1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_bpf.h" 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_pf.h" 47 #include "opt_sctp.h" 48 49 #include <sys/param.h> 50 #include <sys/bus.h> 51 #include <sys/endian.h> 52 #include <sys/gsb_crc32.h> 53 #include <sys/hash.h> 54 #include <sys/interrupt.h> 55 #include <sys/kernel.h> 56 #include <sys/kthread.h> 57 #include <sys/limits.h> 58 #include <sys/mbuf.h> 59 #include <sys/md5.h> 60 #include <sys/random.h> 61 #include <sys/refcount.h> 62 #include <sys/sdt.h> 63 #include <sys/socket.h> 64 #include <sys/sysctl.h> 65 #include <sys/taskqueue.h> 66 #include <sys/ucred.h> 67 68 #include <net/if.h> 69 #include <net/if_var.h> 70 #include <net/if_types.h> 71 #include <net/if_vlan_var.h> 72 #include <net/route.h> 73 #include <net/route/nhop.h> 74 #include <net/vnet.h> 75 76 #include <net/pfil.h> 77 #include <net/pfvar.h> 78 #include <net/if_pflog.h> 79 #include <net/if_pfsync.h> 80 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_var.h> 83 #include <netinet/in_fib.h> 84 #include <netinet/ip.h> 85 #include <netinet/ip_fw.h> 86 #include <netinet/ip_icmp.h> 87 #include <netinet/icmp_var.h> 88 #include <netinet/ip_var.h> 89 #include <netinet/tcp.h> 90 #include <netinet/tcp_fsm.h> 91 #include <netinet/tcp_seq.h> 92 #include <netinet/tcp_timer.h> 93 #include <netinet/tcp_var.h> 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 97 #ifdef INET6 98 #include <netinet/ip6.h> 99 #include <netinet/icmp6.h> 100 #include <netinet6/nd6.h> 101 #include <netinet6/ip6_var.h> 102 #include <netinet6/in6_pcb.h> 103 #include <netinet6/in6_fib.h> 104 #include <netinet6/scope6_var.h> 105 #endif /* INET6 */ 106 107 #if defined(SCTP) || defined(SCTP_SUPPORT) 108 #include <netinet/sctp_crc32.h> 109 #endif 110 111 #include <machine/in_cksum.h> 112 #include <security/mac/mac_framework.h> 113 114 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 115 116 SDT_PROVIDER_DEFINE(pf); 117 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 118 "struct pf_kstate *"); 119 SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", 120 "struct pf_kstate *"); 121 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 122 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 123 "struct pf_kstate *"); 124 125 /* 126 * Global variables 127 */ 128 129 /* state tables */ 130 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 131 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 132 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 133 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 134 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 135 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 136 VNET_DEFINE(struct pf_kstatus, pf_status); 137 138 VNET_DEFINE(u_int32_t, ticket_altqs_active); 139 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 140 VNET_DEFINE(int, altqs_inactive_open); 141 VNET_DEFINE(u_int32_t, ticket_pabuf); 142 143 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 144 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 145 VNET_DEFINE(u_char, pf_tcp_secret[16]); 146 #define V_pf_tcp_secret VNET(pf_tcp_secret) 147 VNET_DEFINE(int, pf_tcp_secret_init); 148 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 149 VNET_DEFINE(int, pf_tcp_iss_off); 150 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 151 VNET_DECLARE(int, pf_vnet_active); 152 #define V_pf_vnet_active VNET(pf_vnet_active) 153 154 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 155 #define V_pf_purge_idx VNET(pf_purge_idx) 156 157 /* 158 * Queue for pf_intr() sends. 159 */ 160 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 161 struct pf_send_entry { 162 STAILQ_ENTRY(pf_send_entry) pfse_next; 163 struct mbuf *pfse_m; 164 enum { 165 PFSE_IP, 166 PFSE_IP6, 167 PFSE_ICMP, 168 PFSE_ICMP6, 169 } pfse_type; 170 struct { 171 int type; 172 int code; 173 int mtu; 174 } icmpopts; 175 }; 176 177 STAILQ_HEAD(pf_send_head, pf_send_entry); 178 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 179 #define V_pf_sendqueue VNET(pf_sendqueue) 180 181 static struct mtx_padalign pf_sendqueue_mtx; 182 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 183 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 184 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 185 186 /* 187 * Queue for pf_overload_task() tasks. 188 */ 189 struct pf_overload_entry { 190 SLIST_ENTRY(pf_overload_entry) next; 191 struct pf_addr addr; 192 sa_family_t af; 193 uint8_t dir; 194 struct pf_krule *rule; 195 }; 196 197 SLIST_HEAD(pf_overload_head, pf_overload_entry); 198 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 199 #define V_pf_overloadqueue VNET(pf_overloadqueue) 200 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 201 #define V_pf_overloadtask VNET(pf_overloadtask) 202 203 static struct mtx_padalign pf_overloadqueue_mtx; 204 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 205 "pf overload/flush queue", MTX_DEF); 206 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 207 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 208 209 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 210 struct mtx_padalign pf_unlnkdrules_mtx; 211 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 212 MTX_DEF); 213 214 struct mtx_padalign pf_table_stats_lock; 215 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 216 MTX_DEF); 217 218 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 219 #define V_pf_sources_z VNET(pf_sources_z) 220 uma_zone_t pf_mtag_z; 221 VNET_DEFINE(uma_zone_t, pf_state_z); 222 VNET_DEFINE(uma_zone_t, pf_state_key_z); 223 224 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 225 #define PFID_CPUBITS 8 226 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 227 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 228 #define PFID_MAXID (~PFID_CPUMASK) 229 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 230 231 static void pf_src_tree_remove_state(struct pf_kstate *); 232 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 233 u_int32_t); 234 static void pf_add_threshold(struct pf_threshold *); 235 static int pf_check_threshold(struct pf_threshold *); 236 237 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 238 u_int16_t *, u_int16_t *, struct pf_addr *, 239 u_int16_t, u_int8_t, sa_family_t); 240 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 241 struct tcphdr *, struct pf_state_peer *); 242 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 243 struct pf_addr *, struct pf_addr *, u_int16_t, 244 u_int16_t *, u_int16_t *, u_int16_t *, 245 u_int16_t *, u_int8_t, sa_family_t); 246 static void pf_send_tcp(struct mbuf *, 247 const struct pf_krule *, sa_family_t, 248 const struct pf_addr *, const struct pf_addr *, 249 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 250 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 251 u_int16_t, struct ifnet *); 252 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 253 sa_family_t, struct pf_krule *); 254 static void pf_detach_state(struct pf_kstate *); 255 static int pf_state_key_attach(struct pf_state_key *, 256 struct pf_state_key *, struct pf_kstate *); 257 static void pf_state_key_detach(struct pf_kstate *, int); 258 static int pf_state_key_ctor(void *, int, void *, int); 259 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 260 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 261 int, struct pfi_kkif *, struct mbuf *, int, 262 struct pf_pdesc *, struct pf_krule **, 263 struct pf_kruleset **, struct inpcb *); 264 static int pf_create_state(struct pf_krule *, struct pf_krule *, 265 struct pf_krule *, struct pf_pdesc *, 266 struct pf_ksrc_node *, struct pf_state_key *, 267 struct pf_state_key *, struct mbuf *, int, 268 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 269 struct pf_kstate **, int, u_int16_t, u_int16_t, 270 int); 271 static int pf_test_fragment(struct pf_krule **, int, 272 struct pfi_kkif *, struct mbuf *, void *, 273 struct pf_pdesc *, struct pf_krule **, 274 struct pf_kruleset **); 275 static int pf_tcp_track_full(struct pf_state_peer *, 276 struct pf_state_peer *, struct pf_kstate **, 277 struct pfi_kkif *, struct mbuf *, int, 278 struct pf_pdesc *, u_short *, int *); 279 static int pf_tcp_track_sloppy(struct pf_state_peer *, 280 struct pf_state_peer *, struct pf_kstate **, 281 struct pf_pdesc *, u_short *); 282 static int pf_test_state_tcp(struct pf_kstate **, int, 283 struct pfi_kkif *, struct mbuf *, int, 284 void *, struct pf_pdesc *, u_short *); 285 static int pf_test_state_udp(struct pf_kstate **, int, 286 struct pfi_kkif *, struct mbuf *, int, 287 void *, struct pf_pdesc *); 288 static int pf_test_state_icmp(struct pf_kstate **, int, 289 struct pfi_kkif *, struct mbuf *, int, 290 void *, struct pf_pdesc *, u_short *); 291 static int pf_test_state_other(struct pf_kstate **, int, 292 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 293 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 294 sa_family_t); 295 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 296 sa_family_t); 297 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 298 int, u_int16_t); 299 static int pf_check_proto_cksum(struct mbuf *, int, int, 300 u_int8_t, sa_family_t); 301 static void pf_print_state_parts(struct pf_kstate *, 302 struct pf_state_key *, struct pf_state_key *); 303 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 304 struct pf_addr_wrap *); 305 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 306 bool, u_int8_t); 307 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 308 struct pf_state_key_cmp *, u_int); 309 static int pf_src_connlimit(struct pf_kstate **); 310 static void pf_overload_task(void *v, int pending); 311 static int pf_insert_src_node(struct pf_ksrc_node **, 312 struct pf_krule *, struct pf_addr *, sa_family_t); 313 static u_int pf_purge_expired_states(u_int, int); 314 static void pf_purge_unlinked_rules(void); 315 static int pf_mtag_uminit(void *, int, int); 316 static void pf_mtag_free(struct m_tag *); 317 #ifdef INET 318 static void pf_route(struct mbuf **, struct pf_krule *, int, 319 struct ifnet *, struct pf_kstate *, 320 struct pf_pdesc *, struct inpcb *); 321 #endif /* INET */ 322 #ifdef INET6 323 static void pf_change_a6(struct pf_addr *, u_int16_t *, 324 struct pf_addr *, u_int8_t); 325 static void pf_route6(struct mbuf **, struct pf_krule *, int, 326 struct ifnet *, struct pf_kstate *, 327 struct pf_pdesc *, struct inpcb *); 328 #endif /* INET6 */ 329 330 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 331 332 extern int pf_end_threads; 333 extern struct proc *pf_purge_proc; 334 335 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 336 337 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 338 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 339 340 #define STATE_LOOKUP(i, k, d, s, pd) \ 341 do { \ 342 (s) = pf_find_state((i), (k), (d)); \ 343 SDT_PROBE5(pf, ip, state, lookup, i, k, d, pd, (s)); \ 344 if ((s) == NULL) \ 345 return (PF_DROP); \ 346 if (PACKET_LOOPED(pd)) \ 347 return (PF_PASS); \ 348 if ((d) == PF_OUT && \ 349 (s)->rule.ptr->rt == PF_ROUTETO && \ 350 (s)->rule.ptr->direction == PF_OUT && \ 351 (s)->rt_kif != NULL && \ 352 (s)->rt_kif != (i)) \ 353 return (PF_PASS); \ 354 } while (0) 355 356 #define BOUND_IFACE(r, k) \ 357 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 358 359 #define STATE_INC_COUNTERS(s) \ 360 do { \ 361 counter_u64_add(s->rule.ptr->states_cur, 1); \ 362 counter_u64_add(s->rule.ptr->states_tot, 1); \ 363 if (s->anchor.ptr != NULL) { \ 364 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 365 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 366 } \ 367 if (s->nat_rule.ptr != NULL) { \ 368 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 369 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 370 } \ 371 } while (0) 372 373 #define STATE_DEC_COUNTERS(s) \ 374 do { \ 375 if (s->nat_rule.ptr != NULL) \ 376 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 377 if (s->anchor.ptr != NULL) \ 378 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 379 counter_u64_add(s->rule.ptr->states_cur, -1); \ 380 } while (0) 381 382 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 383 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 384 VNET_DEFINE(struct pf_idhash *, pf_idhash); 385 VNET_DEFINE(struct pf_srchash *, pf_srchash); 386 387 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 388 "pf(4)"); 389 390 u_long pf_hashmask; 391 u_long pf_srchashmask; 392 static u_long pf_hashsize; 393 static u_long pf_srchashsize; 394 u_long pf_ioctl_maxcount = 65535; 395 396 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 397 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 398 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 399 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 400 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 401 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 402 403 VNET_DEFINE(void *, pf_swi_cookie); 404 VNET_DEFINE(struct intr_event *, pf_swi_ie); 405 406 VNET_DEFINE(uint32_t, pf_hashseed); 407 #define V_pf_hashseed VNET(pf_hashseed) 408 409 int 410 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 411 { 412 413 switch (af) { 414 #ifdef INET 415 case AF_INET: 416 if (a->addr32[0] > b->addr32[0]) 417 return (1); 418 if (a->addr32[0] < b->addr32[0]) 419 return (-1); 420 break; 421 #endif /* INET */ 422 #ifdef INET6 423 case AF_INET6: 424 if (a->addr32[3] > b->addr32[3]) 425 return (1); 426 if (a->addr32[3] < b->addr32[3]) 427 return (-1); 428 if (a->addr32[2] > b->addr32[2]) 429 return (1); 430 if (a->addr32[2] < b->addr32[2]) 431 return (-1); 432 if (a->addr32[1] > b->addr32[1]) 433 return (1); 434 if (a->addr32[1] < b->addr32[1]) 435 return (-1); 436 if (a->addr32[0] > b->addr32[0]) 437 return (1); 438 if (a->addr32[0] < b->addr32[0]) 439 return (-1); 440 break; 441 #endif /* INET6 */ 442 default: 443 panic("%s: unknown address family %u", __func__, af); 444 } 445 return (0); 446 } 447 448 static __inline uint32_t 449 pf_hashkey(struct pf_state_key *sk) 450 { 451 uint32_t h; 452 453 h = murmur3_32_hash32((uint32_t *)sk, 454 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 455 V_pf_hashseed); 456 457 return (h & pf_hashmask); 458 } 459 460 static __inline uint32_t 461 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 462 { 463 uint32_t h; 464 465 switch (af) { 466 case AF_INET: 467 h = murmur3_32_hash32((uint32_t *)&addr->v4, 468 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 469 break; 470 case AF_INET6: 471 h = murmur3_32_hash32((uint32_t *)&addr->v6, 472 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 473 break; 474 default: 475 panic("%s: unknown address family %u", __func__, af); 476 } 477 478 return (h & pf_srchashmask); 479 } 480 481 #ifdef ALTQ 482 static int 483 pf_state_hash(struct pf_kstate *s) 484 { 485 u_int32_t hv = (intptr_t)s / sizeof(*s); 486 487 hv ^= crc32(&s->src, sizeof(s->src)); 488 hv ^= crc32(&s->dst, sizeof(s->dst)); 489 if (hv == 0) 490 hv = 1; 491 return (hv); 492 } 493 #endif 494 495 #ifdef INET6 496 void 497 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 498 { 499 switch (af) { 500 #ifdef INET 501 case AF_INET: 502 dst->addr32[0] = src->addr32[0]; 503 break; 504 #endif /* INET */ 505 case AF_INET6: 506 dst->addr32[0] = src->addr32[0]; 507 dst->addr32[1] = src->addr32[1]; 508 dst->addr32[2] = src->addr32[2]; 509 dst->addr32[3] = src->addr32[3]; 510 break; 511 } 512 } 513 #endif /* INET6 */ 514 515 static void 516 pf_init_threshold(struct pf_threshold *threshold, 517 u_int32_t limit, u_int32_t seconds) 518 { 519 threshold->limit = limit * PF_THRESHOLD_MULT; 520 threshold->seconds = seconds; 521 threshold->count = 0; 522 threshold->last = time_uptime; 523 } 524 525 static void 526 pf_add_threshold(struct pf_threshold *threshold) 527 { 528 u_int32_t t = time_uptime, diff = t - threshold->last; 529 530 if (diff >= threshold->seconds) 531 threshold->count = 0; 532 else 533 threshold->count -= threshold->count * diff / 534 threshold->seconds; 535 threshold->count += PF_THRESHOLD_MULT; 536 threshold->last = t; 537 } 538 539 static int 540 pf_check_threshold(struct pf_threshold *threshold) 541 { 542 return (threshold->count > threshold->limit); 543 } 544 545 static int 546 pf_src_connlimit(struct pf_kstate **state) 547 { 548 struct pf_overload_entry *pfoe; 549 int bad = 0; 550 551 PF_STATE_LOCK_ASSERT(*state); 552 553 (*state)->src_node->conn++; 554 (*state)->src.tcp_est = 1; 555 pf_add_threshold(&(*state)->src_node->conn_rate); 556 557 if ((*state)->rule.ptr->max_src_conn && 558 (*state)->rule.ptr->max_src_conn < 559 (*state)->src_node->conn) { 560 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 561 bad++; 562 } 563 564 if ((*state)->rule.ptr->max_src_conn_rate.limit && 565 pf_check_threshold(&(*state)->src_node->conn_rate)) { 566 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 567 bad++; 568 } 569 570 if (!bad) 571 return (0); 572 573 /* Kill this state. */ 574 (*state)->timeout = PFTM_PURGE; 575 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 576 577 if ((*state)->rule.ptr->overload_tbl == NULL) 578 return (1); 579 580 /* Schedule overloading and flushing task. */ 581 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 582 if (pfoe == NULL) 583 return (1); /* too bad :( */ 584 585 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 586 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 587 pfoe->rule = (*state)->rule.ptr; 588 pfoe->dir = (*state)->direction; 589 PF_OVERLOADQ_LOCK(); 590 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 591 PF_OVERLOADQ_UNLOCK(); 592 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 593 594 return (1); 595 } 596 597 static void 598 pf_overload_task(void *v, int pending) 599 { 600 struct pf_overload_head queue; 601 struct pfr_addr p; 602 struct pf_overload_entry *pfoe, *pfoe1; 603 uint32_t killed = 0; 604 605 CURVNET_SET((struct vnet *)v); 606 607 PF_OVERLOADQ_LOCK(); 608 queue = V_pf_overloadqueue; 609 SLIST_INIT(&V_pf_overloadqueue); 610 PF_OVERLOADQ_UNLOCK(); 611 612 bzero(&p, sizeof(p)); 613 SLIST_FOREACH(pfoe, &queue, next) { 614 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 615 if (V_pf_status.debug >= PF_DEBUG_MISC) { 616 printf("%s: blocking address ", __func__); 617 pf_print_host(&pfoe->addr, 0, pfoe->af); 618 printf("\n"); 619 } 620 621 p.pfra_af = pfoe->af; 622 switch (pfoe->af) { 623 #ifdef INET 624 case AF_INET: 625 p.pfra_net = 32; 626 p.pfra_ip4addr = pfoe->addr.v4; 627 break; 628 #endif 629 #ifdef INET6 630 case AF_INET6: 631 p.pfra_net = 128; 632 p.pfra_ip6addr = pfoe->addr.v6; 633 break; 634 #endif 635 } 636 637 PF_RULES_WLOCK(); 638 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 639 PF_RULES_WUNLOCK(); 640 } 641 642 /* 643 * Remove those entries, that don't need flushing. 644 */ 645 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 646 if (pfoe->rule->flush == 0) { 647 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 648 free(pfoe, M_PFTEMP); 649 } else 650 counter_u64_add( 651 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 652 653 /* If nothing to flush, return. */ 654 if (SLIST_EMPTY(&queue)) { 655 CURVNET_RESTORE(); 656 return; 657 } 658 659 for (int i = 0; i <= pf_hashmask; i++) { 660 struct pf_idhash *ih = &V_pf_idhash[i]; 661 struct pf_state_key *sk; 662 struct pf_kstate *s; 663 664 PF_HASHROW_LOCK(ih); 665 LIST_FOREACH(s, &ih->states, entry) { 666 sk = s->key[PF_SK_WIRE]; 667 SLIST_FOREACH(pfoe, &queue, next) 668 if (sk->af == pfoe->af && 669 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 670 pfoe->rule == s->rule.ptr) && 671 ((pfoe->dir == PF_OUT && 672 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 673 (pfoe->dir == PF_IN && 674 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 675 s->timeout = PFTM_PURGE; 676 s->src.state = s->dst.state = TCPS_CLOSED; 677 killed++; 678 } 679 } 680 PF_HASHROW_UNLOCK(ih); 681 } 682 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 683 free(pfoe, M_PFTEMP); 684 if (V_pf_status.debug >= PF_DEBUG_MISC) 685 printf("%s: %u states killed", __func__, killed); 686 687 CURVNET_RESTORE(); 688 } 689 690 /* 691 * Can return locked on failure, so that we can consistently 692 * allocate and insert a new one. 693 */ 694 struct pf_ksrc_node * 695 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 696 int returnlocked) 697 { 698 struct pf_srchash *sh; 699 struct pf_ksrc_node *n; 700 701 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 702 703 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 704 PF_HASHROW_LOCK(sh); 705 LIST_FOREACH(n, &sh->nodes, entry) 706 if (n->rule.ptr == rule && n->af == af && 707 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 708 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 709 break; 710 if (n != NULL) { 711 n->states++; 712 PF_HASHROW_UNLOCK(sh); 713 } else if (returnlocked == 0) 714 PF_HASHROW_UNLOCK(sh); 715 716 return (n); 717 } 718 719 static void 720 pf_free_src_node(struct pf_ksrc_node *sn) 721 { 722 723 for (int i = 0; i < 2; i++) { 724 counter_u64_free(sn->bytes[i]); 725 counter_u64_free(sn->packets[i]); 726 } 727 uma_zfree(V_pf_sources_z, sn); 728 } 729 730 static int 731 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 732 struct pf_addr *src, sa_family_t af) 733 { 734 735 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 736 rule->rpool.opts & PF_POOL_STICKYADDR), 737 ("%s for non-tracking rule %p", __func__, rule)); 738 739 if (*sn == NULL) 740 *sn = pf_find_src_node(src, rule, af, 1); 741 742 if (*sn == NULL) { 743 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 744 745 PF_HASHROW_ASSERT(sh); 746 747 if (!rule->max_src_nodes || 748 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 749 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 750 else 751 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 752 1); 753 if ((*sn) == NULL) { 754 PF_HASHROW_UNLOCK(sh); 755 return (-1); 756 } 757 758 for (int i = 0; i < 2; i++) { 759 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 760 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 761 762 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 763 pf_free_src_node(*sn); 764 PF_HASHROW_UNLOCK(sh); 765 return (-1); 766 } 767 } 768 769 pf_init_threshold(&(*sn)->conn_rate, 770 rule->max_src_conn_rate.limit, 771 rule->max_src_conn_rate.seconds); 772 773 (*sn)->af = af; 774 (*sn)->rule.ptr = rule; 775 PF_ACPY(&(*sn)->addr, src, af); 776 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 777 (*sn)->creation = time_uptime; 778 (*sn)->ruletype = rule->action; 779 (*sn)->states = 1; 780 if ((*sn)->rule.ptr != NULL) 781 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 782 PF_HASHROW_UNLOCK(sh); 783 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 784 } else { 785 if (rule->max_src_states && 786 (*sn)->states >= rule->max_src_states) { 787 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 788 1); 789 return (-1); 790 } 791 } 792 return (0); 793 } 794 795 void 796 pf_unlink_src_node(struct pf_ksrc_node *src) 797 { 798 799 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 800 LIST_REMOVE(src, entry); 801 if (src->rule.ptr) 802 counter_u64_add(src->rule.ptr->src_nodes, -1); 803 } 804 805 u_int 806 pf_free_src_nodes(struct pf_ksrc_node_list *head) 807 { 808 struct pf_ksrc_node *sn, *tmp; 809 u_int count = 0; 810 811 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 812 pf_free_src_node(sn); 813 count++; 814 } 815 816 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 817 818 return (count); 819 } 820 821 void 822 pf_mtag_initialize() 823 { 824 825 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 826 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 827 UMA_ALIGN_PTR, 0); 828 } 829 830 /* Per-vnet data storage structures initialization. */ 831 void 832 pf_initialize() 833 { 834 struct pf_keyhash *kh; 835 struct pf_idhash *ih; 836 struct pf_srchash *sh; 837 u_int i; 838 839 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 840 pf_hashsize = PF_HASHSIZ; 841 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 842 pf_srchashsize = PF_SRCHASHSIZ; 843 844 V_pf_hashseed = arc4random(); 845 846 /* States and state keys storage. */ 847 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 848 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 849 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 850 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 851 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 852 853 V_pf_state_key_z = uma_zcreate("pf state keys", 854 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 855 UMA_ALIGN_PTR, 0); 856 857 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 858 M_PFHASH, M_NOWAIT | M_ZERO); 859 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 860 M_PFHASH, M_NOWAIT | M_ZERO); 861 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 862 printf("pf: Unable to allocate memory for " 863 "state_hashsize %lu.\n", pf_hashsize); 864 865 free(V_pf_keyhash, M_PFHASH); 866 free(V_pf_idhash, M_PFHASH); 867 868 pf_hashsize = PF_HASHSIZ; 869 V_pf_keyhash = mallocarray(pf_hashsize, 870 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 871 V_pf_idhash = mallocarray(pf_hashsize, 872 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 873 } 874 875 pf_hashmask = pf_hashsize - 1; 876 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 877 i++, kh++, ih++) { 878 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 879 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 880 } 881 882 /* Source nodes. */ 883 V_pf_sources_z = uma_zcreate("pf source nodes", 884 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 885 0); 886 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 887 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 888 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 889 890 V_pf_srchash = mallocarray(pf_srchashsize, 891 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 892 if (V_pf_srchash == NULL) { 893 printf("pf: Unable to allocate memory for " 894 "source_hashsize %lu.\n", pf_srchashsize); 895 896 pf_srchashsize = PF_SRCHASHSIZ; 897 V_pf_srchash = mallocarray(pf_srchashsize, 898 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 899 } 900 901 pf_srchashmask = pf_srchashsize - 1; 902 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 903 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 904 905 /* ALTQ */ 906 TAILQ_INIT(&V_pf_altqs[0]); 907 TAILQ_INIT(&V_pf_altqs[1]); 908 TAILQ_INIT(&V_pf_altqs[2]); 909 TAILQ_INIT(&V_pf_altqs[3]); 910 TAILQ_INIT(&V_pf_pabuf); 911 V_pf_altqs_active = &V_pf_altqs[0]; 912 V_pf_altq_ifs_active = &V_pf_altqs[1]; 913 V_pf_altqs_inactive = &V_pf_altqs[2]; 914 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 915 916 /* Send & overload+flush queues. */ 917 STAILQ_INIT(&V_pf_sendqueue); 918 SLIST_INIT(&V_pf_overloadqueue); 919 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 920 921 /* Unlinked, but may be referenced rules. */ 922 TAILQ_INIT(&V_pf_unlinked_rules); 923 } 924 925 void 926 pf_mtag_cleanup() 927 { 928 929 uma_zdestroy(pf_mtag_z); 930 } 931 932 void 933 pf_cleanup() 934 { 935 struct pf_keyhash *kh; 936 struct pf_idhash *ih; 937 struct pf_srchash *sh; 938 struct pf_send_entry *pfse, *next; 939 u_int i; 940 941 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 942 i++, kh++, ih++) { 943 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 944 __func__)); 945 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 946 __func__)); 947 mtx_destroy(&kh->lock); 948 mtx_destroy(&ih->lock); 949 } 950 free(V_pf_keyhash, M_PFHASH); 951 free(V_pf_idhash, M_PFHASH); 952 953 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 954 KASSERT(LIST_EMPTY(&sh->nodes), 955 ("%s: source node hash not empty", __func__)); 956 mtx_destroy(&sh->lock); 957 } 958 free(V_pf_srchash, M_PFHASH); 959 960 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 961 m_freem(pfse->pfse_m); 962 free(pfse, M_PFTEMP); 963 } 964 965 uma_zdestroy(V_pf_sources_z); 966 uma_zdestroy(V_pf_state_z); 967 uma_zdestroy(V_pf_state_key_z); 968 } 969 970 static int 971 pf_mtag_uminit(void *mem, int size, int how) 972 { 973 struct m_tag *t; 974 975 t = (struct m_tag *)mem; 976 t->m_tag_cookie = MTAG_ABI_COMPAT; 977 t->m_tag_id = PACKET_TAG_PF; 978 t->m_tag_len = sizeof(struct pf_mtag); 979 t->m_tag_free = pf_mtag_free; 980 981 return (0); 982 } 983 984 static void 985 pf_mtag_free(struct m_tag *t) 986 { 987 988 uma_zfree(pf_mtag_z, t); 989 } 990 991 struct pf_mtag * 992 pf_get_mtag(struct mbuf *m) 993 { 994 struct m_tag *mtag; 995 996 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 997 return ((struct pf_mtag *)(mtag + 1)); 998 999 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1000 if (mtag == NULL) 1001 return (NULL); 1002 bzero(mtag + 1, sizeof(struct pf_mtag)); 1003 m_tag_prepend(m, mtag); 1004 1005 return ((struct pf_mtag *)(mtag + 1)); 1006 } 1007 1008 static int 1009 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1010 struct pf_kstate *s) 1011 { 1012 struct pf_keyhash *khs, *khw, *kh; 1013 struct pf_state_key *sk, *cur; 1014 struct pf_kstate *si, *olds = NULL; 1015 int idx; 1016 1017 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1018 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1019 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1020 1021 /* 1022 * We need to lock hash slots of both keys. To avoid deadlock 1023 * we always lock the slot with lower address first. Unlock order 1024 * isn't important. 1025 * 1026 * We also need to lock ID hash slot before dropping key 1027 * locks. On success we return with ID hash slot locked. 1028 */ 1029 1030 if (skw == sks) { 1031 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1032 PF_HASHROW_LOCK(khs); 1033 } else { 1034 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1035 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1036 if (khs == khw) { 1037 PF_HASHROW_LOCK(khs); 1038 } else if (khs < khw) { 1039 PF_HASHROW_LOCK(khs); 1040 PF_HASHROW_LOCK(khw); 1041 } else { 1042 PF_HASHROW_LOCK(khw); 1043 PF_HASHROW_LOCK(khs); 1044 } 1045 } 1046 1047 #define KEYS_UNLOCK() do { \ 1048 if (khs != khw) { \ 1049 PF_HASHROW_UNLOCK(khs); \ 1050 PF_HASHROW_UNLOCK(khw); \ 1051 } else \ 1052 PF_HASHROW_UNLOCK(khs); \ 1053 } while (0) 1054 1055 /* 1056 * First run: start with wire key. 1057 */ 1058 sk = skw; 1059 kh = khw; 1060 idx = PF_SK_WIRE; 1061 1062 keyattach: 1063 LIST_FOREACH(cur, &kh->keys, entry) 1064 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1065 break; 1066 1067 if (cur != NULL) { 1068 /* Key exists. Check for same kif, if none, add to key. */ 1069 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1070 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1071 1072 PF_HASHROW_LOCK(ih); 1073 if (si->kif == s->kif && 1074 si->direction == s->direction) { 1075 if (sk->proto == IPPROTO_TCP && 1076 si->src.state >= TCPS_FIN_WAIT_2 && 1077 si->dst.state >= TCPS_FIN_WAIT_2) { 1078 /* 1079 * New state matches an old >FIN_WAIT_2 1080 * state. We can't drop key hash locks, 1081 * thus we can't unlink it properly. 1082 * 1083 * As a workaround we drop it into 1084 * TCPS_CLOSED state, schedule purge 1085 * ASAP and push it into the very end 1086 * of the slot TAILQ, so that it won't 1087 * conflict with our new state. 1088 */ 1089 si->src.state = si->dst.state = 1090 TCPS_CLOSED; 1091 si->timeout = PFTM_PURGE; 1092 olds = si; 1093 } else { 1094 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1095 printf("pf: %s key attach " 1096 "failed on %s: ", 1097 (idx == PF_SK_WIRE) ? 1098 "wire" : "stack", 1099 s->kif->pfik_name); 1100 pf_print_state_parts(s, 1101 (idx == PF_SK_WIRE) ? 1102 sk : NULL, 1103 (idx == PF_SK_STACK) ? 1104 sk : NULL); 1105 printf(", existing: "); 1106 pf_print_state_parts(si, 1107 (idx == PF_SK_WIRE) ? 1108 sk : NULL, 1109 (idx == PF_SK_STACK) ? 1110 sk : NULL); 1111 printf("\n"); 1112 } 1113 PF_HASHROW_UNLOCK(ih); 1114 KEYS_UNLOCK(); 1115 uma_zfree(V_pf_state_key_z, sk); 1116 if (idx == PF_SK_STACK) 1117 pf_detach_state(s); 1118 return (EEXIST); /* collision! */ 1119 } 1120 } 1121 PF_HASHROW_UNLOCK(ih); 1122 } 1123 uma_zfree(V_pf_state_key_z, sk); 1124 s->key[idx] = cur; 1125 } else { 1126 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1127 s->key[idx] = sk; 1128 } 1129 1130 stateattach: 1131 /* List is sorted, if-bound states before floating. */ 1132 if (s->kif == V_pfi_all) 1133 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1134 else 1135 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1136 1137 if (olds) { 1138 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1139 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1140 key_list[idx]); 1141 olds = NULL; 1142 } 1143 1144 /* 1145 * Attach done. See how should we (or should not?) 1146 * attach a second key. 1147 */ 1148 if (sks == skw) { 1149 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1150 idx = PF_SK_STACK; 1151 sks = NULL; 1152 goto stateattach; 1153 } else if (sks != NULL) { 1154 /* 1155 * Continue attaching with stack key. 1156 */ 1157 sk = sks; 1158 kh = khs; 1159 idx = PF_SK_STACK; 1160 sks = NULL; 1161 goto keyattach; 1162 } 1163 1164 PF_STATE_LOCK(s); 1165 KEYS_UNLOCK(); 1166 1167 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1168 ("%s failure", __func__)); 1169 1170 return (0); 1171 #undef KEYS_UNLOCK 1172 } 1173 1174 static void 1175 pf_detach_state(struct pf_kstate *s) 1176 { 1177 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1178 struct pf_keyhash *kh; 1179 1180 if (sks != NULL) { 1181 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1182 PF_HASHROW_LOCK(kh); 1183 if (s->key[PF_SK_STACK] != NULL) 1184 pf_state_key_detach(s, PF_SK_STACK); 1185 /* 1186 * If both point to same key, then we are done. 1187 */ 1188 if (sks == s->key[PF_SK_WIRE]) { 1189 pf_state_key_detach(s, PF_SK_WIRE); 1190 PF_HASHROW_UNLOCK(kh); 1191 return; 1192 } 1193 PF_HASHROW_UNLOCK(kh); 1194 } 1195 1196 if (s->key[PF_SK_WIRE] != NULL) { 1197 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1198 PF_HASHROW_LOCK(kh); 1199 if (s->key[PF_SK_WIRE] != NULL) 1200 pf_state_key_detach(s, PF_SK_WIRE); 1201 PF_HASHROW_UNLOCK(kh); 1202 } 1203 } 1204 1205 static void 1206 pf_state_key_detach(struct pf_kstate *s, int idx) 1207 { 1208 struct pf_state_key *sk = s->key[idx]; 1209 #ifdef INVARIANTS 1210 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1211 1212 PF_HASHROW_ASSERT(kh); 1213 #endif 1214 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1215 s->key[idx] = NULL; 1216 1217 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1218 LIST_REMOVE(sk, entry); 1219 uma_zfree(V_pf_state_key_z, sk); 1220 } 1221 } 1222 1223 static int 1224 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1225 { 1226 struct pf_state_key *sk = mem; 1227 1228 bzero(sk, sizeof(struct pf_state_key_cmp)); 1229 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1230 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1231 1232 return (0); 1233 } 1234 1235 struct pf_state_key * 1236 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1237 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1238 { 1239 struct pf_state_key *sk; 1240 1241 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1242 if (sk == NULL) 1243 return (NULL); 1244 1245 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1246 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1247 sk->port[pd->sidx] = sport; 1248 sk->port[pd->didx] = dport; 1249 sk->proto = pd->proto; 1250 sk->af = pd->af; 1251 1252 return (sk); 1253 } 1254 1255 struct pf_state_key * 1256 pf_state_key_clone(struct pf_state_key *orig) 1257 { 1258 struct pf_state_key *sk; 1259 1260 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1261 if (sk == NULL) 1262 return (NULL); 1263 1264 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1265 1266 return (sk); 1267 } 1268 1269 int 1270 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1271 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1272 { 1273 struct pf_idhash *ih; 1274 struct pf_kstate *cur; 1275 int error; 1276 1277 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1278 ("%s: sks not pristine", __func__)); 1279 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1280 ("%s: skw not pristine", __func__)); 1281 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1282 1283 s->kif = kif; 1284 s->orig_kif = orig_kif; 1285 1286 if (s->id == 0 && s->creatorid == 0) { 1287 /* XXX: should be atomic, but probability of collision low */ 1288 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1289 V_pf_stateid[curcpu] = 1; 1290 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1291 s->id = htobe64(s->id); 1292 s->creatorid = V_pf_status.hostid; 1293 } 1294 1295 /* Returns with ID locked on success. */ 1296 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1297 return (error); 1298 1299 ih = &V_pf_idhash[PF_IDHASH(s)]; 1300 PF_HASHROW_ASSERT(ih); 1301 LIST_FOREACH(cur, &ih->states, entry) 1302 if (cur->id == s->id && cur->creatorid == s->creatorid) 1303 break; 1304 1305 if (cur != NULL) { 1306 PF_HASHROW_UNLOCK(ih); 1307 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1308 printf("pf: state ID collision: " 1309 "id: %016llx creatorid: %08x\n", 1310 (unsigned long long)be64toh(s->id), 1311 ntohl(s->creatorid)); 1312 } 1313 pf_detach_state(s); 1314 return (EEXIST); 1315 } 1316 LIST_INSERT_HEAD(&ih->states, s, entry); 1317 /* One for keys, one for ID hash. */ 1318 refcount_init(&s->refs, 2); 1319 1320 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1321 if (V_pfsync_insert_state_ptr != NULL) 1322 V_pfsync_insert_state_ptr(s); 1323 1324 /* Returns locked. */ 1325 return (0); 1326 } 1327 1328 /* 1329 * Find state by ID: returns with locked row on success. 1330 */ 1331 struct pf_kstate * 1332 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1333 { 1334 struct pf_idhash *ih; 1335 struct pf_kstate *s; 1336 1337 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1338 1339 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1340 1341 PF_HASHROW_LOCK(ih); 1342 LIST_FOREACH(s, &ih->states, entry) 1343 if (s->id == id && s->creatorid == creatorid) 1344 break; 1345 1346 if (s == NULL) 1347 PF_HASHROW_UNLOCK(ih); 1348 1349 return (s); 1350 } 1351 1352 /* 1353 * Find state by key. 1354 * Returns with ID hash slot locked on success. 1355 */ 1356 static struct pf_kstate * 1357 pf_find_state(struct pfi_kkif *kif, struct pf_state_key_cmp *key, u_int dir) 1358 { 1359 struct pf_keyhash *kh; 1360 struct pf_state_key *sk; 1361 struct pf_kstate *s; 1362 int idx; 1363 1364 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1365 1366 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1367 1368 PF_HASHROW_LOCK(kh); 1369 LIST_FOREACH(sk, &kh->keys, entry) 1370 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1371 break; 1372 if (sk == NULL) { 1373 PF_HASHROW_UNLOCK(kh); 1374 return (NULL); 1375 } 1376 1377 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1378 1379 /* List is sorted, if-bound states before floating ones. */ 1380 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1381 if (s->kif == V_pfi_all || s->kif == kif) { 1382 PF_STATE_LOCK(s); 1383 PF_HASHROW_UNLOCK(kh); 1384 if (s->timeout >= PFTM_MAX) { 1385 /* 1386 * State is either being processed by 1387 * pf_unlink_state() in an other thread, or 1388 * is scheduled for immediate expiry. 1389 */ 1390 PF_STATE_UNLOCK(s); 1391 return (NULL); 1392 } 1393 return (s); 1394 } 1395 PF_HASHROW_UNLOCK(kh); 1396 1397 return (NULL); 1398 } 1399 1400 struct pf_kstate * 1401 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1402 { 1403 struct pf_keyhash *kh; 1404 struct pf_state_key *sk; 1405 struct pf_kstate *s, *ret = NULL; 1406 int idx, inout = 0; 1407 1408 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1409 1410 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1411 1412 PF_HASHROW_LOCK(kh); 1413 LIST_FOREACH(sk, &kh->keys, entry) 1414 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1415 break; 1416 if (sk == NULL) { 1417 PF_HASHROW_UNLOCK(kh); 1418 return (NULL); 1419 } 1420 switch (dir) { 1421 case PF_IN: 1422 idx = PF_SK_WIRE; 1423 break; 1424 case PF_OUT: 1425 idx = PF_SK_STACK; 1426 break; 1427 case PF_INOUT: 1428 idx = PF_SK_WIRE; 1429 inout = 1; 1430 break; 1431 default: 1432 panic("%s: dir %u", __func__, dir); 1433 } 1434 second_run: 1435 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1436 if (more == NULL) { 1437 PF_HASHROW_UNLOCK(kh); 1438 return (s); 1439 } 1440 1441 if (ret) 1442 (*more)++; 1443 else 1444 ret = s; 1445 } 1446 if (inout == 1) { 1447 inout = 0; 1448 idx = PF_SK_STACK; 1449 goto second_run; 1450 } 1451 PF_HASHROW_UNLOCK(kh); 1452 1453 return (ret); 1454 } 1455 1456 bool 1457 pf_find_state_all_exists(struct pf_state_key_cmp *key, u_int dir) 1458 { 1459 struct pf_kstate *s; 1460 1461 s = pf_find_state_all(key, dir, NULL); 1462 return (s != NULL); 1463 } 1464 1465 /* END state table stuff */ 1466 1467 static void 1468 pf_send(struct pf_send_entry *pfse) 1469 { 1470 1471 PF_SENDQ_LOCK(); 1472 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1473 PF_SENDQ_UNLOCK(); 1474 swi_sched(V_pf_swi_cookie, 0); 1475 } 1476 1477 void 1478 pf_intr(void *v) 1479 { 1480 struct epoch_tracker et; 1481 struct pf_send_head queue; 1482 struct pf_send_entry *pfse, *next; 1483 1484 CURVNET_SET((struct vnet *)v); 1485 1486 PF_SENDQ_LOCK(); 1487 queue = V_pf_sendqueue; 1488 STAILQ_INIT(&V_pf_sendqueue); 1489 PF_SENDQ_UNLOCK(); 1490 1491 NET_EPOCH_ENTER(et); 1492 1493 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1494 switch (pfse->pfse_type) { 1495 #ifdef INET 1496 case PFSE_IP: 1497 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1498 break; 1499 case PFSE_ICMP: 1500 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1501 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1502 break; 1503 #endif /* INET */ 1504 #ifdef INET6 1505 case PFSE_IP6: 1506 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1507 NULL); 1508 break; 1509 case PFSE_ICMP6: 1510 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1511 pfse->icmpopts.code, pfse->icmpopts.mtu); 1512 break; 1513 #endif /* INET6 */ 1514 default: 1515 panic("%s: unknown type", __func__); 1516 } 1517 free(pfse, M_PFTEMP); 1518 } 1519 NET_EPOCH_EXIT(et); 1520 CURVNET_RESTORE(); 1521 } 1522 1523 void 1524 pf_purge_thread(void *unused __unused) 1525 { 1526 VNET_ITERATOR_DECL(vnet_iter); 1527 1528 sx_xlock(&pf_end_lock); 1529 while (pf_end_threads == 0) { 1530 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", hz / 10); 1531 1532 VNET_LIST_RLOCK(); 1533 VNET_FOREACH(vnet_iter) { 1534 CURVNET_SET(vnet_iter); 1535 1536 /* Wait until V_pf_default_rule is initialized. */ 1537 if (V_pf_vnet_active == 0) { 1538 CURVNET_RESTORE(); 1539 continue; 1540 } 1541 1542 /* 1543 * Process 1/interval fraction of the state 1544 * table every run. 1545 */ 1546 V_pf_purge_idx = 1547 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1548 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1549 1550 /* 1551 * Purge other expired types every 1552 * PFTM_INTERVAL seconds. 1553 */ 1554 if (V_pf_purge_idx == 0) { 1555 /* 1556 * Order is important: 1557 * - states and src nodes reference rules 1558 * - states and rules reference kifs 1559 */ 1560 pf_purge_expired_fragments(); 1561 pf_purge_expired_src_nodes(); 1562 pf_purge_unlinked_rules(); 1563 pfi_kkif_purge(); 1564 } 1565 CURVNET_RESTORE(); 1566 } 1567 VNET_LIST_RUNLOCK(); 1568 } 1569 1570 pf_end_threads++; 1571 sx_xunlock(&pf_end_lock); 1572 kproc_exit(0); 1573 } 1574 1575 void 1576 pf_unload_vnet_purge(void) 1577 { 1578 1579 /* 1580 * To cleanse up all kifs and rules we need 1581 * two runs: first one clears reference flags, 1582 * then pf_purge_expired_states() doesn't 1583 * raise them, and then second run frees. 1584 */ 1585 pf_purge_unlinked_rules(); 1586 pfi_kkif_purge(); 1587 1588 /* 1589 * Now purge everything. 1590 */ 1591 pf_purge_expired_states(0, pf_hashmask); 1592 pf_purge_fragments(UINT_MAX); 1593 pf_purge_expired_src_nodes(); 1594 1595 /* 1596 * Now all kifs & rules should be unreferenced, 1597 * thus should be successfully freed. 1598 */ 1599 pf_purge_unlinked_rules(); 1600 pfi_kkif_purge(); 1601 } 1602 1603 u_int32_t 1604 pf_state_expires(const struct pf_kstate *state) 1605 { 1606 u_int32_t timeout; 1607 u_int32_t start; 1608 u_int32_t end; 1609 u_int32_t states; 1610 1611 /* handle all PFTM_* > PFTM_MAX here */ 1612 if (state->timeout == PFTM_PURGE) 1613 return (time_uptime); 1614 KASSERT(state->timeout != PFTM_UNLINKED, 1615 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1616 KASSERT((state->timeout < PFTM_MAX), 1617 ("pf_state_expires: timeout > PFTM_MAX")); 1618 timeout = state->rule.ptr->timeout[state->timeout]; 1619 if (!timeout) 1620 timeout = V_pf_default_rule.timeout[state->timeout]; 1621 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1622 if (start && state->rule.ptr != &V_pf_default_rule) { 1623 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1624 states = counter_u64_fetch(state->rule.ptr->states_cur); 1625 } else { 1626 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1627 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1628 states = V_pf_status.states; 1629 } 1630 if (end && states > start && start < end) { 1631 if (states < end) { 1632 timeout = (u_int64_t)timeout * (end - states) / 1633 (end - start); 1634 return (state->expire + timeout); 1635 } 1636 else 1637 return (time_uptime); 1638 } 1639 return (state->expire + timeout); 1640 } 1641 1642 void 1643 pf_purge_expired_src_nodes() 1644 { 1645 struct pf_ksrc_node_list freelist; 1646 struct pf_srchash *sh; 1647 struct pf_ksrc_node *cur, *next; 1648 int i; 1649 1650 LIST_INIT(&freelist); 1651 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1652 PF_HASHROW_LOCK(sh); 1653 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1654 if (cur->states == 0 && cur->expire <= time_uptime) { 1655 pf_unlink_src_node(cur); 1656 LIST_INSERT_HEAD(&freelist, cur, entry); 1657 } else if (cur->rule.ptr != NULL) 1658 cur->rule.ptr->rule_ref |= PFRULE_REFS; 1659 PF_HASHROW_UNLOCK(sh); 1660 } 1661 1662 pf_free_src_nodes(&freelist); 1663 1664 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1665 } 1666 1667 static void 1668 pf_src_tree_remove_state(struct pf_kstate *s) 1669 { 1670 struct pf_ksrc_node *sn; 1671 struct pf_srchash *sh; 1672 uint32_t timeout; 1673 1674 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1675 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1676 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1677 1678 if (s->src_node != NULL) { 1679 sn = s->src_node; 1680 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1681 PF_HASHROW_LOCK(sh); 1682 if (s->src.tcp_est) 1683 --sn->conn; 1684 if (--sn->states == 0) 1685 sn->expire = time_uptime + timeout; 1686 PF_HASHROW_UNLOCK(sh); 1687 } 1688 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1689 sn = s->nat_src_node; 1690 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1691 PF_HASHROW_LOCK(sh); 1692 if (--sn->states == 0) 1693 sn->expire = time_uptime + timeout; 1694 PF_HASHROW_UNLOCK(sh); 1695 } 1696 s->src_node = s->nat_src_node = NULL; 1697 } 1698 1699 /* 1700 * Unlink and potentilly free a state. Function may be 1701 * called with ID hash row locked, but always returns 1702 * unlocked, since it needs to go through key hash locking. 1703 */ 1704 int 1705 pf_unlink_state(struct pf_kstate *s, u_int flags) 1706 { 1707 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1708 1709 if ((flags & PF_ENTER_LOCKED) == 0) 1710 PF_HASHROW_LOCK(ih); 1711 else 1712 PF_HASHROW_ASSERT(ih); 1713 1714 if (s->timeout == PFTM_UNLINKED) { 1715 /* 1716 * State is being processed 1717 * by pf_unlink_state() in 1718 * an other thread. 1719 */ 1720 PF_HASHROW_UNLOCK(ih); 1721 return (0); /* XXXGL: undefined actually */ 1722 } 1723 1724 if (s->src.state == PF_TCPS_PROXY_DST) { 1725 /* XXX wire key the right one? */ 1726 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1727 &s->key[PF_SK_WIRE]->addr[1], 1728 &s->key[PF_SK_WIRE]->addr[0], 1729 s->key[PF_SK_WIRE]->port[1], 1730 s->key[PF_SK_WIRE]->port[0], 1731 s->src.seqhi, s->src.seqlo + 1, 1732 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1733 } 1734 1735 LIST_REMOVE(s, entry); 1736 pf_src_tree_remove_state(s); 1737 1738 if (V_pfsync_delete_state_ptr != NULL) 1739 V_pfsync_delete_state_ptr(s); 1740 1741 STATE_DEC_COUNTERS(s); 1742 1743 s->timeout = PFTM_UNLINKED; 1744 1745 PF_HASHROW_UNLOCK(ih); 1746 1747 pf_detach_state(s); 1748 /* pf_state_insert() initialises refs to 2 */ 1749 return (pf_release_staten(s, 2)); 1750 } 1751 1752 struct pf_kstate * 1753 pf_alloc_state(int flags) 1754 { 1755 1756 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 1757 } 1758 1759 void 1760 pf_free_state(struct pf_kstate *cur) 1761 { 1762 1763 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1764 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1765 cur->timeout)); 1766 1767 pf_normalize_tcp_cleanup(cur); 1768 uma_zfree(V_pf_state_z, cur); 1769 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1770 } 1771 1772 /* 1773 * Called only from pf_purge_thread(), thus serialized. 1774 */ 1775 static u_int 1776 pf_purge_expired_states(u_int i, int maxcheck) 1777 { 1778 struct pf_idhash *ih; 1779 struct pf_kstate *s; 1780 1781 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1782 1783 /* 1784 * Go through hash and unlink states that expire now. 1785 */ 1786 while (maxcheck > 0) { 1787 ih = &V_pf_idhash[i]; 1788 1789 /* only take the lock if we expect to do work */ 1790 if (!LIST_EMPTY(&ih->states)) { 1791 relock: 1792 PF_HASHROW_LOCK(ih); 1793 LIST_FOREACH(s, &ih->states, entry) { 1794 if (pf_state_expires(s) <= time_uptime) { 1795 V_pf_status.states -= 1796 pf_unlink_state(s, PF_ENTER_LOCKED); 1797 goto relock; 1798 } 1799 s->rule.ptr->rule_ref |= PFRULE_REFS; 1800 if (s->nat_rule.ptr != NULL) 1801 s->nat_rule.ptr->rule_ref |= PFRULE_REFS; 1802 if (s->anchor.ptr != NULL) 1803 s->anchor.ptr->rule_ref |= PFRULE_REFS; 1804 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1805 if (s->rt_kif) 1806 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1807 } 1808 PF_HASHROW_UNLOCK(ih); 1809 } 1810 1811 /* Return when we hit end of hash. */ 1812 if (++i > pf_hashmask) { 1813 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1814 return (0); 1815 } 1816 1817 maxcheck--; 1818 } 1819 1820 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1821 1822 return (i); 1823 } 1824 1825 static void 1826 pf_purge_unlinked_rules() 1827 { 1828 struct pf_krulequeue tmpq; 1829 struct pf_krule *r, *r1; 1830 1831 /* 1832 * If we have overloading task pending, then we'd 1833 * better skip purging this time. There is a tiny 1834 * probability that overloading task references 1835 * an already unlinked rule. 1836 */ 1837 PF_OVERLOADQ_LOCK(); 1838 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1839 PF_OVERLOADQ_UNLOCK(); 1840 return; 1841 } 1842 PF_OVERLOADQ_UNLOCK(); 1843 1844 /* 1845 * Do naive mark-and-sweep garbage collecting of old rules. 1846 * Reference flag is raised by pf_purge_expired_states() 1847 * and pf_purge_expired_src_nodes(). 1848 * 1849 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1850 * use a temporary queue. 1851 */ 1852 TAILQ_INIT(&tmpq); 1853 PF_UNLNKDRULES_LOCK(); 1854 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1855 if (!(r->rule_ref & PFRULE_REFS)) { 1856 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1857 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1858 } else 1859 r->rule_ref &= ~PFRULE_REFS; 1860 } 1861 PF_UNLNKDRULES_UNLOCK(); 1862 1863 if (!TAILQ_EMPTY(&tmpq)) { 1864 PF_RULES_WLOCK(); 1865 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1866 TAILQ_REMOVE(&tmpq, r, entries); 1867 pf_free_rule(r); 1868 } 1869 PF_RULES_WUNLOCK(); 1870 } 1871 } 1872 1873 void 1874 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1875 { 1876 switch (af) { 1877 #ifdef INET 1878 case AF_INET: { 1879 u_int32_t a = ntohl(addr->addr32[0]); 1880 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1881 (a>>8)&255, a&255); 1882 if (p) { 1883 p = ntohs(p); 1884 printf(":%u", p); 1885 } 1886 break; 1887 } 1888 #endif /* INET */ 1889 #ifdef INET6 1890 case AF_INET6: { 1891 u_int16_t b; 1892 u_int8_t i, curstart, curend, maxstart, maxend; 1893 curstart = curend = maxstart = maxend = 255; 1894 for (i = 0; i < 8; i++) { 1895 if (!addr->addr16[i]) { 1896 if (curstart == 255) 1897 curstart = i; 1898 curend = i; 1899 } else { 1900 if ((curend - curstart) > 1901 (maxend - maxstart)) { 1902 maxstart = curstart; 1903 maxend = curend; 1904 } 1905 curstart = curend = 255; 1906 } 1907 } 1908 if ((curend - curstart) > 1909 (maxend - maxstart)) { 1910 maxstart = curstart; 1911 maxend = curend; 1912 } 1913 for (i = 0; i < 8; i++) { 1914 if (i >= maxstart && i <= maxend) { 1915 if (i == 0) 1916 printf(":"); 1917 if (i == maxend) 1918 printf(":"); 1919 } else { 1920 b = ntohs(addr->addr16[i]); 1921 printf("%x", b); 1922 if (i < 7) 1923 printf(":"); 1924 } 1925 } 1926 if (p) { 1927 p = ntohs(p); 1928 printf("[%u]", p); 1929 } 1930 break; 1931 } 1932 #endif /* INET6 */ 1933 } 1934 } 1935 1936 void 1937 pf_print_state(struct pf_kstate *s) 1938 { 1939 pf_print_state_parts(s, NULL, NULL); 1940 } 1941 1942 static void 1943 pf_print_state_parts(struct pf_kstate *s, 1944 struct pf_state_key *skwp, struct pf_state_key *sksp) 1945 { 1946 struct pf_state_key *skw, *sks; 1947 u_int8_t proto, dir; 1948 1949 /* Do our best to fill these, but they're skipped if NULL */ 1950 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1951 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1952 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1953 dir = s ? s->direction : 0; 1954 1955 switch (proto) { 1956 case IPPROTO_IPV4: 1957 printf("IPv4"); 1958 break; 1959 case IPPROTO_IPV6: 1960 printf("IPv6"); 1961 break; 1962 case IPPROTO_TCP: 1963 printf("TCP"); 1964 break; 1965 case IPPROTO_UDP: 1966 printf("UDP"); 1967 break; 1968 case IPPROTO_ICMP: 1969 printf("ICMP"); 1970 break; 1971 case IPPROTO_ICMPV6: 1972 printf("ICMPv6"); 1973 break; 1974 default: 1975 printf("%u", proto); 1976 break; 1977 } 1978 switch (dir) { 1979 case PF_IN: 1980 printf(" in"); 1981 break; 1982 case PF_OUT: 1983 printf(" out"); 1984 break; 1985 } 1986 if (skw) { 1987 printf(" wire: "); 1988 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1989 printf(" "); 1990 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1991 } 1992 if (sks) { 1993 printf(" stack: "); 1994 if (sks != skw) { 1995 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1996 printf(" "); 1997 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1998 } else 1999 printf("-"); 2000 } 2001 if (s) { 2002 if (proto == IPPROTO_TCP) { 2003 printf(" [lo=%u high=%u win=%u modulator=%u", 2004 s->src.seqlo, s->src.seqhi, 2005 s->src.max_win, s->src.seqdiff); 2006 if (s->src.wscale && s->dst.wscale) 2007 printf(" wscale=%u", 2008 s->src.wscale & PF_WSCALE_MASK); 2009 printf("]"); 2010 printf(" [lo=%u high=%u win=%u modulator=%u", 2011 s->dst.seqlo, s->dst.seqhi, 2012 s->dst.max_win, s->dst.seqdiff); 2013 if (s->src.wscale && s->dst.wscale) 2014 printf(" wscale=%u", 2015 s->dst.wscale & PF_WSCALE_MASK); 2016 printf("]"); 2017 } 2018 printf(" %u:%u", s->src.state, s->dst.state); 2019 } 2020 } 2021 2022 void 2023 pf_print_flags(u_int8_t f) 2024 { 2025 if (f) 2026 printf(" "); 2027 if (f & TH_FIN) 2028 printf("F"); 2029 if (f & TH_SYN) 2030 printf("S"); 2031 if (f & TH_RST) 2032 printf("R"); 2033 if (f & TH_PUSH) 2034 printf("P"); 2035 if (f & TH_ACK) 2036 printf("A"); 2037 if (f & TH_URG) 2038 printf("U"); 2039 if (f & TH_ECE) 2040 printf("E"); 2041 if (f & TH_CWR) 2042 printf("W"); 2043 } 2044 2045 #define PF_SET_SKIP_STEPS(i) \ 2046 do { \ 2047 while (head[i] != cur) { \ 2048 head[i]->skip[i].ptr = cur; \ 2049 head[i] = TAILQ_NEXT(head[i], entries); \ 2050 } \ 2051 } while (0) 2052 2053 void 2054 pf_calc_skip_steps(struct pf_krulequeue *rules) 2055 { 2056 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2057 int i; 2058 2059 cur = TAILQ_FIRST(rules); 2060 prev = cur; 2061 for (i = 0; i < PF_SKIP_COUNT; ++i) 2062 head[i] = cur; 2063 while (cur != NULL) { 2064 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2065 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2066 if (cur->direction != prev->direction) 2067 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2068 if (cur->af != prev->af) 2069 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2070 if (cur->proto != prev->proto) 2071 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2072 if (cur->src.neg != prev->src.neg || 2073 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2074 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2075 if (cur->src.port[0] != prev->src.port[0] || 2076 cur->src.port[1] != prev->src.port[1] || 2077 cur->src.port_op != prev->src.port_op) 2078 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2079 if (cur->dst.neg != prev->dst.neg || 2080 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2081 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2082 if (cur->dst.port[0] != prev->dst.port[0] || 2083 cur->dst.port[1] != prev->dst.port[1] || 2084 cur->dst.port_op != prev->dst.port_op) 2085 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2086 2087 prev = cur; 2088 cur = TAILQ_NEXT(cur, entries); 2089 } 2090 for (i = 0; i < PF_SKIP_COUNT; ++i) 2091 PF_SET_SKIP_STEPS(i); 2092 } 2093 2094 static int 2095 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2096 { 2097 if (aw1->type != aw2->type) 2098 return (1); 2099 switch (aw1->type) { 2100 case PF_ADDR_ADDRMASK: 2101 case PF_ADDR_RANGE: 2102 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2103 return (1); 2104 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2105 return (1); 2106 return (0); 2107 case PF_ADDR_DYNIFTL: 2108 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2109 case PF_ADDR_NOROUTE: 2110 case PF_ADDR_URPFFAILED: 2111 return (0); 2112 case PF_ADDR_TABLE: 2113 return (aw1->p.tbl != aw2->p.tbl); 2114 default: 2115 printf("invalid address type: %d\n", aw1->type); 2116 return (1); 2117 } 2118 } 2119 2120 /** 2121 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2122 * header isn't always a full checksum. In some cases (i.e. output) it's a 2123 * pseudo-header checksum, which is a partial checksum over src/dst IP 2124 * addresses, protocol number and length. 2125 * 2126 * That means we have the following cases: 2127 * * Input or forwarding: we don't have TSO, the checksum fields are full 2128 * checksums, we need to update the checksum whenever we change anything. 2129 * * Output (i.e. the checksum is a pseudo-header checksum): 2130 * x The field being updated is src/dst address or affects the length of 2131 * the packet. We need to update the pseudo-header checksum (note that this 2132 * checksum is not ones' complement). 2133 * x Some other field is being modified (e.g. src/dst port numbers): We 2134 * don't have to update anything. 2135 **/ 2136 u_int16_t 2137 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2138 { 2139 u_int32_t x; 2140 2141 x = cksum + old - new; 2142 x = (x + (x >> 16)) & 0xffff; 2143 2144 /* optimise: eliminate a branch when not udp */ 2145 if (udp && cksum == 0x0000) 2146 return cksum; 2147 if (udp && x == 0x0000) 2148 x = 0xffff; 2149 2150 return (u_int16_t)(x); 2151 } 2152 2153 static void 2154 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 2155 u_int8_t udp) 2156 { 2157 u_int16_t old = htons(hi ? (*f << 8) : *f); 2158 u_int16_t new = htons(hi ? ( v << 8) : v); 2159 2160 if (*f == v) 2161 return; 2162 2163 *f = v; 2164 2165 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2166 return; 2167 2168 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 2169 } 2170 2171 void 2172 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 2173 bool hi, u_int8_t udp) 2174 { 2175 u_int8_t *fb = (u_int8_t *)f; 2176 u_int8_t *vb = (u_int8_t *)&v; 2177 2178 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2179 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2180 } 2181 2182 void 2183 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 2184 bool hi, u_int8_t udp) 2185 { 2186 u_int8_t *fb = (u_int8_t *)f; 2187 u_int8_t *vb = (u_int8_t *)&v; 2188 2189 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2190 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2191 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2192 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2193 } 2194 2195 u_int16_t 2196 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2197 u_int16_t new, u_int8_t udp) 2198 { 2199 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2200 return (cksum); 2201 2202 return (pf_cksum_fixup(cksum, old, new, udp)); 2203 } 2204 2205 static void 2206 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2207 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2208 sa_family_t af) 2209 { 2210 struct pf_addr ao; 2211 u_int16_t po = *p; 2212 2213 PF_ACPY(&ao, a, af); 2214 PF_ACPY(a, an, af); 2215 2216 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2217 *pc = ~*pc; 2218 2219 *p = pn; 2220 2221 switch (af) { 2222 #ifdef INET 2223 case AF_INET: 2224 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2225 ao.addr16[0], an->addr16[0], 0), 2226 ao.addr16[1], an->addr16[1], 0); 2227 *p = pn; 2228 2229 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2230 ao.addr16[0], an->addr16[0], u), 2231 ao.addr16[1], an->addr16[1], u); 2232 2233 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2234 break; 2235 #endif /* INET */ 2236 #ifdef INET6 2237 case AF_INET6: 2238 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2239 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2240 pf_cksum_fixup(pf_cksum_fixup(*pc, 2241 ao.addr16[0], an->addr16[0], u), 2242 ao.addr16[1], an->addr16[1], u), 2243 ao.addr16[2], an->addr16[2], u), 2244 ao.addr16[3], an->addr16[3], u), 2245 ao.addr16[4], an->addr16[4], u), 2246 ao.addr16[5], an->addr16[5], u), 2247 ao.addr16[6], an->addr16[6], u), 2248 ao.addr16[7], an->addr16[7], u); 2249 2250 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2251 break; 2252 #endif /* INET6 */ 2253 } 2254 2255 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2256 CSUM_DELAY_DATA_IPV6)) { 2257 *pc = ~*pc; 2258 if (! *pc) 2259 *pc = 0xffff; 2260 } 2261 } 2262 2263 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2264 void 2265 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2266 { 2267 u_int32_t ao; 2268 2269 memcpy(&ao, a, sizeof(ao)); 2270 memcpy(a, &an, sizeof(u_int32_t)); 2271 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2272 ao % 65536, an % 65536, u); 2273 } 2274 2275 void 2276 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2277 { 2278 u_int32_t ao; 2279 2280 memcpy(&ao, a, sizeof(ao)); 2281 memcpy(a, &an, sizeof(u_int32_t)); 2282 2283 *c = pf_proto_cksum_fixup(m, 2284 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2285 ao % 65536, an % 65536, udp); 2286 } 2287 2288 #ifdef INET6 2289 static void 2290 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2291 { 2292 struct pf_addr ao; 2293 2294 PF_ACPY(&ao, a, AF_INET6); 2295 PF_ACPY(a, an, AF_INET6); 2296 2297 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2298 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2299 pf_cksum_fixup(pf_cksum_fixup(*c, 2300 ao.addr16[0], an->addr16[0], u), 2301 ao.addr16[1], an->addr16[1], u), 2302 ao.addr16[2], an->addr16[2], u), 2303 ao.addr16[3], an->addr16[3], u), 2304 ao.addr16[4], an->addr16[4], u), 2305 ao.addr16[5], an->addr16[5], u), 2306 ao.addr16[6], an->addr16[6], u), 2307 ao.addr16[7], an->addr16[7], u); 2308 } 2309 #endif /* INET6 */ 2310 2311 static void 2312 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2313 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2314 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2315 { 2316 struct pf_addr oia, ooa; 2317 2318 PF_ACPY(&oia, ia, af); 2319 if (oa) 2320 PF_ACPY(&ooa, oa, af); 2321 2322 /* Change inner protocol port, fix inner protocol checksum. */ 2323 if (ip != NULL) { 2324 u_int16_t oip = *ip; 2325 u_int32_t opc; 2326 2327 if (pc != NULL) 2328 opc = *pc; 2329 *ip = np; 2330 if (pc != NULL) 2331 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2332 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2333 if (pc != NULL) 2334 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2335 } 2336 /* Change inner ip address, fix inner ip and icmp checksums. */ 2337 PF_ACPY(ia, na, af); 2338 switch (af) { 2339 #ifdef INET 2340 case AF_INET: { 2341 u_int32_t oh2c = *h2c; 2342 2343 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2344 oia.addr16[0], ia->addr16[0], 0), 2345 oia.addr16[1], ia->addr16[1], 0); 2346 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2347 oia.addr16[0], ia->addr16[0], 0), 2348 oia.addr16[1], ia->addr16[1], 0); 2349 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2350 break; 2351 } 2352 #endif /* INET */ 2353 #ifdef INET6 2354 case AF_INET6: 2355 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2356 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2357 pf_cksum_fixup(pf_cksum_fixup(*ic, 2358 oia.addr16[0], ia->addr16[0], u), 2359 oia.addr16[1], ia->addr16[1], u), 2360 oia.addr16[2], ia->addr16[2], u), 2361 oia.addr16[3], ia->addr16[3], u), 2362 oia.addr16[4], ia->addr16[4], u), 2363 oia.addr16[5], ia->addr16[5], u), 2364 oia.addr16[6], ia->addr16[6], u), 2365 oia.addr16[7], ia->addr16[7], u); 2366 break; 2367 #endif /* INET6 */ 2368 } 2369 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2370 if (oa) { 2371 PF_ACPY(oa, na, af); 2372 switch (af) { 2373 #ifdef INET 2374 case AF_INET: 2375 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2376 ooa.addr16[0], oa->addr16[0], 0), 2377 ooa.addr16[1], oa->addr16[1], 0); 2378 break; 2379 #endif /* INET */ 2380 #ifdef INET6 2381 case AF_INET6: 2382 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2383 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2384 pf_cksum_fixup(pf_cksum_fixup(*ic, 2385 ooa.addr16[0], oa->addr16[0], u), 2386 ooa.addr16[1], oa->addr16[1], u), 2387 ooa.addr16[2], oa->addr16[2], u), 2388 ooa.addr16[3], oa->addr16[3], u), 2389 ooa.addr16[4], oa->addr16[4], u), 2390 ooa.addr16[5], oa->addr16[5], u), 2391 ooa.addr16[6], oa->addr16[6], u), 2392 ooa.addr16[7], oa->addr16[7], u); 2393 break; 2394 #endif /* INET6 */ 2395 } 2396 } 2397 } 2398 2399 /* 2400 * Need to modulate the sequence numbers in the TCP SACK option 2401 * (credits to Krzysztof Pfaff for report and patch) 2402 */ 2403 static int 2404 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2405 struct tcphdr *th, struct pf_state_peer *dst) 2406 { 2407 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2408 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2409 int copyback = 0, i, olen; 2410 struct sackblk sack; 2411 2412 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2413 if (hlen < TCPOLEN_SACKLEN || 2414 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2415 return 0; 2416 2417 while (hlen >= TCPOLEN_SACKLEN) { 2418 size_t startoff = opt - opts; 2419 olen = opt[1]; 2420 switch (*opt) { 2421 case TCPOPT_EOL: /* FALLTHROUGH */ 2422 case TCPOPT_NOP: 2423 opt++; 2424 hlen--; 2425 break; 2426 case TCPOPT_SACK: 2427 if (olen > hlen) 2428 olen = hlen; 2429 if (olen >= TCPOLEN_SACKLEN) { 2430 for (i = 2; i + TCPOLEN_SACK <= olen; 2431 i += TCPOLEN_SACK) { 2432 memcpy(&sack, &opt[i], sizeof(sack)); 2433 pf_patch_32_unaligned(m, 2434 &th->th_sum, &sack.start, 2435 htonl(ntohl(sack.start) - dst->seqdiff), 2436 PF_ALGNMNT(startoff), 2437 0); 2438 pf_patch_32_unaligned(m, &th->th_sum, 2439 &sack.end, 2440 htonl(ntohl(sack.end) - dst->seqdiff), 2441 PF_ALGNMNT(startoff), 2442 0); 2443 memcpy(&opt[i], &sack, sizeof(sack)); 2444 } 2445 copyback = 1; 2446 } 2447 /* FALLTHROUGH */ 2448 default: 2449 if (olen < 2) 2450 olen = 2; 2451 hlen -= olen; 2452 opt += olen; 2453 } 2454 } 2455 2456 if (copyback) 2457 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2458 return (copyback); 2459 } 2460 2461 static void 2462 pf_send_tcp(struct mbuf *replyto, const struct pf_krule *r, sa_family_t af, 2463 const struct pf_addr *saddr, const struct pf_addr *daddr, 2464 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2465 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2466 u_int16_t rtag, struct ifnet *ifp) 2467 { 2468 struct pf_send_entry *pfse; 2469 struct mbuf *m; 2470 int len, tlen; 2471 #ifdef INET 2472 struct ip *h = NULL; 2473 #endif /* INET */ 2474 #ifdef INET6 2475 struct ip6_hdr *h6 = NULL; 2476 #endif /* INET6 */ 2477 struct tcphdr *th; 2478 char *opt; 2479 struct pf_mtag *pf_mtag; 2480 2481 len = 0; 2482 th = NULL; 2483 2484 /* maximum segment size tcp option */ 2485 tlen = sizeof(struct tcphdr); 2486 if (mss) 2487 tlen += 4; 2488 2489 switch (af) { 2490 #ifdef INET 2491 case AF_INET: 2492 len = sizeof(struct ip) + tlen; 2493 break; 2494 #endif /* INET */ 2495 #ifdef INET6 2496 case AF_INET6: 2497 len = sizeof(struct ip6_hdr) + tlen; 2498 break; 2499 #endif /* INET6 */ 2500 default: 2501 panic("%s: unsupported af %d", __func__, af); 2502 } 2503 2504 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2505 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2506 if (pfse == NULL) 2507 return; 2508 m = m_gethdr(M_NOWAIT, MT_DATA); 2509 if (m == NULL) { 2510 free(pfse, M_PFTEMP); 2511 return; 2512 } 2513 #ifdef MAC 2514 mac_netinet_firewall_send(m); 2515 #endif 2516 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2517 free(pfse, M_PFTEMP); 2518 m_freem(m); 2519 return; 2520 } 2521 if (tag) 2522 m->m_flags |= M_SKIP_FIREWALL; 2523 pf_mtag->tag = rtag; 2524 2525 if (r != NULL && r->rtableid >= 0) 2526 M_SETFIB(m, r->rtableid); 2527 2528 #ifdef ALTQ 2529 if (r != NULL && r->qid) { 2530 pf_mtag->qid = r->qid; 2531 2532 /* add hints for ecn */ 2533 pf_mtag->hdr = mtod(m, struct ip *); 2534 } 2535 #endif /* ALTQ */ 2536 m->m_data += max_linkhdr; 2537 m->m_pkthdr.len = m->m_len = len; 2538 m->m_pkthdr.rcvif = NULL; 2539 bzero(m->m_data, len); 2540 switch (af) { 2541 #ifdef INET 2542 case AF_INET: 2543 h = mtod(m, struct ip *); 2544 2545 /* IP header fields included in the TCP checksum */ 2546 h->ip_p = IPPROTO_TCP; 2547 h->ip_len = htons(tlen); 2548 h->ip_src.s_addr = saddr->v4.s_addr; 2549 h->ip_dst.s_addr = daddr->v4.s_addr; 2550 2551 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2552 break; 2553 #endif /* INET */ 2554 #ifdef INET6 2555 case AF_INET6: 2556 h6 = mtod(m, struct ip6_hdr *); 2557 2558 /* IP header fields included in the TCP checksum */ 2559 h6->ip6_nxt = IPPROTO_TCP; 2560 h6->ip6_plen = htons(tlen); 2561 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2562 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2563 2564 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2565 break; 2566 #endif /* INET6 */ 2567 } 2568 2569 /* TCP header */ 2570 th->th_sport = sport; 2571 th->th_dport = dport; 2572 th->th_seq = htonl(seq); 2573 th->th_ack = htonl(ack); 2574 th->th_off = tlen >> 2; 2575 th->th_flags = flags; 2576 th->th_win = htons(win); 2577 2578 if (mss) { 2579 opt = (char *)(th + 1); 2580 opt[0] = TCPOPT_MAXSEG; 2581 opt[1] = 4; 2582 HTONS(mss); 2583 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2584 } 2585 2586 switch (af) { 2587 #ifdef INET 2588 case AF_INET: 2589 /* TCP checksum */ 2590 th->th_sum = in_cksum(m, len); 2591 2592 /* Finish the IP header */ 2593 h->ip_v = 4; 2594 h->ip_hl = sizeof(*h) >> 2; 2595 h->ip_tos = IPTOS_LOWDELAY; 2596 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2597 h->ip_len = htons(len); 2598 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2599 h->ip_sum = 0; 2600 2601 pfse->pfse_type = PFSE_IP; 2602 break; 2603 #endif /* INET */ 2604 #ifdef INET6 2605 case AF_INET6: 2606 /* TCP checksum */ 2607 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2608 sizeof(struct ip6_hdr), tlen); 2609 2610 h6->ip6_vfc |= IPV6_VERSION; 2611 h6->ip6_hlim = IPV6_DEFHLIM; 2612 2613 pfse->pfse_type = PFSE_IP6; 2614 break; 2615 #endif /* INET6 */ 2616 } 2617 pfse->pfse_m = m; 2618 pf_send(pfse); 2619 } 2620 2621 static void 2622 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 2623 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 2624 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 2625 u_short *reason) 2626 { 2627 struct pf_addr * const saddr = pd->src; 2628 struct pf_addr * const daddr = pd->dst; 2629 sa_family_t af = pd->af; 2630 2631 /* undo NAT changes, if they have taken place */ 2632 if (nr != NULL) { 2633 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 2634 PF_ACPY(daddr, &sk->addr[pd->didx], af); 2635 if (pd->sport) 2636 *pd->sport = sk->port[pd->sidx]; 2637 if (pd->dport) 2638 *pd->dport = sk->port[pd->didx]; 2639 if (pd->proto_sum) 2640 *pd->proto_sum = bproto_sum; 2641 if (pd->ip_sum) 2642 *pd->ip_sum = bip_sum; 2643 m_copyback(m, off, hdrlen, pd->hdr.any); 2644 } 2645 if (pd->proto == IPPROTO_TCP && 2646 ((r->rule_flag & PFRULE_RETURNRST) || 2647 (r->rule_flag & PFRULE_RETURN)) && 2648 !(th->th_flags & TH_RST)) { 2649 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 2650 int len = 0; 2651 #ifdef INET 2652 struct ip *h4; 2653 #endif 2654 #ifdef INET6 2655 struct ip6_hdr *h6; 2656 #endif 2657 2658 switch (af) { 2659 #ifdef INET 2660 case AF_INET: 2661 h4 = mtod(m, struct ip *); 2662 len = ntohs(h4->ip_len) - off; 2663 break; 2664 #endif 2665 #ifdef INET6 2666 case AF_INET6: 2667 h6 = mtod(m, struct ip6_hdr *); 2668 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 2669 break; 2670 #endif 2671 } 2672 2673 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 2674 REASON_SET(reason, PFRES_PROTCKSUM); 2675 else { 2676 if (th->th_flags & TH_SYN) 2677 ack++; 2678 if (th->th_flags & TH_FIN) 2679 ack++; 2680 pf_send_tcp(m, r, af, pd->dst, 2681 pd->src, th->th_dport, th->th_sport, 2682 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 2683 r->return_ttl, 1, 0, kif->pfik_ifp); 2684 } 2685 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 2686 r->return_icmp) 2687 pf_send_icmp(m, r->return_icmp >> 8, 2688 r->return_icmp & 255, af, r); 2689 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 2690 r->return_icmp6) 2691 pf_send_icmp(m, r->return_icmp6 >> 8, 2692 r->return_icmp6 & 255, af, r); 2693 } 2694 2695 static int 2696 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2697 { 2698 struct m_tag *mtag; 2699 2700 KASSERT(prio <= PF_PRIO_MAX, 2701 ("%s with invalid pcp", __func__)); 2702 2703 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2704 if (mtag == NULL) { 2705 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2706 sizeof(uint8_t), M_NOWAIT); 2707 if (mtag == NULL) 2708 return (ENOMEM); 2709 m_tag_prepend(m, mtag); 2710 } 2711 2712 *(uint8_t *)(mtag + 1) = prio; 2713 return (0); 2714 } 2715 2716 static int 2717 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2718 { 2719 struct m_tag *mtag; 2720 u_int8_t mpcp; 2721 2722 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2723 if (mtag == NULL) 2724 return (0); 2725 2726 if (prio == PF_PRIO_ZERO) 2727 prio = 0; 2728 2729 mpcp = *(uint8_t *)(mtag + 1); 2730 2731 return (mpcp == prio); 2732 } 2733 2734 static void 2735 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2736 struct pf_krule *r) 2737 { 2738 struct pf_send_entry *pfse; 2739 struct mbuf *m0; 2740 struct pf_mtag *pf_mtag; 2741 2742 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2743 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2744 if (pfse == NULL) 2745 return; 2746 2747 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2748 free(pfse, M_PFTEMP); 2749 return; 2750 } 2751 2752 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2753 free(pfse, M_PFTEMP); 2754 return; 2755 } 2756 /* XXX: revisit */ 2757 m0->m_flags |= M_SKIP_FIREWALL; 2758 2759 if (r->rtableid >= 0) 2760 M_SETFIB(m0, r->rtableid); 2761 2762 #ifdef ALTQ 2763 if (r->qid) { 2764 pf_mtag->qid = r->qid; 2765 /* add hints for ecn */ 2766 pf_mtag->hdr = mtod(m0, struct ip *); 2767 } 2768 #endif /* ALTQ */ 2769 2770 switch (af) { 2771 #ifdef INET 2772 case AF_INET: 2773 pfse->pfse_type = PFSE_ICMP; 2774 break; 2775 #endif /* INET */ 2776 #ifdef INET6 2777 case AF_INET6: 2778 pfse->pfse_type = PFSE_ICMP6; 2779 break; 2780 #endif /* INET6 */ 2781 } 2782 pfse->pfse_m = m0; 2783 pfse->icmpopts.type = type; 2784 pfse->icmpopts.code = code; 2785 pf_send(pfse); 2786 } 2787 2788 /* 2789 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2790 * If n is 0, they match if they are equal. If n is != 0, they match if they 2791 * are different. 2792 */ 2793 int 2794 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2795 struct pf_addr *b, sa_family_t af) 2796 { 2797 int match = 0; 2798 2799 switch (af) { 2800 #ifdef INET 2801 case AF_INET: 2802 if ((a->addr32[0] & m->addr32[0]) == 2803 (b->addr32[0] & m->addr32[0])) 2804 match++; 2805 break; 2806 #endif /* INET */ 2807 #ifdef INET6 2808 case AF_INET6: 2809 if (((a->addr32[0] & m->addr32[0]) == 2810 (b->addr32[0] & m->addr32[0])) && 2811 ((a->addr32[1] & m->addr32[1]) == 2812 (b->addr32[1] & m->addr32[1])) && 2813 ((a->addr32[2] & m->addr32[2]) == 2814 (b->addr32[2] & m->addr32[2])) && 2815 ((a->addr32[3] & m->addr32[3]) == 2816 (b->addr32[3] & m->addr32[3]))) 2817 match++; 2818 break; 2819 #endif /* INET6 */ 2820 } 2821 if (match) { 2822 if (n) 2823 return (0); 2824 else 2825 return (1); 2826 } else { 2827 if (n) 2828 return (1); 2829 else 2830 return (0); 2831 } 2832 } 2833 2834 /* 2835 * Return 1 if b <= a <= e, otherwise return 0. 2836 */ 2837 int 2838 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2839 struct pf_addr *a, sa_family_t af) 2840 { 2841 switch (af) { 2842 #ifdef INET 2843 case AF_INET: 2844 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2845 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2846 return (0); 2847 break; 2848 #endif /* INET */ 2849 #ifdef INET6 2850 case AF_INET6: { 2851 int i; 2852 2853 /* check a >= b */ 2854 for (i = 0; i < 4; ++i) 2855 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2856 break; 2857 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2858 return (0); 2859 /* check a <= e */ 2860 for (i = 0; i < 4; ++i) 2861 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2862 break; 2863 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2864 return (0); 2865 break; 2866 } 2867 #endif /* INET6 */ 2868 } 2869 return (1); 2870 } 2871 2872 static int 2873 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2874 { 2875 switch (op) { 2876 case PF_OP_IRG: 2877 return ((p > a1) && (p < a2)); 2878 case PF_OP_XRG: 2879 return ((p < a1) || (p > a2)); 2880 case PF_OP_RRG: 2881 return ((p >= a1) && (p <= a2)); 2882 case PF_OP_EQ: 2883 return (p == a1); 2884 case PF_OP_NE: 2885 return (p != a1); 2886 case PF_OP_LT: 2887 return (p < a1); 2888 case PF_OP_LE: 2889 return (p <= a1); 2890 case PF_OP_GT: 2891 return (p > a1); 2892 case PF_OP_GE: 2893 return (p >= a1); 2894 } 2895 return (0); /* never reached */ 2896 } 2897 2898 int 2899 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2900 { 2901 NTOHS(a1); 2902 NTOHS(a2); 2903 NTOHS(p); 2904 return (pf_match(op, a1, a2, p)); 2905 } 2906 2907 static int 2908 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2909 { 2910 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2911 return (0); 2912 return (pf_match(op, a1, a2, u)); 2913 } 2914 2915 static int 2916 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2917 { 2918 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2919 return (0); 2920 return (pf_match(op, a1, a2, g)); 2921 } 2922 2923 int 2924 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 2925 { 2926 if (*tag == -1) 2927 *tag = mtag; 2928 2929 return ((!r->match_tag_not && r->match_tag == *tag) || 2930 (r->match_tag_not && r->match_tag != *tag)); 2931 } 2932 2933 int 2934 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2935 { 2936 2937 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2938 2939 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2940 return (ENOMEM); 2941 2942 pd->pf_mtag->tag = tag; 2943 2944 return (0); 2945 } 2946 2947 #define PF_ANCHOR_STACKSIZE 32 2948 struct pf_kanchor_stackframe { 2949 struct pf_kruleset *rs; 2950 struct pf_krule *r; /* XXX: + match bit */ 2951 struct pf_kanchor *child; 2952 }; 2953 2954 /* 2955 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2956 */ 2957 #define PF_ANCHORSTACK_MATCH 0x00000001 2958 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2959 2960 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2961 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 2962 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2963 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2964 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2965 } while (0) 2966 2967 void 2968 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 2969 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 2970 int *match) 2971 { 2972 struct pf_kanchor_stackframe *f; 2973 2974 PF_RULES_RASSERT(); 2975 2976 if (match) 2977 *match = 0; 2978 if (*depth >= PF_ANCHOR_STACKSIZE) { 2979 printf("%s: anchor stack overflow on %s\n", 2980 __func__, (*r)->anchor->name); 2981 *r = TAILQ_NEXT(*r, entries); 2982 return; 2983 } else if (*depth == 0 && a != NULL) 2984 *a = *r; 2985 f = stack + (*depth)++; 2986 f->rs = *rs; 2987 f->r = *r; 2988 if ((*r)->anchor_wildcard) { 2989 struct pf_kanchor_node *parent = &(*r)->anchor->children; 2990 2991 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 2992 *r = NULL; 2993 return; 2994 } 2995 *rs = &f->child->ruleset; 2996 } else { 2997 f->child = NULL; 2998 *rs = &(*r)->anchor->ruleset; 2999 } 3000 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3001 } 3002 3003 int 3004 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3005 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3006 int *match) 3007 { 3008 struct pf_kanchor_stackframe *f; 3009 struct pf_krule *fr; 3010 int quick = 0; 3011 3012 PF_RULES_RASSERT(); 3013 3014 do { 3015 if (*depth <= 0) 3016 break; 3017 f = stack + *depth - 1; 3018 fr = PF_ANCHOR_RULE(f); 3019 if (f->child != NULL) { 3020 struct pf_kanchor_node *parent; 3021 3022 /* 3023 * This block traverses through 3024 * a wildcard anchor. 3025 */ 3026 parent = &fr->anchor->children; 3027 if (match != NULL && *match) { 3028 /* 3029 * If any of "*" matched, then 3030 * "foo/ *" matched, mark frame 3031 * appropriately. 3032 */ 3033 PF_ANCHOR_SET_MATCH(f); 3034 *match = 0; 3035 } 3036 f->child = RB_NEXT(pf_kanchor_node, parent, f->child); 3037 if (f->child != NULL) { 3038 *rs = &f->child->ruleset; 3039 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3040 if (*r == NULL) 3041 continue; 3042 else 3043 break; 3044 } 3045 } 3046 (*depth)--; 3047 if (*depth == 0 && a != NULL) 3048 *a = NULL; 3049 *rs = f->rs; 3050 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 3051 quick = fr->quick; 3052 *r = TAILQ_NEXT(fr, entries); 3053 } while (*r == NULL); 3054 3055 return (quick); 3056 } 3057 3058 #ifdef INET6 3059 void 3060 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 3061 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 3062 { 3063 switch (af) { 3064 #ifdef INET 3065 case AF_INET: 3066 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3067 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3068 break; 3069 #endif /* INET */ 3070 case AF_INET6: 3071 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3072 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3073 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 3074 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 3075 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 3076 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 3077 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 3078 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 3079 break; 3080 } 3081 } 3082 3083 void 3084 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 3085 { 3086 switch (af) { 3087 #ifdef INET 3088 case AF_INET: 3089 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 3090 break; 3091 #endif /* INET */ 3092 case AF_INET6: 3093 if (addr->addr32[3] == 0xffffffff) { 3094 addr->addr32[3] = 0; 3095 if (addr->addr32[2] == 0xffffffff) { 3096 addr->addr32[2] = 0; 3097 if (addr->addr32[1] == 0xffffffff) { 3098 addr->addr32[1] = 0; 3099 addr->addr32[0] = 3100 htonl(ntohl(addr->addr32[0]) + 1); 3101 } else 3102 addr->addr32[1] = 3103 htonl(ntohl(addr->addr32[1]) + 1); 3104 } else 3105 addr->addr32[2] = 3106 htonl(ntohl(addr->addr32[2]) + 1); 3107 } else 3108 addr->addr32[3] = 3109 htonl(ntohl(addr->addr32[3]) + 1); 3110 break; 3111 } 3112 } 3113 #endif /* INET6 */ 3114 3115 int 3116 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 3117 { 3118 struct pf_addr *saddr, *daddr; 3119 u_int16_t sport, dport; 3120 struct inpcbinfo *pi; 3121 struct inpcb *inp; 3122 3123 pd->lookup.uid = UID_MAX; 3124 pd->lookup.gid = GID_MAX; 3125 3126 switch (pd->proto) { 3127 case IPPROTO_TCP: 3128 sport = pd->hdr.tcp.th_sport; 3129 dport = pd->hdr.tcp.th_dport; 3130 pi = &V_tcbinfo; 3131 break; 3132 case IPPROTO_UDP: 3133 sport = pd->hdr.udp.uh_sport; 3134 dport = pd->hdr.udp.uh_dport; 3135 pi = &V_udbinfo; 3136 break; 3137 default: 3138 return (-1); 3139 } 3140 if (direction == PF_IN) { 3141 saddr = pd->src; 3142 daddr = pd->dst; 3143 } else { 3144 u_int16_t p; 3145 3146 p = sport; 3147 sport = dport; 3148 dport = p; 3149 saddr = pd->dst; 3150 daddr = pd->src; 3151 } 3152 switch (pd->af) { 3153 #ifdef INET 3154 case AF_INET: 3155 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3156 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3157 if (inp == NULL) { 3158 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3159 daddr->v4, dport, INPLOOKUP_WILDCARD | 3160 INPLOOKUP_RLOCKPCB, NULL, m); 3161 if (inp == NULL) 3162 return (-1); 3163 } 3164 break; 3165 #endif /* INET */ 3166 #ifdef INET6 3167 case AF_INET6: 3168 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3169 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3170 if (inp == NULL) { 3171 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3172 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3173 INPLOOKUP_RLOCKPCB, NULL, m); 3174 if (inp == NULL) 3175 return (-1); 3176 } 3177 break; 3178 #endif /* INET6 */ 3179 3180 default: 3181 return (-1); 3182 } 3183 INP_RLOCK_ASSERT(inp); 3184 pd->lookup.uid = inp->inp_cred->cr_uid; 3185 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3186 INP_RUNLOCK(inp); 3187 3188 return (1); 3189 } 3190 3191 static u_int8_t 3192 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3193 { 3194 int hlen; 3195 u_int8_t hdr[60]; 3196 u_int8_t *opt, optlen; 3197 u_int8_t wscale = 0; 3198 3199 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3200 if (hlen <= sizeof(struct tcphdr)) 3201 return (0); 3202 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3203 return (0); 3204 opt = hdr + sizeof(struct tcphdr); 3205 hlen -= sizeof(struct tcphdr); 3206 while (hlen >= 3) { 3207 switch (*opt) { 3208 case TCPOPT_EOL: 3209 case TCPOPT_NOP: 3210 ++opt; 3211 --hlen; 3212 break; 3213 case TCPOPT_WINDOW: 3214 wscale = opt[2]; 3215 if (wscale > TCP_MAX_WINSHIFT) 3216 wscale = TCP_MAX_WINSHIFT; 3217 wscale |= PF_WSCALE_FLAG; 3218 /* FALLTHROUGH */ 3219 default: 3220 optlen = opt[1]; 3221 if (optlen < 2) 3222 optlen = 2; 3223 hlen -= optlen; 3224 opt += optlen; 3225 break; 3226 } 3227 } 3228 return (wscale); 3229 } 3230 3231 static u_int16_t 3232 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3233 { 3234 int hlen; 3235 u_int8_t hdr[60]; 3236 u_int8_t *opt, optlen; 3237 u_int16_t mss = V_tcp_mssdflt; 3238 3239 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3240 if (hlen <= sizeof(struct tcphdr)) 3241 return (0); 3242 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3243 return (0); 3244 opt = hdr + sizeof(struct tcphdr); 3245 hlen -= sizeof(struct tcphdr); 3246 while (hlen >= TCPOLEN_MAXSEG) { 3247 switch (*opt) { 3248 case TCPOPT_EOL: 3249 case TCPOPT_NOP: 3250 ++opt; 3251 --hlen; 3252 break; 3253 case TCPOPT_MAXSEG: 3254 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3255 NTOHS(mss); 3256 /* FALLTHROUGH */ 3257 default: 3258 optlen = opt[1]; 3259 if (optlen < 2) 3260 optlen = 2; 3261 hlen -= optlen; 3262 opt += optlen; 3263 break; 3264 } 3265 } 3266 return (mss); 3267 } 3268 3269 static u_int16_t 3270 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3271 { 3272 struct nhop_object *nh; 3273 #ifdef INET6 3274 struct in6_addr dst6; 3275 uint32_t scopeid; 3276 #endif /* INET6 */ 3277 int hlen = 0; 3278 uint16_t mss = 0; 3279 3280 NET_EPOCH_ASSERT(); 3281 3282 switch (af) { 3283 #ifdef INET 3284 case AF_INET: 3285 hlen = sizeof(struct ip); 3286 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 3287 if (nh != NULL) 3288 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3289 break; 3290 #endif /* INET */ 3291 #ifdef INET6 3292 case AF_INET6: 3293 hlen = sizeof(struct ip6_hdr); 3294 in6_splitscope(&addr->v6, &dst6, &scopeid); 3295 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 3296 if (nh != NULL) 3297 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3298 break; 3299 #endif /* INET6 */ 3300 } 3301 3302 mss = max(V_tcp_mssdflt, mss); 3303 mss = min(mss, offer); 3304 mss = max(mss, 64); /* sanity - at least max opt space */ 3305 return (mss); 3306 } 3307 3308 static u_int32_t 3309 pf_tcp_iss(struct pf_pdesc *pd) 3310 { 3311 MD5_CTX ctx; 3312 u_int32_t digest[4]; 3313 3314 if (V_pf_tcp_secret_init == 0) { 3315 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3316 MD5Init(&V_pf_tcp_secret_ctx); 3317 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3318 sizeof(V_pf_tcp_secret)); 3319 V_pf_tcp_secret_init = 1; 3320 } 3321 3322 ctx = V_pf_tcp_secret_ctx; 3323 3324 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 3325 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 3326 if (pd->af == AF_INET6) { 3327 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3328 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3329 } else { 3330 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3331 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3332 } 3333 MD5Final((u_char *)digest, &ctx); 3334 V_pf_tcp_iss_off += 4096; 3335 #define ISN_RANDOM_INCREMENT (4096 - 1) 3336 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3337 V_pf_tcp_iss_off); 3338 #undef ISN_RANDOM_INCREMENT 3339 } 3340 3341 static int 3342 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, int direction, 3343 struct pfi_kkif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3344 struct pf_krule **am, struct pf_kruleset **rsm, struct inpcb *inp) 3345 { 3346 struct pf_krule *nr = NULL; 3347 struct pf_addr * const saddr = pd->src; 3348 struct pf_addr * const daddr = pd->dst; 3349 sa_family_t af = pd->af; 3350 struct pf_krule *r, *a = NULL; 3351 struct pf_kruleset *ruleset = NULL; 3352 struct pf_ksrc_node *nsn = NULL; 3353 struct tcphdr *th = &pd->hdr.tcp; 3354 struct pf_state_key *sk = NULL, *nk = NULL; 3355 u_short reason; 3356 int rewrite = 0, hdrlen = 0; 3357 int tag = -1, rtableid = -1; 3358 int asd = 0; 3359 int match = 0; 3360 int state_icmp = 0; 3361 u_int16_t sport = 0, dport = 0; 3362 u_int16_t bproto_sum = 0, bip_sum = 0; 3363 u_int8_t icmptype = 0, icmpcode = 0; 3364 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3365 3366 PF_RULES_RASSERT(); 3367 3368 if (inp != NULL) { 3369 INP_LOCK_ASSERT(inp); 3370 pd->lookup.uid = inp->inp_cred->cr_uid; 3371 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3372 pd->lookup.done = 1; 3373 } 3374 3375 switch (pd->proto) { 3376 case IPPROTO_TCP: 3377 sport = th->th_sport; 3378 dport = th->th_dport; 3379 hdrlen = sizeof(*th); 3380 break; 3381 case IPPROTO_UDP: 3382 sport = pd->hdr.udp.uh_sport; 3383 dport = pd->hdr.udp.uh_dport; 3384 hdrlen = sizeof(pd->hdr.udp); 3385 break; 3386 #ifdef INET 3387 case IPPROTO_ICMP: 3388 if (pd->af != AF_INET) 3389 break; 3390 sport = dport = pd->hdr.icmp.icmp_id; 3391 hdrlen = sizeof(pd->hdr.icmp); 3392 icmptype = pd->hdr.icmp.icmp_type; 3393 icmpcode = pd->hdr.icmp.icmp_code; 3394 3395 if (icmptype == ICMP_UNREACH || 3396 icmptype == ICMP_SOURCEQUENCH || 3397 icmptype == ICMP_REDIRECT || 3398 icmptype == ICMP_TIMXCEED || 3399 icmptype == ICMP_PARAMPROB) 3400 state_icmp++; 3401 break; 3402 #endif /* INET */ 3403 #ifdef INET6 3404 case IPPROTO_ICMPV6: 3405 if (af != AF_INET6) 3406 break; 3407 sport = dport = pd->hdr.icmp6.icmp6_id; 3408 hdrlen = sizeof(pd->hdr.icmp6); 3409 icmptype = pd->hdr.icmp6.icmp6_type; 3410 icmpcode = pd->hdr.icmp6.icmp6_code; 3411 3412 if (icmptype == ICMP6_DST_UNREACH || 3413 icmptype == ICMP6_PACKET_TOO_BIG || 3414 icmptype == ICMP6_TIME_EXCEEDED || 3415 icmptype == ICMP6_PARAM_PROB) 3416 state_icmp++; 3417 break; 3418 #endif /* INET6 */ 3419 default: 3420 sport = dport = hdrlen = 0; 3421 break; 3422 } 3423 3424 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3425 3426 /* check packet for BINAT/NAT/RDR */ 3427 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3428 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3429 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3430 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3431 3432 if (pd->ip_sum) 3433 bip_sum = *pd->ip_sum; 3434 3435 switch (pd->proto) { 3436 case IPPROTO_TCP: 3437 bproto_sum = th->th_sum; 3438 pd->proto_sum = &th->th_sum; 3439 3440 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3441 nk->port[pd->sidx] != sport) { 3442 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3443 &th->th_sum, &nk->addr[pd->sidx], 3444 nk->port[pd->sidx], 0, af); 3445 pd->sport = &th->th_sport; 3446 sport = th->th_sport; 3447 } 3448 3449 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3450 nk->port[pd->didx] != dport) { 3451 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3452 &th->th_sum, &nk->addr[pd->didx], 3453 nk->port[pd->didx], 0, af); 3454 dport = th->th_dport; 3455 pd->dport = &th->th_dport; 3456 } 3457 rewrite++; 3458 break; 3459 case IPPROTO_UDP: 3460 bproto_sum = pd->hdr.udp.uh_sum; 3461 pd->proto_sum = &pd->hdr.udp.uh_sum; 3462 3463 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3464 nk->port[pd->sidx] != sport) { 3465 pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, 3466 pd->ip_sum, &pd->hdr.udp.uh_sum, 3467 &nk->addr[pd->sidx], 3468 nk->port[pd->sidx], 1, af); 3469 sport = pd->hdr.udp.uh_sport; 3470 pd->sport = &pd->hdr.udp.uh_sport; 3471 } 3472 3473 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3474 nk->port[pd->didx] != dport) { 3475 pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, 3476 pd->ip_sum, &pd->hdr.udp.uh_sum, 3477 &nk->addr[pd->didx], 3478 nk->port[pd->didx], 1, af); 3479 dport = pd->hdr.udp.uh_dport; 3480 pd->dport = &pd->hdr.udp.uh_dport; 3481 } 3482 rewrite++; 3483 break; 3484 #ifdef INET 3485 case IPPROTO_ICMP: 3486 nk->port[0] = nk->port[1]; 3487 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3488 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3489 nk->addr[pd->sidx].v4.s_addr, 0); 3490 3491 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3492 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3493 nk->addr[pd->didx].v4.s_addr, 0); 3494 3495 if (nk->port[1] != pd->hdr.icmp.icmp_id) { 3496 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 3497 pd->hdr.icmp.icmp_cksum, sport, 3498 nk->port[1], 0); 3499 pd->hdr.icmp.icmp_id = nk->port[1]; 3500 pd->sport = &pd->hdr.icmp.icmp_id; 3501 } 3502 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 3503 break; 3504 #endif /* INET */ 3505 #ifdef INET6 3506 case IPPROTO_ICMPV6: 3507 nk->port[0] = nk->port[1]; 3508 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3509 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 3510 &nk->addr[pd->sidx], 0); 3511 3512 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3513 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 3514 &nk->addr[pd->didx], 0); 3515 rewrite++; 3516 break; 3517 #endif /* INET */ 3518 default: 3519 switch (af) { 3520 #ifdef INET 3521 case AF_INET: 3522 if (PF_ANEQ(saddr, 3523 &nk->addr[pd->sidx], AF_INET)) 3524 pf_change_a(&saddr->v4.s_addr, 3525 pd->ip_sum, 3526 nk->addr[pd->sidx].v4.s_addr, 0); 3527 3528 if (PF_ANEQ(daddr, 3529 &nk->addr[pd->didx], AF_INET)) 3530 pf_change_a(&daddr->v4.s_addr, 3531 pd->ip_sum, 3532 nk->addr[pd->didx].v4.s_addr, 0); 3533 break; 3534 #endif /* INET */ 3535 #ifdef INET6 3536 case AF_INET6: 3537 if (PF_ANEQ(saddr, 3538 &nk->addr[pd->sidx], AF_INET6)) 3539 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3540 3541 if (PF_ANEQ(daddr, 3542 &nk->addr[pd->didx], AF_INET6)) 3543 PF_ACPY(daddr, &nk->addr[pd->didx], af); 3544 break; 3545 #endif /* INET */ 3546 } 3547 break; 3548 } 3549 if (nr->natpass) 3550 r = NULL; 3551 pd->nat_rule = nr; 3552 } 3553 3554 while (r != NULL) { 3555 counter_u64_add(r->evaluations, 1); 3556 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 3557 r = r->skip[PF_SKIP_IFP].ptr; 3558 else if (r->direction && r->direction != direction) 3559 r = r->skip[PF_SKIP_DIR].ptr; 3560 else if (r->af && r->af != af) 3561 r = r->skip[PF_SKIP_AF].ptr; 3562 else if (r->proto && r->proto != pd->proto) 3563 r = r->skip[PF_SKIP_PROTO].ptr; 3564 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3565 r->src.neg, kif, M_GETFIB(m))) 3566 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3567 /* tcp/udp only. port_op always 0 in other cases */ 3568 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3569 r->src.port[0], r->src.port[1], sport)) 3570 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3571 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3572 r->dst.neg, NULL, M_GETFIB(m))) 3573 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3574 /* tcp/udp only. port_op always 0 in other cases */ 3575 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3576 r->dst.port[0], r->dst.port[1], dport)) 3577 r = r->skip[PF_SKIP_DST_PORT].ptr; 3578 /* icmp only. type always 0 in other cases */ 3579 else if (r->type && r->type != icmptype + 1) 3580 r = TAILQ_NEXT(r, entries); 3581 /* icmp only. type always 0 in other cases */ 3582 else if (r->code && r->code != icmpcode + 1) 3583 r = TAILQ_NEXT(r, entries); 3584 else if (r->tos && !(r->tos == pd->tos)) 3585 r = TAILQ_NEXT(r, entries); 3586 else if (r->rule_flag & PFRULE_FRAGMENT) 3587 r = TAILQ_NEXT(r, entries); 3588 else if (pd->proto == IPPROTO_TCP && 3589 (r->flagset & th->th_flags) != r->flags) 3590 r = TAILQ_NEXT(r, entries); 3591 /* tcp/udp only. uid.op always 0 in other cases */ 3592 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3593 pf_socket_lookup(direction, pd, m), 1)) && 3594 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3595 pd->lookup.uid)) 3596 r = TAILQ_NEXT(r, entries); 3597 /* tcp/udp only. gid.op always 0 in other cases */ 3598 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3599 pf_socket_lookup(direction, pd, m), 1)) && 3600 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3601 pd->lookup.gid)) 3602 r = TAILQ_NEXT(r, entries); 3603 else if (r->prio && 3604 !pf_match_ieee8021q_pcp(r->prio, m)) 3605 r = TAILQ_NEXT(r, entries); 3606 else if (r->prob && 3607 r->prob <= arc4random()) 3608 r = TAILQ_NEXT(r, entries); 3609 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3610 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3611 r = TAILQ_NEXT(r, entries); 3612 else if (r->os_fingerprint != PF_OSFP_ANY && 3613 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3614 pf_osfp_fingerprint(pd, m, off, th), 3615 r->os_fingerprint))) 3616 r = TAILQ_NEXT(r, entries); 3617 else { 3618 if (r->tag) 3619 tag = r->tag; 3620 if (r->rtableid >= 0) 3621 rtableid = r->rtableid; 3622 if (r->anchor == NULL) { 3623 match = 1; 3624 *rm = r; 3625 *am = a; 3626 *rsm = ruleset; 3627 if ((*rm)->quick) 3628 break; 3629 r = TAILQ_NEXT(r, entries); 3630 } else 3631 pf_step_into_anchor(anchor_stack, &asd, 3632 &ruleset, PF_RULESET_FILTER, &r, &a, 3633 &match); 3634 } 3635 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3636 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3637 break; 3638 } 3639 r = *rm; 3640 a = *am; 3641 ruleset = *rsm; 3642 3643 REASON_SET(&reason, PFRES_MATCH); 3644 3645 if (r->log || (nr != NULL && nr->log)) { 3646 if (rewrite) 3647 m_copyback(m, off, hdrlen, pd->hdr.any); 3648 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3649 ruleset, pd, 1); 3650 } 3651 3652 if ((r->action == PF_DROP) && 3653 ((r->rule_flag & PFRULE_RETURNRST) || 3654 (r->rule_flag & PFRULE_RETURNICMP) || 3655 (r->rule_flag & PFRULE_RETURN))) { 3656 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 3657 bip_sum, hdrlen, &reason); 3658 } 3659 3660 if (r->action == PF_DROP) 3661 goto cleanup; 3662 3663 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3664 REASON_SET(&reason, PFRES_MEMORY); 3665 goto cleanup; 3666 } 3667 if (rtableid >= 0) 3668 M_SETFIB(m, rtableid); 3669 3670 if (!state_icmp && (r->keep_state || nr != NULL || 3671 (pd->flags & PFDESC_TCP_NORM))) { 3672 int action; 3673 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3674 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3675 hdrlen); 3676 if (action != PF_PASS) { 3677 if (action == PF_DROP && 3678 (r->rule_flag & PFRULE_RETURN)) 3679 pf_return(r, nr, pd, sk, off, m, th, kif, 3680 bproto_sum, bip_sum, hdrlen, &reason); 3681 return (action); 3682 } 3683 } else { 3684 if (sk != NULL) 3685 uma_zfree(V_pf_state_key_z, sk); 3686 if (nk != NULL) 3687 uma_zfree(V_pf_state_key_z, nk); 3688 } 3689 3690 /* copy back packet headers if we performed NAT operations */ 3691 if (rewrite) 3692 m_copyback(m, off, hdrlen, pd->hdr.any); 3693 3694 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3695 direction == PF_OUT && 3696 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 3697 /* 3698 * We want the state created, but we dont 3699 * want to send this in case a partner 3700 * firewall has to know about it to allow 3701 * replies through it. 3702 */ 3703 return (PF_DEFER); 3704 3705 return (PF_PASS); 3706 3707 cleanup: 3708 if (sk != NULL) 3709 uma_zfree(V_pf_state_key_z, sk); 3710 if (nk != NULL) 3711 uma_zfree(V_pf_state_key_z, nk); 3712 return (PF_DROP); 3713 } 3714 3715 static int 3716 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 3717 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 3718 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3719 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, 3720 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3721 { 3722 struct pf_kstate *s = NULL; 3723 struct pf_ksrc_node *sn = NULL; 3724 struct tcphdr *th = &pd->hdr.tcp; 3725 u_int16_t mss = V_tcp_mssdflt; 3726 u_short reason; 3727 3728 /* check maximums */ 3729 if (r->max_states && 3730 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3731 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3732 REASON_SET(&reason, PFRES_MAXSTATES); 3733 goto csfailed; 3734 } 3735 /* src node for filter rule */ 3736 if ((r->rule_flag & PFRULE_SRCTRACK || 3737 r->rpool.opts & PF_POOL_STICKYADDR) && 3738 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3739 REASON_SET(&reason, PFRES_SRCLIMIT); 3740 goto csfailed; 3741 } 3742 /* src node for translation rule */ 3743 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3744 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3745 REASON_SET(&reason, PFRES_SRCLIMIT); 3746 goto csfailed; 3747 } 3748 s = pf_alloc_state(M_NOWAIT); 3749 if (s == NULL) { 3750 REASON_SET(&reason, PFRES_MEMORY); 3751 goto csfailed; 3752 } 3753 s->rule.ptr = r; 3754 s->nat_rule.ptr = nr; 3755 s->anchor.ptr = a; 3756 STATE_INC_COUNTERS(s); 3757 if (r->allow_opts) 3758 s->state_flags |= PFSTATE_ALLOWOPTS; 3759 if (r->rule_flag & PFRULE_STATESLOPPY) 3760 s->state_flags |= PFSTATE_SLOPPY; 3761 s->log = r->log & PF_LOG_ALL; 3762 s->sync_state = PFSYNC_S_NONE; 3763 if (nr != NULL) 3764 s->log |= nr->log & PF_LOG_ALL; 3765 switch (pd->proto) { 3766 case IPPROTO_TCP: 3767 s->src.seqlo = ntohl(th->th_seq); 3768 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3769 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3770 r->keep_state == PF_STATE_MODULATE) { 3771 /* Generate sequence number modulator */ 3772 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3773 0) 3774 s->src.seqdiff = 1; 3775 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3776 htonl(s->src.seqlo + s->src.seqdiff), 0); 3777 *rewrite = 1; 3778 } else 3779 s->src.seqdiff = 0; 3780 if (th->th_flags & TH_SYN) { 3781 s->src.seqhi++; 3782 s->src.wscale = pf_get_wscale(m, off, 3783 th->th_off, pd->af); 3784 } 3785 s->src.max_win = MAX(ntohs(th->th_win), 1); 3786 if (s->src.wscale & PF_WSCALE_MASK) { 3787 /* Remove scale factor from initial window */ 3788 int win = s->src.max_win; 3789 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3790 s->src.max_win = (win - 1) >> 3791 (s->src.wscale & PF_WSCALE_MASK); 3792 } 3793 if (th->th_flags & TH_FIN) 3794 s->src.seqhi++; 3795 s->dst.seqhi = 1; 3796 s->dst.max_win = 1; 3797 s->src.state = TCPS_SYN_SENT; 3798 s->dst.state = TCPS_CLOSED; 3799 s->timeout = PFTM_TCP_FIRST_PACKET; 3800 break; 3801 case IPPROTO_UDP: 3802 s->src.state = PFUDPS_SINGLE; 3803 s->dst.state = PFUDPS_NO_TRAFFIC; 3804 s->timeout = PFTM_UDP_FIRST_PACKET; 3805 break; 3806 case IPPROTO_ICMP: 3807 #ifdef INET6 3808 case IPPROTO_ICMPV6: 3809 #endif 3810 s->timeout = PFTM_ICMP_FIRST_PACKET; 3811 break; 3812 default: 3813 s->src.state = PFOTHERS_SINGLE; 3814 s->dst.state = PFOTHERS_NO_TRAFFIC; 3815 s->timeout = PFTM_OTHER_FIRST_PACKET; 3816 } 3817 3818 if (r->rt) { 3819 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3820 REASON_SET(&reason, PFRES_MAPFAILED); 3821 pf_src_tree_remove_state(s); 3822 STATE_DEC_COUNTERS(s); 3823 pf_free_state(s); 3824 goto csfailed; 3825 } 3826 s->rt_kif = r->rpool.cur->kif; 3827 } 3828 3829 s->creation = time_uptime; 3830 s->expire = time_uptime; 3831 3832 if (sn != NULL) 3833 s->src_node = sn; 3834 if (nsn != NULL) { 3835 /* XXX We only modify one side for now. */ 3836 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3837 s->nat_src_node = nsn; 3838 } 3839 if (pd->proto == IPPROTO_TCP) { 3840 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3841 off, pd, th, &s->src, &s->dst)) { 3842 REASON_SET(&reason, PFRES_MEMORY); 3843 pf_src_tree_remove_state(s); 3844 STATE_DEC_COUNTERS(s); 3845 pf_free_state(s); 3846 return (PF_DROP); 3847 } 3848 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3849 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3850 &s->src, &s->dst, rewrite)) { 3851 /* This really shouldn't happen!!! */ 3852 DPFPRINTF(PF_DEBUG_URGENT, 3853 ("pf_normalize_tcp_stateful failed on first " 3854 "pkt\n")); 3855 pf_src_tree_remove_state(s); 3856 STATE_DEC_COUNTERS(s); 3857 pf_free_state(s); 3858 return (PF_DROP); 3859 } 3860 } 3861 s->direction = pd->dir; 3862 3863 /* 3864 * sk/nk could already been setup by pf_get_translation(). 3865 */ 3866 if (nr == NULL) { 3867 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3868 __func__, nr, sk, nk)); 3869 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3870 if (sk == NULL) 3871 goto csfailed; 3872 nk = sk; 3873 } else 3874 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3875 __func__, nr, sk, nk)); 3876 3877 /* Swap sk/nk for PF_OUT. */ 3878 if (pf_state_insert(BOUND_IFACE(r, kif), kif, 3879 (pd->dir == PF_IN) ? sk : nk, 3880 (pd->dir == PF_IN) ? nk : sk, s)) { 3881 REASON_SET(&reason, PFRES_STATEINS); 3882 pf_src_tree_remove_state(s); 3883 STATE_DEC_COUNTERS(s); 3884 pf_free_state(s); 3885 return (PF_DROP); 3886 } else 3887 *sm = s; 3888 3889 if (tag > 0) 3890 s->tag = tag; 3891 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3892 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3893 s->src.state = PF_TCPS_PROXY_SRC; 3894 /* undo NAT changes, if they have taken place */ 3895 if (nr != NULL) { 3896 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3897 if (pd->dir == PF_OUT) 3898 skt = s->key[PF_SK_STACK]; 3899 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3900 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3901 if (pd->sport) 3902 *pd->sport = skt->port[pd->sidx]; 3903 if (pd->dport) 3904 *pd->dport = skt->port[pd->didx]; 3905 if (pd->proto_sum) 3906 *pd->proto_sum = bproto_sum; 3907 if (pd->ip_sum) 3908 *pd->ip_sum = bip_sum; 3909 m_copyback(m, off, hdrlen, pd->hdr.any); 3910 } 3911 s->src.seqhi = htonl(arc4random()); 3912 /* Find mss option */ 3913 int rtid = M_GETFIB(m); 3914 mss = pf_get_mss(m, off, th->th_off, pd->af); 3915 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3916 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3917 s->src.mss = mss; 3918 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3919 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3920 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3921 REASON_SET(&reason, PFRES_SYNPROXY); 3922 return (PF_SYNPROXY_DROP); 3923 } 3924 3925 return (PF_PASS); 3926 3927 csfailed: 3928 if (sk != NULL) 3929 uma_zfree(V_pf_state_key_z, sk); 3930 if (nk != NULL) 3931 uma_zfree(V_pf_state_key_z, nk); 3932 3933 if (sn != NULL) { 3934 struct pf_srchash *sh; 3935 3936 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3937 PF_HASHROW_LOCK(sh); 3938 if (--sn->states == 0 && sn->expire == 0) { 3939 pf_unlink_src_node(sn); 3940 uma_zfree(V_pf_sources_z, sn); 3941 counter_u64_add( 3942 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3943 } 3944 PF_HASHROW_UNLOCK(sh); 3945 } 3946 3947 if (nsn != sn && nsn != NULL) { 3948 struct pf_srchash *sh; 3949 3950 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3951 PF_HASHROW_LOCK(sh); 3952 if (--nsn->states == 0 && nsn->expire == 0) { 3953 pf_unlink_src_node(nsn); 3954 uma_zfree(V_pf_sources_z, nsn); 3955 counter_u64_add( 3956 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3957 } 3958 PF_HASHROW_UNLOCK(sh); 3959 } 3960 3961 return (PF_DROP); 3962 } 3963 3964 static int 3965 pf_test_fragment(struct pf_krule **rm, int direction, struct pfi_kkif *kif, 3966 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, 3967 struct pf_kruleset **rsm) 3968 { 3969 struct pf_krule *r, *a = NULL; 3970 struct pf_kruleset *ruleset = NULL; 3971 sa_family_t af = pd->af; 3972 u_short reason; 3973 int tag = -1; 3974 int asd = 0; 3975 int match = 0; 3976 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3977 3978 PF_RULES_RASSERT(); 3979 3980 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3981 while (r != NULL) { 3982 counter_u64_add(r->evaluations, 1); 3983 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 3984 r = r->skip[PF_SKIP_IFP].ptr; 3985 else if (r->direction && r->direction != direction) 3986 r = r->skip[PF_SKIP_DIR].ptr; 3987 else if (r->af && r->af != af) 3988 r = r->skip[PF_SKIP_AF].ptr; 3989 else if (r->proto && r->proto != pd->proto) 3990 r = r->skip[PF_SKIP_PROTO].ptr; 3991 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3992 r->src.neg, kif, M_GETFIB(m))) 3993 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3994 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3995 r->dst.neg, NULL, M_GETFIB(m))) 3996 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3997 else if (r->tos && !(r->tos == pd->tos)) 3998 r = TAILQ_NEXT(r, entries); 3999 else if (r->os_fingerprint != PF_OSFP_ANY) 4000 r = TAILQ_NEXT(r, entries); 4001 else if (pd->proto == IPPROTO_UDP && 4002 (r->src.port_op || r->dst.port_op)) 4003 r = TAILQ_NEXT(r, entries); 4004 else if (pd->proto == IPPROTO_TCP && 4005 (r->src.port_op || r->dst.port_op || r->flagset)) 4006 r = TAILQ_NEXT(r, entries); 4007 else if ((pd->proto == IPPROTO_ICMP || 4008 pd->proto == IPPROTO_ICMPV6) && 4009 (r->type || r->code)) 4010 r = TAILQ_NEXT(r, entries); 4011 else if (r->prio && 4012 !pf_match_ieee8021q_pcp(r->prio, m)) 4013 r = TAILQ_NEXT(r, entries); 4014 else if (r->prob && r->prob <= 4015 (arc4random() % (UINT_MAX - 1) + 1)) 4016 r = TAILQ_NEXT(r, entries); 4017 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4018 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4019 r = TAILQ_NEXT(r, entries); 4020 else { 4021 if (r->anchor == NULL) { 4022 match = 1; 4023 *rm = r; 4024 *am = a; 4025 *rsm = ruleset; 4026 if ((*rm)->quick) 4027 break; 4028 r = TAILQ_NEXT(r, entries); 4029 } else 4030 pf_step_into_anchor(anchor_stack, &asd, 4031 &ruleset, PF_RULESET_FILTER, &r, &a, 4032 &match); 4033 } 4034 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4035 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4036 break; 4037 } 4038 r = *rm; 4039 a = *am; 4040 ruleset = *rsm; 4041 4042 REASON_SET(&reason, PFRES_MATCH); 4043 4044 if (r->log) 4045 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 4046 1); 4047 4048 if (r->action != PF_PASS) 4049 return (PF_DROP); 4050 4051 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4052 REASON_SET(&reason, PFRES_MEMORY); 4053 return (PF_DROP); 4054 } 4055 4056 return (PF_PASS); 4057 } 4058 4059 static int 4060 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 4061 struct pf_kstate **state, struct pfi_kkif *kif, struct mbuf *m, int off, 4062 struct pf_pdesc *pd, u_short *reason, int *copyback) 4063 { 4064 struct tcphdr *th = &pd->hdr.tcp; 4065 u_int16_t win = ntohs(th->th_win); 4066 u_int32_t ack, end, seq, orig_seq; 4067 u_int8_t sws, dws; 4068 int ackskew; 4069 4070 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 4071 sws = src->wscale & PF_WSCALE_MASK; 4072 dws = dst->wscale & PF_WSCALE_MASK; 4073 } else 4074 sws = dws = 0; 4075 4076 /* 4077 * Sequence tracking algorithm from Guido van Rooij's paper: 4078 * http://www.madison-gurkha.com/publications/tcp_filtering/ 4079 * tcp_filtering.ps 4080 */ 4081 4082 orig_seq = seq = ntohl(th->th_seq); 4083 if (src->seqlo == 0) { 4084 /* First packet from this end. Set its state */ 4085 4086 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 4087 src->scrub == NULL) { 4088 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 4089 REASON_SET(reason, PFRES_MEMORY); 4090 return (PF_DROP); 4091 } 4092 } 4093 4094 /* Deferred generation of sequence number modulator */ 4095 if (dst->seqdiff && !src->seqdiff) { 4096 /* use random iss for the TCP server */ 4097 while ((src->seqdiff = arc4random() - seq) == 0) 4098 ; 4099 ack = ntohl(th->th_ack) - dst->seqdiff; 4100 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4101 src->seqdiff), 0); 4102 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4103 *copyback = 1; 4104 } else { 4105 ack = ntohl(th->th_ack); 4106 } 4107 4108 end = seq + pd->p_len; 4109 if (th->th_flags & TH_SYN) { 4110 end++; 4111 if (dst->wscale & PF_WSCALE_FLAG) { 4112 src->wscale = pf_get_wscale(m, off, th->th_off, 4113 pd->af); 4114 if (src->wscale & PF_WSCALE_FLAG) { 4115 /* Remove scale factor from initial 4116 * window */ 4117 sws = src->wscale & PF_WSCALE_MASK; 4118 win = ((u_int32_t)win + (1 << sws) - 1) 4119 >> sws; 4120 dws = dst->wscale & PF_WSCALE_MASK; 4121 } else { 4122 /* fixup other window */ 4123 dst->max_win <<= dst->wscale & 4124 PF_WSCALE_MASK; 4125 /* in case of a retrans SYN|ACK */ 4126 dst->wscale = 0; 4127 } 4128 } 4129 } 4130 if (th->th_flags & TH_FIN) 4131 end++; 4132 4133 src->seqlo = seq; 4134 if (src->state < TCPS_SYN_SENT) 4135 src->state = TCPS_SYN_SENT; 4136 4137 /* 4138 * May need to slide the window (seqhi may have been set by 4139 * the crappy stack check or if we picked up the connection 4140 * after establishment) 4141 */ 4142 if (src->seqhi == 1 || 4143 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4144 src->seqhi = end + MAX(1, dst->max_win << dws); 4145 if (win > src->max_win) 4146 src->max_win = win; 4147 4148 } else { 4149 ack = ntohl(th->th_ack) - dst->seqdiff; 4150 if (src->seqdiff) { 4151 /* Modulate sequence numbers */ 4152 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4153 src->seqdiff), 0); 4154 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4155 *copyback = 1; 4156 } 4157 end = seq + pd->p_len; 4158 if (th->th_flags & TH_SYN) 4159 end++; 4160 if (th->th_flags & TH_FIN) 4161 end++; 4162 } 4163 4164 if ((th->th_flags & TH_ACK) == 0) { 4165 /* Let it pass through the ack skew check */ 4166 ack = dst->seqlo; 4167 } else if ((ack == 0 && 4168 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4169 /* broken tcp stacks do not set ack */ 4170 (dst->state < TCPS_SYN_SENT)) { 4171 /* 4172 * Many stacks (ours included) will set the ACK number in an 4173 * FIN|ACK if the SYN times out -- no sequence to ACK. 4174 */ 4175 ack = dst->seqlo; 4176 } 4177 4178 if (seq == end) { 4179 /* Ease sequencing restrictions on no data packets */ 4180 seq = src->seqlo; 4181 end = seq; 4182 } 4183 4184 ackskew = dst->seqlo - ack; 4185 4186 /* 4187 * Need to demodulate the sequence numbers in any TCP SACK options 4188 * (Selective ACK). We could optionally validate the SACK values 4189 * against the current ACK window, either forwards or backwards, but 4190 * I'm not confident that SACK has been implemented properly 4191 * everywhere. It wouldn't surprise me if several stacks accidentally 4192 * SACK too far backwards of previously ACKed data. There really aren't 4193 * any security implications of bad SACKing unless the target stack 4194 * doesn't validate the option length correctly. Someone trying to 4195 * spoof into a TCP connection won't bother blindly sending SACK 4196 * options anyway. 4197 */ 4198 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4199 if (pf_modulate_sack(m, off, pd, th, dst)) 4200 *copyback = 1; 4201 } 4202 4203 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4204 if (SEQ_GEQ(src->seqhi, end) && 4205 /* Last octet inside other's window space */ 4206 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4207 /* Retrans: not more than one window back */ 4208 (ackskew >= -MAXACKWINDOW) && 4209 /* Acking not more than one reassembled fragment backwards */ 4210 (ackskew <= (MAXACKWINDOW << sws)) && 4211 /* Acking not more than one window forward */ 4212 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4213 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4214 (pd->flags & PFDESC_IP_REAS) == 0)) { 4215 /* Require an exact/+1 sequence match on resets when possible */ 4216 4217 if (dst->scrub || src->scrub) { 4218 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4219 *state, src, dst, copyback)) 4220 return (PF_DROP); 4221 } 4222 4223 /* update max window */ 4224 if (src->max_win < win) 4225 src->max_win = win; 4226 /* synchronize sequencing */ 4227 if (SEQ_GT(end, src->seqlo)) 4228 src->seqlo = end; 4229 /* slide the window of what the other end can send */ 4230 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4231 dst->seqhi = ack + MAX((win << sws), 1); 4232 4233 /* update states */ 4234 if (th->th_flags & TH_SYN) 4235 if (src->state < TCPS_SYN_SENT) 4236 src->state = TCPS_SYN_SENT; 4237 if (th->th_flags & TH_FIN) 4238 if (src->state < TCPS_CLOSING) 4239 src->state = TCPS_CLOSING; 4240 if (th->th_flags & TH_ACK) { 4241 if (dst->state == TCPS_SYN_SENT) { 4242 dst->state = TCPS_ESTABLISHED; 4243 if (src->state == TCPS_ESTABLISHED && 4244 (*state)->src_node != NULL && 4245 pf_src_connlimit(state)) { 4246 REASON_SET(reason, PFRES_SRCLIMIT); 4247 return (PF_DROP); 4248 } 4249 } else if (dst->state == TCPS_CLOSING) 4250 dst->state = TCPS_FIN_WAIT_2; 4251 } 4252 if (th->th_flags & TH_RST) 4253 src->state = dst->state = TCPS_TIME_WAIT; 4254 4255 /* update expire time */ 4256 (*state)->expire = time_uptime; 4257 if (src->state >= TCPS_FIN_WAIT_2 && 4258 dst->state >= TCPS_FIN_WAIT_2) 4259 (*state)->timeout = PFTM_TCP_CLOSED; 4260 else if (src->state >= TCPS_CLOSING && 4261 dst->state >= TCPS_CLOSING) 4262 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4263 else if (src->state < TCPS_ESTABLISHED || 4264 dst->state < TCPS_ESTABLISHED) 4265 (*state)->timeout = PFTM_TCP_OPENING; 4266 else if (src->state >= TCPS_CLOSING || 4267 dst->state >= TCPS_CLOSING) 4268 (*state)->timeout = PFTM_TCP_CLOSING; 4269 else 4270 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4271 4272 /* Fall through to PASS packet */ 4273 4274 } else if ((dst->state < TCPS_SYN_SENT || 4275 dst->state >= TCPS_FIN_WAIT_2 || 4276 src->state >= TCPS_FIN_WAIT_2) && 4277 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4278 /* Within a window forward of the originating packet */ 4279 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4280 /* Within a window backward of the originating packet */ 4281 4282 /* 4283 * This currently handles three situations: 4284 * 1) Stupid stacks will shotgun SYNs before their peer 4285 * replies. 4286 * 2) When PF catches an already established stream (the 4287 * firewall rebooted, the state table was flushed, routes 4288 * changed...) 4289 * 3) Packets get funky immediately after the connection 4290 * closes (this should catch Solaris spurious ACK|FINs 4291 * that web servers like to spew after a close) 4292 * 4293 * This must be a little more careful than the above code 4294 * since packet floods will also be caught here. We don't 4295 * update the TTL here to mitigate the damage of a packet 4296 * flood and so the same code can handle awkward establishment 4297 * and a loosened connection close. 4298 * In the establishment case, a correct peer response will 4299 * validate the connection, go through the normal state code 4300 * and keep updating the state TTL. 4301 */ 4302 4303 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4304 printf("pf: loose state match: "); 4305 pf_print_state(*state); 4306 pf_print_flags(th->th_flags); 4307 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4308 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4309 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4310 (unsigned long long)(*state)->packets[1], 4311 pd->dir == PF_IN ? "in" : "out", 4312 pd->dir == (*state)->direction ? "fwd" : "rev"); 4313 } 4314 4315 if (dst->scrub || src->scrub) { 4316 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4317 *state, src, dst, copyback)) 4318 return (PF_DROP); 4319 } 4320 4321 /* update max window */ 4322 if (src->max_win < win) 4323 src->max_win = win; 4324 /* synchronize sequencing */ 4325 if (SEQ_GT(end, src->seqlo)) 4326 src->seqlo = end; 4327 /* slide the window of what the other end can send */ 4328 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4329 dst->seqhi = ack + MAX((win << sws), 1); 4330 4331 /* 4332 * Cannot set dst->seqhi here since this could be a shotgunned 4333 * SYN and not an already established connection. 4334 */ 4335 4336 if (th->th_flags & TH_FIN) 4337 if (src->state < TCPS_CLOSING) 4338 src->state = TCPS_CLOSING; 4339 if (th->th_flags & TH_RST) 4340 src->state = dst->state = TCPS_TIME_WAIT; 4341 4342 /* Fall through to PASS packet */ 4343 4344 } else { 4345 if ((*state)->dst.state == TCPS_SYN_SENT && 4346 (*state)->src.state == TCPS_SYN_SENT) { 4347 /* Send RST for state mismatches during handshake */ 4348 if (!(th->th_flags & TH_RST)) 4349 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4350 pd->dst, pd->src, th->th_dport, 4351 th->th_sport, ntohl(th->th_ack), 0, 4352 TH_RST, 0, 0, 4353 (*state)->rule.ptr->return_ttl, 1, 0, 4354 kif->pfik_ifp); 4355 src->seqlo = 0; 4356 src->seqhi = 1; 4357 src->max_win = 1; 4358 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4359 printf("pf: BAD state: "); 4360 pf_print_state(*state); 4361 pf_print_flags(th->th_flags); 4362 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4363 "pkts=%llu:%llu dir=%s,%s\n", 4364 seq, orig_seq, ack, pd->p_len, ackskew, 4365 (unsigned long long)(*state)->packets[0], 4366 (unsigned long long)(*state)->packets[1], 4367 pd->dir == PF_IN ? "in" : "out", 4368 pd->dir == (*state)->direction ? "fwd" : "rev"); 4369 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4370 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4371 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4372 ' ': '2', 4373 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4374 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4375 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4376 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4377 } 4378 REASON_SET(reason, PFRES_BADSTATE); 4379 return (PF_DROP); 4380 } 4381 4382 return (PF_PASS); 4383 } 4384 4385 static int 4386 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4387 struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 4388 { 4389 struct tcphdr *th = &pd->hdr.tcp; 4390 4391 if (th->th_flags & TH_SYN) 4392 if (src->state < TCPS_SYN_SENT) 4393 src->state = TCPS_SYN_SENT; 4394 if (th->th_flags & TH_FIN) 4395 if (src->state < TCPS_CLOSING) 4396 src->state = TCPS_CLOSING; 4397 if (th->th_flags & TH_ACK) { 4398 if (dst->state == TCPS_SYN_SENT) { 4399 dst->state = TCPS_ESTABLISHED; 4400 if (src->state == TCPS_ESTABLISHED && 4401 (*state)->src_node != NULL && 4402 pf_src_connlimit(state)) { 4403 REASON_SET(reason, PFRES_SRCLIMIT); 4404 return (PF_DROP); 4405 } 4406 } else if (dst->state == TCPS_CLOSING) { 4407 dst->state = TCPS_FIN_WAIT_2; 4408 } else if (src->state == TCPS_SYN_SENT && 4409 dst->state < TCPS_SYN_SENT) { 4410 /* 4411 * Handle a special sloppy case where we only see one 4412 * half of the connection. If there is a ACK after 4413 * the initial SYN without ever seeing a packet from 4414 * the destination, set the connection to established. 4415 */ 4416 dst->state = src->state = TCPS_ESTABLISHED; 4417 if ((*state)->src_node != NULL && 4418 pf_src_connlimit(state)) { 4419 REASON_SET(reason, PFRES_SRCLIMIT); 4420 return (PF_DROP); 4421 } 4422 } else if (src->state == TCPS_CLOSING && 4423 dst->state == TCPS_ESTABLISHED && 4424 dst->seqlo == 0) { 4425 /* 4426 * Handle the closing of half connections where we 4427 * don't see the full bidirectional FIN/ACK+ACK 4428 * handshake. 4429 */ 4430 dst->state = TCPS_CLOSING; 4431 } 4432 } 4433 if (th->th_flags & TH_RST) 4434 src->state = dst->state = TCPS_TIME_WAIT; 4435 4436 /* update expire time */ 4437 (*state)->expire = time_uptime; 4438 if (src->state >= TCPS_FIN_WAIT_2 && 4439 dst->state >= TCPS_FIN_WAIT_2) 4440 (*state)->timeout = PFTM_TCP_CLOSED; 4441 else if (src->state >= TCPS_CLOSING && 4442 dst->state >= TCPS_CLOSING) 4443 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4444 else if (src->state < TCPS_ESTABLISHED || 4445 dst->state < TCPS_ESTABLISHED) 4446 (*state)->timeout = PFTM_TCP_OPENING; 4447 else if (src->state >= TCPS_CLOSING || 4448 dst->state >= TCPS_CLOSING) 4449 (*state)->timeout = PFTM_TCP_CLOSING; 4450 else 4451 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4452 4453 return (PF_PASS); 4454 } 4455 4456 static int 4457 pf_test_state_tcp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 4458 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4459 u_short *reason) 4460 { 4461 struct pf_state_key_cmp key; 4462 struct tcphdr *th = &pd->hdr.tcp; 4463 int copyback = 0; 4464 struct pf_state_peer *src, *dst; 4465 struct pf_state_key *sk; 4466 4467 bzero(&key, sizeof(key)); 4468 key.af = pd->af; 4469 key.proto = IPPROTO_TCP; 4470 if (direction == PF_IN) { /* wire side, straight */ 4471 PF_ACPY(&key.addr[0], pd->src, key.af); 4472 PF_ACPY(&key.addr[1], pd->dst, key.af); 4473 key.port[0] = th->th_sport; 4474 key.port[1] = th->th_dport; 4475 } else { /* stack side, reverse */ 4476 PF_ACPY(&key.addr[1], pd->src, key.af); 4477 PF_ACPY(&key.addr[0], pd->dst, key.af); 4478 key.port[1] = th->th_sport; 4479 key.port[0] = th->th_dport; 4480 } 4481 4482 STATE_LOOKUP(kif, &key, direction, *state, pd); 4483 4484 if (direction == (*state)->direction) { 4485 src = &(*state)->src; 4486 dst = &(*state)->dst; 4487 } else { 4488 src = &(*state)->dst; 4489 dst = &(*state)->src; 4490 } 4491 4492 sk = (*state)->key[pd->didx]; 4493 4494 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4495 if (direction != (*state)->direction) { 4496 REASON_SET(reason, PFRES_SYNPROXY); 4497 return (PF_SYNPROXY_DROP); 4498 } 4499 if (th->th_flags & TH_SYN) { 4500 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4501 REASON_SET(reason, PFRES_SYNPROXY); 4502 return (PF_DROP); 4503 } 4504 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4505 pd->src, th->th_dport, th->th_sport, 4506 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4507 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4508 REASON_SET(reason, PFRES_SYNPROXY); 4509 return (PF_SYNPROXY_DROP); 4510 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 4511 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4512 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4513 REASON_SET(reason, PFRES_SYNPROXY); 4514 return (PF_DROP); 4515 } else if ((*state)->src_node != NULL && 4516 pf_src_connlimit(state)) { 4517 REASON_SET(reason, PFRES_SRCLIMIT); 4518 return (PF_DROP); 4519 } else 4520 (*state)->src.state = PF_TCPS_PROXY_DST; 4521 } 4522 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4523 if (direction == (*state)->direction) { 4524 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4525 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4526 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4527 REASON_SET(reason, PFRES_SYNPROXY); 4528 return (PF_DROP); 4529 } 4530 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4531 if ((*state)->dst.seqhi == 1) 4532 (*state)->dst.seqhi = htonl(arc4random()); 4533 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4534 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4535 sk->port[pd->sidx], sk->port[pd->didx], 4536 (*state)->dst.seqhi, 0, TH_SYN, 0, 4537 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4538 REASON_SET(reason, PFRES_SYNPROXY); 4539 return (PF_SYNPROXY_DROP); 4540 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4541 (TH_SYN|TH_ACK)) || 4542 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4543 REASON_SET(reason, PFRES_SYNPROXY); 4544 return (PF_DROP); 4545 } else { 4546 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4547 (*state)->dst.seqlo = ntohl(th->th_seq); 4548 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4549 pd->src, th->th_dport, th->th_sport, 4550 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4551 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4552 (*state)->tag, NULL); 4553 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4554 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4555 sk->port[pd->sidx], sk->port[pd->didx], 4556 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4557 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4558 (*state)->src.seqdiff = (*state)->dst.seqhi - 4559 (*state)->src.seqlo; 4560 (*state)->dst.seqdiff = (*state)->src.seqhi - 4561 (*state)->dst.seqlo; 4562 (*state)->src.seqhi = (*state)->src.seqlo + 4563 (*state)->dst.max_win; 4564 (*state)->dst.seqhi = (*state)->dst.seqlo + 4565 (*state)->src.max_win; 4566 (*state)->src.wscale = (*state)->dst.wscale = 0; 4567 (*state)->src.state = (*state)->dst.state = 4568 TCPS_ESTABLISHED; 4569 REASON_SET(reason, PFRES_SYNPROXY); 4570 return (PF_SYNPROXY_DROP); 4571 } 4572 } 4573 4574 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4575 dst->state >= TCPS_FIN_WAIT_2 && 4576 src->state >= TCPS_FIN_WAIT_2) { 4577 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4578 printf("pf: state reuse "); 4579 pf_print_state(*state); 4580 pf_print_flags(th->th_flags); 4581 printf("\n"); 4582 } 4583 /* XXX make sure it's the same direction ?? */ 4584 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4585 pf_unlink_state(*state, PF_ENTER_LOCKED); 4586 *state = NULL; 4587 return (PF_DROP); 4588 } 4589 4590 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4591 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4592 return (PF_DROP); 4593 } else { 4594 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4595 ©back) == PF_DROP) 4596 return (PF_DROP); 4597 } 4598 4599 /* translate source/destination address, if necessary */ 4600 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4601 struct pf_state_key *nk = (*state)->key[pd->didx]; 4602 4603 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4604 nk->port[pd->sidx] != th->th_sport) 4605 pf_change_ap(m, pd->src, &th->th_sport, 4606 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4607 nk->port[pd->sidx], 0, pd->af); 4608 4609 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4610 nk->port[pd->didx] != th->th_dport) 4611 pf_change_ap(m, pd->dst, &th->th_dport, 4612 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4613 nk->port[pd->didx], 0, pd->af); 4614 copyback = 1; 4615 } 4616 4617 /* Copyback sequence modulation or stateful scrub changes if needed */ 4618 if (copyback) 4619 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4620 4621 return (PF_PASS); 4622 } 4623 4624 static int 4625 pf_test_state_udp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 4626 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4627 { 4628 struct pf_state_peer *src, *dst; 4629 struct pf_state_key_cmp key; 4630 struct udphdr *uh = &pd->hdr.udp; 4631 4632 bzero(&key, sizeof(key)); 4633 key.af = pd->af; 4634 key.proto = IPPROTO_UDP; 4635 if (direction == PF_IN) { /* wire side, straight */ 4636 PF_ACPY(&key.addr[0], pd->src, key.af); 4637 PF_ACPY(&key.addr[1], pd->dst, key.af); 4638 key.port[0] = uh->uh_sport; 4639 key.port[1] = uh->uh_dport; 4640 } else { /* stack side, reverse */ 4641 PF_ACPY(&key.addr[1], pd->src, key.af); 4642 PF_ACPY(&key.addr[0], pd->dst, key.af); 4643 key.port[1] = uh->uh_sport; 4644 key.port[0] = uh->uh_dport; 4645 } 4646 4647 STATE_LOOKUP(kif, &key, direction, *state, pd); 4648 4649 if (direction == (*state)->direction) { 4650 src = &(*state)->src; 4651 dst = &(*state)->dst; 4652 } else { 4653 src = &(*state)->dst; 4654 dst = &(*state)->src; 4655 } 4656 4657 /* update states */ 4658 if (src->state < PFUDPS_SINGLE) 4659 src->state = PFUDPS_SINGLE; 4660 if (dst->state == PFUDPS_SINGLE) 4661 dst->state = PFUDPS_MULTIPLE; 4662 4663 /* update expire time */ 4664 (*state)->expire = time_uptime; 4665 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4666 (*state)->timeout = PFTM_UDP_MULTIPLE; 4667 else 4668 (*state)->timeout = PFTM_UDP_SINGLE; 4669 4670 /* translate source/destination address, if necessary */ 4671 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4672 struct pf_state_key *nk = (*state)->key[pd->didx]; 4673 4674 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4675 nk->port[pd->sidx] != uh->uh_sport) 4676 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4677 &uh->uh_sum, &nk->addr[pd->sidx], 4678 nk->port[pd->sidx], 1, pd->af); 4679 4680 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4681 nk->port[pd->didx] != uh->uh_dport) 4682 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4683 &uh->uh_sum, &nk->addr[pd->didx], 4684 nk->port[pd->didx], 1, pd->af); 4685 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4686 } 4687 4688 return (PF_PASS); 4689 } 4690 4691 static int 4692 pf_test_state_icmp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 4693 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4694 { 4695 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4696 u_int16_t icmpid = 0, *icmpsum; 4697 u_int8_t icmptype, icmpcode; 4698 int state_icmp = 0; 4699 struct pf_state_key_cmp key; 4700 4701 bzero(&key, sizeof(key)); 4702 switch (pd->proto) { 4703 #ifdef INET 4704 case IPPROTO_ICMP: 4705 icmptype = pd->hdr.icmp.icmp_type; 4706 icmpcode = pd->hdr.icmp.icmp_code; 4707 icmpid = pd->hdr.icmp.icmp_id; 4708 icmpsum = &pd->hdr.icmp.icmp_cksum; 4709 4710 if (icmptype == ICMP_UNREACH || 4711 icmptype == ICMP_SOURCEQUENCH || 4712 icmptype == ICMP_REDIRECT || 4713 icmptype == ICMP_TIMXCEED || 4714 icmptype == ICMP_PARAMPROB) 4715 state_icmp++; 4716 break; 4717 #endif /* INET */ 4718 #ifdef INET6 4719 case IPPROTO_ICMPV6: 4720 icmptype = pd->hdr.icmp6.icmp6_type; 4721 icmpcode = pd->hdr.icmp6.icmp6_code; 4722 icmpid = pd->hdr.icmp6.icmp6_id; 4723 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 4724 4725 if (icmptype == ICMP6_DST_UNREACH || 4726 icmptype == ICMP6_PACKET_TOO_BIG || 4727 icmptype == ICMP6_TIME_EXCEEDED || 4728 icmptype == ICMP6_PARAM_PROB) 4729 state_icmp++; 4730 break; 4731 #endif /* INET6 */ 4732 } 4733 4734 if (!state_icmp) { 4735 /* 4736 * ICMP query/reply message not related to a TCP/UDP packet. 4737 * Search for an ICMP state. 4738 */ 4739 key.af = pd->af; 4740 key.proto = pd->proto; 4741 key.port[0] = key.port[1] = icmpid; 4742 if (direction == PF_IN) { /* wire side, straight */ 4743 PF_ACPY(&key.addr[0], pd->src, key.af); 4744 PF_ACPY(&key.addr[1], pd->dst, key.af); 4745 } else { /* stack side, reverse */ 4746 PF_ACPY(&key.addr[1], pd->src, key.af); 4747 PF_ACPY(&key.addr[0], pd->dst, key.af); 4748 } 4749 4750 STATE_LOOKUP(kif, &key, direction, *state, pd); 4751 4752 (*state)->expire = time_uptime; 4753 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4754 4755 /* translate source/destination address, if necessary */ 4756 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4757 struct pf_state_key *nk = (*state)->key[pd->didx]; 4758 4759 switch (pd->af) { 4760 #ifdef INET 4761 case AF_INET: 4762 if (PF_ANEQ(pd->src, 4763 &nk->addr[pd->sidx], AF_INET)) 4764 pf_change_a(&saddr->v4.s_addr, 4765 pd->ip_sum, 4766 nk->addr[pd->sidx].v4.s_addr, 0); 4767 4768 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4769 AF_INET)) 4770 pf_change_a(&daddr->v4.s_addr, 4771 pd->ip_sum, 4772 nk->addr[pd->didx].v4.s_addr, 0); 4773 4774 if (nk->port[0] != 4775 pd->hdr.icmp.icmp_id) { 4776 pd->hdr.icmp.icmp_cksum = 4777 pf_cksum_fixup( 4778 pd->hdr.icmp.icmp_cksum, icmpid, 4779 nk->port[pd->sidx], 0); 4780 pd->hdr.icmp.icmp_id = 4781 nk->port[pd->sidx]; 4782 } 4783 4784 m_copyback(m, off, ICMP_MINLEN, 4785 (caddr_t )&pd->hdr.icmp); 4786 break; 4787 #endif /* INET */ 4788 #ifdef INET6 4789 case AF_INET6: 4790 if (PF_ANEQ(pd->src, 4791 &nk->addr[pd->sidx], AF_INET6)) 4792 pf_change_a6(saddr, 4793 &pd->hdr.icmp6.icmp6_cksum, 4794 &nk->addr[pd->sidx], 0); 4795 4796 if (PF_ANEQ(pd->dst, 4797 &nk->addr[pd->didx], AF_INET6)) 4798 pf_change_a6(daddr, 4799 &pd->hdr.icmp6.icmp6_cksum, 4800 &nk->addr[pd->didx], 0); 4801 4802 m_copyback(m, off, sizeof(struct icmp6_hdr), 4803 (caddr_t )&pd->hdr.icmp6); 4804 break; 4805 #endif /* INET6 */ 4806 } 4807 } 4808 return (PF_PASS); 4809 4810 } else { 4811 /* 4812 * ICMP error message in response to a TCP/UDP packet. 4813 * Extract the inner TCP/UDP header and search for that state. 4814 */ 4815 4816 struct pf_pdesc pd2; 4817 bzero(&pd2, sizeof pd2); 4818 #ifdef INET 4819 struct ip h2; 4820 #endif /* INET */ 4821 #ifdef INET6 4822 struct ip6_hdr h2_6; 4823 int terminal = 0; 4824 #endif /* INET6 */ 4825 int ipoff2 = 0; 4826 int off2 = 0; 4827 4828 pd2.af = pd->af; 4829 /* Payload packet is from the opposite direction. */ 4830 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4831 pd2.didx = (direction == PF_IN) ? 0 : 1; 4832 switch (pd->af) { 4833 #ifdef INET 4834 case AF_INET: 4835 /* offset of h2 in mbuf chain */ 4836 ipoff2 = off + ICMP_MINLEN; 4837 4838 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4839 NULL, reason, pd2.af)) { 4840 DPFPRINTF(PF_DEBUG_MISC, 4841 ("pf: ICMP error message too short " 4842 "(ip)\n")); 4843 return (PF_DROP); 4844 } 4845 /* 4846 * ICMP error messages don't refer to non-first 4847 * fragments 4848 */ 4849 if (h2.ip_off & htons(IP_OFFMASK)) { 4850 REASON_SET(reason, PFRES_FRAG); 4851 return (PF_DROP); 4852 } 4853 4854 /* offset of protocol header that follows h2 */ 4855 off2 = ipoff2 + (h2.ip_hl << 2); 4856 4857 pd2.proto = h2.ip_p; 4858 pd2.src = (struct pf_addr *)&h2.ip_src; 4859 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4860 pd2.ip_sum = &h2.ip_sum; 4861 break; 4862 #endif /* INET */ 4863 #ifdef INET6 4864 case AF_INET6: 4865 ipoff2 = off + sizeof(struct icmp6_hdr); 4866 4867 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4868 NULL, reason, pd2.af)) { 4869 DPFPRINTF(PF_DEBUG_MISC, 4870 ("pf: ICMP error message too short " 4871 "(ip6)\n")); 4872 return (PF_DROP); 4873 } 4874 pd2.proto = h2_6.ip6_nxt; 4875 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4876 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4877 pd2.ip_sum = NULL; 4878 off2 = ipoff2 + sizeof(h2_6); 4879 do { 4880 switch (pd2.proto) { 4881 case IPPROTO_FRAGMENT: 4882 /* 4883 * ICMPv6 error messages for 4884 * non-first fragments 4885 */ 4886 REASON_SET(reason, PFRES_FRAG); 4887 return (PF_DROP); 4888 case IPPROTO_AH: 4889 case IPPROTO_HOPOPTS: 4890 case IPPROTO_ROUTING: 4891 case IPPROTO_DSTOPTS: { 4892 /* get next header and header length */ 4893 struct ip6_ext opt6; 4894 4895 if (!pf_pull_hdr(m, off2, &opt6, 4896 sizeof(opt6), NULL, reason, 4897 pd2.af)) { 4898 DPFPRINTF(PF_DEBUG_MISC, 4899 ("pf: ICMPv6 short opt\n")); 4900 return (PF_DROP); 4901 } 4902 if (pd2.proto == IPPROTO_AH) 4903 off2 += (opt6.ip6e_len + 2) * 4; 4904 else 4905 off2 += (opt6.ip6e_len + 1) * 8; 4906 pd2.proto = opt6.ip6e_nxt; 4907 /* goto the next header */ 4908 break; 4909 } 4910 default: 4911 terminal++; 4912 break; 4913 } 4914 } while (!terminal); 4915 break; 4916 #endif /* INET6 */ 4917 } 4918 4919 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 4920 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4921 printf("pf: BAD ICMP %d:%d outer dst: ", 4922 icmptype, icmpcode); 4923 pf_print_host(pd->src, 0, pd->af); 4924 printf(" -> "); 4925 pf_print_host(pd->dst, 0, pd->af); 4926 printf(" inner src: "); 4927 pf_print_host(pd2.src, 0, pd2.af); 4928 printf(" -> "); 4929 pf_print_host(pd2.dst, 0, pd2.af); 4930 printf("\n"); 4931 } 4932 REASON_SET(reason, PFRES_BADSTATE); 4933 return (PF_DROP); 4934 } 4935 4936 switch (pd2.proto) { 4937 case IPPROTO_TCP: { 4938 struct tcphdr th; 4939 u_int32_t seq; 4940 struct pf_state_peer *src, *dst; 4941 u_int8_t dws; 4942 int copyback = 0; 4943 4944 /* 4945 * Only the first 8 bytes of the TCP header can be 4946 * expected. Don't access any TCP header fields after 4947 * th_seq, an ackskew test is not possible. 4948 */ 4949 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4950 pd2.af)) { 4951 DPFPRINTF(PF_DEBUG_MISC, 4952 ("pf: ICMP error message too short " 4953 "(tcp)\n")); 4954 return (PF_DROP); 4955 } 4956 4957 key.af = pd2.af; 4958 key.proto = IPPROTO_TCP; 4959 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4960 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4961 key.port[pd2.sidx] = th.th_sport; 4962 key.port[pd2.didx] = th.th_dport; 4963 4964 STATE_LOOKUP(kif, &key, direction, *state, pd); 4965 4966 if (direction == (*state)->direction) { 4967 src = &(*state)->dst; 4968 dst = &(*state)->src; 4969 } else { 4970 src = &(*state)->src; 4971 dst = &(*state)->dst; 4972 } 4973 4974 if (src->wscale && dst->wscale) 4975 dws = dst->wscale & PF_WSCALE_MASK; 4976 else 4977 dws = 0; 4978 4979 /* Demodulate sequence number */ 4980 seq = ntohl(th.th_seq) - src->seqdiff; 4981 if (src->seqdiff) { 4982 pf_change_a(&th.th_seq, icmpsum, 4983 htonl(seq), 0); 4984 copyback = 1; 4985 } 4986 4987 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4988 (!SEQ_GEQ(src->seqhi, seq) || 4989 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4990 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4991 printf("pf: BAD ICMP %d:%d ", 4992 icmptype, icmpcode); 4993 pf_print_host(pd->src, 0, pd->af); 4994 printf(" -> "); 4995 pf_print_host(pd->dst, 0, pd->af); 4996 printf(" state: "); 4997 pf_print_state(*state); 4998 printf(" seq=%u\n", seq); 4999 } 5000 REASON_SET(reason, PFRES_BADSTATE); 5001 return (PF_DROP); 5002 } else { 5003 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5004 printf("pf: OK ICMP %d:%d ", 5005 icmptype, icmpcode); 5006 pf_print_host(pd->src, 0, pd->af); 5007 printf(" -> "); 5008 pf_print_host(pd->dst, 0, pd->af); 5009 printf(" state: "); 5010 pf_print_state(*state); 5011 printf(" seq=%u\n", seq); 5012 } 5013 } 5014 5015 /* translate source/destination address, if necessary */ 5016 if ((*state)->key[PF_SK_WIRE] != 5017 (*state)->key[PF_SK_STACK]) { 5018 struct pf_state_key *nk = 5019 (*state)->key[pd->didx]; 5020 5021 if (PF_ANEQ(pd2.src, 5022 &nk->addr[pd2.sidx], pd2.af) || 5023 nk->port[pd2.sidx] != th.th_sport) 5024 pf_change_icmp(pd2.src, &th.th_sport, 5025 daddr, &nk->addr[pd2.sidx], 5026 nk->port[pd2.sidx], NULL, 5027 pd2.ip_sum, icmpsum, 5028 pd->ip_sum, 0, pd2.af); 5029 5030 if (PF_ANEQ(pd2.dst, 5031 &nk->addr[pd2.didx], pd2.af) || 5032 nk->port[pd2.didx] != th.th_dport) 5033 pf_change_icmp(pd2.dst, &th.th_dport, 5034 saddr, &nk->addr[pd2.didx], 5035 nk->port[pd2.didx], NULL, 5036 pd2.ip_sum, icmpsum, 5037 pd->ip_sum, 0, pd2.af); 5038 copyback = 1; 5039 } 5040 5041 if (copyback) { 5042 switch (pd2.af) { 5043 #ifdef INET 5044 case AF_INET: 5045 m_copyback(m, off, ICMP_MINLEN, 5046 (caddr_t )&pd->hdr.icmp); 5047 m_copyback(m, ipoff2, sizeof(h2), 5048 (caddr_t )&h2); 5049 break; 5050 #endif /* INET */ 5051 #ifdef INET6 5052 case AF_INET6: 5053 m_copyback(m, off, 5054 sizeof(struct icmp6_hdr), 5055 (caddr_t )&pd->hdr.icmp6); 5056 m_copyback(m, ipoff2, sizeof(h2_6), 5057 (caddr_t )&h2_6); 5058 break; 5059 #endif /* INET6 */ 5060 } 5061 m_copyback(m, off2, 8, (caddr_t)&th); 5062 } 5063 5064 return (PF_PASS); 5065 break; 5066 } 5067 case IPPROTO_UDP: { 5068 struct udphdr uh; 5069 5070 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 5071 NULL, reason, pd2.af)) { 5072 DPFPRINTF(PF_DEBUG_MISC, 5073 ("pf: ICMP error message too short " 5074 "(udp)\n")); 5075 return (PF_DROP); 5076 } 5077 5078 key.af = pd2.af; 5079 key.proto = IPPROTO_UDP; 5080 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5081 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5082 key.port[pd2.sidx] = uh.uh_sport; 5083 key.port[pd2.didx] = uh.uh_dport; 5084 5085 STATE_LOOKUP(kif, &key, direction, *state, pd); 5086 5087 /* translate source/destination address, if necessary */ 5088 if ((*state)->key[PF_SK_WIRE] != 5089 (*state)->key[PF_SK_STACK]) { 5090 struct pf_state_key *nk = 5091 (*state)->key[pd->didx]; 5092 5093 if (PF_ANEQ(pd2.src, 5094 &nk->addr[pd2.sidx], pd2.af) || 5095 nk->port[pd2.sidx] != uh.uh_sport) 5096 pf_change_icmp(pd2.src, &uh.uh_sport, 5097 daddr, &nk->addr[pd2.sidx], 5098 nk->port[pd2.sidx], &uh.uh_sum, 5099 pd2.ip_sum, icmpsum, 5100 pd->ip_sum, 1, pd2.af); 5101 5102 if (PF_ANEQ(pd2.dst, 5103 &nk->addr[pd2.didx], pd2.af) || 5104 nk->port[pd2.didx] != uh.uh_dport) 5105 pf_change_icmp(pd2.dst, &uh.uh_dport, 5106 saddr, &nk->addr[pd2.didx], 5107 nk->port[pd2.didx], &uh.uh_sum, 5108 pd2.ip_sum, icmpsum, 5109 pd->ip_sum, 1, pd2.af); 5110 5111 switch (pd2.af) { 5112 #ifdef INET 5113 case AF_INET: 5114 m_copyback(m, off, ICMP_MINLEN, 5115 (caddr_t )&pd->hdr.icmp); 5116 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5117 break; 5118 #endif /* INET */ 5119 #ifdef INET6 5120 case AF_INET6: 5121 m_copyback(m, off, 5122 sizeof(struct icmp6_hdr), 5123 (caddr_t )&pd->hdr.icmp6); 5124 m_copyback(m, ipoff2, sizeof(h2_6), 5125 (caddr_t )&h2_6); 5126 break; 5127 #endif /* INET6 */ 5128 } 5129 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 5130 } 5131 return (PF_PASS); 5132 break; 5133 } 5134 #ifdef INET 5135 case IPPROTO_ICMP: { 5136 struct icmp iih; 5137 5138 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 5139 NULL, reason, pd2.af)) { 5140 DPFPRINTF(PF_DEBUG_MISC, 5141 ("pf: ICMP error message too short i" 5142 "(icmp)\n")); 5143 return (PF_DROP); 5144 } 5145 5146 key.af = pd2.af; 5147 key.proto = IPPROTO_ICMP; 5148 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5149 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5150 key.port[0] = key.port[1] = iih.icmp_id; 5151 5152 STATE_LOOKUP(kif, &key, direction, *state, pd); 5153 5154 /* translate source/destination address, if necessary */ 5155 if ((*state)->key[PF_SK_WIRE] != 5156 (*state)->key[PF_SK_STACK]) { 5157 struct pf_state_key *nk = 5158 (*state)->key[pd->didx]; 5159 5160 if (PF_ANEQ(pd2.src, 5161 &nk->addr[pd2.sidx], pd2.af) || 5162 nk->port[pd2.sidx] != iih.icmp_id) 5163 pf_change_icmp(pd2.src, &iih.icmp_id, 5164 daddr, &nk->addr[pd2.sidx], 5165 nk->port[pd2.sidx], NULL, 5166 pd2.ip_sum, icmpsum, 5167 pd->ip_sum, 0, AF_INET); 5168 5169 if (PF_ANEQ(pd2.dst, 5170 &nk->addr[pd2.didx], pd2.af) || 5171 nk->port[pd2.didx] != iih.icmp_id) 5172 pf_change_icmp(pd2.dst, &iih.icmp_id, 5173 saddr, &nk->addr[pd2.didx], 5174 nk->port[pd2.didx], NULL, 5175 pd2.ip_sum, icmpsum, 5176 pd->ip_sum, 0, AF_INET); 5177 5178 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 5179 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5180 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5181 } 5182 return (PF_PASS); 5183 break; 5184 } 5185 #endif /* INET */ 5186 #ifdef INET6 5187 case IPPROTO_ICMPV6: { 5188 struct icmp6_hdr iih; 5189 5190 if (!pf_pull_hdr(m, off2, &iih, 5191 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5192 DPFPRINTF(PF_DEBUG_MISC, 5193 ("pf: ICMP error message too short " 5194 "(icmp6)\n")); 5195 return (PF_DROP); 5196 } 5197 5198 key.af = pd2.af; 5199 key.proto = IPPROTO_ICMPV6; 5200 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5201 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5202 key.port[0] = key.port[1] = iih.icmp6_id; 5203 5204 STATE_LOOKUP(kif, &key, direction, *state, pd); 5205 5206 /* translate source/destination address, if necessary */ 5207 if ((*state)->key[PF_SK_WIRE] != 5208 (*state)->key[PF_SK_STACK]) { 5209 struct pf_state_key *nk = 5210 (*state)->key[pd->didx]; 5211 5212 if (PF_ANEQ(pd2.src, 5213 &nk->addr[pd2.sidx], pd2.af) || 5214 nk->port[pd2.sidx] != iih.icmp6_id) 5215 pf_change_icmp(pd2.src, &iih.icmp6_id, 5216 daddr, &nk->addr[pd2.sidx], 5217 nk->port[pd2.sidx], NULL, 5218 pd2.ip_sum, icmpsum, 5219 pd->ip_sum, 0, AF_INET6); 5220 5221 if (PF_ANEQ(pd2.dst, 5222 &nk->addr[pd2.didx], pd2.af) || 5223 nk->port[pd2.didx] != iih.icmp6_id) 5224 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5225 saddr, &nk->addr[pd2.didx], 5226 nk->port[pd2.didx], NULL, 5227 pd2.ip_sum, icmpsum, 5228 pd->ip_sum, 0, AF_INET6); 5229 5230 m_copyback(m, off, sizeof(struct icmp6_hdr), 5231 (caddr_t)&pd->hdr.icmp6); 5232 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5233 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5234 (caddr_t)&iih); 5235 } 5236 return (PF_PASS); 5237 break; 5238 } 5239 #endif /* INET6 */ 5240 default: { 5241 key.af = pd2.af; 5242 key.proto = pd2.proto; 5243 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5244 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5245 key.port[0] = key.port[1] = 0; 5246 5247 STATE_LOOKUP(kif, &key, direction, *state, pd); 5248 5249 /* translate source/destination address, if necessary */ 5250 if ((*state)->key[PF_SK_WIRE] != 5251 (*state)->key[PF_SK_STACK]) { 5252 struct pf_state_key *nk = 5253 (*state)->key[pd->didx]; 5254 5255 if (PF_ANEQ(pd2.src, 5256 &nk->addr[pd2.sidx], pd2.af)) 5257 pf_change_icmp(pd2.src, NULL, daddr, 5258 &nk->addr[pd2.sidx], 0, NULL, 5259 pd2.ip_sum, icmpsum, 5260 pd->ip_sum, 0, pd2.af); 5261 5262 if (PF_ANEQ(pd2.dst, 5263 &nk->addr[pd2.didx], pd2.af)) 5264 pf_change_icmp(pd2.dst, NULL, saddr, 5265 &nk->addr[pd2.didx], 0, NULL, 5266 pd2.ip_sum, icmpsum, 5267 pd->ip_sum, 0, pd2.af); 5268 5269 switch (pd2.af) { 5270 #ifdef INET 5271 case AF_INET: 5272 m_copyback(m, off, ICMP_MINLEN, 5273 (caddr_t)&pd->hdr.icmp); 5274 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5275 break; 5276 #endif /* INET */ 5277 #ifdef INET6 5278 case AF_INET6: 5279 m_copyback(m, off, 5280 sizeof(struct icmp6_hdr), 5281 (caddr_t )&pd->hdr.icmp6); 5282 m_copyback(m, ipoff2, sizeof(h2_6), 5283 (caddr_t )&h2_6); 5284 break; 5285 #endif /* INET6 */ 5286 } 5287 } 5288 return (PF_PASS); 5289 break; 5290 } 5291 } 5292 } 5293 } 5294 5295 static int 5296 pf_test_state_other(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 5297 struct mbuf *m, struct pf_pdesc *pd) 5298 { 5299 struct pf_state_peer *src, *dst; 5300 struct pf_state_key_cmp key; 5301 5302 bzero(&key, sizeof(key)); 5303 key.af = pd->af; 5304 key.proto = pd->proto; 5305 if (direction == PF_IN) { 5306 PF_ACPY(&key.addr[0], pd->src, key.af); 5307 PF_ACPY(&key.addr[1], pd->dst, key.af); 5308 key.port[0] = key.port[1] = 0; 5309 } else { 5310 PF_ACPY(&key.addr[1], pd->src, key.af); 5311 PF_ACPY(&key.addr[0], pd->dst, key.af); 5312 key.port[1] = key.port[0] = 0; 5313 } 5314 5315 STATE_LOOKUP(kif, &key, direction, *state, pd); 5316 5317 if (direction == (*state)->direction) { 5318 src = &(*state)->src; 5319 dst = &(*state)->dst; 5320 } else { 5321 src = &(*state)->dst; 5322 dst = &(*state)->src; 5323 } 5324 5325 /* update states */ 5326 if (src->state < PFOTHERS_SINGLE) 5327 src->state = PFOTHERS_SINGLE; 5328 if (dst->state == PFOTHERS_SINGLE) 5329 dst->state = PFOTHERS_MULTIPLE; 5330 5331 /* update expire time */ 5332 (*state)->expire = time_uptime; 5333 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5334 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5335 else 5336 (*state)->timeout = PFTM_OTHER_SINGLE; 5337 5338 /* translate source/destination address, if necessary */ 5339 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5340 struct pf_state_key *nk = (*state)->key[pd->didx]; 5341 5342 KASSERT(nk, ("%s: nk is null", __func__)); 5343 KASSERT(pd, ("%s: pd is null", __func__)); 5344 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5345 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5346 switch (pd->af) { 5347 #ifdef INET 5348 case AF_INET: 5349 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5350 pf_change_a(&pd->src->v4.s_addr, 5351 pd->ip_sum, 5352 nk->addr[pd->sidx].v4.s_addr, 5353 0); 5354 5355 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5356 pf_change_a(&pd->dst->v4.s_addr, 5357 pd->ip_sum, 5358 nk->addr[pd->didx].v4.s_addr, 5359 0); 5360 5361 break; 5362 #endif /* INET */ 5363 #ifdef INET6 5364 case AF_INET6: 5365 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5366 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5367 5368 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5369 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5370 #endif /* INET6 */ 5371 } 5372 } 5373 return (PF_PASS); 5374 } 5375 5376 /* 5377 * ipoff and off are measured from the start of the mbuf chain. 5378 * h must be at "ipoff" on the mbuf chain. 5379 */ 5380 void * 5381 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5382 u_short *actionp, u_short *reasonp, sa_family_t af) 5383 { 5384 switch (af) { 5385 #ifdef INET 5386 case AF_INET: { 5387 struct ip *h = mtod(m, struct ip *); 5388 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5389 5390 if (fragoff) { 5391 if (fragoff >= len) 5392 ACTION_SET(actionp, PF_PASS); 5393 else { 5394 ACTION_SET(actionp, PF_DROP); 5395 REASON_SET(reasonp, PFRES_FRAG); 5396 } 5397 return (NULL); 5398 } 5399 if (m->m_pkthdr.len < off + len || 5400 ntohs(h->ip_len) < off + len) { 5401 ACTION_SET(actionp, PF_DROP); 5402 REASON_SET(reasonp, PFRES_SHORT); 5403 return (NULL); 5404 } 5405 break; 5406 } 5407 #endif /* INET */ 5408 #ifdef INET6 5409 case AF_INET6: { 5410 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5411 5412 if (m->m_pkthdr.len < off + len || 5413 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5414 (unsigned)(off + len)) { 5415 ACTION_SET(actionp, PF_DROP); 5416 REASON_SET(reasonp, PFRES_SHORT); 5417 return (NULL); 5418 } 5419 break; 5420 } 5421 #endif /* INET6 */ 5422 } 5423 m_copydata(m, off, len, p); 5424 return (p); 5425 } 5426 5427 int 5428 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 5429 int rtableid) 5430 { 5431 struct ifnet *ifp; 5432 5433 /* 5434 * Skip check for addresses with embedded interface scope, 5435 * as they would always match anyway. 5436 */ 5437 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5438 return (1); 5439 5440 if (af != AF_INET && af != AF_INET6) 5441 return (0); 5442 5443 /* Skip checks for ipsec interfaces */ 5444 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5445 return (1); 5446 5447 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 5448 5449 switch (af) { 5450 #ifdef INET6 5451 case AF_INET6: 5452 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 5453 ifp)); 5454 #endif 5455 #ifdef INET 5456 case AF_INET: 5457 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 5458 ifp)); 5459 #endif 5460 } 5461 5462 return (0); 5463 } 5464 5465 #ifdef INET 5466 static void 5467 pf_route(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 5468 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 5469 { 5470 struct mbuf *m0, *m1; 5471 struct sockaddr_in dst; 5472 struct ip *ip; 5473 struct ifnet *ifp = NULL; 5474 struct pf_addr naddr; 5475 struct pf_ksrc_node *sn = NULL; 5476 int error = 0; 5477 uint16_t ip_len, ip_off; 5478 5479 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5480 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5481 __func__)); 5482 5483 if ((pd->pf_mtag == NULL && 5484 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5485 pd->pf_mtag->routed++ > 3) { 5486 m0 = *m; 5487 *m = NULL; 5488 goto bad_locked; 5489 } 5490 5491 if (r->rt == PF_DUPTO) { 5492 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 5493 if (s == NULL) { 5494 ifp = r->rpool.cur->kif ? 5495 r->rpool.cur->kif->pfik_ifp : NULL; 5496 } else { 5497 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5498 PF_STATE_UNLOCK(s); 5499 } 5500 if (ifp == oifp) { 5501 /* When the 2nd interface is not skipped */ 5502 return; 5503 } else { 5504 m0 = *m; 5505 *m = NULL; 5506 goto bad; 5507 } 5508 } else { 5509 pd->pf_mtag->flags |= PF_DUPLICATED; 5510 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 5511 if (s) 5512 PF_STATE_UNLOCK(s); 5513 return; 5514 } 5515 } 5516 } else { 5517 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5518 if (s) 5519 PF_STATE_UNLOCK(s); 5520 return; 5521 } 5522 m0 = *m; 5523 } 5524 5525 ip = mtod(m0, struct ip *); 5526 5527 bzero(&dst, sizeof(dst)); 5528 dst.sin_family = AF_INET; 5529 dst.sin_len = sizeof(dst); 5530 dst.sin_addr = ip->ip_dst; 5531 5532 bzero(&naddr, sizeof(naddr)); 5533 5534 if (TAILQ_EMPTY(&r->rpool.list)) { 5535 DPFPRINTF(PF_DEBUG_URGENT, 5536 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5537 goto bad_locked; 5538 } 5539 if (s == NULL) { 5540 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5541 &naddr, NULL, &sn); 5542 if (!PF_AZERO(&naddr, AF_INET)) 5543 dst.sin_addr.s_addr = naddr.v4.s_addr; 5544 ifp = r->rpool.cur->kif ? 5545 r->rpool.cur->kif->pfik_ifp : NULL; 5546 } else { 5547 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5548 dst.sin_addr.s_addr = 5549 s->rt_addr.v4.s_addr; 5550 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5551 PF_STATE_UNLOCK(s); 5552 } 5553 if (ifp == NULL) 5554 goto bad; 5555 5556 if (dir == PF_IN) { 5557 if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 5558 goto bad; 5559 else if (m0 == NULL) 5560 goto done; 5561 if (m0->m_len < sizeof(struct ip)) { 5562 DPFPRINTF(PF_DEBUG_URGENT, 5563 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5564 goto bad; 5565 } 5566 ip = mtod(m0, struct ip *); 5567 } 5568 5569 if (ifp->if_flags & IFF_LOOPBACK) 5570 m0->m_flags |= M_SKIP_FIREWALL; 5571 5572 ip_len = ntohs(ip->ip_len); 5573 ip_off = ntohs(ip->ip_off); 5574 5575 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5576 m0->m_pkthdr.csum_flags |= CSUM_IP; 5577 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5578 m0 = mb_unmapped_to_ext(m0); 5579 if (m0 == NULL) 5580 goto done; 5581 in_delayed_cksum(m0); 5582 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5583 } 5584 #if defined(SCTP) || defined(SCTP_SUPPORT) 5585 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5586 m0 = mb_unmapped_to_ext(m0); 5587 if (m0 == NULL) 5588 goto done; 5589 sctp_delayed_cksum(m0, (uint32_t)(ip->ip_hl << 2)); 5590 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5591 } 5592 #endif 5593 5594 /* 5595 * If small enough for interface, or the interface will take 5596 * care of the fragmentation for us, we can just send directly. 5597 */ 5598 if (ip_len <= ifp->if_mtu || 5599 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5600 ip->ip_sum = 0; 5601 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5602 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5603 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5604 } 5605 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5606 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5607 goto done; 5608 } 5609 5610 /* Balk when DF bit is set or the interface didn't support TSO. */ 5611 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5612 error = EMSGSIZE; 5613 KMOD_IPSTAT_INC(ips_cantfrag); 5614 if (r->rt != PF_DUPTO) { 5615 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5616 ifp->if_mtu); 5617 goto done; 5618 } else 5619 goto bad; 5620 } 5621 5622 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5623 if (error) 5624 goto bad; 5625 5626 for (; m0; m0 = m1) { 5627 m1 = m0->m_nextpkt; 5628 m0->m_nextpkt = NULL; 5629 if (error == 0) { 5630 m_clrprotoflags(m0); 5631 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5632 } else 5633 m_freem(m0); 5634 } 5635 5636 if (error == 0) 5637 KMOD_IPSTAT_INC(ips_fragmented); 5638 5639 done: 5640 if (r->rt != PF_DUPTO) 5641 *m = NULL; 5642 return; 5643 5644 bad_locked: 5645 if (s) 5646 PF_STATE_UNLOCK(s); 5647 bad: 5648 m_freem(m0); 5649 goto done; 5650 } 5651 #endif /* INET */ 5652 5653 #ifdef INET6 5654 static void 5655 pf_route6(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 5656 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 5657 { 5658 struct mbuf *m0; 5659 struct sockaddr_in6 dst; 5660 struct ip6_hdr *ip6; 5661 struct ifnet *ifp = NULL; 5662 struct pf_addr naddr; 5663 struct pf_ksrc_node *sn = NULL; 5664 5665 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5666 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5667 __func__)); 5668 5669 if ((pd->pf_mtag == NULL && 5670 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5671 pd->pf_mtag->routed++ > 3) { 5672 m0 = *m; 5673 *m = NULL; 5674 goto bad_locked; 5675 } 5676 5677 if (r->rt == PF_DUPTO) { 5678 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 5679 if (s == NULL) { 5680 ifp = r->rpool.cur->kif ? 5681 r->rpool.cur->kif->pfik_ifp : NULL; 5682 } else { 5683 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5684 PF_STATE_UNLOCK(s); 5685 } 5686 if (ifp == oifp) { 5687 /* When the 2nd interface is not skipped */ 5688 return; 5689 } else { 5690 m0 = *m; 5691 *m = NULL; 5692 goto bad; 5693 } 5694 } else { 5695 pd->pf_mtag->flags |= PF_DUPLICATED; 5696 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 5697 if (s) 5698 PF_STATE_UNLOCK(s); 5699 return; 5700 } 5701 } 5702 } else { 5703 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5704 if (s) 5705 PF_STATE_UNLOCK(s); 5706 return; 5707 } 5708 m0 = *m; 5709 } 5710 5711 ip6 = mtod(m0, struct ip6_hdr *); 5712 5713 bzero(&dst, sizeof(dst)); 5714 dst.sin6_family = AF_INET6; 5715 dst.sin6_len = sizeof(dst); 5716 dst.sin6_addr = ip6->ip6_dst; 5717 5718 bzero(&naddr, sizeof(naddr)); 5719 5720 if (TAILQ_EMPTY(&r->rpool.list)) { 5721 DPFPRINTF(PF_DEBUG_URGENT, 5722 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5723 goto bad_locked; 5724 } 5725 if (s == NULL) { 5726 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5727 &naddr, NULL, &sn); 5728 if (!PF_AZERO(&naddr, AF_INET6)) 5729 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5730 &naddr, AF_INET6); 5731 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5732 } else { 5733 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5734 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5735 &s->rt_addr, AF_INET6); 5736 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5737 } 5738 5739 if (s) 5740 PF_STATE_UNLOCK(s); 5741 5742 if (ifp == NULL) 5743 goto bad; 5744 5745 if (dir == PF_IN) { 5746 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS) 5747 goto bad; 5748 else if (m0 == NULL) 5749 goto done; 5750 if (m0->m_len < sizeof(struct ip6_hdr)) { 5751 DPFPRINTF(PF_DEBUG_URGENT, 5752 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5753 __func__)); 5754 goto bad; 5755 } 5756 ip6 = mtod(m0, struct ip6_hdr *); 5757 } 5758 5759 if (ifp->if_flags & IFF_LOOPBACK) 5760 m0->m_flags |= M_SKIP_FIREWALL; 5761 5762 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5763 ~ifp->if_hwassist) { 5764 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5765 m0 = mb_unmapped_to_ext(m0); 5766 if (m0 == NULL) 5767 goto done; 5768 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5769 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5770 } 5771 5772 /* 5773 * If the packet is too large for the outgoing interface, 5774 * send back an icmp6 error. 5775 */ 5776 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5777 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5778 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5779 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5780 else { 5781 in6_ifstat_inc(ifp, ifs6_in_toobig); 5782 if (r->rt != PF_DUPTO) 5783 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5784 else 5785 goto bad; 5786 } 5787 5788 done: 5789 if (r->rt != PF_DUPTO) 5790 *m = NULL; 5791 return; 5792 5793 bad_locked: 5794 if (s) 5795 PF_STATE_UNLOCK(s); 5796 bad: 5797 m_freem(m0); 5798 goto done; 5799 } 5800 #endif /* INET6 */ 5801 5802 /* 5803 * FreeBSD supports cksum offloads for the following drivers. 5804 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 5805 * 5806 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5807 * network driver performed cksum including pseudo header, need to verify 5808 * csum_data 5809 * CSUM_DATA_VALID : 5810 * network driver performed cksum, needs to additional pseudo header 5811 * cksum computation with partial csum_data(i.e. lack of H/W support for 5812 * pseudo header, for instance sk(4) and possibly gem(4)) 5813 * 5814 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5815 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5816 * TCP/UDP layer. 5817 * Also, set csum_data to 0xffff to force cksum validation. 5818 */ 5819 static int 5820 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5821 { 5822 u_int16_t sum = 0; 5823 int hw_assist = 0; 5824 struct ip *ip; 5825 5826 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5827 return (1); 5828 if (m->m_pkthdr.len < off + len) 5829 return (1); 5830 5831 switch (p) { 5832 case IPPROTO_TCP: 5833 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5834 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5835 sum = m->m_pkthdr.csum_data; 5836 } else { 5837 ip = mtod(m, struct ip *); 5838 sum = in_pseudo(ip->ip_src.s_addr, 5839 ip->ip_dst.s_addr, htonl((u_short)len + 5840 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5841 } 5842 sum ^= 0xffff; 5843 ++hw_assist; 5844 } 5845 break; 5846 case IPPROTO_UDP: 5847 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5848 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5849 sum = m->m_pkthdr.csum_data; 5850 } else { 5851 ip = mtod(m, struct ip *); 5852 sum = in_pseudo(ip->ip_src.s_addr, 5853 ip->ip_dst.s_addr, htonl((u_short)len + 5854 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5855 } 5856 sum ^= 0xffff; 5857 ++hw_assist; 5858 } 5859 break; 5860 case IPPROTO_ICMP: 5861 #ifdef INET6 5862 case IPPROTO_ICMPV6: 5863 #endif /* INET6 */ 5864 break; 5865 default: 5866 return (1); 5867 } 5868 5869 if (!hw_assist) { 5870 switch (af) { 5871 case AF_INET: 5872 if (p == IPPROTO_ICMP) { 5873 if (m->m_len < off) 5874 return (1); 5875 m->m_data += off; 5876 m->m_len -= off; 5877 sum = in_cksum(m, len); 5878 m->m_data -= off; 5879 m->m_len += off; 5880 } else { 5881 if (m->m_len < sizeof(struct ip)) 5882 return (1); 5883 sum = in4_cksum(m, p, off, len); 5884 } 5885 break; 5886 #ifdef INET6 5887 case AF_INET6: 5888 if (m->m_len < sizeof(struct ip6_hdr)) 5889 return (1); 5890 sum = in6_cksum(m, p, off, len); 5891 break; 5892 #endif /* INET6 */ 5893 default: 5894 return (1); 5895 } 5896 } 5897 if (sum) { 5898 switch (p) { 5899 case IPPROTO_TCP: 5900 { 5901 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5902 break; 5903 } 5904 case IPPROTO_UDP: 5905 { 5906 KMOD_UDPSTAT_INC(udps_badsum); 5907 break; 5908 } 5909 #ifdef INET 5910 case IPPROTO_ICMP: 5911 { 5912 KMOD_ICMPSTAT_INC(icps_checksum); 5913 break; 5914 } 5915 #endif 5916 #ifdef INET6 5917 case IPPROTO_ICMPV6: 5918 { 5919 KMOD_ICMP6STAT_INC(icp6s_checksum); 5920 break; 5921 } 5922 #endif /* INET6 */ 5923 } 5924 return (1); 5925 } else { 5926 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5927 m->m_pkthdr.csum_flags |= 5928 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5929 m->m_pkthdr.csum_data = 0xffff; 5930 } 5931 } 5932 return (0); 5933 } 5934 5935 #ifdef INET 5936 int 5937 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5938 { 5939 struct pfi_kkif *kif; 5940 u_short action, reason = 0, log = 0; 5941 struct mbuf *m = *m0; 5942 struct ip *h = NULL; 5943 struct m_tag *ipfwtag; 5944 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5945 struct pf_kstate *s = NULL; 5946 struct pf_kruleset *ruleset = NULL; 5947 struct pf_pdesc pd; 5948 int off, dirndx, pqid = 0; 5949 5950 PF_RULES_RLOCK_TRACKER; 5951 5952 M_ASSERTPKTHDR(m); 5953 5954 if (!V_pf_status.running) 5955 return (PF_PASS); 5956 5957 memset(&pd, 0, sizeof(pd)); 5958 5959 kif = (struct pfi_kkif *)ifp->if_pf_kif; 5960 5961 if (kif == NULL) { 5962 DPFPRINTF(PF_DEBUG_URGENT, 5963 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5964 return (PF_DROP); 5965 } 5966 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5967 return (PF_PASS); 5968 5969 if (m->m_flags & M_SKIP_FIREWALL) 5970 return (PF_PASS); 5971 5972 pd.pf_mtag = pf_find_mtag(m); 5973 5974 PF_RULES_RLOCK(); 5975 5976 if (ip_divert_ptr != NULL && 5977 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5978 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5979 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5980 if (pd.pf_mtag == NULL && 5981 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5982 action = PF_DROP; 5983 goto done; 5984 } 5985 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5986 m_tag_delete(m, ipfwtag); 5987 } 5988 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5989 m->m_flags |= M_FASTFWD_OURS; 5990 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5991 } 5992 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5993 /* We do IP header normalization and packet reassembly here */ 5994 action = PF_DROP; 5995 goto done; 5996 } 5997 m = *m0; /* pf_normalize messes with m0 */ 5998 h = mtod(m, struct ip *); 5999 6000 off = h->ip_hl << 2; 6001 if (off < (int)sizeof(struct ip)) { 6002 action = PF_DROP; 6003 REASON_SET(&reason, PFRES_SHORT); 6004 log = 1; 6005 goto done; 6006 } 6007 6008 pd.src = (struct pf_addr *)&h->ip_src; 6009 pd.dst = (struct pf_addr *)&h->ip_dst; 6010 pd.sport = pd.dport = NULL; 6011 pd.ip_sum = &h->ip_sum; 6012 pd.proto_sum = NULL; 6013 pd.proto = h->ip_p; 6014 pd.dir = dir; 6015 pd.sidx = (dir == PF_IN) ? 0 : 1; 6016 pd.didx = (dir == PF_IN) ? 1 : 0; 6017 pd.af = AF_INET; 6018 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 6019 pd.tot_len = ntohs(h->ip_len); 6020 6021 /* handle fragments that didn't get reassembled by normalization */ 6022 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 6023 action = pf_test_fragment(&r, dir, kif, m, h, 6024 &pd, &a, &ruleset); 6025 goto done; 6026 } 6027 6028 switch (h->ip_p) { 6029 case IPPROTO_TCP: { 6030 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 6031 &action, &reason, AF_INET)) { 6032 log = action != PF_PASS; 6033 goto done; 6034 } 6035 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 6036 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 6037 pqid = 1; 6038 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6039 if (action == PF_DROP) 6040 goto done; 6041 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6042 &reason); 6043 if (action == PF_PASS) { 6044 if (V_pfsync_update_state_ptr != NULL) 6045 V_pfsync_update_state_ptr(s); 6046 r = s->rule.ptr; 6047 a = s->anchor.ptr; 6048 log = s->log; 6049 } else if (s == NULL) 6050 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6051 &a, &ruleset, inp); 6052 break; 6053 } 6054 6055 case IPPROTO_UDP: { 6056 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 6057 &action, &reason, AF_INET)) { 6058 log = action != PF_PASS; 6059 goto done; 6060 } 6061 if (pd.hdr.udp.uh_dport == 0 || 6062 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 6063 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 6064 action = PF_DROP; 6065 REASON_SET(&reason, PFRES_SHORT); 6066 goto done; 6067 } 6068 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6069 if (action == PF_PASS) { 6070 if (V_pfsync_update_state_ptr != NULL) 6071 V_pfsync_update_state_ptr(s); 6072 r = s->rule.ptr; 6073 a = s->anchor.ptr; 6074 log = s->log; 6075 } else if (s == NULL) 6076 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6077 &a, &ruleset, inp); 6078 break; 6079 } 6080 6081 case IPPROTO_ICMP: { 6082 if (!pf_pull_hdr(m, off, &pd.hdr.icmp, ICMP_MINLEN, 6083 &action, &reason, AF_INET)) { 6084 log = action != PF_PASS; 6085 goto done; 6086 } 6087 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 6088 &reason); 6089 if (action == PF_PASS) { 6090 if (V_pfsync_update_state_ptr != NULL) 6091 V_pfsync_update_state_ptr(s); 6092 r = s->rule.ptr; 6093 a = s->anchor.ptr; 6094 log = s->log; 6095 } else if (s == NULL) 6096 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6097 &a, &ruleset, inp); 6098 break; 6099 } 6100 6101 #ifdef INET6 6102 case IPPROTO_ICMPV6: { 6103 action = PF_DROP; 6104 DPFPRINTF(PF_DEBUG_MISC, 6105 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6106 goto done; 6107 } 6108 #endif 6109 6110 default: 6111 action = pf_test_state_other(&s, dir, kif, m, &pd); 6112 if (action == PF_PASS) { 6113 if (V_pfsync_update_state_ptr != NULL) 6114 V_pfsync_update_state_ptr(s); 6115 r = s->rule.ptr; 6116 a = s->anchor.ptr; 6117 log = s->log; 6118 } else if (s == NULL) 6119 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6120 &a, &ruleset, inp); 6121 break; 6122 } 6123 6124 done: 6125 PF_RULES_RUNLOCK(); 6126 if (action == PF_PASS && h->ip_hl > 5 && 6127 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6128 action = PF_DROP; 6129 REASON_SET(&reason, PFRES_IPOPTIONS); 6130 log = r->log; 6131 DPFPRINTF(PF_DEBUG_MISC, 6132 ("pf: dropping packet with ip options\n")); 6133 } 6134 6135 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6136 action = PF_DROP; 6137 REASON_SET(&reason, PFRES_MEMORY); 6138 } 6139 if (r->rtableid >= 0) 6140 M_SETFIB(m, r->rtableid); 6141 6142 if (r->scrub_flags & PFSTATE_SETPRIO) { 6143 if (pd.tos & IPTOS_LOWDELAY) 6144 pqid = 1; 6145 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6146 action = PF_DROP; 6147 REASON_SET(&reason, PFRES_MEMORY); 6148 log = 1; 6149 DPFPRINTF(PF_DEBUG_MISC, 6150 ("pf: failed to allocate 802.1q mtag\n")); 6151 } 6152 } 6153 6154 #ifdef ALTQ 6155 if (action == PF_PASS && r->qid) { 6156 if (pd.pf_mtag == NULL && 6157 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6158 action = PF_DROP; 6159 REASON_SET(&reason, PFRES_MEMORY); 6160 } else { 6161 if (s != NULL) 6162 pd.pf_mtag->qid_hash = pf_state_hash(s); 6163 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6164 pd.pf_mtag->qid = r->pqid; 6165 else 6166 pd.pf_mtag->qid = r->qid; 6167 /* Add hints for ecn. */ 6168 pd.pf_mtag->hdr = h; 6169 } 6170 } 6171 #endif /* ALTQ */ 6172 6173 /* 6174 * connections redirected to loopback should not match sockets 6175 * bound specifically to loopback due to security implications, 6176 * see tcp_input() and in_pcblookup_listen(). 6177 */ 6178 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6179 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6180 (s->nat_rule.ptr->action == PF_RDR || 6181 s->nat_rule.ptr->action == PF_BINAT) && 6182 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 6183 m->m_flags |= M_SKIP_FIREWALL; 6184 6185 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6186 !PACKET_LOOPED(&pd)) { 6187 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6188 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6189 if (ipfwtag != NULL) { 6190 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6191 ntohs(r->divert.port); 6192 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6193 6194 if (s) 6195 PF_STATE_UNLOCK(s); 6196 6197 m_tag_prepend(m, ipfwtag); 6198 if (m->m_flags & M_FASTFWD_OURS) { 6199 if (pd.pf_mtag == NULL && 6200 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6201 action = PF_DROP; 6202 REASON_SET(&reason, PFRES_MEMORY); 6203 log = 1; 6204 DPFPRINTF(PF_DEBUG_MISC, 6205 ("pf: failed to allocate tag\n")); 6206 } else { 6207 pd.pf_mtag->flags |= 6208 PF_FASTFWD_OURS_PRESENT; 6209 m->m_flags &= ~M_FASTFWD_OURS; 6210 } 6211 } 6212 ip_divert_ptr(*m0, dir == PF_IN); 6213 *m0 = NULL; 6214 6215 return (action); 6216 } else { 6217 /* XXX: ipfw has the same behaviour! */ 6218 action = PF_DROP; 6219 REASON_SET(&reason, PFRES_MEMORY); 6220 log = 1; 6221 DPFPRINTF(PF_DEBUG_MISC, 6222 ("pf: failed to allocate divert tag\n")); 6223 } 6224 } 6225 6226 if (log) { 6227 struct pf_krule *lr; 6228 6229 if (s != NULL && s->nat_rule.ptr != NULL && 6230 s->nat_rule.ptr->log & PF_LOG_ALL) 6231 lr = s->nat_rule.ptr; 6232 else 6233 lr = r; 6234 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6235 (s == NULL)); 6236 } 6237 6238 counter_u64_add(kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], 6239 pd.tot_len); 6240 counter_u64_add(kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 6241 1); 6242 6243 if (action == PF_PASS || r->action == PF_DROP) { 6244 dirndx = (dir == PF_OUT); 6245 counter_u64_add(r->packets[dirndx], 1); 6246 counter_u64_add(r->bytes[dirndx], pd.tot_len); 6247 if (a != NULL) { 6248 counter_u64_add(a->packets[dirndx], 1); 6249 counter_u64_add(a->bytes[dirndx], pd.tot_len); 6250 } 6251 if (s != NULL) { 6252 if (s->nat_rule.ptr != NULL) { 6253 counter_u64_add(s->nat_rule.ptr->packets[dirndx], 6254 1); 6255 counter_u64_add(s->nat_rule.ptr->bytes[dirndx], 6256 pd.tot_len); 6257 } 6258 if (s->src_node != NULL) { 6259 counter_u64_add(s->src_node->packets[dirndx], 6260 1); 6261 counter_u64_add(s->src_node->bytes[dirndx], 6262 pd.tot_len); 6263 } 6264 if (s->nat_src_node != NULL) { 6265 counter_u64_add(s->nat_src_node->packets[dirndx], 6266 1); 6267 counter_u64_add(s->nat_src_node->bytes[dirndx], 6268 pd.tot_len); 6269 } 6270 dirndx = (dir == s->direction) ? 0 : 1; 6271 s->packets[dirndx]++; 6272 s->bytes[dirndx] += pd.tot_len; 6273 } 6274 tr = r; 6275 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6276 if (nr != NULL && r == &V_pf_default_rule) 6277 tr = nr; 6278 if (tr->src.addr.type == PF_ADDR_TABLE) 6279 pfr_update_stats(tr->src.addr.p.tbl, 6280 (s == NULL) ? pd.src : 6281 &s->key[(s->direction == PF_IN)]-> 6282 addr[(s->direction == PF_OUT)], 6283 pd.af, pd.tot_len, dir == PF_OUT, 6284 r->action == PF_PASS, tr->src.neg); 6285 if (tr->dst.addr.type == PF_ADDR_TABLE) 6286 pfr_update_stats(tr->dst.addr.p.tbl, 6287 (s == NULL) ? pd.dst : 6288 &s->key[(s->direction == PF_IN)]-> 6289 addr[(s->direction == PF_IN)], 6290 pd.af, pd.tot_len, dir == PF_OUT, 6291 r->action == PF_PASS, tr->dst.neg); 6292 } 6293 6294 switch (action) { 6295 case PF_SYNPROXY_DROP: 6296 m_freem(*m0); 6297 case PF_DEFER: 6298 *m0 = NULL; 6299 action = PF_PASS; 6300 break; 6301 case PF_DROP: 6302 m_freem(*m0); 6303 *m0 = NULL; 6304 break; 6305 default: 6306 /* pf_route() returns unlocked. */ 6307 if (r->rt) { 6308 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6309 return (action); 6310 } 6311 break; 6312 } 6313 6314 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 6315 6316 if (s) 6317 PF_STATE_UNLOCK(s); 6318 6319 return (action); 6320 } 6321 #endif /* INET */ 6322 6323 #ifdef INET6 6324 int 6325 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6326 { 6327 struct pfi_kkif *kif; 6328 u_short action, reason = 0, log = 0; 6329 struct mbuf *m = *m0, *n = NULL; 6330 struct m_tag *mtag; 6331 struct ip6_hdr *h = NULL; 6332 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6333 struct pf_kstate *s = NULL; 6334 struct pf_kruleset *ruleset = NULL; 6335 struct pf_pdesc pd; 6336 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6337 6338 PF_RULES_RLOCK_TRACKER; 6339 M_ASSERTPKTHDR(m); 6340 6341 if (!V_pf_status.running) 6342 return (PF_PASS); 6343 6344 memset(&pd, 0, sizeof(pd)); 6345 pd.pf_mtag = pf_find_mtag(m); 6346 6347 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6348 return (PF_PASS); 6349 6350 kif = (struct pfi_kkif *)ifp->if_pf_kif; 6351 if (kif == NULL) { 6352 DPFPRINTF(PF_DEBUG_URGENT, 6353 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6354 return (PF_DROP); 6355 } 6356 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6357 return (PF_PASS); 6358 6359 if (m->m_flags & M_SKIP_FIREWALL) 6360 return (PF_PASS); 6361 6362 PF_RULES_RLOCK(); 6363 6364 /* We do IP header normalization and packet reassembly here */ 6365 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6366 action = PF_DROP; 6367 goto done; 6368 } 6369 m = *m0; /* pf_normalize messes with m0 */ 6370 h = mtod(m, struct ip6_hdr *); 6371 6372 /* 6373 * we do not support jumbogram. if we keep going, zero ip6_plen 6374 * will do something bad, so drop the packet for now. 6375 */ 6376 if (htons(h->ip6_plen) == 0) { 6377 action = PF_DROP; 6378 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6379 goto done; 6380 } 6381 6382 pd.src = (struct pf_addr *)&h->ip6_src; 6383 pd.dst = (struct pf_addr *)&h->ip6_dst; 6384 pd.sport = pd.dport = NULL; 6385 pd.ip_sum = NULL; 6386 pd.proto_sum = NULL; 6387 pd.dir = dir; 6388 pd.sidx = (dir == PF_IN) ? 0 : 1; 6389 pd.didx = (dir == PF_IN) ? 1 : 0; 6390 pd.af = AF_INET6; 6391 pd.tos = IPV6_DSCP(h); 6392 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6393 6394 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6395 pd.proto = h->ip6_nxt; 6396 do { 6397 switch (pd.proto) { 6398 case IPPROTO_FRAGMENT: 6399 action = pf_test_fragment(&r, dir, kif, m, h, 6400 &pd, &a, &ruleset); 6401 if (action == PF_DROP) 6402 REASON_SET(&reason, PFRES_FRAG); 6403 goto done; 6404 case IPPROTO_ROUTING: { 6405 struct ip6_rthdr rthdr; 6406 6407 if (rh_cnt++) { 6408 DPFPRINTF(PF_DEBUG_MISC, 6409 ("pf: IPv6 more than one rthdr\n")); 6410 action = PF_DROP; 6411 REASON_SET(&reason, PFRES_IPOPTIONS); 6412 log = 1; 6413 goto done; 6414 } 6415 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6416 &reason, pd.af)) { 6417 DPFPRINTF(PF_DEBUG_MISC, 6418 ("pf: IPv6 short rthdr\n")); 6419 action = PF_DROP; 6420 REASON_SET(&reason, PFRES_SHORT); 6421 log = 1; 6422 goto done; 6423 } 6424 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6425 DPFPRINTF(PF_DEBUG_MISC, 6426 ("pf: IPv6 rthdr0\n")); 6427 action = PF_DROP; 6428 REASON_SET(&reason, PFRES_IPOPTIONS); 6429 log = 1; 6430 goto done; 6431 } 6432 /* FALLTHROUGH */ 6433 } 6434 case IPPROTO_AH: 6435 case IPPROTO_HOPOPTS: 6436 case IPPROTO_DSTOPTS: { 6437 /* get next header and header length */ 6438 struct ip6_ext opt6; 6439 6440 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6441 NULL, &reason, pd.af)) { 6442 DPFPRINTF(PF_DEBUG_MISC, 6443 ("pf: IPv6 short opt\n")); 6444 action = PF_DROP; 6445 log = 1; 6446 goto done; 6447 } 6448 if (pd.proto == IPPROTO_AH) 6449 off += (opt6.ip6e_len + 2) * 4; 6450 else 6451 off += (opt6.ip6e_len + 1) * 8; 6452 pd.proto = opt6.ip6e_nxt; 6453 /* goto the next header */ 6454 break; 6455 } 6456 default: 6457 terminal++; 6458 break; 6459 } 6460 } while (!terminal); 6461 6462 /* if there's no routing header, use unmodified mbuf for checksumming */ 6463 if (!n) 6464 n = m; 6465 6466 switch (pd.proto) { 6467 case IPPROTO_TCP: { 6468 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 6469 &action, &reason, AF_INET6)) { 6470 log = action != PF_PASS; 6471 goto done; 6472 } 6473 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 6474 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6475 if (action == PF_DROP) 6476 goto done; 6477 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6478 &reason); 6479 if (action == PF_PASS) { 6480 if (V_pfsync_update_state_ptr != NULL) 6481 V_pfsync_update_state_ptr(s); 6482 r = s->rule.ptr; 6483 a = s->anchor.ptr; 6484 log = s->log; 6485 } else if (s == NULL) 6486 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6487 &a, &ruleset, inp); 6488 break; 6489 } 6490 6491 case IPPROTO_UDP: { 6492 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 6493 &action, &reason, AF_INET6)) { 6494 log = action != PF_PASS; 6495 goto done; 6496 } 6497 if (pd.hdr.udp.uh_dport == 0 || 6498 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 6499 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 6500 action = PF_DROP; 6501 REASON_SET(&reason, PFRES_SHORT); 6502 goto done; 6503 } 6504 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6505 if (action == PF_PASS) { 6506 if (V_pfsync_update_state_ptr != NULL) 6507 V_pfsync_update_state_ptr(s); 6508 r = s->rule.ptr; 6509 a = s->anchor.ptr; 6510 log = s->log; 6511 } else if (s == NULL) 6512 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6513 &a, &ruleset, inp); 6514 break; 6515 } 6516 6517 case IPPROTO_ICMP: { 6518 action = PF_DROP; 6519 DPFPRINTF(PF_DEBUG_MISC, 6520 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6521 goto done; 6522 } 6523 6524 case IPPROTO_ICMPV6: { 6525 if (!pf_pull_hdr(m, off, &pd.hdr.icmp6, sizeof(pd.hdr.icmp6), 6526 &action, &reason, AF_INET6)) { 6527 log = action != PF_PASS; 6528 goto done; 6529 } 6530 action = pf_test_state_icmp(&s, dir, kif, 6531 m, off, h, &pd, &reason); 6532 if (action == PF_PASS) { 6533 if (V_pfsync_update_state_ptr != NULL) 6534 V_pfsync_update_state_ptr(s); 6535 r = s->rule.ptr; 6536 a = s->anchor.ptr; 6537 log = s->log; 6538 } else if (s == NULL) 6539 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6540 &a, &ruleset, inp); 6541 break; 6542 } 6543 6544 default: 6545 action = pf_test_state_other(&s, dir, kif, m, &pd); 6546 if (action == PF_PASS) { 6547 if (V_pfsync_update_state_ptr != NULL) 6548 V_pfsync_update_state_ptr(s); 6549 r = s->rule.ptr; 6550 a = s->anchor.ptr; 6551 log = s->log; 6552 } else if (s == NULL) 6553 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6554 &a, &ruleset, inp); 6555 break; 6556 } 6557 6558 done: 6559 PF_RULES_RUNLOCK(); 6560 if (n != m) { 6561 m_freem(n); 6562 n = NULL; 6563 } 6564 6565 /* handle dangerous IPv6 extension headers. */ 6566 if (action == PF_PASS && rh_cnt && 6567 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6568 action = PF_DROP; 6569 REASON_SET(&reason, PFRES_IPOPTIONS); 6570 log = r->log; 6571 DPFPRINTF(PF_DEBUG_MISC, 6572 ("pf: dropping packet with dangerous v6 headers\n")); 6573 } 6574 6575 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6576 action = PF_DROP; 6577 REASON_SET(&reason, PFRES_MEMORY); 6578 } 6579 if (r->rtableid >= 0) 6580 M_SETFIB(m, r->rtableid); 6581 6582 if (r->scrub_flags & PFSTATE_SETPRIO) { 6583 if (pd.tos & IPTOS_LOWDELAY) 6584 pqid = 1; 6585 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6586 action = PF_DROP; 6587 REASON_SET(&reason, PFRES_MEMORY); 6588 log = 1; 6589 DPFPRINTF(PF_DEBUG_MISC, 6590 ("pf: failed to allocate 802.1q mtag\n")); 6591 } 6592 } 6593 6594 #ifdef ALTQ 6595 if (action == PF_PASS && r->qid) { 6596 if (pd.pf_mtag == NULL && 6597 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6598 action = PF_DROP; 6599 REASON_SET(&reason, PFRES_MEMORY); 6600 } else { 6601 if (s != NULL) 6602 pd.pf_mtag->qid_hash = pf_state_hash(s); 6603 if (pd.tos & IPTOS_LOWDELAY) 6604 pd.pf_mtag->qid = r->pqid; 6605 else 6606 pd.pf_mtag->qid = r->qid; 6607 /* Add hints for ecn. */ 6608 pd.pf_mtag->hdr = h; 6609 } 6610 } 6611 #endif /* ALTQ */ 6612 6613 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6614 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6615 (s->nat_rule.ptr->action == PF_RDR || 6616 s->nat_rule.ptr->action == PF_BINAT) && 6617 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6618 m->m_flags |= M_SKIP_FIREWALL; 6619 6620 /* XXX: Anybody working on it?! */ 6621 if (r->divert.port) 6622 printf("pf: divert(9) is not supported for IPv6\n"); 6623 6624 if (log) { 6625 struct pf_krule *lr; 6626 6627 if (s != NULL && s->nat_rule.ptr != NULL && 6628 s->nat_rule.ptr->log & PF_LOG_ALL) 6629 lr = s->nat_rule.ptr; 6630 else 6631 lr = r; 6632 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6633 &pd, (s == NULL)); 6634 } 6635 6636 counter_u64_add(kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], 6637 pd.tot_len); 6638 counter_u64_add(kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 6639 1); 6640 6641 if (action == PF_PASS || r->action == PF_DROP) { 6642 dirndx = (dir == PF_OUT); 6643 counter_u64_add(r->packets[dirndx], 1); 6644 counter_u64_add(r->bytes[dirndx], pd.tot_len); 6645 if (a != NULL) { 6646 counter_u64_add(a->packets[dirndx], 1); 6647 counter_u64_add(a->bytes[dirndx], pd.tot_len); 6648 } 6649 if (s != NULL) { 6650 if (s->nat_rule.ptr != NULL) { 6651 counter_u64_add(s->nat_rule.ptr->packets[dirndx], 6652 1); 6653 counter_u64_add(s->nat_rule.ptr->bytes[dirndx], 6654 pd.tot_len); 6655 } 6656 if (s->src_node != NULL) { 6657 counter_u64_add(s->src_node->packets[dirndx], 6658 1); 6659 counter_u64_add(s->src_node->bytes[dirndx], 6660 pd.tot_len); 6661 } 6662 if (s->nat_src_node != NULL) { 6663 counter_u64_add(s->nat_src_node->packets[dirndx], 6664 1); 6665 counter_u64_add(s->nat_src_node->bytes[dirndx], 6666 pd.tot_len); 6667 } 6668 dirndx = (dir == s->direction) ? 0 : 1; 6669 s->packets[dirndx]++; 6670 s->bytes[dirndx] += pd.tot_len; 6671 } 6672 tr = r; 6673 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6674 if (nr != NULL && r == &V_pf_default_rule) 6675 tr = nr; 6676 if (tr->src.addr.type == PF_ADDR_TABLE) 6677 pfr_update_stats(tr->src.addr.p.tbl, 6678 (s == NULL) ? pd.src : 6679 &s->key[(s->direction == PF_IN)]->addr[0], 6680 pd.af, pd.tot_len, dir == PF_OUT, 6681 r->action == PF_PASS, tr->src.neg); 6682 if (tr->dst.addr.type == PF_ADDR_TABLE) 6683 pfr_update_stats(tr->dst.addr.p.tbl, 6684 (s == NULL) ? pd.dst : 6685 &s->key[(s->direction == PF_IN)]->addr[1], 6686 pd.af, pd.tot_len, dir == PF_OUT, 6687 r->action == PF_PASS, tr->dst.neg); 6688 } 6689 6690 switch (action) { 6691 case PF_SYNPROXY_DROP: 6692 m_freem(*m0); 6693 case PF_DEFER: 6694 *m0 = NULL; 6695 action = PF_PASS; 6696 break; 6697 case PF_DROP: 6698 m_freem(*m0); 6699 *m0 = NULL; 6700 break; 6701 default: 6702 /* pf_route6() returns unlocked. */ 6703 if (r->rt) { 6704 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6705 return (action); 6706 } 6707 break; 6708 } 6709 6710 if (s) 6711 PF_STATE_UNLOCK(s); 6712 6713 /* If reassembled packet passed, create new fragments. */ 6714 if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && 6715 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6716 action = pf_refragment6(ifp, m0, mtag); 6717 6718 SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); 6719 6720 return (action); 6721 } 6722 #endif /* INET6 */ 6723