1 /*- 2 * Copyright (c) 2001 Daniel Hartmeier 3 * Copyright (c) 2002 - 2008 Henning Brauer 4 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * - Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * - Redistributions in binary form must reproduce the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer in the documentation and/or other materials provided 16 * with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 26 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Effort sponsored in part by the Defense Advanced Research Projects 32 * Agency (DARPA) and Air Force Research Laboratory, Air Force 33 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 34 * 35 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_inet.h" 42 #include "opt_inet6.h" 43 #include "opt_bpf.h" 44 #include "opt_pf.h" 45 46 #include <sys/param.h> 47 #include <sys/bus.h> 48 #include <sys/endian.h> 49 #include <sys/hash.h> 50 #include <sys/interrupt.h> 51 #include <sys/kernel.h> 52 #include <sys/kthread.h> 53 #include <sys/limits.h> 54 #include <sys/mbuf.h> 55 #include <sys/md5.h> 56 #include <sys/random.h> 57 #include <sys/refcount.h> 58 #include <sys/socket.h> 59 #include <sys/sysctl.h> 60 #include <sys/taskqueue.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_types.h> 65 #include <net/route.h> 66 #include <net/radix_mpath.h> 67 #include <net/vnet.h> 68 69 #include <net/pfvar.h> 70 #include <net/pf_mtag.h> 71 #include <net/if_pflog.h> 72 #include <net/if_pfsync.h> 73 74 #include <netinet/in_pcb.h> 75 #include <netinet/in_var.h> 76 #include <netinet/ip.h> 77 #include <netinet/ip_fw.h> 78 #include <netinet/ip_icmp.h> 79 #include <netinet/icmp_var.h> 80 #include <netinet/ip_var.h> 81 #include <netinet/tcp.h> 82 #include <netinet/tcp_fsm.h> 83 #include <netinet/tcp_seq.h> 84 #include <netinet/tcp_timer.h> 85 #include <netinet/tcp_var.h> 86 #include <netinet/udp.h> 87 #include <netinet/udp_var.h> 88 89 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 90 91 #ifdef INET6 92 #include <netinet/ip6.h> 93 #include <netinet/icmp6.h> 94 #include <netinet6/nd6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/in6_pcb.h> 97 #endif /* INET6 */ 98 99 #include <machine/in_cksum.h> 100 #include <security/mac/mac_framework.h> 101 102 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 103 104 /* 105 * Global variables 106 */ 107 108 /* state tables */ 109 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 110 VNET_DEFINE(struct pf_palist, pf_pabuf); 111 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 112 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 113 VNET_DEFINE(struct pf_status, pf_status); 114 115 VNET_DEFINE(u_int32_t, ticket_altqs_active); 116 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 117 VNET_DEFINE(int, altqs_inactive_open); 118 VNET_DEFINE(u_int32_t, ticket_pabuf); 119 120 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 121 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 122 VNET_DEFINE(u_char, pf_tcp_secret[16]); 123 #define V_pf_tcp_secret VNET(pf_tcp_secret) 124 VNET_DEFINE(int, pf_tcp_secret_init); 125 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 126 VNET_DEFINE(int, pf_tcp_iss_off); 127 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 128 129 /* 130 * Queue for pf_intr() sends. 131 */ 132 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 133 struct pf_send_entry { 134 STAILQ_ENTRY(pf_send_entry) pfse_next; 135 struct mbuf *pfse_m; 136 enum { 137 PFSE_IP, 138 PFSE_IP6, 139 PFSE_ICMP, 140 PFSE_ICMP6, 141 } pfse_type; 142 union { 143 struct route ro; 144 struct { 145 int type; 146 int code; 147 int mtu; 148 } icmpopts; 149 } u; 150 #define pfse_ro u.ro 151 #define pfse_icmp_type u.icmpopts.type 152 #define pfse_icmp_code u.icmpopts.code 153 #define pfse_icmp_mtu u.icmpopts.mtu 154 }; 155 156 STAILQ_HEAD(pf_send_head, pf_send_entry); 157 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 158 #define V_pf_sendqueue VNET(pf_sendqueue) 159 160 static struct mtx pf_sendqueue_mtx; 161 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 162 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 163 164 /* 165 * Queue for pf_overload_task() tasks. 166 */ 167 struct pf_overload_entry { 168 SLIST_ENTRY(pf_overload_entry) next; 169 struct pf_addr addr; 170 sa_family_t af; 171 uint8_t dir; 172 struct pf_rule *rule; 173 }; 174 175 SLIST_HEAD(pf_overload_head, pf_overload_entry); 176 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 177 #define V_pf_overloadqueue VNET(pf_overloadqueue) 178 static VNET_DEFINE(struct task, pf_overloadtask); 179 #define V_pf_overloadtask VNET(pf_overloadtask) 180 181 static struct mtx pf_overloadqueue_mtx; 182 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 183 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 184 185 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 186 struct mtx pf_unlnkdrules_mtx; 187 188 static VNET_DEFINE(uma_zone_t, pf_sources_z); 189 #define V_pf_sources_z VNET(pf_sources_z) 190 static VNET_DEFINE(uma_zone_t, pf_mtag_z); 191 #define V_pf_mtag_z VNET(pf_mtag_z) 192 VNET_DEFINE(uma_zone_t, pf_state_z); 193 VNET_DEFINE(uma_zone_t, pf_state_key_z); 194 195 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 196 #define PFID_CPUBITS 8 197 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 198 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 199 #define PFID_MAXID (~PFID_CPUMASK) 200 CTASSERT((1 << PFID_CPUBITS) > MAXCPU); 201 202 static void pf_src_tree_remove_state(struct pf_state *); 203 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 204 u_int32_t); 205 static void pf_add_threshold(struct pf_threshold *); 206 static int pf_check_threshold(struct pf_threshold *); 207 208 static void pf_change_ap(struct pf_addr *, u_int16_t *, 209 u_int16_t *, u_int16_t *, struct pf_addr *, 210 u_int16_t, u_int8_t, sa_family_t); 211 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 212 struct tcphdr *, struct pf_state_peer *); 213 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 214 struct pf_addr *, struct pf_addr *, u_int16_t, 215 u_int16_t *, u_int16_t *, u_int16_t *, 216 u_int16_t *, u_int8_t, sa_family_t); 217 static void pf_send_tcp(struct mbuf *, 218 const struct pf_rule *, sa_family_t, 219 const struct pf_addr *, const struct pf_addr *, 220 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 221 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 222 u_int16_t, struct ifnet *); 223 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 224 sa_family_t, struct pf_rule *); 225 static void pf_detach_state(struct pf_state *); 226 static int pf_state_key_attach(struct pf_state_key *, 227 struct pf_state_key *, struct pf_state *); 228 static void pf_state_key_detach(struct pf_state *, int); 229 static int pf_state_key_ctor(void *, int, void *, int); 230 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 231 static int pf_test_rule(struct pf_rule **, struct pf_state **, 232 int, struct pfi_kif *, struct mbuf *, int, 233 struct pf_pdesc *, struct pf_rule **, 234 struct pf_ruleset **, struct inpcb *); 235 static int pf_create_state(struct pf_rule *, struct pf_rule *, 236 struct pf_rule *, struct pf_pdesc *, 237 struct pf_src_node *, struct pf_state_key *, 238 struct pf_state_key *, struct mbuf *, int, 239 u_int16_t, u_int16_t, int *, struct pfi_kif *, 240 struct pf_state **, int, u_int16_t, u_int16_t, 241 int); 242 static int pf_test_fragment(struct pf_rule **, int, 243 struct pfi_kif *, struct mbuf *, void *, 244 struct pf_pdesc *, struct pf_rule **, 245 struct pf_ruleset **); 246 static int pf_tcp_track_full(struct pf_state_peer *, 247 struct pf_state_peer *, struct pf_state **, 248 struct pfi_kif *, struct mbuf *, int, 249 struct pf_pdesc *, u_short *, int *); 250 static int pf_tcp_track_sloppy(struct pf_state_peer *, 251 struct pf_state_peer *, struct pf_state **, 252 struct pf_pdesc *, u_short *); 253 static int pf_test_state_tcp(struct pf_state **, int, 254 struct pfi_kif *, struct mbuf *, int, 255 void *, struct pf_pdesc *, u_short *); 256 static int pf_test_state_udp(struct pf_state **, int, 257 struct pfi_kif *, struct mbuf *, int, 258 void *, struct pf_pdesc *); 259 static int pf_test_state_icmp(struct pf_state **, int, 260 struct pfi_kif *, struct mbuf *, int, 261 void *, struct pf_pdesc *, u_short *); 262 static int pf_test_state_other(struct pf_state **, int, 263 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 264 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 265 sa_family_t); 266 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 267 sa_family_t); 268 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 269 int, u_int16_t); 270 static void pf_set_rt_ifp(struct pf_state *, 271 struct pf_addr *); 272 static int pf_check_proto_cksum(struct mbuf *, int, int, 273 u_int8_t, sa_family_t); 274 static void pf_print_state_parts(struct pf_state *, 275 struct pf_state_key *, struct pf_state_key *); 276 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 277 struct pf_addr_wrap *); 278 static struct pf_state *pf_find_state(struct pfi_kif *, 279 struct pf_state_key_cmp *, u_int); 280 static int pf_src_connlimit(struct pf_state **); 281 static void pf_overload_task(void *c, int pending); 282 static int pf_insert_src_node(struct pf_src_node **, 283 struct pf_rule *, struct pf_addr *, sa_family_t); 284 static u_int pf_purge_expired_states(u_int, int); 285 static void pf_purge_unlinked_rules(void); 286 static int pf_mtag_init(void *, int, int); 287 static void pf_mtag_free(struct m_tag *); 288 #ifdef INET 289 static void pf_route(struct mbuf **, struct pf_rule *, int, 290 struct ifnet *, struct pf_state *, 291 struct pf_pdesc *); 292 #endif /* INET */ 293 #ifdef INET6 294 static void pf_change_a6(struct pf_addr *, u_int16_t *, 295 struct pf_addr *, u_int8_t); 296 static void pf_route6(struct mbuf **, struct pf_rule *, int, 297 struct ifnet *, struct pf_state *, 298 struct pf_pdesc *); 299 #endif /* INET6 */ 300 301 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 302 303 VNET_DECLARE(int, pf_end_threads); 304 305 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 306 307 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 308 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 309 310 #define STATE_LOOKUP(i, k, d, s, pd) \ 311 do { \ 312 (s) = pf_find_state((i), (k), (d)); \ 313 if ((s) == NULL || (s)->timeout == PFTM_PURGE) \ 314 return (PF_DROP); \ 315 if (PACKET_LOOPED(pd)) \ 316 return (PF_PASS); \ 317 if ((d) == PF_OUT && \ 318 (((s)->rule.ptr->rt == PF_ROUTETO && \ 319 (s)->rule.ptr->direction == PF_OUT) || \ 320 ((s)->rule.ptr->rt == PF_REPLYTO && \ 321 (s)->rule.ptr->direction == PF_IN)) && \ 322 (s)->rt_kif != NULL && \ 323 (s)->rt_kif != (i)) \ 324 return (PF_PASS); \ 325 } while (0) 326 327 #define BOUND_IFACE(r, k) \ 328 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 329 330 #define STATE_INC_COUNTERS(s) \ 331 do { \ 332 s->rule.ptr->states_cur++; \ 333 s->rule.ptr->states_tot++; \ 334 if (s->anchor.ptr != NULL) { \ 335 s->anchor.ptr->states_cur++; \ 336 s->anchor.ptr->states_tot++; \ 337 } \ 338 if (s->nat_rule.ptr != NULL) { \ 339 s->nat_rule.ptr->states_cur++; \ 340 s->nat_rule.ptr->states_tot++; \ 341 } \ 342 } while (0) 343 344 #define STATE_DEC_COUNTERS(s) \ 345 do { \ 346 if (s->nat_rule.ptr != NULL) \ 347 s->nat_rule.ptr->states_cur--; \ 348 if (s->anchor.ptr != NULL) \ 349 s->anchor.ptr->states_cur--; \ 350 s->rule.ptr->states_cur--; \ 351 } while (0) 352 353 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 354 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 355 VNET_DEFINE(struct pf_idhash *, pf_idhash); 356 VNET_DEFINE(u_long, pf_hashmask); 357 VNET_DEFINE(struct pf_srchash *, pf_srchash); 358 VNET_DEFINE(u_long, pf_srchashmask); 359 360 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 361 362 VNET_DEFINE(u_long, pf_hashsize); 363 #define V_pf_hashsize VNET(pf_hashsize) 364 SYSCTL_VNET_UINT(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 365 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 366 367 VNET_DEFINE(u_long, pf_srchashsize); 368 #define V_pf_srchashsize VNET(pf_srchashsize) 369 SYSCTL_VNET_UINT(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 370 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 371 372 VNET_DEFINE(void *, pf_swi_cookie); 373 374 VNET_DEFINE(uint32_t, pf_hashseed); 375 #define V_pf_hashseed VNET(pf_hashseed) 376 377 static __inline uint32_t 378 pf_hashkey(struct pf_state_key *sk) 379 { 380 uint32_t h; 381 382 h = jenkins_hash32((uint32_t *)sk, 383 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 384 V_pf_hashseed); 385 386 return (h & V_pf_hashmask); 387 } 388 389 static __inline uint32_t 390 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 391 { 392 uint32_t h; 393 394 switch (af) { 395 case AF_INET: 396 h = jenkins_hash32((uint32_t *)&addr->v4, 397 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 398 break; 399 case AF_INET6: 400 h = jenkins_hash32((uint32_t *)&addr->v6, 401 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 402 break; 403 default: 404 panic("%s: unknown address family %u", __func__, af); 405 } 406 407 return (h & V_pf_srchashmask); 408 } 409 410 #ifdef INET6 411 void 412 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 413 { 414 switch (af) { 415 #ifdef INET 416 case AF_INET: 417 dst->addr32[0] = src->addr32[0]; 418 break; 419 #endif /* INET */ 420 case AF_INET6: 421 dst->addr32[0] = src->addr32[0]; 422 dst->addr32[1] = src->addr32[1]; 423 dst->addr32[2] = src->addr32[2]; 424 dst->addr32[3] = src->addr32[3]; 425 break; 426 } 427 } 428 #endif /* INET6 */ 429 430 static void 431 pf_init_threshold(struct pf_threshold *threshold, 432 u_int32_t limit, u_int32_t seconds) 433 { 434 threshold->limit = limit * PF_THRESHOLD_MULT; 435 threshold->seconds = seconds; 436 threshold->count = 0; 437 threshold->last = time_uptime; 438 } 439 440 static void 441 pf_add_threshold(struct pf_threshold *threshold) 442 { 443 u_int32_t t = time_uptime, diff = t - threshold->last; 444 445 if (diff >= threshold->seconds) 446 threshold->count = 0; 447 else 448 threshold->count -= threshold->count * diff / 449 threshold->seconds; 450 threshold->count += PF_THRESHOLD_MULT; 451 threshold->last = t; 452 } 453 454 static int 455 pf_check_threshold(struct pf_threshold *threshold) 456 { 457 return (threshold->count > threshold->limit); 458 } 459 460 static int 461 pf_src_connlimit(struct pf_state **state) 462 { 463 struct pf_overload_entry *pfoe; 464 int bad = 0; 465 466 PF_STATE_LOCK_ASSERT(*state); 467 468 (*state)->src_node->conn++; 469 (*state)->src.tcp_est = 1; 470 pf_add_threshold(&(*state)->src_node->conn_rate); 471 472 if ((*state)->rule.ptr->max_src_conn && 473 (*state)->rule.ptr->max_src_conn < 474 (*state)->src_node->conn) { 475 V_pf_status.lcounters[LCNT_SRCCONN]++; 476 bad++; 477 } 478 479 if ((*state)->rule.ptr->max_src_conn_rate.limit && 480 pf_check_threshold(&(*state)->src_node->conn_rate)) { 481 V_pf_status.lcounters[LCNT_SRCCONNRATE]++; 482 bad++; 483 } 484 485 if (!bad) 486 return (0); 487 488 /* Kill this state. */ 489 (*state)->timeout = PFTM_PURGE; 490 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 491 492 if ((*state)->rule.ptr->overload_tbl == NULL) 493 return (1); 494 495 /* Schedule overloading and flushing task. */ 496 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 497 if (pfoe == NULL) 498 return (1); /* too bad :( */ 499 500 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 501 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 502 pfoe->rule = (*state)->rule.ptr; 503 pfoe->dir = (*state)->direction; 504 PF_OVERLOADQ_LOCK(); 505 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 506 PF_OVERLOADQ_UNLOCK(); 507 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 508 509 return (1); 510 } 511 512 static void 513 pf_overload_task(void *c, int pending) 514 { 515 struct pf_overload_head queue; 516 struct pfr_addr p; 517 struct pf_overload_entry *pfoe, *pfoe1; 518 uint32_t killed = 0; 519 520 PF_OVERLOADQ_LOCK(); 521 queue = *(struct pf_overload_head *)c; 522 SLIST_INIT((struct pf_overload_head *)c); 523 PF_OVERLOADQ_UNLOCK(); 524 525 bzero(&p, sizeof(p)); 526 SLIST_FOREACH(pfoe, &queue, next) { 527 V_pf_status.lcounters[LCNT_OVERLOAD_TABLE]++; 528 if (V_pf_status.debug >= PF_DEBUG_MISC) { 529 printf("%s: blocking address ", __func__); 530 pf_print_host(&pfoe->addr, 0, pfoe->af); 531 printf("\n"); 532 } 533 534 p.pfra_af = pfoe->af; 535 switch (pfoe->af) { 536 #ifdef INET 537 case AF_INET: 538 p.pfra_net = 32; 539 p.pfra_ip4addr = pfoe->addr.v4; 540 break; 541 #endif 542 #ifdef INET6 543 case AF_INET6: 544 p.pfra_net = 128; 545 p.pfra_ip6addr = pfoe->addr.v6; 546 break; 547 #endif 548 } 549 550 PF_RULES_WLOCK(); 551 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 552 PF_RULES_WUNLOCK(); 553 } 554 555 /* 556 * Remove those entries, that don't need flushing. 557 */ 558 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 559 if (pfoe->rule->flush == 0) { 560 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 561 free(pfoe, M_PFTEMP); 562 } else 563 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH]++; 564 565 /* If nothing to flush, return. */ 566 if (SLIST_EMPTY(&queue)) 567 return; 568 569 for (int i = 0; i <= V_pf_hashmask; i++) { 570 struct pf_idhash *ih = &V_pf_idhash[i]; 571 struct pf_state_key *sk; 572 struct pf_state *s; 573 574 PF_HASHROW_LOCK(ih); 575 LIST_FOREACH(s, &ih->states, entry) { 576 sk = s->key[PF_SK_WIRE]; 577 SLIST_FOREACH(pfoe, &queue, next) 578 if (sk->af == pfoe->af && 579 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 580 pfoe->rule == s->rule.ptr) && 581 ((pfoe->dir == PF_OUT && 582 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 583 (pfoe->dir == PF_IN && 584 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 585 s->timeout = PFTM_PURGE; 586 s->src.state = s->dst.state = TCPS_CLOSED; 587 killed++; 588 } 589 } 590 PF_HASHROW_UNLOCK(ih); 591 } 592 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 593 free(pfoe, M_PFTEMP); 594 if (V_pf_status.debug >= PF_DEBUG_MISC) 595 printf("%s: %u states killed", __func__, killed); 596 } 597 598 /* 599 * Can return locked on failure, so that we can consistently 600 * allocate and insert a new one. 601 */ 602 struct pf_src_node * 603 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 604 int returnlocked) 605 { 606 struct pf_srchash *sh; 607 struct pf_src_node *n; 608 609 V_pf_status.scounters[SCNT_SRC_NODE_SEARCH]++; 610 611 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 612 PF_HASHROW_LOCK(sh); 613 LIST_FOREACH(n, &sh->nodes, entry) 614 if (n->rule.ptr == rule && n->af == af && 615 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 616 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 617 break; 618 if (n != NULL || returnlocked == 0) 619 PF_HASHROW_UNLOCK(sh); 620 621 return (n); 622 } 623 624 static int 625 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 626 struct pf_addr *src, sa_family_t af) 627 { 628 629 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 630 rule->rpool.opts & PF_POOL_STICKYADDR), 631 ("%s for non-tracking rule %p", __func__, rule)); 632 633 if (*sn == NULL) 634 *sn = pf_find_src_node(src, rule, af, 1); 635 636 if (*sn == NULL) { 637 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 638 639 PF_HASHROW_ASSERT(sh); 640 641 if (!rule->max_src_nodes || 642 rule->src_nodes < rule->max_src_nodes) 643 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 644 else 645 V_pf_status.lcounters[LCNT_SRCNODES]++; 646 if ((*sn) == NULL) { 647 PF_HASHROW_UNLOCK(sh); 648 return (-1); 649 } 650 651 pf_init_threshold(&(*sn)->conn_rate, 652 rule->max_src_conn_rate.limit, 653 rule->max_src_conn_rate.seconds); 654 655 (*sn)->af = af; 656 (*sn)->rule.ptr = rule; 657 PF_ACPY(&(*sn)->addr, src, af); 658 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 659 (*sn)->creation = time_uptime; 660 (*sn)->ruletype = rule->action; 661 if ((*sn)->rule.ptr != NULL) 662 (*sn)->rule.ptr->src_nodes++; 663 PF_HASHROW_UNLOCK(sh); 664 V_pf_status.scounters[SCNT_SRC_NODE_INSERT]++; 665 V_pf_status.src_nodes++; 666 } else { 667 if (rule->max_src_states && 668 (*sn)->states >= rule->max_src_states) { 669 V_pf_status.lcounters[LCNT_SRCSTATES]++; 670 return (-1); 671 } 672 } 673 return (0); 674 } 675 676 static void 677 pf_remove_src_node(struct pf_src_node *src) 678 { 679 struct pf_srchash *sh; 680 681 sh = &V_pf_srchash[pf_hashsrc(&src->addr, src->af)]; 682 PF_HASHROW_LOCK(sh); 683 LIST_REMOVE(src, entry); 684 PF_HASHROW_UNLOCK(sh); 685 686 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS]++; 687 V_pf_status.src_nodes--; 688 689 uma_zfree(V_pf_sources_z, src); 690 } 691 692 /* Data storage structures initialization. */ 693 void 694 pf_initialize() 695 { 696 struct pf_keyhash *kh; 697 struct pf_idhash *ih; 698 struct pf_srchash *sh; 699 u_int i; 700 701 TUNABLE_ULONG_FETCH("net.pf.states_hashsize", &V_pf_hashsize); 702 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 703 V_pf_hashsize = PF_HASHSIZ; 704 TUNABLE_ULONG_FETCH("net.pf.source_nodes_hashsize", &V_pf_srchashsize); 705 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 706 V_pf_srchashsize = PF_HASHSIZ / 4; 707 708 V_pf_hashseed = arc4random(); 709 710 /* States and state keys storage. */ 711 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 712 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 713 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 714 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 715 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 716 717 V_pf_state_key_z = uma_zcreate("pf state keys", 718 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 719 UMA_ALIGN_PTR, 0); 720 V_pf_keyhash = malloc(V_pf_hashsize * sizeof(struct pf_keyhash), 721 M_PFHASH, M_WAITOK | M_ZERO); 722 V_pf_idhash = malloc(V_pf_hashsize * sizeof(struct pf_idhash), 723 M_PFHASH, M_WAITOK | M_ZERO); 724 V_pf_hashmask = V_pf_hashsize - 1; 725 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 726 i++, kh++, ih++) { 727 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF); 728 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 729 } 730 731 /* Source nodes. */ 732 V_pf_sources_z = uma_zcreate("pf source nodes", 733 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 734 0); 735 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 736 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 737 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 738 V_pf_srchash = malloc(V_pf_srchashsize * sizeof(struct pf_srchash), 739 M_PFHASH, M_WAITOK|M_ZERO); 740 V_pf_srchashmask = V_pf_srchashsize - 1; 741 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 742 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 743 744 /* ALTQ */ 745 TAILQ_INIT(&V_pf_altqs[0]); 746 TAILQ_INIT(&V_pf_altqs[1]); 747 TAILQ_INIT(&V_pf_pabuf); 748 V_pf_altqs_active = &V_pf_altqs[0]; 749 V_pf_altqs_inactive = &V_pf_altqs[1]; 750 751 /* Mbuf tags */ 752 V_pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 753 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_init, NULL, 754 UMA_ALIGN_PTR, 0); 755 756 /* Send & overload+flush queues. */ 757 STAILQ_INIT(&V_pf_sendqueue); 758 SLIST_INIT(&V_pf_overloadqueue); 759 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, &V_pf_overloadqueue); 760 mtx_init(&pf_sendqueue_mtx, "pf send queue", NULL, MTX_DEF); 761 mtx_init(&pf_overloadqueue_mtx, "pf overload/flush queue", NULL, 762 MTX_DEF); 763 764 /* Unlinked, but may be referenced rules. */ 765 TAILQ_INIT(&V_pf_unlinked_rules); 766 mtx_init(&pf_unlnkdrules_mtx, "pf unlinked rules", NULL, MTX_DEF); 767 } 768 769 void 770 pf_cleanup() 771 { 772 struct pf_keyhash *kh; 773 struct pf_idhash *ih; 774 struct pf_srchash *sh; 775 struct pf_send_entry *pfse, *next; 776 u_int i; 777 778 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 779 i++, kh++, ih++) { 780 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 781 __func__)); 782 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 783 __func__)); 784 mtx_destroy(&kh->lock); 785 mtx_destroy(&ih->lock); 786 } 787 free(V_pf_keyhash, M_PFHASH); 788 free(V_pf_idhash, M_PFHASH); 789 790 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 791 KASSERT(LIST_EMPTY(&sh->nodes), 792 ("%s: source node hash not empty", __func__)); 793 mtx_destroy(&sh->lock); 794 } 795 free(V_pf_srchash, M_PFHASH); 796 797 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 798 m_freem(pfse->pfse_m); 799 free(pfse, M_PFTEMP); 800 } 801 802 mtx_destroy(&pf_sendqueue_mtx); 803 mtx_destroy(&pf_overloadqueue_mtx); 804 mtx_destroy(&pf_unlnkdrules_mtx); 805 806 uma_zdestroy(V_pf_mtag_z); 807 uma_zdestroy(V_pf_sources_z); 808 uma_zdestroy(V_pf_state_z); 809 uma_zdestroy(V_pf_state_key_z); 810 } 811 812 static int 813 pf_mtag_init(void *mem, int size, int how) 814 { 815 struct m_tag *t; 816 817 t = (struct m_tag *)mem; 818 t->m_tag_cookie = MTAG_ABI_COMPAT; 819 t->m_tag_id = PACKET_TAG_PF; 820 t->m_tag_len = sizeof(struct pf_mtag); 821 t->m_tag_free = pf_mtag_free; 822 823 return (0); 824 } 825 826 static void 827 pf_mtag_free(struct m_tag *t) 828 { 829 830 uma_zfree(V_pf_mtag_z, t); 831 } 832 833 struct pf_mtag * 834 pf_get_mtag(struct mbuf *m) 835 { 836 struct m_tag *mtag; 837 838 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 839 return ((struct pf_mtag *)(mtag + 1)); 840 841 mtag = uma_zalloc(V_pf_mtag_z, M_NOWAIT); 842 if (mtag == NULL) 843 return (NULL); 844 bzero(mtag + 1, sizeof(struct pf_mtag)); 845 m_tag_prepend(m, mtag); 846 847 return ((struct pf_mtag *)(mtag + 1)); 848 } 849 850 static int 851 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 852 struct pf_state *s) 853 { 854 struct pf_keyhash *kh; 855 struct pf_state_key *sk, *cur; 856 struct pf_state *si, *olds = NULL; 857 int idx; 858 859 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 860 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 861 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 862 863 /* 864 * First run: start with wire key. 865 */ 866 sk = skw; 867 idx = PF_SK_WIRE; 868 869 keyattach: 870 kh = &V_pf_keyhash[pf_hashkey(sk)]; 871 872 PF_HASHROW_LOCK(kh); 873 LIST_FOREACH(cur, &kh->keys, entry) 874 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 875 break; 876 877 if (cur != NULL) { 878 /* Key exists. Check for same kif, if none, add to key. */ 879 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 880 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 881 882 PF_HASHROW_LOCK(ih); 883 if (si->kif == s->kif && 884 si->direction == s->direction) { 885 if (sk->proto == IPPROTO_TCP && 886 si->src.state >= TCPS_FIN_WAIT_2 && 887 si->dst.state >= TCPS_FIN_WAIT_2) { 888 si->src.state = si->dst.state = 889 TCPS_CLOSED; 890 /* Unlink later or cur can go away. */ 891 pf_ref_state(si); 892 olds = si; 893 } else { 894 if (V_pf_status.debug >= PF_DEBUG_MISC) { 895 printf("pf: %s key attach " 896 "failed on %s: ", 897 (idx == PF_SK_WIRE) ? 898 "wire" : "stack", 899 s->kif->pfik_name); 900 pf_print_state_parts(s, 901 (idx == PF_SK_WIRE) ? 902 sk : NULL, 903 (idx == PF_SK_STACK) ? 904 sk : NULL); 905 printf(", existing: "); 906 pf_print_state_parts(si, 907 (idx == PF_SK_WIRE) ? 908 sk : NULL, 909 (idx == PF_SK_STACK) ? 910 sk : NULL); 911 printf("\n"); 912 } 913 PF_HASHROW_UNLOCK(ih); 914 PF_HASHROW_UNLOCK(kh); 915 uma_zfree(V_pf_state_key_z, sk); 916 if (idx == PF_SK_STACK) 917 pf_detach_state(s); 918 return (EEXIST); /* collision! */ 919 } 920 } 921 PF_HASHROW_UNLOCK(ih); 922 } 923 uma_zfree(V_pf_state_key_z, sk); 924 s->key[idx] = cur; 925 } else { 926 LIST_INSERT_HEAD(&kh->keys, sk, entry); 927 s->key[idx] = sk; 928 } 929 930 stateattach: 931 /* List is sorted, if-bound states before floating. */ 932 if (s->kif == V_pfi_all) 933 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 934 else 935 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 936 937 /* 938 * Attach done. See how should we (or should not?) 939 * attach a second key. 940 */ 941 if (sks == skw) { 942 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 943 idx = PF_SK_STACK; 944 sks = NULL; 945 goto stateattach; 946 } else if (sks != NULL) { 947 PF_HASHROW_UNLOCK(kh); 948 if (olds) { 949 pf_unlink_state(olds, 0); 950 pf_release_state(olds); 951 olds = NULL; 952 } 953 /* 954 * Continue attaching with stack key. 955 */ 956 sk = sks; 957 idx = PF_SK_STACK; 958 sks = NULL; 959 goto keyattach; 960 } else 961 PF_HASHROW_UNLOCK(kh); 962 963 if (olds) { 964 pf_unlink_state(olds, 0); 965 pf_release_state(olds); 966 } 967 968 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 969 ("%s failure", __func__)); 970 971 return (0); 972 } 973 974 static void 975 pf_detach_state(struct pf_state *s) 976 { 977 struct pf_state_key *sks = s->key[PF_SK_STACK]; 978 struct pf_keyhash *kh; 979 980 if (sks != NULL) { 981 kh = &V_pf_keyhash[pf_hashkey(sks)]; 982 PF_HASHROW_LOCK(kh); 983 if (s->key[PF_SK_STACK] != NULL) 984 pf_state_key_detach(s, PF_SK_STACK); 985 /* 986 * If both point to same key, then we are done. 987 */ 988 if (sks == s->key[PF_SK_WIRE]) { 989 pf_state_key_detach(s, PF_SK_WIRE); 990 PF_HASHROW_UNLOCK(kh); 991 return; 992 } 993 PF_HASHROW_UNLOCK(kh); 994 } 995 996 if (s->key[PF_SK_WIRE] != NULL) { 997 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 998 PF_HASHROW_LOCK(kh); 999 if (s->key[PF_SK_WIRE] != NULL) 1000 pf_state_key_detach(s, PF_SK_WIRE); 1001 PF_HASHROW_UNLOCK(kh); 1002 } 1003 } 1004 1005 static void 1006 pf_state_key_detach(struct pf_state *s, int idx) 1007 { 1008 struct pf_state_key *sk = s->key[idx]; 1009 #ifdef INVARIANTS 1010 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1011 1012 PF_HASHROW_ASSERT(kh); 1013 #endif 1014 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1015 s->key[idx] = NULL; 1016 1017 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1018 LIST_REMOVE(sk, entry); 1019 uma_zfree(V_pf_state_key_z, sk); 1020 } 1021 } 1022 1023 static int 1024 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1025 { 1026 struct pf_state_key *sk = mem; 1027 1028 bzero(sk, sizeof(struct pf_state_key_cmp)); 1029 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1030 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1031 1032 return (0); 1033 } 1034 1035 struct pf_state_key * 1036 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1037 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1038 { 1039 struct pf_state_key *sk; 1040 1041 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1042 if (sk == NULL) 1043 return (NULL); 1044 1045 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1046 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1047 sk->port[pd->sidx] = sport; 1048 sk->port[pd->didx] = dport; 1049 sk->proto = pd->proto; 1050 sk->af = pd->af; 1051 1052 return (sk); 1053 } 1054 1055 struct pf_state_key * 1056 pf_state_key_clone(struct pf_state_key *orig) 1057 { 1058 struct pf_state_key *sk; 1059 1060 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1061 if (sk == NULL) 1062 return (NULL); 1063 1064 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1065 1066 return (sk); 1067 } 1068 1069 int 1070 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1071 struct pf_state_key *sks, struct pf_state *s) 1072 { 1073 struct pf_idhash *ih; 1074 struct pf_state *cur; 1075 int error; 1076 1077 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1078 ("%s: sks not pristine", __func__)); 1079 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1080 ("%s: skw not pristine", __func__)); 1081 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1082 1083 s->kif = kif; 1084 1085 if (s->id == 0 && s->creatorid == 0) { 1086 /* XXX: should be atomic, but probability of collision low */ 1087 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1088 V_pf_stateid[curcpu] = 1; 1089 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1090 s->id = htobe64(s->id); 1091 s->creatorid = V_pf_status.hostid; 1092 } 1093 1094 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1095 return (error); 1096 1097 ih = &V_pf_idhash[PF_IDHASH(s)]; 1098 PF_HASHROW_LOCK(ih); 1099 LIST_FOREACH(cur, &ih->states, entry) 1100 if (cur->id == s->id && cur->creatorid == s->creatorid) 1101 break; 1102 1103 if (cur != NULL) { 1104 PF_HASHROW_UNLOCK(ih); 1105 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1106 printf("pf: state ID collision: " 1107 "id: %016llx creatorid: %08x\n", 1108 (unsigned long long)be64toh(s->id), 1109 ntohl(s->creatorid)); 1110 } 1111 pf_detach_state(s); 1112 return (EEXIST); 1113 } 1114 LIST_INSERT_HEAD(&ih->states, s, entry); 1115 /* One for keys, one for ID hash. */ 1116 refcount_init(&s->refs, 2); 1117 1118 V_pf_status.fcounters[FCNT_STATE_INSERT]++; 1119 if (pfsync_insert_state_ptr != NULL) 1120 pfsync_insert_state_ptr(s); 1121 1122 /* Returns locked. */ 1123 return (0); 1124 } 1125 1126 /* 1127 * Find state by ID: returns with locked row on success. 1128 */ 1129 struct pf_state * 1130 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1131 { 1132 struct pf_idhash *ih; 1133 struct pf_state *s; 1134 1135 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1136 1137 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))]; 1138 1139 PF_HASHROW_LOCK(ih); 1140 LIST_FOREACH(s, &ih->states, entry) 1141 if (s->id == id && s->creatorid == creatorid) 1142 break; 1143 1144 if (s == NULL) 1145 PF_HASHROW_UNLOCK(ih); 1146 1147 return (s); 1148 } 1149 1150 /* 1151 * Find state by key. 1152 * Returns with ID hash slot locked on success. 1153 */ 1154 static struct pf_state * 1155 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1156 { 1157 struct pf_keyhash *kh; 1158 struct pf_state_key *sk; 1159 struct pf_state *s; 1160 int idx; 1161 1162 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1163 1164 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1165 1166 PF_HASHROW_LOCK(kh); 1167 LIST_FOREACH(sk, &kh->keys, entry) 1168 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1169 break; 1170 if (sk == NULL) { 1171 PF_HASHROW_UNLOCK(kh); 1172 return (NULL); 1173 } 1174 1175 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1176 1177 /* List is sorted, if-bound states before floating ones. */ 1178 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1179 if (s->kif == V_pfi_all || s->kif == kif) { 1180 PF_STATE_LOCK(s); 1181 PF_HASHROW_UNLOCK(kh); 1182 if (s->timeout == PFTM_UNLINKED) { 1183 /* 1184 * State is being processed 1185 * by pf_unlink_state() in 1186 * an other thread. 1187 */ 1188 PF_STATE_UNLOCK(s); 1189 return (NULL); 1190 } 1191 return (s); 1192 } 1193 PF_HASHROW_UNLOCK(kh); 1194 1195 return (NULL); 1196 } 1197 1198 struct pf_state * 1199 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1200 { 1201 struct pf_keyhash *kh; 1202 struct pf_state_key *sk; 1203 struct pf_state *s, *ret = NULL; 1204 int idx, inout = 0; 1205 1206 V_pf_status.fcounters[FCNT_STATE_SEARCH]++; 1207 1208 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1209 1210 PF_HASHROW_LOCK(kh); 1211 LIST_FOREACH(sk, &kh->keys, entry) 1212 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1213 break; 1214 if (sk == NULL) { 1215 PF_HASHROW_UNLOCK(kh); 1216 return (NULL); 1217 } 1218 switch (dir) { 1219 case PF_IN: 1220 idx = PF_SK_WIRE; 1221 break; 1222 case PF_OUT: 1223 idx = PF_SK_STACK; 1224 break; 1225 case PF_INOUT: 1226 idx = PF_SK_WIRE; 1227 inout = 1; 1228 break; 1229 default: 1230 panic("%s: dir %u", __func__, dir); 1231 } 1232 second_run: 1233 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1234 if (more == NULL) { 1235 PF_HASHROW_UNLOCK(kh); 1236 return (s); 1237 } 1238 1239 if (ret) 1240 (*more)++; 1241 else 1242 ret = s; 1243 } 1244 if (inout == 1) { 1245 inout = 0; 1246 idx = PF_SK_STACK; 1247 goto second_run; 1248 } 1249 PF_HASHROW_UNLOCK(kh); 1250 1251 return (ret); 1252 } 1253 1254 /* END state table stuff */ 1255 1256 static void 1257 pf_send(struct pf_send_entry *pfse) 1258 { 1259 1260 PF_SENDQ_LOCK(); 1261 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1262 PF_SENDQ_UNLOCK(); 1263 swi_sched(V_pf_swi_cookie, 0); 1264 } 1265 1266 void 1267 pf_intr(void *v) 1268 { 1269 struct pf_send_head queue; 1270 struct pf_send_entry *pfse, *next; 1271 1272 CURVNET_SET((struct vnet *)v); 1273 1274 PF_SENDQ_LOCK(); 1275 queue = V_pf_sendqueue; 1276 STAILQ_INIT(&V_pf_sendqueue); 1277 PF_SENDQ_UNLOCK(); 1278 1279 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1280 switch (pfse->pfse_type) { 1281 #ifdef INET 1282 case PFSE_IP: 1283 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1284 break; 1285 case PFSE_ICMP: 1286 icmp_error(pfse->pfse_m, pfse->pfse_icmp_type, 1287 pfse->pfse_icmp_code, 0, pfse->pfse_icmp_mtu); 1288 break; 1289 #endif /* INET */ 1290 #ifdef INET6 1291 case PFSE_IP6: 1292 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1293 NULL); 1294 break; 1295 case PFSE_ICMP6: 1296 icmp6_error(pfse->pfse_m, pfse->pfse_icmp_type, 1297 pfse->pfse_icmp_code, pfse->pfse_icmp_mtu); 1298 break; 1299 #endif /* INET6 */ 1300 default: 1301 panic("%s: unknown type", __func__); 1302 } 1303 free(pfse, M_PFTEMP); 1304 } 1305 CURVNET_RESTORE(); 1306 } 1307 1308 void 1309 pf_purge_thread(void *v) 1310 { 1311 u_int idx = 0; 1312 1313 CURVNET_SET((struct vnet *)v); 1314 1315 for (;;) { 1316 PF_RULES_RLOCK(); 1317 rw_sleep(pf_purge_thread, &pf_rules_lock, 0, "pftm", hz / 10); 1318 1319 if (V_pf_end_threads) { 1320 /* 1321 * To cleanse up all kifs and rules we need 1322 * two runs: first one clears reference flags, 1323 * then pf_purge_expired_states() doesn't 1324 * raise them, and then second run frees. 1325 */ 1326 PF_RULES_RUNLOCK(); 1327 pf_purge_unlinked_rules(); 1328 pfi_kif_purge(); 1329 1330 /* 1331 * Now purge everything. 1332 */ 1333 pf_purge_expired_states(0, V_pf_hashmask); 1334 pf_purge_expired_fragments(); 1335 pf_purge_expired_src_nodes(); 1336 1337 /* 1338 * Now all kifs & rules should be unreferenced, 1339 * thus should be successfully freed. 1340 */ 1341 pf_purge_unlinked_rules(); 1342 pfi_kif_purge(); 1343 1344 /* 1345 * Announce success and exit. 1346 */ 1347 PF_RULES_RLOCK(); 1348 V_pf_end_threads++; 1349 PF_RULES_RUNLOCK(); 1350 wakeup(pf_purge_thread); 1351 kproc_exit(0); 1352 } 1353 PF_RULES_RUNLOCK(); 1354 1355 /* Process 1/interval fraction of the state table every run. */ 1356 idx = pf_purge_expired_states(idx, V_pf_hashmask / 1357 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1358 1359 /* Purge other expired types every PFTM_INTERVAL seconds. */ 1360 if (idx == 0) { 1361 /* 1362 * Order is important: 1363 * - states and src nodes reference rules 1364 * - states and rules reference kifs 1365 */ 1366 pf_purge_expired_fragments(); 1367 pf_purge_expired_src_nodes(); 1368 pf_purge_unlinked_rules(); 1369 pfi_kif_purge(); 1370 } 1371 } 1372 /* not reached */ 1373 CURVNET_RESTORE(); 1374 } 1375 1376 u_int32_t 1377 pf_state_expires(const struct pf_state *state) 1378 { 1379 u_int32_t timeout; 1380 u_int32_t start; 1381 u_int32_t end; 1382 u_int32_t states; 1383 1384 /* handle all PFTM_* > PFTM_MAX here */ 1385 if (state->timeout == PFTM_PURGE) 1386 return (time_uptime); 1387 if (state->timeout == PFTM_UNTIL_PACKET) 1388 return (0); 1389 KASSERT(state->timeout != PFTM_UNLINKED, 1390 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1391 KASSERT((state->timeout < PFTM_MAX), 1392 ("pf_state_expires: timeout > PFTM_MAX")); 1393 timeout = state->rule.ptr->timeout[state->timeout]; 1394 if (!timeout) 1395 timeout = V_pf_default_rule.timeout[state->timeout]; 1396 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1397 if (start) { 1398 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1399 states = state->rule.ptr->states_cur; /* XXXGL */ 1400 } else { 1401 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1402 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1403 states = V_pf_status.states; 1404 } 1405 if (end && states > start && start < end) { 1406 if (states < end) 1407 return (state->expire + timeout * (end - states) / 1408 (end - start)); 1409 else 1410 return (time_uptime); 1411 } 1412 return (state->expire + timeout); 1413 } 1414 1415 void 1416 pf_purge_expired_src_nodes() 1417 { 1418 struct pf_srchash *sh; 1419 struct pf_src_node *cur, *next; 1420 int i; 1421 1422 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1423 PF_HASHROW_LOCK(sh); 1424 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1425 if (cur->states <= 0 && cur->expire <= time_uptime) { 1426 if (cur->rule.ptr != NULL) 1427 cur->rule.ptr->src_nodes--; 1428 LIST_REMOVE(cur, entry); 1429 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS]++; 1430 V_pf_status.src_nodes--; 1431 uma_zfree(V_pf_sources_z, cur); 1432 } else if (cur->rule.ptr != NULL) 1433 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1434 PF_HASHROW_UNLOCK(sh); 1435 } 1436 } 1437 1438 static void 1439 pf_src_tree_remove_state(struct pf_state *s) 1440 { 1441 u_int32_t timeout; 1442 1443 if (s->src_node != NULL) { 1444 if (s->src.tcp_est) 1445 --s->src_node->conn; 1446 if (--s->src_node->states <= 0) { 1447 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1448 if (!timeout) 1449 timeout = 1450 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1451 s->src_node->expire = time_uptime + timeout; 1452 } 1453 } 1454 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1455 if (--s->nat_src_node->states <= 0) { 1456 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1457 if (!timeout) 1458 timeout = 1459 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1460 s->nat_src_node->expire = time_uptime + timeout; 1461 } 1462 } 1463 s->src_node = s->nat_src_node = NULL; 1464 } 1465 1466 /* 1467 * Unlink and potentilly free a state. Function may be 1468 * called with ID hash row locked, but always returns 1469 * unlocked, since it needs to go through key hash locking. 1470 */ 1471 int 1472 pf_unlink_state(struct pf_state *s, u_int flags) 1473 { 1474 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1475 1476 if ((flags & PF_ENTER_LOCKED) == 0) 1477 PF_HASHROW_LOCK(ih); 1478 else 1479 PF_HASHROW_ASSERT(ih); 1480 1481 if (s->timeout == PFTM_UNLINKED) { 1482 /* 1483 * State is being processed 1484 * by pf_unlink_state() in 1485 * an other thread. 1486 */ 1487 PF_HASHROW_UNLOCK(ih); 1488 return (0); /* XXXGL: undefined actually */ 1489 } 1490 1491 if (s->src.state == PF_TCPS_PROXY_DST) { 1492 /* XXX wire key the right one? */ 1493 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1494 &s->key[PF_SK_WIRE]->addr[1], 1495 &s->key[PF_SK_WIRE]->addr[0], 1496 s->key[PF_SK_WIRE]->port[1], 1497 s->key[PF_SK_WIRE]->port[0], 1498 s->src.seqhi, s->src.seqlo + 1, 1499 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1500 } 1501 1502 LIST_REMOVE(s, entry); 1503 pf_src_tree_remove_state(s); 1504 1505 if (pfsync_delete_state_ptr != NULL) 1506 pfsync_delete_state_ptr(s); 1507 1508 --s->rule.ptr->states_cur; 1509 if (s->nat_rule.ptr != NULL) 1510 --s->nat_rule.ptr->states_cur; 1511 if (s->anchor.ptr != NULL) 1512 --s->anchor.ptr->states_cur; 1513 1514 s->timeout = PFTM_UNLINKED; 1515 1516 PF_HASHROW_UNLOCK(ih); 1517 1518 pf_detach_state(s); 1519 refcount_release(&s->refs); 1520 1521 return (pf_release_state(s)); 1522 } 1523 1524 void 1525 pf_free_state(struct pf_state *cur) 1526 { 1527 1528 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1529 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1530 cur->timeout)); 1531 1532 pf_normalize_tcp_cleanup(cur); 1533 uma_zfree(V_pf_state_z, cur); 1534 V_pf_status.fcounters[FCNT_STATE_REMOVALS]++; 1535 } 1536 1537 /* 1538 * Called only from pf_purge_thread(), thus serialized. 1539 */ 1540 static u_int 1541 pf_purge_expired_states(u_int i, int maxcheck) 1542 { 1543 struct pf_idhash *ih; 1544 struct pf_state *s; 1545 1546 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1547 1548 /* 1549 * Go through hash and unlink states that expire now. 1550 */ 1551 while (maxcheck > 0) { 1552 1553 ih = &V_pf_idhash[i]; 1554 relock: 1555 PF_HASHROW_LOCK(ih); 1556 LIST_FOREACH(s, &ih->states, entry) { 1557 if (pf_state_expires(s) <= time_uptime) { 1558 V_pf_status.states -= 1559 pf_unlink_state(s, PF_ENTER_LOCKED); 1560 goto relock; 1561 } 1562 s->rule.ptr->rule_flag |= PFRULE_REFS; 1563 if (s->nat_rule.ptr != NULL) 1564 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1565 if (s->anchor.ptr != NULL) 1566 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1567 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1568 if (s->rt_kif) 1569 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1570 } 1571 PF_HASHROW_UNLOCK(ih); 1572 1573 /* Return when we hit end of hash. */ 1574 if (++i > V_pf_hashmask) { 1575 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1576 return (0); 1577 } 1578 1579 maxcheck--; 1580 } 1581 1582 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1583 1584 return (i); 1585 } 1586 1587 static void 1588 pf_purge_unlinked_rules() 1589 { 1590 struct pf_rulequeue tmpq; 1591 struct pf_rule *r, *r1; 1592 1593 /* 1594 * If we have overloading task pending, then we'd 1595 * better skip purging this time. There is a tiny 1596 * probability that overloading task references 1597 * an already unlinked rule. 1598 */ 1599 PF_OVERLOADQ_LOCK(); 1600 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1601 PF_OVERLOADQ_UNLOCK(); 1602 return; 1603 } 1604 PF_OVERLOADQ_UNLOCK(); 1605 1606 /* 1607 * Do naive mark-and-sweep garbage collecting of old rules. 1608 * Reference flag is raised by pf_purge_expired_states() 1609 * and pf_purge_expired_src_nodes(). 1610 * 1611 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1612 * use a temporary queue. 1613 */ 1614 TAILQ_INIT(&tmpq); 1615 PF_UNLNKDRULES_LOCK(); 1616 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1617 if (!(r->rule_flag & PFRULE_REFS)) { 1618 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1619 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1620 } else 1621 r->rule_flag &= ~PFRULE_REFS; 1622 } 1623 PF_UNLNKDRULES_UNLOCK(); 1624 1625 if (!TAILQ_EMPTY(&tmpq)) { 1626 PF_RULES_WLOCK(); 1627 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1628 TAILQ_REMOVE(&tmpq, r, entries); 1629 pf_free_rule(r); 1630 } 1631 PF_RULES_WUNLOCK(); 1632 } 1633 } 1634 1635 void 1636 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1637 { 1638 switch (af) { 1639 #ifdef INET 1640 case AF_INET: { 1641 u_int32_t a = ntohl(addr->addr32[0]); 1642 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1643 (a>>8)&255, a&255); 1644 if (p) { 1645 p = ntohs(p); 1646 printf(":%u", p); 1647 } 1648 break; 1649 } 1650 #endif /* INET */ 1651 #ifdef INET6 1652 case AF_INET6: { 1653 u_int16_t b; 1654 u_int8_t i, curstart, curend, maxstart, maxend; 1655 curstart = curend = maxstart = maxend = 255; 1656 for (i = 0; i < 8; i++) { 1657 if (!addr->addr16[i]) { 1658 if (curstart == 255) 1659 curstart = i; 1660 curend = i; 1661 } else { 1662 if ((curend - curstart) > 1663 (maxend - maxstart)) { 1664 maxstart = curstart; 1665 maxend = curend; 1666 } 1667 curstart = curend = 255; 1668 } 1669 } 1670 if ((curend - curstart) > 1671 (maxend - maxstart)) { 1672 maxstart = curstart; 1673 maxend = curend; 1674 } 1675 for (i = 0; i < 8; i++) { 1676 if (i >= maxstart && i <= maxend) { 1677 if (i == 0) 1678 printf(":"); 1679 if (i == maxend) 1680 printf(":"); 1681 } else { 1682 b = ntohs(addr->addr16[i]); 1683 printf("%x", b); 1684 if (i < 7) 1685 printf(":"); 1686 } 1687 } 1688 if (p) { 1689 p = ntohs(p); 1690 printf("[%u]", p); 1691 } 1692 break; 1693 } 1694 #endif /* INET6 */ 1695 } 1696 } 1697 1698 void 1699 pf_print_state(struct pf_state *s) 1700 { 1701 pf_print_state_parts(s, NULL, NULL); 1702 } 1703 1704 static void 1705 pf_print_state_parts(struct pf_state *s, 1706 struct pf_state_key *skwp, struct pf_state_key *sksp) 1707 { 1708 struct pf_state_key *skw, *sks; 1709 u_int8_t proto, dir; 1710 1711 /* Do our best to fill these, but they're skipped if NULL */ 1712 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1713 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1714 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1715 dir = s ? s->direction : 0; 1716 1717 switch (proto) { 1718 case IPPROTO_IPV4: 1719 printf("IPv4"); 1720 break; 1721 case IPPROTO_IPV6: 1722 printf("IPv6"); 1723 break; 1724 case IPPROTO_TCP: 1725 printf("TCP"); 1726 break; 1727 case IPPROTO_UDP: 1728 printf("UDP"); 1729 break; 1730 case IPPROTO_ICMP: 1731 printf("ICMP"); 1732 break; 1733 case IPPROTO_ICMPV6: 1734 printf("ICMPv6"); 1735 break; 1736 default: 1737 printf("%u", skw->proto); 1738 break; 1739 } 1740 switch (dir) { 1741 case PF_IN: 1742 printf(" in"); 1743 break; 1744 case PF_OUT: 1745 printf(" out"); 1746 break; 1747 } 1748 if (skw) { 1749 printf(" wire: "); 1750 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1751 printf(" "); 1752 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1753 } 1754 if (sks) { 1755 printf(" stack: "); 1756 if (sks != skw) { 1757 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1758 printf(" "); 1759 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1760 } else 1761 printf("-"); 1762 } 1763 if (s) { 1764 if (proto == IPPROTO_TCP) { 1765 printf(" [lo=%u high=%u win=%u modulator=%u", 1766 s->src.seqlo, s->src.seqhi, 1767 s->src.max_win, s->src.seqdiff); 1768 if (s->src.wscale && s->dst.wscale) 1769 printf(" wscale=%u", 1770 s->src.wscale & PF_WSCALE_MASK); 1771 printf("]"); 1772 printf(" [lo=%u high=%u win=%u modulator=%u", 1773 s->dst.seqlo, s->dst.seqhi, 1774 s->dst.max_win, s->dst.seqdiff); 1775 if (s->src.wscale && s->dst.wscale) 1776 printf(" wscale=%u", 1777 s->dst.wscale & PF_WSCALE_MASK); 1778 printf("]"); 1779 } 1780 printf(" %u:%u", s->src.state, s->dst.state); 1781 } 1782 } 1783 1784 void 1785 pf_print_flags(u_int8_t f) 1786 { 1787 if (f) 1788 printf(" "); 1789 if (f & TH_FIN) 1790 printf("F"); 1791 if (f & TH_SYN) 1792 printf("S"); 1793 if (f & TH_RST) 1794 printf("R"); 1795 if (f & TH_PUSH) 1796 printf("P"); 1797 if (f & TH_ACK) 1798 printf("A"); 1799 if (f & TH_URG) 1800 printf("U"); 1801 if (f & TH_ECE) 1802 printf("E"); 1803 if (f & TH_CWR) 1804 printf("W"); 1805 } 1806 1807 #define PF_SET_SKIP_STEPS(i) \ 1808 do { \ 1809 while (head[i] != cur) { \ 1810 head[i]->skip[i].ptr = cur; \ 1811 head[i] = TAILQ_NEXT(head[i], entries); \ 1812 } \ 1813 } while (0) 1814 1815 void 1816 pf_calc_skip_steps(struct pf_rulequeue *rules) 1817 { 1818 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1819 int i; 1820 1821 cur = TAILQ_FIRST(rules); 1822 prev = cur; 1823 for (i = 0; i < PF_SKIP_COUNT; ++i) 1824 head[i] = cur; 1825 while (cur != NULL) { 1826 1827 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1828 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1829 if (cur->direction != prev->direction) 1830 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1831 if (cur->af != prev->af) 1832 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1833 if (cur->proto != prev->proto) 1834 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1835 if (cur->src.neg != prev->src.neg || 1836 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1837 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1838 if (cur->src.port[0] != prev->src.port[0] || 1839 cur->src.port[1] != prev->src.port[1] || 1840 cur->src.port_op != prev->src.port_op) 1841 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1842 if (cur->dst.neg != prev->dst.neg || 1843 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1844 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1845 if (cur->dst.port[0] != prev->dst.port[0] || 1846 cur->dst.port[1] != prev->dst.port[1] || 1847 cur->dst.port_op != prev->dst.port_op) 1848 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1849 1850 prev = cur; 1851 cur = TAILQ_NEXT(cur, entries); 1852 } 1853 for (i = 0; i < PF_SKIP_COUNT; ++i) 1854 PF_SET_SKIP_STEPS(i); 1855 } 1856 1857 static int 1858 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1859 { 1860 if (aw1->type != aw2->type) 1861 return (1); 1862 switch (aw1->type) { 1863 case PF_ADDR_ADDRMASK: 1864 case PF_ADDR_RANGE: 1865 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, 0)) 1866 return (1); 1867 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, 0)) 1868 return (1); 1869 return (0); 1870 case PF_ADDR_DYNIFTL: 1871 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 1872 case PF_ADDR_NOROUTE: 1873 case PF_ADDR_URPFFAILED: 1874 return (0); 1875 case PF_ADDR_TABLE: 1876 return (aw1->p.tbl != aw2->p.tbl); 1877 default: 1878 printf("invalid address type: %d\n", aw1->type); 1879 return (1); 1880 } 1881 } 1882 1883 u_int16_t 1884 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 1885 { 1886 u_int32_t l; 1887 1888 if (udp && !cksum) 1889 return (0x0000); 1890 l = cksum + old - new; 1891 l = (l >> 16) + (l & 65535); 1892 l = l & 65535; 1893 if (udp && !l) 1894 return (0xFFFF); 1895 return (l); 1896 } 1897 1898 static void 1899 pf_change_ap(struct pf_addr *a, u_int16_t *p, u_int16_t *ic, u_int16_t *pc, 1900 struct pf_addr *an, u_int16_t pn, u_int8_t u, sa_family_t af) 1901 { 1902 struct pf_addr ao; 1903 u_int16_t po = *p; 1904 1905 PF_ACPY(&ao, a, af); 1906 PF_ACPY(a, an, af); 1907 1908 *p = pn; 1909 1910 switch (af) { 1911 #ifdef INET 1912 case AF_INET: 1913 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 1914 ao.addr16[0], an->addr16[0], 0), 1915 ao.addr16[1], an->addr16[1], 0); 1916 *p = pn; 1917 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 1918 ao.addr16[0], an->addr16[0], u), 1919 ao.addr16[1], an->addr16[1], u), 1920 po, pn, u); 1921 break; 1922 #endif /* INET */ 1923 #ifdef INET6 1924 case AF_INET6: 1925 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 1926 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 1927 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 1928 ao.addr16[0], an->addr16[0], u), 1929 ao.addr16[1], an->addr16[1], u), 1930 ao.addr16[2], an->addr16[2], u), 1931 ao.addr16[3], an->addr16[3], u), 1932 ao.addr16[4], an->addr16[4], u), 1933 ao.addr16[5], an->addr16[5], u), 1934 ao.addr16[6], an->addr16[6], u), 1935 ao.addr16[7], an->addr16[7], u), 1936 po, pn, u); 1937 break; 1938 #endif /* INET6 */ 1939 } 1940 } 1941 1942 1943 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 1944 void 1945 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 1946 { 1947 u_int32_t ao; 1948 1949 memcpy(&ao, a, sizeof(ao)); 1950 memcpy(a, &an, sizeof(u_int32_t)); 1951 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 1952 ao % 65536, an % 65536, u); 1953 } 1954 1955 #ifdef INET6 1956 static void 1957 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 1958 { 1959 struct pf_addr ao; 1960 1961 PF_ACPY(&ao, a, AF_INET6); 1962 PF_ACPY(a, an, AF_INET6); 1963 1964 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 1965 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 1966 pf_cksum_fixup(pf_cksum_fixup(*c, 1967 ao.addr16[0], an->addr16[0], u), 1968 ao.addr16[1], an->addr16[1], u), 1969 ao.addr16[2], an->addr16[2], u), 1970 ao.addr16[3], an->addr16[3], u), 1971 ao.addr16[4], an->addr16[4], u), 1972 ao.addr16[5], an->addr16[5], u), 1973 ao.addr16[6], an->addr16[6], u), 1974 ao.addr16[7], an->addr16[7], u); 1975 } 1976 #endif /* INET6 */ 1977 1978 static void 1979 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 1980 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 1981 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 1982 { 1983 struct pf_addr oia, ooa; 1984 1985 PF_ACPY(&oia, ia, af); 1986 if (oa) 1987 PF_ACPY(&ooa, oa, af); 1988 1989 /* Change inner protocol port, fix inner protocol checksum. */ 1990 if (ip != NULL) { 1991 u_int16_t oip = *ip; 1992 u_int32_t opc; 1993 1994 if (pc != NULL) 1995 opc = *pc; 1996 *ip = np; 1997 if (pc != NULL) 1998 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 1999 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2000 if (pc != NULL) 2001 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2002 } 2003 /* Change inner ip address, fix inner ip and icmp checksums. */ 2004 PF_ACPY(ia, na, af); 2005 switch (af) { 2006 #ifdef INET 2007 case AF_INET: { 2008 u_int32_t oh2c = *h2c; 2009 2010 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2011 oia.addr16[0], ia->addr16[0], 0), 2012 oia.addr16[1], ia->addr16[1], 0); 2013 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2014 oia.addr16[0], ia->addr16[0], 0), 2015 oia.addr16[1], ia->addr16[1], 0); 2016 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2017 break; 2018 } 2019 #endif /* INET */ 2020 #ifdef INET6 2021 case AF_INET6: 2022 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2023 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2024 pf_cksum_fixup(pf_cksum_fixup(*ic, 2025 oia.addr16[0], ia->addr16[0], u), 2026 oia.addr16[1], ia->addr16[1], u), 2027 oia.addr16[2], ia->addr16[2], u), 2028 oia.addr16[3], ia->addr16[3], u), 2029 oia.addr16[4], ia->addr16[4], u), 2030 oia.addr16[5], ia->addr16[5], u), 2031 oia.addr16[6], ia->addr16[6], u), 2032 oia.addr16[7], ia->addr16[7], u); 2033 break; 2034 #endif /* INET6 */ 2035 } 2036 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2037 if (oa) { 2038 PF_ACPY(oa, na, af); 2039 switch (af) { 2040 #ifdef INET 2041 case AF_INET: 2042 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2043 ooa.addr16[0], oa->addr16[0], 0), 2044 ooa.addr16[1], oa->addr16[1], 0); 2045 break; 2046 #endif /* INET */ 2047 #ifdef INET6 2048 case AF_INET6: 2049 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2050 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2051 pf_cksum_fixup(pf_cksum_fixup(*ic, 2052 ooa.addr16[0], oa->addr16[0], u), 2053 ooa.addr16[1], oa->addr16[1], u), 2054 ooa.addr16[2], oa->addr16[2], u), 2055 ooa.addr16[3], oa->addr16[3], u), 2056 ooa.addr16[4], oa->addr16[4], u), 2057 ooa.addr16[5], oa->addr16[5], u), 2058 ooa.addr16[6], oa->addr16[6], u), 2059 ooa.addr16[7], oa->addr16[7], u); 2060 break; 2061 #endif /* INET6 */ 2062 } 2063 } 2064 } 2065 2066 2067 /* 2068 * Need to modulate the sequence numbers in the TCP SACK option 2069 * (credits to Krzysztof Pfaff for report and patch) 2070 */ 2071 static int 2072 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2073 struct tcphdr *th, struct pf_state_peer *dst) 2074 { 2075 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2076 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2077 int copyback = 0, i, olen; 2078 struct sackblk sack; 2079 2080 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2081 if (hlen < TCPOLEN_SACKLEN || 2082 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2083 return 0; 2084 2085 while (hlen >= TCPOLEN_SACKLEN) { 2086 olen = opt[1]; 2087 switch (*opt) { 2088 case TCPOPT_EOL: /* FALLTHROUGH */ 2089 case TCPOPT_NOP: 2090 opt++; 2091 hlen--; 2092 break; 2093 case TCPOPT_SACK: 2094 if (olen > hlen) 2095 olen = hlen; 2096 if (olen >= TCPOLEN_SACKLEN) { 2097 for (i = 2; i + TCPOLEN_SACK <= olen; 2098 i += TCPOLEN_SACK) { 2099 memcpy(&sack, &opt[i], sizeof(sack)); 2100 pf_change_a(&sack.start, &th->th_sum, 2101 htonl(ntohl(sack.start) - 2102 dst->seqdiff), 0); 2103 pf_change_a(&sack.end, &th->th_sum, 2104 htonl(ntohl(sack.end) - 2105 dst->seqdiff), 0); 2106 memcpy(&opt[i], &sack, sizeof(sack)); 2107 } 2108 copyback = 1; 2109 } 2110 /* FALLTHROUGH */ 2111 default: 2112 if (olen < 2) 2113 olen = 2; 2114 hlen -= olen; 2115 opt += olen; 2116 } 2117 } 2118 2119 if (copyback) 2120 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2121 return (copyback); 2122 } 2123 2124 static void 2125 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2126 const struct pf_addr *saddr, const struct pf_addr *daddr, 2127 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2128 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2129 u_int16_t rtag, struct ifnet *ifp) 2130 { 2131 struct pf_send_entry *pfse; 2132 struct mbuf *m; 2133 int len, tlen; 2134 #ifdef INET 2135 struct ip *h = NULL; 2136 #endif /* INET */ 2137 #ifdef INET6 2138 struct ip6_hdr *h6 = NULL; 2139 #endif /* INET6 */ 2140 struct tcphdr *th; 2141 char *opt; 2142 struct pf_mtag *pf_mtag; 2143 2144 len = 0; 2145 th = NULL; 2146 2147 /* maximum segment size tcp option */ 2148 tlen = sizeof(struct tcphdr); 2149 if (mss) 2150 tlen += 4; 2151 2152 switch (af) { 2153 #ifdef INET 2154 case AF_INET: 2155 len = sizeof(struct ip) + tlen; 2156 break; 2157 #endif /* INET */ 2158 #ifdef INET6 2159 case AF_INET6: 2160 len = sizeof(struct ip6_hdr) + tlen; 2161 break; 2162 #endif /* INET6 */ 2163 default: 2164 panic("%s: unsupported af %d", __func__, af); 2165 } 2166 2167 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2168 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2169 if (pfse == NULL) 2170 return; 2171 m = m_gethdr(M_NOWAIT, MT_DATA); 2172 if (m == NULL) { 2173 free(pfse, M_PFTEMP); 2174 return; 2175 } 2176 #ifdef MAC 2177 mac_netinet_firewall_send(m); 2178 #endif 2179 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2180 free(pfse, M_PFTEMP); 2181 m_freem(m); 2182 return; 2183 } 2184 if (tag) 2185 m->m_flags |= M_SKIP_FIREWALL; 2186 pf_mtag->tag = rtag; 2187 2188 if (r != NULL && r->rtableid >= 0) 2189 M_SETFIB(m, r->rtableid); 2190 2191 #ifdef ALTQ 2192 if (r != NULL && r->qid) { 2193 pf_mtag->qid = r->qid; 2194 2195 /* add hints for ecn */ 2196 pf_mtag->hdr = mtod(m, struct ip *); 2197 } 2198 #endif /* ALTQ */ 2199 m->m_data += max_linkhdr; 2200 m->m_pkthdr.len = m->m_len = len; 2201 m->m_pkthdr.rcvif = NULL; 2202 bzero(m->m_data, len); 2203 switch (af) { 2204 #ifdef INET 2205 case AF_INET: 2206 h = mtod(m, struct ip *); 2207 2208 /* IP header fields included in the TCP checksum */ 2209 h->ip_p = IPPROTO_TCP; 2210 h->ip_len = htons(tlen); 2211 h->ip_src.s_addr = saddr->v4.s_addr; 2212 h->ip_dst.s_addr = daddr->v4.s_addr; 2213 2214 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2215 break; 2216 #endif /* INET */ 2217 #ifdef INET6 2218 case AF_INET6: 2219 h6 = mtod(m, struct ip6_hdr *); 2220 2221 /* IP header fields included in the TCP checksum */ 2222 h6->ip6_nxt = IPPROTO_TCP; 2223 h6->ip6_plen = htons(tlen); 2224 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2225 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2226 2227 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2228 break; 2229 #endif /* INET6 */ 2230 } 2231 2232 /* TCP header */ 2233 th->th_sport = sport; 2234 th->th_dport = dport; 2235 th->th_seq = htonl(seq); 2236 th->th_ack = htonl(ack); 2237 th->th_off = tlen >> 2; 2238 th->th_flags = flags; 2239 th->th_win = htons(win); 2240 2241 if (mss) { 2242 opt = (char *)(th + 1); 2243 opt[0] = TCPOPT_MAXSEG; 2244 opt[1] = 4; 2245 HTONS(mss); 2246 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2247 } 2248 2249 switch (af) { 2250 #ifdef INET 2251 case AF_INET: 2252 /* TCP checksum */ 2253 th->th_sum = in_cksum(m, len); 2254 2255 /* Finish the IP header */ 2256 h->ip_v = 4; 2257 h->ip_hl = sizeof(*h) >> 2; 2258 h->ip_tos = IPTOS_LOWDELAY; 2259 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2260 h->ip_len = htons(len); 2261 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2262 h->ip_sum = 0; 2263 2264 pfse->pfse_type = PFSE_IP; 2265 break; 2266 #endif /* INET */ 2267 #ifdef INET6 2268 case AF_INET6: 2269 /* TCP checksum */ 2270 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2271 sizeof(struct ip6_hdr), tlen); 2272 2273 h6->ip6_vfc |= IPV6_VERSION; 2274 h6->ip6_hlim = IPV6_DEFHLIM; 2275 2276 pfse->pfse_type = PFSE_IP6; 2277 break; 2278 #endif /* INET6 */ 2279 } 2280 pfse->pfse_m = m; 2281 pf_send(pfse); 2282 } 2283 2284 static void 2285 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2286 struct pf_rule *r) 2287 { 2288 struct pf_send_entry *pfse; 2289 struct mbuf *m0; 2290 struct pf_mtag *pf_mtag; 2291 2292 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2293 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2294 if (pfse == NULL) 2295 return; 2296 2297 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2298 free(pfse, M_PFTEMP); 2299 return; 2300 } 2301 2302 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2303 free(pfse, M_PFTEMP); 2304 return; 2305 } 2306 /* XXX: revisit */ 2307 m0->m_flags |= M_SKIP_FIREWALL; 2308 2309 if (r->rtableid >= 0) 2310 M_SETFIB(m0, r->rtableid); 2311 2312 #ifdef ALTQ 2313 if (r->qid) { 2314 pf_mtag->qid = r->qid; 2315 /* add hints for ecn */ 2316 pf_mtag->hdr = mtod(m0, struct ip *); 2317 } 2318 #endif /* ALTQ */ 2319 2320 switch (af) { 2321 #ifdef INET 2322 case AF_INET: 2323 pfse->pfse_type = PFSE_ICMP; 2324 break; 2325 #endif /* INET */ 2326 #ifdef INET6 2327 case AF_INET6: 2328 pfse->pfse_type = PFSE_ICMP6; 2329 break; 2330 #endif /* INET6 */ 2331 } 2332 pfse->pfse_m = m0; 2333 pfse->pfse_icmp_type = type; 2334 pfse->pfse_icmp_code = code; 2335 pf_send(pfse); 2336 } 2337 2338 /* 2339 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2340 * If n is 0, they match if they are equal. If n is != 0, they match if they 2341 * are different. 2342 */ 2343 int 2344 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2345 struct pf_addr *b, sa_family_t af) 2346 { 2347 int match = 0; 2348 2349 switch (af) { 2350 #ifdef INET 2351 case AF_INET: 2352 if ((a->addr32[0] & m->addr32[0]) == 2353 (b->addr32[0] & m->addr32[0])) 2354 match++; 2355 break; 2356 #endif /* INET */ 2357 #ifdef INET6 2358 case AF_INET6: 2359 if (((a->addr32[0] & m->addr32[0]) == 2360 (b->addr32[0] & m->addr32[0])) && 2361 ((a->addr32[1] & m->addr32[1]) == 2362 (b->addr32[1] & m->addr32[1])) && 2363 ((a->addr32[2] & m->addr32[2]) == 2364 (b->addr32[2] & m->addr32[2])) && 2365 ((a->addr32[3] & m->addr32[3]) == 2366 (b->addr32[3] & m->addr32[3]))) 2367 match++; 2368 break; 2369 #endif /* INET6 */ 2370 } 2371 if (match) { 2372 if (n) 2373 return (0); 2374 else 2375 return (1); 2376 } else { 2377 if (n) 2378 return (1); 2379 else 2380 return (0); 2381 } 2382 } 2383 2384 /* 2385 * Return 1 if b <= a <= e, otherwise return 0. 2386 */ 2387 int 2388 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2389 struct pf_addr *a, sa_family_t af) 2390 { 2391 switch (af) { 2392 #ifdef INET 2393 case AF_INET: 2394 if ((a->addr32[0] < b->addr32[0]) || 2395 (a->addr32[0] > e->addr32[0])) 2396 return (0); 2397 break; 2398 #endif /* INET */ 2399 #ifdef INET6 2400 case AF_INET6: { 2401 int i; 2402 2403 /* check a >= b */ 2404 for (i = 0; i < 4; ++i) 2405 if (a->addr32[i] > b->addr32[i]) 2406 break; 2407 else if (a->addr32[i] < b->addr32[i]) 2408 return (0); 2409 /* check a <= e */ 2410 for (i = 0; i < 4; ++i) 2411 if (a->addr32[i] < e->addr32[i]) 2412 break; 2413 else if (a->addr32[i] > e->addr32[i]) 2414 return (0); 2415 break; 2416 } 2417 #endif /* INET6 */ 2418 } 2419 return (1); 2420 } 2421 2422 static int 2423 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2424 { 2425 switch (op) { 2426 case PF_OP_IRG: 2427 return ((p > a1) && (p < a2)); 2428 case PF_OP_XRG: 2429 return ((p < a1) || (p > a2)); 2430 case PF_OP_RRG: 2431 return ((p >= a1) && (p <= a2)); 2432 case PF_OP_EQ: 2433 return (p == a1); 2434 case PF_OP_NE: 2435 return (p != a1); 2436 case PF_OP_LT: 2437 return (p < a1); 2438 case PF_OP_LE: 2439 return (p <= a1); 2440 case PF_OP_GT: 2441 return (p > a1); 2442 case PF_OP_GE: 2443 return (p >= a1); 2444 } 2445 return (0); /* never reached */ 2446 } 2447 2448 int 2449 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2450 { 2451 NTOHS(a1); 2452 NTOHS(a2); 2453 NTOHS(p); 2454 return (pf_match(op, a1, a2, p)); 2455 } 2456 2457 static int 2458 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2459 { 2460 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2461 return (0); 2462 return (pf_match(op, a1, a2, u)); 2463 } 2464 2465 static int 2466 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2467 { 2468 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2469 return (0); 2470 return (pf_match(op, a1, a2, g)); 2471 } 2472 2473 int 2474 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2475 { 2476 if (*tag == -1) 2477 *tag = mtag; 2478 2479 return ((!r->match_tag_not && r->match_tag == *tag) || 2480 (r->match_tag_not && r->match_tag != *tag)); 2481 } 2482 2483 int 2484 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2485 { 2486 2487 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2488 2489 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2490 return (ENOMEM); 2491 2492 pd->pf_mtag->tag = tag; 2493 2494 return (0); 2495 } 2496 2497 #define PF_ANCHOR_STACKSIZE 32 2498 struct pf_anchor_stackframe { 2499 struct pf_ruleset *rs; 2500 struct pf_rule *r; /* XXX: + match bit */ 2501 struct pf_anchor *child; 2502 }; 2503 2504 /* 2505 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2506 */ 2507 #define PF_ANCHORSTACK_MATCH 0x00000001 2508 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2509 2510 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2511 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2512 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2513 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2514 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2515 } while (0) 2516 2517 void 2518 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2519 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2520 int *match) 2521 { 2522 struct pf_anchor_stackframe *f; 2523 2524 PF_RULES_RASSERT(); 2525 2526 if (match) 2527 *match = 0; 2528 if (*depth >= PF_ANCHOR_STACKSIZE) { 2529 printf("%s: anchor stack overflow on %s\n", 2530 __func__, (*r)->anchor->name); 2531 *r = TAILQ_NEXT(*r, entries); 2532 return; 2533 } else if (*depth == 0 && a != NULL) 2534 *a = *r; 2535 f = stack + (*depth)++; 2536 f->rs = *rs; 2537 f->r = *r; 2538 if ((*r)->anchor_wildcard) { 2539 struct pf_anchor_node *parent = &(*r)->anchor->children; 2540 2541 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2542 *r = NULL; 2543 return; 2544 } 2545 *rs = &f->child->ruleset; 2546 } else { 2547 f->child = NULL; 2548 *rs = &(*r)->anchor->ruleset; 2549 } 2550 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2551 } 2552 2553 int 2554 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2555 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2556 int *match) 2557 { 2558 struct pf_anchor_stackframe *f; 2559 struct pf_rule *fr; 2560 int quick = 0; 2561 2562 PF_RULES_RASSERT(); 2563 2564 do { 2565 if (*depth <= 0) 2566 break; 2567 f = stack + *depth - 1; 2568 fr = PF_ANCHOR_RULE(f); 2569 if (f->child != NULL) { 2570 struct pf_anchor_node *parent; 2571 2572 /* 2573 * This block traverses through 2574 * a wildcard anchor. 2575 */ 2576 parent = &fr->anchor->children; 2577 if (match != NULL && *match) { 2578 /* 2579 * If any of "*" matched, then 2580 * "foo/ *" matched, mark frame 2581 * appropriately. 2582 */ 2583 PF_ANCHOR_SET_MATCH(f); 2584 *match = 0; 2585 } 2586 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2587 if (f->child != NULL) { 2588 *rs = &f->child->ruleset; 2589 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2590 if (*r == NULL) 2591 continue; 2592 else 2593 break; 2594 } 2595 } 2596 (*depth)--; 2597 if (*depth == 0 && a != NULL) 2598 *a = NULL; 2599 *rs = f->rs; 2600 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2601 quick = fr->quick; 2602 *r = TAILQ_NEXT(fr, entries); 2603 } while (*r == NULL); 2604 2605 return (quick); 2606 } 2607 2608 #ifdef INET6 2609 void 2610 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2611 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2612 { 2613 switch (af) { 2614 #ifdef INET 2615 case AF_INET: 2616 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2617 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2618 break; 2619 #endif /* INET */ 2620 case AF_INET6: 2621 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2622 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2623 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2624 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2625 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2626 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2627 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2628 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2629 break; 2630 } 2631 } 2632 2633 void 2634 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2635 { 2636 switch (af) { 2637 #ifdef INET 2638 case AF_INET: 2639 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2640 break; 2641 #endif /* INET */ 2642 case AF_INET6: 2643 if (addr->addr32[3] == 0xffffffff) { 2644 addr->addr32[3] = 0; 2645 if (addr->addr32[2] == 0xffffffff) { 2646 addr->addr32[2] = 0; 2647 if (addr->addr32[1] == 0xffffffff) { 2648 addr->addr32[1] = 0; 2649 addr->addr32[0] = 2650 htonl(ntohl(addr->addr32[0]) + 1); 2651 } else 2652 addr->addr32[1] = 2653 htonl(ntohl(addr->addr32[1]) + 1); 2654 } else 2655 addr->addr32[2] = 2656 htonl(ntohl(addr->addr32[2]) + 1); 2657 } else 2658 addr->addr32[3] = 2659 htonl(ntohl(addr->addr32[3]) + 1); 2660 break; 2661 } 2662 } 2663 #endif /* INET6 */ 2664 2665 int 2666 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2667 { 2668 struct pf_addr *saddr, *daddr; 2669 u_int16_t sport, dport; 2670 struct inpcbinfo *pi; 2671 struct inpcb *inp; 2672 2673 pd->lookup.uid = UID_MAX; 2674 pd->lookup.gid = GID_MAX; 2675 2676 switch (pd->proto) { 2677 case IPPROTO_TCP: 2678 if (pd->hdr.tcp == NULL) 2679 return (-1); 2680 sport = pd->hdr.tcp->th_sport; 2681 dport = pd->hdr.tcp->th_dport; 2682 pi = &V_tcbinfo; 2683 break; 2684 case IPPROTO_UDP: 2685 if (pd->hdr.udp == NULL) 2686 return (-1); 2687 sport = pd->hdr.udp->uh_sport; 2688 dport = pd->hdr.udp->uh_dport; 2689 pi = &V_udbinfo; 2690 break; 2691 default: 2692 return (-1); 2693 } 2694 if (direction == PF_IN) { 2695 saddr = pd->src; 2696 daddr = pd->dst; 2697 } else { 2698 u_int16_t p; 2699 2700 p = sport; 2701 sport = dport; 2702 dport = p; 2703 saddr = pd->dst; 2704 daddr = pd->src; 2705 } 2706 switch (pd->af) { 2707 #ifdef INET 2708 case AF_INET: 2709 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2710 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2711 if (inp == NULL) { 2712 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2713 daddr->v4, dport, INPLOOKUP_WILDCARD | 2714 INPLOOKUP_RLOCKPCB, NULL, m); 2715 if (inp == NULL) 2716 return (-1); 2717 } 2718 break; 2719 #endif /* INET */ 2720 #ifdef INET6 2721 case AF_INET6: 2722 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2723 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2724 if (inp == NULL) { 2725 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2726 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2727 INPLOOKUP_RLOCKPCB, NULL, m); 2728 if (inp == NULL) 2729 return (-1); 2730 } 2731 break; 2732 #endif /* INET6 */ 2733 2734 default: 2735 return (-1); 2736 } 2737 INP_RLOCK_ASSERT(inp); 2738 pd->lookup.uid = inp->inp_cred->cr_uid; 2739 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2740 INP_RUNLOCK(inp); 2741 2742 return (1); 2743 } 2744 2745 static u_int8_t 2746 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2747 { 2748 int hlen; 2749 u_int8_t hdr[60]; 2750 u_int8_t *opt, optlen; 2751 u_int8_t wscale = 0; 2752 2753 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2754 if (hlen <= sizeof(struct tcphdr)) 2755 return (0); 2756 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2757 return (0); 2758 opt = hdr + sizeof(struct tcphdr); 2759 hlen -= sizeof(struct tcphdr); 2760 while (hlen >= 3) { 2761 switch (*opt) { 2762 case TCPOPT_EOL: 2763 case TCPOPT_NOP: 2764 ++opt; 2765 --hlen; 2766 break; 2767 case TCPOPT_WINDOW: 2768 wscale = opt[2]; 2769 if (wscale > TCP_MAX_WINSHIFT) 2770 wscale = TCP_MAX_WINSHIFT; 2771 wscale |= PF_WSCALE_FLAG; 2772 /* FALLTHROUGH */ 2773 default: 2774 optlen = opt[1]; 2775 if (optlen < 2) 2776 optlen = 2; 2777 hlen -= optlen; 2778 opt += optlen; 2779 break; 2780 } 2781 } 2782 return (wscale); 2783 } 2784 2785 static u_int16_t 2786 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2787 { 2788 int hlen; 2789 u_int8_t hdr[60]; 2790 u_int8_t *opt, optlen; 2791 u_int16_t mss = V_tcp_mssdflt; 2792 2793 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2794 if (hlen <= sizeof(struct tcphdr)) 2795 return (0); 2796 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2797 return (0); 2798 opt = hdr + sizeof(struct tcphdr); 2799 hlen -= sizeof(struct tcphdr); 2800 while (hlen >= TCPOLEN_MAXSEG) { 2801 switch (*opt) { 2802 case TCPOPT_EOL: 2803 case TCPOPT_NOP: 2804 ++opt; 2805 --hlen; 2806 break; 2807 case TCPOPT_MAXSEG: 2808 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 2809 NTOHS(mss); 2810 /* FALLTHROUGH */ 2811 default: 2812 optlen = opt[1]; 2813 if (optlen < 2) 2814 optlen = 2; 2815 hlen -= optlen; 2816 opt += optlen; 2817 break; 2818 } 2819 } 2820 return (mss); 2821 } 2822 2823 static u_int16_t 2824 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 2825 { 2826 #ifdef INET 2827 struct sockaddr_in *dst; 2828 struct route ro; 2829 #endif /* INET */ 2830 #ifdef INET6 2831 struct sockaddr_in6 *dst6; 2832 struct route_in6 ro6; 2833 #endif /* INET6 */ 2834 struct rtentry *rt = NULL; 2835 int hlen = 0; 2836 u_int16_t mss = V_tcp_mssdflt; 2837 2838 switch (af) { 2839 #ifdef INET 2840 case AF_INET: 2841 hlen = sizeof(struct ip); 2842 bzero(&ro, sizeof(ro)); 2843 dst = (struct sockaddr_in *)&ro.ro_dst; 2844 dst->sin_family = AF_INET; 2845 dst->sin_len = sizeof(*dst); 2846 dst->sin_addr = addr->v4; 2847 in_rtalloc_ign(&ro, 0, rtableid); 2848 rt = ro.ro_rt; 2849 break; 2850 #endif /* INET */ 2851 #ifdef INET6 2852 case AF_INET6: 2853 hlen = sizeof(struct ip6_hdr); 2854 bzero(&ro6, sizeof(ro6)); 2855 dst6 = (struct sockaddr_in6 *)&ro6.ro_dst; 2856 dst6->sin6_family = AF_INET6; 2857 dst6->sin6_len = sizeof(*dst6); 2858 dst6->sin6_addr = addr->v6; 2859 in6_rtalloc_ign(&ro6, 0, rtableid); 2860 rt = ro6.ro_rt; 2861 break; 2862 #endif /* INET6 */ 2863 } 2864 2865 if (rt && rt->rt_ifp) { 2866 mss = rt->rt_ifp->if_mtu - hlen - sizeof(struct tcphdr); 2867 mss = max(V_tcp_mssdflt, mss); 2868 RTFREE(rt); 2869 } 2870 mss = min(mss, offer); 2871 mss = max(mss, 64); /* sanity - at least max opt space */ 2872 return (mss); 2873 } 2874 2875 static void 2876 pf_set_rt_ifp(struct pf_state *s, struct pf_addr *saddr) 2877 { 2878 struct pf_rule *r = s->rule.ptr; 2879 struct pf_src_node *sn = NULL; 2880 2881 s->rt_kif = NULL; 2882 if (!r->rt || r->rt == PF_FASTROUTE) 2883 return; 2884 switch (s->key[PF_SK_WIRE]->af) { 2885 #ifdef INET 2886 case AF_INET: 2887 pf_map_addr(AF_INET, r, saddr, &s->rt_addr, NULL, &sn); 2888 s->rt_kif = r->rpool.cur->kif; 2889 break; 2890 #endif /* INET */ 2891 #ifdef INET6 2892 case AF_INET6: 2893 pf_map_addr(AF_INET6, r, saddr, &s->rt_addr, NULL, &sn); 2894 s->rt_kif = r->rpool.cur->kif; 2895 break; 2896 #endif /* INET6 */ 2897 } 2898 } 2899 2900 static u_int32_t 2901 pf_tcp_iss(struct pf_pdesc *pd) 2902 { 2903 MD5_CTX ctx; 2904 u_int32_t digest[4]; 2905 2906 if (V_pf_tcp_secret_init == 0) { 2907 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 2908 MD5Init(&V_pf_tcp_secret_ctx); 2909 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 2910 sizeof(V_pf_tcp_secret)); 2911 V_pf_tcp_secret_init = 1; 2912 } 2913 2914 ctx = V_pf_tcp_secret_ctx; 2915 2916 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 2917 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 2918 if (pd->af == AF_INET6) { 2919 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 2920 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 2921 } else { 2922 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 2923 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 2924 } 2925 MD5Final((u_char *)digest, &ctx); 2926 V_pf_tcp_iss_off += 4096; 2927 #define ISN_RANDOM_INCREMENT (4096 - 1) 2928 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 2929 V_pf_tcp_iss_off); 2930 #undef ISN_RANDOM_INCREMENT 2931 } 2932 2933 static int 2934 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 2935 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 2936 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 2937 { 2938 struct pf_rule *nr = NULL; 2939 struct pf_addr * const saddr = pd->src; 2940 struct pf_addr * const daddr = pd->dst; 2941 sa_family_t af = pd->af; 2942 struct pf_rule *r, *a = NULL; 2943 struct pf_ruleset *ruleset = NULL; 2944 struct pf_src_node *nsn = NULL; 2945 struct tcphdr *th = pd->hdr.tcp; 2946 struct pf_state_key *sk = NULL, *nk = NULL; 2947 u_short reason; 2948 int rewrite = 0, hdrlen = 0; 2949 int tag = -1, rtableid = -1; 2950 int asd = 0; 2951 int match = 0; 2952 int state_icmp = 0; 2953 u_int16_t sport = 0, dport = 0; 2954 u_int16_t bproto_sum = 0, bip_sum = 0; 2955 u_int8_t icmptype = 0, icmpcode = 0; 2956 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 2957 2958 PF_RULES_RASSERT(); 2959 2960 if (inp != NULL) { 2961 INP_LOCK_ASSERT(inp); 2962 pd->lookup.uid = inp->inp_cred->cr_uid; 2963 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2964 pd->lookup.done = 1; 2965 } 2966 2967 switch (pd->proto) { 2968 case IPPROTO_TCP: 2969 sport = th->th_sport; 2970 dport = th->th_dport; 2971 hdrlen = sizeof(*th); 2972 break; 2973 case IPPROTO_UDP: 2974 sport = pd->hdr.udp->uh_sport; 2975 dport = pd->hdr.udp->uh_dport; 2976 hdrlen = sizeof(*pd->hdr.udp); 2977 break; 2978 #ifdef INET 2979 case IPPROTO_ICMP: 2980 if (pd->af != AF_INET) 2981 break; 2982 sport = dport = pd->hdr.icmp->icmp_id; 2983 hdrlen = sizeof(*pd->hdr.icmp); 2984 icmptype = pd->hdr.icmp->icmp_type; 2985 icmpcode = pd->hdr.icmp->icmp_code; 2986 2987 if (icmptype == ICMP_UNREACH || 2988 icmptype == ICMP_SOURCEQUENCH || 2989 icmptype == ICMP_REDIRECT || 2990 icmptype == ICMP_TIMXCEED || 2991 icmptype == ICMP_PARAMPROB) 2992 state_icmp++; 2993 break; 2994 #endif /* INET */ 2995 #ifdef INET6 2996 case IPPROTO_ICMPV6: 2997 if (af != AF_INET6) 2998 break; 2999 sport = dport = pd->hdr.icmp6->icmp6_id; 3000 hdrlen = sizeof(*pd->hdr.icmp6); 3001 icmptype = pd->hdr.icmp6->icmp6_type; 3002 icmpcode = pd->hdr.icmp6->icmp6_code; 3003 3004 if (icmptype == ICMP6_DST_UNREACH || 3005 icmptype == ICMP6_PACKET_TOO_BIG || 3006 icmptype == ICMP6_TIME_EXCEEDED || 3007 icmptype == ICMP6_PARAM_PROB) 3008 state_icmp++; 3009 break; 3010 #endif /* INET6 */ 3011 default: 3012 sport = dport = hdrlen = 0; 3013 break; 3014 } 3015 3016 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3017 3018 /* check packet for BINAT/NAT/RDR */ 3019 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3020 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3021 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3022 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3023 3024 if (pd->ip_sum) 3025 bip_sum = *pd->ip_sum; 3026 3027 switch (pd->proto) { 3028 case IPPROTO_TCP: 3029 bproto_sum = th->th_sum; 3030 pd->proto_sum = &th->th_sum; 3031 3032 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3033 nk->port[pd->sidx] != sport) { 3034 pf_change_ap(saddr, &th->th_sport, pd->ip_sum, 3035 &th->th_sum, &nk->addr[pd->sidx], 3036 nk->port[pd->sidx], 0, af); 3037 pd->sport = &th->th_sport; 3038 sport = th->th_sport; 3039 } 3040 3041 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3042 nk->port[pd->didx] != dport) { 3043 pf_change_ap(daddr, &th->th_dport, pd->ip_sum, 3044 &th->th_sum, &nk->addr[pd->didx], 3045 nk->port[pd->didx], 0, af); 3046 dport = th->th_dport; 3047 pd->dport = &th->th_dport; 3048 } 3049 rewrite++; 3050 break; 3051 case IPPROTO_UDP: 3052 bproto_sum = pd->hdr.udp->uh_sum; 3053 pd->proto_sum = &pd->hdr.udp->uh_sum; 3054 3055 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3056 nk->port[pd->sidx] != sport) { 3057 pf_change_ap(saddr, &pd->hdr.udp->uh_sport, 3058 pd->ip_sum, &pd->hdr.udp->uh_sum, 3059 &nk->addr[pd->sidx], 3060 nk->port[pd->sidx], 1, af); 3061 sport = pd->hdr.udp->uh_sport; 3062 pd->sport = &pd->hdr.udp->uh_sport; 3063 } 3064 3065 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3066 nk->port[pd->didx] != dport) { 3067 pf_change_ap(daddr, &pd->hdr.udp->uh_dport, 3068 pd->ip_sum, &pd->hdr.udp->uh_sum, 3069 &nk->addr[pd->didx], 3070 nk->port[pd->didx], 1, af); 3071 dport = pd->hdr.udp->uh_dport; 3072 pd->dport = &pd->hdr.udp->uh_dport; 3073 } 3074 rewrite++; 3075 break; 3076 #ifdef INET 3077 case IPPROTO_ICMP: 3078 nk->port[0] = nk->port[1]; 3079 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3080 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3081 nk->addr[pd->sidx].v4.s_addr, 0); 3082 3083 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3084 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3085 nk->addr[pd->didx].v4.s_addr, 0); 3086 3087 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3088 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3089 pd->hdr.icmp->icmp_cksum, sport, 3090 nk->port[1], 0); 3091 pd->hdr.icmp->icmp_id = nk->port[1]; 3092 pd->sport = &pd->hdr.icmp->icmp_id; 3093 } 3094 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3095 break; 3096 #endif /* INET */ 3097 #ifdef INET6 3098 case IPPROTO_ICMPV6: 3099 nk->port[0] = nk->port[1]; 3100 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3101 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3102 &nk->addr[pd->sidx], 0); 3103 3104 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3105 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3106 &nk->addr[pd->didx], 0); 3107 rewrite++; 3108 break; 3109 #endif /* INET */ 3110 default: 3111 switch (af) { 3112 #ifdef INET 3113 case AF_INET: 3114 if (PF_ANEQ(saddr, 3115 &nk->addr[pd->sidx], AF_INET)) 3116 pf_change_a(&saddr->v4.s_addr, 3117 pd->ip_sum, 3118 nk->addr[pd->sidx].v4.s_addr, 0); 3119 3120 if (PF_ANEQ(daddr, 3121 &nk->addr[pd->didx], AF_INET)) 3122 pf_change_a(&daddr->v4.s_addr, 3123 pd->ip_sum, 3124 nk->addr[pd->didx].v4.s_addr, 0); 3125 break; 3126 #endif /* INET */ 3127 #ifdef INET6 3128 case AF_INET6: 3129 if (PF_ANEQ(saddr, 3130 &nk->addr[pd->sidx], AF_INET6)) 3131 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3132 3133 if (PF_ANEQ(daddr, 3134 &nk->addr[pd->didx], AF_INET6)) 3135 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3136 break; 3137 #endif /* INET */ 3138 } 3139 break; 3140 } 3141 if (nr->natpass) 3142 r = NULL; 3143 pd->nat_rule = nr; 3144 } 3145 3146 while (r != NULL) { 3147 r->evaluations++; 3148 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3149 r = r->skip[PF_SKIP_IFP].ptr; 3150 else if (r->direction && r->direction != direction) 3151 r = r->skip[PF_SKIP_DIR].ptr; 3152 else if (r->af && r->af != af) 3153 r = r->skip[PF_SKIP_AF].ptr; 3154 else if (r->proto && r->proto != pd->proto) 3155 r = r->skip[PF_SKIP_PROTO].ptr; 3156 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3157 r->src.neg, kif, M_GETFIB(m))) 3158 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3159 /* tcp/udp only. port_op always 0 in other cases */ 3160 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3161 r->src.port[0], r->src.port[1], sport)) 3162 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3163 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3164 r->dst.neg, NULL, M_GETFIB(m))) 3165 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3166 /* tcp/udp only. port_op always 0 in other cases */ 3167 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3168 r->dst.port[0], r->dst.port[1], dport)) 3169 r = r->skip[PF_SKIP_DST_PORT].ptr; 3170 /* icmp only. type always 0 in other cases */ 3171 else if (r->type && r->type != icmptype + 1) 3172 r = TAILQ_NEXT(r, entries); 3173 /* icmp only. type always 0 in other cases */ 3174 else if (r->code && r->code != icmpcode + 1) 3175 r = TAILQ_NEXT(r, entries); 3176 else if (r->tos && !(r->tos == pd->tos)) 3177 r = TAILQ_NEXT(r, entries); 3178 else if (r->rule_flag & PFRULE_FRAGMENT) 3179 r = TAILQ_NEXT(r, entries); 3180 else if (pd->proto == IPPROTO_TCP && 3181 (r->flagset & th->th_flags) != r->flags) 3182 r = TAILQ_NEXT(r, entries); 3183 /* tcp/udp only. uid.op always 0 in other cases */ 3184 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3185 pf_socket_lookup(direction, pd, m), 1)) && 3186 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3187 pd->lookup.uid)) 3188 r = TAILQ_NEXT(r, entries); 3189 /* tcp/udp only. gid.op always 0 in other cases */ 3190 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3191 pf_socket_lookup(direction, pd, m), 1)) && 3192 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3193 pd->lookup.gid)) 3194 r = TAILQ_NEXT(r, entries); 3195 else if (r->prob && 3196 r->prob <= arc4random()) 3197 r = TAILQ_NEXT(r, entries); 3198 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3199 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3200 r = TAILQ_NEXT(r, entries); 3201 else if (r->os_fingerprint != PF_OSFP_ANY && 3202 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3203 pf_osfp_fingerprint(pd, m, off, th), 3204 r->os_fingerprint))) 3205 r = TAILQ_NEXT(r, entries); 3206 else { 3207 if (r->tag) 3208 tag = r->tag; 3209 if (r->rtableid >= 0) 3210 rtableid = r->rtableid; 3211 if (r->anchor == NULL) { 3212 match = 1; 3213 *rm = r; 3214 *am = a; 3215 *rsm = ruleset; 3216 if ((*rm)->quick) 3217 break; 3218 r = TAILQ_NEXT(r, entries); 3219 } else 3220 pf_step_into_anchor(anchor_stack, &asd, 3221 &ruleset, PF_RULESET_FILTER, &r, &a, 3222 &match); 3223 } 3224 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3225 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3226 break; 3227 } 3228 r = *rm; 3229 a = *am; 3230 ruleset = *rsm; 3231 3232 REASON_SET(&reason, PFRES_MATCH); 3233 3234 if (r->log || (nr != NULL && nr->log)) { 3235 if (rewrite) 3236 m_copyback(m, off, hdrlen, pd->hdr.any); 3237 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3238 ruleset, pd, 1); 3239 } 3240 3241 if ((r->action == PF_DROP) && 3242 ((r->rule_flag & PFRULE_RETURNRST) || 3243 (r->rule_flag & PFRULE_RETURNICMP) || 3244 (r->rule_flag & PFRULE_RETURN))) { 3245 /* undo NAT changes, if they have taken place */ 3246 if (nr != NULL) { 3247 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3248 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3249 if (pd->sport) 3250 *pd->sport = sk->port[pd->sidx]; 3251 if (pd->dport) 3252 *pd->dport = sk->port[pd->didx]; 3253 if (pd->proto_sum) 3254 *pd->proto_sum = bproto_sum; 3255 if (pd->ip_sum) 3256 *pd->ip_sum = bip_sum; 3257 m_copyback(m, off, hdrlen, pd->hdr.any); 3258 } 3259 if (pd->proto == IPPROTO_TCP && 3260 ((r->rule_flag & PFRULE_RETURNRST) || 3261 (r->rule_flag & PFRULE_RETURN)) && 3262 !(th->th_flags & TH_RST)) { 3263 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3264 int len = 0; 3265 #ifdef INET 3266 struct ip *h4; 3267 #endif 3268 #ifdef INET6 3269 struct ip6_hdr *h6; 3270 #endif 3271 3272 switch (af) { 3273 #ifdef INET 3274 case AF_INET: 3275 h4 = mtod(m, struct ip *); 3276 len = ntohs(h4->ip_len) - off; 3277 break; 3278 #endif 3279 #ifdef INET6 3280 case AF_INET6: 3281 h6 = mtod(m, struct ip6_hdr *); 3282 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3283 break; 3284 #endif 3285 } 3286 3287 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3288 REASON_SET(&reason, PFRES_PROTCKSUM); 3289 else { 3290 if (th->th_flags & TH_SYN) 3291 ack++; 3292 if (th->th_flags & TH_FIN) 3293 ack++; 3294 pf_send_tcp(m, r, af, pd->dst, 3295 pd->src, th->th_dport, th->th_sport, 3296 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3297 r->return_ttl, 1, 0, kif->pfik_ifp); 3298 } 3299 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3300 r->return_icmp) 3301 pf_send_icmp(m, r->return_icmp >> 8, 3302 r->return_icmp & 255, af, r); 3303 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3304 r->return_icmp6) 3305 pf_send_icmp(m, r->return_icmp6 >> 8, 3306 r->return_icmp6 & 255, af, r); 3307 } 3308 3309 if (r->action == PF_DROP) 3310 goto cleanup; 3311 3312 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3313 REASON_SET(&reason, PFRES_MEMORY); 3314 goto cleanup; 3315 } 3316 if (rtableid >= 0) 3317 M_SETFIB(m, rtableid); 3318 3319 if (!state_icmp && (r->keep_state || nr != NULL || 3320 (pd->flags & PFDESC_TCP_NORM))) { 3321 int action; 3322 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3323 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3324 hdrlen); 3325 if (action != PF_PASS) 3326 return (action); 3327 } else { 3328 if (sk != NULL) 3329 uma_zfree(V_pf_state_key_z, sk); 3330 if (nk != NULL) 3331 uma_zfree(V_pf_state_key_z, nk); 3332 } 3333 3334 /* copy back packet headers if we performed NAT operations */ 3335 if (rewrite) 3336 m_copyback(m, off, hdrlen, pd->hdr.any); 3337 3338 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3339 direction == PF_OUT && 3340 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3341 /* 3342 * We want the state created, but we dont 3343 * want to send this in case a partner 3344 * firewall has to know about it to allow 3345 * replies through it. 3346 */ 3347 return (PF_DEFER); 3348 3349 return (PF_PASS); 3350 3351 cleanup: 3352 if (sk != NULL) 3353 uma_zfree(V_pf_state_key_z, sk); 3354 if (nk != NULL) 3355 uma_zfree(V_pf_state_key_z, nk); 3356 return (PF_DROP); 3357 } 3358 3359 static int 3360 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3361 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3362 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3363 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3364 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3365 { 3366 struct pf_state *s = NULL; 3367 struct pf_src_node *sn = NULL; 3368 struct tcphdr *th = pd->hdr.tcp; 3369 u_int16_t mss = V_tcp_mssdflt; 3370 u_short reason; 3371 3372 /* check maximums */ 3373 if (r->max_states && (r->states_cur >= r->max_states)) { 3374 V_pf_status.lcounters[LCNT_STATES]++; 3375 REASON_SET(&reason, PFRES_MAXSTATES); 3376 return (PF_DROP); 3377 } 3378 /* src node for filter rule */ 3379 if ((r->rule_flag & PFRULE_SRCTRACK || 3380 r->rpool.opts & PF_POOL_STICKYADDR) && 3381 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3382 REASON_SET(&reason, PFRES_SRCLIMIT); 3383 goto csfailed; 3384 } 3385 /* src node for translation rule */ 3386 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3387 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3388 REASON_SET(&reason, PFRES_SRCLIMIT); 3389 goto csfailed; 3390 } 3391 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3392 if (s == NULL) { 3393 REASON_SET(&reason, PFRES_MEMORY); 3394 goto csfailed; 3395 } 3396 s->rule.ptr = r; 3397 s->nat_rule.ptr = nr; 3398 s->anchor.ptr = a; 3399 STATE_INC_COUNTERS(s); 3400 if (r->allow_opts) 3401 s->state_flags |= PFSTATE_ALLOWOPTS; 3402 if (r->rule_flag & PFRULE_STATESLOPPY) 3403 s->state_flags |= PFSTATE_SLOPPY; 3404 s->log = r->log & PF_LOG_ALL; 3405 s->sync_state = PFSYNC_S_NONE; 3406 if (nr != NULL) 3407 s->log |= nr->log & PF_LOG_ALL; 3408 switch (pd->proto) { 3409 case IPPROTO_TCP: 3410 s->src.seqlo = ntohl(th->th_seq); 3411 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3412 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3413 r->keep_state == PF_STATE_MODULATE) { 3414 /* Generate sequence number modulator */ 3415 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3416 0) 3417 s->src.seqdiff = 1; 3418 pf_change_a(&th->th_seq, &th->th_sum, 3419 htonl(s->src.seqlo + s->src.seqdiff), 0); 3420 *rewrite = 1; 3421 } else 3422 s->src.seqdiff = 0; 3423 if (th->th_flags & TH_SYN) { 3424 s->src.seqhi++; 3425 s->src.wscale = pf_get_wscale(m, off, 3426 th->th_off, pd->af); 3427 } 3428 s->src.max_win = MAX(ntohs(th->th_win), 1); 3429 if (s->src.wscale & PF_WSCALE_MASK) { 3430 /* Remove scale factor from initial window */ 3431 int win = s->src.max_win; 3432 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3433 s->src.max_win = (win - 1) >> 3434 (s->src.wscale & PF_WSCALE_MASK); 3435 } 3436 if (th->th_flags & TH_FIN) 3437 s->src.seqhi++; 3438 s->dst.seqhi = 1; 3439 s->dst.max_win = 1; 3440 s->src.state = TCPS_SYN_SENT; 3441 s->dst.state = TCPS_CLOSED; 3442 s->timeout = PFTM_TCP_FIRST_PACKET; 3443 break; 3444 case IPPROTO_UDP: 3445 s->src.state = PFUDPS_SINGLE; 3446 s->dst.state = PFUDPS_NO_TRAFFIC; 3447 s->timeout = PFTM_UDP_FIRST_PACKET; 3448 break; 3449 case IPPROTO_ICMP: 3450 #ifdef INET6 3451 case IPPROTO_ICMPV6: 3452 #endif 3453 s->timeout = PFTM_ICMP_FIRST_PACKET; 3454 break; 3455 default: 3456 s->src.state = PFOTHERS_SINGLE; 3457 s->dst.state = PFOTHERS_NO_TRAFFIC; 3458 s->timeout = PFTM_OTHER_FIRST_PACKET; 3459 } 3460 3461 s->creation = time_uptime; 3462 s->expire = time_uptime; 3463 3464 if (sn != NULL) { 3465 s->src_node = sn; 3466 s->src_node->states++; 3467 } 3468 if (nsn != NULL) { 3469 /* XXX We only modify one side for now. */ 3470 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3471 s->nat_src_node = nsn; 3472 s->nat_src_node->states++; 3473 } 3474 if (pd->proto == IPPROTO_TCP) { 3475 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3476 off, pd, th, &s->src, &s->dst)) { 3477 REASON_SET(&reason, PFRES_MEMORY); 3478 pf_src_tree_remove_state(s); 3479 STATE_DEC_COUNTERS(s); 3480 uma_zfree(V_pf_state_z, s); 3481 return (PF_DROP); 3482 } 3483 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3484 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3485 &s->src, &s->dst, rewrite)) { 3486 /* This really shouldn't happen!!! */ 3487 DPFPRINTF(PF_DEBUG_URGENT, 3488 ("pf_normalize_tcp_stateful failed on first pkt")); 3489 pf_normalize_tcp_cleanup(s); 3490 pf_src_tree_remove_state(s); 3491 STATE_DEC_COUNTERS(s); 3492 uma_zfree(V_pf_state_z, s); 3493 return (PF_DROP); 3494 } 3495 } 3496 s->direction = pd->dir; 3497 3498 /* 3499 * sk/nk could already been setup by pf_get_translation(). 3500 */ 3501 if (nr == NULL) { 3502 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3503 __func__, nr, sk, nk)); 3504 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3505 if (sk == NULL) 3506 goto csfailed; 3507 nk = sk; 3508 } else 3509 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3510 __func__, nr, sk, nk)); 3511 3512 /* Swap sk/nk for PF_OUT. */ 3513 if (pf_state_insert(BOUND_IFACE(r, kif), 3514 (pd->dir == PF_IN) ? sk : nk, 3515 (pd->dir == PF_IN) ? nk : sk, s)) { 3516 if (pd->proto == IPPROTO_TCP) 3517 pf_normalize_tcp_cleanup(s); 3518 REASON_SET(&reason, PFRES_STATEINS); 3519 pf_src_tree_remove_state(s); 3520 STATE_DEC_COUNTERS(s); 3521 uma_zfree(V_pf_state_z, s); 3522 return (PF_DROP); 3523 } else 3524 *sm = s; 3525 3526 pf_set_rt_ifp(s, pd->src); /* needs s->state_key set */ 3527 if (tag > 0) 3528 s->tag = tag; 3529 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3530 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3531 s->src.state = PF_TCPS_PROXY_SRC; 3532 /* undo NAT changes, if they have taken place */ 3533 if (nr != NULL) { 3534 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3535 if (pd->dir == PF_OUT) 3536 skt = s->key[PF_SK_STACK]; 3537 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3538 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3539 if (pd->sport) 3540 *pd->sport = skt->port[pd->sidx]; 3541 if (pd->dport) 3542 *pd->dport = skt->port[pd->didx]; 3543 if (pd->proto_sum) 3544 *pd->proto_sum = bproto_sum; 3545 if (pd->ip_sum) 3546 *pd->ip_sum = bip_sum; 3547 m_copyback(m, off, hdrlen, pd->hdr.any); 3548 } 3549 s->src.seqhi = htonl(arc4random()); 3550 /* Find mss option */ 3551 int rtid = M_GETFIB(m); 3552 mss = pf_get_mss(m, off, th->th_off, pd->af); 3553 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3554 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3555 s->src.mss = mss; 3556 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3557 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3558 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3559 REASON_SET(&reason, PFRES_SYNPROXY); 3560 return (PF_SYNPROXY_DROP); 3561 } 3562 3563 return (PF_PASS); 3564 3565 csfailed: 3566 if (sk != NULL) 3567 uma_zfree(V_pf_state_key_z, sk); 3568 if (nk != NULL) 3569 uma_zfree(V_pf_state_key_z, nk); 3570 3571 if (sn != NULL && sn->states == 0 && sn->expire == 0) 3572 pf_remove_src_node(sn); 3573 3574 if (nsn != sn && nsn != NULL && nsn->states == 0 && nsn->expire == 0) 3575 pf_remove_src_node(nsn); 3576 3577 return (PF_DROP); 3578 } 3579 3580 static int 3581 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3582 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3583 struct pf_ruleset **rsm) 3584 { 3585 struct pf_rule *r, *a = NULL; 3586 struct pf_ruleset *ruleset = NULL; 3587 sa_family_t af = pd->af; 3588 u_short reason; 3589 int tag = -1; 3590 int asd = 0; 3591 int match = 0; 3592 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3593 3594 PF_RULES_RASSERT(); 3595 3596 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3597 while (r != NULL) { 3598 r->evaluations++; 3599 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3600 r = r->skip[PF_SKIP_IFP].ptr; 3601 else if (r->direction && r->direction != direction) 3602 r = r->skip[PF_SKIP_DIR].ptr; 3603 else if (r->af && r->af != af) 3604 r = r->skip[PF_SKIP_AF].ptr; 3605 else if (r->proto && r->proto != pd->proto) 3606 r = r->skip[PF_SKIP_PROTO].ptr; 3607 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3608 r->src.neg, kif, M_GETFIB(m))) 3609 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3610 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3611 r->dst.neg, NULL, M_GETFIB(m))) 3612 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3613 else if (r->tos && !(r->tos == pd->tos)) 3614 r = TAILQ_NEXT(r, entries); 3615 else if (r->os_fingerprint != PF_OSFP_ANY) 3616 r = TAILQ_NEXT(r, entries); 3617 else if (pd->proto == IPPROTO_UDP && 3618 (r->src.port_op || r->dst.port_op)) 3619 r = TAILQ_NEXT(r, entries); 3620 else if (pd->proto == IPPROTO_TCP && 3621 (r->src.port_op || r->dst.port_op || r->flagset)) 3622 r = TAILQ_NEXT(r, entries); 3623 else if ((pd->proto == IPPROTO_ICMP || 3624 pd->proto == IPPROTO_ICMPV6) && 3625 (r->type || r->code)) 3626 r = TAILQ_NEXT(r, entries); 3627 else if (r->prob && r->prob <= 3628 (arc4random() % (UINT_MAX - 1) + 1)) 3629 r = TAILQ_NEXT(r, entries); 3630 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3631 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3632 r = TAILQ_NEXT(r, entries); 3633 else { 3634 if (r->anchor == NULL) { 3635 match = 1; 3636 *rm = r; 3637 *am = a; 3638 *rsm = ruleset; 3639 if ((*rm)->quick) 3640 break; 3641 r = TAILQ_NEXT(r, entries); 3642 } else 3643 pf_step_into_anchor(anchor_stack, &asd, 3644 &ruleset, PF_RULESET_FILTER, &r, &a, 3645 &match); 3646 } 3647 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3648 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3649 break; 3650 } 3651 r = *rm; 3652 a = *am; 3653 ruleset = *rsm; 3654 3655 REASON_SET(&reason, PFRES_MATCH); 3656 3657 if (r->log) 3658 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3659 1); 3660 3661 if (r->action != PF_PASS) 3662 return (PF_DROP); 3663 3664 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3665 REASON_SET(&reason, PFRES_MEMORY); 3666 return (PF_DROP); 3667 } 3668 3669 return (PF_PASS); 3670 } 3671 3672 static int 3673 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3674 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3675 struct pf_pdesc *pd, u_short *reason, int *copyback) 3676 { 3677 struct tcphdr *th = pd->hdr.tcp; 3678 u_int16_t win = ntohs(th->th_win); 3679 u_int32_t ack, end, seq, orig_seq; 3680 u_int8_t sws, dws; 3681 int ackskew; 3682 3683 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3684 sws = src->wscale & PF_WSCALE_MASK; 3685 dws = dst->wscale & PF_WSCALE_MASK; 3686 } else 3687 sws = dws = 0; 3688 3689 /* 3690 * Sequence tracking algorithm from Guido van Rooij's paper: 3691 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3692 * tcp_filtering.ps 3693 */ 3694 3695 orig_seq = seq = ntohl(th->th_seq); 3696 if (src->seqlo == 0) { 3697 /* First packet from this end. Set its state */ 3698 3699 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3700 src->scrub == NULL) { 3701 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3702 REASON_SET(reason, PFRES_MEMORY); 3703 return (PF_DROP); 3704 } 3705 } 3706 3707 /* Deferred generation of sequence number modulator */ 3708 if (dst->seqdiff && !src->seqdiff) { 3709 /* use random iss for the TCP server */ 3710 while ((src->seqdiff = arc4random() - seq) == 0) 3711 ; 3712 ack = ntohl(th->th_ack) - dst->seqdiff; 3713 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3714 src->seqdiff), 0); 3715 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3716 *copyback = 1; 3717 } else { 3718 ack = ntohl(th->th_ack); 3719 } 3720 3721 end = seq + pd->p_len; 3722 if (th->th_flags & TH_SYN) { 3723 end++; 3724 if (dst->wscale & PF_WSCALE_FLAG) { 3725 src->wscale = pf_get_wscale(m, off, th->th_off, 3726 pd->af); 3727 if (src->wscale & PF_WSCALE_FLAG) { 3728 /* Remove scale factor from initial 3729 * window */ 3730 sws = src->wscale & PF_WSCALE_MASK; 3731 win = ((u_int32_t)win + (1 << sws) - 1) 3732 >> sws; 3733 dws = dst->wscale & PF_WSCALE_MASK; 3734 } else { 3735 /* fixup other window */ 3736 dst->max_win <<= dst->wscale & 3737 PF_WSCALE_MASK; 3738 /* in case of a retrans SYN|ACK */ 3739 dst->wscale = 0; 3740 } 3741 } 3742 } 3743 if (th->th_flags & TH_FIN) 3744 end++; 3745 3746 src->seqlo = seq; 3747 if (src->state < TCPS_SYN_SENT) 3748 src->state = TCPS_SYN_SENT; 3749 3750 /* 3751 * May need to slide the window (seqhi may have been set by 3752 * the crappy stack check or if we picked up the connection 3753 * after establishment) 3754 */ 3755 if (src->seqhi == 1 || 3756 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3757 src->seqhi = end + MAX(1, dst->max_win << dws); 3758 if (win > src->max_win) 3759 src->max_win = win; 3760 3761 } else { 3762 ack = ntohl(th->th_ack) - dst->seqdiff; 3763 if (src->seqdiff) { 3764 /* Modulate sequence numbers */ 3765 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3766 src->seqdiff), 0); 3767 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3768 *copyback = 1; 3769 } 3770 end = seq + pd->p_len; 3771 if (th->th_flags & TH_SYN) 3772 end++; 3773 if (th->th_flags & TH_FIN) 3774 end++; 3775 } 3776 3777 if ((th->th_flags & TH_ACK) == 0) { 3778 /* Let it pass through the ack skew check */ 3779 ack = dst->seqlo; 3780 } else if ((ack == 0 && 3781 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 3782 /* broken tcp stacks do not set ack */ 3783 (dst->state < TCPS_SYN_SENT)) { 3784 /* 3785 * Many stacks (ours included) will set the ACK number in an 3786 * FIN|ACK if the SYN times out -- no sequence to ACK. 3787 */ 3788 ack = dst->seqlo; 3789 } 3790 3791 if (seq == end) { 3792 /* Ease sequencing restrictions on no data packets */ 3793 seq = src->seqlo; 3794 end = seq; 3795 } 3796 3797 ackskew = dst->seqlo - ack; 3798 3799 3800 /* 3801 * Need to demodulate the sequence numbers in any TCP SACK options 3802 * (Selective ACK). We could optionally validate the SACK values 3803 * against the current ACK window, either forwards or backwards, but 3804 * I'm not confident that SACK has been implemented properly 3805 * everywhere. It wouldn't surprise me if several stacks accidently 3806 * SACK too far backwards of previously ACKed data. There really aren't 3807 * any security implications of bad SACKing unless the target stack 3808 * doesn't validate the option length correctly. Someone trying to 3809 * spoof into a TCP connection won't bother blindly sending SACK 3810 * options anyway. 3811 */ 3812 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 3813 if (pf_modulate_sack(m, off, pd, th, dst)) 3814 *copyback = 1; 3815 } 3816 3817 3818 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 3819 if (SEQ_GEQ(src->seqhi, end) && 3820 /* Last octet inside other's window space */ 3821 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 3822 /* Retrans: not more than one window back */ 3823 (ackskew >= -MAXACKWINDOW) && 3824 /* Acking not more than one reassembled fragment backwards */ 3825 (ackskew <= (MAXACKWINDOW << sws)) && 3826 /* Acking not more than one window forward */ 3827 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 3828 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 3829 (pd->flags & PFDESC_IP_REAS) == 0)) { 3830 /* Require an exact/+1 sequence match on resets when possible */ 3831 3832 if (dst->scrub || src->scrub) { 3833 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 3834 *state, src, dst, copyback)) 3835 return (PF_DROP); 3836 } 3837 3838 /* update max window */ 3839 if (src->max_win < win) 3840 src->max_win = win; 3841 /* synchronize sequencing */ 3842 if (SEQ_GT(end, src->seqlo)) 3843 src->seqlo = end; 3844 /* slide the window of what the other end can send */ 3845 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 3846 dst->seqhi = ack + MAX((win << sws), 1); 3847 3848 3849 /* update states */ 3850 if (th->th_flags & TH_SYN) 3851 if (src->state < TCPS_SYN_SENT) 3852 src->state = TCPS_SYN_SENT; 3853 if (th->th_flags & TH_FIN) 3854 if (src->state < TCPS_CLOSING) 3855 src->state = TCPS_CLOSING; 3856 if (th->th_flags & TH_ACK) { 3857 if (dst->state == TCPS_SYN_SENT) { 3858 dst->state = TCPS_ESTABLISHED; 3859 if (src->state == TCPS_ESTABLISHED && 3860 (*state)->src_node != NULL && 3861 pf_src_connlimit(state)) { 3862 REASON_SET(reason, PFRES_SRCLIMIT); 3863 return (PF_DROP); 3864 } 3865 } else if (dst->state == TCPS_CLOSING) 3866 dst->state = TCPS_FIN_WAIT_2; 3867 } 3868 if (th->th_flags & TH_RST) 3869 src->state = dst->state = TCPS_TIME_WAIT; 3870 3871 /* update expire time */ 3872 (*state)->expire = time_uptime; 3873 if (src->state >= TCPS_FIN_WAIT_2 && 3874 dst->state >= TCPS_FIN_WAIT_2) 3875 (*state)->timeout = PFTM_TCP_CLOSED; 3876 else if (src->state >= TCPS_CLOSING && 3877 dst->state >= TCPS_CLOSING) 3878 (*state)->timeout = PFTM_TCP_FIN_WAIT; 3879 else if (src->state < TCPS_ESTABLISHED || 3880 dst->state < TCPS_ESTABLISHED) 3881 (*state)->timeout = PFTM_TCP_OPENING; 3882 else if (src->state >= TCPS_CLOSING || 3883 dst->state >= TCPS_CLOSING) 3884 (*state)->timeout = PFTM_TCP_CLOSING; 3885 else 3886 (*state)->timeout = PFTM_TCP_ESTABLISHED; 3887 3888 /* Fall through to PASS packet */ 3889 3890 } else if ((dst->state < TCPS_SYN_SENT || 3891 dst->state >= TCPS_FIN_WAIT_2 || 3892 src->state >= TCPS_FIN_WAIT_2) && 3893 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 3894 /* Within a window forward of the originating packet */ 3895 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 3896 /* Within a window backward of the originating packet */ 3897 3898 /* 3899 * This currently handles three situations: 3900 * 1) Stupid stacks will shotgun SYNs before their peer 3901 * replies. 3902 * 2) When PF catches an already established stream (the 3903 * firewall rebooted, the state table was flushed, routes 3904 * changed...) 3905 * 3) Packets get funky immediately after the connection 3906 * closes (this should catch Solaris spurious ACK|FINs 3907 * that web servers like to spew after a close) 3908 * 3909 * This must be a little more careful than the above code 3910 * since packet floods will also be caught here. We don't 3911 * update the TTL here to mitigate the damage of a packet 3912 * flood and so the same code can handle awkward establishment 3913 * and a loosened connection close. 3914 * In the establishment case, a correct peer response will 3915 * validate the connection, go through the normal state code 3916 * and keep updating the state TTL. 3917 */ 3918 3919 if (V_pf_status.debug >= PF_DEBUG_MISC) { 3920 printf("pf: loose state match: "); 3921 pf_print_state(*state); 3922 pf_print_flags(th->th_flags); 3923 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 3924 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 3925 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 3926 (unsigned long long)(*state)->packets[1], 3927 pd->dir == PF_IN ? "in" : "out", 3928 pd->dir == (*state)->direction ? "fwd" : "rev"); 3929 } 3930 3931 if (dst->scrub || src->scrub) { 3932 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 3933 *state, src, dst, copyback)) 3934 return (PF_DROP); 3935 } 3936 3937 /* update max window */ 3938 if (src->max_win < win) 3939 src->max_win = win; 3940 /* synchronize sequencing */ 3941 if (SEQ_GT(end, src->seqlo)) 3942 src->seqlo = end; 3943 /* slide the window of what the other end can send */ 3944 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 3945 dst->seqhi = ack + MAX((win << sws), 1); 3946 3947 /* 3948 * Cannot set dst->seqhi here since this could be a shotgunned 3949 * SYN and not an already established connection. 3950 */ 3951 3952 if (th->th_flags & TH_FIN) 3953 if (src->state < TCPS_CLOSING) 3954 src->state = TCPS_CLOSING; 3955 if (th->th_flags & TH_RST) 3956 src->state = dst->state = TCPS_TIME_WAIT; 3957 3958 /* Fall through to PASS packet */ 3959 3960 } else { 3961 if ((*state)->dst.state == TCPS_SYN_SENT && 3962 (*state)->src.state == TCPS_SYN_SENT) { 3963 /* Send RST for state mismatches during handshake */ 3964 if (!(th->th_flags & TH_RST)) 3965 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 3966 pd->dst, pd->src, th->th_dport, 3967 th->th_sport, ntohl(th->th_ack), 0, 3968 TH_RST, 0, 0, 3969 (*state)->rule.ptr->return_ttl, 1, 0, 3970 kif->pfik_ifp); 3971 src->seqlo = 0; 3972 src->seqhi = 1; 3973 src->max_win = 1; 3974 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 3975 printf("pf: BAD state: "); 3976 pf_print_state(*state); 3977 pf_print_flags(th->th_flags); 3978 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 3979 "pkts=%llu:%llu dir=%s,%s\n", 3980 seq, orig_seq, ack, pd->p_len, ackskew, 3981 (unsigned long long)(*state)->packets[0], 3982 (unsigned long long)(*state)->packets[1], 3983 pd->dir == PF_IN ? "in" : "out", 3984 pd->dir == (*state)->direction ? "fwd" : "rev"); 3985 printf("pf: State failure on: %c %c %c %c | %c %c\n", 3986 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 3987 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 3988 ' ': '2', 3989 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 3990 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 3991 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 3992 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 3993 } 3994 REASON_SET(reason, PFRES_BADSTATE); 3995 return (PF_DROP); 3996 } 3997 3998 return (PF_PASS); 3999 } 4000 4001 static int 4002 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4003 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4004 { 4005 struct tcphdr *th = pd->hdr.tcp; 4006 4007 if (th->th_flags & TH_SYN) 4008 if (src->state < TCPS_SYN_SENT) 4009 src->state = TCPS_SYN_SENT; 4010 if (th->th_flags & TH_FIN) 4011 if (src->state < TCPS_CLOSING) 4012 src->state = TCPS_CLOSING; 4013 if (th->th_flags & TH_ACK) { 4014 if (dst->state == TCPS_SYN_SENT) { 4015 dst->state = TCPS_ESTABLISHED; 4016 if (src->state == TCPS_ESTABLISHED && 4017 (*state)->src_node != NULL && 4018 pf_src_connlimit(state)) { 4019 REASON_SET(reason, PFRES_SRCLIMIT); 4020 return (PF_DROP); 4021 } 4022 } else if (dst->state == TCPS_CLOSING) { 4023 dst->state = TCPS_FIN_WAIT_2; 4024 } else if (src->state == TCPS_SYN_SENT && 4025 dst->state < TCPS_SYN_SENT) { 4026 /* 4027 * Handle a special sloppy case where we only see one 4028 * half of the connection. If there is a ACK after 4029 * the initial SYN without ever seeing a packet from 4030 * the destination, set the connection to established. 4031 */ 4032 dst->state = src->state = TCPS_ESTABLISHED; 4033 if ((*state)->src_node != NULL && 4034 pf_src_connlimit(state)) { 4035 REASON_SET(reason, PFRES_SRCLIMIT); 4036 return (PF_DROP); 4037 } 4038 } else if (src->state == TCPS_CLOSING && 4039 dst->state == TCPS_ESTABLISHED && 4040 dst->seqlo == 0) { 4041 /* 4042 * Handle the closing of half connections where we 4043 * don't see the full bidirectional FIN/ACK+ACK 4044 * handshake. 4045 */ 4046 dst->state = TCPS_CLOSING; 4047 } 4048 } 4049 if (th->th_flags & TH_RST) 4050 src->state = dst->state = TCPS_TIME_WAIT; 4051 4052 /* update expire time */ 4053 (*state)->expire = time_uptime; 4054 if (src->state >= TCPS_FIN_WAIT_2 && 4055 dst->state >= TCPS_FIN_WAIT_2) 4056 (*state)->timeout = PFTM_TCP_CLOSED; 4057 else if (src->state >= TCPS_CLOSING && 4058 dst->state >= TCPS_CLOSING) 4059 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4060 else if (src->state < TCPS_ESTABLISHED || 4061 dst->state < TCPS_ESTABLISHED) 4062 (*state)->timeout = PFTM_TCP_OPENING; 4063 else if (src->state >= TCPS_CLOSING || 4064 dst->state >= TCPS_CLOSING) 4065 (*state)->timeout = PFTM_TCP_CLOSING; 4066 else 4067 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4068 4069 return (PF_PASS); 4070 } 4071 4072 static int 4073 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4074 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4075 u_short *reason) 4076 { 4077 struct pf_state_key_cmp key; 4078 struct tcphdr *th = pd->hdr.tcp; 4079 int copyback = 0; 4080 struct pf_state_peer *src, *dst; 4081 struct pf_state_key *sk; 4082 4083 bzero(&key, sizeof(key)); 4084 key.af = pd->af; 4085 key.proto = IPPROTO_TCP; 4086 if (direction == PF_IN) { /* wire side, straight */ 4087 PF_ACPY(&key.addr[0], pd->src, key.af); 4088 PF_ACPY(&key.addr[1], pd->dst, key.af); 4089 key.port[0] = th->th_sport; 4090 key.port[1] = th->th_dport; 4091 } else { /* stack side, reverse */ 4092 PF_ACPY(&key.addr[1], pd->src, key.af); 4093 PF_ACPY(&key.addr[0], pd->dst, key.af); 4094 key.port[1] = th->th_sport; 4095 key.port[0] = th->th_dport; 4096 } 4097 4098 STATE_LOOKUP(kif, &key, direction, *state, pd); 4099 4100 if (direction == (*state)->direction) { 4101 src = &(*state)->src; 4102 dst = &(*state)->dst; 4103 } else { 4104 src = &(*state)->dst; 4105 dst = &(*state)->src; 4106 } 4107 4108 sk = (*state)->key[pd->didx]; 4109 4110 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4111 if (direction != (*state)->direction) { 4112 REASON_SET(reason, PFRES_SYNPROXY); 4113 return (PF_SYNPROXY_DROP); 4114 } 4115 if (th->th_flags & TH_SYN) { 4116 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4117 REASON_SET(reason, PFRES_SYNPROXY); 4118 return (PF_DROP); 4119 } 4120 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4121 pd->src, th->th_dport, th->th_sport, 4122 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4123 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4124 REASON_SET(reason, PFRES_SYNPROXY); 4125 return (PF_SYNPROXY_DROP); 4126 } else if (!(th->th_flags & TH_ACK) || 4127 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4128 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4129 REASON_SET(reason, PFRES_SYNPROXY); 4130 return (PF_DROP); 4131 } else if ((*state)->src_node != NULL && 4132 pf_src_connlimit(state)) { 4133 REASON_SET(reason, PFRES_SRCLIMIT); 4134 return (PF_DROP); 4135 } else 4136 (*state)->src.state = PF_TCPS_PROXY_DST; 4137 } 4138 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4139 if (direction == (*state)->direction) { 4140 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4141 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4142 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4143 REASON_SET(reason, PFRES_SYNPROXY); 4144 return (PF_DROP); 4145 } 4146 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4147 if ((*state)->dst.seqhi == 1) 4148 (*state)->dst.seqhi = htonl(arc4random()); 4149 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4150 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4151 sk->port[pd->sidx], sk->port[pd->didx], 4152 (*state)->dst.seqhi, 0, TH_SYN, 0, 4153 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4154 REASON_SET(reason, PFRES_SYNPROXY); 4155 return (PF_SYNPROXY_DROP); 4156 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4157 (TH_SYN|TH_ACK)) || 4158 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4159 REASON_SET(reason, PFRES_SYNPROXY); 4160 return (PF_DROP); 4161 } else { 4162 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4163 (*state)->dst.seqlo = ntohl(th->th_seq); 4164 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4165 pd->src, th->th_dport, th->th_sport, 4166 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4167 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4168 (*state)->tag, NULL); 4169 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4170 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4171 sk->port[pd->sidx], sk->port[pd->didx], 4172 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4173 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4174 (*state)->src.seqdiff = (*state)->dst.seqhi - 4175 (*state)->src.seqlo; 4176 (*state)->dst.seqdiff = (*state)->src.seqhi - 4177 (*state)->dst.seqlo; 4178 (*state)->src.seqhi = (*state)->src.seqlo + 4179 (*state)->dst.max_win; 4180 (*state)->dst.seqhi = (*state)->dst.seqlo + 4181 (*state)->src.max_win; 4182 (*state)->src.wscale = (*state)->dst.wscale = 0; 4183 (*state)->src.state = (*state)->dst.state = 4184 TCPS_ESTABLISHED; 4185 REASON_SET(reason, PFRES_SYNPROXY); 4186 return (PF_SYNPROXY_DROP); 4187 } 4188 } 4189 4190 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4191 dst->state >= TCPS_FIN_WAIT_2 && 4192 src->state >= TCPS_FIN_WAIT_2) { 4193 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4194 printf("pf: state reuse "); 4195 pf_print_state(*state); 4196 pf_print_flags(th->th_flags); 4197 printf("\n"); 4198 } 4199 /* XXX make sure it's the same direction ?? */ 4200 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4201 pf_unlink_state(*state, PF_ENTER_LOCKED); 4202 *state = NULL; 4203 return (PF_DROP); 4204 } 4205 4206 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4207 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4208 return (PF_DROP); 4209 } else { 4210 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4211 ©back) == PF_DROP) 4212 return (PF_DROP); 4213 } 4214 4215 /* translate source/destination address, if necessary */ 4216 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4217 struct pf_state_key *nk = (*state)->key[pd->didx]; 4218 4219 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4220 nk->port[pd->sidx] != th->th_sport) 4221 pf_change_ap(pd->src, &th->th_sport, pd->ip_sum, 4222 &th->th_sum, &nk->addr[pd->sidx], 4223 nk->port[pd->sidx], 0, pd->af); 4224 4225 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4226 nk->port[pd->didx] != th->th_dport) 4227 pf_change_ap(pd->dst, &th->th_dport, pd->ip_sum, 4228 &th->th_sum, &nk->addr[pd->didx], 4229 nk->port[pd->didx], 0, pd->af); 4230 copyback = 1; 4231 } 4232 4233 /* Copyback sequence modulation or stateful scrub changes if needed */ 4234 if (copyback) 4235 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4236 4237 return (PF_PASS); 4238 } 4239 4240 static int 4241 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4242 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4243 { 4244 struct pf_state_peer *src, *dst; 4245 struct pf_state_key_cmp key; 4246 struct udphdr *uh = pd->hdr.udp; 4247 4248 bzero(&key, sizeof(key)); 4249 key.af = pd->af; 4250 key.proto = IPPROTO_UDP; 4251 if (direction == PF_IN) { /* wire side, straight */ 4252 PF_ACPY(&key.addr[0], pd->src, key.af); 4253 PF_ACPY(&key.addr[1], pd->dst, key.af); 4254 key.port[0] = uh->uh_sport; 4255 key.port[1] = uh->uh_dport; 4256 } else { /* stack side, reverse */ 4257 PF_ACPY(&key.addr[1], pd->src, key.af); 4258 PF_ACPY(&key.addr[0], pd->dst, key.af); 4259 key.port[1] = uh->uh_sport; 4260 key.port[0] = uh->uh_dport; 4261 } 4262 4263 STATE_LOOKUP(kif, &key, direction, *state, pd); 4264 4265 if (direction == (*state)->direction) { 4266 src = &(*state)->src; 4267 dst = &(*state)->dst; 4268 } else { 4269 src = &(*state)->dst; 4270 dst = &(*state)->src; 4271 } 4272 4273 /* update states */ 4274 if (src->state < PFUDPS_SINGLE) 4275 src->state = PFUDPS_SINGLE; 4276 if (dst->state == PFUDPS_SINGLE) 4277 dst->state = PFUDPS_MULTIPLE; 4278 4279 /* update expire time */ 4280 (*state)->expire = time_uptime; 4281 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4282 (*state)->timeout = PFTM_UDP_MULTIPLE; 4283 else 4284 (*state)->timeout = PFTM_UDP_SINGLE; 4285 4286 /* translate source/destination address, if necessary */ 4287 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4288 struct pf_state_key *nk = (*state)->key[pd->didx]; 4289 4290 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4291 nk->port[pd->sidx] != uh->uh_sport) 4292 pf_change_ap(pd->src, &uh->uh_sport, pd->ip_sum, 4293 &uh->uh_sum, &nk->addr[pd->sidx], 4294 nk->port[pd->sidx], 1, pd->af); 4295 4296 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4297 nk->port[pd->didx] != uh->uh_dport) 4298 pf_change_ap(pd->dst, &uh->uh_dport, pd->ip_sum, 4299 &uh->uh_sum, &nk->addr[pd->didx], 4300 nk->port[pd->didx], 1, pd->af); 4301 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4302 } 4303 4304 return (PF_PASS); 4305 } 4306 4307 static int 4308 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4309 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4310 { 4311 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4312 u_int16_t icmpid = 0, *icmpsum; 4313 u_int8_t icmptype; 4314 int state_icmp = 0; 4315 struct pf_state_key_cmp key; 4316 4317 bzero(&key, sizeof(key)); 4318 switch (pd->proto) { 4319 #ifdef INET 4320 case IPPROTO_ICMP: 4321 icmptype = pd->hdr.icmp->icmp_type; 4322 icmpid = pd->hdr.icmp->icmp_id; 4323 icmpsum = &pd->hdr.icmp->icmp_cksum; 4324 4325 if (icmptype == ICMP_UNREACH || 4326 icmptype == ICMP_SOURCEQUENCH || 4327 icmptype == ICMP_REDIRECT || 4328 icmptype == ICMP_TIMXCEED || 4329 icmptype == ICMP_PARAMPROB) 4330 state_icmp++; 4331 break; 4332 #endif /* INET */ 4333 #ifdef INET6 4334 case IPPROTO_ICMPV6: 4335 icmptype = pd->hdr.icmp6->icmp6_type; 4336 icmpid = pd->hdr.icmp6->icmp6_id; 4337 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4338 4339 if (icmptype == ICMP6_DST_UNREACH || 4340 icmptype == ICMP6_PACKET_TOO_BIG || 4341 icmptype == ICMP6_TIME_EXCEEDED || 4342 icmptype == ICMP6_PARAM_PROB) 4343 state_icmp++; 4344 break; 4345 #endif /* INET6 */ 4346 } 4347 4348 if (!state_icmp) { 4349 4350 /* 4351 * ICMP query/reply message not related to a TCP/UDP packet. 4352 * Search for an ICMP state. 4353 */ 4354 key.af = pd->af; 4355 key.proto = pd->proto; 4356 key.port[0] = key.port[1] = icmpid; 4357 if (direction == PF_IN) { /* wire side, straight */ 4358 PF_ACPY(&key.addr[0], pd->src, key.af); 4359 PF_ACPY(&key.addr[1], pd->dst, key.af); 4360 } else { /* stack side, reverse */ 4361 PF_ACPY(&key.addr[1], pd->src, key.af); 4362 PF_ACPY(&key.addr[0], pd->dst, key.af); 4363 } 4364 4365 STATE_LOOKUP(kif, &key, direction, *state, pd); 4366 4367 (*state)->expire = time_uptime; 4368 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4369 4370 /* translate source/destination address, if necessary */ 4371 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4372 struct pf_state_key *nk = (*state)->key[pd->didx]; 4373 4374 switch (pd->af) { 4375 #ifdef INET 4376 case AF_INET: 4377 if (PF_ANEQ(pd->src, 4378 &nk->addr[pd->sidx], AF_INET)) 4379 pf_change_a(&saddr->v4.s_addr, 4380 pd->ip_sum, 4381 nk->addr[pd->sidx].v4.s_addr, 0); 4382 4383 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4384 AF_INET)) 4385 pf_change_a(&daddr->v4.s_addr, 4386 pd->ip_sum, 4387 nk->addr[pd->didx].v4.s_addr, 0); 4388 4389 if (nk->port[0] != 4390 pd->hdr.icmp->icmp_id) { 4391 pd->hdr.icmp->icmp_cksum = 4392 pf_cksum_fixup( 4393 pd->hdr.icmp->icmp_cksum, icmpid, 4394 nk->port[pd->sidx], 0); 4395 pd->hdr.icmp->icmp_id = 4396 nk->port[pd->sidx]; 4397 } 4398 4399 m_copyback(m, off, ICMP_MINLEN, 4400 (caddr_t )pd->hdr.icmp); 4401 break; 4402 #endif /* INET */ 4403 #ifdef INET6 4404 case AF_INET6: 4405 if (PF_ANEQ(pd->src, 4406 &nk->addr[pd->sidx], AF_INET6)) 4407 pf_change_a6(saddr, 4408 &pd->hdr.icmp6->icmp6_cksum, 4409 &nk->addr[pd->sidx], 0); 4410 4411 if (PF_ANEQ(pd->dst, 4412 &nk->addr[pd->didx], AF_INET6)) 4413 pf_change_a6(daddr, 4414 &pd->hdr.icmp6->icmp6_cksum, 4415 &nk->addr[pd->didx], 0); 4416 4417 m_copyback(m, off, sizeof(struct icmp6_hdr), 4418 (caddr_t )pd->hdr.icmp6); 4419 break; 4420 #endif /* INET6 */ 4421 } 4422 } 4423 return (PF_PASS); 4424 4425 } else { 4426 /* 4427 * ICMP error message in response to a TCP/UDP packet. 4428 * Extract the inner TCP/UDP header and search for that state. 4429 */ 4430 4431 struct pf_pdesc pd2; 4432 bzero(&pd2, sizeof pd2); 4433 #ifdef INET 4434 struct ip h2; 4435 #endif /* INET */ 4436 #ifdef INET6 4437 struct ip6_hdr h2_6; 4438 int terminal = 0; 4439 #endif /* INET6 */ 4440 int ipoff2 = 0; 4441 int off2 = 0; 4442 4443 pd2.af = pd->af; 4444 /* Payload packet is from the opposite direction. */ 4445 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4446 pd2.didx = (direction == PF_IN) ? 0 : 1; 4447 switch (pd->af) { 4448 #ifdef INET 4449 case AF_INET: 4450 /* offset of h2 in mbuf chain */ 4451 ipoff2 = off + ICMP_MINLEN; 4452 4453 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4454 NULL, reason, pd2.af)) { 4455 DPFPRINTF(PF_DEBUG_MISC, 4456 ("pf: ICMP error message too short " 4457 "(ip)\n")); 4458 return (PF_DROP); 4459 } 4460 /* 4461 * ICMP error messages don't refer to non-first 4462 * fragments 4463 */ 4464 if (h2.ip_off & htons(IP_OFFMASK)) { 4465 REASON_SET(reason, PFRES_FRAG); 4466 return (PF_DROP); 4467 } 4468 4469 /* offset of protocol header that follows h2 */ 4470 off2 = ipoff2 + (h2.ip_hl << 2); 4471 4472 pd2.proto = h2.ip_p; 4473 pd2.src = (struct pf_addr *)&h2.ip_src; 4474 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4475 pd2.ip_sum = &h2.ip_sum; 4476 break; 4477 #endif /* INET */ 4478 #ifdef INET6 4479 case AF_INET6: 4480 ipoff2 = off + sizeof(struct icmp6_hdr); 4481 4482 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4483 NULL, reason, pd2.af)) { 4484 DPFPRINTF(PF_DEBUG_MISC, 4485 ("pf: ICMP error message too short " 4486 "(ip6)\n")); 4487 return (PF_DROP); 4488 } 4489 pd2.proto = h2_6.ip6_nxt; 4490 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4491 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4492 pd2.ip_sum = NULL; 4493 off2 = ipoff2 + sizeof(h2_6); 4494 do { 4495 switch (pd2.proto) { 4496 case IPPROTO_FRAGMENT: 4497 /* 4498 * ICMPv6 error messages for 4499 * non-first fragments 4500 */ 4501 REASON_SET(reason, PFRES_FRAG); 4502 return (PF_DROP); 4503 case IPPROTO_AH: 4504 case IPPROTO_HOPOPTS: 4505 case IPPROTO_ROUTING: 4506 case IPPROTO_DSTOPTS: { 4507 /* get next header and header length */ 4508 struct ip6_ext opt6; 4509 4510 if (!pf_pull_hdr(m, off2, &opt6, 4511 sizeof(opt6), NULL, reason, 4512 pd2.af)) { 4513 DPFPRINTF(PF_DEBUG_MISC, 4514 ("pf: ICMPv6 short opt\n")); 4515 return (PF_DROP); 4516 } 4517 if (pd2.proto == IPPROTO_AH) 4518 off2 += (opt6.ip6e_len + 2) * 4; 4519 else 4520 off2 += (opt6.ip6e_len + 1) * 8; 4521 pd2.proto = opt6.ip6e_nxt; 4522 /* goto the next header */ 4523 break; 4524 } 4525 default: 4526 terminal++; 4527 break; 4528 } 4529 } while (!terminal); 4530 break; 4531 #endif /* INET6 */ 4532 } 4533 4534 switch (pd2.proto) { 4535 case IPPROTO_TCP: { 4536 struct tcphdr th; 4537 u_int32_t seq; 4538 struct pf_state_peer *src, *dst; 4539 u_int8_t dws; 4540 int copyback = 0; 4541 4542 /* 4543 * Only the first 8 bytes of the TCP header can be 4544 * expected. Don't access any TCP header fields after 4545 * th_seq, an ackskew test is not possible. 4546 */ 4547 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4548 pd2.af)) { 4549 DPFPRINTF(PF_DEBUG_MISC, 4550 ("pf: ICMP error message too short " 4551 "(tcp)\n")); 4552 return (PF_DROP); 4553 } 4554 4555 key.af = pd2.af; 4556 key.proto = IPPROTO_TCP; 4557 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4558 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4559 key.port[pd2.sidx] = th.th_sport; 4560 key.port[pd2.didx] = th.th_dport; 4561 4562 STATE_LOOKUP(kif, &key, direction, *state, pd); 4563 4564 if (direction == (*state)->direction) { 4565 src = &(*state)->dst; 4566 dst = &(*state)->src; 4567 } else { 4568 src = &(*state)->src; 4569 dst = &(*state)->dst; 4570 } 4571 4572 if (src->wscale && dst->wscale) 4573 dws = dst->wscale & PF_WSCALE_MASK; 4574 else 4575 dws = 0; 4576 4577 /* Demodulate sequence number */ 4578 seq = ntohl(th.th_seq) - src->seqdiff; 4579 if (src->seqdiff) { 4580 pf_change_a(&th.th_seq, icmpsum, 4581 htonl(seq), 0); 4582 copyback = 1; 4583 } 4584 4585 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4586 (!SEQ_GEQ(src->seqhi, seq) || 4587 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4588 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4589 printf("pf: BAD ICMP %d:%d ", 4590 icmptype, pd->hdr.icmp->icmp_code); 4591 pf_print_host(pd->src, 0, pd->af); 4592 printf(" -> "); 4593 pf_print_host(pd->dst, 0, pd->af); 4594 printf(" state: "); 4595 pf_print_state(*state); 4596 printf(" seq=%u\n", seq); 4597 } 4598 REASON_SET(reason, PFRES_BADSTATE); 4599 return (PF_DROP); 4600 } else { 4601 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4602 printf("pf: OK ICMP %d:%d ", 4603 icmptype, pd->hdr.icmp->icmp_code); 4604 pf_print_host(pd->src, 0, pd->af); 4605 printf(" -> "); 4606 pf_print_host(pd->dst, 0, pd->af); 4607 printf(" state: "); 4608 pf_print_state(*state); 4609 printf(" seq=%u\n", seq); 4610 } 4611 } 4612 4613 /* translate source/destination address, if necessary */ 4614 if ((*state)->key[PF_SK_WIRE] != 4615 (*state)->key[PF_SK_STACK]) { 4616 struct pf_state_key *nk = 4617 (*state)->key[pd->didx]; 4618 4619 if (PF_ANEQ(pd2.src, 4620 &nk->addr[pd2.sidx], pd2.af) || 4621 nk->port[pd2.sidx] != th.th_sport) 4622 pf_change_icmp(pd2.src, &th.th_sport, 4623 daddr, &nk->addr[pd2.sidx], 4624 nk->port[pd2.sidx], NULL, 4625 pd2.ip_sum, icmpsum, 4626 pd->ip_sum, 0, pd2.af); 4627 4628 if (PF_ANEQ(pd2.dst, 4629 &nk->addr[pd2.didx], pd2.af) || 4630 nk->port[pd2.didx] != th.th_dport) 4631 pf_change_icmp(pd2.dst, &th.th_dport, 4632 NULL, /* XXX Inbound NAT? */ 4633 &nk->addr[pd2.didx], 4634 nk->port[pd2.didx], NULL, 4635 pd2.ip_sum, icmpsum, 4636 pd->ip_sum, 0, pd2.af); 4637 copyback = 1; 4638 } 4639 4640 if (copyback) { 4641 switch (pd2.af) { 4642 #ifdef INET 4643 case AF_INET: 4644 m_copyback(m, off, ICMP_MINLEN, 4645 (caddr_t )pd->hdr.icmp); 4646 m_copyback(m, ipoff2, sizeof(h2), 4647 (caddr_t )&h2); 4648 break; 4649 #endif /* INET */ 4650 #ifdef INET6 4651 case AF_INET6: 4652 m_copyback(m, off, 4653 sizeof(struct icmp6_hdr), 4654 (caddr_t )pd->hdr.icmp6); 4655 m_copyback(m, ipoff2, sizeof(h2_6), 4656 (caddr_t )&h2_6); 4657 break; 4658 #endif /* INET6 */ 4659 } 4660 m_copyback(m, off2, 8, (caddr_t)&th); 4661 } 4662 4663 return (PF_PASS); 4664 break; 4665 } 4666 case IPPROTO_UDP: { 4667 struct udphdr uh; 4668 4669 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4670 NULL, reason, pd2.af)) { 4671 DPFPRINTF(PF_DEBUG_MISC, 4672 ("pf: ICMP error message too short " 4673 "(udp)\n")); 4674 return (PF_DROP); 4675 } 4676 4677 key.af = pd2.af; 4678 key.proto = IPPROTO_UDP; 4679 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4680 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4681 key.port[pd2.sidx] = uh.uh_sport; 4682 key.port[pd2.didx] = uh.uh_dport; 4683 4684 STATE_LOOKUP(kif, &key, direction, *state, pd); 4685 4686 /* translate source/destination address, if necessary */ 4687 if ((*state)->key[PF_SK_WIRE] != 4688 (*state)->key[PF_SK_STACK]) { 4689 struct pf_state_key *nk = 4690 (*state)->key[pd->didx]; 4691 4692 if (PF_ANEQ(pd2.src, 4693 &nk->addr[pd2.sidx], pd2.af) || 4694 nk->port[pd2.sidx] != uh.uh_sport) 4695 pf_change_icmp(pd2.src, &uh.uh_sport, 4696 daddr, &nk->addr[pd2.sidx], 4697 nk->port[pd2.sidx], &uh.uh_sum, 4698 pd2.ip_sum, icmpsum, 4699 pd->ip_sum, 1, pd2.af); 4700 4701 if (PF_ANEQ(pd2.dst, 4702 &nk->addr[pd2.didx], pd2.af) || 4703 nk->port[pd2.didx] != uh.uh_dport) 4704 pf_change_icmp(pd2.dst, &uh.uh_dport, 4705 NULL, /* XXX Inbound NAT? */ 4706 &nk->addr[pd2.didx], 4707 nk->port[pd2.didx], &uh.uh_sum, 4708 pd2.ip_sum, icmpsum, 4709 pd->ip_sum, 1, pd2.af); 4710 4711 switch (pd2.af) { 4712 #ifdef INET 4713 case AF_INET: 4714 m_copyback(m, off, ICMP_MINLEN, 4715 (caddr_t )pd->hdr.icmp); 4716 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4717 break; 4718 #endif /* INET */ 4719 #ifdef INET6 4720 case AF_INET6: 4721 m_copyback(m, off, 4722 sizeof(struct icmp6_hdr), 4723 (caddr_t )pd->hdr.icmp6); 4724 m_copyback(m, ipoff2, sizeof(h2_6), 4725 (caddr_t )&h2_6); 4726 break; 4727 #endif /* INET6 */ 4728 } 4729 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4730 } 4731 return (PF_PASS); 4732 break; 4733 } 4734 #ifdef INET 4735 case IPPROTO_ICMP: { 4736 struct icmp iih; 4737 4738 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4739 NULL, reason, pd2.af)) { 4740 DPFPRINTF(PF_DEBUG_MISC, 4741 ("pf: ICMP error message too short i" 4742 "(icmp)\n")); 4743 return (PF_DROP); 4744 } 4745 4746 key.af = pd2.af; 4747 key.proto = IPPROTO_ICMP; 4748 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4749 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4750 key.port[0] = key.port[1] = iih.icmp_id; 4751 4752 STATE_LOOKUP(kif, &key, direction, *state, pd); 4753 4754 /* translate source/destination address, if necessary */ 4755 if ((*state)->key[PF_SK_WIRE] != 4756 (*state)->key[PF_SK_STACK]) { 4757 struct pf_state_key *nk = 4758 (*state)->key[pd->didx]; 4759 4760 if (PF_ANEQ(pd2.src, 4761 &nk->addr[pd2.sidx], pd2.af) || 4762 nk->port[pd2.sidx] != iih.icmp_id) 4763 pf_change_icmp(pd2.src, &iih.icmp_id, 4764 daddr, &nk->addr[pd2.sidx], 4765 nk->port[pd2.sidx], NULL, 4766 pd2.ip_sum, icmpsum, 4767 pd->ip_sum, 0, AF_INET); 4768 4769 if (PF_ANEQ(pd2.dst, 4770 &nk->addr[pd2.didx], pd2.af) || 4771 nk->port[pd2.didx] != iih.icmp_id) 4772 pf_change_icmp(pd2.dst, &iih.icmp_id, 4773 NULL, /* XXX Inbound NAT? */ 4774 &nk->addr[pd2.didx], 4775 nk->port[pd2.didx], NULL, 4776 pd2.ip_sum, icmpsum, 4777 pd->ip_sum, 0, AF_INET); 4778 4779 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 4780 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4781 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 4782 } 4783 return (PF_PASS); 4784 break; 4785 } 4786 #endif /* INET */ 4787 #ifdef INET6 4788 case IPPROTO_ICMPV6: { 4789 struct icmp6_hdr iih; 4790 4791 if (!pf_pull_hdr(m, off2, &iih, 4792 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 4793 DPFPRINTF(PF_DEBUG_MISC, 4794 ("pf: ICMP error message too short " 4795 "(icmp6)\n")); 4796 return (PF_DROP); 4797 } 4798 4799 key.af = pd2.af; 4800 key.proto = IPPROTO_ICMPV6; 4801 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4802 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4803 key.port[0] = key.port[1] = iih.icmp6_id; 4804 4805 STATE_LOOKUP(kif, &key, direction, *state, pd); 4806 4807 /* translate source/destination address, if necessary */ 4808 if ((*state)->key[PF_SK_WIRE] != 4809 (*state)->key[PF_SK_STACK]) { 4810 struct pf_state_key *nk = 4811 (*state)->key[pd->didx]; 4812 4813 if (PF_ANEQ(pd2.src, 4814 &nk->addr[pd2.sidx], pd2.af) || 4815 nk->port[pd2.sidx] != iih.icmp6_id) 4816 pf_change_icmp(pd2.src, &iih.icmp6_id, 4817 daddr, &nk->addr[pd2.sidx], 4818 nk->port[pd2.sidx], NULL, 4819 pd2.ip_sum, icmpsum, 4820 pd->ip_sum, 0, AF_INET6); 4821 4822 if (PF_ANEQ(pd2.dst, 4823 &nk->addr[pd2.didx], pd2.af) || 4824 nk->port[pd2.didx] != iih.icmp6_id) 4825 pf_change_icmp(pd2.dst, &iih.icmp6_id, 4826 NULL, /* XXX Inbound NAT? */ 4827 &nk->addr[pd2.didx], 4828 nk->port[pd2.didx], NULL, 4829 pd2.ip_sum, icmpsum, 4830 pd->ip_sum, 0, AF_INET6); 4831 4832 m_copyback(m, off, sizeof(struct icmp6_hdr), 4833 (caddr_t)pd->hdr.icmp6); 4834 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 4835 m_copyback(m, off2, sizeof(struct icmp6_hdr), 4836 (caddr_t)&iih); 4837 } 4838 return (PF_PASS); 4839 break; 4840 } 4841 #endif /* INET6 */ 4842 default: { 4843 key.af = pd2.af; 4844 key.proto = pd2.proto; 4845 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4846 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4847 key.port[0] = key.port[1] = 0; 4848 4849 STATE_LOOKUP(kif, &key, direction, *state, pd); 4850 4851 /* translate source/destination address, if necessary */ 4852 if ((*state)->key[PF_SK_WIRE] != 4853 (*state)->key[PF_SK_STACK]) { 4854 struct pf_state_key *nk = 4855 (*state)->key[pd->didx]; 4856 4857 if (PF_ANEQ(pd2.src, 4858 &nk->addr[pd2.sidx], pd2.af)) 4859 pf_change_icmp(pd2.src, NULL, daddr, 4860 &nk->addr[pd2.sidx], 0, NULL, 4861 pd2.ip_sum, icmpsum, 4862 pd->ip_sum, 0, pd2.af); 4863 4864 if (PF_ANEQ(pd2.dst, 4865 &nk->addr[pd2.didx], pd2.af)) 4866 pf_change_icmp(pd2.src, NULL, 4867 NULL, /* XXX Inbound NAT? */ 4868 &nk->addr[pd2.didx], 0, NULL, 4869 pd2.ip_sum, icmpsum, 4870 pd->ip_sum, 0, pd2.af); 4871 4872 switch (pd2.af) { 4873 #ifdef INET 4874 case AF_INET: 4875 m_copyback(m, off, ICMP_MINLEN, 4876 (caddr_t)pd->hdr.icmp); 4877 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4878 break; 4879 #endif /* INET */ 4880 #ifdef INET6 4881 case AF_INET6: 4882 m_copyback(m, off, 4883 sizeof(struct icmp6_hdr), 4884 (caddr_t )pd->hdr.icmp6); 4885 m_copyback(m, ipoff2, sizeof(h2_6), 4886 (caddr_t )&h2_6); 4887 break; 4888 #endif /* INET6 */ 4889 } 4890 } 4891 return (PF_PASS); 4892 break; 4893 } 4894 } 4895 } 4896 } 4897 4898 static int 4899 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 4900 struct mbuf *m, struct pf_pdesc *pd) 4901 { 4902 struct pf_state_peer *src, *dst; 4903 struct pf_state_key_cmp key; 4904 4905 bzero(&key, sizeof(key)); 4906 key.af = pd->af; 4907 key.proto = pd->proto; 4908 if (direction == PF_IN) { 4909 PF_ACPY(&key.addr[0], pd->src, key.af); 4910 PF_ACPY(&key.addr[1], pd->dst, key.af); 4911 key.port[0] = key.port[1] = 0; 4912 } else { 4913 PF_ACPY(&key.addr[1], pd->src, key.af); 4914 PF_ACPY(&key.addr[0], pd->dst, key.af); 4915 key.port[1] = key.port[0] = 0; 4916 } 4917 4918 STATE_LOOKUP(kif, &key, direction, *state, pd); 4919 4920 if (direction == (*state)->direction) { 4921 src = &(*state)->src; 4922 dst = &(*state)->dst; 4923 } else { 4924 src = &(*state)->dst; 4925 dst = &(*state)->src; 4926 } 4927 4928 /* update states */ 4929 if (src->state < PFOTHERS_SINGLE) 4930 src->state = PFOTHERS_SINGLE; 4931 if (dst->state == PFOTHERS_SINGLE) 4932 dst->state = PFOTHERS_MULTIPLE; 4933 4934 /* update expire time */ 4935 (*state)->expire = time_uptime; 4936 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 4937 (*state)->timeout = PFTM_OTHER_MULTIPLE; 4938 else 4939 (*state)->timeout = PFTM_OTHER_SINGLE; 4940 4941 /* translate source/destination address, if necessary */ 4942 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4943 struct pf_state_key *nk = (*state)->key[pd->didx]; 4944 4945 KASSERT(nk, ("%s: nk is null", __func__)); 4946 KASSERT(pd, ("%s: pd is null", __func__)); 4947 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 4948 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 4949 switch (pd->af) { 4950 #ifdef INET 4951 case AF_INET: 4952 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 4953 pf_change_a(&pd->src->v4.s_addr, 4954 pd->ip_sum, 4955 nk->addr[pd->sidx].v4.s_addr, 4956 0); 4957 4958 4959 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 4960 pf_change_a(&pd->dst->v4.s_addr, 4961 pd->ip_sum, 4962 nk->addr[pd->didx].v4.s_addr, 4963 0); 4964 4965 break; 4966 #endif /* INET */ 4967 #ifdef INET6 4968 case AF_INET6: 4969 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 4970 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 4971 4972 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 4973 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 4974 #endif /* INET6 */ 4975 } 4976 } 4977 return (PF_PASS); 4978 } 4979 4980 /* 4981 * ipoff and off are measured from the start of the mbuf chain. 4982 * h must be at "ipoff" on the mbuf chain. 4983 */ 4984 void * 4985 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 4986 u_short *actionp, u_short *reasonp, sa_family_t af) 4987 { 4988 switch (af) { 4989 #ifdef INET 4990 case AF_INET: { 4991 struct ip *h = mtod(m, struct ip *); 4992 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 4993 4994 if (fragoff) { 4995 if (fragoff >= len) 4996 ACTION_SET(actionp, PF_PASS); 4997 else { 4998 ACTION_SET(actionp, PF_DROP); 4999 REASON_SET(reasonp, PFRES_FRAG); 5000 } 5001 return (NULL); 5002 } 5003 if (m->m_pkthdr.len < off + len || 5004 ntohs(h->ip_len) < off + len) { 5005 ACTION_SET(actionp, PF_DROP); 5006 REASON_SET(reasonp, PFRES_SHORT); 5007 return (NULL); 5008 } 5009 break; 5010 } 5011 #endif /* INET */ 5012 #ifdef INET6 5013 case AF_INET6: { 5014 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5015 5016 if (m->m_pkthdr.len < off + len || 5017 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5018 (unsigned)(off + len)) { 5019 ACTION_SET(actionp, PF_DROP); 5020 REASON_SET(reasonp, PFRES_SHORT); 5021 return (NULL); 5022 } 5023 break; 5024 } 5025 #endif /* INET6 */ 5026 } 5027 m_copydata(m, off, len, p); 5028 return (p); 5029 } 5030 5031 int 5032 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5033 int rtableid) 5034 { 5035 #ifdef RADIX_MPATH 5036 struct radix_node_head *rnh; 5037 #endif 5038 struct sockaddr_in *dst; 5039 int ret = 1; 5040 int check_mpath; 5041 #ifdef INET6 5042 struct sockaddr_in6 *dst6; 5043 struct route_in6 ro; 5044 #else 5045 struct route ro; 5046 #endif 5047 struct radix_node *rn; 5048 struct rtentry *rt; 5049 struct ifnet *ifp; 5050 5051 check_mpath = 0; 5052 #ifdef RADIX_MPATH 5053 /* XXX: stick to table 0 for now */ 5054 rnh = rt_tables_get_rnh(0, af); 5055 if (rnh != NULL && rn_mpath_capable(rnh)) 5056 check_mpath = 1; 5057 #endif 5058 bzero(&ro, sizeof(ro)); 5059 switch (af) { 5060 case AF_INET: 5061 dst = satosin(&ro.ro_dst); 5062 dst->sin_family = AF_INET; 5063 dst->sin_len = sizeof(*dst); 5064 dst->sin_addr = addr->v4; 5065 break; 5066 #ifdef INET6 5067 case AF_INET6: 5068 /* 5069 * Skip check for addresses with embedded interface scope, 5070 * as they would always match anyway. 5071 */ 5072 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5073 goto out; 5074 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5075 dst6->sin6_family = AF_INET6; 5076 dst6->sin6_len = sizeof(*dst6); 5077 dst6->sin6_addr = addr->v6; 5078 break; 5079 #endif /* INET6 */ 5080 default: 5081 return (0); 5082 } 5083 5084 /* Skip checks for ipsec interfaces */ 5085 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5086 goto out; 5087 5088 switch (af) { 5089 #ifdef INET6 5090 case AF_INET6: 5091 in6_rtalloc_ign(&ro, 0, rtableid); 5092 break; 5093 #endif 5094 #ifdef INET 5095 case AF_INET: 5096 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5097 break; 5098 #endif 5099 default: 5100 rtalloc_ign((struct route *)&ro, 0); /* No/default FIB. */ 5101 break; 5102 } 5103 5104 if (ro.ro_rt != NULL) { 5105 /* No interface given, this is a no-route check */ 5106 if (kif == NULL) 5107 goto out; 5108 5109 if (kif->pfik_ifp == NULL) { 5110 ret = 0; 5111 goto out; 5112 } 5113 5114 /* Perform uRPF check if passed input interface */ 5115 ret = 0; 5116 rn = (struct radix_node *)ro.ro_rt; 5117 do { 5118 rt = (struct rtentry *)rn; 5119 ifp = rt->rt_ifp; 5120 5121 if (kif->pfik_ifp == ifp) 5122 ret = 1; 5123 #ifdef RADIX_MPATH 5124 rn = rn_mpath_next(rn); 5125 #endif 5126 } while (check_mpath == 1 && rn != NULL && ret == 0); 5127 } else 5128 ret = 0; 5129 out: 5130 if (ro.ro_rt != NULL) 5131 RTFREE(ro.ro_rt); 5132 return (ret); 5133 } 5134 5135 #ifdef INET 5136 static void 5137 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5138 struct pf_state *s, struct pf_pdesc *pd) 5139 { 5140 struct mbuf *m0, *m1; 5141 struct sockaddr_in dst; 5142 struct ip *ip; 5143 struct ifnet *ifp = NULL; 5144 struct pf_addr naddr; 5145 struct pf_src_node *sn = NULL; 5146 int error = 0; 5147 uint16_t ip_len, ip_off; 5148 5149 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5150 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5151 __func__)); 5152 5153 if ((pd->pf_mtag == NULL && 5154 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5155 pd->pf_mtag->routed++ > 3) { 5156 m0 = *m; 5157 *m = NULL; 5158 goto bad_locked; 5159 } 5160 5161 if (r->rt == PF_DUPTO) { 5162 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5163 if (s) 5164 PF_STATE_UNLOCK(s); 5165 return; 5166 } 5167 } else { 5168 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5169 if (s) 5170 PF_STATE_UNLOCK(s); 5171 return; 5172 } 5173 m0 = *m; 5174 } 5175 5176 ip = mtod(m0, struct ip *); 5177 5178 bzero(&dst, sizeof(dst)); 5179 dst.sin_family = AF_INET; 5180 dst.sin_len = sizeof(dst); 5181 dst.sin_addr = ip->ip_dst; 5182 5183 if (r->rt == PF_FASTROUTE) { 5184 struct rtentry *rt; 5185 5186 if (s) 5187 PF_STATE_UNLOCK(s); 5188 rt = rtalloc1_fib(sintosa(&dst), 0, 0, M_GETFIB(m0)); 5189 if (rt == NULL) { 5190 RTFREE_LOCKED(rt); 5191 KMOD_IPSTAT_INC(ips_noroute); 5192 error = EHOSTUNREACH; 5193 goto bad; 5194 } 5195 5196 ifp = rt->rt_ifp; 5197 rt->rt_rmx.rmx_pksent++; 5198 5199 if (rt->rt_flags & RTF_GATEWAY) 5200 bcopy(satosin(rt->rt_gateway), &dst, sizeof(dst)); 5201 RTFREE_LOCKED(rt); 5202 } else { 5203 if (TAILQ_EMPTY(&r->rpool.list)) { 5204 DPFPRINTF(PF_DEBUG_URGENT, 5205 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5206 goto bad_locked; 5207 } 5208 if (s == NULL) { 5209 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5210 &naddr, NULL, &sn); 5211 if (!PF_AZERO(&naddr, AF_INET)) 5212 dst.sin_addr.s_addr = naddr.v4.s_addr; 5213 ifp = r->rpool.cur->kif ? 5214 r->rpool.cur->kif->pfik_ifp : NULL; 5215 } else { 5216 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5217 dst.sin_addr.s_addr = 5218 s->rt_addr.v4.s_addr; 5219 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5220 PF_STATE_UNLOCK(s); 5221 } 5222 } 5223 if (ifp == NULL) 5224 goto bad; 5225 5226 if (oifp != ifp) { 5227 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5228 goto bad; 5229 else if (m0 == NULL) 5230 goto done; 5231 if (m0->m_len < sizeof(struct ip)) { 5232 DPFPRINTF(PF_DEBUG_URGENT, 5233 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5234 goto bad; 5235 } 5236 ip = mtod(m0, struct ip *); 5237 } 5238 5239 if (ifp->if_flags & IFF_LOOPBACK) 5240 m0->m_flags |= M_SKIP_FIREWALL; 5241 5242 ip_len = ntohs(ip->ip_len); 5243 ip_off = ntohs(ip->ip_off); 5244 5245 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5246 m0->m_pkthdr.csum_flags |= CSUM_IP; 5247 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5248 in_delayed_cksum(m0); 5249 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5250 } 5251 #ifdef SCTP 5252 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5253 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5254 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5255 } 5256 #endif 5257 5258 /* 5259 * If small enough for interface, or the interface will take 5260 * care of the fragmentation for us, we can just send directly. 5261 */ 5262 if (ip_len <= ifp->if_mtu || 5263 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 || 5264 ((ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) { 5265 ip->ip_sum = 0; 5266 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5267 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5268 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5269 } 5270 m0->m_flags &= ~(M_PROTOFLAGS); 5271 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5272 goto done; 5273 } 5274 5275 /* Balk when DF bit is set or the interface didn't support TSO. */ 5276 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5277 error = EMSGSIZE; 5278 KMOD_IPSTAT_INC(ips_cantfrag); 5279 if (r->rt != PF_DUPTO) { 5280 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5281 ifp->if_mtu); 5282 goto done; 5283 } else 5284 goto bad; 5285 } 5286 5287 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5288 if (error) 5289 goto bad; 5290 5291 for (; m0; m0 = m1) { 5292 m1 = m0->m_nextpkt; 5293 m0->m_nextpkt = NULL; 5294 if (error == 0) { 5295 m0->m_flags &= ~(M_PROTOFLAGS); 5296 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5297 } else 5298 m_freem(m0); 5299 } 5300 5301 if (error == 0) 5302 KMOD_IPSTAT_INC(ips_fragmented); 5303 5304 done: 5305 if (r->rt != PF_DUPTO) 5306 *m = NULL; 5307 return; 5308 5309 bad_locked: 5310 if (s) 5311 PF_STATE_UNLOCK(s); 5312 bad: 5313 m_freem(m0); 5314 goto done; 5315 } 5316 #endif /* INET */ 5317 5318 #ifdef INET6 5319 static void 5320 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5321 struct pf_state *s, struct pf_pdesc *pd) 5322 { 5323 struct mbuf *m0; 5324 struct sockaddr_in6 dst; 5325 struct ip6_hdr *ip6; 5326 struct ifnet *ifp = NULL; 5327 struct pf_addr naddr; 5328 struct pf_src_node *sn = NULL; 5329 5330 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5331 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5332 __func__)); 5333 5334 if ((pd->pf_mtag == NULL && 5335 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5336 pd->pf_mtag->routed++ > 3) { 5337 m0 = *m; 5338 *m = NULL; 5339 goto bad_locked; 5340 } 5341 5342 if (r->rt == PF_DUPTO) { 5343 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5344 if (s) 5345 PF_STATE_UNLOCK(s); 5346 return; 5347 } 5348 } else { 5349 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5350 if (s) 5351 PF_STATE_UNLOCK(s); 5352 return; 5353 } 5354 m0 = *m; 5355 } 5356 5357 ip6 = mtod(m0, struct ip6_hdr *); 5358 5359 bzero(&dst, sizeof(dst)); 5360 dst.sin6_family = AF_INET6; 5361 dst.sin6_len = sizeof(dst); 5362 dst.sin6_addr = ip6->ip6_dst; 5363 5364 /* Cheat. XXX why only in the v6 case??? */ 5365 if (r->rt == PF_FASTROUTE) { 5366 if (s) 5367 PF_STATE_UNLOCK(s); 5368 m0->m_flags |= M_SKIP_FIREWALL; 5369 ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL); 5370 return; 5371 } 5372 5373 if (TAILQ_EMPTY(&r->rpool.list)) { 5374 DPFPRINTF(PF_DEBUG_URGENT, 5375 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5376 goto bad_locked; 5377 } 5378 if (s == NULL) { 5379 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5380 &naddr, NULL, &sn); 5381 if (!PF_AZERO(&naddr, AF_INET6)) 5382 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5383 &naddr, AF_INET6); 5384 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5385 } else { 5386 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5387 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5388 &s->rt_addr, AF_INET6); 5389 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5390 } 5391 5392 if (s) 5393 PF_STATE_UNLOCK(s); 5394 5395 if (ifp == NULL) 5396 goto bad; 5397 5398 if (oifp != ifp) { 5399 if (pf_test6(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5400 goto bad; 5401 else if (m0 == NULL) 5402 goto done; 5403 if (m0->m_len < sizeof(struct ip6_hdr)) { 5404 DPFPRINTF(PF_DEBUG_URGENT, 5405 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5406 __func__)); 5407 goto bad; 5408 } 5409 ip6 = mtod(m0, struct ip6_hdr *); 5410 } 5411 5412 if (ifp->if_flags & IFF_LOOPBACK) 5413 m0->m_flags |= M_SKIP_FIREWALL; 5414 5415 /* 5416 * If the packet is too large for the outgoing interface, 5417 * send back an icmp6 error. 5418 */ 5419 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5420 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5421 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5422 nd6_output(ifp, ifp, m0, &dst, NULL); 5423 else { 5424 in6_ifstat_inc(ifp, ifs6_in_toobig); 5425 if (r->rt != PF_DUPTO) 5426 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5427 else 5428 goto bad; 5429 } 5430 5431 done: 5432 if (r->rt != PF_DUPTO) 5433 *m = NULL; 5434 return; 5435 5436 bad_locked: 5437 if (s) 5438 PF_STATE_UNLOCK(s); 5439 bad: 5440 m_freem(m0); 5441 goto done; 5442 } 5443 #endif /* INET6 */ 5444 5445 /* 5446 * FreeBSD supports cksum offloads for the following drivers. 5447 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5448 * ti(4), txp(4), xl(4) 5449 * 5450 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5451 * network driver performed cksum including pseudo header, need to verify 5452 * csum_data 5453 * CSUM_DATA_VALID : 5454 * network driver performed cksum, needs to additional pseudo header 5455 * cksum computation with partial csum_data(i.e. lack of H/W support for 5456 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5457 * 5458 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5459 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5460 * TCP/UDP layer. 5461 * Also, set csum_data to 0xffff to force cksum validation. 5462 */ 5463 static int 5464 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5465 { 5466 u_int16_t sum = 0; 5467 int hw_assist = 0; 5468 struct ip *ip; 5469 5470 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5471 return (1); 5472 if (m->m_pkthdr.len < off + len) 5473 return (1); 5474 5475 switch (p) { 5476 case IPPROTO_TCP: 5477 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5478 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5479 sum = m->m_pkthdr.csum_data; 5480 } else { 5481 ip = mtod(m, struct ip *); 5482 sum = in_pseudo(ip->ip_src.s_addr, 5483 ip->ip_dst.s_addr, htonl((u_short)len + 5484 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5485 } 5486 sum ^= 0xffff; 5487 ++hw_assist; 5488 } 5489 break; 5490 case IPPROTO_UDP: 5491 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5492 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5493 sum = m->m_pkthdr.csum_data; 5494 } else { 5495 ip = mtod(m, struct ip *); 5496 sum = in_pseudo(ip->ip_src.s_addr, 5497 ip->ip_dst.s_addr, htonl((u_short)len + 5498 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5499 } 5500 sum ^= 0xffff; 5501 ++hw_assist; 5502 } 5503 break; 5504 case IPPROTO_ICMP: 5505 #ifdef INET6 5506 case IPPROTO_ICMPV6: 5507 #endif /* INET6 */ 5508 break; 5509 default: 5510 return (1); 5511 } 5512 5513 if (!hw_assist) { 5514 switch (af) { 5515 case AF_INET: 5516 if (p == IPPROTO_ICMP) { 5517 if (m->m_len < off) 5518 return (1); 5519 m->m_data += off; 5520 m->m_len -= off; 5521 sum = in_cksum(m, len); 5522 m->m_data -= off; 5523 m->m_len += off; 5524 } else { 5525 if (m->m_len < sizeof(struct ip)) 5526 return (1); 5527 sum = in4_cksum(m, p, off, len); 5528 } 5529 break; 5530 #ifdef INET6 5531 case AF_INET6: 5532 if (m->m_len < sizeof(struct ip6_hdr)) 5533 return (1); 5534 sum = in6_cksum(m, p, off, len); 5535 break; 5536 #endif /* INET6 */ 5537 default: 5538 return (1); 5539 } 5540 } 5541 if (sum) { 5542 switch (p) { 5543 case IPPROTO_TCP: 5544 { 5545 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5546 break; 5547 } 5548 case IPPROTO_UDP: 5549 { 5550 KMOD_UDPSTAT_INC(udps_badsum); 5551 break; 5552 } 5553 #ifdef INET 5554 case IPPROTO_ICMP: 5555 { 5556 KMOD_ICMPSTAT_INC(icps_checksum); 5557 break; 5558 } 5559 #endif 5560 #ifdef INET6 5561 case IPPROTO_ICMPV6: 5562 { 5563 KMOD_ICMP6STAT_INC(icp6s_checksum); 5564 break; 5565 } 5566 #endif /* INET6 */ 5567 } 5568 return (1); 5569 } else { 5570 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5571 m->m_pkthdr.csum_flags |= 5572 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5573 m->m_pkthdr.csum_data = 0xffff; 5574 } 5575 } 5576 return (0); 5577 } 5578 5579 5580 #ifdef INET 5581 int 5582 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5583 { 5584 struct pfi_kif *kif; 5585 u_short action, reason = 0, log = 0; 5586 struct mbuf *m = *m0; 5587 struct ip *h = NULL; 5588 struct m_tag *ipfwtag; 5589 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5590 struct pf_state *s = NULL; 5591 struct pf_ruleset *ruleset = NULL; 5592 struct pf_pdesc pd; 5593 int off, dirndx, pqid = 0; 5594 5595 M_ASSERTPKTHDR(m); 5596 5597 if (!V_pf_status.running) 5598 return (PF_PASS); 5599 5600 memset(&pd, 0, sizeof(pd)); 5601 5602 kif = (struct pfi_kif *)ifp->if_pf_kif; 5603 5604 if (kif == NULL) { 5605 DPFPRINTF(PF_DEBUG_URGENT, 5606 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5607 return (PF_DROP); 5608 } 5609 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5610 return (PF_PASS); 5611 5612 if (m->m_flags & M_SKIP_FIREWALL) 5613 return (PF_PASS); 5614 5615 pd.pf_mtag = pf_find_mtag(m); 5616 5617 PF_RULES_RLOCK(); 5618 5619 if (ip_divert_ptr != NULL && 5620 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5621 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5622 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5623 if (pd.pf_mtag == NULL && 5624 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5625 action = PF_DROP; 5626 goto done; 5627 } 5628 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5629 m_tag_delete(m, ipfwtag); 5630 } 5631 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5632 m->m_flags |= M_FASTFWD_OURS; 5633 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5634 } 5635 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5636 /* We do IP header normalization and packet reassembly here */ 5637 action = PF_DROP; 5638 goto done; 5639 } 5640 m = *m0; /* pf_normalize messes with m0 */ 5641 h = mtod(m, struct ip *); 5642 5643 off = h->ip_hl << 2; 5644 if (off < (int)sizeof(struct ip)) { 5645 action = PF_DROP; 5646 REASON_SET(&reason, PFRES_SHORT); 5647 log = 1; 5648 goto done; 5649 } 5650 5651 pd.src = (struct pf_addr *)&h->ip_src; 5652 pd.dst = (struct pf_addr *)&h->ip_dst; 5653 pd.sport = pd.dport = NULL; 5654 pd.ip_sum = &h->ip_sum; 5655 pd.proto_sum = NULL; 5656 pd.proto = h->ip_p; 5657 pd.dir = dir; 5658 pd.sidx = (dir == PF_IN) ? 0 : 1; 5659 pd.didx = (dir == PF_IN) ? 1 : 0; 5660 pd.af = AF_INET; 5661 pd.tos = h->ip_tos; 5662 pd.tot_len = ntohs(h->ip_len); 5663 5664 /* handle fragments that didn't get reassembled by normalization */ 5665 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5666 action = pf_test_fragment(&r, dir, kif, m, h, 5667 &pd, &a, &ruleset); 5668 goto done; 5669 } 5670 5671 switch (h->ip_p) { 5672 5673 case IPPROTO_TCP: { 5674 struct tcphdr th; 5675 5676 pd.hdr.tcp = &th; 5677 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5678 &action, &reason, AF_INET)) { 5679 log = action != PF_PASS; 5680 goto done; 5681 } 5682 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5683 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5684 pqid = 1; 5685 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5686 if (action == PF_DROP) 5687 goto done; 5688 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5689 &reason); 5690 if (action == PF_PASS) { 5691 if (pfsync_update_state_ptr != NULL) 5692 pfsync_update_state_ptr(s); 5693 r = s->rule.ptr; 5694 a = s->anchor.ptr; 5695 log = s->log; 5696 } else if (s == NULL) 5697 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5698 &a, &ruleset, inp); 5699 break; 5700 } 5701 5702 case IPPROTO_UDP: { 5703 struct udphdr uh; 5704 5705 pd.hdr.udp = &uh; 5706 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5707 &action, &reason, AF_INET)) { 5708 log = action != PF_PASS; 5709 goto done; 5710 } 5711 if (uh.uh_dport == 0 || 5712 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5713 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5714 action = PF_DROP; 5715 REASON_SET(&reason, PFRES_SHORT); 5716 goto done; 5717 } 5718 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5719 if (action == PF_PASS) { 5720 if (pfsync_update_state_ptr != NULL) 5721 pfsync_update_state_ptr(s); 5722 r = s->rule.ptr; 5723 a = s->anchor.ptr; 5724 log = s->log; 5725 } else if (s == NULL) 5726 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5727 &a, &ruleset, inp); 5728 break; 5729 } 5730 5731 case IPPROTO_ICMP: { 5732 struct icmp ih; 5733 5734 pd.hdr.icmp = &ih; 5735 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 5736 &action, &reason, AF_INET)) { 5737 log = action != PF_PASS; 5738 goto done; 5739 } 5740 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 5741 &reason); 5742 if (action == PF_PASS) { 5743 if (pfsync_update_state_ptr != NULL) 5744 pfsync_update_state_ptr(s); 5745 r = s->rule.ptr; 5746 a = s->anchor.ptr; 5747 log = s->log; 5748 } else if (s == NULL) 5749 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5750 &a, &ruleset, inp); 5751 break; 5752 } 5753 5754 #ifdef INET6 5755 case IPPROTO_ICMPV6: { 5756 action = PF_DROP; 5757 DPFPRINTF(PF_DEBUG_MISC, 5758 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 5759 goto done; 5760 } 5761 #endif 5762 5763 default: 5764 action = pf_test_state_other(&s, dir, kif, m, &pd); 5765 if (action == PF_PASS) { 5766 if (pfsync_update_state_ptr != NULL) 5767 pfsync_update_state_ptr(s); 5768 r = s->rule.ptr; 5769 a = s->anchor.ptr; 5770 log = s->log; 5771 } else if (s == NULL) 5772 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5773 &a, &ruleset, inp); 5774 break; 5775 } 5776 5777 done: 5778 PF_RULES_RUNLOCK(); 5779 if (action == PF_PASS && h->ip_hl > 5 && 5780 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 5781 action = PF_DROP; 5782 REASON_SET(&reason, PFRES_IPOPTIONS); 5783 log = 1; 5784 DPFPRINTF(PF_DEBUG_MISC, 5785 ("pf: dropping packet with ip options\n")); 5786 } 5787 5788 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 5789 action = PF_DROP; 5790 REASON_SET(&reason, PFRES_MEMORY); 5791 } 5792 if (r->rtableid >= 0) 5793 M_SETFIB(m, r->rtableid); 5794 5795 #ifdef ALTQ 5796 if (action == PF_PASS && r->qid) { 5797 if (pd.pf_mtag == NULL && 5798 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5799 action = PF_DROP; 5800 REASON_SET(&reason, PFRES_MEMORY); 5801 } 5802 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 5803 pd.pf_mtag->qid = r->pqid; 5804 else 5805 pd.pf_mtag->qid = r->qid; 5806 /* add hints for ecn */ 5807 pd.pf_mtag->hdr = h; 5808 5809 } 5810 #endif /* ALTQ */ 5811 5812 /* 5813 * connections redirected to loopback should not match sockets 5814 * bound specifically to loopback due to security implications, 5815 * see tcp_input() and in_pcblookup_listen(). 5816 */ 5817 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 5818 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 5819 (s->nat_rule.ptr->action == PF_RDR || 5820 s->nat_rule.ptr->action == PF_BINAT) && 5821 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 5822 m->m_flags |= M_SKIP_FIREWALL; 5823 5824 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 5825 !PACKET_LOOPED(&pd)) { 5826 5827 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 5828 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 5829 if (ipfwtag != NULL) { 5830 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 5831 ntohs(r->divert.port); 5832 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 5833 5834 if (s) 5835 PF_STATE_UNLOCK(s); 5836 5837 m_tag_prepend(m, ipfwtag); 5838 if (m->m_flags & M_FASTFWD_OURS) { 5839 if (pd.pf_mtag == NULL && 5840 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5841 action = PF_DROP; 5842 REASON_SET(&reason, PFRES_MEMORY); 5843 log = 1; 5844 DPFPRINTF(PF_DEBUG_MISC, 5845 ("pf: failed to allocate tag\n")); 5846 } 5847 pd.pf_mtag->flags |= PF_FASTFWD_OURS_PRESENT; 5848 m->m_flags &= ~M_FASTFWD_OURS; 5849 } 5850 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 5851 *m0 = NULL; 5852 5853 return (action); 5854 } else { 5855 /* XXX: ipfw has the same behaviour! */ 5856 action = PF_DROP; 5857 REASON_SET(&reason, PFRES_MEMORY); 5858 log = 1; 5859 DPFPRINTF(PF_DEBUG_MISC, 5860 ("pf: failed to allocate divert tag\n")); 5861 } 5862 } 5863 5864 if (log) { 5865 struct pf_rule *lr; 5866 5867 if (s != NULL && s->nat_rule.ptr != NULL && 5868 s->nat_rule.ptr->log & PF_LOG_ALL) 5869 lr = s->nat_rule.ptr; 5870 else 5871 lr = r; 5872 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 5873 (s == NULL)); 5874 } 5875 5876 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 5877 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 5878 5879 if (action == PF_PASS || r->action == PF_DROP) { 5880 dirndx = (dir == PF_OUT); 5881 r->packets[dirndx]++; 5882 r->bytes[dirndx] += pd.tot_len; 5883 if (a != NULL) { 5884 a->packets[dirndx]++; 5885 a->bytes[dirndx] += pd.tot_len; 5886 } 5887 if (s != NULL) { 5888 if (s->nat_rule.ptr != NULL) { 5889 s->nat_rule.ptr->packets[dirndx]++; 5890 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 5891 } 5892 if (s->src_node != NULL) { 5893 s->src_node->packets[dirndx]++; 5894 s->src_node->bytes[dirndx] += pd.tot_len; 5895 } 5896 if (s->nat_src_node != NULL) { 5897 s->nat_src_node->packets[dirndx]++; 5898 s->nat_src_node->bytes[dirndx] += pd.tot_len; 5899 } 5900 dirndx = (dir == s->direction) ? 0 : 1; 5901 s->packets[dirndx]++; 5902 s->bytes[dirndx] += pd.tot_len; 5903 } 5904 tr = r; 5905 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 5906 if (nr != NULL && r == &V_pf_default_rule) 5907 tr = nr; 5908 if (tr->src.addr.type == PF_ADDR_TABLE) 5909 pfr_update_stats(tr->src.addr.p.tbl, 5910 (s == NULL) ? pd.src : 5911 &s->key[(s->direction == PF_IN)]-> 5912 addr[(s->direction == PF_OUT)], 5913 pd.af, pd.tot_len, dir == PF_OUT, 5914 r->action == PF_PASS, tr->src.neg); 5915 if (tr->dst.addr.type == PF_ADDR_TABLE) 5916 pfr_update_stats(tr->dst.addr.p.tbl, 5917 (s == NULL) ? pd.dst : 5918 &s->key[(s->direction == PF_IN)]-> 5919 addr[(s->direction == PF_IN)], 5920 pd.af, pd.tot_len, dir == PF_OUT, 5921 r->action == PF_PASS, tr->dst.neg); 5922 } 5923 5924 switch (action) { 5925 case PF_SYNPROXY_DROP: 5926 m_freem(*m0); 5927 case PF_DEFER: 5928 *m0 = NULL; 5929 action = PF_PASS; 5930 break; 5931 default: 5932 /* pf_route() returns unlocked. */ 5933 if (r->rt) { 5934 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 5935 return (action); 5936 } 5937 break; 5938 } 5939 if (s) 5940 PF_STATE_UNLOCK(s); 5941 5942 return (action); 5943 } 5944 #endif /* INET */ 5945 5946 #ifdef INET6 5947 int 5948 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5949 { 5950 struct pfi_kif *kif; 5951 u_short action, reason = 0, log = 0; 5952 struct mbuf *m = *m0, *n = NULL; 5953 struct ip6_hdr *h = NULL; 5954 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5955 struct pf_state *s = NULL; 5956 struct pf_ruleset *ruleset = NULL; 5957 struct pf_pdesc pd; 5958 int off, terminal = 0, dirndx, rh_cnt = 0; 5959 5960 M_ASSERTPKTHDR(m); 5961 5962 if (!V_pf_status.running) 5963 return (PF_PASS); 5964 5965 memset(&pd, 0, sizeof(pd)); 5966 pd.pf_mtag = pf_find_mtag(m); 5967 5968 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 5969 return (PF_PASS); 5970 5971 kif = (struct pfi_kif *)ifp->if_pf_kif; 5972 if (kif == NULL) { 5973 DPFPRINTF(PF_DEBUG_URGENT, 5974 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 5975 return (PF_DROP); 5976 } 5977 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5978 return (PF_PASS); 5979 5980 PF_RULES_RLOCK(); 5981 5982 /* We do IP header normalization and packet reassembly here */ 5983 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 5984 action = PF_DROP; 5985 goto done; 5986 } 5987 m = *m0; /* pf_normalize messes with m0 */ 5988 h = mtod(m, struct ip6_hdr *); 5989 5990 #if 1 5991 /* 5992 * we do not support jumbogram yet. if we keep going, zero ip6_plen 5993 * will do something bad, so drop the packet for now. 5994 */ 5995 if (htons(h->ip6_plen) == 0) { 5996 action = PF_DROP; 5997 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 5998 goto done; 5999 } 6000 #endif 6001 6002 pd.src = (struct pf_addr *)&h->ip6_src; 6003 pd.dst = (struct pf_addr *)&h->ip6_dst; 6004 pd.sport = pd.dport = NULL; 6005 pd.ip_sum = NULL; 6006 pd.proto_sum = NULL; 6007 pd.dir = dir; 6008 pd.sidx = (dir == PF_IN) ? 0 : 1; 6009 pd.didx = (dir == PF_IN) ? 1 : 0; 6010 pd.af = AF_INET6; 6011 pd.tos = 0; 6012 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6013 6014 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6015 pd.proto = h->ip6_nxt; 6016 do { 6017 switch (pd.proto) { 6018 case IPPROTO_FRAGMENT: 6019 action = pf_test_fragment(&r, dir, kif, m, h, 6020 &pd, &a, &ruleset); 6021 if (action == PF_DROP) 6022 REASON_SET(&reason, PFRES_FRAG); 6023 goto done; 6024 case IPPROTO_ROUTING: { 6025 struct ip6_rthdr rthdr; 6026 6027 if (rh_cnt++) { 6028 DPFPRINTF(PF_DEBUG_MISC, 6029 ("pf: IPv6 more than one rthdr\n")); 6030 action = PF_DROP; 6031 REASON_SET(&reason, PFRES_IPOPTIONS); 6032 log = 1; 6033 goto done; 6034 } 6035 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6036 &reason, pd.af)) { 6037 DPFPRINTF(PF_DEBUG_MISC, 6038 ("pf: IPv6 short rthdr\n")); 6039 action = PF_DROP; 6040 REASON_SET(&reason, PFRES_SHORT); 6041 log = 1; 6042 goto done; 6043 } 6044 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6045 DPFPRINTF(PF_DEBUG_MISC, 6046 ("pf: IPv6 rthdr0\n")); 6047 action = PF_DROP; 6048 REASON_SET(&reason, PFRES_IPOPTIONS); 6049 log = 1; 6050 goto done; 6051 } 6052 /* FALLTHROUGH */ 6053 } 6054 case IPPROTO_AH: 6055 case IPPROTO_HOPOPTS: 6056 case IPPROTO_DSTOPTS: { 6057 /* get next header and header length */ 6058 struct ip6_ext opt6; 6059 6060 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6061 NULL, &reason, pd.af)) { 6062 DPFPRINTF(PF_DEBUG_MISC, 6063 ("pf: IPv6 short opt\n")); 6064 action = PF_DROP; 6065 log = 1; 6066 goto done; 6067 } 6068 if (pd.proto == IPPROTO_AH) 6069 off += (opt6.ip6e_len + 2) * 4; 6070 else 6071 off += (opt6.ip6e_len + 1) * 8; 6072 pd.proto = opt6.ip6e_nxt; 6073 /* goto the next header */ 6074 break; 6075 } 6076 default: 6077 terminal++; 6078 break; 6079 } 6080 } while (!terminal); 6081 6082 /* if there's no routing header, use unmodified mbuf for checksumming */ 6083 if (!n) 6084 n = m; 6085 6086 switch (pd.proto) { 6087 6088 case IPPROTO_TCP: { 6089 struct tcphdr th; 6090 6091 pd.hdr.tcp = &th; 6092 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6093 &action, &reason, AF_INET6)) { 6094 log = action != PF_PASS; 6095 goto done; 6096 } 6097 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6098 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6099 if (action == PF_DROP) 6100 goto done; 6101 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6102 &reason); 6103 if (action == PF_PASS) { 6104 if (pfsync_update_state_ptr != NULL) 6105 pfsync_update_state_ptr(s); 6106 r = s->rule.ptr; 6107 a = s->anchor.ptr; 6108 log = s->log; 6109 } else if (s == NULL) 6110 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6111 &a, &ruleset, inp); 6112 break; 6113 } 6114 6115 case IPPROTO_UDP: { 6116 struct udphdr uh; 6117 6118 pd.hdr.udp = &uh; 6119 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6120 &action, &reason, AF_INET6)) { 6121 log = action != PF_PASS; 6122 goto done; 6123 } 6124 if (uh.uh_dport == 0 || 6125 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6126 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6127 action = PF_DROP; 6128 REASON_SET(&reason, PFRES_SHORT); 6129 goto done; 6130 } 6131 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6132 if (action == PF_PASS) { 6133 if (pfsync_update_state_ptr != NULL) 6134 pfsync_update_state_ptr(s); 6135 r = s->rule.ptr; 6136 a = s->anchor.ptr; 6137 log = s->log; 6138 } else if (s == NULL) 6139 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6140 &a, &ruleset, inp); 6141 break; 6142 } 6143 6144 case IPPROTO_ICMP: { 6145 action = PF_DROP; 6146 DPFPRINTF(PF_DEBUG_MISC, 6147 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6148 goto done; 6149 } 6150 6151 case IPPROTO_ICMPV6: { 6152 struct icmp6_hdr ih; 6153 6154 pd.hdr.icmp6 = &ih; 6155 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6156 &action, &reason, AF_INET6)) { 6157 log = action != PF_PASS; 6158 goto done; 6159 } 6160 action = pf_test_state_icmp(&s, dir, kif, 6161 m, off, h, &pd, &reason); 6162 if (action == PF_PASS) { 6163 if (pfsync_update_state_ptr != NULL) 6164 pfsync_update_state_ptr(s); 6165 r = s->rule.ptr; 6166 a = s->anchor.ptr; 6167 log = s->log; 6168 } else if (s == NULL) 6169 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6170 &a, &ruleset, inp); 6171 break; 6172 } 6173 6174 default: 6175 action = pf_test_state_other(&s, dir, kif, m, &pd); 6176 if (action == PF_PASS) { 6177 if (pfsync_update_state_ptr != NULL) 6178 pfsync_update_state_ptr(s); 6179 r = s->rule.ptr; 6180 a = s->anchor.ptr; 6181 log = s->log; 6182 } else if (s == NULL) 6183 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6184 &a, &ruleset, inp); 6185 break; 6186 } 6187 6188 done: 6189 PF_RULES_RUNLOCK(); 6190 if (n != m) { 6191 m_freem(n); 6192 n = NULL; 6193 } 6194 6195 /* handle dangerous IPv6 extension headers. */ 6196 if (action == PF_PASS && rh_cnt && 6197 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6198 action = PF_DROP; 6199 REASON_SET(&reason, PFRES_IPOPTIONS); 6200 log = 1; 6201 DPFPRINTF(PF_DEBUG_MISC, 6202 ("pf: dropping packet with dangerous v6 headers\n")); 6203 } 6204 6205 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6206 action = PF_DROP; 6207 REASON_SET(&reason, PFRES_MEMORY); 6208 } 6209 if (r->rtableid >= 0) 6210 M_SETFIB(m, r->rtableid); 6211 6212 #ifdef ALTQ 6213 if (action == PF_PASS && r->qid) { 6214 if (pd.pf_mtag == NULL && 6215 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6216 action = PF_DROP; 6217 REASON_SET(&reason, PFRES_MEMORY); 6218 } 6219 if (pd.tos & IPTOS_LOWDELAY) 6220 pd.pf_mtag->qid = r->pqid; 6221 else 6222 pd.pf_mtag->qid = r->qid; 6223 /* add hints for ecn */ 6224 pd.pf_mtag->hdr = h; 6225 } 6226 #endif /* ALTQ */ 6227 6228 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6229 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6230 (s->nat_rule.ptr->action == PF_RDR || 6231 s->nat_rule.ptr->action == PF_BINAT) && 6232 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6233 m->m_flags |= M_SKIP_FIREWALL; 6234 6235 /* XXX: Anybody working on it?! */ 6236 if (r->divert.port) 6237 printf("pf: divert(9) is not supported for IPv6\n"); 6238 6239 if (log) { 6240 struct pf_rule *lr; 6241 6242 if (s != NULL && s->nat_rule.ptr != NULL && 6243 s->nat_rule.ptr->log & PF_LOG_ALL) 6244 lr = s->nat_rule.ptr; 6245 else 6246 lr = r; 6247 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6248 &pd, (s == NULL)); 6249 } 6250 6251 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6252 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6253 6254 if (action == PF_PASS || r->action == PF_DROP) { 6255 dirndx = (dir == PF_OUT); 6256 r->packets[dirndx]++; 6257 r->bytes[dirndx] += pd.tot_len; 6258 if (a != NULL) { 6259 a->packets[dirndx]++; 6260 a->bytes[dirndx] += pd.tot_len; 6261 } 6262 if (s != NULL) { 6263 if (s->nat_rule.ptr != NULL) { 6264 s->nat_rule.ptr->packets[dirndx]++; 6265 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6266 } 6267 if (s->src_node != NULL) { 6268 s->src_node->packets[dirndx]++; 6269 s->src_node->bytes[dirndx] += pd.tot_len; 6270 } 6271 if (s->nat_src_node != NULL) { 6272 s->nat_src_node->packets[dirndx]++; 6273 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6274 } 6275 dirndx = (dir == s->direction) ? 0 : 1; 6276 s->packets[dirndx]++; 6277 s->bytes[dirndx] += pd.tot_len; 6278 } 6279 tr = r; 6280 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6281 if (nr != NULL && r == &V_pf_default_rule) 6282 tr = nr; 6283 if (tr->src.addr.type == PF_ADDR_TABLE) 6284 pfr_update_stats(tr->src.addr.p.tbl, 6285 (s == NULL) ? pd.src : 6286 &s->key[(s->direction == PF_IN)]->addr[0], 6287 pd.af, pd.tot_len, dir == PF_OUT, 6288 r->action == PF_PASS, tr->src.neg); 6289 if (tr->dst.addr.type == PF_ADDR_TABLE) 6290 pfr_update_stats(tr->dst.addr.p.tbl, 6291 (s == NULL) ? pd.dst : 6292 &s->key[(s->direction == PF_IN)]->addr[1], 6293 pd.af, pd.tot_len, dir == PF_OUT, 6294 r->action == PF_PASS, tr->dst.neg); 6295 } 6296 6297 switch (action) { 6298 case PF_SYNPROXY_DROP: 6299 m_freem(*m0); 6300 case PF_DEFER: 6301 *m0 = NULL; 6302 action = PF_PASS; 6303 break; 6304 default: 6305 /* pf_route6() returns unlocked. */ 6306 if (r->rt) { 6307 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6308 return (action); 6309 } 6310 break; 6311 } 6312 6313 if (s) 6314 PF_STATE_UNLOCK(s); 6315 6316 return (action); 6317 } 6318 #endif /* INET6 */ 6319