1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_bpf.h" 46 #include "opt_pf.h" 47 48 #include <sys/param.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/socket.h> 61 #include <sys/sysctl.h> 62 #include <sys/taskqueue.h> 63 #include <sys/ucred.h> 64 65 #include <net/if.h> 66 #include <net/if_var.h> 67 #include <net/if_types.h> 68 #include <net/if_vlan_var.h> 69 #include <net/route.h> 70 #include <net/radix_mpath.h> 71 #include <net/vnet.h> 72 73 #include <net/pfvar.h> 74 #include <net/if_pflog.h> 75 #include <net/if_pfsync.h> 76 77 #include <netinet/in_pcb.h> 78 #include <netinet/in_var.h> 79 #include <netinet/in_fib.h> 80 #include <netinet/ip.h> 81 #include <netinet/ip_fw.h> 82 #include <netinet/ip_icmp.h> 83 #include <netinet/icmp_var.h> 84 #include <netinet/ip_var.h> 85 #include <netinet/tcp.h> 86 #include <netinet/tcp_fsm.h> 87 #include <netinet/tcp_seq.h> 88 #include <netinet/tcp_timer.h> 89 #include <netinet/tcp_var.h> 90 #include <netinet/udp.h> 91 #include <netinet/udp_var.h> 92 93 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 94 95 #ifdef INET6 96 #include <netinet/ip6.h> 97 #include <netinet/icmp6.h> 98 #include <netinet6/nd6.h> 99 #include <netinet6/ip6_var.h> 100 #include <netinet6/in6_pcb.h> 101 #include <netinet6/in6_fib.h> 102 #include <netinet6/scope6_var.h> 103 #endif /* INET6 */ 104 105 #include <machine/in_cksum.h> 106 #include <security/mac/mac_framework.h> 107 108 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 109 110 /* 111 * Global variables 112 */ 113 114 /* state tables */ 115 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 116 VNET_DEFINE(struct pf_palist, pf_pabuf); 117 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 118 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 119 VNET_DEFINE(struct pf_kstatus, pf_status); 120 121 VNET_DEFINE(u_int32_t, ticket_altqs_active); 122 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 123 VNET_DEFINE(int, altqs_inactive_open); 124 VNET_DEFINE(u_int32_t, ticket_pabuf); 125 126 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 127 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 128 VNET_DEFINE(u_char, pf_tcp_secret[16]); 129 #define V_pf_tcp_secret VNET(pf_tcp_secret) 130 VNET_DEFINE(int, pf_tcp_secret_init); 131 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 132 VNET_DEFINE(int, pf_tcp_iss_off); 133 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 134 VNET_DECLARE(int, pf_vnet_active); 135 #define V_pf_vnet_active VNET(pf_vnet_active) 136 137 static VNET_DEFINE(uint32_t, pf_purge_idx); 138 #define V_pf_purge_idx VNET(pf_purge_idx) 139 140 /* 141 * Queue for pf_intr() sends. 142 */ 143 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 144 struct pf_send_entry { 145 STAILQ_ENTRY(pf_send_entry) pfse_next; 146 struct mbuf *pfse_m; 147 enum { 148 PFSE_IP, 149 PFSE_IP6, 150 PFSE_ICMP, 151 PFSE_ICMP6, 152 } pfse_type; 153 struct { 154 int type; 155 int code; 156 int mtu; 157 } icmpopts; 158 }; 159 160 STAILQ_HEAD(pf_send_head, pf_send_entry); 161 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 162 #define V_pf_sendqueue VNET(pf_sendqueue) 163 164 static struct mtx pf_sendqueue_mtx; 165 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 166 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 167 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 168 169 /* 170 * Queue for pf_overload_task() tasks. 171 */ 172 struct pf_overload_entry { 173 SLIST_ENTRY(pf_overload_entry) next; 174 struct pf_addr addr; 175 sa_family_t af; 176 uint8_t dir; 177 struct pf_rule *rule; 178 }; 179 180 SLIST_HEAD(pf_overload_head, pf_overload_entry); 181 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 182 #define V_pf_overloadqueue VNET(pf_overloadqueue) 183 static VNET_DEFINE(struct task, pf_overloadtask); 184 #define V_pf_overloadtask VNET(pf_overloadtask) 185 186 static struct mtx pf_overloadqueue_mtx; 187 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 188 "pf overload/flush queue", MTX_DEF); 189 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 190 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 191 192 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 193 struct mtx pf_unlnkdrules_mtx; 194 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 195 MTX_DEF); 196 197 static VNET_DEFINE(uma_zone_t, pf_sources_z); 198 #define V_pf_sources_z VNET(pf_sources_z) 199 uma_zone_t pf_mtag_z; 200 VNET_DEFINE(uma_zone_t, pf_state_z); 201 VNET_DEFINE(uma_zone_t, pf_state_key_z); 202 203 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 204 #define PFID_CPUBITS 8 205 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 206 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 207 #define PFID_MAXID (~PFID_CPUMASK) 208 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 209 210 static void pf_src_tree_remove_state(struct pf_state *); 211 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 212 u_int32_t); 213 static void pf_add_threshold(struct pf_threshold *); 214 static int pf_check_threshold(struct pf_threshold *); 215 216 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 217 u_int16_t *, u_int16_t *, struct pf_addr *, 218 u_int16_t, u_int8_t, sa_family_t); 219 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 220 struct tcphdr *, struct pf_state_peer *); 221 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 222 struct pf_addr *, struct pf_addr *, u_int16_t, 223 u_int16_t *, u_int16_t *, u_int16_t *, 224 u_int16_t *, u_int8_t, sa_family_t); 225 static void pf_send_tcp(struct mbuf *, 226 const struct pf_rule *, sa_family_t, 227 const struct pf_addr *, const struct pf_addr *, 228 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 229 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 230 u_int16_t, struct ifnet *); 231 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 232 sa_family_t, struct pf_rule *); 233 static void pf_detach_state(struct pf_state *); 234 static int pf_state_key_attach(struct pf_state_key *, 235 struct pf_state_key *, struct pf_state *); 236 static void pf_state_key_detach(struct pf_state *, int); 237 static int pf_state_key_ctor(void *, int, void *, int); 238 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 239 static int pf_test_rule(struct pf_rule **, struct pf_state **, 240 int, struct pfi_kif *, struct mbuf *, int, 241 struct pf_pdesc *, struct pf_rule **, 242 struct pf_ruleset **, struct inpcb *); 243 static int pf_create_state(struct pf_rule *, struct pf_rule *, 244 struct pf_rule *, struct pf_pdesc *, 245 struct pf_src_node *, struct pf_state_key *, 246 struct pf_state_key *, struct mbuf *, int, 247 u_int16_t, u_int16_t, int *, struct pfi_kif *, 248 struct pf_state **, int, u_int16_t, u_int16_t, 249 int); 250 static int pf_test_fragment(struct pf_rule **, int, 251 struct pfi_kif *, struct mbuf *, void *, 252 struct pf_pdesc *, struct pf_rule **, 253 struct pf_ruleset **); 254 static int pf_tcp_track_full(struct pf_state_peer *, 255 struct pf_state_peer *, struct pf_state **, 256 struct pfi_kif *, struct mbuf *, int, 257 struct pf_pdesc *, u_short *, int *); 258 static int pf_tcp_track_sloppy(struct pf_state_peer *, 259 struct pf_state_peer *, struct pf_state **, 260 struct pf_pdesc *, u_short *); 261 static int pf_test_state_tcp(struct pf_state **, int, 262 struct pfi_kif *, struct mbuf *, int, 263 void *, struct pf_pdesc *, u_short *); 264 static int pf_test_state_udp(struct pf_state **, int, 265 struct pfi_kif *, struct mbuf *, int, 266 void *, struct pf_pdesc *); 267 static int pf_test_state_icmp(struct pf_state **, int, 268 struct pfi_kif *, struct mbuf *, int, 269 void *, struct pf_pdesc *, u_short *); 270 static int pf_test_state_other(struct pf_state **, int, 271 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 272 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 273 sa_family_t); 274 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 275 sa_family_t); 276 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 277 int, u_int16_t); 278 static int pf_check_proto_cksum(struct mbuf *, int, int, 279 u_int8_t, sa_family_t); 280 static void pf_print_state_parts(struct pf_state *, 281 struct pf_state_key *, struct pf_state_key *); 282 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 283 struct pf_addr_wrap *); 284 static struct pf_state *pf_find_state(struct pfi_kif *, 285 struct pf_state_key_cmp *, u_int); 286 static int pf_src_connlimit(struct pf_state **); 287 static void pf_overload_task(void *v, int pending); 288 static int pf_insert_src_node(struct pf_src_node **, 289 struct pf_rule *, struct pf_addr *, sa_family_t); 290 static u_int pf_purge_expired_states(u_int, int); 291 static void pf_purge_unlinked_rules(void); 292 static int pf_mtag_uminit(void *, int, int); 293 static void pf_mtag_free(struct m_tag *); 294 #ifdef INET 295 static void pf_route(struct mbuf **, struct pf_rule *, int, 296 struct ifnet *, struct pf_state *, 297 struct pf_pdesc *); 298 #endif /* INET */ 299 #ifdef INET6 300 static void pf_change_a6(struct pf_addr *, u_int16_t *, 301 struct pf_addr *, u_int8_t); 302 static void pf_route6(struct mbuf **, struct pf_rule *, int, 303 struct ifnet *, struct pf_state *, 304 struct pf_pdesc *); 305 #endif /* INET6 */ 306 307 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 308 309 extern int pf_end_threads; 310 extern struct proc *pf_purge_proc; 311 312 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 313 314 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 315 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 316 317 #define STATE_LOOKUP(i, k, d, s, pd) \ 318 do { \ 319 (s) = pf_find_state((i), (k), (d)); \ 320 if ((s) == NULL) \ 321 return (PF_DROP); \ 322 if (PACKET_LOOPED(pd)) \ 323 return (PF_PASS); \ 324 if ((d) == PF_OUT && \ 325 (((s)->rule.ptr->rt == PF_ROUTETO && \ 326 (s)->rule.ptr->direction == PF_OUT) || \ 327 ((s)->rule.ptr->rt == PF_REPLYTO && \ 328 (s)->rule.ptr->direction == PF_IN)) && \ 329 (s)->rt_kif != NULL && \ 330 (s)->rt_kif != (i)) \ 331 return (PF_PASS); \ 332 } while (0) 333 334 #define BOUND_IFACE(r, k) \ 335 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 336 337 #define STATE_INC_COUNTERS(s) \ 338 do { \ 339 counter_u64_add(s->rule.ptr->states_cur, 1); \ 340 counter_u64_add(s->rule.ptr->states_tot, 1); \ 341 if (s->anchor.ptr != NULL) { \ 342 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 343 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 344 } \ 345 if (s->nat_rule.ptr != NULL) { \ 346 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 347 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 348 } \ 349 } while (0) 350 351 #define STATE_DEC_COUNTERS(s) \ 352 do { \ 353 if (s->nat_rule.ptr != NULL) \ 354 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 355 if (s->anchor.ptr != NULL) \ 356 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 357 counter_u64_add(s->rule.ptr->states_cur, -1); \ 358 } while (0) 359 360 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 361 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 362 VNET_DEFINE(struct pf_idhash *, pf_idhash); 363 VNET_DEFINE(struct pf_srchash *, pf_srchash); 364 365 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 366 367 u_long pf_hashmask; 368 u_long pf_srchashmask; 369 static u_long pf_hashsize; 370 static u_long pf_srchashsize; 371 372 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 373 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 374 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 375 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 376 377 VNET_DEFINE(void *, pf_swi_cookie); 378 379 VNET_DEFINE(uint32_t, pf_hashseed); 380 #define V_pf_hashseed VNET(pf_hashseed) 381 382 int 383 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 384 { 385 386 switch (af) { 387 #ifdef INET 388 case AF_INET: 389 if (a->addr32[0] > b->addr32[0]) 390 return (1); 391 if (a->addr32[0] < b->addr32[0]) 392 return (-1); 393 break; 394 #endif /* INET */ 395 #ifdef INET6 396 case AF_INET6: 397 if (a->addr32[3] > b->addr32[3]) 398 return (1); 399 if (a->addr32[3] < b->addr32[3]) 400 return (-1); 401 if (a->addr32[2] > b->addr32[2]) 402 return (1); 403 if (a->addr32[2] < b->addr32[2]) 404 return (-1); 405 if (a->addr32[1] > b->addr32[1]) 406 return (1); 407 if (a->addr32[1] < b->addr32[1]) 408 return (-1); 409 if (a->addr32[0] > b->addr32[0]) 410 return (1); 411 if (a->addr32[0] < b->addr32[0]) 412 return (-1); 413 break; 414 #endif /* INET6 */ 415 default: 416 panic("%s: unknown address family %u", __func__, af); 417 } 418 return (0); 419 } 420 421 static __inline uint32_t 422 pf_hashkey(struct pf_state_key *sk) 423 { 424 uint32_t h; 425 426 h = murmur3_32_hash32((uint32_t *)sk, 427 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 428 V_pf_hashseed); 429 430 return (h & pf_hashmask); 431 } 432 433 static __inline uint32_t 434 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 435 { 436 uint32_t h; 437 438 switch (af) { 439 case AF_INET: 440 h = murmur3_32_hash32((uint32_t *)&addr->v4, 441 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 442 break; 443 case AF_INET6: 444 h = murmur3_32_hash32((uint32_t *)&addr->v6, 445 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 446 break; 447 default: 448 panic("%s: unknown address family %u", __func__, af); 449 } 450 451 return (h & pf_srchashmask); 452 } 453 454 #ifdef ALTQ 455 static int 456 pf_state_hash(struct pf_state *s) 457 { 458 u_int32_t hv = (intptr_t)s / sizeof(*s); 459 460 hv ^= crc32(&s->src, sizeof(s->src)); 461 hv ^= crc32(&s->dst, sizeof(s->dst)); 462 if (hv == 0) 463 hv = 1; 464 return (hv); 465 } 466 #endif 467 468 #ifdef INET6 469 void 470 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 471 { 472 switch (af) { 473 #ifdef INET 474 case AF_INET: 475 dst->addr32[0] = src->addr32[0]; 476 break; 477 #endif /* INET */ 478 case AF_INET6: 479 dst->addr32[0] = src->addr32[0]; 480 dst->addr32[1] = src->addr32[1]; 481 dst->addr32[2] = src->addr32[2]; 482 dst->addr32[3] = src->addr32[3]; 483 break; 484 } 485 } 486 #endif /* INET6 */ 487 488 static void 489 pf_init_threshold(struct pf_threshold *threshold, 490 u_int32_t limit, u_int32_t seconds) 491 { 492 threshold->limit = limit * PF_THRESHOLD_MULT; 493 threshold->seconds = seconds; 494 threshold->count = 0; 495 threshold->last = time_uptime; 496 } 497 498 static void 499 pf_add_threshold(struct pf_threshold *threshold) 500 { 501 u_int32_t t = time_uptime, diff = t - threshold->last; 502 503 if (diff >= threshold->seconds) 504 threshold->count = 0; 505 else 506 threshold->count -= threshold->count * diff / 507 threshold->seconds; 508 threshold->count += PF_THRESHOLD_MULT; 509 threshold->last = t; 510 } 511 512 static int 513 pf_check_threshold(struct pf_threshold *threshold) 514 { 515 return (threshold->count > threshold->limit); 516 } 517 518 static int 519 pf_src_connlimit(struct pf_state **state) 520 { 521 struct pf_overload_entry *pfoe; 522 int bad = 0; 523 524 PF_STATE_LOCK_ASSERT(*state); 525 526 (*state)->src_node->conn++; 527 (*state)->src.tcp_est = 1; 528 pf_add_threshold(&(*state)->src_node->conn_rate); 529 530 if ((*state)->rule.ptr->max_src_conn && 531 (*state)->rule.ptr->max_src_conn < 532 (*state)->src_node->conn) { 533 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 534 bad++; 535 } 536 537 if ((*state)->rule.ptr->max_src_conn_rate.limit && 538 pf_check_threshold(&(*state)->src_node->conn_rate)) { 539 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 540 bad++; 541 } 542 543 if (!bad) 544 return (0); 545 546 /* Kill this state. */ 547 (*state)->timeout = PFTM_PURGE; 548 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 549 550 if ((*state)->rule.ptr->overload_tbl == NULL) 551 return (1); 552 553 /* Schedule overloading and flushing task. */ 554 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 555 if (pfoe == NULL) 556 return (1); /* too bad :( */ 557 558 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 559 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 560 pfoe->rule = (*state)->rule.ptr; 561 pfoe->dir = (*state)->direction; 562 PF_OVERLOADQ_LOCK(); 563 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 564 PF_OVERLOADQ_UNLOCK(); 565 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 566 567 return (1); 568 } 569 570 static void 571 pf_overload_task(void *v, int pending) 572 { 573 struct pf_overload_head queue; 574 struct pfr_addr p; 575 struct pf_overload_entry *pfoe, *pfoe1; 576 uint32_t killed = 0; 577 578 CURVNET_SET((struct vnet *)v); 579 580 PF_OVERLOADQ_LOCK(); 581 queue = V_pf_overloadqueue; 582 SLIST_INIT(&V_pf_overloadqueue); 583 PF_OVERLOADQ_UNLOCK(); 584 585 bzero(&p, sizeof(p)); 586 SLIST_FOREACH(pfoe, &queue, next) { 587 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 588 if (V_pf_status.debug >= PF_DEBUG_MISC) { 589 printf("%s: blocking address ", __func__); 590 pf_print_host(&pfoe->addr, 0, pfoe->af); 591 printf("\n"); 592 } 593 594 p.pfra_af = pfoe->af; 595 switch (pfoe->af) { 596 #ifdef INET 597 case AF_INET: 598 p.pfra_net = 32; 599 p.pfra_ip4addr = pfoe->addr.v4; 600 break; 601 #endif 602 #ifdef INET6 603 case AF_INET6: 604 p.pfra_net = 128; 605 p.pfra_ip6addr = pfoe->addr.v6; 606 break; 607 #endif 608 } 609 610 PF_RULES_WLOCK(); 611 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 612 PF_RULES_WUNLOCK(); 613 } 614 615 /* 616 * Remove those entries, that don't need flushing. 617 */ 618 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 619 if (pfoe->rule->flush == 0) { 620 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 621 free(pfoe, M_PFTEMP); 622 } else 623 counter_u64_add( 624 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 625 626 /* If nothing to flush, return. */ 627 if (SLIST_EMPTY(&queue)) { 628 CURVNET_RESTORE(); 629 return; 630 } 631 632 for (int i = 0; i <= pf_hashmask; i++) { 633 struct pf_idhash *ih = &V_pf_idhash[i]; 634 struct pf_state_key *sk; 635 struct pf_state *s; 636 637 PF_HASHROW_LOCK(ih); 638 LIST_FOREACH(s, &ih->states, entry) { 639 sk = s->key[PF_SK_WIRE]; 640 SLIST_FOREACH(pfoe, &queue, next) 641 if (sk->af == pfoe->af && 642 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 643 pfoe->rule == s->rule.ptr) && 644 ((pfoe->dir == PF_OUT && 645 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 646 (pfoe->dir == PF_IN && 647 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 648 s->timeout = PFTM_PURGE; 649 s->src.state = s->dst.state = TCPS_CLOSED; 650 killed++; 651 } 652 } 653 PF_HASHROW_UNLOCK(ih); 654 } 655 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 656 free(pfoe, M_PFTEMP); 657 if (V_pf_status.debug >= PF_DEBUG_MISC) 658 printf("%s: %u states killed", __func__, killed); 659 660 CURVNET_RESTORE(); 661 } 662 663 /* 664 * Can return locked on failure, so that we can consistently 665 * allocate and insert a new one. 666 */ 667 struct pf_src_node * 668 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 669 int returnlocked) 670 { 671 struct pf_srchash *sh; 672 struct pf_src_node *n; 673 674 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 675 676 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 677 PF_HASHROW_LOCK(sh); 678 LIST_FOREACH(n, &sh->nodes, entry) 679 if (n->rule.ptr == rule && n->af == af && 680 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 681 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 682 break; 683 if (n != NULL) { 684 n->states++; 685 PF_HASHROW_UNLOCK(sh); 686 } else if (returnlocked == 0) 687 PF_HASHROW_UNLOCK(sh); 688 689 return (n); 690 } 691 692 static int 693 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 694 struct pf_addr *src, sa_family_t af) 695 { 696 697 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 698 rule->rpool.opts & PF_POOL_STICKYADDR), 699 ("%s for non-tracking rule %p", __func__, rule)); 700 701 if (*sn == NULL) 702 *sn = pf_find_src_node(src, rule, af, 1); 703 704 if (*sn == NULL) { 705 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 706 707 PF_HASHROW_ASSERT(sh); 708 709 if (!rule->max_src_nodes || 710 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 711 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 712 else 713 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 714 1); 715 if ((*sn) == NULL) { 716 PF_HASHROW_UNLOCK(sh); 717 return (-1); 718 } 719 720 pf_init_threshold(&(*sn)->conn_rate, 721 rule->max_src_conn_rate.limit, 722 rule->max_src_conn_rate.seconds); 723 724 (*sn)->af = af; 725 (*sn)->rule.ptr = rule; 726 PF_ACPY(&(*sn)->addr, src, af); 727 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 728 (*sn)->creation = time_uptime; 729 (*sn)->ruletype = rule->action; 730 (*sn)->states = 1; 731 if ((*sn)->rule.ptr != NULL) 732 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 733 PF_HASHROW_UNLOCK(sh); 734 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 735 } else { 736 if (rule->max_src_states && 737 (*sn)->states >= rule->max_src_states) { 738 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 739 1); 740 return (-1); 741 } 742 } 743 return (0); 744 } 745 746 void 747 pf_unlink_src_node(struct pf_src_node *src) 748 { 749 750 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 751 LIST_REMOVE(src, entry); 752 if (src->rule.ptr) 753 counter_u64_add(src->rule.ptr->src_nodes, -1); 754 } 755 756 u_int 757 pf_free_src_nodes(struct pf_src_node_list *head) 758 { 759 struct pf_src_node *sn, *tmp; 760 u_int count = 0; 761 762 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 763 uma_zfree(V_pf_sources_z, sn); 764 count++; 765 } 766 767 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 768 769 return (count); 770 } 771 772 void 773 pf_mtag_initialize() 774 { 775 776 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 777 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 778 UMA_ALIGN_PTR, 0); 779 } 780 781 /* Per-vnet data storage structures initialization. */ 782 void 783 pf_initialize() 784 { 785 struct pf_keyhash *kh; 786 struct pf_idhash *ih; 787 struct pf_srchash *sh; 788 u_int i; 789 790 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 791 pf_hashsize = PF_HASHSIZ; 792 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 793 pf_srchashsize = PF_SRCHASHSIZ; 794 795 V_pf_hashseed = arc4random(); 796 797 /* States and state keys storage. */ 798 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 799 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 800 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 801 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 802 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 803 804 V_pf_state_key_z = uma_zcreate("pf state keys", 805 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 806 UMA_ALIGN_PTR, 0); 807 808 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 809 M_PFHASH, M_NOWAIT | M_ZERO); 810 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 811 M_PFHASH, M_NOWAIT | M_ZERO); 812 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 813 printf("pf: Unable to allocate memory for " 814 "state_hashsize %lu.\n", pf_hashsize); 815 816 free(V_pf_keyhash, M_PFHASH); 817 free(V_pf_idhash, M_PFHASH); 818 819 pf_hashsize = PF_HASHSIZ; 820 V_pf_keyhash = mallocarray(pf_hashsize, 821 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 822 V_pf_idhash = mallocarray(pf_hashsize, 823 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 824 } 825 826 pf_hashmask = pf_hashsize - 1; 827 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 828 i++, kh++, ih++) { 829 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 830 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 831 } 832 833 /* Source nodes. */ 834 V_pf_sources_z = uma_zcreate("pf source nodes", 835 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 836 0); 837 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 838 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 839 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 840 841 V_pf_srchash = mallocarray(pf_srchashsize, 842 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 843 if (V_pf_srchash == NULL) { 844 printf("pf: Unable to allocate memory for " 845 "source_hashsize %lu.\n", pf_srchashsize); 846 847 pf_srchashsize = PF_SRCHASHSIZ; 848 V_pf_srchash = mallocarray(pf_srchashsize, 849 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 850 } 851 852 pf_srchashmask = pf_srchashsize - 1; 853 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 854 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 855 856 /* ALTQ */ 857 TAILQ_INIT(&V_pf_altqs[0]); 858 TAILQ_INIT(&V_pf_altqs[1]); 859 TAILQ_INIT(&V_pf_pabuf); 860 V_pf_altqs_active = &V_pf_altqs[0]; 861 V_pf_altqs_inactive = &V_pf_altqs[1]; 862 863 /* Send & overload+flush queues. */ 864 STAILQ_INIT(&V_pf_sendqueue); 865 SLIST_INIT(&V_pf_overloadqueue); 866 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 867 868 /* Unlinked, but may be referenced rules. */ 869 TAILQ_INIT(&V_pf_unlinked_rules); 870 } 871 872 void 873 pf_mtag_cleanup() 874 { 875 876 uma_zdestroy(pf_mtag_z); 877 } 878 879 void 880 pf_cleanup() 881 { 882 struct pf_keyhash *kh; 883 struct pf_idhash *ih; 884 struct pf_srchash *sh; 885 struct pf_send_entry *pfse, *next; 886 u_int i; 887 888 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 889 i++, kh++, ih++) { 890 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 891 __func__)); 892 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 893 __func__)); 894 mtx_destroy(&kh->lock); 895 mtx_destroy(&ih->lock); 896 } 897 free(V_pf_keyhash, M_PFHASH); 898 free(V_pf_idhash, M_PFHASH); 899 900 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 901 KASSERT(LIST_EMPTY(&sh->nodes), 902 ("%s: source node hash not empty", __func__)); 903 mtx_destroy(&sh->lock); 904 } 905 free(V_pf_srchash, M_PFHASH); 906 907 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 908 m_freem(pfse->pfse_m); 909 free(pfse, M_PFTEMP); 910 } 911 912 uma_zdestroy(V_pf_sources_z); 913 uma_zdestroy(V_pf_state_z); 914 uma_zdestroy(V_pf_state_key_z); 915 } 916 917 static int 918 pf_mtag_uminit(void *mem, int size, int how) 919 { 920 struct m_tag *t; 921 922 t = (struct m_tag *)mem; 923 t->m_tag_cookie = MTAG_ABI_COMPAT; 924 t->m_tag_id = PACKET_TAG_PF; 925 t->m_tag_len = sizeof(struct pf_mtag); 926 t->m_tag_free = pf_mtag_free; 927 928 return (0); 929 } 930 931 static void 932 pf_mtag_free(struct m_tag *t) 933 { 934 935 uma_zfree(pf_mtag_z, t); 936 } 937 938 struct pf_mtag * 939 pf_get_mtag(struct mbuf *m) 940 { 941 struct m_tag *mtag; 942 943 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 944 return ((struct pf_mtag *)(mtag + 1)); 945 946 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 947 if (mtag == NULL) 948 return (NULL); 949 bzero(mtag + 1, sizeof(struct pf_mtag)); 950 m_tag_prepend(m, mtag); 951 952 return ((struct pf_mtag *)(mtag + 1)); 953 } 954 955 static int 956 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 957 struct pf_state *s) 958 { 959 struct pf_keyhash *khs, *khw, *kh; 960 struct pf_state_key *sk, *cur; 961 struct pf_state *si, *olds = NULL; 962 int idx; 963 964 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 965 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 966 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 967 968 /* 969 * We need to lock hash slots of both keys. To avoid deadlock 970 * we always lock the slot with lower address first. Unlock order 971 * isn't important. 972 * 973 * We also need to lock ID hash slot before dropping key 974 * locks. On success we return with ID hash slot locked. 975 */ 976 977 if (skw == sks) { 978 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 979 PF_HASHROW_LOCK(khs); 980 } else { 981 khs = &V_pf_keyhash[pf_hashkey(sks)]; 982 khw = &V_pf_keyhash[pf_hashkey(skw)]; 983 if (khs == khw) { 984 PF_HASHROW_LOCK(khs); 985 } else if (khs < khw) { 986 PF_HASHROW_LOCK(khs); 987 PF_HASHROW_LOCK(khw); 988 } else { 989 PF_HASHROW_LOCK(khw); 990 PF_HASHROW_LOCK(khs); 991 } 992 } 993 994 #define KEYS_UNLOCK() do { \ 995 if (khs != khw) { \ 996 PF_HASHROW_UNLOCK(khs); \ 997 PF_HASHROW_UNLOCK(khw); \ 998 } else \ 999 PF_HASHROW_UNLOCK(khs); \ 1000 } while (0) 1001 1002 /* 1003 * First run: start with wire key. 1004 */ 1005 sk = skw; 1006 kh = khw; 1007 idx = PF_SK_WIRE; 1008 1009 keyattach: 1010 LIST_FOREACH(cur, &kh->keys, entry) 1011 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1012 break; 1013 1014 if (cur != NULL) { 1015 /* Key exists. Check for same kif, if none, add to key. */ 1016 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1017 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1018 1019 PF_HASHROW_LOCK(ih); 1020 if (si->kif == s->kif && 1021 si->direction == s->direction) { 1022 if (sk->proto == IPPROTO_TCP && 1023 si->src.state >= TCPS_FIN_WAIT_2 && 1024 si->dst.state >= TCPS_FIN_WAIT_2) { 1025 /* 1026 * New state matches an old >FIN_WAIT_2 1027 * state. We can't drop key hash locks, 1028 * thus we can't unlink it properly. 1029 * 1030 * As a workaround we drop it into 1031 * TCPS_CLOSED state, schedule purge 1032 * ASAP and push it into the very end 1033 * of the slot TAILQ, so that it won't 1034 * conflict with our new state. 1035 */ 1036 si->src.state = si->dst.state = 1037 TCPS_CLOSED; 1038 si->timeout = PFTM_PURGE; 1039 olds = si; 1040 } else { 1041 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1042 printf("pf: %s key attach " 1043 "failed on %s: ", 1044 (idx == PF_SK_WIRE) ? 1045 "wire" : "stack", 1046 s->kif->pfik_name); 1047 pf_print_state_parts(s, 1048 (idx == PF_SK_WIRE) ? 1049 sk : NULL, 1050 (idx == PF_SK_STACK) ? 1051 sk : NULL); 1052 printf(", existing: "); 1053 pf_print_state_parts(si, 1054 (idx == PF_SK_WIRE) ? 1055 sk : NULL, 1056 (idx == PF_SK_STACK) ? 1057 sk : NULL); 1058 printf("\n"); 1059 } 1060 PF_HASHROW_UNLOCK(ih); 1061 KEYS_UNLOCK(); 1062 uma_zfree(V_pf_state_key_z, sk); 1063 if (idx == PF_SK_STACK) 1064 pf_detach_state(s); 1065 return (EEXIST); /* collision! */ 1066 } 1067 } 1068 PF_HASHROW_UNLOCK(ih); 1069 } 1070 uma_zfree(V_pf_state_key_z, sk); 1071 s->key[idx] = cur; 1072 } else { 1073 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1074 s->key[idx] = sk; 1075 } 1076 1077 stateattach: 1078 /* List is sorted, if-bound states before floating. */ 1079 if (s->kif == V_pfi_all) 1080 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1081 else 1082 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1083 1084 if (olds) { 1085 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1086 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1087 key_list[idx]); 1088 olds = NULL; 1089 } 1090 1091 /* 1092 * Attach done. See how should we (or should not?) 1093 * attach a second key. 1094 */ 1095 if (sks == skw) { 1096 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1097 idx = PF_SK_STACK; 1098 sks = NULL; 1099 goto stateattach; 1100 } else if (sks != NULL) { 1101 /* 1102 * Continue attaching with stack key. 1103 */ 1104 sk = sks; 1105 kh = khs; 1106 idx = PF_SK_STACK; 1107 sks = NULL; 1108 goto keyattach; 1109 } 1110 1111 PF_STATE_LOCK(s); 1112 KEYS_UNLOCK(); 1113 1114 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1115 ("%s failure", __func__)); 1116 1117 return (0); 1118 #undef KEYS_UNLOCK 1119 } 1120 1121 static void 1122 pf_detach_state(struct pf_state *s) 1123 { 1124 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1125 struct pf_keyhash *kh; 1126 1127 if (sks != NULL) { 1128 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1129 PF_HASHROW_LOCK(kh); 1130 if (s->key[PF_SK_STACK] != NULL) 1131 pf_state_key_detach(s, PF_SK_STACK); 1132 /* 1133 * If both point to same key, then we are done. 1134 */ 1135 if (sks == s->key[PF_SK_WIRE]) { 1136 pf_state_key_detach(s, PF_SK_WIRE); 1137 PF_HASHROW_UNLOCK(kh); 1138 return; 1139 } 1140 PF_HASHROW_UNLOCK(kh); 1141 } 1142 1143 if (s->key[PF_SK_WIRE] != NULL) { 1144 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1145 PF_HASHROW_LOCK(kh); 1146 if (s->key[PF_SK_WIRE] != NULL) 1147 pf_state_key_detach(s, PF_SK_WIRE); 1148 PF_HASHROW_UNLOCK(kh); 1149 } 1150 } 1151 1152 static void 1153 pf_state_key_detach(struct pf_state *s, int idx) 1154 { 1155 struct pf_state_key *sk = s->key[idx]; 1156 #ifdef INVARIANTS 1157 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1158 1159 PF_HASHROW_ASSERT(kh); 1160 #endif 1161 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1162 s->key[idx] = NULL; 1163 1164 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1165 LIST_REMOVE(sk, entry); 1166 uma_zfree(V_pf_state_key_z, sk); 1167 } 1168 } 1169 1170 static int 1171 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1172 { 1173 struct pf_state_key *sk = mem; 1174 1175 bzero(sk, sizeof(struct pf_state_key_cmp)); 1176 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1177 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1178 1179 return (0); 1180 } 1181 1182 struct pf_state_key * 1183 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1184 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1185 { 1186 struct pf_state_key *sk; 1187 1188 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1189 if (sk == NULL) 1190 return (NULL); 1191 1192 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1193 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1194 sk->port[pd->sidx] = sport; 1195 sk->port[pd->didx] = dport; 1196 sk->proto = pd->proto; 1197 sk->af = pd->af; 1198 1199 return (sk); 1200 } 1201 1202 struct pf_state_key * 1203 pf_state_key_clone(struct pf_state_key *orig) 1204 { 1205 struct pf_state_key *sk; 1206 1207 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1208 if (sk == NULL) 1209 return (NULL); 1210 1211 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1212 1213 return (sk); 1214 } 1215 1216 int 1217 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1218 struct pf_state_key *sks, struct pf_state *s) 1219 { 1220 struct pf_idhash *ih; 1221 struct pf_state *cur; 1222 int error; 1223 1224 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1225 ("%s: sks not pristine", __func__)); 1226 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1227 ("%s: skw not pristine", __func__)); 1228 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1229 1230 s->kif = kif; 1231 1232 if (s->id == 0 && s->creatorid == 0) { 1233 /* XXX: should be atomic, but probability of collision low */ 1234 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1235 V_pf_stateid[curcpu] = 1; 1236 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1237 s->id = htobe64(s->id); 1238 s->creatorid = V_pf_status.hostid; 1239 } 1240 1241 /* Returns with ID locked on success. */ 1242 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1243 return (error); 1244 1245 ih = &V_pf_idhash[PF_IDHASH(s)]; 1246 PF_HASHROW_ASSERT(ih); 1247 LIST_FOREACH(cur, &ih->states, entry) 1248 if (cur->id == s->id && cur->creatorid == s->creatorid) 1249 break; 1250 1251 if (cur != NULL) { 1252 PF_HASHROW_UNLOCK(ih); 1253 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1254 printf("pf: state ID collision: " 1255 "id: %016llx creatorid: %08x\n", 1256 (unsigned long long)be64toh(s->id), 1257 ntohl(s->creatorid)); 1258 } 1259 pf_detach_state(s); 1260 return (EEXIST); 1261 } 1262 LIST_INSERT_HEAD(&ih->states, s, entry); 1263 /* One for keys, one for ID hash. */ 1264 refcount_init(&s->refs, 2); 1265 1266 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1267 if (pfsync_insert_state_ptr != NULL) 1268 pfsync_insert_state_ptr(s); 1269 1270 /* Returns locked. */ 1271 return (0); 1272 } 1273 1274 /* 1275 * Find state by ID: returns with locked row on success. 1276 */ 1277 struct pf_state * 1278 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1279 { 1280 struct pf_idhash *ih; 1281 struct pf_state *s; 1282 1283 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1284 1285 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1286 1287 PF_HASHROW_LOCK(ih); 1288 LIST_FOREACH(s, &ih->states, entry) 1289 if (s->id == id && s->creatorid == creatorid) 1290 break; 1291 1292 if (s == NULL) 1293 PF_HASHROW_UNLOCK(ih); 1294 1295 return (s); 1296 } 1297 1298 /* 1299 * Find state by key. 1300 * Returns with ID hash slot locked on success. 1301 */ 1302 static struct pf_state * 1303 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1304 { 1305 struct pf_keyhash *kh; 1306 struct pf_state_key *sk; 1307 struct pf_state *s; 1308 int idx; 1309 1310 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1311 1312 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1313 1314 PF_HASHROW_LOCK(kh); 1315 LIST_FOREACH(sk, &kh->keys, entry) 1316 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1317 break; 1318 if (sk == NULL) { 1319 PF_HASHROW_UNLOCK(kh); 1320 return (NULL); 1321 } 1322 1323 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1324 1325 /* List is sorted, if-bound states before floating ones. */ 1326 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1327 if (s->kif == V_pfi_all || s->kif == kif) { 1328 PF_STATE_LOCK(s); 1329 PF_HASHROW_UNLOCK(kh); 1330 if (s->timeout >= PFTM_MAX) { 1331 /* 1332 * State is either being processed by 1333 * pf_unlink_state() in an other thread, or 1334 * is scheduled for immediate expiry. 1335 */ 1336 PF_STATE_UNLOCK(s); 1337 return (NULL); 1338 } 1339 return (s); 1340 } 1341 PF_HASHROW_UNLOCK(kh); 1342 1343 return (NULL); 1344 } 1345 1346 struct pf_state * 1347 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1348 { 1349 struct pf_keyhash *kh; 1350 struct pf_state_key *sk; 1351 struct pf_state *s, *ret = NULL; 1352 int idx, inout = 0; 1353 1354 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1355 1356 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1357 1358 PF_HASHROW_LOCK(kh); 1359 LIST_FOREACH(sk, &kh->keys, entry) 1360 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1361 break; 1362 if (sk == NULL) { 1363 PF_HASHROW_UNLOCK(kh); 1364 return (NULL); 1365 } 1366 switch (dir) { 1367 case PF_IN: 1368 idx = PF_SK_WIRE; 1369 break; 1370 case PF_OUT: 1371 idx = PF_SK_STACK; 1372 break; 1373 case PF_INOUT: 1374 idx = PF_SK_WIRE; 1375 inout = 1; 1376 break; 1377 default: 1378 panic("%s: dir %u", __func__, dir); 1379 } 1380 second_run: 1381 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1382 if (more == NULL) { 1383 PF_HASHROW_UNLOCK(kh); 1384 return (s); 1385 } 1386 1387 if (ret) 1388 (*more)++; 1389 else 1390 ret = s; 1391 } 1392 if (inout == 1) { 1393 inout = 0; 1394 idx = PF_SK_STACK; 1395 goto second_run; 1396 } 1397 PF_HASHROW_UNLOCK(kh); 1398 1399 return (ret); 1400 } 1401 1402 /* END state table stuff */ 1403 1404 static void 1405 pf_send(struct pf_send_entry *pfse) 1406 { 1407 1408 PF_SENDQ_LOCK(); 1409 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1410 PF_SENDQ_UNLOCK(); 1411 swi_sched(V_pf_swi_cookie, 0); 1412 } 1413 1414 void 1415 pf_intr(void *v) 1416 { 1417 struct pf_send_head queue; 1418 struct pf_send_entry *pfse, *next; 1419 1420 CURVNET_SET((struct vnet *)v); 1421 1422 PF_SENDQ_LOCK(); 1423 queue = V_pf_sendqueue; 1424 STAILQ_INIT(&V_pf_sendqueue); 1425 PF_SENDQ_UNLOCK(); 1426 1427 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1428 switch (pfse->pfse_type) { 1429 #ifdef INET 1430 case PFSE_IP: 1431 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1432 break; 1433 case PFSE_ICMP: 1434 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1435 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1436 break; 1437 #endif /* INET */ 1438 #ifdef INET6 1439 case PFSE_IP6: 1440 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1441 NULL); 1442 break; 1443 case PFSE_ICMP6: 1444 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1445 pfse->icmpopts.code, pfse->icmpopts.mtu); 1446 break; 1447 #endif /* INET6 */ 1448 default: 1449 panic("%s: unknown type", __func__); 1450 } 1451 free(pfse, M_PFTEMP); 1452 } 1453 CURVNET_RESTORE(); 1454 } 1455 1456 void 1457 pf_purge_thread(void *unused __unused) 1458 { 1459 VNET_ITERATOR_DECL(vnet_iter); 1460 1461 sx_xlock(&pf_end_lock); 1462 while (pf_end_threads == 0) { 1463 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", hz / 10); 1464 1465 VNET_LIST_RLOCK(); 1466 VNET_FOREACH(vnet_iter) { 1467 CURVNET_SET(vnet_iter); 1468 1469 1470 /* Wait until V_pf_default_rule is initialized. */ 1471 if (V_pf_vnet_active == 0) { 1472 CURVNET_RESTORE(); 1473 continue; 1474 } 1475 1476 /* 1477 * Process 1/interval fraction of the state 1478 * table every run. 1479 */ 1480 V_pf_purge_idx = 1481 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1482 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1483 1484 /* 1485 * Purge other expired types every 1486 * PFTM_INTERVAL seconds. 1487 */ 1488 if (V_pf_purge_idx == 0) { 1489 /* 1490 * Order is important: 1491 * - states and src nodes reference rules 1492 * - states and rules reference kifs 1493 */ 1494 pf_purge_expired_fragments(); 1495 pf_purge_expired_src_nodes(); 1496 pf_purge_unlinked_rules(); 1497 pfi_kif_purge(); 1498 } 1499 CURVNET_RESTORE(); 1500 } 1501 VNET_LIST_RUNLOCK(); 1502 } 1503 1504 pf_end_threads++; 1505 sx_xunlock(&pf_end_lock); 1506 kproc_exit(0); 1507 } 1508 1509 void 1510 pf_unload_vnet_purge(void) 1511 { 1512 1513 /* 1514 * To cleanse up all kifs and rules we need 1515 * two runs: first one clears reference flags, 1516 * then pf_purge_expired_states() doesn't 1517 * raise them, and then second run frees. 1518 */ 1519 pf_purge_unlinked_rules(); 1520 pfi_kif_purge(); 1521 1522 /* 1523 * Now purge everything. 1524 */ 1525 pf_purge_expired_states(0, pf_hashmask); 1526 pf_purge_fragments(UINT_MAX); 1527 pf_purge_expired_src_nodes(); 1528 1529 /* 1530 * Now all kifs & rules should be unreferenced, 1531 * thus should be successfully freed. 1532 */ 1533 pf_purge_unlinked_rules(); 1534 pfi_kif_purge(); 1535 } 1536 1537 1538 u_int32_t 1539 pf_state_expires(const struct pf_state *state) 1540 { 1541 u_int32_t timeout; 1542 u_int32_t start; 1543 u_int32_t end; 1544 u_int32_t states; 1545 1546 /* handle all PFTM_* > PFTM_MAX here */ 1547 if (state->timeout == PFTM_PURGE) 1548 return (time_uptime); 1549 KASSERT(state->timeout != PFTM_UNLINKED, 1550 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1551 KASSERT((state->timeout < PFTM_MAX), 1552 ("pf_state_expires: timeout > PFTM_MAX")); 1553 timeout = state->rule.ptr->timeout[state->timeout]; 1554 if (!timeout) 1555 timeout = V_pf_default_rule.timeout[state->timeout]; 1556 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1557 if (start) { 1558 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1559 states = counter_u64_fetch(state->rule.ptr->states_cur); 1560 } else { 1561 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1562 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1563 states = V_pf_status.states; 1564 } 1565 if (end && states > start && start < end) { 1566 if (states < end) 1567 return (state->expire + timeout * (end - states) / 1568 (end - start)); 1569 else 1570 return (time_uptime); 1571 } 1572 return (state->expire + timeout); 1573 } 1574 1575 void 1576 pf_purge_expired_src_nodes() 1577 { 1578 struct pf_src_node_list freelist; 1579 struct pf_srchash *sh; 1580 struct pf_src_node *cur, *next; 1581 int i; 1582 1583 LIST_INIT(&freelist); 1584 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1585 PF_HASHROW_LOCK(sh); 1586 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1587 if (cur->states == 0 && cur->expire <= time_uptime) { 1588 pf_unlink_src_node(cur); 1589 LIST_INSERT_HEAD(&freelist, cur, entry); 1590 } else if (cur->rule.ptr != NULL) 1591 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1592 PF_HASHROW_UNLOCK(sh); 1593 } 1594 1595 pf_free_src_nodes(&freelist); 1596 1597 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1598 } 1599 1600 static void 1601 pf_src_tree_remove_state(struct pf_state *s) 1602 { 1603 struct pf_src_node *sn; 1604 struct pf_srchash *sh; 1605 uint32_t timeout; 1606 1607 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1608 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1609 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1610 1611 if (s->src_node != NULL) { 1612 sn = s->src_node; 1613 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1614 PF_HASHROW_LOCK(sh); 1615 if (s->src.tcp_est) 1616 --sn->conn; 1617 if (--sn->states == 0) 1618 sn->expire = time_uptime + timeout; 1619 PF_HASHROW_UNLOCK(sh); 1620 } 1621 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1622 sn = s->nat_src_node; 1623 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1624 PF_HASHROW_LOCK(sh); 1625 if (--sn->states == 0) 1626 sn->expire = time_uptime + timeout; 1627 PF_HASHROW_UNLOCK(sh); 1628 } 1629 s->src_node = s->nat_src_node = NULL; 1630 } 1631 1632 /* 1633 * Unlink and potentilly free a state. Function may be 1634 * called with ID hash row locked, but always returns 1635 * unlocked, since it needs to go through key hash locking. 1636 */ 1637 int 1638 pf_unlink_state(struct pf_state *s, u_int flags) 1639 { 1640 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1641 1642 if ((flags & PF_ENTER_LOCKED) == 0) 1643 PF_HASHROW_LOCK(ih); 1644 else 1645 PF_HASHROW_ASSERT(ih); 1646 1647 if (s->timeout == PFTM_UNLINKED) { 1648 /* 1649 * State is being processed 1650 * by pf_unlink_state() in 1651 * an other thread. 1652 */ 1653 PF_HASHROW_UNLOCK(ih); 1654 return (0); /* XXXGL: undefined actually */ 1655 } 1656 1657 if (s->src.state == PF_TCPS_PROXY_DST) { 1658 /* XXX wire key the right one? */ 1659 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1660 &s->key[PF_SK_WIRE]->addr[1], 1661 &s->key[PF_SK_WIRE]->addr[0], 1662 s->key[PF_SK_WIRE]->port[1], 1663 s->key[PF_SK_WIRE]->port[0], 1664 s->src.seqhi, s->src.seqlo + 1, 1665 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1666 } 1667 1668 LIST_REMOVE(s, entry); 1669 pf_src_tree_remove_state(s); 1670 1671 if (pfsync_delete_state_ptr != NULL) 1672 pfsync_delete_state_ptr(s); 1673 1674 STATE_DEC_COUNTERS(s); 1675 1676 s->timeout = PFTM_UNLINKED; 1677 1678 PF_HASHROW_UNLOCK(ih); 1679 1680 pf_detach_state(s); 1681 /* pf_state_insert() initialises refs to 2, so we can never release the 1682 * last reference here, only in pf_release_state(). */ 1683 (void)refcount_release(&s->refs); 1684 1685 return (pf_release_state(s)); 1686 } 1687 1688 void 1689 pf_free_state(struct pf_state *cur) 1690 { 1691 1692 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1693 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1694 cur->timeout)); 1695 1696 pf_normalize_tcp_cleanup(cur); 1697 uma_zfree(V_pf_state_z, cur); 1698 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1699 } 1700 1701 /* 1702 * Called only from pf_purge_thread(), thus serialized. 1703 */ 1704 static u_int 1705 pf_purge_expired_states(u_int i, int maxcheck) 1706 { 1707 struct pf_idhash *ih; 1708 struct pf_state *s; 1709 1710 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1711 1712 /* 1713 * Go through hash and unlink states that expire now. 1714 */ 1715 while (maxcheck > 0) { 1716 1717 ih = &V_pf_idhash[i]; 1718 relock: 1719 PF_HASHROW_LOCK(ih); 1720 LIST_FOREACH(s, &ih->states, entry) { 1721 if (pf_state_expires(s) <= time_uptime) { 1722 V_pf_status.states -= 1723 pf_unlink_state(s, PF_ENTER_LOCKED); 1724 goto relock; 1725 } 1726 s->rule.ptr->rule_flag |= PFRULE_REFS; 1727 if (s->nat_rule.ptr != NULL) 1728 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1729 if (s->anchor.ptr != NULL) 1730 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1731 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1732 if (s->rt_kif) 1733 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1734 } 1735 PF_HASHROW_UNLOCK(ih); 1736 1737 /* Return when we hit end of hash. */ 1738 if (++i > pf_hashmask) { 1739 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1740 return (0); 1741 } 1742 1743 maxcheck--; 1744 } 1745 1746 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1747 1748 return (i); 1749 } 1750 1751 static void 1752 pf_purge_unlinked_rules() 1753 { 1754 struct pf_rulequeue tmpq; 1755 struct pf_rule *r, *r1; 1756 1757 /* 1758 * If we have overloading task pending, then we'd 1759 * better skip purging this time. There is a tiny 1760 * probability that overloading task references 1761 * an already unlinked rule. 1762 */ 1763 PF_OVERLOADQ_LOCK(); 1764 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1765 PF_OVERLOADQ_UNLOCK(); 1766 return; 1767 } 1768 PF_OVERLOADQ_UNLOCK(); 1769 1770 /* 1771 * Do naive mark-and-sweep garbage collecting of old rules. 1772 * Reference flag is raised by pf_purge_expired_states() 1773 * and pf_purge_expired_src_nodes(). 1774 * 1775 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1776 * use a temporary queue. 1777 */ 1778 TAILQ_INIT(&tmpq); 1779 PF_UNLNKDRULES_LOCK(); 1780 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1781 if (!(r->rule_flag & PFRULE_REFS)) { 1782 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1783 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1784 } else 1785 r->rule_flag &= ~PFRULE_REFS; 1786 } 1787 PF_UNLNKDRULES_UNLOCK(); 1788 1789 if (!TAILQ_EMPTY(&tmpq)) { 1790 PF_RULES_WLOCK(); 1791 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1792 TAILQ_REMOVE(&tmpq, r, entries); 1793 pf_free_rule(r); 1794 } 1795 PF_RULES_WUNLOCK(); 1796 } 1797 } 1798 1799 void 1800 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1801 { 1802 switch (af) { 1803 #ifdef INET 1804 case AF_INET: { 1805 u_int32_t a = ntohl(addr->addr32[0]); 1806 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1807 (a>>8)&255, a&255); 1808 if (p) { 1809 p = ntohs(p); 1810 printf(":%u", p); 1811 } 1812 break; 1813 } 1814 #endif /* INET */ 1815 #ifdef INET6 1816 case AF_INET6: { 1817 u_int16_t b; 1818 u_int8_t i, curstart, curend, maxstart, maxend; 1819 curstart = curend = maxstart = maxend = 255; 1820 for (i = 0; i < 8; i++) { 1821 if (!addr->addr16[i]) { 1822 if (curstart == 255) 1823 curstart = i; 1824 curend = i; 1825 } else { 1826 if ((curend - curstart) > 1827 (maxend - maxstart)) { 1828 maxstart = curstart; 1829 maxend = curend; 1830 } 1831 curstart = curend = 255; 1832 } 1833 } 1834 if ((curend - curstart) > 1835 (maxend - maxstart)) { 1836 maxstart = curstart; 1837 maxend = curend; 1838 } 1839 for (i = 0; i < 8; i++) { 1840 if (i >= maxstart && i <= maxend) { 1841 if (i == 0) 1842 printf(":"); 1843 if (i == maxend) 1844 printf(":"); 1845 } else { 1846 b = ntohs(addr->addr16[i]); 1847 printf("%x", b); 1848 if (i < 7) 1849 printf(":"); 1850 } 1851 } 1852 if (p) { 1853 p = ntohs(p); 1854 printf("[%u]", p); 1855 } 1856 break; 1857 } 1858 #endif /* INET6 */ 1859 } 1860 } 1861 1862 void 1863 pf_print_state(struct pf_state *s) 1864 { 1865 pf_print_state_parts(s, NULL, NULL); 1866 } 1867 1868 static void 1869 pf_print_state_parts(struct pf_state *s, 1870 struct pf_state_key *skwp, struct pf_state_key *sksp) 1871 { 1872 struct pf_state_key *skw, *sks; 1873 u_int8_t proto, dir; 1874 1875 /* Do our best to fill these, but they're skipped if NULL */ 1876 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1877 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1878 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1879 dir = s ? s->direction : 0; 1880 1881 switch (proto) { 1882 case IPPROTO_IPV4: 1883 printf("IPv4"); 1884 break; 1885 case IPPROTO_IPV6: 1886 printf("IPv6"); 1887 break; 1888 case IPPROTO_TCP: 1889 printf("TCP"); 1890 break; 1891 case IPPROTO_UDP: 1892 printf("UDP"); 1893 break; 1894 case IPPROTO_ICMP: 1895 printf("ICMP"); 1896 break; 1897 case IPPROTO_ICMPV6: 1898 printf("ICMPv6"); 1899 break; 1900 default: 1901 printf("%u", proto); 1902 break; 1903 } 1904 switch (dir) { 1905 case PF_IN: 1906 printf(" in"); 1907 break; 1908 case PF_OUT: 1909 printf(" out"); 1910 break; 1911 } 1912 if (skw) { 1913 printf(" wire: "); 1914 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1915 printf(" "); 1916 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1917 } 1918 if (sks) { 1919 printf(" stack: "); 1920 if (sks != skw) { 1921 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1922 printf(" "); 1923 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1924 } else 1925 printf("-"); 1926 } 1927 if (s) { 1928 if (proto == IPPROTO_TCP) { 1929 printf(" [lo=%u high=%u win=%u modulator=%u", 1930 s->src.seqlo, s->src.seqhi, 1931 s->src.max_win, s->src.seqdiff); 1932 if (s->src.wscale && s->dst.wscale) 1933 printf(" wscale=%u", 1934 s->src.wscale & PF_WSCALE_MASK); 1935 printf("]"); 1936 printf(" [lo=%u high=%u win=%u modulator=%u", 1937 s->dst.seqlo, s->dst.seqhi, 1938 s->dst.max_win, s->dst.seqdiff); 1939 if (s->src.wscale && s->dst.wscale) 1940 printf(" wscale=%u", 1941 s->dst.wscale & PF_WSCALE_MASK); 1942 printf("]"); 1943 } 1944 printf(" %u:%u", s->src.state, s->dst.state); 1945 } 1946 } 1947 1948 void 1949 pf_print_flags(u_int8_t f) 1950 { 1951 if (f) 1952 printf(" "); 1953 if (f & TH_FIN) 1954 printf("F"); 1955 if (f & TH_SYN) 1956 printf("S"); 1957 if (f & TH_RST) 1958 printf("R"); 1959 if (f & TH_PUSH) 1960 printf("P"); 1961 if (f & TH_ACK) 1962 printf("A"); 1963 if (f & TH_URG) 1964 printf("U"); 1965 if (f & TH_ECE) 1966 printf("E"); 1967 if (f & TH_CWR) 1968 printf("W"); 1969 } 1970 1971 #define PF_SET_SKIP_STEPS(i) \ 1972 do { \ 1973 while (head[i] != cur) { \ 1974 head[i]->skip[i].ptr = cur; \ 1975 head[i] = TAILQ_NEXT(head[i], entries); \ 1976 } \ 1977 } while (0) 1978 1979 void 1980 pf_calc_skip_steps(struct pf_rulequeue *rules) 1981 { 1982 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1983 int i; 1984 1985 cur = TAILQ_FIRST(rules); 1986 prev = cur; 1987 for (i = 0; i < PF_SKIP_COUNT; ++i) 1988 head[i] = cur; 1989 while (cur != NULL) { 1990 1991 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1992 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1993 if (cur->direction != prev->direction) 1994 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1995 if (cur->af != prev->af) 1996 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1997 if (cur->proto != prev->proto) 1998 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1999 if (cur->src.neg != prev->src.neg || 2000 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2001 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2002 if (cur->src.port[0] != prev->src.port[0] || 2003 cur->src.port[1] != prev->src.port[1] || 2004 cur->src.port_op != prev->src.port_op) 2005 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2006 if (cur->dst.neg != prev->dst.neg || 2007 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2008 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2009 if (cur->dst.port[0] != prev->dst.port[0] || 2010 cur->dst.port[1] != prev->dst.port[1] || 2011 cur->dst.port_op != prev->dst.port_op) 2012 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2013 2014 prev = cur; 2015 cur = TAILQ_NEXT(cur, entries); 2016 } 2017 for (i = 0; i < PF_SKIP_COUNT; ++i) 2018 PF_SET_SKIP_STEPS(i); 2019 } 2020 2021 static int 2022 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2023 { 2024 if (aw1->type != aw2->type) 2025 return (1); 2026 switch (aw1->type) { 2027 case PF_ADDR_ADDRMASK: 2028 case PF_ADDR_RANGE: 2029 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2030 return (1); 2031 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2032 return (1); 2033 return (0); 2034 case PF_ADDR_DYNIFTL: 2035 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2036 case PF_ADDR_NOROUTE: 2037 case PF_ADDR_URPFFAILED: 2038 return (0); 2039 case PF_ADDR_TABLE: 2040 return (aw1->p.tbl != aw2->p.tbl); 2041 default: 2042 printf("invalid address type: %d\n", aw1->type); 2043 return (1); 2044 } 2045 } 2046 2047 /** 2048 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2049 * header isn't always a full checksum. In some cases (i.e. output) it's a 2050 * pseudo-header checksum, which is a partial checksum over src/dst IP 2051 * addresses, protocol number and length. 2052 * 2053 * That means we have the following cases: 2054 * * Input or forwarding: we don't have TSO, the checksum fields are full 2055 * checksums, we need to update the checksum whenever we change anything. 2056 * * Output (i.e. the checksum is a pseudo-header checksum): 2057 * x The field being updated is src/dst address or affects the length of 2058 * the packet. We need to update the pseudo-header checksum (note that this 2059 * checksum is not ones' complement). 2060 * x Some other field is being modified (e.g. src/dst port numbers): We 2061 * don't have to update anything. 2062 **/ 2063 u_int16_t 2064 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2065 { 2066 u_int32_t l; 2067 2068 if (udp && !cksum) 2069 return (0x0000); 2070 l = cksum + old - new; 2071 l = (l >> 16) + (l & 65535); 2072 l = l & 65535; 2073 if (udp && !l) 2074 return (0xFFFF); 2075 return (l); 2076 } 2077 2078 u_int16_t 2079 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2080 u_int16_t new, u_int8_t udp) 2081 { 2082 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2083 return (cksum); 2084 2085 return (pf_cksum_fixup(cksum, old, new, udp)); 2086 } 2087 2088 static void 2089 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2090 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2091 sa_family_t af) 2092 { 2093 struct pf_addr ao; 2094 u_int16_t po = *p; 2095 2096 PF_ACPY(&ao, a, af); 2097 PF_ACPY(a, an, af); 2098 2099 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2100 *pc = ~*pc; 2101 2102 *p = pn; 2103 2104 switch (af) { 2105 #ifdef INET 2106 case AF_INET: 2107 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2108 ao.addr16[0], an->addr16[0], 0), 2109 ao.addr16[1], an->addr16[1], 0); 2110 *p = pn; 2111 2112 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2113 ao.addr16[0], an->addr16[0], u), 2114 ao.addr16[1], an->addr16[1], u); 2115 2116 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2117 break; 2118 #endif /* INET */ 2119 #ifdef INET6 2120 case AF_INET6: 2121 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2122 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2123 pf_cksum_fixup(pf_cksum_fixup(*pc, 2124 ao.addr16[0], an->addr16[0], u), 2125 ao.addr16[1], an->addr16[1], u), 2126 ao.addr16[2], an->addr16[2], u), 2127 ao.addr16[3], an->addr16[3], u), 2128 ao.addr16[4], an->addr16[4], u), 2129 ao.addr16[5], an->addr16[5], u), 2130 ao.addr16[6], an->addr16[6], u), 2131 ao.addr16[7], an->addr16[7], u); 2132 2133 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2134 break; 2135 #endif /* INET6 */ 2136 } 2137 2138 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2139 CSUM_DELAY_DATA_IPV6)) { 2140 *pc = ~*pc; 2141 if (! *pc) 2142 *pc = 0xffff; 2143 } 2144 } 2145 2146 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2147 void 2148 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2149 { 2150 u_int32_t ao; 2151 2152 memcpy(&ao, a, sizeof(ao)); 2153 memcpy(a, &an, sizeof(u_int32_t)); 2154 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2155 ao % 65536, an % 65536, u); 2156 } 2157 2158 void 2159 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2160 { 2161 u_int32_t ao; 2162 2163 memcpy(&ao, a, sizeof(ao)); 2164 memcpy(a, &an, sizeof(u_int32_t)); 2165 2166 *c = pf_proto_cksum_fixup(m, 2167 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2168 ao % 65536, an % 65536, udp); 2169 } 2170 2171 #ifdef INET6 2172 static void 2173 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2174 { 2175 struct pf_addr ao; 2176 2177 PF_ACPY(&ao, a, AF_INET6); 2178 PF_ACPY(a, an, AF_INET6); 2179 2180 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2181 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2182 pf_cksum_fixup(pf_cksum_fixup(*c, 2183 ao.addr16[0], an->addr16[0], u), 2184 ao.addr16[1], an->addr16[1], u), 2185 ao.addr16[2], an->addr16[2], u), 2186 ao.addr16[3], an->addr16[3], u), 2187 ao.addr16[4], an->addr16[4], u), 2188 ao.addr16[5], an->addr16[5], u), 2189 ao.addr16[6], an->addr16[6], u), 2190 ao.addr16[7], an->addr16[7], u); 2191 } 2192 #endif /* INET6 */ 2193 2194 static void 2195 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2196 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2197 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2198 { 2199 struct pf_addr oia, ooa; 2200 2201 PF_ACPY(&oia, ia, af); 2202 if (oa) 2203 PF_ACPY(&ooa, oa, af); 2204 2205 /* Change inner protocol port, fix inner protocol checksum. */ 2206 if (ip != NULL) { 2207 u_int16_t oip = *ip; 2208 u_int32_t opc; 2209 2210 if (pc != NULL) 2211 opc = *pc; 2212 *ip = np; 2213 if (pc != NULL) 2214 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2215 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2216 if (pc != NULL) 2217 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2218 } 2219 /* Change inner ip address, fix inner ip and icmp checksums. */ 2220 PF_ACPY(ia, na, af); 2221 switch (af) { 2222 #ifdef INET 2223 case AF_INET: { 2224 u_int32_t oh2c = *h2c; 2225 2226 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2227 oia.addr16[0], ia->addr16[0], 0), 2228 oia.addr16[1], ia->addr16[1], 0); 2229 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2230 oia.addr16[0], ia->addr16[0], 0), 2231 oia.addr16[1], ia->addr16[1], 0); 2232 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2233 break; 2234 } 2235 #endif /* INET */ 2236 #ifdef INET6 2237 case AF_INET6: 2238 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2239 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2240 pf_cksum_fixup(pf_cksum_fixup(*ic, 2241 oia.addr16[0], ia->addr16[0], u), 2242 oia.addr16[1], ia->addr16[1], u), 2243 oia.addr16[2], ia->addr16[2], u), 2244 oia.addr16[3], ia->addr16[3], u), 2245 oia.addr16[4], ia->addr16[4], u), 2246 oia.addr16[5], ia->addr16[5], u), 2247 oia.addr16[6], ia->addr16[6], u), 2248 oia.addr16[7], ia->addr16[7], u); 2249 break; 2250 #endif /* INET6 */ 2251 } 2252 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2253 if (oa) { 2254 PF_ACPY(oa, na, af); 2255 switch (af) { 2256 #ifdef INET 2257 case AF_INET: 2258 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2259 ooa.addr16[0], oa->addr16[0], 0), 2260 ooa.addr16[1], oa->addr16[1], 0); 2261 break; 2262 #endif /* INET */ 2263 #ifdef INET6 2264 case AF_INET6: 2265 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2266 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2267 pf_cksum_fixup(pf_cksum_fixup(*ic, 2268 ooa.addr16[0], oa->addr16[0], u), 2269 ooa.addr16[1], oa->addr16[1], u), 2270 ooa.addr16[2], oa->addr16[2], u), 2271 ooa.addr16[3], oa->addr16[3], u), 2272 ooa.addr16[4], oa->addr16[4], u), 2273 ooa.addr16[5], oa->addr16[5], u), 2274 ooa.addr16[6], oa->addr16[6], u), 2275 ooa.addr16[7], oa->addr16[7], u); 2276 break; 2277 #endif /* INET6 */ 2278 } 2279 } 2280 } 2281 2282 2283 /* 2284 * Need to modulate the sequence numbers in the TCP SACK option 2285 * (credits to Krzysztof Pfaff for report and patch) 2286 */ 2287 static int 2288 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2289 struct tcphdr *th, struct pf_state_peer *dst) 2290 { 2291 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2292 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2293 int copyback = 0, i, olen; 2294 struct sackblk sack; 2295 2296 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2297 if (hlen < TCPOLEN_SACKLEN || 2298 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2299 return 0; 2300 2301 while (hlen >= TCPOLEN_SACKLEN) { 2302 olen = opt[1]; 2303 switch (*opt) { 2304 case TCPOPT_EOL: /* FALLTHROUGH */ 2305 case TCPOPT_NOP: 2306 opt++; 2307 hlen--; 2308 break; 2309 case TCPOPT_SACK: 2310 if (olen > hlen) 2311 olen = hlen; 2312 if (olen >= TCPOLEN_SACKLEN) { 2313 for (i = 2; i + TCPOLEN_SACK <= olen; 2314 i += TCPOLEN_SACK) { 2315 memcpy(&sack, &opt[i], sizeof(sack)); 2316 pf_change_proto_a(m, &sack.start, &th->th_sum, 2317 htonl(ntohl(sack.start) - dst->seqdiff), 0); 2318 pf_change_proto_a(m, &sack.end, &th->th_sum, 2319 htonl(ntohl(sack.end) - dst->seqdiff), 0); 2320 memcpy(&opt[i], &sack, sizeof(sack)); 2321 } 2322 copyback = 1; 2323 } 2324 /* FALLTHROUGH */ 2325 default: 2326 if (olen < 2) 2327 olen = 2; 2328 hlen -= olen; 2329 opt += olen; 2330 } 2331 } 2332 2333 if (copyback) 2334 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2335 return (copyback); 2336 } 2337 2338 static void 2339 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2340 const struct pf_addr *saddr, const struct pf_addr *daddr, 2341 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2342 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2343 u_int16_t rtag, struct ifnet *ifp) 2344 { 2345 struct pf_send_entry *pfse; 2346 struct mbuf *m; 2347 int len, tlen; 2348 #ifdef INET 2349 struct ip *h = NULL; 2350 #endif /* INET */ 2351 #ifdef INET6 2352 struct ip6_hdr *h6 = NULL; 2353 #endif /* INET6 */ 2354 struct tcphdr *th; 2355 char *opt; 2356 struct pf_mtag *pf_mtag; 2357 2358 len = 0; 2359 th = NULL; 2360 2361 /* maximum segment size tcp option */ 2362 tlen = sizeof(struct tcphdr); 2363 if (mss) 2364 tlen += 4; 2365 2366 switch (af) { 2367 #ifdef INET 2368 case AF_INET: 2369 len = sizeof(struct ip) + tlen; 2370 break; 2371 #endif /* INET */ 2372 #ifdef INET6 2373 case AF_INET6: 2374 len = sizeof(struct ip6_hdr) + tlen; 2375 break; 2376 #endif /* INET6 */ 2377 default: 2378 panic("%s: unsupported af %d", __func__, af); 2379 } 2380 2381 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2382 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2383 if (pfse == NULL) 2384 return; 2385 m = m_gethdr(M_NOWAIT, MT_DATA); 2386 if (m == NULL) { 2387 free(pfse, M_PFTEMP); 2388 return; 2389 } 2390 #ifdef MAC 2391 mac_netinet_firewall_send(m); 2392 #endif 2393 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2394 free(pfse, M_PFTEMP); 2395 m_freem(m); 2396 return; 2397 } 2398 if (tag) 2399 m->m_flags |= M_SKIP_FIREWALL; 2400 pf_mtag->tag = rtag; 2401 2402 if (r != NULL && r->rtableid >= 0) 2403 M_SETFIB(m, r->rtableid); 2404 2405 #ifdef ALTQ 2406 if (r != NULL && r->qid) { 2407 pf_mtag->qid = r->qid; 2408 2409 /* add hints for ecn */ 2410 pf_mtag->hdr = mtod(m, struct ip *); 2411 } 2412 #endif /* ALTQ */ 2413 m->m_data += max_linkhdr; 2414 m->m_pkthdr.len = m->m_len = len; 2415 m->m_pkthdr.rcvif = NULL; 2416 bzero(m->m_data, len); 2417 switch (af) { 2418 #ifdef INET 2419 case AF_INET: 2420 h = mtod(m, struct ip *); 2421 2422 /* IP header fields included in the TCP checksum */ 2423 h->ip_p = IPPROTO_TCP; 2424 h->ip_len = htons(tlen); 2425 h->ip_src.s_addr = saddr->v4.s_addr; 2426 h->ip_dst.s_addr = daddr->v4.s_addr; 2427 2428 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2429 break; 2430 #endif /* INET */ 2431 #ifdef INET6 2432 case AF_INET6: 2433 h6 = mtod(m, struct ip6_hdr *); 2434 2435 /* IP header fields included in the TCP checksum */ 2436 h6->ip6_nxt = IPPROTO_TCP; 2437 h6->ip6_plen = htons(tlen); 2438 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2439 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2440 2441 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2442 break; 2443 #endif /* INET6 */ 2444 } 2445 2446 /* TCP header */ 2447 th->th_sport = sport; 2448 th->th_dport = dport; 2449 th->th_seq = htonl(seq); 2450 th->th_ack = htonl(ack); 2451 th->th_off = tlen >> 2; 2452 th->th_flags = flags; 2453 th->th_win = htons(win); 2454 2455 if (mss) { 2456 opt = (char *)(th + 1); 2457 opt[0] = TCPOPT_MAXSEG; 2458 opt[1] = 4; 2459 HTONS(mss); 2460 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2461 } 2462 2463 switch (af) { 2464 #ifdef INET 2465 case AF_INET: 2466 /* TCP checksum */ 2467 th->th_sum = in_cksum(m, len); 2468 2469 /* Finish the IP header */ 2470 h->ip_v = 4; 2471 h->ip_hl = sizeof(*h) >> 2; 2472 h->ip_tos = IPTOS_LOWDELAY; 2473 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2474 h->ip_len = htons(len); 2475 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2476 h->ip_sum = 0; 2477 2478 pfse->pfse_type = PFSE_IP; 2479 break; 2480 #endif /* INET */ 2481 #ifdef INET6 2482 case AF_INET6: 2483 /* TCP checksum */ 2484 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2485 sizeof(struct ip6_hdr), tlen); 2486 2487 h6->ip6_vfc |= IPV6_VERSION; 2488 h6->ip6_hlim = IPV6_DEFHLIM; 2489 2490 pfse->pfse_type = PFSE_IP6; 2491 break; 2492 #endif /* INET6 */ 2493 } 2494 pfse->pfse_m = m; 2495 pf_send(pfse); 2496 } 2497 2498 static int 2499 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2500 { 2501 struct m_tag *mtag; 2502 2503 KASSERT(prio <= PF_PRIO_MAX, 2504 ("%s with invalid pcp", __func__)); 2505 2506 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2507 if (mtag == NULL) { 2508 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2509 sizeof(uint8_t), M_NOWAIT); 2510 if (mtag == NULL) 2511 return (ENOMEM); 2512 m_tag_prepend(m, mtag); 2513 } 2514 2515 *(uint8_t *)(mtag + 1) = prio; 2516 return (0); 2517 } 2518 2519 static int 2520 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2521 { 2522 struct m_tag *mtag; 2523 u_int8_t mpcp; 2524 2525 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2526 if (mtag == NULL) 2527 return (0); 2528 2529 if (prio == PF_PRIO_ZERO) 2530 prio = 0; 2531 2532 mpcp = *(uint8_t *)(mtag + 1); 2533 2534 return (mpcp == prio); 2535 } 2536 2537 static void 2538 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2539 struct pf_rule *r) 2540 { 2541 struct pf_send_entry *pfse; 2542 struct mbuf *m0; 2543 struct pf_mtag *pf_mtag; 2544 2545 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2546 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2547 if (pfse == NULL) 2548 return; 2549 2550 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2551 free(pfse, M_PFTEMP); 2552 return; 2553 } 2554 2555 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2556 free(pfse, M_PFTEMP); 2557 return; 2558 } 2559 /* XXX: revisit */ 2560 m0->m_flags |= M_SKIP_FIREWALL; 2561 2562 if (r->rtableid >= 0) 2563 M_SETFIB(m0, r->rtableid); 2564 2565 #ifdef ALTQ 2566 if (r->qid) { 2567 pf_mtag->qid = r->qid; 2568 /* add hints for ecn */ 2569 pf_mtag->hdr = mtod(m0, struct ip *); 2570 } 2571 #endif /* ALTQ */ 2572 2573 switch (af) { 2574 #ifdef INET 2575 case AF_INET: 2576 pfse->pfse_type = PFSE_ICMP; 2577 break; 2578 #endif /* INET */ 2579 #ifdef INET6 2580 case AF_INET6: 2581 pfse->pfse_type = PFSE_ICMP6; 2582 break; 2583 #endif /* INET6 */ 2584 } 2585 pfse->pfse_m = m0; 2586 pfse->icmpopts.type = type; 2587 pfse->icmpopts.code = code; 2588 pf_send(pfse); 2589 } 2590 2591 /* 2592 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2593 * If n is 0, they match if they are equal. If n is != 0, they match if they 2594 * are different. 2595 */ 2596 int 2597 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2598 struct pf_addr *b, sa_family_t af) 2599 { 2600 int match = 0; 2601 2602 switch (af) { 2603 #ifdef INET 2604 case AF_INET: 2605 if ((a->addr32[0] & m->addr32[0]) == 2606 (b->addr32[0] & m->addr32[0])) 2607 match++; 2608 break; 2609 #endif /* INET */ 2610 #ifdef INET6 2611 case AF_INET6: 2612 if (((a->addr32[0] & m->addr32[0]) == 2613 (b->addr32[0] & m->addr32[0])) && 2614 ((a->addr32[1] & m->addr32[1]) == 2615 (b->addr32[1] & m->addr32[1])) && 2616 ((a->addr32[2] & m->addr32[2]) == 2617 (b->addr32[2] & m->addr32[2])) && 2618 ((a->addr32[3] & m->addr32[3]) == 2619 (b->addr32[3] & m->addr32[3]))) 2620 match++; 2621 break; 2622 #endif /* INET6 */ 2623 } 2624 if (match) { 2625 if (n) 2626 return (0); 2627 else 2628 return (1); 2629 } else { 2630 if (n) 2631 return (1); 2632 else 2633 return (0); 2634 } 2635 } 2636 2637 /* 2638 * Return 1 if b <= a <= e, otherwise return 0. 2639 */ 2640 int 2641 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2642 struct pf_addr *a, sa_family_t af) 2643 { 2644 switch (af) { 2645 #ifdef INET 2646 case AF_INET: 2647 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2648 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2649 return (0); 2650 break; 2651 #endif /* INET */ 2652 #ifdef INET6 2653 case AF_INET6: { 2654 int i; 2655 2656 /* check a >= b */ 2657 for (i = 0; i < 4; ++i) 2658 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2659 break; 2660 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2661 return (0); 2662 /* check a <= e */ 2663 for (i = 0; i < 4; ++i) 2664 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2665 break; 2666 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2667 return (0); 2668 break; 2669 } 2670 #endif /* INET6 */ 2671 } 2672 return (1); 2673 } 2674 2675 static int 2676 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2677 { 2678 switch (op) { 2679 case PF_OP_IRG: 2680 return ((p > a1) && (p < a2)); 2681 case PF_OP_XRG: 2682 return ((p < a1) || (p > a2)); 2683 case PF_OP_RRG: 2684 return ((p >= a1) && (p <= a2)); 2685 case PF_OP_EQ: 2686 return (p == a1); 2687 case PF_OP_NE: 2688 return (p != a1); 2689 case PF_OP_LT: 2690 return (p < a1); 2691 case PF_OP_LE: 2692 return (p <= a1); 2693 case PF_OP_GT: 2694 return (p > a1); 2695 case PF_OP_GE: 2696 return (p >= a1); 2697 } 2698 return (0); /* never reached */ 2699 } 2700 2701 int 2702 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2703 { 2704 NTOHS(a1); 2705 NTOHS(a2); 2706 NTOHS(p); 2707 return (pf_match(op, a1, a2, p)); 2708 } 2709 2710 static int 2711 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2712 { 2713 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2714 return (0); 2715 return (pf_match(op, a1, a2, u)); 2716 } 2717 2718 static int 2719 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2720 { 2721 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2722 return (0); 2723 return (pf_match(op, a1, a2, g)); 2724 } 2725 2726 int 2727 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2728 { 2729 if (*tag == -1) 2730 *tag = mtag; 2731 2732 return ((!r->match_tag_not && r->match_tag == *tag) || 2733 (r->match_tag_not && r->match_tag != *tag)); 2734 } 2735 2736 int 2737 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2738 { 2739 2740 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2741 2742 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2743 return (ENOMEM); 2744 2745 pd->pf_mtag->tag = tag; 2746 2747 return (0); 2748 } 2749 2750 #define PF_ANCHOR_STACKSIZE 32 2751 struct pf_anchor_stackframe { 2752 struct pf_ruleset *rs; 2753 struct pf_rule *r; /* XXX: + match bit */ 2754 struct pf_anchor *child; 2755 }; 2756 2757 /* 2758 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2759 */ 2760 #define PF_ANCHORSTACK_MATCH 0x00000001 2761 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2762 2763 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2764 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2765 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2766 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2767 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2768 } while (0) 2769 2770 void 2771 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2772 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2773 int *match) 2774 { 2775 struct pf_anchor_stackframe *f; 2776 2777 PF_RULES_RASSERT(); 2778 2779 if (match) 2780 *match = 0; 2781 if (*depth >= PF_ANCHOR_STACKSIZE) { 2782 printf("%s: anchor stack overflow on %s\n", 2783 __func__, (*r)->anchor->name); 2784 *r = TAILQ_NEXT(*r, entries); 2785 return; 2786 } else if (*depth == 0 && a != NULL) 2787 *a = *r; 2788 f = stack + (*depth)++; 2789 f->rs = *rs; 2790 f->r = *r; 2791 if ((*r)->anchor_wildcard) { 2792 struct pf_anchor_node *parent = &(*r)->anchor->children; 2793 2794 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2795 *r = NULL; 2796 return; 2797 } 2798 *rs = &f->child->ruleset; 2799 } else { 2800 f->child = NULL; 2801 *rs = &(*r)->anchor->ruleset; 2802 } 2803 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2804 } 2805 2806 int 2807 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2808 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2809 int *match) 2810 { 2811 struct pf_anchor_stackframe *f; 2812 struct pf_rule *fr; 2813 int quick = 0; 2814 2815 PF_RULES_RASSERT(); 2816 2817 do { 2818 if (*depth <= 0) 2819 break; 2820 f = stack + *depth - 1; 2821 fr = PF_ANCHOR_RULE(f); 2822 if (f->child != NULL) { 2823 struct pf_anchor_node *parent; 2824 2825 /* 2826 * This block traverses through 2827 * a wildcard anchor. 2828 */ 2829 parent = &fr->anchor->children; 2830 if (match != NULL && *match) { 2831 /* 2832 * If any of "*" matched, then 2833 * "foo/ *" matched, mark frame 2834 * appropriately. 2835 */ 2836 PF_ANCHOR_SET_MATCH(f); 2837 *match = 0; 2838 } 2839 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2840 if (f->child != NULL) { 2841 *rs = &f->child->ruleset; 2842 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2843 if (*r == NULL) 2844 continue; 2845 else 2846 break; 2847 } 2848 } 2849 (*depth)--; 2850 if (*depth == 0 && a != NULL) 2851 *a = NULL; 2852 *rs = f->rs; 2853 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2854 quick = fr->quick; 2855 *r = TAILQ_NEXT(fr, entries); 2856 } while (*r == NULL); 2857 2858 return (quick); 2859 } 2860 2861 #ifdef INET6 2862 void 2863 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2864 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2865 { 2866 switch (af) { 2867 #ifdef INET 2868 case AF_INET: 2869 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2870 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2871 break; 2872 #endif /* INET */ 2873 case AF_INET6: 2874 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2875 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2876 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2877 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2878 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2879 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2880 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2881 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2882 break; 2883 } 2884 } 2885 2886 void 2887 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2888 { 2889 switch (af) { 2890 #ifdef INET 2891 case AF_INET: 2892 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2893 break; 2894 #endif /* INET */ 2895 case AF_INET6: 2896 if (addr->addr32[3] == 0xffffffff) { 2897 addr->addr32[3] = 0; 2898 if (addr->addr32[2] == 0xffffffff) { 2899 addr->addr32[2] = 0; 2900 if (addr->addr32[1] == 0xffffffff) { 2901 addr->addr32[1] = 0; 2902 addr->addr32[0] = 2903 htonl(ntohl(addr->addr32[0]) + 1); 2904 } else 2905 addr->addr32[1] = 2906 htonl(ntohl(addr->addr32[1]) + 1); 2907 } else 2908 addr->addr32[2] = 2909 htonl(ntohl(addr->addr32[2]) + 1); 2910 } else 2911 addr->addr32[3] = 2912 htonl(ntohl(addr->addr32[3]) + 1); 2913 break; 2914 } 2915 } 2916 #endif /* INET6 */ 2917 2918 int 2919 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2920 { 2921 struct pf_addr *saddr, *daddr; 2922 u_int16_t sport, dport; 2923 struct inpcbinfo *pi; 2924 struct inpcb *inp; 2925 2926 pd->lookup.uid = UID_MAX; 2927 pd->lookup.gid = GID_MAX; 2928 2929 switch (pd->proto) { 2930 case IPPROTO_TCP: 2931 if (pd->hdr.tcp == NULL) 2932 return (-1); 2933 sport = pd->hdr.tcp->th_sport; 2934 dport = pd->hdr.tcp->th_dport; 2935 pi = &V_tcbinfo; 2936 break; 2937 case IPPROTO_UDP: 2938 if (pd->hdr.udp == NULL) 2939 return (-1); 2940 sport = pd->hdr.udp->uh_sport; 2941 dport = pd->hdr.udp->uh_dport; 2942 pi = &V_udbinfo; 2943 break; 2944 default: 2945 return (-1); 2946 } 2947 if (direction == PF_IN) { 2948 saddr = pd->src; 2949 daddr = pd->dst; 2950 } else { 2951 u_int16_t p; 2952 2953 p = sport; 2954 sport = dport; 2955 dport = p; 2956 saddr = pd->dst; 2957 daddr = pd->src; 2958 } 2959 switch (pd->af) { 2960 #ifdef INET 2961 case AF_INET: 2962 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2963 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2964 if (inp == NULL) { 2965 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2966 daddr->v4, dport, INPLOOKUP_WILDCARD | 2967 INPLOOKUP_RLOCKPCB, NULL, m); 2968 if (inp == NULL) 2969 return (-1); 2970 } 2971 break; 2972 #endif /* INET */ 2973 #ifdef INET6 2974 case AF_INET6: 2975 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2976 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2977 if (inp == NULL) { 2978 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2979 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2980 INPLOOKUP_RLOCKPCB, NULL, m); 2981 if (inp == NULL) 2982 return (-1); 2983 } 2984 break; 2985 #endif /* INET6 */ 2986 2987 default: 2988 return (-1); 2989 } 2990 INP_RLOCK_ASSERT(inp); 2991 pd->lookup.uid = inp->inp_cred->cr_uid; 2992 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2993 INP_RUNLOCK(inp); 2994 2995 return (1); 2996 } 2997 2998 static u_int8_t 2999 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3000 { 3001 int hlen; 3002 u_int8_t hdr[60]; 3003 u_int8_t *opt, optlen; 3004 u_int8_t wscale = 0; 3005 3006 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3007 if (hlen <= sizeof(struct tcphdr)) 3008 return (0); 3009 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3010 return (0); 3011 opt = hdr + sizeof(struct tcphdr); 3012 hlen -= sizeof(struct tcphdr); 3013 while (hlen >= 3) { 3014 switch (*opt) { 3015 case TCPOPT_EOL: 3016 case TCPOPT_NOP: 3017 ++opt; 3018 --hlen; 3019 break; 3020 case TCPOPT_WINDOW: 3021 wscale = opt[2]; 3022 if (wscale > TCP_MAX_WINSHIFT) 3023 wscale = TCP_MAX_WINSHIFT; 3024 wscale |= PF_WSCALE_FLAG; 3025 /* FALLTHROUGH */ 3026 default: 3027 optlen = opt[1]; 3028 if (optlen < 2) 3029 optlen = 2; 3030 hlen -= optlen; 3031 opt += optlen; 3032 break; 3033 } 3034 } 3035 return (wscale); 3036 } 3037 3038 static u_int16_t 3039 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3040 { 3041 int hlen; 3042 u_int8_t hdr[60]; 3043 u_int8_t *opt, optlen; 3044 u_int16_t mss = V_tcp_mssdflt; 3045 3046 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3047 if (hlen <= sizeof(struct tcphdr)) 3048 return (0); 3049 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3050 return (0); 3051 opt = hdr + sizeof(struct tcphdr); 3052 hlen -= sizeof(struct tcphdr); 3053 while (hlen >= TCPOLEN_MAXSEG) { 3054 switch (*opt) { 3055 case TCPOPT_EOL: 3056 case TCPOPT_NOP: 3057 ++opt; 3058 --hlen; 3059 break; 3060 case TCPOPT_MAXSEG: 3061 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3062 NTOHS(mss); 3063 /* FALLTHROUGH */ 3064 default: 3065 optlen = opt[1]; 3066 if (optlen < 2) 3067 optlen = 2; 3068 hlen -= optlen; 3069 opt += optlen; 3070 break; 3071 } 3072 } 3073 return (mss); 3074 } 3075 3076 static u_int16_t 3077 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3078 { 3079 #ifdef INET 3080 struct nhop4_basic nh4; 3081 #endif /* INET */ 3082 #ifdef INET6 3083 struct nhop6_basic nh6; 3084 struct in6_addr dst6; 3085 uint32_t scopeid; 3086 #endif /* INET6 */ 3087 int hlen = 0; 3088 uint16_t mss = 0; 3089 3090 switch (af) { 3091 #ifdef INET 3092 case AF_INET: 3093 hlen = sizeof(struct ip); 3094 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) == 0) 3095 mss = nh4.nh_mtu - hlen - sizeof(struct tcphdr); 3096 break; 3097 #endif /* INET */ 3098 #ifdef INET6 3099 case AF_INET6: 3100 hlen = sizeof(struct ip6_hdr); 3101 in6_splitscope(&addr->v6, &dst6, &scopeid); 3102 if (fib6_lookup_nh_basic(rtableid, &dst6, scopeid, 0,0,&nh6)==0) 3103 mss = nh6.nh_mtu - hlen - sizeof(struct tcphdr); 3104 break; 3105 #endif /* INET6 */ 3106 } 3107 3108 mss = max(V_tcp_mssdflt, mss); 3109 mss = min(mss, offer); 3110 mss = max(mss, 64); /* sanity - at least max opt space */ 3111 return (mss); 3112 } 3113 3114 static u_int32_t 3115 pf_tcp_iss(struct pf_pdesc *pd) 3116 { 3117 MD5_CTX ctx; 3118 u_int32_t digest[4]; 3119 3120 if (V_pf_tcp_secret_init == 0) { 3121 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3122 MD5Init(&V_pf_tcp_secret_ctx); 3123 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3124 sizeof(V_pf_tcp_secret)); 3125 V_pf_tcp_secret_init = 1; 3126 } 3127 3128 ctx = V_pf_tcp_secret_ctx; 3129 3130 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3131 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3132 if (pd->af == AF_INET6) { 3133 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3134 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3135 } else { 3136 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3137 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3138 } 3139 MD5Final((u_char *)digest, &ctx); 3140 V_pf_tcp_iss_off += 4096; 3141 #define ISN_RANDOM_INCREMENT (4096 - 1) 3142 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3143 V_pf_tcp_iss_off); 3144 #undef ISN_RANDOM_INCREMENT 3145 } 3146 3147 static int 3148 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3149 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3150 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3151 { 3152 struct pf_rule *nr = NULL; 3153 struct pf_addr * const saddr = pd->src; 3154 struct pf_addr * const daddr = pd->dst; 3155 sa_family_t af = pd->af; 3156 struct pf_rule *r, *a = NULL; 3157 struct pf_ruleset *ruleset = NULL; 3158 struct pf_src_node *nsn = NULL; 3159 struct tcphdr *th = pd->hdr.tcp; 3160 struct pf_state_key *sk = NULL, *nk = NULL; 3161 u_short reason; 3162 int rewrite = 0, hdrlen = 0; 3163 int tag = -1, rtableid = -1; 3164 int asd = 0; 3165 int match = 0; 3166 int state_icmp = 0; 3167 u_int16_t sport = 0, dport = 0; 3168 u_int16_t bproto_sum = 0, bip_sum = 0; 3169 u_int8_t icmptype = 0, icmpcode = 0; 3170 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3171 3172 PF_RULES_RASSERT(); 3173 3174 if (inp != NULL) { 3175 INP_LOCK_ASSERT(inp); 3176 pd->lookup.uid = inp->inp_cred->cr_uid; 3177 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3178 pd->lookup.done = 1; 3179 } 3180 3181 switch (pd->proto) { 3182 case IPPROTO_TCP: 3183 sport = th->th_sport; 3184 dport = th->th_dport; 3185 hdrlen = sizeof(*th); 3186 break; 3187 case IPPROTO_UDP: 3188 sport = pd->hdr.udp->uh_sport; 3189 dport = pd->hdr.udp->uh_dport; 3190 hdrlen = sizeof(*pd->hdr.udp); 3191 break; 3192 #ifdef INET 3193 case IPPROTO_ICMP: 3194 if (pd->af != AF_INET) 3195 break; 3196 sport = dport = pd->hdr.icmp->icmp_id; 3197 hdrlen = sizeof(*pd->hdr.icmp); 3198 icmptype = pd->hdr.icmp->icmp_type; 3199 icmpcode = pd->hdr.icmp->icmp_code; 3200 3201 if (icmptype == ICMP_UNREACH || 3202 icmptype == ICMP_SOURCEQUENCH || 3203 icmptype == ICMP_REDIRECT || 3204 icmptype == ICMP_TIMXCEED || 3205 icmptype == ICMP_PARAMPROB) 3206 state_icmp++; 3207 break; 3208 #endif /* INET */ 3209 #ifdef INET6 3210 case IPPROTO_ICMPV6: 3211 if (af != AF_INET6) 3212 break; 3213 sport = dport = pd->hdr.icmp6->icmp6_id; 3214 hdrlen = sizeof(*pd->hdr.icmp6); 3215 icmptype = pd->hdr.icmp6->icmp6_type; 3216 icmpcode = pd->hdr.icmp6->icmp6_code; 3217 3218 if (icmptype == ICMP6_DST_UNREACH || 3219 icmptype == ICMP6_PACKET_TOO_BIG || 3220 icmptype == ICMP6_TIME_EXCEEDED || 3221 icmptype == ICMP6_PARAM_PROB) 3222 state_icmp++; 3223 break; 3224 #endif /* INET6 */ 3225 default: 3226 sport = dport = hdrlen = 0; 3227 break; 3228 } 3229 3230 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3231 3232 /* check packet for BINAT/NAT/RDR */ 3233 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3234 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3235 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3236 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3237 3238 if (pd->ip_sum) 3239 bip_sum = *pd->ip_sum; 3240 3241 switch (pd->proto) { 3242 case IPPROTO_TCP: 3243 bproto_sum = th->th_sum; 3244 pd->proto_sum = &th->th_sum; 3245 3246 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3247 nk->port[pd->sidx] != sport) { 3248 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3249 &th->th_sum, &nk->addr[pd->sidx], 3250 nk->port[pd->sidx], 0, af); 3251 pd->sport = &th->th_sport; 3252 sport = th->th_sport; 3253 } 3254 3255 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3256 nk->port[pd->didx] != dport) { 3257 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3258 &th->th_sum, &nk->addr[pd->didx], 3259 nk->port[pd->didx], 0, af); 3260 dport = th->th_dport; 3261 pd->dport = &th->th_dport; 3262 } 3263 rewrite++; 3264 break; 3265 case IPPROTO_UDP: 3266 bproto_sum = pd->hdr.udp->uh_sum; 3267 pd->proto_sum = &pd->hdr.udp->uh_sum; 3268 3269 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3270 nk->port[pd->sidx] != sport) { 3271 pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, 3272 pd->ip_sum, &pd->hdr.udp->uh_sum, 3273 &nk->addr[pd->sidx], 3274 nk->port[pd->sidx], 1, af); 3275 sport = pd->hdr.udp->uh_sport; 3276 pd->sport = &pd->hdr.udp->uh_sport; 3277 } 3278 3279 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3280 nk->port[pd->didx] != dport) { 3281 pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, 3282 pd->ip_sum, &pd->hdr.udp->uh_sum, 3283 &nk->addr[pd->didx], 3284 nk->port[pd->didx], 1, af); 3285 dport = pd->hdr.udp->uh_dport; 3286 pd->dport = &pd->hdr.udp->uh_dport; 3287 } 3288 rewrite++; 3289 break; 3290 #ifdef INET 3291 case IPPROTO_ICMP: 3292 nk->port[0] = nk->port[1]; 3293 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3294 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3295 nk->addr[pd->sidx].v4.s_addr, 0); 3296 3297 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3298 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3299 nk->addr[pd->didx].v4.s_addr, 0); 3300 3301 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3302 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3303 pd->hdr.icmp->icmp_cksum, sport, 3304 nk->port[1], 0); 3305 pd->hdr.icmp->icmp_id = nk->port[1]; 3306 pd->sport = &pd->hdr.icmp->icmp_id; 3307 } 3308 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3309 break; 3310 #endif /* INET */ 3311 #ifdef INET6 3312 case IPPROTO_ICMPV6: 3313 nk->port[0] = nk->port[1]; 3314 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3315 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3316 &nk->addr[pd->sidx], 0); 3317 3318 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3319 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3320 &nk->addr[pd->didx], 0); 3321 rewrite++; 3322 break; 3323 #endif /* INET */ 3324 default: 3325 switch (af) { 3326 #ifdef INET 3327 case AF_INET: 3328 if (PF_ANEQ(saddr, 3329 &nk->addr[pd->sidx], AF_INET)) 3330 pf_change_a(&saddr->v4.s_addr, 3331 pd->ip_sum, 3332 nk->addr[pd->sidx].v4.s_addr, 0); 3333 3334 if (PF_ANEQ(daddr, 3335 &nk->addr[pd->didx], AF_INET)) 3336 pf_change_a(&daddr->v4.s_addr, 3337 pd->ip_sum, 3338 nk->addr[pd->didx].v4.s_addr, 0); 3339 break; 3340 #endif /* INET */ 3341 #ifdef INET6 3342 case AF_INET6: 3343 if (PF_ANEQ(saddr, 3344 &nk->addr[pd->sidx], AF_INET6)) 3345 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3346 3347 if (PF_ANEQ(daddr, 3348 &nk->addr[pd->didx], AF_INET6)) 3349 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3350 break; 3351 #endif /* INET */ 3352 } 3353 break; 3354 } 3355 if (nr->natpass) 3356 r = NULL; 3357 pd->nat_rule = nr; 3358 } 3359 3360 while (r != NULL) { 3361 r->evaluations++; 3362 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3363 r = r->skip[PF_SKIP_IFP].ptr; 3364 else if (r->direction && r->direction != direction) 3365 r = r->skip[PF_SKIP_DIR].ptr; 3366 else if (r->af && r->af != af) 3367 r = r->skip[PF_SKIP_AF].ptr; 3368 else if (r->proto && r->proto != pd->proto) 3369 r = r->skip[PF_SKIP_PROTO].ptr; 3370 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3371 r->src.neg, kif, M_GETFIB(m))) 3372 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3373 /* tcp/udp only. port_op always 0 in other cases */ 3374 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3375 r->src.port[0], r->src.port[1], sport)) 3376 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3377 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3378 r->dst.neg, NULL, M_GETFIB(m))) 3379 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3380 /* tcp/udp only. port_op always 0 in other cases */ 3381 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3382 r->dst.port[0], r->dst.port[1], dport)) 3383 r = r->skip[PF_SKIP_DST_PORT].ptr; 3384 /* icmp only. type always 0 in other cases */ 3385 else if (r->type && r->type != icmptype + 1) 3386 r = TAILQ_NEXT(r, entries); 3387 /* icmp only. type always 0 in other cases */ 3388 else if (r->code && r->code != icmpcode + 1) 3389 r = TAILQ_NEXT(r, entries); 3390 else if (r->tos && !(r->tos == pd->tos)) 3391 r = TAILQ_NEXT(r, entries); 3392 else if (r->rule_flag & PFRULE_FRAGMENT) 3393 r = TAILQ_NEXT(r, entries); 3394 else if (pd->proto == IPPROTO_TCP && 3395 (r->flagset & th->th_flags) != r->flags) 3396 r = TAILQ_NEXT(r, entries); 3397 /* tcp/udp only. uid.op always 0 in other cases */ 3398 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3399 pf_socket_lookup(direction, pd, m), 1)) && 3400 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3401 pd->lookup.uid)) 3402 r = TAILQ_NEXT(r, entries); 3403 /* tcp/udp only. gid.op always 0 in other cases */ 3404 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3405 pf_socket_lookup(direction, pd, m), 1)) && 3406 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3407 pd->lookup.gid)) 3408 r = TAILQ_NEXT(r, entries); 3409 else if (r->prio && 3410 !pf_match_ieee8021q_pcp(r->prio, m)) 3411 r = TAILQ_NEXT(r, entries); 3412 else if (r->prob && 3413 r->prob <= arc4random()) 3414 r = TAILQ_NEXT(r, entries); 3415 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3416 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3417 r = TAILQ_NEXT(r, entries); 3418 else if (r->os_fingerprint != PF_OSFP_ANY && 3419 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3420 pf_osfp_fingerprint(pd, m, off, th), 3421 r->os_fingerprint))) 3422 r = TAILQ_NEXT(r, entries); 3423 else { 3424 if (r->tag) 3425 tag = r->tag; 3426 if (r->rtableid >= 0) 3427 rtableid = r->rtableid; 3428 if (r->anchor == NULL) { 3429 match = 1; 3430 *rm = r; 3431 *am = a; 3432 *rsm = ruleset; 3433 if ((*rm)->quick) 3434 break; 3435 r = TAILQ_NEXT(r, entries); 3436 } else 3437 pf_step_into_anchor(anchor_stack, &asd, 3438 &ruleset, PF_RULESET_FILTER, &r, &a, 3439 &match); 3440 } 3441 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3442 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3443 break; 3444 } 3445 r = *rm; 3446 a = *am; 3447 ruleset = *rsm; 3448 3449 REASON_SET(&reason, PFRES_MATCH); 3450 3451 if (r->log || (nr != NULL && nr->log)) { 3452 if (rewrite) 3453 m_copyback(m, off, hdrlen, pd->hdr.any); 3454 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3455 ruleset, pd, 1); 3456 } 3457 3458 if ((r->action == PF_DROP) && 3459 ((r->rule_flag & PFRULE_RETURNRST) || 3460 (r->rule_flag & PFRULE_RETURNICMP) || 3461 (r->rule_flag & PFRULE_RETURN))) { 3462 /* undo NAT changes, if they have taken place */ 3463 if (nr != NULL) { 3464 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3465 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3466 if (pd->sport) 3467 *pd->sport = sk->port[pd->sidx]; 3468 if (pd->dport) 3469 *pd->dport = sk->port[pd->didx]; 3470 if (pd->proto_sum) 3471 *pd->proto_sum = bproto_sum; 3472 if (pd->ip_sum) 3473 *pd->ip_sum = bip_sum; 3474 m_copyback(m, off, hdrlen, pd->hdr.any); 3475 } 3476 if (pd->proto == IPPROTO_TCP && 3477 ((r->rule_flag & PFRULE_RETURNRST) || 3478 (r->rule_flag & PFRULE_RETURN)) && 3479 !(th->th_flags & TH_RST)) { 3480 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3481 int len = 0; 3482 #ifdef INET 3483 struct ip *h4; 3484 #endif 3485 #ifdef INET6 3486 struct ip6_hdr *h6; 3487 #endif 3488 3489 switch (af) { 3490 #ifdef INET 3491 case AF_INET: 3492 h4 = mtod(m, struct ip *); 3493 len = ntohs(h4->ip_len) - off; 3494 break; 3495 #endif 3496 #ifdef INET6 3497 case AF_INET6: 3498 h6 = mtod(m, struct ip6_hdr *); 3499 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3500 break; 3501 #endif 3502 } 3503 3504 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3505 REASON_SET(&reason, PFRES_PROTCKSUM); 3506 else { 3507 if (th->th_flags & TH_SYN) 3508 ack++; 3509 if (th->th_flags & TH_FIN) 3510 ack++; 3511 pf_send_tcp(m, r, af, pd->dst, 3512 pd->src, th->th_dport, th->th_sport, 3513 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3514 r->return_ttl, 1, 0, kif->pfik_ifp); 3515 } 3516 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3517 r->return_icmp) 3518 pf_send_icmp(m, r->return_icmp >> 8, 3519 r->return_icmp & 255, af, r); 3520 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3521 r->return_icmp6) 3522 pf_send_icmp(m, r->return_icmp6 >> 8, 3523 r->return_icmp6 & 255, af, r); 3524 } 3525 3526 if (r->action == PF_DROP) 3527 goto cleanup; 3528 3529 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3530 REASON_SET(&reason, PFRES_MEMORY); 3531 goto cleanup; 3532 } 3533 if (rtableid >= 0) 3534 M_SETFIB(m, rtableid); 3535 3536 if (!state_icmp && (r->keep_state || nr != NULL || 3537 (pd->flags & PFDESC_TCP_NORM))) { 3538 int action; 3539 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3540 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3541 hdrlen); 3542 if (action != PF_PASS) 3543 return (action); 3544 } else { 3545 if (sk != NULL) 3546 uma_zfree(V_pf_state_key_z, sk); 3547 if (nk != NULL) 3548 uma_zfree(V_pf_state_key_z, nk); 3549 } 3550 3551 /* copy back packet headers if we performed NAT operations */ 3552 if (rewrite) 3553 m_copyback(m, off, hdrlen, pd->hdr.any); 3554 3555 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3556 direction == PF_OUT && 3557 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3558 /* 3559 * We want the state created, but we dont 3560 * want to send this in case a partner 3561 * firewall has to know about it to allow 3562 * replies through it. 3563 */ 3564 return (PF_DEFER); 3565 3566 return (PF_PASS); 3567 3568 cleanup: 3569 if (sk != NULL) 3570 uma_zfree(V_pf_state_key_z, sk); 3571 if (nk != NULL) 3572 uma_zfree(V_pf_state_key_z, nk); 3573 return (PF_DROP); 3574 } 3575 3576 static int 3577 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3578 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3579 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3580 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3581 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3582 { 3583 struct pf_state *s = NULL; 3584 struct pf_src_node *sn = NULL; 3585 struct tcphdr *th = pd->hdr.tcp; 3586 u_int16_t mss = V_tcp_mssdflt; 3587 u_short reason; 3588 3589 /* check maximums */ 3590 if (r->max_states && 3591 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3592 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3593 REASON_SET(&reason, PFRES_MAXSTATES); 3594 goto csfailed; 3595 } 3596 /* src node for filter rule */ 3597 if ((r->rule_flag & PFRULE_SRCTRACK || 3598 r->rpool.opts & PF_POOL_STICKYADDR) && 3599 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3600 REASON_SET(&reason, PFRES_SRCLIMIT); 3601 goto csfailed; 3602 } 3603 /* src node for translation rule */ 3604 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3605 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3606 REASON_SET(&reason, PFRES_SRCLIMIT); 3607 goto csfailed; 3608 } 3609 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3610 if (s == NULL) { 3611 REASON_SET(&reason, PFRES_MEMORY); 3612 goto csfailed; 3613 } 3614 s->rule.ptr = r; 3615 s->nat_rule.ptr = nr; 3616 s->anchor.ptr = a; 3617 STATE_INC_COUNTERS(s); 3618 if (r->allow_opts) 3619 s->state_flags |= PFSTATE_ALLOWOPTS; 3620 if (r->rule_flag & PFRULE_STATESLOPPY) 3621 s->state_flags |= PFSTATE_SLOPPY; 3622 s->log = r->log & PF_LOG_ALL; 3623 s->sync_state = PFSYNC_S_NONE; 3624 if (nr != NULL) 3625 s->log |= nr->log & PF_LOG_ALL; 3626 switch (pd->proto) { 3627 case IPPROTO_TCP: 3628 s->src.seqlo = ntohl(th->th_seq); 3629 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3630 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3631 r->keep_state == PF_STATE_MODULATE) { 3632 /* Generate sequence number modulator */ 3633 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3634 0) 3635 s->src.seqdiff = 1; 3636 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3637 htonl(s->src.seqlo + s->src.seqdiff), 0); 3638 *rewrite = 1; 3639 } else 3640 s->src.seqdiff = 0; 3641 if (th->th_flags & TH_SYN) { 3642 s->src.seqhi++; 3643 s->src.wscale = pf_get_wscale(m, off, 3644 th->th_off, pd->af); 3645 } 3646 s->src.max_win = MAX(ntohs(th->th_win), 1); 3647 if (s->src.wscale & PF_WSCALE_MASK) { 3648 /* Remove scale factor from initial window */ 3649 int win = s->src.max_win; 3650 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3651 s->src.max_win = (win - 1) >> 3652 (s->src.wscale & PF_WSCALE_MASK); 3653 } 3654 if (th->th_flags & TH_FIN) 3655 s->src.seqhi++; 3656 s->dst.seqhi = 1; 3657 s->dst.max_win = 1; 3658 s->src.state = TCPS_SYN_SENT; 3659 s->dst.state = TCPS_CLOSED; 3660 s->timeout = PFTM_TCP_FIRST_PACKET; 3661 break; 3662 case IPPROTO_UDP: 3663 s->src.state = PFUDPS_SINGLE; 3664 s->dst.state = PFUDPS_NO_TRAFFIC; 3665 s->timeout = PFTM_UDP_FIRST_PACKET; 3666 break; 3667 case IPPROTO_ICMP: 3668 #ifdef INET6 3669 case IPPROTO_ICMPV6: 3670 #endif 3671 s->timeout = PFTM_ICMP_FIRST_PACKET; 3672 break; 3673 default: 3674 s->src.state = PFOTHERS_SINGLE; 3675 s->dst.state = PFOTHERS_NO_TRAFFIC; 3676 s->timeout = PFTM_OTHER_FIRST_PACKET; 3677 } 3678 3679 if (r->rt) { 3680 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3681 REASON_SET(&reason, PFRES_MAPFAILED); 3682 pf_src_tree_remove_state(s); 3683 STATE_DEC_COUNTERS(s); 3684 uma_zfree(V_pf_state_z, s); 3685 goto csfailed; 3686 } 3687 s->rt_kif = r->rpool.cur->kif; 3688 } 3689 3690 s->creation = time_uptime; 3691 s->expire = time_uptime; 3692 3693 if (sn != NULL) 3694 s->src_node = sn; 3695 if (nsn != NULL) { 3696 /* XXX We only modify one side for now. */ 3697 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3698 s->nat_src_node = nsn; 3699 } 3700 if (pd->proto == IPPROTO_TCP) { 3701 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3702 off, pd, th, &s->src, &s->dst)) { 3703 REASON_SET(&reason, PFRES_MEMORY); 3704 pf_src_tree_remove_state(s); 3705 STATE_DEC_COUNTERS(s); 3706 uma_zfree(V_pf_state_z, s); 3707 return (PF_DROP); 3708 } 3709 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3710 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3711 &s->src, &s->dst, rewrite)) { 3712 /* This really shouldn't happen!!! */ 3713 DPFPRINTF(PF_DEBUG_URGENT, 3714 ("pf_normalize_tcp_stateful failed on first pkt")); 3715 pf_normalize_tcp_cleanup(s); 3716 pf_src_tree_remove_state(s); 3717 STATE_DEC_COUNTERS(s); 3718 uma_zfree(V_pf_state_z, s); 3719 return (PF_DROP); 3720 } 3721 } 3722 s->direction = pd->dir; 3723 3724 /* 3725 * sk/nk could already been setup by pf_get_translation(). 3726 */ 3727 if (nr == NULL) { 3728 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3729 __func__, nr, sk, nk)); 3730 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3731 if (sk == NULL) 3732 goto csfailed; 3733 nk = sk; 3734 } else 3735 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3736 __func__, nr, sk, nk)); 3737 3738 /* Swap sk/nk for PF_OUT. */ 3739 if (pf_state_insert(BOUND_IFACE(r, kif), 3740 (pd->dir == PF_IN) ? sk : nk, 3741 (pd->dir == PF_IN) ? nk : sk, s)) { 3742 if (pd->proto == IPPROTO_TCP) 3743 pf_normalize_tcp_cleanup(s); 3744 REASON_SET(&reason, PFRES_STATEINS); 3745 pf_src_tree_remove_state(s); 3746 STATE_DEC_COUNTERS(s); 3747 uma_zfree(V_pf_state_z, s); 3748 return (PF_DROP); 3749 } else 3750 *sm = s; 3751 3752 if (tag > 0) 3753 s->tag = tag; 3754 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3755 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3756 s->src.state = PF_TCPS_PROXY_SRC; 3757 /* undo NAT changes, if they have taken place */ 3758 if (nr != NULL) { 3759 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3760 if (pd->dir == PF_OUT) 3761 skt = s->key[PF_SK_STACK]; 3762 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3763 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3764 if (pd->sport) 3765 *pd->sport = skt->port[pd->sidx]; 3766 if (pd->dport) 3767 *pd->dport = skt->port[pd->didx]; 3768 if (pd->proto_sum) 3769 *pd->proto_sum = bproto_sum; 3770 if (pd->ip_sum) 3771 *pd->ip_sum = bip_sum; 3772 m_copyback(m, off, hdrlen, pd->hdr.any); 3773 } 3774 s->src.seqhi = htonl(arc4random()); 3775 /* Find mss option */ 3776 int rtid = M_GETFIB(m); 3777 mss = pf_get_mss(m, off, th->th_off, pd->af); 3778 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3779 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3780 s->src.mss = mss; 3781 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3782 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3783 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3784 REASON_SET(&reason, PFRES_SYNPROXY); 3785 return (PF_SYNPROXY_DROP); 3786 } 3787 3788 return (PF_PASS); 3789 3790 csfailed: 3791 if (sk != NULL) 3792 uma_zfree(V_pf_state_key_z, sk); 3793 if (nk != NULL) 3794 uma_zfree(V_pf_state_key_z, nk); 3795 3796 if (sn != NULL) { 3797 struct pf_srchash *sh; 3798 3799 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3800 PF_HASHROW_LOCK(sh); 3801 if (--sn->states == 0 && sn->expire == 0) { 3802 pf_unlink_src_node(sn); 3803 uma_zfree(V_pf_sources_z, sn); 3804 counter_u64_add( 3805 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3806 } 3807 PF_HASHROW_UNLOCK(sh); 3808 } 3809 3810 if (nsn != sn && nsn != NULL) { 3811 struct pf_srchash *sh; 3812 3813 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3814 PF_HASHROW_LOCK(sh); 3815 if (--nsn->states == 0 && nsn->expire == 0) { 3816 pf_unlink_src_node(nsn); 3817 uma_zfree(V_pf_sources_z, nsn); 3818 counter_u64_add( 3819 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3820 } 3821 PF_HASHROW_UNLOCK(sh); 3822 } 3823 3824 return (PF_DROP); 3825 } 3826 3827 static int 3828 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3829 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3830 struct pf_ruleset **rsm) 3831 { 3832 struct pf_rule *r, *a = NULL; 3833 struct pf_ruleset *ruleset = NULL; 3834 sa_family_t af = pd->af; 3835 u_short reason; 3836 int tag = -1; 3837 int asd = 0; 3838 int match = 0; 3839 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3840 3841 PF_RULES_RASSERT(); 3842 3843 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3844 while (r != NULL) { 3845 r->evaluations++; 3846 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3847 r = r->skip[PF_SKIP_IFP].ptr; 3848 else if (r->direction && r->direction != direction) 3849 r = r->skip[PF_SKIP_DIR].ptr; 3850 else if (r->af && r->af != af) 3851 r = r->skip[PF_SKIP_AF].ptr; 3852 else if (r->proto && r->proto != pd->proto) 3853 r = r->skip[PF_SKIP_PROTO].ptr; 3854 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3855 r->src.neg, kif, M_GETFIB(m))) 3856 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3857 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3858 r->dst.neg, NULL, M_GETFIB(m))) 3859 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3860 else if (r->tos && !(r->tos == pd->tos)) 3861 r = TAILQ_NEXT(r, entries); 3862 else if (r->os_fingerprint != PF_OSFP_ANY) 3863 r = TAILQ_NEXT(r, entries); 3864 else if (pd->proto == IPPROTO_UDP && 3865 (r->src.port_op || r->dst.port_op)) 3866 r = TAILQ_NEXT(r, entries); 3867 else if (pd->proto == IPPROTO_TCP && 3868 (r->src.port_op || r->dst.port_op || r->flagset)) 3869 r = TAILQ_NEXT(r, entries); 3870 else if ((pd->proto == IPPROTO_ICMP || 3871 pd->proto == IPPROTO_ICMPV6) && 3872 (r->type || r->code)) 3873 r = TAILQ_NEXT(r, entries); 3874 else if (r->prio && 3875 !pf_match_ieee8021q_pcp(r->prio, m)) 3876 r = TAILQ_NEXT(r, entries); 3877 else if (r->prob && r->prob <= 3878 (arc4random() % (UINT_MAX - 1) + 1)) 3879 r = TAILQ_NEXT(r, entries); 3880 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3881 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3882 r = TAILQ_NEXT(r, entries); 3883 else { 3884 if (r->anchor == NULL) { 3885 match = 1; 3886 *rm = r; 3887 *am = a; 3888 *rsm = ruleset; 3889 if ((*rm)->quick) 3890 break; 3891 r = TAILQ_NEXT(r, entries); 3892 } else 3893 pf_step_into_anchor(anchor_stack, &asd, 3894 &ruleset, PF_RULESET_FILTER, &r, &a, 3895 &match); 3896 } 3897 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3898 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3899 break; 3900 } 3901 r = *rm; 3902 a = *am; 3903 ruleset = *rsm; 3904 3905 REASON_SET(&reason, PFRES_MATCH); 3906 3907 if (r->log) 3908 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3909 1); 3910 3911 if (r->action != PF_PASS) 3912 return (PF_DROP); 3913 3914 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3915 REASON_SET(&reason, PFRES_MEMORY); 3916 return (PF_DROP); 3917 } 3918 3919 return (PF_PASS); 3920 } 3921 3922 static int 3923 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3924 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3925 struct pf_pdesc *pd, u_short *reason, int *copyback) 3926 { 3927 struct tcphdr *th = pd->hdr.tcp; 3928 u_int16_t win = ntohs(th->th_win); 3929 u_int32_t ack, end, seq, orig_seq; 3930 u_int8_t sws, dws; 3931 int ackskew; 3932 3933 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3934 sws = src->wscale & PF_WSCALE_MASK; 3935 dws = dst->wscale & PF_WSCALE_MASK; 3936 } else 3937 sws = dws = 0; 3938 3939 /* 3940 * Sequence tracking algorithm from Guido van Rooij's paper: 3941 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3942 * tcp_filtering.ps 3943 */ 3944 3945 orig_seq = seq = ntohl(th->th_seq); 3946 if (src->seqlo == 0) { 3947 /* First packet from this end. Set its state */ 3948 3949 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3950 src->scrub == NULL) { 3951 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3952 REASON_SET(reason, PFRES_MEMORY); 3953 return (PF_DROP); 3954 } 3955 } 3956 3957 /* Deferred generation of sequence number modulator */ 3958 if (dst->seqdiff && !src->seqdiff) { 3959 /* use random iss for the TCP server */ 3960 while ((src->seqdiff = arc4random() - seq) == 0) 3961 ; 3962 ack = ntohl(th->th_ack) - dst->seqdiff; 3963 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3964 src->seqdiff), 0); 3965 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 3966 *copyback = 1; 3967 } else { 3968 ack = ntohl(th->th_ack); 3969 } 3970 3971 end = seq + pd->p_len; 3972 if (th->th_flags & TH_SYN) { 3973 end++; 3974 if (dst->wscale & PF_WSCALE_FLAG) { 3975 src->wscale = pf_get_wscale(m, off, th->th_off, 3976 pd->af); 3977 if (src->wscale & PF_WSCALE_FLAG) { 3978 /* Remove scale factor from initial 3979 * window */ 3980 sws = src->wscale & PF_WSCALE_MASK; 3981 win = ((u_int32_t)win + (1 << sws) - 1) 3982 >> sws; 3983 dws = dst->wscale & PF_WSCALE_MASK; 3984 } else { 3985 /* fixup other window */ 3986 dst->max_win <<= dst->wscale & 3987 PF_WSCALE_MASK; 3988 /* in case of a retrans SYN|ACK */ 3989 dst->wscale = 0; 3990 } 3991 } 3992 } 3993 if (th->th_flags & TH_FIN) 3994 end++; 3995 3996 src->seqlo = seq; 3997 if (src->state < TCPS_SYN_SENT) 3998 src->state = TCPS_SYN_SENT; 3999 4000 /* 4001 * May need to slide the window (seqhi may have been set by 4002 * the crappy stack check or if we picked up the connection 4003 * after establishment) 4004 */ 4005 if (src->seqhi == 1 || 4006 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4007 src->seqhi = end + MAX(1, dst->max_win << dws); 4008 if (win > src->max_win) 4009 src->max_win = win; 4010 4011 } else { 4012 ack = ntohl(th->th_ack) - dst->seqdiff; 4013 if (src->seqdiff) { 4014 /* Modulate sequence numbers */ 4015 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4016 src->seqdiff), 0); 4017 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4018 *copyback = 1; 4019 } 4020 end = seq + pd->p_len; 4021 if (th->th_flags & TH_SYN) 4022 end++; 4023 if (th->th_flags & TH_FIN) 4024 end++; 4025 } 4026 4027 if ((th->th_flags & TH_ACK) == 0) { 4028 /* Let it pass through the ack skew check */ 4029 ack = dst->seqlo; 4030 } else if ((ack == 0 && 4031 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4032 /* broken tcp stacks do not set ack */ 4033 (dst->state < TCPS_SYN_SENT)) { 4034 /* 4035 * Many stacks (ours included) will set the ACK number in an 4036 * FIN|ACK if the SYN times out -- no sequence to ACK. 4037 */ 4038 ack = dst->seqlo; 4039 } 4040 4041 if (seq == end) { 4042 /* Ease sequencing restrictions on no data packets */ 4043 seq = src->seqlo; 4044 end = seq; 4045 } 4046 4047 ackskew = dst->seqlo - ack; 4048 4049 4050 /* 4051 * Need to demodulate the sequence numbers in any TCP SACK options 4052 * (Selective ACK). We could optionally validate the SACK values 4053 * against the current ACK window, either forwards or backwards, but 4054 * I'm not confident that SACK has been implemented properly 4055 * everywhere. It wouldn't surprise me if several stacks accidentally 4056 * SACK too far backwards of previously ACKed data. There really aren't 4057 * any security implications of bad SACKing unless the target stack 4058 * doesn't validate the option length correctly. Someone trying to 4059 * spoof into a TCP connection won't bother blindly sending SACK 4060 * options anyway. 4061 */ 4062 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4063 if (pf_modulate_sack(m, off, pd, th, dst)) 4064 *copyback = 1; 4065 } 4066 4067 4068 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4069 if (SEQ_GEQ(src->seqhi, end) && 4070 /* Last octet inside other's window space */ 4071 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4072 /* Retrans: not more than one window back */ 4073 (ackskew >= -MAXACKWINDOW) && 4074 /* Acking not more than one reassembled fragment backwards */ 4075 (ackskew <= (MAXACKWINDOW << sws)) && 4076 /* Acking not more than one window forward */ 4077 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4078 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4079 (pd->flags & PFDESC_IP_REAS) == 0)) { 4080 /* Require an exact/+1 sequence match on resets when possible */ 4081 4082 if (dst->scrub || src->scrub) { 4083 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4084 *state, src, dst, copyback)) 4085 return (PF_DROP); 4086 } 4087 4088 /* update max window */ 4089 if (src->max_win < win) 4090 src->max_win = win; 4091 /* synchronize sequencing */ 4092 if (SEQ_GT(end, src->seqlo)) 4093 src->seqlo = end; 4094 /* slide the window of what the other end can send */ 4095 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4096 dst->seqhi = ack + MAX((win << sws), 1); 4097 4098 4099 /* update states */ 4100 if (th->th_flags & TH_SYN) 4101 if (src->state < TCPS_SYN_SENT) 4102 src->state = TCPS_SYN_SENT; 4103 if (th->th_flags & TH_FIN) 4104 if (src->state < TCPS_CLOSING) 4105 src->state = TCPS_CLOSING; 4106 if (th->th_flags & TH_ACK) { 4107 if (dst->state == TCPS_SYN_SENT) { 4108 dst->state = TCPS_ESTABLISHED; 4109 if (src->state == TCPS_ESTABLISHED && 4110 (*state)->src_node != NULL && 4111 pf_src_connlimit(state)) { 4112 REASON_SET(reason, PFRES_SRCLIMIT); 4113 return (PF_DROP); 4114 } 4115 } else if (dst->state == TCPS_CLOSING) 4116 dst->state = TCPS_FIN_WAIT_2; 4117 } 4118 if (th->th_flags & TH_RST) 4119 src->state = dst->state = TCPS_TIME_WAIT; 4120 4121 /* update expire time */ 4122 (*state)->expire = time_uptime; 4123 if (src->state >= TCPS_FIN_WAIT_2 && 4124 dst->state >= TCPS_FIN_WAIT_2) 4125 (*state)->timeout = PFTM_TCP_CLOSED; 4126 else if (src->state >= TCPS_CLOSING && 4127 dst->state >= TCPS_CLOSING) 4128 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4129 else if (src->state < TCPS_ESTABLISHED || 4130 dst->state < TCPS_ESTABLISHED) 4131 (*state)->timeout = PFTM_TCP_OPENING; 4132 else if (src->state >= TCPS_CLOSING || 4133 dst->state >= TCPS_CLOSING) 4134 (*state)->timeout = PFTM_TCP_CLOSING; 4135 else 4136 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4137 4138 /* Fall through to PASS packet */ 4139 4140 } else if ((dst->state < TCPS_SYN_SENT || 4141 dst->state >= TCPS_FIN_WAIT_2 || 4142 src->state >= TCPS_FIN_WAIT_2) && 4143 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4144 /* Within a window forward of the originating packet */ 4145 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4146 /* Within a window backward of the originating packet */ 4147 4148 /* 4149 * This currently handles three situations: 4150 * 1) Stupid stacks will shotgun SYNs before their peer 4151 * replies. 4152 * 2) When PF catches an already established stream (the 4153 * firewall rebooted, the state table was flushed, routes 4154 * changed...) 4155 * 3) Packets get funky immediately after the connection 4156 * closes (this should catch Solaris spurious ACK|FINs 4157 * that web servers like to spew after a close) 4158 * 4159 * This must be a little more careful than the above code 4160 * since packet floods will also be caught here. We don't 4161 * update the TTL here to mitigate the damage of a packet 4162 * flood and so the same code can handle awkward establishment 4163 * and a loosened connection close. 4164 * In the establishment case, a correct peer response will 4165 * validate the connection, go through the normal state code 4166 * and keep updating the state TTL. 4167 */ 4168 4169 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4170 printf("pf: loose state match: "); 4171 pf_print_state(*state); 4172 pf_print_flags(th->th_flags); 4173 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4174 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4175 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4176 (unsigned long long)(*state)->packets[1], 4177 pd->dir == PF_IN ? "in" : "out", 4178 pd->dir == (*state)->direction ? "fwd" : "rev"); 4179 } 4180 4181 if (dst->scrub || src->scrub) { 4182 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4183 *state, src, dst, copyback)) 4184 return (PF_DROP); 4185 } 4186 4187 /* update max window */ 4188 if (src->max_win < win) 4189 src->max_win = win; 4190 /* synchronize sequencing */ 4191 if (SEQ_GT(end, src->seqlo)) 4192 src->seqlo = end; 4193 /* slide the window of what the other end can send */ 4194 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4195 dst->seqhi = ack + MAX((win << sws), 1); 4196 4197 /* 4198 * Cannot set dst->seqhi here since this could be a shotgunned 4199 * SYN and not an already established connection. 4200 */ 4201 4202 if (th->th_flags & TH_FIN) 4203 if (src->state < TCPS_CLOSING) 4204 src->state = TCPS_CLOSING; 4205 if (th->th_flags & TH_RST) 4206 src->state = dst->state = TCPS_TIME_WAIT; 4207 4208 /* Fall through to PASS packet */ 4209 4210 } else { 4211 if ((*state)->dst.state == TCPS_SYN_SENT && 4212 (*state)->src.state == TCPS_SYN_SENT) { 4213 /* Send RST for state mismatches during handshake */ 4214 if (!(th->th_flags & TH_RST)) 4215 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4216 pd->dst, pd->src, th->th_dport, 4217 th->th_sport, ntohl(th->th_ack), 0, 4218 TH_RST, 0, 0, 4219 (*state)->rule.ptr->return_ttl, 1, 0, 4220 kif->pfik_ifp); 4221 src->seqlo = 0; 4222 src->seqhi = 1; 4223 src->max_win = 1; 4224 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4225 printf("pf: BAD state: "); 4226 pf_print_state(*state); 4227 pf_print_flags(th->th_flags); 4228 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4229 "pkts=%llu:%llu dir=%s,%s\n", 4230 seq, orig_seq, ack, pd->p_len, ackskew, 4231 (unsigned long long)(*state)->packets[0], 4232 (unsigned long long)(*state)->packets[1], 4233 pd->dir == PF_IN ? "in" : "out", 4234 pd->dir == (*state)->direction ? "fwd" : "rev"); 4235 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4236 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4237 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4238 ' ': '2', 4239 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4240 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4241 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4242 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4243 } 4244 REASON_SET(reason, PFRES_BADSTATE); 4245 return (PF_DROP); 4246 } 4247 4248 return (PF_PASS); 4249 } 4250 4251 static int 4252 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4253 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4254 { 4255 struct tcphdr *th = pd->hdr.tcp; 4256 4257 if (th->th_flags & TH_SYN) 4258 if (src->state < TCPS_SYN_SENT) 4259 src->state = TCPS_SYN_SENT; 4260 if (th->th_flags & TH_FIN) 4261 if (src->state < TCPS_CLOSING) 4262 src->state = TCPS_CLOSING; 4263 if (th->th_flags & TH_ACK) { 4264 if (dst->state == TCPS_SYN_SENT) { 4265 dst->state = TCPS_ESTABLISHED; 4266 if (src->state == TCPS_ESTABLISHED && 4267 (*state)->src_node != NULL && 4268 pf_src_connlimit(state)) { 4269 REASON_SET(reason, PFRES_SRCLIMIT); 4270 return (PF_DROP); 4271 } 4272 } else if (dst->state == TCPS_CLOSING) { 4273 dst->state = TCPS_FIN_WAIT_2; 4274 } else if (src->state == TCPS_SYN_SENT && 4275 dst->state < TCPS_SYN_SENT) { 4276 /* 4277 * Handle a special sloppy case where we only see one 4278 * half of the connection. If there is a ACK after 4279 * the initial SYN without ever seeing a packet from 4280 * the destination, set the connection to established. 4281 */ 4282 dst->state = src->state = TCPS_ESTABLISHED; 4283 if ((*state)->src_node != NULL && 4284 pf_src_connlimit(state)) { 4285 REASON_SET(reason, PFRES_SRCLIMIT); 4286 return (PF_DROP); 4287 } 4288 } else if (src->state == TCPS_CLOSING && 4289 dst->state == TCPS_ESTABLISHED && 4290 dst->seqlo == 0) { 4291 /* 4292 * Handle the closing of half connections where we 4293 * don't see the full bidirectional FIN/ACK+ACK 4294 * handshake. 4295 */ 4296 dst->state = TCPS_CLOSING; 4297 } 4298 } 4299 if (th->th_flags & TH_RST) 4300 src->state = dst->state = TCPS_TIME_WAIT; 4301 4302 /* update expire time */ 4303 (*state)->expire = time_uptime; 4304 if (src->state >= TCPS_FIN_WAIT_2 && 4305 dst->state >= TCPS_FIN_WAIT_2) 4306 (*state)->timeout = PFTM_TCP_CLOSED; 4307 else if (src->state >= TCPS_CLOSING && 4308 dst->state >= TCPS_CLOSING) 4309 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4310 else if (src->state < TCPS_ESTABLISHED || 4311 dst->state < TCPS_ESTABLISHED) 4312 (*state)->timeout = PFTM_TCP_OPENING; 4313 else if (src->state >= TCPS_CLOSING || 4314 dst->state >= TCPS_CLOSING) 4315 (*state)->timeout = PFTM_TCP_CLOSING; 4316 else 4317 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4318 4319 return (PF_PASS); 4320 } 4321 4322 static int 4323 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4324 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4325 u_short *reason) 4326 { 4327 struct pf_state_key_cmp key; 4328 struct tcphdr *th = pd->hdr.tcp; 4329 int copyback = 0; 4330 struct pf_state_peer *src, *dst; 4331 struct pf_state_key *sk; 4332 4333 bzero(&key, sizeof(key)); 4334 key.af = pd->af; 4335 key.proto = IPPROTO_TCP; 4336 if (direction == PF_IN) { /* wire side, straight */ 4337 PF_ACPY(&key.addr[0], pd->src, key.af); 4338 PF_ACPY(&key.addr[1], pd->dst, key.af); 4339 key.port[0] = th->th_sport; 4340 key.port[1] = th->th_dport; 4341 } else { /* stack side, reverse */ 4342 PF_ACPY(&key.addr[1], pd->src, key.af); 4343 PF_ACPY(&key.addr[0], pd->dst, key.af); 4344 key.port[1] = th->th_sport; 4345 key.port[0] = th->th_dport; 4346 } 4347 4348 STATE_LOOKUP(kif, &key, direction, *state, pd); 4349 4350 if (direction == (*state)->direction) { 4351 src = &(*state)->src; 4352 dst = &(*state)->dst; 4353 } else { 4354 src = &(*state)->dst; 4355 dst = &(*state)->src; 4356 } 4357 4358 sk = (*state)->key[pd->didx]; 4359 4360 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4361 if (direction != (*state)->direction) { 4362 REASON_SET(reason, PFRES_SYNPROXY); 4363 return (PF_SYNPROXY_DROP); 4364 } 4365 if (th->th_flags & TH_SYN) { 4366 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4367 REASON_SET(reason, PFRES_SYNPROXY); 4368 return (PF_DROP); 4369 } 4370 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4371 pd->src, th->th_dport, th->th_sport, 4372 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4373 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4374 REASON_SET(reason, PFRES_SYNPROXY); 4375 return (PF_SYNPROXY_DROP); 4376 } else if (!(th->th_flags & TH_ACK) || 4377 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4378 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4379 REASON_SET(reason, PFRES_SYNPROXY); 4380 return (PF_DROP); 4381 } else if ((*state)->src_node != NULL && 4382 pf_src_connlimit(state)) { 4383 REASON_SET(reason, PFRES_SRCLIMIT); 4384 return (PF_DROP); 4385 } else 4386 (*state)->src.state = PF_TCPS_PROXY_DST; 4387 } 4388 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4389 if (direction == (*state)->direction) { 4390 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4391 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4392 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4393 REASON_SET(reason, PFRES_SYNPROXY); 4394 return (PF_DROP); 4395 } 4396 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4397 if ((*state)->dst.seqhi == 1) 4398 (*state)->dst.seqhi = htonl(arc4random()); 4399 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4400 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4401 sk->port[pd->sidx], sk->port[pd->didx], 4402 (*state)->dst.seqhi, 0, TH_SYN, 0, 4403 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4404 REASON_SET(reason, PFRES_SYNPROXY); 4405 return (PF_SYNPROXY_DROP); 4406 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4407 (TH_SYN|TH_ACK)) || 4408 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4409 REASON_SET(reason, PFRES_SYNPROXY); 4410 return (PF_DROP); 4411 } else { 4412 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4413 (*state)->dst.seqlo = ntohl(th->th_seq); 4414 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4415 pd->src, th->th_dport, th->th_sport, 4416 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4417 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4418 (*state)->tag, NULL); 4419 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4420 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4421 sk->port[pd->sidx], sk->port[pd->didx], 4422 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4423 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4424 (*state)->src.seqdiff = (*state)->dst.seqhi - 4425 (*state)->src.seqlo; 4426 (*state)->dst.seqdiff = (*state)->src.seqhi - 4427 (*state)->dst.seqlo; 4428 (*state)->src.seqhi = (*state)->src.seqlo + 4429 (*state)->dst.max_win; 4430 (*state)->dst.seqhi = (*state)->dst.seqlo + 4431 (*state)->src.max_win; 4432 (*state)->src.wscale = (*state)->dst.wscale = 0; 4433 (*state)->src.state = (*state)->dst.state = 4434 TCPS_ESTABLISHED; 4435 REASON_SET(reason, PFRES_SYNPROXY); 4436 return (PF_SYNPROXY_DROP); 4437 } 4438 } 4439 4440 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4441 dst->state >= TCPS_FIN_WAIT_2 && 4442 src->state >= TCPS_FIN_WAIT_2) { 4443 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4444 printf("pf: state reuse "); 4445 pf_print_state(*state); 4446 pf_print_flags(th->th_flags); 4447 printf("\n"); 4448 } 4449 /* XXX make sure it's the same direction ?? */ 4450 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4451 pf_unlink_state(*state, PF_ENTER_LOCKED); 4452 *state = NULL; 4453 return (PF_DROP); 4454 } 4455 4456 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4457 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4458 return (PF_DROP); 4459 } else { 4460 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4461 ©back) == PF_DROP) 4462 return (PF_DROP); 4463 } 4464 4465 /* translate source/destination address, if necessary */ 4466 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4467 struct pf_state_key *nk = (*state)->key[pd->didx]; 4468 4469 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4470 nk->port[pd->sidx] != th->th_sport) 4471 pf_change_ap(m, pd->src, &th->th_sport, 4472 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4473 nk->port[pd->sidx], 0, pd->af); 4474 4475 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4476 nk->port[pd->didx] != th->th_dport) 4477 pf_change_ap(m, pd->dst, &th->th_dport, 4478 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4479 nk->port[pd->didx], 0, pd->af); 4480 copyback = 1; 4481 } 4482 4483 /* Copyback sequence modulation or stateful scrub changes if needed */ 4484 if (copyback) 4485 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4486 4487 return (PF_PASS); 4488 } 4489 4490 static int 4491 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4492 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4493 { 4494 struct pf_state_peer *src, *dst; 4495 struct pf_state_key_cmp key; 4496 struct udphdr *uh = pd->hdr.udp; 4497 4498 bzero(&key, sizeof(key)); 4499 key.af = pd->af; 4500 key.proto = IPPROTO_UDP; 4501 if (direction == PF_IN) { /* wire side, straight */ 4502 PF_ACPY(&key.addr[0], pd->src, key.af); 4503 PF_ACPY(&key.addr[1], pd->dst, key.af); 4504 key.port[0] = uh->uh_sport; 4505 key.port[1] = uh->uh_dport; 4506 } else { /* stack side, reverse */ 4507 PF_ACPY(&key.addr[1], pd->src, key.af); 4508 PF_ACPY(&key.addr[0], pd->dst, key.af); 4509 key.port[1] = uh->uh_sport; 4510 key.port[0] = uh->uh_dport; 4511 } 4512 4513 STATE_LOOKUP(kif, &key, direction, *state, pd); 4514 4515 if (direction == (*state)->direction) { 4516 src = &(*state)->src; 4517 dst = &(*state)->dst; 4518 } else { 4519 src = &(*state)->dst; 4520 dst = &(*state)->src; 4521 } 4522 4523 /* update states */ 4524 if (src->state < PFUDPS_SINGLE) 4525 src->state = PFUDPS_SINGLE; 4526 if (dst->state == PFUDPS_SINGLE) 4527 dst->state = PFUDPS_MULTIPLE; 4528 4529 /* update expire time */ 4530 (*state)->expire = time_uptime; 4531 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4532 (*state)->timeout = PFTM_UDP_MULTIPLE; 4533 else 4534 (*state)->timeout = PFTM_UDP_SINGLE; 4535 4536 /* translate source/destination address, if necessary */ 4537 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4538 struct pf_state_key *nk = (*state)->key[pd->didx]; 4539 4540 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4541 nk->port[pd->sidx] != uh->uh_sport) 4542 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4543 &uh->uh_sum, &nk->addr[pd->sidx], 4544 nk->port[pd->sidx], 1, pd->af); 4545 4546 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4547 nk->port[pd->didx] != uh->uh_dport) 4548 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4549 &uh->uh_sum, &nk->addr[pd->didx], 4550 nk->port[pd->didx], 1, pd->af); 4551 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4552 } 4553 4554 return (PF_PASS); 4555 } 4556 4557 static int 4558 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4559 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4560 { 4561 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4562 u_int16_t icmpid = 0, *icmpsum; 4563 u_int8_t icmptype; 4564 int state_icmp = 0; 4565 struct pf_state_key_cmp key; 4566 4567 bzero(&key, sizeof(key)); 4568 switch (pd->proto) { 4569 #ifdef INET 4570 case IPPROTO_ICMP: 4571 icmptype = pd->hdr.icmp->icmp_type; 4572 icmpid = pd->hdr.icmp->icmp_id; 4573 icmpsum = &pd->hdr.icmp->icmp_cksum; 4574 4575 if (icmptype == ICMP_UNREACH || 4576 icmptype == ICMP_SOURCEQUENCH || 4577 icmptype == ICMP_REDIRECT || 4578 icmptype == ICMP_TIMXCEED || 4579 icmptype == ICMP_PARAMPROB) 4580 state_icmp++; 4581 break; 4582 #endif /* INET */ 4583 #ifdef INET6 4584 case IPPROTO_ICMPV6: 4585 icmptype = pd->hdr.icmp6->icmp6_type; 4586 icmpid = pd->hdr.icmp6->icmp6_id; 4587 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4588 4589 if (icmptype == ICMP6_DST_UNREACH || 4590 icmptype == ICMP6_PACKET_TOO_BIG || 4591 icmptype == ICMP6_TIME_EXCEEDED || 4592 icmptype == ICMP6_PARAM_PROB) 4593 state_icmp++; 4594 break; 4595 #endif /* INET6 */ 4596 } 4597 4598 if (!state_icmp) { 4599 4600 /* 4601 * ICMP query/reply message not related to a TCP/UDP packet. 4602 * Search for an ICMP state. 4603 */ 4604 key.af = pd->af; 4605 key.proto = pd->proto; 4606 key.port[0] = key.port[1] = icmpid; 4607 if (direction == PF_IN) { /* wire side, straight */ 4608 PF_ACPY(&key.addr[0], pd->src, key.af); 4609 PF_ACPY(&key.addr[1], pd->dst, key.af); 4610 } else { /* stack side, reverse */ 4611 PF_ACPY(&key.addr[1], pd->src, key.af); 4612 PF_ACPY(&key.addr[0], pd->dst, key.af); 4613 } 4614 4615 STATE_LOOKUP(kif, &key, direction, *state, pd); 4616 4617 (*state)->expire = time_uptime; 4618 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4619 4620 /* translate source/destination address, if necessary */ 4621 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4622 struct pf_state_key *nk = (*state)->key[pd->didx]; 4623 4624 switch (pd->af) { 4625 #ifdef INET 4626 case AF_INET: 4627 if (PF_ANEQ(pd->src, 4628 &nk->addr[pd->sidx], AF_INET)) 4629 pf_change_a(&saddr->v4.s_addr, 4630 pd->ip_sum, 4631 nk->addr[pd->sidx].v4.s_addr, 0); 4632 4633 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4634 AF_INET)) 4635 pf_change_a(&daddr->v4.s_addr, 4636 pd->ip_sum, 4637 nk->addr[pd->didx].v4.s_addr, 0); 4638 4639 if (nk->port[0] != 4640 pd->hdr.icmp->icmp_id) { 4641 pd->hdr.icmp->icmp_cksum = 4642 pf_cksum_fixup( 4643 pd->hdr.icmp->icmp_cksum, icmpid, 4644 nk->port[pd->sidx], 0); 4645 pd->hdr.icmp->icmp_id = 4646 nk->port[pd->sidx]; 4647 } 4648 4649 m_copyback(m, off, ICMP_MINLEN, 4650 (caddr_t )pd->hdr.icmp); 4651 break; 4652 #endif /* INET */ 4653 #ifdef INET6 4654 case AF_INET6: 4655 if (PF_ANEQ(pd->src, 4656 &nk->addr[pd->sidx], AF_INET6)) 4657 pf_change_a6(saddr, 4658 &pd->hdr.icmp6->icmp6_cksum, 4659 &nk->addr[pd->sidx], 0); 4660 4661 if (PF_ANEQ(pd->dst, 4662 &nk->addr[pd->didx], AF_INET6)) 4663 pf_change_a6(daddr, 4664 &pd->hdr.icmp6->icmp6_cksum, 4665 &nk->addr[pd->didx], 0); 4666 4667 m_copyback(m, off, sizeof(struct icmp6_hdr), 4668 (caddr_t )pd->hdr.icmp6); 4669 break; 4670 #endif /* INET6 */ 4671 } 4672 } 4673 return (PF_PASS); 4674 4675 } else { 4676 /* 4677 * ICMP error message in response to a TCP/UDP packet. 4678 * Extract the inner TCP/UDP header and search for that state. 4679 */ 4680 4681 struct pf_pdesc pd2; 4682 bzero(&pd2, sizeof pd2); 4683 #ifdef INET 4684 struct ip h2; 4685 #endif /* INET */ 4686 #ifdef INET6 4687 struct ip6_hdr h2_6; 4688 int terminal = 0; 4689 #endif /* INET6 */ 4690 int ipoff2 = 0; 4691 int off2 = 0; 4692 4693 pd2.af = pd->af; 4694 /* Payload packet is from the opposite direction. */ 4695 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4696 pd2.didx = (direction == PF_IN) ? 0 : 1; 4697 switch (pd->af) { 4698 #ifdef INET 4699 case AF_INET: 4700 /* offset of h2 in mbuf chain */ 4701 ipoff2 = off + ICMP_MINLEN; 4702 4703 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4704 NULL, reason, pd2.af)) { 4705 DPFPRINTF(PF_DEBUG_MISC, 4706 ("pf: ICMP error message too short " 4707 "(ip)\n")); 4708 return (PF_DROP); 4709 } 4710 /* 4711 * ICMP error messages don't refer to non-first 4712 * fragments 4713 */ 4714 if (h2.ip_off & htons(IP_OFFMASK)) { 4715 REASON_SET(reason, PFRES_FRAG); 4716 return (PF_DROP); 4717 } 4718 4719 /* offset of protocol header that follows h2 */ 4720 off2 = ipoff2 + (h2.ip_hl << 2); 4721 4722 pd2.proto = h2.ip_p; 4723 pd2.src = (struct pf_addr *)&h2.ip_src; 4724 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4725 pd2.ip_sum = &h2.ip_sum; 4726 break; 4727 #endif /* INET */ 4728 #ifdef INET6 4729 case AF_INET6: 4730 ipoff2 = off + sizeof(struct icmp6_hdr); 4731 4732 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4733 NULL, reason, pd2.af)) { 4734 DPFPRINTF(PF_DEBUG_MISC, 4735 ("pf: ICMP error message too short " 4736 "(ip6)\n")); 4737 return (PF_DROP); 4738 } 4739 pd2.proto = h2_6.ip6_nxt; 4740 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4741 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4742 pd2.ip_sum = NULL; 4743 off2 = ipoff2 + sizeof(h2_6); 4744 do { 4745 switch (pd2.proto) { 4746 case IPPROTO_FRAGMENT: 4747 /* 4748 * ICMPv6 error messages for 4749 * non-first fragments 4750 */ 4751 REASON_SET(reason, PFRES_FRAG); 4752 return (PF_DROP); 4753 case IPPROTO_AH: 4754 case IPPROTO_HOPOPTS: 4755 case IPPROTO_ROUTING: 4756 case IPPROTO_DSTOPTS: { 4757 /* get next header and header length */ 4758 struct ip6_ext opt6; 4759 4760 if (!pf_pull_hdr(m, off2, &opt6, 4761 sizeof(opt6), NULL, reason, 4762 pd2.af)) { 4763 DPFPRINTF(PF_DEBUG_MISC, 4764 ("pf: ICMPv6 short opt\n")); 4765 return (PF_DROP); 4766 } 4767 if (pd2.proto == IPPROTO_AH) 4768 off2 += (opt6.ip6e_len + 2) * 4; 4769 else 4770 off2 += (opt6.ip6e_len + 1) * 8; 4771 pd2.proto = opt6.ip6e_nxt; 4772 /* goto the next header */ 4773 break; 4774 } 4775 default: 4776 terminal++; 4777 break; 4778 } 4779 } while (!terminal); 4780 break; 4781 #endif /* INET6 */ 4782 } 4783 4784 switch (pd2.proto) { 4785 case IPPROTO_TCP: { 4786 struct tcphdr th; 4787 u_int32_t seq; 4788 struct pf_state_peer *src, *dst; 4789 u_int8_t dws; 4790 int copyback = 0; 4791 4792 /* 4793 * Only the first 8 bytes of the TCP header can be 4794 * expected. Don't access any TCP header fields after 4795 * th_seq, an ackskew test is not possible. 4796 */ 4797 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4798 pd2.af)) { 4799 DPFPRINTF(PF_DEBUG_MISC, 4800 ("pf: ICMP error message too short " 4801 "(tcp)\n")); 4802 return (PF_DROP); 4803 } 4804 4805 key.af = pd2.af; 4806 key.proto = IPPROTO_TCP; 4807 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4808 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4809 key.port[pd2.sidx] = th.th_sport; 4810 key.port[pd2.didx] = th.th_dport; 4811 4812 STATE_LOOKUP(kif, &key, direction, *state, pd); 4813 4814 if (direction == (*state)->direction) { 4815 src = &(*state)->dst; 4816 dst = &(*state)->src; 4817 } else { 4818 src = &(*state)->src; 4819 dst = &(*state)->dst; 4820 } 4821 4822 if (src->wscale && dst->wscale) 4823 dws = dst->wscale & PF_WSCALE_MASK; 4824 else 4825 dws = 0; 4826 4827 /* Demodulate sequence number */ 4828 seq = ntohl(th.th_seq) - src->seqdiff; 4829 if (src->seqdiff) { 4830 pf_change_a(&th.th_seq, icmpsum, 4831 htonl(seq), 0); 4832 copyback = 1; 4833 } 4834 4835 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4836 (!SEQ_GEQ(src->seqhi, seq) || 4837 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4838 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4839 printf("pf: BAD ICMP %d:%d ", 4840 icmptype, pd->hdr.icmp->icmp_code); 4841 pf_print_host(pd->src, 0, pd->af); 4842 printf(" -> "); 4843 pf_print_host(pd->dst, 0, pd->af); 4844 printf(" state: "); 4845 pf_print_state(*state); 4846 printf(" seq=%u\n", seq); 4847 } 4848 REASON_SET(reason, PFRES_BADSTATE); 4849 return (PF_DROP); 4850 } else { 4851 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4852 printf("pf: OK ICMP %d:%d ", 4853 icmptype, pd->hdr.icmp->icmp_code); 4854 pf_print_host(pd->src, 0, pd->af); 4855 printf(" -> "); 4856 pf_print_host(pd->dst, 0, pd->af); 4857 printf(" state: "); 4858 pf_print_state(*state); 4859 printf(" seq=%u\n", seq); 4860 } 4861 } 4862 4863 /* translate source/destination address, if necessary */ 4864 if ((*state)->key[PF_SK_WIRE] != 4865 (*state)->key[PF_SK_STACK]) { 4866 struct pf_state_key *nk = 4867 (*state)->key[pd->didx]; 4868 4869 if (PF_ANEQ(pd2.src, 4870 &nk->addr[pd2.sidx], pd2.af) || 4871 nk->port[pd2.sidx] != th.th_sport) 4872 pf_change_icmp(pd2.src, &th.th_sport, 4873 daddr, &nk->addr[pd2.sidx], 4874 nk->port[pd2.sidx], NULL, 4875 pd2.ip_sum, icmpsum, 4876 pd->ip_sum, 0, pd2.af); 4877 4878 if (PF_ANEQ(pd2.dst, 4879 &nk->addr[pd2.didx], pd2.af) || 4880 nk->port[pd2.didx] != th.th_dport) 4881 pf_change_icmp(pd2.dst, &th.th_dport, 4882 saddr, &nk->addr[pd2.didx], 4883 nk->port[pd2.didx], NULL, 4884 pd2.ip_sum, icmpsum, 4885 pd->ip_sum, 0, pd2.af); 4886 copyback = 1; 4887 } 4888 4889 if (copyback) { 4890 switch (pd2.af) { 4891 #ifdef INET 4892 case AF_INET: 4893 m_copyback(m, off, ICMP_MINLEN, 4894 (caddr_t )pd->hdr.icmp); 4895 m_copyback(m, ipoff2, sizeof(h2), 4896 (caddr_t )&h2); 4897 break; 4898 #endif /* INET */ 4899 #ifdef INET6 4900 case AF_INET6: 4901 m_copyback(m, off, 4902 sizeof(struct icmp6_hdr), 4903 (caddr_t )pd->hdr.icmp6); 4904 m_copyback(m, ipoff2, sizeof(h2_6), 4905 (caddr_t )&h2_6); 4906 break; 4907 #endif /* INET6 */ 4908 } 4909 m_copyback(m, off2, 8, (caddr_t)&th); 4910 } 4911 4912 return (PF_PASS); 4913 break; 4914 } 4915 case IPPROTO_UDP: { 4916 struct udphdr uh; 4917 4918 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4919 NULL, reason, pd2.af)) { 4920 DPFPRINTF(PF_DEBUG_MISC, 4921 ("pf: ICMP error message too short " 4922 "(udp)\n")); 4923 return (PF_DROP); 4924 } 4925 4926 key.af = pd2.af; 4927 key.proto = IPPROTO_UDP; 4928 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4929 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4930 key.port[pd2.sidx] = uh.uh_sport; 4931 key.port[pd2.didx] = uh.uh_dport; 4932 4933 STATE_LOOKUP(kif, &key, direction, *state, pd); 4934 4935 /* translate source/destination address, if necessary */ 4936 if ((*state)->key[PF_SK_WIRE] != 4937 (*state)->key[PF_SK_STACK]) { 4938 struct pf_state_key *nk = 4939 (*state)->key[pd->didx]; 4940 4941 if (PF_ANEQ(pd2.src, 4942 &nk->addr[pd2.sidx], pd2.af) || 4943 nk->port[pd2.sidx] != uh.uh_sport) 4944 pf_change_icmp(pd2.src, &uh.uh_sport, 4945 daddr, &nk->addr[pd2.sidx], 4946 nk->port[pd2.sidx], &uh.uh_sum, 4947 pd2.ip_sum, icmpsum, 4948 pd->ip_sum, 1, pd2.af); 4949 4950 if (PF_ANEQ(pd2.dst, 4951 &nk->addr[pd2.didx], pd2.af) || 4952 nk->port[pd2.didx] != uh.uh_dport) 4953 pf_change_icmp(pd2.dst, &uh.uh_dport, 4954 saddr, &nk->addr[pd2.didx], 4955 nk->port[pd2.didx], &uh.uh_sum, 4956 pd2.ip_sum, icmpsum, 4957 pd->ip_sum, 1, pd2.af); 4958 4959 switch (pd2.af) { 4960 #ifdef INET 4961 case AF_INET: 4962 m_copyback(m, off, ICMP_MINLEN, 4963 (caddr_t )pd->hdr.icmp); 4964 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4965 break; 4966 #endif /* INET */ 4967 #ifdef INET6 4968 case AF_INET6: 4969 m_copyback(m, off, 4970 sizeof(struct icmp6_hdr), 4971 (caddr_t )pd->hdr.icmp6); 4972 m_copyback(m, ipoff2, sizeof(h2_6), 4973 (caddr_t )&h2_6); 4974 break; 4975 #endif /* INET6 */ 4976 } 4977 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4978 } 4979 return (PF_PASS); 4980 break; 4981 } 4982 #ifdef INET 4983 case IPPROTO_ICMP: { 4984 struct icmp iih; 4985 4986 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4987 NULL, reason, pd2.af)) { 4988 DPFPRINTF(PF_DEBUG_MISC, 4989 ("pf: ICMP error message too short i" 4990 "(icmp)\n")); 4991 return (PF_DROP); 4992 } 4993 4994 key.af = pd2.af; 4995 key.proto = IPPROTO_ICMP; 4996 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4997 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4998 key.port[0] = key.port[1] = iih.icmp_id; 4999 5000 STATE_LOOKUP(kif, &key, direction, *state, pd); 5001 5002 /* translate source/destination address, if necessary */ 5003 if ((*state)->key[PF_SK_WIRE] != 5004 (*state)->key[PF_SK_STACK]) { 5005 struct pf_state_key *nk = 5006 (*state)->key[pd->didx]; 5007 5008 if (PF_ANEQ(pd2.src, 5009 &nk->addr[pd2.sidx], pd2.af) || 5010 nk->port[pd2.sidx] != iih.icmp_id) 5011 pf_change_icmp(pd2.src, &iih.icmp_id, 5012 daddr, &nk->addr[pd2.sidx], 5013 nk->port[pd2.sidx], NULL, 5014 pd2.ip_sum, icmpsum, 5015 pd->ip_sum, 0, AF_INET); 5016 5017 if (PF_ANEQ(pd2.dst, 5018 &nk->addr[pd2.didx], pd2.af) || 5019 nk->port[pd2.didx] != iih.icmp_id) 5020 pf_change_icmp(pd2.dst, &iih.icmp_id, 5021 saddr, &nk->addr[pd2.didx], 5022 nk->port[pd2.didx], NULL, 5023 pd2.ip_sum, icmpsum, 5024 pd->ip_sum, 0, AF_INET); 5025 5026 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 5027 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5028 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5029 } 5030 return (PF_PASS); 5031 break; 5032 } 5033 #endif /* INET */ 5034 #ifdef INET6 5035 case IPPROTO_ICMPV6: { 5036 struct icmp6_hdr iih; 5037 5038 if (!pf_pull_hdr(m, off2, &iih, 5039 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5040 DPFPRINTF(PF_DEBUG_MISC, 5041 ("pf: ICMP error message too short " 5042 "(icmp6)\n")); 5043 return (PF_DROP); 5044 } 5045 5046 key.af = pd2.af; 5047 key.proto = IPPROTO_ICMPV6; 5048 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5049 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5050 key.port[0] = key.port[1] = iih.icmp6_id; 5051 5052 STATE_LOOKUP(kif, &key, direction, *state, pd); 5053 5054 /* translate source/destination address, if necessary */ 5055 if ((*state)->key[PF_SK_WIRE] != 5056 (*state)->key[PF_SK_STACK]) { 5057 struct pf_state_key *nk = 5058 (*state)->key[pd->didx]; 5059 5060 if (PF_ANEQ(pd2.src, 5061 &nk->addr[pd2.sidx], pd2.af) || 5062 nk->port[pd2.sidx] != iih.icmp6_id) 5063 pf_change_icmp(pd2.src, &iih.icmp6_id, 5064 daddr, &nk->addr[pd2.sidx], 5065 nk->port[pd2.sidx], NULL, 5066 pd2.ip_sum, icmpsum, 5067 pd->ip_sum, 0, AF_INET6); 5068 5069 if (PF_ANEQ(pd2.dst, 5070 &nk->addr[pd2.didx], pd2.af) || 5071 nk->port[pd2.didx] != iih.icmp6_id) 5072 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5073 saddr, &nk->addr[pd2.didx], 5074 nk->port[pd2.didx], NULL, 5075 pd2.ip_sum, icmpsum, 5076 pd->ip_sum, 0, AF_INET6); 5077 5078 m_copyback(m, off, sizeof(struct icmp6_hdr), 5079 (caddr_t)pd->hdr.icmp6); 5080 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5081 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5082 (caddr_t)&iih); 5083 } 5084 return (PF_PASS); 5085 break; 5086 } 5087 #endif /* INET6 */ 5088 default: { 5089 key.af = pd2.af; 5090 key.proto = pd2.proto; 5091 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5092 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5093 key.port[0] = key.port[1] = 0; 5094 5095 STATE_LOOKUP(kif, &key, direction, *state, pd); 5096 5097 /* translate source/destination address, if necessary */ 5098 if ((*state)->key[PF_SK_WIRE] != 5099 (*state)->key[PF_SK_STACK]) { 5100 struct pf_state_key *nk = 5101 (*state)->key[pd->didx]; 5102 5103 if (PF_ANEQ(pd2.src, 5104 &nk->addr[pd2.sidx], pd2.af)) 5105 pf_change_icmp(pd2.src, NULL, daddr, 5106 &nk->addr[pd2.sidx], 0, NULL, 5107 pd2.ip_sum, icmpsum, 5108 pd->ip_sum, 0, pd2.af); 5109 5110 if (PF_ANEQ(pd2.dst, 5111 &nk->addr[pd2.didx], pd2.af)) 5112 pf_change_icmp(pd2.dst, NULL, saddr, 5113 &nk->addr[pd2.didx], 0, NULL, 5114 pd2.ip_sum, icmpsum, 5115 pd->ip_sum, 0, pd2.af); 5116 5117 switch (pd2.af) { 5118 #ifdef INET 5119 case AF_INET: 5120 m_copyback(m, off, ICMP_MINLEN, 5121 (caddr_t)pd->hdr.icmp); 5122 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5123 break; 5124 #endif /* INET */ 5125 #ifdef INET6 5126 case AF_INET6: 5127 m_copyback(m, off, 5128 sizeof(struct icmp6_hdr), 5129 (caddr_t )pd->hdr.icmp6); 5130 m_copyback(m, ipoff2, sizeof(h2_6), 5131 (caddr_t )&h2_6); 5132 break; 5133 #endif /* INET6 */ 5134 } 5135 } 5136 return (PF_PASS); 5137 break; 5138 } 5139 } 5140 } 5141 } 5142 5143 static int 5144 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5145 struct mbuf *m, struct pf_pdesc *pd) 5146 { 5147 struct pf_state_peer *src, *dst; 5148 struct pf_state_key_cmp key; 5149 5150 bzero(&key, sizeof(key)); 5151 key.af = pd->af; 5152 key.proto = pd->proto; 5153 if (direction == PF_IN) { 5154 PF_ACPY(&key.addr[0], pd->src, key.af); 5155 PF_ACPY(&key.addr[1], pd->dst, key.af); 5156 key.port[0] = key.port[1] = 0; 5157 } else { 5158 PF_ACPY(&key.addr[1], pd->src, key.af); 5159 PF_ACPY(&key.addr[0], pd->dst, key.af); 5160 key.port[1] = key.port[0] = 0; 5161 } 5162 5163 STATE_LOOKUP(kif, &key, direction, *state, pd); 5164 5165 if (direction == (*state)->direction) { 5166 src = &(*state)->src; 5167 dst = &(*state)->dst; 5168 } else { 5169 src = &(*state)->dst; 5170 dst = &(*state)->src; 5171 } 5172 5173 /* update states */ 5174 if (src->state < PFOTHERS_SINGLE) 5175 src->state = PFOTHERS_SINGLE; 5176 if (dst->state == PFOTHERS_SINGLE) 5177 dst->state = PFOTHERS_MULTIPLE; 5178 5179 /* update expire time */ 5180 (*state)->expire = time_uptime; 5181 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5182 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5183 else 5184 (*state)->timeout = PFTM_OTHER_SINGLE; 5185 5186 /* translate source/destination address, if necessary */ 5187 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5188 struct pf_state_key *nk = (*state)->key[pd->didx]; 5189 5190 KASSERT(nk, ("%s: nk is null", __func__)); 5191 KASSERT(pd, ("%s: pd is null", __func__)); 5192 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5193 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5194 switch (pd->af) { 5195 #ifdef INET 5196 case AF_INET: 5197 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5198 pf_change_a(&pd->src->v4.s_addr, 5199 pd->ip_sum, 5200 nk->addr[pd->sidx].v4.s_addr, 5201 0); 5202 5203 5204 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5205 pf_change_a(&pd->dst->v4.s_addr, 5206 pd->ip_sum, 5207 nk->addr[pd->didx].v4.s_addr, 5208 0); 5209 5210 break; 5211 #endif /* INET */ 5212 #ifdef INET6 5213 case AF_INET6: 5214 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5215 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5216 5217 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5218 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5219 #endif /* INET6 */ 5220 } 5221 } 5222 return (PF_PASS); 5223 } 5224 5225 /* 5226 * ipoff and off are measured from the start of the mbuf chain. 5227 * h must be at "ipoff" on the mbuf chain. 5228 */ 5229 void * 5230 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5231 u_short *actionp, u_short *reasonp, sa_family_t af) 5232 { 5233 switch (af) { 5234 #ifdef INET 5235 case AF_INET: { 5236 struct ip *h = mtod(m, struct ip *); 5237 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5238 5239 if (fragoff) { 5240 if (fragoff >= len) 5241 ACTION_SET(actionp, PF_PASS); 5242 else { 5243 ACTION_SET(actionp, PF_DROP); 5244 REASON_SET(reasonp, PFRES_FRAG); 5245 } 5246 return (NULL); 5247 } 5248 if (m->m_pkthdr.len < off + len || 5249 ntohs(h->ip_len) < off + len) { 5250 ACTION_SET(actionp, PF_DROP); 5251 REASON_SET(reasonp, PFRES_SHORT); 5252 return (NULL); 5253 } 5254 break; 5255 } 5256 #endif /* INET */ 5257 #ifdef INET6 5258 case AF_INET6: { 5259 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5260 5261 if (m->m_pkthdr.len < off + len || 5262 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5263 (unsigned)(off + len)) { 5264 ACTION_SET(actionp, PF_DROP); 5265 REASON_SET(reasonp, PFRES_SHORT); 5266 return (NULL); 5267 } 5268 break; 5269 } 5270 #endif /* INET6 */ 5271 } 5272 m_copydata(m, off, len, p); 5273 return (p); 5274 } 5275 5276 #ifdef RADIX_MPATH 5277 static int 5278 pf_routable_oldmpath(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5279 int rtableid) 5280 { 5281 struct radix_node_head *rnh; 5282 struct sockaddr_in *dst; 5283 int ret = 1; 5284 int check_mpath; 5285 #ifdef INET6 5286 struct sockaddr_in6 *dst6; 5287 struct route_in6 ro; 5288 #else 5289 struct route ro; 5290 #endif 5291 struct radix_node *rn; 5292 struct rtentry *rt; 5293 struct ifnet *ifp; 5294 5295 check_mpath = 0; 5296 /* XXX: stick to table 0 for now */ 5297 rnh = rt_tables_get_rnh(0, af); 5298 if (rnh != NULL && rn_mpath_capable(rnh)) 5299 check_mpath = 1; 5300 bzero(&ro, sizeof(ro)); 5301 switch (af) { 5302 case AF_INET: 5303 dst = satosin(&ro.ro_dst); 5304 dst->sin_family = AF_INET; 5305 dst->sin_len = sizeof(*dst); 5306 dst->sin_addr = addr->v4; 5307 break; 5308 #ifdef INET6 5309 case AF_INET6: 5310 /* 5311 * Skip check for addresses with embedded interface scope, 5312 * as they would always match anyway. 5313 */ 5314 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5315 goto out; 5316 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5317 dst6->sin6_family = AF_INET6; 5318 dst6->sin6_len = sizeof(*dst6); 5319 dst6->sin6_addr = addr->v6; 5320 break; 5321 #endif /* INET6 */ 5322 default: 5323 return (0); 5324 } 5325 5326 /* Skip checks for ipsec interfaces */ 5327 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5328 goto out; 5329 5330 switch (af) { 5331 #ifdef INET6 5332 case AF_INET6: 5333 in6_rtalloc_ign(&ro, 0, rtableid); 5334 break; 5335 #endif 5336 #ifdef INET 5337 case AF_INET: 5338 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5339 break; 5340 #endif 5341 } 5342 5343 if (ro.ro_rt != NULL) { 5344 /* No interface given, this is a no-route check */ 5345 if (kif == NULL) 5346 goto out; 5347 5348 if (kif->pfik_ifp == NULL) { 5349 ret = 0; 5350 goto out; 5351 } 5352 5353 /* Perform uRPF check if passed input interface */ 5354 ret = 0; 5355 rn = (struct radix_node *)ro.ro_rt; 5356 do { 5357 rt = (struct rtentry *)rn; 5358 ifp = rt->rt_ifp; 5359 5360 if (kif->pfik_ifp == ifp) 5361 ret = 1; 5362 rn = rn_mpath_next(rn); 5363 } while (check_mpath == 1 && rn != NULL && ret == 0); 5364 } else 5365 ret = 0; 5366 out: 5367 if (ro.ro_rt != NULL) 5368 RTFREE(ro.ro_rt); 5369 return (ret); 5370 } 5371 #endif 5372 5373 int 5374 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5375 int rtableid) 5376 { 5377 #ifdef INET 5378 struct nhop4_basic nh4; 5379 #endif 5380 #ifdef INET6 5381 struct nhop6_basic nh6; 5382 #endif 5383 struct ifnet *ifp; 5384 #ifdef RADIX_MPATH 5385 struct radix_node_head *rnh; 5386 5387 /* XXX: stick to table 0 for now */ 5388 rnh = rt_tables_get_rnh(0, af); 5389 if (rnh != NULL && rn_mpath_capable(rnh)) 5390 return (pf_routable_oldmpath(addr, af, kif, rtableid)); 5391 #endif 5392 /* 5393 * Skip check for addresses with embedded interface scope, 5394 * as they would always match anyway. 5395 */ 5396 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5397 return (1); 5398 5399 if (af != AF_INET && af != AF_INET6) 5400 return (0); 5401 5402 /* Skip checks for ipsec interfaces */ 5403 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5404 return (1); 5405 5406 ifp = NULL; 5407 5408 switch (af) { 5409 #ifdef INET6 5410 case AF_INET6: 5411 if (fib6_lookup_nh_basic(rtableid, &addr->v6, 0, 0, 0, &nh6)!=0) 5412 return (0); 5413 ifp = nh6.nh_ifp; 5414 break; 5415 #endif 5416 #ifdef INET 5417 case AF_INET: 5418 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) != 0) 5419 return (0); 5420 ifp = nh4.nh_ifp; 5421 break; 5422 #endif 5423 } 5424 5425 /* No interface given, this is a no-route check */ 5426 if (kif == NULL) 5427 return (1); 5428 5429 if (kif->pfik_ifp == NULL) 5430 return (0); 5431 5432 /* Perform uRPF check if passed input interface */ 5433 if (kif->pfik_ifp == ifp) 5434 return (1); 5435 return (0); 5436 } 5437 5438 #ifdef INET 5439 static void 5440 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5441 struct pf_state *s, struct pf_pdesc *pd) 5442 { 5443 struct mbuf *m0, *m1; 5444 struct sockaddr_in dst; 5445 struct ip *ip; 5446 struct ifnet *ifp = NULL; 5447 struct pf_addr naddr; 5448 struct pf_src_node *sn = NULL; 5449 int error = 0; 5450 uint16_t ip_len, ip_off; 5451 5452 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5453 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5454 __func__)); 5455 5456 if ((pd->pf_mtag == NULL && 5457 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5458 pd->pf_mtag->routed++ > 3) { 5459 m0 = *m; 5460 *m = NULL; 5461 goto bad_locked; 5462 } 5463 5464 if (r->rt == PF_DUPTO) { 5465 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5466 if (s) 5467 PF_STATE_UNLOCK(s); 5468 return; 5469 } 5470 } else { 5471 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5472 if (s) 5473 PF_STATE_UNLOCK(s); 5474 return; 5475 } 5476 m0 = *m; 5477 } 5478 5479 ip = mtod(m0, struct ip *); 5480 5481 bzero(&dst, sizeof(dst)); 5482 dst.sin_family = AF_INET; 5483 dst.sin_len = sizeof(dst); 5484 dst.sin_addr = ip->ip_dst; 5485 5486 if (TAILQ_EMPTY(&r->rpool.list)) { 5487 DPFPRINTF(PF_DEBUG_URGENT, 5488 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5489 goto bad_locked; 5490 } 5491 if (s == NULL) { 5492 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5493 &naddr, NULL, &sn); 5494 if (!PF_AZERO(&naddr, AF_INET)) 5495 dst.sin_addr.s_addr = naddr.v4.s_addr; 5496 ifp = r->rpool.cur->kif ? 5497 r->rpool.cur->kif->pfik_ifp : NULL; 5498 } else { 5499 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5500 dst.sin_addr.s_addr = 5501 s->rt_addr.v4.s_addr; 5502 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5503 PF_STATE_UNLOCK(s); 5504 } 5505 if (ifp == NULL) 5506 goto bad; 5507 5508 if (oifp != ifp) { 5509 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5510 goto bad; 5511 else if (m0 == NULL) 5512 goto done; 5513 if (m0->m_len < sizeof(struct ip)) { 5514 DPFPRINTF(PF_DEBUG_URGENT, 5515 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5516 goto bad; 5517 } 5518 ip = mtod(m0, struct ip *); 5519 } 5520 5521 if (ifp->if_flags & IFF_LOOPBACK) 5522 m0->m_flags |= M_SKIP_FIREWALL; 5523 5524 ip_len = ntohs(ip->ip_len); 5525 ip_off = ntohs(ip->ip_off); 5526 5527 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5528 m0->m_pkthdr.csum_flags |= CSUM_IP; 5529 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5530 in_delayed_cksum(m0); 5531 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5532 } 5533 #ifdef SCTP 5534 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5535 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5536 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5537 } 5538 #endif 5539 5540 /* 5541 * If small enough for interface, or the interface will take 5542 * care of the fragmentation for us, we can just send directly. 5543 */ 5544 if (ip_len <= ifp->if_mtu || 5545 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5546 ip->ip_sum = 0; 5547 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5548 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5549 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5550 } 5551 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5552 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5553 goto done; 5554 } 5555 5556 /* Balk when DF bit is set or the interface didn't support TSO. */ 5557 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5558 error = EMSGSIZE; 5559 KMOD_IPSTAT_INC(ips_cantfrag); 5560 if (r->rt != PF_DUPTO) { 5561 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5562 ifp->if_mtu); 5563 goto done; 5564 } else 5565 goto bad; 5566 } 5567 5568 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5569 if (error) 5570 goto bad; 5571 5572 for (; m0; m0 = m1) { 5573 m1 = m0->m_nextpkt; 5574 m0->m_nextpkt = NULL; 5575 if (error == 0) { 5576 m_clrprotoflags(m0); 5577 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5578 } else 5579 m_freem(m0); 5580 } 5581 5582 if (error == 0) 5583 KMOD_IPSTAT_INC(ips_fragmented); 5584 5585 done: 5586 if (r->rt != PF_DUPTO) 5587 *m = NULL; 5588 return; 5589 5590 bad_locked: 5591 if (s) 5592 PF_STATE_UNLOCK(s); 5593 bad: 5594 m_freem(m0); 5595 goto done; 5596 } 5597 #endif /* INET */ 5598 5599 #ifdef INET6 5600 static void 5601 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5602 struct pf_state *s, struct pf_pdesc *pd) 5603 { 5604 struct mbuf *m0; 5605 struct sockaddr_in6 dst; 5606 struct ip6_hdr *ip6; 5607 struct ifnet *ifp = NULL; 5608 struct pf_addr naddr; 5609 struct pf_src_node *sn = NULL; 5610 5611 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5612 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5613 __func__)); 5614 5615 if ((pd->pf_mtag == NULL && 5616 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5617 pd->pf_mtag->routed++ > 3) { 5618 m0 = *m; 5619 *m = NULL; 5620 goto bad_locked; 5621 } 5622 5623 if (r->rt == PF_DUPTO) { 5624 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5625 if (s) 5626 PF_STATE_UNLOCK(s); 5627 return; 5628 } 5629 } else { 5630 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5631 if (s) 5632 PF_STATE_UNLOCK(s); 5633 return; 5634 } 5635 m0 = *m; 5636 } 5637 5638 ip6 = mtod(m0, struct ip6_hdr *); 5639 5640 bzero(&dst, sizeof(dst)); 5641 dst.sin6_family = AF_INET6; 5642 dst.sin6_len = sizeof(dst); 5643 dst.sin6_addr = ip6->ip6_dst; 5644 5645 if (TAILQ_EMPTY(&r->rpool.list)) { 5646 DPFPRINTF(PF_DEBUG_URGENT, 5647 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5648 goto bad_locked; 5649 } 5650 if (s == NULL) { 5651 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5652 &naddr, NULL, &sn); 5653 if (!PF_AZERO(&naddr, AF_INET6)) 5654 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5655 &naddr, AF_INET6); 5656 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5657 } else { 5658 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5659 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5660 &s->rt_addr, AF_INET6); 5661 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5662 } 5663 5664 if (s) 5665 PF_STATE_UNLOCK(s); 5666 5667 if (ifp == NULL) 5668 goto bad; 5669 5670 if (oifp != ifp) { 5671 if (pf_test6(PF_FWD, ifp, &m0, NULL) != PF_PASS) 5672 goto bad; 5673 else if (m0 == NULL) 5674 goto done; 5675 if (m0->m_len < sizeof(struct ip6_hdr)) { 5676 DPFPRINTF(PF_DEBUG_URGENT, 5677 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5678 __func__)); 5679 goto bad; 5680 } 5681 ip6 = mtod(m0, struct ip6_hdr *); 5682 } 5683 5684 if (ifp->if_flags & IFF_LOOPBACK) 5685 m0->m_flags |= M_SKIP_FIREWALL; 5686 5687 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5688 ~ifp->if_hwassist) { 5689 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5690 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5691 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5692 } 5693 5694 /* 5695 * If the packet is too large for the outgoing interface, 5696 * send back an icmp6 error. 5697 */ 5698 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5699 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5700 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5701 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5702 else { 5703 in6_ifstat_inc(ifp, ifs6_in_toobig); 5704 if (r->rt != PF_DUPTO) 5705 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5706 else 5707 goto bad; 5708 } 5709 5710 done: 5711 if (r->rt != PF_DUPTO) 5712 *m = NULL; 5713 return; 5714 5715 bad_locked: 5716 if (s) 5717 PF_STATE_UNLOCK(s); 5718 bad: 5719 m_freem(m0); 5720 goto done; 5721 } 5722 #endif /* INET6 */ 5723 5724 /* 5725 * FreeBSD supports cksum offloads for the following drivers. 5726 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5727 * ti(4), txp(4), xl(4) 5728 * 5729 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5730 * network driver performed cksum including pseudo header, need to verify 5731 * csum_data 5732 * CSUM_DATA_VALID : 5733 * network driver performed cksum, needs to additional pseudo header 5734 * cksum computation with partial csum_data(i.e. lack of H/W support for 5735 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5736 * 5737 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5738 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5739 * TCP/UDP layer. 5740 * Also, set csum_data to 0xffff to force cksum validation. 5741 */ 5742 static int 5743 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5744 { 5745 u_int16_t sum = 0; 5746 int hw_assist = 0; 5747 struct ip *ip; 5748 5749 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5750 return (1); 5751 if (m->m_pkthdr.len < off + len) 5752 return (1); 5753 5754 switch (p) { 5755 case IPPROTO_TCP: 5756 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5757 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5758 sum = m->m_pkthdr.csum_data; 5759 } else { 5760 ip = mtod(m, struct ip *); 5761 sum = in_pseudo(ip->ip_src.s_addr, 5762 ip->ip_dst.s_addr, htonl((u_short)len + 5763 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5764 } 5765 sum ^= 0xffff; 5766 ++hw_assist; 5767 } 5768 break; 5769 case IPPROTO_UDP: 5770 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5771 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5772 sum = m->m_pkthdr.csum_data; 5773 } else { 5774 ip = mtod(m, struct ip *); 5775 sum = in_pseudo(ip->ip_src.s_addr, 5776 ip->ip_dst.s_addr, htonl((u_short)len + 5777 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5778 } 5779 sum ^= 0xffff; 5780 ++hw_assist; 5781 } 5782 break; 5783 case IPPROTO_ICMP: 5784 #ifdef INET6 5785 case IPPROTO_ICMPV6: 5786 #endif /* INET6 */ 5787 break; 5788 default: 5789 return (1); 5790 } 5791 5792 if (!hw_assist) { 5793 switch (af) { 5794 case AF_INET: 5795 if (p == IPPROTO_ICMP) { 5796 if (m->m_len < off) 5797 return (1); 5798 m->m_data += off; 5799 m->m_len -= off; 5800 sum = in_cksum(m, len); 5801 m->m_data -= off; 5802 m->m_len += off; 5803 } else { 5804 if (m->m_len < sizeof(struct ip)) 5805 return (1); 5806 sum = in4_cksum(m, p, off, len); 5807 } 5808 break; 5809 #ifdef INET6 5810 case AF_INET6: 5811 if (m->m_len < sizeof(struct ip6_hdr)) 5812 return (1); 5813 sum = in6_cksum(m, p, off, len); 5814 break; 5815 #endif /* INET6 */ 5816 default: 5817 return (1); 5818 } 5819 } 5820 if (sum) { 5821 switch (p) { 5822 case IPPROTO_TCP: 5823 { 5824 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5825 break; 5826 } 5827 case IPPROTO_UDP: 5828 { 5829 KMOD_UDPSTAT_INC(udps_badsum); 5830 break; 5831 } 5832 #ifdef INET 5833 case IPPROTO_ICMP: 5834 { 5835 KMOD_ICMPSTAT_INC(icps_checksum); 5836 break; 5837 } 5838 #endif 5839 #ifdef INET6 5840 case IPPROTO_ICMPV6: 5841 { 5842 KMOD_ICMP6STAT_INC(icp6s_checksum); 5843 break; 5844 } 5845 #endif /* INET6 */ 5846 } 5847 return (1); 5848 } else { 5849 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5850 m->m_pkthdr.csum_flags |= 5851 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5852 m->m_pkthdr.csum_data = 0xffff; 5853 } 5854 } 5855 return (0); 5856 } 5857 5858 5859 #ifdef INET 5860 int 5861 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5862 { 5863 struct pfi_kif *kif; 5864 u_short action, reason = 0, log = 0; 5865 struct mbuf *m = *m0; 5866 struct ip *h = NULL; 5867 struct m_tag *ipfwtag; 5868 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5869 struct pf_state *s = NULL; 5870 struct pf_ruleset *ruleset = NULL; 5871 struct pf_pdesc pd; 5872 int off, dirndx, pqid = 0; 5873 5874 M_ASSERTPKTHDR(m); 5875 5876 if (!V_pf_status.running) 5877 return (PF_PASS); 5878 5879 memset(&pd, 0, sizeof(pd)); 5880 5881 kif = (struct pfi_kif *)ifp->if_pf_kif; 5882 5883 if (kif == NULL) { 5884 DPFPRINTF(PF_DEBUG_URGENT, 5885 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5886 return (PF_DROP); 5887 } 5888 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5889 return (PF_PASS); 5890 5891 if (m->m_flags & M_SKIP_FIREWALL) 5892 return (PF_PASS); 5893 5894 pd.pf_mtag = pf_find_mtag(m); 5895 5896 PF_RULES_RLOCK(); 5897 5898 if (ip_divert_ptr != NULL && 5899 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5900 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5901 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5902 if (pd.pf_mtag == NULL && 5903 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5904 action = PF_DROP; 5905 goto done; 5906 } 5907 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5908 m_tag_delete(m, ipfwtag); 5909 } 5910 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5911 m->m_flags |= M_FASTFWD_OURS; 5912 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5913 } 5914 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5915 /* We do IP header normalization and packet reassembly here */ 5916 action = PF_DROP; 5917 goto done; 5918 } 5919 m = *m0; /* pf_normalize messes with m0 */ 5920 h = mtod(m, struct ip *); 5921 5922 off = h->ip_hl << 2; 5923 if (off < (int)sizeof(struct ip)) { 5924 action = PF_DROP; 5925 REASON_SET(&reason, PFRES_SHORT); 5926 log = 1; 5927 goto done; 5928 } 5929 5930 pd.src = (struct pf_addr *)&h->ip_src; 5931 pd.dst = (struct pf_addr *)&h->ip_dst; 5932 pd.sport = pd.dport = NULL; 5933 pd.ip_sum = &h->ip_sum; 5934 pd.proto_sum = NULL; 5935 pd.proto = h->ip_p; 5936 pd.dir = dir; 5937 pd.sidx = (dir == PF_IN) ? 0 : 1; 5938 pd.didx = (dir == PF_IN) ? 1 : 0; 5939 pd.af = AF_INET; 5940 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 5941 pd.tot_len = ntohs(h->ip_len); 5942 5943 /* handle fragments that didn't get reassembled by normalization */ 5944 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5945 action = pf_test_fragment(&r, dir, kif, m, h, 5946 &pd, &a, &ruleset); 5947 goto done; 5948 } 5949 5950 switch (h->ip_p) { 5951 5952 case IPPROTO_TCP: { 5953 struct tcphdr th; 5954 5955 pd.hdr.tcp = &th; 5956 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5957 &action, &reason, AF_INET)) { 5958 log = action != PF_PASS; 5959 goto done; 5960 } 5961 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5962 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5963 pqid = 1; 5964 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5965 if (action == PF_DROP) 5966 goto done; 5967 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5968 &reason); 5969 if (action == PF_PASS) { 5970 if (pfsync_update_state_ptr != NULL) 5971 pfsync_update_state_ptr(s); 5972 r = s->rule.ptr; 5973 a = s->anchor.ptr; 5974 log = s->log; 5975 } else if (s == NULL) 5976 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5977 &a, &ruleset, inp); 5978 break; 5979 } 5980 5981 case IPPROTO_UDP: { 5982 struct udphdr uh; 5983 5984 pd.hdr.udp = &uh; 5985 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5986 &action, &reason, AF_INET)) { 5987 log = action != PF_PASS; 5988 goto done; 5989 } 5990 if (uh.uh_dport == 0 || 5991 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5992 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5993 action = PF_DROP; 5994 REASON_SET(&reason, PFRES_SHORT); 5995 goto done; 5996 } 5997 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5998 if (action == PF_PASS) { 5999 if (pfsync_update_state_ptr != NULL) 6000 pfsync_update_state_ptr(s); 6001 r = s->rule.ptr; 6002 a = s->anchor.ptr; 6003 log = s->log; 6004 } else if (s == NULL) 6005 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6006 &a, &ruleset, inp); 6007 break; 6008 } 6009 6010 case IPPROTO_ICMP: { 6011 struct icmp ih; 6012 6013 pd.hdr.icmp = &ih; 6014 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 6015 &action, &reason, AF_INET)) { 6016 log = action != PF_PASS; 6017 goto done; 6018 } 6019 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 6020 &reason); 6021 if (action == PF_PASS) { 6022 if (pfsync_update_state_ptr != NULL) 6023 pfsync_update_state_ptr(s); 6024 r = s->rule.ptr; 6025 a = s->anchor.ptr; 6026 log = s->log; 6027 } else if (s == NULL) 6028 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6029 &a, &ruleset, inp); 6030 break; 6031 } 6032 6033 #ifdef INET6 6034 case IPPROTO_ICMPV6: { 6035 action = PF_DROP; 6036 DPFPRINTF(PF_DEBUG_MISC, 6037 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6038 goto done; 6039 } 6040 #endif 6041 6042 default: 6043 action = pf_test_state_other(&s, dir, kif, m, &pd); 6044 if (action == PF_PASS) { 6045 if (pfsync_update_state_ptr != NULL) 6046 pfsync_update_state_ptr(s); 6047 r = s->rule.ptr; 6048 a = s->anchor.ptr; 6049 log = s->log; 6050 } else if (s == NULL) 6051 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6052 &a, &ruleset, inp); 6053 break; 6054 } 6055 6056 done: 6057 PF_RULES_RUNLOCK(); 6058 if (action == PF_PASS && h->ip_hl > 5 && 6059 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6060 action = PF_DROP; 6061 REASON_SET(&reason, PFRES_IPOPTIONS); 6062 log = r->log; 6063 DPFPRINTF(PF_DEBUG_MISC, 6064 ("pf: dropping packet with ip options\n")); 6065 } 6066 6067 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6068 action = PF_DROP; 6069 REASON_SET(&reason, PFRES_MEMORY); 6070 } 6071 if (r->rtableid >= 0) 6072 M_SETFIB(m, r->rtableid); 6073 6074 if (r->scrub_flags & PFSTATE_SETPRIO) { 6075 if (pd.tos & IPTOS_LOWDELAY) 6076 pqid = 1; 6077 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6078 action = PF_DROP; 6079 REASON_SET(&reason, PFRES_MEMORY); 6080 log = 1; 6081 DPFPRINTF(PF_DEBUG_MISC, 6082 ("pf: failed to allocate 802.1q mtag\n")); 6083 } 6084 } 6085 6086 #ifdef ALTQ 6087 if (action == PF_PASS && r->qid) { 6088 if (pd.pf_mtag == NULL && 6089 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6090 action = PF_DROP; 6091 REASON_SET(&reason, PFRES_MEMORY); 6092 } else { 6093 if (s != NULL) 6094 pd.pf_mtag->qid_hash = pf_state_hash(s); 6095 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6096 pd.pf_mtag->qid = r->pqid; 6097 else 6098 pd.pf_mtag->qid = r->qid; 6099 /* Add hints for ecn. */ 6100 pd.pf_mtag->hdr = h; 6101 } 6102 6103 } 6104 #endif /* ALTQ */ 6105 6106 /* 6107 * connections redirected to loopback should not match sockets 6108 * bound specifically to loopback due to security implications, 6109 * see tcp_input() and in_pcblookup_listen(). 6110 */ 6111 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6112 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6113 (s->nat_rule.ptr->action == PF_RDR || 6114 s->nat_rule.ptr->action == PF_BINAT) && 6115 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 6116 m->m_flags |= M_SKIP_FIREWALL; 6117 6118 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6119 !PACKET_LOOPED(&pd)) { 6120 6121 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6122 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6123 if (ipfwtag != NULL) { 6124 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6125 ntohs(r->divert.port); 6126 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6127 6128 if (s) 6129 PF_STATE_UNLOCK(s); 6130 6131 m_tag_prepend(m, ipfwtag); 6132 if (m->m_flags & M_FASTFWD_OURS) { 6133 if (pd.pf_mtag == NULL && 6134 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6135 action = PF_DROP; 6136 REASON_SET(&reason, PFRES_MEMORY); 6137 log = 1; 6138 DPFPRINTF(PF_DEBUG_MISC, 6139 ("pf: failed to allocate tag\n")); 6140 } else { 6141 pd.pf_mtag->flags |= 6142 PF_FASTFWD_OURS_PRESENT; 6143 m->m_flags &= ~M_FASTFWD_OURS; 6144 } 6145 } 6146 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 6147 *m0 = NULL; 6148 6149 return (action); 6150 } else { 6151 /* XXX: ipfw has the same behaviour! */ 6152 action = PF_DROP; 6153 REASON_SET(&reason, PFRES_MEMORY); 6154 log = 1; 6155 DPFPRINTF(PF_DEBUG_MISC, 6156 ("pf: failed to allocate divert tag\n")); 6157 } 6158 } 6159 6160 if (log) { 6161 struct pf_rule *lr; 6162 6163 if (s != NULL && s->nat_rule.ptr != NULL && 6164 s->nat_rule.ptr->log & PF_LOG_ALL) 6165 lr = s->nat_rule.ptr; 6166 else 6167 lr = r; 6168 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6169 (s == NULL)); 6170 } 6171 6172 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6173 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 6174 6175 if (action == PF_PASS || r->action == PF_DROP) { 6176 dirndx = (dir == PF_OUT); 6177 r->packets[dirndx]++; 6178 r->bytes[dirndx] += pd.tot_len; 6179 if (a != NULL) { 6180 a->packets[dirndx]++; 6181 a->bytes[dirndx] += pd.tot_len; 6182 } 6183 if (s != NULL) { 6184 if (s->nat_rule.ptr != NULL) { 6185 s->nat_rule.ptr->packets[dirndx]++; 6186 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6187 } 6188 if (s->src_node != NULL) { 6189 s->src_node->packets[dirndx]++; 6190 s->src_node->bytes[dirndx] += pd.tot_len; 6191 } 6192 if (s->nat_src_node != NULL) { 6193 s->nat_src_node->packets[dirndx]++; 6194 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6195 } 6196 dirndx = (dir == s->direction) ? 0 : 1; 6197 s->packets[dirndx]++; 6198 s->bytes[dirndx] += pd.tot_len; 6199 } 6200 tr = r; 6201 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6202 if (nr != NULL && r == &V_pf_default_rule) 6203 tr = nr; 6204 if (tr->src.addr.type == PF_ADDR_TABLE) 6205 pfr_update_stats(tr->src.addr.p.tbl, 6206 (s == NULL) ? pd.src : 6207 &s->key[(s->direction == PF_IN)]-> 6208 addr[(s->direction == PF_OUT)], 6209 pd.af, pd.tot_len, dir == PF_OUT, 6210 r->action == PF_PASS, tr->src.neg); 6211 if (tr->dst.addr.type == PF_ADDR_TABLE) 6212 pfr_update_stats(tr->dst.addr.p.tbl, 6213 (s == NULL) ? pd.dst : 6214 &s->key[(s->direction == PF_IN)]-> 6215 addr[(s->direction == PF_IN)], 6216 pd.af, pd.tot_len, dir == PF_OUT, 6217 r->action == PF_PASS, tr->dst.neg); 6218 } 6219 6220 switch (action) { 6221 case PF_SYNPROXY_DROP: 6222 m_freem(*m0); 6223 case PF_DEFER: 6224 *m0 = NULL; 6225 action = PF_PASS; 6226 break; 6227 case PF_DROP: 6228 m_freem(*m0); 6229 *m0 = NULL; 6230 break; 6231 default: 6232 /* pf_route() returns unlocked. */ 6233 if (r->rt) { 6234 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 6235 return (action); 6236 } 6237 break; 6238 } 6239 if (s) 6240 PF_STATE_UNLOCK(s); 6241 6242 return (action); 6243 } 6244 #endif /* INET */ 6245 6246 #ifdef INET6 6247 int 6248 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6249 { 6250 struct pfi_kif *kif; 6251 u_short action, reason = 0, log = 0; 6252 struct mbuf *m = *m0, *n = NULL; 6253 struct m_tag *mtag; 6254 struct ip6_hdr *h = NULL; 6255 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6256 struct pf_state *s = NULL; 6257 struct pf_ruleset *ruleset = NULL; 6258 struct pf_pdesc pd; 6259 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6260 int fwdir = dir; 6261 6262 M_ASSERTPKTHDR(m); 6263 6264 /* Detect packet forwarding. 6265 * If the input interface is different from the output interface we're 6266 * forwarding. 6267 * We do need to be careful about bridges. If the 6268 * net.link.bridge.pfil_bridge sysctl is set we can be filtering on a 6269 * bridge, so if the input interface is a bridge member and the output 6270 * interface is its bridge or a member of the same bridge we're not 6271 * actually forwarding but bridging. 6272 */ 6273 if (dir == PF_OUT && m->m_pkthdr.rcvif && ifp != m->m_pkthdr.rcvif && 6274 (m->m_pkthdr.rcvif->if_bridge == NULL || 6275 (m->m_pkthdr.rcvif->if_bridge != ifp->if_softc && 6276 m->m_pkthdr.rcvif->if_bridge != ifp->if_bridge))) 6277 fwdir = PF_FWD; 6278 6279 if (dir == PF_FWD) 6280 dir = PF_OUT; 6281 6282 if (!V_pf_status.running) 6283 return (PF_PASS); 6284 6285 memset(&pd, 0, sizeof(pd)); 6286 pd.pf_mtag = pf_find_mtag(m); 6287 6288 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6289 return (PF_PASS); 6290 6291 kif = (struct pfi_kif *)ifp->if_pf_kif; 6292 if (kif == NULL) { 6293 DPFPRINTF(PF_DEBUG_URGENT, 6294 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6295 return (PF_DROP); 6296 } 6297 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6298 return (PF_PASS); 6299 6300 if (m->m_flags & M_SKIP_FIREWALL) 6301 return (PF_PASS); 6302 6303 PF_RULES_RLOCK(); 6304 6305 /* We do IP header normalization and packet reassembly here */ 6306 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6307 action = PF_DROP; 6308 goto done; 6309 } 6310 m = *m0; /* pf_normalize messes with m0 */ 6311 h = mtod(m, struct ip6_hdr *); 6312 6313 #if 1 6314 /* 6315 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6316 * will do something bad, so drop the packet for now. 6317 */ 6318 if (htons(h->ip6_plen) == 0) { 6319 action = PF_DROP; 6320 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6321 goto done; 6322 } 6323 #endif 6324 6325 pd.src = (struct pf_addr *)&h->ip6_src; 6326 pd.dst = (struct pf_addr *)&h->ip6_dst; 6327 pd.sport = pd.dport = NULL; 6328 pd.ip_sum = NULL; 6329 pd.proto_sum = NULL; 6330 pd.dir = dir; 6331 pd.sidx = (dir == PF_IN) ? 0 : 1; 6332 pd.didx = (dir == PF_IN) ? 1 : 0; 6333 pd.af = AF_INET6; 6334 pd.tos = 0; 6335 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6336 6337 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6338 pd.proto = h->ip6_nxt; 6339 do { 6340 switch (pd.proto) { 6341 case IPPROTO_FRAGMENT: 6342 action = pf_test_fragment(&r, dir, kif, m, h, 6343 &pd, &a, &ruleset); 6344 if (action == PF_DROP) 6345 REASON_SET(&reason, PFRES_FRAG); 6346 goto done; 6347 case IPPROTO_ROUTING: { 6348 struct ip6_rthdr rthdr; 6349 6350 if (rh_cnt++) { 6351 DPFPRINTF(PF_DEBUG_MISC, 6352 ("pf: IPv6 more than one rthdr\n")); 6353 action = PF_DROP; 6354 REASON_SET(&reason, PFRES_IPOPTIONS); 6355 log = 1; 6356 goto done; 6357 } 6358 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6359 &reason, pd.af)) { 6360 DPFPRINTF(PF_DEBUG_MISC, 6361 ("pf: IPv6 short rthdr\n")); 6362 action = PF_DROP; 6363 REASON_SET(&reason, PFRES_SHORT); 6364 log = 1; 6365 goto done; 6366 } 6367 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6368 DPFPRINTF(PF_DEBUG_MISC, 6369 ("pf: IPv6 rthdr0\n")); 6370 action = PF_DROP; 6371 REASON_SET(&reason, PFRES_IPOPTIONS); 6372 log = 1; 6373 goto done; 6374 } 6375 /* FALLTHROUGH */ 6376 } 6377 case IPPROTO_AH: 6378 case IPPROTO_HOPOPTS: 6379 case IPPROTO_DSTOPTS: { 6380 /* get next header and header length */ 6381 struct ip6_ext opt6; 6382 6383 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6384 NULL, &reason, pd.af)) { 6385 DPFPRINTF(PF_DEBUG_MISC, 6386 ("pf: IPv6 short opt\n")); 6387 action = PF_DROP; 6388 log = 1; 6389 goto done; 6390 } 6391 if (pd.proto == IPPROTO_AH) 6392 off += (opt6.ip6e_len + 2) * 4; 6393 else 6394 off += (opt6.ip6e_len + 1) * 8; 6395 pd.proto = opt6.ip6e_nxt; 6396 /* goto the next header */ 6397 break; 6398 } 6399 default: 6400 terminal++; 6401 break; 6402 } 6403 } while (!terminal); 6404 6405 /* if there's no routing header, use unmodified mbuf for checksumming */ 6406 if (!n) 6407 n = m; 6408 6409 switch (pd.proto) { 6410 6411 case IPPROTO_TCP: { 6412 struct tcphdr th; 6413 6414 pd.hdr.tcp = &th; 6415 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6416 &action, &reason, AF_INET6)) { 6417 log = action != PF_PASS; 6418 goto done; 6419 } 6420 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6421 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6422 if (action == PF_DROP) 6423 goto done; 6424 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6425 &reason); 6426 if (action == PF_PASS) { 6427 if (pfsync_update_state_ptr != NULL) 6428 pfsync_update_state_ptr(s); 6429 r = s->rule.ptr; 6430 a = s->anchor.ptr; 6431 log = s->log; 6432 } else if (s == NULL) 6433 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6434 &a, &ruleset, inp); 6435 break; 6436 } 6437 6438 case IPPROTO_UDP: { 6439 struct udphdr uh; 6440 6441 pd.hdr.udp = &uh; 6442 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6443 &action, &reason, AF_INET6)) { 6444 log = action != PF_PASS; 6445 goto done; 6446 } 6447 if (uh.uh_dport == 0 || 6448 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6449 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6450 action = PF_DROP; 6451 REASON_SET(&reason, PFRES_SHORT); 6452 goto done; 6453 } 6454 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6455 if (action == PF_PASS) { 6456 if (pfsync_update_state_ptr != NULL) 6457 pfsync_update_state_ptr(s); 6458 r = s->rule.ptr; 6459 a = s->anchor.ptr; 6460 log = s->log; 6461 } else if (s == NULL) 6462 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6463 &a, &ruleset, inp); 6464 break; 6465 } 6466 6467 case IPPROTO_ICMP: { 6468 action = PF_DROP; 6469 DPFPRINTF(PF_DEBUG_MISC, 6470 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6471 goto done; 6472 } 6473 6474 case IPPROTO_ICMPV6: { 6475 struct icmp6_hdr ih; 6476 6477 pd.hdr.icmp6 = &ih; 6478 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6479 &action, &reason, AF_INET6)) { 6480 log = action != PF_PASS; 6481 goto done; 6482 } 6483 action = pf_test_state_icmp(&s, dir, kif, 6484 m, off, h, &pd, &reason); 6485 if (action == PF_PASS) { 6486 if (pfsync_update_state_ptr != NULL) 6487 pfsync_update_state_ptr(s); 6488 r = s->rule.ptr; 6489 a = s->anchor.ptr; 6490 log = s->log; 6491 } else if (s == NULL) 6492 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6493 &a, &ruleset, inp); 6494 break; 6495 } 6496 6497 default: 6498 action = pf_test_state_other(&s, dir, kif, m, &pd); 6499 if (action == PF_PASS) { 6500 if (pfsync_update_state_ptr != NULL) 6501 pfsync_update_state_ptr(s); 6502 r = s->rule.ptr; 6503 a = s->anchor.ptr; 6504 log = s->log; 6505 } else if (s == NULL) 6506 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6507 &a, &ruleset, inp); 6508 break; 6509 } 6510 6511 done: 6512 PF_RULES_RUNLOCK(); 6513 if (n != m) { 6514 m_freem(n); 6515 n = NULL; 6516 } 6517 6518 /* handle dangerous IPv6 extension headers. */ 6519 if (action == PF_PASS && rh_cnt && 6520 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6521 action = PF_DROP; 6522 REASON_SET(&reason, PFRES_IPOPTIONS); 6523 log = r->log; 6524 DPFPRINTF(PF_DEBUG_MISC, 6525 ("pf: dropping packet with dangerous v6 headers\n")); 6526 } 6527 6528 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6529 action = PF_DROP; 6530 REASON_SET(&reason, PFRES_MEMORY); 6531 } 6532 if (r->rtableid >= 0) 6533 M_SETFIB(m, r->rtableid); 6534 6535 if (r->scrub_flags & PFSTATE_SETPRIO) { 6536 if (pd.tos & IPTOS_LOWDELAY) 6537 pqid = 1; 6538 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6539 action = PF_DROP; 6540 REASON_SET(&reason, PFRES_MEMORY); 6541 log = 1; 6542 DPFPRINTF(PF_DEBUG_MISC, 6543 ("pf: failed to allocate 802.1q mtag\n")); 6544 } 6545 } 6546 6547 #ifdef ALTQ 6548 if (action == PF_PASS && r->qid) { 6549 if (pd.pf_mtag == NULL && 6550 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6551 action = PF_DROP; 6552 REASON_SET(&reason, PFRES_MEMORY); 6553 } else { 6554 if (s != NULL) 6555 pd.pf_mtag->qid_hash = pf_state_hash(s); 6556 if (pd.tos & IPTOS_LOWDELAY) 6557 pd.pf_mtag->qid = r->pqid; 6558 else 6559 pd.pf_mtag->qid = r->qid; 6560 /* Add hints for ecn. */ 6561 pd.pf_mtag->hdr = h; 6562 } 6563 } 6564 #endif /* ALTQ */ 6565 6566 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6567 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6568 (s->nat_rule.ptr->action == PF_RDR || 6569 s->nat_rule.ptr->action == PF_BINAT) && 6570 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6571 m->m_flags |= M_SKIP_FIREWALL; 6572 6573 /* XXX: Anybody working on it?! */ 6574 if (r->divert.port) 6575 printf("pf: divert(9) is not supported for IPv6\n"); 6576 6577 if (log) { 6578 struct pf_rule *lr; 6579 6580 if (s != NULL && s->nat_rule.ptr != NULL && 6581 s->nat_rule.ptr->log & PF_LOG_ALL) 6582 lr = s->nat_rule.ptr; 6583 else 6584 lr = r; 6585 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6586 &pd, (s == NULL)); 6587 } 6588 6589 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6590 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6591 6592 if (action == PF_PASS || r->action == PF_DROP) { 6593 dirndx = (dir == PF_OUT); 6594 r->packets[dirndx]++; 6595 r->bytes[dirndx] += pd.tot_len; 6596 if (a != NULL) { 6597 a->packets[dirndx]++; 6598 a->bytes[dirndx] += pd.tot_len; 6599 } 6600 if (s != NULL) { 6601 if (s->nat_rule.ptr != NULL) { 6602 s->nat_rule.ptr->packets[dirndx]++; 6603 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6604 } 6605 if (s->src_node != NULL) { 6606 s->src_node->packets[dirndx]++; 6607 s->src_node->bytes[dirndx] += pd.tot_len; 6608 } 6609 if (s->nat_src_node != NULL) { 6610 s->nat_src_node->packets[dirndx]++; 6611 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6612 } 6613 dirndx = (dir == s->direction) ? 0 : 1; 6614 s->packets[dirndx]++; 6615 s->bytes[dirndx] += pd.tot_len; 6616 } 6617 tr = r; 6618 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6619 if (nr != NULL && r == &V_pf_default_rule) 6620 tr = nr; 6621 if (tr->src.addr.type == PF_ADDR_TABLE) 6622 pfr_update_stats(tr->src.addr.p.tbl, 6623 (s == NULL) ? pd.src : 6624 &s->key[(s->direction == PF_IN)]->addr[0], 6625 pd.af, pd.tot_len, dir == PF_OUT, 6626 r->action == PF_PASS, tr->src.neg); 6627 if (tr->dst.addr.type == PF_ADDR_TABLE) 6628 pfr_update_stats(tr->dst.addr.p.tbl, 6629 (s == NULL) ? pd.dst : 6630 &s->key[(s->direction == PF_IN)]->addr[1], 6631 pd.af, pd.tot_len, dir == PF_OUT, 6632 r->action == PF_PASS, tr->dst.neg); 6633 } 6634 6635 switch (action) { 6636 case PF_SYNPROXY_DROP: 6637 m_freem(*m0); 6638 case PF_DEFER: 6639 *m0 = NULL; 6640 action = PF_PASS; 6641 break; 6642 case PF_DROP: 6643 m_freem(*m0); 6644 *m0 = NULL; 6645 break; 6646 default: 6647 /* pf_route6() returns unlocked. */ 6648 if (r->rt) { 6649 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6650 return (action); 6651 } 6652 break; 6653 } 6654 6655 if (s) 6656 PF_STATE_UNLOCK(s); 6657 6658 /* If reassembled packet passed, create new fragments. */ 6659 if (action == PF_PASS && *m0 && fwdir == PF_FWD && 6660 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6661 action = pf_refragment6(ifp, m0, mtag); 6662 6663 return (action); 6664 } 6665 #endif /* INET6 */ 6666