1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 #include "opt_bpf.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_pf.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/gsb_crc32.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/sdt.h> 61 #include <sys/socket.h> 62 #include <sys/sysctl.h> 63 #include <sys/taskqueue.h> 64 #include <sys/ucred.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_private.h> 69 #include <net/if_types.h> 70 #include <net/if_vlan_var.h> 71 #include <net/route.h> 72 #include <net/route/nhop.h> 73 #include <net/vnet.h> 74 75 #include <net/pfil.h> 76 #include <net/pfvar.h> 77 #include <net/if_pflog.h> 78 #include <net/if_pfsync.h> 79 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_var.h> 82 #include <netinet/in_fib.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_fw.h> 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp.h> 89 #include <netinet/tcp_fsm.h> 90 #include <netinet/tcp_seq.h> 91 #include <netinet/tcp_timer.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet/udp.h> 94 #include <netinet/udp_var.h> 95 96 /* dummynet */ 97 #include <netinet/ip_dummynet.h> 98 #include <netinet/ip_fw.h> 99 #include <netpfil/ipfw/dn_heap.h> 100 #include <netpfil/ipfw/ip_fw_private.h> 101 #include <netpfil/ipfw/ip_dn_private.h> 102 103 #ifdef INET6 104 #include <netinet/ip6.h> 105 #include <netinet/icmp6.h> 106 #include <netinet6/nd6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet6/in6_pcb.h> 109 #include <netinet6/in6_fib.h> 110 #include <netinet6/scope6_var.h> 111 #endif /* INET6 */ 112 113 #include <netinet/sctp_header.h> 114 #include <netinet/sctp_crc32.h> 115 116 #include <machine/in_cksum.h> 117 #include <security/mac/mac_framework.h> 118 119 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 120 121 SDT_PROVIDER_DEFINE(pf); 122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 123 "struct pf_kstate *"); 124 SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", 125 "struct pf_kstate *"); 126 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 127 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 128 "struct pf_kstate *"); 129 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *", 130 "struct pfi_kkif *"); 131 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *", 132 "struct pf_krule *", "struct mbuf *", "int"); 133 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t", 134 "struct pf_sctp_source *"); 135 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t", 136 "struct pf_kstate *", "struct pf_sctp_source *"); 137 138 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 139 "struct mbuf *"); 140 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 141 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 142 "int", "struct pf_keth_rule *", "char *"); 143 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 144 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 145 "int", "struct pf_keth_rule *"); 146 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t"); 147 148 /* 149 * Global variables 150 */ 151 152 /* state tables */ 153 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 154 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 155 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 156 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 157 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 158 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 159 VNET_DEFINE(struct pf_kstatus, pf_status); 160 161 VNET_DEFINE(u_int32_t, ticket_altqs_active); 162 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 163 VNET_DEFINE(int, altqs_inactive_open); 164 VNET_DEFINE(u_int32_t, ticket_pabuf); 165 166 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 167 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 168 VNET_DEFINE(u_char, pf_tcp_secret[16]); 169 #define V_pf_tcp_secret VNET(pf_tcp_secret) 170 VNET_DEFINE(int, pf_tcp_secret_init); 171 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 172 VNET_DEFINE(int, pf_tcp_iss_off); 173 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 174 VNET_DECLARE(int, pf_vnet_active); 175 #define V_pf_vnet_active VNET(pf_vnet_active) 176 177 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 178 #define V_pf_purge_idx VNET(pf_purge_idx) 179 180 #ifdef PF_WANT_32_TO_64_COUNTER 181 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 182 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 183 184 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 185 VNET_DEFINE(size_t, pf_allrulecount); 186 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 187 #endif 188 189 struct pf_sctp_endpoint; 190 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint); 191 struct pf_sctp_source { 192 sa_family_t af; 193 struct pf_addr addr; 194 TAILQ_ENTRY(pf_sctp_source) entry; 195 }; 196 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source); 197 struct pf_sctp_endpoint 198 { 199 uint32_t v_tag; 200 struct pf_sctp_sources sources; 201 RB_ENTRY(pf_sctp_endpoint) entry; 202 }; 203 static int 204 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b) 205 { 206 return (a->v_tag - b->v_tag); 207 } 208 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 209 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 210 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints); 211 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints) 212 static struct mtx_padalign pf_sctp_endpoints_mtx; 213 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF); 214 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx) 215 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx) 216 217 /* 218 * Queue for pf_intr() sends. 219 */ 220 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 221 struct pf_send_entry { 222 STAILQ_ENTRY(pf_send_entry) pfse_next; 223 struct mbuf *pfse_m; 224 enum { 225 PFSE_IP, 226 PFSE_IP6, 227 PFSE_ICMP, 228 PFSE_ICMP6, 229 } pfse_type; 230 struct { 231 int type; 232 int code; 233 int mtu; 234 } icmpopts; 235 }; 236 237 STAILQ_HEAD(pf_send_head, pf_send_entry); 238 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 239 #define V_pf_sendqueue VNET(pf_sendqueue) 240 241 static struct mtx_padalign pf_sendqueue_mtx; 242 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 243 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 244 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 245 246 /* 247 * Queue for pf_overload_task() tasks. 248 */ 249 struct pf_overload_entry { 250 SLIST_ENTRY(pf_overload_entry) next; 251 struct pf_addr addr; 252 sa_family_t af; 253 uint8_t dir; 254 struct pf_krule *rule; 255 }; 256 257 SLIST_HEAD(pf_overload_head, pf_overload_entry); 258 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 259 #define V_pf_overloadqueue VNET(pf_overloadqueue) 260 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 261 #define V_pf_overloadtask VNET(pf_overloadtask) 262 263 static struct mtx_padalign pf_overloadqueue_mtx; 264 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 265 "pf overload/flush queue", MTX_DEF); 266 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 267 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 268 269 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 270 struct mtx_padalign pf_unlnkdrules_mtx; 271 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 272 MTX_DEF); 273 274 struct sx pf_config_lock; 275 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 276 277 struct mtx_padalign pf_table_stats_lock; 278 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 279 MTX_DEF); 280 281 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 282 #define V_pf_sources_z VNET(pf_sources_z) 283 uma_zone_t pf_mtag_z; 284 VNET_DEFINE(uma_zone_t, pf_state_z); 285 VNET_DEFINE(uma_zone_t, pf_state_key_z); 286 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z); 287 288 VNET_DEFINE(struct unrhdr64, pf_stateid); 289 290 static void pf_src_tree_remove_state(struct pf_kstate *); 291 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 292 u_int32_t); 293 static void pf_add_threshold(struct pf_threshold *); 294 static int pf_check_threshold(struct pf_threshold *); 295 296 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 297 u_int16_t *, u_int16_t *, struct pf_addr *, 298 u_int16_t, u_int8_t, sa_family_t); 299 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 300 struct tcphdr *, struct pf_state_peer *); 301 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *, 302 int *, u_int16_t *, u_int16_t *); 303 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 304 struct pf_addr *, struct pf_addr *, u_int16_t, 305 u_int16_t *, u_int16_t *, u_int16_t *, 306 u_int16_t *, u_int8_t, sa_family_t); 307 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 308 sa_family_t, struct pf_krule *, int); 309 static void pf_detach_state(struct pf_kstate *); 310 static int pf_state_key_attach(struct pf_state_key *, 311 struct pf_state_key *, struct pf_kstate *); 312 static void pf_state_key_detach(struct pf_kstate *, int); 313 static int pf_state_key_ctor(void *, int, void *, int); 314 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 315 static __inline void pf_dummynet_flag_remove(struct mbuf *m, 316 struct pf_mtag *pf_mtag); 317 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *, 318 struct pf_krule *, struct mbuf **); 319 static int pf_dummynet_route(struct pf_pdesc *, 320 struct pf_kstate *, struct pf_krule *, 321 struct ifnet *, struct sockaddr *, struct mbuf **); 322 static int pf_test_eth_rule(int, struct pfi_kkif *, 323 struct mbuf **); 324 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 325 struct pfi_kkif *, struct mbuf *, int, 326 struct pf_pdesc *, struct pf_krule **, 327 struct pf_kruleset **, struct inpcb *); 328 static int pf_create_state(struct pf_krule *, struct pf_krule *, 329 struct pf_krule *, struct pf_pdesc *, 330 struct pf_ksrc_node *, struct pf_state_key *, 331 struct pf_state_key *, struct mbuf *, int, 332 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 333 struct pf_kstate **, int, u_int16_t, u_int16_t, 334 int, struct pf_krule_slist *, struct pf_udp_mapping *); 335 static int pf_state_key_addr_setup(struct pf_pdesc *, struct mbuf *, 336 int, struct pf_state_key_cmp *, int, struct pf_addr *, 337 int, struct pf_addr *, int); 338 static int pf_test_fragment(struct pf_krule **, struct pfi_kkif *, 339 struct mbuf *, void *, struct pf_pdesc *, 340 struct pf_krule **, struct pf_kruleset **); 341 static int pf_tcp_track_full(struct pf_kstate **, 342 struct pfi_kkif *, struct mbuf *, int, 343 struct pf_pdesc *, u_short *, int *); 344 static int pf_tcp_track_sloppy(struct pf_kstate **, 345 struct pf_pdesc *, u_short *); 346 static int pf_test_state_tcp(struct pf_kstate **, 347 struct pfi_kkif *, struct mbuf *, int, 348 void *, struct pf_pdesc *, u_short *); 349 static int pf_test_state_udp(struct pf_kstate **, 350 struct pfi_kkif *, struct mbuf *, int, 351 void *, struct pf_pdesc *); 352 int pf_icmp_state_lookup(struct pf_state_key_cmp *, 353 struct pf_pdesc *, struct pf_kstate **, struct mbuf *, 354 int, int, struct pfi_kkif *, u_int16_t, u_int16_t, 355 int, int *, int, int); 356 static int pf_test_state_icmp(struct pf_kstate **, 357 struct pfi_kkif *, struct mbuf *, int, 358 void *, struct pf_pdesc *, u_short *); 359 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *); 360 static void pf_sctp_multihome_delayed(struct pf_pdesc *, int, 361 struct pfi_kkif *, struct pf_kstate *, int); 362 static int pf_test_state_sctp(struct pf_kstate **, 363 struct pfi_kkif *, struct mbuf *, int, 364 void *, struct pf_pdesc *, u_short *); 365 static int pf_test_state_other(struct pf_kstate **, 366 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 367 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 368 int, u_int16_t); 369 static int pf_check_proto_cksum(struct mbuf *, int, int, 370 u_int8_t, sa_family_t); 371 static void pf_print_state_parts(struct pf_kstate *, 372 struct pf_state_key *, struct pf_state_key *); 373 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 374 bool, u_int8_t); 375 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 376 const struct pf_state_key_cmp *, u_int); 377 static int pf_src_connlimit(struct pf_kstate **); 378 static void pf_overload_task(void *v, int pending); 379 static u_short pf_insert_src_node(struct pf_ksrc_node **, 380 struct pf_krule *, struct pf_addr *, sa_family_t); 381 static u_int pf_purge_expired_states(u_int, int); 382 static void pf_purge_unlinked_rules(void); 383 static int pf_mtag_uminit(void *, int, int); 384 static void pf_mtag_free(struct m_tag *); 385 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 386 int, struct pf_state_key *); 387 #ifdef INET 388 static void pf_route(struct mbuf **, struct pf_krule *, 389 struct ifnet *, struct pf_kstate *, 390 struct pf_pdesc *, struct inpcb *); 391 #endif /* INET */ 392 #ifdef INET6 393 static void pf_change_a6(struct pf_addr *, u_int16_t *, 394 struct pf_addr *, u_int8_t); 395 static void pf_route6(struct mbuf **, struct pf_krule *, 396 struct ifnet *, struct pf_kstate *, 397 struct pf_pdesc *, struct inpcb *); 398 #endif /* INET6 */ 399 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 400 401 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 402 403 extern int pf_end_threads; 404 extern struct proc *pf_purge_proc; 405 406 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 407 408 enum { PF_ICMP_MULTI_NONE, PF_ICMP_MULTI_LINK }; 409 410 #define PACKET_UNDO_NAT(_m, _pd, _off, _s) \ 411 do { \ 412 struct pf_state_key *nk; \ 413 if ((pd->dir) == PF_OUT) \ 414 nk = (_s)->key[PF_SK_STACK]; \ 415 else \ 416 nk = (_s)->key[PF_SK_WIRE]; \ 417 pf_packet_rework_nat(_m, _pd, _off, nk); \ 418 } while (0) 419 420 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 421 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED) 422 423 #define STATE_LOOKUP(i, k, s, pd) \ 424 do { \ 425 (s) = pf_find_state((i), (k), (pd->dir)); \ 426 SDT_PROBE5(pf, ip, state, lookup, i, k, (pd->dir), pd, (s)); \ 427 if ((s) == NULL) \ 428 return (PF_DROP); \ 429 if (PACKET_LOOPED(pd)) \ 430 return (PF_PASS); \ 431 } while (0) 432 433 static struct pfi_kkif * 434 BOUND_IFACE(struct pf_kstate *st, struct pfi_kkif *k) 435 { 436 SDT_PROBE2(pf, ip, , bound_iface, st, k); 437 438 /* Floating unless otherwise specified. */ 439 if (! (st->rule.ptr->rule_flag & PFRULE_IFBOUND)) 440 return (V_pfi_all); 441 442 /* 443 * Initially set to all, because we don't know what interface we'll be 444 * sending this out when we create the state. 445 */ 446 if (st->rule.ptr->rt == PF_REPLYTO) 447 return (V_pfi_all); 448 449 /* Don't overrule the interface for states created on incoming packets. */ 450 if (st->direction == PF_IN) 451 return (k); 452 453 /* No route-to, so don't overrule. */ 454 if (st->rt != PF_ROUTETO) 455 return (k); 456 457 /* Bind to the route-to interface. */ 458 return (st->rt_kif); 459 } 460 461 #define STATE_INC_COUNTERS(s) \ 462 do { \ 463 struct pf_krule_item *mrm; \ 464 counter_u64_add(s->rule.ptr->states_cur, 1); \ 465 counter_u64_add(s->rule.ptr->states_tot, 1); \ 466 if (s->anchor.ptr != NULL) { \ 467 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 468 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 469 } \ 470 if (s->nat_rule.ptr != NULL) { \ 471 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 472 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 473 } \ 474 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 475 counter_u64_add(mrm->r->states_cur, 1); \ 476 counter_u64_add(mrm->r->states_tot, 1); \ 477 } \ 478 } while (0) 479 480 #define STATE_DEC_COUNTERS(s) \ 481 do { \ 482 struct pf_krule_item *mrm; \ 483 if (s->nat_rule.ptr != NULL) \ 484 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 485 if (s->anchor.ptr != NULL) \ 486 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 487 counter_u64_add(s->rule.ptr->states_cur, -1); \ 488 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 489 counter_u64_add(mrm->r->states_cur, -1); \ 490 } while (0) 491 492 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 493 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 494 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 495 VNET_DEFINE(struct pf_idhash *, pf_idhash); 496 VNET_DEFINE(struct pf_srchash *, pf_srchash); 497 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash); 498 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping); 499 500 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 501 "pf(4)"); 502 503 VNET_DEFINE(u_long, pf_hashmask); 504 VNET_DEFINE(u_long, pf_srchashmask); 505 VNET_DEFINE(u_long, pf_udpendpointhashmask); 506 VNET_DEFINE_STATIC(u_long, pf_hashsize); 507 #define V_pf_hashsize VNET(pf_hashsize) 508 VNET_DEFINE_STATIC(u_long, pf_srchashsize); 509 #define V_pf_srchashsize VNET(pf_srchashsize) 510 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize); 511 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize) 512 u_long pf_ioctl_maxcount = 65535; 513 514 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 515 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 516 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 517 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 518 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 519 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable"); 520 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 521 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 522 523 VNET_DEFINE(void *, pf_swi_cookie); 524 VNET_DEFINE(struct intr_event *, pf_swi_ie); 525 526 VNET_DEFINE(uint32_t, pf_hashseed); 527 #define V_pf_hashseed VNET(pf_hashseed) 528 529 static void 530 pf_sctp_checksum(struct mbuf *m, int off) 531 { 532 uint32_t sum = 0; 533 534 /* Zero out the checksum, to enable recalculation. */ 535 m_copyback(m, off + offsetof(struct sctphdr, checksum), 536 sizeof(sum), (caddr_t)&sum); 537 538 sum = sctp_calculate_cksum(m, off); 539 540 m_copyback(m, off + offsetof(struct sctphdr, checksum), 541 sizeof(sum), (caddr_t)&sum); 542 } 543 544 int 545 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 546 { 547 548 switch (af) { 549 #ifdef INET 550 case AF_INET: 551 if (a->addr32[0] > b->addr32[0]) 552 return (1); 553 if (a->addr32[0] < b->addr32[0]) 554 return (-1); 555 break; 556 #endif /* INET */ 557 #ifdef INET6 558 case AF_INET6: 559 if (a->addr32[3] > b->addr32[3]) 560 return (1); 561 if (a->addr32[3] < b->addr32[3]) 562 return (-1); 563 if (a->addr32[2] > b->addr32[2]) 564 return (1); 565 if (a->addr32[2] < b->addr32[2]) 566 return (-1); 567 if (a->addr32[1] > b->addr32[1]) 568 return (1); 569 if (a->addr32[1] < b->addr32[1]) 570 return (-1); 571 if (a->addr32[0] > b->addr32[0]) 572 return (1); 573 if (a->addr32[0] < b->addr32[0]) 574 return (-1); 575 break; 576 #endif /* INET6 */ 577 default: 578 panic("%s: unknown address family %u", __func__, af); 579 } 580 return (0); 581 } 582 583 static void 584 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 585 struct pf_state_key *nk) 586 { 587 588 switch (pd->proto) { 589 case IPPROTO_TCP: { 590 struct tcphdr *th = &pd->hdr.tcp; 591 592 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 593 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 594 &th->th_sum, &nk->addr[pd->sidx], 595 nk->port[pd->sidx], 0, pd->af); 596 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 597 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 598 &th->th_sum, &nk->addr[pd->didx], 599 nk->port[pd->didx], 0, pd->af); 600 m_copyback(m, off, sizeof(*th), (caddr_t)th); 601 break; 602 } 603 case IPPROTO_UDP: { 604 struct udphdr *uh = &pd->hdr.udp; 605 606 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 607 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 608 &uh->uh_sum, &nk->addr[pd->sidx], 609 nk->port[pd->sidx], 1, pd->af); 610 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 611 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 612 &uh->uh_sum, &nk->addr[pd->didx], 613 nk->port[pd->didx], 1, pd->af); 614 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 615 break; 616 } 617 case IPPROTO_SCTP: { 618 struct sctphdr *sh = &pd->hdr.sctp; 619 uint16_t checksum = 0; 620 621 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 622 pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum, 623 &checksum, &nk->addr[pd->sidx], 624 nk->port[pd->sidx], 1, pd->af); 625 } 626 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 627 pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum, 628 &checksum, &nk->addr[pd->didx], 629 nk->port[pd->didx], 1, pd->af); 630 } 631 632 break; 633 } 634 case IPPROTO_ICMP: { 635 struct icmp *ih = &pd->hdr.icmp; 636 637 if (nk->port[pd->sidx] != ih->icmp_id) { 638 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 639 ih->icmp_cksum, ih->icmp_id, 640 nk->port[pd->sidx], 0); 641 ih->icmp_id = nk->port[pd->sidx]; 642 pd->sport = &ih->icmp_id; 643 644 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 645 } 646 /* FALLTHROUGH */ 647 } 648 default: 649 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 650 switch (pd->af) { 651 case AF_INET: 652 pf_change_a(&pd->src->v4.s_addr, 653 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 654 0); 655 break; 656 case AF_INET6: 657 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 658 break; 659 } 660 } 661 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 662 switch (pd->af) { 663 case AF_INET: 664 pf_change_a(&pd->dst->v4.s_addr, 665 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 666 0); 667 break; 668 case AF_INET6: 669 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 670 break; 671 } 672 } 673 break; 674 } 675 } 676 677 static __inline uint32_t 678 pf_hashkey(const struct pf_state_key *sk) 679 { 680 uint32_t h; 681 682 h = murmur3_32_hash32((const uint32_t *)sk, 683 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 684 V_pf_hashseed); 685 686 return (h & V_pf_hashmask); 687 } 688 689 static __inline uint32_t 690 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 691 { 692 uint32_t h; 693 694 switch (af) { 695 case AF_INET: 696 h = murmur3_32_hash32((uint32_t *)&addr->v4, 697 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 698 break; 699 case AF_INET6: 700 h = murmur3_32_hash32((uint32_t *)&addr->v6, 701 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 702 break; 703 default: 704 panic("%s: unknown address family %u", __func__, af); 705 } 706 707 return (h & V_pf_srchashmask); 708 } 709 710 static inline uint32_t 711 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint) 712 { 713 uint32_t h; 714 715 h = murmur3_32_hash32((uint32_t *)endpoint, 716 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t), 717 V_pf_hashseed); 718 return (h & V_pf_udpendpointhashmask); 719 } 720 721 #ifdef ALTQ 722 static int 723 pf_state_hash(struct pf_kstate *s) 724 { 725 u_int32_t hv = (intptr_t)s / sizeof(*s); 726 727 hv ^= crc32(&s->src, sizeof(s->src)); 728 hv ^= crc32(&s->dst, sizeof(s->dst)); 729 if (hv == 0) 730 hv = 1; 731 return (hv); 732 } 733 #endif 734 735 static __inline void 736 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 737 { 738 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 739 s->dst.state = newstate; 740 if (which == PF_PEER_DST) 741 return; 742 if (s->src.state == newstate) 743 return; 744 if (s->creatorid == V_pf_status.hostid && 745 s->key[PF_SK_STACK] != NULL && 746 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 747 !(TCPS_HAVEESTABLISHED(s->src.state) || 748 s->src.state == TCPS_CLOSED) && 749 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 750 atomic_add_32(&V_pf_status.states_halfopen, -1); 751 752 s->src.state = newstate; 753 } 754 755 #ifdef INET6 756 void 757 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 758 { 759 switch (af) { 760 #ifdef INET 761 case AF_INET: 762 memcpy(&dst->v4, &src->v4, sizeof(dst->v4)); 763 break; 764 #endif /* INET */ 765 case AF_INET6: 766 memcpy(&dst->v6, &src->v6, sizeof(dst->v6)); 767 break; 768 } 769 } 770 #endif /* INET6 */ 771 772 static void 773 pf_init_threshold(struct pf_threshold *threshold, 774 u_int32_t limit, u_int32_t seconds) 775 { 776 threshold->limit = limit * PF_THRESHOLD_MULT; 777 threshold->seconds = seconds; 778 threshold->count = 0; 779 threshold->last = time_uptime; 780 } 781 782 static void 783 pf_add_threshold(struct pf_threshold *threshold) 784 { 785 u_int32_t t = time_uptime, diff = t - threshold->last; 786 787 if (diff >= threshold->seconds) 788 threshold->count = 0; 789 else 790 threshold->count -= threshold->count * diff / 791 threshold->seconds; 792 threshold->count += PF_THRESHOLD_MULT; 793 threshold->last = t; 794 } 795 796 static int 797 pf_check_threshold(struct pf_threshold *threshold) 798 { 799 return (threshold->count > threshold->limit); 800 } 801 802 static int 803 pf_src_connlimit(struct pf_kstate **state) 804 { 805 struct pf_overload_entry *pfoe; 806 int bad = 0; 807 808 PF_STATE_LOCK_ASSERT(*state); 809 /* 810 * XXXKS: The src node is accessed unlocked! 811 * PF_SRC_NODE_LOCK_ASSERT((*state)->src_node); 812 */ 813 814 (*state)->src_node->conn++; 815 (*state)->src.tcp_est = 1; 816 pf_add_threshold(&(*state)->src_node->conn_rate); 817 818 if ((*state)->rule.ptr->max_src_conn && 819 (*state)->rule.ptr->max_src_conn < 820 (*state)->src_node->conn) { 821 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 822 bad++; 823 } 824 825 if ((*state)->rule.ptr->max_src_conn_rate.limit && 826 pf_check_threshold(&(*state)->src_node->conn_rate)) { 827 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 828 bad++; 829 } 830 831 if (!bad) 832 return (0); 833 834 /* Kill this state. */ 835 (*state)->timeout = PFTM_PURGE; 836 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 837 838 if ((*state)->rule.ptr->overload_tbl == NULL) 839 return (1); 840 841 /* Schedule overloading and flushing task. */ 842 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 843 if (pfoe == NULL) 844 return (1); /* too bad :( */ 845 846 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 847 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 848 pfoe->rule = (*state)->rule.ptr; 849 pfoe->dir = (*state)->direction; 850 PF_OVERLOADQ_LOCK(); 851 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 852 PF_OVERLOADQ_UNLOCK(); 853 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 854 855 return (1); 856 } 857 858 static void 859 pf_overload_task(void *v, int pending) 860 { 861 struct pf_overload_head queue; 862 struct pfr_addr p; 863 struct pf_overload_entry *pfoe, *pfoe1; 864 uint32_t killed = 0; 865 866 CURVNET_SET((struct vnet *)v); 867 868 PF_OVERLOADQ_LOCK(); 869 queue = V_pf_overloadqueue; 870 SLIST_INIT(&V_pf_overloadqueue); 871 PF_OVERLOADQ_UNLOCK(); 872 873 bzero(&p, sizeof(p)); 874 SLIST_FOREACH(pfoe, &queue, next) { 875 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 876 if (V_pf_status.debug >= PF_DEBUG_MISC) { 877 printf("%s: blocking address ", __func__); 878 pf_print_host(&pfoe->addr, 0, pfoe->af); 879 printf("\n"); 880 } 881 882 p.pfra_af = pfoe->af; 883 switch (pfoe->af) { 884 #ifdef INET 885 case AF_INET: 886 p.pfra_net = 32; 887 p.pfra_ip4addr = pfoe->addr.v4; 888 break; 889 #endif 890 #ifdef INET6 891 case AF_INET6: 892 p.pfra_net = 128; 893 p.pfra_ip6addr = pfoe->addr.v6; 894 break; 895 #endif 896 } 897 898 PF_RULES_WLOCK(); 899 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 900 PF_RULES_WUNLOCK(); 901 } 902 903 /* 904 * Remove those entries, that don't need flushing. 905 */ 906 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 907 if (pfoe->rule->flush == 0) { 908 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 909 free(pfoe, M_PFTEMP); 910 } else 911 counter_u64_add( 912 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 913 914 /* If nothing to flush, return. */ 915 if (SLIST_EMPTY(&queue)) { 916 CURVNET_RESTORE(); 917 return; 918 } 919 920 for (int i = 0; i <= V_pf_hashmask; i++) { 921 struct pf_idhash *ih = &V_pf_idhash[i]; 922 struct pf_state_key *sk; 923 struct pf_kstate *s; 924 925 PF_HASHROW_LOCK(ih); 926 LIST_FOREACH(s, &ih->states, entry) { 927 sk = s->key[PF_SK_WIRE]; 928 SLIST_FOREACH(pfoe, &queue, next) 929 if (sk->af == pfoe->af && 930 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 931 pfoe->rule == s->rule.ptr) && 932 ((pfoe->dir == PF_OUT && 933 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 934 (pfoe->dir == PF_IN && 935 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 936 s->timeout = PFTM_PURGE; 937 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 938 killed++; 939 } 940 } 941 PF_HASHROW_UNLOCK(ih); 942 } 943 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 944 free(pfoe, M_PFTEMP); 945 if (V_pf_status.debug >= PF_DEBUG_MISC) 946 printf("%s: %u states killed", __func__, killed); 947 948 CURVNET_RESTORE(); 949 } 950 951 /* 952 * Can return locked on failure, so that we can consistently 953 * allocate and insert a new one. 954 */ 955 struct pf_ksrc_node * 956 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 957 struct pf_srchash **sh, bool returnlocked) 958 { 959 struct pf_ksrc_node *n; 960 961 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 962 963 *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 964 PF_HASHROW_LOCK(*sh); 965 LIST_FOREACH(n, &(*sh)->nodes, entry) 966 if (n->rule.ptr == rule && n->af == af && 967 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 968 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 969 break; 970 971 if (n != NULL) { 972 n->states++; 973 PF_HASHROW_UNLOCK(*sh); 974 } else if (returnlocked == false) 975 PF_HASHROW_UNLOCK(*sh); 976 977 return (n); 978 } 979 980 static void 981 pf_free_src_node(struct pf_ksrc_node *sn) 982 { 983 984 for (int i = 0; i < 2; i++) { 985 counter_u64_free(sn->bytes[i]); 986 counter_u64_free(sn->packets[i]); 987 } 988 uma_zfree(V_pf_sources_z, sn); 989 } 990 991 static u_short 992 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 993 struct pf_addr *src, sa_family_t af) 994 { 995 u_short reason = 0; 996 struct pf_srchash *sh = NULL; 997 998 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 999 rule->rpool.opts & PF_POOL_STICKYADDR), 1000 ("%s for non-tracking rule %p", __func__, rule)); 1001 1002 if (*sn == NULL) 1003 *sn = pf_find_src_node(src, rule, af, &sh, true); 1004 1005 if (*sn == NULL) { 1006 PF_HASHROW_ASSERT(sh); 1007 1008 if (rule->max_src_nodes && 1009 counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) { 1010 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); 1011 PF_HASHROW_UNLOCK(sh); 1012 reason = PFRES_SRCLIMIT; 1013 goto done; 1014 } 1015 1016 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 1017 if ((*sn) == NULL) { 1018 PF_HASHROW_UNLOCK(sh); 1019 reason = PFRES_MEMORY; 1020 goto done; 1021 } 1022 1023 for (int i = 0; i < 2; i++) { 1024 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 1025 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 1026 1027 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 1028 pf_free_src_node(*sn); 1029 PF_HASHROW_UNLOCK(sh); 1030 reason = PFRES_MEMORY; 1031 goto done; 1032 } 1033 } 1034 1035 pf_init_threshold(&(*sn)->conn_rate, 1036 rule->max_src_conn_rate.limit, 1037 rule->max_src_conn_rate.seconds); 1038 1039 MPASS((*sn)->lock == NULL); 1040 (*sn)->lock = &sh->lock; 1041 1042 (*sn)->af = af; 1043 (*sn)->rule.ptr = rule; 1044 PF_ACPY(&(*sn)->addr, src, af); 1045 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 1046 (*sn)->creation = time_uptime; 1047 (*sn)->ruletype = rule->action; 1048 (*sn)->states = 1; 1049 if ((*sn)->rule.ptr != NULL) 1050 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 1051 PF_HASHROW_UNLOCK(sh); 1052 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 1053 } else { 1054 if (rule->max_src_states && 1055 (*sn)->states >= rule->max_src_states) { 1056 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 1057 1); 1058 reason = PFRES_SRCLIMIT; 1059 goto done; 1060 } 1061 } 1062 done: 1063 return (reason); 1064 } 1065 1066 void 1067 pf_unlink_src_node(struct pf_ksrc_node *src) 1068 { 1069 PF_SRC_NODE_LOCK_ASSERT(src); 1070 1071 LIST_REMOVE(src, entry); 1072 if (src->rule.ptr) 1073 counter_u64_add(src->rule.ptr->src_nodes, -1); 1074 } 1075 1076 u_int 1077 pf_free_src_nodes(struct pf_ksrc_node_list *head) 1078 { 1079 struct pf_ksrc_node *sn, *tmp; 1080 u_int count = 0; 1081 1082 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 1083 pf_free_src_node(sn); 1084 count++; 1085 } 1086 1087 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 1088 1089 return (count); 1090 } 1091 1092 void 1093 pf_mtag_initialize(void) 1094 { 1095 1096 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 1097 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 1098 UMA_ALIGN_PTR, 0); 1099 } 1100 1101 /* Per-vnet data storage structures initialization. */ 1102 void 1103 pf_initialize(void) 1104 { 1105 struct pf_keyhash *kh; 1106 struct pf_idhash *ih; 1107 struct pf_srchash *sh; 1108 struct pf_udpendpointhash *uh; 1109 u_int i; 1110 1111 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 1112 V_pf_hashsize = PF_HASHSIZ; 1113 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 1114 V_pf_srchashsize = PF_SRCHASHSIZ; 1115 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize)) 1116 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1117 1118 V_pf_hashseed = arc4random(); 1119 1120 /* States and state keys storage. */ 1121 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1122 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1123 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1124 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1125 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1126 1127 V_pf_state_key_z = uma_zcreate("pf state keys", 1128 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1129 UMA_ALIGN_PTR, 0); 1130 1131 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash), 1132 M_PFHASH, M_NOWAIT | M_ZERO); 1133 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash), 1134 M_PFHASH, M_NOWAIT | M_ZERO); 1135 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1136 printf("pf: Unable to allocate memory for " 1137 "state_hashsize %lu.\n", V_pf_hashsize); 1138 1139 free(V_pf_keyhash, M_PFHASH); 1140 free(V_pf_idhash, M_PFHASH); 1141 1142 V_pf_hashsize = PF_HASHSIZ; 1143 V_pf_keyhash = mallocarray(V_pf_hashsize, 1144 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1145 V_pf_idhash = mallocarray(V_pf_hashsize, 1146 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1147 } 1148 1149 V_pf_hashmask = V_pf_hashsize - 1; 1150 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 1151 i++, kh++, ih++) { 1152 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1153 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1154 } 1155 1156 /* Source nodes. */ 1157 V_pf_sources_z = uma_zcreate("pf source nodes", 1158 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1159 0); 1160 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1161 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1162 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1163 1164 V_pf_srchash = mallocarray(V_pf_srchashsize, 1165 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1166 if (V_pf_srchash == NULL) { 1167 printf("pf: Unable to allocate memory for " 1168 "source_hashsize %lu.\n", V_pf_srchashsize); 1169 1170 V_pf_srchashsize = PF_SRCHASHSIZ; 1171 V_pf_srchash = mallocarray(V_pf_srchashsize, 1172 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1173 } 1174 1175 V_pf_srchashmask = V_pf_srchashsize - 1; 1176 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 1177 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1178 1179 1180 /* UDP endpoint mappings. */ 1181 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings", 1182 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL, 1183 UMA_ALIGN_PTR, 0); 1184 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1185 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO); 1186 if (V_pf_udpendpointhash == NULL) { 1187 printf("pf: Unable to allocate memory for " 1188 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize); 1189 1190 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1191 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1192 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO); 1193 } 1194 1195 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1; 1196 for (i = 0, uh = V_pf_udpendpointhash; 1197 i <= V_pf_udpendpointhashmask; 1198 i++, uh++) { 1199 mtx_init(&uh->lock, "pf_udpendpointhash", NULL, 1200 MTX_DEF | MTX_DUPOK); 1201 } 1202 1203 /* ALTQ */ 1204 TAILQ_INIT(&V_pf_altqs[0]); 1205 TAILQ_INIT(&V_pf_altqs[1]); 1206 TAILQ_INIT(&V_pf_altqs[2]); 1207 TAILQ_INIT(&V_pf_altqs[3]); 1208 TAILQ_INIT(&V_pf_pabuf); 1209 V_pf_altqs_active = &V_pf_altqs[0]; 1210 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1211 V_pf_altqs_inactive = &V_pf_altqs[2]; 1212 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1213 1214 /* Send & overload+flush queues. */ 1215 STAILQ_INIT(&V_pf_sendqueue); 1216 SLIST_INIT(&V_pf_overloadqueue); 1217 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1218 1219 /* Unlinked, but may be referenced rules. */ 1220 TAILQ_INIT(&V_pf_unlinked_rules); 1221 } 1222 1223 void 1224 pf_mtag_cleanup(void) 1225 { 1226 1227 uma_zdestroy(pf_mtag_z); 1228 } 1229 1230 void 1231 pf_cleanup(void) 1232 { 1233 struct pf_keyhash *kh; 1234 struct pf_idhash *ih; 1235 struct pf_srchash *sh; 1236 struct pf_udpendpointhash *uh; 1237 struct pf_send_entry *pfse, *next; 1238 u_int i; 1239 1240 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; 1241 i <= V_pf_hashmask; 1242 i++, kh++, ih++) { 1243 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1244 __func__)); 1245 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1246 __func__)); 1247 mtx_destroy(&kh->lock); 1248 mtx_destroy(&ih->lock); 1249 } 1250 free(V_pf_keyhash, M_PFHASH); 1251 free(V_pf_idhash, M_PFHASH); 1252 1253 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1254 KASSERT(LIST_EMPTY(&sh->nodes), 1255 ("%s: source node hash not empty", __func__)); 1256 mtx_destroy(&sh->lock); 1257 } 1258 free(V_pf_srchash, M_PFHASH); 1259 1260 for (i = 0, uh = V_pf_udpendpointhash; 1261 i <= V_pf_udpendpointhashmask; 1262 i++, uh++) { 1263 KASSERT(LIST_EMPTY(&uh->endpoints), 1264 ("%s: udp endpoint hash not empty", __func__)); 1265 mtx_destroy(&uh->lock); 1266 } 1267 free(V_pf_udpendpointhash, M_PFHASH); 1268 1269 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1270 m_freem(pfse->pfse_m); 1271 free(pfse, M_PFTEMP); 1272 } 1273 MPASS(RB_EMPTY(&V_pf_sctp_endpoints)); 1274 1275 uma_zdestroy(V_pf_sources_z); 1276 uma_zdestroy(V_pf_state_z); 1277 uma_zdestroy(V_pf_state_key_z); 1278 uma_zdestroy(V_pf_udp_mapping_z); 1279 } 1280 1281 static int 1282 pf_mtag_uminit(void *mem, int size, int how) 1283 { 1284 struct m_tag *t; 1285 1286 t = (struct m_tag *)mem; 1287 t->m_tag_cookie = MTAG_ABI_COMPAT; 1288 t->m_tag_id = PACKET_TAG_PF; 1289 t->m_tag_len = sizeof(struct pf_mtag); 1290 t->m_tag_free = pf_mtag_free; 1291 1292 return (0); 1293 } 1294 1295 static void 1296 pf_mtag_free(struct m_tag *t) 1297 { 1298 1299 uma_zfree(pf_mtag_z, t); 1300 } 1301 1302 struct pf_mtag * 1303 pf_get_mtag(struct mbuf *m) 1304 { 1305 struct m_tag *mtag; 1306 1307 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1308 return ((struct pf_mtag *)(mtag + 1)); 1309 1310 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1311 if (mtag == NULL) 1312 return (NULL); 1313 bzero(mtag + 1, sizeof(struct pf_mtag)); 1314 m_tag_prepend(m, mtag); 1315 1316 return ((struct pf_mtag *)(mtag + 1)); 1317 } 1318 1319 static int 1320 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1321 struct pf_kstate *s) 1322 { 1323 struct pf_keyhash *khs, *khw, *kh; 1324 struct pf_state_key *sk, *cur; 1325 struct pf_kstate *si, *olds = NULL; 1326 int idx; 1327 1328 NET_EPOCH_ASSERT(); 1329 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1330 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1331 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1332 1333 /* 1334 * We need to lock hash slots of both keys. To avoid deadlock 1335 * we always lock the slot with lower address first. Unlock order 1336 * isn't important. 1337 * 1338 * We also need to lock ID hash slot before dropping key 1339 * locks. On success we return with ID hash slot locked. 1340 */ 1341 1342 if (skw == sks) { 1343 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1344 PF_HASHROW_LOCK(khs); 1345 } else { 1346 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1347 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1348 if (khs == khw) { 1349 PF_HASHROW_LOCK(khs); 1350 } else if (khs < khw) { 1351 PF_HASHROW_LOCK(khs); 1352 PF_HASHROW_LOCK(khw); 1353 } else { 1354 PF_HASHROW_LOCK(khw); 1355 PF_HASHROW_LOCK(khs); 1356 } 1357 } 1358 1359 #define KEYS_UNLOCK() do { \ 1360 if (khs != khw) { \ 1361 PF_HASHROW_UNLOCK(khs); \ 1362 PF_HASHROW_UNLOCK(khw); \ 1363 } else \ 1364 PF_HASHROW_UNLOCK(khs); \ 1365 } while (0) 1366 1367 /* 1368 * First run: start with wire key. 1369 */ 1370 sk = skw; 1371 kh = khw; 1372 idx = PF_SK_WIRE; 1373 1374 MPASS(s->lock == NULL); 1375 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1376 1377 keyattach: 1378 LIST_FOREACH(cur, &kh->keys, entry) 1379 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1380 break; 1381 1382 if (cur != NULL) { 1383 /* Key exists. Check for same kif, if none, add to key. */ 1384 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1385 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1386 1387 PF_HASHROW_LOCK(ih); 1388 if (si->kif == s->kif && 1389 si->direction == s->direction) { 1390 if (sk->proto == IPPROTO_TCP && 1391 si->src.state >= TCPS_FIN_WAIT_2 && 1392 si->dst.state >= TCPS_FIN_WAIT_2) { 1393 /* 1394 * New state matches an old >FIN_WAIT_2 1395 * state. We can't drop key hash locks, 1396 * thus we can't unlink it properly. 1397 * 1398 * As a workaround we drop it into 1399 * TCPS_CLOSED state, schedule purge 1400 * ASAP and push it into the very end 1401 * of the slot TAILQ, so that it won't 1402 * conflict with our new state. 1403 */ 1404 pf_set_protostate(si, PF_PEER_BOTH, 1405 TCPS_CLOSED); 1406 si->timeout = PFTM_PURGE; 1407 olds = si; 1408 } else { 1409 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1410 printf("pf: %s key attach " 1411 "failed on %s: ", 1412 (idx == PF_SK_WIRE) ? 1413 "wire" : "stack", 1414 s->kif->pfik_name); 1415 pf_print_state_parts(s, 1416 (idx == PF_SK_WIRE) ? 1417 sk : NULL, 1418 (idx == PF_SK_STACK) ? 1419 sk : NULL); 1420 printf(", existing: "); 1421 pf_print_state_parts(si, 1422 (idx == PF_SK_WIRE) ? 1423 sk : NULL, 1424 (idx == PF_SK_STACK) ? 1425 sk : NULL); 1426 printf("\n"); 1427 } 1428 s->timeout = PFTM_UNLINKED; 1429 PF_HASHROW_UNLOCK(ih); 1430 KEYS_UNLOCK(); 1431 uma_zfree(V_pf_state_key_z, sk); 1432 if (idx == PF_SK_STACK) 1433 pf_detach_state(s); 1434 return (EEXIST); /* collision! */ 1435 } 1436 } 1437 PF_HASHROW_UNLOCK(ih); 1438 } 1439 uma_zfree(V_pf_state_key_z, sk); 1440 s->key[idx] = cur; 1441 } else { 1442 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1443 s->key[idx] = sk; 1444 } 1445 1446 stateattach: 1447 /* List is sorted, if-bound states before floating. */ 1448 if (s->kif == V_pfi_all) 1449 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1450 else 1451 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1452 1453 if (olds) { 1454 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1455 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1456 key_list[idx]); 1457 olds = NULL; 1458 } 1459 1460 /* 1461 * Attach done. See how should we (or should not?) 1462 * attach a second key. 1463 */ 1464 if (sks == skw) { 1465 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1466 idx = PF_SK_STACK; 1467 sks = NULL; 1468 goto stateattach; 1469 } else if (sks != NULL) { 1470 /* 1471 * Continue attaching with stack key. 1472 */ 1473 sk = sks; 1474 kh = khs; 1475 idx = PF_SK_STACK; 1476 sks = NULL; 1477 goto keyattach; 1478 } 1479 1480 PF_STATE_LOCK(s); 1481 KEYS_UNLOCK(); 1482 1483 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1484 ("%s failure", __func__)); 1485 1486 return (0); 1487 #undef KEYS_UNLOCK 1488 } 1489 1490 static void 1491 pf_detach_state(struct pf_kstate *s) 1492 { 1493 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1494 struct pf_keyhash *kh; 1495 1496 NET_EPOCH_ASSERT(); 1497 MPASS(s->timeout >= PFTM_MAX); 1498 1499 pf_sctp_multihome_detach_addr(s); 1500 1501 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr) 1502 V_pflow_export_state_ptr(s); 1503 1504 if (sks != NULL) { 1505 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1506 PF_HASHROW_LOCK(kh); 1507 if (s->key[PF_SK_STACK] != NULL) 1508 pf_state_key_detach(s, PF_SK_STACK); 1509 /* 1510 * If both point to same key, then we are done. 1511 */ 1512 if (sks == s->key[PF_SK_WIRE]) { 1513 pf_state_key_detach(s, PF_SK_WIRE); 1514 PF_HASHROW_UNLOCK(kh); 1515 return; 1516 } 1517 PF_HASHROW_UNLOCK(kh); 1518 } 1519 1520 if (s->key[PF_SK_WIRE] != NULL) { 1521 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1522 PF_HASHROW_LOCK(kh); 1523 if (s->key[PF_SK_WIRE] != NULL) 1524 pf_state_key_detach(s, PF_SK_WIRE); 1525 PF_HASHROW_UNLOCK(kh); 1526 } 1527 } 1528 1529 static void 1530 pf_state_key_detach(struct pf_kstate *s, int idx) 1531 { 1532 struct pf_state_key *sk = s->key[idx]; 1533 #ifdef INVARIANTS 1534 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1535 1536 PF_HASHROW_ASSERT(kh); 1537 #endif 1538 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1539 s->key[idx] = NULL; 1540 1541 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1542 LIST_REMOVE(sk, entry); 1543 uma_zfree(V_pf_state_key_z, sk); 1544 } 1545 } 1546 1547 static int 1548 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1549 { 1550 struct pf_state_key *sk = mem; 1551 1552 bzero(sk, sizeof(struct pf_state_key_cmp)); 1553 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1554 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1555 1556 return (0); 1557 } 1558 1559 static int 1560 pf_state_key_addr_setup(struct pf_pdesc *pd, struct mbuf *m, int off, 1561 struct pf_state_key_cmp *key, int sidx, struct pf_addr *saddr, 1562 int didx, struct pf_addr *daddr, int multi) 1563 { 1564 #ifdef INET6 1565 struct nd_neighbor_solicit nd; 1566 struct pf_addr *target; 1567 u_short action, reason; 1568 1569 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6) 1570 goto copy; 1571 1572 switch (pd->hdr.icmp6.icmp6_type) { 1573 case ND_NEIGHBOR_SOLICIT: 1574 if (multi) 1575 return (-1); 1576 if (!pf_pull_hdr(m, off, &nd, sizeof(nd), &action, &reason, pd->af)) 1577 return (-1); 1578 target = (struct pf_addr *)&nd.nd_ns_target; 1579 daddr = target; 1580 break; 1581 case ND_NEIGHBOR_ADVERT: 1582 if (multi) 1583 return (-1); 1584 if (!pf_pull_hdr(m, off, &nd, sizeof(nd), &action, &reason, pd->af)) 1585 return (-1); 1586 target = (struct pf_addr *)&nd.nd_ns_target; 1587 saddr = target; 1588 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) { 1589 key->addr[didx].addr32[0] = 0; 1590 key->addr[didx].addr32[1] = 0; 1591 key->addr[didx].addr32[2] = 0; 1592 key->addr[didx].addr32[3] = 0; 1593 daddr = NULL; /* overwritten */ 1594 } 1595 break; 1596 default: 1597 if (multi == PF_ICMP_MULTI_LINK) { 1598 key->addr[sidx].addr32[0] = IPV6_ADDR_INT32_MLL; 1599 key->addr[sidx].addr32[1] = 0; 1600 key->addr[sidx].addr32[2] = 0; 1601 key->addr[sidx].addr32[3] = IPV6_ADDR_INT32_ONE; 1602 saddr = NULL; /* overwritten */ 1603 } 1604 } 1605 copy: 1606 #endif 1607 if (saddr) 1608 PF_ACPY(&key->addr[sidx], saddr, pd->af); 1609 if (daddr) 1610 PF_ACPY(&key->addr[didx], daddr, pd->af); 1611 1612 return (0); 1613 } 1614 1615 struct pf_state_key * 1616 pf_state_key_setup(struct pf_pdesc *pd, struct mbuf *m, int off, 1617 struct pf_addr *saddr, struct pf_addr *daddr, u_int16_t sport, 1618 u_int16_t dport) 1619 { 1620 struct pf_state_key *sk; 1621 1622 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1623 if (sk == NULL) 1624 return (NULL); 1625 1626 if (pf_state_key_addr_setup(pd, m, off, (struct pf_state_key_cmp *)sk, 1627 pd->sidx, pd->src, pd->didx, pd->dst, 0)) { 1628 uma_zfree(V_pf_state_key_z, sk); 1629 return (NULL); 1630 } 1631 1632 sk->port[pd->sidx] = sport; 1633 sk->port[pd->didx] = dport; 1634 sk->proto = pd->proto; 1635 sk->af = pd->af; 1636 1637 return (sk); 1638 } 1639 1640 struct pf_state_key * 1641 pf_state_key_clone(const struct pf_state_key *orig) 1642 { 1643 struct pf_state_key *sk; 1644 1645 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1646 if (sk == NULL) 1647 return (NULL); 1648 1649 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1650 1651 return (sk); 1652 } 1653 1654 int 1655 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1656 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1657 { 1658 struct pf_idhash *ih; 1659 struct pf_kstate *cur; 1660 int error; 1661 1662 NET_EPOCH_ASSERT(); 1663 1664 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1665 ("%s: sks not pristine", __func__)); 1666 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1667 ("%s: skw not pristine", __func__)); 1668 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1669 1670 s->kif = kif; 1671 s->orig_kif = orig_kif; 1672 1673 if (s->id == 0 && s->creatorid == 0) { 1674 s->id = alloc_unr64(&V_pf_stateid); 1675 s->id = htobe64(s->id); 1676 s->creatorid = V_pf_status.hostid; 1677 } 1678 1679 /* Returns with ID locked on success. */ 1680 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1681 return (error); 1682 1683 ih = &V_pf_idhash[PF_IDHASH(s)]; 1684 PF_HASHROW_ASSERT(ih); 1685 LIST_FOREACH(cur, &ih->states, entry) 1686 if (cur->id == s->id && cur->creatorid == s->creatorid) 1687 break; 1688 1689 if (cur != NULL) { 1690 s->timeout = PFTM_UNLINKED; 1691 PF_HASHROW_UNLOCK(ih); 1692 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1693 printf("pf: state ID collision: " 1694 "id: %016llx creatorid: %08x\n", 1695 (unsigned long long)be64toh(s->id), 1696 ntohl(s->creatorid)); 1697 } 1698 pf_detach_state(s); 1699 return (EEXIST); 1700 } 1701 LIST_INSERT_HEAD(&ih->states, s, entry); 1702 /* One for keys, one for ID hash. */ 1703 refcount_init(&s->refs, 2); 1704 1705 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1706 if (V_pfsync_insert_state_ptr != NULL) 1707 V_pfsync_insert_state_ptr(s); 1708 1709 /* Returns locked. */ 1710 return (0); 1711 } 1712 1713 /* 1714 * Find state by ID: returns with locked row on success. 1715 */ 1716 struct pf_kstate * 1717 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1718 { 1719 struct pf_idhash *ih; 1720 struct pf_kstate *s; 1721 1722 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1723 1724 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))]; 1725 1726 PF_HASHROW_LOCK(ih); 1727 LIST_FOREACH(s, &ih->states, entry) 1728 if (s->id == id && s->creatorid == creatorid) 1729 break; 1730 1731 if (s == NULL) 1732 PF_HASHROW_UNLOCK(ih); 1733 1734 return (s); 1735 } 1736 1737 /* 1738 * Find state by key. 1739 * Returns with ID hash slot locked on success. 1740 */ 1741 static struct pf_kstate * 1742 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key, 1743 u_int dir) 1744 { 1745 struct pf_keyhash *kh; 1746 struct pf_state_key *sk; 1747 struct pf_kstate *s; 1748 int idx; 1749 1750 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1751 1752 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1753 1754 PF_HASHROW_LOCK(kh); 1755 LIST_FOREACH(sk, &kh->keys, entry) 1756 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1757 break; 1758 if (sk == NULL) { 1759 PF_HASHROW_UNLOCK(kh); 1760 return (NULL); 1761 } 1762 1763 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1764 1765 /* List is sorted, if-bound states before floating ones. */ 1766 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1767 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) { 1768 PF_STATE_LOCK(s); 1769 PF_HASHROW_UNLOCK(kh); 1770 if (__predict_false(s->timeout >= PFTM_MAX)) { 1771 /* 1772 * State is either being processed by 1773 * pf_unlink_state() in an other thread, or 1774 * is scheduled for immediate expiry. 1775 */ 1776 PF_STATE_UNLOCK(s); 1777 return (NULL); 1778 } 1779 return (s); 1780 } 1781 PF_HASHROW_UNLOCK(kh); 1782 1783 return (NULL); 1784 } 1785 1786 /* 1787 * Returns with ID hash slot locked on success. 1788 */ 1789 struct pf_kstate * 1790 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more) 1791 { 1792 struct pf_keyhash *kh; 1793 struct pf_state_key *sk; 1794 struct pf_kstate *s, *ret = NULL; 1795 int idx, inout = 0; 1796 1797 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1798 1799 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1800 1801 PF_HASHROW_LOCK(kh); 1802 LIST_FOREACH(sk, &kh->keys, entry) 1803 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1804 break; 1805 if (sk == NULL) { 1806 PF_HASHROW_UNLOCK(kh); 1807 return (NULL); 1808 } 1809 switch (dir) { 1810 case PF_IN: 1811 idx = PF_SK_WIRE; 1812 break; 1813 case PF_OUT: 1814 idx = PF_SK_STACK; 1815 break; 1816 case PF_INOUT: 1817 idx = PF_SK_WIRE; 1818 inout = 1; 1819 break; 1820 default: 1821 panic("%s: dir %u", __func__, dir); 1822 } 1823 second_run: 1824 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1825 if (more == NULL) { 1826 PF_STATE_LOCK(s); 1827 PF_HASHROW_UNLOCK(kh); 1828 return (s); 1829 } 1830 1831 if (ret) 1832 (*more)++; 1833 else { 1834 ret = s; 1835 PF_STATE_LOCK(s); 1836 } 1837 } 1838 if (inout == 1) { 1839 inout = 0; 1840 idx = PF_SK_STACK; 1841 goto second_run; 1842 } 1843 PF_HASHROW_UNLOCK(kh); 1844 1845 return (ret); 1846 } 1847 1848 /* 1849 * FIXME 1850 * This routine is inefficient -- locks the state only to unlock immediately on 1851 * return. 1852 * It is racy -- after the state is unlocked nothing stops other threads from 1853 * removing it. 1854 */ 1855 bool 1856 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir) 1857 { 1858 struct pf_kstate *s; 1859 1860 s = pf_find_state_all(key, dir, NULL); 1861 if (s != NULL) { 1862 PF_STATE_UNLOCK(s); 1863 return (true); 1864 } 1865 return (false); 1866 } 1867 1868 struct pf_udp_mapping * 1869 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port, 1870 struct pf_addr *nat_addr, uint16_t nat_port) 1871 { 1872 struct pf_udp_mapping *mapping; 1873 1874 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO); 1875 if (mapping == NULL) 1876 return (NULL); 1877 PF_ACPY(&mapping->endpoints[0].addr, src_addr, af); 1878 mapping->endpoints[0].port = src_port; 1879 mapping->endpoints[0].af = af; 1880 mapping->endpoints[0].mapping = mapping; 1881 PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af); 1882 mapping->endpoints[1].port = nat_port; 1883 mapping->endpoints[1].af = af; 1884 mapping->endpoints[1].mapping = mapping; 1885 refcount_init(&mapping->refs, 1); 1886 return (mapping); 1887 } 1888 1889 int 1890 pf_udp_mapping_insert(struct pf_udp_mapping *mapping) 1891 { 1892 struct pf_udpendpointhash *h0, *h1; 1893 struct pf_udp_endpoint *endpoint; 1894 int ret = EEXIST; 1895 1896 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 1897 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 1898 if (h0 == h1) { 1899 PF_HASHROW_LOCK(h0); 1900 } else if (h0 < h1) { 1901 PF_HASHROW_LOCK(h0); 1902 PF_HASHROW_LOCK(h1); 1903 } else { 1904 PF_HASHROW_LOCK(h1); 1905 PF_HASHROW_LOCK(h0); 1906 } 1907 1908 LIST_FOREACH(endpoint, &h0->endpoints, entry) { 1909 if (bcmp(endpoint, &mapping->endpoints[0], 1910 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1911 break; 1912 } 1913 if (endpoint != NULL) 1914 goto cleanup; 1915 LIST_FOREACH(endpoint, &h1->endpoints, entry) { 1916 if (bcmp(endpoint, &mapping->endpoints[1], 1917 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1918 break; 1919 } 1920 if (endpoint != NULL) 1921 goto cleanup; 1922 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry); 1923 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry); 1924 ret = 0; 1925 1926 cleanup: 1927 if (h0 != h1) { 1928 PF_HASHROW_UNLOCK(h0); 1929 PF_HASHROW_UNLOCK(h1); 1930 } else { 1931 PF_HASHROW_UNLOCK(h0); 1932 } 1933 return (ret); 1934 } 1935 1936 void 1937 pf_udp_mapping_release(struct pf_udp_mapping *mapping) 1938 { 1939 /* refcount is synchronized on the source endpoint's row lock */ 1940 struct pf_udpendpointhash *h0, *h1; 1941 1942 if (mapping == NULL) 1943 return; 1944 1945 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 1946 PF_HASHROW_LOCK(h0); 1947 if (refcount_release(&mapping->refs)) { 1948 LIST_REMOVE(&mapping->endpoints[0], entry); 1949 PF_HASHROW_UNLOCK(h0); 1950 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 1951 PF_HASHROW_LOCK(h1); 1952 LIST_REMOVE(&mapping->endpoints[1], entry); 1953 PF_HASHROW_UNLOCK(h1); 1954 1955 uma_zfree(V_pf_udp_mapping_z, mapping); 1956 } else { 1957 PF_HASHROW_UNLOCK(h0); 1958 } 1959 } 1960 1961 1962 struct pf_udp_mapping * 1963 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key) 1964 { 1965 struct pf_udpendpointhash *uh; 1966 struct pf_udp_endpoint *endpoint; 1967 1968 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)]; 1969 1970 PF_HASHROW_LOCK(uh); 1971 LIST_FOREACH(endpoint, &uh->endpoints, entry) { 1972 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 && 1973 bcmp(endpoint, &endpoint->mapping->endpoints[0], 1974 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1975 break; 1976 } 1977 if (endpoint == NULL) { 1978 PF_HASHROW_UNLOCK(uh); 1979 return (NULL); 1980 } 1981 refcount_acquire(&endpoint->mapping->refs); 1982 PF_HASHROW_UNLOCK(uh); 1983 return (endpoint->mapping); 1984 } 1985 /* END state table stuff */ 1986 1987 static void 1988 pf_send(struct pf_send_entry *pfse) 1989 { 1990 1991 PF_SENDQ_LOCK(); 1992 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1993 PF_SENDQ_UNLOCK(); 1994 swi_sched(V_pf_swi_cookie, 0); 1995 } 1996 1997 static bool 1998 pf_isforlocal(struct mbuf *m, int af) 1999 { 2000 switch (af) { 2001 #ifdef INET 2002 case AF_INET: { 2003 struct ip *ip = mtod(m, struct ip *); 2004 2005 return (in_localip(ip->ip_dst)); 2006 } 2007 #endif 2008 #ifdef INET6 2009 case AF_INET6: { 2010 struct ip6_hdr *ip6; 2011 struct in6_ifaddr *ia; 2012 ip6 = mtod(m, struct ip6_hdr *); 2013 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 2014 if (ia == NULL) 2015 return (false); 2016 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 2017 } 2018 #endif 2019 default: 2020 panic("Unsupported af %d", af); 2021 } 2022 2023 return (false); 2024 } 2025 2026 int 2027 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type, 2028 int *icmp_dir, int *multi, u_int16_t *virtual_id, u_int16_t *virtual_type) 2029 { 2030 /* 2031 * ICMP types marked with PF_OUT are typically responses to 2032 * PF_IN, and will match states in the opposite direction. 2033 * PF_IN ICMP types need to match a state with that type. 2034 */ 2035 *icmp_dir = PF_OUT; 2036 *multi = PF_ICMP_MULTI_LINK; 2037 /* Queries (and responses) */ 2038 switch (pd->af) { 2039 #ifdef INET 2040 case AF_INET: 2041 switch (type) { 2042 case ICMP_ECHO: 2043 *icmp_dir = PF_IN; 2044 case ICMP_ECHOREPLY: 2045 *virtual_type = ICMP_ECHO; 2046 *virtual_id = pd->hdr.icmp.icmp_id; 2047 break; 2048 2049 case ICMP_TSTAMP: 2050 *icmp_dir = PF_IN; 2051 case ICMP_TSTAMPREPLY: 2052 *virtual_type = ICMP_TSTAMP; 2053 *virtual_id = pd->hdr.icmp.icmp_id; 2054 break; 2055 2056 case ICMP_IREQ: 2057 *icmp_dir = PF_IN; 2058 case ICMP_IREQREPLY: 2059 *virtual_type = ICMP_IREQ; 2060 *virtual_id = pd->hdr.icmp.icmp_id; 2061 break; 2062 2063 case ICMP_MASKREQ: 2064 *icmp_dir = PF_IN; 2065 case ICMP_MASKREPLY: 2066 *virtual_type = ICMP_MASKREQ; 2067 *virtual_id = pd->hdr.icmp.icmp_id; 2068 break; 2069 2070 case ICMP_IPV6_WHEREAREYOU: 2071 *icmp_dir = PF_IN; 2072 case ICMP_IPV6_IAMHERE: 2073 *virtual_type = ICMP_IPV6_WHEREAREYOU; 2074 *virtual_id = 0; /* Nothing sane to match on! */ 2075 break; 2076 2077 case ICMP_MOBILE_REGREQUEST: 2078 *icmp_dir = PF_IN; 2079 case ICMP_MOBILE_REGREPLY: 2080 *virtual_type = ICMP_MOBILE_REGREQUEST; 2081 *virtual_id = 0; /* Nothing sane to match on! */ 2082 break; 2083 2084 case ICMP_ROUTERSOLICIT: 2085 *icmp_dir = PF_IN; 2086 case ICMP_ROUTERADVERT: 2087 *virtual_type = ICMP_ROUTERSOLICIT; 2088 *virtual_id = 0; /* Nothing sane to match on! */ 2089 break; 2090 2091 /* These ICMP types map to other connections */ 2092 case ICMP_UNREACH: 2093 case ICMP_SOURCEQUENCH: 2094 case ICMP_REDIRECT: 2095 case ICMP_TIMXCEED: 2096 case ICMP_PARAMPROB: 2097 /* These will not be used, but set them anyway */ 2098 *icmp_dir = PF_IN; 2099 *virtual_type = type; 2100 *virtual_id = 0; 2101 HTONS(*virtual_type); 2102 return (1); /* These types match to another state */ 2103 2104 /* 2105 * All remaining ICMP types get their own states, 2106 * and will only match in one direction. 2107 */ 2108 default: 2109 *icmp_dir = PF_IN; 2110 *virtual_type = type; 2111 *virtual_id = 0; 2112 break; 2113 } 2114 break; 2115 #endif /* INET */ 2116 #ifdef INET6 2117 case AF_INET6: 2118 switch (type) { 2119 case ICMP6_ECHO_REQUEST: 2120 *icmp_dir = PF_IN; 2121 case ICMP6_ECHO_REPLY: 2122 *virtual_type = ICMP6_ECHO_REQUEST; 2123 *virtual_id = pd->hdr.icmp6.icmp6_id; 2124 break; 2125 2126 case MLD_LISTENER_QUERY: 2127 case MLD_LISTENER_REPORT: { 2128 /* 2129 * Listener Report can be sent by clients 2130 * without an associated Listener Query. 2131 * In addition to that, when Report is sent as a 2132 * reply to a Query its source and destination 2133 * address are different. 2134 */ 2135 *icmp_dir = PF_IN; 2136 *virtual_type = MLD_LISTENER_QUERY; 2137 *virtual_id = 0; 2138 break; 2139 } 2140 case MLD_MTRACE: 2141 *icmp_dir = PF_IN; 2142 case MLD_MTRACE_RESP: 2143 *virtual_type = MLD_MTRACE; 2144 *virtual_id = 0; /* Nothing sane to match on! */ 2145 break; 2146 2147 case ND_NEIGHBOR_SOLICIT: 2148 *icmp_dir = PF_IN; 2149 case ND_NEIGHBOR_ADVERT: { 2150 *virtual_type = ND_NEIGHBOR_SOLICIT; 2151 *virtual_id = 0; 2152 break; 2153 } 2154 2155 /* 2156 * These ICMP types map to other connections. 2157 * ND_REDIRECT can't be in this list because the triggering 2158 * packet header is optional. 2159 */ 2160 case ICMP6_DST_UNREACH: 2161 case ICMP6_PACKET_TOO_BIG: 2162 case ICMP6_TIME_EXCEEDED: 2163 case ICMP6_PARAM_PROB: 2164 /* These will not be used, but set them anyway */ 2165 *icmp_dir = PF_IN; 2166 *virtual_type = type; 2167 *virtual_id = 0; 2168 HTONS(*virtual_type); 2169 return (1); /* These types match to another state */ 2170 /* 2171 * All remaining ICMP6 types get their own states, 2172 * and will only match in one direction. 2173 */ 2174 default: 2175 *icmp_dir = PF_IN; 2176 *virtual_type = type; 2177 *virtual_id = 0; 2178 break; 2179 } 2180 break; 2181 #endif /* INET6 */ 2182 default: 2183 *icmp_dir = PF_IN; 2184 *virtual_type = type; 2185 *virtual_id = 0; 2186 break; 2187 } 2188 HTONS(*virtual_type); 2189 return (0); /* These types match to their own state */ 2190 } 2191 2192 void 2193 pf_intr(void *v) 2194 { 2195 struct epoch_tracker et; 2196 struct pf_send_head queue; 2197 struct pf_send_entry *pfse, *next; 2198 2199 CURVNET_SET((struct vnet *)v); 2200 2201 PF_SENDQ_LOCK(); 2202 queue = V_pf_sendqueue; 2203 STAILQ_INIT(&V_pf_sendqueue); 2204 PF_SENDQ_UNLOCK(); 2205 2206 NET_EPOCH_ENTER(et); 2207 2208 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 2209 switch (pfse->pfse_type) { 2210 #ifdef INET 2211 case PFSE_IP: { 2212 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 2213 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 2214 pfse->pfse_m->m_pkthdr.csum_flags |= 2215 CSUM_IP_VALID | CSUM_IP_CHECKED; 2216 ip_input(pfse->pfse_m); 2217 } else { 2218 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2219 NULL); 2220 } 2221 break; 2222 } 2223 case PFSE_ICMP: 2224 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 2225 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 2226 break; 2227 #endif /* INET */ 2228 #ifdef INET6 2229 case PFSE_IP6: 2230 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 2231 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 2232 ip6_input(pfse->pfse_m); 2233 } else { 2234 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2235 NULL, NULL); 2236 } 2237 break; 2238 case PFSE_ICMP6: 2239 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 2240 pfse->icmpopts.code, pfse->icmpopts.mtu); 2241 break; 2242 #endif /* INET6 */ 2243 default: 2244 panic("%s: unknown type", __func__); 2245 } 2246 free(pfse, M_PFTEMP); 2247 } 2248 NET_EPOCH_EXIT(et); 2249 CURVNET_RESTORE(); 2250 } 2251 2252 #define pf_purge_thread_period (hz / 10) 2253 2254 #ifdef PF_WANT_32_TO_64_COUNTER 2255 static void 2256 pf_status_counter_u64_periodic(void) 2257 { 2258 2259 PF_RULES_RASSERT(); 2260 2261 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 2262 return; 2263 } 2264 2265 for (int i = 0; i < FCNT_MAX; i++) { 2266 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 2267 } 2268 } 2269 2270 static void 2271 pf_kif_counter_u64_periodic(void) 2272 { 2273 struct pfi_kkif *kif; 2274 size_t r, run; 2275 2276 PF_RULES_RASSERT(); 2277 2278 if (__predict_false(V_pf_allkifcount == 0)) { 2279 return; 2280 } 2281 2282 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2283 return; 2284 } 2285 2286 run = V_pf_allkifcount / 10; 2287 if (run < 5) 2288 run = 5; 2289 2290 for (r = 0; r < run; r++) { 2291 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 2292 if (kif == NULL) { 2293 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2294 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 2295 break; 2296 } 2297 2298 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2299 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 2300 2301 for (int i = 0; i < 2; i++) { 2302 for (int j = 0; j < 2; j++) { 2303 for (int k = 0; k < 2; k++) { 2304 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 2305 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 2306 } 2307 } 2308 } 2309 } 2310 } 2311 2312 static void 2313 pf_rule_counter_u64_periodic(void) 2314 { 2315 struct pf_krule *rule; 2316 size_t r, run; 2317 2318 PF_RULES_RASSERT(); 2319 2320 if (__predict_false(V_pf_allrulecount == 0)) { 2321 return; 2322 } 2323 2324 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2325 return; 2326 } 2327 2328 run = V_pf_allrulecount / 10; 2329 if (run < 5) 2330 run = 5; 2331 2332 for (r = 0; r < run; r++) { 2333 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 2334 if (rule == NULL) { 2335 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2336 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 2337 break; 2338 } 2339 2340 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2341 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 2342 2343 pf_counter_u64_periodic(&rule->evaluations); 2344 for (int i = 0; i < 2; i++) { 2345 pf_counter_u64_periodic(&rule->packets[i]); 2346 pf_counter_u64_periodic(&rule->bytes[i]); 2347 } 2348 } 2349 } 2350 2351 static void 2352 pf_counter_u64_periodic_main(void) 2353 { 2354 PF_RULES_RLOCK_TRACKER; 2355 2356 V_pf_counter_periodic_iter++; 2357 2358 PF_RULES_RLOCK(); 2359 pf_counter_u64_critical_enter(); 2360 pf_status_counter_u64_periodic(); 2361 pf_kif_counter_u64_periodic(); 2362 pf_rule_counter_u64_periodic(); 2363 pf_counter_u64_critical_exit(); 2364 PF_RULES_RUNLOCK(); 2365 } 2366 #else 2367 #define pf_counter_u64_periodic_main() do { } while (0) 2368 #endif 2369 2370 void 2371 pf_purge_thread(void *unused __unused) 2372 { 2373 struct epoch_tracker et; 2374 2375 VNET_ITERATOR_DECL(vnet_iter); 2376 2377 sx_xlock(&pf_end_lock); 2378 while (pf_end_threads == 0) { 2379 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 2380 2381 VNET_LIST_RLOCK(); 2382 NET_EPOCH_ENTER(et); 2383 VNET_FOREACH(vnet_iter) { 2384 CURVNET_SET(vnet_iter); 2385 2386 /* Wait until V_pf_default_rule is initialized. */ 2387 if (V_pf_vnet_active == 0) { 2388 CURVNET_RESTORE(); 2389 continue; 2390 } 2391 2392 pf_counter_u64_periodic_main(); 2393 2394 /* 2395 * Process 1/interval fraction of the state 2396 * table every run. 2397 */ 2398 V_pf_purge_idx = 2399 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask / 2400 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 2401 2402 /* 2403 * Purge other expired types every 2404 * PFTM_INTERVAL seconds. 2405 */ 2406 if (V_pf_purge_idx == 0) { 2407 /* 2408 * Order is important: 2409 * - states and src nodes reference rules 2410 * - states and rules reference kifs 2411 */ 2412 pf_purge_expired_fragments(); 2413 pf_purge_expired_src_nodes(); 2414 pf_purge_unlinked_rules(); 2415 pfi_kkif_purge(); 2416 } 2417 CURVNET_RESTORE(); 2418 } 2419 NET_EPOCH_EXIT(et); 2420 VNET_LIST_RUNLOCK(); 2421 } 2422 2423 pf_end_threads++; 2424 sx_xunlock(&pf_end_lock); 2425 kproc_exit(0); 2426 } 2427 2428 void 2429 pf_unload_vnet_purge(void) 2430 { 2431 2432 /* 2433 * To cleanse up all kifs and rules we need 2434 * two runs: first one clears reference flags, 2435 * then pf_purge_expired_states() doesn't 2436 * raise them, and then second run frees. 2437 */ 2438 pf_purge_unlinked_rules(); 2439 pfi_kkif_purge(); 2440 2441 /* 2442 * Now purge everything. 2443 */ 2444 pf_purge_expired_states(0, V_pf_hashmask); 2445 pf_purge_fragments(UINT_MAX); 2446 pf_purge_expired_src_nodes(); 2447 2448 /* 2449 * Now all kifs & rules should be unreferenced, 2450 * thus should be successfully freed. 2451 */ 2452 pf_purge_unlinked_rules(); 2453 pfi_kkif_purge(); 2454 } 2455 2456 u_int32_t 2457 pf_state_expires(const struct pf_kstate *state) 2458 { 2459 u_int32_t timeout; 2460 u_int32_t start; 2461 u_int32_t end; 2462 u_int32_t states; 2463 2464 /* handle all PFTM_* > PFTM_MAX here */ 2465 if (state->timeout == PFTM_PURGE) 2466 return (time_uptime); 2467 KASSERT(state->timeout != PFTM_UNLINKED, 2468 ("pf_state_expires: timeout == PFTM_UNLINKED")); 2469 KASSERT((state->timeout < PFTM_MAX), 2470 ("pf_state_expires: timeout > PFTM_MAX")); 2471 timeout = state->rule.ptr->timeout[state->timeout]; 2472 if (!timeout) 2473 timeout = V_pf_default_rule.timeout[state->timeout]; 2474 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 2475 if (start && state->rule.ptr != &V_pf_default_rule) { 2476 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 2477 states = counter_u64_fetch(state->rule.ptr->states_cur); 2478 } else { 2479 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 2480 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 2481 states = V_pf_status.states; 2482 } 2483 if (end && states > start && start < end) { 2484 if (states < end) { 2485 timeout = (u_int64_t)timeout * (end - states) / 2486 (end - start); 2487 return ((state->expire / 1000) + timeout); 2488 } 2489 else 2490 return (time_uptime); 2491 } 2492 return ((state->expire / 1000) + timeout); 2493 } 2494 2495 void 2496 pf_purge_expired_src_nodes(void) 2497 { 2498 struct pf_ksrc_node_list freelist; 2499 struct pf_srchash *sh; 2500 struct pf_ksrc_node *cur, *next; 2501 int i; 2502 2503 LIST_INIT(&freelist); 2504 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 2505 PF_HASHROW_LOCK(sh); 2506 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 2507 if (cur->states == 0 && cur->expire <= time_uptime) { 2508 pf_unlink_src_node(cur); 2509 LIST_INSERT_HEAD(&freelist, cur, entry); 2510 } else if (cur->rule.ptr != NULL) 2511 cur->rule.ptr->rule_ref |= PFRULE_REFS; 2512 PF_HASHROW_UNLOCK(sh); 2513 } 2514 2515 pf_free_src_nodes(&freelist); 2516 2517 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2518 } 2519 2520 static void 2521 pf_src_tree_remove_state(struct pf_kstate *s) 2522 { 2523 struct pf_ksrc_node *sn; 2524 uint32_t timeout; 2525 2526 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 2527 s->rule.ptr->timeout[PFTM_SRC_NODE] : 2528 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2529 2530 if (s->src_node != NULL) { 2531 sn = s->src_node; 2532 PF_SRC_NODE_LOCK(sn); 2533 if (s->src.tcp_est) 2534 --sn->conn; 2535 if (--sn->states == 0) 2536 sn->expire = time_uptime + timeout; 2537 PF_SRC_NODE_UNLOCK(sn); 2538 } 2539 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 2540 sn = s->nat_src_node; 2541 PF_SRC_NODE_LOCK(sn); 2542 if (--sn->states == 0) 2543 sn->expire = time_uptime + timeout; 2544 PF_SRC_NODE_UNLOCK(sn); 2545 } 2546 s->src_node = s->nat_src_node = NULL; 2547 } 2548 2549 /* 2550 * Unlink and potentilly free a state. Function may be 2551 * called with ID hash row locked, but always returns 2552 * unlocked, since it needs to go through key hash locking. 2553 */ 2554 int 2555 pf_unlink_state(struct pf_kstate *s) 2556 { 2557 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2558 2559 NET_EPOCH_ASSERT(); 2560 PF_HASHROW_ASSERT(ih); 2561 2562 if (s->timeout == PFTM_UNLINKED) { 2563 /* 2564 * State is being processed 2565 * by pf_unlink_state() in 2566 * an other thread. 2567 */ 2568 PF_HASHROW_UNLOCK(ih); 2569 return (0); /* XXXGL: undefined actually */ 2570 } 2571 2572 if (s->src.state == PF_TCPS_PROXY_DST) { 2573 /* XXX wire key the right one? */ 2574 pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af, 2575 &s->key[PF_SK_WIRE]->addr[1], 2576 &s->key[PF_SK_WIRE]->addr[0], 2577 s->key[PF_SK_WIRE]->port[1], 2578 s->key[PF_SK_WIRE]->port[0], 2579 s->src.seqhi, s->src.seqlo + 1, 2580 TH_RST|TH_ACK, 0, 0, 0, true, s->tag, 0, s->act.rtableid); 2581 } 2582 2583 LIST_REMOVE(s, entry); 2584 pf_src_tree_remove_state(s); 2585 2586 if (V_pfsync_delete_state_ptr != NULL) 2587 V_pfsync_delete_state_ptr(s); 2588 2589 STATE_DEC_COUNTERS(s); 2590 2591 s->timeout = PFTM_UNLINKED; 2592 2593 /* Ensure we remove it from the list of halfopen states, if needed. */ 2594 if (s->key[PF_SK_STACK] != NULL && 2595 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2596 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2597 2598 PF_HASHROW_UNLOCK(ih); 2599 2600 pf_detach_state(s); 2601 2602 pf_udp_mapping_release(s->udp_mapping); 2603 2604 /* pf_state_insert() initialises refs to 2 */ 2605 return (pf_release_staten(s, 2)); 2606 } 2607 2608 struct pf_kstate * 2609 pf_alloc_state(int flags) 2610 { 2611 2612 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2613 } 2614 2615 void 2616 pf_free_state(struct pf_kstate *cur) 2617 { 2618 struct pf_krule_item *ri; 2619 2620 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2621 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2622 cur->timeout)); 2623 2624 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2625 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2626 free(ri, M_PF_RULE_ITEM); 2627 } 2628 2629 pf_normalize_tcp_cleanup(cur); 2630 uma_zfree(V_pf_state_z, cur); 2631 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2632 } 2633 2634 /* 2635 * Called only from pf_purge_thread(), thus serialized. 2636 */ 2637 static u_int 2638 pf_purge_expired_states(u_int i, int maxcheck) 2639 { 2640 struct pf_idhash *ih; 2641 struct pf_kstate *s; 2642 struct pf_krule_item *mrm; 2643 size_t count __unused; 2644 2645 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2646 2647 /* 2648 * Go through hash and unlink states that expire now. 2649 */ 2650 while (maxcheck > 0) { 2651 count = 0; 2652 ih = &V_pf_idhash[i]; 2653 2654 /* only take the lock if we expect to do work */ 2655 if (!LIST_EMPTY(&ih->states)) { 2656 relock: 2657 PF_HASHROW_LOCK(ih); 2658 LIST_FOREACH(s, &ih->states, entry) { 2659 if (pf_state_expires(s) <= time_uptime) { 2660 V_pf_status.states -= 2661 pf_unlink_state(s); 2662 goto relock; 2663 } 2664 s->rule.ptr->rule_ref |= PFRULE_REFS; 2665 if (s->nat_rule.ptr != NULL) 2666 s->nat_rule.ptr->rule_ref |= PFRULE_REFS; 2667 if (s->anchor.ptr != NULL) 2668 s->anchor.ptr->rule_ref |= PFRULE_REFS; 2669 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2670 SLIST_FOREACH(mrm, &s->match_rules, entry) 2671 mrm->r->rule_ref |= PFRULE_REFS; 2672 if (s->rt_kif) 2673 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2674 count++; 2675 } 2676 PF_HASHROW_UNLOCK(ih); 2677 } 2678 2679 SDT_PROBE2(pf, purge, state, rowcount, i, count); 2680 2681 /* Return when we hit end of hash. */ 2682 if (++i > V_pf_hashmask) { 2683 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2684 return (0); 2685 } 2686 2687 maxcheck--; 2688 } 2689 2690 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2691 2692 return (i); 2693 } 2694 2695 static void 2696 pf_purge_unlinked_rules(void) 2697 { 2698 struct pf_krulequeue tmpq; 2699 struct pf_krule *r, *r1; 2700 2701 /* 2702 * If we have overloading task pending, then we'd 2703 * better skip purging this time. There is a tiny 2704 * probability that overloading task references 2705 * an already unlinked rule. 2706 */ 2707 PF_OVERLOADQ_LOCK(); 2708 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2709 PF_OVERLOADQ_UNLOCK(); 2710 return; 2711 } 2712 PF_OVERLOADQ_UNLOCK(); 2713 2714 /* 2715 * Do naive mark-and-sweep garbage collecting of old rules. 2716 * Reference flag is raised by pf_purge_expired_states() 2717 * and pf_purge_expired_src_nodes(). 2718 * 2719 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2720 * use a temporary queue. 2721 */ 2722 TAILQ_INIT(&tmpq); 2723 PF_UNLNKDRULES_LOCK(); 2724 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2725 if (!(r->rule_ref & PFRULE_REFS)) { 2726 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2727 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2728 } else 2729 r->rule_ref &= ~PFRULE_REFS; 2730 } 2731 PF_UNLNKDRULES_UNLOCK(); 2732 2733 if (!TAILQ_EMPTY(&tmpq)) { 2734 PF_CONFIG_LOCK(); 2735 PF_RULES_WLOCK(); 2736 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2737 TAILQ_REMOVE(&tmpq, r, entries); 2738 pf_free_rule(r); 2739 } 2740 PF_RULES_WUNLOCK(); 2741 PF_CONFIG_UNLOCK(); 2742 } 2743 } 2744 2745 void 2746 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2747 { 2748 switch (af) { 2749 #ifdef INET 2750 case AF_INET: { 2751 u_int32_t a = ntohl(addr->addr32[0]); 2752 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2753 (a>>8)&255, a&255); 2754 if (p) { 2755 p = ntohs(p); 2756 printf(":%u", p); 2757 } 2758 break; 2759 } 2760 #endif /* INET */ 2761 #ifdef INET6 2762 case AF_INET6: { 2763 u_int16_t b; 2764 u_int8_t i, curstart, curend, maxstart, maxend; 2765 curstart = curend = maxstart = maxend = 255; 2766 for (i = 0; i < 8; i++) { 2767 if (!addr->addr16[i]) { 2768 if (curstart == 255) 2769 curstart = i; 2770 curend = i; 2771 } else { 2772 if ((curend - curstart) > 2773 (maxend - maxstart)) { 2774 maxstart = curstart; 2775 maxend = curend; 2776 } 2777 curstart = curend = 255; 2778 } 2779 } 2780 if ((curend - curstart) > 2781 (maxend - maxstart)) { 2782 maxstart = curstart; 2783 maxend = curend; 2784 } 2785 for (i = 0; i < 8; i++) { 2786 if (i >= maxstart && i <= maxend) { 2787 if (i == 0) 2788 printf(":"); 2789 if (i == maxend) 2790 printf(":"); 2791 } else { 2792 b = ntohs(addr->addr16[i]); 2793 printf("%x", b); 2794 if (i < 7) 2795 printf(":"); 2796 } 2797 } 2798 if (p) { 2799 p = ntohs(p); 2800 printf("[%u]", p); 2801 } 2802 break; 2803 } 2804 #endif /* INET6 */ 2805 } 2806 } 2807 2808 void 2809 pf_print_state(struct pf_kstate *s) 2810 { 2811 pf_print_state_parts(s, NULL, NULL); 2812 } 2813 2814 static void 2815 pf_print_state_parts(struct pf_kstate *s, 2816 struct pf_state_key *skwp, struct pf_state_key *sksp) 2817 { 2818 struct pf_state_key *skw, *sks; 2819 u_int8_t proto, dir; 2820 2821 /* Do our best to fill these, but they're skipped if NULL */ 2822 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2823 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2824 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2825 dir = s ? s->direction : 0; 2826 2827 switch (proto) { 2828 case IPPROTO_IPV4: 2829 printf("IPv4"); 2830 break; 2831 case IPPROTO_IPV6: 2832 printf("IPv6"); 2833 break; 2834 case IPPROTO_TCP: 2835 printf("TCP"); 2836 break; 2837 case IPPROTO_UDP: 2838 printf("UDP"); 2839 break; 2840 case IPPROTO_ICMP: 2841 printf("ICMP"); 2842 break; 2843 case IPPROTO_ICMPV6: 2844 printf("ICMPv6"); 2845 break; 2846 default: 2847 printf("%u", proto); 2848 break; 2849 } 2850 switch (dir) { 2851 case PF_IN: 2852 printf(" in"); 2853 break; 2854 case PF_OUT: 2855 printf(" out"); 2856 break; 2857 } 2858 if (skw) { 2859 printf(" wire: "); 2860 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2861 printf(" "); 2862 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2863 } 2864 if (sks) { 2865 printf(" stack: "); 2866 if (sks != skw) { 2867 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2868 printf(" "); 2869 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2870 } else 2871 printf("-"); 2872 } 2873 if (s) { 2874 if (proto == IPPROTO_TCP) { 2875 printf(" [lo=%u high=%u win=%u modulator=%u", 2876 s->src.seqlo, s->src.seqhi, 2877 s->src.max_win, s->src.seqdiff); 2878 if (s->src.wscale && s->dst.wscale) 2879 printf(" wscale=%u", 2880 s->src.wscale & PF_WSCALE_MASK); 2881 printf("]"); 2882 printf(" [lo=%u high=%u win=%u modulator=%u", 2883 s->dst.seqlo, s->dst.seqhi, 2884 s->dst.max_win, s->dst.seqdiff); 2885 if (s->src.wscale && s->dst.wscale) 2886 printf(" wscale=%u", 2887 s->dst.wscale & PF_WSCALE_MASK); 2888 printf("]"); 2889 } 2890 printf(" %u:%u", s->src.state, s->dst.state); 2891 } 2892 } 2893 2894 void 2895 pf_print_flags(u_int8_t f) 2896 { 2897 if (f) 2898 printf(" "); 2899 if (f & TH_FIN) 2900 printf("F"); 2901 if (f & TH_SYN) 2902 printf("S"); 2903 if (f & TH_RST) 2904 printf("R"); 2905 if (f & TH_PUSH) 2906 printf("P"); 2907 if (f & TH_ACK) 2908 printf("A"); 2909 if (f & TH_URG) 2910 printf("U"); 2911 if (f & TH_ECE) 2912 printf("E"); 2913 if (f & TH_CWR) 2914 printf("W"); 2915 } 2916 2917 #define PF_SET_SKIP_STEPS(i) \ 2918 do { \ 2919 while (head[i] != cur) { \ 2920 head[i]->skip[i].ptr = cur; \ 2921 head[i] = TAILQ_NEXT(head[i], entries); \ 2922 } \ 2923 } while (0) 2924 2925 void 2926 pf_calc_skip_steps(struct pf_krulequeue *rules) 2927 { 2928 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2929 int i; 2930 2931 cur = TAILQ_FIRST(rules); 2932 prev = cur; 2933 for (i = 0; i < PF_SKIP_COUNT; ++i) 2934 head[i] = cur; 2935 while (cur != NULL) { 2936 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2937 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2938 if (cur->direction != prev->direction) 2939 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2940 if (cur->af != prev->af) 2941 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2942 if (cur->proto != prev->proto) 2943 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2944 if (cur->src.neg != prev->src.neg || 2945 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2946 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2947 if (cur->src.port[0] != prev->src.port[0] || 2948 cur->src.port[1] != prev->src.port[1] || 2949 cur->src.port_op != prev->src.port_op) 2950 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2951 if (cur->dst.neg != prev->dst.neg || 2952 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2953 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2954 if (cur->dst.port[0] != prev->dst.port[0] || 2955 cur->dst.port[1] != prev->dst.port[1] || 2956 cur->dst.port_op != prev->dst.port_op) 2957 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2958 2959 prev = cur; 2960 cur = TAILQ_NEXT(cur, entries); 2961 } 2962 for (i = 0; i < PF_SKIP_COUNT; ++i) 2963 PF_SET_SKIP_STEPS(i); 2964 } 2965 2966 int 2967 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2968 { 2969 if (aw1->type != aw2->type) 2970 return (1); 2971 switch (aw1->type) { 2972 case PF_ADDR_ADDRMASK: 2973 case PF_ADDR_RANGE: 2974 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2975 return (1); 2976 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2977 return (1); 2978 return (0); 2979 case PF_ADDR_DYNIFTL: 2980 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2981 case PF_ADDR_NOROUTE: 2982 case PF_ADDR_URPFFAILED: 2983 return (0); 2984 case PF_ADDR_TABLE: 2985 return (aw1->p.tbl != aw2->p.tbl); 2986 default: 2987 printf("invalid address type: %d\n", aw1->type); 2988 return (1); 2989 } 2990 } 2991 2992 /** 2993 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2994 * header isn't always a full checksum. In some cases (i.e. output) it's a 2995 * pseudo-header checksum, which is a partial checksum over src/dst IP 2996 * addresses, protocol number and length. 2997 * 2998 * That means we have the following cases: 2999 * * Input or forwarding: we don't have TSO, the checksum fields are full 3000 * checksums, we need to update the checksum whenever we change anything. 3001 * * Output (i.e. the checksum is a pseudo-header checksum): 3002 * x The field being updated is src/dst address or affects the length of 3003 * the packet. We need to update the pseudo-header checksum (note that this 3004 * checksum is not ones' complement). 3005 * x Some other field is being modified (e.g. src/dst port numbers): We 3006 * don't have to update anything. 3007 **/ 3008 u_int16_t 3009 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 3010 { 3011 u_int32_t x; 3012 3013 x = cksum + old - new; 3014 x = (x + (x >> 16)) & 0xffff; 3015 3016 /* optimise: eliminate a branch when not udp */ 3017 if (udp && cksum == 0x0000) 3018 return cksum; 3019 if (udp && x == 0x0000) 3020 x = 0xffff; 3021 3022 return (u_int16_t)(x); 3023 } 3024 3025 static void 3026 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 3027 u_int8_t udp) 3028 { 3029 u_int16_t old = htons(hi ? (*f << 8) : *f); 3030 u_int16_t new = htons(hi ? ( v << 8) : v); 3031 3032 if (*f == v) 3033 return; 3034 3035 *f = v; 3036 3037 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3038 return; 3039 3040 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 3041 } 3042 3043 void 3044 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 3045 bool hi, u_int8_t udp) 3046 { 3047 u_int8_t *fb = (u_int8_t *)f; 3048 u_int8_t *vb = (u_int8_t *)&v; 3049 3050 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3051 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3052 } 3053 3054 void 3055 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 3056 bool hi, u_int8_t udp) 3057 { 3058 u_int8_t *fb = (u_int8_t *)f; 3059 u_int8_t *vb = (u_int8_t *)&v; 3060 3061 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3062 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3063 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3064 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3065 } 3066 3067 u_int16_t 3068 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 3069 u_int16_t new, u_int8_t udp) 3070 { 3071 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3072 return (cksum); 3073 3074 return (pf_cksum_fixup(cksum, old, new, udp)); 3075 } 3076 3077 static void 3078 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 3079 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 3080 sa_family_t af) 3081 { 3082 struct pf_addr ao; 3083 u_int16_t po = *p; 3084 3085 PF_ACPY(&ao, a, af); 3086 PF_ACPY(a, an, af); 3087 3088 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3089 *pc = ~*pc; 3090 3091 *p = pn; 3092 3093 switch (af) { 3094 #ifdef INET 3095 case AF_INET: 3096 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3097 ao.addr16[0], an->addr16[0], 0), 3098 ao.addr16[1], an->addr16[1], 0); 3099 *p = pn; 3100 3101 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 3102 ao.addr16[0], an->addr16[0], u), 3103 ao.addr16[1], an->addr16[1], u); 3104 3105 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 3106 break; 3107 #endif /* INET */ 3108 #ifdef INET6 3109 case AF_INET6: 3110 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3111 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3112 pf_cksum_fixup(pf_cksum_fixup(*pc, 3113 ao.addr16[0], an->addr16[0], u), 3114 ao.addr16[1], an->addr16[1], u), 3115 ao.addr16[2], an->addr16[2], u), 3116 ao.addr16[3], an->addr16[3], u), 3117 ao.addr16[4], an->addr16[4], u), 3118 ao.addr16[5], an->addr16[5], u), 3119 ao.addr16[6], an->addr16[6], u), 3120 ao.addr16[7], an->addr16[7], u); 3121 3122 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 3123 break; 3124 #endif /* INET6 */ 3125 } 3126 3127 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 3128 CSUM_DELAY_DATA_IPV6)) { 3129 *pc = ~*pc; 3130 if (! *pc) 3131 *pc = 0xffff; 3132 } 3133 } 3134 3135 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 3136 void 3137 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 3138 { 3139 u_int32_t ao; 3140 3141 memcpy(&ao, a, sizeof(ao)); 3142 memcpy(a, &an, sizeof(u_int32_t)); 3143 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 3144 ao % 65536, an % 65536, u); 3145 } 3146 3147 void 3148 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 3149 { 3150 u_int32_t ao; 3151 3152 memcpy(&ao, a, sizeof(ao)); 3153 memcpy(a, &an, sizeof(u_int32_t)); 3154 3155 *c = pf_proto_cksum_fixup(m, 3156 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 3157 ao % 65536, an % 65536, udp); 3158 } 3159 3160 #ifdef INET6 3161 static void 3162 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 3163 { 3164 struct pf_addr ao; 3165 3166 PF_ACPY(&ao, a, AF_INET6); 3167 PF_ACPY(a, an, AF_INET6); 3168 3169 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3170 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3171 pf_cksum_fixup(pf_cksum_fixup(*c, 3172 ao.addr16[0], an->addr16[0], u), 3173 ao.addr16[1], an->addr16[1], u), 3174 ao.addr16[2], an->addr16[2], u), 3175 ao.addr16[3], an->addr16[3], u), 3176 ao.addr16[4], an->addr16[4], u), 3177 ao.addr16[5], an->addr16[5], u), 3178 ao.addr16[6], an->addr16[6], u), 3179 ao.addr16[7], an->addr16[7], u); 3180 } 3181 #endif /* INET6 */ 3182 3183 static void 3184 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 3185 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 3186 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 3187 { 3188 struct pf_addr oia, ooa; 3189 3190 PF_ACPY(&oia, ia, af); 3191 if (oa) 3192 PF_ACPY(&ooa, oa, af); 3193 3194 /* Change inner protocol port, fix inner protocol checksum. */ 3195 if (ip != NULL) { 3196 u_int16_t oip = *ip; 3197 u_int32_t opc; 3198 3199 if (pc != NULL) 3200 opc = *pc; 3201 *ip = np; 3202 if (pc != NULL) 3203 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 3204 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 3205 if (pc != NULL) 3206 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 3207 } 3208 /* Change inner ip address, fix inner ip and icmp checksums. */ 3209 PF_ACPY(ia, na, af); 3210 switch (af) { 3211 #ifdef INET 3212 case AF_INET: { 3213 u_int32_t oh2c = *h2c; 3214 3215 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 3216 oia.addr16[0], ia->addr16[0], 0), 3217 oia.addr16[1], ia->addr16[1], 0); 3218 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3219 oia.addr16[0], ia->addr16[0], 0), 3220 oia.addr16[1], ia->addr16[1], 0); 3221 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 3222 break; 3223 } 3224 #endif /* INET */ 3225 #ifdef INET6 3226 case AF_INET6: 3227 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3228 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3229 pf_cksum_fixup(pf_cksum_fixup(*ic, 3230 oia.addr16[0], ia->addr16[0], u), 3231 oia.addr16[1], ia->addr16[1], u), 3232 oia.addr16[2], ia->addr16[2], u), 3233 oia.addr16[3], ia->addr16[3], u), 3234 oia.addr16[4], ia->addr16[4], u), 3235 oia.addr16[5], ia->addr16[5], u), 3236 oia.addr16[6], ia->addr16[6], u), 3237 oia.addr16[7], ia->addr16[7], u); 3238 break; 3239 #endif /* INET6 */ 3240 } 3241 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 3242 if (oa) { 3243 PF_ACPY(oa, na, af); 3244 switch (af) { 3245 #ifdef INET 3246 case AF_INET: 3247 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 3248 ooa.addr16[0], oa->addr16[0], 0), 3249 ooa.addr16[1], oa->addr16[1], 0); 3250 break; 3251 #endif /* INET */ 3252 #ifdef INET6 3253 case AF_INET6: 3254 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3255 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3256 pf_cksum_fixup(pf_cksum_fixup(*ic, 3257 ooa.addr16[0], oa->addr16[0], u), 3258 ooa.addr16[1], oa->addr16[1], u), 3259 ooa.addr16[2], oa->addr16[2], u), 3260 ooa.addr16[3], oa->addr16[3], u), 3261 ooa.addr16[4], oa->addr16[4], u), 3262 ooa.addr16[5], oa->addr16[5], u), 3263 ooa.addr16[6], oa->addr16[6], u), 3264 ooa.addr16[7], oa->addr16[7], u); 3265 break; 3266 #endif /* INET6 */ 3267 } 3268 } 3269 } 3270 3271 /* 3272 * Need to modulate the sequence numbers in the TCP SACK option 3273 * (credits to Krzysztof Pfaff for report and patch) 3274 */ 3275 static int 3276 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 3277 struct tcphdr *th, struct pf_state_peer *dst) 3278 { 3279 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 3280 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 3281 int copyback = 0, i, olen; 3282 struct sackblk sack; 3283 3284 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 3285 if (hlen < TCPOLEN_SACKLEN || 3286 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 3287 return 0; 3288 3289 while (hlen >= TCPOLEN_SACKLEN) { 3290 size_t startoff = opt - opts; 3291 olen = opt[1]; 3292 switch (*opt) { 3293 case TCPOPT_EOL: /* FALLTHROUGH */ 3294 case TCPOPT_NOP: 3295 opt++; 3296 hlen--; 3297 break; 3298 case TCPOPT_SACK: 3299 if (olen > hlen) 3300 olen = hlen; 3301 if (olen >= TCPOLEN_SACKLEN) { 3302 for (i = 2; i + TCPOLEN_SACK <= olen; 3303 i += TCPOLEN_SACK) { 3304 memcpy(&sack, &opt[i], sizeof(sack)); 3305 pf_patch_32_unaligned(m, 3306 &th->th_sum, &sack.start, 3307 htonl(ntohl(sack.start) - dst->seqdiff), 3308 PF_ALGNMNT(startoff), 3309 0); 3310 pf_patch_32_unaligned(m, &th->th_sum, 3311 &sack.end, 3312 htonl(ntohl(sack.end) - dst->seqdiff), 3313 PF_ALGNMNT(startoff), 3314 0); 3315 memcpy(&opt[i], &sack, sizeof(sack)); 3316 } 3317 copyback = 1; 3318 } 3319 /* FALLTHROUGH */ 3320 default: 3321 if (olen < 2) 3322 olen = 2; 3323 hlen -= olen; 3324 opt += olen; 3325 } 3326 } 3327 3328 if (copyback) 3329 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 3330 return (copyback); 3331 } 3332 3333 struct mbuf * 3334 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 3335 const struct pf_addr *saddr, const struct pf_addr *daddr, 3336 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3337 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3338 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3339 { 3340 struct mbuf *m; 3341 int len, tlen; 3342 #ifdef INET 3343 struct ip *h = NULL; 3344 #endif /* INET */ 3345 #ifdef INET6 3346 struct ip6_hdr *h6 = NULL; 3347 #endif /* INET6 */ 3348 struct tcphdr *th; 3349 char *opt; 3350 struct pf_mtag *pf_mtag; 3351 3352 len = 0; 3353 th = NULL; 3354 3355 /* maximum segment size tcp option */ 3356 tlen = sizeof(struct tcphdr); 3357 if (mss) 3358 tlen += 4; 3359 3360 switch (af) { 3361 #ifdef INET 3362 case AF_INET: 3363 len = sizeof(struct ip) + tlen; 3364 break; 3365 #endif /* INET */ 3366 #ifdef INET6 3367 case AF_INET6: 3368 len = sizeof(struct ip6_hdr) + tlen; 3369 break; 3370 #endif /* INET6 */ 3371 default: 3372 panic("%s: unsupported af %d", __func__, af); 3373 } 3374 3375 m = m_gethdr(M_NOWAIT, MT_DATA); 3376 if (m == NULL) 3377 return (NULL); 3378 3379 #ifdef MAC 3380 mac_netinet_firewall_send(m); 3381 #endif 3382 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 3383 m_freem(m); 3384 return (NULL); 3385 } 3386 if (skip_firewall) 3387 m->m_flags |= M_SKIP_FIREWALL; 3388 pf_mtag->tag = mtag_tag; 3389 pf_mtag->flags = mtag_flags; 3390 3391 if (rtableid >= 0) 3392 M_SETFIB(m, rtableid); 3393 3394 #ifdef ALTQ 3395 if (r != NULL && r->qid) { 3396 pf_mtag->qid = r->qid; 3397 3398 /* add hints for ecn */ 3399 pf_mtag->hdr = mtod(m, struct ip *); 3400 } 3401 #endif /* ALTQ */ 3402 m->m_data += max_linkhdr; 3403 m->m_pkthdr.len = m->m_len = len; 3404 /* The rest of the stack assumes a rcvif, so provide one. 3405 * This is a locally generated packet, so .. close enough. */ 3406 m->m_pkthdr.rcvif = V_loif; 3407 bzero(m->m_data, len); 3408 switch (af) { 3409 #ifdef INET 3410 case AF_INET: 3411 h = mtod(m, struct ip *); 3412 3413 /* IP header fields included in the TCP checksum */ 3414 h->ip_p = IPPROTO_TCP; 3415 h->ip_len = htons(tlen); 3416 h->ip_src.s_addr = saddr->v4.s_addr; 3417 h->ip_dst.s_addr = daddr->v4.s_addr; 3418 3419 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 3420 break; 3421 #endif /* INET */ 3422 #ifdef INET6 3423 case AF_INET6: 3424 h6 = mtod(m, struct ip6_hdr *); 3425 3426 /* IP header fields included in the TCP checksum */ 3427 h6->ip6_nxt = IPPROTO_TCP; 3428 h6->ip6_plen = htons(tlen); 3429 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 3430 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 3431 3432 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 3433 break; 3434 #endif /* INET6 */ 3435 } 3436 3437 /* TCP header */ 3438 th->th_sport = sport; 3439 th->th_dport = dport; 3440 th->th_seq = htonl(seq); 3441 th->th_ack = htonl(ack); 3442 th->th_off = tlen >> 2; 3443 th->th_flags = tcp_flags; 3444 th->th_win = htons(win); 3445 3446 if (mss) { 3447 opt = (char *)(th + 1); 3448 opt[0] = TCPOPT_MAXSEG; 3449 opt[1] = 4; 3450 HTONS(mss); 3451 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 3452 } 3453 3454 switch (af) { 3455 #ifdef INET 3456 case AF_INET: 3457 /* TCP checksum */ 3458 th->th_sum = in_cksum(m, len); 3459 3460 /* Finish the IP header */ 3461 h->ip_v = 4; 3462 h->ip_hl = sizeof(*h) >> 2; 3463 h->ip_tos = IPTOS_LOWDELAY; 3464 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 3465 h->ip_len = htons(len); 3466 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3467 h->ip_sum = 0; 3468 break; 3469 #endif /* INET */ 3470 #ifdef INET6 3471 case AF_INET6: 3472 /* TCP checksum */ 3473 th->th_sum = in6_cksum(m, IPPROTO_TCP, 3474 sizeof(struct ip6_hdr), tlen); 3475 3476 h6->ip6_vfc |= IPV6_VERSION; 3477 h6->ip6_hlim = IPV6_DEFHLIM; 3478 break; 3479 #endif /* INET6 */ 3480 } 3481 3482 return (m); 3483 } 3484 3485 static void 3486 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd, 3487 uint8_t ttl, int rtableid) 3488 { 3489 struct mbuf *m; 3490 #ifdef INET 3491 struct ip *h = NULL; 3492 #endif /* INET */ 3493 #ifdef INET6 3494 struct ip6_hdr *h6 = NULL; 3495 #endif /* INET6 */ 3496 struct sctphdr *hdr; 3497 struct sctp_chunkhdr *chunk; 3498 struct pf_send_entry *pfse; 3499 int off = 0; 3500 3501 MPASS(af == pd->af); 3502 3503 m = m_gethdr(M_NOWAIT, MT_DATA); 3504 if (m == NULL) 3505 return; 3506 3507 m->m_data += max_linkhdr; 3508 m->m_flags |= M_SKIP_FIREWALL; 3509 /* The rest of the stack assumes a rcvif, so provide one. 3510 * This is a locally generated packet, so .. close enough. */ 3511 m->m_pkthdr.rcvif = V_loif; 3512 3513 /* IPv4|6 header */ 3514 switch (af) { 3515 #ifdef INET 3516 case AF_INET: 3517 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk)); 3518 3519 h = mtod(m, struct ip *); 3520 3521 /* IP header fields included in the TCP checksum */ 3522 3523 h->ip_p = IPPROTO_SCTP; 3524 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk)); 3525 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3526 h->ip_src = pd->dst->v4; 3527 h->ip_dst = pd->src->v4; 3528 3529 off += sizeof(struct ip); 3530 break; 3531 #endif /* INET */ 3532 #ifdef INET6 3533 case AF_INET6: 3534 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk)); 3535 3536 h6 = mtod(m, struct ip6_hdr *); 3537 3538 /* IP header fields included in the TCP checksum */ 3539 h6->ip6_vfc |= IPV6_VERSION; 3540 h6->ip6_nxt = IPPROTO_SCTP; 3541 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk)); 3542 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim; 3543 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr)); 3544 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr)); 3545 3546 off += sizeof(struct ip6_hdr); 3547 break; 3548 #endif /* INET6 */ 3549 } 3550 3551 /* SCTP header */ 3552 hdr = mtodo(m, off); 3553 3554 hdr->src_port = pd->hdr.sctp.dest_port; 3555 hdr->dest_port = pd->hdr.sctp.src_port; 3556 hdr->v_tag = pd->sctp_initiate_tag; 3557 hdr->checksum = 0; 3558 3559 /* Abort chunk. */ 3560 off += sizeof(struct sctphdr); 3561 chunk = mtodo(m, off); 3562 3563 chunk->chunk_type = SCTP_ABORT_ASSOCIATION; 3564 chunk->chunk_length = htons(sizeof(*chunk)); 3565 3566 /* SCTP checksum */ 3567 off += sizeof(*chunk); 3568 m->m_pkthdr.len = m->m_len = off; 3569 3570 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk)); 3571 3572 if (rtableid >= 0) 3573 M_SETFIB(m, rtableid); 3574 3575 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3576 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3577 if (pfse == NULL) { 3578 m_freem(m); 3579 return; 3580 } 3581 3582 switch (af) { 3583 #ifdef INET 3584 case AF_INET: 3585 pfse->pfse_type = PFSE_IP; 3586 break; 3587 #endif /* INET */ 3588 #ifdef INET6 3589 case AF_INET6: 3590 pfse->pfse_type = PFSE_IP6; 3591 break; 3592 #endif /* INET6 */ 3593 } 3594 3595 pfse->pfse_m = m; 3596 pf_send(pfse); 3597 } 3598 3599 void 3600 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 3601 const struct pf_addr *saddr, const struct pf_addr *daddr, 3602 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3603 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3604 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3605 { 3606 struct pf_send_entry *pfse; 3607 struct mbuf *m; 3608 3609 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags, 3610 win, mss, ttl, skip_firewall, mtag_tag, mtag_flags, rtableid); 3611 if (m == NULL) 3612 return; 3613 3614 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3615 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3616 if (pfse == NULL) { 3617 m_freem(m); 3618 return; 3619 } 3620 3621 switch (af) { 3622 #ifdef INET 3623 case AF_INET: 3624 pfse->pfse_type = PFSE_IP; 3625 break; 3626 #endif /* INET */ 3627 #ifdef INET6 3628 case AF_INET6: 3629 pfse->pfse_type = PFSE_IP6; 3630 break; 3631 #endif /* INET6 */ 3632 } 3633 3634 pfse->pfse_m = m; 3635 pf_send(pfse); 3636 } 3637 3638 static void 3639 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 3640 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 3641 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 3642 u_short *reason, int rtableid) 3643 { 3644 struct pf_addr * const saddr = pd->src; 3645 struct pf_addr * const daddr = pd->dst; 3646 sa_family_t af = pd->af; 3647 3648 /* undo NAT changes, if they have taken place */ 3649 if (nr != NULL) { 3650 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3651 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3652 if (pd->sport) 3653 *pd->sport = sk->port[pd->sidx]; 3654 if (pd->dport) 3655 *pd->dport = sk->port[pd->didx]; 3656 if (pd->proto_sum) 3657 *pd->proto_sum = bproto_sum; 3658 if (pd->ip_sum) 3659 *pd->ip_sum = bip_sum; 3660 m_copyback(m, off, hdrlen, pd->hdr.any); 3661 } 3662 if (pd->proto == IPPROTO_TCP && 3663 ((r->rule_flag & PFRULE_RETURNRST) || 3664 (r->rule_flag & PFRULE_RETURN)) && 3665 !(th->th_flags & TH_RST)) { 3666 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3667 int len = 0; 3668 #ifdef INET 3669 struct ip *h4; 3670 #endif 3671 #ifdef INET6 3672 struct ip6_hdr *h6; 3673 #endif 3674 3675 switch (af) { 3676 #ifdef INET 3677 case AF_INET: 3678 h4 = mtod(m, struct ip *); 3679 len = ntohs(h4->ip_len) - off; 3680 break; 3681 #endif 3682 #ifdef INET6 3683 case AF_INET6: 3684 h6 = mtod(m, struct ip6_hdr *); 3685 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3686 break; 3687 #endif 3688 } 3689 3690 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3691 REASON_SET(reason, PFRES_PROTCKSUM); 3692 else { 3693 if (th->th_flags & TH_SYN) 3694 ack++; 3695 if (th->th_flags & TH_FIN) 3696 ack++; 3697 pf_send_tcp(r, af, pd->dst, 3698 pd->src, th->th_dport, th->th_sport, 3699 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3700 r->return_ttl, true, 0, 0, rtableid); 3701 } 3702 } else if (pd->proto == IPPROTO_SCTP && 3703 (r->rule_flag & PFRULE_RETURN)) { 3704 pf_send_sctp_abort(af, pd, r->return_ttl, rtableid); 3705 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3706 r->return_icmp) 3707 pf_send_icmp(m, r->return_icmp >> 8, 3708 r->return_icmp & 255, af, r, rtableid); 3709 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3710 r->return_icmp6) 3711 pf_send_icmp(m, r->return_icmp6 >> 8, 3712 r->return_icmp6 & 255, af, r, rtableid); 3713 } 3714 3715 static int 3716 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 3717 { 3718 struct m_tag *mtag; 3719 u_int8_t mpcp; 3720 3721 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 3722 if (mtag == NULL) 3723 return (0); 3724 3725 if (prio == PF_PRIO_ZERO) 3726 prio = 0; 3727 3728 mpcp = *(uint8_t *)(mtag + 1); 3729 3730 return (mpcp == prio); 3731 } 3732 3733 static int 3734 pf_icmp_to_bandlim(uint8_t type) 3735 { 3736 switch (type) { 3737 case ICMP_ECHO: 3738 case ICMP_ECHOREPLY: 3739 return (BANDLIM_ICMP_ECHO); 3740 case ICMP_TSTAMP: 3741 case ICMP_TSTAMPREPLY: 3742 return (BANDLIM_ICMP_TSTAMP); 3743 case ICMP_UNREACH: 3744 default: 3745 return (BANDLIM_ICMP_UNREACH); 3746 } 3747 } 3748 3749 static void 3750 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 3751 struct pf_krule *r, int rtableid) 3752 { 3753 struct pf_send_entry *pfse; 3754 struct mbuf *m0; 3755 struct pf_mtag *pf_mtag; 3756 3757 /* ICMP packet rate limitation. */ 3758 #ifdef INET6 3759 if (af == AF_INET6) { 3760 if (icmp6_ratelimit(NULL, type, code)) 3761 return; 3762 } 3763 #endif 3764 #ifdef INET 3765 if (af == AF_INET) { 3766 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 3767 return; 3768 } 3769 #endif 3770 3771 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3772 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3773 if (pfse == NULL) 3774 return; 3775 3776 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 3777 free(pfse, M_PFTEMP); 3778 return; 3779 } 3780 3781 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 3782 free(pfse, M_PFTEMP); 3783 return; 3784 } 3785 /* XXX: revisit */ 3786 m0->m_flags |= M_SKIP_FIREWALL; 3787 3788 if (rtableid >= 0) 3789 M_SETFIB(m0, rtableid); 3790 3791 #ifdef ALTQ 3792 if (r->qid) { 3793 pf_mtag->qid = r->qid; 3794 /* add hints for ecn */ 3795 pf_mtag->hdr = mtod(m0, struct ip *); 3796 } 3797 #endif /* ALTQ */ 3798 3799 switch (af) { 3800 #ifdef INET 3801 case AF_INET: 3802 pfse->pfse_type = PFSE_ICMP; 3803 break; 3804 #endif /* INET */ 3805 #ifdef INET6 3806 case AF_INET6: 3807 pfse->pfse_type = PFSE_ICMP6; 3808 break; 3809 #endif /* INET6 */ 3810 } 3811 pfse->pfse_m = m0; 3812 pfse->icmpopts.type = type; 3813 pfse->icmpopts.code = code; 3814 pf_send(pfse); 3815 } 3816 3817 /* 3818 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 3819 * If n is 0, they match if they are equal. If n is != 0, they match if they 3820 * are different. 3821 */ 3822 int 3823 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 3824 struct pf_addr *b, sa_family_t af) 3825 { 3826 int match = 0; 3827 3828 switch (af) { 3829 #ifdef INET 3830 case AF_INET: 3831 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4)) 3832 match++; 3833 break; 3834 #endif /* INET */ 3835 #ifdef INET6 3836 case AF_INET6: 3837 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6)) 3838 match++; 3839 break; 3840 #endif /* INET6 */ 3841 } 3842 if (match) { 3843 if (n) 3844 return (0); 3845 else 3846 return (1); 3847 } else { 3848 if (n) 3849 return (1); 3850 else 3851 return (0); 3852 } 3853 } 3854 3855 /* 3856 * Return 1 if b <= a <= e, otherwise return 0. 3857 */ 3858 int 3859 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 3860 struct pf_addr *a, sa_family_t af) 3861 { 3862 switch (af) { 3863 #ifdef INET 3864 case AF_INET: 3865 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 3866 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 3867 return (0); 3868 break; 3869 #endif /* INET */ 3870 #ifdef INET6 3871 case AF_INET6: { 3872 int i; 3873 3874 /* check a >= b */ 3875 for (i = 0; i < 4; ++i) 3876 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 3877 break; 3878 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 3879 return (0); 3880 /* check a <= e */ 3881 for (i = 0; i < 4; ++i) 3882 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 3883 break; 3884 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 3885 return (0); 3886 break; 3887 } 3888 #endif /* INET6 */ 3889 } 3890 return (1); 3891 } 3892 3893 static int 3894 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3895 { 3896 switch (op) { 3897 case PF_OP_IRG: 3898 return ((p > a1) && (p < a2)); 3899 case PF_OP_XRG: 3900 return ((p < a1) || (p > a2)); 3901 case PF_OP_RRG: 3902 return ((p >= a1) && (p <= a2)); 3903 case PF_OP_EQ: 3904 return (p == a1); 3905 case PF_OP_NE: 3906 return (p != a1); 3907 case PF_OP_LT: 3908 return (p < a1); 3909 case PF_OP_LE: 3910 return (p <= a1); 3911 case PF_OP_GT: 3912 return (p > a1); 3913 case PF_OP_GE: 3914 return (p >= a1); 3915 } 3916 return (0); /* never reached */ 3917 } 3918 3919 int 3920 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3921 { 3922 NTOHS(a1); 3923 NTOHS(a2); 3924 NTOHS(p); 3925 return (pf_match(op, a1, a2, p)); 3926 } 3927 3928 static int 3929 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3930 { 3931 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3932 return (0); 3933 return (pf_match(op, a1, a2, u)); 3934 } 3935 3936 static int 3937 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3938 { 3939 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3940 return (0); 3941 return (pf_match(op, a1, a2, g)); 3942 } 3943 3944 int 3945 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3946 { 3947 if (*tag == -1) 3948 *tag = mtag; 3949 3950 return ((!r->match_tag_not && r->match_tag == *tag) || 3951 (r->match_tag_not && r->match_tag != *tag)); 3952 } 3953 3954 int 3955 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 3956 { 3957 3958 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 3959 3960 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 3961 return (ENOMEM); 3962 3963 pd->pf_mtag->tag = tag; 3964 3965 return (0); 3966 } 3967 3968 #define PF_ANCHOR_STACKSIZE 32 3969 struct pf_kanchor_stackframe { 3970 struct pf_kruleset *rs; 3971 struct pf_krule *r; /* XXX: + match bit */ 3972 struct pf_kanchor *child; 3973 }; 3974 3975 /* 3976 * XXX: We rely on malloc(9) returning pointer aligned addresses. 3977 */ 3978 #define PF_ANCHORSTACK_MATCH 0x00000001 3979 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 3980 3981 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3982 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 3983 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3984 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3985 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3986 } while (0) 3987 3988 void 3989 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3990 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3991 int *match) 3992 { 3993 struct pf_kanchor_stackframe *f; 3994 3995 PF_RULES_RASSERT(); 3996 3997 if (match) 3998 *match = 0; 3999 if (*depth >= PF_ANCHOR_STACKSIZE) { 4000 printf("%s: anchor stack overflow on %s\n", 4001 __func__, (*r)->anchor->name); 4002 *r = TAILQ_NEXT(*r, entries); 4003 return; 4004 } else if (*depth == 0 && a != NULL) 4005 *a = *r; 4006 f = stack + (*depth)++; 4007 f->rs = *rs; 4008 f->r = *r; 4009 if ((*r)->anchor_wildcard) { 4010 struct pf_kanchor_node *parent = &(*r)->anchor->children; 4011 4012 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 4013 *r = NULL; 4014 return; 4015 } 4016 *rs = &f->child->ruleset; 4017 } else { 4018 f->child = NULL; 4019 *rs = &(*r)->anchor->ruleset; 4020 } 4021 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4022 } 4023 4024 int 4025 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 4026 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 4027 int *match) 4028 { 4029 struct pf_kanchor_stackframe *f; 4030 struct pf_krule *fr; 4031 int quick = 0; 4032 4033 PF_RULES_RASSERT(); 4034 4035 do { 4036 if (*depth <= 0) 4037 break; 4038 f = stack + *depth - 1; 4039 fr = PF_ANCHOR_RULE(f); 4040 if (f->child != NULL) { 4041 /* 4042 * This block traverses through 4043 * a wildcard anchor. 4044 */ 4045 if (match != NULL && *match) { 4046 /* 4047 * If any of "*" matched, then 4048 * "foo/ *" matched, mark frame 4049 * appropriately. 4050 */ 4051 PF_ANCHOR_SET_MATCH(f); 4052 *match = 0; 4053 } 4054 f->child = RB_NEXT(pf_kanchor_node, 4055 &fr->anchor->children, f->child); 4056 if (f->child != NULL) { 4057 *rs = &f->child->ruleset; 4058 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4059 if (*r == NULL) 4060 continue; 4061 else 4062 break; 4063 } 4064 } 4065 (*depth)--; 4066 if (*depth == 0 && a != NULL) 4067 *a = NULL; 4068 *rs = f->rs; 4069 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 4070 quick = fr->quick; 4071 *r = TAILQ_NEXT(fr, entries); 4072 } while (*r == NULL); 4073 4074 return (quick); 4075 } 4076 4077 struct pf_keth_anchor_stackframe { 4078 struct pf_keth_ruleset *rs; 4079 struct pf_keth_rule *r; /* XXX: + match bit */ 4080 struct pf_keth_anchor *child; 4081 }; 4082 4083 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4084 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 4085 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4086 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4087 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4088 } while (0) 4089 4090 void 4091 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4092 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4093 struct pf_keth_rule **a, int *match) 4094 { 4095 struct pf_keth_anchor_stackframe *f; 4096 4097 NET_EPOCH_ASSERT(); 4098 4099 if (match) 4100 *match = 0; 4101 if (*depth >= PF_ANCHOR_STACKSIZE) { 4102 printf("%s: anchor stack overflow on %s\n", 4103 __func__, (*r)->anchor->name); 4104 *r = TAILQ_NEXT(*r, entries); 4105 return; 4106 } else if (*depth == 0 && a != NULL) 4107 *a = *r; 4108 f = stack + (*depth)++; 4109 f->rs = *rs; 4110 f->r = *r; 4111 if ((*r)->anchor_wildcard) { 4112 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 4113 4114 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 4115 *r = NULL; 4116 return; 4117 } 4118 *rs = &f->child->ruleset; 4119 } else { 4120 f->child = NULL; 4121 *rs = &(*r)->anchor->ruleset; 4122 } 4123 *r = TAILQ_FIRST((*rs)->active.rules); 4124 } 4125 4126 int 4127 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4128 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4129 struct pf_keth_rule **a, int *match) 4130 { 4131 struct pf_keth_anchor_stackframe *f; 4132 struct pf_keth_rule *fr; 4133 int quick = 0; 4134 4135 NET_EPOCH_ASSERT(); 4136 4137 do { 4138 if (*depth <= 0) 4139 break; 4140 f = stack + *depth - 1; 4141 fr = PF_ETH_ANCHOR_RULE(f); 4142 if (f->child != NULL) { 4143 /* 4144 * This block traverses through 4145 * a wildcard anchor. 4146 */ 4147 if (match != NULL && *match) { 4148 /* 4149 * If any of "*" matched, then 4150 * "foo/ *" matched, mark frame 4151 * appropriately. 4152 */ 4153 PF_ETH_ANCHOR_SET_MATCH(f); 4154 *match = 0; 4155 } 4156 f->child = RB_NEXT(pf_keth_anchor_node, 4157 &fr->anchor->children, f->child); 4158 if (f->child != NULL) { 4159 *rs = &f->child->ruleset; 4160 *r = TAILQ_FIRST((*rs)->active.rules); 4161 if (*r == NULL) 4162 continue; 4163 else 4164 break; 4165 } 4166 } 4167 (*depth)--; 4168 if (*depth == 0 && a != NULL) 4169 *a = NULL; 4170 *rs = f->rs; 4171 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 4172 quick = fr->quick; 4173 *r = TAILQ_NEXT(fr, entries); 4174 } while (*r == NULL); 4175 4176 return (quick); 4177 } 4178 4179 #ifdef INET6 4180 void 4181 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 4182 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 4183 { 4184 switch (af) { 4185 #ifdef INET 4186 case AF_INET: 4187 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4188 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4189 break; 4190 #endif /* INET */ 4191 case AF_INET6: 4192 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4193 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4194 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 4195 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 4196 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 4197 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 4198 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 4199 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 4200 break; 4201 } 4202 } 4203 4204 void 4205 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 4206 { 4207 switch (af) { 4208 #ifdef INET 4209 case AF_INET: 4210 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 4211 break; 4212 #endif /* INET */ 4213 case AF_INET6: 4214 if (addr->addr32[3] == 0xffffffff) { 4215 addr->addr32[3] = 0; 4216 if (addr->addr32[2] == 0xffffffff) { 4217 addr->addr32[2] = 0; 4218 if (addr->addr32[1] == 0xffffffff) { 4219 addr->addr32[1] = 0; 4220 addr->addr32[0] = 4221 htonl(ntohl(addr->addr32[0]) + 1); 4222 } else 4223 addr->addr32[1] = 4224 htonl(ntohl(addr->addr32[1]) + 1); 4225 } else 4226 addr->addr32[2] = 4227 htonl(ntohl(addr->addr32[2]) + 1); 4228 } else 4229 addr->addr32[3] = 4230 htonl(ntohl(addr->addr32[3]) + 1); 4231 break; 4232 } 4233 } 4234 #endif /* INET6 */ 4235 4236 void 4237 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 4238 { 4239 /* 4240 * Modern rules use the same flags in rules as they do in states. 4241 */ 4242 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 4243 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 4244 4245 /* 4246 * Old-style scrub rules have different flags which need to be translated. 4247 */ 4248 if (r->rule_flag & PFRULE_RANDOMID) 4249 a->flags |= PFSTATE_RANDOMID; 4250 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) { 4251 a->flags |= PFSTATE_SETTOS; 4252 a->set_tos = r->set_tos; 4253 } 4254 4255 if (r->qid) 4256 a->qid = r->qid; 4257 if (r->pqid) 4258 a->pqid = r->pqid; 4259 if (r->rtableid >= 0) 4260 a->rtableid = r->rtableid; 4261 a->log |= r->log; 4262 if (r->min_ttl) 4263 a->min_ttl = r->min_ttl; 4264 if (r->max_mss) 4265 a->max_mss = r->max_mss; 4266 if (r->dnpipe) 4267 a->dnpipe = r->dnpipe; 4268 if (r->dnrpipe) 4269 a->dnrpipe = r->dnrpipe; 4270 if (r->dnpipe || r->dnrpipe) { 4271 if (r->free_flags & PFRULE_DN_IS_PIPE) 4272 a->flags |= PFSTATE_DN_IS_PIPE; 4273 else 4274 a->flags &= ~PFSTATE_DN_IS_PIPE; 4275 } 4276 if (r->scrub_flags & PFSTATE_SETPRIO) { 4277 a->set_prio[0] = r->set_prio[0]; 4278 a->set_prio[1] = r->set_prio[1]; 4279 } 4280 } 4281 4282 int 4283 pf_socket_lookup(struct pf_pdesc *pd, struct mbuf *m) 4284 { 4285 struct pf_addr *saddr, *daddr; 4286 u_int16_t sport, dport; 4287 struct inpcbinfo *pi; 4288 struct inpcb *inp; 4289 4290 pd->lookup.uid = UID_MAX; 4291 pd->lookup.gid = GID_MAX; 4292 4293 switch (pd->proto) { 4294 case IPPROTO_TCP: 4295 sport = pd->hdr.tcp.th_sport; 4296 dport = pd->hdr.tcp.th_dport; 4297 pi = &V_tcbinfo; 4298 break; 4299 case IPPROTO_UDP: 4300 sport = pd->hdr.udp.uh_sport; 4301 dport = pd->hdr.udp.uh_dport; 4302 pi = &V_udbinfo; 4303 break; 4304 default: 4305 return (-1); 4306 } 4307 if (pd->dir == PF_IN) { 4308 saddr = pd->src; 4309 daddr = pd->dst; 4310 } else { 4311 u_int16_t p; 4312 4313 p = sport; 4314 sport = dport; 4315 dport = p; 4316 saddr = pd->dst; 4317 daddr = pd->src; 4318 } 4319 switch (pd->af) { 4320 #ifdef INET 4321 case AF_INET: 4322 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 4323 dport, INPLOOKUP_RLOCKPCB, NULL, m); 4324 if (inp == NULL) { 4325 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 4326 daddr->v4, dport, INPLOOKUP_WILDCARD | 4327 INPLOOKUP_RLOCKPCB, NULL, m); 4328 if (inp == NULL) 4329 return (-1); 4330 } 4331 break; 4332 #endif /* INET */ 4333 #ifdef INET6 4334 case AF_INET6: 4335 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 4336 dport, INPLOOKUP_RLOCKPCB, NULL, m); 4337 if (inp == NULL) { 4338 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 4339 &daddr->v6, dport, INPLOOKUP_WILDCARD | 4340 INPLOOKUP_RLOCKPCB, NULL, m); 4341 if (inp == NULL) 4342 return (-1); 4343 } 4344 break; 4345 #endif /* INET6 */ 4346 4347 default: 4348 return (-1); 4349 } 4350 INP_RLOCK_ASSERT(inp); 4351 pd->lookup.uid = inp->inp_cred->cr_uid; 4352 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4353 INP_RUNLOCK(inp); 4354 4355 return (1); 4356 } 4357 4358 u_int8_t 4359 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 4360 { 4361 int hlen; 4362 u_int8_t hdr[60]; 4363 u_int8_t *opt, optlen; 4364 u_int8_t wscale = 0; 4365 4366 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 4367 if (hlen <= sizeof(struct tcphdr)) 4368 return (0); 4369 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 4370 return (0); 4371 opt = hdr + sizeof(struct tcphdr); 4372 hlen -= sizeof(struct tcphdr); 4373 while (hlen >= 3) { 4374 switch (*opt) { 4375 case TCPOPT_EOL: 4376 case TCPOPT_NOP: 4377 ++opt; 4378 --hlen; 4379 break; 4380 case TCPOPT_WINDOW: 4381 wscale = opt[2]; 4382 if (wscale > TCP_MAX_WINSHIFT) 4383 wscale = TCP_MAX_WINSHIFT; 4384 wscale |= PF_WSCALE_FLAG; 4385 /* FALLTHROUGH */ 4386 default: 4387 optlen = opt[1]; 4388 if (optlen < 2) 4389 optlen = 2; 4390 hlen -= optlen; 4391 opt += optlen; 4392 break; 4393 } 4394 } 4395 return (wscale); 4396 } 4397 4398 u_int16_t 4399 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 4400 { 4401 int hlen; 4402 u_int8_t hdr[60]; 4403 u_int8_t *opt, optlen; 4404 u_int16_t mss = V_tcp_mssdflt; 4405 4406 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 4407 if (hlen <= sizeof(struct tcphdr)) 4408 return (0); 4409 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 4410 return (0); 4411 opt = hdr + sizeof(struct tcphdr); 4412 hlen -= sizeof(struct tcphdr); 4413 while (hlen >= TCPOLEN_MAXSEG) { 4414 switch (*opt) { 4415 case TCPOPT_EOL: 4416 case TCPOPT_NOP: 4417 ++opt; 4418 --hlen; 4419 break; 4420 case TCPOPT_MAXSEG: 4421 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 4422 NTOHS(mss); 4423 /* FALLTHROUGH */ 4424 default: 4425 optlen = opt[1]; 4426 if (optlen < 2) 4427 optlen = 2; 4428 hlen -= optlen; 4429 opt += optlen; 4430 break; 4431 } 4432 } 4433 return (mss); 4434 } 4435 4436 static u_int16_t 4437 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 4438 { 4439 struct nhop_object *nh; 4440 #ifdef INET6 4441 struct in6_addr dst6; 4442 uint32_t scopeid; 4443 #endif /* INET6 */ 4444 int hlen = 0; 4445 uint16_t mss = 0; 4446 4447 NET_EPOCH_ASSERT(); 4448 4449 switch (af) { 4450 #ifdef INET 4451 case AF_INET: 4452 hlen = sizeof(struct ip); 4453 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 4454 if (nh != NULL) 4455 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4456 break; 4457 #endif /* INET */ 4458 #ifdef INET6 4459 case AF_INET6: 4460 hlen = sizeof(struct ip6_hdr); 4461 in6_splitscope(&addr->v6, &dst6, &scopeid); 4462 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 4463 if (nh != NULL) 4464 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4465 break; 4466 #endif /* INET6 */ 4467 } 4468 4469 mss = max(V_tcp_mssdflt, mss); 4470 mss = min(mss, offer); 4471 mss = max(mss, 64); /* sanity - at least max opt space */ 4472 return (mss); 4473 } 4474 4475 static u_int32_t 4476 pf_tcp_iss(struct pf_pdesc *pd) 4477 { 4478 MD5_CTX ctx; 4479 u_int32_t digest[4]; 4480 4481 if (V_pf_tcp_secret_init == 0) { 4482 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 4483 MD5Init(&V_pf_tcp_secret_ctx); 4484 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 4485 sizeof(V_pf_tcp_secret)); 4486 V_pf_tcp_secret_init = 1; 4487 } 4488 4489 ctx = V_pf_tcp_secret_ctx; 4490 4491 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 4492 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 4493 if (pd->af == AF_INET6) { 4494 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 4495 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 4496 } else { 4497 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 4498 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 4499 } 4500 MD5Final((u_char *)digest, &ctx); 4501 V_pf_tcp_iss_off += 4096; 4502 #define ISN_RANDOM_INCREMENT (4096 - 1) 4503 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 4504 V_pf_tcp_iss_off); 4505 #undef ISN_RANDOM_INCREMENT 4506 } 4507 4508 static bool 4509 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 4510 { 4511 bool match = true; 4512 4513 /* Always matches if not set */ 4514 if (! r->isset) 4515 return (!r->neg); 4516 4517 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 4518 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 4519 match = false; 4520 break; 4521 } 4522 } 4523 4524 return (match ^ r->neg); 4525 } 4526 4527 static int 4528 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 4529 { 4530 if (*tag == -1) 4531 *tag = mtag; 4532 4533 return ((!r->match_tag_not && r->match_tag == *tag) || 4534 (r->match_tag_not && r->match_tag != *tag)); 4535 } 4536 4537 static void 4538 pf_bridge_to(struct ifnet *ifp, struct mbuf *m) 4539 { 4540 /* If we don't have the interface drop the packet. */ 4541 if (ifp == NULL) { 4542 m_freem(m); 4543 return; 4544 } 4545 4546 switch (ifp->if_type) { 4547 case IFT_ETHER: 4548 case IFT_XETHER: 4549 case IFT_L2VLAN: 4550 case IFT_BRIDGE: 4551 case IFT_IEEE8023ADLAG: 4552 break; 4553 default: 4554 m_freem(m); 4555 return; 4556 } 4557 4558 ifp->if_transmit(ifp, m); 4559 } 4560 4561 static int 4562 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 4563 { 4564 #ifdef INET 4565 struct ip ip; 4566 #endif 4567 #ifdef INET6 4568 struct ip6_hdr ip6; 4569 #endif 4570 struct mbuf *m = *m0; 4571 struct ether_header *e; 4572 struct pf_keth_rule *r, *rm, *a = NULL; 4573 struct pf_keth_ruleset *ruleset = NULL; 4574 struct pf_mtag *mtag; 4575 struct pf_keth_ruleq *rules; 4576 struct pf_addr *src = NULL, *dst = NULL; 4577 struct pfi_kkif *bridge_to; 4578 sa_family_t af = 0; 4579 uint16_t proto; 4580 int asd = 0, match = 0; 4581 int tag = -1; 4582 uint8_t action; 4583 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4584 4585 MPASS(kif->pfik_ifp->if_vnet == curvnet); 4586 NET_EPOCH_ASSERT(); 4587 4588 PF_RULES_RLOCK_TRACKER; 4589 4590 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 4591 4592 mtag = pf_find_mtag(m); 4593 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 4594 /* Dummynet re-injects packets after they've 4595 * completed their delay. We've already 4596 * processed them, so pass unconditionally. */ 4597 4598 /* But only once. We may see the packet multiple times (e.g. 4599 * PFIL_IN/PFIL_OUT). */ 4600 pf_dummynet_flag_remove(m, mtag); 4601 4602 return (PF_PASS); 4603 } 4604 4605 ruleset = V_pf_keth; 4606 rules = ck_pr_load_ptr(&ruleset->active.rules); 4607 r = TAILQ_FIRST(rules); 4608 rm = NULL; 4609 4610 if (__predict_false(m->m_len < sizeof(struct ether_header)) && 4611 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) { 4612 DPFPRINTF(PF_DEBUG_URGENT, 4613 ("pf_test_eth_rule: m_len < sizeof(struct ether_header)" 4614 ", pullup failed\n")); 4615 return (PF_DROP); 4616 } 4617 e = mtod(m, struct ether_header *); 4618 proto = ntohs(e->ether_type); 4619 4620 switch (proto) { 4621 #ifdef INET 4622 case ETHERTYPE_IP: { 4623 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4624 sizeof(ip))) 4625 return (PF_DROP); 4626 4627 af = AF_INET; 4628 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 4629 (caddr_t)&ip); 4630 src = (struct pf_addr *)&ip.ip_src; 4631 dst = (struct pf_addr *)&ip.ip_dst; 4632 break; 4633 } 4634 #endif /* INET */ 4635 #ifdef INET6 4636 case ETHERTYPE_IPV6: { 4637 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4638 sizeof(ip6))) 4639 return (PF_DROP); 4640 4641 af = AF_INET6; 4642 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 4643 (caddr_t)&ip6); 4644 src = (struct pf_addr *)&ip6.ip6_src; 4645 dst = (struct pf_addr *)&ip6.ip6_dst; 4646 break; 4647 } 4648 #endif /* INET6 */ 4649 } 4650 4651 PF_RULES_RLOCK(); 4652 4653 while (r != NULL) { 4654 counter_u64_add(r->evaluations, 1); 4655 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 4656 4657 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 4658 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4659 "kif"); 4660 r = r->skip[PFE_SKIP_IFP].ptr; 4661 } 4662 else if (r->direction && r->direction != dir) { 4663 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4664 "dir"); 4665 r = r->skip[PFE_SKIP_DIR].ptr; 4666 } 4667 else if (r->proto && r->proto != proto) { 4668 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4669 "proto"); 4670 r = r->skip[PFE_SKIP_PROTO].ptr; 4671 } 4672 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 4673 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4674 "src"); 4675 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 4676 } 4677 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 4678 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4679 "dst"); 4680 r = r->skip[PFE_SKIP_DST_ADDR].ptr; 4681 } 4682 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 4683 r->ipsrc.neg, kif, M_GETFIB(m))) { 4684 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4685 "ip_src"); 4686 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr; 4687 } 4688 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 4689 r->ipdst.neg, kif, M_GETFIB(m))) { 4690 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4691 "ip_dst"); 4692 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr; 4693 } 4694 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 4695 mtag ? mtag->tag : 0)) { 4696 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4697 "match_tag"); 4698 r = TAILQ_NEXT(r, entries); 4699 } 4700 else { 4701 if (r->tag) 4702 tag = r->tag; 4703 if (r->anchor == NULL) { 4704 /* Rule matches */ 4705 rm = r; 4706 4707 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 4708 4709 if (r->quick) 4710 break; 4711 4712 r = TAILQ_NEXT(r, entries); 4713 } else { 4714 pf_step_into_keth_anchor(anchor_stack, &asd, 4715 &ruleset, &r, &a, &match); 4716 } 4717 } 4718 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 4719 &ruleset, &r, &a, &match)) 4720 break; 4721 } 4722 4723 r = rm; 4724 4725 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 4726 4727 /* Default to pass. */ 4728 if (r == NULL) { 4729 PF_RULES_RUNLOCK(); 4730 return (PF_PASS); 4731 } 4732 4733 /* Execute action. */ 4734 counter_u64_add(r->packets[dir == PF_OUT], 1); 4735 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 4736 pf_update_timestamp(r); 4737 4738 /* Shortcut. Don't tag if we're just going to drop anyway. */ 4739 if (r->action == PF_DROP) { 4740 PF_RULES_RUNLOCK(); 4741 return (PF_DROP); 4742 } 4743 4744 if (tag > 0) { 4745 if (mtag == NULL) 4746 mtag = pf_get_mtag(m); 4747 if (mtag == NULL) { 4748 PF_RULES_RUNLOCK(); 4749 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4750 return (PF_DROP); 4751 } 4752 mtag->tag = tag; 4753 } 4754 4755 if (r->qid != 0) { 4756 if (mtag == NULL) 4757 mtag = pf_get_mtag(m); 4758 if (mtag == NULL) { 4759 PF_RULES_RUNLOCK(); 4760 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4761 return (PF_DROP); 4762 } 4763 mtag->qid = r->qid; 4764 } 4765 4766 action = r->action; 4767 bridge_to = r->bridge_to; 4768 4769 /* Dummynet */ 4770 if (r->dnpipe) { 4771 struct ip_fw_args dnflow; 4772 4773 /* Drop packet if dummynet is not loaded. */ 4774 if (ip_dn_io_ptr == NULL) { 4775 PF_RULES_RUNLOCK(); 4776 m_freem(m); 4777 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4778 return (PF_DROP); 4779 } 4780 if (mtag == NULL) 4781 mtag = pf_get_mtag(m); 4782 if (mtag == NULL) { 4783 PF_RULES_RUNLOCK(); 4784 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4785 return (PF_DROP); 4786 } 4787 4788 bzero(&dnflow, sizeof(dnflow)); 4789 4790 /* We don't have port numbers here, so we set 0. That means 4791 * that we'll be somewhat limited in distinguishing flows (i.e. 4792 * only based on IP addresses, not based on port numbers), but 4793 * it's better than nothing. */ 4794 dnflow.f_id.dst_port = 0; 4795 dnflow.f_id.src_port = 0; 4796 dnflow.f_id.proto = 0; 4797 4798 dnflow.rule.info = r->dnpipe; 4799 dnflow.rule.info |= IPFW_IS_DUMMYNET; 4800 if (r->dnflags & PFRULE_DN_IS_PIPE) 4801 dnflow.rule.info |= IPFW_IS_PIPE; 4802 4803 dnflow.f_id.extra = dnflow.rule.info; 4804 4805 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 4806 dnflow.flags |= IPFW_ARGS_ETHER; 4807 dnflow.ifp = kif->pfik_ifp; 4808 4809 switch (af) { 4810 case AF_INET: 4811 dnflow.f_id.addr_type = 4; 4812 dnflow.f_id.src_ip = src->v4.s_addr; 4813 dnflow.f_id.dst_ip = dst->v4.s_addr; 4814 break; 4815 case AF_INET6: 4816 dnflow.flags |= IPFW_ARGS_IP6; 4817 dnflow.f_id.addr_type = 6; 4818 dnflow.f_id.src_ip6 = src->v6; 4819 dnflow.f_id.dst_ip6 = dst->v6; 4820 break; 4821 } 4822 4823 PF_RULES_RUNLOCK(); 4824 4825 mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 4826 ip_dn_io_ptr(m0, &dnflow); 4827 if (*m0 != NULL) 4828 pf_dummynet_flag_remove(m, mtag); 4829 } else { 4830 PF_RULES_RUNLOCK(); 4831 } 4832 4833 if (action == PF_PASS && bridge_to) { 4834 pf_bridge_to(bridge_to->pfik_ifp, *m0); 4835 *m0 = NULL; /* We've eaten the packet. */ 4836 } 4837 4838 return (action); 4839 } 4840 4841 static int 4842 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, struct pfi_kkif *kif, 4843 struct mbuf *m, int off, struct pf_pdesc *pd, struct pf_krule **am, 4844 struct pf_kruleset **rsm, struct inpcb *inp) 4845 { 4846 struct pf_krule *nr = NULL; 4847 struct pf_addr * const saddr = pd->src; 4848 struct pf_addr * const daddr = pd->dst; 4849 sa_family_t af = pd->af; 4850 struct pf_krule *r, *a = NULL; 4851 struct pf_kruleset *ruleset = NULL; 4852 struct pf_krule_slist match_rules; 4853 struct pf_krule_item *ri; 4854 struct pf_ksrc_node *nsn = NULL; 4855 struct tcphdr *th = &pd->hdr.tcp; 4856 struct pf_state_key *sk = NULL, *nk = NULL; 4857 u_short reason, transerror; 4858 int rewrite = 0, hdrlen = 0; 4859 int tag = -1; 4860 int asd = 0; 4861 int match = 0; 4862 int state_icmp = 0, icmp_dir, multi; 4863 u_int16_t sport = 0, dport = 0, virtual_type, virtual_id; 4864 u_int16_t bproto_sum = 0, bip_sum = 0; 4865 u_int8_t icmptype = 0, icmpcode = 0; 4866 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4867 struct pf_udp_mapping *udp_mapping = NULL; 4868 4869 PF_RULES_RASSERT(); 4870 4871 SLIST_INIT(&match_rules); 4872 4873 if (inp != NULL) { 4874 INP_LOCK_ASSERT(inp); 4875 pd->lookup.uid = inp->inp_cred->cr_uid; 4876 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4877 pd->lookup.done = 1; 4878 } 4879 4880 switch (pd->proto) { 4881 case IPPROTO_TCP: 4882 sport = th->th_sport; 4883 dport = th->th_dport; 4884 hdrlen = sizeof(*th); 4885 break; 4886 case IPPROTO_UDP: 4887 sport = pd->hdr.udp.uh_sport; 4888 dport = pd->hdr.udp.uh_dport; 4889 hdrlen = sizeof(pd->hdr.udp); 4890 break; 4891 case IPPROTO_SCTP: 4892 sport = pd->hdr.sctp.src_port; 4893 dport = pd->hdr.sctp.dest_port; 4894 hdrlen = sizeof(pd->hdr.sctp); 4895 break; 4896 #ifdef INET 4897 case IPPROTO_ICMP: 4898 if (pd->af != AF_INET) 4899 break; 4900 hdrlen = sizeof(pd->hdr.icmp); 4901 icmptype = pd->hdr.icmp.icmp_type; 4902 icmpcode = pd->hdr.icmp.icmp_code; 4903 state_icmp = pf_icmp_mapping(pd, icmptype, 4904 &icmp_dir, &multi, &virtual_id, &virtual_type); 4905 if (icmp_dir == PF_IN) { 4906 sport = virtual_id; 4907 dport = virtual_type; 4908 } else { 4909 sport = virtual_type; 4910 dport = virtual_id; 4911 } 4912 break; 4913 #endif /* INET */ 4914 #ifdef INET6 4915 case IPPROTO_ICMPV6: 4916 if (af != AF_INET6) 4917 break; 4918 hdrlen = sizeof(pd->hdr.icmp6); 4919 icmptype = pd->hdr.icmp6.icmp6_type; 4920 icmpcode = pd->hdr.icmp6.icmp6_code; 4921 state_icmp = pf_icmp_mapping(pd, icmptype, 4922 &icmp_dir, &multi, &virtual_id, &virtual_type); 4923 if (icmp_dir == PF_IN) { 4924 sport = virtual_id; 4925 dport = virtual_type; 4926 } else { 4927 sport = virtual_type; 4928 dport = virtual_id; 4929 } 4930 4931 break; 4932 #endif /* INET6 */ 4933 default: 4934 sport = dport = hdrlen = 0; 4935 break; 4936 } 4937 4938 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4939 4940 /* check packet for BINAT/NAT/RDR */ 4941 transerror = pf_get_translation(pd, m, off, kif, &nsn, &sk, 4942 &nk, saddr, daddr, sport, dport, anchor_stack, &nr, &udp_mapping); 4943 switch (transerror) { 4944 default: 4945 /* A translation error occurred. */ 4946 REASON_SET(&reason, transerror); 4947 goto cleanup; 4948 case PFRES_MAX: 4949 /* No match. */ 4950 break; 4951 case PFRES_MATCH: 4952 KASSERT(sk != NULL, ("%s: null sk", __func__)); 4953 KASSERT(nk != NULL, ("%s: null nk", __func__)); 4954 4955 if (nr->log) { 4956 PFLOG_PACKET(kif, m, af, PF_PASS, PFRES_MATCH, nr, a, 4957 ruleset, pd, 1); 4958 } 4959 4960 if (pd->ip_sum) 4961 bip_sum = *pd->ip_sum; 4962 4963 switch (pd->proto) { 4964 case IPPROTO_TCP: 4965 bproto_sum = th->th_sum; 4966 pd->proto_sum = &th->th_sum; 4967 4968 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4969 nk->port[pd->sidx] != sport) { 4970 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 4971 &th->th_sum, &nk->addr[pd->sidx], 4972 nk->port[pd->sidx], 0, af); 4973 pd->sport = &th->th_sport; 4974 sport = th->th_sport; 4975 } 4976 4977 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4978 nk->port[pd->didx] != dport) { 4979 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 4980 &th->th_sum, &nk->addr[pd->didx], 4981 nk->port[pd->didx], 0, af); 4982 dport = th->th_dport; 4983 pd->dport = &th->th_dport; 4984 } 4985 rewrite++; 4986 break; 4987 case IPPROTO_UDP: 4988 bproto_sum = pd->hdr.udp.uh_sum; 4989 pd->proto_sum = &pd->hdr.udp.uh_sum; 4990 4991 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4992 nk->port[pd->sidx] != sport) { 4993 pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, 4994 pd->ip_sum, &pd->hdr.udp.uh_sum, 4995 &nk->addr[pd->sidx], 4996 nk->port[pd->sidx], 1, af); 4997 sport = pd->hdr.udp.uh_sport; 4998 pd->sport = &pd->hdr.udp.uh_sport; 4999 } 5000 5001 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 5002 nk->port[pd->didx] != dport) { 5003 pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, 5004 pd->ip_sum, &pd->hdr.udp.uh_sum, 5005 &nk->addr[pd->didx], 5006 nk->port[pd->didx], 1, af); 5007 dport = pd->hdr.udp.uh_dport; 5008 pd->dport = &pd->hdr.udp.uh_dport; 5009 } 5010 rewrite++; 5011 break; 5012 case IPPROTO_SCTP: { 5013 uint16_t checksum = 0; 5014 5015 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 5016 nk->port[pd->sidx] != sport) { 5017 pf_change_ap(m, saddr, &pd->hdr.sctp.src_port, 5018 pd->ip_sum, &checksum, 5019 &nk->addr[pd->sidx], 5020 nk->port[pd->sidx], 1, af); 5021 } 5022 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 5023 nk->port[pd->didx] != dport) { 5024 pf_change_ap(m, daddr, &pd->hdr.sctp.dest_port, 5025 pd->ip_sum, &checksum, 5026 &nk->addr[pd->didx], 5027 nk->port[pd->didx], 1, af); 5028 } 5029 break; 5030 } 5031 #ifdef INET 5032 case IPPROTO_ICMP: 5033 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 5034 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 5035 nk->addr[pd->sidx].v4.s_addr, 0); 5036 5037 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 5038 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 5039 nk->addr[pd->didx].v4.s_addr, 0); 5040 5041 if (virtual_type == htons(ICMP_ECHO) && 5042 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) { 5043 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 5044 pd->hdr.icmp.icmp_cksum, sport, 5045 nk->port[pd->sidx], 0); 5046 pd->hdr.icmp.icmp_id = nk->port[pd->sidx]; 5047 pd->sport = &pd->hdr.icmp.icmp_id; 5048 } 5049 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 5050 break; 5051 #endif /* INET */ 5052 #ifdef INET6 5053 case IPPROTO_ICMPV6: 5054 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 5055 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 5056 &nk->addr[pd->sidx], 0); 5057 5058 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 5059 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 5060 &nk->addr[pd->didx], 0); 5061 rewrite++; 5062 break; 5063 #endif /* INET */ 5064 default: 5065 switch (af) { 5066 #ifdef INET 5067 case AF_INET: 5068 if (PF_ANEQ(saddr, 5069 &nk->addr[pd->sidx], AF_INET)) 5070 pf_change_a(&saddr->v4.s_addr, 5071 pd->ip_sum, 5072 nk->addr[pd->sidx].v4.s_addr, 0); 5073 5074 if (PF_ANEQ(daddr, 5075 &nk->addr[pd->didx], AF_INET)) 5076 pf_change_a(&daddr->v4.s_addr, 5077 pd->ip_sum, 5078 nk->addr[pd->didx].v4.s_addr, 0); 5079 break; 5080 #endif /* INET */ 5081 #ifdef INET6 5082 case AF_INET6: 5083 if (PF_ANEQ(saddr, 5084 &nk->addr[pd->sidx], AF_INET6)) 5085 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 5086 5087 if (PF_ANEQ(daddr, 5088 &nk->addr[pd->didx], AF_INET6)) 5089 PF_ACPY(daddr, &nk->addr[pd->didx], af); 5090 break; 5091 #endif /* INET */ 5092 } 5093 break; 5094 } 5095 if (nr->natpass) 5096 r = NULL; 5097 pd->nat_rule = nr; 5098 } 5099 5100 while (r != NULL) { 5101 pf_counter_u64_add(&r->evaluations, 1); 5102 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 5103 r = r->skip[PF_SKIP_IFP].ptr; 5104 else if (r->direction && r->direction != pd->dir) 5105 r = r->skip[PF_SKIP_DIR].ptr; 5106 else if (r->af && r->af != af) 5107 r = r->skip[PF_SKIP_AF].ptr; 5108 else if (r->proto && r->proto != pd->proto) 5109 r = r->skip[PF_SKIP_PROTO].ptr; 5110 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 5111 r->src.neg, kif, M_GETFIB(m))) 5112 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 5113 /* tcp/udp only. port_op always 0 in other cases */ 5114 else if (r->src.port_op && !pf_match_port(r->src.port_op, 5115 r->src.port[0], r->src.port[1], sport)) 5116 r = r->skip[PF_SKIP_SRC_PORT].ptr; 5117 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 5118 r->dst.neg, NULL, M_GETFIB(m))) 5119 r = r->skip[PF_SKIP_DST_ADDR].ptr; 5120 /* tcp/udp only. port_op always 0 in other cases */ 5121 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 5122 r->dst.port[0], r->dst.port[1], dport)) 5123 r = r->skip[PF_SKIP_DST_PORT].ptr; 5124 /* icmp only. type always 0 in other cases */ 5125 else if (r->type && r->type != icmptype + 1) 5126 r = TAILQ_NEXT(r, entries); 5127 /* icmp only. type always 0 in other cases */ 5128 else if (r->code && r->code != icmpcode + 1) 5129 r = TAILQ_NEXT(r, entries); 5130 else if (r->tos && !(r->tos == pd->tos)) 5131 r = TAILQ_NEXT(r, entries); 5132 else if (r->rule_flag & PFRULE_FRAGMENT) 5133 r = TAILQ_NEXT(r, entries); 5134 else if (pd->proto == IPPROTO_TCP && 5135 (r->flagset & th->th_flags) != r->flags) 5136 r = TAILQ_NEXT(r, entries); 5137 /* tcp/udp only. uid.op always 0 in other cases */ 5138 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 5139 pf_socket_lookup(pd, m), 1)) && 5140 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 5141 pd->lookup.uid)) 5142 r = TAILQ_NEXT(r, entries); 5143 /* tcp/udp only. gid.op always 0 in other cases */ 5144 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 5145 pf_socket_lookup(pd, m), 1)) && 5146 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 5147 pd->lookup.gid)) 5148 r = TAILQ_NEXT(r, entries); 5149 else if (r->prio && 5150 !pf_match_ieee8021q_pcp(r->prio, m)) 5151 r = TAILQ_NEXT(r, entries); 5152 else if (r->prob && 5153 r->prob <= arc4random()) 5154 r = TAILQ_NEXT(r, entries); 5155 else if (r->match_tag && !pf_match_tag(m, r, &tag, 5156 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 5157 r = TAILQ_NEXT(r, entries); 5158 else if (r->os_fingerprint != PF_OSFP_ANY && 5159 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 5160 pf_osfp_fingerprint(pd, m, off, th), 5161 r->os_fingerprint))) 5162 r = TAILQ_NEXT(r, entries); 5163 else { 5164 if (r->tag) 5165 tag = r->tag; 5166 if (r->anchor == NULL) { 5167 if (r->action == PF_MATCH) { 5168 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5169 if (ri == NULL) { 5170 REASON_SET(&reason, PFRES_MEMORY); 5171 goto cleanup; 5172 } 5173 ri->r = r; 5174 SLIST_INSERT_HEAD(&match_rules, ri, entry); 5175 pf_counter_u64_critical_enter(); 5176 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5177 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5178 pf_counter_u64_critical_exit(); 5179 pf_rule_to_actions(r, &pd->act); 5180 if (r->log) 5181 PFLOG_PACKET(kif, m, af, 5182 r->action, PFRES_MATCH, r, 5183 a, ruleset, pd, 1); 5184 } else { 5185 match = 1; 5186 *rm = r; 5187 *am = a; 5188 *rsm = ruleset; 5189 } 5190 if ((*rm)->quick) 5191 break; 5192 r = TAILQ_NEXT(r, entries); 5193 } else 5194 pf_step_into_anchor(anchor_stack, &asd, 5195 &ruleset, PF_RULESET_FILTER, &r, &a, 5196 &match); 5197 } 5198 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 5199 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 5200 break; 5201 } 5202 r = *rm; 5203 a = *am; 5204 ruleset = *rsm; 5205 5206 REASON_SET(&reason, PFRES_MATCH); 5207 5208 /* apply actions for last matching pass/block rule */ 5209 pf_rule_to_actions(r, &pd->act); 5210 5211 if (r->log) { 5212 if (rewrite) 5213 m_copyback(m, off, hdrlen, pd->hdr.any); 5214 PFLOG_PACKET(kif, m, af, r->action, reason, r, a, ruleset, pd, 1); 5215 } 5216 5217 if ((r->action == PF_DROP) && 5218 ((r->rule_flag & PFRULE_RETURNRST) || 5219 (r->rule_flag & PFRULE_RETURNICMP) || 5220 (r->rule_flag & PFRULE_RETURN))) { 5221 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 5222 bip_sum, hdrlen, &reason, r->rtableid); 5223 } 5224 5225 if (r->action == PF_DROP) 5226 goto cleanup; 5227 5228 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 5229 REASON_SET(&reason, PFRES_MEMORY); 5230 goto cleanup; 5231 } 5232 if (pd->act.rtableid >= 0) 5233 M_SETFIB(m, pd->act.rtableid); 5234 5235 if (!state_icmp && (r->keep_state || nr != NULL || 5236 (pd->flags & PFDESC_TCP_NORM))) { 5237 int action; 5238 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 5239 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 5240 hdrlen, &match_rules, udp_mapping); 5241 if (action != PF_PASS) { 5242 pf_udp_mapping_release(udp_mapping); 5243 if (action == PF_DROP && 5244 (r->rule_flag & PFRULE_RETURN)) 5245 pf_return(r, nr, pd, sk, off, m, th, kif, 5246 bproto_sum, bip_sum, hdrlen, &reason, 5247 pd->act.rtableid); 5248 return (action); 5249 } 5250 } else { 5251 while ((ri = SLIST_FIRST(&match_rules))) { 5252 SLIST_REMOVE_HEAD(&match_rules, entry); 5253 free(ri, M_PF_RULE_ITEM); 5254 } 5255 5256 uma_zfree(V_pf_state_key_z, sk); 5257 uma_zfree(V_pf_state_key_z, nk); 5258 pf_udp_mapping_release(udp_mapping); 5259 } 5260 5261 /* copy back packet headers if we performed NAT operations */ 5262 if (rewrite) 5263 m_copyback(m, off, hdrlen, pd->hdr.any); 5264 5265 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 5266 pd->dir == PF_OUT && 5267 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 5268 /* 5269 * We want the state created, but we dont 5270 * want to send this in case a partner 5271 * firewall has to know about it to allow 5272 * replies through it. 5273 */ 5274 return (PF_DEFER); 5275 5276 return (PF_PASS); 5277 5278 cleanup: 5279 while ((ri = SLIST_FIRST(&match_rules))) { 5280 SLIST_REMOVE_HEAD(&match_rules, entry); 5281 free(ri, M_PF_RULE_ITEM); 5282 } 5283 5284 uma_zfree(V_pf_state_key_z, sk); 5285 uma_zfree(V_pf_state_key_z, nk); 5286 pf_udp_mapping_release(udp_mapping); 5287 5288 return (PF_DROP); 5289 } 5290 5291 static int 5292 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 5293 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 5294 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 5295 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, 5296 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 5297 struct pf_krule_slist *match_rules, struct pf_udp_mapping *udp_mapping) 5298 { 5299 struct pf_kstate *s = NULL; 5300 struct pf_ksrc_node *sn = NULL; 5301 struct tcphdr *th = &pd->hdr.tcp; 5302 u_int16_t mss = V_tcp_mssdflt; 5303 u_short reason, sn_reason; 5304 struct pf_krule_item *ri; 5305 5306 /* check maximums */ 5307 if (r->max_states && 5308 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 5309 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 5310 REASON_SET(&reason, PFRES_MAXSTATES); 5311 goto csfailed; 5312 } 5313 /* src node for filter rule */ 5314 if ((r->rule_flag & PFRULE_SRCTRACK || 5315 r->rpool.opts & PF_POOL_STICKYADDR) && 5316 (sn_reason = pf_insert_src_node(&sn, r, pd->src, pd->af)) != 0) { 5317 REASON_SET(&reason, sn_reason); 5318 goto csfailed; 5319 } 5320 /* src node for translation rule */ 5321 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 5322 (sn_reason = pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], 5323 pd->af)) != 0 ) { 5324 REASON_SET(&reason, sn_reason); 5325 goto csfailed; 5326 } 5327 s = pf_alloc_state(M_NOWAIT); 5328 if (s == NULL) { 5329 REASON_SET(&reason, PFRES_MEMORY); 5330 goto csfailed; 5331 } 5332 s->rule.ptr = r; 5333 s->nat_rule.ptr = nr; 5334 s->anchor.ptr = a; 5335 bcopy(match_rules, &s->match_rules, sizeof(s->match_rules)); 5336 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions)); 5337 5338 STATE_INC_COUNTERS(s); 5339 if (r->allow_opts) 5340 s->state_flags |= PFSTATE_ALLOWOPTS; 5341 if (r->rule_flag & PFRULE_STATESLOPPY) 5342 s->state_flags |= PFSTATE_SLOPPY; 5343 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 5344 s->state_flags |= PFSTATE_SCRUB_TCP; 5345 if ((r->rule_flag & PFRULE_PFLOW) || 5346 (nr != NULL && nr->rule_flag & PFRULE_PFLOW)) 5347 s->state_flags |= PFSTATE_PFLOW; 5348 5349 s->act.log = pd->act.log & PF_LOG_ALL; 5350 s->sync_state = PFSYNC_S_NONE; 5351 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */ 5352 5353 if (nr != NULL) 5354 s->act.log |= nr->log & PF_LOG_ALL; 5355 switch (pd->proto) { 5356 case IPPROTO_TCP: 5357 s->src.seqlo = ntohl(th->th_seq); 5358 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 5359 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 5360 r->keep_state == PF_STATE_MODULATE) { 5361 /* Generate sequence number modulator */ 5362 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 5363 0) 5364 s->src.seqdiff = 1; 5365 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 5366 htonl(s->src.seqlo + s->src.seqdiff), 0); 5367 *rewrite = 1; 5368 } else 5369 s->src.seqdiff = 0; 5370 if (th->th_flags & TH_SYN) { 5371 s->src.seqhi++; 5372 s->src.wscale = pf_get_wscale(m, off, 5373 th->th_off, pd->af); 5374 } 5375 s->src.max_win = MAX(ntohs(th->th_win), 1); 5376 if (s->src.wscale & PF_WSCALE_MASK) { 5377 /* Remove scale factor from initial window */ 5378 int win = s->src.max_win; 5379 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 5380 s->src.max_win = (win - 1) >> 5381 (s->src.wscale & PF_WSCALE_MASK); 5382 } 5383 if (th->th_flags & TH_FIN) 5384 s->src.seqhi++; 5385 s->dst.seqhi = 1; 5386 s->dst.max_win = 1; 5387 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 5388 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 5389 s->timeout = PFTM_TCP_FIRST_PACKET; 5390 atomic_add_32(&V_pf_status.states_halfopen, 1); 5391 break; 5392 case IPPROTO_UDP: 5393 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 5394 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 5395 s->timeout = PFTM_UDP_FIRST_PACKET; 5396 break; 5397 case IPPROTO_SCTP: 5398 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT); 5399 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED); 5400 s->timeout = PFTM_SCTP_FIRST_PACKET; 5401 break; 5402 case IPPROTO_ICMP: 5403 #ifdef INET6 5404 case IPPROTO_ICMPV6: 5405 #endif 5406 s->timeout = PFTM_ICMP_FIRST_PACKET; 5407 break; 5408 default: 5409 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 5410 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 5411 s->timeout = PFTM_OTHER_FIRST_PACKET; 5412 } 5413 5414 if (r->rt) { 5415 /* pf_map_addr increases the reason counters */ 5416 if ((reason = pf_map_addr(pd->af, r, pd->src, &s->rt_addr, 5417 &s->rt_kif, NULL, &sn)) != 0) 5418 goto csfailed; 5419 s->rt = r->rt; 5420 } 5421 5422 s->creation = s->expire = pf_get_uptime(); 5423 5424 if (sn != NULL) 5425 s->src_node = sn; 5426 if (nsn != NULL) { 5427 /* XXX We only modify one side for now. */ 5428 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 5429 s->nat_src_node = nsn; 5430 } 5431 if (pd->proto == IPPROTO_TCP) { 5432 if (s->state_flags & PFSTATE_SCRUB_TCP && 5433 pf_normalize_tcp_init(m, off, pd, th, &s->src, &s->dst)) { 5434 REASON_SET(&reason, PFRES_MEMORY); 5435 goto drop; 5436 } 5437 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 5438 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 5439 &s->src, &s->dst, rewrite)) { 5440 /* This really shouldn't happen!!! */ 5441 DPFPRINTF(PF_DEBUG_URGENT, 5442 ("pf_normalize_tcp_stateful failed on first " 5443 "pkt\n")); 5444 goto drop; 5445 } 5446 } else if (pd->proto == IPPROTO_SCTP) { 5447 if (pf_normalize_sctp_init(m, off, pd, &s->src, &s->dst)) 5448 goto drop; 5449 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP))) 5450 goto drop; 5451 } 5452 s->direction = pd->dir; 5453 5454 /* 5455 * sk/nk could already been setup by pf_get_translation(). 5456 */ 5457 if (nr == NULL) { 5458 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 5459 __func__, nr, sk, nk)); 5460 sk = pf_state_key_setup(pd, m, off, pd->src, pd->dst, sport, dport); 5461 if (sk == NULL) 5462 goto csfailed; 5463 nk = sk; 5464 } else 5465 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 5466 __func__, nr, sk, nk)); 5467 5468 /* Swap sk/nk for PF_OUT. */ 5469 if (pf_state_insert(BOUND_IFACE(s, kif), kif, 5470 (pd->dir == PF_IN) ? sk : nk, 5471 (pd->dir == PF_IN) ? nk : sk, s)) { 5472 REASON_SET(&reason, PFRES_STATEINS); 5473 goto drop; 5474 } else 5475 *sm = s; 5476 5477 if (tag > 0) 5478 s->tag = tag; 5479 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 5480 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 5481 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 5482 /* undo NAT changes, if they have taken place */ 5483 if (nr != NULL) { 5484 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 5485 if (pd->dir == PF_OUT) 5486 skt = s->key[PF_SK_STACK]; 5487 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 5488 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 5489 if (pd->sport) 5490 *pd->sport = skt->port[pd->sidx]; 5491 if (pd->dport) 5492 *pd->dport = skt->port[pd->didx]; 5493 if (pd->proto_sum) 5494 *pd->proto_sum = bproto_sum; 5495 if (pd->ip_sum) 5496 *pd->ip_sum = bip_sum; 5497 m_copyback(m, off, hdrlen, pd->hdr.any); 5498 } 5499 s->src.seqhi = htonl(arc4random()); 5500 /* Find mss option */ 5501 int rtid = M_GETFIB(m); 5502 mss = pf_get_mss(m, off, th->th_off, pd->af); 5503 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 5504 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 5505 s->src.mss = mss; 5506 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 5507 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 5508 TH_SYN|TH_ACK, 0, s->src.mss, 0, true, 0, 0, 5509 pd->act.rtableid); 5510 REASON_SET(&reason, PFRES_SYNPROXY); 5511 return (PF_SYNPROXY_DROP); 5512 } 5513 5514 s->udp_mapping = udp_mapping; 5515 5516 return (PF_PASS); 5517 5518 csfailed: 5519 while ((ri = SLIST_FIRST(match_rules))) { 5520 SLIST_REMOVE_HEAD(match_rules, entry); 5521 free(ri, M_PF_RULE_ITEM); 5522 } 5523 5524 uma_zfree(V_pf_state_key_z, sk); 5525 uma_zfree(V_pf_state_key_z, nk); 5526 5527 if (sn != NULL) { 5528 PF_SRC_NODE_LOCK(sn); 5529 if (--sn->states == 0 && sn->expire == 0) { 5530 pf_unlink_src_node(sn); 5531 uma_zfree(V_pf_sources_z, sn); 5532 counter_u64_add( 5533 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5534 } 5535 PF_SRC_NODE_UNLOCK(sn); 5536 } 5537 5538 if (nsn != sn && nsn != NULL) { 5539 PF_SRC_NODE_LOCK(nsn); 5540 if (--nsn->states == 0 && nsn->expire == 0) { 5541 pf_unlink_src_node(nsn); 5542 uma_zfree(V_pf_sources_z, nsn); 5543 counter_u64_add( 5544 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5545 } 5546 PF_SRC_NODE_UNLOCK(nsn); 5547 } 5548 5549 drop: 5550 if (s != NULL) { 5551 pf_src_tree_remove_state(s); 5552 s->timeout = PFTM_UNLINKED; 5553 STATE_DEC_COUNTERS(s); 5554 pf_free_state(s); 5555 } 5556 5557 return (PF_DROP); 5558 } 5559 5560 static int 5561 pf_test_fragment(struct pf_krule **rm, struct pfi_kkif *kif, 5562 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, 5563 struct pf_kruleset **rsm) 5564 { 5565 struct pf_krule *r, *a = NULL; 5566 struct pf_kruleset *ruleset = NULL; 5567 struct pf_krule_slist match_rules; 5568 struct pf_krule_item *ri; 5569 sa_family_t af = pd->af; 5570 u_short reason; 5571 int tag = -1; 5572 int asd = 0; 5573 int match = 0; 5574 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 5575 5576 PF_RULES_RASSERT(); 5577 5578 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 5579 SLIST_INIT(&match_rules); 5580 while (r != NULL) { 5581 pf_counter_u64_add(&r->evaluations, 1); 5582 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 5583 r = r->skip[PF_SKIP_IFP].ptr; 5584 else if (r->direction && r->direction != pd->dir) 5585 r = r->skip[PF_SKIP_DIR].ptr; 5586 else if (r->af && r->af != af) 5587 r = r->skip[PF_SKIP_AF].ptr; 5588 else if (r->proto && r->proto != pd->proto) 5589 r = r->skip[PF_SKIP_PROTO].ptr; 5590 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 5591 r->src.neg, kif, M_GETFIB(m))) 5592 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 5593 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 5594 r->dst.neg, NULL, M_GETFIB(m))) 5595 r = r->skip[PF_SKIP_DST_ADDR].ptr; 5596 else if (r->tos && !(r->tos == pd->tos)) 5597 r = TAILQ_NEXT(r, entries); 5598 else if (r->os_fingerprint != PF_OSFP_ANY) 5599 r = TAILQ_NEXT(r, entries); 5600 else if (pd->proto == IPPROTO_UDP && 5601 (r->src.port_op || r->dst.port_op)) 5602 r = TAILQ_NEXT(r, entries); 5603 else if (pd->proto == IPPROTO_TCP && 5604 (r->src.port_op || r->dst.port_op || r->flagset)) 5605 r = TAILQ_NEXT(r, entries); 5606 else if ((pd->proto == IPPROTO_ICMP || 5607 pd->proto == IPPROTO_ICMPV6) && 5608 (r->type || r->code)) 5609 r = TAILQ_NEXT(r, entries); 5610 else if (r->prio && 5611 !pf_match_ieee8021q_pcp(r->prio, m)) 5612 r = TAILQ_NEXT(r, entries); 5613 else if (r->prob && r->prob <= 5614 (arc4random() % (UINT_MAX - 1) + 1)) 5615 r = TAILQ_NEXT(r, entries); 5616 else if (r->match_tag && !pf_match_tag(m, r, &tag, 5617 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 5618 r = TAILQ_NEXT(r, entries); 5619 else { 5620 if (r->anchor == NULL) { 5621 if (r->action == PF_MATCH) { 5622 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5623 if (ri == NULL) { 5624 REASON_SET(&reason, PFRES_MEMORY); 5625 goto cleanup; 5626 } 5627 ri->r = r; 5628 SLIST_INSERT_HEAD(&match_rules, ri, entry); 5629 pf_counter_u64_critical_enter(); 5630 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5631 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5632 pf_counter_u64_critical_exit(); 5633 pf_rule_to_actions(r, &pd->act); 5634 if (r->log) 5635 PFLOG_PACKET(kif, m, af, 5636 r->action, PFRES_MATCH, r, 5637 a, ruleset, pd, 1); 5638 } else { 5639 match = 1; 5640 *rm = r; 5641 *am = a; 5642 *rsm = ruleset; 5643 } 5644 if ((*rm)->quick) 5645 break; 5646 r = TAILQ_NEXT(r, entries); 5647 } else 5648 pf_step_into_anchor(anchor_stack, &asd, 5649 &ruleset, PF_RULESET_FILTER, &r, &a, 5650 &match); 5651 } 5652 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 5653 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 5654 break; 5655 } 5656 r = *rm; 5657 a = *am; 5658 ruleset = *rsm; 5659 5660 REASON_SET(&reason, PFRES_MATCH); 5661 5662 /* apply actions for last matching pass/block rule */ 5663 pf_rule_to_actions(r, &pd->act); 5664 5665 if (r->log) 5666 PFLOG_PACKET(kif, m, af, r->action, reason, r, a, ruleset, pd, 1); 5667 5668 if (r->action != PF_PASS) 5669 return (PF_DROP); 5670 5671 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 5672 REASON_SET(&reason, PFRES_MEMORY); 5673 goto cleanup; 5674 } 5675 5676 return (PF_PASS); 5677 5678 cleanup: 5679 while ((ri = SLIST_FIRST(&match_rules))) { 5680 SLIST_REMOVE_HEAD(&match_rules, entry); 5681 free(ri, M_PF_RULE_ITEM); 5682 } 5683 5684 return (PF_DROP); 5685 } 5686 5687 static int 5688 pf_tcp_track_full(struct pf_kstate **state, struct pfi_kkif *kif, 5689 struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason, 5690 int *copyback) 5691 { 5692 struct tcphdr *th = &pd->hdr.tcp; 5693 struct pf_state_peer *src, *dst; 5694 u_int16_t win = ntohs(th->th_win); 5695 u_int32_t ack, end, data_end, seq, orig_seq; 5696 u_int8_t sws, dws, psrc, pdst; 5697 int ackskew; 5698 5699 if (pd->dir == (*state)->direction) { 5700 src = &(*state)->src; 5701 dst = &(*state)->dst; 5702 psrc = PF_PEER_SRC; 5703 pdst = PF_PEER_DST; 5704 } else { 5705 src = &(*state)->dst; 5706 dst = &(*state)->src; 5707 psrc = PF_PEER_DST; 5708 pdst = PF_PEER_SRC; 5709 } 5710 5711 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 5712 sws = src->wscale & PF_WSCALE_MASK; 5713 dws = dst->wscale & PF_WSCALE_MASK; 5714 } else 5715 sws = dws = 0; 5716 5717 /* 5718 * Sequence tracking algorithm from Guido van Rooij's paper: 5719 * http://www.madison-gurkha.com/publications/tcp_filtering/ 5720 * tcp_filtering.ps 5721 */ 5722 5723 orig_seq = seq = ntohl(th->th_seq); 5724 if (src->seqlo == 0) { 5725 /* First packet from this end. Set its state */ 5726 5727 if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 5728 src->scrub == NULL) { 5729 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 5730 REASON_SET(reason, PFRES_MEMORY); 5731 return (PF_DROP); 5732 } 5733 } 5734 5735 /* Deferred generation of sequence number modulator */ 5736 if (dst->seqdiff && !src->seqdiff) { 5737 /* use random iss for the TCP server */ 5738 while ((src->seqdiff = arc4random() - seq) == 0) 5739 ; 5740 ack = ntohl(th->th_ack) - dst->seqdiff; 5741 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5742 src->seqdiff), 0); 5743 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5744 *copyback = 1; 5745 } else { 5746 ack = ntohl(th->th_ack); 5747 } 5748 5749 end = seq + pd->p_len; 5750 if (th->th_flags & TH_SYN) { 5751 end++; 5752 if (dst->wscale & PF_WSCALE_FLAG) { 5753 src->wscale = pf_get_wscale(m, off, th->th_off, 5754 pd->af); 5755 if (src->wscale & PF_WSCALE_FLAG) { 5756 /* Remove scale factor from initial 5757 * window */ 5758 sws = src->wscale & PF_WSCALE_MASK; 5759 win = ((u_int32_t)win + (1 << sws) - 1) 5760 >> sws; 5761 dws = dst->wscale & PF_WSCALE_MASK; 5762 } else { 5763 /* fixup other window */ 5764 dst->max_win = MIN(TCP_MAXWIN, 5765 (u_int32_t)dst->max_win << 5766 (dst->wscale & PF_WSCALE_MASK)); 5767 /* in case of a retrans SYN|ACK */ 5768 dst->wscale = 0; 5769 } 5770 } 5771 } 5772 data_end = end; 5773 if (th->th_flags & TH_FIN) 5774 end++; 5775 5776 src->seqlo = seq; 5777 if (src->state < TCPS_SYN_SENT) 5778 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5779 5780 /* 5781 * May need to slide the window (seqhi may have been set by 5782 * the crappy stack check or if we picked up the connection 5783 * after establishment) 5784 */ 5785 if (src->seqhi == 1 || 5786 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 5787 src->seqhi = end + MAX(1, dst->max_win << dws); 5788 if (win > src->max_win) 5789 src->max_win = win; 5790 5791 } else { 5792 ack = ntohl(th->th_ack) - dst->seqdiff; 5793 if (src->seqdiff) { 5794 /* Modulate sequence numbers */ 5795 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5796 src->seqdiff), 0); 5797 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5798 *copyback = 1; 5799 } 5800 end = seq + pd->p_len; 5801 if (th->th_flags & TH_SYN) 5802 end++; 5803 data_end = end; 5804 if (th->th_flags & TH_FIN) 5805 end++; 5806 } 5807 5808 if ((th->th_flags & TH_ACK) == 0) { 5809 /* Let it pass through the ack skew check */ 5810 ack = dst->seqlo; 5811 } else if ((ack == 0 && 5812 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 5813 /* broken tcp stacks do not set ack */ 5814 (dst->state < TCPS_SYN_SENT)) { 5815 /* 5816 * Many stacks (ours included) will set the ACK number in an 5817 * FIN|ACK if the SYN times out -- no sequence to ACK. 5818 */ 5819 ack = dst->seqlo; 5820 } 5821 5822 if (seq == end) { 5823 /* Ease sequencing restrictions on no data packets */ 5824 seq = src->seqlo; 5825 data_end = end = seq; 5826 } 5827 5828 ackskew = dst->seqlo - ack; 5829 5830 /* 5831 * Need to demodulate the sequence numbers in any TCP SACK options 5832 * (Selective ACK). We could optionally validate the SACK values 5833 * against the current ACK window, either forwards or backwards, but 5834 * I'm not confident that SACK has been implemented properly 5835 * everywhere. It wouldn't surprise me if several stacks accidentally 5836 * SACK too far backwards of previously ACKed data. There really aren't 5837 * any security implications of bad SACKing unless the target stack 5838 * doesn't validate the option length correctly. Someone trying to 5839 * spoof into a TCP connection won't bother blindly sending SACK 5840 * options anyway. 5841 */ 5842 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 5843 if (pf_modulate_sack(m, off, pd, th, dst)) 5844 *copyback = 1; 5845 } 5846 5847 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 5848 if (SEQ_GEQ(src->seqhi, data_end) && 5849 /* Last octet inside other's window space */ 5850 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 5851 /* Retrans: not more than one window back */ 5852 (ackskew >= -MAXACKWINDOW) && 5853 /* Acking not more than one reassembled fragment backwards */ 5854 (ackskew <= (MAXACKWINDOW << sws)) && 5855 /* Acking not more than one window forward */ 5856 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 5857 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) { 5858 /* Require an exact/+1 sequence match on resets when possible */ 5859 5860 if (dst->scrub || src->scrub) { 5861 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5862 *state, src, dst, copyback)) 5863 return (PF_DROP); 5864 } 5865 5866 /* update max window */ 5867 if (src->max_win < win) 5868 src->max_win = win; 5869 /* synchronize sequencing */ 5870 if (SEQ_GT(end, src->seqlo)) 5871 src->seqlo = end; 5872 /* slide the window of what the other end can send */ 5873 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5874 dst->seqhi = ack + MAX((win << sws), 1); 5875 5876 /* update states */ 5877 if (th->th_flags & TH_SYN) 5878 if (src->state < TCPS_SYN_SENT) 5879 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5880 if (th->th_flags & TH_FIN) 5881 if (src->state < TCPS_CLOSING) 5882 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5883 if (th->th_flags & TH_ACK) { 5884 if (dst->state == TCPS_SYN_SENT) { 5885 pf_set_protostate(*state, pdst, 5886 TCPS_ESTABLISHED); 5887 if (src->state == TCPS_ESTABLISHED && 5888 (*state)->src_node != NULL && 5889 pf_src_connlimit(state)) { 5890 REASON_SET(reason, PFRES_SRCLIMIT); 5891 return (PF_DROP); 5892 } 5893 } else if (dst->state == TCPS_CLOSING) 5894 pf_set_protostate(*state, pdst, 5895 TCPS_FIN_WAIT_2); 5896 } 5897 if (th->th_flags & TH_RST) 5898 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5899 5900 /* update expire time */ 5901 (*state)->expire = pf_get_uptime(); 5902 if (src->state >= TCPS_FIN_WAIT_2 && 5903 dst->state >= TCPS_FIN_WAIT_2) 5904 (*state)->timeout = PFTM_TCP_CLOSED; 5905 else if (src->state >= TCPS_CLOSING && 5906 dst->state >= TCPS_CLOSING) 5907 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5908 else if (src->state < TCPS_ESTABLISHED || 5909 dst->state < TCPS_ESTABLISHED) 5910 (*state)->timeout = PFTM_TCP_OPENING; 5911 else if (src->state >= TCPS_CLOSING || 5912 dst->state >= TCPS_CLOSING) 5913 (*state)->timeout = PFTM_TCP_CLOSING; 5914 else 5915 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5916 5917 /* Fall through to PASS packet */ 5918 5919 } else if ((dst->state < TCPS_SYN_SENT || 5920 dst->state >= TCPS_FIN_WAIT_2 || 5921 src->state >= TCPS_FIN_WAIT_2) && 5922 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) && 5923 /* Within a window forward of the originating packet */ 5924 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 5925 /* Within a window backward of the originating packet */ 5926 5927 /* 5928 * This currently handles three situations: 5929 * 1) Stupid stacks will shotgun SYNs before their peer 5930 * replies. 5931 * 2) When PF catches an already established stream (the 5932 * firewall rebooted, the state table was flushed, routes 5933 * changed...) 5934 * 3) Packets get funky immediately after the connection 5935 * closes (this should catch Solaris spurious ACK|FINs 5936 * that web servers like to spew after a close) 5937 * 5938 * This must be a little more careful than the above code 5939 * since packet floods will also be caught here. We don't 5940 * update the TTL here to mitigate the damage of a packet 5941 * flood and so the same code can handle awkward establishment 5942 * and a loosened connection close. 5943 * In the establishment case, a correct peer response will 5944 * validate the connection, go through the normal state code 5945 * and keep updating the state TTL. 5946 */ 5947 5948 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5949 printf("pf: loose state match: "); 5950 pf_print_state(*state); 5951 pf_print_flags(th->th_flags); 5952 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5953 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 5954 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 5955 (unsigned long long)(*state)->packets[1], 5956 pd->dir == PF_IN ? "in" : "out", 5957 pd->dir == (*state)->direction ? "fwd" : "rev"); 5958 } 5959 5960 if (dst->scrub || src->scrub) { 5961 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5962 *state, src, dst, copyback)) 5963 return (PF_DROP); 5964 } 5965 5966 /* update max window */ 5967 if (src->max_win < win) 5968 src->max_win = win; 5969 /* synchronize sequencing */ 5970 if (SEQ_GT(end, src->seqlo)) 5971 src->seqlo = end; 5972 /* slide the window of what the other end can send */ 5973 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5974 dst->seqhi = ack + MAX((win << sws), 1); 5975 5976 /* 5977 * Cannot set dst->seqhi here since this could be a shotgunned 5978 * SYN and not an already established connection. 5979 */ 5980 5981 if (th->th_flags & TH_FIN) 5982 if (src->state < TCPS_CLOSING) 5983 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5984 if (th->th_flags & TH_RST) 5985 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5986 5987 /* Fall through to PASS packet */ 5988 5989 } else { 5990 if ((*state)->dst.state == TCPS_SYN_SENT && 5991 (*state)->src.state == TCPS_SYN_SENT) { 5992 /* Send RST for state mismatches during handshake */ 5993 if (!(th->th_flags & TH_RST)) 5994 pf_send_tcp((*state)->rule.ptr, pd->af, 5995 pd->dst, pd->src, th->th_dport, 5996 th->th_sport, ntohl(th->th_ack), 0, 5997 TH_RST, 0, 0, 5998 (*state)->rule.ptr->return_ttl, true, 0, 0, 5999 (*state)->act.rtableid); 6000 src->seqlo = 0; 6001 src->seqhi = 1; 6002 src->max_win = 1; 6003 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 6004 printf("pf: BAD state: "); 6005 pf_print_state(*state); 6006 pf_print_flags(th->th_flags); 6007 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 6008 "pkts=%llu:%llu dir=%s,%s\n", 6009 seq, orig_seq, ack, pd->p_len, ackskew, 6010 (unsigned long long)(*state)->packets[0], 6011 (unsigned long long)(*state)->packets[1], 6012 pd->dir == PF_IN ? "in" : "out", 6013 pd->dir == (*state)->direction ? "fwd" : "rev"); 6014 printf("pf: State failure on: %c %c %c %c | %c %c\n", 6015 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1', 6016 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 6017 ' ': '2', 6018 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 6019 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 6020 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5', 6021 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 6022 } 6023 REASON_SET(reason, PFRES_BADSTATE); 6024 return (PF_DROP); 6025 } 6026 6027 return (PF_PASS); 6028 } 6029 6030 static int 6031 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 6032 { 6033 struct tcphdr *th = &pd->hdr.tcp; 6034 struct pf_state_peer *src, *dst; 6035 u_int8_t psrc, pdst; 6036 6037 if (pd->dir == (*state)->direction) { 6038 src = &(*state)->src; 6039 dst = &(*state)->dst; 6040 psrc = PF_PEER_SRC; 6041 pdst = PF_PEER_DST; 6042 } else { 6043 src = &(*state)->dst; 6044 dst = &(*state)->src; 6045 psrc = PF_PEER_DST; 6046 pdst = PF_PEER_SRC; 6047 } 6048 6049 if (th->th_flags & TH_SYN) 6050 if (src->state < TCPS_SYN_SENT) 6051 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 6052 if (th->th_flags & TH_FIN) 6053 if (src->state < TCPS_CLOSING) 6054 pf_set_protostate(*state, psrc, TCPS_CLOSING); 6055 if (th->th_flags & TH_ACK) { 6056 if (dst->state == TCPS_SYN_SENT) { 6057 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 6058 if (src->state == TCPS_ESTABLISHED && 6059 (*state)->src_node != NULL && 6060 pf_src_connlimit(state)) { 6061 REASON_SET(reason, PFRES_SRCLIMIT); 6062 return (PF_DROP); 6063 } 6064 } else if (dst->state == TCPS_CLOSING) { 6065 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 6066 } else if (src->state == TCPS_SYN_SENT && 6067 dst->state < TCPS_SYN_SENT) { 6068 /* 6069 * Handle a special sloppy case where we only see one 6070 * half of the connection. If there is a ACK after 6071 * the initial SYN without ever seeing a packet from 6072 * the destination, set the connection to established. 6073 */ 6074 pf_set_protostate(*state, PF_PEER_BOTH, 6075 TCPS_ESTABLISHED); 6076 dst->state = src->state = TCPS_ESTABLISHED; 6077 if ((*state)->src_node != NULL && 6078 pf_src_connlimit(state)) { 6079 REASON_SET(reason, PFRES_SRCLIMIT); 6080 return (PF_DROP); 6081 } 6082 } else if (src->state == TCPS_CLOSING && 6083 dst->state == TCPS_ESTABLISHED && 6084 dst->seqlo == 0) { 6085 /* 6086 * Handle the closing of half connections where we 6087 * don't see the full bidirectional FIN/ACK+ACK 6088 * handshake. 6089 */ 6090 pf_set_protostate(*state, pdst, TCPS_CLOSING); 6091 } 6092 } 6093 if (th->th_flags & TH_RST) 6094 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6095 6096 /* update expire time */ 6097 (*state)->expire = pf_get_uptime(); 6098 if (src->state >= TCPS_FIN_WAIT_2 && 6099 dst->state >= TCPS_FIN_WAIT_2) 6100 (*state)->timeout = PFTM_TCP_CLOSED; 6101 else if (src->state >= TCPS_CLOSING && 6102 dst->state >= TCPS_CLOSING) 6103 (*state)->timeout = PFTM_TCP_FIN_WAIT; 6104 else if (src->state < TCPS_ESTABLISHED || 6105 dst->state < TCPS_ESTABLISHED) 6106 (*state)->timeout = PFTM_TCP_OPENING; 6107 else if (src->state >= TCPS_CLOSING || 6108 dst->state >= TCPS_CLOSING) 6109 (*state)->timeout = PFTM_TCP_CLOSING; 6110 else 6111 (*state)->timeout = PFTM_TCP_ESTABLISHED; 6112 6113 return (PF_PASS); 6114 } 6115 6116 static int 6117 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 6118 { 6119 struct pf_state_key *sk = (*state)->key[pd->didx]; 6120 struct tcphdr *th = &pd->hdr.tcp; 6121 6122 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 6123 if (pd->dir != (*state)->direction) { 6124 REASON_SET(reason, PFRES_SYNPROXY); 6125 return (PF_SYNPROXY_DROP); 6126 } 6127 if (th->th_flags & TH_SYN) { 6128 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 6129 REASON_SET(reason, PFRES_SYNPROXY); 6130 return (PF_DROP); 6131 } 6132 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 6133 pd->src, th->th_dport, th->th_sport, 6134 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 6135 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, true, 0, 0, 6136 (*state)->act.rtableid); 6137 REASON_SET(reason, PFRES_SYNPROXY); 6138 return (PF_SYNPROXY_DROP); 6139 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 6140 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 6141 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 6142 REASON_SET(reason, PFRES_SYNPROXY); 6143 return (PF_DROP); 6144 } else if ((*state)->src_node != NULL && 6145 pf_src_connlimit(state)) { 6146 REASON_SET(reason, PFRES_SRCLIMIT); 6147 return (PF_DROP); 6148 } else 6149 pf_set_protostate(*state, PF_PEER_SRC, 6150 PF_TCPS_PROXY_DST); 6151 } 6152 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 6153 if (pd->dir == (*state)->direction) { 6154 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 6155 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 6156 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 6157 REASON_SET(reason, PFRES_SYNPROXY); 6158 return (PF_DROP); 6159 } 6160 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 6161 if ((*state)->dst.seqhi == 1) 6162 (*state)->dst.seqhi = htonl(arc4random()); 6163 pf_send_tcp((*state)->rule.ptr, pd->af, 6164 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6165 sk->port[pd->sidx], sk->port[pd->didx], 6166 (*state)->dst.seqhi, 0, TH_SYN, 0, 6167 (*state)->src.mss, 0, false, (*state)->tag, 0, 6168 (*state)->act.rtableid); 6169 REASON_SET(reason, PFRES_SYNPROXY); 6170 return (PF_SYNPROXY_DROP); 6171 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 6172 (TH_SYN|TH_ACK)) || 6173 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 6174 REASON_SET(reason, PFRES_SYNPROXY); 6175 return (PF_DROP); 6176 } else { 6177 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 6178 (*state)->dst.seqlo = ntohl(th->th_seq); 6179 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 6180 pd->src, th->th_dport, th->th_sport, 6181 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 6182 TH_ACK, (*state)->src.max_win, 0, 0, false, 6183 (*state)->tag, 0, (*state)->act.rtableid); 6184 pf_send_tcp((*state)->rule.ptr, pd->af, 6185 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6186 sk->port[pd->sidx], sk->port[pd->didx], 6187 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 6188 TH_ACK, (*state)->dst.max_win, 0, 0, true, 0, 0, 6189 (*state)->act.rtableid); 6190 (*state)->src.seqdiff = (*state)->dst.seqhi - 6191 (*state)->src.seqlo; 6192 (*state)->dst.seqdiff = (*state)->src.seqhi - 6193 (*state)->dst.seqlo; 6194 (*state)->src.seqhi = (*state)->src.seqlo + 6195 (*state)->dst.max_win; 6196 (*state)->dst.seqhi = (*state)->dst.seqlo + 6197 (*state)->src.max_win; 6198 (*state)->src.wscale = (*state)->dst.wscale = 0; 6199 pf_set_protostate(*state, PF_PEER_BOTH, 6200 TCPS_ESTABLISHED); 6201 REASON_SET(reason, PFRES_SYNPROXY); 6202 return (PF_SYNPROXY_DROP); 6203 } 6204 } 6205 6206 return (PF_PASS); 6207 } 6208 6209 static int 6210 pf_test_state_tcp(struct pf_kstate **state, struct pfi_kkif *kif, 6211 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 6212 u_short *reason) 6213 { 6214 struct pf_state_key_cmp key; 6215 struct tcphdr *th = &pd->hdr.tcp; 6216 int copyback = 0; 6217 int action; 6218 struct pf_state_peer *src, *dst; 6219 6220 bzero(&key, sizeof(key)); 6221 key.af = pd->af; 6222 key.proto = IPPROTO_TCP; 6223 if (pd->dir == PF_IN) { /* wire side, straight */ 6224 PF_ACPY(&key.addr[0], pd->src, key.af); 6225 PF_ACPY(&key.addr[1], pd->dst, key.af); 6226 key.port[0] = th->th_sport; 6227 key.port[1] = th->th_dport; 6228 } else { /* stack side, reverse */ 6229 PF_ACPY(&key.addr[1], pd->src, key.af); 6230 PF_ACPY(&key.addr[0], pd->dst, key.af); 6231 key.port[1] = th->th_sport; 6232 key.port[0] = th->th_dport; 6233 } 6234 6235 STATE_LOOKUP(kif, &key, *state, pd); 6236 6237 if (pd->dir == (*state)->direction) { 6238 src = &(*state)->src; 6239 dst = &(*state)->dst; 6240 } else { 6241 src = &(*state)->dst; 6242 dst = &(*state)->src; 6243 } 6244 6245 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 6246 return (action); 6247 6248 if (dst->state >= TCPS_FIN_WAIT_2 && 6249 src->state >= TCPS_FIN_WAIT_2 && 6250 (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) || 6251 ((th->th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK && 6252 pf_syncookie_check(pd) && pd->dir == PF_IN))) { 6253 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6254 printf("pf: state reuse "); 6255 pf_print_state(*state); 6256 pf_print_flags(th->th_flags); 6257 printf("\n"); 6258 } 6259 /* XXX make sure it's the same direction ?? */ 6260 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 6261 pf_unlink_state(*state); 6262 *state = NULL; 6263 return (PF_DROP); 6264 } 6265 6266 if ((*state)->state_flags & PFSTATE_SLOPPY) { 6267 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 6268 return (PF_DROP); 6269 } else { 6270 if (pf_tcp_track_full(state, kif, m, off, pd, reason, 6271 ©back) == PF_DROP) 6272 return (PF_DROP); 6273 } 6274 6275 /* translate source/destination address, if necessary */ 6276 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6277 struct pf_state_key *nk = (*state)->key[pd->didx]; 6278 6279 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6280 nk->port[pd->sidx] != th->th_sport) 6281 pf_change_ap(m, pd->src, &th->th_sport, 6282 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 6283 nk->port[pd->sidx], 0, pd->af); 6284 6285 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6286 nk->port[pd->didx] != th->th_dport) 6287 pf_change_ap(m, pd->dst, &th->th_dport, 6288 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 6289 nk->port[pd->didx], 0, pd->af); 6290 copyback = 1; 6291 } 6292 6293 /* Copyback sequence modulation or stateful scrub changes if needed */ 6294 if (copyback) 6295 m_copyback(m, off, sizeof(*th), (caddr_t)th); 6296 6297 return (PF_PASS); 6298 } 6299 6300 static int 6301 pf_test_state_udp(struct pf_kstate **state, struct pfi_kkif *kif, 6302 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 6303 { 6304 struct pf_state_peer *src, *dst; 6305 struct pf_state_key_cmp key; 6306 struct udphdr *uh = &pd->hdr.udp; 6307 uint8_t psrc, pdst; 6308 6309 bzero(&key, sizeof(key)); 6310 key.af = pd->af; 6311 key.proto = IPPROTO_UDP; 6312 if (pd->dir == PF_IN) { /* wire side, straight */ 6313 PF_ACPY(&key.addr[0], pd->src, key.af); 6314 PF_ACPY(&key.addr[1], pd->dst, key.af); 6315 key.port[0] = uh->uh_sport; 6316 key.port[1] = uh->uh_dport; 6317 } else { /* stack side, reverse */ 6318 PF_ACPY(&key.addr[1], pd->src, key.af); 6319 PF_ACPY(&key.addr[0], pd->dst, key.af); 6320 key.port[1] = uh->uh_sport; 6321 key.port[0] = uh->uh_dport; 6322 } 6323 6324 STATE_LOOKUP(kif, &key, *state, pd); 6325 6326 if (pd->dir == (*state)->direction) { 6327 src = &(*state)->src; 6328 dst = &(*state)->dst; 6329 psrc = PF_PEER_SRC; 6330 pdst = PF_PEER_DST; 6331 } else { 6332 src = &(*state)->dst; 6333 dst = &(*state)->src; 6334 psrc = PF_PEER_DST; 6335 pdst = PF_PEER_SRC; 6336 } 6337 6338 /* update states */ 6339 if (src->state < PFUDPS_SINGLE) 6340 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 6341 if (dst->state == PFUDPS_SINGLE) 6342 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 6343 6344 /* update expire time */ 6345 (*state)->expire = pf_get_uptime(); 6346 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 6347 (*state)->timeout = PFTM_UDP_MULTIPLE; 6348 else 6349 (*state)->timeout = PFTM_UDP_SINGLE; 6350 6351 /* translate source/destination address, if necessary */ 6352 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6353 struct pf_state_key *nk = (*state)->key[pd->didx]; 6354 6355 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6356 nk->port[pd->sidx] != uh->uh_sport) 6357 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 6358 &uh->uh_sum, &nk->addr[pd->sidx], 6359 nk->port[pd->sidx], 1, pd->af); 6360 6361 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6362 nk->port[pd->didx] != uh->uh_dport) 6363 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 6364 &uh->uh_sum, &nk->addr[pd->didx], 6365 nk->port[pd->didx], 1, pd->af); 6366 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 6367 } 6368 6369 return (PF_PASS); 6370 } 6371 6372 static int 6373 pf_test_state_sctp(struct pf_kstate **state, struct pfi_kkif *kif, 6374 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 6375 { 6376 struct pf_state_key_cmp key; 6377 struct pf_state_peer *src, *dst; 6378 struct sctphdr *sh = &pd->hdr.sctp; 6379 u_int8_t psrc; //, pdst; 6380 6381 bzero(&key, sizeof(key)); 6382 key.af = pd->af; 6383 key.proto = IPPROTO_SCTP; 6384 if (pd->dir == PF_IN) { /* wire side, straight */ 6385 PF_ACPY(&key.addr[0], pd->src, key.af); 6386 PF_ACPY(&key.addr[1], pd->dst, key.af); 6387 key.port[0] = sh->src_port; 6388 key.port[1] = sh->dest_port; 6389 } else { /* stack side, reverse */ 6390 PF_ACPY(&key.addr[1], pd->src, key.af); 6391 PF_ACPY(&key.addr[0], pd->dst, key.af); 6392 key.port[1] = sh->src_port; 6393 key.port[0] = sh->dest_port; 6394 } 6395 6396 STATE_LOOKUP(kif, &key, *state, pd); 6397 6398 if (pd->dir == (*state)->direction) { 6399 src = &(*state)->src; 6400 dst = &(*state)->dst; 6401 psrc = PF_PEER_SRC; 6402 } else { 6403 src = &(*state)->dst; 6404 dst = &(*state)->src; 6405 psrc = PF_PEER_DST; 6406 } 6407 6408 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) && 6409 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) && 6410 pd->sctp_flags & PFDESC_SCTP_INIT) { 6411 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED); 6412 pf_unlink_state(*state); 6413 *state = NULL; 6414 return (PF_DROP); 6415 } 6416 6417 /* Track state. */ 6418 if (pd->sctp_flags & PFDESC_SCTP_INIT) { 6419 if (src->state < SCTP_COOKIE_WAIT) { 6420 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT); 6421 (*state)->timeout = PFTM_SCTP_OPENING; 6422 } 6423 } 6424 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) { 6425 MPASS(dst->scrub != NULL); 6426 if (dst->scrub->pfss_v_tag == 0) 6427 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag; 6428 } 6429 6430 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) { 6431 if (src->state < SCTP_ESTABLISHED) { 6432 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED); 6433 (*state)->timeout = PFTM_SCTP_ESTABLISHED; 6434 } 6435 } 6436 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | PFDESC_SCTP_ABORT | 6437 PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 6438 if (src->state < SCTP_SHUTDOWN_PENDING) { 6439 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING); 6440 (*state)->timeout = PFTM_SCTP_CLOSING; 6441 } 6442 } 6443 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 6444 pf_set_protostate(*state, psrc, SCTP_CLOSED); 6445 (*state)->timeout = PFTM_SCTP_CLOSED; 6446 } 6447 6448 if (src->scrub != NULL) { 6449 if (src->scrub->pfss_v_tag == 0) { 6450 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag; 6451 } else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag) 6452 return (PF_DROP); 6453 } 6454 6455 (*state)->expire = pf_get_uptime(); 6456 6457 /* translate source/destination address, if necessary */ 6458 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6459 uint16_t checksum = 0; 6460 struct pf_state_key *nk = (*state)->key[pd->didx]; 6461 6462 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6463 nk->port[pd->sidx] != pd->hdr.sctp.src_port) { 6464 pf_change_ap(m, pd->src, &pd->hdr.sctp.src_port, 6465 pd->ip_sum, &checksum, &nk->addr[pd->sidx], 6466 nk->port[pd->sidx], 1, pd->af); 6467 } 6468 6469 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6470 nk->port[pd->didx] != pd->hdr.sctp.dest_port) { 6471 pf_change_ap(m, pd->dst, &pd->hdr.sctp.dest_port, 6472 pd->ip_sum, &checksum, &nk->addr[pd->didx], 6473 nk->port[pd->didx], 1, pd->af); 6474 } 6475 } 6476 6477 return (PF_PASS); 6478 } 6479 6480 static void 6481 pf_sctp_multihome_detach_addr(const struct pf_kstate *s) 6482 { 6483 struct pf_sctp_endpoint key; 6484 struct pf_sctp_endpoint *ep; 6485 struct pf_state_key *sks = s->key[PF_SK_STACK]; 6486 struct pf_sctp_source *i, *tmp; 6487 6488 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL) 6489 return; 6490 6491 PF_SCTP_ENDPOINTS_LOCK(); 6492 6493 key.v_tag = s->dst.scrub->pfss_v_tag; 6494 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6495 if (ep != NULL) { 6496 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6497 if (pf_addr_cmp(&i->addr, 6498 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT], 6499 s->key[PF_SK_WIRE]->af) == 0) { 6500 SDT_PROBE3(pf, sctp, multihome, remove, 6501 key.v_tag, s, i); 6502 TAILQ_REMOVE(&ep->sources, i, entry); 6503 free(i, M_PFTEMP); 6504 break; 6505 } 6506 } 6507 6508 if (TAILQ_EMPTY(&ep->sources)) { 6509 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6510 free(ep, M_PFTEMP); 6511 } 6512 } 6513 6514 /* Other direction. */ 6515 key.v_tag = s->src.scrub->pfss_v_tag; 6516 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6517 if (ep != NULL) { 6518 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6519 if (pf_addr_cmp(&i->addr, 6520 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN], 6521 s->key[PF_SK_WIRE]->af) == 0) { 6522 SDT_PROBE3(pf, sctp, multihome, remove, 6523 key.v_tag, s, i); 6524 TAILQ_REMOVE(&ep->sources, i, entry); 6525 free(i, M_PFTEMP); 6526 break; 6527 } 6528 } 6529 6530 if (TAILQ_EMPTY(&ep->sources)) { 6531 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6532 free(ep, M_PFTEMP); 6533 } 6534 } 6535 6536 PF_SCTP_ENDPOINTS_UNLOCK(); 6537 } 6538 6539 static void 6540 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag) 6541 { 6542 struct pf_sctp_endpoint key = { 6543 .v_tag = v_tag, 6544 }; 6545 struct pf_sctp_source *i; 6546 struct pf_sctp_endpoint *ep; 6547 6548 PF_SCTP_ENDPOINTS_LOCK(); 6549 6550 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6551 if (ep == NULL) { 6552 ep = malloc(sizeof(struct pf_sctp_endpoint), 6553 M_PFTEMP, M_NOWAIT); 6554 if (ep == NULL) { 6555 PF_SCTP_ENDPOINTS_UNLOCK(); 6556 return; 6557 } 6558 6559 ep->v_tag = v_tag; 6560 TAILQ_INIT(&ep->sources); 6561 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6562 } 6563 6564 /* Avoid inserting duplicates. */ 6565 TAILQ_FOREACH(i, &ep->sources, entry) { 6566 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) { 6567 PF_SCTP_ENDPOINTS_UNLOCK(); 6568 return; 6569 } 6570 } 6571 6572 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT); 6573 if (i == NULL) { 6574 PF_SCTP_ENDPOINTS_UNLOCK(); 6575 return; 6576 } 6577 6578 i->af = pd->af; 6579 memcpy(&i->addr, a, sizeof(*a)); 6580 TAILQ_INSERT_TAIL(&ep->sources, i, entry); 6581 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i); 6582 6583 PF_SCTP_ENDPOINTS_UNLOCK(); 6584 } 6585 6586 static void 6587 pf_sctp_multihome_delayed(struct pf_pdesc *pd, int off, struct pfi_kkif *kif, 6588 struct pf_kstate *s, int action) 6589 { 6590 struct pf_sctp_multihome_job *j, *tmp; 6591 struct pf_sctp_source *i; 6592 int ret __unused; 6593 struct pf_kstate *sm = NULL; 6594 struct pf_krule *ra = NULL; 6595 struct pf_krule *r = &V_pf_default_rule; 6596 struct pf_kruleset *rs = NULL; 6597 bool do_extra = true; 6598 6599 PF_RULES_RLOCK_TRACKER; 6600 6601 again: 6602 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) { 6603 if (s == NULL || action != PF_PASS) 6604 goto free; 6605 6606 /* Confirm we don't recurse here. */ 6607 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP)); 6608 6609 switch (j->op) { 6610 case SCTP_ADD_IP_ADDRESS: { 6611 uint32_t v_tag = pd->sctp_initiate_tag; 6612 6613 if (v_tag == 0) { 6614 if (s->direction == pd->dir) 6615 v_tag = s->src.scrub->pfss_v_tag; 6616 else 6617 v_tag = s->dst.scrub->pfss_v_tag; 6618 } 6619 6620 /* 6621 * Avoid duplicating states. We'll already have 6622 * created a state based on the source address of 6623 * the packet, but SCTP endpoints may also list this 6624 * address again in the INIT(_ACK) parameters. 6625 */ 6626 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) { 6627 break; 6628 } 6629 6630 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP; 6631 PF_RULES_RLOCK(); 6632 sm = NULL; 6633 /* 6634 * New connections need to be floating, because 6635 * we cannot know what interfaces it will use. 6636 * That's why we pass V_pfi_all rather than kif. 6637 */ 6638 ret = pf_test_rule(&r, &sm, V_pfi_all, 6639 j->m, off, &j->pd, &ra, &rs, NULL); 6640 PF_RULES_RUNLOCK(); 6641 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->m, ret); 6642 if (ret != PF_DROP && sm != NULL) { 6643 /* Inherit v_tag values. */ 6644 if (sm->direction == s->direction) { 6645 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6646 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6647 } else { 6648 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6649 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6650 } 6651 PF_STATE_UNLOCK(sm); 6652 } else { 6653 /* If we try duplicate inserts? */ 6654 break; 6655 } 6656 6657 /* Only add the address if we've actually allowed the state. */ 6658 pf_sctp_multihome_add_addr(pd, &j->src, v_tag); 6659 6660 if (! do_extra) { 6661 break; 6662 } 6663 /* 6664 * We need to do this for each of our source addresses. 6665 * Find those based on the verification tag. 6666 */ 6667 struct pf_sctp_endpoint key = { 6668 .v_tag = pd->hdr.sctp.v_tag, 6669 }; 6670 struct pf_sctp_endpoint *ep; 6671 6672 PF_SCTP_ENDPOINTS_LOCK(); 6673 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6674 if (ep == NULL) { 6675 PF_SCTP_ENDPOINTS_UNLOCK(); 6676 break; 6677 } 6678 MPASS(ep != NULL); 6679 6680 TAILQ_FOREACH(i, &ep->sources, entry) { 6681 struct pf_sctp_multihome_job *nj; 6682 6683 /* SCTP can intermingle IPv4 and IPv6. */ 6684 if (i->af != pd->af) 6685 continue; 6686 6687 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO); 6688 if (! nj) { 6689 continue; 6690 } 6691 memcpy(&nj->pd, &j->pd, sizeof(j->pd)); 6692 memcpy(&nj->src, &j->src, sizeof(nj->src)); 6693 nj->pd.src = &nj->src; 6694 // New destination address! 6695 memcpy(&nj->dst, &i->addr, sizeof(nj->dst)); 6696 nj->pd.dst = &nj->dst; 6697 nj->m = j->m; 6698 nj->op = j->op; 6699 6700 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next); 6701 } 6702 PF_SCTP_ENDPOINTS_UNLOCK(); 6703 6704 break; 6705 } 6706 case SCTP_DEL_IP_ADDRESS: { 6707 struct pf_state_key_cmp key; 6708 uint8_t psrc; 6709 6710 bzero(&key, sizeof(key)); 6711 key.af = j->pd.af; 6712 key.proto = IPPROTO_SCTP; 6713 if (j->pd.dir == PF_IN) { /* wire side, straight */ 6714 PF_ACPY(&key.addr[0], j->pd.src, key.af); 6715 PF_ACPY(&key.addr[1], j->pd.dst, key.af); 6716 key.port[0] = j->pd.hdr.sctp.src_port; 6717 key.port[1] = j->pd.hdr.sctp.dest_port; 6718 } else { /* stack side, reverse */ 6719 PF_ACPY(&key.addr[1], j->pd.src, key.af); 6720 PF_ACPY(&key.addr[0], j->pd.dst, key.af); 6721 key.port[1] = j->pd.hdr.sctp.src_port; 6722 key.port[0] = j->pd.hdr.sctp.dest_port; 6723 } 6724 6725 sm = pf_find_state(kif, &key, j->pd.dir); 6726 if (sm != NULL) { 6727 PF_STATE_LOCK_ASSERT(sm); 6728 if (j->pd.dir == sm->direction) { 6729 psrc = PF_PEER_SRC; 6730 } else { 6731 psrc = PF_PEER_DST; 6732 } 6733 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING); 6734 sm->timeout = PFTM_SCTP_CLOSING; 6735 PF_STATE_UNLOCK(sm); 6736 } 6737 break; 6738 default: 6739 panic("Unknown op %#x", j->op); 6740 } 6741 } 6742 6743 free: 6744 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next); 6745 free(j, M_PFTEMP); 6746 } 6747 6748 /* We may have inserted extra work while processing the list. */ 6749 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) { 6750 do_extra = false; 6751 goto again; 6752 } 6753 } 6754 6755 static int 6756 pf_multihome_scan(struct mbuf *m, int start, int len, struct pf_pdesc *pd, 6757 struct pfi_kkif *kif, int op) 6758 { 6759 int off = 0; 6760 struct pf_sctp_multihome_job *job; 6761 6762 while (off < len) { 6763 struct sctp_paramhdr h; 6764 6765 if (!pf_pull_hdr(m, start + off, &h, sizeof(h), NULL, NULL, 6766 pd->af)) 6767 return (PF_DROP); 6768 6769 /* Parameters are at least 4 bytes. */ 6770 if (ntohs(h.param_length) < 4) 6771 return (PF_DROP); 6772 6773 switch (ntohs(h.param_type)) { 6774 case SCTP_IPV4_ADDRESS: { 6775 struct in_addr t; 6776 6777 if (ntohs(h.param_length) != 6778 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6779 return (PF_DROP); 6780 6781 if (!pf_pull_hdr(m, start + off + sizeof(h), &t, sizeof(t), 6782 NULL, NULL, pd->af)) 6783 return (PF_DROP); 6784 6785 if (in_nullhost(t)) 6786 t.s_addr = pd->src->v4.s_addr; 6787 6788 /* 6789 * We hold the state lock (idhash) here, which means 6790 * that we can't acquire the keyhash, or we'll get a 6791 * LOR (and potentially double-lock things too). We also 6792 * can't release the state lock here, so instead we'll 6793 * enqueue this for async handling. 6794 * There's a relatively small race here, in that a 6795 * packet using the new addresses could arrive already, 6796 * but that's just though luck for it. 6797 */ 6798 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6799 if (! job) 6800 return (PF_DROP); 6801 6802 memcpy(&job->pd, pd, sizeof(*pd)); 6803 6804 // New source address! 6805 memcpy(&job->src, &t, sizeof(t)); 6806 job->pd.src = &job->src; 6807 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6808 job->pd.dst = &job->dst; 6809 job->m = m; 6810 job->op = op; 6811 6812 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6813 break; 6814 } 6815 #ifdef INET6 6816 case SCTP_IPV6_ADDRESS: { 6817 struct in6_addr t; 6818 6819 if (ntohs(h.param_length) != 6820 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6821 return (PF_DROP); 6822 6823 if (!pf_pull_hdr(m, start + off + sizeof(h), &t, sizeof(t), 6824 NULL, NULL, pd->af)) 6825 return (PF_DROP); 6826 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0) 6827 break; 6828 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0) 6829 memcpy(&t, &pd->src->v6, sizeof(t)); 6830 6831 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6832 if (! job) 6833 return (PF_DROP); 6834 6835 memcpy(&job->pd, pd, sizeof(*pd)); 6836 memcpy(&job->src, &t, sizeof(t)); 6837 job->pd.src = &job->src; 6838 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6839 job->pd.dst = &job->dst; 6840 job->m = m; 6841 job->op = op; 6842 6843 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6844 break; 6845 } 6846 #endif 6847 case SCTP_ADD_IP_ADDRESS: { 6848 int ret; 6849 struct sctp_asconf_paramhdr ah; 6850 6851 if (!pf_pull_hdr(m, start + off, &ah, sizeof(ah), 6852 NULL, NULL, pd->af)) 6853 return (PF_DROP); 6854 6855 ret = pf_multihome_scan(m, start + off + sizeof(ah), 6856 ntohs(ah.ph.param_length) - sizeof(ah), pd, kif, 6857 SCTP_ADD_IP_ADDRESS); 6858 if (ret != PF_PASS) 6859 return (ret); 6860 break; 6861 } 6862 case SCTP_DEL_IP_ADDRESS: { 6863 int ret; 6864 struct sctp_asconf_paramhdr ah; 6865 6866 if (!pf_pull_hdr(m, start + off, &ah, sizeof(ah), 6867 NULL, NULL, pd->af)) 6868 return (PF_DROP); 6869 ret = pf_multihome_scan(m, start + off + sizeof(ah), 6870 ntohs(ah.ph.param_length) - sizeof(ah), pd, kif, 6871 SCTP_DEL_IP_ADDRESS); 6872 if (ret != PF_PASS) 6873 return (ret); 6874 break; 6875 } 6876 default: 6877 break; 6878 } 6879 6880 off += roundup(ntohs(h.param_length), 4); 6881 } 6882 6883 return (PF_PASS); 6884 } 6885 int 6886 pf_multihome_scan_init(struct mbuf *m, int start, int len, struct pf_pdesc *pd, 6887 struct pfi_kkif *kif) 6888 { 6889 start += sizeof(struct sctp_init_chunk); 6890 len -= sizeof(struct sctp_init_chunk); 6891 6892 return (pf_multihome_scan(m, start, len, pd, kif, SCTP_ADD_IP_ADDRESS)); 6893 } 6894 6895 int 6896 pf_multihome_scan_asconf(struct mbuf *m, int start, int len, 6897 struct pf_pdesc *pd, struct pfi_kkif *kif) 6898 { 6899 start += sizeof(struct sctp_asconf_chunk); 6900 len -= sizeof(struct sctp_asconf_chunk); 6901 6902 return (pf_multihome_scan(m, start, len, pd, kif, SCTP_ADD_IP_ADDRESS)); 6903 } 6904 6905 int 6906 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd, 6907 struct pf_kstate **state, struct mbuf *m, int off, int direction, 6908 struct pfi_kkif *kif, u_int16_t icmpid, u_int16_t type, int icmp_dir, 6909 int *iidx, int multi, int inner) 6910 { 6911 key->af = pd->af; 6912 key->proto = pd->proto; 6913 if (icmp_dir == PF_IN) { 6914 *iidx = pd->sidx; 6915 key->port[pd->sidx] = icmpid; 6916 key->port[pd->didx] = type; 6917 } else { 6918 *iidx = pd->didx; 6919 key->port[pd->sidx] = type; 6920 key->port[pd->didx] = icmpid; 6921 } 6922 if (pf_state_key_addr_setup(pd, m, off, key, pd->sidx, pd->src, 6923 pd->didx, pd->dst, multi)) 6924 return (PF_DROP); 6925 6926 STATE_LOOKUP(kif, key, *state, pd); 6927 6928 if ((*state)->state_flags & PFSTATE_SLOPPY) 6929 return (-1); 6930 6931 /* Is this ICMP message flowing in right direction? */ 6932 if ((*state)->rule.ptr->type && 6933 (((!inner && (*state)->direction == direction) || 6934 (inner && (*state)->direction != direction)) ? 6935 PF_IN : PF_OUT) != icmp_dir) { 6936 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6937 printf("pf: icmp type %d in wrong direction (%d): ", 6938 ntohs(type), icmp_dir); 6939 pf_print_state(*state); 6940 printf("\n"); 6941 } 6942 PF_STATE_UNLOCK(*state); 6943 *state = NULL; 6944 return (PF_DROP); 6945 } 6946 return (-1); 6947 } 6948 6949 static int 6950 pf_test_state_icmp(struct pf_kstate **state, struct pfi_kkif *kif, 6951 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 6952 { 6953 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 6954 u_int16_t *icmpsum, virtual_id, virtual_type; 6955 u_int8_t icmptype, icmpcode; 6956 int icmp_dir, iidx, ret, multi; 6957 struct pf_state_key_cmp key; 6958 #ifdef INET 6959 u_int16_t icmpid; 6960 #endif 6961 6962 MPASS(*state == NULL); 6963 6964 bzero(&key, sizeof(key)); 6965 switch (pd->proto) { 6966 #ifdef INET 6967 case IPPROTO_ICMP: 6968 icmptype = pd->hdr.icmp.icmp_type; 6969 icmpcode = pd->hdr.icmp.icmp_code; 6970 icmpid = pd->hdr.icmp.icmp_id; 6971 icmpsum = &pd->hdr.icmp.icmp_cksum; 6972 break; 6973 #endif /* INET */ 6974 #ifdef INET6 6975 case IPPROTO_ICMPV6: 6976 icmptype = pd->hdr.icmp6.icmp6_type; 6977 icmpcode = pd->hdr.icmp6.icmp6_code; 6978 #ifdef INET 6979 icmpid = pd->hdr.icmp6.icmp6_id; 6980 #endif 6981 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 6982 break; 6983 #endif /* INET6 */ 6984 } 6985 6986 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &multi, 6987 &virtual_id, &virtual_type) == 0) { 6988 /* 6989 * ICMP query/reply message not related to a TCP/UDP packet. 6990 * Search for an ICMP state. 6991 */ 6992 ret = pf_icmp_state_lookup(&key, pd, state, m, off, pd->dir, 6993 kif, virtual_id, virtual_type, icmp_dir, &iidx, 6994 PF_ICMP_MULTI_NONE, 0); 6995 if (ret >= 0) { 6996 MPASS(*state == NULL); 6997 if (ret == PF_DROP && pd->af == AF_INET6 && 6998 icmp_dir == PF_OUT) { 6999 ret = pf_icmp_state_lookup(&key, pd, state, m, off, 7000 pd->dir, kif, virtual_id, virtual_type, 7001 icmp_dir, &iidx, multi, 0); 7002 if (ret >= 0) { 7003 MPASS(*state == NULL); 7004 return (ret); 7005 } 7006 } else 7007 return (ret); 7008 } 7009 7010 (*state)->expire = pf_get_uptime(); 7011 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 7012 7013 /* translate source/destination address, if necessary */ 7014 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7015 struct pf_state_key *nk = (*state)->key[pd->didx]; 7016 7017 switch (pd->af) { 7018 #ifdef INET 7019 case AF_INET: 7020 if (PF_ANEQ(pd->src, 7021 &nk->addr[pd->sidx], AF_INET)) 7022 pf_change_a(&saddr->v4.s_addr, 7023 pd->ip_sum, 7024 nk->addr[pd->sidx].v4.s_addr, 0); 7025 7026 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 7027 AF_INET)) 7028 pf_change_a(&daddr->v4.s_addr, 7029 pd->ip_sum, 7030 nk->addr[pd->didx].v4.s_addr, 0); 7031 7032 if (nk->port[iidx] != 7033 pd->hdr.icmp.icmp_id) { 7034 pd->hdr.icmp.icmp_cksum = 7035 pf_cksum_fixup( 7036 pd->hdr.icmp.icmp_cksum, icmpid, 7037 nk->port[iidx], 0); 7038 pd->hdr.icmp.icmp_id = 7039 nk->port[iidx]; 7040 } 7041 7042 m_copyback(m, off, ICMP_MINLEN, 7043 (caddr_t )&pd->hdr.icmp); 7044 break; 7045 #endif /* INET */ 7046 #ifdef INET6 7047 case AF_INET6: 7048 if (PF_ANEQ(pd->src, 7049 &nk->addr[pd->sidx], AF_INET6)) 7050 pf_change_a6(saddr, 7051 &pd->hdr.icmp6.icmp6_cksum, 7052 &nk->addr[pd->sidx], 0); 7053 7054 if (PF_ANEQ(pd->dst, 7055 &nk->addr[pd->didx], AF_INET6)) 7056 pf_change_a6(daddr, 7057 &pd->hdr.icmp6.icmp6_cksum, 7058 &nk->addr[pd->didx], 0); 7059 7060 m_copyback(m, off, sizeof(struct icmp6_hdr), 7061 (caddr_t )&pd->hdr.icmp6); 7062 break; 7063 #endif /* INET6 */ 7064 } 7065 } 7066 return (PF_PASS); 7067 7068 } else { 7069 /* 7070 * ICMP error message in response to a TCP/UDP packet. 7071 * Extract the inner TCP/UDP header and search for that state. 7072 */ 7073 7074 struct pf_pdesc pd2; 7075 bzero(&pd2, sizeof pd2); 7076 #ifdef INET 7077 struct ip h2; 7078 #endif /* INET */ 7079 #ifdef INET6 7080 struct ip6_hdr h2_6; 7081 int terminal = 0; 7082 #endif /* INET6 */ 7083 int ipoff2 = 0; 7084 int off2 = 0; 7085 7086 pd2.af = pd->af; 7087 pd2.dir = pd->dir; 7088 /* Payload packet is from the opposite direction. */ 7089 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0; 7090 pd2.didx = (pd->dir == PF_IN) ? 0 : 1; 7091 switch (pd->af) { 7092 #ifdef INET 7093 case AF_INET: 7094 /* offset of h2 in mbuf chain */ 7095 ipoff2 = off + ICMP_MINLEN; 7096 7097 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 7098 NULL, reason, pd2.af)) { 7099 DPFPRINTF(PF_DEBUG_MISC, 7100 ("pf: ICMP error message too short " 7101 "(ip)\n")); 7102 return (PF_DROP); 7103 } 7104 /* 7105 * ICMP error messages don't refer to non-first 7106 * fragments 7107 */ 7108 if (h2.ip_off & htons(IP_OFFMASK)) { 7109 REASON_SET(reason, PFRES_FRAG); 7110 return (PF_DROP); 7111 } 7112 7113 /* offset of protocol header that follows h2 */ 7114 off2 = ipoff2 + (h2.ip_hl << 2); 7115 7116 pd2.proto = h2.ip_p; 7117 pd2.src = (struct pf_addr *)&h2.ip_src; 7118 pd2.dst = (struct pf_addr *)&h2.ip_dst; 7119 pd2.ip_sum = &h2.ip_sum; 7120 break; 7121 #endif /* INET */ 7122 #ifdef INET6 7123 case AF_INET6: 7124 ipoff2 = off + sizeof(struct icmp6_hdr); 7125 7126 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 7127 NULL, reason, pd2.af)) { 7128 DPFPRINTF(PF_DEBUG_MISC, 7129 ("pf: ICMP error message too short " 7130 "(ip6)\n")); 7131 return (PF_DROP); 7132 } 7133 pd2.proto = h2_6.ip6_nxt; 7134 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 7135 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 7136 pd2.ip_sum = NULL; 7137 off2 = ipoff2 + sizeof(h2_6); 7138 do { 7139 switch (pd2.proto) { 7140 case IPPROTO_FRAGMENT: 7141 /* 7142 * ICMPv6 error messages for 7143 * non-first fragments 7144 */ 7145 REASON_SET(reason, PFRES_FRAG); 7146 return (PF_DROP); 7147 case IPPROTO_AH: 7148 case IPPROTO_HOPOPTS: 7149 case IPPROTO_ROUTING: 7150 case IPPROTO_DSTOPTS: { 7151 /* get next header and header length */ 7152 struct ip6_ext opt6; 7153 7154 if (!pf_pull_hdr(m, off2, &opt6, 7155 sizeof(opt6), NULL, reason, 7156 pd2.af)) { 7157 DPFPRINTF(PF_DEBUG_MISC, 7158 ("pf: ICMPv6 short opt\n")); 7159 return (PF_DROP); 7160 } 7161 if (pd2.proto == IPPROTO_AH) 7162 off2 += (opt6.ip6e_len + 2) * 4; 7163 else 7164 off2 += (opt6.ip6e_len + 1) * 8; 7165 pd2.proto = opt6.ip6e_nxt; 7166 /* goto the next header */ 7167 break; 7168 } 7169 default: 7170 terminal++; 7171 break; 7172 } 7173 } while (!terminal); 7174 break; 7175 #endif /* INET6 */ 7176 } 7177 7178 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 7179 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7180 printf("pf: BAD ICMP %d:%d outer dst: ", 7181 icmptype, icmpcode); 7182 pf_print_host(pd->src, 0, pd->af); 7183 printf(" -> "); 7184 pf_print_host(pd->dst, 0, pd->af); 7185 printf(" inner src: "); 7186 pf_print_host(pd2.src, 0, pd2.af); 7187 printf(" -> "); 7188 pf_print_host(pd2.dst, 0, pd2.af); 7189 printf("\n"); 7190 } 7191 REASON_SET(reason, PFRES_BADSTATE); 7192 return (PF_DROP); 7193 } 7194 7195 switch (pd2.proto) { 7196 case IPPROTO_TCP: { 7197 struct tcphdr th; 7198 u_int32_t seq; 7199 struct pf_state_peer *src, *dst; 7200 u_int8_t dws; 7201 int copyback = 0; 7202 7203 /* 7204 * Only the first 8 bytes of the TCP header can be 7205 * expected. Don't access any TCP header fields after 7206 * th_seq, an ackskew test is not possible. 7207 */ 7208 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 7209 pd2.af)) { 7210 DPFPRINTF(PF_DEBUG_MISC, 7211 ("pf: ICMP error message too short " 7212 "(tcp)\n")); 7213 return (PF_DROP); 7214 } 7215 7216 key.af = pd2.af; 7217 key.proto = IPPROTO_TCP; 7218 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7219 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7220 key.port[pd2.sidx] = th.th_sport; 7221 key.port[pd2.didx] = th.th_dport; 7222 7223 STATE_LOOKUP(kif, &key, *state, pd); 7224 7225 if (pd->dir == (*state)->direction) { 7226 src = &(*state)->dst; 7227 dst = &(*state)->src; 7228 } else { 7229 src = &(*state)->src; 7230 dst = &(*state)->dst; 7231 } 7232 7233 if (src->wscale && dst->wscale) 7234 dws = dst->wscale & PF_WSCALE_MASK; 7235 else 7236 dws = 0; 7237 7238 /* Demodulate sequence number */ 7239 seq = ntohl(th.th_seq) - src->seqdiff; 7240 if (src->seqdiff) { 7241 pf_change_a(&th.th_seq, icmpsum, 7242 htonl(seq), 0); 7243 copyback = 1; 7244 } 7245 7246 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 7247 (!SEQ_GEQ(src->seqhi, seq) || 7248 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 7249 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7250 printf("pf: BAD ICMP %d:%d ", 7251 icmptype, icmpcode); 7252 pf_print_host(pd->src, 0, pd->af); 7253 printf(" -> "); 7254 pf_print_host(pd->dst, 0, pd->af); 7255 printf(" state: "); 7256 pf_print_state(*state); 7257 printf(" seq=%u\n", seq); 7258 } 7259 REASON_SET(reason, PFRES_BADSTATE); 7260 return (PF_DROP); 7261 } else { 7262 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7263 printf("pf: OK ICMP %d:%d ", 7264 icmptype, icmpcode); 7265 pf_print_host(pd->src, 0, pd->af); 7266 printf(" -> "); 7267 pf_print_host(pd->dst, 0, pd->af); 7268 printf(" state: "); 7269 pf_print_state(*state); 7270 printf(" seq=%u\n", seq); 7271 } 7272 } 7273 7274 /* translate source/destination address, if necessary */ 7275 if ((*state)->key[PF_SK_WIRE] != 7276 (*state)->key[PF_SK_STACK]) { 7277 struct pf_state_key *nk = 7278 (*state)->key[pd->didx]; 7279 7280 if (PF_ANEQ(pd2.src, 7281 &nk->addr[pd2.sidx], pd2.af) || 7282 nk->port[pd2.sidx] != th.th_sport) 7283 pf_change_icmp(pd2.src, &th.th_sport, 7284 daddr, &nk->addr[pd2.sidx], 7285 nk->port[pd2.sidx], NULL, 7286 pd2.ip_sum, icmpsum, 7287 pd->ip_sum, 0, pd2.af); 7288 7289 if (PF_ANEQ(pd2.dst, 7290 &nk->addr[pd2.didx], pd2.af) || 7291 nk->port[pd2.didx] != th.th_dport) 7292 pf_change_icmp(pd2.dst, &th.th_dport, 7293 saddr, &nk->addr[pd2.didx], 7294 nk->port[pd2.didx], NULL, 7295 pd2.ip_sum, icmpsum, 7296 pd->ip_sum, 0, pd2.af); 7297 copyback = 1; 7298 } 7299 7300 if (copyback) { 7301 switch (pd2.af) { 7302 #ifdef INET 7303 case AF_INET: 7304 m_copyback(m, off, ICMP_MINLEN, 7305 (caddr_t )&pd->hdr.icmp); 7306 m_copyback(m, ipoff2, sizeof(h2), 7307 (caddr_t )&h2); 7308 break; 7309 #endif /* INET */ 7310 #ifdef INET6 7311 case AF_INET6: 7312 m_copyback(m, off, 7313 sizeof(struct icmp6_hdr), 7314 (caddr_t )&pd->hdr.icmp6); 7315 m_copyback(m, ipoff2, sizeof(h2_6), 7316 (caddr_t )&h2_6); 7317 break; 7318 #endif /* INET6 */ 7319 } 7320 m_copyback(m, off2, 8, (caddr_t)&th); 7321 } 7322 7323 return (PF_PASS); 7324 break; 7325 } 7326 case IPPROTO_UDP: { 7327 struct udphdr uh; 7328 7329 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 7330 NULL, reason, pd2.af)) { 7331 DPFPRINTF(PF_DEBUG_MISC, 7332 ("pf: ICMP error message too short " 7333 "(udp)\n")); 7334 return (PF_DROP); 7335 } 7336 7337 key.af = pd2.af; 7338 key.proto = IPPROTO_UDP; 7339 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7340 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7341 key.port[pd2.sidx] = uh.uh_sport; 7342 key.port[pd2.didx] = uh.uh_dport; 7343 7344 STATE_LOOKUP(kif, &key, *state, pd); 7345 7346 /* translate source/destination address, if necessary */ 7347 if ((*state)->key[PF_SK_WIRE] != 7348 (*state)->key[PF_SK_STACK]) { 7349 struct pf_state_key *nk = 7350 (*state)->key[pd->didx]; 7351 7352 if (PF_ANEQ(pd2.src, 7353 &nk->addr[pd2.sidx], pd2.af) || 7354 nk->port[pd2.sidx] != uh.uh_sport) 7355 pf_change_icmp(pd2.src, &uh.uh_sport, 7356 daddr, &nk->addr[pd2.sidx], 7357 nk->port[pd2.sidx], &uh.uh_sum, 7358 pd2.ip_sum, icmpsum, 7359 pd->ip_sum, 1, pd2.af); 7360 7361 if (PF_ANEQ(pd2.dst, 7362 &nk->addr[pd2.didx], pd2.af) || 7363 nk->port[pd2.didx] != uh.uh_dport) 7364 pf_change_icmp(pd2.dst, &uh.uh_dport, 7365 saddr, &nk->addr[pd2.didx], 7366 nk->port[pd2.didx], &uh.uh_sum, 7367 pd2.ip_sum, icmpsum, 7368 pd->ip_sum, 1, pd2.af); 7369 7370 switch (pd2.af) { 7371 #ifdef INET 7372 case AF_INET: 7373 m_copyback(m, off, ICMP_MINLEN, 7374 (caddr_t )&pd->hdr.icmp); 7375 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 7376 break; 7377 #endif /* INET */ 7378 #ifdef INET6 7379 case AF_INET6: 7380 m_copyback(m, off, 7381 sizeof(struct icmp6_hdr), 7382 (caddr_t )&pd->hdr.icmp6); 7383 m_copyback(m, ipoff2, sizeof(h2_6), 7384 (caddr_t )&h2_6); 7385 break; 7386 #endif /* INET6 */ 7387 } 7388 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 7389 } 7390 return (PF_PASS); 7391 break; 7392 } 7393 #ifdef INET 7394 case IPPROTO_ICMP: { 7395 struct icmp *iih = &pd2.hdr.icmp; 7396 7397 if (!pf_pull_hdr(m, off2, iih, ICMP_MINLEN, 7398 NULL, reason, pd2.af)) { 7399 DPFPRINTF(PF_DEBUG_MISC, 7400 ("pf: ICMP error message too short i" 7401 "(icmp)\n")); 7402 return (PF_DROP); 7403 } 7404 7405 icmpid = iih->icmp_id; 7406 pf_icmp_mapping(&pd2, iih->icmp_type, 7407 &icmp_dir, &multi, &virtual_id, &virtual_type); 7408 7409 ret = pf_icmp_state_lookup(&key, &pd2, state, m, off, 7410 pd2.dir, kif, virtual_id, virtual_type, 7411 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1); 7412 if (ret >= 0) { 7413 MPASS(*state == NULL); 7414 return (ret); 7415 } 7416 7417 /* translate source/destination address, if necessary */ 7418 if ((*state)->key[PF_SK_WIRE] != 7419 (*state)->key[PF_SK_STACK]) { 7420 struct pf_state_key *nk = 7421 (*state)->key[pd->didx]; 7422 7423 if (PF_ANEQ(pd2.src, 7424 &nk->addr[pd2.sidx], pd2.af) || 7425 (virtual_type == htons(ICMP_ECHO) && 7426 nk->port[iidx] != iih->icmp_id)) 7427 pf_change_icmp(pd2.src, 7428 (virtual_type == htons(ICMP_ECHO)) ? 7429 &iih->icmp_id : NULL, 7430 daddr, &nk->addr[pd2.sidx], 7431 (virtual_type == htons(ICMP_ECHO)) ? 7432 nk->port[iidx] : 0, NULL, 7433 pd2.ip_sum, icmpsum, 7434 pd->ip_sum, 0, AF_INET); 7435 7436 if (PF_ANEQ(pd2.dst, 7437 &nk->addr[pd2.didx], pd2.af)) 7438 pf_change_icmp(pd2.dst, NULL, NULL, 7439 &nk->addr[pd2.didx], 0, NULL, 7440 pd2.ip_sum, icmpsum, pd->ip_sum, 0, 7441 AF_INET); 7442 7443 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 7444 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 7445 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)iih); 7446 } 7447 return (PF_PASS); 7448 break; 7449 } 7450 #endif /* INET */ 7451 #ifdef INET6 7452 case IPPROTO_ICMPV6: { 7453 struct icmp6_hdr *iih = &pd2.hdr.icmp6; 7454 7455 if (!pf_pull_hdr(m, off2, iih, 7456 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 7457 DPFPRINTF(PF_DEBUG_MISC, 7458 ("pf: ICMP error message too short " 7459 "(icmp6)\n")); 7460 return (PF_DROP); 7461 } 7462 7463 pf_icmp_mapping(&pd2, iih->icmp6_type, 7464 &icmp_dir, &multi, &virtual_id, &virtual_type); 7465 7466 ret = pf_icmp_state_lookup(&key, &pd2, state, m, off, 7467 pd->dir, kif, virtual_id, virtual_type, 7468 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1); 7469 if (ret >= 0) { 7470 MPASS(*state == NULL); 7471 if (ret == PF_DROP && pd2.af == AF_INET6 && 7472 icmp_dir == PF_OUT) { 7473 ret = pf_icmp_state_lookup(&key, &pd2, 7474 state, m, off, pd->dir, kif, 7475 virtual_id, virtual_type, 7476 icmp_dir, &iidx, multi, 1); 7477 if (ret >= 0) { 7478 MPASS(*state == NULL); 7479 return (ret); 7480 } 7481 } else 7482 return (ret); 7483 } 7484 7485 /* translate source/destination address, if necessary */ 7486 if ((*state)->key[PF_SK_WIRE] != 7487 (*state)->key[PF_SK_STACK]) { 7488 struct pf_state_key *nk = 7489 (*state)->key[pd->didx]; 7490 7491 if (PF_ANEQ(pd2.src, 7492 &nk->addr[pd2.sidx], pd2.af) || 7493 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) && 7494 nk->port[pd2.sidx] != iih->icmp6_id)) 7495 pf_change_icmp(pd2.src, 7496 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 7497 ? &iih->icmp6_id : NULL, 7498 daddr, &nk->addr[pd2.sidx], 7499 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 7500 ? nk->port[iidx] : 0, NULL, 7501 pd2.ip_sum, icmpsum, 7502 pd->ip_sum, 0, AF_INET6); 7503 7504 if (PF_ANEQ(pd2.dst, 7505 &nk->addr[pd2.didx], pd2.af)) 7506 pf_change_icmp(pd2.dst, NULL, NULL, 7507 &nk->addr[pd2.didx], 0, NULL, 7508 pd2.ip_sum, icmpsum, 7509 pd->ip_sum, 0, AF_INET6); 7510 7511 m_copyback(m, off, sizeof(struct icmp6_hdr), 7512 (caddr_t)&pd->hdr.icmp6); 7513 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 7514 m_copyback(m, off2, sizeof(struct icmp6_hdr), 7515 (caddr_t)iih); 7516 } 7517 return (PF_PASS); 7518 break; 7519 } 7520 #endif /* INET6 */ 7521 default: { 7522 key.af = pd2.af; 7523 key.proto = pd2.proto; 7524 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7525 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7526 key.port[0] = key.port[1] = 0; 7527 7528 STATE_LOOKUP(kif, &key, *state, pd); 7529 7530 /* translate source/destination address, if necessary */ 7531 if ((*state)->key[PF_SK_WIRE] != 7532 (*state)->key[PF_SK_STACK]) { 7533 struct pf_state_key *nk = 7534 (*state)->key[pd->didx]; 7535 7536 if (PF_ANEQ(pd2.src, 7537 &nk->addr[pd2.sidx], pd2.af)) 7538 pf_change_icmp(pd2.src, NULL, daddr, 7539 &nk->addr[pd2.sidx], 0, NULL, 7540 pd2.ip_sum, icmpsum, 7541 pd->ip_sum, 0, pd2.af); 7542 7543 if (PF_ANEQ(pd2.dst, 7544 &nk->addr[pd2.didx], pd2.af)) 7545 pf_change_icmp(pd2.dst, NULL, saddr, 7546 &nk->addr[pd2.didx], 0, NULL, 7547 pd2.ip_sum, icmpsum, 7548 pd->ip_sum, 0, pd2.af); 7549 7550 switch (pd2.af) { 7551 #ifdef INET 7552 case AF_INET: 7553 m_copyback(m, off, ICMP_MINLEN, 7554 (caddr_t)&pd->hdr.icmp); 7555 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 7556 break; 7557 #endif /* INET */ 7558 #ifdef INET6 7559 case AF_INET6: 7560 m_copyback(m, off, 7561 sizeof(struct icmp6_hdr), 7562 (caddr_t )&pd->hdr.icmp6); 7563 m_copyback(m, ipoff2, sizeof(h2_6), 7564 (caddr_t )&h2_6); 7565 break; 7566 #endif /* INET6 */ 7567 } 7568 } 7569 return (PF_PASS); 7570 break; 7571 } 7572 } 7573 } 7574 } 7575 7576 static int 7577 pf_test_state_other(struct pf_kstate **state, struct pfi_kkif *kif, 7578 struct mbuf *m, struct pf_pdesc *pd) 7579 { 7580 struct pf_state_peer *src, *dst; 7581 struct pf_state_key_cmp key; 7582 uint8_t psrc, pdst; 7583 7584 bzero(&key, sizeof(key)); 7585 key.af = pd->af; 7586 key.proto = pd->proto; 7587 if (pd->dir == PF_IN) { 7588 PF_ACPY(&key.addr[0], pd->src, key.af); 7589 PF_ACPY(&key.addr[1], pd->dst, key.af); 7590 key.port[0] = key.port[1] = 0; 7591 } else { 7592 PF_ACPY(&key.addr[1], pd->src, key.af); 7593 PF_ACPY(&key.addr[0], pd->dst, key.af); 7594 key.port[1] = key.port[0] = 0; 7595 } 7596 7597 STATE_LOOKUP(kif, &key, *state, pd); 7598 7599 if (pd->dir == (*state)->direction) { 7600 src = &(*state)->src; 7601 dst = &(*state)->dst; 7602 psrc = PF_PEER_SRC; 7603 pdst = PF_PEER_DST; 7604 } else { 7605 src = &(*state)->dst; 7606 dst = &(*state)->src; 7607 psrc = PF_PEER_DST; 7608 pdst = PF_PEER_SRC; 7609 } 7610 7611 /* update states */ 7612 if (src->state < PFOTHERS_SINGLE) 7613 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 7614 if (dst->state == PFOTHERS_SINGLE) 7615 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 7616 7617 /* update expire time */ 7618 (*state)->expire = pf_get_uptime(); 7619 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 7620 (*state)->timeout = PFTM_OTHER_MULTIPLE; 7621 else 7622 (*state)->timeout = PFTM_OTHER_SINGLE; 7623 7624 /* translate source/destination address, if necessary */ 7625 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7626 struct pf_state_key *nk = (*state)->key[pd->didx]; 7627 7628 KASSERT(nk, ("%s: nk is null", __func__)); 7629 KASSERT(pd, ("%s: pd is null", __func__)); 7630 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 7631 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 7632 switch (pd->af) { 7633 #ifdef INET 7634 case AF_INET: 7635 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 7636 pf_change_a(&pd->src->v4.s_addr, 7637 pd->ip_sum, 7638 nk->addr[pd->sidx].v4.s_addr, 7639 0); 7640 7641 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 7642 pf_change_a(&pd->dst->v4.s_addr, 7643 pd->ip_sum, 7644 nk->addr[pd->didx].v4.s_addr, 7645 0); 7646 7647 break; 7648 #endif /* INET */ 7649 #ifdef INET6 7650 case AF_INET6: 7651 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 7652 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 7653 7654 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 7655 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 7656 #endif /* INET6 */ 7657 } 7658 } 7659 return (PF_PASS); 7660 } 7661 7662 /* 7663 * ipoff and off are measured from the start of the mbuf chain. 7664 * h must be at "ipoff" on the mbuf chain. 7665 */ 7666 void * 7667 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len, 7668 u_short *actionp, u_short *reasonp, sa_family_t af) 7669 { 7670 switch (af) { 7671 #ifdef INET 7672 case AF_INET: { 7673 const struct ip *h = mtod(m, struct ip *); 7674 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 7675 7676 if (fragoff) { 7677 if (fragoff >= len) 7678 ACTION_SET(actionp, PF_PASS); 7679 else { 7680 ACTION_SET(actionp, PF_DROP); 7681 REASON_SET(reasonp, PFRES_FRAG); 7682 } 7683 return (NULL); 7684 } 7685 if (m->m_pkthdr.len < off + len || 7686 ntohs(h->ip_len) < off + len) { 7687 ACTION_SET(actionp, PF_DROP); 7688 REASON_SET(reasonp, PFRES_SHORT); 7689 return (NULL); 7690 } 7691 break; 7692 } 7693 #endif /* INET */ 7694 #ifdef INET6 7695 case AF_INET6: { 7696 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 7697 7698 if (m->m_pkthdr.len < off + len || 7699 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 7700 (unsigned)(off + len)) { 7701 ACTION_SET(actionp, PF_DROP); 7702 REASON_SET(reasonp, PFRES_SHORT); 7703 return (NULL); 7704 } 7705 break; 7706 } 7707 #endif /* INET6 */ 7708 } 7709 m_copydata(m, off, len, p); 7710 return (p); 7711 } 7712 7713 int 7714 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 7715 int rtableid) 7716 { 7717 struct ifnet *ifp; 7718 7719 /* 7720 * Skip check for addresses with embedded interface scope, 7721 * as they would always match anyway. 7722 */ 7723 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 7724 return (1); 7725 7726 if (af != AF_INET && af != AF_INET6) 7727 return (0); 7728 7729 if (kif == V_pfi_all) 7730 return (1); 7731 7732 /* Skip checks for ipsec interfaces */ 7733 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 7734 return (1); 7735 7736 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 7737 7738 switch (af) { 7739 #ifdef INET6 7740 case AF_INET6: 7741 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 7742 ifp)); 7743 #endif 7744 #ifdef INET 7745 case AF_INET: 7746 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 7747 ifp)); 7748 #endif 7749 } 7750 7751 return (0); 7752 } 7753 7754 #ifdef INET 7755 static void 7756 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7757 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7758 { 7759 struct mbuf *m0, *m1, *md; 7760 struct sockaddr_in dst; 7761 struct ip *ip; 7762 struct pfi_kkif *nkif = NULL; 7763 struct ifnet *ifp = NULL; 7764 struct pf_addr naddr; 7765 struct pf_ksrc_node *sn = NULL; 7766 int error = 0; 7767 uint16_t ip_len, ip_off; 7768 uint16_t tmp; 7769 int r_rt, r_dir; 7770 7771 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 7772 7773 if (s) { 7774 r_rt = s->rt; 7775 r_dir = s->direction; 7776 } else { 7777 r_rt = r->rt; 7778 r_dir = r->direction; 7779 } 7780 7781 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7782 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7783 __func__)); 7784 7785 if ((pd->pf_mtag == NULL && 7786 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7787 pd->pf_mtag->routed++ > 3) { 7788 m0 = *m; 7789 *m = NULL; 7790 goto bad_locked; 7791 } 7792 7793 if (r_rt == PF_DUPTO) { 7794 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7795 if (s == NULL) { 7796 ifp = r->rpool.cur->kif ? 7797 r->rpool.cur->kif->pfik_ifp : NULL; 7798 } else { 7799 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7800 /* If pfsync'd */ 7801 if (ifp == NULL && r->rpool.cur != NULL) 7802 ifp = r->rpool.cur->kif ? 7803 r->rpool.cur->kif->pfik_ifp : NULL; 7804 PF_STATE_UNLOCK(s); 7805 } 7806 if (ifp == oifp) { 7807 /* When the 2nd interface is not skipped */ 7808 return; 7809 } else { 7810 m0 = *m; 7811 *m = NULL; 7812 goto bad; 7813 } 7814 } else { 7815 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 7816 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 7817 if (s) 7818 PF_STATE_UNLOCK(s); 7819 return; 7820 } 7821 } 7822 } else { 7823 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 7824 pf_dummynet(pd, s, r, m); 7825 if (s) 7826 PF_STATE_UNLOCK(s); 7827 return; 7828 } 7829 m0 = *m; 7830 } 7831 7832 ip = mtod(m0, struct ip *); 7833 7834 bzero(&dst, sizeof(dst)); 7835 dst.sin_family = AF_INET; 7836 dst.sin_len = sizeof(dst); 7837 dst.sin_addr = ip->ip_dst; 7838 7839 bzero(&naddr, sizeof(naddr)); 7840 7841 if (s == NULL) { 7842 if (TAILQ_EMPTY(&r->rpool.list)) { 7843 DPFPRINTF(PF_DEBUG_URGENT, 7844 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 7845 goto bad_locked; 7846 } 7847 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 7848 &naddr, &nkif, NULL, &sn); 7849 if (!PF_AZERO(&naddr, AF_INET)) 7850 dst.sin_addr.s_addr = naddr.v4.s_addr; 7851 ifp = nkif ? nkif->pfik_ifp : NULL; 7852 } else { 7853 struct pfi_kkif *kif; 7854 7855 if (!PF_AZERO(&s->rt_addr, AF_INET)) 7856 dst.sin_addr.s_addr = 7857 s->rt_addr.v4.s_addr; 7858 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7859 kif = s->rt_kif; 7860 /* If pfsync'd */ 7861 if (ifp == NULL && r->rpool.cur != NULL) { 7862 ifp = r->rpool.cur->kif ? 7863 r->rpool.cur->kif->pfik_ifp : NULL; 7864 kif = r->rpool.cur->kif; 7865 } 7866 if (ifp != NULL && kif != NULL && 7867 r->rule_flag & PFRULE_IFBOUND && 7868 r->rt == PF_REPLYTO && 7869 s->kif == V_pfi_all) { 7870 s->kif = kif; 7871 s->orig_kif = oifp->if_pf_kif; 7872 } 7873 7874 PF_STATE_UNLOCK(s); 7875 } 7876 7877 if (ifp == NULL) 7878 goto bad; 7879 7880 if (pd->dir == PF_IN) { 7881 if (pf_test(PF_OUT, PFIL_FWD, ifp, &m0, inp, &pd->act) != PF_PASS) 7882 goto bad; 7883 else if (m0 == NULL) 7884 goto done; 7885 if (m0->m_len < sizeof(struct ip)) { 7886 DPFPRINTF(PF_DEBUG_URGENT, 7887 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 7888 goto bad; 7889 } 7890 ip = mtod(m0, struct ip *); 7891 } 7892 7893 if (ifp->if_flags & IFF_LOOPBACK) 7894 m0->m_flags |= M_SKIP_FIREWALL; 7895 7896 ip_len = ntohs(ip->ip_len); 7897 ip_off = ntohs(ip->ip_off); 7898 7899 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 7900 m0->m_pkthdr.csum_flags |= CSUM_IP; 7901 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 7902 in_delayed_cksum(m0); 7903 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 7904 } 7905 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 7906 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2)); 7907 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 7908 } 7909 7910 if (pd->dir == PF_IN) { 7911 /* 7912 * Make sure dummynet gets the correct direction, in case it needs to 7913 * re-inject later. 7914 */ 7915 pd->dir = PF_OUT; 7916 7917 /* 7918 * The following processing is actually the rest of the inbound processing, even 7919 * though we've marked it as outbound (so we don't look through dummynet) and it 7920 * happens after the outbound processing (pf_test(PF_OUT) above). 7921 * Swap the dummynet pipe numbers, because it's going to come to the wrong 7922 * conclusion about what direction it's processing, and we can't fix it or it 7923 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 7924 * decision will pick the right pipe, and everything will mostly work as expected. 7925 */ 7926 tmp = pd->act.dnrpipe; 7927 pd->act.dnrpipe = pd->act.dnpipe; 7928 pd->act.dnpipe = tmp; 7929 } 7930 7931 /* 7932 * If small enough for interface, or the interface will take 7933 * care of the fragmentation for us, we can just send directly. 7934 */ 7935 if (ip_len <= ifp->if_mtu || 7936 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 7937 ip->ip_sum = 0; 7938 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 7939 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 7940 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 7941 } 7942 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 7943 7944 md = m0; 7945 error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 7946 if (md != NULL) 7947 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL); 7948 goto done; 7949 } 7950 7951 /* Balk when DF bit is set or the interface didn't support TSO. */ 7952 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 7953 error = EMSGSIZE; 7954 KMOD_IPSTAT_INC(ips_cantfrag); 7955 if (r_rt != PF_DUPTO) { 7956 if (s && pd->nat_rule != NULL) 7957 PACKET_UNDO_NAT(m0, pd, 7958 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 7959 s); 7960 7961 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 7962 ifp->if_mtu); 7963 goto done; 7964 } else 7965 goto bad; 7966 } 7967 7968 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 7969 if (error) 7970 goto bad; 7971 7972 for (; m0; m0 = m1) { 7973 m1 = m0->m_nextpkt; 7974 m0->m_nextpkt = NULL; 7975 if (error == 0) { 7976 m_clrprotoflags(m0); 7977 md = m0; 7978 pd->pf_mtag = pf_find_mtag(md); 7979 error = pf_dummynet_route(pd, s, r, ifp, 7980 sintosa(&dst), &md); 7981 if (md != NULL) 7982 error = (*ifp->if_output)(ifp, md, 7983 sintosa(&dst), NULL); 7984 } else 7985 m_freem(m0); 7986 } 7987 7988 if (error == 0) 7989 KMOD_IPSTAT_INC(ips_fragmented); 7990 7991 done: 7992 if (r_rt != PF_DUPTO) 7993 *m = NULL; 7994 return; 7995 7996 bad_locked: 7997 if (s) 7998 PF_STATE_UNLOCK(s); 7999 bad: 8000 m_freem(m0); 8001 goto done; 8002 } 8003 #endif /* INET */ 8004 8005 #ifdef INET6 8006 static void 8007 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 8008 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 8009 { 8010 struct mbuf *m0, *md; 8011 struct sockaddr_in6 dst; 8012 struct ip6_hdr *ip6; 8013 struct pfi_kkif *nkif = NULL; 8014 struct ifnet *ifp = NULL; 8015 struct pf_addr naddr; 8016 struct pf_ksrc_node *sn = NULL; 8017 int r_rt, r_dir; 8018 8019 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 8020 8021 if (s) { 8022 r_rt = s->rt; 8023 r_dir = s->direction; 8024 } else { 8025 r_rt = r->rt; 8026 r_dir = r->direction; 8027 } 8028 8029 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 8030 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 8031 __func__)); 8032 8033 if ((pd->pf_mtag == NULL && 8034 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 8035 pd->pf_mtag->routed++ > 3) { 8036 m0 = *m; 8037 *m = NULL; 8038 goto bad_locked; 8039 } 8040 8041 if (r_rt == PF_DUPTO) { 8042 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 8043 if (s == NULL) { 8044 ifp = r->rpool.cur->kif ? 8045 r->rpool.cur->kif->pfik_ifp : NULL; 8046 } else { 8047 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 8048 /* If pfsync'd */ 8049 if (ifp == NULL && r->rpool.cur != NULL) 8050 ifp = r->rpool.cur->kif ? 8051 r->rpool.cur->kif->pfik_ifp : NULL; 8052 PF_STATE_UNLOCK(s); 8053 } 8054 if (ifp == oifp) { 8055 /* When the 2nd interface is not skipped */ 8056 return; 8057 } else { 8058 m0 = *m; 8059 *m = NULL; 8060 goto bad; 8061 } 8062 } else { 8063 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 8064 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 8065 if (s) 8066 PF_STATE_UNLOCK(s); 8067 return; 8068 } 8069 } 8070 } else { 8071 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 8072 pf_dummynet(pd, s, r, m); 8073 if (s) 8074 PF_STATE_UNLOCK(s); 8075 return; 8076 } 8077 m0 = *m; 8078 } 8079 8080 ip6 = mtod(m0, struct ip6_hdr *); 8081 8082 bzero(&dst, sizeof(dst)); 8083 dst.sin6_family = AF_INET6; 8084 dst.sin6_len = sizeof(dst); 8085 dst.sin6_addr = ip6->ip6_dst; 8086 8087 bzero(&naddr, sizeof(naddr)); 8088 8089 if (s == NULL) { 8090 if (TAILQ_EMPTY(&r->rpool.list)) { 8091 DPFPRINTF(PF_DEBUG_URGENT, 8092 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 8093 goto bad_locked; 8094 } 8095 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 8096 &naddr, &nkif, NULL, &sn); 8097 if (!PF_AZERO(&naddr, AF_INET6)) 8098 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 8099 &naddr, AF_INET6); 8100 ifp = nkif ? nkif->pfik_ifp : NULL; 8101 } else { 8102 struct pfi_kkif *kif; 8103 8104 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 8105 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 8106 &s->rt_addr, AF_INET6); 8107 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 8108 kif = s->rt_kif; 8109 /* If pfsync'd */ 8110 if (ifp == NULL && r->rpool.cur != NULL) { 8111 ifp = r->rpool.cur->kif ? 8112 r->rpool.cur->kif->pfik_ifp : NULL; 8113 kif = r->rpool.cur->kif; 8114 } 8115 if (ifp != NULL && kif != NULL && 8116 r->rule_flag & PFRULE_IFBOUND && 8117 r->rt == PF_REPLYTO && 8118 s->kif == V_pfi_all) { 8119 s->kif = kif; 8120 s->orig_kif = oifp->if_pf_kif; 8121 } 8122 } 8123 8124 if (s) 8125 PF_STATE_UNLOCK(s); 8126 8127 if (ifp == NULL) 8128 goto bad; 8129 8130 if (pd->dir == PF_IN) { 8131 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp, &pd->act) != PF_PASS) 8132 goto bad; 8133 else if (m0 == NULL) 8134 goto done; 8135 if (m0->m_len < sizeof(struct ip6_hdr)) { 8136 DPFPRINTF(PF_DEBUG_URGENT, 8137 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 8138 __func__)); 8139 goto bad; 8140 } 8141 ip6 = mtod(m0, struct ip6_hdr *); 8142 } 8143 8144 if (ifp->if_flags & IFF_LOOPBACK) 8145 m0->m_flags |= M_SKIP_FIREWALL; 8146 8147 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 8148 ~ifp->if_hwassist) { 8149 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 8150 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 8151 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 8152 } 8153 8154 /* 8155 * If the packet is too large for the outgoing interface, 8156 * send back an icmp6 error. 8157 */ 8158 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 8159 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 8160 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 8161 md = m0; 8162 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 8163 if (md != NULL) 8164 nd6_output_ifp(ifp, ifp, md, &dst, NULL); 8165 } 8166 else { 8167 in6_ifstat_inc(ifp, ifs6_in_toobig); 8168 if (r_rt != PF_DUPTO) { 8169 if (s && pd->nat_rule != NULL) 8170 PACKET_UNDO_NAT(m0, pd, 8171 ((caddr_t)ip6 - m0->m_data) + 8172 sizeof(struct ip6_hdr), s); 8173 8174 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 8175 } else 8176 goto bad; 8177 } 8178 8179 done: 8180 if (r_rt != PF_DUPTO) 8181 *m = NULL; 8182 return; 8183 8184 bad_locked: 8185 if (s) 8186 PF_STATE_UNLOCK(s); 8187 bad: 8188 m_freem(m0); 8189 goto done; 8190 } 8191 #endif /* INET6 */ 8192 8193 /* 8194 * FreeBSD supports cksum offloads for the following drivers. 8195 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 8196 * 8197 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 8198 * network driver performed cksum including pseudo header, need to verify 8199 * csum_data 8200 * CSUM_DATA_VALID : 8201 * network driver performed cksum, needs to additional pseudo header 8202 * cksum computation with partial csum_data(i.e. lack of H/W support for 8203 * pseudo header, for instance sk(4) and possibly gem(4)) 8204 * 8205 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 8206 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 8207 * TCP/UDP layer. 8208 * Also, set csum_data to 0xffff to force cksum validation. 8209 */ 8210 static int 8211 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 8212 { 8213 u_int16_t sum = 0; 8214 int hw_assist = 0; 8215 struct ip *ip; 8216 8217 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 8218 return (1); 8219 if (m->m_pkthdr.len < off + len) 8220 return (1); 8221 8222 switch (p) { 8223 case IPPROTO_TCP: 8224 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 8225 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 8226 sum = m->m_pkthdr.csum_data; 8227 } else { 8228 ip = mtod(m, struct ip *); 8229 sum = in_pseudo(ip->ip_src.s_addr, 8230 ip->ip_dst.s_addr, htonl((u_short)len + 8231 m->m_pkthdr.csum_data + IPPROTO_TCP)); 8232 } 8233 sum ^= 0xffff; 8234 ++hw_assist; 8235 } 8236 break; 8237 case IPPROTO_UDP: 8238 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 8239 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 8240 sum = m->m_pkthdr.csum_data; 8241 } else { 8242 ip = mtod(m, struct ip *); 8243 sum = in_pseudo(ip->ip_src.s_addr, 8244 ip->ip_dst.s_addr, htonl((u_short)len + 8245 m->m_pkthdr.csum_data + IPPROTO_UDP)); 8246 } 8247 sum ^= 0xffff; 8248 ++hw_assist; 8249 } 8250 break; 8251 case IPPROTO_ICMP: 8252 #ifdef INET6 8253 case IPPROTO_ICMPV6: 8254 #endif /* INET6 */ 8255 break; 8256 default: 8257 return (1); 8258 } 8259 8260 if (!hw_assist) { 8261 switch (af) { 8262 case AF_INET: 8263 if (p == IPPROTO_ICMP) { 8264 if (m->m_len < off) 8265 return (1); 8266 m->m_data += off; 8267 m->m_len -= off; 8268 sum = in_cksum(m, len); 8269 m->m_data -= off; 8270 m->m_len += off; 8271 } else { 8272 if (m->m_len < sizeof(struct ip)) 8273 return (1); 8274 sum = in4_cksum(m, p, off, len); 8275 } 8276 break; 8277 #ifdef INET6 8278 case AF_INET6: 8279 if (m->m_len < sizeof(struct ip6_hdr)) 8280 return (1); 8281 sum = in6_cksum(m, p, off, len); 8282 break; 8283 #endif /* INET6 */ 8284 default: 8285 return (1); 8286 } 8287 } 8288 if (sum) { 8289 switch (p) { 8290 case IPPROTO_TCP: 8291 { 8292 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 8293 break; 8294 } 8295 case IPPROTO_UDP: 8296 { 8297 KMOD_UDPSTAT_INC(udps_badsum); 8298 break; 8299 } 8300 #ifdef INET 8301 case IPPROTO_ICMP: 8302 { 8303 KMOD_ICMPSTAT_INC(icps_checksum); 8304 break; 8305 } 8306 #endif 8307 #ifdef INET6 8308 case IPPROTO_ICMPV6: 8309 { 8310 KMOD_ICMP6STAT_INC(icp6s_checksum); 8311 break; 8312 } 8313 #endif /* INET6 */ 8314 } 8315 return (1); 8316 } else { 8317 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 8318 m->m_pkthdr.csum_flags |= 8319 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 8320 m->m_pkthdr.csum_data = 0xffff; 8321 } 8322 } 8323 return (0); 8324 } 8325 8326 static bool 8327 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r, 8328 const struct pf_kstate *s, struct ip_fw_args *dnflow) 8329 { 8330 int dndir = r->direction; 8331 8332 if (s && dndir == PF_INOUT) { 8333 dndir = s->direction; 8334 } else if (dndir == PF_INOUT) { 8335 /* Assume primary direction. Happens when we've set dnpipe in 8336 * the ethernet level code. */ 8337 dndir = pd->dir; 8338 } 8339 8340 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED) 8341 return (false); 8342 8343 memset(dnflow, 0, sizeof(*dnflow)); 8344 8345 if (pd->dport != NULL) 8346 dnflow->f_id.dst_port = ntohs(*pd->dport); 8347 if (pd->sport != NULL) 8348 dnflow->f_id.src_port = ntohs(*pd->sport); 8349 8350 if (pd->dir == PF_IN) 8351 dnflow->flags |= IPFW_ARGS_IN; 8352 else 8353 dnflow->flags |= IPFW_ARGS_OUT; 8354 8355 if (pd->dir != dndir && pd->act.dnrpipe) { 8356 dnflow->rule.info = pd->act.dnrpipe; 8357 } 8358 else if (pd->dir == dndir && pd->act.dnpipe) { 8359 dnflow->rule.info = pd->act.dnpipe; 8360 } 8361 else { 8362 return (false); 8363 } 8364 8365 dnflow->rule.info |= IPFW_IS_DUMMYNET; 8366 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 8367 dnflow->rule.info |= IPFW_IS_PIPE; 8368 8369 dnflow->f_id.proto = pd->proto; 8370 dnflow->f_id.extra = dnflow->rule.info; 8371 switch (pd->af) { 8372 case AF_INET: 8373 dnflow->f_id.addr_type = 4; 8374 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 8375 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 8376 break; 8377 case AF_INET6: 8378 dnflow->flags |= IPFW_ARGS_IP6; 8379 dnflow->f_id.addr_type = 6; 8380 dnflow->f_id.src_ip6 = pd->src->v6; 8381 dnflow->f_id.dst_ip6 = pd->dst->v6; 8382 break; 8383 default: 8384 panic("Invalid AF"); 8385 break; 8386 } 8387 8388 return (true); 8389 } 8390 8391 int 8392 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 8393 struct inpcb *inp) 8394 { 8395 struct pfi_kkif *kif; 8396 struct mbuf *m = *m0; 8397 8398 M_ASSERTPKTHDR(m); 8399 MPASS(ifp->if_vnet == curvnet); 8400 NET_EPOCH_ASSERT(); 8401 8402 if (!V_pf_status.running) 8403 return (PF_PASS); 8404 8405 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8406 8407 if (kif == NULL) { 8408 DPFPRINTF(PF_DEBUG_URGENT, 8409 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname)); 8410 return (PF_DROP); 8411 } 8412 if (kif->pfik_flags & PFI_IFLAG_SKIP) 8413 return (PF_PASS); 8414 8415 if (m->m_flags & M_SKIP_FIREWALL) 8416 return (PF_PASS); 8417 8418 if (__predict_false(! M_WRITABLE(*m0))) { 8419 m = *m0 = m_unshare(*m0, M_NOWAIT); 8420 if (*m0 == NULL) 8421 return (PF_DROP); 8422 } 8423 8424 /* Stateless! */ 8425 return (pf_test_eth_rule(dir, kif, m0)); 8426 } 8427 8428 static __inline void 8429 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag) 8430 { 8431 struct m_tag *mtag; 8432 8433 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 8434 8435 /* dummynet adds this tag, but pf does not need it, 8436 * and keeping it creates unexpected behavior, 8437 * e.g. in case of divert(4) usage right after dummynet. */ 8438 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 8439 if (mtag != NULL) 8440 m_tag_delete(m, mtag); 8441 } 8442 8443 static int 8444 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s, 8445 struct pf_krule *r, struct mbuf **m0) 8446 { 8447 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0)); 8448 } 8449 8450 static int 8451 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s, 8452 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa, 8453 struct mbuf **m0) 8454 { 8455 NET_EPOCH_ASSERT(); 8456 8457 if (pd->act.dnpipe || pd->act.dnrpipe) { 8458 struct ip_fw_args dnflow; 8459 if (ip_dn_io_ptr == NULL) { 8460 m_freem(*m0); 8461 *m0 = NULL; 8462 return (ENOMEM); 8463 } 8464 8465 if (pd->pf_mtag == NULL && 8466 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 8467 m_freem(*m0); 8468 *m0 = NULL; 8469 return (ENOMEM); 8470 } 8471 8472 if (ifp != NULL) { 8473 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO; 8474 8475 pd->pf_mtag->if_index = ifp->if_index; 8476 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 8477 8478 MPASS(sa != NULL); 8479 8480 if (pd->af == AF_INET) 8481 memcpy(&pd->pf_mtag->dst, sa, 8482 sizeof(struct sockaddr_in)); 8483 else 8484 memcpy(&pd->pf_mtag->dst, sa, 8485 sizeof(struct sockaddr_in6)); 8486 } 8487 8488 if (s != NULL && s->nat_rule.ptr != NULL && 8489 s->nat_rule.ptr->action == PF_RDR && 8490 ( 8491 #ifdef INET 8492 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) || 8493 #endif 8494 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) { 8495 /* 8496 * If we're redirecting to loopback mark this packet 8497 * as being local. Otherwise it might get dropped 8498 * if dummynet re-injects. 8499 */ 8500 (*m0)->m_pkthdr.rcvif = V_loif; 8501 } 8502 8503 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) { 8504 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 8505 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED; 8506 ip_dn_io_ptr(m0, &dnflow); 8507 if (*m0 != NULL) { 8508 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 8509 pf_dummynet_flag_remove(*m0, pd->pf_mtag); 8510 } 8511 } 8512 } 8513 8514 return (0); 8515 } 8516 8517 #ifdef INET 8518 int 8519 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 8520 struct inpcb *inp, struct pf_rule_actions *default_actions) 8521 { 8522 struct pfi_kkif *kif; 8523 u_short action, reason = 0; 8524 struct mbuf *m = *m0; 8525 struct ip *h = NULL; 8526 struct m_tag *mtag; 8527 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 8528 struct pf_kstate *s = NULL; 8529 struct pf_kruleset *ruleset = NULL; 8530 struct pf_pdesc pd; 8531 int off, dirndx, use_2nd_queue = 0; 8532 uint16_t tag; 8533 uint8_t rt; 8534 8535 PF_RULES_RLOCK_TRACKER; 8536 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 8537 M_ASSERTPKTHDR(m); 8538 8539 if (!V_pf_status.running) 8540 return (PF_PASS); 8541 8542 PF_RULES_RLOCK(); 8543 8544 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8545 8546 if (__predict_false(kif == NULL)) { 8547 DPFPRINTF(PF_DEBUG_URGENT, 8548 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 8549 PF_RULES_RUNLOCK(); 8550 return (PF_DROP); 8551 } 8552 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 8553 PF_RULES_RUNLOCK(); 8554 return (PF_PASS); 8555 } 8556 8557 if (m->m_flags & M_SKIP_FIREWALL) { 8558 PF_RULES_RUNLOCK(); 8559 return (PF_PASS); 8560 } 8561 8562 if (__predict_false(! M_WRITABLE(*m0))) { 8563 m = *m0 = m_unshare(*m0, M_NOWAIT); 8564 if (*m0 == NULL) 8565 return (PF_DROP); 8566 } 8567 8568 memset(&pd, 0, sizeof(pd)); 8569 TAILQ_INIT(&pd.sctp_multihome_jobs); 8570 if (default_actions != NULL) 8571 memcpy(&pd.act, default_actions, sizeof(pd.act)); 8572 pd.pf_mtag = pf_find_mtag(m); 8573 8574 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 8575 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 8576 8577 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 8578 pd.pf_mtag->if_idxgen); 8579 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 8580 PF_RULES_RUNLOCK(); 8581 m_freem(*m0); 8582 *m0 = NULL; 8583 return (PF_PASS); 8584 } 8585 PF_RULES_RUNLOCK(); 8586 (ifp->if_output)(ifp, m, sintosa(&pd.pf_mtag->dst), NULL); 8587 *m0 = NULL; 8588 return (PF_PASS); 8589 } 8590 8591 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 8592 pd.act.dnpipe = pd.pf_mtag->dnpipe; 8593 pd.act.flags = pd.pf_mtag->dnflags; 8594 } 8595 8596 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 8597 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 8598 /* Dummynet re-injects packets after they've 8599 * completed their delay. We've already 8600 * processed them, so pass unconditionally. */ 8601 8602 /* But only once. We may see the packet multiple times (e.g. 8603 * PFIL_IN/PFIL_OUT). */ 8604 pf_dummynet_flag_remove(m, pd.pf_mtag); 8605 PF_RULES_RUNLOCK(); 8606 8607 return (PF_PASS); 8608 } 8609 8610 pd.sport = pd.dport = NULL; 8611 pd.proto_sum = NULL; 8612 pd.dir = dir; 8613 pd.sidx = (dir == PF_IN) ? 0 : 1; 8614 pd.didx = (dir == PF_IN) ? 1 : 0; 8615 pd.af = AF_INET; 8616 pd.act.rtableid = -1; 8617 8618 if (__predict_false(m->m_len < sizeof(struct ip)) && 8619 (m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) { 8620 DPFPRINTF(PF_DEBUG_URGENT, 8621 ("pf_test: m_len < sizeof(struct ip), pullup failed\n")); 8622 PF_RULES_RUNLOCK(); 8623 return (PF_DROP); 8624 } 8625 h = mtod(m, struct ip *); 8626 off = h->ip_hl << 2; 8627 8628 if (__predict_false(ip_divert_ptr != NULL) && 8629 ((mtag = m_tag_locate(m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) { 8630 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1); 8631 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) || 8632 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) { 8633 if (pd.pf_mtag == NULL && 8634 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 8635 action = PF_DROP; 8636 goto done; 8637 } 8638 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED; 8639 } 8640 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) { 8641 m->m_flags |= M_FASTFWD_OURS; 8642 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 8643 } 8644 m_tag_delete(m, mtag); 8645 8646 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 8647 if (mtag != NULL) 8648 m_tag_delete(m, mtag); 8649 } else if (pf_normalize_ip(m0, kif, &reason, &pd) != PF_PASS) { 8650 /* We do IP header normalization and packet reassembly here */ 8651 action = PF_DROP; 8652 goto done; 8653 } 8654 m = *m0; /* pf_normalize messes with m0 */ 8655 h = mtod(m, struct ip *); 8656 8657 off = h->ip_hl << 2; 8658 if (off < (int)sizeof(struct ip)) { 8659 action = PF_DROP; 8660 REASON_SET(&reason, PFRES_SHORT); 8661 pd.act.log = PF_LOG_FORCE; 8662 goto done; 8663 } 8664 8665 pd.src = (struct pf_addr *)&h->ip_src; 8666 pd.dst = (struct pf_addr *)&h->ip_dst; 8667 pd.ip_sum = &h->ip_sum; 8668 pd.proto = h->ip_p; 8669 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 8670 pd.tot_len = ntohs(h->ip_len); 8671 8672 /* handle fragments that didn't get reassembled by normalization */ 8673 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 8674 action = pf_test_fragment(&r, kif, m, h, &pd, &a, &ruleset); 8675 goto done; 8676 } 8677 8678 switch (h->ip_p) { 8679 case IPPROTO_TCP: { 8680 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 8681 &action, &reason, AF_INET)) { 8682 if (action != PF_PASS) 8683 pd.act.log = PF_LOG_FORCE; 8684 goto done; 8685 } 8686 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 8687 8688 pd.sport = &pd.hdr.tcp.th_sport; 8689 pd.dport = &pd.hdr.tcp.th_dport; 8690 8691 /* Respond to SYN with a syncookie. */ 8692 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 8693 pd.dir == PF_IN && pf_synflood_check(&pd)) { 8694 pf_syncookie_send(m, off, &pd); 8695 action = PF_DROP; 8696 break; 8697 } 8698 8699 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 8700 use_2nd_queue = 1; 8701 action = pf_normalize_tcp(kif, m, 0, off, h, &pd); 8702 if (action == PF_DROP) 8703 goto done; 8704 action = pf_test_state_tcp(&s, kif, m, off, h, &pd, &reason); 8705 if (action == PF_PASS) { 8706 if (V_pfsync_update_state_ptr != NULL) 8707 V_pfsync_update_state_ptr(s); 8708 r = s->rule.ptr; 8709 a = s->anchor.ptr; 8710 } else if (s == NULL) { 8711 /* Validate remote SYN|ACK, re-create original SYN if 8712 * valid. */ 8713 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 8714 TH_ACK && pf_syncookie_validate(&pd) && 8715 pd.dir == PF_IN) { 8716 struct mbuf *msyn; 8717 8718 msyn = pf_syncookie_recreate_syn(h->ip_ttl, off, 8719 &pd); 8720 if (msyn == NULL) { 8721 action = PF_DROP; 8722 break; 8723 } 8724 8725 action = pf_test(dir, pflags, ifp, &msyn, inp, 8726 &pd.act); 8727 m_freem(msyn); 8728 if (action != PF_PASS) 8729 break; 8730 8731 action = pf_test_state_tcp(&s, kif, m, off, h, 8732 &pd, &reason); 8733 if (action != PF_PASS || s == NULL) { 8734 action = PF_DROP; 8735 break; 8736 } 8737 8738 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 8739 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 8740 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 8741 action = pf_synproxy(&pd, &s, &reason); 8742 break; 8743 } else { 8744 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8745 &a, &ruleset, inp); 8746 } 8747 } 8748 break; 8749 } 8750 8751 case IPPROTO_UDP: { 8752 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 8753 &action, &reason, AF_INET)) { 8754 if (action != PF_PASS) 8755 pd.act.log = PF_LOG_FORCE; 8756 goto done; 8757 } 8758 pd.sport = &pd.hdr.udp.uh_sport; 8759 pd.dport = &pd.hdr.udp.uh_dport; 8760 if (pd.hdr.udp.uh_dport == 0 || 8761 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 8762 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 8763 action = PF_DROP; 8764 REASON_SET(&reason, PFRES_SHORT); 8765 goto done; 8766 } 8767 action = pf_test_state_udp(&s, kif, m, off, h, &pd); 8768 if (action == PF_PASS) { 8769 if (V_pfsync_update_state_ptr != NULL) 8770 V_pfsync_update_state_ptr(s); 8771 r = s->rule.ptr; 8772 a = s->anchor.ptr; 8773 } else if (s == NULL) 8774 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8775 &a, &ruleset, inp); 8776 break; 8777 } 8778 8779 case IPPROTO_SCTP: { 8780 if (!pf_pull_hdr(m, off, &pd.hdr.sctp, sizeof(pd.hdr.sctp), 8781 &action, &reason, AF_INET)) { 8782 if (action != PF_PASS) 8783 pd.act.log |= PF_LOG_FORCE; 8784 goto done; 8785 } 8786 pd.p_len = pd.tot_len - off; 8787 8788 pd.sport = &pd.hdr.sctp.src_port; 8789 pd.dport = &pd.hdr.sctp.dest_port; 8790 if (pd.hdr.sctp.src_port == 0 || pd.hdr.sctp.dest_port == 0) { 8791 action = PF_DROP; 8792 REASON_SET(&reason, PFRES_SHORT); 8793 goto done; 8794 } 8795 action = pf_normalize_sctp(dir, kif, m, 0, off, h, &pd); 8796 if (action == PF_DROP) 8797 goto done; 8798 action = pf_test_state_sctp(&s, kif, m, off, h, &pd, 8799 &reason); 8800 if (action == PF_PASS) { 8801 if (V_pfsync_update_state_ptr != NULL) 8802 V_pfsync_update_state_ptr(s); 8803 r = s->rule.ptr; 8804 a = s->anchor.ptr; 8805 } else if (s == NULL) { 8806 action = pf_test_rule(&r, &s, kif, m, off, 8807 &pd, &a, &ruleset, inp); 8808 } 8809 break; 8810 } 8811 8812 case IPPROTO_ICMP: { 8813 if (!pf_pull_hdr(m, off, &pd.hdr.icmp, ICMP_MINLEN, 8814 &action, &reason, AF_INET)) { 8815 if (action != PF_PASS) 8816 pd.act.log = PF_LOG_FORCE; 8817 goto done; 8818 } 8819 action = pf_test_state_icmp(&s, kif, m, off, h, &pd, &reason); 8820 if (action == PF_PASS) { 8821 if (V_pfsync_update_state_ptr != NULL) 8822 V_pfsync_update_state_ptr(s); 8823 r = s->rule.ptr; 8824 a = s->anchor.ptr; 8825 } else if (s == NULL) 8826 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8827 &a, &ruleset, inp); 8828 break; 8829 } 8830 8831 #ifdef INET6 8832 case IPPROTO_ICMPV6: { 8833 action = PF_DROP; 8834 DPFPRINTF(PF_DEBUG_MISC, 8835 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 8836 goto done; 8837 } 8838 #endif 8839 8840 default: 8841 action = pf_test_state_other(&s, kif, m, &pd); 8842 if (action == PF_PASS) { 8843 if (V_pfsync_update_state_ptr != NULL) 8844 V_pfsync_update_state_ptr(s); 8845 r = s->rule.ptr; 8846 a = s->anchor.ptr; 8847 } else if (s == NULL) 8848 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8849 &a, &ruleset, inp); 8850 break; 8851 } 8852 8853 done: 8854 PF_RULES_RUNLOCK(); 8855 if (action == PF_PASS && h->ip_hl > 5 && 8856 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 8857 action = PF_DROP; 8858 REASON_SET(&reason, PFRES_IPOPTIONS); 8859 pd.act.log = PF_LOG_FORCE; 8860 DPFPRINTF(PF_DEBUG_MISC, 8861 ("pf: dropping packet with ip options\n")); 8862 } 8863 8864 if (s) { 8865 uint8_t log = pd.act.log; 8866 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 8867 pd.act.log |= log; 8868 tag = s->tag; 8869 rt = s->rt; 8870 } else { 8871 tag = r->tag; 8872 rt = r->rt; 8873 } 8874 8875 if (tag > 0 && pf_tag_packet(m, &pd, tag)) { 8876 action = PF_DROP; 8877 REASON_SET(&reason, PFRES_MEMORY); 8878 } 8879 8880 pf_scrub_ip(&m, &pd); 8881 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 8882 pf_normalize_mss(m, off, &pd); 8883 8884 if (pd.act.rtableid >= 0) 8885 M_SETFIB(m, pd.act.rtableid); 8886 8887 if (pd.act.flags & PFSTATE_SETPRIO) { 8888 if (pd.tos & IPTOS_LOWDELAY) 8889 use_2nd_queue = 1; 8890 if (vlan_set_pcp(m, pd.act.set_prio[use_2nd_queue])) { 8891 action = PF_DROP; 8892 REASON_SET(&reason, PFRES_MEMORY); 8893 pd.act.log = PF_LOG_FORCE; 8894 DPFPRINTF(PF_DEBUG_MISC, 8895 ("pf: failed to allocate 802.1q mtag\n")); 8896 } 8897 } 8898 8899 #ifdef ALTQ 8900 if (action == PF_PASS && pd.act.qid) { 8901 if (pd.pf_mtag == NULL && 8902 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 8903 action = PF_DROP; 8904 REASON_SET(&reason, PFRES_MEMORY); 8905 } else { 8906 if (s != NULL) 8907 pd.pf_mtag->qid_hash = pf_state_hash(s); 8908 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY)) 8909 pd.pf_mtag->qid = pd.act.pqid; 8910 else 8911 pd.pf_mtag->qid = pd.act.qid; 8912 /* Add hints for ecn. */ 8913 pd.pf_mtag->hdr = h; 8914 } 8915 } 8916 #endif /* ALTQ */ 8917 8918 /* 8919 * connections redirected to loopback should not match sockets 8920 * bound specifically to loopback due to security implications, 8921 * see tcp_input() and in_pcblookup_listen(). 8922 */ 8923 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 8924 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 8925 (s->nat_rule.ptr->action == PF_RDR || 8926 s->nat_rule.ptr->action == PF_BINAT) && 8927 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 8928 m->m_flags |= M_SKIP_FIREWALL; 8929 8930 if (__predict_false(ip_divert_ptr != NULL) && action == PF_PASS && 8931 r->divert.port && !PACKET_LOOPED(&pd)) { 8932 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0, 8933 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO); 8934 if (mtag != NULL) { 8935 ((struct pf_divert_mtag *)(mtag+1))->port = 8936 ntohs(r->divert.port); 8937 ((struct pf_divert_mtag *)(mtag+1))->idir = 8938 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN : 8939 PF_DIVERT_MTAG_DIR_OUT; 8940 8941 if (s) 8942 PF_STATE_UNLOCK(s); 8943 8944 m_tag_prepend(m, mtag); 8945 if (m->m_flags & M_FASTFWD_OURS) { 8946 if (pd.pf_mtag == NULL && 8947 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 8948 action = PF_DROP; 8949 REASON_SET(&reason, PFRES_MEMORY); 8950 pd.act.log = PF_LOG_FORCE; 8951 DPFPRINTF(PF_DEBUG_MISC, 8952 ("pf: failed to allocate tag\n")); 8953 } else { 8954 pd.pf_mtag->flags |= 8955 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 8956 m->m_flags &= ~M_FASTFWD_OURS; 8957 } 8958 } 8959 ip_divert_ptr(*m0, dir == PF_IN); 8960 *m0 = NULL; 8961 8962 return (action); 8963 } else { 8964 /* XXX: ipfw has the same behaviour! */ 8965 action = PF_DROP; 8966 REASON_SET(&reason, PFRES_MEMORY); 8967 pd.act.log = PF_LOG_FORCE; 8968 DPFPRINTF(PF_DEBUG_MISC, 8969 ("pf: failed to allocate divert tag\n")); 8970 } 8971 } 8972 /* this flag will need revising if the pkt is forwarded */ 8973 if (pd.pf_mtag) 8974 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED; 8975 8976 if (pd.act.log) { 8977 struct pf_krule *lr; 8978 struct pf_krule_item *ri; 8979 8980 if (s != NULL && s->nat_rule.ptr != NULL && 8981 s->nat_rule.ptr->log & PF_LOG_ALL) 8982 lr = s->nat_rule.ptr; 8983 else 8984 lr = r; 8985 8986 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 8987 PFLOG_PACKET(kif, m, AF_INET, action, reason, lr, a, 8988 ruleset, &pd, (s == NULL)); 8989 if (s) { 8990 SLIST_FOREACH(ri, &s->match_rules, entry) 8991 if (ri->r->log & PF_LOG_ALL) 8992 PFLOG_PACKET(kif, m, AF_INET, action, 8993 reason, ri->r, a, ruleset, &pd, 0); 8994 } 8995 } 8996 8997 pf_counter_u64_critical_enter(); 8998 pf_counter_u64_add_protected(&kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], 8999 pd.tot_len); 9000 pf_counter_u64_add_protected(&kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 9001 1); 9002 9003 if (action == PF_PASS || r->action == PF_DROP) { 9004 dirndx = (dir == PF_OUT); 9005 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 9006 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 9007 pf_update_timestamp(r); 9008 9009 if (a != NULL) { 9010 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 9011 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 9012 } 9013 if (s != NULL) { 9014 struct pf_krule_item *ri; 9015 9016 if (s->nat_rule.ptr != NULL) { 9017 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 9018 1); 9019 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 9020 pd.tot_len); 9021 } 9022 if (s->src_node != NULL) { 9023 counter_u64_add(s->src_node->packets[dirndx], 9024 1); 9025 counter_u64_add(s->src_node->bytes[dirndx], 9026 pd.tot_len); 9027 } 9028 if (s->nat_src_node != NULL) { 9029 counter_u64_add(s->nat_src_node->packets[dirndx], 9030 1); 9031 counter_u64_add(s->nat_src_node->bytes[dirndx], 9032 pd.tot_len); 9033 } 9034 dirndx = (dir == s->direction) ? 0 : 1; 9035 s->packets[dirndx]++; 9036 s->bytes[dirndx] += pd.tot_len; 9037 SLIST_FOREACH(ri, &s->match_rules, entry) { 9038 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 9039 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd.tot_len); 9040 } 9041 } 9042 tr = r; 9043 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 9044 if (nr != NULL && r == &V_pf_default_rule) 9045 tr = nr; 9046 if (tr->src.addr.type == PF_ADDR_TABLE) 9047 pfr_update_stats(tr->src.addr.p.tbl, 9048 (s == NULL) ? pd.src : 9049 &s->key[(s->direction == PF_IN)]-> 9050 addr[(s->direction == PF_OUT)], 9051 pd.af, pd.tot_len, dir == PF_OUT, 9052 r->action == PF_PASS, tr->src.neg); 9053 if (tr->dst.addr.type == PF_ADDR_TABLE) 9054 pfr_update_stats(tr->dst.addr.p.tbl, 9055 (s == NULL) ? pd.dst : 9056 &s->key[(s->direction == PF_IN)]-> 9057 addr[(s->direction == PF_IN)], 9058 pd.af, pd.tot_len, dir == PF_OUT, 9059 r->action == PF_PASS, tr->dst.neg); 9060 } 9061 pf_counter_u64_critical_exit(); 9062 9063 switch (action) { 9064 case PF_SYNPROXY_DROP: 9065 m_freem(*m0); 9066 case PF_DEFER: 9067 *m0 = NULL; 9068 action = PF_PASS; 9069 break; 9070 case PF_DROP: 9071 m_freem(*m0); 9072 *m0 = NULL; 9073 break; 9074 default: 9075 /* pf_route() returns unlocked. */ 9076 if (rt) { 9077 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp); 9078 goto out; 9079 } 9080 if (pf_dummynet(&pd, s, r, m0) != 0) { 9081 action = PF_DROP; 9082 REASON_SET(&reason, PFRES_MEMORY); 9083 } 9084 break; 9085 } 9086 9087 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 9088 9089 if (s && action != PF_DROP) { 9090 if (!s->if_index_in && dir == PF_IN) 9091 s->if_index_in = ifp->if_index; 9092 else if (!s->if_index_out && dir == PF_OUT) 9093 s->if_index_out = ifp->if_index; 9094 } 9095 9096 if (s) 9097 PF_STATE_UNLOCK(s); 9098 9099 out: 9100 pf_sctp_multihome_delayed(&pd, off, kif, s, action); 9101 9102 return (action); 9103 } 9104 #endif /* INET */ 9105 9106 #ifdef INET6 9107 int 9108 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp, 9109 struct pf_rule_actions *default_actions) 9110 { 9111 struct pfi_kkif *kif; 9112 u_short action, reason = 0; 9113 struct mbuf *m = *m0, *n = NULL; 9114 struct m_tag *mtag; 9115 struct ip6_hdr *h = NULL; 9116 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 9117 struct pf_kstate *s = NULL; 9118 struct pf_kruleset *ruleset = NULL; 9119 struct pf_pdesc pd; 9120 int off, terminal = 0, dirndx, rh_cnt = 0, use_2nd_queue = 0; 9121 uint16_t tag; 9122 uint8_t rt; 9123 9124 PF_RULES_RLOCK_TRACKER; 9125 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 9126 M_ASSERTPKTHDR(m); 9127 9128 if (!V_pf_status.running) 9129 return (PF_PASS); 9130 9131 PF_RULES_RLOCK(); 9132 9133 kif = (struct pfi_kkif *)ifp->if_pf_kif; 9134 if (__predict_false(kif == NULL)) { 9135 DPFPRINTF(PF_DEBUG_URGENT, 9136 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 9137 PF_RULES_RUNLOCK(); 9138 return (PF_DROP); 9139 } 9140 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 9141 PF_RULES_RUNLOCK(); 9142 return (PF_PASS); 9143 } 9144 9145 if (m->m_flags & M_SKIP_FIREWALL) { 9146 PF_RULES_RUNLOCK(); 9147 return (PF_PASS); 9148 } 9149 9150 /* 9151 * If we end up changing IP addresses (e.g. binat) the stack may get 9152 * confused and fail to send the icmp6 packet too big error. Just send 9153 * it here, before we do any NAT. 9154 */ 9155 if (dir == PF_OUT && pflags & PFIL_FWD && IN6_LINKMTU(ifp) < pf_max_frag_size(m)) { 9156 PF_RULES_RUNLOCK(); 9157 *m0 = NULL; 9158 icmp6_error(m, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp)); 9159 return (PF_DROP); 9160 } 9161 9162 if (__predict_false(! M_WRITABLE(*m0))) { 9163 m = *m0 = m_unshare(*m0, M_NOWAIT); 9164 if (*m0 == NULL) 9165 return (PF_DROP); 9166 } 9167 9168 memset(&pd, 0, sizeof(pd)); 9169 TAILQ_INIT(&pd.sctp_multihome_jobs); 9170 if (default_actions != NULL) 9171 memcpy(&pd.act, default_actions, sizeof(pd.act)); 9172 pd.pf_mtag = pf_find_mtag(m); 9173 9174 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 9175 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 9176 9177 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 9178 pd.pf_mtag->if_idxgen); 9179 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 9180 PF_RULES_RUNLOCK(); 9181 m_freem(*m0); 9182 *m0 = NULL; 9183 return (PF_PASS); 9184 } 9185 PF_RULES_RUNLOCK(); 9186 nd6_output_ifp(ifp, ifp, m, 9187 (struct sockaddr_in6 *)&pd.pf_mtag->dst, NULL); 9188 *m0 = NULL; 9189 return (PF_PASS); 9190 } 9191 9192 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 9193 pd.act.dnpipe = pd.pf_mtag->dnpipe; 9194 pd.act.flags = pd.pf_mtag->dnflags; 9195 } 9196 9197 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 9198 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 9199 pf_dummynet_flag_remove(m, pd.pf_mtag); 9200 /* Dummynet re-injects packets after they've 9201 * completed their delay. We've already 9202 * processed them, so pass unconditionally. */ 9203 PF_RULES_RUNLOCK(); 9204 return (PF_PASS); 9205 } 9206 9207 pd.sport = pd.dport = NULL; 9208 pd.ip_sum = NULL; 9209 pd.proto_sum = NULL; 9210 pd.dir = dir; 9211 pd.sidx = (dir == PF_IN) ? 0 : 1; 9212 pd.didx = (dir == PF_IN) ? 1 : 0; 9213 pd.af = AF_INET6; 9214 pd.act.rtableid = -1; 9215 9216 if (__predict_false(m->m_len < sizeof(struct ip6_hdr)) && 9217 (m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) { 9218 DPFPRINTF(PF_DEBUG_URGENT, 9219 ("pf_test6: m_len < sizeof(struct ip6_hdr)" 9220 ", pullup failed\n")); 9221 PF_RULES_RUNLOCK(); 9222 return (PF_DROP); 9223 } 9224 h = mtod(m, struct ip6_hdr *); 9225 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 9226 9227 /* We do IP header normalization and packet reassembly here */ 9228 if (pf_normalize_ip6(m0, kif, &reason, &pd) != PF_PASS) { 9229 action = PF_DROP; 9230 goto done; 9231 } 9232 m = *m0; /* pf_normalize messes with m0 */ 9233 h = mtod(m, struct ip6_hdr *); 9234 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 9235 9236 /* 9237 * we do not support jumbogram. if we keep going, zero ip6_plen 9238 * will do something bad, so drop the packet for now. 9239 */ 9240 if (htons(h->ip6_plen) == 0) { 9241 action = PF_DROP; 9242 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 9243 goto done; 9244 } 9245 9246 pd.src = (struct pf_addr *)&h->ip6_src; 9247 pd.dst = (struct pf_addr *)&h->ip6_dst; 9248 pd.tos = IPV6_DSCP(h); 9249 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 9250 9251 pd.proto = h->ip6_nxt; 9252 do { 9253 switch (pd.proto) { 9254 case IPPROTO_FRAGMENT: 9255 action = pf_test_fragment(&r, kif, m, h, &pd, &a, 9256 &ruleset); 9257 if (action == PF_DROP) 9258 REASON_SET(&reason, PFRES_FRAG); 9259 goto done; 9260 case IPPROTO_ROUTING: { 9261 struct ip6_rthdr rthdr; 9262 9263 if (rh_cnt++) { 9264 DPFPRINTF(PF_DEBUG_MISC, 9265 ("pf: IPv6 more than one rthdr\n")); 9266 action = PF_DROP; 9267 REASON_SET(&reason, PFRES_IPOPTIONS); 9268 pd.act.log = PF_LOG_FORCE; 9269 goto done; 9270 } 9271 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 9272 &reason, pd.af)) { 9273 DPFPRINTF(PF_DEBUG_MISC, 9274 ("pf: IPv6 short rthdr\n")); 9275 action = PF_DROP; 9276 REASON_SET(&reason, PFRES_SHORT); 9277 pd.act.log = PF_LOG_FORCE; 9278 goto done; 9279 } 9280 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 9281 DPFPRINTF(PF_DEBUG_MISC, 9282 ("pf: IPv6 rthdr0\n")); 9283 action = PF_DROP; 9284 REASON_SET(&reason, PFRES_IPOPTIONS); 9285 pd.act.log = PF_LOG_FORCE; 9286 goto done; 9287 } 9288 /* FALLTHROUGH */ 9289 } 9290 case IPPROTO_AH: 9291 case IPPROTO_HOPOPTS: 9292 case IPPROTO_DSTOPTS: { 9293 /* get next header and header length */ 9294 struct ip6_ext opt6; 9295 9296 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 9297 NULL, &reason, pd.af)) { 9298 DPFPRINTF(PF_DEBUG_MISC, 9299 ("pf: IPv6 short opt\n")); 9300 action = PF_DROP; 9301 pd.act.log = PF_LOG_FORCE; 9302 goto done; 9303 } 9304 if (pd.proto == IPPROTO_AH) 9305 off += (opt6.ip6e_len + 2) * 4; 9306 else 9307 off += (opt6.ip6e_len + 1) * 8; 9308 pd.proto = opt6.ip6e_nxt; 9309 /* goto the next header */ 9310 break; 9311 } 9312 default: 9313 terminal++; 9314 break; 9315 } 9316 } while (!terminal); 9317 9318 /* if there's no routing header, use unmodified mbuf for checksumming */ 9319 if (!n) 9320 n = m; 9321 9322 switch (pd.proto) { 9323 case IPPROTO_TCP: { 9324 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 9325 &action, &reason, AF_INET6)) { 9326 if (action != PF_PASS) 9327 pd.act.log |= PF_LOG_FORCE; 9328 goto done; 9329 } 9330 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 9331 pd.sport = &pd.hdr.tcp.th_sport; 9332 pd.dport = &pd.hdr.tcp.th_dport; 9333 9334 /* Respond to SYN with a syncookie. */ 9335 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 9336 pd.dir == PF_IN && pf_synflood_check(&pd)) { 9337 pf_syncookie_send(m, off, &pd); 9338 action = PF_DROP; 9339 break; 9340 } 9341 9342 action = pf_normalize_tcp(kif, m, 0, off, h, &pd); 9343 if (action == PF_DROP) 9344 goto done; 9345 action = pf_test_state_tcp(&s, kif, m, off, h, &pd, &reason); 9346 if (action == PF_PASS) { 9347 if (V_pfsync_update_state_ptr != NULL) 9348 V_pfsync_update_state_ptr(s); 9349 r = s->rule.ptr; 9350 a = s->anchor.ptr; 9351 } else if (s == NULL) { 9352 /* Validate remote SYN|ACK, re-create original SYN if 9353 * valid. */ 9354 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 9355 TH_ACK && pf_syncookie_validate(&pd) && 9356 pd.dir == PF_IN) { 9357 struct mbuf *msyn; 9358 9359 msyn = pf_syncookie_recreate_syn(h->ip6_hlim, 9360 off, &pd); 9361 if (msyn == NULL) { 9362 action = PF_DROP; 9363 break; 9364 } 9365 9366 action = pf_test6(dir, pflags, ifp, &msyn, inp, 9367 &pd.act); 9368 m_freem(msyn); 9369 if (action != PF_PASS) 9370 break; 9371 9372 action = pf_test_state_tcp(&s, kif, m, off, h, 9373 &pd, &reason); 9374 if (action != PF_PASS || s == NULL) { 9375 action = PF_DROP; 9376 break; 9377 } 9378 9379 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 9380 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 9381 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 9382 9383 action = pf_synproxy(&pd, &s, &reason); 9384 break; 9385 } else { 9386 action = pf_test_rule(&r, &s, kif, m, off, &pd, 9387 &a, &ruleset, inp); 9388 } 9389 } 9390 break; 9391 } 9392 9393 case IPPROTO_UDP: { 9394 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 9395 &action, &reason, AF_INET6)) { 9396 if (action != PF_PASS) 9397 pd.act.log |= PF_LOG_FORCE; 9398 goto done; 9399 } 9400 pd.sport = &pd.hdr.udp.uh_sport; 9401 pd.dport = &pd.hdr.udp.uh_dport; 9402 if (pd.hdr.udp.uh_dport == 0 || 9403 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 9404 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 9405 action = PF_DROP; 9406 REASON_SET(&reason, PFRES_SHORT); 9407 goto done; 9408 } 9409 action = pf_test_state_udp(&s, kif, m, off, h, &pd); 9410 if (action == PF_PASS) { 9411 if (V_pfsync_update_state_ptr != NULL) 9412 V_pfsync_update_state_ptr(s); 9413 r = s->rule.ptr; 9414 a = s->anchor.ptr; 9415 } else if (s == NULL) 9416 action = pf_test_rule(&r, &s, kif, m, off, &pd, 9417 &a, &ruleset, inp); 9418 break; 9419 } 9420 9421 case IPPROTO_SCTP: { 9422 if (!pf_pull_hdr(m, off, &pd.hdr.sctp, sizeof(pd.hdr.sctp), 9423 &action, &reason, AF_INET6)) { 9424 if (action != PF_PASS) 9425 pd.act.log |= PF_LOG_FORCE; 9426 goto done; 9427 } 9428 pd.sport = &pd.hdr.sctp.src_port; 9429 pd.dport = &pd.hdr.sctp.dest_port; 9430 if (pd.hdr.sctp.src_port == 0 || pd.hdr.sctp.dest_port == 0) { 9431 action = PF_DROP; 9432 REASON_SET(&reason, PFRES_SHORT); 9433 goto done; 9434 } 9435 action = pf_normalize_sctp(dir, kif, m, 0, off, h, &pd); 9436 if (action == PF_DROP) 9437 goto done; 9438 action = pf_test_state_sctp(&s, kif, m, off, h, &pd, 9439 &reason); 9440 if (action == PF_PASS) { 9441 if (V_pfsync_update_state_ptr != NULL) 9442 V_pfsync_update_state_ptr(s); 9443 r = s->rule.ptr; 9444 a = s->anchor.ptr; 9445 } else if (s == NULL) { 9446 action = pf_test_rule(&r, &s, kif, m, off, 9447 &pd, &a, &ruleset, inp); 9448 } 9449 break; 9450 } 9451 9452 case IPPROTO_ICMP: { 9453 action = PF_DROP; 9454 DPFPRINTF(PF_DEBUG_MISC, 9455 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 9456 goto done; 9457 } 9458 9459 case IPPROTO_ICMPV6: { 9460 if (!pf_pull_hdr(m, off, &pd.hdr.icmp6, sizeof(pd.hdr.icmp6), 9461 &action, &reason, AF_INET6)) { 9462 if (action != PF_PASS) 9463 pd.act.log |= PF_LOG_FORCE; 9464 goto done; 9465 } 9466 action = pf_test_state_icmp(&s, kif, m, off, h, &pd, &reason); 9467 if (action == PF_PASS) { 9468 if (V_pfsync_update_state_ptr != NULL) 9469 V_pfsync_update_state_ptr(s); 9470 r = s->rule.ptr; 9471 a = s->anchor.ptr; 9472 } else if (s == NULL) 9473 action = pf_test_rule(&r, &s, kif, m, off, &pd, 9474 &a, &ruleset, inp); 9475 break; 9476 } 9477 9478 default: 9479 action = pf_test_state_other(&s, kif, m, &pd); 9480 if (action == PF_PASS) { 9481 if (V_pfsync_update_state_ptr != NULL) 9482 V_pfsync_update_state_ptr(s); 9483 r = s->rule.ptr; 9484 a = s->anchor.ptr; 9485 } else if (s == NULL) 9486 action = pf_test_rule(&r, &s, kif, m, off, &pd, 9487 &a, &ruleset, inp); 9488 break; 9489 } 9490 9491 done: 9492 PF_RULES_RUNLOCK(); 9493 if (n != m) { 9494 m_freem(n); 9495 n = NULL; 9496 } 9497 9498 /* handle dangerous IPv6 extension headers. */ 9499 if (action == PF_PASS && rh_cnt && 9500 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 9501 action = PF_DROP; 9502 REASON_SET(&reason, PFRES_IPOPTIONS); 9503 pd.act.log = r->log; 9504 DPFPRINTF(PF_DEBUG_MISC, 9505 ("pf: dropping packet with dangerous v6 headers\n")); 9506 } 9507 9508 if (s) { 9509 uint8_t log = pd.act.log; 9510 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 9511 pd.act.log |= log; 9512 tag = s->tag; 9513 rt = s->rt; 9514 } else { 9515 tag = r->tag; 9516 rt = r->rt; 9517 } 9518 9519 if (tag > 0 && pf_tag_packet(m, &pd, tag)) { 9520 action = PF_DROP; 9521 REASON_SET(&reason, PFRES_MEMORY); 9522 } 9523 9524 pf_scrub_ip6(&m, &pd); 9525 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 9526 pf_normalize_mss(m, off, &pd); 9527 9528 if (pd.act.rtableid >= 0) 9529 M_SETFIB(m, pd.act.rtableid); 9530 9531 if (pd.act.flags & PFSTATE_SETPRIO) { 9532 if (pd.tos & IPTOS_LOWDELAY) 9533 use_2nd_queue = 1; 9534 if (vlan_set_pcp(m, pd.act.set_prio[use_2nd_queue])) { 9535 action = PF_DROP; 9536 REASON_SET(&reason, PFRES_MEMORY); 9537 pd.act.log = PF_LOG_FORCE; 9538 DPFPRINTF(PF_DEBUG_MISC, 9539 ("pf: failed to allocate 802.1q mtag\n")); 9540 } 9541 } 9542 9543 #ifdef ALTQ 9544 if (action == PF_PASS && pd.act.qid) { 9545 if (pd.pf_mtag == NULL && 9546 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 9547 action = PF_DROP; 9548 REASON_SET(&reason, PFRES_MEMORY); 9549 } else { 9550 if (s != NULL) 9551 pd.pf_mtag->qid_hash = pf_state_hash(s); 9552 if (pd.tos & IPTOS_LOWDELAY) 9553 pd.pf_mtag->qid = pd.act.pqid; 9554 else 9555 pd.pf_mtag->qid = pd.act.qid; 9556 /* Add hints for ecn. */ 9557 pd.pf_mtag->hdr = h; 9558 } 9559 } 9560 #endif /* ALTQ */ 9561 9562 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 9563 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 9564 (s->nat_rule.ptr->action == PF_RDR || 9565 s->nat_rule.ptr->action == PF_BINAT) && 9566 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 9567 m->m_flags |= M_SKIP_FIREWALL; 9568 9569 /* XXX: Anybody working on it?! */ 9570 if (r->divert.port) 9571 printf("pf: divert(9) is not supported for IPv6\n"); 9572 9573 if (pd.act.log) { 9574 struct pf_krule *lr; 9575 struct pf_krule_item *ri; 9576 9577 if (s != NULL && s->nat_rule.ptr != NULL && 9578 s->nat_rule.ptr->log & PF_LOG_ALL) 9579 lr = s->nat_rule.ptr; 9580 else 9581 lr = r; 9582 9583 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 9584 PFLOG_PACKET(kif, m, AF_INET6, action, reason, lr, a, ruleset, 9585 &pd, (s == NULL)); 9586 if (s) { 9587 SLIST_FOREACH(ri, &s->match_rules, entry) 9588 if (ri->r->log & PF_LOG_ALL) 9589 PFLOG_PACKET(kif, m, AF_INET6, action, reason, 9590 ri->r, a, ruleset, &pd, 0); 9591 } 9592 } 9593 9594 pf_counter_u64_critical_enter(); 9595 pf_counter_u64_add_protected(&kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], 9596 pd.tot_len); 9597 pf_counter_u64_add_protected(&kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 9598 1); 9599 9600 if (action == PF_PASS || r->action == PF_DROP) { 9601 dirndx = (dir == PF_OUT); 9602 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 9603 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 9604 if (a != NULL) { 9605 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 9606 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 9607 } 9608 if (s != NULL) { 9609 if (s->nat_rule.ptr != NULL) { 9610 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 9611 1); 9612 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 9613 pd.tot_len); 9614 } 9615 if (s->src_node != NULL) { 9616 counter_u64_add(s->src_node->packets[dirndx], 9617 1); 9618 counter_u64_add(s->src_node->bytes[dirndx], 9619 pd.tot_len); 9620 } 9621 if (s->nat_src_node != NULL) { 9622 counter_u64_add(s->nat_src_node->packets[dirndx], 9623 1); 9624 counter_u64_add(s->nat_src_node->bytes[dirndx], 9625 pd.tot_len); 9626 } 9627 dirndx = (dir == s->direction) ? 0 : 1; 9628 s->packets[dirndx]++; 9629 s->bytes[dirndx] += pd.tot_len; 9630 } 9631 tr = r; 9632 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 9633 if (nr != NULL && r == &V_pf_default_rule) 9634 tr = nr; 9635 if (tr->src.addr.type == PF_ADDR_TABLE) 9636 pfr_update_stats(tr->src.addr.p.tbl, 9637 (s == NULL) ? pd.src : 9638 &s->key[(s->direction == PF_IN)]->addr[0], 9639 pd.af, pd.tot_len, dir == PF_OUT, 9640 r->action == PF_PASS, tr->src.neg); 9641 if (tr->dst.addr.type == PF_ADDR_TABLE) 9642 pfr_update_stats(tr->dst.addr.p.tbl, 9643 (s == NULL) ? pd.dst : 9644 &s->key[(s->direction == PF_IN)]->addr[1], 9645 pd.af, pd.tot_len, dir == PF_OUT, 9646 r->action == PF_PASS, tr->dst.neg); 9647 } 9648 pf_counter_u64_critical_exit(); 9649 9650 switch (action) { 9651 case PF_SYNPROXY_DROP: 9652 m_freem(*m0); 9653 case PF_DEFER: 9654 *m0 = NULL; 9655 action = PF_PASS; 9656 break; 9657 case PF_DROP: 9658 m_freem(*m0); 9659 *m0 = NULL; 9660 break; 9661 default: 9662 /* pf_route6() returns unlocked. */ 9663 if (rt) { 9664 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp); 9665 goto out; 9666 } 9667 if (pf_dummynet(&pd, s, r, m0) != 0) { 9668 action = PF_DROP; 9669 REASON_SET(&reason, PFRES_MEMORY); 9670 } 9671 break; 9672 } 9673 9674 if (s && action != PF_DROP) { 9675 if (!s->if_index_in && dir == PF_IN) 9676 s->if_index_in = ifp->if_index; 9677 else if (!s->if_index_out && dir == PF_OUT) 9678 s->if_index_out = ifp->if_index; 9679 } 9680 9681 if (s) 9682 PF_STATE_UNLOCK(s); 9683 9684 /* If reassembled packet passed, create new fragments. */ 9685 if (action == PF_PASS && *m0 && dir == PF_OUT && 9686 (mtag = m_tag_find(m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL) 9687 action = pf_refragment6(ifp, m0, mtag, pflags & PFIL_FWD); 9688 9689 out: 9690 SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); 9691 9692 pf_sctp_multihome_delayed(&pd, off, kif, s, action); 9693 9694 return (action); 9695 } 9696 #endif /* INET6 */ 9697