1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_bpf.h" 46 #include "opt_pf.h" 47 48 #include <sys/param.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/socket.h> 61 #include <sys/sysctl.h> 62 #include <sys/taskqueue.h> 63 #include <sys/ucred.h> 64 65 #include <net/if.h> 66 #include <net/if_var.h> 67 #include <net/if_types.h> 68 #include <net/if_vlan_var.h> 69 #include <net/route.h> 70 #include <net/radix_mpath.h> 71 #include <net/vnet.h> 72 73 #include <net/pfil.h> 74 #include <net/pfvar.h> 75 #include <net/if_pflog.h> 76 #include <net/if_pfsync.h> 77 78 #include <netinet/in_pcb.h> 79 #include <netinet/in_var.h> 80 #include <netinet/in_fib.h> 81 #include <netinet/ip.h> 82 #include <netinet/ip_fw.h> 83 #include <netinet/ip_icmp.h> 84 #include <netinet/icmp_var.h> 85 #include <netinet/ip_var.h> 86 #include <netinet/tcp.h> 87 #include <netinet/tcp_fsm.h> 88 #include <netinet/tcp_seq.h> 89 #include <netinet/tcp_timer.h> 90 #include <netinet/tcp_var.h> 91 #include <netinet/udp.h> 92 #include <netinet/udp_var.h> 93 94 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 95 96 #ifdef INET6 97 #include <netinet/ip6.h> 98 #include <netinet/icmp6.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/ip6_var.h> 101 #include <netinet6/in6_pcb.h> 102 #include <netinet6/in6_fib.h> 103 #include <netinet6/scope6_var.h> 104 #endif /* INET6 */ 105 106 #include <machine/in_cksum.h> 107 #include <security/mac/mac_framework.h> 108 109 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 110 111 /* 112 * Global variables 113 */ 114 115 /* state tables */ 116 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 117 VNET_DEFINE(struct pf_palist, pf_pabuf); 118 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 119 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 120 VNET_DEFINE(struct pf_kstatus, pf_status); 121 122 VNET_DEFINE(u_int32_t, ticket_altqs_active); 123 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 124 VNET_DEFINE(int, altqs_inactive_open); 125 VNET_DEFINE(u_int32_t, ticket_pabuf); 126 127 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 128 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 129 VNET_DEFINE(u_char, pf_tcp_secret[16]); 130 #define V_pf_tcp_secret VNET(pf_tcp_secret) 131 VNET_DEFINE(int, pf_tcp_secret_init); 132 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 133 VNET_DEFINE(int, pf_tcp_iss_off); 134 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 135 VNET_DECLARE(int, pf_vnet_active); 136 #define V_pf_vnet_active VNET(pf_vnet_active) 137 138 static VNET_DEFINE(uint32_t, pf_purge_idx); 139 #define V_pf_purge_idx VNET(pf_purge_idx) 140 141 /* 142 * Queue for pf_intr() sends. 143 */ 144 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 145 struct pf_send_entry { 146 STAILQ_ENTRY(pf_send_entry) pfse_next; 147 struct mbuf *pfse_m; 148 enum { 149 PFSE_IP, 150 PFSE_IP6, 151 PFSE_ICMP, 152 PFSE_ICMP6, 153 } pfse_type; 154 struct { 155 int type; 156 int code; 157 int mtu; 158 } icmpopts; 159 }; 160 161 STAILQ_HEAD(pf_send_head, pf_send_entry); 162 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 163 #define V_pf_sendqueue VNET(pf_sendqueue) 164 165 static struct mtx pf_sendqueue_mtx; 166 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 167 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 168 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 169 170 /* 171 * Queue for pf_overload_task() tasks. 172 */ 173 struct pf_overload_entry { 174 SLIST_ENTRY(pf_overload_entry) next; 175 struct pf_addr addr; 176 sa_family_t af; 177 uint8_t dir; 178 struct pf_rule *rule; 179 }; 180 181 SLIST_HEAD(pf_overload_head, pf_overload_entry); 182 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 183 #define V_pf_overloadqueue VNET(pf_overloadqueue) 184 static VNET_DEFINE(struct task, pf_overloadtask); 185 #define V_pf_overloadtask VNET(pf_overloadtask) 186 187 static struct mtx pf_overloadqueue_mtx; 188 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 189 "pf overload/flush queue", MTX_DEF); 190 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 191 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 192 193 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 194 struct mtx pf_unlnkdrules_mtx; 195 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 196 MTX_DEF); 197 198 static VNET_DEFINE(uma_zone_t, pf_sources_z); 199 #define V_pf_sources_z VNET(pf_sources_z) 200 uma_zone_t pf_mtag_z; 201 VNET_DEFINE(uma_zone_t, pf_state_z); 202 VNET_DEFINE(uma_zone_t, pf_state_key_z); 203 204 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 205 #define PFID_CPUBITS 8 206 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 207 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 208 #define PFID_MAXID (~PFID_CPUMASK) 209 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 210 211 static void pf_src_tree_remove_state(struct pf_state *); 212 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 213 u_int32_t); 214 static void pf_add_threshold(struct pf_threshold *); 215 static int pf_check_threshold(struct pf_threshold *); 216 217 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 218 u_int16_t *, u_int16_t *, struct pf_addr *, 219 u_int16_t, u_int8_t, sa_family_t); 220 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 221 struct tcphdr *, struct pf_state_peer *); 222 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 223 struct pf_addr *, struct pf_addr *, u_int16_t, 224 u_int16_t *, u_int16_t *, u_int16_t *, 225 u_int16_t *, u_int8_t, sa_family_t); 226 static void pf_send_tcp(struct mbuf *, 227 const struct pf_rule *, sa_family_t, 228 const struct pf_addr *, const struct pf_addr *, 229 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 230 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 231 u_int16_t, struct ifnet *); 232 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 233 sa_family_t, struct pf_rule *); 234 static void pf_detach_state(struct pf_state *); 235 static int pf_state_key_attach(struct pf_state_key *, 236 struct pf_state_key *, struct pf_state *); 237 static void pf_state_key_detach(struct pf_state *, int); 238 static int pf_state_key_ctor(void *, int, void *, int); 239 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 240 static int pf_test_rule(struct pf_rule **, struct pf_state **, 241 int, struct pfi_kif *, struct mbuf *, int, 242 struct pf_pdesc *, struct pf_rule **, 243 struct pf_ruleset **, struct inpcb *); 244 static int pf_create_state(struct pf_rule *, struct pf_rule *, 245 struct pf_rule *, struct pf_pdesc *, 246 struct pf_src_node *, struct pf_state_key *, 247 struct pf_state_key *, struct mbuf *, int, 248 u_int16_t, u_int16_t, int *, struct pfi_kif *, 249 struct pf_state **, int, u_int16_t, u_int16_t, 250 int); 251 static int pf_test_fragment(struct pf_rule **, int, 252 struct pfi_kif *, struct mbuf *, void *, 253 struct pf_pdesc *, struct pf_rule **, 254 struct pf_ruleset **); 255 static int pf_tcp_track_full(struct pf_state_peer *, 256 struct pf_state_peer *, struct pf_state **, 257 struct pfi_kif *, struct mbuf *, int, 258 struct pf_pdesc *, u_short *, int *); 259 static int pf_tcp_track_sloppy(struct pf_state_peer *, 260 struct pf_state_peer *, struct pf_state **, 261 struct pf_pdesc *, u_short *); 262 static int pf_test_state_tcp(struct pf_state **, int, 263 struct pfi_kif *, struct mbuf *, int, 264 void *, struct pf_pdesc *, u_short *); 265 static int pf_test_state_udp(struct pf_state **, int, 266 struct pfi_kif *, struct mbuf *, int, 267 void *, struct pf_pdesc *); 268 static int pf_test_state_icmp(struct pf_state **, int, 269 struct pfi_kif *, struct mbuf *, int, 270 void *, struct pf_pdesc *, u_short *); 271 static int pf_test_state_other(struct pf_state **, int, 272 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 273 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 274 sa_family_t); 275 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 276 sa_family_t); 277 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 278 int, u_int16_t); 279 static int pf_check_proto_cksum(struct mbuf *, int, int, 280 u_int8_t, sa_family_t); 281 static void pf_print_state_parts(struct pf_state *, 282 struct pf_state_key *, struct pf_state_key *); 283 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 284 struct pf_addr_wrap *); 285 static struct pf_state *pf_find_state(struct pfi_kif *, 286 struct pf_state_key_cmp *, u_int); 287 static int pf_src_connlimit(struct pf_state **); 288 static void pf_overload_task(void *v, int pending); 289 static int pf_insert_src_node(struct pf_src_node **, 290 struct pf_rule *, struct pf_addr *, sa_family_t); 291 static u_int pf_purge_expired_states(u_int, int); 292 static void pf_purge_unlinked_rules(void); 293 static int pf_mtag_uminit(void *, int, int); 294 static void pf_mtag_free(struct m_tag *); 295 #ifdef INET 296 static void pf_route(struct mbuf **, struct pf_rule *, int, 297 struct ifnet *, struct pf_state *, 298 struct pf_pdesc *); 299 #endif /* INET */ 300 #ifdef INET6 301 static void pf_change_a6(struct pf_addr *, u_int16_t *, 302 struct pf_addr *, u_int8_t); 303 static void pf_route6(struct mbuf **, struct pf_rule *, int, 304 struct ifnet *, struct pf_state *, 305 struct pf_pdesc *); 306 #endif /* INET6 */ 307 308 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 309 310 extern int pf_end_threads; 311 extern struct proc *pf_purge_proc; 312 313 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 314 315 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 316 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 317 318 #define STATE_LOOKUP(i, k, d, s, pd) \ 319 do { \ 320 (s) = pf_find_state((i), (k), (d)); \ 321 if ((s) == NULL) \ 322 return (PF_DROP); \ 323 if (PACKET_LOOPED(pd)) \ 324 return (PF_PASS); \ 325 if ((d) == PF_OUT && \ 326 (((s)->rule.ptr->rt == PF_ROUTETO && \ 327 (s)->rule.ptr->direction == PF_OUT) || \ 328 ((s)->rule.ptr->rt == PF_REPLYTO && \ 329 (s)->rule.ptr->direction == PF_IN)) && \ 330 (s)->rt_kif != NULL && \ 331 (s)->rt_kif != (i)) \ 332 return (PF_PASS); \ 333 } while (0) 334 335 #define BOUND_IFACE(r, k) \ 336 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 337 338 #define STATE_INC_COUNTERS(s) \ 339 do { \ 340 counter_u64_add(s->rule.ptr->states_cur, 1); \ 341 counter_u64_add(s->rule.ptr->states_tot, 1); \ 342 if (s->anchor.ptr != NULL) { \ 343 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 344 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 345 } \ 346 if (s->nat_rule.ptr != NULL) { \ 347 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 348 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 349 } \ 350 } while (0) 351 352 #define STATE_DEC_COUNTERS(s) \ 353 do { \ 354 if (s->nat_rule.ptr != NULL) \ 355 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 356 if (s->anchor.ptr != NULL) \ 357 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 358 counter_u64_add(s->rule.ptr->states_cur, -1); \ 359 } while (0) 360 361 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 362 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 363 VNET_DEFINE(struct pf_idhash *, pf_idhash); 364 VNET_DEFINE(struct pf_srchash *, pf_srchash); 365 366 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 367 368 u_long pf_hashmask; 369 u_long pf_srchashmask; 370 static u_long pf_hashsize; 371 static u_long pf_srchashsize; 372 373 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 374 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 375 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 376 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 377 378 VNET_DEFINE(void *, pf_swi_cookie); 379 380 VNET_DEFINE(uint32_t, pf_hashseed); 381 #define V_pf_hashseed VNET(pf_hashseed) 382 383 int 384 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 385 { 386 387 switch (af) { 388 #ifdef INET 389 case AF_INET: 390 if (a->addr32[0] > b->addr32[0]) 391 return (1); 392 if (a->addr32[0] < b->addr32[0]) 393 return (-1); 394 break; 395 #endif /* INET */ 396 #ifdef INET6 397 case AF_INET6: 398 if (a->addr32[3] > b->addr32[3]) 399 return (1); 400 if (a->addr32[3] < b->addr32[3]) 401 return (-1); 402 if (a->addr32[2] > b->addr32[2]) 403 return (1); 404 if (a->addr32[2] < b->addr32[2]) 405 return (-1); 406 if (a->addr32[1] > b->addr32[1]) 407 return (1); 408 if (a->addr32[1] < b->addr32[1]) 409 return (-1); 410 if (a->addr32[0] > b->addr32[0]) 411 return (1); 412 if (a->addr32[0] < b->addr32[0]) 413 return (-1); 414 break; 415 #endif /* INET6 */ 416 default: 417 panic("%s: unknown address family %u", __func__, af); 418 } 419 return (0); 420 } 421 422 static __inline uint32_t 423 pf_hashkey(struct pf_state_key *sk) 424 { 425 uint32_t h; 426 427 h = murmur3_32_hash32((uint32_t *)sk, 428 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 429 V_pf_hashseed); 430 431 return (h & pf_hashmask); 432 } 433 434 static __inline uint32_t 435 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 436 { 437 uint32_t h; 438 439 switch (af) { 440 case AF_INET: 441 h = murmur3_32_hash32((uint32_t *)&addr->v4, 442 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 443 break; 444 case AF_INET6: 445 h = murmur3_32_hash32((uint32_t *)&addr->v6, 446 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 447 break; 448 default: 449 panic("%s: unknown address family %u", __func__, af); 450 } 451 452 return (h & pf_srchashmask); 453 } 454 455 #ifdef ALTQ 456 static int 457 pf_state_hash(struct pf_state *s) 458 { 459 u_int32_t hv = (intptr_t)s / sizeof(*s); 460 461 hv ^= crc32(&s->src, sizeof(s->src)); 462 hv ^= crc32(&s->dst, sizeof(s->dst)); 463 if (hv == 0) 464 hv = 1; 465 return (hv); 466 } 467 #endif 468 469 #ifdef INET6 470 void 471 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 472 { 473 switch (af) { 474 #ifdef INET 475 case AF_INET: 476 dst->addr32[0] = src->addr32[0]; 477 break; 478 #endif /* INET */ 479 case AF_INET6: 480 dst->addr32[0] = src->addr32[0]; 481 dst->addr32[1] = src->addr32[1]; 482 dst->addr32[2] = src->addr32[2]; 483 dst->addr32[3] = src->addr32[3]; 484 break; 485 } 486 } 487 #endif /* INET6 */ 488 489 static void 490 pf_init_threshold(struct pf_threshold *threshold, 491 u_int32_t limit, u_int32_t seconds) 492 { 493 threshold->limit = limit * PF_THRESHOLD_MULT; 494 threshold->seconds = seconds; 495 threshold->count = 0; 496 threshold->last = time_uptime; 497 } 498 499 static void 500 pf_add_threshold(struct pf_threshold *threshold) 501 { 502 u_int32_t t = time_uptime, diff = t - threshold->last; 503 504 if (diff >= threshold->seconds) 505 threshold->count = 0; 506 else 507 threshold->count -= threshold->count * diff / 508 threshold->seconds; 509 threshold->count += PF_THRESHOLD_MULT; 510 threshold->last = t; 511 } 512 513 static int 514 pf_check_threshold(struct pf_threshold *threshold) 515 { 516 return (threshold->count > threshold->limit); 517 } 518 519 static int 520 pf_src_connlimit(struct pf_state **state) 521 { 522 struct pf_overload_entry *pfoe; 523 int bad = 0; 524 525 PF_STATE_LOCK_ASSERT(*state); 526 527 (*state)->src_node->conn++; 528 (*state)->src.tcp_est = 1; 529 pf_add_threshold(&(*state)->src_node->conn_rate); 530 531 if ((*state)->rule.ptr->max_src_conn && 532 (*state)->rule.ptr->max_src_conn < 533 (*state)->src_node->conn) { 534 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 535 bad++; 536 } 537 538 if ((*state)->rule.ptr->max_src_conn_rate.limit && 539 pf_check_threshold(&(*state)->src_node->conn_rate)) { 540 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 541 bad++; 542 } 543 544 if (!bad) 545 return (0); 546 547 /* Kill this state. */ 548 (*state)->timeout = PFTM_PURGE; 549 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 550 551 if ((*state)->rule.ptr->overload_tbl == NULL) 552 return (1); 553 554 /* Schedule overloading and flushing task. */ 555 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 556 if (pfoe == NULL) 557 return (1); /* too bad :( */ 558 559 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 560 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 561 pfoe->rule = (*state)->rule.ptr; 562 pfoe->dir = (*state)->direction; 563 PF_OVERLOADQ_LOCK(); 564 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 565 PF_OVERLOADQ_UNLOCK(); 566 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 567 568 return (1); 569 } 570 571 static void 572 pf_overload_task(void *v, int pending) 573 { 574 struct pf_overload_head queue; 575 struct pfr_addr p; 576 struct pf_overload_entry *pfoe, *pfoe1; 577 uint32_t killed = 0; 578 579 CURVNET_SET((struct vnet *)v); 580 581 PF_OVERLOADQ_LOCK(); 582 queue = V_pf_overloadqueue; 583 SLIST_INIT(&V_pf_overloadqueue); 584 PF_OVERLOADQ_UNLOCK(); 585 586 bzero(&p, sizeof(p)); 587 SLIST_FOREACH(pfoe, &queue, next) { 588 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 589 if (V_pf_status.debug >= PF_DEBUG_MISC) { 590 printf("%s: blocking address ", __func__); 591 pf_print_host(&pfoe->addr, 0, pfoe->af); 592 printf("\n"); 593 } 594 595 p.pfra_af = pfoe->af; 596 switch (pfoe->af) { 597 #ifdef INET 598 case AF_INET: 599 p.pfra_net = 32; 600 p.pfra_ip4addr = pfoe->addr.v4; 601 break; 602 #endif 603 #ifdef INET6 604 case AF_INET6: 605 p.pfra_net = 128; 606 p.pfra_ip6addr = pfoe->addr.v6; 607 break; 608 #endif 609 } 610 611 PF_RULES_WLOCK(); 612 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 613 PF_RULES_WUNLOCK(); 614 } 615 616 /* 617 * Remove those entries, that don't need flushing. 618 */ 619 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 620 if (pfoe->rule->flush == 0) { 621 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 622 free(pfoe, M_PFTEMP); 623 } else 624 counter_u64_add( 625 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 626 627 /* If nothing to flush, return. */ 628 if (SLIST_EMPTY(&queue)) { 629 CURVNET_RESTORE(); 630 return; 631 } 632 633 for (int i = 0; i <= pf_hashmask; i++) { 634 struct pf_idhash *ih = &V_pf_idhash[i]; 635 struct pf_state_key *sk; 636 struct pf_state *s; 637 638 PF_HASHROW_LOCK(ih); 639 LIST_FOREACH(s, &ih->states, entry) { 640 sk = s->key[PF_SK_WIRE]; 641 SLIST_FOREACH(pfoe, &queue, next) 642 if (sk->af == pfoe->af && 643 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 644 pfoe->rule == s->rule.ptr) && 645 ((pfoe->dir == PF_OUT && 646 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 647 (pfoe->dir == PF_IN && 648 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 649 s->timeout = PFTM_PURGE; 650 s->src.state = s->dst.state = TCPS_CLOSED; 651 killed++; 652 } 653 } 654 PF_HASHROW_UNLOCK(ih); 655 } 656 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 657 free(pfoe, M_PFTEMP); 658 if (V_pf_status.debug >= PF_DEBUG_MISC) 659 printf("%s: %u states killed", __func__, killed); 660 661 CURVNET_RESTORE(); 662 } 663 664 /* 665 * Can return locked on failure, so that we can consistently 666 * allocate and insert a new one. 667 */ 668 struct pf_src_node * 669 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 670 int returnlocked) 671 { 672 struct pf_srchash *sh; 673 struct pf_src_node *n; 674 675 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 676 677 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 678 PF_HASHROW_LOCK(sh); 679 LIST_FOREACH(n, &sh->nodes, entry) 680 if (n->rule.ptr == rule && n->af == af && 681 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 682 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 683 break; 684 if (n != NULL) { 685 n->states++; 686 PF_HASHROW_UNLOCK(sh); 687 } else if (returnlocked == 0) 688 PF_HASHROW_UNLOCK(sh); 689 690 return (n); 691 } 692 693 static int 694 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 695 struct pf_addr *src, sa_family_t af) 696 { 697 698 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 699 rule->rpool.opts & PF_POOL_STICKYADDR), 700 ("%s for non-tracking rule %p", __func__, rule)); 701 702 if (*sn == NULL) 703 *sn = pf_find_src_node(src, rule, af, 1); 704 705 if (*sn == NULL) { 706 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 707 708 PF_HASHROW_ASSERT(sh); 709 710 if (!rule->max_src_nodes || 711 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 712 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 713 else 714 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 715 1); 716 if ((*sn) == NULL) { 717 PF_HASHROW_UNLOCK(sh); 718 return (-1); 719 } 720 721 pf_init_threshold(&(*sn)->conn_rate, 722 rule->max_src_conn_rate.limit, 723 rule->max_src_conn_rate.seconds); 724 725 (*sn)->af = af; 726 (*sn)->rule.ptr = rule; 727 PF_ACPY(&(*sn)->addr, src, af); 728 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 729 (*sn)->creation = time_uptime; 730 (*sn)->ruletype = rule->action; 731 (*sn)->states = 1; 732 if ((*sn)->rule.ptr != NULL) 733 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 734 PF_HASHROW_UNLOCK(sh); 735 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 736 } else { 737 if (rule->max_src_states && 738 (*sn)->states >= rule->max_src_states) { 739 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 740 1); 741 return (-1); 742 } 743 } 744 return (0); 745 } 746 747 void 748 pf_unlink_src_node(struct pf_src_node *src) 749 { 750 751 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 752 LIST_REMOVE(src, entry); 753 if (src->rule.ptr) 754 counter_u64_add(src->rule.ptr->src_nodes, -1); 755 } 756 757 u_int 758 pf_free_src_nodes(struct pf_src_node_list *head) 759 { 760 struct pf_src_node *sn, *tmp; 761 u_int count = 0; 762 763 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 764 uma_zfree(V_pf_sources_z, sn); 765 count++; 766 } 767 768 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 769 770 return (count); 771 } 772 773 void 774 pf_mtag_initialize() 775 { 776 777 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 778 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 779 UMA_ALIGN_PTR, 0); 780 } 781 782 /* Per-vnet data storage structures initialization. */ 783 void 784 pf_initialize() 785 { 786 struct pf_keyhash *kh; 787 struct pf_idhash *ih; 788 struct pf_srchash *sh; 789 u_int i; 790 791 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 792 pf_hashsize = PF_HASHSIZ; 793 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 794 pf_srchashsize = PF_SRCHASHSIZ; 795 796 V_pf_hashseed = arc4random(); 797 798 /* States and state keys storage. */ 799 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 800 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 801 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 802 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 803 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 804 805 V_pf_state_key_z = uma_zcreate("pf state keys", 806 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 807 UMA_ALIGN_PTR, 0); 808 809 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 810 M_PFHASH, M_NOWAIT | M_ZERO); 811 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 812 M_PFHASH, M_NOWAIT | M_ZERO); 813 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 814 printf("pf: Unable to allocate memory for " 815 "state_hashsize %lu.\n", pf_hashsize); 816 817 free(V_pf_keyhash, M_PFHASH); 818 free(V_pf_idhash, M_PFHASH); 819 820 pf_hashsize = PF_HASHSIZ; 821 V_pf_keyhash = mallocarray(pf_hashsize, 822 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 823 V_pf_idhash = mallocarray(pf_hashsize, 824 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 825 } 826 827 pf_hashmask = pf_hashsize - 1; 828 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 829 i++, kh++, ih++) { 830 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 831 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 832 } 833 834 /* Source nodes. */ 835 V_pf_sources_z = uma_zcreate("pf source nodes", 836 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 837 0); 838 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 839 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 840 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 841 842 V_pf_srchash = mallocarray(pf_srchashsize, 843 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 844 if (V_pf_srchash == NULL) { 845 printf("pf: Unable to allocate memory for " 846 "source_hashsize %lu.\n", pf_srchashsize); 847 848 pf_srchashsize = PF_SRCHASHSIZ; 849 V_pf_srchash = mallocarray(pf_srchashsize, 850 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 851 } 852 853 pf_srchashmask = pf_srchashsize - 1; 854 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 855 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 856 857 /* ALTQ */ 858 TAILQ_INIT(&V_pf_altqs[0]); 859 TAILQ_INIT(&V_pf_altqs[1]); 860 TAILQ_INIT(&V_pf_pabuf); 861 V_pf_altqs_active = &V_pf_altqs[0]; 862 V_pf_altqs_inactive = &V_pf_altqs[1]; 863 864 /* Send & overload+flush queues. */ 865 STAILQ_INIT(&V_pf_sendqueue); 866 SLIST_INIT(&V_pf_overloadqueue); 867 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 868 869 /* Unlinked, but may be referenced rules. */ 870 TAILQ_INIT(&V_pf_unlinked_rules); 871 } 872 873 void 874 pf_mtag_cleanup() 875 { 876 877 uma_zdestroy(pf_mtag_z); 878 } 879 880 void 881 pf_cleanup() 882 { 883 struct pf_keyhash *kh; 884 struct pf_idhash *ih; 885 struct pf_srchash *sh; 886 struct pf_send_entry *pfse, *next; 887 u_int i; 888 889 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 890 i++, kh++, ih++) { 891 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 892 __func__)); 893 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 894 __func__)); 895 mtx_destroy(&kh->lock); 896 mtx_destroy(&ih->lock); 897 } 898 free(V_pf_keyhash, M_PFHASH); 899 free(V_pf_idhash, M_PFHASH); 900 901 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 902 KASSERT(LIST_EMPTY(&sh->nodes), 903 ("%s: source node hash not empty", __func__)); 904 mtx_destroy(&sh->lock); 905 } 906 free(V_pf_srchash, M_PFHASH); 907 908 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 909 m_freem(pfse->pfse_m); 910 free(pfse, M_PFTEMP); 911 } 912 913 uma_zdestroy(V_pf_sources_z); 914 uma_zdestroy(V_pf_state_z); 915 uma_zdestroy(V_pf_state_key_z); 916 } 917 918 static int 919 pf_mtag_uminit(void *mem, int size, int how) 920 { 921 struct m_tag *t; 922 923 t = (struct m_tag *)mem; 924 t->m_tag_cookie = MTAG_ABI_COMPAT; 925 t->m_tag_id = PACKET_TAG_PF; 926 t->m_tag_len = sizeof(struct pf_mtag); 927 t->m_tag_free = pf_mtag_free; 928 929 return (0); 930 } 931 932 static void 933 pf_mtag_free(struct m_tag *t) 934 { 935 936 uma_zfree(pf_mtag_z, t); 937 } 938 939 struct pf_mtag * 940 pf_get_mtag(struct mbuf *m) 941 { 942 struct m_tag *mtag; 943 944 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 945 return ((struct pf_mtag *)(mtag + 1)); 946 947 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 948 if (mtag == NULL) 949 return (NULL); 950 bzero(mtag + 1, sizeof(struct pf_mtag)); 951 m_tag_prepend(m, mtag); 952 953 return ((struct pf_mtag *)(mtag + 1)); 954 } 955 956 static int 957 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 958 struct pf_state *s) 959 { 960 struct pf_keyhash *khs, *khw, *kh; 961 struct pf_state_key *sk, *cur; 962 struct pf_state *si, *olds = NULL; 963 int idx; 964 965 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 966 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 967 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 968 969 /* 970 * We need to lock hash slots of both keys. To avoid deadlock 971 * we always lock the slot with lower address first. Unlock order 972 * isn't important. 973 * 974 * We also need to lock ID hash slot before dropping key 975 * locks. On success we return with ID hash slot locked. 976 */ 977 978 if (skw == sks) { 979 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 980 PF_HASHROW_LOCK(khs); 981 } else { 982 khs = &V_pf_keyhash[pf_hashkey(sks)]; 983 khw = &V_pf_keyhash[pf_hashkey(skw)]; 984 if (khs == khw) { 985 PF_HASHROW_LOCK(khs); 986 } else if (khs < khw) { 987 PF_HASHROW_LOCK(khs); 988 PF_HASHROW_LOCK(khw); 989 } else { 990 PF_HASHROW_LOCK(khw); 991 PF_HASHROW_LOCK(khs); 992 } 993 } 994 995 #define KEYS_UNLOCK() do { \ 996 if (khs != khw) { \ 997 PF_HASHROW_UNLOCK(khs); \ 998 PF_HASHROW_UNLOCK(khw); \ 999 } else \ 1000 PF_HASHROW_UNLOCK(khs); \ 1001 } while (0) 1002 1003 /* 1004 * First run: start with wire key. 1005 */ 1006 sk = skw; 1007 kh = khw; 1008 idx = PF_SK_WIRE; 1009 1010 keyattach: 1011 LIST_FOREACH(cur, &kh->keys, entry) 1012 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1013 break; 1014 1015 if (cur != NULL) { 1016 /* Key exists. Check for same kif, if none, add to key. */ 1017 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1018 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1019 1020 PF_HASHROW_LOCK(ih); 1021 if (si->kif == s->kif && 1022 si->direction == s->direction) { 1023 if (sk->proto == IPPROTO_TCP && 1024 si->src.state >= TCPS_FIN_WAIT_2 && 1025 si->dst.state >= TCPS_FIN_WAIT_2) { 1026 /* 1027 * New state matches an old >FIN_WAIT_2 1028 * state. We can't drop key hash locks, 1029 * thus we can't unlink it properly. 1030 * 1031 * As a workaround we drop it into 1032 * TCPS_CLOSED state, schedule purge 1033 * ASAP and push it into the very end 1034 * of the slot TAILQ, so that it won't 1035 * conflict with our new state. 1036 */ 1037 si->src.state = si->dst.state = 1038 TCPS_CLOSED; 1039 si->timeout = PFTM_PURGE; 1040 olds = si; 1041 } else { 1042 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1043 printf("pf: %s key attach " 1044 "failed on %s: ", 1045 (idx == PF_SK_WIRE) ? 1046 "wire" : "stack", 1047 s->kif->pfik_name); 1048 pf_print_state_parts(s, 1049 (idx == PF_SK_WIRE) ? 1050 sk : NULL, 1051 (idx == PF_SK_STACK) ? 1052 sk : NULL); 1053 printf(", existing: "); 1054 pf_print_state_parts(si, 1055 (idx == PF_SK_WIRE) ? 1056 sk : NULL, 1057 (idx == PF_SK_STACK) ? 1058 sk : NULL); 1059 printf("\n"); 1060 } 1061 PF_HASHROW_UNLOCK(ih); 1062 KEYS_UNLOCK(); 1063 uma_zfree(V_pf_state_key_z, sk); 1064 if (idx == PF_SK_STACK) 1065 pf_detach_state(s); 1066 return (EEXIST); /* collision! */ 1067 } 1068 } 1069 PF_HASHROW_UNLOCK(ih); 1070 } 1071 uma_zfree(V_pf_state_key_z, sk); 1072 s->key[idx] = cur; 1073 } else { 1074 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1075 s->key[idx] = sk; 1076 } 1077 1078 stateattach: 1079 /* List is sorted, if-bound states before floating. */ 1080 if (s->kif == V_pfi_all) 1081 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1082 else 1083 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1084 1085 if (olds) { 1086 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1087 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1088 key_list[idx]); 1089 olds = NULL; 1090 } 1091 1092 /* 1093 * Attach done. See how should we (or should not?) 1094 * attach a second key. 1095 */ 1096 if (sks == skw) { 1097 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1098 idx = PF_SK_STACK; 1099 sks = NULL; 1100 goto stateattach; 1101 } else if (sks != NULL) { 1102 /* 1103 * Continue attaching with stack key. 1104 */ 1105 sk = sks; 1106 kh = khs; 1107 idx = PF_SK_STACK; 1108 sks = NULL; 1109 goto keyattach; 1110 } 1111 1112 PF_STATE_LOCK(s); 1113 KEYS_UNLOCK(); 1114 1115 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1116 ("%s failure", __func__)); 1117 1118 return (0); 1119 #undef KEYS_UNLOCK 1120 } 1121 1122 static void 1123 pf_detach_state(struct pf_state *s) 1124 { 1125 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1126 struct pf_keyhash *kh; 1127 1128 if (sks != NULL) { 1129 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1130 PF_HASHROW_LOCK(kh); 1131 if (s->key[PF_SK_STACK] != NULL) 1132 pf_state_key_detach(s, PF_SK_STACK); 1133 /* 1134 * If both point to same key, then we are done. 1135 */ 1136 if (sks == s->key[PF_SK_WIRE]) { 1137 pf_state_key_detach(s, PF_SK_WIRE); 1138 PF_HASHROW_UNLOCK(kh); 1139 return; 1140 } 1141 PF_HASHROW_UNLOCK(kh); 1142 } 1143 1144 if (s->key[PF_SK_WIRE] != NULL) { 1145 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1146 PF_HASHROW_LOCK(kh); 1147 if (s->key[PF_SK_WIRE] != NULL) 1148 pf_state_key_detach(s, PF_SK_WIRE); 1149 PF_HASHROW_UNLOCK(kh); 1150 } 1151 } 1152 1153 static void 1154 pf_state_key_detach(struct pf_state *s, int idx) 1155 { 1156 struct pf_state_key *sk = s->key[idx]; 1157 #ifdef INVARIANTS 1158 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1159 1160 PF_HASHROW_ASSERT(kh); 1161 #endif 1162 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1163 s->key[idx] = NULL; 1164 1165 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1166 LIST_REMOVE(sk, entry); 1167 uma_zfree(V_pf_state_key_z, sk); 1168 } 1169 } 1170 1171 static int 1172 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1173 { 1174 struct pf_state_key *sk = mem; 1175 1176 bzero(sk, sizeof(struct pf_state_key_cmp)); 1177 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1178 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1179 1180 return (0); 1181 } 1182 1183 struct pf_state_key * 1184 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1185 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1186 { 1187 struct pf_state_key *sk; 1188 1189 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1190 if (sk == NULL) 1191 return (NULL); 1192 1193 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1194 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1195 sk->port[pd->sidx] = sport; 1196 sk->port[pd->didx] = dport; 1197 sk->proto = pd->proto; 1198 sk->af = pd->af; 1199 1200 return (sk); 1201 } 1202 1203 struct pf_state_key * 1204 pf_state_key_clone(struct pf_state_key *orig) 1205 { 1206 struct pf_state_key *sk; 1207 1208 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1209 if (sk == NULL) 1210 return (NULL); 1211 1212 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1213 1214 return (sk); 1215 } 1216 1217 int 1218 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1219 struct pf_state_key *sks, struct pf_state *s) 1220 { 1221 struct pf_idhash *ih; 1222 struct pf_state *cur; 1223 int error; 1224 1225 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1226 ("%s: sks not pristine", __func__)); 1227 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1228 ("%s: skw not pristine", __func__)); 1229 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1230 1231 s->kif = kif; 1232 1233 if (s->id == 0 && s->creatorid == 0) { 1234 /* XXX: should be atomic, but probability of collision low */ 1235 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1236 V_pf_stateid[curcpu] = 1; 1237 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1238 s->id = htobe64(s->id); 1239 s->creatorid = V_pf_status.hostid; 1240 } 1241 1242 /* Returns with ID locked on success. */ 1243 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1244 return (error); 1245 1246 ih = &V_pf_idhash[PF_IDHASH(s)]; 1247 PF_HASHROW_ASSERT(ih); 1248 LIST_FOREACH(cur, &ih->states, entry) 1249 if (cur->id == s->id && cur->creatorid == s->creatorid) 1250 break; 1251 1252 if (cur != NULL) { 1253 PF_HASHROW_UNLOCK(ih); 1254 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1255 printf("pf: state ID collision: " 1256 "id: %016llx creatorid: %08x\n", 1257 (unsigned long long)be64toh(s->id), 1258 ntohl(s->creatorid)); 1259 } 1260 pf_detach_state(s); 1261 return (EEXIST); 1262 } 1263 LIST_INSERT_HEAD(&ih->states, s, entry); 1264 /* One for keys, one for ID hash. */ 1265 refcount_init(&s->refs, 2); 1266 1267 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1268 if (pfsync_insert_state_ptr != NULL) 1269 pfsync_insert_state_ptr(s); 1270 1271 /* Returns locked. */ 1272 return (0); 1273 } 1274 1275 /* 1276 * Find state by ID: returns with locked row on success. 1277 */ 1278 struct pf_state * 1279 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1280 { 1281 struct pf_idhash *ih; 1282 struct pf_state *s; 1283 1284 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1285 1286 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1287 1288 PF_HASHROW_LOCK(ih); 1289 LIST_FOREACH(s, &ih->states, entry) 1290 if (s->id == id && s->creatorid == creatorid) 1291 break; 1292 1293 if (s == NULL) 1294 PF_HASHROW_UNLOCK(ih); 1295 1296 return (s); 1297 } 1298 1299 /* 1300 * Find state by key. 1301 * Returns with ID hash slot locked on success. 1302 */ 1303 static struct pf_state * 1304 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1305 { 1306 struct pf_keyhash *kh; 1307 struct pf_state_key *sk; 1308 struct pf_state *s; 1309 int idx; 1310 1311 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1312 1313 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1314 1315 PF_HASHROW_LOCK(kh); 1316 LIST_FOREACH(sk, &kh->keys, entry) 1317 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1318 break; 1319 if (sk == NULL) { 1320 PF_HASHROW_UNLOCK(kh); 1321 return (NULL); 1322 } 1323 1324 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1325 1326 /* List is sorted, if-bound states before floating ones. */ 1327 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1328 if (s->kif == V_pfi_all || s->kif == kif) { 1329 PF_STATE_LOCK(s); 1330 PF_HASHROW_UNLOCK(kh); 1331 if (s->timeout >= PFTM_MAX) { 1332 /* 1333 * State is either being processed by 1334 * pf_unlink_state() in an other thread, or 1335 * is scheduled for immediate expiry. 1336 */ 1337 PF_STATE_UNLOCK(s); 1338 return (NULL); 1339 } 1340 return (s); 1341 } 1342 PF_HASHROW_UNLOCK(kh); 1343 1344 return (NULL); 1345 } 1346 1347 struct pf_state * 1348 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1349 { 1350 struct pf_keyhash *kh; 1351 struct pf_state_key *sk; 1352 struct pf_state *s, *ret = NULL; 1353 int idx, inout = 0; 1354 1355 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1356 1357 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1358 1359 PF_HASHROW_LOCK(kh); 1360 LIST_FOREACH(sk, &kh->keys, entry) 1361 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1362 break; 1363 if (sk == NULL) { 1364 PF_HASHROW_UNLOCK(kh); 1365 return (NULL); 1366 } 1367 switch (dir) { 1368 case PF_IN: 1369 idx = PF_SK_WIRE; 1370 break; 1371 case PF_OUT: 1372 idx = PF_SK_STACK; 1373 break; 1374 case PF_INOUT: 1375 idx = PF_SK_WIRE; 1376 inout = 1; 1377 break; 1378 default: 1379 panic("%s: dir %u", __func__, dir); 1380 } 1381 second_run: 1382 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1383 if (more == NULL) { 1384 PF_HASHROW_UNLOCK(kh); 1385 return (s); 1386 } 1387 1388 if (ret) 1389 (*more)++; 1390 else 1391 ret = s; 1392 } 1393 if (inout == 1) { 1394 inout = 0; 1395 idx = PF_SK_STACK; 1396 goto second_run; 1397 } 1398 PF_HASHROW_UNLOCK(kh); 1399 1400 return (ret); 1401 } 1402 1403 /* END state table stuff */ 1404 1405 static void 1406 pf_send(struct pf_send_entry *pfse) 1407 { 1408 1409 PF_SENDQ_LOCK(); 1410 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1411 PF_SENDQ_UNLOCK(); 1412 swi_sched(V_pf_swi_cookie, 0); 1413 } 1414 1415 void 1416 pf_intr(void *v) 1417 { 1418 struct pf_send_head queue; 1419 struct pf_send_entry *pfse, *next; 1420 1421 CURVNET_SET((struct vnet *)v); 1422 1423 PF_SENDQ_LOCK(); 1424 queue = V_pf_sendqueue; 1425 STAILQ_INIT(&V_pf_sendqueue); 1426 PF_SENDQ_UNLOCK(); 1427 1428 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1429 switch (pfse->pfse_type) { 1430 #ifdef INET 1431 case PFSE_IP: 1432 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1433 break; 1434 case PFSE_ICMP: 1435 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1436 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1437 break; 1438 #endif /* INET */ 1439 #ifdef INET6 1440 case PFSE_IP6: 1441 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1442 NULL); 1443 break; 1444 case PFSE_ICMP6: 1445 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1446 pfse->icmpopts.code, pfse->icmpopts.mtu); 1447 break; 1448 #endif /* INET6 */ 1449 default: 1450 panic("%s: unknown type", __func__); 1451 } 1452 free(pfse, M_PFTEMP); 1453 } 1454 CURVNET_RESTORE(); 1455 } 1456 1457 void 1458 pf_purge_thread(void *unused __unused) 1459 { 1460 VNET_ITERATOR_DECL(vnet_iter); 1461 1462 sx_xlock(&pf_end_lock); 1463 while (pf_end_threads == 0) { 1464 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", hz / 10); 1465 1466 VNET_LIST_RLOCK(); 1467 VNET_FOREACH(vnet_iter) { 1468 CURVNET_SET(vnet_iter); 1469 1470 1471 /* Wait until V_pf_default_rule is initialized. */ 1472 if (V_pf_vnet_active == 0) { 1473 CURVNET_RESTORE(); 1474 continue; 1475 } 1476 1477 /* 1478 * Process 1/interval fraction of the state 1479 * table every run. 1480 */ 1481 V_pf_purge_idx = 1482 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1483 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1484 1485 /* 1486 * Purge other expired types every 1487 * PFTM_INTERVAL seconds. 1488 */ 1489 if (V_pf_purge_idx == 0) { 1490 /* 1491 * Order is important: 1492 * - states and src nodes reference rules 1493 * - states and rules reference kifs 1494 */ 1495 pf_purge_expired_fragments(); 1496 pf_purge_expired_src_nodes(); 1497 pf_purge_unlinked_rules(); 1498 pfi_kif_purge(); 1499 } 1500 CURVNET_RESTORE(); 1501 } 1502 VNET_LIST_RUNLOCK(); 1503 } 1504 1505 pf_end_threads++; 1506 sx_xunlock(&pf_end_lock); 1507 kproc_exit(0); 1508 } 1509 1510 void 1511 pf_unload_vnet_purge(void) 1512 { 1513 1514 /* 1515 * To cleanse up all kifs and rules we need 1516 * two runs: first one clears reference flags, 1517 * then pf_purge_expired_states() doesn't 1518 * raise them, and then second run frees. 1519 */ 1520 pf_purge_unlinked_rules(); 1521 pfi_kif_purge(); 1522 1523 /* 1524 * Now purge everything. 1525 */ 1526 pf_purge_expired_states(0, pf_hashmask); 1527 pf_purge_fragments(UINT_MAX); 1528 pf_purge_expired_src_nodes(); 1529 1530 /* 1531 * Now all kifs & rules should be unreferenced, 1532 * thus should be successfully freed. 1533 */ 1534 pf_purge_unlinked_rules(); 1535 pfi_kif_purge(); 1536 } 1537 1538 1539 u_int32_t 1540 pf_state_expires(const struct pf_state *state) 1541 { 1542 u_int32_t timeout; 1543 u_int32_t start; 1544 u_int32_t end; 1545 u_int32_t states; 1546 1547 /* handle all PFTM_* > PFTM_MAX here */ 1548 if (state->timeout == PFTM_PURGE) 1549 return (time_uptime); 1550 KASSERT(state->timeout != PFTM_UNLINKED, 1551 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1552 KASSERT((state->timeout < PFTM_MAX), 1553 ("pf_state_expires: timeout > PFTM_MAX")); 1554 timeout = state->rule.ptr->timeout[state->timeout]; 1555 if (!timeout) 1556 timeout = V_pf_default_rule.timeout[state->timeout]; 1557 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1558 if (start) { 1559 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1560 states = counter_u64_fetch(state->rule.ptr->states_cur); 1561 } else { 1562 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1563 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1564 states = V_pf_status.states; 1565 } 1566 if (end && states > start && start < end) { 1567 if (states < end) 1568 return (state->expire + timeout * (end - states) / 1569 (end - start)); 1570 else 1571 return (time_uptime); 1572 } 1573 return (state->expire + timeout); 1574 } 1575 1576 void 1577 pf_purge_expired_src_nodes() 1578 { 1579 struct pf_src_node_list freelist; 1580 struct pf_srchash *sh; 1581 struct pf_src_node *cur, *next; 1582 int i; 1583 1584 LIST_INIT(&freelist); 1585 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1586 PF_HASHROW_LOCK(sh); 1587 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1588 if (cur->states == 0 && cur->expire <= time_uptime) { 1589 pf_unlink_src_node(cur); 1590 LIST_INSERT_HEAD(&freelist, cur, entry); 1591 } else if (cur->rule.ptr != NULL) 1592 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1593 PF_HASHROW_UNLOCK(sh); 1594 } 1595 1596 pf_free_src_nodes(&freelist); 1597 1598 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1599 } 1600 1601 static void 1602 pf_src_tree_remove_state(struct pf_state *s) 1603 { 1604 struct pf_src_node *sn; 1605 struct pf_srchash *sh; 1606 uint32_t timeout; 1607 1608 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1609 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1610 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1611 1612 if (s->src_node != NULL) { 1613 sn = s->src_node; 1614 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1615 PF_HASHROW_LOCK(sh); 1616 if (s->src.tcp_est) 1617 --sn->conn; 1618 if (--sn->states == 0) 1619 sn->expire = time_uptime + timeout; 1620 PF_HASHROW_UNLOCK(sh); 1621 } 1622 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1623 sn = s->nat_src_node; 1624 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1625 PF_HASHROW_LOCK(sh); 1626 if (--sn->states == 0) 1627 sn->expire = time_uptime + timeout; 1628 PF_HASHROW_UNLOCK(sh); 1629 } 1630 s->src_node = s->nat_src_node = NULL; 1631 } 1632 1633 /* 1634 * Unlink and potentilly free a state. Function may be 1635 * called with ID hash row locked, but always returns 1636 * unlocked, since it needs to go through key hash locking. 1637 */ 1638 int 1639 pf_unlink_state(struct pf_state *s, u_int flags) 1640 { 1641 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1642 1643 if ((flags & PF_ENTER_LOCKED) == 0) 1644 PF_HASHROW_LOCK(ih); 1645 else 1646 PF_HASHROW_ASSERT(ih); 1647 1648 if (s->timeout == PFTM_UNLINKED) { 1649 /* 1650 * State is being processed 1651 * by pf_unlink_state() in 1652 * an other thread. 1653 */ 1654 PF_HASHROW_UNLOCK(ih); 1655 return (0); /* XXXGL: undefined actually */ 1656 } 1657 1658 if (s->src.state == PF_TCPS_PROXY_DST) { 1659 /* XXX wire key the right one? */ 1660 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1661 &s->key[PF_SK_WIRE]->addr[1], 1662 &s->key[PF_SK_WIRE]->addr[0], 1663 s->key[PF_SK_WIRE]->port[1], 1664 s->key[PF_SK_WIRE]->port[0], 1665 s->src.seqhi, s->src.seqlo + 1, 1666 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1667 } 1668 1669 LIST_REMOVE(s, entry); 1670 pf_src_tree_remove_state(s); 1671 1672 if (pfsync_delete_state_ptr != NULL) 1673 pfsync_delete_state_ptr(s); 1674 1675 STATE_DEC_COUNTERS(s); 1676 1677 s->timeout = PFTM_UNLINKED; 1678 1679 PF_HASHROW_UNLOCK(ih); 1680 1681 pf_detach_state(s); 1682 /* pf_state_insert() initialises refs to 2, so we can never release the 1683 * last reference here, only in pf_release_state(). */ 1684 (void)refcount_release(&s->refs); 1685 1686 return (pf_release_state(s)); 1687 } 1688 1689 void 1690 pf_free_state(struct pf_state *cur) 1691 { 1692 1693 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1694 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1695 cur->timeout)); 1696 1697 pf_normalize_tcp_cleanup(cur); 1698 uma_zfree(V_pf_state_z, cur); 1699 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1700 } 1701 1702 /* 1703 * Called only from pf_purge_thread(), thus serialized. 1704 */ 1705 static u_int 1706 pf_purge_expired_states(u_int i, int maxcheck) 1707 { 1708 struct pf_idhash *ih; 1709 struct pf_state *s; 1710 1711 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1712 1713 /* 1714 * Go through hash and unlink states that expire now. 1715 */ 1716 while (maxcheck > 0) { 1717 1718 ih = &V_pf_idhash[i]; 1719 relock: 1720 PF_HASHROW_LOCK(ih); 1721 LIST_FOREACH(s, &ih->states, entry) { 1722 if (pf_state_expires(s) <= time_uptime) { 1723 V_pf_status.states -= 1724 pf_unlink_state(s, PF_ENTER_LOCKED); 1725 goto relock; 1726 } 1727 s->rule.ptr->rule_flag |= PFRULE_REFS; 1728 if (s->nat_rule.ptr != NULL) 1729 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1730 if (s->anchor.ptr != NULL) 1731 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1732 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1733 if (s->rt_kif) 1734 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1735 } 1736 PF_HASHROW_UNLOCK(ih); 1737 1738 /* Return when we hit end of hash. */ 1739 if (++i > pf_hashmask) { 1740 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1741 return (0); 1742 } 1743 1744 maxcheck--; 1745 } 1746 1747 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1748 1749 return (i); 1750 } 1751 1752 static void 1753 pf_purge_unlinked_rules() 1754 { 1755 struct pf_rulequeue tmpq; 1756 struct pf_rule *r, *r1; 1757 1758 /* 1759 * If we have overloading task pending, then we'd 1760 * better skip purging this time. There is a tiny 1761 * probability that overloading task references 1762 * an already unlinked rule. 1763 */ 1764 PF_OVERLOADQ_LOCK(); 1765 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1766 PF_OVERLOADQ_UNLOCK(); 1767 return; 1768 } 1769 PF_OVERLOADQ_UNLOCK(); 1770 1771 /* 1772 * Do naive mark-and-sweep garbage collecting of old rules. 1773 * Reference flag is raised by pf_purge_expired_states() 1774 * and pf_purge_expired_src_nodes(). 1775 * 1776 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1777 * use a temporary queue. 1778 */ 1779 TAILQ_INIT(&tmpq); 1780 PF_UNLNKDRULES_LOCK(); 1781 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1782 if (!(r->rule_flag & PFRULE_REFS)) { 1783 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1784 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1785 } else 1786 r->rule_flag &= ~PFRULE_REFS; 1787 } 1788 PF_UNLNKDRULES_UNLOCK(); 1789 1790 if (!TAILQ_EMPTY(&tmpq)) { 1791 PF_RULES_WLOCK(); 1792 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1793 TAILQ_REMOVE(&tmpq, r, entries); 1794 pf_free_rule(r); 1795 } 1796 PF_RULES_WUNLOCK(); 1797 } 1798 } 1799 1800 void 1801 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1802 { 1803 switch (af) { 1804 #ifdef INET 1805 case AF_INET: { 1806 u_int32_t a = ntohl(addr->addr32[0]); 1807 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1808 (a>>8)&255, a&255); 1809 if (p) { 1810 p = ntohs(p); 1811 printf(":%u", p); 1812 } 1813 break; 1814 } 1815 #endif /* INET */ 1816 #ifdef INET6 1817 case AF_INET6: { 1818 u_int16_t b; 1819 u_int8_t i, curstart, curend, maxstart, maxend; 1820 curstart = curend = maxstart = maxend = 255; 1821 for (i = 0; i < 8; i++) { 1822 if (!addr->addr16[i]) { 1823 if (curstart == 255) 1824 curstart = i; 1825 curend = i; 1826 } else { 1827 if ((curend - curstart) > 1828 (maxend - maxstart)) { 1829 maxstart = curstart; 1830 maxend = curend; 1831 } 1832 curstart = curend = 255; 1833 } 1834 } 1835 if ((curend - curstart) > 1836 (maxend - maxstart)) { 1837 maxstart = curstart; 1838 maxend = curend; 1839 } 1840 for (i = 0; i < 8; i++) { 1841 if (i >= maxstart && i <= maxend) { 1842 if (i == 0) 1843 printf(":"); 1844 if (i == maxend) 1845 printf(":"); 1846 } else { 1847 b = ntohs(addr->addr16[i]); 1848 printf("%x", b); 1849 if (i < 7) 1850 printf(":"); 1851 } 1852 } 1853 if (p) { 1854 p = ntohs(p); 1855 printf("[%u]", p); 1856 } 1857 break; 1858 } 1859 #endif /* INET6 */ 1860 } 1861 } 1862 1863 void 1864 pf_print_state(struct pf_state *s) 1865 { 1866 pf_print_state_parts(s, NULL, NULL); 1867 } 1868 1869 static void 1870 pf_print_state_parts(struct pf_state *s, 1871 struct pf_state_key *skwp, struct pf_state_key *sksp) 1872 { 1873 struct pf_state_key *skw, *sks; 1874 u_int8_t proto, dir; 1875 1876 /* Do our best to fill these, but they're skipped if NULL */ 1877 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1878 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1879 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1880 dir = s ? s->direction : 0; 1881 1882 switch (proto) { 1883 case IPPROTO_IPV4: 1884 printf("IPv4"); 1885 break; 1886 case IPPROTO_IPV6: 1887 printf("IPv6"); 1888 break; 1889 case IPPROTO_TCP: 1890 printf("TCP"); 1891 break; 1892 case IPPROTO_UDP: 1893 printf("UDP"); 1894 break; 1895 case IPPROTO_ICMP: 1896 printf("ICMP"); 1897 break; 1898 case IPPROTO_ICMPV6: 1899 printf("ICMPv6"); 1900 break; 1901 default: 1902 printf("%u", proto); 1903 break; 1904 } 1905 switch (dir) { 1906 case PF_IN: 1907 printf(" in"); 1908 break; 1909 case PF_OUT: 1910 printf(" out"); 1911 break; 1912 } 1913 if (skw) { 1914 printf(" wire: "); 1915 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1916 printf(" "); 1917 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1918 } 1919 if (sks) { 1920 printf(" stack: "); 1921 if (sks != skw) { 1922 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1923 printf(" "); 1924 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1925 } else 1926 printf("-"); 1927 } 1928 if (s) { 1929 if (proto == IPPROTO_TCP) { 1930 printf(" [lo=%u high=%u win=%u modulator=%u", 1931 s->src.seqlo, s->src.seqhi, 1932 s->src.max_win, s->src.seqdiff); 1933 if (s->src.wscale && s->dst.wscale) 1934 printf(" wscale=%u", 1935 s->src.wscale & PF_WSCALE_MASK); 1936 printf("]"); 1937 printf(" [lo=%u high=%u win=%u modulator=%u", 1938 s->dst.seqlo, s->dst.seqhi, 1939 s->dst.max_win, s->dst.seqdiff); 1940 if (s->src.wscale && s->dst.wscale) 1941 printf(" wscale=%u", 1942 s->dst.wscale & PF_WSCALE_MASK); 1943 printf("]"); 1944 } 1945 printf(" %u:%u", s->src.state, s->dst.state); 1946 } 1947 } 1948 1949 void 1950 pf_print_flags(u_int8_t f) 1951 { 1952 if (f) 1953 printf(" "); 1954 if (f & TH_FIN) 1955 printf("F"); 1956 if (f & TH_SYN) 1957 printf("S"); 1958 if (f & TH_RST) 1959 printf("R"); 1960 if (f & TH_PUSH) 1961 printf("P"); 1962 if (f & TH_ACK) 1963 printf("A"); 1964 if (f & TH_URG) 1965 printf("U"); 1966 if (f & TH_ECE) 1967 printf("E"); 1968 if (f & TH_CWR) 1969 printf("W"); 1970 } 1971 1972 #define PF_SET_SKIP_STEPS(i) \ 1973 do { \ 1974 while (head[i] != cur) { \ 1975 head[i]->skip[i].ptr = cur; \ 1976 head[i] = TAILQ_NEXT(head[i], entries); \ 1977 } \ 1978 } while (0) 1979 1980 void 1981 pf_calc_skip_steps(struct pf_rulequeue *rules) 1982 { 1983 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1984 int i; 1985 1986 cur = TAILQ_FIRST(rules); 1987 prev = cur; 1988 for (i = 0; i < PF_SKIP_COUNT; ++i) 1989 head[i] = cur; 1990 while (cur != NULL) { 1991 1992 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1993 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1994 if (cur->direction != prev->direction) 1995 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1996 if (cur->af != prev->af) 1997 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1998 if (cur->proto != prev->proto) 1999 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2000 if (cur->src.neg != prev->src.neg || 2001 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2002 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2003 if (cur->src.port[0] != prev->src.port[0] || 2004 cur->src.port[1] != prev->src.port[1] || 2005 cur->src.port_op != prev->src.port_op) 2006 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2007 if (cur->dst.neg != prev->dst.neg || 2008 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2009 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2010 if (cur->dst.port[0] != prev->dst.port[0] || 2011 cur->dst.port[1] != prev->dst.port[1] || 2012 cur->dst.port_op != prev->dst.port_op) 2013 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2014 2015 prev = cur; 2016 cur = TAILQ_NEXT(cur, entries); 2017 } 2018 for (i = 0; i < PF_SKIP_COUNT; ++i) 2019 PF_SET_SKIP_STEPS(i); 2020 } 2021 2022 static int 2023 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2024 { 2025 if (aw1->type != aw2->type) 2026 return (1); 2027 switch (aw1->type) { 2028 case PF_ADDR_ADDRMASK: 2029 case PF_ADDR_RANGE: 2030 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2031 return (1); 2032 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2033 return (1); 2034 return (0); 2035 case PF_ADDR_DYNIFTL: 2036 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2037 case PF_ADDR_NOROUTE: 2038 case PF_ADDR_URPFFAILED: 2039 return (0); 2040 case PF_ADDR_TABLE: 2041 return (aw1->p.tbl != aw2->p.tbl); 2042 default: 2043 printf("invalid address type: %d\n", aw1->type); 2044 return (1); 2045 } 2046 } 2047 2048 /** 2049 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2050 * header isn't always a full checksum. In some cases (i.e. output) it's a 2051 * pseudo-header checksum, which is a partial checksum over src/dst IP 2052 * addresses, protocol number and length. 2053 * 2054 * That means we have the following cases: 2055 * * Input or forwarding: we don't have TSO, the checksum fields are full 2056 * checksums, we need to update the checksum whenever we change anything. 2057 * * Output (i.e. the checksum is a pseudo-header checksum): 2058 * x The field being updated is src/dst address or affects the length of 2059 * the packet. We need to update the pseudo-header checksum (note that this 2060 * checksum is not ones' complement). 2061 * x Some other field is being modified (e.g. src/dst port numbers): We 2062 * don't have to update anything. 2063 **/ 2064 u_int16_t 2065 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2066 { 2067 u_int32_t l; 2068 2069 if (udp && !cksum) 2070 return (0x0000); 2071 l = cksum + old - new; 2072 l = (l >> 16) + (l & 65535); 2073 l = l & 65535; 2074 if (udp && !l) 2075 return (0xFFFF); 2076 return (l); 2077 } 2078 2079 u_int16_t 2080 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2081 u_int16_t new, u_int8_t udp) 2082 { 2083 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2084 return (cksum); 2085 2086 return (pf_cksum_fixup(cksum, old, new, udp)); 2087 } 2088 2089 static void 2090 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2091 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2092 sa_family_t af) 2093 { 2094 struct pf_addr ao; 2095 u_int16_t po = *p; 2096 2097 PF_ACPY(&ao, a, af); 2098 PF_ACPY(a, an, af); 2099 2100 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2101 *pc = ~*pc; 2102 2103 *p = pn; 2104 2105 switch (af) { 2106 #ifdef INET 2107 case AF_INET: 2108 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2109 ao.addr16[0], an->addr16[0], 0), 2110 ao.addr16[1], an->addr16[1], 0); 2111 *p = pn; 2112 2113 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2114 ao.addr16[0], an->addr16[0], u), 2115 ao.addr16[1], an->addr16[1], u); 2116 2117 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2118 break; 2119 #endif /* INET */ 2120 #ifdef INET6 2121 case AF_INET6: 2122 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2123 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2124 pf_cksum_fixup(pf_cksum_fixup(*pc, 2125 ao.addr16[0], an->addr16[0], u), 2126 ao.addr16[1], an->addr16[1], u), 2127 ao.addr16[2], an->addr16[2], u), 2128 ao.addr16[3], an->addr16[3], u), 2129 ao.addr16[4], an->addr16[4], u), 2130 ao.addr16[5], an->addr16[5], u), 2131 ao.addr16[6], an->addr16[6], u), 2132 ao.addr16[7], an->addr16[7], u); 2133 2134 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2135 break; 2136 #endif /* INET6 */ 2137 } 2138 2139 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2140 CSUM_DELAY_DATA_IPV6)) { 2141 *pc = ~*pc; 2142 if (! *pc) 2143 *pc = 0xffff; 2144 } 2145 } 2146 2147 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2148 void 2149 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2150 { 2151 u_int32_t ao; 2152 2153 memcpy(&ao, a, sizeof(ao)); 2154 memcpy(a, &an, sizeof(u_int32_t)); 2155 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2156 ao % 65536, an % 65536, u); 2157 } 2158 2159 void 2160 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2161 { 2162 u_int32_t ao; 2163 2164 memcpy(&ao, a, sizeof(ao)); 2165 memcpy(a, &an, sizeof(u_int32_t)); 2166 2167 *c = pf_proto_cksum_fixup(m, 2168 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2169 ao % 65536, an % 65536, udp); 2170 } 2171 2172 #ifdef INET6 2173 static void 2174 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2175 { 2176 struct pf_addr ao; 2177 2178 PF_ACPY(&ao, a, AF_INET6); 2179 PF_ACPY(a, an, AF_INET6); 2180 2181 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2182 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2183 pf_cksum_fixup(pf_cksum_fixup(*c, 2184 ao.addr16[0], an->addr16[0], u), 2185 ao.addr16[1], an->addr16[1], u), 2186 ao.addr16[2], an->addr16[2], u), 2187 ao.addr16[3], an->addr16[3], u), 2188 ao.addr16[4], an->addr16[4], u), 2189 ao.addr16[5], an->addr16[5], u), 2190 ao.addr16[6], an->addr16[6], u), 2191 ao.addr16[7], an->addr16[7], u); 2192 } 2193 #endif /* INET6 */ 2194 2195 static void 2196 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2197 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2198 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2199 { 2200 struct pf_addr oia, ooa; 2201 2202 PF_ACPY(&oia, ia, af); 2203 if (oa) 2204 PF_ACPY(&ooa, oa, af); 2205 2206 /* Change inner protocol port, fix inner protocol checksum. */ 2207 if (ip != NULL) { 2208 u_int16_t oip = *ip; 2209 u_int32_t opc; 2210 2211 if (pc != NULL) 2212 opc = *pc; 2213 *ip = np; 2214 if (pc != NULL) 2215 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2216 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2217 if (pc != NULL) 2218 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2219 } 2220 /* Change inner ip address, fix inner ip and icmp checksums. */ 2221 PF_ACPY(ia, na, af); 2222 switch (af) { 2223 #ifdef INET 2224 case AF_INET: { 2225 u_int32_t oh2c = *h2c; 2226 2227 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2228 oia.addr16[0], ia->addr16[0], 0), 2229 oia.addr16[1], ia->addr16[1], 0); 2230 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2231 oia.addr16[0], ia->addr16[0], 0), 2232 oia.addr16[1], ia->addr16[1], 0); 2233 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2234 break; 2235 } 2236 #endif /* INET */ 2237 #ifdef INET6 2238 case AF_INET6: 2239 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2240 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2241 pf_cksum_fixup(pf_cksum_fixup(*ic, 2242 oia.addr16[0], ia->addr16[0], u), 2243 oia.addr16[1], ia->addr16[1], u), 2244 oia.addr16[2], ia->addr16[2], u), 2245 oia.addr16[3], ia->addr16[3], u), 2246 oia.addr16[4], ia->addr16[4], u), 2247 oia.addr16[5], ia->addr16[5], u), 2248 oia.addr16[6], ia->addr16[6], u), 2249 oia.addr16[7], ia->addr16[7], u); 2250 break; 2251 #endif /* INET6 */ 2252 } 2253 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2254 if (oa) { 2255 PF_ACPY(oa, na, af); 2256 switch (af) { 2257 #ifdef INET 2258 case AF_INET: 2259 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2260 ooa.addr16[0], oa->addr16[0], 0), 2261 ooa.addr16[1], oa->addr16[1], 0); 2262 break; 2263 #endif /* INET */ 2264 #ifdef INET6 2265 case AF_INET6: 2266 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2267 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2268 pf_cksum_fixup(pf_cksum_fixup(*ic, 2269 ooa.addr16[0], oa->addr16[0], u), 2270 ooa.addr16[1], oa->addr16[1], u), 2271 ooa.addr16[2], oa->addr16[2], u), 2272 ooa.addr16[3], oa->addr16[3], u), 2273 ooa.addr16[4], oa->addr16[4], u), 2274 ooa.addr16[5], oa->addr16[5], u), 2275 ooa.addr16[6], oa->addr16[6], u), 2276 ooa.addr16[7], oa->addr16[7], u); 2277 break; 2278 #endif /* INET6 */ 2279 } 2280 } 2281 } 2282 2283 2284 /* 2285 * Need to modulate the sequence numbers in the TCP SACK option 2286 * (credits to Krzysztof Pfaff for report and patch) 2287 */ 2288 static int 2289 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2290 struct tcphdr *th, struct pf_state_peer *dst) 2291 { 2292 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2293 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2294 int copyback = 0, i, olen; 2295 struct sackblk sack; 2296 2297 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2298 if (hlen < TCPOLEN_SACKLEN || 2299 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2300 return 0; 2301 2302 while (hlen >= TCPOLEN_SACKLEN) { 2303 olen = opt[1]; 2304 switch (*opt) { 2305 case TCPOPT_EOL: /* FALLTHROUGH */ 2306 case TCPOPT_NOP: 2307 opt++; 2308 hlen--; 2309 break; 2310 case TCPOPT_SACK: 2311 if (olen > hlen) 2312 olen = hlen; 2313 if (olen >= TCPOLEN_SACKLEN) { 2314 for (i = 2; i + TCPOLEN_SACK <= olen; 2315 i += TCPOLEN_SACK) { 2316 memcpy(&sack, &opt[i], sizeof(sack)); 2317 pf_change_proto_a(m, &sack.start, &th->th_sum, 2318 htonl(ntohl(sack.start) - dst->seqdiff), 0); 2319 pf_change_proto_a(m, &sack.end, &th->th_sum, 2320 htonl(ntohl(sack.end) - dst->seqdiff), 0); 2321 memcpy(&opt[i], &sack, sizeof(sack)); 2322 } 2323 copyback = 1; 2324 } 2325 /* FALLTHROUGH */ 2326 default: 2327 if (olen < 2) 2328 olen = 2; 2329 hlen -= olen; 2330 opt += olen; 2331 } 2332 } 2333 2334 if (copyback) 2335 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2336 return (copyback); 2337 } 2338 2339 static void 2340 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2341 const struct pf_addr *saddr, const struct pf_addr *daddr, 2342 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2343 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2344 u_int16_t rtag, struct ifnet *ifp) 2345 { 2346 struct pf_send_entry *pfse; 2347 struct mbuf *m; 2348 int len, tlen; 2349 #ifdef INET 2350 struct ip *h = NULL; 2351 #endif /* INET */ 2352 #ifdef INET6 2353 struct ip6_hdr *h6 = NULL; 2354 #endif /* INET6 */ 2355 struct tcphdr *th; 2356 char *opt; 2357 struct pf_mtag *pf_mtag; 2358 2359 len = 0; 2360 th = NULL; 2361 2362 /* maximum segment size tcp option */ 2363 tlen = sizeof(struct tcphdr); 2364 if (mss) 2365 tlen += 4; 2366 2367 switch (af) { 2368 #ifdef INET 2369 case AF_INET: 2370 len = sizeof(struct ip) + tlen; 2371 break; 2372 #endif /* INET */ 2373 #ifdef INET6 2374 case AF_INET6: 2375 len = sizeof(struct ip6_hdr) + tlen; 2376 break; 2377 #endif /* INET6 */ 2378 default: 2379 panic("%s: unsupported af %d", __func__, af); 2380 } 2381 2382 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2383 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2384 if (pfse == NULL) 2385 return; 2386 m = m_gethdr(M_NOWAIT, MT_DATA); 2387 if (m == NULL) { 2388 free(pfse, M_PFTEMP); 2389 return; 2390 } 2391 #ifdef MAC 2392 mac_netinet_firewall_send(m); 2393 #endif 2394 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2395 free(pfse, M_PFTEMP); 2396 m_freem(m); 2397 return; 2398 } 2399 if (tag) 2400 m->m_flags |= M_SKIP_FIREWALL; 2401 pf_mtag->tag = rtag; 2402 2403 if (r != NULL && r->rtableid >= 0) 2404 M_SETFIB(m, r->rtableid); 2405 2406 #ifdef ALTQ 2407 if (r != NULL && r->qid) { 2408 pf_mtag->qid = r->qid; 2409 2410 /* add hints for ecn */ 2411 pf_mtag->hdr = mtod(m, struct ip *); 2412 } 2413 #endif /* ALTQ */ 2414 m->m_data += max_linkhdr; 2415 m->m_pkthdr.len = m->m_len = len; 2416 m->m_pkthdr.rcvif = NULL; 2417 bzero(m->m_data, len); 2418 switch (af) { 2419 #ifdef INET 2420 case AF_INET: 2421 h = mtod(m, struct ip *); 2422 2423 /* IP header fields included in the TCP checksum */ 2424 h->ip_p = IPPROTO_TCP; 2425 h->ip_len = htons(tlen); 2426 h->ip_src.s_addr = saddr->v4.s_addr; 2427 h->ip_dst.s_addr = daddr->v4.s_addr; 2428 2429 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2430 break; 2431 #endif /* INET */ 2432 #ifdef INET6 2433 case AF_INET6: 2434 h6 = mtod(m, struct ip6_hdr *); 2435 2436 /* IP header fields included in the TCP checksum */ 2437 h6->ip6_nxt = IPPROTO_TCP; 2438 h6->ip6_plen = htons(tlen); 2439 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2440 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2441 2442 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2443 break; 2444 #endif /* INET6 */ 2445 } 2446 2447 /* TCP header */ 2448 th->th_sport = sport; 2449 th->th_dport = dport; 2450 th->th_seq = htonl(seq); 2451 th->th_ack = htonl(ack); 2452 th->th_off = tlen >> 2; 2453 th->th_flags = flags; 2454 th->th_win = htons(win); 2455 2456 if (mss) { 2457 opt = (char *)(th + 1); 2458 opt[0] = TCPOPT_MAXSEG; 2459 opt[1] = 4; 2460 HTONS(mss); 2461 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2462 } 2463 2464 switch (af) { 2465 #ifdef INET 2466 case AF_INET: 2467 /* TCP checksum */ 2468 th->th_sum = in_cksum(m, len); 2469 2470 /* Finish the IP header */ 2471 h->ip_v = 4; 2472 h->ip_hl = sizeof(*h) >> 2; 2473 h->ip_tos = IPTOS_LOWDELAY; 2474 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2475 h->ip_len = htons(len); 2476 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2477 h->ip_sum = 0; 2478 2479 pfse->pfse_type = PFSE_IP; 2480 break; 2481 #endif /* INET */ 2482 #ifdef INET6 2483 case AF_INET6: 2484 /* TCP checksum */ 2485 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2486 sizeof(struct ip6_hdr), tlen); 2487 2488 h6->ip6_vfc |= IPV6_VERSION; 2489 h6->ip6_hlim = IPV6_DEFHLIM; 2490 2491 pfse->pfse_type = PFSE_IP6; 2492 break; 2493 #endif /* INET6 */ 2494 } 2495 pfse->pfse_m = m; 2496 pf_send(pfse); 2497 } 2498 2499 static int 2500 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2501 { 2502 struct m_tag *mtag; 2503 2504 KASSERT(prio <= PF_PRIO_MAX, 2505 ("%s with invalid pcp", __func__)); 2506 2507 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2508 if (mtag == NULL) { 2509 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2510 sizeof(uint8_t), M_NOWAIT); 2511 if (mtag == NULL) 2512 return (ENOMEM); 2513 m_tag_prepend(m, mtag); 2514 } 2515 2516 *(uint8_t *)(mtag + 1) = prio; 2517 return (0); 2518 } 2519 2520 static int 2521 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2522 { 2523 struct m_tag *mtag; 2524 u_int8_t mpcp; 2525 2526 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2527 if (mtag == NULL) 2528 return (0); 2529 2530 if (prio == PF_PRIO_ZERO) 2531 prio = 0; 2532 2533 mpcp = *(uint8_t *)(mtag + 1); 2534 2535 return (mpcp == prio); 2536 } 2537 2538 static void 2539 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2540 struct pf_rule *r) 2541 { 2542 struct pf_send_entry *pfse; 2543 struct mbuf *m0; 2544 struct pf_mtag *pf_mtag; 2545 2546 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2547 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2548 if (pfse == NULL) 2549 return; 2550 2551 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2552 free(pfse, M_PFTEMP); 2553 return; 2554 } 2555 2556 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2557 free(pfse, M_PFTEMP); 2558 return; 2559 } 2560 /* XXX: revisit */ 2561 m0->m_flags |= M_SKIP_FIREWALL; 2562 2563 if (r->rtableid >= 0) 2564 M_SETFIB(m0, r->rtableid); 2565 2566 #ifdef ALTQ 2567 if (r->qid) { 2568 pf_mtag->qid = r->qid; 2569 /* add hints for ecn */ 2570 pf_mtag->hdr = mtod(m0, struct ip *); 2571 } 2572 #endif /* ALTQ */ 2573 2574 switch (af) { 2575 #ifdef INET 2576 case AF_INET: 2577 pfse->pfse_type = PFSE_ICMP; 2578 break; 2579 #endif /* INET */ 2580 #ifdef INET6 2581 case AF_INET6: 2582 pfse->pfse_type = PFSE_ICMP6; 2583 break; 2584 #endif /* INET6 */ 2585 } 2586 pfse->pfse_m = m0; 2587 pfse->icmpopts.type = type; 2588 pfse->icmpopts.code = code; 2589 pf_send(pfse); 2590 } 2591 2592 /* 2593 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2594 * If n is 0, they match if they are equal. If n is != 0, they match if they 2595 * are different. 2596 */ 2597 int 2598 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2599 struct pf_addr *b, sa_family_t af) 2600 { 2601 int match = 0; 2602 2603 switch (af) { 2604 #ifdef INET 2605 case AF_INET: 2606 if ((a->addr32[0] & m->addr32[0]) == 2607 (b->addr32[0] & m->addr32[0])) 2608 match++; 2609 break; 2610 #endif /* INET */ 2611 #ifdef INET6 2612 case AF_INET6: 2613 if (((a->addr32[0] & m->addr32[0]) == 2614 (b->addr32[0] & m->addr32[0])) && 2615 ((a->addr32[1] & m->addr32[1]) == 2616 (b->addr32[1] & m->addr32[1])) && 2617 ((a->addr32[2] & m->addr32[2]) == 2618 (b->addr32[2] & m->addr32[2])) && 2619 ((a->addr32[3] & m->addr32[3]) == 2620 (b->addr32[3] & m->addr32[3]))) 2621 match++; 2622 break; 2623 #endif /* INET6 */ 2624 } 2625 if (match) { 2626 if (n) 2627 return (0); 2628 else 2629 return (1); 2630 } else { 2631 if (n) 2632 return (1); 2633 else 2634 return (0); 2635 } 2636 } 2637 2638 /* 2639 * Return 1 if b <= a <= e, otherwise return 0. 2640 */ 2641 int 2642 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2643 struct pf_addr *a, sa_family_t af) 2644 { 2645 switch (af) { 2646 #ifdef INET 2647 case AF_INET: 2648 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2649 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2650 return (0); 2651 break; 2652 #endif /* INET */ 2653 #ifdef INET6 2654 case AF_INET6: { 2655 int i; 2656 2657 /* check a >= b */ 2658 for (i = 0; i < 4; ++i) 2659 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2660 break; 2661 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2662 return (0); 2663 /* check a <= e */ 2664 for (i = 0; i < 4; ++i) 2665 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2666 break; 2667 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2668 return (0); 2669 break; 2670 } 2671 #endif /* INET6 */ 2672 } 2673 return (1); 2674 } 2675 2676 static int 2677 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2678 { 2679 switch (op) { 2680 case PF_OP_IRG: 2681 return ((p > a1) && (p < a2)); 2682 case PF_OP_XRG: 2683 return ((p < a1) || (p > a2)); 2684 case PF_OP_RRG: 2685 return ((p >= a1) && (p <= a2)); 2686 case PF_OP_EQ: 2687 return (p == a1); 2688 case PF_OP_NE: 2689 return (p != a1); 2690 case PF_OP_LT: 2691 return (p < a1); 2692 case PF_OP_LE: 2693 return (p <= a1); 2694 case PF_OP_GT: 2695 return (p > a1); 2696 case PF_OP_GE: 2697 return (p >= a1); 2698 } 2699 return (0); /* never reached */ 2700 } 2701 2702 int 2703 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2704 { 2705 NTOHS(a1); 2706 NTOHS(a2); 2707 NTOHS(p); 2708 return (pf_match(op, a1, a2, p)); 2709 } 2710 2711 static int 2712 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2713 { 2714 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2715 return (0); 2716 return (pf_match(op, a1, a2, u)); 2717 } 2718 2719 static int 2720 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2721 { 2722 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2723 return (0); 2724 return (pf_match(op, a1, a2, g)); 2725 } 2726 2727 int 2728 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2729 { 2730 if (*tag == -1) 2731 *tag = mtag; 2732 2733 return ((!r->match_tag_not && r->match_tag == *tag) || 2734 (r->match_tag_not && r->match_tag != *tag)); 2735 } 2736 2737 int 2738 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2739 { 2740 2741 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2742 2743 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2744 return (ENOMEM); 2745 2746 pd->pf_mtag->tag = tag; 2747 2748 return (0); 2749 } 2750 2751 #define PF_ANCHOR_STACKSIZE 32 2752 struct pf_anchor_stackframe { 2753 struct pf_ruleset *rs; 2754 struct pf_rule *r; /* XXX: + match bit */ 2755 struct pf_anchor *child; 2756 }; 2757 2758 /* 2759 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2760 */ 2761 #define PF_ANCHORSTACK_MATCH 0x00000001 2762 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2763 2764 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2765 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2766 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2767 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2768 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2769 } while (0) 2770 2771 void 2772 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2773 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2774 int *match) 2775 { 2776 struct pf_anchor_stackframe *f; 2777 2778 PF_RULES_RASSERT(); 2779 2780 if (match) 2781 *match = 0; 2782 if (*depth >= PF_ANCHOR_STACKSIZE) { 2783 printf("%s: anchor stack overflow on %s\n", 2784 __func__, (*r)->anchor->name); 2785 *r = TAILQ_NEXT(*r, entries); 2786 return; 2787 } else if (*depth == 0 && a != NULL) 2788 *a = *r; 2789 f = stack + (*depth)++; 2790 f->rs = *rs; 2791 f->r = *r; 2792 if ((*r)->anchor_wildcard) { 2793 struct pf_anchor_node *parent = &(*r)->anchor->children; 2794 2795 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2796 *r = NULL; 2797 return; 2798 } 2799 *rs = &f->child->ruleset; 2800 } else { 2801 f->child = NULL; 2802 *rs = &(*r)->anchor->ruleset; 2803 } 2804 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2805 } 2806 2807 int 2808 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2809 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2810 int *match) 2811 { 2812 struct pf_anchor_stackframe *f; 2813 struct pf_rule *fr; 2814 int quick = 0; 2815 2816 PF_RULES_RASSERT(); 2817 2818 do { 2819 if (*depth <= 0) 2820 break; 2821 f = stack + *depth - 1; 2822 fr = PF_ANCHOR_RULE(f); 2823 if (f->child != NULL) { 2824 struct pf_anchor_node *parent; 2825 2826 /* 2827 * This block traverses through 2828 * a wildcard anchor. 2829 */ 2830 parent = &fr->anchor->children; 2831 if (match != NULL && *match) { 2832 /* 2833 * If any of "*" matched, then 2834 * "foo/ *" matched, mark frame 2835 * appropriately. 2836 */ 2837 PF_ANCHOR_SET_MATCH(f); 2838 *match = 0; 2839 } 2840 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2841 if (f->child != NULL) { 2842 *rs = &f->child->ruleset; 2843 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2844 if (*r == NULL) 2845 continue; 2846 else 2847 break; 2848 } 2849 } 2850 (*depth)--; 2851 if (*depth == 0 && a != NULL) 2852 *a = NULL; 2853 *rs = f->rs; 2854 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2855 quick = fr->quick; 2856 *r = TAILQ_NEXT(fr, entries); 2857 } while (*r == NULL); 2858 2859 return (quick); 2860 } 2861 2862 #ifdef INET6 2863 void 2864 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2865 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2866 { 2867 switch (af) { 2868 #ifdef INET 2869 case AF_INET: 2870 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2871 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2872 break; 2873 #endif /* INET */ 2874 case AF_INET6: 2875 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2876 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2877 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2878 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2879 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2880 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2881 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2882 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2883 break; 2884 } 2885 } 2886 2887 void 2888 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2889 { 2890 switch (af) { 2891 #ifdef INET 2892 case AF_INET: 2893 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2894 break; 2895 #endif /* INET */ 2896 case AF_INET6: 2897 if (addr->addr32[3] == 0xffffffff) { 2898 addr->addr32[3] = 0; 2899 if (addr->addr32[2] == 0xffffffff) { 2900 addr->addr32[2] = 0; 2901 if (addr->addr32[1] == 0xffffffff) { 2902 addr->addr32[1] = 0; 2903 addr->addr32[0] = 2904 htonl(ntohl(addr->addr32[0]) + 1); 2905 } else 2906 addr->addr32[1] = 2907 htonl(ntohl(addr->addr32[1]) + 1); 2908 } else 2909 addr->addr32[2] = 2910 htonl(ntohl(addr->addr32[2]) + 1); 2911 } else 2912 addr->addr32[3] = 2913 htonl(ntohl(addr->addr32[3]) + 1); 2914 break; 2915 } 2916 } 2917 #endif /* INET6 */ 2918 2919 int 2920 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2921 { 2922 struct pf_addr *saddr, *daddr; 2923 u_int16_t sport, dport; 2924 struct inpcbinfo *pi; 2925 struct inpcb *inp; 2926 2927 pd->lookup.uid = UID_MAX; 2928 pd->lookup.gid = GID_MAX; 2929 2930 switch (pd->proto) { 2931 case IPPROTO_TCP: 2932 if (pd->hdr.tcp == NULL) 2933 return (-1); 2934 sport = pd->hdr.tcp->th_sport; 2935 dport = pd->hdr.tcp->th_dport; 2936 pi = &V_tcbinfo; 2937 break; 2938 case IPPROTO_UDP: 2939 if (pd->hdr.udp == NULL) 2940 return (-1); 2941 sport = pd->hdr.udp->uh_sport; 2942 dport = pd->hdr.udp->uh_dport; 2943 pi = &V_udbinfo; 2944 break; 2945 default: 2946 return (-1); 2947 } 2948 if (direction == PF_IN) { 2949 saddr = pd->src; 2950 daddr = pd->dst; 2951 } else { 2952 u_int16_t p; 2953 2954 p = sport; 2955 sport = dport; 2956 dport = p; 2957 saddr = pd->dst; 2958 daddr = pd->src; 2959 } 2960 switch (pd->af) { 2961 #ifdef INET 2962 case AF_INET: 2963 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2964 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2965 if (inp == NULL) { 2966 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2967 daddr->v4, dport, INPLOOKUP_WILDCARD | 2968 INPLOOKUP_RLOCKPCB, NULL, m); 2969 if (inp == NULL) 2970 return (-1); 2971 } 2972 break; 2973 #endif /* INET */ 2974 #ifdef INET6 2975 case AF_INET6: 2976 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2977 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2978 if (inp == NULL) { 2979 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2980 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2981 INPLOOKUP_RLOCKPCB, NULL, m); 2982 if (inp == NULL) 2983 return (-1); 2984 } 2985 break; 2986 #endif /* INET6 */ 2987 2988 default: 2989 return (-1); 2990 } 2991 INP_RLOCK_ASSERT(inp); 2992 pd->lookup.uid = inp->inp_cred->cr_uid; 2993 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2994 INP_RUNLOCK(inp); 2995 2996 return (1); 2997 } 2998 2999 static u_int8_t 3000 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3001 { 3002 int hlen; 3003 u_int8_t hdr[60]; 3004 u_int8_t *opt, optlen; 3005 u_int8_t wscale = 0; 3006 3007 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3008 if (hlen <= sizeof(struct tcphdr)) 3009 return (0); 3010 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3011 return (0); 3012 opt = hdr + sizeof(struct tcphdr); 3013 hlen -= sizeof(struct tcphdr); 3014 while (hlen >= 3) { 3015 switch (*opt) { 3016 case TCPOPT_EOL: 3017 case TCPOPT_NOP: 3018 ++opt; 3019 --hlen; 3020 break; 3021 case TCPOPT_WINDOW: 3022 wscale = opt[2]; 3023 if (wscale > TCP_MAX_WINSHIFT) 3024 wscale = TCP_MAX_WINSHIFT; 3025 wscale |= PF_WSCALE_FLAG; 3026 /* FALLTHROUGH */ 3027 default: 3028 optlen = opt[1]; 3029 if (optlen < 2) 3030 optlen = 2; 3031 hlen -= optlen; 3032 opt += optlen; 3033 break; 3034 } 3035 } 3036 return (wscale); 3037 } 3038 3039 static u_int16_t 3040 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3041 { 3042 int hlen; 3043 u_int8_t hdr[60]; 3044 u_int8_t *opt, optlen; 3045 u_int16_t mss = V_tcp_mssdflt; 3046 3047 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3048 if (hlen <= sizeof(struct tcphdr)) 3049 return (0); 3050 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3051 return (0); 3052 opt = hdr + sizeof(struct tcphdr); 3053 hlen -= sizeof(struct tcphdr); 3054 while (hlen >= TCPOLEN_MAXSEG) { 3055 switch (*opt) { 3056 case TCPOPT_EOL: 3057 case TCPOPT_NOP: 3058 ++opt; 3059 --hlen; 3060 break; 3061 case TCPOPT_MAXSEG: 3062 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3063 NTOHS(mss); 3064 /* FALLTHROUGH */ 3065 default: 3066 optlen = opt[1]; 3067 if (optlen < 2) 3068 optlen = 2; 3069 hlen -= optlen; 3070 opt += optlen; 3071 break; 3072 } 3073 } 3074 return (mss); 3075 } 3076 3077 static u_int16_t 3078 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3079 { 3080 #ifdef INET 3081 struct nhop4_basic nh4; 3082 #endif /* INET */ 3083 #ifdef INET6 3084 struct nhop6_basic nh6; 3085 struct in6_addr dst6; 3086 uint32_t scopeid; 3087 #endif /* INET6 */ 3088 int hlen = 0; 3089 uint16_t mss = 0; 3090 3091 switch (af) { 3092 #ifdef INET 3093 case AF_INET: 3094 hlen = sizeof(struct ip); 3095 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) == 0) 3096 mss = nh4.nh_mtu - hlen - sizeof(struct tcphdr); 3097 break; 3098 #endif /* INET */ 3099 #ifdef INET6 3100 case AF_INET6: 3101 hlen = sizeof(struct ip6_hdr); 3102 in6_splitscope(&addr->v6, &dst6, &scopeid); 3103 if (fib6_lookup_nh_basic(rtableid, &dst6, scopeid, 0,0,&nh6)==0) 3104 mss = nh6.nh_mtu - hlen - sizeof(struct tcphdr); 3105 break; 3106 #endif /* INET6 */ 3107 } 3108 3109 mss = max(V_tcp_mssdflt, mss); 3110 mss = min(mss, offer); 3111 mss = max(mss, 64); /* sanity - at least max opt space */ 3112 return (mss); 3113 } 3114 3115 static u_int32_t 3116 pf_tcp_iss(struct pf_pdesc *pd) 3117 { 3118 MD5_CTX ctx; 3119 u_int32_t digest[4]; 3120 3121 if (V_pf_tcp_secret_init == 0) { 3122 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3123 MD5Init(&V_pf_tcp_secret_ctx); 3124 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3125 sizeof(V_pf_tcp_secret)); 3126 V_pf_tcp_secret_init = 1; 3127 } 3128 3129 ctx = V_pf_tcp_secret_ctx; 3130 3131 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3132 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3133 if (pd->af == AF_INET6) { 3134 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3135 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3136 } else { 3137 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3138 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3139 } 3140 MD5Final((u_char *)digest, &ctx); 3141 V_pf_tcp_iss_off += 4096; 3142 #define ISN_RANDOM_INCREMENT (4096 - 1) 3143 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3144 V_pf_tcp_iss_off); 3145 #undef ISN_RANDOM_INCREMENT 3146 } 3147 3148 static int 3149 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3150 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3151 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3152 { 3153 struct pf_rule *nr = NULL; 3154 struct pf_addr * const saddr = pd->src; 3155 struct pf_addr * const daddr = pd->dst; 3156 sa_family_t af = pd->af; 3157 struct pf_rule *r, *a = NULL; 3158 struct pf_ruleset *ruleset = NULL; 3159 struct pf_src_node *nsn = NULL; 3160 struct tcphdr *th = pd->hdr.tcp; 3161 struct pf_state_key *sk = NULL, *nk = NULL; 3162 u_short reason; 3163 int rewrite = 0, hdrlen = 0; 3164 int tag = -1, rtableid = -1; 3165 int asd = 0; 3166 int match = 0; 3167 int state_icmp = 0; 3168 u_int16_t sport = 0, dport = 0; 3169 u_int16_t bproto_sum = 0, bip_sum = 0; 3170 u_int8_t icmptype = 0, icmpcode = 0; 3171 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3172 3173 PF_RULES_RASSERT(); 3174 3175 if (inp != NULL) { 3176 INP_LOCK_ASSERT(inp); 3177 pd->lookup.uid = inp->inp_cred->cr_uid; 3178 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3179 pd->lookup.done = 1; 3180 } 3181 3182 switch (pd->proto) { 3183 case IPPROTO_TCP: 3184 sport = th->th_sport; 3185 dport = th->th_dport; 3186 hdrlen = sizeof(*th); 3187 break; 3188 case IPPROTO_UDP: 3189 sport = pd->hdr.udp->uh_sport; 3190 dport = pd->hdr.udp->uh_dport; 3191 hdrlen = sizeof(*pd->hdr.udp); 3192 break; 3193 #ifdef INET 3194 case IPPROTO_ICMP: 3195 if (pd->af != AF_INET) 3196 break; 3197 sport = dport = pd->hdr.icmp->icmp_id; 3198 hdrlen = sizeof(*pd->hdr.icmp); 3199 icmptype = pd->hdr.icmp->icmp_type; 3200 icmpcode = pd->hdr.icmp->icmp_code; 3201 3202 if (icmptype == ICMP_UNREACH || 3203 icmptype == ICMP_SOURCEQUENCH || 3204 icmptype == ICMP_REDIRECT || 3205 icmptype == ICMP_TIMXCEED || 3206 icmptype == ICMP_PARAMPROB) 3207 state_icmp++; 3208 break; 3209 #endif /* INET */ 3210 #ifdef INET6 3211 case IPPROTO_ICMPV6: 3212 if (af != AF_INET6) 3213 break; 3214 sport = dport = pd->hdr.icmp6->icmp6_id; 3215 hdrlen = sizeof(*pd->hdr.icmp6); 3216 icmptype = pd->hdr.icmp6->icmp6_type; 3217 icmpcode = pd->hdr.icmp6->icmp6_code; 3218 3219 if (icmptype == ICMP6_DST_UNREACH || 3220 icmptype == ICMP6_PACKET_TOO_BIG || 3221 icmptype == ICMP6_TIME_EXCEEDED || 3222 icmptype == ICMP6_PARAM_PROB) 3223 state_icmp++; 3224 break; 3225 #endif /* INET6 */ 3226 default: 3227 sport = dport = hdrlen = 0; 3228 break; 3229 } 3230 3231 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3232 3233 /* check packet for BINAT/NAT/RDR */ 3234 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3235 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3236 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3237 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3238 3239 if (pd->ip_sum) 3240 bip_sum = *pd->ip_sum; 3241 3242 switch (pd->proto) { 3243 case IPPROTO_TCP: 3244 bproto_sum = th->th_sum; 3245 pd->proto_sum = &th->th_sum; 3246 3247 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3248 nk->port[pd->sidx] != sport) { 3249 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3250 &th->th_sum, &nk->addr[pd->sidx], 3251 nk->port[pd->sidx], 0, af); 3252 pd->sport = &th->th_sport; 3253 sport = th->th_sport; 3254 } 3255 3256 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3257 nk->port[pd->didx] != dport) { 3258 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3259 &th->th_sum, &nk->addr[pd->didx], 3260 nk->port[pd->didx], 0, af); 3261 dport = th->th_dport; 3262 pd->dport = &th->th_dport; 3263 } 3264 rewrite++; 3265 break; 3266 case IPPROTO_UDP: 3267 bproto_sum = pd->hdr.udp->uh_sum; 3268 pd->proto_sum = &pd->hdr.udp->uh_sum; 3269 3270 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3271 nk->port[pd->sidx] != sport) { 3272 pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, 3273 pd->ip_sum, &pd->hdr.udp->uh_sum, 3274 &nk->addr[pd->sidx], 3275 nk->port[pd->sidx], 1, af); 3276 sport = pd->hdr.udp->uh_sport; 3277 pd->sport = &pd->hdr.udp->uh_sport; 3278 } 3279 3280 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3281 nk->port[pd->didx] != dport) { 3282 pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, 3283 pd->ip_sum, &pd->hdr.udp->uh_sum, 3284 &nk->addr[pd->didx], 3285 nk->port[pd->didx], 1, af); 3286 dport = pd->hdr.udp->uh_dport; 3287 pd->dport = &pd->hdr.udp->uh_dport; 3288 } 3289 rewrite++; 3290 break; 3291 #ifdef INET 3292 case IPPROTO_ICMP: 3293 nk->port[0] = nk->port[1]; 3294 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3295 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3296 nk->addr[pd->sidx].v4.s_addr, 0); 3297 3298 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3299 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3300 nk->addr[pd->didx].v4.s_addr, 0); 3301 3302 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3303 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3304 pd->hdr.icmp->icmp_cksum, sport, 3305 nk->port[1], 0); 3306 pd->hdr.icmp->icmp_id = nk->port[1]; 3307 pd->sport = &pd->hdr.icmp->icmp_id; 3308 } 3309 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3310 break; 3311 #endif /* INET */ 3312 #ifdef INET6 3313 case IPPROTO_ICMPV6: 3314 nk->port[0] = nk->port[1]; 3315 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3316 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3317 &nk->addr[pd->sidx], 0); 3318 3319 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3320 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3321 &nk->addr[pd->didx], 0); 3322 rewrite++; 3323 break; 3324 #endif /* INET */ 3325 default: 3326 switch (af) { 3327 #ifdef INET 3328 case AF_INET: 3329 if (PF_ANEQ(saddr, 3330 &nk->addr[pd->sidx], AF_INET)) 3331 pf_change_a(&saddr->v4.s_addr, 3332 pd->ip_sum, 3333 nk->addr[pd->sidx].v4.s_addr, 0); 3334 3335 if (PF_ANEQ(daddr, 3336 &nk->addr[pd->didx], AF_INET)) 3337 pf_change_a(&daddr->v4.s_addr, 3338 pd->ip_sum, 3339 nk->addr[pd->didx].v4.s_addr, 0); 3340 break; 3341 #endif /* INET */ 3342 #ifdef INET6 3343 case AF_INET6: 3344 if (PF_ANEQ(saddr, 3345 &nk->addr[pd->sidx], AF_INET6)) 3346 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3347 3348 if (PF_ANEQ(daddr, 3349 &nk->addr[pd->didx], AF_INET6)) 3350 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3351 break; 3352 #endif /* INET */ 3353 } 3354 break; 3355 } 3356 if (nr->natpass) 3357 r = NULL; 3358 pd->nat_rule = nr; 3359 } 3360 3361 while (r != NULL) { 3362 r->evaluations++; 3363 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3364 r = r->skip[PF_SKIP_IFP].ptr; 3365 else if (r->direction && r->direction != direction) 3366 r = r->skip[PF_SKIP_DIR].ptr; 3367 else if (r->af && r->af != af) 3368 r = r->skip[PF_SKIP_AF].ptr; 3369 else if (r->proto && r->proto != pd->proto) 3370 r = r->skip[PF_SKIP_PROTO].ptr; 3371 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3372 r->src.neg, kif, M_GETFIB(m))) 3373 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3374 /* tcp/udp only. port_op always 0 in other cases */ 3375 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3376 r->src.port[0], r->src.port[1], sport)) 3377 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3378 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3379 r->dst.neg, NULL, M_GETFIB(m))) 3380 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3381 /* tcp/udp only. port_op always 0 in other cases */ 3382 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3383 r->dst.port[0], r->dst.port[1], dport)) 3384 r = r->skip[PF_SKIP_DST_PORT].ptr; 3385 /* icmp only. type always 0 in other cases */ 3386 else if (r->type && r->type != icmptype + 1) 3387 r = TAILQ_NEXT(r, entries); 3388 /* icmp only. type always 0 in other cases */ 3389 else if (r->code && r->code != icmpcode + 1) 3390 r = TAILQ_NEXT(r, entries); 3391 else if (r->tos && !(r->tos == pd->tos)) 3392 r = TAILQ_NEXT(r, entries); 3393 else if (r->rule_flag & PFRULE_FRAGMENT) 3394 r = TAILQ_NEXT(r, entries); 3395 else if (pd->proto == IPPROTO_TCP && 3396 (r->flagset & th->th_flags) != r->flags) 3397 r = TAILQ_NEXT(r, entries); 3398 /* tcp/udp only. uid.op always 0 in other cases */ 3399 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3400 pf_socket_lookup(direction, pd, m), 1)) && 3401 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3402 pd->lookup.uid)) 3403 r = TAILQ_NEXT(r, entries); 3404 /* tcp/udp only. gid.op always 0 in other cases */ 3405 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3406 pf_socket_lookup(direction, pd, m), 1)) && 3407 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3408 pd->lookup.gid)) 3409 r = TAILQ_NEXT(r, entries); 3410 else if (r->prio && 3411 !pf_match_ieee8021q_pcp(r->prio, m)) 3412 r = TAILQ_NEXT(r, entries); 3413 else if (r->prob && 3414 r->prob <= arc4random()) 3415 r = TAILQ_NEXT(r, entries); 3416 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3417 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3418 r = TAILQ_NEXT(r, entries); 3419 else if (r->os_fingerprint != PF_OSFP_ANY && 3420 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3421 pf_osfp_fingerprint(pd, m, off, th), 3422 r->os_fingerprint))) 3423 r = TAILQ_NEXT(r, entries); 3424 else { 3425 if (r->tag) 3426 tag = r->tag; 3427 if (r->rtableid >= 0) 3428 rtableid = r->rtableid; 3429 if (r->anchor == NULL) { 3430 match = 1; 3431 *rm = r; 3432 *am = a; 3433 *rsm = ruleset; 3434 if ((*rm)->quick) 3435 break; 3436 r = TAILQ_NEXT(r, entries); 3437 } else 3438 pf_step_into_anchor(anchor_stack, &asd, 3439 &ruleset, PF_RULESET_FILTER, &r, &a, 3440 &match); 3441 } 3442 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3443 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3444 break; 3445 } 3446 r = *rm; 3447 a = *am; 3448 ruleset = *rsm; 3449 3450 REASON_SET(&reason, PFRES_MATCH); 3451 3452 if (r->log || (nr != NULL && nr->log)) { 3453 if (rewrite) 3454 m_copyback(m, off, hdrlen, pd->hdr.any); 3455 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3456 ruleset, pd, 1); 3457 } 3458 3459 if ((r->action == PF_DROP) && 3460 ((r->rule_flag & PFRULE_RETURNRST) || 3461 (r->rule_flag & PFRULE_RETURNICMP) || 3462 (r->rule_flag & PFRULE_RETURN))) { 3463 /* undo NAT changes, if they have taken place */ 3464 if (nr != NULL) { 3465 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3466 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3467 if (pd->sport) 3468 *pd->sport = sk->port[pd->sidx]; 3469 if (pd->dport) 3470 *pd->dport = sk->port[pd->didx]; 3471 if (pd->proto_sum) 3472 *pd->proto_sum = bproto_sum; 3473 if (pd->ip_sum) 3474 *pd->ip_sum = bip_sum; 3475 m_copyback(m, off, hdrlen, pd->hdr.any); 3476 } 3477 if (pd->proto == IPPROTO_TCP && 3478 ((r->rule_flag & PFRULE_RETURNRST) || 3479 (r->rule_flag & PFRULE_RETURN)) && 3480 !(th->th_flags & TH_RST)) { 3481 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3482 int len = 0; 3483 #ifdef INET 3484 struct ip *h4; 3485 #endif 3486 #ifdef INET6 3487 struct ip6_hdr *h6; 3488 #endif 3489 3490 switch (af) { 3491 #ifdef INET 3492 case AF_INET: 3493 h4 = mtod(m, struct ip *); 3494 len = ntohs(h4->ip_len) - off; 3495 break; 3496 #endif 3497 #ifdef INET6 3498 case AF_INET6: 3499 h6 = mtod(m, struct ip6_hdr *); 3500 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3501 break; 3502 #endif 3503 } 3504 3505 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3506 REASON_SET(&reason, PFRES_PROTCKSUM); 3507 else { 3508 if (th->th_flags & TH_SYN) 3509 ack++; 3510 if (th->th_flags & TH_FIN) 3511 ack++; 3512 pf_send_tcp(m, r, af, pd->dst, 3513 pd->src, th->th_dport, th->th_sport, 3514 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3515 r->return_ttl, 1, 0, kif->pfik_ifp); 3516 } 3517 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3518 r->return_icmp) 3519 pf_send_icmp(m, r->return_icmp >> 8, 3520 r->return_icmp & 255, af, r); 3521 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3522 r->return_icmp6) 3523 pf_send_icmp(m, r->return_icmp6 >> 8, 3524 r->return_icmp6 & 255, af, r); 3525 } 3526 3527 if (r->action == PF_DROP) 3528 goto cleanup; 3529 3530 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3531 REASON_SET(&reason, PFRES_MEMORY); 3532 goto cleanup; 3533 } 3534 if (rtableid >= 0) 3535 M_SETFIB(m, rtableid); 3536 3537 if (!state_icmp && (r->keep_state || nr != NULL || 3538 (pd->flags & PFDESC_TCP_NORM))) { 3539 int action; 3540 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3541 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3542 hdrlen); 3543 if (action != PF_PASS) 3544 return (action); 3545 } else { 3546 if (sk != NULL) 3547 uma_zfree(V_pf_state_key_z, sk); 3548 if (nk != NULL) 3549 uma_zfree(V_pf_state_key_z, nk); 3550 } 3551 3552 /* copy back packet headers if we performed NAT operations */ 3553 if (rewrite) 3554 m_copyback(m, off, hdrlen, pd->hdr.any); 3555 3556 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3557 direction == PF_OUT && 3558 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3559 /* 3560 * We want the state created, but we dont 3561 * want to send this in case a partner 3562 * firewall has to know about it to allow 3563 * replies through it. 3564 */ 3565 return (PF_DEFER); 3566 3567 return (PF_PASS); 3568 3569 cleanup: 3570 if (sk != NULL) 3571 uma_zfree(V_pf_state_key_z, sk); 3572 if (nk != NULL) 3573 uma_zfree(V_pf_state_key_z, nk); 3574 return (PF_DROP); 3575 } 3576 3577 static int 3578 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3579 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3580 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3581 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3582 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3583 { 3584 struct pf_state *s = NULL; 3585 struct pf_src_node *sn = NULL; 3586 struct tcphdr *th = pd->hdr.tcp; 3587 u_int16_t mss = V_tcp_mssdflt; 3588 u_short reason; 3589 3590 /* check maximums */ 3591 if (r->max_states && 3592 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3593 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3594 REASON_SET(&reason, PFRES_MAXSTATES); 3595 goto csfailed; 3596 } 3597 /* src node for filter rule */ 3598 if ((r->rule_flag & PFRULE_SRCTRACK || 3599 r->rpool.opts & PF_POOL_STICKYADDR) && 3600 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3601 REASON_SET(&reason, PFRES_SRCLIMIT); 3602 goto csfailed; 3603 } 3604 /* src node for translation rule */ 3605 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3606 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3607 REASON_SET(&reason, PFRES_SRCLIMIT); 3608 goto csfailed; 3609 } 3610 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3611 if (s == NULL) { 3612 REASON_SET(&reason, PFRES_MEMORY); 3613 goto csfailed; 3614 } 3615 s->rule.ptr = r; 3616 s->nat_rule.ptr = nr; 3617 s->anchor.ptr = a; 3618 STATE_INC_COUNTERS(s); 3619 if (r->allow_opts) 3620 s->state_flags |= PFSTATE_ALLOWOPTS; 3621 if (r->rule_flag & PFRULE_STATESLOPPY) 3622 s->state_flags |= PFSTATE_SLOPPY; 3623 s->log = r->log & PF_LOG_ALL; 3624 s->sync_state = PFSYNC_S_NONE; 3625 if (nr != NULL) 3626 s->log |= nr->log & PF_LOG_ALL; 3627 switch (pd->proto) { 3628 case IPPROTO_TCP: 3629 s->src.seqlo = ntohl(th->th_seq); 3630 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3631 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3632 r->keep_state == PF_STATE_MODULATE) { 3633 /* Generate sequence number modulator */ 3634 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3635 0) 3636 s->src.seqdiff = 1; 3637 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3638 htonl(s->src.seqlo + s->src.seqdiff), 0); 3639 *rewrite = 1; 3640 } else 3641 s->src.seqdiff = 0; 3642 if (th->th_flags & TH_SYN) { 3643 s->src.seqhi++; 3644 s->src.wscale = pf_get_wscale(m, off, 3645 th->th_off, pd->af); 3646 } 3647 s->src.max_win = MAX(ntohs(th->th_win), 1); 3648 if (s->src.wscale & PF_WSCALE_MASK) { 3649 /* Remove scale factor from initial window */ 3650 int win = s->src.max_win; 3651 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3652 s->src.max_win = (win - 1) >> 3653 (s->src.wscale & PF_WSCALE_MASK); 3654 } 3655 if (th->th_flags & TH_FIN) 3656 s->src.seqhi++; 3657 s->dst.seqhi = 1; 3658 s->dst.max_win = 1; 3659 s->src.state = TCPS_SYN_SENT; 3660 s->dst.state = TCPS_CLOSED; 3661 s->timeout = PFTM_TCP_FIRST_PACKET; 3662 break; 3663 case IPPROTO_UDP: 3664 s->src.state = PFUDPS_SINGLE; 3665 s->dst.state = PFUDPS_NO_TRAFFIC; 3666 s->timeout = PFTM_UDP_FIRST_PACKET; 3667 break; 3668 case IPPROTO_ICMP: 3669 #ifdef INET6 3670 case IPPROTO_ICMPV6: 3671 #endif 3672 s->timeout = PFTM_ICMP_FIRST_PACKET; 3673 break; 3674 default: 3675 s->src.state = PFOTHERS_SINGLE; 3676 s->dst.state = PFOTHERS_NO_TRAFFIC; 3677 s->timeout = PFTM_OTHER_FIRST_PACKET; 3678 } 3679 3680 if (r->rt) { 3681 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3682 REASON_SET(&reason, PFRES_MAPFAILED); 3683 pf_src_tree_remove_state(s); 3684 STATE_DEC_COUNTERS(s); 3685 uma_zfree(V_pf_state_z, s); 3686 goto csfailed; 3687 } 3688 s->rt_kif = r->rpool.cur->kif; 3689 } 3690 3691 s->creation = time_uptime; 3692 s->expire = time_uptime; 3693 3694 if (sn != NULL) 3695 s->src_node = sn; 3696 if (nsn != NULL) { 3697 /* XXX We only modify one side for now. */ 3698 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3699 s->nat_src_node = nsn; 3700 } 3701 if (pd->proto == IPPROTO_TCP) { 3702 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3703 off, pd, th, &s->src, &s->dst)) { 3704 REASON_SET(&reason, PFRES_MEMORY); 3705 pf_src_tree_remove_state(s); 3706 STATE_DEC_COUNTERS(s); 3707 uma_zfree(V_pf_state_z, s); 3708 return (PF_DROP); 3709 } 3710 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3711 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3712 &s->src, &s->dst, rewrite)) { 3713 /* This really shouldn't happen!!! */ 3714 DPFPRINTF(PF_DEBUG_URGENT, 3715 ("pf_normalize_tcp_stateful failed on first pkt")); 3716 pf_normalize_tcp_cleanup(s); 3717 pf_src_tree_remove_state(s); 3718 STATE_DEC_COUNTERS(s); 3719 uma_zfree(V_pf_state_z, s); 3720 return (PF_DROP); 3721 } 3722 } 3723 s->direction = pd->dir; 3724 3725 /* 3726 * sk/nk could already been setup by pf_get_translation(). 3727 */ 3728 if (nr == NULL) { 3729 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3730 __func__, nr, sk, nk)); 3731 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3732 if (sk == NULL) 3733 goto csfailed; 3734 nk = sk; 3735 } else 3736 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3737 __func__, nr, sk, nk)); 3738 3739 /* Swap sk/nk for PF_OUT. */ 3740 if (pf_state_insert(BOUND_IFACE(r, kif), 3741 (pd->dir == PF_IN) ? sk : nk, 3742 (pd->dir == PF_IN) ? nk : sk, s)) { 3743 if (pd->proto == IPPROTO_TCP) 3744 pf_normalize_tcp_cleanup(s); 3745 REASON_SET(&reason, PFRES_STATEINS); 3746 pf_src_tree_remove_state(s); 3747 STATE_DEC_COUNTERS(s); 3748 uma_zfree(V_pf_state_z, s); 3749 return (PF_DROP); 3750 } else 3751 *sm = s; 3752 3753 if (tag > 0) 3754 s->tag = tag; 3755 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3756 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3757 s->src.state = PF_TCPS_PROXY_SRC; 3758 /* undo NAT changes, if they have taken place */ 3759 if (nr != NULL) { 3760 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3761 if (pd->dir == PF_OUT) 3762 skt = s->key[PF_SK_STACK]; 3763 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3764 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3765 if (pd->sport) 3766 *pd->sport = skt->port[pd->sidx]; 3767 if (pd->dport) 3768 *pd->dport = skt->port[pd->didx]; 3769 if (pd->proto_sum) 3770 *pd->proto_sum = bproto_sum; 3771 if (pd->ip_sum) 3772 *pd->ip_sum = bip_sum; 3773 m_copyback(m, off, hdrlen, pd->hdr.any); 3774 } 3775 s->src.seqhi = htonl(arc4random()); 3776 /* Find mss option */ 3777 int rtid = M_GETFIB(m); 3778 mss = pf_get_mss(m, off, th->th_off, pd->af); 3779 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3780 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3781 s->src.mss = mss; 3782 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3783 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3784 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3785 REASON_SET(&reason, PFRES_SYNPROXY); 3786 return (PF_SYNPROXY_DROP); 3787 } 3788 3789 return (PF_PASS); 3790 3791 csfailed: 3792 if (sk != NULL) 3793 uma_zfree(V_pf_state_key_z, sk); 3794 if (nk != NULL) 3795 uma_zfree(V_pf_state_key_z, nk); 3796 3797 if (sn != NULL) { 3798 struct pf_srchash *sh; 3799 3800 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3801 PF_HASHROW_LOCK(sh); 3802 if (--sn->states == 0 && sn->expire == 0) { 3803 pf_unlink_src_node(sn); 3804 uma_zfree(V_pf_sources_z, sn); 3805 counter_u64_add( 3806 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3807 } 3808 PF_HASHROW_UNLOCK(sh); 3809 } 3810 3811 if (nsn != sn && nsn != NULL) { 3812 struct pf_srchash *sh; 3813 3814 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3815 PF_HASHROW_LOCK(sh); 3816 if (--nsn->states == 0 && nsn->expire == 0) { 3817 pf_unlink_src_node(nsn); 3818 uma_zfree(V_pf_sources_z, nsn); 3819 counter_u64_add( 3820 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3821 } 3822 PF_HASHROW_UNLOCK(sh); 3823 } 3824 3825 return (PF_DROP); 3826 } 3827 3828 static int 3829 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3830 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3831 struct pf_ruleset **rsm) 3832 { 3833 struct pf_rule *r, *a = NULL; 3834 struct pf_ruleset *ruleset = NULL; 3835 sa_family_t af = pd->af; 3836 u_short reason; 3837 int tag = -1; 3838 int asd = 0; 3839 int match = 0; 3840 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3841 3842 PF_RULES_RASSERT(); 3843 3844 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3845 while (r != NULL) { 3846 r->evaluations++; 3847 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3848 r = r->skip[PF_SKIP_IFP].ptr; 3849 else if (r->direction && r->direction != direction) 3850 r = r->skip[PF_SKIP_DIR].ptr; 3851 else if (r->af && r->af != af) 3852 r = r->skip[PF_SKIP_AF].ptr; 3853 else if (r->proto && r->proto != pd->proto) 3854 r = r->skip[PF_SKIP_PROTO].ptr; 3855 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3856 r->src.neg, kif, M_GETFIB(m))) 3857 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3858 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3859 r->dst.neg, NULL, M_GETFIB(m))) 3860 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3861 else if (r->tos && !(r->tos == pd->tos)) 3862 r = TAILQ_NEXT(r, entries); 3863 else if (r->os_fingerprint != PF_OSFP_ANY) 3864 r = TAILQ_NEXT(r, entries); 3865 else if (pd->proto == IPPROTO_UDP && 3866 (r->src.port_op || r->dst.port_op)) 3867 r = TAILQ_NEXT(r, entries); 3868 else if (pd->proto == IPPROTO_TCP && 3869 (r->src.port_op || r->dst.port_op || r->flagset)) 3870 r = TAILQ_NEXT(r, entries); 3871 else if ((pd->proto == IPPROTO_ICMP || 3872 pd->proto == IPPROTO_ICMPV6) && 3873 (r->type || r->code)) 3874 r = TAILQ_NEXT(r, entries); 3875 else if (r->prio && 3876 !pf_match_ieee8021q_pcp(r->prio, m)) 3877 r = TAILQ_NEXT(r, entries); 3878 else if (r->prob && r->prob <= 3879 (arc4random() % (UINT_MAX - 1) + 1)) 3880 r = TAILQ_NEXT(r, entries); 3881 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3882 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3883 r = TAILQ_NEXT(r, entries); 3884 else { 3885 if (r->anchor == NULL) { 3886 match = 1; 3887 *rm = r; 3888 *am = a; 3889 *rsm = ruleset; 3890 if ((*rm)->quick) 3891 break; 3892 r = TAILQ_NEXT(r, entries); 3893 } else 3894 pf_step_into_anchor(anchor_stack, &asd, 3895 &ruleset, PF_RULESET_FILTER, &r, &a, 3896 &match); 3897 } 3898 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3899 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3900 break; 3901 } 3902 r = *rm; 3903 a = *am; 3904 ruleset = *rsm; 3905 3906 REASON_SET(&reason, PFRES_MATCH); 3907 3908 if (r->log) 3909 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3910 1); 3911 3912 if (r->action != PF_PASS) 3913 return (PF_DROP); 3914 3915 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3916 REASON_SET(&reason, PFRES_MEMORY); 3917 return (PF_DROP); 3918 } 3919 3920 return (PF_PASS); 3921 } 3922 3923 static int 3924 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3925 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3926 struct pf_pdesc *pd, u_short *reason, int *copyback) 3927 { 3928 struct tcphdr *th = pd->hdr.tcp; 3929 u_int16_t win = ntohs(th->th_win); 3930 u_int32_t ack, end, seq, orig_seq; 3931 u_int8_t sws, dws; 3932 int ackskew; 3933 3934 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3935 sws = src->wscale & PF_WSCALE_MASK; 3936 dws = dst->wscale & PF_WSCALE_MASK; 3937 } else 3938 sws = dws = 0; 3939 3940 /* 3941 * Sequence tracking algorithm from Guido van Rooij's paper: 3942 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3943 * tcp_filtering.ps 3944 */ 3945 3946 orig_seq = seq = ntohl(th->th_seq); 3947 if (src->seqlo == 0) { 3948 /* First packet from this end. Set its state */ 3949 3950 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3951 src->scrub == NULL) { 3952 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3953 REASON_SET(reason, PFRES_MEMORY); 3954 return (PF_DROP); 3955 } 3956 } 3957 3958 /* Deferred generation of sequence number modulator */ 3959 if (dst->seqdiff && !src->seqdiff) { 3960 /* use random iss for the TCP server */ 3961 while ((src->seqdiff = arc4random() - seq) == 0) 3962 ; 3963 ack = ntohl(th->th_ack) - dst->seqdiff; 3964 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3965 src->seqdiff), 0); 3966 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 3967 *copyback = 1; 3968 } else { 3969 ack = ntohl(th->th_ack); 3970 } 3971 3972 end = seq + pd->p_len; 3973 if (th->th_flags & TH_SYN) { 3974 end++; 3975 if (dst->wscale & PF_WSCALE_FLAG) { 3976 src->wscale = pf_get_wscale(m, off, th->th_off, 3977 pd->af); 3978 if (src->wscale & PF_WSCALE_FLAG) { 3979 /* Remove scale factor from initial 3980 * window */ 3981 sws = src->wscale & PF_WSCALE_MASK; 3982 win = ((u_int32_t)win + (1 << sws) - 1) 3983 >> sws; 3984 dws = dst->wscale & PF_WSCALE_MASK; 3985 } else { 3986 /* fixup other window */ 3987 dst->max_win <<= dst->wscale & 3988 PF_WSCALE_MASK; 3989 /* in case of a retrans SYN|ACK */ 3990 dst->wscale = 0; 3991 } 3992 } 3993 } 3994 if (th->th_flags & TH_FIN) 3995 end++; 3996 3997 src->seqlo = seq; 3998 if (src->state < TCPS_SYN_SENT) 3999 src->state = TCPS_SYN_SENT; 4000 4001 /* 4002 * May need to slide the window (seqhi may have been set by 4003 * the crappy stack check or if we picked up the connection 4004 * after establishment) 4005 */ 4006 if (src->seqhi == 1 || 4007 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4008 src->seqhi = end + MAX(1, dst->max_win << dws); 4009 if (win > src->max_win) 4010 src->max_win = win; 4011 4012 } else { 4013 ack = ntohl(th->th_ack) - dst->seqdiff; 4014 if (src->seqdiff) { 4015 /* Modulate sequence numbers */ 4016 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4017 src->seqdiff), 0); 4018 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4019 *copyback = 1; 4020 } 4021 end = seq + pd->p_len; 4022 if (th->th_flags & TH_SYN) 4023 end++; 4024 if (th->th_flags & TH_FIN) 4025 end++; 4026 } 4027 4028 if ((th->th_flags & TH_ACK) == 0) { 4029 /* Let it pass through the ack skew check */ 4030 ack = dst->seqlo; 4031 } else if ((ack == 0 && 4032 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4033 /* broken tcp stacks do not set ack */ 4034 (dst->state < TCPS_SYN_SENT)) { 4035 /* 4036 * Many stacks (ours included) will set the ACK number in an 4037 * FIN|ACK if the SYN times out -- no sequence to ACK. 4038 */ 4039 ack = dst->seqlo; 4040 } 4041 4042 if (seq == end) { 4043 /* Ease sequencing restrictions on no data packets */ 4044 seq = src->seqlo; 4045 end = seq; 4046 } 4047 4048 ackskew = dst->seqlo - ack; 4049 4050 4051 /* 4052 * Need to demodulate the sequence numbers in any TCP SACK options 4053 * (Selective ACK). We could optionally validate the SACK values 4054 * against the current ACK window, either forwards or backwards, but 4055 * I'm not confident that SACK has been implemented properly 4056 * everywhere. It wouldn't surprise me if several stacks accidentally 4057 * SACK too far backwards of previously ACKed data. There really aren't 4058 * any security implications of bad SACKing unless the target stack 4059 * doesn't validate the option length correctly. Someone trying to 4060 * spoof into a TCP connection won't bother blindly sending SACK 4061 * options anyway. 4062 */ 4063 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4064 if (pf_modulate_sack(m, off, pd, th, dst)) 4065 *copyback = 1; 4066 } 4067 4068 4069 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4070 if (SEQ_GEQ(src->seqhi, end) && 4071 /* Last octet inside other's window space */ 4072 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4073 /* Retrans: not more than one window back */ 4074 (ackskew >= -MAXACKWINDOW) && 4075 /* Acking not more than one reassembled fragment backwards */ 4076 (ackskew <= (MAXACKWINDOW << sws)) && 4077 /* Acking not more than one window forward */ 4078 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4079 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4080 (pd->flags & PFDESC_IP_REAS) == 0)) { 4081 /* Require an exact/+1 sequence match on resets when possible */ 4082 4083 if (dst->scrub || src->scrub) { 4084 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4085 *state, src, dst, copyback)) 4086 return (PF_DROP); 4087 } 4088 4089 /* update max window */ 4090 if (src->max_win < win) 4091 src->max_win = win; 4092 /* synchronize sequencing */ 4093 if (SEQ_GT(end, src->seqlo)) 4094 src->seqlo = end; 4095 /* slide the window of what the other end can send */ 4096 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4097 dst->seqhi = ack + MAX((win << sws), 1); 4098 4099 4100 /* update states */ 4101 if (th->th_flags & TH_SYN) 4102 if (src->state < TCPS_SYN_SENT) 4103 src->state = TCPS_SYN_SENT; 4104 if (th->th_flags & TH_FIN) 4105 if (src->state < TCPS_CLOSING) 4106 src->state = TCPS_CLOSING; 4107 if (th->th_flags & TH_ACK) { 4108 if (dst->state == TCPS_SYN_SENT) { 4109 dst->state = TCPS_ESTABLISHED; 4110 if (src->state == TCPS_ESTABLISHED && 4111 (*state)->src_node != NULL && 4112 pf_src_connlimit(state)) { 4113 REASON_SET(reason, PFRES_SRCLIMIT); 4114 return (PF_DROP); 4115 } 4116 } else if (dst->state == TCPS_CLOSING) 4117 dst->state = TCPS_FIN_WAIT_2; 4118 } 4119 if (th->th_flags & TH_RST) 4120 src->state = dst->state = TCPS_TIME_WAIT; 4121 4122 /* update expire time */ 4123 (*state)->expire = time_uptime; 4124 if (src->state >= TCPS_FIN_WAIT_2 && 4125 dst->state >= TCPS_FIN_WAIT_2) 4126 (*state)->timeout = PFTM_TCP_CLOSED; 4127 else if (src->state >= TCPS_CLOSING && 4128 dst->state >= TCPS_CLOSING) 4129 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4130 else if (src->state < TCPS_ESTABLISHED || 4131 dst->state < TCPS_ESTABLISHED) 4132 (*state)->timeout = PFTM_TCP_OPENING; 4133 else if (src->state >= TCPS_CLOSING || 4134 dst->state >= TCPS_CLOSING) 4135 (*state)->timeout = PFTM_TCP_CLOSING; 4136 else 4137 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4138 4139 /* Fall through to PASS packet */ 4140 4141 } else if ((dst->state < TCPS_SYN_SENT || 4142 dst->state >= TCPS_FIN_WAIT_2 || 4143 src->state >= TCPS_FIN_WAIT_2) && 4144 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4145 /* Within a window forward of the originating packet */ 4146 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4147 /* Within a window backward of the originating packet */ 4148 4149 /* 4150 * This currently handles three situations: 4151 * 1) Stupid stacks will shotgun SYNs before their peer 4152 * replies. 4153 * 2) When PF catches an already established stream (the 4154 * firewall rebooted, the state table was flushed, routes 4155 * changed...) 4156 * 3) Packets get funky immediately after the connection 4157 * closes (this should catch Solaris spurious ACK|FINs 4158 * that web servers like to spew after a close) 4159 * 4160 * This must be a little more careful than the above code 4161 * since packet floods will also be caught here. We don't 4162 * update the TTL here to mitigate the damage of a packet 4163 * flood and so the same code can handle awkward establishment 4164 * and a loosened connection close. 4165 * In the establishment case, a correct peer response will 4166 * validate the connection, go through the normal state code 4167 * and keep updating the state TTL. 4168 */ 4169 4170 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4171 printf("pf: loose state match: "); 4172 pf_print_state(*state); 4173 pf_print_flags(th->th_flags); 4174 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4175 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4176 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4177 (unsigned long long)(*state)->packets[1], 4178 pd->dir == PF_IN ? "in" : "out", 4179 pd->dir == (*state)->direction ? "fwd" : "rev"); 4180 } 4181 4182 if (dst->scrub || src->scrub) { 4183 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4184 *state, src, dst, copyback)) 4185 return (PF_DROP); 4186 } 4187 4188 /* update max window */ 4189 if (src->max_win < win) 4190 src->max_win = win; 4191 /* synchronize sequencing */ 4192 if (SEQ_GT(end, src->seqlo)) 4193 src->seqlo = end; 4194 /* slide the window of what the other end can send */ 4195 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4196 dst->seqhi = ack + MAX((win << sws), 1); 4197 4198 /* 4199 * Cannot set dst->seqhi here since this could be a shotgunned 4200 * SYN and not an already established connection. 4201 */ 4202 4203 if (th->th_flags & TH_FIN) 4204 if (src->state < TCPS_CLOSING) 4205 src->state = TCPS_CLOSING; 4206 if (th->th_flags & TH_RST) 4207 src->state = dst->state = TCPS_TIME_WAIT; 4208 4209 /* Fall through to PASS packet */ 4210 4211 } else { 4212 if ((*state)->dst.state == TCPS_SYN_SENT && 4213 (*state)->src.state == TCPS_SYN_SENT) { 4214 /* Send RST for state mismatches during handshake */ 4215 if (!(th->th_flags & TH_RST)) 4216 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4217 pd->dst, pd->src, th->th_dport, 4218 th->th_sport, ntohl(th->th_ack), 0, 4219 TH_RST, 0, 0, 4220 (*state)->rule.ptr->return_ttl, 1, 0, 4221 kif->pfik_ifp); 4222 src->seqlo = 0; 4223 src->seqhi = 1; 4224 src->max_win = 1; 4225 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4226 printf("pf: BAD state: "); 4227 pf_print_state(*state); 4228 pf_print_flags(th->th_flags); 4229 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4230 "pkts=%llu:%llu dir=%s,%s\n", 4231 seq, orig_seq, ack, pd->p_len, ackskew, 4232 (unsigned long long)(*state)->packets[0], 4233 (unsigned long long)(*state)->packets[1], 4234 pd->dir == PF_IN ? "in" : "out", 4235 pd->dir == (*state)->direction ? "fwd" : "rev"); 4236 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4237 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4238 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4239 ' ': '2', 4240 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4241 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4242 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4243 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4244 } 4245 REASON_SET(reason, PFRES_BADSTATE); 4246 return (PF_DROP); 4247 } 4248 4249 return (PF_PASS); 4250 } 4251 4252 static int 4253 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4254 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4255 { 4256 struct tcphdr *th = pd->hdr.tcp; 4257 4258 if (th->th_flags & TH_SYN) 4259 if (src->state < TCPS_SYN_SENT) 4260 src->state = TCPS_SYN_SENT; 4261 if (th->th_flags & TH_FIN) 4262 if (src->state < TCPS_CLOSING) 4263 src->state = TCPS_CLOSING; 4264 if (th->th_flags & TH_ACK) { 4265 if (dst->state == TCPS_SYN_SENT) { 4266 dst->state = TCPS_ESTABLISHED; 4267 if (src->state == TCPS_ESTABLISHED && 4268 (*state)->src_node != NULL && 4269 pf_src_connlimit(state)) { 4270 REASON_SET(reason, PFRES_SRCLIMIT); 4271 return (PF_DROP); 4272 } 4273 } else if (dst->state == TCPS_CLOSING) { 4274 dst->state = TCPS_FIN_WAIT_2; 4275 } else if (src->state == TCPS_SYN_SENT && 4276 dst->state < TCPS_SYN_SENT) { 4277 /* 4278 * Handle a special sloppy case where we only see one 4279 * half of the connection. If there is a ACK after 4280 * the initial SYN without ever seeing a packet from 4281 * the destination, set the connection to established. 4282 */ 4283 dst->state = src->state = TCPS_ESTABLISHED; 4284 if ((*state)->src_node != NULL && 4285 pf_src_connlimit(state)) { 4286 REASON_SET(reason, PFRES_SRCLIMIT); 4287 return (PF_DROP); 4288 } 4289 } else if (src->state == TCPS_CLOSING && 4290 dst->state == TCPS_ESTABLISHED && 4291 dst->seqlo == 0) { 4292 /* 4293 * Handle the closing of half connections where we 4294 * don't see the full bidirectional FIN/ACK+ACK 4295 * handshake. 4296 */ 4297 dst->state = TCPS_CLOSING; 4298 } 4299 } 4300 if (th->th_flags & TH_RST) 4301 src->state = dst->state = TCPS_TIME_WAIT; 4302 4303 /* update expire time */ 4304 (*state)->expire = time_uptime; 4305 if (src->state >= TCPS_FIN_WAIT_2 && 4306 dst->state >= TCPS_FIN_WAIT_2) 4307 (*state)->timeout = PFTM_TCP_CLOSED; 4308 else if (src->state >= TCPS_CLOSING && 4309 dst->state >= TCPS_CLOSING) 4310 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4311 else if (src->state < TCPS_ESTABLISHED || 4312 dst->state < TCPS_ESTABLISHED) 4313 (*state)->timeout = PFTM_TCP_OPENING; 4314 else if (src->state >= TCPS_CLOSING || 4315 dst->state >= TCPS_CLOSING) 4316 (*state)->timeout = PFTM_TCP_CLOSING; 4317 else 4318 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4319 4320 return (PF_PASS); 4321 } 4322 4323 static int 4324 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4325 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4326 u_short *reason) 4327 { 4328 struct pf_state_key_cmp key; 4329 struct tcphdr *th = pd->hdr.tcp; 4330 int copyback = 0; 4331 struct pf_state_peer *src, *dst; 4332 struct pf_state_key *sk; 4333 4334 bzero(&key, sizeof(key)); 4335 key.af = pd->af; 4336 key.proto = IPPROTO_TCP; 4337 if (direction == PF_IN) { /* wire side, straight */ 4338 PF_ACPY(&key.addr[0], pd->src, key.af); 4339 PF_ACPY(&key.addr[1], pd->dst, key.af); 4340 key.port[0] = th->th_sport; 4341 key.port[1] = th->th_dport; 4342 } else { /* stack side, reverse */ 4343 PF_ACPY(&key.addr[1], pd->src, key.af); 4344 PF_ACPY(&key.addr[0], pd->dst, key.af); 4345 key.port[1] = th->th_sport; 4346 key.port[0] = th->th_dport; 4347 } 4348 4349 STATE_LOOKUP(kif, &key, direction, *state, pd); 4350 4351 if (direction == (*state)->direction) { 4352 src = &(*state)->src; 4353 dst = &(*state)->dst; 4354 } else { 4355 src = &(*state)->dst; 4356 dst = &(*state)->src; 4357 } 4358 4359 sk = (*state)->key[pd->didx]; 4360 4361 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4362 if (direction != (*state)->direction) { 4363 REASON_SET(reason, PFRES_SYNPROXY); 4364 return (PF_SYNPROXY_DROP); 4365 } 4366 if (th->th_flags & TH_SYN) { 4367 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4368 REASON_SET(reason, PFRES_SYNPROXY); 4369 return (PF_DROP); 4370 } 4371 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4372 pd->src, th->th_dport, th->th_sport, 4373 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4374 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4375 REASON_SET(reason, PFRES_SYNPROXY); 4376 return (PF_SYNPROXY_DROP); 4377 } else if (!(th->th_flags & TH_ACK) || 4378 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4379 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4380 REASON_SET(reason, PFRES_SYNPROXY); 4381 return (PF_DROP); 4382 } else if ((*state)->src_node != NULL && 4383 pf_src_connlimit(state)) { 4384 REASON_SET(reason, PFRES_SRCLIMIT); 4385 return (PF_DROP); 4386 } else 4387 (*state)->src.state = PF_TCPS_PROXY_DST; 4388 } 4389 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4390 if (direction == (*state)->direction) { 4391 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4392 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4393 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4394 REASON_SET(reason, PFRES_SYNPROXY); 4395 return (PF_DROP); 4396 } 4397 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4398 if ((*state)->dst.seqhi == 1) 4399 (*state)->dst.seqhi = htonl(arc4random()); 4400 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4401 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4402 sk->port[pd->sidx], sk->port[pd->didx], 4403 (*state)->dst.seqhi, 0, TH_SYN, 0, 4404 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4405 REASON_SET(reason, PFRES_SYNPROXY); 4406 return (PF_SYNPROXY_DROP); 4407 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4408 (TH_SYN|TH_ACK)) || 4409 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4410 REASON_SET(reason, PFRES_SYNPROXY); 4411 return (PF_DROP); 4412 } else { 4413 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4414 (*state)->dst.seqlo = ntohl(th->th_seq); 4415 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4416 pd->src, th->th_dport, th->th_sport, 4417 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4418 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4419 (*state)->tag, NULL); 4420 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4421 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4422 sk->port[pd->sidx], sk->port[pd->didx], 4423 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4424 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4425 (*state)->src.seqdiff = (*state)->dst.seqhi - 4426 (*state)->src.seqlo; 4427 (*state)->dst.seqdiff = (*state)->src.seqhi - 4428 (*state)->dst.seqlo; 4429 (*state)->src.seqhi = (*state)->src.seqlo + 4430 (*state)->dst.max_win; 4431 (*state)->dst.seqhi = (*state)->dst.seqlo + 4432 (*state)->src.max_win; 4433 (*state)->src.wscale = (*state)->dst.wscale = 0; 4434 (*state)->src.state = (*state)->dst.state = 4435 TCPS_ESTABLISHED; 4436 REASON_SET(reason, PFRES_SYNPROXY); 4437 return (PF_SYNPROXY_DROP); 4438 } 4439 } 4440 4441 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4442 dst->state >= TCPS_FIN_WAIT_2 && 4443 src->state >= TCPS_FIN_WAIT_2) { 4444 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4445 printf("pf: state reuse "); 4446 pf_print_state(*state); 4447 pf_print_flags(th->th_flags); 4448 printf("\n"); 4449 } 4450 /* XXX make sure it's the same direction ?? */ 4451 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4452 pf_unlink_state(*state, PF_ENTER_LOCKED); 4453 *state = NULL; 4454 return (PF_DROP); 4455 } 4456 4457 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4458 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4459 return (PF_DROP); 4460 } else { 4461 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4462 ©back) == PF_DROP) 4463 return (PF_DROP); 4464 } 4465 4466 /* translate source/destination address, if necessary */ 4467 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4468 struct pf_state_key *nk = (*state)->key[pd->didx]; 4469 4470 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4471 nk->port[pd->sidx] != th->th_sport) 4472 pf_change_ap(m, pd->src, &th->th_sport, 4473 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4474 nk->port[pd->sidx], 0, pd->af); 4475 4476 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4477 nk->port[pd->didx] != th->th_dport) 4478 pf_change_ap(m, pd->dst, &th->th_dport, 4479 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4480 nk->port[pd->didx], 0, pd->af); 4481 copyback = 1; 4482 } 4483 4484 /* Copyback sequence modulation or stateful scrub changes if needed */ 4485 if (copyback) 4486 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4487 4488 return (PF_PASS); 4489 } 4490 4491 static int 4492 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4493 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4494 { 4495 struct pf_state_peer *src, *dst; 4496 struct pf_state_key_cmp key; 4497 struct udphdr *uh = pd->hdr.udp; 4498 4499 bzero(&key, sizeof(key)); 4500 key.af = pd->af; 4501 key.proto = IPPROTO_UDP; 4502 if (direction == PF_IN) { /* wire side, straight */ 4503 PF_ACPY(&key.addr[0], pd->src, key.af); 4504 PF_ACPY(&key.addr[1], pd->dst, key.af); 4505 key.port[0] = uh->uh_sport; 4506 key.port[1] = uh->uh_dport; 4507 } else { /* stack side, reverse */ 4508 PF_ACPY(&key.addr[1], pd->src, key.af); 4509 PF_ACPY(&key.addr[0], pd->dst, key.af); 4510 key.port[1] = uh->uh_sport; 4511 key.port[0] = uh->uh_dport; 4512 } 4513 4514 STATE_LOOKUP(kif, &key, direction, *state, pd); 4515 4516 if (direction == (*state)->direction) { 4517 src = &(*state)->src; 4518 dst = &(*state)->dst; 4519 } else { 4520 src = &(*state)->dst; 4521 dst = &(*state)->src; 4522 } 4523 4524 /* update states */ 4525 if (src->state < PFUDPS_SINGLE) 4526 src->state = PFUDPS_SINGLE; 4527 if (dst->state == PFUDPS_SINGLE) 4528 dst->state = PFUDPS_MULTIPLE; 4529 4530 /* update expire time */ 4531 (*state)->expire = time_uptime; 4532 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4533 (*state)->timeout = PFTM_UDP_MULTIPLE; 4534 else 4535 (*state)->timeout = PFTM_UDP_SINGLE; 4536 4537 /* translate source/destination address, if necessary */ 4538 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4539 struct pf_state_key *nk = (*state)->key[pd->didx]; 4540 4541 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4542 nk->port[pd->sidx] != uh->uh_sport) 4543 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4544 &uh->uh_sum, &nk->addr[pd->sidx], 4545 nk->port[pd->sidx], 1, pd->af); 4546 4547 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4548 nk->port[pd->didx] != uh->uh_dport) 4549 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4550 &uh->uh_sum, &nk->addr[pd->didx], 4551 nk->port[pd->didx], 1, pd->af); 4552 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4553 } 4554 4555 return (PF_PASS); 4556 } 4557 4558 static int 4559 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4560 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4561 { 4562 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4563 u_int16_t icmpid = 0, *icmpsum; 4564 u_int8_t icmptype; 4565 int state_icmp = 0; 4566 struct pf_state_key_cmp key; 4567 4568 bzero(&key, sizeof(key)); 4569 switch (pd->proto) { 4570 #ifdef INET 4571 case IPPROTO_ICMP: 4572 icmptype = pd->hdr.icmp->icmp_type; 4573 icmpid = pd->hdr.icmp->icmp_id; 4574 icmpsum = &pd->hdr.icmp->icmp_cksum; 4575 4576 if (icmptype == ICMP_UNREACH || 4577 icmptype == ICMP_SOURCEQUENCH || 4578 icmptype == ICMP_REDIRECT || 4579 icmptype == ICMP_TIMXCEED || 4580 icmptype == ICMP_PARAMPROB) 4581 state_icmp++; 4582 break; 4583 #endif /* INET */ 4584 #ifdef INET6 4585 case IPPROTO_ICMPV6: 4586 icmptype = pd->hdr.icmp6->icmp6_type; 4587 icmpid = pd->hdr.icmp6->icmp6_id; 4588 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4589 4590 if (icmptype == ICMP6_DST_UNREACH || 4591 icmptype == ICMP6_PACKET_TOO_BIG || 4592 icmptype == ICMP6_TIME_EXCEEDED || 4593 icmptype == ICMP6_PARAM_PROB) 4594 state_icmp++; 4595 break; 4596 #endif /* INET6 */ 4597 } 4598 4599 if (!state_icmp) { 4600 4601 /* 4602 * ICMP query/reply message not related to a TCP/UDP packet. 4603 * Search for an ICMP state. 4604 */ 4605 key.af = pd->af; 4606 key.proto = pd->proto; 4607 key.port[0] = key.port[1] = icmpid; 4608 if (direction == PF_IN) { /* wire side, straight */ 4609 PF_ACPY(&key.addr[0], pd->src, key.af); 4610 PF_ACPY(&key.addr[1], pd->dst, key.af); 4611 } else { /* stack side, reverse */ 4612 PF_ACPY(&key.addr[1], pd->src, key.af); 4613 PF_ACPY(&key.addr[0], pd->dst, key.af); 4614 } 4615 4616 STATE_LOOKUP(kif, &key, direction, *state, pd); 4617 4618 (*state)->expire = time_uptime; 4619 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4620 4621 /* translate source/destination address, if necessary */ 4622 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4623 struct pf_state_key *nk = (*state)->key[pd->didx]; 4624 4625 switch (pd->af) { 4626 #ifdef INET 4627 case AF_INET: 4628 if (PF_ANEQ(pd->src, 4629 &nk->addr[pd->sidx], AF_INET)) 4630 pf_change_a(&saddr->v4.s_addr, 4631 pd->ip_sum, 4632 nk->addr[pd->sidx].v4.s_addr, 0); 4633 4634 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4635 AF_INET)) 4636 pf_change_a(&daddr->v4.s_addr, 4637 pd->ip_sum, 4638 nk->addr[pd->didx].v4.s_addr, 0); 4639 4640 if (nk->port[0] != 4641 pd->hdr.icmp->icmp_id) { 4642 pd->hdr.icmp->icmp_cksum = 4643 pf_cksum_fixup( 4644 pd->hdr.icmp->icmp_cksum, icmpid, 4645 nk->port[pd->sidx], 0); 4646 pd->hdr.icmp->icmp_id = 4647 nk->port[pd->sidx]; 4648 } 4649 4650 m_copyback(m, off, ICMP_MINLEN, 4651 (caddr_t )pd->hdr.icmp); 4652 break; 4653 #endif /* INET */ 4654 #ifdef INET6 4655 case AF_INET6: 4656 if (PF_ANEQ(pd->src, 4657 &nk->addr[pd->sidx], AF_INET6)) 4658 pf_change_a6(saddr, 4659 &pd->hdr.icmp6->icmp6_cksum, 4660 &nk->addr[pd->sidx], 0); 4661 4662 if (PF_ANEQ(pd->dst, 4663 &nk->addr[pd->didx], AF_INET6)) 4664 pf_change_a6(daddr, 4665 &pd->hdr.icmp6->icmp6_cksum, 4666 &nk->addr[pd->didx], 0); 4667 4668 m_copyback(m, off, sizeof(struct icmp6_hdr), 4669 (caddr_t )pd->hdr.icmp6); 4670 break; 4671 #endif /* INET6 */ 4672 } 4673 } 4674 return (PF_PASS); 4675 4676 } else { 4677 /* 4678 * ICMP error message in response to a TCP/UDP packet. 4679 * Extract the inner TCP/UDP header and search for that state. 4680 */ 4681 4682 struct pf_pdesc pd2; 4683 bzero(&pd2, sizeof pd2); 4684 #ifdef INET 4685 struct ip h2; 4686 #endif /* INET */ 4687 #ifdef INET6 4688 struct ip6_hdr h2_6; 4689 int terminal = 0; 4690 #endif /* INET6 */ 4691 int ipoff2 = 0; 4692 int off2 = 0; 4693 4694 pd2.af = pd->af; 4695 /* Payload packet is from the opposite direction. */ 4696 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4697 pd2.didx = (direction == PF_IN) ? 0 : 1; 4698 switch (pd->af) { 4699 #ifdef INET 4700 case AF_INET: 4701 /* offset of h2 in mbuf chain */ 4702 ipoff2 = off + ICMP_MINLEN; 4703 4704 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4705 NULL, reason, pd2.af)) { 4706 DPFPRINTF(PF_DEBUG_MISC, 4707 ("pf: ICMP error message too short " 4708 "(ip)\n")); 4709 return (PF_DROP); 4710 } 4711 /* 4712 * ICMP error messages don't refer to non-first 4713 * fragments 4714 */ 4715 if (h2.ip_off & htons(IP_OFFMASK)) { 4716 REASON_SET(reason, PFRES_FRAG); 4717 return (PF_DROP); 4718 } 4719 4720 /* offset of protocol header that follows h2 */ 4721 off2 = ipoff2 + (h2.ip_hl << 2); 4722 4723 pd2.proto = h2.ip_p; 4724 pd2.src = (struct pf_addr *)&h2.ip_src; 4725 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4726 pd2.ip_sum = &h2.ip_sum; 4727 break; 4728 #endif /* INET */ 4729 #ifdef INET6 4730 case AF_INET6: 4731 ipoff2 = off + sizeof(struct icmp6_hdr); 4732 4733 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4734 NULL, reason, pd2.af)) { 4735 DPFPRINTF(PF_DEBUG_MISC, 4736 ("pf: ICMP error message too short " 4737 "(ip6)\n")); 4738 return (PF_DROP); 4739 } 4740 pd2.proto = h2_6.ip6_nxt; 4741 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4742 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4743 pd2.ip_sum = NULL; 4744 off2 = ipoff2 + sizeof(h2_6); 4745 do { 4746 switch (pd2.proto) { 4747 case IPPROTO_FRAGMENT: 4748 /* 4749 * ICMPv6 error messages for 4750 * non-first fragments 4751 */ 4752 REASON_SET(reason, PFRES_FRAG); 4753 return (PF_DROP); 4754 case IPPROTO_AH: 4755 case IPPROTO_HOPOPTS: 4756 case IPPROTO_ROUTING: 4757 case IPPROTO_DSTOPTS: { 4758 /* get next header and header length */ 4759 struct ip6_ext opt6; 4760 4761 if (!pf_pull_hdr(m, off2, &opt6, 4762 sizeof(opt6), NULL, reason, 4763 pd2.af)) { 4764 DPFPRINTF(PF_DEBUG_MISC, 4765 ("pf: ICMPv6 short opt\n")); 4766 return (PF_DROP); 4767 } 4768 if (pd2.proto == IPPROTO_AH) 4769 off2 += (opt6.ip6e_len + 2) * 4; 4770 else 4771 off2 += (opt6.ip6e_len + 1) * 8; 4772 pd2.proto = opt6.ip6e_nxt; 4773 /* goto the next header */ 4774 break; 4775 } 4776 default: 4777 terminal++; 4778 break; 4779 } 4780 } while (!terminal); 4781 break; 4782 #endif /* INET6 */ 4783 } 4784 4785 switch (pd2.proto) { 4786 case IPPROTO_TCP: { 4787 struct tcphdr th; 4788 u_int32_t seq; 4789 struct pf_state_peer *src, *dst; 4790 u_int8_t dws; 4791 int copyback = 0; 4792 4793 /* 4794 * Only the first 8 bytes of the TCP header can be 4795 * expected. Don't access any TCP header fields after 4796 * th_seq, an ackskew test is not possible. 4797 */ 4798 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4799 pd2.af)) { 4800 DPFPRINTF(PF_DEBUG_MISC, 4801 ("pf: ICMP error message too short " 4802 "(tcp)\n")); 4803 return (PF_DROP); 4804 } 4805 4806 key.af = pd2.af; 4807 key.proto = IPPROTO_TCP; 4808 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4809 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4810 key.port[pd2.sidx] = th.th_sport; 4811 key.port[pd2.didx] = th.th_dport; 4812 4813 STATE_LOOKUP(kif, &key, direction, *state, pd); 4814 4815 if (direction == (*state)->direction) { 4816 src = &(*state)->dst; 4817 dst = &(*state)->src; 4818 } else { 4819 src = &(*state)->src; 4820 dst = &(*state)->dst; 4821 } 4822 4823 if (src->wscale && dst->wscale) 4824 dws = dst->wscale & PF_WSCALE_MASK; 4825 else 4826 dws = 0; 4827 4828 /* Demodulate sequence number */ 4829 seq = ntohl(th.th_seq) - src->seqdiff; 4830 if (src->seqdiff) { 4831 pf_change_a(&th.th_seq, icmpsum, 4832 htonl(seq), 0); 4833 copyback = 1; 4834 } 4835 4836 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4837 (!SEQ_GEQ(src->seqhi, seq) || 4838 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4839 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4840 printf("pf: BAD ICMP %d:%d ", 4841 icmptype, pd->hdr.icmp->icmp_code); 4842 pf_print_host(pd->src, 0, pd->af); 4843 printf(" -> "); 4844 pf_print_host(pd->dst, 0, pd->af); 4845 printf(" state: "); 4846 pf_print_state(*state); 4847 printf(" seq=%u\n", seq); 4848 } 4849 REASON_SET(reason, PFRES_BADSTATE); 4850 return (PF_DROP); 4851 } else { 4852 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4853 printf("pf: OK ICMP %d:%d ", 4854 icmptype, pd->hdr.icmp->icmp_code); 4855 pf_print_host(pd->src, 0, pd->af); 4856 printf(" -> "); 4857 pf_print_host(pd->dst, 0, pd->af); 4858 printf(" state: "); 4859 pf_print_state(*state); 4860 printf(" seq=%u\n", seq); 4861 } 4862 } 4863 4864 /* translate source/destination address, if necessary */ 4865 if ((*state)->key[PF_SK_WIRE] != 4866 (*state)->key[PF_SK_STACK]) { 4867 struct pf_state_key *nk = 4868 (*state)->key[pd->didx]; 4869 4870 if (PF_ANEQ(pd2.src, 4871 &nk->addr[pd2.sidx], pd2.af) || 4872 nk->port[pd2.sidx] != th.th_sport) 4873 pf_change_icmp(pd2.src, &th.th_sport, 4874 daddr, &nk->addr[pd2.sidx], 4875 nk->port[pd2.sidx], NULL, 4876 pd2.ip_sum, icmpsum, 4877 pd->ip_sum, 0, pd2.af); 4878 4879 if (PF_ANEQ(pd2.dst, 4880 &nk->addr[pd2.didx], pd2.af) || 4881 nk->port[pd2.didx] != th.th_dport) 4882 pf_change_icmp(pd2.dst, &th.th_dport, 4883 saddr, &nk->addr[pd2.didx], 4884 nk->port[pd2.didx], NULL, 4885 pd2.ip_sum, icmpsum, 4886 pd->ip_sum, 0, pd2.af); 4887 copyback = 1; 4888 } 4889 4890 if (copyback) { 4891 switch (pd2.af) { 4892 #ifdef INET 4893 case AF_INET: 4894 m_copyback(m, off, ICMP_MINLEN, 4895 (caddr_t )pd->hdr.icmp); 4896 m_copyback(m, ipoff2, sizeof(h2), 4897 (caddr_t )&h2); 4898 break; 4899 #endif /* INET */ 4900 #ifdef INET6 4901 case AF_INET6: 4902 m_copyback(m, off, 4903 sizeof(struct icmp6_hdr), 4904 (caddr_t )pd->hdr.icmp6); 4905 m_copyback(m, ipoff2, sizeof(h2_6), 4906 (caddr_t )&h2_6); 4907 break; 4908 #endif /* INET6 */ 4909 } 4910 m_copyback(m, off2, 8, (caddr_t)&th); 4911 } 4912 4913 return (PF_PASS); 4914 break; 4915 } 4916 case IPPROTO_UDP: { 4917 struct udphdr uh; 4918 4919 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4920 NULL, reason, pd2.af)) { 4921 DPFPRINTF(PF_DEBUG_MISC, 4922 ("pf: ICMP error message too short " 4923 "(udp)\n")); 4924 return (PF_DROP); 4925 } 4926 4927 key.af = pd2.af; 4928 key.proto = IPPROTO_UDP; 4929 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4930 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4931 key.port[pd2.sidx] = uh.uh_sport; 4932 key.port[pd2.didx] = uh.uh_dport; 4933 4934 STATE_LOOKUP(kif, &key, direction, *state, pd); 4935 4936 /* translate source/destination address, if necessary */ 4937 if ((*state)->key[PF_SK_WIRE] != 4938 (*state)->key[PF_SK_STACK]) { 4939 struct pf_state_key *nk = 4940 (*state)->key[pd->didx]; 4941 4942 if (PF_ANEQ(pd2.src, 4943 &nk->addr[pd2.sidx], pd2.af) || 4944 nk->port[pd2.sidx] != uh.uh_sport) 4945 pf_change_icmp(pd2.src, &uh.uh_sport, 4946 daddr, &nk->addr[pd2.sidx], 4947 nk->port[pd2.sidx], &uh.uh_sum, 4948 pd2.ip_sum, icmpsum, 4949 pd->ip_sum, 1, pd2.af); 4950 4951 if (PF_ANEQ(pd2.dst, 4952 &nk->addr[pd2.didx], pd2.af) || 4953 nk->port[pd2.didx] != uh.uh_dport) 4954 pf_change_icmp(pd2.dst, &uh.uh_dport, 4955 saddr, &nk->addr[pd2.didx], 4956 nk->port[pd2.didx], &uh.uh_sum, 4957 pd2.ip_sum, icmpsum, 4958 pd->ip_sum, 1, pd2.af); 4959 4960 switch (pd2.af) { 4961 #ifdef INET 4962 case AF_INET: 4963 m_copyback(m, off, ICMP_MINLEN, 4964 (caddr_t )pd->hdr.icmp); 4965 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4966 break; 4967 #endif /* INET */ 4968 #ifdef INET6 4969 case AF_INET6: 4970 m_copyback(m, off, 4971 sizeof(struct icmp6_hdr), 4972 (caddr_t )pd->hdr.icmp6); 4973 m_copyback(m, ipoff2, sizeof(h2_6), 4974 (caddr_t )&h2_6); 4975 break; 4976 #endif /* INET6 */ 4977 } 4978 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4979 } 4980 return (PF_PASS); 4981 break; 4982 } 4983 #ifdef INET 4984 case IPPROTO_ICMP: { 4985 struct icmp iih; 4986 4987 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4988 NULL, reason, pd2.af)) { 4989 DPFPRINTF(PF_DEBUG_MISC, 4990 ("pf: ICMP error message too short i" 4991 "(icmp)\n")); 4992 return (PF_DROP); 4993 } 4994 4995 key.af = pd2.af; 4996 key.proto = IPPROTO_ICMP; 4997 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4998 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4999 key.port[0] = key.port[1] = iih.icmp_id; 5000 5001 STATE_LOOKUP(kif, &key, direction, *state, pd); 5002 5003 /* translate source/destination address, if necessary */ 5004 if ((*state)->key[PF_SK_WIRE] != 5005 (*state)->key[PF_SK_STACK]) { 5006 struct pf_state_key *nk = 5007 (*state)->key[pd->didx]; 5008 5009 if (PF_ANEQ(pd2.src, 5010 &nk->addr[pd2.sidx], pd2.af) || 5011 nk->port[pd2.sidx] != iih.icmp_id) 5012 pf_change_icmp(pd2.src, &iih.icmp_id, 5013 daddr, &nk->addr[pd2.sidx], 5014 nk->port[pd2.sidx], NULL, 5015 pd2.ip_sum, icmpsum, 5016 pd->ip_sum, 0, AF_INET); 5017 5018 if (PF_ANEQ(pd2.dst, 5019 &nk->addr[pd2.didx], pd2.af) || 5020 nk->port[pd2.didx] != iih.icmp_id) 5021 pf_change_icmp(pd2.dst, &iih.icmp_id, 5022 saddr, &nk->addr[pd2.didx], 5023 nk->port[pd2.didx], NULL, 5024 pd2.ip_sum, icmpsum, 5025 pd->ip_sum, 0, AF_INET); 5026 5027 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 5028 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5029 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5030 } 5031 return (PF_PASS); 5032 break; 5033 } 5034 #endif /* INET */ 5035 #ifdef INET6 5036 case IPPROTO_ICMPV6: { 5037 struct icmp6_hdr iih; 5038 5039 if (!pf_pull_hdr(m, off2, &iih, 5040 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5041 DPFPRINTF(PF_DEBUG_MISC, 5042 ("pf: ICMP error message too short " 5043 "(icmp6)\n")); 5044 return (PF_DROP); 5045 } 5046 5047 key.af = pd2.af; 5048 key.proto = IPPROTO_ICMPV6; 5049 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5050 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5051 key.port[0] = key.port[1] = iih.icmp6_id; 5052 5053 STATE_LOOKUP(kif, &key, direction, *state, pd); 5054 5055 /* translate source/destination address, if necessary */ 5056 if ((*state)->key[PF_SK_WIRE] != 5057 (*state)->key[PF_SK_STACK]) { 5058 struct pf_state_key *nk = 5059 (*state)->key[pd->didx]; 5060 5061 if (PF_ANEQ(pd2.src, 5062 &nk->addr[pd2.sidx], pd2.af) || 5063 nk->port[pd2.sidx] != iih.icmp6_id) 5064 pf_change_icmp(pd2.src, &iih.icmp6_id, 5065 daddr, &nk->addr[pd2.sidx], 5066 nk->port[pd2.sidx], NULL, 5067 pd2.ip_sum, icmpsum, 5068 pd->ip_sum, 0, AF_INET6); 5069 5070 if (PF_ANEQ(pd2.dst, 5071 &nk->addr[pd2.didx], pd2.af) || 5072 nk->port[pd2.didx] != iih.icmp6_id) 5073 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5074 saddr, &nk->addr[pd2.didx], 5075 nk->port[pd2.didx], NULL, 5076 pd2.ip_sum, icmpsum, 5077 pd->ip_sum, 0, AF_INET6); 5078 5079 m_copyback(m, off, sizeof(struct icmp6_hdr), 5080 (caddr_t)pd->hdr.icmp6); 5081 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5082 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5083 (caddr_t)&iih); 5084 } 5085 return (PF_PASS); 5086 break; 5087 } 5088 #endif /* INET6 */ 5089 default: { 5090 key.af = pd2.af; 5091 key.proto = pd2.proto; 5092 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5093 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5094 key.port[0] = key.port[1] = 0; 5095 5096 STATE_LOOKUP(kif, &key, direction, *state, pd); 5097 5098 /* translate source/destination address, if necessary */ 5099 if ((*state)->key[PF_SK_WIRE] != 5100 (*state)->key[PF_SK_STACK]) { 5101 struct pf_state_key *nk = 5102 (*state)->key[pd->didx]; 5103 5104 if (PF_ANEQ(pd2.src, 5105 &nk->addr[pd2.sidx], pd2.af)) 5106 pf_change_icmp(pd2.src, NULL, daddr, 5107 &nk->addr[pd2.sidx], 0, NULL, 5108 pd2.ip_sum, icmpsum, 5109 pd->ip_sum, 0, pd2.af); 5110 5111 if (PF_ANEQ(pd2.dst, 5112 &nk->addr[pd2.didx], pd2.af)) 5113 pf_change_icmp(pd2.dst, NULL, saddr, 5114 &nk->addr[pd2.didx], 0, NULL, 5115 pd2.ip_sum, icmpsum, 5116 pd->ip_sum, 0, pd2.af); 5117 5118 switch (pd2.af) { 5119 #ifdef INET 5120 case AF_INET: 5121 m_copyback(m, off, ICMP_MINLEN, 5122 (caddr_t)pd->hdr.icmp); 5123 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5124 break; 5125 #endif /* INET */ 5126 #ifdef INET6 5127 case AF_INET6: 5128 m_copyback(m, off, 5129 sizeof(struct icmp6_hdr), 5130 (caddr_t )pd->hdr.icmp6); 5131 m_copyback(m, ipoff2, sizeof(h2_6), 5132 (caddr_t )&h2_6); 5133 break; 5134 #endif /* INET6 */ 5135 } 5136 } 5137 return (PF_PASS); 5138 break; 5139 } 5140 } 5141 } 5142 } 5143 5144 static int 5145 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5146 struct mbuf *m, struct pf_pdesc *pd) 5147 { 5148 struct pf_state_peer *src, *dst; 5149 struct pf_state_key_cmp key; 5150 5151 bzero(&key, sizeof(key)); 5152 key.af = pd->af; 5153 key.proto = pd->proto; 5154 if (direction == PF_IN) { 5155 PF_ACPY(&key.addr[0], pd->src, key.af); 5156 PF_ACPY(&key.addr[1], pd->dst, key.af); 5157 key.port[0] = key.port[1] = 0; 5158 } else { 5159 PF_ACPY(&key.addr[1], pd->src, key.af); 5160 PF_ACPY(&key.addr[0], pd->dst, key.af); 5161 key.port[1] = key.port[0] = 0; 5162 } 5163 5164 STATE_LOOKUP(kif, &key, direction, *state, pd); 5165 5166 if (direction == (*state)->direction) { 5167 src = &(*state)->src; 5168 dst = &(*state)->dst; 5169 } else { 5170 src = &(*state)->dst; 5171 dst = &(*state)->src; 5172 } 5173 5174 /* update states */ 5175 if (src->state < PFOTHERS_SINGLE) 5176 src->state = PFOTHERS_SINGLE; 5177 if (dst->state == PFOTHERS_SINGLE) 5178 dst->state = PFOTHERS_MULTIPLE; 5179 5180 /* update expire time */ 5181 (*state)->expire = time_uptime; 5182 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5183 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5184 else 5185 (*state)->timeout = PFTM_OTHER_SINGLE; 5186 5187 /* translate source/destination address, if necessary */ 5188 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5189 struct pf_state_key *nk = (*state)->key[pd->didx]; 5190 5191 KASSERT(nk, ("%s: nk is null", __func__)); 5192 KASSERT(pd, ("%s: pd is null", __func__)); 5193 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5194 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5195 switch (pd->af) { 5196 #ifdef INET 5197 case AF_INET: 5198 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5199 pf_change_a(&pd->src->v4.s_addr, 5200 pd->ip_sum, 5201 nk->addr[pd->sidx].v4.s_addr, 5202 0); 5203 5204 5205 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5206 pf_change_a(&pd->dst->v4.s_addr, 5207 pd->ip_sum, 5208 nk->addr[pd->didx].v4.s_addr, 5209 0); 5210 5211 break; 5212 #endif /* INET */ 5213 #ifdef INET6 5214 case AF_INET6: 5215 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5216 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5217 5218 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5219 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5220 #endif /* INET6 */ 5221 } 5222 } 5223 return (PF_PASS); 5224 } 5225 5226 /* 5227 * ipoff and off are measured from the start of the mbuf chain. 5228 * h must be at "ipoff" on the mbuf chain. 5229 */ 5230 void * 5231 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5232 u_short *actionp, u_short *reasonp, sa_family_t af) 5233 { 5234 switch (af) { 5235 #ifdef INET 5236 case AF_INET: { 5237 struct ip *h = mtod(m, struct ip *); 5238 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5239 5240 if (fragoff) { 5241 if (fragoff >= len) 5242 ACTION_SET(actionp, PF_PASS); 5243 else { 5244 ACTION_SET(actionp, PF_DROP); 5245 REASON_SET(reasonp, PFRES_FRAG); 5246 } 5247 return (NULL); 5248 } 5249 if (m->m_pkthdr.len < off + len || 5250 ntohs(h->ip_len) < off + len) { 5251 ACTION_SET(actionp, PF_DROP); 5252 REASON_SET(reasonp, PFRES_SHORT); 5253 return (NULL); 5254 } 5255 break; 5256 } 5257 #endif /* INET */ 5258 #ifdef INET6 5259 case AF_INET6: { 5260 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5261 5262 if (m->m_pkthdr.len < off + len || 5263 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5264 (unsigned)(off + len)) { 5265 ACTION_SET(actionp, PF_DROP); 5266 REASON_SET(reasonp, PFRES_SHORT); 5267 return (NULL); 5268 } 5269 break; 5270 } 5271 #endif /* INET6 */ 5272 } 5273 m_copydata(m, off, len, p); 5274 return (p); 5275 } 5276 5277 #ifdef RADIX_MPATH 5278 static int 5279 pf_routable_oldmpath(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5280 int rtableid) 5281 { 5282 struct radix_node_head *rnh; 5283 struct sockaddr_in *dst; 5284 int ret = 1; 5285 int check_mpath; 5286 #ifdef INET6 5287 struct sockaddr_in6 *dst6; 5288 struct route_in6 ro; 5289 #else 5290 struct route ro; 5291 #endif 5292 struct radix_node *rn; 5293 struct rtentry *rt; 5294 struct ifnet *ifp; 5295 5296 check_mpath = 0; 5297 /* XXX: stick to table 0 for now */ 5298 rnh = rt_tables_get_rnh(0, af); 5299 if (rnh != NULL && rn_mpath_capable(rnh)) 5300 check_mpath = 1; 5301 bzero(&ro, sizeof(ro)); 5302 switch (af) { 5303 case AF_INET: 5304 dst = satosin(&ro.ro_dst); 5305 dst->sin_family = AF_INET; 5306 dst->sin_len = sizeof(*dst); 5307 dst->sin_addr = addr->v4; 5308 break; 5309 #ifdef INET6 5310 case AF_INET6: 5311 /* 5312 * Skip check for addresses with embedded interface scope, 5313 * as they would always match anyway. 5314 */ 5315 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5316 goto out; 5317 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5318 dst6->sin6_family = AF_INET6; 5319 dst6->sin6_len = sizeof(*dst6); 5320 dst6->sin6_addr = addr->v6; 5321 break; 5322 #endif /* INET6 */ 5323 default: 5324 return (0); 5325 } 5326 5327 /* Skip checks for ipsec interfaces */ 5328 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5329 goto out; 5330 5331 switch (af) { 5332 #ifdef INET6 5333 case AF_INET6: 5334 in6_rtalloc_ign(&ro, 0, rtableid); 5335 break; 5336 #endif 5337 #ifdef INET 5338 case AF_INET: 5339 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5340 break; 5341 #endif 5342 } 5343 5344 if (ro.ro_rt != NULL) { 5345 /* No interface given, this is a no-route check */ 5346 if (kif == NULL) 5347 goto out; 5348 5349 if (kif->pfik_ifp == NULL) { 5350 ret = 0; 5351 goto out; 5352 } 5353 5354 /* Perform uRPF check if passed input interface */ 5355 ret = 0; 5356 rn = (struct radix_node *)ro.ro_rt; 5357 do { 5358 rt = (struct rtentry *)rn; 5359 ifp = rt->rt_ifp; 5360 5361 if (kif->pfik_ifp == ifp) 5362 ret = 1; 5363 rn = rn_mpath_next(rn); 5364 } while (check_mpath == 1 && rn != NULL && ret == 0); 5365 } else 5366 ret = 0; 5367 out: 5368 if (ro.ro_rt != NULL) 5369 RTFREE(ro.ro_rt); 5370 return (ret); 5371 } 5372 #endif 5373 5374 int 5375 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5376 int rtableid) 5377 { 5378 #ifdef INET 5379 struct nhop4_basic nh4; 5380 #endif 5381 #ifdef INET6 5382 struct nhop6_basic nh6; 5383 #endif 5384 struct ifnet *ifp; 5385 #ifdef RADIX_MPATH 5386 struct radix_node_head *rnh; 5387 5388 /* XXX: stick to table 0 for now */ 5389 rnh = rt_tables_get_rnh(0, af); 5390 if (rnh != NULL && rn_mpath_capable(rnh)) 5391 return (pf_routable_oldmpath(addr, af, kif, rtableid)); 5392 #endif 5393 /* 5394 * Skip check for addresses with embedded interface scope, 5395 * as they would always match anyway. 5396 */ 5397 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5398 return (1); 5399 5400 if (af != AF_INET && af != AF_INET6) 5401 return (0); 5402 5403 /* Skip checks for ipsec interfaces */ 5404 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5405 return (1); 5406 5407 ifp = NULL; 5408 5409 switch (af) { 5410 #ifdef INET6 5411 case AF_INET6: 5412 if (fib6_lookup_nh_basic(rtableid, &addr->v6, 0, 0, 0, &nh6)!=0) 5413 return (0); 5414 ifp = nh6.nh_ifp; 5415 break; 5416 #endif 5417 #ifdef INET 5418 case AF_INET: 5419 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) != 0) 5420 return (0); 5421 ifp = nh4.nh_ifp; 5422 break; 5423 #endif 5424 } 5425 5426 /* No interface given, this is a no-route check */ 5427 if (kif == NULL) 5428 return (1); 5429 5430 if (kif->pfik_ifp == NULL) 5431 return (0); 5432 5433 /* Perform uRPF check if passed input interface */ 5434 if (kif->pfik_ifp == ifp) 5435 return (1); 5436 return (0); 5437 } 5438 5439 #ifdef INET 5440 static void 5441 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5442 struct pf_state *s, struct pf_pdesc *pd) 5443 { 5444 struct mbuf *m0, *m1; 5445 struct sockaddr_in dst; 5446 struct ip *ip; 5447 struct ifnet *ifp = NULL; 5448 struct pf_addr naddr; 5449 struct pf_src_node *sn = NULL; 5450 int error = 0; 5451 uint16_t ip_len, ip_off; 5452 5453 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5454 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5455 __func__)); 5456 5457 if ((pd->pf_mtag == NULL && 5458 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5459 pd->pf_mtag->routed++ > 3) { 5460 m0 = *m; 5461 *m = NULL; 5462 goto bad_locked; 5463 } 5464 5465 if (r->rt == PF_DUPTO) { 5466 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5467 if (s) 5468 PF_STATE_UNLOCK(s); 5469 return; 5470 } 5471 } else { 5472 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5473 if (s) 5474 PF_STATE_UNLOCK(s); 5475 return; 5476 } 5477 m0 = *m; 5478 } 5479 5480 ip = mtod(m0, struct ip *); 5481 5482 bzero(&dst, sizeof(dst)); 5483 dst.sin_family = AF_INET; 5484 dst.sin_len = sizeof(dst); 5485 dst.sin_addr = ip->ip_dst; 5486 5487 if (TAILQ_EMPTY(&r->rpool.list)) { 5488 DPFPRINTF(PF_DEBUG_URGENT, 5489 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5490 goto bad_locked; 5491 } 5492 if (s == NULL) { 5493 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5494 &naddr, NULL, &sn); 5495 if (!PF_AZERO(&naddr, AF_INET)) 5496 dst.sin_addr.s_addr = naddr.v4.s_addr; 5497 ifp = r->rpool.cur->kif ? 5498 r->rpool.cur->kif->pfik_ifp : NULL; 5499 } else { 5500 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5501 dst.sin_addr.s_addr = 5502 s->rt_addr.v4.s_addr; 5503 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5504 PF_STATE_UNLOCK(s); 5505 } 5506 if (ifp == NULL) 5507 goto bad; 5508 5509 if (oifp != ifp) { 5510 if (pf_test(PF_OUT, 0, ifp, &m0, NULL) != PF_PASS) 5511 goto bad; 5512 else if (m0 == NULL) 5513 goto done; 5514 if (m0->m_len < sizeof(struct ip)) { 5515 DPFPRINTF(PF_DEBUG_URGENT, 5516 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5517 goto bad; 5518 } 5519 ip = mtod(m0, struct ip *); 5520 } 5521 5522 if (ifp->if_flags & IFF_LOOPBACK) 5523 m0->m_flags |= M_SKIP_FIREWALL; 5524 5525 ip_len = ntohs(ip->ip_len); 5526 ip_off = ntohs(ip->ip_off); 5527 5528 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5529 m0->m_pkthdr.csum_flags |= CSUM_IP; 5530 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5531 in_delayed_cksum(m0); 5532 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5533 } 5534 #ifdef SCTP 5535 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5536 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5537 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5538 } 5539 #endif 5540 5541 /* 5542 * If small enough for interface, or the interface will take 5543 * care of the fragmentation for us, we can just send directly. 5544 */ 5545 if (ip_len <= ifp->if_mtu || 5546 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5547 ip->ip_sum = 0; 5548 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5549 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5550 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5551 } 5552 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5553 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5554 goto done; 5555 } 5556 5557 /* Balk when DF bit is set or the interface didn't support TSO. */ 5558 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5559 error = EMSGSIZE; 5560 KMOD_IPSTAT_INC(ips_cantfrag); 5561 if (r->rt != PF_DUPTO) { 5562 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5563 ifp->if_mtu); 5564 goto done; 5565 } else 5566 goto bad; 5567 } 5568 5569 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5570 if (error) 5571 goto bad; 5572 5573 for (; m0; m0 = m1) { 5574 m1 = m0->m_nextpkt; 5575 m0->m_nextpkt = NULL; 5576 if (error == 0) { 5577 m_clrprotoflags(m0); 5578 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5579 } else 5580 m_freem(m0); 5581 } 5582 5583 if (error == 0) 5584 KMOD_IPSTAT_INC(ips_fragmented); 5585 5586 done: 5587 if (r->rt != PF_DUPTO) 5588 *m = NULL; 5589 return; 5590 5591 bad_locked: 5592 if (s) 5593 PF_STATE_UNLOCK(s); 5594 bad: 5595 m_freem(m0); 5596 goto done; 5597 } 5598 #endif /* INET */ 5599 5600 #ifdef INET6 5601 static void 5602 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5603 struct pf_state *s, struct pf_pdesc *pd) 5604 { 5605 struct mbuf *m0; 5606 struct sockaddr_in6 dst; 5607 struct ip6_hdr *ip6; 5608 struct ifnet *ifp = NULL; 5609 struct pf_addr naddr; 5610 struct pf_src_node *sn = NULL; 5611 5612 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5613 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5614 __func__)); 5615 5616 if ((pd->pf_mtag == NULL && 5617 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5618 pd->pf_mtag->routed++ > 3) { 5619 m0 = *m; 5620 *m = NULL; 5621 goto bad_locked; 5622 } 5623 5624 if (r->rt == PF_DUPTO) { 5625 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5626 if (s) 5627 PF_STATE_UNLOCK(s); 5628 return; 5629 } 5630 } else { 5631 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5632 if (s) 5633 PF_STATE_UNLOCK(s); 5634 return; 5635 } 5636 m0 = *m; 5637 } 5638 5639 ip6 = mtod(m0, struct ip6_hdr *); 5640 5641 bzero(&dst, sizeof(dst)); 5642 dst.sin6_family = AF_INET6; 5643 dst.sin6_len = sizeof(dst); 5644 dst.sin6_addr = ip6->ip6_dst; 5645 5646 if (TAILQ_EMPTY(&r->rpool.list)) { 5647 DPFPRINTF(PF_DEBUG_URGENT, 5648 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5649 goto bad_locked; 5650 } 5651 if (s == NULL) { 5652 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5653 &naddr, NULL, &sn); 5654 if (!PF_AZERO(&naddr, AF_INET6)) 5655 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5656 &naddr, AF_INET6); 5657 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5658 } else { 5659 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5660 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5661 &s->rt_addr, AF_INET6); 5662 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5663 } 5664 5665 if (s) 5666 PF_STATE_UNLOCK(s); 5667 5668 if (ifp == NULL) 5669 goto bad; 5670 5671 if (oifp != ifp) { 5672 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, NULL) != PF_PASS) 5673 goto bad; 5674 else if (m0 == NULL) 5675 goto done; 5676 if (m0->m_len < sizeof(struct ip6_hdr)) { 5677 DPFPRINTF(PF_DEBUG_URGENT, 5678 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5679 __func__)); 5680 goto bad; 5681 } 5682 ip6 = mtod(m0, struct ip6_hdr *); 5683 } 5684 5685 if (ifp->if_flags & IFF_LOOPBACK) 5686 m0->m_flags |= M_SKIP_FIREWALL; 5687 5688 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5689 ~ifp->if_hwassist) { 5690 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5691 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5692 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5693 } 5694 5695 /* 5696 * If the packet is too large for the outgoing interface, 5697 * send back an icmp6 error. 5698 */ 5699 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5700 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5701 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5702 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5703 else { 5704 in6_ifstat_inc(ifp, ifs6_in_toobig); 5705 if (r->rt != PF_DUPTO) 5706 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5707 else 5708 goto bad; 5709 } 5710 5711 done: 5712 if (r->rt != PF_DUPTO) 5713 *m = NULL; 5714 return; 5715 5716 bad_locked: 5717 if (s) 5718 PF_STATE_UNLOCK(s); 5719 bad: 5720 m_freem(m0); 5721 goto done; 5722 } 5723 #endif /* INET6 */ 5724 5725 /* 5726 * FreeBSD supports cksum offloads for the following drivers. 5727 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5728 * ti(4), txp(4), xl(4) 5729 * 5730 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5731 * network driver performed cksum including pseudo header, need to verify 5732 * csum_data 5733 * CSUM_DATA_VALID : 5734 * network driver performed cksum, needs to additional pseudo header 5735 * cksum computation with partial csum_data(i.e. lack of H/W support for 5736 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5737 * 5738 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5739 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5740 * TCP/UDP layer. 5741 * Also, set csum_data to 0xffff to force cksum validation. 5742 */ 5743 static int 5744 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5745 { 5746 u_int16_t sum = 0; 5747 int hw_assist = 0; 5748 struct ip *ip; 5749 5750 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5751 return (1); 5752 if (m->m_pkthdr.len < off + len) 5753 return (1); 5754 5755 switch (p) { 5756 case IPPROTO_TCP: 5757 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5758 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5759 sum = m->m_pkthdr.csum_data; 5760 } else { 5761 ip = mtod(m, struct ip *); 5762 sum = in_pseudo(ip->ip_src.s_addr, 5763 ip->ip_dst.s_addr, htonl((u_short)len + 5764 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5765 } 5766 sum ^= 0xffff; 5767 ++hw_assist; 5768 } 5769 break; 5770 case IPPROTO_UDP: 5771 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5772 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5773 sum = m->m_pkthdr.csum_data; 5774 } else { 5775 ip = mtod(m, struct ip *); 5776 sum = in_pseudo(ip->ip_src.s_addr, 5777 ip->ip_dst.s_addr, htonl((u_short)len + 5778 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5779 } 5780 sum ^= 0xffff; 5781 ++hw_assist; 5782 } 5783 break; 5784 case IPPROTO_ICMP: 5785 #ifdef INET6 5786 case IPPROTO_ICMPV6: 5787 #endif /* INET6 */ 5788 break; 5789 default: 5790 return (1); 5791 } 5792 5793 if (!hw_assist) { 5794 switch (af) { 5795 case AF_INET: 5796 if (p == IPPROTO_ICMP) { 5797 if (m->m_len < off) 5798 return (1); 5799 m->m_data += off; 5800 m->m_len -= off; 5801 sum = in_cksum(m, len); 5802 m->m_data -= off; 5803 m->m_len += off; 5804 } else { 5805 if (m->m_len < sizeof(struct ip)) 5806 return (1); 5807 sum = in4_cksum(m, p, off, len); 5808 } 5809 break; 5810 #ifdef INET6 5811 case AF_INET6: 5812 if (m->m_len < sizeof(struct ip6_hdr)) 5813 return (1); 5814 sum = in6_cksum(m, p, off, len); 5815 break; 5816 #endif /* INET6 */ 5817 default: 5818 return (1); 5819 } 5820 } 5821 if (sum) { 5822 switch (p) { 5823 case IPPROTO_TCP: 5824 { 5825 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5826 break; 5827 } 5828 case IPPROTO_UDP: 5829 { 5830 KMOD_UDPSTAT_INC(udps_badsum); 5831 break; 5832 } 5833 #ifdef INET 5834 case IPPROTO_ICMP: 5835 { 5836 KMOD_ICMPSTAT_INC(icps_checksum); 5837 break; 5838 } 5839 #endif 5840 #ifdef INET6 5841 case IPPROTO_ICMPV6: 5842 { 5843 KMOD_ICMP6STAT_INC(icp6s_checksum); 5844 break; 5845 } 5846 #endif /* INET6 */ 5847 } 5848 return (1); 5849 } else { 5850 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5851 m->m_pkthdr.csum_flags |= 5852 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5853 m->m_pkthdr.csum_data = 0xffff; 5854 } 5855 } 5856 return (0); 5857 } 5858 5859 5860 #ifdef INET 5861 int 5862 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5863 { 5864 struct pfi_kif *kif; 5865 u_short action, reason = 0, log = 0; 5866 struct mbuf *m = *m0; 5867 struct ip *h = NULL; 5868 struct m_tag *ipfwtag; 5869 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5870 struct pf_state *s = NULL; 5871 struct pf_ruleset *ruleset = NULL; 5872 struct pf_pdesc pd; 5873 int off, dirndx, pqid = 0; 5874 5875 M_ASSERTPKTHDR(m); 5876 5877 if (!V_pf_status.running) 5878 return (PF_PASS); 5879 5880 memset(&pd, 0, sizeof(pd)); 5881 5882 kif = (struct pfi_kif *)ifp->if_pf_kif; 5883 5884 if (kif == NULL) { 5885 DPFPRINTF(PF_DEBUG_URGENT, 5886 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5887 return (PF_DROP); 5888 } 5889 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5890 return (PF_PASS); 5891 5892 if (m->m_flags & M_SKIP_FIREWALL) 5893 return (PF_PASS); 5894 5895 pd.pf_mtag = pf_find_mtag(m); 5896 5897 PF_RULES_RLOCK(); 5898 5899 if (ip_divert_ptr != NULL && 5900 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5901 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5902 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5903 if (pd.pf_mtag == NULL && 5904 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5905 action = PF_DROP; 5906 goto done; 5907 } 5908 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5909 m_tag_delete(m, ipfwtag); 5910 } 5911 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5912 m->m_flags |= M_FASTFWD_OURS; 5913 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5914 } 5915 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5916 /* We do IP header normalization and packet reassembly here */ 5917 action = PF_DROP; 5918 goto done; 5919 } 5920 m = *m0; /* pf_normalize messes with m0 */ 5921 h = mtod(m, struct ip *); 5922 5923 off = h->ip_hl << 2; 5924 if (off < (int)sizeof(struct ip)) { 5925 action = PF_DROP; 5926 REASON_SET(&reason, PFRES_SHORT); 5927 log = 1; 5928 goto done; 5929 } 5930 5931 pd.src = (struct pf_addr *)&h->ip_src; 5932 pd.dst = (struct pf_addr *)&h->ip_dst; 5933 pd.sport = pd.dport = NULL; 5934 pd.ip_sum = &h->ip_sum; 5935 pd.proto_sum = NULL; 5936 pd.proto = h->ip_p; 5937 pd.dir = dir; 5938 pd.sidx = (dir == PF_IN) ? 0 : 1; 5939 pd.didx = (dir == PF_IN) ? 1 : 0; 5940 pd.af = AF_INET; 5941 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 5942 pd.tot_len = ntohs(h->ip_len); 5943 5944 /* handle fragments that didn't get reassembled by normalization */ 5945 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5946 action = pf_test_fragment(&r, dir, kif, m, h, 5947 &pd, &a, &ruleset); 5948 goto done; 5949 } 5950 5951 switch (h->ip_p) { 5952 5953 case IPPROTO_TCP: { 5954 struct tcphdr th; 5955 5956 pd.hdr.tcp = &th; 5957 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5958 &action, &reason, AF_INET)) { 5959 log = action != PF_PASS; 5960 goto done; 5961 } 5962 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5963 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5964 pqid = 1; 5965 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5966 if (action == PF_DROP) 5967 goto done; 5968 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5969 &reason); 5970 if (action == PF_PASS) { 5971 if (pfsync_update_state_ptr != NULL) 5972 pfsync_update_state_ptr(s); 5973 r = s->rule.ptr; 5974 a = s->anchor.ptr; 5975 log = s->log; 5976 } else if (s == NULL) 5977 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5978 &a, &ruleset, inp); 5979 break; 5980 } 5981 5982 case IPPROTO_UDP: { 5983 struct udphdr uh; 5984 5985 pd.hdr.udp = &uh; 5986 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5987 &action, &reason, AF_INET)) { 5988 log = action != PF_PASS; 5989 goto done; 5990 } 5991 if (uh.uh_dport == 0 || 5992 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5993 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5994 action = PF_DROP; 5995 REASON_SET(&reason, PFRES_SHORT); 5996 goto done; 5997 } 5998 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5999 if (action == PF_PASS) { 6000 if (pfsync_update_state_ptr != NULL) 6001 pfsync_update_state_ptr(s); 6002 r = s->rule.ptr; 6003 a = s->anchor.ptr; 6004 log = s->log; 6005 } else if (s == NULL) 6006 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6007 &a, &ruleset, inp); 6008 break; 6009 } 6010 6011 case IPPROTO_ICMP: { 6012 struct icmp ih; 6013 6014 pd.hdr.icmp = &ih; 6015 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 6016 &action, &reason, AF_INET)) { 6017 log = action != PF_PASS; 6018 goto done; 6019 } 6020 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 6021 &reason); 6022 if (action == PF_PASS) { 6023 if (pfsync_update_state_ptr != NULL) 6024 pfsync_update_state_ptr(s); 6025 r = s->rule.ptr; 6026 a = s->anchor.ptr; 6027 log = s->log; 6028 } else if (s == NULL) 6029 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6030 &a, &ruleset, inp); 6031 break; 6032 } 6033 6034 #ifdef INET6 6035 case IPPROTO_ICMPV6: { 6036 action = PF_DROP; 6037 DPFPRINTF(PF_DEBUG_MISC, 6038 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6039 goto done; 6040 } 6041 #endif 6042 6043 default: 6044 action = pf_test_state_other(&s, dir, kif, m, &pd); 6045 if (action == PF_PASS) { 6046 if (pfsync_update_state_ptr != NULL) 6047 pfsync_update_state_ptr(s); 6048 r = s->rule.ptr; 6049 a = s->anchor.ptr; 6050 log = s->log; 6051 } else if (s == NULL) 6052 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6053 &a, &ruleset, inp); 6054 break; 6055 } 6056 6057 done: 6058 PF_RULES_RUNLOCK(); 6059 if (action == PF_PASS && h->ip_hl > 5 && 6060 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6061 action = PF_DROP; 6062 REASON_SET(&reason, PFRES_IPOPTIONS); 6063 log = r->log; 6064 DPFPRINTF(PF_DEBUG_MISC, 6065 ("pf: dropping packet with ip options\n")); 6066 } 6067 6068 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6069 action = PF_DROP; 6070 REASON_SET(&reason, PFRES_MEMORY); 6071 } 6072 if (r->rtableid >= 0) 6073 M_SETFIB(m, r->rtableid); 6074 6075 if (r->scrub_flags & PFSTATE_SETPRIO) { 6076 if (pd.tos & IPTOS_LOWDELAY) 6077 pqid = 1; 6078 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6079 action = PF_DROP; 6080 REASON_SET(&reason, PFRES_MEMORY); 6081 log = 1; 6082 DPFPRINTF(PF_DEBUG_MISC, 6083 ("pf: failed to allocate 802.1q mtag\n")); 6084 } 6085 } 6086 6087 #ifdef ALTQ 6088 if (action == PF_PASS && r->qid) { 6089 if (pd.pf_mtag == NULL && 6090 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6091 action = PF_DROP; 6092 REASON_SET(&reason, PFRES_MEMORY); 6093 } else { 6094 if (s != NULL) 6095 pd.pf_mtag->qid_hash = pf_state_hash(s); 6096 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6097 pd.pf_mtag->qid = r->pqid; 6098 else 6099 pd.pf_mtag->qid = r->qid; 6100 /* Add hints for ecn. */ 6101 pd.pf_mtag->hdr = h; 6102 } 6103 6104 } 6105 #endif /* ALTQ */ 6106 6107 /* 6108 * connections redirected to loopback should not match sockets 6109 * bound specifically to loopback due to security implications, 6110 * see tcp_input() and in_pcblookup_listen(). 6111 */ 6112 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6113 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6114 (s->nat_rule.ptr->action == PF_RDR || 6115 s->nat_rule.ptr->action == PF_BINAT) && 6116 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 6117 m->m_flags |= M_SKIP_FIREWALL; 6118 6119 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6120 !PACKET_LOOPED(&pd)) { 6121 6122 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6123 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6124 if (ipfwtag != NULL) { 6125 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6126 ntohs(r->divert.port); 6127 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6128 6129 if (s) 6130 PF_STATE_UNLOCK(s); 6131 6132 m_tag_prepend(m, ipfwtag); 6133 if (m->m_flags & M_FASTFWD_OURS) { 6134 if (pd.pf_mtag == NULL && 6135 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6136 action = PF_DROP; 6137 REASON_SET(&reason, PFRES_MEMORY); 6138 log = 1; 6139 DPFPRINTF(PF_DEBUG_MISC, 6140 ("pf: failed to allocate tag\n")); 6141 } else { 6142 pd.pf_mtag->flags |= 6143 PF_FASTFWD_OURS_PRESENT; 6144 m->m_flags &= ~M_FASTFWD_OURS; 6145 } 6146 } 6147 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 6148 *m0 = NULL; 6149 6150 return (action); 6151 } else { 6152 /* XXX: ipfw has the same behaviour! */ 6153 action = PF_DROP; 6154 REASON_SET(&reason, PFRES_MEMORY); 6155 log = 1; 6156 DPFPRINTF(PF_DEBUG_MISC, 6157 ("pf: failed to allocate divert tag\n")); 6158 } 6159 } 6160 6161 if (log) { 6162 struct pf_rule *lr; 6163 6164 if (s != NULL && s->nat_rule.ptr != NULL && 6165 s->nat_rule.ptr->log & PF_LOG_ALL) 6166 lr = s->nat_rule.ptr; 6167 else 6168 lr = r; 6169 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6170 (s == NULL)); 6171 } 6172 6173 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6174 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 6175 6176 if (action == PF_PASS || r->action == PF_DROP) { 6177 dirndx = (dir == PF_OUT); 6178 r->packets[dirndx]++; 6179 r->bytes[dirndx] += pd.tot_len; 6180 if (a != NULL) { 6181 a->packets[dirndx]++; 6182 a->bytes[dirndx] += pd.tot_len; 6183 } 6184 if (s != NULL) { 6185 if (s->nat_rule.ptr != NULL) { 6186 s->nat_rule.ptr->packets[dirndx]++; 6187 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6188 } 6189 if (s->src_node != NULL) { 6190 s->src_node->packets[dirndx]++; 6191 s->src_node->bytes[dirndx] += pd.tot_len; 6192 } 6193 if (s->nat_src_node != NULL) { 6194 s->nat_src_node->packets[dirndx]++; 6195 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6196 } 6197 dirndx = (dir == s->direction) ? 0 : 1; 6198 s->packets[dirndx]++; 6199 s->bytes[dirndx] += pd.tot_len; 6200 } 6201 tr = r; 6202 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6203 if (nr != NULL && r == &V_pf_default_rule) 6204 tr = nr; 6205 if (tr->src.addr.type == PF_ADDR_TABLE) 6206 pfr_update_stats(tr->src.addr.p.tbl, 6207 (s == NULL) ? pd.src : 6208 &s->key[(s->direction == PF_IN)]-> 6209 addr[(s->direction == PF_OUT)], 6210 pd.af, pd.tot_len, dir == PF_OUT, 6211 r->action == PF_PASS, tr->src.neg); 6212 if (tr->dst.addr.type == PF_ADDR_TABLE) 6213 pfr_update_stats(tr->dst.addr.p.tbl, 6214 (s == NULL) ? pd.dst : 6215 &s->key[(s->direction == PF_IN)]-> 6216 addr[(s->direction == PF_IN)], 6217 pd.af, pd.tot_len, dir == PF_OUT, 6218 r->action == PF_PASS, tr->dst.neg); 6219 } 6220 6221 switch (action) { 6222 case PF_SYNPROXY_DROP: 6223 m_freem(*m0); 6224 case PF_DEFER: 6225 *m0 = NULL; 6226 action = PF_PASS; 6227 break; 6228 case PF_DROP: 6229 m_freem(*m0); 6230 *m0 = NULL; 6231 break; 6232 default: 6233 /* pf_route() returns unlocked. */ 6234 if (r->rt) { 6235 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 6236 return (action); 6237 } 6238 break; 6239 } 6240 if (s) 6241 PF_STATE_UNLOCK(s); 6242 6243 return (action); 6244 } 6245 #endif /* INET */ 6246 6247 #ifdef INET6 6248 int 6249 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6250 { 6251 struct pfi_kif *kif; 6252 u_short action, reason = 0, log = 0; 6253 struct mbuf *m = *m0, *n = NULL; 6254 struct m_tag *mtag; 6255 struct ip6_hdr *h = NULL; 6256 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6257 struct pf_state *s = NULL; 6258 struct pf_ruleset *ruleset = NULL; 6259 struct pf_pdesc pd; 6260 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6261 6262 M_ASSERTPKTHDR(m); 6263 6264 if (!V_pf_status.running) 6265 return (PF_PASS); 6266 6267 memset(&pd, 0, sizeof(pd)); 6268 pd.pf_mtag = pf_find_mtag(m); 6269 6270 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6271 return (PF_PASS); 6272 6273 kif = (struct pfi_kif *)ifp->if_pf_kif; 6274 if (kif == NULL) { 6275 DPFPRINTF(PF_DEBUG_URGENT, 6276 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6277 return (PF_DROP); 6278 } 6279 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6280 return (PF_PASS); 6281 6282 if (m->m_flags & M_SKIP_FIREWALL) 6283 return (PF_PASS); 6284 6285 PF_RULES_RLOCK(); 6286 6287 /* We do IP header normalization and packet reassembly here */ 6288 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6289 action = PF_DROP; 6290 goto done; 6291 } 6292 m = *m0; /* pf_normalize messes with m0 */ 6293 h = mtod(m, struct ip6_hdr *); 6294 6295 #if 1 6296 /* 6297 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6298 * will do something bad, so drop the packet for now. 6299 */ 6300 if (htons(h->ip6_plen) == 0) { 6301 action = PF_DROP; 6302 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6303 goto done; 6304 } 6305 #endif 6306 6307 pd.src = (struct pf_addr *)&h->ip6_src; 6308 pd.dst = (struct pf_addr *)&h->ip6_dst; 6309 pd.sport = pd.dport = NULL; 6310 pd.ip_sum = NULL; 6311 pd.proto_sum = NULL; 6312 pd.dir = dir; 6313 pd.sidx = (dir == PF_IN) ? 0 : 1; 6314 pd.didx = (dir == PF_IN) ? 1 : 0; 6315 pd.af = AF_INET6; 6316 pd.tos = 0; 6317 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6318 6319 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6320 pd.proto = h->ip6_nxt; 6321 do { 6322 switch (pd.proto) { 6323 case IPPROTO_FRAGMENT: 6324 action = pf_test_fragment(&r, dir, kif, m, h, 6325 &pd, &a, &ruleset); 6326 if (action == PF_DROP) 6327 REASON_SET(&reason, PFRES_FRAG); 6328 goto done; 6329 case IPPROTO_ROUTING: { 6330 struct ip6_rthdr rthdr; 6331 6332 if (rh_cnt++) { 6333 DPFPRINTF(PF_DEBUG_MISC, 6334 ("pf: IPv6 more than one rthdr\n")); 6335 action = PF_DROP; 6336 REASON_SET(&reason, PFRES_IPOPTIONS); 6337 log = 1; 6338 goto done; 6339 } 6340 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6341 &reason, pd.af)) { 6342 DPFPRINTF(PF_DEBUG_MISC, 6343 ("pf: IPv6 short rthdr\n")); 6344 action = PF_DROP; 6345 REASON_SET(&reason, PFRES_SHORT); 6346 log = 1; 6347 goto done; 6348 } 6349 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6350 DPFPRINTF(PF_DEBUG_MISC, 6351 ("pf: IPv6 rthdr0\n")); 6352 action = PF_DROP; 6353 REASON_SET(&reason, PFRES_IPOPTIONS); 6354 log = 1; 6355 goto done; 6356 } 6357 /* FALLTHROUGH */ 6358 } 6359 case IPPROTO_AH: 6360 case IPPROTO_HOPOPTS: 6361 case IPPROTO_DSTOPTS: { 6362 /* get next header and header length */ 6363 struct ip6_ext opt6; 6364 6365 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6366 NULL, &reason, pd.af)) { 6367 DPFPRINTF(PF_DEBUG_MISC, 6368 ("pf: IPv6 short opt\n")); 6369 action = PF_DROP; 6370 log = 1; 6371 goto done; 6372 } 6373 if (pd.proto == IPPROTO_AH) 6374 off += (opt6.ip6e_len + 2) * 4; 6375 else 6376 off += (opt6.ip6e_len + 1) * 8; 6377 pd.proto = opt6.ip6e_nxt; 6378 /* goto the next header */ 6379 break; 6380 } 6381 default: 6382 terminal++; 6383 break; 6384 } 6385 } while (!terminal); 6386 6387 /* if there's no routing header, use unmodified mbuf for checksumming */ 6388 if (!n) 6389 n = m; 6390 6391 switch (pd.proto) { 6392 6393 case IPPROTO_TCP: { 6394 struct tcphdr th; 6395 6396 pd.hdr.tcp = &th; 6397 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6398 &action, &reason, AF_INET6)) { 6399 log = action != PF_PASS; 6400 goto done; 6401 } 6402 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6403 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6404 if (action == PF_DROP) 6405 goto done; 6406 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6407 &reason); 6408 if (action == PF_PASS) { 6409 if (pfsync_update_state_ptr != NULL) 6410 pfsync_update_state_ptr(s); 6411 r = s->rule.ptr; 6412 a = s->anchor.ptr; 6413 log = s->log; 6414 } else if (s == NULL) 6415 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6416 &a, &ruleset, inp); 6417 break; 6418 } 6419 6420 case IPPROTO_UDP: { 6421 struct udphdr uh; 6422 6423 pd.hdr.udp = &uh; 6424 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6425 &action, &reason, AF_INET6)) { 6426 log = action != PF_PASS; 6427 goto done; 6428 } 6429 if (uh.uh_dport == 0 || 6430 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6431 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6432 action = PF_DROP; 6433 REASON_SET(&reason, PFRES_SHORT); 6434 goto done; 6435 } 6436 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6437 if (action == PF_PASS) { 6438 if (pfsync_update_state_ptr != NULL) 6439 pfsync_update_state_ptr(s); 6440 r = s->rule.ptr; 6441 a = s->anchor.ptr; 6442 log = s->log; 6443 } else if (s == NULL) 6444 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6445 &a, &ruleset, inp); 6446 break; 6447 } 6448 6449 case IPPROTO_ICMP: { 6450 action = PF_DROP; 6451 DPFPRINTF(PF_DEBUG_MISC, 6452 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6453 goto done; 6454 } 6455 6456 case IPPROTO_ICMPV6: { 6457 struct icmp6_hdr ih; 6458 6459 pd.hdr.icmp6 = &ih; 6460 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6461 &action, &reason, AF_INET6)) { 6462 log = action != PF_PASS; 6463 goto done; 6464 } 6465 action = pf_test_state_icmp(&s, dir, kif, 6466 m, off, h, &pd, &reason); 6467 if (action == PF_PASS) { 6468 if (pfsync_update_state_ptr != NULL) 6469 pfsync_update_state_ptr(s); 6470 r = s->rule.ptr; 6471 a = s->anchor.ptr; 6472 log = s->log; 6473 } else if (s == NULL) 6474 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6475 &a, &ruleset, inp); 6476 break; 6477 } 6478 6479 default: 6480 action = pf_test_state_other(&s, dir, kif, m, &pd); 6481 if (action == PF_PASS) { 6482 if (pfsync_update_state_ptr != NULL) 6483 pfsync_update_state_ptr(s); 6484 r = s->rule.ptr; 6485 a = s->anchor.ptr; 6486 log = s->log; 6487 } else if (s == NULL) 6488 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6489 &a, &ruleset, inp); 6490 break; 6491 } 6492 6493 done: 6494 PF_RULES_RUNLOCK(); 6495 if (n != m) { 6496 m_freem(n); 6497 n = NULL; 6498 } 6499 6500 /* handle dangerous IPv6 extension headers. */ 6501 if (action == PF_PASS && rh_cnt && 6502 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6503 action = PF_DROP; 6504 REASON_SET(&reason, PFRES_IPOPTIONS); 6505 log = r->log; 6506 DPFPRINTF(PF_DEBUG_MISC, 6507 ("pf: dropping packet with dangerous v6 headers\n")); 6508 } 6509 6510 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6511 action = PF_DROP; 6512 REASON_SET(&reason, PFRES_MEMORY); 6513 } 6514 if (r->rtableid >= 0) 6515 M_SETFIB(m, r->rtableid); 6516 6517 if (r->scrub_flags & PFSTATE_SETPRIO) { 6518 if (pd.tos & IPTOS_LOWDELAY) 6519 pqid = 1; 6520 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6521 action = PF_DROP; 6522 REASON_SET(&reason, PFRES_MEMORY); 6523 log = 1; 6524 DPFPRINTF(PF_DEBUG_MISC, 6525 ("pf: failed to allocate 802.1q mtag\n")); 6526 } 6527 } 6528 6529 #ifdef ALTQ 6530 if (action == PF_PASS && r->qid) { 6531 if (pd.pf_mtag == NULL && 6532 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6533 action = PF_DROP; 6534 REASON_SET(&reason, PFRES_MEMORY); 6535 } else { 6536 if (s != NULL) 6537 pd.pf_mtag->qid_hash = pf_state_hash(s); 6538 if (pd.tos & IPTOS_LOWDELAY) 6539 pd.pf_mtag->qid = r->pqid; 6540 else 6541 pd.pf_mtag->qid = r->qid; 6542 /* Add hints for ecn. */ 6543 pd.pf_mtag->hdr = h; 6544 } 6545 } 6546 #endif /* ALTQ */ 6547 6548 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6549 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6550 (s->nat_rule.ptr->action == PF_RDR || 6551 s->nat_rule.ptr->action == PF_BINAT) && 6552 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6553 m->m_flags |= M_SKIP_FIREWALL; 6554 6555 /* XXX: Anybody working on it?! */ 6556 if (r->divert.port) 6557 printf("pf: divert(9) is not supported for IPv6\n"); 6558 6559 if (log) { 6560 struct pf_rule *lr; 6561 6562 if (s != NULL && s->nat_rule.ptr != NULL && 6563 s->nat_rule.ptr->log & PF_LOG_ALL) 6564 lr = s->nat_rule.ptr; 6565 else 6566 lr = r; 6567 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6568 &pd, (s == NULL)); 6569 } 6570 6571 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6572 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6573 6574 if (action == PF_PASS || r->action == PF_DROP) { 6575 dirndx = (dir == PF_OUT); 6576 r->packets[dirndx]++; 6577 r->bytes[dirndx] += pd.tot_len; 6578 if (a != NULL) { 6579 a->packets[dirndx]++; 6580 a->bytes[dirndx] += pd.tot_len; 6581 } 6582 if (s != NULL) { 6583 if (s->nat_rule.ptr != NULL) { 6584 s->nat_rule.ptr->packets[dirndx]++; 6585 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6586 } 6587 if (s->src_node != NULL) { 6588 s->src_node->packets[dirndx]++; 6589 s->src_node->bytes[dirndx] += pd.tot_len; 6590 } 6591 if (s->nat_src_node != NULL) { 6592 s->nat_src_node->packets[dirndx]++; 6593 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6594 } 6595 dirndx = (dir == s->direction) ? 0 : 1; 6596 s->packets[dirndx]++; 6597 s->bytes[dirndx] += pd.tot_len; 6598 } 6599 tr = r; 6600 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6601 if (nr != NULL && r == &V_pf_default_rule) 6602 tr = nr; 6603 if (tr->src.addr.type == PF_ADDR_TABLE) 6604 pfr_update_stats(tr->src.addr.p.tbl, 6605 (s == NULL) ? pd.src : 6606 &s->key[(s->direction == PF_IN)]->addr[0], 6607 pd.af, pd.tot_len, dir == PF_OUT, 6608 r->action == PF_PASS, tr->src.neg); 6609 if (tr->dst.addr.type == PF_ADDR_TABLE) 6610 pfr_update_stats(tr->dst.addr.p.tbl, 6611 (s == NULL) ? pd.dst : 6612 &s->key[(s->direction == PF_IN)]->addr[1], 6613 pd.af, pd.tot_len, dir == PF_OUT, 6614 r->action == PF_PASS, tr->dst.neg); 6615 } 6616 6617 switch (action) { 6618 case PF_SYNPROXY_DROP: 6619 m_freem(*m0); 6620 case PF_DEFER: 6621 *m0 = NULL; 6622 action = PF_PASS; 6623 break; 6624 case PF_DROP: 6625 m_freem(*m0); 6626 *m0 = NULL; 6627 break; 6628 default: 6629 /* pf_route6() returns unlocked. */ 6630 if (r->rt) { 6631 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6632 return (action); 6633 } 6634 break; 6635 } 6636 6637 if (s) 6638 PF_STATE_UNLOCK(s); 6639 6640 /* If reassembled packet passed, create new fragments. */ 6641 if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && 6642 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6643 action = pf_refragment6(ifp, m0, mtag); 6644 6645 return (action); 6646 } 6647 #endif /* INET6 */ 6648