1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 #include "opt_bpf.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_pf.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/gsb_crc32.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/sdt.h> 61 #include <sys/socket.h> 62 #include <sys/sysctl.h> 63 #include <sys/taskqueue.h> 64 #include <sys/ucred.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_private.h> 69 #include <net/if_types.h> 70 #include <net/if_vlan_var.h> 71 #include <net/route.h> 72 #include <net/route/nhop.h> 73 #include <net/vnet.h> 74 75 #include <net/pfil.h> 76 #include <net/pfvar.h> 77 #include <net/if_pflog.h> 78 #include <net/if_pfsync.h> 79 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_var.h> 82 #include <netinet/in_fib.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_fw.h> 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp.h> 89 #include <netinet/tcp_fsm.h> 90 #include <netinet/tcp_seq.h> 91 #include <netinet/tcp_timer.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet/udp.h> 94 #include <netinet/udp_var.h> 95 96 /* dummynet */ 97 #include <netinet/ip_dummynet.h> 98 #include <netinet/ip_fw.h> 99 #include <netpfil/ipfw/dn_heap.h> 100 #include <netpfil/ipfw/ip_fw_private.h> 101 #include <netpfil/ipfw/ip_dn_private.h> 102 103 #ifdef INET6 104 #include <netinet/ip6.h> 105 #include <netinet/icmp6.h> 106 #include <netinet6/nd6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet6/in6_pcb.h> 109 #include <netinet6/in6_fib.h> 110 #include <netinet6/scope6_var.h> 111 #endif /* INET6 */ 112 113 #include <netinet/sctp_header.h> 114 #include <netinet/sctp_crc32.h> 115 116 #include <machine/in_cksum.h> 117 #include <security/mac/mac_framework.h> 118 119 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 120 121 SDT_PROVIDER_DEFINE(pf); 122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 123 "struct pf_kstate *"); 124 SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", 125 "struct pf_kstate *"); 126 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 127 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 128 "struct pf_kstate *"); 129 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *", 130 "struct pf_krule *", "struct mbuf *", "int"); 131 132 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 133 "struct mbuf *"); 134 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 135 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 136 "int", "struct pf_keth_rule *", "char *"); 137 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 138 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 139 "int", "struct pf_keth_rule *"); 140 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t"); 141 142 /* 143 * Global variables 144 */ 145 146 /* state tables */ 147 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 148 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 149 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 150 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 151 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 152 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 153 VNET_DEFINE(struct pf_kstatus, pf_status); 154 155 VNET_DEFINE(u_int32_t, ticket_altqs_active); 156 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 157 VNET_DEFINE(int, altqs_inactive_open); 158 VNET_DEFINE(u_int32_t, ticket_pabuf); 159 160 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 161 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 162 VNET_DEFINE(u_char, pf_tcp_secret[16]); 163 #define V_pf_tcp_secret VNET(pf_tcp_secret) 164 VNET_DEFINE(int, pf_tcp_secret_init); 165 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 166 VNET_DEFINE(int, pf_tcp_iss_off); 167 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 168 VNET_DECLARE(int, pf_vnet_active); 169 #define V_pf_vnet_active VNET(pf_vnet_active) 170 171 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 172 #define V_pf_purge_idx VNET(pf_purge_idx) 173 174 #ifdef PF_WANT_32_TO_64_COUNTER 175 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 176 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 177 178 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 179 VNET_DEFINE(size_t, pf_allrulecount); 180 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 181 #endif 182 183 struct pf_sctp_endpoint; 184 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint); 185 struct pf_sctp_source { 186 sa_family_t af; 187 struct pf_addr addr; 188 TAILQ_ENTRY(pf_sctp_source) entry; 189 }; 190 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source); 191 struct pf_sctp_endpoint 192 { 193 uint32_t v_tag; 194 struct pf_sctp_sources sources; 195 RB_ENTRY(pf_sctp_endpoint) entry; 196 }; 197 static int 198 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b) 199 { 200 return (a->v_tag - b->v_tag); 201 } 202 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 203 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 204 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints); 205 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints) 206 static struct mtx_padalign pf_sctp_endpoints_mtx; 207 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF); 208 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx) 209 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx) 210 211 /* 212 * Queue for pf_intr() sends. 213 */ 214 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 215 struct pf_send_entry { 216 STAILQ_ENTRY(pf_send_entry) pfse_next; 217 struct mbuf *pfse_m; 218 enum { 219 PFSE_IP, 220 PFSE_IP6, 221 PFSE_ICMP, 222 PFSE_ICMP6, 223 } pfse_type; 224 struct { 225 int type; 226 int code; 227 int mtu; 228 } icmpopts; 229 }; 230 231 STAILQ_HEAD(pf_send_head, pf_send_entry); 232 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 233 #define V_pf_sendqueue VNET(pf_sendqueue) 234 235 static struct mtx_padalign pf_sendqueue_mtx; 236 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 237 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 238 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 239 240 /* 241 * Queue for pf_overload_task() tasks. 242 */ 243 struct pf_overload_entry { 244 SLIST_ENTRY(pf_overload_entry) next; 245 struct pf_addr addr; 246 sa_family_t af; 247 uint8_t dir; 248 struct pf_krule *rule; 249 }; 250 251 SLIST_HEAD(pf_overload_head, pf_overload_entry); 252 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 253 #define V_pf_overloadqueue VNET(pf_overloadqueue) 254 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 255 #define V_pf_overloadtask VNET(pf_overloadtask) 256 257 static struct mtx_padalign pf_overloadqueue_mtx; 258 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 259 "pf overload/flush queue", MTX_DEF); 260 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 261 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 262 263 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 264 struct mtx_padalign pf_unlnkdrules_mtx; 265 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 266 MTX_DEF); 267 268 struct sx pf_config_lock; 269 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 270 271 struct mtx_padalign pf_table_stats_lock; 272 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 273 MTX_DEF); 274 275 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 276 #define V_pf_sources_z VNET(pf_sources_z) 277 uma_zone_t pf_mtag_z; 278 VNET_DEFINE(uma_zone_t, pf_state_z); 279 VNET_DEFINE(uma_zone_t, pf_state_key_z); 280 281 VNET_DEFINE(struct unrhdr64, pf_stateid); 282 283 static void pf_src_tree_remove_state(struct pf_kstate *); 284 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 285 u_int32_t); 286 static void pf_add_threshold(struct pf_threshold *); 287 static int pf_check_threshold(struct pf_threshold *); 288 289 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 290 u_int16_t *, u_int16_t *, struct pf_addr *, 291 u_int16_t, u_int8_t, sa_family_t); 292 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 293 struct tcphdr *, struct pf_state_peer *); 294 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 295 struct pf_addr *, struct pf_addr *, u_int16_t, 296 u_int16_t *, u_int16_t *, u_int16_t *, 297 u_int16_t *, u_int8_t, sa_family_t); 298 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 299 sa_family_t, struct pf_krule *, int); 300 static void pf_detach_state(struct pf_kstate *); 301 static int pf_state_key_attach(struct pf_state_key *, 302 struct pf_state_key *, struct pf_kstate *); 303 static void pf_state_key_detach(struct pf_kstate *, int); 304 static int pf_state_key_ctor(void *, int, void *, int); 305 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 306 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *, 307 struct pf_krule *, struct mbuf **); 308 static int pf_dummynet_route(struct pf_pdesc *, 309 struct pf_kstate *, struct pf_krule *, 310 struct ifnet *, struct sockaddr *, struct mbuf **); 311 static int pf_test_eth_rule(int, struct pfi_kkif *, 312 struct mbuf **); 313 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 314 struct pfi_kkif *, struct mbuf *, int, 315 struct pf_pdesc *, struct pf_krule **, 316 struct pf_kruleset **, struct inpcb *); 317 static int pf_create_state(struct pf_krule *, struct pf_krule *, 318 struct pf_krule *, struct pf_pdesc *, 319 struct pf_ksrc_node *, struct pf_state_key *, 320 struct pf_state_key *, struct mbuf *, int, 321 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 322 struct pf_kstate **, int, u_int16_t, u_int16_t, 323 int, struct pf_krule_slist *); 324 static int pf_test_fragment(struct pf_krule **, struct pfi_kkif *, 325 struct mbuf *, void *, struct pf_pdesc *, 326 struct pf_krule **, struct pf_kruleset **); 327 static int pf_tcp_track_full(struct pf_kstate **, 328 struct pfi_kkif *, struct mbuf *, int, 329 struct pf_pdesc *, u_short *, int *); 330 static int pf_tcp_track_sloppy(struct pf_kstate **, 331 struct pf_pdesc *, u_short *); 332 static int pf_test_state_tcp(struct pf_kstate **, 333 struct pfi_kkif *, struct mbuf *, int, 334 void *, struct pf_pdesc *, u_short *); 335 static int pf_test_state_udp(struct pf_kstate **, 336 struct pfi_kkif *, struct mbuf *, int, 337 void *, struct pf_pdesc *); 338 static int pf_test_state_icmp(struct pf_kstate **, 339 struct pfi_kkif *, struct mbuf *, int, 340 void *, struct pf_pdesc *, u_short *); 341 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *); 342 static void pf_sctp_multihome_delayed(struct pf_pdesc *, int, 343 struct pfi_kkif *, struct pf_kstate *, int); 344 static int pf_test_state_sctp(struct pf_kstate **, 345 struct pfi_kkif *, struct mbuf *, int, 346 void *, struct pf_pdesc *, u_short *); 347 static int pf_test_state_other(struct pf_kstate **, 348 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 349 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 350 int, u_int16_t); 351 static int pf_check_proto_cksum(struct mbuf *, int, int, 352 u_int8_t, sa_family_t); 353 static void pf_print_state_parts(struct pf_kstate *, 354 struct pf_state_key *, struct pf_state_key *); 355 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 356 bool, u_int8_t); 357 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 358 struct pf_state_key_cmp *, u_int); 359 static int pf_src_connlimit(struct pf_kstate **); 360 static void pf_overload_task(void *v, int pending); 361 static u_short pf_insert_src_node(struct pf_ksrc_node **, 362 struct pf_krule *, struct pf_addr *, sa_family_t); 363 static u_int pf_purge_expired_states(u_int, int); 364 static void pf_purge_unlinked_rules(void); 365 static int pf_mtag_uminit(void *, int, int); 366 static void pf_mtag_free(struct m_tag *); 367 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 368 int, struct pf_state_key *); 369 #ifdef INET 370 static void pf_route(struct mbuf **, struct pf_krule *, 371 struct ifnet *, struct pf_kstate *, 372 struct pf_pdesc *, struct inpcb *); 373 #endif /* INET */ 374 #ifdef INET6 375 static void pf_change_a6(struct pf_addr *, u_int16_t *, 376 struct pf_addr *, u_int8_t); 377 static void pf_route6(struct mbuf **, struct pf_krule *, 378 struct ifnet *, struct pf_kstate *, 379 struct pf_pdesc *, struct inpcb *); 380 #endif /* INET6 */ 381 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 382 383 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 384 385 extern int pf_end_threads; 386 extern struct proc *pf_purge_proc; 387 388 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 389 390 #define PACKET_UNDO_NAT(_m, _pd, _off, _s) \ 391 do { \ 392 struct pf_state_key *nk; \ 393 if ((pd->dir) == PF_OUT) \ 394 nk = (_s)->key[PF_SK_STACK]; \ 395 else \ 396 nk = (_s)->key[PF_SK_WIRE]; \ 397 pf_packet_rework_nat(_m, _pd, _off, nk); \ 398 } while (0) 399 400 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 401 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED) 402 403 #define STATE_LOOKUP(i, k, s, pd) \ 404 do { \ 405 (s) = pf_find_state((i), (k), (pd->dir)); \ 406 SDT_PROBE5(pf, ip, state, lookup, i, k, (pd->dir), pd, (s)); \ 407 if ((s) == NULL) \ 408 return (PF_DROP); \ 409 if (PACKET_LOOPED(pd)) \ 410 return (PF_PASS); \ 411 } while (0) 412 413 #define BOUND_IFACE(r, k) \ 414 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 415 416 #define STATE_INC_COUNTERS(s) \ 417 do { \ 418 struct pf_krule_item *mrm; \ 419 counter_u64_add(s->rule.ptr->states_cur, 1); \ 420 counter_u64_add(s->rule.ptr->states_tot, 1); \ 421 if (s->anchor.ptr != NULL) { \ 422 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 423 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 424 } \ 425 if (s->nat_rule.ptr != NULL) { \ 426 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 427 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 428 } \ 429 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 430 counter_u64_add(mrm->r->states_cur, 1); \ 431 counter_u64_add(mrm->r->states_tot, 1); \ 432 } \ 433 } while (0) 434 435 #define STATE_DEC_COUNTERS(s) \ 436 do { \ 437 struct pf_krule_item *mrm; \ 438 if (s->nat_rule.ptr != NULL) \ 439 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 440 if (s->anchor.ptr != NULL) \ 441 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 442 counter_u64_add(s->rule.ptr->states_cur, -1); \ 443 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 444 counter_u64_add(mrm->r->states_cur, -1); \ 445 } while (0) 446 447 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 448 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 449 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 450 VNET_DEFINE(struct pf_idhash *, pf_idhash); 451 VNET_DEFINE(struct pf_srchash *, pf_srchash); 452 453 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 454 "pf(4)"); 455 456 u_long pf_hashmask; 457 u_long pf_srchashmask; 458 static u_long pf_hashsize; 459 static u_long pf_srchashsize; 460 u_long pf_ioctl_maxcount = 65535; 461 462 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 463 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 464 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 465 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 466 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 467 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 468 469 VNET_DEFINE(void *, pf_swi_cookie); 470 VNET_DEFINE(struct intr_event *, pf_swi_ie); 471 472 VNET_DEFINE(uint32_t, pf_hashseed); 473 #define V_pf_hashseed VNET(pf_hashseed) 474 475 static void 476 pf_sctp_checksum(struct mbuf *m, int off) 477 { 478 uint32_t sum = 0; 479 480 /* Zero out the checksum, to enable recalculation. */ 481 m_copyback(m, off + offsetof(struct sctphdr, checksum), 482 sizeof(sum), (caddr_t)&sum); 483 484 sum = sctp_calculate_cksum(m, off); 485 486 m_copyback(m, off + offsetof(struct sctphdr, checksum), 487 sizeof(sum), (caddr_t)&sum); 488 } 489 490 int 491 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 492 { 493 494 switch (af) { 495 #ifdef INET 496 case AF_INET: 497 if (a->addr32[0] > b->addr32[0]) 498 return (1); 499 if (a->addr32[0] < b->addr32[0]) 500 return (-1); 501 break; 502 #endif /* INET */ 503 #ifdef INET6 504 case AF_INET6: 505 if (a->addr32[3] > b->addr32[3]) 506 return (1); 507 if (a->addr32[3] < b->addr32[3]) 508 return (-1); 509 if (a->addr32[2] > b->addr32[2]) 510 return (1); 511 if (a->addr32[2] < b->addr32[2]) 512 return (-1); 513 if (a->addr32[1] > b->addr32[1]) 514 return (1); 515 if (a->addr32[1] < b->addr32[1]) 516 return (-1); 517 if (a->addr32[0] > b->addr32[0]) 518 return (1); 519 if (a->addr32[0] < b->addr32[0]) 520 return (-1); 521 break; 522 #endif /* INET6 */ 523 default: 524 panic("%s: unknown address family %u", __func__, af); 525 } 526 return (0); 527 } 528 529 static void 530 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 531 struct pf_state_key *nk) 532 { 533 534 switch (pd->proto) { 535 case IPPROTO_TCP: { 536 struct tcphdr *th = &pd->hdr.tcp; 537 538 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 539 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 540 &th->th_sum, &nk->addr[pd->sidx], 541 nk->port[pd->sidx], 0, pd->af); 542 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 543 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 544 &th->th_sum, &nk->addr[pd->didx], 545 nk->port[pd->didx], 0, pd->af); 546 m_copyback(m, off, sizeof(*th), (caddr_t)th); 547 break; 548 } 549 case IPPROTO_UDP: { 550 struct udphdr *uh = &pd->hdr.udp; 551 552 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 553 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 554 &uh->uh_sum, &nk->addr[pd->sidx], 555 nk->port[pd->sidx], 1, pd->af); 556 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 557 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 558 &uh->uh_sum, &nk->addr[pd->didx], 559 nk->port[pd->didx], 1, pd->af); 560 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 561 break; 562 } 563 case IPPROTO_SCTP: { 564 struct sctphdr *sh = &pd->hdr.sctp; 565 uint16_t checksum = 0; 566 567 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 568 pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum, 569 &checksum, &nk->addr[pd->sidx], 570 nk->port[pd->sidx], 1, pd->af); 571 } 572 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 573 pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum, 574 &checksum, &nk->addr[pd->didx], 575 nk->port[pd->didx], 1, pd->af); 576 } 577 578 break; 579 } 580 case IPPROTO_ICMP: { 581 struct icmp *ih = &pd->hdr.icmp; 582 583 if (nk->port[pd->sidx] != ih->icmp_id) { 584 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 585 ih->icmp_cksum, ih->icmp_id, 586 nk->port[pd->sidx], 0); 587 ih->icmp_id = nk->port[pd->sidx]; 588 pd->sport = &ih->icmp_id; 589 590 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 591 } 592 /* FALLTHROUGH */ 593 } 594 default: 595 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 596 switch (pd->af) { 597 case AF_INET: 598 pf_change_a(&pd->src->v4.s_addr, 599 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 600 0); 601 break; 602 case AF_INET6: 603 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 604 break; 605 } 606 } 607 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 608 switch (pd->af) { 609 case AF_INET: 610 pf_change_a(&pd->dst->v4.s_addr, 611 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 612 0); 613 break; 614 case AF_INET6: 615 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 616 break; 617 } 618 } 619 break; 620 } 621 } 622 623 static __inline uint32_t 624 pf_hashkey(struct pf_state_key *sk) 625 { 626 uint32_t h; 627 628 h = murmur3_32_hash32((uint32_t *)sk, 629 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 630 V_pf_hashseed); 631 632 return (h & pf_hashmask); 633 } 634 635 static __inline uint32_t 636 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 637 { 638 uint32_t h; 639 640 switch (af) { 641 case AF_INET: 642 h = murmur3_32_hash32((uint32_t *)&addr->v4, 643 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 644 break; 645 case AF_INET6: 646 h = murmur3_32_hash32((uint32_t *)&addr->v6, 647 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 648 break; 649 default: 650 panic("%s: unknown address family %u", __func__, af); 651 } 652 653 return (h & pf_srchashmask); 654 } 655 656 #ifdef ALTQ 657 static int 658 pf_state_hash(struct pf_kstate *s) 659 { 660 u_int32_t hv = (intptr_t)s / sizeof(*s); 661 662 hv ^= crc32(&s->src, sizeof(s->src)); 663 hv ^= crc32(&s->dst, sizeof(s->dst)); 664 if (hv == 0) 665 hv = 1; 666 return (hv); 667 } 668 #endif 669 670 static __inline void 671 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 672 { 673 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 674 s->dst.state = newstate; 675 if (which == PF_PEER_DST) 676 return; 677 if (s->src.state == newstate) 678 return; 679 if (s->creatorid == V_pf_status.hostid && 680 s->key[PF_SK_STACK] != NULL && 681 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 682 !(TCPS_HAVEESTABLISHED(s->src.state) || 683 s->src.state == TCPS_CLOSED) && 684 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 685 atomic_add_32(&V_pf_status.states_halfopen, -1); 686 687 s->src.state = newstate; 688 } 689 690 #ifdef INET6 691 void 692 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 693 { 694 switch (af) { 695 #ifdef INET 696 case AF_INET: 697 dst->addr32[0] = src->addr32[0]; 698 break; 699 #endif /* INET */ 700 case AF_INET6: 701 dst->addr32[0] = src->addr32[0]; 702 dst->addr32[1] = src->addr32[1]; 703 dst->addr32[2] = src->addr32[2]; 704 dst->addr32[3] = src->addr32[3]; 705 break; 706 } 707 } 708 #endif /* INET6 */ 709 710 static void 711 pf_init_threshold(struct pf_threshold *threshold, 712 u_int32_t limit, u_int32_t seconds) 713 { 714 threshold->limit = limit * PF_THRESHOLD_MULT; 715 threshold->seconds = seconds; 716 threshold->count = 0; 717 threshold->last = time_uptime; 718 } 719 720 static void 721 pf_add_threshold(struct pf_threshold *threshold) 722 { 723 u_int32_t t = time_uptime, diff = t - threshold->last; 724 725 if (diff >= threshold->seconds) 726 threshold->count = 0; 727 else 728 threshold->count -= threshold->count * diff / 729 threshold->seconds; 730 threshold->count += PF_THRESHOLD_MULT; 731 threshold->last = t; 732 } 733 734 static int 735 pf_check_threshold(struct pf_threshold *threshold) 736 { 737 return (threshold->count > threshold->limit); 738 } 739 740 static int 741 pf_src_connlimit(struct pf_kstate **state) 742 { 743 struct pf_overload_entry *pfoe; 744 int bad = 0; 745 746 PF_STATE_LOCK_ASSERT(*state); 747 /* 748 * XXXKS: The src node is accessed unlocked! 749 * PF_SRC_NODE_LOCK_ASSERT((*state)->src_node); 750 */ 751 752 (*state)->src_node->conn++; 753 (*state)->src.tcp_est = 1; 754 pf_add_threshold(&(*state)->src_node->conn_rate); 755 756 if ((*state)->rule.ptr->max_src_conn && 757 (*state)->rule.ptr->max_src_conn < 758 (*state)->src_node->conn) { 759 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 760 bad++; 761 } 762 763 if ((*state)->rule.ptr->max_src_conn_rate.limit && 764 pf_check_threshold(&(*state)->src_node->conn_rate)) { 765 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 766 bad++; 767 } 768 769 if (!bad) 770 return (0); 771 772 /* Kill this state. */ 773 (*state)->timeout = PFTM_PURGE; 774 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 775 776 if ((*state)->rule.ptr->overload_tbl == NULL) 777 return (1); 778 779 /* Schedule overloading and flushing task. */ 780 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 781 if (pfoe == NULL) 782 return (1); /* too bad :( */ 783 784 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 785 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 786 pfoe->rule = (*state)->rule.ptr; 787 pfoe->dir = (*state)->direction; 788 PF_OVERLOADQ_LOCK(); 789 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 790 PF_OVERLOADQ_UNLOCK(); 791 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 792 793 return (1); 794 } 795 796 static void 797 pf_overload_task(void *v, int pending) 798 { 799 struct pf_overload_head queue; 800 struct pfr_addr p; 801 struct pf_overload_entry *pfoe, *pfoe1; 802 uint32_t killed = 0; 803 804 CURVNET_SET((struct vnet *)v); 805 806 PF_OVERLOADQ_LOCK(); 807 queue = V_pf_overloadqueue; 808 SLIST_INIT(&V_pf_overloadqueue); 809 PF_OVERLOADQ_UNLOCK(); 810 811 bzero(&p, sizeof(p)); 812 SLIST_FOREACH(pfoe, &queue, next) { 813 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 814 if (V_pf_status.debug >= PF_DEBUG_MISC) { 815 printf("%s: blocking address ", __func__); 816 pf_print_host(&pfoe->addr, 0, pfoe->af); 817 printf("\n"); 818 } 819 820 p.pfra_af = pfoe->af; 821 switch (pfoe->af) { 822 #ifdef INET 823 case AF_INET: 824 p.pfra_net = 32; 825 p.pfra_ip4addr = pfoe->addr.v4; 826 break; 827 #endif 828 #ifdef INET6 829 case AF_INET6: 830 p.pfra_net = 128; 831 p.pfra_ip6addr = pfoe->addr.v6; 832 break; 833 #endif 834 } 835 836 PF_RULES_WLOCK(); 837 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 838 PF_RULES_WUNLOCK(); 839 } 840 841 /* 842 * Remove those entries, that don't need flushing. 843 */ 844 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 845 if (pfoe->rule->flush == 0) { 846 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 847 free(pfoe, M_PFTEMP); 848 } else 849 counter_u64_add( 850 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 851 852 /* If nothing to flush, return. */ 853 if (SLIST_EMPTY(&queue)) { 854 CURVNET_RESTORE(); 855 return; 856 } 857 858 for (int i = 0; i <= pf_hashmask; i++) { 859 struct pf_idhash *ih = &V_pf_idhash[i]; 860 struct pf_state_key *sk; 861 struct pf_kstate *s; 862 863 PF_HASHROW_LOCK(ih); 864 LIST_FOREACH(s, &ih->states, entry) { 865 sk = s->key[PF_SK_WIRE]; 866 SLIST_FOREACH(pfoe, &queue, next) 867 if (sk->af == pfoe->af && 868 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 869 pfoe->rule == s->rule.ptr) && 870 ((pfoe->dir == PF_OUT && 871 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 872 (pfoe->dir == PF_IN && 873 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 874 s->timeout = PFTM_PURGE; 875 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 876 killed++; 877 } 878 } 879 PF_HASHROW_UNLOCK(ih); 880 } 881 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 882 free(pfoe, M_PFTEMP); 883 if (V_pf_status.debug >= PF_DEBUG_MISC) 884 printf("%s: %u states killed", __func__, killed); 885 886 CURVNET_RESTORE(); 887 } 888 889 /* 890 * Can return locked on failure, so that we can consistently 891 * allocate and insert a new one. 892 */ 893 struct pf_ksrc_node * 894 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 895 struct pf_srchash **sh, bool returnlocked) 896 { 897 struct pf_ksrc_node *n; 898 899 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 900 901 *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 902 PF_HASHROW_LOCK(*sh); 903 LIST_FOREACH(n, &(*sh)->nodes, entry) 904 if (n->rule.ptr == rule && n->af == af && 905 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 906 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 907 break; 908 909 if (n != NULL) { 910 n->states++; 911 PF_HASHROW_UNLOCK(*sh); 912 } else if (returnlocked == false) 913 PF_HASHROW_UNLOCK(*sh); 914 915 return (n); 916 } 917 918 static void 919 pf_free_src_node(struct pf_ksrc_node *sn) 920 { 921 922 for (int i = 0; i < 2; i++) { 923 counter_u64_free(sn->bytes[i]); 924 counter_u64_free(sn->packets[i]); 925 } 926 uma_zfree(V_pf_sources_z, sn); 927 } 928 929 static u_short 930 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 931 struct pf_addr *src, sa_family_t af) 932 { 933 u_short reason = 0; 934 struct pf_srchash *sh = NULL; 935 936 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 937 rule->rpool.opts & PF_POOL_STICKYADDR), 938 ("%s for non-tracking rule %p", __func__, rule)); 939 940 if (*sn == NULL) 941 *sn = pf_find_src_node(src, rule, af, &sh, true); 942 943 if (*sn == NULL) { 944 PF_HASHROW_ASSERT(sh); 945 946 if (rule->max_src_nodes && 947 counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) { 948 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); 949 PF_HASHROW_UNLOCK(sh); 950 reason = PFRES_SRCLIMIT; 951 goto done; 952 } 953 954 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 955 if ((*sn) == NULL) { 956 PF_HASHROW_UNLOCK(sh); 957 reason = PFRES_MEMORY; 958 goto done; 959 } 960 961 for (int i = 0; i < 2; i++) { 962 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 963 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 964 965 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 966 pf_free_src_node(*sn); 967 PF_HASHROW_UNLOCK(sh); 968 reason = PFRES_MEMORY; 969 goto done; 970 } 971 } 972 973 pf_init_threshold(&(*sn)->conn_rate, 974 rule->max_src_conn_rate.limit, 975 rule->max_src_conn_rate.seconds); 976 977 MPASS((*sn)->lock == NULL); 978 (*sn)->lock = &sh->lock; 979 980 (*sn)->af = af; 981 (*sn)->rule.ptr = rule; 982 PF_ACPY(&(*sn)->addr, src, af); 983 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 984 (*sn)->creation = time_uptime; 985 (*sn)->ruletype = rule->action; 986 (*sn)->states = 1; 987 if ((*sn)->rule.ptr != NULL) 988 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 989 PF_HASHROW_UNLOCK(sh); 990 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 991 } else { 992 if (rule->max_src_states && 993 (*sn)->states >= rule->max_src_states) { 994 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 995 1); 996 reason = PFRES_SRCLIMIT; 997 goto done; 998 } 999 } 1000 done: 1001 return (reason); 1002 } 1003 1004 void 1005 pf_unlink_src_node(struct pf_ksrc_node *src) 1006 { 1007 PF_SRC_NODE_LOCK_ASSERT(src); 1008 1009 LIST_REMOVE(src, entry); 1010 if (src->rule.ptr) 1011 counter_u64_add(src->rule.ptr->src_nodes, -1); 1012 } 1013 1014 u_int 1015 pf_free_src_nodes(struct pf_ksrc_node_list *head) 1016 { 1017 struct pf_ksrc_node *sn, *tmp; 1018 u_int count = 0; 1019 1020 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 1021 pf_free_src_node(sn); 1022 count++; 1023 } 1024 1025 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 1026 1027 return (count); 1028 } 1029 1030 void 1031 pf_mtag_initialize(void) 1032 { 1033 1034 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 1035 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 1036 UMA_ALIGN_PTR, 0); 1037 } 1038 1039 /* Per-vnet data storage structures initialization. */ 1040 void 1041 pf_initialize(void) 1042 { 1043 struct pf_keyhash *kh; 1044 struct pf_idhash *ih; 1045 struct pf_srchash *sh; 1046 u_int i; 1047 1048 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 1049 pf_hashsize = PF_HASHSIZ; 1050 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 1051 pf_srchashsize = PF_SRCHASHSIZ; 1052 1053 V_pf_hashseed = arc4random(); 1054 1055 /* States and state keys storage. */ 1056 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1057 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1058 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1059 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1060 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1061 1062 V_pf_state_key_z = uma_zcreate("pf state keys", 1063 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1064 UMA_ALIGN_PTR, 0); 1065 1066 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 1067 M_PFHASH, M_NOWAIT | M_ZERO); 1068 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 1069 M_PFHASH, M_NOWAIT | M_ZERO); 1070 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1071 printf("pf: Unable to allocate memory for " 1072 "state_hashsize %lu.\n", pf_hashsize); 1073 1074 free(V_pf_keyhash, M_PFHASH); 1075 free(V_pf_idhash, M_PFHASH); 1076 1077 pf_hashsize = PF_HASHSIZ; 1078 V_pf_keyhash = mallocarray(pf_hashsize, 1079 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1080 V_pf_idhash = mallocarray(pf_hashsize, 1081 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1082 } 1083 1084 pf_hashmask = pf_hashsize - 1; 1085 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 1086 i++, kh++, ih++) { 1087 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1088 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1089 } 1090 1091 /* Source nodes. */ 1092 V_pf_sources_z = uma_zcreate("pf source nodes", 1093 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1094 0); 1095 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1096 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1097 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1098 1099 V_pf_srchash = mallocarray(pf_srchashsize, 1100 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1101 if (V_pf_srchash == NULL) { 1102 printf("pf: Unable to allocate memory for " 1103 "source_hashsize %lu.\n", pf_srchashsize); 1104 1105 pf_srchashsize = PF_SRCHASHSIZ; 1106 V_pf_srchash = mallocarray(pf_srchashsize, 1107 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1108 } 1109 1110 pf_srchashmask = pf_srchashsize - 1; 1111 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 1112 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1113 1114 /* ALTQ */ 1115 TAILQ_INIT(&V_pf_altqs[0]); 1116 TAILQ_INIT(&V_pf_altqs[1]); 1117 TAILQ_INIT(&V_pf_altqs[2]); 1118 TAILQ_INIT(&V_pf_altqs[3]); 1119 TAILQ_INIT(&V_pf_pabuf); 1120 V_pf_altqs_active = &V_pf_altqs[0]; 1121 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1122 V_pf_altqs_inactive = &V_pf_altqs[2]; 1123 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1124 1125 /* Send & overload+flush queues. */ 1126 STAILQ_INIT(&V_pf_sendqueue); 1127 SLIST_INIT(&V_pf_overloadqueue); 1128 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1129 1130 /* Unlinked, but may be referenced rules. */ 1131 TAILQ_INIT(&V_pf_unlinked_rules); 1132 } 1133 1134 void 1135 pf_mtag_cleanup(void) 1136 { 1137 1138 uma_zdestroy(pf_mtag_z); 1139 } 1140 1141 void 1142 pf_cleanup(void) 1143 { 1144 struct pf_keyhash *kh; 1145 struct pf_idhash *ih; 1146 struct pf_srchash *sh; 1147 struct pf_send_entry *pfse, *next; 1148 u_int i; 1149 1150 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 1151 i++, kh++, ih++) { 1152 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1153 __func__)); 1154 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1155 __func__)); 1156 mtx_destroy(&kh->lock); 1157 mtx_destroy(&ih->lock); 1158 } 1159 free(V_pf_keyhash, M_PFHASH); 1160 free(V_pf_idhash, M_PFHASH); 1161 1162 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1163 KASSERT(LIST_EMPTY(&sh->nodes), 1164 ("%s: source node hash not empty", __func__)); 1165 mtx_destroy(&sh->lock); 1166 } 1167 free(V_pf_srchash, M_PFHASH); 1168 1169 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1170 m_freem(pfse->pfse_m); 1171 free(pfse, M_PFTEMP); 1172 } 1173 MPASS(RB_EMPTY(&V_pf_sctp_endpoints)); 1174 1175 uma_zdestroy(V_pf_sources_z); 1176 uma_zdestroy(V_pf_state_z); 1177 uma_zdestroy(V_pf_state_key_z); 1178 } 1179 1180 static int 1181 pf_mtag_uminit(void *mem, int size, int how) 1182 { 1183 struct m_tag *t; 1184 1185 t = (struct m_tag *)mem; 1186 t->m_tag_cookie = MTAG_ABI_COMPAT; 1187 t->m_tag_id = PACKET_TAG_PF; 1188 t->m_tag_len = sizeof(struct pf_mtag); 1189 t->m_tag_free = pf_mtag_free; 1190 1191 return (0); 1192 } 1193 1194 static void 1195 pf_mtag_free(struct m_tag *t) 1196 { 1197 1198 uma_zfree(pf_mtag_z, t); 1199 } 1200 1201 struct pf_mtag * 1202 pf_get_mtag(struct mbuf *m) 1203 { 1204 struct m_tag *mtag; 1205 1206 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1207 return ((struct pf_mtag *)(mtag + 1)); 1208 1209 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1210 if (mtag == NULL) 1211 return (NULL); 1212 bzero(mtag + 1, sizeof(struct pf_mtag)); 1213 m_tag_prepend(m, mtag); 1214 1215 return ((struct pf_mtag *)(mtag + 1)); 1216 } 1217 1218 static int 1219 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1220 struct pf_kstate *s) 1221 { 1222 struct pf_keyhash *khs, *khw, *kh; 1223 struct pf_state_key *sk, *cur; 1224 struct pf_kstate *si, *olds = NULL; 1225 int idx; 1226 1227 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1228 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1229 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1230 1231 /* 1232 * We need to lock hash slots of both keys. To avoid deadlock 1233 * we always lock the slot with lower address first. Unlock order 1234 * isn't important. 1235 * 1236 * We also need to lock ID hash slot before dropping key 1237 * locks. On success we return with ID hash slot locked. 1238 */ 1239 1240 if (skw == sks) { 1241 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1242 PF_HASHROW_LOCK(khs); 1243 } else { 1244 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1245 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1246 if (khs == khw) { 1247 PF_HASHROW_LOCK(khs); 1248 } else if (khs < khw) { 1249 PF_HASHROW_LOCK(khs); 1250 PF_HASHROW_LOCK(khw); 1251 } else { 1252 PF_HASHROW_LOCK(khw); 1253 PF_HASHROW_LOCK(khs); 1254 } 1255 } 1256 1257 #define KEYS_UNLOCK() do { \ 1258 if (khs != khw) { \ 1259 PF_HASHROW_UNLOCK(khs); \ 1260 PF_HASHROW_UNLOCK(khw); \ 1261 } else \ 1262 PF_HASHROW_UNLOCK(khs); \ 1263 } while (0) 1264 1265 /* 1266 * First run: start with wire key. 1267 */ 1268 sk = skw; 1269 kh = khw; 1270 idx = PF_SK_WIRE; 1271 1272 MPASS(s->lock == NULL); 1273 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1274 1275 keyattach: 1276 LIST_FOREACH(cur, &kh->keys, entry) 1277 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1278 break; 1279 1280 if (cur != NULL) { 1281 /* Key exists. Check for same kif, if none, add to key. */ 1282 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1283 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1284 1285 PF_HASHROW_LOCK(ih); 1286 if (si->kif == s->kif && 1287 si->direction == s->direction) { 1288 if (sk->proto == IPPROTO_TCP && 1289 si->src.state >= TCPS_FIN_WAIT_2 && 1290 si->dst.state >= TCPS_FIN_WAIT_2) { 1291 /* 1292 * New state matches an old >FIN_WAIT_2 1293 * state. We can't drop key hash locks, 1294 * thus we can't unlink it properly. 1295 * 1296 * As a workaround we drop it into 1297 * TCPS_CLOSED state, schedule purge 1298 * ASAP and push it into the very end 1299 * of the slot TAILQ, so that it won't 1300 * conflict with our new state. 1301 */ 1302 pf_set_protostate(si, PF_PEER_BOTH, 1303 TCPS_CLOSED); 1304 si->timeout = PFTM_PURGE; 1305 olds = si; 1306 } else { 1307 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1308 printf("pf: %s key attach " 1309 "failed on %s: ", 1310 (idx == PF_SK_WIRE) ? 1311 "wire" : "stack", 1312 s->kif->pfik_name); 1313 pf_print_state_parts(s, 1314 (idx == PF_SK_WIRE) ? 1315 sk : NULL, 1316 (idx == PF_SK_STACK) ? 1317 sk : NULL); 1318 printf(", existing: "); 1319 pf_print_state_parts(si, 1320 (idx == PF_SK_WIRE) ? 1321 sk : NULL, 1322 (idx == PF_SK_STACK) ? 1323 sk : NULL); 1324 printf("\n"); 1325 } 1326 PF_HASHROW_UNLOCK(ih); 1327 KEYS_UNLOCK(); 1328 uma_zfree(V_pf_state_key_z, sk); 1329 if (idx == PF_SK_STACK) 1330 pf_detach_state(s); 1331 return (EEXIST); /* collision! */ 1332 } 1333 } 1334 PF_HASHROW_UNLOCK(ih); 1335 } 1336 uma_zfree(V_pf_state_key_z, sk); 1337 s->key[idx] = cur; 1338 } else { 1339 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1340 s->key[idx] = sk; 1341 } 1342 1343 stateattach: 1344 /* List is sorted, if-bound states before floating. */ 1345 if (s->kif == V_pfi_all) 1346 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1347 else 1348 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1349 1350 if (olds) { 1351 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1352 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1353 key_list[idx]); 1354 olds = NULL; 1355 } 1356 1357 /* 1358 * Attach done. See how should we (or should not?) 1359 * attach a second key. 1360 */ 1361 if (sks == skw) { 1362 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1363 idx = PF_SK_STACK; 1364 sks = NULL; 1365 goto stateattach; 1366 } else if (sks != NULL) { 1367 /* 1368 * Continue attaching with stack key. 1369 */ 1370 sk = sks; 1371 kh = khs; 1372 idx = PF_SK_STACK; 1373 sks = NULL; 1374 goto keyattach; 1375 } 1376 1377 PF_STATE_LOCK(s); 1378 KEYS_UNLOCK(); 1379 1380 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1381 ("%s failure", __func__)); 1382 1383 return (0); 1384 #undef KEYS_UNLOCK 1385 } 1386 1387 static void 1388 pf_detach_state(struct pf_kstate *s) 1389 { 1390 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1391 struct pf_keyhash *kh; 1392 1393 pf_sctp_multihome_detach_addr(s); 1394 1395 if (sks != NULL) { 1396 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1397 PF_HASHROW_LOCK(kh); 1398 if (s->key[PF_SK_STACK] != NULL) 1399 pf_state_key_detach(s, PF_SK_STACK); 1400 /* 1401 * If both point to same key, then we are done. 1402 */ 1403 if (sks == s->key[PF_SK_WIRE]) { 1404 pf_state_key_detach(s, PF_SK_WIRE); 1405 PF_HASHROW_UNLOCK(kh); 1406 return; 1407 } 1408 PF_HASHROW_UNLOCK(kh); 1409 } 1410 1411 if (s->key[PF_SK_WIRE] != NULL) { 1412 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1413 PF_HASHROW_LOCK(kh); 1414 if (s->key[PF_SK_WIRE] != NULL) 1415 pf_state_key_detach(s, PF_SK_WIRE); 1416 PF_HASHROW_UNLOCK(kh); 1417 } 1418 } 1419 1420 static void 1421 pf_state_key_detach(struct pf_kstate *s, int idx) 1422 { 1423 struct pf_state_key *sk = s->key[idx]; 1424 #ifdef INVARIANTS 1425 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1426 1427 PF_HASHROW_ASSERT(kh); 1428 #endif 1429 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1430 s->key[idx] = NULL; 1431 1432 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1433 LIST_REMOVE(sk, entry); 1434 uma_zfree(V_pf_state_key_z, sk); 1435 } 1436 } 1437 1438 static int 1439 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1440 { 1441 struct pf_state_key *sk = mem; 1442 1443 bzero(sk, sizeof(struct pf_state_key_cmp)); 1444 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1445 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1446 1447 return (0); 1448 } 1449 1450 struct pf_state_key * 1451 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1452 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1453 { 1454 struct pf_state_key *sk; 1455 1456 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1457 if (sk == NULL) 1458 return (NULL); 1459 1460 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1461 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1462 sk->port[pd->sidx] = sport; 1463 sk->port[pd->didx] = dport; 1464 sk->proto = pd->proto; 1465 sk->af = pd->af; 1466 1467 return (sk); 1468 } 1469 1470 struct pf_state_key * 1471 pf_state_key_clone(struct pf_state_key *orig) 1472 { 1473 struct pf_state_key *sk; 1474 1475 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1476 if (sk == NULL) 1477 return (NULL); 1478 1479 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1480 1481 return (sk); 1482 } 1483 1484 int 1485 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1486 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1487 { 1488 struct pf_idhash *ih; 1489 struct pf_kstate *cur; 1490 int error; 1491 1492 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1493 ("%s: sks not pristine", __func__)); 1494 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1495 ("%s: skw not pristine", __func__)); 1496 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1497 1498 s->kif = kif; 1499 s->orig_kif = orig_kif; 1500 1501 if (s->id == 0 && s->creatorid == 0) { 1502 s->id = alloc_unr64(&V_pf_stateid); 1503 s->id = htobe64(s->id); 1504 s->creatorid = V_pf_status.hostid; 1505 } 1506 1507 /* Returns with ID locked on success. */ 1508 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1509 return (error); 1510 1511 ih = &V_pf_idhash[PF_IDHASH(s)]; 1512 PF_HASHROW_ASSERT(ih); 1513 LIST_FOREACH(cur, &ih->states, entry) 1514 if (cur->id == s->id && cur->creatorid == s->creatorid) 1515 break; 1516 1517 if (cur != NULL) { 1518 PF_HASHROW_UNLOCK(ih); 1519 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1520 printf("pf: state ID collision: " 1521 "id: %016llx creatorid: %08x\n", 1522 (unsigned long long)be64toh(s->id), 1523 ntohl(s->creatorid)); 1524 } 1525 pf_detach_state(s); 1526 return (EEXIST); 1527 } 1528 LIST_INSERT_HEAD(&ih->states, s, entry); 1529 /* One for keys, one for ID hash. */ 1530 refcount_init(&s->refs, 2); 1531 1532 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1533 if (V_pfsync_insert_state_ptr != NULL) 1534 V_pfsync_insert_state_ptr(s); 1535 1536 /* Returns locked. */ 1537 return (0); 1538 } 1539 1540 /* 1541 * Find state by ID: returns with locked row on success. 1542 */ 1543 struct pf_kstate * 1544 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1545 { 1546 struct pf_idhash *ih; 1547 struct pf_kstate *s; 1548 1549 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1550 1551 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1552 1553 PF_HASHROW_LOCK(ih); 1554 LIST_FOREACH(s, &ih->states, entry) 1555 if (s->id == id && s->creatorid == creatorid) 1556 break; 1557 1558 if (s == NULL) 1559 PF_HASHROW_UNLOCK(ih); 1560 1561 return (s); 1562 } 1563 1564 /* 1565 * Find state by key. 1566 * Returns with ID hash slot locked on success. 1567 */ 1568 static struct pf_kstate * 1569 pf_find_state(struct pfi_kkif *kif, struct pf_state_key_cmp *key, u_int dir) 1570 { 1571 struct pf_keyhash *kh; 1572 struct pf_state_key *sk; 1573 struct pf_kstate *s; 1574 int idx; 1575 1576 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1577 1578 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1579 1580 PF_HASHROW_LOCK(kh); 1581 LIST_FOREACH(sk, &kh->keys, entry) 1582 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1583 break; 1584 if (sk == NULL) { 1585 PF_HASHROW_UNLOCK(kh); 1586 return (NULL); 1587 } 1588 1589 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1590 1591 /* List is sorted, if-bound states before floating ones. */ 1592 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1593 if (s->kif == V_pfi_all || s->kif == kif) { 1594 PF_STATE_LOCK(s); 1595 PF_HASHROW_UNLOCK(kh); 1596 if (__predict_false(s->timeout >= PFTM_MAX)) { 1597 /* 1598 * State is either being processed by 1599 * pf_unlink_state() in an other thread, or 1600 * is scheduled for immediate expiry. 1601 */ 1602 PF_STATE_UNLOCK(s); 1603 return (NULL); 1604 } 1605 return (s); 1606 } 1607 PF_HASHROW_UNLOCK(kh); 1608 1609 return (NULL); 1610 } 1611 1612 /* 1613 * Returns with ID hash slot locked on success. 1614 */ 1615 struct pf_kstate * 1616 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1617 { 1618 struct pf_keyhash *kh; 1619 struct pf_state_key *sk; 1620 struct pf_kstate *s, *ret = NULL; 1621 int idx, inout = 0; 1622 1623 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1624 1625 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1626 1627 PF_HASHROW_LOCK(kh); 1628 LIST_FOREACH(sk, &kh->keys, entry) 1629 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1630 break; 1631 if (sk == NULL) { 1632 PF_HASHROW_UNLOCK(kh); 1633 return (NULL); 1634 } 1635 switch (dir) { 1636 case PF_IN: 1637 idx = PF_SK_WIRE; 1638 break; 1639 case PF_OUT: 1640 idx = PF_SK_STACK; 1641 break; 1642 case PF_INOUT: 1643 idx = PF_SK_WIRE; 1644 inout = 1; 1645 break; 1646 default: 1647 panic("%s: dir %u", __func__, dir); 1648 } 1649 second_run: 1650 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1651 if (more == NULL) { 1652 PF_STATE_LOCK(s); 1653 PF_HASHROW_UNLOCK(kh); 1654 return (s); 1655 } 1656 1657 if (ret) 1658 (*more)++; 1659 else { 1660 ret = s; 1661 PF_STATE_LOCK(s); 1662 } 1663 } 1664 if (inout == 1) { 1665 inout = 0; 1666 idx = PF_SK_STACK; 1667 goto second_run; 1668 } 1669 PF_HASHROW_UNLOCK(kh); 1670 1671 return (ret); 1672 } 1673 1674 /* 1675 * FIXME 1676 * This routine is inefficient -- locks the state only to unlock immediately on 1677 * return. 1678 * It is racy -- after the state is unlocked nothing stops other threads from 1679 * removing it. 1680 */ 1681 bool 1682 pf_find_state_all_exists(struct pf_state_key_cmp *key, u_int dir) 1683 { 1684 struct pf_kstate *s; 1685 1686 s = pf_find_state_all(key, dir, NULL); 1687 if (s != NULL) { 1688 PF_STATE_UNLOCK(s); 1689 return (true); 1690 } 1691 return (false); 1692 } 1693 1694 /* END state table stuff */ 1695 1696 static void 1697 pf_send(struct pf_send_entry *pfse) 1698 { 1699 1700 PF_SENDQ_LOCK(); 1701 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1702 PF_SENDQ_UNLOCK(); 1703 swi_sched(V_pf_swi_cookie, 0); 1704 } 1705 1706 static bool 1707 pf_isforlocal(struct mbuf *m, int af) 1708 { 1709 switch (af) { 1710 #ifdef INET 1711 case AF_INET: { 1712 struct ip *ip = mtod(m, struct ip *); 1713 1714 return (in_localip(ip->ip_dst)); 1715 } 1716 #endif 1717 #ifdef INET6 1718 case AF_INET6: { 1719 struct ip6_hdr *ip6; 1720 struct in6_ifaddr *ia; 1721 ip6 = mtod(m, struct ip6_hdr *); 1722 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 1723 if (ia == NULL) 1724 return (false); 1725 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 1726 } 1727 #endif 1728 default: 1729 panic("Unsupported af %d", af); 1730 } 1731 1732 return (false); 1733 } 1734 1735 void 1736 pf_intr(void *v) 1737 { 1738 struct epoch_tracker et; 1739 struct pf_send_head queue; 1740 struct pf_send_entry *pfse, *next; 1741 1742 CURVNET_SET((struct vnet *)v); 1743 1744 PF_SENDQ_LOCK(); 1745 queue = V_pf_sendqueue; 1746 STAILQ_INIT(&V_pf_sendqueue); 1747 PF_SENDQ_UNLOCK(); 1748 1749 NET_EPOCH_ENTER(et); 1750 1751 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1752 switch (pfse->pfse_type) { 1753 #ifdef INET 1754 case PFSE_IP: { 1755 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 1756 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1757 pfse->pfse_m->m_pkthdr.csum_flags |= 1758 CSUM_IP_VALID | CSUM_IP_CHECKED; 1759 ip_input(pfse->pfse_m); 1760 } else { 1761 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1762 NULL); 1763 } 1764 break; 1765 } 1766 case PFSE_ICMP: 1767 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1768 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1769 break; 1770 #endif /* INET */ 1771 #ifdef INET6 1772 case PFSE_IP6: 1773 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 1774 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1775 ip6_input(pfse->pfse_m); 1776 } else { 1777 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1778 NULL, NULL); 1779 } 1780 break; 1781 case PFSE_ICMP6: 1782 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1783 pfse->icmpopts.code, pfse->icmpopts.mtu); 1784 break; 1785 #endif /* INET6 */ 1786 default: 1787 panic("%s: unknown type", __func__); 1788 } 1789 free(pfse, M_PFTEMP); 1790 } 1791 NET_EPOCH_EXIT(et); 1792 CURVNET_RESTORE(); 1793 } 1794 1795 #define pf_purge_thread_period (hz / 10) 1796 1797 #ifdef PF_WANT_32_TO_64_COUNTER 1798 static void 1799 pf_status_counter_u64_periodic(void) 1800 { 1801 1802 PF_RULES_RASSERT(); 1803 1804 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 1805 return; 1806 } 1807 1808 for (int i = 0; i < FCNT_MAX; i++) { 1809 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 1810 } 1811 } 1812 1813 static void 1814 pf_kif_counter_u64_periodic(void) 1815 { 1816 struct pfi_kkif *kif; 1817 size_t r, run; 1818 1819 PF_RULES_RASSERT(); 1820 1821 if (__predict_false(V_pf_allkifcount == 0)) { 1822 return; 1823 } 1824 1825 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1826 return; 1827 } 1828 1829 run = V_pf_allkifcount / 10; 1830 if (run < 5) 1831 run = 5; 1832 1833 for (r = 0; r < run; r++) { 1834 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 1835 if (kif == NULL) { 1836 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1837 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 1838 break; 1839 } 1840 1841 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1842 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 1843 1844 for (int i = 0; i < 2; i++) { 1845 for (int j = 0; j < 2; j++) { 1846 for (int k = 0; k < 2; k++) { 1847 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 1848 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 1849 } 1850 } 1851 } 1852 } 1853 } 1854 1855 static void 1856 pf_rule_counter_u64_periodic(void) 1857 { 1858 struct pf_krule *rule; 1859 size_t r, run; 1860 1861 PF_RULES_RASSERT(); 1862 1863 if (__predict_false(V_pf_allrulecount == 0)) { 1864 return; 1865 } 1866 1867 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1868 return; 1869 } 1870 1871 run = V_pf_allrulecount / 10; 1872 if (run < 5) 1873 run = 5; 1874 1875 for (r = 0; r < run; r++) { 1876 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 1877 if (rule == NULL) { 1878 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1879 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 1880 break; 1881 } 1882 1883 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1884 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 1885 1886 pf_counter_u64_periodic(&rule->evaluations); 1887 for (int i = 0; i < 2; i++) { 1888 pf_counter_u64_periodic(&rule->packets[i]); 1889 pf_counter_u64_periodic(&rule->bytes[i]); 1890 } 1891 } 1892 } 1893 1894 static void 1895 pf_counter_u64_periodic_main(void) 1896 { 1897 PF_RULES_RLOCK_TRACKER; 1898 1899 V_pf_counter_periodic_iter++; 1900 1901 PF_RULES_RLOCK(); 1902 pf_counter_u64_critical_enter(); 1903 pf_status_counter_u64_periodic(); 1904 pf_kif_counter_u64_periodic(); 1905 pf_rule_counter_u64_periodic(); 1906 pf_counter_u64_critical_exit(); 1907 PF_RULES_RUNLOCK(); 1908 } 1909 #else 1910 #define pf_counter_u64_periodic_main() do { } while (0) 1911 #endif 1912 1913 void 1914 pf_purge_thread(void *unused __unused) 1915 { 1916 VNET_ITERATOR_DECL(vnet_iter); 1917 1918 sx_xlock(&pf_end_lock); 1919 while (pf_end_threads == 0) { 1920 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 1921 1922 VNET_LIST_RLOCK(); 1923 VNET_FOREACH(vnet_iter) { 1924 CURVNET_SET(vnet_iter); 1925 1926 /* Wait until V_pf_default_rule is initialized. */ 1927 if (V_pf_vnet_active == 0) { 1928 CURVNET_RESTORE(); 1929 continue; 1930 } 1931 1932 pf_counter_u64_periodic_main(); 1933 1934 /* 1935 * Process 1/interval fraction of the state 1936 * table every run. 1937 */ 1938 V_pf_purge_idx = 1939 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1940 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1941 1942 /* 1943 * Purge other expired types every 1944 * PFTM_INTERVAL seconds. 1945 */ 1946 if (V_pf_purge_idx == 0) { 1947 /* 1948 * Order is important: 1949 * - states and src nodes reference rules 1950 * - states and rules reference kifs 1951 */ 1952 pf_purge_expired_fragments(); 1953 pf_purge_expired_src_nodes(); 1954 pf_purge_unlinked_rules(); 1955 pfi_kkif_purge(); 1956 } 1957 CURVNET_RESTORE(); 1958 } 1959 VNET_LIST_RUNLOCK(); 1960 } 1961 1962 pf_end_threads++; 1963 sx_xunlock(&pf_end_lock); 1964 kproc_exit(0); 1965 } 1966 1967 void 1968 pf_unload_vnet_purge(void) 1969 { 1970 1971 /* 1972 * To cleanse up all kifs and rules we need 1973 * two runs: first one clears reference flags, 1974 * then pf_purge_expired_states() doesn't 1975 * raise them, and then second run frees. 1976 */ 1977 pf_purge_unlinked_rules(); 1978 pfi_kkif_purge(); 1979 1980 /* 1981 * Now purge everything. 1982 */ 1983 pf_purge_expired_states(0, pf_hashmask); 1984 pf_purge_fragments(UINT_MAX); 1985 pf_purge_expired_src_nodes(); 1986 1987 /* 1988 * Now all kifs & rules should be unreferenced, 1989 * thus should be successfully freed. 1990 */ 1991 pf_purge_unlinked_rules(); 1992 pfi_kkif_purge(); 1993 } 1994 1995 u_int32_t 1996 pf_state_expires(const struct pf_kstate *state) 1997 { 1998 u_int32_t timeout; 1999 u_int32_t start; 2000 u_int32_t end; 2001 u_int32_t states; 2002 2003 /* handle all PFTM_* > PFTM_MAX here */ 2004 if (state->timeout == PFTM_PURGE) 2005 return (time_uptime); 2006 KASSERT(state->timeout != PFTM_UNLINKED, 2007 ("pf_state_expires: timeout == PFTM_UNLINKED")); 2008 KASSERT((state->timeout < PFTM_MAX), 2009 ("pf_state_expires: timeout > PFTM_MAX")); 2010 timeout = state->rule.ptr->timeout[state->timeout]; 2011 if (!timeout) 2012 timeout = V_pf_default_rule.timeout[state->timeout]; 2013 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 2014 if (start && state->rule.ptr != &V_pf_default_rule) { 2015 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 2016 states = counter_u64_fetch(state->rule.ptr->states_cur); 2017 } else { 2018 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 2019 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 2020 states = V_pf_status.states; 2021 } 2022 if (end && states > start && start < end) { 2023 if (states < end) { 2024 timeout = (u_int64_t)timeout * (end - states) / 2025 (end - start); 2026 return (state->expire + timeout); 2027 } 2028 else 2029 return (time_uptime); 2030 } 2031 return (state->expire + timeout); 2032 } 2033 2034 void 2035 pf_purge_expired_src_nodes(void) 2036 { 2037 struct pf_ksrc_node_list freelist; 2038 struct pf_srchash *sh; 2039 struct pf_ksrc_node *cur, *next; 2040 int i; 2041 2042 LIST_INIT(&freelist); 2043 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 2044 PF_HASHROW_LOCK(sh); 2045 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 2046 if (cur->states == 0 && cur->expire <= time_uptime) { 2047 pf_unlink_src_node(cur); 2048 LIST_INSERT_HEAD(&freelist, cur, entry); 2049 } else if (cur->rule.ptr != NULL) 2050 cur->rule.ptr->rule_ref |= PFRULE_REFS; 2051 PF_HASHROW_UNLOCK(sh); 2052 } 2053 2054 pf_free_src_nodes(&freelist); 2055 2056 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2057 } 2058 2059 static void 2060 pf_src_tree_remove_state(struct pf_kstate *s) 2061 { 2062 struct pf_ksrc_node *sn; 2063 uint32_t timeout; 2064 2065 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 2066 s->rule.ptr->timeout[PFTM_SRC_NODE] : 2067 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2068 2069 if (s->src_node != NULL) { 2070 sn = s->src_node; 2071 PF_SRC_NODE_LOCK(sn); 2072 if (s->src.tcp_est) 2073 --sn->conn; 2074 if (--sn->states == 0) 2075 sn->expire = time_uptime + timeout; 2076 PF_SRC_NODE_UNLOCK(sn); 2077 } 2078 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 2079 sn = s->nat_src_node; 2080 PF_SRC_NODE_LOCK(sn); 2081 if (--sn->states == 0) 2082 sn->expire = time_uptime + timeout; 2083 PF_SRC_NODE_UNLOCK(sn); 2084 } 2085 s->src_node = s->nat_src_node = NULL; 2086 } 2087 2088 /* 2089 * Unlink and potentilly free a state. Function may be 2090 * called with ID hash row locked, but always returns 2091 * unlocked, since it needs to go through key hash locking. 2092 */ 2093 int 2094 pf_unlink_state(struct pf_kstate *s) 2095 { 2096 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2097 2098 PF_HASHROW_ASSERT(ih); 2099 2100 if (s->timeout == PFTM_UNLINKED) { 2101 /* 2102 * State is being processed 2103 * by pf_unlink_state() in 2104 * an other thread. 2105 */ 2106 PF_HASHROW_UNLOCK(ih); 2107 return (0); /* XXXGL: undefined actually */ 2108 } 2109 2110 if (s->src.state == PF_TCPS_PROXY_DST) { 2111 /* XXX wire key the right one? */ 2112 pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af, 2113 &s->key[PF_SK_WIRE]->addr[1], 2114 &s->key[PF_SK_WIRE]->addr[0], 2115 s->key[PF_SK_WIRE]->port[1], 2116 s->key[PF_SK_WIRE]->port[0], 2117 s->src.seqhi, s->src.seqlo + 1, 2118 TH_RST|TH_ACK, 0, 0, 0, true, s->tag, 0, s->act.rtableid); 2119 } 2120 2121 LIST_REMOVE(s, entry); 2122 pf_src_tree_remove_state(s); 2123 2124 if (V_pfsync_delete_state_ptr != NULL) 2125 V_pfsync_delete_state_ptr(s); 2126 2127 STATE_DEC_COUNTERS(s); 2128 2129 s->timeout = PFTM_UNLINKED; 2130 2131 /* Ensure we remove it from the list of halfopen states, if needed. */ 2132 if (s->key[PF_SK_STACK] != NULL && 2133 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2134 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2135 2136 PF_HASHROW_UNLOCK(ih); 2137 2138 pf_detach_state(s); 2139 /* pf_state_insert() initialises refs to 2 */ 2140 return (pf_release_staten(s, 2)); 2141 } 2142 2143 struct pf_kstate * 2144 pf_alloc_state(int flags) 2145 { 2146 2147 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2148 } 2149 2150 void 2151 pf_free_state(struct pf_kstate *cur) 2152 { 2153 struct pf_krule_item *ri; 2154 2155 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2156 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2157 cur->timeout)); 2158 2159 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2160 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2161 free(ri, M_PF_RULE_ITEM); 2162 } 2163 2164 pf_normalize_tcp_cleanup(cur); 2165 uma_zfree(V_pf_state_z, cur); 2166 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2167 } 2168 2169 /* 2170 * Called only from pf_purge_thread(), thus serialized. 2171 */ 2172 static u_int 2173 pf_purge_expired_states(u_int i, int maxcheck) 2174 { 2175 struct pf_idhash *ih; 2176 struct pf_kstate *s; 2177 struct pf_krule_item *mrm; 2178 size_t count __unused; 2179 2180 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2181 2182 /* 2183 * Go through hash and unlink states that expire now. 2184 */ 2185 while (maxcheck > 0) { 2186 count = 0; 2187 ih = &V_pf_idhash[i]; 2188 2189 /* only take the lock if we expect to do work */ 2190 if (!LIST_EMPTY(&ih->states)) { 2191 relock: 2192 PF_HASHROW_LOCK(ih); 2193 LIST_FOREACH(s, &ih->states, entry) { 2194 if (pf_state_expires(s) <= time_uptime) { 2195 V_pf_status.states -= 2196 pf_unlink_state(s); 2197 goto relock; 2198 } 2199 s->rule.ptr->rule_ref |= PFRULE_REFS; 2200 if (s->nat_rule.ptr != NULL) 2201 s->nat_rule.ptr->rule_ref |= PFRULE_REFS; 2202 if (s->anchor.ptr != NULL) 2203 s->anchor.ptr->rule_ref |= PFRULE_REFS; 2204 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2205 SLIST_FOREACH(mrm, &s->match_rules, entry) 2206 mrm->r->rule_ref |= PFRULE_REFS; 2207 if (s->rt_kif) 2208 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2209 count++; 2210 } 2211 PF_HASHROW_UNLOCK(ih); 2212 } 2213 2214 SDT_PROBE2(pf, purge, state, rowcount, i, count); 2215 2216 /* Return when we hit end of hash. */ 2217 if (++i > pf_hashmask) { 2218 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2219 return (0); 2220 } 2221 2222 maxcheck--; 2223 } 2224 2225 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2226 2227 return (i); 2228 } 2229 2230 static void 2231 pf_purge_unlinked_rules(void) 2232 { 2233 struct pf_krulequeue tmpq; 2234 struct pf_krule *r, *r1; 2235 2236 /* 2237 * If we have overloading task pending, then we'd 2238 * better skip purging this time. There is a tiny 2239 * probability that overloading task references 2240 * an already unlinked rule. 2241 */ 2242 PF_OVERLOADQ_LOCK(); 2243 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2244 PF_OVERLOADQ_UNLOCK(); 2245 return; 2246 } 2247 PF_OVERLOADQ_UNLOCK(); 2248 2249 /* 2250 * Do naive mark-and-sweep garbage collecting of old rules. 2251 * Reference flag is raised by pf_purge_expired_states() 2252 * and pf_purge_expired_src_nodes(). 2253 * 2254 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2255 * use a temporary queue. 2256 */ 2257 TAILQ_INIT(&tmpq); 2258 PF_UNLNKDRULES_LOCK(); 2259 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2260 if (!(r->rule_ref & PFRULE_REFS)) { 2261 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2262 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2263 } else 2264 r->rule_ref &= ~PFRULE_REFS; 2265 } 2266 PF_UNLNKDRULES_UNLOCK(); 2267 2268 if (!TAILQ_EMPTY(&tmpq)) { 2269 PF_CONFIG_LOCK(); 2270 PF_RULES_WLOCK(); 2271 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2272 TAILQ_REMOVE(&tmpq, r, entries); 2273 pf_free_rule(r); 2274 } 2275 PF_RULES_WUNLOCK(); 2276 PF_CONFIG_UNLOCK(); 2277 } 2278 } 2279 2280 void 2281 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2282 { 2283 switch (af) { 2284 #ifdef INET 2285 case AF_INET: { 2286 u_int32_t a = ntohl(addr->addr32[0]); 2287 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2288 (a>>8)&255, a&255); 2289 if (p) { 2290 p = ntohs(p); 2291 printf(":%u", p); 2292 } 2293 break; 2294 } 2295 #endif /* INET */ 2296 #ifdef INET6 2297 case AF_INET6: { 2298 u_int16_t b; 2299 u_int8_t i, curstart, curend, maxstart, maxend; 2300 curstart = curend = maxstart = maxend = 255; 2301 for (i = 0; i < 8; i++) { 2302 if (!addr->addr16[i]) { 2303 if (curstart == 255) 2304 curstart = i; 2305 curend = i; 2306 } else { 2307 if ((curend - curstart) > 2308 (maxend - maxstart)) { 2309 maxstart = curstart; 2310 maxend = curend; 2311 } 2312 curstart = curend = 255; 2313 } 2314 } 2315 if ((curend - curstart) > 2316 (maxend - maxstart)) { 2317 maxstart = curstart; 2318 maxend = curend; 2319 } 2320 for (i = 0; i < 8; i++) { 2321 if (i >= maxstart && i <= maxend) { 2322 if (i == 0) 2323 printf(":"); 2324 if (i == maxend) 2325 printf(":"); 2326 } else { 2327 b = ntohs(addr->addr16[i]); 2328 printf("%x", b); 2329 if (i < 7) 2330 printf(":"); 2331 } 2332 } 2333 if (p) { 2334 p = ntohs(p); 2335 printf("[%u]", p); 2336 } 2337 break; 2338 } 2339 #endif /* INET6 */ 2340 } 2341 } 2342 2343 void 2344 pf_print_state(struct pf_kstate *s) 2345 { 2346 pf_print_state_parts(s, NULL, NULL); 2347 } 2348 2349 static void 2350 pf_print_state_parts(struct pf_kstate *s, 2351 struct pf_state_key *skwp, struct pf_state_key *sksp) 2352 { 2353 struct pf_state_key *skw, *sks; 2354 u_int8_t proto, dir; 2355 2356 /* Do our best to fill these, but they're skipped if NULL */ 2357 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2358 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2359 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2360 dir = s ? s->direction : 0; 2361 2362 switch (proto) { 2363 case IPPROTO_IPV4: 2364 printf("IPv4"); 2365 break; 2366 case IPPROTO_IPV6: 2367 printf("IPv6"); 2368 break; 2369 case IPPROTO_TCP: 2370 printf("TCP"); 2371 break; 2372 case IPPROTO_UDP: 2373 printf("UDP"); 2374 break; 2375 case IPPROTO_ICMP: 2376 printf("ICMP"); 2377 break; 2378 case IPPROTO_ICMPV6: 2379 printf("ICMPv6"); 2380 break; 2381 default: 2382 printf("%u", proto); 2383 break; 2384 } 2385 switch (dir) { 2386 case PF_IN: 2387 printf(" in"); 2388 break; 2389 case PF_OUT: 2390 printf(" out"); 2391 break; 2392 } 2393 if (skw) { 2394 printf(" wire: "); 2395 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2396 printf(" "); 2397 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2398 } 2399 if (sks) { 2400 printf(" stack: "); 2401 if (sks != skw) { 2402 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2403 printf(" "); 2404 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2405 } else 2406 printf("-"); 2407 } 2408 if (s) { 2409 if (proto == IPPROTO_TCP) { 2410 printf(" [lo=%u high=%u win=%u modulator=%u", 2411 s->src.seqlo, s->src.seqhi, 2412 s->src.max_win, s->src.seqdiff); 2413 if (s->src.wscale && s->dst.wscale) 2414 printf(" wscale=%u", 2415 s->src.wscale & PF_WSCALE_MASK); 2416 printf("]"); 2417 printf(" [lo=%u high=%u win=%u modulator=%u", 2418 s->dst.seqlo, s->dst.seqhi, 2419 s->dst.max_win, s->dst.seqdiff); 2420 if (s->src.wscale && s->dst.wscale) 2421 printf(" wscale=%u", 2422 s->dst.wscale & PF_WSCALE_MASK); 2423 printf("]"); 2424 } 2425 printf(" %u:%u", s->src.state, s->dst.state); 2426 } 2427 } 2428 2429 void 2430 pf_print_flags(u_int8_t f) 2431 { 2432 if (f) 2433 printf(" "); 2434 if (f & TH_FIN) 2435 printf("F"); 2436 if (f & TH_SYN) 2437 printf("S"); 2438 if (f & TH_RST) 2439 printf("R"); 2440 if (f & TH_PUSH) 2441 printf("P"); 2442 if (f & TH_ACK) 2443 printf("A"); 2444 if (f & TH_URG) 2445 printf("U"); 2446 if (f & TH_ECE) 2447 printf("E"); 2448 if (f & TH_CWR) 2449 printf("W"); 2450 } 2451 2452 #define PF_SET_SKIP_STEPS(i) \ 2453 do { \ 2454 while (head[i] != cur) { \ 2455 head[i]->skip[i].ptr = cur; \ 2456 head[i] = TAILQ_NEXT(head[i], entries); \ 2457 } \ 2458 } while (0) 2459 2460 void 2461 pf_calc_skip_steps(struct pf_krulequeue *rules) 2462 { 2463 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2464 int i; 2465 2466 cur = TAILQ_FIRST(rules); 2467 prev = cur; 2468 for (i = 0; i < PF_SKIP_COUNT; ++i) 2469 head[i] = cur; 2470 while (cur != NULL) { 2471 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2472 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2473 if (cur->direction != prev->direction) 2474 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2475 if (cur->af != prev->af) 2476 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2477 if (cur->proto != prev->proto) 2478 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2479 if (cur->src.neg != prev->src.neg || 2480 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2481 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2482 if (cur->src.port[0] != prev->src.port[0] || 2483 cur->src.port[1] != prev->src.port[1] || 2484 cur->src.port_op != prev->src.port_op) 2485 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2486 if (cur->dst.neg != prev->dst.neg || 2487 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2488 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2489 if (cur->dst.port[0] != prev->dst.port[0] || 2490 cur->dst.port[1] != prev->dst.port[1] || 2491 cur->dst.port_op != prev->dst.port_op) 2492 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2493 2494 prev = cur; 2495 cur = TAILQ_NEXT(cur, entries); 2496 } 2497 for (i = 0; i < PF_SKIP_COUNT; ++i) 2498 PF_SET_SKIP_STEPS(i); 2499 } 2500 2501 int 2502 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2503 { 2504 if (aw1->type != aw2->type) 2505 return (1); 2506 switch (aw1->type) { 2507 case PF_ADDR_ADDRMASK: 2508 case PF_ADDR_RANGE: 2509 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2510 return (1); 2511 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2512 return (1); 2513 return (0); 2514 case PF_ADDR_DYNIFTL: 2515 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2516 case PF_ADDR_NOROUTE: 2517 case PF_ADDR_URPFFAILED: 2518 return (0); 2519 case PF_ADDR_TABLE: 2520 return (aw1->p.tbl != aw2->p.tbl); 2521 default: 2522 printf("invalid address type: %d\n", aw1->type); 2523 return (1); 2524 } 2525 } 2526 2527 /** 2528 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2529 * header isn't always a full checksum. In some cases (i.e. output) it's a 2530 * pseudo-header checksum, which is a partial checksum over src/dst IP 2531 * addresses, protocol number and length. 2532 * 2533 * That means we have the following cases: 2534 * * Input or forwarding: we don't have TSO, the checksum fields are full 2535 * checksums, we need to update the checksum whenever we change anything. 2536 * * Output (i.e. the checksum is a pseudo-header checksum): 2537 * x The field being updated is src/dst address or affects the length of 2538 * the packet. We need to update the pseudo-header checksum (note that this 2539 * checksum is not ones' complement). 2540 * x Some other field is being modified (e.g. src/dst port numbers): We 2541 * don't have to update anything. 2542 **/ 2543 u_int16_t 2544 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2545 { 2546 u_int32_t x; 2547 2548 x = cksum + old - new; 2549 x = (x + (x >> 16)) & 0xffff; 2550 2551 /* optimise: eliminate a branch when not udp */ 2552 if (udp && cksum == 0x0000) 2553 return cksum; 2554 if (udp && x == 0x0000) 2555 x = 0xffff; 2556 2557 return (u_int16_t)(x); 2558 } 2559 2560 static void 2561 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 2562 u_int8_t udp) 2563 { 2564 u_int16_t old = htons(hi ? (*f << 8) : *f); 2565 u_int16_t new = htons(hi ? ( v << 8) : v); 2566 2567 if (*f == v) 2568 return; 2569 2570 *f = v; 2571 2572 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2573 return; 2574 2575 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 2576 } 2577 2578 void 2579 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 2580 bool hi, u_int8_t udp) 2581 { 2582 u_int8_t *fb = (u_int8_t *)f; 2583 u_int8_t *vb = (u_int8_t *)&v; 2584 2585 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2586 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2587 } 2588 2589 void 2590 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 2591 bool hi, u_int8_t udp) 2592 { 2593 u_int8_t *fb = (u_int8_t *)f; 2594 u_int8_t *vb = (u_int8_t *)&v; 2595 2596 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2597 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2598 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2599 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2600 } 2601 2602 u_int16_t 2603 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2604 u_int16_t new, u_int8_t udp) 2605 { 2606 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2607 return (cksum); 2608 2609 return (pf_cksum_fixup(cksum, old, new, udp)); 2610 } 2611 2612 static void 2613 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2614 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2615 sa_family_t af) 2616 { 2617 struct pf_addr ao; 2618 u_int16_t po = *p; 2619 2620 PF_ACPY(&ao, a, af); 2621 PF_ACPY(a, an, af); 2622 2623 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2624 *pc = ~*pc; 2625 2626 *p = pn; 2627 2628 switch (af) { 2629 #ifdef INET 2630 case AF_INET: 2631 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2632 ao.addr16[0], an->addr16[0], 0), 2633 ao.addr16[1], an->addr16[1], 0); 2634 *p = pn; 2635 2636 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2637 ao.addr16[0], an->addr16[0], u), 2638 ao.addr16[1], an->addr16[1], u); 2639 2640 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2641 break; 2642 #endif /* INET */ 2643 #ifdef INET6 2644 case AF_INET6: 2645 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2646 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2647 pf_cksum_fixup(pf_cksum_fixup(*pc, 2648 ao.addr16[0], an->addr16[0], u), 2649 ao.addr16[1], an->addr16[1], u), 2650 ao.addr16[2], an->addr16[2], u), 2651 ao.addr16[3], an->addr16[3], u), 2652 ao.addr16[4], an->addr16[4], u), 2653 ao.addr16[5], an->addr16[5], u), 2654 ao.addr16[6], an->addr16[6], u), 2655 ao.addr16[7], an->addr16[7], u); 2656 2657 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2658 break; 2659 #endif /* INET6 */ 2660 } 2661 2662 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2663 CSUM_DELAY_DATA_IPV6)) { 2664 *pc = ~*pc; 2665 if (! *pc) 2666 *pc = 0xffff; 2667 } 2668 } 2669 2670 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2671 void 2672 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2673 { 2674 u_int32_t ao; 2675 2676 memcpy(&ao, a, sizeof(ao)); 2677 memcpy(a, &an, sizeof(u_int32_t)); 2678 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2679 ao % 65536, an % 65536, u); 2680 } 2681 2682 void 2683 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2684 { 2685 u_int32_t ao; 2686 2687 memcpy(&ao, a, sizeof(ao)); 2688 memcpy(a, &an, sizeof(u_int32_t)); 2689 2690 *c = pf_proto_cksum_fixup(m, 2691 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2692 ao % 65536, an % 65536, udp); 2693 } 2694 2695 #ifdef INET6 2696 static void 2697 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2698 { 2699 struct pf_addr ao; 2700 2701 PF_ACPY(&ao, a, AF_INET6); 2702 PF_ACPY(a, an, AF_INET6); 2703 2704 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2705 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2706 pf_cksum_fixup(pf_cksum_fixup(*c, 2707 ao.addr16[0], an->addr16[0], u), 2708 ao.addr16[1], an->addr16[1], u), 2709 ao.addr16[2], an->addr16[2], u), 2710 ao.addr16[3], an->addr16[3], u), 2711 ao.addr16[4], an->addr16[4], u), 2712 ao.addr16[5], an->addr16[5], u), 2713 ao.addr16[6], an->addr16[6], u), 2714 ao.addr16[7], an->addr16[7], u); 2715 } 2716 #endif /* INET6 */ 2717 2718 static void 2719 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2720 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2721 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2722 { 2723 struct pf_addr oia, ooa; 2724 2725 PF_ACPY(&oia, ia, af); 2726 if (oa) 2727 PF_ACPY(&ooa, oa, af); 2728 2729 /* Change inner protocol port, fix inner protocol checksum. */ 2730 if (ip != NULL) { 2731 u_int16_t oip = *ip; 2732 u_int32_t opc; 2733 2734 if (pc != NULL) 2735 opc = *pc; 2736 *ip = np; 2737 if (pc != NULL) 2738 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2739 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2740 if (pc != NULL) 2741 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2742 } 2743 /* Change inner ip address, fix inner ip and icmp checksums. */ 2744 PF_ACPY(ia, na, af); 2745 switch (af) { 2746 #ifdef INET 2747 case AF_INET: { 2748 u_int32_t oh2c = *h2c; 2749 2750 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2751 oia.addr16[0], ia->addr16[0], 0), 2752 oia.addr16[1], ia->addr16[1], 0); 2753 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2754 oia.addr16[0], ia->addr16[0], 0), 2755 oia.addr16[1], ia->addr16[1], 0); 2756 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2757 break; 2758 } 2759 #endif /* INET */ 2760 #ifdef INET6 2761 case AF_INET6: 2762 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2763 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2764 pf_cksum_fixup(pf_cksum_fixup(*ic, 2765 oia.addr16[0], ia->addr16[0], u), 2766 oia.addr16[1], ia->addr16[1], u), 2767 oia.addr16[2], ia->addr16[2], u), 2768 oia.addr16[3], ia->addr16[3], u), 2769 oia.addr16[4], ia->addr16[4], u), 2770 oia.addr16[5], ia->addr16[5], u), 2771 oia.addr16[6], ia->addr16[6], u), 2772 oia.addr16[7], ia->addr16[7], u); 2773 break; 2774 #endif /* INET6 */ 2775 } 2776 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2777 if (oa) { 2778 PF_ACPY(oa, na, af); 2779 switch (af) { 2780 #ifdef INET 2781 case AF_INET: 2782 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2783 ooa.addr16[0], oa->addr16[0], 0), 2784 ooa.addr16[1], oa->addr16[1], 0); 2785 break; 2786 #endif /* INET */ 2787 #ifdef INET6 2788 case AF_INET6: 2789 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2790 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2791 pf_cksum_fixup(pf_cksum_fixup(*ic, 2792 ooa.addr16[0], oa->addr16[0], u), 2793 ooa.addr16[1], oa->addr16[1], u), 2794 ooa.addr16[2], oa->addr16[2], u), 2795 ooa.addr16[3], oa->addr16[3], u), 2796 ooa.addr16[4], oa->addr16[4], u), 2797 ooa.addr16[5], oa->addr16[5], u), 2798 ooa.addr16[6], oa->addr16[6], u), 2799 ooa.addr16[7], oa->addr16[7], u); 2800 break; 2801 #endif /* INET6 */ 2802 } 2803 } 2804 } 2805 2806 /* 2807 * Need to modulate the sequence numbers in the TCP SACK option 2808 * (credits to Krzysztof Pfaff for report and patch) 2809 */ 2810 static int 2811 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2812 struct tcphdr *th, struct pf_state_peer *dst) 2813 { 2814 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2815 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2816 int copyback = 0, i, olen; 2817 struct sackblk sack; 2818 2819 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2820 if (hlen < TCPOLEN_SACKLEN || 2821 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2822 return 0; 2823 2824 while (hlen >= TCPOLEN_SACKLEN) { 2825 size_t startoff = opt - opts; 2826 olen = opt[1]; 2827 switch (*opt) { 2828 case TCPOPT_EOL: /* FALLTHROUGH */ 2829 case TCPOPT_NOP: 2830 opt++; 2831 hlen--; 2832 break; 2833 case TCPOPT_SACK: 2834 if (olen > hlen) 2835 olen = hlen; 2836 if (olen >= TCPOLEN_SACKLEN) { 2837 for (i = 2; i + TCPOLEN_SACK <= olen; 2838 i += TCPOLEN_SACK) { 2839 memcpy(&sack, &opt[i], sizeof(sack)); 2840 pf_patch_32_unaligned(m, 2841 &th->th_sum, &sack.start, 2842 htonl(ntohl(sack.start) - dst->seqdiff), 2843 PF_ALGNMNT(startoff), 2844 0); 2845 pf_patch_32_unaligned(m, &th->th_sum, 2846 &sack.end, 2847 htonl(ntohl(sack.end) - dst->seqdiff), 2848 PF_ALGNMNT(startoff), 2849 0); 2850 memcpy(&opt[i], &sack, sizeof(sack)); 2851 } 2852 copyback = 1; 2853 } 2854 /* FALLTHROUGH */ 2855 default: 2856 if (olen < 2) 2857 olen = 2; 2858 hlen -= olen; 2859 opt += olen; 2860 } 2861 } 2862 2863 if (copyback) 2864 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2865 return (copyback); 2866 } 2867 2868 struct mbuf * 2869 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 2870 const struct pf_addr *saddr, const struct pf_addr *daddr, 2871 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2872 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 2873 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 2874 { 2875 struct mbuf *m; 2876 int len, tlen; 2877 #ifdef INET 2878 struct ip *h = NULL; 2879 #endif /* INET */ 2880 #ifdef INET6 2881 struct ip6_hdr *h6 = NULL; 2882 #endif /* INET6 */ 2883 struct tcphdr *th; 2884 char *opt; 2885 struct pf_mtag *pf_mtag; 2886 2887 len = 0; 2888 th = NULL; 2889 2890 /* maximum segment size tcp option */ 2891 tlen = sizeof(struct tcphdr); 2892 if (mss) 2893 tlen += 4; 2894 2895 switch (af) { 2896 #ifdef INET 2897 case AF_INET: 2898 len = sizeof(struct ip) + tlen; 2899 break; 2900 #endif /* INET */ 2901 #ifdef INET6 2902 case AF_INET6: 2903 len = sizeof(struct ip6_hdr) + tlen; 2904 break; 2905 #endif /* INET6 */ 2906 default: 2907 panic("%s: unsupported af %d", __func__, af); 2908 } 2909 2910 m = m_gethdr(M_NOWAIT, MT_DATA); 2911 if (m == NULL) 2912 return (NULL); 2913 2914 #ifdef MAC 2915 mac_netinet_firewall_send(m); 2916 #endif 2917 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2918 m_freem(m); 2919 return (NULL); 2920 } 2921 if (skip_firewall) 2922 m->m_flags |= M_SKIP_FIREWALL; 2923 pf_mtag->tag = mtag_tag; 2924 pf_mtag->flags = mtag_flags; 2925 2926 if (rtableid >= 0) 2927 M_SETFIB(m, rtableid); 2928 2929 #ifdef ALTQ 2930 if (r != NULL && r->qid) { 2931 pf_mtag->qid = r->qid; 2932 2933 /* add hints for ecn */ 2934 pf_mtag->hdr = mtod(m, struct ip *); 2935 } 2936 #endif /* ALTQ */ 2937 m->m_data += max_linkhdr; 2938 m->m_pkthdr.len = m->m_len = len; 2939 /* The rest of the stack assumes a rcvif, so provide one. 2940 * This is a locally generated packet, so .. close enough. */ 2941 m->m_pkthdr.rcvif = V_loif; 2942 bzero(m->m_data, len); 2943 switch (af) { 2944 #ifdef INET 2945 case AF_INET: 2946 h = mtod(m, struct ip *); 2947 2948 /* IP header fields included in the TCP checksum */ 2949 h->ip_p = IPPROTO_TCP; 2950 h->ip_len = htons(tlen); 2951 h->ip_src.s_addr = saddr->v4.s_addr; 2952 h->ip_dst.s_addr = daddr->v4.s_addr; 2953 2954 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2955 break; 2956 #endif /* INET */ 2957 #ifdef INET6 2958 case AF_INET6: 2959 h6 = mtod(m, struct ip6_hdr *); 2960 2961 /* IP header fields included in the TCP checksum */ 2962 h6->ip6_nxt = IPPROTO_TCP; 2963 h6->ip6_plen = htons(tlen); 2964 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2965 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2966 2967 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2968 break; 2969 #endif /* INET6 */ 2970 } 2971 2972 /* TCP header */ 2973 th->th_sport = sport; 2974 th->th_dport = dport; 2975 th->th_seq = htonl(seq); 2976 th->th_ack = htonl(ack); 2977 th->th_off = tlen >> 2; 2978 th->th_flags = tcp_flags; 2979 th->th_win = htons(win); 2980 2981 if (mss) { 2982 opt = (char *)(th + 1); 2983 opt[0] = TCPOPT_MAXSEG; 2984 opt[1] = 4; 2985 HTONS(mss); 2986 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2987 } 2988 2989 switch (af) { 2990 #ifdef INET 2991 case AF_INET: 2992 /* TCP checksum */ 2993 th->th_sum = in_cksum(m, len); 2994 2995 /* Finish the IP header */ 2996 h->ip_v = 4; 2997 h->ip_hl = sizeof(*h) >> 2; 2998 h->ip_tos = IPTOS_LOWDELAY; 2999 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 3000 h->ip_len = htons(len); 3001 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3002 h->ip_sum = 0; 3003 break; 3004 #endif /* INET */ 3005 #ifdef INET6 3006 case AF_INET6: 3007 /* TCP checksum */ 3008 th->th_sum = in6_cksum(m, IPPROTO_TCP, 3009 sizeof(struct ip6_hdr), tlen); 3010 3011 h6->ip6_vfc |= IPV6_VERSION; 3012 h6->ip6_hlim = IPV6_DEFHLIM; 3013 break; 3014 #endif /* INET6 */ 3015 } 3016 3017 return (m); 3018 } 3019 3020 static void 3021 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd, 3022 uint8_t ttl, int rtableid) 3023 { 3024 struct mbuf *m; 3025 #ifdef INET 3026 struct ip *h = NULL; 3027 #endif /* INET */ 3028 #ifdef INET6 3029 struct ip6_hdr *h6 = NULL; 3030 #endif /* INET6 */ 3031 struct sctphdr *hdr; 3032 struct sctp_chunkhdr *chunk; 3033 struct pf_send_entry *pfse; 3034 int off = 0; 3035 3036 MPASS(af == pd->af); 3037 3038 m = m_gethdr(M_NOWAIT, MT_DATA); 3039 if (m == NULL) 3040 return; 3041 3042 m->m_data += max_linkhdr; 3043 m->m_flags |= M_SKIP_FIREWALL; 3044 /* The rest of the stack assumes a rcvif, so provide one. 3045 * This is a locally generated packet, so .. close enough. */ 3046 m->m_pkthdr.rcvif = V_loif; 3047 3048 /* IPv4|6 header */ 3049 switch (af) { 3050 #ifdef INET 3051 case AF_INET: 3052 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk)); 3053 3054 h = mtod(m, struct ip *); 3055 3056 /* IP header fields included in the TCP checksum */ 3057 3058 h->ip_p = IPPROTO_SCTP; 3059 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk)); 3060 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3061 h->ip_src = pd->dst->v4; 3062 h->ip_dst = pd->src->v4; 3063 3064 off += sizeof(struct ip); 3065 break; 3066 #endif /* INET */ 3067 #ifdef INET6 3068 case AF_INET6: 3069 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk)); 3070 3071 h6 = mtod(m, struct ip6_hdr *); 3072 3073 /* IP header fields included in the TCP checksum */ 3074 h6->ip6_vfc |= IPV6_VERSION; 3075 h6->ip6_nxt = IPPROTO_SCTP; 3076 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk)); 3077 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim; 3078 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr)); 3079 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr)); 3080 3081 off += sizeof(struct ip6_hdr); 3082 break; 3083 #endif /* INET6 */ 3084 } 3085 3086 /* SCTP header */ 3087 hdr = mtodo(m, off); 3088 3089 hdr->src_port = pd->hdr.sctp.dest_port; 3090 hdr->dest_port = pd->hdr.sctp.src_port; 3091 hdr->v_tag = pd->sctp_initiate_tag; 3092 hdr->checksum = 0; 3093 3094 /* Abort chunk. */ 3095 off += sizeof(struct sctphdr); 3096 chunk = mtodo(m, off); 3097 3098 chunk->chunk_type = SCTP_ABORT_ASSOCIATION; 3099 chunk->chunk_length = htons(sizeof(*chunk)); 3100 3101 /* SCTP checksum */ 3102 off += sizeof(*chunk); 3103 m->m_pkthdr.len = m->m_len = off; 3104 3105 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk));; 3106 3107 if (rtableid >= 0) 3108 M_SETFIB(m, rtableid); 3109 3110 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3111 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3112 if (pfse == NULL) { 3113 m_freem(m); 3114 return; 3115 } 3116 3117 switch (af) { 3118 #ifdef INET 3119 case AF_INET: 3120 pfse->pfse_type = PFSE_IP; 3121 break; 3122 #endif /* INET */ 3123 #ifdef INET6 3124 case AF_INET6: 3125 pfse->pfse_type = PFSE_IP6; 3126 break; 3127 #endif /* INET6 */ 3128 } 3129 3130 pfse->pfse_m = m; 3131 pf_send(pfse); 3132 } 3133 3134 void 3135 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 3136 const struct pf_addr *saddr, const struct pf_addr *daddr, 3137 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3138 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3139 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3140 { 3141 struct pf_send_entry *pfse; 3142 struct mbuf *m; 3143 3144 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags, 3145 win, mss, ttl, skip_firewall, mtag_tag, mtag_flags, rtableid); 3146 if (m == NULL) 3147 return; 3148 3149 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3150 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3151 if (pfse == NULL) { 3152 m_freem(m); 3153 return; 3154 } 3155 3156 switch (af) { 3157 #ifdef INET 3158 case AF_INET: 3159 pfse->pfse_type = PFSE_IP; 3160 break; 3161 #endif /* INET */ 3162 #ifdef INET6 3163 case AF_INET6: 3164 pfse->pfse_type = PFSE_IP6; 3165 break; 3166 #endif /* INET6 */ 3167 } 3168 3169 pfse->pfse_m = m; 3170 pf_send(pfse); 3171 } 3172 3173 static void 3174 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 3175 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 3176 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 3177 u_short *reason, int rtableid) 3178 { 3179 struct pf_addr * const saddr = pd->src; 3180 struct pf_addr * const daddr = pd->dst; 3181 sa_family_t af = pd->af; 3182 3183 /* undo NAT changes, if they have taken place */ 3184 if (nr != NULL) { 3185 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3186 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3187 if (pd->sport) 3188 *pd->sport = sk->port[pd->sidx]; 3189 if (pd->dport) 3190 *pd->dport = sk->port[pd->didx]; 3191 if (pd->proto_sum) 3192 *pd->proto_sum = bproto_sum; 3193 if (pd->ip_sum) 3194 *pd->ip_sum = bip_sum; 3195 m_copyback(m, off, hdrlen, pd->hdr.any); 3196 } 3197 if (pd->proto == IPPROTO_TCP && 3198 ((r->rule_flag & PFRULE_RETURNRST) || 3199 (r->rule_flag & PFRULE_RETURN)) && 3200 !(th->th_flags & TH_RST)) { 3201 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3202 int len = 0; 3203 #ifdef INET 3204 struct ip *h4; 3205 #endif 3206 #ifdef INET6 3207 struct ip6_hdr *h6; 3208 #endif 3209 3210 switch (af) { 3211 #ifdef INET 3212 case AF_INET: 3213 h4 = mtod(m, struct ip *); 3214 len = ntohs(h4->ip_len) - off; 3215 break; 3216 #endif 3217 #ifdef INET6 3218 case AF_INET6: 3219 h6 = mtod(m, struct ip6_hdr *); 3220 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3221 break; 3222 #endif 3223 } 3224 3225 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3226 REASON_SET(reason, PFRES_PROTCKSUM); 3227 else { 3228 if (th->th_flags & TH_SYN) 3229 ack++; 3230 if (th->th_flags & TH_FIN) 3231 ack++; 3232 pf_send_tcp(r, af, pd->dst, 3233 pd->src, th->th_dport, th->th_sport, 3234 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3235 r->return_ttl, true, 0, 0, rtableid); 3236 } 3237 } else if (pd->proto == IPPROTO_SCTP && 3238 (r->rule_flag & PFRULE_RETURN)) { 3239 pf_send_sctp_abort(af, pd, r->return_ttl, rtableid); 3240 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3241 r->return_icmp) 3242 pf_send_icmp(m, r->return_icmp >> 8, 3243 r->return_icmp & 255, af, r, rtableid); 3244 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3245 r->return_icmp6) 3246 pf_send_icmp(m, r->return_icmp6 >> 8, 3247 r->return_icmp6 & 255, af, r, rtableid); 3248 } 3249 3250 static int 3251 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 3252 { 3253 struct m_tag *mtag; 3254 u_int8_t mpcp; 3255 3256 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 3257 if (mtag == NULL) 3258 return (0); 3259 3260 if (prio == PF_PRIO_ZERO) 3261 prio = 0; 3262 3263 mpcp = *(uint8_t *)(mtag + 1); 3264 3265 return (mpcp == prio); 3266 } 3267 3268 static int 3269 pf_icmp_to_bandlim(uint8_t type) 3270 { 3271 switch (type) { 3272 case ICMP_ECHO: 3273 case ICMP_ECHOREPLY: 3274 return (BANDLIM_ICMP_ECHO); 3275 case ICMP_TSTAMP: 3276 case ICMP_TSTAMPREPLY: 3277 return (BANDLIM_ICMP_TSTAMP); 3278 case ICMP_UNREACH: 3279 default: 3280 return (BANDLIM_ICMP_UNREACH); 3281 } 3282 } 3283 3284 static void 3285 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 3286 struct pf_krule *r, int rtableid) 3287 { 3288 struct pf_send_entry *pfse; 3289 struct mbuf *m0; 3290 struct pf_mtag *pf_mtag; 3291 3292 /* ICMP packet rate limitation. */ 3293 #ifdef INET6 3294 if (af == AF_INET6) { 3295 if (icmp6_ratelimit(NULL, type, code)) 3296 return; 3297 } 3298 #endif 3299 #ifdef INET 3300 if (af == AF_INET) { 3301 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 3302 return; 3303 } 3304 #endif 3305 3306 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3307 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3308 if (pfse == NULL) 3309 return; 3310 3311 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 3312 free(pfse, M_PFTEMP); 3313 return; 3314 } 3315 3316 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 3317 free(pfse, M_PFTEMP); 3318 return; 3319 } 3320 /* XXX: revisit */ 3321 m0->m_flags |= M_SKIP_FIREWALL; 3322 3323 if (rtableid >= 0) 3324 M_SETFIB(m0, rtableid); 3325 3326 #ifdef ALTQ 3327 if (r->qid) { 3328 pf_mtag->qid = r->qid; 3329 /* add hints for ecn */ 3330 pf_mtag->hdr = mtod(m0, struct ip *); 3331 } 3332 #endif /* ALTQ */ 3333 3334 switch (af) { 3335 #ifdef INET 3336 case AF_INET: 3337 pfse->pfse_type = PFSE_ICMP; 3338 break; 3339 #endif /* INET */ 3340 #ifdef INET6 3341 case AF_INET6: 3342 pfse->pfse_type = PFSE_ICMP6; 3343 break; 3344 #endif /* INET6 */ 3345 } 3346 pfse->pfse_m = m0; 3347 pfse->icmpopts.type = type; 3348 pfse->icmpopts.code = code; 3349 pf_send(pfse); 3350 } 3351 3352 /* 3353 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 3354 * If n is 0, they match if they are equal. If n is != 0, they match if they 3355 * are different. 3356 */ 3357 int 3358 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 3359 struct pf_addr *b, sa_family_t af) 3360 { 3361 int match = 0; 3362 3363 switch (af) { 3364 #ifdef INET 3365 case AF_INET: 3366 if ((a->addr32[0] & m->addr32[0]) == 3367 (b->addr32[0] & m->addr32[0])) 3368 match++; 3369 break; 3370 #endif /* INET */ 3371 #ifdef INET6 3372 case AF_INET6: 3373 if (((a->addr32[0] & m->addr32[0]) == 3374 (b->addr32[0] & m->addr32[0])) && 3375 ((a->addr32[1] & m->addr32[1]) == 3376 (b->addr32[1] & m->addr32[1])) && 3377 ((a->addr32[2] & m->addr32[2]) == 3378 (b->addr32[2] & m->addr32[2])) && 3379 ((a->addr32[3] & m->addr32[3]) == 3380 (b->addr32[3] & m->addr32[3]))) 3381 match++; 3382 break; 3383 #endif /* INET6 */ 3384 } 3385 if (match) { 3386 if (n) 3387 return (0); 3388 else 3389 return (1); 3390 } else { 3391 if (n) 3392 return (1); 3393 else 3394 return (0); 3395 } 3396 } 3397 3398 /* 3399 * Return 1 if b <= a <= e, otherwise return 0. 3400 */ 3401 int 3402 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 3403 struct pf_addr *a, sa_family_t af) 3404 { 3405 switch (af) { 3406 #ifdef INET 3407 case AF_INET: 3408 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 3409 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 3410 return (0); 3411 break; 3412 #endif /* INET */ 3413 #ifdef INET6 3414 case AF_INET6: { 3415 int i; 3416 3417 /* check a >= b */ 3418 for (i = 0; i < 4; ++i) 3419 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 3420 break; 3421 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 3422 return (0); 3423 /* check a <= e */ 3424 for (i = 0; i < 4; ++i) 3425 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 3426 break; 3427 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 3428 return (0); 3429 break; 3430 } 3431 #endif /* INET6 */ 3432 } 3433 return (1); 3434 } 3435 3436 static int 3437 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3438 { 3439 switch (op) { 3440 case PF_OP_IRG: 3441 return ((p > a1) && (p < a2)); 3442 case PF_OP_XRG: 3443 return ((p < a1) || (p > a2)); 3444 case PF_OP_RRG: 3445 return ((p >= a1) && (p <= a2)); 3446 case PF_OP_EQ: 3447 return (p == a1); 3448 case PF_OP_NE: 3449 return (p != a1); 3450 case PF_OP_LT: 3451 return (p < a1); 3452 case PF_OP_LE: 3453 return (p <= a1); 3454 case PF_OP_GT: 3455 return (p > a1); 3456 case PF_OP_GE: 3457 return (p >= a1); 3458 } 3459 return (0); /* never reached */ 3460 } 3461 3462 int 3463 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3464 { 3465 NTOHS(a1); 3466 NTOHS(a2); 3467 NTOHS(p); 3468 return (pf_match(op, a1, a2, p)); 3469 } 3470 3471 static int 3472 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3473 { 3474 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3475 return (0); 3476 return (pf_match(op, a1, a2, u)); 3477 } 3478 3479 static int 3480 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3481 { 3482 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3483 return (0); 3484 return (pf_match(op, a1, a2, g)); 3485 } 3486 3487 int 3488 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3489 { 3490 if (*tag == -1) 3491 *tag = mtag; 3492 3493 return ((!r->match_tag_not && r->match_tag == *tag) || 3494 (r->match_tag_not && r->match_tag != *tag)); 3495 } 3496 3497 int 3498 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 3499 { 3500 3501 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 3502 3503 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 3504 return (ENOMEM); 3505 3506 pd->pf_mtag->tag = tag; 3507 3508 return (0); 3509 } 3510 3511 #define PF_ANCHOR_STACKSIZE 32 3512 struct pf_kanchor_stackframe { 3513 struct pf_kruleset *rs; 3514 struct pf_krule *r; /* XXX: + match bit */ 3515 struct pf_kanchor *child; 3516 }; 3517 3518 /* 3519 * XXX: We rely on malloc(9) returning pointer aligned addresses. 3520 */ 3521 #define PF_ANCHORSTACK_MATCH 0x00000001 3522 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 3523 3524 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3525 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 3526 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3527 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3528 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3529 } while (0) 3530 3531 void 3532 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3533 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3534 int *match) 3535 { 3536 struct pf_kanchor_stackframe *f; 3537 3538 PF_RULES_RASSERT(); 3539 3540 if (match) 3541 *match = 0; 3542 if (*depth >= PF_ANCHOR_STACKSIZE) { 3543 printf("%s: anchor stack overflow on %s\n", 3544 __func__, (*r)->anchor->name); 3545 *r = TAILQ_NEXT(*r, entries); 3546 return; 3547 } else if (*depth == 0 && a != NULL) 3548 *a = *r; 3549 f = stack + (*depth)++; 3550 f->rs = *rs; 3551 f->r = *r; 3552 if ((*r)->anchor_wildcard) { 3553 struct pf_kanchor_node *parent = &(*r)->anchor->children; 3554 3555 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 3556 *r = NULL; 3557 return; 3558 } 3559 *rs = &f->child->ruleset; 3560 } else { 3561 f->child = NULL; 3562 *rs = &(*r)->anchor->ruleset; 3563 } 3564 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3565 } 3566 3567 int 3568 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3569 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3570 int *match) 3571 { 3572 struct pf_kanchor_stackframe *f; 3573 struct pf_krule *fr; 3574 int quick = 0; 3575 3576 PF_RULES_RASSERT(); 3577 3578 do { 3579 if (*depth <= 0) 3580 break; 3581 f = stack + *depth - 1; 3582 fr = PF_ANCHOR_RULE(f); 3583 if (f->child != NULL) { 3584 /* 3585 * This block traverses through 3586 * a wildcard anchor. 3587 */ 3588 if (match != NULL && *match) { 3589 /* 3590 * If any of "*" matched, then 3591 * "foo/ *" matched, mark frame 3592 * appropriately. 3593 */ 3594 PF_ANCHOR_SET_MATCH(f); 3595 *match = 0; 3596 } 3597 f->child = RB_NEXT(pf_kanchor_node, 3598 &fr->anchor->children, f->child); 3599 if (f->child != NULL) { 3600 *rs = &f->child->ruleset; 3601 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3602 if (*r == NULL) 3603 continue; 3604 else 3605 break; 3606 } 3607 } 3608 (*depth)--; 3609 if (*depth == 0 && a != NULL) 3610 *a = NULL; 3611 *rs = f->rs; 3612 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 3613 quick = fr->quick; 3614 *r = TAILQ_NEXT(fr, entries); 3615 } while (*r == NULL); 3616 3617 return (quick); 3618 } 3619 3620 struct pf_keth_anchor_stackframe { 3621 struct pf_keth_ruleset *rs; 3622 struct pf_keth_rule *r; /* XXX: + match bit */ 3623 struct pf_keth_anchor *child; 3624 }; 3625 3626 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3627 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 3628 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3629 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3630 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3631 } while (0) 3632 3633 void 3634 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 3635 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 3636 struct pf_keth_rule **a, int *match) 3637 { 3638 struct pf_keth_anchor_stackframe *f; 3639 3640 NET_EPOCH_ASSERT(); 3641 3642 if (match) 3643 *match = 0; 3644 if (*depth >= PF_ANCHOR_STACKSIZE) { 3645 printf("%s: anchor stack overflow on %s\n", 3646 __func__, (*r)->anchor->name); 3647 *r = TAILQ_NEXT(*r, entries); 3648 return; 3649 } else if (*depth == 0 && a != NULL) 3650 *a = *r; 3651 f = stack + (*depth)++; 3652 f->rs = *rs; 3653 f->r = *r; 3654 if ((*r)->anchor_wildcard) { 3655 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 3656 3657 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 3658 *r = NULL; 3659 return; 3660 } 3661 *rs = &f->child->ruleset; 3662 } else { 3663 f->child = NULL; 3664 *rs = &(*r)->anchor->ruleset; 3665 } 3666 *r = TAILQ_FIRST((*rs)->active.rules); 3667 } 3668 3669 int 3670 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 3671 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 3672 struct pf_keth_rule **a, int *match) 3673 { 3674 struct pf_keth_anchor_stackframe *f; 3675 struct pf_keth_rule *fr; 3676 int quick = 0; 3677 3678 NET_EPOCH_ASSERT(); 3679 3680 do { 3681 if (*depth <= 0) 3682 break; 3683 f = stack + *depth - 1; 3684 fr = PF_ETH_ANCHOR_RULE(f); 3685 if (f->child != NULL) { 3686 /* 3687 * This block traverses through 3688 * a wildcard anchor. 3689 */ 3690 if (match != NULL && *match) { 3691 /* 3692 * If any of "*" matched, then 3693 * "foo/ *" matched, mark frame 3694 * appropriately. 3695 */ 3696 PF_ETH_ANCHOR_SET_MATCH(f); 3697 *match = 0; 3698 } 3699 f->child = RB_NEXT(pf_keth_anchor_node, 3700 &fr->anchor->children, f->child); 3701 if (f->child != NULL) { 3702 *rs = &f->child->ruleset; 3703 *r = TAILQ_FIRST((*rs)->active.rules); 3704 if (*r == NULL) 3705 continue; 3706 else 3707 break; 3708 } 3709 } 3710 (*depth)--; 3711 if (*depth == 0 && a != NULL) 3712 *a = NULL; 3713 *rs = f->rs; 3714 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 3715 quick = fr->quick; 3716 *r = TAILQ_NEXT(fr, entries); 3717 } while (*r == NULL); 3718 3719 return (quick); 3720 } 3721 3722 #ifdef INET6 3723 void 3724 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 3725 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 3726 { 3727 switch (af) { 3728 #ifdef INET 3729 case AF_INET: 3730 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3731 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3732 break; 3733 #endif /* INET */ 3734 case AF_INET6: 3735 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3736 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3737 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 3738 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 3739 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 3740 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 3741 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 3742 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 3743 break; 3744 } 3745 } 3746 3747 void 3748 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 3749 { 3750 switch (af) { 3751 #ifdef INET 3752 case AF_INET: 3753 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 3754 break; 3755 #endif /* INET */ 3756 case AF_INET6: 3757 if (addr->addr32[3] == 0xffffffff) { 3758 addr->addr32[3] = 0; 3759 if (addr->addr32[2] == 0xffffffff) { 3760 addr->addr32[2] = 0; 3761 if (addr->addr32[1] == 0xffffffff) { 3762 addr->addr32[1] = 0; 3763 addr->addr32[0] = 3764 htonl(ntohl(addr->addr32[0]) + 1); 3765 } else 3766 addr->addr32[1] = 3767 htonl(ntohl(addr->addr32[1]) + 1); 3768 } else 3769 addr->addr32[2] = 3770 htonl(ntohl(addr->addr32[2]) + 1); 3771 } else 3772 addr->addr32[3] = 3773 htonl(ntohl(addr->addr32[3]) + 1); 3774 break; 3775 } 3776 } 3777 #endif /* INET6 */ 3778 3779 void 3780 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 3781 { 3782 /* 3783 * Modern rules use the same flags in rules as they do in states. 3784 */ 3785 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 3786 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 3787 3788 /* 3789 * Old-style scrub rules have different flags which need to be translated. 3790 */ 3791 if (r->rule_flag & PFRULE_RANDOMID) 3792 a->flags |= PFSTATE_RANDOMID; 3793 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) { 3794 a->flags |= PFSTATE_SETTOS; 3795 a->set_tos = r->set_tos; 3796 } 3797 3798 if (r->qid) 3799 a->qid = r->qid; 3800 if (r->pqid) 3801 a->pqid = r->pqid; 3802 if (r->rtableid >= 0) 3803 a->rtableid = r->rtableid; 3804 a->log |= r->log; 3805 if (r->min_ttl) 3806 a->min_ttl = r->min_ttl; 3807 if (r->max_mss) 3808 a->max_mss = r->max_mss; 3809 if (r->dnpipe) 3810 a->dnpipe = r->dnpipe; 3811 if (r->dnrpipe) 3812 a->dnrpipe = r->dnrpipe; 3813 if (r->dnpipe || r->dnrpipe) { 3814 if (r->free_flags & PFRULE_DN_IS_PIPE) 3815 a->flags |= PFSTATE_DN_IS_PIPE; 3816 else 3817 a->flags &= ~PFSTATE_DN_IS_PIPE; 3818 } 3819 if (r->scrub_flags & PFSTATE_SETPRIO) { 3820 a->set_prio[0] = r->set_prio[0]; 3821 a->set_prio[1] = r->set_prio[1]; 3822 } 3823 } 3824 3825 int 3826 pf_socket_lookup(struct pf_pdesc *pd, struct mbuf *m) 3827 { 3828 struct pf_addr *saddr, *daddr; 3829 u_int16_t sport, dport; 3830 struct inpcbinfo *pi; 3831 struct inpcb *inp; 3832 3833 pd->lookup.uid = UID_MAX; 3834 pd->lookup.gid = GID_MAX; 3835 3836 switch (pd->proto) { 3837 case IPPROTO_TCP: 3838 sport = pd->hdr.tcp.th_sport; 3839 dport = pd->hdr.tcp.th_dport; 3840 pi = &V_tcbinfo; 3841 break; 3842 case IPPROTO_UDP: 3843 sport = pd->hdr.udp.uh_sport; 3844 dport = pd->hdr.udp.uh_dport; 3845 pi = &V_udbinfo; 3846 break; 3847 default: 3848 return (-1); 3849 } 3850 if (pd->dir == PF_IN) { 3851 saddr = pd->src; 3852 daddr = pd->dst; 3853 } else { 3854 u_int16_t p; 3855 3856 p = sport; 3857 sport = dport; 3858 dport = p; 3859 saddr = pd->dst; 3860 daddr = pd->src; 3861 } 3862 switch (pd->af) { 3863 #ifdef INET 3864 case AF_INET: 3865 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3866 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3867 if (inp == NULL) { 3868 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3869 daddr->v4, dport, INPLOOKUP_WILDCARD | 3870 INPLOOKUP_RLOCKPCB, NULL, m); 3871 if (inp == NULL) 3872 return (-1); 3873 } 3874 break; 3875 #endif /* INET */ 3876 #ifdef INET6 3877 case AF_INET6: 3878 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3879 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3880 if (inp == NULL) { 3881 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3882 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3883 INPLOOKUP_RLOCKPCB, NULL, m); 3884 if (inp == NULL) 3885 return (-1); 3886 } 3887 break; 3888 #endif /* INET6 */ 3889 3890 default: 3891 return (-1); 3892 } 3893 INP_RLOCK_ASSERT(inp); 3894 pd->lookup.uid = inp->inp_cred->cr_uid; 3895 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3896 INP_RUNLOCK(inp); 3897 3898 return (1); 3899 } 3900 3901 u_int8_t 3902 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3903 { 3904 int hlen; 3905 u_int8_t hdr[60]; 3906 u_int8_t *opt, optlen; 3907 u_int8_t wscale = 0; 3908 3909 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3910 if (hlen <= sizeof(struct tcphdr)) 3911 return (0); 3912 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3913 return (0); 3914 opt = hdr + sizeof(struct tcphdr); 3915 hlen -= sizeof(struct tcphdr); 3916 while (hlen >= 3) { 3917 switch (*opt) { 3918 case TCPOPT_EOL: 3919 case TCPOPT_NOP: 3920 ++opt; 3921 --hlen; 3922 break; 3923 case TCPOPT_WINDOW: 3924 wscale = opt[2]; 3925 if (wscale > TCP_MAX_WINSHIFT) 3926 wscale = TCP_MAX_WINSHIFT; 3927 wscale |= PF_WSCALE_FLAG; 3928 /* FALLTHROUGH */ 3929 default: 3930 optlen = opt[1]; 3931 if (optlen < 2) 3932 optlen = 2; 3933 hlen -= optlen; 3934 opt += optlen; 3935 break; 3936 } 3937 } 3938 return (wscale); 3939 } 3940 3941 u_int16_t 3942 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3943 { 3944 int hlen; 3945 u_int8_t hdr[60]; 3946 u_int8_t *opt, optlen; 3947 u_int16_t mss = V_tcp_mssdflt; 3948 3949 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3950 if (hlen <= sizeof(struct tcphdr)) 3951 return (0); 3952 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3953 return (0); 3954 opt = hdr + sizeof(struct tcphdr); 3955 hlen -= sizeof(struct tcphdr); 3956 while (hlen >= TCPOLEN_MAXSEG) { 3957 switch (*opt) { 3958 case TCPOPT_EOL: 3959 case TCPOPT_NOP: 3960 ++opt; 3961 --hlen; 3962 break; 3963 case TCPOPT_MAXSEG: 3964 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3965 NTOHS(mss); 3966 /* FALLTHROUGH */ 3967 default: 3968 optlen = opt[1]; 3969 if (optlen < 2) 3970 optlen = 2; 3971 hlen -= optlen; 3972 opt += optlen; 3973 break; 3974 } 3975 } 3976 return (mss); 3977 } 3978 3979 static u_int16_t 3980 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3981 { 3982 struct nhop_object *nh; 3983 #ifdef INET6 3984 struct in6_addr dst6; 3985 uint32_t scopeid; 3986 #endif /* INET6 */ 3987 int hlen = 0; 3988 uint16_t mss = 0; 3989 3990 NET_EPOCH_ASSERT(); 3991 3992 switch (af) { 3993 #ifdef INET 3994 case AF_INET: 3995 hlen = sizeof(struct ip); 3996 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 3997 if (nh != NULL) 3998 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3999 break; 4000 #endif /* INET */ 4001 #ifdef INET6 4002 case AF_INET6: 4003 hlen = sizeof(struct ip6_hdr); 4004 in6_splitscope(&addr->v6, &dst6, &scopeid); 4005 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 4006 if (nh != NULL) 4007 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4008 break; 4009 #endif /* INET6 */ 4010 } 4011 4012 mss = max(V_tcp_mssdflt, mss); 4013 mss = min(mss, offer); 4014 mss = max(mss, 64); /* sanity - at least max opt space */ 4015 return (mss); 4016 } 4017 4018 static u_int32_t 4019 pf_tcp_iss(struct pf_pdesc *pd) 4020 { 4021 MD5_CTX ctx; 4022 u_int32_t digest[4]; 4023 4024 if (V_pf_tcp_secret_init == 0) { 4025 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 4026 MD5Init(&V_pf_tcp_secret_ctx); 4027 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 4028 sizeof(V_pf_tcp_secret)); 4029 V_pf_tcp_secret_init = 1; 4030 } 4031 4032 ctx = V_pf_tcp_secret_ctx; 4033 4034 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 4035 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 4036 if (pd->af == AF_INET6) { 4037 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 4038 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 4039 } else { 4040 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 4041 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 4042 } 4043 MD5Final((u_char *)digest, &ctx); 4044 V_pf_tcp_iss_off += 4096; 4045 #define ISN_RANDOM_INCREMENT (4096 - 1) 4046 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 4047 V_pf_tcp_iss_off); 4048 #undef ISN_RANDOM_INCREMENT 4049 } 4050 4051 static bool 4052 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 4053 { 4054 bool match = true; 4055 4056 /* Always matches if not set */ 4057 if (! r->isset) 4058 return (!r->neg); 4059 4060 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 4061 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 4062 match = false; 4063 break; 4064 } 4065 } 4066 4067 return (match ^ r->neg); 4068 } 4069 4070 static int 4071 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 4072 { 4073 if (*tag == -1) 4074 *tag = mtag; 4075 4076 return ((!r->match_tag_not && r->match_tag == *tag) || 4077 (r->match_tag_not && r->match_tag != *tag)); 4078 } 4079 4080 static void 4081 pf_bridge_to(struct ifnet *ifp, struct mbuf *m) 4082 { 4083 /* If we don't have the interface drop the packet. */ 4084 if (ifp == NULL) { 4085 m_freem(m); 4086 return; 4087 } 4088 4089 switch (ifp->if_type) { 4090 case IFT_ETHER: 4091 case IFT_XETHER: 4092 case IFT_L2VLAN: 4093 case IFT_BRIDGE: 4094 case IFT_IEEE8023ADLAG: 4095 break; 4096 default: 4097 m_freem(m); 4098 return; 4099 } 4100 4101 ifp->if_transmit(ifp, m); 4102 } 4103 4104 static int 4105 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 4106 { 4107 #ifdef INET 4108 struct ip ip; 4109 #endif 4110 #ifdef INET6 4111 struct ip6_hdr ip6; 4112 #endif 4113 struct mbuf *m = *m0; 4114 struct ether_header *e; 4115 struct pf_keth_rule *r, *rm, *a = NULL; 4116 struct pf_keth_ruleset *ruleset = NULL; 4117 struct pf_mtag *mtag; 4118 struct pf_keth_ruleq *rules; 4119 struct pf_addr *src = NULL, *dst = NULL; 4120 struct pfi_kkif *bridge_to; 4121 sa_family_t af = 0; 4122 uint16_t proto; 4123 int asd = 0, match = 0; 4124 int tag = -1; 4125 uint8_t action; 4126 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4127 4128 MPASS(kif->pfik_ifp->if_vnet == curvnet); 4129 NET_EPOCH_ASSERT(); 4130 4131 PF_RULES_RLOCK_TRACKER; 4132 4133 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 4134 4135 mtag = pf_find_mtag(m); 4136 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 4137 /* Dummynet re-injects packets after they've 4138 * completed their delay. We've already 4139 * processed them, so pass unconditionally. */ 4140 4141 /* But only once. We may see the packet multiple times (e.g. 4142 * PFIL_IN/PFIL_OUT). */ 4143 mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 4144 4145 return (PF_PASS); 4146 } 4147 4148 ruleset = V_pf_keth; 4149 rules = ck_pr_load_ptr(&ruleset->active.rules); 4150 r = TAILQ_FIRST(rules); 4151 rm = NULL; 4152 4153 e = mtod(m, struct ether_header *); 4154 proto = ntohs(e->ether_type); 4155 4156 switch (proto) { 4157 #ifdef INET 4158 case ETHERTYPE_IP: { 4159 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4160 sizeof(ip))) 4161 return (PF_DROP); 4162 4163 af = AF_INET; 4164 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 4165 (caddr_t)&ip); 4166 src = (struct pf_addr *)&ip.ip_src; 4167 dst = (struct pf_addr *)&ip.ip_dst; 4168 break; 4169 } 4170 #endif /* INET */ 4171 #ifdef INET6 4172 case ETHERTYPE_IPV6: { 4173 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4174 sizeof(ip6))) 4175 return (PF_DROP); 4176 4177 af = AF_INET6; 4178 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 4179 (caddr_t)&ip6); 4180 src = (struct pf_addr *)&ip6.ip6_src; 4181 dst = (struct pf_addr *)&ip6.ip6_dst; 4182 break; 4183 } 4184 #endif /* INET6 */ 4185 } 4186 4187 PF_RULES_RLOCK(); 4188 4189 while (r != NULL) { 4190 counter_u64_add(r->evaluations, 1); 4191 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 4192 4193 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 4194 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4195 "kif"); 4196 r = r->skip[PFE_SKIP_IFP].ptr; 4197 } 4198 else if (r->direction && r->direction != dir) { 4199 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4200 "dir"); 4201 r = r->skip[PFE_SKIP_DIR].ptr; 4202 } 4203 else if (r->proto && r->proto != proto) { 4204 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4205 "proto"); 4206 r = r->skip[PFE_SKIP_PROTO].ptr; 4207 } 4208 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 4209 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4210 "src"); 4211 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 4212 } 4213 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 4214 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4215 "dst"); 4216 r = r->skip[PFE_SKIP_DST_ADDR].ptr; 4217 } 4218 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 4219 r->ipsrc.neg, kif, M_GETFIB(m))) { 4220 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4221 "ip_src"); 4222 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr; 4223 } 4224 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 4225 r->ipdst.neg, kif, M_GETFIB(m))) { 4226 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4227 "ip_dst"); 4228 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr; 4229 } 4230 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 4231 mtag ? mtag->tag : 0)) { 4232 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4233 "match_tag"); 4234 r = TAILQ_NEXT(r, entries); 4235 } 4236 else { 4237 if (r->tag) 4238 tag = r->tag; 4239 if (r->anchor == NULL) { 4240 /* Rule matches */ 4241 rm = r; 4242 4243 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 4244 4245 if (r->quick) 4246 break; 4247 4248 r = TAILQ_NEXT(r, entries); 4249 } else { 4250 pf_step_into_keth_anchor(anchor_stack, &asd, 4251 &ruleset, &r, &a, &match); 4252 } 4253 } 4254 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 4255 &ruleset, &r, &a, &match)) 4256 break; 4257 } 4258 4259 r = rm; 4260 4261 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 4262 4263 /* Default to pass. */ 4264 if (r == NULL) { 4265 PF_RULES_RUNLOCK(); 4266 return (PF_PASS); 4267 } 4268 4269 /* Execute action. */ 4270 counter_u64_add(r->packets[dir == PF_OUT], 1); 4271 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 4272 pf_update_timestamp(r); 4273 4274 /* Shortcut. Don't tag if we're just going to drop anyway. */ 4275 if (r->action == PF_DROP) { 4276 PF_RULES_RUNLOCK(); 4277 return (PF_DROP); 4278 } 4279 4280 if (tag > 0) { 4281 if (mtag == NULL) 4282 mtag = pf_get_mtag(m); 4283 if (mtag == NULL) { 4284 PF_RULES_RUNLOCK(); 4285 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4286 return (PF_DROP); 4287 } 4288 mtag->tag = tag; 4289 } 4290 4291 if (r->qid != 0) { 4292 if (mtag == NULL) 4293 mtag = pf_get_mtag(m); 4294 if (mtag == NULL) { 4295 PF_RULES_RUNLOCK(); 4296 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4297 return (PF_DROP); 4298 } 4299 mtag->qid = r->qid; 4300 } 4301 4302 action = r->action; 4303 bridge_to = r->bridge_to; 4304 4305 /* Dummynet */ 4306 if (r->dnpipe) { 4307 struct ip_fw_args dnflow; 4308 4309 /* Drop packet if dummynet is not loaded. */ 4310 if (ip_dn_io_ptr == NULL) { 4311 PF_RULES_RUNLOCK(); 4312 m_freem(m); 4313 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4314 return (PF_DROP); 4315 } 4316 if (mtag == NULL) 4317 mtag = pf_get_mtag(m); 4318 if (mtag == NULL) { 4319 PF_RULES_RUNLOCK(); 4320 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4321 return (PF_DROP); 4322 } 4323 4324 bzero(&dnflow, sizeof(dnflow)); 4325 4326 /* We don't have port numbers here, so we set 0. That means 4327 * that we'll be somewhat limited in distinguishing flows (i.e. 4328 * only based on IP addresses, not based on port numbers), but 4329 * it's better than nothing. */ 4330 dnflow.f_id.dst_port = 0; 4331 dnflow.f_id.src_port = 0; 4332 dnflow.f_id.proto = 0; 4333 4334 dnflow.rule.info = r->dnpipe; 4335 dnflow.rule.info |= IPFW_IS_DUMMYNET; 4336 if (r->dnflags & PFRULE_DN_IS_PIPE) 4337 dnflow.rule.info |= IPFW_IS_PIPE; 4338 4339 dnflow.f_id.extra = dnflow.rule.info; 4340 4341 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 4342 dnflow.flags |= IPFW_ARGS_ETHER; 4343 dnflow.ifp = kif->pfik_ifp; 4344 4345 switch (af) { 4346 case AF_INET: 4347 dnflow.f_id.addr_type = 4; 4348 dnflow.f_id.src_ip = src->v4.s_addr; 4349 dnflow.f_id.dst_ip = dst->v4.s_addr; 4350 break; 4351 case AF_INET6: 4352 dnflow.flags |= IPFW_ARGS_IP6; 4353 dnflow.f_id.addr_type = 6; 4354 dnflow.f_id.src_ip6 = src->v6; 4355 dnflow.f_id.dst_ip6 = dst->v6; 4356 break; 4357 } 4358 4359 PF_RULES_RUNLOCK(); 4360 4361 mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 4362 ip_dn_io_ptr(m0, &dnflow); 4363 if (*m0 != NULL) 4364 mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 4365 } else { 4366 PF_RULES_RUNLOCK(); 4367 } 4368 4369 if (action == PF_PASS && bridge_to) { 4370 pf_bridge_to(bridge_to->pfik_ifp, *m0); 4371 *m0 = NULL; /* We've eaten the packet. */ 4372 } 4373 4374 return (action); 4375 } 4376 4377 static int 4378 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, struct pfi_kkif *kif, 4379 struct mbuf *m, int off, struct pf_pdesc *pd, struct pf_krule **am, 4380 struct pf_kruleset **rsm, struct inpcb *inp) 4381 { 4382 struct pf_krule *nr = NULL; 4383 struct pf_addr * const saddr = pd->src; 4384 struct pf_addr * const daddr = pd->dst; 4385 sa_family_t af = pd->af; 4386 struct pf_krule *r, *a = NULL; 4387 struct pf_kruleset *ruleset = NULL; 4388 struct pf_krule_slist match_rules; 4389 struct pf_krule_item *ri; 4390 struct pf_ksrc_node *nsn = NULL; 4391 struct tcphdr *th = &pd->hdr.tcp; 4392 struct pf_state_key *sk = NULL, *nk = NULL; 4393 u_short reason; 4394 int rewrite = 0, hdrlen = 0; 4395 int tag = -1; 4396 int asd = 0; 4397 int match = 0; 4398 int state_icmp = 0; 4399 u_int16_t sport = 0, dport = 0; 4400 u_int16_t bproto_sum = 0, bip_sum = 0; 4401 u_int8_t icmptype = 0, icmpcode = 0; 4402 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4403 4404 PF_RULES_RASSERT(); 4405 4406 if (inp != NULL) { 4407 INP_LOCK_ASSERT(inp); 4408 pd->lookup.uid = inp->inp_cred->cr_uid; 4409 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4410 pd->lookup.done = 1; 4411 } 4412 4413 switch (pd->proto) { 4414 case IPPROTO_TCP: 4415 sport = th->th_sport; 4416 dport = th->th_dport; 4417 hdrlen = sizeof(*th); 4418 break; 4419 case IPPROTO_UDP: 4420 sport = pd->hdr.udp.uh_sport; 4421 dport = pd->hdr.udp.uh_dport; 4422 hdrlen = sizeof(pd->hdr.udp); 4423 break; 4424 case IPPROTO_SCTP: 4425 sport = pd->hdr.sctp.src_port; 4426 dport = pd->hdr.sctp.dest_port; 4427 hdrlen = sizeof(pd->hdr.sctp); 4428 break; 4429 #ifdef INET 4430 case IPPROTO_ICMP: 4431 if (pd->af != AF_INET) 4432 break; 4433 sport = dport = pd->hdr.icmp.icmp_id; 4434 hdrlen = sizeof(pd->hdr.icmp); 4435 icmptype = pd->hdr.icmp.icmp_type; 4436 icmpcode = pd->hdr.icmp.icmp_code; 4437 4438 if (icmptype == ICMP_UNREACH || 4439 icmptype == ICMP_SOURCEQUENCH || 4440 icmptype == ICMP_REDIRECT || 4441 icmptype == ICMP_TIMXCEED || 4442 icmptype == ICMP_PARAMPROB) 4443 state_icmp++; 4444 break; 4445 #endif /* INET */ 4446 #ifdef INET6 4447 case IPPROTO_ICMPV6: 4448 if (af != AF_INET6) 4449 break; 4450 sport = dport = pd->hdr.icmp6.icmp6_id; 4451 hdrlen = sizeof(pd->hdr.icmp6); 4452 icmptype = pd->hdr.icmp6.icmp6_type; 4453 icmpcode = pd->hdr.icmp6.icmp6_code; 4454 4455 if (icmptype == ICMP6_DST_UNREACH || 4456 icmptype == ICMP6_PACKET_TOO_BIG || 4457 icmptype == ICMP6_TIME_EXCEEDED || 4458 icmptype == ICMP6_PARAM_PROB) 4459 state_icmp++; 4460 break; 4461 #endif /* INET6 */ 4462 default: 4463 sport = dport = hdrlen = 0; 4464 break; 4465 } 4466 4467 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4468 4469 /* check packet for BINAT/NAT/RDR */ 4470 if ((nr = pf_get_translation(pd, m, off, kif, &nsn, &sk, 4471 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 4472 KASSERT(sk != NULL, ("%s: null sk", __func__)); 4473 KASSERT(nk != NULL, ("%s: null nk", __func__)); 4474 4475 if (nr->log) { 4476 PFLOG_PACKET(kif, m, af, PFRES_MATCH, nr, a, 4477 ruleset, pd, 1); 4478 } 4479 4480 if (pd->ip_sum) 4481 bip_sum = *pd->ip_sum; 4482 4483 switch (pd->proto) { 4484 case IPPROTO_TCP: 4485 bproto_sum = th->th_sum; 4486 pd->proto_sum = &th->th_sum; 4487 4488 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4489 nk->port[pd->sidx] != sport) { 4490 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 4491 &th->th_sum, &nk->addr[pd->sidx], 4492 nk->port[pd->sidx], 0, af); 4493 pd->sport = &th->th_sport; 4494 sport = th->th_sport; 4495 } 4496 4497 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4498 nk->port[pd->didx] != dport) { 4499 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 4500 &th->th_sum, &nk->addr[pd->didx], 4501 nk->port[pd->didx], 0, af); 4502 dport = th->th_dport; 4503 pd->dport = &th->th_dport; 4504 } 4505 rewrite++; 4506 break; 4507 case IPPROTO_UDP: 4508 bproto_sum = pd->hdr.udp.uh_sum; 4509 pd->proto_sum = &pd->hdr.udp.uh_sum; 4510 4511 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4512 nk->port[pd->sidx] != sport) { 4513 pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, 4514 pd->ip_sum, &pd->hdr.udp.uh_sum, 4515 &nk->addr[pd->sidx], 4516 nk->port[pd->sidx], 1, af); 4517 sport = pd->hdr.udp.uh_sport; 4518 pd->sport = &pd->hdr.udp.uh_sport; 4519 } 4520 4521 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4522 nk->port[pd->didx] != dport) { 4523 pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, 4524 pd->ip_sum, &pd->hdr.udp.uh_sum, 4525 &nk->addr[pd->didx], 4526 nk->port[pd->didx], 1, af); 4527 dport = pd->hdr.udp.uh_dport; 4528 pd->dport = &pd->hdr.udp.uh_dport; 4529 } 4530 rewrite++; 4531 break; 4532 case IPPROTO_SCTP: { 4533 uint16_t checksum = 0; 4534 4535 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4536 nk->port[pd->sidx] != sport) { 4537 pf_change_ap(m, saddr, &pd->hdr.sctp.src_port, 4538 pd->ip_sum, &checksum, 4539 &nk->addr[pd->sidx], 4540 nk->port[pd->sidx], 1, af); 4541 } 4542 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4543 nk->port[pd->didx] != dport) { 4544 pf_change_ap(m, daddr, &pd->hdr.sctp.dest_port, 4545 pd->ip_sum, &checksum, 4546 &nk->addr[pd->didx], 4547 nk->port[pd->didx], 1, af); 4548 } 4549 break; 4550 } 4551 #ifdef INET 4552 case IPPROTO_ICMP: 4553 nk->port[0] = nk->port[1]; 4554 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 4555 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 4556 nk->addr[pd->sidx].v4.s_addr, 0); 4557 4558 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 4559 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 4560 nk->addr[pd->didx].v4.s_addr, 0); 4561 4562 if (nk->port[1] != pd->hdr.icmp.icmp_id) { 4563 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 4564 pd->hdr.icmp.icmp_cksum, sport, 4565 nk->port[1], 0); 4566 pd->hdr.icmp.icmp_id = nk->port[1]; 4567 pd->sport = &pd->hdr.icmp.icmp_id; 4568 } 4569 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 4570 break; 4571 #endif /* INET */ 4572 #ifdef INET6 4573 case IPPROTO_ICMPV6: 4574 nk->port[0] = nk->port[1]; 4575 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 4576 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 4577 &nk->addr[pd->sidx], 0); 4578 4579 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 4580 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 4581 &nk->addr[pd->didx], 0); 4582 rewrite++; 4583 break; 4584 #endif /* INET */ 4585 default: 4586 switch (af) { 4587 #ifdef INET 4588 case AF_INET: 4589 if (PF_ANEQ(saddr, 4590 &nk->addr[pd->sidx], AF_INET)) 4591 pf_change_a(&saddr->v4.s_addr, 4592 pd->ip_sum, 4593 nk->addr[pd->sidx].v4.s_addr, 0); 4594 4595 if (PF_ANEQ(daddr, 4596 &nk->addr[pd->didx], AF_INET)) 4597 pf_change_a(&daddr->v4.s_addr, 4598 pd->ip_sum, 4599 nk->addr[pd->didx].v4.s_addr, 0); 4600 break; 4601 #endif /* INET */ 4602 #ifdef INET6 4603 case AF_INET6: 4604 if (PF_ANEQ(saddr, 4605 &nk->addr[pd->sidx], AF_INET6)) 4606 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 4607 4608 if (PF_ANEQ(daddr, 4609 &nk->addr[pd->didx], AF_INET6)) 4610 PF_ACPY(daddr, &nk->addr[pd->didx], af); 4611 break; 4612 #endif /* INET */ 4613 } 4614 break; 4615 } 4616 if (nr->natpass) 4617 r = NULL; 4618 pd->nat_rule = nr; 4619 } 4620 4621 SLIST_INIT(&match_rules); 4622 while (r != NULL) { 4623 pf_counter_u64_add(&r->evaluations, 1); 4624 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 4625 r = r->skip[PF_SKIP_IFP].ptr; 4626 else if (r->direction && r->direction != pd->dir) 4627 r = r->skip[PF_SKIP_DIR].ptr; 4628 else if (r->af && r->af != af) 4629 r = r->skip[PF_SKIP_AF].ptr; 4630 else if (r->proto && r->proto != pd->proto) 4631 r = r->skip[PF_SKIP_PROTO].ptr; 4632 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 4633 r->src.neg, kif, M_GETFIB(m))) 4634 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4635 /* tcp/udp only. port_op always 0 in other cases */ 4636 else if (r->src.port_op && !pf_match_port(r->src.port_op, 4637 r->src.port[0], r->src.port[1], sport)) 4638 r = r->skip[PF_SKIP_SRC_PORT].ptr; 4639 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 4640 r->dst.neg, NULL, M_GETFIB(m))) 4641 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4642 /* tcp/udp only. port_op always 0 in other cases */ 4643 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 4644 r->dst.port[0], r->dst.port[1], dport)) 4645 r = r->skip[PF_SKIP_DST_PORT].ptr; 4646 /* icmp only. type always 0 in other cases */ 4647 else if (r->type && r->type != icmptype + 1) 4648 r = TAILQ_NEXT(r, entries); 4649 /* icmp only. type always 0 in other cases */ 4650 else if (r->code && r->code != icmpcode + 1) 4651 r = TAILQ_NEXT(r, entries); 4652 else if (r->tos && !(r->tos == pd->tos)) 4653 r = TAILQ_NEXT(r, entries); 4654 else if (r->rule_flag & PFRULE_FRAGMENT) 4655 r = TAILQ_NEXT(r, entries); 4656 else if (pd->proto == IPPROTO_TCP && 4657 (r->flagset & th->th_flags) != r->flags) 4658 r = TAILQ_NEXT(r, entries); 4659 /* tcp/udp only. uid.op always 0 in other cases */ 4660 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 4661 pf_socket_lookup(pd, m), 1)) && 4662 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 4663 pd->lookup.uid)) 4664 r = TAILQ_NEXT(r, entries); 4665 /* tcp/udp only. gid.op always 0 in other cases */ 4666 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 4667 pf_socket_lookup(pd, m), 1)) && 4668 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 4669 pd->lookup.gid)) 4670 r = TAILQ_NEXT(r, entries); 4671 else if (r->prio && 4672 !pf_match_ieee8021q_pcp(r->prio, m)) 4673 r = TAILQ_NEXT(r, entries); 4674 else if (r->prob && 4675 r->prob <= arc4random()) 4676 r = TAILQ_NEXT(r, entries); 4677 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4678 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4679 r = TAILQ_NEXT(r, entries); 4680 else if (r->os_fingerprint != PF_OSFP_ANY && 4681 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 4682 pf_osfp_fingerprint(pd, m, off, th), 4683 r->os_fingerprint))) 4684 r = TAILQ_NEXT(r, entries); 4685 else { 4686 if (r->tag) 4687 tag = r->tag; 4688 if (r->anchor == NULL) { 4689 if (r->action == PF_MATCH) { 4690 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 4691 if (ri == NULL) { 4692 REASON_SET(&reason, PFRES_MEMORY); 4693 goto cleanup; 4694 } 4695 ri->r = r; 4696 SLIST_INSERT_HEAD(&match_rules, ri, entry); 4697 pf_counter_u64_critical_enter(); 4698 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 4699 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 4700 pf_counter_u64_critical_exit(); 4701 pf_rule_to_actions(r, &pd->act); 4702 if (r->log) 4703 PFLOG_PACKET(kif, m, af, 4704 PFRES_MATCH, r, 4705 a, ruleset, pd, 1); 4706 } else { 4707 match = 1; 4708 *rm = r; 4709 *am = a; 4710 *rsm = ruleset; 4711 } 4712 if ((*rm)->quick) 4713 break; 4714 r = TAILQ_NEXT(r, entries); 4715 } else 4716 pf_step_into_anchor(anchor_stack, &asd, 4717 &ruleset, PF_RULESET_FILTER, &r, &a, 4718 &match); 4719 } 4720 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4721 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4722 break; 4723 } 4724 r = *rm; 4725 a = *am; 4726 ruleset = *rsm; 4727 4728 REASON_SET(&reason, PFRES_MATCH); 4729 4730 /* apply actions for last matching pass/block rule */ 4731 pf_rule_to_actions(r, &pd->act); 4732 4733 if (r->log) { 4734 if (rewrite) 4735 m_copyback(m, off, hdrlen, pd->hdr.any); 4736 PFLOG_PACKET(kif, m, af, reason, r, a, ruleset, pd, 1); 4737 } 4738 4739 if ((r->action == PF_DROP) && 4740 ((r->rule_flag & PFRULE_RETURNRST) || 4741 (r->rule_flag & PFRULE_RETURNICMP) || 4742 (r->rule_flag & PFRULE_RETURN))) { 4743 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 4744 bip_sum, hdrlen, &reason, r->rtableid); 4745 } 4746 4747 if (r->action == PF_DROP) 4748 goto cleanup; 4749 4750 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4751 REASON_SET(&reason, PFRES_MEMORY); 4752 goto cleanup; 4753 } 4754 if (pd->act.rtableid >= 0) 4755 M_SETFIB(m, pd->act.rtableid); 4756 4757 if (!state_icmp && (r->keep_state || nr != NULL || 4758 (pd->flags & PFDESC_TCP_NORM))) { 4759 int action; 4760 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 4761 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 4762 hdrlen, &match_rules); 4763 if (action != PF_PASS) { 4764 if (action == PF_DROP && 4765 (r->rule_flag & PFRULE_RETURN)) 4766 pf_return(r, nr, pd, sk, off, m, th, kif, 4767 bproto_sum, bip_sum, hdrlen, &reason, 4768 pd->act.rtableid); 4769 return (action); 4770 } 4771 } else { 4772 while ((ri = SLIST_FIRST(&match_rules))) { 4773 SLIST_REMOVE_HEAD(&match_rules, entry); 4774 free(ri, M_PF_RULE_ITEM); 4775 } 4776 4777 uma_zfree(V_pf_state_key_z, sk); 4778 uma_zfree(V_pf_state_key_z, nk); 4779 } 4780 4781 /* copy back packet headers if we performed NAT operations */ 4782 if (rewrite) 4783 m_copyback(m, off, hdrlen, pd->hdr.any); 4784 4785 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 4786 pd->dir == PF_OUT && 4787 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 4788 /* 4789 * We want the state created, but we dont 4790 * want to send this in case a partner 4791 * firewall has to know about it to allow 4792 * replies through it. 4793 */ 4794 return (PF_DEFER); 4795 4796 return (PF_PASS); 4797 4798 cleanup: 4799 while ((ri = SLIST_FIRST(&match_rules))) { 4800 SLIST_REMOVE_HEAD(&match_rules, entry); 4801 free(ri, M_PF_RULE_ITEM); 4802 } 4803 4804 uma_zfree(V_pf_state_key_z, sk); 4805 uma_zfree(V_pf_state_key_z, nk); 4806 return (PF_DROP); 4807 } 4808 4809 static int 4810 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 4811 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 4812 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 4813 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, 4814 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 4815 struct pf_krule_slist *match_rules) 4816 { 4817 struct pf_kstate *s = NULL; 4818 struct pf_ksrc_node *sn = NULL; 4819 struct tcphdr *th = &pd->hdr.tcp; 4820 u_int16_t mss = V_tcp_mssdflt; 4821 u_short reason, sn_reason; 4822 struct pf_krule_item *ri; 4823 4824 /* check maximums */ 4825 if (r->max_states && 4826 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 4827 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 4828 REASON_SET(&reason, PFRES_MAXSTATES); 4829 goto csfailed; 4830 } 4831 /* src node for filter rule */ 4832 if ((r->rule_flag & PFRULE_SRCTRACK || 4833 r->rpool.opts & PF_POOL_STICKYADDR) && 4834 (sn_reason = pf_insert_src_node(&sn, r, pd->src, pd->af)) != 0) { 4835 REASON_SET(&reason, sn_reason); 4836 goto csfailed; 4837 } 4838 /* src node for translation rule */ 4839 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 4840 (sn_reason = pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], 4841 pd->af)) != 0 ) { 4842 REASON_SET(&reason, sn_reason); 4843 goto csfailed; 4844 } 4845 s = pf_alloc_state(M_NOWAIT); 4846 if (s == NULL) { 4847 REASON_SET(&reason, PFRES_MEMORY); 4848 goto csfailed; 4849 } 4850 s->rule.ptr = r; 4851 s->nat_rule.ptr = nr; 4852 s->anchor.ptr = a; 4853 bcopy(match_rules, &s->match_rules, sizeof(s->match_rules)); 4854 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions)); 4855 4856 STATE_INC_COUNTERS(s); 4857 if (r->allow_opts) 4858 s->state_flags |= PFSTATE_ALLOWOPTS; 4859 if (r->rule_flag & PFRULE_STATESLOPPY) 4860 s->state_flags |= PFSTATE_SLOPPY; 4861 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 4862 s->state_flags |= PFSTATE_SCRUB_TCP; 4863 4864 s->act.log = pd->act.log & PF_LOG_ALL; 4865 s->sync_state = PFSYNC_S_NONE; 4866 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */ 4867 4868 if (nr != NULL) 4869 s->act.log |= nr->log & PF_LOG_ALL; 4870 switch (pd->proto) { 4871 case IPPROTO_TCP: 4872 s->src.seqlo = ntohl(th->th_seq); 4873 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 4874 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 4875 r->keep_state == PF_STATE_MODULATE) { 4876 /* Generate sequence number modulator */ 4877 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 4878 0) 4879 s->src.seqdiff = 1; 4880 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 4881 htonl(s->src.seqlo + s->src.seqdiff), 0); 4882 *rewrite = 1; 4883 } else 4884 s->src.seqdiff = 0; 4885 if (th->th_flags & TH_SYN) { 4886 s->src.seqhi++; 4887 s->src.wscale = pf_get_wscale(m, off, 4888 th->th_off, pd->af); 4889 } 4890 s->src.max_win = MAX(ntohs(th->th_win), 1); 4891 if (s->src.wscale & PF_WSCALE_MASK) { 4892 /* Remove scale factor from initial window */ 4893 int win = s->src.max_win; 4894 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 4895 s->src.max_win = (win - 1) >> 4896 (s->src.wscale & PF_WSCALE_MASK); 4897 } 4898 if (th->th_flags & TH_FIN) 4899 s->src.seqhi++; 4900 s->dst.seqhi = 1; 4901 s->dst.max_win = 1; 4902 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 4903 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 4904 s->timeout = PFTM_TCP_FIRST_PACKET; 4905 atomic_add_32(&V_pf_status.states_halfopen, 1); 4906 break; 4907 case IPPROTO_UDP: 4908 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 4909 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 4910 s->timeout = PFTM_UDP_FIRST_PACKET; 4911 break; 4912 case IPPROTO_SCTP: 4913 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT); 4914 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED); 4915 s->timeout = PFTM_SCTP_FIRST_PACKET; 4916 break; 4917 case IPPROTO_ICMP: 4918 #ifdef INET6 4919 case IPPROTO_ICMPV6: 4920 #endif 4921 s->timeout = PFTM_ICMP_FIRST_PACKET; 4922 break; 4923 default: 4924 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 4925 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 4926 s->timeout = PFTM_OTHER_FIRST_PACKET; 4927 } 4928 4929 if (r->rt) { 4930 /* pf_map_addr increases the reason counters */ 4931 if ((reason = pf_map_addr(pd->af, r, pd->src, &s->rt_addr, 4932 &s->rt_kif, NULL, &sn)) != 0) 4933 goto csfailed; 4934 s->rt = r->rt; 4935 } 4936 4937 s->creation = time_uptime; 4938 s->expire = time_uptime; 4939 4940 if (sn != NULL) 4941 s->src_node = sn; 4942 if (nsn != NULL) { 4943 /* XXX We only modify one side for now. */ 4944 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 4945 s->nat_src_node = nsn; 4946 } 4947 if (pd->proto == IPPROTO_TCP) { 4948 if (s->state_flags & PFSTATE_SCRUB_TCP && 4949 pf_normalize_tcp_init(m, off, pd, th, &s->src, &s->dst)) { 4950 REASON_SET(&reason, PFRES_MEMORY); 4951 goto drop; 4952 } 4953 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 4954 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 4955 &s->src, &s->dst, rewrite)) { 4956 /* This really shouldn't happen!!! */ 4957 DPFPRINTF(PF_DEBUG_URGENT, 4958 ("pf_normalize_tcp_stateful failed on first " 4959 "pkt\n")); 4960 goto drop; 4961 } 4962 } else if (pd->proto == IPPROTO_SCTP) { 4963 if (pf_normalize_sctp_init(m, off, pd, &s->src, &s->dst)) 4964 goto drop; 4965 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP))) 4966 goto drop; 4967 } 4968 s->direction = pd->dir; 4969 4970 /* 4971 * sk/nk could already been setup by pf_get_translation(). 4972 */ 4973 if (nr == NULL) { 4974 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 4975 __func__, nr, sk, nk)); 4976 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 4977 if (sk == NULL) 4978 goto csfailed; 4979 nk = sk; 4980 } else 4981 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 4982 __func__, nr, sk, nk)); 4983 4984 /* Swap sk/nk for PF_OUT. */ 4985 if (pf_state_insert(BOUND_IFACE(r, kif), kif, 4986 (pd->dir == PF_IN) ? sk : nk, 4987 (pd->dir == PF_IN) ? nk : sk, s)) { 4988 REASON_SET(&reason, PFRES_STATEINS); 4989 goto drop; 4990 } else 4991 *sm = s; 4992 4993 if (tag > 0) 4994 s->tag = tag; 4995 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 4996 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 4997 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 4998 /* undo NAT changes, if they have taken place */ 4999 if (nr != NULL) { 5000 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 5001 if (pd->dir == PF_OUT) 5002 skt = s->key[PF_SK_STACK]; 5003 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 5004 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 5005 if (pd->sport) 5006 *pd->sport = skt->port[pd->sidx]; 5007 if (pd->dport) 5008 *pd->dport = skt->port[pd->didx]; 5009 if (pd->proto_sum) 5010 *pd->proto_sum = bproto_sum; 5011 if (pd->ip_sum) 5012 *pd->ip_sum = bip_sum; 5013 m_copyback(m, off, hdrlen, pd->hdr.any); 5014 } 5015 s->src.seqhi = htonl(arc4random()); 5016 /* Find mss option */ 5017 int rtid = M_GETFIB(m); 5018 mss = pf_get_mss(m, off, th->th_off, pd->af); 5019 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 5020 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 5021 s->src.mss = mss; 5022 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 5023 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 5024 TH_SYN|TH_ACK, 0, s->src.mss, 0, true, 0, 0, 5025 pd->act.rtableid); 5026 REASON_SET(&reason, PFRES_SYNPROXY); 5027 return (PF_SYNPROXY_DROP); 5028 } 5029 5030 return (PF_PASS); 5031 5032 csfailed: 5033 while ((ri = SLIST_FIRST(match_rules))) { 5034 SLIST_REMOVE_HEAD(match_rules, entry); 5035 free(ri, M_PF_RULE_ITEM); 5036 } 5037 5038 uma_zfree(V_pf_state_key_z, sk); 5039 uma_zfree(V_pf_state_key_z, nk); 5040 5041 if (sn != NULL) { 5042 PF_SRC_NODE_LOCK(sn); 5043 if (--sn->states == 0 && sn->expire == 0) { 5044 pf_unlink_src_node(sn); 5045 uma_zfree(V_pf_sources_z, sn); 5046 counter_u64_add( 5047 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5048 } 5049 PF_SRC_NODE_UNLOCK(sn); 5050 } 5051 5052 if (nsn != sn && nsn != NULL) { 5053 PF_SRC_NODE_LOCK(nsn); 5054 if (--nsn->states == 0 && nsn->expire == 0) { 5055 pf_unlink_src_node(nsn); 5056 uma_zfree(V_pf_sources_z, nsn); 5057 counter_u64_add( 5058 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5059 } 5060 PF_SRC_NODE_UNLOCK(nsn); 5061 } 5062 5063 drop: 5064 if (s != NULL) { 5065 pf_src_tree_remove_state(s); 5066 s->timeout = PFTM_UNLINKED; 5067 STATE_DEC_COUNTERS(s); 5068 pf_free_state(s); 5069 } 5070 5071 return (PF_DROP); 5072 } 5073 5074 static int 5075 pf_test_fragment(struct pf_krule **rm, struct pfi_kkif *kif, 5076 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, 5077 struct pf_kruleset **rsm) 5078 { 5079 struct pf_krule *r, *a = NULL; 5080 struct pf_kruleset *ruleset = NULL; 5081 struct pf_krule_slist match_rules; 5082 struct pf_krule_item *ri; 5083 sa_family_t af = pd->af; 5084 u_short reason; 5085 int tag = -1; 5086 int asd = 0; 5087 int match = 0; 5088 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 5089 5090 PF_RULES_RASSERT(); 5091 5092 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 5093 SLIST_INIT(&match_rules); 5094 while (r != NULL) { 5095 pf_counter_u64_add(&r->evaluations, 1); 5096 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 5097 r = r->skip[PF_SKIP_IFP].ptr; 5098 else if (r->direction && r->direction != pd->dir) 5099 r = r->skip[PF_SKIP_DIR].ptr; 5100 else if (r->af && r->af != af) 5101 r = r->skip[PF_SKIP_AF].ptr; 5102 else if (r->proto && r->proto != pd->proto) 5103 r = r->skip[PF_SKIP_PROTO].ptr; 5104 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 5105 r->src.neg, kif, M_GETFIB(m))) 5106 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 5107 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 5108 r->dst.neg, NULL, M_GETFIB(m))) 5109 r = r->skip[PF_SKIP_DST_ADDR].ptr; 5110 else if (r->tos && !(r->tos == pd->tos)) 5111 r = TAILQ_NEXT(r, entries); 5112 else if (r->os_fingerprint != PF_OSFP_ANY) 5113 r = TAILQ_NEXT(r, entries); 5114 else if (pd->proto == IPPROTO_UDP && 5115 (r->src.port_op || r->dst.port_op)) 5116 r = TAILQ_NEXT(r, entries); 5117 else if (pd->proto == IPPROTO_TCP && 5118 (r->src.port_op || r->dst.port_op || r->flagset)) 5119 r = TAILQ_NEXT(r, entries); 5120 else if ((pd->proto == IPPROTO_ICMP || 5121 pd->proto == IPPROTO_ICMPV6) && 5122 (r->type || r->code)) 5123 r = TAILQ_NEXT(r, entries); 5124 else if (r->prio && 5125 !pf_match_ieee8021q_pcp(r->prio, m)) 5126 r = TAILQ_NEXT(r, entries); 5127 else if (r->prob && r->prob <= 5128 (arc4random() % (UINT_MAX - 1) + 1)) 5129 r = TAILQ_NEXT(r, entries); 5130 else if (r->match_tag && !pf_match_tag(m, r, &tag, 5131 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 5132 r = TAILQ_NEXT(r, entries); 5133 else { 5134 if (r->anchor == NULL) { 5135 if (r->action == PF_MATCH) { 5136 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5137 if (ri == NULL) { 5138 REASON_SET(&reason, PFRES_MEMORY); 5139 goto cleanup; 5140 } 5141 ri->r = r; 5142 SLIST_INSERT_HEAD(&match_rules, ri, entry); 5143 pf_counter_u64_critical_enter(); 5144 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5145 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5146 pf_counter_u64_critical_exit(); 5147 pf_rule_to_actions(r, &pd->act); 5148 if (r->log) 5149 PFLOG_PACKET(kif, m, af, 5150 PFRES_MATCH, r, 5151 a, ruleset, pd, 1); 5152 } else { 5153 match = 1; 5154 *rm = r; 5155 *am = a; 5156 *rsm = ruleset; 5157 } 5158 if ((*rm)->quick) 5159 break; 5160 r = TAILQ_NEXT(r, entries); 5161 } else 5162 pf_step_into_anchor(anchor_stack, &asd, 5163 &ruleset, PF_RULESET_FILTER, &r, &a, 5164 &match); 5165 } 5166 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 5167 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 5168 break; 5169 } 5170 r = *rm; 5171 a = *am; 5172 ruleset = *rsm; 5173 5174 REASON_SET(&reason, PFRES_MATCH); 5175 5176 /* apply actions for last matching pass/block rule */ 5177 pf_rule_to_actions(r, &pd->act); 5178 5179 if (r->log) 5180 PFLOG_PACKET(kif, m, af, reason, r, a, ruleset, pd, 1); 5181 5182 if (r->action != PF_PASS) 5183 return (PF_DROP); 5184 5185 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 5186 REASON_SET(&reason, PFRES_MEMORY); 5187 goto cleanup; 5188 } 5189 5190 return (PF_PASS); 5191 5192 cleanup: 5193 while ((ri = SLIST_FIRST(&match_rules))) { 5194 SLIST_REMOVE_HEAD(&match_rules, entry); 5195 free(ri, M_PF_RULE_ITEM); 5196 } 5197 5198 return (PF_DROP); 5199 } 5200 5201 static int 5202 pf_tcp_track_full(struct pf_kstate **state, struct pfi_kkif *kif, 5203 struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason, 5204 int *copyback) 5205 { 5206 struct tcphdr *th = &pd->hdr.tcp; 5207 struct pf_state_peer *src, *dst; 5208 u_int16_t win = ntohs(th->th_win); 5209 u_int32_t ack, end, seq, orig_seq; 5210 u_int8_t sws, dws, psrc, pdst; 5211 int ackskew; 5212 5213 if (pd->dir == (*state)->direction) { 5214 src = &(*state)->src; 5215 dst = &(*state)->dst; 5216 psrc = PF_PEER_SRC; 5217 pdst = PF_PEER_DST; 5218 } else { 5219 src = &(*state)->dst; 5220 dst = &(*state)->src; 5221 psrc = PF_PEER_DST; 5222 pdst = PF_PEER_SRC; 5223 } 5224 5225 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 5226 sws = src->wscale & PF_WSCALE_MASK; 5227 dws = dst->wscale & PF_WSCALE_MASK; 5228 } else 5229 sws = dws = 0; 5230 5231 /* 5232 * Sequence tracking algorithm from Guido van Rooij's paper: 5233 * http://www.madison-gurkha.com/publications/tcp_filtering/ 5234 * tcp_filtering.ps 5235 */ 5236 5237 orig_seq = seq = ntohl(th->th_seq); 5238 if (src->seqlo == 0) { 5239 /* First packet from this end. Set its state */ 5240 5241 if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 5242 src->scrub == NULL) { 5243 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 5244 REASON_SET(reason, PFRES_MEMORY); 5245 return (PF_DROP); 5246 } 5247 } 5248 5249 /* Deferred generation of sequence number modulator */ 5250 if (dst->seqdiff && !src->seqdiff) { 5251 /* use random iss for the TCP server */ 5252 while ((src->seqdiff = arc4random() - seq) == 0) 5253 ; 5254 ack = ntohl(th->th_ack) - dst->seqdiff; 5255 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5256 src->seqdiff), 0); 5257 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5258 *copyback = 1; 5259 } else { 5260 ack = ntohl(th->th_ack); 5261 } 5262 5263 end = seq + pd->p_len; 5264 if (th->th_flags & TH_SYN) { 5265 end++; 5266 if (dst->wscale & PF_WSCALE_FLAG) { 5267 src->wscale = pf_get_wscale(m, off, th->th_off, 5268 pd->af); 5269 if (src->wscale & PF_WSCALE_FLAG) { 5270 /* Remove scale factor from initial 5271 * window */ 5272 sws = src->wscale & PF_WSCALE_MASK; 5273 win = ((u_int32_t)win + (1 << sws) - 1) 5274 >> sws; 5275 dws = dst->wscale & PF_WSCALE_MASK; 5276 } else { 5277 /* fixup other window */ 5278 dst->max_win <<= dst->wscale & 5279 PF_WSCALE_MASK; 5280 /* in case of a retrans SYN|ACK */ 5281 dst->wscale = 0; 5282 } 5283 } 5284 } 5285 if (th->th_flags & TH_FIN) 5286 end++; 5287 5288 src->seqlo = seq; 5289 if (src->state < TCPS_SYN_SENT) 5290 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5291 5292 /* 5293 * May need to slide the window (seqhi may have been set by 5294 * the crappy stack check or if we picked up the connection 5295 * after establishment) 5296 */ 5297 if (src->seqhi == 1 || 5298 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 5299 src->seqhi = end + MAX(1, dst->max_win << dws); 5300 if (win > src->max_win) 5301 src->max_win = win; 5302 5303 } else { 5304 ack = ntohl(th->th_ack) - dst->seqdiff; 5305 if (src->seqdiff) { 5306 /* Modulate sequence numbers */ 5307 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5308 src->seqdiff), 0); 5309 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5310 *copyback = 1; 5311 } 5312 end = seq + pd->p_len; 5313 if (th->th_flags & TH_SYN) 5314 end++; 5315 if (th->th_flags & TH_FIN) 5316 end++; 5317 } 5318 5319 if ((th->th_flags & TH_ACK) == 0) { 5320 /* Let it pass through the ack skew check */ 5321 ack = dst->seqlo; 5322 } else if ((ack == 0 && 5323 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 5324 /* broken tcp stacks do not set ack */ 5325 (dst->state < TCPS_SYN_SENT)) { 5326 /* 5327 * Many stacks (ours included) will set the ACK number in an 5328 * FIN|ACK if the SYN times out -- no sequence to ACK. 5329 */ 5330 ack = dst->seqlo; 5331 } 5332 5333 if (seq == end) { 5334 /* Ease sequencing restrictions on no data packets */ 5335 seq = src->seqlo; 5336 end = seq; 5337 } 5338 5339 ackskew = dst->seqlo - ack; 5340 5341 /* 5342 * Need to demodulate the sequence numbers in any TCP SACK options 5343 * (Selective ACK). We could optionally validate the SACK values 5344 * against the current ACK window, either forwards or backwards, but 5345 * I'm not confident that SACK has been implemented properly 5346 * everywhere. It wouldn't surprise me if several stacks accidentally 5347 * SACK too far backwards of previously ACKed data. There really aren't 5348 * any security implications of bad SACKing unless the target stack 5349 * doesn't validate the option length correctly. Someone trying to 5350 * spoof into a TCP connection won't bother blindly sending SACK 5351 * options anyway. 5352 */ 5353 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 5354 if (pf_modulate_sack(m, off, pd, th, dst)) 5355 *copyback = 1; 5356 } 5357 5358 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 5359 if (SEQ_GEQ(src->seqhi, end) && 5360 /* Last octet inside other's window space */ 5361 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 5362 /* Retrans: not more than one window back */ 5363 (ackskew >= -MAXACKWINDOW) && 5364 /* Acking not more than one reassembled fragment backwards */ 5365 (ackskew <= (MAXACKWINDOW << sws)) && 5366 /* Acking not more than one window forward */ 5367 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 5368 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 5369 (pd->flags & PFDESC_IP_REAS) == 0)) { 5370 /* Require an exact/+1 sequence match on resets when possible */ 5371 5372 if (dst->scrub || src->scrub) { 5373 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5374 *state, src, dst, copyback)) 5375 return (PF_DROP); 5376 } 5377 5378 /* update max window */ 5379 if (src->max_win < win) 5380 src->max_win = win; 5381 /* synchronize sequencing */ 5382 if (SEQ_GT(end, src->seqlo)) 5383 src->seqlo = end; 5384 /* slide the window of what the other end can send */ 5385 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5386 dst->seqhi = ack + MAX((win << sws), 1); 5387 5388 /* update states */ 5389 if (th->th_flags & TH_SYN) 5390 if (src->state < TCPS_SYN_SENT) 5391 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5392 if (th->th_flags & TH_FIN) 5393 if (src->state < TCPS_CLOSING) 5394 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5395 if (th->th_flags & TH_ACK) { 5396 if (dst->state == TCPS_SYN_SENT) { 5397 pf_set_protostate(*state, pdst, 5398 TCPS_ESTABLISHED); 5399 if (src->state == TCPS_ESTABLISHED && 5400 (*state)->src_node != NULL && 5401 pf_src_connlimit(state)) { 5402 REASON_SET(reason, PFRES_SRCLIMIT); 5403 return (PF_DROP); 5404 } 5405 } else if (dst->state == TCPS_CLOSING) 5406 pf_set_protostate(*state, pdst, 5407 TCPS_FIN_WAIT_2); 5408 } 5409 if (th->th_flags & TH_RST) 5410 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5411 5412 /* update expire time */ 5413 (*state)->expire = time_uptime; 5414 if (src->state >= TCPS_FIN_WAIT_2 && 5415 dst->state >= TCPS_FIN_WAIT_2) 5416 (*state)->timeout = PFTM_TCP_CLOSED; 5417 else if (src->state >= TCPS_CLOSING && 5418 dst->state >= TCPS_CLOSING) 5419 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5420 else if (src->state < TCPS_ESTABLISHED || 5421 dst->state < TCPS_ESTABLISHED) 5422 (*state)->timeout = PFTM_TCP_OPENING; 5423 else if (src->state >= TCPS_CLOSING || 5424 dst->state >= TCPS_CLOSING) 5425 (*state)->timeout = PFTM_TCP_CLOSING; 5426 else 5427 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5428 5429 /* Fall through to PASS packet */ 5430 5431 } else if ((dst->state < TCPS_SYN_SENT || 5432 dst->state >= TCPS_FIN_WAIT_2 || 5433 src->state >= TCPS_FIN_WAIT_2) && 5434 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 5435 /* Within a window forward of the originating packet */ 5436 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 5437 /* Within a window backward of the originating packet */ 5438 5439 /* 5440 * This currently handles three situations: 5441 * 1) Stupid stacks will shotgun SYNs before their peer 5442 * replies. 5443 * 2) When PF catches an already established stream (the 5444 * firewall rebooted, the state table was flushed, routes 5445 * changed...) 5446 * 3) Packets get funky immediately after the connection 5447 * closes (this should catch Solaris spurious ACK|FINs 5448 * that web servers like to spew after a close) 5449 * 5450 * This must be a little more careful than the above code 5451 * since packet floods will also be caught here. We don't 5452 * update the TTL here to mitigate the damage of a packet 5453 * flood and so the same code can handle awkward establishment 5454 * and a loosened connection close. 5455 * In the establishment case, a correct peer response will 5456 * validate the connection, go through the normal state code 5457 * and keep updating the state TTL. 5458 */ 5459 5460 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5461 printf("pf: loose state match: "); 5462 pf_print_state(*state); 5463 pf_print_flags(th->th_flags); 5464 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5465 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 5466 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 5467 (unsigned long long)(*state)->packets[1], 5468 pd->dir == PF_IN ? "in" : "out", 5469 pd->dir == (*state)->direction ? "fwd" : "rev"); 5470 } 5471 5472 if (dst->scrub || src->scrub) { 5473 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5474 *state, src, dst, copyback)) 5475 return (PF_DROP); 5476 } 5477 5478 /* update max window */ 5479 if (src->max_win < win) 5480 src->max_win = win; 5481 /* synchronize sequencing */ 5482 if (SEQ_GT(end, src->seqlo)) 5483 src->seqlo = end; 5484 /* slide the window of what the other end can send */ 5485 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5486 dst->seqhi = ack + MAX((win << sws), 1); 5487 5488 /* 5489 * Cannot set dst->seqhi here since this could be a shotgunned 5490 * SYN and not an already established connection. 5491 */ 5492 5493 if (th->th_flags & TH_FIN) 5494 if (src->state < TCPS_CLOSING) 5495 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5496 if (th->th_flags & TH_RST) 5497 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5498 5499 /* Fall through to PASS packet */ 5500 5501 } else { 5502 if ((*state)->dst.state == TCPS_SYN_SENT && 5503 (*state)->src.state == TCPS_SYN_SENT) { 5504 /* Send RST for state mismatches during handshake */ 5505 if (!(th->th_flags & TH_RST)) 5506 pf_send_tcp((*state)->rule.ptr, pd->af, 5507 pd->dst, pd->src, th->th_dport, 5508 th->th_sport, ntohl(th->th_ack), 0, 5509 TH_RST, 0, 0, 5510 (*state)->rule.ptr->return_ttl, true, 0, 0, 5511 (*state)->act.rtableid); 5512 src->seqlo = 0; 5513 src->seqhi = 1; 5514 src->max_win = 1; 5515 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 5516 printf("pf: BAD state: "); 5517 pf_print_state(*state); 5518 pf_print_flags(th->th_flags); 5519 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5520 "pkts=%llu:%llu dir=%s,%s\n", 5521 seq, orig_seq, ack, pd->p_len, ackskew, 5522 (unsigned long long)(*state)->packets[0], 5523 (unsigned long long)(*state)->packets[1], 5524 pd->dir == PF_IN ? "in" : "out", 5525 pd->dir == (*state)->direction ? "fwd" : "rev"); 5526 printf("pf: State failure on: %c %c %c %c | %c %c\n", 5527 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 5528 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 5529 ' ': '2', 5530 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 5531 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 5532 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 5533 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 5534 } 5535 REASON_SET(reason, PFRES_BADSTATE); 5536 return (PF_DROP); 5537 } 5538 5539 return (PF_PASS); 5540 } 5541 5542 static int 5543 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 5544 { 5545 struct tcphdr *th = &pd->hdr.tcp; 5546 struct pf_state_peer *src, *dst; 5547 u_int8_t psrc, pdst; 5548 5549 if (pd->dir == (*state)->direction) { 5550 src = &(*state)->src; 5551 dst = &(*state)->dst; 5552 psrc = PF_PEER_SRC; 5553 pdst = PF_PEER_DST; 5554 } else { 5555 src = &(*state)->dst; 5556 dst = &(*state)->src; 5557 psrc = PF_PEER_DST; 5558 pdst = PF_PEER_SRC; 5559 } 5560 5561 if (th->th_flags & TH_SYN) 5562 if (src->state < TCPS_SYN_SENT) 5563 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5564 if (th->th_flags & TH_FIN) 5565 if (src->state < TCPS_CLOSING) 5566 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5567 if (th->th_flags & TH_ACK) { 5568 if (dst->state == TCPS_SYN_SENT) { 5569 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 5570 if (src->state == TCPS_ESTABLISHED && 5571 (*state)->src_node != NULL && 5572 pf_src_connlimit(state)) { 5573 REASON_SET(reason, PFRES_SRCLIMIT); 5574 return (PF_DROP); 5575 } 5576 } else if (dst->state == TCPS_CLOSING) { 5577 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 5578 } else if (src->state == TCPS_SYN_SENT && 5579 dst->state < TCPS_SYN_SENT) { 5580 /* 5581 * Handle a special sloppy case where we only see one 5582 * half of the connection. If there is a ACK after 5583 * the initial SYN without ever seeing a packet from 5584 * the destination, set the connection to established. 5585 */ 5586 pf_set_protostate(*state, PF_PEER_BOTH, 5587 TCPS_ESTABLISHED); 5588 dst->state = src->state = TCPS_ESTABLISHED; 5589 if ((*state)->src_node != NULL && 5590 pf_src_connlimit(state)) { 5591 REASON_SET(reason, PFRES_SRCLIMIT); 5592 return (PF_DROP); 5593 } 5594 } else if (src->state == TCPS_CLOSING && 5595 dst->state == TCPS_ESTABLISHED && 5596 dst->seqlo == 0) { 5597 /* 5598 * Handle the closing of half connections where we 5599 * don't see the full bidirectional FIN/ACK+ACK 5600 * handshake. 5601 */ 5602 pf_set_protostate(*state, pdst, TCPS_CLOSING); 5603 } 5604 } 5605 if (th->th_flags & TH_RST) 5606 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5607 5608 /* update expire time */ 5609 (*state)->expire = time_uptime; 5610 if (src->state >= TCPS_FIN_WAIT_2 && 5611 dst->state >= TCPS_FIN_WAIT_2) 5612 (*state)->timeout = PFTM_TCP_CLOSED; 5613 else if (src->state >= TCPS_CLOSING && 5614 dst->state >= TCPS_CLOSING) 5615 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5616 else if (src->state < TCPS_ESTABLISHED || 5617 dst->state < TCPS_ESTABLISHED) 5618 (*state)->timeout = PFTM_TCP_OPENING; 5619 else if (src->state >= TCPS_CLOSING || 5620 dst->state >= TCPS_CLOSING) 5621 (*state)->timeout = PFTM_TCP_CLOSING; 5622 else 5623 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5624 5625 return (PF_PASS); 5626 } 5627 5628 static int 5629 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 5630 { 5631 struct pf_state_key *sk = (*state)->key[pd->didx]; 5632 struct tcphdr *th = &pd->hdr.tcp; 5633 5634 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 5635 if (pd->dir != (*state)->direction) { 5636 REASON_SET(reason, PFRES_SYNPROXY); 5637 return (PF_SYNPROXY_DROP); 5638 } 5639 if (th->th_flags & TH_SYN) { 5640 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 5641 REASON_SET(reason, PFRES_SYNPROXY); 5642 return (PF_DROP); 5643 } 5644 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 5645 pd->src, th->th_dport, th->th_sport, 5646 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 5647 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, true, 0, 0, 5648 (*state)->act.rtableid); 5649 REASON_SET(reason, PFRES_SYNPROXY); 5650 return (PF_SYNPROXY_DROP); 5651 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 5652 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 5653 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 5654 REASON_SET(reason, PFRES_SYNPROXY); 5655 return (PF_DROP); 5656 } else if ((*state)->src_node != NULL && 5657 pf_src_connlimit(state)) { 5658 REASON_SET(reason, PFRES_SRCLIMIT); 5659 return (PF_DROP); 5660 } else 5661 pf_set_protostate(*state, PF_PEER_SRC, 5662 PF_TCPS_PROXY_DST); 5663 } 5664 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 5665 if (pd->dir == (*state)->direction) { 5666 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 5667 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 5668 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 5669 REASON_SET(reason, PFRES_SYNPROXY); 5670 return (PF_DROP); 5671 } 5672 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 5673 if ((*state)->dst.seqhi == 1) 5674 (*state)->dst.seqhi = htonl(arc4random()); 5675 pf_send_tcp((*state)->rule.ptr, pd->af, 5676 &sk->addr[pd->sidx], &sk->addr[pd->didx], 5677 sk->port[pd->sidx], sk->port[pd->didx], 5678 (*state)->dst.seqhi, 0, TH_SYN, 0, 5679 (*state)->src.mss, 0, false, (*state)->tag, 0, 5680 (*state)->act.rtableid); 5681 REASON_SET(reason, PFRES_SYNPROXY); 5682 return (PF_SYNPROXY_DROP); 5683 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 5684 (TH_SYN|TH_ACK)) || 5685 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 5686 REASON_SET(reason, PFRES_SYNPROXY); 5687 return (PF_DROP); 5688 } else { 5689 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 5690 (*state)->dst.seqlo = ntohl(th->th_seq); 5691 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 5692 pd->src, th->th_dport, th->th_sport, 5693 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 5694 TH_ACK, (*state)->src.max_win, 0, 0, false, 5695 (*state)->tag, 0, (*state)->act.rtableid); 5696 pf_send_tcp((*state)->rule.ptr, pd->af, 5697 &sk->addr[pd->sidx], &sk->addr[pd->didx], 5698 sk->port[pd->sidx], sk->port[pd->didx], 5699 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 5700 TH_ACK, (*state)->dst.max_win, 0, 0, true, 0, 0, 5701 (*state)->act.rtableid); 5702 (*state)->src.seqdiff = (*state)->dst.seqhi - 5703 (*state)->src.seqlo; 5704 (*state)->dst.seqdiff = (*state)->src.seqhi - 5705 (*state)->dst.seqlo; 5706 (*state)->src.seqhi = (*state)->src.seqlo + 5707 (*state)->dst.max_win; 5708 (*state)->dst.seqhi = (*state)->dst.seqlo + 5709 (*state)->src.max_win; 5710 (*state)->src.wscale = (*state)->dst.wscale = 0; 5711 pf_set_protostate(*state, PF_PEER_BOTH, 5712 TCPS_ESTABLISHED); 5713 REASON_SET(reason, PFRES_SYNPROXY); 5714 return (PF_SYNPROXY_DROP); 5715 } 5716 } 5717 5718 return (PF_PASS); 5719 } 5720 5721 static int 5722 pf_test_state_tcp(struct pf_kstate **state, struct pfi_kkif *kif, 5723 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 5724 u_short *reason) 5725 { 5726 struct pf_state_key_cmp key; 5727 struct tcphdr *th = &pd->hdr.tcp; 5728 int copyback = 0; 5729 int action; 5730 struct pf_state_peer *src, *dst; 5731 5732 bzero(&key, sizeof(key)); 5733 key.af = pd->af; 5734 key.proto = IPPROTO_TCP; 5735 if (pd->dir == PF_IN) { /* wire side, straight */ 5736 PF_ACPY(&key.addr[0], pd->src, key.af); 5737 PF_ACPY(&key.addr[1], pd->dst, key.af); 5738 key.port[0] = th->th_sport; 5739 key.port[1] = th->th_dport; 5740 } else { /* stack side, reverse */ 5741 PF_ACPY(&key.addr[1], pd->src, key.af); 5742 PF_ACPY(&key.addr[0], pd->dst, key.af); 5743 key.port[1] = th->th_sport; 5744 key.port[0] = th->th_dport; 5745 } 5746 5747 STATE_LOOKUP(kif, &key, *state, pd); 5748 5749 if (pd->dir == (*state)->direction) { 5750 src = &(*state)->src; 5751 dst = &(*state)->dst; 5752 } else { 5753 src = &(*state)->dst; 5754 dst = &(*state)->src; 5755 } 5756 5757 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 5758 return (action); 5759 5760 if (dst->state >= TCPS_FIN_WAIT_2 && 5761 src->state >= TCPS_FIN_WAIT_2 && 5762 (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) || 5763 ((th->th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK && 5764 pf_syncookie_check(pd) && pd->dir == PF_IN))) { 5765 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5766 printf("pf: state reuse "); 5767 pf_print_state(*state); 5768 pf_print_flags(th->th_flags); 5769 printf("\n"); 5770 } 5771 /* XXX make sure it's the same direction ?? */ 5772 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 5773 pf_unlink_state(*state); 5774 *state = NULL; 5775 return (PF_DROP); 5776 } 5777 5778 if ((*state)->state_flags & PFSTATE_SLOPPY) { 5779 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 5780 return (PF_DROP); 5781 } else { 5782 if (pf_tcp_track_full(state, kif, m, off, pd, reason, 5783 ©back) == PF_DROP) 5784 return (PF_DROP); 5785 } 5786 5787 /* translate source/destination address, if necessary */ 5788 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5789 struct pf_state_key *nk = (*state)->key[pd->didx]; 5790 5791 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5792 nk->port[pd->sidx] != th->th_sport) 5793 pf_change_ap(m, pd->src, &th->th_sport, 5794 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 5795 nk->port[pd->sidx], 0, pd->af); 5796 5797 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5798 nk->port[pd->didx] != th->th_dport) 5799 pf_change_ap(m, pd->dst, &th->th_dport, 5800 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 5801 nk->port[pd->didx], 0, pd->af); 5802 copyback = 1; 5803 } 5804 5805 /* Copyback sequence modulation or stateful scrub changes if needed */ 5806 if (copyback) 5807 m_copyback(m, off, sizeof(*th), (caddr_t)th); 5808 5809 return (PF_PASS); 5810 } 5811 5812 static int 5813 pf_test_state_udp(struct pf_kstate **state, struct pfi_kkif *kif, 5814 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 5815 { 5816 struct pf_state_peer *src, *dst; 5817 struct pf_state_key_cmp key; 5818 struct udphdr *uh = &pd->hdr.udp; 5819 uint8_t psrc, pdst; 5820 5821 bzero(&key, sizeof(key)); 5822 key.af = pd->af; 5823 key.proto = IPPROTO_UDP; 5824 if (pd->dir == PF_IN) { /* wire side, straight */ 5825 PF_ACPY(&key.addr[0], pd->src, key.af); 5826 PF_ACPY(&key.addr[1], pd->dst, key.af); 5827 key.port[0] = uh->uh_sport; 5828 key.port[1] = uh->uh_dport; 5829 } else { /* stack side, reverse */ 5830 PF_ACPY(&key.addr[1], pd->src, key.af); 5831 PF_ACPY(&key.addr[0], pd->dst, key.af); 5832 key.port[1] = uh->uh_sport; 5833 key.port[0] = uh->uh_dport; 5834 } 5835 5836 STATE_LOOKUP(kif, &key, *state, pd); 5837 5838 if (pd->dir == (*state)->direction) { 5839 src = &(*state)->src; 5840 dst = &(*state)->dst; 5841 psrc = PF_PEER_SRC; 5842 pdst = PF_PEER_DST; 5843 } else { 5844 src = &(*state)->dst; 5845 dst = &(*state)->src; 5846 psrc = PF_PEER_DST; 5847 pdst = PF_PEER_SRC; 5848 } 5849 5850 /* update states */ 5851 if (src->state < PFUDPS_SINGLE) 5852 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 5853 if (dst->state == PFUDPS_SINGLE) 5854 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 5855 5856 /* update expire time */ 5857 (*state)->expire = time_uptime; 5858 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 5859 (*state)->timeout = PFTM_UDP_MULTIPLE; 5860 else 5861 (*state)->timeout = PFTM_UDP_SINGLE; 5862 5863 /* translate source/destination address, if necessary */ 5864 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5865 struct pf_state_key *nk = (*state)->key[pd->didx]; 5866 5867 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5868 nk->port[pd->sidx] != uh->uh_sport) 5869 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 5870 &uh->uh_sum, &nk->addr[pd->sidx], 5871 nk->port[pd->sidx], 1, pd->af); 5872 5873 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5874 nk->port[pd->didx] != uh->uh_dport) 5875 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 5876 &uh->uh_sum, &nk->addr[pd->didx], 5877 nk->port[pd->didx], 1, pd->af); 5878 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 5879 } 5880 5881 return (PF_PASS); 5882 } 5883 5884 static int 5885 pf_test_state_sctp(struct pf_kstate **state, struct pfi_kkif *kif, 5886 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 5887 { 5888 struct pf_state_key_cmp key; 5889 struct pf_state_peer *src, *dst; 5890 struct sctphdr *sh = &pd->hdr.sctp; 5891 u_int8_t psrc; //, pdst; 5892 5893 bzero(&key, sizeof(key)); 5894 key.af = pd->af; 5895 key.proto = IPPROTO_SCTP; 5896 if (pd->dir == PF_IN) { /* wire side, straight */ 5897 PF_ACPY(&key.addr[0], pd->src, key.af); 5898 PF_ACPY(&key.addr[1], pd->dst, key.af); 5899 key.port[0] = sh->src_port; 5900 key.port[1] = sh->dest_port; 5901 } else { /* stack side, reverse */ 5902 PF_ACPY(&key.addr[1], pd->src, key.af); 5903 PF_ACPY(&key.addr[0], pd->dst, key.af); 5904 key.port[1] = sh->src_port; 5905 key.port[0] = sh->dest_port; 5906 } 5907 5908 STATE_LOOKUP(kif, &key, *state, pd); 5909 5910 if (pd->dir == (*state)->direction) { 5911 src = &(*state)->src; 5912 dst = &(*state)->dst; 5913 psrc = PF_PEER_SRC; 5914 } else { 5915 src = &(*state)->dst; 5916 dst = &(*state)->src; 5917 psrc = PF_PEER_DST; 5918 } 5919 5920 /* Track state. */ 5921 if (pd->sctp_flags & PFDESC_SCTP_INIT) { 5922 if (src->state < SCTP_COOKIE_WAIT) { 5923 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT); 5924 (*state)->timeout = PFTM_SCTP_OPENING; 5925 } 5926 } 5927 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) { 5928 MPASS(dst->scrub != NULL); 5929 if (dst->scrub->pfss_v_tag == 0) 5930 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag; 5931 } 5932 5933 if (pd->sctp_flags & PFDESC_SCTP_COOKIE) { 5934 if (src->state < SCTP_ESTABLISHED) { 5935 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED); 5936 (*state)->timeout = PFTM_SCTP_ESTABLISHED; 5937 } 5938 } 5939 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | PFDESC_SCTP_ABORT | 5940 PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 5941 if (src->state < SCTP_SHUTDOWN_PENDING) { 5942 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING); 5943 (*state)->timeout = PFTM_SCTP_CLOSING; 5944 } 5945 } 5946 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 5947 pf_set_protostate(*state, psrc, SCTP_CLOSED); 5948 (*state)->timeout = PFTM_SCTP_CLOSED; 5949 } 5950 5951 if (src->scrub != NULL) { 5952 if (src->scrub->pfss_v_tag == 0) { 5953 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag; 5954 } else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag) 5955 return (PF_DROP); 5956 } 5957 5958 (*state)->expire = time_uptime; 5959 5960 /* translate source/destination address, if necessary */ 5961 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5962 uint16_t checksum = 0; 5963 struct pf_state_key *nk = (*state)->key[pd->didx]; 5964 5965 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5966 nk->port[pd->sidx] != pd->hdr.sctp.src_port) { 5967 pf_change_ap(m, pd->src, &pd->hdr.sctp.src_port, 5968 pd->ip_sum, &checksum, &nk->addr[pd->sidx], 5969 nk->port[pd->sidx], 1, pd->af); 5970 } 5971 5972 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5973 nk->port[pd->didx] != pd->hdr.sctp.dest_port) { 5974 pf_change_ap(m, pd->dst, &pd->hdr.sctp.dest_port, 5975 pd->ip_sum, &checksum, &nk->addr[pd->didx], 5976 nk->port[pd->didx], 1, pd->af); 5977 } 5978 } 5979 5980 return (PF_PASS); 5981 } 5982 5983 static void 5984 pf_sctp_multihome_detach_addr(const struct pf_kstate *s) 5985 { 5986 struct pf_sctp_endpoint key; 5987 struct pf_sctp_endpoint *ep; 5988 struct pf_state_key *sks = s->key[PF_SK_STACK]; 5989 struct pf_sctp_source *i, *tmp; 5990 5991 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL) 5992 return; 5993 5994 PF_SCTP_ENDPOINTS_LOCK(); 5995 5996 key.v_tag = s->dst.scrub->pfss_v_tag; 5997 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 5998 if (ep != NULL) { 5999 /* XXX Actually remove! */ 6000 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6001 if (pf_addr_cmp(&i->addr, 6002 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT], 6003 s->key[PF_SK_WIRE]->af) == 0) { 6004 TAILQ_REMOVE(&ep->sources, i, entry); 6005 free(i, M_PFTEMP); 6006 break; 6007 } 6008 } 6009 6010 if (TAILQ_EMPTY(&ep->sources)) { 6011 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6012 free(ep, M_PFTEMP); 6013 } 6014 } 6015 6016 /* Other direction. */ 6017 key.v_tag = s->src.scrub->pfss_v_tag; 6018 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6019 if (ep != NULL) { 6020 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6021 if (pf_addr_cmp(&i->addr, 6022 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN], 6023 s->key[PF_SK_WIRE]->af) == 0) { 6024 TAILQ_REMOVE(&ep->sources, i, entry); 6025 free(i, M_PFTEMP); 6026 break; 6027 } 6028 } 6029 6030 if (TAILQ_EMPTY(&ep->sources)) { 6031 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6032 free(ep, M_PFTEMP); 6033 } 6034 } 6035 6036 PF_SCTP_ENDPOINTS_UNLOCK(); 6037 } 6038 6039 static void 6040 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag) 6041 { 6042 struct pf_sctp_endpoint key = { 6043 .v_tag = v_tag, 6044 }; 6045 struct pf_sctp_source *i; 6046 struct pf_sctp_endpoint *ep; 6047 6048 PF_SCTP_ENDPOINTS_LOCK(); 6049 6050 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6051 if (ep == NULL) { 6052 ep = malloc(sizeof(struct pf_sctp_endpoint), 6053 M_PFTEMP, M_NOWAIT); 6054 if (ep == NULL) { 6055 PF_SCTP_ENDPOINTS_UNLOCK(); 6056 return; 6057 } 6058 6059 ep->v_tag = v_tag; 6060 TAILQ_INIT(&ep->sources); 6061 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6062 } 6063 6064 /* Avoid inserting duplicates. */ 6065 TAILQ_FOREACH(i, &ep->sources, entry) { 6066 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) { 6067 PF_SCTP_ENDPOINTS_UNLOCK(); 6068 return; 6069 } 6070 } 6071 6072 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT); 6073 if (i == NULL) { 6074 PF_SCTP_ENDPOINTS_UNLOCK(); 6075 return; 6076 } 6077 6078 i->af = pd->af; 6079 memcpy(&i->addr, a, sizeof(*a)); 6080 TAILQ_INSERT_TAIL(&ep->sources, i, entry); 6081 6082 PF_SCTP_ENDPOINTS_UNLOCK(); 6083 } 6084 6085 static void 6086 pf_sctp_multihome_delayed(struct pf_pdesc *pd, int off, struct pfi_kkif *kif, 6087 struct pf_kstate *s, int action) 6088 { 6089 struct pf_sctp_multihome_job *j, *tmp; 6090 struct pf_sctp_source *i; 6091 int ret __unused;; 6092 struct pf_kstate *sm = NULL; 6093 struct pf_krule *ra = NULL; 6094 struct pf_krule *r = &V_pf_default_rule; 6095 struct pf_kruleset *rs = NULL; 6096 bool do_extra = true; 6097 6098 PF_RULES_RLOCK_TRACKER; 6099 6100 again: 6101 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) { 6102 if (s == NULL || action != PF_PASS) 6103 goto free; 6104 6105 /* Confirm we don't recurse here. */ 6106 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP)); 6107 6108 switch (j->op) { 6109 case SCTP_ADD_IP_ADDRESS: { 6110 uint32_t v_tag = pd->sctp_initiate_tag; 6111 6112 if (v_tag == 0) { 6113 if (s->direction == pd->dir) 6114 v_tag = s->src.scrub->pfss_v_tag; 6115 else 6116 v_tag = s->dst.scrub->pfss_v_tag; 6117 } 6118 6119 /* 6120 * Avoid duplicating states. We'll already have 6121 * created a state based on the source address of 6122 * the packet, but SCTP endpoints may also list this 6123 * address again in the INIT(_ACK) parameters. 6124 */ 6125 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) { 6126 break; 6127 } 6128 6129 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP; 6130 PF_RULES_RLOCK(); 6131 sm = NULL; 6132 /* XXX: May generated unwanted abort if we try to insert a duplicate state. */ 6133 ret = pf_test_rule(&r, &sm, kif, 6134 j->m, off, &j->pd, &ra, &rs, NULL); 6135 PF_RULES_RUNLOCK(); 6136 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->m, ret); 6137 if (ret != PF_DROP && sm != NULL) { 6138 /* Inherit v_tag values. */ 6139 if (sm->direction == s->direction) { 6140 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6141 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6142 } else { 6143 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6144 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6145 } 6146 PF_STATE_UNLOCK(sm); 6147 } else { 6148 /* If we try duplicate inserts? */ 6149 break; 6150 } 6151 6152 /* Only add the addres if we've actually allowed the state. */ 6153 pf_sctp_multihome_add_addr(pd, &j->src, v_tag); 6154 6155 if (! do_extra) { 6156 break; 6157 } 6158 /* 6159 * We need to do this for each of our source addresses. 6160 * Find those based on the verification tag. 6161 */ 6162 struct pf_sctp_endpoint key = { 6163 .v_tag = pd->hdr.sctp.v_tag, 6164 }; 6165 struct pf_sctp_endpoint *ep; 6166 6167 PF_SCTP_ENDPOINTS_LOCK(); 6168 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6169 if (ep == NULL) { 6170 PF_SCTP_ENDPOINTS_UNLOCK(); 6171 break; 6172 } 6173 MPASS(ep != NULL); 6174 6175 TAILQ_FOREACH(i, &ep->sources, entry) { 6176 struct pf_sctp_multihome_job *nj; 6177 6178 /* SCTP can intermingle IPv4 and IPv6. */ 6179 if (i->af != pd->af) 6180 continue; 6181 6182 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO); 6183 if (! nj) { 6184 continue; 6185 } 6186 memcpy(&nj->pd, &j->pd, sizeof(j->pd)); 6187 memcpy(&nj->src, &j->src, sizeof(nj->src)); 6188 nj->pd.src = &nj->src; 6189 // New destination address! 6190 memcpy(&nj->dst, &i->addr, sizeof(nj->dst)); 6191 nj->pd.dst = &nj->dst; 6192 nj->m = j->m; 6193 nj->op = j->op; 6194 6195 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next); 6196 } 6197 PF_SCTP_ENDPOINTS_UNLOCK(); 6198 6199 break; 6200 } 6201 case SCTP_DEL_IP_ADDRESS: { 6202 struct pf_state_key_cmp key; 6203 uint8_t psrc; 6204 6205 bzero(&key, sizeof(key)); 6206 key.af = j->pd.af; 6207 key.proto = IPPROTO_SCTP; 6208 if (j->pd.dir == PF_IN) { /* wire side, straight */ 6209 PF_ACPY(&key.addr[0], j->pd.src, key.af); 6210 PF_ACPY(&key.addr[1], j->pd.dst, key.af); 6211 key.port[0] = j->pd.hdr.sctp.src_port; 6212 key.port[1] = j->pd.hdr.sctp.dest_port; 6213 } else { /* stack side, reverse */ 6214 PF_ACPY(&key.addr[1], j->pd.src, key.af); 6215 PF_ACPY(&key.addr[0], j->pd.dst, key.af); 6216 key.port[1] = j->pd.hdr.sctp.src_port; 6217 key.port[0] = j->pd.hdr.sctp.dest_port; 6218 } 6219 6220 sm = pf_find_state(kif, &key, j->pd.dir); 6221 if (sm != NULL) { 6222 PF_STATE_LOCK_ASSERT(sm); 6223 if (j->pd.dir == sm->direction) { 6224 psrc = PF_PEER_SRC; 6225 } else { 6226 psrc = PF_PEER_DST; 6227 } 6228 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING); 6229 sm->timeout = PFTM_SCTP_CLOSING; 6230 PF_STATE_UNLOCK(sm); 6231 } 6232 break; 6233 default: 6234 panic("Unknown op %#x", j->op); 6235 } 6236 } 6237 6238 free: 6239 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next); 6240 free(j, M_PFTEMP); 6241 } 6242 6243 /* We may have inserted extra work while processing the list. */ 6244 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) { 6245 do_extra = false; 6246 goto again; 6247 } 6248 } 6249 6250 static int 6251 pf_multihome_scan(struct mbuf *m, int start, int len, struct pf_pdesc *pd, 6252 struct pfi_kkif *kif, int op) 6253 { 6254 int off = 0; 6255 struct pf_sctp_multihome_job *job; 6256 6257 while (off < len) { 6258 struct sctp_paramhdr h; 6259 6260 if (!pf_pull_hdr(m, start + off, &h, sizeof(h), NULL, NULL, 6261 pd->af)) 6262 return (PF_DROP); 6263 6264 /* Parameters are at least 4 bytes. */ 6265 if (ntohs(h.param_length) < 4) 6266 return (PF_DROP); 6267 6268 switch (ntohs(h.param_type)) { 6269 case SCTP_IPV4_ADDRESS: { 6270 struct in_addr t; 6271 6272 if (ntohs(h.param_length) != 6273 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6274 return (PF_DROP); 6275 6276 if (!pf_pull_hdr(m, start + off + sizeof(h), &t, sizeof(t), 6277 NULL, NULL, pd->af)) 6278 return (PF_DROP); 6279 6280 if (in_nullhost(t)) 6281 t.s_addr = pd->src->v4.s_addr; 6282 6283 /* 6284 * We hold the state lock (idhash) here, which means 6285 * that we can't acquire the keyhash, or we'll get a 6286 * LOR (and potentially double-lock things too). We also 6287 * can't release the state lock here, so instead we'll 6288 * enqueue this for async handling. 6289 * There's a relatively small race here, in that a 6290 * packet using the new addresses could arrive already, 6291 * but that's just though luck for it. 6292 */ 6293 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6294 if (! job) 6295 return (PF_DROP); 6296 6297 memcpy(&job->pd, pd, sizeof(*pd)); 6298 6299 // New source address! 6300 memcpy(&job->src, &t, sizeof(t)); 6301 job->pd.src = &job->src; 6302 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6303 job->pd.dst = &job->dst; 6304 job->m = m; 6305 job->op = op; 6306 6307 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6308 break; 6309 } 6310 #ifdef INET6 6311 case SCTP_IPV6_ADDRESS: { 6312 struct in6_addr t; 6313 6314 if (ntohs(h.param_length) != 6315 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6316 return (PF_DROP); 6317 6318 if (!pf_pull_hdr(m, start + off + sizeof(h), &t, sizeof(t), 6319 NULL, NULL, pd->af)) 6320 return (PF_DROP); 6321 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0) 6322 break; 6323 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0) 6324 memcpy(&t, &pd->src->v6, sizeof(t)); 6325 6326 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6327 if (! job) 6328 return (PF_DROP); 6329 6330 memcpy(&job->pd, pd, sizeof(*pd)); 6331 memcpy(&job->src, &t, sizeof(t)); 6332 job->pd.src = &job->src; 6333 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6334 job->pd.dst = &job->dst; 6335 job->m = m; 6336 job->op = op; 6337 6338 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6339 break; 6340 } 6341 #endif 6342 case SCTP_ADD_IP_ADDRESS: { 6343 int ret; 6344 struct sctp_asconf_paramhdr ah; 6345 6346 if (!pf_pull_hdr(m, start + off, &ah, sizeof(ah), 6347 NULL, NULL, pd->af)) 6348 return (PF_DROP); 6349 6350 ret = pf_multihome_scan(m, start + off + sizeof(ah), 6351 ntohs(ah.ph.param_length) - sizeof(ah), pd, kif, 6352 SCTP_ADD_IP_ADDRESS); 6353 if (ret != PF_PASS) 6354 return (ret); 6355 break; 6356 } 6357 case SCTP_DEL_IP_ADDRESS: { 6358 int ret; 6359 struct sctp_asconf_paramhdr ah; 6360 6361 if (!pf_pull_hdr(m, start + off, &ah, sizeof(ah), 6362 NULL, NULL, pd->af)) 6363 return (PF_DROP); 6364 ret = pf_multihome_scan(m, start + off + sizeof(ah), 6365 ntohs(ah.ph.param_length) - sizeof(ah), pd, kif, 6366 SCTP_DEL_IP_ADDRESS); 6367 if (ret != PF_PASS) 6368 return (ret); 6369 break; 6370 } 6371 default: 6372 break; 6373 } 6374 6375 off += roundup(ntohs(h.param_length), 4); 6376 } 6377 6378 return (PF_PASS); 6379 } 6380 int 6381 pf_multihome_scan_init(struct mbuf *m, int start, int len, struct pf_pdesc *pd, 6382 struct pfi_kkif *kif) 6383 { 6384 start += sizeof(struct sctp_init_chunk); 6385 len -= sizeof(struct sctp_init_chunk); 6386 6387 return (pf_multihome_scan(m, start, len, pd, kif, SCTP_ADD_IP_ADDRESS)); 6388 } 6389 6390 int 6391 pf_multihome_scan_asconf(struct mbuf *m, int start, int len, 6392 struct pf_pdesc *pd, struct pfi_kkif *kif) 6393 { 6394 start += sizeof(struct sctp_asconf_chunk); 6395 len -= sizeof(struct sctp_asconf_chunk); 6396 6397 return (pf_multihome_scan(m, start, len, pd, kif, SCTP_ADD_IP_ADDRESS)); 6398 } 6399 6400 static int 6401 pf_test_state_icmp(struct pf_kstate **state, struct pfi_kkif *kif, 6402 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 6403 { 6404 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 6405 u_int16_t icmpid = 0, *icmpsum; 6406 u_int8_t icmptype, icmpcode; 6407 int state_icmp = 0; 6408 struct pf_state_key_cmp key; 6409 6410 bzero(&key, sizeof(key)); 6411 switch (pd->proto) { 6412 #ifdef INET 6413 case IPPROTO_ICMP: 6414 icmptype = pd->hdr.icmp.icmp_type; 6415 icmpcode = pd->hdr.icmp.icmp_code; 6416 icmpid = pd->hdr.icmp.icmp_id; 6417 icmpsum = &pd->hdr.icmp.icmp_cksum; 6418 6419 if (icmptype == ICMP_UNREACH || 6420 icmptype == ICMP_SOURCEQUENCH || 6421 icmptype == ICMP_REDIRECT || 6422 icmptype == ICMP_TIMXCEED || 6423 icmptype == ICMP_PARAMPROB) 6424 state_icmp++; 6425 break; 6426 #endif /* INET */ 6427 #ifdef INET6 6428 case IPPROTO_ICMPV6: 6429 icmptype = pd->hdr.icmp6.icmp6_type; 6430 icmpcode = pd->hdr.icmp6.icmp6_code; 6431 icmpid = pd->hdr.icmp6.icmp6_id; 6432 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 6433 6434 if (icmptype == ICMP6_DST_UNREACH || 6435 icmptype == ICMP6_PACKET_TOO_BIG || 6436 icmptype == ICMP6_TIME_EXCEEDED || 6437 icmptype == ICMP6_PARAM_PROB) 6438 state_icmp++; 6439 break; 6440 #endif /* INET6 */ 6441 } 6442 6443 if (!state_icmp) { 6444 /* 6445 * ICMP query/reply message not related to a TCP/UDP packet. 6446 * Search for an ICMP state. 6447 */ 6448 key.af = pd->af; 6449 key.proto = pd->proto; 6450 key.port[0] = key.port[1] = icmpid; 6451 if (pd->dir == PF_IN) { /* wire side, straight */ 6452 PF_ACPY(&key.addr[0], pd->src, key.af); 6453 PF_ACPY(&key.addr[1], pd->dst, key.af); 6454 } else { /* stack side, reverse */ 6455 PF_ACPY(&key.addr[1], pd->src, key.af); 6456 PF_ACPY(&key.addr[0], pd->dst, key.af); 6457 } 6458 6459 STATE_LOOKUP(kif, &key, *state, pd); 6460 6461 (*state)->expire = time_uptime; 6462 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 6463 6464 /* translate source/destination address, if necessary */ 6465 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6466 struct pf_state_key *nk = (*state)->key[pd->didx]; 6467 6468 switch (pd->af) { 6469 #ifdef INET 6470 case AF_INET: 6471 if (PF_ANEQ(pd->src, 6472 &nk->addr[pd->sidx], AF_INET)) 6473 pf_change_a(&saddr->v4.s_addr, 6474 pd->ip_sum, 6475 nk->addr[pd->sidx].v4.s_addr, 0); 6476 6477 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 6478 AF_INET)) 6479 pf_change_a(&daddr->v4.s_addr, 6480 pd->ip_sum, 6481 nk->addr[pd->didx].v4.s_addr, 0); 6482 6483 if (nk->port[0] != 6484 pd->hdr.icmp.icmp_id) { 6485 pd->hdr.icmp.icmp_cksum = 6486 pf_cksum_fixup( 6487 pd->hdr.icmp.icmp_cksum, icmpid, 6488 nk->port[pd->sidx], 0); 6489 pd->hdr.icmp.icmp_id = 6490 nk->port[pd->sidx]; 6491 } 6492 6493 m_copyback(m, off, ICMP_MINLEN, 6494 (caddr_t )&pd->hdr.icmp); 6495 break; 6496 #endif /* INET */ 6497 #ifdef INET6 6498 case AF_INET6: 6499 if (PF_ANEQ(pd->src, 6500 &nk->addr[pd->sidx], AF_INET6)) 6501 pf_change_a6(saddr, 6502 &pd->hdr.icmp6.icmp6_cksum, 6503 &nk->addr[pd->sidx], 0); 6504 6505 if (PF_ANEQ(pd->dst, 6506 &nk->addr[pd->didx], AF_INET6)) 6507 pf_change_a6(daddr, 6508 &pd->hdr.icmp6.icmp6_cksum, 6509 &nk->addr[pd->didx], 0); 6510 6511 m_copyback(m, off, sizeof(struct icmp6_hdr), 6512 (caddr_t )&pd->hdr.icmp6); 6513 break; 6514 #endif /* INET6 */ 6515 } 6516 } 6517 return (PF_PASS); 6518 6519 } else { 6520 /* 6521 * ICMP error message in response to a TCP/UDP packet. 6522 * Extract the inner TCP/UDP header and search for that state. 6523 */ 6524 6525 struct pf_pdesc pd2; 6526 bzero(&pd2, sizeof pd2); 6527 #ifdef INET 6528 struct ip h2; 6529 #endif /* INET */ 6530 #ifdef INET6 6531 struct ip6_hdr h2_6; 6532 int terminal = 0; 6533 #endif /* INET6 */ 6534 int ipoff2 = 0; 6535 int off2 = 0; 6536 6537 pd2.af = pd->af; 6538 /* Payload packet is from the opposite direction. */ 6539 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0; 6540 pd2.didx = (pd->dir == PF_IN) ? 0 : 1; 6541 switch (pd->af) { 6542 #ifdef INET 6543 case AF_INET: 6544 /* offset of h2 in mbuf chain */ 6545 ipoff2 = off + ICMP_MINLEN; 6546 6547 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 6548 NULL, reason, pd2.af)) { 6549 DPFPRINTF(PF_DEBUG_MISC, 6550 ("pf: ICMP error message too short " 6551 "(ip)\n")); 6552 return (PF_DROP); 6553 } 6554 /* 6555 * ICMP error messages don't refer to non-first 6556 * fragments 6557 */ 6558 if (h2.ip_off & htons(IP_OFFMASK)) { 6559 REASON_SET(reason, PFRES_FRAG); 6560 return (PF_DROP); 6561 } 6562 6563 /* offset of protocol header that follows h2 */ 6564 off2 = ipoff2 + (h2.ip_hl << 2); 6565 6566 pd2.proto = h2.ip_p; 6567 pd2.src = (struct pf_addr *)&h2.ip_src; 6568 pd2.dst = (struct pf_addr *)&h2.ip_dst; 6569 pd2.ip_sum = &h2.ip_sum; 6570 break; 6571 #endif /* INET */ 6572 #ifdef INET6 6573 case AF_INET6: 6574 ipoff2 = off + sizeof(struct icmp6_hdr); 6575 6576 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 6577 NULL, reason, pd2.af)) { 6578 DPFPRINTF(PF_DEBUG_MISC, 6579 ("pf: ICMP error message too short " 6580 "(ip6)\n")); 6581 return (PF_DROP); 6582 } 6583 pd2.proto = h2_6.ip6_nxt; 6584 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 6585 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 6586 pd2.ip_sum = NULL; 6587 off2 = ipoff2 + sizeof(h2_6); 6588 do { 6589 switch (pd2.proto) { 6590 case IPPROTO_FRAGMENT: 6591 /* 6592 * ICMPv6 error messages for 6593 * non-first fragments 6594 */ 6595 REASON_SET(reason, PFRES_FRAG); 6596 return (PF_DROP); 6597 case IPPROTO_AH: 6598 case IPPROTO_HOPOPTS: 6599 case IPPROTO_ROUTING: 6600 case IPPROTO_DSTOPTS: { 6601 /* get next header and header length */ 6602 struct ip6_ext opt6; 6603 6604 if (!pf_pull_hdr(m, off2, &opt6, 6605 sizeof(opt6), NULL, reason, 6606 pd2.af)) { 6607 DPFPRINTF(PF_DEBUG_MISC, 6608 ("pf: ICMPv6 short opt\n")); 6609 return (PF_DROP); 6610 } 6611 if (pd2.proto == IPPROTO_AH) 6612 off2 += (opt6.ip6e_len + 2) * 4; 6613 else 6614 off2 += (opt6.ip6e_len + 1) * 8; 6615 pd2.proto = opt6.ip6e_nxt; 6616 /* goto the next header */ 6617 break; 6618 } 6619 default: 6620 terminal++; 6621 break; 6622 } 6623 } while (!terminal); 6624 break; 6625 #endif /* INET6 */ 6626 } 6627 6628 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 6629 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6630 printf("pf: BAD ICMP %d:%d outer dst: ", 6631 icmptype, icmpcode); 6632 pf_print_host(pd->src, 0, pd->af); 6633 printf(" -> "); 6634 pf_print_host(pd->dst, 0, pd->af); 6635 printf(" inner src: "); 6636 pf_print_host(pd2.src, 0, pd2.af); 6637 printf(" -> "); 6638 pf_print_host(pd2.dst, 0, pd2.af); 6639 printf("\n"); 6640 } 6641 REASON_SET(reason, PFRES_BADSTATE); 6642 return (PF_DROP); 6643 } 6644 6645 switch (pd2.proto) { 6646 case IPPROTO_TCP: { 6647 struct tcphdr th; 6648 u_int32_t seq; 6649 struct pf_state_peer *src, *dst; 6650 u_int8_t dws; 6651 int copyback = 0; 6652 6653 /* 6654 * Only the first 8 bytes of the TCP header can be 6655 * expected. Don't access any TCP header fields after 6656 * th_seq, an ackskew test is not possible. 6657 */ 6658 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 6659 pd2.af)) { 6660 DPFPRINTF(PF_DEBUG_MISC, 6661 ("pf: ICMP error message too short " 6662 "(tcp)\n")); 6663 return (PF_DROP); 6664 } 6665 6666 key.af = pd2.af; 6667 key.proto = IPPROTO_TCP; 6668 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6669 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6670 key.port[pd2.sidx] = th.th_sport; 6671 key.port[pd2.didx] = th.th_dport; 6672 6673 STATE_LOOKUP(kif, &key, *state, pd); 6674 6675 if (pd->dir == (*state)->direction) { 6676 src = &(*state)->dst; 6677 dst = &(*state)->src; 6678 } else { 6679 src = &(*state)->src; 6680 dst = &(*state)->dst; 6681 } 6682 6683 if (src->wscale && dst->wscale) 6684 dws = dst->wscale & PF_WSCALE_MASK; 6685 else 6686 dws = 0; 6687 6688 /* Demodulate sequence number */ 6689 seq = ntohl(th.th_seq) - src->seqdiff; 6690 if (src->seqdiff) { 6691 pf_change_a(&th.th_seq, icmpsum, 6692 htonl(seq), 0); 6693 copyback = 1; 6694 } 6695 6696 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 6697 (!SEQ_GEQ(src->seqhi, seq) || 6698 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 6699 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6700 printf("pf: BAD ICMP %d:%d ", 6701 icmptype, icmpcode); 6702 pf_print_host(pd->src, 0, pd->af); 6703 printf(" -> "); 6704 pf_print_host(pd->dst, 0, pd->af); 6705 printf(" state: "); 6706 pf_print_state(*state); 6707 printf(" seq=%u\n", seq); 6708 } 6709 REASON_SET(reason, PFRES_BADSTATE); 6710 return (PF_DROP); 6711 } else { 6712 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6713 printf("pf: OK ICMP %d:%d ", 6714 icmptype, icmpcode); 6715 pf_print_host(pd->src, 0, pd->af); 6716 printf(" -> "); 6717 pf_print_host(pd->dst, 0, pd->af); 6718 printf(" state: "); 6719 pf_print_state(*state); 6720 printf(" seq=%u\n", seq); 6721 } 6722 } 6723 6724 /* translate source/destination address, if necessary */ 6725 if ((*state)->key[PF_SK_WIRE] != 6726 (*state)->key[PF_SK_STACK]) { 6727 struct pf_state_key *nk = 6728 (*state)->key[pd->didx]; 6729 6730 if (PF_ANEQ(pd2.src, 6731 &nk->addr[pd2.sidx], pd2.af) || 6732 nk->port[pd2.sidx] != th.th_sport) 6733 pf_change_icmp(pd2.src, &th.th_sport, 6734 daddr, &nk->addr[pd2.sidx], 6735 nk->port[pd2.sidx], NULL, 6736 pd2.ip_sum, icmpsum, 6737 pd->ip_sum, 0, pd2.af); 6738 6739 if (PF_ANEQ(pd2.dst, 6740 &nk->addr[pd2.didx], pd2.af) || 6741 nk->port[pd2.didx] != th.th_dport) 6742 pf_change_icmp(pd2.dst, &th.th_dport, 6743 saddr, &nk->addr[pd2.didx], 6744 nk->port[pd2.didx], NULL, 6745 pd2.ip_sum, icmpsum, 6746 pd->ip_sum, 0, pd2.af); 6747 copyback = 1; 6748 } 6749 6750 if (copyback) { 6751 switch (pd2.af) { 6752 #ifdef INET 6753 case AF_INET: 6754 m_copyback(m, off, ICMP_MINLEN, 6755 (caddr_t )&pd->hdr.icmp); 6756 m_copyback(m, ipoff2, sizeof(h2), 6757 (caddr_t )&h2); 6758 break; 6759 #endif /* INET */ 6760 #ifdef INET6 6761 case AF_INET6: 6762 m_copyback(m, off, 6763 sizeof(struct icmp6_hdr), 6764 (caddr_t )&pd->hdr.icmp6); 6765 m_copyback(m, ipoff2, sizeof(h2_6), 6766 (caddr_t )&h2_6); 6767 break; 6768 #endif /* INET6 */ 6769 } 6770 m_copyback(m, off2, 8, (caddr_t)&th); 6771 } 6772 6773 return (PF_PASS); 6774 break; 6775 } 6776 case IPPROTO_UDP: { 6777 struct udphdr uh; 6778 6779 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 6780 NULL, reason, pd2.af)) { 6781 DPFPRINTF(PF_DEBUG_MISC, 6782 ("pf: ICMP error message too short " 6783 "(udp)\n")); 6784 return (PF_DROP); 6785 } 6786 6787 key.af = pd2.af; 6788 key.proto = IPPROTO_UDP; 6789 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6790 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6791 key.port[pd2.sidx] = uh.uh_sport; 6792 key.port[pd2.didx] = uh.uh_dport; 6793 6794 STATE_LOOKUP(kif, &key, *state, pd); 6795 6796 /* translate source/destination address, if necessary */ 6797 if ((*state)->key[PF_SK_WIRE] != 6798 (*state)->key[PF_SK_STACK]) { 6799 struct pf_state_key *nk = 6800 (*state)->key[pd->didx]; 6801 6802 if (PF_ANEQ(pd2.src, 6803 &nk->addr[pd2.sidx], pd2.af) || 6804 nk->port[pd2.sidx] != uh.uh_sport) 6805 pf_change_icmp(pd2.src, &uh.uh_sport, 6806 daddr, &nk->addr[pd2.sidx], 6807 nk->port[pd2.sidx], &uh.uh_sum, 6808 pd2.ip_sum, icmpsum, 6809 pd->ip_sum, 1, pd2.af); 6810 6811 if (PF_ANEQ(pd2.dst, 6812 &nk->addr[pd2.didx], pd2.af) || 6813 nk->port[pd2.didx] != uh.uh_dport) 6814 pf_change_icmp(pd2.dst, &uh.uh_dport, 6815 saddr, &nk->addr[pd2.didx], 6816 nk->port[pd2.didx], &uh.uh_sum, 6817 pd2.ip_sum, icmpsum, 6818 pd->ip_sum, 1, pd2.af); 6819 6820 switch (pd2.af) { 6821 #ifdef INET 6822 case AF_INET: 6823 m_copyback(m, off, ICMP_MINLEN, 6824 (caddr_t )&pd->hdr.icmp); 6825 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6826 break; 6827 #endif /* INET */ 6828 #ifdef INET6 6829 case AF_INET6: 6830 m_copyback(m, off, 6831 sizeof(struct icmp6_hdr), 6832 (caddr_t )&pd->hdr.icmp6); 6833 m_copyback(m, ipoff2, sizeof(h2_6), 6834 (caddr_t )&h2_6); 6835 break; 6836 #endif /* INET6 */ 6837 } 6838 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 6839 } 6840 return (PF_PASS); 6841 break; 6842 } 6843 #ifdef INET 6844 case IPPROTO_ICMP: { 6845 struct icmp iih; 6846 6847 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 6848 NULL, reason, pd2.af)) { 6849 DPFPRINTF(PF_DEBUG_MISC, 6850 ("pf: ICMP error message too short i" 6851 "(icmp)\n")); 6852 return (PF_DROP); 6853 } 6854 6855 key.af = pd2.af; 6856 key.proto = IPPROTO_ICMP; 6857 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6858 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6859 key.port[0] = key.port[1] = iih.icmp_id; 6860 6861 STATE_LOOKUP(kif, &key, *state, pd); 6862 6863 /* translate source/destination address, if necessary */ 6864 if ((*state)->key[PF_SK_WIRE] != 6865 (*state)->key[PF_SK_STACK]) { 6866 struct pf_state_key *nk = 6867 (*state)->key[pd->didx]; 6868 6869 if (PF_ANEQ(pd2.src, 6870 &nk->addr[pd2.sidx], pd2.af) || 6871 nk->port[pd2.sidx] != iih.icmp_id) 6872 pf_change_icmp(pd2.src, &iih.icmp_id, 6873 daddr, &nk->addr[pd2.sidx], 6874 nk->port[pd2.sidx], NULL, 6875 pd2.ip_sum, icmpsum, 6876 pd->ip_sum, 0, AF_INET); 6877 6878 if (PF_ANEQ(pd2.dst, 6879 &nk->addr[pd2.didx], pd2.af) || 6880 nk->port[pd2.didx] != iih.icmp_id) 6881 pf_change_icmp(pd2.dst, &iih.icmp_id, 6882 saddr, &nk->addr[pd2.didx], 6883 nk->port[pd2.didx], NULL, 6884 pd2.ip_sum, icmpsum, 6885 pd->ip_sum, 0, AF_INET); 6886 6887 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 6888 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6889 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 6890 } 6891 return (PF_PASS); 6892 break; 6893 } 6894 #endif /* INET */ 6895 #ifdef INET6 6896 case IPPROTO_ICMPV6: { 6897 struct icmp6_hdr iih; 6898 6899 if (!pf_pull_hdr(m, off2, &iih, 6900 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 6901 DPFPRINTF(PF_DEBUG_MISC, 6902 ("pf: ICMP error message too short " 6903 "(icmp6)\n")); 6904 return (PF_DROP); 6905 } 6906 6907 key.af = pd2.af; 6908 key.proto = IPPROTO_ICMPV6; 6909 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6910 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6911 key.port[0] = key.port[1] = iih.icmp6_id; 6912 6913 STATE_LOOKUP(kif, &key, *state, pd); 6914 6915 /* translate source/destination address, if necessary */ 6916 if ((*state)->key[PF_SK_WIRE] != 6917 (*state)->key[PF_SK_STACK]) { 6918 struct pf_state_key *nk = 6919 (*state)->key[pd->didx]; 6920 6921 if (PF_ANEQ(pd2.src, 6922 &nk->addr[pd2.sidx], pd2.af) || 6923 nk->port[pd2.sidx] != iih.icmp6_id) 6924 pf_change_icmp(pd2.src, &iih.icmp6_id, 6925 daddr, &nk->addr[pd2.sidx], 6926 nk->port[pd2.sidx], NULL, 6927 pd2.ip_sum, icmpsum, 6928 pd->ip_sum, 0, AF_INET6); 6929 6930 if (PF_ANEQ(pd2.dst, 6931 &nk->addr[pd2.didx], pd2.af) || 6932 nk->port[pd2.didx] != iih.icmp6_id) 6933 pf_change_icmp(pd2.dst, &iih.icmp6_id, 6934 saddr, &nk->addr[pd2.didx], 6935 nk->port[pd2.didx], NULL, 6936 pd2.ip_sum, icmpsum, 6937 pd->ip_sum, 0, AF_INET6); 6938 6939 m_copyback(m, off, sizeof(struct icmp6_hdr), 6940 (caddr_t)&pd->hdr.icmp6); 6941 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 6942 m_copyback(m, off2, sizeof(struct icmp6_hdr), 6943 (caddr_t)&iih); 6944 } 6945 return (PF_PASS); 6946 break; 6947 } 6948 #endif /* INET6 */ 6949 default: { 6950 key.af = pd2.af; 6951 key.proto = pd2.proto; 6952 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6953 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6954 key.port[0] = key.port[1] = 0; 6955 6956 STATE_LOOKUP(kif, &key, *state, pd); 6957 6958 /* translate source/destination address, if necessary */ 6959 if ((*state)->key[PF_SK_WIRE] != 6960 (*state)->key[PF_SK_STACK]) { 6961 struct pf_state_key *nk = 6962 (*state)->key[pd->didx]; 6963 6964 if (PF_ANEQ(pd2.src, 6965 &nk->addr[pd2.sidx], pd2.af)) 6966 pf_change_icmp(pd2.src, NULL, daddr, 6967 &nk->addr[pd2.sidx], 0, NULL, 6968 pd2.ip_sum, icmpsum, 6969 pd->ip_sum, 0, pd2.af); 6970 6971 if (PF_ANEQ(pd2.dst, 6972 &nk->addr[pd2.didx], pd2.af)) 6973 pf_change_icmp(pd2.dst, NULL, saddr, 6974 &nk->addr[pd2.didx], 0, NULL, 6975 pd2.ip_sum, icmpsum, 6976 pd->ip_sum, 0, pd2.af); 6977 6978 switch (pd2.af) { 6979 #ifdef INET 6980 case AF_INET: 6981 m_copyback(m, off, ICMP_MINLEN, 6982 (caddr_t)&pd->hdr.icmp); 6983 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6984 break; 6985 #endif /* INET */ 6986 #ifdef INET6 6987 case AF_INET6: 6988 m_copyback(m, off, 6989 sizeof(struct icmp6_hdr), 6990 (caddr_t )&pd->hdr.icmp6); 6991 m_copyback(m, ipoff2, sizeof(h2_6), 6992 (caddr_t )&h2_6); 6993 break; 6994 #endif /* INET6 */ 6995 } 6996 } 6997 return (PF_PASS); 6998 break; 6999 } 7000 } 7001 } 7002 } 7003 7004 static int 7005 pf_test_state_other(struct pf_kstate **state, struct pfi_kkif *kif, 7006 struct mbuf *m, struct pf_pdesc *pd) 7007 { 7008 struct pf_state_peer *src, *dst; 7009 struct pf_state_key_cmp key; 7010 uint8_t psrc, pdst; 7011 7012 bzero(&key, sizeof(key)); 7013 key.af = pd->af; 7014 key.proto = pd->proto; 7015 if (pd->dir == PF_IN) { 7016 PF_ACPY(&key.addr[0], pd->src, key.af); 7017 PF_ACPY(&key.addr[1], pd->dst, key.af); 7018 key.port[0] = key.port[1] = 0; 7019 } else { 7020 PF_ACPY(&key.addr[1], pd->src, key.af); 7021 PF_ACPY(&key.addr[0], pd->dst, key.af); 7022 key.port[1] = key.port[0] = 0; 7023 } 7024 7025 STATE_LOOKUP(kif, &key, *state, pd); 7026 7027 if (pd->dir == (*state)->direction) { 7028 src = &(*state)->src; 7029 dst = &(*state)->dst; 7030 psrc = PF_PEER_SRC; 7031 pdst = PF_PEER_DST; 7032 } else { 7033 src = &(*state)->dst; 7034 dst = &(*state)->src; 7035 psrc = PF_PEER_DST; 7036 pdst = PF_PEER_SRC; 7037 } 7038 7039 /* update states */ 7040 if (src->state < PFOTHERS_SINGLE) 7041 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 7042 if (dst->state == PFOTHERS_SINGLE) 7043 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 7044 7045 /* update expire time */ 7046 (*state)->expire = time_uptime; 7047 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 7048 (*state)->timeout = PFTM_OTHER_MULTIPLE; 7049 else 7050 (*state)->timeout = PFTM_OTHER_SINGLE; 7051 7052 /* translate source/destination address, if necessary */ 7053 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7054 struct pf_state_key *nk = (*state)->key[pd->didx]; 7055 7056 KASSERT(nk, ("%s: nk is null", __func__)); 7057 KASSERT(pd, ("%s: pd is null", __func__)); 7058 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 7059 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 7060 switch (pd->af) { 7061 #ifdef INET 7062 case AF_INET: 7063 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 7064 pf_change_a(&pd->src->v4.s_addr, 7065 pd->ip_sum, 7066 nk->addr[pd->sidx].v4.s_addr, 7067 0); 7068 7069 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 7070 pf_change_a(&pd->dst->v4.s_addr, 7071 pd->ip_sum, 7072 nk->addr[pd->didx].v4.s_addr, 7073 0); 7074 7075 break; 7076 #endif /* INET */ 7077 #ifdef INET6 7078 case AF_INET6: 7079 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 7080 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 7081 7082 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 7083 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 7084 #endif /* INET6 */ 7085 } 7086 } 7087 return (PF_PASS); 7088 } 7089 7090 /* 7091 * ipoff and off are measured from the start of the mbuf chain. 7092 * h must be at "ipoff" on the mbuf chain. 7093 */ 7094 void * 7095 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 7096 u_short *actionp, u_short *reasonp, sa_family_t af) 7097 { 7098 switch (af) { 7099 #ifdef INET 7100 case AF_INET: { 7101 struct ip *h = mtod(m, struct ip *); 7102 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 7103 7104 if (fragoff) { 7105 if (fragoff >= len) 7106 ACTION_SET(actionp, PF_PASS); 7107 else { 7108 ACTION_SET(actionp, PF_DROP); 7109 REASON_SET(reasonp, PFRES_FRAG); 7110 } 7111 return (NULL); 7112 } 7113 if (m->m_pkthdr.len < off + len || 7114 ntohs(h->ip_len) < off + len) { 7115 ACTION_SET(actionp, PF_DROP); 7116 REASON_SET(reasonp, PFRES_SHORT); 7117 return (NULL); 7118 } 7119 break; 7120 } 7121 #endif /* INET */ 7122 #ifdef INET6 7123 case AF_INET6: { 7124 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 7125 7126 if (m->m_pkthdr.len < off + len || 7127 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 7128 (unsigned)(off + len)) { 7129 ACTION_SET(actionp, PF_DROP); 7130 REASON_SET(reasonp, PFRES_SHORT); 7131 return (NULL); 7132 } 7133 break; 7134 } 7135 #endif /* INET6 */ 7136 } 7137 m_copydata(m, off, len, p); 7138 return (p); 7139 } 7140 7141 int 7142 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 7143 int rtableid) 7144 { 7145 struct ifnet *ifp; 7146 7147 /* 7148 * Skip check for addresses with embedded interface scope, 7149 * as they would always match anyway. 7150 */ 7151 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 7152 return (1); 7153 7154 if (af != AF_INET && af != AF_INET6) 7155 return (0); 7156 7157 /* Skip checks for ipsec interfaces */ 7158 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 7159 return (1); 7160 7161 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 7162 7163 switch (af) { 7164 #ifdef INET6 7165 case AF_INET6: 7166 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 7167 ifp)); 7168 #endif 7169 #ifdef INET 7170 case AF_INET: 7171 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 7172 ifp)); 7173 #endif 7174 } 7175 7176 return (0); 7177 } 7178 7179 #ifdef INET 7180 static void 7181 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7182 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7183 { 7184 struct mbuf *m0, *m1, *md; 7185 struct sockaddr_in dst; 7186 struct ip *ip; 7187 struct pfi_kkif *nkif = NULL; 7188 struct ifnet *ifp = NULL; 7189 struct pf_addr naddr; 7190 struct pf_ksrc_node *sn = NULL; 7191 int error = 0; 7192 uint16_t ip_len, ip_off; 7193 int r_rt, r_dir; 7194 7195 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 7196 7197 if (s) { 7198 r_rt = s->rt; 7199 r_dir = s->direction; 7200 } else { 7201 r_rt = r->rt; 7202 r_dir = r->direction; 7203 } 7204 7205 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7206 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7207 __func__)); 7208 7209 if ((pd->pf_mtag == NULL && 7210 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7211 pd->pf_mtag->routed++ > 3) { 7212 m0 = *m; 7213 *m = NULL; 7214 goto bad_locked; 7215 } 7216 7217 if (r_rt == PF_DUPTO) { 7218 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7219 if (s == NULL) { 7220 ifp = r->rpool.cur->kif ? 7221 r->rpool.cur->kif->pfik_ifp : NULL; 7222 } else { 7223 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7224 /* If pfsync'd */ 7225 if (ifp == NULL && r->rpool.cur != NULL) 7226 ifp = r->rpool.cur->kif ? 7227 r->rpool.cur->kif->pfik_ifp : NULL; 7228 PF_STATE_UNLOCK(s); 7229 } 7230 if (ifp == oifp) { 7231 /* When the 2nd interface is not skipped */ 7232 return; 7233 } else { 7234 m0 = *m; 7235 *m = NULL; 7236 goto bad; 7237 } 7238 } else { 7239 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 7240 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 7241 if (s) 7242 PF_STATE_UNLOCK(s); 7243 return; 7244 } 7245 } 7246 } else { 7247 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 7248 pf_dummynet(pd, s, r, m); 7249 if (s) 7250 PF_STATE_UNLOCK(s); 7251 return; 7252 } 7253 m0 = *m; 7254 } 7255 7256 ip = mtod(m0, struct ip *); 7257 7258 bzero(&dst, sizeof(dst)); 7259 dst.sin_family = AF_INET; 7260 dst.sin_len = sizeof(dst); 7261 dst.sin_addr = ip->ip_dst; 7262 7263 bzero(&naddr, sizeof(naddr)); 7264 7265 if (s == NULL) { 7266 if (TAILQ_EMPTY(&r->rpool.list)) { 7267 DPFPRINTF(PF_DEBUG_URGENT, 7268 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 7269 goto bad_locked; 7270 } 7271 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 7272 &naddr, &nkif, NULL, &sn); 7273 if (!PF_AZERO(&naddr, AF_INET)) 7274 dst.sin_addr.s_addr = naddr.v4.s_addr; 7275 ifp = nkif ? nkif->pfik_ifp : NULL; 7276 } else { 7277 if (!PF_AZERO(&s->rt_addr, AF_INET)) 7278 dst.sin_addr.s_addr = 7279 s->rt_addr.v4.s_addr; 7280 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7281 /* If pfsync'd */ 7282 if (ifp == NULL && r->rpool.cur != NULL) { 7283 ifp = r->rpool.cur->kif ? 7284 r->rpool.cur->kif->pfik_ifp : NULL; 7285 } 7286 PF_STATE_UNLOCK(s); 7287 } 7288 7289 if (ifp == NULL) 7290 goto bad; 7291 7292 if (pd->dir == PF_IN) { 7293 if (pf_test(PF_OUT, 0, ifp, &m0, inp, &pd->act) != PF_PASS) 7294 goto bad; 7295 else if (m0 == NULL) 7296 goto done; 7297 if (m0->m_len < sizeof(struct ip)) { 7298 DPFPRINTF(PF_DEBUG_URGENT, 7299 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 7300 goto bad; 7301 } 7302 ip = mtod(m0, struct ip *); 7303 } 7304 7305 if (ifp->if_flags & IFF_LOOPBACK) 7306 m0->m_flags |= M_SKIP_FIREWALL; 7307 7308 ip_len = ntohs(ip->ip_len); 7309 ip_off = ntohs(ip->ip_off); 7310 7311 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 7312 m0->m_pkthdr.csum_flags |= CSUM_IP; 7313 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 7314 in_delayed_cksum(m0); 7315 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 7316 } 7317 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 7318 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2)); 7319 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 7320 } 7321 7322 /* 7323 * If small enough for interface, or the interface will take 7324 * care of the fragmentation for us, we can just send directly. 7325 */ 7326 if (ip_len <= ifp->if_mtu || 7327 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 7328 ip->ip_sum = 0; 7329 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 7330 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 7331 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 7332 } 7333 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 7334 7335 md = m0; 7336 error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 7337 if (md != NULL) 7338 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL); 7339 goto done; 7340 } 7341 7342 /* Balk when DF bit is set or the interface didn't support TSO. */ 7343 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 7344 error = EMSGSIZE; 7345 KMOD_IPSTAT_INC(ips_cantfrag); 7346 if (r_rt != PF_DUPTO) { 7347 if (s && pd->nat_rule != NULL) 7348 PACKET_UNDO_NAT(m0, pd, 7349 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 7350 s); 7351 7352 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 7353 ifp->if_mtu); 7354 goto done; 7355 } else 7356 goto bad; 7357 } 7358 7359 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 7360 if (error) 7361 goto bad; 7362 7363 for (; m0; m0 = m1) { 7364 m1 = m0->m_nextpkt; 7365 m0->m_nextpkt = NULL; 7366 if (error == 0) { 7367 m_clrprotoflags(m0); 7368 md = m0; 7369 error = pf_dummynet_route(pd, s, r, ifp, 7370 sintosa(&dst), &md); 7371 if (md != NULL) 7372 error = (*ifp->if_output)(ifp, md, 7373 sintosa(&dst), NULL); 7374 } else 7375 m_freem(m0); 7376 } 7377 7378 if (error == 0) 7379 KMOD_IPSTAT_INC(ips_fragmented); 7380 7381 done: 7382 if (r_rt != PF_DUPTO) 7383 *m = NULL; 7384 return; 7385 7386 bad_locked: 7387 if (s) 7388 PF_STATE_UNLOCK(s); 7389 bad: 7390 m_freem(m0); 7391 goto done; 7392 } 7393 #endif /* INET */ 7394 7395 #ifdef INET6 7396 static void 7397 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7398 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7399 { 7400 struct mbuf *m0, *md; 7401 struct sockaddr_in6 dst; 7402 struct ip6_hdr *ip6; 7403 struct pfi_kkif *nkif = NULL; 7404 struct ifnet *ifp = NULL; 7405 struct pf_addr naddr; 7406 struct pf_ksrc_node *sn = NULL; 7407 int r_rt, r_dir; 7408 7409 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 7410 7411 if (s) { 7412 r_rt = s->rt; 7413 r_dir = s->direction; 7414 } else { 7415 r_rt = r->rt; 7416 r_dir = r->direction; 7417 } 7418 7419 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7420 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7421 __func__)); 7422 7423 if ((pd->pf_mtag == NULL && 7424 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7425 pd->pf_mtag->routed++ > 3) { 7426 m0 = *m; 7427 *m = NULL; 7428 goto bad_locked; 7429 } 7430 7431 if (r_rt == PF_DUPTO) { 7432 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7433 if (s == NULL) { 7434 ifp = r->rpool.cur->kif ? 7435 r->rpool.cur->kif->pfik_ifp : NULL; 7436 } else { 7437 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7438 /* If pfsync'd */ 7439 if (ifp == NULL && r->rpool.cur != NULL) 7440 ifp = r->rpool.cur->kif ? 7441 r->rpool.cur->kif->pfik_ifp : NULL; 7442 PF_STATE_UNLOCK(s); 7443 } 7444 if (ifp == oifp) { 7445 /* When the 2nd interface is not skipped */ 7446 return; 7447 } else { 7448 m0 = *m; 7449 *m = NULL; 7450 goto bad; 7451 } 7452 } else { 7453 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 7454 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 7455 if (s) 7456 PF_STATE_UNLOCK(s); 7457 return; 7458 } 7459 } 7460 } else { 7461 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 7462 pf_dummynet(pd, s, r, m); 7463 if (s) 7464 PF_STATE_UNLOCK(s); 7465 return; 7466 } 7467 m0 = *m; 7468 } 7469 7470 ip6 = mtod(m0, struct ip6_hdr *); 7471 7472 bzero(&dst, sizeof(dst)); 7473 dst.sin6_family = AF_INET6; 7474 dst.sin6_len = sizeof(dst); 7475 dst.sin6_addr = ip6->ip6_dst; 7476 7477 bzero(&naddr, sizeof(naddr)); 7478 7479 if (s == NULL) { 7480 if (TAILQ_EMPTY(&r->rpool.list)) { 7481 DPFPRINTF(PF_DEBUG_URGENT, 7482 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 7483 goto bad_locked; 7484 } 7485 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 7486 &naddr, &nkif, NULL, &sn); 7487 if (!PF_AZERO(&naddr, AF_INET6)) 7488 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 7489 &naddr, AF_INET6); 7490 ifp = nkif ? nkif->pfik_ifp : NULL; 7491 } else { 7492 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 7493 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 7494 &s->rt_addr, AF_INET6); 7495 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7496 /* If pfsync'd */ 7497 if (ifp == NULL && r->rpool.cur != NULL) 7498 ifp = r->rpool.cur->kif ? 7499 r->rpool.cur->kif->pfik_ifp : NULL; 7500 } 7501 7502 if (s) 7503 PF_STATE_UNLOCK(s); 7504 7505 if (ifp == NULL) 7506 goto bad; 7507 7508 if (pd->dir == PF_IN) { 7509 if (pf_test6(PF_OUT, 0, ifp, &m0, inp, &pd->act) != PF_PASS) 7510 goto bad; 7511 else if (m0 == NULL) 7512 goto done; 7513 if (m0->m_len < sizeof(struct ip6_hdr)) { 7514 DPFPRINTF(PF_DEBUG_URGENT, 7515 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 7516 __func__)); 7517 goto bad; 7518 } 7519 ip6 = mtod(m0, struct ip6_hdr *); 7520 } 7521 7522 if (ifp->if_flags & IFF_LOOPBACK) 7523 m0->m_flags |= M_SKIP_FIREWALL; 7524 7525 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 7526 ~ifp->if_hwassist) { 7527 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 7528 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 7529 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 7530 } 7531 7532 /* 7533 * If the packet is too large for the outgoing interface, 7534 * send back an icmp6 error. 7535 */ 7536 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 7537 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 7538 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 7539 md = m0; 7540 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 7541 if (md != NULL) 7542 nd6_output_ifp(ifp, ifp, md, &dst, NULL); 7543 } 7544 else { 7545 in6_ifstat_inc(ifp, ifs6_in_toobig); 7546 if (r_rt != PF_DUPTO) { 7547 if (s && pd->nat_rule != NULL) 7548 PACKET_UNDO_NAT(m0, pd, 7549 ((caddr_t)ip6 - m0->m_data) + 7550 sizeof(struct ip6_hdr), s); 7551 7552 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 7553 } else 7554 goto bad; 7555 } 7556 7557 done: 7558 if (r_rt != PF_DUPTO) 7559 *m = NULL; 7560 return; 7561 7562 bad_locked: 7563 if (s) 7564 PF_STATE_UNLOCK(s); 7565 bad: 7566 m_freem(m0); 7567 goto done; 7568 } 7569 #endif /* INET6 */ 7570 7571 /* 7572 * FreeBSD supports cksum offloads for the following drivers. 7573 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 7574 * 7575 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 7576 * network driver performed cksum including pseudo header, need to verify 7577 * csum_data 7578 * CSUM_DATA_VALID : 7579 * network driver performed cksum, needs to additional pseudo header 7580 * cksum computation with partial csum_data(i.e. lack of H/W support for 7581 * pseudo header, for instance sk(4) and possibly gem(4)) 7582 * 7583 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 7584 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 7585 * TCP/UDP layer. 7586 * Also, set csum_data to 0xffff to force cksum validation. 7587 */ 7588 static int 7589 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 7590 { 7591 u_int16_t sum = 0; 7592 int hw_assist = 0; 7593 struct ip *ip; 7594 7595 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 7596 return (1); 7597 if (m->m_pkthdr.len < off + len) 7598 return (1); 7599 7600 switch (p) { 7601 case IPPROTO_TCP: 7602 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 7603 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 7604 sum = m->m_pkthdr.csum_data; 7605 } else { 7606 ip = mtod(m, struct ip *); 7607 sum = in_pseudo(ip->ip_src.s_addr, 7608 ip->ip_dst.s_addr, htonl((u_short)len + 7609 m->m_pkthdr.csum_data + IPPROTO_TCP)); 7610 } 7611 sum ^= 0xffff; 7612 ++hw_assist; 7613 } 7614 break; 7615 case IPPROTO_UDP: 7616 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 7617 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 7618 sum = m->m_pkthdr.csum_data; 7619 } else { 7620 ip = mtod(m, struct ip *); 7621 sum = in_pseudo(ip->ip_src.s_addr, 7622 ip->ip_dst.s_addr, htonl((u_short)len + 7623 m->m_pkthdr.csum_data + IPPROTO_UDP)); 7624 } 7625 sum ^= 0xffff; 7626 ++hw_assist; 7627 } 7628 break; 7629 case IPPROTO_ICMP: 7630 #ifdef INET6 7631 case IPPROTO_ICMPV6: 7632 #endif /* INET6 */ 7633 break; 7634 default: 7635 return (1); 7636 } 7637 7638 if (!hw_assist) { 7639 switch (af) { 7640 case AF_INET: 7641 if (p == IPPROTO_ICMP) { 7642 if (m->m_len < off) 7643 return (1); 7644 m->m_data += off; 7645 m->m_len -= off; 7646 sum = in_cksum(m, len); 7647 m->m_data -= off; 7648 m->m_len += off; 7649 } else { 7650 if (m->m_len < sizeof(struct ip)) 7651 return (1); 7652 sum = in4_cksum(m, p, off, len); 7653 } 7654 break; 7655 #ifdef INET6 7656 case AF_INET6: 7657 if (m->m_len < sizeof(struct ip6_hdr)) 7658 return (1); 7659 sum = in6_cksum(m, p, off, len); 7660 break; 7661 #endif /* INET6 */ 7662 default: 7663 return (1); 7664 } 7665 } 7666 if (sum) { 7667 switch (p) { 7668 case IPPROTO_TCP: 7669 { 7670 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 7671 break; 7672 } 7673 case IPPROTO_UDP: 7674 { 7675 KMOD_UDPSTAT_INC(udps_badsum); 7676 break; 7677 } 7678 #ifdef INET 7679 case IPPROTO_ICMP: 7680 { 7681 KMOD_ICMPSTAT_INC(icps_checksum); 7682 break; 7683 } 7684 #endif 7685 #ifdef INET6 7686 case IPPROTO_ICMPV6: 7687 { 7688 KMOD_ICMP6STAT_INC(icp6s_checksum); 7689 break; 7690 } 7691 #endif /* INET6 */ 7692 } 7693 return (1); 7694 } else { 7695 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 7696 m->m_pkthdr.csum_flags |= 7697 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 7698 m->m_pkthdr.csum_data = 0xffff; 7699 } 7700 } 7701 return (0); 7702 } 7703 7704 static bool 7705 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r, 7706 const struct pf_kstate *s, struct ip_fw_args *dnflow) 7707 { 7708 int dndir = r->direction; 7709 7710 if (s && dndir == PF_INOUT) { 7711 dndir = s->direction; 7712 } else if (dndir == PF_INOUT) { 7713 /* Assume primary direction. Happens when we've set dnpipe in 7714 * the ethernet level code. */ 7715 dndir = pd->dir; 7716 } 7717 7718 memset(dnflow, 0, sizeof(*dnflow)); 7719 7720 if (pd->dport != NULL) 7721 dnflow->f_id.dst_port = ntohs(*pd->dport); 7722 if (pd->sport != NULL) 7723 dnflow->f_id.src_port = ntohs(*pd->sport); 7724 7725 if (pd->dir == PF_IN) 7726 dnflow->flags |= IPFW_ARGS_IN; 7727 else 7728 dnflow->flags |= IPFW_ARGS_OUT; 7729 7730 if (pd->dir != dndir && pd->act.dnrpipe) { 7731 dnflow->rule.info = pd->act.dnrpipe; 7732 } 7733 else if (pd->dir == dndir && pd->act.dnpipe) { 7734 dnflow->rule.info = pd->act.dnpipe; 7735 } 7736 else { 7737 return (false); 7738 } 7739 7740 dnflow->rule.info |= IPFW_IS_DUMMYNET; 7741 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 7742 dnflow->rule.info |= IPFW_IS_PIPE; 7743 7744 dnflow->f_id.proto = pd->proto; 7745 dnflow->f_id.extra = dnflow->rule.info; 7746 switch (pd->af) { 7747 case AF_INET: 7748 dnflow->f_id.addr_type = 4; 7749 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 7750 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 7751 break; 7752 case AF_INET6: 7753 dnflow->flags |= IPFW_ARGS_IP6; 7754 dnflow->f_id.addr_type = 6; 7755 dnflow->f_id.src_ip6 = pd->src->v6; 7756 dnflow->f_id.dst_ip6 = pd->dst->v6; 7757 break; 7758 default: 7759 panic("Invalid AF"); 7760 break; 7761 } 7762 7763 return (true); 7764 } 7765 7766 int 7767 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 7768 struct inpcb *inp) 7769 { 7770 struct pfi_kkif *kif; 7771 struct mbuf *m = *m0; 7772 7773 M_ASSERTPKTHDR(m); 7774 MPASS(ifp->if_vnet == curvnet); 7775 NET_EPOCH_ASSERT(); 7776 7777 if (!V_pf_status.running) 7778 return (PF_PASS); 7779 7780 kif = (struct pfi_kkif *)ifp->if_pf_kif; 7781 7782 if (kif == NULL) { 7783 DPFPRINTF(PF_DEBUG_URGENT, 7784 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname)); 7785 return (PF_DROP); 7786 } 7787 if (kif->pfik_flags & PFI_IFLAG_SKIP) 7788 return (PF_PASS); 7789 7790 if (m->m_flags & M_SKIP_FIREWALL) 7791 return (PF_PASS); 7792 7793 /* Stateless! */ 7794 return (pf_test_eth_rule(dir, kif, m0)); 7795 } 7796 7797 static int 7798 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s, 7799 struct pf_krule *r, struct mbuf **m0) 7800 { 7801 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0)); 7802 } 7803 7804 static int 7805 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s, 7806 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa, 7807 struct mbuf **m0) 7808 { 7809 NET_EPOCH_ASSERT(); 7810 7811 if (pd->act.dnpipe || pd->act.dnrpipe) { 7812 struct ip_fw_args dnflow; 7813 if (ip_dn_io_ptr == NULL) { 7814 m_freem(*m0); 7815 *m0 = NULL; 7816 return (ENOMEM); 7817 } 7818 7819 if (pd->pf_mtag == NULL && 7820 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 7821 m_freem(*m0); 7822 *m0 = NULL; 7823 return (ENOMEM); 7824 } 7825 7826 if (ifp != NULL) { 7827 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO; 7828 7829 pd->pf_mtag->if_index = ifp->if_index; 7830 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 7831 7832 MPASS(sa != NULL); 7833 7834 if (pd->af == AF_INET) 7835 memcpy(&pd->pf_mtag->dst, sa, 7836 sizeof(struct sockaddr_in)); 7837 else 7838 memcpy(&pd->pf_mtag->dst, sa, 7839 sizeof(struct sockaddr_in6)); 7840 } 7841 7842 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) { 7843 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 7844 ip_dn_io_ptr(m0, &dnflow); 7845 if (*m0 != NULL) { 7846 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 7847 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 7848 } 7849 } 7850 } 7851 7852 return (0); 7853 } 7854 7855 #ifdef INET 7856 int 7857 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 7858 struct inpcb *inp, struct pf_rule_actions *default_actions) 7859 { 7860 struct pfi_kkif *kif; 7861 u_short action, reason = 0; 7862 struct mbuf *m = *m0; 7863 struct ip *h = NULL; 7864 struct m_tag *mtag; 7865 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 7866 struct pf_kstate *s = NULL; 7867 struct pf_kruleset *ruleset = NULL; 7868 struct pf_pdesc pd; 7869 int off, dirndx, use_2nd_queue = 0; 7870 uint16_t tag; 7871 uint8_t rt; 7872 7873 PF_RULES_RLOCK_TRACKER; 7874 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 7875 M_ASSERTPKTHDR(m); 7876 7877 if (!V_pf_status.running) 7878 return (PF_PASS); 7879 7880 PF_RULES_RLOCK(); 7881 7882 kif = (struct pfi_kkif *)ifp->if_pf_kif; 7883 7884 if (__predict_false(kif == NULL)) { 7885 DPFPRINTF(PF_DEBUG_URGENT, 7886 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 7887 PF_RULES_RUNLOCK(); 7888 return (PF_DROP); 7889 } 7890 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 7891 PF_RULES_RUNLOCK(); 7892 return (PF_PASS); 7893 } 7894 7895 if (m->m_flags & M_SKIP_FIREWALL) { 7896 PF_RULES_RUNLOCK(); 7897 return (PF_PASS); 7898 } 7899 7900 memset(&pd, 0, sizeof(pd)); 7901 TAILQ_INIT(&pd.sctp_multihome_jobs); 7902 if (default_actions != NULL) 7903 memcpy(&pd.act, default_actions, sizeof(pd.act)); 7904 pd.pf_mtag = pf_find_mtag(m); 7905 7906 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 7907 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 7908 7909 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 7910 pd.pf_mtag->if_idxgen); 7911 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 7912 PF_RULES_RUNLOCK(); 7913 m_freem(*m0); 7914 *m0 = NULL; 7915 return (PF_PASS); 7916 } 7917 PF_RULES_RUNLOCK(); 7918 (ifp->if_output)(ifp, m, sintosa(&pd.pf_mtag->dst), NULL); 7919 *m0 = NULL; 7920 return (PF_PASS); 7921 } 7922 7923 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 7924 pd.act.dnpipe = pd.pf_mtag->dnpipe; 7925 pd.act.flags = pd.pf_mtag->dnflags; 7926 } 7927 7928 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 7929 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 7930 /* Dummynet re-injects packets after they've 7931 * completed their delay. We've already 7932 * processed them, so pass unconditionally. */ 7933 7934 /* But only once. We may see the packet multiple times (e.g. 7935 * PFIL_IN/PFIL_OUT). */ 7936 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 7937 PF_RULES_RUNLOCK(); 7938 7939 return (PF_PASS); 7940 } 7941 7942 pd.sport = pd.dport = NULL; 7943 pd.proto_sum = NULL; 7944 pd.dir = dir; 7945 pd.sidx = (dir == PF_IN) ? 0 : 1; 7946 pd.didx = (dir == PF_IN) ? 1 : 0; 7947 pd.af = AF_INET; 7948 pd.act.rtableid = -1; 7949 7950 h = mtod(m, struct ip *); 7951 off = h->ip_hl << 2; 7952 7953 if (__predict_false(ip_divert_ptr != NULL) && 7954 ((mtag = m_tag_locate(m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) { 7955 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1); 7956 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) || 7957 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) { 7958 if (pd.pf_mtag == NULL && 7959 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7960 action = PF_DROP; 7961 goto done; 7962 } 7963 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED; 7964 } 7965 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) { 7966 m->m_flags |= M_FASTFWD_OURS; 7967 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 7968 } 7969 m_tag_delete(m, mtag); 7970 7971 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 7972 if (mtag != NULL) 7973 m_tag_delete(m, mtag); 7974 } else if (pf_normalize_ip(m0, kif, &reason, &pd) != PF_PASS) { 7975 /* We do IP header normalization and packet reassembly here */ 7976 action = PF_DROP; 7977 goto done; 7978 } 7979 m = *m0; /* pf_normalize messes with m0 */ 7980 h = mtod(m, struct ip *); 7981 7982 off = h->ip_hl << 2; 7983 if (off < (int)sizeof(struct ip)) { 7984 action = PF_DROP; 7985 REASON_SET(&reason, PFRES_SHORT); 7986 pd.act.log = PF_LOG_FORCE; 7987 goto done; 7988 } 7989 7990 pd.src = (struct pf_addr *)&h->ip_src; 7991 pd.dst = (struct pf_addr *)&h->ip_dst; 7992 pd.ip_sum = &h->ip_sum; 7993 pd.proto = h->ip_p; 7994 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 7995 pd.tot_len = ntohs(h->ip_len); 7996 7997 /* handle fragments that didn't get reassembled by normalization */ 7998 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 7999 action = pf_test_fragment(&r, kif, m, h, &pd, &a, &ruleset); 8000 goto done; 8001 } 8002 8003 switch (h->ip_p) { 8004 case IPPROTO_TCP: { 8005 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 8006 &action, &reason, AF_INET)) { 8007 if (action != PF_PASS) 8008 pd.act.log = PF_LOG_FORCE; 8009 goto done; 8010 } 8011 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 8012 8013 pd.sport = &pd.hdr.tcp.th_sport; 8014 pd.dport = &pd.hdr.tcp.th_dport; 8015 8016 /* Respond to SYN with a syncookie. */ 8017 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 8018 pd.dir == PF_IN && pf_synflood_check(&pd)) { 8019 pf_syncookie_send(m, off, &pd); 8020 action = PF_DROP; 8021 break; 8022 } 8023 8024 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 8025 use_2nd_queue = 1; 8026 action = pf_normalize_tcp(kif, m, 0, off, h, &pd); 8027 if (action == PF_DROP) 8028 goto done; 8029 action = pf_test_state_tcp(&s, kif, m, off, h, &pd, &reason); 8030 if (action == PF_PASS) { 8031 if (V_pfsync_update_state_ptr != NULL) 8032 V_pfsync_update_state_ptr(s); 8033 r = s->rule.ptr; 8034 a = s->anchor.ptr; 8035 } else if (s == NULL) { 8036 /* Validate remote SYN|ACK, re-create original SYN if 8037 * valid. */ 8038 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 8039 TH_ACK && pf_syncookie_validate(&pd) && 8040 pd.dir == PF_IN) { 8041 struct mbuf *msyn; 8042 8043 msyn = pf_syncookie_recreate_syn(h->ip_ttl, off, 8044 &pd); 8045 if (msyn == NULL) { 8046 action = PF_DROP; 8047 break; 8048 } 8049 8050 action = pf_test(dir, pflags, ifp, &msyn, inp, 8051 &pd.act); 8052 m_freem(msyn); 8053 if (action != PF_PASS) 8054 break; 8055 8056 action = pf_test_state_tcp(&s, kif, m, off, h, 8057 &pd, &reason); 8058 if (action != PF_PASS || s == NULL) { 8059 action = PF_DROP; 8060 break; 8061 } 8062 8063 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 8064 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 8065 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 8066 action = pf_synproxy(&pd, &s, &reason); 8067 break; 8068 } else { 8069 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8070 &a, &ruleset, inp); 8071 } 8072 } 8073 break; 8074 } 8075 8076 case IPPROTO_UDP: { 8077 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 8078 &action, &reason, AF_INET)) { 8079 if (action != PF_PASS) 8080 pd.act.log = PF_LOG_FORCE; 8081 goto done; 8082 } 8083 pd.sport = &pd.hdr.udp.uh_sport; 8084 pd.dport = &pd.hdr.udp.uh_dport; 8085 if (pd.hdr.udp.uh_dport == 0 || 8086 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 8087 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 8088 action = PF_DROP; 8089 REASON_SET(&reason, PFRES_SHORT); 8090 goto done; 8091 } 8092 action = pf_test_state_udp(&s, kif, m, off, h, &pd); 8093 if (action == PF_PASS) { 8094 if (V_pfsync_update_state_ptr != NULL) 8095 V_pfsync_update_state_ptr(s); 8096 r = s->rule.ptr; 8097 a = s->anchor.ptr; 8098 } else if (s == NULL) 8099 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8100 &a, &ruleset, inp); 8101 break; 8102 } 8103 8104 case IPPROTO_SCTP: { 8105 if (!pf_pull_hdr(m, off, &pd.hdr.sctp, sizeof(pd.hdr.sctp), 8106 &action, &reason, AF_INET)) { 8107 if (action != PF_PASS) 8108 pd.act.log |= PF_LOG_FORCE; 8109 goto done; 8110 } 8111 pd.p_len = pd.tot_len - off; 8112 8113 pd.sport = &pd.hdr.sctp.src_port; 8114 pd.dport = &pd.hdr.sctp.dest_port; 8115 if (pd.hdr.sctp.src_port == 0 || pd.hdr.sctp.dest_port == 0) { 8116 action = PF_DROP; 8117 REASON_SET(&reason, PFRES_SHORT); 8118 goto done; 8119 } 8120 action = pf_normalize_sctp(dir, kif, m, 0, off, h, &pd); 8121 if (action == PF_DROP) 8122 goto done; 8123 action = pf_test_state_sctp(&s, kif, m, off, h, &pd, 8124 &reason); 8125 if (action == PF_PASS) { 8126 if (V_pfsync_update_state_ptr != NULL) 8127 V_pfsync_update_state_ptr(s); 8128 r = s->rule.ptr; 8129 a = s->anchor.ptr; 8130 } else { 8131 action = pf_test_rule(&r, &s, kif, m, off, 8132 &pd, &a, &ruleset, inp); 8133 } 8134 break; 8135 } 8136 8137 case IPPROTO_ICMP: { 8138 if (!pf_pull_hdr(m, off, &pd.hdr.icmp, ICMP_MINLEN, 8139 &action, &reason, AF_INET)) { 8140 if (action != PF_PASS) 8141 pd.act.log = PF_LOG_FORCE; 8142 goto done; 8143 } 8144 action = pf_test_state_icmp(&s, kif, m, off, h, &pd, &reason); 8145 if (action == PF_PASS) { 8146 if (V_pfsync_update_state_ptr != NULL) 8147 V_pfsync_update_state_ptr(s); 8148 r = s->rule.ptr; 8149 a = s->anchor.ptr; 8150 } else if (s == NULL) 8151 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8152 &a, &ruleset, inp); 8153 break; 8154 } 8155 8156 #ifdef INET6 8157 case IPPROTO_ICMPV6: { 8158 action = PF_DROP; 8159 DPFPRINTF(PF_DEBUG_MISC, 8160 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 8161 goto done; 8162 } 8163 #endif 8164 8165 default: 8166 action = pf_test_state_other(&s, kif, m, &pd); 8167 if (action == PF_PASS) { 8168 if (V_pfsync_update_state_ptr != NULL) 8169 V_pfsync_update_state_ptr(s); 8170 r = s->rule.ptr; 8171 a = s->anchor.ptr; 8172 } else if (s == NULL) 8173 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8174 &a, &ruleset, inp); 8175 break; 8176 } 8177 8178 done: 8179 PF_RULES_RUNLOCK(); 8180 if (action == PF_PASS && h->ip_hl > 5 && 8181 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 8182 action = PF_DROP; 8183 REASON_SET(&reason, PFRES_IPOPTIONS); 8184 pd.act.log = PF_LOG_FORCE; 8185 DPFPRINTF(PF_DEBUG_MISC, 8186 ("pf: dropping packet with ip options\n")); 8187 } 8188 8189 if (s) { 8190 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 8191 tag = s->tag; 8192 rt = s->rt; 8193 } else { 8194 tag = r->tag; 8195 rt = r->rt; 8196 } 8197 8198 if (tag > 0 && pf_tag_packet(m, &pd, tag)) { 8199 action = PF_DROP; 8200 REASON_SET(&reason, PFRES_MEMORY); 8201 } 8202 8203 pf_scrub_ip(&m, &pd); 8204 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 8205 pf_normalize_mss(m, off, &pd); 8206 8207 if (pd.act.rtableid >= 0) 8208 M_SETFIB(m, pd.act.rtableid); 8209 8210 if (pd.act.flags & PFSTATE_SETPRIO) { 8211 if (pd.tos & IPTOS_LOWDELAY) 8212 use_2nd_queue = 1; 8213 if (vlan_set_pcp(m, pd.act.set_prio[use_2nd_queue])) { 8214 action = PF_DROP; 8215 REASON_SET(&reason, PFRES_MEMORY); 8216 pd.act.log = PF_LOG_FORCE; 8217 DPFPRINTF(PF_DEBUG_MISC, 8218 ("pf: failed to allocate 802.1q mtag\n")); 8219 } 8220 } 8221 8222 #ifdef ALTQ 8223 if (action == PF_PASS && pd.act.qid) { 8224 if (pd.pf_mtag == NULL && 8225 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 8226 action = PF_DROP; 8227 REASON_SET(&reason, PFRES_MEMORY); 8228 } else { 8229 if (s != NULL) 8230 pd.pf_mtag->qid_hash = pf_state_hash(s); 8231 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY)) 8232 pd.pf_mtag->qid = pd.act.pqid; 8233 else 8234 pd.pf_mtag->qid = pd.act.qid; 8235 /* Add hints for ecn. */ 8236 pd.pf_mtag->hdr = h; 8237 } 8238 } 8239 #endif /* ALTQ */ 8240 8241 /* 8242 * connections redirected to loopback should not match sockets 8243 * bound specifically to loopback due to security implications, 8244 * see tcp_input() and in_pcblookup_listen(). 8245 */ 8246 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 8247 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 8248 (s->nat_rule.ptr->action == PF_RDR || 8249 s->nat_rule.ptr->action == PF_BINAT) && 8250 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 8251 m->m_flags |= M_SKIP_FIREWALL; 8252 8253 if (__predict_false(ip_divert_ptr != NULL) && action == PF_PASS && 8254 r->divert.port && !PACKET_LOOPED(&pd)) { 8255 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0, 8256 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO); 8257 if (mtag != NULL) { 8258 ((struct pf_divert_mtag *)(mtag+1))->port = 8259 ntohs(r->divert.port); 8260 ((struct pf_divert_mtag *)(mtag+1))->idir = 8261 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN : 8262 PF_DIVERT_MTAG_DIR_OUT; 8263 8264 if (s) 8265 PF_STATE_UNLOCK(s); 8266 8267 m_tag_prepend(m, mtag); 8268 if (m->m_flags & M_FASTFWD_OURS) { 8269 if (pd.pf_mtag == NULL && 8270 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 8271 action = PF_DROP; 8272 REASON_SET(&reason, PFRES_MEMORY); 8273 pd.act.log = PF_LOG_FORCE; 8274 DPFPRINTF(PF_DEBUG_MISC, 8275 ("pf: failed to allocate tag\n")); 8276 } else { 8277 pd.pf_mtag->flags |= 8278 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 8279 m->m_flags &= ~M_FASTFWD_OURS; 8280 } 8281 } 8282 ip_divert_ptr(*m0, dir == PF_IN); 8283 *m0 = NULL; 8284 8285 return (action); 8286 } else { 8287 /* XXX: ipfw has the same behaviour! */ 8288 action = PF_DROP; 8289 REASON_SET(&reason, PFRES_MEMORY); 8290 pd.act.log = PF_LOG_FORCE; 8291 DPFPRINTF(PF_DEBUG_MISC, 8292 ("pf: failed to allocate divert tag\n")); 8293 } 8294 } 8295 /* this flag will need revising if the pkt is forwarded */ 8296 if (pd.pf_mtag) 8297 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED; 8298 8299 if (pd.act.log) { 8300 struct pf_krule *lr; 8301 struct pf_krule_item *ri; 8302 8303 if (s != NULL && s->nat_rule.ptr != NULL && 8304 s->nat_rule.ptr->log & PF_LOG_ALL) 8305 lr = s->nat_rule.ptr; 8306 else 8307 lr = r; 8308 8309 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 8310 PFLOG_PACKET(kif, m, AF_INET, reason, lr, a, ruleset, 8311 &pd, (s == NULL)); 8312 if (s) { 8313 SLIST_FOREACH(ri, &s->match_rules, entry) 8314 if (ri->r->log & PF_LOG_ALL) 8315 PFLOG_PACKET(kif, m, AF_INET, reason, 8316 ri->r, a, ruleset, &pd, 0); 8317 } 8318 } 8319 8320 pf_counter_u64_critical_enter(); 8321 pf_counter_u64_add_protected(&kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], 8322 pd.tot_len); 8323 pf_counter_u64_add_protected(&kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 8324 1); 8325 8326 if (action == PF_PASS || r->action == PF_DROP) { 8327 dirndx = (dir == PF_OUT); 8328 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 8329 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 8330 pf_update_timestamp(r); 8331 8332 if (a != NULL) { 8333 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 8334 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 8335 } 8336 if (s != NULL) { 8337 struct pf_krule_item *ri; 8338 8339 if (s->nat_rule.ptr != NULL) { 8340 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 8341 1); 8342 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 8343 pd.tot_len); 8344 } 8345 if (s->src_node != NULL) { 8346 counter_u64_add(s->src_node->packets[dirndx], 8347 1); 8348 counter_u64_add(s->src_node->bytes[dirndx], 8349 pd.tot_len); 8350 } 8351 if (s->nat_src_node != NULL) { 8352 counter_u64_add(s->nat_src_node->packets[dirndx], 8353 1); 8354 counter_u64_add(s->nat_src_node->bytes[dirndx], 8355 pd.tot_len); 8356 } 8357 dirndx = (dir == s->direction) ? 0 : 1; 8358 s->packets[dirndx]++; 8359 s->bytes[dirndx] += pd.tot_len; 8360 SLIST_FOREACH(ri, &s->match_rules, entry) { 8361 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 8362 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd.tot_len); 8363 } 8364 } 8365 tr = r; 8366 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 8367 if (nr != NULL && r == &V_pf_default_rule) 8368 tr = nr; 8369 if (tr->src.addr.type == PF_ADDR_TABLE) 8370 pfr_update_stats(tr->src.addr.p.tbl, 8371 (s == NULL) ? pd.src : 8372 &s->key[(s->direction == PF_IN)]-> 8373 addr[(s->direction == PF_OUT)], 8374 pd.af, pd.tot_len, dir == PF_OUT, 8375 r->action == PF_PASS, tr->src.neg); 8376 if (tr->dst.addr.type == PF_ADDR_TABLE) 8377 pfr_update_stats(tr->dst.addr.p.tbl, 8378 (s == NULL) ? pd.dst : 8379 &s->key[(s->direction == PF_IN)]-> 8380 addr[(s->direction == PF_IN)], 8381 pd.af, pd.tot_len, dir == PF_OUT, 8382 r->action == PF_PASS, tr->dst.neg); 8383 } 8384 pf_counter_u64_critical_exit(); 8385 8386 switch (action) { 8387 case PF_SYNPROXY_DROP: 8388 m_freem(*m0); 8389 case PF_DEFER: 8390 *m0 = NULL; 8391 action = PF_PASS; 8392 break; 8393 case PF_DROP: 8394 m_freem(*m0); 8395 *m0 = NULL; 8396 break; 8397 default: 8398 /* pf_route() returns unlocked. */ 8399 if (rt) { 8400 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp); 8401 goto out; 8402 } 8403 if (pf_dummynet(&pd, s, r, m0) != 0) { 8404 action = PF_DROP; 8405 REASON_SET(&reason, PFRES_MEMORY); 8406 } 8407 break; 8408 } 8409 8410 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 8411 8412 if (s) 8413 PF_STATE_UNLOCK(s); 8414 8415 out: 8416 pf_sctp_multihome_delayed(&pd, off, kif, s, action); 8417 8418 return (action); 8419 } 8420 #endif /* INET */ 8421 8422 #ifdef INET6 8423 int 8424 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp, 8425 struct pf_rule_actions *default_actions) 8426 { 8427 struct pfi_kkif *kif; 8428 u_short action, reason = 0; 8429 struct mbuf *m = *m0, *n = NULL; 8430 struct m_tag *mtag; 8431 struct ip6_hdr *h = NULL; 8432 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 8433 struct pf_kstate *s = NULL; 8434 struct pf_kruleset *ruleset = NULL; 8435 struct pf_pdesc pd; 8436 int off, terminal = 0, dirndx, rh_cnt = 0, use_2nd_queue = 0; 8437 uint16_t tag; 8438 uint8_t rt; 8439 8440 PF_RULES_RLOCK_TRACKER; 8441 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 8442 M_ASSERTPKTHDR(m); 8443 8444 if (!V_pf_status.running) 8445 return (PF_PASS); 8446 8447 PF_RULES_RLOCK(); 8448 8449 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8450 if (__predict_false(kif == NULL)) { 8451 DPFPRINTF(PF_DEBUG_URGENT, 8452 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 8453 PF_RULES_RUNLOCK(); 8454 return (PF_DROP); 8455 } 8456 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 8457 PF_RULES_RUNLOCK(); 8458 return (PF_PASS); 8459 } 8460 8461 if (m->m_flags & M_SKIP_FIREWALL) { 8462 PF_RULES_RUNLOCK(); 8463 return (PF_PASS); 8464 } 8465 8466 memset(&pd, 0, sizeof(pd)); 8467 TAILQ_INIT(&pd.sctp_multihome_jobs); 8468 if (default_actions != NULL) 8469 memcpy(&pd.act, default_actions, sizeof(pd.act)); 8470 pd.pf_mtag = pf_find_mtag(m); 8471 8472 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 8473 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 8474 8475 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 8476 pd.pf_mtag->if_idxgen); 8477 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 8478 PF_RULES_RUNLOCK(); 8479 m_freem(*m0); 8480 *m0 = NULL; 8481 return (PF_PASS); 8482 } 8483 PF_RULES_RUNLOCK(); 8484 nd6_output_ifp(ifp, ifp, m, 8485 (struct sockaddr_in6 *)&pd.pf_mtag->dst, NULL); 8486 *m0 = NULL; 8487 return (PF_PASS); 8488 } 8489 8490 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 8491 pd.act.dnpipe = pd.pf_mtag->dnpipe; 8492 pd.act.flags = pd.pf_mtag->dnflags; 8493 } 8494 8495 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 8496 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 8497 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 8498 /* Dummynet re-injects packets after they've 8499 * completed their delay. We've already 8500 * processed them, so pass unconditionally. */ 8501 PF_RULES_RUNLOCK(); 8502 return (PF_PASS); 8503 } 8504 8505 pd.sport = pd.dport = NULL; 8506 pd.ip_sum = NULL; 8507 pd.proto_sum = NULL; 8508 pd.dir = dir; 8509 pd.sidx = (dir == PF_IN) ? 0 : 1; 8510 pd.didx = (dir == PF_IN) ? 1 : 0; 8511 pd.af = AF_INET6; 8512 pd.act.rtableid = -1; 8513 8514 h = mtod(m, struct ip6_hdr *); 8515 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 8516 8517 /* We do IP header normalization and packet reassembly here */ 8518 if (pf_normalize_ip6(m0, kif, &reason, &pd) != PF_PASS) { 8519 action = PF_DROP; 8520 goto done; 8521 } 8522 m = *m0; /* pf_normalize messes with m0 */ 8523 h = mtod(m, struct ip6_hdr *); 8524 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 8525 8526 /* 8527 * we do not support jumbogram. if we keep going, zero ip6_plen 8528 * will do something bad, so drop the packet for now. 8529 */ 8530 if (htons(h->ip6_plen) == 0) { 8531 action = PF_DROP; 8532 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 8533 goto done; 8534 } 8535 8536 pd.src = (struct pf_addr *)&h->ip6_src; 8537 pd.dst = (struct pf_addr *)&h->ip6_dst; 8538 pd.tos = IPV6_DSCP(h); 8539 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 8540 8541 pd.proto = h->ip6_nxt; 8542 do { 8543 switch (pd.proto) { 8544 case IPPROTO_FRAGMENT: 8545 action = pf_test_fragment(&r, kif, m, h, &pd, &a, 8546 &ruleset); 8547 if (action == PF_DROP) 8548 REASON_SET(&reason, PFRES_FRAG); 8549 goto done; 8550 case IPPROTO_ROUTING: { 8551 struct ip6_rthdr rthdr; 8552 8553 if (rh_cnt++) { 8554 DPFPRINTF(PF_DEBUG_MISC, 8555 ("pf: IPv6 more than one rthdr\n")); 8556 action = PF_DROP; 8557 REASON_SET(&reason, PFRES_IPOPTIONS); 8558 pd.act.log = PF_LOG_FORCE; 8559 goto done; 8560 } 8561 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 8562 &reason, pd.af)) { 8563 DPFPRINTF(PF_DEBUG_MISC, 8564 ("pf: IPv6 short rthdr\n")); 8565 action = PF_DROP; 8566 REASON_SET(&reason, PFRES_SHORT); 8567 pd.act.log = PF_LOG_FORCE; 8568 goto done; 8569 } 8570 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 8571 DPFPRINTF(PF_DEBUG_MISC, 8572 ("pf: IPv6 rthdr0\n")); 8573 action = PF_DROP; 8574 REASON_SET(&reason, PFRES_IPOPTIONS); 8575 pd.act.log = PF_LOG_FORCE; 8576 goto done; 8577 } 8578 /* FALLTHROUGH */ 8579 } 8580 case IPPROTO_AH: 8581 case IPPROTO_HOPOPTS: 8582 case IPPROTO_DSTOPTS: { 8583 /* get next header and header length */ 8584 struct ip6_ext opt6; 8585 8586 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 8587 NULL, &reason, pd.af)) { 8588 DPFPRINTF(PF_DEBUG_MISC, 8589 ("pf: IPv6 short opt\n")); 8590 action = PF_DROP; 8591 pd.act.log = PF_LOG_FORCE; 8592 goto done; 8593 } 8594 if (pd.proto == IPPROTO_AH) 8595 off += (opt6.ip6e_len + 2) * 4; 8596 else 8597 off += (opt6.ip6e_len + 1) * 8; 8598 pd.proto = opt6.ip6e_nxt; 8599 /* goto the next header */ 8600 break; 8601 } 8602 default: 8603 terminal++; 8604 break; 8605 } 8606 } while (!terminal); 8607 8608 /* if there's no routing header, use unmodified mbuf for checksumming */ 8609 if (!n) 8610 n = m; 8611 8612 switch (pd.proto) { 8613 case IPPROTO_TCP: { 8614 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 8615 &action, &reason, AF_INET6)) { 8616 if (action != PF_PASS) 8617 pd.act.log |= PF_LOG_FORCE; 8618 goto done; 8619 } 8620 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 8621 pd.sport = &pd.hdr.tcp.th_sport; 8622 pd.dport = &pd.hdr.tcp.th_dport; 8623 8624 /* Respond to SYN with a syncookie. */ 8625 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 8626 pd.dir == PF_IN && pf_synflood_check(&pd)) { 8627 pf_syncookie_send(m, off, &pd); 8628 action = PF_DROP; 8629 break; 8630 } 8631 8632 action = pf_normalize_tcp(kif, m, 0, off, h, &pd); 8633 if (action == PF_DROP) 8634 goto done; 8635 action = pf_test_state_tcp(&s, kif, m, off, h, &pd, &reason); 8636 if (action == PF_PASS) { 8637 if (V_pfsync_update_state_ptr != NULL) 8638 V_pfsync_update_state_ptr(s); 8639 r = s->rule.ptr; 8640 a = s->anchor.ptr; 8641 } else if (s == NULL) { 8642 /* Validate remote SYN|ACK, re-create original SYN if 8643 * valid. */ 8644 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 8645 TH_ACK && pf_syncookie_validate(&pd) && 8646 pd.dir == PF_IN) { 8647 struct mbuf *msyn; 8648 8649 msyn = pf_syncookie_recreate_syn(h->ip6_hlim, 8650 off, &pd); 8651 if (msyn == NULL) { 8652 action = PF_DROP; 8653 break; 8654 } 8655 8656 action = pf_test6(dir, pflags, ifp, &msyn, inp, 8657 &pd.act); 8658 m_freem(msyn); 8659 if (action != PF_PASS) 8660 break; 8661 8662 action = pf_test_state_tcp(&s, kif, m, off, h, 8663 &pd, &reason); 8664 if (action != PF_PASS || s == NULL) { 8665 action = PF_DROP; 8666 break; 8667 } 8668 8669 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 8670 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 8671 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 8672 8673 action = pf_synproxy(&pd, &s, &reason); 8674 break; 8675 } else { 8676 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8677 &a, &ruleset, inp); 8678 } 8679 } 8680 break; 8681 } 8682 8683 case IPPROTO_UDP: { 8684 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 8685 &action, &reason, AF_INET6)) { 8686 if (action != PF_PASS) 8687 pd.act.log |= PF_LOG_FORCE; 8688 goto done; 8689 } 8690 pd.sport = &pd.hdr.udp.uh_sport; 8691 pd.dport = &pd.hdr.udp.uh_dport; 8692 if (pd.hdr.udp.uh_dport == 0 || 8693 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 8694 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 8695 action = PF_DROP; 8696 REASON_SET(&reason, PFRES_SHORT); 8697 goto done; 8698 } 8699 action = pf_test_state_udp(&s, kif, m, off, h, &pd); 8700 if (action == PF_PASS) { 8701 if (V_pfsync_update_state_ptr != NULL) 8702 V_pfsync_update_state_ptr(s); 8703 r = s->rule.ptr; 8704 a = s->anchor.ptr; 8705 } else if (s == NULL) 8706 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8707 &a, &ruleset, inp); 8708 break; 8709 } 8710 8711 case IPPROTO_SCTP: { 8712 if (!pf_pull_hdr(m, off, &pd.hdr.sctp, sizeof(pd.hdr.sctp), 8713 &action, &reason, AF_INET6)) { 8714 if (action != PF_PASS) 8715 pd.act.log |= PF_LOG_FORCE; 8716 goto done; 8717 } 8718 pd.sport = &pd.hdr.sctp.src_port; 8719 pd.dport = &pd.hdr.sctp.dest_port; 8720 if (pd.hdr.sctp.src_port == 0 || pd.hdr.sctp.dest_port == 0) { 8721 action = PF_DROP; 8722 REASON_SET(&reason, PFRES_SHORT); 8723 goto done; 8724 } 8725 action = pf_normalize_sctp(dir, kif, m, 0, off, h, &pd); 8726 if (action == PF_DROP) 8727 goto done; 8728 action = pf_test_state_sctp(&s, kif, m, off, h, &pd, 8729 &reason); 8730 if (action == PF_PASS) { 8731 if (V_pfsync_update_state_ptr != NULL) 8732 V_pfsync_update_state_ptr(s); 8733 r = s->rule.ptr; 8734 a = s->anchor.ptr; 8735 } else { 8736 action = pf_test_rule(&r, &s, kif, m, off, 8737 &pd, &a, &ruleset, inp); 8738 } 8739 break; 8740 } 8741 8742 case IPPROTO_ICMP: { 8743 action = PF_DROP; 8744 DPFPRINTF(PF_DEBUG_MISC, 8745 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 8746 goto done; 8747 } 8748 8749 case IPPROTO_ICMPV6: { 8750 if (!pf_pull_hdr(m, off, &pd.hdr.icmp6, sizeof(pd.hdr.icmp6), 8751 &action, &reason, AF_INET6)) { 8752 if (action != PF_PASS) 8753 pd.act.log |= PF_LOG_FORCE; 8754 goto done; 8755 } 8756 action = pf_test_state_icmp(&s, kif, m, off, h, &pd, &reason); 8757 if (action == PF_PASS) { 8758 if (V_pfsync_update_state_ptr != NULL) 8759 V_pfsync_update_state_ptr(s); 8760 r = s->rule.ptr; 8761 a = s->anchor.ptr; 8762 } else if (s == NULL) 8763 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8764 &a, &ruleset, inp); 8765 break; 8766 } 8767 8768 default: 8769 action = pf_test_state_other(&s, kif, m, &pd); 8770 if (action == PF_PASS) { 8771 if (V_pfsync_update_state_ptr != NULL) 8772 V_pfsync_update_state_ptr(s); 8773 r = s->rule.ptr; 8774 a = s->anchor.ptr; 8775 } else if (s == NULL) 8776 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8777 &a, &ruleset, inp); 8778 break; 8779 } 8780 8781 done: 8782 PF_RULES_RUNLOCK(); 8783 if (n != m) { 8784 m_freem(n); 8785 n = NULL; 8786 } 8787 8788 /* handle dangerous IPv6 extension headers. */ 8789 if (action == PF_PASS && rh_cnt && 8790 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 8791 action = PF_DROP; 8792 REASON_SET(&reason, PFRES_IPOPTIONS); 8793 pd.act.log = r->log; 8794 DPFPRINTF(PF_DEBUG_MISC, 8795 ("pf: dropping packet with dangerous v6 headers\n")); 8796 } 8797 8798 if (s) { 8799 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 8800 tag = s->tag; 8801 rt = s->rt; 8802 } else { 8803 tag = r->tag; 8804 rt = r->rt; 8805 } 8806 8807 if (tag > 0 && pf_tag_packet(m, &pd, tag)) { 8808 action = PF_DROP; 8809 REASON_SET(&reason, PFRES_MEMORY); 8810 } 8811 8812 pf_scrub_ip6(&m, &pd); 8813 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 8814 pf_normalize_mss(m, off, &pd); 8815 8816 if (pd.act.rtableid >= 0) 8817 M_SETFIB(m, pd.act.rtableid); 8818 8819 if (pd.act.flags & PFSTATE_SETPRIO) { 8820 if (pd.tos & IPTOS_LOWDELAY) 8821 use_2nd_queue = 1; 8822 if (vlan_set_pcp(m, pd.act.set_prio[use_2nd_queue])) { 8823 action = PF_DROP; 8824 REASON_SET(&reason, PFRES_MEMORY); 8825 pd.act.log = PF_LOG_FORCE; 8826 DPFPRINTF(PF_DEBUG_MISC, 8827 ("pf: failed to allocate 802.1q mtag\n")); 8828 } 8829 } 8830 8831 #ifdef ALTQ 8832 if (action == PF_PASS && pd.act.qid) { 8833 if (pd.pf_mtag == NULL && 8834 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 8835 action = PF_DROP; 8836 REASON_SET(&reason, PFRES_MEMORY); 8837 } else { 8838 if (s != NULL) 8839 pd.pf_mtag->qid_hash = pf_state_hash(s); 8840 if (pd.tos & IPTOS_LOWDELAY) 8841 pd.pf_mtag->qid = pd.act.pqid; 8842 else 8843 pd.pf_mtag->qid = pd.act.qid; 8844 /* Add hints for ecn. */ 8845 pd.pf_mtag->hdr = h; 8846 } 8847 } 8848 #endif /* ALTQ */ 8849 8850 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 8851 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 8852 (s->nat_rule.ptr->action == PF_RDR || 8853 s->nat_rule.ptr->action == PF_BINAT) && 8854 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 8855 m->m_flags |= M_SKIP_FIREWALL; 8856 8857 /* XXX: Anybody working on it?! */ 8858 if (r->divert.port) 8859 printf("pf: divert(9) is not supported for IPv6\n"); 8860 8861 if (pd.act.log) { 8862 struct pf_krule *lr; 8863 struct pf_krule_item *ri; 8864 8865 if (s != NULL && s->nat_rule.ptr != NULL && 8866 s->nat_rule.ptr->log & PF_LOG_ALL) 8867 lr = s->nat_rule.ptr; 8868 else 8869 lr = r; 8870 8871 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 8872 PFLOG_PACKET(kif, m, AF_INET6, reason, lr, a, ruleset, 8873 &pd, (s == NULL)); 8874 if (s) { 8875 SLIST_FOREACH(ri, &s->match_rules, entry) 8876 if (ri->r->log & PF_LOG_ALL) 8877 PFLOG_PACKET(kif, m, AF_INET6, reason, 8878 ri->r, a, ruleset, &pd, 0); 8879 } 8880 } 8881 8882 pf_counter_u64_critical_enter(); 8883 pf_counter_u64_add_protected(&kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], 8884 pd.tot_len); 8885 pf_counter_u64_add_protected(&kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 8886 1); 8887 8888 if (action == PF_PASS || r->action == PF_DROP) { 8889 dirndx = (dir == PF_OUT); 8890 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 8891 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 8892 if (a != NULL) { 8893 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 8894 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 8895 } 8896 if (s != NULL) { 8897 if (s->nat_rule.ptr != NULL) { 8898 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 8899 1); 8900 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 8901 pd.tot_len); 8902 } 8903 if (s->src_node != NULL) { 8904 counter_u64_add(s->src_node->packets[dirndx], 8905 1); 8906 counter_u64_add(s->src_node->bytes[dirndx], 8907 pd.tot_len); 8908 } 8909 if (s->nat_src_node != NULL) { 8910 counter_u64_add(s->nat_src_node->packets[dirndx], 8911 1); 8912 counter_u64_add(s->nat_src_node->bytes[dirndx], 8913 pd.tot_len); 8914 } 8915 dirndx = (dir == s->direction) ? 0 : 1; 8916 s->packets[dirndx]++; 8917 s->bytes[dirndx] += pd.tot_len; 8918 } 8919 tr = r; 8920 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 8921 if (nr != NULL && r == &V_pf_default_rule) 8922 tr = nr; 8923 if (tr->src.addr.type == PF_ADDR_TABLE) 8924 pfr_update_stats(tr->src.addr.p.tbl, 8925 (s == NULL) ? pd.src : 8926 &s->key[(s->direction == PF_IN)]->addr[0], 8927 pd.af, pd.tot_len, dir == PF_OUT, 8928 r->action == PF_PASS, tr->src.neg); 8929 if (tr->dst.addr.type == PF_ADDR_TABLE) 8930 pfr_update_stats(tr->dst.addr.p.tbl, 8931 (s == NULL) ? pd.dst : 8932 &s->key[(s->direction == PF_IN)]->addr[1], 8933 pd.af, pd.tot_len, dir == PF_OUT, 8934 r->action == PF_PASS, tr->dst.neg); 8935 } 8936 pf_counter_u64_critical_exit(); 8937 8938 switch (action) { 8939 case PF_SYNPROXY_DROP: 8940 m_freem(*m0); 8941 case PF_DEFER: 8942 *m0 = NULL; 8943 action = PF_PASS; 8944 break; 8945 case PF_DROP: 8946 m_freem(*m0); 8947 *m0 = NULL; 8948 break; 8949 default: 8950 /* pf_route6() returns unlocked. */ 8951 if (rt) { 8952 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp); 8953 goto out; 8954 } 8955 if (pf_dummynet(&pd, s, r, m0) != 0) { 8956 action = PF_DROP; 8957 REASON_SET(&reason, PFRES_MEMORY); 8958 } 8959 break; 8960 } 8961 8962 if (s) 8963 PF_STATE_UNLOCK(s); 8964 8965 /* If reassembled packet passed, create new fragments. */ 8966 if (action == PF_PASS && *m0 && dir == PF_OUT && 8967 (mtag = m_tag_find(m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL) 8968 action = pf_refragment6(ifp, m0, mtag, pflags & PFIL_FWD); 8969 8970 out: 8971 SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); 8972 8973 pf_sctp_multihome_delayed(&pd, off, kif, s, action); 8974 8975 return (action); 8976 } 8977 #endif /* INET6 */ 8978