1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_bpf.h" 46 #include "opt_pf.h" 47 48 #include <sys/param.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/socket.h> 61 #include <sys/sysctl.h> 62 #include <sys/taskqueue.h> 63 #include <sys/ucred.h> 64 65 #include <net/if.h> 66 #include <net/if_var.h> 67 #include <net/if_types.h> 68 #include <net/if_vlan_var.h> 69 #include <net/route.h> 70 #include <net/radix_mpath.h> 71 #include <net/vnet.h> 72 73 #include <net/pfil.h> 74 #include <net/pfvar.h> 75 #include <net/if_pflog.h> 76 #include <net/if_pfsync.h> 77 78 #include <netinet/in_pcb.h> 79 #include <netinet/in_var.h> 80 #include <netinet/in_fib.h> 81 #include <netinet/ip.h> 82 #include <netinet/ip_fw.h> 83 #include <netinet/ip_icmp.h> 84 #include <netinet/icmp_var.h> 85 #include <netinet/ip_var.h> 86 #include <netinet/tcp.h> 87 #include <netinet/tcp_fsm.h> 88 #include <netinet/tcp_seq.h> 89 #include <netinet/tcp_timer.h> 90 #include <netinet/tcp_var.h> 91 #include <netinet/udp.h> 92 #include <netinet/udp_var.h> 93 94 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 95 96 #ifdef INET6 97 #include <netinet/ip6.h> 98 #include <netinet/icmp6.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/ip6_var.h> 101 #include <netinet6/in6_pcb.h> 102 #include <netinet6/in6_fib.h> 103 #include <netinet6/scope6_var.h> 104 #endif /* INET6 */ 105 106 #include <machine/in_cksum.h> 107 #include <security/mac/mac_framework.h> 108 109 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 110 111 /* 112 * Global variables 113 */ 114 115 /* state tables */ 116 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 117 VNET_DEFINE(struct pf_palist, pf_pabuf); 118 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 119 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 120 VNET_DEFINE(struct pf_kstatus, pf_status); 121 122 VNET_DEFINE(u_int32_t, ticket_altqs_active); 123 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 124 VNET_DEFINE(int, altqs_inactive_open); 125 VNET_DEFINE(u_int32_t, ticket_pabuf); 126 127 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 128 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 129 VNET_DEFINE(u_char, pf_tcp_secret[16]); 130 #define V_pf_tcp_secret VNET(pf_tcp_secret) 131 VNET_DEFINE(int, pf_tcp_secret_init); 132 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 133 VNET_DEFINE(int, pf_tcp_iss_off); 134 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 135 VNET_DECLARE(int, pf_vnet_active); 136 #define V_pf_vnet_active VNET(pf_vnet_active) 137 138 static VNET_DEFINE(uint32_t, pf_purge_idx); 139 #define V_pf_purge_idx VNET(pf_purge_idx) 140 141 /* 142 * Queue for pf_intr() sends. 143 */ 144 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 145 struct pf_send_entry { 146 STAILQ_ENTRY(pf_send_entry) pfse_next; 147 struct mbuf *pfse_m; 148 enum { 149 PFSE_IP, 150 PFSE_IP6, 151 PFSE_ICMP, 152 PFSE_ICMP6, 153 } pfse_type; 154 struct { 155 int type; 156 int code; 157 int mtu; 158 } icmpopts; 159 }; 160 161 STAILQ_HEAD(pf_send_head, pf_send_entry); 162 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 163 #define V_pf_sendqueue VNET(pf_sendqueue) 164 165 static struct mtx pf_sendqueue_mtx; 166 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 167 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 168 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 169 170 /* 171 * Queue for pf_overload_task() tasks. 172 */ 173 struct pf_overload_entry { 174 SLIST_ENTRY(pf_overload_entry) next; 175 struct pf_addr addr; 176 sa_family_t af; 177 uint8_t dir; 178 struct pf_rule *rule; 179 }; 180 181 SLIST_HEAD(pf_overload_head, pf_overload_entry); 182 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 183 #define V_pf_overloadqueue VNET(pf_overloadqueue) 184 static VNET_DEFINE(struct task, pf_overloadtask); 185 #define V_pf_overloadtask VNET(pf_overloadtask) 186 187 static struct mtx pf_overloadqueue_mtx; 188 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 189 "pf overload/flush queue", MTX_DEF); 190 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 191 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 192 193 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 194 struct mtx pf_unlnkdrules_mtx; 195 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 196 MTX_DEF); 197 198 static VNET_DEFINE(uma_zone_t, pf_sources_z); 199 #define V_pf_sources_z VNET(pf_sources_z) 200 uma_zone_t pf_mtag_z; 201 VNET_DEFINE(uma_zone_t, pf_state_z); 202 VNET_DEFINE(uma_zone_t, pf_state_key_z); 203 204 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 205 #define PFID_CPUBITS 8 206 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 207 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 208 #define PFID_MAXID (~PFID_CPUMASK) 209 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 210 211 static void pf_src_tree_remove_state(struct pf_state *); 212 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 213 u_int32_t); 214 static void pf_add_threshold(struct pf_threshold *); 215 static int pf_check_threshold(struct pf_threshold *); 216 217 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 218 u_int16_t *, u_int16_t *, struct pf_addr *, 219 u_int16_t, u_int8_t, sa_family_t); 220 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 221 struct tcphdr *, struct pf_state_peer *); 222 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 223 struct pf_addr *, struct pf_addr *, u_int16_t, 224 u_int16_t *, u_int16_t *, u_int16_t *, 225 u_int16_t *, u_int8_t, sa_family_t); 226 static void pf_send_tcp(struct mbuf *, 227 const struct pf_rule *, sa_family_t, 228 const struct pf_addr *, const struct pf_addr *, 229 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 230 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 231 u_int16_t, struct ifnet *); 232 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 233 sa_family_t, struct pf_rule *); 234 static void pf_detach_state(struct pf_state *); 235 static int pf_state_key_attach(struct pf_state_key *, 236 struct pf_state_key *, struct pf_state *); 237 static void pf_state_key_detach(struct pf_state *, int); 238 static int pf_state_key_ctor(void *, int, void *, int); 239 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 240 static int pf_test_rule(struct pf_rule **, struct pf_state **, 241 int, struct pfi_kif *, struct mbuf *, int, 242 struct pf_pdesc *, struct pf_rule **, 243 struct pf_ruleset **, struct inpcb *); 244 static int pf_create_state(struct pf_rule *, struct pf_rule *, 245 struct pf_rule *, struct pf_pdesc *, 246 struct pf_src_node *, struct pf_state_key *, 247 struct pf_state_key *, struct mbuf *, int, 248 u_int16_t, u_int16_t, int *, struct pfi_kif *, 249 struct pf_state **, int, u_int16_t, u_int16_t, 250 int); 251 static int pf_test_fragment(struct pf_rule **, int, 252 struct pfi_kif *, struct mbuf *, void *, 253 struct pf_pdesc *, struct pf_rule **, 254 struct pf_ruleset **); 255 static int pf_tcp_track_full(struct pf_state_peer *, 256 struct pf_state_peer *, struct pf_state **, 257 struct pfi_kif *, struct mbuf *, int, 258 struct pf_pdesc *, u_short *, int *); 259 static int pf_tcp_track_sloppy(struct pf_state_peer *, 260 struct pf_state_peer *, struct pf_state **, 261 struct pf_pdesc *, u_short *); 262 static int pf_test_state_tcp(struct pf_state **, int, 263 struct pfi_kif *, struct mbuf *, int, 264 void *, struct pf_pdesc *, u_short *); 265 static int pf_test_state_udp(struct pf_state **, int, 266 struct pfi_kif *, struct mbuf *, int, 267 void *, struct pf_pdesc *); 268 static int pf_test_state_icmp(struct pf_state **, int, 269 struct pfi_kif *, struct mbuf *, int, 270 void *, struct pf_pdesc *, u_short *); 271 static int pf_test_state_other(struct pf_state **, int, 272 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 273 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 274 sa_family_t); 275 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 276 sa_family_t); 277 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 278 int, u_int16_t); 279 static int pf_check_proto_cksum(struct mbuf *, int, int, 280 u_int8_t, sa_family_t); 281 static void pf_print_state_parts(struct pf_state *, 282 struct pf_state_key *, struct pf_state_key *); 283 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 284 struct pf_addr_wrap *); 285 static struct pf_state *pf_find_state(struct pfi_kif *, 286 struct pf_state_key_cmp *, u_int); 287 static int pf_src_connlimit(struct pf_state **); 288 static void pf_overload_task(void *v, int pending); 289 static int pf_insert_src_node(struct pf_src_node **, 290 struct pf_rule *, struct pf_addr *, sa_family_t); 291 static u_int pf_purge_expired_states(u_int, int); 292 static void pf_purge_unlinked_rules(void); 293 static int pf_mtag_uminit(void *, int, int); 294 static void pf_mtag_free(struct m_tag *); 295 #ifdef INET 296 static void pf_route(struct mbuf **, struct pf_rule *, int, 297 struct ifnet *, struct pf_state *, 298 struct pf_pdesc *, struct inpcb *); 299 #endif /* INET */ 300 #ifdef INET6 301 static void pf_change_a6(struct pf_addr *, u_int16_t *, 302 struct pf_addr *, u_int8_t); 303 static void pf_route6(struct mbuf **, struct pf_rule *, int, 304 struct ifnet *, struct pf_state *, 305 struct pf_pdesc *, struct inpcb *); 306 #endif /* INET6 */ 307 308 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 309 310 extern int pf_end_threads; 311 extern struct proc *pf_purge_proc; 312 313 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 314 315 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 316 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 317 318 #define STATE_LOOKUP(i, k, d, s, pd) \ 319 do { \ 320 (s) = pf_find_state((i), (k), (d)); \ 321 if ((s) == NULL) \ 322 return (PF_DROP); \ 323 if (PACKET_LOOPED(pd)) \ 324 return (PF_PASS); \ 325 if ((d) == PF_OUT && \ 326 (((s)->rule.ptr->rt == PF_ROUTETO && \ 327 (s)->rule.ptr->direction == PF_OUT) || \ 328 ((s)->rule.ptr->rt == PF_REPLYTO && \ 329 (s)->rule.ptr->direction == PF_IN)) && \ 330 (s)->rt_kif != NULL && \ 331 (s)->rt_kif != (i)) \ 332 return (PF_PASS); \ 333 } while (0) 334 335 #define BOUND_IFACE(r, k) \ 336 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 337 338 #define STATE_INC_COUNTERS(s) \ 339 do { \ 340 counter_u64_add(s->rule.ptr->states_cur, 1); \ 341 counter_u64_add(s->rule.ptr->states_tot, 1); \ 342 if (s->anchor.ptr != NULL) { \ 343 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 344 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 345 } \ 346 if (s->nat_rule.ptr != NULL) { \ 347 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 348 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 349 } \ 350 } while (0) 351 352 #define STATE_DEC_COUNTERS(s) \ 353 do { \ 354 if (s->nat_rule.ptr != NULL) \ 355 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 356 if (s->anchor.ptr != NULL) \ 357 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 358 counter_u64_add(s->rule.ptr->states_cur, -1); \ 359 } while (0) 360 361 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 362 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 363 VNET_DEFINE(struct pf_idhash *, pf_idhash); 364 VNET_DEFINE(struct pf_srchash *, pf_srchash); 365 366 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 367 368 u_long pf_hashmask; 369 u_long pf_srchashmask; 370 static u_long pf_hashsize; 371 static u_long pf_srchashsize; 372 u_long pf_ioctl_maxcount = 65535; 373 374 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 375 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 376 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 377 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 378 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RDTUN, 379 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 380 381 VNET_DEFINE(void *, pf_swi_cookie); 382 383 VNET_DEFINE(uint32_t, pf_hashseed); 384 #define V_pf_hashseed VNET(pf_hashseed) 385 386 int 387 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 388 { 389 390 switch (af) { 391 #ifdef INET 392 case AF_INET: 393 if (a->addr32[0] > b->addr32[0]) 394 return (1); 395 if (a->addr32[0] < b->addr32[0]) 396 return (-1); 397 break; 398 #endif /* INET */ 399 #ifdef INET6 400 case AF_INET6: 401 if (a->addr32[3] > b->addr32[3]) 402 return (1); 403 if (a->addr32[3] < b->addr32[3]) 404 return (-1); 405 if (a->addr32[2] > b->addr32[2]) 406 return (1); 407 if (a->addr32[2] < b->addr32[2]) 408 return (-1); 409 if (a->addr32[1] > b->addr32[1]) 410 return (1); 411 if (a->addr32[1] < b->addr32[1]) 412 return (-1); 413 if (a->addr32[0] > b->addr32[0]) 414 return (1); 415 if (a->addr32[0] < b->addr32[0]) 416 return (-1); 417 break; 418 #endif /* INET6 */ 419 default: 420 panic("%s: unknown address family %u", __func__, af); 421 } 422 return (0); 423 } 424 425 static __inline uint32_t 426 pf_hashkey(struct pf_state_key *sk) 427 { 428 uint32_t h; 429 430 h = murmur3_32_hash32((uint32_t *)sk, 431 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 432 V_pf_hashseed); 433 434 return (h & pf_hashmask); 435 } 436 437 static __inline uint32_t 438 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 439 { 440 uint32_t h; 441 442 switch (af) { 443 case AF_INET: 444 h = murmur3_32_hash32((uint32_t *)&addr->v4, 445 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 446 break; 447 case AF_INET6: 448 h = murmur3_32_hash32((uint32_t *)&addr->v6, 449 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 450 break; 451 default: 452 panic("%s: unknown address family %u", __func__, af); 453 } 454 455 return (h & pf_srchashmask); 456 } 457 458 #ifdef ALTQ 459 static int 460 pf_state_hash(struct pf_state *s) 461 { 462 u_int32_t hv = (intptr_t)s / sizeof(*s); 463 464 hv ^= crc32(&s->src, sizeof(s->src)); 465 hv ^= crc32(&s->dst, sizeof(s->dst)); 466 if (hv == 0) 467 hv = 1; 468 return (hv); 469 } 470 #endif 471 472 #ifdef INET6 473 void 474 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 475 { 476 switch (af) { 477 #ifdef INET 478 case AF_INET: 479 dst->addr32[0] = src->addr32[0]; 480 break; 481 #endif /* INET */ 482 case AF_INET6: 483 dst->addr32[0] = src->addr32[0]; 484 dst->addr32[1] = src->addr32[1]; 485 dst->addr32[2] = src->addr32[2]; 486 dst->addr32[3] = src->addr32[3]; 487 break; 488 } 489 } 490 #endif /* INET6 */ 491 492 static void 493 pf_init_threshold(struct pf_threshold *threshold, 494 u_int32_t limit, u_int32_t seconds) 495 { 496 threshold->limit = limit * PF_THRESHOLD_MULT; 497 threshold->seconds = seconds; 498 threshold->count = 0; 499 threshold->last = time_uptime; 500 } 501 502 static void 503 pf_add_threshold(struct pf_threshold *threshold) 504 { 505 u_int32_t t = time_uptime, diff = t - threshold->last; 506 507 if (diff >= threshold->seconds) 508 threshold->count = 0; 509 else 510 threshold->count -= threshold->count * diff / 511 threshold->seconds; 512 threshold->count += PF_THRESHOLD_MULT; 513 threshold->last = t; 514 } 515 516 static int 517 pf_check_threshold(struct pf_threshold *threshold) 518 { 519 return (threshold->count > threshold->limit); 520 } 521 522 static int 523 pf_src_connlimit(struct pf_state **state) 524 { 525 struct pf_overload_entry *pfoe; 526 int bad = 0; 527 528 PF_STATE_LOCK_ASSERT(*state); 529 530 (*state)->src_node->conn++; 531 (*state)->src.tcp_est = 1; 532 pf_add_threshold(&(*state)->src_node->conn_rate); 533 534 if ((*state)->rule.ptr->max_src_conn && 535 (*state)->rule.ptr->max_src_conn < 536 (*state)->src_node->conn) { 537 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 538 bad++; 539 } 540 541 if ((*state)->rule.ptr->max_src_conn_rate.limit && 542 pf_check_threshold(&(*state)->src_node->conn_rate)) { 543 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 544 bad++; 545 } 546 547 if (!bad) 548 return (0); 549 550 /* Kill this state. */ 551 (*state)->timeout = PFTM_PURGE; 552 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 553 554 if ((*state)->rule.ptr->overload_tbl == NULL) 555 return (1); 556 557 /* Schedule overloading and flushing task. */ 558 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 559 if (pfoe == NULL) 560 return (1); /* too bad :( */ 561 562 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 563 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 564 pfoe->rule = (*state)->rule.ptr; 565 pfoe->dir = (*state)->direction; 566 PF_OVERLOADQ_LOCK(); 567 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 568 PF_OVERLOADQ_UNLOCK(); 569 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 570 571 return (1); 572 } 573 574 static void 575 pf_overload_task(void *v, int pending) 576 { 577 struct pf_overload_head queue; 578 struct pfr_addr p; 579 struct pf_overload_entry *pfoe, *pfoe1; 580 uint32_t killed = 0; 581 582 CURVNET_SET((struct vnet *)v); 583 584 PF_OVERLOADQ_LOCK(); 585 queue = V_pf_overloadqueue; 586 SLIST_INIT(&V_pf_overloadqueue); 587 PF_OVERLOADQ_UNLOCK(); 588 589 bzero(&p, sizeof(p)); 590 SLIST_FOREACH(pfoe, &queue, next) { 591 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 592 if (V_pf_status.debug >= PF_DEBUG_MISC) { 593 printf("%s: blocking address ", __func__); 594 pf_print_host(&pfoe->addr, 0, pfoe->af); 595 printf("\n"); 596 } 597 598 p.pfra_af = pfoe->af; 599 switch (pfoe->af) { 600 #ifdef INET 601 case AF_INET: 602 p.pfra_net = 32; 603 p.pfra_ip4addr = pfoe->addr.v4; 604 break; 605 #endif 606 #ifdef INET6 607 case AF_INET6: 608 p.pfra_net = 128; 609 p.pfra_ip6addr = pfoe->addr.v6; 610 break; 611 #endif 612 } 613 614 PF_RULES_WLOCK(); 615 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 616 PF_RULES_WUNLOCK(); 617 } 618 619 /* 620 * Remove those entries, that don't need flushing. 621 */ 622 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 623 if (pfoe->rule->flush == 0) { 624 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 625 free(pfoe, M_PFTEMP); 626 } else 627 counter_u64_add( 628 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 629 630 /* If nothing to flush, return. */ 631 if (SLIST_EMPTY(&queue)) { 632 CURVNET_RESTORE(); 633 return; 634 } 635 636 for (int i = 0; i <= pf_hashmask; i++) { 637 struct pf_idhash *ih = &V_pf_idhash[i]; 638 struct pf_state_key *sk; 639 struct pf_state *s; 640 641 PF_HASHROW_LOCK(ih); 642 LIST_FOREACH(s, &ih->states, entry) { 643 sk = s->key[PF_SK_WIRE]; 644 SLIST_FOREACH(pfoe, &queue, next) 645 if (sk->af == pfoe->af && 646 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 647 pfoe->rule == s->rule.ptr) && 648 ((pfoe->dir == PF_OUT && 649 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 650 (pfoe->dir == PF_IN && 651 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 652 s->timeout = PFTM_PURGE; 653 s->src.state = s->dst.state = TCPS_CLOSED; 654 killed++; 655 } 656 } 657 PF_HASHROW_UNLOCK(ih); 658 } 659 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 660 free(pfoe, M_PFTEMP); 661 if (V_pf_status.debug >= PF_DEBUG_MISC) 662 printf("%s: %u states killed", __func__, killed); 663 664 CURVNET_RESTORE(); 665 } 666 667 /* 668 * Can return locked on failure, so that we can consistently 669 * allocate and insert a new one. 670 */ 671 struct pf_src_node * 672 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 673 int returnlocked) 674 { 675 struct pf_srchash *sh; 676 struct pf_src_node *n; 677 678 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 679 680 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 681 PF_HASHROW_LOCK(sh); 682 LIST_FOREACH(n, &sh->nodes, entry) 683 if (n->rule.ptr == rule && n->af == af && 684 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 685 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 686 break; 687 if (n != NULL) { 688 n->states++; 689 PF_HASHROW_UNLOCK(sh); 690 } else if (returnlocked == 0) 691 PF_HASHROW_UNLOCK(sh); 692 693 return (n); 694 } 695 696 static int 697 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 698 struct pf_addr *src, sa_family_t af) 699 { 700 701 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 702 rule->rpool.opts & PF_POOL_STICKYADDR), 703 ("%s for non-tracking rule %p", __func__, rule)); 704 705 if (*sn == NULL) 706 *sn = pf_find_src_node(src, rule, af, 1); 707 708 if (*sn == NULL) { 709 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 710 711 PF_HASHROW_ASSERT(sh); 712 713 if (!rule->max_src_nodes || 714 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 715 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 716 else 717 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 718 1); 719 if ((*sn) == NULL) { 720 PF_HASHROW_UNLOCK(sh); 721 return (-1); 722 } 723 724 pf_init_threshold(&(*sn)->conn_rate, 725 rule->max_src_conn_rate.limit, 726 rule->max_src_conn_rate.seconds); 727 728 (*sn)->af = af; 729 (*sn)->rule.ptr = rule; 730 PF_ACPY(&(*sn)->addr, src, af); 731 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 732 (*sn)->creation = time_uptime; 733 (*sn)->ruletype = rule->action; 734 (*sn)->states = 1; 735 if ((*sn)->rule.ptr != NULL) 736 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 737 PF_HASHROW_UNLOCK(sh); 738 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 739 } else { 740 if (rule->max_src_states && 741 (*sn)->states >= rule->max_src_states) { 742 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 743 1); 744 return (-1); 745 } 746 } 747 return (0); 748 } 749 750 void 751 pf_unlink_src_node(struct pf_src_node *src) 752 { 753 754 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 755 LIST_REMOVE(src, entry); 756 if (src->rule.ptr) 757 counter_u64_add(src->rule.ptr->src_nodes, -1); 758 } 759 760 u_int 761 pf_free_src_nodes(struct pf_src_node_list *head) 762 { 763 struct pf_src_node *sn, *tmp; 764 u_int count = 0; 765 766 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 767 uma_zfree(V_pf_sources_z, sn); 768 count++; 769 } 770 771 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 772 773 return (count); 774 } 775 776 void 777 pf_mtag_initialize() 778 { 779 780 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 781 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 782 UMA_ALIGN_PTR, 0); 783 } 784 785 /* Per-vnet data storage structures initialization. */ 786 void 787 pf_initialize() 788 { 789 struct pf_keyhash *kh; 790 struct pf_idhash *ih; 791 struct pf_srchash *sh; 792 u_int i; 793 794 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 795 pf_hashsize = PF_HASHSIZ; 796 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 797 pf_srchashsize = PF_SRCHASHSIZ; 798 799 V_pf_hashseed = arc4random(); 800 801 /* States and state keys storage. */ 802 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 803 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 804 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 805 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 806 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 807 808 V_pf_state_key_z = uma_zcreate("pf state keys", 809 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 810 UMA_ALIGN_PTR, 0); 811 812 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 813 M_PFHASH, M_NOWAIT | M_ZERO); 814 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 815 M_PFHASH, M_NOWAIT | M_ZERO); 816 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 817 printf("pf: Unable to allocate memory for " 818 "state_hashsize %lu.\n", pf_hashsize); 819 820 free(V_pf_keyhash, M_PFHASH); 821 free(V_pf_idhash, M_PFHASH); 822 823 pf_hashsize = PF_HASHSIZ; 824 V_pf_keyhash = mallocarray(pf_hashsize, 825 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 826 V_pf_idhash = mallocarray(pf_hashsize, 827 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 828 } 829 830 pf_hashmask = pf_hashsize - 1; 831 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 832 i++, kh++, ih++) { 833 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 834 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 835 } 836 837 /* Source nodes. */ 838 V_pf_sources_z = uma_zcreate("pf source nodes", 839 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 840 0); 841 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 842 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 843 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 844 845 V_pf_srchash = mallocarray(pf_srchashsize, 846 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 847 if (V_pf_srchash == NULL) { 848 printf("pf: Unable to allocate memory for " 849 "source_hashsize %lu.\n", pf_srchashsize); 850 851 pf_srchashsize = PF_SRCHASHSIZ; 852 V_pf_srchash = mallocarray(pf_srchashsize, 853 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 854 } 855 856 pf_srchashmask = pf_srchashsize - 1; 857 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 858 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 859 860 /* ALTQ */ 861 TAILQ_INIT(&V_pf_altqs[0]); 862 TAILQ_INIT(&V_pf_altqs[1]); 863 TAILQ_INIT(&V_pf_pabuf); 864 V_pf_altqs_active = &V_pf_altqs[0]; 865 V_pf_altqs_inactive = &V_pf_altqs[1]; 866 867 /* Send & overload+flush queues. */ 868 STAILQ_INIT(&V_pf_sendqueue); 869 SLIST_INIT(&V_pf_overloadqueue); 870 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 871 872 /* Unlinked, but may be referenced rules. */ 873 TAILQ_INIT(&V_pf_unlinked_rules); 874 } 875 876 void 877 pf_mtag_cleanup() 878 { 879 880 uma_zdestroy(pf_mtag_z); 881 } 882 883 void 884 pf_cleanup() 885 { 886 struct pf_keyhash *kh; 887 struct pf_idhash *ih; 888 struct pf_srchash *sh; 889 struct pf_send_entry *pfse, *next; 890 u_int i; 891 892 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 893 i++, kh++, ih++) { 894 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 895 __func__)); 896 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 897 __func__)); 898 mtx_destroy(&kh->lock); 899 mtx_destroy(&ih->lock); 900 } 901 free(V_pf_keyhash, M_PFHASH); 902 free(V_pf_idhash, M_PFHASH); 903 904 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 905 KASSERT(LIST_EMPTY(&sh->nodes), 906 ("%s: source node hash not empty", __func__)); 907 mtx_destroy(&sh->lock); 908 } 909 free(V_pf_srchash, M_PFHASH); 910 911 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 912 m_freem(pfse->pfse_m); 913 free(pfse, M_PFTEMP); 914 } 915 916 uma_zdestroy(V_pf_sources_z); 917 uma_zdestroy(V_pf_state_z); 918 uma_zdestroy(V_pf_state_key_z); 919 } 920 921 static int 922 pf_mtag_uminit(void *mem, int size, int how) 923 { 924 struct m_tag *t; 925 926 t = (struct m_tag *)mem; 927 t->m_tag_cookie = MTAG_ABI_COMPAT; 928 t->m_tag_id = PACKET_TAG_PF; 929 t->m_tag_len = sizeof(struct pf_mtag); 930 t->m_tag_free = pf_mtag_free; 931 932 return (0); 933 } 934 935 static void 936 pf_mtag_free(struct m_tag *t) 937 { 938 939 uma_zfree(pf_mtag_z, t); 940 } 941 942 struct pf_mtag * 943 pf_get_mtag(struct mbuf *m) 944 { 945 struct m_tag *mtag; 946 947 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 948 return ((struct pf_mtag *)(mtag + 1)); 949 950 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 951 if (mtag == NULL) 952 return (NULL); 953 bzero(mtag + 1, sizeof(struct pf_mtag)); 954 m_tag_prepend(m, mtag); 955 956 return ((struct pf_mtag *)(mtag + 1)); 957 } 958 959 static int 960 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 961 struct pf_state *s) 962 { 963 struct pf_keyhash *khs, *khw, *kh; 964 struct pf_state_key *sk, *cur; 965 struct pf_state *si, *olds = NULL; 966 int idx; 967 968 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 969 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 970 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 971 972 /* 973 * We need to lock hash slots of both keys. To avoid deadlock 974 * we always lock the slot with lower address first. Unlock order 975 * isn't important. 976 * 977 * We also need to lock ID hash slot before dropping key 978 * locks. On success we return with ID hash slot locked. 979 */ 980 981 if (skw == sks) { 982 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 983 PF_HASHROW_LOCK(khs); 984 } else { 985 khs = &V_pf_keyhash[pf_hashkey(sks)]; 986 khw = &V_pf_keyhash[pf_hashkey(skw)]; 987 if (khs == khw) { 988 PF_HASHROW_LOCK(khs); 989 } else if (khs < khw) { 990 PF_HASHROW_LOCK(khs); 991 PF_HASHROW_LOCK(khw); 992 } else { 993 PF_HASHROW_LOCK(khw); 994 PF_HASHROW_LOCK(khs); 995 } 996 } 997 998 #define KEYS_UNLOCK() do { \ 999 if (khs != khw) { \ 1000 PF_HASHROW_UNLOCK(khs); \ 1001 PF_HASHROW_UNLOCK(khw); \ 1002 } else \ 1003 PF_HASHROW_UNLOCK(khs); \ 1004 } while (0) 1005 1006 /* 1007 * First run: start with wire key. 1008 */ 1009 sk = skw; 1010 kh = khw; 1011 idx = PF_SK_WIRE; 1012 1013 keyattach: 1014 LIST_FOREACH(cur, &kh->keys, entry) 1015 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1016 break; 1017 1018 if (cur != NULL) { 1019 /* Key exists. Check for same kif, if none, add to key. */ 1020 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1021 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1022 1023 PF_HASHROW_LOCK(ih); 1024 if (si->kif == s->kif && 1025 si->direction == s->direction) { 1026 if (sk->proto == IPPROTO_TCP && 1027 si->src.state >= TCPS_FIN_WAIT_2 && 1028 si->dst.state >= TCPS_FIN_WAIT_2) { 1029 /* 1030 * New state matches an old >FIN_WAIT_2 1031 * state. We can't drop key hash locks, 1032 * thus we can't unlink it properly. 1033 * 1034 * As a workaround we drop it into 1035 * TCPS_CLOSED state, schedule purge 1036 * ASAP and push it into the very end 1037 * of the slot TAILQ, so that it won't 1038 * conflict with our new state. 1039 */ 1040 si->src.state = si->dst.state = 1041 TCPS_CLOSED; 1042 si->timeout = PFTM_PURGE; 1043 olds = si; 1044 } else { 1045 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1046 printf("pf: %s key attach " 1047 "failed on %s: ", 1048 (idx == PF_SK_WIRE) ? 1049 "wire" : "stack", 1050 s->kif->pfik_name); 1051 pf_print_state_parts(s, 1052 (idx == PF_SK_WIRE) ? 1053 sk : NULL, 1054 (idx == PF_SK_STACK) ? 1055 sk : NULL); 1056 printf(", existing: "); 1057 pf_print_state_parts(si, 1058 (idx == PF_SK_WIRE) ? 1059 sk : NULL, 1060 (idx == PF_SK_STACK) ? 1061 sk : NULL); 1062 printf("\n"); 1063 } 1064 PF_HASHROW_UNLOCK(ih); 1065 KEYS_UNLOCK(); 1066 uma_zfree(V_pf_state_key_z, sk); 1067 if (idx == PF_SK_STACK) 1068 pf_detach_state(s); 1069 return (EEXIST); /* collision! */ 1070 } 1071 } 1072 PF_HASHROW_UNLOCK(ih); 1073 } 1074 uma_zfree(V_pf_state_key_z, sk); 1075 s->key[idx] = cur; 1076 } else { 1077 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1078 s->key[idx] = sk; 1079 } 1080 1081 stateattach: 1082 /* List is sorted, if-bound states before floating. */ 1083 if (s->kif == V_pfi_all) 1084 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1085 else 1086 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1087 1088 if (olds) { 1089 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1090 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1091 key_list[idx]); 1092 olds = NULL; 1093 } 1094 1095 /* 1096 * Attach done. See how should we (or should not?) 1097 * attach a second key. 1098 */ 1099 if (sks == skw) { 1100 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1101 idx = PF_SK_STACK; 1102 sks = NULL; 1103 goto stateattach; 1104 } else if (sks != NULL) { 1105 /* 1106 * Continue attaching with stack key. 1107 */ 1108 sk = sks; 1109 kh = khs; 1110 idx = PF_SK_STACK; 1111 sks = NULL; 1112 goto keyattach; 1113 } 1114 1115 PF_STATE_LOCK(s); 1116 KEYS_UNLOCK(); 1117 1118 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1119 ("%s failure", __func__)); 1120 1121 return (0); 1122 #undef KEYS_UNLOCK 1123 } 1124 1125 static void 1126 pf_detach_state(struct pf_state *s) 1127 { 1128 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1129 struct pf_keyhash *kh; 1130 1131 if (sks != NULL) { 1132 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1133 PF_HASHROW_LOCK(kh); 1134 if (s->key[PF_SK_STACK] != NULL) 1135 pf_state_key_detach(s, PF_SK_STACK); 1136 /* 1137 * If both point to same key, then we are done. 1138 */ 1139 if (sks == s->key[PF_SK_WIRE]) { 1140 pf_state_key_detach(s, PF_SK_WIRE); 1141 PF_HASHROW_UNLOCK(kh); 1142 return; 1143 } 1144 PF_HASHROW_UNLOCK(kh); 1145 } 1146 1147 if (s->key[PF_SK_WIRE] != NULL) { 1148 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1149 PF_HASHROW_LOCK(kh); 1150 if (s->key[PF_SK_WIRE] != NULL) 1151 pf_state_key_detach(s, PF_SK_WIRE); 1152 PF_HASHROW_UNLOCK(kh); 1153 } 1154 } 1155 1156 static void 1157 pf_state_key_detach(struct pf_state *s, int idx) 1158 { 1159 struct pf_state_key *sk = s->key[idx]; 1160 #ifdef INVARIANTS 1161 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1162 1163 PF_HASHROW_ASSERT(kh); 1164 #endif 1165 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1166 s->key[idx] = NULL; 1167 1168 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1169 LIST_REMOVE(sk, entry); 1170 uma_zfree(V_pf_state_key_z, sk); 1171 } 1172 } 1173 1174 static int 1175 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1176 { 1177 struct pf_state_key *sk = mem; 1178 1179 bzero(sk, sizeof(struct pf_state_key_cmp)); 1180 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1181 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1182 1183 return (0); 1184 } 1185 1186 struct pf_state_key * 1187 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1188 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1189 { 1190 struct pf_state_key *sk; 1191 1192 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1193 if (sk == NULL) 1194 return (NULL); 1195 1196 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1197 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1198 sk->port[pd->sidx] = sport; 1199 sk->port[pd->didx] = dport; 1200 sk->proto = pd->proto; 1201 sk->af = pd->af; 1202 1203 return (sk); 1204 } 1205 1206 struct pf_state_key * 1207 pf_state_key_clone(struct pf_state_key *orig) 1208 { 1209 struct pf_state_key *sk; 1210 1211 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1212 if (sk == NULL) 1213 return (NULL); 1214 1215 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1216 1217 return (sk); 1218 } 1219 1220 int 1221 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1222 struct pf_state_key *sks, struct pf_state *s) 1223 { 1224 struct pf_idhash *ih; 1225 struct pf_state *cur; 1226 int error; 1227 1228 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1229 ("%s: sks not pristine", __func__)); 1230 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1231 ("%s: skw not pristine", __func__)); 1232 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1233 1234 s->kif = kif; 1235 1236 if (s->id == 0 && s->creatorid == 0) { 1237 /* XXX: should be atomic, but probability of collision low */ 1238 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1239 V_pf_stateid[curcpu] = 1; 1240 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1241 s->id = htobe64(s->id); 1242 s->creatorid = V_pf_status.hostid; 1243 } 1244 1245 /* Returns with ID locked on success. */ 1246 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1247 return (error); 1248 1249 ih = &V_pf_idhash[PF_IDHASH(s)]; 1250 PF_HASHROW_ASSERT(ih); 1251 LIST_FOREACH(cur, &ih->states, entry) 1252 if (cur->id == s->id && cur->creatorid == s->creatorid) 1253 break; 1254 1255 if (cur != NULL) { 1256 PF_HASHROW_UNLOCK(ih); 1257 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1258 printf("pf: state ID collision: " 1259 "id: %016llx creatorid: %08x\n", 1260 (unsigned long long)be64toh(s->id), 1261 ntohl(s->creatorid)); 1262 } 1263 pf_detach_state(s); 1264 return (EEXIST); 1265 } 1266 LIST_INSERT_HEAD(&ih->states, s, entry); 1267 /* One for keys, one for ID hash. */ 1268 refcount_init(&s->refs, 2); 1269 1270 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1271 if (pfsync_insert_state_ptr != NULL) 1272 pfsync_insert_state_ptr(s); 1273 1274 /* Returns locked. */ 1275 return (0); 1276 } 1277 1278 /* 1279 * Find state by ID: returns with locked row on success. 1280 */ 1281 struct pf_state * 1282 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1283 { 1284 struct pf_idhash *ih; 1285 struct pf_state *s; 1286 1287 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1288 1289 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1290 1291 PF_HASHROW_LOCK(ih); 1292 LIST_FOREACH(s, &ih->states, entry) 1293 if (s->id == id && s->creatorid == creatorid) 1294 break; 1295 1296 if (s == NULL) 1297 PF_HASHROW_UNLOCK(ih); 1298 1299 return (s); 1300 } 1301 1302 /* 1303 * Find state by key. 1304 * Returns with ID hash slot locked on success. 1305 */ 1306 static struct pf_state * 1307 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1308 { 1309 struct pf_keyhash *kh; 1310 struct pf_state_key *sk; 1311 struct pf_state *s; 1312 int idx; 1313 1314 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1315 1316 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1317 1318 PF_HASHROW_LOCK(kh); 1319 LIST_FOREACH(sk, &kh->keys, entry) 1320 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1321 break; 1322 if (sk == NULL) { 1323 PF_HASHROW_UNLOCK(kh); 1324 return (NULL); 1325 } 1326 1327 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1328 1329 /* List is sorted, if-bound states before floating ones. */ 1330 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1331 if (s->kif == V_pfi_all || s->kif == kif) { 1332 PF_STATE_LOCK(s); 1333 PF_HASHROW_UNLOCK(kh); 1334 if (s->timeout >= PFTM_MAX) { 1335 /* 1336 * State is either being processed by 1337 * pf_unlink_state() in an other thread, or 1338 * is scheduled for immediate expiry. 1339 */ 1340 PF_STATE_UNLOCK(s); 1341 return (NULL); 1342 } 1343 return (s); 1344 } 1345 PF_HASHROW_UNLOCK(kh); 1346 1347 return (NULL); 1348 } 1349 1350 struct pf_state * 1351 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1352 { 1353 struct pf_keyhash *kh; 1354 struct pf_state_key *sk; 1355 struct pf_state *s, *ret = NULL; 1356 int idx, inout = 0; 1357 1358 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1359 1360 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1361 1362 PF_HASHROW_LOCK(kh); 1363 LIST_FOREACH(sk, &kh->keys, entry) 1364 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1365 break; 1366 if (sk == NULL) { 1367 PF_HASHROW_UNLOCK(kh); 1368 return (NULL); 1369 } 1370 switch (dir) { 1371 case PF_IN: 1372 idx = PF_SK_WIRE; 1373 break; 1374 case PF_OUT: 1375 idx = PF_SK_STACK; 1376 break; 1377 case PF_INOUT: 1378 idx = PF_SK_WIRE; 1379 inout = 1; 1380 break; 1381 default: 1382 panic("%s: dir %u", __func__, dir); 1383 } 1384 second_run: 1385 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1386 if (more == NULL) { 1387 PF_HASHROW_UNLOCK(kh); 1388 return (s); 1389 } 1390 1391 if (ret) 1392 (*more)++; 1393 else 1394 ret = s; 1395 } 1396 if (inout == 1) { 1397 inout = 0; 1398 idx = PF_SK_STACK; 1399 goto second_run; 1400 } 1401 PF_HASHROW_UNLOCK(kh); 1402 1403 return (ret); 1404 } 1405 1406 /* END state table stuff */ 1407 1408 static void 1409 pf_send(struct pf_send_entry *pfse) 1410 { 1411 1412 PF_SENDQ_LOCK(); 1413 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1414 PF_SENDQ_UNLOCK(); 1415 swi_sched(V_pf_swi_cookie, 0); 1416 } 1417 1418 void 1419 pf_intr(void *v) 1420 { 1421 struct pf_send_head queue; 1422 struct pf_send_entry *pfse, *next; 1423 1424 CURVNET_SET((struct vnet *)v); 1425 1426 PF_SENDQ_LOCK(); 1427 queue = V_pf_sendqueue; 1428 STAILQ_INIT(&V_pf_sendqueue); 1429 PF_SENDQ_UNLOCK(); 1430 1431 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1432 switch (pfse->pfse_type) { 1433 #ifdef INET 1434 case PFSE_IP: 1435 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1436 break; 1437 case PFSE_ICMP: 1438 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1439 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1440 break; 1441 #endif /* INET */ 1442 #ifdef INET6 1443 case PFSE_IP6: 1444 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1445 NULL); 1446 break; 1447 case PFSE_ICMP6: 1448 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1449 pfse->icmpopts.code, pfse->icmpopts.mtu); 1450 break; 1451 #endif /* INET6 */ 1452 default: 1453 panic("%s: unknown type", __func__); 1454 } 1455 free(pfse, M_PFTEMP); 1456 } 1457 CURVNET_RESTORE(); 1458 } 1459 1460 void 1461 pf_purge_thread(void *unused __unused) 1462 { 1463 VNET_ITERATOR_DECL(vnet_iter); 1464 1465 sx_xlock(&pf_end_lock); 1466 while (pf_end_threads == 0) { 1467 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", hz / 10); 1468 1469 VNET_LIST_RLOCK(); 1470 VNET_FOREACH(vnet_iter) { 1471 CURVNET_SET(vnet_iter); 1472 1473 1474 /* Wait until V_pf_default_rule is initialized. */ 1475 if (V_pf_vnet_active == 0) { 1476 CURVNET_RESTORE(); 1477 continue; 1478 } 1479 1480 /* 1481 * Process 1/interval fraction of the state 1482 * table every run. 1483 */ 1484 V_pf_purge_idx = 1485 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1486 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1487 1488 /* 1489 * Purge other expired types every 1490 * PFTM_INTERVAL seconds. 1491 */ 1492 if (V_pf_purge_idx == 0) { 1493 /* 1494 * Order is important: 1495 * - states and src nodes reference rules 1496 * - states and rules reference kifs 1497 */ 1498 pf_purge_expired_fragments(); 1499 pf_purge_expired_src_nodes(); 1500 pf_purge_unlinked_rules(); 1501 pfi_kif_purge(); 1502 } 1503 CURVNET_RESTORE(); 1504 } 1505 VNET_LIST_RUNLOCK(); 1506 } 1507 1508 pf_end_threads++; 1509 sx_xunlock(&pf_end_lock); 1510 kproc_exit(0); 1511 } 1512 1513 void 1514 pf_unload_vnet_purge(void) 1515 { 1516 1517 /* 1518 * To cleanse up all kifs and rules we need 1519 * two runs: first one clears reference flags, 1520 * then pf_purge_expired_states() doesn't 1521 * raise them, and then second run frees. 1522 */ 1523 pf_purge_unlinked_rules(); 1524 pfi_kif_purge(); 1525 1526 /* 1527 * Now purge everything. 1528 */ 1529 pf_purge_expired_states(0, pf_hashmask); 1530 pf_purge_fragments(UINT_MAX); 1531 pf_purge_expired_src_nodes(); 1532 1533 /* 1534 * Now all kifs & rules should be unreferenced, 1535 * thus should be successfully freed. 1536 */ 1537 pf_purge_unlinked_rules(); 1538 pfi_kif_purge(); 1539 } 1540 1541 1542 u_int32_t 1543 pf_state_expires(const struct pf_state *state) 1544 { 1545 u_int32_t timeout; 1546 u_int32_t start; 1547 u_int32_t end; 1548 u_int32_t states; 1549 1550 /* handle all PFTM_* > PFTM_MAX here */ 1551 if (state->timeout == PFTM_PURGE) 1552 return (time_uptime); 1553 KASSERT(state->timeout != PFTM_UNLINKED, 1554 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1555 KASSERT((state->timeout < PFTM_MAX), 1556 ("pf_state_expires: timeout > PFTM_MAX")); 1557 timeout = state->rule.ptr->timeout[state->timeout]; 1558 if (!timeout) 1559 timeout = V_pf_default_rule.timeout[state->timeout]; 1560 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1561 if (start) { 1562 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1563 states = counter_u64_fetch(state->rule.ptr->states_cur); 1564 } else { 1565 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1566 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1567 states = V_pf_status.states; 1568 } 1569 if (end && states > start && start < end) { 1570 if (states < end) 1571 return (state->expire + timeout * (end - states) / 1572 (end - start)); 1573 else 1574 return (time_uptime); 1575 } 1576 return (state->expire + timeout); 1577 } 1578 1579 void 1580 pf_purge_expired_src_nodes() 1581 { 1582 struct pf_src_node_list freelist; 1583 struct pf_srchash *sh; 1584 struct pf_src_node *cur, *next; 1585 int i; 1586 1587 LIST_INIT(&freelist); 1588 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1589 PF_HASHROW_LOCK(sh); 1590 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1591 if (cur->states == 0 && cur->expire <= time_uptime) { 1592 pf_unlink_src_node(cur); 1593 LIST_INSERT_HEAD(&freelist, cur, entry); 1594 } else if (cur->rule.ptr != NULL) 1595 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1596 PF_HASHROW_UNLOCK(sh); 1597 } 1598 1599 pf_free_src_nodes(&freelist); 1600 1601 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1602 } 1603 1604 static void 1605 pf_src_tree_remove_state(struct pf_state *s) 1606 { 1607 struct pf_src_node *sn; 1608 struct pf_srchash *sh; 1609 uint32_t timeout; 1610 1611 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1612 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1613 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1614 1615 if (s->src_node != NULL) { 1616 sn = s->src_node; 1617 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1618 PF_HASHROW_LOCK(sh); 1619 if (s->src.tcp_est) 1620 --sn->conn; 1621 if (--sn->states == 0) 1622 sn->expire = time_uptime + timeout; 1623 PF_HASHROW_UNLOCK(sh); 1624 } 1625 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1626 sn = s->nat_src_node; 1627 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1628 PF_HASHROW_LOCK(sh); 1629 if (--sn->states == 0) 1630 sn->expire = time_uptime + timeout; 1631 PF_HASHROW_UNLOCK(sh); 1632 } 1633 s->src_node = s->nat_src_node = NULL; 1634 } 1635 1636 /* 1637 * Unlink and potentilly free a state. Function may be 1638 * called with ID hash row locked, but always returns 1639 * unlocked, since it needs to go through key hash locking. 1640 */ 1641 int 1642 pf_unlink_state(struct pf_state *s, u_int flags) 1643 { 1644 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1645 1646 if ((flags & PF_ENTER_LOCKED) == 0) 1647 PF_HASHROW_LOCK(ih); 1648 else 1649 PF_HASHROW_ASSERT(ih); 1650 1651 if (s->timeout == PFTM_UNLINKED) { 1652 /* 1653 * State is being processed 1654 * by pf_unlink_state() in 1655 * an other thread. 1656 */ 1657 PF_HASHROW_UNLOCK(ih); 1658 return (0); /* XXXGL: undefined actually */ 1659 } 1660 1661 if (s->src.state == PF_TCPS_PROXY_DST) { 1662 /* XXX wire key the right one? */ 1663 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1664 &s->key[PF_SK_WIRE]->addr[1], 1665 &s->key[PF_SK_WIRE]->addr[0], 1666 s->key[PF_SK_WIRE]->port[1], 1667 s->key[PF_SK_WIRE]->port[0], 1668 s->src.seqhi, s->src.seqlo + 1, 1669 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1670 } 1671 1672 LIST_REMOVE(s, entry); 1673 pf_src_tree_remove_state(s); 1674 1675 if (pfsync_delete_state_ptr != NULL) 1676 pfsync_delete_state_ptr(s); 1677 1678 STATE_DEC_COUNTERS(s); 1679 1680 s->timeout = PFTM_UNLINKED; 1681 1682 PF_HASHROW_UNLOCK(ih); 1683 1684 pf_detach_state(s); 1685 /* pf_state_insert() initialises refs to 2, so we can never release the 1686 * last reference here, only in pf_release_state(). */ 1687 (void)refcount_release(&s->refs); 1688 1689 return (pf_release_state(s)); 1690 } 1691 1692 void 1693 pf_free_state(struct pf_state *cur) 1694 { 1695 1696 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1697 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1698 cur->timeout)); 1699 1700 pf_normalize_tcp_cleanup(cur); 1701 uma_zfree(V_pf_state_z, cur); 1702 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1703 } 1704 1705 /* 1706 * Called only from pf_purge_thread(), thus serialized. 1707 */ 1708 static u_int 1709 pf_purge_expired_states(u_int i, int maxcheck) 1710 { 1711 struct pf_idhash *ih; 1712 struct pf_state *s; 1713 1714 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1715 1716 /* 1717 * Go through hash and unlink states that expire now. 1718 */ 1719 while (maxcheck > 0) { 1720 1721 ih = &V_pf_idhash[i]; 1722 relock: 1723 PF_HASHROW_LOCK(ih); 1724 LIST_FOREACH(s, &ih->states, entry) { 1725 if (pf_state_expires(s) <= time_uptime) { 1726 V_pf_status.states -= 1727 pf_unlink_state(s, PF_ENTER_LOCKED); 1728 goto relock; 1729 } 1730 s->rule.ptr->rule_flag |= PFRULE_REFS; 1731 if (s->nat_rule.ptr != NULL) 1732 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1733 if (s->anchor.ptr != NULL) 1734 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1735 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1736 if (s->rt_kif) 1737 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1738 } 1739 PF_HASHROW_UNLOCK(ih); 1740 1741 /* Return when we hit end of hash. */ 1742 if (++i > pf_hashmask) { 1743 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1744 return (0); 1745 } 1746 1747 maxcheck--; 1748 } 1749 1750 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1751 1752 return (i); 1753 } 1754 1755 static void 1756 pf_purge_unlinked_rules() 1757 { 1758 struct pf_rulequeue tmpq; 1759 struct pf_rule *r, *r1; 1760 1761 /* 1762 * If we have overloading task pending, then we'd 1763 * better skip purging this time. There is a tiny 1764 * probability that overloading task references 1765 * an already unlinked rule. 1766 */ 1767 PF_OVERLOADQ_LOCK(); 1768 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1769 PF_OVERLOADQ_UNLOCK(); 1770 return; 1771 } 1772 PF_OVERLOADQ_UNLOCK(); 1773 1774 /* 1775 * Do naive mark-and-sweep garbage collecting of old rules. 1776 * Reference flag is raised by pf_purge_expired_states() 1777 * and pf_purge_expired_src_nodes(). 1778 * 1779 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1780 * use a temporary queue. 1781 */ 1782 TAILQ_INIT(&tmpq); 1783 PF_UNLNKDRULES_LOCK(); 1784 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1785 if (!(r->rule_flag & PFRULE_REFS)) { 1786 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1787 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1788 } else 1789 r->rule_flag &= ~PFRULE_REFS; 1790 } 1791 PF_UNLNKDRULES_UNLOCK(); 1792 1793 if (!TAILQ_EMPTY(&tmpq)) { 1794 PF_RULES_WLOCK(); 1795 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1796 TAILQ_REMOVE(&tmpq, r, entries); 1797 pf_free_rule(r); 1798 } 1799 PF_RULES_WUNLOCK(); 1800 } 1801 } 1802 1803 void 1804 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1805 { 1806 switch (af) { 1807 #ifdef INET 1808 case AF_INET: { 1809 u_int32_t a = ntohl(addr->addr32[0]); 1810 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1811 (a>>8)&255, a&255); 1812 if (p) { 1813 p = ntohs(p); 1814 printf(":%u", p); 1815 } 1816 break; 1817 } 1818 #endif /* INET */ 1819 #ifdef INET6 1820 case AF_INET6: { 1821 u_int16_t b; 1822 u_int8_t i, curstart, curend, maxstart, maxend; 1823 curstart = curend = maxstart = maxend = 255; 1824 for (i = 0; i < 8; i++) { 1825 if (!addr->addr16[i]) { 1826 if (curstart == 255) 1827 curstart = i; 1828 curend = i; 1829 } else { 1830 if ((curend - curstart) > 1831 (maxend - maxstart)) { 1832 maxstart = curstart; 1833 maxend = curend; 1834 } 1835 curstart = curend = 255; 1836 } 1837 } 1838 if ((curend - curstart) > 1839 (maxend - maxstart)) { 1840 maxstart = curstart; 1841 maxend = curend; 1842 } 1843 for (i = 0; i < 8; i++) { 1844 if (i >= maxstart && i <= maxend) { 1845 if (i == 0) 1846 printf(":"); 1847 if (i == maxend) 1848 printf(":"); 1849 } else { 1850 b = ntohs(addr->addr16[i]); 1851 printf("%x", b); 1852 if (i < 7) 1853 printf(":"); 1854 } 1855 } 1856 if (p) { 1857 p = ntohs(p); 1858 printf("[%u]", p); 1859 } 1860 break; 1861 } 1862 #endif /* INET6 */ 1863 } 1864 } 1865 1866 void 1867 pf_print_state(struct pf_state *s) 1868 { 1869 pf_print_state_parts(s, NULL, NULL); 1870 } 1871 1872 static void 1873 pf_print_state_parts(struct pf_state *s, 1874 struct pf_state_key *skwp, struct pf_state_key *sksp) 1875 { 1876 struct pf_state_key *skw, *sks; 1877 u_int8_t proto, dir; 1878 1879 /* Do our best to fill these, but they're skipped if NULL */ 1880 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1881 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1882 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1883 dir = s ? s->direction : 0; 1884 1885 switch (proto) { 1886 case IPPROTO_IPV4: 1887 printf("IPv4"); 1888 break; 1889 case IPPROTO_IPV6: 1890 printf("IPv6"); 1891 break; 1892 case IPPROTO_TCP: 1893 printf("TCP"); 1894 break; 1895 case IPPROTO_UDP: 1896 printf("UDP"); 1897 break; 1898 case IPPROTO_ICMP: 1899 printf("ICMP"); 1900 break; 1901 case IPPROTO_ICMPV6: 1902 printf("ICMPv6"); 1903 break; 1904 default: 1905 printf("%u", proto); 1906 break; 1907 } 1908 switch (dir) { 1909 case PF_IN: 1910 printf(" in"); 1911 break; 1912 case PF_OUT: 1913 printf(" out"); 1914 break; 1915 } 1916 if (skw) { 1917 printf(" wire: "); 1918 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1919 printf(" "); 1920 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1921 } 1922 if (sks) { 1923 printf(" stack: "); 1924 if (sks != skw) { 1925 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1926 printf(" "); 1927 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1928 } else 1929 printf("-"); 1930 } 1931 if (s) { 1932 if (proto == IPPROTO_TCP) { 1933 printf(" [lo=%u high=%u win=%u modulator=%u", 1934 s->src.seqlo, s->src.seqhi, 1935 s->src.max_win, s->src.seqdiff); 1936 if (s->src.wscale && s->dst.wscale) 1937 printf(" wscale=%u", 1938 s->src.wscale & PF_WSCALE_MASK); 1939 printf("]"); 1940 printf(" [lo=%u high=%u win=%u modulator=%u", 1941 s->dst.seqlo, s->dst.seqhi, 1942 s->dst.max_win, s->dst.seqdiff); 1943 if (s->src.wscale && s->dst.wscale) 1944 printf(" wscale=%u", 1945 s->dst.wscale & PF_WSCALE_MASK); 1946 printf("]"); 1947 } 1948 printf(" %u:%u", s->src.state, s->dst.state); 1949 } 1950 } 1951 1952 void 1953 pf_print_flags(u_int8_t f) 1954 { 1955 if (f) 1956 printf(" "); 1957 if (f & TH_FIN) 1958 printf("F"); 1959 if (f & TH_SYN) 1960 printf("S"); 1961 if (f & TH_RST) 1962 printf("R"); 1963 if (f & TH_PUSH) 1964 printf("P"); 1965 if (f & TH_ACK) 1966 printf("A"); 1967 if (f & TH_URG) 1968 printf("U"); 1969 if (f & TH_ECE) 1970 printf("E"); 1971 if (f & TH_CWR) 1972 printf("W"); 1973 } 1974 1975 #define PF_SET_SKIP_STEPS(i) \ 1976 do { \ 1977 while (head[i] != cur) { \ 1978 head[i]->skip[i].ptr = cur; \ 1979 head[i] = TAILQ_NEXT(head[i], entries); \ 1980 } \ 1981 } while (0) 1982 1983 void 1984 pf_calc_skip_steps(struct pf_rulequeue *rules) 1985 { 1986 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1987 int i; 1988 1989 cur = TAILQ_FIRST(rules); 1990 prev = cur; 1991 for (i = 0; i < PF_SKIP_COUNT; ++i) 1992 head[i] = cur; 1993 while (cur != NULL) { 1994 1995 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1996 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1997 if (cur->direction != prev->direction) 1998 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1999 if (cur->af != prev->af) 2000 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2001 if (cur->proto != prev->proto) 2002 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2003 if (cur->src.neg != prev->src.neg || 2004 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2005 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2006 if (cur->src.port[0] != prev->src.port[0] || 2007 cur->src.port[1] != prev->src.port[1] || 2008 cur->src.port_op != prev->src.port_op) 2009 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2010 if (cur->dst.neg != prev->dst.neg || 2011 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2012 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2013 if (cur->dst.port[0] != prev->dst.port[0] || 2014 cur->dst.port[1] != prev->dst.port[1] || 2015 cur->dst.port_op != prev->dst.port_op) 2016 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2017 2018 prev = cur; 2019 cur = TAILQ_NEXT(cur, entries); 2020 } 2021 for (i = 0; i < PF_SKIP_COUNT; ++i) 2022 PF_SET_SKIP_STEPS(i); 2023 } 2024 2025 static int 2026 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2027 { 2028 if (aw1->type != aw2->type) 2029 return (1); 2030 switch (aw1->type) { 2031 case PF_ADDR_ADDRMASK: 2032 case PF_ADDR_RANGE: 2033 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2034 return (1); 2035 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2036 return (1); 2037 return (0); 2038 case PF_ADDR_DYNIFTL: 2039 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2040 case PF_ADDR_NOROUTE: 2041 case PF_ADDR_URPFFAILED: 2042 return (0); 2043 case PF_ADDR_TABLE: 2044 return (aw1->p.tbl != aw2->p.tbl); 2045 default: 2046 printf("invalid address type: %d\n", aw1->type); 2047 return (1); 2048 } 2049 } 2050 2051 /** 2052 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2053 * header isn't always a full checksum. In some cases (i.e. output) it's a 2054 * pseudo-header checksum, which is a partial checksum over src/dst IP 2055 * addresses, protocol number and length. 2056 * 2057 * That means we have the following cases: 2058 * * Input or forwarding: we don't have TSO, the checksum fields are full 2059 * checksums, we need to update the checksum whenever we change anything. 2060 * * Output (i.e. the checksum is a pseudo-header checksum): 2061 * x The field being updated is src/dst address or affects the length of 2062 * the packet. We need to update the pseudo-header checksum (note that this 2063 * checksum is not ones' complement). 2064 * x Some other field is being modified (e.g. src/dst port numbers): We 2065 * don't have to update anything. 2066 **/ 2067 u_int16_t 2068 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2069 { 2070 u_int32_t l; 2071 2072 if (udp && !cksum) 2073 return (0x0000); 2074 l = cksum + old - new; 2075 l = (l >> 16) + (l & 65535); 2076 l = l & 65535; 2077 if (udp && !l) 2078 return (0xFFFF); 2079 return (l); 2080 } 2081 2082 u_int16_t 2083 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2084 u_int16_t new, u_int8_t udp) 2085 { 2086 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2087 return (cksum); 2088 2089 return (pf_cksum_fixup(cksum, old, new, udp)); 2090 } 2091 2092 static void 2093 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2094 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2095 sa_family_t af) 2096 { 2097 struct pf_addr ao; 2098 u_int16_t po = *p; 2099 2100 PF_ACPY(&ao, a, af); 2101 PF_ACPY(a, an, af); 2102 2103 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2104 *pc = ~*pc; 2105 2106 *p = pn; 2107 2108 switch (af) { 2109 #ifdef INET 2110 case AF_INET: 2111 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2112 ao.addr16[0], an->addr16[0], 0), 2113 ao.addr16[1], an->addr16[1], 0); 2114 *p = pn; 2115 2116 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2117 ao.addr16[0], an->addr16[0], u), 2118 ao.addr16[1], an->addr16[1], u); 2119 2120 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2121 break; 2122 #endif /* INET */ 2123 #ifdef INET6 2124 case AF_INET6: 2125 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2126 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2127 pf_cksum_fixup(pf_cksum_fixup(*pc, 2128 ao.addr16[0], an->addr16[0], u), 2129 ao.addr16[1], an->addr16[1], u), 2130 ao.addr16[2], an->addr16[2], u), 2131 ao.addr16[3], an->addr16[3], u), 2132 ao.addr16[4], an->addr16[4], u), 2133 ao.addr16[5], an->addr16[5], u), 2134 ao.addr16[6], an->addr16[6], u), 2135 ao.addr16[7], an->addr16[7], u); 2136 2137 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2138 break; 2139 #endif /* INET6 */ 2140 } 2141 2142 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2143 CSUM_DELAY_DATA_IPV6)) { 2144 *pc = ~*pc; 2145 if (! *pc) 2146 *pc = 0xffff; 2147 } 2148 } 2149 2150 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2151 void 2152 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2153 { 2154 u_int32_t ao; 2155 2156 memcpy(&ao, a, sizeof(ao)); 2157 memcpy(a, &an, sizeof(u_int32_t)); 2158 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2159 ao % 65536, an % 65536, u); 2160 } 2161 2162 void 2163 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2164 { 2165 u_int32_t ao; 2166 2167 memcpy(&ao, a, sizeof(ao)); 2168 memcpy(a, &an, sizeof(u_int32_t)); 2169 2170 *c = pf_proto_cksum_fixup(m, 2171 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2172 ao % 65536, an % 65536, udp); 2173 } 2174 2175 #ifdef INET6 2176 static void 2177 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2178 { 2179 struct pf_addr ao; 2180 2181 PF_ACPY(&ao, a, AF_INET6); 2182 PF_ACPY(a, an, AF_INET6); 2183 2184 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2185 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2186 pf_cksum_fixup(pf_cksum_fixup(*c, 2187 ao.addr16[0], an->addr16[0], u), 2188 ao.addr16[1], an->addr16[1], u), 2189 ao.addr16[2], an->addr16[2], u), 2190 ao.addr16[3], an->addr16[3], u), 2191 ao.addr16[4], an->addr16[4], u), 2192 ao.addr16[5], an->addr16[5], u), 2193 ao.addr16[6], an->addr16[6], u), 2194 ao.addr16[7], an->addr16[7], u); 2195 } 2196 #endif /* INET6 */ 2197 2198 static void 2199 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2200 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2201 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2202 { 2203 struct pf_addr oia, ooa; 2204 2205 PF_ACPY(&oia, ia, af); 2206 if (oa) 2207 PF_ACPY(&ooa, oa, af); 2208 2209 /* Change inner protocol port, fix inner protocol checksum. */ 2210 if (ip != NULL) { 2211 u_int16_t oip = *ip; 2212 u_int32_t opc; 2213 2214 if (pc != NULL) 2215 opc = *pc; 2216 *ip = np; 2217 if (pc != NULL) 2218 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2219 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2220 if (pc != NULL) 2221 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2222 } 2223 /* Change inner ip address, fix inner ip and icmp checksums. */ 2224 PF_ACPY(ia, na, af); 2225 switch (af) { 2226 #ifdef INET 2227 case AF_INET: { 2228 u_int32_t oh2c = *h2c; 2229 2230 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2231 oia.addr16[0], ia->addr16[0], 0), 2232 oia.addr16[1], ia->addr16[1], 0); 2233 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2234 oia.addr16[0], ia->addr16[0], 0), 2235 oia.addr16[1], ia->addr16[1], 0); 2236 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2237 break; 2238 } 2239 #endif /* INET */ 2240 #ifdef INET6 2241 case AF_INET6: 2242 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2243 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2244 pf_cksum_fixup(pf_cksum_fixup(*ic, 2245 oia.addr16[0], ia->addr16[0], u), 2246 oia.addr16[1], ia->addr16[1], u), 2247 oia.addr16[2], ia->addr16[2], u), 2248 oia.addr16[3], ia->addr16[3], u), 2249 oia.addr16[4], ia->addr16[4], u), 2250 oia.addr16[5], ia->addr16[5], u), 2251 oia.addr16[6], ia->addr16[6], u), 2252 oia.addr16[7], ia->addr16[7], u); 2253 break; 2254 #endif /* INET6 */ 2255 } 2256 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2257 if (oa) { 2258 PF_ACPY(oa, na, af); 2259 switch (af) { 2260 #ifdef INET 2261 case AF_INET: 2262 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2263 ooa.addr16[0], oa->addr16[0], 0), 2264 ooa.addr16[1], oa->addr16[1], 0); 2265 break; 2266 #endif /* INET */ 2267 #ifdef INET6 2268 case AF_INET6: 2269 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2270 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2271 pf_cksum_fixup(pf_cksum_fixup(*ic, 2272 ooa.addr16[0], oa->addr16[0], u), 2273 ooa.addr16[1], oa->addr16[1], u), 2274 ooa.addr16[2], oa->addr16[2], u), 2275 ooa.addr16[3], oa->addr16[3], u), 2276 ooa.addr16[4], oa->addr16[4], u), 2277 ooa.addr16[5], oa->addr16[5], u), 2278 ooa.addr16[6], oa->addr16[6], u), 2279 ooa.addr16[7], oa->addr16[7], u); 2280 break; 2281 #endif /* INET6 */ 2282 } 2283 } 2284 } 2285 2286 2287 /* 2288 * Need to modulate the sequence numbers in the TCP SACK option 2289 * (credits to Krzysztof Pfaff for report and patch) 2290 */ 2291 static int 2292 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2293 struct tcphdr *th, struct pf_state_peer *dst) 2294 { 2295 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2296 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2297 int copyback = 0, i, olen; 2298 struct sackblk sack; 2299 2300 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2301 if (hlen < TCPOLEN_SACKLEN || 2302 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2303 return 0; 2304 2305 while (hlen >= TCPOLEN_SACKLEN) { 2306 olen = opt[1]; 2307 switch (*opt) { 2308 case TCPOPT_EOL: /* FALLTHROUGH */ 2309 case TCPOPT_NOP: 2310 opt++; 2311 hlen--; 2312 break; 2313 case TCPOPT_SACK: 2314 if (olen > hlen) 2315 olen = hlen; 2316 if (olen >= TCPOLEN_SACKLEN) { 2317 for (i = 2; i + TCPOLEN_SACK <= olen; 2318 i += TCPOLEN_SACK) { 2319 memcpy(&sack, &opt[i], sizeof(sack)); 2320 pf_change_proto_a(m, &sack.start, &th->th_sum, 2321 htonl(ntohl(sack.start) - dst->seqdiff), 0); 2322 pf_change_proto_a(m, &sack.end, &th->th_sum, 2323 htonl(ntohl(sack.end) - dst->seqdiff), 0); 2324 memcpy(&opt[i], &sack, sizeof(sack)); 2325 } 2326 copyback = 1; 2327 } 2328 /* FALLTHROUGH */ 2329 default: 2330 if (olen < 2) 2331 olen = 2; 2332 hlen -= olen; 2333 opt += olen; 2334 } 2335 } 2336 2337 if (copyback) 2338 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2339 return (copyback); 2340 } 2341 2342 static void 2343 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2344 const struct pf_addr *saddr, const struct pf_addr *daddr, 2345 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2346 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2347 u_int16_t rtag, struct ifnet *ifp) 2348 { 2349 struct pf_send_entry *pfse; 2350 struct mbuf *m; 2351 int len, tlen; 2352 #ifdef INET 2353 struct ip *h = NULL; 2354 #endif /* INET */ 2355 #ifdef INET6 2356 struct ip6_hdr *h6 = NULL; 2357 #endif /* INET6 */ 2358 struct tcphdr *th; 2359 char *opt; 2360 struct pf_mtag *pf_mtag; 2361 2362 len = 0; 2363 th = NULL; 2364 2365 /* maximum segment size tcp option */ 2366 tlen = sizeof(struct tcphdr); 2367 if (mss) 2368 tlen += 4; 2369 2370 switch (af) { 2371 #ifdef INET 2372 case AF_INET: 2373 len = sizeof(struct ip) + tlen; 2374 break; 2375 #endif /* INET */ 2376 #ifdef INET6 2377 case AF_INET6: 2378 len = sizeof(struct ip6_hdr) + tlen; 2379 break; 2380 #endif /* INET6 */ 2381 default: 2382 panic("%s: unsupported af %d", __func__, af); 2383 } 2384 2385 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2386 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2387 if (pfse == NULL) 2388 return; 2389 m = m_gethdr(M_NOWAIT, MT_DATA); 2390 if (m == NULL) { 2391 free(pfse, M_PFTEMP); 2392 return; 2393 } 2394 #ifdef MAC 2395 mac_netinet_firewall_send(m); 2396 #endif 2397 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2398 free(pfse, M_PFTEMP); 2399 m_freem(m); 2400 return; 2401 } 2402 if (tag) 2403 m->m_flags |= M_SKIP_FIREWALL; 2404 pf_mtag->tag = rtag; 2405 2406 if (r != NULL && r->rtableid >= 0) 2407 M_SETFIB(m, r->rtableid); 2408 2409 #ifdef ALTQ 2410 if (r != NULL && r->qid) { 2411 pf_mtag->qid = r->qid; 2412 2413 /* add hints for ecn */ 2414 pf_mtag->hdr = mtod(m, struct ip *); 2415 } 2416 #endif /* ALTQ */ 2417 m->m_data += max_linkhdr; 2418 m->m_pkthdr.len = m->m_len = len; 2419 m->m_pkthdr.rcvif = NULL; 2420 bzero(m->m_data, len); 2421 switch (af) { 2422 #ifdef INET 2423 case AF_INET: 2424 h = mtod(m, struct ip *); 2425 2426 /* IP header fields included in the TCP checksum */ 2427 h->ip_p = IPPROTO_TCP; 2428 h->ip_len = htons(tlen); 2429 h->ip_src.s_addr = saddr->v4.s_addr; 2430 h->ip_dst.s_addr = daddr->v4.s_addr; 2431 2432 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2433 break; 2434 #endif /* INET */ 2435 #ifdef INET6 2436 case AF_INET6: 2437 h6 = mtod(m, struct ip6_hdr *); 2438 2439 /* IP header fields included in the TCP checksum */ 2440 h6->ip6_nxt = IPPROTO_TCP; 2441 h6->ip6_plen = htons(tlen); 2442 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2443 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2444 2445 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2446 break; 2447 #endif /* INET6 */ 2448 } 2449 2450 /* TCP header */ 2451 th->th_sport = sport; 2452 th->th_dport = dport; 2453 th->th_seq = htonl(seq); 2454 th->th_ack = htonl(ack); 2455 th->th_off = tlen >> 2; 2456 th->th_flags = flags; 2457 th->th_win = htons(win); 2458 2459 if (mss) { 2460 opt = (char *)(th + 1); 2461 opt[0] = TCPOPT_MAXSEG; 2462 opt[1] = 4; 2463 HTONS(mss); 2464 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2465 } 2466 2467 switch (af) { 2468 #ifdef INET 2469 case AF_INET: 2470 /* TCP checksum */ 2471 th->th_sum = in_cksum(m, len); 2472 2473 /* Finish the IP header */ 2474 h->ip_v = 4; 2475 h->ip_hl = sizeof(*h) >> 2; 2476 h->ip_tos = IPTOS_LOWDELAY; 2477 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2478 h->ip_len = htons(len); 2479 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2480 h->ip_sum = 0; 2481 2482 pfse->pfse_type = PFSE_IP; 2483 break; 2484 #endif /* INET */ 2485 #ifdef INET6 2486 case AF_INET6: 2487 /* TCP checksum */ 2488 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2489 sizeof(struct ip6_hdr), tlen); 2490 2491 h6->ip6_vfc |= IPV6_VERSION; 2492 h6->ip6_hlim = IPV6_DEFHLIM; 2493 2494 pfse->pfse_type = PFSE_IP6; 2495 break; 2496 #endif /* INET6 */ 2497 } 2498 pfse->pfse_m = m; 2499 pf_send(pfse); 2500 } 2501 2502 static void 2503 pf_return(struct pf_rule *r, struct pf_rule *nr, struct pf_pdesc *pd, 2504 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 2505 struct pfi_kif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 2506 u_short *reason) 2507 { 2508 struct pf_addr * const saddr = pd->src; 2509 struct pf_addr * const daddr = pd->dst; 2510 sa_family_t af = pd->af; 2511 2512 /* undo NAT changes, if they have taken place */ 2513 if (nr != NULL) { 2514 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 2515 PF_ACPY(daddr, &sk->addr[pd->didx], af); 2516 if (pd->sport) 2517 *pd->sport = sk->port[pd->sidx]; 2518 if (pd->dport) 2519 *pd->dport = sk->port[pd->didx]; 2520 if (pd->proto_sum) 2521 *pd->proto_sum = bproto_sum; 2522 if (pd->ip_sum) 2523 *pd->ip_sum = bip_sum; 2524 m_copyback(m, off, hdrlen, pd->hdr.any); 2525 } 2526 if (pd->proto == IPPROTO_TCP && 2527 ((r->rule_flag & PFRULE_RETURNRST) || 2528 (r->rule_flag & PFRULE_RETURN)) && 2529 !(th->th_flags & TH_RST)) { 2530 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 2531 int len = 0; 2532 #ifdef INET 2533 struct ip *h4; 2534 #endif 2535 #ifdef INET6 2536 struct ip6_hdr *h6; 2537 #endif 2538 2539 switch (af) { 2540 #ifdef INET 2541 case AF_INET: 2542 h4 = mtod(m, struct ip *); 2543 len = ntohs(h4->ip_len) - off; 2544 break; 2545 #endif 2546 #ifdef INET6 2547 case AF_INET6: 2548 h6 = mtod(m, struct ip6_hdr *); 2549 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 2550 break; 2551 #endif 2552 } 2553 2554 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 2555 REASON_SET(reason, PFRES_PROTCKSUM); 2556 else { 2557 if (th->th_flags & TH_SYN) 2558 ack++; 2559 if (th->th_flags & TH_FIN) 2560 ack++; 2561 pf_send_tcp(m, r, af, pd->dst, 2562 pd->src, th->th_dport, th->th_sport, 2563 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 2564 r->return_ttl, 1, 0, kif->pfik_ifp); 2565 } 2566 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 2567 r->return_icmp) 2568 pf_send_icmp(m, r->return_icmp >> 8, 2569 r->return_icmp & 255, af, r); 2570 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 2571 r->return_icmp6) 2572 pf_send_icmp(m, r->return_icmp6 >> 8, 2573 r->return_icmp6 & 255, af, r); 2574 } 2575 2576 2577 static int 2578 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2579 { 2580 struct m_tag *mtag; 2581 2582 KASSERT(prio <= PF_PRIO_MAX, 2583 ("%s with invalid pcp", __func__)); 2584 2585 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2586 if (mtag == NULL) { 2587 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2588 sizeof(uint8_t), M_NOWAIT); 2589 if (mtag == NULL) 2590 return (ENOMEM); 2591 m_tag_prepend(m, mtag); 2592 } 2593 2594 *(uint8_t *)(mtag + 1) = prio; 2595 return (0); 2596 } 2597 2598 static int 2599 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2600 { 2601 struct m_tag *mtag; 2602 u_int8_t mpcp; 2603 2604 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2605 if (mtag == NULL) 2606 return (0); 2607 2608 if (prio == PF_PRIO_ZERO) 2609 prio = 0; 2610 2611 mpcp = *(uint8_t *)(mtag + 1); 2612 2613 return (mpcp == prio); 2614 } 2615 2616 static void 2617 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2618 struct pf_rule *r) 2619 { 2620 struct pf_send_entry *pfse; 2621 struct mbuf *m0; 2622 struct pf_mtag *pf_mtag; 2623 2624 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2625 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2626 if (pfse == NULL) 2627 return; 2628 2629 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2630 free(pfse, M_PFTEMP); 2631 return; 2632 } 2633 2634 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2635 free(pfse, M_PFTEMP); 2636 return; 2637 } 2638 /* XXX: revisit */ 2639 m0->m_flags |= M_SKIP_FIREWALL; 2640 2641 if (r->rtableid >= 0) 2642 M_SETFIB(m0, r->rtableid); 2643 2644 #ifdef ALTQ 2645 if (r->qid) { 2646 pf_mtag->qid = r->qid; 2647 /* add hints for ecn */ 2648 pf_mtag->hdr = mtod(m0, struct ip *); 2649 } 2650 #endif /* ALTQ */ 2651 2652 switch (af) { 2653 #ifdef INET 2654 case AF_INET: 2655 pfse->pfse_type = PFSE_ICMP; 2656 break; 2657 #endif /* INET */ 2658 #ifdef INET6 2659 case AF_INET6: 2660 pfse->pfse_type = PFSE_ICMP6; 2661 break; 2662 #endif /* INET6 */ 2663 } 2664 pfse->pfse_m = m0; 2665 pfse->icmpopts.type = type; 2666 pfse->icmpopts.code = code; 2667 pf_send(pfse); 2668 } 2669 2670 /* 2671 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2672 * If n is 0, they match if they are equal. If n is != 0, they match if they 2673 * are different. 2674 */ 2675 int 2676 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2677 struct pf_addr *b, sa_family_t af) 2678 { 2679 int match = 0; 2680 2681 switch (af) { 2682 #ifdef INET 2683 case AF_INET: 2684 if ((a->addr32[0] & m->addr32[0]) == 2685 (b->addr32[0] & m->addr32[0])) 2686 match++; 2687 break; 2688 #endif /* INET */ 2689 #ifdef INET6 2690 case AF_INET6: 2691 if (((a->addr32[0] & m->addr32[0]) == 2692 (b->addr32[0] & m->addr32[0])) && 2693 ((a->addr32[1] & m->addr32[1]) == 2694 (b->addr32[1] & m->addr32[1])) && 2695 ((a->addr32[2] & m->addr32[2]) == 2696 (b->addr32[2] & m->addr32[2])) && 2697 ((a->addr32[3] & m->addr32[3]) == 2698 (b->addr32[3] & m->addr32[3]))) 2699 match++; 2700 break; 2701 #endif /* INET6 */ 2702 } 2703 if (match) { 2704 if (n) 2705 return (0); 2706 else 2707 return (1); 2708 } else { 2709 if (n) 2710 return (1); 2711 else 2712 return (0); 2713 } 2714 } 2715 2716 /* 2717 * Return 1 if b <= a <= e, otherwise return 0. 2718 */ 2719 int 2720 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2721 struct pf_addr *a, sa_family_t af) 2722 { 2723 switch (af) { 2724 #ifdef INET 2725 case AF_INET: 2726 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2727 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2728 return (0); 2729 break; 2730 #endif /* INET */ 2731 #ifdef INET6 2732 case AF_INET6: { 2733 int i; 2734 2735 /* check a >= b */ 2736 for (i = 0; i < 4; ++i) 2737 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2738 break; 2739 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2740 return (0); 2741 /* check a <= e */ 2742 for (i = 0; i < 4; ++i) 2743 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2744 break; 2745 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2746 return (0); 2747 break; 2748 } 2749 #endif /* INET6 */ 2750 } 2751 return (1); 2752 } 2753 2754 static int 2755 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2756 { 2757 switch (op) { 2758 case PF_OP_IRG: 2759 return ((p > a1) && (p < a2)); 2760 case PF_OP_XRG: 2761 return ((p < a1) || (p > a2)); 2762 case PF_OP_RRG: 2763 return ((p >= a1) && (p <= a2)); 2764 case PF_OP_EQ: 2765 return (p == a1); 2766 case PF_OP_NE: 2767 return (p != a1); 2768 case PF_OP_LT: 2769 return (p < a1); 2770 case PF_OP_LE: 2771 return (p <= a1); 2772 case PF_OP_GT: 2773 return (p > a1); 2774 case PF_OP_GE: 2775 return (p >= a1); 2776 } 2777 return (0); /* never reached */ 2778 } 2779 2780 int 2781 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2782 { 2783 NTOHS(a1); 2784 NTOHS(a2); 2785 NTOHS(p); 2786 return (pf_match(op, a1, a2, p)); 2787 } 2788 2789 static int 2790 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2791 { 2792 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2793 return (0); 2794 return (pf_match(op, a1, a2, u)); 2795 } 2796 2797 static int 2798 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2799 { 2800 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2801 return (0); 2802 return (pf_match(op, a1, a2, g)); 2803 } 2804 2805 int 2806 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2807 { 2808 if (*tag == -1) 2809 *tag = mtag; 2810 2811 return ((!r->match_tag_not && r->match_tag == *tag) || 2812 (r->match_tag_not && r->match_tag != *tag)); 2813 } 2814 2815 int 2816 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2817 { 2818 2819 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2820 2821 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2822 return (ENOMEM); 2823 2824 pd->pf_mtag->tag = tag; 2825 2826 return (0); 2827 } 2828 2829 #define PF_ANCHOR_STACKSIZE 32 2830 struct pf_anchor_stackframe { 2831 struct pf_ruleset *rs; 2832 struct pf_rule *r; /* XXX: + match bit */ 2833 struct pf_anchor *child; 2834 }; 2835 2836 /* 2837 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2838 */ 2839 #define PF_ANCHORSTACK_MATCH 0x00000001 2840 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2841 2842 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2843 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2844 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2845 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2846 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2847 } while (0) 2848 2849 void 2850 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2851 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2852 int *match) 2853 { 2854 struct pf_anchor_stackframe *f; 2855 2856 PF_RULES_RASSERT(); 2857 2858 if (match) 2859 *match = 0; 2860 if (*depth >= PF_ANCHOR_STACKSIZE) { 2861 printf("%s: anchor stack overflow on %s\n", 2862 __func__, (*r)->anchor->name); 2863 *r = TAILQ_NEXT(*r, entries); 2864 return; 2865 } else if (*depth == 0 && a != NULL) 2866 *a = *r; 2867 f = stack + (*depth)++; 2868 f->rs = *rs; 2869 f->r = *r; 2870 if ((*r)->anchor_wildcard) { 2871 struct pf_anchor_node *parent = &(*r)->anchor->children; 2872 2873 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2874 *r = NULL; 2875 return; 2876 } 2877 *rs = &f->child->ruleset; 2878 } else { 2879 f->child = NULL; 2880 *rs = &(*r)->anchor->ruleset; 2881 } 2882 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2883 } 2884 2885 int 2886 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2887 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2888 int *match) 2889 { 2890 struct pf_anchor_stackframe *f; 2891 struct pf_rule *fr; 2892 int quick = 0; 2893 2894 PF_RULES_RASSERT(); 2895 2896 do { 2897 if (*depth <= 0) 2898 break; 2899 f = stack + *depth - 1; 2900 fr = PF_ANCHOR_RULE(f); 2901 if (f->child != NULL) { 2902 struct pf_anchor_node *parent; 2903 2904 /* 2905 * This block traverses through 2906 * a wildcard anchor. 2907 */ 2908 parent = &fr->anchor->children; 2909 if (match != NULL && *match) { 2910 /* 2911 * If any of "*" matched, then 2912 * "foo/ *" matched, mark frame 2913 * appropriately. 2914 */ 2915 PF_ANCHOR_SET_MATCH(f); 2916 *match = 0; 2917 } 2918 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2919 if (f->child != NULL) { 2920 *rs = &f->child->ruleset; 2921 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2922 if (*r == NULL) 2923 continue; 2924 else 2925 break; 2926 } 2927 } 2928 (*depth)--; 2929 if (*depth == 0 && a != NULL) 2930 *a = NULL; 2931 *rs = f->rs; 2932 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2933 quick = fr->quick; 2934 *r = TAILQ_NEXT(fr, entries); 2935 } while (*r == NULL); 2936 2937 return (quick); 2938 } 2939 2940 #ifdef INET6 2941 void 2942 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2943 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2944 { 2945 switch (af) { 2946 #ifdef INET 2947 case AF_INET: 2948 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2949 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2950 break; 2951 #endif /* INET */ 2952 case AF_INET6: 2953 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2954 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2955 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2956 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2957 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2958 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2959 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2960 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2961 break; 2962 } 2963 } 2964 2965 void 2966 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2967 { 2968 switch (af) { 2969 #ifdef INET 2970 case AF_INET: 2971 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2972 break; 2973 #endif /* INET */ 2974 case AF_INET6: 2975 if (addr->addr32[3] == 0xffffffff) { 2976 addr->addr32[3] = 0; 2977 if (addr->addr32[2] == 0xffffffff) { 2978 addr->addr32[2] = 0; 2979 if (addr->addr32[1] == 0xffffffff) { 2980 addr->addr32[1] = 0; 2981 addr->addr32[0] = 2982 htonl(ntohl(addr->addr32[0]) + 1); 2983 } else 2984 addr->addr32[1] = 2985 htonl(ntohl(addr->addr32[1]) + 1); 2986 } else 2987 addr->addr32[2] = 2988 htonl(ntohl(addr->addr32[2]) + 1); 2989 } else 2990 addr->addr32[3] = 2991 htonl(ntohl(addr->addr32[3]) + 1); 2992 break; 2993 } 2994 } 2995 #endif /* INET6 */ 2996 2997 int 2998 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2999 { 3000 struct pf_addr *saddr, *daddr; 3001 u_int16_t sport, dport; 3002 struct inpcbinfo *pi; 3003 struct inpcb *inp; 3004 3005 pd->lookup.uid = UID_MAX; 3006 pd->lookup.gid = GID_MAX; 3007 3008 switch (pd->proto) { 3009 case IPPROTO_TCP: 3010 if (pd->hdr.tcp == NULL) 3011 return (-1); 3012 sport = pd->hdr.tcp->th_sport; 3013 dport = pd->hdr.tcp->th_dport; 3014 pi = &V_tcbinfo; 3015 break; 3016 case IPPROTO_UDP: 3017 if (pd->hdr.udp == NULL) 3018 return (-1); 3019 sport = pd->hdr.udp->uh_sport; 3020 dport = pd->hdr.udp->uh_dport; 3021 pi = &V_udbinfo; 3022 break; 3023 default: 3024 return (-1); 3025 } 3026 if (direction == PF_IN) { 3027 saddr = pd->src; 3028 daddr = pd->dst; 3029 } else { 3030 u_int16_t p; 3031 3032 p = sport; 3033 sport = dport; 3034 dport = p; 3035 saddr = pd->dst; 3036 daddr = pd->src; 3037 } 3038 switch (pd->af) { 3039 #ifdef INET 3040 case AF_INET: 3041 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3042 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3043 if (inp == NULL) { 3044 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3045 daddr->v4, dport, INPLOOKUP_WILDCARD | 3046 INPLOOKUP_RLOCKPCB, NULL, m); 3047 if (inp == NULL) 3048 return (-1); 3049 } 3050 break; 3051 #endif /* INET */ 3052 #ifdef INET6 3053 case AF_INET6: 3054 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3055 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3056 if (inp == NULL) { 3057 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3058 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3059 INPLOOKUP_RLOCKPCB, NULL, m); 3060 if (inp == NULL) 3061 return (-1); 3062 } 3063 break; 3064 #endif /* INET6 */ 3065 3066 default: 3067 return (-1); 3068 } 3069 INP_RLOCK_ASSERT(inp); 3070 pd->lookup.uid = inp->inp_cred->cr_uid; 3071 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3072 INP_RUNLOCK(inp); 3073 3074 return (1); 3075 } 3076 3077 static u_int8_t 3078 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3079 { 3080 int hlen; 3081 u_int8_t hdr[60]; 3082 u_int8_t *opt, optlen; 3083 u_int8_t wscale = 0; 3084 3085 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3086 if (hlen <= sizeof(struct tcphdr)) 3087 return (0); 3088 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3089 return (0); 3090 opt = hdr + sizeof(struct tcphdr); 3091 hlen -= sizeof(struct tcphdr); 3092 while (hlen >= 3) { 3093 switch (*opt) { 3094 case TCPOPT_EOL: 3095 case TCPOPT_NOP: 3096 ++opt; 3097 --hlen; 3098 break; 3099 case TCPOPT_WINDOW: 3100 wscale = opt[2]; 3101 if (wscale > TCP_MAX_WINSHIFT) 3102 wscale = TCP_MAX_WINSHIFT; 3103 wscale |= PF_WSCALE_FLAG; 3104 /* FALLTHROUGH */ 3105 default: 3106 optlen = opt[1]; 3107 if (optlen < 2) 3108 optlen = 2; 3109 hlen -= optlen; 3110 opt += optlen; 3111 break; 3112 } 3113 } 3114 return (wscale); 3115 } 3116 3117 static u_int16_t 3118 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3119 { 3120 int hlen; 3121 u_int8_t hdr[60]; 3122 u_int8_t *opt, optlen; 3123 u_int16_t mss = V_tcp_mssdflt; 3124 3125 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3126 if (hlen <= sizeof(struct tcphdr)) 3127 return (0); 3128 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3129 return (0); 3130 opt = hdr + sizeof(struct tcphdr); 3131 hlen -= sizeof(struct tcphdr); 3132 while (hlen >= TCPOLEN_MAXSEG) { 3133 switch (*opt) { 3134 case TCPOPT_EOL: 3135 case TCPOPT_NOP: 3136 ++opt; 3137 --hlen; 3138 break; 3139 case TCPOPT_MAXSEG: 3140 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3141 NTOHS(mss); 3142 /* FALLTHROUGH */ 3143 default: 3144 optlen = opt[1]; 3145 if (optlen < 2) 3146 optlen = 2; 3147 hlen -= optlen; 3148 opt += optlen; 3149 break; 3150 } 3151 } 3152 return (mss); 3153 } 3154 3155 static u_int16_t 3156 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3157 { 3158 #ifdef INET 3159 struct nhop4_basic nh4; 3160 #endif /* INET */ 3161 #ifdef INET6 3162 struct nhop6_basic nh6; 3163 struct in6_addr dst6; 3164 uint32_t scopeid; 3165 #endif /* INET6 */ 3166 int hlen = 0; 3167 uint16_t mss = 0; 3168 3169 switch (af) { 3170 #ifdef INET 3171 case AF_INET: 3172 hlen = sizeof(struct ip); 3173 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) == 0) 3174 mss = nh4.nh_mtu - hlen - sizeof(struct tcphdr); 3175 break; 3176 #endif /* INET */ 3177 #ifdef INET6 3178 case AF_INET6: 3179 hlen = sizeof(struct ip6_hdr); 3180 in6_splitscope(&addr->v6, &dst6, &scopeid); 3181 if (fib6_lookup_nh_basic(rtableid, &dst6, scopeid, 0,0,&nh6)==0) 3182 mss = nh6.nh_mtu - hlen - sizeof(struct tcphdr); 3183 break; 3184 #endif /* INET6 */ 3185 } 3186 3187 mss = max(V_tcp_mssdflt, mss); 3188 mss = min(mss, offer); 3189 mss = max(mss, 64); /* sanity - at least max opt space */ 3190 return (mss); 3191 } 3192 3193 static u_int32_t 3194 pf_tcp_iss(struct pf_pdesc *pd) 3195 { 3196 MD5_CTX ctx; 3197 u_int32_t digest[4]; 3198 3199 if (V_pf_tcp_secret_init == 0) { 3200 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3201 MD5Init(&V_pf_tcp_secret_ctx); 3202 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3203 sizeof(V_pf_tcp_secret)); 3204 V_pf_tcp_secret_init = 1; 3205 } 3206 3207 ctx = V_pf_tcp_secret_ctx; 3208 3209 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3210 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3211 if (pd->af == AF_INET6) { 3212 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3213 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3214 } else { 3215 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3216 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3217 } 3218 MD5Final((u_char *)digest, &ctx); 3219 V_pf_tcp_iss_off += 4096; 3220 #define ISN_RANDOM_INCREMENT (4096 - 1) 3221 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3222 V_pf_tcp_iss_off); 3223 #undef ISN_RANDOM_INCREMENT 3224 } 3225 3226 static int 3227 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3228 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3229 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3230 { 3231 struct pf_rule *nr = NULL; 3232 struct pf_addr * const saddr = pd->src; 3233 struct pf_addr * const daddr = pd->dst; 3234 sa_family_t af = pd->af; 3235 struct pf_rule *r, *a = NULL; 3236 struct pf_ruleset *ruleset = NULL; 3237 struct pf_src_node *nsn = NULL; 3238 struct tcphdr *th = pd->hdr.tcp; 3239 struct pf_state_key *sk = NULL, *nk = NULL; 3240 u_short reason; 3241 int rewrite = 0, hdrlen = 0; 3242 int tag = -1, rtableid = -1; 3243 int asd = 0; 3244 int match = 0; 3245 int state_icmp = 0; 3246 u_int16_t sport = 0, dport = 0; 3247 u_int16_t bproto_sum = 0, bip_sum = 0; 3248 u_int8_t icmptype = 0, icmpcode = 0; 3249 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3250 3251 PF_RULES_RASSERT(); 3252 3253 if (inp != NULL) { 3254 INP_LOCK_ASSERT(inp); 3255 pd->lookup.uid = inp->inp_cred->cr_uid; 3256 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3257 pd->lookup.done = 1; 3258 } 3259 3260 switch (pd->proto) { 3261 case IPPROTO_TCP: 3262 sport = th->th_sport; 3263 dport = th->th_dport; 3264 hdrlen = sizeof(*th); 3265 break; 3266 case IPPROTO_UDP: 3267 sport = pd->hdr.udp->uh_sport; 3268 dport = pd->hdr.udp->uh_dport; 3269 hdrlen = sizeof(*pd->hdr.udp); 3270 break; 3271 #ifdef INET 3272 case IPPROTO_ICMP: 3273 if (pd->af != AF_INET) 3274 break; 3275 sport = dport = pd->hdr.icmp->icmp_id; 3276 hdrlen = sizeof(*pd->hdr.icmp); 3277 icmptype = pd->hdr.icmp->icmp_type; 3278 icmpcode = pd->hdr.icmp->icmp_code; 3279 3280 if (icmptype == ICMP_UNREACH || 3281 icmptype == ICMP_SOURCEQUENCH || 3282 icmptype == ICMP_REDIRECT || 3283 icmptype == ICMP_TIMXCEED || 3284 icmptype == ICMP_PARAMPROB) 3285 state_icmp++; 3286 break; 3287 #endif /* INET */ 3288 #ifdef INET6 3289 case IPPROTO_ICMPV6: 3290 if (af != AF_INET6) 3291 break; 3292 sport = dport = pd->hdr.icmp6->icmp6_id; 3293 hdrlen = sizeof(*pd->hdr.icmp6); 3294 icmptype = pd->hdr.icmp6->icmp6_type; 3295 icmpcode = pd->hdr.icmp6->icmp6_code; 3296 3297 if (icmptype == ICMP6_DST_UNREACH || 3298 icmptype == ICMP6_PACKET_TOO_BIG || 3299 icmptype == ICMP6_TIME_EXCEEDED || 3300 icmptype == ICMP6_PARAM_PROB) 3301 state_icmp++; 3302 break; 3303 #endif /* INET6 */ 3304 default: 3305 sport = dport = hdrlen = 0; 3306 break; 3307 } 3308 3309 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3310 3311 /* check packet for BINAT/NAT/RDR */ 3312 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3313 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3314 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3315 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3316 3317 if (pd->ip_sum) 3318 bip_sum = *pd->ip_sum; 3319 3320 switch (pd->proto) { 3321 case IPPROTO_TCP: 3322 bproto_sum = th->th_sum; 3323 pd->proto_sum = &th->th_sum; 3324 3325 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3326 nk->port[pd->sidx] != sport) { 3327 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3328 &th->th_sum, &nk->addr[pd->sidx], 3329 nk->port[pd->sidx], 0, af); 3330 pd->sport = &th->th_sport; 3331 sport = th->th_sport; 3332 } 3333 3334 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3335 nk->port[pd->didx] != dport) { 3336 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3337 &th->th_sum, &nk->addr[pd->didx], 3338 nk->port[pd->didx], 0, af); 3339 dport = th->th_dport; 3340 pd->dport = &th->th_dport; 3341 } 3342 rewrite++; 3343 break; 3344 case IPPROTO_UDP: 3345 bproto_sum = pd->hdr.udp->uh_sum; 3346 pd->proto_sum = &pd->hdr.udp->uh_sum; 3347 3348 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3349 nk->port[pd->sidx] != sport) { 3350 pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, 3351 pd->ip_sum, &pd->hdr.udp->uh_sum, 3352 &nk->addr[pd->sidx], 3353 nk->port[pd->sidx], 1, af); 3354 sport = pd->hdr.udp->uh_sport; 3355 pd->sport = &pd->hdr.udp->uh_sport; 3356 } 3357 3358 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3359 nk->port[pd->didx] != dport) { 3360 pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, 3361 pd->ip_sum, &pd->hdr.udp->uh_sum, 3362 &nk->addr[pd->didx], 3363 nk->port[pd->didx], 1, af); 3364 dport = pd->hdr.udp->uh_dport; 3365 pd->dport = &pd->hdr.udp->uh_dport; 3366 } 3367 rewrite++; 3368 break; 3369 #ifdef INET 3370 case IPPROTO_ICMP: 3371 nk->port[0] = nk->port[1]; 3372 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3373 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3374 nk->addr[pd->sidx].v4.s_addr, 0); 3375 3376 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3377 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3378 nk->addr[pd->didx].v4.s_addr, 0); 3379 3380 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3381 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3382 pd->hdr.icmp->icmp_cksum, sport, 3383 nk->port[1], 0); 3384 pd->hdr.icmp->icmp_id = nk->port[1]; 3385 pd->sport = &pd->hdr.icmp->icmp_id; 3386 } 3387 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3388 break; 3389 #endif /* INET */ 3390 #ifdef INET6 3391 case IPPROTO_ICMPV6: 3392 nk->port[0] = nk->port[1]; 3393 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3394 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3395 &nk->addr[pd->sidx], 0); 3396 3397 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3398 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3399 &nk->addr[pd->didx], 0); 3400 rewrite++; 3401 break; 3402 #endif /* INET */ 3403 default: 3404 switch (af) { 3405 #ifdef INET 3406 case AF_INET: 3407 if (PF_ANEQ(saddr, 3408 &nk->addr[pd->sidx], AF_INET)) 3409 pf_change_a(&saddr->v4.s_addr, 3410 pd->ip_sum, 3411 nk->addr[pd->sidx].v4.s_addr, 0); 3412 3413 if (PF_ANEQ(daddr, 3414 &nk->addr[pd->didx], AF_INET)) 3415 pf_change_a(&daddr->v4.s_addr, 3416 pd->ip_sum, 3417 nk->addr[pd->didx].v4.s_addr, 0); 3418 break; 3419 #endif /* INET */ 3420 #ifdef INET6 3421 case AF_INET6: 3422 if (PF_ANEQ(saddr, 3423 &nk->addr[pd->sidx], AF_INET6)) 3424 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3425 3426 if (PF_ANEQ(daddr, 3427 &nk->addr[pd->didx], AF_INET6)) 3428 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3429 break; 3430 #endif /* INET */ 3431 } 3432 break; 3433 } 3434 if (nr->natpass) 3435 r = NULL; 3436 pd->nat_rule = nr; 3437 } 3438 3439 while (r != NULL) { 3440 r->evaluations++; 3441 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3442 r = r->skip[PF_SKIP_IFP].ptr; 3443 else if (r->direction && r->direction != direction) 3444 r = r->skip[PF_SKIP_DIR].ptr; 3445 else if (r->af && r->af != af) 3446 r = r->skip[PF_SKIP_AF].ptr; 3447 else if (r->proto && r->proto != pd->proto) 3448 r = r->skip[PF_SKIP_PROTO].ptr; 3449 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3450 r->src.neg, kif, M_GETFIB(m))) 3451 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3452 /* tcp/udp only. port_op always 0 in other cases */ 3453 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3454 r->src.port[0], r->src.port[1], sport)) 3455 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3456 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3457 r->dst.neg, NULL, M_GETFIB(m))) 3458 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3459 /* tcp/udp only. port_op always 0 in other cases */ 3460 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3461 r->dst.port[0], r->dst.port[1], dport)) 3462 r = r->skip[PF_SKIP_DST_PORT].ptr; 3463 /* icmp only. type always 0 in other cases */ 3464 else if (r->type && r->type != icmptype + 1) 3465 r = TAILQ_NEXT(r, entries); 3466 /* icmp only. type always 0 in other cases */ 3467 else if (r->code && r->code != icmpcode + 1) 3468 r = TAILQ_NEXT(r, entries); 3469 else if (r->tos && !(r->tos == pd->tos)) 3470 r = TAILQ_NEXT(r, entries); 3471 else if (r->rule_flag & PFRULE_FRAGMENT) 3472 r = TAILQ_NEXT(r, entries); 3473 else if (pd->proto == IPPROTO_TCP && 3474 (r->flagset & th->th_flags) != r->flags) 3475 r = TAILQ_NEXT(r, entries); 3476 /* tcp/udp only. uid.op always 0 in other cases */ 3477 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3478 pf_socket_lookup(direction, pd, m), 1)) && 3479 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3480 pd->lookup.uid)) 3481 r = TAILQ_NEXT(r, entries); 3482 /* tcp/udp only. gid.op always 0 in other cases */ 3483 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3484 pf_socket_lookup(direction, pd, m), 1)) && 3485 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3486 pd->lookup.gid)) 3487 r = TAILQ_NEXT(r, entries); 3488 else if (r->prio && 3489 !pf_match_ieee8021q_pcp(r->prio, m)) 3490 r = TAILQ_NEXT(r, entries); 3491 else if (r->prob && 3492 r->prob <= arc4random()) 3493 r = TAILQ_NEXT(r, entries); 3494 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3495 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3496 r = TAILQ_NEXT(r, entries); 3497 else if (r->os_fingerprint != PF_OSFP_ANY && 3498 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3499 pf_osfp_fingerprint(pd, m, off, th), 3500 r->os_fingerprint))) 3501 r = TAILQ_NEXT(r, entries); 3502 else { 3503 if (r->tag) 3504 tag = r->tag; 3505 if (r->rtableid >= 0) 3506 rtableid = r->rtableid; 3507 if (r->anchor == NULL) { 3508 match = 1; 3509 *rm = r; 3510 *am = a; 3511 *rsm = ruleset; 3512 if ((*rm)->quick) 3513 break; 3514 r = TAILQ_NEXT(r, entries); 3515 } else 3516 pf_step_into_anchor(anchor_stack, &asd, 3517 &ruleset, PF_RULESET_FILTER, &r, &a, 3518 &match); 3519 } 3520 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3521 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3522 break; 3523 } 3524 r = *rm; 3525 a = *am; 3526 ruleset = *rsm; 3527 3528 REASON_SET(&reason, PFRES_MATCH); 3529 3530 if (r->log || (nr != NULL && nr->log)) { 3531 if (rewrite) 3532 m_copyback(m, off, hdrlen, pd->hdr.any); 3533 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3534 ruleset, pd, 1); 3535 } 3536 3537 if ((r->action == PF_DROP) && 3538 ((r->rule_flag & PFRULE_RETURNRST) || 3539 (r->rule_flag & PFRULE_RETURNICMP) || 3540 (r->rule_flag & PFRULE_RETURN))) { 3541 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 3542 bip_sum, hdrlen, &reason); 3543 } 3544 3545 if (r->action == PF_DROP) 3546 goto cleanup; 3547 3548 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3549 REASON_SET(&reason, PFRES_MEMORY); 3550 goto cleanup; 3551 } 3552 if (rtableid >= 0) 3553 M_SETFIB(m, rtableid); 3554 3555 if (!state_icmp && (r->keep_state || nr != NULL || 3556 (pd->flags & PFDESC_TCP_NORM))) { 3557 int action; 3558 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3559 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3560 hdrlen); 3561 if (action != PF_PASS && r->rule_flag & PFRULE_RETURN) { 3562 pf_return(r, nr, pd, sk, off, m, th, kif, 3563 bproto_sum, bip_sum, hdrlen, &reason); 3564 return (action); 3565 } 3566 } else { 3567 if (sk != NULL) 3568 uma_zfree(V_pf_state_key_z, sk); 3569 if (nk != NULL) 3570 uma_zfree(V_pf_state_key_z, nk); 3571 } 3572 3573 /* copy back packet headers if we performed NAT operations */ 3574 if (rewrite) 3575 m_copyback(m, off, hdrlen, pd->hdr.any); 3576 3577 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3578 direction == PF_OUT && 3579 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3580 /* 3581 * We want the state created, but we dont 3582 * want to send this in case a partner 3583 * firewall has to know about it to allow 3584 * replies through it. 3585 */ 3586 return (PF_DEFER); 3587 3588 return (PF_PASS); 3589 3590 cleanup: 3591 if (sk != NULL) 3592 uma_zfree(V_pf_state_key_z, sk); 3593 if (nk != NULL) 3594 uma_zfree(V_pf_state_key_z, nk); 3595 return (PF_DROP); 3596 } 3597 3598 static int 3599 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3600 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3601 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3602 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3603 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3604 { 3605 struct pf_state *s = NULL; 3606 struct pf_src_node *sn = NULL; 3607 struct tcphdr *th = pd->hdr.tcp; 3608 u_int16_t mss = V_tcp_mssdflt; 3609 u_short reason; 3610 3611 /* check maximums */ 3612 if (r->max_states && 3613 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3614 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3615 REASON_SET(&reason, PFRES_MAXSTATES); 3616 goto csfailed; 3617 } 3618 /* src node for filter rule */ 3619 if ((r->rule_flag & PFRULE_SRCTRACK || 3620 r->rpool.opts & PF_POOL_STICKYADDR) && 3621 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3622 REASON_SET(&reason, PFRES_SRCLIMIT); 3623 goto csfailed; 3624 } 3625 /* src node for translation rule */ 3626 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3627 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3628 REASON_SET(&reason, PFRES_SRCLIMIT); 3629 goto csfailed; 3630 } 3631 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3632 if (s == NULL) { 3633 REASON_SET(&reason, PFRES_MEMORY); 3634 goto csfailed; 3635 } 3636 s->rule.ptr = r; 3637 s->nat_rule.ptr = nr; 3638 s->anchor.ptr = a; 3639 STATE_INC_COUNTERS(s); 3640 if (r->allow_opts) 3641 s->state_flags |= PFSTATE_ALLOWOPTS; 3642 if (r->rule_flag & PFRULE_STATESLOPPY) 3643 s->state_flags |= PFSTATE_SLOPPY; 3644 s->log = r->log & PF_LOG_ALL; 3645 s->sync_state = PFSYNC_S_NONE; 3646 if (nr != NULL) 3647 s->log |= nr->log & PF_LOG_ALL; 3648 switch (pd->proto) { 3649 case IPPROTO_TCP: 3650 s->src.seqlo = ntohl(th->th_seq); 3651 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3652 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3653 r->keep_state == PF_STATE_MODULATE) { 3654 /* Generate sequence number modulator */ 3655 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3656 0) 3657 s->src.seqdiff = 1; 3658 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3659 htonl(s->src.seqlo + s->src.seqdiff), 0); 3660 *rewrite = 1; 3661 } else 3662 s->src.seqdiff = 0; 3663 if (th->th_flags & TH_SYN) { 3664 s->src.seqhi++; 3665 s->src.wscale = pf_get_wscale(m, off, 3666 th->th_off, pd->af); 3667 } 3668 s->src.max_win = MAX(ntohs(th->th_win), 1); 3669 if (s->src.wscale & PF_WSCALE_MASK) { 3670 /* Remove scale factor from initial window */ 3671 int win = s->src.max_win; 3672 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3673 s->src.max_win = (win - 1) >> 3674 (s->src.wscale & PF_WSCALE_MASK); 3675 } 3676 if (th->th_flags & TH_FIN) 3677 s->src.seqhi++; 3678 s->dst.seqhi = 1; 3679 s->dst.max_win = 1; 3680 s->src.state = TCPS_SYN_SENT; 3681 s->dst.state = TCPS_CLOSED; 3682 s->timeout = PFTM_TCP_FIRST_PACKET; 3683 break; 3684 case IPPROTO_UDP: 3685 s->src.state = PFUDPS_SINGLE; 3686 s->dst.state = PFUDPS_NO_TRAFFIC; 3687 s->timeout = PFTM_UDP_FIRST_PACKET; 3688 break; 3689 case IPPROTO_ICMP: 3690 #ifdef INET6 3691 case IPPROTO_ICMPV6: 3692 #endif 3693 s->timeout = PFTM_ICMP_FIRST_PACKET; 3694 break; 3695 default: 3696 s->src.state = PFOTHERS_SINGLE; 3697 s->dst.state = PFOTHERS_NO_TRAFFIC; 3698 s->timeout = PFTM_OTHER_FIRST_PACKET; 3699 } 3700 3701 if (r->rt) { 3702 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3703 REASON_SET(&reason, PFRES_MAPFAILED); 3704 pf_src_tree_remove_state(s); 3705 STATE_DEC_COUNTERS(s); 3706 uma_zfree(V_pf_state_z, s); 3707 goto csfailed; 3708 } 3709 s->rt_kif = r->rpool.cur->kif; 3710 } 3711 3712 s->creation = time_uptime; 3713 s->expire = time_uptime; 3714 3715 if (sn != NULL) 3716 s->src_node = sn; 3717 if (nsn != NULL) { 3718 /* XXX We only modify one side for now. */ 3719 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3720 s->nat_src_node = nsn; 3721 } 3722 if (pd->proto == IPPROTO_TCP) { 3723 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3724 off, pd, th, &s->src, &s->dst)) { 3725 REASON_SET(&reason, PFRES_MEMORY); 3726 pf_src_tree_remove_state(s); 3727 STATE_DEC_COUNTERS(s); 3728 uma_zfree(V_pf_state_z, s); 3729 return (PF_DROP); 3730 } 3731 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3732 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3733 &s->src, &s->dst, rewrite)) { 3734 /* This really shouldn't happen!!! */ 3735 DPFPRINTF(PF_DEBUG_URGENT, 3736 ("pf_normalize_tcp_stateful failed on first pkt")); 3737 pf_normalize_tcp_cleanup(s); 3738 pf_src_tree_remove_state(s); 3739 STATE_DEC_COUNTERS(s); 3740 uma_zfree(V_pf_state_z, s); 3741 return (PF_DROP); 3742 } 3743 } 3744 s->direction = pd->dir; 3745 3746 /* 3747 * sk/nk could already been setup by pf_get_translation(). 3748 */ 3749 if (nr == NULL) { 3750 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3751 __func__, nr, sk, nk)); 3752 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3753 if (sk == NULL) 3754 goto csfailed; 3755 nk = sk; 3756 } else 3757 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3758 __func__, nr, sk, nk)); 3759 3760 /* Swap sk/nk for PF_OUT. */ 3761 if (pf_state_insert(BOUND_IFACE(r, kif), 3762 (pd->dir == PF_IN) ? sk : nk, 3763 (pd->dir == PF_IN) ? nk : sk, s)) { 3764 if (pd->proto == IPPROTO_TCP) 3765 pf_normalize_tcp_cleanup(s); 3766 REASON_SET(&reason, PFRES_STATEINS); 3767 pf_src_tree_remove_state(s); 3768 STATE_DEC_COUNTERS(s); 3769 uma_zfree(V_pf_state_z, s); 3770 return (PF_DROP); 3771 } else 3772 *sm = s; 3773 3774 if (tag > 0) 3775 s->tag = tag; 3776 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3777 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3778 s->src.state = PF_TCPS_PROXY_SRC; 3779 /* undo NAT changes, if they have taken place */ 3780 if (nr != NULL) { 3781 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3782 if (pd->dir == PF_OUT) 3783 skt = s->key[PF_SK_STACK]; 3784 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3785 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3786 if (pd->sport) 3787 *pd->sport = skt->port[pd->sidx]; 3788 if (pd->dport) 3789 *pd->dport = skt->port[pd->didx]; 3790 if (pd->proto_sum) 3791 *pd->proto_sum = bproto_sum; 3792 if (pd->ip_sum) 3793 *pd->ip_sum = bip_sum; 3794 m_copyback(m, off, hdrlen, pd->hdr.any); 3795 } 3796 s->src.seqhi = htonl(arc4random()); 3797 /* Find mss option */ 3798 int rtid = M_GETFIB(m); 3799 mss = pf_get_mss(m, off, th->th_off, pd->af); 3800 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3801 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3802 s->src.mss = mss; 3803 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3804 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3805 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3806 REASON_SET(&reason, PFRES_SYNPROXY); 3807 return (PF_SYNPROXY_DROP); 3808 } 3809 3810 return (PF_PASS); 3811 3812 csfailed: 3813 if (sk != NULL) 3814 uma_zfree(V_pf_state_key_z, sk); 3815 if (nk != NULL) 3816 uma_zfree(V_pf_state_key_z, nk); 3817 3818 if (sn != NULL) { 3819 struct pf_srchash *sh; 3820 3821 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3822 PF_HASHROW_LOCK(sh); 3823 if (--sn->states == 0 && sn->expire == 0) { 3824 pf_unlink_src_node(sn); 3825 uma_zfree(V_pf_sources_z, sn); 3826 counter_u64_add( 3827 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3828 } 3829 PF_HASHROW_UNLOCK(sh); 3830 } 3831 3832 if (nsn != sn && nsn != NULL) { 3833 struct pf_srchash *sh; 3834 3835 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3836 PF_HASHROW_LOCK(sh); 3837 if (--nsn->states == 0 && nsn->expire == 0) { 3838 pf_unlink_src_node(nsn); 3839 uma_zfree(V_pf_sources_z, nsn); 3840 counter_u64_add( 3841 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3842 } 3843 PF_HASHROW_UNLOCK(sh); 3844 } 3845 3846 return (PF_DROP); 3847 } 3848 3849 static int 3850 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3851 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3852 struct pf_ruleset **rsm) 3853 { 3854 struct pf_rule *r, *a = NULL; 3855 struct pf_ruleset *ruleset = NULL; 3856 sa_family_t af = pd->af; 3857 u_short reason; 3858 int tag = -1; 3859 int asd = 0; 3860 int match = 0; 3861 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3862 3863 PF_RULES_RASSERT(); 3864 3865 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3866 while (r != NULL) { 3867 r->evaluations++; 3868 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3869 r = r->skip[PF_SKIP_IFP].ptr; 3870 else if (r->direction && r->direction != direction) 3871 r = r->skip[PF_SKIP_DIR].ptr; 3872 else if (r->af && r->af != af) 3873 r = r->skip[PF_SKIP_AF].ptr; 3874 else if (r->proto && r->proto != pd->proto) 3875 r = r->skip[PF_SKIP_PROTO].ptr; 3876 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3877 r->src.neg, kif, M_GETFIB(m))) 3878 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3879 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3880 r->dst.neg, NULL, M_GETFIB(m))) 3881 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3882 else if (r->tos && !(r->tos == pd->tos)) 3883 r = TAILQ_NEXT(r, entries); 3884 else if (r->os_fingerprint != PF_OSFP_ANY) 3885 r = TAILQ_NEXT(r, entries); 3886 else if (pd->proto == IPPROTO_UDP && 3887 (r->src.port_op || r->dst.port_op)) 3888 r = TAILQ_NEXT(r, entries); 3889 else if (pd->proto == IPPROTO_TCP && 3890 (r->src.port_op || r->dst.port_op || r->flagset)) 3891 r = TAILQ_NEXT(r, entries); 3892 else if ((pd->proto == IPPROTO_ICMP || 3893 pd->proto == IPPROTO_ICMPV6) && 3894 (r->type || r->code)) 3895 r = TAILQ_NEXT(r, entries); 3896 else if (r->prio && 3897 !pf_match_ieee8021q_pcp(r->prio, m)) 3898 r = TAILQ_NEXT(r, entries); 3899 else if (r->prob && r->prob <= 3900 (arc4random() % (UINT_MAX - 1) + 1)) 3901 r = TAILQ_NEXT(r, entries); 3902 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3903 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3904 r = TAILQ_NEXT(r, entries); 3905 else { 3906 if (r->anchor == NULL) { 3907 match = 1; 3908 *rm = r; 3909 *am = a; 3910 *rsm = ruleset; 3911 if ((*rm)->quick) 3912 break; 3913 r = TAILQ_NEXT(r, entries); 3914 } else 3915 pf_step_into_anchor(anchor_stack, &asd, 3916 &ruleset, PF_RULESET_FILTER, &r, &a, 3917 &match); 3918 } 3919 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3920 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3921 break; 3922 } 3923 r = *rm; 3924 a = *am; 3925 ruleset = *rsm; 3926 3927 REASON_SET(&reason, PFRES_MATCH); 3928 3929 if (r->log) 3930 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3931 1); 3932 3933 if (r->action != PF_PASS) 3934 return (PF_DROP); 3935 3936 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3937 REASON_SET(&reason, PFRES_MEMORY); 3938 return (PF_DROP); 3939 } 3940 3941 return (PF_PASS); 3942 } 3943 3944 static int 3945 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3946 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3947 struct pf_pdesc *pd, u_short *reason, int *copyback) 3948 { 3949 struct tcphdr *th = pd->hdr.tcp; 3950 u_int16_t win = ntohs(th->th_win); 3951 u_int32_t ack, end, seq, orig_seq; 3952 u_int8_t sws, dws; 3953 int ackskew; 3954 3955 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3956 sws = src->wscale & PF_WSCALE_MASK; 3957 dws = dst->wscale & PF_WSCALE_MASK; 3958 } else 3959 sws = dws = 0; 3960 3961 /* 3962 * Sequence tracking algorithm from Guido van Rooij's paper: 3963 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3964 * tcp_filtering.ps 3965 */ 3966 3967 orig_seq = seq = ntohl(th->th_seq); 3968 if (src->seqlo == 0) { 3969 /* First packet from this end. Set its state */ 3970 3971 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3972 src->scrub == NULL) { 3973 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3974 REASON_SET(reason, PFRES_MEMORY); 3975 return (PF_DROP); 3976 } 3977 } 3978 3979 /* Deferred generation of sequence number modulator */ 3980 if (dst->seqdiff && !src->seqdiff) { 3981 /* use random iss for the TCP server */ 3982 while ((src->seqdiff = arc4random() - seq) == 0) 3983 ; 3984 ack = ntohl(th->th_ack) - dst->seqdiff; 3985 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3986 src->seqdiff), 0); 3987 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 3988 *copyback = 1; 3989 } else { 3990 ack = ntohl(th->th_ack); 3991 } 3992 3993 end = seq + pd->p_len; 3994 if (th->th_flags & TH_SYN) { 3995 end++; 3996 if (dst->wscale & PF_WSCALE_FLAG) { 3997 src->wscale = pf_get_wscale(m, off, th->th_off, 3998 pd->af); 3999 if (src->wscale & PF_WSCALE_FLAG) { 4000 /* Remove scale factor from initial 4001 * window */ 4002 sws = src->wscale & PF_WSCALE_MASK; 4003 win = ((u_int32_t)win + (1 << sws) - 1) 4004 >> sws; 4005 dws = dst->wscale & PF_WSCALE_MASK; 4006 } else { 4007 /* fixup other window */ 4008 dst->max_win <<= dst->wscale & 4009 PF_WSCALE_MASK; 4010 /* in case of a retrans SYN|ACK */ 4011 dst->wscale = 0; 4012 } 4013 } 4014 } 4015 if (th->th_flags & TH_FIN) 4016 end++; 4017 4018 src->seqlo = seq; 4019 if (src->state < TCPS_SYN_SENT) 4020 src->state = TCPS_SYN_SENT; 4021 4022 /* 4023 * May need to slide the window (seqhi may have been set by 4024 * the crappy stack check or if we picked up the connection 4025 * after establishment) 4026 */ 4027 if (src->seqhi == 1 || 4028 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4029 src->seqhi = end + MAX(1, dst->max_win << dws); 4030 if (win > src->max_win) 4031 src->max_win = win; 4032 4033 } else { 4034 ack = ntohl(th->th_ack) - dst->seqdiff; 4035 if (src->seqdiff) { 4036 /* Modulate sequence numbers */ 4037 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4038 src->seqdiff), 0); 4039 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4040 *copyback = 1; 4041 } 4042 end = seq + pd->p_len; 4043 if (th->th_flags & TH_SYN) 4044 end++; 4045 if (th->th_flags & TH_FIN) 4046 end++; 4047 } 4048 4049 if ((th->th_flags & TH_ACK) == 0) { 4050 /* Let it pass through the ack skew check */ 4051 ack = dst->seqlo; 4052 } else if ((ack == 0 && 4053 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4054 /* broken tcp stacks do not set ack */ 4055 (dst->state < TCPS_SYN_SENT)) { 4056 /* 4057 * Many stacks (ours included) will set the ACK number in an 4058 * FIN|ACK if the SYN times out -- no sequence to ACK. 4059 */ 4060 ack = dst->seqlo; 4061 } 4062 4063 if (seq == end) { 4064 /* Ease sequencing restrictions on no data packets */ 4065 seq = src->seqlo; 4066 end = seq; 4067 } 4068 4069 ackskew = dst->seqlo - ack; 4070 4071 4072 /* 4073 * Need to demodulate the sequence numbers in any TCP SACK options 4074 * (Selective ACK). We could optionally validate the SACK values 4075 * against the current ACK window, either forwards or backwards, but 4076 * I'm not confident that SACK has been implemented properly 4077 * everywhere. It wouldn't surprise me if several stacks accidentally 4078 * SACK too far backwards of previously ACKed data. There really aren't 4079 * any security implications of bad SACKing unless the target stack 4080 * doesn't validate the option length correctly. Someone trying to 4081 * spoof into a TCP connection won't bother blindly sending SACK 4082 * options anyway. 4083 */ 4084 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4085 if (pf_modulate_sack(m, off, pd, th, dst)) 4086 *copyback = 1; 4087 } 4088 4089 4090 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4091 if (SEQ_GEQ(src->seqhi, end) && 4092 /* Last octet inside other's window space */ 4093 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4094 /* Retrans: not more than one window back */ 4095 (ackskew >= -MAXACKWINDOW) && 4096 /* Acking not more than one reassembled fragment backwards */ 4097 (ackskew <= (MAXACKWINDOW << sws)) && 4098 /* Acking not more than one window forward */ 4099 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4100 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4101 (pd->flags & PFDESC_IP_REAS) == 0)) { 4102 /* Require an exact/+1 sequence match on resets when possible */ 4103 4104 if (dst->scrub || src->scrub) { 4105 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4106 *state, src, dst, copyback)) 4107 return (PF_DROP); 4108 } 4109 4110 /* update max window */ 4111 if (src->max_win < win) 4112 src->max_win = win; 4113 /* synchronize sequencing */ 4114 if (SEQ_GT(end, src->seqlo)) 4115 src->seqlo = end; 4116 /* slide the window of what the other end can send */ 4117 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4118 dst->seqhi = ack + MAX((win << sws), 1); 4119 4120 4121 /* update states */ 4122 if (th->th_flags & TH_SYN) 4123 if (src->state < TCPS_SYN_SENT) 4124 src->state = TCPS_SYN_SENT; 4125 if (th->th_flags & TH_FIN) 4126 if (src->state < TCPS_CLOSING) 4127 src->state = TCPS_CLOSING; 4128 if (th->th_flags & TH_ACK) { 4129 if (dst->state == TCPS_SYN_SENT) { 4130 dst->state = TCPS_ESTABLISHED; 4131 if (src->state == TCPS_ESTABLISHED && 4132 (*state)->src_node != NULL && 4133 pf_src_connlimit(state)) { 4134 REASON_SET(reason, PFRES_SRCLIMIT); 4135 return (PF_DROP); 4136 } 4137 } else if (dst->state == TCPS_CLOSING) 4138 dst->state = TCPS_FIN_WAIT_2; 4139 } 4140 if (th->th_flags & TH_RST) 4141 src->state = dst->state = TCPS_TIME_WAIT; 4142 4143 /* update expire time */ 4144 (*state)->expire = time_uptime; 4145 if (src->state >= TCPS_FIN_WAIT_2 && 4146 dst->state >= TCPS_FIN_WAIT_2) 4147 (*state)->timeout = PFTM_TCP_CLOSED; 4148 else if (src->state >= TCPS_CLOSING && 4149 dst->state >= TCPS_CLOSING) 4150 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4151 else if (src->state < TCPS_ESTABLISHED || 4152 dst->state < TCPS_ESTABLISHED) 4153 (*state)->timeout = PFTM_TCP_OPENING; 4154 else if (src->state >= TCPS_CLOSING || 4155 dst->state >= TCPS_CLOSING) 4156 (*state)->timeout = PFTM_TCP_CLOSING; 4157 else 4158 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4159 4160 /* Fall through to PASS packet */ 4161 4162 } else if ((dst->state < TCPS_SYN_SENT || 4163 dst->state >= TCPS_FIN_WAIT_2 || 4164 src->state >= TCPS_FIN_WAIT_2) && 4165 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4166 /* Within a window forward of the originating packet */ 4167 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4168 /* Within a window backward of the originating packet */ 4169 4170 /* 4171 * This currently handles three situations: 4172 * 1) Stupid stacks will shotgun SYNs before their peer 4173 * replies. 4174 * 2) When PF catches an already established stream (the 4175 * firewall rebooted, the state table was flushed, routes 4176 * changed...) 4177 * 3) Packets get funky immediately after the connection 4178 * closes (this should catch Solaris spurious ACK|FINs 4179 * that web servers like to spew after a close) 4180 * 4181 * This must be a little more careful than the above code 4182 * since packet floods will also be caught here. We don't 4183 * update the TTL here to mitigate the damage of a packet 4184 * flood and so the same code can handle awkward establishment 4185 * and a loosened connection close. 4186 * In the establishment case, a correct peer response will 4187 * validate the connection, go through the normal state code 4188 * and keep updating the state TTL. 4189 */ 4190 4191 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4192 printf("pf: loose state match: "); 4193 pf_print_state(*state); 4194 pf_print_flags(th->th_flags); 4195 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4196 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4197 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4198 (unsigned long long)(*state)->packets[1], 4199 pd->dir == PF_IN ? "in" : "out", 4200 pd->dir == (*state)->direction ? "fwd" : "rev"); 4201 } 4202 4203 if (dst->scrub || src->scrub) { 4204 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4205 *state, src, dst, copyback)) 4206 return (PF_DROP); 4207 } 4208 4209 /* update max window */ 4210 if (src->max_win < win) 4211 src->max_win = win; 4212 /* synchronize sequencing */ 4213 if (SEQ_GT(end, src->seqlo)) 4214 src->seqlo = end; 4215 /* slide the window of what the other end can send */ 4216 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4217 dst->seqhi = ack + MAX((win << sws), 1); 4218 4219 /* 4220 * Cannot set dst->seqhi here since this could be a shotgunned 4221 * SYN and not an already established connection. 4222 */ 4223 4224 if (th->th_flags & TH_FIN) 4225 if (src->state < TCPS_CLOSING) 4226 src->state = TCPS_CLOSING; 4227 if (th->th_flags & TH_RST) 4228 src->state = dst->state = TCPS_TIME_WAIT; 4229 4230 /* Fall through to PASS packet */ 4231 4232 } else { 4233 if ((*state)->dst.state == TCPS_SYN_SENT && 4234 (*state)->src.state == TCPS_SYN_SENT) { 4235 /* Send RST for state mismatches during handshake */ 4236 if (!(th->th_flags & TH_RST)) 4237 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4238 pd->dst, pd->src, th->th_dport, 4239 th->th_sport, ntohl(th->th_ack), 0, 4240 TH_RST, 0, 0, 4241 (*state)->rule.ptr->return_ttl, 1, 0, 4242 kif->pfik_ifp); 4243 src->seqlo = 0; 4244 src->seqhi = 1; 4245 src->max_win = 1; 4246 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4247 printf("pf: BAD state: "); 4248 pf_print_state(*state); 4249 pf_print_flags(th->th_flags); 4250 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4251 "pkts=%llu:%llu dir=%s,%s\n", 4252 seq, orig_seq, ack, pd->p_len, ackskew, 4253 (unsigned long long)(*state)->packets[0], 4254 (unsigned long long)(*state)->packets[1], 4255 pd->dir == PF_IN ? "in" : "out", 4256 pd->dir == (*state)->direction ? "fwd" : "rev"); 4257 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4258 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4259 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4260 ' ': '2', 4261 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4262 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4263 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4264 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4265 } 4266 REASON_SET(reason, PFRES_BADSTATE); 4267 return (PF_DROP); 4268 } 4269 4270 return (PF_PASS); 4271 } 4272 4273 static int 4274 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4275 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4276 { 4277 struct tcphdr *th = pd->hdr.tcp; 4278 4279 if (th->th_flags & TH_SYN) 4280 if (src->state < TCPS_SYN_SENT) 4281 src->state = TCPS_SYN_SENT; 4282 if (th->th_flags & TH_FIN) 4283 if (src->state < TCPS_CLOSING) 4284 src->state = TCPS_CLOSING; 4285 if (th->th_flags & TH_ACK) { 4286 if (dst->state == TCPS_SYN_SENT) { 4287 dst->state = TCPS_ESTABLISHED; 4288 if (src->state == TCPS_ESTABLISHED && 4289 (*state)->src_node != NULL && 4290 pf_src_connlimit(state)) { 4291 REASON_SET(reason, PFRES_SRCLIMIT); 4292 return (PF_DROP); 4293 } 4294 } else if (dst->state == TCPS_CLOSING) { 4295 dst->state = TCPS_FIN_WAIT_2; 4296 } else if (src->state == TCPS_SYN_SENT && 4297 dst->state < TCPS_SYN_SENT) { 4298 /* 4299 * Handle a special sloppy case where we only see one 4300 * half of the connection. If there is a ACK after 4301 * the initial SYN without ever seeing a packet from 4302 * the destination, set the connection to established. 4303 */ 4304 dst->state = src->state = TCPS_ESTABLISHED; 4305 if ((*state)->src_node != NULL && 4306 pf_src_connlimit(state)) { 4307 REASON_SET(reason, PFRES_SRCLIMIT); 4308 return (PF_DROP); 4309 } 4310 } else if (src->state == TCPS_CLOSING && 4311 dst->state == TCPS_ESTABLISHED && 4312 dst->seqlo == 0) { 4313 /* 4314 * Handle the closing of half connections where we 4315 * don't see the full bidirectional FIN/ACK+ACK 4316 * handshake. 4317 */ 4318 dst->state = TCPS_CLOSING; 4319 } 4320 } 4321 if (th->th_flags & TH_RST) 4322 src->state = dst->state = TCPS_TIME_WAIT; 4323 4324 /* update expire time */ 4325 (*state)->expire = time_uptime; 4326 if (src->state >= TCPS_FIN_WAIT_2 && 4327 dst->state >= TCPS_FIN_WAIT_2) 4328 (*state)->timeout = PFTM_TCP_CLOSED; 4329 else if (src->state >= TCPS_CLOSING && 4330 dst->state >= TCPS_CLOSING) 4331 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4332 else if (src->state < TCPS_ESTABLISHED || 4333 dst->state < TCPS_ESTABLISHED) 4334 (*state)->timeout = PFTM_TCP_OPENING; 4335 else if (src->state >= TCPS_CLOSING || 4336 dst->state >= TCPS_CLOSING) 4337 (*state)->timeout = PFTM_TCP_CLOSING; 4338 else 4339 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4340 4341 return (PF_PASS); 4342 } 4343 4344 static int 4345 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4346 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4347 u_short *reason) 4348 { 4349 struct pf_state_key_cmp key; 4350 struct tcphdr *th = pd->hdr.tcp; 4351 int copyback = 0; 4352 struct pf_state_peer *src, *dst; 4353 struct pf_state_key *sk; 4354 4355 bzero(&key, sizeof(key)); 4356 key.af = pd->af; 4357 key.proto = IPPROTO_TCP; 4358 if (direction == PF_IN) { /* wire side, straight */ 4359 PF_ACPY(&key.addr[0], pd->src, key.af); 4360 PF_ACPY(&key.addr[1], pd->dst, key.af); 4361 key.port[0] = th->th_sport; 4362 key.port[1] = th->th_dport; 4363 } else { /* stack side, reverse */ 4364 PF_ACPY(&key.addr[1], pd->src, key.af); 4365 PF_ACPY(&key.addr[0], pd->dst, key.af); 4366 key.port[1] = th->th_sport; 4367 key.port[0] = th->th_dport; 4368 } 4369 4370 STATE_LOOKUP(kif, &key, direction, *state, pd); 4371 4372 if (direction == (*state)->direction) { 4373 src = &(*state)->src; 4374 dst = &(*state)->dst; 4375 } else { 4376 src = &(*state)->dst; 4377 dst = &(*state)->src; 4378 } 4379 4380 sk = (*state)->key[pd->didx]; 4381 4382 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4383 if (direction != (*state)->direction) { 4384 REASON_SET(reason, PFRES_SYNPROXY); 4385 return (PF_SYNPROXY_DROP); 4386 } 4387 if (th->th_flags & TH_SYN) { 4388 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4389 REASON_SET(reason, PFRES_SYNPROXY); 4390 return (PF_DROP); 4391 } 4392 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4393 pd->src, th->th_dport, th->th_sport, 4394 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4395 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4396 REASON_SET(reason, PFRES_SYNPROXY); 4397 return (PF_SYNPROXY_DROP); 4398 } else if (!(th->th_flags & TH_ACK) || 4399 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4400 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4401 REASON_SET(reason, PFRES_SYNPROXY); 4402 return (PF_DROP); 4403 } else if ((*state)->src_node != NULL && 4404 pf_src_connlimit(state)) { 4405 REASON_SET(reason, PFRES_SRCLIMIT); 4406 return (PF_DROP); 4407 } else 4408 (*state)->src.state = PF_TCPS_PROXY_DST; 4409 } 4410 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4411 if (direction == (*state)->direction) { 4412 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4413 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4414 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4415 REASON_SET(reason, PFRES_SYNPROXY); 4416 return (PF_DROP); 4417 } 4418 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4419 if ((*state)->dst.seqhi == 1) 4420 (*state)->dst.seqhi = htonl(arc4random()); 4421 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4422 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4423 sk->port[pd->sidx], sk->port[pd->didx], 4424 (*state)->dst.seqhi, 0, TH_SYN, 0, 4425 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4426 REASON_SET(reason, PFRES_SYNPROXY); 4427 return (PF_SYNPROXY_DROP); 4428 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4429 (TH_SYN|TH_ACK)) || 4430 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4431 REASON_SET(reason, PFRES_SYNPROXY); 4432 return (PF_DROP); 4433 } else { 4434 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4435 (*state)->dst.seqlo = ntohl(th->th_seq); 4436 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4437 pd->src, th->th_dport, th->th_sport, 4438 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4439 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4440 (*state)->tag, NULL); 4441 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4442 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4443 sk->port[pd->sidx], sk->port[pd->didx], 4444 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4445 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4446 (*state)->src.seqdiff = (*state)->dst.seqhi - 4447 (*state)->src.seqlo; 4448 (*state)->dst.seqdiff = (*state)->src.seqhi - 4449 (*state)->dst.seqlo; 4450 (*state)->src.seqhi = (*state)->src.seqlo + 4451 (*state)->dst.max_win; 4452 (*state)->dst.seqhi = (*state)->dst.seqlo + 4453 (*state)->src.max_win; 4454 (*state)->src.wscale = (*state)->dst.wscale = 0; 4455 (*state)->src.state = (*state)->dst.state = 4456 TCPS_ESTABLISHED; 4457 REASON_SET(reason, PFRES_SYNPROXY); 4458 return (PF_SYNPROXY_DROP); 4459 } 4460 } 4461 4462 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4463 dst->state >= TCPS_FIN_WAIT_2 && 4464 src->state >= TCPS_FIN_WAIT_2) { 4465 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4466 printf("pf: state reuse "); 4467 pf_print_state(*state); 4468 pf_print_flags(th->th_flags); 4469 printf("\n"); 4470 } 4471 /* XXX make sure it's the same direction ?? */ 4472 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4473 pf_unlink_state(*state, PF_ENTER_LOCKED); 4474 *state = NULL; 4475 return (PF_DROP); 4476 } 4477 4478 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4479 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4480 return (PF_DROP); 4481 } else { 4482 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4483 ©back) == PF_DROP) 4484 return (PF_DROP); 4485 } 4486 4487 /* translate source/destination address, if necessary */ 4488 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4489 struct pf_state_key *nk = (*state)->key[pd->didx]; 4490 4491 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4492 nk->port[pd->sidx] != th->th_sport) 4493 pf_change_ap(m, pd->src, &th->th_sport, 4494 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4495 nk->port[pd->sidx], 0, pd->af); 4496 4497 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4498 nk->port[pd->didx] != th->th_dport) 4499 pf_change_ap(m, pd->dst, &th->th_dport, 4500 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4501 nk->port[pd->didx], 0, pd->af); 4502 copyback = 1; 4503 } 4504 4505 /* Copyback sequence modulation or stateful scrub changes if needed */ 4506 if (copyback) 4507 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4508 4509 return (PF_PASS); 4510 } 4511 4512 static int 4513 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4514 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4515 { 4516 struct pf_state_peer *src, *dst; 4517 struct pf_state_key_cmp key; 4518 struct udphdr *uh = pd->hdr.udp; 4519 4520 bzero(&key, sizeof(key)); 4521 key.af = pd->af; 4522 key.proto = IPPROTO_UDP; 4523 if (direction == PF_IN) { /* wire side, straight */ 4524 PF_ACPY(&key.addr[0], pd->src, key.af); 4525 PF_ACPY(&key.addr[1], pd->dst, key.af); 4526 key.port[0] = uh->uh_sport; 4527 key.port[1] = uh->uh_dport; 4528 } else { /* stack side, reverse */ 4529 PF_ACPY(&key.addr[1], pd->src, key.af); 4530 PF_ACPY(&key.addr[0], pd->dst, key.af); 4531 key.port[1] = uh->uh_sport; 4532 key.port[0] = uh->uh_dport; 4533 } 4534 4535 STATE_LOOKUP(kif, &key, direction, *state, pd); 4536 4537 if (direction == (*state)->direction) { 4538 src = &(*state)->src; 4539 dst = &(*state)->dst; 4540 } else { 4541 src = &(*state)->dst; 4542 dst = &(*state)->src; 4543 } 4544 4545 /* update states */ 4546 if (src->state < PFUDPS_SINGLE) 4547 src->state = PFUDPS_SINGLE; 4548 if (dst->state == PFUDPS_SINGLE) 4549 dst->state = PFUDPS_MULTIPLE; 4550 4551 /* update expire time */ 4552 (*state)->expire = time_uptime; 4553 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4554 (*state)->timeout = PFTM_UDP_MULTIPLE; 4555 else 4556 (*state)->timeout = PFTM_UDP_SINGLE; 4557 4558 /* translate source/destination address, if necessary */ 4559 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4560 struct pf_state_key *nk = (*state)->key[pd->didx]; 4561 4562 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4563 nk->port[pd->sidx] != uh->uh_sport) 4564 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4565 &uh->uh_sum, &nk->addr[pd->sidx], 4566 nk->port[pd->sidx], 1, pd->af); 4567 4568 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4569 nk->port[pd->didx] != uh->uh_dport) 4570 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4571 &uh->uh_sum, &nk->addr[pd->didx], 4572 nk->port[pd->didx], 1, pd->af); 4573 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4574 } 4575 4576 return (PF_PASS); 4577 } 4578 4579 static int 4580 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4581 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4582 { 4583 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4584 u_int16_t icmpid = 0, *icmpsum; 4585 u_int8_t icmptype; 4586 int state_icmp = 0; 4587 struct pf_state_key_cmp key; 4588 4589 bzero(&key, sizeof(key)); 4590 switch (pd->proto) { 4591 #ifdef INET 4592 case IPPROTO_ICMP: 4593 icmptype = pd->hdr.icmp->icmp_type; 4594 icmpid = pd->hdr.icmp->icmp_id; 4595 icmpsum = &pd->hdr.icmp->icmp_cksum; 4596 4597 if (icmptype == ICMP_UNREACH || 4598 icmptype == ICMP_SOURCEQUENCH || 4599 icmptype == ICMP_REDIRECT || 4600 icmptype == ICMP_TIMXCEED || 4601 icmptype == ICMP_PARAMPROB) 4602 state_icmp++; 4603 break; 4604 #endif /* INET */ 4605 #ifdef INET6 4606 case IPPROTO_ICMPV6: 4607 icmptype = pd->hdr.icmp6->icmp6_type; 4608 icmpid = pd->hdr.icmp6->icmp6_id; 4609 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4610 4611 if (icmptype == ICMP6_DST_UNREACH || 4612 icmptype == ICMP6_PACKET_TOO_BIG || 4613 icmptype == ICMP6_TIME_EXCEEDED || 4614 icmptype == ICMP6_PARAM_PROB) 4615 state_icmp++; 4616 break; 4617 #endif /* INET6 */ 4618 } 4619 4620 if (!state_icmp) { 4621 4622 /* 4623 * ICMP query/reply message not related to a TCP/UDP packet. 4624 * Search for an ICMP state. 4625 */ 4626 key.af = pd->af; 4627 key.proto = pd->proto; 4628 key.port[0] = key.port[1] = icmpid; 4629 if (direction == PF_IN) { /* wire side, straight */ 4630 PF_ACPY(&key.addr[0], pd->src, key.af); 4631 PF_ACPY(&key.addr[1], pd->dst, key.af); 4632 } else { /* stack side, reverse */ 4633 PF_ACPY(&key.addr[1], pd->src, key.af); 4634 PF_ACPY(&key.addr[0], pd->dst, key.af); 4635 } 4636 4637 STATE_LOOKUP(kif, &key, direction, *state, pd); 4638 4639 (*state)->expire = time_uptime; 4640 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4641 4642 /* translate source/destination address, if necessary */ 4643 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4644 struct pf_state_key *nk = (*state)->key[pd->didx]; 4645 4646 switch (pd->af) { 4647 #ifdef INET 4648 case AF_INET: 4649 if (PF_ANEQ(pd->src, 4650 &nk->addr[pd->sidx], AF_INET)) 4651 pf_change_a(&saddr->v4.s_addr, 4652 pd->ip_sum, 4653 nk->addr[pd->sidx].v4.s_addr, 0); 4654 4655 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4656 AF_INET)) 4657 pf_change_a(&daddr->v4.s_addr, 4658 pd->ip_sum, 4659 nk->addr[pd->didx].v4.s_addr, 0); 4660 4661 if (nk->port[0] != 4662 pd->hdr.icmp->icmp_id) { 4663 pd->hdr.icmp->icmp_cksum = 4664 pf_cksum_fixup( 4665 pd->hdr.icmp->icmp_cksum, icmpid, 4666 nk->port[pd->sidx], 0); 4667 pd->hdr.icmp->icmp_id = 4668 nk->port[pd->sidx]; 4669 } 4670 4671 m_copyback(m, off, ICMP_MINLEN, 4672 (caddr_t )pd->hdr.icmp); 4673 break; 4674 #endif /* INET */ 4675 #ifdef INET6 4676 case AF_INET6: 4677 if (PF_ANEQ(pd->src, 4678 &nk->addr[pd->sidx], AF_INET6)) 4679 pf_change_a6(saddr, 4680 &pd->hdr.icmp6->icmp6_cksum, 4681 &nk->addr[pd->sidx], 0); 4682 4683 if (PF_ANEQ(pd->dst, 4684 &nk->addr[pd->didx], AF_INET6)) 4685 pf_change_a6(daddr, 4686 &pd->hdr.icmp6->icmp6_cksum, 4687 &nk->addr[pd->didx], 0); 4688 4689 m_copyback(m, off, sizeof(struct icmp6_hdr), 4690 (caddr_t )pd->hdr.icmp6); 4691 break; 4692 #endif /* INET6 */ 4693 } 4694 } 4695 return (PF_PASS); 4696 4697 } else { 4698 /* 4699 * ICMP error message in response to a TCP/UDP packet. 4700 * Extract the inner TCP/UDP header and search for that state. 4701 */ 4702 4703 struct pf_pdesc pd2; 4704 bzero(&pd2, sizeof pd2); 4705 #ifdef INET 4706 struct ip h2; 4707 #endif /* INET */ 4708 #ifdef INET6 4709 struct ip6_hdr h2_6; 4710 int terminal = 0; 4711 #endif /* INET6 */ 4712 int ipoff2 = 0; 4713 int off2 = 0; 4714 4715 pd2.af = pd->af; 4716 /* Payload packet is from the opposite direction. */ 4717 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4718 pd2.didx = (direction == PF_IN) ? 0 : 1; 4719 switch (pd->af) { 4720 #ifdef INET 4721 case AF_INET: 4722 /* offset of h2 in mbuf chain */ 4723 ipoff2 = off + ICMP_MINLEN; 4724 4725 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4726 NULL, reason, pd2.af)) { 4727 DPFPRINTF(PF_DEBUG_MISC, 4728 ("pf: ICMP error message too short " 4729 "(ip)\n")); 4730 return (PF_DROP); 4731 } 4732 /* 4733 * ICMP error messages don't refer to non-first 4734 * fragments 4735 */ 4736 if (h2.ip_off & htons(IP_OFFMASK)) { 4737 REASON_SET(reason, PFRES_FRAG); 4738 return (PF_DROP); 4739 } 4740 4741 /* offset of protocol header that follows h2 */ 4742 off2 = ipoff2 + (h2.ip_hl << 2); 4743 4744 pd2.proto = h2.ip_p; 4745 pd2.src = (struct pf_addr *)&h2.ip_src; 4746 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4747 pd2.ip_sum = &h2.ip_sum; 4748 break; 4749 #endif /* INET */ 4750 #ifdef INET6 4751 case AF_INET6: 4752 ipoff2 = off + sizeof(struct icmp6_hdr); 4753 4754 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4755 NULL, reason, pd2.af)) { 4756 DPFPRINTF(PF_DEBUG_MISC, 4757 ("pf: ICMP error message too short " 4758 "(ip6)\n")); 4759 return (PF_DROP); 4760 } 4761 pd2.proto = h2_6.ip6_nxt; 4762 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4763 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4764 pd2.ip_sum = NULL; 4765 off2 = ipoff2 + sizeof(h2_6); 4766 do { 4767 switch (pd2.proto) { 4768 case IPPROTO_FRAGMENT: 4769 /* 4770 * ICMPv6 error messages for 4771 * non-first fragments 4772 */ 4773 REASON_SET(reason, PFRES_FRAG); 4774 return (PF_DROP); 4775 case IPPROTO_AH: 4776 case IPPROTO_HOPOPTS: 4777 case IPPROTO_ROUTING: 4778 case IPPROTO_DSTOPTS: { 4779 /* get next header and header length */ 4780 struct ip6_ext opt6; 4781 4782 if (!pf_pull_hdr(m, off2, &opt6, 4783 sizeof(opt6), NULL, reason, 4784 pd2.af)) { 4785 DPFPRINTF(PF_DEBUG_MISC, 4786 ("pf: ICMPv6 short opt\n")); 4787 return (PF_DROP); 4788 } 4789 if (pd2.proto == IPPROTO_AH) 4790 off2 += (opt6.ip6e_len + 2) * 4; 4791 else 4792 off2 += (opt6.ip6e_len + 1) * 8; 4793 pd2.proto = opt6.ip6e_nxt; 4794 /* goto the next header */ 4795 break; 4796 } 4797 default: 4798 terminal++; 4799 break; 4800 } 4801 } while (!terminal); 4802 break; 4803 #endif /* INET6 */ 4804 } 4805 4806 switch (pd2.proto) { 4807 case IPPROTO_TCP: { 4808 struct tcphdr th; 4809 u_int32_t seq; 4810 struct pf_state_peer *src, *dst; 4811 u_int8_t dws; 4812 int copyback = 0; 4813 4814 /* 4815 * Only the first 8 bytes of the TCP header can be 4816 * expected. Don't access any TCP header fields after 4817 * th_seq, an ackskew test is not possible. 4818 */ 4819 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4820 pd2.af)) { 4821 DPFPRINTF(PF_DEBUG_MISC, 4822 ("pf: ICMP error message too short " 4823 "(tcp)\n")); 4824 return (PF_DROP); 4825 } 4826 4827 key.af = pd2.af; 4828 key.proto = IPPROTO_TCP; 4829 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4830 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4831 key.port[pd2.sidx] = th.th_sport; 4832 key.port[pd2.didx] = th.th_dport; 4833 4834 STATE_LOOKUP(kif, &key, direction, *state, pd); 4835 4836 if (direction == (*state)->direction) { 4837 src = &(*state)->dst; 4838 dst = &(*state)->src; 4839 } else { 4840 src = &(*state)->src; 4841 dst = &(*state)->dst; 4842 } 4843 4844 if (src->wscale && dst->wscale) 4845 dws = dst->wscale & PF_WSCALE_MASK; 4846 else 4847 dws = 0; 4848 4849 /* Demodulate sequence number */ 4850 seq = ntohl(th.th_seq) - src->seqdiff; 4851 if (src->seqdiff) { 4852 pf_change_a(&th.th_seq, icmpsum, 4853 htonl(seq), 0); 4854 copyback = 1; 4855 } 4856 4857 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4858 (!SEQ_GEQ(src->seqhi, seq) || 4859 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4860 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4861 printf("pf: BAD ICMP %d:%d ", 4862 icmptype, pd->hdr.icmp->icmp_code); 4863 pf_print_host(pd->src, 0, pd->af); 4864 printf(" -> "); 4865 pf_print_host(pd->dst, 0, pd->af); 4866 printf(" state: "); 4867 pf_print_state(*state); 4868 printf(" seq=%u\n", seq); 4869 } 4870 REASON_SET(reason, PFRES_BADSTATE); 4871 return (PF_DROP); 4872 } else { 4873 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4874 printf("pf: OK ICMP %d:%d ", 4875 icmptype, pd->hdr.icmp->icmp_code); 4876 pf_print_host(pd->src, 0, pd->af); 4877 printf(" -> "); 4878 pf_print_host(pd->dst, 0, pd->af); 4879 printf(" state: "); 4880 pf_print_state(*state); 4881 printf(" seq=%u\n", seq); 4882 } 4883 } 4884 4885 /* translate source/destination address, if necessary */ 4886 if ((*state)->key[PF_SK_WIRE] != 4887 (*state)->key[PF_SK_STACK]) { 4888 struct pf_state_key *nk = 4889 (*state)->key[pd->didx]; 4890 4891 if (PF_ANEQ(pd2.src, 4892 &nk->addr[pd2.sidx], pd2.af) || 4893 nk->port[pd2.sidx] != th.th_sport) 4894 pf_change_icmp(pd2.src, &th.th_sport, 4895 daddr, &nk->addr[pd2.sidx], 4896 nk->port[pd2.sidx], NULL, 4897 pd2.ip_sum, icmpsum, 4898 pd->ip_sum, 0, pd2.af); 4899 4900 if (PF_ANEQ(pd2.dst, 4901 &nk->addr[pd2.didx], pd2.af) || 4902 nk->port[pd2.didx] != th.th_dport) 4903 pf_change_icmp(pd2.dst, &th.th_dport, 4904 saddr, &nk->addr[pd2.didx], 4905 nk->port[pd2.didx], NULL, 4906 pd2.ip_sum, icmpsum, 4907 pd->ip_sum, 0, pd2.af); 4908 copyback = 1; 4909 } 4910 4911 if (copyback) { 4912 switch (pd2.af) { 4913 #ifdef INET 4914 case AF_INET: 4915 m_copyback(m, off, ICMP_MINLEN, 4916 (caddr_t )pd->hdr.icmp); 4917 m_copyback(m, ipoff2, sizeof(h2), 4918 (caddr_t )&h2); 4919 break; 4920 #endif /* INET */ 4921 #ifdef INET6 4922 case AF_INET6: 4923 m_copyback(m, off, 4924 sizeof(struct icmp6_hdr), 4925 (caddr_t )pd->hdr.icmp6); 4926 m_copyback(m, ipoff2, sizeof(h2_6), 4927 (caddr_t )&h2_6); 4928 break; 4929 #endif /* INET6 */ 4930 } 4931 m_copyback(m, off2, 8, (caddr_t)&th); 4932 } 4933 4934 return (PF_PASS); 4935 break; 4936 } 4937 case IPPROTO_UDP: { 4938 struct udphdr uh; 4939 4940 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4941 NULL, reason, pd2.af)) { 4942 DPFPRINTF(PF_DEBUG_MISC, 4943 ("pf: ICMP error message too short " 4944 "(udp)\n")); 4945 return (PF_DROP); 4946 } 4947 4948 key.af = pd2.af; 4949 key.proto = IPPROTO_UDP; 4950 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4951 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4952 key.port[pd2.sidx] = uh.uh_sport; 4953 key.port[pd2.didx] = uh.uh_dport; 4954 4955 STATE_LOOKUP(kif, &key, direction, *state, pd); 4956 4957 /* translate source/destination address, if necessary */ 4958 if ((*state)->key[PF_SK_WIRE] != 4959 (*state)->key[PF_SK_STACK]) { 4960 struct pf_state_key *nk = 4961 (*state)->key[pd->didx]; 4962 4963 if (PF_ANEQ(pd2.src, 4964 &nk->addr[pd2.sidx], pd2.af) || 4965 nk->port[pd2.sidx] != uh.uh_sport) 4966 pf_change_icmp(pd2.src, &uh.uh_sport, 4967 daddr, &nk->addr[pd2.sidx], 4968 nk->port[pd2.sidx], &uh.uh_sum, 4969 pd2.ip_sum, icmpsum, 4970 pd->ip_sum, 1, pd2.af); 4971 4972 if (PF_ANEQ(pd2.dst, 4973 &nk->addr[pd2.didx], pd2.af) || 4974 nk->port[pd2.didx] != uh.uh_dport) 4975 pf_change_icmp(pd2.dst, &uh.uh_dport, 4976 saddr, &nk->addr[pd2.didx], 4977 nk->port[pd2.didx], &uh.uh_sum, 4978 pd2.ip_sum, icmpsum, 4979 pd->ip_sum, 1, pd2.af); 4980 4981 switch (pd2.af) { 4982 #ifdef INET 4983 case AF_INET: 4984 m_copyback(m, off, ICMP_MINLEN, 4985 (caddr_t )pd->hdr.icmp); 4986 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4987 break; 4988 #endif /* INET */ 4989 #ifdef INET6 4990 case AF_INET6: 4991 m_copyback(m, off, 4992 sizeof(struct icmp6_hdr), 4993 (caddr_t )pd->hdr.icmp6); 4994 m_copyback(m, ipoff2, sizeof(h2_6), 4995 (caddr_t )&h2_6); 4996 break; 4997 #endif /* INET6 */ 4998 } 4999 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 5000 } 5001 return (PF_PASS); 5002 break; 5003 } 5004 #ifdef INET 5005 case IPPROTO_ICMP: { 5006 struct icmp iih; 5007 5008 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 5009 NULL, reason, pd2.af)) { 5010 DPFPRINTF(PF_DEBUG_MISC, 5011 ("pf: ICMP error message too short i" 5012 "(icmp)\n")); 5013 return (PF_DROP); 5014 } 5015 5016 key.af = pd2.af; 5017 key.proto = IPPROTO_ICMP; 5018 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5019 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5020 key.port[0] = key.port[1] = iih.icmp_id; 5021 5022 STATE_LOOKUP(kif, &key, direction, *state, pd); 5023 5024 /* translate source/destination address, if necessary */ 5025 if ((*state)->key[PF_SK_WIRE] != 5026 (*state)->key[PF_SK_STACK]) { 5027 struct pf_state_key *nk = 5028 (*state)->key[pd->didx]; 5029 5030 if (PF_ANEQ(pd2.src, 5031 &nk->addr[pd2.sidx], pd2.af) || 5032 nk->port[pd2.sidx] != iih.icmp_id) 5033 pf_change_icmp(pd2.src, &iih.icmp_id, 5034 daddr, &nk->addr[pd2.sidx], 5035 nk->port[pd2.sidx], NULL, 5036 pd2.ip_sum, icmpsum, 5037 pd->ip_sum, 0, AF_INET); 5038 5039 if (PF_ANEQ(pd2.dst, 5040 &nk->addr[pd2.didx], pd2.af) || 5041 nk->port[pd2.didx] != iih.icmp_id) 5042 pf_change_icmp(pd2.dst, &iih.icmp_id, 5043 saddr, &nk->addr[pd2.didx], 5044 nk->port[pd2.didx], NULL, 5045 pd2.ip_sum, icmpsum, 5046 pd->ip_sum, 0, AF_INET); 5047 5048 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 5049 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5050 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5051 } 5052 return (PF_PASS); 5053 break; 5054 } 5055 #endif /* INET */ 5056 #ifdef INET6 5057 case IPPROTO_ICMPV6: { 5058 struct icmp6_hdr iih; 5059 5060 if (!pf_pull_hdr(m, off2, &iih, 5061 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5062 DPFPRINTF(PF_DEBUG_MISC, 5063 ("pf: ICMP error message too short " 5064 "(icmp6)\n")); 5065 return (PF_DROP); 5066 } 5067 5068 key.af = pd2.af; 5069 key.proto = IPPROTO_ICMPV6; 5070 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5071 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5072 key.port[0] = key.port[1] = iih.icmp6_id; 5073 5074 STATE_LOOKUP(kif, &key, direction, *state, pd); 5075 5076 /* translate source/destination address, if necessary */ 5077 if ((*state)->key[PF_SK_WIRE] != 5078 (*state)->key[PF_SK_STACK]) { 5079 struct pf_state_key *nk = 5080 (*state)->key[pd->didx]; 5081 5082 if (PF_ANEQ(pd2.src, 5083 &nk->addr[pd2.sidx], pd2.af) || 5084 nk->port[pd2.sidx] != iih.icmp6_id) 5085 pf_change_icmp(pd2.src, &iih.icmp6_id, 5086 daddr, &nk->addr[pd2.sidx], 5087 nk->port[pd2.sidx], NULL, 5088 pd2.ip_sum, icmpsum, 5089 pd->ip_sum, 0, AF_INET6); 5090 5091 if (PF_ANEQ(pd2.dst, 5092 &nk->addr[pd2.didx], pd2.af) || 5093 nk->port[pd2.didx] != iih.icmp6_id) 5094 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5095 saddr, &nk->addr[pd2.didx], 5096 nk->port[pd2.didx], NULL, 5097 pd2.ip_sum, icmpsum, 5098 pd->ip_sum, 0, AF_INET6); 5099 5100 m_copyback(m, off, sizeof(struct icmp6_hdr), 5101 (caddr_t)pd->hdr.icmp6); 5102 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5103 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5104 (caddr_t)&iih); 5105 } 5106 return (PF_PASS); 5107 break; 5108 } 5109 #endif /* INET6 */ 5110 default: { 5111 key.af = pd2.af; 5112 key.proto = pd2.proto; 5113 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5114 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5115 key.port[0] = key.port[1] = 0; 5116 5117 STATE_LOOKUP(kif, &key, direction, *state, pd); 5118 5119 /* translate source/destination address, if necessary */ 5120 if ((*state)->key[PF_SK_WIRE] != 5121 (*state)->key[PF_SK_STACK]) { 5122 struct pf_state_key *nk = 5123 (*state)->key[pd->didx]; 5124 5125 if (PF_ANEQ(pd2.src, 5126 &nk->addr[pd2.sidx], pd2.af)) 5127 pf_change_icmp(pd2.src, NULL, daddr, 5128 &nk->addr[pd2.sidx], 0, NULL, 5129 pd2.ip_sum, icmpsum, 5130 pd->ip_sum, 0, pd2.af); 5131 5132 if (PF_ANEQ(pd2.dst, 5133 &nk->addr[pd2.didx], pd2.af)) 5134 pf_change_icmp(pd2.dst, NULL, saddr, 5135 &nk->addr[pd2.didx], 0, NULL, 5136 pd2.ip_sum, icmpsum, 5137 pd->ip_sum, 0, pd2.af); 5138 5139 switch (pd2.af) { 5140 #ifdef INET 5141 case AF_INET: 5142 m_copyback(m, off, ICMP_MINLEN, 5143 (caddr_t)pd->hdr.icmp); 5144 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5145 break; 5146 #endif /* INET */ 5147 #ifdef INET6 5148 case AF_INET6: 5149 m_copyback(m, off, 5150 sizeof(struct icmp6_hdr), 5151 (caddr_t )pd->hdr.icmp6); 5152 m_copyback(m, ipoff2, sizeof(h2_6), 5153 (caddr_t )&h2_6); 5154 break; 5155 #endif /* INET6 */ 5156 } 5157 } 5158 return (PF_PASS); 5159 break; 5160 } 5161 } 5162 } 5163 } 5164 5165 static int 5166 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5167 struct mbuf *m, struct pf_pdesc *pd) 5168 { 5169 struct pf_state_peer *src, *dst; 5170 struct pf_state_key_cmp key; 5171 5172 bzero(&key, sizeof(key)); 5173 key.af = pd->af; 5174 key.proto = pd->proto; 5175 if (direction == PF_IN) { 5176 PF_ACPY(&key.addr[0], pd->src, key.af); 5177 PF_ACPY(&key.addr[1], pd->dst, key.af); 5178 key.port[0] = key.port[1] = 0; 5179 } else { 5180 PF_ACPY(&key.addr[1], pd->src, key.af); 5181 PF_ACPY(&key.addr[0], pd->dst, key.af); 5182 key.port[1] = key.port[0] = 0; 5183 } 5184 5185 STATE_LOOKUP(kif, &key, direction, *state, pd); 5186 5187 if (direction == (*state)->direction) { 5188 src = &(*state)->src; 5189 dst = &(*state)->dst; 5190 } else { 5191 src = &(*state)->dst; 5192 dst = &(*state)->src; 5193 } 5194 5195 /* update states */ 5196 if (src->state < PFOTHERS_SINGLE) 5197 src->state = PFOTHERS_SINGLE; 5198 if (dst->state == PFOTHERS_SINGLE) 5199 dst->state = PFOTHERS_MULTIPLE; 5200 5201 /* update expire time */ 5202 (*state)->expire = time_uptime; 5203 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5204 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5205 else 5206 (*state)->timeout = PFTM_OTHER_SINGLE; 5207 5208 /* translate source/destination address, if necessary */ 5209 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5210 struct pf_state_key *nk = (*state)->key[pd->didx]; 5211 5212 KASSERT(nk, ("%s: nk is null", __func__)); 5213 KASSERT(pd, ("%s: pd is null", __func__)); 5214 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5215 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5216 switch (pd->af) { 5217 #ifdef INET 5218 case AF_INET: 5219 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5220 pf_change_a(&pd->src->v4.s_addr, 5221 pd->ip_sum, 5222 nk->addr[pd->sidx].v4.s_addr, 5223 0); 5224 5225 5226 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5227 pf_change_a(&pd->dst->v4.s_addr, 5228 pd->ip_sum, 5229 nk->addr[pd->didx].v4.s_addr, 5230 0); 5231 5232 break; 5233 #endif /* INET */ 5234 #ifdef INET6 5235 case AF_INET6: 5236 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5237 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5238 5239 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5240 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5241 #endif /* INET6 */ 5242 } 5243 } 5244 return (PF_PASS); 5245 } 5246 5247 /* 5248 * ipoff and off are measured from the start of the mbuf chain. 5249 * h must be at "ipoff" on the mbuf chain. 5250 */ 5251 void * 5252 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5253 u_short *actionp, u_short *reasonp, sa_family_t af) 5254 { 5255 switch (af) { 5256 #ifdef INET 5257 case AF_INET: { 5258 struct ip *h = mtod(m, struct ip *); 5259 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5260 5261 if (fragoff) { 5262 if (fragoff >= len) 5263 ACTION_SET(actionp, PF_PASS); 5264 else { 5265 ACTION_SET(actionp, PF_DROP); 5266 REASON_SET(reasonp, PFRES_FRAG); 5267 } 5268 return (NULL); 5269 } 5270 if (m->m_pkthdr.len < off + len || 5271 ntohs(h->ip_len) < off + len) { 5272 ACTION_SET(actionp, PF_DROP); 5273 REASON_SET(reasonp, PFRES_SHORT); 5274 return (NULL); 5275 } 5276 break; 5277 } 5278 #endif /* INET */ 5279 #ifdef INET6 5280 case AF_INET6: { 5281 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5282 5283 if (m->m_pkthdr.len < off + len || 5284 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5285 (unsigned)(off + len)) { 5286 ACTION_SET(actionp, PF_DROP); 5287 REASON_SET(reasonp, PFRES_SHORT); 5288 return (NULL); 5289 } 5290 break; 5291 } 5292 #endif /* INET6 */ 5293 } 5294 m_copydata(m, off, len, p); 5295 return (p); 5296 } 5297 5298 #ifdef RADIX_MPATH 5299 static int 5300 pf_routable_oldmpath(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5301 int rtableid) 5302 { 5303 struct radix_node_head *rnh; 5304 struct sockaddr_in *dst; 5305 int ret = 1; 5306 int check_mpath; 5307 #ifdef INET6 5308 struct sockaddr_in6 *dst6; 5309 struct route_in6 ro; 5310 #else 5311 struct route ro; 5312 #endif 5313 struct radix_node *rn; 5314 struct rtentry *rt; 5315 struct ifnet *ifp; 5316 5317 check_mpath = 0; 5318 /* XXX: stick to table 0 for now */ 5319 rnh = rt_tables_get_rnh(0, af); 5320 if (rnh != NULL && rn_mpath_capable(rnh)) 5321 check_mpath = 1; 5322 bzero(&ro, sizeof(ro)); 5323 switch (af) { 5324 case AF_INET: 5325 dst = satosin(&ro.ro_dst); 5326 dst->sin_family = AF_INET; 5327 dst->sin_len = sizeof(*dst); 5328 dst->sin_addr = addr->v4; 5329 break; 5330 #ifdef INET6 5331 case AF_INET6: 5332 /* 5333 * Skip check for addresses with embedded interface scope, 5334 * as they would always match anyway. 5335 */ 5336 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5337 goto out; 5338 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5339 dst6->sin6_family = AF_INET6; 5340 dst6->sin6_len = sizeof(*dst6); 5341 dst6->sin6_addr = addr->v6; 5342 break; 5343 #endif /* INET6 */ 5344 default: 5345 return (0); 5346 } 5347 5348 /* Skip checks for ipsec interfaces */ 5349 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5350 goto out; 5351 5352 switch (af) { 5353 #ifdef INET6 5354 case AF_INET6: 5355 in6_rtalloc_ign(&ro, 0, rtableid); 5356 break; 5357 #endif 5358 #ifdef INET 5359 case AF_INET: 5360 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5361 break; 5362 #endif 5363 } 5364 5365 if (ro.ro_rt != NULL) { 5366 /* No interface given, this is a no-route check */ 5367 if (kif == NULL) 5368 goto out; 5369 5370 if (kif->pfik_ifp == NULL) { 5371 ret = 0; 5372 goto out; 5373 } 5374 5375 /* Perform uRPF check if passed input interface */ 5376 ret = 0; 5377 rn = (struct radix_node *)ro.ro_rt; 5378 do { 5379 rt = (struct rtentry *)rn; 5380 ifp = rt->rt_ifp; 5381 5382 if (kif->pfik_ifp == ifp) 5383 ret = 1; 5384 rn = rn_mpath_next(rn); 5385 } while (check_mpath == 1 && rn != NULL && ret == 0); 5386 } else 5387 ret = 0; 5388 out: 5389 if (ro.ro_rt != NULL) 5390 RTFREE(ro.ro_rt); 5391 return (ret); 5392 } 5393 #endif 5394 5395 int 5396 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5397 int rtableid) 5398 { 5399 #ifdef INET 5400 struct nhop4_basic nh4; 5401 #endif 5402 #ifdef INET6 5403 struct nhop6_basic nh6; 5404 #endif 5405 struct ifnet *ifp; 5406 #ifdef RADIX_MPATH 5407 struct radix_node_head *rnh; 5408 5409 /* XXX: stick to table 0 for now */ 5410 rnh = rt_tables_get_rnh(0, af); 5411 if (rnh != NULL && rn_mpath_capable(rnh)) 5412 return (pf_routable_oldmpath(addr, af, kif, rtableid)); 5413 #endif 5414 /* 5415 * Skip check for addresses with embedded interface scope, 5416 * as they would always match anyway. 5417 */ 5418 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5419 return (1); 5420 5421 if (af != AF_INET && af != AF_INET6) 5422 return (0); 5423 5424 /* Skip checks for ipsec interfaces */ 5425 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5426 return (1); 5427 5428 ifp = NULL; 5429 5430 switch (af) { 5431 #ifdef INET6 5432 case AF_INET6: 5433 if (fib6_lookup_nh_basic(rtableid, &addr->v6, 0, 0, 0, &nh6)!=0) 5434 return (0); 5435 ifp = nh6.nh_ifp; 5436 break; 5437 #endif 5438 #ifdef INET 5439 case AF_INET: 5440 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) != 0) 5441 return (0); 5442 ifp = nh4.nh_ifp; 5443 break; 5444 #endif 5445 } 5446 5447 /* No interface given, this is a no-route check */ 5448 if (kif == NULL) 5449 return (1); 5450 5451 if (kif->pfik_ifp == NULL) 5452 return (0); 5453 5454 /* Perform uRPF check if passed input interface */ 5455 if (kif->pfik_ifp == ifp) 5456 return (1); 5457 return (0); 5458 } 5459 5460 #ifdef INET 5461 static void 5462 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5463 struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) 5464 { 5465 struct mbuf *m0, *m1; 5466 struct sockaddr_in dst; 5467 struct ip *ip; 5468 struct ifnet *ifp = NULL; 5469 struct pf_addr naddr; 5470 struct pf_src_node *sn = NULL; 5471 int error = 0; 5472 uint16_t ip_len, ip_off; 5473 5474 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5475 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5476 __func__)); 5477 5478 if ((pd->pf_mtag == NULL && 5479 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5480 pd->pf_mtag->routed++ > 3) { 5481 m0 = *m; 5482 *m = NULL; 5483 goto bad_locked; 5484 } 5485 5486 if (r->rt == PF_DUPTO) { 5487 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5488 if (s) 5489 PF_STATE_UNLOCK(s); 5490 return; 5491 } 5492 } else { 5493 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5494 if (s) 5495 PF_STATE_UNLOCK(s); 5496 return; 5497 } 5498 m0 = *m; 5499 } 5500 5501 ip = mtod(m0, struct ip *); 5502 5503 bzero(&dst, sizeof(dst)); 5504 dst.sin_family = AF_INET; 5505 dst.sin_len = sizeof(dst); 5506 dst.sin_addr = ip->ip_dst; 5507 5508 if (TAILQ_EMPTY(&r->rpool.list)) { 5509 DPFPRINTF(PF_DEBUG_URGENT, 5510 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5511 goto bad_locked; 5512 } 5513 if (s == NULL) { 5514 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5515 &naddr, NULL, &sn); 5516 if (!PF_AZERO(&naddr, AF_INET)) 5517 dst.sin_addr.s_addr = naddr.v4.s_addr; 5518 ifp = r->rpool.cur->kif ? 5519 r->rpool.cur->kif->pfik_ifp : NULL; 5520 } else { 5521 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5522 dst.sin_addr.s_addr = 5523 s->rt_addr.v4.s_addr; 5524 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5525 PF_STATE_UNLOCK(s); 5526 } 5527 if (ifp == NULL) 5528 goto bad; 5529 5530 if (oifp != ifp) { 5531 if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 5532 goto bad; 5533 else if (m0 == NULL) 5534 goto done; 5535 if (m0->m_len < sizeof(struct ip)) { 5536 DPFPRINTF(PF_DEBUG_URGENT, 5537 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5538 goto bad; 5539 } 5540 ip = mtod(m0, struct ip *); 5541 } 5542 5543 if (ifp->if_flags & IFF_LOOPBACK) 5544 m0->m_flags |= M_SKIP_FIREWALL; 5545 5546 ip_len = ntohs(ip->ip_len); 5547 ip_off = ntohs(ip->ip_off); 5548 5549 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5550 m0->m_pkthdr.csum_flags |= CSUM_IP; 5551 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5552 in_delayed_cksum(m0); 5553 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5554 } 5555 #ifdef SCTP 5556 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5557 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5558 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5559 } 5560 #endif 5561 5562 /* 5563 * If small enough for interface, or the interface will take 5564 * care of the fragmentation for us, we can just send directly. 5565 */ 5566 if (ip_len <= ifp->if_mtu || 5567 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5568 ip->ip_sum = 0; 5569 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5570 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5571 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5572 } 5573 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5574 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5575 goto done; 5576 } 5577 5578 /* Balk when DF bit is set or the interface didn't support TSO. */ 5579 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5580 error = EMSGSIZE; 5581 KMOD_IPSTAT_INC(ips_cantfrag); 5582 if (r->rt != PF_DUPTO) { 5583 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5584 ifp->if_mtu); 5585 goto done; 5586 } else 5587 goto bad; 5588 } 5589 5590 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5591 if (error) 5592 goto bad; 5593 5594 for (; m0; m0 = m1) { 5595 m1 = m0->m_nextpkt; 5596 m0->m_nextpkt = NULL; 5597 if (error == 0) { 5598 m_clrprotoflags(m0); 5599 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5600 } else 5601 m_freem(m0); 5602 } 5603 5604 if (error == 0) 5605 KMOD_IPSTAT_INC(ips_fragmented); 5606 5607 done: 5608 if (r->rt != PF_DUPTO) 5609 *m = NULL; 5610 return; 5611 5612 bad_locked: 5613 if (s) 5614 PF_STATE_UNLOCK(s); 5615 bad: 5616 m_freem(m0); 5617 goto done; 5618 } 5619 #endif /* INET */ 5620 5621 #ifdef INET6 5622 static void 5623 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5624 struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) 5625 { 5626 struct mbuf *m0; 5627 struct sockaddr_in6 dst; 5628 struct ip6_hdr *ip6; 5629 struct ifnet *ifp = NULL; 5630 struct pf_addr naddr; 5631 struct pf_src_node *sn = NULL; 5632 5633 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5634 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5635 __func__)); 5636 5637 if ((pd->pf_mtag == NULL && 5638 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5639 pd->pf_mtag->routed++ > 3) { 5640 m0 = *m; 5641 *m = NULL; 5642 goto bad_locked; 5643 } 5644 5645 if (r->rt == PF_DUPTO) { 5646 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5647 if (s) 5648 PF_STATE_UNLOCK(s); 5649 return; 5650 } 5651 } else { 5652 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5653 if (s) 5654 PF_STATE_UNLOCK(s); 5655 return; 5656 } 5657 m0 = *m; 5658 } 5659 5660 ip6 = mtod(m0, struct ip6_hdr *); 5661 5662 bzero(&dst, sizeof(dst)); 5663 dst.sin6_family = AF_INET6; 5664 dst.sin6_len = sizeof(dst); 5665 dst.sin6_addr = ip6->ip6_dst; 5666 5667 if (TAILQ_EMPTY(&r->rpool.list)) { 5668 DPFPRINTF(PF_DEBUG_URGENT, 5669 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5670 goto bad_locked; 5671 } 5672 if (s == NULL) { 5673 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5674 &naddr, NULL, &sn); 5675 if (!PF_AZERO(&naddr, AF_INET6)) 5676 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5677 &naddr, AF_INET6); 5678 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5679 } else { 5680 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5681 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5682 &s->rt_addr, AF_INET6); 5683 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5684 } 5685 5686 if (s) 5687 PF_STATE_UNLOCK(s); 5688 5689 if (ifp == NULL) 5690 goto bad; 5691 5692 if (oifp != ifp) { 5693 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS) 5694 goto bad; 5695 else if (m0 == NULL) 5696 goto done; 5697 if (m0->m_len < sizeof(struct ip6_hdr)) { 5698 DPFPRINTF(PF_DEBUG_URGENT, 5699 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5700 __func__)); 5701 goto bad; 5702 } 5703 ip6 = mtod(m0, struct ip6_hdr *); 5704 } 5705 5706 if (ifp->if_flags & IFF_LOOPBACK) 5707 m0->m_flags |= M_SKIP_FIREWALL; 5708 5709 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5710 ~ifp->if_hwassist) { 5711 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5712 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5713 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5714 } 5715 5716 /* 5717 * If the packet is too large for the outgoing interface, 5718 * send back an icmp6 error. 5719 */ 5720 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5721 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5722 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5723 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5724 else { 5725 in6_ifstat_inc(ifp, ifs6_in_toobig); 5726 if (r->rt != PF_DUPTO) 5727 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5728 else 5729 goto bad; 5730 } 5731 5732 done: 5733 if (r->rt != PF_DUPTO) 5734 *m = NULL; 5735 return; 5736 5737 bad_locked: 5738 if (s) 5739 PF_STATE_UNLOCK(s); 5740 bad: 5741 m_freem(m0); 5742 goto done; 5743 } 5744 #endif /* INET6 */ 5745 5746 /* 5747 * FreeBSD supports cksum offloads for the following drivers. 5748 * em(4), fxp(4), lge(4), ndis(4), nge(4), re(4), ti(4), txp(4), xl(4) 5749 * 5750 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5751 * network driver performed cksum including pseudo header, need to verify 5752 * csum_data 5753 * CSUM_DATA_VALID : 5754 * network driver performed cksum, needs to additional pseudo header 5755 * cksum computation with partial csum_data(i.e. lack of H/W support for 5756 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5757 * 5758 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5759 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5760 * TCP/UDP layer. 5761 * Also, set csum_data to 0xffff to force cksum validation. 5762 */ 5763 static int 5764 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5765 { 5766 u_int16_t sum = 0; 5767 int hw_assist = 0; 5768 struct ip *ip; 5769 5770 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5771 return (1); 5772 if (m->m_pkthdr.len < off + len) 5773 return (1); 5774 5775 switch (p) { 5776 case IPPROTO_TCP: 5777 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5778 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5779 sum = m->m_pkthdr.csum_data; 5780 } else { 5781 ip = mtod(m, struct ip *); 5782 sum = in_pseudo(ip->ip_src.s_addr, 5783 ip->ip_dst.s_addr, htonl((u_short)len + 5784 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5785 } 5786 sum ^= 0xffff; 5787 ++hw_assist; 5788 } 5789 break; 5790 case IPPROTO_UDP: 5791 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5792 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5793 sum = m->m_pkthdr.csum_data; 5794 } else { 5795 ip = mtod(m, struct ip *); 5796 sum = in_pseudo(ip->ip_src.s_addr, 5797 ip->ip_dst.s_addr, htonl((u_short)len + 5798 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5799 } 5800 sum ^= 0xffff; 5801 ++hw_assist; 5802 } 5803 break; 5804 case IPPROTO_ICMP: 5805 #ifdef INET6 5806 case IPPROTO_ICMPV6: 5807 #endif /* INET6 */ 5808 break; 5809 default: 5810 return (1); 5811 } 5812 5813 if (!hw_assist) { 5814 switch (af) { 5815 case AF_INET: 5816 if (p == IPPROTO_ICMP) { 5817 if (m->m_len < off) 5818 return (1); 5819 m->m_data += off; 5820 m->m_len -= off; 5821 sum = in_cksum(m, len); 5822 m->m_data -= off; 5823 m->m_len += off; 5824 } else { 5825 if (m->m_len < sizeof(struct ip)) 5826 return (1); 5827 sum = in4_cksum(m, p, off, len); 5828 } 5829 break; 5830 #ifdef INET6 5831 case AF_INET6: 5832 if (m->m_len < sizeof(struct ip6_hdr)) 5833 return (1); 5834 sum = in6_cksum(m, p, off, len); 5835 break; 5836 #endif /* INET6 */ 5837 default: 5838 return (1); 5839 } 5840 } 5841 if (sum) { 5842 switch (p) { 5843 case IPPROTO_TCP: 5844 { 5845 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5846 break; 5847 } 5848 case IPPROTO_UDP: 5849 { 5850 KMOD_UDPSTAT_INC(udps_badsum); 5851 break; 5852 } 5853 #ifdef INET 5854 case IPPROTO_ICMP: 5855 { 5856 KMOD_ICMPSTAT_INC(icps_checksum); 5857 break; 5858 } 5859 #endif 5860 #ifdef INET6 5861 case IPPROTO_ICMPV6: 5862 { 5863 KMOD_ICMP6STAT_INC(icp6s_checksum); 5864 break; 5865 } 5866 #endif /* INET6 */ 5867 } 5868 return (1); 5869 } else { 5870 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5871 m->m_pkthdr.csum_flags |= 5872 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5873 m->m_pkthdr.csum_data = 0xffff; 5874 } 5875 } 5876 return (0); 5877 } 5878 5879 5880 #ifdef INET 5881 int 5882 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5883 { 5884 struct pfi_kif *kif; 5885 u_short action, reason = 0, log = 0; 5886 struct mbuf *m = *m0; 5887 struct ip *h = NULL; 5888 struct m_tag *ipfwtag; 5889 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5890 struct pf_state *s = NULL; 5891 struct pf_ruleset *ruleset = NULL; 5892 struct pf_pdesc pd; 5893 int off, dirndx, pqid = 0; 5894 5895 PF_RULES_RLOCK_TRACKER; 5896 5897 M_ASSERTPKTHDR(m); 5898 5899 if (!V_pf_status.running) 5900 return (PF_PASS); 5901 5902 memset(&pd, 0, sizeof(pd)); 5903 5904 kif = (struct pfi_kif *)ifp->if_pf_kif; 5905 5906 if (kif == NULL) { 5907 DPFPRINTF(PF_DEBUG_URGENT, 5908 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5909 return (PF_DROP); 5910 } 5911 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5912 return (PF_PASS); 5913 5914 if (m->m_flags & M_SKIP_FIREWALL) 5915 return (PF_PASS); 5916 5917 pd.pf_mtag = pf_find_mtag(m); 5918 5919 PF_RULES_RLOCK(); 5920 5921 if (ip_divert_ptr != NULL && 5922 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5923 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5924 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5925 if (pd.pf_mtag == NULL && 5926 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5927 action = PF_DROP; 5928 goto done; 5929 } 5930 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5931 m_tag_delete(m, ipfwtag); 5932 } 5933 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5934 m->m_flags |= M_FASTFWD_OURS; 5935 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5936 } 5937 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5938 /* We do IP header normalization and packet reassembly here */ 5939 action = PF_DROP; 5940 goto done; 5941 } 5942 m = *m0; /* pf_normalize messes with m0 */ 5943 h = mtod(m, struct ip *); 5944 5945 off = h->ip_hl << 2; 5946 if (off < (int)sizeof(struct ip)) { 5947 action = PF_DROP; 5948 REASON_SET(&reason, PFRES_SHORT); 5949 log = 1; 5950 goto done; 5951 } 5952 5953 pd.src = (struct pf_addr *)&h->ip_src; 5954 pd.dst = (struct pf_addr *)&h->ip_dst; 5955 pd.sport = pd.dport = NULL; 5956 pd.ip_sum = &h->ip_sum; 5957 pd.proto_sum = NULL; 5958 pd.proto = h->ip_p; 5959 pd.dir = dir; 5960 pd.sidx = (dir == PF_IN) ? 0 : 1; 5961 pd.didx = (dir == PF_IN) ? 1 : 0; 5962 pd.af = AF_INET; 5963 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 5964 pd.tot_len = ntohs(h->ip_len); 5965 5966 /* handle fragments that didn't get reassembled by normalization */ 5967 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5968 action = pf_test_fragment(&r, dir, kif, m, h, 5969 &pd, &a, &ruleset); 5970 goto done; 5971 } 5972 5973 switch (h->ip_p) { 5974 5975 case IPPROTO_TCP: { 5976 struct tcphdr th; 5977 5978 pd.hdr.tcp = &th; 5979 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5980 &action, &reason, AF_INET)) { 5981 log = action != PF_PASS; 5982 goto done; 5983 } 5984 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5985 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5986 pqid = 1; 5987 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5988 if (action == PF_DROP) 5989 goto done; 5990 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5991 &reason); 5992 if (action == PF_PASS) { 5993 if (pfsync_update_state_ptr != NULL) 5994 pfsync_update_state_ptr(s); 5995 r = s->rule.ptr; 5996 a = s->anchor.ptr; 5997 log = s->log; 5998 } else if (s == NULL) 5999 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6000 &a, &ruleset, inp); 6001 break; 6002 } 6003 6004 case IPPROTO_UDP: { 6005 struct udphdr uh; 6006 6007 pd.hdr.udp = &uh; 6008 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6009 &action, &reason, AF_INET)) { 6010 log = action != PF_PASS; 6011 goto done; 6012 } 6013 if (uh.uh_dport == 0 || 6014 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6015 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6016 action = PF_DROP; 6017 REASON_SET(&reason, PFRES_SHORT); 6018 goto done; 6019 } 6020 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6021 if (action == PF_PASS) { 6022 if (pfsync_update_state_ptr != NULL) 6023 pfsync_update_state_ptr(s); 6024 r = s->rule.ptr; 6025 a = s->anchor.ptr; 6026 log = s->log; 6027 } else if (s == NULL) 6028 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6029 &a, &ruleset, inp); 6030 break; 6031 } 6032 6033 case IPPROTO_ICMP: { 6034 struct icmp ih; 6035 6036 pd.hdr.icmp = &ih; 6037 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 6038 &action, &reason, AF_INET)) { 6039 log = action != PF_PASS; 6040 goto done; 6041 } 6042 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 6043 &reason); 6044 if (action == PF_PASS) { 6045 if (pfsync_update_state_ptr != NULL) 6046 pfsync_update_state_ptr(s); 6047 r = s->rule.ptr; 6048 a = s->anchor.ptr; 6049 log = s->log; 6050 } else if (s == NULL) 6051 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6052 &a, &ruleset, inp); 6053 break; 6054 } 6055 6056 #ifdef INET6 6057 case IPPROTO_ICMPV6: { 6058 action = PF_DROP; 6059 DPFPRINTF(PF_DEBUG_MISC, 6060 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6061 goto done; 6062 } 6063 #endif 6064 6065 default: 6066 action = pf_test_state_other(&s, dir, kif, m, &pd); 6067 if (action == PF_PASS) { 6068 if (pfsync_update_state_ptr != NULL) 6069 pfsync_update_state_ptr(s); 6070 r = s->rule.ptr; 6071 a = s->anchor.ptr; 6072 log = s->log; 6073 } else if (s == NULL) 6074 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6075 &a, &ruleset, inp); 6076 break; 6077 } 6078 6079 done: 6080 PF_RULES_RUNLOCK(); 6081 if (action == PF_PASS && h->ip_hl > 5 && 6082 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6083 action = PF_DROP; 6084 REASON_SET(&reason, PFRES_IPOPTIONS); 6085 log = r->log; 6086 DPFPRINTF(PF_DEBUG_MISC, 6087 ("pf: dropping packet with ip options\n")); 6088 } 6089 6090 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6091 action = PF_DROP; 6092 REASON_SET(&reason, PFRES_MEMORY); 6093 } 6094 if (r->rtableid >= 0) 6095 M_SETFIB(m, r->rtableid); 6096 6097 if (r->scrub_flags & PFSTATE_SETPRIO) { 6098 if (pd.tos & IPTOS_LOWDELAY) 6099 pqid = 1; 6100 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6101 action = PF_DROP; 6102 REASON_SET(&reason, PFRES_MEMORY); 6103 log = 1; 6104 DPFPRINTF(PF_DEBUG_MISC, 6105 ("pf: failed to allocate 802.1q mtag\n")); 6106 } 6107 } 6108 6109 #ifdef ALTQ 6110 if (action == PF_PASS && r->qid) { 6111 if (pd.pf_mtag == NULL && 6112 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6113 action = PF_DROP; 6114 REASON_SET(&reason, PFRES_MEMORY); 6115 } else { 6116 if (s != NULL) 6117 pd.pf_mtag->qid_hash = pf_state_hash(s); 6118 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6119 pd.pf_mtag->qid = r->pqid; 6120 else 6121 pd.pf_mtag->qid = r->qid; 6122 /* Add hints for ecn. */ 6123 pd.pf_mtag->hdr = h; 6124 } 6125 6126 } 6127 #endif /* ALTQ */ 6128 6129 /* 6130 * connections redirected to loopback should not match sockets 6131 * bound specifically to loopback due to security implications, 6132 * see tcp_input() and in_pcblookup_listen(). 6133 */ 6134 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6135 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6136 (s->nat_rule.ptr->action == PF_RDR || 6137 s->nat_rule.ptr->action == PF_BINAT) && 6138 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 6139 m->m_flags |= M_SKIP_FIREWALL; 6140 6141 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6142 !PACKET_LOOPED(&pd)) { 6143 6144 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6145 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6146 if (ipfwtag != NULL) { 6147 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6148 ntohs(r->divert.port); 6149 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6150 6151 if (s) 6152 PF_STATE_UNLOCK(s); 6153 6154 m_tag_prepend(m, ipfwtag); 6155 if (m->m_flags & M_FASTFWD_OURS) { 6156 if (pd.pf_mtag == NULL && 6157 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6158 action = PF_DROP; 6159 REASON_SET(&reason, PFRES_MEMORY); 6160 log = 1; 6161 DPFPRINTF(PF_DEBUG_MISC, 6162 ("pf: failed to allocate tag\n")); 6163 } else { 6164 pd.pf_mtag->flags |= 6165 PF_FASTFWD_OURS_PRESENT; 6166 m->m_flags &= ~M_FASTFWD_OURS; 6167 } 6168 } 6169 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 6170 *m0 = NULL; 6171 6172 return (action); 6173 } else { 6174 /* XXX: ipfw has the same behaviour! */ 6175 action = PF_DROP; 6176 REASON_SET(&reason, PFRES_MEMORY); 6177 log = 1; 6178 DPFPRINTF(PF_DEBUG_MISC, 6179 ("pf: failed to allocate divert tag\n")); 6180 } 6181 } 6182 6183 if (log) { 6184 struct pf_rule *lr; 6185 6186 if (s != NULL && s->nat_rule.ptr != NULL && 6187 s->nat_rule.ptr->log & PF_LOG_ALL) 6188 lr = s->nat_rule.ptr; 6189 else 6190 lr = r; 6191 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6192 (s == NULL)); 6193 } 6194 6195 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6196 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 6197 6198 if (action == PF_PASS || r->action == PF_DROP) { 6199 dirndx = (dir == PF_OUT); 6200 r->packets[dirndx]++; 6201 r->bytes[dirndx] += pd.tot_len; 6202 if (a != NULL) { 6203 a->packets[dirndx]++; 6204 a->bytes[dirndx] += pd.tot_len; 6205 } 6206 if (s != NULL) { 6207 if (s->nat_rule.ptr != NULL) { 6208 s->nat_rule.ptr->packets[dirndx]++; 6209 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6210 } 6211 if (s->src_node != NULL) { 6212 s->src_node->packets[dirndx]++; 6213 s->src_node->bytes[dirndx] += pd.tot_len; 6214 } 6215 if (s->nat_src_node != NULL) { 6216 s->nat_src_node->packets[dirndx]++; 6217 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6218 } 6219 dirndx = (dir == s->direction) ? 0 : 1; 6220 s->packets[dirndx]++; 6221 s->bytes[dirndx] += pd.tot_len; 6222 } 6223 tr = r; 6224 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6225 if (nr != NULL && r == &V_pf_default_rule) 6226 tr = nr; 6227 if (tr->src.addr.type == PF_ADDR_TABLE) 6228 pfr_update_stats(tr->src.addr.p.tbl, 6229 (s == NULL) ? pd.src : 6230 &s->key[(s->direction == PF_IN)]-> 6231 addr[(s->direction == PF_OUT)], 6232 pd.af, pd.tot_len, dir == PF_OUT, 6233 r->action == PF_PASS, tr->src.neg); 6234 if (tr->dst.addr.type == PF_ADDR_TABLE) 6235 pfr_update_stats(tr->dst.addr.p.tbl, 6236 (s == NULL) ? pd.dst : 6237 &s->key[(s->direction == PF_IN)]-> 6238 addr[(s->direction == PF_IN)], 6239 pd.af, pd.tot_len, dir == PF_OUT, 6240 r->action == PF_PASS, tr->dst.neg); 6241 } 6242 6243 switch (action) { 6244 case PF_SYNPROXY_DROP: 6245 m_freem(*m0); 6246 case PF_DEFER: 6247 *m0 = NULL; 6248 action = PF_PASS; 6249 break; 6250 case PF_DROP: 6251 m_freem(*m0); 6252 *m0 = NULL; 6253 break; 6254 default: 6255 /* pf_route() returns unlocked. */ 6256 if (r->rt) { 6257 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6258 return (action); 6259 } 6260 break; 6261 } 6262 if (s) 6263 PF_STATE_UNLOCK(s); 6264 6265 return (action); 6266 } 6267 #endif /* INET */ 6268 6269 #ifdef INET6 6270 int 6271 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6272 { 6273 struct pfi_kif *kif; 6274 u_short action, reason = 0, log = 0; 6275 struct mbuf *m = *m0, *n = NULL; 6276 struct m_tag *mtag; 6277 struct ip6_hdr *h = NULL; 6278 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6279 struct pf_state *s = NULL; 6280 struct pf_ruleset *ruleset = NULL; 6281 struct pf_pdesc pd; 6282 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6283 6284 PF_RULES_RLOCK_TRACKER; 6285 M_ASSERTPKTHDR(m); 6286 6287 if (!V_pf_status.running) 6288 return (PF_PASS); 6289 6290 memset(&pd, 0, sizeof(pd)); 6291 pd.pf_mtag = pf_find_mtag(m); 6292 6293 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6294 return (PF_PASS); 6295 6296 kif = (struct pfi_kif *)ifp->if_pf_kif; 6297 if (kif == NULL) { 6298 DPFPRINTF(PF_DEBUG_URGENT, 6299 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6300 return (PF_DROP); 6301 } 6302 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6303 return (PF_PASS); 6304 6305 if (m->m_flags & M_SKIP_FIREWALL) 6306 return (PF_PASS); 6307 6308 PF_RULES_RLOCK(); 6309 6310 /* We do IP header normalization and packet reassembly here */ 6311 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6312 action = PF_DROP; 6313 goto done; 6314 } 6315 m = *m0; /* pf_normalize messes with m0 */ 6316 h = mtod(m, struct ip6_hdr *); 6317 6318 #if 1 6319 /* 6320 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6321 * will do something bad, so drop the packet for now. 6322 */ 6323 if (htons(h->ip6_plen) == 0) { 6324 action = PF_DROP; 6325 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6326 goto done; 6327 } 6328 #endif 6329 6330 pd.src = (struct pf_addr *)&h->ip6_src; 6331 pd.dst = (struct pf_addr *)&h->ip6_dst; 6332 pd.sport = pd.dport = NULL; 6333 pd.ip_sum = NULL; 6334 pd.proto_sum = NULL; 6335 pd.dir = dir; 6336 pd.sidx = (dir == PF_IN) ? 0 : 1; 6337 pd.didx = (dir == PF_IN) ? 1 : 0; 6338 pd.af = AF_INET6; 6339 pd.tos = 0; 6340 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6341 6342 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6343 pd.proto = h->ip6_nxt; 6344 do { 6345 switch (pd.proto) { 6346 case IPPROTO_FRAGMENT: 6347 action = pf_test_fragment(&r, dir, kif, m, h, 6348 &pd, &a, &ruleset); 6349 if (action == PF_DROP) 6350 REASON_SET(&reason, PFRES_FRAG); 6351 goto done; 6352 case IPPROTO_ROUTING: { 6353 struct ip6_rthdr rthdr; 6354 6355 if (rh_cnt++) { 6356 DPFPRINTF(PF_DEBUG_MISC, 6357 ("pf: IPv6 more than one rthdr\n")); 6358 action = PF_DROP; 6359 REASON_SET(&reason, PFRES_IPOPTIONS); 6360 log = 1; 6361 goto done; 6362 } 6363 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6364 &reason, pd.af)) { 6365 DPFPRINTF(PF_DEBUG_MISC, 6366 ("pf: IPv6 short rthdr\n")); 6367 action = PF_DROP; 6368 REASON_SET(&reason, PFRES_SHORT); 6369 log = 1; 6370 goto done; 6371 } 6372 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6373 DPFPRINTF(PF_DEBUG_MISC, 6374 ("pf: IPv6 rthdr0\n")); 6375 action = PF_DROP; 6376 REASON_SET(&reason, PFRES_IPOPTIONS); 6377 log = 1; 6378 goto done; 6379 } 6380 /* FALLTHROUGH */ 6381 } 6382 case IPPROTO_AH: 6383 case IPPROTO_HOPOPTS: 6384 case IPPROTO_DSTOPTS: { 6385 /* get next header and header length */ 6386 struct ip6_ext opt6; 6387 6388 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6389 NULL, &reason, pd.af)) { 6390 DPFPRINTF(PF_DEBUG_MISC, 6391 ("pf: IPv6 short opt\n")); 6392 action = PF_DROP; 6393 log = 1; 6394 goto done; 6395 } 6396 if (pd.proto == IPPROTO_AH) 6397 off += (opt6.ip6e_len + 2) * 4; 6398 else 6399 off += (opt6.ip6e_len + 1) * 8; 6400 pd.proto = opt6.ip6e_nxt; 6401 /* goto the next header */ 6402 break; 6403 } 6404 default: 6405 terminal++; 6406 break; 6407 } 6408 } while (!terminal); 6409 6410 /* if there's no routing header, use unmodified mbuf for checksumming */ 6411 if (!n) 6412 n = m; 6413 6414 switch (pd.proto) { 6415 6416 case IPPROTO_TCP: { 6417 struct tcphdr th; 6418 6419 pd.hdr.tcp = &th; 6420 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6421 &action, &reason, AF_INET6)) { 6422 log = action != PF_PASS; 6423 goto done; 6424 } 6425 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6426 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6427 if (action == PF_DROP) 6428 goto done; 6429 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6430 &reason); 6431 if (action == PF_PASS) { 6432 if (pfsync_update_state_ptr != NULL) 6433 pfsync_update_state_ptr(s); 6434 r = s->rule.ptr; 6435 a = s->anchor.ptr; 6436 log = s->log; 6437 } else if (s == NULL) 6438 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6439 &a, &ruleset, inp); 6440 break; 6441 } 6442 6443 case IPPROTO_UDP: { 6444 struct udphdr uh; 6445 6446 pd.hdr.udp = &uh; 6447 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6448 &action, &reason, AF_INET6)) { 6449 log = action != PF_PASS; 6450 goto done; 6451 } 6452 if (uh.uh_dport == 0 || 6453 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6454 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6455 action = PF_DROP; 6456 REASON_SET(&reason, PFRES_SHORT); 6457 goto done; 6458 } 6459 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6460 if (action == PF_PASS) { 6461 if (pfsync_update_state_ptr != NULL) 6462 pfsync_update_state_ptr(s); 6463 r = s->rule.ptr; 6464 a = s->anchor.ptr; 6465 log = s->log; 6466 } else if (s == NULL) 6467 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6468 &a, &ruleset, inp); 6469 break; 6470 } 6471 6472 case IPPROTO_ICMP: { 6473 action = PF_DROP; 6474 DPFPRINTF(PF_DEBUG_MISC, 6475 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6476 goto done; 6477 } 6478 6479 case IPPROTO_ICMPV6: { 6480 struct icmp6_hdr ih; 6481 6482 pd.hdr.icmp6 = &ih; 6483 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6484 &action, &reason, AF_INET6)) { 6485 log = action != PF_PASS; 6486 goto done; 6487 } 6488 action = pf_test_state_icmp(&s, dir, kif, 6489 m, off, h, &pd, &reason); 6490 if (action == PF_PASS) { 6491 if (pfsync_update_state_ptr != NULL) 6492 pfsync_update_state_ptr(s); 6493 r = s->rule.ptr; 6494 a = s->anchor.ptr; 6495 log = s->log; 6496 } else if (s == NULL) 6497 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6498 &a, &ruleset, inp); 6499 break; 6500 } 6501 6502 default: 6503 action = pf_test_state_other(&s, dir, kif, m, &pd); 6504 if (action == PF_PASS) { 6505 if (pfsync_update_state_ptr != NULL) 6506 pfsync_update_state_ptr(s); 6507 r = s->rule.ptr; 6508 a = s->anchor.ptr; 6509 log = s->log; 6510 } else if (s == NULL) 6511 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6512 &a, &ruleset, inp); 6513 break; 6514 } 6515 6516 done: 6517 PF_RULES_RUNLOCK(); 6518 if (n != m) { 6519 m_freem(n); 6520 n = NULL; 6521 } 6522 6523 /* handle dangerous IPv6 extension headers. */ 6524 if (action == PF_PASS && rh_cnt && 6525 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6526 action = PF_DROP; 6527 REASON_SET(&reason, PFRES_IPOPTIONS); 6528 log = r->log; 6529 DPFPRINTF(PF_DEBUG_MISC, 6530 ("pf: dropping packet with dangerous v6 headers\n")); 6531 } 6532 6533 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6534 action = PF_DROP; 6535 REASON_SET(&reason, PFRES_MEMORY); 6536 } 6537 if (r->rtableid >= 0) 6538 M_SETFIB(m, r->rtableid); 6539 6540 if (r->scrub_flags & PFSTATE_SETPRIO) { 6541 if (pd.tos & IPTOS_LOWDELAY) 6542 pqid = 1; 6543 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6544 action = PF_DROP; 6545 REASON_SET(&reason, PFRES_MEMORY); 6546 log = 1; 6547 DPFPRINTF(PF_DEBUG_MISC, 6548 ("pf: failed to allocate 802.1q mtag\n")); 6549 } 6550 } 6551 6552 #ifdef ALTQ 6553 if (action == PF_PASS && r->qid) { 6554 if (pd.pf_mtag == NULL && 6555 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6556 action = PF_DROP; 6557 REASON_SET(&reason, PFRES_MEMORY); 6558 } else { 6559 if (s != NULL) 6560 pd.pf_mtag->qid_hash = pf_state_hash(s); 6561 if (pd.tos & IPTOS_LOWDELAY) 6562 pd.pf_mtag->qid = r->pqid; 6563 else 6564 pd.pf_mtag->qid = r->qid; 6565 /* Add hints for ecn. */ 6566 pd.pf_mtag->hdr = h; 6567 } 6568 } 6569 #endif /* ALTQ */ 6570 6571 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6572 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6573 (s->nat_rule.ptr->action == PF_RDR || 6574 s->nat_rule.ptr->action == PF_BINAT) && 6575 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6576 m->m_flags |= M_SKIP_FIREWALL; 6577 6578 /* XXX: Anybody working on it?! */ 6579 if (r->divert.port) 6580 printf("pf: divert(9) is not supported for IPv6\n"); 6581 6582 if (log) { 6583 struct pf_rule *lr; 6584 6585 if (s != NULL && s->nat_rule.ptr != NULL && 6586 s->nat_rule.ptr->log & PF_LOG_ALL) 6587 lr = s->nat_rule.ptr; 6588 else 6589 lr = r; 6590 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6591 &pd, (s == NULL)); 6592 } 6593 6594 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6595 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6596 6597 if (action == PF_PASS || r->action == PF_DROP) { 6598 dirndx = (dir == PF_OUT); 6599 r->packets[dirndx]++; 6600 r->bytes[dirndx] += pd.tot_len; 6601 if (a != NULL) { 6602 a->packets[dirndx]++; 6603 a->bytes[dirndx] += pd.tot_len; 6604 } 6605 if (s != NULL) { 6606 if (s->nat_rule.ptr != NULL) { 6607 s->nat_rule.ptr->packets[dirndx]++; 6608 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6609 } 6610 if (s->src_node != NULL) { 6611 s->src_node->packets[dirndx]++; 6612 s->src_node->bytes[dirndx] += pd.tot_len; 6613 } 6614 if (s->nat_src_node != NULL) { 6615 s->nat_src_node->packets[dirndx]++; 6616 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6617 } 6618 dirndx = (dir == s->direction) ? 0 : 1; 6619 s->packets[dirndx]++; 6620 s->bytes[dirndx] += pd.tot_len; 6621 } 6622 tr = r; 6623 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6624 if (nr != NULL && r == &V_pf_default_rule) 6625 tr = nr; 6626 if (tr->src.addr.type == PF_ADDR_TABLE) 6627 pfr_update_stats(tr->src.addr.p.tbl, 6628 (s == NULL) ? pd.src : 6629 &s->key[(s->direction == PF_IN)]->addr[0], 6630 pd.af, pd.tot_len, dir == PF_OUT, 6631 r->action == PF_PASS, tr->src.neg); 6632 if (tr->dst.addr.type == PF_ADDR_TABLE) 6633 pfr_update_stats(tr->dst.addr.p.tbl, 6634 (s == NULL) ? pd.dst : 6635 &s->key[(s->direction == PF_IN)]->addr[1], 6636 pd.af, pd.tot_len, dir == PF_OUT, 6637 r->action == PF_PASS, tr->dst.neg); 6638 } 6639 6640 switch (action) { 6641 case PF_SYNPROXY_DROP: 6642 m_freem(*m0); 6643 case PF_DEFER: 6644 *m0 = NULL; 6645 action = PF_PASS; 6646 break; 6647 case PF_DROP: 6648 m_freem(*m0); 6649 *m0 = NULL; 6650 break; 6651 default: 6652 /* pf_route6() returns unlocked. */ 6653 if (r->rt) { 6654 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6655 return (action); 6656 } 6657 break; 6658 } 6659 6660 if (s) 6661 PF_STATE_UNLOCK(s); 6662 6663 /* If reassembled packet passed, create new fragments. */ 6664 if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && 6665 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6666 action = pf_refragment6(ifp, m0, mtag); 6667 6668 return (action); 6669 } 6670 #endif /* INET6 */ 6671