)(mtag + 1)); 847 } 848 849 static int 850 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 851 struct pf_state *s) 852 { 853 struct pf_keyhash *kh; 854 struct pf_state_key *sk, *cur; 855 struct pf_state *si, *olds = NULL; 856 int idx; 857 858 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 859 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 860 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 861 862 /* 863 * First run: start with wire key. 864 */ 865 sk = skw; 866 idx = PF_SK_WIRE; 867 868 keyattach: 869 kh = &V_pf_keyhash[pf_hashkey(sk)]; 870 871 PF_HASHROW_LOCK(kh); 872 LIST_FOREACH(cur, &kh->keys, entry) 873 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 874 break; 875 876 if (cur != NULL) { 877 /* Key exists. Check for same kif, if none, add to key. */ 878 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 879 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 880 881 PF_HASHROW_LOCK(ih); 882 if (si->kif == s->kif && 883 si->direction == s->direction) { 884 if (sk->proto == IPPROTO_TCP && 885 si->src.state >= TCPS_FIN_WAIT_2 && 886 si->dst.state >= TCPS_FIN_WAIT_2) { 887 si->src.state = si->dst.state = 888 TCPS_CLOSED; 889 /* Unlink later or cur can go away. */ 890 pf_ref_state(si); 891 olds = si; 892 } else { 893 if (V_pf_status.debug >= PF_DEBUG_MISC) { 894 printf("pf: %s key attach " 895 "failed on %s: ", 896 (idx == PF_SK_WIRE) ? 897 "wire" : "stack", 898 s->kif->pfik_name); 899 pf_print_state_parts(s, 900 (idx == PF_SK_WIRE) ? 901 sk : NULL, 902 (idx == PF_SK_STACK) ? 903 sk : NULL); 904 printf(", existing: "); 905 pf_print_state_parts(si, 906 (idx == PF_SK_WIRE) ? 907 sk : NULL, 908 (idx == PF_SK_STACK) ? 909 sk : NULL); 910 printf("\n"); 911 } 912 PF_HASHROW_UNLOCK(ih); 913 PF_HASHROW_UNLOCK(kh); 914 uma_zfree(V_pf_state_key_z, sk); 915 if (idx == PF_SK_STACK) 916 pf_detach_state(s); 917 return (-1); /* collision! */ 918 } 919 } 920 PF_HASHROW_UNLOCK(ih); 921 } 922 uma_zfree(V_pf_state_key_z, sk); 923 s->key[idx] = cur; 924 } else { 925 LIST_INSERT_HEAD(&kh->keys, sk, entry); 926 s->key[idx] = sk; 927 } 928 929 stateattach: 930 /* List is sorted, if-bound states before floating. */ 931 if (s->kif == V_pfi_all) 932 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 933 else 934 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 935 936 /* 937 * Attach done. See how should we (or should not?) 938 * attach a second key. 939 */ 940 if (sks == skw) { 941 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 942 idx = PF_SK_STACK; 943 sks = NULL; 944 goto stateattach; 945 } else if (sks != NULL) { 946 PF_HASHROW_UNLOCK(kh); 947 if (olds) { 948 pf_unlink_state(olds, 0); 949 pf_release_state(olds); 950 olds = NULL; 951 } 952 /* 953 * Continue attaching with stack key. 954 */ 955 sk = sks; 956 idx = PF_SK_STACK; 957 sks = NULL; 958 goto keyattach; 959 } else 960 PF_HASHROW_UNLOCK(kh); 961 962 if (olds) { 963 pf_unlink_state(olds, 0); 964 pf_release_state(olds); 965 } 966 967 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 968 ("%s failure", __func__)); 969 970 return (0); 971 } 972 973 static void 974 pf_detach_state(struct pf_state *s) 975 { 976 struct pf_state_key *sks = s->key[PF_SK_STACK]; 977 struct pf_keyhash *kh; 978 979 if (sks != NULL) { 980 kh = &V_pf_keyhash[pf_hashkey(sks)]; 981 PF_HASHROW_LOCK(kh); 982 if (s->key[PF_SK_STACK] != NULL) 983 pf_state_key_detach(s, PF_SK_STACK); 984 /* 985 * If both point to same key, then we are done. 986 */ 987 if (sks == s->key[PF_SK_WIRE]) { 988 pf_state_key_detach(s, PF_SK_WIRE); 989 PF_HASHROW_UNLOCK(kh); 990 return; 991 } 992 PF_HASHROW_UNLOCK(kh); 993 } 994 995 if (s->key[PF_SK_WIRE] != NULL) { 996 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 997 PF_HASHROW_LOCK(kh); 998 if (s->key[PF_SK_WIRE] != NULL) 999 pf_state_key_detach(s, PF_SK_WIRE); 1000 PF_HASHROW_UNLOCK(kh); 1001 } 1002 } 1003 1004 static void 1005 pf_state_key_detach(struct pf_state *s, int idx) 1006 { 1007 struct pf_state_key *sk = s->key[idx]; 1008 #ifdef INVARIANTS 1009 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1010 1011 PF_HASHROW_ASSERT(kh); 1012 #endif 1013 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1014 s->key[idx] = NULL; 1015 1016 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1017 LIST_REMOVE(sk, entry); 1018 uma_zfree(V_pf_state_key_z, sk); 1019 } 1020 } 1021 1022 static int 1023 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1024 { 1025 struct pf_state_key *sk = mem; 1026 1027 bzero(sk, sizeof(struct pf_state_key_cmp)); 1028 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1029 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1030 1031 return (0); 1032 } 1033 1034 struct pf_state_key * 1035 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1036 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1037 { 1038 struct pf_state_key *sk; 1039 1040 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1041 if (sk == NULL) 1042 return (NULL); 1043 1044 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1045 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1046 sk->port[pd->sidx] = sport; 1047 sk->port[pd->didx] = dport; 1048 sk->proto = pd->proto; 1049 sk->af = pd->af; 1050 1051 return (sk); 1052 } 1053 1054 struct pf_state_key * 1055 pf_state_key_clone(struct pf_state_key *orig) 1056 { 1057 struct pf_state_key *sk; 1058 1059 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1060 if (sk == NULL) 1061 return (NULL); 1062 1063 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1064 1065 return (sk); 1066 } 1067 1068 int 1069 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1070 struct pf_state_key *sks, struct pf_state *s) 1071 { 1072 struct pf_idhash *ih; 1073 struct pf_state *cur; 1074 1075 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1076 ("%s: sks not pristine", __func__)); 1077 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1078 ("%s: skw not pristine", __func__)); 1079 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1080 1081 s->kif = kif; 1082 1083 if (pf_state_key_attach(skw, sks, s)) 1084 return (-1); 1085 1086 if (s->id == 0 && s->creatorid == 0) { 1087 /* XXX: should be atomic, but probability of collision low */ 1088 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1089 V_pf_stateid[curcpu] = 1; 1090 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1091 s->id = htobe64(s->id); 1092 s->creatorid = V_pf_status.hostid; 1093 } 1094 1095 ih = &V_pf_idhash[PF_IDHASH(s)]; 1096 PF_HASHROW_LOCK(ih); 1097 LIST_FOREACH(cur, &ih->states, entry) 1098 if (cur->id == s->id && cur->creatorid == s->creatorid) 1099 break; 1100 1101 if (cur != NULL) { 1102 PF_HASHROW_UNLOCK(ih); 1103 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1104 printf("pf: state insert failed: " 1105 "id: %016llx creatorid: %08x", 1106 (unsigned long long)be64toh(s->id), 1107 ntohl(s->creatorid)); 1108 printf("\n"); 1109 } 1110 pf_detach_state(s); 1111 return (-1); 1112 } 1113 LIST_INSERT_HEAD(&ih->states, s, entry); 1114 /* One for keys, one for ID hash. */ 1115 refcount_init(&s->refs, 2); 1116 1117 V_pf_status.fcounters[FCNT_STATE_INSERT]++; 1118 if (pfsync_insert_state_ptr != NULL) 1119 pfsync_insert_state_ptr(s); 1120 1121 /* Returns locked. */ 1122 return (0); 1123 } 1124 1125 /* 1126 * Find state by ID: returns with locked row on success. 1127 */ 1128 struct pf_state * 1129 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1130 { 1131 struct pf_idhash *ih; 1132 struct pf_state *s; 1133 1134 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1135 1136 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))]; 1137 1138 PF_HASHROW_LOCK(ih); 1139 LIST_FOREACH(s, &ih->states, entry) 1140 if (s->id == id && s->creatorid == creatorid) 1141 break; 1142 1143 if (s == NULL) 1144 PF_HASHROW_UNLOCK(ih); 1145 1146 return (s); 1147 } 1148 1149 /* 1150 * Find state by key. 1151 * Returns with ID hash slot locked on success. 1152 */ 1153 static struct pf_state * 1154 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1155 { 1156 struct pf_keyhash *kh; 1157 struct pf_state_key *sk; 1158 struct pf_state *s; 1159 int idx; 1160 1161 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1162 1163 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1164 1165 PF_HASHROW_LOCK(kh); 1166 LIST_FOREACH(sk, &kh->keys, entry) 1167 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1168 break; 1169 if (sk == NULL) { 1170 PF_HASHROW_UNLOCK(kh); 1171 return (NULL); 1172 } 1173 1174 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1175 1176 /* List is sorted, if-bound states before floating ones. */ 1177 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1178 if (s->kif == V_pfi_all || s->kif == kif) { 1179 PF_STATE_LOCK(s); 1180 PF_HASHROW_UNLOCK(kh); 1181 if (s->timeout == PFTM_UNLINKED) { 1182 /* 1183 * State is being processed 1184 * by pf_unlink_state() in 1185 * an other thread. 1186 */ 1187 PF_STATE_UNLOCK(s); 1188 return (NULL); 1189 } 1190 return (s); 1191 } 1192 PF_HASHROW_UNLOCK(kh); 1193 1194 return (NULL); 1195 } 1196 1197 struct pf_state * 1198 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1199 { 1200 struct pf_keyhash *kh; 1201 struct pf_state_key *sk; 1202 struct pf_state *s, *ret = NULL; 1203 int idx, inout = 0; 1204 1205 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1206 1207 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1208 1209 PF_HASHROW_LOCK(kh); 1210 LIST_FOREACH(sk, &kh->keys, entry) 1211 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1212 break; 1213 if (sk == NULL) { 1214 PF_HASHROW_UNLOCK(kh); 1215 return (NULL); 1216 } 1217 switch (dir) { 1218 case PF_IN: 1219 idx = PF_SK_WIRE; 1220 break; 1221 case PF_OUT: 1222 idx = PF_SK_STACK; 1223 break; 1224 case PF_INOUT: 1225 idx = PF_SK_WIRE; 1226 inout = 1; 1227 break; 1228 default: 1229 panic("%s: dir %u", __func__, dir); 1230 } 1231 second_run: 1232 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1233 if (more == NULL) { 1234 PF_HASHROW_UNLOCK(kh); 1235 return (s); 1236 } 1237 1238 if (ret) 1239 (*more)++; 1240 else 1241 ret = s; 1242 } 1243 if (inout == 1) { 1244 inout = 0; 1245 idx = PF_SK_STACK; 1246 goto second_run; 1247 } 1248 PF_HASHROW_UNLOCK(kh); 1249 1250 return (ret); 1251 } 1252 1253 /* END state table stuff */ 1254 1255 static void 1256 pf_send(struct pf_send_entry *pfse) 1257 { 1258 1259 PF_SENDQ_LOCK(); 1260 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1261 PF_SENDQ_UNLOCK(); 1262 swi_sched(V_pf_swi_cookie, 0); 1263 } 1264 1265 void 1266 pf_intr(void *v) 1267 { 1268 struct pf_send_head queue; 1269 struct pf_send_entry *pfse, *next; 1270 1271 CURVNET_SET((struct vnet *)v); 1272 1273 PF_SENDQ_LOCK(); 1274 queue = V_pf_sendqueue; 1275 STAILQ_INIT(&V_pf_sendqueue); 1276 PF_SENDQ_UNLOCK(); 1277 1278 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1279 switch (pfse->pfse_type) { 1280 #ifdef INET 1281 case PFSE_IP: 1282 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1283 break; 1284 case PFSE_ICMP: 1285 icmp_error(pfse->pfse_m, pfse->pfse_icmp_type, 1286 pfse->pfse_icmp_code, 0, pfse->pfse_icmp_mtu); 1287 break; 1288 #endif /* INET */ 1289 #ifdef INET6 1290 case PFSE_IP6: 1291 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1292 NULL); 1293 break; 1294 case PFSE_ICMP6: 1295 icmp6_error(pfse->pfse_m, pfse->pfse_icmp_type, 1296 pfse->pfse_icmp_code, pfse->pfse_icmp_mtu); 1297 break; 1298 #endif /* INET6 */ 1299 default: 1300 panic("%s: unknown type", __func__); 1301 } 1302 free(pfse, M_PFTEMP); 1303 } 1304 CURVNET_RESTORE(); 1305 } 1306 1307 void 1308 pf_purge_thread(void *v) 1309 { 1310 u_int idx = 0; 1311 1312 CURVNET_SET((struct vnet *)v); 1313 1314 for (;;) { 1315 PF_RULES_RLOCK(); 1316 rw_sleep(pf_purge_thread, &pf_rules_lock, 0, "pftm", hz / 10); 1317 1318 if (V_pf_end_threads) { 1319 /* 1320 * To cleanse up all kifs and rules we need 1321 * two runs: first one clears reference flags, 1322 * then pf_purge_expired_states() doesn't 1323 * raise them, and then second run frees. 1324 */ 1325 PF_RULES_RUNLOCK(); 1326 pf_purge_unlinked_rules(); 1327 pfi_kif_purge(); 1328 1329 /* 1330 * Now purge everything. 1331 */ 1332 pf_purge_expired_states(0, V_pf_hashmask); 1333 pf_purge_expired_fragments(); 1334 pf_purge_expired_src_nodes(); 1335 1336 /* 1337 * Now all kifs & rules should be unreferenced, 1338 * thus should be successfully freed. 1339 */ 1340 pf_purge_unlinked_rules(); 1341 pfi_kif_purge(); 1342 1343 /* 1344 * Announce success and exit. 1345 */ 1346 PF_RULES_RLOCK(); 1347 V_pf_end_threads++; 1348 PF_RULES_RUNLOCK(); 1349 wakeup(pf_purge_thread); 1350 kproc_exit(0); 1351 } 1352 PF_RULES_RUNLOCK(); 1353 1354 /* Process 1/interval fraction of the state table every run. */ 1355 idx = pf_purge_expired_states(idx, V_pf_hashmask / 1356 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1357 1358 /* Purge other expired types every PFTM_INTERVAL seconds. */ 1359 if (idx == 0) { 1360 /* 1361 * Order is important: 1362 * - states and src nodes reference rules 1363 * - states and rules reference kifs 1364 */ 1365 pf_purge_expired_fragments(); 1366 pf_purge_expired_src_nodes(); 1367 pf_purge_unlinked_rules(); 1368 pfi_kif_purge(); 1369 } 1370 } 1371 /* not reached */ 1372 CURVNET_RESTORE(); 1373 } 1374 1375 u_int32_t 1376 pf_state_expires(const struct pf_state *state) 1377 { 1378 u_int32_t timeout; 1379 u_int32_t start; 1380 u_int32_t end; 1381 u_int32_t states; 1382 1383 /* handle all PFTM_* > PFTM_MAX here */ 1384 if (state->timeout == PFTM_PURGE) 1385 return (time_uptime); 1386 if (state->timeout == PFTM_UNTIL_PACKET) 1387 return (0); 1388 KASSERT(state->timeout != PFTM_UNLINKED, 1389 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1390 KASSERT((state->timeout < PFTM_MAX), 1391 ("pf_state_expires: timeout > PFTM_MAX")); 1392 timeout = state->rule.ptr->timeout[state->timeout]; 1393 if (!timeout) 1394 timeout = V_pf_default_rule.timeout[state->timeout]; 1395 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1396 if (start) { 1397 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1398 states = state->rule.ptr->states_cur; /* XXXGL */ 1399 } else { 1400 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1401 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1402 states = V_pf_status.states; 1403 } 1404 if (end && states > start && start < end) { 1405 if (states < end) 1406 return (state->expire + timeout * (end - states) / 1407 (end - start)); 1408 else 1409 return (time_uptime); 1410 } 1411 return (state->expire + timeout); 1412 } 1413 1414 void 1415 pf_purge_expired_src_nodes() 1416 { 1417 struct pf_srchash *sh; 1418 struct pf_src_node *cur, *next; 1419 int i; 1420 1421 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1422 PF_HASHROW_LOCK(sh); 1423 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1424 if (cur->states <= 0 && cur->expire <= time_uptime) { 1425 if (cur->rule.ptr != NULL) 1426 cur->rule.ptr->src_nodes--; 1427 LIST_REMOVE(cur, entry); 1428 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS]++; 1429 V_pf_status.src_nodes--; 1430 uma_zfree(V_pf_sources_z, cur); 1431 } else if (cur->rule.ptr != NULL) 1432 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1433 PF_HASHROW_UNLOCK(sh); 1434 } 1435 } 1436 1437 static void 1438 pf_src_tree_remove_state(struct pf_state *s) 1439 { 1440 u_int32_t timeout; 1441 1442 if (s->src_node != NULL) { 1443 if (s->src.tcp_est) 1444 --s->src_node->conn; 1445 if (--s->src_node->states <= 0) { 1446 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1447 if (!timeout) 1448 timeout = 1449 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1450 s->src_node->expire = time_uptime + timeout; 1451 } 1452 } 1453 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1454 if (--s->nat_src_node->states <= 0) { 1455 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1456 if (!timeout) 1457 timeout = 1458 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1459 s->nat_src_node->expire = time_uptime + timeout; 1460 } 1461 } 1462 s->src_node = s->nat_src_node = NULL; 1463 } 1464 1465 /* 1466 * Unlink and potentilly free a state. Function may be 1467 * called with ID hash row locked, but always returns 1468 * unlocked, since it needs to go through key hash locking. 1469 */ 1470 int 1471 pf_unlink_state(struct pf_state *s, u_int flags) 1472 { 1473 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1474 1475 if ((flags & PF_ENTER_LOCKED) == 0) 1476 PF_HASHROW_LOCK(ih); 1477 else 1478 PF_HASHROW_ASSERT(ih); 1479 1480 if (s->timeout == PFTM_UNLINKED) { 1481 /* 1482 * State is being processed 1483 * by pf_unlink_state() in 1484 * an other thread. 1485 */ 1486 PF_HASHROW_UNLOCK(ih); 1487 return (0); /* XXXGL: undefined actually */ 1488 } 1489 1490 s->timeout = PFTM_UNLINKED; 1491 1492 if (s->src.state == PF_TCPS_PROXY_DST) { 1493 /* XXX wire key the right one? */ 1494 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1495 &s->key[PF_SK_WIRE]->addr[1], 1496 &s->key[PF_SK_WIRE]->addr[0], 1497 s->key[PF_SK_WIRE]->port[1], 1498 s->key[PF_SK_WIRE]->port[0], 1499 s->src.seqhi, s->src.seqlo + 1, 1500 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1501 } 1502 1503 LIST_REMOVE(s, entry); 1504 pf_src_tree_remove_state(s); 1505 PF_HASHROW_UNLOCK(ih); 1506 1507 if (pfsync_delete_state_ptr != NULL) 1508 pfsync_delete_state_ptr(s); 1509 1510 pf_detach_state(s); 1511 refcount_release(&s->refs); 1512 1513 return (pf_release_state(s)); 1514 } 1515 1516 void 1517 pf_free_state(struct pf_state *cur) 1518 { 1519 1520 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1521 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1522 cur->timeout)); 1523 --cur->rule.ptr->states_cur; 1524 if (cur->nat_rule.ptr != NULL) 1525 --cur->nat_rule.ptr->states_cur; 1526 if (cur->anchor.ptr != NULL) 1527 --cur->anchor.ptr->states_cur; 1528 pf_normalize_tcp_cleanup(cur); 1529 uma_zfree(V_pf_state_z, cur); 1530 V_pf_status.fcounters[FCNT_STATE_REMOVALS]++; 1531 } 1532 1533 /* 1534 * Called only from pf_purge_thread(), thus serialized. 1535 */ 1536 static u_int 1537 pf_purge_expired_states(u_int i, int maxcheck) 1538 { 1539 struct pf_idhash *ih; 1540 struct pf_state *s; 1541 1542 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1543 1544 /* 1545 * Go through hash and unlink states that expire now. 1546 */ 1547 while (maxcheck > 0) { 1548 1549 ih = &V_pf_idhash[i]; 1550 relock: 1551 PF_HASHROW_LOCK(ih); 1552 LIST_FOREACH(s, &ih->states, entry) { 1553 if (pf_state_expires(s) <= time_uptime) { 1554 V_pf_status.states -= 1555 pf_unlink_state(s, PF_ENTER_LOCKED); 1556 goto relock; 1557 } 1558 s->rule.ptr->rule_flag |= PFRULE_REFS; 1559 if (s->nat_rule.ptr != NULL) 1560 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1561 if (s->anchor.ptr != NULL) 1562 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1563 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1564 if (s->rt_kif) 1565 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1566 } 1567 PF_HASHROW_UNLOCK(ih); 1568 1569 /* Return when we hit end of hash. */ 1570 if (++i > V_pf_hashmask) { 1571 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1572 return (0); 1573 } 1574 1575 maxcheck--; 1576 } 1577 1578 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1579 1580 return (i); 1581 } 1582 1583 static void 1584 pf_purge_unlinked_rules() 1585 { 1586 struct pf_rulequeue tmpq; 1587 struct pf_rule *r, *r1; 1588 1589 /* 1590 * If we have overloading task pending, then we'd 1591 * better skip purging this time. There is a tiny 1592 * probability that overloading task references 1593 * an already unlinked rule. 1594 */ 1595 PF_OVERLOADQ_LOCK(); 1596 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1597 PF_OVERLOADQ_UNLOCK(); 1598 return; 1599 } 1600 PF_OVERLOADQ_UNLOCK(); 1601 1602 /* 1603 * Do naive mark-and-sweep garbage collecting of old rules. 1604 * Reference flag is raised by pf_purge_expired_states() 1605 * and pf_purge_expired_src_nodes(). 1606 * 1607 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1608 * use a temporary queue. 1609 */ 1610 TAILQ_INIT(&tmpq); 1611 PF_UNLNKDRULES_LOCK(); 1612 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1613 if (!(r->rule_flag & PFRULE_REFS)) { 1614 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1615 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1616 } else 1617 r->rule_flag &= ~PFRULE_REFS; 1618 } 1619 PF_UNLNKDRULES_UNLOCK(); 1620 1621 if (!TAILQ_EMPTY(&tmpq)) { 1622 PF_RULES_WLOCK(); 1623 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1624 TAILQ_REMOVE(&tmpq, r, entries); 1625 pf_free_rule(r); 1626 } 1627 PF_RULES_WUNLOCK(); 1628 } 1629 } 1630 1631 void 1632 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1633 { 1634 switch (af) { 1635 #ifdef INET 1636 case AF_INET: { 1637 u_int32_t a = ntohl(addr->addr32[0]); 1638 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1639 (a>>8)&255, a&255); 1640 if (p) { 1641 p = ntohs(p); 1642 printf(":%u", p); 1643 } 1644 break; 1645 } 1646 #endif /* INET */ 1647 #ifdef INET6 1648 case AF_INET6: { 1649 u_int16_t b; 1650 u_int8_t i, curstart, curend, maxstart, maxend; 1651 curstart = curend = maxstart = maxend = 255; 1652 for (i = 0; i < 8; i++) { 1653 if (!addr->addr16[i]) { 1654 if (curstart == 255) 1655 curstart = i; 1656 curend = i; 1657 } else { 1658 if ((curend - curstart) > 1659 (maxend - maxstart)) { 1660 maxstart = curstart; 1661 maxend = curend; 1662 } 1663 curstart = curend = 255; 1664 } 1665 } 1666 if ((curend - curstart) > 1667 (maxend - maxstart)) { 1668 maxstart = curstart; 1669 maxend = curend; 1670 } 1671 for (i = 0; i < 8; i++) { 1672 if (i >= maxstart && i <= maxend) { 1673 if (i == 0) 1674 printf(":"); 1675 if (i == maxend) 1676 printf(":"); 1677 } else { 1678 b = ntohs(addr->addr16[i]); 1679 printf("%x", b); 1680 if (i < 7) 1681 printf(":"); 1682 } 1683 } 1684 if (p) { 1685 p = ntohs(p); 1686 printf("[%u]", p); 1687 } 1688 break; 1689 } 1690 #endif /* INET6 */ 1691 } 1692 } 1693 1694 void 1695 pf_print_state(struct pf_state *s) 1696 { 1697 pf_print_state_parts(s, NULL, NULL); 1698 } 1699 1700 static void 1701 pf_print_state_parts(struct pf_state *s, 1702 struct pf_state_key *skwp, struct pf_state_key *sksp) 1703 { 1704 struct pf_state_key *skw, *sks; 1705 u_int8_t proto, dir; 1706 1707 /* Do our best to fill these, but they're skipped if NULL */ 1708 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1709 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1710 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1711 dir = s ? s->direction : 0; 1712 1713 switch (proto) { 1714 case IPPROTO_IPV4: 1715 printf("IPv4"); 1716 break; 1717 case IPPROTO_IPV6: 1718 printf("IPv6"); 1719 break; 1720 case IPPROTO_TCP: 1721 printf("TCP"); 1722 break; 1723 case IPPROTO_UDP: 1724 printf("UDP"); 1725 break; 1726 case IPPROTO_ICMP: 1727 printf("ICMP"); 1728 break; 1729 case IPPROTO_ICMPV6: 1730 printf("ICMPv6"); 1731 break; 1732 default: 1733 printf("%u", skw->proto); 1734 break; 1735 } 1736 switch (dir) { 1737 case PF_IN: 1738 printf(" in"); 1739 break; 1740 case PF_OUT: 1741 printf(" out"); 1742 break; 1743 } 1744 if (skw) { 1745 printf(" wire: "); 1746 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1747 printf(" "); 1748 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1749 } 1750 if (sks) { 1751 printf(" stack: "); 1752 if (sks != skw) { 1753 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1754 printf(" "); 1755 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1756 } else 1757 printf("-"); 1758 } 1759 if (s) { 1760 if (proto == IPPROTO_TCP) { 1761 printf(" [lo=%u high=%u win=%u modulator=%u", 1762 s->src.seqlo, s->src.seqhi, 1763 s->src.max_win, s->src.seqdiff); 1764 if (s->src.wscale && s->dst.wscale) 1765 printf(" wscale=%u", 1766 s->src.wscale & PF_WSCALE_MASK); 1767 printf("]"); 1768 printf(" [lo=%u high=%u win=%u modulator=%u", 1769 s->dst.seqlo, s->dst.seqhi, 1770 s->dst.max_win, s->dst.seqdiff); 1771 if (s->src.wscale && s->dst.wscale) 1772 printf(" wscale=%u", 1773 s->dst.wscale & PF_WSCALE_MASK); 1774 printf("]"); 1775 } 1776 printf(" %u:%u", s->src.state, s->dst.state); 1777 } 1778 } 1779 1780 void 1781 pf_print_flags(u_int8_t f) 1782 { 1783 if (f) 1784 printf(" "); 1785 if (f & TH_FIN) 1786 printf("F"); 1787 if (f & TH_SYN) 1788 printf("S"); 1789 if (f & TH_RST) 1790 printf("R"); 1791 if (f & TH_PUSH) 1792 printf("P"); 1793 if (f & TH_ACK) 1794 printf("A"); 1795 if (f & TH_URG) 1796 printf("U"); 1797 if (f & TH_ECE) 1798 printf("E"); 1799 if (f & TH_CWR) 1800 printf("W"); 1801 } 1802 1803 #define PF_SET_SKIP_STEPS(i) \ 1804 do { \ 1805 while (head[i] != cur) { \ 1806 head[i]->skip[i].ptr = cur; \ 1807 head[i] = TAILQ_NEXT(head[i], entries); \ 1808 } \ 1809 } while (0) 1810 1811 void 1812 pf_calc_skip_steps(struct pf_rulequeue *rules) 1813 { 1814 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1815 int i; 1816 1817 cur = TAILQ_FIRST(rules); 1818 prev = cur; 1819 for (i = 0; i < PF_SKIP_COUNT; ++i) 1820 head[i] = cur; 1821 while (cur != NULL) { 1822 1823 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1824 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1825 if (cur->direction != prev->direction) 1826 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1827 if (cur->af != prev->af) 1828 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1829 if (cur->proto != prev->proto) 1830 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1831 if (cur->src.neg != prev->src.neg || 1832 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1833 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1834 if (cur->src.port[0] != prev->src.port[0] || 1835 cur->src.port[1] != prev->src.port[1] || 1836 cur->src.port_op != prev->src.port_op) 1837 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1838 if (cur->dst.neg != prev->dst.neg || 1839 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1840 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1841 if (cur->dst.port[0] != prev->dst.port[0] || 1842 cur->dst.port[1] != prev->dst.port[1] || 1843 cur->dst.port_op != prev->dst.port_op) 1844 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1845 1846 prev = cur; 1847 cur = TAILQ_NEXT(cur, entries); 1848 } 1849 for (i = 0; i < PF_SKIP_COUNT; ++i) 1850 PF_SET_SKIP_STEPS(i); 1851 } 1852 1853 static int 1854 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1855 { 1856 if (aw1->type != aw2->type) 1857 return (1); 1858 switch (aw1->type) { 1859 case PF_ADDR_ADDRMASK: 1860 case PF_ADDR_RANGE: 1861 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, 0)) 1862 return (1); 1863 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, 0)) 1864 return (1); 1865 return (0); 1866 case PF_ADDR_DYNIFTL: 1867 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 1868 case PF_ADDR_NOROUTE: 1869 case PF_ADDR_URPFFAILED: 1870 return (0); 1871 case PF_ADDR_TABLE: 1872 return (aw1->p.tbl != aw2->p.tbl); 1873 default: 1874 printf("invalid address type: %d\n", aw1->type); 1875 return (1); 1876 } 1877 } 1878 1879 u_int16_t 1880 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 1881 { 1882 u_int32_t l; 1883 1884 if (udp && !cksum) 1885 return (0x0000); 1886 l = cksum + old - new; 1887 l = (l >> 16) + (l & 65535); 1888 l = l & 65535; 1889 if (udp && !l) 1890 return (0xFFFF); 1891 return (l); 1892 } 1893 1894 static void 1895 pf_change_ap(struct pf_addr *a, u_int16_t *p, u_int16_t *ic, u_int16_t *pc, 1896 struct pf_addr *an, u_int16_t pn, u_int8_t u, sa_family_t af) 1897 { 1898 struct pf_addr ao; 1899 u_int16_t po = *p; 1900 1901 PF_ACPY(&ao, a, af); 1902 PF_ACPY(a, an, af); 1903 1904 *p = pn; 1905 1906 switch (af) { 1907 #ifdef INET 1908 case AF_INET: 1909 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 1910 ao.addr16[0], an->addr16[0], 0), 1911 ao.addr16[1], an->addr16[1], 0); 1912 *p = pn; 1913 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 1914 ao.addr16[0], an->addr16[0], u), 1915 ao.addr16[1], an->addr16[1], u), 1916 po, pn, u); 1917 break; 1918 #endif /* INET */ 1919 #ifdef INET6 1920 case AF_INET6: 1921 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 1922 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 1923 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 1924 ao.addr16[0], an->addr16[0], u), 1925 ao.addr16[1], an->addr16[1], u), 1926 ao.addr16[2], an->addr16[2], u), 1927 ao.addr16[3], an->addr16[3], u), 1928 ao.addr16[4], an->addr16[4], u), 1929 ao.addr16[5], an->addr16[5], u), 1930 ao.addr16[6], an->addr16[6], u), 1931 ao.addr16[7], an->addr16[7], u), 1932 po, pn, u); 1933 break; 1934 #endif /* INET6 */ 1935 } 1936 } 1937 1938 1939 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 1940 void 1941 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 1942 { 1943 u_int32_t ao; 1944 1945 memcpy(&ao, a, sizeof(ao)); 1946 memcpy(a, &an, sizeof(u_int32_t)); 1947 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 1948 ao % 65536, an % 65536, u); 1949 } 1950 1951 #ifdef INET6 1952 static void 1953 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 1954 { 1955 struct pf_addr ao; 1956 1957 PF_ACPY(&ao, a, AF_INET6); 1958 PF_ACPY(a, an, AF_INET6); 1959 1960 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 1961 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 1962 pf_cksum_fixup(pf_cksum_fixup(*c, 1963 ao.addr16[0], an->addr16[0], u), 1964 ao.addr16[1], an->addr16[1], u), 1965 ao.addr16[2], an->addr16[2], u), 1966 ao.addr16[3], an->addr16[3], u), 1967 ao.addr16[4], an->addr16[4], u), 1968 ao.addr16[5], an->addr16[5], u), 1969 ao.addr16[6], an->addr16[6], u), 1970 ao.addr16[7], an->addr16[7], u); 1971 } 1972 #endif /* INET6 */ 1973 1974 static void 1975 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 1976 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 1977 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 1978 { 1979 struct pf_addr oia, ooa; 1980 1981 PF_ACPY(&oia, ia, af); 1982 if (oa) 1983 PF_ACPY(&ooa, oa, af); 1984 1985 /* Change inner protocol port, fix inner protocol checksum. */ 1986 if (ip != NULL) { 1987 u_int16_t oip = *ip; 1988 u_int32_t opc; 1989 1990 if (pc != NULL) 1991 opc = *pc; 1992 *ip = np; 1993 if (pc != NULL) 1994 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 1995 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 1996 if (pc != NULL) 1997 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 1998 } 1999 /* Change inner ip address, fix inner ip and icmp checksums. */ 2000 PF_ACPY(ia, na, af); 2001 switch (af) { 2002 #ifdef INET 2003 case AF_INET: { 2004 u_int32_t oh2c = *h2c; 2005 2006 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2007 oia.addr16[0], ia->addr16[0], 0), 2008 oia.addr16[1], ia->addr16[1], 0); 2009 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2010 oia.addr16[0], ia->addr16[0], 0), 2011 oia.addr16[1], ia->addr16[1], 0); 2012 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2013 break; 2014 } 2015 #endif /* INET */ 2016 #ifdef INET6 2017 case AF_INET6: 2018 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2019 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2020 pf_cksum_fixup(pf_cksum_fixup(*ic, 2021 oia.addr16[0], ia->addr16[0], u), 2022 oia.addr16[1], ia->addr16[1], u), 2023 oia.addr16[2], ia->addr16[2], u), 2024 oia.addr16[3], ia->addr16[3], u), 2025 oia.addr16[4], ia->addr16[4], u), 2026 oia.addr16[5], ia->addr16[5], u), 2027 oia.addr16[6], ia->addr16[6], u), 2028 oia.addr16[7], ia->addr16[7], u); 2029 break; 2030 #endif /* INET6 */ 2031 } 2032 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2033 if (oa) { 2034 PF_ACPY(oa, na, af); 2035 switch (af) { 2036 #ifdef INET 2037 case AF_INET: 2038 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2039 ooa.addr16[0], oa->addr16[0], 0), 2040 ooa.addr16[1], oa->addr16[1], 0); 2041 break; 2042 #endif /* INET */ 2043 #ifdef INET6 2044 case AF_INET6: 2045 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2046 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2047 pf_cksum_fixup(pf_cksum_fixup(*ic, 2048 ooa.addr16[0], oa->addr16[0], u), 2049 ooa.addr16[1], oa->addr16[1], u), 2050 ooa.addr16[2], oa->addr16[2], u), 2051 ooa.addr16[3], oa->addr16[3], u), 2052 ooa.addr16[4], oa->addr16[4], u), 2053 ooa.addr16[5], oa->addr16[5], u), 2054 ooa.addr16[6], oa->addr16[6], u), 2055 ooa.addr16[7], oa->addr16[7], u); 2056 break; 2057 #endif /* INET6 */ 2058 } 2059 } 2060 } 2061 2062 2063 /* 2064 * Need to modulate the sequence numbers in the TCP SACK option 2065 * (credits to Krzysztof Pfaff for report and patch) 2066 */ 2067 static int 2068 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2069 struct tcphdr *th, struct pf_state_peer *dst) 2070 { 2071 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2072 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2073 int copyback = 0, i, olen; 2074 struct sackblk sack; 2075 2076 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2077 if (hlen < TCPOLEN_SACKLEN || 2078 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2079 return 0; 2080 2081 while (hlen >= TCPOLEN_SACKLEN) { 2082 olen = opt[1]; 2083 switch (*opt) { 2084 case TCPOPT_EOL: /* FALLTHROUGH */ 2085 case TCPOPT_NOP: 2086 opt++; 2087 hlen--; 2088 break; 2089 case TCPOPT_SACK: 2090 if (olen > hlen) 2091 olen = hlen; 2092 if (olen >= TCPOLEN_SACKLEN) { 2093 for (i = 2; i + TCPOLEN_SACK <= olen; 2094 i += TCPOLEN_SACK) { 2095 memcpy(&sack, &opt[i], sizeof(sack)); 2096 pf_change_a(&sack.start, &th->th_sum, 2097 htonl(ntohl(sack.start) - 2098 dst->seqdiff), 0); 2099 pf_change_a(&sack.end, &th->th_sum, 2100 htonl(ntohl(sack.end) - 2101 dst->seqdiff), 0); 2102 memcpy(&opt[i], &sack, sizeof(sack)); 2103 } 2104 copyback = 1; 2105 } 2106 /* FALLTHROUGH */ 2107 default: 2108 if (olen < 2) 2109 olen = 2; 2110 hlen -= olen; 2111 opt += olen; 2112 } 2113 } 2114 2115 if (copyback) 2116 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2117 return (copyback); 2118 } 2119 2120 static void 2121 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2122 const struct pf_addr *saddr, const struct pf_addr *daddr, 2123 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2124 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2125 u_int16_t rtag, struct ifnet *ifp) 2126 { 2127 struct pf_send_entry *pfse; 2128 struct mbuf *m; 2129 int len, tlen; 2130 #ifdef INET 2131 struct ip *h = NULL; 2132 #endif /* INET */ 2133 #ifdef INET6 2134 struct ip6_hdr *h6 = NULL; 2135 #endif /* INET6 */ 2136 struct tcphdr *th; 2137 char *opt; 2138 struct pf_mtag *pf_mtag; 2139 2140 len = 0; 2141 th = NULL; 2142 2143 /* maximum segment size tcp option */ 2144 tlen = sizeof(struct tcphdr); 2145 if (mss) 2146 tlen += 4; 2147 2148 switch (af) { 2149 #ifdef INET 2150 case AF_INET: 2151 len = sizeof(struct ip) + tlen; 2152 break; 2153 #endif /* INET */ 2154 #ifdef INET6 2155 case AF_INET6: 2156 len = sizeof(struct ip6_hdr) + tlen; 2157 break; 2158 #endif /* INET6 */ 2159 default: 2160 panic("%s: unsupported af %d", __func__, af); 2161 } 2162 2163 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2164 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2165 if (pfse == NULL) 2166 return; 2167 m = m_gethdr(M_NOWAIT, MT_HEADER); 2168 if (m == NULL) { 2169 free(pfse, M_PFTEMP); 2170 return; 2171 } 2172 #ifdef MAC 2173 mac_netinet_firewall_send(m); 2174 #endif 2175 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2176 free(pfse, M_PFTEMP); 2177 m_freem(m); 2178 return; 2179 } 2180 if (tag) 2181 m->m_flags |= M_SKIP_FIREWALL; 2182 pf_mtag->tag = rtag; 2183 2184 if (r != NULL && r->rtableid >= 0) 2185 M_SETFIB(m, r->rtableid); 2186 2187 #ifdef ALTQ 2188 if (r != NULL && r->qid) { 2189 pf_mtag->qid = r->qid; 2190 2191 /* add hints for ecn */ 2192 pf_mtag->hdr = mtod(m, struct ip *); 2193 } 2194 #endif /* ALTQ */ 2195 m->m_data += max_linkhdr; 2196 m->m_pkthdr.len = m->m_len = len; 2197 m->m_pkthdr.rcvif = NULL; 2198 bzero(m->m_data, len); 2199 switch (af) { 2200 #ifdef INET 2201 case AF_INET: 2202 h = mtod(m, struct ip *); 2203 2204 /* IP header fields included in the TCP checksum */ 2205 h->ip_p = IPPROTO_TCP; 2206 h->ip_len = htons(tlen); 2207 h->ip_src.s_addr = saddr->v4.s_addr; 2208 h->ip_dst.s_addr = daddr->v4.s_addr; 2209 2210 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2211 break; 2212 #endif /* INET */ 2213 #ifdef INET6 2214 case AF_INET6: 2215 h6 = mtod(m, struct ip6_hdr *); 2216 2217 /* IP header fields included in the TCP checksum */ 2218 h6->ip6_nxt = IPPROTO_TCP; 2219 h6->ip6_plen = htons(tlen); 2220 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2221 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2222 2223 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2224 break; 2225 #endif /* INET6 */ 2226 } 2227 2228 /* TCP header */ 2229 th->th_sport = sport; 2230 th->th_dport = dport; 2231 th->th_seq = htonl(seq); 2232 th->th_ack = htonl(ack); 2233 th->th_off = tlen >> 2; 2234 th->th_flags = flags; 2235 th->th_win = htons(win); 2236 2237 if (mss) { 2238 opt = (char *)(th + 1); 2239 opt[0] = TCPOPT_MAXSEG; 2240 opt[1] = 4; 2241 HTONS(mss); 2242 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2243 } 2244 2245 switch (af) { 2246 #ifdef INET 2247 case AF_INET: 2248 /* TCP checksum */ 2249 th->th_sum = in_cksum(m, len); 2250 2251 /* Finish the IP header */ 2252 h->ip_v = 4; 2253 h->ip_hl = sizeof(*h) >> 2; 2254 h->ip_tos = IPTOS_LOWDELAY; 2255 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2256 h->ip_len = htons(len); 2257 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2258 h->ip_sum = 0; 2259 2260 pfse->pfse_type = PFSE_IP; 2261 break; 2262 #endif /* INET */ 2263 #ifdef INET6 2264 case AF_INET6: 2265 /* TCP checksum */ 2266 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2267 sizeof(struct ip6_hdr), tlen); 2268 2269 h6->ip6_vfc |= IPV6_VERSION; 2270 h6->ip6_hlim = IPV6_DEFHLIM; 2271 2272 pfse->pfse_type = PFSE_IP6; 2273 break; 2274 #endif /* INET6 */ 2275 } 2276 pfse->pfse_m = m; 2277 pf_send(pfse); 2278 } 2279 2280 static void 2281 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2282 struct pf_rule *r) 2283 { 2284 struct pf_send_entry *pfse; 2285 struct mbuf *m0; 2286 struct pf_mtag *pf_mtag; 2287 2288 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2289 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2290 if (pfse == NULL) 2291 return; 2292 2293 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2294 free(pfse, M_PFTEMP); 2295 return; 2296 } 2297 2298 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2299 free(pfse, M_PFTEMP); 2300 return; 2301 } 2302 /* XXX: revisit */ 2303 m0->m_flags |= M_SKIP_FIREWALL; 2304 2305 if (r->rtableid >= 0) 2306 M_SETFIB(m0, r->rtableid); 2307 2308 #ifdef ALTQ 2309 if (r->qid) { 2310 pf_mtag->qid = r->qid; 2311 /* add hints for ecn */ 2312 pf_mtag->hdr = mtod(m0, struct ip *); 2313 } 2314 #endif /* ALTQ */ 2315 2316 switch (af) { 2317 #ifdef INET 2318 case AF_INET: 2319 pfse->pfse_type = PFSE_ICMP; 2320 break; 2321 #endif /* INET */ 2322 #ifdef INET6 2323 case AF_INET6: 2324 pfse->pfse_type = PFSE_ICMP6; 2325 break; 2326 #endif /* INET6 */ 2327 } 2328 pfse->pfse_m = m0; 2329 pfse->pfse_icmp_type = type; 2330 pfse->pfse_icmp_code = code; 2331 pf_send(pfse); 2332 } 2333 2334 /* 2335 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2336 * If n is 0, they match if they are equal. If n is != 0, they match if they 2337 * are different. 2338 */ 2339 int 2340 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2341 struct pf_addr *b, sa_family_t af) 2342 { 2343 int match = 0; 2344 2345 switch (af) { 2346 #ifdef INET 2347 case AF_INET: 2348 if ((a->addr32[0] & m->addr32[0]) == 2349 (b->addr32[0] & m->addr32[0])) 2350 match++; 2351 break; 2352 #endif /* INET */ 2353 #ifdef INET6 2354 case AF_INET6: 2355 if (((a->addr32[0] & m->addr32[0]) == 2356 (b->addr32[0] & m->addr32[0])) && 2357 ((a->addr32[1] & m->addr32[1]) == 2358 (b->addr32[1] & m->addr32[1])) && 2359 ((a->addr32[2] & m->addr32[2]) == 2360 (b->addr32[2] & m->addr32[2])) && 2361 ((a->addr32[3] & m->addr32[3]) == 2362 (b->addr32[3] & m->addr32[3]))) 2363 match++; 2364 break; 2365 #endif /* INET6 */ 2366 } 2367 if (match) { 2368 if (n) 2369 return (0); 2370 else 2371 return (1); 2372 } else { 2373 if (n) 2374 return (1); 2375 else 2376 return (0); 2377 } 2378 } 2379 2380 /* 2381 * Return 1 if b <= a <= e, otherwise return 0. 2382 */ 2383 int 2384 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2385 struct pf_addr *a, sa_family_t af) 2386 { 2387 switch (af) { 2388 #ifdef INET 2389 case AF_INET: 2390 if ((a->addr32[0] < b->addr32[0]) || 2391 (a->addr32[0] > e->addr32[0])) 2392 return (0); 2393 break; 2394 #endif /* INET */ 2395 #ifdef INET6 2396 case AF_INET6: { 2397 int i; 2398 2399 /* check a >= b */ 2400 for (i = 0; i < 4; ++i) 2401 if (a->addr32[i] > b->addr32[i]) 2402 break; 2403 else if (a->addr32[i] < b->addr32[i]) 2404 return (0); 2405 /* check a <= e */ 2406 for (i = 0; i < 4; ++i) 2407 if (a->addr32[i] < e->addr32[i]) 2408 break; 2409 else if (a->addr32[i] > e->addr32[i]) 2410 return (0); 2411 break; 2412 } 2413 #endif /* INET6 */ 2414 } 2415 return (1); 2416 } 2417 2418 static int 2419 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2420 { 2421 switch (op) { 2422 case PF_OP_IRG: 2423 return ((p > a1) && (p < a2)); 2424 case PF_OP_XRG: 2425 return ((p < a1) || (p > a2)); 2426 case PF_OP_RRG: 2427 return ((p >= a1) && (p <= a2)); 2428 case PF_OP_EQ: 2429 return (p == a1); 2430 case PF_OP_NE: 2431 return (p != a1); 2432 case PF_OP_LT: 2433 return (p < a1); 2434 case PF_OP_LE: 2435 return (p <= a1); 2436 case PF_OP_GT: 2437 return (p > a1); 2438 case PF_OP_GE: 2439 return (p >= a1); 2440 } 2441 return (0); /* never reached */ 2442 } 2443 2444 int 2445 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2446 { 2447 NTOHS(a1); 2448 NTOHS(a2); 2449 NTOHS(p); 2450 return (pf_match(op, a1, a2, p)); 2451 } 2452 2453 static int 2454 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2455 { 2456 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2457 return (0); 2458 return (pf_match(op, a1, a2, u)); 2459 } 2460 2461 static int 2462 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2463 { 2464 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2465 return (0); 2466 return (pf_match(op, a1, a2, g)); 2467 } 2468 2469 int 2470 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2471 { 2472 if (*tag == -1) 2473 *tag = mtag; 2474 2475 return ((!r->match_tag_not && r->match_tag == *tag) || 2476 (r->match_tag_not && r->match_tag != *tag)); 2477 } 2478 2479 int 2480 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2481 { 2482 2483 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2484 2485 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2486 return (ENOMEM); 2487 2488 pd->pf_mtag->tag = tag; 2489 2490 return (0); 2491 } 2492 2493 #define PF_ANCHOR_STACKSIZE 32 2494 struct pf_anchor_stackframe { 2495 struct pf_ruleset *rs; 2496 struct pf_rule *r; /* XXX: + match bit */ 2497 struct pf_anchor *child; 2498 }; 2499 2500 /* 2501 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2502 */ 2503 #define PF_ANCHORSTACK_MATCH 0x00000001 2504 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2505 2506 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2507 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2508 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2509 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2510 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2511 } while (0) 2512 2513 void 2514 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2515 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2516 int *match) 2517 { 2518 struct pf_anchor_stackframe *f; 2519 2520 PF_RULES_RASSERT(); 2521 2522 if (match) 2523 *match = 0; 2524 if (*depth >= PF_ANCHOR_STACKSIZE) { 2525 printf("%s: anchor stack overflow on %s\n", 2526 __func__, (*r)->anchor->name); 2527 *r = TAILQ_NEXT(*r, entries); 2528 return; 2529 } else if (*depth == 0 && a != NULL) 2530 *a = *r; 2531 f = stack + (*depth)++; 2532 f->rs = *rs; 2533 f->r = *r; 2534 if ((*r)->anchor_wildcard) { 2535 struct pf_anchor_node *parent = &(*r)->anchor->children; 2536 2537 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2538 *r = NULL; 2539 return; 2540 } 2541 *rs = &f->child->ruleset; 2542 } else { 2543 f->child = NULL; 2544 *rs = &(*r)->anchor->ruleset; 2545 } 2546 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2547 } 2548 2549 int 2550 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2551 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2552 int *match) 2553 { 2554 struct pf_anchor_stackframe *f; 2555 struct pf_rule *fr; 2556 int quick = 0; 2557 2558 PF_RULES_RASSERT(); 2559 2560 do { 2561 if (*depth <= 0) 2562 break; 2563 f = stack + *depth - 1; 2564 fr = PF_ANCHOR_RULE(f); 2565 if (f->child != NULL) { 2566 struct pf_anchor_node *parent; 2567 2568 /* 2569 * This block traverses through 2570 * a wildcard anchor. 2571 */ 2572 parent = &fr->anchor->children; 2573 if (match != NULL && *match) { 2574 /* 2575 * If any of "*" matched, then 2576 * "foo/ *" matched, mark frame 2577 * appropriately. 2578 */ 2579 PF_ANCHOR_SET_MATCH(f); 2580 *match = 0; 2581 } 2582 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2583 if (f->child != NULL) { 2584 *rs = &f->child->ruleset; 2585 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2586 if (*r == NULL) 2587 continue; 2588 else 2589 break; 2590 } 2591 } 2592 (*depth)--; 2593 if (*depth == 0 && a != NULL) 2594 *a = NULL; 2595 *rs = f->rs; 2596 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2597 quick = fr->quick; 2598 *r = TAILQ_NEXT(fr, entries); 2599 } while (*r == NULL); 2600 2601 return (quick); 2602 } 2603 2604 #ifdef INET6 2605 void 2606 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2607 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2608 { 2609 switch (af) { 2610 #ifdef INET 2611 case AF_INET: 2612 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2613 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2614 break; 2615 #endif /* INET */ 2616 case AF_INET6: 2617 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2618 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2619 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2620 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2621 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2622 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2623 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2624 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2625 break; 2626 } 2627 } 2628 2629 void 2630 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2631 { 2632 switch (af) { 2633 #ifdef INET 2634 case AF_INET: 2635 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2636 break; 2637 #endif /* INET */ 2638 case AF_INET6: 2639 if (addr->addr32[3] == 0xffffffff) { 2640 addr->addr32[3] = 0; 2641 if (addr->addr32[2] == 0xffffffff) { 2642 addr->addr32[2] = 0; 2643 if (addr->addr32[1] == 0xffffffff) { 2644 addr->addr32[1] = 0; 2645 addr->addr32[0] = 2646 htonl(ntohl(addr->addr32[0]) + 1); 2647 } else 2648 addr->addr32[1] = 2649 htonl(ntohl(addr->addr32[1]) + 1); 2650 } else 2651 addr->addr32[2] = 2652 htonl(ntohl(addr->addr32[2]) + 1); 2653 } else 2654 addr->addr32[3] = 2655 htonl(ntohl(addr->addr32[3]) + 1); 2656 break; 2657 } 2658 } 2659 #endif /* INET6 */ 2660 2661 int 2662 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2663 { 2664 struct pf_addr *saddr, *daddr; 2665 u_int16_t sport, dport; 2666 struct inpcbinfo *pi; 2667 struct inpcb *inp; 2668 2669 pd->lookup.uid = UID_MAX; 2670 pd->lookup.gid = GID_MAX; 2671 2672 switch (pd->proto) { 2673 case IPPROTO_TCP: 2674 if (pd->hdr.tcp == NULL) 2675 return (-1); 2676 sport = pd->hdr.tcp->th_sport; 2677 dport = pd->hdr.tcp->th_dport; 2678 pi = &V_tcbinfo; 2679 break; 2680 case IPPROTO_UDP: 2681 if (pd->hdr.udp == NULL) 2682 return (-1); 2683 sport = pd->hdr.udp->uh_sport; 2684 dport = pd->hdr.udp->uh_dport; 2685 pi = &V_udbinfo; 2686 break; 2687 default: 2688 return (-1); 2689 } 2690 if (direction == PF_IN) { 2691 saddr = pd->src; 2692 daddr = pd->dst; 2693 } else { 2694 u_int16_t p; 2695 2696 p = sport; 2697 sport = dport; 2698 dport = p; 2699 saddr = pd->dst; 2700 daddr = pd->src; 2701 } 2702 switch (pd->af) { 2703 #ifdef INET 2704 case AF_INET: 2705 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2706 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2707 if (inp == NULL) { 2708 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2709 daddr->v4, dport, INPLOOKUP_WILDCARD | 2710 INPLOOKUP_RLOCKPCB, NULL, m); 2711 if (inp == NULL) 2712 return (-1); 2713 } 2714 break; 2715 #endif /* INET */ 2716 #ifdef INET6 2717 case AF_INET6: 2718 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2719 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2720 if (inp == NULL) { 2721 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2722 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2723 INPLOOKUP_RLOCKPCB, NULL, m); 2724 if (inp == NULL) 2725 return (-1); 2726 } 2727 break; 2728 #endif /* INET6 */ 2729 2730 default: 2731 return (-1); 2732 } 2733 INP_RLOCK_ASSERT(inp); 2734 pd->lookup.uid = inp->inp_cred->cr_uid; 2735 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2736 INP_RUNLOCK(inp); 2737 2738 return (1); 2739 } 2740 2741 static u_int8_t 2742 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2743 { 2744 int hlen; 2745 u_int8_t hdr[60]; 2746 u_int8_t *opt, optlen; 2747 u_int8_t wscale = 0; 2748 2749 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2750 if (hlen <= sizeof(struct tcphdr)) 2751 return (0); 2752 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2753 return (0); 2754 opt = hdr + sizeof(struct tcphdr); 2755 hlen -= sizeof(struct tcphdr); 2756 while (hlen >= 3) { 2757 switch (*opt) { 2758 case TCPOPT_EOL: 2759 case TCPOPT_NOP: 2760 ++opt; 2761 --hlen; 2762 break; 2763 case TCPOPT_WINDOW: 2764 wscale = opt[2]; 2765 if (wscale > TCP_MAX_WINSHIFT) 2766 wscale = TCP_MAX_WINSHIFT; 2767 wscale |= PF_WSCALE_FLAG; 2768 /* FALLTHROUGH */ 2769 default: 2770 optlen = opt[1]; 2771 if (optlen < 2) 2772 optlen = 2; 2773 hlen -= optlen; 2774 opt += optlen; 2775 break; 2776 } 2777 } 2778 return (wscale); 2779 } 2780 2781 static u_int16_t 2782 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2783 { 2784 int hlen; 2785 u_int8_t hdr[60]; 2786 u_int8_t *opt, optlen; 2787 u_int16_t mss = V_tcp_mssdflt; 2788 2789 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2790 if (hlen <= sizeof(struct tcphdr)) 2791 return (0); 2792 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2793 return (0); 2794 opt = hdr + sizeof(struct tcphdr); 2795 hlen -= sizeof(struct tcphdr); 2796 while (hlen >= TCPOLEN_MAXSEG) { 2797 switch (*opt) { 2798 case TCPOPT_EOL: 2799 case TCPOPT_NOP: 2800 ++opt; 2801 --hlen; 2802 break; 2803 case TCPOPT_MAXSEG: 2804 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 2805 NTOHS(mss); 2806 /* FALLTHROUGH */ 2807 default: 2808 optlen = opt[1]; 2809 if (optlen < 2) 2810 optlen = 2; 2811 hlen -= optlen; 2812 opt += optlen; 2813 break; 2814 } 2815 } 2816 return (mss); 2817 } 2818 2819 static u_int16_t 2820 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 2821 { 2822 #ifdef INET 2823 struct sockaddr_in *dst; 2824 struct route ro; 2825 #endif /* INET */ 2826 #ifdef INET6 2827 struct sockaddr_in6 *dst6; 2828 struct route_in6 ro6; 2829 #endif /* INET6 */ 2830 struct rtentry *rt = NULL; 2831 int hlen = 0; 2832 u_int16_t mss = V_tcp_mssdflt; 2833 2834 switch (af) { 2835 #ifdef INET 2836 case AF_INET: 2837 hlen = sizeof(struct ip); 2838 bzero(&ro, sizeof(ro)); 2839 dst = (struct sockaddr_in *)&ro.ro_dst; 2840 dst->sin_family = AF_INET; 2841 dst->sin_len = sizeof(*dst); 2842 dst->sin_addr = addr->v4; 2843 in_rtalloc_ign(&ro, 0, rtableid); 2844 rt = ro.ro_rt; 2845 break; 2846 #endif /* INET */ 2847 #ifdef INET6 2848 case AF_INET6: 2849 hlen = sizeof(struct ip6_hdr); 2850 bzero(&ro6, sizeof(ro6)); 2851 dst6 = (struct sockaddr_in6 *)&ro6.ro_dst; 2852 dst6->sin6_family = AF_INET6; 2853 dst6->sin6_len = sizeof(*dst6); 2854 dst6->sin6_addr = addr->v6; 2855 in6_rtalloc_ign(&ro6, 0, rtableid); 2856 rt = ro6.ro_rt; 2857 break; 2858 #endif /* INET6 */ 2859 } 2860 2861 if (rt && rt->rt_ifp) { 2862 mss = rt->rt_ifp->if_mtu - hlen - sizeof(struct tcphdr); 2863 mss = max(V_tcp_mssdflt, mss); 2864 RTFREE(rt); 2865 } 2866 mss = min(mss, offer); 2867 mss = max(mss, 64); /* sanity - at least max opt space */ 2868 return (mss); 2869 } 2870 2871 static void 2872 pf_set_rt_ifp(struct pf_state *s, struct pf_addr *saddr) 2873 { 2874 struct pf_rule *r = s->rule.ptr; 2875 struct pf_src_node *sn = NULL; 2876 2877 s->rt_kif = NULL; 2878 if (!r->rt || r->rt == PF_FASTROUTE) 2879 return; 2880 switch (s->key[PF_SK_WIRE]->af) { 2881 #ifdef INET 2882 case AF_INET: 2883 pf_map_addr(AF_INET, r, saddr, &s->rt_addr, NULL, &sn); 2884 s->rt_kif = r->rpool.cur->kif; 2885 break; 2886 #endif /* INET */ 2887 #ifdef INET6 2888 case AF_INET6: 2889 pf_map_addr(AF_INET6, r, saddr, &s->rt_addr, NULL, &sn); 2890 s->rt_kif = r->rpool.cur->kif; 2891 break; 2892 #endif /* INET6 */ 2893 } 2894 } 2895 2896 static u_int32_t 2897 pf_tcp_iss(struct pf_pdesc *pd) 2898 { 2899 MD5_CTX ctx; 2900 u_int32_t digest[4]; 2901 2902 if (V_pf_tcp_secret_init == 0) { 2903 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 2904 MD5Init(&V_pf_tcp_secret_ctx); 2905 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 2906 sizeof(V_pf_tcp_secret)); 2907 V_pf_tcp_secret_init = 1; 2908 } 2909 2910 ctx = V_pf_tcp_secret_ctx; 2911 2912 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 2913 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 2914 if (pd->af == AF_INET6) { 2915 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 2916 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 2917 } else { 2918 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 2919 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 2920 } 2921 MD5Final((u_char *)digest, &ctx); 2922 V_pf_tcp_iss_off += 4096; 2923 #define ISN_RANDOM_INCREMENT (4096 - 1) 2924 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 2925 V_pf_tcp_iss_off); 2926 #undef ISN_RANDOM_INCREMENT 2927 } 2928 2929 static int 2930 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 2931 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 2932 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 2933 { 2934 struct pf_rule *nr = NULL; 2935 struct pf_addr * const saddr = pd->src; 2936 struct pf_addr * const daddr = pd->dst; 2937 sa_family_t af = pd->af; 2938 struct pf_rule *r, *a = NULL; 2939 struct pf_ruleset *ruleset = NULL; 2940 struct pf_src_node *nsn = NULL; 2941 struct tcphdr *th = pd->hdr.tcp; 2942 struct pf_state_key *sk = NULL, *nk = NULL; 2943 u_short reason; 2944 int rewrite = 0, hdrlen = 0; 2945 int tag = -1, rtableid = -1; 2946 int asd = 0; 2947 int match = 0; 2948 int state_icmp = 0; 2949 u_int16_t sport = 0, dport = 0; 2950 u_int16_t bproto_sum = 0, bip_sum = 0; 2951 u_int8_t icmptype = 0, icmpcode = 0; 2952 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 2953 2954 PF_RULES_RASSERT(); 2955 2956 if (inp != NULL) { 2957 INP_LOCK_ASSERT(inp); 2958 pd->lookup.uid = inp->inp_cred->cr_uid; 2959 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2960 pd->lookup.done = 1; 2961 } 2962 2963 switch (pd->proto) { 2964 case IPPROTO_TCP: 2965 sport = th->th_sport; 2966 dport = th->th_dport; 2967 hdrlen = sizeof(*th); 2968 break; 2969 case IPPROTO_UDP: 2970 sport = pd->hdr.udp->uh_sport; 2971 dport = pd->hdr.udp->uh_dport; 2972 hdrlen = sizeof(*pd->hdr.udp); 2973 break; 2974 #ifdef INET 2975 case IPPROTO_ICMP: 2976 if (pd->af != AF_INET) 2977 break; 2978 sport = dport = pd->hdr.icmp->icmp_id; 2979 hdrlen = sizeof(*pd->hdr.icmp); 2980 icmptype = pd->hdr.icmp->icmp_type; 2981 icmpcode = pd->hdr.icmp->icmp_code; 2982 2983 if (icmptype == ICMP_UNREACH || 2984 icmptype == ICMP_SOURCEQUENCH || 2985 icmptype == ICMP_REDIRECT || 2986 icmptype == ICMP_TIMXCEED || 2987 icmptype == ICMP_PARAMPROB) 2988 state_icmp++; 2989 break; 2990 #endif /* INET */ 2991 #ifdef INET6 2992 case IPPROTO_ICMPV6: 2993 if (af != AF_INET6) 2994 break; 2995 sport = dport = pd->hdr.icmp6->icmp6_id; 2996 hdrlen = sizeof(*pd->hdr.icmp6); 2997 icmptype = pd->hdr.icmp6->icmp6_type; 2998 icmpcode = pd->hdr.icmp6->icmp6_code; 2999 3000 if (icmptype == ICMP6_DST_UNREACH || 3001 icmptype == ICMP6_PACKET_TOO_BIG || 3002 icmptype == ICMP6_TIME_EXCEEDED || 3003 icmptype == ICMP6_PARAM_PROB) 3004 state_icmp++; 3005 break; 3006 #endif /* INET6 */ 3007 default: 3008 sport = dport = hdrlen = 0; 3009 break; 3010 } 3011 3012 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3013 3014 /* check packet for BINAT/NAT/RDR */ 3015 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3016 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3017 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3018 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3019 3020 if (pd->ip_sum) 3021 bip_sum = *pd->ip_sum; 3022 3023 switch (pd->proto) { 3024 case IPPROTO_TCP: 3025 bproto_sum = th->th_sum; 3026 pd->proto_sum = &th->th_sum; 3027 3028 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3029 nk->port[pd->sidx] != sport) { 3030 pf_change_ap(saddr, &th->th_sport, pd->ip_sum, 3031 &th->th_sum, &nk->addr[pd->sidx], 3032 nk->port[pd->sidx], 0, af); 3033 pd->sport = &th->th_sport; 3034 sport = th->th_sport; 3035 } 3036 3037 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3038 nk->port[pd->didx] != dport) { 3039 pf_change_ap(daddr, &th->th_dport, pd->ip_sum, 3040 &th->th_sum, &nk->addr[pd->didx], 3041 nk->port[pd->didx], 0, af); 3042 dport = th->th_dport; 3043 pd->dport = &th->th_dport; 3044 } 3045 rewrite++; 3046 break; 3047 case IPPROTO_UDP: 3048 bproto_sum = pd->hdr.udp->uh_sum; 3049 pd->proto_sum = &pd->hdr.udp->uh_sum; 3050 3051 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3052 nk->port[pd->sidx] != sport) { 3053 pf_change_ap(saddr, &pd->hdr.udp->uh_sport, 3054 pd->ip_sum, &pd->hdr.udp->uh_sum, 3055 &nk->addr[pd->sidx], 3056 nk->port[pd->sidx], 1, af); 3057 sport = pd->hdr.udp->uh_sport; 3058 pd->sport = &pd->hdr.udp->uh_sport; 3059 } 3060 3061 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3062 nk->port[pd->didx] != dport) { 3063 pf_change_ap(daddr, &pd->hdr.udp->uh_dport, 3064 pd->ip_sum, &pd->hdr.udp->uh_sum, 3065 &nk->addr[pd->didx], 3066 nk->port[pd->didx], 1, af); 3067 dport = pd->hdr.udp->uh_dport; 3068 pd->dport = &pd->hdr.udp->uh_dport; 3069 } 3070 rewrite++; 3071 break; 3072 #ifdef INET 3073 case IPPROTO_ICMP: 3074 nk->port[0] = nk->port[1]; 3075 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3076 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3077 nk->addr[pd->sidx].v4.s_addr, 0); 3078 3079 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3080 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3081 nk->addr[pd->didx].v4.s_addr, 0); 3082 3083 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3084 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3085 pd->hdr.icmp->icmp_cksum, sport, 3086 nk->port[1], 0); 3087 pd->hdr.icmp->icmp_id = nk->port[1]; 3088 pd->sport = &pd->hdr.icmp->icmp_id; 3089 } 3090 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3091 break; 3092 #endif /* INET */ 3093 #ifdef INET6 3094 case IPPROTO_ICMPV6: 3095 nk->port[0] = nk->port[1]; 3096 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3097 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3098 &nk->addr[pd->sidx], 0); 3099 3100 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3101 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3102 &nk->addr[pd->didx], 0); 3103 rewrite++; 3104 break; 3105 #endif /* INET */ 3106 default: 3107 switch (af) { 3108 #ifdef INET 3109 case AF_INET: 3110 if (PF_ANEQ(saddr, 3111 &nk->addr[pd->sidx], AF_INET)) 3112 pf_change_a(&saddr->v4.s_addr, 3113 pd->ip_sum, 3114 nk->addr[pd->sidx].v4.s_addr, 0); 3115 3116 if (PF_ANEQ(daddr, 3117 &nk->addr[pd->didx], AF_INET)) 3118 pf_change_a(&daddr->v4.s_addr, 3119 pd->ip_sum, 3120 nk->addr[pd->didx].v4.s_addr, 0); 3121 break; 3122 #endif /* INET */ 3123 #ifdef INET6 3124 case AF_INET6: 3125 if (PF_ANEQ(saddr, 3126 &nk->addr[pd->sidx], AF_INET6)) 3127 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3128 3129 if (PF_ANEQ(daddr, 3130 &nk->addr[pd->didx], AF_INET6)) 3131 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3132 break; 3133 #endif /* INET */ 3134 } 3135 break; 3136 } 3137 if (nr->natpass) 3138 r = NULL; 3139 pd->nat_rule = nr; 3140 } 3141 3142 while (r != NULL) { 3143 r->evaluations++; 3144 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3145 r = r->skip[PF_SKIP_IFP].ptr; 3146 else if (r->direction && r->direction != direction) 3147 r = r->skip[PF_SKIP_DIR].ptr; 3148 else if (r->af && r->af != af) 3149 r = r->skip[PF_SKIP_AF].ptr; 3150 else if (r->proto && r->proto != pd->proto) 3151 r = r->skip[PF_SKIP_PROTO].ptr; 3152 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3153 r->src.neg, kif, M_GETFIB(m))) 3154 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3155 /* tcp/udp only. port_op always 0 in other cases */ 3156 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3157 r->src.port[0], r->src.port[1], sport)) 3158 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3159 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3160 r->dst.neg, NULL, M_GETFIB(m))) 3161 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3162 /* tcp/udp only. port_op always 0 in other cases */ 3163 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3164 r->dst.port[0], r->dst.port[1], dport)) 3165 r = r->skip[PF_SKIP_DST_PORT].ptr; 3166 /* icmp only. type always 0 in other cases */ 3167 else if (r->type && r->type != icmptype + 1) 3168 r = TAILQ_NEXT(r, entries); 3169 /* icmp only. type always 0 in other cases */ 3170 else if (r->code && r->code != icmpcode + 1) 3171 r = TAILQ_NEXT(r, entries); 3172 else if (r->tos && !(r->tos == pd->tos)) 3173 r = TAILQ_NEXT(r, entries); 3174 else if (r->rule_flag & PFRULE_FRAGMENT) 3175 r = TAILQ_NEXT(r, entries); 3176 else if (pd->proto == IPPROTO_TCP && 3177 (r->flagset & th->th_flags) != r->flags) 3178 r = TAILQ_NEXT(r, entries); 3179 /* tcp/udp only. uid.op always 0 in other cases */ 3180 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3181 pf_socket_lookup(direction, pd, m), 1)) && 3182 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3183 pd->lookup.uid)) 3184 r = TAILQ_NEXT(r, entries); 3185 /* tcp/udp only. gid.op always 0 in other cases */ 3186 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3187 pf_socket_lookup(direction, pd, m), 1)) && 3188 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3189 pd->lookup.gid)) 3190 r = TAILQ_NEXT(r, entries); 3191 else if (r->prob && 3192 r->prob <= arc4random()) 3193 r = TAILQ_NEXT(r, entries); 3194 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3195 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3196 r = TAILQ_NEXT(r, entries); 3197 else if (r->os_fingerprint != PF_OSFP_ANY && 3198 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3199 pf_osfp_fingerprint(pd, m, off, th), 3200 r->os_fingerprint))) 3201 r = TAILQ_NEXT(r, entries); 3202 else { 3203 if (r->tag) 3204 tag = r->tag; 3205 if (r->rtableid >= 0) 3206 rtableid = r->rtableid; 3207 if (r->anchor == NULL) { 3208 match = 1; 3209 *rm = r; 3210 *am = a; 3211 *rsm = ruleset; 3212 if ((*rm)->quick) 3213 break; 3214 r = TAILQ_NEXT(r, entries); 3215 } else 3216 pf_step_into_anchor(anchor_stack, &asd, 3217 &ruleset, PF_RULESET_FILTER, &r, &a, 3218 &match); 3219 } 3220 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3221 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3222 break; 3223 } 3224 r = *rm; 3225 a = *am; 3226 ruleset = *rsm; 3227 3228 REASON_SET(&reason, PFRES_MATCH); 3229 3230 if (r->log || (nr != NULL && nr->log)) { 3231 if (rewrite) 3232 m_copyback(m, off, hdrlen, pd->hdr.any); 3233 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3234 ruleset, pd, 1); 3235 } 3236 3237 if ((r->action == PF_DROP) && 3238 ((r->rule_flag & PFRULE_RETURNRST) || 3239 (r->rule_flag & PFRULE_RETURNICMP) || 3240 (r->rule_flag & PFRULE_RETURN))) { 3241 /* undo NAT changes, if they have taken place */ 3242 if (nr != NULL) { 3243 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3244 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3245 if (pd->sport) 3246 *pd->sport = sk->port[pd->sidx]; 3247 if (pd->dport) 3248 *pd->dport = sk->port[pd->didx]; 3249 if (pd->proto_sum) 3250 *pd->proto_sum = bproto_sum; 3251 if (pd->ip_sum) 3252 *pd->ip_sum = bip_sum; 3253 m_copyback(m, off, hdrlen, pd->hdr.any); 3254 } 3255 if (pd->proto == IPPROTO_TCP && 3256 ((r->rule_flag & PFRULE_RETURNRST) || 3257 (r->rule_flag & PFRULE_RETURN)) && 3258 !(th->th_flags & TH_RST)) { 3259 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3260 int len = 0; 3261 #ifdef INET 3262 struct ip *h4; 3263 #endif 3264 #ifdef INET6 3265 struct ip6_hdr *h6; 3266 #endif 3267 3268 switch (af) { 3269 #ifdef INET 3270 case AF_INET: 3271 h4 = mtod(m, struct ip *); 3272 len = ntohs(h4->ip_len) - off; 3273 break; 3274 #endif 3275 #ifdef INET6 3276 case AF_INET6: 3277 h6 = mtod(m, struct ip6_hdr *); 3278 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3279 break; 3280 #endif 3281 } 3282 3283 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3284 REASON_SET(&reason, PFRES_PROTCKSUM); 3285 else { 3286 if (th->th_flags & TH_SYN) 3287 ack++; 3288 if (th->th_flags & TH_FIN) 3289 ack++; 3290 pf_send_tcp(m, r, af, pd->dst, 3291 pd->src, th->th_dport, th->th_sport, 3292 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3293 r->return_ttl, 1, 0, kif->pfik_ifp); 3294 } 3295 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3296 r->return_icmp) 3297 pf_send_icmp(m, r->return_icmp >> 8, 3298 r->return_icmp & 255, af, r); 3299 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3300 r->return_icmp6) 3301 pf_send_icmp(m, r->return_icmp6 >> 8, 3302 r->return_icmp6 & 255, af, r); 3303 } 3304 3305 if (r->action == PF_DROP) 3306 goto cleanup; 3307 3308 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3309 REASON_SET(&reason, PFRES_MEMORY); 3310 goto cleanup; 3311 } 3312 if (rtableid >= 0) 3313 M_SETFIB(m, rtableid); 3314 3315 if (!state_icmp && (r->keep_state || nr != NULL || 3316 (pd->flags & PFDESC_TCP_NORM))) { 3317 int action; 3318 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3319 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3320 hdrlen); 3321 if (action != PF_PASS) 3322 return (action); 3323 } else { 3324 if (sk != NULL) 3325 uma_zfree(V_pf_state_key_z, sk); 3326 if (nk != NULL) 3327 uma_zfree(V_pf_state_key_z, nk); 3328 } 3329 3330 /* copy back packet headers if we performed NAT operations */ 3331 if (rewrite) 3332 m_copyback(m, off, hdrlen, pd->hdr.any); 3333 3334 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3335 direction == PF_OUT && 3336 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3337 /* 3338 * We want the state created, but we dont 3339 * want to send this in case a partner 3340 * firewall has to know about it to allow 3341 * replies through it. 3342 */ 3343 return (PF_DEFER); 3344 3345 return (PF_PASS); 3346 3347 cleanup: 3348 if (sk != NULL) 3349 uma_zfree(V_pf_state_key_z, sk); 3350 if (nk != NULL) 3351 uma_zfree(V_pf_state_key_z, nk); 3352 return (PF_DROP); 3353 } 3354 3355 static int 3356 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3357 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3358 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3359 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3360 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3361 { 3362 struct pf_state *s = NULL; 3363 struct pf_src_node *sn = NULL; 3364 struct tcphdr *th = pd->hdr.tcp; 3365 u_int16_t mss = V_tcp_mssdflt; 3366 u_short reason; 3367 3368 /* check maximums */ 3369 if (r->max_states && (r->states_cur >= r->max_states)) { 3370 V_pf_status.lcounters[LCNT_STATES]++; 3371 REASON_SET(&reason, PFRES_MAXSTATES); 3372 return (PF_DROP); 3373 } 3374 /* src node for filter rule */ 3375 if ((r->rule_flag & PFRULE_SRCTRACK || 3376 r->rpool.opts & PF_POOL_STICKYADDR) && 3377 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3378 REASON_SET(&reason, PFRES_SRCLIMIT); 3379 goto csfailed; 3380 } 3381 /* src node for translation rule */ 3382 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3383 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3384 REASON_SET(&reason, PFRES_SRCLIMIT); 3385 goto csfailed; 3386 } 3387 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3388 if (s == NULL) { 3389 REASON_SET(&reason, PFRES_MEMORY); 3390 goto csfailed; 3391 } 3392 s->rule.ptr = r; 3393 s->nat_rule.ptr = nr; 3394 s->anchor.ptr = a; 3395 STATE_INC_COUNTERS(s); 3396 if (r->allow_opts) 3397 s->state_flags |= PFSTATE_ALLOWOPTS; 3398 if (r->rule_flag & PFRULE_STATESLOPPY) 3399 s->state_flags |= PFSTATE_SLOPPY; 3400 s->log = r->log & PF_LOG_ALL; 3401 s->sync_state = PFSYNC_S_NONE; 3402 if (nr != NULL) 3403 s->log |= nr->log & PF_LOG_ALL; 3404 switch (pd->proto) { 3405 case IPPROTO_TCP: 3406 s->src.seqlo = ntohl(th->th_seq); 3407 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3408 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3409 r->keep_state == PF_STATE_MODULATE) { 3410 /* Generate sequence number modulator */ 3411 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3412 0) 3413 s->src.seqdiff = 1; 3414 pf_change_a(&th->th_seq, &th->th_sum, 3415 htonl(s->src.seqlo + s->src.seqdiff), 0); 3416 *rewrite = 1; 3417 } else 3418 s->src.seqdiff = 0; 3419 if (th->th_flags & TH_SYN) { 3420 s->src.seqhi++; 3421 s->src.wscale = pf_get_wscale(m, off, 3422 th->th_off, pd->af); 3423 } 3424 s->src.max_win = MAX(ntohs(th->th_win), 1); 3425 if (s->src.wscale & PF_WSCALE_MASK) { 3426 /* Remove scale factor from initial window */ 3427 int win = s->src.max_win; 3428 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3429 s->src.max_win = (win - 1) >> 3430 (s->src.wscale & PF_WSCALE_MASK); 3431 } 3432 if (th->th_flags & TH_FIN) 3433 s->src.seqhi++; 3434 s->dst.seqhi = 1; 3435 s->dst.max_win = 1; 3436 s->src.state = TCPS_SYN_SENT; 3437 s->dst.state = TCPS_CLOSED; 3438 s->timeout = PFTM_TCP_FIRST_PACKET; 3439 break; 3440 case IPPROTO_UDP: 3441 s->src.state = PFUDPS_SINGLE; 3442 s->dst.state = PFUDPS_NO_TRAFFIC; 3443 s->timeout = PFTM_UDP_FIRST_PACKET; 3444 break; 3445 case IPPROTO_ICMP: 3446 #ifdef INET6 3447 case IPPROTO_ICMPV6: 3448 #endif 3449 s->timeout = PFTM_ICMP_FIRST_PACKET; 3450 break; 3451 default: 3452 s->src.state = PFOTHERS_SINGLE; 3453 s->dst.state = PFOTHERS_NO_TRAFFIC; 3454 s->timeout = PFTM_OTHER_FIRST_PACKET; 3455 } 3456 3457 s->creation = time_uptime; 3458 s->expire = time_uptime; 3459 3460 if (sn != NULL) { 3461 s->src_node = sn; 3462 s->src_node->states++; 3463 } 3464 if (nsn != NULL) { 3465 /* XXX We only modify one side for now. */ 3466 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3467 s->nat_src_node = nsn; 3468 s->nat_src_node->states++; 3469 } 3470 if (pd->proto == IPPROTO_TCP) { 3471 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3472 off, pd, th, &s->src, &s->dst)) { 3473 REASON_SET(&reason, PFRES_MEMORY); 3474 pf_src_tree_remove_state(s); 3475 STATE_DEC_COUNTERS(s); 3476 uma_zfree(V_pf_state_z, s); 3477 return (PF_DROP); 3478 } 3479 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3480 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3481 &s->src, &s->dst, rewrite)) { 3482 /* This really shouldn't happen!!! */ 3483 DPFPRINTF(PF_DEBUG_URGENT, 3484 ("pf_normalize_tcp_stateful failed on first pkt")); 3485 pf_normalize_tcp_cleanup(s); 3486 pf_src_tree_remove_state(s); 3487 STATE_DEC_COUNTERS(s); 3488 uma_zfree(V_pf_state_z, s); 3489 return (PF_DROP); 3490 } 3491 } 3492 s->direction = pd->dir; 3493 3494 /* 3495 * sk/nk could already been setup by pf_get_translation(). 3496 */ 3497 if (nr == NULL) { 3498 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3499 __func__, nr, sk, nk)); 3500 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3501 if (sk == NULL) 3502 goto csfailed; 3503 nk = sk; 3504 } else 3505 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3506 __func__, nr, sk, nk)); 3507 3508 /* Swap sk/nk for PF_OUT. */ 3509 if (pf_state_insert(BOUND_IFACE(r, kif), 3510 (pd->dir == PF_IN) ? sk : nk, 3511 (pd->dir == PF_IN) ? nk : sk, s)) { 3512 if (pd->proto == IPPROTO_TCP) 3513 pf_normalize_tcp_cleanup(s); 3514 REASON_SET(&reason, PFRES_STATEINS); 3515 pf_src_tree_remove_state(s); 3516 STATE_DEC_COUNTERS(s); 3517 uma_zfree(V_pf_state_z, s); 3518 return (PF_DROP); 3519 } else 3520 *sm = s; 3521 3522 pf_set_rt_ifp(s, pd->src); /* needs s->state_key set */ 3523 if (tag > 0) 3524 s->tag = tag; 3525 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3526 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3527 s->src.state = PF_TCPS_PROXY_SRC; 3528 /* undo NAT changes, if they have taken place */ 3529 if (nr != NULL) { 3530 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3531 if (pd->dir == PF_OUT) 3532 skt = s->key[PF_SK_STACK]; 3533 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3534 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3535 if (pd->sport) 3536 *pd->sport = skt->port[pd->sidx]; 3537 if (pd->dport) 3538 *pd->dport = skt->port[pd->didx]; 3539 if (pd->proto_sum) 3540 *pd->proto_sum = bproto_sum; 3541 if (pd->ip_sum) 3542 *pd->ip_sum = bip_sum; 3543 m_copyback(m, off, hdrlen, pd->hdr.any); 3544 } 3545 s->src.seqhi = htonl(arc4random()); 3546 /* Find mss option */ 3547 int rtid = M_GETFIB(m); 3548 mss = pf_get_mss(m, off, th->th_off, pd->af); 3549 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3550 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3551 s->src.mss = mss; 3552 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3553 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3554 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3555 REASON_SET(&reason, PFRES_SYNPROXY); 3556 return (PF_SYNPROXY_DROP); 3557 } 3558 3559 return (PF_PASS); 3560 3561 csfailed: 3562 if (sk != NULL) 3563 uma_zfree(V_pf_state_key_z, sk); 3564 if (nk != NULL) 3565 uma_zfree(V_pf_state_key_z, nk); 3566 3567 if (sn != NULL && sn->states == 0 && sn->expire == 0) 3568 pf_remove_src_node(sn); 3569 3570 if (nsn != sn && nsn != NULL && nsn->states == 0 && nsn->expire == 0) 3571 pf_remove_src_node(nsn); 3572 3573 return (PF_DROP); 3574 } 3575 3576 static int 3577 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3578 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3579 struct pf_ruleset **rsm) 3580 { 3581 struct pf_rule *r, *a = NULL; 3582 struct pf_ruleset *ruleset = NULL; 3583 sa_family_t af = pd->af; 3584 u_short reason; 3585 int tag = -1; 3586 int asd = 0; 3587 int match = 0; 3588 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3589 3590 PF_RULES_RASSERT(); 3591 3592 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3593 while (r != NULL) { 3594 r->evaluations++; 3595 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3596 r = r->skip[PF_SKIP_IFP].ptr; 3597 else if (r->direction && r->direction != direction) 3598 r = r->skip[PF_SKIP_DIR].ptr; 3599 else if (r->af && r->af != af) 3600 r = r->skip[PF_SKIP_AF].ptr; 3601 else if (r->proto && r->proto != pd->proto) 3602 r = r->skip[PF_SKIP_PROTO].ptr; 3603 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3604 r->src.neg, kif, M_GETFIB(m))) 3605 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3606 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3607 r->dst.neg, NULL, M_GETFIB(m))) 3608 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3609 else if (r->tos && !(r->tos == pd->tos)) 3610 r = TAILQ_NEXT(r, entries); 3611 else if (r->os_fingerprint != PF_OSFP_ANY) 3612 r = TAILQ_NEXT(r, entries); 3613 else if (pd->proto == IPPROTO_UDP && 3614 (r->src.port_op || r->dst.port_op)) 3615 r = TAILQ_NEXT(r, entries); 3616 else if (pd->proto == IPPROTO_TCP && 3617 (r->src.port_op || r->dst.port_op || r->flagset)) 3618 r = TAILQ_NEXT(r, entries); 3619 else if ((pd->proto == IPPROTO_ICMP || 3620 pd->proto == IPPROTO_ICMPV6) && 3621 (r->type || r->code)) 3622 r = TAILQ_NEXT(r, entries); 3623 else if (r->prob && r->prob <= 3624 (arc4random() % (UINT_MAX - 1) + 1)) 3625 r = TAILQ_NEXT(r, entries); 3626 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3627 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3628 r = TAILQ_NEXT(r, entries); 3629 else { 3630 if (r->anchor == NULL) { 3631 match = 1; 3632 *rm = r; 3633 *am = a; 3634 *rsm = ruleset; 3635 if ((*rm)->quick) 3636 break; 3637 r = TAILQ_NEXT(r, entries); 3638 } else 3639 pf_step_into_anchor(anchor_stack, &asd, 3640 &ruleset, PF_RULESET_FILTER, &r, &a, 3641 &match); 3642 } 3643 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3644 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3645 break; 3646 } 3647 r = *rm; 3648 a = *am; 3649 ruleset = *rsm; 3650 3651 REASON_SET(&reason, PFRES_MATCH); 3652 3653 if (r->log) 3654 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3655 1); 3656 3657 if (r->action != PF_PASS) 3658 return (PF_DROP); 3659 3660 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3661 REASON_SET(&reason, PFRES_MEMORY); 3662 return (PF_DROP); 3663 } 3664 3665 return (PF_PASS); 3666 } 3667 3668 static int 3669 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3670 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3671 struct pf_pdesc *pd, u_short *reason, int *copyback) 3672 { 3673 struct tcphdr *th = pd->hdr.tcp; 3674 u_int16_t win = ntohs(th->th_win); 3675 u_int32_t ack, end, seq, orig_seq; 3676 u_int8_t sws, dws; 3677 int ackskew; 3678 3679 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3680 sws = src->wscale & PF_WSCALE_MASK; 3681 dws = dst->wscale & PF_WSCALE_MASK; 3682 } else 3683 sws = dws = 0; 3684 3685 /* 3686 * Sequence tracking algorithm from Guido van Rooij's paper: 3687 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3688 * tcp_filtering.ps 3689 */ 3690 3691 orig_seq = seq = ntohl(th->th_seq); 3692 if (src->seqlo == 0) { 3693 /* First packet from this end. Set its state */ 3694 3695 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3696 src->scrub == NULL) { 3697 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3698 REASON_SET(reason, PFRES_MEMORY); 3699 return (PF_DROP); 3700 } 3701 } 3702 3703 /* Deferred generation of sequence number modulator */ 3704 if (dst->seqdiff && !src->seqdiff) { 3705 /* use random iss for the TCP server */ 3706 while ((src->seqdiff = arc4random() - seq) == 0) 3707 ; 3708 ack = ntohl(th->th_ack) - dst->seqdiff; 3709 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3710 src->seqdiff), 0); 3711 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3712 *copyback = 1; 3713 } else { 3714 ack = ntohl(th->th_ack); 3715 } 3716 3717 end = seq + pd->p_len; 3718 if (th->th_flags & TH_SYN) { 3719 end++; 3720 if (dst->wscale & PF_WSCALE_FLAG) { 3721 src->wscale = pf_get_wscale(m, off, th->th_off, 3722 pd->af); 3723 if (src->wscale & PF_WSCALE_FLAG) { 3724 /* Remove scale factor from initial 3725 * window */ 3726 sws = src->wscale & PF_WSCALE_MASK; 3727 win = ((u_int32_t)win + (1 << sws) - 1) 3728 >> sws; 3729 dws = dst->wscale & PF_WSCALE_MASK; 3730 } else { 3731 /* fixup other window */ 3732 dst->max_win <<= dst->wscale & 3733 PF_WSCALE_MASK; 3734 /* in case of a retrans SYN|ACK */ 3735 dst->wscale = 0; 3736 } 3737 } 3738 } 3739 if (th->th_flags & TH_FIN) 3740 end++; 3741 3742 src->seqlo = seq; 3743 if (src->state < TCPS_SYN_SENT) 3744 src->state = TCPS_SYN_SENT; 3745 3746 /* 3747 * May need to slide the window (seqhi may have been set by 3748 * the crappy stack check or if we picked up the connection 3749 * after establishment) 3750 */ 3751 if (src->seqhi == 1 || 3752 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3753 src->seqhi = end + MAX(1, dst->max_win << dws); 3754 if (win > src->max_win) 3755 src->max_win = win; 3756 3757 } else { 3758 ack = ntohl(th->th_ack) - dst->seqdiff; 3759 if (src->seqdiff) { 3760 /* Modulate sequence numbers */ 3761 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3762 src->seqdiff), 0); 3763 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3764 *copyback = 1; 3765 } 3766 end = seq + pd->p_len; 3767 if (th->th_flags & TH_SYN) 3768 end++; 3769 if (th->th_flags & TH_FIN) 3770 end++; 3771 } 3772 3773 if ((th->th_flags & TH_ACK) == 0) { 3774 /* Let it pass through the ack skew check */ 3775 ack = dst->seqlo; 3776 } else if ((ack == 0 && 3777 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 3778 /* broken tcp stacks do not set ack */ 3779 (dst->state < TCPS_SYN_SENT)) { 3780 /* 3781 * Many stacks (ours included) will set the ACK number in an 3782 * FIN|ACK if the SYN times out -- no sequence to ACK. 3783 */ 3784 ack = dst->seqlo; 3785 } 3786 3787 if (seq == end) { 3788 /* Ease sequencing restrictions on no data packets */ 3789 seq = src->seqlo; 3790 end = seq; 3791 } 3792 3793 ackskew = dst->seqlo - ack; 3794 3795 3796 /* 3797 * Need to demodulate the sequence numbers in any TCP SACK options 3798 * (Selective ACK). We could optionally validate the SACK values 3799 * against the current ACK window, either forwards or backwards, but 3800 * I'm not confident that SACK has been implemented properly 3801 * everywhere. It wouldn't surprise me if several stacks accidently 3802 * SACK too far backwards of previously ACKed data. There really aren't 3803 * any security implications of bad SACKing unless the target stack 3804 * doesn't validate the option length correctly. Someone trying to 3805 * spoof into a TCP connection won't bother blindly sending SACK 3806 * options anyway. 3807 */ 3808 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 3809 if (pf_modulate_sack(m, off, pd, th, dst)) 3810 *copyback = 1; 3811 } 3812 3813 3814 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 3815 if (SEQ_GEQ(src->seqhi, end) && 3816 /* Last octet inside other's window space */ 3817 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 3818 /* Retrans: not more than one window back */ 3819 (ackskew >= -MAXACKWINDOW) && 3820 /* Acking not more than one reassembled fragment backwards */ 3821 (ackskew <= (MAXACKWINDOW << sws)) && 3822 /* Acking not more than one window forward */ 3823 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 3824 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 3825 (pd->flags & PFDESC_IP_REAS) == 0)) { 3826 /* Require an exact/+1 sequence match on resets when possible */ 3827 3828 if (dst->scrub || src->scrub) { 3829 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 3830 *state, src, dst, copyback)) 3831 return (PF_DROP); 3832 } 3833 3834 /* update max window */ 3835 if (src->max_win < win) 3836 src->max_win = win; 3837 /* synchronize sequencing */ 3838 if (SEQ_GT(end, src->seqlo)) 3839 src->seqlo = end; 3840 /* slide the window of what the other end can send */ 3841 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 3842 dst->seqhi = ack + MAX((win << sws), 1); 3843 3844 3845 /* update states */ 3846 if (th->th_flags & TH_SYN) 3847 if (src->state < TCPS_SYN_SENT) 3848 src->state = TCPS_SYN_SENT; 3849 if (th->th_flags & TH_FIN) 3850 if (src->state < TCPS_CLOSING) 3851 src->state = TCPS_CLOSING; 3852 if (th->th_flags & TH_ACK) { 3853 if (dst->state == TCPS_SYN_SENT) { 3854 dst->state = TCPS_ESTABLISHED; 3855 if (src->state == TCPS_ESTABLISHED && 3856 (*state)->src_node != NULL && 3857 pf_src_connlimit(state)) { 3858 REASON_SET(reason, PFRES_SRCLIMIT); 3859 return (PF_DROP); 3860 } 3861 } else if (dst->state == TCPS_CLOSING) 3862 dst->state = TCPS_FIN_WAIT_2; 3863 } 3864 if (th->th_flags & TH_RST) 3865 src->state = dst->state = TCPS_TIME_WAIT; 3866 3867 /* update expire time */ 3868 (*state)->expire = time_uptime; 3869 if (src->state >= TCPS_FIN_WAIT_2 && 3870 dst->state >= TCPS_FIN_WAIT_2) 3871 (*state)->timeout = PFTM_TCP_CLOSED; 3872 else if (src->state >= TCPS_CLOSING && 3873 dst->state >= TCPS_CLOSING) 3874 (*state)->timeout = PFTM_TCP_FIN_WAIT; 3875 else if (src->state < TCPS_ESTABLISHED || 3876 dst->state < TCPS_ESTABLISHED) 3877 (*state)->timeout = PFTM_TCP_OPENING; 3878 else if (src->state >= TCPS_CLOSING || 3879 dst->state >= TCPS_CLOSING) 3880 (*state)->timeout = PFTM_TCP_CLOSING; 3881 else 3882 (*state)->timeout = PFTM_TCP_ESTABLISHED; 3883 3884 /* Fall through to PASS packet */ 3885 3886 } else if ((dst->state < TCPS_SYN_SENT || 3887 dst->state >= TCPS_FIN_WAIT_2 || 3888 src->state >= TCPS_FIN_WAIT_2) && 3889 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 3890 /* Within a window forward of the originating packet */ 3891 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 3892 /* Within a window backward of the originating packet */ 3893 3894 /* 3895 * This currently handles three situations: 3896 * 1) Stupid stacks will shotgun SYNs before their peer 3897 * replies. 3898 * 2) When PF catches an already established stream (the 3899 * firewall rebooted, the state table was flushed, routes 3900 * changed...) 3901 * 3) Packets get funky immediately after the connection 3902 * closes (this should catch Solaris spurious ACK|FINs 3903 * that web servers like to spew after a close) 3904 * 3905 * This must be a little more careful than the above code 3906 * since packet floods will also be caught here. We don't 3907 * update the TTL here to mitigate the damage of a packet 3908 * flood and so the same code can handle awkward establishment 3909 * and a loosened connection close. 3910 * In the establishment case, a correct peer response will 3911 * validate the connection, go through the normal state code 3912 * and keep updating the state TTL. 3913 */ 3914 3915 if (V_pf_status.debug >= PF_DEBUG_MISC) { 3916 printf("pf: loose state match: "); 3917 pf_print_state(*state); 3918 pf_print_flags(th->th_flags); 3919 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 3920 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 3921 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 3922 (unsigned long long)(*state)->packets[1], 3923 pd->dir == PF_IN ? "in" : "out", 3924 pd->dir == (*state)->direction ? "fwd" : "rev"); 3925 } 3926 3927 if (dst->scrub || src->scrub) { 3928 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 3929 *state, src, dst, copyback)) 3930 return (PF_DROP); 3931 } 3932 3933 /* update max window */ 3934 if (src->max_win < win) 3935 src->max_win = win; 3936 /* synchronize sequencing */ 3937 if (SEQ_GT(end, src->seqlo)) 3938 src->seqlo = end; 3939 /* slide the window of what the other end can send */ 3940 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 3941 dst->seqhi = ack + MAX((win << sws), 1); 3942 3943 /* 3944 * Cannot set dst->seqhi here since this could be a shotgunned 3945 * SYN and not an already established connection. 3946 */ 3947 3948 if (th->th_flags & TH_FIN) 3949 if (src->state < TCPS_CLOSING) 3950 src->state = TCPS_CLOSING; 3951 if (th->th_flags & TH_RST) 3952 src->state = dst->state = TCPS_TIME_WAIT; 3953 3954 /* Fall through to PASS packet */ 3955 3956 } else { 3957 if ((*state)->dst.state == TCPS_SYN_SENT && 3958 (*state)->src.state == TCPS_SYN_SENT) { 3959 /* Send RST for state mismatches during handshake */ 3960 if (!(th->th_flags & TH_RST)) 3961 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 3962 pd->dst, pd->src, th->th_dport, 3963 th->th_sport, ntohl(th->th_ack), 0, 3964 TH_RST, 0, 0, 3965 (*state)->rule.ptr->return_ttl, 1, 0, 3966 kif->pfik_ifp); 3967 src->seqlo = 0; 3968 src->seqhi = 1; 3969 src->max_win = 1; 3970 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 3971 printf("pf: BAD state: "); 3972 pf_print_state(*state); 3973 pf_print_flags(th->th_flags); 3974 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 3975 "pkts=%llu:%llu dir=%s,%s\n", 3976 seq, orig_seq, ack, pd->p_len, ackskew, 3977 (unsigned long long)(*state)->packets[0], 3978 (unsigned long long)(*state)->packets[1], 3979 pd->dir == PF_IN ? "in" : "out", 3980 pd->dir == (*state)->direction ? "fwd" : "rev"); 3981 printf("pf: State failure on: %c %c %c %c | %c %c\n", 3982 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 3983 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 3984 ' ': '2', 3985 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 3986 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 3987 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 3988 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 3989 } 3990 REASON_SET(reason, PFRES_BADSTATE); 3991 return (PF_DROP); 3992 } 3993 3994 return (PF_PASS); 3995 } 3996 3997 static int 3998 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 3999 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4000 { 4001 struct tcphdr *th = pd->hdr.tcp; 4002 4003 if (th->th_flags & TH_SYN) 4004 if (src->state < TCPS_SYN_SENT) 4005 src->state = TCPS_SYN_SENT; 4006 if (th->th_flags & TH_FIN) 4007 if (src->state < TCPS_CLOSING) 4008 src->state = TCPS_CLOSING; 4009 if (th->th_flags & TH_ACK) { 4010 if (dst->state == TCPS_SYN_SENT) { 4011 dst->state = TCPS_ESTABLISHED; 4012 if (src->state == TCPS_ESTABLISHED && 4013 (*state)->src_node != NULL && 4014 pf_src_connlimit(state)) { 4015 REASON_SET(reason, PFRES_SRCLIMIT); 4016 return (PF_DROP); 4017 } 4018 } else if (dst->state == TCPS_CLOSING) { 4019 dst->state = TCPS_FIN_WAIT_2; 4020 } else if (src->state == TCPS_SYN_SENT && 4021 dst->state < TCPS_SYN_SENT) { 4022 /* 4023 * Handle a special sloppy case where we only see one 4024 * half of the connection. If there is a ACK after 4025 * the initial SYN without ever seeing a packet from 4026 * the destination, set the connection to established. 4027 */ 4028 dst->state = src->state = TCPS_ESTABLISHED; 4029 if ((*state)->src_node != NULL && 4030 pf_src_connlimit(state)) { 4031 REASON_SET(reason, PFRES_SRCLIMIT); 4032 return (PF_DROP); 4033 } 4034 } else if (src->state == TCPS_CLOSING && 4035 dst->state == TCPS_ESTABLISHED && 4036 dst->seqlo == 0) { 4037 /* 4038 * Handle the closing of half connections where we 4039 * don't see the full bidirectional FIN/ACK+ACK 4040 * handshake. 4041 */ 4042 dst->state = TCPS_CLOSING; 4043 } 4044 } 4045 if (th->th_flags & TH_RST) 4046 src->state = dst->state = TCPS_TIME_WAIT; 4047 4048 /* update expire time */ 4049 (*state)->expire = time_uptime; 4050 if (src->state >= TCPS_FIN_WAIT_2 && 4051 dst->state >= TCPS_FIN_WAIT_2) 4052 (*state)->timeout = PFTM_TCP_CLOSED; 4053 else if (src->state >= TCPS_CLOSING && 4054 dst->state >= TCPS_CLOSING) 4055 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4056 else if (src->state < TCPS_ESTABLISHED || 4057 dst->state < TCPS_ESTABLISHED) 4058 (*state)->timeout = PFTM_TCP_OPENING; 4059 else if (src->state >= TCPS_CLOSING || 4060 dst->state >= TCPS_CLOSING) 4061 (*state)->timeout = PFTM_TCP_CLOSING; 4062 else 4063 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4064 4065 return (PF_PASS); 4066 } 4067 4068 static int 4069 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4070 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4071 u_short *reason) 4072 { 4073 struct pf_state_key_cmp key; 4074 struct tcphdr *th = pd->hdr.tcp; 4075 int copyback = 0; 4076 struct pf_state_peer *src, *dst; 4077 struct pf_state_key *sk; 4078 4079 bzero(&key, sizeof(key)); 4080 key.af = pd->af; 4081 key.proto = IPPROTO_TCP; 4082 if (direction == PF_IN) { /* wire side, straight */ 4083 PF_ACPY(&key.addr[0], pd->src, key.af); 4084 PF_ACPY(&key.addr[1], pd->dst, key.af); 4085 key.port[0] = th->th_sport; 4086 key.port[1] = th->th_dport; 4087 } else { /* stack side, reverse */ 4088 PF_ACPY(&key.addr[1], pd->src, key.af); 4089 PF_ACPY(&key.addr[0], pd->dst, key.af); 4090 key.port[1] = th->th_sport; 4091 key.port[0] = th->th_dport; 4092 } 4093 4094 STATE_LOOKUP(kif, &key, direction, *state, pd); 4095 4096 if (direction == (*state)->direction) { 4097 src = &(*state)->src; 4098 dst = &(*state)->dst; 4099 } else { 4100 src = &(*state)->dst; 4101 dst = &(*state)->src; 4102 } 4103 4104 sk = (*state)->key[pd->didx]; 4105 4106 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4107 if (direction != (*state)->direction) { 4108 REASON_SET(reason, PFRES_SYNPROXY); 4109 return (PF_SYNPROXY_DROP); 4110 } 4111 if (th->th_flags & TH_SYN) { 4112 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4113 REASON_SET(reason, PFRES_SYNPROXY); 4114 return (PF_DROP); 4115 } 4116 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4117 pd->src, th->th_dport, th->th_sport, 4118 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4119 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4120 REASON_SET(reason, PFRES_SYNPROXY); 4121 return (PF_SYNPROXY_DROP); 4122 } else if (!(th->th_flags & TH_ACK) || 4123 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4124 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4125 REASON_SET(reason, PFRES_SYNPROXY); 4126 return (PF_DROP); 4127 } else if ((*state)->src_node != NULL && 4128 pf_src_connlimit(state)) { 4129 REASON_SET(reason, PFRES_SRCLIMIT); 4130 return (PF_DROP); 4131 } else 4132 (*state)->src.state = PF_TCPS_PROXY_DST; 4133 } 4134 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4135 if (direction == (*state)->direction) { 4136 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4137 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4138 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4139 REASON_SET(reason, PFRES_SYNPROXY); 4140 return (PF_DROP); 4141 } 4142 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4143 if ((*state)->dst.seqhi == 1) 4144 (*state)->dst.seqhi = htonl(arc4random()); 4145 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4146 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4147 sk->port[pd->sidx], sk->port[pd->didx], 4148 (*state)->dst.seqhi, 0, TH_SYN, 0, 4149 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4150 REASON_SET(reason, PFRES_SYNPROXY); 4151 return (PF_SYNPROXY_DROP); 4152 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4153 (TH_SYN|TH_ACK)) || 4154 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4155 REASON_SET(reason, PFRES_SYNPROXY); 4156 return (PF_DROP); 4157 } else { 4158 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4159 (*state)->dst.seqlo = ntohl(th->th_seq); 4160 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4161 pd->src, th->th_dport, th->th_sport, 4162 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4163 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4164 (*state)->tag, NULL); 4165 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4166 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4167 sk->port[pd->sidx], sk->port[pd->didx], 4168 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4169 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4170 (*state)->src.seqdiff = (*state)->dst.seqhi - 4171 (*state)->src.seqlo; 4172 (*state)->dst.seqdiff = (*state)->src.seqhi - 4173 (*state)->dst.seqlo; 4174 (*state)->src.seqhi = (*state)->src.seqlo + 4175 (*state)->dst.max_win; 4176 (*state)->dst.seqhi = (*state)->dst.seqlo + 4177 (*state)->src.max_win; 4178 (*state)->src.wscale = (*state)->dst.wscale = 0; 4179 (*state)->src.state = (*state)->dst.state = 4180 TCPS_ESTABLISHED; 4181 REASON_SET(reason, PFRES_SYNPROXY); 4182 return (PF_SYNPROXY_DROP); 4183 } 4184 } 4185 4186 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4187 dst->state >= TCPS_FIN_WAIT_2 && 4188 src->state >= TCPS_FIN_WAIT_2) { 4189 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4190 printf("pf: state reuse "); 4191 pf_print_state(*state); 4192 pf_print_flags(th->th_flags); 4193 printf("\n"); 4194 } 4195 /* XXX make sure it's the same direction ?? */ 4196 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4197 pf_unlink_state(*state, PF_ENTER_LOCKED); 4198 *state = NULL; 4199 return (PF_DROP); 4200 } 4201 4202 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4203 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4204 return (PF_DROP); 4205 } else { 4206 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4207 ©back) == PF_DROP) 4208 return (PF_DROP); 4209 } 4210 4211 /* translate source/destination address, if necessary */ 4212 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4213 struct pf_state_key *nk = (*state)->key[pd->didx]; 4214 4215 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4216 nk->port[pd->sidx] != th->th_sport) 4217 pf_change_ap(pd->src, &th->th_sport, pd->ip_sum, 4218 &th->th_sum, &nk->addr[pd->sidx], 4219 nk->port[pd->sidx], 0, pd->af); 4220 4221 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4222 nk->port[pd->didx] != th->th_dport) 4223 pf_change_ap(pd->dst, &th->th_dport, pd->ip_sum, 4224 &th->th_sum, &nk->addr[pd->didx], 4225 nk->port[pd->didx], 0, pd->af); 4226 copyback = 1; 4227 } 4228 4229 /* Copyback sequence modulation or stateful scrub changes if needed */ 4230 if (copyback) 4231 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4232 4233 return (PF_PASS); 4234 } 4235 4236 static int 4237 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4238 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4239 { 4240 struct pf_state_peer *src, *dst; 4241 struct pf_state_key_cmp key; 4242 struct udphdr *uh = pd->hdr.udp; 4243 4244 bzero(&key, sizeof(key)); 4245 key.af = pd->af; 4246 key.proto = IPPROTO_UDP; 4247 if (direction == PF_IN) { /* wire side, straight */ 4248 PF_ACPY(&key.addr[0], pd->src, key.af); 4249 PF_ACPY(&key.addr[1], pd->dst, key.af); 4250 key.port[0] = uh->uh_sport; 4251 key.port[1] = uh->uh_dport; 4252 } else { /* stack side, reverse */ 4253 PF_ACPY(&key.addr[1], pd->src, key.af); 4254 PF_ACPY(&key.addr[0], pd->dst, key.af); 4255 key.port[1] = uh->uh_sport; 4256 key.port[0] = uh->uh_dport; 4257 } 4258 4259 STATE_LOOKUP(kif, &key, direction, *state, pd); 4260 4261 if (direction == (*state)->direction) { 4262 src = &(*state)->src; 4263 dst = &(*state)->dst; 4264 } else { 4265 src = &(*state)->dst; 4266 dst = &(*state)->src; 4267 } 4268 4269 /* update states */ 4270 if (src->state < PFUDPS_SINGLE) 4271 src->state = PFUDPS_SINGLE; 4272 if (dst->state == PFUDPS_SINGLE) 4273 dst->state = PFUDPS_MULTIPLE; 4274 4275 /* update expire time */ 4276 (*state)->expire = time_uptime; 4277 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4278 (*state)->timeout = PFTM_UDP_MULTIPLE; 4279 else 4280 (*state)->timeout = PFTM_UDP_SINGLE; 4281 4282 /* translate source/destination address, if necessary */ 4283 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4284 struct pf_state_key *nk = (*state)->key[pd->didx]; 4285 4286 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4287 nk->port[pd->sidx] != uh->uh_sport) 4288 pf_change_ap(pd->src, &uh->uh_sport, pd->ip_sum, 4289 &uh->uh_sum, &nk->addr[pd->sidx], 4290 nk->port[pd->sidx], 1, pd->af); 4291 4292 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4293 nk->port[pd->didx] != uh->uh_dport) 4294 pf_change_ap(pd->dst, &uh->uh_dport, pd->ip_sum, 4295 &uh->uh_sum, &nk->addr[pd->didx], 4296 nk->port[pd->didx], 1, pd->af); 4297 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4298 } 4299 4300 return (PF_PASS); 4301 } 4302 4303 static int 4304 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4305 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4306 { 4307 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4308 u_int16_t icmpid = 0, *icmpsum; 4309 u_int8_t icmptype; 4310 int state_icmp = 0; 4311 struct pf_state_key_cmp key; 4312 4313 bzero(&key, sizeof(key)); 4314 switch (pd->proto) { 4315 #ifdef INET 4316 case IPPROTO_ICMP: 4317 icmptype = pd->hdr.icmp->icmp_type; 4318 icmpid = pd->hdr.icmp->icmp_id; 4319 icmpsum = &pd->hdr.icmp->icmp_cksum; 4320 4321 if (icmptype == ICMP_UNREACH || 4322 icmptype == ICMP_SOURCEQUENCH || 4323 icmptype == ICMP_REDIRECT || 4324 icmptype == ICMP_TIMXCEED || 4325 icmptype == ICMP_PARAMPROB) 4326 state_icmp++; 4327 break; 4328 #endif /* INET */ 4329 #ifdef INET6 4330 case IPPROTO_ICMPV6: 4331 icmptype = pd->hdr.icmp6->icmp6_type; 4332 icmpid = pd->hdr.icmp6->icmp6_id; 4333 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4334 4335 if (icmptype == ICMP6_DST_UNREACH || 4336 icmptype == ICMP6_PACKET_TOO_BIG || 4337 icmptype == ICMP6_TIME_EXCEEDED || 4338 icmptype == ICMP6_PARAM_PROB) 4339 state_icmp++; 4340 break; 4341 #endif /* INET6 */ 4342 } 4343 4344 if (!state_icmp) { 4345 4346 /* 4347 * ICMP query/reply message not related to a TCP/UDP packet. 4348 * Search for an ICMP state. 4349 */ 4350 key.af = pd->af; 4351 key.proto = pd->proto; 4352 key.port[0] = key.port[1] = icmpid; 4353 if (direction == PF_IN) { /* wire side, straight */ 4354 PF_ACPY(&key.addr[0], pd->src, key.af); 4355 PF_ACPY(&key.addr[1], pd->dst, key.af); 4356 } else { /* stack side, reverse */ 4357 PF_ACPY(&key.addr[1], pd->src, key.af); 4358 PF_ACPY(&key.addr[0], pd->dst, key.af); 4359 } 4360 4361 STATE_LOOKUP(kif, &key, direction, *state, pd); 4362 4363 (*state)->expire = time_uptime; 4364 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4365 4366 /* translate source/destination address, if necessary */ 4367 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4368 struct pf_state_key *nk = (*state)->key[pd->didx]; 4369 4370 switch (pd->af) { 4371 #ifdef INET 4372 case AF_INET: 4373 if (PF_ANEQ(pd->src, 4374 &nk->addr[pd->sidx], AF_INET)) 4375 pf_change_a(&saddr->v4.s_addr, 4376 pd->ip_sum, 4377 nk->addr[pd->sidx].v4.s_addr, 0); 4378 4379 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4380 AF_INET)) 4381 pf_change_a(&daddr->v4.s_addr, 4382 pd->ip_sum, 4383 nk->addr[pd->didx].v4.s_addr, 0); 4384 4385 if (nk->port[0] != 4386 pd->hdr.icmp->icmp_id) { 4387 pd->hdr.icmp->icmp_cksum = 4388 pf_cksum_fixup( 4389 pd->hdr.icmp->icmp_cksum, icmpid, 4390 nk->port[pd->sidx], 0); 4391 pd->hdr.icmp->icmp_id = 4392 nk->port[pd->sidx]; 4393 } 4394 4395 m_copyback(m, off, ICMP_MINLEN, 4396 (caddr_t )pd->hdr.icmp); 4397 break; 4398 #endif /* INET */ 4399 #ifdef INET6 4400 case AF_INET6: 4401 if (PF_ANEQ(pd->src, 4402 &nk->addr[pd->sidx], AF_INET6)) 4403 pf_change_a6(saddr, 4404 &pd->hdr.icmp6->icmp6_cksum, 4405 &nk->addr[pd->sidx], 0); 4406 4407 if (PF_ANEQ(pd->dst, 4408 &nk->addr[pd->didx], AF_INET6)) 4409 pf_change_a6(daddr, 4410 &pd->hdr.icmp6->icmp6_cksum, 4411 &nk->addr[pd->didx], 0); 4412 4413 m_copyback(m, off, sizeof(struct icmp6_hdr), 4414 (caddr_t )pd->hdr.icmp6); 4415 break; 4416 #endif /* INET6 */ 4417 } 4418 } 4419 return (PF_PASS); 4420 4421 } else { 4422 /* 4423 * ICMP error message in response to a TCP/UDP packet. 4424 * Extract the inner TCP/UDP header and search for that state. 4425 */ 4426 4427 struct pf_pdesc pd2; 4428 bzero(&pd2, sizeof pd2); 4429 #ifdef INET 4430 struct ip h2; 4431 #endif /* INET */ 4432 #ifdef INET6 4433 struct ip6_hdr h2_6; 4434 int terminal = 0; 4435 #endif /* INET6 */ 4436 int ipoff2 = 0; 4437 int off2 = 0; 4438 4439 pd2.af = pd->af; 4440 /* Payload packet is from the opposite direction. */ 4441 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4442 pd2.didx = (direction == PF_IN) ? 0 : 1; 4443 switch (pd->af) { 4444 #ifdef INET 4445 case AF_INET: 4446 /* offset of h2 in mbuf chain */ 4447 ipoff2 = off + ICMP_MINLEN; 4448 4449 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4450 NULL, reason, pd2.af)) { 4451 DPFPRINTF(PF_DEBUG_MISC, 4452 ("pf: ICMP error message too short " 4453 "(ip)\n")); 4454 return (PF_DROP); 4455 } 4456 /* 4457 * ICMP error messages don't refer to non-first 4458 * fragments 4459 */ 4460 if (h2.ip_off & htons(IP_OFFMASK)) { 4461 REASON_SET(reason, PFRES_FRAG); 4462 return (PF_DROP); 4463 } 4464 4465 /* offset of protocol header that follows h2 */ 4466 off2 = ipoff2 + (h2.ip_hl << 2); 4467 4468 pd2.proto = h2.ip_p; 4469 pd2.src = (struct pf_addr *)&h2.ip_src; 4470 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4471 pd2.ip_sum = &h2.ip_sum; 4472 break; 4473 #endif /* INET */ 4474 #ifdef INET6 4475 case AF_INET6: 4476 ipoff2 = off + sizeof(struct icmp6_hdr); 4477 4478 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4479 NULL, reason, pd2.af)) { 4480 DPFPRINTF(PF_DEBUG_MISC, 4481 ("pf: ICMP error message too short " 4482 "(ip6)\n")); 4483 return (PF_DROP); 4484 } 4485 pd2.proto = h2_6.ip6_nxt; 4486 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4487 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4488 pd2.ip_sum = NULL; 4489 off2 = ipoff2 + sizeof(h2_6); 4490 do { 4491 switch (pd2.proto) { 4492 case IPPROTO_FRAGMENT: 4493 /* 4494 * ICMPv6 error messages for 4495 * non-first fragments 4496 */ 4497 REASON_SET(reason, PFRES_FRAG); 4498 return (PF_DROP); 4499 case IPPROTO_AH: 4500 case IPPROTO_HOPOPTS: 4501 case IPPROTO_ROUTING: 4502 case IPPROTO_DSTOPTS: { 4503 /* get next header and header length */ 4504 struct ip6_ext opt6; 4505 4506 if (!pf_pull_hdr(m, off2, &opt6, 4507 sizeof(opt6), NULL, reason, 4508 pd2.af)) { 4509 DPFPRINTF(PF_DEBUG_MISC, 4510 ("pf: ICMPv6 short opt\n")); 4511 return (PF_DROP); 4512 } 4513 if (pd2.proto == IPPROTO_AH) 4514 off2 += (opt6.ip6e_len + 2) * 4; 4515 else 4516 off2 += (opt6.ip6e_len + 1) * 8; 4517 pd2.proto = opt6.ip6e_nxt; 4518 /* goto the next header */ 4519 break; 4520 } 4521 default: 4522 terminal++; 4523 break; 4524 } 4525 } while (!terminal); 4526 break; 4527 #endif /* INET6 */ 4528 } 4529 4530 switch (pd2.proto) { 4531 case IPPROTO_TCP: { 4532 struct tcphdr th; 4533 u_int32_t seq; 4534 struct pf_state_peer *src, *dst; 4535 u_int8_t dws; 4536 int copyback = 0; 4537 4538 /* 4539 * Only the first 8 bytes of the TCP header can be 4540 * expected. Don't access any TCP header fields after 4541 * th_seq, an ackskew test is not possible. 4542 */ 4543 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4544 pd2.af)) { 4545 DPFPRINTF(PF_DEBUG_MISC, 4546 ("pf: ICMP error message too short " 4547 "(tcp)\n")); 4548 return (PF_DROP); 4549 } 4550 4551 key.af = pd2.af; 4552 key.proto = IPPROTO_TCP; 4553 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4554 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4555 key.port[pd2.sidx] = th.th_sport; 4556 key.port[pd2.didx] = th.th_dport; 4557 4558 STATE_LOOKUP(kif, &key, direction, *state, pd); 4559 4560 if (direction == (*state)->direction) { 4561 src = &(*state)->dst; 4562 dst = &(*state)->src; 4563 } else { 4564 src = &(*state)->src; 4565 dst = &(*state)->dst; 4566 } 4567 4568 if (src->wscale && dst->wscale) 4569 dws = dst->wscale & PF_WSCALE_MASK; 4570 else 4571 dws = 0; 4572 4573 /* Demodulate sequence number */ 4574 seq = ntohl(th.th_seq) - src->seqdiff; 4575 if (src->seqdiff) { 4576 pf_change_a(&th.th_seq, icmpsum, 4577 htonl(seq), 0); 4578 copyback = 1; 4579 } 4580 4581 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4582 (!SEQ_GEQ(src->seqhi, seq) || 4583 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4584 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4585 printf("pf: BAD ICMP %d:%d ", 4586 icmptype, pd->hdr.icmp->icmp_code); 4587 pf_print_host(pd->src, 0, pd->af); 4588 printf(" -> "); 4589 pf_print_host(pd->dst, 0, pd->af); 4590 printf(" state: "); 4591 pf_print_state(*state); 4592 printf(" seq=%u\n", seq); 4593 } 4594 REASON_SET(reason, PFRES_BADSTATE); 4595 return (PF_DROP); 4596 } else { 4597 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4598 printf("pf: OK ICMP %d:%d ", 4599 icmptype, pd->hdr.icmp->icmp_code); 4600 pf_print_host(pd->src, 0, pd->af); 4601 printf(" -> "); 4602 pf_print_host(pd->dst, 0, pd->af); 4603 printf(" state: "); 4604 pf_print_state(*state); 4605 printf(" seq=%u\n", seq); 4606 } 4607 } 4608 4609 /* translate source/destination address, if necessary */ 4610 if ((*state)->key[PF_SK_WIRE] != 4611 (*state)->key[PF_SK_STACK]) { 4612 struct pf_state_key *nk = 4613 (*state)->key[pd->didx]; 4614 4615 if (PF_ANEQ(pd2.src, 4616 &nk->addr[pd2.sidx], pd2.af) || 4617 nk->port[pd2.sidx] != th.th_sport) 4618 pf_change_icmp(pd2.src, &th.th_sport, 4619 daddr, &nk->addr[pd2.sidx], 4620 nk->port[pd2.sidx], NULL, 4621 pd2.ip_sum, icmpsum, 4622 pd->ip_sum, 0, pd2.af); 4623 4624 if (PF_ANEQ(pd2.dst, 4625 &nk->addr[pd2.didx], pd2.af) || 4626 nk->port[pd2.didx] != th.th_dport) 4627 pf_change_icmp(pd2.dst, &th.th_dport, 4628 NULL, /* XXX Inbound NAT? */ 4629 &nk->addr[pd2.didx], 4630 nk->port[pd2.didx], NULL, 4631 pd2.ip_sum, icmpsum, 4632 pd->ip_sum, 0, pd2.af); 4633 copyback = 1; 4634 } 4635 4636 if (copyback) { 4637 switch (pd2.af) { 4638 #ifdef INET 4639 case AF_INET: 4640 m_copyback(m, off, ICMP_MINLEN, 4641 (caddr_t )pd->hdr.icmp); 4642 m_copyback(m, ipoff2, sizeof(h2), 4643 (caddr_t )&h2); 4644 break; 4645 #endif /* INET */ 4646 #ifdef INET6 4647 case AF_INET6: 4648 m_copyback(m, off, 4649 sizeof(struct icmp6_hdr), 4650 (caddr_t )pd->hdr.icmp6); 4651 m_copyback(m, ipoff2, sizeof(h2_6), 4652 (caddr_t )&h2_6); 4653 break; 4654 #endif /* INET6 */ 4655 } 4656 m_copyback(m, off2, 8, (caddr_t)&th); 4657 } 4658 4659 return (PF_PASS); 4660 break; 4661 } 4662 case IPPROTO_UDP: { 4663 struct udphdr uh; 4664 4665 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4666 NULL, reason, pd2.af)) { 4667 DPFPRINTF(PF_DEBUG_MISC, 4668 ("pf: ICMP error message too short " 4669 "(udp)\n")); 4670 return (PF_DROP); 4671 } 4672 4673 key.af = pd2.af; 4674 key.proto = IPPROTO_UDP; 4675 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4676 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4677 key.port[pd2.sidx] = uh.uh_sport; 4678 key.port[pd2.didx] = uh.uh_dport; 4679 4680 STATE_LOOKUP(kif, &key, direction, *state, pd); 4681 4682 /* translate source/destination address, if necessary */ 4683 if ((*state)->key[PF_SK_WIRE] != 4684 (*state)->key[PF_SK_STACK]) { 4685 struct pf_state_key *nk = 4686 (*state)->key[pd->didx]; 4687 4688 if (PF_ANEQ(pd2.src, 4689 &nk->addr[pd2.sidx], pd2.af) || 4690 nk->port[pd2.sidx] != uh.uh_sport) 4691 pf_change_icmp(pd2.src, &uh.uh_sport, 4692 daddr, &nk->addr[pd2.sidx], 4693 nk->port[pd2.sidx], &uh.uh_sum, 4694 pd2.ip_sum, icmpsum, 4695 pd->ip_sum, 1, pd2.af); 4696 4697 if (PF_ANEQ(pd2.dst, 4698 &nk->addr[pd2.didx], pd2.af) || 4699 nk->port[pd2.didx] != uh.uh_dport) 4700 pf_change_icmp(pd2.dst, &uh.uh_dport, 4701 NULL, /* XXX Inbound NAT? */ 4702 &nk->addr[pd2.didx], 4703 nk->port[pd2.didx], &uh.uh_sum, 4704 pd2.ip_sum, icmpsum, 4705 pd->ip_sum, 1, pd2.af); 4706 4707 switch (pd2.af) { 4708 #ifdef INET 4709 case AF_INET: 4710 m_copyback(m, off, ICMP_MINLEN, 4711 (caddr_t )pd->hdr.icmp); 4712 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4713 break; 4714 #endif /* INET */ 4715 #ifdef INET6 4716 case AF_INET6: 4717 m_copyback(m, off, 4718 sizeof(struct icmp6_hdr), 4719 (caddr_t )pd->hdr.icmp6); 4720 m_copyback(m, ipoff2, sizeof(h2_6), 4721 (caddr_t )&h2_6); 4722 break; 4723 #endif /* INET6 */ 4724 } 4725 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4726 } 4727 return (PF_PASS); 4728 break; 4729 } 4730 #ifdef INET 4731 case IPPROTO_ICMP: { 4732 struct icmp iih; 4733 4734 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4735 NULL, reason, pd2.af)) { 4736 DPFPRINTF(PF_DEBUG_MISC, 4737 ("pf: ICMP error message too short i" 4738 "(icmp)\n")); 4739 return (PF_DROP); 4740 } 4741 4742 key.af = pd2.af; 4743 key.proto = IPPROTO_ICMP; 4744 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4745 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4746 key.port[0] = key.port[1] = iih.icmp_id; 4747 4748 STATE_LOOKUP(kif, &key, direction, *state, pd); 4749 4750 /* translate source/destination address, if necessary */ 4751 if ((*state)->key[PF_SK_WIRE] != 4752 (*state)->key[PF_SK_STACK]) { 4753 struct pf_state_key *nk = 4754 (*state)->key[pd->didx]; 4755 4756 if (PF_ANEQ(pd2.src, 4757 &nk->addr[pd2.sidx], pd2.af) || 4758 nk->port[pd2.sidx] != iih.icmp_id) 4759 pf_change_icmp(pd2.src, &iih.icmp_id, 4760 daddr, &nk->addr[pd2.sidx], 4761 nk->port[pd2.sidx], NULL, 4762 pd2.ip_sum, icmpsum, 4763 pd->ip_sum, 0, AF_INET); 4764 4765 if (PF_ANEQ(pd2.dst, 4766 &nk->addr[pd2.didx], pd2.af) || 4767 nk->port[pd2.didx] != iih.icmp_id) 4768 pf_change_icmp(pd2.dst, &iih.icmp_id, 4769 NULL, /* XXX Inbound NAT? */ 4770 &nk->addr[pd2.didx], 4771 nk->port[pd2.didx], NULL, 4772 pd2.ip_sum, icmpsum, 4773 pd->ip_sum, 0, AF_INET); 4774 4775 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 4776 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4777 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 4778 } 4779 return (PF_PASS); 4780 break; 4781 } 4782 #endif /* INET */ 4783 #ifdef INET6 4784 case IPPROTO_ICMPV6: { 4785 struct icmp6_hdr iih; 4786 4787 if (!pf_pull_hdr(m, off2, &iih, 4788 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 4789 DPFPRINTF(PF_DEBUG_MISC, 4790 ("pf: ICMP error message too short " 4791 "(icmp6)\n")); 4792 return (PF_DROP); 4793 } 4794 4795 key.af = pd2.af; 4796 key.proto = IPPROTO_ICMPV6; 4797 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4798 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4799 key.port[0] = key.port[1] = iih.icmp6_id; 4800 4801 STATE_LOOKUP(kif, &key, direction, *state, pd); 4802 4803 /* translate source/destination address, if necessary */ 4804 if ((*state)->key[PF_SK_WIRE] != 4805 (*state)->key[PF_SK_STACK]) { 4806 struct pf_state_key *nk = 4807 (*state)->key[pd->didx]; 4808 4809 if (PF_ANEQ(pd2.src, 4810 &nk->addr[pd2.sidx], pd2.af) || 4811 nk->port[pd2.sidx] != iih.icmp6_id) 4812 pf_change_icmp(pd2.src, &iih.icmp6_id, 4813 daddr, &nk->addr[pd2.sidx], 4814 nk->port[pd2.sidx], NULL, 4815 pd2.ip_sum, icmpsum, 4816 pd->ip_sum, 0, AF_INET6); 4817 4818 if (PF_ANEQ(pd2.dst, 4819 &nk->addr[pd2.didx], pd2.af) || 4820 nk->port[pd2.didx] != iih.icmp6_id) 4821 pf_change_icmp(pd2.dst, &iih.icmp6_id, 4822 NULL, /* XXX Inbound NAT? */ 4823 &nk->addr[pd2.didx], 4824 nk->port[pd2.didx], NULL, 4825 pd2.ip_sum, icmpsum, 4826 pd->ip_sum, 0, AF_INET6); 4827 4828 m_copyback(m, off, sizeof(struct icmp6_hdr), 4829 (caddr_t)pd->hdr.icmp6); 4830 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 4831 m_copyback(m, off2, sizeof(struct icmp6_hdr), 4832 (caddr_t)&iih); 4833 } 4834 return (PF_PASS); 4835 break; 4836 } 4837 #endif /* INET6 */ 4838 default: { 4839 key.af = pd2.af; 4840 key.proto = pd2.proto; 4841 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4842 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4843 key.port[0] = key.port[1] = 0; 4844 4845 STATE_LOOKUP(kif, &key, direction, *state, pd); 4846 4847 /* translate source/destination address, if necessary */ 4848 if ((*state)->key[PF_SK_WIRE] != 4849 (*state)->key[PF_SK_STACK]) { 4850 struct pf_state_key *nk = 4851 (*state)->key[pd->didx]; 4852 4853 if (PF_ANEQ(pd2.src, 4854 &nk->addr[pd2.sidx], pd2.af)) 4855 pf_change_icmp(pd2.src, NULL, daddr, 4856 &nk->addr[pd2.sidx], 0, NULL, 4857 pd2.ip_sum, icmpsum, 4858 pd->ip_sum, 0, pd2.af); 4859 4860 if (PF_ANEQ(pd2.dst, 4861 &nk->addr[pd2.didx], pd2.af)) 4862 pf_change_icmp(pd2.src, NULL, 4863 NULL, /* XXX Inbound NAT? */ 4864 &nk->addr[pd2.didx], 0, NULL, 4865 pd2.ip_sum, icmpsum, 4866 pd->ip_sum, 0, pd2.af); 4867 4868 switch (pd2.af) { 4869 #ifdef INET 4870 case AF_INET: 4871 m_copyback(m, off, ICMP_MINLEN, 4872 (caddr_t)pd->hdr.icmp); 4873 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4874 break; 4875 #endif /* INET */ 4876 #ifdef INET6 4877 case AF_INET6: 4878 m_copyback(m, off, 4879 sizeof(struct icmp6_hdr), 4880 (caddr_t )pd->hdr.icmp6); 4881 m_copyback(m, ipoff2, sizeof(h2_6), 4882 (caddr_t )&h2_6); 4883 break; 4884 #endif /* INET6 */ 4885 } 4886 } 4887 return (PF_PASS); 4888 break; 4889 } 4890 } 4891 } 4892 } 4893 4894 static int 4895 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 4896 struct mbuf *m, struct pf_pdesc *pd) 4897 { 4898 struct pf_state_peer *src, *dst; 4899 struct pf_state_key_cmp key; 4900 4901 bzero(&key, sizeof(key)); 4902 key.af = pd->af; 4903 key.proto = pd->proto; 4904 if (direction == PF_IN) { 4905 PF_ACPY(&key.addr[0], pd->src, key.af); 4906 PF_ACPY(&key.addr[1], pd->dst, key.af); 4907 key.port[0] = key.port[1] = 0; 4908 } else { 4909 PF_ACPY(&key.addr[1], pd->src, key.af); 4910 PF_ACPY(&key.addr[0], pd->dst, key.af); 4911 key.port[1] = key.port[0] = 0; 4912 } 4913 4914 STATE_LOOKUP(kif, &key, direction, *state, pd); 4915 4916 if (direction == (*state)->direction) { 4917 src = &(*state)->src; 4918 dst = &(*state)->dst; 4919 } else { 4920 src = &(*state)->dst; 4921 dst = &(*state)->src; 4922 } 4923 4924 /* update states */ 4925 if (src->state < PFOTHERS_SINGLE) 4926 src->state = PFOTHERS_SINGLE; 4927 if (dst->state == PFOTHERS_SINGLE) 4928 dst->state = PFOTHERS_MULTIPLE; 4929 4930 /* update expire time */ 4931 (*state)->expire = time_uptime; 4932 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 4933 (*state)->timeout = PFTM_OTHER_MULTIPLE; 4934 else 4935 (*state)->timeout = PFTM_OTHER_SINGLE; 4936 4937 /* translate source/destination address, if necessary */ 4938 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4939 struct pf_state_key *nk = (*state)->key[pd->didx]; 4940 4941 KASSERT(nk, ("%s: nk is null", __func__)); 4942 KASSERT(pd, ("%s: pd is null", __func__)); 4943 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 4944 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 4945 switch (pd->af) { 4946 #ifdef INET 4947 case AF_INET: 4948 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 4949 pf_change_a(&pd->src->v4.s_addr, 4950 pd->ip_sum, 4951 nk->addr[pd->sidx].v4.s_addr, 4952 0); 4953 4954 4955 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 4956 pf_change_a(&pd->dst->v4.s_addr, 4957 pd->ip_sum, 4958 nk->addr[pd->didx].v4.s_addr, 4959 0); 4960 4961 break; 4962 #endif /* INET */ 4963 #ifdef INET6 4964 case AF_INET6: 4965 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 4966 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 4967 4968 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 4969 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 4970 #endif /* INET6 */ 4971 } 4972 } 4973 return (PF_PASS); 4974 } 4975 4976 /* 4977 * ipoff and off are measured from the start of the mbuf chain. 4978 * h must be at "ipoff" on the mbuf chain. 4979 */ 4980 void * 4981 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 4982 u_short *actionp, u_short *reasonp, sa_family_t af) 4983 { 4984 switch (af) { 4985 #ifdef INET 4986 case AF_INET: { 4987 struct ip *h = mtod(m, struct ip *); 4988 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 4989 4990 if (fragoff) { 4991 if (fragoff >= len) 4992 ACTION_SET(actionp, PF_PASS); 4993 else { 4994 ACTION_SET(actionp, PF_DROP); 4995 REASON_SET(reasonp, PFRES_FRAG); 4996 } 4997 return (NULL); 4998 } 4999 if (m->m_pkthdr.len < off + len || 5000 ntohs(h->ip_len) < off + len) { 5001 ACTION_SET(actionp, PF_DROP); 5002 REASON_SET(reasonp, PFRES_SHORT); 5003 return (NULL); 5004 } 5005 break; 5006 } 5007 #endif /* INET */ 5008 #ifdef INET6 5009 case AF_INET6: { 5010 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5011 5012 if (m->m_pkthdr.len < off + len || 5013 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5014 (unsigned)(off + len)) { 5015 ACTION_SET(actionp, PF_DROP); 5016 REASON_SET(reasonp, PFRES_SHORT); 5017 return (NULL); 5018 } 5019 break; 5020 } 5021 #endif /* INET6 */ 5022 } 5023 m_copydata(m, off, len, p); 5024 return (p); 5025 } 5026 5027 int 5028 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5029 int rtableid) 5030 { 5031 #ifdef RADIX_MPATH 5032 struct radix_node_head *rnh; 5033 #endif 5034 struct sockaddr_in *dst; 5035 int ret = 1; 5036 int check_mpath; 5037 #ifdef INET6 5038 struct sockaddr_in6 *dst6; 5039 struct route_in6 ro; 5040 #else 5041 struct route ro; 5042 #endif 5043 struct radix_node *rn; 5044 struct rtentry *rt; 5045 struct ifnet *ifp; 5046 5047 check_mpath = 0; 5048 #ifdef RADIX_MPATH 5049 /* XXX: stick to table 0 for now */ 5050 rnh = rt_tables_get_rnh(0, af); 5051 if (rnh != NULL && rn_mpath_capable(rnh)) 5052 check_mpath = 1; 5053 #endif 5054 bzero(&ro, sizeof(ro)); 5055 switch (af) { 5056 case AF_INET: 5057 dst = satosin(&ro.ro_dst); 5058 dst->sin_family = AF_INET; 5059 dst->sin_len = sizeof(*dst); 5060 dst->sin_addr = addr->v4; 5061 break; 5062 #ifdef INET6 5063 case AF_INET6: 5064 /* 5065 * Skip check for addresses with embedded interface scope, 5066 * as they would always match anyway. 5067 */ 5068 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5069 goto out; 5070 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5071 dst6->sin6_family = AF_INET6; 5072 dst6->sin6_len = sizeof(*dst6); 5073 dst6->sin6_addr = addr->v6; 5074 break; 5075 #endif /* INET6 */ 5076 default: 5077 return (0); 5078 } 5079 5080 /* Skip checks for ipsec interfaces */ 5081 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5082 goto out; 5083 5084 switch (af) { 5085 #ifdef INET6 5086 case AF_INET6: 5087 in6_rtalloc_ign(&ro, 0, rtableid); 5088 break; 5089 #endif 5090 #ifdef INET 5091 case AF_INET: 5092 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5093 break; 5094 #endif 5095 default: 5096 rtalloc_ign((struct route *)&ro, 0); /* No/default FIB. */ 5097 break; 5098 } 5099 5100 if (ro.ro_rt != NULL) { 5101 /* No interface given, this is a no-route check */ 5102 if (kif == NULL) 5103 goto out; 5104 5105 if (kif->pfik_ifp == NULL) { 5106 ret = 0; 5107 goto out; 5108 } 5109 5110 /* Perform uRPF check if passed input interface */ 5111 ret = 0; 5112 rn = (struct radix_node *)ro.ro_rt; 5113 do { 5114 rt = (struct rtentry *)rn; 5115 ifp = rt->rt_ifp; 5116 5117 if (kif->pfik_ifp == ifp) 5118 ret = 1; 5119 #ifdef RADIX_MPATH 5120 rn = rn_mpath_next(rn); 5121 #endif 5122 } while (check_mpath == 1 && rn != NULL && ret == 0); 5123 } else 5124 ret = 0; 5125 out: 5126 if (ro.ro_rt != NULL) 5127 RTFREE(ro.ro_rt); 5128 return (ret); 5129 } 5130 5131 #ifdef INET 5132 static void 5133 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5134 struct pf_state *s, struct pf_pdesc *pd) 5135 { 5136 struct mbuf *m0, *m1; 5137 struct sockaddr_in dst; 5138 struct ip *ip; 5139 struct ifnet *ifp = NULL; 5140 struct pf_addr naddr; 5141 struct pf_src_node *sn = NULL; 5142 int error = 0; 5143 uint16_t ip_len, ip_off; 5144 5145 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5146 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5147 __func__)); 5148 5149 if ((pd->pf_mtag == NULL && 5150 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5151 pd->pf_mtag->routed++ > 3) { 5152 m0 = *m; 5153 *m = NULL; 5154 goto bad_locked; 5155 } 5156 5157 if (r->rt == PF_DUPTO) { 5158 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5159 if (s) 5160 PF_STATE_UNLOCK(s); 5161 return; 5162 } 5163 } else { 5164 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5165 if (s) 5166 PF_STATE_UNLOCK(s); 5167 return; 5168 } 5169 m0 = *m; 5170 } 5171 5172 ip = mtod(m0, struct ip *); 5173 5174 bzero(&dst, sizeof(dst)); 5175 dst.sin_family = AF_INET; 5176 dst.sin_len = sizeof(dst); 5177 dst.sin_addr = ip->ip_dst; 5178 5179 if (r->rt == PF_FASTROUTE) { 5180 struct rtentry *rt; 5181 5182 if (s) 5183 PF_STATE_UNLOCK(s); 5184 rt = rtalloc1_fib(sintosa(&dst), 0, 0, M_GETFIB(m0)); 5185 if (rt == NULL) { 5186 RTFREE_LOCKED(rt); 5187 KMOD_IPSTAT_INC(ips_noroute); 5188 error = EHOSTUNREACH; 5189 goto bad; 5190 } 5191 5192 ifp = rt->rt_ifp; 5193 rt->rt_rmx.rmx_pksent++; 5194 5195 if (rt->rt_flags & RTF_GATEWAY) 5196 bcopy(satosin(rt->rt_gateway), &dst, sizeof(dst)); 5197 RTFREE_LOCKED(rt); 5198 } else { 5199 if (TAILQ_EMPTY(&r->rpool.list)) { 5200 DPFPRINTF(PF_DEBUG_URGENT, 5201 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5202 goto bad_locked; 5203 } 5204 if (s == NULL) { 5205 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5206 &naddr, NULL, &sn); 5207 if (!PF_AZERO(&naddr, AF_INET)) 5208 dst.sin_addr.s_addr = naddr.v4.s_addr; 5209 ifp = r->rpool.cur->kif ? 5210 r->rpool.cur->kif->pfik_ifp : NULL; 5211 } else { 5212 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5213 dst.sin_addr.s_addr = 5214 s->rt_addr.v4.s_addr; 5215 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5216 PF_STATE_UNLOCK(s); 5217 } 5218 } 5219 if (ifp == NULL) 5220 goto bad; 5221 5222 if (oifp != ifp) { 5223 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5224 goto bad; 5225 else if (m0 == NULL) 5226 goto done; 5227 if (m0->m_len < sizeof(struct ip)) { 5228 DPFPRINTF(PF_DEBUG_URGENT, 5229 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5230 goto bad; 5231 } 5232 ip = mtod(m0, struct ip *); 5233 } 5234 5235 if (ifp->if_flags & IFF_LOOPBACK) 5236 m0->m_flags |= M_SKIP_FIREWALL; 5237 5238 ip_len = ntohs(ip->ip_len); 5239 ip_off = ntohs(ip->ip_off); 5240 5241 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5242 m0->m_pkthdr.csum_flags |= CSUM_IP; 5243 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5244 in_delayed_cksum(m0); 5245 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5246 } 5247 #ifdef SCTP 5248 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5249 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5250 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5251 } 5252 #endif 5253 5254 /* 5255 * If small enough for interface, or the interface will take 5256 * care of the fragmentation for us, we can just send directly. 5257 */ 5258 if (ip_len <= ifp->if_mtu || 5259 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 || 5260 ((ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) { 5261 ip->ip_sum = 0; 5262 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5263 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5264 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5265 } 5266 m0->m_flags &= ~(M_PROTOFLAGS); 5267 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5268 goto done; 5269 } 5270 5271 /* Balk when DF bit is set or the interface didn't support TSO. */ 5272 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5273 error = EMSGSIZE; 5274 KMOD_IPSTAT_INC(ips_cantfrag); 5275 if (r->rt != PF_DUPTO) { 5276 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5277 ifp->if_mtu); 5278 goto done; 5279 } else 5280 goto bad; 5281 } 5282 5283 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5284 if (error) 5285 goto bad; 5286 5287 for (; m0; m0 = m1) { 5288 m1 = m0->m_nextpkt; 5289 m0->m_nextpkt = NULL; 5290 if (error == 0) { 5291 m0->m_flags &= ~(M_PROTOFLAGS); 5292 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5293 } else 5294 m_freem(m0); 5295 } 5296 5297 if (error == 0) 5298 KMOD_IPSTAT_INC(ips_fragmented); 5299 5300 done: 5301 if (r->rt != PF_DUPTO) 5302 *m = NULL; 5303 return; 5304 5305 bad_locked: 5306 if (s) 5307 PF_STATE_UNLOCK(s); 5308 bad: 5309 m_freem(m0); 5310 goto done; 5311 } 5312 #endif /* INET */ 5313 5314 #ifdef INET6 5315 static void 5316 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5317 struct pf_state *s, struct pf_pdesc *pd) 5318 { 5319 struct mbuf *m0; 5320 struct sockaddr_in6 dst; 5321 struct ip6_hdr *ip6; 5322 struct ifnet *ifp = NULL; 5323 struct pf_addr naddr; 5324 struct pf_src_node *sn = NULL; 5325 5326 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5327 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5328 __func__)); 5329 5330 if ((pd->pf_mtag == NULL && 5331 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5332 pd->pf_mtag->routed++ > 3) { 5333 m0 = *m; 5334 *m = NULL; 5335 goto bad_locked; 5336 } 5337 5338 if (r->rt == PF_DUPTO) { 5339 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5340 if (s) 5341 PF_STATE_UNLOCK(s); 5342 return; 5343 } 5344 } else { 5345 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5346 if (s) 5347 PF_STATE_UNLOCK(s); 5348 return; 5349 } 5350 m0 = *m; 5351 } 5352 5353 ip6 = mtod(m0, struct ip6_hdr *); 5354 5355 bzero(&dst, sizeof(dst)); 5356 dst.sin6_family = AF_INET6; 5357 dst.sin6_len = sizeof(dst); 5358 dst.sin6_addr = ip6->ip6_dst; 5359 5360 /* Cheat. XXX why only in the v6 case??? */ 5361 if (r->rt == PF_FASTROUTE) { 5362 if (s) 5363 PF_STATE_UNLOCK(s); 5364 m0->m_flags |= M_SKIP_FIREWALL; 5365 ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL); 5366 return; 5367 } 5368 5369 if (TAILQ_EMPTY(&r->rpool.list)) { 5370 DPFPRINTF(PF_DEBUG_URGENT, 5371 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5372 goto bad_locked; 5373 } 5374 if (s == NULL) { 5375 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5376 &naddr, NULL, &sn); 5377 if (!PF_AZERO(&naddr, AF_INET6)) 5378 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5379 &naddr, AF_INET6); 5380 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5381 } else { 5382 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5383 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5384 &s->rt_addr, AF_INET6); 5385 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5386 } 5387 5388 if (s) 5389 PF_STATE_UNLOCK(s); 5390 5391 if (ifp == NULL) 5392 goto bad; 5393 5394 if (oifp != ifp) { 5395 if (pf_test6(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5396 goto bad; 5397 else if (m0 == NULL) 5398 goto done; 5399 if (m0->m_len < sizeof(struct ip6_hdr)) { 5400 DPFPRINTF(PF_DEBUG_URGENT, 5401 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5402 __func__)); 5403 goto bad; 5404 } 5405 ip6 = mtod(m0, struct ip6_hdr *); 5406 } 5407 5408 if (ifp->if_flags & IFF_LOOPBACK) 5409 m0->m_flags |= M_SKIP_FIREWALL; 5410 5411 /* 5412 * If the packet is too large for the outgoing interface, 5413 * send back an icmp6 error. 5414 */ 5415 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5416 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5417 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5418 nd6_output(ifp, ifp, m0, &dst, NULL); 5419 else { 5420 in6_ifstat_inc(ifp, ifs6_in_toobig); 5421 if (r->rt != PF_DUPTO) 5422 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5423 else 5424 goto bad; 5425 } 5426 5427 done: 5428 if (r->rt != PF_DUPTO) 5429 *m = NULL; 5430 return; 5431 5432 bad_locked: 5433 if (s) 5434 PF_STATE_UNLOCK(s); 5435 bad: 5436 m_freem(m0); 5437 goto done; 5438 } 5439 #endif /* INET6 */ 5440 5441 /* 5442 * FreeBSD supports cksum offloads for the following drivers. 5443 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5444 * ti(4), txp(4), xl(4) 5445 * 5446 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5447 * network driver performed cksum including pseudo header, need to verify 5448 * csum_data 5449 * CSUM_DATA_VALID : 5450 * network driver performed cksum, needs to additional pseudo header 5451 * cksum computation with partial csum_data(i.e. lack of H/W support for 5452 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5453 * 5454 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5455 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5456 * TCP/UDP layer. 5457 * Also, set csum_data to 0xffff to force cksum validation. 5458 */ 5459 static int 5460 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5461 { 5462 u_int16_t sum = 0; 5463 int hw_assist = 0; 5464 struct ip *ip; 5465 5466 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5467 return (1); 5468 if (m->m_pkthdr.len < off + len) 5469 return (1); 5470 5471 switch (p) { 5472 case IPPROTO_TCP: 5473 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5474 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5475 sum = m->m_pkthdr.csum_data; 5476 } else { 5477 ip = mtod(m, struct ip *); 5478 sum = in_pseudo(ip->ip_src.s_addr, 5479 ip->ip_dst.s_addr, htonl((u_short)len + 5480 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5481 } 5482 sum ^= 0xffff; 5483 ++hw_assist; 5484 } 5485 break; 5486 case IPPROTO_UDP: 5487 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5488 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5489 sum = m->m_pkthdr.csum_data; 5490 } else { 5491 ip = mtod(m, struct ip *); 5492 sum = in_pseudo(ip->ip_src.s_addr, 5493 ip->ip_dst.s_addr, htonl((u_short)len + 5494 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5495 } 5496 sum ^= 0xffff; 5497 ++hw_assist; 5498 } 5499 break; 5500 case IPPROTO_ICMP: 5501 #ifdef INET6 5502 case IPPROTO_ICMPV6: 5503 #endif /* INET6 */ 5504 break; 5505 default: 5506 return (1); 5507 } 5508 5509 if (!hw_assist) { 5510 switch (af) { 5511 case AF_INET: 5512 if (p == IPPROTO_ICMP) { 5513 if (m->m_len < off) 5514 return (1); 5515 m->m_data += off; 5516 m->m_len -= off; 5517 sum = in_cksum(m, len); 5518 m->m_data -= off; 5519 m->m_len += off; 5520 } else { 5521 if (m->m_len < sizeof(struct ip)) 5522 return (1); 5523 sum = in4_cksum(m, p, off, len); 5524 } 5525 break; 5526 #ifdef INET6 5527 case AF_INET6: 5528 if (m->m_len < sizeof(struct ip6_hdr)) 5529 return (1); 5530 sum = in6_cksum(m, p, off, len); 5531 break; 5532 #endif /* INET6 */ 5533 default: 5534 return (1); 5535 } 5536 } 5537 if (sum) { 5538 switch (p) { 5539 case IPPROTO_TCP: 5540 { 5541 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5542 break; 5543 } 5544 case IPPROTO_UDP: 5545 { 5546 KMOD_UDPSTAT_INC(udps_badsum); 5547 break; 5548 } 5549 #ifdef INET 5550 case IPPROTO_ICMP: 5551 { 5552 KMOD_ICMPSTAT_INC(icps_checksum); 5553 break; 5554 } 5555 #endif 5556 #ifdef INET6 5557 case IPPROTO_ICMPV6: 5558 { 5559 KMOD_ICMP6STAT_INC(icp6s_checksum); 5560 break; 5561 } 5562 #endif /* INET6 */ 5563 } 5564 return (1); 5565 } else { 5566 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5567 m->m_pkthdr.csum_flags |= 5568 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5569 m->m_pkthdr.csum_data = 0xffff; 5570 } 5571 } 5572 return (0); 5573 } 5574 5575 5576 #ifdef INET 5577 int 5578 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5579 { 5580 struct pfi_kif *kif; 5581 u_short action, reason = 0, log = 0; 5582 struct mbuf *m = *m0; 5583 struct ip *h = NULL; 5584 struct m_tag *ipfwtag; 5585 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5586 struct pf_state *s = NULL; 5587 struct pf_ruleset *ruleset = NULL; 5588 struct pf_pdesc pd; 5589 int off, dirndx, pqid = 0; 5590 5591 M_ASSERTPKTHDR(m); 5592 5593 if (!V_pf_status.running) 5594 return (PF_PASS); 5595 5596 memset(&pd, 0, sizeof(pd)); 5597 5598 kif = (struct pfi_kif *)ifp->if_pf_kif; 5599 5600 if (kif == NULL) { 5601 DPFPRINTF(PF_DEBUG_URGENT, 5602 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5603 return (PF_DROP); 5604 } 5605 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5606 return (PF_PASS); 5607 5608 if (m->m_flags & M_SKIP_FIREWALL) 5609 return (PF_PASS); 5610 5611 pd.pf_mtag = pf_find_mtag(m); 5612 5613 PF_RULES_RLOCK(); 5614 5615 if (ip_divert_ptr != NULL && 5616 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5617 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5618 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5619 if (pd.pf_mtag == NULL && 5620 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5621 action = PF_DROP; 5622 goto done; 5623 } 5624 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5625 m_tag_delete(m, ipfwtag); 5626 } 5627 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5628 m->m_flags |= M_FASTFWD_OURS; 5629 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5630 } 5631 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5632 /* We do IP header normalization and packet reassembly here */ 5633 action = PF_DROP; 5634 goto done; 5635 } 5636 m = *m0; /* pf_normalize messes with m0 */ 5637 h = mtod(m, struct ip *); 5638 5639 off = h->ip_hl << 2; 5640 if (off < (int)sizeof(struct ip)) { 5641 action = PF_DROP; 5642 REASON_SET(&reason, PFRES_SHORT); 5643 log = 1; 5644 goto done; 5645 } 5646 5647 pd.src = (struct pf_addr *)&h->ip_src; 5648 pd.dst = (struct pf_addr *)&h->ip_dst; 5649 pd.sport = pd.dport = NULL; 5650 pd.ip_sum = &h->ip_sum; 5651 pd.proto_sum = NULL; 5652 pd.proto = h->ip_p; 5653 pd.dir = dir; 5654 pd.sidx = (dir == PF_IN) ? 0 : 1; 5655 pd.didx = (dir == PF_IN) ? 1 : 0; 5656 pd.af = AF_INET; 5657 pd.tos = h->ip_tos; 5658 pd.tot_len = ntohs(h->ip_len); 5659 5660 /* handle fragments that didn't get reassembled by normalization */ 5661 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5662 action = pf_test_fragment(&r, dir, kif, m, h, 5663 &pd, &a, &ruleset); 5664 goto done; 5665 } 5666 5667 switch (h->ip_p) { 5668 5669 case IPPROTO_TCP: { 5670 struct tcphdr th; 5671 5672 pd.hdr.tcp = &th; 5673 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5674 &action, &reason, AF_INET)) { 5675 log = action != PF_PASS; 5676 goto done; 5677 } 5678 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5679 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5680 pqid = 1; 5681 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5682 if (action == PF_DROP) 5683 goto done; 5684 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5685 &reason); 5686 if (action == PF_PASS) { 5687 if (pfsync_update_state_ptr != NULL) 5688 pfsync_update_state_ptr(s); 5689 r = s->rule.ptr; 5690 a = s->anchor.ptr; 5691 log = s->log; 5692 } else if (s == NULL) 5693 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5694 &a, &ruleset, inp); 5695 break; 5696 } 5697 5698 case IPPROTO_UDP: { 5699 struct udphdr uh; 5700 5701 pd.hdr.udp = &uh; 5702 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5703 &action, &reason, AF_INET)) { 5704 log = action != PF_PASS; 5705 goto done; 5706 } 5707 if (uh.uh_dport == 0 || 5708 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5709 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5710 action = PF_DROP; 5711 REASON_SET(&reason, PFRES_SHORT); 5712 goto done; 5713 } 5714 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5715 if (action == PF_PASS) { 5716 if (pfsync_update_state_ptr != NULL) 5717 pfsync_update_state_ptr(s); 5718 r = s->rule.ptr; 5719 a = s->anchor.ptr; 5720 log = s->log; 5721 } else if (s == NULL) 5722 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5723 &a, &ruleset, inp); 5724 break; 5725 } 5726 5727 case IPPROTO_ICMP: { 5728 struct icmp ih; 5729 5730 pd.hdr.icmp = &ih; 5731 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 5732 &action, &reason, AF_INET)) { 5733 log = action != PF_PASS; 5734 goto done; 5735 } 5736 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 5737 &reason); 5738 if (action == PF_PASS) { 5739 if (pfsync_update_state_ptr != NULL) 5740 pfsync_update_state_ptr(s); 5741 r = s->rule.ptr; 5742 a = s->anchor.ptr; 5743 log = s->log; 5744 } else if (s == NULL) 5745 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5746 &a, &ruleset, inp); 5747 break; 5748 } 5749 5750 #ifdef INET6 5751 case IPPROTO_ICMPV6: { 5752 action = PF_DROP; 5753 DPFPRINTF(PF_DEBUG_MISC, 5754 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 5755 goto done; 5756 } 5757 #endif 5758 5759 default: 5760 action = pf_test_state_other(&s, dir, kif, m, &pd); 5761 if (action == PF_PASS) { 5762 if (pfsync_update_state_ptr != NULL) 5763 pfsync_update_state_ptr(s); 5764 r = s->rule.ptr; 5765 a = s->anchor.ptr; 5766 log = s->log; 5767 } else if (s == NULL) 5768 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5769 &a, &ruleset, inp); 5770 break; 5771 } 5772 5773 done: 5774 PF_RULES_RUNLOCK(); 5775 if (action == PF_PASS && h->ip_hl > 5 && 5776 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 5777 action = PF_DROP; 5778 REASON_SET(&reason, PFRES_IPOPTIONS); 5779 log = 1; 5780 DPFPRINTF(PF_DEBUG_MISC, 5781 ("pf: dropping packet with ip options\n")); 5782 } 5783 5784 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 5785 action = PF_DROP; 5786 REASON_SET(&reason, PFRES_MEMORY); 5787 } 5788 if (r->rtableid >= 0) 5789 M_SETFIB(m, r->rtableid); 5790 5791 #ifdef ALTQ 5792 if (action == PF_PASS && r->qid) { 5793 if (pd.pf_mtag == NULL && 5794 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5795 action = PF_DROP; 5796 REASON_SET(&reason, PFRES_MEMORY); 5797 } 5798 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 5799 pd.pf_mtag->qid = r->pqid; 5800 else 5801 pd.pf_mtag->qid = r->qid; 5802 /* add hints for ecn */ 5803 pd.pf_mtag->hdr = h; 5804 5805 } 5806 #endif /* ALTQ */ 5807 5808 /* 5809 * connections redirected to loopback should not match sockets 5810 * bound specifically to loopback due to security implications, 5811 * see tcp_input() and in_pcblookup_listen(). 5812 */ 5813 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 5814 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 5815 (s->nat_rule.ptr->action == PF_RDR || 5816 s->nat_rule.ptr->action == PF_BINAT) && 5817 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 5818 m->m_flags |= M_SKIP_FIREWALL; 5819 5820 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 5821 !PACKET_LOOPED(&pd)) { 5822 5823 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 5824 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 5825 if (ipfwtag != NULL) { 5826 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 5827 ntohs(r->divert.port); 5828 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 5829 5830 if (s) 5831 PF_STATE_UNLOCK(s); 5832 5833 m_tag_prepend(m, ipfwtag); 5834 if (m->m_flags & M_FASTFWD_OURS) { 5835 if (pd.pf_mtag == NULL && 5836 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5837 action = PF_DROP; 5838 REASON_SET(&reason, PFRES_MEMORY); 5839 log = 1; 5840 DPFPRINTF(PF_DEBUG_MISC, 5841 ("pf: failed to allocate tag\n")); 5842 } 5843 pd.pf_mtag->flags |= PF_FASTFWD_OURS_PRESENT; 5844 m->m_flags &= ~M_FASTFWD_OURS; 5845 } 5846 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 5847 *m0 = NULL; 5848 5849 return (action); 5850 } else { 5851 /* XXX: ipfw has the same behaviour! */ 5852 action = PF_DROP; 5853 REASON_SET(&reason, PFRES_MEMORY); 5854 log = 1; 5855 DPFPRINTF(PF_DEBUG_MISC, 5856 ("pf: failed to allocate divert tag\n")); 5857 } 5858 } 5859 5860 if (log) { 5861 struct pf_rule *lr; 5862 5863 if (s != NULL && s->nat_rule.ptr != NULL && 5864 s->nat_rule.ptr->log & PF_LOG_ALL) 5865 lr = s->nat_rule.ptr; 5866 else 5867 lr = r; 5868 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 5869 (s == NULL)); 5870 } 5871 5872 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 5873 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 5874 5875 if (action == PF_PASS || r->action == PF_DROP) { 5876 dirndx = (dir == PF_OUT); 5877 r->packets[dirndx]++; 5878 r->bytes[dirndx] += pd.tot_len; 5879 if (a != NULL) { 5880 a->packets[dirndx]++; 5881 a->bytes[dirndx] += pd.tot_len; 5882 } 5883 if (s != NULL) { 5884 if (s->nat_rule.ptr != NULL) { 5885 s->nat_rule.ptr->packets[dirndx]++; 5886 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 5887 } 5888 if (s->src_node != NULL) { 5889 s->src_node->packets[dirndx]++; 5890 s->src_node->bytes[dirndx] += pd.tot_len; 5891 } 5892 if (s->nat_src_node != NULL) { 5893 s->nat_src_node->packets[dirndx]++; 5894 s->nat_src_node->bytes[dirndx] += pd.tot_len; 5895 } 5896 dirndx = (dir == s->direction) ? 0 : 1; 5897 s->packets[dirndx]++; 5898 s->bytes[dirndx] += pd.tot_len; 5899 } 5900 tr = r; 5901 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 5902 if (nr != NULL && r == &V_pf_default_rule) 5903 tr = nr; 5904 if (tr->src.addr.type == PF_ADDR_TABLE) 5905 pfr_update_stats(tr->src.addr.p.tbl, 5906 (s == NULL) ? pd.src : 5907 &s->key[(s->direction == PF_IN)]-> 5908 addr[(s->direction == PF_OUT)], 5909 pd.af, pd.tot_len, dir == PF_OUT, 5910 r->action == PF_PASS, tr->src.neg); 5911 if (tr->dst.addr.type == PF_ADDR_TABLE) 5912 pfr_update_stats(tr->dst.addr.p.tbl, 5913 (s == NULL) ? pd.dst : 5914 &s->key[(s->direction == PF_IN)]-> 5915 addr[(s->direction == PF_IN)], 5916 pd.af, pd.tot_len, dir == PF_OUT, 5917 r->action == PF_PASS, tr->dst.neg); 5918 } 5919 5920 switch (action) { 5921 case PF_SYNPROXY_DROP: 5922 m_freem(*m0); 5923 case PF_DEFER: 5924 *m0 = NULL; 5925 action = PF_PASS; 5926 break; 5927 default: 5928 /* pf_route() returns unlocked. */ 5929 if (r->rt) { 5930 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 5931 return (action); 5932 } 5933 break; 5934 } 5935 if (s) 5936 PF_STATE_UNLOCK(s); 5937 5938 return (action); 5939 } 5940 #endif /* INET */ 5941 5942 #ifdef INET6 5943 int 5944 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5945 { 5946 struct pfi_kif *kif; 5947 u_short action, reason = 0, log = 0; 5948 struct mbuf *m = *m0, *n = NULL; 5949 struct ip6_hdr *h = NULL; 5950 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5951 struct pf_state *s = NULL; 5952 struct pf_ruleset *ruleset = NULL; 5953 struct pf_pdesc pd; 5954 int off, terminal = 0, dirndx, rh_cnt = 0; 5955 5956 M_ASSERTPKTHDR(m); 5957 5958 if (!V_pf_status.running) 5959 return (PF_PASS); 5960 5961 memset(&pd, 0, sizeof(pd)); 5962 pd.pf_mtag = pf_find_mtag(m); 5963 5964 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 5965 return (PF_PASS); 5966 5967 kif = (struct pfi_kif *)ifp->if_pf_kif; 5968 if (kif == NULL) { 5969 DPFPRINTF(PF_DEBUG_URGENT, 5970 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 5971 return (PF_DROP); 5972 } 5973 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5974 return (PF_PASS); 5975 5976 PF_RULES_RLOCK(); 5977 5978 /* We do IP header normalization and packet reassembly here */ 5979 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 5980 action = PF_DROP; 5981 goto done; 5982 } 5983 m = *m0; /* pf_normalize messes with m0 */ 5984 h = mtod(m, struct ip6_hdr *); 5985 5986 #if 1 5987 /* 5988 * we do not support jumbogram yet. if we keep going, zero ip6_plen 5989 * will do something bad, so drop the packet for now. 5990 */ 5991 if (htons(h->ip6_plen) == 0) { 5992 action = PF_DROP; 5993 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 5994 goto done; 5995 } 5996 #endif 5997 5998 pd.src = (struct pf_addr *)&h->ip6_src; 5999 pd.dst = (struct pf_addr *)&h->ip6_dst; 6000 pd.sport = pd.dport = NULL; 6001 pd.ip_sum = NULL; 6002 pd.proto_sum = NULL; 6003 pd.dir = dir; 6004 pd.sidx = (dir == PF_IN) ? 0 : 1; 6005 pd.didx = (dir == PF_IN) ? 1 : 0; 6006 pd.af = AF_INET6; 6007 pd.tos = 0; 6008 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6009 6010 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6011 pd.proto = h->ip6_nxt; 6012 do { 6013 switch (pd.proto) { 6014 case IPPROTO_FRAGMENT: 6015 action = pf_test_fragment(&r, dir, kif, m, h, 6016 &pd, &a, &ruleset); 6017 if (action == PF_DROP) 6018 REASON_SET(&reason, PFRES_FRAG); 6019 goto done; 6020 case IPPROTO_ROUTING: { 6021 struct ip6_rthdr rthdr; 6022 6023 if (rh_cnt++) { 6024 DPFPRINTF(PF_DEBUG_MISC, 6025 ("pf: IPv6 more than one rthdr\n")); 6026 action = PF_DROP; 6027 REASON_SET(&reason, PFRES_IPOPTIONS); 6028 log = 1; 6029 goto done; 6030 } 6031 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6032 &reason, pd.af)) { 6033 DPFPRINTF(PF_DEBUG_MISC, 6034 ("pf: IPv6 short rthdr\n")); 6035 action = PF_DROP; 6036 REASON_SET(&reason, PFRES_SHORT); 6037 log = 1; 6038 goto done; 6039 } 6040 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6041 DPFPRINTF(PF_DEBUG_MISC, 6042 ("pf: IPv6 rthdr0\n")); 6043 action = PF_DROP; 6044 REASON_SET(&reason, PFRES_IPOPTIONS); 6045 log = 1; 6046 goto done; 6047 } 6048 /* FALLTHROUGH */ 6049 } 6050 case IPPROTO_AH: 6051 case IPPROTO_HOPOPTS: 6052 case IPPROTO_DSTOPTS: { 6053 /* get next header and header length */ 6054 struct ip6_ext opt6; 6055 6056 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6057 NULL, &reason, pd.af)) { 6058 DPFPRINTF(PF_DEBUG_MISC, 6059 ("pf: IPv6 short opt\n")); 6060 action = PF_DROP; 6061 log = 1; 6062 goto done; 6063 } 6064 if (pd.proto == IPPROTO_AH) 6065 off += (opt6.ip6e_len + 2) * 4; 6066 else 6067 off += (opt6.ip6e_len + 1) * 8; 6068 pd.proto = opt6.ip6e_nxt; 6069 /* goto the next header */ 6070 break; 6071 } 6072 default: 6073 terminal++; 6074 break; 6075 } 6076 } while (!terminal); 6077 6078 /* if there's no routing header, use unmodified mbuf for checksumming */ 6079 if (!n) 6080 n = m; 6081 6082 switch (pd.proto) { 6083 6084 case IPPROTO_TCP: { 6085 struct tcphdr th; 6086 6087 pd.hdr.tcp = &th; 6088 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6089 &action, &reason, AF_INET6)) { 6090 log = action != PF_PASS; 6091 goto done; 6092 } 6093 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6094 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6095 if (action == PF_DROP) 6096 goto done; 6097 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6098 &reason); 6099 if (action == PF_PASS) { 6100 if (pfsync_update_state_ptr != NULL) 6101 pfsync_update_state_ptr(s); 6102 r = s->rule.ptr; 6103 a = s->anchor.ptr; 6104 log = s->log; 6105 } else if (s == NULL) 6106 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6107 &a, &ruleset, inp); 6108 break; 6109 } 6110 6111 case IPPROTO_UDP: { 6112 struct udphdr uh; 6113 6114 pd.hdr.udp = &uh; 6115 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6116 &action, &reason, AF_INET6)) { 6117 log = action != PF_PASS; 6118 goto done; 6119 } 6120 if (uh.uh_dport == 0 || 6121 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6122 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6123 action = PF_DROP; 6124 REASON_SET(&reason, PFRES_SHORT); 6125 goto done; 6126 } 6127 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6128 if (action == PF_PASS) { 6129 if (pfsync_update_state_ptr != NULL) 6130 pfsync_update_state_ptr(s); 6131 r = s->rule.ptr; 6132 a = s->anchor.ptr; 6133 log = s->log; 6134 } else if (s == NULL) 6135 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6136 &a, &ruleset, inp); 6137 break; 6138 } 6139 6140 case IPPROTO_ICMP: { 6141 action = PF_DROP; 6142 DPFPRINTF(PF_DEBUG_MISC, 6143 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6144 goto done; 6145 } 6146 6147 case IPPROTO_ICMPV6: { 6148 struct icmp6_hdr ih; 6149 6150 pd.hdr.icmp6 = &ih; 6151 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6152 &action, &reason, AF_INET6)) { 6153 log = action != PF_PASS; 6154 goto done; 6155 } 6156 action = pf_test_state_icmp(&s, dir, kif, 6157 m, off, h, &pd, &reason); 6158 if (action == PF_PASS) { 6159 if (pfsync_update_state_ptr != NULL) 6160 pfsync_update_state_ptr(s); 6161 r = s->rule.ptr; 6162 a = s->anchor.ptr; 6163 log = s->log; 6164 } else if (s == NULL) 6165 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6166 &a, &ruleset, inp); 6167 break; 6168 } 6169 6170 default: 6171 action = pf_test_state_other(&s, dir, kif, m, &pd); 6172 if (action == PF_PASS) { 6173 if (pfsync_update_state_ptr != NULL) 6174 pfsync_update_state_ptr(s); 6175 r = s->rule.ptr; 6176 a = s->anchor.ptr; 6177 log = s->log; 6178 } else if (s == NULL) 6179 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6180 &a, &ruleset, inp); 6181 break; 6182 } 6183 6184 done: 6185 PF_RULES_RUNLOCK(); 6186 if (n != m) { 6187 m_freem(n); 6188 n = NULL; 6189 } 6190 6191 /* handle dangerous IPv6 extension headers. */ 6192 if (action == PF_PASS && rh_cnt && 6193 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6194 action = PF_DROP; 6195 REASON_SET(&reason, PFRES_IPOPTIONS); 6196 log = 1; 6197 DPFPRINTF(PF_DEBUG_MISC, 6198 ("pf: dropping packet with dangerous v6 headers\n")); 6199 } 6200 6201 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6202 action = PF_DROP; 6203 REASON_SET(&reason, PFRES_MEMORY); 6204 } 6205 if (r->rtableid >= 0) 6206 M_SETFIB(m, r->rtableid); 6207 6208 #ifdef ALTQ 6209 if (action == PF_PASS && r->qid) { 6210 if (pd.pf_mtag == NULL && 6211 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6212 action = PF_DROP; 6213 REASON_SET(&reason, PFRES_MEMORY); 6214 } 6215 if (pd.tos & IPTOS_LOWDELAY) 6216 pd.pf_mtag->qid = r->pqid; 6217 else 6218 pd.pf_mtag->qid = r->qid; 6219 /* add hints for ecn */ 6220 pd.pf_mtag->hdr = h; 6221 } 6222 #endif /* ALTQ */ 6223 6224 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6225 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6226 (s->nat_rule.ptr->action == PF_RDR || 6227 s->nat_rule.ptr->action == PF_BINAT) && 6228 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6229 m->m_flags |= M_SKIP_FIREWALL; 6230 6231 /* XXX: Anybody working on it?! */ 6232 if (r->divert.port) 6233 printf("pf: divert(9) is not supported for IPv6\n"); 6234 6235 if (log) { 6236 struct pf_rule *lr; 6237 6238 if (s != NULL && s->nat_rule.ptr != NULL && 6239 s->nat_rule.ptr->log & PF_LOG_ALL) 6240 lr = s->nat_rule.ptr; 6241 else 6242 lr = r; 6243 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6244 &pd, (s == NULL)); 6245 } 6246 6247 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6248 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6249 6250 if (action == PF_PASS || r->action == PF_DROP) { 6251 dirndx = (dir == PF_OUT); 6252 r->packets[dirndx]++; 6253 r->bytes[dirndx] += pd.tot_len; 6254 if (a != NULL) { 6255 a->packets[dirndx]++; 6256 a->bytes[dirndx] += pd.tot_len; 6257 } 6258 if (s != NULL) { 6259 if (s->nat_rule.ptr != NULL) { 6260 s->nat_rule.ptr->packets[dirndx]++; 6261 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6262 } 6263 if (s->src_node != NULL) { 6264 s->src_node->packets[dirndx]++; 6265 s->src_node->bytes[dirndx] += pd.tot_len; 6266 } 6267 if (s->nat_src_node != NULL) { 6268 s->nat_src_node->packets[dirndx]++; 6269 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6270 } 6271 dirndx = (dir == s->direction) ? 0 : 1; 6272 s->packets[dirndx]++; 6273 s->bytes[dirndx] += pd.tot_len; 6274 } 6275 tr = r; 6276 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6277 if (nr != NULL && r == &V_pf_default_rule) 6278 tr = nr; 6279 if (tr->src.addr.type == PF_ADDR_TABLE) 6280 pfr_update_stats(tr->src.addr.p.tbl, 6281 (s == NULL) ? pd.src : 6282 &s->key[(s->direction == PF_IN)]->addr[0], 6283 pd.af, pd.tot_len, dir == PF_OUT, 6284 r->action == PF_PASS, tr->src.neg); 6285 if (tr->dst.addr.type == PF_ADDR_TABLE) 6286 pfr_update_stats(tr->dst.addr.p.tbl, 6287 (s == NULL) ? pd.dst : 6288 &s->key[(s->direction == PF_IN)]->addr[1], 6289 pd.af, pd.tot_len, dir == PF_OUT, 6290 r->action == PF_PASS, tr->dst.neg); 6291 } 6292 6293 switch (action) { 6294 case PF_SYNPROXY_DROP: 6295 m_freem(*m0); 6296 case PF_DEFER: 6297 *m0 = NULL; 6298 action = PF_PASS; 6299 break; 6300 default: 6301 /* pf_route6() returns unlocked. */ 6302 if (r->rt) { 6303 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6304 return (action); 6305 } 6306 break; 6307 } 6308 6309 if (s) 6310 PF_STATE_UNLOCK(s); 6311 6312 return (action); 6313 } 6314 #endif /* INET6 */ 6315