1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 #include "opt_bpf.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_pf.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/gsb_crc32.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/sdt.h> 61 #include <sys/socket.h> 62 #include <sys/sysctl.h> 63 #include <sys/taskqueue.h> 64 #include <sys/ucred.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_private.h> 69 #include <net/if_types.h> 70 #include <net/if_vlan_var.h> 71 #include <net/route.h> 72 #include <net/route/nhop.h> 73 #include <net/vnet.h> 74 75 #include <net/pfil.h> 76 #include <net/pfvar.h> 77 #include <net/if_pflog.h> 78 #include <net/if_pfsync.h> 79 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_var.h> 82 #include <netinet/in_fib.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_fw.h> 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp.h> 89 #include <netinet/tcp_fsm.h> 90 #include <netinet/tcp_seq.h> 91 #include <netinet/tcp_timer.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet/udp.h> 94 #include <netinet/udp_var.h> 95 96 /* dummynet */ 97 #include <netinet/ip_dummynet.h> 98 #include <netinet/ip_fw.h> 99 #include <netpfil/ipfw/dn_heap.h> 100 #include <netpfil/ipfw/ip_fw_private.h> 101 #include <netpfil/ipfw/ip_dn_private.h> 102 103 #ifdef INET6 104 #include <netinet/ip6.h> 105 #include <netinet/icmp6.h> 106 #include <netinet6/nd6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet6/in6_pcb.h> 109 #include <netinet6/in6_fib.h> 110 #include <netinet6/scope6_var.h> 111 #endif /* INET6 */ 112 113 #include <netinet/sctp_header.h> 114 #include <netinet/sctp_crc32.h> 115 116 #include <machine/in_cksum.h> 117 #include <security/mac/mac_framework.h> 118 119 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 120 121 SDT_PROVIDER_DEFINE(pf); 122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 123 "struct pf_kstate *"); 124 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 125 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 126 "struct pf_kstate *"); 127 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *", 128 "struct pfi_kkif *"); 129 SDT_PROBE_DEFINE4(pf, ip, route_to, entry, "struct mbuf *", 130 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *"); 131 SDT_PROBE_DEFINE1(pf, ip, route_to, drop, "int"); 132 SDT_PROBE_DEFINE2(pf, ip, route_to, output, "struct ifnet *", "int"); 133 SDT_PROBE_DEFINE4(pf, ip6, route_to, entry, "struct mbuf *", 134 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *"); 135 SDT_PROBE_DEFINE1(pf, ip6, route_to, drop, "int"); 136 SDT_PROBE_DEFINE2(pf, ip6, route_to, output, "struct ifnet *", "int"); 137 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *", 138 "struct pf_krule *", "struct mbuf *", "int"); 139 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t", 140 "struct pf_sctp_source *"); 141 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t", 142 "struct pf_kstate *", "struct pf_sctp_source *"); 143 SDT_PROBE_DEFINE4(pf, sctp, multihome_scan, entry, "int", 144 "int", "struct pf_pdesc *", "int"); 145 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, param, "uint16_t", "uint16_t"); 146 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv4, "struct in_addr *", 147 "int"); 148 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv6, "struct in_addr6 *", 149 "int"); 150 151 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 152 "struct mbuf *"); 153 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 154 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 155 "int", "struct pf_keth_rule *", "char *"); 156 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 157 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 158 "int", "struct pf_keth_rule *"); 159 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t"); 160 161 /* 162 * Global variables 163 */ 164 165 /* state tables */ 166 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 167 VNET_DEFINE(struct pf_kpalist, pf_pabuf[2]); 168 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 169 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 170 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 171 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 172 VNET_DEFINE(struct pf_kstatus, pf_status); 173 174 VNET_DEFINE(u_int32_t, ticket_altqs_active); 175 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 176 VNET_DEFINE(int, altqs_inactive_open); 177 VNET_DEFINE(u_int32_t, ticket_pabuf); 178 179 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 180 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 181 VNET_DEFINE(u_char, pf_tcp_secret[16]); 182 #define V_pf_tcp_secret VNET(pf_tcp_secret) 183 VNET_DEFINE(int, pf_tcp_secret_init); 184 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 185 VNET_DEFINE(int, pf_tcp_iss_off); 186 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 187 VNET_DECLARE(int, pf_vnet_active); 188 #define V_pf_vnet_active VNET(pf_vnet_active) 189 190 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 191 #define V_pf_purge_idx VNET(pf_purge_idx) 192 193 #ifdef PF_WANT_32_TO_64_COUNTER 194 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 195 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 196 197 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 198 VNET_DEFINE(size_t, pf_allrulecount); 199 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 200 #endif 201 202 struct pf_sctp_endpoint; 203 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint); 204 struct pf_sctp_source { 205 sa_family_t af; 206 struct pf_addr addr; 207 TAILQ_ENTRY(pf_sctp_source) entry; 208 }; 209 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source); 210 struct pf_sctp_endpoint 211 { 212 uint32_t v_tag; 213 struct pf_sctp_sources sources; 214 RB_ENTRY(pf_sctp_endpoint) entry; 215 }; 216 static int 217 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b) 218 { 219 return (a->v_tag - b->v_tag); 220 } 221 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 222 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 223 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints); 224 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints) 225 static struct mtx_padalign pf_sctp_endpoints_mtx; 226 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF); 227 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx) 228 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx) 229 230 /* 231 * Queue for pf_intr() sends. 232 */ 233 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 234 struct pf_send_entry { 235 STAILQ_ENTRY(pf_send_entry) pfse_next; 236 struct mbuf *pfse_m; 237 enum { 238 PFSE_IP, 239 PFSE_IP6, 240 PFSE_ICMP, 241 PFSE_ICMP6, 242 } pfse_type; 243 struct { 244 int type; 245 int code; 246 int mtu; 247 } icmpopts; 248 }; 249 250 STAILQ_HEAD(pf_send_head, pf_send_entry); 251 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 252 #define V_pf_sendqueue VNET(pf_sendqueue) 253 254 static struct mtx_padalign pf_sendqueue_mtx; 255 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 256 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 257 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 258 259 /* 260 * Queue for pf_overload_task() tasks. 261 */ 262 struct pf_overload_entry { 263 SLIST_ENTRY(pf_overload_entry) next; 264 struct pf_addr addr; 265 sa_family_t af; 266 uint8_t dir; 267 struct pf_krule *rule; 268 }; 269 270 SLIST_HEAD(pf_overload_head, pf_overload_entry); 271 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 272 #define V_pf_overloadqueue VNET(pf_overloadqueue) 273 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 274 #define V_pf_overloadtask VNET(pf_overloadtask) 275 276 static struct mtx_padalign pf_overloadqueue_mtx; 277 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 278 "pf overload/flush queue", MTX_DEF); 279 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 280 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 281 282 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 283 struct mtx_padalign pf_unlnkdrules_mtx; 284 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 285 MTX_DEF); 286 287 struct sx pf_config_lock; 288 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 289 290 struct mtx_padalign pf_table_stats_lock; 291 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 292 MTX_DEF); 293 294 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 295 #define V_pf_sources_z VNET(pf_sources_z) 296 uma_zone_t pf_mtag_z; 297 VNET_DEFINE(uma_zone_t, pf_state_z); 298 VNET_DEFINE(uma_zone_t, pf_state_key_z); 299 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z); 300 301 VNET_DEFINE(struct unrhdr64, pf_stateid); 302 303 static void pf_src_tree_remove_state(struct pf_kstate *); 304 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 305 u_int32_t); 306 static void pf_add_threshold(struct pf_threshold *); 307 static int pf_check_threshold(struct pf_threshold *); 308 309 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 310 u_int16_t *, u_int16_t *, struct pf_addr *, 311 u_int16_t, u_int8_t, sa_family_t, sa_family_t); 312 static int pf_modulate_sack(struct pf_pdesc *, 313 struct tcphdr *, struct pf_state_peer *); 314 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *, 315 int *, u_int16_t *, u_int16_t *); 316 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 317 struct pf_addr *, struct pf_addr *, u_int16_t, 318 u_int16_t *, u_int16_t *, u_int16_t *, 319 u_int16_t *, u_int8_t, sa_family_t); 320 int pf_change_icmp_af(struct mbuf *, int, 321 struct pf_pdesc *, struct pf_pdesc *, 322 struct pf_addr *, struct pf_addr *, sa_family_t, 323 sa_family_t); 324 int pf_translate_icmp_af(int, void *); 325 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 326 sa_family_t, struct pf_krule *, int); 327 static void pf_detach_state(struct pf_kstate *); 328 static int pf_state_key_attach(struct pf_state_key *, 329 struct pf_state_key *, struct pf_kstate *); 330 static void pf_state_key_detach(struct pf_kstate *, int); 331 static int pf_state_key_ctor(void *, int, void *, int); 332 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 333 static __inline void pf_dummynet_flag_remove(struct mbuf *m, 334 struct pf_mtag *pf_mtag); 335 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *, 336 struct pf_krule *, struct mbuf **); 337 static int pf_dummynet_route(struct pf_pdesc *, 338 struct pf_kstate *, struct pf_krule *, 339 struct ifnet *, struct sockaddr *, struct mbuf **); 340 static int pf_test_eth_rule(int, struct pfi_kkif *, 341 struct mbuf **); 342 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 343 struct pf_pdesc *, struct pf_krule **, 344 struct pf_kruleset **, struct inpcb *); 345 static int pf_create_state(struct pf_krule *, struct pf_krule *, 346 struct pf_krule *, struct pf_pdesc *, 347 struct pf_state_key *, struct pf_state_key *, int *, 348 struct pf_kstate **, int, u_int16_t, u_int16_t, 349 struct pf_krule_slist *, struct pf_udp_mapping *); 350 static int pf_state_key_addr_setup(struct pf_pdesc *, 351 struct pf_state_key_cmp *, int); 352 static int pf_tcp_track_full(struct pf_kstate **, 353 struct pf_pdesc *, u_short *, int *); 354 static int pf_tcp_track_sloppy(struct pf_kstate **, 355 struct pf_pdesc *, u_short *); 356 static int pf_test_state_tcp(struct pf_kstate **, 357 struct pf_pdesc *, u_short *); 358 static int pf_test_state_udp(struct pf_kstate **, 359 struct pf_pdesc *); 360 int pf_icmp_state_lookup(struct pf_state_key_cmp *, 361 struct pf_pdesc *, struct pf_kstate **, 362 int, u_int16_t, u_int16_t, 363 int, int *, int, int); 364 static int pf_test_state_icmp(struct pf_kstate **, 365 struct pf_pdesc *, u_short *); 366 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *); 367 static void pf_sctp_multihome_delayed(struct pf_pdesc *, 368 struct pfi_kkif *, struct pf_kstate *, int); 369 static int pf_test_state_sctp(struct pf_kstate **, 370 struct pf_pdesc *, u_short *); 371 static int pf_test_state_other(struct pf_kstate **, 372 struct pf_pdesc *); 373 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 374 int, u_int16_t); 375 static int pf_check_proto_cksum(struct mbuf *, int, int, 376 u_int8_t, sa_family_t); 377 static int pf_walk_option6(struct pf_pdesc *, struct ip6_hdr *, 378 int, int, u_short *); 379 static int pf_walk_header6(struct pf_pdesc *, struct ip6_hdr *, 380 u_short *); 381 static void pf_print_state_parts(struct pf_kstate *, 382 struct pf_state_key *, struct pf_state_key *); 383 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 384 bool, u_int8_t); 385 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 386 const struct pf_state_key_cmp *, u_int); 387 static bool pf_src_connlimit(struct pf_kstate *); 388 static int pf_match_rcvif(struct mbuf *, struct pf_krule *); 389 static void pf_counters_inc(int, struct pf_pdesc *, 390 struct pf_kstate *, struct pf_krule *, 391 struct pf_krule *); 392 static void pf_overload_task(void *v, int pending); 393 static u_short pf_insert_src_node(struct pf_ksrc_node **, 394 struct pf_srchash **, struct pf_krule *, 395 struct pf_addr *, sa_family_t, struct pf_addr *, 396 struct pfi_kkif *); 397 static u_int pf_purge_expired_states(u_int, int); 398 static void pf_purge_unlinked_rules(void); 399 static int pf_mtag_uminit(void *, int, int); 400 static void pf_mtag_free(struct m_tag *); 401 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 402 int, struct pf_state_key *); 403 #ifdef INET 404 static void pf_route(struct mbuf **, struct pf_krule *, 405 struct ifnet *, struct pf_kstate *, 406 struct pf_pdesc *, struct inpcb *); 407 #endif /* INET */ 408 #ifdef INET6 409 static void pf_change_a6(struct pf_addr *, u_int16_t *, 410 struct pf_addr *, u_int8_t); 411 static void pf_route6(struct mbuf **, struct pf_krule *, 412 struct ifnet *, struct pf_kstate *, 413 struct pf_pdesc *, struct inpcb *); 414 #endif /* INET6 */ 415 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 416 417 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 418 419 extern int pf_end_threads; 420 extern struct proc *pf_purge_proc; 421 422 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 423 424 enum { PF_ICMP_MULTI_NONE, PF_ICMP_MULTI_LINK }; 425 426 #define PACKET_UNDO_NAT(_m, _pd, _off, _s) \ 427 do { \ 428 struct pf_state_key *nk; \ 429 if ((pd->dir) == PF_OUT) \ 430 nk = (_s)->key[PF_SK_STACK]; \ 431 else \ 432 nk = (_s)->key[PF_SK_WIRE]; \ 433 pf_packet_rework_nat(_m, _pd, _off, nk); \ 434 } while (0) 435 436 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 437 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED) 438 439 #define STATE_LOOKUP(k, s, pd) \ 440 do { \ 441 (s) = pf_find_state((pd->kif), (k), (pd->dir)); \ 442 SDT_PROBE5(pf, ip, state, lookup, pd->kif, k, (pd->dir), pd, (s)); \ 443 if ((s) == NULL) \ 444 return (PF_DROP); \ 445 if (PACKET_LOOPED(pd)) \ 446 return (PF_PASS); \ 447 } while (0) 448 449 static struct pfi_kkif * 450 BOUND_IFACE(struct pf_kstate *st, struct pf_pdesc *pd) 451 { 452 struct pfi_kkif *k = pd->kif; 453 454 SDT_PROBE2(pf, ip, , bound_iface, st, k); 455 456 /* Floating unless otherwise specified. */ 457 if (! (st->rule->rule_flag & PFRULE_IFBOUND)) 458 return (V_pfi_all); 459 460 /* 461 * Initially set to all, because we don't know what interface we'll be 462 * sending this out when we create the state. 463 */ 464 if (st->rule->rt == PF_REPLYTO || (pd->af != pd->naf)) 465 return (V_pfi_all); 466 467 /* Don't overrule the interface for states created on incoming packets. */ 468 if (st->direction == PF_IN) 469 return (k); 470 471 /* No route-to, so don't overrule. */ 472 if (st->act.rt != PF_ROUTETO) 473 return (k); 474 475 /* Bind to the route-to interface. */ 476 return (st->act.rt_kif); 477 } 478 479 #define STATE_INC_COUNTERS(s) \ 480 do { \ 481 struct pf_krule_item *mrm; \ 482 counter_u64_add(s->rule->states_cur, 1); \ 483 counter_u64_add(s->rule->states_tot, 1); \ 484 if (s->anchor != NULL) { \ 485 counter_u64_add(s->anchor->states_cur, 1); \ 486 counter_u64_add(s->anchor->states_tot, 1); \ 487 } \ 488 if (s->nat_rule != NULL) { \ 489 counter_u64_add(s->nat_rule->states_cur, 1);\ 490 counter_u64_add(s->nat_rule->states_tot, 1);\ 491 } \ 492 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 493 counter_u64_add(mrm->r->states_cur, 1); \ 494 counter_u64_add(mrm->r->states_tot, 1); \ 495 } \ 496 } while (0) 497 498 #define STATE_DEC_COUNTERS(s) \ 499 do { \ 500 struct pf_krule_item *mrm; \ 501 if (s->nat_rule != NULL) \ 502 counter_u64_add(s->nat_rule->states_cur, -1);\ 503 if (s->anchor != NULL) \ 504 counter_u64_add(s->anchor->states_cur, -1); \ 505 counter_u64_add(s->rule->states_cur, -1); \ 506 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 507 counter_u64_add(mrm->r->states_cur, -1); \ 508 } while (0) 509 510 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 511 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 512 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 513 VNET_DEFINE(struct pf_idhash *, pf_idhash); 514 VNET_DEFINE(struct pf_srchash *, pf_srchash); 515 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash); 516 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping); 517 518 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 519 "pf(4)"); 520 521 VNET_DEFINE(u_long, pf_hashmask); 522 VNET_DEFINE(u_long, pf_srchashmask); 523 VNET_DEFINE(u_long, pf_udpendpointhashmask); 524 VNET_DEFINE_STATIC(u_long, pf_hashsize); 525 #define V_pf_hashsize VNET(pf_hashsize) 526 VNET_DEFINE_STATIC(u_long, pf_srchashsize); 527 #define V_pf_srchashsize VNET(pf_srchashsize) 528 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize); 529 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize) 530 u_long pf_ioctl_maxcount = 65535; 531 532 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 533 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 534 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 535 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 536 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 537 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable"); 538 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 539 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 540 541 VNET_DEFINE(void *, pf_swi_cookie); 542 VNET_DEFINE(struct intr_event *, pf_swi_ie); 543 544 VNET_DEFINE(uint32_t, pf_hashseed); 545 #define V_pf_hashseed VNET(pf_hashseed) 546 547 static void 548 pf_sctp_checksum(struct mbuf *m, int off) 549 { 550 uint32_t sum = 0; 551 552 /* Zero out the checksum, to enable recalculation. */ 553 m_copyback(m, off + offsetof(struct sctphdr, checksum), 554 sizeof(sum), (caddr_t)&sum); 555 556 sum = sctp_calculate_cksum(m, off); 557 558 m_copyback(m, off + offsetof(struct sctphdr, checksum), 559 sizeof(sum), (caddr_t)&sum); 560 } 561 562 int 563 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 564 { 565 566 switch (af) { 567 #ifdef INET 568 case AF_INET: 569 if (a->addr32[0] > b->addr32[0]) 570 return (1); 571 if (a->addr32[0] < b->addr32[0]) 572 return (-1); 573 break; 574 #endif /* INET */ 575 #ifdef INET6 576 case AF_INET6: 577 if (a->addr32[3] > b->addr32[3]) 578 return (1); 579 if (a->addr32[3] < b->addr32[3]) 580 return (-1); 581 if (a->addr32[2] > b->addr32[2]) 582 return (1); 583 if (a->addr32[2] < b->addr32[2]) 584 return (-1); 585 if (a->addr32[1] > b->addr32[1]) 586 return (1); 587 if (a->addr32[1] < b->addr32[1]) 588 return (-1); 589 if (a->addr32[0] > b->addr32[0]) 590 return (1); 591 if (a->addr32[0] < b->addr32[0]) 592 return (-1); 593 break; 594 #endif /* INET6 */ 595 } 596 return (0); 597 } 598 599 static bool 600 pf_is_loopback(sa_family_t af, struct pf_addr *addr) 601 { 602 switch (af) { 603 #ifdef INET 604 case AF_INET: 605 return IN_LOOPBACK(ntohl(addr->v4.s_addr)); 606 #endif 607 case AF_INET6: 608 return IN6_IS_ADDR_LOOPBACK(&addr->v6); 609 default: 610 panic("Unknown af %d", af); 611 } 612 } 613 614 static void 615 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 616 struct pf_state_key *nk) 617 { 618 619 switch (pd->proto) { 620 case IPPROTO_TCP: { 621 struct tcphdr *th = &pd->hdr.tcp; 622 623 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 624 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 625 &th->th_sum, &nk->addr[pd->sidx], 626 nk->port[pd->sidx], 0, pd->af, pd->naf); 627 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 628 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 629 &th->th_sum, &nk->addr[pd->didx], 630 nk->port[pd->didx], 0, pd->af, pd->naf); 631 m_copyback(m, off, sizeof(*th), (caddr_t)th); 632 break; 633 } 634 case IPPROTO_UDP: { 635 struct udphdr *uh = &pd->hdr.udp; 636 637 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 638 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 639 &uh->uh_sum, &nk->addr[pd->sidx], 640 nk->port[pd->sidx], 1, pd->af, pd->naf); 641 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 642 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 643 &uh->uh_sum, &nk->addr[pd->didx], 644 nk->port[pd->didx], 1, pd->af, pd->naf); 645 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 646 break; 647 } 648 case IPPROTO_SCTP: { 649 struct sctphdr *sh = &pd->hdr.sctp; 650 uint16_t checksum = 0; 651 652 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 653 pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum, 654 &checksum, &nk->addr[pd->sidx], 655 nk->port[pd->sidx], 1, pd->af, pd->naf); 656 } 657 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 658 pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum, 659 &checksum, &nk->addr[pd->didx], 660 nk->port[pd->didx], 1, pd->af, pd->naf); 661 } 662 663 break; 664 } 665 case IPPROTO_ICMP: { 666 struct icmp *ih = &pd->hdr.icmp; 667 668 if (nk->port[pd->sidx] != ih->icmp_id) { 669 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 670 ih->icmp_cksum, ih->icmp_id, 671 nk->port[pd->sidx], 0); 672 ih->icmp_id = nk->port[pd->sidx]; 673 pd->sport = &ih->icmp_id; 674 675 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 676 } 677 /* FALLTHROUGH */ 678 } 679 default: 680 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 681 switch (pd->af) { 682 case AF_INET: 683 pf_change_a(&pd->src->v4.s_addr, 684 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 685 0); 686 break; 687 case AF_INET6: 688 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 689 break; 690 } 691 } 692 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 693 switch (pd->af) { 694 case AF_INET: 695 pf_change_a(&pd->dst->v4.s_addr, 696 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 697 0); 698 break; 699 case AF_INET6: 700 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 701 break; 702 } 703 } 704 break; 705 } 706 } 707 708 static __inline uint32_t 709 pf_hashkey(const struct pf_state_key *sk) 710 { 711 uint32_t h; 712 713 h = murmur3_32_hash32((const uint32_t *)sk, 714 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 715 V_pf_hashseed); 716 717 return (h & V_pf_hashmask); 718 } 719 720 __inline uint32_t 721 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 722 { 723 uint32_t h; 724 725 switch (af) { 726 case AF_INET: 727 h = murmur3_32_hash32((uint32_t *)&addr->v4, 728 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 729 break; 730 case AF_INET6: 731 h = murmur3_32_hash32((uint32_t *)&addr->v6, 732 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 733 break; 734 } 735 736 return (h & V_pf_srchashmask); 737 } 738 739 static inline uint32_t 740 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint) 741 { 742 uint32_t h; 743 744 h = murmur3_32_hash32((uint32_t *)endpoint, 745 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t), 746 V_pf_hashseed); 747 return (h & V_pf_udpendpointhashmask); 748 } 749 750 #ifdef ALTQ 751 static int 752 pf_state_hash(struct pf_kstate *s) 753 { 754 u_int32_t hv = (intptr_t)s / sizeof(*s); 755 756 hv ^= crc32(&s->src, sizeof(s->src)); 757 hv ^= crc32(&s->dst, sizeof(s->dst)); 758 if (hv == 0) 759 hv = 1; 760 return (hv); 761 } 762 #endif 763 764 static __inline void 765 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 766 { 767 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 768 s->dst.state = newstate; 769 if (which == PF_PEER_DST) 770 return; 771 if (s->src.state == newstate) 772 return; 773 if (s->creatorid == V_pf_status.hostid && 774 s->key[PF_SK_STACK] != NULL && 775 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 776 !(TCPS_HAVEESTABLISHED(s->src.state) || 777 s->src.state == TCPS_CLOSED) && 778 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 779 atomic_add_32(&V_pf_status.states_halfopen, -1); 780 781 s->src.state = newstate; 782 } 783 784 #ifdef INET6 785 void 786 pf_addrcpy(struct pf_addr *dst, const struct pf_addr *src, sa_family_t af) 787 { 788 switch (af) { 789 #ifdef INET 790 case AF_INET: 791 memcpy(&dst->v4, &src->v4, sizeof(dst->v4)); 792 break; 793 #endif /* INET */ 794 case AF_INET6: 795 memcpy(&dst->v6, &src->v6, sizeof(dst->v6)); 796 break; 797 } 798 } 799 #endif /* INET6 */ 800 801 static void 802 pf_init_threshold(struct pf_threshold *threshold, 803 u_int32_t limit, u_int32_t seconds) 804 { 805 threshold->limit = limit * PF_THRESHOLD_MULT; 806 threshold->seconds = seconds; 807 threshold->count = 0; 808 threshold->last = time_uptime; 809 } 810 811 static void 812 pf_add_threshold(struct pf_threshold *threshold) 813 { 814 u_int32_t t = time_uptime, diff = t - threshold->last; 815 816 if (diff >= threshold->seconds) 817 threshold->count = 0; 818 else 819 threshold->count -= threshold->count * diff / 820 threshold->seconds; 821 threshold->count += PF_THRESHOLD_MULT; 822 threshold->last = t; 823 } 824 825 static int 826 pf_check_threshold(struct pf_threshold *threshold) 827 { 828 return (threshold->count > threshold->limit); 829 } 830 831 static bool 832 pf_src_connlimit(struct pf_kstate *state) 833 { 834 struct pf_overload_entry *pfoe; 835 bool limited = false; 836 837 PF_STATE_LOCK_ASSERT(state); 838 PF_SRC_NODE_LOCK(state->src_node); 839 840 state->src_node->conn++; 841 state->src.tcp_est = 1; 842 pf_add_threshold(&state->src_node->conn_rate); 843 844 if (state->rule->max_src_conn && 845 state->rule->max_src_conn < 846 state->src_node->conn) { 847 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 848 limited = true; 849 } 850 851 if (state->rule->max_src_conn_rate.limit && 852 pf_check_threshold(&state->src_node->conn_rate)) { 853 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 854 limited = true; 855 } 856 857 if (!limited) 858 goto done; 859 860 /* Kill this state. */ 861 state->timeout = PFTM_PURGE; 862 pf_set_protostate(state, PF_PEER_BOTH, TCPS_CLOSED); 863 864 if (state->rule->overload_tbl == NULL) 865 goto done; 866 867 /* Schedule overloading and flushing task. */ 868 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 869 if (pfoe == NULL) 870 goto done; /* too bad :( */ 871 872 bcopy(&state->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 873 pfoe->af = state->key[PF_SK_WIRE]->af; 874 pfoe->rule = state->rule; 875 pfoe->dir = state->direction; 876 PF_OVERLOADQ_LOCK(); 877 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 878 PF_OVERLOADQ_UNLOCK(); 879 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 880 881 done: 882 PF_SRC_NODE_UNLOCK(state->src_node); 883 return (limited); 884 } 885 886 static void 887 pf_overload_task(void *v, int pending) 888 { 889 struct pf_overload_head queue; 890 struct pfr_addr p; 891 struct pf_overload_entry *pfoe, *pfoe1; 892 uint32_t killed = 0; 893 894 CURVNET_SET((struct vnet *)v); 895 896 PF_OVERLOADQ_LOCK(); 897 queue = V_pf_overloadqueue; 898 SLIST_INIT(&V_pf_overloadqueue); 899 PF_OVERLOADQ_UNLOCK(); 900 901 bzero(&p, sizeof(p)); 902 SLIST_FOREACH(pfoe, &queue, next) { 903 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 904 if (V_pf_status.debug >= PF_DEBUG_MISC) { 905 printf("%s: blocking address ", __func__); 906 pf_print_host(&pfoe->addr, 0, pfoe->af); 907 printf("\n"); 908 } 909 910 p.pfra_af = pfoe->af; 911 switch (pfoe->af) { 912 #ifdef INET 913 case AF_INET: 914 p.pfra_net = 32; 915 p.pfra_ip4addr = pfoe->addr.v4; 916 break; 917 #endif 918 #ifdef INET6 919 case AF_INET6: 920 p.pfra_net = 128; 921 p.pfra_ip6addr = pfoe->addr.v6; 922 break; 923 #endif 924 } 925 926 PF_RULES_WLOCK(); 927 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 928 PF_RULES_WUNLOCK(); 929 } 930 931 /* 932 * Remove those entries, that don't need flushing. 933 */ 934 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 935 if (pfoe->rule->flush == 0) { 936 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 937 free(pfoe, M_PFTEMP); 938 } else 939 counter_u64_add( 940 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 941 942 /* If nothing to flush, return. */ 943 if (SLIST_EMPTY(&queue)) { 944 CURVNET_RESTORE(); 945 return; 946 } 947 948 for (int i = 0; i <= V_pf_hashmask; i++) { 949 struct pf_idhash *ih = &V_pf_idhash[i]; 950 struct pf_state_key *sk; 951 struct pf_kstate *s; 952 953 PF_HASHROW_LOCK(ih); 954 LIST_FOREACH(s, &ih->states, entry) { 955 sk = s->key[PF_SK_WIRE]; 956 SLIST_FOREACH(pfoe, &queue, next) 957 if (sk->af == pfoe->af && 958 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 959 pfoe->rule == s->rule) && 960 ((pfoe->dir == PF_OUT && 961 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 962 (pfoe->dir == PF_IN && 963 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 964 s->timeout = PFTM_PURGE; 965 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 966 killed++; 967 } 968 } 969 PF_HASHROW_UNLOCK(ih); 970 } 971 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 972 free(pfoe, M_PFTEMP); 973 if (V_pf_status.debug >= PF_DEBUG_MISC) 974 printf("%s: %u states killed", __func__, killed); 975 976 CURVNET_RESTORE(); 977 } 978 979 /* 980 * On node found always returns locked. On not found its configurable. 981 */ 982 struct pf_ksrc_node * 983 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 984 struct pf_srchash **sh, bool returnlocked) 985 { 986 struct pf_ksrc_node *n; 987 988 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 989 990 *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 991 PF_HASHROW_LOCK(*sh); 992 LIST_FOREACH(n, &(*sh)->nodes, entry) 993 if (n->rule == rule && n->af == af && 994 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 995 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 996 break; 997 998 if (n == NULL && !returnlocked) 999 PF_HASHROW_UNLOCK(*sh); 1000 1001 return (n); 1002 } 1003 1004 bool 1005 pf_src_node_exists(struct pf_ksrc_node **sn, struct pf_srchash *sh) 1006 { 1007 struct pf_ksrc_node *cur; 1008 1009 if ((*sn) == NULL) 1010 return (false); 1011 1012 KASSERT(sh != NULL, ("%s: sh is NULL", __func__)); 1013 1014 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 1015 PF_HASHROW_LOCK(sh); 1016 LIST_FOREACH(cur, &(sh->nodes), entry) { 1017 if (cur == (*sn) && 1018 cur->expire != 1) /* Ignore nodes being killed */ 1019 return (true); 1020 } 1021 PF_HASHROW_UNLOCK(sh); 1022 (*sn) = NULL; 1023 return (false); 1024 } 1025 1026 static void 1027 pf_free_src_node(struct pf_ksrc_node *sn) 1028 { 1029 1030 for (int i = 0; i < 2; i++) { 1031 counter_u64_free(sn->bytes[i]); 1032 counter_u64_free(sn->packets[i]); 1033 } 1034 uma_zfree(V_pf_sources_z, sn); 1035 } 1036 1037 static u_short 1038 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_srchash **sh, 1039 struct pf_krule *rule, struct pf_addr *src, sa_family_t af, 1040 struct pf_addr *raddr, struct pfi_kkif *rkif) 1041 { 1042 u_short reason = 0; 1043 1044 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 1045 rule->rdr.opts & PF_POOL_STICKYADDR), 1046 ("%s for non-tracking rule %p", __func__, rule)); 1047 1048 /* 1049 * Request the sh to always be locked, as we might insert a new sn. 1050 */ 1051 if (*sn == NULL) 1052 *sn = pf_find_src_node(src, rule, af, sh, true); 1053 1054 if (*sn == NULL) { 1055 PF_HASHROW_ASSERT(*sh); 1056 1057 if (rule->max_src_nodes && 1058 counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) { 1059 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); 1060 reason = PFRES_SRCLIMIT; 1061 goto done; 1062 } 1063 1064 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 1065 if ((*sn) == NULL) { 1066 reason = PFRES_MEMORY; 1067 goto done; 1068 } 1069 1070 for (int i = 0; i < 2; i++) { 1071 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 1072 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 1073 1074 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 1075 pf_free_src_node(*sn); 1076 reason = PFRES_MEMORY; 1077 goto done; 1078 } 1079 } 1080 1081 pf_init_threshold(&(*sn)->conn_rate, 1082 rule->max_src_conn_rate.limit, 1083 rule->max_src_conn_rate.seconds); 1084 1085 MPASS((*sn)->lock == NULL); 1086 (*sn)->lock = &(*sh)->lock; 1087 1088 (*sn)->af = af; 1089 (*sn)->rule = rule; 1090 PF_ACPY(&(*sn)->addr, src, af); 1091 PF_ACPY(&(*sn)->raddr, raddr, af); 1092 (*sn)->rkif = rkif; 1093 LIST_INSERT_HEAD(&(*sh)->nodes, *sn, entry); 1094 (*sn)->creation = time_uptime; 1095 (*sn)->ruletype = rule->action; 1096 if ((*sn)->rule != NULL) 1097 counter_u64_add((*sn)->rule->src_nodes, 1); 1098 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 1099 } else { 1100 if (rule->max_src_states && 1101 (*sn)->states >= rule->max_src_states) { 1102 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 1103 1); 1104 reason = PFRES_SRCLIMIT; 1105 goto done; 1106 } 1107 } 1108 done: 1109 if (reason == 0) 1110 (*sn)->states++; 1111 else 1112 (*sn) = NULL; 1113 1114 PF_HASHROW_UNLOCK(*sh); 1115 return (reason); 1116 } 1117 1118 void 1119 pf_unlink_src_node(struct pf_ksrc_node *src) 1120 { 1121 PF_SRC_NODE_LOCK_ASSERT(src); 1122 1123 LIST_REMOVE(src, entry); 1124 if (src->rule) 1125 counter_u64_add(src->rule->src_nodes, -1); 1126 } 1127 1128 u_int 1129 pf_free_src_nodes(struct pf_ksrc_node_list *head) 1130 { 1131 struct pf_ksrc_node *sn, *tmp; 1132 u_int count = 0; 1133 1134 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 1135 pf_free_src_node(sn); 1136 count++; 1137 } 1138 1139 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 1140 1141 return (count); 1142 } 1143 1144 void 1145 pf_mtag_initialize(void) 1146 { 1147 1148 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 1149 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 1150 UMA_ALIGN_PTR, 0); 1151 } 1152 1153 /* Per-vnet data storage structures initialization. */ 1154 void 1155 pf_initialize(void) 1156 { 1157 struct pf_keyhash *kh; 1158 struct pf_idhash *ih; 1159 struct pf_srchash *sh; 1160 struct pf_udpendpointhash *uh; 1161 u_int i; 1162 1163 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 1164 V_pf_hashsize = PF_HASHSIZ; 1165 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 1166 V_pf_srchashsize = PF_SRCHASHSIZ; 1167 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize)) 1168 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1169 1170 V_pf_hashseed = arc4random(); 1171 1172 /* States and state keys storage. */ 1173 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1174 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1175 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1176 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1177 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1178 1179 V_pf_state_key_z = uma_zcreate("pf state keys", 1180 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1181 UMA_ALIGN_PTR, 0); 1182 1183 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash), 1184 M_PFHASH, M_NOWAIT | M_ZERO); 1185 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash), 1186 M_PFHASH, M_NOWAIT | M_ZERO); 1187 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1188 printf("pf: Unable to allocate memory for " 1189 "state_hashsize %lu.\n", V_pf_hashsize); 1190 1191 free(V_pf_keyhash, M_PFHASH); 1192 free(V_pf_idhash, M_PFHASH); 1193 1194 V_pf_hashsize = PF_HASHSIZ; 1195 V_pf_keyhash = mallocarray(V_pf_hashsize, 1196 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1197 V_pf_idhash = mallocarray(V_pf_hashsize, 1198 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1199 } 1200 1201 V_pf_hashmask = V_pf_hashsize - 1; 1202 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 1203 i++, kh++, ih++) { 1204 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1205 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1206 } 1207 1208 /* Source nodes. */ 1209 V_pf_sources_z = uma_zcreate("pf source nodes", 1210 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1211 0); 1212 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1213 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1214 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1215 1216 V_pf_srchash = mallocarray(V_pf_srchashsize, 1217 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1218 if (V_pf_srchash == NULL) { 1219 printf("pf: Unable to allocate memory for " 1220 "source_hashsize %lu.\n", V_pf_srchashsize); 1221 1222 V_pf_srchashsize = PF_SRCHASHSIZ; 1223 V_pf_srchash = mallocarray(V_pf_srchashsize, 1224 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1225 } 1226 1227 V_pf_srchashmask = V_pf_srchashsize - 1; 1228 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 1229 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1230 1231 1232 /* UDP endpoint mappings. */ 1233 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings", 1234 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL, 1235 UMA_ALIGN_PTR, 0); 1236 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1237 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO); 1238 if (V_pf_udpendpointhash == NULL) { 1239 printf("pf: Unable to allocate memory for " 1240 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize); 1241 1242 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1243 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1244 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO); 1245 } 1246 1247 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1; 1248 for (i = 0, uh = V_pf_udpendpointhash; 1249 i <= V_pf_udpendpointhashmask; 1250 i++, uh++) { 1251 mtx_init(&uh->lock, "pf_udpendpointhash", NULL, 1252 MTX_DEF | MTX_DUPOK); 1253 } 1254 1255 /* ALTQ */ 1256 TAILQ_INIT(&V_pf_altqs[0]); 1257 TAILQ_INIT(&V_pf_altqs[1]); 1258 TAILQ_INIT(&V_pf_altqs[2]); 1259 TAILQ_INIT(&V_pf_altqs[3]); 1260 TAILQ_INIT(&V_pf_pabuf[0]); 1261 TAILQ_INIT(&V_pf_pabuf[1]); 1262 V_pf_altqs_active = &V_pf_altqs[0]; 1263 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1264 V_pf_altqs_inactive = &V_pf_altqs[2]; 1265 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1266 1267 /* Send & overload+flush queues. */ 1268 STAILQ_INIT(&V_pf_sendqueue); 1269 SLIST_INIT(&V_pf_overloadqueue); 1270 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1271 1272 /* Unlinked, but may be referenced rules. */ 1273 TAILQ_INIT(&V_pf_unlinked_rules); 1274 } 1275 1276 void 1277 pf_mtag_cleanup(void) 1278 { 1279 1280 uma_zdestroy(pf_mtag_z); 1281 } 1282 1283 void 1284 pf_cleanup(void) 1285 { 1286 struct pf_keyhash *kh; 1287 struct pf_idhash *ih; 1288 struct pf_srchash *sh; 1289 struct pf_udpendpointhash *uh; 1290 struct pf_send_entry *pfse, *next; 1291 u_int i; 1292 1293 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; 1294 i <= V_pf_hashmask; 1295 i++, kh++, ih++) { 1296 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1297 __func__)); 1298 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1299 __func__)); 1300 mtx_destroy(&kh->lock); 1301 mtx_destroy(&ih->lock); 1302 } 1303 free(V_pf_keyhash, M_PFHASH); 1304 free(V_pf_idhash, M_PFHASH); 1305 1306 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1307 KASSERT(LIST_EMPTY(&sh->nodes), 1308 ("%s: source node hash not empty", __func__)); 1309 mtx_destroy(&sh->lock); 1310 } 1311 free(V_pf_srchash, M_PFHASH); 1312 1313 for (i = 0, uh = V_pf_udpendpointhash; 1314 i <= V_pf_udpendpointhashmask; 1315 i++, uh++) { 1316 KASSERT(LIST_EMPTY(&uh->endpoints), 1317 ("%s: udp endpoint hash not empty", __func__)); 1318 mtx_destroy(&uh->lock); 1319 } 1320 free(V_pf_udpendpointhash, M_PFHASH); 1321 1322 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1323 m_freem(pfse->pfse_m); 1324 free(pfse, M_PFTEMP); 1325 } 1326 MPASS(RB_EMPTY(&V_pf_sctp_endpoints)); 1327 1328 uma_zdestroy(V_pf_sources_z); 1329 uma_zdestroy(V_pf_state_z); 1330 uma_zdestroy(V_pf_state_key_z); 1331 uma_zdestroy(V_pf_udp_mapping_z); 1332 } 1333 1334 static int 1335 pf_mtag_uminit(void *mem, int size, int how) 1336 { 1337 struct m_tag *t; 1338 1339 t = (struct m_tag *)mem; 1340 t->m_tag_cookie = MTAG_ABI_COMPAT; 1341 t->m_tag_id = PACKET_TAG_PF; 1342 t->m_tag_len = sizeof(struct pf_mtag); 1343 t->m_tag_free = pf_mtag_free; 1344 1345 return (0); 1346 } 1347 1348 static void 1349 pf_mtag_free(struct m_tag *t) 1350 { 1351 1352 uma_zfree(pf_mtag_z, t); 1353 } 1354 1355 struct pf_mtag * 1356 pf_get_mtag(struct mbuf *m) 1357 { 1358 struct m_tag *mtag; 1359 1360 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1361 return ((struct pf_mtag *)(mtag + 1)); 1362 1363 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1364 if (mtag == NULL) 1365 return (NULL); 1366 bzero(mtag + 1, sizeof(struct pf_mtag)); 1367 m_tag_prepend(m, mtag); 1368 1369 return ((struct pf_mtag *)(mtag + 1)); 1370 } 1371 1372 static int 1373 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1374 struct pf_kstate *s) 1375 { 1376 struct pf_keyhash *khs, *khw, *kh; 1377 struct pf_state_key *sk, *cur; 1378 struct pf_kstate *si, *olds = NULL; 1379 int idx; 1380 1381 NET_EPOCH_ASSERT(); 1382 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1383 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1384 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1385 1386 /* 1387 * We need to lock hash slots of both keys. To avoid deadlock 1388 * we always lock the slot with lower address first. Unlock order 1389 * isn't important. 1390 * 1391 * We also need to lock ID hash slot before dropping key 1392 * locks. On success we return with ID hash slot locked. 1393 */ 1394 1395 if (skw == sks) { 1396 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1397 PF_HASHROW_LOCK(khs); 1398 } else { 1399 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1400 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1401 if (khs == khw) { 1402 PF_HASHROW_LOCK(khs); 1403 } else if (khs < khw) { 1404 PF_HASHROW_LOCK(khs); 1405 PF_HASHROW_LOCK(khw); 1406 } else { 1407 PF_HASHROW_LOCK(khw); 1408 PF_HASHROW_LOCK(khs); 1409 } 1410 } 1411 1412 #define KEYS_UNLOCK() do { \ 1413 if (khs != khw) { \ 1414 PF_HASHROW_UNLOCK(khs); \ 1415 PF_HASHROW_UNLOCK(khw); \ 1416 } else \ 1417 PF_HASHROW_UNLOCK(khs); \ 1418 } while (0) 1419 1420 /* 1421 * First run: start with wire key. 1422 */ 1423 sk = skw; 1424 kh = khw; 1425 idx = PF_SK_WIRE; 1426 1427 MPASS(s->lock == NULL); 1428 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1429 1430 keyattach: 1431 LIST_FOREACH(cur, &kh->keys, entry) 1432 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1433 break; 1434 1435 if (cur != NULL) { 1436 /* Key exists. Check for same kif, if none, add to key. */ 1437 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1438 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1439 1440 PF_HASHROW_LOCK(ih); 1441 if (si->kif == s->kif && 1442 ((si->key[PF_SK_WIRE]->af == sk->af && 1443 si->direction == s->direction) || 1444 (si->key[PF_SK_WIRE]->af != 1445 si->key[PF_SK_STACK]->af && 1446 sk->af == si->key[PF_SK_STACK]->af && 1447 si->direction != s->direction))) { 1448 if (sk->proto == IPPROTO_TCP && 1449 si->src.state >= TCPS_FIN_WAIT_2 && 1450 si->dst.state >= TCPS_FIN_WAIT_2) { 1451 /* 1452 * New state matches an old >FIN_WAIT_2 1453 * state. We can't drop key hash locks, 1454 * thus we can't unlink it properly. 1455 * 1456 * As a workaround we drop it into 1457 * TCPS_CLOSED state, schedule purge 1458 * ASAP and push it into the very end 1459 * of the slot TAILQ, so that it won't 1460 * conflict with our new state. 1461 */ 1462 pf_set_protostate(si, PF_PEER_BOTH, 1463 TCPS_CLOSED); 1464 si->timeout = PFTM_PURGE; 1465 olds = si; 1466 } else { 1467 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1468 printf("pf: %s key attach " 1469 "failed on %s: ", 1470 (idx == PF_SK_WIRE) ? 1471 "wire" : "stack", 1472 s->kif->pfik_name); 1473 pf_print_state_parts(s, 1474 (idx == PF_SK_WIRE) ? 1475 sk : NULL, 1476 (idx == PF_SK_STACK) ? 1477 sk : NULL); 1478 printf(", existing: "); 1479 pf_print_state_parts(si, 1480 (idx == PF_SK_WIRE) ? 1481 sk : NULL, 1482 (idx == PF_SK_STACK) ? 1483 sk : NULL); 1484 printf("\n"); 1485 } 1486 s->timeout = PFTM_UNLINKED; 1487 PF_HASHROW_UNLOCK(ih); 1488 KEYS_UNLOCK(); 1489 if (idx == PF_SK_WIRE) { 1490 uma_zfree(V_pf_state_key_z, skw); 1491 if (skw != sks) 1492 uma_zfree(V_pf_state_key_z, sks); 1493 } else { 1494 pf_detach_state(s); 1495 } 1496 return (EEXIST); /* collision! */ 1497 } 1498 } 1499 PF_HASHROW_UNLOCK(ih); 1500 } 1501 uma_zfree(V_pf_state_key_z, sk); 1502 s->key[idx] = cur; 1503 } else { 1504 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1505 s->key[idx] = sk; 1506 } 1507 1508 stateattach: 1509 /* List is sorted, if-bound states before floating. */ 1510 if (s->kif == V_pfi_all) 1511 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1512 else 1513 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1514 1515 if (olds) { 1516 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1517 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1518 key_list[idx]); 1519 olds = NULL; 1520 } 1521 1522 /* 1523 * Attach done. See how should we (or should not?) 1524 * attach a second key. 1525 */ 1526 if (sks == skw) { 1527 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1528 idx = PF_SK_STACK; 1529 sks = NULL; 1530 goto stateattach; 1531 } else if (sks != NULL) { 1532 /* 1533 * Continue attaching with stack key. 1534 */ 1535 sk = sks; 1536 kh = khs; 1537 idx = PF_SK_STACK; 1538 sks = NULL; 1539 goto keyattach; 1540 } 1541 1542 PF_STATE_LOCK(s); 1543 KEYS_UNLOCK(); 1544 1545 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1546 ("%s failure", __func__)); 1547 1548 return (0); 1549 #undef KEYS_UNLOCK 1550 } 1551 1552 static void 1553 pf_detach_state(struct pf_kstate *s) 1554 { 1555 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1556 struct pf_keyhash *kh; 1557 1558 NET_EPOCH_ASSERT(); 1559 MPASS(s->timeout >= PFTM_MAX); 1560 1561 pf_sctp_multihome_detach_addr(s); 1562 1563 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr) 1564 V_pflow_export_state_ptr(s); 1565 1566 if (sks != NULL) { 1567 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1568 PF_HASHROW_LOCK(kh); 1569 if (s->key[PF_SK_STACK] != NULL) 1570 pf_state_key_detach(s, PF_SK_STACK); 1571 /* 1572 * If both point to same key, then we are done. 1573 */ 1574 if (sks == s->key[PF_SK_WIRE]) { 1575 pf_state_key_detach(s, PF_SK_WIRE); 1576 PF_HASHROW_UNLOCK(kh); 1577 return; 1578 } 1579 PF_HASHROW_UNLOCK(kh); 1580 } 1581 1582 if (s->key[PF_SK_WIRE] != NULL) { 1583 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1584 PF_HASHROW_LOCK(kh); 1585 if (s->key[PF_SK_WIRE] != NULL) 1586 pf_state_key_detach(s, PF_SK_WIRE); 1587 PF_HASHROW_UNLOCK(kh); 1588 } 1589 } 1590 1591 static void 1592 pf_state_key_detach(struct pf_kstate *s, int idx) 1593 { 1594 struct pf_state_key *sk = s->key[idx]; 1595 #ifdef INVARIANTS 1596 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1597 1598 PF_HASHROW_ASSERT(kh); 1599 #endif 1600 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1601 s->key[idx] = NULL; 1602 1603 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1604 LIST_REMOVE(sk, entry); 1605 uma_zfree(V_pf_state_key_z, sk); 1606 } 1607 } 1608 1609 static int 1610 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1611 { 1612 struct pf_state_key *sk = mem; 1613 1614 bzero(sk, sizeof(struct pf_state_key_cmp)); 1615 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1616 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1617 1618 return (0); 1619 } 1620 1621 static int 1622 pf_state_key_addr_setup(struct pf_pdesc *pd, 1623 struct pf_state_key_cmp *key, int multi) 1624 { 1625 struct pf_addr *saddr = pd->src; 1626 struct pf_addr *daddr = pd->dst; 1627 #ifdef INET6 1628 struct nd_neighbor_solicit nd; 1629 struct pf_addr *target; 1630 u_short action, reason; 1631 1632 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6) 1633 goto copy; 1634 1635 switch (pd->hdr.icmp6.icmp6_type) { 1636 case ND_NEIGHBOR_SOLICIT: 1637 if (multi) 1638 return (-1); 1639 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af)) 1640 return (-1); 1641 target = (struct pf_addr *)&nd.nd_ns_target; 1642 daddr = target; 1643 break; 1644 case ND_NEIGHBOR_ADVERT: 1645 if (multi) 1646 return (-1); 1647 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af)) 1648 return (-1); 1649 target = (struct pf_addr *)&nd.nd_ns_target; 1650 saddr = target; 1651 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) { 1652 key->addr[pd->didx].addr32[0] = 0; 1653 key->addr[pd->didx].addr32[1] = 0; 1654 key->addr[pd->didx].addr32[2] = 0; 1655 key->addr[pd->didx].addr32[3] = 0; 1656 daddr = NULL; /* overwritten */ 1657 } 1658 break; 1659 default: 1660 if (multi == PF_ICMP_MULTI_LINK) { 1661 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL; 1662 key->addr[pd->sidx].addr32[1] = 0; 1663 key->addr[pd->sidx].addr32[2] = 0; 1664 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE; 1665 saddr = NULL; /* overwritten */ 1666 } 1667 } 1668 copy: 1669 #endif 1670 if (saddr) 1671 PF_ACPY(&key->addr[pd->sidx], saddr, pd->af); 1672 if (daddr) 1673 PF_ACPY(&key->addr[pd->didx], daddr, pd->af); 1674 1675 return (0); 1676 } 1677 1678 int 1679 pf_state_key_setup(struct pf_pdesc *pd, u_int16_t sport, u_int16_t dport, 1680 struct pf_state_key **sk, struct pf_state_key **nk) 1681 { 1682 *sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1683 if (*sk == NULL) 1684 return (ENOMEM); 1685 1686 if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)*sk, 1687 0)) { 1688 uma_zfree(V_pf_state_key_z, *sk); 1689 *sk = NULL; 1690 return (ENOMEM); 1691 } 1692 1693 (*sk)->port[pd->sidx] = sport; 1694 (*sk)->port[pd->didx] = dport; 1695 (*sk)->proto = pd->proto; 1696 (*sk)->af = pd->af; 1697 1698 *nk = pf_state_key_clone(*sk); 1699 if (*nk == NULL) { 1700 uma_zfree(V_pf_state_key_z, *sk); 1701 *sk = NULL; 1702 return (ENOMEM); 1703 } 1704 1705 if (pd->af != pd->naf) { 1706 (*sk)->port[pd->sidx] = pd->osport; 1707 (*sk)->port[pd->didx] = pd->odport; 1708 1709 (*nk)->af = pd->naf; 1710 1711 /* 1712 * We're overwriting an address here, so potentially there's bits of an IPv6 1713 * address left in here. Clear that out first. 1714 */ 1715 bzero(&(*nk)->addr[0], sizeof((*nk)->addr[0])); 1716 bzero(&(*nk)->addr[1], sizeof((*nk)->addr[1])); 1717 1718 PF_ACPY(&(*nk)->addr[pd->didx], &pd->nsaddr, pd->naf); 1719 PF_ACPY(&(*nk)->addr[pd->sidx], &pd->ndaddr, pd->naf); 1720 (*nk)->port[pd->didx] = pd->nsport; 1721 (*nk)->port[pd->sidx] = pd->ndport; 1722 switch (pd->proto) { 1723 case IPPROTO_ICMP: 1724 (*nk)->proto = IPPROTO_ICMPV6; 1725 break; 1726 case IPPROTO_ICMPV6: 1727 (*nk)->proto = IPPROTO_ICMP; 1728 break; 1729 default: 1730 (*nk)->proto = pd->proto; 1731 } 1732 } 1733 1734 return (0); 1735 } 1736 1737 struct pf_state_key * 1738 pf_state_key_clone(const struct pf_state_key *orig) 1739 { 1740 struct pf_state_key *sk; 1741 1742 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1743 if (sk == NULL) 1744 return (NULL); 1745 1746 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1747 1748 return (sk); 1749 } 1750 1751 int 1752 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1753 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1754 { 1755 struct pf_idhash *ih; 1756 struct pf_kstate *cur; 1757 int error; 1758 1759 NET_EPOCH_ASSERT(); 1760 1761 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1762 ("%s: sks not pristine", __func__)); 1763 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1764 ("%s: skw not pristine", __func__)); 1765 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1766 1767 s->kif = kif; 1768 s->orig_kif = orig_kif; 1769 1770 if (s->id == 0 && s->creatorid == 0) { 1771 s->id = alloc_unr64(&V_pf_stateid); 1772 s->id = htobe64(s->id); 1773 s->creatorid = V_pf_status.hostid; 1774 } 1775 1776 /* Returns with ID locked on success. */ 1777 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1778 return (error); 1779 1780 ih = &V_pf_idhash[PF_IDHASH(s)]; 1781 PF_HASHROW_ASSERT(ih); 1782 LIST_FOREACH(cur, &ih->states, entry) 1783 if (cur->id == s->id && cur->creatorid == s->creatorid) 1784 break; 1785 1786 if (cur != NULL) { 1787 s->timeout = PFTM_UNLINKED; 1788 PF_HASHROW_UNLOCK(ih); 1789 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1790 printf("pf: state ID collision: " 1791 "id: %016llx creatorid: %08x\n", 1792 (unsigned long long)be64toh(s->id), 1793 ntohl(s->creatorid)); 1794 } 1795 pf_detach_state(s); 1796 return (EEXIST); 1797 } 1798 LIST_INSERT_HEAD(&ih->states, s, entry); 1799 /* One for keys, one for ID hash. */ 1800 refcount_init(&s->refs, 2); 1801 1802 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1803 if (V_pfsync_insert_state_ptr != NULL) 1804 V_pfsync_insert_state_ptr(s); 1805 1806 /* Returns locked. */ 1807 return (0); 1808 } 1809 1810 /* 1811 * Find state by ID: returns with locked row on success. 1812 */ 1813 struct pf_kstate * 1814 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1815 { 1816 struct pf_idhash *ih; 1817 struct pf_kstate *s; 1818 1819 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1820 1821 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))]; 1822 1823 PF_HASHROW_LOCK(ih); 1824 LIST_FOREACH(s, &ih->states, entry) 1825 if (s->id == id && s->creatorid == creatorid) 1826 break; 1827 1828 if (s == NULL) 1829 PF_HASHROW_UNLOCK(ih); 1830 1831 return (s); 1832 } 1833 1834 /* 1835 * Find state by key. 1836 * Returns with ID hash slot locked on success. 1837 */ 1838 static struct pf_kstate * 1839 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key, 1840 u_int dir) 1841 { 1842 struct pf_keyhash *kh; 1843 struct pf_state_key *sk; 1844 struct pf_kstate *s; 1845 int idx; 1846 1847 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1848 1849 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1850 1851 PF_HASHROW_LOCK(kh); 1852 LIST_FOREACH(sk, &kh->keys, entry) 1853 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1854 break; 1855 if (sk == NULL) { 1856 PF_HASHROW_UNLOCK(kh); 1857 return (NULL); 1858 } 1859 1860 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1861 1862 /* List is sorted, if-bound states before floating ones. */ 1863 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1864 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) { 1865 PF_STATE_LOCK(s); 1866 PF_HASHROW_UNLOCK(kh); 1867 if (__predict_false(s->timeout >= PFTM_MAX)) { 1868 /* 1869 * State is either being processed by 1870 * pf_unlink_state() in an other thread, or 1871 * is scheduled for immediate expiry. 1872 */ 1873 PF_STATE_UNLOCK(s); 1874 return (NULL); 1875 } 1876 return (s); 1877 } 1878 1879 /* Look through the other list, in case of AF-TO */ 1880 idx = idx == PF_SK_WIRE ? PF_SK_STACK : PF_SK_WIRE; 1881 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1882 if (s->key[PF_SK_WIRE]->af == s->key[PF_SK_STACK]->af) 1883 continue; 1884 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) { 1885 PF_STATE_LOCK(s); 1886 PF_HASHROW_UNLOCK(kh); 1887 if (__predict_false(s->timeout >= PFTM_MAX)) { 1888 /* 1889 * State is either being processed by 1890 * pf_unlink_state() in an other thread, or 1891 * is scheduled for immediate expiry. 1892 */ 1893 PF_STATE_UNLOCK(s); 1894 return (NULL); 1895 } 1896 return (s); 1897 } 1898 } 1899 1900 PF_HASHROW_UNLOCK(kh); 1901 1902 return (NULL); 1903 } 1904 1905 /* 1906 * Returns with ID hash slot locked on success. 1907 */ 1908 struct pf_kstate * 1909 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more) 1910 { 1911 struct pf_keyhash *kh; 1912 struct pf_state_key *sk; 1913 struct pf_kstate *s, *ret = NULL; 1914 int idx, inout = 0; 1915 1916 if (more != NULL) 1917 *more = 0; 1918 1919 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1920 1921 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1922 1923 PF_HASHROW_LOCK(kh); 1924 LIST_FOREACH(sk, &kh->keys, entry) 1925 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1926 break; 1927 if (sk == NULL) { 1928 PF_HASHROW_UNLOCK(kh); 1929 return (NULL); 1930 } 1931 switch (dir) { 1932 case PF_IN: 1933 idx = PF_SK_WIRE; 1934 break; 1935 case PF_OUT: 1936 idx = PF_SK_STACK; 1937 break; 1938 case PF_INOUT: 1939 idx = PF_SK_WIRE; 1940 inout = 1; 1941 break; 1942 default: 1943 panic("%s: dir %u", __func__, dir); 1944 } 1945 second_run: 1946 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1947 if (more == NULL) { 1948 PF_STATE_LOCK(s); 1949 PF_HASHROW_UNLOCK(kh); 1950 return (s); 1951 } 1952 1953 if (ret) 1954 (*more)++; 1955 else { 1956 ret = s; 1957 PF_STATE_LOCK(s); 1958 } 1959 } 1960 if (inout == 1) { 1961 inout = 0; 1962 idx = PF_SK_STACK; 1963 goto second_run; 1964 } 1965 PF_HASHROW_UNLOCK(kh); 1966 1967 return (ret); 1968 } 1969 1970 /* 1971 * FIXME 1972 * This routine is inefficient -- locks the state only to unlock immediately on 1973 * return. 1974 * It is racy -- after the state is unlocked nothing stops other threads from 1975 * removing it. 1976 */ 1977 bool 1978 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir) 1979 { 1980 struct pf_kstate *s; 1981 1982 s = pf_find_state_all(key, dir, NULL); 1983 if (s != NULL) { 1984 PF_STATE_UNLOCK(s); 1985 return (true); 1986 } 1987 return (false); 1988 } 1989 1990 struct pf_udp_mapping * 1991 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port, 1992 struct pf_addr *nat_addr, uint16_t nat_port) 1993 { 1994 struct pf_udp_mapping *mapping; 1995 1996 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO); 1997 if (mapping == NULL) 1998 return (NULL); 1999 PF_ACPY(&mapping->endpoints[0].addr, src_addr, af); 2000 mapping->endpoints[0].port = src_port; 2001 mapping->endpoints[0].af = af; 2002 mapping->endpoints[0].mapping = mapping; 2003 PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af); 2004 mapping->endpoints[1].port = nat_port; 2005 mapping->endpoints[1].af = af; 2006 mapping->endpoints[1].mapping = mapping; 2007 refcount_init(&mapping->refs, 1); 2008 return (mapping); 2009 } 2010 2011 int 2012 pf_udp_mapping_insert(struct pf_udp_mapping *mapping) 2013 { 2014 struct pf_udpendpointhash *h0, *h1; 2015 struct pf_udp_endpoint *endpoint; 2016 int ret = EEXIST; 2017 2018 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 2019 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 2020 if (h0 == h1) { 2021 PF_HASHROW_LOCK(h0); 2022 } else if (h0 < h1) { 2023 PF_HASHROW_LOCK(h0); 2024 PF_HASHROW_LOCK(h1); 2025 } else { 2026 PF_HASHROW_LOCK(h1); 2027 PF_HASHROW_LOCK(h0); 2028 } 2029 2030 LIST_FOREACH(endpoint, &h0->endpoints, entry) { 2031 if (bcmp(endpoint, &mapping->endpoints[0], 2032 sizeof(struct pf_udp_endpoint_cmp)) == 0) 2033 break; 2034 } 2035 if (endpoint != NULL) 2036 goto cleanup; 2037 LIST_FOREACH(endpoint, &h1->endpoints, entry) { 2038 if (bcmp(endpoint, &mapping->endpoints[1], 2039 sizeof(struct pf_udp_endpoint_cmp)) == 0) 2040 break; 2041 } 2042 if (endpoint != NULL) 2043 goto cleanup; 2044 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry); 2045 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry); 2046 ret = 0; 2047 2048 cleanup: 2049 if (h0 != h1) { 2050 PF_HASHROW_UNLOCK(h0); 2051 PF_HASHROW_UNLOCK(h1); 2052 } else { 2053 PF_HASHROW_UNLOCK(h0); 2054 } 2055 return (ret); 2056 } 2057 2058 void 2059 pf_udp_mapping_release(struct pf_udp_mapping *mapping) 2060 { 2061 /* refcount is synchronized on the source endpoint's row lock */ 2062 struct pf_udpendpointhash *h0, *h1; 2063 2064 if (mapping == NULL) 2065 return; 2066 2067 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 2068 PF_HASHROW_LOCK(h0); 2069 if (refcount_release(&mapping->refs)) { 2070 LIST_REMOVE(&mapping->endpoints[0], entry); 2071 PF_HASHROW_UNLOCK(h0); 2072 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 2073 PF_HASHROW_LOCK(h1); 2074 LIST_REMOVE(&mapping->endpoints[1], entry); 2075 PF_HASHROW_UNLOCK(h1); 2076 2077 uma_zfree(V_pf_udp_mapping_z, mapping); 2078 } else { 2079 PF_HASHROW_UNLOCK(h0); 2080 } 2081 } 2082 2083 2084 struct pf_udp_mapping * 2085 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key) 2086 { 2087 struct pf_udpendpointhash *uh; 2088 struct pf_udp_endpoint *endpoint; 2089 2090 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)]; 2091 2092 PF_HASHROW_LOCK(uh); 2093 LIST_FOREACH(endpoint, &uh->endpoints, entry) { 2094 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 && 2095 bcmp(endpoint, &endpoint->mapping->endpoints[0], 2096 sizeof(struct pf_udp_endpoint_cmp)) == 0) 2097 break; 2098 } 2099 if (endpoint == NULL) { 2100 PF_HASHROW_UNLOCK(uh); 2101 return (NULL); 2102 } 2103 refcount_acquire(&endpoint->mapping->refs); 2104 PF_HASHROW_UNLOCK(uh); 2105 return (endpoint->mapping); 2106 } 2107 /* END state table stuff */ 2108 2109 static void 2110 pf_send(struct pf_send_entry *pfse) 2111 { 2112 2113 PF_SENDQ_LOCK(); 2114 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 2115 PF_SENDQ_UNLOCK(); 2116 swi_sched(V_pf_swi_cookie, 0); 2117 } 2118 2119 static bool 2120 pf_isforlocal(struct mbuf *m, int af) 2121 { 2122 switch (af) { 2123 #ifdef INET 2124 case AF_INET: { 2125 struct ip *ip = mtod(m, struct ip *); 2126 2127 return (in_localip(ip->ip_dst)); 2128 } 2129 #endif 2130 #ifdef INET6 2131 case AF_INET6: { 2132 struct ip6_hdr *ip6; 2133 struct in6_ifaddr *ia; 2134 ip6 = mtod(m, struct ip6_hdr *); 2135 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 2136 if (ia == NULL) 2137 return (false); 2138 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 2139 } 2140 #endif 2141 } 2142 2143 return (false); 2144 } 2145 2146 int 2147 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type, 2148 int *icmp_dir, int *multi, u_int16_t *virtual_id, u_int16_t *virtual_type) 2149 { 2150 /* 2151 * ICMP types marked with PF_OUT are typically responses to 2152 * PF_IN, and will match states in the opposite direction. 2153 * PF_IN ICMP types need to match a state with that type. 2154 */ 2155 *icmp_dir = PF_OUT; 2156 *multi = PF_ICMP_MULTI_LINK; 2157 /* Queries (and responses) */ 2158 switch (pd->af) { 2159 #ifdef INET 2160 case AF_INET: 2161 switch (type) { 2162 case ICMP_ECHO: 2163 *icmp_dir = PF_IN; 2164 case ICMP_ECHOREPLY: 2165 *virtual_type = ICMP_ECHO; 2166 *virtual_id = pd->hdr.icmp.icmp_id; 2167 break; 2168 2169 case ICMP_TSTAMP: 2170 *icmp_dir = PF_IN; 2171 case ICMP_TSTAMPREPLY: 2172 *virtual_type = ICMP_TSTAMP; 2173 *virtual_id = pd->hdr.icmp.icmp_id; 2174 break; 2175 2176 case ICMP_IREQ: 2177 *icmp_dir = PF_IN; 2178 case ICMP_IREQREPLY: 2179 *virtual_type = ICMP_IREQ; 2180 *virtual_id = pd->hdr.icmp.icmp_id; 2181 break; 2182 2183 case ICMP_MASKREQ: 2184 *icmp_dir = PF_IN; 2185 case ICMP_MASKREPLY: 2186 *virtual_type = ICMP_MASKREQ; 2187 *virtual_id = pd->hdr.icmp.icmp_id; 2188 break; 2189 2190 case ICMP_IPV6_WHEREAREYOU: 2191 *icmp_dir = PF_IN; 2192 case ICMP_IPV6_IAMHERE: 2193 *virtual_type = ICMP_IPV6_WHEREAREYOU; 2194 *virtual_id = 0; /* Nothing sane to match on! */ 2195 break; 2196 2197 case ICMP_MOBILE_REGREQUEST: 2198 *icmp_dir = PF_IN; 2199 case ICMP_MOBILE_REGREPLY: 2200 *virtual_type = ICMP_MOBILE_REGREQUEST; 2201 *virtual_id = 0; /* Nothing sane to match on! */ 2202 break; 2203 2204 case ICMP_ROUTERSOLICIT: 2205 *icmp_dir = PF_IN; 2206 case ICMP_ROUTERADVERT: 2207 *virtual_type = ICMP_ROUTERSOLICIT; 2208 *virtual_id = 0; /* Nothing sane to match on! */ 2209 break; 2210 2211 /* These ICMP types map to other connections */ 2212 case ICMP_UNREACH: 2213 case ICMP_SOURCEQUENCH: 2214 case ICMP_REDIRECT: 2215 case ICMP_TIMXCEED: 2216 case ICMP_PARAMPROB: 2217 /* These will not be used, but set them anyway */ 2218 *icmp_dir = PF_IN; 2219 *virtual_type = type; 2220 *virtual_id = 0; 2221 HTONS(*virtual_type); 2222 return (1); /* These types match to another state */ 2223 2224 /* 2225 * All remaining ICMP types get their own states, 2226 * and will only match in one direction. 2227 */ 2228 default: 2229 *icmp_dir = PF_IN; 2230 *virtual_type = type; 2231 *virtual_id = 0; 2232 break; 2233 } 2234 break; 2235 #endif /* INET */ 2236 #ifdef INET6 2237 case AF_INET6: 2238 switch (type) { 2239 case ICMP6_ECHO_REQUEST: 2240 *icmp_dir = PF_IN; 2241 case ICMP6_ECHO_REPLY: 2242 *virtual_type = ICMP6_ECHO_REQUEST; 2243 *virtual_id = pd->hdr.icmp6.icmp6_id; 2244 break; 2245 2246 case MLD_LISTENER_QUERY: 2247 case MLD_LISTENER_REPORT: { 2248 /* 2249 * Listener Report can be sent by clients 2250 * without an associated Listener Query. 2251 * In addition to that, when Report is sent as a 2252 * reply to a Query its source and destination 2253 * address are different. 2254 */ 2255 *icmp_dir = PF_IN; 2256 *virtual_type = MLD_LISTENER_QUERY; 2257 *virtual_id = 0; 2258 break; 2259 } 2260 case MLD_MTRACE: 2261 *icmp_dir = PF_IN; 2262 case MLD_MTRACE_RESP: 2263 *virtual_type = MLD_MTRACE; 2264 *virtual_id = 0; /* Nothing sane to match on! */ 2265 break; 2266 2267 case ND_NEIGHBOR_SOLICIT: 2268 *icmp_dir = PF_IN; 2269 case ND_NEIGHBOR_ADVERT: { 2270 *virtual_type = ND_NEIGHBOR_SOLICIT; 2271 *virtual_id = 0; 2272 break; 2273 } 2274 2275 /* 2276 * These ICMP types map to other connections. 2277 * ND_REDIRECT can't be in this list because the triggering 2278 * packet header is optional. 2279 */ 2280 case ICMP6_DST_UNREACH: 2281 case ICMP6_PACKET_TOO_BIG: 2282 case ICMP6_TIME_EXCEEDED: 2283 case ICMP6_PARAM_PROB: 2284 /* These will not be used, but set them anyway */ 2285 *icmp_dir = PF_IN; 2286 *virtual_type = type; 2287 *virtual_id = 0; 2288 HTONS(*virtual_type); 2289 return (1); /* These types match to another state */ 2290 /* 2291 * All remaining ICMP6 types get their own states, 2292 * and will only match in one direction. 2293 */ 2294 default: 2295 *icmp_dir = PF_IN; 2296 *virtual_type = type; 2297 *virtual_id = 0; 2298 break; 2299 } 2300 break; 2301 #endif /* INET6 */ 2302 } 2303 HTONS(*virtual_type); 2304 return (0); /* These types match to their own state */ 2305 } 2306 2307 void 2308 pf_intr(void *v) 2309 { 2310 struct epoch_tracker et; 2311 struct pf_send_head queue; 2312 struct pf_send_entry *pfse, *next; 2313 2314 CURVNET_SET((struct vnet *)v); 2315 2316 PF_SENDQ_LOCK(); 2317 queue = V_pf_sendqueue; 2318 STAILQ_INIT(&V_pf_sendqueue); 2319 PF_SENDQ_UNLOCK(); 2320 2321 NET_EPOCH_ENTER(et); 2322 2323 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 2324 switch (pfse->pfse_type) { 2325 #ifdef INET 2326 case PFSE_IP: { 2327 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 2328 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif, 2329 ("%s: rcvif != loif", __func__)); 2330 2331 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 2332 pfse->pfse_m->m_pkthdr.csum_flags |= 2333 CSUM_IP_VALID | CSUM_IP_CHECKED; 2334 ip_input(pfse->pfse_m); 2335 } else { 2336 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2337 NULL); 2338 } 2339 break; 2340 } 2341 case PFSE_ICMP: 2342 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 2343 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 2344 break; 2345 #endif /* INET */ 2346 #ifdef INET6 2347 case PFSE_IP6: 2348 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 2349 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif, 2350 ("%s: rcvif != loif", __func__)); 2351 2352 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL | 2353 M_LOOP; 2354 ip6_input(pfse->pfse_m); 2355 } else { 2356 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2357 NULL, NULL); 2358 } 2359 break; 2360 case PFSE_ICMP6: 2361 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 2362 pfse->icmpopts.code, pfse->icmpopts.mtu); 2363 break; 2364 #endif /* INET6 */ 2365 default: 2366 panic("%s: unknown type", __func__); 2367 } 2368 free(pfse, M_PFTEMP); 2369 } 2370 NET_EPOCH_EXIT(et); 2371 CURVNET_RESTORE(); 2372 } 2373 2374 #define pf_purge_thread_period (hz / 10) 2375 2376 #ifdef PF_WANT_32_TO_64_COUNTER 2377 static void 2378 pf_status_counter_u64_periodic(void) 2379 { 2380 2381 PF_RULES_RASSERT(); 2382 2383 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 2384 return; 2385 } 2386 2387 for (int i = 0; i < FCNT_MAX; i++) { 2388 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 2389 } 2390 } 2391 2392 static void 2393 pf_kif_counter_u64_periodic(void) 2394 { 2395 struct pfi_kkif *kif; 2396 size_t r, run; 2397 2398 PF_RULES_RASSERT(); 2399 2400 if (__predict_false(V_pf_allkifcount == 0)) { 2401 return; 2402 } 2403 2404 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2405 return; 2406 } 2407 2408 run = V_pf_allkifcount / 10; 2409 if (run < 5) 2410 run = 5; 2411 2412 for (r = 0; r < run; r++) { 2413 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 2414 if (kif == NULL) { 2415 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2416 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 2417 break; 2418 } 2419 2420 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2421 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 2422 2423 for (int i = 0; i < 2; i++) { 2424 for (int j = 0; j < 2; j++) { 2425 for (int k = 0; k < 2; k++) { 2426 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 2427 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 2428 } 2429 } 2430 } 2431 } 2432 } 2433 2434 static void 2435 pf_rule_counter_u64_periodic(void) 2436 { 2437 struct pf_krule *rule; 2438 size_t r, run; 2439 2440 PF_RULES_RASSERT(); 2441 2442 if (__predict_false(V_pf_allrulecount == 0)) { 2443 return; 2444 } 2445 2446 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2447 return; 2448 } 2449 2450 run = V_pf_allrulecount / 10; 2451 if (run < 5) 2452 run = 5; 2453 2454 for (r = 0; r < run; r++) { 2455 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 2456 if (rule == NULL) { 2457 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2458 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 2459 break; 2460 } 2461 2462 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2463 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 2464 2465 pf_counter_u64_periodic(&rule->evaluations); 2466 for (int i = 0; i < 2; i++) { 2467 pf_counter_u64_periodic(&rule->packets[i]); 2468 pf_counter_u64_periodic(&rule->bytes[i]); 2469 } 2470 } 2471 } 2472 2473 static void 2474 pf_counter_u64_periodic_main(void) 2475 { 2476 PF_RULES_RLOCK_TRACKER; 2477 2478 V_pf_counter_periodic_iter++; 2479 2480 PF_RULES_RLOCK(); 2481 pf_counter_u64_critical_enter(); 2482 pf_status_counter_u64_periodic(); 2483 pf_kif_counter_u64_periodic(); 2484 pf_rule_counter_u64_periodic(); 2485 pf_counter_u64_critical_exit(); 2486 PF_RULES_RUNLOCK(); 2487 } 2488 #else 2489 #define pf_counter_u64_periodic_main() do { } while (0) 2490 #endif 2491 2492 void 2493 pf_purge_thread(void *unused __unused) 2494 { 2495 struct epoch_tracker et; 2496 2497 VNET_ITERATOR_DECL(vnet_iter); 2498 2499 sx_xlock(&pf_end_lock); 2500 while (pf_end_threads == 0) { 2501 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 2502 2503 VNET_LIST_RLOCK(); 2504 NET_EPOCH_ENTER(et); 2505 VNET_FOREACH(vnet_iter) { 2506 CURVNET_SET(vnet_iter); 2507 2508 /* Wait until V_pf_default_rule is initialized. */ 2509 if (V_pf_vnet_active == 0) { 2510 CURVNET_RESTORE(); 2511 continue; 2512 } 2513 2514 pf_counter_u64_periodic_main(); 2515 2516 /* 2517 * Process 1/interval fraction of the state 2518 * table every run. 2519 */ 2520 V_pf_purge_idx = 2521 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask / 2522 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 2523 2524 /* 2525 * Purge other expired types every 2526 * PFTM_INTERVAL seconds. 2527 */ 2528 if (V_pf_purge_idx == 0) { 2529 /* 2530 * Order is important: 2531 * - states and src nodes reference rules 2532 * - states and rules reference kifs 2533 */ 2534 pf_purge_expired_fragments(); 2535 pf_purge_expired_src_nodes(); 2536 pf_purge_unlinked_rules(); 2537 pfi_kkif_purge(); 2538 } 2539 CURVNET_RESTORE(); 2540 } 2541 NET_EPOCH_EXIT(et); 2542 VNET_LIST_RUNLOCK(); 2543 } 2544 2545 pf_end_threads++; 2546 sx_xunlock(&pf_end_lock); 2547 kproc_exit(0); 2548 } 2549 2550 void 2551 pf_unload_vnet_purge(void) 2552 { 2553 2554 /* 2555 * To cleanse up all kifs and rules we need 2556 * two runs: first one clears reference flags, 2557 * then pf_purge_expired_states() doesn't 2558 * raise them, and then second run frees. 2559 */ 2560 pf_purge_unlinked_rules(); 2561 pfi_kkif_purge(); 2562 2563 /* 2564 * Now purge everything. 2565 */ 2566 pf_purge_expired_states(0, V_pf_hashmask); 2567 pf_purge_fragments(UINT_MAX); 2568 pf_purge_expired_src_nodes(); 2569 2570 /* 2571 * Now all kifs & rules should be unreferenced, 2572 * thus should be successfully freed. 2573 */ 2574 pf_purge_unlinked_rules(); 2575 pfi_kkif_purge(); 2576 } 2577 2578 u_int32_t 2579 pf_state_expires(const struct pf_kstate *state) 2580 { 2581 u_int32_t timeout; 2582 u_int32_t start; 2583 u_int32_t end; 2584 u_int32_t states; 2585 2586 /* handle all PFTM_* > PFTM_MAX here */ 2587 if (state->timeout == PFTM_PURGE) 2588 return (time_uptime); 2589 KASSERT(state->timeout != PFTM_UNLINKED, 2590 ("pf_state_expires: timeout == PFTM_UNLINKED")); 2591 KASSERT((state->timeout < PFTM_MAX), 2592 ("pf_state_expires: timeout > PFTM_MAX")); 2593 timeout = state->rule->timeout[state->timeout]; 2594 if (!timeout) 2595 timeout = V_pf_default_rule.timeout[state->timeout]; 2596 start = state->rule->timeout[PFTM_ADAPTIVE_START]; 2597 if (start && state->rule != &V_pf_default_rule) { 2598 end = state->rule->timeout[PFTM_ADAPTIVE_END]; 2599 states = counter_u64_fetch(state->rule->states_cur); 2600 } else { 2601 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 2602 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 2603 states = V_pf_status.states; 2604 } 2605 if (end && states > start && start < end) { 2606 if (states < end) { 2607 timeout = (u_int64_t)timeout * (end - states) / 2608 (end - start); 2609 return ((state->expire / 1000) + timeout); 2610 } 2611 else 2612 return (time_uptime); 2613 } 2614 return ((state->expire / 1000) + timeout); 2615 } 2616 2617 void 2618 pf_purge_expired_src_nodes(void) 2619 { 2620 struct pf_ksrc_node_list freelist; 2621 struct pf_srchash *sh; 2622 struct pf_ksrc_node *cur, *next; 2623 int i; 2624 2625 LIST_INIT(&freelist); 2626 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 2627 PF_HASHROW_LOCK(sh); 2628 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 2629 if (cur->states == 0 && cur->expire <= time_uptime) { 2630 pf_unlink_src_node(cur); 2631 LIST_INSERT_HEAD(&freelist, cur, entry); 2632 } else if (cur->rule != NULL) 2633 cur->rule->rule_ref |= PFRULE_REFS; 2634 PF_HASHROW_UNLOCK(sh); 2635 } 2636 2637 pf_free_src_nodes(&freelist); 2638 2639 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2640 } 2641 2642 static void 2643 pf_src_tree_remove_state(struct pf_kstate *s) 2644 { 2645 struct pf_ksrc_node *sn; 2646 uint32_t timeout; 2647 2648 timeout = s->rule->timeout[PFTM_SRC_NODE] ? 2649 s->rule->timeout[PFTM_SRC_NODE] : 2650 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2651 2652 if (s->src_node != NULL) { 2653 sn = s->src_node; 2654 PF_SRC_NODE_LOCK(sn); 2655 if (s->src.tcp_est) 2656 --sn->conn; 2657 if (--sn->states == 0) 2658 sn->expire = time_uptime + timeout; 2659 PF_SRC_NODE_UNLOCK(sn); 2660 } 2661 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 2662 sn = s->nat_src_node; 2663 PF_SRC_NODE_LOCK(sn); 2664 if (--sn->states == 0) 2665 sn->expire = time_uptime + timeout; 2666 PF_SRC_NODE_UNLOCK(sn); 2667 } 2668 s->src_node = s->nat_src_node = NULL; 2669 } 2670 2671 /* 2672 * Unlink and potentilly free a state. Function may be 2673 * called with ID hash row locked, but always returns 2674 * unlocked, since it needs to go through key hash locking. 2675 */ 2676 int 2677 pf_unlink_state(struct pf_kstate *s) 2678 { 2679 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2680 2681 NET_EPOCH_ASSERT(); 2682 PF_HASHROW_ASSERT(ih); 2683 2684 if (s->timeout == PFTM_UNLINKED) { 2685 /* 2686 * State is being processed 2687 * by pf_unlink_state() in 2688 * an other thread. 2689 */ 2690 PF_HASHROW_UNLOCK(ih); 2691 return (0); /* XXXGL: undefined actually */ 2692 } 2693 2694 if (s->src.state == PF_TCPS_PROXY_DST) { 2695 /* XXX wire key the right one? */ 2696 pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af, 2697 &s->key[PF_SK_WIRE]->addr[1], 2698 &s->key[PF_SK_WIRE]->addr[0], 2699 s->key[PF_SK_WIRE]->port[1], 2700 s->key[PF_SK_WIRE]->port[0], 2701 s->src.seqhi, s->src.seqlo + 1, 2702 TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0, 2703 s->act.rtableid); 2704 } 2705 2706 LIST_REMOVE(s, entry); 2707 pf_src_tree_remove_state(s); 2708 2709 if (V_pfsync_delete_state_ptr != NULL) 2710 V_pfsync_delete_state_ptr(s); 2711 2712 STATE_DEC_COUNTERS(s); 2713 2714 s->timeout = PFTM_UNLINKED; 2715 2716 /* Ensure we remove it from the list of halfopen states, if needed. */ 2717 if (s->key[PF_SK_STACK] != NULL && 2718 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2719 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2720 2721 PF_HASHROW_UNLOCK(ih); 2722 2723 pf_detach_state(s); 2724 2725 pf_udp_mapping_release(s->udp_mapping); 2726 2727 /* pf_state_insert() initialises refs to 2 */ 2728 return (pf_release_staten(s, 2)); 2729 } 2730 2731 struct pf_kstate * 2732 pf_alloc_state(int flags) 2733 { 2734 2735 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2736 } 2737 2738 void 2739 pf_free_state(struct pf_kstate *cur) 2740 { 2741 struct pf_krule_item *ri; 2742 2743 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2744 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2745 cur->timeout)); 2746 2747 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2748 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2749 free(ri, M_PF_RULE_ITEM); 2750 } 2751 2752 pf_normalize_tcp_cleanup(cur); 2753 uma_zfree(V_pf_state_z, cur); 2754 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2755 } 2756 2757 /* 2758 * Called only from pf_purge_thread(), thus serialized. 2759 */ 2760 static u_int 2761 pf_purge_expired_states(u_int i, int maxcheck) 2762 { 2763 struct pf_idhash *ih; 2764 struct pf_kstate *s; 2765 struct pf_krule_item *mrm; 2766 size_t count __unused; 2767 2768 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2769 2770 /* 2771 * Go through hash and unlink states that expire now. 2772 */ 2773 while (maxcheck > 0) { 2774 count = 0; 2775 ih = &V_pf_idhash[i]; 2776 2777 /* only take the lock if we expect to do work */ 2778 if (!LIST_EMPTY(&ih->states)) { 2779 relock: 2780 PF_HASHROW_LOCK(ih); 2781 LIST_FOREACH(s, &ih->states, entry) { 2782 if (pf_state_expires(s) <= time_uptime) { 2783 V_pf_status.states -= 2784 pf_unlink_state(s); 2785 goto relock; 2786 } 2787 s->rule->rule_ref |= PFRULE_REFS; 2788 if (s->nat_rule != NULL) 2789 s->nat_rule->rule_ref |= PFRULE_REFS; 2790 if (s->anchor != NULL) 2791 s->anchor->rule_ref |= PFRULE_REFS; 2792 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2793 SLIST_FOREACH(mrm, &s->match_rules, entry) 2794 mrm->r->rule_ref |= PFRULE_REFS; 2795 if (s->act.rt_kif) 2796 s->act.rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2797 count++; 2798 } 2799 PF_HASHROW_UNLOCK(ih); 2800 } 2801 2802 SDT_PROBE2(pf, purge, state, rowcount, i, count); 2803 2804 /* Return when we hit end of hash. */ 2805 if (++i > V_pf_hashmask) { 2806 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2807 return (0); 2808 } 2809 2810 maxcheck--; 2811 } 2812 2813 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2814 2815 return (i); 2816 } 2817 2818 static void 2819 pf_purge_unlinked_rules(void) 2820 { 2821 struct pf_krulequeue tmpq; 2822 struct pf_krule *r, *r1; 2823 2824 /* 2825 * If we have overloading task pending, then we'd 2826 * better skip purging this time. There is a tiny 2827 * probability that overloading task references 2828 * an already unlinked rule. 2829 */ 2830 PF_OVERLOADQ_LOCK(); 2831 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2832 PF_OVERLOADQ_UNLOCK(); 2833 return; 2834 } 2835 PF_OVERLOADQ_UNLOCK(); 2836 2837 /* 2838 * Do naive mark-and-sweep garbage collecting of old rules. 2839 * Reference flag is raised by pf_purge_expired_states() 2840 * and pf_purge_expired_src_nodes(). 2841 * 2842 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2843 * use a temporary queue. 2844 */ 2845 TAILQ_INIT(&tmpq); 2846 PF_UNLNKDRULES_LOCK(); 2847 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2848 if (!(r->rule_ref & PFRULE_REFS)) { 2849 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2850 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2851 } else 2852 r->rule_ref &= ~PFRULE_REFS; 2853 } 2854 PF_UNLNKDRULES_UNLOCK(); 2855 2856 if (!TAILQ_EMPTY(&tmpq)) { 2857 PF_CONFIG_LOCK(); 2858 PF_RULES_WLOCK(); 2859 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2860 TAILQ_REMOVE(&tmpq, r, entries); 2861 pf_free_rule(r); 2862 } 2863 PF_RULES_WUNLOCK(); 2864 PF_CONFIG_UNLOCK(); 2865 } 2866 } 2867 2868 void 2869 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2870 { 2871 switch (af) { 2872 #ifdef INET 2873 case AF_INET: { 2874 u_int32_t a = ntohl(addr->addr32[0]); 2875 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2876 (a>>8)&255, a&255); 2877 if (p) { 2878 p = ntohs(p); 2879 printf(":%u", p); 2880 } 2881 break; 2882 } 2883 #endif /* INET */ 2884 #ifdef INET6 2885 case AF_INET6: { 2886 u_int16_t b; 2887 u_int8_t i, curstart, curend, maxstart, maxend; 2888 curstart = curend = maxstart = maxend = 255; 2889 for (i = 0; i < 8; i++) { 2890 if (!addr->addr16[i]) { 2891 if (curstart == 255) 2892 curstart = i; 2893 curend = i; 2894 } else { 2895 if ((curend - curstart) > 2896 (maxend - maxstart)) { 2897 maxstart = curstart; 2898 maxend = curend; 2899 } 2900 curstart = curend = 255; 2901 } 2902 } 2903 if ((curend - curstart) > 2904 (maxend - maxstart)) { 2905 maxstart = curstart; 2906 maxend = curend; 2907 } 2908 for (i = 0; i < 8; i++) { 2909 if (i >= maxstart && i <= maxend) { 2910 if (i == 0) 2911 printf(":"); 2912 if (i == maxend) 2913 printf(":"); 2914 } else { 2915 b = ntohs(addr->addr16[i]); 2916 printf("%x", b); 2917 if (i < 7) 2918 printf(":"); 2919 } 2920 } 2921 if (p) { 2922 p = ntohs(p); 2923 printf("[%u]", p); 2924 } 2925 break; 2926 } 2927 #endif /* INET6 */ 2928 } 2929 } 2930 2931 void 2932 pf_print_state(struct pf_kstate *s) 2933 { 2934 pf_print_state_parts(s, NULL, NULL); 2935 } 2936 2937 static void 2938 pf_print_state_parts(struct pf_kstate *s, 2939 struct pf_state_key *skwp, struct pf_state_key *sksp) 2940 { 2941 struct pf_state_key *skw, *sks; 2942 u_int8_t proto, dir; 2943 2944 /* Do our best to fill these, but they're skipped if NULL */ 2945 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2946 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2947 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2948 dir = s ? s->direction : 0; 2949 2950 switch (proto) { 2951 case IPPROTO_IPV4: 2952 printf("IPv4"); 2953 break; 2954 case IPPROTO_IPV6: 2955 printf("IPv6"); 2956 break; 2957 case IPPROTO_TCP: 2958 printf("TCP"); 2959 break; 2960 case IPPROTO_UDP: 2961 printf("UDP"); 2962 break; 2963 case IPPROTO_ICMP: 2964 printf("ICMP"); 2965 break; 2966 case IPPROTO_ICMPV6: 2967 printf("ICMPv6"); 2968 break; 2969 default: 2970 printf("%u", proto); 2971 break; 2972 } 2973 switch (dir) { 2974 case PF_IN: 2975 printf(" in"); 2976 break; 2977 case PF_OUT: 2978 printf(" out"); 2979 break; 2980 } 2981 if (skw) { 2982 printf(" wire: "); 2983 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2984 printf(" "); 2985 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2986 } 2987 if (sks) { 2988 printf(" stack: "); 2989 if (sks != skw) { 2990 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2991 printf(" "); 2992 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2993 } else 2994 printf("-"); 2995 } 2996 if (s) { 2997 if (proto == IPPROTO_TCP) { 2998 printf(" [lo=%u high=%u win=%u modulator=%u", 2999 s->src.seqlo, s->src.seqhi, 3000 s->src.max_win, s->src.seqdiff); 3001 if (s->src.wscale && s->dst.wscale) 3002 printf(" wscale=%u", 3003 s->src.wscale & PF_WSCALE_MASK); 3004 printf("]"); 3005 printf(" [lo=%u high=%u win=%u modulator=%u", 3006 s->dst.seqlo, s->dst.seqhi, 3007 s->dst.max_win, s->dst.seqdiff); 3008 if (s->src.wscale && s->dst.wscale) 3009 printf(" wscale=%u", 3010 s->dst.wscale & PF_WSCALE_MASK); 3011 printf("]"); 3012 } 3013 printf(" %u:%u", s->src.state, s->dst.state); 3014 if (s->rule) 3015 printf(" @%d", s->rule->nr); 3016 } 3017 } 3018 3019 void 3020 pf_print_flags(uint16_t f) 3021 { 3022 if (f) 3023 printf(" "); 3024 if (f & TH_FIN) 3025 printf("F"); 3026 if (f & TH_SYN) 3027 printf("S"); 3028 if (f & TH_RST) 3029 printf("R"); 3030 if (f & TH_PUSH) 3031 printf("P"); 3032 if (f & TH_ACK) 3033 printf("A"); 3034 if (f & TH_URG) 3035 printf("U"); 3036 if (f & TH_ECE) 3037 printf("E"); 3038 if (f & TH_CWR) 3039 printf("W"); 3040 if (f & TH_AE) 3041 printf("e"); 3042 } 3043 3044 #define PF_SET_SKIP_STEPS(i) \ 3045 do { \ 3046 while (head[i] != cur) { \ 3047 head[i]->skip[i] = cur; \ 3048 head[i] = TAILQ_NEXT(head[i], entries); \ 3049 } \ 3050 } while (0) 3051 3052 void 3053 pf_calc_skip_steps(struct pf_krulequeue *rules) 3054 { 3055 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 3056 int i; 3057 3058 cur = TAILQ_FIRST(rules); 3059 prev = cur; 3060 for (i = 0; i < PF_SKIP_COUNT; ++i) 3061 head[i] = cur; 3062 while (cur != NULL) { 3063 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 3064 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 3065 if (cur->direction != prev->direction) 3066 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 3067 if (cur->af != prev->af) 3068 PF_SET_SKIP_STEPS(PF_SKIP_AF); 3069 if (cur->proto != prev->proto) 3070 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 3071 if (cur->src.neg != prev->src.neg || 3072 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 3073 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 3074 if (cur->dst.neg != prev->dst.neg || 3075 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 3076 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 3077 if (cur->src.port[0] != prev->src.port[0] || 3078 cur->src.port[1] != prev->src.port[1] || 3079 cur->src.port_op != prev->src.port_op) 3080 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 3081 if (cur->dst.port[0] != prev->dst.port[0] || 3082 cur->dst.port[1] != prev->dst.port[1] || 3083 cur->dst.port_op != prev->dst.port_op) 3084 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 3085 3086 prev = cur; 3087 cur = TAILQ_NEXT(cur, entries); 3088 } 3089 for (i = 0; i < PF_SKIP_COUNT; ++i) 3090 PF_SET_SKIP_STEPS(i); 3091 } 3092 3093 int 3094 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 3095 { 3096 if (aw1->type != aw2->type) 3097 return (1); 3098 switch (aw1->type) { 3099 case PF_ADDR_ADDRMASK: 3100 case PF_ADDR_RANGE: 3101 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 3102 return (1); 3103 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 3104 return (1); 3105 return (0); 3106 case PF_ADDR_DYNIFTL: 3107 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 3108 case PF_ADDR_NONE: 3109 case PF_ADDR_NOROUTE: 3110 case PF_ADDR_URPFFAILED: 3111 return (0); 3112 case PF_ADDR_TABLE: 3113 return (aw1->p.tbl != aw2->p.tbl); 3114 default: 3115 printf("invalid address type: %d\n", aw1->type); 3116 return (1); 3117 } 3118 } 3119 3120 /** 3121 * Checksum updates are a little complicated because the checksum in the TCP/UDP 3122 * header isn't always a full checksum. In some cases (i.e. output) it's a 3123 * pseudo-header checksum, which is a partial checksum over src/dst IP 3124 * addresses, protocol number and length. 3125 * 3126 * That means we have the following cases: 3127 * * Input or forwarding: we don't have TSO, the checksum fields are full 3128 * checksums, we need to update the checksum whenever we change anything. 3129 * * Output (i.e. the checksum is a pseudo-header checksum): 3130 * x The field being updated is src/dst address or affects the length of 3131 * the packet. We need to update the pseudo-header checksum (note that this 3132 * checksum is not ones' complement). 3133 * x Some other field is being modified (e.g. src/dst port numbers): We 3134 * don't have to update anything. 3135 **/ 3136 u_int16_t 3137 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 3138 { 3139 u_int32_t x; 3140 3141 x = cksum + old - new; 3142 x = (x + (x >> 16)) & 0xffff; 3143 3144 /* optimise: eliminate a branch when not udp */ 3145 if (udp && cksum == 0x0000) 3146 return cksum; 3147 if (udp && x == 0x0000) 3148 x = 0xffff; 3149 3150 return (u_int16_t)(x); 3151 } 3152 3153 static void 3154 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 3155 u_int8_t udp) 3156 { 3157 u_int16_t old = htons(hi ? (*f << 8) : *f); 3158 u_int16_t new = htons(hi ? ( v << 8) : v); 3159 3160 if (*f == v) 3161 return; 3162 3163 *f = v; 3164 3165 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3166 return; 3167 3168 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 3169 } 3170 3171 void 3172 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 3173 bool hi, u_int8_t udp) 3174 { 3175 u_int8_t *fb = (u_int8_t *)f; 3176 u_int8_t *vb = (u_int8_t *)&v; 3177 3178 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3179 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3180 } 3181 3182 void 3183 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 3184 bool hi, u_int8_t udp) 3185 { 3186 u_int8_t *fb = (u_int8_t *)f; 3187 u_int8_t *vb = (u_int8_t *)&v; 3188 3189 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3190 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3191 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3192 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3193 } 3194 3195 u_int16_t 3196 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 3197 u_int16_t new, u_int8_t udp) 3198 { 3199 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3200 return (cksum); 3201 3202 return (pf_cksum_fixup(cksum, old, new, udp)); 3203 } 3204 3205 static void 3206 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 3207 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 3208 sa_family_t af, sa_family_t naf) 3209 { 3210 struct pf_addr ao; 3211 u_int16_t po = *p; 3212 3213 PF_ACPY(&ao, a, af); 3214 if (af == naf) 3215 PF_ACPY(a, an, af); 3216 3217 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3218 *pc = ~*pc; 3219 3220 *p = pn; 3221 3222 switch (af) { 3223 #ifdef INET 3224 case AF_INET: 3225 switch (naf) { 3226 case AF_INET: 3227 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3228 ao.addr16[0], an->addr16[0], 0), 3229 ao.addr16[1], an->addr16[1], 0); 3230 *p = pn; 3231 3232 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 3233 ao.addr16[0], an->addr16[0], u), 3234 ao.addr16[1], an->addr16[1], u); 3235 3236 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 3237 break; 3238 #ifdef INET6 3239 case AF_INET6: 3240 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3241 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3242 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 3243 ao.addr16[0], an->addr16[0], u), 3244 ao.addr16[1], an->addr16[1], u), 3245 0, an->addr16[2], u), 3246 0, an->addr16[3], u), 3247 0, an->addr16[4], u), 3248 0, an->addr16[5], u), 3249 0, an->addr16[6], u), 3250 0, an->addr16[7], u), 3251 po, pn, u); 3252 3253 /* XXXKP TODO *ic checksum? */ 3254 break; 3255 #endif /* INET6 */ 3256 } 3257 break; 3258 #endif /* INET */ 3259 #ifdef INET6 3260 case AF_INET6: 3261 switch (naf) { 3262 #ifdef INET 3263 case AF_INET: 3264 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3265 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3266 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 3267 ao.addr16[0], an->addr16[0], u), 3268 ao.addr16[1], an->addr16[1], u), 3269 ao.addr16[2], 0, u), 3270 ao.addr16[3], 0, u), 3271 ao.addr16[4], 0, u), 3272 ao.addr16[5], 0, u), 3273 ao.addr16[6], 0, u), 3274 ao.addr16[7], 0, u), 3275 po, pn, u); 3276 3277 /* XXXKP TODO *ic checksum? */ 3278 break; 3279 #endif /* INET */ 3280 case AF_INET6: 3281 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3282 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3283 pf_cksum_fixup(pf_cksum_fixup(*pc, 3284 ao.addr16[0], an->addr16[0], u), 3285 ao.addr16[1], an->addr16[1], u), 3286 ao.addr16[2], an->addr16[2], u), 3287 ao.addr16[3], an->addr16[3], u), 3288 ao.addr16[4], an->addr16[4], u), 3289 ao.addr16[5], an->addr16[5], u), 3290 ao.addr16[6], an->addr16[6], u), 3291 ao.addr16[7], an->addr16[7], u); 3292 3293 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 3294 break; 3295 } 3296 break; 3297 #endif /* INET6 */ 3298 } 3299 3300 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 3301 CSUM_DELAY_DATA_IPV6)) { 3302 *pc = ~*pc; 3303 if (! *pc) 3304 *pc = 0xffff; 3305 } 3306 } 3307 3308 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 3309 void 3310 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 3311 { 3312 u_int32_t ao; 3313 3314 memcpy(&ao, a, sizeof(ao)); 3315 memcpy(a, &an, sizeof(u_int32_t)); 3316 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 3317 ao % 65536, an % 65536, u); 3318 } 3319 3320 void 3321 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 3322 { 3323 u_int32_t ao; 3324 3325 memcpy(&ao, a, sizeof(ao)); 3326 memcpy(a, &an, sizeof(u_int32_t)); 3327 3328 *c = pf_proto_cksum_fixup(m, 3329 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 3330 ao % 65536, an % 65536, udp); 3331 } 3332 3333 #ifdef INET6 3334 static void 3335 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 3336 { 3337 struct pf_addr ao; 3338 3339 PF_ACPY(&ao, a, AF_INET6); 3340 PF_ACPY(a, an, AF_INET6); 3341 3342 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3343 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3344 pf_cksum_fixup(pf_cksum_fixup(*c, 3345 ao.addr16[0], an->addr16[0], u), 3346 ao.addr16[1], an->addr16[1], u), 3347 ao.addr16[2], an->addr16[2], u), 3348 ao.addr16[3], an->addr16[3], u), 3349 ao.addr16[4], an->addr16[4], u), 3350 ao.addr16[5], an->addr16[5], u), 3351 ao.addr16[6], an->addr16[6], u), 3352 ao.addr16[7], an->addr16[7], u); 3353 } 3354 #endif /* INET6 */ 3355 3356 static void 3357 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 3358 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 3359 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 3360 { 3361 struct pf_addr oia, ooa; 3362 3363 PF_ACPY(&oia, ia, af); 3364 if (oa) 3365 PF_ACPY(&ooa, oa, af); 3366 3367 /* Change inner protocol port, fix inner protocol checksum. */ 3368 if (ip != NULL) { 3369 u_int16_t oip = *ip; 3370 u_int32_t opc; 3371 3372 if (pc != NULL) 3373 opc = *pc; 3374 *ip = np; 3375 if (pc != NULL) 3376 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 3377 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 3378 if (pc != NULL) 3379 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 3380 } 3381 /* Change inner ip address, fix inner ip and icmp checksums. */ 3382 PF_ACPY(ia, na, af); 3383 switch (af) { 3384 #ifdef INET 3385 case AF_INET: { 3386 u_int32_t oh2c = *h2c; 3387 3388 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 3389 oia.addr16[0], ia->addr16[0], 0), 3390 oia.addr16[1], ia->addr16[1], 0); 3391 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3392 oia.addr16[0], ia->addr16[0], 0), 3393 oia.addr16[1], ia->addr16[1], 0); 3394 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 3395 break; 3396 } 3397 #endif /* INET */ 3398 #ifdef INET6 3399 case AF_INET6: 3400 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3401 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3402 pf_cksum_fixup(pf_cksum_fixup(*ic, 3403 oia.addr16[0], ia->addr16[0], u), 3404 oia.addr16[1], ia->addr16[1], u), 3405 oia.addr16[2], ia->addr16[2], u), 3406 oia.addr16[3], ia->addr16[3], u), 3407 oia.addr16[4], ia->addr16[4], u), 3408 oia.addr16[5], ia->addr16[5], u), 3409 oia.addr16[6], ia->addr16[6], u), 3410 oia.addr16[7], ia->addr16[7], u); 3411 break; 3412 #endif /* INET6 */ 3413 } 3414 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 3415 if (oa) { 3416 PF_ACPY(oa, na, af); 3417 switch (af) { 3418 #ifdef INET 3419 case AF_INET: 3420 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 3421 ooa.addr16[0], oa->addr16[0], 0), 3422 ooa.addr16[1], oa->addr16[1], 0); 3423 break; 3424 #endif /* INET */ 3425 #ifdef INET6 3426 case AF_INET6: 3427 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3428 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3429 pf_cksum_fixup(pf_cksum_fixup(*ic, 3430 ooa.addr16[0], oa->addr16[0], u), 3431 ooa.addr16[1], oa->addr16[1], u), 3432 ooa.addr16[2], oa->addr16[2], u), 3433 ooa.addr16[3], oa->addr16[3], u), 3434 ooa.addr16[4], oa->addr16[4], u), 3435 ooa.addr16[5], oa->addr16[5], u), 3436 ooa.addr16[6], oa->addr16[6], u), 3437 ooa.addr16[7], oa->addr16[7], u); 3438 break; 3439 #endif /* INET6 */ 3440 } 3441 } 3442 } 3443 3444 int 3445 pf_translate_af(struct pf_pdesc *pd) 3446 { 3447 #if defined(INET) && defined(INET6) 3448 struct mbuf *mp; 3449 struct ip *ip4; 3450 struct ip6_hdr *ip6; 3451 struct icmp6_hdr *icmp; 3452 struct m_tag *mtag; 3453 struct pf_fragment_tag *ftag; 3454 int hlen; 3455 3456 hlen = pd->naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6); 3457 3458 /* trim the old header */ 3459 m_adj(pd->m, pd->off); 3460 3461 /* prepend a new one */ 3462 M_PREPEND(pd->m, hlen, M_NOWAIT); 3463 if (pd->m == NULL) 3464 return (-1); 3465 3466 switch (pd->naf) { 3467 case AF_INET: 3468 ip4 = mtod(pd->m, struct ip *); 3469 bzero(ip4, hlen); 3470 ip4->ip_v = IPVERSION; 3471 ip4->ip_hl = hlen >> 2; 3472 ip4->ip_tos = pd->tos; 3473 ip4->ip_len = htons(hlen + (pd->tot_len - pd->off)); 3474 ip_fillid(ip4); 3475 ip4->ip_ttl = pd->ttl; 3476 ip4->ip_p = pd->proto; 3477 ip4->ip_src = pd->nsaddr.v4; 3478 ip4->ip_dst = pd->ndaddr.v4; 3479 pd->src = (struct pf_addr *)&ip4->ip_src; 3480 pd->dst = (struct pf_addr *)&ip4->ip_dst; 3481 pd->off = sizeof(struct ip); 3482 break; 3483 case AF_INET6: 3484 ip6 = mtod(pd->m, struct ip6_hdr *); 3485 bzero(ip6, hlen); 3486 ip6->ip6_vfc = IPV6_VERSION; 3487 ip6->ip6_flow |= htonl((u_int32_t)pd->tos << 20); 3488 ip6->ip6_plen = htons(pd->tot_len - pd->off); 3489 ip6->ip6_nxt = pd->proto; 3490 if (!pd->ttl || pd->ttl > IPV6_DEFHLIM) 3491 ip6->ip6_hlim = IPV6_DEFHLIM; 3492 else 3493 ip6->ip6_hlim = pd->ttl; 3494 ip6->ip6_src = pd->nsaddr.v6; 3495 ip6->ip6_dst = pd->ndaddr.v6; 3496 pd->src = (struct pf_addr *)&ip6->ip6_src; 3497 pd->dst = (struct pf_addr *)&ip6->ip6_dst; 3498 pd->off = sizeof(struct ip6_hdr); 3499 3500 /* 3501 * If we're dealing with a reassembled packet we need to adjust 3502 * the header length from the IPv4 header size to IPv6 header 3503 * size. 3504 */ 3505 mtag = m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL); 3506 if (mtag) { 3507 ftag = (struct pf_fragment_tag *)(mtag + 1); 3508 ftag->ft_hdrlen = sizeof(*ip6); 3509 ftag->ft_maxlen -= sizeof(struct ip6_hdr) - 3510 sizeof(struct ip) + sizeof(struct ip6_frag); 3511 } 3512 break; 3513 default: 3514 return (-1); 3515 } 3516 3517 /* recalculate icmp/icmp6 checksums */ 3518 if (pd->proto == IPPROTO_ICMP || pd->proto == IPPROTO_ICMPV6) { 3519 int off; 3520 if ((mp = m_pulldown(pd->m, hlen, sizeof(*icmp), &off)) == 3521 NULL) { 3522 pd->m = NULL; 3523 return (-1); 3524 } 3525 icmp = (struct icmp6_hdr *)(mp->m_data + off); 3526 icmp->icmp6_cksum = 0; 3527 icmp->icmp6_cksum = pd->naf == AF_INET ? 3528 in4_cksum(pd->m, 0, hlen, ntohs(ip4->ip_len) - hlen) : 3529 in6_cksum(pd->m, IPPROTO_ICMPV6, hlen, 3530 ntohs(ip6->ip6_plen)); 3531 } 3532 #endif /* INET && INET6 */ 3533 3534 return (0); 3535 } 3536 3537 int 3538 pf_change_icmp_af(struct mbuf *m, int off, struct pf_pdesc *pd, 3539 struct pf_pdesc *pd2, struct pf_addr *src, struct pf_addr *dst, 3540 sa_family_t af, sa_family_t naf) 3541 { 3542 #if defined(INET) && defined(INET6) 3543 struct mbuf *n = NULL; 3544 struct ip *ip4; 3545 struct ip6_hdr *ip6; 3546 int hlen, olen, mlen; 3547 3548 if (af == naf || (af != AF_INET && af != AF_INET6) || 3549 (naf != AF_INET && naf != AF_INET6)) 3550 return (-1); 3551 3552 /* split the mbuf chain on the inner ip/ip6 header boundary */ 3553 if ((n = m_split(m, off, M_NOWAIT)) == NULL) 3554 return (-1); 3555 3556 /* old header */ 3557 olen = pd2->off - off; 3558 /* new header */ 3559 hlen = naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6); 3560 /* data lenght */ 3561 mlen = m->m_pkthdr.len - pd2->off; 3562 3563 /* trim old header */ 3564 m_adj(n, olen); 3565 3566 /* prepend a new one */ 3567 M_PREPEND(n, hlen, M_NOWAIT); 3568 if (n == NULL) 3569 return (-1); 3570 3571 /* translate inner ip/ip6 header */ 3572 switch (naf) { 3573 case AF_INET: 3574 ip4 = mtod(n, struct ip *); 3575 bzero(ip4, sizeof(*ip4)); 3576 ip4->ip_v = IPVERSION; 3577 ip4->ip_hl = sizeof(*ip4) >> 2; 3578 ip4->ip_len = htons(sizeof(*ip4) + mlen); 3579 ip_fillid(ip4); 3580 ip4->ip_off = htons(IP_DF); 3581 ip4->ip_ttl = pd2->ttl; 3582 if (pd2->proto == IPPROTO_ICMPV6) 3583 ip4->ip_p = IPPROTO_ICMP; 3584 else 3585 ip4->ip_p = pd2->proto; 3586 ip4->ip_src = src->v4; 3587 ip4->ip_dst = dst->v4; 3588 ip4->ip_sum = in_cksum(n, ip4->ip_hl << 2); 3589 break; 3590 case AF_INET6: 3591 ip6 = mtod(n, struct ip6_hdr *); 3592 bzero(ip6, sizeof(*ip6)); 3593 ip6->ip6_vfc = IPV6_VERSION; 3594 ip6->ip6_plen = htons(mlen); 3595 if (pd2->proto == IPPROTO_ICMP) 3596 ip6->ip6_nxt = IPPROTO_ICMPV6; 3597 else 3598 ip6->ip6_nxt = pd2->proto; 3599 if (!pd2->ttl || pd2->ttl > IPV6_DEFHLIM) 3600 ip6->ip6_hlim = IPV6_DEFHLIM; 3601 else 3602 ip6->ip6_hlim = pd2->ttl; 3603 ip6->ip6_src = src->v6; 3604 ip6->ip6_dst = dst->v6; 3605 break; 3606 } 3607 3608 /* adjust payload offset and total packet length */ 3609 pd2->off += hlen - olen; 3610 pd->tot_len += hlen - olen; 3611 3612 /* merge modified inner packet with the original header */ 3613 mlen = n->m_pkthdr.len; 3614 m_cat(m, n); 3615 m->m_pkthdr.len += mlen; 3616 #endif /* INET && INET6 */ 3617 3618 return (0); 3619 } 3620 3621 #define PTR_IP(field) (offsetof(struct ip, field)) 3622 #define PTR_IP6(field) (offsetof(struct ip6_hdr, field)) 3623 3624 int 3625 pf_translate_icmp_af(int af, void *arg) 3626 { 3627 #if defined(INET) && defined(INET6) 3628 struct icmp *icmp4; 3629 struct icmp6_hdr *icmp6; 3630 u_int32_t mtu; 3631 int32_t ptr = -1; 3632 u_int8_t type; 3633 u_int8_t code; 3634 3635 switch (af) { 3636 case AF_INET: 3637 icmp6 = arg; 3638 type = icmp6->icmp6_type; 3639 code = icmp6->icmp6_code; 3640 mtu = ntohl(icmp6->icmp6_mtu); 3641 3642 switch (type) { 3643 case ICMP6_ECHO_REQUEST: 3644 type = ICMP_ECHO; 3645 break; 3646 case ICMP6_ECHO_REPLY: 3647 type = ICMP_ECHOREPLY; 3648 break; 3649 case ICMP6_DST_UNREACH: 3650 type = ICMP_UNREACH; 3651 switch (code) { 3652 case ICMP6_DST_UNREACH_NOROUTE: 3653 case ICMP6_DST_UNREACH_BEYONDSCOPE: 3654 case ICMP6_DST_UNREACH_ADDR: 3655 code = ICMP_UNREACH_HOST; 3656 break; 3657 case ICMP6_DST_UNREACH_ADMIN: 3658 code = ICMP_UNREACH_HOST_PROHIB; 3659 break; 3660 case ICMP6_DST_UNREACH_NOPORT: 3661 code = ICMP_UNREACH_PORT; 3662 break; 3663 default: 3664 return (-1); 3665 } 3666 break; 3667 case ICMP6_PACKET_TOO_BIG: 3668 type = ICMP_UNREACH; 3669 code = ICMP_UNREACH_NEEDFRAG; 3670 mtu -= 20; 3671 break; 3672 case ICMP6_TIME_EXCEEDED: 3673 type = ICMP_TIMXCEED; 3674 break; 3675 case ICMP6_PARAM_PROB: 3676 switch (code) { 3677 case ICMP6_PARAMPROB_HEADER: 3678 type = ICMP_PARAMPROB; 3679 code = ICMP_PARAMPROB_ERRATPTR; 3680 ptr = ntohl(icmp6->icmp6_pptr); 3681 3682 if (ptr == PTR_IP6(ip6_vfc)) 3683 ; /* preserve */ 3684 else if (ptr == PTR_IP6(ip6_vfc) + 1) 3685 ptr = PTR_IP(ip_tos); 3686 else if (ptr == PTR_IP6(ip6_plen) || 3687 ptr == PTR_IP6(ip6_plen) + 1) 3688 ptr = PTR_IP(ip_len); 3689 else if (ptr == PTR_IP6(ip6_nxt)) 3690 ptr = PTR_IP(ip_p); 3691 else if (ptr == PTR_IP6(ip6_hlim)) 3692 ptr = PTR_IP(ip_ttl); 3693 else if (ptr >= PTR_IP6(ip6_src) && 3694 ptr < PTR_IP6(ip6_dst)) 3695 ptr = PTR_IP(ip_src); 3696 else if (ptr >= PTR_IP6(ip6_dst) && 3697 ptr < sizeof(struct ip6_hdr)) 3698 ptr = PTR_IP(ip_dst); 3699 else { 3700 return (-1); 3701 } 3702 break; 3703 case ICMP6_PARAMPROB_NEXTHEADER: 3704 type = ICMP_UNREACH; 3705 code = ICMP_UNREACH_PROTOCOL; 3706 break; 3707 default: 3708 return (-1); 3709 } 3710 break; 3711 default: 3712 return (-1); 3713 } 3714 if (icmp6->icmp6_type != type) { 3715 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3716 icmp6->icmp6_type, type, 0); 3717 icmp6->icmp6_type = type; 3718 } 3719 if (icmp6->icmp6_code != code) { 3720 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3721 icmp6->icmp6_code, code, 0); 3722 icmp6->icmp6_code = code; 3723 } 3724 if (icmp6->icmp6_mtu != htonl(mtu)) { 3725 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3726 htons(ntohl(icmp6->icmp6_mtu)), htons(mtu), 0); 3727 /* aligns well with a icmpv4 nextmtu */ 3728 icmp6->icmp6_mtu = htonl(mtu); 3729 } 3730 if (ptr >= 0 && icmp6->icmp6_pptr != htonl(ptr)) { 3731 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3732 htons(ntohl(icmp6->icmp6_pptr)), htons(ptr), 0); 3733 /* icmpv4 pptr is a one most significant byte */ 3734 icmp6->icmp6_pptr = htonl(ptr << 24); 3735 } 3736 break; 3737 case AF_INET6: 3738 icmp4 = arg; 3739 type = icmp4->icmp_type; 3740 code = icmp4->icmp_code; 3741 mtu = ntohs(icmp4->icmp_nextmtu); 3742 3743 switch (type) { 3744 case ICMP_ECHO: 3745 type = ICMP6_ECHO_REQUEST; 3746 break; 3747 case ICMP_ECHOREPLY: 3748 type = ICMP6_ECHO_REPLY; 3749 break; 3750 case ICMP_UNREACH: 3751 type = ICMP6_DST_UNREACH; 3752 switch (code) { 3753 case ICMP_UNREACH_NET: 3754 case ICMP_UNREACH_HOST: 3755 case ICMP_UNREACH_NET_UNKNOWN: 3756 case ICMP_UNREACH_HOST_UNKNOWN: 3757 case ICMP_UNREACH_ISOLATED: 3758 case ICMP_UNREACH_TOSNET: 3759 case ICMP_UNREACH_TOSHOST: 3760 code = ICMP6_DST_UNREACH_NOROUTE; 3761 break; 3762 case ICMP_UNREACH_PORT: 3763 code = ICMP6_DST_UNREACH_NOPORT; 3764 break; 3765 case ICMP_UNREACH_NET_PROHIB: 3766 case ICMP_UNREACH_HOST_PROHIB: 3767 case ICMP_UNREACH_FILTER_PROHIB: 3768 case ICMP_UNREACH_PRECEDENCE_CUTOFF: 3769 code = ICMP6_DST_UNREACH_ADMIN; 3770 break; 3771 case ICMP_UNREACH_PROTOCOL: 3772 type = ICMP6_PARAM_PROB; 3773 code = ICMP6_PARAMPROB_NEXTHEADER; 3774 ptr = offsetof(struct ip6_hdr, ip6_nxt); 3775 break; 3776 case ICMP_UNREACH_NEEDFRAG: 3777 type = ICMP6_PACKET_TOO_BIG; 3778 code = 0; 3779 mtu += 20; 3780 break; 3781 default: 3782 return (-1); 3783 } 3784 break; 3785 case ICMP_TIMXCEED: 3786 type = ICMP6_TIME_EXCEEDED; 3787 break; 3788 case ICMP_PARAMPROB: 3789 type = ICMP6_PARAM_PROB; 3790 switch (code) { 3791 case ICMP_PARAMPROB_ERRATPTR: 3792 code = ICMP6_PARAMPROB_HEADER; 3793 break; 3794 case ICMP_PARAMPROB_LENGTH: 3795 code = ICMP6_PARAMPROB_HEADER; 3796 break; 3797 default: 3798 return (-1); 3799 } 3800 3801 ptr = icmp4->icmp_pptr; 3802 if (ptr == 0 || ptr == PTR_IP(ip_tos)) 3803 ; /* preserve */ 3804 else if (ptr == PTR_IP(ip_len) || 3805 ptr == PTR_IP(ip_len) + 1) 3806 ptr = PTR_IP6(ip6_plen); 3807 else if (ptr == PTR_IP(ip_ttl)) 3808 ptr = PTR_IP6(ip6_hlim); 3809 else if (ptr == PTR_IP(ip_p)) 3810 ptr = PTR_IP6(ip6_nxt); 3811 else if (ptr >= PTR_IP(ip_src) && ptr < PTR_IP(ip_dst)) 3812 ptr = PTR_IP6(ip6_src); 3813 else if (ptr >= PTR_IP(ip_dst) && 3814 ptr < sizeof(struct ip)) 3815 ptr = PTR_IP6(ip6_dst); 3816 else { 3817 return (-1); 3818 } 3819 break; 3820 default: 3821 return (-1); 3822 } 3823 if (icmp4->icmp_type != type) { 3824 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3825 icmp4->icmp_type, type, 0); 3826 icmp4->icmp_type = type; 3827 } 3828 if (icmp4->icmp_code != code) { 3829 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3830 icmp4->icmp_code, code, 0); 3831 icmp4->icmp_code = code; 3832 } 3833 if (icmp4->icmp_nextmtu != htons(mtu)) { 3834 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3835 icmp4->icmp_nextmtu, htons(mtu), 0); 3836 icmp4->icmp_nextmtu = htons(mtu); 3837 } 3838 if (ptr >= 0 && icmp4->icmp_void != ptr) { 3839 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3840 htons(icmp4->icmp_pptr), htons(ptr), 0); 3841 icmp4->icmp_void = htonl(ptr); 3842 } 3843 break; 3844 } 3845 #endif /* INET && INET6 */ 3846 3847 return (0); 3848 } 3849 3850 /* 3851 * Need to modulate the sequence numbers in the TCP SACK option 3852 * (credits to Krzysztof Pfaff for report and patch) 3853 */ 3854 static int 3855 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th, 3856 struct pf_state_peer *dst) 3857 { 3858 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 3859 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 3860 int copyback = 0, i, olen; 3861 struct sackblk sack; 3862 3863 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 3864 if (hlen < TCPOLEN_SACKLEN || 3865 !pf_pull_hdr(pd->m, pd->off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 3866 return 0; 3867 3868 while (hlen >= TCPOLEN_SACKLEN) { 3869 size_t startoff = opt - opts; 3870 olen = opt[1]; 3871 switch (*opt) { 3872 case TCPOPT_EOL: /* FALLTHROUGH */ 3873 case TCPOPT_NOP: 3874 opt++; 3875 hlen--; 3876 break; 3877 case TCPOPT_SACK: 3878 if (olen > hlen) 3879 olen = hlen; 3880 if (olen >= TCPOLEN_SACKLEN) { 3881 for (i = 2; i + TCPOLEN_SACK <= olen; 3882 i += TCPOLEN_SACK) { 3883 memcpy(&sack, &opt[i], sizeof(sack)); 3884 pf_patch_32_unaligned(pd->m, 3885 &th->th_sum, &sack.start, 3886 htonl(ntohl(sack.start) - dst->seqdiff), 3887 PF_ALGNMNT(startoff), 3888 0); 3889 pf_patch_32_unaligned(pd->m, &th->th_sum, 3890 &sack.end, 3891 htonl(ntohl(sack.end) - dst->seqdiff), 3892 PF_ALGNMNT(startoff), 3893 0); 3894 memcpy(&opt[i], &sack, sizeof(sack)); 3895 } 3896 copyback = 1; 3897 } 3898 /* FALLTHROUGH */ 3899 default: 3900 if (olen < 2) 3901 olen = 2; 3902 hlen -= olen; 3903 opt += olen; 3904 } 3905 } 3906 3907 if (copyback) 3908 m_copyback(pd->m, pd->off + sizeof(*th), thoptlen, (caddr_t)opts); 3909 return (copyback); 3910 } 3911 3912 struct mbuf * 3913 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 3914 const struct pf_addr *saddr, const struct pf_addr *daddr, 3915 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3916 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3917 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3918 { 3919 struct mbuf *m; 3920 int len, tlen; 3921 #ifdef INET 3922 struct ip *h = NULL; 3923 #endif /* INET */ 3924 #ifdef INET6 3925 struct ip6_hdr *h6 = NULL; 3926 #endif /* INET6 */ 3927 struct tcphdr *th; 3928 char *opt; 3929 struct pf_mtag *pf_mtag; 3930 3931 len = 0; 3932 th = NULL; 3933 3934 /* maximum segment size tcp option */ 3935 tlen = sizeof(struct tcphdr); 3936 if (mss) 3937 tlen += 4; 3938 3939 switch (af) { 3940 #ifdef INET 3941 case AF_INET: 3942 len = sizeof(struct ip) + tlen; 3943 break; 3944 #endif /* INET */ 3945 #ifdef INET6 3946 case AF_INET6: 3947 len = sizeof(struct ip6_hdr) + tlen; 3948 break; 3949 #endif /* INET6 */ 3950 } 3951 3952 m = m_gethdr(M_NOWAIT, MT_DATA); 3953 if (m == NULL) 3954 return (NULL); 3955 3956 #ifdef MAC 3957 mac_netinet_firewall_send(m); 3958 #endif 3959 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 3960 m_freem(m); 3961 return (NULL); 3962 } 3963 m->m_flags |= mbuf_flags; 3964 pf_mtag->tag = mtag_tag; 3965 pf_mtag->flags = mtag_flags; 3966 3967 if (rtableid >= 0) 3968 M_SETFIB(m, rtableid); 3969 3970 #ifdef ALTQ 3971 if (r != NULL && r->qid) { 3972 pf_mtag->qid = r->qid; 3973 3974 /* add hints for ecn */ 3975 pf_mtag->hdr = mtod(m, struct ip *); 3976 } 3977 #endif /* ALTQ */ 3978 m->m_data += max_linkhdr; 3979 m->m_pkthdr.len = m->m_len = len; 3980 /* The rest of the stack assumes a rcvif, so provide one. 3981 * This is a locally generated packet, so .. close enough. */ 3982 m->m_pkthdr.rcvif = V_loif; 3983 bzero(m->m_data, len); 3984 switch (af) { 3985 #ifdef INET 3986 case AF_INET: 3987 h = mtod(m, struct ip *); 3988 3989 /* IP header fields included in the TCP checksum */ 3990 h->ip_p = IPPROTO_TCP; 3991 h->ip_len = htons(tlen); 3992 h->ip_src.s_addr = saddr->v4.s_addr; 3993 h->ip_dst.s_addr = daddr->v4.s_addr; 3994 3995 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 3996 break; 3997 #endif /* INET */ 3998 #ifdef INET6 3999 case AF_INET6: 4000 h6 = mtod(m, struct ip6_hdr *); 4001 4002 /* IP header fields included in the TCP checksum */ 4003 h6->ip6_nxt = IPPROTO_TCP; 4004 h6->ip6_plen = htons(tlen); 4005 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 4006 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 4007 4008 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 4009 break; 4010 #endif /* INET6 */ 4011 } 4012 4013 /* TCP header */ 4014 th->th_sport = sport; 4015 th->th_dport = dport; 4016 th->th_seq = htonl(seq); 4017 th->th_ack = htonl(ack); 4018 th->th_off = tlen >> 2; 4019 tcp_set_flags(th, tcp_flags); 4020 th->th_win = htons(win); 4021 4022 if (mss) { 4023 opt = (char *)(th + 1); 4024 opt[0] = TCPOPT_MAXSEG; 4025 opt[1] = 4; 4026 HTONS(mss); 4027 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 4028 } 4029 4030 switch (af) { 4031 #ifdef INET 4032 case AF_INET: 4033 /* TCP checksum */ 4034 th->th_sum = in_cksum(m, len); 4035 4036 /* Finish the IP header */ 4037 h->ip_v = 4; 4038 h->ip_hl = sizeof(*h) >> 2; 4039 h->ip_tos = IPTOS_LOWDELAY; 4040 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 4041 h->ip_len = htons(len); 4042 h->ip_ttl = ttl ? ttl : V_ip_defttl; 4043 h->ip_sum = 0; 4044 break; 4045 #endif /* INET */ 4046 #ifdef INET6 4047 case AF_INET6: 4048 /* TCP checksum */ 4049 th->th_sum = in6_cksum(m, IPPROTO_TCP, 4050 sizeof(struct ip6_hdr), tlen); 4051 4052 h6->ip6_vfc |= IPV6_VERSION; 4053 h6->ip6_hlim = IPV6_DEFHLIM; 4054 break; 4055 #endif /* INET6 */ 4056 } 4057 4058 return (m); 4059 } 4060 4061 static void 4062 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd, 4063 uint8_t ttl, int rtableid) 4064 { 4065 struct mbuf *m; 4066 #ifdef INET 4067 struct ip *h = NULL; 4068 #endif /* INET */ 4069 #ifdef INET6 4070 struct ip6_hdr *h6 = NULL; 4071 #endif /* INET6 */ 4072 struct sctphdr *hdr; 4073 struct sctp_chunkhdr *chunk; 4074 struct pf_send_entry *pfse; 4075 int off = 0; 4076 4077 MPASS(af == pd->af); 4078 4079 m = m_gethdr(M_NOWAIT, MT_DATA); 4080 if (m == NULL) 4081 return; 4082 4083 m->m_data += max_linkhdr; 4084 m->m_flags |= M_SKIP_FIREWALL; 4085 /* The rest of the stack assumes a rcvif, so provide one. 4086 * This is a locally generated packet, so .. close enough. */ 4087 m->m_pkthdr.rcvif = V_loif; 4088 4089 /* IPv4|6 header */ 4090 switch (af) { 4091 #ifdef INET 4092 case AF_INET: 4093 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk)); 4094 4095 h = mtod(m, struct ip *); 4096 4097 /* IP header fields included in the TCP checksum */ 4098 4099 h->ip_p = IPPROTO_SCTP; 4100 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk)); 4101 h->ip_ttl = ttl ? ttl : V_ip_defttl; 4102 h->ip_src = pd->dst->v4; 4103 h->ip_dst = pd->src->v4; 4104 4105 off += sizeof(struct ip); 4106 break; 4107 #endif /* INET */ 4108 #ifdef INET6 4109 case AF_INET6: 4110 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk)); 4111 4112 h6 = mtod(m, struct ip6_hdr *); 4113 4114 /* IP header fields included in the TCP checksum */ 4115 h6->ip6_vfc |= IPV6_VERSION; 4116 h6->ip6_nxt = IPPROTO_SCTP; 4117 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk)); 4118 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim; 4119 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr)); 4120 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr)); 4121 4122 off += sizeof(struct ip6_hdr); 4123 break; 4124 #endif /* INET6 */ 4125 } 4126 4127 /* SCTP header */ 4128 hdr = mtodo(m, off); 4129 4130 hdr->src_port = pd->hdr.sctp.dest_port; 4131 hdr->dest_port = pd->hdr.sctp.src_port; 4132 hdr->v_tag = pd->sctp_initiate_tag; 4133 hdr->checksum = 0; 4134 4135 /* Abort chunk. */ 4136 off += sizeof(struct sctphdr); 4137 chunk = mtodo(m, off); 4138 4139 chunk->chunk_type = SCTP_ABORT_ASSOCIATION; 4140 chunk->chunk_length = htons(sizeof(*chunk)); 4141 4142 /* SCTP checksum */ 4143 off += sizeof(*chunk); 4144 m->m_pkthdr.len = m->m_len = off; 4145 4146 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk)); 4147 4148 if (rtableid >= 0) 4149 M_SETFIB(m, rtableid); 4150 4151 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 4152 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 4153 if (pfse == NULL) { 4154 m_freem(m); 4155 return; 4156 } 4157 4158 switch (af) { 4159 #ifdef INET 4160 case AF_INET: 4161 pfse->pfse_type = PFSE_IP; 4162 break; 4163 #endif /* INET */ 4164 #ifdef INET6 4165 case AF_INET6: 4166 pfse->pfse_type = PFSE_IP6; 4167 break; 4168 #endif /* INET6 */ 4169 } 4170 4171 pfse->pfse_m = m; 4172 pf_send(pfse); 4173 } 4174 4175 void 4176 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 4177 const struct pf_addr *saddr, const struct pf_addr *daddr, 4178 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 4179 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 4180 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 4181 { 4182 struct pf_send_entry *pfse; 4183 struct mbuf *m; 4184 4185 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags, 4186 win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, rtableid); 4187 if (m == NULL) 4188 return; 4189 4190 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 4191 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 4192 if (pfse == NULL) { 4193 m_freem(m); 4194 return; 4195 } 4196 4197 switch (af) { 4198 #ifdef INET 4199 case AF_INET: 4200 pfse->pfse_type = PFSE_IP; 4201 break; 4202 #endif /* INET */ 4203 #ifdef INET6 4204 case AF_INET6: 4205 pfse->pfse_type = PFSE_IP6; 4206 break; 4207 #endif /* INET6 */ 4208 } 4209 4210 pfse->pfse_m = m; 4211 pf_send(pfse); 4212 } 4213 4214 static void 4215 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 4216 struct pf_state_key *sk, struct tcphdr *th, 4217 u_int16_t bproto_sum, u_int16_t bip_sum, 4218 u_short *reason, int rtableid) 4219 { 4220 struct pf_addr * const saddr = pd->src; 4221 struct pf_addr * const daddr = pd->dst; 4222 4223 /* undo NAT changes, if they have taken place */ 4224 if (nr != NULL) { 4225 PF_ACPY(saddr, &sk->addr[pd->sidx], pd->af); 4226 PF_ACPY(daddr, &sk->addr[pd->didx], pd->af); 4227 if (pd->sport) 4228 *pd->sport = sk->port[pd->sidx]; 4229 if (pd->dport) 4230 *pd->dport = sk->port[pd->didx]; 4231 if (pd->ip_sum) 4232 *pd->ip_sum = bip_sum; 4233 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 4234 } 4235 if (pd->proto == IPPROTO_TCP && 4236 ((r->rule_flag & PFRULE_RETURNRST) || 4237 (r->rule_flag & PFRULE_RETURN)) && 4238 !(tcp_get_flags(th) & TH_RST)) { 4239 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 4240 4241 if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off, 4242 IPPROTO_TCP, pd->af)) 4243 REASON_SET(reason, PFRES_PROTCKSUM); 4244 else { 4245 if (tcp_get_flags(th) & TH_SYN) 4246 ack++; 4247 if (tcp_get_flags(th) & TH_FIN) 4248 ack++; 4249 pf_send_tcp(r, pd->af, pd->dst, 4250 pd->src, th->th_dport, th->th_sport, 4251 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 4252 r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid); 4253 } 4254 } else if (pd->proto == IPPROTO_SCTP && 4255 (r->rule_flag & PFRULE_RETURN)) { 4256 pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid); 4257 } else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET && 4258 r->return_icmp) 4259 pf_send_icmp(pd->m, r->return_icmp >> 8, 4260 r->return_icmp & 255, pd->af, r, rtableid); 4261 else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 && 4262 r->return_icmp6) 4263 pf_send_icmp(pd->m, r->return_icmp6 >> 8, 4264 r->return_icmp6 & 255, pd->af, r, rtableid); 4265 } 4266 4267 static int 4268 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 4269 { 4270 struct m_tag *mtag; 4271 u_int8_t mpcp; 4272 4273 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 4274 if (mtag == NULL) 4275 return (0); 4276 4277 if (prio == PF_PRIO_ZERO) 4278 prio = 0; 4279 4280 mpcp = *(uint8_t *)(mtag + 1); 4281 4282 return (mpcp == prio); 4283 } 4284 4285 static int 4286 pf_icmp_to_bandlim(uint8_t type) 4287 { 4288 switch (type) { 4289 case ICMP_ECHO: 4290 case ICMP_ECHOREPLY: 4291 return (BANDLIM_ICMP_ECHO); 4292 case ICMP_TSTAMP: 4293 case ICMP_TSTAMPREPLY: 4294 return (BANDLIM_ICMP_TSTAMP); 4295 case ICMP_UNREACH: 4296 default: 4297 return (BANDLIM_ICMP_UNREACH); 4298 } 4299 } 4300 4301 static void 4302 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 4303 struct pf_krule *r, int rtableid) 4304 { 4305 struct pf_send_entry *pfse; 4306 struct mbuf *m0; 4307 struct pf_mtag *pf_mtag; 4308 4309 /* ICMP packet rate limitation. */ 4310 switch (af) { 4311 #ifdef INET6 4312 case AF_INET6: 4313 if (icmp6_ratelimit(NULL, type, code)) 4314 return; 4315 break; 4316 #endif 4317 #ifdef INET 4318 case AF_INET: 4319 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 4320 return; 4321 break; 4322 #endif 4323 } 4324 4325 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 4326 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 4327 if (pfse == NULL) 4328 return; 4329 4330 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 4331 free(pfse, M_PFTEMP); 4332 return; 4333 } 4334 4335 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 4336 free(pfse, M_PFTEMP); 4337 return; 4338 } 4339 /* XXX: revisit */ 4340 m0->m_flags |= M_SKIP_FIREWALL; 4341 4342 if (rtableid >= 0) 4343 M_SETFIB(m0, rtableid); 4344 4345 #ifdef ALTQ 4346 if (r->qid) { 4347 pf_mtag->qid = r->qid; 4348 /* add hints for ecn */ 4349 pf_mtag->hdr = mtod(m0, struct ip *); 4350 } 4351 #endif /* ALTQ */ 4352 4353 switch (af) { 4354 #ifdef INET 4355 case AF_INET: 4356 pfse->pfse_type = PFSE_ICMP; 4357 break; 4358 #endif /* INET */ 4359 #ifdef INET6 4360 case AF_INET6: 4361 pfse->pfse_type = PFSE_ICMP6; 4362 break; 4363 #endif /* INET6 */ 4364 } 4365 pfse->pfse_m = m0; 4366 pfse->icmpopts.type = type; 4367 pfse->icmpopts.code = code; 4368 pf_send(pfse); 4369 } 4370 4371 /* 4372 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 4373 * If n is 0, they match if they are equal. If n is != 0, they match if they 4374 * are different. 4375 */ 4376 int 4377 pf_match_addr(u_int8_t n, const struct pf_addr *a, const struct pf_addr *m, 4378 const struct pf_addr *b, sa_family_t af) 4379 { 4380 int match = 0; 4381 4382 switch (af) { 4383 #ifdef INET 4384 case AF_INET: 4385 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4)) 4386 match++; 4387 break; 4388 #endif /* INET */ 4389 #ifdef INET6 4390 case AF_INET6: 4391 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6)) 4392 match++; 4393 break; 4394 #endif /* INET6 */ 4395 } 4396 if (match) { 4397 if (n) 4398 return (0); 4399 else 4400 return (1); 4401 } else { 4402 if (n) 4403 return (1); 4404 else 4405 return (0); 4406 } 4407 } 4408 4409 /* 4410 * Return 1 if b <= a <= e, otherwise return 0. 4411 */ 4412 int 4413 pf_match_addr_range(const struct pf_addr *b, const struct pf_addr *e, 4414 const struct pf_addr *a, sa_family_t af) 4415 { 4416 switch (af) { 4417 #ifdef INET 4418 case AF_INET: 4419 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 4420 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 4421 return (0); 4422 break; 4423 #endif /* INET */ 4424 #ifdef INET6 4425 case AF_INET6: { 4426 int i; 4427 4428 /* check a >= b */ 4429 for (i = 0; i < 4; ++i) 4430 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 4431 break; 4432 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 4433 return (0); 4434 /* check a <= e */ 4435 for (i = 0; i < 4; ++i) 4436 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 4437 break; 4438 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 4439 return (0); 4440 break; 4441 } 4442 #endif /* INET6 */ 4443 } 4444 return (1); 4445 } 4446 4447 static int 4448 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 4449 { 4450 switch (op) { 4451 case PF_OP_IRG: 4452 return ((p > a1) && (p < a2)); 4453 case PF_OP_XRG: 4454 return ((p < a1) || (p > a2)); 4455 case PF_OP_RRG: 4456 return ((p >= a1) && (p <= a2)); 4457 case PF_OP_EQ: 4458 return (p == a1); 4459 case PF_OP_NE: 4460 return (p != a1); 4461 case PF_OP_LT: 4462 return (p < a1); 4463 case PF_OP_LE: 4464 return (p <= a1); 4465 case PF_OP_GT: 4466 return (p > a1); 4467 case PF_OP_GE: 4468 return (p >= a1); 4469 } 4470 return (0); /* never reached */ 4471 } 4472 4473 int 4474 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 4475 { 4476 NTOHS(a1); 4477 NTOHS(a2); 4478 NTOHS(p); 4479 return (pf_match(op, a1, a2, p)); 4480 } 4481 4482 static int 4483 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 4484 { 4485 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 4486 return (0); 4487 return (pf_match(op, a1, a2, u)); 4488 } 4489 4490 static int 4491 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 4492 { 4493 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 4494 return (0); 4495 return (pf_match(op, a1, a2, g)); 4496 } 4497 4498 int 4499 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 4500 { 4501 if (*tag == -1) 4502 *tag = mtag; 4503 4504 return ((!r->match_tag_not && r->match_tag == *tag) || 4505 (r->match_tag_not && r->match_tag != *tag)); 4506 } 4507 4508 static int 4509 pf_match_rcvif(struct mbuf *m, struct pf_krule *r) 4510 { 4511 struct ifnet *ifp = m->m_pkthdr.rcvif; 4512 struct pfi_kkif *kif; 4513 4514 if (ifp == NULL) 4515 return (0); 4516 4517 kif = (struct pfi_kkif *)ifp->if_pf_kif; 4518 4519 if (kif == NULL) { 4520 DPFPRINTF(PF_DEBUG_URGENT, 4521 ("pf_test_via: kif == NULL, @%d via %s\n", r->nr, 4522 r->rcv_ifname)); 4523 return (0); 4524 } 4525 4526 return (pfi_kkif_match(r->rcv_kif, kif)); 4527 } 4528 4529 int 4530 pf_tag_packet(struct pf_pdesc *pd, int tag) 4531 { 4532 4533 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 4534 4535 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) 4536 return (ENOMEM); 4537 4538 pd->pf_mtag->tag = tag; 4539 4540 return (0); 4541 } 4542 4543 #define PF_ANCHOR_STACKSIZE 32 4544 struct pf_kanchor_stackframe { 4545 struct pf_kruleset *rs; 4546 struct pf_krule *r; /* XXX: + match bit */ 4547 struct pf_kanchor *child; 4548 }; 4549 4550 /* 4551 * XXX: We rely on malloc(9) returning pointer aligned addresses. 4552 */ 4553 #define PF_ANCHORSTACK_MATCH 0x00000001 4554 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 4555 4556 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4557 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 4558 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4559 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4560 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4561 } while (0) 4562 4563 void 4564 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 4565 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 4566 int *match) 4567 { 4568 struct pf_kanchor_stackframe *f; 4569 4570 PF_RULES_RASSERT(); 4571 4572 if (match) 4573 *match = 0; 4574 if (*depth >= PF_ANCHOR_STACKSIZE) { 4575 printf("%s: anchor stack overflow on %s\n", 4576 __func__, (*r)->anchor->name); 4577 *r = TAILQ_NEXT(*r, entries); 4578 return; 4579 } else if (*depth == 0 && a != NULL) 4580 *a = *r; 4581 f = stack + (*depth)++; 4582 f->rs = *rs; 4583 f->r = *r; 4584 if ((*r)->anchor_wildcard) { 4585 struct pf_kanchor_node *parent = &(*r)->anchor->children; 4586 4587 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 4588 *r = NULL; 4589 return; 4590 } 4591 *rs = &f->child->ruleset; 4592 } else { 4593 f->child = NULL; 4594 *rs = &(*r)->anchor->ruleset; 4595 } 4596 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4597 } 4598 4599 int 4600 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 4601 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 4602 int *match) 4603 { 4604 struct pf_kanchor_stackframe *f; 4605 struct pf_krule *fr; 4606 int quick = 0; 4607 4608 PF_RULES_RASSERT(); 4609 4610 do { 4611 if (*depth <= 0) 4612 break; 4613 f = stack + *depth - 1; 4614 fr = PF_ANCHOR_RULE(f); 4615 if (f->child != NULL) { 4616 /* 4617 * This block traverses through 4618 * a wildcard anchor. 4619 */ 4620 if (match != NULL && *match) { 4621 /* 4622 * If any of "*" matched, then 4623 * "foo/ *" matched, mark frame 4624 * appropriately. 4625 */ 4626 PF_ANCHOR_SET_MATCH(f); 4627 *match = 0; 4628 } 4629 f->child = RB_NEXT(pf_kanchor_node, 4630 &fr->anchor->children, f->child); 4631 if (f->child != NULL) { 4632 *rs = &f->child->ruleset; 4633 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4634 if (*r == NULL) 4635 continue; 4636 else 4637 break; 4638 } 4639 } 4640 (*depth)--; 4641 if (*depth == 0 && a != NULL) 4642 *a = NULL; 4643 *rs = f->rs; 4644 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 4645 quick = fr->quick; 4646 *r = TAILQ_NEXT(fr, entries); 4647 } while (*r == NULL); 4648 4649 return (quick); 4650 } 4651 4652 struct pf_keth_anchor_stackframe { 4653 struct pf_keth_ruleset *rs; 4654 struct pf_keth_rule *r; /* XXX: + match bit */ 4655 struct pf_keth_anchor *child; 4656 }; 4657 4658 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4659 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 4660 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4661 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4662 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4663 } while (0) 4664 4665 void 4666 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4667 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4668 struct pf_keth_rule **a, int *match) 4669 { 4670 struct pf_keth_anchor_stackframe *f; 4671 4672 NET_EPOCH_ASSERT(); 4673 4674 if (match) 4675 *match = 0; 4676 if (*depth >= PF_ANCHOR_STACKSIZE) { 4677 printf("%s: anchor stack overflow on %s\n", 4678 __func__, (*r)->anchor->name); 4679 *r = TAILQ_NEXT(*r, entries); 4680 return; 4681 } else if (*depth == 0 && a != NULL) 4682 *a = *r; 4683 f = stack + (*depth)++; 4684 f->rs = *rs; 4685 f->r = *r; 4686 if ((*r)->anchor_wildcard) { 4687 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 4688 4689 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 4690 *r = NULL; 4691 return; 4692 } 4693 *rs = &f->child->ruleset; 4694 } else { 4695 f->child = NULL; 4696 *rs = &(*r)->anchor->ruleset; 4697 } 4698 *r = TAILQ_FIRST((*rs)->active.rules); 4699 } 4700 4701 int 4702 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4703 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4704 struct pf_keth_rule **a, int *match) 4705 { 4706 struct pf_keth_anchor_stackframe *f; 4707 struct pf_keth_rule *fr; 4708 int quick = 0; 4709 4710 NET_EPOCH_ASSERT(); 4711 4712 do { 4713 if (*depth <= 0) 4714 break; 4715 f = stack + *depth - 1; 4716 fr = PF_ETH_ANCHOR_RULE(f); 4717 if (f->child != NULL) { 4718 /* 4719 * This block traverses through 4720 * a wildcard anchor. 4721 */ 4722 if (match != NULL && *match) { 4723 /* 4724 * If any of "*" matched, then 4725 * "foo/ *" matched, mark frame 4726 * appropriately. 4727 */ 4728 PF_ETH_ANCHOR_SET_MATCH(f); 4729 *match = 0; 4730 } 4731 f->child = RB_NEXT(pf_keth_anchor_node, 4732 &fr->anchor->children, f->child); 4733 if (f->child != NULL) { 4734 *rs = &f->child->ruleset; 4735 *r = TAILQ_FIRST((*rs)->active.rules); 4736 if (*r == NULL) 4737 continue; 4738 else 4739 break; 4740 } 4741 } 4742 (*depth)--; 4743 if (*depth == 0 && a != NULL) 4744 *a = NULL; 4745 *rs = f->rs; 4746 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 4747 quick = fr->quick; 4748 *r = TAILQ_NEXT(fr, entries); 4749 } while (*r == NULL); 4750 4751 return (quick); 4752 } 4753 4754 #ifdef INET6 4755 void 4756 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 4757 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 4758 { 4759 switch (af) { 4760 #ifdef INET 4761 case AF_INET: 4762 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4763 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4764 break; 4765 #endif /* INET */ 4766 case AF_INET6: 4767 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4768 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4769 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 4770 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 4771 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 4772 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 4773 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 4774 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 4775 break; 4776 } 4777 } 4778 4779 void 4780 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 4781 { 4782 switch (af) { 4783 #ifdef INET 4784 case AF_INET: 4785 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 4786 break; 4787 #endif /* INET */ 4788 case AF_INET6: 4789 if (addr->addr32[3] == 0xffffffff) { 4790 addr->addr32[3] = 0; 4791 if (addr->addr32[2] == 0xffffffff) { 4792 addr->addr32[2] = 0; 4793 if (addr->addr32[1] == 0xffffffff) { 4794 addr->addr32[1] = 0; 4795 addr->addr32[0] = 4796 htonl(ntohl(addr->addr32[0]) + 1); 4797 } else 4798 addr->addr32[1] = 4799 htonl(ntohl(addr->addr32[1]) + 1); 4800 } else 4801 addr->addr32[2] = 4802 htonl(ntohl(addr->addr32[2]) + 1); 4803 } else 4804 addr->addr32[3] = 4805 htonl(ntohl(addr->addr32[3]) + 1); 4806 break; 4807 } 4808 } 4809 #endif /* INET6 */ 4810 4811 void 4812 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 4813 { 4814 /* 4815 * Modern rules use the same flags in rules as they do in states. 4816 */ 4817 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 4818 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 4819 4820 /* 4821 * Old-style scrub rules have different flags which need to be translated. 4822 */ 4823 if (r->rule_flag & PFRULE_RANDOMID) 4824 a->flags |= PFSTATE_RANDOMID; 4825 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) { 4826 a->flags |= PFSTATE_SETTOS; 4827 a->set_tos = r->set_tos; 4828 } 4829 4830 if (r->qid) 4831 a->qid = r->qid; 4832 if (r->pqid) 4833 a->pqid = r->pqid; 4834 if (r->rtableid >= 0) 4835 a->rtableid = r->rtableid; 4836 a->log |= r->log; 4837 if (r->min_ttl) 4838 a->min_ttl = r->min_ttl; 4839 if (r->max_mss) 4840 a->max_mss = r->max_mss; 4841 if (r->dnpipe) 4842 a->dnpipe = r->dnpipe; 4843 if (r->dnrpipe) 4844 a->dnrpipe = r->dnrpipe; 4845 if (r->dnpipe || r->dnrpipe) { 4846 if (r->free_flags & PFRULE_DN_IS_PIPE) 4847 a->flags |= PFSTATE_DN_IS_PIPE; 4848 else 4849 a->flags &= ~PFSTATE_DN_IS_PIPE; 4850 } 4851 if (r->scrub_flags & PFSTATE_SETPRIO) { 4852 a->set_prio[0] = r->set_prio[0]; 4853 a->set_prio[1] = r->set_prio[1]; 4854 } 4855 } 4856 4857 int 4858 pf_socket_lookup(struct pf_pdesc *pd) 4859 { 4860 struct pf_addr *saddr, *daddr; 4861 u_int16_t sport, dport; 4862 struct inpcbinfo *pi; 4863 struct inpcb *inp; 4864 4865 pd->lookup.uid = UID_MAX; 4866 pd->lookup.gid = GID_MAX; 4867 4868 switch (pd->proto) { 4869 case IPPROTO_TCP: 4870 sport = pd->hdr.tcp.th_sport; 4871 dport = pd->hdr.tcp.th_dport; 4872 pi = &V_tcbinfo; 4873 break; 4874 case IPPROTO_UDP: 4875 sport = pd->hdr.udp.uh_sport; 4876 dport = pd->hdr.udp.uh_dport; 4877 pi = &V_udbinfo; 4878 break; 4879 default: 4880 return (-1); 4881 } 4882 if (pd->dir == PF_IN) { 4883 saddr = pd->src; 4884 daddr = pd->dst; 4885 } else { 4886 u_int16_t p; 4887 4888 p = sport; 4889 sport = dport; 4890 dport = p; 4891 saddr = pd->dst; 4892 daddr = pd->src; 4893 } 4894 switch (pd->af) { 4895 #ifdef INET 4896 case AF_INET: 4897 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 4898 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m); 4899 if (inp == NULL) { 4900 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 4901 daddr->v4, dport, INPLOOKUP_WILDCARD | 4902 INPLOOKUP_RLOCKPCB, NULL, pd->m); 4903 if (inp == NULL) 4904 return (-1); 4905 } 4906 break; 4907 #endif /* INET */ 4908 #ifdef INET6 4909 case AF_INET6: 4910 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 4911 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m); 4912 if (inp == NULL) { 4913 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 4914 &daddr->v6, dport, INPLOOKUP_WILDCARD | 4915 INPLOOKUP_RLOCKPCB, NULL, pd->m); 4916 if (inp == NULL) 4917 return (-1); 4918 } 4919 break; 4920 #endif /* INET6 */ 4921 } 4922 INP_RLOCK_ASSERT(inp); 4923 pd->lookup.uid = inp->inp_cred->cr_uid; 4924 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4925 INP_RUNLOCK(inp); 4926 4927 return (1); 4928 } 4929 4930 u_int8_t 4931 pf_get_wscale(struct pf_pdesc *pd) 4932 { 4933 struct tcphdr *th = &pd->hdr.tcp; 4934 int hlen; 4935 u_int8_t hdr[60]; 4936 u_int8_t *opt, optlen; 4937 u_int8_t wscale = 0; 4938 4939 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */ 4940 if (hlen <= sizeof(struct tcphdr)) 4941 return (0); 4942 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af)) 4943 return (0); 4944 opt = hdr + sizeof(struct tcphdr); 4945 hlen -= sizeof(struct tcphdr); 4946 while (hlen >= 3) { 4947 switch (*opt) { 4948 case TCPOPT_EOL: 4949 case TCPOPT_NOP: 4950 ++opt; 4951 --hlen; 4952 break; 4953 case TCPOPT_WINDOW: 4954 wscale = opt[2]; 4955 if (wscale > TCP_MAX_WINSHIFT) 4956 wscale = TCP_MAX_WINSHIFT; 4957 wscale |= PF_WSCALE_FLAG; 4958 /* FALLTHROUGH */ 4959 default: 4960 optlen = opt[1]; 4961 if (optlen < 2) 4962 optlen = 2; 4963 hlen -= optlen; 4964 opt += optlen; 4965 break; 4966 } 4967 } 4968 return (wscale); 4969 } 4970 4971 u_int16_t 4972 pf_get_mss(struct pf_pdesc *pd) 4973 { 4974 struct tcphdr *th = &pd->hdr.tcp; 4975 int hlen; 4976 u_int8_t hdr[60]; 4977 u_int8_t *opt, optlen; 4978 u_int16_t mss = V_tcp_mssdflt; 4979 4980 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */ 4981 if (hlen <= sizeof(struct tcphdr)) 4982 return (0); 4983 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af)) 4984 return (0); 4985 opt = hdr + sizeof(struct tcphdr); 4986 hlen -= sizeof(struct tcphdr); 4987 while (hlen >= TCPOLEN_MAXSEG) { 4988 switch (*opt) { 4989 case TCPOPT_EOL: 4990 case TCPOPT_NOP: 4991 ++opt; 4992 --hlen; 4993 break; 4994 case TCPOPT_MAXSEG: 4995 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 4996 NTOHS(mss); 4997 /* FALLTHROUGH */ 4998 default: 4999 optlen = opt[1]; 5000 if (optlen < 2) 5001 optlen = 2; 5002 hlen -= optlen; 5003 opt += optlen; 5004 break; 5005 } 5006 } 5007 return (mss); 5008 } 5009 5010 static u_int16_t 5011 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 5012 { 5013 struct nhop_object *nh; 5014 #ifdef INET6 5015 struct in6_addr dst6; 5016 uint32_t scopeid; 5017 #endif /* INET6 */ 5018 int hlen = 0; 5019 uint16_t mss = 0; 5020 5021 NET_EPOCH_ASSERT(); 5022 5023 switch (af) { 5024 #ifdef INET 5025 case AF_INET: 5026 hlen = sizeof(struct ip); 5027 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 5028 if (nh != NULL) 5029 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 5030 break; 5031 #endif /* INET */ 5032 #ifdef INET6 5033 case AF_INET6: 5034 hlen = sizeof(struct ip6_hdr); 5035 in6_splitscope(&addr->v6, &dst6, &scopeid); 5036 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 5037 if (nh != NULL) 5038 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 5039 break; 5040 #endif /* INET6 */ 5041 } 5042 5043 mss = max(V_tcp_mssdflt, mss); 5044 mss = min(mss, offer); 5045 mss = max(mss, 64); /* sanity - at least max opt space */ 5046 return (mss); 5047 } 5048 5049 static u_int32_t 5050 pf_tcp_iss(struct pf_pdesc *pd) 5051 { 5052 MD5_CTX ctx; 5053 u_int32_t digest[4]; 5054 5055 if (V_pf_tcp_secret_init == 0) { 5056 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 5057 MD5Init(&V_pf_tcp_secret_ctx); 5058 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 5059 sizeof(V_pf_tcp_secret)); 5060 V_pf_tcp_secret_init = 1; 5061 } 5062 5063 ctx = V_pf_tcp_secret_ctx; 5064 5065 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 5066 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 5067 switch (pd->af) { 5068 case AF_INET6: 5069 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 5070 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 5071 break; 5072 case AF_INET: 5073 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 5074 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 5075 break; 5076 } 5077 MD5Final((u_char *)digest, &ctx); 5078 V_pf_tcp_iss_off += 4096; 5079 #define ISN_RANDOM_INCREMENT (4096 - 1) 5080 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 5081 V_pf_tcp_iss_off); 5082 #undef ISN_RANDOM_INCREMENT 5083 } 5084 5085 static bool 5086 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 5087 { 5088 bool match = true; 5089 5090 /* Always matches if not set */ 5091 if (! r->isset) 5092 return (!r->neg); 5093 5094 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 5095 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 5096 match = false; 5097 break; 5098 } 5099 } 5100 5101 return (match ^ r->neg); 5102 } 5103 5104 static int 5105 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 5106 { 5107 if (*tag == -1) 5108 *tag = mtag; 5109 5110 return ((!r->match_tag_not && r->match_tag == *tag) || 5111 (r->match_tag_not && r->match_tag != *tag)); 5112 } 5113 5114 static void 5115 pf_bridge_to(struct ifnet *ifp, struct mbuf *m) 5116 { 5117 /* If we don't have the interface drop the packet. */ 5118 if (ifp == NULL) { 5119 m_freem(m); 5120 return; 5121 } 5122 5123 switch (ifp->if_type) { 5124 case IFT_ETHER: 5125 case IFT_XETHER: 5126 case IFT_L2VLAN: 5127 case IFT_BRIDGE: 5128 case IFT_IEEE8023ADLAG: 5129 break; 5130 default: 5131 m_freem(m); 5132 return; 5133 } 5134 5135 ifp->if_transmit(ifp, m); 5136 } 5137 5138 static int 5139 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 5140 { 5141 #ifdef INET 5142 struct ip ip; 5143 #endif 5144 #ifdef INET6 5145 struct ip6_hdr ip6; 5146 #endif 5147 struct mbuf *m = *m0; 5148 struct ether_header *e; 5149 struct pf_keth_rule *r, *rm, *a = NULL; 5150 struct pf_keth_ruleset *ruleset = NULL; 5151 struct pf_mtag *mtag; 5152 struct pf_keth_ruleq *rules; 5153 struct pf_addr *src = NULL, *dst = NULL; 5154 struct pfi_kkif *bridge_to; 5155 sa_family_t af = 0; 5156 uint16_t proto; 5157 int asd = 0, match = 0; 5158 int tag = -1; 5159 uint8_t action; 5160 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 5161 5162 MPASS(kif->pfik_ifp->if_vnet == curvnet); 5163 NET_EPOCH_ASSERT(); 5164 5165 PF_RULES_RLOCK_TRACKER; 5166 5167 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 5168 5169 mtag = pf_find_mtag(m); 5170 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 5171 /* Dummynet re-injects packets after they've 5172 * completed their delay. We've already 5173 * processed them, so pass unconditionally. */ 5174 5175 /* But only once. We may see the packet multiple times (e.g. 5176 * PFIL_IN/PFIL_OUT). */ 5177 pf_dummynet_flag_remove(m, mtag); 5178 5179 return (PF_PASS); 5180 } 5181 5182 ruleset = V_pf_keth; 5183 rules = ck_pr_load_ptr(&ruleset->active.rules); 5184 r = TAILQ_FIRST(rules); 5185 rm = NULL; 5186 5187 if (__predict_false(m->m_len < sizeof(struct ether_header)) && 5188 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) { 5189 DPFPRINTF(PF_DEBUG_URGENT, 5190 ("pf_test_eth_rule: m_len < sizeof(struct ether_header)" 5191 ", pullup failed\n")); 5192 return (PF_DROP); 5193 } 5194 e = mtod(m, struct ether_header *); 5195 proto = ntohs(e->ether_type); 5196 5197 switch (proto) { 5198 #ifdef INET 5199 case ETHERTYPE_IP: { 5200 if (m_length(m, NULL) < (sizeof(struct ether_header) + 5201 sizeof(ip))) 5202 return (PF_DROP); 5203 5204 af = AF_INET; 5205 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 5206 (caddr_t)&ip); 5207 src = (struct pf_addr *)&ip.ip_src; 5208 dst = (struct pf_addr *)&ip.ip_dst; 5209 break; 5210 } 5211 #endif /* INET */ 5212 #ifdef INET6 5213 case ETHERTYPE_IPV6: { 5214 if (m_length(m, NULL) < (sizeof(struct ether_header) + 5215 sizeof(ip6))) 5216 return (PF_DROP); 5217 5218 af = AF_INET6; 5219 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 5220 (caddr_t)&ip6); 5221 src = (struct pf_addr *)&ip6.ip6_src; 5222 dst = (struct pf_addr *)&ip6.ip6_dst; 5223 break; 5224 } 5225 #endif /* INET6 */ 5226 } 5227 5228 PF_RULES_RLOCK(); 5229 5230 while (r != NULL) { 5231 counter_u64_add(r->evaluations, 1); 5232 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 5233 5234 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 5235 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5236 "kif"); 5237 r = r->skip[PFE_SKIP_IFP].ptr; 5238 } 5239 else if (r->direction && r->direction != dir) { 5240 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5241 "dir"); 5242 r = r->skip[PFE_SKIP_DIR].ptr; 5243 } 5244 else if (r->proto && r->proto != proto) { 5245 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5246 "proto"); 5247 r = r->skip[PFE_SKIP_PROTO].ptr; 5248 } 5249 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 5250 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5251 "src"); 5252 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 5253 } 5254 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 5255 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5256 "dst"); 5257 r = r->skip[PFE_SKIP_DST_ADDR].ptr; 5258 } 5259 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 5260 r->ipsrc.neg, kif, M_GETFIB(m))) { 5261 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5262 "ip_src"); 5263 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr; 5264 } 5265 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 5266 r->ipdst.neg, kif, M_GETFIB(m))) { 5267 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5268 "ip_dst"); 5269 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr; 5270 } 5271 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 5272 mtag ? mtag->tag : 0)) { 5273 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5274 "match_tag"); 5275 r = TAILQ_NEXT(r, entries); 5276 } 5277 else { 5278 if (r->tag) 5279 tag = r->tag; 5280 if (r->anchor == NULL) { 5281 /* Rule matches */ 5282 rm = r; 5283 5284 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 5285 5286 if (r->quick) 5287 break; 5288 5289 r = TAILQ_NEXT(r, entries); 5290 } else { 5291 pf_step_into_keth_anchor(anchor_stack, &asd, 5292 &ruleset, &r, &a, &match); 5293 } 5294 } 5295 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 5296 &ruleset, &r, &a, &match)) 5297 break; 5298 } 5299 5300 r = rm; 5301 5302 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 5303 5304 /* Default to pass. */ 5305 if (r == NULL) { 5306 PF_RULES_RUNLOCK(); 5307 return (PF_PASS); 5308 } 5309 5310 /* Execute action. */ 5311 counter_u64_add(r->packets[dir == PF_OUT], 1); 5312 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 5313 pf_update_timestamp(r); 5314 5315 /* Shortcut. Don't tag if we're just going to drop anyway. */ 5316 if (r->action == PF_DROP) { 5317 PF_RULES_RUNLOCK(); 5318 return (PF_DROP); 5319 } 5320 5321 if (tag > 0) { 5322 if (mtag == NULL) 5323 mtag = pf_get_mtag(m); 5324 if (mtag == NULL) { 5325 PF_RULES_RUNLOCK(); 5326 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5327 return (PF_DROP); 5328 } 5329 mtag->tag = tag; 5330 } 5331 5332 if (r->qid != 0) { 5333 if (mtag == NULL) 5334 mtag = pf_get_mtag(m); 5335 if (mtag == NULL) { 5336 PF_RULES_RUNLOCK(); 5337 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5338 return (PF_DROP); 5339 } 5340 mtag->qid = r->qid; 5341 } 5342 5343 action = r->action; 5344 bridge_to = r->bridge_to; 5345 5346 /* Dummynet */ 5347 if (r->dnpipe) { 5348 struct ip_fw_args dnflow; 5349 5350 /* Drop packet if dummynet is not loaded. */ 5351 if (ip_dn_io_ptr == NULL) { 5352 PF_RULES_RUNLOCK(); 5353 m_freem(m); 5354 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5355 return (PF_DROP); 5356 } 5357 if (mtag == NULL) 5358 mtag = pf_get_mtag(m); 5359 if (mtag == NULL) { 5360 PF_RULES_RUNLOCK(); 5361 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5362 return (PF_DROP); 5363 } 5364 5365 bzero(&dnflow, sizeof(dnflow)); 5366 5367 /* We don't have port numbers here, so we set 0. That means 5368 * that we'll be somewhat limited in distinguishing flows (i.e. 5369 * only based on IP addresses, not based on port numbers), but 5370 * it's better than nothing. */ 5371 dnflow.f_id.dst_port = 0; 5372 dnflow.f_id.src_port = 0; 5373 dnflow.f_id.proto = 0; 5374 5375 dnflow.rule.info = r->dnpipe; 5376 dnflow.rule.info |= IPFW_IS_DUMMYNET; 5377 if (r->dnflags & PFRULE_DN_IS_PIPE) 5378 dnflow.rule.info |= IPFW_IS_PIPE; 5379 5380 dnflow.f_id.extra = dnflow.rule.info; 5381 5382 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 5383 dnflow.flags |= IPFW_ARGS_ETHER; 5384 dnflow.ifp = kif->pfik_ifp; 5385 5386 switch (af) { 5387 case AF_INET: 5388 dnflow.f_id.addr_type = 4; 5389 dnflow.f_id.src_ip = src->v4.s_addr; 5390 dnflow.f_id.dst_ip = dst->v4.s_addr; 5391 break; 5392 case AF_INET6: 5393 dnflow.flags |= IPFW_ARGS_IP6; 5394 dnflow.f_id.addr_type = 6; 5395 dnflow.f_id.src_ip6 = src->v6; 5396 dnflow.f_id.dst_ip6 = dst->v6; 5397 break; 5398 } 5399 5400 PF_RULES_RUNLOCK(); 5401 5402 mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 5403 ip_dn_io_ptr(m0, &dnflow); 5404 if (*m0 != NULL) 5405 pf_dummynet_flag_remove(m, mtag); 5406 } else { 5407 PF_RULES_RUNLOCK(); 5408 } 5409 5410 if (action == PF_PASS && bridge_to) { 5411 pf_bridge_to(bridge_to->pfik_ifp, *m0); 5412 *m0 = NULL; /* We've eaten the packet. */ 5413 } 5414 5415 return (action); 5416 } 5417 5418 #define PF_TEST_ATTRIB(t, a)\ 5419 do { \ 5420 if (t) { \ 5421 r = a; \ 5422 goto nextrule; \ 5423 } \ 5424 } while (0) 5425 5426 static int 5427 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, 5428 struct pf_pdesc *pd, struct pf_krule **am, 5429 struct pf_kruleset **rsm, struct inpcb *inp) 5430 { 5431 struct pf_krule *nr = NULL; 5432 struct pf_krule *r, *a = NULL; 5433 struct pf_kruleset *ruleset = NULL; 5434 struct pf_krule_slist match_rules; 5435 struct pf_krule_item *ri; 5436 struct tcphdr *th = &pd->hdr.tcp; 5437 struct pf_state_key *sk = NULL, *nk = NULL; 5438 u_short reason, transerror; 5439 int rewrite = 0; 5440 int tag = -1; 5441 int asd = 0; 5442 int match = 0; 5443 int state_icmp = 0, icmp_dir, multi; 5444 u_int16_t virtual_type, virtual_id; 5445 u_int16_t bproto_sum = 0, bip_sum = 0; 5446 u_int8_t icmptype = 0, icmpcode = 0; 5447 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 5448 struct pf_udp_mapping *udp_mapping = NULL; 5449 5450 PF_RULES_RASSERT(); 5451 5452 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5453 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5454 5455 SLIST_INIT(&match_rules); 5456 5457 if (inp != NULL) { 5458 INP_LOCK_ASSERT(inp); 5459 pd->lookup.uid = inp->inp_cred->cr_uid; 5460 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 5461 pd->lookup.done = 1; 5462 } 5463 5464 switch (pd->virtual_proto) { 5465 case IPPROTO_TCP: 5466 pd->nsport = th->th_sport; 5467 pd->ndport = th->th_dport; 5468 break; 5469 case IPPROTO_UDP: 5470 pd->nsport = pd->hdr.udp.uh_sport; 5471 pd->ndport = pd->hdr.udp.uh_dport; 5472 break; 5473 case IPPROTO_SCTP: 5474 pd->nsport = pd->hdr.sctp.src_port; 5475 pd->ndport = pd->hdr.sctp.dest_port; 5476 break; 5477 #ifdef INET 5478 case IPPROTO_ICMP: 5479 MPASS(pd->af == AF_INET); 5480 icmptype = pd->hdr.icmp.icmp_type; 5481 icmpcode = pd->hdr.icmp.icmp_code; 5482 state_icmp = pf_icmp_mapping(pd, icmptype, 5483 &icmp_dir, &multi, &virtual_id, &virtual_type); 5484 if (icmp_dir == PF_IN) { 5485 pd->nsport = virtual_id; 5486 pd->ndport = virtual_type; 5487 } else { 5488 pd->nsport = virtual_type; 5489 pd->ndport = virtual_id; 5490 } 5491 break; 5492 #endif /* INET */ 5493 #ifdef INET6 5494 case IPPROTO_ICMPV6: 5495 MPASS(pd->af == AF_INET6); 5496 icmptype = pd->hdr.icmp6.icmp6_type; 5497 icmpcode = pd->hdr.icmp6.icmp6_code; 5498 state_icmp = pf_icmp_mapping(pd, icmptype, 5499 &icmp_dir, &multi, &virtual_id, &virtual_type); 5500 if (icmp_dir == PF_IN) { 5501 pd->nsport = virtual_id; 5502 pd->ndport = virtual_type; 5503 } else { 5504 pd->nsport = virtual_type; 5505 pd->ndport = virtual_id; 5506 } 5507 5508 break; 5509 #endif /* INET6 */ 5510 default: 5511 pd->nsport = pd->ndport = 0; 5512 break; 5513 } 5514 pd->osport = pd->nsport; 5515 pd->odport = pd->ndport; 5516 5517 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 5518 5519 /* check packet for BINAT/NAT/RDR */ 5520 transerror = pf_get_translation(pd, pd->off, &sk, &nk, anchor_stack, 5521 &nr, &udp_mapping); 5522 switch (transerror) { 5523 default: 5524 /* A translation error occurred. */ 5525 REASON_SET(&reason, transerror); 5526 goto cleanup; 5527 case PFRES_MAX: 5528 /* No match. */ 5529 break; 5530 case PFRES_MATCH: 5531 KASSERT(sk != NULL, ("%s: null sk", __func__)); 5532 KASSERT(nk != NULL, ("%s: null nk", __func__)); 5533 5534 if (nr->log) { 5535 PFLOG_PACKET(PF_PASS, PFRES_MATCH, nr, a, 5536 ruleset, pd, 1); 5537 } 5538 5539 if (pd->ip_sum) 5540 bip_sum = *pd->ip_sum; 5541 5542 switch (pd->proto) { 5543 case IPPROTO_TCP: 5544 bproto_sum = th->th_sum; 5545 5546 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) || 5547 nk->port[pd->sidx] != pd->nsport) { 5548 pf_change_ap(pd->m, pd->src, &th->th_sport, 5549 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 5550 nk->port[pd->sidx], 0, pd->af, pd->naf); 5551 pd->sport = &th->th_sport; 5552 pd->nsport = th->th_sport; 5553 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5554 } 5555 5556 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) || 5557 nk->port[pd->didx] != pd->ndport) { 5558 pf_change_ap(pd->m, pd->dst, &th->th_dport, 5559 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 5560 nk->port[pd->didx], 0, pd->af, pd->naf); 5561 pd->dport = &th->th_dport; 5562 pd->ndport = th->th_dport; 5563 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5564 } 5565 rewrite++; 5566 break; 5567 case IPPROTO_UDP: 5568 bproto_sum = pd->hdr.udp.uh_sum; 5569 5570 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) || 5571 nk->port[pd->sidx] != pd->nsport) { 5572 pf_change_ap(pd->m, pd->src, 5573 &pd->hdr.udp.uh_sport, 5574 pd->ip_sum, &pd->hdr.udp.uh_sum, 5575 &nk->addr[pd->sidx], 5576 nk->port[pd->sidx], 1, pd->af, pd->naf); 5577 pd->sport = &pd->hdr.udp.uh_sport; 5578 pd->nsport = pd->hdr.udp.uh_sport; 5579 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5580 } 5581 5582 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) || 5583 nk->port[pd->didx] != pd->ndport) { 5584 pf_change_ap(pd->m, pd->dst, 5585 &pd->hdr.udp.uh_dport, 5586 pd->ip_sum, &pd->hdr.udp.uh_sum, 5587 &nk->addr[pd->didx], 5588 nk->port[pd->didx], 1, pd->af, pd->naf); 5589 pd->dport = &pd->hdr.udp.uh_dport; 5590 pd->ndport = pd->hdr.udp.uh_dport; 5591 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5592 } 5593 rewrite++; 5594 break; 5595 case IPPROTO_SCTP: { 5596 uint16_t checksum = 0; 5597 5598 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) || 5599 nk->port[pd->sidx] != pd->nsport) { 5600 pf_change_ap(pd->m, pd->src, 5601 &pd->hdr.sctp.src_port, pd->ip_sum, &checksum, 5602 &nk->addr[pd->sidx], 5603 nk->port[pd->sidx], 1, pd->af, pd->naf); 5604 pd->sport = &pd->hdr.sctp.src_port; 5605 pd->nsport = pd->hdr.sctp.src_port; 5606 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5607 } 5608 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) || 5609 nk->port[pd->didx] != pd->ndport) { 5610 pf_change_ap(pd->m, pd->dst, 5611 &pd->hdr.sctp.dest_port, pd->ip_sum, &checksum, 5612 &nk->addr[pd->didx], 5613 nk->port[pd->didx], 1, pd->af, pd->naf); 5614 pd->dport = &pd->hdr.sctp.dest_port; 5615 pd->ndport = pd->hdr.sctp.dest_port; 5616 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5617 } 5618 break; 5619 } 5620 #ifdef INET 5621 case IPPROTO_ICMP: 5622 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET)) { 5623 pf_change_a(&pd->src->v4.s_addr, pd->ip_sum, 5624 nk->addr[pd->sidx].v4.s_addr, 0); 5625 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5626 } 5627 5628 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET)) { 5629 pf_change_a(&pd->dst->v4.s_addr, pd->ip_sum, 5630 nk->addr[pd->didx].v4.s_addr, 0); 5631 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5632 } 5633 5634 if (virtual_type == htons(ICMP_ECHO) && 5635 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) { 5636 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 5637 pd->hdr.icmp.icmp_cksum, pd->nsport, 5638 nk->port[pd->sidx], 0); 5639 pd->hdr.icmp.icmp_id = nk->port[pd->sidx]; 5640 pd->sport = &pd->hdr.icmp.icmp_id; 5641 } 5642 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 5643 break; 5644 #endif /* INET */ 5645 #ifdef INET6 5646 case IPPROTO_ICMPV6: 5647 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET6)) { 5648 pf_change_a6(pd->src, &pd->hdr.icmp6.icmp6_cksum, 5649 &nk->addr[pd->sidx], 0); 5650 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5651 } 5652 5653 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET6)) { 5654 pf_change_a6(pd->dst, &pd->hdr.icmp6.icmp6_cksum, 5655 &nk->addr[pd->didx], 0); 5656 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5657 } 5658 rewrite++; 5659 break; 5660 #endif /* INET */ 5661 default: 5662 switch (pd->af) { 5663 #ifdef INET 5664 case AF_INET: 5665 if (PF_ANEQ(&pd->nsaddr, 5666 &nk->addr[pd->sidx], AF_INET)) { 5667 pf_change_a(&pd->src->v4.s_addr, 5668 pd->ip_sum, 5669 nk->addr[pd->sidx].v4.s_addr, 0); 5670 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5671 } 5672 5673 if (PF_ANEQ(&pd->ndaddr, 5674 &nk->addr[pd->didx], AF_INET)) { 5675 pf_change_a(&pd->dst->v4.s_addr, 5676 pd->ip_sum, 5677 nk->addr[pd->didx].v4.s_addr, 0); 5678 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5679 } 5680 break; 5681 #endif /* INET */ 5682 #ifdef INET6 5683 case AF_INET6: 5684 if (PF_ANEQ(&pd->nsaddr, 5685 &nk->addr[pd->sidx], AF_INET6)) { 5686 PF_ACPY(&pd->nsaddr, &nk->addr[pd->sidx], pd->af); 5687 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5688 } 5689 5690 if (PF_ANEQ(&pd->ndaddr, 5691 &nk->addr[pd->didx], AF_INET6)) { 5692 PF_ACPY(&pd->ndaddr, &nk->addr[pd->didx], pd->af); 5693 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5694 } 5695 break; 5696 #endif /* INET */ 5697 } 5698 break; 5699 } 5700 if (nr->natpass) 5701 r = NULL; 5702 } 5703 5704 while (r != NULL) { 5705 pf_counter_u64_add(&r->evaluations, 1); 5706 PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot, 5707 r->skip[PF_SKIP_IFP]); 5708 PF_TEST_ATTRIB(r->direction && r->direction != pd->dir, 5709 r->skip[PF_SKIP_DIR]); 5710 PF_TEST_ATTRIB(r->af && r->af != pd->af, 5711 r->skip[PF_SKIP_AF]); 5712 PF_TEST_ATTRIB(r->proto && r->proto != pd->proto, 5713 r->skip[PF_SKIP_PROTO]); 5714 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, &pd->nsaddr, pd->naf, 5715 r->src.neg, pd->kif, M_GETFIB(pd->m)), 5716 r->skip[PF_SKIP_SRC_ADDR]); 5717 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, &pd->ndaddr, pd->af, 5718 r->dst.neg, NULL, M_GETFIB(pd->m)), 5719 r->skip[PF_SKIP_DST_ADDR]); 5720 switch (pd->virtual_proto) { 5721 case PF_VPROTO_FRAGMENT: 5722 /* tcp/udp only. port_op always 0 in other cases */ 5723 PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op), 5724 TAILQ_NEXT(r, entries)); 5725 PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset), 5726 TAILQ_NEXT(r, entries)); 5727 /* icmp only. type/code always 0 in other cases */ 5728 PF_TEST_ATTRIB((r->type || r->code), 5729 TAILQ_NEXT(r, entries)); 5730 /* tcp/udp only. {uid|gid}.op always 0 in other cases */ 5731 PF_TEST_ATTRIB((r->gid.op || r->uid.op), 5732 TAILQ_NEXT(r, entries)); 5733 break; 5734 5735 case IPPROTO_TCP: 5736 PF_TEST_ATTRIB((r->flagset & tcp_get_flags(th)) != r->flags, 5737 TAILQ_NEXT(r, entries)); 5738 /* FALLTHROUGH */ 5739 case IPPROTO_SCTP: 5740 case IPPROTO_UDP: 5741 /* tcp/udp only. port_op always 0 in other cases */ 5742 PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op, 5743 r->src.port[0], r->src.port[1], pd->nsport), 5744 r->skip[PF_SKIP_SRC_PORT]); 5745 /* tcp/udp only. port_op always 0 in other cases */ 5746 PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op, 5747 r->dst.port[0], r->dst.port[1], pd->ndport), 5748 r->skip[PF_SKIP_DST_PORT]); 5749 /* tcp/udp only. uid.op always 0 in other cases */ 5750 PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done = 5751 pf_socket_lookup(pd), 1)) && 5752 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 5753 pd->lookup.uid), 5754 TAILQ_NEXT(r, entries)); 5755 /* tcp/udp only. gid.op always 0 in other cases */ 5756 PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done = 5757 pf_socket_lookup(pd), 1)) && 5758 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 5759 pd->lookup.gid), 5760 TAILQ_NEXT(r, entries)); 5761 break; 5762 5763 case IPPROTO_ICMP: 5764 case IPPROTO_ICMPV6: 5765 /* icmp only. type always 0 in other cases */ 5766 PF_TEST_ATTRIB(r->type && r->type != icmptype + 1, 5767 TAILQ_NEXT(r, entries)); 5768 /* icmp only. type always 0 in other cases */ 5769 PF_TEST_ATTRIB(r->code && r->code != icmpcode + 1, 5770 TAILQ_NEXT(r, entries)); 5771 break; 5772 5773 default: 5774 break; 5775 } 5776 PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos), 5777 TAILQ_NEXT(r, entries)); 5778 PF_TEST_ATTRIB(r->prio && 5779 !pf_match_ieee8021q_pcp(r->prio, pd->m), 5780 TAILQ_NEXT(r, entries)); 5781 PF_TEST_ATTRIB(r->prob && 5782 r->prob <= arc4random(), 5783 TAILQ_NEXT(r, entries)); 5784 PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r, &tag, 5785 pd->pf_mtag ? pd->pf_mtag->tag : 0), 5786 TAILQ_NEXT(r, entries)); 5787 PF_TEST_ATTRIB(r->rcv_kif && !pf_match_rcvif(pd->m, r), 5788 TAILQ_NEXT(r, entries)); 5789 PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT && 5790 pd->virtual_proto != PF_VPROTO_FRAGMENT), 5791 TAILQ_NEXT(r, entries)); 5792 PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY && 5793 (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match( 5794 pf_osfp_fingerprint(pd, th), 5795 r->os_fingerprint)), 5796 TAILQ_NEXT(r, entries)); 5797 /* FALLTHROUGH */ 5798 if (r->tag) 5799 tag = r->tag; 5800 if (r->anchor == NULL) { 5801 if (r->action == PF_MATCH) { 5802 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5803 if (ri == NULL) { 5804 REASON_SET(&reason, PFRES_MEMORY); 5805 goto cleanup; 5806 } 5807 ri->r = r; 5808 SLIST_INSERT_HEAD(&match_rules, ri, entry); 5809 pf_counter_u64_critical_enter(); 5810 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5811 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5812 pf_counter_u64_critical_exit(); 5813 pf_rule_to_actions(r, &pd->act); 5814 if (r->rule_flag & PFRULE_AFTO) 5815 pd->naf = r->naf; 5816 if (pd->af != pd->naf) { 5817 if (pf_get_transaddr_af(r, pd) == -1) { 5818 REASON_SET(&reason, PFRES_MEMORY); 5819 goto cleanup; 5820 } 5821 } 5822 if (r->log || pd->act.log & PF_LOG_MATCHES) 5823 PFLOG_PACKET(r->action, PFRES_MATCH, r, 5824 a, ruleset, pd, 1); 5825 } else { 5826 match = 1; 5827 *rm = r; 5828 *am = a; 5829 *rsm = ruleset; 5830 if (pd->act.log & PF_LOG_MATCHES) 5831 PFLOG_PACKET(r->action, PFRES_MATCH, r, 5832 a, ruleset, pd, 1); 5833 } 5834 if ((*rm)->quick) 5835 break; 5836 r = TAILQ_NEXT(r, entries); 5837 } else 5838 pf_step_into_anchor(anchor_stack, &asd, 5839 &ruleset, PF_RULESET_FILTER, &r, &a, 5840 &match); 5841 nextrule: 5842 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 5843 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 5844 break; 5845 } 5846 r = *rm; 5847 a = *am; 5848 ruleset = *rsm; 5849 5850 REASON_SET(&reason, PFRES_MATCH); 5851 5852 /* apply actions for last matching pass/block rule */ 5853 pf_rule_to_actions(r, &pd->act); 5854 if (r->rule_flag & PFRULE_AFTO) 5855 pd->naf = r->naf; 5856 if (pd->af != pd->naf) { 5857 if (pf_get_transaddr_af(r, pd) == -1) { 5858 REASON_SET(&reason, PFRES_MEMORY); 5859 goto cleanup; 5860 } 5861 } 5862 5863 if (r->log || pd->act.log & PF_LOG_MATCHES) { 5864 if (rewrite) 5865 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5866 PFLOG_PACKET(r->action, reason, r, a, ruleset, pd, 1); 5867 } 5868 5869 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5870 (r->action == PF_DROP) && 5871 ((r->rule_flag & PFRULE_RETURNRST) || 5872 (r->rule_flag & PFRULE_RETURNICMP) || 5873 (r->rule_flag & PFRULE_RETURN))) { 5874 pf_return(r, nr, pd, sk, th, bproto_sum, 5875 bip_sum, &reason, r->rtableid); 5876 } 5877 5878 if (r->action == PF_DROP) 5879 goto cleanup; 5880 5881 if (tag > 0 && pf_tag_packet(pd, tag)) { 5882 REASON_SET(&reason, PFRES_MEMORY); 5883 goto cleanup; 5884 } 5885 if (pd->act.rtableid >= 0) 5886 M_SETFIB(pd->m, pd->act.rtableid); 5887 5888 if (r->rt) { 5889 struct pf_ksrc_node *sn = NULL; 5890 struct pf_srchash *snh = NULL; 5891 /* 5892 * Set act.rt here instead of in pf_rule_to_actions() because 5893 * it is applied only from the last pass rule. 5894 */ 5895 pd->act.rt = r->rt; 5896 /* Don't use REASON_SET, pf_map_addr increases the reason counters */ 5897 reason = pf_map_addr_sn(pd->af, r, pd->src, &pd->act.rt_addr, 5898 &pd->act.rt_kif, NULL, &sn, &snh, &r->rdr); 5899 if (reason != 0) 5900 goto cleanup; 5901 } 5902 5903 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5904 (!state_icmp && (r->keep_state || nr != NULL || 5905 (pd->flags & PFDESC_TCP_NORM)))) { 5906 int action; 5907 bool nat64; 5908 5909 action = pf_create_state(r, nr, a, pd, nk, sk, 5910 &rewrite, sm, tag, bproto_sum, bip_sum, 5911 &match_rules, udp_mapping); 5912 if (action != PF_PASS) { 5913 pf_udp_mapping_release(udp_mapping); 5914 pd->act.log |= PF_LOG_FORCE; 5915 if (action == PF_DROP && 5916 (r->rule_flag & PFRULE_RETURN)) 5917 pf_return(r, nr, pd, sk, th, 5918 bproto_sum, bip_sum, &reason, 5919 pd->act.rtableid); 5920 return (action); 5921 } 5922 5923 nat64 = pd->af != pd->naf; 5924 if (nat64) { 5925 struct pf_state_key *_sk; 5926 int ret; 5927 5928 if (sk == NULL) 5929 sk = (*sm)->key[pd->dir == PF_IN ? PF_SK_STACK : PF_SK_WIRE]; 5930 if (nk == NULL) 5931 nk = (*sm)->key[pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK]; 5932 if (pd->dir == PF_IN) 5933 _sk = sk; 5934 else 5935 _sk = nk; 5936 5937 ret = pf_translate(pd, 5938 &_sk->addr[pd->didx], 5939 _sk->port[pd->didx], 5940 &_sk->addr[pd->sidx], 5941 _sk->port[pd->sidx], 5942 virtual_type, icmp_dir); 5943 if (ret < 0) 5944 goto cleanup; 5945 5946 rewrite += ret; 5947 } 5948 } else { 5949 while ((ri = SLIST_FIRST(&match_rules))) { 5950 SLIST_REMOVE_HEAD(&match_rules, entry); 5951 free(ri, M_PF_RULE_ITEM); 5952 } 5953 5954 uma_zfree(V_pf_state_key_z, sk); 5955 uma_zfree(V_pf_state_key_z, nk); 5956 pf_udp_mapping_release(udp_mapping); 5957 } 5958 5959 /* copy back packet headers if we performed NAT operations */ 5960 if (rewrite) 5961 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5962 5963 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 5964 pd->dir == PF_OUT && 5965 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m)) 5966 /* 5967 * We want the state created, but we dont 5968 * want to send this in case a partner 5969 * firewall has to know about it to allow 5970 * replies through it. 5971 */ 5972 return (PF_DEFER); 5973 5974 if (rewrite && sk != NULL && nk != NULL && sk->af != nk->af) { 5975 return (PF_AFRT); 5976 } else 5977 return (PF_PASS); 5978 5979 cleanup: 5980 while ((ri = SLIST_FIRST(&match_rules))) { 5981 SLIST_REMOVE_HEAD(&match_rules, entry); 5982 free(ri, M_PF_RULE_ITEM); 5983 } 5984 5985 uma_zfree(V_pf_state_key_z, sk); 5986 uma_zfree(V_pf_state_key_z, nk); 5987 pf_udp_mapping_release(udp_mapping); 5988 5989 return (PF_DROP); 5990 } 5991 5992 static int 5993 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 5994 struct pf_pdesc *pd, struct pf_state_key *nk, struct pf_state_key *sk, 5995 int *rewrite, struct pf_kstate **sm, int tag, u_int16_t bproto_sum, 5996 u_int16_t bip_sum, struct pf_krule_slist *match_rules, 5997 struct pf_udp_mapping *udp_mapping) 5998 { 5999 struct pf_kstate *s = NULL; 6000 struct pf_ksrc_node *sn = NULL; 6001 struct pf_srchash *snh = NULL; 6002 struct pf_ksrc_node *nsn = NULL; 6003 struct pf_srchash *nsnh = NULL; 6004 struct tcphdr *th = &pd->hdr.tcp; 6005 u_int16_t mss = V_tcp_mssdflt; 6006 u_short reason, sn_reason; 6007 struct pf_krule_item *ri; 6008 6009 /* check maximums */ 6010 if (r->max_states && 6011 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 6012 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 6013 REASON_SET(&reason, PFRES_MAXSTATES); 6014 goto csfailed; 6015 } 6016 /* src node for filter rule */ 6017 if ((r->rule_flag & PFRULE_SRCTRACK || 6018 r->rdr.opts & PF_POOL_STICKYADDR) && 6019 (sn_reason = pf_insert_src_node(&sn, &snh, r, pd->src, pd->af, 6020 &pd->act.rt_addr, pd->act.rt_kif)) != 0) { 6021 REASON_SET(&reason, sn_reason); 6022 goto csfailed; 6023 } 6024 /* src node for translation rule */ 6025 if (nr != NULL && (nr->rdr.opts & PF_POOL_STICKYADDR) && 6026 (sn_reason = pf_insert_src_node(&nsn, &nsnh, nr, &sk->addr[pd->sidx], 6027 pd->af, &nk->addr[1], NULL)) != 0 ) { 6028 REASON_SET(&reason, sn_reason); 6029 goto csfailed; 6030 } 6031 s = pf_alloc_state(M_NOWAIT); 6032 if (s == NULL) { 6033 REASON_SET(&reason, PFRES_MEMORY); 6034 goto csfailed; 6035 } 6036 s->rule = r; 6037 s->nat_rule = nr; 6038 s->anchor = a; 6039 bcopy(match_rules, &s->match_rules, sizeof(s->match_rules)); 6040 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions)); 6041 6042 STATE_INC_COUNTERS(s); 6043 if (r->allow_opts) 6044 s->state_flags |= PFSTATE_ALLOWOPTS; 6045 if (r->rule_flag & PFRULE_STATESLOPPY) 6046 s->state_flags |= PFSTATE_SLOPPY; 6047 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 6048 s->state_flags |= PFSTATE_SCRUB_TCP; 6049 if ((r->rule_flag & PFRULE_PFLOW) || 6050 (nr != NULL && nr->rule_flag & PFRULE_PFLOW)) 6051 s->state_flags |= PFSTATE_PFLOW; 6052 6053 s->act.log = pd->act.log & PF_LOG_ALL; 6054 s->sync_state = PFSYNC_S_NONE; 6055 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */ 6056 6057 if (nr != NULL) 6058 s->act.log |= nr->log & PF_LOG_ALL; 6059 switch (pd->proto) { 6060 case IPPROTO_TCP: 6061 s->src.seqlo = ntohl(th->th_seq); 6062 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 6063 if ((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN && 6064 r->keep_state == PF_STATE_MODULATE) { 6065 /* Generate sequence number modulator */ 6066 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 6067 0) 6068 s->src.seqdiff = 1; 6069 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, 6070 htonl(s->src.seqlo + s->src.seqdiff), 0); 6071 *rewrite = 1; 6072 } else 6073 s->src.seqdiff = 0; 6074 if (tcp_get_flags(th) & TH_SYN) { 6075 s->src.seqhi++; 6076 s->src.wscale = pf_get_wscale(pd); 6077 } 6078 s->src.max_win = MAX(ntohs(th->th_win), 1); 6079 if (s->src.wscale & PF_WSCALE_MASK) { 6080 /* Remove scale factor from initial window */ 6081 int win = s->src.max_win; 6082 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 6083 s->src.max_win = (win - 1) >> 6084 (s->src.wscale & PF_WSCALE_MASK); 6085 } 6086 if (tcp_get_flags(th) & TH_FIN) 6087 s->src.seqhi++; 6088 s->dst.seqhi = 1; 6089 s->dst.max_win = 1; 6090 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 6091 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 6092 s->timeout = PFTM_TCP_FIRST_PACKET; 6093 atomic_add_32(&V_pf_status.states_halfopen, 1); 6094 break; 6095 case IPPROTO_UDP: 6096 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 6097 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 6098 s->timeout = PFTM_UDP_FIRST_PACKET; 6099 break; 6100 case IPPROTO_SCTP: 6101 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT); 6102 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED); 6103 s->timeout = PFTM_SCTP_FIRST_PACKET; 6104 break; 6105 case IPPROTO_ICMP: 6106 #ifdef INET6 6107 case IPPROTO_ICMPV6: 6108 #endif 6109 s->timeout = PFTM_ICMP_FIRST_PACKET; 6110 break; 6111 default: 6112 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 6113 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 6114 s->timeout = PFTM_OTHER_FIRST_PACKET; 6115 } 6116 6117 s->creation = s->expire = pf_get_uptime(); 6118 6119 if (pd->proto == IPPROTO_TCP) { 6120 if (s->state_flags & PFSTATE_SCRUB_TCP && 6121 pf_normalize_tcp_init(pd, th, &s->src, &s->dst)) { 6122 REASON_SET(&reason, PFRES_MEMORY); 6123 goto csfailed; 6124 } 6125 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 6126 pf_normalize_tcp_stateful(pd, &reason, th, s, 6127 &s->src, &s->dst, rewrite)) { 6128 /* This really shouldn't happen!!! */ 6129 DPFPRINTF(PF_DEBUG_URGENT, 6130 ("pf_normalize_tcp_stateful failed on first " 6131 "pkt\n")); 6132 goto csfailed; 6133 } 6134 } else if (pd->proto == IPPROTO_SCTP) { 6135 if (pf_normalize_sctp_init(pd, &s->src, &s->dst)) 6136 goto csfailed; 6137 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP))) 6138 goto csfailed; 6139 } 6140 s->direction = pd->dir; 6141 6142 /* 6143 * sk/nk could already been setup by pf_get_translation(). 6144 */ 6145 if (nr == NULL) { 6146 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 6147 __func__, nr, sk, nk)); 6148 MPASS(pd->sport == NULL || (pd->osport == *pd->sport)); 6149 MPASS(pd->dport == NULL || (pd->odport == *pd->dport)); 6150 if (pf_state_key_setup(pd, pd->nsport, pd->ndport, &sk, &nk)) { 6151 goto csfailed; 6152 } 6153 } else 6154 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 6155 __func__, nr, sk, nk)); 6156 6157 /* Swap sk/nk for PF_OUT. */ 6158 if (pf_state_insert(BOUND_IFACE(s, pd), pd->kif, 6159 (pd->dir == PF_IN) ? sk : nk, 6160 (pd->dir == PF_IN) ? nk : sk, s)) { 6161 REASON_SET(&reason, PFRES_STATEINS); 6162 goto drop; 6163 } else 6164 *sm = s; 6165 6166 /* 6167 * Lock order is important: first state, then source node. 6168 */ 6169 if (pf_src_node_exists(&sn, snh)) { 6170 s->src_node = sn; 6171 PF_HASHROW_UNLOCK(snh); 6172 } 6173 if (pf_src_node_exists(&nsn, nsnh)) { 6174 s->nat_src_node = nsn; 6175 PF_HASHROW_UNLOCK(nsnh); 6176 } 6177 6178 if (tag > 0) 6179 s->tag = tag; 6180 if (pd->proto == IPPROTO_TCP && (tcp_get_flags(th) & (TH_SYN|TH_ACK)) == 6181 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 6182 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 6183 /* undo NAT changes, if they have taken place */ 6184 if (nr != NULL) { 6185 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 6186 if (pd->dir == PF_OUT) 6187 skt = s->key[PF_SK_STACK]; 6188 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 6189 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 6190 if (pd->sport) 6191 *pd->sport = skt->port[pd->sidx]; 6192 if (pd->dport) 6193 *pd->dport = skt->port[pd->didx]; 6194 if (pd->ip_sum) 6195 *pd->ip_sum = bip_sum; 6196 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 6197 } 6198 s->src.seqhi = htonl(arc4random()); 6199 /* Find mss option */ 6200 int rtid = M_GETFIB(pd->m); 6201 mss = pf_get_mss(pd); 6202 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 6203 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 6204 s->src.mss = mss; 6205 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 6206 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 6207 TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0, 6208 pd->act.rtableid); 6209 REASON_SET(&reason, PFRES_SYNPROXY); 6210 return (PF_SYNPROXY_DROP); 6211 } 6212 6213 s->udp_mapping = udp_mapping; 6214 6215 return (PF_PASS); 6216 6217 csfailed: 6218 while ((ri = SLIST_FIRST(match_rules))) { 6219 SLIST_REMOVE_HEAD(match_rules, entry); 6220 free(ri, M_PF_RULE_ITEM); 6221 } 6222 6223 uma_zfree(V_pf_state_key_z, sk); 6224 uma_zfree(V_pf_state_key_z, nk); 6225 6226 if (pf_src_node_exists(&sn, snh)) { 6227 if (--sn->states == 0 && sn->expire == 0) { 6228 pf_unlink_src_node(sn); 6229 pf_free_src_node(sn); 6230 counter_u64_add( 6231 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 6232 } 6233 PF_HASHROW_UNLOCK(snh); 6234 } 6235 6236 if (sn != nsn && pf_src_node_exists(&nsn, nsnh)) { 6237 if (--nsn->states == 0 && nsn->expire == 0) { 6238 pf_unlink_src_node(nsn); 6239 pf_free_src_node(nsn); 6240 counter_u64_add( 6241 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 6242 } 6243 PF_HASHROW_UNLOCK(nsnh); 6244 } 6245 6246 drop: 6247 if (s != NULL) { 6248 pf_src_tree_remove_state(s); 6249 s->timeout = PFTM_UNLINKED; 6250 STATE_DEC_COUNTERS(s); 6251 pf_free_state(s); 6252 } 6253 6254 return (PF_DROP); 6255 } 6256 6257 int 6258 pf_translate(struct pf_pdesc *pd, struct pf_addr *saddr, u_int16_t sport, 6259 struct pf_addr *daddr, u_int16_t dport, u_int16_t virtual_type, 6260 int icmp_dir) 6261 { 6262 /* 6263 * pf_translate() implements OpenBSD's "new" NAT approach. 6264 * We don't follow it, because it involves a breaking syntax change 6265 * (removing nat/rdr rules, moving it into regular pf rules.) 6266 * It also moves NAT processing to be done after normal rules evaluation 6267 * whereas in FreeBSD that's done before rules processing. 6268 * 6269 * We adopt the function only for nat64, and keep other NAT processing 6270 * before rules processing. 6271 */ 6272 int rewrite = 0; 6273 int afto = pd->af != pd->naf; 6274 6275 MPASS(afto); 6276 6277 switch (pd->proto) { 6278 case IPPROTO_TCP: 6279 if (afto || *pd->sport != sport) { 6280 pf_change_ap(pd->m, pd->src, pd->sport, pd->ip_sum, &pd->hdr.tcp.th_sum, 6281 saddr, sport, 0, pd->af, pd->naf); 6282 rewrite = 1; 6283 } 6284 if (afto || *pd->dport != dport) { 6285 pf_change_ap(pd->m, pd->dst, pd->dport, pd->ip_sum, &pd->hdr.tcp.th_sum, 6286 daddr, dport, 0, pd->af, pd->naf); 6287 rewrite = 1; 6288 } 6289 break; 6290 6291 case IPPROTO_UDP: 6292 if (afto || *pd->sport != sport) { 6293 pf_change_ap(pd->m, pd->src, pd->sport, pd->ip_sum, &pd->hdr.udp.uh_sum, 6294 saddr, sport, 1, pd->af, pd->naf); 6295 rewrite = 1; 6296 } 6297 if (afto || *pd->dport != dport) { 6298 pf_change_ap(pd->m, pd->dst, pd->dport, pd->ip_sum, &pd->hdr.udp.uh_sum, 6299 daddr, dport, 1, pd->af, pd->naf); 6300 rewrite = 1; 6301 } 6302 break; 6303 6304 case IPPROTO_SCTP: { 6305 uint16_t checksum = 0; 6306 if (afto || *pd->sport != sport) { 6307 pf_change_ap(pd->m, pd->src, pd->sport, pd->ip_sum, &checksum, 6308 saddr, sport, 1, pd->af, pd->naf); 6309 rewrite = 1; 6310 } 6311 if (afto || *pd->dport != dport) { 6312 pf_change_ap(pd->m, pd->dst, pd->dport, pd->ip_sum, &checksum, 6313 daddr, dport, 1, pd->af, pd->naf); 6314 rewrite = 1; 6315 } 6316 break; 6317 } 6318 6319 #ifdef INET 6320 case IPPROTO_ICMP: 6321 /* pf_translate() is also used when logging invalid packets */ 6322 if (pd->af != AF_INET) 6323 return (0); 6324 6325 if (afto) { 6326 if (pf_translate_icmp_af(AF_INET6, &pd->hdr.icmp)) 6327 return (-1); 6328 pd->proto = IPPROTO_ICMPV6; 6329 rewrite = 1; 6330 } 6331 if (virtual_type == htons(ICMP_ECHO)) { 6332 u_int16_t icmpid = (icmp_dir == PF_IN) ? sport : dport; 6333 6334 if (icmpid != pd->hdr.icmp.icmp_id) { 6335 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 6336 pd->hdr.icmp.icmp_cksum, 6337 pd->hdr.icmp.icmp_id, icmpid, 0); 6338 pd->hdr.icmp.icmp_id = icmpid; 6339 /* XXX TODO copyback. */ 6340 rewrite = 1; 6341 } 6342 } 6343 break; 6344 #endif /* INET */ 6345 6346 #ifdef INET6 6347 case IPPROTO_ICMPV6: 6348 /* pf_translate() is also used when logging invalid packets */ 6349 if (pd->af != AF_INET6) 6350 return (0); 6351 6352 if (afto) { 6353 /* ip_sum will be recalculated in pf_translate_af */ 6354 if (pf_translate_icmp_af(AF_INET, &pd->hdr.icmp6)) 6355 return (0); 6356 pd->proto = IPPROTO_ICMP; 6357 rewrite = 1; 6358 } 6359 break; 6360 #endif /* INET6 */ 6361 6362 default: 6363 break; 6364 } 6365 6366 return (rewrite); 6367 } 6368 6369 static int 6370 pf_tcp_track_full(struct pf_kstate **state, struct pf_pdesc *pd, 6371 u_short *reason, int *copyback) 6372 { 6373 struct tcphdr *th = &pd->hdr.tcp; 6374 struct pf_state_peer *src, *dst; 6375 u_int16_t win = ntohs(th->th_win); 6376 u_int32_t ack, end, data_end, seq, orig_seq; 6377 u_int8_t sws, dws, psrc, pdst; 6378 int ackskew; 6379 6380 if (pd->dir == (*state)->direction) { 6381 if (PF_REVERSED_KEY((*state)->key, pd->af)) { 6382 src = &(*state)->dst; 6383 dst = &(*state)->src; 6384 } else { 6385 src = &(*state)->src; 6386 dst = &(*state)->dst; 6387 } 6388 psrc = PF_PEER_SRC; 6389 pdst = PF_PEER_DST; 6390 } else { 6391 if (PF_REVERSED_KEY((*state)->key, pd->af)) { 6392 src = &(*state)->src; 6393 dst = &(*state)->dst; 6394 } else { 6395 src = &(*state)->dst; 6396 dst = &(*state)->src; 6397 } 6398 psrc = PF_PEER_DST; 6399 pdst = PF_PEER_SRC; 6400 } 6401 6402 if (src->wscale && dst->wscale && !(tcp_get_flags(th) & TH_SYN)) { 6403 sws = src->wscale & PF_WSCALE_MASK; 6404 dws = dst->wscale & PF_WSCALE_MASK; 6405 } else 6406 sws = dws = 0; 6407 6408 /* 6409 * Sequence tracking algorithm from Guido van Rooij's paper: 6410 * http://www.madison-gurkha.com/publications/tcp_filtering/ 6411 * tcp_filtering.ps 6412 */ 6413 6414 orig_seq = seq = ntohl(th->th_seq); 6415 if (src->seqlo == 0) { 6416 /* First packet from this end. Set its state */ 6417 6418 if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 6419 src->scrub == NULL) { 6420 if (pf_normalize_tcp_init(pd, th, src, dst)) { 6421 REASON_SET(reason, PFRES_MEMORY); 6422 return (PF_DROP); 6423 } 6424 } 6425 6426 /* Deferred generation of sequence number modulator */ 6427 if (dst->seqdiff && !src->seqdiff) { 6428 /* use random iss for the TCP server */ 6429 while ((src->seqdiff = arc4random() - seq) == 0) 6430 ; 6431 ack = ntohl(th->th_ack) - dst->seqdiff; 6432 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq + 6433 src->seqdiff), 0); 6434 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0); 6435 *copyback = 1; 6436 } else { 6437 ack = ntohl(th->th_ack); 6438 } 6439 6440 end = seq + pd->p_len; 6441 if (tcp_get_flags(th) & TH_SYN) { 6442 end++; 6443 if (dst->wscale & PF_WSCALE_FLAG) { 6444 src->wscale = pf_get_wscale(pd); 6445 if (src->wscale & PF_WSCALE_FLAG) { 6446 /* Remove scale factor from initial 6447 * window */ 6448 sws = src->wscale & PF_WSCALE_MASK; 6449 win = ((u_int32_t)win + (1 << sws) - 1) 6450 >> sws; 6451 dws = dst->wscale & PF_WSCALE_MASK; 6452 } else { 6453 /* fixup other window */ 6454 dst->max_win = MIN(TCP_MAXWIN, 6455 (u_int32_t)dst->max_win << 6456 (dst->wscale & PF_WSCALE_MASK)); 6457 /* in case of a retrans SYN|ACK */ 6458 dst->wscale = 0; 6459 } 6460 } 6461 } 6462 data_end = end; 6463 if (tcp_get_flags(th) & TH_FIN) 6464 end++; 6465 6466 src->seqlo = seq; 6467 if (src->state < TCPS_SYN_SENT) 6468 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 6469 6470 /* 6471 * May need to slide the window (seqhi may have been set by 6472 * the crappy stack check or if we picked up the connection 6473 * after establishment) 6474 */ 6475 if (src->seqhi == 1 || 6476 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 6477 src->seqhi = end + MAX(1, dst->max_win << dws); 6478 if (win > src->max_win) 6479 src->max_win = win; 6480 6481 } else { 6482 ack = ntohl(th->th_ack) - dst->seqdiff; 6483 if (src->seqdiff) { 6484 /* Modulate sequence numbers */ 6485 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq + 6486 src->seqdiff), 0); 6487 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0); 6488 *copyback = 1; 6489 } 6490 end = seq + pd->p_len; 6491 if (tcp_get_flags(th) & TH_SYN) 6492 end++; 6493 data_end = end; 6494 if (tcp_get_flags(th) & TH_FIN) 6495 end++; 6496 } 6497 6498 if ((tcp_get_flags(th) & TH_ACK) == 0) { 6499 /* Let it pass through the ack skew check */ 6500 ack = dst->seqlo; 6501 } else if ((ack == 0 && 6502 (tcp_get_flags(th) & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 6503 /* broken tcp stacks do not set ack */ 6504 (dst->state < TCPS_SYN_SENT)) { 6505 /* 6506 * Many stacks (ours included) will set the ACK number in an 6507 * FIN|ACK if the SYN times out -- no sequence to ACK. 6508 */ 6509 ack = dst->seqlo; 6510 } 6511 6512 if (seq == end) { 6513 /* Ease sequencing restrictions on no data packets */ 6514 seq = src->seqlo; 6515 data_end = end = seq; 6516 } 6517 6518 ackskew = dst->seqlo - ack; 6519 6520 /* 6521 * Need to demodulate the sequence numbers in any TCP SACK options 6522 * (Selective ACK). We could optionally validate the SACK values 6523 * against the current ACK window, either forwards or backwards, but 6524 * I'm not confident that SACK has been implemented properly 6525 * everywhere. It wouldn't surprise me if several stacks accidentally 6526 * SACK too far backwards of previously ACKed data. There really aren't 6527 * any security implications of bad SACKing unless the target stack 6528 * doesn't validate the option length correctly. Someone trying to 6529 * spoof into a TCP connection won't bother blindly sending SACK 6530 * options anyway. 6531 */ 6532 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 6533 if (pf_modulate_sack(pd, th, dst)) 6534 *copyback = 1; 6535 } 6536 6537 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 6538 if (SEQ_GEQ(src->seqhi, data_end) && 6539 /* Last octet inside other's window space */ 6540 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 6541 /* Retrans: not more than one window back */ 6542 (ackskew >= -MAXACKWINDOW) && 6543 /* Acking not more than one reassembled fragment backwards */ 6544 (ackskew <= (MAXACKWINDOW << sws)) && 6545 /* Acking not more than one window forward */ 6546 ((tcp_get_flags(th) & TH_RST) == 0 || orig_seq == src->seqlo || 6547 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) { 6548 /* Require an exact/+1 sequence match on resets when possible */ 6549 6550 if (dst->scrub || src->scrub) { 6551 if (pf_normalize_tcp_stateful(pd, reason, th, 6552 *state, src, dst, copyback)) 6553 return (PF_DROP); 6554 } 6555 6556 /* update max window */ 6557 if (src->max_win < win) 6558 src->max_win = win; 6559 /* synchronize sequencing */ 6560 if (SEQ_GT(end, src->seqlo)) 6561 src->seqlo = end; 6562 /* slide the window of what the other end can send */ 6563 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 6564 dst->seqhi = ack + MAX((win << sws), 1); 6565 6566 /* update states */ 6567 if (tcp_get_flags(th) & TH_SYN) 6568 if (src->state < TCPS_SYN_SENT) 6569 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 6570 if (tcp_get_flags(th) & TH_FIN) 6571 if (src->state < TCPS_CLOSING) 6572 pf_set_protostate(*state, psrc, TCPS_CLOSING); 6573 if (tcp_get_flags(th) & TH_ACK) { 6574 if (dst->state == TCPS_SYN_SENT) { 6575 pf_set_protostate(*state, pdst, 6576 TCPS_ESTABLISHED); 6577 if (src->state == TCPS_ESTABLISHED && 6578 (*state)->src_node != NULL && 6579 pf_src_connlimit(*state)) { 6580 REASON_SET(reason, PFRES_SRCLIMIT); 6581 return (PF_DROP); 6582 } 6583 } else if (dst->state == TCPS_CLOSING) 6584 pf_set_protostate(*state, pdst, 6585 TCPS_FIN_WAIT_2); 6586 } 6587 if (tcp_get_flags(th) & TH_RST) 6588 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6589 6590 /* update expire time */ 6591 (*state)->expire = pf_get_uptime(); 6592 if (src->state >= TCPS_FIN_WAIT_2 && 6593 dst->state >= TCPS_FIN_WAIT_2) 6594 (*state)->timeout = PFTM_TCP_CLOSED; 6595 else if (src->state >= TCPS_CLOSING && 6596 dst->state >= TCPS_CLOSING) 6597 (*state)->timeout = PFTM_TCP_FIN_WAIT; 6598 else if (src->state < TCPS_ESTABLISHED || 6599 dst->state < TCPS_ESTABLISHED) 6600 (*state)->timeout = PFTM_TCP_OPENING; 6601 else if (src->state >= TCPS_CLOSING || 6602 dst->state >= TCPS_CLOSING) 6603 (*state)->timeout = PFTM_TCP_CLOSING; 6604 else 6605 (*state)->timeout = PFTM_TCP_ESTABLISHED; 6606 6607 /* Fall through to PASS packet */ 6608 6609 } else if ((dst->state < TCPS_SYN_SENT || 6610 dst->state >= TCPS_FIN_WAIT_2 || 6611 src->state >= TCPS_FIN_WAIT_2) && 6612 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) && 6613 /* Within a window forward of the originating packet */ 6614 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 6615 /* Within a window backward of the originating packet */ 6616 6617 /* 6618 * This currently handles three situations: 6619 * 1) Stupid stacks will shotgun SYNs before their peer 6620 * replies. 6621 * 2) When PF catches an already established stream (the 6622 * firewall rebooted, the state table was flushed, routes 6623 * changed...) 6624 * 3) Packets get funky immediately after the connection 6625 * closes (this should catch Solaris spurious ACK|FINs 6626 * that web servers like to spew after a close) 6627 * 6628 * This must be a little more careful than the above code 6629 * since packet floods will also be caught here. We don't 6630 * update the TTL here to mitigate the damage of a packet 6631 * flood and so the same code can handle awkward establishment 6632 * and a loosened connection close. 6633 * In the establishment case, a correct peer response will 6634 * validate the connection, go through the normal state code 6635 * and keep updating the state TTL. 6636 */ 6637 6638 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6639 printf("pf: loose state match: "); 6640 pf_print_state(*state); 6641 pf_print_flags(tcp_get_flags(th)); 6642 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 6643 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 6644 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 6645 (unsigned long long)(*state)->packets[1], 6646 pd->dir == PF_IN ? "in" : "out", 6647 pd->dir == (*state)->direction ? "fwd" : "rev"); 6648 } 6649 6650 if (dst->scrub || src->scrub) { 6651 if (pf_normalize_tcp_stateful(pd, reason, th, 6652 *state, src, dst, copyback)) 6653 return (PF_DROP); 6654 } 6655 6656 /* update max window */ 6657 if (src->max_win < win) 6658 src->max_win = win; 6659 /* synchronize sequencing */ 6660 if (SEQ_GT(end, src->seqlo)) 6661 src->seqlo = end; 6662 /* slide the window of what the other end can send */ 6663 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 6664 dst->seqhi = ack + MAX((win << sws), 1); 6665 6666 /* 6667 * Cannot set dst->seqhi here since this could be a shotgunned 6668 * SYN and not an already established connection. 6669 */ 6670 6671 if (tcp_get_flags(th) & TH_FIN) 6672 if (src->state < TCPS_CLOSING) 6673 pf_set_protostate(*state, psrc, TCPS_CLOSING); 6674 if (tcp_get_flags(th) & TH_RST) 6675 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6676 6677 /* Fall through to PASS packet */ 6678 6679 } else { 6680 if ((*state)->dst.state == TCPS_SYN_SENT && 6681 (*state)->src.state == TCPS_SYN_SENT) { 6682 /* Send RST for state mismatches during handshake */ 6683 if (!(tcp_get_flags(th) & TH_RST)) 6684 pf_send_tcp((*state)->rule, pd->af, 6685 pd->dst, pd->src, th->th_dport, 6686 th->th_sport, ntohl(th->th_ack), 0, 6687 TH_RST, 0, 0, 6688 (*state)->rule->return_ttl, M_SKIP_FIREWALL, 6689 0, 0, (*state)->act.rtableid); 6690 src->seqlo = 0; 6691 src->seqhi = 1; 6692 src->max_win = 1; 6693 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 6694 printf("pf: BAD state: "); 6695 pf_print_state(*state); 6696 pf_print_flags(tcp_get_flags(th)); 6697 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 6698 "pkts=%llu:%llu dir=%s,%s\n", 6699 seq, orig_seq, ack, pd->p_len, ackskew, 6700 (unsigned long long)(*state)->packets[0], 6701 (unsigned long long)(*state)->packets[1], 6702 pd->dir == PF_IN ? "in" : "out", 6703 pd->dir == (*state)->direction ? "fwd" : "rev"); 6704 printf("pf: State failure on: %c %c %c %c | %c %c\n", 6705 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1', 6706 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 6707 ' ': '2', 6708 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 6709 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 6710 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5', 6711 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 6712 } 6713 REASON_SET(reason, PFRES_BADSTATE); 6714 return (PF_DROP); 6715 } 6716 6717 return (PF_PASS); 6718 } 6719 6720 static int 6721 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 6722 { 6723 struct tcphdr *th = &pd->hdr.tcp; 6724 struct pf_state_peer *src, *dst; 6725 u_int8_t psrc, pdst; 6726 6727 if (pd->dir == (*state)->direction) { 6728 src = &(*state)->src; 6729 dst = &(*state)->dst; 6730 psrc = PF_PEER_SRC; 6731 pdst = PF_PEER_DST; 6732 } else { 6733 src = &(*state)->dst; 6734 dst = &(*state)->src; 6735 psrc = PF_PEER_DST; 6736 pdst = PF_PEER_SRC; 6737 } 6738 6739 if (tcp_get_flags(th) & TH_SYN) 6740 if (src->state < TCPS_SYN_SENT) 6741 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 6742 if (tcp_get_flags(th) & TH_FIN) 6743 if (src->state < TCPS_CLOSING) 6744 pf_set_protostate(*state, psrc, TCPS_CLOSING); 6745 if (tcp_get_flags(th) & TH_ACK) { 6746 if (dst->state == TCPS_SYN_SENT) { 6747 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 6748 if (src->state == TCPS_ESTABLISHED && 6749 (*state)->src_node != NULL && 6750 pf_src_connlimit(*state)) { 6751 REASON_SET(reason, PFRES_SRCLIMIT); 6752 return (PF_DROP); 6753 } 6754 } else if (dst->state == TCPS_CLOSING) { 6755 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 6756 } else if (src->state == TCPS_SYN_SENT && 6757 dst->state < TCPS_SYN_SENT) { 6758 /* 6759 * Handle a special sloppy case where we only see one 6760 * half of the connection. If there is a ACK after 6761 * the initial SYN without ever seeing a packet from 6762 * the destination, set the connection to established. 6763 */ 6764 pf_set_protostate(*state, PF_PEER_BOTH, 6765 TCPS_ESTABLISHED); 6766 dst->state = src->state = TCPS_ESTABLISHED; 6767 if ((*state)->src_node != NULL && 6768 pf_src_connlimit(*state)) { 6769 REASON_SET(reason, PFRES_SRCLIMIT); 6770 return (PF_DROP); 6771 } 6772 } else if (src->state == TCPS_CLOSING && 6773 dst->state == TCPS_ESTABLISHED && 6774 dst->seqlo == 0) { 6775 /* 6776 * Handle the closing of half connections where we 6777 * don't see the full bidirectional FIN/ACK+ACK 6778 * handshake. 6779 */ 6780 pf_set_protostate(*state, pdst, TCPS_CLOSING); 6781 } 6782 } 6783 if (tcp_get_flags(th) & TH_RST) 6784 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6785 6786 /* update expire time */ 6787 (*state)->expire = pf_get_uptime(); 6788 if (src->state >= TCPS_FIN_WAIT_2 && 6789 dst->state >= TCPS_FIN_WAIT_2) 6790 (*state)->timeout = PFTM_TCP_CLOSED; 6791 else if (src->state >= TCPS_CLOSING && 6792 dst->state >= TCPS_CLOSING) 6793 (*state)->timeout = PFTM_TCP_FIN_WAIT; 6794 else if (src->state < TCPS_ESTABLISHED || 6795 dst->state < TCPS_ESTABLISHED) 6796 (*state)->timeout = PFTM_TCP_OPENING; 6797 else if (src->state >= TCPS_CLOSING || 6798 dst->state >= TCPS_CLOSING) 6799 (*state)->timeout = PFTM_TCP_CLOSING; 6800 else 6801 (*state)->timeout = PFTM_TCP_ESTABLISHED; 6802 6803 return (PF_PASS); 6804 } 6805 6806 static int 6807 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 6808 { 6809 struct pf_state_key *sk = (*state)->key[pd->didx]; 6810 struct tcphdr *th = &pd->hdr.tcp; 6811 6812 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 6813 if (pd->dir != (*state)->direction) { 6814 REASON_SET(reason, PFRES_SYNPROXY); 6815 return (PF_SYNPROXY_DROP); 6816 } 6817 if (tcp_get_flags(th) & TH_SYN) { 6818 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 6819 REASON_SET(reason, PFRES_SYNPROXY); 6820 return (PF_DROP); 6821 } 6822 pf_send_tcp((*state)->rule, pd->af, pd->dst, 6823 pd->src, th->th_dport, th->th_sport, 6824 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 6825 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 6826 M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid); 6827 REASON_SET(reason, PFRES_SYNPROXY); 6828 return (PF_SYNPROXY_DROP); 6829 } else if ((tcp_get_flags(th) & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 6830 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 6831 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 6832 REASON_SET(reason, PFRES_SYNPROXY); 6833 return (PF_DROP); 6834 } else if ((*state)->src_node != NULL && 6835 pf_src_connlimit(*state)) { 6836 REASON_SET(reason, PFRES_SRCLIMIT); 6837 return (PF_DROP); 6838 } else 6839 pf_set_protostate(*state, PF_PEER_SRC, 6840 PF_TCPS_PROXY_DST); 6841 } 6842 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 6843 if (pd->dir == (*state)->direction) { 6844 if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != TH_ACK) || 6845 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 6846 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 6847 REASON_SET(reason, PFRES_SYNPROXY); 6848 return (PF_DROP); 6849 } 6850 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 6851 if ((*state)->dst.seqhi == 1) 6852 (*state)->dst.seqhi = htonl(arc4random()); 6853 pf_send_tcp((*state)->rule, pd->af, 6854 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6855 sk->port[pd->sidx], sk->port[pd->didx], 6856 (*state)->dst.seqhi, 0, TH_SYN, 0, 6857 (*state)->src.mss, 0, 6858 (*state)->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0, 6859 (*state)->tag, 0, (*state)->act.rtableid); 6860 REASON_SET(reason, PFRES_SYNPROXY); 6861 return (PF_SYNPROXY_DROP); 6862 } else if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != 6863 (TH_SYN|TH_ACK)) || 6864 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 6865 REASON_SET(reason, PFRES_SYNPROXY); 6866 return (PF_DROP); 6867 } else { 6868 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 6869 (*state)->dst.seqlo = ntohl(th->th_seq); 6870 pf_send_tcp((*state)->rule, pd->af, pd->dst, 6871 pd->src, th->th_dport, th->th_sport, 6872 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 6873 TH_ACK, (*state)->src.max_win, 0, 0, 0, 6874 (*state)->tag, 0, (*state)->act.rtableid); 6875 pf_send_tcp((*state)->rule, pd->af, 6876 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6877 sk->port[pd->sidx], sk->port[pd->didx], 6878 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 6879 TH_ACK, (*state)->dst.max_win, 0, 0, 6880 M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid); 6881 (*state)->src.seqdiff = (*state)->dst.seqhi - 6882 (*state)->src.seqlo; 6883 (*state)->dst.seqdiff = (*state)->src.seqhi - 6884 (*state)->dst.seqlo; 6885 (*state)->src.seqhi = (*state)->src.seqlo + 6886 (*state)->dst.max_win; 6887 (*state)->dst.seqhi = (*state)->dst.seqlo + 6888 (*state)->src.max_win; 6889 (*state)->src.wscale = (*state)->dst.wscale = 0; 6890 pf_set_protostate(*state, PF_PEER_BOTH, 6891 TCPS_ESTABLISHED); 6892 REASON_SET(reason, PFRES_SYNPROXY); 6893 return (PF_SYNPROXY_DROP); 6894 } 6895 } 6896 6897 return (PF_PASS); 6898 } 6899 6900 static int 6901 pf_test_state_tcp(struct pf_kstate **state, struct pf_pdesc *pd, 6902 u_short *reason) 6903 { 6904 struct pf_state_key_cmp key; 6905 struct tcphdr *th = &pd->hdr.tcp; 6906 int copyback = 0; 6907 int action = PF_PASS; 6908 struct pf_state_peer *src, *dst; 6909 6910 bzero(&key, sizeof(key)); 6911 key.af = pd->af; 6912 key.proto = IPPROTO_TCP; 6913 PF_ACPY(&key.addr[pd->sidx], pd->src, key.af); 6914 PF_ACPY(&key.addr[pd->didx], pd->dst, key.af); 6915 key.port[pd->sidx] = th->th_sport; 6916 key.port[pd->didx] = th->th_dport; 6917 6918 STATE_LOOKUP(&key, *state, pd); 6919 6920 if (pd->dir == (*state)->direction) { 6921 src = &(*state)->src; 6922 dst = &(*state)->dst; 6923 } else { 6924 src = &(*state)->dst; 6925 dst = &(*state)->src; 6926 } 6927 6928 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 6929 return (action); 6930 6931 if (dst->state >= TCPS_FIN_WAIT_2 && 6932 src->state >= TCPS_FIN_WAIT_2 && 6933 (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN) || 6934 ((tcp_get_flags(th) & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK && 6935 pf_syncookie_check(pd) && pd->dir == PF_IN))) { 6936 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6937 printf("pf: state reuse "); 6938 pf_print_state(*state); 6939 pf_print_flags(tcp_get_flags(th)); 6940 printf("\n"); 6941 } 6942 /* XXX make sure it's the same direction ?? */ 6943 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 6944 pf_unlink_state(*state); 6945 *state = NULL; 6946 return (PF_DROP); 6947 } 6948 6949 if ((*state)->state_flags & PFSTATE_SLOPPY) { 6950 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 6951 return (PF_DROP); 6952 } else { 6953 int ret; 6954 6955 ret = pf_tcp_track_full(state, pd, reason, 6956 ©back); 6957 if (ret == PF_DROP) 6958 return (PF_DROP); 6959 } 6960 6961 /* translate source/destination address, if necessary */ 6962 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6963 struct pf_state_key *nk; 6964 int afto, sidx, didx; 6965 6966 if (PF_REVERSED_KEY((*state)->key, pd->af)) 6967 nk = (*state)->key[pd->sidx]; 6968 else 6969 nk = (*state)->key[pd->didx]; 6970 6971 afto = pd->af != nk->af; 6972 sidx = afto ? pd->didx : pd->sidx; 6973 didx = afto ? pd->sidx : pd->didx; 6974 6975 if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) || 6976 nk->port[sidx] != th->th_sport) 6977 pf_change_ap(pd->m, pd->src, &th->th_sport, 6978 pd->ip_sum, &th->th_sum, &nk->addr[sidx], 6979 nk->port[sidx], 0, pd->af, nk->af); 6980 6981 if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) || 6982 nk->port[didx] != th->th_dport) 6983 pf_change_ap(pd->m, pd->dst, &th->th_dport, 6984 pd->ip_sum, &th->th_sum, &nk->addr[didx], 6985 nk->port[didx], 0, pd->af, nk->af); 6986 6987 if (afto) { 6988 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af); 6989 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af); 6990 pd->naf = nk->af; 6991 action = PF_AFRT; 6992 } 6993 6994 copyback = 1; 6995 } 6996 6997 /* Copyback sequence modulation or stateful scrub changes if needed */ 6998 if (copyback) 6999 m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th); 7000 7001 return (action); 7002 } 7003 7004 static int 7005 pf_test_state_udp(struct pf_kstate **state, struct pf_pdesc *pd) 7006 { 7007 struct pf_state_peer *src, *dst; 7008 struct pf_state_key_cmp key; 7009 struct udphdr *uh = &pd->hdr.udp; 7010 uint8_t psrc, pdst; 7011 int action = PF_PASS; 7012 7013 bzero(&key, sizeof(key)); 7014 key.af = pd->af; 7015 key.proto = IPPROTO_UDP; 7016 PF_ACPY(&key.addr[pd->sidx], pd->src, key.af); 7017 PF_ACPY(&key.addr[pd->didx], pd->dst, key.af); 7018 key.port[pd->sidx] = uh->uh_sport; 7019 key.port[pd->didx] = uh->uh_dport; 7020 7021 STATE_LOOKUP(&key, *state, pd); 7022 7023 if (pd->dir == (*state)->direction) { 7024 src = &(*state)->src; 7025 dst = &(*state)->dst; 7026 psrc = PF_PEER_SRC; 7027 pdst = PF_PEER_DST; 7028 } else { 7029 src = &(*state)->dst; 7030 dst = &(*state)->src; 7031 psrc = PF_PEER_DST; 7032 pdst = PF_PEER_SRC; 7033 } 7034 7035 /* update states */ 7036 if (src->state < PFUDPS_SINGLE) 7037 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 7038 if (dst->state == PFUDPS_SINGLE) 7039 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 7040 7041 /* update expire time */ 7042 (*state)->expire = pf_get_uptime(); 7043 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 7044 (*state)->timeout = PFTM_UDP_MULTIPLE; 7045 else 7046 (*state)->timeout = PFTM_UDP_SINGLE; 7047 7048 /* translate source/destination address, if necessary */ 7049 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7050 struct pf_state_key *nk; 7051 int afto, sidx, didx; 7052 7053 if (PF_REVERSED_KEY((*state)->key, pd->af)) 7054 nk = (*state)->key[pd->sidx]; 7055 else 7056 nk = (*state)->key[pd->didx]; 7057 7058 afto = pd->af != nk->af; 7059 sidx = afto ? pd->didx : pd->sidx; 7060 didx = afto ? pd->sidx : pd->didx; 7061 7062 if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) || 7063 nk->port[sidx] != uh->uh_sport) 7064 pf_change_ap(pd->m, pd->src, &uh->uh_sport, pd->ip_sum, 7065 &uh->uh_sum, &nk->addr[pd->sidx], 7066 nk->port[sidx], 1, pd->af, nk->af); 7067 7068 if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) || 7069 nk->port[didx] != uh->uh_dport) 7070 pf_change_ap(pd->m, pd->dst, &uh->uh_dport, pd->ip_sum, 7071 &uh->uh_sum, &nk->addr[pd->didx], 7072 nk->port[didx], 1, pd->af, nk->af); 7073 7074 if (afto) { 7075 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af); 7076 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af); 7077 pd->naf = nk->af; 7078 action = PF_AFRT; 7079 } 7080 7081 m_copyback(pd->m, pd->off, sizeof(*uh), (caddr_t)uh); 7082 } 7083 7084 return (action); 7085 } 7086 7087 static int 7088 pf_sctp_track(struct pf_kstate *state, struct pf_pdesc *pd, 7089 u_short *reason) 7090 { 7091 struct pf_state_peer *src; 7092 if (pd->dir == state->direction) { 7093 if (PF_REVERSED_KEY(state->key, pd->af)) 7094 src = &state->dst; 7095 else 7096 src = &state->src; 7097 } else { 7098 if (PF_REVERSED_KEY(state->key, pd->af)) 7099 src = &state->src; 7100 else 7101 src = &state->dst; 7102 } 7103 7104 if (src->scrub != NULL) { 7105 if (src->scrub->pfss_v_tag == 0) 7106 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag; 7107 else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag) 7108 return (PF_DROP); 7109 } 7110 7111 return (PF_PASS); 7112 } 7113 7114 static int 7115 pf_test_state_sctp(struct pf_kstate **state, struct pf_pdesc *pd, 7116 u_short *reason) 7117 { 7118 struct pf_state_key_cmp key; 7119 struct pf_state_peer *src, *dst; 7120 struct sctphdr *sh = &pd->hdr.sctp; 7121 u_int8_t psrc; //, pdst; 7122 7123 bzero(&key, sizeof(key)); 7124 key.af = pd->af; 7125 key.proto = IPPROTO_SCTP; 7126 PF_ACPY(&key.addr[pd->sidx], pd->src, key.af); 7127 PF_ACPY(&key.addr[pd->didx], pd->dst, key.af); 7128 key.port[pd->sidx] = sh->src_port; 7129 key.port[pd->didx] = sh->dest_port; 7130 7131 STATE_LOOKUP(&key, *state, pd); 7132 7133 if (pd->dir == (*state)->direction) { 7134 src = &(*state)->src; 7135 dst = &(*state)->dst; 7136 psrc = PF_PEER_SRC; 7137 } else { 7138 src = &(*state)->dst; 7139 dst = &(*state)->src; 7140 psrc = PF_PEER_DST; 7141 } 7142 7143 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) && 7144 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) && 7145 pd->sctp_flags & PFDESC_SCTP_INIT) { 7146 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED); 7147 pf_unlink_state(*state); 7148 *state = NULL; 7149 return (PF_DROP); 7150 } 7151 7152 /* Track state. */ 7153 if (pd->sctp_flags & PFDESC_SCTP_INIT) { 7154 if (src->state < SCTP_COOKIE_WAIT) { 7155 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT); 7156 (*state)->timeout = PFTM_SCTP_OPENING; 7157 } 7158 } 7159 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) { 7160 MPASS(dst->scrub != NULL); 7161 if (dst->scrub->pfss_v_tag == 0) 7162 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag; 7163 } 7164 7165 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) { 7166 if (src->state < SCTP_ESTABLISHED) { 7167 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED); 7168 (*state)->timeout = PFTM_SCTP_ESTABLISHED; 7169 } 7170 } 7171 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | 7172 PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 7173 if (src->state < SCTP_SHUTDOWN_PENDING) { 7174 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING); 7175 (*state)->timeout = PFTM_SCTP_CLOSING; 7176 } 7177 } 7178 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE | PFDESC_SCTP_ABORT)) { 7179 pf_set_protostate(*state, psrc, SCTP_CLOSED); 7180 (*state)->timeout = PFTM_SCTP_CLOSED; 7181 } 7182 7183 if (pf_sctp_track(*state, pd, reason) != PF_PASS) 7184 return (PF_DROP); 7185 7186 (*state)->expire = pf_get_uptime(); 7187 7188 /* translate source/destination address, if necessary */ 7189 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7190 uint16_t checksum = 0; 7191 struct pf_state_key *nk; 7192 int afto, sidx, didx; 7193 7194 if (PF_REVERSED_KEY((*state)->key, pd->af)) 7195 nk = (*state)->key[pd->sidx]; 7196 else 7197 nk = (*state)->key[pd->didx]; 7198 7199 afto = pd->af != nk->af; 7200 sidx = afto ? pd->didx : pd->sidx; 7201 didx = afto ? pd->sidx : pd->didx; 7202 7203 if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) || 7204 nk->port[sidx] != pd->hdr.sctp.src_port) { 7205 pf_change_ap(pd->m, pd->src, &pd->hdr.sctp.src_port, 7206 pd->ip_sum, &checksum, &nk->addr[sidx], 7207 nk->port[sidx], 1, pd->af, pd->naf); 7208 } 7209 7210 if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) || 7211 nk->port[didx] != pd->hdr.sctp.dest_port) { 7212 pf_change_ap(pd->m, pd->dst, &pd->hdr.sctp.dest_port, 7213 pd->ip_sum, &checksum, &nk->addr[didx], 7214 nk->port[didx], 1, pd->af, pd->naf); 7215 } 7216 7217 if (afto) { 7218 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af); 7219 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af); 7220 pd->naf = nk->af; 7221 return (PF_AFRT); 7222 } 7223 } 7224 7225 return (PF_PASS); 7226 } 7227 7228 static void 7229 pf_sctp_multihome_detach_addr(const struct pf_kstate *s) 7230 { 7231 struct pf_sctp_endpoint key; 7232 struct pf_sctp_endpoint *ep; 7233 struct pf_state_key *sks = s->key[PF_SK_STACK]; 7234 struct pf_sctp_source *i, *tmp; 7235 7236 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL) 7237 return; 7238 7239 PF_SCTP_ENDPOINTS_LOCK(); 7240 7241 key.v_tag = s->dst.scrub->pfss_v_tag; 7242 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7243 if (ep != NULL) { 7244 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 7245 if (pf_addr_cmp(&i->addr, 7246 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT], 7247 s->key[PF_SK_WIRE]->af) == 0) { 7248 SDT_PROBE3(pf, sctp, multihome, remove, 7249 key.v_tag, s, i); 7250 TAILQ_REMOVE(&ep->sources, i, entry); 7251 free(i, M_PFTEMP); 7252 break; 7253 } 7254 } 7255 7256 if (TAILQ_EMPTY(&ep->sources)) { 7257 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 7258 free(ep, M_PFTEMP); 7259 } 7260 } 7261 7262 /* Other direction. */ 7263 key.v_tag = s->src.scrub->pfss_v_tag; 7264 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7265 if (ep != NULL) { 7266 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 7267 if (pf_addr_cmp(&i->addr, 7268 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN], 7269 s->key[PF_SK_WIRE]->af) == 0) { 7270 SDT_PROBE3(pf, sctp, multihome, remove, 7271 key.v_tag, s, i); 7272 TAILQ_REMOVE(&ep->sources, i, entry); 7273 free(i, M_PFTEMP); 7274 break; 7275 } 7276 } 7277 7278 if (TAILQ_EMPTY(&ep->sources)) { 7279 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 7280 free(ep, M_PFTEMP); 7281 } 7282 } 7283 7284 PF_SCTP_ENDPOINTS_UNLOCK(); 7285 } 7286 7287 static void 7288 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag) 7289 { 7290 struct pf_sctp_endpoint key = { 7291 .v_tag = v_tag, 7292 }; 7293 struct pf_sctp_source *i; 7294 struct pf_sctp_endpoint *ep; 7295 7296 PF_SCTP_ENDPOINTS_LOCK(); 7297 7298 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7299 if (ep == NULL) { 7300 ep = malloc(sizeof(struct pf_sctp_endpoint), 7301 M_PFTEMP, M_NOWAIT); 7302 if (ep == NULL) { 7303 PF_SCTP_ENDPOINTS_UNLOCK(); 7304 return; 7305 } 7306 7307 ep->v_tag = v_tag; 7308 TAILQ_INIT(&ep->sources); 7309 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 7310 } 7311 7312 /* Avoid inserting duplicates. */ 7313 TAILQ_FOREACH(i, &ep->sources, entry) { 7314 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) { 7315 PF_SCTP_ENDPOINTS_UNLOCK(); 7316 return; 7317 } 7318 } 7319 7320 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT); 7321 if (i == NULL) { 7322 PF_SCTP_ENDPOINTS_UNLOCK(); 7323 return; 7324 } 7325 7326 i->af = pd->af; 7327 memcpy(&i->addr, a, sizeof(*a)); 7328 TAILQ_INSERT_TAIL(&ep->sources, i, entry); 7329 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i); 7330 7331 PF_SCTP_ENDPOINTS_UNLOCK(); 7332 } 7333 7334 static void 7335 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif, 7336 struct pf_kstate *s, int action) 7337 { 7338 struct pf_sctp_multihome_job *j, *tmp; 7339 struct pf_sctp_source *i; 7340 int ret __unused; 7341 struct pf_kstate *sm = NULL; 7342 struct pf_krule *ra = NULL; 7343 struct pf_krule *r = &V_pf_default_rule; 7344 struct pf_kruleset *rs = NULL; 7345 bool do_extra = true; 7346 7347 PF_RULES_RLOCK_TRACKER; 7348 7349 again: 7350 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) { 7351 if (s == NULL || action != PF_PASS) 7352 goto free; 7353 7354 /* Confirm we don't recurse here. */ 7355 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP)); 7356 7357 switch (j->op) { 7358 case SCTP_ADD_IP_ADDRESS: { 7359 uint32_t v_tag = pd->sctp_initiate_tag; 7360 7361 if (v_tag == 0) { 7362 if (s->direction == pd->dir) 7363 v_tag = s->src.scrub->pfss_v_tag; 7364 else 7365 v_tag = s->dst.scrub->pfss_v_tag; 7366 } 7367 7368 /* 7369 * Avoid duplicating states. We'll already have 7370 * created a state based on the source address of 7371 * the packet, but SCTP endpoints may also list this 7372 * address again in the INIT(_ACK) parameters. 7373 */ 7374 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) { 7375 break; 7376 } 7377 7378 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP; 7379 PF_RULES_RLOCK(); 7380 sm = NULL; 7381 ret = pf_test_rule(&r, &sm, 7382 &j->pd, &ra, &rs, NULL); 7383 PF_RULES_RUNLOCK(); 7384 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret); 7385 if (ret != PF_DROP && sm != NULL) { 7386 /* Inherit v_tag values. */ 7387 if (sm->direction == s->direction) { 7388 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 7389 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 7390 } else { 7391 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 7392 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 7393 } 7394 PF_STATE_UNLOCK(sm); 7395 } else { 7396 /* If we try duplicate inserts? */ 7397 break; 7398 } 7399 7400 /* Only add the address if we've actually allowed the state. */ 7401 pf_sctp_multihome_add_addr(pd, &j->src, v_tag); 7402 7403 if (! do_extra) { 7404 break; 7405 } 7406 /* 7407 * We need to do this for each of our source addresses. 7408 * Find those based on the verification tag. 7409 */ 7410 struct pf_sctp_endpoint key = { 7411 .v_tag = pd->hdr.sctp.v_tag, 7412 }; 7413 struct pf_sctp_endpoint *ep; 7414 7415 PF_SCTP_ENDPOINTS_LOCK(); 7416 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7417 if (ep == NULL) { 7418 PF_SCTP_ENDPOINTS_UNLOCK(); 7419 break; 7420 } 7421 MPASS(ep != NULL); 7422 7423 TAILQ_FOREACH(i, &ep->sources, entry) { 7424 struct pf_sctp_multihome_job *nj; 7425 7426 /* SCTP can intermingle IPv4 and IPv6. */ 7427 if (i->af != pd->af) 7428 continue; 7429 7430 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO); 7431 if (! nj) { 7432 continue; 7433 } 7434 memcpy(&nj->pd, &j->pd, sizeof(j->pd)); 7435 memcpy(&nj->src, &j->src, sizeof(nj->src)); 7436 nj->pd.src = &nj->src; 7437 // New destination address! 7438 memcpy(&nj->dst, &i->addr, sizeof(nj->dst)); 7439 nj->pd.dst = &nj->dst; 7440 nj->pd.m = j->pd.m; 7441 nj->op = j->op; 7442 7443 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next); 7444 } 7445 PF_SCTP_ENDPOINTS_UNLOCK(); 7446 7447 break; 7448 } 7449 case SCTP_DEL_IP_ADDRESS: { 7450 struct pf_state_key_cmp key; 7451 uint8_t psrc; 7452 7453 bzero(&key, sizeof(key)); 7454 key.af = j->pd.af; 7455 key.proto = IPPROTO_SCTP; 7456 if (j->pd.dir == PF_IN) { /* wire side, straight */ 7457 PF_ACPY(&key.addr[0], j->pd.src, key.af); 7458 PF_ACPY(&key.addr[1], j->pd.dst, key.af); 7459 key.port[0] = j->pd.hdr.sctp.src_port; 7460 key.port[1] = j->pd.hdr.sctp.dest_port; 7461 } else { /* stack side, reverse */ 7462 PF_ACPY(&key.addr[1], j->pd.src, key.af); 7463 PF_ACPY(&key.addr[0], j->pd.dst, key.af); 7464 key.port[1] = j->pd.hdr.sctp.src_port; 7465 key.port[0] = j->pd.hdr.sctp.dest_port; 7466 } 7467 7468 sm = pf_find_state(kif, &key, j->pd.dir); 7469 if (sm != NULL) { 7470 PF_STATE_LOCK_ASSERT(sm); 7471 if (j->pd.dir == sm->direction) { 7472 psrc = PF_PEER_SRC; 7473 } else { 7474 psrc = PF_PEER_DST; 7475 } 7476 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING); 7477 sm->timeout = PFTM_SCTP_CLOSING; 7478 PF_STATE_UNLOCK(sm); 7479 } 7480 break; 7481 default: 7482 panic("Unknown op %#x", j->op); 7483 } 7484 } 7485 7486 free: 7487 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next); 7488 free(j, M_PFTEMP); 7489 } 7490 7491 /* We may have inserted extra work while processing the list. */ 7492 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) { 7493 do_extra = false; 7494 goto again; 7495 } 7496 } 7497 7498 static int 7499 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op) 7500 { 7501 int off = 0; 7502 struct pf_sctp_multihome_job *job; 7503 7504 SDT_PROBE4(pf, sctp, multihome_scan, entry, start, len, pd, op); 7505 7506 while (off < len) { 7507 struct sctp_paramhdr h; 7508 7509 if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL, NULL, 7510 pd->af)) 7511 return (PF_DROP); 7512 7513 /* Parameters are at least 4 bytes. */ 7514 if (ntohs(h.param_length) < 4) 7515 return (PF_DROP); 7516 7517 SDT_PROBE2(pf, sctp, multihome_scan, param, ntohs(h.param_type), 7518 ntohs(h.param_length)); 7519 7520 switch (ntohs(h.param_type)) { 7521 case SCTP_IPV4_ADDRESS: { 7522 struct in_addr t; 7523 7524 if (ntohs(h.param_length) != 7525 (sizeof(struct sctp_paramhdr) + sizeof(t))) 7526 return (PF_DROP); 7527 7528 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t), 7529 NULL, NULL, pd->af)) 7530 return (PF_DROP); 7531 7532 if (in_nullhost(t)) 7533 t.s_addr = pd->src->v4.s_addr; 7534 7535 /* 7536 * We hold the state lock (idhash) here, which means 7537 * that we can't acquire the keyhash, or we'll get a 7538 * LOR (and potentially double-lock things too). We also 7539 * can't release the state lock here, so instead we'll 7540 * enqueue this for async handling. 7541 * There's a relatively small race here, in that a 7542 * packet using the new addresses could arrive already, 7543 * but that's just though luck for it. 7544 */ 7545 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 7546 if (! job) 7547 return (PF_DROP); 7548 7549 SDT_PROBE2(pf, sctp, multihome_scan, ipv4, &t, op); 7550 7551 memcpy(&job->pd, pd, sizeof(*pd)); 7552 7553 // New source address! 7554 memcpy(&job->src, &t, sizeof(t)); 7555 job->pd.src = &job->src; 7556 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 7557 job->pd.dst = &job->dst; 7558 job->pd.m = pd->m; 7559 job->op = op; 7560 7561 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 7562 break; 7563 } 7564 #ifdef INET6 7565 case SCTP_IPV6_ADDRESS: { 7566 struct in6_addr t; 7567 7568 if (ntohs(h.param_length) != 7569 (sizeof(struct sctp_paramhdr) + sizeof(t))) 7570 return (PF_DROP); 7571 7572 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t), 7573 NULL, NULL, pd->af)) 7574 return (PF_DROP); 7575 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0) 7576 break; 7577 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0) 7578 memcpy(&t, &pd->src->v6, sizeof(t)); 7579 7580 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 7581 if (! job) 7582 return (PF_DROP); 7583 7584 SDT_PROBE2(pf, sctp, multihome_scan, ipv6, &t, op); 7585 7586 memcpy(&job->pd, pd, sizeof(*pd)); 7587 memcpy(&job->src, &t, sizeof(t)); 7588 job->pd.src = &job->src; 7589 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 7590 job->pd.dst = &job->dst; 7591 job->pd.m = pd->m; 7592 job->op = op; 7593 7594 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 7595 break; 7596 } 7597 #endif 7598 case SCTP_ADD_IP_ADDRESS: { 7599 int ret; 7600 struct sctp_asconf_paramhdr ah; 7601 7602 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah), 7603 NULL, NULL, pd->af)) 7604 return (PF_DROP); 7605 7606 ret = pf_multihome_scan(start + off + sizeof(ah), 7607 ntohs(ah.ph.param_length) - sizeof(ah), pd, 7608 SCTP_ADD_IP_ADDRESS); 7609 if (ret != PF_PASS) 7610 return (ret); 7611 break; 7612 } 7613 case SCTP_DEL_IP_ADDRESS: { 7614 int ret; 7615 struct sctp_asconf_paramhdr ah; 7616 7617 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah), 7618 NULL, NULL, pd->af)) 7619 return (PF_DROP); 7620 ret = pf_multihome_scan(start + off + sizeof(ah), 7621 ntohs(ah.ph.param_length) - sizeof(ah), pd, 7622 SCTP_DEL_IP_ADDRESS); 7623 if (ret != PF_PASS) 7624 return (ret); 7625 break; 7626 } 7627 default: 7628 break; 7629 } 7630 7631 off += roundup(ntohs(h.param_length), 4); 7632 } 7633 7634 return (PF_PASS); 7635 } 7636 7637 int 7638 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd) 7639 { 7640 start += sizeof(struct sctp_init_chunk); 7641 len -= sizeof(struct sctp_init_chunk); 7642 7643 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS)); 7644 } 7645 7646 int 7647 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd) 7648 { 7649 start += sizeof(struct sctp_asconf_chunk); 7650 len -= sizeof(struct sctp_asconf_chunk); 7651 7652 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS)); 7653 } 7654 7655 int 7656 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd, 7657 struct pf_kstate **state, int direction, 7658 u_int16_t icmpid, u_int16_t type, int icmp_dir, 7659 int *iidx, int multi, int inner) 7660 { 7661 key->af = pd->af; 7662 key->proto = pd->proto; 7663 if (icmp_dir == PF_IN) { 7664 *iidx = pd->sidx; 7665 key->port[pd->sidx] = icmpid; 7666 key->port[pd->didx] = type; 7667 } else { 7668 *iidx = pd->didx; 7669 key->port[pd->sidx] = type; 7670 key->port[pd->didx] = icmpid; 7671 } 7672 if (pf_state_key_addr_setup(pd, key, multi)) 7673 return (PF_DROP); 7674 7675 STATE_LOOKUP(key, *state, pd); 7676 7677 if ((*state)->state_flags & PFSTATE_SLOPPY) 7678 return (-1); 7679 7680 /* Is this ICMP message flowing in right direction? */ 7681 if ((*state)->key[PF_SK_WIRE]->af != (*state)->key[PF_SK_STACK]->af) 7682 direction = (pd->af == (*state)->key[PF_SK_WIRE]->af) ? 7683 PF_IN : PF_OUT; 7684 else 7685 direction = (*state)->direction; 7686 if ((*state)->rule->type && 7687 (((!inner && direction == pd->dir) || 7688 (inner && direction != pd->dir)) ? 7689 PF_IN : PF_OUT) != icmp_dir) { 7690 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7691 printf("pf: icmp type %d in wrong direction (%d): ", 7692 ntohs(type), icmp_dir); 7693 pf_print_state(*state); 7694 printf("\n"); 7695 } 7696 PF_STATE_UNLOCK(*state); 7697 *state = NULL; 7698 return (PF_DROP); 7699 } 7700 return (-1); 7701 } 7702 7703 static int 7704 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd, 7705 u_short *reason) 7706 { 7707 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 7708 u_int16_t *icmpsum, virtual_id, virtual_type; 7709 u_int8_t icmptype, icmpcode; 7710 int icmp_dir, iidx, ret, multi; 7711 struct pf_state_key_cmp key; 7712 #ifdef INET 7713 u_int16_t icmpid; 7714 #endif 7715 7716 MPASS(*state == NULL); 7717 7718 bzero(&key, sizeof(key)); 7719 switch (pd->proto) { 7720 #ifdef INET 7721 case IPPROTO_ICMP: 7722 icmptype = pd->hdr.icmp.icmp_type; 7723 icmpcode = pd->hdr.icmp.icmp_code; 7724 icmpid = pd->hdr.icmp.icmp_id; 7725 icmpsum = &pd->hdr.icmp.icmp_cksum; 7726 break; 7727 #endif /* INET */ 7728 #ifdef INET6 7729 case IPPROTO_ICMPV6: 7730 icmptype = pd->hdr.icmp6.icmp6_type; 7731 icmpcode = pd->hdr.icmp6.icmp6_code; 7732 #ifdef INET 7733 icmpid = pd->hdr.icmp6.icmp6_id; 7734 #endif 7735 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 7736 break; 7737 #endif /* INET6 */ 7738 } 7739 7740 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &multi, 7741 &virtual_id, &virtual_type) == 0) { 7742 /* 7743 * ICMP query/reply message not related to a TCP/UDP/SCTP 7744 * packet. Search for an ICMP state. 7745 */ 7746 ret = pf_icmp_state_lookup(&key, pd, state, pd->dir, 7747 virtual_id, virtual_type, icmp_dir, &iidx, 7748 PF_ICMP_MULTI_NONE, 0); 7749 if (ret >= 0) { 7750 MPASS(*state == NULL); 7751 if (ret == PF_DROP && pd->af == AF_INET6 && 7752 icmp_dir == PF_OUT) { 7753 ret = pf_icmp_state_lookup(&key, pd, state, 7754 pd->dir, virtual_id, virtual_type, 7755 icmp_dir, &iidx, multi, 0); 7756 if (ret >= 0) { 7757 MPASS(*state == NULL); 7758 return (ret); 7759 } 7760 } else 7761 return (ret); 7762 } 7763 7764 (*state)->expire = pf_get_uptime(); 7765 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 7766 7767 /* translate source/destination address, if necessary */ 7768 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7769 struct pf_state_key *nk; 7770 int afto, sidx, didx; 7771 7772 if (PF_REVERSED_KEY((*state)->key, pd->af)) 7773 nk = (*state)->key[pd->sidx]; 7774 else 7775 nk = (*state)->key[pd->didx]; 7776 7777 afto = pd->af != nk->af; 7778 sidx = afto ? pd->didx : pd->sidx; 7779 didx = afto ? pd->sidx : pd->didx; 7780 iidx = afto ? !iidx : iidx; 7781 7782 switch (pd->af) { 7783 #ifdef INET 7784 case AF_INET: 7785 #ifdef INET6 7786 if (afto) { 7787 if (pf_translate_icmp_af(AF_INET6, 7788 &pd->hdr.icmp)) 7789 return (PF_DROP); 7790 pd->proto = IPPROTO_ICMPV6; 7791 } 7792 #endif 7793 if (!afto && 7794 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET)) 7795 pf_change_a(&saddr->v4.s_addr, 7796 pd->ip_sum, 7797 nk->addr[sidx].v4.s_addr, 7798 0); 7799 7800 if (!afto && PF_ANEQ(pd->dst, 7801 &nk->addr[didx], AF_INET)) 7802 pf_change_a(&daddr->v4.s_addr, 7803 pd->ip_sum, 7804 nk->addr[didx].v4.s_addr, 0); 7805 7806 if (nk->port[iidx] != 7807 pd->hdr.icmp.icmp_id) { 7808 pd->hdr.icmp.icmp_cksum = 7809 pf_cksum_fixup( 7810 pd->hdr.icmp.icmp_cksum, icmpid, 7811 nk->port[iidx], 0); 7812 pd->hdr.icmp.icmp_id = 7813 nk->port[iidx]; 7814 } 7815 7816 m_copyback(pd->m, pd->off, ICMP_MINLEN, 7817 (caddr_t )&pd->hdr.icmp); 7818 break; 7819 #endif /* INET */ 7820 #ifdef INET6 7821 case AF_INET6: 7822 #ifdef INET 7823 if (afto) { 7824 if (pf_translate_icmp_af(AF_INET, 7825 &pd->hdr.icmp6)) 7826 return (PF_DROP); 7827 pd->proto = IPPROTO_ICMP; 7828 } 7829 #endif 7830 if (!afto && 7831 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET6)) 7832 pf_change_a6(saddr, 7833 &pd->hdr.icmp6.icmp6_cksum, 7834 &nk->addr[sidx], 0); 7835 7836 if (!afto && PF_ANEQ(pd->dst, 7837 &nk->addr[didx], AF_INET6)) 7838 pf_change_a6(daddr, 7839 &pd->hdr.icmp6.icmp6_cksum, 7840 &nk->addr[didx], 0); 7841 7842 if (nk->port[iidx] != pd->hdr.icmp6.icmp6_id) 7843 pd->hdr.icmp6.icmp6_id = 7844 nk->port[iidx]; 7845 7846 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr), 7847 (caddr_t )&pd->hdr.icmp6); 7848 break; 7849 #endif /* INET6 */ 7850 } 7851 if (afto) { 7852 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af); 7853 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af); 7854 pd->naf = nk->af; 7855 return (PF_AFRT); 7856 } 7857 } 7858 return (PF_PASS); 7859 7860 } else { 7861 /* 7862 * ICMP error message in response to a TCP/UDP packet. 7863 * Extract the inner TCP/UDP header and search for that state. 7864 */ 7865 7866 struct pf_pdesc pd2; 7867 bzero(&pd2, sizeof pd2); 7868 #ifdef INET 7869 struct ip h2; 7870 #endif /* INET */ 7871 #ifdef INET6 7872 struct ip6_hdr h2_6; 7873 #endif /* INET6 */ 7874 int ipoff2 = 0; 7875 7876 pd2.af = pd->af; 7877 pd2.dir = pd->dir; 7878 /* Payload packet is from the opposite direction. */ 7879 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0; 7880 pd2.didx = (pd->dir == PF_IN) ? 0 : 1; 7881 pd2.m = pd->m; 7882 switch (pd->af) { 7883 #ifdef INET 7884 case AF_INET: 7885 /* offset of h2 in mbuf chain */ 7886 ipoff2 = pd->off + ICMP_MINLEN; 7887 7888 if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2), 7889 NULL, reason, pd2.af)) { 7890 DPFPRINTF(PF_DEBUG_MISC, 7891 ("pf: ICMP error message too short " 7892 "(ip)\n")); 7893 return (PF_DROP); 7894 } 7895 /* 7896 * ICMP error messages don't refer to non-first 7897 * fragments 7898 */ 7899 if (h2.ip_off & htons(IP_OFFMASK)) { 7900 REASON_SET(reason, PFRES_FRAG); 7901 return (PF_DROP); 7902 } 7903 7904 /* offset of protocol header that follows h2 */ 7905 pd2.off = ipoff2 + (h2.ip_hl << 2); 7906 7907 pd2.proto = h2.ip_p; 7908 pd2.src = (struct pf_addr *)&h2.ip_src; 7909 pd2.dst = (struct pf_addr *)&h2.ip_dst; 7910 pd2.ip_sum = &h2.ip_sum; 7911 break; 7912 #endif /* INET */ 7913 #ifdef INET6 7914 case AF_INET6: 7915 ipoff2 = pd->off + sizeof(struct icmp6_hdr); 7916 7917 if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6), 7918 NULL, reason, pd2.af)) { 7919 DPFPRINTF(PF_DEBUG_MISC, 7920 ("pf: ICMP error message too short " 7921 "(ip6)\n")); 7922 return (PF_DROP); 7923 } 7924 pd2.off = ipoff2; 7925 if (pf_walk_header6(&pd2, &h2_6, reason) != PF_PASS) 7926 return (PF_DROP); 7927 7928 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 7929 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 7930 pd2.ip_sum = NULL; 7931 break; 7932 #endif /* INET6 */ 7933 } 7934 7935 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 7936 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7937 printf("pf: BAD ICMP %d:%d outer dst: ", 7938 icmptype, icmpcode); 7939 pf_print_host(pd->src, 0, pd->af); 7940 printf(" -> "); 7941 pf_print_host(pd->dst, 0, pd->af); 7942 printf(" inner src: "); 7943 pf_print_host(pd2.src, 0, pd2.af); 7944 printf(" -> "); 7945 pf_print_host(pd2.dst, 0, pd2.af); 7946 printf("\n"); 7947 } 7948 REASON_SET(reason, PFRES_BADSTATE); 7949 return (PF_DROP); 7950 } 7951 7952 switch (pd2.proto) { 7953 case IPPROTO_TCP: { 7954 struct tcphdr th; 7955 u_int32_t seq; 7956 struct pf_state_peer *src, *dst; 7957 u_int8_t dws; 7958 int copyback = 0; 7959 7960 /* 7961 * Only the first 8 bytes of the TCP header can be 7962 * expected. Don't access any TCP header fields after 7963 * th_seq, an ackskew test is not possible. 7964 */ 7965 if (!pf_pull_hdr(pd->m, pd2.off, &th, 8, NULL, reason, 7966 pd2.af)) { 7967 DPFPRINTF(PF_DEBUG_MISC, 7968 ("pf: ICMP error message too short " 7969 "(tcp)\n")); 7970 return (PF_DROP); 7971 } 7972 7973 key.af = pd2.af; 7974 key.proto = IPPROTO_TCP; 7975 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7976 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7977 key.port[pd2.sidx] = th.th_sport; 7978 key.port[pd2.didx] = th.th_dport; 7979 7980 STATE_LOOKUP(&key, *state, pd); 7981 7982 if (pd->dir == (*state)->direction) { 7983 if (PF_REVERSED_KEY((*state)->key, pd->af)) { 7984 src = &(*state)->src; 7985 dst = &(*state)->dst; 7986 } else { 7987 src = &(*state)->dst; 7988 dst = &(*state)->src; 7989 } 7990 } else { 7991 if (PF_REVERSED_KEY((*state)->key, pd->af)) { 7992 src = &(*state)->dst; 7993 dst = &(*state)->src; 7994 } else { 7995 src = &(*state)->src; 7996 dst = &(*state)->dst; 7997 } 7998 } 7999 8000 if (src->wscale && dst->wscale) 8001 dws = dst->wscale & PF_WSCALE_MASK; 8002 else 8003 dws = 0; 8004 8005 /* Demodulate sequence number */ 8006 seq = ntohl(th.th_seq) - src->seqdiff; 8007 if (src->seqdiff) { 8008 pf_change_a(&th.th_seq, icmpsum, 8009 htonl(seq), 0); 8010 copyback = 1; 8011 } 8012 8013 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 8014 (!SEQ_GEQ(src->seqhi, seq) || 8015 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 8016 if (V_pf_status.debug >= PF_DEBUG_MISC) { 8017 printf("pf: BAD ICMP %d:%d ", 8018 icmptype, icmpcode); 8019 pf_print_host(pd->src, 0, pd->af); 8020 printf(" -> "); 8021 pf_print_host(pd->dst, 0, pd->af); 8022 printf(" state: "); 8023 pf_print_state(*state); 8024 printf(" seq=%u\n", seq); 8025 } 8026 REASON_SET(reason, PFRES_BADSTATE); 8027 return (PF_DROP); 8028 } else { 8029 if (V_pf_status.debug >= PF_DEBUG_MISC) { 8030 printf("pf: OK ICMP %d:%d ", 8031 icmptype, icmpcode); 8032 pf_print_host(pd->src, 0, pd->af); 8033 printf(" -> "); 8034 pf_print_host(pd->dst, 0, pd->af); 8035 printf(" state: "); 8036 pf_print_state(*state); 8037 printf(" seq=%u\n", seq); 8038 } 8039 } 8040 8041 /* translate source/destination address, if necessary */ 8042 if ((*state)->key[PF_SK_WIRE] != 8043 (*state)->key[PF_SK_STACK]) { 8044 8045 struct pf_state_key *nk; 8046 8047 if (PF_REVERSED_KEY((*state)->key, pd->af)) 8048 nk = (*state)->key[pd->sidx]; 8049 else 8050 nk = (*state)->key[pd->didx]; 8051 8052 #if defined(INET) && defined(INET6) 8053 int afto, sidx, didx; 8054 8055 afto = pd->af != nk->af; 8056 sidx = afto ? pd2.didx : pd2.sidx; 8057 didx = afto ? pd2.sidx : pd2.didx; 8058 8059 if (afto) { 8060 if (pf_translate_icmp_af(nk->af, 8061 &pd->hdr.icmp)) 8062 return (PF_DROP); 8063 m_copyback(pd->m, pd->off, 8064 sizeof(struct icmp6_hdr), 8065 (c_caddr_t)&pd->hdr.icmp6); 8066 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8067 &pd2, &nk->addr[sidx], 8068 &nk->addr[didx], pd->af, 8069 nk->af)) 8070 return (PF_DROP); 8071 if (nk->af == AF_INET) 8072 pd->proto = IPPROTO_ICMP; 8073 else 8074 pd->proto = IPPROTO_ICMPV6; 8075 th.th_sport = nk->port[sidx]; 8076 th.th_dport = nk->port[didx]; 8077 m_copyback(pd2.m, pd2.off, 8, (c_caddr_t)&th); 8078 PF_ACPY(pd->src, 8079 &nk->addr[pd2.sidx], nk->af); 8080 PF_ACPY(pd->dst, 8081 &nk->addr[pd2.didx], nk->af); 8082 pd->naf = nk->af; 8083 return (PF_AFRT); 8084 } 8085 #endif 8086 8087 if (PF_ANEQ(pd2.src, 8088 &nk->addr[pd2.sidx], pd2.af) || 8089 nk->port[pd2.sidx] != th.th_sport) 8090 pf_change_icmp(pd2.src, &th.th_sport, 8091 daddr, &nk->addr[pd2.sidx], 8092 nk->port[pd2.sidx], NULL, 8093 pd2.ip_sum, icmpsum, 8094 pd->ip_sum, 0, pd2.af); 8095 8096 if (PF_ANEQ(pd2.dst, 8097 &nk->addr[pd2.didx], pd2.af) || 8098 nk->port[pd2.didx] != th.th_dport) 8099 pf_change_icmp(pd2.dst, &th.th_dport, 8100 saddr, &nk->addr[pd2.didx], 8101 nk->port[pd2.didx], NULL, 8102 pd2.ip_sum, icmpsum, 8103 pd->ip_sum, 0, pd2.af); 8104 copyback = 1; 8105 } 8106 8107 if (copyback) { 8108 switch (pd2.af) { 8109 #ifdef INET 8110 case AF_INET: 8111 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8112 (caddr_t )&pd->hdr.icmp); 8113 m_copyback(pd->m, ipoff2, sizeof(h2), 8114 (caddr_t )&h2); 8115 break; 8116 #endif /* INET */ 8117 #ifdef INET6 8118 case AF_INET6: 8119 m_copyback(pd->m, pd->off, 8120 sizeof(struct icmp6_hdr), 8121 (caddr_t )&pd->hdr.icmp6); 8122 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8123 (caddr_t )&h2_6); 8124 break; 8125 #endif /* INET6 */ 8126 } 8127 m_copyback(pd->m, pd2.off, 8, (caddr_t)&th); 8128 } 8129 8130 return (PF_PASS); 8131 break; 8132 } 8133 case IPPROTO_UDP: { 8134 struct udphdr uh; 8135 8136 if (!pf_pull_hdr(pd->m, pd2.off, &uh, sizeof(uh), 8137 NULL, reason, pd2.af)) { 8138 DPFPRINTF(PF_DEBUG_MISC, 8139 ("pf: ICMP error message too short " 8140 "(udp)\n")); 8141 return (PF_DROP); 8142 } 8143 8144 key.af = pd2.af; 8145 key.proto = IPPROTO_UDP; 8146 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 8147 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 8148 key.port[pd2.sidx] = uh.uh_sport; 8149 key.port[pd2.didx] = uh.uh_dport; 8150 8151 STATE_LOOKUP(&key, *state, pd); 8152 8153 /* translate source/destination address, if necessary */ 8154 if ((*state)->key[PF_SK_WIRE] != 8155 (*state)->key[PF_SK_STACK]) { 8156 struct pf_state_key *nk; 8157 8158 if (PF_REVERSED_KEY((*state)->key, pd->af)) 8159 nk = (*state)->key[pd->sidx]; 8160 else 8161 nk = (*state)->key[pd->didx]; 8162 8163 #if defined(INET) && defined(INET6) 8164 int afto, sidx, didx; 8165 8166 afto = pd->af != nk->af; 8167 sidx = afto ? pd2.didx : pd2.sidx; 8168 didx = afto ? pd2.sidx : pd2.didx; 8169 8170 if (afto) { 8171 if (pf_translate_icmp_af(nk->af, 8172 &pd->hdr.icmp)) 8173 return (PF_DROP); 8174 m_copyback(pd->m, pd->off, 8175 sizeof(struct icmp6_hdr), 8176 (c_caddr_t)&pd->hdr.icmp6); 8177 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8178 &pd2, &nk->addr[sidx], 8179 &nk->addr[didx], pd->af, 8180 nk->af)) 8181 return (PF_DROP); 8182 if (nk->af == AF_INET) 8183 pd->proto = IPPROTO_ICMP; 8184 else 8185 pd->proto = IPPROTO_ICMPV6; 8186 pf_change_ap(pd->m, pd2.src, &uh.uh_sport, 8187 pd->ip_sum, &uh.uh_sum, &nk->addr[pd2.sidx], 8188 nk->port[sidx], 1, pd->af, nk->af); 8189 pf_change_ap(pd->m, pd2.dst, &uh.uh_dport, 8190 pd->ip_sum, &uh.uh_sum, &nk->addr[pd2.didx], 8191 nk->port[didx], 1, pd->af, nk->af); 8192 m_copyback(pd2.m, pd2.off, sizeof(uh), 8193 (c_caddr_t)&uh); 8194 PF_ACPY(&pd->nsaddr, 8195 &nk->addr[pd2.sidx], nk->af); 8196 PF_ACPY(&pd->ndaddr, 8197 &nk->addr[pd2.didx], nk->af); 8198 pd->naf = nk->af; 8199 return (PF_AFRT); 8200 } 8201 #endif 8202 8203 if (PF_ANEQ(pd2.src, 8204 &nk->addr[pd2.sidx], pd2.af) || 8205 nk->port[pd2.sidx] != uh.uh_sport) 8206 pf_change_icmp(pd2.src, &uh.uh_sport, 8207 daddr, &nk->addr[pd2.sidx], 8208 nk->port[pd2.sidx], &uh.uh_sum, 8209 pd2.ip_sum, icmpsum, 8210 pd->ip_sum, 1, pd2.af); 8211 8212 if (PF_ANEQ(pd2.dst, 8213 &nk->addr[pd2.didx], pd2.af) || 8214 nk->port[pd2.didx] != uh.uh_dport) 8215 pf_change_icmp(pd2.dst, &uh.uh_dport, 8216 saddr, &nk->addr[pd2.didx], 8217 nk->port[pd2.didx], &uh.uh_sum, 8218 pd2.ip_sum, icmpsum, 8219 pd->ip_sum, 1, pd2.af); 8220 8221 switch (pd2.af) { 8222 #ifdef INET 8223 case AF_INET: 8224 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8225 (caddr_t )&pd->hdr.icmp); 8226 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 8227 break; 8228 #endif /* INET */ 8229 #ifdef INET6 8230 case AF_INET6: 8231 m_copyback(pd->m, pd->off, 8232 sizeof(struct icmp6_hdr), 8233 (caddr_t )&pd->hdr.icmp6); 8234 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8235 (caddr_t )&h2_6); 8236 break; 8237 #endif /* INET6 */ 8238 } 8239 m_copyback(pd->m, pd2.off, sizeof(uh), (caddr_t)&uh); 8240 } 8241 return (PF_PASS); 8242 break; 8243 } 8244 #ifdef INET 8245 case IPPROTO_SCTP: { 8246 struct sctphdr sh; 8247 struct pf_state_peer *src; 8248 int copyback = 0; 8249 8250 if (! pf_pull_hdr(pd->m, pd2.off, &sh, sizeof(sh), NULL, reason, 8251 pd2.af)) { 8252 DPFPRINTF(PF_DEBUG_MISC, 8253 ("pf: ICMP error message too short " 8254 "(sctp)\n")); 8255 return (PF_DROP); 8256 } 8257 8258 key.af = pd2.af; 8259 key.proto = IPPROTO_SCTP; 8260 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 8261 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 8262 key.port[pd2.sidx] = sh.src_port; 8263 key.port[pd2.didx] = sh.dest_port; 8264 8265 STATE_LOOKUP(&key, *state, pd); 8266 8267 if (pd->dir == (*state)->direction) { 8268 if (PF_REVERSED_KEY((*state)->key, pd->af)) 8269 src = &(*state)->src; 8270 else 8271 src = &(*state)->dst; 8272 } else { 8273 if (PF_REVERSED_KEY((*state)->key, pd->af)) 8274 src = &(*state)->dst; 8275 else 8276 src = &(*state)->src; 8277 } 8278 8279 if (src->scrub->pfss_v_tag != sh.v_tag) { 8280 DPFPRINTF(PF_DEBUG_MISC, 8281 ("pf: ICMP error message has incorrect " 8282 "SCTP v_tag\n")); 8283 return (PF_DROP); 8284 } 8285 8286 /* translate source/destination address, if necessary */ 8287 if ((*state)->key[PF_SK_WIRE] != 8288 (*state)->key[PF_SK_STACK]) { 8289 8290 struct pf_state_key *nk; 8291 8292 if (PF_REVERSED_KEY((*state)->key, pd->af)) 8293 nk = (*state)->key[pd->sidx]; 8294 else 8295 nk = (*state)->key[pd->didx]; 8296 8297 #if defined(INET) && defined(INET6) 8298 int afto, sidx, didx; 8299 8300 afto = pd->af != nk->af; 8301 sidx = afto ? pd2.didx : pd2.sidx; 8302 didx = afto ? pd2.sidx : pd2.didx; 8303 8304 if (afto) { 8305 if (pf_translate_icmp_af(nk->af, 8306 &pd->hdr.icmp)) 8307 return (PF_DROP); 8308 m_copyback(pd->m, pd->off, 8309 sizeof(struct icmp6_hdr), 8310 (c_caddr_t)&pd->hdr.icmp6); 8311 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8312 &pd2, &nk->addr[sidx], 8313 &nk->addr[didx], pd->af, 8314 nk->af)) 8315 return (PF_DROP); 8316 if (nk->af == AF_INET) 8317 pd->proto = IPPROTO_ICMP; 8318 else 8319 pd->proto = IPPROTO_ICMPV6; 8320 sh.src_port = nk->port[sidx]; 8321 sh.dest_port = nk->port[didx]; 8322 m_copyback(pd2.m, pd2.off, sizeof(sh), (c_caddr_t)&sh); 8323 PF_ACPY(pd->src, 8324 &nk->addr[pd2.sidx], nk->af); 8325 PF_ACPY(pd->dst, 8326 &nk->addr[pd2.didx], nk->af); 8327 pd->naf = nk->af; 8328 return (PF_AFRT); 8329 } 8330 #endif 8331 8332 if (PF_ANEQ(pd2.src, 8333 &nk->addr[pd2.sidx], pd2.af) || 8334 nk->port[pd2.sidx] != sh.src_port) 8335 pf_change_icmp(pd2.src, &sh.src_port, 8336 daddr, &nk->addr[pd2.sidx], 8337 nk->port[pd2.sidx], NULL, 8338 pd2.ip_sum, icmpsum, 8339 pd->ip_sum, 0, pd2.af); 8340 8341 if (PF_ANEQ(pd2.dst, 8342 &nk->addr[pd2.didx], pd2.af) || 8343 nk->port[pd2.didx] != sh.dest_port) 8344 pf_change_icmp(pd2.dst, &sh.dest_port, 8345 saddr, &nk->addr[pd2.didx], 8346 nk->port[pd2.didx], NULL, 8347 pd2.ip_sum, icmpsum, 8348 pd->ip_sum, 0, pd2.af); 8349 copyback = 1; 8350 } 8351 8352 if (copyback) { 8353 switch (pd2.af) { 8354 #ifdef INET 8355 case AF_INET: 8356 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8357 (caddr_t )&pd->hdr.icmp); 8358 m_copyback(pd->m, ipoff2, sizeof(h2), 8359 (caddr_t )&h2); 8360 break; 8361 #endif /* INET */ 8362 #ifdef INET6 8363 case AF_INET6: 8364 m_copyback(pd->m, pd->off, 8365 sizeof(struct icmp6_hdr), 8366 (caddr_t )&pd->hdr.icmp6); 8367 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8368 (caddr_t )&h2_6); 8369 break; 8370 #endif /* INET6 */ 8371 } 8372 m_copyback(pd->m, pd2.off, sizeof(sh), (caddr_t)&sh); 8373 } 8374 8375 return (PF_PASS); 8376 break; 8377 } 8378 case IPPROTO_ICMP: { 8379 struct icmp *iih = &pd2.hdr.icmp; 8380 8381 if (pd2.af != AF_INET) { 8382 REASON_SET(reason, PFRES_NORM); 8383 return (PF_DROP); 8384 } 8385 8386 if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN, 8387 NULL, reason, pd2.af)) { 8388 DPFPRINTF(PF_DEBUG_MISC, 8389 ("pf: ICMP error message too short i" 8390 "(icmp)\n")); 8391 return (PF_DROP); 8392 } 8393 8394 icmpid = iih->icmp_id; 8395 pf_icmp_mapping(&pd2, iih->icmp_type, 8396 &icmp_dir, &multi, &virtual_id, &virtual_type); 8397 8398 ret = pf_icmp_state_lookup(&key, &pd2, state, 8399 pd2.dir, virtual_id, virtual_type, 8400 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1); 8401 if (ret >= 0) { 8402 MPASS(*state == NULL); 8403 return (ret); 8404 } 8405 8406 /* translate source/destination address, if necessary */ 8407 if ((*state)->key[PF_SK_WIRE] != 8408 (*state)->key[PF_SK_STACK]) { 8409 struct pf_state_key *nk; 8410 8411 if (PF_REVERSED_KEY((*state)->key, pd->af)) 8412 nk = (*state)->key[pd->sidx]; 8413 else 8414 nk = (*state)->key[pd->didx]; 8415 8416 #if defined(INET) && defined(INET6) 8417 int afto, sidx, didx; 8418 8419 afto = pd->af != nk->af; 8420 sidx = afto ? pd2.didx : pd2.sidx; 8421 didx = afto ? pd2.sidx : pd2.didx; 8422 iidx = afto ? !iidx : iidx; 8423 8424 if (afto) { 8425 if (nk->af != AF_INET6) 8426 return (PF_DROP); 8427 if (pf_translate_icmp_af(nk->af, 8428 &pd->hdr.icmp)) 8429 return (PF_DROP); 8430 m_copyback(pd->m, pd->off, 8431 sizeof(struct icmp6_hdr), 8432 (c_caddr_t)&pd->hdr.icmp6); 8433 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8434 &pd2, &nk->addr[sidx], 8435 &nk->addr[didx], pd->af, 8436 nk->af)) 8437 return (PF_DROP); 8438 pd->proto = IPPROTO_ICMPV6; 8439 if (pf_translate_icmp_af(nk->af, &iih)) 8440 return (PF_DROP); 8441 if (virtual_type == htons(ICMP_ECHO) && 8442 nk->port[iidx] != iih->icmp_id) 8443 iih->icmp_id = nk->port[iidx]; 8444 m_copyback(pd2.m, pd2.off, ICMP_MINLEN, 8445 (c_caddr_t)&iih); 8446 PF_ACPY(&pd->nsaddr, 8447 &nk->addr[pd2.sidx], nk->af); 8448 PF_ACPY(&pd->ndaddr, 8449 &nk->addr[pd2.didx], nk->af); 8450 pd->naf = nk->af; 8451 return (PF_AFRT); 8452 } 8453 #endif 8454 8455 if (PF_ANEQ(pd2.src, 8456 &nk->addr[pd2.sidx], pd2.af) || 8457 (virtual_type == htons(ICMP_ECHO) && 8458 nk->port[iidx] != iih->icmp_id)) 8459 pf_change_icmp(pd2.src, 8460 (virtual_type == htons(ICMP_ECHO)) ? 8461 &iih->icmp_id : NULL, 8462 daddr, &nk->addr[pd2.sidx], 8463 (virtual_type == htons(ICMP_ECHO)) ? 8464 nk->port[iidx] : 0, NULL, 8465 pd2.ip_sum, icmpsum, 8466 pd->ip_sum, 0, AF_INET); 8467 8468 if (PF_ANEQ(pd2.dst, 8469 &nk->addr[pd2.didx], pd2.af)) 8470 pf_change_icmp(pd2.dst, NULL, NULL, 8471 &nk->addr[pd2.didx], 0, NULL, 8472 pd2.ip_sum, icmpsum, pd->ip_sum, 0, 8473 AF_INET); 8474 8475 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 8476 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 8477 m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih); 8478 } 8479 return (PF_PASS); 8480 break; 8481 } 8482 #endif /* INET */ 8483 #ifdef INET6 8484 case IPPROTO_ICMPV6: { 8485 struct icmp6_hdr *iih = &pd2.hdr.icmp6; 8486 8487 if (pd2.af != AF_INET6) { 8488 REASON_SET(reason, PFRES_NORM); 8489 return (PF_DROP); 8490 } 8491 8492 if (!pf_pull_hdr(pd->m, pd2.off, iih, 8493 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 8494 DPFPRINTF(PF_DEBUG_MISC, 8495 ("pf: ICMP error message too short " 8496 "(icmp6)\n")); 8497 return (PF_DROP); 8498 } 8499 8500 pf_icmp_mapping(&pd2, iih->icmp6_type, 8501 &icmp_dir, &multi, &virtual_id, &virtual_type); 8502 8503 ret = pf_icmp_state_lookup(&key, &pd2, state, 8504 pd->dir, virtual_id, virtual_type, 8505 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1); 8506 if (ret >= 0) { 8507 MPASS(*state == NULL); 8508 if (ret == PF_DROP && pd2.af == AF_INET6 && 8509 icmp_dir == PF_OUT) { 8510 ret = pf_icmp_state_lookup(&key, &pd2, 8511 state, pd->dir, 8512 virtual_id, virtual_type, 8513 icmp_dir, &iidx, multi, 1); 8514 if (ret >= 0) { 8515 MPASS(*state == NULL); 8516 return (ret); 8517 } 8518 } else 8519 return (ret); 8520 } 8521 8522 /* translate source/destination address, if necessary */ 8523 if ((*state)->key[PF_SK_WIRE] != 8524 (*state)->key[PF_SK_STACK]) { 8525 struct pf_state_key *nk; 8526 8527 if (PF_REVERSED_KEY((*state)->key, pd->af)) 8528 nk = (*state)->key[pd->sidx]; 8529 else 8530 nk = (*state)->key[pd->didx]; 8531 8532 #if defined(INET) && defined(INET6) 8533 int afto, sidx, didx; 8534 8535 afto = pd->af != nk->af; 8536 sidx = afto ? pd2.didx : pd2.sidx; 8537 didx = afto ? pd2.sidx : pd2.didx; 8538 iidx = afto ? !iidx : iidx; 8539 8540 if (afto) { 8541 if (nk->af != AF_INET) 8542 return (PF_DROP); 8543 if (pf_translate_icmp_af(nk->af, 8544 &pd->hdr.icmp)) 8545 return (PF_DROP); 8546 m_copyback(pd->m, pd->off, 8547 sizeof(struct icmp6_hdr), 8548 (c_caddr_t)&pd->hdr.icmp6); 8549 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8550 &pd2, &nk->addr[sidx], 8551 &nk->addr[didx], pd->af, 8552 nk->af)) 8553 return (PF_DROP); 8554 pd->proto = IPPROTO_ICMP; 8555 if (pf_translate_icmp_af(nk->af, &iih)) 8556 return (PF_DROP); 8557 if (virtual_type == 8558 htons(ICMP6_ECHO_REQUEST) && 8559 nk->port[iidx] != iih->icmp6_id) 8560 iih->icmp6_id = nk->port[iidx]; 8561 m_copyback(pd2.m, pd2.off, 8562 sizeof(struct icmp6_hdr), (c_caddr_t)&iih); 8563 PF_ACPY(&pd->nsaddr, 8564 &nk->addr[pd2.sidx], nk->af); 8565 PF_ACPY(&pd->ndaddr, 8566 &nk->addr[pd2.didx], nk->af); 8567 pd->naf = nk->af; 8568 return (PF_AFRT); 8569 } 8570 #endif 8571 8572 if (PF_ANEQ(pd2.src, 8573 &nk->addr[pd2.sidx], pd2.af) || 8574 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) && 8575 nk->port[pd2.sidx] != iih->icmp6_id)) 8576 pf_change_icmp(pd2.src, 8577 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 8578 ? &iih->icmp6_id : NULL, 8579 daddr, &nk->addr[pd2.sidx], 8580 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 8581 ? nk->port[iidx] : 0, NULL, 8582 pd2.ip_sum, icmpsum, 8583 pd->ip_sum, 0, AF_INET6); 8584 8585 if (PF_ANEQ(pd2.dst, 8586 &nk->addr[pd2.didx], pd2.af)) 8587 pf_change_icmp(pd2.dst, NULL, NULL, 8588 &nk->addr[pd2.didx], 0, NULL, 8589 pd2.ip_sum, icmpsum, 8590 pd->ip_sum, 0, AF_INET6); 8591 8592 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr), 8593 (caddr_t)&pd->hdr.icmp6); 8594 m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 8595 m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr), 8596 (caddr_t)iih); 8597 } 8598 return (PF_PASS); 8599 break; 8600 } 8601 #endif /* INET6 */ 8602 default: { 8603 key.af = pd2.af; 8604 key.proto = pd2.proto; 8605 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 8606 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 8607 key.port[0] = key.port[1] = 0; 8608 8609 STATE_LOOKUP(&key, *state, pd); 8610 8611 /* translate source/destination address, if necessary */ 8612 if ((*state)->key[PF_SK_WIRE] != 8613 (*state)->key[PF_SK_STACK]) { 8614 struct pf_state_key *nk = 8615 (*state)->key[pd->didx]; 8616 8617 if (PF_ANEQ(pd2.src, 8618 &nk->addr[pd2.sidx], pd2.af)) 8619 pf_change_icmp(pd2.src, NULL, daddr, 8620 &nk->addr[pd2.sidx], 0, NULL, 8621 pd2.ip_sum, icmpsum, 8622 pd->ip_sum, 0, pd2.af); 8623 8624 if (PF_ANEQ(pd2.dst, 8625 &nk->addr[pd2.didx], pd2.af)) 8626 pf_change_icmp(pd2.dst, NULL, saddr, 8627 &nk->addr[pd2.didx], 0, NULL, 8628 pd2.ip_sum, icmpsum, 8629 pd->ip_sum, 0, pd2.af); 8630 8631 switch (pd2.af) { 8632 #ifdef INET 8633 case AF_INET: 8634 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8635 (caddr_t)&pd->hdr.icmp); 8636 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 8637 break; 8638 #endif /* INET */ 8639 #ifdef INET6 8640 case AF_INET6: 8641 m_copyback(pd->m, pd->off, 8642 sizeof(struct icmp6_hdr), 8643 (caddr_t )&pd->hdr.icmp6); 8644 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8645 (caddr_t )&h2_6); 8646 break; 8647 #endif /* INET6 */ 8648 } 8649 } 8650 return (PF_PASS); 8651 break; 8652 } 8653 } 8654 } 8655 } 8656 8657 static int 8658 pf_test_state_other(struct pf_kstate **state, struct pf_pdesc *pd) 8659 { 8660 struct pf_state_peer *src, *dst; 8661 struct pf_state_key_cmp key; 8662 uint8_t psrc, pdst; 8663 int action = PF_PASS; 8664 8665 bzero(&key, sizeof(key)); 8666 key.af = pd->af; 8667 key.proto = pd->proto; 8668 PF_ACPY(&key.addr[pd->sidx], pd->src, key.af); 8669 PF_ACPY(&key.addr[pd->didx], pd->dst, key.af); 8670 key.port[0] = key.port[1] = 0; 8671 8672 STATE_LOOKUP(&key, *state, pd); 8673 8674 if (pd->dir == (*state)->direction) { 8675 src = &(*state)->src; 8676 dst = &(*state)->dst; 8677 psrc = PF_PEER_SRC; 8678 pdst = PF_PEER_DST; 8679 } else { 8680 src = &(*state)->dst; 8681 dst = &(*state)->src; 8682 psrc = PF_PEER_DST; 8683 pdst = PF_PEER_SRC; 8684 } 8685 8686 /* update states */ 8687 if (src->state < PFOTHERS_SINGLE) 8688 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 8689 if (dst->state == PFOTHERS_SINGLE) 8690 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 8691 8692 /* update expire time */ 8693 (*state)->expire = pf_get_uptime(); 8694 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 8695 (*state)->timeout = PFTM_OTHER_MULTIPLE; 8696 else 8697 (*state)->timeout = PFTM_OTHER_SINGLE; 8698 8699 /* translate source/destination address, if necessary */ 8700 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 8701 struct pf_state_key *nk; 8702 int afto; 8703 8704 if (PF_REVERSED_KEY((*state)->key, pd->af)) 8705 nk = (*state)->key[pd->sidx]; 8706 else 8707 nk = (*state)->key[pd->didx]; 8708 8709 KASSERT(nk, ("%s: nk is null", __func__)); 8710 KASSERT(pd, ("%s: pd is null", __func__)); 8711 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 8712 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 8713 8714 afto = pd->af != nk->af; 8715 8716 switch (pd->af) { 8717 #ifdef INET 8718 case AF_INET: 8719 if (!afto && 8720 PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 8721 pf_change_a(&pd->src->v4.s_addr, 8722 pd->ip_sum, 8723 nk->addr[pd->sidx].v4.s_addr, 8724 0); 8725 8726 if (!afto && 8727 PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 8728 pf_change_a(&pd->dst->v4.s_addr, 8729 pd->ip_sum, 8730 nk->addr[pd->didx].v4.s_addr, 8731 0); 8732 8733 break; 8734 #endif /* INET */ 8735 #ifdef INET6 8736 case AF_INET6: 8737 if (!afto && 8738 PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET6)) 8739 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 8740 8741 if (!afto && 8742 PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET6)) 8743 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 8744 #endif /* INET6 */ 8745 } 8746 if (afto) { 8747 PF_ACPY(&pd->nsaddr, 8748 &nk->addr[afto ? pd->didx : pd->sidx], nk->af); 8749 PF_ACPY(&pd->ndaddr, 8750 &nk->addr[afto ? pd->sidx : pd->didx], nk->af); 8751 pd->naf = nk->af; 8752 action = PF_AFRT; 8753 } 8754 } 8755 return (action); 8756 } 8757 8758 /* 8759 * ipoff and off are measured from the start of the mbuf chain. 8760 * h must be at "ipoff" on the mbuf chain. 8761 */ 8762 void * 8763 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len, 8764 u_short *actionp, u_short *reasonp, sa_family_t af) 8765 { 8766 switch (af) { 8767 #ifdef INET 8768 case AF_INET: { 8769 const struct ip *h = mtod(m, struct ip *); 8770 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 8771 8772 if (fragoff) { 8773 if (fragoff >= len) 8774 ACTION_SET(actionp, PF_PASS); 8775 else { 8776 ACTION_SET(actionp, PF_DROP); 8777 REASON_SET(reasonp, PFRES_FRAG); 8778 } 8779 return (NULL); 8780 } 8781 if (m->m_pkthdr.len < off + len || 8782 ntohs(h->ip_len) < off + len) { 8783 ACTION_SET(actionp, PF_DROP); 8784 REASON_SET(reasonp, PFRES_SHORT); 8785 return (NULL); 8786 } 8787 break; 8788 } 8789 #endif /* INET */ 8790 #ifdef INET6 8791 case AF_INET6: { 8792 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 8793 8794 if (m->m_pkthdr.len < off + len || 8795 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 8796 (unsigned)(off + len)) { 8797 ACTION_SET(actionp, PF_DROP); 8798 REASON_SET(reasonp, PFRES_SHORT); 8799 return (NULL); 8800 } 8801 break; 8802 } 8803 #endif /* INET6 */ 8804 } 8805 m_copydata(m, off, len, p); 8806 return (p); 8807 } 8808 8809 int 8810 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 8811 int rtableid) 8812 { 8813 struct ifnet *ifp; 8814 8815 /* 8816 * Skip check for addresses with embedded interface scope, 8817 * as they would always match anyway. 8818 */ 8819 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 8820 return (1); 8821 8822 if (af != AF_INET && af != AF_INET6) 8823 return (0); 8824 8825 if (kif == V_pfi_all) 8826 return (1); 8827 8828 /* Skip checks for ipsec interfaces */ 8829 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 8830 return (1); 8831 8832 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 8833 8834 switch (af) { 8835 #ifdef INET6 8836 case AF_INET6: 8837 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 8838 ifp)); 8839 #endif 8840 #ifdef INET 8841 case AF_INET: 8842 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 8843 ifp)); 8844 #endif 8845 } 8846 8847 return (0); 8848 } 8849 8850 #ifdef INET 8851 static void 8852 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 8853 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 8854 { 8855 struct mbuf *m0, *m1, *md; 8856 struct sockaddr_in dst; 8857 struct ip *ip; 8858 struct ifnet *ifp = NULL; 8859 int error = 0; 8860 uint16_t ip_len, ip_off; 8861 uint16_t tmp; 8862 int r_dir; 8863 8864 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 8865 8866 SDT_PROBE4(pf, ip, route_to, entry, *m, pd, s, oifp); 8867 8868 if (s) { 8869 r_dir = s->direction; 8870 } else { 8871 r_dir = r->direction; 8872 } 8873 8874 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 8875 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 8876 __func__)); 8877 8878 if ((pd->pf_mtag == NULL && 8879 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 8880 pd->pf_mtag->routed++ > 3) { 8881 m0 = *m; 8882 *m = NULL; 8883 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8884 goto bad_locked; 8885 } 8886 8887 if (pd->act.rt_kif != NULL) 8888 ifp = pd->act.rt_kif->pfik_ifp; 8889 8890 if (pd->act.rt == PF_DUPTO) { 8891 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 8892 if (s != NULL) { 8893 PF_STATE_UNLOCK(s); 8894 } 8895 if (ifp == oifp) { 8896 /* When the 2nd interface is not skipped */ 8897 return; 8898 } else { 8899 m0 = *m; 8900 *m = NULL; 8901 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8902 goto bad; 8903 } 8904 } else { 8905 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 8906 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 8907 if (s) 8908 PF_STATE_UNLOCK(s); 8909 return; 8910 } 8911 } 8912 } else { 8913 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) { 8914 pf_dummynet(pd, s, r, m); 8915 if (s) 8916 PF_STATE_UNLOCK(s); 8917 return; 8918 } 8919 m0 = *m; 8920 } 8921 8922 ip = mtod(m0, struct ip *); 8923 8924 bzero(&dst, sizeof(dst)); 8925 dst.sin_family = AF_INET; 8926 dst.sin_len = sizeof(dst); 8927 dst.sin_addr = ip->ip_dst; 8928 dst.sin_addr.s_addr = pd->act.rt_addr.v4.s_addr; 8929 8930 if (s != NULL){ 8931 if (r->rule_flag & PFRULE_IFBOUND && 8932 pd->act.rt == PF_REPLYTO && 8933 s->kif == V_pfi_all) { 8934 s->kif = pd->act.rt_kif; 8935 s->orig_kif = oifp->if_pf_kif; 8936 } 8937 8938 if (ifp == NULL && (pd->af != pd->naf)) { 8939 /* We're in the AFTO case. Do a route lookup. */ 8940 struct nhop_object *nh; 8941 nh = fib4_lookup(M_GETFIB(*m), ip->ip_dst, 0, NHR_NONE, 0); 8942 if (nh) { 8943 ifp = nh->nh_ifp; 8944 8945 /* Use the gateway if needed. */ 8946 if (nh->nh_flags & NHF_GATEWAY) 8947 dst.sin_addr = nh->gw4_sa.sin_addr; 8948 else 8949 dst.sin_addr = ip->ip_dst; 8950 8951 /* 8952 * Bind to the correct interface if we're 8953 * if-bound. We don't know which interface 8954 * that will be until here, so we've inserted 8955 * the state on V_pf_all. Fix that now. 8956 */ 8957 if (s->kif == V_pfi_all && ifp != NULL && 8958 r->rule_flag & PFRULE_IFBOUND) 8959 s->kif = ifp->if_pf_kif; 8960 } 8961 } 8962 8963 PF_STATE_UNLOCK(s); 8964 } 8965 8966 if (ifp == NULL) { 8967 m0 = *m; 8968 *m = NULL; 8969 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8970 goto bad; 8971 } 8972 8973 if (pd->dir == PF_IN) { 8974 if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp, 8975 &pd->act) != PF_PASS) { 8976 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8977 goto bad; 8978 } else if (m0 == NULL) { 8979 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8980 goto done; 8981 } 8982 if (m0->m_len < sizeof(struct ip)) { 8983 DPFPRINTF(PF_DEBUG_URGENT, 8984 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 8985 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8986 goto bad; 8987 } 8988 ip = mtod(m0, struct ip *); 8989 } 8990 8991 if (ifp->if_flags & IFF_LOOPBACK) 8992 m0->m_flags |= M_SKIP_FIREWALL; 8993 8994 ip_len = ntohs(ip->ip_len); 8995 ip_off = ntohs(ip->ip_off); 8996 8997 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 8998 m0->m_pkthdr.csum_flags |= CSUM_IP; 8999 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 9000 in_delayed_cksum(m0); 9001 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 9002 } 9003 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 9004 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2)); 9005 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 9006 } 9007 9008 if (pd->dir == PF_IN) { 9009 /* 9010 * Make sure dummynet gets the correct direction, in case it needs to 9011 * re-inject later. 9012 */ 9013 pd->dir = PF_OUT; 9014 9015 /* 9016 * The following processing is actually the rest of the inbound processing, even 9017 * though we've marked it as outbound (so we don't look through dummynet) and it 9018 * happens after the outbound processing (pf_test(PF_OUT) above). 9019 * Swap the dummynet pipe numbers, because it's going to come to the wrong 9020 * conclusion about what direction it's processing, and we can't fix it or it 9021 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 9022 * decision will pick the right pipe, and everything will mostly work as expected. 9023 */ 9024 tmp = pd->act.dnrpipe; 9025 pd->act.dnrpipe = pd->act.dnpipe; 9026 pd->act.dnpipe = tmp; 9027 } 9028 9029 /* 9030 * If small enough for interface, or the interface will take 9031 * care of the fragmentation for us, we can just send directly. 9032 */ 9033 if (ip_len <= ifp->if_mtu || 9034 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 9035 ip->ip_sum = 0; 9036 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 9037 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 9038 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 9039 } 9040 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 9041 9042 md = m0; 9043 error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 9044 if (md != NULL) { 9045 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL); 9046 SDT_PROBE2(pf, ip, route_to, output, ifp, error); 9047 } 9048 goto done; 9049 } 9050 9051 /* Balk when DF bit is set or the interface didn't support TSO. */ 9052 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 9053 error = EMSGSIZE; 9054 KMOD_IPSTAT_INC(ips_cantfrag); 9055 if (pd->act.rt != PF_DUPTO) { 9056 if (s && s->nat_rule != NULL) 9057 PACKET_UNDO_NAT(m0, pd, 9058 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 9059 s); 9060 9061 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 9062 ifp->if_mtu); 9063 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9064 goto done; 9065 } else { 9066 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9067 goto bad; 9068 } 9069 } 9070 9071 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 9072 if (error) { 9073 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9074 goto bad; 9075 } 9076 9077 for (; m0; m0 = m1) { 9078 m1 = m0->m_nextpkt; 9079 m0->m_nextpkt = NULL; 9080 if (error == 0) { 9081 m_clrprotoflags(m0); 9082 md = m0; 9083 pd->pf_mtag = pf_find_mtag(md); 9084 error = pf_dummynet_route(pd, s, r, ifp, 9085 sintosa(&dst), &md); 9086 if (md != NULL) { 9087 error = (*ifp->if_output)(ifp, md, 9088 sintosa(&dst), NULL); 9089 SDT_PROBE2(pf, ip, route_to, output, ifp, error); 9090 } 9091 } else 9092 m_freem(m0); 9093 } 9094 9095 if (error == 0) 9096 KMOD_IPSTAT_INC(ips_fragmented); 9097 9098 done: 9099 if (pd->act.rt != PF_DUPTO) 9100 *m = NULL; 9101 return; 9102 9103 bad_locked: 9104 if (s) 9105 PF_STATE_UNLOCK(s); 9106 bad: 9107 m_freem(m0); 9108 goto done; 9109 } 9110 #endif /* INET */ 9111 9112 #ifdef INET6 9113 static void 9114 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 9115 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 9116 { 9117 struct mbuf *m0, *md; 9118 struct m_tag *mtag; 9119 struct sockaddr_in6 dst; 9120 struct ip6_hdr *ip6; 9121 struct ifnet *ifp = NULL; 9122 int r_dir; 9123 9124 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 9125 9126 SDT_PROBE4(pf, ip6, route_to, entry, *m, pd, s, oifp); 9127 9128 if (s) { 9129 r_dir = s->direction; 9130 } else { 9131 r_dir = r->direction; 9132 } 9133 9134 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 9135 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 9136 __func__)); 9137 9138 if ((pd->pf_mtag == NULL && 9139 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 9140 pd->pf_mtag->routed++ > 3) { 9141 m0 = *m; 9142 *m = NULL; 9143 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9144 goto bad_locked; 9145 } 9146 9147 if (pd->act.rt_kif != NULL) 9148 ifp = pd->act.rt_kif->pfik_ifp; 9149 9150 if (pd->act.rt == PF_DUPTO) { 9151 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 9152 if (s != NULL) { 9153 PF_STATE_UNLOCK(s); 9154 } 9155 if (ifp == oifp) { 9156 /* When the 2nd interface is not skipped */ 9157 return; 9158 } else { 9159 m0 = *m; 9160 *m = NULL; 9161 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9162 goto bad; 9163 } 9164 } else { 9165 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 9166 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 9167 if (s) 9168 PF_STATE_UNLOCK(s); 9169 return; 9170 } 9171 } 9172 } else { 9173 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) { 9174 pf_dummynet(pd, s, r, m); 9175 if (s) 9176 PF_STATE_UNLOCK(s); 9177 return; 9178 } 9179 m0 = *m; 9180 } 9181 9182 ip6 = mtod(m0, struct ip6_hdr *); 9183 9184 bzero(&dst, sizeof(dst)); 9185 dst.sin6_family = AF_INET6; 9186 dst.sin6_len = sizeof(dst); 9187 dst.sin6_addr = ip6->ip6_dst; 9188 PF_ACPY((struct pf_addr *)&dst.sin6_addr, &pd->act.rt_addr, AF_INET6); 9189 9190 if (s != NULL) { 9191 if (r->rule_flag & PFRULE_IFBOUND && 9192 pd->act.rt == PF_REPLYTO && 9193 s->kif == V_pfi_all) { 9194 s->kif = pd->act.rt_kif; 9195 s->orig_kif = oifp->if_pf_kif; 9196 } 9197 9198 if (ifp == NULL && (pd->af != pd->naf)) { 9199 struct nhop_object *nh; 9200 nh = fib6_lookup(M_GETFIB(*m), &ip6->ip6_dst, 0, NHR_NONE, 0); 9201 if (nh) { 9202 ifp = nh->nh_ifp; 9203 9204 /* Use the gateway if needed. */ 9205 if (nh->nh_flags & NHF_GATEWAY) 9206 bcopy(&dst.sin6_addr, &nh->gw6_sa.sin6_addr, 9207 sizeof(dst.sin6_addr)); 9208 else 9209 dst.sin6_addr = ip6->ip6_dst; 9210 9211 /* 9212 * Bind to the correct interface if we're 9213 * if-bound. We don't know which interface 9214 * that will be until here, so we've inserted 9215 * the state on V_pf_all. Fix that now. 9216 */ 9217 if (s->kif == V_pfi_all && ifp != NULL && 9218 r->rule_flag & PFRULE_IFBOUND) 9219 s->kif = ifp->if_pf_kif; 9220 } 9221 } 9222 9223 PF_STATE_UNLOCK(s); 9224 } 9225 9226 if (pd->af != pd->naf) { 9227 struct udphdr *uh = &pd->hdr.udp; 9228 9229 if (pd->proto == IPPROTO_UDP && uh->uh_sum == 0) { 9230 uh->uh_sum = in6_cksum_pseudo(ip6, 9231 ntohs(uh->uh_ulen), IPPROTO_UDP, 0); 9232 m_copyback(m0, pd->off, sizeof(*uh), pd->hdr.any); 9233 } 9234 } 9235 9236 if (ifp == NULL) { 9237 m0 = *m; 9238 *m = NULL; 9239 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9240 goto bad; 9241 } 9242 9243 if (pd->dir == PF_IN) { 9244 if (pf_test(AF_INET6, PF_OUT, PFIL_FWD | PF_PFIL_NOREFRAGMENT, 9245 ifp, &m0, inp, &pd->act) != PF_PASS) { 9246 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9247 goto bad; 9248 } else if (m0 == NULL) { 9249 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9250 goto done; 9251 } 9252 if (m0->m_len < sizeof(struct ip6_hdr)) { 9253 DPFPRINTF(PF_DEBUG_URGENT, 9254 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 9255 __func__)); 9256 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9257 goto bad; 9258 } 9259 ip6 = mtod(m0, struct ip6_hdr *); 9260 } 9261 9262 if (ifp->if_flags & IFF_LOOPBACK) 9263 m0->m_flags |= M_SKIP_FIREWALL; 9264 9265 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 9266 ~ifp->if_hwassist) { 9267 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 9268 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 9269 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 9270 } 9271 9272 if (pd->dir == PF_IN) { 9273 uint16_t tmp; 9274 /* 9275 * Make sure dummynet gets the correct direction, in case it needs to 9276 * re-inject later. 9277 */ 9278 pd->dir = PF_OUT; 9279 9280 /* 9281 * The following processing is actually the rest of the inbound processing, even 9282 * though we've marked it as outbound (so we don't look through dummynet) and it 9283 * happens after the outbound processing (pf_test(PF_OUT) above). 9284 * Swap the dummynet pipe numbers, because it's going to come to the wrong 9285 * conclusion about what direction it's processing, and we can't fix it or it 9286 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 9287 * decision will pick the right pipe, and everything will mostly work as expected. 9288 */ 9289 tmp = pd->act.dnrpipe; 9290 pd->act.dnrpipe = pd->act.dnpipe; 9291 pd->act.dnpipe = tmp; 9292 } 9293 9294 /* 9295 * If the packet is too large for the outgoing interface, 9296 * send back an icmp6 error. 9297 */ 9298 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 9299 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 9300 mtag = m_tag_find(m0, PACKET_TAG_PF_REASSEMBLED, NULL); 9301 if (mtag != NULL) { 9302 int ret __sdt_used; 9303 ret = pf_refragment6(ifp, &m0, mtag, ifp, true); 9304 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret); 9305 goto done; 9306 } 9307 9308 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 9309 md = m0; 9310 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 9311 if (md != NULL) { 9312 int ret __sdt_used; 9313 ret = nd6_output_ifp(ifp, ifp, md, &dst, NULL); 9314 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret); 9315 } 9316 } 9317 else { 9318 in6_ifstat_inc(ifp, ifs6_in_toobig); 9319 if (pd->act.rt != PF_DUPTO) { 9320 if (s && s->nat_rule != NULL) 9321 PACKET_UNDO_NAT(m0, pd, 9322 ((caddr_t)ip6 - m0->m_data) + 9323 sizeof(struct ip6_hdr), s); 9324 9325 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 9326 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9327 } else { 9328 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9329 goto bad; 9330 } 9331 } 9332 9333 done: 9334 if (pd->act.rt != PF_DUPTO) 9335 *m = NULL; 9336 return; 9337 9338 bad_locked: 9339 if (s) 9340 PF_STATE_UNLOCK(s); 9341 bad: 9342 m_freem(m0); 9343 goto done; 9344 } 9345 #endif /* INET6 */ 9346 9347 /* 9348 * FreeBSD supports cksum offloads for the following drivers. 9349 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 9350 * 9351 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 9352 * network driver performed cksum including pseudo header, need to verify 9353 * csum_data 9354 * CSUM_DATA_VALID : 9355 * network driver performed cksum, needs to additional pseudo header 9356 * cksum computation with partial csum_data(i.e. lack of H/W support for 9357 * pseudo header, for instance sk(4) and possibly gem(4)) 9358 * 9359 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 9360 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 9361 * TCP/UDP layer. 9362 * Also, set csum_data to 0xffff to force cksum validation. 9363 */ 9364 static int 9365 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 9366 { 9367 u_int16_t sum = 0; 9368 int hw_assist = 0; 9369 struct ip *ip; 9370 9371 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 9372 return (1); 9373 if (m->m_pkthdr.len < off + len) 9374 return (1); 9375 9376 switch (p) { 9377 case IPPROTO_TCP: 9378 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 9379 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 9380 sum = m->m_pkthdr.csum_data; 9381 } else { 9382 ip = mtod(m, struct ip *); 9383 sum = in_pseudo(ip->ip_src.s_addr, 9384 ip->ip_dst.s_addr, htonl((u_short)len + 9385 m->m_pkthdr.csum_data + IPPROTO_TCP)); 9386 } 9387 sum ^= 0xffff; 9388 ++hw_assist; 9389 } 9390 break; 9391 case IPPROTO_UDP: 9392 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 9393 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 9394 sum = m->m_pkthdr.csum_data; 9395 } else { 9396 ip = mtod(m, struct ip *); 9397 sum = in_pseudo(ip->ip_src.s_addr, 9398 ip->ip_dst.s_addr, htonl((u_short)len + 9399 m->m_pkthdr.csum_data + IPPROTO_UDP)); 9400 } 9401 sum ^= 0xffff; 9402 ++hw_assist; 9403 } 9404 break; 9405 case IPPROTO_ICMP: 9406 #ifdef INET6 9407 case IPPROTO_ICMPV6: 9408 #endif /* INET6 */ 9409 break; 9410 default: 9411 return (1); 9412 } 9413 9414 if (!hw_assist) { 9415 switch (af) { 9416 case AF_INET: 9417 if (p == IPPROTO_ICMP) { 9418 if (m->m_len < off) 9419 return (1); 9420 m->m_data += off; 9421 m->m_len -= off; 9422 sum = in_cksum(m, len); 9423 m->m_data -= off; 9424 m->m_len += off; 9425 } else { 9426 if (m->m_len < sizeof(struct ip)) 9427 return (1); 9428 sum = in4_cksum(m, p, off, len); 9429 } 9430 break; 9431 #ifdef INET6 9432 case AF_INET6: 9433 if (m->m_len < sizeof(struct ip6_hdr)) 9434 return (1); 9435 sum = in6_cksum(m, p, off, len); 9436 break; 9437 #endif /* INET6 */ 9438 } 9439 } 9440 if (sum) { 9441 switch (p) { 9442 case IPPROTO_TCP: 9443 { 9444 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 9445 break; 9446 } 9447 case IPPROTO_UDP: 9448 { 9449 KMOD_UDPSTAT_INC(udps_badsum); 9450 break; 9451 } 9452 #ifdef INET 9453 case IPPROTO_ICMP: 9454 { 9455 KMOD_ICMPSTAT_INC(icps_checksum); 9456 break; 9457 } 9458 #endif 9459 #ifdef INET6 9460 case IPPROTO_ICMPV6: 9461 { 9462 KMOD_ICMP6STAT_INC(icp6s_checksum); 9463 break; 9464 } 9465 #endif /* INET6 */ 9466 } 9467 return (1); 9468 } else { 9469 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 9470 m->m_pkthdr.csum_flags |= 9471 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 9472 m->m_pkthdr.csum_data = 0xffff; 9473 } 9474 } 9475 return (0); 9476 } 9477 9478 static bool 9479 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r, 9480 const struct pf_kstate *s, struct ip_fw_args *dnflow) 9481 { 9482 int dndir = r->direction; 9483 9484 if (s && dndir == PF_INOUT) { 9485 dndir = s->direction; 9486 } else if (dndir == PF_INOUT) { 9487 /* Assume primary direction. Happens when we've set dnpipe in 9488 * the ethernet level code. */ 9489 dndir = pd->dir; 9490 } 9491 9492 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED) 9493 return (false); 9494 9495 memset(dnflow, 0, sizeof(*dnflow)); 9496 9497 if (pd->dport != NULL) 9498 dnflow->f_id.dst_port = ntohs(*pd->dport); 9499 if (pd->sport != NULL) 9500 dnflow->f_id.src_port = ntohs(*pd->sport); 9501 9502 if (pd->dir == PF_IN) 9503 dnflow->flags |= IPFW_ARGS_IN; 9504 else 9505 dnflow->flags |= IPFW_ARGS_OUT; 9506 9507 if (pd->dir != dndir && pd->act.dnrpipe) { 9508 dnflow->rule.info = pd->act.dnrpipe; 9509 } 9510 else if (pd->dir == dndir && pd->act.dnpipe) { 9511 dnflow->rule.info = pd->act.dnpipe; 9512 } 9513 else { 9514 return (false); 9515 } 9516 9517 dnflow->rule.info |= IPFW_IS_DUMMYNET; 9518 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 9519 dnflow->rule.info |= IPFW_IS_PIPE; 9520 9521 dnflow->f_id.proto = pd->proto; 9522 dnflow->f_id.extra = dnflow->rule.info; 9523 switch (pd->naf) { 9524 case AF_INET: 9525 dnflow->f_id.addr_type = 4; 9526 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 9527 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 9528 break; 9529 case AF_INET6: 9530 dnflow->flags |= IPFW_ARGS_IP6; 9531 dnflow->f_id.addr_type = 6; 9532 dnflow->f_id.src_ip6 = pd->src->v6; 9533 dnflow->f_id.dst_ip6 = pd->dst->v6; 9534 break; 9535 } 9536 9537 return (true); 9538 } 9539 9540 int 9541 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 9542 struct inpcb *inp) 9543 { 9544 struct pfi_kkif *kif; 9545 struct mbuf *m = *m0; 9546 9547 M_ASSERTPKTHDR(m); 9548 MPASS(ifp->if_vnet == curvnet); 9549 NET_EPOCH_ASSERT(); 9550 9551 if (!V_pf_status.running) 9552 return (PF_PASS); 9553 9554 kif = (struct pfi_kkif *)ifp->if_pf_kif; 9555 9556 if (kif == NULL) { 9557 DPFPRINTF(PF_DEBUG_URGENT, 9558 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname)); 9559 return (PF_DROP); 9560 } 9561 if (kif->pfik_flags & PFI_IFLAG_SKIP) 9562 return (PF_PASS); 9563 9564 if (m->m_flags & M_SKIP_FIREWALL) 9565 return (PF_PASS); 9566 9567 if (__predict_false(! M_WRITABLE(*m0))) { 9568 m = *m0 = m_unshare(*m0, M_NOWAIT); 9569 if (*m0 == NULL) 9570 return (PF_DROP); 9571 } 9572 9573 /* Stateless! */ 9574 return (pf_test_eth_rule(dir, kif, m0)); 9575 } 9576 9577 static __inline void 9578 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag) 9579 { 9580 struct m_tag *mtag; 9581 9582 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 9583 9584 /* dummynet adds this tag, but pf does not need it, 9585 * and keeping it creates unexpected behavior, 9586 * e.g. in case of divert(4) usage right after dummynet. */ 9587 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 9588 if (mtag != NULL) 9589 m_tag_delete(m, mtag); 9590 } 9591 9592 static int 9593 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s, 9594 struct pf_krule *r, struct mbuf **m0) 9595 { 9596 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0)); 9597 } 9598 9599 static int 9600 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s, 9601 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa, 9602 struct mbuf **m0) 9603 { 9604 struct ip_fw_args dnflow; 9605 9606 NET_EPOCH_ASSERT(); 9607 9608 if (pd->act.dnpipe == 0 && pd->act.dnrpipe == 0) 9609 return (0); 9610 9611 if (ip_dn_io_ptr == NULL) { 9612 m_freem(*m0); 9613 *m0 = NULL; 9614 return (ENOMEM); 9615 } 9616 9617 if (pd->pf_mtag == NULL && 9618 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 9619 m_freem(*m0); 9620 *m0 = NULL; 9621 return (ENOMEM); 9622 } 9623 9624 if (ifp != NULL) { 9625 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO; 9626 9627 pd->pf_mtag->if_index = ifp->if_index; 9628 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 9629 9630 MPASS(sa != NULL); 9631 9632 switch (pd->naf) { 9633 case AF_INET: 9634 memcpy(&pd->pf_mtag->dst, sa, 9635 sizeof(struct sockaddr_in)); 9636 break; 9637 case AF_INET6: 9638 memcpy(&pd->pf_mtag->dst, sa, 9639 sizeof(struct sockaddr_in6)); 9640 break; 9641 } 9642 } 9643 9644 if (s != NULL && s->nat_rule != NULL && 9645 s->nat_rule->action == PF_RDR && 9646 ( 9647 #ifdef INET 9648 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) || 9649 #endif 9650 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) { 9651 /* 9652 * If we're redirecting to loopback mark this packet 9653 * as being local. Otherwise it might get dropped 9654 * if dummynet re-injects. 9655 */ 9656 (*m0)->m_pkthdr.rcvif = V_loif; 9657 } 9658 9659 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) { 9660 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 9661 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED; 9662 ip_dn_io_ptr(m0, &dnflow); 9663 if (*m0 != NULL) { 9664 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 9665 pf_dummynet_flag_remove(*m0, pd->pf_mtag); 9666 } 9667 } 9668 9669 return (0); 9670 } 9671 9672 #ifdef INET6 9673 static int 9674 pf_walk_option6(struct pf_pdesc *pd, struct ip6_hdr *h, int off, int end, 9675 u_short *reason) 9676 { 9677 struct ip6_opt opt; 9678 struct ip6_opt_jumbo jumbo; 9679 9680 while (off < end) { 9681 if (!pf_pull_hdr(pd->m, off, &opt.ip6o_type, 9682 sizeof(opt.ip6o_type), NULL, reason, AF_INET6)) { 9683 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt type")); 9684 return (PF_DROP); 9685 } 9686 if (opt.ip6o_type == IP6OPT_PAD1) { 9687 off++; 9688 continue; 9689 } 9690 if (!pf_pull_hdr(pd->m, off, &opt, sizeof(opt), NULL, 9691 reason, AF_INET6)) { 9692 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt")); 9693 return (PF_DROP); 9694 } 9695 if (off + sizeof(opt) + opt.ip6o_len > end) { 9696 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 long opt")); 9697 REASON_SET(reason, PFRES_IPOPTIONS); 9698 return (PF_DROP); 9699 } 9700 switch (opt.ip6o_type) { 9701 case IP6OPT_JUMBO: 9702 if (pd->jumbolen != 0) { 9703 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple jumbo")); 9704 REASON_SET(reason, PFRES_IPOPTIONS); 9705 return (PF_DROP); 9706 } 9707 if (ntohs(h->ip6_plen) != 0) { 9708 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 bad jumbo plen")); 9709 REASON_SET(reason, PFRES_IPOPTIONS); 9710 return (PF_DROP); 9711 } 9712 if (!pf_pull_hdr(pd->m, off, &jumbo, sizeof(jumbo), NULL, 9713 reason, AF_INET6)) { 9714 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbo")); 9715 return (PF_DROP); 9716 } 9717 memcpy(&pd->jumbolen, jumbo.ip6oj_jumbo_len, 9718 sizeof(pd->jumbolen)); 9719 pd->jumbolen = ntohl(pd->jumbolen); 9720 if (pd->jumbolen < IPV6_MAXPACKET) { 9721 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbolen")); 9722 REASON_SET(reason, PFRES_IPOPTIONS); 9723 return (PF_DROP); 9724 } 9725 break; 9726 default: 9727 break; 9728 } 9729 off += sizeof(opt) + opt.ip6o_len; 9730 } 9731 9732 return (PF_PASS); 9733 } 9734 9735 int 9736 pf_walk_header6(struct pf_pdesc *pd, struct ip6_hdr *h, u_short *reason) 9737 { 9738 struct ip6_frag frag; 9739 struct ip6_ext ext; 9740 struct ip6_rthdr rthdr; 9741 uint32_t end; 9742 int rthdr_cnt = 0; 9743 9744 pd->off += sizeof(struct ip6_hdr); 9745 end = pd->off + ntohs(h->ip6_plen); 9746 pd->fragoff = pd->extoff = pd->jumbolen = 0; 9747 pd->proto = h->ip6_nxt; 9748 for (;;) { 9749 switch (pd->proto) { 9750 case IPPROTO_FRAGMENT: 9751 if (pd->fragoff != 0) { 9752 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple fragment")); 9753 REASON_SET(reason, PFRES_FRAG); 9754 return (PF_DROP); 9755 } 9756 /* jumbo payload packets cannot be fragmented */ 9757 if (pd->jumbolen != 0) { 9758 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 fragmented jumbo")); 9759 REASON_SET(reason, PFRES_FRAG); 9760 return (PF_DROP); 9761 } 9762 if (!pf_pull_hdr(pd->m, pd->off, &frag, sizeof(frag), 9763 NULL, reason, AF_INET6)) { 9764 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short fragment")); 9765 return (PF_DROP); 9766 } 9767 pd->fragoff = pd->off; 9768 /* stop walking over non initial fragments */ 9769 if (htons((frag.ip6f_offlg & IP6F_OFF_MASK)) != 0) 9770 return (PF_PASS); 9771 pd->off += sizeof(frag); 9772 pd->proto = frag.ip6f_nxt; 9773 break; 9774 case IPPROTO_ROUTING: 9775 if (rthdr_cnt++) { 9776 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple rthdr")); 9777 REASON_SET(reason, PFRES_IPOPTIONS); 9778 return (PF_DROP); 9779 } 9780 /* fragments may be short */ 9781 if (pd->fragoff != 0 && end < pd->off + sizeof(rthdr)) { 9782 pd->off = pd->fragoff; 9783 pd->proto = IPPROTO_FRAGMENT; 9784 return (PF_PASS); 9785 } 9786 if (!pf_pull_hdr(pd->m, pd->off, &rthdr, sizeof(rthdr), 9787 NULL, reason, AF_INET6)) { 9788 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short rthdr")); 9789 return (PF_DROP); 9790 } 9791 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 9792 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 rthdr0")); 9793 REASON_SET(reason, PFRES_IPOPTIONS); 9794 return (PF_DROP); 9795 } 9796 /* FALLTHROUGH */ 9797 case IPPROTO_AH: 9798 case IPPROTO_HOPOPTS: 9799 case IPPROTO_DSTOPTS: 9800 if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext), 9801 NULL, reason, AF_INET6)) { 9802 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short exthdr")); 9803 return (PF_DROP); 9804 } 9805 /* fragments may be short */ 9806 if (pd->fragoff != 0 && end < pd->off + sizeof(ext)) { 9807 pd->off = pd->fragoff; 9808 pd->proto = IPPROTO_FRAGMENT; 9809 return (PF_PASS); 9810 } 9811 /* reassembly needs the ext header before the frag */ 9812 if (pd->fragoff == 0) 9813 pd->extoff = pd->off; 9814 if (pd->proto == IPPROTO_HOPOPTS && pd->fragoff == 0) { 9815 if (pf_walk_option6(pd, h, 9816 pd->off + sizeof(ext), 9817 pd->off + (ext.ip6e_len + 1) * 8, reason) 9818 != PF_PASS) 9819 return (PF_DROP); 9820 if (ntohs(h->ip6_plen) == 0 && pd->jumbolen != 0) { 9821 DPFPRINTF(PF_DEBUG_MISC, 9822 ("IPv6 missing jumbo")); 9823 REASON_SET(reason, PFRES_IPOPTIONS); 9824 return (PF_DROP); 9825 } 9826 } 9827 if (pd->proto == IPPROTO_AH) 9828 pd->off += (ext.ip6e_len + 2) * 4; 9829 else 9830 pd->off += (ext.ip6e_len + 1) * 8; 9831 pd->proto = ext.ip6e_nxt; 9832 break; 9833 case IPPROTO_TCP: 9834 case IPPROTO_UDP: 9835 case IPPROTO_SCTP: 9836 case IPPROTO_ICMPV6: 9837 /* fragments may be short, ignore inner header then */ 9838 if (pd->fragoff != 0 && end < pd->off + 9839 (pd->proto == IPPROTO_TCP ? sizeof(struct tcphdr) : 9840 pd->proto == IPPROTO_UDP ? sizeof(struct udphdr) : 9841 pd->proto == IPPROTO_SCTP ? sizeof(struct sctphdr) : 9842 sizeof(struct icmp6_hdr))) { 9843 pd->off = pd->fragoff; 9844 pd->proto = IPPROTO_FRAGMENT; 9845 } 9846 /* FALLTHROUGH */ 9847 default: 9848 return (PF_PASS); 9849 } 9850 } 9851 } 9852 #endif 9853 9854 static void 9855 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m) 9856 { 9857 memset(pd, 0, sizeof(*pd)); 9858 pd->pf_mtag = pf_find_mtag(m); 9859 pd->m = m; 9860 } 9861 9862 static int 9863 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0, 9864 u_short *action, u_short *reason, struct pfi_kkif *kif, 9865 struct pf_rule_actions *default_actions) 9866 { 9867 pd->dir = dir; 9868 pd->kif = kif; 9869 pd->m = *m0; 9870 pd->sidx = (dir == PF_IN) ? 0 : 1; 9871 pd->didx = (dir == PF_IN) ? 1 : 0; 9872 pd->af = pd->naf = af; 9873 9874 TAILQ_INIT(&pd->sctp_multihome_jobs); 9875 if (default_actions != NULL) 9876 memcpy(&pd->act, default_actions, sizeof(pd->act)); 9877 9878 if (pd->pf_mtag && pd->pf_mtag->dnpipe) { 9879 pd->act.dnpipe = pd->pf_mtag->dnpipe; 9880 pd->act.flags = pd->pf_mtag->dnflags; 9881 } 9882 9883 switch (af) { 9884 #ifdef INET 9885 case AF_INET: { 9886 struct ip *h; 9887 9888 if (__predict_false((*m0)->m_len < sizeof(struct ip)) && 9889 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) { 9890 DPFPRINTF(PF_DEBUG_URGENT, 9891 ("pf_test: m_len < sizeof(struct ip), pullup failed\n")); 9892 *action = PF_DROP; 9893 REASON_SET(reason, PFRES_SHORT); 9894 return (-1); 9895 } 9896 9897 if (pf_normalize_ip(m0, reason, pd) != PF_PASS) { 9898 /* We do IP header normalization and packet reassembly here */ 9899 *action = PF_DROP; 9900 return (-1); 9901 } 9902 pd->m = *m0; 9903 9904 h = mtod(pd->m, struct ip *); 9905 pd->off = h->ip_hl << 2; 9906 if (pd->off < (int)sizeof(*h)) { 9907 *action = PF_DROP; 9908 REASON_SET(reason, PFRES_SHORT); 9909 return (-1); 9910 } 9911 pd->src = (struct pf_addr *)&h->ip_src; 9912 pd->dst = (struct pf_addr *)&h->ip_dst; 9913 pd->ip_sum = &h->ip_sum; 9914 pd->virtual_proto = pd->proto = h->ip_p; 9915 pd->tos = h->ip_tos; 9916 pd->ttl = h->ip_ttl; 9917 pd->tot_len = ntohs(h->ip_len); 9918 pd->act.rtableid = -1; 9919 9920 if (h->ip_hl > 5) /* has options */ 9921 pd->badopts++; 9922 9923 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) 9924 pd->virtual_proto = PF_VPROTO_FRAGMENT; 9925 9926 break; 9927 } 9928 #endif 9929 #ifdef INET6 9930 case AF_INET6: { 9931 struct ip6_hdr *h; 9932 9933 if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) && 9934 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) { 9935 DPFPRINTF(PF_DEBUG_URGENT, 9936 ("pf_test6: m_len < sizeof(struct ip6_hdr)" 9937 ", pullup failed\n")); 9938 *action = PF_DROP; 9939 REASON_SET(reason, PFRES_SHORT); 9940 return (-1); 9941 } 9942 9943 h = mtod(pd->m, struct ip6_hdr *); 9944 pd->off = 0; 9945 if (pf_walk_header6(pd, h, reason) != PF_PASS) { 9946 *action = PF_DROP; 9947 return (-1); 9948 } 9949 9950 h = mtod(pd->m, struct ip6_hdr *); 9951 pd->src = (struct pf_addr *)&h->ip6_src; 9952 pd->dst = (struct pf_addr *)&h->ip6_dst; 9953 pd->ip_sum = NULL; 9954 pd->tos = IPV6_DSCP(h); 9955 pd->ttl = h->ip6_hlim; 9956 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 9957 pd->virtual_proto = pd->proto = h->ip6_nxt; 9958 pd->act.rtableid = -1; 9959 9960 if (pd->fragoff != 0) 9961 pd->virtual_proto = PF_VPROTO_FRAGMENT; 9962 9963 /* 9964 * we do not support jumbogram. if we keep going, zero ip6_plen 9965 * will do something bad, so drop the packet for now. 9966 */ 9967 if (htons(h->ip6_plen) == 0) { 9968 *action = PF_DROP; 9969 return (-1); 9970 } 9971 9972 /* We do IP header normalization and packet reassembly here */ 9973 if (pf_normalize_ip6(m0, pd->fragoff, reason, pd) != 9974 PF_PASS) { 9975 *action = PF_DROP; 9976 return (-1); 9977 } 9978 pd->m = *m0; 9979 if (pd->m == NULL) { 9980 /* packet sits in reassembly queue, no error */ 9981 *action = PF_PASS; 9982 return (-1); 9983 } 9984 9985 /* Update pointers into the packet. */ 9986 h = mtod(pd->m, struct ip6_hdr *); 9987 pd->src = (struct pf_addr *)&h->ip6_src; 9988 pd->dst = (struct pf_addr *)&h->ip6_dst; 9989 9990 pd->off = 0; 9991 9992 if (pf_walk_header6(pd, h, reason) != PF_PASS) { 9993 *action = PF_DROP; 9994 return (-1); 9995 } 9996 9997 if (m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL) != NULL) { 9998 /* 9999 * Reassembly may have changed the next protocol from 10000 * fragment to something else, so update. 10001 */ 10002 pd->virtual_proto = pd->proto; 10003 MPASS(pd->fragoff == 0); 10004 } 10005 10006 if (pd->fragoff != 0) 10007 pd->virtual_proto = PF_VPROTO_FRAGMENT; 10008 10009 break; 10010 } 10011 #endif 10012 default: 10013 panic("pf_setup_pdesc called with illegal af %u", af); 10014 } 10015 10016 switch (pd->virtual_proto) { 10017 case IPPROTO_TCP: { 10018 struct tcphdr *th = &pd->hdr.tcp; 10019 10020 if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th), action, 10021 reason, af)) { 10022 *action = PF_DROP; 10023 REASON_SET(reason, PFRES_SHORT); 10024 return (-1); 10025 } 10026 pd->hdrlen = sizeof(*th); 10027 pd->p_len = pd->tot_len - pd->off - (th->th_off << 2); 10028 pd->sport = &th->th_sport; 10029 pd->dport = &th->th_dport; 10030 break; 10031 } 10032 case IPPROTO_UDP: { 10033 struct udphdr *uh = &pd->hdr.udp; 10034 10035 if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh), action, 10036 reason, af)) { 10037 *action = PF_DROP; 10038 REASON_SET(reason, PFRES_SHORT); 10039 return (-1); 10040 } 10041 pd->hdrlen = sizeof(*uh); 10042 if (uh->uh_dport == 0 || 10043 ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off || 10044 ntohs(uh->uh_ulen) < sizeof(struct udphdr)) { 10045 *action = PF_DROP; 10046 REASON_SET(reason, PFRES_SHORT); 10047 return (-1); 10048 } 10049 pd->sport = &uh->uh_sport; 10050 pd->dport = &uh->uh_dport; 10051 break; 10052 } 10053 case IPPROTO_SCTP: { 10054 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp), 10055 action, reason, af)) { 10056 *action = PF_DROP; 10057 REASON_SET(reason, PFRES_SHORT); 10058 return (-1); 10059 } 10060 pd->hdrlen = sizeof(pd->hdr.sctp); 10061 pd->p_len = pd->tot_len - pd->off; 10062 10063 pd->sport = &pd->hdr.sctp.src_port; 10064 pd->dport = &pd->hdr.sctp.dest_port; 10065 if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) { 10066 *action = PF_DROP; 10067 REASON_SET(reason, PFRES_SHORT); 10068 return (-1); 10069 } 10070 if (pf_scan_sctp(pd) != PF_PASS) { 10071 *action = PF_DROP; 10072 REASON_SET(reason, PFRES_SHORT); 10073 return (-1); 10074 } 10075 break; 10076 } 10077 case IPPROTO_ICMP: { 10078 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN, 10079 action, reason, af)) { 10080 *action = PF_DROP; 10081 REASON_SET(reason, PFRES_SHORT); 10082 return (-1); 10083 } 10084 pd->hdrlen = ICMP_MINLEN; 10085 break; 10086 } 10087 #ifdef INET6 10088 case IPPROTO_ICMPV6: { 10089 size_t icmp_hlen = sizeof(struct icmp6_hdr); 10090 10091 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen, 10092 action, reason, af)) { 10093 *action = PF_DROP; 10094 REASON_SET(reason, PFRES_SHORT); 10095 return (-1); 10096 } 10097 /* ICMP headers we look further into to match state */ 10098 switch (pd->hdr.icmp6.icmp6_type) { 10099 case MLD_LISTENER_QUERY: 10100 case MLD_LISTENER_REPORT: 10101 icmp_hlen = sizeof(struct mld_hdr); 10102 break; 10103 case ND_NEIGHBOR_SOLICIT: 10104 case ND_NEIGHBOR_ADVERT: 10105 icmp_hlen = sizeof(struct nd_neighbor_solicit); 10106 break; 10107 } 10108 if (icmp_hlen > sizeof(struct icmp6_hdr) && 10109 !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen, 10110 action, reason, af)) { 10111 *action = PF_DROP; 10112 REASON_SET(reason, PFRES_SHORT); 10113 return (-1); 10114 } 10115 pd->hdrlen = icmp_hlen; 10116 break; 10117 } 10118 #endif 10119 } 10120 return (0); 10121 } 10122 10123 static void 10124 pf_counters_inc(int action, struct pf_pdesc *pd, 10125 struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a) 10126 { 10127 struct pf_krule *tr; 10128 int dir = pd->dir; 10129 int dirndx; 10130 10131 pf_counter_u64_critical_enter(); 10132 pf_counter_u64_add_protected( 10133 &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 10134 pd->tot_len); 10135 pf_counter_u64_add_protected( 10136 &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 10137 1); 10138 10139 if (action == PF_PASS || action == PF_AFRT || r->action == PF_DROP) { 10140 dirndx = (dir == PF_OUT); 10141 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 10142 pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len); 10143 pf_update_timestamp(r); 10144 10145 if (a != NULL) { 10146 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 10147 pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len); 10148 } 10149 if (s != NULL) { 10150 struct pf_krule_item *ri; 10151 10152 if (s->nat_rule != NULL) { 10153 pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx], 10154 1); 10155 pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx], 10156 pd->tot_len); 10157 } 10158 if (s->src_node != NULL) { 10159 counter_u64_add(s->src_node->packets[dirndx], 10160 1); 10161 counter_u64_add(s->src_node->bytes[dirndx], 10162 pd->tot_len); 10163 } 10164 if (s->nat_src_node != NULL) { 10165 counter_u64_add(s->nat_src_node->packets[dirndx], 10166 1); 10167 counter_u64_add(s->nat_src_node->bytes[dirndx], 10168 pd->tot_len); 10169 } 10170 dirndx = (dir == s->direction) ? 0 : 1; 10171 s->packets[dirndx]++; 10172 s->bytes[dirndx] += pd->tot_len; 10173 10174 SLIST_FOREACH(ri, &s->match_rules, entry) { 10175 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 10176 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len); 10177 } 10178 } 10179 10180 tr = r; 10181 if (s != NULL && s->nat_rule != NULL && 10182 r == &V_pf_default_rule) 10183 tr = s->nat_rule; 10184 10185 if (tr->src.addr.type == PF_ADDR_TABLE) 10186 pfr_update_stats(tr->src.addr.p.tbl, 10187 (s == NULL) ? pd->src : 10188 &s->key[(s->direction == PF_IN)]-> 10189 addr[(s->direction == PF_OUT)], 10190 pd->af, pd->tot_len, dir == PF_OUT, 10191 r->action == PF_PASS, tr->src.neg); 10192 if (tr->dst.addr.type == PF_ADDR_TABLE) 10193 pfr_update_stats(tr->dst.addr.p.tbl, 10194 (s == NULL) ? pd->dst : 10195 &s->key[(s->direction == PF_IN)]-> 10196 addr[(s->direction == PF_IN)], 10197 pd->af, pd->tot_len, dir == PF_OUT, 10198 r->action == PF_PASS, tr->dst.neg); 10199 } 10200 pf_counter_u64_critical_exit(); 10201 } 10202 10203 #if defined(INET) || defined(INET6) 10204 int 10205 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 10206 struct inpcb *inp, struct pf_rule_actions *default_actions) 10207 { 10208 struct pfi_kkif *kif; 10209 u_short action, reason = 0; 10210 struct m_tag *mtag; 10211 struct pf_krule *a = NULL, *r = &V_pf_default_rule; 10212 struct pf_kstate *s = NULL; 10213 struct pf_kruleset *ruleset = NULL; 10214 struct pf_pdesc pd; 10215 int use_2nd_queue = 0; 10216 uint16_t tag; 10217 10218 PF_RULES_RLOCK_TRACKER; 10219 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 10220 M_ASSERTPKTHDR(*m0); 10221 10222 if (!V_pf_status.running) 10223 return (PF_PASS); 10224 10225 PF_RULES_RLOCK(); 10226 10227 kif = (struct pfi_kkif *)ifp->if_pf_kif; 10228 10229 if (__predict_false(kif == NULL)) { 10230 DPFPRINTF(PF_DEBUG_URGENT, 10231 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 10232 PF_RULES_RUNLOCK(); 10233 return (PF_DROP); 10234 } 10235 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 10236 PF_RULES_RUNLOCK(); 10237 return (PF_PASS); 10238 } 10239 10240 if ((*m0)->m_flags & M_SKIP_FIREWALL) { 10241 PF_RULES_RUNLOCK(); 10242 return (PF_PASS); 10243 } 10244 10245 #ifdef INET6 10246 /* 10247 * If we end up changing IP addresses (e.g. binat) the stack may get 10248 * confused and fail to send the icmp6 packet too big error. Just send 10249 * it here, before we do any NAT. 10250 */ 10251 if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD && 10252 IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) { 10253 PF_RULES_RUNLOCK(); 10254 icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp)); 10255 *m0 = NULL; 10256 return (PF_DROP); 10257 } 10258 #endif 10259 10260 if (__predict_false(! M_WRITABLE(*m0))) { 10261 *m0 = m_unshare(*m0, M_NOWAIT); 10262 if (*m0 == NULL) { 10263 PF_RULES_RUNLOCK(); 10264 return (PF_DROP); 10265 } 10266 } 10267 10268 pf_init_pdesc(&pd, *m0); 10269 10270 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 10271 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 10272 10273 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 10274 pd.pf_mtag->if_idxgen); 10275 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 10276 PF_RULES_RUNLOCK(); 10277 m_freem(*m0); 10278 *m0 = NULL; 10279 return (PF_PASS); 10280 } 10281 PF_RULES_RUNLOCK(); 10282 (ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL); 10283 *m0 = NULL; 10284 return (PF_PASS); 10285 } 10286 10287 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 10288 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 10289 /* Dummynet re-injects packets after they've 10290 * completed their delay. We've already 10291 * processed them, so pass unconditionally. */ 10292 10293 /* But only once. We may see the packet multiple times (e.g. 10294 * PFIL_IN/PFIL_OUT). */ 10295 pf_dummynet_flag_remove(pd.m, pd.pf_mtag); 10296 PF_RULES_RUNLOCK(); 10297 10298 return (PF_PASS); 10299 } 10300 10301 if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason, 10302 kif, default_actions) == -1) { 10303 if (action != PF_PASS) 10304 pd.act.log |= PF_LOG_FORCE; 10305 goto done; 10306 } 10307 10308 if (__predict_false(ip_divert_ptr != NULL) && 10309 ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) { 10310 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1); 10311 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) || 10312 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) { 10313 if (pd.pf_mtag == NULL && 10314 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 10315 action = PF_DROP; 10316 goto done; 10317 } 10318 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED; 10319 } 10320 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) { 10321 pd.m->m_flags |= M_FASTFWD_OURS; 10322 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 10323 } 10324 m_tag_delete(pd.m, mtag); 10325 10326 mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL); 10327 if (mtag != NULL) 10328 m_tag_delete(pd.m, mtag); 10329 } 10330 10331 switch (pd.virtual_proto) { 10332 case PF_VPROTO_FRAGMENT: 10333 /* 10334 * handle fragments that aren't reassembled by 10335 * normalization 10336 */ 10337 if (kif == NULL || r == NULL) /* pflog */ 10338 action = PF_DROP; 10339 else 10340 action = pf_test_rule(&r, &s, &pd, &a, 10341 &ruleset, inp); 10342 if (action != PF_PASS) 10343 REASON_SET(&reason, PFRES_FRAG); 10344 break; 10345 10346 case IPPROTO_TCP: { 10347 /* Respond to SYN with a syncookie. */ 10348 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 10349 pd.dir == PF_IN && pf_synflood_check(&pd)) { 10350 pf_syncookie_send(&pd); 10351 action = PF_DROP; 10352 break; 10353 } 10354 10355 if ((tcp_get_flags(&pd.hdr.tcp) & TH_ACK) && pd.p_len == 0) 10356 use_2nd_queue = 1; 10357 action = pf_normalize_tcp(&pd); 10358 if (action == PF_DROP) 10359 goto done; 10360 action = pf_test_state_tcp(&s, &pd, &reason); 10361 if (action == PF_PASS || action == PF_AFRT) { 10362 if (V_pfsync_update_state_ptr != NULL) 10363 V_pfsync_update_state_ptr(s); 10364 r = s->rule; 10365 a = s->anchor; 10366 } else if (s == NULL) { 10367 /* Validate remote SYN|ACK, re-create original SYN if 10368 * valid. */ 10369 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == 10370 TH_ACK && pf_syncookie_validate(&pd) && 10371 pd.dir == PF_IN) { 10372 struct mbuf *msyn; 10373 10374 msyn = pf_syncookie_recreate_syn(&pd); 10375 if (msyn == NULL) { 10376 action = PF_DROP; 10377 break; 10378 } 10379 10380 action = pf_test(af, dir, pflags, ifp, &msyn, inp, 10381 &pd.act); 10382 m_freem(msyn); 10383 if (action != PF_PASS) 10384 break; 10385 10386 action = pf_test_state_tcp(&s, &pd, &reason); 10387 if (action != PF_PASS || s == NULL) { 10388 action = PF_DROP; 10389 break; 10390 } 10391 10392 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 10393 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 10394 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 10395 action = pf_synproxy(&pd, &s, &reason); 10396 break; 10397 } else { 10398 action = pf_test_rule(&r, &s, &pd, 10399 &a, &ruleset, inp); 10400 } 10401 } 10402 break; 10403 } 10404 10405 case IPPROTO_UDP: { 10406 action = pf_test_state_udp(&s, &pd); 10407 if (action == PF_PASS || action == PF_AFRT) { 10408 if (V_pfsync_update_state_ptr != NULL) 10409 V_pfsync_update_state_ptr(s); 10410 r = s->rule; 10411 a = s->anchor; 10412 } else if (s == NULL) 10413 action = pf_test_rule(&r, &s, &pd, 10414 &a, &ruleset, inp); 10415 break; 10416 } 10417 10418 case IPPROTO_SCTP: { 10419 action = pf_normalize_sctp(&pd); 10420 if (action == PF_DROP) 10421 goto done; 10422 action = pf_test_state_sctp(&s, &pd, &reason); 10423 if (action == PF_PASS || action == PF_AFRT) { 10424 if (V_pfsync_update_state_ptr != NULL) 10425 V_pfsync_update_state_ptr(s); 10426 r = s->rule; 10427 a = s->anchor; 10428 } else if (s == NULL) { 10429 action = pf_test_rule(&r, &s, 10430 &pd, &a, &ruleset, inp); 10431 } 10432 break; 10433 } 10434 10435 case IPPROTO_ICMP: 10436 case IPPROTO_ICMPV6: { 10437 if (pd.virtual_proto == IPPROTO_ICMP && af != AF_INET) { 10438 action = PF_DROP; 10439 REASON_SET(&reason, PFRES_NORM); 10440 DPFPRINTF(PF_DEBUG_MISC, 10441 ("dropping IPv6 packet with ICMPv4 payload")); 10442 goto done; 10443 } 10444 if (pd.virtual_proto == IPPROTO_ICMPV6 && af != AF_INET6) { 10445 action = PF_DROP; 10446 REASON_SET(&reason, PFRES_NORM); 10447 DPFPRINTF(PF_DEBUG_MISC, 10448 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 10449 goto done; 10450 } 10451 action = pf_test_state_icmp(&s, &pd, &reason); 10452 if (action == PF_PASS || action == PF_AFRT) { 10453 if (V_pfsync_update_state_ptr != NULL) 10454 V_pfsync_update_state_ptr(s); 10455 r = s->rule; 10456 a = s->anchor; 10457 } else if (s == NULL) 10458 action = pf_test_rule(&r, &s, &pd, 10459 &a, &ruleset, inp); 10460 break; 10461 } 10462 10463 default: 10464 action = pf_test_state_other(&s, &pd); 10465 if (action == PF_PASS || action == PF_AFRT) { 10466 if (V_pfsync_update_state_ptr != NULL) 10467 V_pfsync_update_state_ptr(s); 10468 r = s->rule; 10469 a = s->anchor; 10470 } else if (s == NULL) 10471 action = pf_test_rule(&r, &s, &pd, 10472 &a, &ruleset, inp); 10473 break; 10474 } 10475 10476 done: 10477 PF_RULES_RUNLOCK(); 10478 10479 if (pd.m == NULL) 10480 goto eat_pkt; 10481 10482 if (action == PF_PASS && pd.badopts && 10483 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 10484 action = PF_DROP; 10485 REASON_SET(&reason, PFRES_IPOPTIONS); 10486 pd.act.log = PF_LOG_FORCE; 10487 DPFPRINTF(PF_DEBUG_MISC, 10488 ("pf: dropping packet with dangerous headers\n")); 10489 } 10490 10491 if (s) { 10492 uint8_t log = pd.act.log; 10493 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 10494 pd.act.log |= log; 10495 tag = s->tag; 10496 } else { 10497 tag = r->tag; 10498 } 10499 10500 if (tag > 0 && pf_tag_packet(&pd, tag)) { 10501 action = PF_DROP; 10502 REASON_SET(&reason, PFRES_MEMORY); 10503 } 10504 10505 pf_scrub(&pd); 10506 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 10507 pf_normalize_mss(&pd); 10508 10509 if (pd.act.rtableid >= 0) 10510 M_SETFIB(pd.m, pd.act.rtableid); 10511 10512 if (pd.act.flags & PFSTATE_SETPRIO) { 10513 if (pd.tos & IPTOS_LOWDELAY) 10514 use_2nd_queue = 1; 10515 if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) { 10516 action = PF_DROP; 10517 REASON_SET(&reason, PFRES_MEMORY); 10518 pd.act.log = PF_LOG_FORCE; 10519 DPFPRINTF(PF_DEBUG_MISC, 10520 ("pf: failed to allocate 802.1q mtag\n")); 10521 } 10522 } 10523 10524 #ifdef ALTQ 10525 if (action == PF_PASS && pd.act.qid) { 10526 if (pd.pf_mtag == NULL && 10527 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 10528 action = PF_DROP; 10529 REASON_SET(&reason, PFRES_MEMORY); 10530 } else { 10531 if (s != NULL) 10532 pd.pf_mtag->qid_hash = pf_state_hash(s); 10533 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY)) 10534 pd.pf_mtag->qid = pd.act.pqid; 10535 else 10536 pd.pf_mtag->qid = pd.act.qid; 10537 /* Add hints for ecn. */ 10538 pd.pf_mtag->hdr = mtod(pd.m, void *); 10539 } 10540 } 10541 #endif /* ALTQ */ 10542 10543 /* 10544 * connections redirected to loopback should not match sockets 10545 * bound specifically to loopback due to security implications, 10546 * see tcp_input() and in_pcblookup_listen(). 10547 */ 10548 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 10549 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL && 10550 (s->nat_rule->action == PF_RDR || 10551 s->nat_rule->action == PF_BINAT) && 10552 pf_is_loopback(af, pd.dst)) 10553 pd.m->m_flags |= M_SKIP_FIREWALL; 10554 10555 if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) && 10556 action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) { 10557 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0, 10558 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO); 10559 if (mtag != NULL) { 10560 ((struct pf_divert_mtag *)(mtag+1))->port = 10561 ntohs(r->divert.port); 10562 ((struct pf_divert_mtag *)(mtag+1))->idir = 10563 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN : 10564 PF_DIVERT_MTAG_DIR_OUT; 10565 10566 if (s) 10567 PF_STATE_UNLOCK(s); 10568 10569 m_tag_prepend(pd.m, mtag); 10570 if (pd.m->m_flags & M_FASTFWD_OURS) { 10571 if (pd.pf_mtag == NULL && 10572 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 10573 action = PF_DROP; 10574 REASON_SET(&reason, PFRES_MEMORY); 10575 pd.act.log = PF_LOG_FORCE; 10576 DPFPRINTF(PF_DEBUG_MISC, 10577 ("pf: failed to allocate tag\n")); 10578 } else { 10579 pd.pf_mtag->flags |= 10580 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 10581 pd.m->m_flags &= ~M_FASTFWD_OURS; 10582 } 10583 } 10584 ip_divert_ptr(*m0, dir == PF_IN); 10585 *m0 = NULL; 10586 10587 return (action); 10588 } else { 10589 /* XXX: ipfw has the same behaviour! */ 10590 action = PF_DROP; 10591 REASON_SET(&reason, PFRES_MEMORY); 10592 pd.act.log = PF_LOG_FORCE; 10593 DPFPRINTF(PF_DEBUG_MISC, 10594 ("pf: failed to allocate divert tag\n")); 10595 } 10596 } 10597 /* XXX: Anybody working on it?! */ 10598 if (af == AF_INET6 && r->divert.port) 10599 printf("pf: divert(9) is not supported for IPv6\n"); 10600 10601 /* this flag will need revising if the pkt is forwarded */ 10602 if (pd.pf_mtag) 10603 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED; 10604 10605 if (pd.act.log) { 10606 struct pf_krule *lr; 10607 struct pf_krule_item *ri; 10608 10609 if (s != NULL && s->nat_rule != NULL && 10610 s->nat_rule->log & PF_LOG_ALL) 10611 lr = s->nat_rule; 10612 else 10613 lr = r; 10614 10615 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 10616 PFLOG_PACKET(action, reason, lr, a, 10617 ruleset, &pd, (s == NULL)); 10618 if (s) { 10619 SLIST_FOREACH(ri, &s->match_rules, entry) 10620 if (ri->r->log & PF_LOG_ALL) 10621 PFLOG_PACKET(action, 10622 reason, ri->r, a, ruleset, &pd, 0); 10623 } 10624 } 10625 10626 pf_counters_inc(action, &pd, s, r, a); 10627 10628 switch (action) { 10629 case PF_SYNPROXY_DROP: 10630 m_freem(*m0); 10631 case PF_DEFER: 10632 *m0 = NULL; 10633 action = PF_PASS; 10634 break; 10635 case PF_DROP: 10636 m_freem(*m0); 10637 *m0 = NULL; 10638 break; 10639 case PF_AFRT: 10640 if (pf_translate_af(&pd)) { 10641 if (!pd.m) 10642 *m0 = NULL; 10643 action = PF_DROP; 10644 break; 10645 } 10646 *m0 = pd.m; /* pf_translate_af may change pd.m */ 10647 #ifdef INET 10648 if (pd.naf == AF_INET) 10649 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp); 10650 #endif 10651 #ifdef INET6 10652 if (pd.naf == AF_INET6) 10653 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp); 10654 #endif 10655 *m0 = NULL; 10656 action = PF_PASS; 10657 goto out; 10658 break; 10659 default: 10660 if (pd.act.rt) { 10661 switch (af) { 10662 #ifdef INET 10663 case AF_INET: 10664 /* pf_route() returns unlocked. */ 10665 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp); 10666 break; 10667 #endif 10668 #ifdef INET6 10669 case AF_INET6: 10670 /* pf_route6() returns unlocked. */ 10671 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp); 10672 break; 10673 #endif 10674 } 10675 goto out; 10676 } 10677 if (pf_dummynet(&pd, s, r, m0) != 0) { 10678 action = PF_DROP; 10679 REASON_SET(&reason, PFRES_MEMORY); 10680 } 10681 break; 10682 } 10683 10684 eat_pkt: 10685 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 10686 10687 if (s && action != PF_DROP) { 10688 if (!s->if_index_in && dir == PF_IN) 10689 s->if_index_in = ifp->if_index; 10690 else if (!s->if_index_out && dir == PF_OUT) 10691 s->if_index_out = ifp->if_index; 10692 } 10693 10694 if (s) 10695 PF_STATE_UNLOCK(s); 10696 10697 out: 10698 #ifdef INET6 10699 /* If reassembled packet passed, create new fragments. */ 10700 if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT && 10701 (! (pflags & PF_PFIL_NOREFRAGMENT)) && 10702 (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL) 10703 action = pf_refragment6(ifp, m0, mtag, NULL, pflags & PFIL_FWD); 10704 #endif 10705 10706 pf_sctp_multihome_delayed(&pd, kif, s, action); 10707 10708 return (action); 10709 } 10710 #endif /* INET || INET6 */ 10711