1 /*- 2 * Copyright (c) 2001 Daniel Hartmeier 3 * Copyright (c) 2002 - 2008 Henning Brauer 4 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * - Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * - Redistributions in binary form must reproduce the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer in the documentation and/or other materials provided 16 * with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 26 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Effort sponsored in part by the Defense Advanced Research Projects 32 * Agency (DARPA) and Air Force Research Laboratory, Air Force 33 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 34 * 35 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_inet.h" 42 #include "opt_inet6.h" 43 #include "opt_bpf.h" 44 #include "opt_pf.h" 45 46 #include <sys/param.h> 47 #include <sys/bus.h> 48 #include <sys/endian.h> 49 #include <sys/hash.h> 50 #include <sys/interrupt.h> 51 #include <sys/kernel.h> 52 #include <sys/kthread.h> 53 #include <sys/limits.h> 54 #include <sys/mbuf.h> 55 #include <sys/md5.h> 56 #include <sys/random.h> 57 #include <sys/refcount.h> 58 #include <sys/socket.h> 59 #include <sys/sysctl.h> 60 #include <sys/taskqueue.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_types.h> 66 #include <net/route.h> 67 #include <net/radix_mpath.h> 68 #include <net/vnet.h> 69 70 #include <net/pfvar.h> 71 #include <net/if_pflog.h> 72 #include <net/if_pfsync.h> 73 74 #include <netinet/in_pcb.h> 75 #include <netinet/in_var.h> 76 #include <netinet/ip.h> 77 #include <netinet/ip_fw.h> 78 #include <netinet/ip_icmp.h> 79 #include <netinet/icmp_var.h> 80 #include <netinet/ip_var.h> 81 #include <netinet/tcp.h> 82 #include <netinet/tcp_fsm.h> 83 #include <netinet/tcp_seq.h> 84 #include <netinet/tcp_timer.h> 85 #include <netinet/tcp_var.h> 86 #include <netinet/udp.h> 87 #include <netinet/udp_var.h> 88 89 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 90 91 #ifdef INET6 92 #include <netinet/ip6.h> 93 #include <netinet/icmp6.h> 94 #include <netinet6/nd6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/in6_pcb.h> 97 #endif /* INET6 */ 98 99 #include <machine/in_cksum.h> 100 #include <security/mac/mac_framework.h> 101 102 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 103 104 /* 105 * Global variables 106 */ 107 108 /* state tables */ 109 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 110 VNET_DEFINE(struct pf_palist, pf_pabuf); 111 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 112 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 113 VNET_DEFINE(struct pf_status, pf_status); 114 115 VNET_DEFINE(u_int32_t, ticket_altqs_active); 116 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 117 VNET_DEFINE(int, altqs_inactive_open); 118 VNET_DEFINE(u_int32_t, ticket_pabuf); 119 120 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 121 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 122 VNET_DEFINE(u_char, pf_tcp_secret[16]); 123 #define V_pf_tcp_secret VNET(pf_tcp_secret) 124 VNET_DEFINE(int, pf_tcp_secret_init); 125 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 126 VNET_DEFINE(int, pf_tcp_iss_off); 127 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 128 129 /* 130 * Queue for pf_intr() sends. 131 */ 132 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 133 struct pf_send_entry { 134 STAILQ_ENTRY(pf_send_entry) pfse_next; 135 struct mbuf *pfse_m; 136 enum { 137 PFSE_IP, 138 PFSE_IP6, 139 PFSE_ICMP, 140 PFSE_ICMP6, 141 } pfse_type; 142 union { 143 struct route ro; 144 struct { 145 int type; 146 int code; 147 int mtu; 148 } icmpopts; 149 } u; 150 #define pfse_ro u.ro 151 #define pfse_icmp_type u.icmpopts.type 152 #define pfse_icmp_code u.icmpopts.code 153 #define pfse_icmp_mtu u.icmpopts.mtu 154 }; 155 156 STAILQ_HEAD(pf_send_head, pf_send_entry); 157 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 158 #define V_pf_sendqueue VNET(pf_sendqueue) 159 160 static struct mtx pf_sendqueue_mtx; 161 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 162 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 163 164 /* 165 * Queue for pf_overload_task() tasks. 166 */ 167 struct pf_overload_entry { 168 SLIST_ENTRY(pf_overload_entry) next; 169 struct pf_addr addr; 170 sa_family_t af; 171 uint8_t dir; 172 struct pf_rule *rule; 173 }; 174 175 SLIST_HEAD(pf_overload_head, pf_overload_entry); 176 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 177 #define V_pf_overloadqueue VNET(pf_overloadqueue) 178 static VNET_DEFINE(struct task, pf_overloadtask); 179 #define V_pf_overloadtask VNET(pf_overloadtask) 180 181 static struct mtx pf_overloadqueue_mtx; 182 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 183 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 184 185 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 186 struct mtx pf_unlnkdrules_mtx; 187 188 static VNET_DEFINE(uma_zone_t, pf_sources_z); 189 #define V_pf_sources_z VNET(pf_sources_z) 190 static VNET_DEFINE(uma_zone_t, pf_mtag_z); 191 #define V_pf_mtag_z VNET(pf_mtag_z) 192 VNET_DEFINE(uma_zone_t, pf_state_z); 193 VNET_DEFINE(uma_zone_t, pf_state_key_z); 194 195 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 196 #define PFID_CPUBITS 8 197 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 198 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 199 #define PFID_MAXID (~PFID_CPUMASK) 200 CTASSERT((1 << PFID_CPUBITS) > MAXCPU); 201 202 static void pf_src_tree_remove_state(struct pf_state *); 203 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 204 u_int32_t); 205 static void pf_add_threshold(struct pf_threshold *); 206 static int pf_check_threshold(struct pf_threshold *); 207 208 static void pf_change_ap(struct pf_addr *, u_int16_t *, 209 u_int16_t *, u_int16_t *, struct pf_addr *, 210 u_int16_t, u_int8_t, sa_family_t); 211 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 212 struct tcphdr *, struct pf_state_peer *); 213 static int pf_icmp_mapping(struct pf_pdesc *, uint8_t, int *, 214 int *, uint16_t *, uint16_t *); 215 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 216 struct pf_addr *, struct pf_addr *, u_int16_t, 217 u_int16_t *, u_int16_t *, u_int16_t *, 218 u_int16_t *, u_int8_t, sa_family_t); 219 static void pf_send_tcp(struct mbuf *, 220 const struct pf_rule *, sa_family_t, 221 const struct pf_addr *, const struct pf_addr *, 222 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 223 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 224 u_int16_t, struct ifnet *); 225 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 226 sa_family_t, struct pf_rule *); 227 static void pf_detach_state(struct pf_state *); 228 static int pf_state_key_attach(struct pf_state_key *, 229 struct pf_state_key *, struct pf_state *); 230 static void pf_state_key_detach(struct pf_state *, int); 231 static int pf_state_key_ctor(void *, int, void *, int); 232 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 233 static int pf_test_rule(struct pf_rule **, struct pf_state **, 234 int, struct pfi_kif *, struct mbuf *, int, 235 struct pf_pdesc *, struct pf_rule **, 236 struct pf_ruleset **, struct inpcb *); 237 static int pf_create_state(struct pf_rule *, struct pf_rule *, 238 struct pf_rule *, struct pf_pdesc *, 239 struct pf_src_node *, struct pf_state_key *, 240 struct pf_state_key *, struct mbuf *, int, 241 u_int16_t, u_int16_t, int *, struct pfi_kif *, 242 struct pf_state **, int, u_int16_t, u_int16_t, 243 int); 244 static int pf_test_fragment(struct pf_rule **, int, 245 struct pfi_kif *, struct mbuf *, void *, 246 struct pf_pdesc *, struct pf_rule **, 247 struct pf_ruleset **); 248 static int pf_tcp_track_full(struct pf_state_peer *, 249 struct pf_state_peer *, struct pf_state **, 250 struct pfi_kif *, struct mbuf *, int, 251 struct pf_pdesc *, u_short *, int *); 252 static int pf_tcp_track_sloppy(struct pf_state_peer *, 253 struct pf_state_peer *, struct pf_state **, 254 struct pf_pdesc *, u_short *); 255 static int pf_test_state_tcp(struct pf_state **, int, 256 struct pfi_kif *, struct mbuf *, int, 257 void *, struct pf_pdesc *, u_short *); 258 static int pf_test_state_udp(struct pf_state **, int, 259 struct pfi_kif *, struct mbuf *, int, 260 void *, struct pf_pdesc *); 261 static int pf_icmp_state_lookup(struct pf_state_key_cmp *, 262 struct pf_pdesc *, struct pf_state **, struct mbuf *, 263 int, struct pfi_kif *, uint16_t, uint16_t, 264 int, int *, int); 265 static int pf_test_state_icmp(struct pf_state **, int, 266 struct pfi_kif *, struct mbuf *, int, 267 void *, struct pf_pdesc *, u_short *); 268 static int pf_test_state_other(struct pf_state **, int, 269 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 270 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 271 sa_family_t); 272 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 273 sa_family_t); 274 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 275 int, u_int16_t); 276 static void pf_set_rt_ifp(struct pf_state *, 277 struct pf_addr *); 278 static int pf_check_proto_cksum(struct mbuf *, int, int, 279 u_int8_t, sa_family_t); 280 static void pf_print_state_parts(struct pf_state *, 281 struct pf_state_key *, struct pf_state_key *); 282 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 283 struct pf_addr_wrap *); 284 static struct pf_state *pf_find_state(struct pfi_kif *, 285 struct pf_state_key_cmp *, u_int); 286 static int pf_src_connlimit(struct pf_state **); 287 static void pf_overload_task(void *c, int pending); 288 static int pf_insert_src_node(struct pf_src_node **, 289 struct pf_rule *, struct pf_addr *, sa_family_t); 290 static u_int pf_purge_expired_states(u_int, int); 291 static void pf_purge_unlinked_rules(void); 292 static int pf_mtag_init(void *, int, int); 293 static void pf_mtag_free(struct m_tag *); 294 #ifdef INET 295 static void pf_route(struct mbuf **, struct pf_rule *, int, 296 struct ifnet *, struct pf_state *, 297 struct pf_pdesc *); 298 #endif /* INET */ 299 #ifdef INET6 300 static void pf_change_a6(struct pf_addr *, u_int16_t *, 301 struct pf_addr *, u_int8_t); 302 static void pf_route6(struct mbuf **, struct pf_rule *, int, 303 struct ifnet *, struct pf_state *, 304 struct pf_pdesc *); 305 #endif /* INET6 */ 306 307 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 308 309 VNET_DECLARE(int, pf_end_threads); 310 311 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 312 313 enum { PF_ICMP_MULTI_NONE, PF_ICMP_MULTI_SOLICITED, PF_ICMP_MULTI_LINK }; 314 315 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 316 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 317 318 #define STATE_LOOKUP(i, k, d, s, pd) \ 319 do { \ 320 (s) = pf_find_state((i), (k), (d)); \ 321 if ((s) == NULL) \ 322 return (PF_DROP); \ 323 if (PACKET_LOOPED(pd)) \ 324 return (PF_PASS); \ 325 if ((d) == PF_OUT && \ 326 (((s)->rule.ptr->rt == PF_ROUTETO && \ 327 (s)->rule.ptr->direction == PF_OUT) || \ 328 ((s)->rule.ptr->rt == PF_REPLYTO && \ 329 (s)->rule.ptr->direction == PF_IN)) && \ 330 (s)->rt_kif != NULL && \ 331 (s)->rt_kif != (i)) \ 332 return (PF_PASS); \ 333 } while (0) 334 335 #define BOUND_IFACE(r, k) \ 336 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 337 338 #define STATE_INC_COUNTERS(s) \ 339 do { \ 340 s->rule.ptr->states_cur++; \ 341 s->rule.ptr->states_tot++; \ 342 if (s->anchor.ptr != NULL) { \ 343 s->anchor.ptr->states_cur++; \ 344 s->anchor.ptr->states_tot++; \ 345 } \ 346 if (s->nat_rule.ptr != NULL) { \ 347 s->nat_rule.ptr->states_cur++; \ 348 s->nat_rule.ptr->states_tot++; \ 349 } \ 350 } while (0) 351 352 #define STATE_DEC_COUNTERS(s) \ 353 do { \ 354 if (s->nat_rule.ptr != NULL) \ 355 s->nat_rule.ptr->states_cur--; \ 356 if (s->anchor.ptr != NULL) \ 357 s->anchor.ptr->states_cur--; \ 358 s->rule.ptr->states_cur--; \ 359 } while (0) 360 361 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 362 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 363 VNET_DEFINE(struct pf_idhash *, pf_idhash); 364 VNET_DEFINE(u_long, pf_hashmask); 365 VNET_DEFINE(struct pf_srchash *, pf_srchash); 366 VNET_DEFINE(u_long, pf_srchashmask); 367 368 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 369 370 VNET_DEFINE(u_long, pf_hashsize); 371 #define V_pf_hashsize VNET(pf_hashsize) 372 SYSCTL_VNET_UINT(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 373 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 374 375 VNET_DEFINE(u_long, pf_srchashsize); 376 #define V_pf_srchashsize VNET(pf_srchashsize) 377 SYSCTL_VNET_UINT(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 378 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 379 380 VNET_DEFINE(void *, pf_swi_cookie); 381 382 VNET_DEFINE(uint32_t, pf_hashseed); 383 #define V_pf_hashseed VNET(pf_hashseed) 384 385 static __inline uint32_t 386 pf_hashkey(struct pf_state_key *sk) 387 { 388 uint32_t h; 389 390 h = jenkins_hash32((uint32_t *)sk, 391 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 392 V_pf_hashseed); 393 394 return (h & V_pf_hashmask); 395 } 396 397 static __inline uint32_t 398 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 399 { 400 uint32_t h; 401 402 switch (af) { 403 case AF_INET: 404 h = jenkins_hash32((uint32_t *)&addr->v4, 405 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 406 break; 407 case AF_INET6: 408 h = jenkins_hash32((uint32_t *)&addr->v6, 409 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 410 break; 411 default: 412 panic("%s: unknown address family %u", __func__, af); 413 } 414 415 return (h & V_pf_srchashmask); 416 } 417 418 #ifdef INET6 419 void 420 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 421 { 422 switch (af) { 423 #ifdef INET 424 case AF_INET: 425 dst->addr32[0] = src->addr32[0]; 426 break; 427 #endif /* INET */ 428 case AF_INET6: 429 dst->addr32[0] = src->addr32[0]; 430 dst->addr32[1] = src->addr32[1]; 431 dst->addr32[2] = src->addr32[2]; 432 dst->addr32[3] = src->addr32[3]; 433 break; 434 } 435 } 436 #endif /* INET6 */ 437 438 static void 439 pf_init_threshold(struct pf_threshold *threshold, 440 u_int32_t limit, u_int32_t seconds) 441 { 442 threshold->limit = limit * PF_THRESHOLD_MULT; 443 threshold->seconds = seconds; 444 threshold->count = 0; 445 threshold->last = time_uptime; 446 } 447 448 static void 449 pf_add_threshold(struct pf_threshold *threshold) 450 { 451 u_int32_t t = time_uptime, diff = t - threshold->last; 452 453 if (diff >= threshold->seconds) 454 threshold->count = 0; 455 else 456 threshold->count -= threshold->count * diff / 457 threshold->seconds; 458 threshold->count += PF_THRESHOLD_MULT; 459 threshold->last = t; 460 } 461 462 static int 463 pf_check_threshold(struct pf_threshold *threshold) 464 { 465 return (threshold->count > threshold->limit); 466 } 467 468 static int 469 pf_src_connlimit(struct pf_state **state) 470 { 471 struct pf_overload_entry *pfoe; 472 int bad = 0; 473 474 PF_STATE_LOCK_ASSERT(*state); 475 476 (*state)->src_node->conn++; 477 (*state)->src.tcp_est = 1; 478 pf_add_threshold(&(*state)->src_node->conn_rate); 479 480 if ((*state)->rule.ptr->max_src_conn && 481 (*state)->rule.ptr->max_src_conn < 482 (*state)->src_node->conn) { 483 V_pf_status.lcounters[LCNT_SRCCONN]++; 484 bad++; 485 } 486 487 if ((*state)->rule.ptr->max_src_conn_rate.limit && 488 pf_check_threshold(&(*state)->src_node->conn_rate)) { 489 V_pf_status.lcounters[LCNT_SRCCONNRATE]++; 490 bad++; 491 } 492 493 if (!bad) 494 return (0); 495 496 /* Kill this state. */ 497 (*state)->timeout = PFTM_PURGE; 498 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 499 500 if ((*state)->rule.ptr->overload_tbl == NULL) 501 return (1); 502 503 /* Schedule overloading and flushing task. */ 504 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 505 if (pfoe == NULL) 506 return (1); /* too bad :( */ 507 508 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 509 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 510 pfoe->rule = (*state)->rule.ptr; 511 pfoe->dir = (*state)->direction; 512 PF_OVERLOADQ_LOCK(); 513 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 514 PF_OVERLOADQ_UNLOCK(); 515 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 516 517 return (1); 518 } 519 520 static void 521 pf_overload_task(void *c, int pending) 522 { 523 struct pf_overload_head queue; 524 struct pfr_addr p; 525 struct pf_overload_entry *pfoe, *pfoe1; 526 uint32_t killed = 0; 527 528 PF_OVERLOADQ_LOCK(); 529 queue = *(struct pf_overload_head *)c; 530 SLIST_INIT((struct pf_overload_head *)c); 531 PF_OVERLOADQ_UNLOCK(); 532 533 bzero(&p, sizeof(p)); 534 SLIST_FOREACH(pfoe, &queue, next) { 535 V_pf_status.lcounters[LCNT_OVERLOAD_TABLE]++; 536 if (V_pf_status.debug >= PF_DEBUG_MISC) { 537 printf("%s: blocking address ", __func__); 538 pf_print_host(&pfoe->addr, 0, pfoe->af); 539 printf("\n"); 540 } 541 542 p.pfra_af = pfoe->af; 543 switch (pfoe->af) { 544 #ifdef INET 545 case AF_INET: 546 p.pfra_net = 32; 547 p.pfra_ip4addr = pfoe->addr.v4; 548 break; 549 #endif 550 #ifdef INET6 551 case AF_INET6: 552 p.pfra_net = 128; 553 p.pfra_ip6addr = pfoe->addr.v6; 554 break; 555 #endif 556 } 557 558 PF_RULES_WLOCK(); 559 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 560 PF_RULES_WUNLOCK(); 561 } 562 563 /* 564 * Remove those entries, that don't need flushing. 565 */ 566 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 567 if (pfoe->rule->flush == 0) { 568 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 569 free(pfoe, M_PFTEMP); 570 } else 571 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH]++; 572 573 /* If nothing to flush, return. */ 574 if (SLIST_EMPTY(&queue)) 575 return; 576 577 for (int i = 0; i <= V_pf_hashmask; i++) { 578 struct pf_idhash *ih = &V_pf_idhash[i]; 579 struct pf_state_key *sk; 580 struct pf_state *s; 581 582 PF_HASHROW_LOCK(ih); 583 LIST_FOREACH(s, &ih->states, entry) { 584 sk = s->key[PF_SK_WIRE]; 585 SLIST_FOREACH(pfoe, &queue, next) 586 if (sk->af == pfoe->af && 587 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 588 pfoe->rule == s->rule.ptr) && 589 ((pfoe->dir == PF_OUT && 590 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 591 (pfoe->dir == PF_IN && 592 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 593 s->timeout = PFTM_PURGE; 594 s->src.state = s->dst.state = TCPS_CLOSED; 595 killed++; 596 } 597 } 598 PF_HASHROW_UNLOCK(ih); 599 } 600 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 601 free(pfoe, M_PFTEMP); 602 if (V_pf_status.debug >= PF_DEBUG_MISC) 603 printf("%s: %u states killed", __func__, killed); 604 } 605 606 /* 607 * Can return locked on failure, so that we can consistently 608 * allocate and insert a new one. 609 */ 610 struct pf_src_node * 611 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 612 int returnlocked) 613 { 614 struct pf_srchash *sh; 615 struct pf_src_node *n; 616 617 V_pf_status.scounters[SCNT_SRC_NODE_SEARCH]++; 618 619 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 620 PF_HASHROW_LOCK(sh); 621 LIST_FOREACH(n, &sh->nodes, entry) 622 if (n->rule.ptr == rule && n->af == af && 623 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 624 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 625 break; 626 if (n != NULL || returnlocked == 0) 627 PF_HASHROW_UNLOCK(sh); 628 629 return (n); 630 } 631 632 static int 633 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 634 struct pf_addr *src, sa_family_t af) 635 { 636 637 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 638 rule->rpool.opts & PF_POOL_STICKYADDR), 639 ("%s for non-tracking rule %p", __func__, rule)); 640 641 if (*sn == NULL) 642 *sn = pf_find_src_node(src, rule, af, 1); 643 644 if (*sn == NULL) { 645 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 646 647 PF_HASHROW_ASSERT(sh); 648 649 if (!rule->max_src_nodes || 650 rule->src_nodes < rule->max_src_nodes) 651 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 652 else 653 V_pf_status.lcounters[LCNT_SRCNODES]++; 654 if ((*sn) == NULL) { 655 PF_HASHROW_UNLOCK(sh); 656 return (-1); 657 } 658 659 pf_init_threshold(&(*sn)->conn_rate, 660 rule->max_src_conn_rate.limit, 661 rule->max_src_conn_rate.seconds); 662 663 (*sn)->af = af; 664 (*sn)->rule.ptr = rule; 665 PF_ACPY(&(*sn)->addr, src, af); 666 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 667 (*sn)->creation = time_uptime; 668 (*sn)->ruletype = rule->action; 669 if ((*sn)->rule.ptr != NULL) 670 (*sn)->rule.ptr->src_nodes++; 671 PF_HASHROW_UNLOCK(sh); 672 V_pf_status.scounters[SCNT_SRC_NODE_INSERT]++; 673 V_pf_status.src_nodes++; 674 } else { 675 if (rule->max_src_states && 676 (*sn)->states >= rule->max_src_states) { 677 V_pf_status.lcounters[LCNT_SRCSTATES]++; 678 return (-1); 679 } 680 } 681 return (0); 682 } 683 684 static void 685 pf_remove_src_node(struct pf_src_node *src) 686 { 687 struct pf_srchash *sh; 688 689 sh = &V_pf_srchash[pf_hashsrc(&src->addr, src->af)]; 690 PF_HASHROW_LOCK(sh); 691 LIST_REMOVE(src, entry); 692 PF_HASHROW_UNLOCK(sh); 693 694 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS]++; 695 V_pf_status.src_nodes--; 696 697 uma_zfree(V_pf_sources_z, src); 698 } 699 700 /* Data storage structures initialization. */ 701 void 702 pf_initialize() 703 { 704 struct pf_keyhash *kh; 705 struct pf_idhash *ih; 706 struct pf_srchash *sh; 707 u_int i; 708 709 TUNABLE_ULONG_FETCH("net.pf.states_hashsize", &V_pf_hashsize); 710 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 711 V_pf_hashsize = PF_HASHSIZ; 712 TUNABLE_ULONG_FETCH("net.pf.source_nodes_hashsize", &V_pf_srchashsize); 713 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 714 V_pf_srchashsize = PF_HASHSIZ / 4; 715 716 V_pf_hashseed = arc4random(); 717 718 /* States and state keys storage. */ 719 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 720 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 721 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 722 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 723 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 724 725 V_pf_state_key_z = uma_zcreate("pf state keys", 726 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 727 UMA_ALIGN_PTR, 0); 728 V_pf_keyhash = malloc(V_pf_hashsize * sizeof(struct pf_keyhash), 729 M_PFHASH, M_WAITOK | M_ZERO); 730 V_pf_idhash = malloc(V_pf_hashsize * sizeof(struct pf_idhash), 731 M_PFHASH, M_WAITOK | M_ZERO); 732 V_pf_hashmask = V_pf_hashsize - 1; 733 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 734 i++, kh++, ih++) { 735 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 736 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 737 } 738 739 /* Source nodes. */ 740 V_pf_sources_z = uma_zcreate("pf source nodes", 741 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 742 0); 743 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 744 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 745 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 746 V_pf_srchash = malloc(V_pf_srchashsize * sizeof(struct pf_srchash), 747 M_PFHASH, M_WAITOK|M_ZERO); 748 V_pf_srchashmask = V_pf_srchashsize - 1; 749 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 750 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 751 752 /* ALTQ */ 753 TAILQ_INIT(&V_pf_altqs[0]); 754 TAILQ_INIT(&V_pf_altqs[1]); 755 TAILQ_INIT(&V_pf_pabuf); 756 V_pf_altqs_active = &V_pf_altqs[0]; 757 V_pf_altqs_inactive = &V_pf_altqs[1]; 758 759 /* Mbuf tags */ 760 V_pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 761 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_init, NULL, 762 UMA_ALIGN_PTR, 0); 763 764 /* Send & overload+flush queues. */ 765 STAILQ_INIT(&V_pf_sendqueue); 766 SLIST_INIT(&V_pf_overloadqueue); 767 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, &V_pf_overloadqueue); 768 mtx_init(&pf_sendqueue_mtx, "pf send queue", NULL, MTX_DEF); 769 mtx_init(&pf_overloadqueue_mtx, "pf overload/flush queue", NULL, 770 MTX_DEF); 771 772 /* Unlinked, but may be referenced rules. */ 773 TAILQ_INIT(&V_pf_unlinked_rules); 774 mtx_init(&pf_unlnkdrules_mtx, "pf unlinked rules", NULL, MTX_DEF); 775 } 776 777 void 778 pf_cleanup() 779 { 780 struct pf_keyhash *kh; 781 struct pf_idhash *ih; 782 struct pf_srchash *sh; 783 struct pf_send_entry *pfse, *next; 784 u_int i; 785 786 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 787 i++, kh++, ih++) { 788 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 789 __func__)); 790 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 791 __func__)); 792 mtx_destroy(&kh->lock); 793 mtx_destroy(&ih->lock); 794 } 795 free(V_pf_keyhash, M_PFHASH); 796 free(V_pf_idhash, M_PFHASH); 797 798 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 799 KASSERT(LIST_EMPTY(&sh->nodes), 800 ("%s: source node hash not empty", __func__)); 801 mtx_destroy(&sh->lock); 802 } 803 free(V_pf_srchash, M_PFHASH); 804 805 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 806 m_freem(pfse->pfse_m); 807 free(pfse, M_PFTEMP); 808 } 809 810 mtx_destroy(&pf_sendqueue_mtx); 811 mtx_destroy(&pf_overloadqueue_mtx); 812 mtx_destroy(&pf_unlnkdrules_mtx); 813 814 uma_zdestroy(V_pf_mtag_z); 815 uma_zdestroy(V_pf_sources_z); 816 uma_zdestroy(V_pf_state_z); 817 uma_zdestroy(V_pf_state_key_z); 818 } 819 820 static int 821 pf_mtag_init(void *mem, int size, int how) 822 { 823 struct m_tag *t; 824 825 t = (struct m_tag *)mem; 826 t->m_tag_cookie = MTAG_ABI_COMPAT; 827 t->m_tag_id = PACKET_TAG_PF; 828 t->m_tag_len = sizeof(struct pf_mtag); 829 t->m_tag_free = pf_mtag_free; 830 831 return (0); 832 } 833 834 static void 835 pf_mtag_free(struct m_tag *t) 836 { 837 838 uma_zfree(V_pf_mtag_z, t); 839 } 840 841 struct pf_mtag * 842 pf_get_mtag(struct mbuf *m) 843 { 844 struct m_tag *mtag; 845 846 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 847 return ((struct pf_mtag *)(mtag + 1)); 848 849 mtag = uma_zalloc(V_pf_mtag_z, M_NOWAIT); 850 if (mtag == NULL) 851 return (NULL); 852 bzero(mtag + 1, sizeof(struct pf_mtag)); 853 m_tag_prepend(m, mtag); 854 855 return ((struct pf_mtag *)(mtag + 1)); 856 } 857 858 static int 859 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 860 struct pf_state *s) 861 { 862 struct pf_keyhash *khs, *khw, *kh; 863 struct pf_state_key *sk, *cur; 864 struct pf_state *si, *olds = NULL; 865 int idx; 866 867 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 868 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 869 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 870 871 /* 872 * We need to lock hash slots of both keys. To avoid deadlock 873 * we always lock the slot with lower address first. Unlock order 874 * isn't important. 875 * 876 * We also need to lock ID hash slot before dropping key 877 * locks. On success we return with ID hash slot locked. 878 */ 879 880 if (skw == sks) { 881 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 882 PF_HASHROW_LOCK(khs); 883 } else { 884 khs = &V_pf_keyhash[pf_hashkey(sks)]; 885 khw = &V_pf_keyhash[pf_hashkey(skw)]; 886 if (khs == khw) { 887 PF_HASHROW_LOCK(khs); 888 } else if (khs < khw) { 889 PF_HASHROW_LOCK(khs); 890 PF_HASHROW_LOCK(khw); 891 } else { 892 PF_HASHROW_LOCK(khw); 893 PF_HASHROW_LOCK(khs); 894 } 895 } 896 897 #define KEYS_UNLOCK() do { \ 898 if (khs != khw) { \ 899 PF_HASHROW_UNLOCK(khs); \ 900 PF_HASHROW_UNLOCK(khw); \ 901 } else \ 902 PF_HASHROW_UNLOCK(khs); \ 903 } while (0) 904 905 /* 906 * First run: start with wire key. 907 */ 908 sk = skw; 909 kh = khw; 910 idx = PF_SK_WIRE; 911 912 keyattach: 913 LIST_FOREACH(cur, &kh->keys, entry) 914 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 915 break; 916 917 if (cur != NULL) { 918 /* Key exists. Check for same kif, if none, add to key. */ 919 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 920 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 921 922 PF_HASHROW_LOCK(ih); 923 if (si->kif == s->kif && 924 si->direction == s->direction) { 925 if (sk->proto == IPPROTO_TCP && 926 si->src.state >= TCPS_FIN_WAIT_2 && 927 si->dst.state >= TCPS_FIN_WAIT_2) { 928 /* 929 * New state matches an old >FIN_WAIT_2 930 * state. We can't drop key hash locks, 931 * thus we can't unlink it properly. 932 * 933 * As a workaround we drop it into 934 * TCPS_CLOSED state, schedule purge 935 * ASAP and push it into the very end 936 * of the slot TAILQ, so that it won't 937 * conflict with our new state. 938 */ 939 si->src.state = si->dst.state = 940 TCPS_CLOSED; 941 si->timeout = PFTM_PURGE; 942 olds = si; 943 } else { 944 if (V_pf_status.debug >= PF_DEBUG_MISC) { 945 printf("pf: %s key attach " 946 "failed on %s: ", 947 (idx == PF_SK_WIRE) ? 948 "wire" : "stack", 949 s->kif->pfik_name); 950 pf_print_state_parts(s, 951 (idx == PF_SK_WIRE) ? 952 sk : NULL, 953 (idx == PF_SK_STACK) ? 954 sk : NULL); 955 printf(", existing: "); 956 pf_print_state_parts(si, 957 (idx == PF_SK_WIRE) ? 958 sk : NULL, 959 (idx == PF_SK_STACK) ? 960 sk : NULL); 961 printf("\n"); 962 } 963 PF_HASHROW_UNLOCK(ih); 964 KEYS_UNLOCK(); 965 uma_zfree(V_pf_state_key_z, sk); 966 if (idx == PF_SK_STACK) 967 pf_detach_state(s); 968 return (EEXIST); /* collision! */ 969 } 970 } 971 PF_HASHROW_UNLOCK(ih); 972 } 973 uma_zfree(V_pf_state_key_z, sk); 974 s->key[idx] = cur; 975 } else { 976 LIST_INSERT_HEAD(&kh->keys, sk, entry); 977 s->key[idx] = sk; 978 } 979 980 stateattach: 981 /* List is sorted, if-bound states before floating. */ 982 if (s->kif == V_pfi_all) 983 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 984 else 985 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 986 987 if (olds) { 988 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 989 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 990 key_list[idx]); 991 olds = NULL; 992 } 993 994 /* 995 * Attach done. See how should we (or should not?) 996 * attach a second key. 997 */ 998 if (sks == skw) { 999 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1000 idx = PF_SK_STACK; 1001 sks = NULL; 1002 goto stateattach; 1003 } else if (sks != NULL) { 1004 /* 1005 * Continue attaching with stack key. 1006 */ 1007 sk = sks; 1008 kh = khs; 1009 idx = PF_SK_STACK; 1010 sks = NULL; 1011 goto keyattach; 1012 } 1013 1014 PF_STATE_LOCK(s); 1015 KEYS_UNLOCK(); 1016 1017 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1018 ("%s failure", __func__)); 1019 1020 return (0); 1021 #undef KEYS_UNLOCK 1022 } 1023 1024 static void 1025 pf_detach_state(struct pf_state *s) 1026 { 1027 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1028 struct pf_keyhash *kh; 1029 1030 if (sks != NULL) { 1031 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1032 PF_HASHROW_LOCK(kh); 1033 if (s->key[PF_SK_STACK] != NULL) 1034 pf_state_key_detach(s, PF_SK_STACK); 1035 /* 1036 * If both point to same key, then we are done. 1037 */ 1038 if (sks == s->key[PF_SK_WIRE]) { 1039 pf_state_key_detach(s, PF_SK_WIRE); 1040 PF_HASHROW_UNLOCK(kh); 1041 return; 1042 } 1043 PF_HASHROW_UNLOCK(kh); 1044 } 1045 1046 if (s->key[PF_SK_WIRE] != NULL) { 1047 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1048 PF_HASHROW_LOCK(kh); 1049 if (s->key[PF_SK_WIRE] != NULL) 1050 pf_state_key_detach(s, PF_SK_WIRE); 1051 PF_HASHROW_UNLOCK(kh); 1052 } 1053 } 1054 1055 static void 1056 pf_state_key_detach(struct pf_state *s, int idx) 1057 { 1058 struct pf_state_key *sk = s->key[idx]; 1059 #ifdef INVARIANTS 1060 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1061 1062 PF_HASHROW_ASSERT(kh); 1063 #endif 1064 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1065 s->key[idx] = NULL; 1066 1067 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1068 LIST_REMOVE(sk, entry); 1069 uma_zfree(V_pf_state_key_z, sk); 1070 } 1071 } 1072 1073 static int 1074 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1075 { 1076 struct pf_state_key *sk = mem; 1077 1078 bzero(sk, sizeof(struct pf_state_key_cmp)); 1079 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1080 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1081 1082 return (0); 1083 } 1084 1085 struct pf_state_key * 1086 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1087 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1088 { 1089 struct pf_state_key *sk; 1090 1091 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1092 if (sk == NULL) 1093 return (NULL); 1094 1095 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1096 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1097 sk->port[pd->sidx] = sport; 1098 sk->port[pd->didx] = dport; 1099 sk->proto = pd->proto; 1100 sk->af = pd->af; 1101 1102 return (sk); 1103 } 1104 1105 struct pf_state_key * 1106 pf_state_key_clone(struct pf_state_key *orig) 1107 { 1108 struct pf_state_key *sk; 1109 1110 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1111 if (sk == NULL) 1112 return (NULL); 1113 1114 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1115 1116 return (sk); 1117 } 1118 1119 int 1120 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1121 struct pf_state_key *sks, struct pf_state *s) 1122 { 1123 struct pf_idhash *ih; 1124 struct pf_state *cur; 1125 int error; 1126 1127 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1128 ("%s: sks not pristine", __func__)); 1129 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1130 ("%s: skw not pristine", __func__)); 1131 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1132 1133 s->kif = kif; 1134 1135 if (s->id == 0 && s->creatorid == 0) { 1136 /* XXX: should be atomic, but probability of collision low */ 1137 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1138 V_pf_stateid[curcpu] = 1; 1139 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1140 s->id = htobe64(s->id); 1141 s->creatorid = V_pf_status.hostid; 1142 } 1143 1144 /* Returns with ID locked on success. */ 1145 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1146 return (error); 1147 1148 ih = &V_pf_idhash[PF_IDHASH(s)]; 1149 PF_HASHROW_ASSERT(ih); 1150 LIST_FOREACH(cur, &ih->states, entry) 1151 if (cur->id == s->id && cur->creatorid == s->creatorid) 1152 break; 1153 1154 if (cur != NULL) { 1155 PF_HASHROW_UNLOCK(ih); 1156 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1157 printf("pf: state ID collision: " 1158 "id: %016llx creatorid: %08x\n", 1159 (unsigned long long)be64toh(s->id), 1160 ntohl(s->creatorid)); 1161 } 1162 pf_detach_state(s); 1163 return (EEXIST); 1164 } 1165 LIST_INSERT_HEAD(&ih->states, s, entry); 1166 /* One for keys, one for ID hash. */ 1167 refcount_init(&s->refs, 2); 1168 1169 V_pf_status.fcounters[FCNT_STATE_INSERT]++; 1170 if (pfsync_insert_state_ptr != NULL) 1171 pfsync_insert_state_ptr(s); 1172 1173 /* Returns locked. */ 1174 return (0); 1175 } 1176 1177 /* 1178 * Find state by ID: returns with locked row on success. 1179 */ 1180 struct pf_state * 1181 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1182 { 1183 struct pf_idhash *ih; 1184 struct pf_state *s; 1185 1186 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1187 1188 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))]; 1189 1190 PF_HASHROW_LOCK(ih); 1191 LIST_FOREACH(s, &ih->states, entry) 1192 if (s->id == id && s->creatorid == creatorid) 1193 break; 1194 1195 if (s == NULL) 1196 PF_HASHROW_UNLOCK(ih); 1197 1198 return (s); 1199 } 1200 1201 /* 1202 * Find state by key. 1203 * Returns with ID hash slot locked on success. 1204 */ 1205 static struct pf_state * 1206 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1207 { 1208 struct pf_keyhash *kh; 1209 struct pf_state_key *sk; 1210 struct pf_state *s; 1211 int idx; 1212 1213 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1214 1215 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1216 1217 PF_HASHROW_LOCK(kh); 1218 LIST_FOREACH(sk, &kh->keys, entry) 1219 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1220 break; 1221 if (sk == NULL) { 1222 PF_HASHROW_UNLOCK(kh); 1223 return (NULL); 1224 } 1225 1226 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1227 1228 /* List is sorted, if-bound states before floating ones. */ 1229 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1230 if (s->kif == V_pfi_all || s->kif == kif) { 1231 PF_STATE_LOCK(s); 1232 PF_HASHROW_UNLOCK(kh); 1233 if (s->timeout >= PFTM_MAX) { 1234 /* 1235 * State is either being processed by 1236 * pf_unlink_state() in an other thread, or 1237 * is scheduled for immediate expiry. 1238 */ 1239 PF_STATE_UNLOCK(s); 1240 return (NULL); 1241 } 1242 return (s); 1243 } 1244 PF_HASHROW_UNLOCK(kh); 1245 1246 return (NULL); 1247 } 1248 1249 struct pf_state * 1250 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1251 { 1252 struct pf_keyhash *kh; 1253 struct pf_state_key *sk; 1254 struct pf_state *s, *ret = NULL; 1255 int idx, inout = 0; 1256 1257 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1258 1259 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1260 1261 PF_HASHROW_LOCK(kh); 1262 LIST_FOREACH(sk, &kh->keys, entry) 1263 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1264 break; 1265 if (sk == NULL) { 1266 PF_HASHROW_UNLOCK(kh); 1267 return (NULL); 1268 } 1269 switch (dir) { 1270 case PF_IN: 1271 idx = PF_SK_WIRE; 1272 break; 1273 case PF_OUT: 1274 idx = PF_SK_STACK; 1275 break; 1276 case PF_INOUT: 1277 idx = PF_SK_WIRE; 1278 inout = 1; 1279 break; 1280 default: 1281 panic("%s: dir %u", __func__, dir); 1282 } 1283 second_run: 1284 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1285 if (more == NULL) { 1286 PF_HASHROW_UNLOCK(kh); 1287 return (s); 1288 } 1289 1290 if (ret) 1291 (*more)++; 1292 else 1293 ret = s; 1294 } 1295 if (inout == 1) { 1296 inout = 0; 1297 idx = PF_SK_STACK; 1298 goto second_run; 1299 } 1300 PF_HASHROW_UNLOCK(kh); 1301 1302 return (ret); 1303 } 1304 1305 /* END state table stuff */ 1306 1307 static void 1308 pf_send(struct pf_send_entry *pfse) 1309 { 1310 1311 PF_SENDQ_LOCK(); 1312 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1313 PF_SENDQ_UNLOCK(); 1314 swi_sched(V_pf_swi_cookie, 0); 1315 } 1316 1317 void 1318 pf_intr(void *v) 1319 { 1320 struct pf_send_head queue; 1321 struct pf_send_entry *pfse, *next; 1322 1323 CURVNET_SET((struct vnet *)v); 1324 1325 PF_SENDQ_LOCK(); 1326 queue = V_pf_sendqueue; 1327 STAILQ_INIT(&V_pf_sendqueue); 1328 PF_SENDQ_UNLOCK(); 1329 1330 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1331 switch (pfse->pfse_type) { 1332 #ifdef INET 1333 case PFSE_IP: 1334 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1335 break; 1336 case PFSE_ICMP: 1337 icmp_error(pfse->pfse_m, pfse->pfse_icmp_type, 1338 pfse->pfse_icmp_code, 0, pfse->pfse_icmp_mtu); 1339 break; 1340 #endif /* INET */ 1341 #ifdef INET6 1342 case PFSE_IP6: 1343 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1344 NULL); 1345 break; 1346 case PFSE_ICMP6: 1347 icmp6_error(pfse->pfse_m, pfse->pfse_icmp_type, 1348 pfse->pfse_icmp_code, pfse->pfse_icmp_mtu); 1349 break; 1350 #endif /* INET6 */ 1351 default: 1352 panic("%s: unknown type", __func__); 1353 } 1354 free(pfse, M_PFTEMP); 1355 } 1356 CURVNET_RESTORE(); 1357 } 1358 1359 void 1360 pf_purge_thread(void *v) 1361 { 1362 u_int idx = 0; 1363 1364 CURVNET_SET((struct vnet *)v); 1365 1366 for (;;) { 1367 PF_RULES_RLOCK(); 1368 rw_sleep(pf_purge_thread, &pf_rules_lock, 0, "pftm", hz / 10); 1369 1370 if (V_pf_end_threads) { 1371 /* 1372 * To cleanse up all kifs and rules we need 1373 * two runs: first one clears reference flags, 1374 * then pf_purge_expired_states() doesn't 1375 * raise them, and then second run frees. 1376 */ 1377 PF_RULES_RUNLOCK(); 1378 pf_purge_unlinked_rules(); 1379 pfi_kif_purge(); 1380 1381 /* 1382 * Now purge everything. 1383 */ 1384 pf_purge_expired_states(0, V_pf_hashmask); 1385 pf_purge_expired_fragments(); 1386 pf_purge_expired_src_nodes(); 1387 1388 /* 1389 * Now all kifs & rules should be unreferenced, 1390 * thus should be successfully freed. 1391 */ 1392 pf_purge_unlinked_rules(); 1393 pfi_kif_purge(); 1394 1395 /* 1396 * Announce success and exit. 1397 */ 1398 PF_RULES_RLOCK(); 1399 V_pf_end_threads++; 1400 PF_RULES_RUNLOCK(); 1401 wakeup(pf_purge_thread); 1402 kproc_exit(0); 1403 } 1404 PF_RULES_RUNLOCK(); 1405 1406 /* Process 1/interval fraction of the state table every run. */ 1407 idx = pf_purge_expired_states(idx, V_pf_hashmask / 1408 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1409 1410 /* Purge other expired types every PFTM_INTERVAL seconds. */ 1411 if (idx == 0) { 1412 /* 1413 * Order is important: 1414 * - states and src nodes reference rules 1415 * - states and rules reference kifs 1416 */ 1417 pf_purge_expired_fragments(); 1418 pf_purge_expired_src_nodes(); 1419 pf_purge_unlinked_rules(); 1420 pfi_kif_purge(); 1421 } 1422 } 1423 /* not reached */ 1424 CURVNET_RESTORE(); 1425 } 1426 1427 u_int32_t 1428 pf_state_expires(const struct pf_state *state) 1429 { 1430 u_int32_t timeout; 1431 u_int32_t start; 1432 u_int32_t end; 1433 u_int32_t states; 1434 1435 /* handle all PFTM_* > PFTM_MAX here */ 1436 if (state->timeout == PFTM_PURGE) 1437 return (time_uptime); 1438 KASSERT(state->timeout != PFTM_UNLINKED, 1439 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1440 KASSERT((state->timeout < PFTM_MAX), 1441 ("pf_state_expires: timeout > PFTM_MAX")); 1442 timeout = state->rule.ptr->timeout[state->timeout]; 1443 if (!timeout) 1444 timeout = V_pf_default_rule.timeout[state->timeout]; 1445 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1446 if (start) { 1447 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1448 states = state->rule.ptr->states_cur; /* XXXGL */ 1449 } else { 1450 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1451 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1452 states = V_pf_status.states; 1453 } 1454 if (end && states > start && start < end) { 1455 if (states < end) 1456 return (state->expire + timeout * (end - states) / 1457 (end - start)); 1458 else 1459 return (time_uptime); 1460 } 1461 return (state->expire + timeout); 1462 } 1463 1464 void 1465 pf_purge_expired_src_nodes() 1466 { 1467 struct pf_srchash *sh; 1468 struct pf_src_node *cur, *next; 1469 int i; 1470 1471 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1472 PF_HASHROW_LOCK(sh); 1473 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1474 if (cur->states <= 0 && cur->expire <= time_uptime) { 1475 if (cur->rule.ptr != NULL) 1476 cur->rule.ptr->src_nodes--; 1477 LIST_REMOVE(cur, entry); 1478 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS]++; 1479 V_pf_status.src_nodes--; 1480 uma_zfree(V_pf_sources_z, cur); 1481 } else if (cur->rule.ptr != NULL) 1482 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1483 PF_HASHROW_UNLOCK(sh); 1484 } 1485 } 1486 1487 static void 1488 pf_src_tree_remove_state(struct pf_state *s) 1489 { 1490 u_int32_t timeout; 1491 1492 if (s->src_node != NULL) { 1493 if (s->src.tcp_est) 1494 --s->src_node->conn; 1495 if (--s->src_node->states <= 0) { 1496 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1497 if (!timeout) 1498 timeout = 1499 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1500 s->src_node->expire = time_uptime + timeout; 1501 } 1502 } 1503 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1504 if (--s->nat_src_node->states <= 0) { 1505 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1506 if (!timeout) 1507 timeout = 1508 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1509 s->nat_src_node->expire = time_uptime + timeout; 1510 } 1511 } 1512 s->src_node = s->nat_src_node = NULL; 1513 } 1514 1515 /* 1516 * Unlink and potentilly free a state. Function may be 1517 * called with ID hash row locked, but always returns 1518 * unlocked, since it needs to go through key hash locking. 1519 */ 1520 int 1521 pf_unlink_state(struct pf_state *s, u_int flags) 1522 { 1523 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1524 1525 if ((flags & PF_ENTER_LOCKED) == 0) 1526 PF_HASHROW_LOCK(ih); 1527 else 1528 PF_HASHROW_ASSERT(ih); 1529 1530 if (s->timeout == PFTM_UNLINKED) { 1531 /* 1532 * State is being processed 1533 * by pf_unlink_state() in 1534 * an other thread. 1535 */ 1536 PF_HASHROW_UNLOCK(ih); 1537 return (0); /* XXXGL: undefined actually */ 1538 } 1539 1540 if (s->src.state == PF_TCPS_PROXY_DST) { 1541 /* XXX wire key the right one? */ 1542 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1543 &s->key[PF_SK_WIRE]->addr[1], 1544 &s->key[PF_SK_WIRE]->addr[0], 1545 s->key[PF_SK_WIRE]->port[1], 1546 s->key[PF_SK_WIRE]->port[0], 1547 s->src.seqhi, s->src.seqlo + 1, 1548 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1549 } 1550 1551 LIST_REMOVE(s, entry); 1552 pf_src_tree_remove_state(s); 1553 1554 if (pfsync_delete_state_ptr != NULL) 1555 pfsync_delete_state_ptr(s); 1556 1557 --s->rule.ptr->states_cur; 1558 if (s->nat_rule.ptr != NULL) 1559 --s->nat_rule.ptr->states_cur; 1560 if (s->anchor.ptr != NULL) 1561 --s->anchor.ptr->states_cur; 1562 1563 s->timeout = PFTM_UNLINKED; 1564 1565 PF_HASHROW_UNLOCK(ih); 1566 1567 pf_detach_state(s); 1568 refcount_release(&s->refs); 1569 1570 return (pf_release_state(s)); 1571 } 1572 1573 void 1574 pf_free_state(struct pf_state *cur) 1575 { 1576 1577 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1578 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1579 cur->timeout)); 1580 1581 pf_normalize_tcp_cleanup(cur); 1582 uma_zfree(V_pf_state_z, cur); 1583 V_pf_status.fcounters[FCNT_STATE_REMOVALS]++; 1584 } 1585 1586 /* 1587 * Called only from pf_purge_thread(), thus serialized. 1588 */ 1589 static u_int 1590 pf_purge_expired_states(u_int i, int maxcheck) 1591 { 1592 struct pf_idhash *ih; 1593 struct pf_state *s; 1594 1595 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1596 1597 /* 1598 * Go through hash and unlink states that expire now. 1599 */ 1600 while (maxcheck > 0) { 1601 1602 ih = &V_pf_idhash[i]; 1603 relock: 1604 PF_HASHROW_LOCK(ih); 1605 LIST_FOREACH(s, &ih->states, entry) { 1606 if (pf_state_expires(s) <= time_uptime) { 1607 V_pf_status.states -= 1608 pf_unlink_state(s, PF_ENTER_LOCKED); 1609 goto relock; 1610 } 1611 s->rule.ptr->rule_flag |= PFRULE_REFS; 1612 if (s->nat_rule.ptr != NULL) 1613 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1614 if (s->anchor.ptr != NULL) 1615 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1616 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1617 if (s->rt_kif) 1618 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1619 } 1620 PF_HASHROW_UNLOCK(ih); 1621 1622 /* Return when we hit end of hash. */ 1623 if (++i > V_pf_hashmask) { 1624 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1625 return (0); 1626 } 1627 1628 maxcheck--; 1629 } 1630 1631 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1632 1633 return (i); 1634 } 1635 1636 static void 1637 pf_purge_unlinked_rules() 1638 { 1639 struct pf_rulequeue tmpq; 1640 struct pf_rule *r, *r1; 1641 1642 /* 1643 * If we have overloading task pending, then we'd 1644 * better skip purging this time. There is a tiny 1645 * probability that overloading task references 1646 * an already unlinked rule. 1647 */ 1648 PF_OVERLOADQ_LOCK(); 1649 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1650 PF_OVERLOADQ_UNLOCK(); 1651 return; 1652 } 1653 PF_OVERLOADQ_UNLOCK(); 1654 1655 /* 1656 * Do naive mark-and-sweep garbage collecting of old rules. 1657 * Reference flag is raised by pf_purge_expired_states() 1658 * and pf_purge_expired_src_nodes(). 1659 * 1660 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1661 * use a temporary queue. 1662 */ 1663 TAILQ_INIT(&tmpq); 1664 PF_UNLNKDRULES_LOCK(); 1665 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1666 if (!(r->rule_flag & PFRULE_REFS)) { 1667 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1668 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1669 } else 1670 r->rule_flag &= ~PFRULE_REFS; 1671 } 1672 PF_UNLNKDRULES_UNLOCK(); 1673 1674 if (!TAILQ_EMPTY(&tmpq)) { 1675 PF_RULES_WLOCK(); 1676 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1677 TAILQ_REMOVE(&tmpq, r, entries); 1678 pf_free_rule(r); 1679 } 1680 PF_RULES_WUNLOCK(); 1681 } 1682 } 1683 1684 void 1685 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1686 { 1687 switch (af) { 1688 #ifdef INET 1689 case AF_INET: { 1690 u_int32_t a = ntohl(addr->addr32[0]); 1691 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1692 (a>>8)&255, a&255); 1693 if (p) { 1694 p = ntohs(p); 1695 printf(":%u", p); 1696 } 1697 break; 1698 } 1699 #endif /* INET */ 1700 #ifdef INET6 1701 case AF_INET6: { 1702 u_int16_t b; 1703 u_int8_t i, curstart, curend, maxstart, maxend; 1704 curstart = curend = maxstart = maxend = 255; 1705 for (i = 0; i < 8; i++) { 1706 if (!addr->addr16[i]) { 1707 if (curstart == 255) 1708 curstart = i; 1709 curend = i; 1710 } else { 1711 if ((curend - curstart) > 1712 (maxend - maxstart)) { 1713 maxstart = curstart; 1714 maxend = curend; 1715 } 1716 curstart = curend = 255; 1717 } 1718 } 1719 if ((curend - curstart) > 1720 (maxend - maxstart)) { 1721 maxstart = curstart; 1722 maxend = curend; 1723 } 1724 for (i = 0; i < 8; i++) { 1725 if (i >= maxstart && i <= maxend) { 1726 if (i == 0) 1727 printf(":"); 1728 if (i == maxend) 1729 printf(":"); 1730 } else { 1731 b = ntohs(addr->addr16[i]); 1732 printf("%x", b); 1733 if (i < 7) 1734 printf(":"); 1735 } 1736 } 1737 if (p) { 1738 p = ntohs(p); 1739 printf("[%u]", p); 1740 } 1741 break; 1742 } 1743 #endif /* INET6 */ 1744 } 1745 } 1746 1747 void 1748 pf_print_state(struct pf_state *s) 1749 { 1750 pf_print_state_parts(s, NULL, NULL); 1751 } 1752 1753 static void 1754 pf_print_state_parts(struct pf_state *s, 1755 struct pf_state_key *skwp, struct pf_state_key *sksp) 1756 { 1757 struct pf_state_key *skw, *sks; 1758 u_int8_t proto, dir; 1759 1760 /* Do our best to fill these, but they're skipped if NULL */ 1761 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1762 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1763 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1764 dir = s ? s->direction : 0; 1765 1766 switch (proto) { 1767 case IPPROTO_IPV4: 1768 printf("IPv4"); 1769 break; 1770 case IPPROTO_IPV6: 1771 printf("IPv6"); 1772 break; 1773 case IPPROTO_TCP: 1774 printf("TCP"); 1775 break; 1776 case IPPROTO_UDP: 1777 printf("UDP"); 1778 break; 1779 case IPPROTO_ICMP: 1780 printf("ICMP"); 1781 break; 1782 case IPPROTO_ICMPV6: 1783 printf("ICMPv6"); 1784 break; 1785 default: 1786 printf("%u", skw->proto); 1787 break; 1788 } 1789 switch (dir) { 1790 case PF_IN: 1791 printf(" in"); 1792 break; 1793 case PF_OUT: 1794 printf(" out"); 1795 break; 1796 } 1797 if (skw) { 1798 printf(" wire: "); 1799 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1800 printf(" "); 1801 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1802 } 1803 if (sks) { 1804 printf(" stack: "); 1805 if (sks != skw) { 1806 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1807 printf(" "); 1808 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1809 } else 1810 printf("-"); 1811 } 1812 if (s) { 1813 if (proto == IPPROTO_TCP) { 1814 printf(" [lo=%u high=%u win=%u modulator=%u", 1815 s->src.seqlo, s->src.seqhi, 1816 s->src.max_win, s->src.seqdiff); 1817 if (s->src.wscale && s->dst.wscale) 1818 printf(" wscale=%u", 1819 s->src.wscale & PF_WSCALE_MASK); 1820 printf("]"); 1821 printf(" [lo=%u high=%u win=%u modulator=%u", 1822 s->dst.seqlo, s->dst.seqhi, 1823 s->dst.max_win, s->dst.seqdiff); 1824 if (s->src.wscale && s->dst.wscale) 1825 printf(" wscale=%u", 1826 s->dst.wscale & PF_WSCALE_MASK); 1827 printf("]"); 1828 } 1829 printf(" %u:%u", s->src.state, s->dst.state); 1830 } 1831 } 1832 1833 void 1834 pf_print_flags(u_int8_t f) 1835 { 1836 if (f) 1837 printf(" "); 1838 if (f & TH_FIN) 1839 printf("F"); 1840 if (f & TH_SYN) 1841 printf("S"); 1842 if (f & TH_RST) 1843 printf("R"); 1844 if (f & TH_PUSH) 1845 printf("P"); 1846 if (f & TH_ACK) 1847 printf("A"); 1848 if (f & TH_URG) 1849 printf("U"); 1850 if (f & TH_ECE) 1851 printf("E"); 1852 if (f & TH_CWR) 1853 printf("W"); 1854 } 1855 1856 #define PF_SET_SKIP_STEPS(i) \ 1857 do { \ 1858 while (head[i] != cur) { \ 1859 head[i]->skip[i].ptr = cur; \ 1860 head[i] = TAILQ_NEXT(head[i], entries); \ 1861 } \ 1862 } while (0) 1863 1864 void 1865 pf_calc_skip_steps(struct pf_rulequeue *rules) 1866 { 1867 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1868 int i; 1869 1870 cur = TAILQ_FIRST(rules); 1871 prev = cur; 1872 for (i = 0; i < PF_SKIP_COUNT; ++i) 1873 head[i] = cur; 1874 while (cur != NULL) { 1875 1876 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1877 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1878 if (cur->direction != prev->direction) 1879 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1880 if (cur->af != prev->af) 1881 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1882 if (cur->proto != prev->proto) 1883 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1884 if (cur->src.neg != prev->src.neg || 1885 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1886 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1887 if (cur->src.port[0] != prev->src.port[0] || 1888 cur->src.port[1] != prev->src.port[1] || 1889 cur->src.port_op != prev->src.port_op) 1890 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1891 if (cur->dst.neg != prev->dst.neg || 1892 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1893 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1894 if (cur->dst.port[0] != prev->dst.port[0] || 1895 cur->dst.port[1] != prev->dst.port[1] || 1896 cur->dst.port_op != prev->dst.port_op) 1897 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1898 1899 prev = cur; 1900 cur = TAILQ_NEXT(cur, entries); 1901 } 1902 for (i = 0; i < PF_SKIP_COUNT; ++i) 1903 PF_SET_SKIP_STEPS(i); 1904 } 1905 1906 static int 1907 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1908 { 1909 if (aw1->type != aw2->type) 1910 return (1); 1911 switch (aw1->type) { 1912 case PF_ADDR_ADDRMASK: 1913 case PF_ADDR_RANGE: 1914 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, 0)) 1915 return (1); 1916 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, 0)) 1917 return (1); 1918 return (0); 1919 case PF_ADDR_DYNIFTL: 1920 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 1921 case PF_ADDR_NOROUTE: 1922 case PF_ADDR_URPFFAILED: 1923 return (0); 1924 case PF_ADDR_TABLE: 1925 return (aw1->p.tbl != aw2->p.tbl); 1926 default: 1927 printf("invalid address type: %d\n", aw1->type); 1928 return (1); 1929 } 1930 } 1931 1932 u_int16_t 1933 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 1934 { 1935 u_int32_t l; 1936 1937 if (udp && !cksum) 1938 return (0x0000); 1939 l = cksum + old - new; 1940 l = (l >> 16) + (l & 65535); 1941 l = l & 65535; 1942 if (udp && !l) 1943 return (0xFFFF); 1944 return (l); 1945 } 1946 1947 static void 1948 pf_change_ap(struct pf_addr *a, u_int16_t *p, u_int16_t *ic, u_int16_t *pc, 1949 struct pf_addr *an, u_int16_t pn, u_int8_t u, sa_family_t af) 1950 { 1951 struct pf_addr ao; 1952 u_int16_t po = *p; 1953 1954 PF_ACPY(&ao, a, af); 1955 PF_ACPY(a, an, af); 1956 1957 *p = pn; 1958 1959 switch (af) { 1960 #ifdef INET 1961 case AF_INET: 1962 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 1963 ao.addr16[0], an->addr16[0], 0), 1964 ao.addr16[1], an->addr16[1], 0); 1965 *p = pn; 1966 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 1967 ao.addr16[0], an->addr16[0], u), 1968 ao.addr16[1], an->addr16[1], u), 1969 po, pn, u); 1970 break; 1971 #endif /* INET */ 1972 #ifdef INET6 1973 case AF_INET6: 1974 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 1975 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 1976 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 1977 ao.addr16[0], an->addr16[0], u), 1978 ao.addr16[1], an->addr16[1], u), 1979 ao.addr16[2], an->addr16[2], u), 1980 ao.addr16[3], an->addr16[3], u), 1981 ao.addr16[4], an->addr16[4], u), 1982 ao.addr16[5], an->addr16[5], u), 1983 ao.addr16[6], an->addr16[6], u), 1984 ao.addr16[7], an->addr16[7], u), 1985 po, pn, u); 1986 break; 1987 #endif /* INET6 */ 1988 } 1989 } 1990 1991 1992 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 1993 void 1994 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 1995 { 1996 u_int32_t ao; 1997 1998 memcpy(&ao, a, sizeof(ao)); 1999 memcpy(a, &an, sizeof(u_int32_t)); 2000 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2001 ao % 65536, an % 65536, u); 2002 } 2003 2004 #ifdef INET6 2005 static void 2006 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2007 { 2008 struct pf_addr ao; 2009 2010 PF_ACPY(&ao, a, AF_INET6); 2011 PF_ACPY(a, an, AF_INET6); 2012 2013 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2014 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2015 pf_cksum_fixup(pf_cksum_fixup(*c, 2016 ao.addr16[0], an->addr16[0], u), 2017 ao.addr16[1], an->addr16[1], u), 2018 ao.addr16[2], an->addr16[2], u), 2019 ao.addr16[3], an->addr16[3], u), 2020 ao.addr16[4], an->addr16[4], u), 2021 ao.addr16[5], an->addr16[5], u), 2022 ao.addr16[6], an->addr16[6], u), 2023 ao.addr16[7], an->addr16[7], u); 2024 } 2025 #endif /* INET6 */ 2026 2027 static int 2028 pf_icmp_mapping(struct pf_pdesc *pd, uint8_t type, 2029 int *icmp_dir, int *multi, uint16_t *icmpid, uint16_t *icmptype) 2030 { 2031 /* 2032 * ICMP types marked with PF_OUT are typically responses to 2033 * PF_IN, and will match states in the opposite direction. 2034 * PF_IN ICMP types need to match a state with that type. 2035 */ 2036 *icmp_dir = PF_OUT; 2037 *multi = PF_ICMP_MULTI_LINK; 2038 /* Queries (and responses) */ 2039 switch (type) { 2040 case ICMP_ECHO: 2041 *icmp_dir = PF_IN; 2042 case ICMP_ECHOREPLY: 2043 *icmptype = ICMP_ECHO; 2044 *icmpid = pd->hdr.icmp->icmp_id; 2045 break; 2046 2047 case ICMP_TSTAMP: 2048 *icmp_dir = PF_IN; 2049 case ICMP_TSTAMPREPLY: 2050 *icmptype = ICMP_TSTAMP; 2051 *icmpid = pd->hdr.icmp->icmp_id; 2052 break; 2053 2054 case ICMP_IREQ: 2055 *icmp_dir = PF_IN; 2056 case ICMP_IREQREPLY: 2057 *icmptype = ICMP_IREQ; 2058 *icmpid = pd->hdr.icmp->icmp_id; 2059 break; 2060 2061 case ICMP_MASKREQ: 2062 *icmp_dir = PF_IN; 2063 case ICMP_MASKREPLY: 2064 *icmptype = ICMP_MASKREQ; 2065 *icmpid = pd->hdr.icmp->icmp_id; 2066 break; 2067 2068 case ICMP_IPV6_WHEREAREYOU: 2069 *icmp_dir = PF_IN; 2070 case ICMP_IPV6_IAMHERE: 2071 *icmptype = ICMP_IPV6_WHEREAREYOU; 2072 *icmpid = 0; /* Nothing sane to match on! */ 2073 break; 2074 2075 case ICMP_MOBILE_REGREQUEST: 2076 *icmp_dir = PF_IN; 2077 case ICMP_MOBILE_REGREPLY: 2078 *icmptype = ICMP_MOBILE_REGREQUEST; 2079 *icmpid = 0; /* Nothing sane to match on! */ 2080 break; 2081 2082 case ICMP_ROUTERSOLICIT: 2083 *icmp_dir = PF_IN; 2084 case ICMP_ROUTERADVERT: 2085 *icmptype = ICMP_MOBILE_REGREQUEST; 2086 *icmpid = 0; /* Nothing sane to match on! */ 2087 break; 2088 2089 #ifdef INET6 2090 case ICMP6_ECHO_REQUEST: 2091 *icmp_dir = PF_IN; 2092 case ICMP6_ECHO_REPLY: 2093 *icmptype = ICMP6_ECHO_REPLY; 2094 *icmpid = 0; /* Nothing sane to match on! */ 2095 break; 2096 2097 case MLD_LISTENER_QUERY: 2098 *icmp_dir = PF_IN; 2099 case MLD_LISTENER_REPORT: { 2100 struct mld_hdr *mld = (void *)pd->hdr.icmp6; 2101 2102 *icmptype = MLD_LISTENER_QUERY; 2103 /* generate fake id for these messages */ 2104 *icmpid = (mld->mld_addr.s6_addr32[0] ^ 2105 mld->mld_addr.s6_addr32[1] ^ 2106 mld->mld_addr.s6_addr32[2] ^ 2107 mld->mld_addr.s6_addr32[3]) & 0xffff; 2108 break; 2109 } 2110 2111 /* ICMP6_FQDN and ICMP6_NI query/reply are the same type as ICMP6_WRU */ 2112 case ICMP6_WRUREQUEST: 2113 *icmp_dir = PF_IN; 2114 case ICMP6_WRUREPLY: 2115 *icmptype = ICMP6_WRUREQUEST; 2116 *icmpid = 0; /* Nothing sane to match on! */ 2117 break; 2118 2119 case MLD_MTRACE: 2120 *icmp_dir = PF_IN; 2121 case MLD_MTRACE_RESP: 2122 *icmptype = MLD_MTRACE; 2123 *icmpid = 0; /* Nothing sane to match on! */ 2124 break; 2125 2126 case ND_NEIGHBOR_SOLICIT: 2127 *icmp_dir = PF_IN; 2128 case ND_NEIGHBOR_ADVERT: { 2129 struct nd_neighbor_solicit *nd = (void *)pd->hdr.icmp6; 2130 2131 *icmptype = ND_NEIGHBOR_SOLICIT; 2132 *multi = PF_ICMP_MULTI_SOLICITED; 2133 /* generate fake id for these messages */ 2134 *icmpid = (nd->nd_ns_target.s6_addr32[0] ^ 2135 nd->nd_ns_target.s6_addr32[1] ^ 2136 nd->nd_ns_target.s6_addr32[2] ^ 2137 nd->nd_ns_target.s6_addr32[3]) & 0xffff; 2138 break; 2139 } 2140 2141 #endif /* INET6 */ 2142 /* These ICMP types map to other connections */ 2143 case ICMP_UNREACH: 2144 case ICMP_SOURCEQUENCH: 2145 case ICMP_REDIRECT: 2146 case ICMP_TIMXCEED: 2147 case ICMP_PARAMPROB: 2148 #ifdef INET6 2149 /* 2150 * ICMP6_TIME_EXCEEDED is the same type as ICMP_UNREACH 2151 * ND_REDIRECT can't be in this list because the triggering packet 2152 * header is optional. 2153 */ 2154 case ICMP6_PACKET_TOO_BIG: 2155 #endif /* INET6 */ 2156 /* These will not be used, but set them anyways */ 2157 *icmp_dir = PF_IN; 2158 *icmptype = htons(type); 2159 *icmpid = 0; 2160 return (1); /* These types are matched to other state */ 2161 /* 2162 * All remaining ICMP types get their own states, 2163 * and will only match in one direction. 2164 */ 2165 default: 2166 *icmp_dir = PF_IN; 2167 *icmptype = type; 2168 *icmpid = 0; 2169 break; 2170 } 2171 *icmptype = htons(*icmptype); 2172 2173 return (0); 2174 } 2175 2176 static void 2177 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2178 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2179 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2180 { 2181 struct pf_addr oia, ooa; 2182 2183 PF_ACPY(&oia, ia, af); 2184 if (oa) 2185 PF_ACPY(&ooa, oa, af); 2186 2187 /* Change inner protocol port, fix inner protocol checksum. */ 2188 if (ip != NULL) { 2189 u_int16_t oip = *ip; 2190 u_int32_t opc; 2191 2192 if (pc != NULL) 2193 opc = *pc; 2194 *ip = np; 2195 if (pc != NULL) 2196 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2197 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2198 if (pc != NULL) 2199 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2200 } 2201 /* Change inner ip address, fix inner ip and icmp checksums. */ 2202 PF_ACPY(ia, na, af); 2203 switch (af) { 2204 #ifdef INET 2205 case AF_INET: { 2206 u_int32_t oh2c = *h2c; 2207 2208 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2209 oia.addr16[0], ia->addr16[0], 0), 2210 oia.addr16[1], ia->addr16[1], 0); 2211 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2212 oia.addr16[0], ia->addr16[0], 0), 2213 oia.addr16[1], ia->addr16[1], 0); 2214 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2215 break; 2216 } 2217 #endif /* INET */ 2218 #ifdef INET6 2219 case AF_INET6: 2220 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2221 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2222 pf_cksum_fixup(pf_cksum_fixup(*ic, 2223 oia.addr16[0], ia->addr16[0], u), 2224 oia.addr16[1], ia->addr16[1], u), 2225 oia.addr16[2], ia->addr16[2], u), 2226 oia.addr16[3], ia->addr16[3], u), 2227 oia.addr16[4], ia->addr16[4], u), 2228 oia.addr16[5], ia->addr16[5], u), 2229 oia.addr16[6], ia->addr16[6], u), 2230 oia.addr16[7], ia->addr16[7], u); 2231 break; 2232 #endif /* INET6 */ 2233 } 2234 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2235 if (oa) { 2236 PF_ACPY(oa, na, af); 2237 switch (af) { 2238 #ifdef INET 2239 case AF_INET: 2240 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2241 ooa.addr16[0], oa->addr16[0], 0), 2242 ooa.addr16[1], oa->addr16[1], 0); 2243 break; 2244 #endif /* INET */ 2245 #ifdef INET6 2246 case AF_INET6: 2247 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2248 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2249 pf_cksum_fixup(pf_cksum_fixup(*ic, 2250 ooa.addr16[0], oa->addr16[0], u), 2251 ooa.addr16[1], oa->addr16[1], u), 2252 ooa.addr16[2], oa->addr16[2], u), 2253 ooa.addr16[3], oa->addr16[3], u), 2254 ooa.addr16[4], oa->addr16[4], u), 2255 ooa.addr16[5], oa->addr16[5], u), 2256 ooa.addr16[6], oa->addr16[6], u), 2257 ooa.addr16[7], oa->addr16[7], u); 2258 break; 2259 #endif /* INET6 */ 2260 } 2261 } 2262 } 2263 2264 2265 /* 2266 * Need to modulate the sequence numbers in the TCP SACK option 2267 * (credits to Krzysztof Pfaff for report and patch) 2268 */ 2269 static int 2270 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2271 struct tcphdr *th, struct pf_state_peer *dst) 2272 { 2273 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2274 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2275 int copyback = 0, i, olen; 2276 struct sackblk sack; 2277 2278 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2279 if (hlen < TCPOLEN_SACKLEN || 2280 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2281 return 0; 2282 2283 while (hlen >= TCPOLEN_SACKLEN) { 2284 olen = opt[1]; 2285 switch (*opt) { 2286 case TCPOPT_EOL: /* FALLTHROUGH */ 2287 case TCPOPT_NOP: 2288 opt++; 2289 hlen--; 2290 break; 2291 case TCPOPT_SACK: 2292 if (olen > hlen) 2293 olen = hlen; 2294 if (olen >= TCPOLEN_SACKLEN) { 2295 for (i = 2; i + TCPOLEN_SACK <= olen; 2296 i += TCPOLEN_SACK) { 2297 memcpy(&sack, &opt[i], sizeof(sack)); 2298 pf_change_a(&sack.start, &th->th_sum, 2299 htonl(ntohl(sack.start) - 2300 dst->seqdiff), 0); 2301 pf_change_a(&sack.end, &th->th_sum, 2302 htonl(ntohl(sack.end) - 2303 dst->seqdiff), 0); 2304 memcpy(&opt[i], &sack, sizeof(sack)); 2305 } 2306 copyback = 1; 2307 } 2308 /* FALLTHROUGH */ 2309 default: 2310 if (olen < 2) 2311 olen = 2; 2312 hlen -= olen; 2313 opt += olen; 2314 } 2315 } 2316 2317 if (copyback) 2318 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2319 return (copyback); 2320 } 2321 2322 static void 2323 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2324 const struct pf_addr *saddr, const struct pf_addr *daddr, 2325 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2326 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2327 u_int16_t rtag, struct ifnet *ifp) 2328 { 2329 struct pf_send_entry *pfse; 2330 struct mbuf *m; 2331 int len, tlen; 2332 #ifdef INET 2333 struct ip *h = NULL; 2334 #endif /* INET */ 2335 #ifdef INET6 2336 struct ip6_hdr *h6 = NULL; 2337 #endif /* INET6 */ 2338 struct tcphdr *th; 2339 char *opt; 2340 struct pf_mtag *pf_mtag; 2341 2342 len = 0; 2343 th = NULL; 2344 2345 /* maximum segment size tcp option */ 2346 tlen = sizeof(struct tcphdr); 2347 if (mss) 2348 tlen += 4; 2349 2350 switch (af) { 2351 #ifdef INET 2352 case AF_INET: 2353 len = sizeof(struct ip) + tlen; 2354 break; 2355 #endif /* INET */ 2356 #ifdef INET6 2357 case AF_INET6: 2358 len = sizeof(struct ip6_hdr) + tlen; 2359 break; 2360 #endif /* INET6 */ 2361 default: 2362 panic("%s: unsupported af %d", __func__, af); 2363 } 2364 2365 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2366 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2367 if (pfse == NULL) 2368 return; 2369 m = m_gethdr(M_NOWAIT, MT_DATA); 2370 if (m == NULL) { 2371 free(pfse, M_PFTEMP); 2372 return; 2373 } 2374 #ifdef MAC 2375 mac_netinet_firewall_send(m); 2376 #endif 2377 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2378 free(pfse, M_PFTEMP); 2379 m_freem(m); 2380 return; 2381 } 2382 if (tag) 2383 m->m_flags |= M_SKIP_FIREWALL; 2384 pf_mtag->tag = rtag; 2385 2386 if (r != NULL && r->rtableid >= 0) 2387 M_SETFIB(m, r->rtableid); 2388 2389 #ifdef ALTQ 2390 if (r != NULL && r->qid) { 2391 pf_mtag->qid = r->qid; 2392 2393 /* add hints for ecn */ 2394 pf_mtag->hdr = mtod(m, struct ip *); 2395 } 2396 #endif /* ALTQ */ 2397 m->m_data += max_linkhdr; 2398 m->m_pkthdr.len = m->m_len = len; 2399 m->m_pkthdr.rcvif = NULL; 2400 bzero(m->m_data, len); 2401 switch (af) { 2402 #ifdef INET 2403 case AF_INET: 2404 h = mtod(m, struct ip *); 2405 2406 /* IP header fields included in the TCP checksum */ 2407 h->ip_p = IPPROTO_TCP; 2408 h->ip_len = htons(tlen); 2409 h->ip_src.s_addr = saddr->v4.s_addr; 2410 h->ip_dst.s_addr = daddr->v4.s_addr; 2411 2412 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2413 break; 2414 #endif /* INET */ 2415 #ifdef INET6 2416 case AF_INET6: 2417 h6 = mtod(m, struct ip6_hdr *); 2418 2419 /* IP header fields included in the TCP checksum */ 2420 h6->ip6_nxt = IPPROTO_TCP; 2421 h6->ip6_plen = htons(tlen); 2422 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2423 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2424 2425 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2426 break; 2427 #endif /* INET6 */ 2428 } 2429 2430 /* TCP header */ 2431 th->th_sport = sport; 2432 th->th_dport = dport; 2433 th->th_seq = htonl(seq); 2434 th->th_ack = htonl(ack); 2435 th->th_off = tlen >> 2; 2436 th->th_flags = flags; 2437 th->th_win = htons(win); 2438 2439 if (mss) { 2440 opt = (char *)(th + 1); 2441 opt[0] = TCPOPT_MAXSEG; 2442 opt[1] = 4; 2443 HTONS(mss); 2444 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2445 } 2446 2447 switch (af) { 2448 #ifdef INET 2449 case AF_INET: 2450 /* TCP checksum */ 2451 th->th_sum = in_cksum(m, len); 2452 2453 /* Finish the IP header */ 2454 h->ip_v = 4; 2455 h->ip_hl = sizeof(*h) >> 2; 2456 h->ip_tos = IPTOS_LOWDELAY; 2457 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2458 h->ip_len = htons(len); 2459 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2460 h->ip_sum = 0; 2461 2462 pfse->pfse_type = PFSE_IP; 2463 break; 2464 #endif /* INET */ 2465 #ifdef INET6 2466 case AF_INET6: 2467 /* TCP checksum */ 2468 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2469 sizeof(struct ip6_hdr), tlen); 2470 2471 h6->ip6_vfc |= IPV6_VERSION; 2472 h6->ip6_hlim = IPV6_DEFHLIM; 2473 2474 pfse->pfse_type = PFSE_IP6; 2475 break; 2476 #endif /* INET6 */ 2477 } 2478 pfse->pfse_m = m; 2479 pf_send(pfse); 2480 } 2481 2482 static void 2483 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2484 struct pf_rule *r) 2485 { 2486 struct pf_send_entry *pfse; 2487 struct mbuf *m0; 2488 struct pf_mtag *pf_mtag; 2489 2490 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2491 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2492 if (pfse == NULL) 2493 return; 2494 2495 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2496 free(pfse, M_PFTEMP); 2497 return; 2498 } 2499 2500 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2501 free(pfse, M_PFTEMP); 2502 return; 2503 } 2504 /* XXX: revisit */ 2505 m0->m_flags |= M_SKIP_FIREWALL; 2506 2507 if (r->rtableid >= 0) 2508 M_SETFIB(m0, r->rtableid); 2509 2510 #ifdef ALTQ 2511 if (r->qid) { 2512 pf_mtag->qid = r->qid; 2513 /* add hints for ecn */ 2514 pf_mtag->hdr = mtod(m0, struct ip *); 2515 } 2516 #endif /* ALTQ */ 2517 2518 switch (af) { 2519 #ifdef INET 2520 case AF_INET: 2521 pfse->pfse_type = PFSE_ICMP; 2522 break; 2523 #endif /* INET */ 2524 #ifdef INET6 2525 case AF_INET6: 2526 pfse->pfse_type = PFSE_ICMP6; 2527 break; 2528 #endif /* INET6 */ 2529 } 2530 pfse->pfse_m = m0; 2531 pfse->pfse_icmp_type = type; 2532 pfse->pfse_icmp_code = code; 2533 pf_send(pfse); 2534 } 2535 2536 /* 2537 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2538 * If n is 0, they match if they are equal. If n is != 0, they match if they 2539 * are different. 2540 */ 2541 int 2542 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2543 struct pf_addr *b, sa_family_t af) 2544 { 2545 int match = 0; 2546 2547 switch (af) { 2548 #ifdef INET 2549 case AF_INET: 2550 if ((a->addr32[0] & m->addr32[0]) == 2551 (b->addr32[0] & m->addr32[0])) 2552 match++; 2553 break; 2554 #endif /* INET */ 2555 #ifdef INET6 2556 case AF_INET6: 2557 if (((a->addr32[0] & m->addr32[0]) == 2558 (b->addr32[0] & m->addr32[0])) && 2559 ((a->addr32[1] & m->addr32[1]) == 2560 (b->addr32[1] & m->addr32[1])) && 2561 ((a->addr32[2] & m->addr32[2]) == 2562 (b->addr32[2] & m->addr32[2])) && 2563 ((a->addr32[3] & m->addr32[3]) == 2564 (b->addr32[3] & m->addr32[3]))) 2565 match++; 2566 break; 2567 #endif /* INET6 */ 2568 } 2569 if (match) { 2570 if (n) 2571 return (0); 2572 else 2573 return (1); 2574 } else { 2575 if (n) 2576 return (1); 2577 else 2578 return (0); 2579 } 2580 } 2581 2582 /* 2583 * Return 1 if b <= a <= e, otherwise return 0. 2584 */ 2585 int 2586 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2587 struct pf_addr *a, sa_family_t af) 2588 { 2589 switch (af) { 2590 #ifdef INET 2591 case AF_INET: 2592 if ((a->addr32[0] < b->addr32[0]) || 2593 (a->addr32[0] > e->addr32[0])) 2594 return (0); 2595 break; 2596 #endif /* INET */ 2597 #ifdef INET6 2598 case AF_INET6: { 2599 int i; 2600 2601 /* check a >= b */ 2602 for (i = 0; i < 4; ++i) 2603 if (a->addr32[i] > b->addr32[i]) 2604 break; 2605 else if (a->addr32[i] < b->addr32[i]) 2606 return (0); 2607 /* check a <= e */ 2608 for (i = 0; i < 4; ++i) 2609 if (a->addr32[i] < e->addr32[i]) 2610 break; 2611 else if (a->addr32[i] > e->addr32[i]) 2612 return (0); 2613 break; 2614 } 2615 #endif /* INET6 */ 2616 } 2617 return (1); 2618 } 2619 2620 static int 2621 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2622 { 2623 switch (op) { 2624 case PF_OP_IRG: 2625 return ((p > a1) && (p < a2)); 2626 case PF_OP_XRG: 2627 return ((p < a1) || (p > a2)); 2628 case PF_OP_RRG: 2629 return ((p >= a1) && (p <= a2)); 2630 case PF_OP_EQ: 2631 return (p == a1); 2632 case PF_OP_NE: 2633 return (p != a1); 2634 case PF_OP_LT: 2635 return (p < a1); 2636 case PF_OP_LE: 2637 return (p <= a1); 2638 case PF_OP_GT: 2639 return (p > a1); 2640 case PF_OP_GE: 2641 return (p >= a1); 2642 } 2643 return (0); /* never reached */ 2644 } 2645 2646 int 2647 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2648 { 2649 NTOHS(a1); 2650 NTOHS(a2); 2651 NTOHS(p); 2652 return (pf_match(op, a1, a2, p)); 2653 } 2654 2655 static int 2656 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2657 { 2658 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2659 return (0); 2660 return (pf_match(op, a1, a2, u)); 2661 } 2662 2663 static int 2664 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2665 { 2666 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2667 return (0); 2668 return (pf_match(op, a1, a2, g)); 2669 } 2670 2671 int 2672 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2673 { 2674 if (*tag == -1) 2675 *tag = mtag; 2676 2677 return ((!r->match_tag_not && r->match_tag == *tag) || 2678 (r->match_tag_not && r->match_tag != *tag)); 2679 } 2680 2681 int 2682 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2683 { 2684 2685 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2686 2687 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2688 return (ENOMEM); 2689 2690 pd->pf_mtag->tag = tag; 2691 2692 return (0); 2693 } 2694 2695 #define PF_ANCHOR_STACKSIZE 32 2696 struct pf_anchor_stackframe { 2697 struct pf_ruleset *rs; 2698 struct pf_rule *r; /* XXX: + match bit */ 2699 struct pf_anchor *child; 2700 }; 2701 2702 /* 2703 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2704 */ 2705 #define PF_ANCHORSTACK_MATCH 0x00000001 2706 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2707 2708 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2709 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2710 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2711 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2712 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2713 } while (0) 2714 2715 void 2716 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2717 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2718 int *match) 2719 { 2720 struct pf_anchor_stackframe *f; 2721 2722 PF_RULES_RASSERT(); 2723 2724 if (match) 2725 *match = 0; 2726 if (*depth >= PF_ANCHOR_STACKSIZE) { 2727 printf("%s: anchor stack overflow on %s\n", 2728 __func__, (*r)->anchor->name); 2729 *r = TAILQ_NEXT(*r, entries); 2730 return; 2731 } else if (*depth == 0 && a != NULL) 2732 *a = *r; 2733 f = stack + (*depth)++; 2734 f->rs = *rs; 2735 f->r = *r; 2736 if ((*r)->anchor_wildcard) { 2737 struct pf_anchor_node *parent = &(*r)->anchor->children; 2738 2739 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2740 *r = NULL; 2741 return; 2742 } 2743 *rs = &f->child->ruleset; 2744 } else { 2745 f->child = NULL; 2746 *rs = &(*r)->anchor->ruleset; 2747 } 2748 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2749 } 2750 2751 int 2752 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2753 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2754 int *match) 2755 { 2756 struct pf_anchor_stackframe *f; 2757 struct pf_rule *fr; 2758 int quick = 0; 2759 2760 PF_RULES_RASSERT(); 2761 2762 do { 2763 if (*depth <= 0) 2764 break; 2765 f = stack + *depth - 1; 2766 fr = PF_ANCHOR_RULE(f); 2767 if (f->child != NULL) { 2768 struct pf_anchor_node *parent; 2769 2770 /* 2771 * This block traverses through 2772 * a wildcard anchor. 2773 */ 2774 parent = &fr->anchor->children; 2775 if (match != NULL && *match) { 2776 /* 2777 * If any of "*" matched, then 2778 * "foo/ *" matched, mark frame 2779 * appropriately. 2780 */ 2781 PF_ANCHOR_SET_MATCH(f); 2782 *match = 0; 2783 } 2784 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2785 if (f->child != NULL) { 2786 *rs = &f->child->ruleset; 2787 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2788 if (*r == NULL) 2789 continue; 2790 else 2791 break; 2792 } 2793 } 2794 (*depth)--; 2795 if (*depth == 0 && a != NULL) 2796 *a = NULL; 2797 *rs = f->rs; 2798 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2799 quick = fr->quick; 2800 *r = TAILQ_NEXT(fr, entries); 2801 } while (*r == NULL); 2802 2803 return (quick); 2804 } 2805 2806 #ifdef INET6 2807 void 2808 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2809 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2810 { 2811 switch (af) { 2812 #ifdef INET 2813 case AF_INET: 2814 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2815 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2816 break; 2817 #endif /* INET */ 2818 case AF_INET6: 2819 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2820 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2821 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2822 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2823 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2824 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2825 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2826 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2827 break; 2828 } 2829 } 2830 2831 void 2832 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2833 { 2834 switch (af) { 2835 #ifdef INET 2836 case AF_INET: 2837 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2838 break; 2839 #endif /* INET */ 2840 case AF_INET6: 2841 if (addr->addr32[3] == 0xffffffff) { 2842 addr->addr32[3] = 0; 2843 if (addr->addr32[2] == 0xffffffff) { 2844 addr->addr32[2] = 0; 2845 if (addr->addr32[1] == 0xffffffff) { 2846 addr->addr32[1] = 0; 2847 addr->addr32[0] = 2848 htonl(ntohl(addr->addr32[0]) + 1); 2849 } else 2850 addr->addr32[1] = 2851 htonl(ntohl(addr->addr32[1]) + 1); 2852 } else 2853 addr->addr32[2] = 2854 htonl(ntohl(addr->addr32[2]) + 1); 2855 } else 2856 addr->addr32[3] = 2857 htonl(ntohl(addr->addr32[3]) + 1); 2858 break; 2859 } 2860 } 2861 #endif /* INET6 */ 2862 2863 int 2864 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2865 { 2866 struct pf_addr *saddr, *daddr; 2867 u_int16_t sport, dport; 2868 struct inpcbinfo *pi; 2869 struct inpcb *inp; 2870 2871 pd->lookup.uid = UID_MAX; 2872 pd->lookup.gid = GID_MAX; 2873 2874 switch (pd->proto) { 2875 case IPPROTO_TCP: 2876 if (pd->hdr.tcp == NULL) 2877 return (-1); 2878 sport = pd->hdr.tcp->th_sport; 2879 dport = pd->hdr.tcp->th_dport; 2880 pi = &V_tcbinfo; 2881 break; 2882 case IPPROTO_UDP: 2883 if (pd->hdr.udp == NULL) 2884 return (-1); 2885 sport = pd->hdr.udp->uh_sport; 2886 dport = pd->hdr.udp->uh_dport; 2887 pi = &V_udbinfo; 2888 break; 2889 default: 2890 return (-1); 2891 } 2892 if (direction == PF_IN) { 2893 saddr = pd->src; 2894 daddr = pd->dst; 2895 } else { 2896 u_int16_t p; 2897 2898 p = sport; 2899 sport = dport; 2900 dport = p; 2901 saddr = pd->dst; 2902 daddr = pd->src; 2903 } 2904 switch (pd->af) { 2905 #ifdef INET 2906 case AF_INET: 2907 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2908 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2909 if (inp == NULL) { 2910 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2911 daddr->v4, dport, INPLOOKUP_WILDCARD | 2912 INPLOOKUP_RLOCKPCB, NULL, m); 2913 if (inp == NULL) 2914 return (-1); 2915 } 2916 break; 2917 #endif /* INET */ 2918 #ifdef INET6 2919 case AF_INET6: 2920 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2921 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2922 if (inp == NULL) { 2923 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2924 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2925 INPLOOKUP_RLOCKPCB, NULL, m); 2926 if (inp == NULL) 2927 return (-1); 2928 } 2929 break; 2930 #endif /* INET6 */ 2931 2932 default: 2933 return (-1); 2934 } 2935 INP_RLOCK_ASSERT(inp); 2936 pd->lookup.uid = inp->inp_cred->cr_uid; 2937 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2938 INP_RUNLOCK(inp); 2939 2940 return (1); 2941 } 2942 2943 static u_int8_t 2944 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2945 { 2946 int hlen; 2947 u_int8_t hdr[60]; 2948 u_int8_t *opt, optlen; 2949 u_int8_t wscale = 0; 2950 2951 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2952 if (hlen <= sizeof(struct tcphdr)) 2953 return (0); 2954 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2955 return (0); 2956 opt = hdr + sizeof(struct tcphdr); 2957 hlen -= sizeof(struct tcphdr); 2958 while (hlen >= 3) { 2959 switch (*opt) { 2960 case TCPOPT_EOL: 2961 case TCPOPT_NOP: 2962 ++opt; 2963 --hlen; 2964 break; 2965 case TCPOPT_WINDOW: 2966 wscale = opt[2]; 2967 if (wscale > TCP_MAX_WINSHIFT) 2968 wscale = TCP_MAX_WINSHIFT; 2969 wscale |= PF_WSCALE_FLAG; 2970 /* FALLTHROUGH */ 2971 default: 2972 optlen = opt[1]; 2973 if (optlen < 2) 2974 optlen = 2; 2975 hlen -= optlen; 2976 opt += optlen; 2977 break; 2978 } 2979 } 2980 return (wscale); 2981 } 2982 2983 static u_int16_t 2984 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2985 { 2986 int hlen; 2987 u_int8_t hdr[60]; 2988 u_int8_t *opt, optlen; 2989 u_int16_t mss = V_tcp_mssdflt; 2990 2991 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2992 if (hlen <= sizeof(struct tcphdr)) 2993 return (0); 2994 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2995 return (0); 2996 opt = hdr + sizeof(struct tcphdr); 2997 hlen -= sizeof(struct tcphdr); 2998 while (hlen >= TCPOLEN_MAXSEG) { 2999 switch (*opt) { 3000 case TCPOPT_EOL: 3001 case TCPOPT_NOP: 3002 ++opt; 3003 --hlen; 3004 break; 3005 case TCPOPT_MAXSEG: 3006 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3007 NTOHS(mss); 3008 /* FALLTHROUGH */ 3009 default: 3010 optlen = opt[1]; 3011 if (optlen < 2) 3012 optlen = 2; 3013 hlen -= optlen; 3014 opt += optlen; 3015 break; 3016 } 3017 } 3018 return (mss); 3019 } 3020 3021 static u_int16_t 3022 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3023 { 3024 #ifdef INET 3025 struct sockaddr_in *dst; 3026 struct route ro; 3027 #endif /* INET */ 3028 #ifdef INET6 3029 struct sockaddr_in6 *dst6; 3030 struct route_in6 ro6; 3031 #endif /* INET6 */ 3032 struct rtentry *rt = NULL; 3033 int hlen = 0; 3034 u_int16_t mss = V_tcp_mssdflt; 3035 3036 switch (af) { 3037 #ifdef INET 3038 case AF_INET: 3039 hlen = sizeof(struct ip); 3040 bzero(&ro, sizeof(ro)); 3041 dst = (struct sockaddr_in *)&ro.ro_dst; 3042 dst->sin_family = AF_INET; 3043 dst->sin_len = sizeof(*dst); 3044 dst->sin_addr = addr->v4; 3045 in_rtalloc_ign(&ro, 0, rtableid); 3046 rt = ro.ro_rt; 3047 break; 3048 #endif /* INET */ 3049 #ifdef INET6 3050 case AF_INET6: 3051 hlen = sizeof(struct ip6_hdr); 3052 bzero(&ro6, sizeof(ro6)); 3053 dst6 = (struct sockaddr_in6 *)&ro6.ro_dst; 3054 dst6->sin6_family = AF_INET6; 3055 dst6->sin6_len = sizeof(*dst6); 3056 dst6->sin6_addr = addr->v6; 3057 in6_rtalloc_ign(&ro6, 0, rtableid); 3058 rt = ro6.ro_rt; 3059 break; 3060 #endif /* INET6 */ 3061 } 3062 3063 if (rt && rt->rt_ifp) { 3064 mss = rt->rt_ifp->if_mtu - hlen - sizeof(struct tcphdr); 3065 mss = max(V_tcp_mssdflt, mss); 3066 RTFREE(rt); 3067 } 3068 mss = min(mss, offer); 3069 mss = max(mss, 64); /* sanity - at least max opt space */ 3070 return (mss); 3071 } 3072 3073 static void 3074 pf_set_rt_ifp(struct pf_state *s, struct pf_addr *saddr) 3075 { 3076 struct pf_rule *r = s->rule.ptr; 3077 struct pf_src_node *sn = NULL; 3078 3079 s->rt_kif = NULL; 3080 if (!r->rt || r->rt == PF_FASTROUTE) 3081 return; 3082 switch (s->key[PF_SK_WIRE]->af) { 3083 #ifdef INET 3084 case AF_INET: 3085 pf_map_addr(AF_INET, r, saddr, &s->rt_addr, NULL, &sn); 3086 s->rt_kif = r->rpool.cur->kif; 3087 break; 3088 #endif /* INET */ 3089 #ifdef INET6 3090 case AF_INET6: 3091 pf_map_addr(AF_INET6, r, saddr, &s->rt_addr, NULL, &sn); 3092 s->rt_kif = r->rpool.cur->kif; 3093 break; 3094 #endif /* INET6 */ 3095 } 3096 } 3097 3098 static u_int32_t 3099 pf_tcp_iss(struct pf_pdesc *pd) 3100 { 3101 MD5_CTX ctx; 3102 u_int32_t digest[4]; 3103 3104 if (V_pf_tcp_secret_init == 0) { 3105 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3106 MD5Init(&V_pf_tcp_secret_ctx); 3107 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3108 sizeof(V_pf_tcp_secret)); 3109 V_pf_tcp_secret_init = 1; 3110 } 3111 3112 ctx = V_pf_tcp_secret_ctx; 3113 3114 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3115 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3116 if (pd->af == AF_INET6) { 3117 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3118 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3119 } else { 3120 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3121 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3122 } 3123 MD5Final((u_char *)digest, &ctx); 3124 V_pf_tcp_iss_off += 4096; 3125 #define ISN_RANDOM_INCREMENT (4096 - 1) 3126 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3127 V_pf_tcp_iss_off); 3128 #undef ISN_RANDOM_INCREMENT 3129 } 3130 3131 static int 3132 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3133 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3134 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3135 { 3136 struct pf_rule *nr = NULL; 3137 struct pf_addr * const saddr = pd->src; 3138 struct pf_addr * const daddr = pd->dst; 3139 sa_family_t af = pd->af; 3140 struct pf_rule *r, *a = NULL; 3141 struct pf_ruleset *ruleset = NULL; 3142 struct pf_src_node *nsn = NULL; 3143 struct tcphdr *th = pd->hdr.tcp; 3144 struct pf_state_key *sk = NULL, *nk = NULL; 3145 u_short reason; 3146 int rewrite = 0, hdrlen = 0; 3147 int tag = -1, rtableid = -1; 3148 int asd = 0; 3149 int match = 0; 3150 int state_icmp = 0, icmp_dir, multi; 3151 uint16_t sport = 0 , dport = 0, virtual_type = 0, virtual_id = 0; 3152 u_int16_t bproto_sum = 0, bip_sum = 0; 3153 u_int8_t icmptype = 0, icmpcode = 0; 3154 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3155 3156 PF_RULES_RASSERT(); 3157 3158 if (inp != NULL) { 3159 INP_LOCK_ASSERT(inp); 3160 pd->lookup.uid = inp->inp_cred->cr_uid; 3161 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3162 pd->lookup.done = 1; 3163 } 3164 3165 switch (pd->proto) { 3166 case IPPROTO_TCP: 3167 sport = th->th_sport; 3168 dport = th->th_dport; 3169 hdrlen = sizeof(*th); 3170 break; 3171 case IPPROTO_UDP: 3172 sport = pd->hdr.udp->uh_sport; 3173 dport = pd->hdr.udp->uh_dport; 3174 hdrlen = sizeof(*pd->hdr.udp); 3175 break; 3176 #ifdef INET 3177 case IPPROTO_ICMP: 3178 if (pd->af != AF_INET) 3179 break; 3180 hdrlen = sizeof(*pd->hdr.icmp); 3181 icmptype = pd->hdr.icmp->icmp_type; 3182 icmpcode = pd->hdr.icmp->icmp_code; 3183 3184 state_icmp = pf_icmp_mapping(pd, icmptype, 3185 &icmp_dir, &multi, &virtual_id, &virtual_type); 3186 if (icmp_dir == PF_IN) { 3187 sport = virtual_id; 3188 dport = virtual_type; 3189 } else { 3190 sport = virtual_type; 3191 dport = virtual_id; 3192 } 3193 break; 3194 #endif /* INET */ 3195 #ifdef INET6 3196 case IPPROTO_ICMPV6: 3197 if (af != AF_INET6) 3198 break; 3199 hdrlen = sizeof(*pd->hdr.icmp6); 3200 icmptype = pd->hdr.icmp6->icmp6_type; 3201 icmpcode = pd->hdr.icmp6->icmp6_code; 3202 3203 state_icmp = pf_icmp_mapping(pd, icmptype, 3204 &icmp_dir, &multi, &virtual_id, &virtual_type); 3205 if (icmp_dir == PF_IN) { 3206 sport = virtual_id; 3207 dport = virtual_type; 3208 } else { 3209 sport = virtual_type; 3210 dport = virtual_id; 3211 } 3212 break; 3213 #endif /* INET6 */ 3214 default: 3215 sport = dport = hdrlen = 0; 3216 break; 3217 } 3218 3219 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3220 3221 /* check packet for BINAT/NAT/RDR */ 3222 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3223 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3224 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3225 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3226 3227 if (pd->ip_sum) 3228 bip_sum = *pd->ip_sum; 3229 3230 switch (pd->proto) { 3231 case IPPROTO_TCP: 3232 bproto_sum = th->th_sum; 3233 pd->proto_sum = &th->th_sum; 3234 3235 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3236 nk->port[pd->sidx] != sport) { 3237 pf_change_ap(saddr, &th->th_sport, pd->ip_sum, 3238 &th->th_sum, &nk->addr[pd->sidx], 3239 nk->port[pd->sidx], 0, af); 3240 pd->sport = &th->th_sport; 3241 sport = th->th_sport; 3242 } 3243 3244 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3245 nk->port[pd->didx] != dport) { 3246 pf_change_ap(daddr, &th->th_dport, pd->ip_sum, 3247 &th->th_sum, &nk->addr[pd->didx], 3248 nk->port[pd->didx], 0, af); 3249 dport = th->th_dport; 3250 pd->dport = &th->th_dport; 3251 } 3252 rewrite++; 3253 break; 3254 case IPPROTO_UDP: 3255 bproto_sum = pd->hdr.udp->uh_sum; 3256 pd->proto_sum = &pd->hdr.udp->uh_sum; 3257 3258 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3259 nk->port[pd->sidx] != sport) { 3260 pf_change_ap(saddr, &pd->hdr.udp->uh_sport, 3261 pd->ip_sum, &pd->hdr.udp->uh_sum, 3262 &nk->addr[pd->sidx], 3263 nk->port[pd->sidx], 1, af); 3264 sport = pd->hdr.udp->uh_sport; 3265 pd->sport = &pd->hdr.udp->uh_sport; 3266 } 3267 3268 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3269 nk->port[pd->didx] != dport) { 3270 pf_change_ap(daddr, &pd->hdr.udp->uh_dport, 3271 pd->ip_sum, &pd->hdr.udp->uh_sum, 3272 &nk->addr[pd->didx], 3273 nk->port[pd->didx], 1, af); 3274 dport = pd->hdr.udp->uh_dport; 3275 pd->dport = &pd->hdr.udp->uh_dport; 3276 } 3277 rewrite++; 3278 break; 3279 #ifdef INET 3280 case IPPROTO_ICMP: 3281 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3282 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3283 nk->addr[pd->sidx].v4.s_addr, 0); 3284 3285 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3286 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3287 nk->addr[pd->didx].v4.s_addr, 0); 3288 3289 if (virtual_type == ICMP_ECHO && 3290 nk->port[pd->sidx] != pd->hdr.icmp->icmp_id) { 3291 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3292 pd->hdr.icmp->icmp_cksum, sport, 3293 nk->port[pd->sidx], 0); 3294 pd->hdr.icmp->icmp_id = nk->port[pd->sidx]; 3295 pd->sport = &pd->hdr.icmp->icmp_id; 3296 } 3297 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3298 break; 3299 #endif /* INET */ 3300 #ifdef INET6 3301 case IPPROTO_ICMPV6: 3302 nk->port[0] = nk->port[1]; 3303 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3304 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3305 &nk->addr[pd->sidx], 0); 3306 3307 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3308 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3309 &nk->addr[pd->didx], 0); 3310 rewrite++; 3311 break; 3312 #endif /* INET */ 3313 default: 3314 switch (af) { 3315 #ifdef INET 3316 case AF_INET: 3317 if (PF_ANEQ(saddr, 3318 &nk->addr[pd->sidx], AF_INET)) 3319 pf_change_a(&saddr->v4.s_addr, 3320 pd->ip_sum, 3321 nk->addr[pd->sidx].v4.s_addr, 0); 3322 3323 if (PF_ANEQ(daddr, 3324 &nk->addr[pd->didx], AF_INET)) 3325 pf_change_a(&daddr->v4.s_addr, 3326 pd->ip_sum, 3327 nk->addr[pd->didx].v4.s_addr, 0); 3328 break; 3329 #endif /* INET */ 3330 #ifdef INET6 3331 case AF_INET6: 3332 if (PF_ANEQ(saddr, 3333 &nk->addr[pd->sidx], AF_INET6)) 3334 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3335 3336 if (PF_ANEQ(daddr, 3337 &nk->addr[pd->didx], AF_INET6)) 3338 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3339 break; 3340 #endif /* INET */ 3341 } 3342 break; 3343 } 3344 if (nr->natpass) 3345 r = NULL; 3346 pd->nat_rule = nr; 3347 } 3348 3349 while (r != NULL) { 3350 r->evaluations++; 3351 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3352 r = r->skip[PF_SKIP_IFP].ptr; 3353 else if (r->direction && r->direction != direction) 3354 r = r->skip[PF_SKIP_DIR].ptr; 3355 else if (r->af && r->af != af) 3356 r = r->skip[PF_SKIP_AF].ptr; 3357 else if (r->proto && r->proto != pd->proto) 3358 r = r->skip[PF_SKIP_PROTO].ptr; 3359 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3360 r->src.neg, kif, M_GETFIB(m))) 3361 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3362 /* tcp/udp only. port_op always 0 in other cases */ 3363 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3364 r->src.port[0], r->src.port[1], sport)) 3365 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3366 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3367 r->dst.neg, NULL, M_GETFIB(m))) 3368 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3369 /* tcp/udp only. port_op always 0 in other cases */ 3370 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3371 r->dst.port[0], r->dst.port[1], dport)) 3372 r = r->skip[PF_SKIP_DST_PORT].ptr; 3373 /* icmp only. type always 0 in other cases */ 3374 else if (r->type && r->type != icmptype + 1) 3375 r = TAILQ_NEXT(r, entries); 3376 /* icmp only. type always 0 in other cases */ 3377 else if (r->code && r->code != icmpcode + 1) 3378 r = TAILQ_NEXT(r, entries); 3379 else if (r->tos && !(r->tos == pd->tos)) 3380 r = TAILQ_NEXT(r, entries); 3381 else if (r->rule_flag & PFRULE_FRAGMENT) 3382 r = TAILQ_NEXT(r, entries); 3383 else if (pd->proto == IPPROTO_TCP && 3384 (r->flagset & th->th_flags) != r->flags) 3385 r = TAILQ_NEXT(r, entries); 3386 /* tcp/udp only. uid.op always 0 in other cases */ 3387 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3388 pf_socket_lookup(direction, pd, m), 1)) && 3389 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3390 pd->lookup.uid)) 3391 r = TAILQ_NEXT(r, entries); 3392 /* tcp/udp only. gid.op always 0 in other cases */ 3393 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3394 pf_socket_lookup(direction, pd, m), 1)) && 3395 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3396 pd->lookup.gid)) 3397 r = TAILQ_NEXT(r, entries); 3398 else if (r->prob && 3399 r->prob <= arc4random()) 3400 r = TAILQ_NEXT(r, entries); 3401 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3402 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3403 r = TAILQ_NEXT(r, entries); 3404 else if (r->os_fingerprint != PF_OSFP_ANY && 3405 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3406 pf_osfp_fingerprint(pd, m, off, th), 3407 r->os_fingerprint))) 3408 r = TAILQ_NEXT(r, entries); 3409 else { 3410 if (r->tag) 3411 tag = r->tag; 3412 if (r->rtableid >= 0) 3413 rtableid = r->rtableid; 3414 if (r->anchor == NULL) { 3415 match = 1; 3416 *rm = r; 3417 *am = a; 3418 *rsm = ruleset; 3419 if ((*rm)->quick) 3420 break; 3421 r = TAILQ_NEXT(r, entries); 3422 } else 3423 pf_step_into_anchor(anchor_stack, &asd, 3424 &ruleset, PF_RULESET_FILTER, &r, &a, 3425 &match); 3426 } 3427 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3428 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3429 break; 3430 } 3431 r = *rm; 3432 a = *am; 3433 ruleset = *rsm; 3434 3435 REASON_SET(&reason, PFRES_MATCH); 3436 3437 if (r->log || (nr != NULL && nr->log)) { 3438 if (rewrite) 3439 m_copyback(m, off, hdrlen, pd->hdr.any); 3440 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3441 ruleset, pd, 1); 3442 } 3443 3444 if ((r->action == PF_DROP) && 3445 ((r->rule_flag & PFRULE_RETURNRST) || 3446 (r->rule_flag & PFRULE_RETURNICMP) || 3447 (r->rule_flag & PFRULE_RETURN))) { 3448 /* undo NAT changes, if they have taken place */ 3449 if (nr != NULL) { 3450 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3451 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3452 if (pd->sport) 3453 *pd->sport = sk->port[pd->sidx]; 3454 if (pd->dport) 3455 *pd->dport = sk->port[pd->didx]; 3456 if (pd->proto_sum) 3457 *pd->proto_sum = bproto_sum; 3458 if (pd->ip_sum) 3459 *pd->ip_sum = bip_sum; 3460 m_copyback(m, off, hdrlen, pd->hdr.any); 3461 } 3462 if (pd->proto == IPPROTO_TCP && 3463 ((r->rule_flag & PFRULE_RETURNRST) || 3464 (r->rule_flag & PFRULE_RETURN)) && 3465 !(th->th_flags & TH_RST)) { 3466 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3467 int len = 0; 3468 #ifdef INET 3469 struct ip *h4; 3470 #endif 3471 #ifdef INET6 3472 struct ip6_hdr *h6; 3473 #endif 3474 3475 switch (af) { 3476 #ifdef INET 3477 case AF_INET: 3478 h4 = mtod(m, struct ip *); 3479 len = ntohs(h4->ip_len) - off; 3480 break; 3481 #endif 3482 #ifdef INET6 3483 case AF_INET6: 3484 h6 = mtod(m, struct ip6_hdr *); 3485 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3486 break; 3487 #endif 3488 } 3489 3490 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3491 REASON_SET(&reason, PFRES_PROTCKSUM); 3492 else { 3493 if (th->th_flags & TH_SYN) 3494 ack++; 3495 if (th->th_flags & TH_FIN) 3496 ack++; 3497 pf_send_tcp(m, r, af, pd->dst, 3498 pd->src, th->th_dport, th->th_sport, 3499 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3500 r->return_ttl, 1, 0, kif->pfik_ifp); 3501 } 3502 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3503 r->return_icmp) 3504 pf_send_icmp(m, r->return_icmp >> 8, 3505 r->return_icmp & 255, af, r); 3506 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3507 r->return_icmp6) 3508 pf_send_icmp(m, r->return_icmp6 >> 8, 3509 r->return_icmp6 & 255, af, r); 3510 } 3511 3512 if (r->action == PF_DROP) 3513 goto cleanup; 3514 3515 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3516 REASON_SET(&reason, PFRES_MEMORY); 3517 goto cleanup; 3518 } 3519 if (rtableid >= 0) 3520 M_SETFIB(m, rtableid); 3521 3522 if (!state_icmp && (r->keep_state || nr != NULL || 3523 (pd->flags & PFDESC_TCP_NORM))) { 3524 int action; 3525 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3526 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3527 hdrlen); 3528 if (action != PF_PASS) 3529 return (action); 3530 } else { 3531 if (sk != NULL) 3532 uma_zfree(V_pf_state_key_z, sk); 3533 if (nk != NULL) 3534 uma_zfree(V_pf_state_key_z, nk); 3535 } 3536 3537 /* copy back packet headers if we performed NAT operations */ 3538 if (rewrite) 3539 m_copyback(m, off, hdrlen, pd->hdr.any); 3540 3541 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3542 direction == PF_OUT && 3543 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3544 /* 3545 * We want the state created, but we dont 3546 * want to send this in case a partner 3547 * firewall has to know about it to allow 3548 * replies through it. 3549 */ 3550 return (PF_DEFER); 3551 3552 return (PF_PASS); 3553 3554 cleanup: 3555 if (sk != NULL) 3556 uma_zfree(V_pf_state_key_z, sk); 3557 if (nk != NULL) 3558 uma_zfree(V_pf_state_key_z, nk); 3559 return (PF_DROP); 3560 } 3561 3562 static int 3563 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3564 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3565 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3566 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3567 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3568 { 3569 struct pf_state *s = NULL; 3570 struct pf_src_node *sn = NULL; 3571 struct tcphdr *th = pd->hdr.tcp; 3572 u_int16_t mss = V_tcp_mssdflt; 3573 u_short reason; 3574 3575 /* check maximums */ 3576 if (r->max_states && (r->states_cur >= r->max_states)) { 3577 V_pf_status.lcounters[LCNT_STATES]++; 3578 REASON_SET(&reason, PFRES_MAXSTATES); 3579 return (PF_DROP); 3580 } 3581 /* src node for filter rule */ 3582 if ((r->rule_flag & PFRULE_SRCTRACK || 3583 r->rpool.opts & PF_POOL_STICKYADDR) && 3584 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3585 REASON_SET(&reason, PFRES_SRCLIMIT); 3586 goto csfailed; 3587 } 3588 /* src node for translation rule */ 3589 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3590 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3591 REASON_SET(&reason, PFRES_SRCLIMIT); 3592 goto csfailed; 3593 } 3594 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3595 if (s == NULL) { 3596 REASON_SET(&reason, PFRES_MEMORY); 3597 goto csfailed; 3598 } 3599 s->rule.ptr = r; 3600 s->nat_rule.ptr = nr; 3601 s->anchor.ptr = a; 3602 STATE_INC_COUNTERS(s); 3603 if (r->allow_opts) 3604 s->state_flags |= PFSTATE_ALLOWOPTS; 3605 if (r->rule_flag & PFRULE_STATESLOPPY) 3606 s->state_flags |= PFSTATE_SLOPPY; 3607 s->log = r->log & PF_LOG_ALL; 3608 s->sync_state = PFSYNC_S_NONE; 3609 if (nr != NULL) 3610 s->log |= nr->log & PF_LOG_ALL; 3611 switch (pd->proto) { 3612 case IPPROTO_TCP: 3613 s->src.seqlo = ntohl(th->th_seq); 3614 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3615 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3616 r->keep_state == PF_STATE_MODULATE) { 3617 /* Generate sequence number modulator */ 3618 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3619 0) 3620 s->src.seqdiff = 1; 3621 pf_change_a(&th->th_seq, &th->th_sum, 3622 htonl(s->src.seqlo + s->src.seqdiff), 0); 3623 *rewrite = 1; 3624 } else 3625 s->src.seqdiff = 0; 3626 if (th->th_flags & TH_SYN) { 3627 s->src.seqhi++; 3628 s->src.wscale = pf_get_wscale(m, off, 3629 th->th_off, pd->af); 3630 } 3631 s->src.max_win = MAX(ntohs(th->th_win), 1); 3632 if (s->src.wscale & PF_WSCALE_MASK) { 3633 /* Remove scale factor from initial window */ 3634 int win = s->src.max_win; 3635 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3636 s->src.max_win = (win - 1) >> 3637 (s->src.wscale & PF_WSCALE_MASK); 3638 } 3639 if (th->th_flags & TH_FIN) 3640 s->src.seqhi++; 3641 s->dst.seqhi = 1; 3642 s->dst.max_win = 1; 3643 s->src.state = TCPS_SYN_SENT; 3644 s->dst.state = TCPS_CLOSED; 3645 s->timeout = PFTM_TCP_FIRST_PACKET; 3646 break; 3647 case IPPROTO_UDP: 3648 s->src.state = PFUDPS_SINGLE; 3649 s->dst.state = PFUDPS_NO_TRAFFIC; 3650 s->timeout = PFTM_UDP_FIRST_PACKET; 3651 break; 3652 case IPPROTO_ICMP: 3653 #ifdef INET6 3654 case IPPROTO_ICMPV6: 3655 #endif 3656 s->timeout = PFTM_ICMP_FIRST_PACKET; 3657 break; 3658 default: 3659 s->src.state = PFOTHERS_SINGLE; 3660 s->dst.state = PFOTHERS_NO_TRAFFIC; 3661 s->timeout = PFTM_OTHER_FIRST_PACKET; 3662 } 3663 3664 s->creation = time_uptime; 3665 s->expire = time_uptime; 3666 3667 if (sn != NULL) { 3668 s->src_node = sn; 3669 s->src_node->states++; 3670 } 3671 if (nsn != NULL) { 3672 /* XXX We only modify one side for now. */ 3673 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3674 s->nat_src_node = nsn; 3675 s->nat_src_node->states++; 3676 } 3677 if (pd->proto == IPPROTO_TCP) { 3678 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3679 off, pd, th, &s->src, &s->dst)) { 3680 REASON_SET(&reason, PFRES_MEMORY); 3681 pf_src_tree_remove_state(s); 3682 STATE_DEC_COUNTERS(s); 3683 uma_zfree(V_pf_state_z, s); 3684 return (PF_DROP); 3685 } 3686 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3687 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3688 &s->src, &s->dst, rewrite)) { 3689 /* This really shouldn't happen!!! */ 3690 DPFPRINTF(PF_DEBUG_URGENT, 3691 ("pf_normalize_tcp_stateful failed on first pkt")); 3692 pf_normalize_tcp_cleanup(s); 3693 pf_src_tree_remove_state(s); 3694 STATE_DEC_COUNTERS(s); 3695 uma_zfree(V_pf_state_z, s); 3696 return (PF_DROP); 3697 } 3698 } 3699 s->direction = pd->dir; 3700 3701 /* 3702 * sk/nk could already been setup by pf_get_translation(). 3703 */ 3704 if (nr == NULL) { 3705 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3706 __func__, nr, sk, nk)); 3707 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3708 if (sk == NULL) 3709 goto csfailed; 3710 nk = sk; 3711 } else 3712 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3713 __func__, nr, sk, nk)); 3714 3715 /* Swap sk/nk for PF_OUT. */ 3716 if (pf_state_insert(BOUND_IFACE(r, kif), 3717 (pd->dir == PF_IN) ? sk : nk, 3718 (pd->dir == PF_IN) ? nk : sk, s)) { 3719 if (pd->proto == IPPROTO_TCP) 3720 pf_normalize_tcp_cleanup(s); 3721 REASON_SET(&reason, PFRES_STATEINS); 3722 pf_src_tree_remove_state(s); 3723 STATE_DEC_COUNTERS(s); 3724 uma_zfree(V_pf_state_z, s); 3725 return (PF_DROP); 3726 } else 3727 *sm = s; 3728 3729 pf_set_rt_ifp(s, pd->src); /* needs s->state_key set */ 3730 if (tag > 0) 3731 s->tag = tag; 3732 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3733 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3734 s->src.state = PF_TCPS_PROXY_SRC; 3735 /* undo NAT changes, if they have taken place */ 3736 if (nr != NULL) { 3737 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3738 if (pd->dir == PF_OUT) 3739 skt = s->key[PF_SK_STACK]; 3740 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3741 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3742 if (pd->sport) 3743 *pd->sport = skt->port[pd->sidx]; 3744 if (pd->dport) 3745 *pd->dport = skt->port[pd->didx]; 3746 if (pd->proto_sum) 3747 *pd->proto_sum = bproto_sum; 3748 if (pd->ip_sum) 3749 *pd->ip_sum = bip_sum; 3750 m_copyback(m, off, hdrlen, pd->hdr.any); 3751 } 3752 s->src.seqhi = htonl(arc4random()); 3753 /* Find mss option */ 3754 int rtid = M_GETFIB(m); 3755 mss = pf_get_mss(m, off, th->th_off, pd->af); 3756 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3757 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3758 s->src.mss = mss; 3759 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3760 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3761 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3762 REASON_SET(&reason, PFRES_SYNPROXY); 3763 return (PF_SYNPROXY_DROP); 3764 } 3765 3766 return (PF_PASS); 3767 3768 csfailed: 3769 if (sk != NULL) 3770 uma_zfree(V_pf_state_key_z, sk); 3771 if (nk != NULL) 3772 uma_zfree(V_pf_state_key_z, nk); 3773 3774 if (sn != NULL && sn->states == 0 && sn->expire == 0) 3775 pf_remove_src_node(sn); 3776 3777 if (nsn != sn && nsn != NULL && nsn->states == 0 && nsn->expire == 0) 3778 pf_remove_src_node(nsn); 3779 3780 return (PF_DROP); 3781 } 3782 3783 static int 3784 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3785 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3786 struct pf_ruleset **rsm) 3787 { 3788 struct pf_rule *r, *a = NULL; 3789 struct pf_ruleset *ruleset = NULL; 3790 sa_family_t af = pd->af; 3791 u_short reason; 3792 int tag = -1; 3793 int asd = 0; 3794 int match = 0; 3795 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3796 3797 PF_RULES_RASSERT(); 3798 3799 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3800 while (r != NULL) { 3801 r->evaluations++; 3802 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3803 r = r->skip[PF_SKIP_IFP].ptr; 3804 else if (r->direction && r->direction != direction) 3805 r = r->skip[PF_SKIP_DIR].ptr; 3806 else if (r->af && r->af != af) 3807 r = r->skip[PF_SKIP_AF].ptr; 3808 else if (r->proto && r->proto != pd->proto) 3809 r = r->skip[PF_SKIP_PROTO].ptr; 3810 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3811 r->src.neg, kif, M_GETFIB(m))) 3812 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3813 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3814 r->dst.neg, NULL, M_GETFIB(m))) 3815 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3816 else if (r->tos && !(r->tos == pd->tos)) 3817 r = TAILQ_NEXT(r, entries); 3818 else if (r->os_fingerprint != PF_OSFP_ANY) 3819 r = TAILQ_NEXT(r, entries); 3820 else if (pd->proto == IPPROTO_UDP && 3821 (r->src.port_op || r->dst.port_op)) 3822 r = TAILQ_NEXT(r, entries); 3823 else if (pd->proto == IPPROTO_TCP && 3824 (r->src.port_op || r->dst.port_op || r->flagset)) 3825 r = TAILQ_NEXT(r, entries); 3826 else if ((pd->proto == IPPROTO_ICMP || 3827 pd->proto == IPPROTO_ICMPV6) && 3828 (r->type || r->code)) 3829 r = TAILQ_NEXT(r, entries); 3830 else if (r->prob && r->prob <= 3831 (arc4random() % (UINT_MAX - 1) + 1)) 3832 r = TAILQ_NEXT(r, entries); 3833 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3834 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3835 r = TAILQ_NEXT(r, entries); 3836 else { 3837 if (r->anchor == NULL) { 3838 match = 1; 3839 *rm = r; 3840 *am = a; 3841 *rsm = ruleset; 3842 if ((*rm)->quick) 3843 break; 3844 r = TAILQ_NEXT(r, entries); 3845 } else 3846 pf_step_into_anchor(anchor_stack, &asd, 3847 &ruleset, PF_RULESET_FILTER, &r, &a, 3848 &match); 3849 } 3850 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3851 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3852 break; 3853 } 3854 r = *rm; 3855 a = *am; 3856 ruleset = *rsm; 3857 3858 REASON_SET(&reason, PFRES_MATCH); 3859 3860 if (r->log) 3861 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3862 1); 3863 3864 if (r->action != PF_PASS) 3865 return (PF_DROP); 3866 3867 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3868 REASON_SET(&reason, PFRES_MEMORY); 3869 return (PF_DROP); 3870 } 3871 3872 return (PF_PASS); 3873 } 3874 3875 static int 3876 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3877 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3878 struct pf_pdesc *pd, u_short *reason, int *copyback) 3879 { 3880 struct tcphdr *th = pd->hdr.tcp; 3881 u_int16_t win = ntohs(th->th_win); 3882 u_int32_t ack, end, seq, orig_seq; 3883 u_int8_t sws, dws; 3884 int ackskew; 3885 3886 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3887 sws = src->wscale & PF_WSCALE_MASK; 3888 dws = dst->wscale & PF_WSCALE_MASK; 3889 } else 3890 sws = dws = 0; 3891 3892 /* 3893 * Sequence tracking algorithm from Guido van Rooij's paper: 3894 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3895 * tcp_filtering.ps 3896 */ 3897 3898 orig_seq = seq = ntohl(th->th_seq); 3899 if (src->seqlo == 0) { 3900 /* First packet from this end. Set its state */ 3901 3902 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3903 src->scrub == NULL) { 3904 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3905 REASON_SET(reason, PFRES_MEMORY); 3906 return (PF_DROP); 3907 } 3908 } 3909 3910 /* Deferred generation of sequence number modulator */ 3911 if (dst->seqdiff && !src->seqdiff) { 3912 /* use random iss for the TCP server */ 3913 while ((src->seqdiff = arc4random() - seq) == 0) 3914 ; 3915 ack = ntohl(th->th_ack) - dst->seqdiff; 3916 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3917 src->seqdiff), 0); 3918 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3919 *copyback = 1; 3920 } else { 3921 ack = ntohl(th->th_ack); 3922 } 3923 3924 end = seq + pd->p_len; 3925 if (th->th_flags & TH_SYN) { 3926 end++; 3927 if (dst->wscale & PF_WSCALE_FLAG) { 3928 src->wscale = pf_get_wscale(m, off, th->th_off, 3929 pd->af); 3930 if (src->wscale & PF_WSCALE_FLAG) { 3931 /* Remove scale factor from initial 3932 * window */ 3933 sws = src->wscale & PF_WSCALE_MASK; 3934 win = ((u_int32_t)win + (1 << sws) - 1) 3935 >> sws; 3936 dws = dst->wscale & PF_WSCALE_MASK; 3937 } else { 3938 /* fixup other window */ 3939 dst->max_win <<= dst->wscale & 3940 PF_WSCALE_MASK; 3941 /* in case of a retrans SYN|ACK */ 3942 dst->wscale = 0; 3943 } 3944 } 3945 } 3946 if (th->th_flags & TH_FIN) 3947 end++; 3948 3949 src->seqlo = seq; 3950 if (src->state < TCPS_SYN_SENT) 3951 src->state = TCPS_SYN_SENT; 3952 3953 /* 3954 * May need to slide the window (seqhi may have been set by 3955 * the crappy stack check or if we picked up the connection 3956 * after establishment) 3957 */ 3958 if (src->seqhi == 1 || 3959 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3960 src->seqhi = end + MAX(1, dst->max_win << dws); 3961 if (win > src->max_win) 3962 src->max_win = win; 3963 3964 } else { 3965 ack = ntohl(th->th_ack) - dst->seqdiff; 3966 if (src->seqdiff) { 3967 /* Modulate sequence numbers */ 3968 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3969 src->seqdiff), 0); 3970 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3971 *copyback = 1; 3972 } 3973 end = seq + pd->p_len; 3974 if (th->th_flags & TH_SYN) 3975 end++; 3976 if (th->th_flags & TH_FIN) 3977 end++; 3978 } 3979 3980 if ((th->th_flags & TH_ACK) == 0) { 3981 /* Let it pass through the ack skew check */ 3982 ack = dst->seqlo; 3983 } else if ((ack == 0 && 3984 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 3985 /* broken tcp stacks do not set ack */ 3986 (dst->state < TCPS_SYN_SENT)) { 3987 /* 3988 * Many stacks (ours included) will set the ACK number in an 3989 * FIN|ACK if the SYN times out -- no sequence to ACK. 3990 */ 3991 ack = dst->seqlo; 3992 } 3993 3994 if (seq == end) { 3995 /* Ease sequencing restrictions on no data packets */ 3996 seq = src->seqlo; 3997 end = seq; 3998 } 3999 4000 ackskew = dst->seqlo - ack; 4001 4002 4003 /* 4004 * Need to demodulate the sequence numbers in any TCP SACK options 4005 * (Selective ACK). We could optionally validate the SACK values 4006 * against the current ACK window, either forwards or backwards, but 4007 * I'm not confident that SACK has been implemented properly 4008 * everywhere. It wouldn't surprise me if several stacks accidently 4009 * SACK too far backwards of previously ACKed data. There really aren't 4010 * any security implications of bad SACKing unless the target stack 4011 * doesn't validate the option length correctly. Someone trying to 4012 * spoof into a TCP connection won't bother blindly sending SACK 4013 * options anyway. 4014 */ 4015 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4016 if (pf_modulate_sack(m, off, pd, th, dst)) 4017 *copyback = 1; 4018 } 4019 4020 4021 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4022 if (SEQ_GEQ(src->seqhi, end) && 4023 /* Last octet inside other's window space */ 4024 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4025 /* Retrans: not more than one window back */ 4026 (ackskew >= -MAXACKWINDOW) && 4027 /* Acking not more than one reassembled fragment backwards */ 4028 (ackskew <= (MAXACKWINDOW << sws)) && 4029 /* Acking not more than one window forward */ 4030 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4031 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4032 (pd->flags & PFDESC_IP_REAS) == 0)) { 4033 /* Require an exact/+1 sequence match on resets when possible */ 4034 4035 if (dst->scrub || src->scrub) { 4036 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4037 *state, src, dst, copyback)) 4038 return (PF_DROP); 4039 } 4040 4041 /* update max window */ 4042 if (src->max_win < win) 4043 src->max_win = win; 4044 /* synchronize sequencing */ 4045 if (SEQ_GT(end, src->seqlo)) 4046 src->seqlo = end; 4047 /* slide the window of what the other end can send */ 4048 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4049 dst->seqhi = ack + MAX((win << sws), 1); 4050 4051 4052 /* update states */ 4053 if (th->th_flags & TH_SYN) 4054 if (src->state < TCPS_SYN_SENT) 4055 src->state = TCPS_SYN_SENT; 4056 if (th->th_flags & TH_FIN) 4057 if (src->state < TCPS_CLOSING) 4058 src->state = TCPS_CLOSING; 4059 if (th->th_flags & TH_ACK) { 4060 if (dst->state == TCPS_SYN_SENT) { 4061 dst->state = TCPS_ESTABLISHED; 4062 if (src->state == TCPS_ESTABLISHED && 4063 (*state)->src_node != NULL && 4064 pf_src_connlimit(state)) { 4065 REASON_SET(reason, PFRES_SRCLIMIT); 4066 return (PF_DROP); 4067 } 4068 } else if (dst->state == TCPS_CLOSING) 4069 dst->state = TCPS_FIN_WAIT_2; 4070 } 4071 if (th->th_flags & TH_RST) 4072 src->state = dst->state = TCPS_TIME_WAIT; 4073 4074 /* update expire time */ 4075 (*state)->expire = time_uptime; 4076 if (src->state >= TCPS_FIN_WAIT_2 && 4077 dst->state >= TCPS_FIN_WAIT_2) 4078 (*state)->timeout = PFTM_TCP_CLOSED; 4079 else if (src->state >= TCPS_CLOSING && 4080 dst->state >= TCPS_CLOSING) 4081 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4082 else if (src->state < TCPS_ESTABLISHED || 4083 dst->state < TCPS_ESTABLISHED) 4084 (*state)->timeout = PFTM_TCP_OPENING; 4085 else if (src->state >= TCPS_CLOSING || 4086 dst->state >= TCPS_CLOSING) 4087 (*state)->timeout = PFTM_TCP_CLOSING; 4088 else 4089 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4090 4091 /* Fall through to PASS packet */ 4092 4093 } else if ((dst->state < TCPS_SYN_SENT || 4094 dst->state >= TCPS_FIN_WAIT_2 || 4095 src->state >= TCPS_FIN_WAIT_2) && 4096 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4097 /* Within a window forward of the originating packet */ 4098 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4099 /* Within a window backward of the originating packet */ 4100 4101 /* 4102 * This currently handles three situations: 4103 * 1) Stupid stacks will shotgun SYNs before their peer 4104 * replies. 4105 * 2) When PF catches an already established stream (the 4106 * firewall rebooted, the state table was flushed, routes 4107 * changed...) 4108 * 3) Packets get funky immediately after the connection 4109 * closes (this should catch Solaris spurious ACK|FINs 4110 * that web servers like to spew after a close) 4111 * 4112 * This must be a little more careful than the above code 4113 * since packet floods will also be caught here. We don't 4114 * update the TTL here to mitigate the damage of a packet 4115 * flood and so the same code can handle awkward establishment 4116 * and a loosened connection close. 4117 * In the establishment case, a correct peer response will 4118 * validate the connection, go through the normal state code 4119 * and keep updating the state TTL. 4120 */ 4121 4122 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4123 printf("pf: loose state match: "); 4124 pf_print_state(*state); 4125 pf_print_flags(th->th_flags); 4126 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4127 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4128 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4129 (unsigned long long)(*state)->packets[1], 4130 pd->dir == PF_IN ? "in" : "out", 4131 pd->dir == (*state)->direction ? "fwd" : "rev"); 4132 } 4133 4134 if (dst->scrub || src->scrub) { 4135 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4136 *state, src, dst, copyback)) 4137 return (PF_DROP); 4138 } 4139 4140 /* update max window */ 4141 if (src->max_win < win) 4142 src->max_win = win; 4143 /* synchronize sequencing */ 4144 if (SEQ_GT(end, src->seqlo)) 4145 src->seqlo = end; 4146 /* slide the window of what the other end can send */ 4147 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4148 dst->seqhi = ack + MAX((win << sws), 1); 4149 4150 /* 4151 * Cannot set dst->seqhi here since this could be a shotgunned 4152 * SYN and not an already established connection. 4153 */ 4154 4155 if (th->th_flags & TH_FIN) 4156 if (src->state < TCPS_CLOSING) 4157 src->state = TCPS_CLOSING; 4158 if (th->th_flags & TH_RST) 4159 src->state = dst->state = TCPS_TIME_WAIT; 4160 4161 /* Fall through to PASS packet */ 4162 4163 } else { 4164 if ((*state)->dst.state == TCPS_SYN_SENT && 4165 (*state)->src.state == TCPS_SYN_SENT) { 4166 /* Send RST for state mismatches during handshake */ 4167 if (!(th->th_flags & TH_RST)) 4168 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4169 pd->dst, pd->src, th->th_dport, 4170 th->th_sport, ntohl(th->th_ack), 0, 4171 TH_RST, 0, 0, 4172 (*state)->rule.ptr->return_ttl, 1, 0, 4173 kif->pfik_ifp); 4174 src->seqlo = 0; 4175 src->seqhi = 1; 4176 src->max_win = 1; 4177 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4178 printf("pf: BAD state: "); 4179 pf_print_state(*state); 4180 pf_print_flags(th->th_flags); 4181 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4182 "pkts=%llu:%llu dir=%s,%s\n", 4183 seq, orig_seq, ack, pd->p_len, ackskew, 4184 (unsigned long long)(*state)->packets[0], 4185 (unsigned long long)(*state)->packets[1], 4186 pd->dir == PF_IN ? "in" : "out", 4187 pd->dir == (*state)->direction ? "fwd" : "rev"); 4188 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4189 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4190 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4191 ' ': '2', 4192 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4193 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4194 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4195 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4196 } 4197 REASON_SET(reason, PFRES_BADSTATE); 4198 return (PF_DROP); 4199 } 4200 4201 return (PF_PASS); 4202 } 4203 4204 static int 4205 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4206 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4207 { 4208 struct tcphdr *th = pd->hdr.tcp; 4209 4210 if (th->th_flags & TH_SYN) 4211 if (src->state < TCPS_SYN_SENT) 4212 src->state = TCPS_SYN_SENT; 4213 if (th->th_flags & TH_FIN) 4214 if (src->state < TCPS_CLOSING) 4215 src->state = TCPS_CLOSING; 4216 if (th->th_flags & TH_ACK) { 4217 if (dst->state == TCPS_SYN_SENT) { 4218 dst->state = TCPS_ESTABLISHED; 4219 if (src->state == TCPS_ESTABLISHED && 4220 (*state)->src_node != NULL && 4221 pf_src_connlimit(state)) { 4222 REASON_SET(reason, PFRES_SRCLIMIT); 4223 return (PF_DROP); 4224 } 4225 } else if (dst->state == TCPS_CLOSING) { 4226 dst->state = TCPS_FIN_WAIT_2; 4227 } else if (src->state == TCPS_SYN_SENT && 4228 dst->state < TCPS_SYN_SENT) { 4229 /* 4230 * Handle a special sloppy case where we only see one 4231 * half of the connection. If there is a ACK after 4232 * the initial SYN without ever seeing a packet from 4233 * the destination, set the connection to established. 4234 */ 4235 dst->state = src->state = TCPS_ESTABLISHED; 4236 if ((*state)->src_node != NULL && 4237 pf_src_connlimit(state)) { 4238 REASON_SET(reason, PFRES_SRCLIMIT); 4239 return (PF_DROP); 4240 } 4241 } else if (src->state == TCPS_CLOSING && 4242 dst->state == TCPS_ESTABLISHED && 4243 dst->seqlo == 0) { 4244 /* 4245 * Handle the closing of half connections where we 4246 * don't see the full bidirectional FIN/ACK+ACK 4247 * handshake. 4248 */ 4249 dst->state = TCPS_CLOSING; 4250 } 4251 } 4252 if (th->th_flags & TH_RST) 4253 src->state = dst->state = TCPS_TIME_WAIT; 4254 4255 /* update expire time */ 4256 (*state)->expire = time_uptime; 4257 if (src->state >= TCPS_FIN_WAIT_2 && 4258 dst->state >= TCPS_FIN_WAIT_2) 4259 (*state)->timeout = PFTM_TCP_CLOSED; 4260 else if (src->state >= TCPS_CLOSING && 4261 dst->state >= TCPS_CLOSING) 4262 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4263 else if (src->state < TCPS_ESTABLISHED || 4264 dst->state < TCPS_ESTABLISHED) 4265 (*state)->timeout = PFTM_TCP_OPENING; 4266 else if (src->state >= TCPS_CLOSING || 4267 dst->state >= TCPS_CLOSING) 4268 (*state)->timeout = PFTM_TCP_CLOSING; 4269 else 4270 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4271 4272 return (PF_PASS); 4273 } 4274 4275 static int 4276 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4277 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4278 u_short *reason) 4279 { 4280 struct pf_state_key_cmp key; 4281 struct tcphdr *th = pd->hdr.tcp; 4282 int copyback = 0; 4283 struct pf_state_peer *src, *dst; 4284 struct pf_state_key *sk; 4285 4286 bzero(&key, sizeof(key)); 4287 key.af = pd->af; 4288 key.proto = IPPROTO_TCP; 4289 if (direction == PF_IN) { /* wire side, straight */ 4290 PF_ACPY(&key.addr[0], pd->src, key.af); 4291 PF_ACPY(&key.addr[1], pd->dst, key.af); 4292 key.port[0] = th->th_sport; 4293 key.port[1] = th->th_dport; 4294 } else { /* stack side, reverse */ 4295 PF_ACPY(&key.addr[1], pd->src, key.af); 4296 PF_ACPY(&key.addr[0], pd->dst, key.af); 4297 key.port[1] = th->th_sport; 4298 key.port[0] = th->th_dport; 4299 } 4300 4301 STATE_LOOKUP(kif, &key, direction, *state, pd); 4302 4303 if (direction == (*state)->direction) { 4304 src = &(*state)->src; 4305 dst = &(*state)->dst; 4306 } else { 4307 src = &(*state)->dst; 4308 dst = &(*state)->src; 4309 } 4310 4311 sk = (*state)->key[pd->didx]; 4312 4313 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4314 if (direction != (*state)->direction) { 4315 REASON_SET(reason, PFRES_SYNPROXY); 4316 return (PF_SYNPROXY_DROP); 4317 } 4318 if (th->th_flags & TH_SYN) { 4319 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4320 REASON_SET(reason, PFRES_SYNPROXY); 4321 return (PF_DROP); 4322 } 4323 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4324 pd->src, th->th_dport, th->th_sport, 4325 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4326 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4327 REASON_SET(reason, PFRES_SYNPROXY); 4328 return (PF_SYNPROXY_DROP); 4329 } else if (!(th->th_flags & TH_ACK) || 4330 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4331 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4332 REASON_SET(reason, PFRES_SYNPROXY); 4333 return (PF_DROP); 4334 } else if ((*state)->src_node != NULL && 4335 pf_src_connlimit(state)) { 4336 REASON_SET(reason, PFRES_SRCLIMIT); 4337 return (PF_DROP); 4338 } else 4339 (*state)->src.state = PF_TCPS_PROXY_DST; 4340 } 4341 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4342 if (direction == (*state)->direction) { 4343 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4344 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4345 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4346 REASON_SET(reason, PFRES_SYNPROXY); 4347 return (PF_DROP); 4348 } 4349 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4350 if ((*state)->dst.seqhi == 1) 4351 (*state)->dst.seqhi = htonl(arc4random()); 4352 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4353 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4354 sk->port[pd->sidx], sk->port[pd->didx], 4355 (*state)->dst.seqhi, 0, TH_SYN, 0, 4356 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4357 REASON_SET(reason, PFRES_SYNPROXY); 4358 return (PF_SYNPROXY_DROP); 4359 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4360 (TH_SYN|TH_ACK)) || 4361 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4362 REASON_SET(reason, PFRES_SYNPROXY); 4363 return (PF_DROP); 4364 } else { 4365 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4366 (*state)->dst.seqlo = ntohl(th->th_seq); 4367 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4368 pd->src, th->th_dport, th->th_sport, 4369 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4370 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4371 (*state)->tag, NULL); 4372 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4373 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4374 sk->port[pd->sidx], sk->port[pd->didx], 4375 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4376 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4377 (*state)->src.seqdiff = (*state)->dst.seqhi - 4378 (*state)->src.seqlo; 4379 (*state)->dst.seqdiff = (*state)->src.seqhi - 4380 (*state)->dst.seqlo; 4381 (*state)->src.seqhi = (*state)->src.seqlo + 4382 (*state)->dst.max_win; 4383 (*state)->dst.seqhi = (*state)->dst.seqlo + 4384 (*state)->src.max_win; 4385 (*state)->src.wscale = (*state)->dst.wscale = 0; 4386 (*state)->src.state = (*state)->dst.state = 4387 TCPS_ESTABLISHED; 4388 REASON_SET(reason, PFRES_SYNPROXY); 4389 return (PF_SYNPROXY_DROP); 4390 } 4391 } 4392 4393 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4394 dst->state >= TCPS_FIN_WAIT_2 && 4395 src->state >= TCPS_FIN_WAIT_2) { 4396 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4397 printf("pf: state reuse "); 4398 pf_print_state(*state); 4399 pf_print_flags(th->th_flags); 4400 printf("\n"); 4401 } 4402 /* XXX make sure it's the same direction ?? */ 4403 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4404 pf_unlink_state(*state, PF_ENTER_LOCKED); 4405 *state = NULL; 4406 return (PF_DROP); 4407 } 4408 4409 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4410 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4411 return (PF_DROP); 4412 } else { 4413 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4414 ©back) == PF_DROP) 4415 return (PF_DROP); 4416 } 4417 4418 /* translate source/destination address, if necessary */ 4419 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4420 struct pf_state_key *nk = (*state)->key[pd->didx]; 4421 4422 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4423 nk->port[pd->sidx] != th->th_sport) 4424 pf_change_ap(pd->src, &th->th_sport, pd->ip_sum, 4425 &th->th_sum, &nk->addr[pd->sidx], 4426 nk->port[pd->sidx], 0, pd->af); 4427 4428 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4429 nk->port[pd->didx] != th->th_dport) 4430 pf_change_ap(pd->dst, &th->th_dport, pd->ip_sum, 4431 &th->th_sum, &nk->addr[pd->didx], 4432 nk->port[pd->didx], 0, pd->af); 4433 copyback = 1; 4434 } 4435 4436 /* Copyback sequence modulation or stateful scrub changes if needed */ 4437 if (copyback) 4438 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4439 4440 return (PF_PASS); 4441 } 4442 4443 static int 4444 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4445 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4446 { 4447 struct pf_state_peer *src, *dst; 4448 struct pf_state_key_cmp key; 4449 struct udphdr *uh = pd->hdr.udp; 4450 4451 bzero(&key, sizeof(key)); 4452 key.af = pd->af; 4453 key.proto = IPPROTO_UDP; 4454 if (direction == PF_IN) { /* wire side, straight */ 4455 PF_ACPY(&key.addr[0], pd->src, key.af); 4456 PF_ACPY(&key.addr[1], pd->dst, key.af); 4457 key.port[0] = uh->uh_sport; 4458 key.port[1] = uh->uh_dport; 4459 } else { /* stack side, reverse */ 4460 PF_ACPY(&key.addr[1], pd->src, key.af); 4461 PF_ACPY(&key.addr[0], pd->dst, key.af); 4462 key.port[1] = uh->uh_sport; 4463 key.port[0] = uh->uh_dport; 4464 } 4465 4466 STATE_LOOKUP(kif, &key, direction, *state, pd); 4467 4468 if (direction == (*state)->direction) { 4469 src = &(*state)->src; 4470 dst = &(*state)->dst; 4471 } else { 4472 src = &(*state)->dst; 4473 dst = &(*state)->src; 4474 } 4475 4476 /* update states */ 4477 if (src->state < PFUDPS_SINGLE) 4478 src->state = PFUDPS_SINGLE; 4479 if (dst->state == PFUDPS_SINGLE) 4480 dst->state = PFUDPS_MULTIPLE; 4481 4482 /* update expire time */ 4483 (*state)->expire = time_uptime; 4484 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4485 (*state)->timeout = PFTM_UDP_MULTIPLE; 4486 else 4487 (*state)->timeout = PFTM_UDP_SINGLE; 4488 4489 /* translate source/destination address, if necessary */ 4490 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4491 struct pf_state_key *nk = (*state)->key[pd->didx]; 4492 4493 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4494 nk->port[pd->sidx] != uh->uh_sport) 4495 pf_change_ap(pd->src, &uh->uh_sport, pd->ip_sum, 4496 &uh->uh_sum, &nk->addr[pd->sidx], 4497 nk->port[pd->sidx], 1, pd->af); 4498 4499 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4500 nk->port[pd->didx] != uh->uh_dport) 4501 pf_change_ap(pd->dst, &uh->uh_dport, pd->ip_sum, 4502 &uh->uh_sum, &nk->addr[pd->didx], 4503 nk->port[pd->didx], 1, pd->af); 4504 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4505 } 4506 4507 return (PF_PASS); 4508 } 4509 4510 static int 4511 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd, 4512 struct pf_state **state, struct mbuf *m, int direction, struct pfi_kif *kif, 4513 uint16_t icmpid, uint16_t type, int icmp_dir, int *iidx, int multi) 4514 { 4515 4516 key->af = pd->af; 4517 key->proto = pd->proto; 4518 if (icmp_dir == PF_IN) { 4519 *iidx = pd->sidx; 4520 key->port[pd->sidx] = icmpid; 4521 key->port[pd->didx] = type; 4522 } else { 4523 *iidx = pd->didx; 4524 key->port[pd->sidx] = type; 4525 key->port[pd->didx] = icmpid; 4526 } 4527 #ifdef INET6 4528 if (pd->af == AF_INET6 && multi != PF_ICMP_MULTI_NONE) { 4529 switch (multi) { 4530 case PF_ICMP_MULTI_SOLICITED: 4531 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL; 4532 key->addr[pd->sidx].addr32[1] = 0; 4533 key->addr[pd->sidx].addr32[2] = IPV6_ADDR_INT32_ONE; 4534 key->addr[pd->sidx].addr32[3] = pd->src->addr32[3]; 4535 key->addr[pd->sidx].addr8[12] = 0xff; 4536 break; 4537 case PF_ICMP_MULTI_LINK: 4538 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL; 4539 key->addr[pd->sidx].addr32[1] = 0; 4540 key->addr[pd->sidx].addr32[2] = 0; 4541 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE; 4542 break; 4543 } 4544 } else 4545 #endif 4546 PF_ACPY(&key->addr[pd->sidx], pd->src, key->af); 4547 PF_ACPY(&key->addr[pd->didx], pd->dst, key->af); 4548 4549 STATE_LOOKUP(kif, key, direction, *state, pd); 4550 4551 /* Is this ICMP message flowing in right direction? */ 4552 if ((*state)->rule.ptr->type && 4553 (((*state)->direction == direction) ? 4554 PF_IN : PF_OUT) != icmp_dir) { 4555 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4556 printf("pf: icmp type %d in wrong direction (%d): ", 4557 icmp_dir, direction); 4558 pf_print_state(*state); 4559 printf("\n"); 4560 } 4561 return (PF_DROP); 4562 } 4563 return (-1); 4564 } 4565 4566 static int 4567 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4568 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4569 { 4570 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4571 u_int16_t icmpid = 0, *icmpsum, virtual_id, virtual_type; 4572 u_int8_t icmptype; 4573 int icmp_dir, iidx, ret, multi; 4574 struct pf_state_key_cmp key; 4575 4576 bzero(&key, sizeof(key)); 4577 switch (pd->proto) { 4578 #ifdef INET 4579 case IPPROTO_ICMP: 4580 icmptype = pd->hdr.icmp->icmp_type; 4581 icmpid = pd->hdr.icmp->icmp_id; 4582 icmpsum = &pd->hdr.icmp->icmp_cksum; 4583 4584 break; 4585 #endif /* INET */ 4586 #ifdef INET6 4587 case IPPROTO_ICMPV6: 4588 icmptype = pd->hdr.icmp6->icmp6_type; 4589 icmpid = pd->hdr.icmp6->icmp6_id; 4590 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4591 4592 break; 4593 #endif /* INET6 */ 4594 default: 4595 panic("%s: proto %d\n", __func__, pd->proto); 4596 } 4597 4598 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &multi, 4599 &virtual_id, &virtual_type) == 0) { 4600 /* 4601 * ICMP query/reply message not related to a TCP/UDP packet. 4602 * Search for an ICMP state. 4603 */ 4604 ret = pf_icmp_state_lookup(&key, pd, state, m, direction, 4605 kif, virtual_id, virtual_type, icmp_dir, &iidx, 4606 PF_ICMP_MULTI_NONE); 4607 if (ret >= 0) { 4608 if (ret == PF_DROP && pd->af == AF_INET6 && 4609 icmp_dir == PF_OUT) { 4610 if (*state) 4611 PF_STATE_UNLOCK(*state); 4612 ret = pf_icmp_state_lookup(&key, pd, state, m, 4613 direction, kif, virtual_id, virtual_type, 4614 icmp_dir, &iidx, multi); 4615 if (ret >= 0) 4616 return (ret); 4617 } else 4618 return (ret); 4619 } 4620 4621 (*state)->expire = time_uptime; 4622 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4623 4624 /* translate source/destination address, if necessary */ 4625 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4626 struct pf_state_key *nk = (*state)->key[pd->didx]; 4627 4628 switch (pd->af) { 4629 #ifdef INET 4630 case AF_INET: 4631 if (PF_ANEQ(pd->src, 4632 &nk->addr[pd->sidx], AF_INET)) 4633 pf_change_a(&saddr->v4.s_addr, 4634 pd->ip_sum, 4635 nk->addr[pd->sidx].v4.s_addr, 0); 4636 4637 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4638 AF_INET)) 4639 pf_change_a(&daddr->v4.s_addr, 4640 pd->ip_sum, 4641 nk->addr[pd->didx].v4.s_addr, 0); 4642 4643 if (nk->port[iidx] != 4644 pd->hdr.icmp->icmp_id) { 4645 pd->hdr.icmp->icmp_cksum = 4646 pf_cksum_fixup( 4647 pd->hdr.icmp->icmp_cksum, icmpid, 4648 nk->port[iidx], 0); 4649 pd->hdr.icmp->icmp_id = nk->port[iidx]; 4650 } 4651 4652 m_copyback(m, off, ICMP_MINLEN, 4653 (caddr_t )pd->hdr.icmp); 4654 break; 4655 #endif /* INET */ 4656 #ifdef INET6 4657 case AF_INET6: 4658 if (PF_ANEQ(pd->src, 4659 &nk->addr[pd->sidx], AF_INET6)) 4660 pf_change_a6(saddr, 4661 &pd->hdr.icmp6->icmp6_cksum, 4662 &nk->addr[pd->sidx], 0); 4663 4664 if (PF_ANEQ(pd->dst, 4665 &nk->addr[pd->didx], AF_INET6)) 4666 pf_change_a6(daddr, 4667 &pd->hdr.icmp6->icmp6_cksum, 4668 &nk->addr[pd->didx], 0); 4669 4670 m_copyback(m, off, sizeof(struct icmp6_hdr), 4671 (caddr_t )pd->hdr.icmp6); 4672 break; 4673 #endif /* INET6 */ 4674 } 4675 } 4676 return (PF_PASS); 4677 4678 } else { 4679 /* 4680 * ICMP error message in response to a TCP/UDP packet. 4681 * Extract the inner TCP/UDP header and search for that state. 4682 */ 4683 4684 struct pf_pdesc pd2; 4685 bzero(&pd2, sizeof pd2); 4686 #ifdef INET 4687 struct ip h2; 4688 #endif /* INET */ 4689 #ifdef INET6 4690 struct ip6_hdr h2_6; 4691 int terminal = 0; 4692 #endif /* INET6 */ 4693 int ipoff2 = 0; 4694 int off2 = 0; 4695 4696 pd2.af = pd->af; 4697 /* Payload packet is from the opposite direction. */ 4698 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4699 pd2.didx = (direction == PF_IN) ? 0 : 1; 4700 switch (pd->af) { 4701 #ifdef INET 4702 case AF_INET: 4703 /* offset of h2 in mbuf chain */ 4704 ipoff2 = off + ICMP_MINLEN; 4705 4706 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4707 NULL, reason, pd2.af)) { 4708 DPFPRINTF(PF_DEBUG_MISC, 4709 ("pf: ICMP error message too short " 4710 "(ip)\n")); 4711 return (PF_DROP); 4712 } 4713 /* 4714 * ICMP error messages don't refer to non-first 4715 * fragments 4716 */ 4717 if (h2.ip_off & htons(IP_OFFMASK)) { 4718 REASON_SET(reason, PFRES_FRAG); 4719 return (PF_DROP); 4720 } 4721 4722 /* offset of protocol header that follows h2 */ 4723 off2 = ipoff2 + (h2.ip_hl << 2); 4724 4725 pd2.proto = h2.ip_p; 4726 pd2.src = (struct pf_addr *)&h2.ip_src; 4727 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4728 pd2.ip_sum = &h2.ip_sum; 4729 break; 4730 #endif /* INET */ 4731 #ifdef INET6 4732 case AF_INET6: 4733 ipoff2 = off + sizeof(struct icmp6_hdr); 4734 4735 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4736 NULL, reason, pd2.af)) { 4737 DPFPRINTF(PF_DEBUG_MISC, 4738 ("pf: ICMP error message too short " 4739 "(ip6)\n")); 4740 return (PF_DROP); 4741 } 4742 pd2.proto = h2_6.ip6_nxt; 4743 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4744 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4745 pd2.ip_sum = NULL; 4746 off2 = ipoff2 + sizeof(h2_6); 4747 do { 4748 switch (pd2.proto) { 4749 case IPPROTO_FRAGMENT: 4750 /* 4751 * ICMPv6 error messages for 4752 * non-first fragments 4753 */ 4754 REASON_SET(reason, PFRES_FRAG); 4755 return (PF_DROP); 4756 case IPPROTO_AH: 4757 case IPPROTO_HOPOPTS: 4758 case IPPROTO_ROUTING: 4759 case IPPROTO_DSTOPTS: { 4760 /* get next header and header length */ 4761 struct ip6_ext opt6; 4762 4763 if (!pf_pull_hdr(m, off2, &opt6, 4764 sizeof(opt6), NULL, reason, 4765 pd2.af)) { 4766 DPFPRINTF(PF_DEBUG_MISC, 4767 ("pf: ICMPv6 short opt\n")); 4768 return (PF_DROP); 4769 } 4770 if (pd2.proto == IPPROTO_AH) 4771 off2 += (opt6.ip6e_len + 2) * 4; 4772 else 4773 off2 += (opt6.ip6e_len + 1) * 8; 4774 pd2.proto = opt6.ip6e_nxt; 4775 /* goto the next header */ 4776 break; 4777 } 4778 default: 4779 terminal++; 4780 break; 4781 } 4782 } while (!terminal); 4783 break; 4784 #endif /* INET6 */ 4785 } 4786 4787 switch (pd2.proto) { 4788 case IPPROTO_TCP: { 4789 struct tcphdr th; 4790 u_int32_t seq; 4791 struct pf_state_peer *src, *dst; 4792 u_int8_t dws; 4793 int copyback = 0; 4794 4795 /* 4796 * Only the first 8 bytes of the TCP header can be 4797 * expected. Don't access any TCP header fields after 4798 * th_seq, an ackskew test is not possible. 4799 */ 4800 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4801 pd2.af)) { 4802 DPFPRINTF(PF_DEBUG_MISC, 4803 ("pf: ICMP error message too short " 4804 "(tcp)\n")); 4805 return (PF_DROP); 4806 } 4807 4808 key.af = pd2.af; 4809 key.proto = IPPROTO_TCP; 4810 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4811 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4812 key.port[pd2.sidx] = th.th_sport; 4813 key.port[pd2.didx] = th.th_dport; 4814 4815 STATE_LOOKUP(kif, &key, direction, *state, pd); 4816 4817 if (direction == (*state)->direction) { 4818 src = &(*state)->dst; 4819 dst = &(*state)->src; 4820 } else { 4821 src = &(*state)->src; 4822 dst = &(*state)->dst; 4823 } 4824 4825 if (src->wscale && dst->wscale) 4826 dws = dst->wscale & PF_WSCALE_MASK; 4827 else 4828 dws = 0; 4829 4830 /* Demodulate sequence number */ 4831 seq = ntohl(th.th_seq) - src->seqdiff; 4832 if (src->seqdiff) { 4833 pf_change_a(&th.th_seq, icmpsum, 4834 htonl(seq), 0); 4835 copyback = 1; 4836 } 4837 4838 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4839 (!SEQ_GEQ(src->seqhi, seq) || 4840 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4841 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4842 printf("pf: BAD ICMP %d:%d ", 4843 icmptype, pd->hdr.icmp->icmp_code); 4844 pf_print_host(pd->src, 0, pd->af); 4845 printf(" -> "); 4846 pf_print_host(pd->dst, 0, pd->af); 4847 printf(" state: "); 4848 pf_print_state(*state); 4849 printf(" seq=%u\n", seq); 4850 } 4851 REASON_SET(reason, PFRES_BADSTATE); 4852 return (PF_DROP); 4853 } else { 4854 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4855 printf("pf: OK ICMP %d:%d ", 4856 icmptype, pd->hdr.icmp->icmp_code); 4857 pf_print_host(pd->src, 0, pd->af); 4858 printf(" -> "); 4859 pf_print_host(pd->dst, 0, pd->af); 4860 printf(" state: "); 4861 pf_print_state(*state); 4862 printf(" seq=%u\n", seq); 4863 } 4864 } 4865 4866 /* translate source/destination address, if necessary */ 4867 if ((*state)->key[PF_SK_WIRE] != 4868 (*state)->key[PF_SK_STACK]) { 4869 struct pf_state_key *nk = 4870 (*state)->key[pd->didx]; 4871 4872 if (PF_ANEQ(pd2.src, 4873 &nk->addr[pd2.sidx], pd2.af) || 4874 nk->port[pd2.sidx] != th.th_sport) 4875 pf_change_icmp(pd2.src, &th.th_sport, 4876 daddr, &nk->addr[pd2.sidx], 4877 nk->port[pd2.sidx], NULL, 4878 pd2.ip_sum, icmpsum, 4879 pd->ip_sum, 0, pd2.af); 4880 4881 if (PF_ANEQ(pd2.dst, 4882 &nk->addr[pd2.didx], pd2.af) || 4883 nk->port[pd2.didx] != th.th_dport) 4884 pf_change_icmp(pd2.dst, &th.th_dport, 4885 NULL, /* XXX Inbound NAT? */ 4886 &nk->addr[pd2.didx], 4887 nk->port[pd2.didx], NULL, 4888 pd2.ip_sum, icmpsum, 4889 pd->ip_sum, 0, pd2.af); 4890 copyback = 1; 4891 } 4892 4893 if (copyback) { 4894 switch (pd2.af) { 4895 #ifdef INET 4896 case AF_INET: 4897 m_copyback(m, off, ICMP_MINLEN, 4898 (caddr_t )pd->hdr.icmp); 4899 m_copyback(m, ipoff2, sizeof(h2), 4900 (caddr_t )&h2); 4901 break; 4902 #endif /* INET */ 4903 #ifdef INET6 4904 case AF_INET6: 4905 m_copyback(m, off, 4906 sizeof(struct icmp6_hdr), 4907 (caddr_t )pd->hdr.icmp6); 4908 m_copyback(m, ipoff2, sizeof(h2_6), 4909 (caddr_t )&h2_6); 4910 break; 4911 #endif /* INET6 */ 4912 } 4913 m_copyback(m, off2, 8, (caddr_t)&th); 4914 } 4915 4916 return (PF_PASS); 4917 break; 4918 } 4919 case IPPROTO_UDP: { 4920 struct udphdr uh; 4921 4922 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4923 NULL, reason, pd2.af)) { 4924 DPFPRINTF(PF_DEBUG_MISC, 4925 ("pf: ICMP error message too short " 4926 "(udp)\n")); 4927 return (PF_DROP); 4928 } 4929 4930 key.af = pd2.af; 4931 key.proto = IPPROTO_UDP; 4932 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4933 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4934 key.port[pd2.sidx] = uh.uh_sport; 4935 key.port[pd2.didx] = uh.uh_dport; 4936 4937 STATE_LOOKUP(kif, &key, direction, *state, pd); 4938 4939 /* translate source/destination address, if necessary */ 4940 if ((*state)->key[PF_SK_WIRE] != 4941 (*state)->key[PF_SK_STACK]) { 4942 struct pf_state_key *nk = 4943 (*state)->key[pd->didx]; 4944 4945 if (PF_ANEQ(pd2.src, 4946 &nk->addr[pd2.sidx], pd2.af) || 4947 nk->port[pd2.sidx] != uh.uh_sport) 4948 pf_change_icmp(pd2.src, &uh.uh_sport, 4949 daddr, &nk->addr[pd2.sidx], 4950 nk->port[pd2.sidx], &uh.uh_sum, 4951 pd2.ip_sum, icmpsum, 4952 pd->ip_sum, 1, pd2.af); 4953 4954 if (PF_ANEQ(pd2.dst, 4955 &nk->addr[pd2.didx], pd2.af) || 4956 nk->port[pd2.didx] != uh.uh_dport) 4957 pf_change_icmp(pd2.dst, &uh.uh_dport, 4958 NULL, /* XXX Inbound NAT? */ 4959 &nk->addr[pd2.didx], 4960 nk->port[pd2.didx], &uh.uh_sum, 4961 pd2.ip_sum, icmpsum, 4962 pd->ip_sum, 1, pd2.af); 4963 4964 switch (pd2.af) { 4965 #ifdef INET 4966 case AF_INET: 4967 m_copyback(m, off, ICMP_MINLEN, 4968 (caddr_t )pd->hdr.icmp); 4969 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4970 break; 4971 #endif /* INET */ 4972 #ifdef INET6 4973 case AF_INET6: 4974 m_copyback(m, off, 4975 sizeof(struct icmp6_hdr), 4976 (caddr_t )pd->hdr.icmp6); 4977 m_copyback(m, ipoff2, sizeof(h2_6), 4978 (caddr_t )&h2_6); 4979 break; 4980 #endif /* INET6 */ 4981 } 4982 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4983 } 4984 return (PF_PASS); 4985 break; 4986 } 4987 #ifdef INET 4988 case IPPROTO_ICMP: { 4989 struct icmp iih; 4990 4991 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4992 NULL, reason, pd2.af)) { 4993 DPFPRINTF(PF_DEBUG_MISC, 4994 ("pf: ICMP error message too short i" 4995 "(icmp)\n")); 4996 return (PF_DROP); 4997 } 4998 4999 pd2.hdr.icmp = &iih; 5000 pf_icmp_mapping(&pd2, iih.icmp_type, 5001 &icmp_dir, &multi, &virtual_id, &virtual_type); 5002 5003 ret = pf_icmp_state_lookup(&key, &pd2, state, m, 5004 direction, kif, virtual_id, virtual_type, 5005 icmp_dir, &iidx, PF_ICMP_MULTI_NONE); 5006 if (ret >= 0) 5007 return (ret); 5008 5009 /* translate source/destination address, if necessary */ 5010 if ((*state)->key[PF_SK_WIRE] != 5011 (*state)->key[PF_SK_STACK]) { 5012 struct pf_state_key *nk = 5013 (*state)->key[pd->didx]; 5014 5015 if (PF_ANEQ(pd2.src, 5016 &nk->addr[pd2.sidx], pd2.af) || 5017 (virtual_type == ICMP_ECHO && 5018 nk->port[iidx] != iih.icmp_id)) 5019 pf_change_icmp(pd2.src, 5020 (virtual_type == ICMP_ECHO) ? 5021 &iih.icmp_id : NULL, 5022 daddr, &nk->addr[pd2.sidx], 5023 nk->port[pd2.sidx], NULL, 5024 pd2.ip_sum, icmpsum, 5025 pd->ip_sum, 0, AF_INET); 5026 5027 if (PF_ANEQ(pd2.dst, 5028 &nk->addr[pd2.didx], pd2.af)) 5029 pf_change_icmp(pd2.dst, NULL, NULL, 5030 &nk->addr[pd2.didx], 0, NULL, 5031 pd2.ip_sum, icmpsum, 5032 pd->ip_sum, 0, AF_INET); 5033 5034 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 5035 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5036 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5037 } 5038 return (PF_PASS); 5039 break; 5040 } 5041 #endif /* INET */ 5042 #ifdef INET6 5043 case IPPROTO_ICMPV6: { 5044 struct icmp6_hdr iih; 5045 5046 if (!pf_pull_hdr(m, off2, &iih, 5047 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5048 DPFPRINTF(PF_DEBUG_MISC, 5049 ("pf: ICMP error message too short " 5050 "(icmp6)\n")); 5051 return (PF_DROP); 5052 } 5053 5054 pd2.hdr.icmp6 = &iih; 5055 pf_icmp_mapping(&pd2, iih.icmp6_type, 5056 &icmp_dir, &multi, &virtual_id, &virtual_type); 5057 ret = pf_icmp_state_lookup(&key, &pd2, state, m, 5058 direction, kif, virtual_id, virtual_type, 5059 icmp_dir, &iidx, PF_ICMP_MULTI_NONE); 5060 if (ret >= 0) { 5061 if (ret == PF_DROP && pd->af == AF_INET6 && 5062 icmp_dir == PF_OUT) { 5063 if (*state) 5064 PF_STATE_UNLOCK(*state); 5065 ret = pf_icmp_state_lookup(&key, pd, 5066 state, m, direction, kif, 5067 virtual_id, virtual_type, 5068 icmp_dir, &iidx, multi); 5069 if (ret >= 0) 5070 return (ret); 5071 } else 5072 return (ret); 5073 } 5074 5075 /* translate source/destination address, if necessary */ 5076 if ((*state)->key[PF_SK_WIRE] != 5077 (*state)->key[PF_SK_STACK]) { 5078 struct pf_state_key *nk = 5079 (*state)->key[pd->didx]; 5080 5081 if (PF_ANEQ(pd2.src, 5082 &nk->addr[pd2.sidx], pd2.af) || 5083 ((virtual_type == ICMP6_ECHO_REQUEST) && 5084 nk->port[pd2.sidx] != iih.icmp6_id)) 5085 pf_change_icmp(pd2.src, 5086 (virtual_type == ICMP6_ECHO_REQUEST) 5087 ? &iih.icmp6_id : NULL, 5088 daddr, &nk->addr[pd2.sidx], 5089 (virtual_type == ICMP6_ECHO_REQUEST) 5090 ? nk->port[iidx] : 0, NULL, 5091 pd2.ip_sum, icmpsum, 5092 pd->ip_sum, 0, AF_INET6); 5093 5094 if (PF_ANEQ(pd2.dst, 5095 &nk->addr[pd2.didx], pd2.af)) 5096 pf_change_icmp(pd2.dst, NULL, NULL, 5097 &nk->addr[pd2.didx], 0, NULL, 5098 pd2.ip_sum, icmpsum, 5099 pd->ip_sum, 0, AF_INET6); 5100 5101 m_copyback(m, off, sizeof(struct icmp6_hdr), 5102 (caddr_t)pd->hdr.icmp6); 5103 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5104 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5105 (caddr_t)&iih); 5106 } 5107 return (PF_PASS); 5108 break; 5109 } 5110 #endif /* INET6 */ 5111 default: { 5112 key.af = pd2.af; 5113 key.proto = pd2.proto; 5114 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5115 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5116 key.port[0] = key.port[1] = 0; 5117 5118 STATE_LOOKUP(kif, &key, direction, *state, pd); 5119 5120 /* translate source/destination address, if necessary */ 5121 if ((*state)->key[PF_SK_WIRE] != 5122 (*state)->key[PF_SK_STACK]) { 5123 struct pf_state_key *nk = 5124 (*state)->key[pd->didx]; 5125 5126 if (PF_ANEQ(pd2.src, 5127 &nk->addr[pd2.sidx], pd2.af)) 5128 pf_change_icmp(pd2.src, NULL, daddr, 5129 &nk->addr[pd2.sidx], 0, NULL, 5130 pd2.ip_sum, icmpsum, 5131 pd->ip_sum, 0, pd2.af); 5132 5133 if (PF_ANEQ(pd2.dst, 5134 &nk->addr[pd2.didx], pd2.af)) 5135 pf_change_icmp(pd2.src, NULL, 5136 NULL, /* XXX Inbound NAT? */ 5137 &nk->addr[pd2.didx], 0, NULL, 5138 pd2.ip_sum, icmpsum, 5139 pd->ip_sum, 0, pd2.af); 5140 5141 switch (pd2.af) { 5142 #ifdef INET 5143 case AF_INET: 5144 m_copyback(m, off, ICMP_MINLEN, 5145 (caddr_t)pd->hdr.icmp); 5146 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5147 break; 5148 #endif /* INET */ 5149 #ifdef INET6 5150 case AF_INET6: 5151 m_copyback(m, off, 5152 sizeof(struct icmp6_hdr), 5153 (caddr_t )pd->hdr.icmp6); 5154 m_copyback(m, ipoff2, sizeof(h2_6), 5155 (caddr_t )&h2_6); 5156 break; 5157 #endif /* INET6 */ 5158 } 5159 } 5160 return (PF_PASS); 5161 break; 5162 } 5163 } 5164 } 5165 } 5166 5167 static int 5168 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5169 struct mbuf *m, struct pf_pdesc *pd) 5170 { 5171 struct pf_state_peer *src, *dst; 5172 struct pf_state_key_cmp key; 5173 5174 bzero(&key, sizeof(key)); 5175 key.af = pd->af; 5176 key.proto = pd->proto; 5177 if (direction == PF_IN) { 5178 PF_ACPY(&key.addr[0], pd->src, key.af); 5179 PF_ACPY(&key.addr[1], pd->dst, key.af); 5180 key.port[0] = key.port[1] = 0; 5181 } else { 5182 PF_ACPY(&key.addr[1], pd->src, key.af); 5183 PF_ACPY(&key.addr[0], pd->dst, key.af); 5184 key.port[1] = key.port[0] = 0; 5185 } 5186 5187 STATE_LOOKUP(kif, &key, direction, *state, pd); 5188 5189 if (direction == (*state)->direction) { 5190 src = &(*state)->src; 5191 dst = &(*state)->dst; 5192 } else { 5193 src = &(*state)->dst; 5194 dst = &(*state)->src; 5195 } 5196 5197 /* update states */ 5198 if (src->state < PFOTHERS_SINGLE) 5199 src->state = PFOTHERS_SINGLE; 5200 if (dst->state == PFOTHERS_SINGLE) 5201 dst->state = PFOTHERS_MULTIPLE; 5202 5203 /* update expire time */ 5204 (*state)->expire = time_uptime; 5205 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5206 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5207 else 5208 (*state)->timeout = PFTM_OTHER_SINGLE; 5209 5210 /* translate source/destination address, if necessary */ 5211 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5212 struct pf_state_key *nk = (*state)->key[pd->didx]; 5213 5214 KASSERT(nk, ("%s: nk is null", __func__)); 5215 KASSERT(pd, ("%s: pd is null", __func__)); 5216 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5217 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5218 switch (pd->af) { 5219 #ifdef INET 5220 case AF_INET: 5221 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5222 pf_change_a(&pd->src->v4.s_addr, 5223 pd->ip_sum, 5224 nk->addr[pd->sidx].v4.s_addr, 5225 0); 5226 5227 5228 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5229 pf_change_a(&pd->dst->v4.s_addr, 5230 pd->ip_sum, 5231 nk->addr[pd->didx].v4.s_addr, 5232 0); 5233 5234 break; 5235 #endif /* INET */ 5236 #ifdef INET6 5237 case AF_INET6: 5238 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5239 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5240 5241 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5242 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5243 #endif /* INET6 */ 5244 } 5245 } 5246 return (PF_PASS); 5247 } 5248 5249 /* 5250 * ipoff and off are measured from the start of the mbuf chain. 5251 * h must be at "ipoff" on the mbuf chain. 5252 */ 5253 void * 5254 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5255 u_short *actionp, u_short *reasonp, sa_family_t af) 5256 { 5257 switch (af) { 5258 #ifdef INET 5259 case AF_INET: { 5260 struct ip *h = mtod(m, struct ip *); 5261 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5262 5263 if (fragoff) { 5264 if (fragoff >= len) 5265 ACTION_SET(actionp, PF_PASS); 5266 else { 5267 ACTION_SET(actionp, PF_DROP); 5268 REASON_SET(reasonp, PFRES_FRAG); 5269 } 5270 return (NULL); 5271 } 5272 if (m->m_pkthdr.len < off + len || 5273 ntohs(h->ip_len) < off + len) { 5274 ACTION_SET(actionp, PF_DROP); 5275 REASON_SET(reasonp, PFRES_SHORT); 5276 return (NULL); 5277 } 5278 break; 5279 } 5280 #endif /* INET */ 5281 #ifdef INET6 5282 case AF_INET6: { 5283 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5284 5285 if (m->m_pkthdr.len < off + len || 5286 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5287 (unsigned)(off + len)) { 5288 ACTION_SET(actionp, PF_DROP); 5289 REASON_SET(reasonp, PFRES_SHORT); 5290 return (NULL); 5291 } 5292 break; 5293 } 5294 #endif /* INET6 */ 5295 } 5296 m_copydata(m, off, len, p); 5297 return (p); 5298 } 5299 5300 int 5301 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5302 int rtableid) 5303 { 5304 #ifdef RADIX_MPATH 5305 struct radix_node_head *rnh; 5306 #endif 5307 struct sockaddr_in *dst; 5308 int ret = 1; 5309 int check_mpath; 5310 #ifdef INET6 5311 struct sockaddr_in6 *dst6; 5312 struct route_in6 ro; 5313 #else 5314 struct route ro; 5315 #endif 5316 struct radix_node *rn; 5317 struct rtentry *rt; 5318 struct ifnet *ifp; 5319 5320 check_mpath = 0; 5321 #ifdef RADIX_MPATH 5322 /* XXX: stick to table 0 for now */ 5323 rnh = rt_tables_get_rnh(0, af); 5324 if (rnh != NULL && rn_mpath_capable(rnh)) 5325 check_mpath = 1; 5326 #endif 5327 bzero(&ro, sizeof(ro)); 5328 switch (af) { 5329 case AF_INET: 5330 dst = satosin(&ro.ro_dst); 5331 dst->sin_family = AF_INET; 5332 dst->sin_len = sizeof(*dst); 5333 dst->sin_addr = addr->v4; 5334 break; 5335 #ifdef INET6 5336 case AF_INET6: 5337 /* 5338 * Skip check for addresses with embedded interface scope, 5339 * as they would always match anyway. 5340 */ 5341 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5342 goto out; 5343 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5344 dst6->sin6_family = AF_INET6; 5345 dst6->sin6_len = sizeof(*dst6); 5346 dst6->sin6_addr = addr->v6; 5347 break; 5348 #endif /* INET6 */ 5349 default: 5350 return (0); 5351 } 5352 5353 /* Skip checks for ipsec interfaces */ 5354 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5355 goto out; 5356 5357 switch (af) { 5358 #ifdef INET6 5359 case AF_INET6: 5360 in6_rtalloc_ign(&ro, 0, rtableid); 5361 break; 5362 #endif 5363 #ifdef INET 5364 case AF_INET: 5365 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5366 break; 5367 #endif 5368 default: 5369 rtalloc_ign((struct route *)&ro, 0); /* No/default FIB. */ 5370 break; 5371 } 5372 5373 if (ro.ro_rt != NULL) { 5374 /* No interface given, this is a no-route check */ 5375 if (kif == NULL) 5376 goto out; 5377 5378 if (kif->pfik_ifp == NULL) { 5379 ret = 0; 5380 goto out; 5381 } 5382 5383 /* Perform uRPF check if passed input interface */ 5384 ret = 0; 5385 rn = (struct radix_node *)ro.ro_rt; 5386 do { 5387 rt = (struct rtentry *)rn; 5388 ifp = rt->rt_ifp; 5389 5390 if (kif->pfik_ifp == ifp) 5391 ret = 1; 5392 #ifdef RADIX_MPATH 5393 rn = rn_mpath_next(rn); 5394 #endif 5395 } while (check_mpath == 1 && rn != NULL && ret == 0); 5396 } else 5397 ret = 0; 5398 out: 5399 if (ro.ro_rt != NULL) 5400 RTFREE(ro.ro_rt); 5401 return (ret); 5402 } 5403 5404 #ifdef INET 5405 static void 5406 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5407 struct pf_state *s, struct pf_pdesc *pd) 5408 { 5409 struct mbuf *m0, *m1; 5410 struct sockaddr_in dst; 5411 struct ip *ip; 5412 struct ifnet *ifp = NULL; 5413 struct pf_addr naddr; 5414 struct pf_src_node *sn = NULL; 5415 int error = 0; 5416 uint16_t ip_len, ip_off; 5417 5418 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5419 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5420 __func__)); 5421 5422 if ((pd->pf_mtag == NULL && 5423 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5424 pd->pf_mtag->routed++ > 3) { 5425 m0 = *m; 5426 *m = NULL; 5427 goto bad_locked; 5428 } 5429 5430 if (r->rt == PF_DUPTO) { 5431 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5432 if (s) 5433 PF_STATE_UNLOCK(s); 5434 return; 5435 } 5436 } else { 5437 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5438 if (s) 5439 PF_STATE_UNLOCK(s); 5440 return; 5441 } 5442 m0 = *m; 5443 } 5444 5445 ip = mtod(m0, struct ip *); 5446 5447 bzero(&dst, sizeof(dst)); 5448 dst.sin_family = AF_INET; 5449 dst.sin_len = sizeof(dst); 5450 dst.sin_addr = ip->ip_dst; 5451 5452 if (r->rt == PF_FASTROUTE) { 5453 struct rtentry *rt; 5454 5455 if (s) 5456 PF_STATE_UNLOCK(s); 5457 rt = rtalloc1_fib(sintosa(&dst), 0, 0, M_GETFIB(m0)); 5458 if (rt == NULL) { 5459 RTFREE_LOCKED(rt); 5460 KMOD_IPSTAT_INC(ips_noroute); 5461 error = EHOSTUNREACH; 5462 goto bad; 5463 } 5464 5465 ifp = rt->rt_ifp; 5466 rt->rt_rmx.rmx_pksent++; 5467 5468 if (rt->rt_flags & RTF_GATEWAY) 5469 bcopy(satosin(rt->rt_gateway), &dst, sizeof(dst)); 5470 RTFREE_LOCKED(rt); 5471 } else { 5472 if (TAILQ_EMPTY(&r->rpool.list)) { 5473 DPFPRINTF(PF_DEBUG_URGENT, 5474 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5475 goto bad_locked; 5476 } 5477 if (s == NULL) { 5478 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5479 &naddr, NULL, &sn); 5480 if (!PF_AZERO(&naddr, AF_INET)) 5481 dst.sin_addr.s_addr = naddr.v4.s_addr; 5482 ifp = r->rpool.cur->kif ? 5483 r->rpool.cur->kif->pfik_ifp : NULL; 5484 } else { 5485 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5486 dst.sin_addr.s_addr = 5487 s->rt_addr.v4.s_addr; 5488 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5489 PF_STATE_UNLOCK(s); 5490 } 5491 } 5492 if (ifp == NULL) 5493 goto bad; 5494 5495 if (oifp != ifp) { 5496 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5497 goto bad; 5498 else if (m0 == NULL) 5499 goto done; 5500 if (m0->m_len < sizeof(struct ip)) { 5501 DPFPRINTF(PF_DEBUG_URGENT, 5502 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5503 goto bad; 5504 } 5505 ip = mtod(m0, struct ip *); 5506 } 5507 5508 if (ifp->if_flags & IFF_LOOPBACK) 5509 m0->m_flags |= M_SKIP_FIREWALL; 5510 5511 ip_len = ntohs(ip->ip_len); 5512 ip_off = ntohs(ip->ip_off); 5513 5514 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5515 m0->m_pkthdr.csum_flags |= CSUM_IP; 5516 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5517 in_delayed_cksum(m0); 5518 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5519 } 5520 #ifdef SCTP 5521 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5522 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5523 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5524 } 5525 #endif 5526 5527 /* 5528 * If small enough for interface, or the interface will take 5529 * care of the fragmentation for us, we can just send directly. 5530 */ 5531 if (ip_len <= ifp->if_mtu || 5532 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 || 5533 ((ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) { 5534 ip->ip_sum = 0; 5535 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5536 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5537 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5538 } 5539 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5540 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5541 goto done; 5542 } 5543 5544 /* Balk when DF bit is set or the interface didn't support TSO. */ 5545 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5546 error = EMSGSIZE; 5547 KMOD_IPSTAT_INC(ips_cantfrag); 5548 if (r->rt != PF_DUPTO) { 5549 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5550 ifp->if_mtu); 5551 goto done; 5552 } else 5553 goto bad; 5554 } 5555 5556 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5557 if (error) 5558 goto bad; 5559 5560 for (; m0; m0 = m1) { 5561 m1 = m0->m_nextpkt; 5562 m0->m_nextpkt = NULL; 5563 if (error == 0) { 5564 m_clrprotoflags(m0); 5565 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5566 } else 5567 m_freem(m0); 5568 } 5569 5570 if (error == 0) 5571 KMOD_IPSTAT_INC(ips_fragmented); 5572 5573 done: 5574 if (r->rt != PF_DUPTO) 5575 *m = NULL; 5576 return; 5577 5578 bad_locked: 5579 if (s) 5580 PF_STATE_UNLOCK(s); 5581 bad: 5582 m_freem(m0); 5583 goto done; 5584 } 5585 #endif /* INET */ 5586 5587 #ifdef INET6 5588 static void 5589 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5590 struct pf_state *s, struct pf_pdesc *pd) 5591 { 5592 struct mbuf *m0; 5593 struct sockaddr_in6 dst; 5594 struct ip6_hdr *ip6; 5595 struct ifnet *ifp = NULL; 5596 struct pf_addr naddr; 5597 struct pf_src_node *sn = NULL; 5598 5599 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5600 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5601 __func__)); 5602 5603 if ((pd->pf_mtag == NULL && 5604 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5605 pd->pf_mtag->routed++ > 3) { 5606 m0 = *m; 5607 *m = NULL; 5608 goto bad_locked; 5609 } 5610 5611 if (r->rt == PF_DUPTO) { 5612 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5613 if (s) 5614 PF_STATE_UNLOCK(s); 5615 return; 5616 } 5617 } else { 5618 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5619 if (s) 5620 PF_STATE_UNLOCK(s); 5621 return; 5622 } 5623 m0 = *m; 5624 } 5625 5626 ip6 = mtod(m0, struct ip6_hdr *); 5627 5628 bzero(&dst, sizeof(dst)); 5629 dst.sin6_family = AF_INET6; 5630 dst.sin6_len = sizeof(dst); 5631 dst.sin6_addr = ip6->ip6_dst; 5632 5633 /* Cheat. XXX why only in the v6 case??? */ 5634 if (r->rt == PF_FASTROUTE) { 5635 if (s) 5636 PF_STATE_UNLOCK(s); 5637 m0->m_flags |= M_SKIP_FIREWALL; 5638 ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL); 5639 return; 5640 } 5641 5642 if (TAILQ_EMPTY(&r->rpool.list)) { 5643 DPFPRINTF(PF_DEBUG_URGENT, 5644 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5645 goto bad_locked; 5646 } 5647 if (s == NULL) { 5648 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5649 &naddr, NULL, &sn); 5650 if (!PF_AZERO(&naddr, AF_INET6)) 5651 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5652 &naddr, AF_INET6); 5653 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5654 } else { 5655 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5656 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5657 &s->rt_addr, AF_INET6); 5658 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5659 } 5660 5661 if (s) 5662 PF_STATE_UNLOCK(s); 5663 5664 if (ifp == NULL) 5665 goto bad; 5666 5667 if (oifp != ifp) { 5668 if (pf_test6(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5669 goto bad; 5670 else if (m0 == NULL) 5671 goto done; 5672 if (m0->m_len < sizeof(struct ip6_hdr)) { 5673 DPFPRINTF(PF_DEBUG_URGENT, 5674 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5675 __func__)); 5676 goto bad; 5677 } 5678 ip6 = mtod(m0, struct ip6_hdr *); 5679 } 5680 5681 if (ifp->if_flags & IFF_LOOPBACK) 5682 m0->m_flags |= M_SKIP_FIREWALL; 5683 5684 /* 5685 * If the packet is too large for the outgoing interface, 5686 * send back an icmp6 error. 5687 */ 5688 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5689 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5690 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5691 nd6_output(ifp, ifp, m0, &dst, NULL); 5692 else { 5693 in6_ifstat_inc(ifp, ifs6_in_toobig); 5694 if (r->rt != PF_DUPTO) 5695 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5696 else 5697 goto bad; 5698 } 5699 5700 done: 5701 if (r->rt != PF_DUPTO) 5702 *m = NULL; 5703 return; 5704 5705 bad_locked: 5706 if (s) 5707 PF_STATE_UNLOCK(s); 5708 bad: 5709 m_freem(m0); 5710 goto done; 5711 } 5712 #endif /* INET6 */ 5713 5714 /* 5715 * FreeBSD supports cksum offloads for the following drivers. 5716 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5717 * ti(4), txp(4), xl(4) 5718 * 5719 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5720 * network driver performed cksum including pseudo header, need to verify 5721 * csum_data 5722 * CSUM_DATA_VALID : 5723 * network driver performed cksum, needs to additional pseudo header 5724 * cksum computation with partial csum_data(i.e. lack of H/W support for 5725 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5726 * 5727 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5728 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5729 * TCP/UDP layer. 5730 * Also, set csum_data to 0xffff to force cksum validation. 5731 */ 5732 static int 5733 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5734 { 5735 u_int16_t sum = 0; 5736 int hw_assist = 0; 5737 struct ip *ip; 5738 5739 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5740 return (1); 5741 if (m->m_pkthdr.len < off + len) 5742 return (1); 5743 5744 switch (p) { 5745 case IPPROTO_TCP: 5746 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5747 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5748 sum = m->m_pkthdr.csum_data; 5749 } else { 5750 ip = mtod(m, struct ip *); 5751 sum = in_pseudo(ip->ip_src.s_addr, 5752 ip->ip_dst.s_addr, htonl((u_short)len + 5753 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5754 } 5755 sum ^= 0xffff; 5756 ++hw_assist; 5757 } 5758 break; 5759 case IPPROTO_UDP: 5760 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5761 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5762 sum = m->m_pkthdr.csum_data; 5763 } else { 5764 ip = mtod(m, struct ip *); 5765 sum = in_pseudo(ip->ip_src.s_addr, 5766 ip->ip_dst.s_addr, htonl((u_short)len + 5767 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5768 } 5769 sum ^= 0xffff; 5770 ++hw_assist; 5771 } 5772 break; 5773 case IPPROTO_ICMP: 5774 #ifdef INET6 5775 case IPPROTO_ICMPV6: 5776 #endif /* INET6 */ 5777 break; 5778 default: 5779 return (1); 5780 } 5781 5782 if (!hw_assist) { 5783 switch (af) { 5784 case AF_INET: 5785 if (p == IPPROTO_ICMP) { 5786 if (m->m_len < off) 5787 return (1); 5788 m->m_data += off; 5789 m->m_len -= off; 5790 sum = in_cksum(m, len); 5791 m->m_data -= off; 5792 m->m_len += off; 5793 } else { 5794 if (m->m_len < sizeof(struct ip)) 5795 return (1); 5796 sum = in4_cksum(m, p, off, len); 5797 } 5798 break; 5799 #ifdef INET6 5800 case AF_INET6: 5801 if (m->m_len < sizeof(struct ip6_hdr)) 5802 return (1); 5803 sum = in6_cksum(m, p, off, len); 5804 break; 5805 #endif /* INET6 */ 5806 default: 5807 return (1); 5808 } 5809 } 5810 if (sum) { 5811 switch (p) { 5812 case IPPROTO_TCP: 5813 { 5814 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5815 break; 5816 } 5817 case IPPROTO_UDP: 5818 { 5819 KMOD_UDPSTAT_INC(udps_badsum); 5820 break; 5821 } 5822 #ifdef INET 5823 case IPPROTO_ICMP: 5824 { 5825 KMOD_ICMPSTAT_INC(icps_checksum); 5826 break; 5827 } 5828 #endif 5829 #ifdef INET6 5830 case IPPROTO_ICMPV6: 5831 { 5832 KMOD_ICMP6STAT_INC(icp6s_checksum); 5833 break; 5834 } 5835 #endif /* INET6 */ 5836 } 5837 return (1); 5838 } else { 5839 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5840 m->m_pkthdr.csum_flags |= 5841 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5842 m->m_pkthdr.csum_data = 0xffff; 5843 } 5844 } 5845 return (0); 5846 } 5847 5848 5849 #ifdef INET 5850 int 5851 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5852 { 5853 struct pfi_kif *kif; 5854 u_short action, reason = 0, log = 0; 5855 struct mbuf *m = *m0; 5856 struct ip *h = NULL; 5857 struct m_tag *ipfwtag; 5858 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5859 struct pf_state *s = NULL; 5860 struct pf_ruleset *ruleset = NULL; 5861 struct pf_pdesc pd; 5862 int off, dirndx, pqid = 0; 5863 5864 M_ASSERTPKTHDR(m); 5865 5866 if (!V_pf_status.running) 5867 return (PF_PASS); 5868 5869 memset(&pd, 0, sizeof(pd)); 5870 5871 kif = (struct pfi_kif *)ifp->if_pf_kif; 5872 5873 if (kif == NULL) { 5874 DPFPRINTF(PF_DEBUG_URGENT, 5875 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5876 return (PF_DROP); 5877 } 5878 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5879 return (PF_PASS); 5880 5881 if (m->m_flags & M_SKIP_FIREWALL) 5882 return (PF_PASS); 5883 5884 pd.pf_mtag = pf_find_mtag(m); 5885 5886 PF_RULES_RLOCK(); 5887 5888 if (ip_divert_ptr != NULL && 5889 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5890 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5891 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5892 if (pd.pf_mtag == NULL && 5893 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5894 action = PF_DROP; 5895 goto done; 5896 } 5897 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5898 m_tag_delete(m, ipfwtag); 5899 } 5900 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5901 m->m_flags |= M_FASTFWD_OURS; 5902 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5903 } 5904 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5905 /* We do IP header normalization and packet reassembly here */ 5906 action = PF_DROP; 5907 goto done; 5908 } 5909 m = *m0; /* pf_normalize messes with m0 */ 5910 h = mtod(m, struct ip *); 5911 5912 off = h->ip_hl << 2; 5913 if (off < (int)sizeof(struct ip)) { 5914 action = PF_DROP; 5915 REASON_SET(&reason, PFRES_SHORT); 5916 log = 1; 5917 goto done; 5918 } 5919 5920 pd.src = (struct pf_addr *)&h->ip_src; 5921 pd.dst = (struct pf_addr *)&h->ip_dst; 5922 pd.sport = pd.dport = NULL; 5923 pd.ip_sum = &h->ip_sum; 5924 pd.proto_sum = NULL; 5925 pd.proto = h->ip_p; 5926 pd.dir = dir; 5927 pd.sidx = (dir == PF_IN) ? 0 : 1; 5928 pd.didx = (dir == PF_IN) ? 1 : 0; 5929 pd.af = AF_INET; 5930 pd.tos = h->ip_tos; 5931 pd.tot_len = ntohs(h->ip_len); 5932 5933 /* handle fragments that didn't get reassembled by normalization */ 5934 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5935 action = pf_test_fragment(&r, dir, kif, m, h, 5936 &pd, &a, &ruleset); 5937 goto done; 5938 } 5939 5940 switch (h->ip_p) { 5941 5942 case IPPROTO_TCP: { 5943 struct tcphdr th; 5944 5945 pd.hdr.tcp = &th; 5946 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5947 &action, &reason, AF_INET)) { 5948 log = action != PF_PASS; 5949 goto done; 5950 } 5951 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5952 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5953 pqid = 1; 5954 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5955 if (action == PF_DROP) 5956 goto done; 5957 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5958 &reason); 5959 if (action == PF_PASS) { 5960 if (pfsync_update_state_ptr != NULL) 5961 pfsync_update_state_ptr(s); 5962 r = s->rule.ptr; 5963 a = s->anchor.ptr; 5964 log = s->log; 5965 } else if (s == NULL) 5966 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5967 &a, &ruleset, inp); 5968 break; 5969 } 5970 5971 case IPPROTO_UDP: { 5972 struct udphdr uh; 5973 5974 pd.hdr.udp = &uh; 5975 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5976 &action, &reason, AF_INET)) { 5977 log = action != PF_PASS; 5978 goto done; 5979 } 5980 if (uh.uh_dport == 0 || 5981 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5982 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5983 action = PF_DROP; 5984 REASON_SET(&reason, PFRES_SHORT); 5985 goto done; 5986 } 5987 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5988 if (action == PF_PASS) { 5989 if (pfsync_update_state_ptr != NULL) 5990 pfsync_update_state_ptr(s); 5991 r = s->rule.ptr; 5992 a = s->anchor.ptr; 5993 log = s->log; 5994 } else if (s == NULL) 5995 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5996 &a, &ruleset, inp); 5997 break; 5998 } 5999 6000 case IPPROTO_ICMP: { 6001 struct icmp ih; 6002 6003 pd.hdr.icmp = &ih; 6004 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 6005 &action, &reason, AF_INET)) { 6006 log = action != PF_PASS; 6007 goto done; 6008 } 6009 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 6010 &reason); 6011 if (action == PF_PASS) { 6012 if (pfsync_update_state_ptr != NULL) 6013 pfsync_update_state_ptr(s); 6014 r = s->rule.ptr; 6015 a = s->anchor.ptr; 6016 log = s->log; 6017 } else if (s == NULL) 6018 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6019 &a, &ruleset, inp); 6020 break; 6021 } 6022 6023 #ifdef INET6 6024 case IPPROTO_ICMPV6: { 6025 action = PF_DROP; 6026 DPFPRINTF(PF_DEBUG_MISC, 6027 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6028 goto done; 6029 } 6030 #endif 6031 6032 default: 6033 action = pf_test_state_other(&s, dir, kif, m, &pd); 6034 if (action == PF_PASS) { 6035 if (pfsync_update_state_ptr != NULL) 6036 pfsync_update_state_ptr(s); 6037 r = s->rule.ptr; 6038 a = s->anchor.ptr; 6039 log = s->log; 6040 } else if (s == NULL) 6041 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6042 &a, &ruleset, inp); 6043 break; 6044 } 6045 6046 done: 6047 PF_RULES_RUNLOCK(); 6048 if (action == PF_PASS && h->ip_hl > 5 && 6049 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6050 action = PF_DROP; 6051 REASON_SET(&reason, PFRES_IPOPTIONS); 6052 log = 1; 6053 DPFPRINTF(PF_DEBUG_MISC, 6054 ("pf: dropping packet with ip options\n")); 6055 } 6056 6057 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6058 action = PF_DROP; 6059 REASON_SET(&reason, PFRES_MEMORY); 6060 } 6061 if (r->rtableid >= 0) 6062 M_SETFIB(m, r->rtableid); 6063 6064 #ifdef ALTQ 6065 if (action == PF_PASS && r->qid) { 6066 if (pd.pf_mtag == NULL && 6067 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6068 action = PF_DROP; 6069 REASON_SET(&reason, PFRES_MEMORY); 6070 } 6071 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6072 pd.pf_mtag->qid = r->pqid; 6073 else 6074 pd.pf_mtag->qid = r->qid; 6075 /* add hints for ecn */ 6076 pd.pf_mtag->hdr = h; 6077 6078 } 6079 #endif /* ALTQ */ 6080 6081 /* 6082 * connections redirected to loopback should not match sockets 6083 * bound specifically to loopback due to security implications, 6084 * see tcp_input() and in_pcblookup_listen(). 6085 */ 6086 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6087 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6088 (s->nat_rule.ptr->action == PF_RDR || 6089 s->nat_rule.ptr->action == PF_BINAT) && 6090 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 6091 m->m_flags |= M_SKIP_FIREWALL; 6092 6093 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6094 !PACKET_LOOPED(&pd)) { 6095 6096 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6097 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6098 if (ipfwtag != NULL) { 6099 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6100 ntohs(r->divert.port); 6101 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6102 6103 if (s) 6104 PF_STATE_UNLOCK(s); 6105 6106 m_tag_prepend(m, ipfwtag); 6107 if (m->m_flags & M_FASTFWD_OURS) { 6108 if (pd.pf_mtag == NULL && 6109 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6110 action = PF_DROP; 6111 REASON_SET(&reason, PFRES_MEMORY); 6112 log = 1; 6113 DPFPRINTF(PF_DEBUG_MISC, 6114 ("pf: failed to allocate tag\n")); 6115 } 6116 pd.pf_mtag->flags |= PF_FASTFWD_OURS_PRESENT; 6117 m->m_flags &= ~M_FASTFWD_OURS; 6118 } 6119 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 6120 *m0 = NULL; 6121 6122 return (action); 6123 } else { 6124 /* XXX: ipfw has the same behaviour! */ 6125 action = PF_DROP; 6126 REASON_SET(&reason, PFRES_MEMORY); 6127 log = 1; 6128 DPFPRINTF(PF_DEBUG_MISC, 6129 ("pf: failed to allocate divert tag\n")); 6130 } 6131 } 6132 6133 if (log) { 6134 struct pf_rule *lr; 6135 6136 if (s != NULL && s->nat_rule.ptr != NULL && 6137 s->nat_rule.ptr->log & PF_LOG_ALL) 6138 lr = s->nat_rule.ptr; 6139 else 6140 lr = r; 6141 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6142 (s == NULL)); 6143 } 6144 6145 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6146 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 6147 6148 if (action == PF_PASS || r->action == PF_DROP) { 6149 dirndx = (dir == PF_OUT); 6150 r->packets[dirndx]++; 6151 r->bytes[dirndx] += pd.tot_len; 6152 if (a != NULL) { 6153 a->packets[dirndx]++; 6154 a->bytes[dirndx] += pd.tot_len; 6155 } 6156 if (s != NULL) { 6157 if (s->nat_rule.ptr != NULL) { 6158 s->nat_rule.ptr->packets[dirndx]++; 6159 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6160 } 6161 if (s->src_node != NULL) { 6162 s->src_node->packets[dirndx]++; 6163 s->src_node->bytes[dirndx] += pd.tot_len; 6164 } 6165 if (s->nat_src_node != NULL) { 6166 s->nat_src_node->packets[dirndx]++; 6167 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6168 } 6169 dirndx = (dir == s->direction) ? 0 : 1; 6170 s->packets[dirndx]++; 6171 s->bytes[dirndx] += pd.tot_len; 6172 } 6173 tr = r; 6174 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6175 if (nr != NULL && r == &V_pf_default_rule) 6176 tr = nr; 6177 if (tr->src.addr.type == PF_ADDR_TABLE) 6178 pfr_update_stats(tr->src.addr.p.tbl, 6179 (s == NULL) ? pd.src : 6180 &s->key[(s->direction == PF_IN)]-> 6181 addr[(s->direction == PF_OUT)], 6182 pd.af, pd.tot_len, dir == PF_OUT, 6183 r->action == PF_PASS, tr->src.neg); 6184 if (tr->dst.addr.type == PF_ADDR_TABLE) 6185 pfr_update_stats(tr->dst.addr.p.tbl, 6186 (s == NULL) ? pd.dst : 6187 &s->key[(s->direction == PF_IN)]-> 6188 addr[(s->direction == PF_IN)], 6189 pd.af, pd.tot_len, dir == PF_OUT, 6190 r->action == PF_PASS, tr->dst.neg); 6191 } 6192 6193 switch (action) { 6194 case PF_SYNPROXY_DROP: 6195 m_freem(*m0); 6196 case PF_DEFER: 6197 *m0 = NULL; 6198 action = PF_PASS; 6199 break; 6200 default: 6201 /* pf_route() returns unlocked. */ 6202 if (r->rt) { 6203 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 6204 return (action); 6205 } 6206 break; 6207 } 6208 if (s) 6209 PF_STATE_UNLOCK(s); 6210 6211 return (action); 6212 } 6213 #endif /* INET */ 6214 6215 #ifdef INET6 6216 int 6217 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6218 { 6219 struct pfi_kif *kif; 6220 u_short action, reason = 0, log = 0; 6221 struct mbuf *m = *m0, *n = NULL; 6222 struct ip6_hdr *h = NULL; 6223 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6224 struct pf_state *s = NULL; 6225 struct pf_ruleset *ruleset = NULL; 6226 struct pf_pdesc pd; 6227 int off, terminal = 0, dirndx, rh_cnt = 0; 6228 6229 M_ASSERTPKTHDR(m); 6230 6231 if (!V_pf_status.running) 6232 return (PF_PASS); 6233 6234 memset(&pd, 0, sizeof(pd)); 6235 pd.pf_mtag = pf_find_mtag(m); 6236 6237 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6238 return (PF_PASS); 6239 6240 kif = (struct pfi_kif *)ifp->if_pf_kif; 6241 if (kif == NULL) { 6242 DPFPRINTF(PF_DEBUG_URGENT, 6243 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6244 return (PF_DROP); 6245 } 6246 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6247 return (PF_PASS); 6248 6249 PF_RULES_RLOCK(); 6250 6251 /* We do IP header normalization and packet reassembly here */ 6252 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6253 action = PF_DROP; 6254 goto done; 6255 } 6256 m = *m0; /* pf_normalize messes with m0 */ 6257 h = mtod(m, struct ip6_hdr *); 6258 6259 #if 1 6260 /* 6261 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6262 * will do something bad, so drop the packet for now. 6263 */ 6264 if (htons(h->ip6_plen) == 0) { 6265 action = PF_DROP; 6266 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6267 goto done; 6268 } 6269 #endif 6270 6271 pd.src = (struct pf_addr *)&h->ip6_src; 6272 pd.dst = (struct pf_addr *)&h->ip6_dst; 6273 pd.sport = pd.dport = NULL; 6274 pd.ip_sum = NULL; 6275 pd.proto_sum = NULL; 6276 pd.dir = dir; 6277 pd.sidx = (dir == PF_IN) ? 0 : 1; 6278 pd.didx = (dir == PF_IN) ? 1 : 0; 6279 pd.af = AF_INET6; 6280 pd.tos = 0; 6281 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6282 6283 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6284 pd.proto = h->ip6_nxt; 6285 do { 6286 switch (pd.proto) { 6287 case IPPROTO_FRAGMENT: 6288 action = pf_test_fragment(&r, dir, kif, m, h, 6289 &pd, &a, &ruleset); 6290 if (action == PF_DROP) 6291 REASON_SET(&reason, PFRES_FRAG); 6292 goto done; 6293 case IPPROTO_ROUTING: { 6294 struct ip6_rthdr rthdr; 6295 6296 if (rh_cnt++) { 6297 DPFPRINTF(PF_DEBUG_MISC, 6298 ("pf: IPv6 more than one rthdr\n")); 6299 action = PF_DROP; 6300 REASON_SET(&reason, PFRES_IPOPTIONS); 6301 log = 1; 6302 goto done; 6303 } 6304 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6305 &reason, pd.af)) { 6306 DPFPRINTF(PF_DEBUG_MISC, 6307 ("pf: IPv6 short rthdr\n")); 6308 action = PF_DROP; 6309 REASON_SET(&reason, PFRES_SHORT); 6310 log = 1; 6311 goto done; 6312 } 6313 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6314 DPFPRINTF(PF_DEBUG_MISC, 6315 ("pf: IPv6 rthdr0\n")); 6316 action = PF_DROP; 6317 REASON_SET(&reason, PFRES_IPOPTIONS); 6318 log = 1; 6319 goto done; 6320 } 6321 /* FALLTHROUGH */ 6322 } 6323 case IPPROTO_AH: 6324 case IPPROTO_HOPOPTS: 6325 case IPPROTO_DSTOPTS: { 6326 /* get next header and header length */ 6327 struct ip6_ext opt6; 6328 6329 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6330 NULL, &reason, pd.af)) { 6331 DPFPRINTF(PF_DEBUG_MISC, 6332 ("pf: IPv6 short opt\n")); 6333 action = PF_DROP; 6334 log = 1; 6335 goto done; 6336 } 6337 if (pd.proto == IPPROTO_AH) 6338 off += (opt6.ip6e_len + 2) * 4; 6339 else 6340 off += (opt6.ip6e_len + 1) * 8; 6341 pd.proto = opt6.ip6e_nxt; 6342 /* goto the next header */ 6343 break; 6344 } 6345 default: 6346 terminal++; 6347 break; 6348 } 6349 } while (!terminal); 6350 6351 /* if there's no routing header, use unmodified mbuf for checksumming */ 6352 if (!n) 6353 n = m; 6354 6355 switch (pd.proto) { 6356 6357 case IPPROTO_TCP: { 6358 struct tcphdr th; 6359 6360 pd.hdr.tcp = &th; 6361 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6362 &action, &reason, AF_INET6)) { 6363 log = action != PF_PASS; 6364 goto done; 6365 } 6366 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6367 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6368 if (action == PF_DROP) 6369 goto done; 6370 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6371 &reason); 6372 if (action == PF_PASS) { 6373 if (pfsync_update_state_ptr != NULL) 6374 pfsync_update_state_ptr(s); 6375 r = s->rule.ptr; 6376 a = s->anchor.ptr; 6377 log = s->log; 6378 } else if (s == NULL) 6379 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6380 &a, &ruleset, inp); 6381 break; 6382 } 6383 6384 case IPPROTO_UDP: { 6385 struct udphdr uh; 6386 6387 pd.hdr.udp = &uh; 6388 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6389 &action, &reason, AF_INET6)) { 6390 log = action != PF_PASS; 6391 goto done; 6392 } 6393 if (uh.uh_dport == 0 || 6394 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6395 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6396 action = PF_DROP; 6397 REASON_SET(&reason, PFRES_SHORT); 6398 goto done; 6399 } 6400 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6401 if (action == PF_PASS) { 6402 if (pfsync_update_state_ptr != NULL) 6403 pfsync_update_state_ptr(s); 6404 r = s->rule.ptr; 6405 a = s->anchor.ptr; 6406 log = s->log; 6407 } else if (s == NULL) 6408 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6409 &a, &ruleset, inp); 6410 break; 6411 } 6412 6413 case IPPROTO_ICMP: { 6414 action = PF_DROP; 6415 DPFPRINTF(PF_DEBUG_MISC, 6416 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6417 goto done; 6418 } 6419 6420 case IPPROTO_ICMPV6: { 6421 union { 6422 struct icmp6_hdr icmp6; 6423 struct mld_hdr mld; 6424 struct nd_neighbor_solicit nd; 6425 } ih; 6426 size_t icmp_hlen = sizeof(struct icmp6_hdr); 6427 6428 pd.hdr.icmp6 = &ih.icmp6; 6429 if (!pf_pull_hdr(m, off, &ih, icmp_hlen, 6430 &action, &reason, AF_INET6)) { 6431 log = action != PF_PASS; 6432 goto done; 6433 } 6434 /* ICMP headers we look further into to match state */ 6435 switch (ih.icmp6.icmp6_type) { 6436 case MLD_LISTENER_QUERY: 6437 case MLD_LISTENER_REPORT: 6438 icmp_hlen = sizeof(struct mld_hdr); 6439 break; 6440 case ND_NEIGHBOR_SOLICIT: 6441 case ND_NEIGHBOR_ADVERT: 6442 icmp_hlen = sizeof(struct nd_neighbor_solicit); 6443 break; 6444 } 6445 if (icmp_hlen > sizeof(struct icmp6_hdr) && 6446 !pf_pull_hdr(m, off, &ih, icmp_hlen, 6447 &action, &reason, AF_INET6)) { 6448 log = action != PF_PASS; 6449 goto done; 6450 } 6451 action = pf_test_state_icmp(&s, dir, kif, 6452 m, off, h, &pd, &reason); 6453 if (action == PF_PASS) { 6454 if (pfsync_update_state_ptr != NULL) 6455 pfsync_update_state_ptr(s); 6456 r = s->rule.ptr; 6457 a = s->anchor.ptr; 6458 log = s->log; 6459 } else if (s == NULL) 6460 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6461 &a, &ruleset, inp); 6462 break; 6463 } 6464 6465 default: 6466 action = pf_test_state_other(&s, dir, kif, m, &pd); 6467 if (action == PF_PASS) { 6468 if (pfsync_update_state_ptr != NULL) 6469 pfsync_update_state_ptr(s); 6470 r = s->rule.ptr; 6471 a = s->anchor.ptr; 6472 log = s->log; 6473 } else if (s == NULL) 6474 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6475 &a, &ruleset, inp); 6476 break; 6477 } 6478 6479 done: 6480 PF_RULES_RUNLOCK(); 6481 if (n != m) { 6482 m_freem(n); 6483 n = NULL; 6484 } 6485 6486 /* handle dangerous IPv6 extension headers. */ 6487 if (action == PF_PASS && rh_cnt && 6488 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6489 action = PF_DROP; 6490 REASON_SET(&reason, PFRES_IPOPTIONS); 6491 log = 1; 6492 DPFPRINTF(PF_DEBUG_MISC, 6493 ("pf: dropping packet with dangerous v6 headers\n")); 6494 } 6495 6496 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6497 action = PF_DROP; 6498 REASON_SET(&reason, PFRES_MEMORY); 6499 } 6500 if (r->rtableid >= 0) 6501 M_SETFIB(m, r->rtableid); 6502 6503 #ifdef ALTQ 6504 if (action == PF_PASS && r->qid) { 6505 if (pd.pf_mtag == NULL && 6506 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6507 action = PF_DROP; 6508 REASON_SET(&reason, PFRES_MEMORY); 6509 } 6510 if (pd.tos & IPTOS_LOWDELAY) 6511 pd.pf_mtag->qid = r->pqid; 6512 else 6513 pd.pf_mtag->qid = r->qid; 6514 /* add hints for ecn */ 6515 pd.pf_mtag->hdr = h; 6516 } 6517 #endif /* ALTQ */ 6518 6519 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6520 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6521 (s->nat_rule.ptr->action == PF_RDR || 6522 s->nat_rule.ptr->action == PF_BINAT) && 6523 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6524 m->m_flags |= M_SKIP_FIREWALL; 6525 6526 /* XXX: Anybody working on it?! */ 6527 if (r->divert.port) 6528 printf("pf: divert(9) is not supported for IPv6\n"); 6529 6530 if (log) { 6531 struct pf_rule *lr; 6532 6533 if (s != NULL && s->nat_rule.ptr != NULL && 6534 s->nat_rule.ptr->log & PF_LOG_ALL) 6535 lr = s->nat_rule.ptr; 6536 else 6537 lr = r; 6538 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6539 &pd, (s == NULL)); 6540 } 6541 6542 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6543 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6544 6545 if (action == PF_PASS || r->action == PF_DROP) { 6546 dirndx = (dir == PF_OUT); 6547 r->packets[dirndx]++; 6548 r->bytes[dirndx] += pd.tot_len; 6549 if (a != NULL) { 6550 a->packets[dirndx]++; 6551 a->bytes[dirndx] += pd.tot_len; 6552 } 6553 if (s != NULL) { 6554 if (s->nat_rule.ptr != NULL) { 6555 s->nat_rule.ptr->packets[dirndx]++; 6556 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6557 } 6558 if (s->src_node != NULL) { 6559 s->src_node->packets[dirndx]++; 6560 s->src_node->bytes[dirndx] += pd.tot_len; 6561 } 6562 if (s->nat_src_node != NULL) { 6563 s->nat_src_node->packets[dirndx]++; 6564 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6565 } 6566 dirndx = (dir == s->direction) ? 0 : 1; 6567 s->packets[dirndx]++; 6568 s->bytes[dirndx] += pd.tot_len; 6569 } 6570 tr = r; 6571 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6572 if (nr != NULL && r == &V_pf_default_rule) 6573 tr = nr; 6574 if (tr->src.addr.type == PF_ADDR_TABLE) 6575 pfr_update_stats(tr->src.addr.p.tbl, 6576 (s == NULL) ? pd.src : 6577 &s->key[(s->direction == PF_IN)]->addr[0], 6578 pd.af, pd.tot_len, dir == PF_OUT, 6579 r->action == PF_PASS, tr->src.neg); 6580 if (tr->dst.addr.type == PF_ADDR_TABLE) 6581 pfr_update_stats(tr->dst.addr.p.tbl, 6582 (s == NULL) ? pd.dst : 6583 &s->key[(s->direction == PF_IN)]->addr[1], 6584 pd.af, pd.tot_len, dir == PF_OUT, 6585 r->action == PF_PASS, tr->dst.neg); 6586 } 6587 6588 switch (action) { 6589 case PF_SYNPROXY_DROP: 6590 m_freem(*m0); 6591 case PF_DEFER: 6592 *m0 = NULL; 6593 action = PF_PASS; 6594 break; 6595 default: 6596 /* pf_route6() returns unlocked. */ 6597 if (r->rt) { 6598 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6599 return (action); 6600 } 6601 break; 6602 } 6603 6604 if (s) 6605 PF_STATE_UNLOCK(s); 6606 6607 return (action); 6608 } 6609 #endif /* INET6 */ 6610