1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_bpf.h" 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_pf.h" 47 #include "opt_sctp.h" 48 49 #include <sys/param.h> 50 #include <sys/bus.h> 51 #include <sys/endian.h> 52 #include <sys/gsb_crc32.h> 53 #include <sys/hash.h> 54 #include <sys/interrupt.h> 55 #include <sys/kernel.h> 56 #include <sys/kthread.h> 57 #include <sys/limits.h> 58 #include <sys/mbuf.h> 59 #include <sys/md5.h> 60 #include <sys/random.h> 61 #include <sys/refcount.h> 62 #include <sys/sdt.h> 63 #include <sys/socket.h> 64 #include <sys/sysctl.h> 65 #include <sys/taskqueue.h> 66 #include <sys/ucred.h> 67 68 #include <net/if.h> 69 #include <net/if_var.h> 70 #include <net/if_types.h> 71 #include <net/if_vlan_var.h> 72 #include <net/route.h> 73 #include <net/route/nhop.h> 74 #include <net/vnet.h> 75 76 #include <net/pfil.h> 77 #include <net/pfvar.h> 78 #include <net/if_pflog.h> 79 #include <net/if_pfsync.h> 80 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_var.h> 83 #include <netinet/in_fib.h> 84 #include <netinet/ip.h> 85 #include <netinet/ip_fw.h> 86 #include <netinet/ip_icmp.h> 87 #include <netinet/icmp_var.h> 88 #include <netinet/ip_var.h> 89 #include <netinet/tcp.h> 90 #include <netinet/tcp_fsm.h> 91 #include <netinet/tcp_seq.h> 92 #include <netinet/tcp_timer.h> 93 #include <netinet/tcp_var.h> 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 97 #ifdef INET6 98 #include <netinet/ip6.h> 99 #include <netinet/icmp6.h> 100 #include <netinet6/nd6.h> 101 #include <netinet6/ip6_var.h> 102 #include <netinet6/in6_pcb.h> 103 #include <netinet6/in6_fib.h> 104 #include <netinet6/scope6_var.h> 105 #endif /* INET6 */ 106 107 #if defined(SCTP) || defined(SCTP_SUPPORT) 108 #include <netinet/sctp_crc32.h> 109 #endif 110 111 #include <machine/in_cksum.h> 112 #include <security/mac/mac_framework.h> 113 114 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 115 116 SDT_PROVIDER_DEFINE(pf); 117 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 118 "struct pf_state *"); 119 SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", 120 "struct pf_state *"); 121 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 122 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 123 "struct pf_state *"); 124 125 /* 126 * Global variables 127 */ 128 129 /* state tables */ 130 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 131 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 132 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 133 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 134 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 135 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 136 VNET_DEFINE(struct pf_kstatus, pf_status); 137 138 VNET_DEFINE(u_int32_t, ticket_altqs_active); 139 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 140 VNET_DEFINE(int, altqs_inactive_open); 141 VNET_DEFINE(u_int32_t, ticket_pabuf); 142 143 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 144 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 145 VNET_DEFINE(u_char, pf_tcp_secret[16]); 146 #define V_pf_tcp_secret VNET(pf_tcp_secret) 147 VNET_DEFINE(int, pf_tcp_secret_init); 148 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 149 VNET_DEFINE(int, pf_tcp_iss_off); 150 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 151 VNET_DECLARE(int, pf_vnet_active); 152 #define V_pf_vnet_active VNET(pf_vnet_active) 153 154 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 155 #define V_pf_purge_idx VNET(pf_purge_idx) 156 157 /* 158 * Queue for pf_intr() sends. 159 */ 160 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 161 struct pf_send_entry { 162 STAILQ_ENTRY(pf_send_entry) pfse_next; 163 struct mbuf *pfse_m; 164 enum { 165 PFSE_IP, 166 PFSE_IP6, 167 PFSE_ICMP, 168 PFSE_ICMP6, 169 } pfse_type; 170 struct { 171 int type; 172 int code; 173 int mtu; 174 } icmpopts; 175 }; 176 177 STAILQ_HEAD(pf_send_head, pf_send_entry); 178 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 179 #define V_pf_sendqueue VNET(pf_sendqueue) 180 181 static struct mtx pf_sendqueue_mtx; 182 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 183 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 184 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 185 186 /* 187 * Queue for pf_overload_task() tasks. 188 */ 189 struct pf_overload_entry { 190 SLIST_ENTRY(pf_overload_entry) next; 191 struct pf_addr addr; 192 sa_family_t af; 193 uint8_t dir; 194 struct pf_krule *rule; 195 }; 196 197 SLIST_HEAD(pf_overload_head, pf_overload_entry); 198 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 199 #define V_pf_overloadqueue VNET(pf_overloadqueue) 200 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 201 #define V_pf_overloadtask VNET(pf_overloadtask) 202 203 static struct mtx pf_overloadqueue_mtx; 204 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 205 "pf overload/flush queue", MTX_DEF); 206 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 207 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 208 209 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 210 struct mtx pf_unlnkdrules_mtx; 211 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 212 MTX_DEF); 213 214 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 215 #define V_pf_sources_z VNET(pf_sources_z) 216 uma_zone_t pf_mtag_z; 217 VNET_DEFINE(uma_zone_t, pf_state_z); 218 VNET_DEFINE(uma_zone_t, pf_state_key_z); 219 220 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 221 #define PFID_CPUBITS 8 222 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 223 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 224 #define PFID_MAXID (~PFID_CPUMASK) 225 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 226 227 static void pf_src_tree_remove_state(struct pf_state *); 228 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 229 u_int32_t); 230 static void pf_add_threshold(struct pf_threshold *); 231 static int pf_check_threshold(struct pf_threshold *); 232 233 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 234 u_int16_t *, u_int16_t *, struct pf_addr *, 235 u_int16_t, u_int8_t, sa_family_t); 236 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 237 struct tcphdr *, struct pf_state_peer *); 238 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 239 struct pf_addr *, struct pf_addr *, u_int16_t, 240 u_int16_t *, u_int16_t *, u_int16_t *, 241 u_int16_t *, u_int8_t, sa_family_t); 242 static void pf_send_tcp(struct mbuf *, 243 const struct pf_krule *, sa_family_t, 244 const struct pf_addr *, const struct pf_addr *, 245 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 246 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 247 u_int16_t, struct ifnet *); 248 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 249 sa_family_t, struct pf_krule *); 250 static void pf_detach_state(struct pf_state *); 251 static int pf_state_key_attach(struct pf_state_key *, 252 struct pf_state_key *, struct pf_state *); 253 static void pf_state_key_detach(struct pf_state *, int); 254 static int pf_state_key_ctor(void *, int, void *, int); 255 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 256 static int pf_test_rule(struct pf_krule **, struct pf_state **, 257 int, struct pfi_kkif *, struct mbuf *, int, 258 struct pf_pdesc *, struct pf_krule **, 259 struct pf_kruleset **, struct inpcb *); 260 static int pf_create_state(struct pf_krule *, struct pf_krule *, 261 struct pf_krule *, struct pf_pdesc *, 262 struct pf_ksrc_node *, struct pf_state_key *, 263 struct pf_state_key *, struct mbuf *, int, 264 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 265 struct pf_state **, int, u_int16_t, u_int16_t, 266 int); 267 static int pf_test_fragment(struct pf_krule **, int, 268 struct pfi_kkif *, struct mbuf *, void *, 269 struct pf_pdesc *, struct pf_krule **, 270 struct pf_kruleset **); 271 static int pf_tcp_track_full(struct pf_state_peer *, 272 struct pf_state_peer *, struct pf_state **, 273 struct pfi_kkif *, struct mbuf *, int, 274 struct pf_pdesc *, u_short *, int *); 275 static int pf_tcp_track_sloppy(struct pf_state_peer *, 276 struct pf_state_peer *, struct pf_state **, 277 struct pf_pdesc *, u_short *); 278 static int pf_test_state_tcp(struct pf_state **, int, 279 struct pfi_kkif *, struct mbuf *, int, 280 void *, struct pf_pdesc *, u_short *); 281 static int pf_test_state_udp(struct pf_state **, int, 282 struct pfi_kkif *, struct mbuf *, int, 283 void *, struct pf_pdesc *); 284 static int pf_test_state_icmp(struct pf_state **, int, 285 struct pfi_kkif *, struct mbuf *, int, 286 void *, struct pf_pdesc *, u_short *); 287 static int pf_test_state_other(struct pf_state **, int, 288 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 289 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 290 sa_family_t); 291 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 292 sa_family_t); 293 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 294 int, u_int16_t); 295 static int pf_check_proto_cksum(struct mbuf *, int, int, 296 u_int8_t, sa_family_t); 297 static void pf_print_state_parts(struct pf_state *, 298 struct pf_state_key *, struct pf_state_key *); 299 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 300 struct pf_addr_wrap *); 301 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 302 bool, u_int8_t); 303 static struct pf_state *pf_find_state(struct pfi_kkif *, 304 struct pf_state_key_cmp *, u_int); 305 static int pf_src_connlimit(struct pf_state **); 306 static void pf_overload_task(void *v, int pending); 307 static int pf_insert_src_node(struct pf_ksrc_node **, 308 struct pf_krule *, struct pf_addr *, sa_family_t); 309 static u_int pf_purge_expired_states(u_int, int); 310 static void pf_purge_unlinked_rules(void); 311 static int pf_mtag_uminit(void *, int, int); 312 static void pf_mtag_free(struct m_tag *); 313 #ifdef INET 314 static void pf_route(struct mbuf **, struct pf_krule *, int, 315 struct ifnet *, struct pf_state *, 316 struct pf_pdesc *, struct inpcb *); 317 #endif /* INET */ 318 #ifdef INET6 319 static void pf_change_a6(struct pf_addr *, u_int16_t *, 320 struct pf_addr *, u_int8_t); 321 static void pf_route6(struct mbuf **, struct pf_krule *, int, 322 struct ifnet *, struct pf_state *, 323 struct pf_pdesc *, struct inpcb *); 324 #endif /* INET6 */ 325 326 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 327 328 extern int pf_end_threads; 329 extern struct proc *pf_purge_proc; 330 331 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 332 333 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 334 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 335 336 #define STATE_LOOKUP(i, k, d, s, pd) \ 337 do { \ 338 (s) = pf_find_state((i), (k), (d)); \ 339 SDT_PROBE5(pf, ip, state, lookup, i, k, d, pd, (s)); \ 340 if ((s) == NULL) \ 341 return (PF_DROP); \ 342 if (PACKET_LOOPED(pd)) \ 343 return (PF_PASS); \ 344 if ((d) == PF_OUT && \ 345 (s)->rule.ptr->rt == PF_ROUTETO && \ 346 (s)->rule.ptr->direction == PF_OUT && \ 347 (s)->rt_kif != NULL && \ 348 (s)->rt_kif != (i)) \ 349 return (PF_PASS); \ 350 } while (0) 351 352 #define BOUND_IFACE(r, k) \ 353 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 354 355 #define STATE_INC_COUNTERS(s) \ 356 do { \ 357 counter_u64_add(s->rule.ptr->states_cur, 1); \ 358 counter_u64_add(s->rule.ptr->states_tot, 1); \ 359 if (s->anchor.ptr != NULL) { \ 360 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 361 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 362 } \ 363 if (s->nat_rule.ptr != NULL) { \ 364 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 365 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 366 } \ 367 } while (0) 368 369 #define STATE_DEC_COUNTERS(s) \ 370 do { \ 371 if (s->nat_rule.ptr != NULL) \ 372 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 373 if (s->anchor.ptr != NULL) \ 374 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 375 counter_u64_add(s->rule.ptr->states_cur, -1); \ 376 } while (0) 377 378 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 379 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 380 VNET_DEFINE(struct pf_idhash *, pf_idhash); 381 VNET_DEFINE(struct pf_srchash *, pf_srchash); 382 383 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 384 "pf(4)"); 385 386 u_long pf_hashmask; 387 u_long pf_srchashmask; 388 static u_long pf_hashsize; 389 static u_long pf_srchashsize; 390 u_long pf_ioctl_maxcount = 65535; 391 392 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 393 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 394 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 395 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 396 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 397 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 398 399 VNET_DEFINE(void *, pf_swi_cookie); 400 VNET_DEFINE(struct intr_event *, pf_swi_ie); 401 402 VNET_DEFINE(uint32_t, pf_hashseed); 403 #define V_pf_hashseed VNET(pf_hashseed) 404 405 int 406 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 407 { 408 409 switch (af) { 410 #ifdef INET 411 case AF_INET: 412 if (a->addr32[0] > b->addr32[0]) 413 return (1); 414 if (a->addr32[0] < b->addr32[0]) 415 return (-1); 416 break; 417 #endif /* INET */ 418 #ifdef INET6 419 case AF_INET6: 420 if (a->addr32[3] > b->addr32[3]) 421 return (1); 422 if (a->addr32[3] < b->addr32[3]) 423 return (-1); 424 if (a->addr32[2] > b->addr32[2]) 425 return (1); 426 if (a->addr32[2] < b->addr32[2]) 427 return (-1); 428 if (a->addr32[1] > b->addr32[1]) 429 return (1); 430 if (a->addr32[1] < b->addr32[1]) 431 return (-1); 432 if (a->addr32[0] > b->addr32[0]) 433 return (1); 434 if (a->addr32[0] < b->addr32[0]) 435 return (-1); 436 break; 437 #endif /* INET6 */ 438 default: 439 panic("%s: unknown address family %u", __func__, af); 440 } 441 return (0); 442 } 443 444 static __inline uint32_t 445 pf_hashkey(struct pf_state_key *sk) 446 { 447 uint32_t h; 448 449 h = murmur3_32_hash32((uint32_t *)sk, 450 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 451 V_pf_hashseed); 452 453 return (h & pf_hashmask); 454 } 455 456 static __inline uint32_t 457 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 458 { 459 uint32_t h; 460 461 switch (af) { 462 case AF_INET: 463 h = murmur3_32_hash32((uint32_t *)&addr->v4, 464 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 465 break; 466 case AF_INET6: 467 h = murmur3_32_hash32((uint32_t *)&addr->v6, 468 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 469 break; 470 default: 471 panic("%s: unknown address family %u", __func__, af); 472 } 473 474 return (h & pf_srchashmask); 475 } 476 477 #ifdef ALTQ 478 static int 479 pf_state_hash(struct pf_state *s) 480 { 481 u_int32_t hv = (intptr_t)s / sizeof(*s); 482 483 hv ^= crc32(&s->src, sizeof(s->src)); 484 hv ^= crc32(&s->dst, sizeof(s->dst)); 485 if (hv == 0) 486 hv = 1; 487 return (hv); 488 } 489 #endif 490 491 #ifdef INET6 492 void 493 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 494 { 495 switch (af) { 496 #ifdef INET 497 case AF_INET: 498 dst->addr32[0] = src->addr32[0]; 499 break; 500 #endif /* INET */ 501 case AF_INET6: 502 dst->addr32[0] = src->addr32[0]; 503 dst->addr32[1] = src->addr32[1]; 504 dst->addr32[2] = src->addr32[2]; 505 dst->addr32[3] = src->addr32[3]; 506 break; 507 } 508 } 509 #endif /* INET6 */ 510 511 static void 512 pf_init_threshold(struct pf_threshold *threshold, 513 u_int32_t limit, u_int32_t seconds) 514 { 515 threshold->limit = limit * PF_THRESHOLD_MULT; 516 threshold->seconds = seconds; 517 threshold->count = 0; 518 threshold->last = time_uptime; 519 } 520 521 static void 522 pf_add_threshold(struct pf_threshold *threshold) 523 { 524 u_int32_t t = time_uptime, diff = t - threshold->last; 525 526 if (diff >= threshold->seconds) 527 threshold->count = 0; 528 else 529 threshold->count -= threshold->count * diff / 530 threshold->seconds; 531 threshold->count += PF_THRESHOLD_MULT; 532 threshold->last = t; 533 } 534 535 static int 536 pf_check_threshold(struct pf_threshold *threshold) 537 { 538 return (threshold->count > threshold->limit); 539 } 540 541 static int 542 pf_src_connlimit(struct pf_state **state) 543 { 544 struct pf_overload_entry *pfoe; 545 int bad = 0; 546 547 PF_STATE_LOCK_ASSERT(*state); 548 549 (*state)->src_node->conn++; 550 (*state)->src.tcp_est = 1; 551 pf_add_threshold(&(*state)->src_node->conn_rate); 552 553 if ((*state)->rule.ptr->max_src_conn && 554 (*state)->rule.ptr->max_src_conn < 555 (*state)->src_node->conn) { 556 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 557 bad++; 558 } 559 560 if ((*state)->rule.ptr->max_src_conn_rate.limit && 561 pf_check_threshold(&(*state)->src_node->conn_rate)) { 562 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 563 bad++; 564 } 565 566 if (!bad) 567 return (0); 568 569 /* Kill this state. */ 570 (*state)->timeout = PFTM_PURGE; 571 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 572 573 if ((*state)->rule.ptr->overload_tbl == NULL) 574 return (1); 575 576 /* Schedule overloading and flushing task. */ 577 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 578 if (pfoe == NULL) 579 return (1); /* too bad :( */ 580 581 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 582 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 583 pfoe->rule = (*state)->rule.ptr; 584 pfoe->dir = (*state)->direction; 585 PF_OVERLOADQ_LOCK(); 586 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 587 PF_OVERLOADQ_UNLOCK(); 588 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 589 590 return (1); 591 } 592 593 static void 594 pf_overload_task(void *v, int pending) 595 { 596 struct pf_overload_head queue; 597 struct pfr_addr p; 598 struct pf_overload_entry *pfoe, *pfoe1; 599 uint32_t killed = 0; 600 601 CURVNET_SET((struct vnet *)v); 602 603 PF_OVERLOADQ_LOCK(); 604 queue = V_pf_overloadqueue; 605 SLIST_INIT(&V_pf_overloadqueue); 606 PF_OVERLOADQ_UNLOCK(); 607 608 bzero(&p, sizeof(p)); 609 SLIST_FOREACH(pfoe, &queue, next) { 610 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 611 if (V_pf_status.debug >= PF_DEBUG_MISC) { 612 printf("%s: blocking address ", __func__); 613 pf_print_host(&pfoe->addr, 0, pfoe->af); 614 printf("\n"); 615 } 616 617 p.pfra_af = pfoe->af; 618 switch (pfoe->af) { 619 #ifdef INET 620 case AF_INET: 621 p.pfra_net = 32; 622 p.pfra_ip4addr = pfoe->addr.v4; 623 break; 624 #endif 625 #ifdef INET6 626 case AF_INET6: 627 p.pfra_net = 128; 628 p.pfra_ip6addr = pfoe->addr.v6; 629 break; 630 #endif 631 } 632 633 PF_RULES_WLOCK(); 634 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 635 PF_RULES_WUNLOCK(); 636 } 637 638 /* 639 * Remove those entries, that don't need flushing. 640 */ 641 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 642 if (pfoe->rule->flush == 0) { 643 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 644 free(pfoe, M_PFTEMP); 645 } else 646 counter_u64_add( 647 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 648 649 /* If nothing to flush, return. */ 650 if (SLIST_EMPTY(&queue)) { 651 CURVNET_RESTORE(); 652 return; 653 } 654 655 for (int i = 0; i <= pf_hashmask; i++) { 656 struct pf_idhash *ih = &V_pf_idhash[i]; 657 struct pf_state_key *sk; 658 struct pf_state *s; 659 660 PF_HASHROW_LOCK(ih); 661 LIST_FOREACH(s, &ih->states, entry) { 662 sk = s->key[PF_SK_WIRE]; 663 SLIST_FOREACH(pfoe, &queue, next) 664 if (sk->af == pfoe->af && 665 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 666 pfoe->rule == s->rule.ptr) && 667 ((pfoe->dir == PF_OUT && 668 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 669 (pfoe->dir == PF_IN && 670 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 671 s->timeout = PFTM_PURGE; 672 s->src.state = s->dst.state = TCPS_CLOSED; 673 killed++; 674 } 675 } 676 PF_HASHROW_UNLOCK(ih); 677 } 678 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 679 free(pfoe, M_PFTEMP); 680 if (V_pf_status.debug >= PF_DEBUG_MISC) 681 printf("%s: %u states killed", __func__, killed); 682 683 CURVNET_RESTORE(); 684 } 685 686 /* 687 * Can return locked on failure, so that we can consistently 688 * allocate and insert a new one. 689 */ 690 struct pf_ksrc_node * 691 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 692 int returnlocked) 693 { 694 struct pf_srchash *sh; 695 struct pf_ksrc_node *n; 696 697 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 698 699 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 700 PF_HASHROW_LOCK(sh); 701 LIST_FOREACH(n, &sh->nodes, entry) 702 if (n->rule.ptr == rule && n->af == af && 703 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 704 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 705 break; 706 if (n != NULL) { 707 n->states++; 708 PF_HASHROW_UNLOCK(sh); 709 } else if (returnlocked == 0) 710 PF_HASHROW_UNLOCK(sh); 711 712 return (n); 713 } 714 715 static void 716 pf_free_src_node(struct pf_ksrc_node *sn) 717 { 718 719 for (int i = 0; i < 2; i++) { 720 counter_u64_free(sn->bytes[i]); 721 counter_u64_free(sn->packets[i]); 722 } 723 uma_zfree(V_pf_sources_z, sn); 724 } 725 726 static int 727 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 728 struct pf_addr *src, sa_family_t af) 729 { 730 731 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 732 rule->rpool.opts & PF_POOL_STICKYADDR), 733 ("%s for non-tracking rule %p", __func__, rule)); 734 735 if (*sn == NULL) 736 *sn = pf_find_src_node(src, rule, af, 1); 737 738 if (*sn == NULL) { 739 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 740 741 PF_HASHROW_ASSERT(sh); 742 743 if (!rule->max_src_nodes || 744 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 745 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 746 else 747 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 748 1); 749 if ((*sn) == NULL) { 750 PF_HASHROW_UNLOCK(sh); 751 return (-1); 752 } 753 754 for (int i = 0; i < 2; i++) { 755 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 756 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 757 758 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 759 pf_free_src_node(*sn); 760 PF_HASHROW_UNLOCK(sh); 761 return (-1); 762 } 763 } 764 765 pf_init_threshold(&(*sn)->conn_rate, 766 rule->max_src_conn_rate.limit, 767 rule->max_src_conn_rate.seconds); 768 769 (*sn)->af = af; 770 (*sn)->rule.ptr = rule; 771 PF_ACPY(&(*sn)->addr, src, af); 772 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 773 (*sn)->creation = time_uptime; 774 (*sn)->ruletype = rule->action; 775 (*sn)->states = 1; 776 if ((*sn)->rule.ptr != NULL) 777 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 778 PF_HASHROW_UNLOCK(sh); 779 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 780 } else { 781 if (rule->max_src_states && 782 (*sn)->states >= rule->max_src_states) { 783 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 784 1); 785 return (-1); 786 } 787 } 788 return (0); 789 } 790 791 void 792 pf_unlink_src_node(struct pf_ksrc_node *src) 793 { 794 795 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 796 LIST_REMOVE(src, entry); 797 if (src->rule.ptr) 798 counter_u64_add(src->rule.ptr->src_nodes, -1); 799 } 800 801 u_int 802 pf_free_src_nodes(struct pf_ksrc_node_list *head) 803 { 804 struct pf_ksrc_node *sn, *tmp; 805 u_int count = 0; 806 807 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 808 pf_free_src_node(sn); 809 count++; 810 } 811 812 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 813 814 return (count); 815 } 816 817 void 818 pf_mtag_initialize() 819 { 820 821 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 822 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 823 UMA_ALIGN_PTR, 0); 824 } 825 826 /* Per-vnet data storage structures initialization. */ 827 void 828 pf_initialize() 829 { 830 struct pf_keyhash *kh; 831 struct pf_idhash *ih; 832 struct pf_srchash *sh; 833 u_int i; 834 835 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 836 pf_hashsize = PF_HASHSIZ; 837 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 838 pf_srchashsize = PF_SRCHASHSIZ; 839 840 V_pf_hashseed = arc4random(); 841 842 /* States and state keys storage. */ 843 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 844 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 845 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 846 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 847 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 848 849 V_pf_state_key_z = uma_zcreate("pf state keys", 850 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 851 UMA_ALIGN_PTR, 0); 852 853 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 854 M_PFHASH, M_NOWAIT | M_ZERO); 855 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 856 M_PFHASH, M_NOWAIT | M_ZERO); 857 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 858 printf("pf: Unable to allocate memory for " 859 "state_hashsize %lu.\n", pf_hashsize); 860 861 free(V_pf_keyhash, M_PFHASH); 862 free(V_pf_idhash, M_PFHASH); 863 864 pf_hashsize = PF_HASHSIZ; 865 V_pf_keyhash = mallocarray(pf_hashsize, 866 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 867 V_pf_idhash = mallocarray(pf_hashsize, 868 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 869 } 870 871 pf_hashmask = pf_hashsize - 1; 872 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 873 i++, kh++, ih++) { 874 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 875 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 876 } 877 878 /* Source nodes. */ 879 V_pf_sources_z = uma_zcreate("pf source nodes", 880 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 881 0); 882 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 883 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 884 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 885 886 V_pf_srchash = mallocarray(pf_srchashsize, 887 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 888 if (V_pf_srchash == NULL) { 889 printf("pf: Unable to allocate memory for " 890 "source_hashsize %lu.\n", pf_srchashsize); 891 892 pf_srchashsize = PF_SRCHASHSIZ; 893 V_pf_srchash = mallocarray(pf_srchashsize, 894 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 895 } 896 897 pf_srchashmask = pf_srchashsize - 1; 898 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 899 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 900 901 /* ALTQ */ 902 TAILQ_INIT(&V_pf_altqs[0]); 903 TAILQ_INIT(&V_pf_altqs[1]); 904 TAILQ_INIT(&V_pf_altqs[2]); 905 TAILQ_INIT(&V_pf_altqs[3]); 906 TAILQ_INIT(&V_pf_pabuf); 907 V_pf_altqs_active = &V_pf_altqs[0]; 908 V_pf_altq_ifs_active = &V_pf_altqs[1]; 909 V_pf_altqs_inactive = &V_pf_altqs[2]; 910 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 911 912 /* Send & overload+flush queues. */ 913 STAILQ_INIT(&V_pf_sendqueue); 914 SLIST_INIT(&V_pf_overloadqueue); 915 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 916 917 /* Unlinked, but may be referenced rules. */ 918 TAILQ_INIT(&V_pf_unlinked_rules); 919 } 920 921 void 922 pf_mtag_cleanup() 923 { 924 925 uma_zdestroy(pf_mtag_z); 926 } 927 928 void 929 pf_cleanup() 930 { 931 struct pf_keyhash *kh; 932 struct pf_idhash *ih; 933 struct pf_srchash *sh; 934 struct pf_send_entry *pfse, *next; 935 u_int i; 936 937 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 938 i++, kh++, ih++) { 939 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 940 __func__)); 941 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 942 __func__)); 943 mtx_destroy(&kh->lock); 944 mtx_destroy(&ih->lock); 945 } 946 free(V_pf_keyhash, M_PFHASH); 947 free(V_pf_idhash, M_PFHASH); 948 949 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 950 KASSERT(LIST_EMPTY(&sh->nodes), 951 ("%s: source node hash not empty", __func__)); 952 mtx_destroy(&sh->lock); 953 } 954 free(V_pf_srchash, M_PFHASH); 955 956 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 957 m_freem(pfse->pfse_m); 958 free(pfse, M_PFTEMP); 959 } 960 961 uma_zdestroy(V_pf_sources_z); 962 uma_zdestroy(V_pf_state_z); 963 uma_zdestroy(V_pf_state_key_z); 964 } 965 966 static int 967 pf_mtag_uminit(void *mem, int size, int how) 968 { 969 struct m_tag *t; 970 971 t = (struct m_tag *)mem; 972 t->m_tag_cookie = MTAG_ABI_COMPAT; 973 t->m_tag_id = PACKET_TAG_PF; 974 t->m_tag_len = sizeof(struct pf_mtag); 975 t->m_tag_free = pf_mtag_free; 976 977 return (0); 978 } 979 980 static void 981 pf_mtag_free(struct m_tag *t) 982 { 983 984 uma_zfree(pf_mtag_z, t); 985 } 986 987 struct pf_mtag * 988 pf_get_mtag(struct mbuf *m) 989 { 990 struct m_tag *mtag; 991 992 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 993 return ((struct pf_mtag *)(mtag + 1)); 994 995 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 996 if (mtag == NULL) 997 return (NULL); 998 bzero(mtag + 1, sizeof(struct pf_mtag)); 999 m_tag_prepend(m, mtag); 1000 1001 return ((struct pf_mtag *)(mtag + 1)); 1002 } 1003 1004 static int 1005 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1006 struct pf_state *s) 1007 { 1008 struct pf_keyhash *khs, *khw, *kh; 1009 struct pf_state_key *sk, *cur; 1010 struct pf_state *si, *olds = NULL; 1011 int idx; 1012 1013 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1014 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1015 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1016 1017 /* 1018 * We need to lock hash slots of both keys. To avoid deadlock 1019 * we always lock the slot with lower address first. Unlock order 1020 * isn't important. 1021 * 1022 * We also need to lock ID hash slot before dropping key 1023 * locks. On success we return with ID hash slot locked. 1024 */ 1025 1026 if (skw == sks) { 1027 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1028 PF_HASHROW_LOCK(khs); 1029 } else { 1030 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1031 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1032 if (khs == khw) { 1033 PF_HASHROW_LOCK(khs); 1034 } else if (khs < khw) { 1035 PF_HASHROW_LOCK(khs); 1036 PF_HASHROW_LOCK(khw); 1037 } else { 1038 PF_HASHROW_LOCK(khw); 1039 PF_HASHROW_LOCK(khs); 1040 } 1041 } 1042 1043 #define KEYS_UNLOCK() do { \ 1044 if (khs != khw) { \ 1045 PF_HASHROW_UNLOCK(khs); \ 1046 PF_HASHROW_UNLOCK(khw); \ 1047 } else \ 1048 PF_HASHROW_UNLOCK(khs); \ 1049 } while (0) 1050 1051 /* 1052 * First run: start with wire key. 1053 */ 1054 sk = skw; 1055 kh = khw; 1056 idx = PF_SK_WIRE; 1057 1058 keyattach: 1059 LIST_FOREACH(cur, &kh->keys, entry) 1060 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1061 break; 1062 1063 if (cur != NULL) { 1064 /* Key exists. Check for same kif, if none, add to key. */ 1065 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1066 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1067 1068 PF_HASHROW_LOCK(ih); 1069 if (si->kif == s->kif && 1070 si->direction == s->direction) { 1071 if (sk->proto == IPPROTO_TCP && 1072 si->src.state >= TCPS_FIN_WAIT_2 && 1073 si->dst.state >= TCPS_FIN_WAIT_2) { 1074 /* 1075 * New state matches an old >FIN_WAIT_2 1076 * state. We can't drop key hash locks, 1077 * thus we can't unlink it properly. 1078 * 1079 * As a workaround we drop it into 1080 * TCPS_CLOSED state, schedule purge 1081 * ASAP and push it into the very end 1082 * of the slot TAILQ, so that it won't 1083 * conflict with our new state. 1084 */ 1085 si->src.state = si->dst.state = 1086 TCPS_CLOSED; 1087 si->timeout = PFTM_PURGE; 1088 olds = si; 1089 } else { 1090 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1091 printf("pf: %s key attach " 1092 "failed on %s: ", 1093 (idx == PF_SK_WIRE) ? 1094 "wire" : "stack", 1095 s->kif->pfik_name); 1096 pf_print_state_parts(s, 1097 (idx == PF_SK_WIRE) ? 1098 sk : NULL, 1099 (idx == PF_SK_STACK) ? 1100 sk : NULL); 1101 printf(", existing: "); 1102 pf_print_state_parts(si, 1103 (idx == PF_SK_WIRE) ? 1104 sk : NULL, 1105 (idx == PF_SK_STACK) ? 1106 sk : NULL); 1107 printf("\n"); 1108 } 1109 PF_HASHROW_UNLOCK(ih); 1110 KEYS_UNLOCK(); 1111 uma_zfree(V_pf_state_key_z, sk); 1112 if (idx == PF_SK_STACK) 1113 pf_detach_state(s); 1114 return (EEXIST); /* collision! */ 1115 } 1116 } 1117 PF_HASHROW_UNLOCK(ih); 1118 } 1119 uma_zfree(V_pf_state_key_z, sk); 1120 s->key[idx] = cur; 1121 } else { 1122 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1123 s->key[idx] = sk; 1124 } 1125 1126 stateattach: 1127 /* List is sorted, if-bound states before floating. */ 1128 if (s->kif == V_pfi_all) 1129 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1130 else 1131 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1132 1133 if (olds) { 1134 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1135 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1136 key_list[idx]); 1137 olds = NULL; 1138 } 1139 1140 /* 1141 * Attach done. See how should we (or should not?) 1142 * attach a second key. 1143 */ 1144 if (sks == skw) { 1145 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1146 idx = PF_SK_STACK; 1147 sks = NULL; 1148 goto stateattach; 1149 } else if (sks != NULL) { 1150 /* 1151 * Continue attaching with stack key. 1152 */ 1153 sk = sks; 1154 kh = khs; 1155 idx = PF_SK_STACK; 1156 sks = NULL; 1157 goto keyattach; 1158 } 1159 1160 PF_STATE_LOCK(s); 1161 KEYS_UNLOCK(); 1162 1163 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1164 ("%s failure", __func__)); 1165 1166 return (0); 1167 #undef KEYS_UNLOCK 1168 } 1169 1170 static void 1171 pf_detach_state(struct pf_state *s) 1172 { 1173 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1174 struct pf_keyhash *kh; 1175 1176 if (sks != NULL) { 1177 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1178 PF_HASHROW_LOCK(kh); 1179 if (s->key[PF_SK_STACK] != NULL) 1180 pf_state_key_detach(s, PF_SK_STACK); 1181 /* 1182 * If both point to same key, then we are done. 1183 */ 1184 if (sks == s->key[PF_SK_WIRE]) { 1185 pf_state_key_detach(s, PF_SK_WIRE); 1186 PF_HASHROW_UNLOCK(kh); 1187 return; 1188 } 1189 PF_HASHROW_UNLOCK(kh); 1190 } 1191 1192 if (s->key[PF_SK_WIRE] != NULL) { 1193 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1194 PF_HASHROW_LOCK(kh); 1195 if (s->key[PF_SK_WIRE] != NULL) 1196 pf_state_key_detach(s, PF_SK_WIRE); 1197 PF_HASHROW_UNLOCK(kh); 1198 } 1199 } 1200 1201 static void 1202 pf_state_key_detach(struct pf_state *s, int idx) 1203 { 1204 struct pf_state_key *sk = s->key[idx]; 1205 #ifdef INVARIANTS 1206 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1207 1208 PF_HASHROW_ASSERT(kh); 1209 #endif 1210 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1211 s->key[idx] = NULL; 1212 1213 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1214 LIST_REMOVE(sk, entry); 1215 uma_zfree(V_pf_state_key_z, sk); 1216 } 1217 } 1218 1219 static int 1220 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1221 { 1222 struct pf_state_key *sk = mem; 1223 1224 bzero(sk, sizeof(struct pf_state_key_cmp)); 1225 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1226 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1227 1228 return (0); 1229 } 1230 1231 struct pf_state_key * 1232 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1233 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1234 { 1235 struct pf_state_key *sk; 1236 1237 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1238 if (sk == NULL) 1239 return (NULL); 1240 1241 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1242 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1243 sk->port[pd->sidx] = sport; 1244 sk->port[pd->didx] = dport; 1245 sk->proto = pd->proto; 1246 sk->af = pd->af; 1247 1248 return (sk); 1249 } 1250 1251 struct pf_state_key * 1252 pf_state_key_clone(struct pf_state_key *orig) 1253 { 1254 struct pf_state_key *sk; 1255 1256 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1257 if (sk == NULL) 1258 return (NULL); 1259 1260 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1261 1262 return (sk); 1263 } 1264 1265 int 1266 pf_state_insert(struct pfi_kkif *kif, struct pf_state_key *skw, 1267 struct pf_state_key *sks, struct pf_state *s) 1268 { 1269 struct pf_idhash *ih; 1270 struct pf_state *cur; 1271 int error; 1272 1273 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1274 ("%s: sks not pristine", __func__)); 1275 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1276 ("%s: skw not pristine", __func__)); 1277 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1278 1279 s->kif = kif; 1280 1281 if (s->id == 0 && s->creatorid == 0) { 1282 /* XXX: should be atomic, but probability of collision low */ 1283 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1284 V_pf_stateid[curcpu] = 1; 1285 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1286 s->id = htobe64(s->id); 1287 s->creatorid = V_pf_status.hostid; 1288 } 1289 1290 /* Returns with ID locked on success. */ 1291 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1292 return (error); 1293 1294 ih = &V_pf_idhash[PF_IDHASH(s)]; 1295 PF_HASHROW_ASSERT(ih); 1296 LIST_FOREACH(cur, &ih->states, entry) 1297 if (cur->id == s->id && cur->creatorid == s->creatorid) 1298 break; 1299 1300 if (cur != NULL) { 1301 PF_HASHROW_UNLOCK(ih); 1302 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1303 printf("pf: state ID collision: " 1304 "id: %016llx creatorid: %08x\n", 1305 (unsigned long long)be64toh(s->id), 1306 ntohl(s->creatorid)); 1307 } 1308 pf_detach_state(s); 1309 return (EEXIST); 1310 } 1311 LIST_INSERT_HEAD(&ih->states, s, entry); 1312 /* One for keys, one for ID hash. */ 1313 refcount_init(&s->refs, 2); 1314 1315 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1316 if (V_pfsync_insert_state_ptr != NULL) 1317 V_pfsync_insert_state_ptr(s); 1318 1319 /* Returns locked. */ 1320 return (0); 1321 } 1322 1323 /* 1324 * Find state by ID: returns with locked row on success. 1325 */ 1326 struct pf_state * 1327 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1328 { 1329 struct pf_idhash *ih; 1330 struct pf_state *s; 1331 1332 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1333 1334 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1335 1336 PF_HASHROW_LOCK(ih); 1337 LIST_FOREACH(s, &ih->states, entry) 1338 if (s->id == id && s->creatorid == creatorid) 1339 break; 1340 1341 if (s == NULL) 1342 PF_HASHROW_UNLOCK(ih); 1343 1344 return (s); 1345 } 1346 1347 /* 1348 * Find state by key. 1349 * Returns with ID hash slot locked on success. 1350 */ 1351 static struct pf_state * 1352 pf_find_state(struct pfi_kkif *kif, struct pf_state_key_cmp *key, u_int dir) 1353 { 1354 struct pf_keyhash *kh; 1355 struct pf_state_key *sk; 1356 struct pf_state *s; 1357 int idx; 1358 1359 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1360 1361 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1362 1363 PF_HASHROW_LOCK(kh); 1364 LIST_FOREACH(sk, &kh->keys, entry) 1365 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1366 break; 1367 if (sk == NULL) { 1368 PF_HASHROW_UNLOCK(kh); 1369 return (NULL); 1370 } 1371 1372 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1373 1374 /* List is sorted, if-bound states before floating ones. */ 1375 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1376 if (s->kif == V_pfi_all || s->kif == kif) { 1377 PF_STATE_LOCK(s); 1378 PF_HASHROW_UNLOCK(kh); 1379 if (s->timeout >= PFTM_MAX) { 1380 /* 1381 * State is either being processed by 1382 * pf_unlink_state() in an other thread, or 1383 * is scheduled for immediate expiry. 1384 */ 1385 PF_STATE_UNLOCK(s); 1386 return (NULL); 1387 } 1388 return (s); 1389 } 1390 PF_HASHROW_UNLOCK(kh); 1391 1392 return (NULL); 1393 } 1394 1395 struct pf_state * 1396 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1397 { 1398 struct pf_keyhash *kh; 1399 struct pf_state_key *sk; 1400 struct pf_state *s, *ret = NULL; 1401 int idx, inout = 0; 1402 1403 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1404 1405 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1406 1407 PF_HASHROW_LOCK(kh); 1408 LIST_FOREACH(sk, &kh->keys, entry) 1409 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1410 break; 1411 if (sk == NULL) { 1412 PF_HASHROW_UNLOCK(kh); 1413 return (NULL); 1414 } 1415 switch (dir) { 1416 case PF_IN: 1417 idx = PF_SK_WIRE; 1418 break; 1419 case PF_OUT: 1420 idx = PF_SK_STACK; 1421 break; 1422 case PF_INOUT: 1423 idx = PF_SK_WIRE; 1424 inout = 1; 1425 break; 1426 default: 1427 panic("%s: dir %u", __func__, dir); 1428 } 1429 second_run: 1430 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1431 if (more == NULL) { 1432 PF_HASHROW_UNLOCK(kh); 1433 return (s); 1434 } 1435 1436 if (ret) 1437 (*more)++; 1438 else 1439 ret = s; 1440 } 1441 if (inout == 1) { 1442 inout = 0; 1443 idx = PF_SK_STACK; 1444 goto second_run; 1445 } 1446 PF_HASHROW_UNLOCK(kh); 1447 1448 return (ret); 1449 } 1450 1451 /* END state table stuff */ 1452 1453 static void 1454 pf_send(struct pf_send_entry *pfse) 1455 { 1456 1457 PF_SENDQ_LOCK(); 1458 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1459 PF_SENDQ_UNLOCK(); 1460 swi_sched(V_pf_swi_cookie, 0); 1461 } 1462 1463 void 1464 pf_intr(void *v) 1465 { 1466 struct epoch_tracker et; 1467 struct pf_send_head queue; 1468 struct pf_send_entry *pfse, *next; 1469 1470 CURVNET_SET((struct vnet *)v); 1471 1472 PF_SENDQ_LOCK(); 1473 queue = V_pf_sendqueue; 1474 STAILQ_INIT(&V_pf_sendqueue); 1475 PF_SENDQ_UNLOCK(); 1476 1477 NET_EPOCH_ENTER(et); 1478 1479 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1480 switch (pfse->pfse_type) { 1481 #ifdef INET 1482 case PFSE_IP: 1483 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1484 break; 1485 case PFSE_ICMP: 1486 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1487 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1488 break; 1489 #endif /* INET */ 1490 #ifdef INET6 1491 case PFSE_IP6: 1492 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1493 NULL); 1494 break; 1495 case PFSE_ICMP6: 1496 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1497 pfse->icmpopts.code, pfse->icmpopts.mtu); 1498 break; 1499 #endif /* INET6 */ 1500 default: 1501 panic("%s: unknown type", __func__); 1502 } 1503 free(pfse, M_PFTEMP); 1504 } 1505 NET_EPOCH_EXIT(et); 1506 CURVNET_RESTORE(); 1507 } 1508 1509 void 1510 pf_purge_thread(void *unused __unused) 1511 { 1512 VNET_ITERATOR_DECL(vnet_iter); 1513 1514 sx_xlock(&pf_end_lock); 1515 while (pf_end_threads == 0) { 1516 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", hz / 10); 1517 1518 VNET_LIST_RLOCK(); 1519 VNET_FOREACH(vnet_iter) { 1520 CURVNET_SET(vnet_iter); 1521 1522 /* Wait until V_pf_default_rule is initialized. */ 1523 if (V_pf_vnet_active == 0) { 1524 CURVNET_RESTORE(); 1525 continue; 1526 } 1527 1528 /* 1529 * Process 1/interval fraction of the state 1530 * table every run. 1531 */ 1532 V_pf_purge_idx = 1533 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1534 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1535 1536 /* 1537 * Purge other expired types every 1538 * PFTM_INTERVAL seconds. 1539 */ 1540 if (V_pf_purge_idx == 0) { 1541 /* 1542 * Order is important: 1543 * - states and src nodes reference rules 1544 * - states and rules reference kifs 1545 */ 1546 pf_purge_expired_fragments(); 1547 pf_purge_expired_src_nodes(); 1548 pf_purge_unlinked_rules(); 1549 pfi_kkif_purge(); 1550 } 1551 CURVNET_RESTORE(); 1552 } 1553 VNET_LIST_RUNLOCK(); 1554 } 1555 1556 pf_end_threads++; 1557 sx_xunlock(&pf_end_lock); 1558 kproc_exit(0); 1559 } 1560 1561 void 1562 pf_unload_vnet_purge(void) 1563 { 1564 1565 /* 1566 * To cleanse up all kifs and rules we need 1567 * two runs: first one clears reference flags, 1568 * then pf_purge_expired_states() doesn't 1569 * raise them, and then second run frees. 1570 */ 1571 pf_purge_unlinked_rules(); 1572 pfi_kkif_purge(); 1573 1574 /* 1575 * Now purge everything. 1576 */ 1577 pf_purge_expired_states(0, pf_hashmask); 1578 pf_purge_fragments(UINT_MAX); 1579 pf_purge_expired_src_nodes(); 1580 1581 /* 1582 * Now all kifs & rules should be unreferenced, 1583 * thus should be successfully freed. 1584 */ 1585 pf_purge_unlinked_rules(); 1586 pfi_kkif_purge(); 1587 } 1588 1589 u_int32_t 1590 pf_state_expires(const struct pf_state *state) 1591 { 1592 u_int32_t timeout; 1593 u_int32_t start; 1594 u_int32_t end; 1595 u_int32_t states; 1596 1597 /* handle all PFTM_* > PFTM_MAX here */ 1598 if (state->timeout == PFTM_PURGE) 1599 return (time_uptime); 1600 KASSERT(state->timeout != PFTM_UNLINKED, 1601 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1602 KASSERT((state->timeout < PFTM_MAX), 1603 ("pf_state_expires: timeout > PFTM_MAX")); 1604 timeout = state->rule.ptr->timeout[state->timeout]; 1605 if (!timeout) 1606 timeout = V_pf_default_rule.timeout[state->timeout]; 1607 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1608 if (start && state->rule.ptr != &V_pf_default_rule) { 1609 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1610 states = counter_u64_fetch(state->rule.ptr->states_cur); 1611 } else { 1612 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1613 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1614 states = V_pf_status.states; 1615 } 1616 if (end && states > start && start < end) { 1617 if (states < end) { 1618 timeout = (u_int64_t)timeout * (end - states) / 1619 (end - start); 1620 return (state->expire + timeout); 1621 } 1622 else 1623 return (time_uptime); 1624 } 1625 return (state->expire + timeout); 1626 } 1627 1628 void 1629 pf_purge_expired_src_nodes() 1630 { 1631 struct pf_ksrc_node_list freelist; 1632 struct pf_srchash *sh; 1633 struct pf_ksrc_node *cur, *next; 1634 int i; 1635 1636 LIST_INIT(&freelist); 1637 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1638 PF_HASHROW_LOCK(sh); 1639 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1640 if (cur->states == 0 && cur->expire <= time_uptime) { 1641 pf_unlink_src_node(cur); 1642 LIST_INSERT_HEAD(&freelist, cur, entry); 1643 } else if (cur->rule.ptr != NULL) 1644 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1645 PF_HASHROW_UNLOCK(sh); 1646 } 1647 1648 pf_free_src_nodes(&freelist); 1649 1650 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1651 } 1652 1653 static void 1654 pf_src_tree_remove_state(struct pf_state *s) 1655 { 1656 struct pf_ksrc_node *sn; 1657 struct pf_srchash *sh; 1658 uint32_t timeout; 1659 1660 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1661 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1662 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1663 1664 if (s->src_node != NULL) { 1665 sn = s->src_node; 1666 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1667 PF_HASHROW_LOCK(sh); 1668 if (s->src.tcp_est) 1669 --sn->conn; 1670 if (--sn->states == 0) 1671 sn->expire = time_uptime + timeout; 1672 PF_HASHROW_UNLOCK(sh); 1673 } 1674 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1675 sn = s->nat_src_node; 1676 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1677 PF_HASHROW_LOCK(sh); 1678 if (--sn->states == 0) 1679 sn->expire = time_uptime + timeout; 1680 PF_HASHROW_UNLOCK(sh); 1681 } 1682 s->src_node = s->nat_src_node = NULL; 1683 } 1684 1685 /* 1686 * Unlink and potentilly free a state. Function may be 1687 * called with ID hash row locked, but always returns 1688 * unlocked, since it needs to go through key hash locking. 1689 */ 1690 int 1691 pf_unlink_state(struct pf_state *s, u_int flags) 1692 { 1693 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1694 1695 if ((flags & PF_ENTER_LOCKED) == 0) 1696 PF_HASHROW_LOCK(ih); 1697 else 1698 PF_HASHROW_ASSERT(ih); 1699 1700 if (s->timeout == PFTM_UNLINKED) { 1701 /* 1702 * State is being processed 1703 * by pf_unlink_state() in 1704 * an other thread. 1705 */ 1706 PF_HASHROW_UNLOCK(ih); 1707 return (0); /* XXXGL: undefined actually */ 1708 } 1709 1710 if (s->src.state == PF_TCPS_PROXY_DST) { 1711 /* XXX wire key the right one? */ 1712 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1713 &s->key[PF_SK_WIRE]->addr[1], 1714 &s->key[PF_SK_WIRE]->addr[0], 1715 s->key[PF_SK_WIRE]->port[1], 1716 s->key[PF_SK_WIRE]->port[0], 1717 s->src.seqhi, s->src.seqlo + 1, 1718 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1719 } 1720 1721 LIST_REMOVE(s, entry); 1722 pf_src_tree_remove_state(s); 1723 1724 if (V_pfsync_delete_state_ptr != NULL) 1725 V_pfsync_delete_state_ptr(s); 1726 1727 STATE_DEC_COUNTERS(s); 1728 1729 s->timeout = PFTM_UNLINKED; 1730 1731 PF_HASHROW_UNLOCK(ih); 1732 1733 pf_detach_state(s); 1734 /* pf_state_insert() initialises refs to 2, so we can never release the 1735 * last reference here, only in pf_release_state(). */ 1736 (void)refcount_release(&s->refs); 1737 1738 return (pf_release_state(s)); 1739 } 1740 1741 void 1742 pf_free_state(struct pf_state *cur) 1743 { 1744 1745 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1746 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1747 cur->timeout)); 1748 1749 for (int i = 0; i < 2; i++) { 1750 counter_u64_free(cur->bytes[i]); 1751 counter_u64_free(cur->packets[i]); 1752 } 1753 1754 pf_normalize_tcp_cleanup(cur); 1755 uma_zfree(V_pf_state_z, cur); 1756 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1757 } 1758 1759 /* 1760 * Called only from pf_purge_thread(), thus serialized. 1761 */ 1762 static u_int 1763 pf_purge_expired_states(u_int i, int maxcheck) 1764 { 1765 struct pf_idhash *ih; 1766 struct pf_state *s; 1767 1768 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1769 1770 /* 1771 * Go through hash and unlink states that expire now. 1772 */ 1773 while (maxcheck > 0) { 1774 ih = &V_pf_idhash[i]; 1775 1776 /* only take the lock if we expect to do work */ 1777 if (!LIST_EMPTY(&ih->states)) { 1778 relock: 1779 PF_HASHROW_LOCK(ih); 1780 LIST_FOREACH(s, &ih->states, entry) { 1781 if (pf_state_expires(s) <= time_uptime) { 1782 V_pf_status.states -= 1783 pf_unlink_state(s, PF_ENTER_LOCKED); 1784 goto relock; 1785 } 1786 s->rule.ptr->rule_flag |= PFRULE_REFS; 1787 if (s->nat_rule.ptr != NULL) 1788 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1789 if (s->anchor.ptr != NULL) 1790 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1791 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1792 if (s->rt_kif) 1793 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1794 } 1795 PF_HASHROW_UNLOCK(ih); 1796 } 1797 1798 /* Return when we hit end of hash. */ 1799 if (++i > pf_hashmask) { 1800 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1801 return (0); 1802 } 1803 1804 maxcheck--; 1805 } 1806 1807 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1808 1809 return (i); 1810 } 1811 1812 static void 1813 pf_purge_unlinked_rules() 1814 { 1815 struct pf_krulequeue tmpq; 1816 struct pf_krule *r, *r1; 1817 1818 /* 1819 * If we have overloading task pending, then we'd 1820 * better skip purging this time. There is a tiny 1821 * probability that overloading task references 1822 * an already unlinked rule. 1823 */ 1824 PF_OVERLOADQ_LOCK(); 1825 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1826 PF_OVERLOADQ_UNLOCK(); 1827 return; 1828 } 1829 PF_OVERLOADQ_UNLOCK(); 1830 1831 /* 1832 * Do naive mark-and-sweep garbage collecting of old rules. 1833 * Reference flag is raised by pf_purge_expired_states() 1834 * and pf_purge_expired_src_nodes(). 1835 * 1836 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1837 * use a temporary queue. 1838 */ 1839 TAILQ_INIT(&tmpq); 1840 PF_UNLNKDRULES_LOCK(); 1841 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1842 if (!(r->rule_flag & PFRULE_REFS)) { 1843 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1844 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1845 } else 1846 r->rule_flag &= ~PFRULE_REFS; 1847 } 1848 PF_UNLNKDRULES_UNLOCK(); 1849 1850 if (!TAILQ_EMPTY(&tmpq)) { 1851 PF_RULES_WLOCK(); 1852 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1853 TAILQ_REMOVE(&tmpq, r, entries); 1854 pf_free_rule(r); 1855 } 1856 PF_RULES_WUNLOCK(); 1857 } 1858 } 1859 1860 void 1861 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1862 { 1863 switch (af) { 1864 #ifdef INET 1865 case AF_INET: { 1866 u_int32_t a = ntohl(addr->addr32[0]); 1867 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1868 (a>>8)&255, a&255); 1869 if (p) { 1870 p = ntohs(p); 1871 printf(":%u", p); 1872 } 1873 break; 1874 } 1875 #endif /* INET */ 1876 #ifdef INET6 1877 case AF_INET6: { 1878 u_int16_t b; 1879 u_int8_t i, curstart, curend, maxstart, maxend; 1880 curstart = curend = maxstart = maxend = 255; 1881 for (i = 0; i < 8; i++) { 1882 if (!addr->addr16[i]) { 1883 if (curstart == 255) 1884 curstart = i; 1885 curend = i; 1886 } else { 1887 if ((curend - curstart) > 1888 (maxend - maxstart)) { 1889 maxstart = curstart; 1890 maxend = curend; 1891 } 1892 curstart = curend = 255; 1893 } 1894 } 1895 if ((curend - curstart) > 1896 (maxend - maxstart)) { 1897 maxstart = curstart; 1898 maxend = curend; 1899 } 1900 for (i = 0; i < 8; i++) { 1901 if (i >= maxstart && i <= maxend) { 1902 if (i == 0) 1903 printf(":"); 1904 if (i == maxend) 1905 printf(":"); 1906 } else { 1907 b = ntohs(addr->addr16[i]); 1908 printf("%x", b); 1909 if (i < 7) 1910 printf(":"); 1911 } 1912 } 1913 if (p) { 1914 p = ntohs(p); 1915 printf("[%u]", p); 1916 } 1917 break; 1918 } 1919 #endif /* INET6 */ 1920 } 1921 } 1922 1923 void 1924 pf_print_state(struct pf_state *s) 1925 { 1926 pf_print_state_parts(s, NULL, NULL); 1927 } 1928 1929 static void 1930 pf_print_state_parts(struct pf_state *s, 1931 struct pf_state_key *skwp, struct pf_state_key *sksp) 1932 { 1933 struct pf_state_key *skw, *sks; 1934 u_int8_t proto, dir; 1935 1936 /* Do our best to fill these, but they're skipped if NULL */ 1937 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1938 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1939 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1940 dir = s ? s->direction : 0; 1941 1942 switch (proto) { 1943 case IPPROTO_IPV4: 1944 printf("IPv4"); 1945 break; 1946 case IPPROTO_IPV6: 1947 printf("IPv6"); 1948 break; 1949 case IPPROTO_TCP: 1950 printf("TCP"); 1951 break; 1952 case IPPROTO_UDP: 1953 printf("UDP"); 1954 break; 1955 case IPPROTO_ICMP: 1956 printf("ICMP"); 1957 break; 1958 case IPPROTO_ICMPV6: 1959 printf("ICMPv6"); 1960 break; 1961 default: 1962 printf("%u", proto); 1963 break; 1964 } 1965 switch (dir) { 1966 case PF_IN: 1967 printf(" in"); 1968 break; 1969 case PF_OUT: 1970 printf(" out"); 1971 break; 1972 } 1973 if (skw) { 1974 printf(" wire: "); 1975 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1976 printf(" "); 1977 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1978 } 1979 if (sks) { 1980 printf(" stack: "); 1981 if (sks != skw) { 1982 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1983 printf(" "); 1984 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1985 } else 1986 printf("-"); 1987 } 1988 if (s) { 1989 if (proto == IPPROTO_TCP) { 1990 printf(" [lo=%u high=%u win=%u modulator=%u", 1991 s->src.seqlo, s->src.seqhi, 1992 s->src.max_win, s->src.seqdiff); 1993 if (s->src.wscale && s->dst.wscale) 1994 printf(" wscale=%u", 1995 s->src.wscale & PF_WSCALE_MASK); 1996 printf("]"); 1997 printf(" [lo=%u high=%u win=%u modulator=%u", 1998 s->dst.seqlo, s->dst.seqhi, 1999 s->dst.max_win, s->dst.seqdiff); 2000 if (s->src.wscale && s->dst.wscale) 2001 printf(" wscale=%u", 2002 s->dst.wscale & PF_WSCALE_MASK); 2003 printf("]"); 2004 } 2005 printf(" %u:%u", s->src.state, s->dst.state); 2006 } 2007 } 2008 2009 void 2010 pf_print_flags(u_int8_t f) 2011 { 2012 if (f) 2013 printf(" "); 2014 if (f & TH_FIN) 2015 printf("F"); 2016 if (f & TH_SYN) 2017 printf("S"); 2018 if (f & TH_RST) 2019 printf("R"); 2020 if (f & TH_PUSH) 2021 printf("P"); 2022 if (f & TH_ACK) 2023 printf("A"); 2024 if (f & TH_URG) 2025 printf("U"); 2026 if (f & TH_ECE) 2027 printf("E"); 2028 if (f & TH_CWR) 2029 printf("W"); 2030 } 2031 2032 #define PF_SET_SKIP_STEPS(i) \ 2033 do { \ 2034 while (head[i] != cur) { \ 2035 head[i]->skip[i].ptr = cur; \ 2036 head[i] = TAILQ_NEXT(head[i], entries); \ 2037 } \ 2038 } while (0) 2039 2040 void 2041 pf_calc_skip_steps(struct pf_krulequeue *rules) 2042 { 2043 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2044 int i; 2045 2046 cur = TAILQ_FIRST(rules); 2047 prev = cur; 2048 for (i = 0; i < PF_SKIP_COUNT; ++i) 2049 head[i] = cur; 2050 while (cur != NULL) { 2051 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2052 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2053 if (cur->direction != prev->direction) 2054 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2055 if (cur->af != prev->af) 2056 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2057 if (cur->proto != prev->proto) 2058 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2059 if (cur->src.neg != prev->src.neg || 2060 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2061 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2062 if (cur->src.port[0] != prev->src.port[0] || 2063 cur->src.port[1] != prev->src.port[1] || 2064 cur->src.port_op != prev->src.port_op) 2065 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2066 if (cur->dst.neg != prev->dst.neg || 2067 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2068 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2069 if (cur->dst.port[0] != prev->dst.port[0] || 2070 cur->dst.port[1] != prev->dst.port[1] || 2071 cur->dst.port_op != prev->dst.port_op) 2072 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2073 2074 prev = cur; 2075 cur = TAILQ_NEXT(cur, entries); 2076 } 2077 for (i = 0; i < PF_SKIP_COUNT; ++i) 2078 PF_SET_SKIP_STEPS(i); 2079 } 2080 2081 static int 2082 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2083 { 2084 if (aw1->type != aw2->type) 2085 return (1); 2086 switch (aw1->type) { 2087 case PF_ADDR_ADDRMASK: 2088 case PF_ADDR_RANGE: 2089 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2090 return (1); 2091 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2092 return (1); 2093 return (0); 2094 case PF_ADDR_DYNIFTL: 2095 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2096 case PF_ADDR_NOROUTE: 2097 case PF_ADDR_URPFFAILED: 2098 return (0); 2099 case PF_ADDR_TABLE: 2100 return (aw1->p.tbl != aw2->p.tbl); 2101 default: 2102 printf("invalid address type: %d\n", aw1->type); 2103 return (1); 2104 } 2105 } 2106 2107 /** 2108 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2109 * header isn't always a full checksum. In some cases (i.e. output) it's a 2110 * pseudo-header checksum, which is a partial checksum over src/dst IP 2111 * addresses, protocol number and length. 2112 * 2113 * That means we have the following cases: 2114 * * Input or forwarding: we don't have TSO, the checksum fields are full 2115 * checksums, we need to update the checksum whenever we change anything. 2116 * * Output (i.e. the checksum is a pseudo-header checksum): 2117 * x The field being updated is src/dst address or affects the length of 2118 * the packet. We need to update the pseudo-header checksum (note that this 2119 * checksum is not ones' complement). 2120 * x Some other field is being modified (e.g. src/dst port numbers): We 2121 * don't have to update anything. 2122 **/ 2123 u_int16_t 2124 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2125 { 2126 u_int32_t x; 2127 2128 x = cksum + old - new; 2129 x = (x + (x >> 16)) & 0xffff; 2130 2131 /* optimise: eliminate a branch when not udp */ 2132 if (udp && cksum == 0x0000) 2133 return cksum; 2134 if (udp && x == 0x0000) 2135 x = 0xffff; 2136 2137 return (u_int16_t)(x); 2138 } 2139 2140 static void 2141 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 2142 u_int8_t udp) 2143 { 2144 u_int16_t old = htons(hi ? (*f << 8) : *f); 2145 u_int16_t new = htons(hi ? ( v << 8) : v); 2146 2147 if (*f == v) 2148 return; 2149 2150 *f = v; 2151 2152 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2153 return; 2154 2155 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 2156 } 2157 2158 void 2159 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 2160 bool hi, u_int8_t udp) 2161 { 2162 u_int8_t *fb = (u_int8_t *)f; 2163 u_int8_t *vb = (u_int8_t *)&v; 2164 2165 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2166 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2167 } 2168 2169 void 2170 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 2171 bool hi, u_int8_t udp) 2172 { 2173 u_int8_t *fb = (u_int8_t *)f; 2174 u_int8_t *vb = (u_int8_t *)&v; 2175 2176 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2177 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2178 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2179 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2180 } 2181 2182 u_int16_t 2183 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2184 u_int16_t new, u_int8_t udp) 2185 { 2186 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2187 return (cksum); 2188 2189 return (pf_cksum_fixup(cksum, old, new, udp)); 2190 } 2191 2192 static void 2193 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2194 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2195 sa_family_t af) 2196 { 2197 struct pf_addr ao; 2198 u_int16_t po = *p; 2199 2200 PF_ACPY(&ao, a, af); 2201 PF_ACPY(a, an, af); 2202 2203 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2204 *pc = ~*pc; 2205 2206 *p = pn; 2207 2208 switch (af) { 2209 #ifdef INET 2210 case AF_INET: 2211 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2212 ao.addr16[0], an->addr16[0], 0), 2213 ao.addr16[1], an->addr16[1], 0); 2214 *p = pn; 2215 2216 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2217 ao.addr16[0], an->addr16[0], u), 2218 ao.addr16[1], an->addr16[1], u); 2219 2220 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2221 break; 2222 #endif /* INET */ 2223 #ifdef INET6 2224 case AF_INET6: 2225 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2226 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2227 pf_cksum_fixup(pf_cksum_fixup(*pc, 2228 ao.addr16[0], an->addr16[0], u), 2229 ao.addr16[1], an->addr16[1], u), 2230 ao.addr16[2], an->addr16[2], u), 2231 ao.addr16[3], an->addr16[3], u), 2232 ao.addr16[4], an->addr16[4], u), 2233 ao.addr16[5], an->addr16[5], u), 2234 ao.addr16[6], an->addr16[6], u), 2235 ao.addr16[7], an->addr16[7], u); 2236 2237 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2238 break; 2239 #endif /* INET6 */ 2240 } 2241 2242 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2243 CSUM_DELAY_DATA_IPV6)) { 2244 *pc = ~*pc; 2245 if (! *pc) 2246 *pc = 0xffff; 2247 } 2248 } 2249 2250 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2251 void 2252 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2253 { 2254 u_int32_t ao; 2255 2256 memcpy(&ao, a, sizeof(ao)); 2257 memcpy(a, &an, sizeof(u_int32_t)); 2258 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2259 ao % 65536, an % 65536, u); 2260 } 2261 2262 void 2263 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2264 { 2265 u_int32_t ao; 2266 2267 memcpy(&ao, a, sizeof(ao)); 2268 memcpy(a, &an, sizeof(u_int32_t)); 2269 2270 *c = pf_proto_cksum_fixup(m, 2271 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2272 ao % 65536, an % 65536, udp); 2273 } 2274 2275 #ifdef INET6 2276 static void 2277 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2278 { 2279 struct pf_addr ao; 2280 2281 PF_ACPY(&ao, a, AF_INET6); 2282 PF_ACPY(a, an, AF_INET6); 2283 2284 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2285 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2286 pf_cksum_fixup(pf_cksum_fixup(*c, 2287 ao.addr16[0], an->addr16[0], u), 2288 ao.addr16[1], an->addr16[1], u), 2289 ao.addr16[2], an->addr16[2], u), 2290 ao.addr16[3], an->addr16[3], u), 2291 ao.addr16[4], an->addr16[4], u), 2292 ao.addr16[5], an->addr16[5], u), 2293 ao.addr16[6], an->addr16[6], u), 2294 ao.addr16[7], an->addr16[7], u); 2295 } 2296 #endif /* INET6 */ 2297 2298 static void 2299 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2300 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2301 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2302 { 2303 struct pf_addr oia, ooa; 2304 2305 PF_ACPY(&oia, ia, af); 2306 if (oa) 2307 PF_ACPY(&ooa, oa, af); 2308 2309 /* Change inner protocol port, fix inner protocol checksum. */ 2310 if (ip != NULL) { 2311 u_int16_t oip = *ip; 2312 u_int32_t opc; 2313 2314 if (pc != NULL) 2315 opc = *pc; 2316 *ip = np; 2317 if (pc != NULL) 2318 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2319 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2320 if (pc != NULL) 2321 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2322 } 2323 /* Change inner ip address, fix inner ip and icmp checksums. */ 2324 PF_ACPY(ia, na, af); 2325 switch (af) { 2326 #ifdef INET 2327 case AF_INET: { 2328 u_int32_t oh2c = *h2c; 2329 2330 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2331 oia.addr16[0], ia->addr16[0], 0), 2332 oia.addr16[1], ia->addr16[1], 0); 2333 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2334 oia.addr16[0], ia->addr16[0], 0), 2335 oia.addr16[1], ia->addr16[1], 0); 2336 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2337 break; 2338 } 2339 #endif /* INET */ 2340 #ifdef INET6 2341 case AF_INET6: 2342 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2343 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2344 pf_cksum_fixup(pf_cksum_fixup(*ic, 2345 oia.addr16[0], ia->addr16[0], u), 2346 oia.addr16[1], ia->addr16[1], u), 2347 oia.addr16[2], ia->addr16[2], u), 2348 oia.addr16[3], ia->addr16[3], u), 2349 oia.addr16[4], ia->addr16[4], u), 2350 oia.addr16[5], ia->addr16[5], u), 2351 oia.addr16[6], ia->addr16[6], u), 2352 oia.addr16[7], ia->addr16[7], u); 2353 break; 2354 #endif /* INET6 */ 2355 } 2356 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2357 if (oa) { 2358 PF_ACPY(oa, na, af); 2359 switch (af) { 2360 #ifdef INET 2361 case AF_INET: 2362 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2363 ooa.addr16[0], oa->addr16[0], 0), 2364 ooa.addr16[1], oa->addr16[1], 0); 2365 break; 2366 #endif /* INET */ 2367 #ifdef INET6 2368 case AF_INET6: 2369 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2370 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2371 pf_cksum_fixup(pf_cksum_fixup(*ic, 2372 ooa.addr16[0], oa->addr16[0], u), 2373 ooa.addr16[1], oa->addr16[1], u), 2374 ooa.addr16[2], oa->addr16[2], u), 2375 ooa.addr16[3], oa->addr16[3], u), 2376 ooa.addr16[4], oa->addr16[4], u), 2377 ooa.addr16[5], oa->addr16[5], u), 2378 ooa.addr16[6], oa->addr16[6], u), 2379 ooa.addr16[7], oa->addr16[7], u); 2380 break; 2381 #endif /* INET6 */ 2382 } 2383 } 2384 } 2385 2386 /* 2387 * Need to modulate the sequence numbers in the TCP SACK option 2388 * (credits to Krzysztof Pfaff for report and patch) 2389 */ 2390 static int 2391 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2392 struct tcphdr *th, struct pf_state_peer *dst) 2393 { 2394 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2395 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2396 int copyback = 0, i, olen; 2397 struct sackblk sack; 2398 2399 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2400 if (hlen < TCPOLEN_SACKLEN || 2401 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2402 return 0; 2403 2404 while (hlen >= TCPOLEN_SACKLEN) { 2405 size_t startoff = opt - opts; 2406 olen = opt[1]; 2407 switch (*opt) { 2408 case TCPOPT_EOL: /* FALLTHROUGH */ 2409 case TCPOPT_NOP: 2410 opt++; 2411 hlen--; 2412 break; 2413 case TCPOPT_SACK: 2414 if (olen > hlen) 2415 olen = hlen; 2416 if (olen >= TCPOLEN_SACKLEN) { 2417 for (i = 2; i + TCPOLEN_SACK <= olen; 2418 i += TCPOLEN_SACK) { 2419 memcpy(&sack, &opt[i], sizeof(sack)); 2420 pf_patch_32_unaligned(m, 2421 &th->th_sum, &sack.start, 2422 htonl(ntohl(sack.start) - dst->seqdiff), 2423 PF_ALGNMNT(startoff), 2424 0); 2425 pf_patch_32_unaligned(m, &th->th_sum, 2426 &sack.end, 2427 htonl(ntohl(sack.end) - dst->seqdiff), 2428 PF_ALGNMNT(startoff), 2429 0); 2430 memcpy(&opt[i], &sack, sizeof(sack)); 2431 } 2432 copyback = 1; 2433 } 2434 /* FALLTHROUGH */ 2435 default: 2436 if (olen < 2) 2437 olen = 2; 2438 hlen -= olen; 2439 opt += olen; 2440 } 2441 } 2442 2443 if (copyback) 2444 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2445 return (copyback); 2446 } 2447 2448 static void 2449 pf_send_tcp(struct mbuf *replyto, const struct pf_krule *r, sa_family_t af, 2450 const struct pf_addr *saddr, const struct pf_addr *daddr, 2451 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2452 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2453 u_int16_t rtag, struct ifnet *ifp) 2454 { 2455 struct pf_send_entry *pfse; 2456 struct mbuf *m; 2457 int len, tlen; 2458 #ifdef INET 2459 struct ip *h = NULL; 2460 #endif /* INET */ 2461 #ifdef INET6 2462 struct ip6_hdr *h6 = NULL; 2463 #endif /* INET6 */ 2464 struct tcphdr *th; 2465 char *opt; 2466 struct pf_mtag *pf_mtag; 2467 2468 len = 0; 2469 th = NULL; 2470 2471 /* maximum segment size tcp option */ 2472 tlen = sizeof(struct tcphdr); 2473 if (mss) 2474 tlen += 4; 2475 2476 switch (af) { 2477 #ifdef INET 2478 case AF_INET: 2479 len = sizeof(struct ip) + tlen; 2480 break; 2481 #endif /* INET */ 2482 #ifdef INET6 2483 case AF_INET6: 2484 len = sizeof(struct ip6_hdr) + tlen; 2485 break; 2486 #endif /* INET6 */ 2487 default: 2488 panic("%s: unsupported af %d", __func__, af); 2489 } 2490 2491 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2492 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2493 if (pfse == NULL) 2494 return; 2495 m = m_gethdr(M_NOWAIT, MT_DATA); 2496 if (m == NULL) { 2497 free(pfse, M_PFTEMP); 2498 return; 2499 } 2500 #ifdef MAC 2501 mac_netinet_firewall_send(m); 2502 #endif 2503 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2504 free(pfse, M_PFTEMP); 2505 m_freem(m); 2506 return; 2507 } 2508 if (tag) 2509 m->m_flags |= M_SKIP_FIREWALL; 2510 pf_mtag->tag = rtag; 2511 2512 if (r != NULL && r->rtableid >= 0) 2513 M_SETFIB(m, r->rtableid); 2514 2515 #ifdef ALTQ 2516 if (r != NULL && r->qid) { 2517 pf_mtag->qid = r->qid; 2518 2519 /* add hints for ecn */ 2520 pf_mtag->hdr = mtod(m, struct ip *); 2521 } 2522 #endif /* ALTQ */ 2523 m->m_data += max_linkhdr; 2524 m->m_pkthdr.len = m->m_len = len; 2525 m->m_pkthdr.rcvif = NULL; 2526 bzero(m->m_data, len); 2527 switch (af) { 2528 #ifdef INET 2529 case AF_INET: 2530 h = mtod(m, struct ip *); 2531 2532 /* IP header fields included in the TCP checksum */ 2533 h->ip_p = IPPROTO_TCP; 2534 h->ip_len = htons(tlen); 2535 h->ip_src.s_addr = saddr->v4.s_addr; 2536 h->ip_dst.s_addr = daddr->v4.s_addr; 2537 2538 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2539 break; 2540 #endif /* INET */ 2541 #ifdef INET6 2542 case AF_INET6: 2543 h6 = mtod(m, struct ip6_hdr *); 2544 2545 /* IP header fields included in the TCP checksum */ 2546 h6->ip6_nxt = IPPROTO_TCP; 2547 h6->ip6_plen = htons(tlen); 2548 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2549 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2550 2551 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2552 break; 2553 #endif /* INET6 */ 2554 } 2555 2556 /* TCP header */ 2557 th->th_sport = sport; 2558 th->th_dport = dport; 2559 th->th_seq = htonl(seq); 2560 th->th_ack = htonl(ack); 2561 th->th_off = tlen >> 2; 2562 th->th_flags = flags; 2563 th->th_win = htons(win); 2564 2565 if (mss) { 2566 opt = (char *)(th + 1); 2567 opt[0] = TCPOPT_MAXSEG; 2568 opt[1] = 4; 2569 HTONS(mss); 2570 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2571 } 2572 2573 switch (af) { 2574 #ifdef INET 2575 case AF_INET: 2576 /* TCP checksum */ 2577 th->th_sum = in_cksum(m, len); 2578 2579 /* Finish the IP header */ 2580 h->ip_v = 4; 2581 h->ip_hl = sizeof(*h) >> 2; 2582 h->ip_tos = IPTOS_LOWDELAY; 2583 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2584 h->ip_len = htons(len); 2585 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2586 h->ip_sum = 0; 2587 2588 pfse->pfse_type = PFSE_IP; 2589 break; 2590 #endif /* INET */ 2591 #ifdef INET6 2592 case AF_INET6: 2593 /* TCP checksum */ 2594 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2595 sizeof(struct ip6_hdr), tlen); 2596 2597 h6->ip6_vfc |= IPV6_VERSION; 2598 h6->ip6_hlim = IPV6_DEFHLIM; 2599 2600 pfse->pfse_type = PFSE_IP6; 2601 break; 2602 #endif /* INET6 */ 2603 } 2604 pfse->pfse_m = m; 2605 pf_send(pfse); 2606 } 2607 2608 static void 2609 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 2610 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 2611 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 2612 u_short *reason) 2613 { 2614 struct pf_addr * const saddr = pd->src; 2615 struct pf_addr * const daddr = pd->dst; 2616 sa_family_t af = pd->af; 2617 2618 /* undo NAT changes, if they have taken place */ 2619 if (nr != NULL) { 2620 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 2621 PF_ACPY(daddr, &sk->addr[pd->didx], af); 2622 if (pd->sport) 2623 *pd->sport = sk->port[pd->sidx]; 2624 if (pd->dport) 2625 *pd->dport = sk->port[pd->didx]; 2626 if (pd->proto_sum) 2627 *pd->proto_sum = bproto_sum; 2628 if (pd->ip_sum) 2629 *pd->ip_sum = bip_sum; 2630 m_copyback(m, off, hdrlen, pd->hdr.any); 2631 } 2632 if (pd->proto == IPPROTO_TCP && 2633 ((r->rule_flag & PFRULE_RETURNRST) || 2634 (r->rule_flag & PFRULE_RETURN)) && 2635 !(th->th_flags & TH_RST)) { 2636 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 2637 int len = 0; 2638 #ifdef INET 2639 struct ip *h4; 2640 #endif 2641 #ifdef INET6 2642 struct ip6_hdr *h6; 2643 #endif 2644 2645 switch (af) { 2646 #ifdef INET 2647 case AF_INET: 2648 h4 = mtod(m, struct ip *); 2649 len = ntohs(h4->ip_len) - off; 2650 break; 2651 #endif 2652 #ifdef INET6 2653 case AF_INET6: 2654 h6 = mtod(m, struct ip6_hdr *); 2655 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 2656 break; 2657 #endif 2658 } 2659 2660 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 2661 REASON_SET(reason, PFRES_PROTCKSUM); 2662 else { 2663 if (th->th_flags & TH_SYN) 2664 ack++; 2665 if (th->th_flags & TH_FIN) 2666 ack++; 2667 pf_send_tcp(m, r, af, pd->dst, 2668 pd->src, th->th_dport, th->th_sport, 2669 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 2670 r->return_ttl, 1, 0, kif->pfik_ifp); 2671 } 2672 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 2673 r->return_icmp) 2674 pf_send_icmp(m, r->return_icmp >> 8, 2675 r->return_icmp & 255, af, r); 2676 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 2677 r->return_icmp6) 2678 pf_send_icmp(m, r->return_icmp6 >> 8, 2679 r->return_icmp6 & 255, af, r); 2680 } 2681 2682 static int 2683 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2684 { 2685 struct m_tag *mtag; 2686 2687 KASSERT(prio <= PF_PRIO_MAX, 2688 ("%s with invalid pcp", __func__)); 2689 2690 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2691 if (mtag == NULL) { 2692 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2693 sizeof(uint8_t), M_NOWAIT); 2694 if (mtag == NULL) 2695 return (ENOMEM); 2696 m_tag_prepend(m, mtag); 2697 } 2698 2699 *(uint8_t *)(mtag + 1) = prio; 2700 return (0); 2701 } 2702 2703 static int 2704 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2705 { 2706 struct m_tag *mtag; 2707 u_int8_t mpcp; 2708 2709 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2710 if (mtag == NULL) 2711 return (0); 2712 2713 if (prio == PF_PRIO_ZERO) 2714 prio = 0; 2715 2716 mpcp = *(uint8_t *)(mtag + 1); 2717 2718 return (mpcp == prio); 2719 } 2720 2721 static void 2722 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2723 struct pf_krule *r) 2724 { 2725 struct pf_send_entry *pfse; 2726 struct mbuf *m0; 2727 struct pf_mtag *pf_mtag; 2728 2729 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2730 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2731 if (pfse == NULL) 2732 return; 2733 2734 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2735 free(pfse, M_PFTEMP); 2736 return; 2737 } 2738 2739 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2740 free(pfse, M_PFTEMP); 2741 return; 2742 } 2743 /* XXX: revisit */ 2744 m0->m_flags |= M_SKIP_FIREWALL; 2745 2746 if (r->rtableid >= 0) 2747 M_SETFIB(m0, r->rtableid); 2748 2749 #ifdef ALTQ 2750 if (r->qid) { 2751 pf_mtag->qid = r->qid; 2752 /* add hints for ecn */ 2753 pf_mtag->hdr = mtod(m0, struct ip *); 2754 } 2755 #endif /* ALTQ */ 2756 2757 switch (af) { 2758 #ifdef INET 2759 case AF_INET: 2760 pfse->pfse_type = PFSE_ICMP; 2761 break; 2762 #endif /* INET */ 2763 #ifdef INET6 2764 case AF_INET6: 2765 pfse->pfse_type = PFSE_ICMP6; 2766 break; 2767 #endif /* INET6 */ 2768 } 2769 pfse->pfse_m = m0; 2770 pfse->icmpopts.type = type; 2771 pfse->icmpopts.code = code; 2772 pf_send(pfse); 2773 } 2774 2775 /* 2776 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2777 * If n is 0, they match if they are equal. If n is != 0, they match if they 2778 * are different. 2779 */ 2780 int 2781 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2782 struct pf_addr *b, sa_family_t af) 2783 { 2784 int match = 0; 2785 2786 switch (af) { 2787 #ifdef INET 2788 case AF_INET: 2789 if ((a->addr32[0] & m->addr32[0]) == 2790 (b->addr32[0] & m->addr32[0])) 2791 match++; 2792 break; 2793 #endif /* INET */ 2794 #ifdef INET6 2795 case AF_INET6: 2796 if (((a->addr32[0] & m->addr32[0]) == 2797 (b->addr32[0] & m->addr32[0])) && 2798 ((a->addr32[1] & m->addr32[1]) == 2799 (b->addr32[1] & m->addr32[1])) && 2800 ((a->addr32[2] & m->addr32[2]) == 2801 (b->addr32[2] & m->addr32[2])) && 2802 ((a->addr32[3] & m->addr32[3]) == 2803 (b->addr32[3] & m->addr32[3]))) 2804 match++; 2805 break; 2806 #endif /* INET6 */ 2807 } 2808 if (match) { 2809 if (n) 2810 return (0); 2811 else 2812 return (1); 2813 } else { 2814 if (n) 2815 return (1); 2816 else 2817 return (0); 2818 } 2819 } 2820 2821 /* 2822 * Return 1 if b <= a <= e, otherwise return 0. 2823 */ 2824 int 2825 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2826 struct pf_addr *a, sa_family_t af) 2827 { 2828 switch (af) { 2829 #ifdef INET 2830 case AF_INET: 2831 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2832 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2833 return (0); 2834 break; 2835 #endif /* INET */ 2836 #ifdef INET6 2837 case AF_INET6: { 2838 int i; 2839 2840 /* check a >= b */ 2841 for (i = 0; i < 4; ++i) 2842 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2843 break; 2844 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2845 return (0); 2846 /* check a <= e */ 2847 for (i = 0; i < 4; ++i) 2848 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2849 break; 2850 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2851 return (0); 2852 break; 2853 } 2854 #endif /* INET6 */ 2855 } 2856 return (1); 2857 } 2858 2859 static int 2860 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2861 { 2862 switch (op) { 2863 case PF_OP_IRG: 2864 return ((p > a1) && (p < a2)); 2865 case PF_OP_XRG: 2866 return ((p < a1) || (p > a2)); 2867 case PF_OP_RRG: 2868 return ((p >= a1) && (p <= a2)); 2869 case PF_OP_EQ: 2870 return (p == a1); 2871 case PF_OP_NE: 2872 return (p != a1); 2873 case PF_OP_LT: 2874 return (p < a1); 2875 case PF_OP_LE: 2876 return (p <= a1); 2877 case PF_OP_GT: 2878 return (p > a1); 2879 case PF_OP_GE: 2880 return (p >= a1); 2881 } 2882 return (0); /* never reached */ 2883 } 2884 2885 int 2886 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2887 { 2888 NTOHS(a1); 2889 NTOHS(a2); 2890 NTOHS(p); 2891 return (pf_match(op, a1, a2, p)); 2892 } 2893 2894 static int 2895 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2896 { 2897 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2898 return (0); 2899 return (pf_match(op, a1, a2, u)); 2900 } 2901 2902 static int 2903 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2904 { 2905 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2906 return (0); 2907 return (pf_match(op, a1, a2, g)); 2908 } 2909 2910 int 2911 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 2912 { 2913 if (*tag == -1) 2914 *tag = mtag; 2915 2916 return ((!r->match_tag_not && r->match_tag == *tag) || 2917 (r->match_tag_not && r->match_tag != *tag)); 2918 } 2919 2920 int 2921 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2922 { 2923 2924 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2925 2926 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2927 return (ENOMEM); 2928 2929 pd->pf_mtag->tag = tag; 2930 2931 return (0); 2932 } 2933 2934 #define PF_ANCHOR_STACKSIZE 32 2935 struct pf_kanchor_stackframe { 2936 struct pf_kruleset *rs; 2937 struct pf_krule *r; /* XXX: + match bit */ 2938 struct pf_kanchor *child; 2939 }; 2940 2941 /* 2942 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2943 */ 2944 #define PF_ANCHORSTACK_MATCH 0x00000001 2945 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2946 2947 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2948 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 2949 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2950 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2951 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2952 } while (0) 2953 2954 void 2955 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 2956 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 2957 int *match) 2958 { 2959 struct pf_kanchor_stackframe *f; 2960 2961 PF_RULES_RASSERT(); 2962 2963 if (match) 2964 *match = 0; 2965 if (*depth >= PF_ANCHOR_STACKSIZE) { 2966 printf("%s: anchor stack overflow on %s\n", 2967 __func__, (*r)->anchor->name); 2968 *r = TAILQ_NEXT(*r, entries); 2969 return; 2970 } else if (*depth == 0 && a != NULL) 2971 *a = *r; 2972 f = stack + (*depth)++; 2973 f->rs = *rs; 2974 f->r = *r; 2975 if ((*r)->anchor_wildcard) { 2976 struct pf_kanchor_node *parent = &(*r)->anchor->children; 2977 2978 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 2979 *r = NULL; 2980 return; 2981 } 2982 *rs = &f->child->ruleset; 2983 } else { 2984 f->child = NULL; 2985 *rs = &(*r)->anchor->ruleset; 2986 } 2987 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2988 } 2989 2990 int 2991 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 2992 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 2993 int *match) 2994 { 2995 struct pf_kanchor_stackframe *f; 2996 struct pf_krule *fr; 2997 int quick = 0; 2998 2999 PF_RULES_RASSERT(); 3000 3001 do { 3002 if (*depth <= 0) 3003 break; 3004 f = stack + *depth - 1; 3005 fr = PF_ANCHOR_RULE(f); 3006 if (f->child != NULL) { 3007 struct pf_kanchor_node *parent; 3008 3009 /* 3010 * This block traverses through 3011 * a wildcard anchor. 3012 */ 3013 parent = &fr->anchor->children; 3014 if (match != NULL && *match) { 3015 /* 3016 * If any of "*" matched, then 3017 * "foo/ *" matched, mark frame 3018 * appropriately. 3019 */ 3020 PF_ANCHOR_SET_MATCH(f); 3021 *match = 0; 3022 } 3023 f->child = RB_NEXT(pf_kanchor_node, parent, f->child); 3024 if (f->child != NULL) { 3025 *rs = &f->child->ruleset; 3026 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3027 if (*r == NULL) 3028 continue; 3029 else 3030 break; 3031 } 3032 } 3033 (*depth)--; 3034 if (*depth == 0 && a != NULL) 3035 *a = NULL; 3036 *rs = f->rs; 3037 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 3038 quick = fr->quick; 3039 *r = TAILQ_NEXT(fr, entries); 3040 } while (*r == NULL); 3041 3042 return (quick); 3043 } 3044 3045 #ifdef INET6 3046 void 3047 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 3048 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 3049 { 3050 switch (af) { 3051 #ifdef INET 3052 case AF_INET: 3053 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3054 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3055 break; 3056 #endif /* INET */ 3057 case AF_INET6: 3058 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3059 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3060 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 3061 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 3062 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 3063 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 3064 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 3065 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 3066 break; 3067 } 3068 } 3069 3070 void 3071 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 3072 { 3073 switch (af) { 3074 #ifdef INET 3075 case AF_INET: 3076 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 3077 break; 3078 #endif /* INET */ 3079 case AF_INET6: 3080 if (addr->addr32[3] == 0xffffffff) { 3081 addr->addr32[3] = 0; 3082 if (addr->addr32[2] == 0xffffffff) { 3083 addr->addr32[2] = 0; 3084 if (addr->addr32[1] == 0xffffffff) { 3085 addr->addr32[1] = 0; 3086 addr->addr32[0] = 3087 htonl(ntohl(addr->addr32[0]) + 1); 3088 } else 3089 addr->addr32[1] = 3090 htonl(ntohl(addr->addr32[1]) + 1); 3091 } else 3092 addr->addr32[2] = 3093 htonl(ntohl(addr->addr32[2]) + 1); 3094 } else 3095 addr->addr32[3] = 3096 htonl(ntohl(addr->addr32[3]) + 1); 3097 break; 3098 } 3099 } 3100 #endif /* INET6 */ 3101 3102 int 3103 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 3104 { 3105 struct pf_addr *saddr, *daddr; 3106 u_int16_t sport, dport; 3107 struct inpcbinfo *pi; 3108 struct inpcb *inp; 3109 3110 pd->lookup.uid = UID_MAX; 3111 pd->lookup.gid = GID_MAX; 3112 3113 switch (pd->proto) { 3114 case IPPROTO_TCP: 3115 if (pd->hdr.tcp == NULL) 3116 return (-1); 3117 sport = pd->hdr.tcp->th_sport; 3118 dport = pd->hdr.tcp->th_dport; 3119 pi = &V_tcbinfo; 3120 break; 3121 case IPPROTO_UDP: 3122 if (pd->hdr.udp == NULL) 3123 return (-1); 3124 sport = pd->hdr.udp->uh_sport; 3125 dport = pd->hdr.udp->uh_dport; 3126 pi = &V_udbinfo; 3127 break; 3128 default: 3129 return (-1); 3130 } 3131 if (direction == PF_IN) { 3132 saddr = pd->src; 3133 daddr = pd->dst; 3134 } else { 3135 u_int16_t p; 3136 3137 p = sport; 3138 sport = dport; 3139 dport = p; 3140 saddr = pd->dst; 3141 daddr = pd->src; 3142 } 3143 switch (pd->af) { 3144 #ifdef INET 3145 case AF_INET: 3146 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3147 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3148 if (inp == NULL) { 3149 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3150 daddr->v4, dport, INPLOOKUP_WILDCARD | 3151 INPLOOKUP_RLOCKPCB, NULL, m); 3152 if (inp == NULL) 3153 return (-1); 3154 } 3155 break; 3156 #endif /* INET */ 3157 #ifdef INET6 3158 case AF_INET6: 3159 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3160 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3161 if (inp == NULL) { 3162 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3163 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3164 INPLOOKUP_RLOCKPCB, NULL, m); 3165 if (inp == NULL) 3166 return (-1); 3167 } 3168 break; 3169 #endif /* INET6 */ 3170 3171 default: 3172 return (-1); 3173 } 3174 INP_RLOCK_ASSERT(inp); 3175 pd->lookup.uid = inp->inp_cred->cr_uid; 3176 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3177 INP_RUNLOCK(inp); 3178 3179 return (1); 3180 } 3181 3182 static u_int8_t 3183 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3184 { 3185 int hlen; 3186 u_int8_t hdr[60]; 3187 u_int8_t *opt, optlen; 3188 u_int8_t wscale = 0; 3189 3190 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3191 if (hlen <= sizeof(struct tcphdr)) 3192 return (0); 3193 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3194 return (0); 3195 opt = hdr + sizeof(struct tcphdr); 3196 hlen -= sizeof(struct tcphdr); 3197 while (hlen >= 3) { 3198 switch (*opt) { 3199 case TCPOPT_EOL: 3200 case TCPOPT_NOP: 3201 ++opt; 3202 --hlen; 3203 break; 3204 case TCPOPT_WINDOW: 3205 wscale = opt[2]; 3206 if (wscale > TCP_MAX_WINSHIFT) 3207 wscale = TCP_MAX_WINSHIFT; 3208 wscale |= PF_WSCALE_FLAG; 3209 /* FALLTHROUGH */ 3210 default: 3211 optlen = opt[1]; 3212 if (optlen < 2) 3213 optlen = 2; 3214 hlen -= optlen; 3215 opt += optlen; 3216 break; 3217 } 3218 } 3219 return (wscale); 3220 } 3221 3222 static u_int16_t 3223 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3224 { 3225 int hlen; 3226 u_int8_t hdr[60]; 3227 u_int8_t *opt, optlen; 3228 u_int16_t mss = V_tcp_mssdflt; 3229 3230 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3231 if (hlen <= sizeof(struct tcphdr)) 3232 return (0); 3233 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3234 return (0); 3235 opt = hdr + sizeof(struct tcphdr); 3236 hlen -= sizeof(struct tcphdr); 3237 while (hlen >= TCPOLEN_MAXSEG) { 3238 switch (*opt) { 3239 case TCPOPT_EOL: 3240 case TCPOPT_NOP: 3241 ++opt; 3242 --hlen; 3243 break; 3244 case TCPOPT_MAXSEG: 3245 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3246 NTOHS(mss); 3247 /* FALLTHROUGH */ 3248 default: 3249 optlen = opt[1]; 3250 if (optlen < 2) 3251 optlen = 2; 3252 hlen -= optlen; 3253 opt += optlen; 3254 break; 3255 } 3256 } 3257 return (mss); 3258 } 3259 3260 static u_int16_t 3261 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3262 { 3263 struct nhop_object *nh; 3264 #ifdef INET6 3265 struct in6_addr dst6; 3266 uint32_t scopeid; 3267 #endif /* INET6 */ 3268 int hlen = 0; 3269 uint16_t mss = 0; 3270 3271 NET_EPOCH_ASSERT(); 3272 3273 switch (af) { 3274 #ifdef INET 3275 case AF_INET: 3276 hlen = sizeof(struct ip); 3277 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 3278 if (nh != NULL) 3279 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3280 break; 3281 #endif /* INET */ 3282 #ifdef INET6 3283 case AF_INET6: 3284 hlen = sizeof(struct ip6_hdr); 3285 in6_splitscope(&addr->v6, &dst6, &scopeid); 3286 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 3287 if (nh != NULL) 3288 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3289 break; 3290 #endif /* INET6 */ 3291 } 3292 3293 mss = max(V_tcp_mssdflt, mss); 3294 mss = min(mss, offer); 3295 mss = max(mss, 64); /* sanity - at least max opt space */ 3296 return (mss); 3297 } 3298 3299 static u_int32_t 3300 pf_tcp_iss(struct pf_pdesc *pd) 3301 { 3302 MD5_CTX ctx; 3303 u_int32_t digest[4]; 3304 3305 if (V_pf_tcp_secret_init == 0) { 3306 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3307 MD5Init(&V_pf_tcp_secret_ctx); 3308 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3309 sizeof(V_pf_tcp_secret)); 3310 V_pf_tcp_secret_init = 1; 3311 } 3312 3313 ctx = V_pf_tcp_secret_ctx; 3314 3315 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3316 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3317 if (pd->af == AF_INET6) { 3318 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3319 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3320 } else { 3321 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3322 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3323 } 3324 MD5Final((u_char *)digest, &ctx); 3325 V_pf_tcp_iss_off += 4096; 3326 #define ISN_RANDOM_INCREMENT (4096 - 1) 3327 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3328 V_pf_tcp_iss_off); 3329 #undef ISN_RANDOM_INCREMENT 3330 } 3331 3332 static int 3333 pf_test_rule(struct pf_krule **rm, struct pf_state **sm, int direction, 3334 struct pfi_kkif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3335 struct pf_krule **am, struct pf_kruleset **rsm, struct inpcb *inp) 3336 { 3337 struct pf_krule *nr = NULL; 3338 struct pf_addr * const saddr = pd->src; 3339 struct pf_addr * const daddr = pd->dst; 3340 sa_family_t af = pd->af; 3341 struct pf_krule *r, *a = NULL; 3342 struct pf_kruleset *ruleset = NULL; 3343 struct pf_ksrc_node *nsn = NULL; 3344 struct tcphdr *th = pd->hdr.tcp; 3345 struct pf_state_key *sk = NULL, *nk = NULL; 3346 u_short reason; 3347 int rewrite = 0, hdrlen = 0; 3348 int tag = -1, rtableid = -1; 3349 int asd = 0; 3350 int match = 0; 3351 int state_icmp = 0; 3352 u_int16_t sport = 0, dport = 0; 3353 u_int16_t bproto_sum = 0, bip_sum = 0; 3354 u_int8_t icmptype = 0, icmpcode = 0; 3355 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3356 3357 PF_RULES_RASSERT(); 3358 3359 if (inp != NULL) { 3360 INP_LOCK_ASSERT(inp); 3361 pd->lookup.uid = inp->inp_cred->cr_uid; 3362 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3363 pd->lookup.done = 1; 3364 } 3365 3366 switch (pd->proto) { 3367 case IPPROTO_TCP: 3368 sport = th->th_sport; 3369 dport = th->th_dport; 3370 hdrlen = sizeof(*th); 3371 break; 3372 case IPPROTO_UDP: 3373 sport = pd->hdr.udp->uh_sport; 3374 dport = pd->hdr.udp->uh_dport; 3375 hdrlen = sizeof(*pd->hdr.udp); 3376 break; 3377 #ifdef INET 3378 case IPPROTO_ICMP: 3379 if (pd->af != AF_INET) 3380 break; 3381 sport = dport = pd->hdr.icmp->icmp_id; 3382 hdrlen = sizeof(*pd->hdr.icmp); 3383 icmptype = pd->hdr.icmp->icmp_type; 3384 icmpcode = pd->hdr.icmp->icmp_code; 3385 3386 if (icmptype == ICMP_UNREACH || 3387 icmptype == ICMP_SOURCEQUENCH || 3388 icmptype == ICMP_REDIRECT || 3389 icmptype == ICMP_TIMXCEED || 3390 icmptype == ICMP_PARAMPROB) 3391 state_icmp++; 3392 break; 3393 #endif /* INET */ 3394 #ifdef INET6 3395 case IPPROTO_ICMPV6: 3396 if (af != AF_INET6) 3397 break; 3398 sport = dport = pd->hdr.icmp6->icmp6_id; 3399 hdrlen = sizeof(*pd->hdr.icmp6); 3400 icmptype = pd->hdr.icmp6->icmp6_type; 3401 icmpcode = pd->hdr.icmp6->icmp6_code; 3402 3403 if (icmptype == ICMP6_DST_UNREACH || 3404 icmptype == ICMP6_PACKET_TOO_BIG || 3405 icmptype == ICMP6_TIME_EXCEEDED || 3406 icmptype == ICMP6_PARAM_PROB) 3407 state_icmp++; 3408 break; 3409 #endif /* INET6 */ 3410 default: 3411 sport = dport = hdrlen = 0; 3412 break; 3413 } 3414 3415 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3416 3417 /* check packet for BINAT/NAT/RDR */ 3418 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3419 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3420 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3421 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3422 3423 if (pd->ip_sum) 3424 bip_sum = *pd->ip_sum; 3425 3426 switch (pd->proto) { 3427 case IPPROTO_TCP: 3428 bproto_sum = th->th_sum; 3429 pd->proto_sum = &th->th_sum; 3430 3431 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3432 nk->port[pd->sidx] != sport) { 3433 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3434 &th->th_sum, &nk->addr[pd->sidx], 3435 nk->port[pd->sidx], 0, af); 3436 pd->sport = &th->th_sport; 3437 sport = th->th_sport; 3438 } 3439 3440 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3441 nk->port[pd->didx] != dport) { 3442 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3443 &th->th_sum, &nk->addr[pd->didx], 3444 nk->port[pd->didx], 0, af); 3445 dport = th->th_dport; 3446 pd->dport = &th->th_dport; 3447 } 3448 rewrite++; 3449 break; 3450 case IPPROTO_UDP: 3451 bproto_sum = pd->hdr.udp->uh_sum; 3452 pd->proto_sum = &pd->hdr.udp->uh_sum; 3453 3454 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3455 nk->port[pd->sidx] != sport) { 3456 pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, 3457 pd->ip_sum, &pd->hdr.udp->uh_sum, 3458 &nk->addr[pd->sidx], 3459 nk->port[pd->sidx], 1, af); 3460 sport = pd->hdr.udp->uh_sport; 3461 pd->sport = &pd->hdr.udp->uh_sport; 3462 } 3463 3464 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3465 nk->port[pd->didx] != dport) { 3466 pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, 3467 pd->ip_sum, &pd->hdr.udp->uh_sum, 3468 &nk->addr[pd->didx], 3469 nk->port[pd->didx], 1, af); 3470 dport = pd->hdr.udp->uh_dport; 3471 pd->dport = &pd->hdr.udp->uh_dport; 3472 } 3473 rewrite++; 3474 break; 3475 #ifdef INET 3476 case IPPROTO_ICMP: 3477 nk->port[0] = nk->port[1]; 3478 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3479 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3480 nk->addr[pd->sidx].v4.s_addr, 0); 3481 3482 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3483 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3484 nk->addr[pd->didx].v4.s_addr, 0); 3485 3486 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3487 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3488 pd->hdr.icmp->icmp_cksum, sport, 3489 nk->port[1], 0); 3490 pd->hdr.icmp->icmp_id = nk->port[1]; 3491 pd->sport = &pd->hdr.icmp->icmp_id; 3492 } 3493 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3494 break; 3495 #endif /* INET */ 3496 #ifdef INET6 3497 case IPPROTO_ICMPV6: 3498 nk->port[0] = nk->port[1]; 3499 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3500 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3501 &nk->addr[pd->sidx], 0); 3502 3503 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3504 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3505 &nk->addr[pd->didx], 0); 3506 rewrite++; 3507 break; 3508 #endif /* INET */ 3509 default: 3510 switch (af) { 3511 #ifdef INET 3512 case AF_INET: 3513 if (PF_ANEQ(saddr, 3514 &nk->addr[pd->sidx], AF_INET)) 3515 pf_change_a(&saddr->v4.s_addr, 3516 pd->ip_sum, 3517 nk->addr[pd->sidx].v4.s_addr, 0); 3518 3519 if (PF_ANEQ(daddr, 3520 &nk->addr[pd->didx], AF_INET)) 3521 pf_change_a(&daddr->v4.s_addr, 3522 pd->ip_sum, 3523 nk->addr[pd->didx].v4.s_addr, 0); 3524 break; 3525 #endif /* INET */ 3526 #ifdef INET6 3527 case AF_INET6: 3528 if (PF_ANEQ(saddr, 3529 &nk->addr[pd->sidx], AF_INET6)) 3530 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3531 3532 if (PF_ANEQ(daddr, 3533 &nk->addr[pd->didx], AF_INET6)) 3534 PF_ACPY(daddr, &nk->addr[pd->didx], af); 3535 break; 3536 #endif /* INET */ 3537 } 3538 break; 3539 } 3540 if (nr->natpass) 3541 r = NULL; 3542 pd->nat_rule = nr; 3543 } 3544 3545 while (r != NULL) { 3546 counter_u64_add(r->evaluations, 1); 3547 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 3548 r = r->skip[PF_SKIP_IFP].ptr; 3549 else if (r->direction && r->direction != direction) 3550 r = r->skip[PF_SKIP_DIR].ptr; 3551 else if (r->af && r->af != af) 3552 r = r->skip[PF_SKIP_AF].ptr; 3553 else if (r->proto && r->proto != pd->proto) 3554 r = r->skip[PF_SKIP_PROTO].ptr; 3555 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3556 r->src.neg, kif, M_GETFIB(m))) 3557 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3558 /* tcp/udp only. port_op always 0 in other cases */ 3559 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3560 r->src.port[0], r->src.port[1], sport)) 3561 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3562 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3563 r->dst.neg, NULL, M_GETFIB(m))) 3564 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3565 /* tcp/udp only. port_op always 0 in other cases */ 3566 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3567 r->dst.port[0], r->dst.port[1], dport)) 3568 r = r->skip[PF_SKIP_DST_PORT].ptr; 3569 /* icmp only. type always 0 in other cases */ 3570 else if (r->type && r->type != icmptype + 1) 3571 r = TAILQ_NEXT(r, entries); 3572 /* icmp only. type always 0 in other cases */ 3573 else if (r->code && r->code != icmpcode + 1) 3574 r = TAILQ_NEXT(r, entries); 3575 else if (r->tos && !(r->tos == pd->tos)) 3576 r = TAILQ_NEXT(r, entries); 3577 else if (r->rule_flag & PFRULE_FRAGMENT) 3578 r = TAILQ_NEXT(r, entries); 3579 else if (pd->proto == IPPROTO_TCP && 3580 (r->flagset & th->th_flags) != r->flags) 3581 r = TAILQ_NEXT(r, entries); 3582 /* tcp/udp only. uid.op always 0 in other cases */ 3583 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3584 pf_socket_lookup(direction, pd, m), 1)) && 3585 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3586 pd->lookup.uid)) 3587 r = TAILQ_NEXT(r, entries); 3588 /* tcp/udp only. gid.op always 0 in other cases */ 3589 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3590 pf_socket_lookup(direction, pd, m), 1)) && 3591 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3592 pd->lookup.gid)) 3593 r = TAILQ_NEXT(r, entries); 3594 else if (r->prio && 3595 !pf_match_ieee8021q_pcp(r->prio, m)) 3596 r = TAILQ_NEXT(r, entries); 3597 else if (r->prob && 3598 r->prob <= arc4random()) 3599 r = TAILQ_NEXT(r, entries); 3600 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3601 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3602 r = TAILQ_NEXT(r, entries); 3603 else if (r->os_fingerprint != PF_OSFP_ANY && 3604 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3605 pf_osfp_fingerprint(pd, m, off, th), 3606 r->os_fingerprint))) 3607 r = TAILQ_NEXT(r, entries); 3608 else { 3609 if (r->tag) 3610 tag = r->tag; 3611 if (r->rtableid >= 0) 3612 rtableid = r->rtableid; 3613 if (r->anchor == NULL) { 3614 match = 1; 3615 *rm = r; 3616 *am = a; 3617 *rsm = ruleset; 3618 if ((*rm)->quick) 3619 break; 3620 r = TAILQ_NEXT(r, entries); 3621 } else 3622 pf_step_into_anchor(anchor_stack, &asd, 3623 &ruleset, PF_RULESET_FILTER, &r, &a, 3624 &match); 3625 } 3626 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3627 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3628 break; 3629 } 3630 r = *rm; 3631 a = *am; 3632 ruleset = *rsm; 3633 3634 REASON_SET(&reason, PFRES_MATCH); 3635 3636 if (r->log || (nr != NULL && nr->log)) { 3637 if (rewrite) 3638 m_copyback(m, off, hdrlen, pd->hdr.any); 3639 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3640 ruleset, pd, 1); 3641 } 3642 3643 if ((r->action == PF_DROP) && 3644 ((r->rule_flag & PFRULE_RETURNRST) || 3645 (r->rule_flag & PFRULE_RETURNICMP) || 3646 (r->rule_flag & PFRULE_RETURN))) { 3647 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 3648 bip_sum, hdrlen, &reason); 3649 } 3650 3651 if (r->action == PF_DROP) 3652 goto cleanup; 3653 3654 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3655 REASON_SET(&reason, PFRES_MEMORY); 3656 goto cleanup; 3657 } 3658 if (rtableid >= 0) 3659 M_SETFIB(m, rtableid); 3660 3661 if (!state_icmp && (r->keep_state || nr != NULL || 3662 (pd->flags & PFDESC_TCP_NORM))) { 3663 int action; 3664 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3665 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3666 hdrlen); 3667 if (action != PF_PASS) { 3668 if (action == PF_DROP && 3669 (r->rule_flag & PFRULE_RETURN)) 3670 pf_return(r, nr, pd, sk, off, m, th, kif, 3671 bproto_sum, bip_sum, hdrlen, &reason); 3672 return (action); 3673 } 3674 } else { 3675 if (sk != NULL) 3676 uma_zfree(V_pf_state_key_z, sk); 3677 if (nk != NULL) 3678 uma_zfree(V_pf_state_key_z, nk); 3679 } 3680 3681 /* copy back packet headers if we performed NAT operations */ 3682 if (rewrite) 3683 m_copyback(m, off, hdrlen, pd->hdr.any); 3684 3685 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3686 direction == PF_OUT && 3687 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 3688 /* 3689 * We want the state created, but we dont 3690 * want to send this in case a partner 3691 * firewall has to know about it to allow 3692 * replies through it. 3693 */ 3694 return (PF_DEFER); 3695 3696 return (PF_PASS); 3697 3698 cleanup: 3699 if (sk != NULL) 3700 uma_zfree(V_pf_state_key_z, sk); 3701 if (nk != NULL) 3702 uma_zfree(V_pf_state_key_z, nk); 3703 return (PF_DROP); 3704 } 3705 3706 static int 3707 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 3708 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 3709 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3710 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_state **sm, 3711 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3712 { 3713 struct pf_state *s = NULL; 3714 struct pf_ksrc_node *sn = NULL; 3715 struct tcphdr *th = pd->hdr.tcp; 3716 u_int16_t mss = V_tcp_mssdflt; 3717 u_short reason; 3718 3719 /* check maximums */ 3720 if (r->max_states && 3721 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3722 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3723 REASON_SET(&reason, PFRES_MAXSTATES); 3724 goto csfailed; 3725 } 3726 /* src node for filter rule */ 3727 if ((r->rule_flag & PFRULE_SRCTRACK || 3728 r->rpool.opts & PF_POOL_STICKYADDR) && 3729 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3730 REASON_SET(&reason, PFRES_SRCLIMIT); 3731 goto csfailed; 3732 } 3733 /* src node for translation rule */ 3734 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3735 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3736 REASON_SET(&reason, PFRES_SRCLIMIT); 3737 goto csfailed; 3738 } 3739 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3740 if (s == NULL) { 3741 REASON_SET(&reason, PFRES_MEMORY); 3742 goto csfailed; 3743 } 3744 for (int i = 0; i < 2; i++) { 3745 s->bytes[i] = counter_u64_alloc(M_NOWAIT); 3746 s->packets[i] = counter_u64_alloc(M_NOWAIT); 3747 3748 if (s->bytes[i] == NULL || s->packets[i] == NULL) { 3749 pf_free_state(s); 3750 REASON_SET(&reason, PFRES_MEMORY); 3751 goto csfailed; 3752 } 3753 } 3754 s->rule.ptr = r; 3755 s->nat_rule.ptr = nr; 3756 s->anchor.ptr = a; 3757 STATE_INC_COUNTERS(s); 3758 if (r->allow_opts) 3759 s->state_flags |= PFSTATE_ALLOWOPTS; 3760 if (r->rule_flag & PFRULE_STATESLOPPY) 3761 s->state_flags |= PFSTATE_SLOPPY; 3762 s->log = r->log & PF_LOG_ALL; 3763 s->sync_state = PFSYNC_S_NONE; 3764 if (nr != NULL) 3765 s->log |= nr->log & PF_LOG_ALL; 3766 switch (pd->proto) { 3767 case IPPROTO_TCP: 3768 s->src.seqlo = ntohl(th->th_seq); 3769 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3770 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3771 r->keep_state == PF_STATE_MODULATE) { 3772 /* Generate sequence number modulator */ 3773 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3774 0) 3775 s->src.seqdiff = 1; 3776 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3777 htonl(s->src.seqlo + s->src.seqdiff), 0); 3778 *rewrite = 1; 3779 } else 3780 s->src.seqdiff = 0; 3781 if (th->th_flags & TH_SYN) { 3782 s->src.seqhi++; 3783 s->src.wscale = pf_get_wscale(m, off, 3784 th->th_off, pd->af); 3785 } 3786 s->src.max_win = MAX(ntohs(th->th_win), 1); 3787 if (s->src.wscale & PF_WSCALE_MASK) { 3788 /* Remove scale factor from initial window */ 3789 int win = s->src.max_win; 3790 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3791 s->src.max_win = (win - 1) >> 3792 (s->src.wscale & PF_WSCALE_MASK); 3793 } 3794 if (th->th_flags & TH_FIN) 3795 s->src.seqhi++; 3796 s->dst.seqhi = 1; 3797 s->dst.max_win = 1; 3798 s->src.state = TCPS_SYN_SENT; 3799 s->dst.state = TCPS_CLOSED; 3800 s->timeout = PFTM_TCP_FIRST_PACKET; 3801 break; 3802 case IPPROTO_UDP: 3803 s->src.state = PFUDPS_SINGLE; 3804 s->dst.state = PFUDPS_NO_TRAFFIC; 3805 s->timeout = PFTM_UDP_FIRST_PACKET; 3806 break; 3807 case IPPROTO_ICMP: 3808 #ifdef INET6 3809 case IPPROTO_ICMPV6: 3810 #endif 3811 s->timeout = PFTM_ICMP_FIRST_PACKET; 3812 break; 3813 default: 3814 s->src.state = PFOTHERS_SINGLE; 3815 s->dst.state = PFOTHERS_NO_TRAFFIC; 3816 s->timeout = PFTM_OTHER_FIRST_PACKET; 3817 } 3818 3819 if (r->rt) { 3820 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3821 REASON_SET(&reason, PFRES_MAPFAILED); 3822 pf_src_tree_remove_state(s); 3823 STATE_DEC_COUNTERS(s); 3824 uma_zfree(V_pf_state_z, s); 3825 goto csfailed; 3826 } 3827 s->rt_kif = r->rpool.cur->kif; 3828 } 3829 3830 s->creation = time_uptime; 3831 s->expire = time_uptime; 3832 3833 if (sn != NULL) 3834 s->src_node = sn; 3835 if (nsn != NULL) { 3836 /* XXX We only modify one side for now. */ 3837 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3838 s->nat_src_node = nsn; 3839 } 3840 if (pd->proto == IPPROTO_TCP) { 3841 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3842 off, pd, th, &s->src, &s->dst)) { 3843 REASON_SET(&reason, PFRES_MEMORY); 3844 pf_src_tree_remove_state(s); 3845 STATE_DEC_COUNTERS(s); 3846 uma_zfree(V_pf_state_z, s); 3847 return (PF_DROP); 3848 } 3849 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3850 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3851 &s->src, &s->dst, rewrite)) { 3852 /* This really shouldn't happen!!! */ 3853 DPFPRINTF(PF_DEBUG_URGENT, 3854 ("pf_normalize_tcp_stateful failed on first " 3855 "pkt\n")); 3856 pf_normalize_tcp_cleanup(s); 3857 pf_src_tree_remove_state(s); 3858 STATE_DEC_COUNTERS(s); 3859 uma_zfree(V_pf_state_z, s); 3860 return (PF_DROP); 3861 } 3862 } 3863 s->direction = pd->dir; 3864 3865 /* 3866 * sk/nk could already been setup by pf_get_translation(). 3867 */ 3868 if (nr == NULL) { 3869 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3870 __func__, nr, sk, nk)); 3871 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3872 if (sk == NULL) 3873 goto csfailed; 3874 nk = sk; 3875 } else 3876 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3877 __func__, nr, sk, nk)); 3878 3879 /* Swap sk/nk for PF_OUT. */ 3880 if (pf_state_insert(BOUND_IFACE(r, kif), 3881 (pd->dir == PF_IN) ? sk : nk, 3882 (pd->dir == PF_IN) ? nk : sk, s)) { 3883 if (pd->proto == IPPROTO_TCP) 3884 pf_normalize_tcp_cleanup(s); 3885 REASON_SET(&reason, PFRES_STATEINS); 3886 pf_src_tree_remove_state(s); 3887 STATE_DEC_COUNTERS(s); 3888 uma_zfree(V_pf_state_z, s); 3889 return (PF_DROP); 3890 } else 3891 *sm = s; 3892 3893 if (tag > 0) 3894 s->tag = tag; 3895 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3896 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3897 s->src.state = PF_TCPS_PROXY_SRC; 3898 /* undo NAT changes, if they have taken place */ 3899 if (nr != NULL) { 3900 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3901 if (pd->dir == PF_OUT) 3902 skt = s->key[PF_SK_STACK]; 3903 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3904 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3905 if (pd->sport) 3906 *pd->sport = skt->port[pd->sidx]; 3907 if (pd->dport) 3908 *pd->dport = skt->port[pd->didx]; 3909 if (pd->proto_sum) 3910 *pd->proto_sum = bproto_sum; 3911 if (pd->ip_sum) 3912 *pd->ip_sum = bip_sum; 3913 m_copyback(m, off, hdrlen, pd->hdr.any); 3914 } 3915 s->src.seqhi = htonl(arc4random()); 3916 /* Find mss option */ 3917 int rtid = M_GETFIB(m); 3918 mss = pf_get_mss(m, off, th->th_off, pd->af); 3919 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3920 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3921 s->src.mss = mss; 3922 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3923 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3924 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3925 REASON_SET(&reason, PFRES_SYNPROXY); 3926 return (PF_SYNPROXY_DROP); 3927 } 3928 3929 return (PF_PASS); 3930 3931 csfailed: 3932 if (sk != NULL) 3933 uma_zfree(V_pf_state_key_z, sk); 3934 if (nk != NULL) 3935 uma_zfree(V_pf_state_key_z, nk); 3936 3937 if (sn != NULL) { 3938 struct pf_srchash *sh; 3939 3940 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3941 PF_HASHROW_LOCK(sh); 3942 if (--sn->states == 0 && sn->expire == 0) { 3943 pf_unlink_src_node(sn); 3944 uma_zfree(V_pf_sources_z, sn); 3945 counter_u64_add( 3946 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3947 } 3948 PF_HASHROW_UNLOCK(sh); 3949 } 3950 3951 if (nsn != sn && nsn != NULL) { 3952 struct pf_srchash *sh; 3953 3954 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3955 PF_HASHROW_LOCK(sh); 3956 if (--nsn->states == 0 && nsn->expire == 0) { 3957 pf_unlink_src_node(nsn); 3958 uma_zfree(V_pf_sources_z, nsn); 3959 counter_u64_add( 3960 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3961 } 3962 PF_HASHROW_UNLOCK(sh); 3963 } 3964 3965 return (PF_DROP); 3966 } 3967 3968 static int 3969 pf_test_fragment(struct pf_krule **rm, int direction, struct pfi_kkif *kif, 3970 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, 3971 struct pf_kruleset **rsm) 3972 { 3973 struct pf_krule *r, *a = NULL; 3974 struct pf_kruleset *ruleset = NULL; 3975 sa_family_t af = pd->af; 3976 u_short reason; 3977 int tag = -1; 3978 int asd = 0; 3979 int match = 0; 3980 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3981 3982 PF_RULES_RASSERT(); 3983 3984 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3985 while (r != NULL) { 3986 counter_u64_add(r->evaluations, 1); 3987 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 3988 r = r->skip[PF_SKIP_IFP].ptr; 3989 else if (r->direction && r->direction != direction) 3990 r = r->skip[PF_SKIP_DIR].ptr; 3991 else if (r->af && r->af != af) 3992 r = r->skip[PF_SKIP_AF].ptr; 3993 else if (r->proto && r->proto != pd->proto) 3994 r = r->skip[PF_SKIP_PROTO].ptr; 3995 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3996 r->src.neg, kif, M_GETFIB(m))) 3997 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3998 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3999 r->dst.neg, NULL, M_GETFIB(m))) 4000 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4001 else if (r->tos && !(r->tos == pd->tos)) 4002 r = TAILQ_NEXT(r, entries); 4003 else if (r->os_fingerprint != PF_OSFP_ANY) 4004 r = TAILQ_NEXT(r, entries); 4005 else if (pd->proto == IPPROTO_UDP && 4006 (r->src.port_op || r->dst.port_op)) 4007 r = TAILQ_NEXT(r, entries); 4008 else if (pd->proto == IPPROTO_TCP && 4009 (r->src.port_op || r->dst.port_op || r->flagset)) 4010 r = TAILQ_NEXT(r, entries); 4011 else if ((pd->proto == IPPROTO_ICMP || 4012 pd->proto == IPPROTO_ICMPV6) && 4013 (r->type || r->code)) 4014 r = TAILQ_NEXT(r, entries); 4015 else if (r->prio && 4016 !pf_match_ieee8021q_pcp(r->prio, m)) 4017 r = TAILQ_NEXT(r, entries); 4018 else if (r->prob && r->prob <= 4019 (arc4random() % (UINT_MAX - 1) + 1)) 4020 r = TAILQ_NEXT(r, entries); 4021 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4022 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4023 r = TAILQ_NEXT(r, entries); 4024 else { 4025 if (r->anchor == NULL) { 4026 match = 1; 4027 *rm = r; 4028 *am = a; 4029 *rsm = ruleset; 4030 if ((*rm)->quick) 4031 break; 4032 r = TAILQ_NEXT(r, entries); 4033 } else 4034 pf_step_into_anchor(anchor_stack, &asd, 4035 &ruleset, PF_RULESET_FILTER, &r, &a, 4036 &match); 4037 } 4038 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4039 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4040 break; 4041 } 4042 r = *rm; 4043 a = *am; 4044 ruleset = *rsm; 4045 4046 REASON_SET(&reason, PFRES_MATCH); 4047 4048 if (r->log) 4049 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 4050 1); 4051 4052 if (r->action != PF_PASS) 4053 return (PF_DROP); 4054 4055 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4056 REASON_SET(&reason, PFRES_MEMORY); 4057 return (PF_DROP); 4058 } 4059 4060 return (PF_PASS); 4061 } 4062 4063 static int 4064 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 4065 struct pf_state **state, struct pfi_kkif *kif, struct mbuf *m, int off, 4066 struct pf_pdesc *pd, u_short *reason, int *copyback) 4067 { 4068 struct tcphdr *th = pd->hdr.tcp; 4069 u_int16_t win = ntohs(th->th_win); 4070 u_int32_t ack, end, seq, orig_seq; 4071 u_int8_t sws, dws; 4072 int ackskew; 4073 4074 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 4075 sws = src->wscale & PF_WSCALE_MASK; 4076 dws = dst->wscale & PF_WSCALE_MASK; 4077 } else 4078 sws = dws = 0; 4079 4080 /* 4081 * Sequence tracking algorithm from Guido van Rooij's paper: 4082 * http://www.madison-gurkha.com/publications/tcp_filtering/ 4083 * tcp_filtering.ps 4084 */ 4085 4086 orig_seq = seq = ntohl(th->th_seq); 4087 if (src->seqlo == 0) { 4088 /* First packet from this end. Set its state */ 4089 4090 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 4091 src->scrub == NULL) { 4092 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 4093 REASON_SET(reason, PFRES_MEMORY); 4094 return (PF_DROP); 4095 } 4096 } 4097 4098 /* Deferred generation of sequence number modulator */ 4099 if (dst->seqdiff && !src->seqdiff) { 4100 /* use random iss for the TCP server */ 4101 while ((src->seqdiff = arc4random() - seq) == 0) 4102 ; 4103 ack = ntohl(th->th_ack) - dst->seqdiff; 4104 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4105 src->seqdiff), 0); 4106 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4107 *copyback = 1; 4108 } else { 4109 ack = ntohl(th->th_ack); 4110 } 4111 4112 end = seq + pd->p_len; 4113 if (th->th_flags & TH_SYN) { 4114 end++; 4115 if (dst->wscale & PF_WSCALE_FLAG) { 4116 src->wscale = pf_get_wscale(m, off, th->th_off, 4117 pd->af); 4118 if (src->wscale & PF_WSCALE_FLAG) { 4119 /* Remove scale factor from initial 4120 * window */ 4121 sws = src->wscale & PF_WSCALE_MASK; 4122 win = ((u_int32_t)win + (1 << sws) - 1) 4123 >> sws; 4124 dws = dst->wscale & PF_WSCALE_MASK; 4125 } else { 4126 /* fixup other window */ 4127 dst->max_win <<= dst->wscale & 4128 PF_WSCALE_MASK; 4129 /* in case of a retrans SYN|ACK */ 4130 dst->wscale = 0; 4131 } 4132 } 4133 } 4134 if (th->th_flags & TH_FIN) 4135 end++; 4136 4137 src->seqlo = seq; 4138 if (src->state < TCPS_SYN_SENT) 4139 src->state = TCPS_SYN_SENT; 4140 4141 /* 4142 * May need to slide the window (seqhi may have been set by 4143 * the crappy stack check or if we picked up the connection 4144 * after establishment) 4145 */ 4146 if (src->seqhi == 1 || 4147 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4148 src->seqhi = end + MAX(1, dst->max_win << dws); 4149 if (win > src->max_win) 4150 src->max_win = win; 4151 4152 } else { 4153 ack = ntohl(th->th_ack) - dst->seqdiff; 4154 if (src->seqdiff) { 4155 /* Modulate sequence numbers */ 4156 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4157 src->seqdiff), 0); 4158 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4159 *copyback = 1; 4160 } 4161 end = seq + pd->p_len; 4162 if (th->th_flags & TH_SYN) 4163 end++; 4164 if (th->th_flags & TH_FIN) 4165 end++; 4166 } 4167 4168 if ((th->th_flags & TH_ACK) == 0) { 4169 /* Let it pass through the ack skew check */ 4170 ack = dst->seqlo; 4171 } else if ((ack == 0 && 4172 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4173 /* broken tcp stacks do not set ack */ 4174 (dst->state < TCPS_SYN_SENT)) { 4175 /* 4176 * Many stacks (ours included) will set the ACK number in an 4177 * FIN|ACK if the SYN times out -- no sequence to ACK. 4178 */ 4179 ack = dst->seqlo; 4180 } 4181 4182 if (seq == end) { 4183 /* Ease sequencing restrictions on no data packets */ 4184 seq = src->seqlo; 4185 end = seq; 4186 } 4187 4188 ackskew = dst->seqlo - ack; 4189 4190 /* 4191 * Need to demodulate the sequence numbers in any TCP SACK options 4192 * (Selective ACK). We could optionally validate the SACK values 4193 * against the current ACK window, either forwards or backwards, but 4194 * I'm not confident that SACK has been implemented properly 4195 * everywhere. It wouldn't surprise me if several stacks accidentally 4196 * SACK too far backwards of previously ACKed data. There really aren't 4197 * any security implications of bad SACKing unless the target stack 4198 * doesn't validate the option length correctly. Someone trying to 4199 * spoof into a TCP connection won't bother blindly sending SACK 4200 * options anyway. 4201 */ 4202 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4203 if (pf_modulate_sack(m, off, pd, th, dst)) 4204 *copyback = 1; 4205 } 4206 4207 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4208 if (SEQ_GEQ(src->seqhi, end) && 4209 /* Last octet inside other's window space */ 4210 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4211 /* Retrans: not more than one window back */ 4212 (ackskew >= -MAXACKWINDOW) && 4213 /* Acking not more than one reassembled fragment backwards */ 4214 (ackskew <= (MAXACKWINDOW << sws)) && 4215 /* Acking not more than one window forward */ 4216 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4217 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4218 (pd->flags & PFDESC_IP_REAS) == 0)) { 4219 /* Require an exact/+1 sequence match on resets when possible */ 4220 4221 if (dst->scrub || src->scrub) { 4222 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4223 *state, src, dst, copyback)) 4224 return (PF_DROP); 4225 } 4226 4227 /* update max window */ 4228 if (src->max_win < win) 4229 src->max_win = win; 4230 /* synchronize sequencing */ 4231 if (SEQ_GT(end, src->seqlo)) 4232 src->seqlo = end; 4233 /* slide the window of what the other end can send */ 4234 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4235 dst->seqhi = ack + MAX((win << sws), 1); 4236 4237 /* update states */ 4238 if (th->th_flags & TH_SYN) 4239 if (src->state < TCPS_SYN_SENT) 4240 src->state = TCPS_SYN_SENT; 4241 if (th->th_flags & TH_FIN) 4242 if (src->state < TCPS_CLOSING) 4243 src->state = TCPS_CLOSING; 4244 if (th->th_flags & TH_ACK) { 4245 if (dst->state == TCPS_SYN_SENT) { 4246 dst->state = TCPS_ESTABLISHED; 4247 if (src->state == TCPS_ESTABLISHED && 4248 (*state)->src_node != NULL && 4249 pf_src_connlimit(state)) { 4250 REASON_SET(reason, PFRES_SRCLIMIT); 4251 return (PF_DROP); 4252 } 4253 } else if (dst->state == TCPS_CLOSING) 4254 dst->state = TCPS_FIN_WAIT_2; 4255 } 4256 if (th->th_flags & TH_RST) 4257 src->state = dst->state = TCPS_TIME_WAIT; 4258 4259 /* update expire time */ 4260 (*state)->expire = time_uptime; 4261 if (src->state >= TCPS_FIN_WAIT_2 && 4262 dst->state >= TCPS_FIN_WAIT_2) 4263 (*state)->timeout = PFTM_TCP_CLOSED; 4264 else if (src->state >= TCPS_CLOSING && 4265 dst->state >= TCPS_CLOSING) 4266 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4267 else if (src->state < TCPS_ESTABLISHED || 4268 dst->state < TCPS_ESTABLISHED) 4269 (*state)->timeout = PFTM_TCP_OPENING; 4270 else if (src->state >= TCPS_CLOSING || 4271 dst->state >= TCPS_CLOSING) 4272 (*state)->timeout = PFTM_TCP_CLOSING; 4273 else 4274 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4275 4276 /* Fall through to PASS packet */ 4277 4278 } else if ((dst->state < TCPS_SYN_SENT || 4279 dst->state >= TCPS_FIN_WAIT_2 || 4280 src->state >= TCPS_FIN_WAIT_2) && 4281 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4282 /* Within a window forward of the originating packet */ 4283 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4284 /* Within a window backward of the originating packet */ 4285 4286 /* 4287 * This currently handles three situations: 4288 * 1) Stupid stacks will shotgun SYNs before their peer 4289 * replies. 4290 * 2) When PF catches an already established stream (the 4291 * firewall rebooted, the state table was flushed, routes 4292 * changed...) 4293 * 3) Packets get funky immediately after the connection 4294 * closes (this should catch Solaris spurious ACK|FINs 4295 * that web servers like to spew after a close) 4296 * 4297 * This must be a little more careful than the above code 4298 * since packet floods will also be caught here. We don't 4299 * update the TTL here to mitigate the damage of a packet 4300 * flood and so the same code can handle awkward establishment 4301 * and a loosened connection close. 4302 * In the establishment case, a correct peer response will 4303 * validate the connection, go through the normal state code 4304 * and keep updating the state TTL. 4305 */ 4306 4307 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4308 printf("pf: loose state match: "); 4309 pf_print_state(*state); 4310 pf_print_flags(th->th_flags); 4311 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4312 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4313 pd->p_len, ackskew, 4314 (unsigned long long)counter_u64_fetch((*state)->packets[0]), 4315 (unsigned long long)counter_u64_fetch((*state)->packets[1]), 4316 pd->dir == PF_IN ? "in" : "out", 4317 pd->dir == (*state)->direction ? "fwd" : "rev"); 4318 } 4319 4320 if (dst->scrub || src->scrub) { 4321 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4322 *state, src, dst, copyback)) 4323 return (PF_DROP); 4324 } 4325 4326 /* update max window */ 4327 if (src->max_win < win) 4328 src->max_win = win; 4329 /* synchronize sequencing */ 4330 if (SEQ_GT(end, src->seqlo)) 4331 src->seqlo = end; 4332 /* slide the window of what the other end can send */ 4333 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4334 dst->seqhi = ack + MAX((win << sws), 1); 4335 4336 /* 4337 * Cannot set dst->seqhi here since this could be a shotgunned 4338 * SYN and not an already established connection. 4339 */ 4340 4341 if (th->th_flags & TH_FIN) 4342 if (src->state < TCPS_CLOSING) 4343 src->state = TCPS_CLOSING; 4344 if (th->th_flags & TH_RST) 4345 src->state = dst->state = TCPS_TIME_WAIT; 4346 4347 /* Fall through to PASS packet */ 4348 4349 } else { 4350 if ((*state)->dst.state == TCPS_SYN_SENT && 4351 (*state)->src.state == TCPS_SYN_SENT) { 4352 /* Send RST for state mismatches during handshake */ 4353 if (!(th->th_flags & TH_RST)) 4354 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4355 pd->dst, pd->src, th->th_dport, 4356 th->th_sport, ntohl(th->th_ack), 0, 4357 TH_RST, 0, 0, 4358 (*state)->rule.ptr->return_ttl, 1, 0, 4359 kif->pfik_ifp); 4360 src->seqlo = 0; 4361 src->seqhi = 1; 4362 src->max_win = 1; 4363 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4364 printf("pf: BAD state: "); 4365 pf_print_state(*state); 4366 pf_print_flags(th->th_flags); 4367 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4368 "pkts=%llu:%llu dir=%s,%s\n", 4369 seq, orig_seq, ack, pd->p_len, ackskew, 4370 (unsigned long long)counter_u64_fetch((*state)->packets[0]), 4371 (unsigned long long)counter_u64_fetch((*state)->packets[1]), 4372 pd->dir == PF_IN ? "in" : "out", 4373 pd->dir == (*state)->direction ? "fwd" : "rev"); 4374 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4375 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4376 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4377 ' ': '2', 4378 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4379 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4380 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4381 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4382 } 4383 REASON_SET(reason, PFRES_BADSTATE); 4384 return (PF_DROP); 4385 } 4386 4387 return (PF_PASS); 4388 } 4389 4390 static int 4391 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4392 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4393 { 4394 struct tcphdr *th = pd->hdr.tcp; 4395 4396 if (th->th_flags & TH_SYN) 4397 if (src->state < TCPS_SYN_SENT) 4398 src->state = TCPS_SYN_SENT; 4399 if (th->th_flags & TH_FIN) 4400 if (src->state < TCPS_CLOSING) 4401 src->state = TCPS_CLOSING; 4402 if (th->th_flags & TH_ACK) { 4403 if (dst->state == TCPS_SYN_SENT) { 4404 dst->state = TCPS_ESTABLISHED; 4405 if (src->state == TCPS_ESTABLISHED && 4406 (*state)->src_node != NULL && 4407 pf_src_connlimit(state)) { 4408 REASON_SET(reason, PFRES_SRCLIMIT); 4409 return (PF_DROP); 4410 } 4411 } else if (dst->state == TCPS_CLOSING) { 4412 dst->state = TCPS_FIN_WAIT_2; 4413 } else if (src->state == TCPS_SYN_SENT && 4414 dst->state < TCPS_SYN_SENT) { 4415 /* 4416 * Handle a special sloppy case where we only see one 4417 * half of the connection. If there is a ACK after 4418 * the initial SYN without ever seeing a packet from 4419 * the destination, set the connection to established. 4420 */ 4421 dst->state = src->state = TCPS_ESTABLISHED; 4422 if ((*state)->src_node != NULL && 4423 pf_src_connlimit(state)) { 4424 REASON_SET(reason, PFRES_SRCLIMIT); 4425 return (PF_DROP); 4426 } 4427 } else if (src->state == TCPS_CLOSING && 4428 dst->state == TCPS_ESTABLISHED && 4429 dst->seqlo == 0) { 4430 /* 4431 * Handle the closing of half connections where we 4432 * don't see the full bidirectional FIN/ACK+ACK 4433 * handshake. 4434 */ 4435 dst->state = TCPS_CLOSING; 4436 } 4437 } 4438 if (th->th_flags & TH_RST) 4439 src->state = dst->state = TCPS_TIME_WAIT; 4440 4441 /* update expire time */ 4442 (*state)->expire = time_uptime; 4443 if (src->state >= TCPS_FIN_WAIT_2 && 4444 dst->state >= TCPS_FIN_WAIT_2) 4445 (*state)->timeout = PFTM_TCP_CLOSED; 4446 else if (src->state >= TCPS_CLOSING && 4447 dst->state >= TCPS_CLOSING) 4448 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4449 else if (src->state < TCPS_ESTABLISHED || 4450 dst->state < TCPS_ESTABLISHED) 4451 (*state)->timeout = PFTM_TCP_OPENING; 4452 else if (src->state >= TCPS_CLOSING || 4453 dst->state >= TCPS_CLOSING) 4454 (*state)->timeout = PFTM_TCP_CLOSING; 4455 else 4456 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4457 4458 return (PF_PASS); 4459 } 4460 4461 static int 4462 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kkif *kif, 4463 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4464 u_short *reason) 4465 { 4466 struct pf_state_key_cmp key; 4467 struct tcphdr *th = pd->hdr.tcp; 4468 int copyback = 0; 4469 struct pf_state_peer *src, *dst; 4470 struct pf_state_key *sk; 4471 4472 bzero(&key, sizeof(key)); 4473 key.af = pd->af; 4474 key.proto = IPPROTO_TCP; 4475 if (direction == PF_IN) { /* wire side, straight */ 4476 PF_ACPY(&key.addr[0], pd->src, key.af); 4477 PF_ACPY(&key.addr[1], pd->dst, key.af); 4478 key.port[0] = th->th_sport; 4479 key.port[1] = th->th_dport; 4480 } else { /* stack side, reverse */ 4481 PF_ACPY(&key.addr[1], pd->src, key.af); 4482 PF_ACPY(&key.addr[0], pd->dst, key.af); 4483 key.port[1] = th->th_sport; 4484 key.port[0] = th->th_dport; 4485 } 4486 4487 STATE_LOOKUP(kif, &key, direction, *state, pd); 4488 4489 if (direction == (*state)->direction) { 4490 src = &(*state)->src; 4491 dst = &(*state)->dst; 4492 } else { 4493 src = &(*state)->dst; 4494 dst = &(*state)->src; 4495 } 4496 4497 sk = (*state)->key[pd->didx]; 4498 4499 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4500 if (direction != (*state)->direction) { 4501 REASON_SET(reason, PFRES_SYNPROXY); 4502 return (PF_SYNPROXY_DROP); 4503 } 4504 if (th->th_flags & TH_SYN) { 4505 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4506 REASON_SET(reason, PFRES_SYNPROXY); 4507 return (PF_DROP); 4508 } 4509 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4510 pd->src, th->th_dport, th->th_sport, 4511 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4512 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4513 REASON_SET(reason, PFRES_SYNPROXY); 4514 return (PF_SYNPROXY_DROP); 4515 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 4516 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4517 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4518 REASON_SET(reason, PFRES_SYNPROXY); 4519 return (PF_DROP); 4520 } else if ((*state)->src_node != NULL && 4521 pf_src_connlimit(state)) { 4522 REASON_SET(reason, PFRES_SRCLIMIT); 4523 return (PF_DROP); 4524 } else 4525 (*state)->src.state = PF_TCPS_PROXY_DST; 4526 } 4527 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4528 if (direction == (*state)->direction) { 4529 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4530 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4531 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4532 REASON_SET(reason, PFRES_SYNPROXY); 4533 return (PF_DROP); 4534 } 4535 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4536 if ((*state)->dst.seqhi == 1) 4537 (*state)->dst.seqhi = htonl(arc4random()); 4538 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4539 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4540 sk->port[pd->sidx], sk->port[pd->didx], 4541 (*state)->dst.seqhi, 0, TH_SYN, 0, 4542 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4543 REASON_SET(reason, PFRES_SYNPROXY); 4544 return (PF_SYNPROXY_DROP); 4545 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4546 (TH_SYN|TH_ACK)) || 4547 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4548 REASON_SET(reason, PFRES_SYNPROXY); 4549 return (PF_DROP); 4550 } else { 4551 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4552 (*state)->dst.seqlo = ntohl(th->th_seq); 4553 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4554 pd->src, th->th_dport, th->th_sport, 4555 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4556 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4557 (*state)->tag, NULL); 4558 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4559 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4560 sk->port[pd->sidx], sk->port[pd->didx], 4561 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4562 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4563 (*state)->src.seqdiff = (*state)->dst.seqhi - 4564 (*state)->src.seqlo; 4565 (*state)->dst.seqdiff = (*state)->src.seqhi - 4566 (*state)->dst.seqlo; 4567 (*state)->src.seqhi = (*state)->src.seqlo + 4568 (*state)->dst.max_win; 4569 (*state)->dst.seqhi = (*state)->dst.seqlo + 4570 (*state)->src.max_win; 4571 (*state)->src.wscale = (*state)->dst.wscale = 0; 4572 (*state)->src.state = (*state)->dst.state = 4573 TCPS_ESTABLISHED; 4574 REASON_SET(reason, PFRES_SYNPROXY); 4575 return (PF_SYNPROXY_DROP); 4576 } 4577 } 4578 4579 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4580 dst->state >= TCPS_FIN_WAIT_2 && 4581 src->state >= TCPS_FIN_WAIT_2) { 4582 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4583 printf("pf: state reuse "); 4584 pf_print_state(*state); 4585 pf_print_flags(th->th_flags); 4586 printf("\n"); 4587 } 4588 /* XXX make sure it's the same direction ?? */ 4589 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4590 pf_unlink_state(*state, PF_ENTER_LOCKED); 4591 *state = NULL; 4592 return (PF_DROP); 4593 } 4594 4595 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4596 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4597 return (PF_DROP); 4598 } else { 4599 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4600 ©back) == PF_DROP) 4601 return (PF_DROP); 4602 } 4603 4604 /* translate source/destination address, if necessary */ 4605 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4606 struct pf_state_key *nk = (*state)->key[pd->didx]; 4607 4608 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4609 nk->port[pd->sidx] != th->th_sport) 4610 pf_change_ap(m, pd->src, &th->th_sport, 4611 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4612 nk->port[pd->sidx], 0, pd->af); 4613 4614 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4615 nk->port[pd->didx] != th->th_dport) 4616 pf_change_ap(m, pd->dst, &th->th_dport, 4617 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4618 nk->port[pd->didx], 0, pd->af); 4619 copyback = 1; 4620 } 4621 4622 /* Copyback sequence modulation or stateful scrub changes if needed */ 4623 if (copyback) 4624 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4625 4626 return (PF_PASS); 4627 } 4628 4629 static int 4630 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kkif *kif, 4631 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4632 { 4633 struct pf_state_peer *src, *dst; 4634 struct pf_state_key_cmp key; 4635 struct udphdr *uh = pd->hdr.udp; 4636 4637 bzero(&key, sizeof(key)); 4638 key.af = pd->af; 4639 key.proto = IPPROTO_UDP; 4640 if (direction == PF_IN) { /* wire side, straight */ 4641 PF_ACPY(&key.addr[0], pd->src, key.af); 4642 PF_ACPY(&key.addr[1], pd->dst, key.af); 4643 key.port[0] = uh->uh_sport; 4644 key.port[1] = uh->uh_dport; 4645 } else { /* stack side, reverse */ 4646 PF_ACPY(&key.addr[1], pd->src, key.af); 4647 PF_ACPY(&key.addr[0], pd->dst, key.af); 4648 key.port[1] = uh->uh_sport; 4649 key.port[0] = uh->uh_dport; 4650 } 4651 4652 STATE_LOOKUP(kif, &key, direction, *state, pd); 4653 4654 if (direction == (*state)->direction) { 4655 src = &(*state)->src; 4656 dst = &(*state)->dst; 4657 } else { 4658 src = &(*state)->dst; 4659 dst = &(*state)->src; 4660 } 4661 4662 /* update states */ 4663 if (src->state < PFUDPS_SINGLE) 4664 src->state = PFUDPS_SINGLE; 4665 if (dst->state == PFUDPS_SINGLE) 4666 dst->state = PFUDPS_MULTIPLE; 4667 4668 /* update expire time */ 4669 (*state)->expire = time_uptime; 4670 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4671 (*state)->timeout = PFTM_UDP_MULTIPLE; 4672 else 4673 (*state)->timeout = PFTM_UDP_SINGLE; 4674 4675 /* translate source/destination address, if necessary */ 4676 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4677 struct pf_state_key *nk = (*state)->key[pd->didx]; 4678 4679 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4680 nk->port[pd->sidx] != uh->uh_sport) 4681 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4682 &uh->uh_sum, &nk->addr[pd->sidx], 4683 nk->port[pd->sidx], 1, pd->af); 4684 4685 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4686 nk->port[pd->didx] != uh->uh_dport) 4687 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4688 &uh->uh_sum, &nk->addr[pd->didx], 4689 nk->port[pd->didx], 1, pd->af); 4690 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4691 } 4692 4693 return (PF_PASS); 4694 } 4695 4696 static int 4697 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kkif *kif, 4698 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4699 { 4700 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4701 u_int16_t icmpid = 0, *icmpsum; 4702 u_int8_t icmptype, icmpcode; 4703 int state_icmp = 0; 4704 struct pf_state_key_cmp key; 4705 4706 bzero(&key, sizeof(key)); 4707 switch (pd->proto) { 4708 #ifdef INET 4709 case IPPROTO_ICMP: 4710 icmptype = pd->hdr.icmp->icmp_type; 4711 icmpcode = pd->hdr.icmp->icmp_code; 4712 icmpid = pd->hdr.icmp->icmp_id; 4713 icmpsum = &pd->hdr.icmp->icmp_cksum; 4714 4715 if (icmptype == ICMP_UNREACH || 4716 icmptype == ICMP_SOURCEQUENCH || 4717 icmptype == ICMP_REDIRECT || 4718 icmptype == ICMP_TIMXCEED || 4719 icmptype == ICMP_PARAMPROB) 4720 state_icmp++; 4721 break; 4722 #endif /* INET */ 4723 #ifdef INET6 4724 case IPPROTO_ICMPV6: 4725 icmptype = pd->hdr.icmp6->icmp6_type; 4726 icmpcode = pd->hdr.icmp6->icmp6_code; 4727 icmpid = pd->hdr.icmp6->icmp6_id; 4728 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4729 4730 if (icmptype == ICMP6_DST_UNREACH || 4731 icmptype == ICMP6_PACKET_TOO_BIG || 4732 icmptype == ICMP6_TIME_EXCEEDED || 4733 icmptype == ICMP6_PARAM_PROB) 4734 state_icmp++; 4735 break; 4736 #endif /* INET6 */ 4737 } 4738 4739 if (!state_icmp) { 4740 /* 4741 * ICMP query/reply message not related to a TCP/UDP packet. 4742 * Search for an ICMP state. 4743 */ 4744 key.af = pd->af; 4745 key.proto = pd->proto; 4746 key.port[0] = key.port[1] = icmpid; 4747 if (direction == PF_IN) { /* wire side, straight */ 4748 PF_ACPY(&key.addr[0], pd->src, key.af); 4749 PF_ACPY(&key.addr[1], pd->dst, key.af); 4750 } else { /* stack side, reverse */ 4751 PF_ACPY(&key.addr[1], pd->src, key.af); 4752 PF_ACPY(&key.addr[0], pd->dst, key.af); 4753 } 4754 4755 STATE_LOOKUP(kif, &key, direction, *state, pd); 4756 4757 (*state)->expire = time_uptime; 4758 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4759 4760 /* translate source/destination address, if necessary */ 4761 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4762 struct pf_state_key *nk = (*state)->key[pd->didx]; 4763 4764 switch (pd->af) { 4765 #ifdef INET 4766 case AF_INET: 4767 if (PF_ANEQ(pd->src, 4768 &nk->addr[pd->sidx], AF_INET)) 4769 pf_change_a(&saddr->v4.s_addr, 4770 pd->ip_sum, 4771 nk->addr[pd->sidx].v4.s_addr, 0); 4772 4773 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4774 AF_INET)) 4775 pf_change_a(&daddr->v4.s_addr, 4776 pd->ip_sum, 4777 nk->addr[pd->didx].v4.s_addr, 0); 4778 4779 if (nk->port[0] != 4780 pd->hdr.icmp->icmp_id) { 4781 pd->hdr.icmp->icmp_cksum = 4782 pf_cksum_fixup( 4783 pd->hdr.icmp->icmp_cksum, icmpid, 4784 nk->port[pd->sidx], 0); 4785 pd->hdr.icmp->icmp_id = 4786 nk->port[pd->sidx]; 4787 } 4788 4789 m_copyback(m, off, ICMP_MINLEN, 4790 (caddr_t )pd->hdr.icmp); 4791 break; 4792 #endif /* INET */ 4793 #ifdef INET6 4794 case AF_INET6: 4795 if (PF_ANEQ(pd->src, 4796 &nk->addr[pd->sidx], AF_INET6)) 4797 pf_change_a6(saddr, 4798 &pd->hdr.icmp6->icmp6_cksum, 4799 &nk->addr[pd->sidx], 0); 4800 4801 if (PF_ANEQ(pd->dst, 4802 &nk->addr[pd->didx], AF_INET6)) 4803 pf_change_a6(daddr, 4804 &pd->hdr.icmp6->icmp6_cksum, 4805 &nk->addr[pd->didx], 0); 4806 4807 m_copyback(m, off, sizeof(struct icmp6_hdr), 4808 (caddr_t )pd->hdr.icmp6); 4809 break; 4810 #endif /* INET6 */ 4811 } 4812 } 4813 return (PF_PASS); 4814 4815 } else { 4816 /* 4817 * ICMP error message in response to a TCP/UDP packet. 4818 * Extract the inner TCP/UDP header and search for that state. 4819 */ 4820 4821 struct pf_pdesc pd2; 4822 bzero(&pd2, sizeof pd2); 4823 #ifdef INET 4824 struct ip h2; 4825 #endif /* INET */ 4826 #ifdef INET6 4827 struct ip6_hdr h2_6; 4828 int terminal = 0; 4829 #endif /* INET6 */ 4830 int ipoff2 = 0; 4831 int off2 = 0; 4832 4833 pd2.af = pd->af; 4834 /* Payload packet is from the opposite direction. */ 4835 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4836 pd2.didx = (direction == PF_IN) ? 0 : 1; 4837 switch (pd->af) { 4838 #ifdef INET 4839 case AF_INET: 4840 /* offset of h2 in mbuf chain */ 4841 ipoff2 = off + ICMP_MINLEN; 4842 4843 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4844 NULL, reason, pd2.af)) { 4845 DPFPRINTF(PF_DEBUG_MISC, 4846 ("pf: ICMP error message too short " 4847 "(ip)\n")); 4848 return (PF_DROP); 4849 } 4850 /* 4851 * ICMP error messages don't refer to non-first 4852 * fragments 4853 */ 4854 if (h2.ip_off & htons(IP_OFFMASK)) { 4855 REASON_SET(reason, PFRES_FRAG); 4856 return (PF_DROP); 4857 } 4858 4859 /* offset of protocol header that follows h2 */ 4860 off2 = ipoff2 + (h2.ip_hl << 2); 4861 4862 pd2.proto = h2.ip_p; 4863 pd2.src = (struct pf_addr *)&h2.ip_src; 4864 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4865 pd2.ip_sum = &h2.ip_sum; 4866 break; 4867 #endif /* INET */ 4868 #ifdef INET6 4869 case AF_INET6: 4870 ipoff2 = off + sizeof(struct icmp6_hdr); 4871 4872 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4873 NULL, reason, pd2.af)) { 4874 DPFPRINTF(PF_DEBUG_MISC, 4875 ("pf: ICMP error message too short " 4876 "(ip6)\n")); 4877 return (PF_DROP); 4878 } 4879 pd2.proto = h2_6.ip6_nxt; 4880 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4881 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4882 pd2.ip_sum = NULL; 4883 off2 = ipoff2 + sizeof(h2_6); 4884 do { 4885 switch (pd2.proto) { 4886 case IPPROTO_FRAGMENT: 4887 /* 4888 * ICMPv6 error messages for 4889 * non-first fragments 4890 */ 4891 REASON_SET(reason, PFRES_FRAG); 4892 return (PF_DROP); 4893 case IPPROTO_AH: 4894 case IPPROTO_HOPOPTS: 4895 case IPPROTO_ROUTING: 4896 case IPPROTO_DSTOPTS: { 4897 /* get next header and header length */ 4898 struct ip6_ext opt6; 4899 4900 if (!pf_pull_hdr(m, off2, &opt6, 4901 sizeof(opt6), NULL, reason, 4902 pd2.af)) { 4903 DPFPRINTF(PF_DEBUG_MISC, 4904 ("pf: ICMPv6 short opt\n")); 4905 return (PF_DROP); 4906 } 4907 if (pd2.proto == IPPROTO_AH) 4908 off2 += (opt6.ip6e_len + 2) * 4; 4909 else 4910 off2 += (opt6.ip6e_len + 1) * 8; 4911 pd2.proto = opt6.ip6e_nxt; 4912 /* goto the next header */ 4913 break; 4914 } 4915 default: 4916 terminal++; 4917 break; 4918 } 4919 } while (!terminal); 4920 break; 4921 #endif /* INET6 */ 4922 } 4923 4924 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 4925 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4926 printf("pf: BAD ICMP %d:%d outer dst: ", 4927 icmptype, icmpcode); 4928 pf_print_host(pd->src, 0, pd->af); 4929 printf(" -> "); 4930 pf_print_host(pd->dst, 0, pd->af); 4931 printf(" inner src: "); 4932 pf_print_host(pd2.src, 0, pd2.af); 4933 printf(" -> "); 4934 pf_print_host(pd2.dst, 0, pd2.af); 4935 printf("\n"); 4936 } 4937 REASON_SET(reason, PFRES_BADSTATE); 4938 return (PF_DROP); 4939 } 4940 4941 switch (pd2.proto) { 4942 case IPPROTO_TCP: { 4943 struct tcphdr th; 4944 u_int32_t seq; 4945 struct pf_state_peer *src, *dst; 4946 u_int8_t dws; 4947 int copyback = 0; 4948 4949 /* 4950 * Only the first 8 bytes of the TCP header can be 4951 * expected. Don't access any TCP header fields after 4952 * th_seq, an ackskew test is not possible. 4953 */ 4954 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4955 pd2.af)) { 4956 DPFPRINTF(PF_DEBUG_MISC, 4957 ("pf: ICMP error message too short " 4958 "(tcp)\n")); 4959 return (PF_DROP); 4960 } 4961 4962 key.af = pd2.af; 4963 key.proto = IPPROTO_TCP; 4964 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4965 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4966 key.port[pd2.sidx] = th.th_sport; 4967 key.port[pd2.didx] = th.th_dport; 4968 4969 STATE_LOOKUP(kif, &key, direction, *state, pd); 4970 4971 if (direction == (*state)->direction) { 4972 src = &(*state)->dst; 4973 dst = &(*state)->src; 4974 } else { 4975 src = &(*state)->src; 4976 dst = &(*state)->dst; 4977 } 4978 4979 if (src->wscale && dst->wscale) 4980 dws = dst->wscale & PF_WSCALE_MASK; 4981 else 4982 dws = 0; 4983 4984 /* Demodulate sequence number */ 4985 seq = ntohl(th.th_seq) - src->seqdiff; 4986 if (src->seqdiff) { 4987 pf_change_a(&th.th_seq, icmpsum, 4988 htonl(seq), 0); 4989 copyback = 1; 4990 } 4991 4992 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4993 (!SEQ_GEQ(src->seqhi, seq) || 4994 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4995 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4996 printf("pf: BAD ICMP %d:%d ", 4997 icmptype, icmpcode); 4998 pf_print_host(pd->src, 0, pd->af); 4999 printf(" -> "); 5000 pf_print_host(pd->dst, 0, pd->af); 5001 printf(" state: "); 5002 pf_print_state(*state); 5003 printf(" seq=%u\n", seq); 5004 } 5005 REASON_SET(reason, PFRES_BADSTATE); 5006 return (PF_DROP); 5007 } else { 5008 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5009 printf("pf: OK ICMP %d:%d ", 5010 icmptype, icmpcode); 5011 pf_print_host(pd->src, 0, pd->af); 5012 printf(" -> "); 5013 pf_print_host(pd->dst, 0, pd->af); 5014 printf(" state: "); 5015 pf_print_state(*state); 5016 printf(" seq=%u\n", seq); 5017 } 5018 } 5019 5020 /* translate source/destination address, if necessary */ 5021 if ((*state)->key[PF_SK_WIRE] != 5022 (*state)->key[PF_SK_STACK]) { 5023 struct pf_state_key *nk = 5024 (*state)->key[pd->didx]; 5025 5026 if (PF_ANEQ(pd2.src, 5027 &nk->addr[pd2.sidx], pd2.af) || 5028 nk->port[pd2.sidx] != th.th_sport) 5029 pf_change_icmp(pd2.src, &th.th_sport, 5030 daddr, &nk->addr[pd2.sidx], 5031 nk->port[pd2.sidx], NULL, 5032 pd2.ip_sum, icmpsum, 5033 pd->ip_sum, 0, pd2.af); 5034 5035 if (PF_ANEQ(pd2.dst, 5036 &nk->addr[pd2.didx], pd2.af) || 5037 nk->port[pd2.didx] != th.th_dport) 5038 pf_change_icmp(pd2.dst, &th.th_dport, 5039 saddr, &nk->addr[pd2.didx], 5040 nk->port[pd2.didx], NULL, 5041 pd2.ip_sum, icmpsum, 5042 pd->ip_sum, 0, pd2.af); 5043 copyback = 1; 5044 } 5045 5046 if (copyback) { 5047 switch (pd2.af) { 5048 #ifdef INET 5049 case AF_INET: 5050 m_copyback(m, off, ICMP_MINLEN, 5051 (caddr_t )pd->hdr.icmp); 5052 m_copyback(m, ipoff2, sizeof(h2), 5053 (caddr_t )&h2); 5054 break; 5055 #endif /* INET */ 5056 #ifdef INET6 5057 case AF_INET6: 5058 m_copyback(m, off, 5059 sizeof(struct icmp6_hdr), 5060 (caddr_t )pd->hdr.icmp6); 5061 m_copyback(m, ipoff2, sizeof(h2_6), 5062 (caddr_t )&h2_6); 5063 break; 5064 #endif /* INET6 */ 5065 } 5066 m_copyback(m, off2, 8, (caddr_t)&th); 5067 } 5068 5069 return (PF_PASS); 5070 break; 5071 } 5072 case IPPROTO_UDP: { 5073 struct udphdr uh; 5074 5075 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 5076 NULL, reason, pd2.af)) { 5077 DPFPRINTF(PF_DEBUG_MISC, 5078 ("pf: ICMP error message too short " 5079 "(udp)\n")); 5080 return (PF_DROP); 5081 } 5082 5083 key.af = pd2.af; 5084 key.proto = IPPROTO_UDP; 5085 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5086 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5087 key.port[pd2.sidx] = uh.uh_sport; 5088 key.port[pd2.didx] = uh.uh_dport; 5089 5090 STATE_LOOKUP(kif, &key, direction, *state, pd); 5091 5092 /* translate source/destination address, if necessary */ 5093 if ((*state)->key[PF_SK_WIRE] != 5094 (*state)->key[PF_SK_STACK]) { 5095 struct pf_state_key *nk = 5096 (*state)->key[pd->didx]; 5097 5098 if (PF_ANEQ(pd2.src, 5099 &nk->addr[pd2.sidx], pd2.af) || 5100 nk->port[pd2.sidx] != uh.uh_sport) 5101 pf_change_icmp(pd2.src, &uh.uh_sport, 5102 daddr, &nk->addr[pd2.sidx], 5103 nk->port[pd2.sidx], &uh.uh_sum, 5104 pd2.ip_sum, icmpsum, 5105 pd->ip_sum, 1, pd2.af); 5106 5107 if (PF_ANEQ(pd2.dst, 5108 &nk->addr[pd2.didx], pd2.af) || 5109 nk->port[pd2.didx] != uh.uh_dport) 5110 pf_change_icmp(pd2.dst, &uh.uh_dport, 5111 saddr, &nk->addr[pd2.didx], 5112 nk->port[pd2.didx], &uh.uh_sum, 5113 pd2.ip_sum, icmpsum, 5114 pd->ip_sum, 1, pd2.af); 5115 5116 switch (pd2.af) { 5117 #ifdef INET 5118 case AF_INET: 5119 m_copyback(m, off, ICMP_MINLEN, 5120 (caddr_t )pd->hdr.icmp); 5121 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5122 break; 5123 #endif /* INET */ 5124 #ifdef INET6 5125 case AF_INET6: 5126 m_copyback(m, off, 5127 sizeof(struct icmp6_hdr), 5128 (caddr_t )pd->hdr.icmp6); 5129 m_copyback(m, ipoff2, sizeof(h2_6), 5130 (caddr_t )&h2_6); 5131 break; 5132 #endif /* INET6 */ 5133 } 5134 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 5135 } 5136 return (PF_PASS); 5137 break; 5138 } 5139 #ifdef INET 5140 case IPPROTO_ICMP: { 5141 struct icmp iih; 5142 5143 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 5144 NULL, reason, pd2.af)) { 5145 DPFPRINTF(PF_DEBUG_MISC, 5146 ("pf: ICMP error message too short i" 5147 "(icmp)\n")); 5148 return (PF_DROP); 5149 } 5150 5151 key.af = pd2.af; 5152 key.proto = IPPROTO_ICMP; 5153 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5154 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5155 key.port[0] = key.port[1] = iih.icmp_id; 5156 5157 STATE_LOOKUP(kif, &key, direction, *state, pd); 5158 5159 /* translate source/destination address, if necessary */ 5160 if ((*state)->key[PF_SK_WIRE] != 5161 (*state)->key[PF_SK_STACK]) { 5162 struct pf_state_key *nk = 5163 (*state)->key[pd->didx]; 5164 5165 if (PF_ANEQ(pd2.src, 5166 &nk->addr[pd2.sidx], pd2.af) || 5167 nk->port[pd2.sidx] != iih.icmp_id) 5168 pf_change_icmp(pd2.src, &iih.icmp_id, 5169 daddr, &nk->addr[pd2.sidx], 5170 nk->port[pd2.sidx], NULL, 5171 pd2.ip_sum, icmpsum, 5172 pd->ip_sum, 0, AF_INET); 5173 5174 if (PF_ANEQ(pd2.dst, 5175 &nk->addr[pd2.didx], pd2.af) || 5176 nk->port[pd2.didx] != iih.icmp_id) 5177 pf_change_icmp(pd2.dst, &iih.icmp_id, 5178 saddr, &nk->addr[pd2.didx], 5179 nk->port[pd2.didx], NULL, 5180 pd2.ip_sum, icmpsum, 5181 pd->ip_sum, 0, AF_INET); 5182 5183 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 5184 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5185 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5186 } 5187 return (PF_PASS); 5188 break; 5189 } 5190 #endif /* INET */ 5191 #ifdef INET6 5192 case IPPROTO_ICMPV6: { 5193 struct icmp6_hdr iih; 5194 5195 if (!pf_pull_hdr(m, off2, &iih, 5196 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5197 DPFPRINTF(PF_DEBUG_MISC, 5198 ("pf: ICMP error message too short " 5199 "(icmp6)\n")); 5200 return (PF_DROP); 5201 } 5202 5203 key.af = pd2.af; 5204 key.proto = IPPROTO_ICMPV6; 5205 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5206 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5207 key.port[0] = key.port[1] = iih.icmp6_id; 5208 5209 STATE_LOOKUP(kif, &key, direction, *state, pd); 5210 5211 /* translate source/destination address, if necessary */ 5212 if ((*state)->key[PF_SK_WIRE] != 5213 (*state)->key[PF_SK_STACK]) { 5214 struct pf_state_key *nk = 5215 (*state)->key[pd->didx]; 5216 5217 if (PF_ANEQ(pd2.src, 5218 &nk->addr[pd2.sidx], pd2.af) || 5219 nk->port[pd2.sidx] != iih.icmp6_id) 5220 pf_change_icmp(pd2.src, &iih.icmp6_id, 5221 daddr, &nk->addr[pd2.sidx], 5222 nk->port[pd2.sidx], NULL, 5223 pd2.ip_sum, icmpsum, 5224 pd->ip_sum, 0, AF_INET6); 5225 5226 if (PF_ANEQ(pd2.dst, 5227 &nk->addr[pd2.didx], pd2.af) || 5228 nk->port[pd2.didx] != iih.icmp6_id) 5229 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5230 saddr, &nk->addr[pd2.didx], 5231 nk->port[pd2.didx], NULL, 5232 pd2.ip_sum, icmpsum, 5233 pd->ip_sum, 0, AF_INET6); 5234 5235 m_copyback(m, off, sizeof(struct icmp6_hdr), 5236 (caddr_t)pd->hdr.icmp6); 5237 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5238 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5239 (caddr_t)&iih); 5240 } 5241 return (PF_PASS); 5242 break; 5243 } 5244 #endif /* INET6 */ 5245 default: { 5246 key.af = pd2.af; 5247 key.proto = pd2.proto; 5248 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5249 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5250 key.port[0] = key.port[1] = 0; 5251 5252 STATE_LOOKUP(kif, &key, direction, *state, pd); 5253 5254 /* translate source/destination address, if necessary */ 5255 if ((*state)->key[PF_SK_WIRE] != 5256 (*state)->key[PF_SK_STACK]) { 5257 struct pf_state_key *nk = 5258 (*state)->key[pd->didx]; 5259 5260 if (PF_ANEQ(pd2.src, 5261 &nk->addr[pd2.sidx], pd2.af)) 5262 pf_change_icmp(pd2.src, NULL, daddr, 5263 &nk->addr[pd2.sidx], 0, NULL, 5264 pd2.ip_sum, icmpsum, 5265 pd->ip_sum, 0, pd2.af); 5266 5267 if (PF_ANEQ(pd2.dst, 5268 &nk->addr[pd2.didx], pd2.af)) 5269 pf_change_icmp(pd2.dst, NULL, saddr, 5270 &nk->addr[pd2.didx], 0, NULL, 5271 pd2.ip_sum, icmpsum, 5272 pd->ip_sum, 0, pd2.af); 5273 5274 switch (pd2.af) { 5275 #ifdef INET 5276 case AF_INET: 5277 m_copyback(m, off, ICMP_MINLEN, 5278 (caddr_t)pd->hdr.icmp); 5279 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5280 break; 5281 #endif /* INET */ 5282 #ifdef INET6 5283 case AF_INET6: 5284 m_copyback(m, off, 5285 sizeof(struct icmp6_hdr), 5286 (caddr_t )pd->hdr.icmp6); 5287 m_copyback(m, ipoff2, sizeof(h2_6), 5288 (caddr_t )&h2_6); 5289 break; 5290 #endif /* INET6 */ 5291 } 5292 } 5293 return (PF_PASS); 5294 break; 5295 } 5296 } 5297 } 5298 } 5299 5300 static int 5301 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kkif *kif, 5302 struct mbuf *m, struct pf_pdesc *pd) 5303 { 5304 struct pf_state_peer *src, *dst; 5305 struct pf_state_key_cmp key; 5306 5307 bzero(&key, sizeof(key)); 5308 key.af = pd->af; 5309 key.proto = pd->proto; 5310 if (direction == PF_IN) { 5311 PF_ACPY(&key.addr[0], pd->src, key.af); 5312 PF_ACPY(&key.addr[1], pd->dst, key.af); 5313 key.port[0] = key.port[1] = 0; 5314 } else { 5315 PF_ACPY(&key.addr[1], pd->src, key.af); 5316 PF_ACPY(&key.addr[0], pd->dst, key.af); 5317 key.port[1] = key.port[0] = 0; 5318 } 5319 5320 STATE_LOOKUP(kif, &key, direction, *state, pd); 5321 5322 if (direction == (*state)->direction) { 5323 src = &(*state)->src; 5324 dst = &(*state)->dst; 5325 } else { 5326 src = &(*state)->dst; 5327 dst = &(*state)->src; 5328 } 5329 5330 /* update states */ 5331 if (src->state < PFOTHERS_SINGLE) 5332 src->state = PFOTHERS_SINGLE; 5333 if (dst->state == PFOTHERS_SINGLE) 5334 dst->state = PFOTHERS_MULTIPLE; 5335 5336 /* update expire time */ 5337 (*state)->expire = time_uptime; 5338 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5339 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5340 else 5341 (*state)->timeout = PFTM_OTHER_SINGLE; 5342 5343 /* translate source/destination address, if necessary */ 5344 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5345 struct pf_state_key *nk = (*state)->key[pd->didx]; 5346 5347 KASSERT(nk, ("%s: nk is null", __func__)); 5348 KASSERT(pd, ("%s: pd is null", __func__)); 5349 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5350 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5351 switch (pd->af) { 5352 #ifdef INET 5353 case AF_INET: 5354 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5355 pf_change_a(&pd->src->v4.s_addr, 5356 pd->ip_sum, 5357 nk->addr[pd->sidx].v4.s_addr, 5358 0); 5359 5360 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5361 pf_change_a(&pd->dst->v4.s_addr, 5362 pd->ip_sum, 5363 nk->addr[pd->didx].v4.s_addr, 5364 0); 5365 5366 break; 5367 #endif /* INET */ 5368 #ifdef INET6 5369 case AF_INET6: 5370 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5371 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5372 5373 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5374 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5375 #endif /* INET6 */ 5376 } 5377 } 5378 return (PF_PASS); 5379 } 5380 5381 /* 5382 * ipoff and off are measured from the start of the mbuf chain. 5383 * h must be at "ipoff" on the mbuf chain. 5384 */ 5385 void * 5386 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5387 u_short *actionp, u_short *reasonp, sa_family_t af) 5388 { 5389 switch (af) { 5390 #ifdef INET 5391 case AF_INET: { 5392 struct ip *h = mtod(m, struct ip *); 5393 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5394 5395 if (fragoff) { 5396 if (fragoff >= len) 5397 ACTION_SET(actionp, PF_PASS); 5398 else { 5399 ACTION_SET(actionp, PF_DROP); 5400 REASON_SET(reasonp, PFRES_FRAG); 5401 } 5402 return (NULL); 5403 } 5404 if (m->m_pkthdr.len < off + len || 5405 ntohs(h->ip_len) < off + len) { 5406 ACTION_SET(actionp, PF_DROP); 5407 REASON_SET(reasonp, PFRES_SHORT); 5408 return (NULL); 5409 } 5410 break; 5411 } 5412 #endif /* INET */ 5413 #ifdef INET6 5414 case AF_INET6: { 5415 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5416 5417 if (m->m_pkthdr.len < off + len || 5418 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5419 (unsigned)(off + len)) { 5420 ACTION_SET(actionp, PF_DROP); 5421 REASON_SET(reasonp, PFRES_SHORT); 5422 return (NULL); 5423 } 5424 break; 5425 } 5426 #endif /* INET6 */ 5427 } 5428 m_copydata(m, off, len, p); 5429 return (p); 5430 } 5431 5432 int 5433 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 5434 int rtableid) 5435 { 5436 struct ifnet *ifp; 5437 5438 /* 5439 * Skip check for addresses with embedded interface scope, 5440 * as they would always match anyway. 5441 */ 5442 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5443 return (1); 5444 5445 if (af != AF_INET && af != AF_INET6) 5446 return (0); 5447 5448 /* Skip checks for ipsec interfaces */ 5449 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5450 return (1); 5451 5452 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 5453 5454 switch (af) { 5455 #ifdef INET6 5456 case AF_INET6: 5457 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 5458 ifp)); 5459 #endif 5460 #ifdef INET 5461 case AF_INET: 5462 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 5463 ifp)); 5464 #endif 5465 } 5466 5467 return (0); 5468 } 5469 5470 #ifdef INET 5471 static void 5472 pf_route(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 5473 struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) 5474 { 5475 struct mbuf *m0, *m1; 5476 struct sockaddr_in dst; 5477 struct ip *ip; 5478 struct ifnet *ifp = NULL; 5479 struct pf_addr naddr; 5480 struct pf_ksrc_node *sn = NULL; 5481 int error = 0; 5482 uint16_t ip_len, ip_off; 5483 5484 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5485 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5486 __func__)); 5487 5488 if ((pd->pf_mtag == NULL && 5489 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5490 pd->pf_mtag->routed++ > 3) { 5491 m0 = *m; 5492 *m = NULL; 5493 goto bad_locked; 5494 } 5495 5496 if (r->rt == PF_DUPTO) { 5497 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 5498 if (s == NULL) { 5499 ifp = r->rpool.cur->kif ? 5500 r->rpool.cur->kif->pfik_ifp : NULL; 5501 } else { 5502 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5503 PF_STATE_UNLOCK(s); 5504 } 5505 if (ifp == oifp) { 5506 /* When the 2nd interface is not skipped */ 5507 return; 5508 } else { 5509 m0 = *m; 5510 *m = NULL; 5511 goto bad; 5512 } 5513 } else { 5514 pd->pf_mtag->flags |= PF_DUPLICATED; 5515 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 5516 if (s) 5517 PF_STATE_UNLOCK(s); 5518 return; 5519 } 5520 } 5521 } else { 5522 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5523 if (s) 5524 PF_STATE_UNLOCK(s); 5525 return; 5526 } 5527 m0 = *m; 5528 } 5529 5530 ip = mtod(m0, struct ip *); 5531 5532 bzero(&dst, sizeof(dst)); 5533 dst.sin_family = AF_INET; 5534 dst.sin_len = sizeof(dst); 5535 dst.sin_addr = ip->ip_dst; 5536 5537 bzero(&naddr, sizeof(naddr)); 5538 5539 if (TAILQ_EMPTY(&r->rpool.list)) { 5540 DPFPRINTF(PF_DEBUG_URGENT, 5541 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5542 goto bad_locked; 5543 } 5544 if (s == NULL) { 5545 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5546 &naddr, NULL, &sn); 5547 if (!PF_AZERO(&naddr, AF_INET)) 5548 dst.sin_addr.s_addr = naddr.v4.s_addr; 5549 ifp = r->rpool.cur->kif ? 5550 r->rpool.cur->kif->pfik_ifp : NULL; 5551 } else { 5552 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5553 dst.sin_addr.s_addr = 5554 s->rt_addr.v4.s_addr; 5555 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5556 PF_STATE_UNLOCK(s); 5557 } 5558 if (ifp == NULL) 5559 goto bad; 5560 5561 if (dir == PF_IN) { 5562 if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 5563 goto bad; 5564 else if (m0 == NULL) 5565 goto done; 5566 if (m0->m_len < sizeof(struct ip)) { 5567 DPFPRINTF(PF_DEBUG_URGENT, 5568 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5569 goto bad; 5570 } 5571 ip = mtod(m0, struct ip *); 5572 } 5573 5574 if (ifp->if_flags & IFF_LOOPBACK) 5575 m0->m_flags |= M_SKIP_FIREWALL; 5576 5577 ip_len = ntohs(ip->ip_len); 5578 ip_off = ntohs(ip->ip_off); 5579 5580 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5581 m0->m_pkthdr.csum_flags |= CSUM_IP; 5582 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5583 m0 = mb_unmapped_to_ext(m0); 5584 if (m0 == NULL) 5585 goto done; 5586 in_delayed_cksum(m0); 5587 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5588 } 5589 #if defined(SCTP) || defined(SCTP_SUPPORT) 5590 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5591 m0 = mb_unmapped_to_ext(m0); 5592 if (m0 == NULL) 5593 goto done; 5594 sctp_delayed_cksum(m0, (uint32_t)(ip->ip_hl << 2)); 5595 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5596 } 5597 #endif 5598 5599 /* 5600 * If small enough for interface, or the interface will take 5601 * care of the fragmentation for us, we can just send directly. 5602 */ 5603 if (ip_len <= ifp->if_mtu || 5604 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5605 ip->ip_sum = 0; 5606 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5607 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5608 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5609 } 5610 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5611 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5612 goto done; 5613 } 5614 5615 /* Balk when DF bit is set or the interface didn't support TSO. */ 5616 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5617 error = EMSGSIZE; 5618 KMOD_IPSTAT_INC(ips_cantfrag); 5619 if (r->rt != PF_DUPTO) { 5620 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5621 ifp->if_mtu); 5622 goto done; 5623 } else 5624 goto bad; 5625 } 5626 5627 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5628 if (error) 5629 goto bad; 5630 5631 for (; m0; m0 = m1) { 5632 m1 = m0->m_nextpkt; 5633 m0->m_nextpkt = NULL; 5634 if (error == 0) { 5635 m_clrprotoflags(m0); 5636 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5637 } else 5638 m_freem(m0); 5639 } 5640 5641 if (error == 0) 5642 KMOD_IPSTAT_INC(ips_fragmented); 5643 5644 done: 5645 if (r->rt != PF_DUPTO) 5646 *m = NULL; 5647 return; 5648 5649 bad_locked: 5650 if (s) 5651 PF_STATE_UNLOCK(s); 5652 bad: 5653 m_freem(m0); 5654 goto done; 5655 } 5656 #endif /* INET */ 5657 5658 #ifdef INET6 5659 static void 5660 pf_route6(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 5661 struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) 5662 { 5663 struct mbuf *m0; 5664 struct sockaddr_in6 dst; 5665 struct ip6_hdr *ip6; 5666 struct ifnet *ifp = NULL; 5667 struct pf_addr naddr; 5668 struct pf_ksrc_node *sn = NULL; 5669 5670 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5671 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5672 __func__)); 5673 5674 if ((pd->pf_mtag == NULL && 5675 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5676 pd->pf_mtag->routed++ > 3) { 5677 m0 = *m; 5678 *m = NULL; 5679 goto bad_locked; 5680 } 5681 5682 if (r->rt == PF_DUPTO) { 5683 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 5684 if (s == NULL) { 5685 ifp = r->rpool.cur->kif ? 5686 r->rpool.cur->kif->pfik_ifp : NULL; 5687 } else { 5688 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5689 PF_STATE_UNLOCK(s); 5690 } 5691 if (ifp == oifp) { 5692 /* When the 2nd interface is not skipped */ 5693 return; 5694 } else { 5695 m0 = *m; 5696 *m = NULL; 5697 goto bad; 5698 } 5699 } else { 5700 pd->pf_mtag->flags |= PF_DUPLICATED; 5701 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 5702 if (s) 5703 PF_STATE_UNLOCK(s); 5704 return; 5705 } 5706 } 5707 } else { 5708 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5709 if (s) 5710 PF_STATE_UNLOCK(s); 5711 return; 5712 } 5713 m0 = *m; 5714 } 5715 5716 ip6 = mtod(m0, struct ip6_hdr *); 5717 5718 bzero(&dst, sizeof(dst)); 5719 dst.sin6_family = AF_INET6; 5720 dst.sin6_len = sizeof(dst); 5721 dst.sin6_addr = ip6->ip6_dst; 5722 5723 bzero(&naddr, sizeof(naddr)); 5724 5725 if (TAILQ_EMPTY(&r->rpool.list)) { 5726 DPFPRINTF(PF_DEBUG_URGENT, 5727 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5728 goto bad_locked; 5729 } 5730 if (s == NULL) { 5731 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5732 &naddr, NULL, &sn); 5733 if (!PF_AZERO(&naddr, AF_INET6)) 5734 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5735 &naddr, AF_INET6); 5736 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5737 } else { 5738 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5739 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5740 &s->rt_addr, AF_INET6); 5741 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5742 } 5743 5744 if (s) 5745 PF_STATE_UNLOCK(s); 5746 5747 if (ifp == NULL) 5748 goto bad; 5749 5750 if (dir == PF_IN) { 5751 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS) 5752 goto bad; 5753 else if (m0 == NULL) 5754 goto done; 5755 if (m0->m_len < sizeof(struct ip6_hdr)) { 5756 DPFPRINTF(PF_DEBUG_URGENT, 5757 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5758 __func__)); 5759 goto bad; 5760 } 5761 ip6 = mtod(m0, struct ip6_hdr *); 5762 } 5763 5764 if (ifp->if_flags & IFF_LOOPBACK) 5765 m0->m_flags |= M_SKIP_FIREWALL; 5766 5767 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5768 ~ifp->if_hwassist) { 5769 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5770 m0 = mb_unmapped_to_ext(m0); 5771 if (m0 == NULL) 5772 goto done; 5773 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5774 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5775 } 5776 5777 /* 5778 * If the packet is too large for the outgoing interface, 5779 * send back an icmp6 error. 5780 */ 5781 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5782 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5783 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5784 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5785 else { 5786 in6_ifstat_inc(ifp, ifs6_in_toobig); 5787 if (r->rt != PF_DUPTO) 5788 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5789 else 5790 goto bad; 5791 } 5792 5793 done: 5794 if (r->rt != PF_DUPTO) 5795 *m = NULL; 5796 return; 5797 5798 bad_locked: 5799 if (s) 5800 PF_STATE_UNLOCK(s); 5801 bad: 5802 m_freem(m0); 5803 goto done; 5804 } 5805 #endif /* INET6 */ 5806 5807 /* 5808 * FreeBSD supports cksum offloads for the following drivers. 5809 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 5810 * 5811 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5812 * network driver performed cksum including pseudo header, need to verify 5813 * csum_data 5814 * CSUM_DATA_VALID : 5815 * network driver performed cksum, needs to additional pseudo header 5816 * cksum computation with partial csum_data(i.e. lack of H/W support for 5817 * pseudo header, for instance sk(4) and possibly gem(4)) 5818 * 5819 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5820 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5821 * TCP/UDP layer. 5822 * Also, set csum_data to 0xffff to force cksum validation. 5823 */ 5824 static int 5825 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5826 { 5827 u_int16_t sum = 0; 5828 int hw_assist = 0; 5829 struct ip *ip; 5830 5831 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5832 return (1); 5833 if (m->m_pkthdr.len < off + len) 5834 return (1); 5835 5836 switch (p) { 5837 case IPPROTO_TCP: 5838 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5839 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5840 sum = m->m_pkthdr.csum_data; 5841 } else { 5842 ip = mtod(m, struct ip *); 5843 sum = in_pseudo(ip->ip_src.s_addr, 5844 ip->ip_dst.s_addr, htonl((u_short)len + 5845 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5846 } 5847 sum ^= 0xffff; 5848 ++hw_assist; 5849 } 5850 break; 5851 case IPPROTO_UDP: 5852 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5853 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5854 sum = m->m_pkthdr.csum_data; 5855 } else { 5856 ip = mtod(m, struct ip *); 5857 sum = in_pseudo(ip->ip_src.s_addr, 5858 ip->ip_dst.s_addr, htonl((u_short)len + 5859 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5860 } 5861 sum ^= 0xffff; 5862 ++hw_assist; 5863 } 5864 break; 5865 case IPPROTO_ICMP: 5866 #ifdef INET6 5867 case IPPROTO_ICMPV6: 5868 #endif /* INET6 */ 5869 break; 5870 default: 5871 return (1); 5872 } 5873 5874 if (!hw_assist) { 5875 switch (af) { 5876 case AF_INET: 5877 if (p == IPPROTO_ICMP) { 5878 if (m->m_len < off) 5879 return (1); 5880 m->m_data += off; 5881 m->m_len -= off; 5882 sum = in_cksum(m, len); 5883 m->m_data -= off; 5884 m->m_len += off; 5885 } else { 5886 if (m->m_len < sizeof(struct ip)) 5887 return (1); 5888 sum = in4_cksum(m, p, off, len); 5889 } 5890 break; 5891 #ifdef INET6 5892 case AF_INET6: 5893 if (m->m_len < sizeof(struct ip6_hdr)) 5894 return (1); 5895 sum = in6_cksum(m, p, off, len); 5896 break; 5897 #endif /* INET6 */ 5898 default: 5899 return (1); 5900 } 5901 } 5902 if (sum) { 5903 switch (p) { 5904 case IPPROTO_TCP: 5905 { 5906 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5907 break; 5908 } 5909 case IPPROTO_UDP: 5910 { 5911 KMOD_UDPSTAT_INC(udps_badsum); 5912 break; 5913 } 5914 #ifdef INET 5915 case IPPROTO_ICMP: 5916 { 5917 KMOD_ICMPSTAT_INC(icps_checksum); 5918 break; 5919 } 5920 #endif 5921 #ifdef INET6 5922 case IPPROTO_ICMPV6: 5923 { 5924 KMOD_ICMP6STAT_INC(icp6s_checksum); 5925 break; 5926 } 5927 #endif /* INET6 */ 5928 } 5929 return (1); 5930 } else { 5931 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5932 m->m_pkthdr.csum_flags |= 5933 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5934 m->m_pkthdr.csum_data = 0xffff; 5935 } 5936 } 5937 return (0); 5938 } 5939 5940 #ifdef INET 5941 int 5942 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5943 { 5944 struct pfi_kkif *kif; 5945 u_short action, reason = 0, log = 0; 5946 struct mbuf *m = *m0; 5947 struct ip *h = NULL; 5948 struct m_tag *ipfwtag; 5949 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5950 struct pf_state *s = NULL; 5951 struct pf_kruleset *ruleset = NULL; 5952 struct pf_pdesc pd; 5953 int off, dirndx, pqid = 0; 5954 5955 PF_RULES_RLOCK_TRACKER; 5956 5957 M_ASSERTPKTHDR(m); 5958 5959 if (!V_pf_status.running) 5960 return (PF_PASS); 5961 5962 memset(&pd, 0, sizeof(pd)); 5963 5964 kif = (struct pfi_kkif *)ifp->if_pf_kif; 5965 5966 if (kif == NULL) { 5967 DPFPRINTF(PF_DEBUG_URGENT, 5968 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5969 return (PF_DROP); 5970 } 5971 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5972 return (PF_PASS); 5973 5974 if (m->m_flags & M_SKIP_FIREWALL) 5975 return (PF_PASS); 5976 5977 pd.pf_mtag = pf_find_mtag(m); 5978 5979 PF_RULES_RLOCK(); 5980 5981 if (ip_divert_ptr != NULL && 5982 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5983 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5984 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5985 if (pd.pf_mtag == NULL && 5986 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5987 action = PF_DROP; 5988 goto done; 5989 } 5990 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5991 m_tag_delete(m, ipfwtag); 5992 } 5993 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5994 m->m_flags |= M_FASTFWD_OURS; 5995 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5996 } 5997 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5998 /* We do IP header normalization and packet reassembly here */ 5999 action = PF_DROP; 6000 goto done; 6001 } 6002 m = *m0; /* pf_normalize messes with m0 */ 6003 h = mtod(m, struct ip *); 6004 6005 off = h->ip_hl << 2; 6006 if (off < (int)sizeof(struct ip)) { 6007 action = PF_DROP; 6008 REASON_SET(&reason, PFRES_SHORT); 6009 log = 1; 6010 goto done; 6011 } 6012 6013 pd.src = (struct pf_addr *)&h->ip_src; 6014 pd.dst = (struct pf_addr *)&h->ip_dst; 6015 pd.sport = pd.dport = NULL; 6016 pd.ip_sum = &h->ip_sum; 6017 pd.proto_sum = NULL; 6018 pd.proto = h->ip_p; 6019 pd.dir = dir; 6020 pd.sidx = (dir == PF_IN) ? 0 : 1; 6021 pd.didx = (dir == PF_IN) ? 1 : 0; 6022 pd.af = AF_INET; 6023 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 6024 pd.tot_len = ntohs(h->ip_len); 6025 6026 /* handle fragments that didn't get reassembled by normalization */ 6027 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 6028 action = pf_test_fragment(&r, dir, kif, m, h, 6029 &pd, &a, &ruleset); 6030 goto done; 6031 } 6032 6033 switch (h->ip_p) { 6034 case IPPROTO_TCP: { 6035 struct tcphdr th; 6036 6037 pd.hdr.tcp = &th; 6038 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6039 &action, &reason, AF_INET)) { 6040 log = action != PF_PASS; 6041 goto done; 6042 } 6043 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6044 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 6045 pqid = 1; 6046 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6047 if (action == PF_DROP) 6048 goto done; 6049 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6050 &reason); 6051 if (action == PF_PASS) { 6052 if (V_pfsync_update_state_ptr != NULL) 6053 V_pfsync_update_state_ptr(s); 6054 r = s->rule.ptr; 6055 a = s->anchor.ptr; 6056 log = s->log; 6057 } else if (s == NULL) 6058 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6059 &a, &ruleset, inp); 6060 break; 6061 } 6062 6063 case IPPROTO_UDP: { 6064 struct udphdr uh; 6065 6066 pd.hdr.udp = &uh; 6067 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6068 &action, &reason, AF_INET)) { 6069 log = action != PF_PASS; 6070 goto done; 6071 } 6072 if (uh.uh_dport == 0 || 6073 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6074 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6075 action = PF_DROP; 6076 REASON_SET(&reason, PFRES_SHORT); 6077 goto done; 6078 } 6079 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6080 if (action == PF_PASS) { 6081 if (V_pfsync_update_state_ptr != NULL) 6082 V_pfsync_update_state_ptr(s); 6083 r = s->rule.ptr; 6084 a = s->anchor.ptr; 6085 log = s->log; 6086 } else if (s == NULL) 6087 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6088 &a, &ruleset, inp); 6089 break; 6090 } 6091 6092 case IPPROTO_ICMP: { 6093 struct icmp ih; 6094 6095 pd.hdr.icmp = &ih; 6096 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 6097 &action, &reason, AF_INET)) { 6098 log = action != PF_PASS; 6099 goto done; 6100 } 6101 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 6102 &reason); 6103 if (action == PF_PASS) { 6104 if (V_pfsync_update_state_ptr != NULL) 6105 V_pfsync_update_state_ptr(s); 6106 r = s->rule.ptr; 6107 a = s->anchor.ptr; 6108 log = s->log; 6109 } else if (s == NULL) 6110 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6111 &a, &ruleset, inp); 6112 break; 6113 } 6114 6115 #ifdef INET6 6116 case IPPROTO_ICMPV6: { 6117 action = PF_DROP; 6118 DPFPRINTF(PF_DEBUG_MISC, 6119 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6120 goto done; 6121 } 6122 #endif 6123 6124 default: 6125 action = pf_test_state_other(&s, dir, kif, m, &pd); 6126 if (action == PF_PASS) { 6127 if (V_pfsync_update_state_ptr != NULL) 6128 V_pfsync_update_state_ptr(s); 6129 r = s->rule.ptr; 6130 a = s->anchor.ptr; 6131 log = s->log; 6132 } else if (s == NULL) 6133 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6134 &a, &ruleset, inp); 6135 break; 6136 } 6137 6138 done: 6139 PF_RULES_RUNLOCK(); 6140 if (action == PF_PASS && h->ip_hl > 5 && 6141 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6142 action = PF_DROP; 6143 REASON_SET(&reason, PFRES_IPOPTIONS); 6144 log = r->log; 6145 DPFPRINTF(PF_DEBUG_MISC, 6146 ("pf: dropping packet with ip options\n")); 6147 } 6148 6149 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6150 action = PF_DROP; 6151 REASON_SET(&reason, PFRES_MEMORY); 6152 } 6153 if (r->rtableid >= 0) 6154 M_SETFIB(m, r->rtableid); 6155 6156 if (r->scrub_flags & PFSTATE_SETPRIO) { 6157 if (pd.tos & IPTOS_LOWDELAY) 6158 pqid = 1; 6159 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6160 action = PF_DROP; 6161 REASON_SET(&reason, PFRES_MEMORY); 6162 log = 1; 6163 DPFPRINTF(PF_DEBUG_MISC, 6164 ("pf: failed to allocate 802.1q mtag\n")); 6165 } 6166 } 6167 6168 #ifdef ALTQ 6169 if (action == PF_PASS && r->qid) { 6170 if (pd.pf_mtag == NULL && 6171 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6172 action = PF_DROP; 6173 REASON_SET(&reason, PFRES_MEMORY); 6174 } else { 6175 if (s != NULL) 6176 pd.pf_mtag->qid_hash = pf_state_hash(s); 6177 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6178 pd.pf_mtag->qid = r->pqid; 6179 else 6180 pd.pf_mtag->qid = r->qid; 6181 /* Add hints for ecn. */ 6182 pd.pf_mtag->hdr = h; 6183 } 6184 } 6185 #endif /* ALTQ */ 6186 6187 /* 6188 * connections redirected to loopback should not match sockets 6189 * bound specifically to loopback due to security implications, 6190 * see tcp_input() and in_pcblookup_listen(). 6191 */ 6192 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6193 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6194 (s->nat_rule.ptr->action == PF_RDR || 6195 s->nat_rule.ptr->action == PF_BINAT) && 6196 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 6197 m->m_flags |= M_SKIP_FIREWALL; 6198 6199 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6200 !PACKET_LOOPED(&pd)) { 6201 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6202 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6203 if (ipfwtag != NULL) { 6204 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6205 ntohs(r->divert.port); 6206 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6207 6208 if (s) 6209 PF_STATE_UNLOCK(s); 6210 6211 m_tag_prepend(m, ipfwtag); 6212 if (m->m_flags & M_FASTFWD_OURS) { 6213 if (pd.pf_mtag == NULL && 6214 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6215 action = PF_DROP; 6216 REASON_SET(&reason, PFRES_MEMORY); 6217 log = 1; 6218 DPFPRINTF(PF_DEBUG_MISC, 6219 ("pf: failed to allocate tag\n")); 6220 } else { 6221 pd.pf_mtag->flags |= 6222 PF_FASTFWD_OURS_PRESENT; 6223 m->m_flags &= ~M_FASTFWD_OURS; 6224 } 6225 } 6226 ip_divert_ptr(*m0, dir == PF_IN); 6227 *m0 = NULL; 6228 6229 return (action); 6230 } else { 6231 /* XXX: ipfw has the same behaviour! */ 6232 action = PF_DROP; 6233 REASON_SET(&reason, PFRES_MEMORY); 6234 log = 1; 6235 DPFPRINTF(PF_DEBUG_MISC, 6236 ("pf: failed to allocate divert tag\n")); 6237 } 6238 } 6239 6240 if (log) { 6241 struct pf_krule *lr; 6242 6243 if (s != NULL && s->nat_rule.ptr != NULL && 6244 s->nat_rule.ptr->log & PF_LOG_ALL) 6245 lr = s->nat_rule.ptr; 6246 else 6247 lr = r; 6248 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6249 (s == NULL)); 6250 } 6251 6252 counter_u64_add(kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], 6253 pd.tot_len); 6254 counter_u64_add(kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 6255 1); 6256 6257 if (action == PF_PASS || r->action == PF_DROP) { 6258 dirndx = (dir == PF_OUT); 6259 counter_u64_add(r->packets[dirndx], 1); 6260 counter_u64_add(r->bytes[dirndx], pd.tot_len); 6261 if (a != NULL) { 6262 counter_u64_add(a->packets[dirndx], 1); 6263 counter_u64_add(a->bytes[dirndx], pd.tot_len); 6264 } 6265 if (s != NULL) { 6266 if (s->nat_rule.ptr != NULL) { 6267 counter_u64_add(s->nat_rule.ptr->packets[dirndx], 6268 1); 6269 counter_u64_add(s->nat_rule.ptr->bytes[dirndx], 6270 pd.tot_len); 6271 } 6272 if (s->src_node != NULL) { 6273 counter_u64_add(s->src_node->packets[dirndx], 6274 1); 6275 counter_u64_add(s->src_node->bytes[dirndx], 6276 pd.tot_len); 6277 } 6278 if (s->nat_src_node != NULL) { 6279 counter_u64_add(s->nat_src_node->packets[dirndx], 6280 1); 6281 counter_u64_add(s->nat_src_node->bytes[dirndx], 6282 pd.tot_len); 6283 } 6284 dirndx = (dir == s->direction) ? 0 : 1; 6285 counter_u64_add(s->packets[dirndx], 1); 6286 counter_u64_add(s->bytes[dirndx], pd.tot_len); 6287 } 6288 tr = r; 6289 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6290 if (nr != NULL && r == &V_pf_default_rule) 6291 tr = nr; 6292 if (tr->src.addr.type == PF_ADDR_TABLE) 6293 pfr_update_stats(tr->src.addr.p.tbl, 6294 (s == NULL) ? pd.src : 6295 &s->key[(s->direction == PF_IN)]-> 6296 addr[(s->direction == PF_OUT)], 6297 pd.af, pd.tot_len, dir == PF_OUT, 6298 r->action == PF_PASS, tr->src.neg); 6299 if (tr->dst.addr.type == PF_ADDR_TABLE) 6300 pfr_update_stats(tr->dst.addr.p.tbl, 6301 (s == NULL) ? pd.dst : 6302 &s->key[(s->direction == PF_IN)]-> 6303 addr[(s->direction == PF_IN)], 6304 pd.af, pd.tot_len, dir == PF_OUT, 6305 r->action == PF_PASS, tr->dst.neg); 6306 } 6307 6308 switch (action) { 6309 case PF_SYNPROXY_DROP: 6310 m_freem(*m0); 6311 case PF_DEFER: 6312 *m0 = NULL; 6313 action = PF_PASS; 6314 break; 6315 case PF_DROP: 6316 m_freem(*m0); 6317 *m0 = NULL; 6318 break; 6319 default: 6320 /* pf_route() returns unlocked. */ 6321 if (r->rt) { 6322 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6323 return (action); 6324 } 6325 break; 6326 } 6327 if (s) 6328 PF_STATE_UNLOCK(s); 6329 6330 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 6331 6332 return (action); 6333 } 6334 #endif /* INET */ 6335 6336 #ifdef INET6 6337 int 6338 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6339 { 6340 struct pfi_kkif *kif; 6341 u_short action, reason = 0, log = 0; 6342 struct mbuf *m = *m0, *n = NULL; 6343 struct m_tag *mtag; 6344 struct ip6_hdr *h = NULL; 6345 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6346 struct pf_state *s = NULL; 6347 struct pf_kruleset *ruleset = NULL; 6348 struct pf_pdesc pd; 6349 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6350 6351 PF_RULES_RLOCK_TRACKER; 6352 M_ASSERTPKTHDR(m); 6353 6354 if (!V_pf_status.running) 6355 return (PF_PASS); 6356 6357 memset(&pd, 0, sizeof(pd)); 6358 pd.pf_mtag = pf_find_mtag(m); 6359 6360 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6361 return (PF_PASS); 6362 6363 kif = (struct pfi_kkif *)ifp->if_pf_kif; 6364 if (kif == NULL) { 6365 DPFPRINTF(PF_DEBUG_URGENT, 6366 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6367 return (PF_DROP); 6368 } 6369 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6370 return (PF_PASS); 6371 6372 if (m->m_flags & M_SKIP_FIREWALL) 6373 return (PF_PASS); 6374 6375 PF_RULES_RLOCK(); 6376 6377 /* We do IP header normalization and packet reassembly here */ 6378 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6379 action = PF_DROP; 6380 goto done; 6381 } 6382 m = *m0; /* pf_normalize messes with m0 */ 6383 h = mtod(m, struct ip6_hdr *); 6384 6385 /* 6386 * we do not support jumbogram. if we keep going, zero ip6_plen 6387 * will do something bad, so drop the packet for now. 6388 */ 6389 if (htons(h->ip6_plen) == 0) { 6390 action = PF_DROP; 6391 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6392 goto done; 6393 } 6394 6395 pd.src = (struct pf_addr *)&h->ip6_src; 6396 pd.dst = (struct pf_addr *)&h->ip6_dst; 6397 pd.sport = pd.dport = NULL; 6398 pd.ip_sum = NULL; 6399 pd.proto_sum = NULL; 6400 pd.dir = dir; 6401 pd.sidx = (dir == PF_IN) ? 0 : 1; 6402 pd.didx = (dir == PF_IN) ? 1 : 0; 6403 pd.af = AF_INET6; 6404 pd.tos = IPV6_DSCP(h); 6405 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6406 6407 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6408 pd.proto = h->ip6_nxt; 6409 do { 6410 switch (pd.proto) { 6411 case IPPROTO_FRAGMENT: 6412 action = pf_test_fragment(&r, dir, kif, m, h, 6413 &pd, &a, &ruleset); 6414 if (action == PF_DROP) 6415 REASON_SET(&reason, PFRES_FRAG); 6416 goto done; 6417 case IPPROTO_ROUTING: { 6418 struct ip6_rthdr rthdr; 6419 6420 if (rh_cnt++) { 6421 DPFPRINTF(PF_DEBUG_MISC, 6422 ("pf: IPv6 more than one rthdr\n")); 6423 action = PF_DROP; 6424 REASON_SET(&reason, PFRES_IPOPTIONS); 6425 log = 1; 6426 goto done; 6427 } 6428 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6429 &reason, pd.af)) { 6430 DPFPRINTF(PF_DEBUG_MISC, 6431 ("pf: IPv6 short rthdr\n")); 6432 action = PF_DROP; 6433 REASON_SET(&reason, PFRES_SHORT); 6434 log = 1; 6435 goto done; 6436 } 6437 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6438 DPFPRINTF(PF_DEBUG_MISC, 6439 ("pf: IPv6 rthdr0\n")); 6440 action = PF_DROP; 6441 REASON_SET(&reason, PFRES_IPOPTIONS); 6442 log = 1; 6443 goto done; 6444 } 6445 /* FALLTHROUGH */ 6446 } 6447 case IPPROTO_AH: 6448 case IPPROTO_HOPOPTS: 6449 case IPPROTO_DSTOPTS: { 6450 /* get next header and header length */ 6451 struct ip6_ext opt6; 6452 6453 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6454 NULL, &reason, pd.af)) { 6455 DPFPRINTF(PF_DEBUG_MISC, 6456 ("pf: IPv6 short opt\n")); 6457 action = PF_DROP; 6458 log = 1; 6459 goto done; 6460 } 6461 if (pd.proto == IPPROTO_AH) 6462 off += (opt6.ip6e_len + 2) * 4; 6463 else 6464 off += (opt6.ip6e_len + 1) * 8; 6465 pd.proto = opt6.ip6e_nxt; 6466 /* goto the next header */ 6467 break; 6468 } 6469 default: 6470 terminal++; 6471 break; 6472 } 6473 } while (!terminal); 6474 6475 /* if there's no routing header, use unmodified mbuf for checksumming */ 6476 if (!n) 6477 n = m; 6478 6479 switch (pd.proto) { 6480 case IPPROTO_TCP: { 6481 struct tcphdr th; 6482 6483 pd.hdr.tcp = &th; 6484 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6485 &action, &reason, AF_INET6)) { 6486 log = action != PF_PASS; 6487 goto done; 6488 } 6489 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6490 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6491 if (action == PF_DROP) 6492 goto done; 6493 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6494 &reason); 6495 if (action == PF_PASS) { 6496 if (V_pfsync_update_state_ptr != NULL) 6497 V_pfsync_update_state_ptr(s); 6498 r = s->rule.ptr; 6499 a = s->anchor.ptr; 6500 log = s->log; 6501 } else if (s == NULL) 6502 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6503 &a, &ruleset, inp); 6504 break; 6505 } 6506 6507 case IPPROTO_UDP: { 6508 struct udphdr uh; 6509 6510 pd.hdr.udp = &uh; 6511 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6512 &action, &reason, AF_INET6)) { 6513 log = action != PF_PASS; 6514 goto done; 6515 } 6516 if (uh.uh_dport == 0 || 6517 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6518 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6519 action = PF_DROP; 6520 REASON_SET(&reason, PFRES_SHORT); 6521 goto done; 6522 } 6523 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6524 if (action == PF_PASS) { 6525 if (V_pfsync_update_state_ptr != NULL) 6526 V_pfsync_update_state_ptr(s); 6527 r = s->rule.ptr; 6528 a = s->anchor.ptr; 6529 log = s->log; 6530 } else if (s == NULL) 6531 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6532 &a, &ruleset, inp); 6533 break; 6534 } 6535 6536 case IPPROTO_ICMP: { 6537 action = PF_DROP; 6538 DPFPRINTF(PF_DEBUG_MISC, 6539 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6540 goto done; 6541 } 6542 6543 case IPPROTO_ICMPV6: { 6544 struct icmp6_hdr ih; 6545 6546 pd.hdr.icmp6 = &ih; 6547 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6548 &action, &reason, AF_INET6)) { 6549 log = action != PF_PASS; 6550 goto done; 6551 } 6552 action = pf_test_state_icmp(&s, dir, kif, 6553 m, off, h, &pd, &reason); 6554 if (action == PF_PASS) { 6555 if (V_pfsync_update_state_ptr != NULL) 6556 V_pfsync_update_state_ptr(s); 6557 r = s->rule.ptr; 6558 a = s->anchor.ptr; 6559 log = s->log; 6560 } else if (s == NULL) 6561 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6562 &a, &ruleset, inp); 6563 break; 6564 } 6565 6566 default: 6567 action = pf_test_state_other(&s, dir, kif, m, &pd); 6568 if (action == PF_PASS) { 6569 if (V_pfsync_update_state_ptr != NULL) 6570 V_pfsync_update_state_ptr(s); 6571 r = s->rule.ptr; 6572 a = s->anchor.ptr; 6573 log = s->log; 6574 } else if (s == NULL) 6575 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6576 &a, &ruleset, inp); 6577 break; 6578 } 6579 6580 done: 6581 PF_RULES_RUNLOCK(); 6582 if (n != m) { 6583 m_freem(n); 6584 n = NULL; 6585 } 6586 6587 /* handle dangerous IPv6 extension headers. */ 6588 if (action == PF_PASS && rh_cnt && 6589 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6590 action = PF_DROP; 6591 REASON_SET(&reason, PFRES_IPOPTIONS); 6592 log = r->log; 6593 DPFPRINTF(PF_DEBUG_MISC, 6594 ("pf: dropping packet with dangerous v6 headers\n")); 6595 } 6596 6597 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6598 action = PF_DROP; 6599 REASON_SET(&reason, PFRES_MEMORY); 6600 } 6601 if (r->rtableid >= 0) 6602 M_SETFIB(m, r->rtableid); 6603 6604 if (r->scrub_flags & PFSTATE_SETPRIO) { 6605 if (pd.tos & IPTOS_LOWDELAY) 6606 pqid = 1; 6607 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6608 action = PF_DROP; 6609 REASON_SET(&reason, PFRES_MEMORY); 6610 log = 1; 6611 DPFPRINTF(PF_DEBUG_MISC, 6612 ("pf: failed to allocate 802.1q mtag\n")); 6613 } 6614 } 6615 6616 #ifdef ALTQ 6617 if (action == PF_PASS && r->qid) { 6618 if (pd.pf_mtag == NULL && 6619 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6620 action = PF_DROP; 6621 REASON_SET(&reason, PFRES_MEMORY); 6622 } else { 6623 if (s != NULL) 6624 pd.pf_mtag->qid_hash = pf_state_hash(s); 6625 if (pd.tos & IPTOS_LOWDELAY) 6626 pd.pf_mtag->qid = r->pqid; 6627 else 6628 pd.pf_mtag->qid = r->qid; 6629 /* Add hints for ecn. */ 6630 pd.pf_mtag->hdr = h; 6631 } 6632 } 6633 #endif /* ALTQ */ 6634 6635 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6636 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6637 (s->nat_rule.ptr->action == PF_RDR || 6638 s->nat_rule.ptr->action == PF_BINAT) && 6639 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6640 m->m_flags |= M_SKIP_FIREWALL; 6641 6642 /* XXX: Anybody working on it?! */ 6643 if (r->divert.port) 6644 printf("pf: divert(9) is not supported for IPv6\n"); 6645 6646 if (log) { 6647 struct pf_krule *lr; 6648 6649 if (s != NULL && s->nat_rule.ptr != NULL && 6650 s->nat_rule.ptr->log & PF_LOG_ALL) 6651 lr = s->nat_rule.ptr; 6652 else 6653 lr = r; 6654 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6655 &pd, (s == NULL)); 6656 } 6657 6658 counter_u64_add(kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], 6659 pd.tot_len); 6660 counter_u64_add(kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 6661 1); 6662 6663 if (action == PF_PASS || r->action == PF_DROP) { 6664 dirndx = (dir == PF_OUT); 6665 counter_u64_add(r->packets[dirndx], 1); 6666 counter_u64_add(r->bytes[dirndx], pd.tot_len); 6667 if (a != NULL) { 6668 counter_u64_add(a->packets[dirndx], 1); 6669 counter_u64_add(a->bytes[dirndx], pd.tot_len); 6670 } 6671 if (s != NULL) { 6672 if (s->nat_rule.ptr != NULL) { 6673 counter_u64_add(s->nat_rule.ptr->packets[dirndx], 6674 1); 6675 counter_u64_add(s->nat_rule.ptr->bytes[dirndx], 6676 pd.tot_len); 6677 } 6678 if (s->src_node != NULL) { 6679 counter_u64_add(s->src_node->packets[dirndx], 6680 1); 6681 counter_u64_add(s->src_node->bytes[dirndx], 6682 pd.tot_len); 6683 } 6684 if (s->nat_src_node != NULL) { 6685 counter_u64_add(s->nat_src_node->packets[dirndx], 6686 1); 6687 counter_u64_add(s->nat_src_node->bytes[dirndx], 6688 pd.tot_len); 6689 } 6690 dirndx = (dir == s->direction) ? 0 : 1; 6691 counter_u64_add(s->packets[dirndx], 1); 6692 counter_u64_add(s->bytes[dirndx], pd.tot_len); 6693 } 6694 tr = r; 6695 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6696 if (nr != NULL && r == &V_pf_default_rule) 6697 tr = nr; 6698 if (tr->src.addr.type == PF_ADDR_TABLE) 6699 pfr_update_stats(tr->src.addr.p.tbl, 6700 (s == NULL) ? pd.src : 6701 &s->key[(s->direction == PF_IN)]->addr[0], 6702 pd.af, pd.tot_len, dir == PF_OUT, 6703 r->action == PF_PASS, tr->src.neg); 6704 if (tr->dst.addr.type == PF_ADDR_TABLE) 6705 pfr_update_stats(tr->dst.addr.p.tbl, 6706 (s == NULL) ? pd.dst : 6707 &s->key[(s->direction == PF_IN)]->addr[1], 6708 pd.af, pd.tot_len, dir == PF_OUT, 6709 r->action == PF_PASS, tr->dst.neg); 6710 } 6711 6712 switch (action) { 6713 case PF_SYNPROXY_DROP: 6714 m_freem(*m0); 6715 case PF_DEFER: 6716 *m0 = NULL; 6717 action = PF_PASS; 6718 break; 6719 case PF_DROP: 6720 m_freem(*m0); 6721 *m0 = NULL; 6722 break; 6723 default: 6724 /* pf_route6() returns unlocked. */ 6725 if (r->rt) { 6726 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6727 return (action); 6728 } 6729 break; 6730 } 6731 6732 if (s) 6733 PF_STATE_UNLOCK(s); 6734 6735 /* If reassembled packet passed, create new fragments. */ 6736 if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && 6737 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6738 action = pf_refragment6(ifp, m0, mtag); 6739 6740 SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); 6741 6742 return (action); 6743 } 6744 #endif /* INET6 */ 6745