1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_bpf.h" 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_pf.h" 47 #include "opt_sctp.h" 48 49 #include <sys/param.h> 50 #include <sys/bus.h> 51 #include <sys/endian.h> 52 #include <sys/gsb_crc32.h> 53 #include <sys/hash.h> 54 #include <sys/interrupt.h> 55 #include <sys/kernel.h> 56 #include <sys/kthread.h> 57 #include <sys/limits.h> 58 #include <sys/mbuf.h> 59 #include <sys/md5.h> 60 #include <sys/random.h> 61 #include <sys/refcount.h> 62 #include <sys/sdt.h> 63 #include <sys/socket.h> 64 #include <sys/sysctl.h> 65 #include <sys/taskqueue.h> 66 #include <sys/ucred.h> 67 68 #include <net/if.h> 69 #include <net/if_var.h> 70 #include <net/if_types.h> 71 #include <net/if_vlan_var.h> 72 #include <net/route.h> 73 #include <net/route/nhop.h> 74 #include <net/vnet.h> 75 76 #include <net/pfil.h> 77 #include <net/pfvar.h> 78 #include <net/if_pflog.h> 79 #include <net/if_pfsync.h> 80 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_var.h> 83 #include <netinet/in_fib.h> 84 #include <netinet/ip.h> 85 #include <netinet/ip_fw.h> 86 #include <netinet/ip_icmp.h> 87 #include <netinet/icmp_var.h> 88 #include <netinet/ip_var.h> 89 #include <netinet/tcp.h> 90 #include <netinet/tcp_fsm.h> 91 #include <netinet/tcp_seq.h> 92 #include <netinet/tcp_timer.h> 93 #include <netinet/tcp_var.h> 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 97 #ifdef INET6 98 #include <netinet/ip6.h> 99 #include <netinet/icmp6.h> 100 #include <netinet6/nd6.h> 101 #include <netinet6/ip6_var.h> 102 #include <netinet6/in6_pcb.h> 103 #include <netinet6/in6_fib.h> 104 #include <netinet6/scope6_var.h> 105 #endif /* INET6 */ 106 107 #if defined(SCTP) || defined(SCTP_SUPPORT) 108 #include <netinet/sctp_crc32.h> 109 #endif 110 111 #include <machine/in_cksum.h> 112 #include <security/mac/mac_framework.h> 113 114 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 115 116 SDT_PROVIDER_DEFINE(pf); 117 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 118 "struct pf_kstate *"); 119 SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", 120 "struct pf_kstate *"); 121 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 122 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 123 "struct pf_kstate *"); 124 125 /* 126 * Global variables 127 */ 128 129 /* state tables */ 130 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 131 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 132 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 133 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 134 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 135 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 136 VNET_DEFINE(struct pf_kstatus, pf_status); 137 138 VNET_DEFINE(u_int32_t, ticket_altqs_active); 139 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 140 VNET_DEFINE(int, altqs_inactive_open); 141 VNET_DEFINE(u_int32_t, ticket_pabuf); 142 143 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 144 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 145 VNET_DEFINE(u_char, pf_tcp_secret[16]); 146 #define V_pf_tcp_secret VNET(pf_tcp_secret) 147 VNET_DEFINE(int, pf_tcp_secret_init); 148 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 149 VNET_DEFINE(int, pf_tcp_iss_off); 150 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 151 VNET_DECLARE(int, pf_vnet_active); 152 #define V_pf_vnet_active VNET(pf_vnet_active) 153 154 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 155 #define V_pf_purge_idx VNET(pf_purge_idx) 156 157 #ifdef PF_WANT_32_TO_64_COUNTER 158 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 159 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 160 161 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 162 VNET_DEFINE(size_t, pf_allrulecount); 163 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 164 #endif 165 166 /* 167 * Queue for pf_intr() sends. 168 */ 169 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 170 struct pf_send_entry { 171 STAILQ_ENTRY(pf_send_entry) pfse_next; 172 struct mbuf *pfse_m; 173 enum { 174 PFSE_IP, 175 PFSE_IP6, 176 PFSE_ICMP, 177 PFSE_ICMP6, 178 } pfse_type; 179 struct { 180 int type; 181 int code; 182 int mtu; 183 } icmpopts; 184 }; 185 186 STAILQ_HEAD(pf_send_head, pf_send_entry); 187 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 188 #define V_pf_sendqueue VNET(pf_sendqueue) 189 190 static struct mtx_padalign pf_sendqueue_mtx; 191 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 192 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 193 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 194 195 /* 196 * Queue for pf_overload_task() tasks. 197 */ 198 struct pf_overload_entry { 199 SLIST_ENTRY(pf_overload_entry) next; 200 struct pf_addr addr; 201 sa_family_t af; 202 uint8_t dir; 203 struct pf_krule *rule; 204 }; 205 206 SLIST_HEAD(pf_overload_head, pf_overload_entry); 207 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 208 #define V_pf_overloadqueue VNET(pf_overloadqueue) 209 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 210 #define V_pf_overloadtask VNET(pf_overloadtask) 211 212 static struct mtx_padalign pf_overloadqueue_mtx; 213 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 214 "pf overload/flush queue", MTX_DEF); 215 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 216 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 217 218 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 219 struct mtx_padalign pf_unlnkdrules_mtx; 220 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 221 MTX_DEF); 222 223 struct mtx_padalign pf_table_stats_lock; 224 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 225 MTX_DEF); 226 227 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 228 #define V_pf_sources_z VNET(pf_sources_z) 229 uma_zone_t pf_mtag_z; 230 VNET_DEFINE(uma_zone_t, pf_state_z); 231 VNET_DEFINE(uma_zone_t, pf_state_key_z); 232 233 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 234 #define PFID_CPUBITS 8 235 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 236 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 237 #define PFID_MAXID (~PFID_CPUMASK) 238 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 239 240 static void pf_src_tree_remove_state(struct pf_kstate *); 241 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 242 u_int32_t); 243 static void pf_add_threshold(struct pf_threshold *); 244 static int pf_check_threshold(struct pf_threshold *); 245 246 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 247 u_int16_t *, u_int16_t *, struct pf_addr *, 248 u_int16_t, u_int8_t, sa_family_t); 249 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 250 struct tcphdr *, struct pf_state_peer *); 251 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 252 struct pf_addr *, struct pf_addr *, u_int16_t, 253 u_int16_t *, u_int16_t *, u_int16_t *, 254 u_int16_t *, u_int8_t, sa_family_t); 255 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 256 sa_family_t, struct pf_krule *); 257 static void pf_detach_state(struct pf_kstate *); 258 static int pf_state_key_attach(struct pf_state_key *, 259 struct pf_state_key *, struct pf_kstate *); 260 static void pf_state_key_detach(struct pf_kstate *, int); 261 static int pf_state_key_ctor(void *, int, void *, int); 262 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 263 void pf_rule_to_actions(struct pf_krule *, 264 struct pf_rule_actions *); 265 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 266 int, struct pfi_kkif *, struct mbuf *, int, 267 struct pf_pdesc *, struct pf_krule **, 268 struct pf_kruleset **, struct inpcb *); 269 static int pf_create_state(struct pf_krule *, struct pf_krule *, 270 struct pf_krule *, struct pf_pdesc *, 271 struct pf_ksrc_node *, struct pf_state_key *, 272 struct pf_state_key *, struct mbuf *, int, 273 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 274 struct pf_kstate **, int, u_int16_t, u_int16_t, 275 int); 276 static int pf_test_fragment(struct pf_krule **, int, 277 struct pfi_kkif *, struct mbuf *, void *, 278 struct pf_pdesc *, struct pf_krule **, 279 struct pf_kruleset **); 280 static int pf_tcp_track_full(struct pf_kstate **, 281 struct pfi_kkif *, struct mbuf *, int, 282 struct pf_pdesc *, u_short *, int *); 283 static int pf_tcp_track_sloppy(struct pf_kstate **, 284 struct pf_pdesc *, u_short *); 285 static int pf_test_state_tcp(struct pf_kstate **, int, 286 struct pfi_kkif *, struct mbuf *, int, 287 void *, struct pf_pdesc *, u_short *); 288 static int pf_test_state_udp(struct pf_kstate **, int, 289 struct pfi_kkif *, struct mbuf *, int, 290 void *, struct pf_pdesc *); 291 static int pf_test_state_icmp(struct pf_kstate **, int, 292 struct pfi_kkif *, struct mbuf *, int, 293 void *, struct pf_pdesc *, u_short *); 294 static int pf_test_state_other(struct pf_kstate **, int, 295 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 296 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 297 int, u_int16_t); 298 static int pf_check_proto_cksum(struct mbuf *, int, int, 299 u_int8_t, sa_family_t); 300 static void pf_print_state_parts(struct pf_kstate *, 301 struct pf_state_key *, struct pf_state_key *); 302 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 303 struct pf_addr_wrap *); 304 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 305 bool, u_int8_t); 306 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 307 struct pf_state_key_cmp *, u_int); 308 static int pf_src_connlimit(struct pf_kstate **); 309 static void pf_overload_task(void *v, int pending); 310 static int pf_insert_src_node(struct pf_ksrc_node **, 311 struct pf_krule *, struct pf_addr *, sa_family_t); 312 static u_int pf_purge_expired_states(u_int, int); 313 static void pf_purge_unlinked_rules(void); 314 static int pf_mtag_uminit(void *, int, int); 315 static void pf_mtag_free(struct m_tag *); 316 #ifdef INET 317 static void pf_route(struct mbuf **, struct pf_krule *, int, 318 struct ifnet *, struct pf_kstate *, 319 struct pf_pdesc *, struct inpcb *); 320 #endif /* INET */ 321 #ifdef INET6 322 static void pf_change_a6(struct pf_addr *, u_int16_t *, 323 struct pf_addr *, u_int8_t); 324 static void pf_route6(struct mbuf **, struct pf_krule *, int, 325 struct ifnet *, struct pf_kstate *, 326 struct pf_pdesc *, struct inpcb *); 327 #endif /* INET6 */ 328 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 329 330 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 331 332 extern int pf_end_threads; 333 extern struct proc *pf_purge_proc; 334 335 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 336 337 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 338 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 339 340 #define STATE_LOOKUP(i, k, d, s, pd) \ 341 do { \ 342 (s) = pf_find_state((i), (k), (d)); \ 343 SDT_PROBE5(pf, ip, state, lookup, i, k, d, pd, (s)); \ 344 if ((s) == NULL) \ 345 return (PF_DROP); \ 346 if (PACKET_LOOPED(pd)) \ 347 return (PF_PASS); \ 348 } while (0) 349 350 #define BOUND_IFACE(r, k) \ 351 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 352 353 #define STATE_INC_COUNTERS(s) \ 354 do { \ 355 counter_u64_add(s->rule.ptr->states_cur, 1); \ 356 counter_u64_add(s->rule.ptr->states_tot, 1); \ 357 if (s->anchor.ptr != NULL) { \ 358 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 359 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 360 } \ 361 if (s->nat_rule.ptr != NULL) { \ 362 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 363 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 364 } \ 365 } while (0) 366 367 #define STATE_DEC_COUNTERS(s) \ 368 do { \ 369 if (s->nat_rule.ptr != NULL) \ 370 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 371 if (s->anchor.ptr != NULL) \ 372 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 373 counter_u64_add(s->rule.ptr->states_cur, -1); \ 374 } while (0) 375 376 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 377 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 378 VNET_DEFINE(struct pf_idhash *, pf_idhash); 379 VNET_DEFINE(struct pf_srchash *, pf_srchash); 380 381 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 382 "pf(4)"); 383 384 u_long pf_hashmask; 385 u_long pf_srchashmask; 386 static u_long pf_hashsize; 387 static u_long pf_srchashsize; 388 u_long pf_ioctl_maxcount = 65535; 389 390 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 391 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 392 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 393 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 394 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 395 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 396 397 VNET_DEFINE(void *, pf_swi_cookie); 398 VNET_DEFINE(struct intr_event *, pf_swi_ie); 399 400 VNET_DEFINE(uint32_t, pf_hashseed); 401 #define V_pf_hashseed VNET(pf_hashseed) 402 403 int 404 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 405 { 406 407 switch (af) { 408 #ifdef INET 409 case AF_INET: 410 if (a->addr32[0] > b->addr32[0]) 411 return (1); 412 if (a->addr32[0] < b->addr32[0]) 413 return (-1); 414 break; 415 #endif /* INET */ 416 #ifdef INET6 417 case AF_INET6: 418 if (a->addr32[3] > b->addr32[3]) 419 return (1); 420 if (a->addr32[3] < b->addr32[3]) 421 return (-1); 422 if (a->addr32[2] > b->addr32[2]) 423 return (1); 424 if (a->addr32[2] < b->addr32[2]) 425 return (-1); 426 if (a->addr32[1] > b->addr32[1]) 427 return (1); 428 if (a->addr32[1] < b->addr32[1]) 429 return (-1); 430 if (a->addr32[0] > b->addr32[0]) 431 return (1); 432 if (a->addr32[0] < b->addr32[0]) 433 return (-1); 434 break; 435 #endif /* INET6 */ 436 default: 437 panic("%s: unknown address family %u", __func__, af); 438 } 439 return (0); 440 } 441 442 static __inline uint32_t 443 pf_hashkey(struct pf_state_key *sk) 444 { 445 uint32_t h; 446 447 h = murmur3_32_hash32((uint32_t *)sk, 448 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 449 V_pf_hashseed); 450 451 return (h & pf_hashmask); 452 } 453 454 static __inline uint32_t 455 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 456 { 457 uint32_t h; 458 459 switch (af) { 460 case AF_INET: 461 h = murmur3_32_hash32((uint32_t *)&addr->v4, 462 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 463 break; 464 case AF_INET6: 465 h = murmur3_32_hash32((uint32_t *)&addr->v6, 466 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 467 break; 468 default: 469 panic("%s: unknown address family %u", __func__, af); 470 } 471 472 return (h & pf_srchashmask); 473 } 474 475 #ifdef ALTQ 476 static int 477 pf_state_hash(struct pf_kstate *s) 478 { 479 u_int32_t hv = (intptr_t)s / sizeof(*s); 480 481 hv ^= crc32(&s->src, sizeof(s->src)); 482 hv ^= crc32(&s->dst, sizeof(s->dst)); 483 if (hv == 0) 484 hv = 1; 485 return (hv); 486 } 487 #endif 488 489 static __inline void 490 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 491 { 492 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 493 s->dst.state = newstate; 494 if (which == PF_PEER_DST) 495 return; 496 497 s->src.state = newstate; 498 } 499 500 #ifdef INET6 501 void 502 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 503 { 504 switch (af) { 505 #ifdef INET 506 case AF_INET: 507 dst->addr32[0] = src->addr32[0]; 508 break; 509 #endif /* INET */ 510 case AF_INET6: 511 dst->addr32[0] = src->addr32[0]; 512 dst->addr32[1] = src->addr32[1]; 513 dst->addr32[2] = src->addr32[2]; 514 dst->addr32[3] = src->addr32[3]; 515 break; 516 } 517 } 518 #endif /* INET6 */ 519 520 static void 521 pf_init_threshold(struct pf_threshold *threshold, 522 u_int32_t limit, u_int32_t seconds) 523 { 524 threshold->limit = limit * PF_THRESHOLD_MULT; 525 threshold->seconds = seconds; 526 threshold->count = 0; 527 threshold->last = time_uptime; 528 } 529 530 static void 531 pf_add_threshold(struct pf_threshold *threshold) 532 { 533 u_int32_t t = time_uptime, diff = t - threshold->last; 534 535 if (diff >= threshold->seconds) 536 threshold->count = 0; 537 else 538 threshold->count -= threshold->count * diff / 539 threshold->seconds; 540 threshold->count += PF_THRESHOLD_MULT; 541 threshold->last = t; 542 } 543 544 static int 545 pf_check_threshold(struct pf_threshold *threshold) 546 { 547 return (threshold->count > threshold->limit); 548 } 549 550 static int 551 pf_src_connlimit(struct pf_kstate **state) 552 { 553 struct pf_overload_entry *pfoe; 554 int bad = 0; 555 556 PF_STATE_LOCK_ASSERT(*state); 557 558 (*state)->src_node->conn++; 559 (*state)->src.tcp_est = 1; 560 pf_add_threshold(&(*state)->src_node->conn_rate); 561 562 if ((*state)->rule.ptr->max_src_conn && 563 (*state)->rule.ptr->max_src_conn < 564 (*state)->src_node->conn) { 565 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 566 bad++; 567 } 568 569 if ((*state)->rule.ptr->max_src_conn_rate.limit && 570 pf_check_threshold(&(*state)->src_node->conn_rate)) { 571 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 572 bad++; 573 } 574 575 if (!bad) 576 return (0); 577 578 /* Kill this state. */ 579 (*state)->timeout = PFTM_PURGE; 580 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 581 582 if ((*state)->rule.ptr->overload_tbl == NULL) 583 return (1); 584 585 /* Schedule overloading and flushing task. */ 586 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 587 if (pfoe == NULL) 588 return (1); /* too bad :( */ 589 590 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 591 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 592 pfoe->rule = (*state)->rule.ptr; 593 pfoe->dir = (*state)->direction; 594 PF_OVERLOADQ_LOCK(); 595 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 596 PF_OVERLOADQ_UNLOCK(); 597 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 598 599 return (1); 600 } 601 602 static void 603 pf_overload_task(void *v, int pending) 604 { 605 struct pf_overload_head queue; 606 struct pfr_addr p; 607 struct pf_overload_entry *pfoe, *pfoe1; 608 uint32_t killed = 0; 609 610 CURVNET_SET((struct vnet *)v); 611 612 PF_OVERLOADQ_LOCK(); 613 queue = V_pf_overloadqueue; 614 SLIST_INIT(&V_pf_overloadqueue); 615 PF_OVERLOADQ_UNLOCK(); 616 617 bzero(&p, sizeof(p)); 618 SLIST_FOREACH(pfoe, &queue, next) { 619 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 620 if (V_pf_status.debug >= PF_DEBUG_MISC) { 621 printf("%s: blocking address ", __func__); 622 pf_print_host(&pfoe->addr, 0, pfoe->af); 623 printf("\n"); 624 } 625 626 p.pfra_af = pfoe->af; 627 switch (pfoe->af) { 628 #ifdef INET 629 case AF_INET: 630 p.pfra_net = 32; 631 p.pfra_ip4addr = pfoe->addr.v4; 632 break; 633 #endif 634 #ifdef INET6 635 case AF_INET6: 636 p.pfra_net = 128; 637 p.pfra_ip6addr = pfoe->addr.v6; 638 break; 639 #endif 640 } 641 642 PF_RULES_WLOCK(); 643 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 644 PF_RULES_WUNLOCK(); 645 } 646 647 /* 648 * Remove those entries, that don't need flushing. 649 */ 650 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 651 if (pfoe->rule->flush == 0) { 652 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 653 free(pfoe, M_PFTEMP); 654 } else 655 counter_u64_add( 656 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 657 658 /* If nothing to flush, return. */ 659 if (SLIST_EMPTY(&queue)) { 660 CURVNET_RESTORE(); 661 return; 662 } 663 664 for (int i = 0; i <= pf_hashmask; i++) { 665 struct pf_idhash *ih = &V_pf_idhash[i]; 666 struct pf_state_key *sk; 667 struct pf_kstate *s; 668 669 PF_HASHROW_LOCK(ih); 670 LIST_FOREACH(s, &ih->states, entry) { 671 sk = s->key[PF_SK_WIRE]; 672 SLIST_FOREACH(pfoe, &queue, next) 673 if (sk->af == pfoe->af && 674 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 675 pfoe->rule == s->rule.ptr) && 676 ((pfoe->dir == PF_OUT && 677 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 678 (pfoe->dir == PF_IN && 679 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 680 s->timeout = PFTM_PURGE; 681 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 682 killed++; 683 } 684 } 685 PF_HASHROW_UNLOCK(ih); 686 } 687 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 688 free(pfoe, M_PFTEMP); 689 if (V_pf_status.debug >= PF_DEBUG_MISC) 690 printf("%s: %u states killed", __func__, killed); 691 692 CURVNET_RESTORE(); 693 } 694 695 /* 696 * Can return locked on failure, so that we can consistently 697 * allocate and insert a new one. 698 */ 699 struct pf_ksrc_node * 700 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 701 int returnlocked) 702 { 703 struct pf_srchash *sh; 704 struct pf_ksrc_node *n; 705 706 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 707 708 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 709 PF_HASHROW_LOCK(sh); 710 LIST_FOREACH(n, &sh->nodes, entry) 711 if (n->rule.ptr == rule && n->af == af && 712 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 713 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 714 break; 715 if (n != NULL) { 716 n->states++; 717 PF_HASHROW_UNLOCK(sh); 718 } else if (returnlocked == 0) 719 PF_HASHROW_UNLOCK(sh); 720 721 return (n); 722 } 723 724 static void 725 pf_free_src_node(struct pf_ksrc_node *sn) 726 { 727 728 for (int i = 0; i < 2; i++) { 729 counter_u64_free(sn->bytes[i]); 730 counter_u64_free(sn->packets[i]); 731 } 732 uma_zfree(V_pf_sources_z, sn); 733 } 734 735 static int 736 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 737 struct pf_addr *src, sa_family_t af) 738 { 739 740 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 741 rule->rpool.opts & PF_POOL_STICKYADDR), 742 ("%s for non-tracking rule %p", __func__, rule)); 743 744 if (*sn == NULL) 745 *sn = pf_find_src_node(src, rule, af, 1); 746 747 if (*sn == NULL) { 748 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 749 750 PF_HASHROW_ASSERT(sh); 751 752 if (!rule->max_src_nodes || 753 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 754 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 755 else 756 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 757 1); 758 if ((*sn) == NULL) { 759 PF_HASHROW_UNLOCK(sh); 760 return (-1); 761 } 762 763 for (int i = 0; i < 2; i++) { 764 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 765 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 766 767 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 768 pf_free_src_node(*sn); 769 PF_HASHROW_UNLOCK(sh); 770 return (-1); 771 } 772 } 773 774 pf_init_threshold(&(*sn)->conn_rate, 775 rule->max_src_conn_rate.limit, 776 rule->max_src_conn_rate.seconds); 777 778 (*sn)->af = af; 779 (*sn)->rule.ptr = rule; 780 PF_ACPY(&(*sn)->addr, src, af); 781 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 782 (*sn)->creation = time_uptime; 783 (*sn)->ruletype = rule->action; 784 (*sn)->states = 1; 785 if ((*sn)->rule.ptr != NULL) 786 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 787 PF_HASHROW_UNLOCK(sh); 788 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 789 } else { 790 if (rule->max_src_states && 791 (*sn)->states >= rule->max_src_states) { 792 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 793 1); 794 return (-1); 795 } 796 } 797 return (0); 798 } 799 800 void 801 pf_unlink_src_node(struct pf_ksrc_node *src) 802 { 803 804 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 805 LIST_REMOVE(src, entry); 806 if (src->rule.ptr) 807 counter_u64_add(src->rule.ptr->src_nodes, -1); 808 } 809 810 u_int 811 pf_free_src_nodes(struct pf_ksrc_node_list *head) 812 { 813 struct pf_ksrc_node *sn, *tmp; 814 u_int count = 0; 815 816 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 817 pf_free_src_node(sn); 818 count++; 819 } 820 821 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 822 823 return (count); 824 } 825 826 void 827 pf_mtag_initialize() 828 { 829 830 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 831 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 832 UMA_ALIGN_PTR, 0); 833 } 834 835 /* Per-vnet data storage structures initialization. */ 836 void 837 pf_initialize() 838 { 839 struct pf_keyhash *kh; 840 struct pf_idhash *ih; 841 struct pf_srchash *sh; 842 u_int i; 843 844 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 845 pf_hashsize = PF_HASHSIZ; 846 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 847 pf_srchashsize = PF_SRCHASHSIZ; 848 849 V_pf_hashseed = arc4random(); 850 851 /* States and state keys storage. */ 852 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 853 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 854 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 855 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 856 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 857 858 V_pf_state_key_z = uma_zcreate("pf state keys", 859 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 860 UMA_ALIGN_PTR, 0); 861 862 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 863 M_PFHASH, M_NOWAIT | M_ZERO); 864 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 865 M_PFHASH, M_NOWAIT | M_ZERO); 866 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 867 printf("pf: Unable to allocate memory for " 868 "state_hashsize %lu.\n", pf_hashsize); 869 870 free(V_pf_keyhash, M_PFHASH); 871 free(V_pf_idhash, M_PFHASH); 872 873 pf_hashsize = PF_HASHSIZ; 874 V_pf_keyhash = mallocarray(pf_hashsize, 875 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 876 V_pf_idhash = mallocarray(pf_hashsize, 877 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 878 } 879 880 pf_hashmask = pf_hashsize - 1; 881 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 882 i++, kh++, ih++) { 883 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 884 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 885 } 886 887 /* Source nodes. */ 888 V_pf_sources_z = uma_zcreate("pf source nodes", 889 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 890 0); 891 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 892 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 893 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 894 895 V_pf_srchash = mallocarray(pf_srchashsize, 896 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 897 if (V_pf_srchash == NULL) { 898 printf("pf: Unable to allocate memory for " 899 "source_hashsize %lu.\n", pf_srchashsize); 900 901 pf_srchashsize = PF_SRCHASHSIZ; 902 V_pf_srchash = mallocarray(pf_srchashsize, 903 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 904 } 905 906 pf_srchashmask = pf_srchashsize - 1; 907 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 908 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 909 910 /* ALTQ */ 911 TAILQ_INIT(&V_pf_altqs[0]); 912 TAILQ_INIT(&V_pf_altqs[1]); 913 TAILQ_INIT(&V_pf_altqs[2]); 914 TAILQ_INIT(&V_pf_altqs[3]); 915 TAILQ_INIT(&V_pf_pabuf); 916 V_pf_altqs_active = &V_pf_altqs[0]; 917 V_pf_altq_ifs_active = &V_pf_altqs[1]; 918 V_pf_altqs_inactive = &V_pf_altqs[2]; 919 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 920 921 /* Send & overload+flush queues. */ 922 STAILQ_INIT(&V_pf_sendqueue); 923 SLIST_INIT(&V_pf_overloadqueue); 924 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 925 926 /* Unlinked, but may be referenced rules. */ 927 TAILQ_INIT(&V_pf_unlinked_rules); 928 } 929 930 void 931 pf_mtag_cleanup() 932 { 933 934 uma_zdestroy(pf_mtag_z); 935 } 936 937 void 938 pf_cleanup() 939 { 940 struct pf_keyhash *kh; 941 struct pf_idhash *ih; 942 struct pf_srchash *sh; 943 struct pf_send_entry *pfse, *next; 944 u_int i; 945 946 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 947 i++, kh++, ih++) { 948 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 949 __func__)); 950 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 951 __func__)); 952 mtx_destroy(&kh->lock); 953 mtx_destroy(&ih->lock); 954 } 955 free(V_pf_keyhash, M_PFHASH); 956 free(V_pf_idhash, M_PFHASH); 957 958 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 959 KASSERT(LIST_EMPTY(&sh->nodes), 960 ("%s: source node hash not empty", __func__)); 961 mtx_destroy(&sh->lock); 962 } 963 free(V_pf_srchash, M_PFHASH); 964 965 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 966 m_freem(pfse->pfse_m); 967 free(pfse, M_PFTEMP); 968 } 969 970 uma_zdestroy(V_pf_sources_z); 971 uma_zdestroy(V_pf_state_z); 972 uma_zdestroy(V_pf_state_key_z); 973 } 974 975 static int 976 pf_mtag_uminit(void *mem, int size, int how) 977 { 978 struct m_tag *t; 979 980 t = (struct m_tag *)mem; 981 t->m_tag_cookie = MTAG_ABI_COMPAT; 982 t->m_tag_id = PACKET_TAG_PF; 983 t->m_tag_len = sizeof(struct pf_mtag); 984 t->m_tag_free = pf_mtag_free; 985 986 return (0); 987 } 988 989 static void 990 pf_mtag_free(struct m_tag *t) 991 { 992 993 uma_zfree(pf_mtag_z, t); 994 } 995 996 struct pf_mtag * 997 pf_get_mtag(struct mbuf *m) 998 { 999 struct m_tag *mtag; 1000 1001 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1002 return ((struct pf_mtag *)(mtag + 1)); 1003 1004 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1005 if (mtag == NULL) 1006 return (NULL); 1007 bzero(mtag + 1, sizeof(struct pf_mtag)); 1008 m_tag_prepend(m, mtag); 1009 1010 return ((struct pf_mtag *)(mtag + 1)); 1011 } 1012 1013 static int 1014 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1015 struct pf_kstate *s) 1016 { 1017 struct pf_keyhash *khs, *khw, *kh; 1018 struct pf_state_key *sk, *cur; 1019 struct pf_kstate *si, *olds = NULL; 1020 int idx; 1021 1022 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1023 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1024 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1025 1026 /* 1027 * We need to lock hash slots of both keys. To avoid deadlock 1028 * we always lock the slot with lower address first. Unlock order 1029 * isn't important. 1030 * 1031 * We also need to lock ID hash slot before dropping key 1032 * locks. On success we return with ID hash slot locked. 1033 */ 1034 1035 if (skw == sks) { 1036 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1037 PF_HASHROW_LOCK(khs); 1038 } else { 1039 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1040 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1041 if (khs == khw) { 1042 PF_HASHROW_LOCK(khs); 1043 } else if (khs < khw) { 1044 PF_HASHROW_LOCK(khs); 1045 PF_HASHROW_LOCK(khw); 1046 } else { 1047 PF_HASHROW_LOCK(khw); 1048 PF_HASHROW_LOCK(khs); 1049 } 1050 } 1051 1052 #define KEYS_UNLOCK() do { \ 1053 if (khs != khw) { \ 1054 PF_HASHROW_UNLOCK(khs); \ 1055 PF_HASHROW_UNLOCK(khw); \ 1056 } else \ 1057 PF_HASHROW_UNLOCK(khs); \ 1058 } while (0) 1059 1060 /* 1061 * First run: start with wire key. 1062 */ 1063 sk = skw; 1064 kh = khw; 1065 idx = PF_SK_WIRE; 1066 1067 MPASS(s->lock == NULL); 1068 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1069 1070 keyattach: 1071 LIST_FOREACH(cur, &kh->keys, entry) 1072 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1073 break; 1074 1075 if (cur != NULL) { 1076 /* Key exists. Check for same kif, if none, add to key. */ 1077 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1078 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1079 1080 PF_HASHROW_LOCK(ih); 1081 if (si->kif == s->kif && 1082 si->direction == s->direction) { 1083 if (sk->proto == IPPROTO_TCP && 1084 si->src.state >= TCPS_FIN_WAIT_2 && 1085 si->dst.state >= TCPS_FIN_WAIT_2) { 1086 /* 1087 * New state matches an old >FIN_WAIT_2 1088 * state. We can't drop key hash locks, 1089 * thus we can't unlink it properly. 1090 * 1091 * As a workaround we drop it into 1092 * TCPS_CLOSED state, schedule purge 1093 * ASAP and push it into the very end 1094 * of the slot TAILQ, so that it won't 1095 * conflict with our new state. 1096 */ 1097 pf_set_protostate(si, PF_PEER_BOTH, 1098 TCPS_CLOSED); 1099 si->timeout = PFTM_PURGE; 1100 olds = si; 1101 } else { 1102 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1103 printf("pf: %s key attach " 1104 "failed on %s: ", 1105 (idx == PF_SK_WIRE) ? 1106 "wire" : "stack", 1107 s->kif->pfik_name); 1108 pf_print_state_parts(s, 1109 (idx == PF_SK_WIRE) ? 1110 sk : NULL, 1111 (idx == PF_SK_STACK) ? 1112 sk : NULL); 1113 printf(", existing: "); 1114 pf_print_state_parts(si, 1115 (idx == PF_SK_WIRE) ? 1116 sk : NULL, 1117 (idx == PF_SK_STACK) ? 1118 sk : NULL); 1119 printf("\n"); 1120 } 1121 PF_HASHROW_UNLOCK(ih); 1122 KEYS_UNLOCK(); 1123 uma_zfree(V_pf_state_key_z, sk); 1124 if (idx == PF_SK_STACK) 1125 pf_detach_state(s); 1126 return (EEXIST); /* collision! */ 1127 } 1128 } 1129 PF_HASHROW_UNLOCK(ih); 1130 } 1131 uma_zfree(V_pf_state_key_z, sk); 1132 s->key[idx] = cur; 1133 } else { 1134 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1135 s->key[idx] = sk; 1136 } 1137 1138 stateattach: 1139 /* List is sorted, if-bound states before floating. */ 1140 if (s->kif == V_pfi_all) 1141 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1142 else 1143 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1144 1145 if (olds) { 1146 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1147 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1148 key_list[idx]); 1149 olds = NULL; 1150 } 1151 1152 /* 1153 * Attach done. See how should we (or should not?) 1154 * attach a second key. 1155 */ 1156 if (sks == skw) { 1157 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1158 idx = PF_SK_STACK; 1159 sks = NULL; 1160 goto stateattach; 1161 } else if (sks != NULL) { 1162 /* 1163 * Continue attaching with stack key. 1164 */ 1165 sk = sks; 1166 kh = khs; 1167 idx = PF_SK_STACK; 1168 sks = NULL; 1169 goto keyattach; 1170 } 1171 1172 PF_STATE_LOCK(s); 1173 KEYS_UNLOCK(); 1174 1175 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1176 ("%s failure", __func__)); 1177 1178 return (0); 1179 #undef KEYS_UNLOCK 1180 } 1181 1182 static void 1183 pf_detach_state(struct pf_kstate *s) 1184 { 1185 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1186 struct pf_keyhash *kh; 1187 1188 if (sks != NULL) { 1189 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1190 PF_HASHROW_LOCK(kh); 1191 if (s->key[PF_SK_STACK] != NULL) 1192 pf_state_key_detach(s, PF_SK_STACK); 1193 /* 1194 * If both point to same key, then we are done. 1195 */ 1196 if (sks == s->key[PF_SK_WIRE]) { 1197 pf_state_key_detach(s, PF_SK_WIRE); 1198 PF_HASHROW_UNLOCK(kh); 1199 return; 1200 } 1201 PF_HASHROW_UNLOCK(kh); 1202 } 1203 1204 if (s->key[PF_SK_WIRE] != NULL) { 1205 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1206 PF_HASHROW_LOCK(kh); 1207 if (s->key[PF_SK_WIRE] != NULL) 1208 pf_state_key_detach(s, PF_SK_WIRE); 1209 PF_HASHROW_UNLOCK(kh); 1210 } 1211 } 1212 1213 static void 1214 pf_state_key_detach(struct pf_kstate *s, int idx) 1215 { 1216 struct pf_state_key *sk = s->key[idx]; 1217 #ifdef INVARIANTS 1218 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1219 1220 PF_HASHROW_ASSERT(kh); 1221 #endif 1222 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1223 s->key[idx] = NULL; 1224 1225 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1226 LIST_REMOVE(sk, entry); 1227 uma_zfree(V_pf_state_key_z, sk); 1228 } 1229 } 1230 1231 static int 1232 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1233 { 1234 struct pf_state_key *sk = mem; 1235 1236 bzero(sk, sizeof(struct pf_state_key_cmp)); 1237 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1238 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1239 1240 return (0); 1241 } 1242 1243 struct pf_state_key * 1244 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1245 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1246 { 1247 struct pf_state_key *sk; 1248 1249 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1250 if (sk == NULL) 1251 return (NULL); 1252 1253 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1254 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1255 sk->port[pd->sidx] = sport; 1256 sk->port[pd->didx] = dport; 1257 sk->proto = pd->proto; 1258 sk->af = pd->af; 1259 1260 return (sk); 1261 } 1262 1263 struct pf_state_key * 1264 pf_state_key_clone(struct pf_state_key *orig) 1265 { 1266 struct pf_state_key *sk; 1267 1268 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1269 if (sk == NULL) 1270 return (NULL); 1271 1272 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1273 1274 return (sk); 1275 } 1276 1277 int 1278 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1279 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1280 { 1281 struct pf_idhash *ih; 1282 struct pf_kstate *cur; 1283 int error; 1284 1285 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1286 ("%s: sks not pristine", __func__)); 1287 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1288 ("%s: skw not pristine", __func__)); 1289 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1290 1291 s->kif = kif; 1292 s->orig_kif = orig_kif; 1293 1294 if (s->id == 0 && s->creatorid == 0) { 1295 /* XXX: should be atomic, but probability of collision low */ 1296 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1297 V_pf_stateid[curcpu] = 1; 1298 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1299 s->id = htobe64(s->id); 1300 s->creatorid = V_pf_status.hostid; 1301 } 1302 1303 /* Returns with ID locked on success. */ 1304 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1305 return (error); 1306 1307 ih = &V_pf_idhash[PF_IDHASH(s)]; 1308 PF_HASHROW_ASSERT(ih); 1309 LIST_FOREACH(cur, &ih->states, entry) 1310 if (cur->id == s->id && cur->creatorid == s->creatorid) 1311 break; 1312 1313 if (cur != NULL) { 1314 PF_HASHROW_UNLOCK(ih); 1315 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1316 printf("pf: state ID collision: " 1317 "id: %016llx creatorid: %08x\n", 1318 (unsigned long long)be64toh(s->id), 1319 ntohl(s->creatorid)); 1320 } 1321 pf_detach_state(s); 1322 return (EEXIST); 1323 } 1324 LIST_INSERT_HEAD(&ih->states, s, entry); 1325 /* One for keys, one for ID hash. */ 1326 refcount_init(&s->refs, 2); 1327 1328 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1329 if (V_pfsync_insert_state_ptr != NULL) 1330 V_pfsync_insert_state_ptr(s); 1331 1332 /* Returns locked. */ 1333 return (0); 1334 } 1335 1336 /* 1337 * Find state by ID: returns with locked row on success. 1338 */ 1339 struct pf_kstate * 1340 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1341 { 1342 struct pf_idhash *ih; 1343 struct pf_kstate *s; 1344 1345 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1346 1347 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1348 1349 PF_HASHROW_LOCK(ih); 1350 LIST_FOREACH(s, &ih->states, entry) 1351 if (s->id == id && s->creatorid == creatorid) 1352 break; 1353 1354 if (s == NULL) 1355 PF_HASHROW_UNLOCK(ih); 1356 1357 return (s); 1358 } 1359 1360 /* 1361 * Find state by key. 1362 * Returns with ID hash slot locked on success. 1363 */ 1364 static struct pf_kstate * 1365 pf_find_state(struct pfi_kkif *kif, struct pf_state_key_cmp *key, u_int dir) 1366 { 1367 struct pf_keyhash *kh; 1368 struct pf_state_key *sk; 1369 struct pf_kstate *s; 1370 int idx; 1371 1372 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1373 1374 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1375 1376 PF_HASHROW_LOCK(kh); 1377 LIST_FOREACH(sk, &kh->keys, entry) 1378 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1379 break; 1380 if (sk == NULL) { 1381 PF_HASHROW_UNLOCK(kh); 1382 return (NULL); 1383 } 1384 1385 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1386 1387 /* List is sorted, if-bound states before floating ones. */ 1388 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1389 if (s->kif == V_pfi_all || s->kif == kif) { 1390 PF_STATE_LOCK(s); 1391 PF_HASHROW_UNLOCK(kh); 1392 if (__predict_false(s->timeout >= PFTM_MAX)) { 1393 /* 1394 * State is either being processed by 1395 * pf_unlink_state() in an other thread, or 1396 * is scheduled for immediate expiry. 1397 */ 1398 PF_STATE_UNLOCK(s); 1399 return (NULL); 1400 } 1401 return (s); 1402 } 1403 PF_HASHROW_UNLOCK(kh); 1404 1405 return (NULL); 1406 } 1407 1408 struct pf_kstate * 1409 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1410 { 1411 struct pf_keyhash *kh; 1412 struct pf_state_key *sk; 1413 struct pf_kstate *s, *ret = NULL; 1414 int idx, inout = 0; 1415 1416 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1417 1418 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1419 1420 PF_HASHROW_LOCK(kh); 1421 LIST_FOREACH(sk, &kh->keys, entry) 1422 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1423 break; 1424 if (sk == NULL) { 1425 PF_HASHROW_UNLOCK(kh); 1426 return (NULL); 1427 } 1428 switch (dir) { 1429 case PF_IN: 1430 idx = PF_SK_WIRE; 1431 break; 1432 case PF_OUT: 1433 idx = PF_SK_STACK; 1434 break; 1435 case PF_INOUT: 1436 idx = PF_SK_WIRE; 1437 inout = 1; 1438 break; 1439 default: 1440 panic("%s: dir %u", __func__, dir); 1441 } 1442 second_run: 1443 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1444 if (more == NULL) { 1445 PF_HASHROW_UNLOCK(kh); 1446 return (s); 1447 } 1448 1449 if (ret) 1450 (*more)++; 1451 else 1452 ret = s; 1453 } 1454 if (inout == 1) { 1455 inout = 0; 1456 idx = PF_SK_STACK; 1457 goto second_run; 1458 } 1459 PF_HASHROW_UNLOCK(kh); 1460 1461 return (ret); 1462 } 1463 1464 bool 1465 pf_find_state_all_exists(struct pf_state_key_cmp *key, u_int dir) 1466 { 1467 struct pf_kstate *s; 1468 1469 s = pf_find_state_all(key, dir, NULL); 1470 return (s != NULL); 1471 } 1472 1473 /* END state table stuff */ 1474 1475 static void 1476 pf_send(struct pf_send_entry *pfse) 1477 { 1478 1479 PF_SENDQ_LOCK(); 1480 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1481 PF_SENDQ_UNLOCK(); 1482 swi_sched(V_pf_swi_cookie, 0); 1483 } 1484 1485 static bool 1486 pf_isforlocal(struct mbuf *m, int af) 1487 { 1488 switch (af) { 1489 #ifdef INET 1490 case AF_INET: { 1491 struct rm_priotracker in_ifa_tracker; 1492 struct ip *ip; 1493 struct in_ifaddr *ia = NULL; 1494 1495 ip = mtod(m, struct ip *); 1496 IN_IFADDR_RLOCK(&in_ifa_tracker); 1497 LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) { 1498 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr) { 1499 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1500 return (true); 1501 } 1502 } 1503 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1504 break; 1505 } 1506 #endif 1507 #ifdef INET6 1508 case AF_INET6: { 1509 struct ip6_hdr *ip6; 1510 struct in6_ifaddr *ia; 1511 ip6 = mtod(m, struct ip6_hdr *); 1512 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 1513 if (ia == NULL) 1514 return (false); 1515 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 1516 } 1517 #endif 1518 default: 1519 panic("Unsupported af %d", af); 1520 } 1521 1522 return (false); 1523 } 1524 1525 void 1526 pf_intr(void *v) 1527 { 1528 struct epoch_tracker et; 1529 struct pf_send_head queue; 1530 struct pf_send_entry *pfse, *next; 1531 1532 CURVNET_SET((struct vnet *)v); 1533 1534 PF_SENDQ_LOCK(); 1535 queue = V_pf_sendqueue; 1536 STAILQ_INIT(&V_pf_sendqueue); 1537 PF_SENDQ_UNLOCK(); 1538 1539 NET_EPOCH_ENTER(et); 1540 1541 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1542 switch (pfse->pfse_type) { 1543 #ifdef INET 1544 case PFSE_IP: { 1545 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 1546 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1547 pfse->pfse_m->m_pkthdr.csum_flags |= 1548 CSUM_IP_VALID | CSUM_IP_CHECKED; 1549 ip_input(pfse->pfse_m); 1550 } else { 1551 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1552 NULL); 1553 } 1554 break; 1555 } 1556 case PFSE_ICMP: 1557 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1558 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1559 break; 1560 #endif /* INET */ 1561 #ifdef INET6 1562 case PFSE_IP6: 1563 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 1564 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1565 ip6_input(pfse->pfse_m); 1566 } else { 1567 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1568 NULL, NULL); 1569 } 1570 break; 1571 case PFSE_ICMP6: 1572 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1573 pfse->icmpopts.code, pfse->icmpopts.mtu); 1574 break; 1575 #endif /* INET6 */ 1576 default: 1577 panic("%s: unknown type", __func__); 1578 } 1579 free(pfse, M_PFTEMP); 1580 } 1581 NET_EPOCH_EXIT(et); 1582 CURVNET_RESTORE(); 1583 } 1584 1585 #define pf_purge_thread_period (hz / 10) 1586 1587 #ifdef PF_WANT_32_TO_64_COUNTER 1588 static void 1589 pf_status_counter_u64_periodic(void) 1590 { 1591 1592 PF_RULES_RASSERT(); 1593 1594 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 1595 return; 1596 } 1597 1598 for (int i = 0; i < FCNT_MAX; i++) { 1599 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 1600 } 1601 } 1602 1603 static void 1604 pf_kif_counter_u64_periodic(void) 1605 { 1606 struct pfi_kkif *kif; 1607 size_t r, run; 1608 1609 PF_RULES_RASSERT(); 1610 1611 if (__predict_false(V_pf_allkifcount == 0)) { 1612 return; 1613 } 1614 1615 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1616 return; 1617 } 1618 1619 run = V_pf_allkifcount / 10; 1620 if (run < 5) 1621 run = 5; 1622 1623 for (r = 0; r < run; r++) { 1624 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 1625 if (kif == NULL) { 1626 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1627 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 1628 break; 1629 } 1630 1631 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1632 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 1633 1634 for (int i = 0; i < 2; i++) { 1635 for (int j = 0; j < 2; j++) { 1636 for (int k = 0; k < 2; k++) { 1637 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 1638 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 1639 } 1640 } 1641 } 1642 } 1643 } 1644 1645 static void 1646 pf_rule_counter_u64_periodic(void) 1647 { 1648 struct pf_krule *rule; 1649 size_t r, run; 1650 1651 PF_RULES_RASSERT(); 1652 1653 if (__predict_false(V_pf_allrulecount == 0)) { 1654 return; 1655 } 1656 1657 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1658 return; 1659 } 1660 1661 run = V_pf_allrulecount / 10; 1662 if (run < 5) 1663 run = 5; 1664 1665 for (r = 0; r < run; r++) { 1666 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 1667 if (rule == NULL) { 1668 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1669 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 1670 break; 1671 } 1672 1673 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1674 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 1675 1676 pf_counter_u64_periodic(&rule->evaluations); 1677 for (int i = 0; i < 2; i++) { 1678 pf_counter_u64_periodic(&rule->packets[i]); 1679 pf_counter_u64_periodic(&rule->bytes[i]); 1680 } 1681 } 1682 } 1683 1684 static void 1685 pf_counter_u64_periodic_main(void) 1686 { 1687 PF_RULES_RLOCK_TRACKER; 1688 1689 V_pf_counter_periodic_iter++; 1690 1691 PF_RULES_RLOCK(); 1692 pf_counter_u64_critical_enter(); 1693 pf_status_counter_u64_periodic(); 1694 pf_kif_counter_u64_periodic(); 1695 pf_rule_counter_u64_periodic(); 1696 pf_counter_u64_critical_exit(); 1697 PF_RULES_RUNLOCK(); 1698 } 1699 #else 1700 #define pf_counter_u64_periodic_main() do { } while (0) 1701 #endif 1702 1703 void 1704 pf_purge_thread(void *unused __unused) 1705 { 1706 VNET_ITERATOR_DECL(vnet_iter); 1707 1708 sx_xlock(&pf_end_lock); 1709 while (pf_end_threads == 0) { 1710 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 1711 1712 VNET_LIST_RLOCK(); 1713 VNET_FOREACH(vnet_iter) { 1714 CURVNET_SET(vnet_iter); 1715 1716 /* Wait until V_pf_default_rule is initialized. */ 1717 if (V_pf_vnet_active == 0) { 1718 CURVNET_RESTORE(); 1719 continue; 1720 } 1721 1722 pf_counter_u64_periodic_main(); 1723 1724 /* 1725 * Process 1/interval fraction of the state 1726 * table every run. 1727 */ 1728 V_pf_purge_idx = 1729 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1730 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1731 1732 /* 1733 * Purge other expired types every 1734 * PFTM_INTERVAL seconds. 1735 */ 1736 if (V_pf_purge_idx == 0) { 1737 /* 1738 * Order is important: 1739 * - states and src nodes reference rules 1740 * - states and rules reference kifs 1741 */ 1742 pf_purge_expired_fragments(); 1743 pf_purge_expired_src_nodes(); 1744 pf_purge_unlinked_rules(); 1745 pfi_kkif_purge(); 1746 } 1747 CURVNET_RESTORE(); 1748 } 1749 VNET_LIST_RUNLOCK(); 1750 } 1751 1752 pf_end_threads++; 1753 sx_xunlock(&pf_end_lock); 1754 kproc_exit(0); 1755 } 1756 1757 void 1758 pf_unload_vnet_purge(void) 1759 { 1760 1761 /* 1762 * To cleanse up all kifs and rules we need 1763 * two runs: first one clears reference flags, 1764 * then pf_purge_expired_states() doesn't 1765 * raise them, and then second run frees. 1766 */ 1767 pf_purge_unlinked_rules(); 1768 pfi_kkif_purge(); 1769 1770 /* 1771 * Now purge everything. 1772 */ 1773 pf_purge_expired_states(0, pf_hashmask); 1774 pf_purge_fragments(UINT_MAX); 1775 pf_purge_expired_src_nodes(); 1776 1777 /* 1778 * Now all kifs & rules should be unreferenced, 1779 * thus should be successfully freed. 1780 */ 1781 pf_purge_unlinked_rules(); 1782 pfi_kkif_purge(); 1783 } 1784 1785 u_int32_t 1786 pf_state_expires(const struct pf_kstate *state) 1787 { 1788 u_int32_t timeout; 1789 u_int32_t start; 1790 u_int32_t end; 1791 u_int32_t states; 1792 1793 /* handle all PFTM_* > PFTM_MAX here */ 1794 if (state->timeout == PFTM_PURGE) 1795 return (time_uptime); 1796 KASSERT(state->timeout != PFTM_UNLINKED, 1797 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1798 KASSERT((state->timeout < PFTM_MAX), 1799 ("pf_state_expires: timeout > PFTM_MAX")); 1800 timeout = state->rule.ptr->timeout[state->timeout]; 1801 if (!timeout) 1802 timeout = V_pf_default_rule.timeout[state->timeout]; 1803 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1804 if (start && state->rule.ptr != &V_pf_default_rule) { 1805 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1806 states = counter_u64_fetch(state->rule.ptr->states_cur); 1807 } else { 1808 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1809 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1810 states = V_pf_status.states; 1811 } 1812 if (end && states > start && start < end) { 1813 if (states < end) { 1814 timeout = (u_int64_t)timeout * (end - states) / 1815 (end - start); 1816 return (state->expire + timeout); 1817 } 1818 else 1819 return (time_uptime); 1820 } 1821 return (state->expire + timeout); 1822 } 1823 1824 void 1825 pf_purge_expired_src_nodes() 1826 { 1827 struct pf_ksrc_node_list freelist; 1828 struct pf_srchash *sh; 1829 struct pf_ksrc_node *cur, *next; 1830 int i; 1831 1832 LIST_INIT(&freelist); 1833 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1834 PF_HASHROW_LOCK(sh); 1835 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1836 if (cur->states == 0 && cur->expire <= time_uptime) { 1837 pf_unlink_src_node(cur); 1838 LIST_INSERT_HEAD(&freelist, cur, entry); 1839 } else if (cur->rule.ptr != NULL) 1840 cur->rule.ptr->rule_ref |= PFRULE_REFS; 1841 PF_HASHROW_UNLOCK(sh); 1842 } 1843 1844 pf_free_src_nodes(&freelist); 1845 1846 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1847 } 1848 1849 static void 1850 pf_src_tree_remove_state(struct pf_kstate *s) 1851 { 1852 struct pf_ksrc_node *sn; 1853 struct pf_srchash *sh; 1854 uint32_t timeout; 1855 1856 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1857 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1858 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1859 1860 if (s->src_node != NULL) { 1861 sn = s->src_node; 1862 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1863 PF_HASHROW_LOCK(sh); 1864 if (s->src.tcp_est) 1865 --sn->conn; 1866 if (--sn->states == 0) 1867 sn->expire = time_uptime + timeout; 1868 PF_HASHROW_UNLOCK(sh); 1869 } 1870 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1871 sn = s->nat_src_node; 1872 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1873 PF_HASHROW_LOCK(sh); 1874 if (--sn->states == 0) 1875 sn->expire = time_uptime + timeout; 1876 PF_HASHROW_UNLOCK(sh); 1877 } 1878 s->src_node = s->nat_src_node = NULL; 1879 } 1880 1881 /* 1882 * Unlink and potentilly free a state. Function may be 1883 * called with ID hash row locked, but always returns 1884 * unlocked, since it needs to go through key hash locking. 1885 */ 1886 int 1887 pf_unlink_state(struct pf_kstate *s, u_int flags) 1888 { 1889 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1890 1891 if ((flags & PF_ENTER_LOCKED) == 0) 1892 PF_HASHROW_LOCK(ih); 1893 else 1894 PF_HASHROW_ASSERT(ih); 1895 1896 if (s->timeout == PFTM_UNLINKED) { 1897 /* 1898 * State is being processed 1899 * by pf_unlink_state() in 1900 * an other thread. 1901 */ 1902 PF_HASHROW_UNLOCK(ih); 1903 return (0); /* XXXGL: undefined actually */ 1904 } 1905 1906 if (s->src.state == PF_TCPS_PROXY_DST) { 1907 /* XXX wire key the right one? */ 1908 pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af, 1909 &s->key[PF_SK_WIRE]->addr[1], 1910 &s->key[PF_SK_WIRE]->addr[0], 1911 s->key[PF_SK_WIRE]->port[1], 1912 s->key[PF_SK_WIRE]->port[0], 1913 s->src.seqhi, s->src.seqlo + 1, 1914 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag); 1915 } 1916 1917 LIST_REMOVE(s, entry); 1918 pf_src_tree_remove_state(s); 1919 1920 if (V_pfsync_delete_state_ptr != NULL) 1921 V_pfsync_delete_state_ptr(s); 1922 1923 STATE_DEC_COUNTERS(s); 1924 1925 s->timeout = PFTM_UNLINKED; 1926 1927 PF_HASHROW_UNLOCK(ih); 1928 1929 pf_detach_state(s); 1930 /* pf_state_insert() initialises refs to 2 */ 1931 return (pf_release_staten(s, 2)); 1932 } 1933 1934 struct pf_kstate * 1935 pf_alloc_state(int flags) 1936 { 1937 1938 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 1939 } 1940 1941 void 1942 pf_free_state(struct pf_kstate *cur) 1943 { 1944 1945 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1946 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1947 cur->timeout)); 1948 1949 pf_normalize_tcp_cleanup(cur); 1950 uma_zfree(V_pf_state_z, cur); 1951 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1952 } 1953 1954 /* 1955 * Called only from pf_purge_thread(), thus serialized. 1956 */ 1957 static u_int 1958 pf_purge_expired_states(u_int i, int maxcheck) 1959 { 1960 struct pf_idhash *ih; 1961 struct pf_kstate *s; 1962 1963 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1964 1965 /* 1966 * Go through hash and unlink states that expire now. 1967 */ 1968 while (maxcheck > 0) { 1969 ih = &V_pf_idhash[i]; 1970 1971 /* only take the lock if we expect to do work */ 1972 if (!LIST_EMPTY(&ih->states)) { 1973 relock: 1974 PF_HASHROW_LOCK(ih); 1975 LIST_FOREACH(s, &ih->states, entry) { 1976 if (pf_state_expires(s) <= time_uptime) { 1977 V_pf_status.states -= 1978 pf_unlink_state(s, PF_ENTER_LOCKED); 1979 goto relock; 1980 } 1981 s->rule.ptr->rule_ref |= PFRULE_REFS; 1982 if (s->nat_rule.ptr != NULL) 1983 s->nat_rule.ptr->rule_ref |= PFRULE_REFS; 1984 if (s->anchor.ptr != NULL) 1985 s->anchor.ptr->rule_ref |= PFRULE_REFS; 1986 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1987 if (s->rt_kif) 1988 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1989 } 1990 PF_HASHROW_UNLOCK(ih); 1991 } 1992 1993 /* Return when we hit end of hash. */ 1994 if (++i > pf_hashmask) { 1995 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1996 return (0); 1997 } 1998 1999 maxcheck--; 2000 } 2001 2002 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2003 2004 return (i); 2005 } 2006 2007 static void 2008 pf_purge_unlinked_rules() 2009 { 2010 struct pf_krulequeue tmpq; 2011 struct pf_krule *r, *r1; 2012 2013 /* 2014 * If we have overloading task pending, then we'd 2015 * better skip purging this time. There is a tiny 2016 * probability that overloading task references 2017 * an already unlinked rule. 2018 */ 2019 PF_OVERLOADQ_LOCK(); 2020 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2021 PF_OVERLOADQ_UNLOCK(); 2022 return; 2023 } 2024 PF_OVERLOADQ_UNLOCK(); 2025 2026 /* 2027 * Do naive mark-and-sweep garbage collecting of old rules. 2028 * Reference flag is raised by pf_purge_expired_states() 2029 * and pf_purge_expired_src_nodes(). 2030 * 2031 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2032 * use a temporary queue. 2033 */ 2034 TAILQ_INIT(&tmpq); 2035 PF_UNLNKDRULES_LOCK(); 2036 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2037 if (!(r->rule_ref & PFRULE_REFS)) { 2038 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2039 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2040 } else 2041 r->rule_ref &= ~PFRULE_REFS; 2042 } 2043 PF_UNLNKDRULES_UNLOCK(); 2044 2045 if (!TAILQ_EMPTY(&tmpq)) { 2046 PF_RULES_WLOCK(); 2047 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2048 TAILQ_REMOVE(&tmpq, r, entries); 2049 pf_free_rule(r); 2050 } 2051 PF_RULES_WUNLOCK(); 2052 } 2053 } 2054 2055 void 2056 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2057 { 2058 switch (af) { 2059 #ifdef INET 2060 case AF_INET: { 2061 u_int32_t a = ntohl(addr->addr32[0]); 2062 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2063 (a>>8)&255, a&255); 2064 if (p) { 2065 p = ntohs(p); 2066 printf(":%u", p); 2067 } 2068 break; 2069 } 2070 #endif /* INET */ 2071 #ifdef INET6 2072 case AF_INET6: { 2073 u_int16_t b; 2074 u_int8_t i, curstart, curend, maxstart, maxend; 2075 curstart = curend = maxstart = maxend = 255; 2076 for (i = 0; i < 8; i++) { 2077 if (!addr->addr16[i]) { 2078 if (curstart == 255) 2079 curstart = i; 2080 curend = i; 2081 } else { 2082 if ((curend - curstart) > 2083 (maxend - maxstart)) { 2084 maxstart = curstart; 2085 maxend = curend; 2086 } 2087 curstart = curend = 255; 2088 } 2089 } 2090 if ((curend - curstart) > 2091 (maxend - maxstart)) { 2092 maxstart = curstart; 2093 maxend = curend; 2094 } 2095 for (i = 0; i < 8; i++) { 2096 if (i >= maxstart && i <= maxend) { 2097 if (i == 0) 2098 printf(":"); 2099 if (i == maxend) 2100 printf(":"); 2101 } else { 2102 b = ntohs(addr->addr16[i]); 2103 printf("%x", b); 2104 if (i < 7) 2105 printf(":"); 2106 } 2107 } 2108 if (p) { 2109 p = ntohs(p); 2110 printf("[%u]", p); 2111 } 2112 break; 2113 } 2114 #endif /* INET6 */ 2115 } 2116 } 2117 2118 void 2119 pf_print_state(struct pf_kstate *s) 2120 { 2121 pf_print_state_parts(s, NULL, NULL); 2122 } 2123 2124 static void 2125 pf_print_state_parts(struct pf_kstate *s, 2126 struct pf_state_key *skwp, struct pf_state_key *sksp) 2127 { 2128 struct pf_state_key *skw, *sks; 2129 u_int8_t proto, dir; 2130 2131 /* Do our best to fill these, but they're skipped if NULL */ 2132 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2133 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2134 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2135 dir = s ? s->direction : 0; 2136 2137 switch (proto) { 2138 case IPPROTO_IPV4: 2139 printf("IPv4"); 2140 break; 2141 case IPPROTO_IPV6: 2142 printf("IPv6"); 2143 break; 2144 case IPPROTO_TCP: 2145 printf("TCP"); 2146 break; 2147 case IPPROTO_UDP: 2148 printf("UDP"); 2149 break; 2150 case IPPROTO_ICMP: 2151 printf("ICMP"); 2152 break; 2153 case IPPROTO_ICMPV6: 2154 printf("ICMPv6"); 2155 break; 2156 default: 2157 printf("%u", proto); 2158 break; 2159 } 2160 switch (dir) { 2161 case PF_IN: 2162 printf(" in"); 2163 break; 2164 case PF_OUT: 2165 printf(" out"); 2166 break; 2167 } 2168 if (skw) { 2169 printf(" wire: "); 2170 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2171 printf(" "); 2172 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2173 } 2174 if (sks) { 2175 printf(" stack: "); 2176 if (sks != skw) { 2177 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2178 printf(" "); 2179 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2180 } else 2181 printf("-"); 2182 } 2183 if (s) { 2184 if (proto == IPPROTO_TCP) { 2185 printf(" [lo=%u high=%u win=%u modulator=%u", 2186 s->src.seqlo, s->src.seqhi, 2187 s->src.max_win, s->src.seqdiff); 2188 if (s->src.wscale && s->dst.wscale) 2189 printf(" wscale=%u", 2190 s->src.wscale & PF_WSCALE_MASK); 2191 printf("]"); 2192 printf(" [lo=%u high=%u win=%u modulator=%u", 2193 s->dst.seqlo, s->dst.seqhi, 2194 s->dst.max_win, s->dst.seqdiff); 2195 if (s->src.wscale && s->dst.wscale) 2196 printf(" wscale=%u", 2197 s->dst.wscale & PF_WSCALE_MASK); 2198 printf("]"); 2199 } 2200 printf(" %u:%u", s->src.state, s->dst.state); 2201 } 2202 } 2203 2204 void 2205 pf_print_flags(u_int8_t f) 2206 { 2207 if (f) 2208 printf(" "); 2209 if (f & TH_FIN) 2210 printf("F"); 2211 if (f & TH_SYN) 2212 printf("S"); 2213 if (f & TH_RST) 2214 printf("R"); 2215 if (f & TH_PUSH) 2216 printf("P"); 2217 if (f & TH_ACK) 2218 printf("A"); 2219 if (f & TH_URG) 2220 printf("U"); 2221 if (f & TH_ECE) 2222 printf("E"); 2223 if (f & TH_CWR) 2224 printf("W"); 2225 } 2226 2227 #define PF_SET_SKIP_STEPS(i) \ 2228 do { \ 2229 while (head[i] != cur) { \ 2230 head[i]->skip[i].ptr = cur; \ 2231 head[i] = TAILQ_NEXT(head[i], entries); \ 2232 } \ 2233 } while (0) 2234 2235 void 2236 pf_calc_skip_steps(struct pf_krulequeue *rules) 2237 { 2238 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2239 int i; 2240 2241 cur = TAILQ_FIRST(rules); 2242 prev = cur; 2243 for (i = 0; i < PF_SKIP_COUNT; ++i) 2244 head[i] = cur; 2245 while (cur != NULL) { 2246 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2247 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2248 if (cur->direction != prev->direction) 2249 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2250 if (cur->af != prev->af) 2251 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2252 if (cur->proto != prev->proto) 2253 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2254 if (cur->src.neg != prev->src.neg || 2255 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2256 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2257 if (cur->src.port[0] != prev->src.port[0] || 2258 cur->src.port[1] != prev->src.port[1] || 2259 cur->src.port_op != prev->src.port_op) 2260 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2261 if (cur->dst.neg != prev->dst.neg || 2262 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2263 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2264 if (cur->dst.port[0] != prev->dst.port[0] || 2265 cur->dst.port[1] != prev->dst.port[1] || 2266 cur->dst.port_op != prev->dst.port_op) 2267 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2268 2269 prev = cur; 2270 cur = TAILQ_NEXT(cur, entries); 2271 } 2272 for (i = 0; i < PF_SKIP_COUNT; ++i) 2273 PF_SET_SKIP_STEPS(i); 2274 } 2275 2276 static int 2277 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2278 { 2279 if (aw1->type != aw2->type) 2280 return (1); 2281 switch (aw1->type) { 2282 case PF_ADDR_ADDRMASK: 2283 case PF_ADDR_RANGE: 2284 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2285 return (1); 2286 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2287 return (1); 2288 return (0); 2289 case PF_ADDR_DYNIFTL: 2290 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2291 case PF_ADDR_NOROUTE: 2292 case PF_ADDR_URPFFAILED: 2293 return (0); 2294 case PF_ADDR_TABLE: 2295 return (aw1->p.tbl != aw2->p.tbl); 2296 default: 2297 printf("invalid address type: %d\n", aw1->type); 2298 return (1); 2299 } 2300 } 2301 2302 /** 2303 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2304 * header isn't always a full checksum. In some cases (i.e. output) it's a 2305 * pseudo-header checksum, which is a partial checksum over src/dst IP 2306 * addresses, protocol number and length. 2307 * 2308 * That means we have the following cases: 2309 * * Input or forwarding: we don't have TSO, the checksum fields are full 2310 * checksums, we need to update the checksum whenever we change anything. 2311 * * Output (i.e. the checksum is a pseudo-header checksum): 2312 * x The field being updated is src/dst address or affects the length of 2313 * the packet. We need to update the pseudo-header checksum (note that this 2314 * checksum is not ones' complement). 2315 * x Some other field is being modified (e.g. src/dst port numbers): We 2316 * don't have to update anything. 2317 **/ 2318 u_int16_t 2319 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2320 { 2321 u_int32_t x; 2322 2323 x = cksum + old - new; 2324 x = (x + (x >> 16)) & 0xffff; 2325 2326 /* optimise: eliminate a branch when not udp */ 2327 if (udp && cksum == 0x0000) 2328 return cksum; 2329 if (udp && x == 0x0000) 2330 x = 0xffff; 2331 2332 return (u_int16_t)(x); 2333 } 2334 2335 static void 2336 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 2337 u_int8_t udp) 2338 { 2339 u_int16_t old = htons(hi ? (*f << 8) : *f); 2340 u_int16_t new = htons(hi ? ( v << 8) : v); 2341 2342 if (*f == v) 2343 return; 2344 2345 *f = v; 2346 2347 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2348 return; 2349 2350 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 2351 } 2352 2353 void 2354 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 2355 bool hi, u_int8_t udp) 2356 { 2357 u_int8_t *fb = (u_int8_t *)f; 2358 u_int8_t *vb = (u_int8_t *)&v; 2359 2360 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2361 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2362 } 2363 2364 void 2365 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 2366 bool hi, u_int8_t udp) 2367 { 2368 u_int8_t *fb = (u_int8_t *)f; 2369 u_int8_t *vb = (u_int8_t *)&v; 2370 2371 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2372 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2373 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2374 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2375 } 2376 2377 u_int16_t 2378 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2379 u_int16_t new, u_int8_t udp) 2380 { 2381 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2382 return (cksum); 2383 2384 return (pf_cksum_fixup(cksum, old, new, udp)); 2385 } 2386 2387 static void 2388 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2389 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2390 sa_family_t af) 2391 { 2392 struct pf_addr ao; 2393 u_int16_t po = *p; 2394 2395 PF_ACPY(&ao, a, af); 2396 PF_ACPY(a, an, af); 2397 2398 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2399 *pc = ~*pc; 2400 2401 *p = pn; 2402 2403 switch (af) { 2404 #ifdef INET 2405 case AF_INET: 2406 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2407 ao.addr16[0], an->addr16[0], 0), 2408 ao.addr16[1], an->addr16[1], 0); 2409 *p = pn; 2410 2411 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2412 ao.addr16[0], an->addr16[0], u), 2413 ao.addr16[1], an->addr16[1], u); 2414 2415 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2416 break; 2417 #endif /* INET */ 2418 #ifdef INET6 2419 case AF_INET6: 2420 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2421 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2422 pf_cksum_fixup(pf_cksum_fixup(*pc, 2423 ao.addr16[0], an->addr16[0], u), 2424 ao.addr16[1], an->addr16[1], u), 2425 ao.addr16[2], an->addr16[2], u), 2426 ao.addr16[3], an->addr16[3], u), 2427 ao.addr16[4], an->addr16[4], u), 2428 ao.addr16[5], an->addr16[5], u), 2429 ao.addr16[6], an->addr16[6], u), 2430 ao.addr16[7], an->addr16[7], u); 2431 2432 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2433 break; 2434 #endif /* INET6 */ 2435 } 2436 2437 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2438 CSUM_DELAY_DATA_IPV6)) { 2439 *pc = ~*pc; 2440 if (! *pc) 2441 *pc = 0xffff; 2442 } 2443 } 2444 2445 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2446 void 2447 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2448 { 2449 u_int32_t ao; 2450 2451 memcpy(&ao, a, sizeof(ao)); 2452 memcpy(a, &an, sizeof(u_int32_t)); 2453 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2454 ao % 65536, an % 65536, u); 2455 } 2456 2457 void 2458 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2459 { 2460 u_int32_t ao; 2461 2462 memcpy(&ao, a, sizeof(ao)); 2463 memcpy(a, &an, sizeof(u_int32_t)); 2464 2465 *c = pf_proto_cksum_fixup(m, 2466 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2467 ao % 65536, an % 65536, udp); 2468 } 2469 2470 #ifdef INET6 2471 static void 2472 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2473 { 2474 struct pf_addr ao; 2475 2476 PF_ACPY(&ao, a, AF_INET6); 2477 PF_ACPY(a, an, AF_INET6); 2478 2479 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2480 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2481 pf_cksum_fixup(pf_cksum_fixup(*c, 2482 ao.addr16[0], an->addr16[0], u), 2483 ao.addr16[1], an->addr16[1], u), 2484 ao.addr16[2], an->addr16[2], u), 2485 ao.addr16[3], an->addr16[3], u), 2486 ao.addr16[4], an->addr16[4], u), 2487 ao.addr16[5], an->addr16[5], u), 2488 ao.addr16[6], an->addr16[6], u), 2489 ao.addr16[7], an->addr16[7], u); 2490 } 2491 #endif /* INET6 */ 2492 2493 static void 2494 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2495 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2496 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2497 { 2498 struct pf_addr oia, ooa; 2499 2500 PF_ACPY(&oia, ia, af); 2501 if (oa) 2502 PF_ACPY(&ooa, oa, af); 2503 2504 /* Change inner protocol port, fix inner protocol checksum. */ 2505 if (ip != NULL) { 2506 u_int16_t oip = *ip; 2507 u_int32_t opc; 2508 2509 if (pc != NULL) 2510 opc = *pc; 2511 *ip = np; 2512 if (pc != NULL) 2513 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2514 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2515 if (pc != NULL) 2516 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2517 } 2518 /* Change inner ip address, fix inner ip and icmp checksums. */ 2519 PF_ACPY(ia, na, af); 2520 switch (af) { 2521 #ifdef INET 2522 case AF_INET: { 2523 u_int32_t oh2c = *h2c; 2524 2525 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2526 oia.addr16[0], ia->addr16[0], 0), 2527 oia.addr16[1], ia->addr16[1], 0); 2528 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2529 oia.addr16[0], ia->addr16[0], 0), 2530 oia.addr16[1], ia->addr16[1], 0); 2531 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2532 break; 2533 } 2534 #endif /* INET */ 2535 #ifdef INET6 2536 case AF_INET6: 2537 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2538 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2539 pf_cksum_fixup(pf_cksum_fixup(*ic, 2540 oia.addr16[0], ia->addr16[0], u), 2541 oia.addr16[1], ia->addr16[1], u), 2542 oia.addr16[2], ia->addr16[2], u), 2543 oia.addr16[3], ia->addr16[3], u), 2544 oia.addr16[4], ia->addr16[4], u), 2545 oia.addr16[5], ia->addr16[5], u), 2546 oia.addr16[6], ia->addr16[6], u), 2547 oia.addr16[7], ia->addr16[7], u); 2548 break; 2549 #endif /* INET6 */ 2550 } 2551 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2552 if (oa) { 2553 PF_ACPY(oa, na, af); 2554 switch (af) { 2555 #ifdef INET 2556 case AF_INET: 2557 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2558 ooa.addr16[0], oa->addr16[0], 0), 2559 ooa.addr16[1], oa->addr16[1], 0); 2560 break; 2561 #endif /* INET */ 2562 #ifdef INET6 2563 case AF_INET6: 2564 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2565 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2566 pf_cksum_fixup(pf_cksum_fixup(*ic, 2567 ooa.addr16[0], oa->addr16[0], u), 2568 ooa.addr16[1], oa->addr16[1], u), 2569 ooa.addr16[2], oa->addr16[2], u), 2570 ooa.addr16[3], oa->addr16[3], u), 2571 ooa.addr16[4], oa->addr16[4], u), 2572 ooa.addr16[5], oa->addr16[5], u), 2573 ooa.addr16[6], oa->addr16[6], u), 2574 ooa.addr16[7], oa->addr16[7], u); 2575 break; 2576 #endif /* INET6 */ 2577 } 2578 } 2579 } 2580 2581 /* 2582 * Need to modulate the sequence numbers in the TCP SACK option 2583 * (credits to Krzysztof Pfaff for report and patch) 2584 */ 2585 static int 2586 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2587 struct tcphdr *th, struct pf_state_peer *dst) 2588 { 2589 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2590 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2591 int copyback = 0, i, olen; 2592 struct sackblk sack; 2593 2594 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2595 if (hlen < TCPOLEN_SACKLEN || 2596 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2597 return 0; 2598 2599 while (hlen >= TCPOLEN_SACKLEN) { 2600 size_t startoff = opt - opts; 2601 olen = opt[1]; 2602 switch (*opt) { 2603 case TCPOPT_EOL: /* FALLTHROUGH */ 2604 case TCPOPT_NOP: 2605 opt++; 2606 hlen--; 2607 break; 2608 case TCPOPT_SACK: 2609 if (olen > hlen) 2610 olen = hlen; 2611 if (olen >= TCPOLEN_SACKLEN) { 2612 for (i = 2; i + TCPOLEN_SACK <= olen; 2613 i += TCPOLEN_SACK) { 2614 memcpy(&sack, &opt[i], sizeof(sack)); 2615 pf_patch_32_unaligned(m, 2616 &th->th_sum, &sack.start, 2617 htonl(ntohl(sack.start) - dst->seqdiff), 2618 PF_ALGNMNT(startoff), 2619 0); 2620 pf_patch_32_unaligned(m, &th->th_sum, 2621 &sack.end, 2622 htonl(ntohl(sack.end) - dst->seqdiff), 2623 PF_ALGNMNT(startoff), 2624 0); 2625 memcpy(&opt[i], &sack, sizeof(sack)); 2626 } 2627 copyback = 1; 2628 } 2629 /* FALLTHROUGH */ 2630 default: 2631 if (olen < 2) 2632 olen = 2; 2633 hlen -= olen; 2634 opt += olen; 2635 } 2636 } 2637 2638 if (copyback) 2639 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2640 return (copyback); 2641 } 2642 2643 struct mbuf * 2644 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 2645 const struct pf_addr *saddr, const struct pf_addr *daddr, 2646 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2647 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2648 u_int16_t rtag) 2649 { 2650 struct mbuf *m; 2651 int len, tlen; 2652 #ifdef INET 2653 struct ip *h = NULL; 2654 #endif /* INET */ 2655 #ifdef INET6 2656 struct ip6_hdr *h6 = NULL; 2657 #endif /* INET6 */ 2658 struct tcphdr *th; 2659 char *opt; 2660 struct pf_mtag *pf_mtag; 2661 2662 len = 0; 2663 th = NULL; 2664 2665 /* maximum segment size tcp option */ 2666 tlen = sizeof(struct tcphdr); 2667 if (mss) 2668 tlen += 4; 2669 2670 switch (af) { 2671 #ifdef INET 2672 case AF_INET: 2673 len = sizeof(struct ip) + tlen; 2674 break; 2675 #endif /* INET */ 2676 #ifdef INET6 2677 case AF_INET6: 2678 len = sizeof(struct ip6_hdr) + tlen; 2679 break; 2680 #endif /* INET6 */ 2681 default: 2682 panic("%s: unsupported af %d", __func__, af); 2683 } 2684 2685 m = m_gethdr(M_NOWAIT, MT_DATA); 2686 if (m == NULL) 2687 return (NULL); 2688 2689 #ifdef MAC 2690 mac_netinet_firewall_send(m); 2691 #endif 2692 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2693 m_freem(m); 2694 return (NULL); 2695 } 2696 if (tag) 2697 m->m_flags |= M_SKIP_FIREWALL; 2698 pf_mtag->tag = rtag; 2699 2700 if (r != NULL && r->rtableid >= 0) 2701 M_SETFIB(m, r->rtableid); 2702 2703 #ifdef ALTQ 2704 if (r != NULL && r->qid) { 2705 pf_mtag->qid = r->qid; 2706 2707 /* add hints for ecn */ 2708 pf_mtag->hdr = mtod(m, struct ip *); 2709 } 2710 #endif /* ALTQ */ 2711 m->m_data += max_linkhdr; 2712 m->m_pkthdr.len = m->m_len = len; 2713 /* The rest of the stack assumes a rcvif, so provide one. 2714 * This is a locally generated packet, so .. close enough. */ 2715 m->m_pkthdr.rcvif = V_loif; 2716 bzero(m->m_data, len); 2717 switch (af) { 2718 #ifdef INET 2719 case AF_INET: 2720 h = mtod(m, struct ip *); 2721 2722 /* IP header fields included in the TCP checksum */ 2723 h->ip_p = IPPROTO_TCP; 2724 h->ip_len = htons(tlen); 2725 h->ip_src.s_addr = saddr->v4.s_addr; 2726 h->ip_dst.s_addr = daddr->v4.s_addr; 2727 2728 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2729 break; 2730 #endif /* INET */ 2731 #ifdef INET6 2732 case AF_INET6: 2733 h6 = mtod(m, struct ip6_hdr *); 2734 2735 /* IP header fields included in the TCP checksum */ 2736 h6->ip6_nxt = IPPROTO_TCP; 2737 h6->ip6_plen = htons(tlen); 2738 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2739 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2740 2741 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2742 break; 2743 #endif /* INET6 */ 2744 } 2745 2746 /* TCP header */ 2747 th->th_sport = sport; 2748 th->th_dport = dport; 2749 th->th_seq = htonl(seq); 2750 th->th_ack = htonl(ack); 2751 th->th_off = tlen >> 2; 2752 th->th_flags = flags; 2753 th->th_win = htons(win); 2754 2755 if (mss) { 2756 opt = (char *)(th + 1); 2757 opt[0] = TCPOPT_MAXSEG; 2758 opt[1] = 4; 2759 HTONS(mss); 2760 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2761 } 2762 2763 switch (af) { 2764 #ifdef INET 2765 case AF_INET: 2766 /* TCP checksum */ 2767 th->th_sum = in_cksum(m, len); 2768 2769 /* Finish the IP header */ 2770 h->ip_v = 4; 2771 h->ip_hl = sizeof(*h) >> 2; 2772 h->ip_tos = IPTOS_LOWDELAY; 2773 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2774 h->ip_len = htons(len); 2775 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2776 h->ip_sum = 0; 2777 break; 2778 #endif /* INET */ 2779 #ifdef INET6 2780 case AF_INET6: 2781 /* TCP checksum */ 2782 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2783 sizeof(struct ip6_hdr), tlen); 2784 2785 h6->ip6_vfc |= IPV6_VERSION; 2786 h6->ip6_hlim = IPV6_DEFHLIM; 2787 break; 2788 #endif /* INET6 */ 2789 } 2790 2791 return (m); 2792 } 2793 2794 void 2795 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 2796 const struct pf_addr *saddr, const struct pf_addr *daddr, 2797 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2798 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2799 u_int16_t rtag) 2800 { 2801 struct pf_send_entry *pfse; 2802 struct mbuf *m; 2803 2804 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, flags, 2805 win, mss, ttl, tag, rtag); 2806 if (m == NULL) 2807 return; 2808 2809 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2810 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2811 if (pfse == NULL) { 2812 m_freem(m); 2813 return; 2814 } 2815 2816 switch (af) { 2817 #ifdef INET 2818 case AF_INET: 2819 pfse->pfse_type = PFSE_IP; 2820 break; 2821 #endif /* INET */ 2822 #ifdef INET6 2823 case AF_INET6: 2824 pfse->pfse_type = PFSE_IP6; 2825 break; 2826 #endif /* INET6 */ 2827 } 2828 2829 pfse->pfse_m = m; 2830 pf_send(pfse); 2831 } 2832 2833 static void 2834 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 2835 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 2836 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 2837 u_short *reason) 2838 { 2839 struct pf_addr * const saddr = pd->src; 2840 struct pf_addr * const daddr = pd->dst; 2841 sa_family_t af = pd->af; 2842 2843 /* undo NAT changes, if they have taken place */ 2844 if (nr != NULL) { 2845 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 2846 PF_ACPY(daddr, &sk->addr[pd->didx], af); 2847 if (pd->sport) 2848 *pd->sport = sk->port[pd->sidx]; 2849 if (pd->dport) 2850 *pd->dport = sk->port[pd->didx]; 2851 if (pd->proto_sum) 2852 *pd->proto_sum = bproto_sum; 2853 if (pd->ip_sum) 2854 *pd->ip_sum = bip_sum; 2855 m_copyback(m, off, hdrlen, pd->hdr.any); 2856 } 2857 if (pd->proto == IPPROTO_TCP && 2858 ((r->rule_flag & PFRULE_RETURNRST) || 2859 (r->rule_flag & PFRULE_RETURN)) && 2860 !(th->th_flags & TH_RST)) { 2861 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 2862 int len = 0; 2863 #ifdef INET 2864 struct ip *h4; 2865 #endif 2866 #ifdef INET6 2867 struct ip6_hdr *h6; 2868 #endif 2869 2870 switch (af) { 2871 #ifdef INET 2872 case AF_INET: 2873 h4 = mtod(m, struct ip *); 2874 len = ntohs(h4->ip_len) - off; 2875 break; 2876 #endif 2877 #ifdef INET6 2878 case AF_INET6: 2879 h6 = mtod(m, struct ip6_hdr *); 2880 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 2881 break; 2882 #endif 2883 } 2884 2885 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 2886 REASON_SET(reason, PFRES_PROTCKSUM); 2887 else { 2888 if (th->th_flags & TH_SYN) 2889 ack++; 2890 if (th->th_flags & TH_FIN) 2891 ack++; 2892 pf_send_tcp(r, af, pd->dst, 2893 pd->src, th->th_dport, th->th_sport, 2894 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 2895 r->return_ttl, 1, 0); 2896 } 2897 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 2898 r->return_icmp) 2899 pf_send_icmp(m, r->return_icmp >> 8, 2900 r->return_icmp & 255, af, r); 2901 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 2902 r->return_icmp6) 2903 pf_send_icmp(m, r->return_icmp6 >> 8, 2904 r->return_icmp6 & 255, af, r); 2905 } 2906 2907 static int 2908 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2909 { 2910 struct m_tag *mtag; 2911 u_int8_t mpcp; 2912 2913 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2914 if (mtag == NULL) 2915 return (0); 2916 2917 if (prio == PF_PRIO_ZERO) 2918 prio = 0; 2919 2920 mpcp = *(uint8_t *)(mtag + 1); 2921 2922 return (mpcp == prio); 2923 } 2924 2925 static void 2926 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2927 struct pf_krule *r) 2928 { 2929 struct pf_send_entry *pfse; 2930 struct mbuf *m0; 2931 struct pf_mtag *pf_mtag; 2932 2933 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2934 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2935 if (pfse == NULL) 2936 return; 2937 2938 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2939 free(pfse, M_PFTEMP); 2940 return; 2941 } 2942 2943 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2944 free(pfse, M_PFTEMP); 2945 return; 2946 } 2947 /* XXX: revisit */ 2948 m0->m_flags |= M_SKIP_FIREWALL; 2949 2950 if (r->rtableid >= 0) 2951 M_SETFIB(m0, r->rtableid); 2952 2953 #ifdef ALTQ 2954 if (r->qid) { 2955 pf_mtag->qid = r->qid; 2956 /* add hints for ecn */ 2957 pf_mtag->hdr = mtod(m0, struct ip *); 2958 } 2959 #endif /* ALTQ */ 2960 2961 switch (af) { 2962 #ifdef INET 2963 case AF_INET: 2964 pfse->pfse_type = PFSE_ICMP; 2965 break; 2966 #endif /* INET */ 2967 #ifdef INET6 2968 case AF_INET6: 2969 pfse->pfse_type = PFSE_ICMP6; 2970 break; 2971 #endif /* INET6 */ 2972 } 2973 pfse->pfse_m = m0; 2974 pfse->icmpopts.type = type; 2975 pfse->icmpopts.code = code; 2976 pf_send(pfse); 2977 } 2978 2979 /* 2980 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2981 * If n is 0, they match if they are equal. If n is != 0, they match if they 2982 * are different. 2983 */ 2984 int 2985 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2986 struct pf_addr *b, sa_family_t af) 2987 { 2988 int match = 0; 2989 2990 switch (af) { 2991 #ifdef INET 2992 case AF_INET: 2993 if ((a->addr32[0] & m->addr32[0]) == 2994 (b->addr32[0] & m->addr32[0])) 2995 match++; 2996 break; 2997 #endif /* INET */ 2998 #ifdef INET6 2999 case AF_INET6: 3000 if (((a->addr32[0] & m->addr32[0]) == 3001 (b->addr32[0] & m->addr32[0])) && 3002 ((a->addr32[1] & m->addr32[1]) == 3003 (b->addr32[1] & m->addr32[1])) && 3004 ((a->addr32[2] & m->addr32[2]) == 3005 (b->addr32[2] & m->addr32[2])) && 3006 ((a->addr32[3] & m->addr32[3]) == 3007 (b->addr32[3] & m->addr32[3]))) 3008 match++; 3009 break; 3010 #endif /* INET6 */ 3011 } 3012 if (match) { 3013 if (n) 3014 return (0); 3015 else 3016 return (1); 3017 } else { 3018 if (n) 3019 return (1); 3020 else 3021 return (0); 3022 } 3023 } 3024 3025 /* 3026 * Return 1 if b <= a <= e, otherwise return 0. 3027 */ 3028 int 3029 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 3030 struct pf_addr *a, sa_family_t af) 3031 { 3032 switch (af) { 3033 #ifdef INET 3034 case AF_INET: 3035 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 3036 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 3037 return (0); 3038 break; 3039 #endif /* INET */ 3040 #ifdef INET6 3041 case AF_INET6: { 3042 int i; 3043 3044 /* check a >= b */ 3045 for (i = 0; i < 4; ++i) 3046 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 3047 break; 3048 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 3049 return (0); 3050 /* check a <= e */ 3051 for (i = 0; i < 4; ++i) 3052 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 3053 break; 3054 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 3055 return (0); 3056 break; 3057 } 3058 #endif /* INET6 */ 3059 } 3060 return (1); 3061 } 3062 3063 static int 3064 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3065 { 3066 switch (op) { 3067 case PF_OP_IRG: 3068 return ((p > a1) && (p < a2)); 3069 case PF_OP_XRG: 3070 return ((p < a1) || (p > a2)); 3071 case PF_OP_RRG: 3072 return ((p >= a1) && (p <= a2)); 3073 case PF_OP_EQ: 3074 return (p == a1); 3075 case PF_OP_NE: 3076 return (p != a1); 3077 case PF_OP_LT: 3078 return (p < a1); 3079 case PF_OP_LE: 3080 return (p <= a1); 3081 case PF_OP_GT: 3082 return (p > a1); 3083 case PF_OP_GE: 3084 return (p >= a1); 3085 } 3086 return (0); /* never reached */ 3087 } 3088 3089 int 3090 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3091 { 3092 NTOHS(a1); 3093 NTOHS(a2); 3094 NTOHS(p); 3095 return (pf_match(op, a1, a2, p)); 3096 } 3097 3098 static int 3099 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3100 { 3101 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3102 return (0); 3103 return (pf_match(op, a1, a2, u)); 3104 } 3105 3106 static int 3107 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3108 { 3109 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3110 return (0); 3111 return (pf_match(op, a1, a2, g)); 3112 } 3113 3114 int 3115 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3116 { 3117 if (*tag == -1) 3118 *tag = mtag; 3119 3120 return ((!r->match_tag_not && r->match_tag == *tag) || 3121 (r->match_tag_not && r->match_tag != *tag)); 3122 } 3123 3124 int 3125 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 3126 { 3127 3128 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 3129 3130 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 3131 return (ENOMEM); 3132 3133 pd->pf_mtag->tag = tag; 3134 3135 return (0); 3136 } 3137 3138 #define PF_ANCHOR_STACKSIZE 32 3139 struct pf_kanchor_stackframe { 3140 struct pf_kruleset *rs; 3141 struct pf_krule *r; /* XXX: + match bit */ 3142 struct pf_kanchor *child; 3143 }; 3144 3145 /* 3146 * XXX: We rely on malloc(9) returning pointer aligned addresses. 3147 */ 3148 #define PF_ANCHORSTACK_MATCH 0x00000001 3149 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 3150 3151 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3152 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 3153 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3154 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3155 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3156 } while (0) 3157 3158 void 3159 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3160 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3161 int *match) 3162 { 3163 struct pf_kanchor_stackframe *f; 3164 3165 PF_RULES_RASSERT(); 3166 3167 if (match) 3168 *match = 0; 3169 if (*depth >= PF_ANCHOR_STACKSIZE) { 3170 printf("%s: anchor stack overflow on %s\n", 3171 __func__, (*r)->anchor->name); 3172 *r = TAILQ_NEXT(*r, entries); 3173 return; 3174 } else if (*depth == 0 && a != NULL) 3175 *a = *r; 3176 f = stack + (*depth)++; 3177 f->rs = *rs; 3178 f->r = *r; 3179 if ((*r)->anchor_wildcard) { 3180 struct pf_kanchor_node *parent = &(*r)->anchor->children; 3181 3182 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 3183 *r = NULL; 3184 return; 3185 } 3186 *rs = &f->child->ruleset; 3187 } else { 3188 f->child = NULL; 3189 *rs = &(*r)->anchor->ruleset; 3190 } 3191 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3192 } 3193 3194 int 3195 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3196 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3197 int *match) 3198 { 3199 struct pf_kanchor_stackframe *f; 3200 struct pf_krule *fr; 3201 int quick = 0; 3202 3203 PF_RULES_RASSERT(); 3204 3205 do { 3206 if (*depth <= 0) 3207 break; 3208 f = stack + *depth - 1; 3209 fr = PF_ANCHOR_RULE(f); 3210 if (f->child != NULL) { 3211 struct pf_kanchor_node *parent; 3212 3213 /* 3214 * This block traverses through 3215 * a wildcard anchor. 3216 */ 3217 parent = &fr->anchor->children; 3218 if (match != NULL && *match) { 3219 /* 3220 * If any of "*" matched, then 3221 * "foo/ *" matched, mark frame 3222 * appropriately. 3223 */ 3224 PF_ANCHOR_SET_MATCH(f); 3225 *match = 0; 3226 } 3227 f->child = RB_NEXT(pf_kanchor_node, parent, f->child); 3228 if (f->child != NULL) { 3229 *rs = &f->child->ruleset; 3230 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3231 if (*r == NULL) 3232 continue; 3233 else 3234 break; 3235 } 3236 } 3237 (*depth)--; 3238 if (*depth == 0 && a != NULL) 3239 *a = NULL; 3240 *rs = f->rs; 3241 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 3242 quick = fr->quick; 3243 *r = TAILQ_NEXT(fr, entries); 3244 } while (*r == NULL); 3245 3246 return (quick); 3247 } 3248 3249 #ifdef INET6 3250 void 3251 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 3252 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 3253 { 3254 switch (af) { 3255 #ifdef INET 3256 case AF_INET: 3257 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3258 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3259 break; 3260 #endif /* INET */ 3261 case AF_INET6: 3262 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3263 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3264 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 3265 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 3266 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 3267 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 3268 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 3269 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 3270 break; 3271 } 3272 } 3273 3274 void 3275 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 3276 { 3277 switch (af) { 3278 #ifdef INET 3279 case AF_INET: 3280 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 3281 break; 3282 #endif /* INET */ 3283 case AF_INET6: 3284 if (addr->addr32[3] == 0xffffffff) { 3285 addr->addr32[3] = 0; 3286 if (addr->addr32[2] == 0xffffffff) { 3287 addr->addr32[2] = 0; 3288 if (addr->addr32[1] == 0xffffffff) { 3289 addr->addr32[1] = 0; 3290 addr->addr32[0] = 3291 htonl(ntohl(addr->addr32[0]) + 1); 3292 } else 3293 addr->addr32[1] = 3294 htonl(ntohl(addr->addr32[1]) + 1); 3295 } else 3296 addr->addr32[2] = 3297 htonl(ntohl(addr->addr32[2]) + 1); 3298 } else 3299 addr->addr32[3] = 3300 htonl(ntohl(addr->addr32[3]) + 1); 3301 break; 3302 } 3303 } 3304 #endif /* INET6 */ 3305 3306 void 3307 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 3308 { 3309 if (r->qid) 3310 a->qid = r->qid; 3311 if (r->pqid) 3312 a->pqid = r->pqid; 3313 } 3314 3315 int 3316 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 3317 { 3318 struct pf_addr *saddr, *daddr; 3319 u_int16_t sport, dport; 3320 struct inpcbinfo *pi; 3321 struct inpcb *inp; 3322 3323 pd->lookup.uid = UID_MAX; 3324 pd->lookup.gid = GID_MAX; 3325 3326 switch (pd->proto) { 3327 case IPPROTO_TCP: 3328 sport = pd->hdr.tcp.th_sport; 3329 dport = pd->hdr.tcp.th_dport; 3330 pi = &V_tcbinfo; 3331 break; 3332 case IPPROTO_UDP: 3333 sport = pd->hdr.udp.uh_sport; 3334 dport = pd->hdr.udp.uh_dport; 3335 pi = &V_udbinfo; 3336 break; 3337 default: 3338 return (-1); 3339 } 3340 if (direction == PF_IN) { 3341 saddr = pd->src; 3342 daddr = pd->dst; 3343 } else { 3344 u_int16_t p; 3345 3346 p = sport; 3347 sport = dport; 3348 dport = p; 3349 saddr = pd->dst; 3350 daddr = pd->src; 3351 } 3352 switch (pd->af) { 3353 #ifdef INET 3354 case AF_INET: 3355 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3356 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3357 if (inp == NULL) { 3358 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3359 daddr->v4, dport, INPLOOKUP_WILDCARD | 3360 INPLOOKUP_RLOCKPCB, NULL, m); 3361 if (inp == NULL) 3362 return (-1); 3363 } 3364 break; 3365 #endif /* INET */ 3366 #ifdef INET6 3367 case AF_INET6: 3368 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3369 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3370 if (inp == NULL) { 3371 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3372 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3373 INPLOOKUP_RLOCKPCB, NULL, m); 3374 if (inp == NULL) 3375 return (-1); 3376 } 3377 break; 3378 #endif /* INET6 */ 3379 3380 default: 3381 return (-1); 3382 } 3383 INP_RLOCK_ASSERT(inp); 3384 pd->lookup.uid = inp->inp_cred->cr_uid; 3385 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3386 INP_RUNLOCK(inp); 3387 3388 return (1); 3389 } 3390 3391 u_int8_t 3392 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3393 { 3394 int hlen; 3395 u_int8_t hdr[60]; 3396 u_int8_t *opt, optlen; 3397 u_int8_t wscale = 0; 3398 3399 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3400 if (hlen <= sizeof(struct tcphdr)) 3401 return (0); 3402 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3403 return (0); 3404 opt = hdr + sizeof(struct tcphdr); 3405 hlen -= sizeof(struct tcphdr); 3406 while (hlen >= 3) { 3407 switch (*opt) { 3408 case TCPOPT_EOL: 3409 case TCPOPT_NOP: 3410 ++opt; 3411 --hlen; 3412 break; 3413 case TCPOPT_WINDOW: 3414 wscale = opt[2]; 3415 if (wscale > TCP_MAX_WINSHIFT) 3416 wscale = TCP_MAX_WINSHIFT; 3417 wscale |= PF_WSCALE_FLAG; 3418 /* FALLTHROUGH */ 3419 default: 3420 optlen = opt[1]; 3421 if (optlen < 2) 3422 optlen = 2; 3423 hlen -= optlen; 3424 opt += optlen; 3425 break; 3426 } 3427 } 3428 return (wscale); 3429 } 3430 3431 u_int16_t 3432 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3433 { 3434 int hlen; 3435 u_int8_t hdr[60]; 3436 u_int8_t *opt, optlen; 3437 u_int16_t mss = V_tcp_mssdflt; 3438 3439 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3440 if (hlen <= sizeof(struct tcphdr)) 3441 return (0); 3442 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3443 return (0); 3444 opt = hdr + sizeof(struct tcphdr); 3445 hlen -= sizeof(struct tcphdr); 3446 while (hlen >= TCPOLEN_MAXSEG) { 3447 switch (*opt) { 3448 case TCPOPT_EOL: 3449 case TCPOPT_NOP: 3450 ++opt; 3451 --hlen; 3452 break; 3453 case TCPOPT_MAXSEG: 3454 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3455 NTOHS(mss); 3456 /* FALLTHROUGH */ 3457 default: 3458 optlen = opt[1]; 3459 if (optlen < 2) 3460 optlen = 2; 3461 hlen -= optlen; 3462 opt += optlen; 3463 break; 3464 } 3465 } 3466 return (mss); 3467 } 3468 3469 static u_int16_t 3470 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3471 { 3472 struct nhop_object *nh; 3473 #ifdef INET6 3474 struct in6_addr dst6; 3475 uint32_t scopeid; 3476 #endif /* INET6 */ 3477 int hlen = 0; 3478 uint16_t mss = 0; 3479 3480 NET_EPOCH_ASSERT(); 3481 3482 switch (af) { 3483 #ifdef INET 3484 case AF_INET: 3485 hlen = sizeof(struct ip); 3486 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 3487 if (nh != NULL) 3488 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3489 break; 3490 #endif /* INET */ 3491 #ifdef INET6 3492 case AF_INET6: 3493 hlen = sizeof(struct ip6_hdr); 3494 in6_splitscope(&addr->v6, &dst6, &scopeid); 3495 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 3496 if (nh != NULL) 3497 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3498 break; 3499 #endif /* INET6 */ 3500 } 3501 3502 mss = max(V_tcp_mssdflt, mss); 3503 mss = min(mss, offer); 3504 mss = max(mss, 64); /* sanity - at least max opt space */ 3505 return (mss); 3506 } 3507 3508 static u_int32_t 3509 pf_tcp_iss(struct pf_pdesc *pd) 3510 { 3511 MD5_CTX ctx; 3512 u_int32_t digest[4]; 3513 3514 if (V_pf_tcp_secret_init == 0) { 3515 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3516 MD5Init(&V_pf_tcp_secret_ctx); 3517 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3518 sizeof(V_pf_tcp_secret)); 3519 V_pf_tcp_secret_init = 1; 3520 } 3521 3522 ctx = V_pf_tcp_secret_ctx; 3523 3524 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 3525 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 3526 if (pd->af == AF_INET6) { 3527 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3528 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3529 } else { 3530 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3531 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3532 } 3533 MD5Final((u_char *)digest, &ctx); 3534 V_pf_tcp_iss_off += 4096; 3535 #define ISN_RANDOM_INCREMENT (4096 - 1) 3536 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3537 V_pf_tcp_iss_off); 3538 #undef ISN_RANDOM_INCREMENT 3539 } 3540 3541 static int 3542 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, int direction, 3543 struct pfi_kkif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3544 struct pf_krule **am, struct pf_kruleset **rsm, struct inpcb *inp) 3545 { 3546 struct pf_krule *nr = NULL; 3547 struct pf_addr * const saddr = pd->src; 3548 struct pf_addr * const daddr = pd->dst; 3549 sa_family_t af = pd->af; 3550 struct pf_krule *r, *a = NULL; 3551 struct pf_kruleset *ruleset = NULL; 3552 struct pf_ksrc_node *nsn = NULL; 3553 struct tcphdr *th = &pd->hdr.tcp; 3554 struct pf_state_key *sk = NULL, *nk = NULL; 3555 u_short reason; 3556 int rewrite = 0, hdrlen = 0; 3557 int tag = -1, rtableid = -1; 3558 int asd = 0; 3559 int match = 0; 3560 int state_icmp = 0; 3561 u_int16_t sport = 0, dport = 0; 3562 u_int16_t bproto_sum = 0, bip_sum = 0; 3563 u_int8_t icmptype = 0, icmpcode = 0; 3564 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3565 3566 PF_RULES_RASSERT(); 3567 3568 if (inp != NULL) { 3569 INP_LOCK_ASSERT(inp); 3570 pd->lookup.uid = inp->inp_cred->cr_uid; 3571 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3572 pd->lookup.done = 1; 3573 } 3574 3575 switch (pd->proto) { 3576 case IPPROTO_TCP: 3577 sport = th->th_sport; 3578 dport = th->th_dport; 3579 hdrlen = sizeof(*th); 3580 break; 3581 case IPPROTO_UDP: 3582 sport = pd->hdr.udp.uh_sport; 3583 dport = pd->hdr.udp.uh_dport; 3584 hdrlen = sizeof(pd->hdr.udp); 3585 break; 3586 #ifdef INET 3587 case IPPROTO_ICMP: 3588 if (pd->af != AF_INET) 3589 break; 3590 sport = dport = pd->hdr.icmp.icmp_id; 3591 hdrlen = sizeof(pd->hdr.icmp); 3592 icmptype = pd->hdr.icmp.icmp_type; 3593 icmpcode = pd->hdr.icmp.icmp_code; 3594 3595 if (icmptype == ICMP_UNREACH || 3596 icmptype == ICMP_SOURCEQUENCH || 3597 icmptype == ICMP_REDIRECT || 3598 icmptype == ICMP_TIMXCEED || 3599 icmptype == ICMP_PARAMPROB) 3600 state_icmp++; 3601 break; 3602 #endif /* INET */ 3603 #ifdef INET6 3604 case IPPROTO_ICMPV6: 3605 if (af != AF_INET6) 3606 break; 3607 sport = dport = pd->hdr.icmp6.icmp6_id; 3608 hdrlen = sizeof(pd->hdr.icmp6); 3609 icmptype = pd->hdr.icmp6.icmp6_type; 3610 icmpcode = pd->hdr.icmp6.icmp6_code; 3611 3612 if (icmptype == ICMP6_DST_UNREACH || 3613 icmptype == ICMP6_PACKET_TOO_BIG || 3614 icmptype == ICMP6_TIME_EXCEEDED || 3615 icmptype == ICMP6_PARAM_PROB) 3616 state_icmp++; 3617 break; 3618 #endif /* INET6 */ 3619 default: 3620 sport = dport = hdrlen = 0; 3621 break; 3622 } 3623 3624 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3625 3626 /* check packet for BINAT/NAT/RDR */ 3627 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3628 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3629 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3630 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3631 3632 if (pd->ip_sum) 3633 bip_sum = *pd->ip_sum; 3634 3635 switch (pd->proto) { 3636 case IPPROTO_TCP: 3637 bproto_sum = th->th_sum; 3638 pd->proto_sum = &th->th_sum; 3639 3640 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3641 nk->port[pd->sidx] != sport) { 3642 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3643 &th->th_sum, &nk->addr[pd->sidx], 3644 nk->port[pd->sidx], 0, af); 3645 pd->sport = &th->th_sport; 3646 sport = th->th_sport; 3647 } 3648 3649 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3650 nk->port[pd->didx] != dport) { 3651 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3652 &th->th_sum, &nk->addr[pd->didx], 3653 nk->port[pd->didx], 0, af); 3654 dport = th->th_dport; 3655 pd->dport = &th->th_dport; 3656 } 3657 rewrite++; 3658 break; 3659 case IPPROTO_UDP: 3660 bproto_sum = pd->hdr.udp.uh_sum; 3661 pd->proto_sum = &pd->hdr.udp.uh_sum; 3662 3663 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3664 nk->port[pd->sidx] != sport) { 3665 pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, 3666 pd->ip_sum, &pd->hdr.udp.uh_sum, 3667 &nk->addr[pd->sidx], 3668 nk->port[pd->sidx], 1, af); 3669 sport = pd->hdr.udp.uh_sport; 3670 pd->sport = &pd->hdr.udp.uh_sport; 3671 } 3672 3673 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3674 nk->port[pd->didx] != dport) { 3675 pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, 3676 pd->ip_sum, &pd->hdr.udp.uh_sum, 3677 &nk->addr[pd->didx], 3678 nk->port[pd->didx], 1, af); 3679 dport = pd->hdr.udp.uh_dport; 3680 pd->dport = &pd->hdr.udp.uh_dport; 3681 } 3682 rewrite++; 3683 break; 3684 #ifdef INET 3685 case IPPROTO_ICMP: 3686 nk->port[0] = nk->port[1]; 3687 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3688 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3689 nk->addr[pd->sidx].v4.s_addr, 0); 3690 3691 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3692 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3693 nk->addr[pd->didx].v4.s_addr, 0); 3694 3695 if (nk->port[1] != pd->hdr.icmp.icmp_id) { 3696 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 3697 pd->hdr.icmp.icmp_cksum, sport, 3698 nk->port[1], 0); 3699 pd->hdr.icmp.icmp_id = nk->port[1]; 3700 pd->sport = &pd->hdr.icmp.icmp_id; 3701 } 3702 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 3703 break; 3704 #endif /* INET */ 3705 #ifdef INET6 3706 case IPPROTO_ICMPV6: 3707 nk->port[0] = nk->port[1]; 3708 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3709 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 3710 &nk->addr[pd->sidx], 0); 3711 3712 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3713 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 3714 &nk->addr[pd->didx], 0); 3715 rewrite++; 3716 break; 3717 #endif /* INET */ 3718 default: 3719 switch (af) { 3720 #ifdef INET 3721 case AF_INET: 3722 if (PF_ANEQ(saddr, 3723 &nk->addr[pd->sidx], AF_INET)) 3724 pf_change_a(&saddr->v4.s_addr, 3725 pd->ip_sum, 3726 nk->addr[pd->sidx].v4.s_addr, 0); 3727 3728 if (PF_ANEQ(daddr, 3729 &nk->addr[pd->didx], AF_INET)) 3730 pf_change_a(&daddr->v4.s_addr, 3731 pd->ip_sum, 3732 nk->addr[pd->didx].v4.s_addr, 0); 3733 break; 3734 #endif /* INET */ 3735 #ifdef INET6 3736 case AF_INET6: 3737 if (PF_ANEQ(saddr, 3738 &nk->addr[pd->sidx], AF_INET6)) 3739 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3740 3741 if (PF_ANEQ(daddr, 3742 &nk->addr[pd->didx], AF_INET6)) 3743 PF_ACPY(daddr, &nk->addr[pd->didx], af); 3744 break; 3745 #endif /* INET */ 3746 } 3747 break; 3748 } 3749 if (nr->natpass) 3750 r = NULL; 3751 pd->nat_rule = nr; 3752 } 3753 3754 while (r != NULL) { 3755 pf_counter_u64_add(&r->evaluations, 1); 3756 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 3757 r = r->skip[PF_SKIP_IFP].ptr; 3758 else if (r->direction && r->direction != direction) 3759 r = r->skip[PF_SKIP_DIR].ptr; 3760 else if (r->af && r->af != af) 3761 r = r->skip[PF_SKIP_AF].ptr; 3762 else if (r->proto && r->proto != pd->proto) 3763 r = r->skip[PF_SKIP_PROTO].ptr; 3764 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3765 r->src.neg, kif, M_GETFIB(m))) 3766 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3767 /* tcp/udp only. port_op always 0 in other cases */ 3768 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3769 r->src.port[0], r->src.port[1], sport)) 3770 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3771 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3772 r->dst.neg, NULL, M_GETFIB(m))) 3773 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3774 /* tcp/udp only. port_op always 0 in other cases */ 3775 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3776 r->dst.port[0], r->dst.port[1], dport)) 3777 r = r->skip[PF_SKIP_DST_PORT].ptr; 3778 /* icmp only. type always 0 in other cases */ 3779 else if (r->type && r->type != icmptype + 1) 3780 r = TAILQ_NEXT(r, entries); 3781 /* icmp only. type always 0 in other cases */ 3782 else if (r->code && r->code != icmpcode + 1) 3783 r = TAILQ_NEXT(r, entries); 3784 else if (r->tos && !(r->tos == pd->tos)) 3785 r = TAILQ_NEXT(r, entries); 3786 else if (r->rule_flag & PFRULE_FRAGMENT) 3787 r = TAILQ_NEXT(r, entries); 3788 else if (pd->proto == IPPROTO_TCP && 3789 (r->flagset & th->th_flags) != r->flags) 3790 r = TAILQ_NEXT(r, entries); 3791 /* tcp/udp only. uid.op always 0 in other cases */ 3792 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3793 pf_socket_lookup(direction, pd, m), 1)) && 3794 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3795 pd->lookup.uid)) 3796 r = TAILQ_NEXT(r, entries); 3797 /* tcp/udp only. gid.op always 0 in other cases */ 3798 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3799 pf_socket_lookup(direction, pd, m), 1)) && 3800 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3801 pd->lookup.gid)) 3802 r = TAILQ_NEXT(r, entries); 3803 else if (r->prio && 3804 !pf_match_ieee8021q_pcp(r->prio, m)) 3805 r = TAILQ_NEXT(r, entries); 3806 else if (r->prob && 3807 r->prob <= arc4random()) 3808 r = TAILQ_NEXT(r, entries); 3809 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3810 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3811 r = TAILQ_NEXT(r, entries); 3812 else if (r->os_fingerprint != PF_OSFP_ANY && 3813 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3814 pf_osfp_fingerprint(pd, m, off, th), 3815 r->os_fingerprint))) 3816 r = TAILQ_NEXT(r, entries); 3817 else { 3818 if (r->tag) 3819 tag = r->tag; 3820 if (r->rtableid >= 0) 3821 rtableid = r->rtableid; 3822 if (r->anchor == NULL) { 3823 if (r->action == PF_MATCH) { 3824 pf_counter_u64_critical_enter(); 3825 pf_counter_u64_add_protected(&r->packets[direction == PF_OUT], 1); 3826 pf_counter_u64_add_protected(&r->bytes[direction == PF_OUT], pd->tot_len); 3827 pf_counter_u64_critical_exit(); 3828 pf_rule_to_actions(r, &pd->act); 3829 if (r->log) 3830 PFLOG_PACKET(kif, m, af, 3831 direction, PFRES_MATCH, r, 3832 a, ruleset, pd, 1); 3833 } else { 3834 match = 1; 3835 *rm = r; 3836 *am = a; 3837 *rsm = ruleset; 3838 } 3839 if ((*rm)->quick) 3840 break; 3841 r = TAILQ_NEXT(r, entries); 3842 } else 3843 pf_step_into_anchor(anchor_stack, &asd, 3844 &ruleset, PF_RULESET_FILTER, &r, &a, 3845 &match); 3846 } 3847 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3848 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3849 break; 3850 } 3851 r = *rm; 3852 a = *am; 3853 ruleset = *rsm; 3854 3855 REASON_SET(&reason, PFRES_MATCH); 3856 3857 /* apply actions for last matching pass/block rule */ 3858 pf_rule_to_actions(r, &pd->act); 3859 3860 if (r->log || (nr != NULL && nr->log)) { 3861 if (rewrite) 3862 m_copyback(m, off, hdrlen, pd->hdr.any); 3863 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3864 ruleset, pd, 1); 3865 } 3866 3867 if ((r->action == PF_DROP) && 3868 ((r->rule_flag & PFRULE_RETURNRST) || 3869 (r->rule_flag & PFRULE_RETURNICMP) || 3870 (r->rule_flag & PFRULE_RETURN))) { 3871 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 3872 bip_sum, hdrlen, &reason); 3873 } 3874 3875 if (r->action == PF_DROP) 3876 goto cleanup; 3877 3878 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3879 REASON_SET(&reason, PFRES_MEMORY); 3880 goto cleanup; 3881 } 3882 if (rtableid >= 0) 3883 M_SETFIB(m, rtableid); 3884 3885 if (!state_icmp && (r->keep_state || nr != NULL || 3886 (pd->flags & PFDESC_TCP_NORM))) { 3887 int action; 3888 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3889 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3890 hdrlen); 3891 if (action != PF_PASS) { 3892 if (action == PF_DROP && 3893 (r->rule_flag & PFRULE_RETURN)) 3894 pf_return(r, nr, pd, sk, off, m, th, kif, 3895 bproto_sum, bip_sum, hdrlen, &reason); 3896 return (action); 3897 } 3898 } else { 3899 if (sk != NULL) 3900 uma_zfree(V_pf_state_key_z, sk); 3901 if (nk != NULL) 3902 uma_zfree(V_pf_state_key_z, nk); 3903 } 3904 3905 /* copy back packet headers if we performed NAT operations */ 3906 if (rewrite) 3907 m_copyback(m, off, hdrlen, pd->hdr.any); 3908 3909 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3910 direction == PF_OUT && 3911 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 3912 /* 3913 * We want the state created, but we dont 3914 * want to send this in case a partner 3915 * firewall has to know about it to allow 3916 * replies through it. 3917 */ 3918 return (PF_DEFER); 3919 3920 return (PF_PASS); 3921 3922 cleanup: 3923 if (sk != NULL) 3924 uma_zfree(V_pf_state_key_z, sk); 3925 if (nk != NULL) 3926 uma_zfree(V_pf_state_key_z, nk); 3927 return (PF_DROP); 3928 } 3929 3930 static int 3931 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 3932 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 3933 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3934 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, 3935 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3936 { 3937 struct pf_kstate *s = NULL; 3938 struct pf_ksrc_node *sn = NULL; 3939 struct tcphdr *th = &pd->hdr.tcp; 3940 u_int16_t mss = V_tcp_mssdflt; 3941 u_short reason; 3942 3943 /* check maximums */ 3944 if (r->max_states && 3945 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3946 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3947 REASON_SET(&reason, PFRES_MAXSTATES); 3948 goto csfailed; 3949 } 3950 /* src node for filter rule */ 3951 if ((r->rule_flag & PFRULE_SRCTRACK || 3952 r->rpool.opts & PF_POOL_STICKYADDR) && 3953 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3954 REASON_SET(&reason, PFRES_SRCLIMIT); 3955 goto csfailed; 3956 } 3957 /* src node for translation rule */ 3958 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3959 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3960 REASON_SET(&reason, PFRES_SRCLIMIT); 3961 goto csfailed; 3962 } 3963 s = pf_alloc_state(M_NOWAIT); 3964 if (s == NULL) { 3965 REASON_SET(&reason, PFRES_MEMORY); 3966 goto csfailed; 3967 } 3968 s->rule.ptr = r; 3969 s->nat_rule.ptr = nr; 3970 s->anchor.ptr = a; 3971 STATE_INC_COUNTERS(s); 3972 if (r->allow_opts) 3973 s->state_flags |= PFSTATE_ALLOWOPTS; 3974 if (r->rule_flag & PFRULE_STATESLOPPY) 3975 s->state_flags |= PFSTATE_SLOPPY; 3976 s->log = r->log & PF_LOG_ALL; 3977 s->sync_state = PFSYNC_S_NONE; 3978 s->qid = pd->act.qid; 3979 s->pqid = pd->act.pqid; 3980 if (nr != NULL) 3981 s->log |= nr->log & PF_LOG_ALL; 3982 switch (pd->proto) { 3983 case IPPROTO_TCP: 3984 s->src.seqlo = ntohl(th->th_seq); 3985 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3986 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3987 r->keep_state == PF_STATE_MODULATE) { 3988 /* Generate sequence number modulator */ 3989 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3990 0) 3991 s->src.seqdiff = 1; 3992 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3993 htonl(s->src.seqlo + s->src.seqdiff), 0); 3994 *rewrite = 1; 3995 } else 3996 s->src.seqdiff = 0; 3997 if (th->th_flags & TH_SYN) { 3998 s->src.seqhi++; 3999 s->src.wscale = pf_get_wscale(m, off, 4000 th->th_off, pd->af); 4001 } 4002 s->src.max_win = MAX(ntohs(th->th_win), 1); 4003 if (s->src.wscale & PF_WSCALE_MASK) { 4004 /* Remove scale factor from initial window */ 4005 int win = s->src.max_win; 4006 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 4007 s->src.max_win = (win - 1) >> 4008 (s->src.wscale & PF_WSCALE_MASK); 4009 } 4010 if (th->th_flags & TH_FIN) 4011 s->src.seqhi++; 4012 s->dst.seqhi = 1; 4013 s->dst.max_win = 1; 4014 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 4015 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 4016 s->timeout = PFTM_TCP_FIRST_PACKET; 4017 break; 4018 case IPPROTO_UDP: 4019 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 4020 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 4021 s->timeout = PFTM_UDP_FIRST_PACKET; 4022 break; 4023 case IPPROTO_ICMP: 4024 #ifdef INET6 4025 case IPPROTO_ICMPV6: 4026 #endif 4027 s->timeout = PFTM_ICMP_FIRST_PACKET; 4028 break; 4029 default: 4030 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 4031 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 4032 s->timeout = PFTM_OTHER_FIRST_PACKET; 4033 } 4034 4035 if (r->rt) { 4036 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 4037 REASON_SET(&reason, PFRES_MAPFAILED); 4038 pf_src_tree_remove_state(s); 4039 s->timeout = PFTM_UNLINKED; 4040 STATE_DEC_COUNTERS(s); 4041 pf_free_state(s); 4042 goto csfailed; 4043 } 4044 s->rt_kif = r->rpool.cur->kif; 4045 } 4046 4047 s->creation = time_uptime; 4048 s->expire = time_uptime; 4049 4050 if (sn != NULL) 4051 s->src_node = sn; 4052 if (nsn != NULL) { 4053 /* XXX We only modify one side for now. */ 4054 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 4055 s->nat_src_node = nsn; 4056 } 4057 if (pd->proto == IPPROTO_TCP) { 4058 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 4059 off, pd, th, &s->src, &s->dst)) { 4060 REASON_SET(&reason, PFRES_MEMORY); 4061 pf_src_tree_remove_state(s); 4062 s->timeout = PFTM_UNLINKED; 4063 STATE_DEC_COUNTERS(s); 4064 pf_free_state(s); 4065 return (PF_DROP); 4066 } 4067 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 4068 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 4069 &s->src, &s->dst, rewrite)) { 4070 /* This really shouldn't happen!!! */ 4071 DPFPRINTF(PF_DEBUG_URGENT, 4072 ("pf_normalize_tcp_stateful failed on first " 4073 "pkt\n")); 4074 pf_src_tree_remove_state(s); 4075 s->timeout = PFTM_UNLINKED; 4076 STATE_DEC_COUNTERS(s); 4077 pf_free_state(s); 4078 return (PF_DROP); 4079 } 4080 } 4081 s->direction = pd->dir; 4082 4083 /* 4084 * sk/nk could already been setup by pf_get_translation(). 4085 */ 4086 if (nr == NULL) { 4087 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 4088 __func__, nr, sk, nk)); 4089 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 4090 if (sk == NULL) 4091 goto csfailed; 4092 nk = sk; 4093 } else 4094 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 4095 __func__, nr, sk, nk)); 4096 4097 /* Swap sk/nk for PF_OUT. */ 4098 if (pf_state_insert(BOUND_IFACE(r, kif), kif, 4099 (pd->dir == PF_IN) ? sk : nk, 4100 (pd->dir == PF_IN) ? nk : sk, s)) { 4101 REASON_SET(&reason, PFRES_STATEINS); 4102 pf_src_tree_remove_state(s); 4103 s->timeout = PFTM_UNLINKED; 4104 STATE_DEC_COUNTERS(s); 4105 pf_free_state(s); 4106 return (PF_DROP); 4107 } else 4108 *sm = s; 4109 4110 if (tag > 0) 4111 s->tag = tag; 4112 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 4113 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 4114 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 4115 /* undo NAT changes, if they have taken place */ 4116 if (nr != NULL) { 4117 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 4118 if (pd->dir == PF_OUT) 4119 skt = s->key[PF_SK_STACK]; 4120 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 4121 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 4122 if (pd->sport) 4123 *pd->sport = skt->port[pd->sidx]; 4124 if (pd->dport) 4125 *pd->dport = skt->port[pd->didx]; 4126 if (pd->proto_sum) 4127 *pd->proto_sum = bproto_sum; 4128 if (pd->ip_sum) 4129 *pd->ip_sum = bip_sum; 4130 m_copyback(m, off, hdrlen, pd->hdr.any); 4131 } 4132 s->src.seqhi = htonl(arc4random()); 4133 /* Find mss option */ 4134 int rtid = M_GETFIB(m); 4135 mss = pf_get_mss(m, off, th->th_off, pd->af); 4136 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 4137 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 4138 s->src.mss = mss; 4139 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 4140 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 4141 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0); 4142 REASON_SET(&reason, PFRES_SYNPROXY); 4143 return (PF_SYNPROXY_DROP); 4144 } 4145 4146 return (PF_PASS); 4147 4148 csfailed: 4149 if (sk != NULL) 4150 uma_zfree(V_pf_state_key_z, sk); 4151 if (nk != NULL) 4152 uma_zfree(V_pf_state_key_z, nk); 4153 4154 if (sn != NULL) { 4155 struct pf_srchash *sh; 4156 4157 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 4158 PF_HASHROW_LOCK(sh); 4159 if (--sn->states == 0 && sn->expire == 0) { 4160 pf_unlink_src_node(sn); 4161 uma_zfree(V_pf_sources_z, sn); 4162 counter_u64_add( 4163 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 4164 } 4165 PF_HASHROW_UNLOCK(sh); 4166 } 4167 4168 if (nsn != sn && nsn != NULL) { 4169 struct pf_srchash *sh; 4170 4171 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 4172 PF_HASHROW_LOCK(sh); 4173 if (--nsn->states == 0 && nsn->expire == 0) { 4174 pf_unlink_src_node(nsn); 4175 uma_zfree(V_pf_sources_z, nsn); 4176 counter_u64_add( 4177 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 4178 } 4179 PF_HASHROW_UNLOCK(sh); 4180 } 4181 4182 return (PF_DROP); 4183 } 4184 4185 static int 4186 pf_test_fragment(struct pf_krule **rm, int direction, struct pfi_kkif *kif, 4187 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, 4188 struct pf_kruleset **rsm) 4189 { 4190 struct pf_krule *r, *a = NULL; 4191 struct pf_kruleset *ruleset = NULL; 4192 sa_family_t af = pd->af; 4193 u_short reason; 4194 int tag = -1; 4195 int asd = 0; 4196 int match = 0; 4197 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4198 4199 PF_RULES_RASSERT(); 4200 4201 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4202 while (r != NULL) { 4203 pf_counter_u64_add(&r->evaluations, 1); 4204 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 4205 r = r->skip[PF_SKIP_IFP].ptr; 4206 else if (r->direction && r->direction != direction) 4207 r = r->skip[PF_SKIP_DIR].ptr; 4208 else if (r->af && r->af != af) 4209 r = r->skip[PF_SKIP_AF].ptr; 4210 else if (r->proto && r->proto != pd->proto) 4211 r = r->skip[PF_SKIP_PROTO].ptr; 4212 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 4213 r->src.neg, kif, M_GETFIB(m))) 4214 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4215 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 4216 r->dst.neg, NULL, M_GETFIB(m))) 4217 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4218 else if (r->tos && !(r->tos == pd->tos)) 4219 r = TAILQ_NEXT(r, entries); 4220 else if (r->os_fingerprint != PF_OSFP_ANY) 4221 r = TAILQ_NEXT(r, entries); 4222 else if (pd->proto == IPPROTO_UDP && 4223 (r->src.port_op || r->dst.port_op)) 4224 r = TAILQ_NEXT(r, entries); 4225 else if (pd->proto == IPPROTO_TCP && 4226 (r->src.port_op || r->dst.port_op || r->flagset)) 4227 r = TAILQ_NEXT(r, entries); 4228 else if ((pd->proto == IPPROTO_ICMP || 4229 pd->proto == IPPROTO_ICMPV6) && 4230 (r->type || r->code)) 4231 r = TAILQ_NEXT(r, entries); 4232 else if (r->prio && 4233 !pf_match_ieee8021q_pcp(r->prio, m)) 4234 r = TAILQ_NEXT(r, entries); 4235 else if (r->prob && r->prob <= 4236 (arc4random() % (UINT_MAX - 1) + 1)) 4237 r = TAILQ_NEXT(r, entries); 4238 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4239 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4240 r = TAILQ_NEXT(r, entries); 4241 else { 4242 if (r->anchor == NULL) { 4243 if (r->action == PF_MATCH) { 4244 pf_counter_u64_critical_enter(); 4245 pf_counter_u64_add_protected(&r->packets[direction == PF_OUT], 1); 4246 pf_counter_u64_add_protected(&r->bytes[direction == PF_OUT], pd->tot_len); 4247 pf_counter_u64_critical_exit(); 4248 pf_rule_to_actions(r, &pd->act); 4249 if (r->log) 4250 PFLOG_PACKET(kif, m, af, 4251 direction, PFRES_MATCH, r, 4252 a, ruleset, pd, 1); 4253 } else { 4254 match = 1; 4255 *rm = r; 4256 *am = a; 4257 *rsm = ruleset; 4258 } 4259 if ((*rm)->quick) 4260 break; 4261 r = TAILQ_NEXT(r, entries); 4262 } else 4263 pf_step_into_anchor(anchor_stack, &asd, 4264 &ruleset, PF_RULESET_FILTER, &r, &a, 4265 &match); 4266 } 4267 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4268 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4269 break; 4270 } 4271 r = *rm; 4272 a = *am; 4273 ruleset = *rsm; 4274 4275 REASON_SET(&reason, PFRES_MATCH); 4276 4277 /* apply actions for last matching pass/block rule */ 4278 pf_rule_to_actions(r, &pd->act); 4279 4280 if (r->log) 4281 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 4282 1); 4283 4284 if (r->action != PF_PASS) 4285 return (PF_DROP); 4286 4287 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4288 REASON_SET(&reason, PFRES_MEMORY); 4289 return (PF_DROP); 4290 } 4291 4292 return (PF_PASS); 4293 } 4294 4295 static int 4296 pf_tcp_track_full(struct pf_kstate **state, struct pfi_kkif *kif, 4297 struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason, 4298 int *copyback) 4299 { 4300 struct tcphdr *th = &pd->hdr.tcp; 4301 struct pf_state_peer *src, *dst; 4302 u_int16_t win = ntohs(th->th_win); 4303 u_int32_t ack, end, seq, orig_seq; 4304 u_int8_t sws, dws, psrc, pdst; 4305 int ackskew; 4306 4307 if (pd->dir == (*state)->direction) { 4308 src = &(*state)->src; 4309 dst = &(*state)->dst; 4310 psrc = PF_PEER_SRC; 4311 pdst = PF_PEER_DST; 4312 } else { 4313 src = &(*state)->dst; 4314 dst = &(*state)->src; 4315 psrc = PF_PEER_DST; 4316 pdst = PF_PEER_SRC; 4317 } 4318 4319 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 4320 sws = src->wscale & PF_WSCALE_MASK; 4321 dws = dst->wscale & PF_WSCALE_MASK; 4322 } else 4323 sws = dws = 0; 4324 4325 /* 4326 * Sequence tracking algorithm from Guido van Rooij's paper: 4327 * http://www.madison-gurkha.com/publications/tcp_filtering/ 4328 * tcp_filtering.ps 4329 */ 4330 4331 orig_seq = seq = ntohl(th->th_seq); 4332 if (src->seqlo == 0) { 4333 /* First packet from this end. Set its state */ 4334 4335 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 4336 src->scrub == NULL) { 4337 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 4338 REASON_SET(reason, PFRES_MEMORY); 4339 return (PF_DROP); 4340 } 4341 } 4342 4343 /* Deferred generation of sequence number modulator */ 4344 if (dst->seqdiff && !src->seqdiff) { 4345 /* use random iss for the TCP server */ 4346 while ((src->seqdiff = arc4random() - seq) == 0) 4347 ; 4348 ack = ntohl(th->th_ack) - dst->seqdiff; 4349 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4350 src->seqdiff), 0); 4351 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4352 *copyback = 1; 4353 } else { 4354 ack = ntohl(th->th_ack); 4355 } 4356 4357 end = seq + pd->p_len; 4358 if (th->th_flags & TH_SYN) { 4359 end++; 4360 if (dst->wscale & PF_WSCALE_FLAG) { 4361 src->wscale = pf_get_wscale(m, off, th->th_off, 4362 pd->af); 4363 if (src->wscale & PF_WSCALE_FLAG) { 4364 /* Remove scale factor from initial 4365 * window */ 4366 sws = src->wscale & PF_WSCALE_MASK; 4367 win = ((u_int32_t)win + (1 << sws) - 1) 4368 >> sws; 4369 dws = dst->wscale & PF_WSCALE_MASK; 4370 } else { 4371 /* fixup other window */ 4372 dst->max_win <<= dst->wscale & 4373 PF_WSCALE_MASK; 4374 /* in case of a retrans SYN|ACK */ 4375 dst->wscale = 0; 4376 } 4377 } 4378 } 4379 if (th->th_flags & TH_FIN) 4380 end++; 4381 4382 src->seqlo = seq; 4383 if (src->state < TCPS_SYN_SENT) 4384 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 4385 4386 /* 4387 * May need to slide the window (seqhi may have been set by 4388 * the crappy stack check or if we picked up the connection 4389 * after establishment) 4390 */ 4391 if (src->seqhi == 1 || 4392 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4393 src->seqhi = end + MAX(1, dst->max_win << dws); 4394 if (win > src->max_win) 4395 src->max_win = win; 4396 4397 } else { 4398 ack = ntohl(th->th_ack) - dst->seqdiff; 4399 if (src->seqdiff) { 4400 /* Modulate sequence numbers */ 4401 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4402 src->seqdiff), 0); 4403 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4404 *copyback = 1; 4405 } 4406 end = seq + pd->p_len; 4407 if (th->th_flags & TH_SYN) 4408 end++; 4409 if (th->th_flags & TH_FIN) 4410 end++; 4411 } 4412 4413 if ((th->th_flags & TH_ACK) == 0) { 4414 /* Let it pass through the ack skew check */ 4415 ack = dst->seqlo; 4416 } else if ((ack == 0 && 4417 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4418 /* broken tcp stacks do not set ack */ 4419 (dst->state < TCPS_SYN_SENT)) { 4420 /* 4421 * Many stacks (ours included) will set the ACK number in an 4422 * FIN|ACK if the SYN times out -- no sequence to ACK. 4423 */ 4424 ack = dst->seqlo; 4425 } 4426 4427 if (seq == end) { 4428 /* Ease sequencing restrictions on no data packets */ 4429 seq = src->seqlo; 4430 end = seq; 4431 } 4432 4433 ackskew = dst->seqlo - ack; 4434 4435 /* 4436 * Need to demodulate the sequence numbers in any TCP SACK options 4437 * (Selective ACK). We could optionally validate the SACK values 4438 * against the current ACK window, either forwards or backwards, but 4439 * I'm not confident that SACK has been implemented properly 4440 * everywhere. It wouldn't surprise me if several stacks accidentally 4441 * SACK too far backwards of previously ACKed data. There really aren't 4442 * any security implications of bad SACKing unless the target stack 4443 * doesn't validate the option length correctly. Someone trying to 4444 * spoof into a TCP connection won't bother blindly sending SACK 4445 * options anyway. 4446 */ 4447 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4448 if (pf_modulate_sack(m, off, pd, th, dst)) 4449 *copyback = 1; 4450 } 4451 4452 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4453 if (SEQ_GEQ(src->seqhi, end) && 4454 /* Last octet inside other's window space */ 4455 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4456 /* Retrans: not more than one window back */ 4457 (ackskew >= -MAXACKWINDOW) && 4458 /* Acking not more than one reassembled fragment backwards */ 4459 (ackskew <= (MAXACKWINDOW << sws)) && 4460 /* Acking not more than one window forward */ 4461 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4462 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4463 (pd->flags & PFDESC_IP_REAS) == 0)) { 4464 /* Require an exact/+1 sequence match on resets when possible */ 4465 4466 if (dst->scrub || src->scrub) { 4467 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4468 *state, src, dst, copyback)) 4469 return (PF_DROP); 4470 } 4471 4472 /* update max window */ 4473 if (src->max_win < win) 4474 src->max_win = win; 4475 /* synchronize sequencing */ 4476 if (SEQ_GT(end, src->seqlo)) 4477 src->seqlo = end; 4478 /* slide the window of what the other end can send */ 4479 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4480 dst->seqhi = ack + MAX((win << sws), 1); 4481 4482 /* update states */ 4483 if (th->th_flags & TH_SYN) 4484 if (src->state < TCPS_SYN_SENT) 4485 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 4486 if (th->th_flags & TH_FIN) 4487 if (src->state < TCPS_CLOSING) 4488 pf_set_protostate(*state, psrc, TCPS_CLOSING); 4489 if (th->th_flags & TH_ACK) { 4490 if (dst->state == TCPS_SYN_SENT) { 4491 pf_set_protostate(*state, pdst, 4492 TCPS_ESTABLISHED); 4493 if (src->state == TCPS_ESTABLISHED && 4494 (*state)->src_node != NULL && 4495 pf_src_connlimit(state)) { 4496 REASON_SET(reason, PFRES_SRCLIMIT); 4497 return (PF_DROP); 4498 } 4499 } else if (dst->state == TCPS_CLOSING) 4500 pf_set_protostate(*state, pdst, 4501 TCPS_FIN_WAIT_2); 4502 } 4503 if (th->th_flags & TH_RST) 4504 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 4505 4506 /* update expire time */ 4507 (*state)->expire = time_uptime; 4508 if (src->state >= TCPS_FIN_WAIT_2 && 4509 dst->state >= TCPS_FIN_WAIT_2) 4510 (*state)->timeout = PFTM_TCP_CLOSED; 4511 else if (src->state >= TCPS_CLOSING && 4512 dst->state >= TCPS_CLOSING) 4513 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4514 else if (src->state < TCPS_ESTABLISHED || 4515 dst->state < TCPS_ESTABLISHED) 4516 (*state)->timeout = PFTM_TCP_OPENING; 4517 else if (src->state >= TCPS_CLOSING || 4518 dst->state >= TCPS_CLOSING) 4519 (*state)->timeout = PFTM_TCP_CLOSING; 4520 else 4521 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4522 4523 /* Fall through to PASS packet */ 4524 4525 } else if ((dst->state < TCPS_SYN_SENT || 4526 dst->state >= TCPS_FIN_WAIT_2 || 4527 src->state >= TCPS_FIN_WAIT_2) && 4528 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4529 /* Within a window forward of the originating packet */ 4530 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4531 /* Within a window backward of the originating packet */ 4532 4533 /* 4534 * This currently handles three situations: 4535 * 1) Stupid stacks will shotgun SYNs before their peer 4536 * replies. 4537 * 2) When PF catches an already established stream (the 4538 * firewall rebooted, the state table was flushed, routes 4539 * changed...) 4540 * 3) Packets get funky immediately after the connection 4541 * closes (this should catch Solaris spurious ACK|FINs 4542 * that web servers like to spew after a close) 4543 * 4544 * This must be a little more careful than the above code 4545 * since packet floods will also be caught here. We don't 4546 * update the TTL here to mitigate the damage of a packet 4547 * flood and so the same code can handle awkward establishment 4548 * and a loosened connection close. 4549 * In the establishment case, a correct peer response will 4550 * validate the connection, go through the normal state code 4551 * and keep updating the state TTL. 4552 */ 4553 4554 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4555 printf("pf: loose state match: "); 4556 pf_print_state(*state); 4557 pf_print_flags(th->th_flags); 4558 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4559 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4560 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4561 (unsigned long long)(*state)->packets[1], 4562 pd->dir == PF_IN ? "in" : "out", 4563 pd->dir == (*state)->direction ? "fwd" : "rev"); 4564 } 4565 4566 if (dst->scrub || src->scrub) { 4567 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4568 *state, src, dst, copyback)) 4569 return (PF_DROP); 4570 } 4571 4572 /* update max window */ 4573 if (src->max_win < win) 4574 src->max_win = win; 4575 /* synchronize sequencing */ 4576 if (SEQ_GT(end, src->seqlo)) 4577 src->seqlo = end; 4578 /* slide the window of what the other end can send */ 4579 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4580 dst->seqhi = ack + MAX((win << sws), 1); 4581 4582 /* 4583 * Cannot set dst->seqhi here since this could be a shotgunned 4584 * SYN and not an already established connection. 4585 */ 4586 4587 if (th->th_flags & TH_FIN) 4588 if (src->state < TCPS_CLOSING) 4589 pf_set_protostate(*state, psrc, TCPS_CLOSING); 4590 if (th->th_flags & TH_RST) 4591 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 4592 4593 /* Fall through to PASS packet */ 4594 4595 } else { 4596 if ((*state)->dst.state == TCPS_SYN_SENT && 4597 (*state)->src.state == TCPS_SYN_SENT) { 4598 /* Send RST for state mismatches during handshake */ 4599 if (!(th->th_flags & TH_RST)) 4600 pf_send_tcp((*state)->rule.ptr, pd->af, 4601 pd->dst, pd->src, th->th_dport, 4602 th->th_sport, ntohl(th->th_ack), 0, 4603 TH_RST, 0, 0, 4604 (*state)->rule.ptr->return_ttl, 1, 0); 4605 src->seqlo = 0; 4606 src->seqhi = 1; 4607 src->max_win = 1; 4608 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4609 printf("pf: BAD state: "); 4610 pf_print_state(*state); 4611 pf_print_flags(th->th_flags); 4612 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4613 "pkts=%llu:%llu dir=%s,%s\n", 4614 seq, orig_seq, ack, pd->p_len, ackskew, 4615 (unsigned long long)(*state)->packets[0], 4616 (unsigned long long)(*state)->packets[1], 4617 pd->dir == PF_IN ? "in" : "out", 4618 pd->dir == (*state)->direction ? "fwd" : "rev"); 4619 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4620 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4621 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4622 ' ': '2', 4623 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4624 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4625 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4626 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4627 } 4628 REASON_SET(reason, PFRES_BADSTATE); 4629 return (PF_DROP); 4630 } 4631 4632 return (PF_PASS); 4633 } 4634 4635 static int 4636 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 4637 { 4638 struct tcphdr *th = &pd->hdr.tcp; 4639 struct pf_state_peer *src, *dst; 4640 u_int8_t psrc, pdst; 4641 4642 if (pd->dir == (*state)->direction) { 4643 src = &(*state)->src; 4644 dst = &(*state)->dst; 4645 psrc = PF_PEER_SRC; 4646 pdst = PF_PEER_DST; 4647 } else { 4648 src = &(*state)->dst; 4649 dst = &(*state)->src; 4650 psrc = PF_PEER_DST; 4651 pdst = PF_PEER_SRC; 4652 } 4653 4654 if (th->th_flags & TH_SYN) 4655 if (src->state < TCPS_SYN_SENT) 4656 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 4657 if (th->th_flags & TH_FIN) 4658 if (src->state < TCPS_CLOSING) 4659 pf_set_protostate(*state, psrc, TCPS_CLOSING); 4660 if (th->th_flags & TH_ACK) { 4661 if (dst->state == TCPS_SYN_SENT) { 4662 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 4663 if (src->state == TCPS_ESTABLISHED && 4664 (*state)->src_node != NULL && 4665 pf_src_connlimit(state)) { 4666 REASON_SET(reason, PFRES_SRCLIMIT); 4667 return (PF_DROP); 4668 } 4669 } else if (dst->state == TCPS_CLOSING) { 4670 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 4671 } else if (src->state == TCPS_SYN_SENT && 4672 dst->state < TCPS_SYN_SENT) { 4673 /* 4674 * Handle a special sloppy case where we only see one 4675 * half of the connection. If there is a ACK after 4676 * the initial SYN without ever seeing a packet from 4677 * the destination, set the connection to established. 4678 */ 4679 pf_set_protostate(*state, PF_PEER_BOTH, 4680 TCPS_ESTABLISHED); 4681 dst->state = src->state = TCPS_ESTABLISHED; 4682 if ((*state)->src_node != NULL && 4683 pf_src_connlimit(state)) { 4684 REASON_SET(reason, PFRES_SRCLIMIT); 4685 return (PF_DROP); 4686 } 4687 } else if (src->state == TCPS_CLOSING && 4688 dst->state == TCPS_ESTABLISHED && 4689 dst->seqlo == 0) { 4690 /* 4691 * Handle the closing of half connections where we 4692 * don't see the full bidirectional FIN/ACK+ACK 4693 * handshake. 4694 */ 4695 pf_set_protostate(*state, pdst, TCPS_CLOSING); 4696 } 4697 } 4698 if (th->th_flags & TH_RST) 4699 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 4700 4701 /* update expire time */ 4702 (*state)->expire = time_uptime; 4703 if (src->state >= TCPS_FIN_WAIT_2 && 4704 dst->state >= TCPS_FIN_WAIT_2) 4705 (*state)->timeout = PFTM_TCP_CLOSED; 4706 else if (src->state >= TCPS_CLOSING && 4707 dst->state >= TCPS_CLOSING) 4708 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4709 else if (src->state < TCPS_ESTABLISHED || 4710 dst->state < TCPS_ESTABLISHED) 4711 (*state)->timeout = PFTM_TCP_OPENING; 4712 else if (src->state >= TCPS_CLOSING || 4713 dst->state >= TCPS_CLOSING) 4714 (*state)->timeout = PFTM_TCP_CLOSING; 4715 else 4716 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4717 4718 return (PF_PASS); 4719 } 4720 4721 static int 4722 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 4723 { 4724 struct pf_state_key *sk = (*state)->key[pd->didx]; 4725 struct tcphdr *th = &pd->hdr.tcp; 4726 4727 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4728 if (pd->dir != (*state)->direction) { 4729 REASON_SET(reason, PFRES_SYNPROXY); 4730 return (PF_SYNPROXY_DROP); 4731 } 4732 if (th->th_flags & TH_SYN) { 4733 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4734 REASON_SET(reason, PFRES_SYNPROXY); 4735 return (PF_DROP); 4736 } 4737 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 4738 pd->src, th->th_dport, th->th_sport, 4739 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4740 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0); 4741 REASON_SET(reason, PFRES_SYNPROXY); 4742 return (PF_SYNPROXY_DROP); 4743 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 4744 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4745 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4746 REASON_SET(reason, PFRES_SYNPROXY); 4747 return (PF_DROP); 4748 } else if ((*state)->src_node != NULL && 4749 pf_src_connlimit(state)) { 4750 REASON_SET(reason, PFRES_SRCLIMIT); 4751 return (PF_DROP); 4752 } else 4753 pf_set_protostate(*state, PF_PEER_SRC, 4754 PF_TCPS_PROXY_DST); 4755 } 4756 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4757 if (pd->dir == (*state)->direction) { 4758 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4759 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4760 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4761 REASON_SET(reason, PFRES_SYNPROXY); 4762 return (PF_DROP); 4763 } 4764 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4765 if ((*state)->dst.seqhi == 1) 4766 (*state)->dst.seqhi = htonl(arc4random()); 4767 pf_send_tcp((*state)->rule.ptr, pd->af, 4768 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4769 sk->port[pd->sidx], sk->port[pd->didx], 4770 (*state)->dst.seqhi, 0, TH_SYN, 0, 4771 (*state)->src.mss, 0, 0, (*state)->tag); 4772 REASON_SET(reason, PFRES_SYNPROXY); 4773 return (PF_SYNPROXY_DROP); 4774 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4775 (TH_SYN|TH_ACK)) || 4776 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4777 REASON_SET(reason, PFRES_SYNPROXY); 4778 return (PF_DROP); 4779 } else { 4780 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4781 (*state)->dst.seqlo = ntohl(th->th_seq); 4782 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 4783 pd->src, th->th_dport, th->th_sport, 4784 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4785 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4786 (*state)->tag); 4787 pf_send_tcp((*state)->rule.ptr, pd->af, 4788 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4789 sk->port[pd->sidx], sk->port[pd->didx], 4790 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4791 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0); 4792 (*state)->src.seqdiff = (*state)->dst.seqhi - 4793 (*state)->src.seqlo; 4794 (*state)->dst.seqdiff = (*state)->src.seqhi - 4795 (*state)->dst.seqlo; 4796 (*state)->src.seqhi = (*state)->src.seqlo + 4797 (*state)->dst.max_win; 4798 (*state)->dst.seqhi = (*state)->dst.seqlo + 4799 (*state)->src.max_win; 4800 (*state)->src.wscale = (*state)->dst.wscale = 0; 4801 pf_set_protostate(*state, PF_PEER_BOTH, 4802 TCPS_ESTABLISHED); 4803 REASON_SET(reason, PFRES_SYNPROXY); 4804 return (PF_SYNPROXY_DROP); 4805 } 4806 } 4807 4808 return (PF_PASS); 4809 } 4810 4811 static int 4812 pf_test_state_tcp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 4813 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4814 u_short *reason) 4815 { 4816 struct pf_state_key_cmp key; 4817 struct tcphdr *th = &pd->hdr.tcp; 4818 int copyback = 0; 4819 int action; 4820 struct pf_state_peer *src, *dst; 4821 struct pf_state_key *sk; 4822 4823 bzero(&key, sizeof(key)); 4824 key.af = pd->af; 4825 key.proto = IPPROTO_TCP; 4826 if (direction == PF_IN) { /* wire side, straight */ 4827 PF_ACPY(&key.addr[0], pd->src, key.af); 4828 PF_ACPY(&key.addr[1], pd->dst, key.af); 4829 key.port[0] = th->th_sport; 4830 key.port[1] = th->th_dport; 4831 } else { /* stack side, reverse */ 4832 PF_ACPY(&key.addr[1], pd->src, key.af); 4833 PF_ACPY(&key.addr[0], pd->dst, key.af); 4834 key.port[1] = th->th_sport; 4835 key.port[0] = th->th_dport; 4836 } 4837 4838 STATE_LOOKUP(kif, &key, direction, *state, pd); 4839 4840 if (direction == (*state)->direction) { 4841 src = &(*state)->src; 4842 dst = &(*state)->dst; 4843 } else { 4844 src = &(*state)->dst; 4845 dst = &(*state)->src; 4846 } 4847 4848 sk = (*state)->key[pd->didx]; 4849 4850 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 4851 return (action); 4852 4853 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4854 dst->state >= TCPS_FIN_WAIT_2 && 4855 src->state >= TCPS_FIN_WAIT_2) { 4856 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4857 printf("pf: state reuse "); 4858 pf_print_state(*state); 4859 pf_print_flags(th->th_flags); 4860 printf("\n"); 4861 } 4862 /* XXX make sure it's the same direction ?? */ 4863 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 4864 pf_unlink_state(*state, PF_ENTER_LOCKED); 4865 *state = NULL; 4866 return (PF_DROP); 4867 } 4868 4869 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4870 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 4871 return (PF_DROP); 4872 } else { 4873 if (pf_tcp_track_full(state, kif, m, off, pd, reason, 4874 ©back) == PF_DROP) 4875 return (PF_DROP); 4876 } 4877 4878 /* translate source/destination address, if necessary */ 4879 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4880 struct pf_state_key *nk = (*state)->key[pd->didx]; 4881 4882 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4883 nk->port[pd->sidx] != th->th_sport) 4884 pf_change_ap(m, pd->src, &th->th_sport, 4885 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4886 nk->port[pd->sidx], 0, pd->af); 4887 4888 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4889 nk->port[pd->didx] != th->th_dport) 4890 pf_change_ap(m, pd->dst, &th->th_dport, 4891 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4892 nk->port[pd->didx], 0, pd->af); 4893 copyback = 1; 4894 } 4895 4896 /* Copyback sequence modulation or stateful scrub changes if needed */ 4897 if (copyback) 4898 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4899 4900 return (PF_PASS); 4901 } 4902 4903 static int 4904 pf_test_state_udp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 4905 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4906 { 4907 struct pf_state_peer *src, *dst; 4908 struct pf_state_key_cmp key; 4909 struct udphdr *uh = &pd->hdr.udp; 4910 uint8_t psrc, pdst; 4911 4912 bzero(&key, sizeof(key)); 4913 key.af = pd->af; 4914 key.proto = IPPROTO_UDP; 4915 if (direction == PF_IN) { /* wire side, straight */ 4916 PF_ACPY(&key.addr[0], pd->src, key.af); 4917 PF_ACPY(&key.addr[1], pd->dst, key.af); 4918 key.port[0] = uh->uh_sport; 4919 key.port[1] = uh->uh_dport; 4920 } else { /* stack side, reverse */ 4921 PF_ACPY(&key.addr[1], pd->src, key.af); 4922 PF_ACPY(&key.addr[0], pd->dst, key.af); 4923 key.port[1] = uh->uh_sport; 4924 key.port[0] = uh->uh_dport; 4925 } 4926 4927 STATE_LOOKUP(kif, &key, direction, *state, pd); 4928 4929 if (direction == (*state)->direction) { 4930 src = &(*state)->src; 4931 dst = &(*state)->dst; 4932 psrc = PF_PEER_SRC; 4933 pdst = PF_PEER_DST; 4934 } else { 4935 src = &(*state)->dst; 4936 dst = &(*state)->src; 4937 psrc = PF_PEER_DST; 4938 pdst = PF_PEER_SRC; 4939 } 4940 4941 /* update states */ 4942 if (src->state < PFUDPS_SINGLE) 4943 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 4944 if (dst->state == PFUDPS_SINGLE) 4945 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 4946 4947 /* update expire time */ 4948 (*state)->expire = time_uptime; 4949 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4950 (*state)->timeout = PFTM_UDP_MULTIPLE; 4951 else 4952 (*state)->timeout = PFTM_UDP_SINGLE; 4953 4954 /* translate source/destination address, if necessary */ 4955 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4956 struct pf_state_key *nk = (*state)->key[pd->didx]; 4957 4958 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4959 nk->port[pd->sidx] != uh->uh_sport) 4960 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4961 &uh->uh_sum, &nk->addr[pd->sidx], 4962 nk->port[pd->sidx], 1, pd->af); 4963 4964 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4965 nk->port[pd->didx] != uh->uh_dport) 4966 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4967 &uh->uh_sum, &nk->addr[pd->didx], 4968 nk->port[pd->didx], 1, pd->af); 4969 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4970 } 4971 4972 return (PF_PASS); 4973 } 4974 4975 static int 4976 pf_test_state_icmp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 4977 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4978 { 4979 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4980 u_int16_t icmpid = 0, *icmpsum; 4981 u_int8_t icmptype, icmpcode; 4982 int state_icmp = 0; 4983 struct pf_state_key_cmp key; 4984 4985 bzero(&key, sizeof(key)); 4986 switch (pd->proto) { 4987 #ifdef INET 4988 case IPPROTO_ICMP: 4989 icmptype = pd->hdr.icmp.icmp_type; 4990 icmpcode = pd->hdr.icmp.icmp_code; 4991 icmpid = pd->hdr.icmp.icmp_id; 4992 icmpsum = &pd->hdr.icmp.icmp_cksum; 4993 4994 if (icmptype == ICMP_UNREACH || 4995 icmptype == ICMP_SOURCEQUENCH || 4996 icmptype == ICMP_REDIRECT || 4997 icmptype == ICMP_TIMXCEED || 4998 icmptype == ICMP_PARAMPROB) 4999 state_icmp++; 5000 break; 5001 #endif /* INET */ 5002 #ifdef INET6 5003 case IPPROTO_ICMPV6: 5004 icmptype = pd->hdr.icmp6.icmp6_type; 5005 icmpcode = pd->hdr.icmp6.icmp6_code; 5006 icmpid = pd->hdr.icmp6.icmp6_id; 5007 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 5008 5009 if (icmptype == ICMP6_DST_UNREACH || 5010 icmptype == ICMP6_PACKET_TOO_BIG || 5011 icmptype == ICMP6_TIME_EXCEEDED || 5012 icmptype == ICMP6_PARAM_PROB) 5013 state_icmp++; 5014 break; 5015 #endif /* INET6 */ 5016 } 5017 5018 if (!state_icmp) { 5019 /* 5020 * ICMP query/reply message not related to a TCP/UDP packet. 5021 * Search for an ICMP state. 5022 */ 5023 key.af = pd->af; 5024 key.proto = pd->proto; 5025 key.port[0] = key.port[1] = icmpid; 5026 if (direction == PF_IN) { /* wire side, straight */ 5027 PF_ACPY(&key.addr[0], pd->src, key.af); 5028 PF_ACPY(&key.addr[1], pd->dst, key.af); 5029 } else { /* stack side, reverse */ 5030 PF_ACPY(&key.addr[1], pd->src, key.af); 5031 PF_ACPY(&key.addr[0], pd->dst, key.af); 5032 } 5033 5034 STATE_LOOKUP(kif, &key, direction, *state, pd); 5035 5036 (*state)->expire = time_uptime; 5037 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 5038 5039 /* translate source/destination address, if necessary */ 5040 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5041 struct pf_state_key *nk = (*state)->key[pd->didx]; 5042 5043 switch (pd->af) { 5044 #ifdef INET 5045 case AF_INET: 5046 if (PF_ANEQ(pd->src, 5047 &nk->addr[pd->sidx], AF_INET)) 5048 pf_change_a(&saddr->v4.s_addr, 5049 pd->ip_sum, 5050 nk->addr[pd->sidx].v4.s_addr, 0); 5051 5052 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 5053 AF_INET)) 5054 pf_change_a(&daddr->v4.s_addr, 5055 pd->ip_sum, 5056 nk->addr[pd->didx].v4.s_addr, 0); 5057 5058 if (nk->port[0] != 5059 pd->hdr.icmp.icmp_id) { 5060 pd->hdr.icmp.icmp_cksum = 5061 pf_cksum_fixup( 5062 pd->hdr.icmp.icmp_cksum, icmpid, 5063 nk->port[pd->sidx], 0); 5064 pd->hdr.icmp.icmp_id = 5065 nk->port[pd->sidx]; 5066 } 5067 5068 m_copyback(m, off, ICMP_MINLEN, 5069 (caddr_t )&pd->hdr.icmp); 5070 break; 5071 #endif /* INET */ 5072 #ifdef INET6 5073 case AF_INET6: 5074 if (PF_ANEQ(pd->src, 5075 &nk->addr[pd->sidx], AF_INET6)) 5076 pf_change_a6(saddr, 5077 &pd->hdr.icmp6.icmp6_cksum, 5078 &nk->addr[pd->sidx], 0); 5079 5080 if (PF_ANEQ(pd->dst, 5081 &nk->addr[pd->didx], AF_INET6)) 5082 pf_change_a6(daddr, 5083 &pd->hdr.icmp6.icmp6_cksum, 5084 &nk->addr[pd->didx], 0); 5085 5086 m_copyback(m, off, sizeof(struct icmp6_hdr), 5087 (caddr_t )&pd->hdr.icmp6); 5088 break; 5089 #endif /* INET6 */ 5090 } 5091 } 5092 return (PF_PASS); 5093 5094 } else { 5095 /* 5096 * ICMP error message in response to a TCP/UDP packet. 5097 * Extract the inner TCP/UDP header and search for that state. 5098 */ 5099 5100 struct pf_pdesc pd2; 5101 bzero(&pd2, sizeof pd2); 5102 #ifdef INET 5103 struct ip h2; 5104 #endif /* INET */ 5105 #ifdef INET6 5106 struct ip6_hdr h2_6; 5107 int terminal = 0; 5108 #endif /* INET6 */ 5109 int ipoff2 = 0; 5110 int off2 = 0; 5111 5112 pd2.af = pd->af; 5113 /* Payload packet is from the opposite direction. */ 5114 pd2.sidx = (direction == PF_IN) ? 1 : 0; 5115 pd2.didx = (direction == PF_IN) ? 0 : 1; 5116 switch (pd->af) { 5117 #ifdef INET 5118 case AF_INET: 5119 /* offset of h2 in mbuf chain */ 5120 ipoff2 = off + ICMP_MINLEN; 5121 5122 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 5123 NULL, reason, pd2.af)) { 5124 DPFPRINTF(PF_DEBUG_MISC, 5125 ("pf: ICMP error message too short " 5126 "(ip)\n")); 5127 return (PF_DROP); 5128 } 5129 /* 5130 * ICMP error messages don't refer to non-first 5131 * fragments 5132 */ 5133 if (h2.ip_off & htons(IP_OFFMASK)) { 5134 REASON_SET(reason, PFRES_FRAG); 5135 return (PF_DROP); 5136 } 5137 5138 /* offset of protocol header that follows h2 */ 5139 off2 = ipoff2 + (h2.ip_hl << 2); 5140 5141 pd2.proto = h2.ip_p; 5142 pd2.src = (struct pf_addr *)&h2.ip_src; 5143 pd2.dst = (struct pf_addr *)&h2.ip_dst; 5144 pd2.ip_sum = &h2.ip_sum; 5145 break; 5146 #endif /* INET */ 5147 #ifdef INET6 5148 case AF_INET6: 5149 ipoff2 = off + sizeof(struct icmp6_hdr); 5150 5151 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 5152 NULL, reason, pd2.af)) { 5153 DPFPRINTF(PF_DEBUG_MISC, 5154 ("pf: ICMP error message too short " 5155 "(ip6)\n")); 5156 return (PF_DROP); 5157 } 5158 pd2.proto = h2_6.ip6_nxt; 5159 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 5160 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 5161 pd2.ip_sum = NULL; 5162 off2 = ipoff2 + sizeof(h2_6); 5163 do { 5164 switch (pd2.proto) { 5165 case IPPROTO_FRAGMENT: 5166 /* 5167 * ICMPv6 error messages for 5168 * non-first fragments 5169 */ 5170 REASON_SET(reason, PFRES_FRAG); 5171 return (PF_DROP); 5172 case IPPROTO_AH: 5173 case IPPROTO_HOPOPTS: 5174 case IPPROTO_ROUTING: 5175 case IPPROTO_DSTOPTS: { 5176 /* get next header and header length */ 5177 struct ip6_ext opt6; 5178 5179 if (!pf_pull_hdr(m, off2, &opt6, 5180 sizeof(opt6), NULL, reason, 5181 pd2.af)) { 5182 DPFPRINTF(PF_DEBUG_MISC, 5183 ("pf: ICMPv6 short opt\n")); 5184 return (PF_DROP); 5185 } 5186 if (pd2.proto == IPPROTO_AH) 5187 off2 += (opt6.ip6e_len + 2) * 4; 5188 else 5189 off2 += (opt6.ip6e_len + 1) * 8; 5190 pd2.proto = opt6.ip6e_nxt; 5191 /* goto the next header */ 5192 break; 5193 } 5194 default: 5195 terminal++; 5196 break; 5197 } 5198 } while (!terminal); 5199 break; 5200 #endif /* INET6 */ 5201 } 5202 5203 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 5204 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5205 printf("pf: BAD ICMP %d:%d outer dst: ", 5206 icmptype, icmpcode); 5207 pf_print_host(pd->src, 0, pd->af); 5208 printf(" -> "); 5209 pf_print_host(pd->dst, 0, pd->af); 5210 printf(" inner src: "); 5211 pf_print_host(pd2.src, 0, pd2.af); 5212 printf(" -> "); 5213 pf_print_host(pd2.dst, 0, pd2.af); 5214 printf("\n"); 5215 } 5216 REASON_SET(reason, PFRES_BADSTATE); 5217 return (PF_DROP); 5218 } 5219 5220 switch (pd2.proto) { 5221 case IPPROTO_TCP: { 5222 struct tcphdr th; 5223 u_int32_t seq; 5224 struct pf_state_peer *src, *dst; 5225 u_int8_t dws; 5226 int copyback = 0; 5227 5228 /* 5229 * Only the first 8 bytes of the TCP header can be 5230 * expected. Don't access any TCP header fields after 5231 * th_seq, an ackskew test is not possible. 5232 */ 5233 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 5234 pd2.af)) { 5235 DPFPRINTF(PF_DEBUG_MISC, 5236 ("pf: ICMP error message too short " 5237 "(tcp)\n")); 5238 return (PF_DROP); 5239 } 5240 5241 key.af = pd2.af; 5242 key.proto = IPPROTO_TCP; 5243 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5244 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5245 key.port[pd2.sidx] = th.th_sport; 5246 key.port[pd2.didx] = th.th_dport; 5247 5248 STATE_LOOKUP(kif, &key, direction, *state, pd); 5249 5250 if (direction == (*state)->direction) { 5251 src = &(*state)->dst; 5252 dst = &(*state)->src; 5253 } else { 5254 src = &(*state)->src; 5255 dst = &(*state)->dst; 5256 } 5257 5258 if (src->wscale && dst->wscale) 5259 dws = dst->wscale & PF_WSCALE_MASK; 5260 else 5261 dws = 0; 5262 5263 /* Demodulate sequence number */ 5264 seq = ntohl(th.th_seq) - src->seqdiff; 5265 if (src->seqdiff) { 5266 pf_change_a(&th.th_seq, icmpsum, 5267 htonl(seq), 0); 5268 copyback = 1; 5269 } 5270 5271 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 5272 (!SEQ_GEQ(src->seqhi, seq) || 5273 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 5274 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5275 printf("pf: BAD ICMP %d:%d ", 5276 icmptype, icmpcode); 5277 pf_print_host(pd->src, 0, pd->af); 5278 printf(" -> "); 5279 pf_print_host(pd->dst, 0, pd->af); 5280 printf(" state: "); 5281 pf_print_state(*state); 5282 printf(" seq=%u\n", seq); 5283 } 5284 REASON_SET(reason, PFRES_BADSTATE); 5285 return (PF_DROP); 5286 } else { 5287 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5288 printf("pf: OK ICMP %d:%d ", 5289 icmptype, icmpcode); 5290 pf_print_host(pd->src, 0, pd->af); 5291 printf(" -> "); 5292 pf_print_host(pd->dst, 0, pd->af); 5293 printf(" state: "); 5294 pf_print_state(*state); 5295 printf(" seq=%u\n", seq); 5296 } 5297 } 5298 5299 /* translate source/destination address, if necessary */ 5300 if ((*state)->key[PF_SK_WIRE] != 5301 (*state)->key[PF_SK_STACK]) { 5302 struct pf_state_key *nk = 5303 (*state)->key[pd->didx]; 5304 5305 if (PF_ANEQ(pd2.src, 5306 &nk->addr[pd2.sidx], pd2.af) || 5307 nk->port[pd2.sidx] != th.th_sport) 5308 pf_change_icmp(pd2.src, &th.th_sport, 5309 daddr, &nk->addr[pd2.sidx], 5310 nk->port[pd2.sidx], NULL, 5311 pd2.ip_sum, icmpsum, 5312 pd->ip_sum, 0, pd2.af); 5313 5314 if (PF_ANEQ(pd2.dst, 5315 &nk->addr[pd2.didx], pd2.af) || 5316 nk->port[pd2.didx] != th.th_dport) 5317 pf_change_icmp(pd2.dst, &th.th_dport, 5318 saddr, &nk->addr[pd2.didx], 5319 nk->port[pd2.didx], NULL, 5320 pd2.ip_sum, icmpsum, 5321 pd->ip_sum, 0, pd2.af); 5322 copyback = 1; 5323 } 5324 5325 if (copyback) { 5326 switch (pd2.af) { 5327 #ifdef INET 5328 case AF_INET: 5329 m_copyback(m, off, ICMP_MINLEN, 5330 (caddr_t )&pd->hdr.icmp); 5331 m_copyback(m, ipoff2, sizeof(h2), 5332 (caddr_t )&h2); 5333 break; 5334 #endif /* INET */ 5335 #ifdef INET6 5336 case AF_INET6: 5337 m_copyback(m, off, 5338 sizeof(struct icmp6_hdr), 5339 (caddr_t )&pd->hdr.icmp6); 5340 m_copyback(m, ipoff2, sizeof(h2_6), 5341 (caddr_t )&h2_6); 5342 break; 5343 #endif /* INET6 */ 5344 } 5345 m_copyback(m, off2, 8, (caddr_t)&th); 5346 } 5347 5348 return (PF_PASS); 5349 break; 5350 } 5351 case IPPROTO_UDP: { 5352 struct udphdr uh; 5353 5354 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 5355 NULL, reason, pd2.af)) { 5356 DPFPRINTF(PF_DEBUG_MISC, 5357 ("pf: ICMP error message too short " 5358 "(udp)\n")); 5359 return (PF_DROP); 5360 } 5361 5362 key.af = pd2.af; 5363 key.proto = IPPROTO_UDP; 5364 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5365 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5366 key.port[pd2.sidx] = uh.uh_sport; 5367 key.port[pd2.didx] = uh.uh_dport; 5368 5369 STATE_LOOKUP(kif, &key, direction, *state, pd); 5370 5371 /* translate source/destination address, if necessary */ 5372 if ((*state)->key[PF_SK_WIRE] != 5373 (*state)->key[PF_SK_STACK]) { 5374 struct pf_state_key *nk = 5375 (*state)->key[pd->didx]; 5376 5377 if (PF_ANEQ(pd2.src, 5378 &nk->addr[pd2.sidx], pd2.af) || 5379 nk->port[pd2.sidx] != uh.uh_sport) 5380 pf_change_icmp(pd2.src, &uh.uh_sport, 5381 daddr, &nk->addr[pd2.sidx], 5382 nk->port[pd2.sidx], &uh.uh_sum, 5383 pd2.ip_sum, icmpsum, 5384 pd->ip_sum, 1, pd2.af); 5385 5386 if (PF_ANEQ(pd2.dst, 5387 &nk->addr[pd2.didx], pd2.af) || 5388 nk->port[pd2.didx] != uh.uh_dport) 5389 pf_change_icmp(pd2.dst, &uh.uh_dport, 5390 saddr, &nk->addr[pd2.didx], 5391 nk->port[pd2.didx], &uh.uh_sum, 5392 pd2.ip_sum, icmpsum, 5393 pd->ip_sum, 1, pd2.af); 5394 5395 switch (pd2.af) { 5396 #ifdef INET 5397 case AF_INET: 5398 m_copyback(m, off, ICMP_MINLEN, 5399 (caddr_t )&pd->hdr.icmp); 5400 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5401 break; 5402 #endif /* INET */ 5403 #ifdef INET6 5404 case AF_INET6: 5405 m_copyback(m, off, 5406 sizeof(struct icmp6_hdr), 5407 (caddr_t )&pd->hdr.icmp6); 5408 m_copyback(m, ipoff2, sizeof(h2_6), 5409 (caddr_t )&h2_6); 5410 break; 5411 #endif /* INET6 */ 5412 } 5413 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 5414 } 5415 return (PF_PASS); 5416 break; 5417 } 5418 #ifdef INET 5419 case IPPROTO_ICMP: { 5420 struct icmp iih; 5421 5422 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 5423 NULL, reason, pd2.af)) { 5424 DPFPRINTF(PF_DEBUG_MISC, 5425 ("pf: ICMP error message too short i" 5426 "(icmp)\n")); 5427 return (PF_DROP); 5428 } 5429 5430 key.af = pd2.af; 5431 key.proto = IPPROTO_ICMP; 5432 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5433 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5434 key.port[0] = key.port[1] = iih.icmp_id; 5435 5436 STATE_LOOKUP(kif, &key, direction, *state, pd); 5437 5438 /* translate source/destination address, if necessary */ 5439 if ((*state)->key[PF_SK_WIRE] != 5440 (*state)->key[PF_SK_STACK]) { 5441 struct pf_state_key *nk = 5442 (*state)->key[pd->didx]; 5443 5444 if (PF_ANEQ(pd2.src, 5445 &nk->addr[pd2.sidx], pd2.af) || 5446 nk->port[pd2.sidx] != iih.icmp_id) 5447 pf_change_icmp(pd2.src, &iih.icmp_id, 5448 daddr, &nk->addr[pd2.sidx], 5449 nk->port[pd2.sidx], NULL, 5450 pd2.ip_sum, icmpsum, 5451 pd->ip_sum, 0, AF_INET); 5452 5453 if (PF_ANEQ(pd2.dst, 5454 &nk->addr[pd2.didx], pd2.af) || 5455 nk->port[pd2.didx] != iih.icmp_id) 5456 pf_change_icmp(pd2.dst, &iih.icmp_id, 5457 saddr, &nk->addr[pd2.didx], 5458 nk->port[pd2.didx], NULL, 5459 pd2.ip_sum, icmpsum, 5460 pd->ip_sum, 0, AF_INET); 5461 5462 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 5463 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5464 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5465 } 5466 return (PF_PASS); 5467 break; 5468 } 5469 #endif /* INET */ 5470 #ifdef INET6 5471 case IPPROTO_ICMPV6: { 5472 struct icmp6_hdr iih; 5473 5474 if (!pf_pull_hdr(m, off2, &iih, 5475 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5476 DPFPRINTF(PF_DEBUG_MISC, 5477 ("pf: ICMP error message too short " 5478 "(icmp6)\n")); 5479 return (PF_DROP); 5480 } 5481 5482 key.af = pd2.af; 5483 key.proto = IPPROTO_ICMPV6; 5484 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5485 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5486 key.port[0] = key.port[1] = iih.icmp6_id; 5487 5488 STATE_LOOKUP(kif, &key, direction, *state, pd); 5489 5490 /* translate source/destination address, if necessary */ 5491 if ((*state)->key[PF_SK_WIRE] != 5492 (*state)->key[PF_SK_STACK]) { 5493 struct pf_state_key *nk = 5494 (*state)->key[pd->didx]; 5495 5496 if (PF_ANEQ(pd2.src, 5497 &nk->addr[pd2.sidx], pd2.af) || 5498 nk->port[pd2.sidx] != iih.icmp6_id) 5499 pf_change_icmp(pd2.src, &iih.icmp6_id, 5500 daddr, &nk->addr[pd2.sidx], 5501 nk->port[pd2.sidx], NULL, 5502 pd2.ip_sum, icmpsum, 5503 pd->ip_sum, 0, AF_INET6); 5504 5505 if (PF_ANEQ(pd2.dst, 5506 &nk->addr[pd2.didx], pd2.af) || 5507 nk->port[pd2.didx] != iih.icmp6_id) 5508 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5509 saddr, &nk->addr[pd2.didx], 5510 nk->port[pd2.didx], NULL, 5511 pd2.ip_sum, icmpsum, 5512 pd->ip_sum, 0, AF_INET6); 5513 5514 m_copyback(m, off, sizeof(struct icmp6_hdr), 5515 (caddr_t)&pd->hdr.icmp6); 5516 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5517 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5518 (caddr_t)&iih); 5519 } 5520 return (PF_PASS); 5521 break; 5522 } 5523 #endif /* INET6 */ 5524 default: { 5525 key.af = pd2.af; 5526 key.proto = pd2.proto; 5527 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5528 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5529 key.port[0] = key.port[1] = 0; 5530 5531 STATE_LOOKUP(kif, &key, direction, *state, pd); 5532 5533 /* translate source/destination address, if necessary */ 5534 if ((*state)->key[PF_SK_WIRE] != 5535 (*state)->key[PF_SK_STACK]) { 5536 struct pf_state_key *nk = 5537 (*state)->key[pd->didx]; 5538 5539 if (PF_ANEQ(pd2.src, 5540 &nk->addr[pd2.sidx], pd2.af)) 5541 pf_change_icmp(pd2.src, NULL, daddr, 5542 &nk->addr[pd2.sidx], 0, NULL, 5543 pd2.ip_sum, icmpsum, 5544 pd->ip_sum, 0, pd2.af); 5545 5546 if (PF_ANEQ(pd2.dst, 5547 &nk->addr[pd2.didx], pd2.af)) 5548 pf_change_icmp(pd2.dst, NULL, saddr, 5549 &nk->addr[pd2.didx], 0, NULL, 5550 pd2.ip_sum, icmpsum, 5551 pd->ip_sum, 0, pd2.af); 5552 5553 switch (pd2.af) { 5554 #ifdef INET 5555 case AF_INET: 5556 m_copyback(m, off, ICMP_MINLEN, 5557 (caddr_t)&pd->hdr.icmp); 5558 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5559 break; 5560 #endif /* INET */ 5561 #ifdef INET6 5562 case AF_INET6: 5563 m_copyback(m, off, 5564 sizeof(struct icmp6_hdr), 5565 (caddr_t )&pd->hdr.icmp6); 5566 m_copyback(m, ipoff2, sizeof(h2_6), 5567 (caddr_t )&h2_6); 5568 break; 5569 #endif /* INET6 */ 5570 } 5571 } 5572 return (PF_PASS); 5573 break; 5574 } 5575 } 5576 } 5577 } 5578 5579 static int 5580 pf_test_state_other(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 5581 struct mbuf *m, struct pf_pdesc *pd) 5582 { 5583 struct pf_state_peer *src, *dst; 5584 struct pf_state_key_cmp key; 5585 uint8_t psrc, pdst; 5586 5587 bzero(&key, sizeof(key)); 5588 key.af = pd->af; 5589 key.proto = pd->proto; 5590 if (direction == PF_IN) { 5591 PF_ACPY(&key.addr[0], pd->src, key.af); 5592 PF_ACPY(&key.addr[1], pd->dst, key.af); 5593 key.port[0] = key.port[1] = 0; 5594 } else { 5595 PF_ACPY(&key.addr[1], pd->src, key.af); 5596 PF_ACPY(&key.addr[0], pd->dst, key.af); 5597 key.port[1] = key.port[0] = 0; 5598 } 5599 5600 STATE_LOOKUP(kif, &key, direction, *state, pd); 5601 5602 if (direction == (*state)->direction) { 5603 src = &(*state)->src; 5604 dst = &(*state)->dst; 5605 psrc = PF_PEER_SRC; 5606 pdst = PF_PEER_DST; 5607 } else { 5608 src = &(*state)->dst; 5609 dst = &(*state)->src; 5610 psrc = PF_PEER_DST; 5611 pdst = PF_PEER_SRC; 5612 } 5613 5614 /* update states */ 5615 if (src->state < PFOTHERS_SINGLE) 5616 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 5617 if (dst->state == PFOTHERS_SINGLE) 5618 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 5619 5620 /* update expire time */ 5621 (*state)->expire = time_uptime; 5622 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5623 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5624 else 5625 (*state)->timeout = PFTM_OTHER_SINGLE; 5626 5627 /* translate source/destination address, if necessary */ 5628 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5629 struct pf_state_key *nk = (*state)->key[pd->didx]; 5630 5631 KASSERT(nk, ("%s: nk is null", __func__)); 5632 KASSERT(pd, ("%s: pd is null", __func__)); 5633 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5634 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5635 switch (pd->af) { 5636 #ifdef INET 5637 case AF_INET: 5638 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5639 pf_change_a(&pd->src->v4.s_addr, 5640 pd->ip_sum, 5641 nk->addr[pd->sidx].v4.s_addr, 5642 0); 5643 5644 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5645 pf_change_a(&pd->dst->v4.s_addr, 5646 pd->ip_sum, 5647 nk->addr[pd->didx].v4.s_addr, 5648 0); 5649 5650 break; 5651 #endif /* INET */ 5652 #ifdef INET6 5653 case AF_INET6: 5654 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5655 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5656 5657 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5658 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5659 #endif /* INET6 */ 5660 } 5661 } 5662 return (PF_PASS); 5663 } 5664 5665 /* 5666 * ipoff and off are measured from the start of the mbuf chain. 5667 * h must be at "ipoff" on the mbuf chain. 5668 */ 5669 void * 5670 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5671 u_short *actionp, u_short *reasonp, sa_family_t af) 5672 { 5673 switch (af) { 5674 #ifdef INET 5675 case AF_INET: { 5676 struct ip *h = mtod(m, struct ip *); 5677 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5678 5679 if (fragoff) { 5680 if (fragoff >= len) 5681 ACTION_SET(actionp, PF_PASS); 5682 else { 5683 ACTION_SET(actionp, PF_DROP); 5684 REASON_SET(reasonp, PFRES_FRAG); 5685 } 5686 return (NULL); 5687 } 5688 if (m->m_pkthdr.len < off + len || 5689 ntohs(h->ip_len) < off + len) { 5690 ACTION_SET(actionp, PF_DROP); 5691 REASON_SET(reasonp, PFRES_SHORT); 5692 return (NULL); 5693 } 5694 break; 5695 } 5696 #endif /* INET */ 5697 #ifdef INET6 5698 case AF_INET6: { 5699 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5700 5701 if (m->m_pkthdr.len < off + len || 5702 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5703 (unsigned)(off + len)) { 5704 ACTION_SET(actionp, PF_DROP); 5705 REASON_SET(reasonp, PFRES_SHORT); 5706 return (NULL); 5707 } 5708 break; 5709 } 5710 #endif /* INET6 */ 5711 } 5712 m_copydata(m, off, len, p); 5713 return (p); 5714 } 5715 5716 int 5717 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 5718 int rtableid) 5719 { 5720 struct ifnet *ifp; 5721 5722 /* 5723 * Skip check for addresses with embedded interface scope, 5724 * as they would always match anyway. 5725 */ 5726 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5727 return (1); 5728 5729 if (af != AF_INET && af != AF_INET6) 5730 return (0); 5731 5732 /* Skip checks for ipsec interfaces */ 5733 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5734 return (1); 5735 5736 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 5737 5738 switch (af) { 5739 #ifdef INET6 5740 case AF_INET6: 5741 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 5742 ifp)); 5743 #endif 5744 #ifdef INET 5745 case AF_INET: 5746 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 5747 ifp)); 5748 #endif 5749 } 5750 5751 return (0); 5752 } 5753 5754 #ifdef INET 5755 static void 5756 pf_route(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 5757 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 5758 { 5759 struct mbuf *m0, *m1; 5760 struct sockaddr_in dst; 5761 struct ip *ip; 5762 struct ifnet *ifp = NULL; 5763 struct pf_addr naddr; 5764 struct pf_ksrc_node *sn = NULL; 5765 int error = 0; 5766 uint16_t ip_len, ip_off; 5767 5768 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5769 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5770 __func__)); 5771 5772 if ((pd->pf_mtag == NULL && 5773 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5774 pd->pf_mtag->routed++ > 3) { 5775 m0 = *m; 5776 *m = NULL; 5777 goto bad_locked; 5778 } 5779 5780 if (r->rt == PF_DUPTO) { 5781 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 5782 if (s == NULL) { 5783 ifp = r->rpool.cur->kif ? 5784 r->rpool.cur->kif->pfik_ifp : NULL; 5785 } else { 5786 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5787 PF_STATE_UNLOCK(s); 5788 } 5789 if (ifp == oifp) { 5790 /* When the 2nd interface is not skipped */ 5791 return; 5792 } else { 5793 m0 = *m; 5794 *m = NULL; 5795 goto bad; 5796 } 5797 } else { 5798 pd->pf_mtag->flags |= PF_DUPLICATED; 5799 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 5800 if (s) 5801 PF_STATE_UNLOCK(s); 5802 return; 5803 } 5804 } 5805 } else { 5806 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5807 if (s) 5808 PF_STATE_UNLOCK(s); 5809 return; 5810 } 5811 m0 = *m; 5812 } 5813 5814 ip = mtod(m0, struct ip *); 5815 5816 bzero(&dst, sizeof(dst)); 5817 dst.sin_family = AF_INET; 5818 dst.sin_len = sizeof(dst); 5819 dst.sin_addr = ip->ip_dst; 5820 5821 bzero(&naddr, sizeof(naddr)); 5822 5823 if (TAILQ_EMPTY(&r->rpool.list)) { 5824 DPFPRINTF(PF_DEBUG_URGENT, 5825 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5826 goto bad_locked; 5827 } 5828 if (s == NULL) { 5829 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5830 &naddr, NULL, &sn); 5831 if (!PF_AZERO(&naddr, AF_INET)) 5832 dst.sin_addr.s_addr = naddr.v4.s_addr; 5833 ifp = r->rpool.cur->kif ? 5834 r->rpool.cur->kif->pfik_ifp : NULL; 5835 } else { 5836 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5837 dst.sin_addr.s_addr = 5838 s->rt_addr.v4.s_addr; 5839 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5840 PF_STATE_UNLOCK(s); 5841 } 5842 if (ifp == NULL) 5843 goto bad; 5844 5845 if (dir == PF_IN) { 5846 if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 5847 goto bad; 5848 else if (m0 == NULL) 5849 goto done; 5850 if (m0->m_len < sizeof(struct ip)) { 5851 DPFPRINTF(PF_DEBUG_URGENT, 5852 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5853 goto bad; 5854 } 5855 ip = mtod(m0, struct ip *); 5856 } 5857 5858 if (ifp->if_flags & IFF_LOOPBACK) 5859 m0->m_flags |= M_SKIP_FIREWALL; 5860 5861 ip_len = ntohs(ip->ip_len); 5862 ip_off = ntohs(ip->ip_off); 5863 5864 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5865 m0->m_pkthdr.csum_flags |= CSUM_IP; 5866 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5867 m0 = mb_unmapped_to_ext(m0); 5868 if (m0 == NULL) 5869 goto done; 5870 in_delayed_cksum(m0); 5871 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5872 } 5873 #if defined(SCTP) || defined(SCTP_SUPPORT) 5874 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5875 m0 = mb_unmapped_to_ext(m0); 5876 if (m0 == NULL) 5877 goto done; 5878 sctp_delayed_cksum(m0, (uint32_t)(ip->ip_hl << 2)); 5879 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5880 } 5881 #endif 5882 5883 /* 5884 * If small enough for interface, or the interface will take 5885 * care of the fragmentation for us, we can just send directly. 5886 */ 5887 if (ip_len <= ifp->if_mtu || 5888 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5889 ip->ip_sum = 0; 5890 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5891 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5892 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5893 } 5894 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5895 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5896 goto done; 5897 } 5898 5899 /* Balk when DF bit is set or the interface didn't support TSO. */ 5900 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5901 error = EMSGSIZE; 5902 KMOD_IPSTAT_INC(ips_cantfrag); 5903 if (r->rt != PF_DUPTO) { 5904 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5905 ifp->if_mtu); 5906 goto done; 5907 } else 5908 goto bad; 5909 } 5910 5911 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5912 if (error) 5913 goto bad; 5914 5915 for (; m0; m0 = m1) { 5916 m1 = m0->m_nextpkt; 5917 m0->m_nextpkt = NULL; 5918 if (error == 0) { 5919 m_clrprotoflags(m0); 5920 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5921 } else 5922 m_freem(m0); 5923 } 5924 5925 if (error == 0) 5926 KMOD_IPSTAT_INC(ips_fragmented); 5927 5928 done: 5929 if (r->rt != PF_DUPTO) 5930 *m = NULL; 5931 return; 5932 5933 bad_locked: 5934 if (s) 5935 PF_STATE_UNLOCK(s); 5936 bad: 5937 m_freem(m0); 5938 goto done; 5939 } 5940 #endif /* INET */ 5941 5942 #ifdef INET6 5943 static void 5944 pf_route6(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 5945 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 5946 { 5947 struct mbuf *m0; 5948 struct sockaddr_in6 dst; 5949 struct ip6_hdr *ip6; 5950 struct ifnet *ifp = NULL; 5951 struct pf_addr naddr; 5952 struct pf_ksrc_node *sn = NULL; 5953 5954 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5955 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5956 __func__)); 5957 5958 if ((pd->pf_mtag == NULL && 5959 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5960 pd->pf_mtag->routed++ > 3) { 5961 m0 = *m; 5962 *m = NULL; 5963 goto bad_locked; 5964 } 5965 5966 if (r->rt == PF_DUPTO) { 5967 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 5968 if (s == NULL) { 5969 ifp = r->rpool.cur->kif ? 5970 r->rpool.cur->kif->pfik_ifp : NULL; 5971 } else { 5972 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5973 PF_STATE_UNLOCK(s); 5974 } 5975 if (ifp == oifp) { 5976 /* When the 2nd interface is not skipped */ 5977 return; 5978 } else { 5979 m0 = *m; 5980 *m = NULL; 5981 goto bad; 5982 } 5983 } else { 5984 pd->pf_mtag->flags |= PF_DUPLICATED; 5985 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 5986 if (s) 5987 PF_STATE_UNLOCK(s); 5988 return; 5989 } 5990 } 5991 } else { 5992 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5993 if (s) 5994 PF_STATE_UNLOCK(s); 5995 return; 5996 } 5997 m0 = *m; 5998 } 5999 6000 ip6 = mtod(m0, struct ip6_hdr *); 6001 6002 bzero(&dst, sizeof(dst)); 6003 dst.sin6_family = AF_INET6; 6004 dst.sin6_len = sizeof(dst); 6005 dst.sin6_addr = ip6->ip6_dst; 6006 6007 bzero(&naddr, sizeof(naddr)); 6008 6009 if (TAILQ_EMPTY(&r->rpool.list)) { 6010 DPFPRINTF(PF_DEBUG_URGENT, 6011 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 6012 goto bad_locked; 6013 } 6014 if (s == NULL) { 6015 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 6016 &naddr, NULL, &sn); 6017 if (!PF_AZERO(&naddr, AF_INET6)) 6018 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 6019 &naddr, AF_INET6); 6020 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 6021 } else { 6022 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 6023 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 6024 &s->rt_addr, AF_INET6); 6025 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6026 } 6027 6028 if (s) 6029 PF_STATE_UNLOCK(s); 6030 6031 if (ifp == NULL) 6032 goto bad; 6033 6034 if (dir == PF_IN) { 6035 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS) 6036 goto bad; 6037 else if (m0 == NULL) 6038 goto done; 6039 if (m0->m_len < sizeof(struct ip6_hdr)) { 6040 DPFPRINTF(PF_DEBUG_URGENT, 6041 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 6042 __func__)); 6043 goto bad; 6044 } 6045 ip6 = mtod(m0, struct ip6_hdr *); 6046 } 6047 6048 if (ifp->if_flags & IFF_LOOPBACK) 6049 m0->m_flags |= M_SKIP_FIREWALL; 6050 6051 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 6052 ~ifp->if_hwassist) { 6053 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 6054 m0 = mb_unmapped_to_ext(m0); 6055 if (m0 == NULL) 6056 goto done; 6057 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 6058 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 6059 } 6060 6061 /* 6062 * If the packet is too large for the outgoing interface, 6063 * send back an icmp6 error. 6064 */ 6065 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 6066 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 6067 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 6068 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 6069 else { 6070 in6_ifstat_inc(ifp, ifs6_in_toobig); 6071 if (r->rt != PF_DUPTO) 6072 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 6073 else 6074 goto bad; 6075 } 6076 6077 done: 6078 if (r->rt != PF_DUPTO) 6079 *m = NULL; 6080 return; 6081 6082 bad_locked: 6083 if (s) 6084 PF_STATE_UNLOCK(s); 6085 bad: 6086 m_freem(m0); 6087 goto done; 6088 } 6089 #endif /* INET6 */ 6090 6091 /* 6092 * FreeBSD supports cksum offloads for the following drivers. 6093 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 6094 * 6095 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 6096 * network driver performed cksum including pseudo header, need to verify 6097 * csum_data 6098 * CSUM_DATA_VALID : 6099 * network driver performed cksum, needs to additional pseudo header 6100 * cksum computation with partial csum_data(i.e. lack of H/W support for 6101 * pseudo header, for instance sk(4) and possibly gem(4)) 6102 * 6103 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 6104 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 6105 * TCP/UDP layer. 6106 * Also, set csum_data to 0xffff to force cksum validation. 6107 */ 6108 static int 6109 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 6110 { 6111 u_int16_t sum = 0; 6112 int hw_assist = 0; 6113 struct ip *ip; 6114 6115 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 6116 return (1); 6117 if (m->m_pkthdr.len < off + len) 6118 return (1); 6119 6120 switch (p) { 6121 case IPPROTO_TCP: 6122 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 6123 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 6124 sum = m->m_pkthdr.csum_data; 6125 } else { 6126 ip = mtod(m, struct ip *); 6127 sum = in_pseudo(ip->ip_src.s_addr, 6128 ip->ip_dst.s_addr, htonl((u_short)len + 6129 m->m_pkthdr.csum_data + IPPROTO_TCP)); 6130 } 6131 sum ^= 0xffff; 6132 ++hw_assist; 6133 } 6134 break; 6135 case IPPROTO_UDP: 6136 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 6137 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 6138 sum = m->m_pkthdr.csum_data; 6139 } else { 6140 ip = mtod(m, struct ip *); 6141 sum = in_pseudo(ip->ip_src.s_addr, 6142 ip->ip_dst.s_addr, htonl((u_short)len + 6143 m->m_pkthdr.csum_data + IPPROTO_UDP)); 6144 } 6145 sum ^= 0xffff; 6146 ++hw_assist; 6147 } 6148 break; 6149 case IPPROTO_ICMP: 6150 #ifdef INET6 6151 case IPPROTO_ICMPV6: 6152 #endif /* INET6 */ 6153 break; 6154 default: 6155 return (1); 6156 } 6157 6158 if (!hw_assist) { 6159 switch (af) { 6160 case AF_INET: 6161 if (p == IPPROTO_ICMP) { 6162 if (m->m_len < off) 6163 return (1); 6164 m->m_data += off; 6165 m->m_len -= off; 6166 sum = in_cksum(m, len); 6167 m->m_data -= off; 6168 m->m_len += off; 6169 } else { 6170 if (m->m_len < sizeof(struct ip)) 6171 return (1); 6172 sum = in4_cksum(m, p, off, len); 6173 } 6174 break; 6175 #ifdef INET6 6176 case AF_INET6: 6177 if (m->m_len < sizeof(struct ip6_hdr)) 6178 return (1); 6179 sum = in6_cksum(m, p, off, len); 6180 break; 6181 #endif /* INET6 */ 6182 default: 6183 return (1); 6184 } 6185 } 6186 if (sum) { 6187 switch (p) { 6188 case IPPROTO_TCP: 6189 { 6190 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 6191 break; 6192 } 6193 case IPPROTO_UDP: 6194 { 6195 KMOD_UDPSTAT_INC(udps_badsum); 6196 break; 6197 } 6198 #ifdef INET 6199 case IPPROTO_ICMP: 6200 { 6201 KMOD_ICMPSTAT_INC(icps_checksum); 6202 break; 6203 } 6204 #endif 6205 #ifdef INET6 6206 case IPPROTO_ICMPV6: 6207 { 6208 KMOD_ICMP6STAT_INC(icp6s_checksum); 6209 break; 6210 } 6211 #endif /* INET6 */ 6212 } 6213 return (1); 6214 } else { 6215 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 6216 m->m_pkthdr.csum_flags |= 6217 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 6218 m->m_pkthdr.csum_data = 0xffff; 6219 } 6220 } 6221 return (0); 6222 } 6223 6224 #ifdef INET 6225 int 6226 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6227 { 6228 struct pfi_kkif *kif; 6229 u_short action, reason = 0, log = 0; 6230 struct mbuf *m = *m0; 6231 struct ip *h = NULL; 6232 struct m_tag *ipfwtag; 6233 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6234 struct pf_kstate *s = NULL; 6235 struct pf_kruleset *ruleset = NULL; 6236 struct pf_pdesc pd; 6237 int off, dirndx, pqid = 0; 6238 6239 PF_RULES_RLOCK_TRACKER; 6240 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 6241 M_ASSERTPKTHDR(m); 6242 6243 if (!V_pf_status.running) 6244 return (PF_PASS); 6245 6246 memset(&pd, 0, sizeof(pd)); 6247 6248 kif = (struct pfi_kkif *)ifp->if_pf_kif; 6249 6250 if (kif == NULL) { 6251 DPFPRINTF(PF_DEBUG_URGENT, 6252 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 6253 return (PF_DROP); 6254 } 6255 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6256 return (PF_PASS); 6257 6258 if (m->m_flags & M_SKIP_FIREWALL) 6259 return (PF_PASS); 6260 6261 pd.pf_mtag = pf_find_mtag(m); 6262 6263 PF_RULES_RLOCK(); 6264 6265 if (__predict_false(ip_divert_ptr != NULL) && 6266 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 6267 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 6268 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 6269 if (pd.pf_mtag == NULL && 6270 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6271 action = PF_DROP; 6272 goto done; 6273 } 6274 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 6275 m_tag_delete(m, ipfwtag); 6276 } 6277 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 6278 m->m_flags |= M_FASTFWD_OURS; 6279 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 6280 } 6281 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 6282 /* We do IP header normalization and packet reassembly here */ 6283 action = PF_DROP; 6284 goto done; 6285 } 6286 m = *m0; /* pf_normalize messes with m0 */ 6287 h = mtod(m, struct ip *); 6288 6289 off = h->ip_hl << 2; 6290 if (off < (int)sizeof(struct ip)) { 6291 action = PF_DROP; 6292 REASON_SET(&reason, PFRES_SHORT); 6293 log = 1; 6294 goto done; 6295 } 6296 6297 pd.src = (struct pf_addr *)&h->ip_src; 6298 pd.dst = (struct pf_addr *)&h->ip_dst; 6299 pd.sport = pd.dport = NULL; 6300 pd.ip_sum = &h->ip_sum; 6301 pd.proto_sum = NULL; 6302 pd.proto = h->ip_p; 6303 pd.dir = dir; 6304 pd.sidx = (dir == PF_IN) ? 0 : 1; 6305 pd.didx = (dir == PF_IN) ? 1 : 0; 6306 pd.af = AF_INET; 6307 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 6308 pd.tot_len = ntohs(h->ip_len); 6309 6310 /* handle fragments that didn't get reassembled by normalization */ 6311 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 6312 action = pf_test_fragment(&r, dir, kif, m, h, 6313 &pd, &a, &ruleset); 6314 goto done; 6315 } 6316 6317 switch (h->ip_p) { 6318 case IPPROTO_TCP: { 6319 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 6320 &action, &reason, AF_INET)) { 6321 log = action != PF_PASS; 6322 goto done; 6323 } 6324 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 6325 6326 pd.sport = &pd.hdr.tcp.th_sport; 6327 pd.dport = &pd.hdr.tcp.th_dport; 6328 6329 /* Respond to SYN with a syncookie. */ 6330 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 6331 pd.dir == PF_IN && pf_synflood_check(&pd)) { 6332 pf_syncookie_send(m, off, &pd); 6333 action = PF_DROP; 6334 break; 6335 } 6336 6337 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 6338 pqid = 1; 6339 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6340 if (action == PF_DROP) 6341 goto done; 6342 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6343 &reason); 6344 if (action == PF_PASS) { 6345 if (V_pfsync_update_state_ptr != NULL) 6346 V_pfsync_update_state_ptr(s); 6347 r = s->rule.ptr; 6348 a = s->anchor.ptr; 6349 log = s->log; 6350 } else if (s == NULL) { 6351 /* Validate remote SYN|ACK, re-create original SYN if 6352 * valid. */ 6353 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 6354 TH_ACK && pf_syncookie_validate(&pd) && 6355 pd.dir == PF_IN) { 6356 struct mbuf *msyn; 6357 6358 msyn = pf_syncookie_recreate_syn(h->ip_ttl, 6359 off,&pd); 6360 if (msyn == NULL) { 6361 action = PF_DROP; 6362 break; 6363 } 6364 6365 action = pf_test(dir, pflags, ifp, &msyn, inp); 6366 m_freem(msyn); 6367 6368 if (action == PF_PASS) { 6369 action = pf_test_state_tcp(&s, dir, 6370 kif, m, off, h, &pd, &reason); 6371 if (action != PF_PASS || s == NULL) { 6372 action = PF_DROP; 6373 break; 6374 } 6375 6376 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) 6377 - 1; 6378 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) 6379 - 1; 6380 pf_set_protostate(s, PF_PEER_SRC, 6381 PF_TCPS_PROXY_DST); 6382 6383 action = pf_synproxy(&pd, &s, &reason); 6384 if (action != PF_PASS) 6385 break; 6386 } 6387 break; 6388 } 6389 else { 6390 action = pf_test_rule(&r, &s, dir, kif, m, off, 6391 &pd, &a, &ruleset, inp); 6392 } 6393 } 6394 break; 6395 } 6396 6397 case IPPROTO_UDP: { 6398 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 6399 &action, &reason, AF_INET)) { 6400 log = action != PF_PASS; 6401 goto done; 6402 } 6403 if (pd.hdr.udp.uh_dport == 0 || 6404 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 6405 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 6406 action = PF_DROP; 6407 REASON_SET(&reason, PFRES_SHORT); 6408 goto done; 6409 } 6410 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6411 if (action == PF_PASS) { 6412 if (V_pfsync_update_state_ptr != NULL) 6413 V_pfsync_update_state_ptr(s); 6414 r = s->rule.ptr; 6415 a = s->anchor.ptr; 6416 log = s->log; 6417 } else if (s == NULL) 6418 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6419 &a, &ruleset, inp); 6420 break; 6421 } 6422 6423 case IPPROTO_ICMP: { 6424 if (!pf_pull_hdr(m, off, &pd.hdr.icmp, ICMP_MINLEN, 6425 &action, &reason, AF_INET)) { 6426 log = action != PF_PASS; 6427 goto done; 6428 } 6429 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 6430 &reason); 6431 if (action == PF_PASS) { 6432 if (V_pfsync_update_state_ptr != NULL) 6433 V_pfsync_update_state_ptr(s); 6434 r = s->rule.ptr; 6435 a = s->anchor.ptr; 6436 log = s->log; 6437 } else if (s == NULL) 6438 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6439 &a, &ruleset, inp); 6440 break; 6441 } 6442 6443 #ifdef INET6 6444 case IPPROTO_ICMPV6: { 6445 action = PF_DROP; 6446 DPFPRINTF(PF_DEBUG_MISC, 6447 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6448 goto done; 6449 } 6450 #endif 6451 6452 default: 6453 action = pf_test_state_other(&s, dir, kif, m, &pd); 6454 if (action == PF_PASS) { 6455 if (V_pfsync_update_state_ptr != NULL) 6456 V_pfsync_update_state_ptr(s); 6457 r = s->rule.ptr; 6458 a = s->anchor.ptr; 6459 log = s->log; 6460 } else if (s == NULL) 6461 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6462 &a, &ruleset, inp); 6463 break; 6464 } 6465 6466 done: 6467 PF_RULES_RUNLOCK(); 6468 if (action == PF_PASS && h->ip_hl > 5 && 6469 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6470 action = PF_DROP; 6471 REASON_SET(&reason, PFRES_IPOPTIONS); 6472 log = r->log; 6473 DPFPRINTF(PF_DEBUG_MISC, 6474 ("pf: dropping packet with ip options\n")); 6475 } 6476 6477 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6478 action = PF_DROP; 6479 REASON_SET(&reason, PFRES_MEMORY); 6480 } 6481 if (r->rtableid >= 0) 6482 M_SETFIB(m, r->rtableid); 6483 6484 if (r->scrub_flags & PFSTATE_SETPRIO) { 6485 if (pd.tos & IPTOS_LOWDELAY) 6486 pqid = 1; 6487 if (vlan_set_pcp(m, r->set_prio[pqid])) { 6488 action = PF_DROP; 6489 REASON_SET(&reason, PFRES_MEMORY); 6490 log = 1; 6491 DPFPRINTF(PF_DEBUG_MISC, 6492 ("pf: failed to allocate 802.1q mtag\n")); 6493 } 6494 } 6495 6496 #ifdef ALTQ 6497 if (s && s->qid) { 6498 pd.act.pqid = s->pqid; 6499 pd.act.qid = s->qid; 6500 } else if (r->qid) { 6501 pd.act.pqid = r->pqid; 6502 pd.act.qid = r->qid; 6503 } 6504 if (action == PF_PASS && pd.act.qid) { 6505 if (pd.pf_mtag == NULL && 6506 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6507 action = PF_DROP; 6508 REASON_SET(&reason, PFRES_MEMORY); 6509 } else { 6510 if (s != NULL) 6511 pd.pf_mtag->qid_hash = pf_state_hash(s); 6512 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6513 pd.pf_mtag->qid = pd.act.pqid; 6514 else 6515 pd.pf_mtag->qid = pd.act.qid; 6516 /* Add hints for ecn. */ 6517 pd.pf_mtag->hdr = h; 6518 } 6519 } 6520 #endif /* ALTQ */ 6521 6522 /* 6523 * connections redirected to loopback should not match sockets 6524 * bound specifically to loopback due to security implications, 6525 * see tcp_input() and in_pcblookup_listen(). 6526 */ 6527 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6528 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6529 (s->nat_rule.ptr->action == PF_RDR || 6530 s->nat_rule.ptr->action == PF_BINAT) && 6531 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 6532 m->m_flags |= M_SKIP_FIREWALL; 6533 6534 if (__predict_false(ip_divert_ptr != NULL) && action == PF_PASS && 6535 r->divert.port && !PACKET_LOOPED(&pd)) { 6536 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6537 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6538 if (ipfwtag != NULL) { 6539 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6540 ntohs(r->divert.port); 6541 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6542 6543 if (s) 6544 PF_STATE_UNLOCK(s); 6545 6546 m_tag_prepend(m, ipfwtag); 6547 if (m->m_flags & M_FASTFWD_OURS) { 6548 if (pd.pf_mtag == NULL && 6549 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6550 action = PF_DROP; 6551 REASON_SET(&reason, PFRES_MEMORY); 6552 log = 1; 6553 DPFPRINTF(PF_DEBUG_MISC, 6554 ("pf: failed to allocate tag\n")); 6555 } else { 6556 pd.pf_mtag->flags |= 6557 PF_FASTFWD_OURS_PRESENT; 6558 m->m_flags &= ~M_FASTFWD_OURS; 6559 } 6560 } 6561 ip_divert_ptr(*m0, dir == PF_IN); 6562 *m0 = NULL; 6563 6564 return (action); 6565 } else { 6566 /* XXX: ipfw has the same behaviour! */ 6567 action = PF_DROP; 6568 REASON_SET(&reason, PFRES_MEMORY); 6569 log = 1; 6570 DPFPRINTF(PF_DEBUG_MISC, 6571 ("pf: failed to allocate divert tag\n")); 6572 } 6573 } 6574 6575 if (log) { 6576 struct pf_krule *lr; 6577 6578 if (s != NULL && s->nat_rule.ptr != NULL && 6579 s->nat_rule.ptr->log & PF_LOG_ALL) 6580 lr = s->nat_rule.ptr; 6581 else 6582 lr = r; 6583 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6584 (s == NULL)); 6585 } 6586 6587 pf_counter_u64_critical_enter(); 6588 pf_counter_u64_add_protected(&kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], 6589 pd.tot_len); 6590 pf_counter_u64_add_protected(&kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 6591 1); 6592 6593 if (action == PF_PASS || r->action == PF_DROP) { 6594 dirndx = (dir == PF_OUT); 6595 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 6596 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 6597 if (a != NULL) { 6598 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 6599 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 6600 } 6601 if (s != NULL) { 6602 if (s->nat_rule.ptr != NULL) { 6603 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 6604 1); 6605 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 6606 pd.tot_len); 6607 } 6608 if (s->src_node != NULL) { 6609 counter_u64_add(s->src_node->packets[dirndx], 6610 1); 6611 counter_u64_add(s->src_node->bytes[dirndx], 6612 pd.tot_len); 6613 } 6614 if (s->nat_src_node != NULL) { 6615 counter_u64_add(s->nat_src_node->packets[dirndx], 6616 1); 6617 counter_u64_add(s->nat_src_node->bytes[dirndx], 6618 pd.tot_len); 6619 } 6620 dirndx = (dir == s->direction) ? 0 : 1; 6621 s->packets[dirndx]++; 6622 s->bytes[dirndx] += pd.tot_len; 6623 } 6624 tr = r; 6625 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6626 if (nr != NULL && r == &V_pf_default_rule) 6627 tr = nr; 6628 if (tr->src.addr.type == PF_ADDR_TABLE) 6629 pfr_update_stats(tr->src.addr.p.tbl, 6630 (s == NULL) ? pd.src : 6631 &s->key[(s->direction == PF_IN)]-> 6632 addr[(s->direction == PF_OUT)], 6633 pd.af, pd.tot_len, dir == PF_OUT, 6634 r->action == PF_PASS, tr->src.neg); 6635 if (tr->dst.addr.type == PF_ADDR_TABLE) 6636 pfr_update_stats(tr->dst.addr.p.tbl, 6637 (s == NULL) ? pd.dst : 6638 &s->key[(s->direction == PF_IN)]-> 6639 addr[(s->direction == PF_IN)], 6640 pd.af, pd.tot_len, dir == PF_OUT, 6641 r->action == PF_PASS, tr->dst.neg); 6642 } 6643 pf_counter_u64_critical_exit(); 6644 6645 switch (action) { 6646 case PF_SYNPROXY_DROP: 6647 m_freem(*m0); 6648 case PF_DEFER: 6649 *m0 = NULL; 6650 action = PF_PASS; 6651 break; 6652 case PF_DROP: 6653 m_freem(*m0); 6654 *m0 = NULL; 6655 break; 6656 default: 6657 /* pf_route() returns unlocked. */ 6658 if (r->rt) { 6659 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6660 return (action); 6661 } 6662 break; 6663 } 6664 6665 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 6666 6667 if (s) 6668 PF_STATE_UNLOCK(s); 6669 6670 return (action); 6671 } 6672 #endif /* INET */ 6673 6674 #ifdef INET6 6675 int 6676 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6677 { 6678 struct pfi_kkif *kif; 6679 u_short action, reason = 0, log = 0; 6680 struct mbuf *m = *m0, *n = NULL; 6681 struct m_tag *mtag; 6682 struct ip6_hdr *h = NULL; 6683 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6684 struct pf_kstate *s = NULL; 6685 struct pf_kruleset *ruleset = NULL; 6686 struct pf_pdesc pd; 6687 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6688 6689 PF_RULES_RLOCK_TRACKER; 6690 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 6691 M_ASSERTPKTHDR(m); 6692 6693 if (!V_pf_status.running) 6694 return (PF_PASS); 6695 6696 memset(&pd, 0, sizeof(pd)); 6697 pd.pf_mtag = pf_find_mtag(m); 6698 6699 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6700 return (PF_PASS); 6701 6702 kif = (struct pfi_kkif *)ifp->if_pf_kif; 6703 if (kif == NULL) { 6704 DPFPRINTF(PF_DEBUG_URGENT, 6705 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6706 return (PF_DROP); 6707 } 6708 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6709 return (PF_PASS); 6710 6711 if (m->m_flags & M_SKIP_FIREWALL) 6712 return (PF_PASS); 6713 6714 PF_RULES_RLOCK(); 6715 6716 /* We do IP header normalization and packet reassembly here */ 6717 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6718 action = PF_DROP; 6719 goto done; 6720 } 6721 m = *m0; /* pf_normalize messes with m0 */ 6722 h = mtod(m, struct ip6_hdr *); 6723 6724 /* 6725 * we do not support jumbogram. if we keep going, zero ip6_plen 6726 * will do something bad, so drop the packet for now. 6727 */ 6728 if (htons(h->ip6_plen) == 0) { 6729 action = PF_DROP; 6730 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6731 goto done; 6732 } 6733 6734 pd.src = (struct pf_addr *)&h->ip6_src; 6735 pd.dst = (struct pf_addr *)&h->ip6_dst; 6736 pd.sport = pd.dport = NULL; 6737 pd.ip_sum = NULL; 6738 pd.proto_sum = NULL; 6739 pd.dir = dir; 6740 pd.sidx = (dir == PF_IN) ? 0 : 1; 6741 pd.didx = (dir == PF_IN) ? 1 : 0; 6742 pd.af = AF_INET6; 6743 pd.tos = IPV6_DSCP(h); 6744 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6745 6746 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6747 pd.proto = h->ip6_nxt; 6748 do { 6749 switch (pd.proto) { 6750 case IPPROTO_FRAGMENT: 6751 action = pf_test_fragment(&r, dir, kif, m, h, 6752 &pd, &a, &ruleset); 6753 if (action == PF_DROP) 6754 REASON_SET(&reason, PFRES_FRAG); 6755 goto done; 6756 case IPPROTO_ROUTING: { 6757 struct ip6_rthdr rthdr; 6758 6759 if (rh_cnt++) { 6760 DPFPRINTF(PF_DEBUG_MISC, 6761 ("pf: IPv6 more than one rthdr\n")); 6762 action = PF_DROP; 6763 REASON_SET(&reason, PFRES_IPOPTIONS); 6764 log = 1; 6765 goto done; 6766 } 6767 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6768 &reason, pd.af)) { 6769 DPFPRINTF(PF_DEBUG_MISC, 6770 ("pf: IPv6 short rthdr\n")); 6771 action = PF_DROP; 6772 REASON_SET(&reason, PFRES_SHORT); 6773 log = 1; 6774 goto done; 6775 } 6776 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6777 DPFPRINTF(PF_DEBUG_MISC, 6778 ("pf: IPv6 rthdr0\n")); 6779 action = PF_DROP; 6780 REASON_SET(&reason, PFRES_IPOPTIONS); 6781 log = 1; 6782 goto done; 6783 } 6784 /* FALLTHROUGH */ 6785 } 6786 case IPPROTO_AH: 6787 case IPPROTO_HOPOPTS: 6788 case IPPROTO_DSTOPTS: { 6789 /* get next header and header length */ 6790 struct ip6_ext opt6; 6791 6792 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6793 NULL, &reason, pd.af)) { 6794 DPFPRINTF(PF_DEBUG_MISC, 6795 ("pf: IPv6 short opt\n")); 6796 action = PF_DROP; 6797 log = 1; 6798 goto done; 6799 } 6800 if (pd.proto == IPPROTO_AH) 6801 off += (opt6.ip6e_len + 2) * 4; 6802 else 6803 off += (opt6.ip6e_len + 1) * 8; 6804 pd.proto = opt6.ip6e_nxt; 6805 /* goto the next header */ 6806 break; 6807 } 6808 default: 6809 terminal++; 6810 break; 6811 } 6812 } while (!terminal); 6813 6814 /* if there's no routing header, use unmodified mbuf for checksumming */ 6815 if (!n) 6816 n = m; 6817 6818 switch (pd.proto) { 6819 case IPPROTO_TCP: { 6820 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 6821 &action, &reason, AF_INET6)) { 6822 log = action != PF_PASS; 6823 goto done; 6824 } 6825 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 6826 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6827 if (action == PF_DROP) 6828 goto done; 6829 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6830 &reason); 6831 if (action == PF_PASS) { 6832 if (V_pfsync_update_state_ptr != NULL) 6833 V_pfsync_update_state_ptr(s); 6834 r = s->rule.ptr; 6835 a = s->anchor.ptr; 6836 log = s->log; 6837 } else if (s == NULL) 6838 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6839 &a, &ruleset, inp); 6840 break; 6841 } 6842 6843 case IPPROTO_UDP: { 6844 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 6845 &action, &reason, AF_INET6)) { 6846 log = action != PF_PASS; 6847 goto done; 6848 } 6849 if (pd.hdr.udp.uh_dport == 0 || 6850 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 6851 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 6852 action = PF_DROP; 6853 REASON_SET(&reason, PFRES_SHORT); 6854 goto done; 6855 } 6856 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6857 if (action == PF_PASS) { 6858 if (V_pfsync_update_state_ptr != NULL) 6859 V_pfsync_update_state_ptr(s); 6860 r = s->rule.ptr; 6861 a = s->anchor.ptr; 6862 log = s->log; 6863 } else if (s == NULL) 6864 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6865 &a, &ruleset, inp); 6866 break; 6867 } 6868 6869 case IPPROTO_ICMP: { 6870 action = PF_DROP; 6871 DPFPRINTF(PF_DEBUG_MISC, 6872 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6873 goto done; 6874 } 6875 6876 case IPPROTO_ICMPV6: { 6877 if (!pf_pull_hdr(m, off, &pd.hdr.icmp6, sizeof(pd.hdr.icmp6), 6878 &action, &reason, AF_INET6)) { 6879 log = action != PF_PASS; 6880 goto done; 6881 } 6882 action = pf_test_state_icmp(&s, dir, kif, 6883 m, off, h, &pd, &reason); 6884 if (action == PF_PASS) { 6885 if (V_pfsync_update_state_ptr != NULL) 6886 V_pfsync_update_state_ptr(s); 6887 r = s->rule.ptr; 6888 a = s->anchor.ptr; 6889 log = s->log; 6890 } else if (s == NULL) 6891 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6892 &a, &ruleset, inp); 6893 break; 6894 } 6895 6896 default: 6897 action = pf_test_state_other(&s, dir, kif, m, &pd); 6898 if (action == PF_PASS) { 6899 if (V_pfsync_update_state_ptr != NULL) 6900 V_pfsync_update_state_ptr(s); 6901 r = s->rule.ptr; 6902 a = s->anchor.ptr; 6903 log = s->log; 6904 } else if (s == NULL) 6905 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6906 &a, &ruleset, inp); 6907 break; 6908 } 6909 6910 done: 6911 PF_RULES_RUNLOCK(); 6912 if (n != m) { 6913 m_freem(n); 6914 n = NULL; 6915 } 6916 6917 /* handle dangerous IPv6 extension headers. */ 6918 if (action == PF_PASS && rh_cnt && 6919 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6920 action = PF_DROP; 6921 REASON_SET(&reason, PFRES_IPOPTIONS); 6922 log = r->log; 6923 DPFPRINTF(PF_DEBUG_MISC, 6924 ("pf: dropping packet with dangerous v6 headers\n")); 6925 } 6926 6927 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6928 action = PF_DROP; 6929 REASON_SET(&reason, PFRES_MEMORY); 6930 } 6931 if (r->rtableid >= 0) 6932 M_SETFIB(m, r->rtableid); 6933 6934 if (r->scrub_flags & PFSTATE_SETPRIO) { 6935 if (pd.tos & IPTOS_LOWDELAY) 6936 pqid = 1; 6937 if (vlan_set_pcp(m, r->set_prio[pqid])) { 6938 action = PF_DROP; 6939 REASON_SET(&reason, PFRES_MEMORY); 6940 log = 1; 6941 DPFPRINTF(PF_DEBUG_MISC, 6942 ("pf: failed to allocate 802.1q mtag\n")); 6943 } 6944 } 6945 6946 #ifdef ALTQ 6947 if (s && s->qid) { 6948 pd.act.pqid = s->pqid; 6949 pd.act.qid = s->qid; 6950 } else if (r->qid) { 6951 pd.act.pqid = r->pqid; 6952 pd.act.qid = r->qid; 6953 } 6954 if (action == PF_PASS && pd.act.qid) { 6955 if (pd.pf_mtag == NULL && 6956 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6957 action = PF_DROP; 6958 REASON_SET(&reason, PFRES_MEMORY); 6959 } else { 6960 if (s != NULL) 6961 pd.pf_mtag->qid_hash = pf_state_hash(s); 6962 if (pd.tos & IPTOS_LOWDELAY) 6963 pd.pf_mtag->qid = pd.act.pqid; 6964 else 6965 pd.pf_mtag->qid = pd.act.qid; 6966 /* Add hints for ecn. */ 6967 pd.pf_mtag->hdr = h; 6968 } 6969 } 6970 #endif /* ALTQ */ 6971 6972 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6973 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6974 (s->nat_rule.ptr->action == PF_RDR || 6975 s->nat_rule.ptr->action == PF_BINAT) && 6976 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6977 m->m_flags |= M_SKIP_FIREWALL; 6978 6979 /* XXX: Anybody working on it?! */ 6980 if (r->divert.port) 6981 printf("pf: divert(9) is not supported for IPv6\n"); 6982 6983 if (log) { 6984 struct pf_krule *lr; 6985 6986 if (s != NULL && s->nat_rule.ptr != NULL && 6987 s->nat_rule.ptr->log & PF_LOG_ALL) 6988 lr = s->nat_rule.ptr; 6989 else 6990 lr = r; 6991 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6992 &pd, (s == NULL)); 6993 } 6994 6995 pf_counter_u64_critical_enter(); 6996 pf_counter_u64_add_protected(&kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], 6997 pd.tot_len); 6998 pf_counter_u64_add_protected(&kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 6999 1); 7000 7001 if (action == PF_PASS || r->action == PF_DROP) { 7002 dirndx = (dir == PF_OUT); 7003 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 7004 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 7005 if (a != NULL) { 7006 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 7007 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 7008 } 7009 if (s != NULL) { 7010 if (s->nat_rule.ptr != NULL) { 7011 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 7012 1); 7013 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 7014 pd.tot_len); 7015 } 7016 if (s->src_node != NULL) { 7017 counter_u64_add(s->src_node->packets[dirndx], 7018 1); 7019 counter_u64_add(s->src_node->bytes[dirndx], 7020 pd.tot_len); 7021 } 7022 if (s->nat_src_node != NULL) { 7023 counter_u64_add(s->nat_src_node->packets[dirndx], 7024 1); 7025 counter_u64_add(s->nat_src_node->bytes[dirndx], 7026 pd.tot_len); 7027 } 7028 dirndx = (dir == s->direction) ? 0 : 1; 7029 s->packets[dirndx]++; 7030 s->bytes[dirndx] += pd.tot_len; 7031 } 7032 tr = r; 7033 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 7034 if (nr != NULL && r == &V_pf_default_rule) 7035 tr = nr; 7036 if (tr->src.addr.type == PF_ADDR_TABLE) 7037 pfr_update_stats(tr->src.addr.p.tbl, 7038 (s == NULL) ? pd.src : 7039 &s->key[(s->direction == PF_IN)]->addr[0], 7040 pd.af, pd.tot_len, dir == PF_OUT, 7041 r->action == PF_PASS, tr->src.neg); 7042 if (tr->dst.addr.type == PF_ADDR_TABLE) 7043 pfr_update_stats(tr->dst.addr.p.tbl, 7044 (s == NULL) ? pd.dst : 7045 &s->key[(s->direction == PF_IN)]->addr[1], 7046 pd.af, pd.tot_len, dir == PF_OUT, 7047 r->action == PF_PASS, tr->dst.neg); 7048 } 7049 pf_counter_u64_critical_exit(); 7050 7051 switch (action) { 7052 case PF_SYNPROXY_DROP: 7053 m_freem(*m0); 7054 case PF_DEFER: 7055 *m0 = NULL; 7056 action = PF_PASS; 7057 break; 7058 case PF_DROP: 7059 m_freem(*m0); 7060 *m0 = NULL; 7061 break; 7062 default: 7063 /* pf_route6() returns unlocked. */ 7064 if (r->rt) { 7065 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 7066 return (action); 7067 } 7068 break; 7069 } 7070 7071 if (s) 7072 PF_STATE_UNLOCK(s); 7073 7074 /* If reassembled packet passed, create new fragments. */ 7075 if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && 7076 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 7077 action = pf_refragment6(ifp, m0, mtag); 7078 7079 SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); 7080 7081 return (action); 7082 } 7083 #endif /* INET6 */ 7084