1 /*- 2 * Copyright (c) 2001 Daniel Hartmeier 3 * Copyright (c) 2002 - 2008 Henning Brauer 4 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * - Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * - Redistributions in binary form must reproduce the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer in the documentation and/or other materials provided 16 * with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 26 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Effort sponsored in part by the Defense Advanced Research Projects 32 * Agency (DARPA) and Air Force Research Laboratory, Air Force 33 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 34 * 35 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_inet.h" 42 #include "opt_inet6.h" 43 #include "opt_bpf.h" 44 #include "opt_pf.h" 45 46 #include <sys/param.h> 47 #include <sys/bus.h> 48 #include <sys/endian.h> 49 #include <sys/hash.h> 50 #include <sys/interrupt.h> 51 #include <sys/kernel.h> 52 #include <sys/kthread.h> 53 #include <sys/limits.h> 54 #include <sys/mbuf.h> 55 #include <sys/md5.h> 56 #include <sys/random.h> 57 #include <sys/refcount.h> 58 #include <sys/socket.h> 59 #include <sys/sysctl.h> 60 #include <sys/taskqueue.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_types.h> 66 #include <net/if_vlan_var.h> 67 #include <net/route.h> 68 #include <net/radix_mpath.h> 69 #include <net/vnet.h> 70 71 #include <net/pfvar.h> 72 #include <net/if_pflog.h> 73 #include <net/if_pfsync.h> 74 75 #include <netinet/in_pcb.h> 76 #include <netinet/in_var.h> 77 #include <netinet/in_fib.h> 78 #include <netinet/ip.h> 79 #include <netinet/ip_fw.h> 80 #include <netinet/ip_icmp.h> 81 #include <netinet/icmp_var.h> 82 #include <netinet/ip_var.h> 83 #include <netinet/tcp.h> 84 #include <netinet/tcp_fsm.h> 85 #include <netinet/tcp_seq.h> 86 #include <netinet/tcp_timer.h> 87 #include <netinet/tcp_var.h> 88 #include <netinet/udp.h> 89 #include <netinet/udp_var.h> 90 91 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 92 93 #ifdef INET6 94 #include <netinet/ip6.h> 95 #include <netinet/icmp6.h> 96 #include <netinet6/nd6.h> 97 #include <netinet6/ip6_var.h> 98 #include <netinet6/in6_pcb.h> 99 #include <netinet6/in6_fib.h> 100 #include <netinet6/scope6_var.h> 101 #endif /* INET6 */ 102 103 #include <machine/in_cksum.h> 104 #include <security/mac/mac_framework.h> 105 106 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 107 108 /* 109 * Global variables 110 */ 111 112 /* state tables */ 113 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 114 VNET_DEFINE(struct pf_palist, pf_pabuf); 115 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 116 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 117 VNET_DEFINE(struct pf_kstatus, pf_status); 118 119 VNET_DEFINE(u_int32_t, ticket_altqs_active); 120 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 121 VNET_DEFINE(int, altqs_inactive_open); 122 VNET_DEFINE(u_int32_t, ticket_pabuf); 123 124 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 125 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 126 VNET_DEFINE(u_char, pf_tcp_secret[16]); 127 #define V_pf_tcp_secret VNET(pf_tcp_secret) 128 VNET_DEFINE(int, pf_tcp_secret_init); 129 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 130 VNET_DEFINE(int, pf_tcp_iss_off); 131 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 132 VNET_DECLARE(int, pf_vnet_active); 133 #define V_pf_vnet_active VNET(pf_vnet_active) 134 135 /* 136 * Queue for pf_intr() sends. 137 */ 138 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 139 struct pf_send_entry { 140 STAILQ_ENTRY(pf_send_entry) pfse_next; 141 struct mbuf *pfse_m; 142 enum { 143 PFSE_IP, 144 PFSE_IP6, 145 PFSE_ICMP, 146 PFSE_ICMP6, 147 } pfse_type; 148 struct { 149 int type; 150 int code; 151 int mtu; 152 } icmpopts; 153 }; 154 155 STAILQ_HEAD(pf_send_head, pf_send_entry); 156 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 157 #define V_pf_sendqueue VNET(pf_sendqueue) 158 159 static struct mtx pf_sendqueue_mtx; 160 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 161 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 162 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 163 164 /* 165 * Queue for pf_overload_task() tasks. 166 */ 167 struct pf_overload_entry { 168 SLIST_ENTRY(pf_overload_entry) next; 169 struct pf_addr addr; 170 sa_family_t af; 171 uint8_t dir; 172 struct pf_rule *rule; 173 }; 174 175 SLIST_HEAD(pf_overload_head, pf_overload_entry); 176 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 177 #define V_pf_overloadqueue VNET(pf_overloadqueue) 178 static VNET_DEFINE(struct task, pf_overloadtask); 179 #define V_pf_overloadtask VNET(pf_overloadtask) 180 181 static struct mtx pf_overloadqueue_mtx; 182 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 183 "pf overload/flush queue", MTX_DEF); 184 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 185 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 186 187 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 188 struct mtx pf_unlnkdrules_mtx; 189 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 190 MTX_DEF); 191 192 static VNET_DEFINE(uma_zone_t, pf_sources_z); 193 #define V_pf_sources_z VNET(pf_sources_z) 194 uma_zone_t pf_mtag_z; 195 VNET_DEFINE(uma_zone_t, pf_state_z); 196 VNET_DEFINE(uma_zone_t, pf_state_key_z); 197 198 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 199 #define PFID_CPUBITS 8 200 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 201 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 202 #define PFID_MAXID (~PFID_CPUMASK) 203 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 204 205 static void pf_src_tree_remove_state(struct pf_state *); 206 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 207 u_int32_t); 208 static void pf_add_threshold(struct pf_threshold *); 209 static int pf_check_threshold(struct pf_threshold *); 210 211 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 212 u_int16_t *, u_int16_t *, struct pf_addr *, 213 u_int16_t, u_int8_t, sa_family_t); 214 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 215 struct tcphdr *, struct pf_state_peer *); 216 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 217 struct pf_addr *, struct pf_addr *, u_int16_t, 218 u_int16_t *, u_int16_t *, u_int16_t *, 219 u_int16_t *, u_int8_t, sa_family_t); 220 static void pf_send_tcp(struct mbuf *, 221 const struct pf_rule *, sa_family_t, 222 const struct pf_addr *, const struct pf_addr *, 223 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 224 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 225 u_int16_t, struct ifnet *); 226 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 227 sa_family_t, struct pf_rule *); 228 static void pf_detach_state(struct pf_state *); 229 static int pf_state_key_attach(struct pf_state_key *, 230 struct pf_state_key *, struct pf_state *); 231 static void pf_state_key_detach(struct pf_state *, int); 232 static int pf_state_key_ctor(void *, int, void *, int); 233 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 234 static int pf_test_rule(struct pf_rule **, struct pf_state **, 235 int, struct pfi_kif *, struct mbuf *, int, 236 struct pf_pdesc *, struct pf_rule **, 237 struct pf_ruleset **, struct inpcb *); 238 static int pf_create_state(struct pf_rule *, struct pf_rule *, 239 struct pf_rule *, struct pf_pdesc *, 240 struct pf_src_node *, struct pf_state_key *, 241 struct pf_state_key *, struct mbuf *, int, 242 u_int16_t, u_int16_t, int *, struct pfi_kif *, 243 struct pf_state **, int, u_int16_t, u_int16_t, 244 int); 245 static int pf_test_fragment(struct pf_rule **, int, 246 struct pfi_kif *, struct mbuf *, void *, 247 struct pf_pdesc *, struct pf_rule **, 248 struct pf_ruleset **); 249 static int pf_tcp_track_full(struct pf_state_peer *, 250 struct pf_state_peer *, struct pf_state **, 251 struct pfi_kif *, struct mbuf *, int, 252 struct pf_pdesc *, u_short *, int *); 253 static int pf_tcp_track_sloppy(struct pf_state_peer *, 254 struct pf_state_peer *, struct pf_state **, 255 struct pf_pdesc *, u_short *); 256 static int pf_test_state_tcp(struct pf_state **, int, 257 struct pfi_kif *, struct mbuf *, int, 258 void *, struct pf_pdesc *, u_short *); 259 static int pf_test_state_udp(struct pf_state **, int, 260 struct pfi_kif *, struct mbuf *, int, 261 void *, struct pf_pdesc *); 262 static int pf_test_state_icmp(struct pf_state **, int, 263 struct pfi_kif *, struct mbuf *, int, 264 void *, struct pf_pdesc *, u_short *); 265 static int pf_test_state_other(struct pf_state **, int, 266 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 267 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 268 sa_family_t); 269 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 270 sa_family_t); 271 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 272 int, u_int16_t); 273 static int pf_check_proto_cksum(struct mbuf *, int, int, 274 u_int8_t, sa_family_t); 275 static void pf_print_state_parts(struct pf_state *, 276 struct pf_state_key *, struct pf_state_key *); 277 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 278 struct pf_addr_wrap *); 279 static struct pf_state *pf_find_state(struct pfi_kif *, 280 struct pf_state_key_cmp *, u_int); 281 static int pf_src_connlimit(struct pf_state **); 282 static void pf_overload_task(void *v, int pending); 283 static int pf_insert_src_node(struct pf_src_node **, 284 struct pf_rule *, struct pf_addr *, sa_family_t); 285 static u_int pf_purge_expired_states(u_int, int); 286 static void pf_purge_unlinked_rules(void); 287 static int pf_mtag_uminit(void *, int, int); 288 static void pf_mtag_free(struct m_tag *); 289 #ifdef INET 290 static void pf_route(struct mbuf **, struct pf_rule *, int, 291 struct ifnet *, struct pf_state *, 292 struct pf_pdesc *); 293 #endif /* INET */ 294 #ifdef INET6 295 static void pf_change_a6(struct pf_addr *, u_int16_t *, 296 struct pf_addr *, u_int8_t); 297 static void pf_route6(struct mbuf **, struct pf_rule *, int, 298 struct ifnet *, struct pf_state *, 299 struct pf_pdesc *); 300 #endif /* INET6 */ 301 302 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 303 304 extern int pf_end_threads; 305 extern struct proc *pf_purge_proc; 306 307 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 308 309 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 310 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 311 312 #define STATE_LOOKUP(i, k, d, s, pd) \ 313 do { \ 314 (s) = pf_find_state((i), (k), (d)); \ 315 if ((s) == NULL) \ 316 return (PF_DROP); \ 317 if (PACKET_LOOPED(pd)) \ 318 return (PF_PASS); \ 319 if ((d) == PF_OUT && \ 320 (((s)->rule.ptr->rt == PF_ROUTETO && \ 321 (s)->rule.ptr->direction == PF_OUT) || \ 322 ((s)->rule.ptr->rt == PF_REPLYTO && \ 323 (s)->rule.ptr->direction == PF_IN)) && \ 324 (s)->rt_kif != NULL && \ 325 (s)->rt_kif != (i)) \ 326 return (PF_PASS); \ 327 } while (0) 328 329 #define BOUND_IFACE(r, k) \ 330 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 331 332 #define STATE_INC_COUNTERS(s) \ 333 do { \ 334 counter_u64_add(s->rule.ptr->states_cur, 1); \ 335 counter_u64_add(s->rule.ptr->states_tot, 1); \ 336 if (s->anchor.ptr != NULL) { \ 337 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 338 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 339 } \ 340 if (s->nat_rule.ptr != NULL) { \ 341 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 342 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 343 } \ 344 } while (0) 345 346 #define STATE_DEC_COUNTERS(s) \ 347 do { \ 348 if (s->nat_rule.ptr != NULL) \ 349 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 350 if (s->anchor.ptr != NULL) \ 351 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 352 counter_u64_add(s->rule.ptr->states_cur, -1); \ 353 } while (0) 354 355 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 356 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 357 VNET_DEFINE(struct pf_idhash *, pf_idhash); 358 VNET_DEFINE(struct pf_srchash *, pf_srchash); 359 360 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 361 362 u_long pf_hashmask; 363 u_long pf_srchashmask; 364 static u_long pf_hashsize; 365 static u_long pf_srchashsize; 366 367 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 368 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 369 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 370 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 371 372 VNET_DEFINE(void *, pf_swi_cookie); 373 374 VNET_DEFINE(uint32_t, pf_hashseed); 375 #define V_pf_hashseed VNET(pf_hashseed) 376 377 int 378 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 379 { 380 381 switch (af) { 382 #ifdef INET 383 case AF_INET: 384 if (a->addr32[0] > b->addr32[0]) 385 return (1); 386 if (a->addr32[0] < b->addr32[0]) 387 return (-1); 388 break; 389 #endif /* INET */ 390 #ifdef INET6 391 case AF_INET6: 392 if (a->addr32[3] > b->addr32[3]) 393 return (1); 394 if (a->addr32[3] < b->addr32[3]) 395 return (-1); 396 if (a->addr32[2] > b->addr32[2]) 397 return (1); 398 if (a->addr32[2] < b->addr32[2]) 399 return (-1); 400 if (a->addr32[1] > b->addr32[1]) 401 return (1); 402 if (a->addr32[1] < b->addr32[1]) 403 return (-1); 404 if (a->addr32[0] > b->addr32[0]) 405 return (1); 406 if (a->addr32[0] < b->addr32[0]) 407 return (-1); 408 break; 409 #endif /* INET6 */ 410 default: 411 panic("%s: unknown address family %u", __func__, af); 412 } 413 return (0); 414 } 415 416 static __inline uint32_t 417 pf_hashkey(struct pf_state_key *sk) 418 { 419 uint32_t h; 420 421 h = murmur3_32_hash32((uint32_t *)sk, 422 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 423 V_pf_hashseed); 424 425 return (h & pf_hashmask); 426 } 427 428 static __inline uint32_t 429 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 430 { 431 uint32_t h; 432 433 switch (af) { 434 case AF_INET: 435 h = murmur3_32_hash32((uint32_t *)&addr->v4, 436 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 437 break; 438 case AF_INET6: 439 h = murmur3_32_hash32((uint32_t *)&addr->v6, 440 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 441 break; 442 default: 443 panic("%s: unknown address family %u", __func__, af); 444 } 445 446 return (h & pf_srchashmask); 447 } 448 449 #ifdef ALTQ 450 static int 451 pf_state_hash(struct pf_state *s) 452 { 453 u_int32_t hv = (intptr_t)s / sizeof(*s); 454 455 hv ^= crc32(&s->src, sizeof(s->src)); 456 hv ^= crc32(&s->dst, sizeof(s->dst)); 457 if (hv == 0) 458 hv = 1; 459 return (hv); 460 } 461 #endif 462 463 #ifdef INET6 464 void 465 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 466 { 467 switch (af) { 468 #ifdef INET 469 case AF_INET: 470 dst->addr32[0] = src->addr32[0]; 471 break; 472 #endif /* INET */ 473 case AF_INET6: 474 dst->addr32[0] = src->addr32[0]; 475 dst->addr32[1] = src->addr32[1]; 476 dst->addr32[2] = src->addr32[2]; 477 dst->addr32[3] = src->addr32[3]; 478 break; 479 } 480 } 481 #endif /* INET6 */ 482 483 static void 484 pf_init_threshold(struct pf_threshold *threshold, 485 u_int32_t limit, u_int32_t seconds) 486 { 487 threshold->limit = limit * PF_THRESHOLD_MULT; 488 threshold->seconds = seconds; 489 threshold->count = 0; 490 threshold->last = time_uptime; 491 } 492 493 static void 494 pf_add_threshold(struct pf_threshold *threshold) 495 { 496 u_int32_t t = time_uptime, diff = t - threshold->last; 497 498 if (diff >= threshold->seconds) 499 threshold->count = 0; 500 else 501 threshold->count -= threshold->count * diff / 502 threshold->seconds; 503 threshold->count += PF_THRESHOLD_MULT; 504 threshold->last = t; 505 } 506 507 static int 508 pf_check_threshold(struct pf_threshold *threshold) 509 { 510 return (threshold->count > threshold->limit); 511 } 512 513 static int 514 pf_src_connlimit(struct pf_state **state) 515 { 516 struct pf_overload_entry *pfoe; 517 int bad = 0; 518 519 PF_STATE_LOCK_ASSERT(*state); 520 521 (*state)->src_node->conn++; 522 (*state)->src.tcp_est = 1; 523 pf_add_threshold(&(*state)->src_node->conn_rate); 524 525 if ((*state)->rule.ptr->max_src_conn && 526 (*state)->rule.ptr->max_src_conn < 527 (*state)->src_node->conn) { 528 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 529 bad++; 530 } 531 532 if ((*state)->rule.ptr->max_src_conn_rate.limit && 533 pf_check_threshold(&(*state)->src_node->conn_rate)) { 534 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 535 bad++; 536 } 537 538 if (!bad) 539 return (0); 540 541 /* Kill this state. */ 542 (*state)->timeout = PFTM_PURGE; 543 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 544 545 if ((*state)->rule.ptr->overload_tbl == NULL) 546 return (1); 547 548 /* Schedule overloading and flushing task. */ 549 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 550 if (pfoe == NULL) 551 return (1); /* too bad :( */ 552 553 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 554 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 555 pfoe->rule = (*state)->rule.ptr; 556 pfoe->dir = (*state)->direction; 557 PF_OVERLOADQ_LOCK(); 558 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 559 PF_OVERLOADQ_UNLOCK(); 560 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 561 562 return (1); 563 } 564 565 static void 566 pf_overload_task(void *v, int pending) 567 { 568 struct pf_overload_head queue; 569 struct pfr_addr p; 570 struct pf_overload_entry *pfoe, *pfoe1; 571 uint32_t killed = 0; 572 573 CURVNET_SET((struct vnet *)v); 574 575 PF_OVERLOADQ_LOCK(); 576 queue = V_pf_overloadqueue; 577 SLIST_INIT(&V_pf_overloadqueue); 578 PF_OVERLOADQ_UNLOCK(); 579 580 bzero(&p, sizeof(p)); 581 SLIST_FOREACH(pfoe, &queue, next) { 582 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 583 if (V_pf_status.debug >= PF_DEBUG_MISC) { 584 printf("%s: blocking address ", __func__); 585 pf_print_host(&pfoe->addr, 0, pfoe->af); 586 printf("\n"); 587 } 588 589 p.pfra_af = pfoe->af; 590 switch (pfoe->af) { 591 #ifdef INET 592 case AF_INET: 593 p.pfra_net = 32; 594 p.pfra_ip4addr = pfoe->addr.v4; 595 break; 596 #endif 597 #ifdef INET6 598 case AF_INET6: 599 p.pfra_net = 128; 600 p.pfra_ip6addr = pfoe->addr.v6; 601 break; 602 #endif 603 } 604 605 PF_RULES_WLOCK(); 606 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 607 PF_RULES_WUNLOCK(); 608 } 609 610 /* 611 * Remove those entries, that don't need flushing. 612 */ 613 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 614 if (pfoe->rule->flush == 0) { 615 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 616 free(pfoe, M_PFTEMP); 617 } else 618 counter_u64_add( 619 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 620 621 /* If nothing to flush, return. */ 622 if (SLIST_EMPTY(&queue)) { 623 CURVNET_RESTORE(); 624 return; 625 } 626 627 for (int i = 0; i <= pf_hashmask; i++) { 628 struct pf_idhash *ih = &V_pf_idhash[i]; 629 struct pf_state_key *sk; 630 struct pf_state *s; 631 632 PF_HASHROW_LOCK(ih); 633 LIST_FOREACH(s, &ih->states, entry) { 634 sk = s->key[PF_SK_WIRE]; 635 SLIST_FOREACH(pfoe, &queue, next) 636 if (sk->af == pfoe->af && 637 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 638 pfoe->rule == s->rule.ptr) && 639 ((pfoe->dir == PF_OUT && 640 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 641 (pfoe->dir == PF_IN && 642 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 643 s->timeout = PFTM_PURGE; 644 s->src.state = s->dst.state = TCPS_CLOSED; 645 killed++; 646 } 647 } 648 PF_HASHROW_UNLOCK(ih); 649 } 650 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 651 free(pfoe, M_PFTEMP); 652 if (V_pf_status.debug >= PF_DEBUG_MISC) 653 printf("%s: %u states killed", __func__, killed); 654 655 CURVNET_RESTORE(); 656 } 657 658 /* 659 * Can return locked on failure, so that we can consistently 660 * allocate and insert a new one. 661 */ 662 struct pf_src_node * 663 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 664 int returnlocked) 665 { 666 struct pf_srchash *sh; 667 struct pf_src_node *n; 668 669 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 670 671 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 672 PF_HASHROW_LOCK(sh); 673 LIST_FOREACH(n, &sh->nodes, entry) 674 if (n->rule.ptr == rule && n->af == af && 675 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 676 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 677 break; 678 if (n != NULL) { 679 n->states++; 680 PF_HASHROW_UNLOCK(sh); 681 } else if (returnlocked == 0) 682 PF_HASHROW_UNLOCK(sh); 683 684 return (n); 685 } 686 687 static int 688 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 689 struct pf_addr *src, sa_family_t af) 690 { 691 692 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 693 rule->rpool.opts & PF_POOL_STICKYADDR), 694 ("%s for non-tracking rule %p", __func__, rule)); 695 696 if (*sn == NULL) 697 *sn = pf_find_src_node(src, rule, af, 1); 698 699 if (*sn == NULL) { 700 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 701 702 PF_HASHROW_ASSERT(sh); 703 704 if (!rule->max_src_nodes || 705 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 706 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 707 else 708 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 709 1); 710 if ((*sn) == NULL) { 711 PF_HASHROW_UNLOCK(sh); 712 return (-1); 713 } 714 715 pf_init_threshold(&(*sn)->conn_rate, 716 rule->max_src_conn_rate.limit, 717 rule->max_src_conn_rate.seconds); 718 719 (*sn)->af = af; 720 (*sn)->rule.ptr = rule; 721 PF_ACPY(&(*sn)->addr, src, af); 722 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 723 (*sn)->creation = time_uptime; 724 (*sn)->ruletype = rule->action; 725 (*sn)->states = 1; 726 if ((*sn)->rule.ptr != NULL) 727 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 728 PF_HASHROW_UNLOCK(sh); 729 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 730 } else { 731 if (rule->max_src_states && 732 (*sn)->states >= rule->max_src_states) { 733 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 734 1); 735 return (-1); 736 } 737 } 738 return (0); 739 } 740 741 void 742 pf_unlink_src_node(struct pf_src_node *src) 743 { 744 745 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 746 LIST_REMOVE(src, entry); 747 if (src->rule.ptr) 748 counter_u64_add(src->rule.ptr->src_nodes, -1); 749 } 750 751 u_int 752 pf_free_src_nodes(struct pf_src_node_list *head) 753 { 754 struct pf_src_node *sn, *tmp; 755 u_int count = 0; 756 757 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 758 uma_zfree(V_pf_sources_z, sn); 759 count++; 760 } 761 762 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 763 764 return (count); 765 } 766 767 void 768 pf_mtag_initialize() 769 { 770 771 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 772 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 773 UMA_ALIGN_PTR, 0); 774 } 775 776 /* Per-vnet data storage structures initialization. */ 777 void 778 pf_initialize() 779 { 780 struct pf_keyhash *kh; 781 struct pf_idhash *ih; 782 struct pf_srchash *sh; 783 u_int i; 784 785 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 786 pf_hashsize = PF_HASHSIZ; 787 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 788 pf_srchashsize = PF_HASHSIZ / 4; 789 790 V_pf_hashseed = arc4random(); 791 792 /* States and state keys storage. */ 793 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 794 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 795 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 796 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 797 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 798 799 V_pf_state_key_z = uma_zcreate("pf state keys", 800 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 801 UMA_ALIGN_PTR, 0); 802 V_pf_keyhash = malloc(pf_hashsize * sizeof(struct pf_keyhash), 803 M_PFHASH, M_WAITOK | M_ZERO); 804 V_pf_idhash = malloc(pf_hashsize * sizeof(struct pf_idhash), 805 M_PFHASH, M_WAITOK | M_ZERO); 806 pf_hashmask = pf_hashsize - 1; 807 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 808 i++, kh++, ih++) { 809 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 810 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 811 } 812 813 /* Source nodes. */ 814 V_pf_sources_z = uma_zcreate("pf source nodes", 815 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 816 0); 817 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 818 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 819 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 820 V_pf_srchash = malloc(pf_srchashsize * sizeof(struct pf_srchash), 821 M_PFHASH, M_WAITOK|M_ZERO); 822 pf_srchashmask = pf_srchashsize - 1; 823 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 824 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 825 826 /* ALTQ */ 827 TAILQ_INIT(&V_pf_altqs[0]); 828 TAILQ_INIT(&V_pf_altqs[1]); 829 TAILQ_INIT(&V_pf_pabuf); 830 V_pf_altqs_active = &V_pf_altqs[0]; 831 V_pf_altqs_inactive = &V_pf_altqs[1]; 832 833 /* Send & overload+flush queues. */ 834 STAILQ_INIT(&V_pf_sendqueue); 835 SLIST_INIT(&V_pf_overloadqueue); 836 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 837 838 /* Unlinked, but may be referenced rules. */ 839 TAILQ_INIT(&V_pf_unlinked_rules); 840 } 841 842 void 843 pf_mtag_cleanup() 844 { 845 846 uma_zdestroy(pf_mtag_z); 847 } 848 849 void 850 pf_cleanup() 851 { 852 struct pf_keyhash *kh; 853 struct pf_idhash *ih; 854 struct pf_srchash *sh; 855 struct pf_send_entry *pfse, *next; 856 u_int i; 857 858 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 859 i++, kh++, ih++) { 860 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 861 __func__)); 862 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 863 __func__)); 864 mtx_destroy(&kh->lock); 865 mtx_destroy(&ih->lock); 866 } 867 free(V_pf_keyhash, M_PFHASH); 868 free(V_pf_idhash, M_PFHASH); 869 870 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 871 KASSERT(LIST_EMPTY(&sh->nodes), 872 ("%s: source node hash not empty", __func__)); 873 mtx_destroy(&sh->lock); 874 } 875 free(V_pf_srchash, M_PFHASH); 876 877 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 878 m_freem(pfse->pfse_m); 879 free(pfse, M_PFTEMP); 880 } 881 882 uma_zdestroy(V_pf_sources_z); 883 uma_zdestroy(V_pf_state_z); 884 uma_zdestroy(V_pf_state_key_z); 885 } 886 887 static int 888 pf_mtag_uminit(void *mem, int size, int how) 889 { 890 struct m_tag *t; 891 892 t = (struct m_tag *)mem; 893 t->m_tag_cookie = MTAG_ABI_COMPAT; 894 t->m_tag_id = PACKET_TAG_PF; 895 t->m_tag_len = sizeof(struct pf_mtag); 896 t->m_tag_free = pf_mtag_free; 897 898 return (0); 899 } 900 901 static void 902 pf_mtag_free(struct m_tag *t) 903 { 904 905 uma_zfree(pf_mtag_z, t); 906 } 907 908 struct pf_mtag * 909 pf_get_mtag(struct mbuf *m) 910 { 911 struct m_tag *mtag; 912 913 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 914 return ((struct pf_mtag *)(mtag + 1)); 915 916 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 917 if (mtag == NULL) 918 return (NULL); 919 bzero(mtag + 1, sizeof(struct pf_mtag)); 920 m_tag_prepend(m, mtag); 921 922 return ((struct pf_mtag *)(mtag + 1)); 923 } 924 925 static int 926 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 927 struct pf_state *s) 928 { 929 struct pf_keyhash *khs, *khw, *kh; 930 struct pf_state_key *sk, *cur; 931 struct pf_state *si, *olds = NULL; 932 int idx; 933 934 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 935 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 936 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 937 938 /* 939 * We need to lock hash slots of both keys. To avoid deadlock 940 * we always lock the slot with lower address first. Unlock order 941 * isn't important. 942 * 943 * We also need to lock ID hash slot before dropping key 944 * locks. On success we return with ID hash slot locked. 945 */ 946 947 if (skw == sks) { 948 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 949 PF_HASHROW_LOCK(khs); 950 } else { 951 khs = &V_pf_keyhash[pf_hashkey(sks)]; 952 khw = &V_pf_keyhash[pf_hashkey(skw)]; 953 if (khs == khw) { 954 PF_HASHROW_LOCK(khs); 955 } else if (khs < khw) { 956 PF_HASHROW_LOCK(khs); 957 PF_HASHROW_LOCK(khw); 958 } else { 959 PF_HASHROW_LOCK(khw); 960 PF_HASHROW_LOCK(khs); 961 } 962 } 963 964 #define KEYS_UNLOCK() do { \ 965 if (khs != khw) { \ 966 PF_HASHROW_UNLOCK(khs); \ 967 PF_HASHROW_UNLOCK(khw); \ 968 } else \ 969 PF_HASHROW_UNLOCK(khs); \ 970 } while (0) 971 972 /* 973 * First run: start with wire key. 974 */ 975 sk = skw; 976 kh = khw; 977 idx = PF_SK_WIRE; 978 979 keyattach: 980 LIST_FOREACH(cur, &kh->keys, entry) 981 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 982 break; 983 984 if (cur != NULL) { 985 /* Key exists. Check for same kif, if none, add to key. */ 986 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 987 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 988 989 PF_HASHROW_LOCK(ih); 990 if (si->kif == s->kif && 991 si->direction == s->direction) { 992 if (sk->proto == IPPROTO_TCP && 993 si->src.state >= TCPS_FIN_WAIT_2 && 994 si->dst.state >= TCPS_FIN_WAIT_2) { 995 /* 996 * New state matches an old >FIN_WAIT_2 997 * state. We can't drop key hash locks, 998 * thus we can't unlink it properly. 999 * 1000 * As a workaround we drop it into 1001 * TCPS_CLOSED state, schedule purge 1002 * ASAP and push it into the very end 1003 * of the slot TAILQ, so that it won't 1004 * conflict with our new state. 1005 */ 1006 si->src.state = si->dst.state = 1007 TCPS_CLOSED; 1008 si->timeout = PFTM_PURGE; 1009 olds = si; 1010 } else { 1011 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1012 printf("pf: %s key attach " 1013 "failed on %s: ", 1014 (idx == PF_SK_WIRE) ? 1015 "wire" : "stack", 1016 s->kif->pfik_name); 1017 pf_print_state_parts(s, 1018 (idx == PF_SK_WIRE) ? 1019 sk : NULL, 1020 (idx == PF_SK_STACK) ? 1021 sk : NULL); 1022 printf(", existing: "); 1023 pf_print_state_parts(si, 1024 (idx == PF_SK_WIRE) ? 1025 sk : NULL, 1026 (idx == PF_SK_STACK) ? 1027 sk : NULL); 1028 printf("\n"); 1029 } 1030 PF_HASHROW_UNLOCK(ih); 1031 KEYS_UNLOCK(); 1032 uma_zfree(V_pf_state_key_z, sk); 1033 if (idx == PF_SK_STACK) 1034 pf_detach_state(s); 1035 return (EEXIST); /* collision! */ 1036 } 1037 } 1038 PF_HASHROW_UNLOCK(ih); 1039 } 1040 uma_zfree(V_pf_state_key_z, sk); 1041 s->key[idx] = cur; 1042 } else { 1043 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1044 s->key[idx] = sk; 1045 } 1046 1047 stateattach: 1048 /* List is sorted, if-bound states before floating. */ 1049 if (s->kif == V_pfi_all) 1050 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1051 else 1052 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1053 1054 if (olds) { 1055 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1056 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1057 key_list[idx]); 1058 olds = NULL; 1059 } 1060 1061 /* 1062 * Attach done. See how should we (or should not?) 1063 * attach a second key. 1064 */ 1065 if (sks == skw) { 1066 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1067 idx = PF_SK_STACK; 1068 sks = NULL; 1069 goto stateattach; 1070 } else if (sks != NULL) { 1071 /* 1072 * Continue attaching with stack key. 1073 */ 1074 sk = sks; 1075 kh = khs; 1076 idx = PF_SK_STACK; 1077 sks = NULL; 1078 goto keyattach; 1079 } 1080 1081 PF_STATE_LOCK(s); 1082 KEYS_UNLOCK(); 1083 1084 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1085 ("%s failure", __func__)); 1086 1087 return (0); 1088 #undef KEYS_UNLOCK 1089 } 1090 1091 static void 1092 pf_detach_state(struct pf_state *s) 1093 { 1094 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1095 struct pf_keyhash *kh; 1096 1097 if (sks != NULL) { 1098 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1099 PF_HASHROW_LOCK(kh); 1100 if (s->key[PF_SK_STACK] != NULL) 1101 pf_state_key_detach(s, PF_SK_STACK); 1102 /* 1103 * If both point to same key, then we are done. 1104 */ 1105 if (sks == s->key[PF_SK_WIRE]) { 1106 pf_state_key_detach(s, PF_SK_WIRE); 1107 PF_HASHROW_UNLOCK(kh); 1108 return; 1109 } 1110 PF_HASHROW_UNLOCK(kh); 1111 } 1112 1113 if (s->key[PF_SK_WIRE] != NULL) { 1114 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1115 PF_HASHROW_LOCK(kh); 1116 if (s->key[PF_SK_WIRE] != NULL) 1117 pf_state_key_detach(s, PF_SK_WIRE); 1118 PF_HASHROW_UNLOCK(kh); 1119 } 1120 } 1121 1122 static void 1123 pf_state_key_detach(struct pf_state *s, int idx) 1124 { 1125 struct pf_state_key *sk = s->key[idx]; 1126 #ifdef INVARIANTS 1127 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1128 1129 PF_HASHROW_ASSERT(kh); 1130 #endif 1131 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1132 s->key[idx] = NULL; 1133 1134 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1135 LIST_REMOVE(sk, entry); 1136 uma_zfree(V_pf_state_key_z, sk); 1137 } 1138 } 1139 1140 static int 1141 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1142 { 1143 struct pf_state_key *sk = mem; 1144 1145 bzero(sk, sizeof(struct pf_state_key_cmp)); 1146 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1147 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1148 1149 return (0); 1150 } 1151 1152 struct pf_state_key * 1153 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1154 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1155 { 1156 struct pf_state_key *sk; 1157 1158 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1159 if (sk == NULL) 1160 return (NULL); 1161 1162 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1163 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1164 sk->port[pd->sidx] = sport; 1165 sk->port[pd->didx] = dport; 1166 sk->proto = pd->proto; 1167 sk->af = pd->af; 1168 1169 return (sk); 1170 } 1171 1172 struct pf_state_key * 1173 pf_state_key_clone(struct pf_state_key *orig) 1174 { 1175 struct pf_state_key *sk; 1176 1177 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1178 if (sk == NULL) 1179 return (NULL); 1180 1181 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1182 1183 return (sk); 1184 } 1185 1186 int 1187 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1188 struct pf_state_key *sks, struct pf_state *s) 1189 { 1190 struct pf_idhash *ih; 1191 struct pf_state *cur; 1192 int error; 1193 1194 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1195 ("%s: sks not pristine", __func__)); 1196 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1197 ("%s: skw not pristine", __func__)); 1198 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1199 1200 s->kif = kif; 1201 1202 if (s->id == 0 && s->creatorid == 0) { 1203 /* XXX: should be atomic, but probability of collision low */ 1204 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1205 V_pf_stateid[curcpu] = 1; 1206 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1207 s->id = htobe64(s->id); 1208 s->creatorid = V_pf_status.hostid; 1209 } 1210 1211 /* Returns with ID locked on success. */ 1212 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1213 return (error); 1214 1215 ih = &V_pf_idhash[PF_IDHASH(s)]; 1216 PF_HASHROW_ASSERT(ih); 1217 LIST_FOREACH(cur, &ih->states, entry) 1218 if (cur->id == s->id && cur->creatorid == s->creatorid) 1219 break; 1220 1221 if (cur != NULL) { 1222 PF_HASHROW_UNLOCK(ih); 1223 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1224 printf("pf: state ID collision: " 1225 "id: %016llx creatorid: %08x\n", 1226 (unsigned long long)be64toh(s->id), 1227 ntohl(s->creatorid)); 1228 } 1229 pf_detach_state(s); 1230 return (EEXIST); 1231 } 1232 LIST_INSERT_HEAD(&ih->states, s, entry); 1233 /* One for keys, one for ID hash. */ 1234 refcount_init(&s->refs, 2); 1235 1236 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1237 if (pfsync_insert_state_ptr != NULL) 1238 pfsync_insert_state_ptr(s); 1239 1240 /* Returns locked. */ 1241 return (0); 1242 } 1243 1244 /* 1245 * Find state by ID: returns with locked row on success. 1246 */ 1247 struct pf_state * 1248 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1249 { 1250 struct pf_idhash *ih; 1251 struct pf_state *s; 1252 1253 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1254 1255 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1256 1257 PF_HASHROW_LOCK(ih); 1258 LIST_FOREACH(s, &ih->states, entry) 1259 if (s->id == id && s->creatorid == creatorid) 1260 break; 1261 1262 if (s == NULL) 1263 PF_HASHROW_UNLOCK(ih); 1264 1265 return (s); 1266 } 1267 1268 /* 1269 * Find state by key. 1270 * Returns with ID hash slot locked on success. 1271 */ 1272 static struct pf_state * 1273 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1274 { 1275 struct pf_keyhash *kh; 1276 struct pf_state_key *sk; 1277 struct pf_state *s; 1278 int idx; 1279 1280 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1281 1282 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1283 1284 PF_HASHROW_LOCK(kh); 1285 LIST_FOREACH(sk, &kh->keys, entry) 1286 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1287 break; 1288 if (sk == NULL) { 1289 PF_HASHROW_UNLOCK(kh); 1290 return (NULL); 1291 } 1292 1293 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1294 1295 /* List is sorted, if-bound states before floating ones. */ 1296 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1297 if (s->kif == V_pfi_all || s->kif == kif) { 1298 PF_STATE_LOCK(s); 1299 PF_HASHROW_UNLOCK(kh); 1300 if (s->timeout >= PFTM_MAX) { 1301 /* 1302 * State is either being processed by 1303 * pf_unlink_state() in an other thread, or 1304 * is scheduled for immediate expiry. 1305 */ 1306 PF_STATE_UNLOCK(s); 1307 return (NULL); 1308 } 1309 return (s); 1310 } 1311 PF_HASHROW_UNLOCK(kh); 1312 1313 return (NULL); 1314 } 1315 1316 struct pf_state * 1317 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1318 { 1319 struct pf_keyhash *kh; 1320 struct pf_state_key *sk; 1321 struct pf_state *s, *ret = NULL; 1322 int idx, inout = 0; 1323 1324 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1325 1326 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1327 1328 PF_HASHROW_LOCK(kh); 1329 LIST_FOREACH(sk, &kh->keys, entry) 1330 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1331 break; 1332 if (sk == NULL) { 1333 PF_HASHROW_UNLOCK(kh); 1334 return (NULL); 1335 } 1336 switch (dir) { 1337 case PF_IN: 1338 idx = PF_SK_WIRE; 1339 break; 1340 case PF_OUT: 1341 idx = PF_SK_STACK; 1342 break; 1343 case PF_INOUT: 1344 idx = PF_SK_WIRE; 1345 inout = 1; 1346 break; 1347 default: 1348 panic("%s: dir %u", __func__, dir); 1349 } 1350 second_run: 1351 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1352 if (more == NULL) { 1353 PF_HASHROW_UNLOCK(kh); 1354 return (s); 1355 } 1356 1357 if (ret) 1358 (*more)++; 1359 else 1360 ret = s; 1361 } 1362 if (inout == 1) { 1363 inout = 0; 1364 idx = PF_SK_STACK; 1365 goto second_run; 1366 } 1367 PF_HASHROW_UNLOCK(kh); 1368 1369 return (ret); 1370 } 1371 1372 /* END state table stuff */ 1373 1374 static void 1375 pf_send(struct pf_send_entry *pfse) 1376 { 1377 1378 PF_SENDQ_LOCK(); 1379 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1380 PF_SENDQ_UNLOCK(); 1381 swi_sched(V_pf_swi_cookie, 0); 1382 } 1383 1384 void 1385 pf_intr(void *v) 1386 { 1387 struct pf_send_head queue; 1388 struct pf_send_entry *pfse, *next; 1389 1390 CURVNET_SET((struct vnet *)v); 1391 1392 PF_SENDQ_LOCK(); 1393 queue = V_pf_sendqueue; 1394 STAILQ_INIT(&V_pf_sendqueue); 1395 PF_SENDQ_UNLOCK(); 1396 1397 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1398 switch (pfse->pfse_type) { 1399 #ifdef INET 1400 case PFSE_IP: 1401 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1402 break; 1403 case PFSE_ICMP: 1404 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1405 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1406 break; 1407 #endif /* INET */ 1408 #ifdef INET6 1409 case PFSE_IP6: 1410 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1411 NULL); 1412 break; 1413 case PFSE_ICMP6: 1414 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1415 pfse->icmpopts.code, pfse->icmpopts.mtu); 1416 break; 1417 #endif /* INET6 */ 1418 default: 1419 panic("%s: unknown type", __func__); 1420 } 1421 free(pfse, M_PFTEMP); 1422 } 1423 CURVNET_RESTORE(); 1424 } 1425 1426 void 1427 pf_purge_thread(void *unused __unused) 1428 { 1429 VNET_ITERATOR_DECL(vnet_iter); 1430 u_int idx = 0; 1431 1432 sx_xlock(&pf_end_lock); 1433 while (pf_end_threads == 0) { 1434 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", hz / 10); 1435 1436 VNET_LIST_RLOCK(); 1437 VNET_FOREACH(vnet_iter) { 1438 CURVNET_SET(vnet_iter); 1439 1440 1441 /* Wait until V_pf_default_rule is initialized. */ 1442 if (V_pf_vnet_active == 0) { 1443 CURVNET_RESTORE(); 1444 continue; 1445 } 1446 1447 /* 1448 * Process 1/interval fraction of the state 1449 * table every run. 1450 */ 1451 idx = pf_purge_expired_states(idx, pf_hashmask / 1452 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1453 1454 /* 1455 * Purge other expired types every 1456 * PFTM_INTERVAL seconds. 1457 */ 1458 if (idx == 0) { 1459 /* 1460 * Order is important: 1461 * - states and src nodes reference rules 1462 * - states and rules reference kifs 1463 */ 1464 pf_purge_expired_fragments(); 1465 pf_purge_expired_src_nodes(); 1466 pf_purge_unlinked_rules(); 1467 pfi_kif_purge(); 1468 } 1469 CURVNET_RESTORE(); 1470 } 1471 VNET_LIST_RUNLOCK(); 1472 } 1473 1474 pf_end_threads++; 1475 sx_xunlock(&pf_end_lock); 1476 kproc_exit(0); 1477 } 1478 1479 void 1480 pf_unload_vnet_purge(void) 1481 { 1482 1483 /* 1484 * To cleanse up all kifs and rules we need 1485 * two runs: first one clears reference flags, 1486 * then pf_purge_expired_states() doesn't 1487 * raise them, and then second run frees. 1488 */ 1489 pf_purge_unlinked_rules(); 1490 pfi_kif_purge(); 1491 1492 /* 1493 * Now purge everything. 1494 */ 1495 pf_purge_expired_states(0, pf_hashmask); 1496 pf_purge_expired_fragments(); 1497 pf_purge_expired_src_nodes(); 1498 1499 /* 1500 * Now all kifs & rules should be unreferenced, 1501 * thus should be successfully freed. 1502 */ 1503 pf_purge_unlinked_rules(); 1504 pfi_kif_purge(); 1505 } 1506 1507 1508 u_int32_t 1509 pf_state_expires(const struct pf_state *state) 1510 { 1511 u_int32_t timeout; 1512 u_int32_t start; 1513 u_int32_t end; 1514 u_int32_t states; 1515 1516 /* handle all PFTM_* > PFTM_MAX here */ 1517 if (state->timeout == PFTM_PURGE) 1518 return (time_uptime); 1519 KASSERT(state->timeout != PFTM_UNLINKED, 1520 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1521 KASSERT((state->timeout < PFTM_MAX), 1522 ("pf_state_expires: timeout > PFTM_MAX")); 1523 timeout = state->rule.ptr->timeout[state->timeout]; 1524 if (!timeout) 1525 timeout = V_pf_default_rule.timeout[state->timeout]; 1526 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1527 if (start) { 1528 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1529 states = counter_u64_fetch(state->rule.ptr->states_cur); 1530 } else { 1531 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1532 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1533 states = V_pf_status.states; 1534 } 1535 if (end && states > start && start < end) { 1536 if (states < end) 1537 return (state->expire + timeout * (end - states) / 1538 (end - start)); 1539 else 1540 return (time_uptime); 1541 } 1542 return (state->expire + timeout); 1543 } 1544 1545 void 1546 pf_purge_expired_src_nodes() 1547 { 1548 struct pf_src_node_list freelist; 1549 struct pf_srchash *sh; 1550 struct pf_src_node *cur, *next; 1551 int i; 1552 1553 LIST_INIT(&freelist); 1554 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1555 PF_HASHROW_LOCK(sh); 1556 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1557 if (cur->states == 0 && cur->expire <= time_uptime) { 1558 pf_unlink_src_node(cur); 1559 LIST_INSERT_HEAD(&freelist, cur, entry); 1560 } else if (cur->rule.ptr != NULL) 1561 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1562 PF_HASHROW_UNLOCK(sh); 1563 } 1564 1565 pf_free_src_nodes(&freelist); 1566 1567 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1568 } 1569 1570 static void 1571 pf_src_tree_remove_state(struct pf_state *s) 1572 { 1573 struct pf_src_node *sn; 1574 struct pf_srchash *sh; 1575 uint32_t timeout; 1576 1577 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1578 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1579 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1580 1581 if (s->src_node != NULL) { 1582 sn = s->src_node; 1583 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1584 PF_HASHROW_LOCK(sh); 1585 if (s->src.tcp_est) 1586 --sn->conn; 1587 if (--sn->states == 0) 1588 sn->expire = time_uptime + timeout; 1589 PF_HASHROW_UNLOCK(sh); 1590 } 1591 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1592 sn = s->nat_src_node; 1593 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1594 PF_HASHROW_LOCK(sh); 1595 if (--sn->states == 0) 1596 sn->expire = time_uptime + timeout; 1597 PF_HASHROW_UNLOCK(sh); 1598 } 1599 s->src_node = s->nat_src_node = NULL; 1600 } 1601 1602 /* 1603 * Unlink and potentilly free a state. Function may be 1604 * called with ID hash row locked, but always returns 1605 * unlocked, since it needs to go through key hash locking. 1606 */ 1607 int 1608 pf_unlink_state(struct pf_state *s, u_int flags) 1609 { 1610 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1611 1612 if ((flags & PF_ENTER_LOCKED) == 0) 1613 PF_HASHROW_LOCK(ih); 1614 else 1615 PF_HASHROW_ASSERT(ih); 1616 1617 if (s->timeout == PFTM_UNLINKED) { 1618 /* 1619 * State is being processed 1620 * by pf_unlink_state() in 1621 * an other thread. 1622 */ 1623 PF_HASHROW_UNLOCK(ih); 1624 return (0); /* XXXGL: undefined actually */ 1625 } 1626 1627 if (s->src.state == PF_TCPS_PROXY_DST) { 1628 /* XXX wire key the right one? */ 1629 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1630 &s->key[PF_SK_WIRE]->addr[1], 1631 &s->key[PF_SK_WIRE]->addr[0], 1632 s->key[PF_SK_WIRE]->port[1], 1633 s->key[PF_SK_WIRE]->port[0], 1634 s->src.seqhi, s->src.seqlo + 1, 1635 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1636 } 1637 1638 LIST_REMOVE(s, entry); 1639 pf_src_tree_remove_state(s); 1640 1641 if (pfsync_delete_state_ptr != NULL) 1642 pfsync_delete_state_ptr(s); 1643 1644 STATE_DEC_COUNTERS(s); 1645 1646 s->timeout = PFTM_UNLINKED; 1647 1648 PF_HASHROW_UNLOCK(ih); 1649 1650 pf_detach_state(s); 1651 refcount_release(&s->refs); 1652 1653 return (pf_release_state(s)); 1654 } 1655 1656 void 1657 pf_free_state(struct pf_state *cur) 1658 { 1659 1660 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1661 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1662 cur->timeout)); 1663 1664 pf_normalize_tcp_cleanup(cur); 1665 uma_zfree(V_pf_state_z, cur); 1666 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1667 } 1668 1669 /* 1670 * Called only from pf_purge_thread(), thus serialized. 1671 */ 1672 static u_int 1673 pf_purge_expired_states(u_int i, int maxcheck) 1674 { 1675 struct pf_idhash *ih; 1676 struct pf_state *s; 1677 1678 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1679 1680 /* 1681 * Go through hash and unlink states that expire now. 1682 */ 1683 while (maxcheck > 0) { 1684 1685 ih = &V_pf_idhash[i]; 1686 relock: 1687 PF_HASHROW_LOCK(ih); 1688 LIST_FOREACH(s, &ih->states, entry) { 1689 if (pf_state_expires(s) <= time_uptime) { 1690 V_pf_status.states -= 1691 pf_unlink_state(s, PF_ENTER_LOCKED); 1692 goto relock; 1693 } 1694 s->rule.ptr->rule_flag |= PFRULE_REFS; 1695 if (s->nat_rule.ptr != NULL) 1696 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1697 if (s->anchor.ptr != NULL) 1698 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1699 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1700 if (s->rt_kif) 1701 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1702 } 1703 PF_HASHROW_UNLOCK(ih); 1704 1705 /* Return when we hit end of hash. */ 1706 if (++i > pf_hashmask) { 1707 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1708 return (0); 1709 } 1710 1711 maxcheck--; 1712 } 1713 1714 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1715 1716 return (i); 1717 } 1718 1719 static void 1720 pf_purge_unlinked_rules() 1721 { 1722 struct pf_rulequeue tmpq; 1723 struct pf_rule *r, *r1; 1724 1725 /* 1726 * If we have overloading task pending, then we'd 1727 * better skip purging this time. There is a tiny 1728 * probability that overloading task references 1729 * an already unlinked rule. 1730 */ 1731 PF_OVERLOADQ_LOCK(); 1732 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1733 PF_OVERLOADQ_UNLOCK(); 1734 return; 1735 } 1736 PF_OVERLOADQ_UNLOCK(); 1737 1738 /* 1739 * Do naive mark-and-sweep garbage collecting of old rules. 1740 * Reference flag is raised by pf_purge_expired_states() 1741 * and pf_purge_expired_src_nodes(). 1742 * 1743 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1744 * use a temporary queue. 1745 */ 1746 TAILQ_INIT(&tmpq); 1747 PF_UNLNKDRULES_LOCK(); 1748 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1749 if (!(r->rule_flag & PFRULE_REFS)) { 1750 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1751 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1752 } else 1753 r->rule_flag &= ~PFRULE_REFS; 1754 } 1755 PF_UNLNKDRULES_UNLOCK(); 1756 1757 if (!TAILQ_EMPTY(&tmpq)) { 1758 PF_RULES_WLOCK(); 1759 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1760 TAILQ_REMOVE(&tmpq, r, entries); 1761 pf_free_rule(r); 1762 } 1763 PF_RULES_WUNLOCK(); 1764 } 1765 } 1766 1767 void 1768 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1769 { 1770 switch (af) { 1771 #ifdef INET 1772 case AF_INET: { 1773 u_int32_t a = ntohl(addr->addr32[0]); 1774 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1775 (a>>8)&255, a&255); 1776 if (p) { 1777 p = ntohs(p); 1778 printf(":%u", p); 1779 } 1780 break; 1781 } 1782 #endif /* INET */ 1783 #ifdef INET6 1784 case AF_INET6: { 1785 u_int16_t b; 1786 u_int8_t i, curstart, curend, maxstart, maxend; 1787 curstart = curend = maxstart = maxend = 255; 1788 for (i = 0; i < 8; i++) { 1789 if (!addr->addr16[i]) { 1790 if (curstart == 255) 1791 curstart = i; 1792 curend = i; 1793 } else { 1794 if ((curend - curstart) > 1795 (maxend - maxstart)) { 1796 maxstart = curstart; 1797 maxend = curend; 1798 } 1799 curstart = curend = 255; 1800 } 1801 } 1802 if ((curend - curstart) > 1803 (maxend - maxstart)) { 1804 maxstart = curstart; 1805 maxend = curend; 1806 } 1807 for (i = 0; i < 8; i++) { 1808 if (i >= maxstart && i <= maxend) { 1809 if (i == 0) 1810 printf(":"); 1811 if (i == maxend) 1812 printf(":"); 1813 } else { 1814 b = ntohs(addr->addr16[i]); 1815 printf("%x", b); 1816 if (i < 7) 1817 printf(":"); 1818 } 1819 } 1820 if (p) { 1821 p = ntohs(p); 1822 printf("[%u]", p); 1823 } 1824 break; 1825 } 1826 #endif /* INET6 */ 1827 } 1828 } 1829 1830 void 1831 pf_print_state(struct pf_state *s) 1832 { 1833 pf_print_state_parts(s, NULL, NULL); 1834 } 1835 1836 static void 1837 pf_print_state_parts(struct pf_state *s, 1838 struct pf_state_key *skwp, struct pf_state_key *sksp) 1839 { 1840 struct pf_state_key *skw, *sks; 1841 u_int8_t proto, dir; 1842 1843 /* Do our best to fill these, but they're skipped if NULL */ 1844 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1845 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1846 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1847 dir = s ? s->direction : 0; 1848 1849 switch (proto) { 1850 case IPPROTO_IPV4: 1851 printf("IPv4"); 1852 break; 1853 case IPPROTO_IPV6: 1854 printf("IPv6"); 1855 break; 1856 case IPPROTO_TCP: 1857 printf("TCP"); 1858 break; 1859 case IPPROTO_UDP: 1860 printf("UDP"); 1861 break; 1862 case IPPROTO_ICMP: 1863 printf("ICMP"); 1864 break; 1865 case IPPROTO_ICMPV6: 1866 printf("ICMPv6"); 1867 break; 1868 default: 1869 printf("%u", proto); 1870 break; 1871 } 1872 switch (dir) { 1873 case PF_IN: 1874 printf(" in"); 1875 break; 1876 case PF_OUT: 1877 printf(" out"); 1878 break; 1879 } 1880 if (skw) { 1881 printf(" wire: "); 1882 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1883 printf(" "); 1884 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1885 } 1886 if (sks) { 1887 printf(" stack: "); 1888 if (sks != skw) { 1889 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1890 printf(" "); 1891 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1892 } else 1893 printf("-"); 1894 } 1895 if (s) { 1896 if (proto == IPPROTO_TCP) { 1897 printf(" [lo=%u high=%u win=%u modulator=%u", 1898 s->src.seqlo, s->src.seqhi, 1899 s->src.max_win, s->src.seqdiff); 1900 if (s->src.wscale && s->dst.wscale) 1901 printf(" wscale=%u", 1902 s->src.wscale & PF_WSCALE_MASK); 1903 printf("]"); 1904 printf(" [lo=%u high=%u win=%u modulator=%u", 1905 s->dst.seqlo, s->dst.seqhi, 1906 s->dst.max_win, s->dst.seqdiff); 1907 if (s->src.wscale && s->dst.wscale) 1908 printf(" wscale=%u", 1909 s->dst.wscale & PF_WSCALE_MASK); 1910 printf("]"); 1911 } 1912 printf(" %u:%u", s->src.state, s->dst.state); 1913 } 1914 } 1915 1916 void 1917 pf_print_flags(u_int8_t f) 1918 { 1919 if (f) 1920 printf(" "); 1921 if (f & TH_FIN) 1922 printf("F"); 1923 if (f & TH_SYN) 1924 printf("S"); 1925 if (f & TH_RST) 1926 printf("R"); 1927 if (f & TH_PUSH) 1928 printf("P"); 1929 if (f & TH_ACK) 1930 printf("A"); 1931 if (f & TH_URG) 1932 printf("U"); 1933 if (f & TH_ECE) 1934 printf("E"); 1935 if (f & TH_CWR) 1936 printf("W"); 1937 } 1938 1939 #define PF_SET_SKIP_STEPS(i) \ 1940 do { \ 1941 while (head[i] != cur) { \ 1942 head[i]->skip[i].ptr = cur; \ 1943 head[i] = TAILQ_NEXT(head[i], entries); \ 1944 } \ 1945 } while (0) 1946 1947 void 1948 pf_calc_skip_steps(struct pf_rulequeue *rules) 1949 { 1950 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1951 int i; 1952 1953 cur = TAILQ_FIRST(rules); 1954 prev = cur; 1955 for (i = 0; i < PF_SKIP_COUNT; ++i) 1956 head[i] = cur; 1957 while (cur != NULL) { 1958 1959 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1960 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1961 if (cur->direction != prev->direction) 1962 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1963 if (cur->af != prev->af) 1964 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1965 if (cur->proto != prev->proto) 1966 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1967 if (cur->src.neg != prev->src.neg || 1968 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1969 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1970 if (cur->src.port[0] != prev->src.port[0] || 1971 cur->src.port[1] != prev->src.port[1] || 1972 cur->src.port_op != prev->src.port_op) 1973 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1974 if (cur->dst.neg != prev->dst.neg || 1975 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1976 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1977 if (cur->dst.port[0] != prev->dst.port[0] || 1978 cur->dst.port[1] != prev->dst.port[1] || 1979 cur->dst.port_op != prev->dst.port_op) 1980 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1981 1982 prev = cur; 1983 cur = TAILQ_NEXT(cur, entries); 1984 } 1985 for (i = 0; i < PF_SKIP_COUNT; ++i) 1986 PF_SET_SKIP_STEPS(i); 1987 } 1988 1989 static int 1990 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1991 { 1992 if (aw1->type != aw2->type) 1993 return (1); 1994 switch (aw1->type) { 1995 case PF_ADDR_ADDRMASK: 1996 case PF_ADDR_RANGE: 1997 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 1998 return (1); 1999 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2000 return (1); 2001 return (0); 2002 case PF_ADDR_DYNIFTL: 2003 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2004 case PF_ADDR_NOROUTE: 2005 case PF_ADDR_URPFFAILED: 2006 return (0); 2007 case PF_ADDR_TABLE: 2008 return (aw1->p.tbl != aw2->p.tbl); 2009 default: 2010 printf("invalid address type: %d\n", aw1->type); 2011 return (1); 2012 } 2013 } 2014 2015 /** 2016 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2017 * header isn't always a full checksum. In some cases (i.e. output) it's a 2018 * pseudo-header checksum, which is a partial checksum over src/dst IP 2019 * addresses, protocol number and length. 2020 * 2021 * That means we have the following cases: 2022 * * Input or forwarding: we don't have TSO, the checksum fields are full 2023 * checksums, we need to update the checksum whenever we change anything. 2024 * * Output (i.e. the checksum is a pseudo-header checksum): 2025 * x The field being updated is src/dst address or affects the length of 2026 * the packet. We need to update the pseudo-header checksum (note that this 2027 * checksum is not ones' complement). 2028 * x Some other field is being modified (e.g. src/dst port numbers): We 2029 * don't have to update anything. 2030 **/ 2031 u_int16_t 2032 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2033 { 2034 u_int32_t l; 2035 2036 if (udp && !cksum) 2037 return (0x0000); 2038 l = cksum + old - new; 2039 l = (l >> 16) + (l & 65535); 2040 l = l & 65535; 2041 if (udp && !l) 2042 return (0xFFFF); 2043 return (l); 2044 } 2045 2046 u_int16_t 2047 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2048 u_int16_t new, u_int8_t udp) 2049 { 2050 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2051 return (cksum); 2052 2053 return (pf_cksum_fixup(cksum, old, new, udp)); 2054 } 2055 2056 static void 2057 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2058 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2059 sa_family_t af) 2060 { 2061 struct pf_addr ao; 2062 u_int16_t po = *p; 2063 2064 PF_ACPY(&ao, a, af); 2065 PF_ACPY(a, an, af); 2066 2067 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2068 *pc = ~*pc; 2069 2070 *p = pn; 2071 2072 switch (af) { 2073 #ifdef INET 2074 case AF_INET: 2075 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2076 ao.addr16[0], an->addr16[0], 0), 2077 ao.addr16[1], an->addr16[1], 0); 2078 *p = pn; 2079 2080 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2081 ao.addr16[0], an->addr16[0], u), 2082 ao.addr16[1], an->addr16[1], u); 2083 2084 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2085 break; 2086 #endif /* INET */ 2087 #ifdef INET6 2088 case AF_INET6: 2089 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2090 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2091 pf_cksum_fixup(pf_cksum_fixup(*pc, 2092 ao.addr16[0], an->addr16[0], u), 2093 ao.addr16[1], an->addr16[1], u), 2094 ao.addr16[2], an->addr16[2], u), 2095 ao.addr16[3], an->addr16[3], u), 2096 ao.addr16[4], an->addr16[4], u), 2097 ao.addr16[5], an->addr16[5], u), 2098 ao.addr16[6], an->addr16[6], u), 2099 ao.addr16[7], an->addr16[7], u); 2100 2101 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2102 break; 2103 #endif /* INET6 */ 2104 } 2105 2106 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2107 CSUM_DELAY_DATA_IPV6)) { 2108 *pc = ~*pc; 2109 if (! *pc) 2110 *pc = 0xffff; 2111 } 2112 } 2113 2114 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2115 void 2116 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2117 { 2118 u_int32_t ao; 2119 2120 memcpy(&ao, a, sizeof(ao)); 2121 memcpy(a, &an, sizeof(u_int32_t)); 2122 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2123 ao % 65536, an % 65536, u); 2124 } 2125 2126 void 2127 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2128 { 2129 u_int32_t ao; 2130 2131 memcpy(&ao, a, sizeof(ao)); 2132 memcpy(a, &an, sizeof(u_int32_t)); 2133 2134 *c = pf_proto_cksum_fixup(m, 2135 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2136 ao % 65536, an % 65536, udp); 2137 } 2138 2139 #ifdef INET6 2140 static void 2141 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2142 { 2143 struct pf_addr ao; 2144 2145 PF_ACPY(&ao, a, AF_INET6); 2146 PF_ACPY(a, an, AF_INET6); 2147 2148 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2149 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2150 pf_cksum_fixup(pf_cksum_fixup(*c, 2151 ao.addr16[0], an->addr16[0], u), 2152 ao.addr16[1], an->addr16[1], u), 2153 ao.addr16[2], an->addr16[2], u), 2154 ao.addr16[3], an->addr16[3], u), 2155 ao.addr16[4], an->addr16[4], u), 2156 ao.addr16[5], an->addr16[5], u), 2157 ao.addr16[6], an->addr16[6], u), 2158 ao.addr16[7], an->addr16[7], u); 2159 } 2160 #endif /* INET6 */ 2161 2162 static void 2163 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2164 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2165 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2166 { 2167 struct pf_addr oia, ooa; 2168 2169 PF_ACPY(&oia, ia, af); 2170 if (oa) 2171 PF_ACPY(&ooa, oa, af); 2172 2173 /* Change inner protocol port, fix inner protocol checksum. */ 2174 if (ip != NULL) { 2175 u_int16_t oip = *ip; 2176 u_int32_t opc; 2177 2178 if (pc != NULL) 2179 opc = *pc; 2180 *ip = np; 2181 if (pc != NULL) 2182 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2183 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2184 if (pc != NULL) 2185 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2186 } 2187 /* Change inner ip address, fix inner ip and icmp checksums. */ 2188 PF_ACPY(ia, na, af); 2189 switch (af) { 2190 #ifdef INET 2191 case AF_INET: { 2192 u_int32_t oh2c = *h2c; 2193 2194 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2195 oia.addr16[0], ia->addr16[0], 0), 2196 oia.addr16[1], ia->addr16[1], 0); 2197 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2198 oia.addr16[0], ia->addr16[0], 0), 2199 oia.addr16[1], ia->addr16[1], 0); 2200 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2201 break; 2202 } 2203 #endif /* INET */ 2204 #ifdef INET6 2205 case AF_INET6: 2206 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2207 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2208 pf_cksum_fixup(pf_cksum_fixup(*ic, 2209 oia.addr16[0], ia->addr16[0], u), 2210 oia.addr16[1], ia->addr16[1], u), 2211 oia.addr16[2], ia->addr16[2], u), 2212 oia.addr16[3], ia->addr16[3], u), 2213 oia.addr16[4], ia->addr16[4], u), 2214 oia.addr16[5], ia->addr16[5], u), 2215 oia.addr16[6], ia->addr16[6], u), 2216 oia.addr16[7], ia->addr16[7], u); 2217 break; 2218 #endif /* INET6 */ 2219 } 2220 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2221 if (oa) { 2222 PF_ACPY(oa, na, af); 2223 switch (af) { 2224 #ifdef INET 2225 case AF_INET: 2226 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2227 ooa.addr16[0], oa->addr16[0], 0), 2228 ooa.addr16[1], oa->addr16[1], 0); 2229 break; 2230 #endif /* INET */ 2231 #ifdef INET6 2232 case AF_INET6: 2233 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2234 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2235 pf_cksum_fixup(pf_cksum_fixup(*ic, 2236 ooa.addr16[0], oa->addr16[0], u), 2237 ooa.addr16[1], oa->addr16[1], u), 2238 ooa.addr16[2], oa->addr16[2], u), 2239 ooa.addr16[3], oa->addr16[3], u), 2240 ooa.addr16[4], oa->addr16[4], u), 2241 ooa.addr16[5], oa->addr16[5], u), 2242 ooa.addr16[6], oa->addr16[6], u), 2243 ooa.addr16[7], oa->addr16[7], u); 2244 break; 2245 #endif /* INET6 */ 2246 } 2247 } 2248 } 2249 2250 2251 /* 2252 * Need to modulate the sequence numbers in the TCP SACK option 2253 * (credits to Krzysztof Pfaff for report and patch) 2254 */ 2255 static int 2256 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2257 struct tcphdr *th, struct pf_state_peer *dst) 2258 { 2259 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2260 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2261 int copyback = 0, i, olen; 2262 struct sackblk sack; 2263 2264 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2265 if (hlen < TCPOLEN_SACKLEN || 2266 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2267 return 0; 2268 2269 while (hlen >= TCPOLEN_SACKLEN) { 2270 olen = opt[1]; 2271 switch (*opt) { 2272 case TCPOPT_EOL: /* FALLTHROUGH */ 2273 case TCPOPT_NOP: 2274 opt++; 2275 hlen--; 2276 break; 2277 case TCPOPT_SACK: 2278 if (olen > hlen) 2279 olen = hlen; 2280 if (olen >= TCPOLEN_SACKLEN) { 2281 for (i = 2; i + TCPOLEN_SACK <= olen; 2282 i += TCPOLEN_SACK) { 2283 memcpy(&sack, &opt[i], sizeof(sack)); 2284 pf_change_proto_a(m, &sack.start, &th->th_sum, 2285 htonl(ntohl(sack.start) - dst->seqdiff), 0); 2286 pf_change_proto_a(m, &sack.end, &th->th_sum, 2287 htonl(ntohl(sack.end) - dst->seqdiff), 0); 2288 memcpy(&opt[i], &sack, sizeof(sack)); 2289 } 2290 copyback = 1; 2291 } 2292 /* FALLTHROUGH */ 2293 default: 2294 if (olen < 2) 2295 olen = 2; 2296 hlen -= olen; 2297 opt += olen; 2298 } 2299 } 2300 2301 if (copyback) 2302 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2303 return (copyback); 2304 } 2305 2306 static void 2307 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2308 const struct pf_addr *saddr, const struct pf_addr *daddr, 2309 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2310 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2311 u_int16_t rtag, struct ifnet *ifp) 2312 { 2313 struct pf_send_entry *pfse; 2314 struct mbuf *m; 2315 int len, tlen; 2316 #ifdef INET 2317 struct ip *h = NULL; 2318 #endif /* INET */ 2319 #ifdef INET6 2320 struct ip6_hdr *h6 = NULL; 2321 #endif /* INET6 */ 2322 struct tcphdr *th; 2323 char *opt; 2324 struct pf_mtag *pf_mtag; 2325 2326 len = 0; 2327 th = NULL; 2328 2329 /* maximum segment size tcp option */ 2330 tlen = sizeof(struct tcphdr); 2331 if (mss) 2332 tlen += 4; 2333 2334 switch (af) { 2335 #ifdef INET 2336 case AF_INET: 2337 len = sizeof(struct ip) + tlen; 2338 break; 2339 #endif /* INET */ 2340 #ifdef INET6 2341 case AF_INET6: 2342 len = sizeof(struct ip6_hdr) + tlen; 2343 break; 2344 #endif /* INET6 */ 2345 default: 2346 panic("%s: unsupported af %d", __func__, af); 2347 } 2348 2349 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2350 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2351 if (pfse == NULL) 2352 return; 2353 m = m_gethdr(M_NOWAIT, MT_DATA); 2354 if (m == NULL) { 2355 free(pfse, M_PFTEMP); 2356 return; 2357 } 2358 #ifdef MAC 2359 mac_netinet_firewall_send(m); 2360 #endif 2361 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2362 free(pfse, M_PFTEMP); 2363 m_freem(m); 2364 return; 2365 } 2366 if (tag) 2367 m->m_flags |= M_SKIP_FIREWALL; 2368 pf_mtag->tag = rtag; 2369 2370 if (r != NULL && r->rtableid >= 0) 2371 M_SETFIB(m, r->rtableid); 2372 2373 #ifdef ALTQ 2374 if (r != NULL && r->qid) { 2375 pf_mtag->qid = r->qid; 2376 2377 /* add hints for ecn */ 2378 pf_mtag->hdr = mtod(m, struct ip *); 2379 } 2380 #endif /* ALTQ */ 2381 m->m_data += max_linkhdr; 2382 m->m_pkthdr.len = m->m_len = len; 2383 m->m_pkthdr.rcvif = NULL; 2384 bzero(m->m_data, len); 2385 switch (af) { 2386 #ifdef INET 2387 case AF_INET: 2388 h = mtod(m, struct ip *); 2389 2390 /* IP header fields included in the TCP checksum */ 2391 h->ip_p = IPPROTO_TCP; 2392 h->ip_len = htons(tlen); 2393 h->ip_src.s_addr = saddr->v4.s_addr; 2394 h->ip_dst.s_addr = daddr->v4.s_addr; 2395 2396 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2397 break; 2398 #endif /* INET */ 2399 #ifdef INET6 2400 case AF_INET6: 2401 h6 = mtod(m, struct ip6_hdr *); 2402 2403 /* IP header fields included in the TCP checksum */ 2404 h6->ip6_nxt = IPPROTO_TCP; 2405 h6->ip6_plen = htons(tlen); 2406 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2407 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2408 2409 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2410 break; 2411 #endif /* INET6 */ 2412 } 2413 2414 /* TCP header */ 2415 th->th_sport = sport; 2416 th->th_dport = dport; 2417 th->th_seq = htonl(seq); 2418 th->th_ack = htonl(ack); 2419 th->th_off = tlen >> 2; 2420 th->th_flags = flags; 2421 th->th_win = htons(win); 2422 2423 if (mss) { 2424 opt = (char *)(th + 1); 2425 opt[0] = TCPOPT_MAXSEG; 2426 opt[1] = 4; 2427 HTONS(mss); 2428 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2429 } 2430 2431 switch (af) { 2432 #ifdef INET 2433 case AF_INET: 2434 /* TCP checksum */ 2435 th->th_sum = in_cksum(m, len); 2436 2437 /* Finish the IP header */ 2438 h->ip_v = 4; 2439 h->ip_hl = sizeof(*h) >> 2; 2440 h->ip_tos = IPTOS_LOWDELAY; 2441 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2442 h->ip_len = htons(len); 2443 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2444 h->ip_sum = 0; 2445 2446 pfse->pfse_type = PFSE_IP; 2447 break; 2448 #endif /* INET */ 2449 #ifdef INET6 2450 case AF_INET6: 2451 /* TCP checksum */ 2452 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2453 sizeof(struct ip6_hdr), tlen); 2454 2455 h6->ip6_vfc |= IPV6_VERSION; 2456 h6->ip6_hlim = IPV6_DEFHLIM; 2457 2458 pfse->pfse_type = PFSE_IP6; 2459 break; 2460 #endif /* INET6 */ 2461 } 2462 pfse->pfse_m = m; 2463 pf_send(pfse); 2464 } 2465 2466 static int 2467 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2468 { 2469 struct m_tag *mtag; 2470 2471 KASSERT(prio <= PF_PRIO_MAX, 2472 ("%s with invalid pcp", __func__)); 2473 2474 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2475 if (mtag == NULL) { 2476 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2477 sizeof(uint8_t), M_NOWAIT); 2478 if (mtag == NULL) 2479 return (ENOMEM); 2480 m_tag_prepend(m, mtag); 2481 } 2482 2483 *(uint8_t *)(mtag + 1) = prio; 2484 return (0); 2485 } 2486 2487 static int 2488 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2489 { 2490 struct m_tag *mtag; 2491 u_int8_t mpcp; 2492 2493 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2494 if (mtag == NULL) 2495 return (0); 2496 2497 if (prio == PF_PRIO_ZERO) 2498 prio = 0; 2499 2500 mpcp = *(uint8_t *)(mtag + 1); 2501 2502 return (mpcp == prio); 2503 } 2504 2505 static void 2506 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2507 struct pf_rule *r) 2508 { 2509 struct pf_send_entry *pfse; 2510 struct mbuf *m0; 2511 struct pf_mtag *pf_mtag; 2512 2513 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2514 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2515 if (pfse == NULL) 2516 return; 2517 2518 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2519 free(pfse, M_PFTEMP); 2520 return; 2521 } 2522 2523 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2524 free(pfse, M_PFTEMP); 2525 return; 2526 } 2527 /* XXX: revisit */ 2528 m0->m_flags |= M_SKIP_FIREWALL; 2529 2530 if (r->rtableid >= 0) 2531 M_SETFIB(m0, r->rtableid); 2532 2533 #ifdef ALTQ 2534 if (r->qid) { 2535 pf_mtag->qid = r->qid; 2536 /* add hints for ecn */ 2537 pf_mtag->hdr = mtod(m0, struct ip *); 2538 } 2539 #endif /* ALTQ */ 2540 2541 switch (af) { 2542 #ifdef INET 2543 case AF_INET: 2544 pfse->pfse_type = PFSE_ICMP; 2545 break; 2546 #endif /* INET */ 2547 #ifdef INET6 2548 case AF_INET6: 2549 pfse->pfse_type = PFSE_ICMP6; 2550 break; 2551 #endif /* INET6 */ 2552 } 2553 pfse->pfse_m = m0; 2554 pfse->icmpopts.type = type; 2555 pfse->icmpopts.code = code; 2556 pf_send(pfse); 2557 } 2558 2559 /* 2560 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2561 * If n is 0, they match if they are equal. If n is != 0, they match if they 2562 * are different. 2563 */ 2564 int 2565 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2566 struct pf_addr *b, sa_family_t af) 2567 { 2568 int match = 0; 2569 2570 switch (af) { 2571 #ifdef INET 2572 case AF_INET: 2573 if ((a->addr32[0] & m->addr32[0]) == 2574 (b->addr32[0] & m->addr32[0])) 2575 match++; 2576 break; 2577 #endif /* INET */ 2578 #ifdef INET6 2579 case AF_INET6: 2580 if (((a->addr32[0] & m->addr32[0]) == 2581 (b->addr32[0] & m->addr32[0])) && 2582 ((a->addr32[1] & m->addr32[1]) == 2583 (b->addr32[1] & m->addr32[1])) && 2584 ((a->addr32[2] & m->addr32[2]) == 2585 (b->addr32[2] & m->addr32[2])) && 2586 ((a->addr32[3] & m->addr32[3]) == 2587 (b->addr32[3] & m->addr32[3]))) 2588 match++; 2589 break; 2590 #endif /* INET6 */ 2591 } 2592 if (match) { 2593 if (n) 2594 return (0); 2595 else 2596 return (1); 2597 } else { 2598 if (n) 2599 return (1); 2600 else 2601 return (0); 2602 } 2603 } 2604 2605 /* 2606 * Return 1 if b <= a <= e, otherwise return 0. 2607 */ 2608 int 2609 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2610 struct pf_addr *a, sa_family_t af) 2611 { 2612 switch (af) { 2613 #ifdef INET 2614 case AF_INET: 2615 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2616 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2617 return (0); 2618 break; 2619 #endif /* INET */ 2620 #ifdef INET6 2621 case AF_INET6: { 2622 int i; 2623 2624 /* check a >= b */ 2625 for (i = 0; i < 4; ++i) 2626 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2627 break; 2628 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2629 return (0); 2630 /* check a <= e */ 2631 for (i = 0; i < 4; ++i) 2632 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2633 break; 2634 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2635 return (0); 2636 break; 2637 } 2638 #endif /* INET6 */ 2639 } 2640 return (1); 2641 } 2642 2643 static int 2644 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2645 { 2646 switch (op) { 2647 case PF_OP_IRG: 2648 return ((p > a1) && (p < a2)); 2649 case PF_OP_XRG: 2650 return ((p < a1) || (p > a2)); 2651 case PF_OP_RRG: 2652 return ((p >= a1) && (p <= a2)); 2653 case PF_OP_EQ: 2654 return (p == a1); 2655 case PF_OP_NE: 2656 return (p != a1); 2657 case PF_OP_LT: 2658 return (p < a1); 2659 case PF_OP_LE: 2660 return (p <= a1); 2661 case PF_OP_GT: 2662 return (p > a1); 2663 case PF_OP_GE: 2664 return (p >= a1); 2665 } 2666 return (0); /* never reached */ 2667 } 2668 2669 int 2670 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2671 { 2672 NTOHS(a1); 2673 NTOHS(a2); 2674 NTOHS(p); 2675 return (pf_match(op, a1, a2, p)); 2676 } 2677 2678 static int 2679 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2680 { 2681 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2682 return (0); 2683 return (pf_match(op, a1, a2, u)); 2684 } 2685 2686 static int 2687 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2688 { 2689 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2690 return (0); 2691 return (pf_match(op, a1, a2, g)); 2692 } 2693 2694 int 2695 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2696 { 2697 if (*tag == -1) 2698 *tag = mtag; 2699 2700 return ((!r->match_tag_not && r->match_tag == *tag) || 2701 (r->match_tag_not && r->match_tag != *tag)); 2702 } 2703 2704 int 2705 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2706 { 2707 2708 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2709 2710 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2711 return (ENOMEM); 2712 2713 pd->pf_mtag->tag = tag; 2714 2715 return (0); 2716 } 2717 2718 #define PF_ANCHOR_STACKSIZE 32 2719 struct pf_anchor_stackframe { 2720 struct pf_ruleset *rs; 2721 struct pf_rule *r; /* XXX: + match bit */ 2722 struct pf_anchor *child; 2723 }; 2724 2725 /* 2726 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2727 */ 2728 #define PF_ANCHORSTACK_MATCH 0x00000001 2729 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2730 2731 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2732 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2733 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2734 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2735 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2736 } while (0) 2737 2738 void 2739 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2740 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2741 int *match) 2742 { 2743 struct pf_anchor_stackframe *f; 2744 2745 PF_RULES_RASSERT(); 2746 2747 if (match) 2748 *match = 0; 2749 if (*depth >= PF_ANCHOR_STACKSIZE) { 2750 printf("%s: anchor stack overflow on %s\n", 2751 __func__, (*r)->anchor->name); 2752 *r = TAILQ_NEXT(*r, entries); 2753 return; 2754 } else if (*depth == 0 && a != NULL) 2755 *a = *r; 2756 f = stack + (*depth)++; 2757 f->rs = *rs; 2758 f->r = *r; 2759 if ((*r)->anchor_wildcard) { 2760 struct pf_anchor_node *parent = &(*r)->anchor->children; 2761 2762 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2763 *r = NULL; 2764 return; 2765 } 2766 *rs = &f->child->ruleset; 2767 } else { 2768 f->child = NULL; 2769 *rs = &(*r)->anchor->ruleset; 2770 } 2771 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2772 } 2773 2774 int 2775 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2776 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2777 int *match) 2778 { 2779 struct pf_anchor_stackframe *f; 2780 struct pf_rule *fr; 2781 int quick = 0; 2782 2783 PF_RULES_RASSERT(); 2784 2785 do { 2786 if (*depth <= 0) 2787 break; 2788 f = stack + *depth - 1; 2789 fr = PF_ANCHOR_RULE(f); 2790 if (f->child != NULL) { 2791 struct pf_anchor_node *parent; 2792 2793 /* 2794 * This block traverses through 2795 * a wildcard anchor. 2796 */ 2797 parent = &fr->anchor->children; 2798 if (match != NULL && *match) { 2799 /* 2800 * If any of "*" matched, then 2801 * "foo/ *" matched, mark frame 2802 * appropriately. 2803 */ 2804 PF_ANCHOR_SET_MATCH(f); 2805 *match = 0; 2806 } 2807 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2808 if (f->child != NULL) { 2809 *rs = &f->child->ruleset; 2810 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2811 if (*r == NULL) 2812 continue; 2813 else 2814 break; 2815 } 2816 } 2817 (*depth)--; 2818 if (*depth == 0 && a != NULL) 2819 *a = NULL; 2820 *rs = f->rs; 2821 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2822 quick = fr->quick; 2823 *r = TAILQ_NEXT(fr, entries); 2824 } while (*r == NULL); 2825 2826 return (quick); 2827 } 2828 2829 #ifdef INET6 2830 void 2831 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2832 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2833 { 2834 switch (af) { 2835 #ifdef INET 2836 case AF_INET: 2837 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2838 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2839 break; 2840 #endif /* INET */ 2841 case AF_INET6: 2842 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2843 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2844 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2845 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2846 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2847 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2848 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2849 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2850 break; 2851 } 2852 } 2853 2854 void 2855 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2856 { 2857 switch (af) { 2858 #ifdef INET 2859 case AF_INET: 2860 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2861 break; 2862 #endif /* INET */ 2863 case AF_INET6: 2864 if (addr->addr32[3] == 0xffffffff) { 2865 addr->addr32[3] = 0; 2866 if (addr->addr32[2] == 0xffffffff) { 2867 addr->addr32[2] = 0; 2868 if (addr->addr32[1] == 0xffffffff) { 2869 addr->addr32[1] = 0; 2870 addr->addr32[0] = 2871 htonl(ntohl(addr->addr32[0]) + 1); 2872 } else 2873 addr->addr32[1] = 2874 htonl(ntohl(addr->addr32[1]) + 1); 2875 } else 2876 addr->addr32[2] = 2877 htonl(ntohl(addr->addr32[2]) + 1); 2878 } else 2879 addr->addr32[3] = 2880 htonl(ntohl(addr->addr32[3]) + 1); 2881 break; 2882 } 2883 } 2884 #endif /* INET6 */ 2885 2886 int 2887 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2888 { 2889 struct pf_addr *saddr, *daddr; 2890 u_int16_t sport, dport; 2891 struct inpcbinfo *pi; 2892 struct inpcb *inp; 2893 2894 pd->lookup.uid = UID_MAX; 2895 pd->lookup.gid = GID_MAX; 2896 2897 switch (pd->proto) { 2898 case IPPROTO_TCP: 2899 if (pd->hdr.tcp == NULL) 2900 return (-1); 2901 sport = pd->hdr.tcp->th_sport; 2902 dport = pd->hdr.tcp->th_dport; 2903 pi = &V_tcbinfo; 2904 break; 2905 case IPPROTO_UDP: 2906 if (pd->hdr.udp == NULL) 2907 return (-1); 2908 sport = pd->hdr.udp->uh_sport; 2909 dport = pd->hdr.udp->uh_dport; 2910 pi = &V_udbinfo; 2911 break; 2912 default: 2913 return (-1); 2914 } 2915 if (direction == PF_IN) { 2916 saddr = pd->src; 2917 daddr = pd->dst; 2918 } else { 2919 u_int16_t p; 2920 2921 p = sport; 2922 sport = dport; 2923 dport = p; 2924 saddr = pd->dst; 2925 daddr = pd->src; 2926 } 2927 switch (pd->af) { 2928 #ifdef INET 2929 case AF_INET: 2930 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2931 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2932 if (inp == NULL) { 2933 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2934 daddr->v4, dport, INPLOOKUP_WILDCARD | 2935 INPLOOKUP_RLOCKPCB, NULL, m); 2936 if (inp == NULL) 2937 return (-1); 2938 } 2939 break; 2940 #endif /* INET */ 2941 #ifdef INET6 2942 case AF_INET6: 2943 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2944 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2945 if (inp == NULL) { 2946 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2947 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2948 INPLOOKUP_RLOCKPCB, NULL, m); 2949 if (inp == NULL) 2950 return (-1); 2951 } 2952 break; 2953 #endif /* INET6 */ 2954 2955 default: 2956 return (-1); 2957 } 2958 INP_RLOCK_ASSERT(inp); 2959 pd->lookup.uid = inp->inp_cred->cr_uid; 2960 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2961 INP_RUNLOCK(inp); 2962 2963 return (1); 2964 } 2965 2966 static u_int8_t 2967 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2968 { 2969 int hlen; 2970 u_int8_t hdr[60]; 2971 u_int8_t *opt, optlen; 2972 u_int8_t wscale = 0; 2973 2974 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2975 if (hlen <= sizeof(struct tcphdr)) 2976 return (0); 2977 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2978 return (0); 2979 opt = hdr + sizeof(struct tcphdr); 2980 hlen -= sizeof(struct tcphdr); 2981 while (hlen >= 3) { 2982 switch (*opt) { 2983 case TCPOPT_EOL: 2984 case TCPOPT_NOP: 2985 ++opt; 2986 --hlen; 2987 break; 2988 case TCPOPT_WINDOW: 2989 wscale = opt[2]; 2990 if (wscale > TCP_MAX_WINSHIFT) 2991 wscale = TCP_MAX_WINSHIFT; 2992 wscale |= PF_WSCALE_FLAG; 2993 /* FALLTHROUGH */ 2994 default: 2995 optlen = opt[1]; 2996 if (optlen < 2) 2997 optlen = 2; 2998 hlen -= optlen; 2999 opt += optlen; 3000 break; 3001 } 3002 } 3003 return (wscale); 3004 } 3005 3006 static u_int16_t 3007 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3008 { 3009 int hlen; 3010 u_int8_t hdr[60]; 3011 u_int8_t *opt, optlen; 3012 u_int16_t mss = V_tcp_mssdflt; 3013 3014 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3015 if (hlen <= sizeof(struct tcphdr)) 3016 return (0); 3017 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3018 return (0); 3019 opt = hdr + sizeof(struct tcphdr); 3020 hlen -= sizeof(struct tcphdr); 3021 while (hlen >= TCPOLEN_MAXSEG) { 3022 switch (*opt) { 3023 case TCPOPT_EOL: 3024 case TCPOPT_NOP: 3025 ++opt; 3026 --hlen; 3027 break; 3028 case TCPOPT_MAXSEG: 3029 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3030 NTOHS(mss); 3031 /* FALLTHROUGH */ 3032 default: 3033 optlen = opt[1]; 3034 if (optlen < 2) 3035 optlen = 2; 3036 hlen -= optlen; 3037 opt += optlen; 3038 break; 3039 } 3040 } 3041 return (mss); 3042 } 3043 3044 static u_int16_t 3045 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3046 { 3047 #ifdef INET 3048 struct nhop4_basic nh4; 3049 #endif /* INET */ 3050 #ifdef INET6 3051 struct nhop6_basic nh6; 3052 struct in6_addr dst6; 3053 uint32_t scopeid; 3054 #endif /* INET6 */ 3055 int hlen = 0; 3056 uint16_t mss = 0; 3057 3058 switch (af) { 3059 #ifdef INET 3060 case AF_INET: 3061 hlen = sizeof(struct ip); 3062 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) == 0) 3063 mss = nh4.nh_mtu - hlen - sizeof(struct tcphdr); 3064 break; 3065 #endif /* INET */ 3066 #ifdef INET6 3067 case AF_INET6: 3068 hlen = sizeof(struct ip6_hdr); 3069 in6_splitscope(&addr->v6, &dst6, &scopeid); 3070 if (fib6_lookup_nh_basic(rtableid, &dst6, scopeid, 0,0,&nh6)==0) 3071 mss = nh6.nh_mtu - hlen - sizeof(struct tcphdr); 3072 break; 3073 #endif /* INET6 */ 3074 } 3075 3076 mss = max(V_tcp_mssdflt, mss); 3077 mss = min(mss, offer); 3078 mss = max(mss, 64); /* sanity - at least max opt space */ 3079 return (mss); 3080 } 3081 3082 static u_int32_t 3083 pf_tcp_iss(struct pf_pdesc *pd) 3084 { 3085 MD5_CTX ctx; 3086 u_int32_t digest[4]; 3087 3088 if (V_pf_tcp_secret_init == 0) { 3089 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3090 MD5Init(&V_pf_tcp_secret_ctx); 3091 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3092 sizeof(V_pf_tcp_secret)); 3093 V_pf_tcp_secret_init = 1; 3094 } 3095 3096 ctx = V_pf_tcp_secret_ctx; 3097 3098 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3099 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3100 if (pd->af == AF_INET6) { 3101 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3102 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3103 } else { 3104 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3105 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3106 } 3107 MD5Final((u_char *)digest, &ctx); 3108 V_pf_tcp_iss_off += 4096; 3109 #define ISN_RANDOM_INCREMENT (4096 - 1) 3110 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3111 V_pf_tcp_iss_off); 3112 #undef ISN_RANDOM_INCREMENT 3113 } 3114 3115 static int 3116 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3117 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3118 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3119 { 3120 struct pf_rule *nr = NULL; 3121 struct pf_addr * const saddr = pd->src; 3122 struct pf_addr * const daddr = pd->dst; 3123 sa_family_t af = pd->af; 3124 struct pf_rule *r, *a = NULL; 3125 struct pf_ruleset *ruleset = NULL; 3126 struct pf_src_node *nsn = NULL; 3127 struct tcphdr *th = pd->hdr.tcp; 3128 struct pf_state_key *sk = NULL, *nk = NULL; 3129 u_short reason; 3130 int rewrite = 0, hdrlen = 0; 3131 int tag = -1, rtableid = -1; 3132 int asd = 0; 3133 int match = 0; 3134 int state_icmp = 0; 3135 u_int16_t sport = 0, dport = 0; 3136 u_int16_t bproto_sum = 0, bip_sum = 0; 3137 u_int8_t icmptype = 0, icmpcode = 0; 3138 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3139 3140 PF_RULES_RASSERT(); 3141 3142 if (inp != NULL) { 3143 INP_LOCK_ASSERT(inp); 3144 pd->lookup.uid = inp->inp_cred->cr_uid; 3145 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3146 pd->lookup.done = 1; 3147 } 3148 3149 switch (pd->proto) { 3150 case IPPROTO_TCP: 3151 sport = th->th_sport; 3152 dport = th->th_dport; 3153 hdrlen = sizeof(*th); 3154 break; 3155 case IPPROTO_UDP: 3156 sport = pd->hdr.udp->uh_sport; 3157 dport = pd->hdr.udp->uh_dport; 3158 hdrlen = sizeof(*pd->hdr.udp); 3159 break; 3160 #ifdef INET 3161 case IPPROTO_ICMP: 3162 if (pd->af != AF_INET) 3163 break; 3164 sport = dport = pd->hdr.icmp->icmp_id; 3165 hdrlen = sizeof(*pd->hdr.icmp); 3166 icmptype = pd->hdr.icmp->icmp_type; 3167 icmpcode = pd->hdr.icmp->icmp_code; 3168 3169 if (icmptype == ICMP_UNREACH || 3170 icmptype == ICMP_SOURCEQUENCH || 3171 icmptype == ICMP_REDIRECT || 3172 icmptype == ICMP_TIMXCEED || 3173 icmptype == ICMP_PARAMPROB) 3174 state_icmp++; 3175 break; 3176 #endif /* INET */ 3177 #ifdef INET6 3178 case IPPROTO_ICMPV6: 3179 if (af != AF_INET6) 3180 break; 3181 sport = dport = pd->hdr.icmp6->icmp6_id; 3182 hdrlen = sizeof(*pd->hdr.icmp6); 3183 icmptype = pd->hdr.icmp6->icmp6_type; 3184 icmpcode = pd->hdr.icmp6->icmp6_code; 3185 3186 if (icmptype == ICMP6_DST_UNREACH || 3187 icmptype == ICMP6_PACKET_TOO_BIG || 3188 icmptype == ICMP6_TIME_EXCEEDED || 3189 icmptype == ICMP6_PARAM_PROB) 3190 state_icmp++; 3191 break; 3192 #endif /* INET6 */ 3193 default: 3194 sport = dport = hdrlen = 0; 3195 break; 3196 } 3197 3198 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3199 3200 /* check packet for BINAT/NAT/RDR */ 3201 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3202 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3203 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3204 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3205 3206 if (pd->ip_sum) 3207 bip_sum = *pd->ip_sum; 3208 3209 switch (pd->proto) { 3210 case IPPROTO_TCP: 3211 bproto_sum = th->th_sum; 3212 pd->proto_sum = &th->th_sum; 3213 3214 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3215 nk->port[pd->sidx] != sport) { 3216 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3217 &th->th_sum, &nk->addr[pd->sidx], 3218 nk->port[pd->sidx], 0, af); 3219 pd->sport = &th->th_sport; 3220 sport = th->th_sport; 3221 } 3222 3223 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3224 nk->port[pd->didx] != dport) { 3225 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3226 &th->th_sum, &nk->addr[pd->didx], 3227 nk->port[pd->didx], 0, af); 3228 dport = th->th_dport; 3229 pd->dport = &th->th_dport; 3230 } 3231 rewrite++; 3232 break; 3233 case IPPROTO_UDP: 3234 bproto_sum = pd->hdr.udp->uh_sum; 3235 pd->proto_sum = &pd->hdr.udp->uh_sum; 3236 3237 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3238 nk->port[pd->sidx] != sport) { 3239 pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, 3240 pd->ip_sum, &pd->hdr.udp->uh_sum, 3241 &nk->addr[pd->sidx], 3242 nk->port[pd->sidx], 1, af); 3243 sport = pd->hdr.udp->uh_sport; 3244 pd->sport = &pd->hdr.udp->uh_sport; 3245 } 3246 3247 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3248 nk->port[pd->didx] != dport) { 3249 pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, 3250 pd->ip_sum, &pd->hdr.udp->uh_sum, 3251 &nk->addr[pd->didx], 3252 nk->port[pd->didx], 1, af); 3253 dport = pd->hdr.udp->uh_dport; 3254 pd->dport = &pd->hdr.udp->uh_dport; 3255 } 3256 rewrite++; 3257 break; 3258 #ifdef INET 3259 case IPPROTO_ICMP: 3260 nk->port[0] = nk->port[1]; 3261 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3262 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3263 nk->addr[pd->sidx].v4.s_addr, 0); 3264 3265 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3266 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3267 nk->addr[pd->didx].v4.s_addr, 0); 3268 3269 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3270 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3271 pd->hdr.icmp->icmp_cksum, sport, 3272 nk->port[1], 0); 3273 pd->hdr.icmp->icmp_id = nk->port[1]; 3274 pd->sport = &pd->hdr.icmp->icmp_id; 3275 } 3276 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3277 break; 3278 #endif /* INET */ 3279 #ifdef INET6 3280 case IPPROTO_ICMPV6: 3281 nk->port[0] = nk->port[1]; 3282 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3283 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3284 &nk->addr[pd->sidx], 0); 3285 3286 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3287 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3288 &nk->addr[pd->didx], 0); 3289 rewrite++; 3290 break; 3291 #endif /* INET */ 3292 default: 3293 switch (af) { 3294 #ifdef INET 3295 case AF_INET: 3296 if (PF_ANEQ(saddr, 3297 &nk->addr[pd->sidx], AF_INET)) 3298 pf_change_a(&saddr->v4.s_addr, 3299 pd->ip_sum, 3300 nk->addr[pd->sidx].v4.s_addr, 0); 3301 3302 if (PF_ANEQ(daddr, 3303 &nk->addr[pd->didx], AF_INET)) 3304 pf_change_a(&daddr->v4.s_addr, 3305 pd->ip_sum, 3306 nk->addr[pd->didx].v4.s_addr, 0); 3307 break; 3308 #endif /* INET */ 3309 #ifdef INET6 3310 case AF_INET6: 3311 if (PF_ANEQ(saddr, 3312 &nk->addr[pd->sidx], AF_INET6)) 3313 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3314 3315 if (PF_ANEQ(daddr, 3316 &nk->addr[pd->didx], AF_INET6)) 3317 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3318 break; 3319 #endif /* INET */ 3320 } 3321 break; 3322 } 3323 if (nr->natpass) 3324 r = NULL; 3325 pd->nat_rule = nr; 3326 } 3327 3328 while (r != NULL) { 3329 r->evaluations++; 3330 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3331 r = r->skip[PF_SKIP_IFP].ptr; 3332 else if (r->direction && r->direction != direction) 3333 r = r->skip[PF_SKIP_DIR].ptr; 3334 else if (r->af && r->af != af) 3335 r = r->skip[PF_SKIP_AF].ptr; 3336 else if (r->proto && r->proto != pd->proto) 3337 r = r->skip[PF_SKIP_PROTO].ptr; 3338 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3339 r->src.neg, kif, M_GETFIB(m))) 3340 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3341 /* tcp/udp only. port_op always 0 in other cases */ 3342 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3343 r->src.port[0], r->src.port[1], sport)) 3344 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3345 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3346 r->dst.neg, NULL, M_GETFIB(m))) 3347 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3348 /* tcp/udp only. port_op always 0 in other cases */ 3349 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3350 r->dst.port[0], r->dst.port[1], dport)) 3351 r = r->skip[PF_SKIP_DST_PORT].ptr; 3352 /* icmp only. type always 0 in other cases */ 3353 else if (r->type && r->type != icmptype + 1) 3354 r = TAILQ_NEXT(r, entries); 3355 /* icmp only. type always 0 in other cases */ 3356 else if (r->code && r->code != icmpcode + 1) 3357 r = TAILQ_NEXT(r, entries); 3358 else if (r->tos && !(r->tos == pd->tos)) 3359 r = TAILQ_NEXT(r, entries); 3360 else if (r->rule_flag & PFRULE_FRAGMENT) 3361 r = TAILQ_NEXT(r, entries); 3362 else if (pd->proto == IPPROTO_TCP && 3363 (r->flagset & th->th_flags) != r->flags) 3364 r = TAILQ_NEXT(r, entries); 3365 /* tcp/udp only. uid.op always 0 in other cases */ 3366 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3367 pf_socket_lookup(direction, pd, m), 1)) && 3368 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3369 pd->lookup.uid)) 3370 r = TAILQ_NEXT(r, entries); 3371 /* tcp/udp only. gid.op always 0 in other cases */ 3372 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3373 pf_socket_lookup(direction, pd, m), 1)) && 3374 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3375 pd->lookup.gid)) 3376 r = TAILQ_NEXT(r, entries); 3377 else if (r->prio && 3378 !pf_match_ieee8021q_pcp(r->prio, m)) 3379 r = TAILQ_NEXT(r, entries); 3380 else if (r->prob && 3381 r->prob <= arc4random()) 3382 r = TAILQ_NEXT(r, entries); 3383 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3384 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3385 r = TAILQ_NEXT(r, entries); 3386 else if (r->os_fingerprint != PF_OSFP_ANY && 3387 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3388 pf_osfp_fingerprint(pd, m, off, th), 3389 r->os_fingerprint))) 3390 r = TAILQ_NEXT(r, entries); 3391 else { 3392 if (r->tag) 3393 tag = r->tag; 3394 if (r->rtableid >= 0) 3395 rtableid = r->rtableid; 3396 if (r->anchor == NULL) { 3397 match = 1; 3398 *rm = r; 3399 *am = a; 3400 *rsm = ruleset; 3401 if ((*rm)->quick) 3402 break; 3403 r = TAILQ_NEXT(r, entries); 3404 } else 3405 pf_step_into_anchor(anchor_stack, &asd, 3406 &ruleset, PF_RULESET_FILTER, &r, &a, 3407 &match); 3408 } 3409 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3410 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3411 break; 3412 } 3413 r = *rm; 3414 a = *am; 3415 ruleset = *rsm; 3416 3417 REASON_SET(&reason, PFRES_MATCH); 3418 3419 if (r->log || (nr != NULL && nr->log)) { 3420 if (rewrite) 3421 m_copyback(m, off, hdrlen, pd->hdr.any); 3422 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3423 ruleset, pd, 1); 3424 } 3425 3426 if ((r->action == PF_DROP) && 3427 ((r->rule_flag & PFRULE_RETURNRST) || 3428 (r->rule_flag & PFRULE_RETURNICMP) || 3429 (r->rule_flag & PFRULE_RETURN))) { 3430 /* undo NAT changes, if they have taken place */ 3431 if (nr != NULL) { 3432 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3433 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3434 if (pd->sport) 3435 *pd->sport = sk->port[pd->sidx]; 3436 if (pd->dport) 3437 *pd->dport = sk->port[pd->didx]; 3438 if (pd->proto_sum) 3439 *pd->proto_sum = bproto_sum; 3440 if (pd->ip_sum) 3441 *pd->ip_sum = bip_sum; 3442 m_copyback(m, off, hdrlen, pd->hdr.any); 3443 } 3444 if (pd->proto == IPPROTO_TCP && 3445 ((r->rule_flag & PFRULE_RETURNRST) || 3446 (r->rule_flag & PFRULE_RETURN)) && 3447 !(th->th_flags & TH_RST)) { 3448 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3449 int len = 0; 3450 #ifdef INET 3451 struct ip *h4; 3452 #endif 3453 #ifdef INET6 3454 struct ip6_hdr *h6; 3455 #endif 3456 3457 switch (af) { 3458 #ifdef INET 3459 case AF_INET: 3460 h4 = mtod(m, struct ip *); 3461 len = ntohs(h4->ip_len) - off; 3462 break; 3463 #endif 3464 #ifdef INET6 3465 case AF_INET6: 3466 h6 = mtod(m, struct ip6_hdr *); 3467 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3468 break; 3469 #endif 3470 } 3471 3472 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3473 REASON_SET(&reason, PFRES_PROTCKSUM); 3474 else { 3475 if (th->th_flags & TH_SYN) 3476 ack++; 3477 if (th->th_flags & TH_FIN) 3478 ack++; 3479 pf_send_tcp(m, r, af, pd->dst, 3480 pd->src, th->th_dport, th->th_sport, 3481 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3482 r->return_ttl, 1, 0, kif->pfik_ifp); 3483 } 3484 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3485 r->return_icmp) 3486 pf_send_icmp(m, r->return_icmp >> 8, 3487 r->return_icmp & 255, af, r); 3488 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3489 r->return_icmp6) 3490 pf_send_icmp(m, r->return_icmp6 >> 8, 3491 r->return_icmp6 & 255, af, r); 3492 } 3493 3494 if (r->action == PF_DROP) 3495 goto cleanup; 3496 3497 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3498 REASON_SET(&reason, PFRES_MEMORY); 3499 goto cleanup; 3500 } 3501 if (rtableid >= 0) 3502 M_SETFIB(m, rtableid); 3503 3504 if (!state_icmp && (r->keep_state || nr != NULL || 3505 (pd->flags & PFDESC_TCP_NORM))) { 3506 int action; 3507 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3508 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3509 hdrlen); 3510 if (action != PF_PASS) 3511 return (action); 3512 } else { 3513 if (sk != NULL) 3514 uma_zfree(V_pf_state_key_z, sk); 3515 if (nk != NULL) 3516 uma_zfree(V_pf_state_key_z, nk); 3517 } 3518 3519 /* copy back packet headers if we performed NAT operations */ 3520 if (rewrite) 3521 m_copyback(m, off, hdrlen, pd->hdr.any); 3522 3523 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3524 direction == PF_OUT && 3525 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3526 /* 3527 * We want the state created, but we dont 3528 * want to send this in case a partner 3529 * firewall has to know about it to allow 3530 * replies through it. 3531 */ 3532 return (PF_DEFER); 3533 3534 return (PF_PASS); 3535 3536 cleanup: 3537 if (sk != NULL) 3538 uma_zfree(V_pf_state_key_z, sk); 3539 if (nk != NULL) 3540 uma_zfree(V_pf_state_key_z, nk); 3541 return (PF_DROP); 3542 } 3543 3544 static int 3545 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3546 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3547 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3548 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3549 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3550 { 3551 struct pf_state *s = NULL; 3552 struct pf_src_node *sn = NULL; 3553 struct tcphdr *th = pd->hdr.tcp; 3554 u_int16_t mss = V_tcp_mssdflt; 3555 u_short reason; 3556 3557 /* check maximums */ 3558 if (r->max_states && 3559 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3560 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3561 REASON_SET(&reason, PFRES_MAXSTATES); 3562 goto csfailed; 3563 } 3564 /* src node for filter rule */ 3565 if ((r->rule_flag & PFRULE_SRCTRACK || 3566 r->rpool.opts & PF_POOL_STICKYADDR) && 3567 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3568 REASON_SET(&reason, PFRES_SRCLIMIT); 3569 goto csfailed; 3570 } 3571 /* src node for translation rule */ 3572 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3573 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3574 REASON_SET(&reason, PFRES_SRCLIMIT); 3575 goto csfailed; 3576 } 3577 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3578 if (s == NULL) { 3579 REASON_SET(&reason, PFRES_MEMORY); 3580 goto csfailed; 3581 } 3582 s->rule.ptr = r; 3583 s->nat_rule.ptr = nr; 3584 s->anchor.ptr = a; 3585 STATE_INC_COUNTERS(s); 3586 if (r->allow_opts) 3587 s->state_flags |= PFSTATE_ALLOWOPTS; 3588 if (r->rule_flag & PFRULE_STATESLOPPY) 3589 s->state_flags |= PFSTATE_SLOPPY; 3590 s->log = r->log & PF_LOG_ALL; 3591 s->sync_state = PFSYNC_S_NONE; 3592 if (nr != NULL) 3593 s->log |= nr->log & PF_LOG_ALL; 3594 switch (pd->proto) { 3595 case IPPROTO_TCP: 3596 s->src.seqlo = ntohl(th->th_seq); 3597 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3598 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3599 r->keep_state == PF_STATE_MODULATE) { 3600 /* Generate sequence number modulator */ 3601 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3602 0) 3603 s->src.seqdiff = 1; 3604 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3605 htonl(s->src.seqlo + s->src.seqdiff), 0); 3606 *rewrite = 1; 3607 } else 3608 s->src.seqdiff = 0; 3609 if (th->th_flags & TH_SYN) { 3610 s->src.seqhi++; 3611 s->src.wscale = pf_get_wscale(m, off, 3612 th->th_off, pd->af); 3613 } 3614 s->src.max_win = MAX(ntohs(th->th_win), 1); 3615 if (s->src.wscale & PF_WSCALE_MASK) { 3616 /* Remove scale factor from initial window */ 3617 int win = s->src.max_win; 3618 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3619 s->src.max_win = (win - 1) >> 3620 (s->src.wscale & PF_WSCALE_MASK); 3621 } 3622 if (th->th_flags & TH_FIN) 3623 s->src.seqhi++; 3624 s->dst.seqhi = 1; 3625 s->dst.max_win = 1; 3626 s->src.state = TCPS_SYN_SENT; 3627 s->dst.state = TCPS_CLOSED; 3628 s->timeout = PFTM_TCP_FIRST_PACKET; 3629 break; 3630 case IPPROTO_UDP: 3631 s->src.state = PFUDPS_SINGLE; 3632 s->dst.state = PFUDPS_NO_TRAFFIC; 3633 s->timeout = PFTM_UDP_FIRST_PACKET; 3634 break; 3635 case IPPROTO_ICMP: 3636 #ifdef INET6 3637 case IPPROTO_ICMPV6: 3638 #endif 3639 s->timeout = PFTM_ICMP_FIRST_PACKET; 3640 break; 3641 default: 3642 s->src.state = PFOTHERS_SINGLE; 3643 s->dst.state = PFOTHERS_NO_TRAFFIC; 3644 s->timeout = PFTM_OTHER_FIRST_PACKET; 3645 } 3646 3647 if (r->rt) { 3648 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3649 REASON_SET(&reason, PFRES_MAPFAILED); 3650 pf_src_tree_remove_state(s); 3651 STATE_DEC_COUNTERS(s); 3652 uma_zfree(V_pf_state_z, s); 3653 goto csfailed; 3654 } 3655 s->rt_kif = r->rpool.cur->kif; 3656 } 3657 3658 s->creation = time_uptime; 3659 s->expire = time_uptime; 3660 3661 if (sn != NULL) 3662 s->src_node = sn; 3663 if (nsn != NULL) { 3664 /* XXX We only modify one side for now. */ 3665 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3666 s->nat_src_node = nsn; 3667 } 3668 if (pd->proto == IPPROTO_TCP) { 3669 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3670 off, pd, th, &s->src, &s->dst)) { 3671 REASON_SET(&reason, PFRES_MEMORY); 3672 pf_src_tree_remove_state(s); 3673 STATE_DEC_COUNTERS(s); 3674 uma_zfree(V_pf_state_z, s); 3675 return (PF_DROP); 3676 } 3677 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3678 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3679 &s->src, &s->dst, rewrite)) { 3680 /* This really shouldn't happen!!! */ 3681 DPFPRINTF(PF_DEBUG_URGENT, 3682 ("pf_normalize_tcp_stateful failed on first pkt")); 3683 pf_normalize_tcp_cleanup(s); 3684 pf_src_tree_remove_state(s); 3685 STATE_DEC_COUNTERS(s); 3686 uma_zfree(V_pf_state_z, s); 3687 return (PF_DROP); 3688 } 3689 } 3690 s->direction = pd->dir; 3691 3692 /* 3693 * sk/nk could already been setup by pf_get_translation(). 3694 */ 3695 if (nr == NULL) { 3696 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3697 __func__, nr, sk, nk)); 3698 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3699 if (sk == NULL) 3700 goto csfailed; 3701 nk = sk; 3702 } else 3703 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3704 __func__, nr, sk, nk)); 3705 3706 /* Swap sk/nk for PF_OUT. */ 3707 if (pf_state_insert(BOUND_IFACE(r, kif), 3708 (pd->dir == PF_IN) ? sk : nk, 3709 (pd->dir == PF_IN) ? nk : sk, s)) { 3710 if (pd->proto == IPPROTO_TCP) 3711 pf_normalize_tcp_cleanup(s); 3712 REASON_SET(&reason, PFRES_STATEINS); 3713 pf_src_tree_remove_state(s); 3714 STATE_DEC_COUNTERS(s); 3715 uma_zfree(V_pf_state_z, s); 3716 return (PF_DROP); 3717 } else 3718 *sm = s; 3719 3720 if (tag > 0) 3721 s->tag = tag; 3722 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3723 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3724 s->src.state = PF_TCPS_PROXY_SRC; 3725 /* undo NAT changes, if they have taken place */ 3726 if (nr != NULL) { 3727 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3728 if (pd->dir == PF_OUT) 3729 skt = s->key[PF_SK_STACK]; 3730 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3731 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3732 if (pd->sport) 3733 *pd->sport = skt->port[pd->sidx]; 3734 if (pd->dport) 3735 *pd->dport = skt->port[pd->didx]; 3736 if (pd->proto_sum) 3737 *pd->proto_sum = bproto_sum; 3738 if (pd->ip_sum) 3739 *pd->ip_sum = bip_sum; 3740 m_copyback(m, off, hdrlen, pd->hdr.any); 3741 } 3742 s->src.seqhi = htonl(arc4random()); 3743 /* Find mss option */ 3744 int rtid = M_GETFIB(m); 3745 mss = pf_get_mss(m, off, th->th_off, pd->af); 3746 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3747 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3748 s->src.mss = mss; 3749 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3750 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3751 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3752 REASON_SET(&reason, PFRES_SYNPROXY); 3753 return (PF_SYNPROXY_DROP); 3754 } 3755 3756 return (PF_PASS); 3757 3758 csfailed: 3759 if (sk != NULL) 3760 uma_zfree(V_pf_state_key_z, sk); 3761 if (nk != NULL) 3762 uma_zfree(V_pf_state_key_z, nk); 3763 3764 if (sn != NULL) { 3765 struct pf_srchash *sh; 3766 3767 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3768 PF_HASHROW_LOCK(sh); 3769 if (--sn->states == 0 && sn->expire == 0) { 3770 pf_unlink_src_node(sn); 3771 uma_zfree(V_pf_sources_z, sn); 3772 counter_u64_add( 3773 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3774 } 3775 PF_HASHROW_UNLOCK(sh); 3776 } 3777 3778 if (nsn != sn && nsn != NULL) { 3779 struct pf_srchash *sh; 3780 3781 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3782 PF_HASHROW_LOCK(sh); 3783 if (--nsn->states == 0 && nsn->expire == 0) { 3784 pf_unlink_src_node(nsn); 3785 uma_zfree(V_pf_sources_z, nsn); 3786 counter_u64_add( 3787 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3788 } 3789 PF_HASHROW_UNLOCK(sh); 3790 } 3791 3792 return (PF_DROP); 3793 } 3794 3795 static int 3796 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3797 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3798 struct pf_ruleset **rsm) 3799 { 3800 struct pf_rule *r, *a = NULL; 3801 struct pf_ruleset *ruleset = NULL; 3802 sa_family_t af = pd->af; 3803 u_short reason; 3804 int tag = -1; 3805 int asd = 0; 3806 int match = 0; 3807 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3808 3809 PF_RULES_RASSERT(); 3810 3811 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3812 while (r != NULL) { 3813 r->evaluations++; 3814 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3815 r = r->skip[PF_SKIP_IFP].ptr; 3816 else if (r->direction && r->direction != direction) 3817 r = r->skip[PF_SKIP_DIR].ptr; 3818 else if (r->af && r->af != af) 3819 r = r->skip[PF_SKIP_AF].ptr; 3820 else if (r->proto && r->proto != pd->proto) 3821 r = r->skip[PF_SKIP_PROTO].ptr; 3822 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3823 r->src.neg, kif, M_GETFIB(m))) 3824 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3825 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3826 r->dst.neg, NULL, M_GETFIB(m))) 3827 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3828 else if (r->tos && !(r->tos == pd->tos)) 3829 r = TAILQ_NEXT(r, entries); 3830 else if (r->os_fingerprint != PF_OSFP_ANY) 3831 r = TAILQ_NEXT(r, entries); 3832 else if (pd->proto == IPPROTO_UDP && 3833 (r->src.port_op || r->dst.port_op)) 3834 r = TAILQ_NEXT(r, entries); 3835 else if (pd->proto == IPPROTO_TCP && 3836 (r->src.port_op || r->dst.port_op || r->flagset)) 3837 r = TAILQ_NEXT(r, entries); 3838 else if ((pd->proto == IPPROTO_ICMP || 3839 pd->proto == IPPROTO_ICMPV6) && 3840 (r->type || r->code)) 3841 r = TAILQ_NEXT(r, entries); 3842 else if (r->prio && 3843 !pf_match_ieee8021q_pcp(r->prio, m)) 3844 r = TAILQ_NEXT(r, entries); 3845 else if (r->prob && r->prob <= 3846 (arc4random() % (UINT_MAX - 1) + 1)) 3847 r = TAILQ_NEXT(r, entries); 3848 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3849 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3850 r = TAILQ_NEXT(r, entries); 3851 else { 3852 if (r->anchor == NULL) { 3853 match = 1; 3854 *rm = r; 3855 *am = a; 3856 *rsm = ruleset; 3857 if ((*rm)->quick) 3858 break; 3859 r = TAILQ_NEXT(r, entries); 3860 } else 3861 pf_step_into_anchor(anchor_stack, &asd, 3862 &ruleset, PF_RULESET_FILTER, &r, &a, 3863 &match); 3864 } 3865 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3866 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3867 break; 3868 } 3869 r = *rm; 3870 a = *am; 3871 ruleset = *rsm; 3872 3873 REASON_SET(&reason, PFRES_MATCH); 3874 3875 if (r->log) 3876 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3877 1); 3878 3879 if (r->action != PF_PASS) 3880 return (PF_DROP); 3881 3882 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3883 REASON_SET(&reason, PFRES_MEMORY); 3884 return (PF_DROP); 3885 } 3886 3887 return (PF_PASS); 3888 } 3889 3890 static int 3891 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3892 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3893 struct pf_pdesc *pd, u_short *reason, int *copyback) 3894 { 3895 struct tcphdr *th = pd->hdr.tcp; 3896 u_int16_t win = ntohs(th->th_win); 3897 u_int32_t ack, end, seq, orig_seq; 3898 u_int8_t sws, dws; 3899 int ackskew; 3900 3901 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3902 sws = src->wscale & PF_WSCALE_MASK; 3903 dws = dst->wscale & PF_WSCALE_MASK; 3904 } else 3905 sws = dws = 0; 3906 3907 /* 3908 * Sequence tracking algorithm from Guido van Rooij's paper: 3909 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3910 * tcp_filtering.ps 3911 */ 3912 3913 orig_seq = seq = ntohl(th->th_seq); 3914 if (src->seqlo == 0) { 3915 /* First packet from this end. Set its state */ 3916 3917 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3918 src->scrub == NULL) { 3919 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3920 REASON_SET(reason, PFRES_MEMORY); 3921 return (PF_DROP); 3922 } 3923 } 3924 3925 /* Deferred generation of sequence number modulator */ 3926 if (dst->seqdiff && !src->seqdiff) { 3927 /* use random iss for the TCP server */ 3928 while ((src->seqdiff = arc4random() - seq) == 0) 3929 ; 3930 ack = ntohl(th->th_ack) - dst->seqdiff; 3931 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3932 src->seqdiff), 0); 3933 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 3934 *copyback = 1; 3935 } else { 3936 ack = ntohl(th->th_ack); 3937 } 3938 3939 end = seq + pd->p_len; 3940 if (th->th_flags & TH_SYN) { 3941 end++; 3942 if (dst->wscale & PF_WSCALE_FLAG) { 3943 src->wscale = pf_get_wscale(m, off, th->th_off, 3944 pd->af); 3945 if (src->wscale & PF_WSCALE_FLAG) { 3946 /* Remove scale factor from initial 3947 * window */ 3948 sws = src->wscale & PF_WSCALE_MASK; 3949 win = ((u_int32_t)win + (1 << sws) - 1) 3950 >> sws; 3951 dws = dst->wscale & PF_WSCALE_MASK; 3952 } else { 3953 /* fixup other window */ 3954 dst->max_win <<= dst->wscale & 3955 PF_WSCALE_MASK; 3956 /* in case of a retrans SYN|ACK */ 3957 dst->wscale = 0; 3958 } 3959 } 3960 } 3961 if (th->th_flags & TH_FIN) 3962 end++; 3963 3964 src->seqlo = seq; 3965 if (src->state < TCPS_SYN_SENT) 3966 src->state = TCPS_SYN_SENT; 3967 3968 /* 3969 * May need to slide the window (seqhi may have been set by 3970 * the crappy stack check or if we picked up the connection 3971 * after establishment) 3972 */ 3973 if (src->seqhi == 1 || 3974 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3975 src->seqhi = end + MAX(1, dst->max_win << dws); 3976 if (win > src->max_win) 3977 src->max_win = win; 3978 3979 } else { 3980 ack = ntohl(th->th_ack) - dst->seqdiff; 3981 if (src->seqdiff) { 3982 /* Modulate sequence numbers */ 3983 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3984 src->seqdiff), 0); 3985 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 3986 *copyback = 1; 3987 } 3988 end = seq + pd->p_len; 3989 if (th->th_flags & TH_SYN) 3990 end++; 3991 if (th->th_flags & TH_FIN) 3992 end++; 3993 } 3994 3995 if ((th->th_flags & TH_ACK) == 0) { 3996 /* Let it pass through the ack skew check */ 3997 ack = dst->seqlo; 3998 } else if ((ack == 0 && 3999 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4000 /* broken tcp stacks do not set ack */ 4001 (dst->state < TCPS_SYN_SENT)) { 4002 /* 4003 * Many stacks (ours included) will set the ACK number in an 4004 * FIN|ACK if the SYN times out -- no sequence to ACK. 4005 */ 4006 ack = dst->seqlo; 4007 } 4008 4009 if (seq == end) { 4010 /* Ease sequencing restrictions on no data packets */ 4011 seq = src->seqlo; 4012 end = seq; 4013 } 4014 4015 ackskew = dst->seqlo - ack; 4016 4017 4018 /* 4019 * Need to demodulate the sequence numbers in any TCP SACK options 4020 * (Selective ACK). We could optionally validate the SACK values 4021 * against the current ACK window, either forwards or backwards, but 4022 * I'm not confident that SACK has been implemented properly 4023 * everywhere. It wouldn't surprise me if several stacks accidentally 4024 * SACK too far backwards of previously ACKed data. There really aren't 4025 * any security implications of bad SACKing unless the target stack 4026 * doesn't validate the option length correctly. Someone trying to 4027 * spoof into a TCP connection won't bother blindly sending SACK 4028 * options anyway. 4029 */ 4030 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4031 if (pf_modulate_sack(m, off, pd, th, dst)) 4032 *copyback = 1; 4033 } 4034 4035 4036 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4037 if (SEQ_GEQ(src->seqhi, end) && 4038 /* Last octet inside other's window space */ 4039 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4040 /* Retrans: not more than one window back */ 4041 (ackskew >= -MAXACKWINDOW) && 4042 /* Acking not more than one reassembled fragment backwards */ 4043 (ackskew <= (MAXACKWINDOW << sws)) && 4044 /* Acking not more than one window forward */ 4045 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4046 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4047 (pd->flags & PFDESC_IP_REAS) == 0)) { 4048 /* Require an exact/+1 sequence match on resets when possible */ 4049 4050 if (dst->scrub || src->scrub) { 4051 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4052 *state, src, dst, copyback)) 4053 return (PF_DROP); 4054 } 4055 4056 /* update max window */ 4057 if (src->max_win < win) 4058 src->max_win = win; 4059 /* synchronize sequencing */ 4060 if (SEQ_GT(end, src->seqlo)) 4061 src->seqlo = end; 4062 /* slide the window of what the other end can send */ 4063 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4064 dst->seqhi = ack + MAX((win << sws), 1); 4065 4066 4067 /* update states */ 4068 if (th->th_flags & TH_SYN) 4069 if (src->state < TCPS_SYN_SENT) 4070 src->state = TCPS_SYN_SENT; 4071 if (th->th_flags & TH_FIN) 4072 if (src->state < TCPS_CLOSING) 4073 src->state = TCPS_CLOSING; 4074 if (th->th_flags & TH_ACK) { 4075 if (dst->state == TCPS_SYN_SENT) { 4076 dst->state = TCPS_ESTABLISHED; 4077 if (src->state == TCPS_ESTABLISHED && 4078 (*state)->src_node != NULL && 4079 pf_src_connlimit(state)) { 4080 REASON_SET(reason, PFRES_SRCLIMIT); 4081 return (PF_DROP); 4082 } 4083 } else if (dst->state == TCPS_CLOSING) 4084 dst->state = TCPS_FIN_WAIT_2; 4085 } 4086 if (th->th_flags & TH_RST) 4087 src->state = dst->state = TCPS_TIME_WAIT; 4088 4089 /* update expire time */ 4090 (*state)->expire = time_uptime; 4091 if (src->state >= TCPS_FIN_WAIT_2 && 4092 dst->state >= TCPS_FIN_WAIT_2) 4093 (*state)->timeout = PFTM_TCP_CLOSED; 4094 else if (src->state >= TCPS_CLOSING && 4095 dst->state >= TCPS_CLOSING) 4096 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4097 else if (src->state < TCPS_ESTABLISHED || 4098 dst->state < TCPS_ESTABLISHED) 4099 (*state)->timeout = PFTM_TCP_OPENING; 4100 else if (src->state >= TCPS_CLOSING || 4101 dst->state >= TCPS_CLOSING) 4102 (*state)->timeout = PFTM_TCP_CLOSING; 4103 else 4104 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4105 4106 /* Fall through to PASS packet */ 4107 4108 } else if ((dst->state < TCPS_SYN_SENT || 4109 dst->state >= TCPS_FIN_WAIT_2 || 4110 src->state >= TCPS_FIN_WAIT_2) && 4111 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4112 /* Within a window forward of the originating packet */ 4113 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4114 /* Within a window backward of the originating packet */ 4115 4116 /* 4117 * This currently handles three situations: 4118 * 1) Stupid stacks will shotgun SYNs before their peer 4119 * replies. 4120 * 2) When PF catches an already established stream (the 4121 * firewall rebooted, the state table was flushed, routes 4122 * changed...) 4123 * 3) Packets get funky immediately after the connection 4124 * closes (this should catch Solaris spurious ACK|FINs 4125 * that web servers like to spew after a close) 4126 * 4127 * This must be a little more careful than the above code 4128 * since packet floods will also be caught here. We don't 4129 * update the TTL here to mitigate the damage of a packet 4130 * flood and so the same code can handle awkward establishment 4131 * and a loosened connection close. 4132 * In the establishment case, a correct peer response will 4133 * validate the connection, go through the normal state code 4134 * and keep updating the state TTL. 4135 */ 4136 4137 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4138 printf("pf: loose state match: "); 4139 pf_print_state(*state); 4140 pf_print_flags(th->th_flags); 4141 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4142 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4143 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4144 (unsigned long long)(*state)->packets[1], 4145 pd->dir == PF_IN ? "in" : "out", 4146 pd->dir == (*state)->direction ? "fwd" : "rev"); 4147 } 4148 4149 if (dst->scrub || src->scrub) { 4150 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4151 *state, src, dst, copyback)) 4152 return (PF_DROP); 4153 } 4154 4155 /* update max window */ 4156 if (src->max_win < win) 4157 src->max_win = win; 4158 /* synchronize sequencing */ 4159 if (SEQ_GT(end, src->seqlo)) 4160 src->seqlo = end; 4161 /* slide the window of what the other end can send */ 4162 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4163 dst->seqhi = ack + MAX((win << sws), 1); 4164 4165 /* 4166 * Cannot set dst->seqhi here since this could be a shotgunned 4167 * SYN and not an already established connection. 4168 */ 4169 4170 if (th->th_flags & TH_FIN) 4171 if (src->state < TCPS_CLOSING) 4172 src->state = TCPS_CLOSING; 4173 if (th->th_flags & TH_RST) 4174 src->state = dst->state = TCPS_TIME_WAIT; 4175 4176 /* Fall through to PASS packet */ 4177 4178 } else { 4179 if ((*state)->dst.state == TCPS_SYN_SENT && 4180 (*state)->src.state == TCPS_SYN_SENT) { 4181 /* Send RST for state mismatches during handshake */ 4182 if (!(th->th_flags & TH_RST)) 4183 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4184 pd->dst, pd->src, th->th_dport, 4185 th->th_sport, ntohl(th->th_ack), 0, 4186 TH_RST, 0, 0, 4187 (*state)->rule.ptr->return_ttl, 1, 0, 4188 kif->pfik_ifp); 4189 src->seqlo = 0; 4190 src->seqhi = 1; 4191 src->max_win = 1; 4192 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4193 printf("pf: BAD state: "); 4194 pf_print_state(*state); 4195 pf_print_flags(th->th_flags); 4196 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4197 "pkts=%llu:%llu dir=%s,%s\n", 4198 seq, orig_seq, ack, pd->p_len, ackskew, 4199 (unsigned long long)(*state)->packets[0], 4200 (unsigned long long)(*state)->packets[1], 4201 pd->dir == PF_IN ? "in" : "out", 4202 pd->dir == (*state)->direction ? "fwd" : "rev"); 4203 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4204 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4205 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4206 ' ': '2', 4207 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4208 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4209 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4210 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4211 } 4212 REASON_SET(reason, PFRES_BADSTATE); 4213 return (PF_DROP); 4214 } 4215 4216 return (PF_PASS); 4217 } 4218 4219 static int 4220 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4221 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4222 { 4223 struct tcphdr *th = pd->hdr.tcp; 4224 4225 if (th->th_flags & TH_SYN) 4226 if (src->state < TCPS_SYN_SENT) 4227 src->state = TCPS_SYN_SENT; 4228 if (th->th_flags & TH_FIN) 4229 if (src->state < TCPS_CLOSING) 4230 src->state = TCPS_CLOSING; 4231 if (th->th_flags & TH_ACK) { 4232 if (dst->state == TCPS_SYN_SENT) { 4233 dst->state = TCPS_ESTABLISHED; 4234 if (src->state == TCPS_ESTABLISHED && 4235 (*state)->src_node != NULL && 4236 pf_src_connlimit(state)) { 4237 REASON_SET(reason, PFRES_SRCLIMIT); 4238 return (PF_DROP); 4239 } 4240 } else if (dst->state == TCPS_CLOSING) { 4241 dst->state = TCPS_FIN_WAIT_2; 4242 } else if (src->state == TCPS_SYN_SENT && 4243 dst->state < TCPS_SYN_SENT) { 4244 /* 4245 * Handle a special sloppy case where we only see one 4246 * half of the connection. If there is a ACK after 4247 * the initial SYN without ever seeing a packet from 4248 * the destination, set the connection to established. 4249 */ 4250 dst->state = src->state = TCPS_ESTABLISHED; 4251 if ((*state)->src_node != NULL && 4252 pf_src_connlimit(state)) { 4253 REASON_SET(reason, PFRES_SRCLIMIT); 4254 return (PF_DROP); 4255 } 4256 } else if (src->state == TCPS_CLOSING && 4257 dst->state == TCPS_ESTABLISHED && 4258 dst->seqlo == 0) { 4259 /* 4260 * Handle the closing of half connections where we 4261 * don't see the full bidirectional FIN/ACK+ACK 4262 * handshake. 4263 */ 4264 dst->state = TCPS_CLOSING; 4265 } 4266 } 4267 if (th->th_flags & TH_RST) 4268 src->state = dst->state = TCPS_TIME_WAIT; 4269 4270 /* update expire time */ 4271 (*state)->expire = time_uptime; 4272 if (src->state >= TCPS_FIN_WAIT_2 && 4273 dst->state >= TCPS_FIN_WAIT_2) 4274 (*state)->timeout = PFTM_TCP_CLOSED; 4275 else if (src->state >= TCPS_CLOSING && 4276 dst->state >= TCPS_CLOSING) 4277 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4278 else if (src->state < TCPS_ESTABLISHED || 4279 dst->state < TCPS_ESTABLISHED) 4280 (*state)->timeout = PFTM_TCP_OPENING; 4281 else if (src->state >= TCPS_CLOSING || 4282 dst->state >= TCPS_CLOSING) 4283 (*state)->timeout = PFTM_TCP_CLOSING; 4284 else 4285 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4286 4287 return (PF_PASS); 4288 } 4289 4290 static int 4291 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4292 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4293 u_short *reason) 4294 { 4295 struct pf_state_key_cmp key; 4296 struct tcphdr *th = pd->hdr.tcp; 4297 int copyback = 0; 4298 struct pf_state_peer *src, *dst; 4299 struct pf_state_key *sk; 4300 4301 bzero(&key, sizeof(key)); 4302 key.af = pd->af; 4303 key.proto = IPPROTO_TCP; 4304 if (direction == PF_IN) { /* wire side, straight */ 4305 PF_ACPY(&key.addr[0], pd->src, key.af); 4306 PF_ACPY(&key.addr[1], pd->dst, key.af); 4307 key.port[0] = th->th_sport; 4308 key.port[1] = th->th_dport; 4309 } else { /* stack side, reverse */ 4310 PF_ACPY(&key.addr[1], pd->src, key.af); 4311 PF_ACPY(&key.addr[0], pd->dst, key.af); 4312 key.port[1] = th->th_sport; 4313 key.port[0] = th->th_dport; 4314 } 4315 4316 STATE_LOOKUP(kif, &key, direction, *state, pd); 4317 4318 if (direction == (*state)->direction) { 4319 src = &(*state)->src; 4320 dst = &(*state)->dst; 4321 } else { 4322 src = &(*state)->dst; 4323 dst = &(*state)->src; 4324 } 4325 4326 sk = (*state)->key[pd->didx]; 4327 4328 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4329 if (direction != (*state)->direction) { 4330 REASON_SET(reason, PFRES_SYNPROXY); 4331 return (PF_SYNPROXY_DROP); 4332 } 4333 if (th->th_flags & TH_SYN) { 4334 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4335 REASON_SET(reason, PFRES_SYNPROXY); 4336 return (PF_DROP); 4337 } 4338 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4339 pd->src, th->th_dport, th->th_sport, 4340 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4341 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4342 REASON_SET(reason, PFRES_SYNPROXY); 4343 return (PF_SYNPROXY_DROP); 4344 } else if (!(th->th_flags & TH_ACK) || 4345 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4346 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4347 REASON_SET(reason, PFRES_SYNPROXY); 4348 return (PF_DROP); 4349 } else if ((*state)->src_node != NULL && 4350 pf_src_connlimit(state)) { 4351 REASON_SET(reason, PFRES_SRCLIMIT); 4352 return (PF_DROP); 4353 } else 4354 (*state)->src.state = PF_TCPS_PROXY_DST; 4355 } 4356 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4357 if (direction == (*state)->direction) { 4358 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4359 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4360 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4361 REASON_SET(reason, PFRES_SYNPROXY); 4362 return (PF_DROP); 4363 } 4364 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4365 if ((*state)->dst.seqhi == 1) 4366 (*state)->dst.seqhi = htonl(arc4random()); 4367 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4368 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4369 sk->port[pd->sidx], sk->port[pd->didx], 4370 (*state)->dst.seqhi, 0, TH_SYN, 0, 4371 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4372 REASON_SET(reason, PFRES_SYNPROXY); 4373 return (PF_SYNPROXY_DROP); 4374 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4375 (TH_SYN|TH_ACK)) || 4376 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4377 REASON_SET(reason, PFRES_SYNPROXY); 4378 return (PF_DROP); 4379 } else { 4380 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4381 (*state)->dst.seqlo = ntohl(th->th_seq); 4382 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4383 pd->src, th->th_dport, th->th_sport, 4384 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4385 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4386 (*state)->tag, NULL); 4387 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4388 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4389 sk->port[pd->sidx], sk->port[pd->didx], 4390 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4391 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4392 (*state)->src.seqdiff = (*state)->dst.seqhi - 4393 (*state)->src.seqlo; 4394 (*state)->dst.seqdiff = (*state)->src.seqhi - 4395 (*state)->dst.seqlo; 4396 (*state)->src.seqhi = (*state)->src.seqlo + 4397 (*state)->dst.max_win; 4398 (*state)->dst.seqhi = (*state)->dst.seqlo + 4399 (*state)->src.max_win; 4400 (*state)->src.wscale = (*state)->dst.wscale = 0; 4401 (*state)->src.state = (*state)->dst.state = 4402 TCPS_ESTABLISHED; 4403 REASON_SET(reason, PFRES_SYNPROXY); 4404 return (PF_SYNPROXY_DROP); 4405 } 4406 } 4407 4408 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4409 dst->state >= TCPS_FIN_WAIT_2 && 4410 src->state >= TCPS_FIN_WAIT_2) { 4411 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4412 printf("pf: state reuse "); 4413 pf_print_state(*state); 4414 pf_print_flags(th->th_flags); 4415 printf("\n"); 4416 } 4417 /* XXX make sure it's the same direction ?? */ 4418 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4419 pf_unlink_state(*state, PF_ENTER_LOCKED); 4420 *state = NULL; 4421 return (PF_DROP); 4422 } 4423 4424 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4425 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4426 return (PF_DROP); 4427 } else { 4428 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4429 ©back) == PF_DROP) 4430 return (PF_DROP); 4431 } 4432 4433 /* translate source/destination address, if necessary */ 4434 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4435 struct pf_state_key *nk = (*state)->key[pd->didx]; 4436 4437 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4438 nk->port[pd->sidx] != th->th_sport) 4439 pf_change_ap(m, pd->src, &th->th_sport, 4440 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4441 nk->port[pd->sidx], 0, pd->af); 4442 4443 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4444 nk->port[pd->didx] != th->th_dport) 4445 pf_change_ap(m, pd->dst, &th->th_dport, 4446 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4447 nk->port[pd->didx], 0, pd->af); 4448 copyback = 1; 4449 } 4450 4451 /* Copyback sequence modulation or stateful scrub changes if needed */ 4452 if (copyback) 4453 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4454 4455 return (PF_PASS); 4456 } 4457 4458 static int 4459 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4460 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4461 { 4462 struct pf_state_peer *src, *dst; 4463 struct pf_state_key_cmp key; 4464 struct udphdr *uh = pd->hdr.udp; 4465 4466 bzero(&key, sizeof(key)); 4467 key.af = pd->af; 4468 key.proto = IPPROTO_UDP; 4469 if (direction == PF_IN) { /* wire side, straight */ 4470 PF_ACPY(&key.addr[0], pd->src, key.af); 4471 PF_ACPY(&key.addr[1], pd->dst, key.af); 4472 key.port[0] = uh->uh_sport; 4473 key.port[1] = uh->uh_dport; 4474 } else { /* stack side, reverse */ 4475 PF_ACPY(&key.addr[1], pd->src, key.af); 4476 PF_ACPY(&key.addr[0], pd->dst, key.af); 4477 key.port[1] = uh->uh_sport; 4478 key.port[0] = uh->uh_dport; 4479 } 4480 4481 STATE_LOOKUP(kif, &key, direction, *state, pd); 4482 4483 if (direction == (*state)->direction) { 4484 src = &(*state)->src; 4485 dst = &(*state)->dst; 4486 } else { 4487 src = &(*state)->dst; 4488 dst = &(*state)->src; 4489 } 4490 4491 /* update states */ 4492 if (src->state < PFUDPS_SINGLE) 4493 src->state = PFUDPS_SINGLE; 4494 if (dst->state == PFUDPS_SINGLE) 4495 dst->state = PFUDPS_MULTIPLE; 4496 4497 /* update expire time */ 4498 (*state)->expire = time_uptime; 4499 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4500 (*state)->timeout = PFTM_UDP_MULTIPLE; 4501 else 4502 (*state)->timeout = PFTM_UDP_SINGLE; 4503 4504 /* translate source/destination address, if necessary */ 4505 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4506 struct pf_state_key *nk = (*state)->key[pd->didx]; 4507 4508 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4509 nk->port[pd->sidx] != uh->uh_sport) 4510 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4511 &uh->uh_sum, &nk->addr[pd->sidx], 4512 nk->port[pd->sidx], 1, pd->af); 4513 4514 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4515 nk->port[pd->didx] != uh->uh_dport) 4516 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4517 &uh->uh_sum, &nk->addr[pd->didx], 4518 nk->port[pd->didx], 1, pd->af); 4519 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4520 } 4521 4522 return (PF_PASS); 4523 } 4524 4525 static int 4526 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4527 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4528 { 4529 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4530 u_int16_t icmpid = 0, *icmpsum; 4531 u_int8_t icmptype; 4532 int state_icmp = 0; 4533 struct pf_state_key_cmp key; 4534 4535 bzero(&key, sizeof(key)); 4536 switch (pd->proto) { 4537 #ifdef INET 4538 case IPPROTO_ICMP: 4539 icmptype = pd->hdr.icmp->icmp_type; 4540 icmpid = pd->hdr.icmp->icmp_id; 4541 icmpsum = &pd->hdr.icmp->icmp_cksum; 4542 4543 if (icmptype == ICMP_UNREACH || 4544 icmptype == ICMP_SOURCEQUENCH || 4545 icmptype == ICMP_REDIRECT || 4546 icmptype == ICMP_TIMXCEED || 4547 icmptype == ICMP_PARAMPROB) 4548 state_icmp++; 4549 break; 4550 #endif /* INET */ 4551 #ifdef INET6 4552 case IPPROTO_ICMPV6: 4553 icmptype = pd->hdr.icmp6->icmp6_type; 4554 icmpid = pd->hdr.icmp6->icmp6_id; 4555 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4556 4557 if (icmptype == ICMP6_DST_UNREACH || 4558 icmptype == ICMP6_PACKET_TOO_BIG || 4559 icmptype == ICMP6_TIME_EXCEEDED || 4560 icmptype == ICMP6_PARAM_PROB) 4561 state_icmp++; 4562 break; 4563 #endif /* INET6 */ 4564 } 4565 4566 if (!state_icmp) { 4567 4568 /* 4569 * ICMP query/reply message not related to a TCP/UDP packet. 4570 * Search for an ICMP state. 4571 */ 4572 key.af = pd->af; 4573 key.proto = pd->proto; 4574 key.port[0] = key.port[1] = icmpid; 4575 if (direction == PF_IN) { /* wire side, straight */ 4576 PF_ACPY(&key.addr[0], pd->src, key.af); 4577 PF_ACPY(&key.addr[1], pd->dst, key.af); 4578 } else { /* stack side, reverse */ 4579 PF_ACPY(&key.addr[1], pd->src, key.af); 4580 PF_ACPY(&key.addr[0], pd->dst, key.af); 4581 } 4582 4583 STATE_LOOKUP(kif, &key, direction, *state, pd); 4584 4585 (*state)->expire = time_uptime; 4586 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4587 4588 /* translate source/destination address, if necessary */ 4589 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4590 struct pf_state_key *nk = (*state)->key[pd->didx]; 4591 4592 switch (pd->af) { 4593 #ifdef INET 4594 case AF_INET: 4595 if (PF_ANEQ(pd->src, 4596 &nk->addr[pd->sidx], AF_INET)) 4597 pf_change_a(&saddr->v4.s_addr, 4598 pd->ip_sum, 4599 nk->addr[pd->sidx].v4.s_addr, 0); 4600 4601 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4602 AF_INET)) 4603 pf_change_a(&daddr->v4.s_addr, 4604 pd->ip_sum, 4605 nk->addr[pd->didx].v4.s_addr, 0); 4606 4607 if (nk->port[0] != 4608 pd->hdr.icmp->icmp_id) { 4609 pd->hdr.icmp->icmp_cksum = 4610 pf_cksum_fixup( 4611 pd->hdr.icmp->icmp_cksum, icmpid, 4612 nk->port[pd->sidx], 0); 4613 pd->hdr.icmp->icmp_id = 4614 nk->port[pd->sidx]; 4615 } 4616 4617 m_copyback(m, off, ICMP_MINLEN, 4618 (caddr_t )pd->hdr.icmp); 4619 break; 4620 #endif /* INET */ 4621 #ifdef INET6 4622 case AF_INET6: 4623 if (PF_ANEQ(pd->src, 4624 &nk->addr[pd->sidx], AF_INET6)) 4625 pf_change_a6(saddr, 4626 &pd->hdr.icmp6->icmp6_cksum, 4627 &nk->addr[pd->sidx], 0); 4628 4629 if (PF_ANEQ(pd->dst, 4630 &nk->addr[pd->didx], AF_INET6)) 4631 pf_change_a6(daddr, 4632 &pd->hdr.icmp6->icmp6_cksum, 4633 &nk->addr[pd->didx], 0); 4634 4635 m_copyback(m, off, sizeof(struct icmp6_hdr), 4636 (caddr_t )pd->hdr.icmp6); 4637 break; 4638 #endif /* INET6 */ 4639 } 4640 } 4641 return (PF_PASS); 4642 4643 } else { 4644 /* 4645 * ICMP error message in response to a TCP/UDP packet. 4646 * Extract the inner TCP/UDP header and search for that state. 4647 */ 4648 4649 struct pf_pdesc pd2; 4650 bzero(&pd2, sizeof pd2); 4651 #ifdef INET 4652 struct ip h2; 4653 #endif /* INET */ 4654 #ifdef INET6 4655 struct ip6_hdr h2_6; 4656 int terminal = 0; 4657 #endif /* INET6 */ 4658 int ipoff2 = 0; 4659 int off2 = 0; 4660 4661 pd2.af = pd->af; 4662 /* Payload packet is from the opposite direction. */ 4663 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4664 pd2.didx = (direction == PF_IN) ? 0 : 1; 4665 switch (pd->af) { 4666 #ifdef INET 4667 case AF_INET: 4668 /* offset of h2 in mbuf chain */ 4669 ipoff2 = off + ICMP_MINLEN; 4670 4671 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4672 NULL, reason, pd2.af)) { 4673 DPFPRINTF(PF_DEBUG_MISC, 4674 ("pf: ICMP error message too short " 4675 "(ip)\n")); 4676 return (PF_DROP); 4677 } 4678 /* 4679 * ICMP error messages don't refer to non-first 4680 * fragments 4681 */ 4682 if (h2.ip_off & htons(IP_OFFMASK)) { 4683 REASON_SET(reason, PFRES_FRAG); 4684 return (PF_DROP); 4685 } 4686 4687 /* offset of protocol header that follows h2 */ 4688 off2 = ipoff2 + (h2.ip_hl << 2); 4689 4690 pd2.proto = h2.ip_p; 4691 pd2.src = (struct pf_addr *)&h2.ip_src; 4692 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4693 pd2.ip_sum = &h2.ip_sum; 4694 break; 4695 #endif /* INET */ 4696 #ifdef INET6 4697 case AF_INET6: 4698 ipoff2 = off + sizeof(struct icmp6_hdr); 4699 4700 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4701 NULL, reason, pd2.af)) { 4702 DPFPRINTF(PF_DEBUG_MISC, 4703 ("pf: ICMP error message too short " 4704 "(ip6)\n")); 4705 return (PF_DROP); 4706 } 4707 pd2.proto = h2_6.ip6_nxt; 4708 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4709 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4710 pd2.ip_sum = NULL; 4711 off2 = ipoff2 + sizeof(h2_6); 4712 do { 4713 switch (pd2.proto) { 4714 case IPPROTO_FRAGMENT: 4715 /* 4716 * ICMPv6 error messages for 4717 * non-first fragments 4718 */ 4719 REASON_SET(reason, PFRES_FRAG); 4720 return (PF_DROP); 4721 case IPPROTO_AH: 4722 case IPPROTO_HOPOPTS: 4723 case IPPROTO_ROUTING: 4724 case IPPROTO_DSTOPTS: { 4725 /* get next header and header length */ 4726 struct ip6_ext opt6; 4727 4728 if (!pf_pull_hdr(m, off2, &opt6, 4729 sizeof(opt6), NULL, reason, 4730 pd2.af)) { 4731 DPFPRINTF(PF_DEBUG_MISC, 4732 ("pf: ICMPv6 short opt\n")); 4733 return (PF_DROP); 4734 } 4735 if (pd2.proto == IPPROTO_AH) 4736 off2 += (opt6.ip6e_len + 2) * 4; 4737 else 4738 off2 += (opt6.ip6e_len + 1) * 8; 4739 pd2.proto = opt6.ip6e_nxt; 4740 /* goto the next header */ 4741 break; 4742 } 4743 default: 4744 terminal++; 4745 break; 4746 } 4747 } while (!terminal); 4748 break; 4749 #endif /* INET6 */ 4750 } 4751 4752 switch (pd2.proto) { 4753 case IPPROTO_TCP: { 4754 struct tcphdr th; 4755 u_int32_t seq; 4756 struct pf_state_peer *src, *dst; 4757 u_int8_t dws; 4758 int copyback = 0; 4759 4760 /* 4761 * Only the first 8 bytes of the TCP header can be 4762 * expected. Don't access any TCP header fields after 4763 * th_seq, an ackskew test is not possible. 4764 */ 4765 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4766 pd2.af)) { 4767 DPFPRINTF(PF_DEBUG_MISC, 4768 ("pf: ICMP error message too short " 4769 "(tcp)\n")); 4770 return (PF_DROP); 4771 } 4772 4773 key.af = pd2.af; 4774 key.proto = IPPROTO_TCP; 4775 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4776 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4777 key.port[pd2.sidx] = th.th_sport; 4778 key.port[pd2.didx] = th.th_dport; 4779 4780 STATE_LOOKUP(kif, &key, direction, *state, pd); 4781 4782 if (direction == (*state)->direction) { 4783 src = &(*state)->dst; 4784 dst = &(*state)->src; 4785 } else { 4786 src = &(*state)->src; 4787 dst = &(*state)->dst; 4788 } 4789 4790 if (src->wscale && dst->wscale) 4791 dws = dst->wscale & PF_WSCALE_MASK; 4792 else 4793 dws = 0; 4794 4795 /* Demodulate sequence number */ 4796 seq = ntohl(th.th_seq) - src->seqdiff; 4797 if (src->seqdiff) { 4798 pf_change_a(&th.th_seq, icmpsum, 4799 htonl(seq), 0); 4800 copyback = 1; 4801 } 4802 4803 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4804 (!SEQ_GEQ(src->seqhi, seq) || 4805 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4806 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4807 printf("pf: BAD ICMP %d:%d ", 4808 icmptype, pd->hdr.icmp->icmp_code); 4809 pf_print_host(pd->src, 0, pd->af); 4810 printf(" -> "); 4811 pf_print_host(pd->dst, 0, pd->af); 4812 printf(" state: "); 4813 pf_print_state(*state); 4814 printf(" seq=%u\n", seq); 4815 } 4816 REASON_SET(reason, PFRES_BADSTATE); 4817 return (PF_DROP); 4818 } else { 4819 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4820 printf("pf: OK ICMP %d:%d ", 4821 icmptype, pd->hdr.icmp->icmp_code); 4822 pf_print_host(pd->src, 0, pd->af); 4823 printf(" -> "); 4824 pf_print_host(pd->dst, 0, pd->af); 4825 printf(" state: "); 4826 pf_print_state(*state); 4827 printf(" seq=%u\n", seq); 4828 } 4829 } 4830 4831 /* translate source/destination address, if necessary */ 4832 if ((*state)->key[PF_SK_WIRE] != 4833 (*state)->key[PF_SK_STACK]) { 4834 struct pf_state_key *nk = 4835 (*state)->key[pd->didx]; 4836 4837 if (PF_ANEQ(pd2.src, 4838 &nk->addr[pd2.sidx], pd2.af) || 4839 nk->port[pd2.sidx] != th.th_sport) 4840 pf_change_icmp(pd2.src, &th.th_sport, 4841 daddr, &nk->addr[pd2.sidx], 4842 nk->port[pd2.sidx], NULL, 4843 pd2.ip_sum, icmpsum, 4844 pd->ip_sum, 0, pd2.af); 4845 4846 if (PF_ANEQ(pd2.dst, 4847 &nk->addr[pd2.didx], pd2.af) || 4848 nk->port[pd2.didx] != th.th_dport) 4849 pf_change_icmp(pd2.dst, &th.th_dport, 4850 saddr, &nk->addr[pd2.didx], 4851 nk->port[pd2.didx], NULL, 4852 pd2.ip_sum, icmpsum, 4853 pd->ip_sum, 0, pd2.af); 4854 copyback = 1; 4855 } 4856 4857 if (copyback) { 4858 switch (pd2.af) { 4859 #ifdef INET 4860 case AF_INET: 4861 m_copyback(m, off, ICMP_MINLEN, 4862 (caddr_t )pd->hdr.icmp); 4863 m_copyback(m, ipoff2, sizeof(h2), 4864 (caddr_t )&h2); 4865 break; 4866 #endif /* INET */ 4867 #ifdef INET6 4868 case AF_INET6: 4869 m_copyback(m, off, 4870 sizeof(struct icmp6_hdr), 4871 (caddr_t )pd->hdr.icmp6); 4872 m_copyback(m, ipoff2, sizeof(h2_6), 4873 (caddr_t )&h2_6); 4874 break; 4875 #endif /* INET6 */ 4876 } 4877 m_copyback(m, off2, 8, (caddr_t)&th); 4878 } 4879 4880 return (PF_PASS); 4881 break; 4882 } 4883 case IPPROTO_UDP: { 4884 struct udphdr uh; 4885 4886 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4887 NULL, reason, pd2.af)) { 4888 DPFPRINTF(PF_DEBUG_MISC, 4889 ("pf: ICMP error message too short " 4890 "(udp)\n")); 4891 return (PF_DROP); 4892 } 4893 4894 key.af = pd2.af; 4895 key.proto = IPPROTO_UDP; 4896 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4897 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4898 key.port[pd2.sidx] = uh.uh_sport; 4899 key.port[pd2.didx] = uh.uh_dport; 4900 4901 STATE_LOOKUP(kif, &key, direction, *state, pd); 4902 4903 /* translate source/destination address, if necessary */ 4904 if ((*state)->key[PF_SK_WIRE] != 4905 (*state)->key[PF_SK_STACK]) { 4906 struct pf_state_key *nk = 4907 (*state)->key[pd->didx]; 4908 4909 if (PF_ANEQ(pd2.src, 4910 &nk->addr[pd2.sidx], pd2.af) || 4911 nk->port[pd2.sidx] != uh.uh_sport) 4912 pf_change_icmp(pd2.src, &uh.uh_sport, 4913 daddr, &nk->addr[pd2.sidx], 4914 nk->port[pd2.sidx], &uh.uh_sum, 4915 pd2.ip_sum, icmpsum, 4916 pd->ip_sum, 1, pd2.af); 4917 4918 if (PF_ANEQ(pd2.dst, 4919 &nk->addr[pd2.didx], pd2.af) || 4920 nk->port[pd2.didx] != uh.uh_dport) 4921 pf_change_icmp(pd2.dst, &uh.uh_dport, 4922 saddr, &nk->addr[pd2.didx], 4923 nk->port[pd2.didx], &uh.uh_sum, 4924 pd2.ip_sum, icmpsum, 4925 pd->ip_sum, 1, pd2.af); 4926 4927 switch (pd2.af) { 4928 #ifdef INET 4929 case AF_INET: 4930 m_copyback(m, off, ICMP_MINLEN, 4931 (caddr_t )pd->hdr.icmp); 4932 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4933 break; 4934 #endif /* INET */ 4935 #ifdef INET6 4936 case AF_INET6: 4937 m_copyback(m, off, 4938 sizeof(struct icmp6_hdr), 4939 (caddr_t )pd->hdr.icmp6); 4940 m_copyback(m, ipoff2, sizeof(h2_6), 4941 (caddr_t )&h2_6); 4942 break; 4943 #endif /* INET6 */ 4944 } 4945 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4946 } 4947 return (PF_PASS); 4948 break; 4949 } 4950 #ifdef INET 4951 case IPPROTO_ICMP: { 4952 struct icmp iih; 4953 4954 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4955 NULL, reason, pd2.af)) { 4956 DPFPRINTF(PF_DEBUG_MISC, 4957 ("pf: ICMP error message too short i" 4958 "(icmp)\n")); 4959 return (PF_DROP); 4960 } 4961 4962 key.af = pd2.af; 4963 key.proto = IPPROTO_ICMP; 4964 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4965 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4966 key.port[0] = key.port[1] = iih.icmp_id; 4967 4968 STATE_LOOKUP(kif, &key, direction, *state, pd); 4969 4970 /* translate source/destination address, if necessary */ 4971 if ((*state)->key[PF_SK_WIRE] != 4972 (*state)->key[PF_SK_STACK]) { 4973 struct pf_state_key *nk = 4974 (*state)->key[pd->didx]; 4975 4976 if (PF_ANEQ(pd2.src, 4977 &nk->addr[pd2.sidx], pd2.af) || 4978 nk->port[pd2.sidx] != iih.icmp_id) 4979 pf_change_icmp(pd2.src, &iih.icmp_id, 4980 daddr, &nk->addr[pd2.sidx], 4981 nk->port[pd2.sidx], NULL, 4982 pd2.ip_sum, icmpsum, 4983 pd->ip_sum, 0, AF_INET); 4984 4985 if (PF_ANEQ(pd2.dst, 4986 &nk->addr[pd2.didx], pd2.af) || 4987 nk->port[pd2.didx] != iih.icmp_id) 4988 pf_change_icmp(pd2.dst, &iih.icmp_id, 4989 saddr, &nk->addr[pd2.didx], 4990 nk->port[pd2.didx], NULL, 4991 pd2.ip_sum, icmpsum, 4992 pd->ip_sum, 0, AF_INET); 4993 4994 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 4995 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4996 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 4997 } 4998 return (PF_PASS); 4999 break; 5000 } 5001 #endif /* INET */ 5002 #ifdef INET6 5003 case IPPROTO_ICMPV6: { 5004 struct icmp6_hdr iih; 5005 5006 if (!pf_pull_hdr(m, off2, &iih, 5007 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5008 DPFPRINTF(PF_DEBUG_MISC, 5009 ("pf: ICMP error message too short " 5010 "(icmp6)\n")); 5011 return (PF_DROP); 5012 } 5013 5014 key.af = pd2.af; 5015 key.proto = IPPROTO_ICMPV6; 5016 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5017 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5018 key.port[0] = key.port[1] = iih.icmp6_id; 5019 5020 STATE_LOOKUP(kif, &key, direction, *state, pd); 5021 5022 /* translate source/destination address, if necessary */ 5023 if ((*state)->key[PF_SK_WIRE] != 5024 (*state)->key[PF_SK_STACK]) { 5025 struct pf_state_key *nk = 5026 (*state)->key[pd->didx]; 5027 5028 if (PF_ANEQ(pd2.src, 5029 &nk->addr[pd2.sidx], pd2.af) || 5030 nk->port[pd2.sidx] != iih.icmp6_id) 5031 pf_change_icmp(pd2.src, &iih.icmp6_id, 5032 daddr, &nk->addr[pd2.sidx], 5033 nk->port[pd2.sidx], NULL, 5034 pd2.ip_sum, icmpsum, 5035 pd->ip_sum, 0, AF_INET6); 5036 5037 if (PF_ANEQ(pd2.dst, 5038 &nk->addr[pd2.didx], pd2.af) || 5039 nk->port[pd2.didx] != iih.icmp6_id) 5040 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5041 saddr, &nk->addr[pd2.didx], 5042 nk->port[pd2.didx], NULL, 5043 pd2.ip_sum, icmpsum, 5044 pd->ip_sum, 0, AF_INET6); 5045 5046 m_copyback(m, off, sizeof(struct icmp6_hdr), 5047 (caddr_t)pd->hdr.icmp6); 5048 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5049 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5050 (caddr_t)&iih); 5051 } 5052 return (PF_PASS); 5053 break; 5054 } 5055 #endif /* INET6 */ 5056 default: { 5057 key.af = pd2.af; 5058 key.proto = pd2.proto; 5059 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5060 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5061 key.port[0] = key.port[1] = 0; 5062 5063 STATE_LOOKUP(kif, &key, direction, *state, pd); 5064 5065 /* translate source/destination address, if necessary */ 5066 if ((*state)->key[PF_SK_WIRE] != 5067 (*state)->key[PF_SK_STACK]) { 5068 struct pf_state_key *nk = 5069 (*state)->key[pd->didx]; 5070 5071 if (PF_ANEQ(pd2.src, 5072 &nk->addr[pd2.sidx], pd2.af)) 5073 pf_change_icmp(pd2.src, NULL, daddr, 5074 &nk->addr[pd2.sidx], 0, NULL, 5075 pd2.ip_sum, icmpsum, 5076 pd->ip_sum, 0, pd2.af); 5077 5078 if (PF_ANEQ(pd2.dst, 5079 &nk->addr[pd2.didx], pd2.af)) 5080 pf_change_icmp(pd2.dst, NULL, saddr, 5081 &nk->addr[pd2.didx], 0, NULL, 5082 pd2.ip_sum, icmpsum, 5083 pd->ip_sum, 0, pd2.af); 5084 5085 switch (pd2.af) { 5086 #ifdef INET 5087 case AF_INET: 5088 m_copyback(m, off, ICMP_MINLEN, 5089 (caddr_t)pd->hdr.icmp); 5090 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5091 break; 5092 #endif /* INET */ 5093 #ifdef INET6 5094 case AF_INET6: 5095 m_copyback(m, off, 5096 sizeof(struct icmp6_hdr), 5097 (caddr_t )pd->hdr.icmp6); 5098 m_copyback(m, ipoff2, sizeof(h2_6), 5099 (caddr_t )&h2_6); 5100 break; 5101 #endif /* INET6 */ 5102 } 5103 } 5104 return (PF_PASS); 5105 break; 5106 } 5107 } 5108 } 5109 } 5110 5111 static int 5112 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5113 struct mbuf *m, struct pf_pdesc *pd) 5114 { 5115 struct pf_state_peer *src, *dst; 5116 struct pf_state_key_cmp key; 5117 5118 bzero(&key, sizeof(key)); 5119 key.af = pd->af; 5120 key.proto = pd->proto; 5121 if (direction == PF_IN) { 5122 PF_ACPY(&key.addr[0], pd->src, key.af); 5123 PF_ACPY(&key.addr[1], pd->dst, key.af); 5124 key.port[0] = key.port[1] = 0; 5125 } else { 5126 PF_ACPY(&key.addr[1], pd->src, key.af); 5127 PF_ACPY(&key.addr[0], pd->dst, key.af); 5128 key.port[1] = key.port[0] = 0; 5129 } 5130 5131 STATE_LOOKUP(kif, &key, direction, *state, pd); 5132 5133 if (direction == (*state)->direction) { 5134 src = &(*state)->src; 5135 dst = &(*state)->dst; 5136 } else { 5137 src = &(*state)->dst; 5138 dst = &(*state)->src; 5139 } 5140 5141 /* update states */ 5142 if (src->state < PFOTHERS_SINGLE) 5143 src->state = PFOTHERS_SINGLE; 5144 if (dst->state == PFOTHERS_SINGLE) 5145 dst->state = PFOTHERS_MULTIPLE; 5146 5147 /* update expire time */ 5148 (*state)->expire = time_uptime; 5149 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5150 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5151 else 5152 (*state)->timeout = PFTM_OTHER_SINGLE; 5153 5154 /* translate source/destination address, if necessary */ 5155 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5156 struct pf_state_key *nk = (*state)->key[pd->didx]; 5157 5158 KASSERT(nk, ("%s: nk is null", __func__)); 5159 KASSERT(pd, ("%s: pd is null", __func__)); 5160 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5161 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5162 switch (pd->af) { 5163 #ifdef INET 5164 case AF_INET: 5165 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5166 pf_change_a(&pd->src->v4.s_addr, 5167 pd->ip_sum, 5168 nk->addr[pd->sidx].v4.s_addr, 5169 0); 5170 5171 5172 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5173 pf_change_a(&pd->dst->v4.s_addr, 5174 pd->ip_sum, 5175 nk->addr[pd->didx].v4.s_addr, 5176 0); 5177 5178 break; 5179 #endif /* INET */ 5180 #ifdef INET6 5181 case AF_INET6: 5182 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5183 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5184 5185 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5186 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5187 #endif /* INET6 */ 5188 } 5189 } 5190 return (PF_PASS); 5191 } 5192 5193 /* 5194 * ipoff and off are measured from the start of the mbuf chain. 5195 * h must be at "ipoff" on the mbuf chain. 5196 */ 5197 void * 5198 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5199 u_short *actionp, u_short *reasonp, sa_family_t af) 5200 { 5201 switch (af) { 5202 #ifdef INET 5203 case AF_INET: { 5204 struct ip *h = mtod(m, struct ip *); 5205 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5206 5207 if (fragoff) { 5208 if (fragoff >= len) 5209 ACTION_SET(actionp, PF_PASS); 5210 else { 5211 ACTION_SET(actionp, PF_DROP); 5212 REASON_SET(reasonp, PFRES_FRAG); 5213 } 5214 return (NULL); 5215 } 5216 if (m->m_pkthdr.len < off + len || 5217 ntohs(h->ip_len) < off + len) { 5218 ACTION_SET(actionp, PF_DROP); 5219 REASON_SET(reasonp, PFRES_SHORT); 5220 return (NULL); 5221 } 5222 break; 5223 } 5224 #endif /* INET */ 5225 #ifdef INET6 5226 case AF_INET6: { 5227 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5228 5229 if (m->m_pkthdr.len < off + len || 5230 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5231 (unsigned)(off + len)) { 5232 ACTION_SET(actionp, PF_DROP); 5233 REASON_SET(reasonp, PFRES_SHORT); 5234 return (NULL); 5235 } 5236 break; 5237 } 5238 #endif /* INET6 */ 5239 } 5240 m_copydata(m, off, len, p); 5241 return (p); 5242 } 5243 5244 #ifdef RADIX_MPATH 5245 static int 5246 pf_routable_oldmpath(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5247 int rtableid) 5248 { 5249 struct radix_node_head *rnh; 5250 struct sockaddr_in *dst; 5251 int ret = 1; 5252 int check_mpath; 5253 #ifdef INET6 5254 struct sockaddr_in6 *dst6; 5255 struct route_in6 ro; 5256 #else 5257 struct route ro; 5258 #endif 5259 struct radix_node *rn; 5260 struct rtentry *rt; 5261 struct ifnet *ifp; 5262 5263 check_mpath = 0; 5264 /* XXX: stick to table 0 for now */ 5265 rnh = rt_tables_get_rnh(0, af); 5266 if (rnh != NULL && rn_mpath_capable(rnh)) 5267 check_mpath = 1; 5268 bzero(&ro, sizeof(ro)); 5269 switch (af) { 5270 case AF_INET: 5271 dst = satosin(&ro.ro_dst); 5272 dst->sin_family = AF_INET; 5273 dst->sin_len = sizeof(*dst); 5274 dst->sin_addr = addr->v4; 5275 break; 5276 #ifdef INET6 5277 case AF_INET6: 5278 /* 5279 * Skip check for addresses with embedded interface scope, 5280 * as they would always match anyway. 5281 */ 5282 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5283 goto out; 5284 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5285 dst6->sin6_family = AF_INET6; 5286 dst6->sin6_len = sizeof(*dst6); 5287 dst6->sin6_addr = addr->v6; 5288 break; 5289 #endif /* INET6 */ 5290 default: 5291 return (0); 5292 } 5293 5294 /* Skip checks for ipsec interfaces */ 5295 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5296 goto out; 5297 5298 switch (af) { 5299 #ifdef INET6 5300 case AF_INET6: 5301 in6_rtalloc_ign(&ro, 0, rtableid); 5302 break; 5303 #endif 5304 #ifdef INET 5305 case AF_INET: 5306 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5307 break; 5308 #endif 5309 } 5310 5311 if (ro.ro_rt != NULL) { 5312 /* No interface given, this is a no-route check */ 5313 if (kif == NULL) 5314 goto out; 5315 5316 if (kif->pfik_ifp == NULL) { 5317 ret = 0; 5318 goto out; 5319 } 5320 5321 /* Perform uRPF check if passed input interface */ 5322 ret = 0; 5323 rn = (struct radix_node *)ro.ro_rt; 5324 do { 5325 rt = (struct rtentry *)rn; 5326 ifp = rt->rt_ifp; 5327 5328 if (kif->pfik_ifp == ifp) 5329 ret = 1; 5330 rn = rn_mpath_next(rn); 5331 } while (check_mpath == 1 && rn != NULL && ret == 0); 5332 } else 5333 ret = 0; 5334 out: 5335 if (ro.ro_rt != NULL) 5336 RTFREE(ro.ro_rt); 5337 return (ret); 5338 } 5339 #endif 5340 5341 int 5342 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5343 int rtableid) 5344 { 5345 #ifdef INET 5346 struct nhop4_basic nh4; 5347 #endif 5348 #ifdef INET6 5349 struct nhop6_basic nh6; 5350 #endif 5351 struct ifnet *ifp; 5352 #ifdef RADIX_MPATH 5353 struct radix_node_head *rnh; 5354 5355 /* XXX: stick to table 0 for now */ 5356 rnh = rt_tables_get_rnh(0, af); 5357 if (rnh != NULL && rn_mpath_capable(rnh)) 5358 return (pf_routable_oldmpath(addr, af, kif, rtableid)); 5359 #endif 5360 /* 5361 * Skip check for addresses with embedded interface scope, 5362 * as they would always match anyway. 5363 */ 5364 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5365 return (1); 5366 5367 if (af != AF_INET && af != AF_INET6) 5368 return (0); 5369 5370 /* Skip checks for ipsec interfaces */ 5371 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5372 return (1); 5373 5374 ifp = NULL; 5375 5376 switch (af) { 5377 #ifdef INET6 5378 case AF_INET6: 5379 if (fib6_lookup_nh_basic(rtableid, &addr->v6, 0, 0, 0, &nh6)!=0) 5380 return (0); 5381 ifp = nh6.nh_ifp; 5382 break; 5383 #endif 5384 #ifdef INET 5385 case AF_INET: 5386 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) != 0) 5387 return (0); 5388 ifp = nh4.nh_ifp; 5389 break; 5390 #endif 5391 } 5392 5393 /* No interface given, this is a no-route check */ 5394 if (kif == NULL) 5395 return (1); 5396 5397 if (kif->pfik_ifp == NULL) 5398 return (0); 5399 5400 /* Perform uRPF check if passed input interface */ 5401 if (kif->pfik_ifp == ifp) 5402 return (1); 5403 return (0); 5404 } 5405 5406 #ifdef INET 5407 static void 5408 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5409 struct pf_state *s, struct pf_pdesc *pd) 5410 { 5411 struct mbuf *m0, *m1; 5412 struct sockaddr_in dst; 5413 struct ip *ip; 5414 struct ifnet *ifp = NULL; 5415 struct pf_addr naddr; 5416 struct pf_src_node *sn = NULL; 5417 int error = 0; 5418 uint16_t ip_len, ip_off; 5419 5420 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5421 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5422 __func__)); 5423 5424 if ((pd->pf_mtag == NULL && 5425 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5426 pd->pf_mtag->routed++ > 3) { 5427 m0 = *m; 5428 *m = NULL; 5429 goto bad_locked; 5430 } 5431 5432 if (r->rt == PF_DUPTO) { 5433 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5434 if (s) 5435 PF_STATE_UNLOCK(s); 5436 return; 5437 } 5438 } else { 5439 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5440 if (s) 5441 PF_STATE_UNLOCK(s); 5442 return; 5443 } 5444 m0 = *m; 5445 } 5446 5447 ip = mtod(m0, struct ip *); 5448 5449 bzero(&dst, sizeof(dst)); 5450 dst.sin_family = AF_INET; 5451 dst.sin_len = sizeof(dst); 5452 dst.sin_addr = ip->ip_dst; 5453 5454 if (TAILQ_EMPTY(&r->rpool.list)) { 5455 DPFPRINTF(PF_DEBUG_URGENT, 5456 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5457 goto bad_locked; 5458 } 5459 if (s == NULL) { 5460 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5461 &naddr, NULL, &sn); 5462 if (!PF_AZERO(&naddr, AF_INET)) 5463 dst.sin_addr.s_addr = naddr.v4.s_addr; 5464 ifp = r->rpool.cur->kif ? 5465 r->rpool.cur->kif->pfik_ifp : NULL; 5466 } else { 5467 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5468 dst.sin_addr.s_addr = 5469 s->rt_addr.v4.s_addr; 5470 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5471 PF_STATE_UNLOCK(s); 5472 } 5473 if (ifp == NULL) 5474 goto bad; 5475 5476 if (oifp != ifp) { 5477 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5478 goto bad; 5479 else if (m0 == NULL) 5480 goto done; 5481 if (m0->m_len < sizeof(struct ip)) { 5482 DPFPRINTF(PF_DEBUG_URGENT, 5483 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5484 goto bad; 5485 } 5486 ip = mtod(m0, struct ip *); 5487 } 5488 5489 if (ifp->if_flags & IFF_LOOPBACK) 5490 m0->m_flags |= M_SKIP_FIREWALL; 5491 5492 ip_len = ntohs(ip->ip_len); 5493 ip_off = ntohs(ip->ip_off); 5494 5495 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5496 m0->m_pkthdr.csum_flags |= CSUM_IP; 5497 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5498 in_delayed_cksum(m0); 5499 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5500 } 5501 #ifdef SCTP 5502 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5503 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5504 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5505 } 5506 #endif 5507 5508 /* 5509 * If small enough for interface, or the interface will take 5510 * care of the fragmentation for us, we can just send directly. 5511 */ 5512 if (ip_len <= ifp->if_mtu || 5513 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5514 ip->ip_sum = 0; 5515 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5516 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5517 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5518 } 5519 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5520 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5521 goto done; 5522 } 5523 5524 /* Balk when DF bit is set or the interface didn't support TSO. */ 5525 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5526 error = EMSGSIZE; 5527 KMOD_IPSTAT_INC(ips_cantfrag); 5528 if (r->rt != PF_DUPTO) { 5529 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5530 ifp->if_mtu); 5531 goto done; 5532 } else 5533 goto bad; 5534 } 5535 5536 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5537 if (error) 5538 goto bad; 5539 5540 for (; m0; m0 = m1) { 5541 m1 = m0->m_nextpkt; 5542 m0->m_nextpkt = NULL; 5543 if (error == 0) { 5544 m_clrprotoflags(m0); 5545 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5546 } else 5547 m_freem(m0); 5548 } 5549 5550 if (error == 0) 5551 KMOD_IPSTAT_INC(ips_fragmented); 5552 5553 done: 5554 if (r->rt != PF_DUPTO) 5555 *m = NULL; 5556 return; 5557 5558 bad_locked: 5559 if (s) 5560 PF_STATE_UNLOCK(s); 5561 bad: 5562 m_freem(m0); 5563 goto done; 5564 } 5565 #endif /* INET */ 5566 5567 #ifdef INET6 5568 static void 5569 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5570 struct pf_state *s, struct pf_pdesc *pd) 5571 { 5572 struct mbuf *m0; 5573 struct sockaddr_in6 dst; 5574 struct ip6_hdr *ip6; 5575 struct ifnet *ifp = NULL; 5576 struct pf_addr naddr; 5577 struct pf_src_node *sn = NULL; 5578 5579 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5580 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5581 __func__)); 5582 5583 if ((pd->pf_mtag == NULL && 5584 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5585 pd->pf_mtag->routed++ > 3) { 5586 m0 = *m; 5587 *m = NULL; 5588 goto bad_locked; 5589 } 5590 5591 if (r->rt == PF_DUPTO) { 5592 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5593 if (s) 5594 PF_STATE_UNLOCK(s); 5595 return; 5596 } 5597 } else { 5598 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5599 if (s) 5600 PF_STATE_UNLOCK(s); 5601 return; 5602 } 5603 m0 = *m; 5604 } 5605 5606 ip6 = mtod(m0, struct ip6_hdr *); 5607 5608 bzero(&dst, sizeof(dst)); 5609 dst.sin6_family = AF_INET6; 5610 dst.sin6_len = sizeof(dst); 5611 dst.sin6_addr = ip6->ip6_dst; 5612 5613 if (TAILQ_EMPTY(&r->rpool.list)) { 5614 DPFPRINTF(PF_DEBUG_URGENT, 5615 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5616 goto bad_locked; 5617 } 5618 if (s == NULL) { 5619 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5620 &naddr, NULL, &sn); 5621 if (!PF_AZERO(&naddr, AF_INET6)) 5622 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5623 &naddr, AF_INET6); 5624 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5625 } else { 5626 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5627 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5628 &s->rt_addr, AF_INET6); 5629 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5630 } 5631 5632 if (s) 5633 PF_STATE_UNLOCK(s); 5634 5635 if (ifp == NULL) 5636 goto bad; 5637 5638 if (oifp != ifp) { 5639 if (pf_test6(PF_FWD, ifp, &m0, NULL) != PF_PASS) 5640 goto bad; 5641 else if (m0 == NULL) 5642 goto done; 5643 if (m0->m_len < sizeof(struct ip6_hdr)) { 5644 DPFPRINTF(PF_DEBUG_URGENT, 5645 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5646 __func__)); 5647 goto bad; 5648 } 5649 ip6 = mtod(m0, struct ip6_hdr *); 5650 } 5651 5652 if (ifp->if_flags & IFF_LOOPBACK) 5653 m0->m_flags |= M_SKIP_FIREWALL; 5654 5655 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5656 ~ifp->if_hwassist) { 5657 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5658 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5659 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5660 } 5661 5662 /* 5663 * If the packet is too large for the outgoing interface, 5664 * send back an icmp6 error. 5665 */ 5666 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5667 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5668 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5669 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5670 else { 5671 in6_ifstat_inc(ifp, ifs6_in_toobig); 5672 if (r->rt != PF_DUPTO) 5673 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5674 else 5675 goto bad; 5676 } 5677 5678 done: 5679 if (r->rt != PF_DUPTO) 5680 *m = NULL; 5681 return; 5682 5683 bad_locked: 5684 if (s) 5685 PF_STATE_UNLOCK(s); 5686 bad: 5687 m_freem(m0); 5688 goto done; 5689 } 5690 #endif /* INET6 */ 5691 5692 /* 5693 * FreeBSD supports cksum offloads for the following drivers. 5694 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5695 * ti(4), txp(4), xl(4) 5696 * 5697 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5698 * network driver performed cksum including pseudo header, need to verify 5699 * csum_data 5700 * CSUM_DATA_VALID : 5701 * network driver performed cksum, needs to additional pseudo header 5702 * cksum computation with partial csum_data(i.e. lack of H/W support for 5703 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5704 * 5705 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5706 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5707 * TCP/UDP layer. 5708 * Also, set csum_data to 0xffff to force cksum validation. 5709 */ 5710 static int 5711 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5712 { 5713 u_int16_t sum = 0; 5714 int hw_assist = 0; 5715 struct ip *ip; 5716 5717 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5718 return (1); 5719 if (m->m_pkthdr.len < off + len) 5720 return (1); 5721 5722 switch (p) { 5723 case IPPROTO_TCP: 5724 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5725 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5726 sum = m->m_pkthdr.csum_data; 5727 } else { 5728 ip = mtod(m, struct ip *); 5729 sum = in_pseudo(ip->ip_src.s_addr, 5730 ip->ip_dst.s_addr, htonl((u_short)len + 5731 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5732 } 5733 sum ^= 0xffff; 5734 ++hw_assist; 5735 } 5736 break; 5737 case IPPROTO_UDP: 5738 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5739 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5740 sum = m->m_pkthdr.csum_data; 5741 } else { 5742 ip = mtod(m, struct ip *); 5743 sum = in_pseudo(ip->ip_src.s_addr, 5744 ip->ip_dst.s_addr, htonl((u_short)len + 5745 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5746 } 5747 sum ^= 0xffff; 5748 ++hw_assist; 5749 } 5750 break; 5751 case IPPROTO_ICMP: 5752 #ifdef INET6 5753 case IPPROTO_ICMPV6: 5754 #endif /* INET6 */ 5755 break; 5756 default: 5757 return (1); 5758 } 5759 5760 if (!hw_assist) { 5761 switch (af) { 5762 case AF_INET: 5763 if (p == IPPROTO_ICMP) { 5764 if (m->m_len < off) 5765 return (1); 5766 m->m_data += off; 5767 m->m_len -= off; 5768 sum = in_cksum(m, len); 5769 m->m_data -= off; 5770 m->m_len += off; 5771 } else { 5772 if (m->m_len < sizeof(struct ip)) 5773 return (1); 5774 sum = in4_cksum(m, p, off, len); 5775 } 5776 break; 5777 #ifdef INET6 5778 case AF_INET6: 5779 if (m->m_len < sizeof(struct ip6_hdr)) 5780 return (1); 5781 sum = in6_cksum(m, p, off, len); 5782 break; 5783 #endif /* INET6 */ 5784 default: 5785 return (1); 5786 } 5787 } 5788 if (sum) { 5789 switch (p) { 5790 case IPPROTO_TCP: 5791 { 5792 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5793 break; 5794 } 5795 case IPPROTO_UDP: 5796 { 5797 KMOD_UDPSTAT_INC(udps_badsum); 5798 break; 5799 } 5800 #ifdef INET 5801 case IPPROTO_ICMP: 5802 { 5803 KMOD_ICMPSTAT_INC(icps_checksum); 5804 break; 5805 } 5806 #endif 5807 #ifdef INET6 5808 case IPPROTO_ICMPV6: 5809 { 5810 KMOD_ICMP6STAT_INC(icp6s_checksum); 5811 break; 5812 } 5813 #endif /* INET6 */ 5814 } 5815 return (1); 5816 } else { 5817 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5818 m->m_pkthdr.csum_flags |= 5819 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5820 m->m_pkthdr.csum_data = 0xffff; 5821 } 5822 } 5823 return (0); 5824 } 5825 5826 5827 #ifdef INET 5828 int 5829 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5830 { 5831 struct pfi_kif *kif; 5832 u_short action, reason = 0, log = 0; 5833 struct mbuf *m = *m0; 5834 struct ip *h = NULL; 5835 struct m_tag *ipfwtag; 5836 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5837 struct pf_state *s = NULL; 5838 struct pf_ruleset *ruleset = NULL; 5839 struct pf_pdesc pd; 5840 int off, dirndx, pqid = 0; 5841 5842 M_ASSERTPKTHDR(m); 5843 5844 if (!V_pf_status.running) 5845 return (PF_PASS); 5846 5847 memset(&pd, 0, sizeof(pd)); 5848 5849 kif = (struct pfi_kif *)ifp->if_pf_kif; 5850 5851 if (kif == NULL) { 5852 DPFPRINTF(PF_DEBUG_URGENT, 5853 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5854 return (PF_DROP); 5855 } 5856 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5857 return (PF_PASS); 5858 5859 if (m->m_flags & M_SKIP_FIREWALL) 5860 return (PF_PASS); 5861 5862 pd.pf_mtag = pf_find_mtag(m); 5863 5864 PF_RULES_RLOCK(); 5865 5866 if (ip_divert_ptr != NULL && 5867 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5868 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5869 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5870 if (pd.pf_mtag == NULL && 5871 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5872 action = PF_DROP; 5873 goto done; 5874 } 5875 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5876 m_tag_delete(m, ipfwtag); 5877 } 5878 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5879 m->m_flags |= M_FASTFWD_OURS; 5880 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5881 } 5882 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5883 /* We do IP header normalization and packet reassembly here */ 5884 action = PF_DROP; 5885 goto done; 5886 } 5887 m = *m0; /* pf_normalize messes with m0 */ 5888 h = mtod(m, struct ip *); 5889 5890 off = h->ip_hl << 2; 5891 if (off < (int)sizeof(struct ip)) { 5892 action = PF_DROP; 5893 REASON_SET(&reason, PFRES_SHORT); 5894 log = 1; 5895 goto done; 5896 } 5897 5898 pd.src = (struct pf_addr *)&h->ip_src; 5899 pd.dst = (struct pf_addr *)&h->ip_dst; 5900 pd.sport = pd.dport = NULL; 5901 pd.ip_sum = &h->ip_sum; 5902 pd.proto_sum = NULL; 5903 pd.proto = h->ip_p; 5904 pd.dir = dir; 5905 pd.sidx = (dir == PF_IN) ? 0 : 1; 5906 pd.didx = (dir == PF_IN) ? 1 : 0; 5907 pd.af = AF_INET; 5908 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 5909 pd.tot_len = ntohs(h->ip_len); 5910 5911 /* handle fragments that didn't get reassembled by normalization */ 5912 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5913 action = pf_test_fragment(&r, dir, kif, m, h, 5914 &pd, &a, &ruleset); 5915 goto done; 5916 } 5917 5918 switch (h->ip_p) { 5919 5920 case IPPROTO_TCP: { 5921 struct tcphdr th; 5922 5923 pd.hdr.tcp = &th; 5924 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5925 &action, &reason, AF_INET)) { 5926 log = action != PF_PASS; 5927 goto done; 5928 } 5929 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5930 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5931 pqid = 1; 5932 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5933 if (action == PF_DROP) 5934 goto done; 5935 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5936 &reason); 5937 if (action == PF_PASS) { 5938 if (pfsync_update_state_ptr != NULL) 5939 pfsync_update_state_ptr(s); 5940 r = s->rule.ptr; 5941 a = s->anchor.ptr; 5942 log = s->log; 5943 } else if (s == NULL) 5944 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5945 &a, &ruleset, inp); 5946 break; 5947 } 5948 5949 case IPPROTO_UDP: { 5950 struct udphdr uh; 5951 5952 pd.hdr.udp = &uh; 5953 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5954 &action, &reason, AF_INET)) { 5955 log = action != PF_PASS; 5956 goto done; 5957 } 5958 if (uh.uh_dport == 0 || 5959 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5960 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5961 action = PF_DROP; 5962 REASON_SET(&reason, PFRES_SHORT); 5963 goto done; 5964 } 5965 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5966 if (action == PF_PASS) { 5967 if (pfsync_update_state_ptr != NULL) 5968 pfsync_update_state_ptr(s); 5969 r = s->rule.ptr; 5970 a = s->anchor.ptr; 5971 log = s->log; 5972 } else if (s == NULL) 5973 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5974 &a, &ruleset, inp); 5975 break; 5976 } 5977 5978 case IPPROTO_ICMP: { 5979 struct icmp ih; 5980 5981 pd.hdr.icmp = &ih; 5982 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 5983 &action, &reason, AF_INET)) { 5984 log = action != PF_PASS; 5985 goto done; 5986 } 5987 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 5988 &reason); 5989 if (action == PF_PASS) { 5990 if (pfsync_update_state_ptr != NULL) 5991 pfsync_update_state_ptr(s); 5992 r = s->rule.ptr; 5993 a = s->anchor.ptr; 5994 log = s->log; 5995 } else if (s == NULL) 5996 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5997 &a, &ruleset, inp); 5998 break; 5999 } 6000 6001 #ifdef INET6 6002 case IPPROTO_ICMPV6: { 6003 action = PF_DROP; 6004 DPFPRINTF(PF_DEBUG_MISC, 6005 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6006 goto done; 6007 } 6008 #endif 6009 6010 default: 6011 action = pf_test_state_other(&s, dir, kif, m, &pd); 6012 if (action == PF_PASS) { 6013 if (pfsync_update_state_ptr != NULL) 6014 pfsync_update_state_ptr(s); 6015 r = s->rule.ptr; 6016 a = s->anchor.ptr; 6017 log = s->log; 6018 } else if (s == NULL) 6019 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6020 &a, &ruleset, inp); 6021 break; 6022 } 6023 6024 done: 6025 PF_RULES_RUNLOCK(); 6026 if (action == PF_PASS && h->ip_hl > 5 && 6027 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6028 action = PF_DROP; 6029 REASON_SET(&reason, PFRES_IPOPTIONS); 6030 log = r->log; 6031 DPFPRINTF(PF_DEBUG_MISC, 6032 ("pf: dropping packet with ip options\n")); 6033 } 6034 6035 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6036 action = PF_DROP; 6037 REASON_SET(&reason, PFRES_MEMORY); 6038 } 6039 if (r->rtableid >= 0) 6040 M_SETFIB(m, r->rtableid); 6041 6042 if (r->scrub_flags & PFSTATE_SETPRIO) { 6043 if (pd.tos & IPTOS_LOWDELAY) 6044 pqid = 1; 6045 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6046 action = PF_DROP; 6047 REASON_SET(&reason, PFRES_MEMORY); 6048 log = 1; 6049 DPFPRINTF(PF_DEBUG_MISC, 6050 ("pf: failed to allocate 802.1q mtag\n")); 6051 } 6052 } 6053 6054 #ifdef ALTQ 6055 if (action == PF_PASS && r->qid) { 6056 if (pd.pf_mtag == NULL && 6057 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6058 action = PF_DROP; 6059 REASON_SET(&reason, PFRES_MEMORY); 6060 } else { 6061 if (s != NULL) 6062 pd.pf_mtag->qid_hash = pf_state_hash(s); 6063 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6064 pd.pf_mtag->qid = r->pqid; 6065 else 6066 pd.pf_mtag->qid = r->qid; 6067 /* Add hints for ecn. */ 6068 pd.pf_mtag->hdr = h; 6069 } 6070 6071 } 6072 #endif /* ALTQ */ 6073 6074 /* 6075 * connections redirected to loopback should not match sockets 6076 * bound specifically to loopback due to security implications, 6077 * see tcp_input() and in_pcblookup_listen(). 6078 */ 6079 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6080 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6081 (s->nat_rule.ptr->action == PF_RDR || 6082 s->nat_rule.ptr->action == PF_BINAT) && 6083 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 6084 m->m_flags |= M_SKIP_FIREWALL; 6085 6086 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6087 !PACKET_LOOPED(&pd)) { 6088 6089 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6090 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6091 if (ipfwtag != NULL) { 6092 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6093 ntohs(r->divert.port); 6094 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6095 6096 if (s) 6097 PF_STATE_UNLOCK(s); 6098 6099 m_tag_prepend(m, ipfwtag); 6100 if (m->m_flags & M_FASTFWD_OURS) { 6101 if (pd.pf_mtag == NULL && 6102 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6103 action = PF_DROP; 6104 REASON_SET(&reason, PFRES_MEMORY); 6105 log = 1; 6106 DPFPRINTF(PF_DEBUG_MISC, 6107 ("pf: failed to allocate tag\n")); 6108 } else { 6109 pd.pf_mtag->flags |= 6110 PF_FASTFWD_OURS_PRESENT; 6111 m->m_flags &= ~M_FASTFWD_OURS; 6112 } 6113 } 6114 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 6115 *m0 = NULL; 6116 6117 return (action); 6118 } else { 6119 /* XXX: ipfw has the same behaviour! */ 6120 action = PF_DROP; 6121 REASON_SET(&reason, PFRES_MEMORY); 6122 log = 1; 6123 DPFPRINTF(PF_DEBUG_MISC, 6124 ("pf: failed to allocate divert tag\n")); 6125 } 6126 } 6127 6128 if (log) { 6129 struct pf_rule *lr; 6130 6131 if (s != NULL && s->nat_rule.ptr != NULL && 6132 s->nat_rule.ptr->log & PF_LOG_ALL) 6133 lr = s->nat_rule.ptr; 6134 else 6135 lr = r; 6136 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6137 (s == NULL)); 6138 } 6139 6140 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6141 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 6142 6143 if (action == PF_PASS || r->action == PF_DROP) { 6144 dirndx = (dir == PF_OUT); 6145 r->packets[dirndx]++; 6146 r->bytes[dirndx] += pd.tot_len; 6147 if (a != NULL) { 6148 a->packets[dirndx]++; 6149 a->bytes[dirndx] += pd.tot_len; 6150 } 6151 if (s != NULL) { 6152 if (s->nat_rule.ptr != NULL) { 6153 s->nat_rule.ptr->packets[dirndx]++; 6154 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6155 } 6156 if (s->src_node != NULL) { 6157 s->src_node->packets[dirndx]++; 6158 s->src_node->bytes[dirndx] += pd.tot_len; 6159 } 6160 if (s->nat_src_node != NULL) { 6161 s->nat_src_node->packets[dirndx]++; 6162 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6163 } 6164 dirndx = (dir == s->direction) ? 0 : 1; 6165 s->packets[dirndx]++; 6166 s->bytes[dirndx] += pd.tot_len; 6167 } 6168 tr = r; 6169 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6170 if (nr != NULL && r == &V_pf_default_rule) 6171 tr = nr; 6172 if (tr->src.addr.type == PF_ADDR_TABLE) 6173 pfr_update_stats(tr->src.addr.p.tbl, 6174 (s == NULL) ? pd.src : 6175 &s->key[(s->direction == PF_IN)]-> 6176 addr[(s->direction == PF_OUT)], 6177 pd.af, pd.tot_len, dir == PF_OUT, 6178 r->action == PF_PASS, tr->src.neg); 6179 if (tr->dst.addr.type == PF_ADDR_TABLE) 6180 pfr_update_stats(tr->dst.addr.p.tbl, 6181 (s == NULL) ? pd.dst : 6182 &s->key[(s->direction == PF_IN)]-> 6183 addr[(s->direction == PF_IN)], 6184 pd.af, pd.tot_len, dir == PF_OUT, 6185 r->action == PF_PASS, tr->dst.neg); 6186 } 6187 6188 switch (action) { 6189 case PF_SYNPROXY_DROP: 6190 m_freem(*m0); 6191 case PF_DEFER: 6192 *m0 = NULL; 6193 action = PF_PASS; 6194 break; 6195 case PF_DROP: 6196 m_freem(*m0); 6197 *m0 = NULL; 6198 break; 6199 default: 6200 /* pf_route() returns unlocked. */ 6201 if (r->rt) { 6202 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 6203 return (action); 6204 } 6205 break; 6206 } 6207 if (s) 6208 PF_STATE_UNLOCK(s); 6209 6210 return (action); 6211 } 6212 #endif /* INET */ 6213 6214 #ifdef INET6 6215 int 6216 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6217 { 6218 struct pfi_kif *kif; 6219 u_short action, reason = 0, log = 0; 6220 struct mbuf *m = *m0, *n = NULL; 6221 struct m_tag *mtag; 6222 struct ip6_hdr *h = NULL; 6223 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6224 struct pf_state *s = NULL; 6225 struct pf_ruleset *ruleset = NULL; 6226 struct pf_pdesc pd; 6227 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6228 int fwdir = dir; 6229 6230 M_ASSERTPKTHDR(m); 6231 6232 /* Detect packet forwarding. 6233 * If the input interface is different from the output interface we're 6234 * forwarding. 6235 * We do need to be careful about bridges. If the 6236 * net.link.bridge.pfil_bridge sysctl is set we can be filtering on a 6237 * bridge, so if the input interface is a bridge member and the output 6238 * interface is its bridge or a member of the same bridge we're not 6239 * actually forwarding but bridging. 6240 */ 6241 if (dir == PF_OUT && m->m_pkthdr.rcvif && ifp != m->m_pkthdr.rcvif && 6242 (m->m_pkthdr.rcvif->if_bridge == NULL || 6243 (m->m_pkthdr.rcvif->if_bridge != ifp->if_softc && 6244 m->m_pkthdr.rcvif->if_bridge != ifp->if_bridge))) 6245 fwdir = PF_FWD; 6246 6247 if (dir == PF_FWD) 6248 dir = PF_OUT; 6249 6250 if (!V_pf_status.running) 6251 return (PF_PASS); 6252 6253 memset(&pd, 0, sizeof(pd)); 6254 pd.pf_mtag = pf_find_mtag(m); 6255 6256 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6257 return (PF_PASS); 6258 6259 kif = (struct pfi_kif *)ifp->if_pf_kif; 6260 if (kif == NULL) { 6261 DPFPRINTF(PF_DEBUG_URGENT, 6262 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6263 return (PF_DROP); 6264 } 6265 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6266 return (PF_PASS); 6267 6268 if (m->m_flags & M_SKIP_FIREWALL) 6269 return (PF_PASS); 6270 6271 PF_RULES_RLOCK(); 6272 6273 /* We do IP header normalization and packet reassembly here */ 6274 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6275 action = PF_DROP; 6276 goto done; 6277 } 6278 m = *m0; /* pf_normalize messes with m0 */ 6279 h = mtod(m, struct ip6_hdr *); 6280 6281 #if 1 6282 /* 6283 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6284 * will do something bad, so drop the packet for now. 6285 */ 6286 if (htons(h->ip6_plen) == 0) { 6287 action = PF_DROP; 6288 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6289 goto done; 6290 } 6291 #endif 6292 6293 pd.src = (struct pf_addr *)&h->ip6_src; 6294 pd.dst = (struct pf_addr *)&h->ip6_dst; 6295 pd.sport = pd.dport = NULL; 6296 pd.ip_sum = NULL; 6297 pd.proto_sum = NULL; 6298 pd.dir = dir; 6299 pd.sidx = (dir == PF_IN) ? 0 : 1; 6300 pd.didx = (dir == PF_IN) ? 1 : 0; 6301 pd.af = AF_INET6; 6302 pd.tos = 0; 6303 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6304 6305 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6306 pd.proto = h->ip6_nxt; 6307 do { 6308 switch (pd.proto) { 6309 case IPPROTO_FRAGMENT: 6310 action = pf_test_fragment(&r, dir, kif, m, h, 6311 &pd, &a, &ruleset); 6312 if (action == PF_DROP) 6313 REASON_SET(&reason, PFRES_FRAG); 6314 goto done; 6315 case IPPROTO_ROUTING: { 6316 struct ip6_rthdr rthdr; 6317 6318 if (rh_cnt++) { 6319 DPFPRINTF(PF_DEBUG_MISC, 6320 ("pf: IPv6 more than one rthdr\n")); 6321 action = PF_DROP; 6322 REASON_SET(&reason, PFRES_IPOPTIONS); 6323 log = 1; 6324 goto done; 6325 } 6326 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6327 &reason, pd.af)) { 6328 DPFPRINTF(PF_DEBUG_MISC, 6329 ("pf: IPv6 short rthdr\n")); 6330 action = PF_DROP; 6331 REASON_SET(&reason, PFRES_SHORT); 6332 log = 1; 6333 goto done; 6334 } 6335 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6336 DPFPRINTF(PF_DEBUG_MISC, 6337 ("pf: IPv6 rthdr0\n")); 6338 action = PF_DROP; 6339 REASON_SET(&reason, PFRES_IPOPTIONS); 6340 log = 1; 6341 goto done; 6342 } 6343 /* FALLTHROUGH */ 6344 } 6345 case IPPROTO_AH: 6346 case IPPROTO_HOPOPTS: 6347 case IPPROTO_DSTOPTS: { 6348 /* get next header and header length */ 6349 struct ip6_ext opt6; 6350 6351 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6352 NULL, &reason, pd.af)) { 6353 DPFPRINTF(PF_DEBUG_MISC, 6354 ("pf: IPv6 short opt\n")); 6355 action = PF_DROP; 6356 log = 1; 6357 goto done; 6358 } 6359 if (pd.proto == IPPROTO_AH) 6360 off += (opt6.ip6e_len + 2) * 4; 6361 else 6362 off += (opt6.ip6e_len + 1) * 8; 6363 pd.proto = opt6.ip6e_nxt; 6364 /* goto the next header */ 6365 break; 6366 } 6367 default: 6368 terminal++; 6369 break; 6370 } 6371 } while (!terminal); 6372 6373 /* if there's no routing header, use unmodified mbuf for checksumming */ 6374 if (!n) 6375 n = m; 6376 6377 switch (pd.proto) { 6378 6379 case IPPROTO_TCP: { 6380 struct tcphdr th; 6381 6382 pd.hdr.tcp = &th; 6383 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6384 &action, &reason, AF_INET6)) { 6385 log = action != PF_PASS; 6386 goto done; 6387 } 6388 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6389 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6390 if (action == PF_DROP) 6391 goto done; 6392 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6393 &reason); 6394 if (action == PF_PASS) { 6395 if (pfsync_update_state_ptr != NULL) 6396 pfsync_update_state_ptr(s); 6397 r = s->rule.ptr; 6398 a = s->anchor.ptr; 6399 log = s->log; 6400 } else if (s == NULL) 6401 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6402 &a, &ruleset, inp); 6403 break; 6404 } 6405 6406 case IPPROTO_UDP: { 6407 struct udphdr uh; 6408 6409 pd.hdr.udp = &uh; 6410 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6411 &action, &reason, AF_INET6)) { 6412 log = action != PF_PASS; 6413 goto done; 6414 } 6415 if (uh.uh_dport == 0 || 6416 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6417 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6418 action = PF_DROP; 6419 REASON_SET(&reason, PFRES_SHORT); 6420 goto done; 6421 } 6422 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6423 if (action == PF_PASS) { 6424 if (pfsync_update_state_ptr != NULL) 6425 pfsync_update_state_ptr(s); 6426 r = s->rule.ptr; 6427 a = s->anchor.ptr; 6428 log = s->log; 6429 } else if (s == NULL) 6430 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6431 &a, &ruleset, inp); 6432 break; 6433 } 6434 6435 case IPPROTO_ICMP: { 6436 action = PF_DROP; 6437 DPFPRINTF(PF_DEBUG_MISC, 6438 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6439 goto done; 6440 } 6441 6442 case IPPROTO_ICMPV6: { 6443 struct icmp6_hdr ih; 6444 6445 pd.hdr.icmp6 = &ih; 6446 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6447 &action, &reason, AF_INET6)) { 6448 log = action != PF_PASS; 6449 goto done; 6450 } 6451 action = pf_test_state_icmp(&s, dir, kif, 6452 m, off, h, &pd, &reason); 6453 if (action == PF_PASS) { 6454 if (pfsync_update_state_ptr != NULL) 6455 pfsync_update_state_ptr(s); 6456 r = s->rule.ptr; 6457 a = s->anchor.ptr; 6458 log = s->log; 6459 } else if (s == NULL) 6460 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6461 &a, &ruleset, inp); 6462 break; 6463 } 6464 6465 default: 6466 action = pf_test_state_other(&s, dir, kif, m, &pd); 6467 if (action == PF_PASS) { 6468 if (pfsync_update_state_ptr != NULL) 6469 pfsync_update_state_ptr(s); 6470 r = s->rule.ptr; 6471 a = s->anchor.ptr; 6472 log = s->log; 6473 } else if (s == NULL) 6474 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6475 &a, &ruleset, inp); 6476 break; 6477 } 6478 6479 done: 6480 PF_RULES_RUNLOCK(); 6481 if (n != m) { 6482 m_freem(n); 6483 n = NULL; 6484 } 6485 6486 /* handle dangerous IPv6 extension headers. */ 6487 if (action == PF_PASS && rh_cnt && 6488 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6489 action = PF_DROP; 6490 REASON_SET(&reason, PFRES_IPOPTIONS); 6491 log = r->log; 6492 DPFPRINTF(PF_DEBUG_MISC, 6493 ("pf: dropping packet with dangerous v6 headers\n")); 6494 } 6495 6496 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6497 action = PF_DROP; 6498 REASON_SET(&reason, PFRES_MEMORY); 6499 } 6500 if (r->rtableid >= 0) 6501 M_SETFIB(m, r->rtableid); 6502 6503 if (r->scrub_flags & PFSTATE_SETPRIO) { 6504 if (pd.tos & IPTOS_LOWDELAY) 6505 pqid = 1; 6506 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6507 action = PF_DROP; 6508 REASON_SET(&reason, PFRES_MEMORY); 6509 log = 1; 6510 DPFPRINTF(PF_DEBUG_MISC, 6511 ("pf: failed to allocate 802.1q mtag\n")); 6512 } 6513 } 6514 6515 #ifdef ALTQ 6516 if (action == PF_PASS && r->qid) { 6517 if (pd.pf_mtag == NULL && 6518 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6519 action = PF_DROP; 6520 REASON_SET(&reason, PFRES_MEMORY); 6521 } else { 6522 if (s != NULL) 6523 pd.pf_mtag->qid_hash = pf_state_hash(s); 6524 if (pd.tos & IPTOS_LOWDELAY) 6525 pd.pf_mtag->qid = r->pqid; 6526 else 6527 pd.pf_mtag->qid = r->qid; 6528 /* Add hints for ecn. */ 6529 pd.pf_mtag->hdr = h; 6530 } 6531 } 6532 #endif /* ALTQ */ 6533 6534 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6535 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6536 (s->nat_rule.ptr->action == PF_RDR || 6537 s->nat_rule.ptr->action == PF_BINAT) && 6538 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6539 m->m_flags |= M_SKIP_FIREWALL; 6540 6541 /* XXX: Anybody working on it?! */ 6542 if (r->divert.port) 6543 printf("pf: divert(9) is not supported for IPv6\n"); 6544 6545 if (log) { 6546 struct pf_rule *lr; 6547 6548 if (s != NULL && s->nat_rule.ptr != NULL && 6549 s->nat_rule.ptr->log & PF_LOG_ALL) 6550 lr = s->nat_rule.ptr; 6551 else 6552 lr = r; 6553 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6554 &pd, (s == NULL)); 6555 } 6556 6557 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6558 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6559 6560 if (action == PF_PASS || r->action == PF_DROP) { 6561 dirndx = (dir == PF_OUT); 6562 r->packets[dirndx]++; 6563 r->bytes[dirndx] += pd.tot_len; 6564 if (a != NULL) { 6565 a->packets[dirndx]++; 6566 a->bytes[dirndx] += pd.tot_len; 6567 } 6568 if (s != NULL) { 6569 if (s->nat_rule.ptr != NULL) { 6570 s->nat_rule.ptr->packets[dirndx]++; 6571 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6572 } 6573 if (s->src_node != NULL) { 6574 s->src_node->packets[dirndx]++; 6575 s->src_node->bytes[dirndx] += pd.tot_len; 6576 } 6577 if (s->nat_src_node != NULL) { 6578 s->nat_src_node->packets[dirndx]++; 6579 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6580 } 6581 dirndx = (dir == s->direction) ? 0 : 1; 6582 s->packets[dirndx]++; 6583 s->bytes[dirndx] += pd.tot_len; 6584 } 6585 tr = r; 6586 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6587 if (nr != NULL && r == &V_pf_default_rule) 6588 tr = nr; 6589 if (tr->src.addr.type == PF_ADDR_TABLE) 6590 pfr_update_stats(tr->src.addr.p.tbl, 6591 (s == NULL) ? pd.src : 6592 &s->key[(s->direction == PF_IN)]->addr[0], 6593 pd.af, pd.tot_len, dir == PF_OUT, 6594 r->action == PF_PASS, tr->src.neg); 6595 if (tr->dst.addr.type == PF_ADDR_TABLE) 6596 pfr_update_stats(tr->dst.addr.p.tbl, 6597 (s == NULL) ? pd.dst : 6598 &s->key[(s->direction == PF_IN)]->addr[1], 6599 pd.af, pd.tot_len, dir == PF_OUT, 6600 r->action == PF_PASS, tr->dst.neg); 6601 } 6602 6603 switch (action) { 6604 case PF_SYNPROXY_DROP: 6605 m_freem(*m0); 6606 case PF_DEFER: 6607 *m0 = NULL; 6608 action = PF_PASS; 6609 break; 6610 case PF_DROP: 6611 m_freem(*m0); 6612 *m0 = NULL; 6613 break; 6614 default: 6615 /* pf_route6() returns unlocked. */ 6616 if (r->rt) { 6617 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6618 return (action); 6619 } 6620 break; 6621 } 6622 6623 if (s) 6624 PF_STATE_UNLOCK(s); 6625 6626 /* If reassembled packet passed, create new fragments. */ 6627 if (action == PF_PASS && *m0 && fwdir == PF_FWD && 6628 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6629 action = pf_refragment6(ifp, m0, mtag); 6630 6631 return (action); 6632 } 6633 #endif /* INET6 */ 6634