1 /*- 2 * Copyright (c) 2001 Daniel Hartmeier 3 * Copyright (c) 2002 - 2008 Henning Brauer 4 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * - Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * - Redistributions in binary form must reproduce the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer in the documentation and/or other materials provided 16 * with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 26 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Effort sponsored in part by the Defense Advanced Research Projects 32 * Agency (DARPA) and Air Force Research Laboratory, Air Force 33 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 34 * 35 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_inet.h" 42 #include "opt_inet6.h" 43 #include "opt_bpf.h" 44 #include "opt_pf.h" 45 46 #include <sys/param.h> 47 #include <sys/bus.h> 48 #include <sys/endian.h> 49 #include <sys/hash.h> 50 #include <sys/interrupt.h> 51 #include <sys/kernel.h> 52 #include <sys/kthread.h> 53 #include <sys/limits.h> 54 #include <sys/mbuf.h> 55 #include <sys/md5.h> 56 #include <sys/random.h> 57 #include <sys/refcount.h> 58 #include <sys/socket.h> 59 #include <sys/sysctl.h> 60 #include <sys/taskqueue.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_types.h> 66 #include <net/route.h> 67 #include <net/radix_mpath.h> 68 #include <net/vnet.h> 69 70 #include <net/pfvar.h> 71 #include <net/if_pflog.h> 72 #include <net/if_pfsync.h> 73 74 #include <netinet/in_pcb.h> 75 #include <netinet/in_var.h> 76 #include <netinet/ip.h> 77 #include <netinet/ip_fw.h> 78 #include <netinet/ip_icmp.h> 79 #include <netinet/icmp_var.h> 80 #include <netinet/ip_var.h> 81 #include <netinet/tcp.h> 82 #include <netinet/tcp_fsm.h> 83 #include <netinet/tcp_seq.h> 84 #include <netinet/tcp_timer.h> 85 #include <netinet/tcp_var.h> 86 #include <netinet/udp.h> 87 #include <netinet/udp_var.h> 88 89 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 90 91 #ifdef INET6 92 #include <netinet/ip6.h> 93 #include <netinet/icmp6.h> 94 #include <netinet6/nd6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/in6_pcb.h> 97 #endif /* INET6 */ 98 99 #include <machine/in_cksum.h> 100 #include <security/mac/mac_framework.h> 101 102 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 103 104 /* 105 * Global variables 106 */ 107 108 /* state tables */ 109 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 110 VNET_DEFINE(struct pf_palist, pf_pabuf); 111 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 112 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 113 VNET_DEFINE(struct pf_kstatus, pf_status); 114 115 VNET_DEFINE(u_int32_t, ticket_altqs_active); 116 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 117 VNET_DEFINE(int, altqs_inactive_open); 118 VNET_DEFINE(u_int32_t, ticket_pabuf); 119 120 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 121 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 122 VNET_DEFINE(u_char, pf_tcp_secret[16]); 123 #define V_pf_tcp_secret VNET(pf_tcp_secret) 124 VNET_DEFINE(int, pf_tcp_secret_init); 125 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 126 VNET_DEFINE(int, pf_tcp_iss_off); 127 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 128 129 /* 130 * Queue for pf_intr() sends. 131 */ 132 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 133 struct pf_send_entry { 134 STAILQ_ENTRY(pf_send_entry) pfse_next; 135 struct mbuf *pfse_m; 136 enum { 137 PFSE_IP, 138 PFSE_IP6, 139 PFSE_ICMP, 140 PFSE_ICMP6, 141 } pfse_type; 142 struct { 143 int type; 144 int code; 145 int mtu; 146 } icmpopts; 147 }; 148 149 STAILQ_HEAD(pf_send_head, pf_send_entry); 150 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 151 #define V_pf_sendqueue VNET(pf_sendqueue) 152 153 static struct mtx pf_sendqueue_mtx; 154 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 155 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 156 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 157 158 /* 159 * Queue for pf_overload_task() tasks. 160 */ 161 struct pf_overload_entry { 162 SLIST_ENTRY(pf_overload_entry) next; 163 struct pf_addr addr; 164 sa_family_t af; 165 uint8_t dir; 166 struct pf_rule *rule; 167 }; 168 169 SLIST_HEAD(pf_overload_head, pf_overload_entry); 170 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 171 #define V_pf_overloadqueue VNET(pf_overloadqueue) 172 static VNET_DEFINE(struct task, pf_overloadtask); 173 #define V_pf_overloadtask VNET(pf_overloadtask) 174 175 static struct mtx pf_overloadqueue_mtx; 176 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 177 "pf overload/flush queue", MTX_DEF); 178 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 179 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 180 181 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 182 struct mtx pf_unlnkdrules_mtx; 183 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 184 MTX_DEF); 185 186 static VNET_DEFINE(uma_zone_t, pf_sources_z); 187 #define V_pf_sources_z VNET(pf_sources_z) 188 uma_zone_t pf_mtag_z; 189 VNET_DEFINE(uma_zone_t, pf_state_z); 190 VNET_DEFINE(uma_zone_t, pf_state_key_z); 191 192 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 193 #define PFID_CPUBITS 8 194 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 195 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 196 #define PFID_MAXID (~PFID_CPUMASK) 197 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 198 199 static void pf_src_tree_remove_state(struct pf_state *); 200 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 201 u_int32_t); 202 static void pf_add_threshold(struct pf_threshold *); 203 static int pf_check_threshold(struct pf_threshold *); 204 205 static void pf_change_ap(struct pf_addr *, u_int16_t *, 206 u_int16_t *, u_int16_t *, struct pf_addr *, 207 u_int16_t, u_int8_t, sa_family_t); 208 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 209 struct tcphdr *, struct pf_state_peer *); 210 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 211 struct pf_addr *, struct pf_addr *, u_int16_t, 212 u_int16_t *, u_int16_t *, u_int16_t *, 213 u_int16_t *, u_int8_t, sa_family_t); 214 static void pf_send_tcp(struct mbuf *, 215 const struct pf_rule *, sa_family_t, 216 const struct pf_addr *, const struct pf_addr *, 217 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 218 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 219 u_int16_t, struct ifnet *); 220 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 221 sa_family_t, struct pf_rule *); 222 static void pf_detach_state(struct pf_state *); 223 static int pf_state_key_attach(struct pf_state_key *, 224 struct pf_state_key *, struct pf_state *); 225 static void pf_state_key_detach(struct pf_state *, int); 226 static int pf_state_key_ctor(void *, int, void *, int); 227 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 228 static int pf_test_rule(struct pf_rule **, struct pf_state **, 229 int, struct pfi_kif *, struct mbuf *, int, 230 struct pf_pdesc *, struct pf_rule **, 231 struct pf_ruleset **, struct inpcb *); 232 static int pf_create_state(struct pf_rule *, struct pf_rule *, 233 struct pf_rule *, struct pf_pdesc *, 234 struct pf_src_node *, struct pf_state_key *, 235 struct pf_state_key *, struct mbuf *, int, 236 u_int16_t, u_int16_t, int *, struct pfi_kif *, 237 struct pf_state **, int, u_int16_t, u_int16_t, 238 int); 239 static int pf_test_fragment(struct pf_rule **, int, 240 struct pfi_kif *, struct mbuf *, void *, 241 struct pf_pdesc *, struct pf_rule **, 242 struct pf_ruleset **); 243 static int pf_tcp_track_full(struct pf_state_peer *, 244 struct pf_state_peer *, struct pf_state **, 245 struct pfi_kif *, struct mbuf *, int, 246 struct pf_pdesc *, u_short *, int *); 247 static int pf_tcp_track_sloppy(struct pf_state_peer *, 248 struct pf_state_peer *, struct pf_state **, 249 struct pf_pdesc *, u_short *); 250 static int pf_test_state_tcp(struct pf_state **, int, 251 struct pfi_kif *, struct mbuf *, int, 252 void *, struct pf_pdesc *, u_short *); 253 static int pf_test_state_udp(struct pf_state **, int, 254 struct pfi_kif *, struct mbuf *, int, 255 void *, struct pf_pdesc *); 256 static int pf_test_state_icmp(struct pf_state **, int, 257 struct pfi_kif *, struct mbuf *, int, 258 void *, struct pf_pdesc *, u_short *); 259 static int pf_test_state_other(struct pf_state **, int, 260 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 261 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 262 sa_family_t); 263 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 264 sa_family_t); 265 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 266 int, u_int16_t); 267 static int pf_check_proto_cksum(struct mbuf *, int, int, 268 u_int8_t, sa_family_t); 269 static void pf_print_state_parts(struct pf_state *, 270 struct pf_state_key *, struct pf_state_key *); 271 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 272 struct pf_addr_wrap *); 273 static struct pf_state *pf_find_state(struct pfi_kif *, 274 struct pf_state_key_cmp *, u_int); 275 static int pf_src_connlimit(struct pf_state **); 276 static void pf_overload_task(void *v, int pending); 277 static int pf_insert_src_node(struct pf_src_node **, 278 struct pf_rule *, struct pf_addr *, sa_family_t); 279 static u_int pf_purge_expired_states(u_int, int); 280 static void pf_purge_unlinked_rules(void); 281 static int pf_mtag_uminit(void *, int, int); 282 static void pf_mtag_free(struct m_tag *); 283 #ifdef INET 284 static void pf_route(struct mbuf **, struct pf_rule *, int, 285 struct ifnet *, struct pf_state *, 286 struct pf_pdesc *); 287 #endif /* INET */ 288 #ifdef INET6 289 static void pf_change_a6(struct pf_addr *, u_int16_t *, 290 struct pf_addr *, u_int8_t); 291 static void pf_route6(struct mbuf **, struct pf_rule *, int, 292 struct ifnet *, struct pf_state *, 293 struct pf_pdesc *); 294 #endif /* INET6 */ 295 296 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 297 298 VNET_DECLARE(int, pf_end_threads); 299 300 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 301 302 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 303 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 304 305 #define STATE_LOOKUP(i, k, d, s, pd) \ 306 do { \ 307 (s) = pf_find_state((i), (k), (d)); \ 308 if ((s) == NULL) \ 309 return (PF_DROP); \ 310 if (PACKET_LOOPED(pd)) \ 311 return (PF_PASS); \ 312 if ((d) == PF_OUT && \ 313 (((s)->rule.ptr->rt == PF_ROUTETO && \ 314 (s)->rule.ptr->direction == PF_OUT) || \ 315 ((s)->rule.ptr->rt == PF_REPLYTO && \ 316 (s)->rule.ptr->direction == PF_IN)) && \ 317 (s)->rt_kif != NULL && \ 318 (s)->rt_kif != (i)) \ 319 return (PF_PASS); \ 320 } while (0) 321 322 #define BOUND_IFACE(r, k) \ 323 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 324 325 #define STATE_INC_COUNTERS(s) \ 326 do { \ 327 counter_u64_add(s->rule.ptr->states_cur, 1); \ 328 counter_u64_add(s->rule.ptr->states_tot, 1); \ 329 if (s->anchor.ptr != NULL) { \ 330 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 331 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 332 } \ 333 if (s->nat_rule.ptr != NULL) { \ 334 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 335 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 336 } \ 337 } while (0) 338 339 #define STATE_DEC_COUNTERS(s) \ 340 do { \ 341 if (s->nat_rule.ptr != NULL) \ 342 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 343 if (s->anchor.ptr != NULL) \ 344 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 345 counter_u64_add(s->rule.ptr->states_cur, -1); \ 346 } while (0) 347 348 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 349 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 350 VNET_DEFINE(struct pf_idhash *, pf_idhash); 351 VNET_DEFINE(struct pf_srchash *, pf_srchash); 352 353 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 354 355 u_long pf_hashmask; 356 u_long pf_srchashmask; 357 static u_long pf_hashsize; 358 static u_long pf_srchashsize; 359 360 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 361 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 362 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 363 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 364 365 VNET_DEFINE(void *, pf_swi_cookie); 366 367 VNET_DEFINE(uint32_t, pf_hashseed); 368 #define V_pf_hashseed VNET(pf_hashseed) 369 370 int 371 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 372 { 373 374 switch (af) { 375 #ifdef INET 376 case AF_INET: 377 if (a->addr32[0] > b->addr32[0]) 378 return (1); 379 if (a->addr32[0] < b->addr32[0]) 380 return (-1); 381 break; 382 #endif /* INET */ 383 #ifdef INET6 384 case AF_INET6: 385 if (a->addr32[3] > b->addr32[3]) 386 return (1); 387 if (a->addr32[3] < b->addr32[3]) 388 return (-1); 389 if (a->addr32[2] > b->addr32[2]) 390 return (1); 391 if (a->addr32[2] < b->addr32[2]) 392 return (-1); 393 if (a->addr32[1] > b->addr32[1]) 394 return (1); 395 if (a->addr32[1] < b->addr32[1]) 396 return (-1); 397 if (a->addr32[0] > b->addr32[0]) 398 return (1); 399 if (a->addr32[0] < b->addr32[0]) 400 return (-1); 401 break; 402 #endif /* INET6 */ 403 default: 404 panic("%s: unknown address family %u", __func__, af); 405 } 406 return (0); 407 } 408 409 static __inline uint32_t 410 pf_hashkey(struct pf_state_key *sk) 411 { 412 uint32_t h; 413 414 h = murmur3_32_hash32((uint32_t *)sk, 415 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 416 V_pf_hashseed); 417 418 return (h & pf_hashmask); 419 } 420 421 static __inline uint32_t 422 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 423 { 424 uint32_t h; 425 426 switch (af) { 427 case AF_INET: 428 h = murmur3_32_hash32((uint32_t *)&addr->v4, 429 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 430 break; 431 case AF_INET6: 432 h = murmur3_32_hash32((uint32_t *)&addr->v6, 433 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 434 break; 435 default: 436 panic("%s: unknown address family %u", __func__, af); 437 } 438 439 return (h & pf_srchashmask); 440 } 441 442 #ifdef ALTQ 443 static int 444 pf_state_hash(struct pf_state *s) 445 { 446 u_int32_t hv = (intptr_t)s / sizeof(*s); 447 448 hv ^= crc32(&s->src, sizeof(s->src)); 449 hv ^= crc32(&s->dst, sizeof(s->dst)); 450 if (hv == 0) 451 hv = 1; 452 return (hv); 453 } 454 #endif 455 456 #ifdef INET6 457 void 458 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 459 { 460 switch (af) { 461 #ifdef INET 462 case AF_INET: 463 dst->addr32[0] = src->addr32[0]; 464 break; 465 #endif /* INET */ 466 case AF_INET6: 467 dst->addr32[0] = src->addr32[0]; 468 dst->addr32[1] = src->addr32[1]; 469 dst->addr32[2] = src->addr32[2]; 470 dst->addr32[3] = src->addr32[3]; 471 break; 472 } 473 } 474 #endif /* INET6 */ 475 476 static void 477 pf_init_threshold(struct pf_threshold *threshold, 478 u_int32_t limit, u_int32_t seconds) 479 { 480 threshold->limit = limit * PF_THRESHOLD_MULT; 481 threshold->seconds = seconds; 482 threshold->count = 0; 483 threshold->last = time_uptime; 484 } 485 486 static void 487 pf_add_threshold(struct pf_threshold *threshold) 488 { 489 u_int32_t t = time_uptime, diff = t - threshold->last; 490 491 if (diff >= threshold->seconds) 492 threshold->count = 0; 493 else 494 threshold->count -= threshold->count * diff / 495 threshold->seconds; 496 threshold->count += PF_THRESHOLD_MULT; 497 threshold->last = t; 498 } 499 500 static int 501 pf_check_threshold(struct pf_threshold *threshold) 502 { 503 return (threshold->count > threshold->limit); 504 } 505 506 static int 507 pf_src_connlimit(struct pf_state **state) 508 { 509 struct pf_overload_entry *pfoe; 510 int bad = 0; 511 512 PF_STATE_LOCK_ASSERT(*state); 513 514 (*state)->src_node->conn++; 515 (*state)->src.tcp_est = 1; 516 pf_add_threshold(&(*state)->src_node->conn_rate); 517 518 if ((*state)->rule.ptr->max_src_conn && 519 (*state)->rule.ptr->max_src_conn < 520 (*state)->src_node->conn) { 521 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 522 bad++; 523 } 524 525 if ((*state)->rule.ptr->max_src_conn_rate.limit && 526 pf_check_threshold(&(*state)->src_node->conn_rate)) { 527 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 528 bad++; 529 } 530 531 if (!bad) 532 return (0); 533 534 /* Kill this state. */ 535 (*state)->timeout = PFTM_PURGE; 536 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 537 538 if ((*state)->rule.ptr->overload_tbl == NULL) 539 return (1); 540 541 /* Schedule overloading and flushing task. */ 542 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 543 if (pfoe == NULL) 544 return (1); /* too bad :( */ 545 546 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 547 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 548 pfoe->rule = (*state)->rule.ptr; 549 pfoe->dir = (*state)->direction; 550 PF_OVERLOADQ_LOCK(); 551 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 552 PF_OVERLOADQ_UNLOCK(); 553 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 554 555 return (1); 556 } 557 558 static void 559 pf_overload_task(void *v, int pending) 560 { 561 struct pf_overload_head queue; 562 struct pfr_addr p; 563 struct pf_overload_entry *pfoe, *pfoe1; 564 uint32_t killed = 0; 565 566 CURVNET_SET((struct vnet *)v); 567 568 PF_OVERLOADQ_LOCK(); 569 queue = V_pf_overloadqueue; 570 SLIST_INIT(&V_pf_overloadqueue); 571 PF_OVERLOADQ_UNLOCK(); 572 573 bzero(&p, sizeof(p)); 574 SLIST_FOREACH(pfoe, &queue, next) { 575 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 576 if (V_pf_status.debug >= PF_DEBUG_MISC) { 577 printf("%s: blocking address ", __func__); 578 pf_print_host(&pfoe->addr, 0, pfoe->af); 579 printf("\n"); 580 } 581 582 p.pfra_af = pfoe->af; 583 switch (pfoe->af) { 584 #ifdef INET 585 case AF_INET: 586 p.pfra_net = 32; 587 p.pfra_ip4addr = pfoe->addr.v4; 588 break; 589 #endif 590 #ifdef INET6 591 case AF_INET6: 592 p.pfra_net = 128; 593 p.pfra_ip6addr = pfoe->addr.v6; 594 break; 595 #endif 596 } 597 598 PF_RULES_WLOCK(); 599 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 600 PF_RULES_WUNLOCK(); 601 } 602 603 /* 604 * Remove those entries, that don't need flushing. 605 */ 606 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 607 if (pfoe->rule->flush == 0) { 608 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 609 free(pfoe, M_PFTEMP); 610 } else 611 counter_u64_add( 612 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 613 614 /* If nothing to flush, return. */ 615 if (SLIST_EMPTY(&queue)) { 616 CURVNET_RESTORE(); 617 return; 618 } 619 620 for (int i = 0; i <= pf_hashmask; i++) { 621 struct pf_idhash *ih = &V_pf_idhash[i]; 622 struct pf_state_key *sk; 623 struct pf_state *s; 624 625 PF_HASHROW_LOCK(ih); 626 LIST_FOREACH(s, &ih->states, entry) { 627 sk = s->key[PF_SK_WIRE]; 628 SLIST_FOREACH(pfoe, &queue, next) 629 if (sk->af == pfoe->af && 630 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 631 pfoe->rule == s->rule.ptr) && 632 ((pfoe->dir == PF_OUT && 633 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 634 (pfoe->dir == PF_IN && 635 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 636 s->timeout = PFTM_PURGE; 637 s->src.state = s->dst.state = TCPS_CLOSED; 638 killed++; 639 } 640 } 641 PF_HASHROW_UNLOCK(ih); 642 } 643 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 644 free(pfoe, M_PFTEMP); 645 if (V_pf_status.debug >= PF_DEBUG_MISC) 646 printf("%s: %u states killed", __func__, killed); 647 648 CURVNET_RESTORE(); 649 } 650 651 /* 652 * Can return locked on failure, so that we can consistently 653 * allocate and insert a new one. 654 */ 655 struct pf_src_node * 656 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 657 int returnlocked) 658 { 659 struct pf_srchash *sh; 660 struct pf_src_node *n; 661 662 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 663 664 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 665 PF_HASHROW_LOCK(sh); 666 LIST_FOREACH(n, &sh->nodes, entry) 667 if (n->rule.ptr == rule && n->af == af && 668 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 669 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 670 break; 671 if (n != NULL) { 672 n->states++; 673 PF_HASHROW_UNLOCK(sh); 674 } else if (returnlocked == 0) 675 PF_HASHROW_UNLOCK(sh); 676 677 return (n); 678 } 679 680 static int 681 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 682 struct pf_addr *src, sa_family_t af) 683 { 684 685 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 686 rule->rpool.opts & PF_POOL_STICKYADDR), 687 ("%s for non-tracking rule %p", __func__, rule)); 688 689 if (*sn == NULL) 690 *sn = pf_find_src_node(src, rule, af, 1); 691 692 if (*sn == NULL) { 693 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 694 695 PF_HASHROW_ASSERT(sh); 696 697 if (!rule->max_src_nodes || 698 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 699 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 700 else 701 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 702 1); 703 if ((*sn) == NULL) { 704 PF_HASHROW_UNLOCK(sh); 705 return (-1); 706 } 707 708 pf_init_threshold(&(*sn)->conn_rate, 709 rule->max_src_conn_rate.limit, 710 rule->max_src_conn_rate.seconds); 711 712 (*sn)->af = af; 713 (*sn)->rule.ptr = rule; 714 PF_ACPY(&(*sn)->addr, src, af); 715 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 716 (*sn)->creation = time_uptime; 717 (*sn)->ruletype = rule->action; 718 (*sn)->states = 1; 719 if ((*sn)->rule.ptr != NULL) 720 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 721 PF_HASHROW_UNLOCK(sh); 722 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 723 } else { 724 if (rule->max_src_states && 725 (*sn)->states >= rule->max_src_states) { 726 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 727 1); 728 return (-1); 729 } 730 } 731 return (0); 732 } 733 734 void 735 pf_unlink_src_node(struct pf_src_node *src) 736 { 737 738 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 739 LIST_REMOVE(src, entry); 740 if (src->rule.ptr) 741 counter_u64_add(src->rule.ptr->src_nodes, -1); 742 } 743 744 u_int 745 pf_free_src_nodes(struct pf_src_node_list *head) 746 { 747 struct pf_src_node *sn, *tmp; 748 u_int count = 0; 749 750 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 751 uma_zfree(V_pf_sources_z, sn); 752 count++; 753 } 754 755 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 756 757 return (count); 758 } 759 760 void 761 pf_mtag_initialize() 762 { 763 764 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 765 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 766 UMA_ALIGN_PTR, 0); 767 } 768 769 /* Per-vnet data storage structures initialization. */ 770 void 771 pf_initialize() 772 { 773 struct pf_keyhash *kh; 774 struct pf_idhash *ih; 775 struct pf_srchash *sh; 776 u_int i; 777 778 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 779 pf_hashsize = PF_HASHSIZ; 780 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 781 pf_srchashsize = PF_HASHSIZ / 4; 782 783 V_pf_hashseed = arc4random(); 784 785 /* States and state keys storage. */ 786 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 787 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 788 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 789 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 790 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 791 792 V_pf_state_key_z = uma_zcreate("pf state keys", 793 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 794 UMA_ALIGN_PTR, 0); 795 V_pf_keyhash = malloc(pf_hashsize * sizeof(struct pf_keyhash), 796 M_PFHASH, M_WAITOK | M_ZERO); 797 V_pf_idhash = malloc(pf_hashsize * sizeof(struct pf_idhash), 798 M_PFHASH, M_WAITOK | M_ZERO); 799 pf_hashmask = pf_hashsize - 1; 800 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 801 i++, kh++, ih++) { 802 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 803 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 804 } 805 806 /* Source nodes. */ 807 V_pf_sources_z = uma_zcreate("pf source nodes", 808 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 809 0); 810 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 811 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 812 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 813 V_pf_srchash = malloc(pf_srchashsize * sizeof(struct pf_srchash), 814 M_PFHASH, M_WAITOK|M_ZERO); 815 pf_srchashmask = pf_srchashsize - 1; 816 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 817 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 818 819 /* ALTQ */ 820 TAILQ_INIT(&V_pf_altqs[0]); 821 TAILQ_INIT(&V_pf_altqs[1]); 822 TAILQ_INIT(&V_pf_pabuf); 823 V_pf_altqs_active = &V_pf_altqs[0]; 824 V_pf_altqs_inactive = &V_pf_altqs[1]; 825 826 /* Send & overload+flush queues. */ 827 STAILQ_INIT(&V_pf_sendqueue); 828 SLIST_INIT(&V_pf_overloadqueue); 829 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 830 831 /* Unlinked, but may be referenced rules. */ 832 TAILQ_INIT(&V_pf_unlinked_rules); 833 } 834 835 void 836 pf_mtag_cleanup() 837 { 838 839 uma_zdestroy(pf_mtag_z); 840 } 841 842 void 843 pf_cleanup() 844 { 845 struct pf_keyhash *kh; 846 struct pf_idhash *ih; 847 struct pf_srchash *sh; 848 struct pf_send_entry *pfse, *next; 849 u_int i; 850 851 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 852 i++, kh++, ih++) { 853 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 854 __func__)); 855 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 856 __func__)); 857 mtx_destroy(&kh->lock); 858 mtx_destroy(&ih->lock); 859 } 860 free(V_pf_keyhash, M_PFHASH); 861 free(V_pf_idhash, M_PFHASH); 862 863 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 864 KASSERT(LIST_EMPTY(&sh->nodes), 865 ("%s: source node hash not empty", __func__)); 866 mtx_destroy(&sh->lock); 867 } 868 free(V_pf_srchash, M_PFHASH); 869 870 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 871 m_freem(pfse->pfse_m); 872 free(pfse, M_PFTEMP); 873 } 874 875 uma_zdestroy(V_pf_sources_z); 876 uma_zdestroy(V_pf_state_z); 877 uma_zdestroy(V_pf_state_key_z); 878 } 879 880 static int 881 pf_mtag_uminit(void *mem, int size, int how) 882 { 883 struct m_tag *t; 884 885 t = (struct m_tag *)mem; 886 t->m_tag_cookie = MTAG_ABI_COMPAT; 887 t->m_tag_id = PACKET_TAG_PF; 888 t->m_tag_len = sizeof(struct pf_mtag); 889 t->m_tag_free = pf_mtag_free; 890 891 return (0); 892 } 893 894 static void 895 pf_mtag_free(struct m_tag *t) 896 { 897 898 uma_zfree(pf_mtag_z, t); 899 } 900 901 struct pf_mtag * 902 pf_get_mtag(struct mbuf *m) 903 { 904 struct m_tag *mtag; 905 906 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 907 return ((struct pf_mtag *)(mtag + 1)); 908 909 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 910 if (mtag == NULL) 911 return (NULL); 912 bzero(mtag + 1, sizeof(struct pf_mtag)); 913 m_tag_prepend(m, mtag); 914 915 return ((struct pf_mtag *)(mtag + 1)); 916 } 917 918 static int 919 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 920 struct pf_state *s) 921 { 922 struct pf_keyhash *khs, *khw, *kh; 923 struct pf_state_key *sk, *cur; 924 struct pf_state *si, *olds = NULL; 925 int idx; 926 927 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 928 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 929 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 930 931 /* 932 * We need to lock hash slots of both keys. To avoid deadlock 933 * we always lock the slot with lower address first. Unlock order 934 * isn't important. 935 * 936 * We also need to lock ID hash slot before dropping key 937 * locks. On success we return with ID hash slot locked. 938 */ 939 940 if (skw == sks) { 941 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 942 PF_HASHROW_LOCK(khs); 943 } else { 944 khs = &V_pf_keyhash[pf_hashkey(sks)]; 945 khw = &V_pf_keyhash[pf_hashkey(skw)]; 946 if (khs == khw) { 947 PF_HASHROW_LOCK(khs); 948 } else if (khs < khw) { 949 PF_HASHROW_LOCK(khs); 950 PF_HASHROW_LOCK(khw); 951 } else { 952 PF_HASHROW_LOCK(khw); 953 PF_HASHROW_LOCK(khs); 954 } 955 } 956 957 #define KEYS_UNLOCK() do { \ 958 if (khs != khw) { \ 959 PF_HASHROW_UNLOCK(khs); \ 960 PF_HASHROW_UNLOCK(khw); \ 961 } else \ 962 PF_HASHROW_UNLOCK(khs); \ 963 } while (0) 964 965 /* 966 * First run: start with wire key. 967 */ 968 sk = skw; 969 kh = khw; 970 idx = PF_SK_WIRE; 971 972 keyattach: 973 LIST_FOREACH(cur, &kh->keys, entry) 974 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 975 break; 976 977 if (cur != NULL) { 978 /* Key exists. Check for same kif, if none, add to key. */ 979 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 980 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 981 982 PF_HASHROW_LOCK(ih); 983 if (si->kif == s->kif && 984 si->direction == s->direction) { 985 if (sk->proto == IPPROTO_TCP && 986 si->src.state >= TCPS_FIN_WAIT_2 && 987 si->dst.state >= TCPS_FIN_WAIT_2) { 988 /* 989 * New state matches an old >FIN_WAIT_2 990 * state. We can't drop key hash locks, 991 * thus we can't unlink it properly. 992 * 993 * As a workaround we drop it into 994 * TCPS_CLOSED state, schedule purge 995 * ASAP and push it into the very end 996 * of the slot TAILQ, so that it won't 997 * conflict with our new state. 998 */ 999 si->src.state = si->dst.state = 1000 TCPS_CLOSED; 1001 si->timeout = PFTM_PURGE; 1002 olds = si; 1003 } else { 1004 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1005 printf("pf: %s key attach " 1006 "failed on %s: ", 1007 (idx == PF_SK_WIRE) ? 1008 "wire" : "stack", 1009 s->kif->pfik_name); 1010 pf_print_state_parts(s, 1011 (idx == PF_SK_WIRE) ? 1012 sk : NULL, 1013 (idx == PF_SK_STACK) ? 1014 sk : NULL); 1015 printf(", existing: "); 1016 pf_print_state_parts(si, 1017 (idx == PF_SK_WIRE) ? 1018 sk : NULL, 1019 (idx == PF_SK_STACK) ? 1020 sk : NULL); 1021 printf("\n"); 1022 } 1023 PF_HASHROW_UNLOCK(ih); 1024 KEYS_UNLOCK(); 1025 uma_zfree(V_pf_state_key_z, sk); 1026 if (idx == PF_SK_STACK) 1027 pf_detach_state(s); 1028 return (EEXIST); /* collision! */ 1029 } 1030 } 1031 PF_HASHROW_UNLOCK(ih); 1032 } 1033 uma_zfree(V_pf_state_key_z, sk); 1034 s->key[idx] = cur; 1035 } else { 1036 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1037 s->key[idx] = sk; 1038 } 1039 1040 stateattach: 1041 /* List is sorted, if-bound states before floating. */ 1042 if (s->kif == V_pfi_all) 1043 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1044 else 1045 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1046 1047 if (olds) { 1048 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1049 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1050 key_list[idx]); 1051 olds = NULL; 1052 } 1053 1054 /* 1055 * Attach done. See how should we (or should not?) 1056 * attach a second key. 1057 */ 1058 if (sks == skw) { 1059 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1060 idx = PF_SK_STACK; 1061 sks = NULL; 1062 goto stateattach; 1063 } else if (sks != NULL) { 1064 /* 1065 * Continue attaching with stack key. 1066 */ 1067 sk = sks; 1068 kh = khs; 1069 idx = PF_SK_STACK; 1070 sks = NULL; 1071 goto keyattach; 1072 } 1073 1074 PF_STATE_LOCK(s); 1075 KEYS_UNLOCK(); 1076 1077 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1078 ("%s failure", __func__)); 1079 1080 return (0); 1081 #undef KEYS_UNLOCK 1082 } 1083 1084 static void 1085 pf_detach_state(struct pf_state *s) 1086 { 1087 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1088 struct pf_keyhash *kh; 1089 1090 if (sks != NULL) { 1091 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1092 PF_HASHROW_LOCK(kh); 1093 if (s->key[PF_SK_STACK] != NULL) 1094 pf_state_key_detach(s, PF_SK_STACK); 1095 /* 1096 * If both point to same key, then we are done. 1097 */ 1098 if (sks == s->key[PF_SK_WIRE]) { 1099 pf_state_key_detach(s, PF_SK_WIRE); 1100 PF_HASHROW_UNLOCK(kh); 1101 return; 1102 } 1103 PF_HASHROW_UNLOCK(kh); 1104 } 1105 1106 if (s->key[PF_SK_WIRE] != NULL) { 1107 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1108 PF_HASHROW_LOCK(kh); 1109 if (s->key[PF_SK_WIRE] != NULL) 1110 pf_state_key_detach(s, PF_SK_WIRE); 1111 PF_HASHROW_UNLOCK(kh); 1112 } 1113 } 1114 1115 static void 1116 pf_state_key_detach(struct pf_state *s, int idx) 1117 { 1118 struct pf_state_key *sk = s->key[idx]; 1119 #ifdef INVARIANTS 1120 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1121 1122 PF_HASHROW_ASSERT(kh); 1123 #endif 1124 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1125 s->key[idx] = NULL; 1126 1127 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1128 LIST_REMOVE(sk, entry); 1129 uma_zfree(V_pf_state_key_z, sk); 1130 } 1131 } 1132 1133 static int 1134 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1135 { 1136 struct pf_state_key *sk = mem; 1137 1138 bzero(sk, sizeof(struct pf_state_key_cmp)); 1139 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1140 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1141 1142 return (0); 1143 } 1144 1145 struct pf_state_key * 1146 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1147 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1148 { 1149 struct pf_state_key *sk; 1150 1151 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1152 if (sk == NULL) 1153 return (NULL); 1154 1155 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1156 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1157 sk->port[pd->sidx] = sport; 1158 sk->port[pd->didx] = dport; 1159 sk->proto = pd->proto; 1160 sk->af = pd->af; 1161 1162 return (sk); 1163 } 1164 1165 struct pf_state_key * 1166 pf_state_key_clone(struct pf_state_key *orig) 1167 { 1168 struct pf_state_key *sk; 1169 1170 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1171 if (sk == NULL) 1172 return (NULL); 1173 1174 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1175 1176 return (sk); 1177 } 1178 1179 int 1180 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1181 struct pf_state_key *sks, struct pf_state *s) 1182 { 1183 struct pf_idhash *ih; 1184 struct pf_state *cur; 1185 int error; 1186 1187 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1188 ("%s: sks not pristine", __func__)); 1189 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1190 ("%s: skw not pristine", __func__)); 1191 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1192 1193 s->kif = kif; 1194 1195 if (s->id == 0 && s->creatorid == 0) { 1196 /* XXX: should be atomic, but probability of collision low */ 1197 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1198 V_pf_stateid[curcpu] = 1; 1199 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1200 s->id = htobe64(s->id); 1201 s->creatorid = V_pf_status.hostid; 1202 } 1203 1204 /* Returns with ID locked on success. */ 1205 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1206 return (error); 1207 1208 ih = &V_pf_idhash[PF_IDHASH(s)]; 1209 PF_HASHROW_ASSERT(ih); 1210 LIST_FOREACH(cur, &ih->states, entry) 1211 if (cur->id == s->id && cur->creatorid == s->creatorid) 1212 break; 1213 1214 if (cur != NULL) { 1215 PF_HASHROW_UNLOCK(ih); 1216 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1217 printf("pf: state ID collision: " 1218 "id: %016llx creatorid: %08x\n", 1219 (unsigned long long)be64toh(s->id), 1220 ntohl(s->creatorid)); 1221 } 1222 pf_detach_state(s); 1223 return (EEXIST); 1224 } 1225 LIST_INSERT_HEAD(&ih->states, s, entry); 1226 /* One for keys, one for ID hash. */ 1227 refcount_init(&s->refs, 2); 1228 1229 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1230 if (pfsync_insert_state_ptr != NULL) 1231 pfsync_insert_state_ptr(s); 1232 1233 /* Returns locked. */ 1234 return (0); 1235 } 1236 1237 /* 1238 * Find state by ID: returns with locked row on success. 1239 */ 1240 struct pf_state * 1241 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1242 { 1243 struct pf_idhash *ih; 1244 struct pf_state *s; 1245 1246 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1247 1248 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1249 1250 PF_HASHROW_LOCK(ih); 1251 LIST_FOREACH(s, &ih->states, entry) 1252 if (s->id == id && s->creatorid == creatorid) 1253 break; 1254 1255 if (s == NULL) 1256 PF_HASHROW_UNLOCK(ih); 1257 1258 return (s); 1259 } 1260 1261 /* 1262 * Find state by key. 1263 * Returns with ID hash slot locked on success. 1264 */ 1265 static struct pf_state * 1266 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1267 { 1268 struct pf_keyhash *kh; 1269 struct pf_state_key *sk; 1270 struct pf_state *s; 1271 int idx; 1272 1273 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1274 1275 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1276 1277 PF_HASHROW_LOCK(kh); 1278 LIST_FOREACH(sk, &kh->keys, entry) 1279 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1280 break; 1281 if (sk == NULL) { 1282 PF_HASHROW_UNLOCK(kh); 1283 return (NULL); 1284 } 1285 1286 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1287 1288 /* List is sorted, if-bound states before floating ones. */ 1289 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1290 if (s->kif == V_pfi_all || s->kif == kif) { 1291 PF_STATE_LOCK(s); 1292 PF_HASHROW_UNLOCK(kh); 1293 if (s->timeout >= PFTM_MAX) { 1294 /* 1295 * State is either being processed by 1296 * pf_unlink_state() in an other thread, or 1297 * is scheduled for immediate expiry. 1298 */ 1299 PF_STATE_UNLOCK(s); 1300 return (NULL); 1301 } 1302 return (s); 1303 } 1304 PF_HASHROW_UNLOCK(kh); 1305 1306 return (NULL); 1307 } 1308 1309 struct pf_state * 1310 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1311 { 1312 struct pf_keyhash *kh; 1313 struct pf_state_key *sk; 1314 struct pf_state *s, *ret = NULL; 1315 int idx, inout = 0; 1316 1317 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1318 1319 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1320 1321 PF_HASHROW_LOCK(kh); 1322 LIST_FOREACH(sk, &kh->keys, entry) 1323 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1324 break; 1325 if (sk == NULL) { 1326 PF_HASHROW_UNLOCK(kh); 1327 return (NULL); 1328 } 1329 switch (dir) { 1330 case PF_IN: 1331 idx = PF_SK_WIRE; 1332 break; 1333 case PF_OUT: 1334 idx = PF_SK_STACK; 1335 break; 1336 case PF_INOUT: 1337 idx = PF_SK_WIRE; 1338 inout = 1; 1339 break; 1340 default: 1341 panic("%s: dir %u", __func__, dir); 1342 } 1343 second_run: 1344 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1345 if (more == NULL) { 1346 PF_HASHROW_UNLOCK(kh); 1347 return (s); 1348 } 1349 1350 if (ret) 1351 (*more)++; 1352 else 1353 ret = s; 1354 } 1355 if (inout == 1) { 1356 inout = 0; 1357 idx = PF_SK_STACK; 1358 goto second_run; 1359 } 1360 PF_HASHROW_UNLOCK(kh); 1361 1362 return (ret); 1363 } 1364 1365 /* END state table stuff */ 1366 1367 static void 1368 pf_send(struct pf_send_entry *pfse) 1369 { 1370 1371 PF_SENDQ_LOCK(); 1372 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1373 PF_SENDQ_UNLOCK(); 1374 swi_sched(V_pf_swi_cookie, 0); 1375 } 1376 1377 void 1378 pf_intr(void *v) 1379 { 1380 struct pf_send_head queue; 1381 struct pf_send_entry *pfse, *next; 1382 1383 CURVNET_SET((struct vnet *)v); 1384 1385 PF_SENDQ_LOCK(); 1386 queue = V_pf_sendqueue; 1387 STAILQ_INIT(&V_pf_sendqueue); 1388 PF_SENDQ_UNLOCK(); 1389 1390 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1391 switch (pfse->pfse_type) { 1392 #ifdef INET 1393 case PFSE_IP: 1394 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1395 break; 1396 case PFSE_ICMP: 1397 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1398 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1399 break; 1400 #endif /* INET */ 1401 #ifdef INET6 1402 case PFSE_IP6: 1403 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1404 NULL); 1405 break; 1406 case PFSE_ICMP6: 1407 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1408 pfse->icmpopts.code, pfse->icmpopts.mtu); 1409 break; 1410 #endif /* INET6 */ 1411 default: 1412 panic("%s: unknown type", __func__); 1413 } 1414 free(pfse, M_PFTEMP); 1415 } 1416 CURVNET_RESTORE(); 1417 } 1418 1419 void 1420 pf_purge_thread(void *v) 1421 { 1422 u_int idx = 0; 1423 1424 CURVNET_SET((struct vnet *)v); 1425 1426 for (;;) { 1427 PF_RULES_RLOCK(); 1428 rw_sleep(pf_purge_thread, &pf_rules_lock, 0, "pftm", hz / 10); 1429 1430 if (V_pf_end_threads) { 1431 /* 1432 * To cleanse up all kifs and rules we need 1433 * two runs: first one clears reference flags, 1434 * then pf_purge_expired_states() doesn't 1435 * raise them, and then second run frees. 1436 */ 1437 PF_RULES_RUNLOCK(); 1438 pf_purge_unlinked_rules(); 1439 pfi_kif_purge(); 1440 1441 /* 1442 * Now purge everything. 1443 */ 1444 pf_purge_expired_states(0, pf_hashmask); 1445 pf_purge_expired_fragments(); 1446 pf_purge_expired_src_nodes(); 1447 1448 /* 1449 * Now all kifs & rules should be unreferenced, 1450 * thus should be successfully freed. 1451 */ 1452 pf_purge_unlinked_rules(); 1453 pfi_kif_purge(); 1454 1455 /* 1456 * Announce success and exit. 1457 */ 1458 PF_RULES_RLOCK(); 1459 V_pf_end_threads++; 1460 PF_RULES_RUNLOCK(); 1461 wakeup(pf_purge_thread); 1462 kproc_exit(0); 1463 } 1464 PF_RULES_RUNLOCK(); 1465 1466 /* Process 1/interval fraction of the state table every run. */ 1467 idx = pf_purge_expired_states(idx, pf_hashmask / 1468 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1469 1470 /* Purge other expired types every PFTM_INTERVAL seconds. */ 1471 if (idx == 0) { 1472 /* 1473 * Order is important: 1474 * - states and src nodes reference rules 1475 * - states and rules reference kifs 1476 */ 1477 pf_purge_expired_fragments(); 1478 pf_purge_expired_src_nodes(); 1479 pf_purge_unlinked_rules(); 1480 pfi_kif_purge(); 1481 } 1482 } 1483 /* not reached */ 1484 CURVNET_RESTORE(); 1485 } 1486 1487 u_int32_t 1488 pf_state_expires(const struct pf_state *state) 1489 { 1490 u_int32_t timeout; 1491 u_int32_t start; 1492 u_int32_t end; 1493 u_int32_t states; 1494 1495 /* handle all PFTM_* > PFTM_MAX here */ 1496 if (state->timeout == PFTM_PURGE) 1497 return (time_uptime); 1498 KASSERT(state->timeout != PFTM_UNLINKED, 1499 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1500 KASSERT((state->timeout < PFTM_MAX), 1501 ("pf_state_expires: timeout > PFTM_MAX")); 1502 timeout = state->rule.ptr->timeout[state->timeout]; 1503 if (!timeout) 1504 timeout = V_pf_default_rule.timeout[state->timeout]; 1505 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1506 if (start) { 1507 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1508 states = counter_u64_fetch(state->rule.ptr->states_cur); 1509 } else { 1510 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1511 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1512 states = V_pf_status.states; 1513 } 1514 if (end && states > start && start < end) { 1515 if (states < end) 1516 return (state->expire + timeout * (end - states) / 1517 (end - start)); 1518 else 1519 return (time_uptime); 1520 } 1521 return (state->expire + timeout); 1522 } 1523 1524 void 1525 pf_purge_expired_src_nodes() 1526 { 1527 struct pf_src_node_list freelist; 1528 struct pf_srchash *sh; 1529 struct pf_src_node *cur, *next; 1530 int i; 1531 1532 LIST_INIT(&freelist); 1533 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1534 PF_HASHROW_LOCK(sh); 1535 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1536 if (cur->states == 0 && cur->expire <= time_uptime) { 1537 pf_unlink_src_node(cur); 1538 LIST_INSERT_HEAD(&freelist, cur, entry); 1539 } else if (cur->rule.ptr != NULL) 1540 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1541 PF_HASHROW_UNLOCK(sh); 1542 } 1543 1544 pf_free_src_nodes(&freelist); 1545 1546 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1547 } 1548 1549 static void 1550 pf_src_tree_remove_state(struct pf_state *s) 1551 { 1552 struct pf_src_node *sn; 1553 struct pf_srchash *sh; 1554 uint32_t timeout; 1555 1556 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1557 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1558 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1559 1560 if (s->src_node != NULL) { 1561 sn = s->src_node; 1562 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1563 PF_HASHROW_LOCK(sh); 1564 if (s->src.tcp_est) 1565 --sn->conn; 1566 if (--sn->states == 0) 1567 sn->expire = time_uptime + timeout; 1568 PF_HASHROW_UNLOCK(sh); 1569 } 1570 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1571 sn = s->nat_src_node; 1572 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1573 PF_HASHROW_LOCK(sh); 1574 if (--sn->states == 0) 1575 sn->expire = time_uptime + timeout; 1576 PF_HASHROW_UNLOCK(sh); 1577 } 1578 s->src_node = s->nat_src_node = NULL; 1579 } 1580 1581 /* 1582 * Unlink and potentilly free a state. Function may be 1583 * called with ID hash row locked, but always returns 1584 * unlocked, since it needs to go through key hash locking. 1585 */ 1586 int 1587 pf_unlink_state(struct pf_state *s, u_int flags) 1588 { 1589 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1590 1591 if ((flags & PF_ENTER_LOCKED) == 0) 1592 PF_HASHROW_LOCK(ih); 1593 else 1594 PF_HASHROW_ASSERT(ih); 1595 1596 if (s->timeout == PFTM_UNLINKED) { 1597 /* 1598 * State is being processed 1599 * by pf_unlink_state() in 1600 * an other thread. 1601 */ 1602 PF_HASHROW_UNLOCK(ih); 1603 return (0); /* XXXGL: undefined actually */ 1604 } 1605 1606 if (s->src.state == PF_TCPS_PROXY_DST) { 1607 /* XXX wire key the right one? */ 1608 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1609 &s->key[PF_SK_WIRE]->addr[1], 1610 &s->key[PF_SK_WIRE]->addr[0], 1611 s->key[PF_SK_WIRE]->port[1], 1612 s->key[PF_SK_WIRE]->port[0], 1613 s->src.seqhi, s->src.seqlo + 1, 1614 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1615 } 1616 1617 LIST_REMOVE(s, entry); 1618 pf_src_tree_remove_state(s); 1619 1620 if (pfsync_delete_state_ptr != NULL) 1621 pfsync_delete_state_ptr(s); 1622 1623 STATE_DEC_COUNTERS(s); 1624 1625 s->timeout = PFTM_UNLINKED; 1626 1627 PF_HASHROW_UNLOCK(ih); 1628 1629 pf_detach_state(s); 1630 refcount_release(&s->refs); 1631 1632 return (pf_release_state(s)); 1633 } 1634 1635 void 1636 pf_free_state(struct pf_state *cur) 1637 { 1638 1639 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1640 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1641 cur->timeout)); 1642 1643 pf_normalize_tcp_cleanup(cur); 1644 uma_zfree(V_pf_state_z, cur); 1645 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1646 } 1647 1648 /* 1649 * Called only from pf_purge_thread(), thus serialized. 1650 */ 1651 static u_int 1652 pf_purge_expired_states(u_int i, int maxcheck) 1653 { 1654 struct pf_idhash *ih; 1655 struct pf_state *s; 1656 1657 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1658 1659 /* 1660 * Go through hash and unlink states that expire now. 1661 */ 1662 while (maxcheck > 0) { 1663 1664 ih = &V_pf_idhash[i]; 1665 relock: 1666 PF_HASHROW_LOCK(ih); 1667 LIST_FOREACH(s, &ih->states, entry) { 1668 if (pf_state_expires(s) <= time_uptime) { 1669 V_pf_status.states -= 1670 pf_unlink_state(s, PF_ENTER_LOCKED); 1671 goto relock; 1672 } 1673 s->rule.ptr->rule_flag |= PFRULE_REFS; 1674 if (s->nat_rule.ptr != NULL) 1675 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1676 if (s->anchor.ptr != NULL) 1677 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1678 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1679 if (s->rt_kif) 1680 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1681 } 1682 PF_HASHROW_UNLOCK(ih); 1683 1684 /* Return when we hit end of hash. */ 1685 if (++i > pf_hashmask) { 1686 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1687 return (0); 1688 } 1689 1690 maxcheck--; 1691 } 1692 1693 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1694 1695 return (i); 1696 } 1697 1698 static void 1699 pf_purge_unlinked_rules() 1700 { 1701 struct pf_rulequeue tmpq; 1702 struct pf_rule *r, *r1; 1703 1704 /* 1705 * If we have overloading task pending, then we'd 1706 * better skip purging this time. There is a tiny 1707 * probability that overloading task references 1708 * an already unlinked rule. 1709 */ 1710 PF_OVERLOADQ_LOCK(); 1711 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1712 PF_OVERLOADQ_UNLOCK(); 1713 return; 1714 } 1715 PF_OVERLOADQ_UNLOCK(); 1716 1717 /* 1718 * Do naive mark-and-sweep garbage collecting of old rules. 1719 * Reference flag is raised by pf_purge_expired_states() 1720 * and pf_purge_expired_src_nodes(). 1721 * 1722 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1723 * use a temporary queue. 1724 */ 1725 TAILQ_INIT(&tmpq); 1726 PF_UNLNKDRULES_LOCK(); 1727 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1728 if (!(r->rule_flag & PFRULE_REFS)) { 1729 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1730 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1731 } else 1732 r->rule_flag &= ~PFRULE_REFS; 1733 } 1734 PF_UNLNKDRULES_UNLOCK(); 1735 1736 if (!TAILQ_EMPTY(&tmpq)) { 1737 PF_RULES_WLOCK(); 1738 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1739 TAILQ_REMOVE(&tmpq, r, entries); 1740 pf_free_rule(r); 1741 } 1742 PF_RULES_WUNLOCK(); 1743 } 1744 } 1745 1746 void 1747 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1748 { 1749 switch (af) { 1750 #ifdef INET 1751 case AF_INET: { 1752 u_int32_t a = ntohl(addr->addr32[0]); 1753 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1754 (a>>8)&255, a&255); 1755 if (p) { 1756 p = ntohs(p); 1757 printf(":%u", p); 1758 } 1759 break; 1760 } 1761 #endif /* INET */ 1762 #ifdef INET6 1763 case AF_INET6: { 1764 u_int16_t b; 1765 u_int8_t i, curstart, curend, maxstart, maxend; 1766 curstart = curend = maxstart = maxend = 255; 1767 for (i = 0; i < 8; i++) { 1768 if (!addr->addr16[i]) { 1769 if (curstart == 255) 1770 curstart = i; 1771 curend = i; 1772 } else { 1773 if ((curend - curstart) > 1774 (maxend - maxstart)) { 1775 maxstart = curstart; 1776 maxend = curend; 1777 } 1778 curstart = curend = 255; 1779 } 1780 } 1781 if ((curend - curstart) > 1782 (maxend - maxstart)) { 1783 maxstart = curstart; 1784 maxend = curend; 1785 } 1786 for (i = 0; i < 8; i++) { 1787 if (i >= maxstart && i <= maxend) { 1788 if (i == 0) 1789 printf(":"); 1790 if (i == maxend) 1791 printf(":"); 1792 } else { 1793 b = ntohs(addr->addr16[i]); 1794 printf("%x", b); 1795 if (i < 7) 1796 printf(":"); 1797 } 1798 } 1799 if (p) { 1800 p = ntohs(p); 1801 printf("[%u]", p); 1802 } 1803 break; 1804 } 1805 #endif /* INET6 */ 1806 } 1807 } 1808 1809 void 1810 pf_print_state(struct pf_state *s) 1811 { 1812 pf_print_state_parts(s, NULL, NULL); 1813 } 1814 1815 static void 1816 pf_print_state_parts(struct pf_state *s, 1817 struct pf_state_key *skwp, struct pf_state_key *sksp) 1818 { 1819 struct pf_state_key *skw, *sks; 1820 u_int8_t proto, dir; 1821 1822 /* Do our best to fill these, but they're skipped if NULL */ 1823 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1824 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1825 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1826 dir = s ? s->direction : 0; 1827 1828 switch (proto) { 1829 case IPPROTO_IPV4: 1830 printf("IPv4"); 1831 break; 1832 case IPPROTO_IPV6: 1833 printf("IPv6"); 1834 break; 1835 case IPPROTO_TCP: 1836 printf("TCP"); 1837 break; 1838 case IPPROTO_UDP: 1839 printf("UDP"); 1840 break; 1841 case IPPROTO_ICMP: 1842 printf("ICMP"); 1843 break; 1844 case IPPROTO_ICMPV6: 1845 printf("ICMPv6"); 1846 break; 1847 default: 1848 printf("%u", skw->proto); 1849 break; 1850 } 1851 switch (dir) { 1852 case PF_IN: 1853 printf(" in"); 1854 break; 1855 case PF_OUT: 1856 printf(" out"); 1857 break; 1858 } 1859 if (skw) { 1860 printf(" wire: "); 1861 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1862 printf(" "); 1863 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1864 } 1865 if (sks) { 1866 printf(" stack: "); 1867 if (sks != skw) { 1868 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1869 printf(" "); 1870 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1871 } else 1872 printf("-"); 1873 } 1874 if (s) { 1875 if (proto == IPPROTO_TCP) { 1876 printf(" [lo=%u high=%u win=%u modulator=%u", 1877 s->src.seqlo, s->src.seqhi, 1878 s->src.max_win, s->src.seqdiff); 1879 if (s->src.wscale && s->dst.wscale) 1880 printf(" wscale=%u", 1881 s->src.wscale & PF_WSCALE_MASK); 1882 printf("]"); 1883 printf(" [lo=%u high=%u win=%u modulator=%u", 1884 s->dst.seqlo, s->dst.seqhi, 1885 s->dst.max_win, s->dst.seqdiff); 1886 if (s->src.wscale && s->dst.wscale) 1887 printf(" wscale=%u", 1888 s->dst.wscale & PF_WSCALE_MASK); 1889 printf("]"); 1890 } 1891 printf(" %u:%u", s->src.state, s->dst.state); 1892 } 1893 } 1894 1895 void 1896 pf_print_flags(u_int8_t f) 1897 { 1898 if (f) 1899 printf(" "); 1900 if (f & TH_FIN) 1901 printf("F"); 1902 if (f & TH_SYN) 1903 printf("S"); 1904 if (f & TH_RST) 1905 printf("R"); 1906 if (f & TH_PUSH) 1907 printf("P"); 1908 if (f & TH_ACK) 1909 printf("A"); 1910 if (f & TH_URG) 1911 printf("U"); 1912 if (f & TH_ECE) 1913 printf("E"); 1914 if (f & TH_CWR) 1915 printf("W"); 1916 } 1917 1918 #define PF_SET_SKIP_STEPS(i) \ 1919 do { \ 1920 while (head[i] != cur) { \ 1921 head[i]->skip[i].ptr = cur; \ 1922 head[i] = TAILQ_NEXT(head[i], entries); \ 1923 } \ 1924 } while (0) 1925 1926 void 1927 pf_calc_skip_steps(struct pf_rulequeue *rules) 1928 { 1929 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1930 int i; 1931 1932 cur = TAILQ_FIRST(rules); 1933 prev = cur; 1934 for (i = 0; i < PF_SKIP_COUNT; ++i) 1935 head[i] = cur; 1936 while (cur != NULL) { 1937 1938 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1939 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1940 if (cur->direction != prev->direction) 1941 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1942 if (cur->af != prev->af) 1943 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1944 if (cur->proto != prev->proto) 1945 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1946 if (cur->src.neg != prev->src.neg || 1947 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1948 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1949 if (cur->src.port[0] != prev->src.port[0] || 1950 cur->src.port[1] != prev->src.port[1] || 1951 cur->src.port_op != prev->src.port_op) 1952 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1953 if (cur->dst.neg != prev->dst.neg || 1954 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1955 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1956 if (cur->dst.port[0] != prev->dst.port[0] || 1957 cur->dst.port[1] != prev->dst.port[1] || 1958 cur->dst.port_op != prev->dst.port_op) 1959 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1960 1961 prev = cur; 1962 cur = TAILQ_NEXT(cur, entries); 1963 } 1964 for (i = 0; i < PF_SKIP_COUNT; ++i) 1965 PF_SET_SKIP_STEPS(i); 1966 } 1967 1968 static int 1969 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1970 { 1971 if (aw1->type != aw2->type) 1972 return (1); 1973 switch (aw1->type) { 1974 case PF_ADDR_ADDRMASK: 1975 case PF_ADDR_RANGE: 1976 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, 0)) 1977 return (1); 1978 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, 0)) 1979 return (1); 1980 return (0); 1981 case PF_ADDR_DYNIFTL: 1982 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 1983 case PF_ADDR_NOROUTE: 1984 case PF_ADDR_URPFFAILED: 1985 return (0); 1986 case PF_ADDR_TABLE: 1987 return (aw1->p.tbl != aw2->p.tbl); 1988 default: 1989 printf("invalid address type: %d\n", aw1->type); 1990 return (1); 1991 } 1992 } 1993 1994 u_int16_t 1995 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 1996 { 1997 u_int32_t l; 1998 1999 if (udp && !cksum) 2000 return (0x0000); 2001 l = cksum + old - new; 2002 l = (l >> 16) + (l & 65535); 2003 l = l & 65535; 2004 if (udp && !l) 2005 return (0xFFFF); 2006 return (l); 2007 } 2008 2009 static void 2010 pf_change_ap(struct pf_addr *a, u_int16_t *p, u_int16_t *ic, u_int16_t *pc, 2011 struct pf_addr *an, u_int16_t pn, u_int8_t u, sa_family_t af) 2012 { 2013 struct pf_addr ao; 2014 u_int16_t po = *p; 2015 2016 PF_ACPY(&ao, a, af); 2017 PF_ACPY(a, an, af); 2018 2019 *p = pn; 2020 2021 switch (af) { 2022 #ifdef INET 2023 case AF_INET: 2024 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2025 ao.addr16[0], an->addr16[0], 0), 2026 ao.addr16[1], an->addr16[1], 0); 2027 *p = pn; 2028 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 2029 ao.addr16[0], an->addr16[0], u), 2030 ao.addr16[1], an->addr16[1], u), 2031 po, pn, u); 2032 break; 2033 #endif /* INET */ 2034 #ifdef INET6 2035 case AF_INET6: 2036 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2037 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2038 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 2039 ao.addr16[0], an->addr16[0], u), 2040 ao.addr16[1], an->addr16[1], u), 2041 ao.addr16[2], an->addr16[2], u), 2042 ao.addr16[3], an->addr16[3], u), 2043 ao.addr16[4], an->addr16[4], u), 2044 ao.addr16[5], an->addr16[5], u), 2045 ao.addr16[6], an->addr16[6], u), 2046 ao.addr16[7], an->addr16[7], u), 2047 po, pn, u); 2048 break; 2049 #endif /* INET6 */ 2050 } 2051 } 2052 2053 2054 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2055 void 2056 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2057 { 2058 u_int32_t ao; 2059 2060 memcpy(&ao, a, sizeof(ao)); 2061 memcpy(a, &an, sizeof(u_int32_t)); 2062 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2063 ao % 65536, an % 65536, u); 2064 } 2065 2066 #ifdef INET6 2067 static void 2068 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2069 { 2070 struct pf_addr ao; 2071 2072 PF_ACPY(&ao, a, AF_INET6); 2073 PF_ACPY(a, an, AF_INET6); 2074 2075 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2076 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2077 pf_cksum_fixup(pf_cksum_fixup(*c, 2078 ao.addr16[0], an->addr16[0], u), 2079 ao.addr16[1], an->addr16[1], u), 2080 ao.addr16[2], an->addr16[2], u), 2081 ao.addr16[3], an->addr16[3], u), 2082 ao.addr16[4], an->addr16[4], u), 2083 ao.addr16[5], an->addr16[5], u), 2084 ao.addr16[6], an->addr16[6], u), 2085 ao.addr16[7], an->addr16[7], u); 2086 } 2087 #endif /* INET6 */ 2088 2089 static void 2090 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2091 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2092 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2093 { 2094 struct pf_addr oia, ooa; 2095 2096 PF_ACPY(&oia, ia, af); 2097 if (oa) 2098 PF_ACPY(&ooa, oa, af); 2099 2100 /* Change inner protocol port, fix inner protocol checksum. */ 2101 if (ip != NULL) { 2102 u_int16_t oip = *ip; 2103 u_int32_t opc; 2104 2105 if (pc != NULL) 2106 opc = *pc; 2107 *ip = np; 2108 if (pc != NULL) 2109 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2110 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2111 if (pc != NULL) 2112 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2113 } 2114 /* Change inner ip address, fix inner ip and icmp checksums. */ 2115 PF_ACPY(ia, na, af); 2116 switch (af) { 2117 #ifdef INET 2118 case AF_INET: { 2119 u_int32_t oh2c = *h2c; 2120 2121 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2122 oia.addr16[0], ia->addr16[0], 0), 2123 oia.addr16[1], ia->addr16[1], 0); 2124 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2125 oia.addr16[0], ia->addr16[0], 0), 2126 oia.addr16[1], ia->addr16[1], 0); 2127 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2128 break; 2129 } 2130 #endif /* INET */ 2131 #ifdef INET6 2132 case AF_INET6: 2133 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2134 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2135 pf_cksum_fixup(pf_cksum_fixup(*ic, 2136 oia.addr16[0], ia->addr16[0], u), 2137 oia.addr16[1], ia->addr16[1], u), 2138 oia.addr16[2], ia->addr16[2], u), 2139 oia.addr16[3], ia->addr16[3], u), 2140 oia.addr16[4], ia->addr16[4], u), 2141 oia.addr16[5], ia->addr16[5], u), 2142 oia.addr16[6], ia->addr16[6], u), 2143 oia.addr16[7], ia->addr16[7], u); 2144 break; 2145 #endif /* INET6 */ 2146 } 2147 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2148 if (oa) { 2149 PF_ACPY(oa, na, af); 2150 switch (af) { 2151 #ifdef INET 2152 case AF_INET: 2153 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2154 ooa.addr16[0], oa->addr16[0], 0), 2155 ooa.addr16[1], oa->addr16[1], 0); 2156 break; 2157 #endif /* INET */ 2158 #ifdef INET6 2159 case AF_INET6: 2160 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2161 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2162 pf_cksum_fixup(pf_cksum_fixup(*ic, 2163 ooa.addr16[0], oa->addr16[0], u), 2164 ooa.addr16[1], oa->addr16[1], u), 2165 ooa.addr16[2], oa->addr16[2], u), 2166 ooa.addr16[3], oa->addr16[3], u), 2167 ooa.addr16[4], oa->addr16[4], u), 2168 ooa.addr16[5], oa->addr16[5], u), 2169 ooa.addr16[6], oa->addr16[6], u), 2170 ooa.addr16[7], oa->addr16[7], u); 2171 break; 2172 #endif /* INET6 */ 2173 } 2174 } 2175 } 2176 2177 2178 /* 2179 * Need to modulate the sequence numbers in the TCP SACK option 2180 * (credits to Krzysztof Pfaff for report and patch) 2181 */ 2182 static int 2183 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2184 struct tcphdr *th, struct pf_state_peer *dst) 2185 { 2186 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2187 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2188 int copyback = 0, i, olen; 2189 struct sackblk sack; 2190 2191 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2192 if (hlen < TCPOLEN_SACKLEN || 2193 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2194 return 0; 2195 2196 while (hlen >= TCPOLEN_SACKLEN) { 2197 olen = opt[1]; 2198 switch (*opt) { 2199 case TCPOPT_EOL: /* FALLTHROUGH */ 2200 case TCPOPT_NOP: 2201 opt++; 2202 hlen--; 2203 break; 2204 case TCPOPT_SACK: 2205 if (olen > hlen) 2206 olen = hlen; 2207 if (olen >= TCPOLEN_SACKLEN) { 2208 for (i = 2; i + TCPOLEN_SACK <= olen; 2209 i += TCPOLEN_SACK) { 2210 memcpy(&sack, &opt[i], sizeof(sack)); 2211 pf_change_a(&sack.start, &th->th_sum, 2212 htonl(ntohl(sack.start) - 2213 dst->seqdiff), 0); 2214 pf_change_a(&sack.end, &th->th_sum, 2215 htonl(ntohl(sack.end) - 2216 dst->seqdiff), 0); 2217 memcpy(&opt[i], &sack, sizeof(sack)); 2218 } 2219 copyback = 1; 2220 } 2221 /* FALLTHROUGH */ 2222 default: 2223 if (olen < 2) 2224 olen = 2; 2225 hlen -= olen; 2226 opt += olen; 2227 } 2228 } 2229 2230 if (copyback) 2231 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2232 return (copyback); 2233 } 2234 2235 static void 2236 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2237 const struct pf_addr *saddr, const struct pf_addr *daddr, 2238 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2239 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2240 u_int16_t rtag, struct ifnet *ifp) 2241 { 2242 struct pf_send_entry *pfse; 2243 struct mbuf *m; 2244 int len, tlen; 2245 #ifdef INET 2246 struct ip *h = NULL; 2247 #endif /* INET */ 2248 #ifdef INET6 2249 struct ip6_hdr *h6 = NULL; 2250 #endif /* INET6 */ 2251 struct tcphdr *th; 2252 char *opt; 2253 struct pf_mtag *pf_mtag; 2254 2255 len = 0; 2256 th = NULL; 2257 2258 /* maximum segment size tcp option */ 2259 tlen = sizeof(struct tcphdr); 2260 if (mss) 2261 tlen += 4; 2262 2263 switch (af) { 2264 #ifdef INET 2265 case AF_INET: 2266 len = sizeof(struct ip) + tlen; 2267 break; 2268 #endif /* INET */ 2269 #ifdef INET6 2270 case AF_INET6: 2271 len = sizeof(struct ip6_hdr) + tlen; 2272 break; 2273 #endif /* INET6 */ 2274 default: 2275 panic("%s: unsupported af %d", __func__, af); 2276 } 2277 2278 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2279 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2280 if (pfse == NULL) 2281 return; 2282 m = m_gethdr(M_NOWAIT, MT_DATA); 2283 if (m == NULL) { 2284 free(pfse, M_PFTEMP); 2285 return; 2286 } 2287 #ifdef MAC 2288 mac_netinet_firewall_send(m); 2289 #endif 2290 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2291 free(pfse, M_PFTEMP); 2292 m_freem(m); 2293 return; 2294 } 2295 if (tag) 2296 m->m_flags |= M_SKIP_FIREWALL; 2297 pf_mtag->tag = rtag; 2298 2299 if (r != NULL && r->rtableid >= 0) 2300 M_SETFIB(m, r->rtableid); 2301 2302 #ifdef ALTQ 2303 if (r != NULL && r->qid) { 2304 pf_mtag->qid = r->qid; 2305 2306 /* add hints for ecn */ 2307 pf_mtag->hdr = mtod(m, struct ip *); 2308 } 2309 #endif /* ALTQ */ 2310 m->m_data += max_linkhdr; 2311 m->m_pkthdr.len = m->m_len = len; 2312 m->m_pkthdr.rcvif = NULL; 2313 bzero(m->m_data, len); 2314 switch (af) { 2315 #ifdef INET 2316 case AF_INET: 2317 h = mtod(m, struct ip *); 2318 2319 /* IP header fields included in the TCP checksum */ 2320 h->ip_p = IPPROTO_TCP; 2321 h->ip_len = htons(tlen); 2322 h->ip_src.s_addr = saddr->v4.s_addr; 2323 h->ip_dst.s_addr = daddr->v4.s_addr; 2324 2325 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2326 break; 2327 #endif /* INET */ 2328 #ifdef INET6 2329 case AF_INET6: 2330 h6 = mtod(m, struct ip6_hdr *); 2331 2332 /* IP header fields included in the TCP checksum */ 2333 h6->ip6_nxt = IPPROTO_TCP; 2334 h6->ip6_plen = htons(tlen); 2335 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2336 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2337 2338 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2339 break; 2340 #endif /* INET6 */ 2341 } 2342 2343 /* TCP header */ 2344 th->th_sport = sport; 2345 th->th_dport = dport; 2346 th->th_seq = htonl(seq); 2347 th->th_ack = htonl(ack); 2348 th->th_off = tlen >> 2; 2349 th->th_flags = flags; 2350 th->th_win = htons(win); 2351 2352 if (mss) { 2353 opt = (char *)(th + 1); 2354 opt[0] = TCPOPT_MAXSEG; 2355 opt[1] = 4; 2356 HTONS(mss); 2357 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2358 } 2359 2360 switch (af) { 2361 #ifdef INET 2362 case AF_INET: 2363 /* TCP checksum */ 2364 th->th_sum = in_cksum(m, len); 2365 2366 /* Finish the IP header */ 2367 h->ip_v = 4; 2368 h->ip_hl = sizeof(*h) >> 2; 2369 h->ip_tos = IPTOS_LOWDELAY; 2370 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2371 h->ip_len = htons(len); 2372 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2373 h->ip_sum = 0; 2374 2375 pfse->pfse_type = PFSE_IP; 2376 break; 2377 #endif /* INET */ 2378 #ifdef INET6 2379 case AF_INET6: 2380 /* TCP checksum */ 2381 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2382 sizeof(struct ip6_hdr), tlen); 2383 2384 h6->ip6_vfc |= IPV6_VERSION; 2385 h6->ip6_hlim = IPV6_DEFHLIM; 2386 2387 pfse->pfse_type = PFSE_IP6; 2388 break; 2389 #endif /* INET6 */ 2390 } 2391 pfse->pfse_m = m; 2392 pf_send(pfse); 2393 } 2394 2395 static void 2396 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2397 struct pf_rule *r) 2398 { 2399 struct pf_send_entry *pfse; 2400 struct mbuf *m0; 2401 struct pf_mtag *pf_mtag; 2402 2403 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2404 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2405 if (pfse == NULL) 2406 return; 2407 2408 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2409 free(pfse, M_PFTEMP); 2410 return; 2411 } 2412 2413 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2414 free(pfse, M_PFTEMP); 2415 return; 2416 } 2417 /* XXX: revisit */ 2418 m0->m_flags |= M_SKIP_FIREWALL; 2419 2420 if (r->rtableid >= 0) 2421 M_SETFIB(m0, r->rtableid); 2422 2423 #ifdef ALTQ 2424 if (r->qid) { 2425 pf_mtag->qid = r->qid; 2426 /* add hints for ecn */ 2427 pf_mtag->hdr = mtod(m0, struct ip *); 2428 } 2429 #endif /* ALTQ */ 2430 2431 switch (af) { 2432 #ifdef INET 2433 case AF_INET: 2434 pfse->pfse_type = PFSE_ICMP; 2435 break; 2436 #endif /* INET */ 2437 #ifdef INET6 2438 case AF_INET6: 2439 pfse->pfse_type = PFSE_ICMP6; 2440 break; 2441 #endif /* INET6 */ 2442 } 2443 pfse->pfse_m = m0; 2444 pfse->icmpopts.type = type; 2445 pfse->icmpopts.code = code; 2446 pf_send(pfse); 2447 } 2448 2449 /* 2450 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2451 * If n is 0, they match if they are equal. If n is != 0, they match if they 2452 * are different. 2453 */ 2454 int 2455 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2456 struct pf_addr *b, sa_family_t af) 2457 { 2458 int match = 0; 2459 2460 switch (af) { 2461 #ifdef INET 2462 case AF_INET: 2463 if ((a->addr32[0] & m->addr32[0]) == 2464 (b->addr32[0] & m->addr32[0])) 2465 match++; 2466 break; 2467 #endif /* INET */ 2468 #ifdef INET6 2469 case AF_INET6: 2470 if (((a->addr32[0] & m->addr32[0]) == 2471 (b->addr32[0] & m->addr32[0])) && 2472 ((a->addr32[1] & m->addr32[1]) == 2473 (b->addr32[1] & m->addr32[1])) && 2474 ((a->addr32[2] & m->addr32[2]) == 2475 (b->addr32[2] & m->addr32[2])) && 2476 ((a->addr32[3] & m->addr32[3]) == 2477 (b->addr32[3] & m->addr32[3]))) 2478 match++; 2479 break; 2480 #endif /* INET6 */ 2481 } 2482 if (match) { 2483 if (n) 2484 return (0); 2485 else 2486 return (1); 2487 } else { 2488 if (n) 2489 return (1); 2490 else 2491 return (0); 2492 } 2493 } 2494 2495 /* 2496 * Return 1 if b <= a <= e, otherwise return 0. 2497 */ 2498 int 2499 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2500 struct pf_addr *a, sa_family_t af) 2501 { 2502 switch (af) { 2503 #ifdef INET 2504 case AF_INET: 2505 if ((a->addr32[0] < b->addr32[0]) || 2506 (a->addr32[0] > e->addr32[0])) 2507 return (0); 2508 break; 2509 #endif /* INET */ 2510 #ifdef INET6 2511 case AF_INET6: { 2512 int i; 2513 2514 /* check a >= b */ 2515 for (i = 0; i < 4; ++i) 2516 if (a->addr32[i] > b->addr32[i]) 2517 break; 2518 else if (a->addr32[i] < b->addr32[i]) 2519 return (0); 2520 /* check a <= e */ 2521 for (i = 0; i < 4; ++i) 2522 if (a->addr32[i] < e->addr32[i]) 2523 break; 2524 else if (a->addr32[i] > e->addr32[i]) 2525 return (0); 2526 break; 2527 } 2528 #endif /* INET6 */ 2529 } 2530 return (1); 2531 } 2532 2533 static int 2534 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2535 { 2536 switch (op) { 2537 case PF_OP_IRG: 2538 return ((p > a1) && (p < a2)); 2539 case PF_OP_XRG: 2540 return ((p < a1) || (p > a2)); 2541 case PF_OP_RRG: 2542 return ((p >= a1) && (p <= a2)); 2543 case PF_OP_EQ: 2544 return (p == a1); 2545 case PF_OP_NE: 2546 return (p != a1); 2547 case PF_OP_LT: 2548 return (p < a1); 2549 case PF_OP_LE: 2550 return (p <= a1); 2551 case PF_OP_GT: 2552 return (p > a1); 2553 case PF_OP_GE: 2554 return (p >= a1); 2555 } 2556 return (0); /* never reached */ 2557 } 2558 2559 int 2560 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2561 { 2562 NTOHS(a1); 2563 NTOHS(a2); 2564 NTOHS(p); 2565 return (pf_match(op, a1, a2, p)); 2566 } 2567 2568 static int 2569 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2570 { 2571 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2572 return (0); 2573 return (pf_match(op, a1, a2, u)); 2574 } 2575 2576 static int 2577 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2578 { 2579 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2580 return (0); 2581 return (pf_match(op, a1, a2, g)); 2582 } 2583 2584 int 2585 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2586 { 2587 if (*tag == -1) 2588 *tag = mtag; 2589 2590 return ((!r->match_tag_not && r->match_tag == *tag) || 2591 (r->match_tag_not && r->match_tag != *tag)); 2592 } 2593 2594 int 2595 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2596 { 2597 2598 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2599 2600 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2601 return (ENOMEM); 2602 2603 pd->pf_mtag->tag = tag; 2604 2605 return (0); 2606 } 2607 2608 #define PF_ANCHOR_STACKSIZE 32 2609 struct pf_anchor_stackframe { 2610 struct pf_ruleset *rs; 2611 struct pf_rule *r; /* XXX: + match bit */ 2612 struct pf_anchor *child; 2613 }; 2614 2615 /* 2616 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2617 */ 2618 #define PF_ANCHORSTACK_MATCH 0x00000001 2619 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2620 2621 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2622 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2623 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2624 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2625 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2626 } while (0) 2627 2628 void 2629 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2630 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2631 int *match) 2632 { 2633 struct pf_anchor_stackframe *f; 2634 2635 PF_RULES_RASSERT(); 2636 2637 if (match) 2638 *match = 0; 2639 if (*depth >= PF_ANCHOR_STACKSIZE) { 2640 printf("%s: anchor stack overflow on %s\n", 2641 __func__, (*r)->anchor->name); 2642 *r = TAILQ_NEXT(*r, entries); 2643 return; 2644 } else if (*depth == 0 && a != NULL) 2645 *a = *r; 2646 f = stack + (*depth)++; 2647 f->rs = *rs; 2648 f->r = *r; 2649 if ((*r)->anchor_wildcard) { 2650 struct pf_anchor_node *parent = &(*r)->anchor->children; 2651 2652 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2653 *r = NULL; 2654 return; 2655 } 2656 *rs = &f->child->ruleset; 2657 } else { 2658 f->child = NULL; 2659 *rs = &(*r)->anchor->ruleset; 2660 } 2661 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2662 } 2663 2664 int 2665 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2666 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2667 int *match) 2668 { 2669 struct pf_anchor_stackframe *f; 2670 struct pf_rule *fr; 2671 int quick = 0; 2672 2673 PF_RULES_RASSERT(); 2674 2675 do { 2676 if (*depth <= 0) 2677 break; 2678 f = stack + *depth - 1; 2679 fr = PF_ANCHOR_RULE(f); 2680 if (f->child != NULL) { 2681 struct pf_anchor_node *parent; 2682 2683 /* 2684 * This block traverses through 2685 * a wildcard anchor. 2686 */ 2687 parent = &fr->anchor->children; 2688 if (match != NULL && *match) { 2689 /* 2690 * If any of "*" matched, then 2691 * "foo/ *" matched, mark frame 2692 * appropriately. 2693 */ 2694 PF_ANCHOR_SET_MATCH(f); 2695 *match = 0; 2696 } 2697 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2698 if (f->child != NULL) { 2699 *rs = &f->child->ruleset; 2700 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2701 if (*r == NULL) 2702 continue; 2703 else 2704 break; 2705 } 2706 } 2707 (*depth)--; 2708 if (*depth == 0 && a != NULL) 2709 *a = NULL; 2710 *rs = f->rs; 2711 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2712 quick = fr->quick; 2713 *r = TAILQ_NEXT(fr, entries); 2714 } while (*r == NULL); 2715 2716 return (quick); 2717 } 2718 2719 #ifdef INET6 2720 void 2721 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2722 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2723 { 2724 switch (af) { 2725 #ifdef INET 2726 case AF_INET: 2727 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2728 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2729 break; 2730 #endif /* INET */ 2731 case AF_INET6: 2732 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2733 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2734 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2735 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2736 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2737 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2738 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2739 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2740 break; 2741 } 2742 } 2743 2744 void 2745 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2746 { 2747 switch (af) { 2748 #ifdef INET 2749 case AF_INET: 2750 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2751 break; 2752 #endif /* INET */ 2753 case AF_INET6: 2754 if (addr->addr32[3] == 0xffffffff) { 2755 addr->addr32[3] = 0; 2756 if (addr->addr32[2] == 0xffffffff) { 2757 addr->addr32[2] = 0; 2758 if (addr->addr32[1] == 0xffffffff) { 2759 addr->addr32[1] = 0; 2760 addr->addr32[0] = 2761 htonl(ntohl(addr->addr32[0]) + 1); 2762 } else 2763 addr->addr32[1] = 2764 htonl(ntohl(addr->addr32[1]) + 1); 2765 } else 2766 addr->addr32[2] = 2767 htonl(ntohl(addr->addr32[2]) + 1); 2768 } else 2769 addr->addr32[3] = 2770 htonl(ntohl(addr->addr32[3]) + 1); 2771 break; 2772 } 2773 } 2774 #endif /* INET6 */ 2775 2776 int 2777 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2778 { 2779 struct pf_addr *saddr, *daddr; 2780 u_int16_t sport, dport; 2781 struct inpcbinfo *pi; 2782 struct inpcb *inp; 2783 2784 pd->lookup.uid = UID_MAX; 2785 pd->lookup.gid = GID_MAX; 2786 2787 switch (pd->proto) { 2788 case IPPROTO_TCP: 2789 if (pd->hdr.tcp == NULL) 2790 return (-1); 2791 sport = pd->hdr.tcp->th_sport; 2792 dport = pd->hdr.tcp->th_dport; 2793 pi = &V_tcbinfo; 2794 break; 2795 case IPPROTO_UDP: 2796 if (pd->hdr.udp == NULL) 2797 return (-1); 2798 sport = pd->hdr.udp->uh_sport; 2799 dport = pd->hdr.udp->uh_dport; 2800 pi = &V_udbinfo; 2801 break; 2802 default: 2803 return (-1); 2804 } 2805 if (direction == PF_IN) { 2806 saddr = pd->src; 2807 daddr = pd->dst; 2808 } else { 2809 u_int16_t p; 2810 2811 p = sport; 2812 sport = dport; 2813 dport = p; 2814 saddr = pd->dst; 2815 daddr = pd->src; 2816 } 2817 switch (pd->af) { 2818 #ifdef INET 2819 case AF_INET: 2820 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2821 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2822 if (inp == NULL) { 2823 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2824 daddr->v4, dport, INPLOOKUP_WILDCARD | 2825 INPLOOKUP_RLOCKPCB, NULL, m); 2826 if (inp == NULL) 2827 return (-1); 2828 } 2829 break; 2830 #endif /* INET */ 2831 #ifdef INET6 2832 case AF_INET6: 2833 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2834 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2835 if (inp == NULL) { 2836 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2837 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2838 INPLOOKUP_RLOCKPCB, NULL, m); 2839 if (inp == NULL) 2840 return (-1); 2841 } 2842 break; 2843 #endif /* INET6 */ 2844 2845 default: 2846 return (-1); 2847 } 2848 INP_RLOCK_ASSERT(inp); 2849 pd->lookup.uid = inp->inp_cred->cr_uid; 2850 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2851 INP_RUNLOCK(inp); 2852 2853 return (1); 2854 } 2855 2856 static u_int8_t 2857 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2858 { 2859 int hlen; 2860 u_int8_t hdr[60]; 2861 u_int8_t *opt, optlen; 2862 u_int8_t wscale = 0; 2863 2864 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2865 if (hlen <= sizeof(struct tcphdr)) 2866 return (0); 2867 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2868 return (0); 2869 opt = hdr + sizeof(struct tcphdr); 2870 hlen -= sizeof(struct tcphdr); 2871 while (hlen >= 3) { 2872 switch (*opt) { 2873 case TCPOPT_EOL: 2874 case TCPOPT_NOP: 2875 ++opt; 2876 --hlen; 2877 break; 2878 case TCPOPT_WINDOW: 2879 wscale = opt[2]; 2880 if (wscale > TCP_MAX_WINSHIFT) 2881 wscale = TCP_MAX_WINSHIFT; 2882 wscale |= PF_WSCALE_FLAG; 2883 /* FALLTHROUGH */ 2884 default: 2885 optlen = opt[1]; 2886 if (optlen < 2) 2887 optlen = 2; 2888 hlen -= optlen; 2889 opt += optlen; 2890 break; 2891 } 2892 } 2893 return (wscale); 2894 } 2895 2896 static u_int16_t 2897 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2898 { 2899 int hlen; 2900 u_int8_t hdr[60]; 2901 u_int8_t *opt, optlen; 2902 u_int16_t mss = V_tcp_mssdflt; 2903 2904 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2905 if (hlen <= sizeof(struct tcphdr)) 2906 return (0); 2907 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2908 return (0); 2909 opt = hdr + sizeof(struct tcphdr); 2910 hlen -= sizeof(struct tcphdr); 2911 while (hlen >= TCPOLEN_MAXSEG) { 2912 switch (*opt) { 2913 case TCPOPT_EOL: 2914 case TCPOPT_NOP: 2915 ++opt; 2916 --hlen; 2917 break; 2918 case TCPOPT_MAXSEG: 2919 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 2920 NTOHS(mss); 2921 /* FALLTHROUGH */ 2922 default: 2923 optlen = opt[1]; 2924 if (optlen < 2) 2925 optlen = 2; 2926 hlen -= optlen; 2927 opt += optlen; 2928 break; 2929 } 2930 } 2931 return (mss); 2932 } 2933 2934 static u_int16_t 2935 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 2936 { 2937 #ifdef INET 2938 struct sockaddr_in *dst; 2939 struct route ro; 2940 #endif /* INET */ 2941 #ifdef INET6 2942 struct sockaddr_in6 *dst6; 2943 struct route_in6 ro6; 2944 #endif /* INET6 */ 2945 struct rtentry *rt = NULL; 2946 int hlen = 0; 2947 u_int16_t mss = V_tcp_mssdflt; 2948 2949 switch (af) { 2950 #ifdef INET 2951 case AF_INET: 2952 hlen = sizeof(struct ip); 2953 bzero(&ro, sizeof(ro)); 2954 dst = (struct sockaddr_in *)&ro.ro_dst; 2955 dst->sin_family = AF_INET; 2956 dst->sin_len = sizeof(*dst); 2957 dst->sin_addr = addr->v4; 2958 in_rtalloc_ign(&ro, 0, rtableid); 2959 rt = ro.ro_rt; 2960 break; 2961 #endif /* INET */ 2962 #ifdef INET6 2963 case AF_INET6: 2964 hlen = sizeof(struct ip6_hdr); 2965 bzero(&ro6, sizeof(ro6)); 2966 dst6 = (struct sockaddr_in6 *)&ro6.ro_dst; 2967 dst6->sin6_family = AF_INET6; 2968 dst6->sin6_len = sizeof(*dst6); 2969 dst6->sin6_addr = addr->v6; 2970 in6_rtalloc_ign(&ro6, 0, rtableid); 2971 rt = ro6.ro_rt; 2972 break; 2973 #endif /* INET6 */ 2974 } 2975 2976 if (rt && rt->rt_ifp) { 2977 mss = rt->rt_ifp->if_mtu - hlen - sizeof(struct tcphdr); 2978 mss = max(V_tcp_mssdflt, mss); 2979 RTFREE(rt); 2980 } 2981 mss = min(mss, offer); 2982 mss = max(mss, 64); /* sanity - at least max opt space */ 2983 return (mss); 2984 } 2985 2986 static u_int32_t 2987 pf_tcp_iss(struct pf_pdesc *pd) 2988 { 2989 MD5_CTX ctx; 2990 u_int32_t digest[4]; 2991 2992 if (V_pf_tcp_secret_init == 0) { 2993 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 2994 MD5Init(&V_pf_tcp_secret_ctx); 2995 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 2996 sizeof(V_pf_tcp_secret)); 2997 V_pf_tcp_secret_init = 1; 2998 } 2999 3000 ctx = V_pf_tcp_secret_ctx; 3001 3002 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3003 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3004 if (pd->af == AF_INET6) { 3005 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3006 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3007 } else { 3008 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3009 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3010 } 3011 MD5Final((u_char *)digest, &ctx); 3012 V_pf_tcp_iss_off += 4096; 3013 #define ISN_RANDOM_INCREMENT (4096 - 1) 3014 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3015 V_pf_tcp_iss_off); 3016 #undef ISN_RANDOM_INCREMENT 3017 } 3018 3019 static int 3020 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3021 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3022 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3023 { 3024 struct pf_rule *nr = NULL; 3025 struct pf_addr * const saddr = pd->src; 3026 struct pf_addr * const daddr = pd->dst; 3027 sa_family_t af = pd->af; 3028 struct pf_rule *r, *a = NULL; 3029 struct pf_ruleset *ruleset = NULL; 3030 struct pf_src_node *nsn = NULL; 3031 struct tcphdr *th = pd->hdr.tcp; 3032 struct pf_state_key *sk = NULL, *nk = NULL; 3033 u_short reason; 3034 int rewrite = 0, hdrlen = 0; 3035 int tag = -1, rtableid = -1; 3036 int asd = 0; 3037 int match = 0; 3038 int state_icmp = 0; 3039 u_int16_t sport = 0, dport = 0; 3040 u_int16_t bproto_sum = 0, bip_sum = 0; 3041 u_int8_t icmptype = 0, icmpcode = 0; 3042 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3043 3044 PF_RULES_RASSERT(); 3045 3046 if (inp != NULL) { 3047 INP_LOCK_ASSERT(inp); 3048 pd->lookup.uid = inp->inp_cred->cr_uid; 3049 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3050 pd->lookup.done = 1; 3051 } 3052 3053 switch (pd->proto) { 3054 case IPPROTO_TCP: 3055 sport = th->th_sport; 3056 dport = th->th_dport; 3057 hdrlen = sizeof(*th); 3058 break; 3059 case IPPROTO_UDP: 3060 sport = pd->hdr.udp->uh_sport; 3061 dport = pd->hdr.udp->uh_dport; 3062 hdrlen = sizeof(*pd->hdr.udp); 3063 break; 3064 #ifdef INET 3065 case IPPROTO_ICMP: 3066 if (pd->af != AF_INET) 3067 break; 3068 sport = dport = pd->hdr.icmp->icmp_id; 3069 hdrlen = sizeof(*pd->hdr.icmp); 3070 icmptype = pd->hdr.icmp->icmp_type; 3071 icmpcode = pd->hdr.icmp->icmp_code; 3072 3073 if (icmptype == ICMP_UNREACH || 3074 icmptype == ICMP_SOURCEQUENCH || 3075 icmptype == ICMP_REDIRECT || 3076 icmptype == ICMP_TIMXCEED || 3077 icmptype == ICMP_PARAMPROB) 3078 state_icmp++; 3079 break; 3080 #endif /* INET */ 3081 #ifdef INET6 3082 case IPPROTO_ICMPV6: 3083 if (af != AF_INET6) 3084 break; 3085 sport = dport = pd->hdr.icmp6->icmp6_id; 3086 hdrlen = sizeof(*pd->hdr.icmp6); 3087 icmptype = pd->hdr.icmp6->icmp6_type; 3088 icmpcode = pd->hdr.icmp6->icmp6_code; 3089 3090 if (icmptype == ICMP6_DST_UNREACH || 3091 icmptype == ICMP6_PACKET_TOO_BIG || 3092 icmptype == ICMP6_TIME_EXCEEDED || 3093 icmptype == ICMP6_PARAM_PROB) 3094 state_icmp++; 3095 break; 3096 #endif /* INET6 */ 3097 default: 3098 sport = dport = hdrlen = 0; 3099 break; 3100 } 3101 3102 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3103 3104 /* check packet for BINAT/NAT/RDR */ 3105 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3106 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3107 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3108 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3109 3110 if (pd->ip_sum) 3111 bip_sum = *pd->ip_sum; 3112 3113 switch (pd->proto) { 3114 case IPPROTO_TCP: 3115 bproto_sum = th->th_sum; 3116 pd->proto_sum = &th->th_sum; 3117 3118 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3119 nk->port[pd->sidx] != sport) { 3120 pf_change_ap(saddr, &th->th_sport, pd->ip_sum, 3121 &th->th_sum, &nk->addr[pd->sidx], 3122 nk->port[pd->sidx], 0, af); 3123 pd->sport = &th->th_sport; 3124 sport = th->th_sport; 3125 } 3126 3127 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3128 nk->port[pd->didx] != dport) { 3129 pf_change_ap(daddr, &th->th_dport, pd->ip_sum, 3130 &th->th_sum, &nk->addr[pd->didx], 3131 nk->port[pd->didx], 0, af); 3132 dport = th->th_dport; 3133 pd->dport = &th->th_dport; 3134 } 3135 rewrite++; 3136 break; 3137 case IPPROTO_UDP: 3138 bproto_sum = pd->hdr.udp->uh_sum; 3139 pd->proto_sum = &pd->hdr.udp->uh_sum; 3140 3141 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3142 nk->port[pd->sidx] != sport) { 3143 pf_change_ap(saddr, &pd->hdr.udp->uh_sport, 3144 pd->ip_sum, &pd->hdr.udp->uh_sum, 3145 &nk->addr[pd->sidx], 3146 nk->port[pd->sidx], 1, af); 3147 sport = pd->hdr.udp->uh_sport; 3148 pd->sport = &pd->hdr.udp->uh_sport; 3149 } 3150 3151 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3152 nk->port[pd->didx] != dport) { 3153 pf_change_ap(daddr, &pd->hdr.udp->uh_dport, 3154 pd->ip_sum, &pd->hdr.udp->uh_sum, 3155 &nk->addr[pd->didx], 3156 nk->port[pd->didx], 1, af); 3157 dport = pd->hdr.udp->uh_dport; 3158 pd->dport = &pd->hdr.udp->uh_dport; 3159 } 3160 rewrite++; 3161 break; 3162 #ifdef INET 3163 case IPPROTO_ICMP: 3164 nk->port[0] = nk->port[1]; 3165 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3166 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3167 nk->addr[pd->sidx].v4.s_addr, 0); 3168 3169 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3170 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3171 nk->addr[pd->didx].v4.s_addr, 0); 3172 3173 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3174 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3175 pd->hdr.icmp->icmp_cksum, sport, 3176 nk->port[1], 0); 3177 pd->hdr.icmp->icmp_id = nk->port[1]; 3178 pd->sport = &pd->hdr.icmp->icmp_id; 3179 } 3180 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3181 break; 3182 #endif /* INET */ 3183 #ifdef INET6 3184 case IPPROTO_ICMPV6: 3185 nk->port[0] = nk->port[1]; 3186 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3187 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3188 &nk->addr[pd->sidx], 0); 3189 3190 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3191 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3192 &nk->addr[pd->didx], 0); 3193 rewrite++; 3194 break; 3195 #endif /* INET */ 3196 default: 3197 switch (af) { 3198 #ifdef INET 3199 case AF_INET: 3200 if (PF_ANEQ(saddr, 3201 &nk->addr[pd->sidx], AF_INET)) 3202 pf_change_a(&saddr->v4.s_addr, 3203 pd->ip_sum, 3204 nk->addr[pd->sidx].v4.s_addr, 0); 3205 3206 if (PF_ANEQ(daddr, 3207 &nk->addr[pd->didx], AF_INET)) 3208 pf_change_a(&daddr->v4.s_addr, 3209 pd->ip_sum, 3210 nk->addr[pd->didx].v4.s_addr, 0); 3211 break; 3212 #endif /* INET */ 3213 #ifdef INET6 3214 case AF_INET6: 3215 if (PF_ANEQ(saddr, 3216 &nk->addr[pd->sidx], AF_INET6)) 3217 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3218 3219 if (PF_ANEQ(daddr, 3220 &nk->addr[pd->didx], AF_INET6)) 3221 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3222 break; 3223 #endif /* INET */ 3224 } 3225 break; 3226 } 3227 if (nr->natpass) 3228 r = NULL; 3229 pd->nat_rule = nr; 3230 } 3231 3232 while (r != NULL) { 3233 r->evaluations++; 3234 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3235 r = r->skip[PF_SKIP_IFP].ptr; 3236 else if (r->direction && r->direction != direction) 3237 r = r->skip[PF_SKIP_DIR].ptr; 3238 else if (r->af && r->af != af) 3239 r = r->skip[PF_SKIP_AF].ptr; 3240 else if (r->proto && r->proto != pd->proto) 3241 r = r->skip[PF_SKIP_PROTO].ptr; 3242 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3243 r->src.neg, kif, M_GETFIB(m))) 3244 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3245 /* tcp/udp only. port_op always 0 in other cases */ 3246 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3247 r->src.port[0], r->src.port[1], sport)) 3248 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3249 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3250 r->dst.neg, NULL, M_GETFIB(m))) 3251 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3252 /* tcp/udp only. port_op always 0 in other cases */ 3253 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3254 r->dst.port[0], r->dst.port[1], dport)) 3255 r = r->skip[PF_SKIP_DST_PORT].ptr; 3256 /* icmp only. type always 0 in other cases */ 3257 else if (r->type && r->type != icmptype + 1) 3258 r = TAILQ_NEXT(r, entries); 3259 /* icmp only. type always 0 in other cases */ 3260 else if (r->code && r->code != icmpcode + 1) 3261 r = TAILQ_NEXT(r, entries); 3262 else if (r->tos && !(r->tos == pd->tos)) 3263 r = TAILQ_NEXT(r, entries); 3264 else if (r->rule_flag & PFRULE_FRAGMENT) 3265 r = TAILQ_NEXT(r, entries); 3266 else if (pd->proto == IPPROTO_TCP && 3267 (r->flagset & th->th_flags) != r->flags) 3268 r = TAILQ_NEXT(r, entries); 3269 /* tcp/udp only. uid.op always 0 in other cases */ 3270 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3271 pf_socket_lookup(direction, pd, m), 1)) && 3272 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3273 pd->lookup.uid)) 3274 r = TAILQ_NEXT(r, entries); 3275 /* tcp/udp only. gid.op always 0 in other cases */ 3276 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3277 pf_socket_lookup(direction, pd, m), 1)) && 3278 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3279 pd->lookup.gid)) 3280 r = TAILQ_NEXT(r, entries); 3281 else if (r->prob && 3282 r->prob <= arc4random()) 3283 r = TAILQ_NEXT(r, entries); 3284 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3285 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3286 r = TAILQ_NEXT(r, entries); 3287 else if (r->os_fingerprint != PF_OSFP_ANY && 3288 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3289 pf_osfp_fingerprint(pd, m, off, th), 3290 r->os_fingerprint))) 3291 r = TAILQ_NEXT(r, entries); 3292 else { 3293 if (r->tag) 3294 tag = r->tag; 3295 if (r->rtableid >= 0) 3296 rtableid = r->rtableid; 3297 if (r->anchor == NULL) { 3298 match = 1; 3299 *rm = r; 3300 *am = a; 3301 *rsm = ruleset; 3302 if ((*rm)->quick) 3303 break; 3304 r = TAILQ_NEXT(r, entries); 3305 } else 3306 pf_step_into_anchor(anchor_stack, &asd, 3307 &ruleset, PF_RULESET_FILTER, &r, &a, 3308 &match); 3309 } 3310 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3311 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3312 break; 3313 } 3314 r = *rm; 3315 a = *am; 3316 ruleset = *rsm; 3317 3318 REASON_SET(&reason, PFRES_MATCH); 3319 3320 if (r->log || (nr != NULL && nr->log)) { 3321 if (rewrite) 3322 m_copyback(m, off, hdrlen, pd->hdr.any); 3323 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3324 ruleset, pd, 1); 3325 } 3326 3327 if ((r->action == PF_DROP) && 3328 ((r->rule_flag & PFRULE_RETURNRST) || 3329 (r->rule_flag & PFRULE_RETURNICMP) || 3330 (r->rule_flag & PFRULE_RETURN))) { 3331 /* undo NAT changes, if they have taken place */ 3332 if (nr != NULL) { 3333 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3334 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3335 if (pd->sport) 3336 *pd->sport = sk->port[pd->sidx]; 3337 if (pd->dport) 3338 *pd->dport = sk->port[pd->didx]; 3339 if (pd->proto_sum) 3340 *pd->proto_sum = bproto_sum; 3341 if (pd->ip_sum) 3342 *pd->ip_sum = bip_sum; 3343 m_copyback(m, off, hdrlen, pd->hdr.any); 3344 } 3345 if (pd->proto == IPPROTO_TCP && 3346 ((r->rule_flag & PFRULE_RETURNRST) || 3347 (r->rule_flag & PFRULE_RETURN)) && 3348 !(th->th_flags & TH_RST)) { 3349 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3350 int len = 0; 3351 #ifdef INET 3352 struct ip *h4; 3353 #endif 3354 #ifdef INET6 3355 struct ip6_hdr *h6; 3356 #endif 3357 3358 switch (af) { 3359 #ifdef INET 3360 case AF_INET: 3361 h4 = mtod(m, struct ip *); 3362 len = ntohs(h4->ip_len) - off; 3363 break; 3364 #endif 3365 #ifdef INET6 3366 case AF_INET6: 3367 h6 = mtod(m, struct ip6_hdr *); 3368 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3369 break; 3370 #endif 3371 } 3372 3373 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3374 REASON_SET(&reason, PFRES_PROTCKSUM); 3375 else { 3376 if (th->th_flags & TH_SYN) 3377 ack++; 3378 if (th->th_flags & TH_FIN) 3379 ack++; 3380 pf_send_tcp(m, r, af, pd->dst, 3381 pd->src, th->th_dport, th->th_sport, 3382 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3383 r->return_ttl, 1, 0, kif->pfik_ifp); 3384 } 3385 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3386 r->return_icmp) 3387 pf_send_icmp(m, r->return_icmp >> 8, 3388 r->return_icmp & 255, af, r); 3389 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3390 r->return_icmp6) 3391 pf_send_icmp(m, r->return_icmp6 >> 8, 3392 r->return_icmp6 & 255, af, r); 3393 } 3394 3395 if (r->action == PF_DROP) 3396 goto cleanup; 3397 3398 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3399 REASON_SET(&reason, PFRES_MEMORY); 3400 goto cleanup; 3401 } 3402 if (rtableid >= 0) 3403 M_SETFIB(m, rtableid); 3404 3405 if (!state_icmp && (r->keep_state || nr != NULL || 3406 (pd->flags & PFDESC_TCP_NORM))) { 3407 int action; 3408 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3409 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3410 hdrlen); 3411 if (action != PF_PASS) 3412 return (action); 3413 } else { 3414 if (sk != NULL) 3415 uma_zfree(V_pf_state_key_z, sk); 3416 if (nk != NULL) 3417 uma_zfree(V_pf_state_key_z, nk); 3418 } 3419 3420 /* copy back packet headers if we performed NAT operations */ 3421 if (rewrite) 3422 m_copyback(m, off, hdrlen, pd->hdr.any); 3423 3424 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3425 direction == PF_OUT && 3426 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3427 /* 3428 * We want the state created, but we dont 3429 * want to send this in case a partner 3430 * firewall has to know about it to allow 3431 * replies through it. 3432 */ 3433 return (PF_DEFER); 3434 3435 return (PF_PASS); 3436 3437 cleanup: 3438 if (sk != NULL) 3439 uma_zfree(V_pf_state_key_z, sk); 3440 if (nk != NULL) 3441 uma_zfree(V_pf_state_key_z, nk); 3442 return (PF_DROP); 3443 } 3444 3445 static int 3446 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3447 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3448 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3449 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3450 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3451 { 3452 struct pf_state *s = NULL; 3453 struct pf_src_node *sn = NULL; 3454 struct tcphdr *th = pd->hdr.tcp; 3455 u_int16_t mss = V_tcp_mssdflt; 3456 u_short reason; 3457 3458 /* check maximums */ 3459 if (r->max_states && 3460 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3461 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3462 REASON_SET(&reason, PFRES_MAXSTATES); 3463 return (PF_DROP); 3464 } 3465 /* src node for filter rule */ 3466 if ((r->rule_flag & PFRULE_SRCTRACK || 3467 r->rpool.opts & PF_POOL_STICKYADDR) && 3468 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3469 REASON_SET(&reason, PFRES_SRCLIMIT); 3470 goto csfailed; 3471 } 3472 /* src node for translation rule */ 3473 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3474 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3475 REASON_SET(&reason, PFRES_SRCLIMIT); 3476 goto csfailed; 3477 } 3478 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3479 if (s == NULL) { 3480 REASON_SET(&reason, PFRES_MEMORY); 3481 goto csfailed; 3482 } 3483 s->rule.ptr = r; 3484 s->nat_rule.ptr = nr; 3485 s->anchor.ptr = a; 3486 STATE_INC_COUNTERS(s); 3487 if (r->allow_opts) 3488 s->state_flags |= PFSTATE_ALLOWOPTS; 3489 if (r->rule_flag & PFRULE_STATESLOPPY) 3490 s->state_flags |= PFSTATE_SLOPPY; 3491 s->log = r->log & PF_LOG_ALL; 3492 s->sync_state = PFSYNC_S_NONE; 3493 if (nr != NULL) 3494 s->log |= nr->log & PF_LOG_ALL; 3495 switch (pd->proto) { 3496 case IPPROTO_TCP: 3497 s->src.seqlo = ntohl(th->th_seq); 3498 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3499 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3500 r->keep_state == PF_STATE_MODULATE) { 3501 /* Generate sequence number modulator */ 3502 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3503 0) 3504 s->src.seqdiff = 1; 3505 pf_change_a(&th->th_seq, &th->th_sum, 3506 htonl(s->src.seqlo + s->src.seqdiff), 0); 3507 *rewrite = 1; 3508 } else 3509 s->src.seqdiff = 0; 3510 if (th->th_flags & TH_SYN) { 3511 s->src.seqhi++; 3512 s->src.wscale = pf_get_wscale(m, off, 3513 th->th_off, pd->af); 3514 } 3515 s->src.max_win = MAX(ntohs(th->th_win), 1); 3516 if (s->src.wscale & PF_WSCALE_MASK) { 3517 /* Remove scale factor from initial window */ 3518 int win = s->src.max_win; 3519 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3520 s->src.max_win = (win - 1) >> 3521 (s->src.wscale & PF_WSCALE_MASK); 3522 } 3523 if (th->th_flags & TH_FIN) 3524 s->src.seqhi++; 3525 s->dst.seqhi = 1; 3526 s->dst.max_win = 1; 3527 s->src.state = TCPS_SYN_SENT; 3528 s->dst.state = TCPS_CLOSED; 3529 s->timeout = PFTM_TCP_FIRST_PACKET; 3530 break; 3531 case IPPROTO_UDP: 3532 s->src.state = PFUDPS_SINGLE; 3533 s->dst.state = PFUDPS_NO_TRAFFIC; 3534 s->timeout = PFTM_UDP_FIRST_PACKET; 3535 break; 3536 case IPPROTO_ICMP: 3537 #ifdef INET6 3538 case IPPROTO_ICMPV6: 3539 #endif 3540 s->timeout = PFTM_ICMP_FIRST_PACKET; 3541 break; 3542 default: 3543 s->src.state = PFOTHERS_SINGLE; 3544 s->dst.state = PFOTHERS_NO_TRAFFIC; 3545 s->timeout = PFTM_OTHER_FIRST_PACKET; 3546 } 3547 3548 if (r->rt && r->rt != PF_FASTROUTE) { 3549 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3550 REASON_SET(&reason, PFRES_MAPFAILED); 3551 pf_src_tree_remove_state(s); 3552 STATE_DEC_COUNTERS(s); 3553 uma_zfree(V_pf_state_z, s); 3554 goto csfailed; 3555 } 3556 s->rt_kif = r->rpool.cur->kif; 3557 } 3558 3559 s->creation = time_uptime; 3560 s->expire = time_uptime; 3561 3562 if (sn != NULL) 3563 s->src_node = sn; 3564 if (nsn != NULL) { 3565 /* XXX We only modify one side for now. */ 3566 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3567 s->nat_src_node = nsn; 3568 } 3569 if (pd->proto == IPPROTO_TCP) { 3570 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3571 off, pd, th, &s->src, &s->dst)) { 3572 REASON_SET(&reason, PFRES_MEMORY); 3573 pf_src_tree_remove_state(s); 3574 STATE_DEC_COUNTERS(s); 3575 uma_zfree(V_pf_state_z, s); 3576 return (PF_DROP); 3577 } 3578 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3579 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3580 &s->src, &s->dst, rewrite)) { 3581 /* This really shouldn't happen!!! */ 3582 DPFPRINTF(PF_DEBUG_URGENT, 3583 ("pf_normalize_tcp_stateful failed on first pkt")); 3584 pf_normalize_tcp_cleanup(s); 3585 pf_src_tree_remove_state(s); 3586 STATE_DEC_COUNTERS(s); 3587 uma_zfree(V_pf_state_z, s); 3588 return (PF_DROP); 3589 } 3590 } 3591 s->direction = pd->dir; 3592 3593 /* 3594 * sk/nk could already been setup by pf_get_translation(). 3595 */ 3596 if (nr == NULL) { 3597 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3598 __func__, nr, sk, nk)); 3599 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3600 if (sk == NULL) 3601 goto csfailed; 3602 nk = sk; 3603 } else 3604 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3605 __func__, nr, sk, nk)); 3606 3607 /* Swap sk/nk for PF_OUT. */ 3608 if (pf_state_insert(BOUND_IFACE(r, kif), 3609 (pd->dir == PF_IN) ? sk : nk, 3610 (pd->dir == PF_IN) ? nk : sk, s)) { 3611 if (pd->proto == IPPROTO_TCP) 3612 pf_normalize_tcp_cleanup(s); 3613 REASON_SET(&reason, PFRES_STATEINS); 3614 pf_src_tree_remove_state(s); 3615 STATE_DEC_COUNTERS(s); 3616 uma_zfree(V_pf_state_z, s); 3617 return (PF_DROP); 3618 } else 3619 *sm = s; 3620 3621 if (tag > 0) 3622 s->tag = tag; 3623 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3624 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3625 s->src.state = PF_TCPS_PROXY_SRC; 3626 /* undo NAT changes, if they have taken place */ 3627 if (nr != NULL) { 3628 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3629 if (pd->dir == PF_OUT) 3630 skt = s->key[PF_SK_STACK]; 3631 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3632 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3633 if (pd->sport) 3634 *pd->sport = skt->port[pd->sidx]; 3635 if (pd->dport) 3636 *pd->dport = skt->port[pd->didx]; 3637 if (pd->proto_sum) 3638 *pd->proto_sum = bproto_sum; 3639 if (pd->ip_sum) 3640 *pd->ip_sum = bip_sum; 3641 m_copyback(m, off, hdrlen, pd->hdr.any); 3642 } 3643 s->src.seqhi = htonl(arc4random()); 3644 /* Find mss option */ 3645 int rtid = M_GETFIB(m); 3646 mss = pf_get_mss(m, off, th->th_off, pd->af); 3647 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3648 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3649 s->src.mss = mss; 3650 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3651 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3652 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3653 REASON_SET(&reason, PFRES_SYNPROXY); 3654 return (PF_SYNPROXY_DROP); 3655 } 3656 3657 return (PF_PASS); 3658 3659 csfailed: 3660 if (sk != NULL) 3661 uma_zfree(V_pf_state_key_z, sk); 3662 if (nk != NULL) 3663 uma_zfree(V_pf_state_key_z, nk); 3664 3665 if (sn != NULL) { 3666 struct pf_srchash *sh; 3667 3668 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3669 PF_HASHROW_LOCK(sh); 3670 if (--sn->states == 0 && sn->expire == 0) { 3671 pf_unlink_src_node(sn); 3672 uma_zfree(V_pf_sources_z, sn); 3673 counter_u64_add( 3674 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3675 } 3676 PF_HASHROW_UNLOCK(sh); 3677 } 3678 3679 if (nsn != sn && nsn != NULL) { 3680 struct pf_srchash *sh; 3681 3682 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3683 PF_HASHROW_LOCK(sh); 3684 if (--nsn->states == 0 && nsn->expire == 0) { 3685 pf_unlink_src_node(nsn); 3686 uma_zfree(V_pf_sources_z, nsn); 3687 counter_u64_add( 3688 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3689 } 3690 PF_HASHROW_UNLOCK(sh); 3691 } 3692 3693 return (PF_DROP); 3694 } 3695 3696 static int 3697 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3698 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3699 struct pf_ruleset **rsm) 3700 { 3701 struct pf_rule *r, *a = NULL; 3702 struct pf_ruleset *ruleset = NULL; 3703 sa_family_t af = pd->af; 3704 u_short reason; 3705 int tag = -1; 3706 int asd = 0; 3707 int match = 0; 3708 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3709 3710 PF_RULES_RASSERT(); 3711 3712 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3713 while (r != NULL) { 3714 r->evaluations++; 3715 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3716 r = r->skip[PF_SKIP_IFP].ptr; 3717 else if (r->direction && r->direction != direction) 3718 r = r->skip[PF_SKIP_DIR].ptr; 3719 else if (r->af && r->af != af) 3720 r = r->skip[PF_SKIP_AF].ptr; 3721 else if (r->proto && r->proto != pd->proto) 3722 r = r->skip[PF_SKIP_PROTO].ptr; 3723 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3724 r->src.neg, kif, M_GETFIB(m))) 3725 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3726 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3727 r->dst.neg, NULL, M_GETFIB(m))) 3728 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3729 else if (r->tos && !(r->tos == pd->tos)) 3730 r = TAILQ_NEXT(r, entries); 3731 else if (r->os_fingerprint != PF_OSFP_ANY) 3732 r = TAILQ_NEXT(r, entries); 3733 else if (pd->proto == IPPROTO_UDP && 3734 (r->src.port_op || r->dst.port_op)) 3735 r = TAILQ_NEXT(r, entries); 3736 else if (pd->proto == IPPROTO_TCP && 3737 (r->src.port_op || r->dst.port_op || r->flagset)) 3738 r = TAILQ_NEXT(r, entries); 3739 else if ((pd->proto == IPPROTO_ICMP || 3740 pd->proto == IPPROTO_ICMPV6) && 3741 (r->type || r->code)) 3742 r = TAILQ_NEXT(r, entries); 3743 else if (r->prob && r->prob <= 3744 (arc4random() % (UINT_MAX - 1) + 1)) 3745 r = TAILQ_NEXT(r, entries); 3746 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3747 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3748 r = TAILQ_NEXT(r, entries); 3749 else { 3750 if (r->anchor == NULL) { 3751 match = 1; 3752 *rm = r; 3753 *am = a; 3754 *rsm = ruleset; 3755 if ((*rm)->quick) 3756 break; 3757 r = TAILQ_NEXT(r, entries); 3758 } else 3759 pf_step_into_anchor(anchor_stack, &asd, 3760 &ruleset, PF_RULESET_FILTER, &r, &a, 3761 &match); 3762 } 3763 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3764 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3765 break; 3766 } 3767 r = *rm; 3768 a = *am; 3769 ruleset = *rsm; 3770 3771 REASON_SET(&reason, PFRES_MATCH); 3772 3773 if (r->log) 3774 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3775 1); 3776 3777 if (r->action != PF_PASS) 3778 return (PF_DROP); 3779 3780 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3781 REASON_SET(&reason, PFRES_MEMORY); 3782 return (PF_DROP); 3783 } 3784 3785 return (PF_PASS); 3786 } 3787 3788 static int 3789 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3790 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3791 struct pf_pdesc *pd, u_short *reason, int *copyback) 3792 { 3793 struct tcphdr *th = pd->hdr.tcp; 3794 u_int16_t win = ntohs(th->th_win); 3795 u_int32_t ack, end, seq, orig_seq; 3796 u_int8_t sws, dws; 3797 int ackskew; 3798 3799 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3800 sws = src->wscale & PF_WSCALE_MASK; 3801 dws = dst->wscale & PF_WSCALE_MASK; 3802 } else 3803 sws = dws = 0; 3804 3805 /* 3806 * Sequence tracking algorithm from Guido van Rooij's paper: 3807 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3808 * tcp_filtering.ps 3809 */ 3810 3811 orig_seq = seq = ntohl(th->th_seq); 3812 if (src->seqlo == 0) { 3813 /* First packet from this end. Set its state */ 3814 3815 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3816 src->scrub == NULL) { 3817 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3818 REASON_SET(reason, PFRES_MEMORY); 3819 return (PF_DROP); 3820 } 3821 } 3822 3823 /* Deferred generation of sequence number modulator */ 3824 if (dst->seqdiff && !src->seqdiff) { 3825 /* use random iss for the TCP server */ 3826 while ((src->seqdiff = arc4random() - seq) == 0) 3827 ; 3828 ack = ntohl(th->th_ack) - dst->seqdiff; 3829 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3830 src->seqdiff), 0); 3831 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3832 *copyback = 1; 3833 } else { 3834 ack = ntohl(th->th_ack); 3835 } 3836 3837 end = seq + pd->p_len; 3838 if (th->th_flags & TH_SYN) { 3839 end++; 3840 if (dst->wscale & PF_WSCALE_FLAG) { 3841 src->wscale = pf_get_wscale(m, off, th->th_off, 3842 pd->af); 3843 if (src->wscale & PF_WSCALE_FLAG) { 3844 /* Remove scale factor from initial 3845 * window */ 3846 sws = src->wscale & PF_WSCALE_MASK; 3847 win = ((u_int32_t)win + (1 << sws) - 1) 3848 >> sws; 3849 dws = dst->wscale & PF_WSCALE_MASK; 3850 } else { 3851 /* fixup other window */ 3852 dst->max_win <<= dst->wscale & 3853 PF_WSCALE_MASK; 3854 /* in case of a retrans SYN|ACK */ 3855 dst->wscale = 0; 3856 } 3857 } 3858 } 3859 if (th->th_flags & TH_FIN) 3860 end++; 3861 3862 src->seqlo = seq; 3863 if (src->state < TCPS_SYN_SENT) 3864 src->state = TCPS_SYN_SENT; 3865 3866 /* 3867 * May need to slide the window (seqhi may have been set by 3868 * the crappy stack check or if we picked up the connection 3869 * after establishment) 3870 */ 3871 if (src->seqhi == 1 || 3872 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3873 src->seqhi = end + MAX(1, dst->max_win << dws); 3874 if (win > src->max_win) 3875 src->max_win = win; 3876 3877 } else { 3878 ack = ntohl(th->th_ack) - dst->seqdiff; 3879 if (src->seqdiff) { 3880 /* Modulate sequence numbers */ 3881 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3882 src->seqdiff), 0); 3883 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3884 *copyback = 1; 3885 } 3886 end = seq + pd->p_len; 3887 if (th->th_flags & TH_SYN) 3888 end++; 3889 if (th->th_flags & TH_FIN) 3890 end++; 3891 } 3892 3893 if ((th->th_flags & TH_ACK) == 0) { 3894 /* Let it pass through the ack skew check */ 3895 ack = dst->seqlo; 3896 } else if ((ack == 0 && 3897 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 3898 /* broken tcp stacks do not set ack */ 3899 (dst->state < TCPS_SYN_SENT)) { 3900 /* 3901 * Many stacks (ours included) will set the ACK number in an 3902 * FIN|ACK if the SYN times out -- no sequence to ACK. 3903 */ 3904 ack = dst->seqlo; 3905 } 3906 3907 if (seq == end) { 3908 /* Ease sequencing restrictions on no data packets */ 3909 seq = src->seqlo; 3910 end = seq; 3911 } 3912 3913 ackskew = dst->seqlo - ack; 3914 3915 3916 /* 3917 * Need to demodulate the sequence numbers in any TCP SACK options 3918 * (Selective ACK). We could optionally validate the SACK values 3919 * against the current ACK window, either forwards or backwards, but 3920 * I'm not confident that SACK has been implemented properly 3921 * everywhere. It wouldn't surprise me if several stacks accidently 3922 * SACK too far backwards of previously ACKed data. There really aren't 3923 * any security implications of bad SACKing unless the target stack 3924 * doesn't validate the option length correctly. Someone trying to 3925 * spoof into a TCP connection won't bother blindly sending SACK 3926 * options anyway. 3927 */ 3928 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 3929 if (pf_modulate_sack(m, off, pd, th, dst)) 3930 *copyback = 1; 3931 } 3932 3933 3934 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 3935 if (SEQ_GEQ(src->seqhi, end) && 3936 /* Last octet inside other's window space */ 3937 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 3938 /* Retrans: not more than one window back */ 3939 (ackskew >= -MAXACKWINDOW) && 3940 /* Acking not more than one reassembled fragment backwards */ 3941 (ackskew <= (MAXACKWINDOW << sws)) && 3942 /* Acking not more than one window forward */ 3943 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 3944 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 3945 (pd->flags & PFDESC_IP_REAS) == 0)) { 3946 /* Require an exact/+1 sequence match on resets when possible */ 3947 3948 if (dst->scrub || src->scrub) { 3949 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 3950 *state, src, dst, copyback)) 3951 return (PF_DROP); 3952 } 3953 3954 /* update max window */ 3955 if (src->max_win < win) 3956 src->max_win = win; 3957 /* synchronize sequencing */ 3958 if (SEQ_GT(end, src->seqlo)) 3959 src->seqlo = end; 3960 /* slide the window of what the other end can send */ 3961 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 3962 dst->seqhi = ack + MAX((win << sws), 1); 3963 3964 3965 /* update states */ 3966 if (th->th_flags & TH_SYN) 3967 if (src->state < TCPS_SYN_SENT) 3968 src->state = TCPS_SYN_SENT; 3969 if (th->th_flags & TH_FIN) 3970 if (src->state < TCPS_CLOSING) 3971 src->state = TCPS_CLOSING; 3972 if (th->th_flags & TH_ACK) { 3973 if (dst->state == TCPS_SYN_SENT) { 3974 dst->state = TCPS_ESTABLISHED; 3975 if (src->state == TCPS_ESTABLISHED && 3976 (*state)->src_node != NULL && 3977 pf_src_connlimit(state)) { 3978 REASON_SET(reason, PFRES_SRCLIMIT); 3979 return (PF_DROP); 3980 } 3981 } else if (dst->state == TCPS_CLOSING) 3982 dst->state = TCPS_FIN_WAIT_2; 3983 } 3984 if (th->th_flags & TH_RST) 3985 src->state = dst->state = TCPS_TIME_WAIT; 3986 3987 /* update expire time */ 3988 (*state)->expire = time_uptime; 3989 if (src->state >= TCPS_FIN_WAIT_2 && 3990 dst->state >= TCPS_FIN_WAIT_2) 3991 (*state)->timeout = PFTM_TCP_CLOSED; 3992 else if (src->state >= TCPS_CLOSING && 3993 dst->state >= TCPS_CLOSING) 3994 (*state)->timeout = PFTM_TCP_FIN_WAIT; 3995 else if (src->state < TCPS_ESTABLISHED || 3996 dst->state < TCPS_ESTABLISHED) 3997 (*state)->timeout = PFTM_TCP_OPENING; 3998 else if (src->state >= TCPS_CLOSING || 3999 dst->state >= TCPS_CLOSING) 4000 (*state)->timeout = PFTM_TCP_CLOSING; 4001 else 4002 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4003 4004 /* Fall through to PASS packet */ 4005 4006 } else if ((dst->state < TCPS_SYN_SENT || 4007 dst->state >= TCPS_FIN_WAIT_2 || 4008 src->state >= TCPS_FIN_WAIT_2) && 4009 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4010 /* Within a window forward of the originating packet */ 4011 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4012 /* Within a window backward of the originating packet */ 4013 4014 /* 4015 * This currently handles three situations: 4016 * 1) Stupid stacks will shotgun SYNs before their peer 4017 * replies. 4018 * 2) When PF catches an already established stream (the 4019 * firewall rebooted, the state table was flushed, routes 4020 * changed...) 4021 * 3) Packets get funky immediately after the connection 4022 * closes (this should catch Solaris spurious ACK|FINs 4023 * that web servers like to spew after a close) 4024 * 4025 * This must be a little more careful than the above code 4026 * since packet floods will also be caught here. We don't 4027 * update the TTL here to mitigate the damage of a packet 4028 * flood and so the same code can handle awkward establishment 4029 * and a loosened connection close. 4030 * In the establishment case, a correct peer response will 4031 * validate the connection, go through the normal state code 4032 * and keep updating the state TTL. 4033 */ 4034 4035 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4036 printf("pf: loose state match: "); 4037 pf_print_state(*state); 4038 pf_print_flags(th->th_flags); 4039 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4040 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4041 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4042 (unsigned long long)(*state)->packets[1], 4043 pd->dir == PF_IN ? "in" : "out", 4044 pd->dir == (*state)->direction ? "fwd" : "rev"); 4045 } 4046 4047 if (dst->scrub || src->scrub) { 4048 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4049 *state, src, dst, copyback)) 4050 return (PF_DROP); 4051 } 4052 4053 /* update max window */ 4054 if (src->max_win < win) 4055 src->max_win = win; 4056 /* synchronize sequencing */ 4057 if (SEQ_GT(end, src->seqlo)) 4058 src->seqlo = end; 4059 /* slide the window of what the other end can send */ 4060 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4061 dst->seqhi = ack + MAX((win << sws), 1); 4062 4063 /* 4064 * Cannot set dst->seqhi here since this could be a shotgunned 4065 * SYN and not an already established connection. 4066 */ 4067 4068 if (th->th_flags & TH_FIN) 4069 if (src->state < TCPS_CLOSING) 4070 src->state = TCPS_CLOSING; 4071 if (th->th_flags & TH_RST) 4072 src->state = dst->state = TCPS_TIME_WAIT; 4073 4074 /* Fall through to PASS packet */ 4075 4076 } else { 4077 if ((*state)->dst.state == TCPS_SYN_SENT && 4078 (*state)->src.state == TCPS_SYN_SENT) { 4079 /* Send RST for state mismatches during handshake */ 4080 if (!(th->th_flags & TH_RST)) 4081 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4082 pd->dst, pd->src, th->th_dport, 4083 th->th_sport, ntohl(th->th_ack), 0, 4084 TH_RST, 0, 0, 4085 (*state)->rule.ptr->return_ttl, 1, 0, 4086 kif->pfik_ifp); 4087 src->seqlo = 0; 4088 src->seqhi = 1; 4089 src->max_win = 1; 4090 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4091 printf("pf: BAD state: "); 4092 pf_print_state(*state); 4093 pf_print_flags(th->th_flags); 4094 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4095 "pkts=%llu:%llu dir=%s,%s\n", 4096 seq, orig_seq, ack, pd->p_len, ackskew, 4097 (unsigned long long)(*state)->packets[0], 4098 (unsigned long long)(*state)->packets[1], 4099 pd->dir == PF_IN ? "in" : "out", 4100 pd->dir == (*state)->direction ? "fwd" : "rev"); 4101 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4102 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4103 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4104 ' ': '2', 4105 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4106 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4107 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4108 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4109 } 4110 REASON_SET(reason, PFRES_BADSTATE); 4111 return (PF_DROP); 4112 } 4113 4114 return (PF_PASS); 4115 } 4116 4117 static int 4118 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4119 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4120 { 4121 struct tcphdr *th = pd->hdr.tcp; 4122 4123 if (th->th_flags & TH_SYN) 4124 if (src->state < TCPS_SYN_SENT) 4125 src->state = TCPS_SYN_SENT; 4126 if (th->th_flags & TH_FIN) 4127 if (src->state < TCPS_CLOSING) 4128 src->state = TCPS_CLOSING; 4129 if (th->th_flags & TH_ACK) { 4130 if (dst->state == TCPS_SYN_SENT) { 4131 dst->state = TCPS_ESTABLISHED; 4132 if (src->state == TCPS_ESTABLISHED && 4133 (*state)->src_node != NULL && 4134 pf_src_connlimit(state)) { 4135 REASON_SET(reason, PFRES_SRCLIMIT); 4136 return (PF_DROP); 4137 } 4138 } else if (dst->state == TCPS_CLOSING) { 4139 dst->state = TCPS_FIN_WAIT_2; 4140 } else if (src->state == TCPS_SYN_SENT && 4141 dst->state < TCPS_SYN_SENT) { 4142 /* 4143 * Handle a special sloppy case where we only see one 4144 * half of the connection. If there is a ACK after 4145 * the initial SYN without ever seeing a packet from 4146 * the destination, set the connection to established. 4147 */ 4148 dst->state = src->state = TCPS_ESTABLISHED; 4149 if ((*state)->src_node != NULL && 4150 pf_src_connlimit(state)) { 4151 REASON_SET(reason, PFRES_SRCLIMIT); 4152 return (PF_DROP); 4153 } 4154 } else if (src->state == TCPS_CLOSING && 4155 dst->state == TCPS_ESTABLISHED && 4156 dst->seqlo == 0) { 4157 /* 4158 * Handle the closing of half connections where we 4159 * don't see the full bidirectional FIN/ACK+ACK 4160 * handshake. 4161 */ 4162 dst->state = TCPS_CLOSING; 4163 } 4164 } 4165 if (th->th_flags & TH_RST) 4166 src->state = dst->state = TCPS_TIME_WAIT; 4167 4168 /* update expire time */ 4169 (*state)->expire = time_uptime; 4170 if (src->state >= TCPS_FIN_WAIT_2 && 4171 dst->state >= TCPS_FIN_WAIT_2) 4172 (*state)->timeout = PFTM_TCP_CLOSED; 4173 else if (src->state >= TCPS_CLOSING && 4174 dst->state >= TCPS_CLOSING) 4175 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4176 else if (src->state < TCPS_ESTABLISHED || 4177 dst->state < TCPS_ESTABLISHED) 4178 (*state)->timeout = PFTM_TCP_OPENING; 4179 else if (src->state >= TCPS_CLOSING || 4180 dst->state >= TCPS_CLOSING) 4181 (*state)->timeout = PFTM_TCP_CLOSING; 4182 else 4183 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4184 4185 return (PF_PASS); 4186 } 4187 4188 static int 4189 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4190 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4191 u_short *reason) 4192 { 4193 struct pf_state_key_cmp key; 4194 struct tcphdr *th = pd->hdr.tcp; 4195 int copyback = 0; 4196 struct pf_state_peer *src, *dst; 4197 struct pf_state_key *sk; 4198 4199 bzero(&key, sizeof(key)); 4200 key.af = pd->af; 4201 key.proto = IPPROTO_TCP; 4202 if (direction == PF_IN) { /* wire side, straight */ 4203 PF_ACPY(&key.addr[0], pd->src, key.af); 4204 PF_ACPY(&key.addr[1], pd->dst, key.af); 4205 key.port[0] = th->th_sport; 4206 key.port[1] = th->th_dport; 4207 } else { /* stack side, reverse */ 4208 PF_ACPY(&key.addr[1], pd->src, key.af); 4209 PF_ACPY(&key.addr[0], pd->dst, key.af); 4210 key.port[1] = th->th_sport; 4211 key.port[0] = th->th_dport; 4212 } 4213 4214 STATE_LOOKUP(kif, &key, direction, *state, pd); 4215 4216 if (direction == (*state)->direction) { 4217 src = &(*state)->src; 4218 dst = &(*state)->dst; 4219 } else { 4220 src = &(*state)->dst; 4221 dst = &(*state)->src; 4222 } 4223 4224 sk = (*state)->key[pd->didx]; 4225 4226 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4227 if (direction != (*state)->direction) { 4228 REASON_SET(reason, PFRES_SYNPROXY); 4229 return (PF_SYNPROXY_DROP); 4230 } 4231 if (th->th_flags & TH_SYN) { 4232 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4233 REASON_SET(reason, PFRES_SYNPROXY); 4234 return (PF_DROP); 4235 } 4236 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4237 pd->src, th->th_dport, th->th_sport, 4238 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4239 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4240 REASON_SET(reason, PFRES_SYNPROXY); 4241 return (PF_SYNPROXY_DROP); 4242 } else if (!(th->th_flags & TH_ACK) || 4243 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4244 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4245 REASON_SET(reason, PFRES_SYNPROXY); 4246 return (PF_DROP); 4247 } else if ((*state)->src_node != NULL && 4248 pf_src_connlimit(state)) { 4249 REASON_SET(reason, PFRES_SRCLIMIT); 4250 return (PF_DROP); 4251 } else 4252 (*state)->src.state = PF_TCPS_PROXY_DST; 4253 } 4254 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4255 if (direction == (*state)->direction) { 4256 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4257 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4258 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4259 REASON_SET(reason, PFRES_SYNPROXY); 4260 return (PF_DROP); 4261 } 4262 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4263 if ((*state)->dst.seqhi == 1) 4264 (*state)->dst.seqhi = htonl(arc4random()); 4265 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4266 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4267 sk->port[pd->sidx], sk->port[pd->didx], 4268 (*state)->dst.seqhi, 0, TH_SYN, 0, 4269 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4270 REASON_SET(reason, PFRES_SYNPROXY); 4271 return (PF_SYNPROXY_DROP); 4272 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4273 (TH_SYN|TH_ACK)) || 4274 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4275 REASON_SET(reason, PFRES_SYNPROXY); 4276 return (PF_DROP); 4277 } else { 4278 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4279 (*state)->dst.seqlo = ntohl(th->th_seq); 4280 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4281 pd->src, th->th_dport, th->th_sport, 4282 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4283 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4284 (*state)->tag, NULL); 4285 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4286 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4287 sk->port[pd->sidx], sk->port[pd->didx], 4288 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4289 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4290 (*state)->src.seqdiff = (*state)->dst.seqhi - 4291 (*state)->src.seqlo; 4292 (*state)->dst.seqdiff = (*state)->src.seqhi - 4293 (*state)->dst.seqlo; 4294 (*state)->src.seqhi = (*state)->src.seqlo + 4295 (*state)->dst.max_win; 4296 (*state)->dst.seqhi = (*state)->dst.seqlo + 4297 (*state)->src.max_win; 4298 (*state)->src.wscale = (*state)->dst.wscale = 0; 4299 (*state)->src.state = (*state)->dst.state = 4300 TCPS_ESTABLISHED; 4301 REASON_SET(reason, PFRES_SYNPROXY); 4302 return (PF_SYNPROXY_DROP); 4303 } 4304 } 4305 4306 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4307 dst->state >= TCPS_FIN_WAIT_2 && 4308 src->state >= TCPS_FIN_WAIT_2) { 4309 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4310 printf("pf: state reuse "); 4311 pf_print_state(*state); 4312 pf_print_flags(th->th_flags); 4313 printf("\n"); 4314 } 4315 /* XXX make sure it's the same direction ?? */ 4316 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4317 pf_unlink_state(*state, PF_ENTER_LOCKED); 4318 *state = NULL; 4319 return (PF_DROP); 4320 } 4321 4322 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4323 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4324 return (PF_DROP); 4325 } else { 4326 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4327 ©back) == PF_DROP) 4328 return (PF_DROP); 4329 } 4330 4331 /* translate source/destination address, if necessary */ 4332 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4333 struct pf_state_key *nk = (*state)->key[pd->didx]; 4334 4335 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4336 nk->port[pd->sidx] != th->th_sport) 4337 pf_change_ap(pd->src, &th->th_sport, pd->ip_sum, 4338 &th->th_sum, &nk->addr[pd->sidx], 4339 nk->port[pd->sidx], 0, pd->af); 4340 4341 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4342 nk->port[pd->didx] != th->th_dport) 4343 pf_change_ap(pd->dst, &th->th_dport, pd->ip_sum, 4344 &th->th_sum, &nk->addr[pd->didx], 4345 nk->port[pd->didx], 0, pd->af); 4346 copyback = 1; 4347 } 4348 4349 /* Copyback sequence modulation or stateful scrub changes if needed */ 4350 if (copyback) 4351 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4352 4353 return (PF_PASS); 4354 } 4355 4356 static int 4357 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4358 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4359 { 4360 struct pf_state_peer *src, *dst; 4361 struct pf_state_key_cmp key; 4362 struct udphdr *uh = pd->hdr.udp; 4363 4364 bzero(&key, sizeof(key)); 4365 key.af = pd->af; 4366 key.proto = IPPROTO_UDP; 4367 if (direction == PF_IN) { /* wire side, straight */ 4368 PF_ACPY(&key.addr[0], pd->src, key.af); 4369 PF_ACPY(&key.addr[1], pd->dst, key.af); 4370 key.port[0] = uh->uh_sport; 4371 key.port[1] = uh->uh_dport; 4372 } else { /* stack side, reverse */ 4373 PF_ACPY(&key.addr[1], pd->src, key.af); 4374 PF_ACPY(&key.addr[0], pd->dst, key.af); 4375 key.port[1] = uh->uh_sport; 4376 key.port[0] = uh->uh_dport; 4377 } 4378 4379 STATE_LOOKUP(kif, &key, direction, *state, pd); 4380 4381 if (direction == (*state)->direction) { 4382 src = &(*state)->src; 4383 dst = &(*state)->dst; 4384 } else { 4385 src = &(*state)->dst; 4386 dst = &(*state)->src; 4387 } 4388 4389 /* update states */ 4390 if (src->state < PFUDPS_SINGLE) 4391 src->state = PFUDPS_SINGLE; 4392 if (dst->state == PFUDPS_SINGLE) 4393 dst->state = PFUDPS_MULTIPLE; 4394 4395 /* update expire time */ 4396 (*state)->expire = time_uptime; 4397 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4398 (*state)->timeout = PFTM_UDP_MULTIPLE; 4399 else 4400 (*state)->timeout = PFTM_UDP_SINGLE; 4401 4402 /* translate source/destination address, if necessary */ 4403 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4404 struct pf_state_key *nk = (*state)->key[pd->didx]; 4405 4406 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4407 nk->port[pd->sidx] != uh->uh_sport) 4408 pf_change_ap(pd->src, &uh->uh_sport, pd->ip_sum, 4409 &uh->uh_sum, &nk->addr[pd->sidx], 4410 nk->port[pd->sidx], 1, pd->af); 4411 4412 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4413 nk->port[pd->didx] != uh->uh_dport) 4414 pf_change_ap(pd->dst, &uh->uh_dport, pd->ip_sum, 4415 &uh->uh_sum, &nk->addr[pd->didx], 4416 nk->port[pd->didx], 1, pd->af); 4417 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4418 } 4419 4420 return (PF_PASS); 4421 } 4422 4423 static int 4424 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4425 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4426 { 4427 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4428 u_int16_t icmpid = 0, *icmpsum; 4429 u_int8_t icmptype; 4430 int state_icmp = 0; 4431 struct pf_state_key_cmp key; 4432 4433 bzero(&key, sizeof(key)); 4434 switch (pd->proto) { 4435 #ifdef INET 4436 case IPPROTO_ICMP: 4437 icmptype = pd->hdr.icmp->icmp_type; 4438 icmpid = pd->hdr.icmp->icmp_id; 4439 icmpsum = &pd->hdr.icmp->icmp_cksum; 4440 4441 if (icmptype == ICMP_UNREACH || 4442 icmptype == ICMP_SOURCEQUENCH || 4443 icmptype == ICMP_REDIRECT || 4444 icmptype == ICMP_TIMXCEED || 4445 icmptype == ICMP_PARAMPROB) 4446 state_icmp++; 4447 break; 4448 #endif /* INET */ 4449 #ifdef INET6 4450 case IPPROTO_ICMPV6: 4451 icmptype = pd->hdr.icmp6->icmp6_type; 4452 icmpid = pd->hdr.icmp6->icmp6_id; 4453 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4454 4455 if (icmptype == ICMP6_DST_UNREACH || 4456 icmptype == ICMP6_PACKET_TOO_BIG || 4457 icmptype == ICMP6_TIME_EXCEEDED || 4458 icmptype == ICMP6_PARAM_PROB) 4459 state_icmp++; 4460 break; 4461 #endif /* INET6 */ 4462 } 4463 4464 if (!state_icmp) { 4465 4466 /* 4467 * ICMP query/reply message not related to a TCP/UDP packet. 4468 * Search for an ICMP state. 4469 */ 4470 key.af = pd->af; 4471 key.proto = pd->proto; 4472 key.port[0] = key.port[1] = icmpid; 4473 if (direction == PF_IN) { /* wire side, straight */ 4474 PF_ACPY(&key.addr[0], pd->src, key.af); 4475 PF_ACPY(&key.addr[1], pd->dst, key.af); 4476 } else { /* stack side, reverse */ 4477 PF_ACPY(&key.addr[1], pd->src, key.af); 4478 PF_ACPY(&key.addr[0], pd->dst, key.af); 4479 } 4480 4481 STATE_LOOKUP(kif, &key, direction, *state, pd); 4482 4483 (*state)->expire = time_uptime; 4484 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4485 4486 /* translate source/destination address, if necessary */ 4487 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4488 struct pf_state_key *nk = (*state)->key[pd->didx]; 4489 4490 switch (pd->af) { 4491 #ifdef INET 4492 case AF_INET: 4493 if (PF_ANEQ(pd->src, 4494 &nk->addr[pd->sidx], AF_INET)) 4495 pf_change_a(&saddr->v4.s_addr, 4496 pd->ip_sum, 4497 nk->addr[pd->sidx].v4.s_addr, 0); 4498 4499 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4500 AF_INET)) 4501 pf_change_a(&daddr->v4.s_addr, 4502 pd->ip_sum, 4503 nk->addr[pd->didx].v4.s_addr, 0); 4504 4505 if (nk->port[0] != 4506 pd->hdr.icmp->icmp_id) { 4507 pd->hdr.icmp->icmp_cksum = 4508 pf_cksum_fixup( 4509 pd->hdr.icmp->icmp_cksum, icmpid, 4510 nk->port[pd->sidx], 0); 4511 pd->hdr.icmp->icmp_id = 4512 nk->port[pd->sidx]; 4513 } 4514 4515 m_copyback(m, off, ICMP_MINLEN, 4516 (caddr_t )pd->hdr.icmp); 4517 break; 4518 #endif /* INET */ 4519 #ifdef INET6 4520 case AF_INET6: 4521 if (PF_ANEQ(pd->src, 4522 &nk->addr[pd->sidx], AF_INET6)) 4523 pf_change_a6(saddr, 4524 &pd->hdr.icmp6->icmp6_cksum, 4525 &nk->addr[pd->sidx], 0); 4526 4527 if (PF_ANEQ(pd->dst, 4528 &nk->addr[pd->didx], AF_INET6)) 4529 pf_change_a6(daddr, 4530 &pd->hdr.icmp6->icmp6_cksum, 4531 &nk->addr[pd->didx], 0); 4532 4533 m_copyback(m, off, sizeof(struct icmp6_hdr), 4534 (caddr_t )pd->hdr.icmp6); 4535 break; 4536 #endif /* INET6 */ 4537 } 4538 } 4539 return (PF_PASS); 4540 4541 } else { 4542 /* 4543 * ICMP error message in response to a TCP/UDP packet. 4544 * Extract the inner TCP/UDP header and search for that state. 4545 */ 4546 4547 struct pf_pdesc pd2; 4548 bzero(&pd2, sizeof pd2); 4549 #ifdef INET 4550 struct ip h2; 4551 #endif /* INET */ 4552 #ifdef INET6 4553 struct ip6_hdr h2_6; 4554 int terminal = 0; 4555 #endif /* INET6 */ 4556 int ipoff2 = 0; 4557 int off2 = 0; 4558 4559 pd2.af = pd->af; 4560 /* Payload packet is from the opposite direction. */ 4561 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4562 pd2.didx = (direction == PF_IN) ? 0 : 1; 4563 switch (pd->af) { 4564 #ifdef INET 4565 case AF_INET: 4566 /* offset of h2 in mbuf chain */ 4567 ipoff2 = off + ICMP_MINLEN; 4568 4569 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4570 NULL, reason, pd2.af)) { 4571 DPFPRINTF(PF_DEBUG_MISC, 4572 ("pf: ICMP error message too short " 4573 "(ip)\n")); 4574 return (PF_DROP); 4575 } 4576 /* 4577 * ICMP error messages don't refer to non-first 4578 * fragments 4579 */ 4580 if (h2.ip_off & htons(IP_OFFMASK)) { 4581 REASON_SET(reason, PFRES_FRAG); 4582 return (PF_DROP); 4583 } 4584 4585 /* offset of protocol header that follows h2 */ 4586 off2 = ipoff2 + (h2.ip_hl << 2); 4587 4588 pd2.proto = h2.ip_p; 4589 pd2.src = (struct pf_addr *)&h2.ip_src; 4590 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4591 pd2.ip_sum = &h2.ip_sum; 4592 break; 4593 #endif /* INET */ 4594 #ifdef INET6 4595 case AF_INET6: 4596 ipoff2 = off + sizeof(struct icmp6_hdr); 4597 4598 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4599 NULL, reason, pd2.af)) { 4600 DPFPRINTF(PF_DEBUG_MISC, 4601 ("pf: ICMP error message too short " 4602 "(ip6)\n")); 4603 return (PF_DROP); 4604 } 4605 pd2.proto = h2_6.ip6_nxt; 4606 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4607 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4608 pd2.ip_sum = NULL; 4609 off2 = ipoff2 + sizeof(h2_6); 4610 do { 4611 switch (pd2.proto) { 4612 case IPPROTO_FRAGMENT: 4613 /* 4614 * ICMPv6 error messages for 4615 * non-first fragments 4616 */ 4617 REASON_SET(reason, PFRES_FRAG); 4618 return (PF_DROP); 4619 case IPPROTO_AH: 4620 case IPPROTO_HOPOPTS: 4621 case IPPROTO_ROUTING: 4622 case IPPROTO_DSTOPTS: { 4623 /* get next header and header length */ 4624 struct ip6_ext opt6; 4625 4626 if (!pf_pull_hdr(m, off2, &opt6, 4627 sizeof(opt6), NULL, reason, 4628 pd2.af)) { 4629 DPFPRINTF(PF_DEBUG_MISC, 4630 ("pf: ICMPv6 short opt\n")); 4631 return (PF_DROP); 4632 } 4633 if (pd2.proto == IPPROTO_AH) 4634 off2 += (opt6.ip6e_len + 2) * 4; 4635 else 4636 off2 += (opt6.ip6e_len + 1) * 8; 4637 pd2.proto = opt6.ip6e_nxt; 4638 /* goto the next header */ 4639 break; 4640 } 4641 default: 4642 terminal++; 4643 break; 4644 } 4645 } while (!terminal); 4646 break; 4647 #endif /* INET6 */ 4648 } 4649 4650 switch (pd2.proto) { 4651 case IPPROTO_TCP: { 4652 struct tcphdr th; 4653 u_int32_t seq; 4654 struct pf_state_peer *src, *dst; 4655 u_int8_t dws; 4656 int copyback = 0; 4657 4658 /* 4659 * Only the first 8 bytes of the TCP header can be 4660 * expected. Don't access any TCP header fields after 4661 * th_seq, an ackskew test is not possible. 4662 */ 4663 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4664 pd2.af)) { 4665 DPFPRINTF(PF_DEBUG_MISC, 4666 ("pf: ICMP error message too short " 4667 "(tcp)\n")); 4668 return (PF_DROP); 4669 } 4670 4671 key.af = pd2.af; 4672 key.proto = IPPROTO_TCP; 4673 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4674 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4675 key.port[pd2.sidx] = th.th_sport; 4676 key.port[pd2.didx] = th.th_dport; 4677 4678 STATE_LOOKUP(kif, &key, direction, *state, pd); 4679 4680 if (direction == (*state)->direction) { 4681 src = &(*state)->dst; 4682 dst = &(*state)->src; 4683 } else { 4684 src = &(*state)->src; 4685 dst = &(*state)->dst; 4686 } 4687 4688 if (src->wscale && dst->wscale) 4689 dws = dst->wscale & PF_WSCALE_MASK; 4690 else 4691 dws = 0; 4692 4693 /* Demodulate sequence number */ 4694 seq = ntohl(th.th_seq) - src->seqdiff; 4695 if (src->seqdiff) { 4696 pf_change_a(&th.th_seq, icmpsum, 4697 htonl(seq), 0); 4698 copyback = 1; 4699 } 4700 4701 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4702 (!SEQ_GEQ(src->seqhi, seq) || 4703 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4704 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4705 printf("pf: BAD ICMP %d:%d ", 4706 icmptype, pd->hdr.icmp->icmp_code); 4707 pf_print_host(pd->src, 0, pd->af); 4708 printf(" -> "); 4709 pf_print_host(pd->dst, 0, pd->af); 4710 printf(" state: "); 4711 pf_print_state(*state); 4712 printf(" seq=%u\n", seq); 4713 } 4714 REASON_SET(reason, PFRES_BADSTATE); 4715 return (PF_DROP); 4716 } else { 4717 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4718 printf("pf: OK ICMP %d:%d ", 4719 icmptype, pd->hdr.icmp->icmp_code); 4720 pf_print_host(pd->src, 0, pd->af); 4721 printf(" -> "); 4722 pf_print_host(pd->dst, 0, pd->af); 4723 printf(" state: "); 4724 pf_print_state(*state); 4725 printf(" seq=%u\n", seq); 4726 } 4727 } 4728 4729 /* translate source/destination address, if necessary */ 4730 if ((*state)->key[PF_SK_WIRE] != 4731 (*state)->key[PF_SK_STACK]) { 4732 struct pf_state_key *nk = 4733 (*state)->key[pd->didx]; 4734 4735 if (PF_ANEQ(pd2.src, 4736 &nk->addr[pd2.sidx], pd2.af) || 4737 nk->port[pd2.sidx] != th.th_sport) 4738 pf_change_icmp(pd2.src, &th.th_sport, 4739 daddr, &nk->addr[pd2.sidx], 4740 nk->port[pd2.sidx], NULL, 4741 pd2.ip_sum, icmpsum, 4742 pd->ip_sum, 0, pd2.af); 4743 4744 if (PF_ANEQ(pd2.dst, 4745 &nk->addr[pd2.didx], pd2.af) || 4746 nk->port[pd2.didx] != th.th_dport) 4747 pf_change_icmp(pd2.dst, &th.th_dport, 4748 NULL, /* XXX Inbound NAT? */ 4749 &nk->addr[pd2.didx], 4750 nk->port[pd2.didx], NULL, 4751 pd2.ip_sum, icmpsum, 4752 pd->ip_sum, 0, pd2.af); 4753 copyback = 1; 4754 } 4755 4756 if (copyback) { 4757 switch (pd2.af) { 4758 #ifdef INET 4759 case AF_INET: 4760 m_copyback(m, off, ICMP_MINLEN, 4761 (caddr_t )pd->hdr.icmp); 4762 m_copyback(m, ipoff2, sizeof(h2), 4763 (caddr_t )&h2); 4764 break; 4765 #endif /* INET */ 4766 #ifdef INET6 4767 case AF_INET6: 4768 m_copyback(m, off, 4769 sizeof(struct icmp6_hdr), 4770 (caddr_t )pd->hdr.icmp6); 4771 m_copyback(m, ipoff2, sizeof(h2_6), 4772 (caddr_t )&h2_6); 4773 break; 4774 #endif /* INET6 */ 4775 } 4776 m_copyback(m, off2, 8, (caddr_t)&th); 4777 } 4778 4779 return (PF_PASS); 4780 break; 4781 } 4782 case IPPROTO_UDP: { 4783 struct udphdr uh; 4784 4785 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4786 NULL, reason, pd2.af)) { 4787 DPFPRINTF(PF_DEBUG_MISC, 4788 ("pf: ICMP error message too short " 4789 "(udp)\n")); 4790 return (PF_DROP); 4791 } 4792 4793 key.af = pd2.af; 4794 key.proto = IPPROTO_UDP; 4795 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4796 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4797 key.port[pd2.sidx] = uh.uh_sport; 4798 key.port[pd2.didx] = uh.uh_dport; 4799 4800 STATE_LOOKUP(kif, &key, direction, *state, pd); 4801 4802 /* translate source/destination address, if necessary */ 4803 if ((*state)->key[PF_SK_WIRE] != 4804 (*state)->key[PF_SK_STACK]) { 4805 struct pf_state_key *nk = 4806 (*state)->key[pd->didx]; 4807 4808 if (PF_ANEQ(pd2.src, 4809 &nk->addr[pd2.sidx], pd2.af) || 4810 nk->port[pd2.sidx] != uh.uh_sport) 4811 pf_change_icmp(pd2.src, &uh.uh_sport, 4812 daddr, &nk->addr[pd2.sidx], 4813 nk->port[pd2.sidx], &uh.uh_sum, 4814 pd2.ip_sum, icmpsum, 4815 pd->ip_sum, 1, pd2.af); 4816 4817 if (PF_ANEQ(pd2.dst, 4818 &nk->addr[pd2.didx], pd2.af) || 4819 nk->port[pd2.didx] != uh.uh_dport) 4820 pf_change_icmp(pd2.dst, &uh.uh_dport, 4821 NULL, /* XXX Inbound NAT? */ 4822 &nk->addr[pd2.didx], 4823 nk->port[pd2.didx], &uh.uh_sum, 4824 pd2.ip_sum, icmpsum, 4825 pd->ip_sum, 1, pd2.af); 4826 4827 switch (pd2.af) { 4828 #ifdef INET 4829 case AF_INET: 4830 m_copyback(m, off, ICMP_MINLEN, 4831 (caddr_t )pd->hdr.icmp); 4832 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4833 break; 4834 #endif /* INET */ 4835 #ifdef INET6 4836 case AF_INET6: 4837 m_copyback(m, off, 4838 sizeof(struct icmp6_hdr), 4839 (caddr_t )pd->hdr.icmp6); 4840 m_copyback(m, ipoff2, sizeof(h2_6), 4841 (caddr_t )&h2_6); 4842 break; 4843 #endif /* INET6 */ 4844 } 4845 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4846 } 4847 return (PF_PASS); 4848 break; 4849 } 4850 #ifdef INET 4851 case IPPROTO_ICMP: { 4852 struct icmp iih; 4853 4854 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4855 NULL, reason, pd2.af)) { 4856 DPFPRINTF(PF_DEBUG_MISC, 4857 ("pf: ICMP error message too short i" 4858 "(icmp)\n")); 4859 return (PF_DROP); 4860 } 4861 4862 key.af = pd2.af; 4863 key.proto = IPPROTO_ICMP; 4864 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4865 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4866 key.port[0] = key.port[1] = iih.icmp_id; 4867 4868 STATE_LOOKUP(kif, &key, direction, *state, pd); 4869 4870 /* translate source/destination address, if necessary */ 4871 if ((*state)->key[PF_SK_WIRE] != 4872 (*state)->key[PF_SK_STACK]) { 4873 struct pf_state_key *nk = 4874 (*state)->key[pd->didx]; 4875 4876 if (PF_ANEQ(pd2.src, 4877 &nk->addr[pd2.sidx], pd2.af) || 4878 nk->port[pd2.sidx] != iih.icmp_id) 4879 pf_change_icmp(pd2.src, &iih.icmp_id, 4880 daddr, &nk->addr[pd2.sidx], 4881 nk->port[pd2.sidx], NULL, 4882 pd2.ip_sum, icmpsum, 4883 pd->ip_sum, 0, AF_INET); 4884 4885 if (PF_ANEQ(pd2.dst, 4886 &nk->addr[pd2.didx], pd2.af) || 4887 nk->port[pd2.didx] != iih.icmp_id) 4888 pf_change_icmp(pd2.dst, &iih.icmp_id, 4889 NULL, /* XXX Inbound NAT? */ 4890 &nk->addr[pd2.didx], 4891 nk->port[pd2.didx], NULL, 4892 pd2.ip_sum, icmpsum, 4893 pd->ip_sum, 0, AF_INET); 4894 4895 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 4896 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4897 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 4898 } 4899 return (PF_PASS); 4900 break; 4901 } 4902 #endif /* INET */ 4903 #ifdef INET6 4904 case IPPROTO_ICMPV6: { 4905 struct icmp6_hdr iih; 4906 4907 if (!pf_pull_hdr(m, off2, &iih, 4908 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 4909 DPFPRINTF(PF_DEBUG_MISC, 4910 ("pf: ICMP error message too short " 4911 "(icmp6)\n")); 4912 return (PF_DROP); 4913 } 4914 4915 key.af = pd2.af; 4916 key.proto = IPPROTO_ICMPV6; 4917 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4918 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4919 key.port[0] = key.port[1] = iih.icmp6_id; 4920 4921 STATE_LOOKUP(kif, &key, direction, *state, pd); 4922 4923 /* translate source/destination address, if necessary */ 4924 if ((*state)->key[PF_SK_WIRE] != 4925 (*state)->key[PF_SK_STACK]) { 4926 struct pf_state_key *nk = 4927 (*state)->key[pd->didx]; 4928 4929 if (PF_ANEQ(pd2.src, 4930 &nk->addr[pd2.sidx], pd2.af) || 4931 nk->port[pd2.sidx] != iih.icmp6_id) 4932 pf_change_icmp(pd2.src, &iih.icmp6_id, 4933 daddr, &nk->addr[pd2.sidx], 4934 nk->port[pd2.sidx], NULL, 4935 pd2.ip_sum, icmpsum, 4936 pd->ip_sum, 0, AF_INET6); 4937 4938 if (PF_ANEQ(pd2.dst, 4939 &nk->addr[pd2.didx], pd2.af) || 4940 nk->port[pd2.didx] != iih.icmp6_id) 4941 pf_change_icmp(pd2.dst, &iih.icmp6_id, 4942 NULL, /* XXX Inbound NAT? */ 4943 &nk->addr[pd2.didx], 4944 nk->port[pd2.didx], NULL, 4945 pd2.ip_sum, icmpsum, 4946 pd->ip_sum, 0, AF_INET6); 4947 4948 m_copyback(m, off, sizeof(struct icmp6_hdr), 4949 (caddr_t)pd->hdr.icmp6); 4950 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 4951 m_copyback(m, off2, sizeof(struct icmp6_hdr), 4952 (caddr_t)&iih); 4953 } 4954 return (PF_PASS); 4955 break; 4956 } 4957 #endif /* INET6 */ 4958 default: { 4959 key.af = pd2.af; 4960 key.proto = pd2.proto; 4961 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4962 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4963 key.port[0] = key.port[1] = 0; 4964 4965 STATE_LOOKUP(kif, &key, direction, *state, pd); 4966 4967 /* translate source/destination address, if necessary */ 4968 if ((*state)->key[PF_SK_WIRE] != 4969 (*state)->key[PF_SK_STACK]) { 4970 struct pf_state_key *nk = 4971 (*state)->key[pd->didx]; 4972 4973 if (PF_ANEQ(pd2.src, 4974 &nk->addr[pd2.sidx], pd2.af)) 4975 pf_change_icmp(pd2.src, NULL, daddr, 4976 &nk->addr[pd2.sidx], 0, NULL, 4977 pd2.ip_sum, icmpsum, 4978 pd->ip_sum, 0, pd2.af); 4979 4980 if (PF_ANEQ(pd2.dst, 4981 &nk->addr[pd2.didx], pd2.af)) 4982 pf_change_icmp(pd2.src, NULL, 4983 NULL, /* XXX Inbound NAT? */ 4984 &nk->addr[pd2.didx], 0, NULL, 4985 pd2.ip_sum, icmpsum, 4986 pd->ip_sum, 0, pd2.af); 4987 4988 switch (pd2.af) { 4989 #ifdef INET 4990 case AF_INET: 4991 m_copyback(m, off, ICMP_MINLEN, 4992 (caddr_t)pd->hdr.icmp); 4993 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4994 break; 4995 #endif /* INET */ 4996 #ifdef INET6 4997 case AF_INET6: 4998 m_copyback(m, off, 4999 sizeof(struct icmp6_hdr), 5000 (caddr_t )pd->hdr.icmp6); 5001 m_copyback(m, ipoff2, sizeof(h2_6), 5002 (caddr_t )&h2_6); 5003 break; 5004 #endif /* INET6 */ 5005 } 5006 } 5007 return (PF_PASS); 5008 break; 5009 } 5010 } 5011 } 5012 } 5013 5014 static int 5015 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5016 struct mbuf *m, struct pf_pdesc *pd) 5017 { 5018 struct pf_state_peer *src, *dst; 5019 struct pf_state_key_cmp key; 5020 5021 bzero(&key, sizeof(key)); 5022 key.af = pd->af; 5023 key.proto = pd->proto; 5024 if (direction == PF_IN) { 5025 PF_ACPY(&key.addr[0], pd->src, key.af); 5026 PF_ACPY(&key.addr[1], pd->dst, key.af); 5027 key.port[0] = key.port[1] = 0; 5028 } else { 5029 PF_ACPY(&key.addr[1], pd->src, key.af); 5030 PF_ACPY(&key.addr[0], pd->dst, key.af); 5031 key.port[1] = key.port[0] = 0; 5032 } 5033 5034 STATE_LOOKUP(kif, &key, direction, *state, pd); 5035 5036 if (direction == (*state)->direction) { 5037 src = &(*state)->src; 5038 dst = &(*state)->dst; 5039 } else { 5040 src = &(*state)->dst; 5041 dst = &(*state)->src; 5042 } 5043 5044 /* update states */ 5045 if (src->state < PFOTHERS_SINGLE) 5046 src->state = PFOTHERS_SINGLE; 5047 if (dst->state == PFOTHERS_SINGLE) 5048 dst->state = PFOTHERS_MULTIPLE; 5049 5050 /* update expire time */ 5051 (*state)->expire = time_uptime; 5052 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5053 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5054 else 5055 (*state)->timeout = PFTM_OTHER_SINGLE; 5056 5057 /* translate source/destination address, if necessary */ 5058 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5059 struct pf_state_key *nk = (*state)->key[pd->didx]; 5060 5061 KASSERT(nk, ("%s: nk is null", __func__)); 5062 KASSERT(pd, ("%s: pd is null", __func__)); 5063 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5064 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5065 switch (pd->af) { 5066 #ifdef INET 5067 case AF_INET: 5068 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5069 pf_change_a(&pd->src->v4.s_addr, 5070 pd->ip_sum, 5071 nk->addr[pd->sidx].v4.s_addr, 5072 0); 5073 5074 5075 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5076 pf_change_a(&pd->dst->v4.s_addr, 5077 pd->ip_sum, 5078 nk->addr[pd->didx].v4.s_addr, 5079 0); 5080 5081 break; 5082 #endif /* INET */ 5083 #ifdef INET6 5084 case AF_INET6: 5085 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5086 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5087 5088 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5089 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5090 #endif /* INET6 */ 5091 } 5092 } 5093 return (PF_PASS); 5094 } 5095 5096 /* 5097 * ipoff and off are measured from the start of the mbuf chain. 5098 * h must be at "ipoff" on the mbuf chain. 5099 */ 5100 void * 5101 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5102 u_short *actionp, u_short *reasonp, sa_family_t af) 5103 { 5104 switch (af) { 5105 #ifdef INET 5106 case AF_INET: { 5107 struct ip *h = mtod(m, struct ip *); 5108 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5109 5110 if (fragoff) { 5111 if (fragoff >= len) 5112 ACTION_SET(actionp, PF_PASS); 5113 else { 5114 ACTION_SET(actionp, PF_DROP); 5115 REASON_SET(reasonp, PFRES_FRAG); 5116 } 5117 return (NULL); 5118 } 5119 if (m->m_pkthdr.len < off + len || 5120 ntohs(h->ip_len) < off + len) { 5121 ACTION_SET(actionp, PF_DROP); 5122 REASON_SET(reasonp, PFRES_SHORT); 5123 return (NULL); 5124 } 5125 break; 5126 } 5127 #endif /* INET */ 5128 #ifdef INET6 5129 case AF_INET6: { 5130 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5131 5132 if (m->m_pkthdr.len < off + len || 5133 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5134 (unsigned)(off + len)) { 5135 ACTION_SET(actionp, PF_DROP); 5136 REASON_SET(reasonp, PFRES_SHORT); 5137 return (NULL); 5138 } 5139 break; 5140 } 5141 #endif /* INET6 */ 5142 } 5143 m_copydata(m, off, len, p); 5144 return (p); 5145 } 5146 5147 int 5148 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5149 int rtableid) 5150 { 5151 #ifdef RADIX_MPATH 5152 struct radix_node_head *rnh; 5153 #endif 5154 struct sockaddr_in *dst; 5155 int ret = 1; 5156 int check_mpath; 5157 #ifdef INET6 5158 struct sockaddr_in6 *dst6; 5159 struct route_in6 ro; 5160 #else 5161 struct route ro; 5162 #endif 5163 struct radix_node *rn; 5164 struct rtentry *rt; 5165 struct ifnet *ifp; 5166 5167 check_mpath = 0; 5168 #ifdef RADIX_MPATH 5169 /* XXX: stick to table 0 for now */ 5170 rnh = rt_tables_get_rnh(0, af); 5171 if (rnh != NULL && rn_mpath_capable(rnh)) 5172 check_mpath = 1; 5173 #endif 5174 bzero(&ro, sizeof(ro)); 5175 switch (af) { 5176 case AF_INET: 5177 dst = satosin(&ro.ro_dst); 5178 dst->sin_family = AF_INET; 5179 dst->sin_len = sizeof(*dst); 5180 dst->sin_addr = addr->v4; 5181 break; 5182 #ifdef INET6 5183 case AF_INET6: 5184 /* 5185 * Skip check for addresses with embedded interface scope, 5186 * as they would always match anyway. 5187 */ 5188 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5189 goto out; 5190 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5191 dst6->sin6_family = AF_INET6; 5192 dst6->sin6_len = sizeof(*dst6); 5193 dst6->sin6_addr = addr->v6; 5194 break; 5195 #endif /* INET6 */ 5196 default: 5197 return (0); 5198 } 5199 5200 /* Skip checks for ipsec interfaces */ 5201 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5202 goto out; 5203 5204 switch (af) { 5205 #ifdef INET6 5206 case AF_INET6: 5207 in6_rtalloc_ign(&ro, 0, rtableid); 5208 break; 5209 #endif 5210 #ifdef INET 5211 case AF_INET: 5212 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5213 break; 5214 #endif 5215 default: 5216 rtalloc_ign((struct route *)&ro, 0); /* No/default FIB. */ 5217 break; 5218 } 5219 5220 if (ro.ro_rt != NULL) { 5221 /* No interface given, this is a no-route check */ 5222 if (kif == NULL) 5223 goto out; 5224 5225 if (kif->pfik_ifp == NULL) { 5226 ret = 0; 5227 goto out; 5228 } 5229 5230 /* Perform uRPF check if passed input interface */ 5231 ret = 0; 5232 rn = (struct radix_node *)ro.ro_rt; 5233 do { 5234 rt = (struct rtentry *)rn; 5235 ifp = rt->rt_ifp; 5236 5237 if (kif->pfik_ifp == ifp) 5238 ret = 1; 5239 #ifdef RADIX_MPATH 5240 rn = rn_mpath_next(rn); 5241 #endif 5242 } while (check_mpath == 1 && rn != NULL && ret == 0); 5243 } else 5244 ret = 0; 5245 out: 5246 if (ro.ro_rt != NULL) 5247 RTFREE(ro.ro_rt); 5248 return (ret); 5249 } 5250 5251 #ifdef INET 5252 static void 5253 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5254 struct pf_state *s, struct pf_pdesc *pd) 5255 { 5256 struct mbuf *m0, *m1; 5257 struct sockaddr_in dst; 5258 struct ip *ip; 5259 struct ifnet *ifp = NULL; 5260 struct pf_addr naddr; 5261 struct pf_src_node *sn = NULL; 5262 int error = 0; 5263 uint16_t ip_len, ip_off; 5264 5265 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5266 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5267 __func__)); 5268 5269 if ((pd->pf_mtag == NULL && 5270 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5271 pd->pf_mtag->routed++ > 3) { 5272 m0 = *m; 5273 *m = NULL; 5274 goto bad_locked; 5275 } 5276 5277 if (r->rt == PF_DUPTO) { 5278 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5279 if (s) 5280 PF_STATE_UNLOCK(s); 5281 return; 5282 } 5283 } else { 5284 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5285 if (s) 5286 PF_STATE_UNLOCK(s); 5287 return; 5288 } 5289 m0 = *m; 5290 } 5291 5292 ip = mtod(m0, struct ip *); 5293 5294 bzero(&dst, sizeof(dst)); 5295 dst.sin_family = AF_INET; 5296 dst.sin_len = sizeof(dst); 5297 dst.sin_addr = ip->ip_dst; 5298 5299 if (r->rt == PF_FASTROUTE) { 5300 struct rtentry *rt; 5301 5302 if (s) 5303 PF_STATE_UNLOCK(s); 5304 rt = rtalloc1_fib(sintosa(&dst), 0, 0, M_GETFIB(m0)); 5305 if (rt == NULL) { 5306 KMOD_IPSTAT_INC(ips_noroute); 5307 error = EHOSTUNREACH; 5308 goto bad; 5309 } 5310 5311 ifp = rt->rt_ifp; 5312 counter_u64_add(rt->rt_pksent, 1); 5313 5314 if (rt->rt_flags & RTF_GATEWAY) 5315 bcopy(satosin(rt->rt_gateway), &dst, sizeof(dst)); 5316 RTFREE_LOCKED(rt); 5317 } else { 5318 if (TAILQ_EMPTY(&r->rpool.list)) { 5319 DPFPRINTF(PF_DEBUG_URGENT, 5320 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5321 goto bad_locked; 5322 } 5323 if (s == NULL) { 5324 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5325 &naddr, NULL, &sn); 5326 if (!PF_AZERO(&naddr, AF_INET)) 5327 dst.sin_addr.s_addr = naddr.v4.s_addr; 5328 ifp = r->rpool.cur->kif ? 5329 r->rpool.cur->kif->pfik_ifp : NULL; 5330 } else { 5331 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5332 dst.sin_addr.s_addr = 5333 s->rt_addr.v4.s_addr; 5334 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5335 PF_STATE_UNLOCK(s); 5336 } 5337 } 5338 if (ifp == NULL) 5339 goto bad; 5340 5341 if (oifp != ifp) { 5342 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5343 goto bad; 5344 else if (m0 == NULL) 5345 goto done; 5346 if (m0->m_len < sizeof(struct ip)) { 5347 DPFPRINTF(PF_DEBUG_URGENT, 5348 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5349 goto bad; 5350 } 5351 ip = mtod(m0, struct ip *); 5352 } 5353 5354 if (ifp->if_flags & IFF_LOOPBACK) 5355 m0->m_flags |= M_SKIP_FIREWALL; 5356 5357 ip_len = ntohs(ip->ip_len); 5358 ip_off = ntohs(ip->ip_off); 5359 5360 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5361 m0->m_pkthdr.csum_flags |= CSUM_IP; 5362 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5363 in_delayed_cksum(m0); 5364 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5365 } 5366 #ifdef SCTP 5367 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5368 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5369 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5370 } 5371 #endif 5372 5373 /* 5374 * If small enough for interface, or the interface will take 5375 * care of the fragmentation for us, we can just send directly. 5376 */ 5377 if (ip_len <= ifp->if_mtu || 5378 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5379 ip->ip_sum = 0; 5380 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5381 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5382 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5383 } 5384 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5385 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5386 goto done; 5387 } 5388 5389 /* Balk when DF bit is set or the interface didn't support TSO. */ 5390 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5391 error = EMSGSIZE; 5392 KMOD_IPSTAT_INC(ips_cantfrag); 5393 if (r->rt != PF_DUPTO) { 5394 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5395 ifp->if_mtu); 5396 goto done; 5397 } else 5398 goto bad; 5399 } 5400 5401 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5402 if (error) 5403 goto bad; 5404 5405 for (; m0; m0 = m1) { 5406 m1 = m0->m_nextpkt; 5407 m0->m_nextpkt = NULL; 5408 if (error == 0) { 5409 m_clrprotoflags(m0); 5410 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5411 } else 5412 m_freem(m0); 5413 } 5414 5415 if (error == 0) 5416 KMOD_IPSTAT_INC(ips_fragmented); 5417 5418 done: 5419 if (r->rt != PF_DUPTO) 5420 *m = NULL; 5421 return; 5422 5423 bad_locked: 5424 if (s) 5425 PF_STATE_UNLOCK(s); 5426 bad: 5427 m_freem(m0); 5428 goto done; 5429 } 5430 #endif /* INET */ 5431 5432 #ifdef INET6 5433 static void 5434 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5435 struct pf_state *s, struct pf_pdesc *pd) 5436 { 5437 struct mbuf *m0; 5438 struct sockaddr_in6 dst; 5439 struct ip6_hdr *ip6; 5440 struct ifnet *ifp = NULL; 5441 struct pf_addr naddr; 5442 struct pf_src_node *sn = NULL; 5443 5444 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5445 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5446 __func__)); 5447 5448 if ((pd->pf_mtag == NULL && 5449 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5450 pd->pf_mtag->routed++ > 3) { 5451 m0 = *m; 5452 *m = NULL; 5453 goto bad_locked; 5454 } 5455 5456 if (r->rt == PF_DUPTO) { 5457 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5458 if (s) 5459 PF_STATE_UNLOCK(s); 5460 return; 5461 } 5462 } else { 5463 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5464 if (s) 5465 PF_STATE_UNLOCK(s); 5466 return; 5467 } 5468 m0 = *m; 5469 } 5470 5471 ip6 = mtod(m0, struct ip6_hdr *); 5472 5473 bzero(&dst, sizeof(dst)); 5474 dst.sin6_family = AF_INET6; 5475 dst.sin6_len = sizeof(dst); 5476 dst.sin6_addr = ip6->ip6_dst; 5477 5478 /* Cheat. XXX why only in the v6 case??? */ 5479 if (r->rt == PF_FASTROUTE) { 5480 if (s) 5481 PF_STATE_UNLOCK(s); 5482 m0->m_flags |= M_SKIP_FIREWALL; 5483 ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL); 5484 *m = NULL; 5485 return; 5486 } 5487 5488 if (TAILQ_EMPTY(&r->rpool.list)) { 5489 DPFPRINTF(PF_DEBUG_URGENT, 5490 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5491 goto bad_locked; 5492 } 5493 if (s == NULL) { 5494 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5495 &naddr, NULL, &sn); 5496 if (!PF_AZERO(&naddr, AF_INET6)) 5497 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5498 &naddr, AF_INET6); 5499 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5500 } else { 5501 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5502 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5503 &s->rt_addr, AF_INET6); 5504 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5505 } 5506 5507 if (s) 5508 PF_STATE_UNLOCK(s); 5509 5510 if (ifp == NULL) 5511 goto bad; 5512 5513 if (oifp != ifp) { 5514 if (pf_test6(PF_FWD, ifp, &m0, NULL) != PF_PASS) 5515 goto bad; 5516 else if (m0 == NULL) 5517 goto done; 5518 if (m0->m_len < sizeof(struct ip6_hdr)) { 5519 DPFPRINTF(PF_DEBUG_URGENT, 5520 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5521 __func__)); 5522 goto bad; 5523 } 5524 ip6 = mtod(m0, struct ip6_hdr *); 5525 } 5526 5527 if (ifp->if_flags & IFF_LOOPBACK) 5528 m0->m_flags |= M_SKIP_FIREWALL; 5529 5530 /* 5531 * If the packet is too large for the outgoing interface, 5532 * send back an icmp6 error. 5533 */ 5534 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5535 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5536 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5537 nd6_output_ifp(ifp, ifp, m0, &dst); 5538 else { 5539 in6_ifstat_inc(ifp, ifs6_in_toobig); 5540 if (r->rt != PF_DUPTO) 5541 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5542 else 5543 goto bad; 5544 } 5545 5546 done: 5547 if (r->rt != PF_DUPTO) 5548 *m = NULL; 5549 return; 5550 5551 bad_locked: 5552 if (s) 5553 PF_STATE_UNLOCK(s); 5554 bad: 5555 m_freem(m0); 5556 goto done; 5557 } 5558 #endif /* INET6 */ 5559 5560 /* 5561 * FreeBSD supports cksum offloads for the following drivers. 5562 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5563 * ti(4), txp(4), xl(4) 5564 * 5565 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5566 * network driver performed cksum including pseudo header, need to verify 5567 * csum_data 5568 * CSUM_DATA_VALID : 5569 * network driver performed cksum, needs to additional pseudo header 5570 * cksum computation with partial csum_data(i.e. lack of H/W support for 5571 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5572 * 5573 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5574 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5575 * TCP/UDP layer. 5576 * Also, set csum_data to 0xffff to force cksum validation. 5577 */ 5578 static int 5579 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5580 { 5581 u_int16_t sum = 0; 5582 int hw_assist = 0; 5583 struct ip *ip; 5584 5585 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5586 return (1); 5587 if (m->m_pkthdr.len < off + len) 5588 return (1); 5589 5590 switch (p) { 5591 case IPPROTO_TCP: 5592 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5593 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5594 sum = m->m_pkthdr.csum_data; 5595 } else { 5596 ip = mtod(m, struct ip *); 5597 sum = in_pseudo(ip->ip_src.s_addr, 5598 ip->ip_dst.s_addr, htonl((u_short)len + 5599 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5600 } 5601 sum ^= 0xffff; 5602 ++hw_assist; 5603 } 5604 break; 5605 case IPPROTO_UDP: 5606 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5607 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5608 sum = m->m_pkthdr.csum_data; 5609 } else { 5610 ip = mtod(m, struct ip *); 5611 sum = in_pseudo(ip->ip_src.s_addr, 5612 ip->ip_dst.s_addr, htonl((u_short)len + 5613 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5614 } 5615 sum ^= 0xffff; 5616 ++hw_assist; 5617 } 5618 break; 5619 case IPPROTO_ICMP: 5620 #ifdef INET6 5621 case IPPROTO_ICMPV6: 5622 #endif /* INET6 */ 5623 break; 5624 default: 5625 return (1); 5626 } 5627 5628 if (!hw_assist) { 5629 switch (af) { 5630 case AF_INET: 5631 if (p == IPPROTO_ICMP) { 5632 if (m->m_len < off) 5633 return (1); 5634 m->m_data += off; 5635 m->m_len -= off; 5636 sum = in_cksum(m, len); 5637 m->m_data -= off; 5638 m->m_len += off; 5639 } else { 5640 if (m->m_len < sizeof(struct ip)) 5641 return (1); 5642 sum = in4_cksum(m, p, off, len); 5643 } 5644 break; 5645 #ifdef INET6 5646 case AF_INET6: 5647 if (m->m_len < sizeof(struct ip6_hdr)) 5648 return (1); 5649 sum = in6_cksum(m, p, off, len); 5650 break; 5651 #endif /* INET6 */ 5652 default: 5653 return (1); 5654 } 5655 } 5656 if (sum) { 5657 switch (p) { 5658 case IPPROTO_TCP: 5659 { 5660 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5661 break; 5662 } 5663 case IPPROTO_UDP: 5664 { 5665 KMOD_UDPSTAT_INC(udps_badsum); 5666 break; 5667 } 5668 #ifdef INET 5669 case IPPROTO_ICMP: 5670 { 5671 KMOD_ICMPSTAT_INC(icps_checksum); 5672 break; 5673 } 5674 #endif 5675 #ifdef INET6 5676 case IPPROTO_ICMPV6: 5677 { 5678 KMOD_ICMP6STAT_INC(icp6s_checksum); 5679 break; 5680 } 5681 #endif /* INET6 */ 5682 } 5683 return (1); 5684 } else { 5685 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5686 m->m_pkthdr.csum_flags |= 5687 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5688 m->m_pkthdr.csum_data = 0xffff; 5689 } 5690 } 5691 return (0); 5692 } 5693 5694 5695 #ifdef INET 5696 int 5697 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5698 { 5699 struct pfi_kif *kif; 5700 u_short action, reason = 0, log = 0; 5701 struct mbuf *m = *m0; 5702 struct ip *h = NULL; 5703 struct m_tag *ipfwtag; 5704 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5705 struct pf_state *s = NULL; 5706 struct pf_ruleset *ruleset = NULL; 5707 struct pf_pdesc pd; 5708 int off, dirndx, pqid = 0; 5709 5710 M_ASSERTPKTHDR(m); 5711 5712 if (!V_pf_status.running) 5713 return (PF_PASS); 5714 5715 memset(&pd, 0, sizeof(pd)); 5716 5717 kif = (struct pfi_kif *)ifp->if_pf_kif; 5718 5719 if (kif == NULL) { 5720 DPFPRINTF(PF_DEBUG_URGENT, 5721 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5722 return (PF_DROP); 5723 } 5724 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5725 return (PF_PASS); 5726 5727 if (m->m_flags & M_SKIP_FIREWALL) 5728 return (PF_PASS); 5729 5730 pd.pf_mtag = pf_find_mtag(m); 5731 5732 PF_RULES_RLOCK(); 5733 5734 if (ip_divert_ptr != NULL && 5735 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5736 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5737 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5738 if (pd.pf_mtag == NULL && 5739 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5740 action = PF_DROP; 5741 goto done; 5742 } 5743 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5744 m_tag_delete(m, ipfwtag); 5745 } 5746 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5747 m->m_flags |= M_FASTFWD_OURS; 5748 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5749 } 5750 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5751 /* We do IP header normalization and packet reassembly here */ 5752 action = PF_DROP; 5753 goto done; 5754 } 5755 m = *m0; /* pf_normalize messes with m0 */ 5756 h = mtod(m, struct ip *); 5757 5758 off = h->ip_hl << 2; 5759 if (off < (int)sizeof(struct ip)) { 5760 action = PF_DROP; 5761 REASON_SET(&reason, PFRES_SHORT); 5762 log = 1; 5763 goto done; 5764 } 5765 5766 pd.src = (struct pf_addr *)&h->ip_src; 5767 pd.dst = (struct pf_addr *)&h->ip_dst; 5768 pd.sport = pd.dport = NULL; 5769 pd.ip_sum = &h->ip_sum; 5770 pd.proto_sum = NULL; 5771 pd.proto = h->ip_p; 5772 pd.dir = dir; 5773 pd.sidx = (dir == PF_IN) ? 0 : 1; 5774 pd.didx = (dir == PF_IN) ? 1 : 0; 5775 pd.af = AF_INET; 5776 pd.tos = h->ip_tos; 5777 pd.tot_len = ntohs(h->ip_len); 5778 5779 /* handle fragments that didn't get reassembled by normalization */ 5780 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5781 action = pf_test_fragment(&r, dir, kif, m, h, 5782 &pd, &a, &ruleset); 5783 goto done; 5784 } 5785 5786 switch (h->ip_p) { 5787 5788 case IPPROTO_TCP: { 5789 struct tcphdr th; 5790 5791 pd.hdr.tcp = &th; 5792 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5793 &action, &reason, AF_INET)) { 5794 log = action != PF_PASS; 5795 goto done; 5796 } 5797 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5798 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5799 pqid = 1; 5800 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5801 if (action == PF_DROP) 5802 goto done; 5803 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5804 &reason); 5805 if (action == PF_PASS) { 5806 if (pfsync_update_state_ptr != NULL) 5807 pfsync_update_state_ptr(s); 5808 r = s->rule.ptr; 5809 a = s->anchor.ptr; 5810 log = s->log; 5811 } else if (s == NULL) 5812 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5813 &a, &ruleset, inp); 5814 break; 5815 } 5816 5817 case IPPROTO_UDP: { 5818 struct udphdr uh; 5819 5820 pd.hdr.udp = &uh; 5821 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5822 &action, &reason, AF_INET)) { 5823 log = action != PF_PASS; 5824 goto done; 5825 } 5826 if (uh.uh_dport == 0 || 5827 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5828 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5829 action = PF_DROP; 5830 REASON_SET(&reason, PFRES_SHORT); 5831 goto done; 5832 } 5833 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5834 if (action == PF_PASS) { 5835 if (pfsync_update_state_ptr != NULL) 5836 pfsync_update_state_ptr(s); 5837 r = s->rule.ptr; 5838 a = s->anchor.ptr; 5839 log = s->log; 5840 } else if (s == NULL) 5841 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5842 &a, &ruleset, inp); 5843 break; 5844 } 5845 5846 case IPPROTO_ICMP: { 5847 struct icmp ih; 5848 5849 pd.hdr.icmp = &ih; 5850 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 5851 &action, &reason, AF_INET)) { 5852 log = action != PF_PASS; 5853 goto done; 5854 } 5855 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 5856 &reason); 5857 if (action == PF_PASS) { 5858 if (pfsync_update_state_ptr != NULL) 5859 pfsync_update_state_ptr(s); 5860 r = s->rule.ptr; 5861 a = s->anchor.ptr; 5862 log = s->log; 5863 } else if (s == NULL) 5864 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5865 &a, &ruleset, inp); 5866 break; 5867 } 5868 5869 #ifdef INET6 5870 case IPPROTO_ICMPV6: { 5871 action = PF_DROP; 5872 DPFPRINTF(PF_DEBUG_MISC, 5873 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 5874 goto done; 5875 } 5876 #endif 5877 5878 default: 5879 action = pf_test_state_other(&s, dir, kif, m, &pd); 5880 if (action == PF_PASS) { 5881 if (pfsync_update_state_ptr != NULL) 5882 pfsync_update_state_ptr(s); 5883 r = s->rule.ptr; 5884 a = s->anchor.ptr; 5885 log = s->log; 5886 } else if (s == NULL) 5887 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5888 &a, &ruleset, inp); 5889 break; 5890 } 5891 5892 done: 5893 PF_RULES_RUNLOCK(); 5894 if (action == PF_PASS && h->ip_hl > 5 && 5895 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 5896 action = PF_DROP; 5897 REASON_SET(&reason, PFRES_IPOPTIONS); 5898 log = r->log; 5899 DPFPRINTF(PF_DEBUG_MISC, 5900 ("pf: dropping packet with ip options\n")); 5901 } 5902 5903 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 5904 action = PF_DROP; 5905 REASON_SET(&reason, PFRES_MEMORY); 5906 } 5907 if (r->rtableid >= 0) 5908 M_SETFIB(m, r->rtableid); 5909 5910 #ifdef ALTQ 5911 if (action == PF_PASS && r->qid) { 5912 if (pd.pf_mtag == NULL && 5913 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5914 action = PF_DROP; 5915 REASON_SET(&reason, PFRES_MEMORY); 5916 } else { 5917 if (s != NULL) 5918 pd.pf_mtag->qid_hash = pf_state_hash(s); 5919 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 5920 pd.pf_mtag->qid = r->pqid; 5921 else 5922 pd.pf_mtag->qid = r->qid; 5923 /* Add hints for ecn. */ 5924 pd.pf_mtag->hdr = h; 5925 } 5926 5927 } 5928 #endif /* ALTQ */ 5929 5930 /* 5931 * connections redirected to loopback should not match sockets 5932 * bound specifically to loopback due to security implications, 5933 * see tcp_input() and in_pcblookup_listen(). 5934 */ 5935 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 5936 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 5937 (s->nat_rule.ptr->action == PF_RDR || 5938 s->nat_rule.ptr->action == PF_BINAT) && 5939 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 5940 m->m_flags |= M_SKIP_FIREWALL; 5941 5942 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 5943 !PACKET_LOOPED(&pd)) { 5944 5945 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 5946 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 5947 if (ipfwtag != NULL) { 5948 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 5949 ntohs(r->divert.port); 5950 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 5951 5952 if (s) 5953 PF_STATE_UNLOCK(s); 5954 5955 m_tag_prepend(m, ipfwtag); 5956 if (m->m_flags & M_FASTFWD_OURS) { 5957 if (pd.pf_mtag == NULL && 5958 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5959 action = PF_DROP; 5960 REASON_SET(&reason, PFRES_MEMORY); 5961 log = 1; 5962 DPFPRINTF(PF_DEBUG_MISC, 5963 ("pf: failed to allocate tag\n")); 5964 } else { 5965 pd.pf_mtag->flags |= 5966 PF_FASTFWD_OURS_PRESENT; 5967 m->m_flags &= ~M_FASTFWD_OURS; 5968 } 5969 } 5970 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 5971 *m0 = NULL; 5972 5973 return (action); 5974 } else { 5975 /* XXX: ipfw has the same behaviour! */ 5976 action = PF_DROP; 5977 REASON_SET(&reason, PFRES_MEMORY); 5978 log = 1; 5979 DPFPRINTF(PF_DEBUG_MISC, 5980 ("pf: failed to allocate divert tag\n")); 5981 } 5982 } 5983 5984 if (log) { 5985 struct pf_rule *lr; 5986 5987 if (s != NULL && s->nat_rule.ptr != NULL && 5988 s->nat_rule.ptr->log & PF_LOG_ALL) 5989 lr = s->nat_rule.ptr; 5990 else 5991 lr = r; 5992 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 5993 (s == NULL)); 5994 } 5995 5996 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 5997 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 5998 5999 if (action == PF_PASS || r->action == PF_DROP) { 6000 dirndx = (dir == PF_OUT); 6001 r->packets[dirndx]++; 6002 r->bytes[dirndx] += pd.tot_len; 6003 if (a != NULL) { 6004 a->packets[dirndx]++; 6005 a->bytes[dirndx] += pd.tot_len; 6006 } 6007 if (s != NULL) { 6008 if (s->nat_rule.ptr != NULL) { 6009 s->nat_rule.ptr->packets[dirndx]++; 6010 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6011 } 6012 if (s->src_node != NULL) { 6013 s->src_node->packets[dirndx]++; 6014 s->src_node->bytes[dirndx] += pd.tot_len; 6015 } 6016 if (s->nat_src_node != NULL) { 6017 s->nat_src_node->packets[dirndx]++; 6018 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6019 } 6020 dirndx = (dir == s->direction) ? 0 : 1; 6021 s->packets[dirndx]++; 6022 s->bytes[dirndx] += pd.tot_len; 6023 } 6024 tr = r; 6025 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6026 if (nr != NULL && r == &V_pf_default_rule) 6027 tr = nr; 6028 if (tr->src.addr.type == PF_ADDR_TABLE) 6029 pfr_update_stats(tr->src.addr.p.tbl, 6030 (s == NULL) ? pd.src : 6031 &s->key[(s->direction == PF_IN)]-> 6032 addr[(s->direction == PF_OUT)], 6033 pd.af, pd.tot_len, dir == PF_OUT, 6034 r->action == PF_PASS, tr->src.neg); 6035 if (tr->dst.addr.type == PF_ADDR_TABLE) 6036 pfr_update_stats(tr->dst.addr.p.tbl, 6037 (s == NULL) ? pd.dst : 6038 &s->key[(s->direction == PF_IN)]-> 6039 addr[(s->direction == PF_IN)], 6040 pd.af, pd.tot_len, dir == PF_OUT, 6041 r->action == PF_PASS, tr->dst.neg); 6042 } 6043 6044 switch (action) { 6045 case PF_SYNPROXY_DROP: 6046 m_freem(*m0); 6047 case PF_DEFER: 6048 *m0 = NULL; 6049 action = PF_PASS; 6050 break; 6051 case PF_DROP: 6052 m_freem(*m0); 6053 *m0 = NULL; 6054 break; 6055 default: 6056 /* pf_route() returns unlocked. */ 6057 if (r->rt) { 6058 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 6059 return (action); 6060 } 6061 break; 6062 } 6063 if (s) 6064 PF_STATE_UNLOCK(s); 6065 6066 return (action); 6067 } 6068 #endif /* INET */ 6069 6070 #ifdef INET6 6071 int 6072 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6073 { 6074 struct pfi_kif *kif; 6075 u_short action, reason = 0, log = 0; 6076 struct mbuf *m = *m0, *n = NULL; 6077 struct m_tag *mtag; 6078 struct ip6_hdr *h = NULL; 6079 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6080 struct pf_state *s = NULL; 6081 struct pf_ruleset *ruleset = NULL; 6082 struct pf_pdesc pd; 6083 int off, terminal = 0, dirndx, rh_cnt = 0; 6084 int fwdir = dir; 6085 6086 M_ASSERTPKTHDR(m); 6087 6088 /* Detect packet forwarding. 6089 * If the input interface is different from the output interface we're 6090 * forwarding. 6091 * We do need to be careful about bridges. If the 6092 * net.link.bridge.pfil_bridge sysctl is set we can be filtering on a 6093 * bridge, so if the input interface is a bridge member and the output 6094 * interface is its bridge we're not actually forwarding but bridging. 6095 */ 6096 if (dir == PF_OUT && m->m_pkthdr.rcvif && ifp != m->m_pkthdr.rcvif 6097 && (m->m_pkthdr.rcvif->if_bridge == NULL 6098 || m->m_pkthdr.rcvif->if_bridge != ifp->if_softc)) 6099 fwdir = PF_FWD; 6100 6101 if (!V_pf_status.running) 6102 return (PF_PASS); 6103 6104 memset(&pd, 0, sizeof(pd)); 6105 pd.pf_mtag = pf_find_mtag(m); 6106 6107 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6108 return (PF_PASS); 6109 6110 kif = (struct pfi_kif *)ifp->if_pf_kif; 6111 if (kif == NULL) { 6112 DPFPRINTF(PF_DEBUG_URGENT, 6113 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6114 return (PF_DROP); 6115 } 6116 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6117 return (PF_PASS); 6118 6119 if (m->m_flags & M_SKIP_FIREWALL) 6120 return (PF_PASS); 6121 6122 PF_RULES_RLOCK(); 6123 6124 /* We do IP header normalization and packet reassembly here */ 6125 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6126 action = PF_DROP; 6127 goto done; 6128 } 6129 m = *m0; /* pf_normalize messes with m0 */ 6130 h = mtod(m, struct ip6_hdr *); 6131 6132 #if 1 6133 /* 6134 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6135 * will do something bad, so drop the packet for now. 6136 */ 6137 if (htons(h->ip6_plen) == 0) { 6138 action = PF_DROP; 6139 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6140 goto done; 6141 } 6142 #endif 6143 6144 pd.src = (struct pf_addr *)&h->ip6_src; 6145 pd.dst = (struct pf_addr *)&h->ip6_dst; 6146 pd.sport = pd.dport = NULL; 6147 pd.ip_sum = NULL; 6148 pd.proto_sum = NULL; 6149 pd.dir = dir; 6150 pd.sidx = (dir == PF_IN) ? 0 : 1; 6151 pd.didx = (dir == PF_IN) ? 1 : 0; 6152 pd.af = AF_INET6; 6153 pd.tos = 0; 6154 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6155 6156 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6157 pd.proto = h->ip6_nxt; 6158 do { 6159 switch (pd.proto) { 6160 case IPPROTO_FRAGMENT: 6161 action = pf_test_fragment(&r, dir, kif, m, h, 6162 &pd, &a, &ruleset); 6163 if (action == PF_DROP) 6164 REASON_SET(&reason, PFRES_FRAG); 6165 goto done; 6166 case IPPROTO_ROUTING: { 6167 struct ip6_rthdr rthdr; 6168 6169 if (rh_cnt++) { 6170 DPFPRINTF(PF_DEBUG_MISC, 6171 ("pf: IPv6 more than one rthdr\n")); 6172 action = PF_DROP; 6173 REASON_SET(&reason, PFRES_IPOPTIONS); 6174 log = 1; 6175 goto done; 6176 } 6177 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6178 &reason, pd.af)) { 6179 DPFPRINTF(PF_DEBUG_MISC, 6180 ("pf: IPv6 short rthdr\n")); 6181 action = PF_DROP; 6182 REASON_SET(&reason, PFRES_SHORT); 6183 log = 1; 6184 goto done; 6185 } 6186 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6187 DPFPRINTF(PF_DEBUG_MISC, 6188 ("pf: IPv6 rthdr0\n")); 6189 action = PF_DROP; 6190 REASON_SET(&reason, PFRES_IPOPTIONS); 6191 log = 1; 6192 goto done; 6193 } 6194 /* FALLTHROUGH */ 6195 } 6196 case IPPROTO_AH: 6197 case IPPROTO_HOPOPTS: 6198 case IPPROTO_DSTOPTS: { 6199 /* get next header and header length */ 6200 struct ip6_ext opt6; 6201 6202 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6203 NULL, &reason, pd.af)) { 6204 DPFPRINTF(PF_DEBUG_MISC, 6205 ("pf: IPv6 short opt\n")); 6206 action = PF_DROP; 6207 log = 1; 6208 goto done; 6209 } 6210 if (pd.proto == IPPROTO_AH) 6211 off += (opt6.ip6e_len + 2) * 4; 6212 else 6213 off += (opt6.ip6e_len + 1) * 8; 6214 pd.proto = opt6.ip6e_nxt; 6215 /* goto the next header */ 6216 break; 6217 } 6218 default: 6219 terminal++; 6220 break; 6221 } 6222 } while (!terminal); 6223 6224 /* if there's no routing header, use unmodified mbuf for checksumming */ 6225 if (!n) 6226 n = m; 6227 6228 switch (pd.proto) { 6229 6230 case IPPROTO_TCP: { 6231 struct tcphdr th; 6232 6233 pd.hdr.tcp = &th; 6234 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6235 &action, &reason, AF_INET6)) { 6236 log = action != PF_PASS; 6237 goto done; 6238 } 6239 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6240 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6241 if (action == PF_DROP) 6242 goto done; 6243 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6244 &reason); 6245 if (action == PF_PASS) { 6246 if (pfsync_update_state_ptr != NULL) 6247 pfsync_update_state_ptr(s); 6248 r = s->rule.ptr; 6249 a = s->anchor.ptr; 6250 log = s->log; 6251 } else if (s == NULL) 6252 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6253 &a, &ruleset, inp); 6254 break; 6255 } 6256 6257 case IPPROTO_UDP: { 6258 struct udphdr uh; 6259 6260 pd.hdr.udp = &uh; 6261 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6262 &action, &reason, AF_INET6)) { 6263 log = action != PF_PASS; 6264 goto done; 6265 } 6266 if (uh.uh_dport == 0 || 6267 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6268 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6269 action = PF_DROP; 6270 REASON_SET(&reason, PFRES_SHORT); 6271 goto done; 6272 } 6273 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6274 if (action == PF_PASS) { 6275 if (pfsync_update_state_ptr != NULL) 6276 pfsync_update_state_ptr(s); 6277 r = s->rule.ptr; 6278 a = s->anchor.ptr; 6279 log = s->log; 6280 } else if (s == NULL) 6281 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6282 &a, &ruleset, inp); 6283 break; 6284 } 6285 6286 case IPPROTO_ICMP: { 6287 action = PF_DROP; 6288 DPFPRINTF(PF_DEBUG_MISC, 6289 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6290 goto done; 6291 } 6292 6293 case IPPROTO_ICMPV6: { 6294 struct icmp6_hdr ih; 6295 6296 pd.hdr.icmp6 = &ih; 6297 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6298 &action, &reason, AF_INET6)) { 6299 log = action != PF_PASS; 6300 goto done; 6301 } 6302 action = pf_test_state_icmp(&s, dir, kif, 6303 m, off, h, &pd, &reason); 6304 if (action == PF_PASS) { 6305 if (pfsync_update_state_ptr != NULL) 6306 pfsync_update_state_ptr(s); 6307 r = s->rule.ptr; 6308 a = s->anchor.ptr; 6309 log = s->log; 6310 } else if (s == NULL) 6311 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6312 &a, &ruleset, inp); 6313 break; 6314 } 6315 6316 default: 6317 action = pf_test_state_other(&s, dir, kif, m, &pd); 6318 if (action == PF_PASS) { 6319 if (pfsync_update_state_ptr != NULL) 6320 pfsync_update_state_ptr(s); 6321 r = s->rule.ptr; 6322 a = s->anchor.ptr; 6323 log = s->log; 6324 } else if (s == NULL) 6325 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6326 &a, &ruleset, inp); 6327 break; 6328 } 6329 6330 done: 6331 PF_RULES_RUNLOCK(); 6332 if (n != m) { 6333 m_freem(n); 6334 n = NULL; 6335 } 6336 6337 /* handle dangerous IPv6 extension headers. */ 6338 if (action == PF_PASS && rh_cnt && 6339 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6340 action = PF_DROP; 6341 REASON_SET(&reason, PFRES_IPOPTIONS); 6342 log = r->log; 6343 DPFPRINTF(PF_DEBUG_MISC, 6344 ("pf: dropping packet with dangerous v6 headers\n")); 6345 } 6346 6347 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6348 action = PF_DROP; 6349 REASON_SET(&reason, PFRES_MEMORY); 6350 } 6351 if (r->rtableid >= 0) 6352 M_SETFIB(m, r->rtableid); 6353 6354 #ifdef ALTQ 6355 if (action == PF_PASS && r->qid) { 6356 if (pd.pf_mtag == NULL && 6357 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6358 action = PF_DROP; 6359 REASON_SET(&reason, PFRES_MEMORY); 6360 } else { 6361 if (s != NULL) 6362 pd.pf_mtag->qid_hash = pf_state_hash(s); 6363 if (pd.tos & IPTOS_LOWDELAY) 6364 pd.pf_mtag->qid = r->pqid; 6365 else 6366 pd.pf_mtag->qid = r->qid; 6367 /* Add hints for ecn. */ 6368 pd.pf_mtag->hdr = h; 6369 } 6370 } 6371 #endif /* ALTQ */ 6372 6373 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6374 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6375 (s->nat_rule.ptr->action == PF_RDR || 6376 s->nat_rule.ptr->action == PF_BINAT) && 6377 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6378 m->m_flags |= M_SKIP_FIREWALL; 6379 6380 /* XXX: Anybody working on it?! */ 6381 if (r->divert.port) 6382 printf("pf: divert(9) is not supported for IPv6\n"); 6383 6384 if (log) { 6385 struct pf_rule *lr; 6386 6387 if (s != NULL && s->nat_rule.ptr != NULL && 6388 s->nat_rule.ptr->log & PF_LOG_ALL) 6389 lr = s->nat_rule.ptr; 6390 else 6391 lr = r; 6392 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6393 &pd, (s == NULL)); 6394 } 6395 6396 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6397 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6398 6399 if (action == PF_PASS || r->action == PF_DROP) { 6400 dirndx = (dir == PF_OUT); 6401 r->packets[dirndx]++; 6402 r->bytes[dirndx] += pd.tot_len; 6403 if (a != NULL) { 6404 a->packets[dirndx]++; 6405 a->bytes[dirndx] += pd.tot_len; 6406 } 6407 if (s != NULL) { 6408 if (s->nat_rule.ptr != NULL) { 6409 s->nat_rule.ptr->packets[dirndx]++; 6410 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6411 } 6412 if (s->src_node != NULL) { 6413 s->src_node->packets[dirndx]++; 6414 s->src_node->bytes[dirndx] += pd.tot_len; 6415 } 6416 if (s->nat_src_node != NULL) { 6417 s->nat_src_node->packets[dirndx]++; 6418 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6419 } 6420 dirndx = (dir == s->direction) ? 0 : 1; 6421 s->packets[dirndx]++; 6422 s->bytes[dirndx] += pd.tot_len; 6423 } 6424 tr = r; 6425 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6426 if (nr != NULL && r == &V_pf_default_rule) 6427 tr = nr; 6428 if (tr->src.addr.type == PF_ADDR_TABLE) 6429 pfr_update_stats(tr->src.addr.p.tbl, 6430 (s == NULL) ? pd.src : 6431 &s->key[(s->direction == PF_IN)]->addr[0], 6432 pd.af, pd.tot_len, dir == PF_OUT, 6433 r->action == PF_PASS, tr->src.neg); 6434 if (tr->dst.addr.type == PF_ADDR_TABLE) 6435 pfr_update_stats(tr->dst.addr.p.tbl, 6436 (s == NULL) ? pd.dst : 6437 &s->key[(s->direction == PF_IN)]->addr[1], 6438 pd.af, pd.tot_len, dir == PF_OUT, 6439 r->action == PF_PASS, tr->dst.neg); 6440 } 6441 6442 switch (action) { 6443 case PF_SYNPROXY_DROP: 6444 m_freem(*m0); 6445 case PF_DEFER: 6446 *m0 = NULL; 6447 action = PF_PASS; 6448 break; 6449 case PF_DROP: 6450 m_freem(*m0); 6451 *m0 = NULL; 6452 break; 6453 default: 6454 /* pf_route6() returns unlocked. */ 6455 if (r->rt) { 6456 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6457 return (action); 6458 } 6459 break; 6460 } 6461 6462 if (s) 6463 PF_STATE_UNLOCK(s); 6464 6465 /* If reassembled packet passed, create new fragments. */ 6466 if (action == PF_PASS && *m0 && fwdir == PF_FWD && 6467 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6468 action = pf_refragment6(ifp, m0, mtag); 6469 6470 return (action); 6471 } 6472 #endif /* INET6 */ 6473