1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 #include "opt_bpf.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_pf.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/gsb_crc32.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/random.h> 58 #include <sys/refcount.h> 59 #include <sys/sdt.h> 60 #include <sys/socket.h> 61 #include <sys/sysctl.h> 62 #include <sys/taskqueue.h> 63 #include <sys/ucred.h> 64 65 #include <crypto/sha2/sha512.h> 66 67 #include <net/if.h> 68 #include <net/if_var.h> 69 #include <net/if_private.h> 70 #include <net/if_types.h> 71 #include <net/if_vlan_var.h> 72 #include <net/route.h> 73 #include <net/route/nhop.h> 74 #include <net/vnet.h> 75 76 #include <net/pfil.h> 77 #include <net/pfvar.h> 78 #include <net/if_pflog.h> 79 #include <net/if_pfsync.h> 80 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_var.h> 83 #include <netinet/in_fib.h> 84 #include <netinet/ip.h> 85 #include <netinet/ip_fw.h> 86 #include <netinet/ip_icmp.h> 87 #include <netinet/icmp_var.h> 88 #include <netinet/ip_var.h> 89 #include <netinet/tcp.h> 90 #include <netinet/tcp_fsm.h> 91 #include <netinet/tcp_seq.h> 92 #include <netinet/tcp_timer.h> 93 #include <netinet/tcp_var.h> 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 97 /* dummynet */ 98 #include <netinet/ip_dummynet.h> 99 #include <netinet/ip_fw.h> 100 #include <netpfil/ipfw/dn_heap.h> 101 #include <netpfil/ipfw/ip_fw_private.h> 102 #include <netpfil/ipfw/ip_dn_private.h> 103 104 #ifdef INET6 105 #include <netinet/ip6.h> 106 #include <netinet/icmp6.h> 107 #include <netinet6/nd6.h> 108 #include <netinet6/ip6_var.h> 109 #include <netinet6/in6_pcb.h> 110 #include <netinet6/in6_fib.h> 111 #include <netinet6/scope6_var.h> 112 #endif /* INET6 */ 113 114 #include <netinet/sctp_header.h> 115 #include <netinet/sctp_crc32.h> 116 117 #include <netipsec/ah.h> 118 119 #include <machine/in_cksum.h> 120 #include <security/mac/mac_framework.h> 121 122 SDT_PROVIDER_DEFINE(pf); 123 SDT_PROBE_DEFINE2(pf, , test, reason_set, "int", "int"); 124 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 125 "struct pf_kstate *"); 126 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 127 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 128 "struct pf_kstate *"); 129 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *", 130 "struct pfi_kkif *"); 131 SDT_PROBE_DEFINE4(pf, ip, route_to, entry, "struct mbuf *", 132 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *"); 133 SDT_PROBE_DEFINE1(pf, ip, route_to, drop, "int"); 134 SDT_PROBE_DEFINE2(pf, ip, route_to, output, "struct ifnet *", "int"); 135 SDT_PROBE_DEFINE4(pf, ip6, route_to, entry, "struct mbuf *", 136 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *"); 137 SDT_PROBE_DEFINE1(pf, ip6, route_to, drop, "int"); 138 SDT_PROBE_DEFINE2(pf, ip6, route_to, output, "struct ifnet *", "int"); 139 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *", 140 "struct pf_krule *", "struct mbuf *", "int"); 141 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t", 142 "struct pf_sctp_source *"); 143 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t", 144 "struct pf_kstate *", "struct pf_sctp_source *"); 145 SDT_PROBE_DEFINE4(pf, sctp, multihome_scan, entry, "int", 146 "int", "struct pf_pdesc *", "int"); 147 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, param, "uint16_t", "uint16_t"); 148 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv4, "struct in_addr *", 149 "int"); 150 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv6, "struct in_addr6 *", 151 "int"); 152 153 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 154 "struct mbuf *"); 155 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 156 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 157 "int", "struct pf_keth_rule *", "char *"); 158 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 159 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 160 "int", "struct pf_keth_rule *"); 161 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t"); 162 SDT_PROBE_DEFINE2(pf, , log, log, "int", "const char *"); 163 164 /* 165 * Global variables 166 */ 167 168 /* state tables */ 169 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 170 VNET_DEFINE(struct pf_kpalist, pf_pabuf[3]); 171 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 172 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 173 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 174 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 175 VNET_DEFINE(struct pf_kstatus, pf_status); 176 177 VNET_DEFINE(u_int32_t, ticket_altqs_active); 178 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 179 VNET_DEFINE(int, altqs_inactive_open); 180 VNET_DEFINE(u_int32_t, ticket_pabuf); 181 182 static const int PF_HDR_LIMIT = 20; /* arbitrary limit */ 183 184 VNET_DEFINE(SHA512_CTX, pf_tcp_secret_ctx); 185 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 186 VNET_DEFINE(u_char, pf_tcp_secret[16]); 187 #define V_pf_tcp_secret VNET(pf_tcp_secret) 188 VNET_DEFINE(int, pf_tcp_secret_init); 189 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 190 VNET_DEFINE(int, pf_tcp_iss_off); 191 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 192 VNET_DECLARE(int, pf_vnet_active); 193 #define V_pf_vnet_active VNET(pf_vnet_active) 194 195 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 196 #define V_pf_purge_idx VNET(pf_purge_idx) 197 198 #ifdef PF_WANT_32_TO_64_COUNTER 199 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 200 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 201 202 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 203 VNET_DEFINE(size_t, pf_allrulecount); 204 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 205 #endif 206 207 #define PF_SCTP_MAX_ENDPOINTS 8 208 209 struct pf_sctp_endpoint; 210 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint); 211 struct pf_sctp_source { 212 sa_family_t af; 213 struct pf_addr addr; 214 TAILQ_ENTRY(pf_sctp_source) entry; 215 }; 216 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source); 217 struct pf_sctp_endpoint 218 { 219 uint32_t v_tag; 220 struct pf_sctp_sources sources; 221 RB_ENTRY(pf_sctp_endpoint) entry; 222 }; 223 static int 224 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b) 225 { 226 return (a->v_tag - b->v_tag); 227 } 228 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 229 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 230 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints); 231 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints) 232 static struct mtx_padalign pf_sctp_endpoints_mtx; 233 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF); 234 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx) 235 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx) 236 237 /* 238 * Queue for pf_intr() sends. 239 */ 240 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 241 struct pf_send_entry { 242 STAILQ_ENTRY(pf_send_entry) pfse_next; 243 struct mbuf *pfse_m; 244 enum { 245 PFSE_IP, 246 PFSE_IP6, 247 PFSE_ICMP, 248 PFSE_ICMP6, 249 } pfse_type; 250 struct { 251 int type; 252 int code; 253 int mtu; 254 } icmpopts; 255 }; 256 257 STAILQ_HEAD(pf_send_head, pf_send_entry); 258 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 259 #define V_pf_sendqueue VNET(pf_sendqueue) 260 261 static struct mtx_padalign pf_sendqueue_mtx; 262 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 263 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 264 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 265 266 /* 267 * Queue for pf_overload_task() tasks. 268 */ 269 struct pf_overload_entry { 270 SLIST_ENTRY(pf_overload_entry) next; 271 struct pf_addr addr; 272 sa_family_t af; 273 uint8_t dir; 274 struct pf_krule *rule; 275 }; 276 277 SLIST_HEAD(pf_overload_head, pf_overload_entry); 278 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 279 #define V_pf_overloadqueue VNET(pf_overloadqueue) 280 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 281 #define V_pf_overloadtask VNET(pf_overloadtask) 282 283 static struct mtx_padalign pf_overloadqueue_mtx; 284 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 285 "pf overload/flush queue", MTX_DEF); 286 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 287 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 288 289 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 290 struct mtx_padalign pf_unlnkdrules_mtx; 291 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 292 MTX_DEF); 293 294 struct sx pf_config_lock; 295 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 296 297 struct mtx_padalign pf_table_stats_lock; 298 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 299 MTX_DEF); 300 301 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 302 #define V_pf_sources_z VNET(pf_sources_z) 303 uma_zone_t pf_mtag_z; 304 VNET_DEFINE(uma_zone_t, pf_state_z); 305 VNET_DEFINE(uma_zone_t, pf_state_key_z); 306 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z); 307 308 VNET_DEFINE(struct unrhdr64, pf_stateid); 309 310 static void pf_src_tree_remove_state(struct pf_kstate *); 311 static int pf_check_threshold(struct pf_kthreshold *); 312 313 static void pf_change_ap(struct pf_pdesc *, struct pf_addr *, u_int16_t *, 314 struct pf_addr *, u_int16_t); 315 static int pf_modulate_sack(struct pf_pdesc *, 316 struct tcphdr *, struct pf_state_peer *); 317 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *, 318 u_int16_t *, u_int16_t *); 319 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 320 struct pf_addr *, struct pf_addr *, u_int16_t, 321 u_int16_t *, u_int16_t *, u_int16_t *, 322 u_int16_t *, u_int8_t, sa_family_t); 323 int pf_change_icmp_af(struct mbuf *, int, 324 struct pf_pdesc *, struct pf_pdesc *, 325 struct pf_addr *, struct pf_addr *, sa_family_t, 326 sa_family_t); 327 int pf_translate_icmp_af(int, void *); 328 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 329 int, sa_family_t, struct pf_krule *, int); 330 static void pf_detach_state(struct pf_kstate *); 331 static int pf_state_key_attach(struct pf_state_key *, 332 struct pf_state_key *, struct pf_kstate *); 333 static void pf_state_key_detach(struct pf_kstate *, int); 334 static int pf_state_key_ctor(void *, int, void *, int); 335 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 336 static __inline void pf_dummynet_flag_remove(struct mbuf *m, 337 struct pf_mtag *pf_mtag); 338 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *, 339 struct pf_krule *, struct mbuf **); 340 static int pf_dummynet_route(struct pf_pdesc *, 341 struct pf_kstate *, struct pf_krule *, 342 struct ifnet *, const struct sockaddr *, struct mbuf **); 343 static int pf_test_eth_rule(int, struct pfi_kkif *, 344 struct mbuf **); 345 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 346 struct pf_pdesc *, struct pf_krule **, 347 struct pf_kruleset **, u_short *, struct inpcb *); 348 static int pf_create_state(struct pf_krule *, 349 struct pf_test_ctx *, 350 struct pf_kstate **, u_int16_t, u_int16_t); 351 static int pf_state_key_addr_setup(struct pf_pdesc *, 352 struct pf_state_key_cmp *, int); 353 static int pf_tcp_track_full(struct pf_kstate *, 354 struct pf_pdesc *, u_short *, int *, 355 struct pf_state_peer *, struct pf_state_peer *, 356 u_int8_t, u_int8_t); 357 static int pf_tcp_track_sloppy(struct pf_kstate *, 358 struct pf_pdesc *, u_short *, 359 struct pf_state_peer *, struct pf_state_peer *, 360 u_int8_t, u_int8_t); 361 static int pf_test_state(struct pf_kstate **, struct pf_pdesc *, 362 u_short *); 363 int pf_icmp_state_lookup(struct pf_state_key_cmp *, 364 struct pf_pdesc *, struct pf_kstate **, 365 u_int16_t, u_int16_t, int, int *, int, int); 366 static int pf_test_state_icmp(struct pf_kstate **, 367 struct pf_pdesc *, u_short *); 368 static int pf_sctp_track(struct pf_kstate *, struct pf_pdesc *, 369 u_short *); 370 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *); 371 static void pf_sctp_multihome_delayed(struct pf_pdesc *, 372 struct pfi_kkif *, struct pf_kstate *, int); 373 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 374 int, u_int16_t); 375 static int pf_check_proto_cksum(struct mbuf *, int, int, 376 u_int8_t, sa_family_t); 377 static int pf_walk_option(struct pf_pdesc *, struct ip *, 378 int, int, u_short *); 379 static int pf_walk_header(struct pf_pdesc *, struct ip *, u_short *); 380 #ifdef INET6 381 static int pf_walk_option6(struct pf_pdesc *, struct ip6_hdr *, 382 int, int, u_short *); 383 static int pf_walk_header6(struct pf_pdesc *, struct ip6_hdr *, 384 u_short *); 385 #endif 386 static void pf_print_state_parts(struct pf_kstate *, 387 struct pf_state_key *, struct pf_state_key *); 388 static int pf_patch_8(struct pf_pdesc *, u_int8_t *, u_int8_t, 389 bool); 390 static int pf_find_state(struct pf_pdesc *, 391 const struct pf_state_key_cmp *, struct pf_kstate **); 392 static bool pf_src_connlimit(struct pf_kstate *); 393 static int pf_match_rcvif(struct mbuf *, struct pf_krule *); 394 static void pf_counters_inc(int, struct pf_pdesc *, 395 struct pf_kstate *, struct pf_krule *, 396 struct pf_krule *); 397 static void pf_log_matches(struct pf_pdesc *, struct pf_krule *, 398 struct pf_krule *, struct pf_kruleset *, 399 struct pf_krule_slist *); 400 static void pf_overload_task(void *v, int pending); 401 static u_short pf_insert_src_node(struct pf_ksrc_node *[PF_SN_MAX], 402 struct pf_srchash *[PF_SN_MAX], struct pf_krule *, 403 struct pf_addr *, sa_family_t, struct pf_addr *, 404 struct pfi_kkif *, sa_family_t, pf_sn_types_t); 405 static u_int pf_purge_expired_states(u_int, int); 406 static void pf_purge_unlinked_rules(void); 407 static int pf_mtag_uminit(void *, int, int); 408 static void pf_mtag_free(struct m_tag *); 409 static void pf_packet_rework_nat(struct pf_pdesc *, int, 410 struct pf_state_key *); 411 #ifdef INET 412 static int pf_route(struct pf_krule *, 413 struct ifnet *, struct pf_kstate *, 414 struct pf_pdesc *, struct inpcb *); 415 #endif /* INET */ 416 #ifdef INET6 417 static void pf_change_a6(struct pf_addr *, u_int16_t *, 418 struct pf_addr *, u_int8_t); 419 static int pf_route6(struct pf_krule *, 420 struct ifnet *, struct pf_kstate *, 421 struct pf_pdesc *, struct inpcb *); 422 #endif /* INET6 */ 423 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 424 425 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 426 427 extern int pf_end_threads; 428 extern struct proc *pf_purge_proc; 429 430 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 431 432 #define PACKET_UNDO_NAT(_pd, _off, _s) \ 433 do { \ 434 struct pf_state_key *nk; \ 435 if ((pd->dir) == PF_OUT) \ 436 nk = (_s)->key[PF_SK_STACK]; \ 437 else \ 438 nk = (_s)->key[PF_SK_WIRE]; \ 439 pf_packet_rework_nat(_pd, _off, nk); \ 440 } while (0) 441 442 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 443 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED) 444 445 static struct pfi_kkif * 446 BOUND_IFACE(struct pf_kstate *st, struct pf_pdesc *pd) 447 { 448 struct pfi_kkif *k = pd->kif; 449 450 SDT_PROBE2(pf, ip, , bound_iface, st, k); 451 452 /* Floating unless otherwise specified. */ 453 if (! (st->rule->rule_flag & PFRULE_IFBOUND)) 454 return (V_pfi_all); 455 456 /* 457 * Initially set to all, because we don't know what interface we'll be 458 * sending this out when we create the state. 459 */ 460 if (st->rule->rt == PF_REPLYTO || (pd->af != pd->naf && st->direction == PF_IN)) 461 return (V_pfi_all); 462 463 /* 464 * If this state is created based on another state (e.g. SCTP 465 * multihome) always set it floating initially. We can't know for sure 466 * what interface the actual traffic for this state will come in on. 467 */ 468 if (pd->related_rule) 469 return (V_pfi_all); 470 471 /* Don't overrule the interface for states created on incoming packets. */ 472 if (st->direction == PF_IN) 473 return (k); 474 475 /* No route-to, so don't overrule. */ 476 if (st->act.rt != PF_ROUTETO) 477 return (k); 478 479 /* Bind to the route-to interface. */ 480 return (st->act.rt_kif); 481 } 482 483 #define STATE_INC_COUNTERS(s) \ 484 do { \ 485 struct pf_krule_item *mrm; \ 486 counter_u64_add(s->rule->states_cur, 1); \ 487 counter_u64_add(s->rule->states_tot, 1); \ 488 if (s->anchor != NULL) { \ 489 counter_u64_add(s->anchor->states_cur, 1); \ 490 counter_u64_add(s->anchor->states_tot, 1); \ 491 } \ 492 if (s->nat_rule != NULL) { \ 493 counter_u64_add(s->nat_rule->states_cur, 1);\ 494 counter_u64_add(s->nat_rule->states_tot, 1);\ 495 } \ 496 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 497 counter_u64_add(mrm->r->states_cur, 1); \ 498 counter_u64_add(mrm->r->states_tot, 1); \ 499 } \ 500 } while (0) 501 502 #define STATE_DEC_COUNTERS(s) \ 503 do { \ 504 struct pf_krule_item *mrm; \ 505 if (s->nat_rule != NULL) \ 506 counter_u64_add(s->nat_rule->states_cur, -1);\ 507 if (s->anchor != NULL) \ 508 counter_u64_add(s->anchor->states_cur, -1); \ 509 counter_u64_add(s->rule->states_cur, -1); \ 510 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 511 counter_u64_add(mrm->r->states_cur, -1); \ 512 } while (0) 513 514 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 515 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 516 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 517 VNET_DEFINE(struct pf_idhash *, pf_idhash); 518 VNET_DEFINE(struct pf_srchash *, pf_srchash); 519 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash); 520 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping); 521 522 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 523 "pf(4)"); 524 525 VNET_DEFINE(u_long, pf_hashmask); 526 VNET_DEFINE(u_long, pf_srchashmask); 527 VNET_DEFINE(u_long, pf_udpendpointhashmask); 528 VNET_DEFINE_STATIC(u_long, pf_hashsize); 529 #define V_pf_hashsize VNET(pf_hashsize) 530 VNET_DEFINE_STATIC(u_long, pf_srchashsize); 531 #define V_pf_srchashsize VNET(pf_srchashsize) 532 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize); 533 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize) 534 u_long pf_ioctl_maxcount = 65535; 535 536 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 537 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 538 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 539 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 540 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 541 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable"); 542 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 543 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 544 545 VNET_DEFINE(void *, pf_swi_cookie); 546 VNET_DEFINE(struct intr_event *, pf_swi_ie); 547 548 VNET_DEFINE(uint32_t, pf_hashseed); 549 #define V_pf_hashseed VNET(pf_hashseed) 550 551 static void 552 pf_sctp_checksum(struct mbuf *m, int off) 553 { 554 uint32_t sum = 0; 555 556 /* Zero out the checksum, to enable recalculation. */ 557 m_copyback(m, off + offsetof(struct sctphdr, checksum), 558 sizeof(sum), (caddr_t)&sum); 559 560 sum = sctp_calculate_cksum(m, off); 561 562 m_copyback(m, off + offsetof(struct sctphdr, checksum), 563 sizeof(sum), (caddr_t)&sum); 564 } 565 566 int 567 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 568 { 569 570 switch (af) { 571 #ifdef INET 572 case AF_INET: 573 if (a->addr32[0] > b->addr32[0]) 574 return (1); 575 if (a->addr32[0] < b->addr32[0]) 576 return (-1); 577 break; 578 #endif /* INET */ 579 #ifdef INET6 580 case AF_INET6: 581 if (a->addr32[3] > b->addr32[3]) 582 return (1); 583 if (a->addr32[3] < b->addr32[3]) 584 return (-1); 585 if (a->addr32[2] > b->addr32[2]) 586 return (1); 587 if (a->addr32[2] < b->addr32[2]) 588 return (-1); 589 if (a->addr32[1] > b->addr32[1]) 590 return (1); 591 if (a->addr32[1] < b->addr32[1]) 592 return (-1); 593 if (a->addr32[0] > b->addr32[0]) 594 return (1); 595 if (a->addr32[0] < b->addr32[0]) 596 return (-1); 597 break; 598 #endif /* INET6 */ 599 default: 600 unhandled_af(af); 601 } 602 return (0); 603 } 604 605 static bool 606 pf_is_loopback(sa_family_t af, struct pf_addr *addr) 607 { 608 switch (af) { 609 #ifdef INET 610 case AF_INET: 611 return IN_LOOPBACK(ntohl(addr->v4.s_addr)); 612 #endif /* INET */ 613 case AF_INET6: 614 return IN6_IS_ADDR_LOOPBACK(&addr->v6); 615 default: 616 unhandled_af(af); 617 } 618 } 619 620 static void 621 pf_packet_rework_nat(struct pf_pdesc *pd, int off, struct pf_state_key *nk) 622 { 623 624 switch (pd->virtual_proto) { 625 case IPPROTO_TCP: { 626 struct tcphdr *th = &pd->hdr.tcp; 627 628 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 629 pf_change_ap(pd, pd->src, &th->th_sport, 630 &nk->addr[pd->sidx], nk->port[pd->sidx]); 631 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 632 pf_change_ap(pd, pd->dst, &th->th_dport, 633 &nk->addr[pd->didx], nk->port[pd->didx]); 634 m_copyback(pd->m, off, sizeof(*th), (caddr_t)th); 635 break; 636 } 637 case IPPROTO_UDP: { 638 struct udphdr *uh = &pd->hdr.udp; 639 640 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 641 pf_change_ap(pd, pd->src, &uh->uh_sport, 642 &nk->addr[pd->sidx], nk->port[pd->sidx]); 643 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 644 pf_change_ap(pd, pd->dst, &uh->uh_dport, 645 &nk->addr[pd->didx], nk->port[pd->didx]); 646 m_copyback(pd->m, off, sizeof(*uh), (caddr_t)uh); 647 break; 648 } 649 case IPPROTO_SCTP: { 650 struct sctphdr *sh = &pd->hdr.sctp; 651 652 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 653 pf_change_ap(pd, pd->src, &sh->src_port, 654 &nk->addr[pd->sidx], nk->port[pd->sidx]); 655 } 656 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 657 pf_change_ap(pd, pd->dst, &sh->dest_port, 658 &nk->addr[pd->didx], nk->port[pd->didx]); 659 } 660 661 break; 662 } 663 case IPPROTO_ICMP: { 664 struct icmp *ih = &pd->hdr.icmp; 665 666 if (nk->port[pd->sidx] != ih->icmp_id) { 667 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 668 ih->icmp_cksum, ih->icmp_id, 669 nk->port[pd->sidx], 0); 670 ih->icmp_id = nk->port[pd->sidx]; 671 pd->sport = &ih->icmp_id; 672 673 m_copyback(pd->m, off, ICMP_MINLEN, (caddr_t)ih); 674 } 675 /* FALLTHROUGH */ 676 } 677 default: 678 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 679 switch (pd->af) { 680 case AF_INET: 681 pf_change_a(&pd->src->v4.s_addr, 682 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 683 0); 684 break; 685 case AF_INET6: 686 pf_addrcpy(pd->src, &nk->addr[pd->sidx], 687 pd->af); 688 break; 689 default: 690 unhandled_af(pd->af); 691 } 692 } 693 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 694 switch (pd->af) { 695 case AF_INET: 696 pf_change_a(&pd->dst->v4.s_addr, 697 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 698 0); 699 break; 700 case AF_INET6: 701 pf_addrcpy(pd->dst, &nk->addr[pd->didx], 702 pd->af); 703 break; 704 default: 705 unhandled_af(pd->af); 706 } 707 } 708 break; 709 } 710 } 711 712 static __inline uint32_t 713 pf_hashkey(const struct pf_state_key *sk) 714 { 715 uint32_t h; 716 717 h = murmur3_32_hash32((const uint32_t *)sk, 718 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 719 V_pf_hashseed); 720 721 return (h & V_pf_hashmask); 722 } 723 724 __inline uint32_t 725 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 726 { 727 uint32_t h; 728 729 switch (af) { 730 case AF_INET: 731 h = murmur3_32_hash32((uint32_t *)&addr->v4, 732 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 733 break; 734 case AF_INET6: 735 h = murmur3_32_hash32((uint32_t *)&addr->v6, 736 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 737 break; 738 default: 739 unhandled_af(af); 740 } 741 742 return (h & V_pf_srchashmask); 743 } 744 745 static inline uint32_t 746 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint) 747 { 748 uint32_t h; 749 750 h = murmur3_32_hash32((uint32_t *)endpoint, 751 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t), 752 V_pf_hashseed); 753 return (h & V_pf_udpendpointhashmask); 754 } 755 756 #ifdef ALTQ 757 static int 758 pf_state_hash(struct pf_kstate *s) 759 { 760 u_int32_t hv = (intptr_t)s / sizeof(*s); 761 762 hv ^= crc32(&s->src, sizeof(s->src)); 763 hv ^= crc32(&s->dst, sizeof(s->dst)); 764 if (hv == 0) 765 hv = 1; 766 return (hv); 767 } 768 #endif /* ALTQ */ 769 770 static __inline void 771 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 772 { 773 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 774 s->dst.state = newstate; 775 if (which == PF_PEER_DST) 776 return; 777 if (s->src.state == newstate) 778 return; 779 if (s->creatorid == V_pf_status.hostid && 780 s->key[PF_SK_STACK] != NULL && 781 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 782 !(TCPS_HAVEESTABLISHED(s->src.state) || 783 s->src.state == TCPS_CLOSED) && 784 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 785 atomic_add_32(&V_pf_status.states_halfopen, -1); 786 787 s->src.state = newstate; 788 } 789 790 bool 791 pf_init_threshold(struct pf_kthreshold *threshold, 792 u_int32_t limit, u_int32_t seconds) 793 { 794 threshold->limit = limit; 795 threshold->seconds = seconds; 796 threshold->cr = counter_rate_alloc(M_NOWAIT, seconds); 797 798 return (threshold->cr != NULL); 799 } 800 801 static int 802 pf_check_threshold(struct pf_kthreshold *threshold) 803 { 804 return (counter_ratecheck(threshold->cr, threshold->limit) < 0); 805 } 806 807 static bool 808 pf_src_connlimit(struct pf_kstate *state) 809 { 810 struct pf_overload_entry *pfoe; 811 struct pf_ksrc_node *src_node = state->sns[PF_SN_LIMIT]; 812 bool limited = false; 813 814 PF_STATE_LOCK_ASSERT(state); 815 PF_SRC_NODE_LOCK(src_node); 816 817 src_node->conn++; 818 state->src.tcp_est = 1; 819 820 if (state->rule->max_src_conn && 821 state->rule->max_src_conn < 822 src_node->conn) { 823 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 824 limited = true; 825 } 826 827 if (state->rule->max_src_conn_rate.limit && 828 pf_check_threshold(&src_node->conn_rate)) { 829 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 830 limited = true; 831 } 832 833 if (!limited) 834 goto done; 835 836 /* Kill this state. */ 837 state->timeout = PFTM_PURGE; 838 pf_set_protostate(state, PF_PEER_BOTH, TCPS_CLOSED); 839 840 if (state->rule->overload_tbl == NULL) 841 goto done; 842 843 /* Schedule overloading and flushing task. */ 844 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 845 if (pfoe == NULL) 846 goto done; /* too bad :( */ 847 848 bcopy(&src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 849 pfoe->af = state->key[PF_SK_WIRE]->af; 850 pfoe->rule = state->rule; 851 pfoe->dir = state->direction; 852 PF_OVERLOADQ_LOCK(); 853 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 854 PF_OVERLOADQ_UNLOCK(); 855 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 856 857 done: 858 PF_SRC_NODE_UNLOCK(src_node); 859 return (limited); 860 } 861 862 static void 863 pf_overload_task(void *v, int pending) 864 { 865 struct pf_overload_head queue; 866 struct pfr_addr p; 867 struct pf_overload_entry *pfoe, *pfoe1; 868 uint32_t killed = 0; 869 870 CURVNET_SET((struct vnet *)v); 871 872 PF_OVERLOADQ_LOCK(); 873 queue = V_pf_overloadqueue; 874 SLIST_INIT(&V_pf_overloadqueue); 875 PF_OVERLOADQ_UNLOCK(); 876 877 bzero(&p, sizeof(p)); 878 SLIST_FOREACH(pfoe, &queue, next) { 879 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 880 if (V_pf_status.debug >= PF_DEBUG_MISC) { 881 printf("%s: blocking address ", __func__); 882 pf_print_host(&pfoe->addr, 0, pfoe->af); 883 printf("\n"); 884 } 885 886 p.pfra_af = pfoe->af; 887 switch (pfoe->af) { 888 #ifdef INET 889 case AF_INET: 890 p.pfra_net = 32; 891 p.pfra_ip4addr = pfoe->addr.v4; 892 break; 893 #endif /* INET */ 894 #ifdef INET6 895 case AF_INET6: 896 p.pfra_net = 128; 897 p.pfra_ip6addr = pfoe->addr.v6; 898 break; 899 #endif /* INET6 */ 900 default: 901 unhandled_af(pfoe->af); 902 } 903 904 PF_RULES_WLOCK(); 905 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 906 PF_RULES_WUNLOCK(); 907 } 908 909 /* 910 * Remove those entries, that don't need flushing. 911 */ 912 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 913 if (pfoe->rule->flush == 0) { 914 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 915 free(pfoe, M_PFTEMP); 916 } else 917 counter_u64_add( 918 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 919 920 /* If nothing to flush, return. */ 921 if (SLIST_EMPTY(&queue)) { 922 CURVNET_RESTORE(); 923 return; 924 } 925 926 for (int i = 0; i <= V_pf_hashmask; i++) { 927 struct pf_idhash *ih = &V_pf_idhash[i]; 928 struct pf_state_key *sk; 929 struct pf_kstate *s; 930 931 PF_HASHROW_LOCK(ih); 932 LIST_FOREACH(s, &ih->states, entry) { 933 sk = s->key[PF_SK_WIRE]; 934 SLIST_FOREACH(pfoe, &queue, next) 935 if (sk->af == pfoe->af && 936 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 937 pfoe->rule == s->rule) && 938 ((pfoe->dir == PF_OUT && 939 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 940 (pfoe->dir == PF_IN && 941 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 942 s->timeout = PFTM_PURGE; 943 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 944 killed++; 945 } 946 } 947 PF_HASHROW_UNLOCK(ih); 948 } 949 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 950 free(pfoe, M_PFTEMP); 951 if (V_pf_status.debug >= PF_DEBUG_MISC) 952 printf("%s: %u states killed", __func__, killed); 953 954 CURVNET_RESTORE(); 955 } 956 957 /* 958 * On node found always returns locked. On not found its configurable. 959 */ 960 struct pf_ksrc_node * 961 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 962 struct pf_srchash **sh, pf_sn_types_t sn_type, bool returnlocked) 963 { 964 struct pf_ksrc_node *n; 965 966 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 967 968 *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 969 PF_HASHROW_LOCK(*sh); 970 LIST_FOREACH(n, &(*sh)->nodes, entry) 971 if (n->rule == rule && n->af == af && n->type == sn_type && 972 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 973 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 974 break; 975 976 if (n == NULL && !returnlocked) 977 PF_HASHROW_UNLOCK(*sh); 978 979 return (n); 980 } 981 982 bool 983 pf_src_node_exists(struct pf_ksrc_node **sn, struct pf_srchash *sh) 984 { 985 struct pf_ksrc_node *cur; 986 987 if ((*sn) == NULL) 988 return (false); 989 990 KASSERT(sh != NULL, ("%s: sh is NULL", __func__)); 991 992 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 993 PF_HASHROW_LOCK(sh); 994 LIST_FOREACH(cur, &(sh->nodes), entry) { 995 if (cur == (*sn) && 996 cur->expire != 1) /* Ignore nodes being killed */ 997 return (true); 998 } 999 PF_HASHROW_UNLOCK(sh); 1000 (*sn) = NULL; 1001 return (false); 1002 } 1003 1004 static void 1005 pf_free_src_node(struct pf_ksrc_node *sn) 1006 { 1007 1008 for (int i = 0; i < 2; i++) { 1009 counter_u64_free(sn->bytes[i]); 1010 counter_u64_free(sn->packets[i]); 1011 } 1012 counter_rate_free(sn->conn_rate.cr); 1013 uma_zfree(V_pf_sources_z, sn); 1014 } 1015 1016 static u_short 1017 pf_insert_src_node(struct pf_ksrc_node *sns[PF_SN_MAX], 1018 struct pf_srchash *snhs[PF_SN_MAX], struct pf_krule *rule, 1019 struct pf_addr *src, sa_family_t af, struct pf_addr *raddr, 1020 struct pfi_kkif *rkif, sa_family_t raf, pf_sn_types_t sn_type) 1021 { 1022 u_short reason = 0; 1023 struct pf_krule *r_track = rule; 1024 struct pf_ksrc_node **sn = &(sns[sn_type]); 1025 struct pf_srchash **sh = &(snhs[sn_type]); 1026 1027 KASSERT(sn_type != PF_SN_LIMIT || (raddr == NULL && rkif == NULL), 1028 ("%s: raddr and rkif must be NULL for PF_SN_LIMIT", __func__)); 1029 1030 KASSERT(sn_type != PF_SN_LIMIT || (rule->rule_flag & PFRULE_SRCTRACK), 1031 ("%s: PF_SN_LIMIT only valid for rules with PFRULE_SRCTRACK", __func__)); 1032 1033 /* 1034 * XXX: There could be a KASSERT for 1035 * sn_type == PF_SN_LIMIT || (pool->opts & PF_POOL_STICKYADDR) 1036 * but we'd need to pass pool *only* for this KASSERT. 1037 */ 1038 1039 if ( (rule->rule_flag & PFRULE_SRCTRACK) && 1040 !(rule->rule_flag & PFRULE_RULESRCTRACK)) 1041 r_track = &V_pf_default_rule; 1042 1043 /* 1044 * Request the sh to always be locked, as we might insert a new sn. 1045 */ 1046 if (*sn == NULL) 1047 *sn = pf_find_src_node(src, r_track, af, sh, sn_type, true); 1048 1049 if (*sn == NULL) { 1050 PF_HASHROW_ASSERT(*sh); 1051 1052 if (sn_type == PF_SN_LIMIT && rule->max_src_nodes && 1053 counter_u64_fetch(r_track->src_nodes[sn_type]) >= rule->max_src_nodes) { 1054 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); 1055 reason = PFRES_SRCLIMIT; 1056 goto done; 1057 } 1058 1059 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 1060 if ((*sn) == NULL) { 1061 reason = PFRES_MEMORY; 1062 goto done; 1063 } 1064 1065 for (int i = 0; i < 2; i++) { 1066 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 1067 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 1068 1069 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 1070 pf_free_src_node(*sn); 1071 reason = PFRES_MEMORY; 1072 goto done; 1073 } 1074 } 1075 1076 if (sn_type == PF_SN_LIMIT) 1077 if (! pf_init_threshold(&(*sn)->conn_rate, 1078 rule->max_src_conn_rate.limit, 1079 rule->max_src_conn_rate.seconds)) { 1080 pf_free_src_node(*sn); 1081 reason = PFRES_MEMORY; 1082 goto done; 1083 } 1084 1085 MPASS((*sn)->lock == NULL); 1086 (*sn)->lock = &(*sh)->lock; 1087 1088 (*sn)->af = af; 1089 (*sn)->rule = r_track; 1090 pf_addrcpy(&(*sn)->addr, src, af); 1091 if (raddr != NULL) 1092 pf_addrcpy(&(*sn)->raddr, raddr, raf); 1093 (*sn)->rkif = rkif; 1094 (*sn)->raf = raf; 1095 LIST_INSERT_HEAD(&(*sh)->nodes, *sn, entry); 1096 (*sn)->creation = time_uptime; 1097 (*sn)->ruletype = rule->action; 1098 (*sn)->type = sn_type; 1099 counter_u64_add(r_track->src_nodes[sn_type], 1); 1100 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 1101 } else { 1102 if (sn_type == PF_SN_LIMIT && rule->max_src_states && 1103 (*sn)->states >= rule->max_src_states) { 1104 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 1105 1); 1106 reason = PFRES_SRCLIMIT; 1107 goto done; 1108 } 1109 } 1110 done: 1111 if (reason == 0) 1112 (*sn)->states++; 1113 else 1114 (*sn) = NULL; 1115 1116 PF_HASHROW_UNLOCK(*sh); 1117 return (reason); 1118 } 1119 1120 void 1121 pf_unlink_src_node(struct pf_ksrc_node *src) 1122 { 1123 PF_SRC_NODE_LOCK_ASSERT(src); 1124 1125 LIST_REMOVE(src, entry); 1126 if (src->rule) 1127 counter_u64_add(src->rule->src_nodes[src->type], -1); 1128 } 1129 1130 u_int 1131 pf_free_src_nodes(struct pf_ksrc_node_list *head) 1132 { 1133 struct pf_ksrc_node *sn, *tmp; 1134 u_int count = 0; 1135 1136 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 1137 pf_free_src_node(sn); 1138 count++; 1139 } 1140 1141 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 1142 1143 return (count); 1144 } 1145 1146 void 1147 pf_mtag_initialize(void) 1148 { 1149 1150 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 1151 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 1152 UMA_ALIGN_PTR, 0); 1153 } 1154 1155 /* Per-vnet data storage structures initialization. */ 1156 void 1157 pf_initialize(void) 1158 { 1159 struct pf_keyhash *kh; 1160 struct pf_idhash *ih; 1161 struct pf_srchash *sh; 1162 struct pf_udpendpointhash *uh; 1163 u_int i; 1164 1165 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 1166 V_pf_hashsize = PF_HASHSIZ; 1167 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 1168 V_pf_srchashsize = PF_SRCHASHSIZ; 1169 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize)) 1170 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1171 1172 V_pf_hashseed = arc4random(); 1173 1174 /* States and state keys storage. */ 1175 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1176 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1177 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1178 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1179 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1180 1181 V_pf_state_key_z = uma_zcreate("pf state keys", 1182 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1183 UMA_ALIGN_PTR, 0); 1184 1185 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash), 1186 M_PFHASH, M_NOWAIT | M_ZERO); 1187 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash), 1188 M_PFHASH, M_NOWAIT | M_ZERO); 1189 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1190 printf("pf: Unable to allocate memory for " 1191 "state_hashsize %lu.\n", V_pf_hashsize); 1192 1193 free(V_pf_keyhash, M_PFHASH); 1194 free(V_pf_idhash, M_PFHASH); 1195 1196 V_pf_hashsize = PF_HASHSIZ; 1197 V_pf_keyhash = mallocarray(V_pf_hashsize, 1198 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1199 V_pf_idhash = mallocarray(V_pf_hashsize, 1200 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1201 } 1202 1203 V_pf_hashmask = V_pf_hashsize - 1; 1204 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 1205 i++, kh++, ih++) { 1206 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1207 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1208 } 1209 1210 /* Source nodes. */ 1211 V_pf_sources_z = uma_zcreate("pf source nodes", 1212 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1213 0); 1214 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1215 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1216 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1217 1218 V_pf_srchash = mallocarray(V_pf_srchashsize, 1219 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1220 if (V_pf_srchash == NULL) { 1221 printf("pf: Unable to allocate memory for " 1222 "source_hashsize %lu.\n", V_pf_srchashsize); 1223 1224 V_pf_srchashsize = PF_SRCHASHSIZ; 1225 V_pf_srchash = mallocarray(V_pf_srchashsize, 1226 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1227 } 1228 1229 V_pf_srchashmask = V_pf_srchashsize - 1; 1230 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 1231 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1232 1233 1234 /* UDP endpoint mappings. */ 1235 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings", 1236 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL, 1237 UMA_ALIGN_PTR, 0); 1238 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1239 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO); 1240 if (V_pf_udpendpointhash == NULL) { 1241 printf("pf: Unable to allocate memory for " 1242 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize); 1243 1244 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1245 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1246 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO); 1247 } 1248 1249 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1; 1250 for (i = 0, uh = V_pf_udpendpointhash; 1251 i <= V_pf_udpendpointhashmask; 1252 i++, uh++) { 1253 mtx_init(&uh->lock, "pf_udpendpointhash", NULL, 1254 MTX_DEF | MTX_DUPOK); 1255 } 1256 1257 /* Anchors */ 1258 V_pf_anchor_z = uma_zcreate("pf anchors", 1259 sizeof(struct pf_kanchor), NULL, NULL, NULL, NULL, 1260 UMA_ALIGN_PTR, 0); 1261 V_pf_limits[PF_LIMIT_ANCHORS].zone = V_pf_anchor_z; 1262 uma_zone_set_max(V_pf_anchor_z, PF_ANCHOR_HIWAT); 1263 uma_zone_set_warning(V_pf_anchor_z, "PF anchor limit reached"); 1264 1265 V_pf_eth_anchor_z = uma_zcreate("pf Ethernet anchors", 1266 sizeof(struct pf_keth_anchor), NULL, NULL, NULL, NULL, 1267 UMA_ALIGN_PTR, 0); 1268 V_pf_limits[PF_LIMIT_ETH_ANCHORS].zone = V_pf_eth_anchor_z; 1269 uma_zone_set_max(V_pf_eth_anchor_z, PF_ANCHOR_HIWAT); 1270 uma_zone_set_warning(V_pf_eth_anchor_z, "PF Ethernet anchor limit reached"); 1271 1272 /* ALTQ */ 1273 TAILQ_INIT(&V_pf_altqs[0]); 1274 TAILQ_INIT(&V_pf_altqs[1]); 1275 TAILQ_INIT(&V_pf_altqs[2]); 1276 TAILQ_INIT(&V_pf_altqs[3]); 1277 TAILQ_INIT(&V_pf_pabuf[0]); 1278 TAILQ_INIT(&V_pf_pabuf[1]); 1279 TAILQ_INIT(&V_pf_pabuf[2]); 1280 V_pf_altqs_active = &V_pf_altqs[0]; 1281 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1282 V_pf_altqs_inactive = &V_pf_altqs[2]; 1283 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1284 1285 /* Send & overload+flush queues. */ 1286 STAILQ_INIT(&V_pf_sendqueue); 1287 SLIST_INIT(&V_pf_overloadqueue); 1288 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1289 1290 /* Unlinked, but may be referenced rules. */ 1291 TAILQ_INIT(&V_pf_unlinked_rules); 1292 } 1293 1294 void 1295 pf_mtag_cleanup(void) 1296 { 1297 1298 uma_zdestroy(pf_mtag_z); 1299 } 1300 1301 void 1302 pf_cleanup(void) 1303 { 1304 struct pf_keyhash *kh; 1305 struct pf_idhash *ih; 1306 struct pf_srchash *sh; 1307 struct pf_udpendpointhash *uh; 1308 struct pf_send_entry *pfse, *next; 1309 u_int i; 1310 1311 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; 1312 i <= V_pf_hashmask; 1313 i++, kh++, ih++) { 1314 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1315 __func__)); 1316 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1317 __func__)); 1318 mtx_destroy(&kh->lock); 1319 mtx_destroy(&ih->lock); 1320 } 1321 free(V_pf_keyhash, M_PFHASH); 1322 free(V_pf_idhash, M_PFHASH); 1323 1324 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1325 KASSERT(LIST_EMPTY(&sh->nodes), 1326 ("%s: source node hash not empty", __func__)); 1327 mtx_destroy(&sh->lock); 1328 } 1329 free(V_pf_srchash, M_PFHASH); 1330 1331 for (i = 0, uh = V_pf_udpendpointhash; 1332 i <= V_pf_udpendpointhashmask; 1333 i++, uh++) { 1334 KASSERT(LIST_EMPTY(&uh->endpoints), 1335 ("%s: udp endpoint hash not empty", __func__)); 1336 mtx_destroy(&uh->lock); 1337 } 1338 free(V_pf_udpendpointhash, M_PFHASH); 1339 1340 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1341 m_freem(pfse->pfse_m); 1342 free(pfse, M_PFTEMP); 1343 } 1344 MPASS(RB_EMPTY(&V_pf_sctp_endpoints)); 1345 1346 uma_zdestroy(V_pf_sources_z); 1347 uma_zdestroy(V_pf_state_z); 1348 uma_zdestroy(V_pf_state_key_z); 1349 uma_zdestroy(V_pf_udp_mapping_z); 1350 } 1351 1352 static int 1353 pf_mtag_uminit(void *mem, int size, int how) 1354 { 1355 struct m_tag *t; 1356 1357 t = (struct m_tag *)mem; 1358 t->m_tag_cookie = MTAG_ABI_COMPAT; 1359 t->m_tag_id = PACKET_TAG_PF; 1360 t->m_tag_len = sizeof(struct pf_mtag); 1361 t->m_tag_free = pf_mtag_free; 1362 1363 return (0); 1364 } 1365 1366 static void 1367 pf_mtag_free(struct m_tag *t) 1368 { 1369 1370 uma_zfree(pf_mtag_z, t); 1371 } 1372 1373 struct pf_mtag * 1374 pf_get_mtag(struct mbuf *m) 1375 { 1376 struct m_tag *mtag; 1377 1378 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1379 return ((struct pf_mtag *)(mtag + 1)); 1380 1381 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1382 if (mtag == NULL) 1383 return (NULL); 1384 bzero(mtag + 1, sizeof(struct pf_mtag)); 1385 m_tag_prepend(m, mtag); 1386 1387 return ((struct pf_mtag *)(mtag + 1)); 1388 } 1389 1390 static int 1391 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1392 struct pf_kstate *s) 1393 { 1394 struct pf_keyhash *khs, *khw, *kh; 1395 struct pf_state_key *sk, *cur; 1396 struct pf_kstate *si, *olds = NULL; 1397 int idx; 1398 1399 NET_EPOCH_ASSERT(); 1400 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1401 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1402 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1403 1404 /* 1405 * We need to lock hash slots of both keys. To avoid deadlock 1406 * we always lock the slot with lower address first. Unlock order 1407 * isn't important. 1408 * 1409 * We also need to lock ID hash slot before dropping key 1410 * locks. On success we return with ID hash slot locked. 1411 */ 1412 1413 if (skw == sks) { 1414 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1415 PF_HASHROW_LOCK(khs); 1416 } else { 1417 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1418 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1419 if (khs == khw) { 1420 PF_HASHROW_LOCK(khs); 1421 } else if (khs < khw) { 1422 PF_HASHROW_LOCK(khs); 1423 PF_HASHROW_LOCK(khw); 1424 } else { 1425 PF_HASHROW_LOCK(khw); 1426 PF_HASHROW_LOCK(khs); 1427 } 1428 } 1429 1430 #define KEYS_UNLOCK() do { \ 1431 if (khs != khw) { \ 1432 PF_HASHROW_UNLOCK(khs); \ 1433 PF_HASHROW_UNLOCK(khw); \ 1434 } else \ 1435 PF_HASHROW_UNLOCK(khs); \ 1436 } while (0) 1437 1438 /* 1439 * First run: start with wire key. 1440 */ 1441 sk = skw; 1442 kh = khw; 1443 idx = PF_SK_WIRE; 1444 1445 MPASS(s->lock == NULL); 1446 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1447 1448 keyattach: 1449 LIST_FOREACH(cur, &kh->keys, entry) 1450 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1451 break; 1452 1453 if (cur != NULL) { 1454 /* Key exists. Check for same kif, if none, add to key. */ 1455 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1456 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1457 1458 PF_HASHROW_LOCK(ih); 1459 if (si->kif == s->kif && 1460 ((si->key[PF_SK_WIRE]->af == sk->af && 1461 si->direction == s->direction) || 1462 (si->key[PF_SK_WIRE]->af != 1463 si->key[PF_SK_STACK]->af && 1464 sk->af == si->key[PF_SK_STACK]->af && 1465 si->direction != s->direction))) { 1466 bool reuse = false; 1467 1468 if (sk->proto == IPPROTO_TCP && 1469 si->src.state >= TCPS_FIN_WAIT_2 && 1470 si->dst.state >= TCPS_FIN_WAIT_2) 1471 reuse = true; 1472 1473 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1474 printf("pf: %s key attach " 1475 "%s on %s: ", 1476 (idx == PF_SK_WIRE) ? 1477 "wire" : "stack", 1478 reuse ? "reuse" : "failed", 1479 s->kif->pfik_name); 1480 pf_print_state_parts(s, 1481 (idx == PF_SK_WIRE) ? 1482 sk : NULL, 1483 (idx == PF_SK_STACK) ? 1484 sk : NULL); 1485 printf(", existing: "); 1486 pf_print_state_parts(si, 1487 (idx == PF_SK_WIRE) ? 1488 sk : NULL, 1489 (idx == PF_SK_STACK) ? 1490 sk : NULL); 1491 printf("\n"); 1492 } 1493 1494 if (reuse) { 1495 /* 1496 * New state matches an old >FIN_WAIT_2 1497 * state. We can't drop key hash locks, 1498 * thus we can't unlink it properly. 1499 * 1500 * As a workaround we drop it into 1501 * TCPS_CLOSED state, schedule purge 1502 * ASAP and push it into the very end 1503 * of the slot TAILQ, so that it won't 1504 * conflict with our new state. 1505 */ 1506 pf_set_protostate(si, PF_PEER_BOTH, 1507 TCPS_CLOSED); 1508 si->timeout = PFTM_PURGE; 1509 olds = si; 1510 } else { 1511 s->timeout = PFTM_UNLINKED; 1512 if (idx == PF_SK_STACK) 1513 /* 1514 * Remove the wire key from 1515 * the hash. Other threads 1516 * can't be referencing it 1517 * because we still hold the 1518 * hash lock. 1519 */ 1520 pf_state_key_detach(s, 1521 PF_SK_WIRE); 1522 PF_HASHROW_UNLOCK(ih); 1523 KEYS_UNLOCK(); 1524 if (idx == PF_SK_WIRE) 1525 /* 1526 * We've not inserted either key. 1527 * Free both. 1528 */ 1529 uma_zfree(V_pf_state_key_z, skw); 1530 if (skw != sks) 1531 uma_zfree( 1532 V_pf_state_key_z, 1533 sks); 1534 return (EEXIST); /* collision! */ 1535 } 1536 } 1537 PF_HASHROW_UNLOCK(ih); 1538 } 1539 uma_zfree(V_pf_state_key_z, sk); 1540 s->key[idx] = cur; 1541 } else { 1542 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1543 s->key[idx] = sk; 1544 } 1545 1546 stateattach: 1547 /* List is sorted, if-bound states before floating. */ 1548 if (s->kif == V_pfi_all) 1549 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1550 else 1551 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1552 1553 if (olds) { 1554 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1555 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1556 key_list[idx]); 1557 olds = NULL; 1558 } 1559 1560 /* 1561 * Attach done. See how should we (or should not?) 1562 * attach a second key. 1563 */ 1564 if (sks == skw) { 1565 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1566 idx = PF_SK_STACK; 1567 sks = NULL; 1568 goto stateattach; 1569 } else if (sks != NULL) { 1570 /* 1571 * Continue attaching with stack key. 1572 */ 1573 sk = sks; 1574 kh = khs; 1575 idx = PF_SK_STACK; 1576 sks = NULL; 1577 goto keyattach; 1578 } 1579 1580 PF_STATE_LOCK(s); 1581 KEYS_UNLOCK(); 1582 1583 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1584 ("%s failure", __func__)); 1585 1586 return (0); 1587 #undef KEYS_UNLOCK 1588 } 1589 1590 static void 1591 pf_detach_state(struct pf_kstate *s) 1592 { 1593 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1594 struct pf_keyhash *kh; 1595 1596 NET_EPOCH_ASSERT(); 1597 MPASS(s->timeout >= PFTM_MAX); 1598 1599 pf_sctp_multihome_detach_addr(s); 1600 1601 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr) 1602 V_pflow_export_state_ptr(s); 1603 1604 if (sks != NULL) { 1605 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1606 PF_HASHROW_LOCK(kh); 1607 if (s->key[PF_SK_STACK] != NULL) 1608 pf_state_key_detach(s, PF_SK_STACK); 1609 /* 1610 * If both point to same key, then we are done. 1611 */ 1612 if (sks == s->key[PF_SK_WIRE]) { 1613 pf_state_key_detach(s, PF_SK_WIRE); 1614 PF_HASHROW_UNLOCK(kh); 1615 return; 1616 } 1617 PF_HASHROW_UNLOCK(kh); 1618 } 1619 1620 if (s->key[PF_SK_WIRE] != NULL) { 1621 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1622 PF_HASHROW_LOCK(kh); 1623 if (s->key[PF_SK_WIRE] != NULL) 1624 pf_state_key_detach(s, PF_SK_WIRE); 1625 PF_HASHROW_UNLOCK(kh); 1626 } 1627 } 1628 1629 static void 1630 pf_state_key_detach(struct pf_kstate *s, int idx) 1631 { 1632 struct pf_state_key *sk = s->key[idx]; 1633 #ifdef INVARIANTS 1634 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1635 1636 PF_HASHROW_ASSERT(kh); 1637 #endif /* INVARIANTS */ 1638 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1639 s->key[idx] = NULL; 1640 1641 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1642 LIST_REMOVE(sk, entry); 1643 uma_zfree(V_pf_state_key_z, sk); 1644 } 1645 } 1646 1647 static int 1648 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1649 { 1650 struct pf_state_key *sk = mem; 1651 1652 bzero(sk, sizeof(struct pf_state_key_cmp)); 1653 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1654 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1655 1656 return (0); 1657 } 1658 1659 static int 1660 pf_state_key_addr_setup(struct pf_pdesc *pd, 1661 struct pf_state_key_cmp *key, int multi) 1662 { 1663 struct pf_addr *saddr = pd->src; 1664 struct pf_addr *daddr = pd->dst; 1665 #ifdef INET6 1666 struct nd_neighbor_solicit nd; 1667 struct pf_addr *target; 1668 u_short action, reason; 1669 1670 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6) 1671 goto copy; 1672 1673 switch (pd->hdr.icmp6.icmp6_type) { 1674 case ND_NEIGHBOR_SOLICIT: 1675 if (multi) 1676 return (-1); 1677 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af)) 1678 return (-1); 1679 target = (struct pf_addr *)&nd.nd_ns_target; 1680 daddr = target; 1681 break; 1682 case ND_NEIGHBOR_ADVERT: 1683 if (multi) 1684 return (-1); 1685 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af)) 1686 return (-1); 1687 target = (struct pf_addr *)&nd.nd_ns_target; 1688 saddr = target; 1689 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) { 1690 key->addr[pd->didx].addr32[0] = 0; 1691 key->addr[pd->didx].addr32[1] = 0; 1692 key->addr[pd->didx].addr32[2] = 0; 1693 key->addr[pd->didx].addr32[3] = 0; 1694 daddr = NULL; /* overwritten */ 1695 } 1696 break; 1697 default: 1698 if (multi) { 1699 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL; 1700 key->addr[pd->sidx].addr32[1] = 0; 1701 key->addr[pd->sidx].addr32[2] = 0; 1702 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE; 1703 saddr = NULL; /* overwritten */ 1704 } 1705 } 1706 copy: 1707 #endif /* INET6 */ 1708 if (saddr) 1709 pf_addrcpy(&key->addr[pd->sidx], saddr, pd->af); 1710 if (daddr) 1711 pf_addrcpy(&key->addr[pd->didx], daddr, pd->af); 1712 1713 return (0); 1714 } 1715 1716 int 1717 pf_state_key_setup(struct pf_pdesc *pd, u_int16_t sport, u_int16_t dport, 1718 struct pf_state_key **sk, struct pf_state_key **nk) 1719 { 1720 *sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1721 if (*sk == NULL) 1722 return (ENOMEM); 1723 1724 if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)*sk, 1725 0)) { 1726 uma_zfree(V_pf_state_key_z, *sk); 1727 *sk = NULL; 1728 return (ENOMEM); 1729 } 1730 1731 (*sk)->port[pd->sidx] = sport; 1732 (*sk)->port[pd->didx] = dport; 1733 (*sk)->proto = pd->proto; 1734 (*sk)->af = pd->af; 1735 1736 *nk = pf_state_key_clone(*sk); 1737 if (*nk == NULL) { 1738 uma_zfree(V_pf_state_key_z, *sk); 1739 *sk = NULL; 1740 return (ENOMEM); 1741 } 1742 1743 if (pd->af != pd->naf) { 1744 (*sk)->port[pd->sidx] = pd->osport; 1745 (*sk)->port[pd->didx] = pd->odport; 1746 1747 (*nk)->af = pd->naf; 1748 1749 /* 1750 * We're overwriting an address here, so potentially there's bits of an IPv6 1751 * address left in here. Clear that out first. 1752 */ 1753 bzero(&(*nk)->addr[0], sizeof((*nk)->addr[0])); 1754 bzero(&(*nk)->addr[1], sizeof((*nk)->addr[1])); 1755 if (pd->dir == PF_IN) { 1756 pf_addrcpy(&(*nk)->addr[pd->didx], &pd->nsaddr, 1757 pd->naf); 1758 pf_addrcpy(&(*nk)->addr[pd->sidx], &pd->ndaddr, 1759 pd->naf); 1760 (*nk)->port[pd->didx] = pd->nsport; 1761 (*nk)->port[pd->sidx] = pd->ndport; 1762 } else { 1763 pf_addrcpy(&(*nk)->addr[pd->sidx], &pd->nsaddr, 1764 pd->naf); 1765 pf_addrcpy(&(*nk)->addr[pd->didx], &pd->ndaddr, 1766 pd->naf); 1767 (*nk)->port[pd->sidx] = pd->nsport; 1768 (*nk)->port[pd->didx] = pd->ndport; 1769 } 1770 1771 switch (pd->proto) { 1772 case IPPROTO_ICMP: 1773 (*nk)->proto = IPPROTO_ICMPV6; 1774 break; 1775 case IPPROTO_ICMPV6: 1776 (*nk)->proto = IPPROTO_ICMP; 1777 break; 1778 default: 1779 (*nk)->proto = pd->proto; 1780 } 1781 } 1782 1783 return (0); 1784 } 1785 1786 struct pf_state_key * 1787 pf_state_key_clone(const struct pf_state_key *orig) 1788 { 1789 struct pf_state_key *sk; 1790 1791 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1792 if (sk == NULL) 1793 return (NULL); 1794 1795 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1796 1797 return (sk); 1798 } 1799 1800 int 1801 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1802 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1803 { 1804 struct pf_idhash *ih; 1805 struct pf_kstate *cur; 1806 int error; 1807 1808 NET_EPOCH_ASSERT(); 1809 1810 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1811 ("%s: sks not pristine", __func__)); 1812 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1813 ("%s: skw not pristine", __func__)); 1814 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1815 1816 s->kif = kif; 1817 s->orig_kif = orig_kif; 1818 1819 if (s->id == 0 && s->creatorid == 0) { 1820 s->id = alloc_unr64(&V_pf_stateid); 1821 s->id = htobe64(s->id); 1822 s->creatorid = V_pf_status.hostid; 1823 } 1824 1825 /* Returns with ID locked on success. */ 1826 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1827 return (error); 1828 skw = sks = NULL; 1829 1830 ih = &V_pf_idhash[PF_IDHASH(s)]; 1831 PF_HASHROW_ASSERT(ih); 1832 LIST_FOREACH(cur, &ih->states, entry) 1833 if (cur->id == s->id && cur->creatorid == s->creatorid) 1834 break; 1835 1836 if (cur != NULL) { 1837 s->timeout = PFTM_UNLINKED; 1838 PF_HASHROW_UNLOCK(ih); 1839 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1840 printf("pf: state ID collision: " 1841 "id: %016llx creatorid: %08x\n", 1842 (unsigned long long)be64toh(s->id), 1843 ntohl(s->creatorid)); 1844 } 1845 pf_detach_state(s); 1846 return (EEXIST); 1847 } 1848 LIST_INSERT_HEAD(&ih->states, s, entry); 1849 /* One for keys, one for ID hash. */ 1850 refcount_init(&s->refs, 2); 1851 1852 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1853 if (V_pfsync_insert_state_ptr != NULL) 1854 V_pfsync_insert_state_ptr(s); 1855 1856 /* Returns locked. */ 1857 return (0); 1858 } 1859 1860 /* 1861 * Find state by ID: returns with locked row on success. 1862 */ 1863 struct pf_kstate * 1864 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1865 { 1866 struct pf_idhash *ih; 1867 struct pf_kstate *s; 1868 1869 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1870 1871 ih = &V_pf_idhash[PF_IDHASHID(id)]; 1872 1873 PF_HASHROW_LOCK(ih); 1874 LIST_FOREACH(s, &ih->states, entry) 1875 if (s->id == id && s->creatorid == creatorid) 1876 break; 1877 1878 if (s == NULL) 1879 PF_HASHROW_UNLOCK(ih); 1880 1881 return (s); 1882 } 1883 1884 /* 1885 * Find state by key. 1886 * Returns with ID hash slot locked on success. 1887 */ 1888 static int 1889 pf_find_state(struct pf_pdesc *pd, const struct pf_state_key_cmp *key, 1890 struct pf_kstate **state) 1891 { 1892 struct pf_keyhash *kh; 1893 struct pf_state_key *sk; 1894 struct pf_kstate *s; 1895 int idx; 1896 1897 *state = NULL; 1898 1899 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1900 1901 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1902 1903 PF_HASHROW_LOCK(kh); 1904 LIST_FOREACH(sk, &kh->keys, entry) 1905 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1906 break; 1907 if (sk == NULL) { 1908 PF_HASHROW_UNLOCK(kh); 1909 return (PF_DROP); 1910 } 1911 1912 idx = (pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1913 1914 /* List is sorted, if-bound states before floating ones. */ 1915 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1916 if (s->kif == V_pfi_all || s->kif == pd->kif || 1917 s->orig_kif == pd->kif) { 1918 PF_STATE_LOCK(s); 1919 PF_HASHROW_UNLOCK(kh); 1920 if (__predict_false(s->timeout >= PFTM_MAX)) { 1921 /* 1922 * State is either being processed by 1923 * pf_remove_state() in an other thread, or 1924 * is scheduled for immediate expiry. 1925 */ 1926 PF_STATE_UNLOCK(s); 1927 SDT_PROBE5(pf, ip, state, lookup, pd->kif, 1928 key, (pd->dir), pd, *state); 1929 return (PF_DROP); 1930 } 1931 goto out; 1932 } 1933 1934 /* Look through the other list, in case of AF-TO */ 1935 idx = idx == PF_SK_WIRE ? PF_SK_STACK : PF_SK_WIRE; 1936 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1937 if (s->key[PF_SK_WIRE]->af == s->key[PF_SK_STACK]->af) 1938 continue; 1939 if (s->kif == V_pfi_all || s->kif == pd->kif || 1940 s->orig_kif == pd->kif) { 1941 PF_STATE_LOCK(s); 1942 PF_HASHROW_UNLOCK(kh); 1943 if (__predict_false(s->timeout >= PFTM_MAX)) { 1944 /* 1945 * State is either being processed by 1946 * pf_remove_state() in an other thread, or 1947 * is scheduled for immediate expiry. 1948 */ 1949 PF_STATE_UNLOCK(s); 1950 SDT_PROBE5(pf, ip, state, lookup, pd->kif, 1951 key, (pd->dir), pd, NULL); 1952 return (PF_DROP); 1953 } 1954 goto out; 1955 } 1956 } 1957 1958 PF_HASHROW_UNLOCK(kh); 1959 1960 out: 1961 SDT_PROBE5(pf, ip, state, lookup, pd->kif, key, (pd->dir), pd, *state); 1962 1963 if (s == NULL || s->timeout == PFTM_PURGE) { 1964 if (s) 1965 PF_STATE_UNLOCK(s); 1966 return (PF_DROP); 1967 } 1968 1969 if ((s)->rule->pktrate.limit && pd->dir == (s)->direction) { 1970 if (pf_check_threshold(&(s)->rule->pktrate)) { 1971 PF_STATE_UNLOCK(s); 1972 return (PF_DROP); 1973 } 1974 } 1975 if (PACKET_LOOPED(pd)) { 1976 PF_STATE_UNLOCK(s); 1977 return (PF_PASS); 1978 } 1979 1980 *state = s; 1981 1982 return (PF_MATCH); 1983 } 1984 1985 /* 1986 * Returns with ID hash slot locked on success. 1987 */ 1988 struct pf_kstate * 1989 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more) 1990 { 1991 struct pf_keyhash *kh; 1992 struct pf_state_key *sk; 1993 struct pf_kstate *s, *ret = NULL; 1994 int idx, inout = 0; 1995 1996 if (more != NULL) 1997 *more = 0; 1998 1999 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 2000 2001 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 2002 2003 PF_HASHROW_LOCK(kh); 2004 LIST_FOREACH(sk, &kh->keys, entry) 2005 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 2006 break; 2007 if (sk == NULL) { 2008 PF_HASHROW_UNLOCK(kh); 2009 return (NULL); 2010 } 2011 switch (dir) { 2012 case PF_IN: 2013 idx = PF_SK_WIRE; 2014 break; 2015 case PF_OUT: 2016 idx = PF_SK_STACK; 2017 break; 2018 case PF_INOUT: 2019 idx = PF_SK_WIRE; 2020 inout = 1; 2021 break; 2022 default: 2023 panic("%s: dir %u", __func__, dir); 2024 } 2025 second_run: 2026 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 2027 if (more == NULL) { 2028 PF_STATE_LOCK(s); 2029 PF_HASHROW_UNLOCK(kh); 2030 return (s); 2031 } 2032 2033 if (ret) 2034 (*more)++; 2035 else { 2036 ret = s; 2037 PF_STATE_LOCK(s); 2038 } 2039 } 2040 if (inout == 1) { 2041 inout = 0; 2042 idx = PF_SK_STACK; 2043 goto second_run; 2044 } 2045 PF_HASHROW_UNLOCK(kh); 2046 2047 return (ret); 2048 } 2049 2050 /* 2051 * FIXME 2052 * This routine is inefficient -- locks the state only to unlock immediately on 2053 * return. 2054 * It is racy -- after the state is unlocked nothing stops other threads from 2055 * removing it. 2056 */ 2057 bool 2058 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir) 2059 { 2060 struct pf_kstate *s; 2061 2062 s = pf_find_state_all(key, dir, NULL); 2063 if (s != NULL) { 2064 PF_STATE_UNLOCK(s); 2065 return (true); 2066 } 2067 return (false); 2068 } 2069 2070 struct pf_udp_mapping * 2071 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port, 2072 struct pf_addr *nat_addr, uint16_t nat_port) 2073 { 2074 struct pf_udp_mapping *mapping; 2075 2076 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO); 2077 if (mapping == NULL) 2078 return (NULL); 2079 pf_addrcpy(&mapping->endpoints[0].addr, src_addr, af); 2080 mapping->endpoints[0].port = src_port; 2081 mapping->endpoints[0].af = af; 2082 mapping->endpoints[0].mapping = mapping; 2083 pf_addrcpy(&mapping->endpoints[1].addr, nat_addr, af); 2084 mapping->endpoints[1].port = nat_port; 2085 mapping->endpoints[1].af = af; 2086 mapping->endpoints[1].mapping = mapping; 2087 refcount_init(&mapping->refs, 1); 2088 return (mapping); 2089 } 2090 2091 int 2092 pf_udp_mapping_insert(struct pf_udp_mapping *mapping) 2093 { 2094 struct pf_udpendpointhash *h0, *h1; 2095 struct pf_udp_endpoint *endpoint; 2096 int ret = EEXIST; 2097 2098 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 2099 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 2100 if (h0 == h1) { 2101 PF_HASHROW_LOCK(h0); 2102 } else if (h0 < h1) { 2103 PF_HASHROW_LOCK(h0); 2104 PF_HASHROW_LOCK(h1); 2105 } else { 2106 PF_HASHROW_LOCK(h1); 2107 PF_HASHROW_LOCK(h0); 2108 } 2109 2110 LIST_FOREACH(endpoint, &h0->endpoints, entry) { 2111 if (bcmp(endpoint, &mapping->endpoints[0], 2112 sizeof(struct pf_udp_endpoint_cmp)) == 0) 2113 break; 2114 } 2115 if (endpoint != NULL) 2116 goto cleanup; 2117 LIST_FOREACH(endpoint, &h1->endpoints, entry) { 2118 if (bcmp(endpoint, &mapping->endpoints[1], 2119 sizeof(struct pf_udp_endpoint_cmp)) == 0) 2120 break; 2121 } 2122 if (endpoint != NULL) 2123 goto cleanup; 2124 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry); 2125 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry); 2126 ret = 0; 2127 2128 cleanup: 2129 if (h0 != h1) { 2130 PF_HASHROW_UNLOCK(h0); 2131 PF_HASHROW_UNLOCK(h1); 2132 } else { 2133 PF_HASHROW_UNLOCK(h0); 2134 } 2135 return (ret); 2136 } 2137 2138 void 2139 pf_udp_mapping_release(struct pf_udp_mapping *mapping) 2140 { 2141 /* refcount is synchronized on the source endpoint's row lock */ 2142 struct pf_udpendpointhash *h0, *h1; 2143 2144 if (mapping == NULL) 2145 return; 2146 2147 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 2148 PF_HASHROW_LOCK(h0); 2149 if (refcount_release(&mapping->refs)) { 2150 LIST_REMOVE(&mapping->endpoints[0], entry); 2151 PF_HASHROW_UNLOCK(h0); 2152 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 2153 PF_HASHROW_LOCK(h1); 2154 LIST_REMOVE(&mapping->endpoints[1], entry); 2155 PF_HASHROW_UNLOCK(h1); 2156 2157 uma_zfree(V_pf_udp_mapping_z, mapping); 2158 } else { 2159 PF_HASHROW_UNLOCK(h0); 2160 } 2161 } 2162 2163 2164 struct pf_udp_mapping * 2165 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key) 2166 { 2167 struct pf_udpendpointhash *uh; 2168 struct pf_udp_endpoint *endpoint; 2169 2170 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)]; 2171 2172 PF_HASHROW_LOCK(uh); 2173 LIST_FOREACH(endpoint, &uh->endpoints, entry) { 2174 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 && 2175 bcmp(endpoint, &endpoint->mapping->endpoints[0], 2176 sizeof(struct pf_udp_endpoint_cmp)) == 0) 2177 break; 2178 } 2179 if (endpoint == NULL) { 2180 PF_HASHROW_UNLOCK(uh); 2181 return (NULL); 2182 } 2183 refcount_acquire(&endpoint->mapping->refs); 2184 PF_HASHROW_UNLOCK(uh); 2185 return (endpoint->mapping); 2186 } 2187 /* END state table stuff */ 2188 2189 static void 2190 pf_send(struct pf_send_entry *pfse) 2191 { 2192 2193 PF_SENDQ_LOCK(); 2194 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 2195 PF_SENDQ_UNLOCK(); 2196 swi_sched(V_pf_swi_cookie, 0); 2197 } 2198 2199 static bool 2200 pf_isforlocal(struct mbuf *m, int af) 2201 { 2202 switch (af) { 2203 #ifdef INET 2204 case AF_INET: { 2205 struct ip *ip = mtod(m, struct ip *); 2206 2207 return (in_localip(ip->ip_dst)); 2208 } 2209 #endif /* INET */ 2210 #ifdef INET6 2211 case AF_INET6: { 2212 struct ip6_hdr *ip6; 2213 struct in6_ifaddr *ia; 2214 ip6 = mtod(m, struct ip6_hdr *); 2215 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 2216 if (ia == NULL) 2217 return (false); 2218 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 2219 } 2220 #endif /* INET6 */ 2221 default: 2222 unhandled_af(af); 2223 } 2224 2225 return (false); 2226 } 2227 2228 int 2229 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type, 2230 int *icmp_dir, u_int16_t *virtual_id, u_int16_t *virtual_type) 2231 { 2232 /* 2233 * ICMP types marked with PF_OUT are typically responses to 2234 * PF_IN, and will match states in the opposite direction. 2235 * PF_IN ICMP types need to match a state with that type. 2236 */ 2237 *icmp_dir = PF_OUT; 2238 2239 /* Queries (and responses) */ 2240 switch (pd->af) { 2241 #ifdef INET 2242 case AF_INET: 2243 switch (type) { 2244 case ICMP_ECHO: 2245 *icmp_dir = PF_IN; 2246 /* FALLTHROUGH */ 2247 case ICMP_ECHOREPLY: 2248 *virtual_type = ICMP_ECHO; 2249 *virtual_id = pd->hdr.icmp.icmp_id; 2250 break; 2251 2252 case ICMP_TSTAMP: 2253 *icmp_dir = PF_IN; 2254 /* FALLTHROUGH */ 2255 case ICMP_TSTAMPREPLY: 2256 *virtual_type = ICMP_TSTAMP; 2257 *virtual_id = pd->hdr.icmp.icmp_id; 2258 break; 2259 2260 case ICMP_IREQ: 2261 *icmp_dir = PF_IN; 2262 /* FALLTHROUGH */ 2263 case ICMP_IREQREPLY: 2264 *virtual_type = ICMP_IREQ; 2265 *virtual_id = pd->hdr.icmp.icmp_id; 2266 break; 2267 2268 case ICMP_MASKREQ: 2269 *icmp_dir = PF_IN; 2270 /* FALLTHROUGH */ 2271 case ICMP_MASKREPLY: 2272 *virtual_type = ICMP_MASKREQ; 2273 *virtual_id = pd->hdr.icmp.icmp_id; 2274 break; 2275 2276 case ICMP_IPV6_WHEREAREYOU: 2277 *icmp_dir = PF_IN; 2278 /* FALLTHROUGH */ 2279 case ICMP_IPV6_IAMHERE: 2280 *virtual_type = ICMP_IPV6_WHEREAREYOU; 2281 *virtual_id = 0; /* Nothing sane to match on! */ 2282 break; 2283 2284 case ICMP_MOBILE_REGREQUEST: 2285 *icmp_dir = PF_IN; 2286 /* FALLTHROUGH */ 2287 case ICMP_MOBILE_REGREPLY: 2288 *virtual_type = ICMP_MOBILE_REGREQUEST; 2289 *virtual_id = 0; /* Nothing sane to match on! */ 2290 break; 2291 2292 case ICMP_ROUTERSOLICIT: 2293 *icmp_dir = PF_IN; 2294 /* FALLTHROUGH */ 2295 case ICMP_ROUTERADVERT: 2296 *virtual_type = ICMP_ROUTERSOLICIT; 2297 *virtual_id = 0; /* Nothing sane to match on! */ 2298 break; 2299 2300 /* These ICMP types map to other connections */ 2301 case ICMP_UNREACH: 2302 case ICMP_SOURCEQUENCH: 2303 case ICMP_REDIRECT: 2304 case ICMP_TIMXCEED: 2305 case ICMP_PARAMPROB: 2306 /* These will not be used, but set them anyway */ 2307 *icmp_dir = PF_IN; 2308 *virtual_type = type; 2309 *virtual_id = 0; 2310 *virtual_type = htons(*virtual_type); 2311 return (1); /* These types match to another state */ 2312 2313 /* 2314 * All remaining ICMP types get their own states, 2315 * and will only match in one direction. 2316 */ 2317 default: 2318 *icmp_dir = PF_IN; 2319 *virtual_type = type; 2320 *virtual_id = 0; 2321 break; 2322 } 2323 break; 2324 #endif /* INET */ 2325 #ifdef INET6 2326 case AF_INET6: 2327 switch (type) { 2328 case ICMP6_ECHO_REQUEST: 2329 *icmp_dir = PF_IN; 2330 /* FALLTHROUGH */ 2331 case ICMP6_ECHO_REPLY: 2332 *virtual_type = ICMP6_ECHO_REQUEST; 2333 *virtual_id = pd->hdr.icmp6.icmp6_id; 2334 break; 2335 2336 case MLD_LISTENER_QUERY: 2337 case MLD_LISTENER_REPORT: { 2338 /* 2339 * Listener Report can be sent by clients 2340 * without an associated Listener Query. 2341 * In addition to that, when Report is sent as a 2342 * reply to a Query its source and destination 2343 * address are different. 2344 */ 2345 *icmp_dir = PF_IN; 2346 *virtual_type = MLD_LISTENER_QUERY; 2347 *virtual_id = 0; 2348 break; 2349 } 2350 case MLD_MTRACE: 2351 *icmp_dir = PF_IN; 2352 /* FALLTHROUGH */ 2353 case MLD_MTRACE_RESP: 2354 *virtual_type = MLD_MTRACE; 2355 *virtual_id = 0; /* Nothing sane to match on! */ 2356 break; 2357 2358 case ND_NEIGHBOR_SOLICIT: 2359 *icmp_dir = PF_IN; 2360 /* FALLTHROUGH */ 2361 case ND_NEIGHBOR_ADVERT: { 2362 *virtual_type = ND_NEIGHBOR_SOLICIT; 2363 *virtual_id = 0; 2364 break; 2365 } 2366 2367 /* 2368 * These ICMP types map to other connections. 2369 * ND_REDIRECT can't be in this list because the triggering 2370 * packet header is optional. 2371 */ 2372 case ICMP6_DST_UNREACH: 2373 case ICMP6_PACKET_TOO_BIG: 2374 case ICMP6_TIME_EXCEEDED: 2375 case ICMP6_PARAM_PROB: 2376 /* These will not be used, but set them anyway */ 2377 *icmp_dir = PF_IN; 2378 *virtual_type = type; 2379 *virtual_id = 0; 2380 *virtual_type = htons(*virtual_type); 2381 return (1); /* These types match to another state */ 2382 /* 2383 * All remaining ICMP6 types get their own states, 2384 * and will only match in one direction. 2385 */ 2386 default: 2387 *icmp_dir = PF_IN; 2388 *virtual_type = type; 2389 *virtual_id = 0; 2390 break; 2391 } 2392 break; 2393 #endif /* INET6 */ 2394 default: 2395 unhandled_af(pd->af); 2396 } 2397 *virtual_type = htons(*virtual_type); 2398 return (0); /* These types match to their own state */ 2399 } 2400 2401 void 2402 pf_intr(void *v) 2403 { 2404 struct epoch_tracker et; 2405 struct pf_send_head queue; 2406 struct pf_send_entry *pfse, *next; 2407 2408 CURVNET_SET((struct vnet *)v); 2409 2410 PF_SENDQ_LOCK(); 2411 queue = V_pf_sendqueue; 2412 STAILQ_INIT(&V_pf_sendqueue); 2413 PF_SENDQ_UNLOCK(); 2414 2415 NET_EPOCH_ENTER(et); 2416 2417 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 2418 switch (pfse->pfse_type) { 2419 #ifdef INET 2420 case PFSE_IP: { 2421 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 2422 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif, 2423 ("%s: rcvif != loif", __func__)); 2424 2425 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 2426 pfse->pfse_m->m_pkthdr.csum_flags |= 2427 CSUM_IP_VALID | CSUM_IP_CHECKED | 2428 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2429 pfse->pfse_m->m_pkthdr.csum_data = 0xffff; 2430 ip_input(pfse->pfse_m); 2431 } else { 2432 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2433 NULL); 2434 } 2435 break; 2436 } 2437 case PFSE_ICMP: 2438 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 2439 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 2440 break; 2441 #endif /* INET */ 2442 #ifdef INET6 2443 case PFSE_IP6: 2444 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 2445 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif, 2446 ("%s: rcvif != loif", __func__)); 2447 2448 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL | 2449 M_LOOP; 2450 pfse->pfse_m->m_pkthdr.csum_flags |= 2451 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2452 pfse->pfse_m->m_pkthdr.csum_data = 0xffff; 2453 ip6_input(pfse->pfse_m); 2454 } else { 2455 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2456 NULL, NULL); 2457 } 2458 break; 2459 case PFSE_ICMP6: 2460 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 2461 pfse->icmpopts.code, pfse->icmpopts.mtu); 2462 break; 2463 #endif /* INET6 */ 2464 default: 2465 panic("%s: unknown type", __func__); 2466 } 2467 free(pfse, M_PFTEMP); 2468 } 2469 NET_EPOCH_EXIT(et); 2470 CURVNET_RESTORE(); 2471 } 2472 2473 #define pf_purge_thread_period (hz / 10) 2474 2475 #ifdef PF_WANT_32_TO_64_COUNTER 2476 static void 2477 pf_status_counter_u64_periodic(void) 2478 { 2479 2480 PF_RULES_RASSERT(); 2481 2482 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 2483 return; 2484 } 2485 2486 for (int i = 0; i < FCNT_MAX; i++) { 2487 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 2488 } 2489 } 2490 2491 static void 2492 pf_kif_counter_u64_periodic(void) 2493 { 2494 struct pfi_kkif *kif; 2495 size_t r, run; 2496 2497 PF_RULES_RASSERT(); 2498 2499 if (__predict_false(V_pf_allkifcount == 0)) { 2500 return; 2501 } 2502 2503 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2504 return; 2505 } 2506 2507 run = V_pf_allkifcount / 10; 2508 if (run < 5) 2509 run = 5; 2510 2511 for (r = 0; r < run; r++) { 2512 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 2513 if (kif == NULL) { 2514 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2515 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 2516 break; 2517 } 2518 2519 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2520 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 2521 2522 for (int i = 0; i < 2; i++) { 2523 for (int j = 0; j < 2; j++) { 2524 for (int k = 0; k < 2; k++) { 2525 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 2526 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 2527 } 2528 } 2529 } 2530 } 2531 } 2532 2533 static void 2534 pf_rule_counter_u64_periodic(void) 2535 { 2536 struct pf_krule *rule; 2537 size_t r, run; 2538 2539 PF_RULES_RASSERT(); 2540 2541 if (__predict_false(V_pf_allrulecount == 0)) { 2542 return; 2543 } 2544 2545 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2546 return; 2547 } 2548 2549 run = V_pf_allrulecount / 10; 2550 if (run < 5) 2551 run = 5; 2552 2553 for (r = 0; r < run; r++) { 2554 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 2555 if (rule == NULL) { 2556 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2557 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 2558 break; 2559 } 2560 2561 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2562 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 2563 2564 pf_counter_u64_periodic(&rule->evaluations); 2565 for (int i = 0; i < 2; i++) { 2566 pf_counter_u64_periodic(&rule->packets[i]); 2567 pf_counter_u64_periodic(&rule->bytes[i]); 2568 } 2569 } 2570 } 2571 2572 static void 2573 pf_counter_u64_periodic_main(void) 2574 { 2575 PF_RULES_RLOCK_TRACKER; 2576 2577 V_pf_counter_periodic_iter++; 2578 2579 PF_RULES_RLOCK(); 2580 pf_counter_u64_critical_enter(); 2581 pf_status_counter_u64_periodic(); 2582 pf_kif_counter_u64_periodic(); 2583 pf_rule_counter_u64_periodic(); 2584 pf_counter_u64_critical_exit(); 2585 PF_RULES_RUNLOCK(); 2586 } 2587 #else 2588 #define pf_counter_u64_periodic_main() do { } while (0) 2589 #endif 2590 2591 void 2592 pf_purge_thread(void *unused __unused) 2593 { 2594 struct epoch_tracker et; 2595 2596 VNET_ITERATOR_DECL(vnet_iter); 2597 2598 sx_xlock(&pf_end_lock); 2599 while (pf_end_threads == 0) { 2600 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 2601 2602 VNET_LIST_RLOCK(); 2603 NET_EPOCH_ENTER(et); 2604 VNET_FOREACH(vnet_iter) { 2605 CURVNET_SET(vnet_iter); 2606 2607 /* Wait until V_pf_default_rule is initialized. */ 2608 if (V_pf_vnet_active == 0) { 2609 CURVNET_RESTORE(); 2610 continue; 2611 } 2612 2613 pf_counter_u64_periodic_main(); 2614 2615 /* 2616 * Process 1/interval fraction of the state 2617 * table every run. 2618 */ 2619 V_pf_purge_idx = 2620 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask / 2621 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 2622 2623 /* 2624 * Purge other expired types every 2625 * PFTM_INTERVAL seconds. 2626 */ 2627 if (V_pf_purge_idx == 0) { 2628 /* 2629 * Order is important: 2630 * - states and src nodes reference rules 2631 * - states and rules reference kifs 2632 */ 2633 pf_purge_expired_fragments(); 2634 pf_purge_expired_src_nodes(); 2635 pf_purge_unlinked_rules(); 2636 pfi_kkif_purge(); 2637 } 2638 CURVNET_RESTORE(); 2639 } 2640 NET_EPOCH_EXIT(et); 2641 VNET_LIST_RUNLOCK(); 2642 } 2643 2644 pf_end_threads++; 2645 sx_xunlock(&pf_end_lock); 2646 kproc_exit(0); 2647 } 2648 2649 void 2650 pf_unload_vnet_purge(void) 2651 { 2652 2653 /* 2654 * To cleanse up all kifs and rules we need 2655 * two runs: first one clears reference flags, 2656 * then pf_purge_expired_states() doesn't 2657 * raise them, and then second run frees. 2658 */ 2659 pf_purge_unlinked_rules(); 2660 pfi_kkif_purge(); 2661 2662 /* 2663 * Now purge everything. 2664 */ 2665 pf_purge_expired_states(0, V_pf_hashmask); 2666 pf_purge_fragments(UINT_MAX); 2667 pf_purge_expired_src_nodes(); 2668 2669 /* 2670 * Now all kifs & rules should be unreferenced, 2671 * thus should be successfully freed. 2672 */ 2673 pf_purge_unlinked_rules(); 2674 pfi_kkif_purge(); 2675 } 2676 2677 u_int32_t 2678 pf_state_expires(const struct pf_kstate *state) 2679 { 2680 u_int32_t timeout; 2681 u_int32_t start; 2682 u_int32_t end; 2683 u_int32_t states; 2684 2685 /* handle all PFTM_* > PFTM_MAX here */ 2686 if (state->timeout == PFTM_PURGE) 2687 return (time_uptime); 2688 KASSERT(state->timeout != PFTM_UNLINKED, 2689 ("pf_state_expires: timeout == PFTM_UNLINKED")); 2690 KASSERT((state->timeout < PFTM_MAX), 2691 ("pf_state_expires: timeout > PFTM_MAX")); 2692 timeout = state->rule->timeout[state->timeout]; 2693 if (!timeout) 2694 timeout = V_pf_default_rule.timeout[state->timeout]; 2695 start = state->rule->timeout[PFTM_ADAPTIVE_START]; 2696 if (start && state->rule != &V_pf_default_rule) { 2697 end = state->rule->timeout[PFTM_ADAPTIVE_END]; 2698 states = counter_u64_fetch(state->rule->states_cur); 2699 } else { 2700 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 2701 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 2702 states = V_pf_status.states; 2703 } 2704 if (end && states > start && start < end) { 2705 if (states < end) { 2706 timeout = (u_int64_t)timeout * (end - states) / 2707 (end - start); 2708 return ((state->expire / 1000) + timeout); 2709 } 2710 else 2711 return (time_uptime); 2712 } 2713 return ((state->expire / 1000) + timeout); 2714 } 2715 2716 void 2717 pf_purge_expired_src_nodes(void) 2718 { 2719 struct pf_ksrc_node_list freelist; 2720 struct pf_srchash *sh; 2721 struct pf_ksrc_node *cur, *next; 2722 int i; 2723 2724 LIST_INIT(&freelist); 2725 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 2726 PF_HASHROW_LOCK(sh); 2727 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 2728 if (cur->states == 0 && cur->expire <= time_uptime) { 2729 pf_unlink_src_node(cur); 2730 LIST_INSERT_HEAD(&freelist, cur, entry); 2731 } else if (cur->rule != NULL) 2732 cur->rule->rule_ref |= PFRULE_REFS; 2733 PF_HASHROW_UNLOCK(sh); 2734 } 2735 2736 pf_free_src_nodes(&freelist); 2737 2738 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2739 } 2740 2741 static void 2742 pf_src_tree_remove_state(struct pf_kstate *s) 2743 { 2744 uint32_t timeout; 2745 2746 timeout = s->rule->timeout[PFTM_SRC_NODE] ? 2747 s->rule->timeout[PFTM_SRC_NODE] : 2748 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2749 2750 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) { 2751 if (s->sns[sn_type] == NULL) 2752 continue; 2753 PF_SRC_NODE_LOCK(s->sns[sn_type]); 2754 if (sn_type == PF_SN_LIMIT && s->src.tcp_est) 2755 --(s->sns[sn_type]->conn); 2756 if (--(s->sns[sn_type]->states) == 0) 2757 s->sns[sn_type]->expire = time_uptime + timeout; 2758 PF_SRC_NODE_UNLOCK(s->sns[sn_type]); 2759 s->sns[sn_type] = NULL; 2760 } 2761 2762 } 2763 2764 /* 2765 * Unlink and potentilly free a state. Function may be 2766 * called with ID hash row locked, but always returns 2767 * unlocked, since it needs to go through key hash locking. 2768 */ 2769 int 2770 pf_remove_state(struct pf_kstate *s) 2771 { 2772 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2773 2774 NET_EPOCH_ASSERT(); 2775 PF_HASHROW_ASSERT(ih); 2776 2777 if (s->timeout == PFTM_UNLINKED) { 2778 /* 2779 * State is being processed 2780 * by pf_remove_state() in 2781 * an other thread. 2782 */ 2783 PF_HASHROW_UNLOCK(ih); 2784 return (0); /* XXXGL: undefined actually */ 2785 } 2786 2787 if (s->src.state == PF_TCPS_PROXY_DST) { 2788 /* XXX wire key the right one? */ 2789 pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af, 2790 &s->key[PF_SK_WIRE]->addr[1], 2791 &s->key[PF_SK_WIRE]->addr[0], 2792 s->key[PF_SK_WIRE]->port[1], 2793 s->key[PF_SK_WIRE]->port[0], 2794 s->src.seqhi, s->src.seqlo + 1, 2795 TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0, 2796 s->act.rtableid); 2797 } 2798 2799 LIST_REMOVE(s, entry); 2800 pf_src_tree_remove_state(s); 2801 2802 if (V_pfsync_delete_state_ptr != NULL) 2803 V_pfsync_delete_state_ptr(s); 2804 2805 STATE_DEC_COUNTERS(s); 2806 2807 s->timeout = PFTM_UNLINKED; 2808 2809 /* Ensure we remove it from the list of halfopen states, if needed. */ 2810 if (s->key[PF_SK_STACK] != NULL && 2811 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2812 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2813 2814 PF_HASHROW_UNLOCK(ih); 2815 2816 pf_detach_state(s); 2817 2818 pf_udp_mapping_release(s->udp_mapping); 2819 2820 /* pf_state_insert() initialises refs to 2 */ 2821 return (pf_release_staten(s, 2)); 2822 } 2823 2824 struct pf_kstate * 2825 pf_alloc_state(int flags) 2826 { 2827 2828 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2829 } 2830 2831 void 2832 pf_free_state(struct pf_kstate *cur) 2833 { 2834 struct pf_krule_item *ri; 2835 2836 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2837 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2838 cur->timeout)); 2839 2840 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2841 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2842 free(ri, M_PF_RULE_ITEM); 2843 } 2844 2845 pf_normalize_tcp_cleanup(cur); 2846 uma_zfree(V_pf_state_z, cur); 2847 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2848 } 2849 2850 /* 2851 * Called only from pf_purge_thread(), thus serialized. 2852 */ 2853 static u_int 2854 pf_purge_expired_states(u_int i, int maxcheck) 2855 { 2856 struct pf_idhash *ih; 2857 struct pf_kstate *s; 2858 struct pf_krule_item *mrm; 2859 size_t count __unused; 2860 2861 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2862 2863 /* 2864 * Go through hash and unlink states that expire now. 2865 */ 2866 while (maxcheck > 0) { 2867 count = 0; 2868 ih = &V_pf_idhash[i]; 2869 2870 /* only take the lock if we expect to do work */ 2871 if (!LIST_EMPTY(&ih->states)) { 2872 relock: 2873 PF_HASHROW_LOCK(ih); 2874 LIST_FOREACH(s, &ih->states, entry) { 2875 if (pf_state_expires(s) <= time_uptime) { 2876 V_pf_status.states -= 2877 pf_remove_state(s); 2878 goto relock; 2879 } 2880 s->rule->rule_ref |= PFRULE_REFS; 2881 if (s->nat_rule != NULL) 2882 s->nat_rule->rule_ref |= PFRULE_REFS; 2883 if (s->anchor != NULL) 2884 s->anchor->rule_ref |= PFRULE_REFS; 2885 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2886 SLIST_FOREACH(mrm, &s->match_rules, entry) 2887 mrm->r->rule_ref |= PFRULE_REFS; 2888 if (s->act.rt_kif) 2889 s->act.rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2890 count++; 2891 } 2892 PF_HASHROW_UNLOCK(ih); 2893 } 2894 2895 SDT_PROBE2(pf, purge, state, rowcount, i, count); 2896 2897 /* Return when we hit end of hash. */ 2898 if (++i > V_pf_hashmask) { 2899 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2900 return (0); 2901 } 2902 2903 maxcheck--; 2904 } 2905 2906 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2907 2908 return (i); 2909 } 2910 2911 static void 2912 pf_purge_unlinked_rules(void) 2913 { 2914 struct pf_krulequeue tmpq; 2915 struct pf_krule *r, *r1; 2916 2917 /* 2918 * If we have overloading task pending, then we'd 2919 * better skip purging this time. There is a tiny 2920 * probability that overloading task references 2921 * an already unlinked rule. 2922 */ 2923 PF_OVERLOADQ_LOCK(); 2924 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2925 PF_OVERLOADQ_UNLOCK(); 2926 return; 2927 } 2928 PF_OVERLOADQ_UNLOCK(); 2929 2930 /* 2931 * Do naive mark-and-sweep garbage collecting of old rules. 2932 * Reference flag is raised by pf_purge_expired_states() 2933 * and pf_purge_expired_src_nodes(). 2934 * 2935 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2936 * use a temporary queue. 2937 */ 2938 TAILQ_INIT(&tmpq); 2939 PF_UNLNKDRULES_LOCK(); 2940 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2941 if (!(r->rule_ref & PFRULE_REFS)) { 2942 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2943 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2944 } else 2945 r->rule_ref &= ~PFRULE_REFS; 2946 } 2947 PF_UNLNKDRULES_UNLOCK(); 2948 2949 if (!TAILQ_EMPTY(&tmpq)) { 2950 PF_CONFIG_LOCK(); 2951 PF_RULES_WLOCK(); 2952 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2953 TAILQ_REMOVE(&tmpq, r, entries); 2954 pf_free_rule(r); 2955 } 2956 PF_RULES_WUNLOCK(); 2957 PF_CONFIG_UNLOCK(); 2958 } 2959 } 2960 2961 void 2962 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2963 { 2964 switch (af) { 2965 #ifdef INET 2966 case AF_INET: { 2967 u_int32_t a = ntohl(addr->addr32[0]); 2968 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2969 (a>>8)&255, a&255); 2970 if (p) { 2971 p = ntohs(p); 2972 printf(":%u", p); 2973 } 2974 break; 2975 } 2976 #endif /* INET */ 2977 #ifdef INET6 2978 case AF_INET6: { 2979 u_int16_t b; 2980 u_int8_t i, curstart, curend, maxstart, maxend; 2981 curstart = curend = maxstart = maxend = 255; 2982 for (i = 0; i < 8; i++) { 2983 if (!addr->addr16[i]) { 2984 if (curstart == 255) 2985 curstart = i; 2986 curend = i; 2987 } else { 2988 if ((curend - curstart) > 2989 (maxend - maxstart)) { 2990 maxstart = curstart; 2991 maxend = curend; 2992 } 2993 curstart = curend = 255; 2994 } 2995 } 2996 if ((curend - curstart) > 2997 (maxend - maxstart)) { 2998 maxstart = curstart; 2999 maxend = curend; 3000 } 3001 for (i = 0; i < 8; i++) { 3002 if (i >= maxstart && i <= maxend) { 3003 if (i == 0) 3004 printf(":"); 3005 if (i == maxend) 3006 printf(":"); 3007 } else { 3008 b = ntohs(addr->addr16[i]); 3009 printf("%x", b); 3010 if (i < 7) 3011 printf(":"); 3012 } 3013 } 3014 if (p) { 3015 p = ntohs(p); 3016 printf("[%u]", p); 3017 } 3018 break; 3019 } 3020 #endif /* INET6 */ 3021 default: 3022 unhandled_af(af); 3023 } 3024 } 3025 3026 void 3027 pf_print_state(struct pf_kstate *s) 3028 { 3029 pf_print_state_parts(s, NULL, NULL); 3030 } 3031 3032 static void 3033 pf_print_state_parts(struct pf_kstate *s, 3034 struct pf_state_key *skwp, struct pf_state_key *sksp) 3035 { 3036 struct pf_state_key *skw, *sks; 3037 u_int8_t proto, dir; 3038 3039 /* Do our best to fill these, but they're skipped if NULL */ 3040 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 3041 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 3042 proto = skw ? skw->proto : (sks ? sks->proto : 0); 3043 dir = s ? s->direction : 0; 3044 3045 switch (proto) { 3046 case IPPROTO_IPV4: 3047 printf("IPv4"); 3048 break; 3049 case IPPROTO_IPV6: 3050 printf("IPv6"); 3051 break; 3052 case IPPROTO_TCP: 3053 printf("TCP"); 3054 break; 3055 case IPPROTO_UDP: 3056 printf("UDP"); 3057 break; 3058 case IPPROTO_ICMP: 3059 printf("ICMP"); 3060 break; 3061 case IPPROTO_ICMPV6: 3062 printf("ICMPv6"); 3063 break; 3064 default: 3065 printf("%u", proto); 3066 break; 3067 } 3068 switch (dir) { 3069 case PF_IN: 3070 printf(" in"); 3071 break; 3072 case PF_OUT: 3073 printf(" out"); 3074 break; 3075 } 3076 if (skw) { 3077 printf(" wire: "); 3078 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 3079 printf(" "); 3080 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 3081 } 3082 if (sks) { 3083 printf(" stack: "); 3084 if (sks != skw) { 3085 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 3086 printf(" "); 3087 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 3088 } else 3089 printf("-"); 3090 } 3091 if (s) { 3092 if (proto == IPPROTO_TCP) { 3093 printf(" [lo=%u high=%u win=%u modulator=%u", 3094 s->src.seqlo, s->src.seqhi, 3095 s->src.max_win, s->src.seqdiff); 3096 if (s->src.wscale && s->dst.wscale) 3097 printf(" wscale=%u", 3098 s->src.wscale & PF_WSCALE_MASK); 3099 printf("]"); 3100 printf(" [lo=%u high=%u win=%u modulator=%u", 3101 s->dst.seqlo, s->dst.seqhi, 3102 s->dst.max_win, s->dst.seqdiff); 3103 if (s->src.wscale && s->dst.wscale) 3104 printf(" wscale=%u", 3105 s->dst.wscale & PF_WSCALE_MASK); 3106 printf("]"); 3107 } 3108 printf(" %u:%u", s->src.state, s->dst.state); 3109 if (s->rule) 3110 printf(" @%d", s->rule->nr); 3111 } 3112 } 3113 3114 void 3115 pf_print_flags(uint16_t f) 3116 { 3117 if (f) 3118 printf(" "); 3119 if (f & TH_FIN) 3120 printf("F"); 3121 if (f & TH_SYN) 3122 printf("S"); 3123 if (f & TH_RST) 3124 printf("R"); 3125 if (f & TH_PUSH) 3126 printf("P"); 3127 if (f & TH_ACK) 3128 printf("A"); 3129 if (f & TH_URG) 3130 printf("U"); 3131 if (f & TH_ECE) 3132 printf("E"); 3133 if (f & TH_CWR) 3134 printf("W"); 3135 if (f & TH_AE) 3136 printf("e"); 3137 } 3138 3139 #define PF_SET_SKIP_STEPS(i) \ 3140 do { \ 3141 while (head[i] != cur) { \ 3142 head[i]->skip[i] = cur; \ 3143 head[i] = TAILQ_NEXT(head[i], entries); \ 3144 } \ 3145 } while (0) 3146 3147 void 3148 pf_calc_skip_steps(struct pf_krulequeue *rules) 3149 { 3150 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 3151 int i; 3152 3153 cur = TAILQ_FIRST(rules); 3154 prev = cur; 3155 for (i = 0; i < PF_SKIP_COUNT; ++i) 3156 head[i] = cur; 3157 while (cur != NULL) { 3158 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 3159 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 3160 if (cur->direction != prev->direction) 3161 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 3162 if (cur->af != prev->af) 3163 PF_SET_SKIP_STEPS(PF_SKIP_AF); 3164 if (cur->proto != prev->proto) 3165 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 3166 if (cur->src.neg != prev->src.neg || 3167 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 3168 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 3169 if (cur->dst.neg != prev->dst.neg || 3170 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 3171 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 3172 if (cur->src.port[0] != prev->src.port[0] || 3173 cur->src.port[1] != prev->src.port[1] || 3174 cur->src.port_op != prev->src.port_op) 3175 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 3176 if (cur->dst.port[0] != prev->dst.port[0] || 3177 cur->dst.port[1] != prev->dst.port[1] || 3178 cur->dst.port_op != prev->dst.port_op) 3179 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 3180 3181 prev = cur; 3182 cur = TAILQ_NEXT(cur, entries); 3183 } 3184 for (i = 0; i < PF_SKIP_COUNT; ++i) 3185 PF_SET_SKIP_STEPS(i); 3186 } 3187 3188 int 3189 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 3190 { 3191 if (aw1->type != aw2->type) 3192 return (1); 3193 switch (aw1->type) { 3194 case PF_ADDR_ADDRMASK: 3195 case PF_ADDR_RANGE: 3196 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 3197 return (1); 3198 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 3199 return (1); 3200 return (0); 3201 case PF_ADDR_DYNIFTL: 3202 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 3203 case PF_ADDR_NONE: 3204 case PF_ADDR_NOROUTE: 3205 case PF_ADDR_URPFFAILED: 3206 return (0); 3207 case PF_ADDR_TABLE: 3208 return (aw1->p.tbl != aw2->p.tbl); 3209 default: 3210 printf("invalid address type: %d\n", aw1->type); 3211 return (1); 3212 } 3213 } 3214 3215 /** 3216 * Checksum updates are a little complicated because the checksum in the TCP/UDP 3217 * header isn't always a full checksum. In some cases (i.e. output) it's a 3218 * pseudo-header checksum, which is a partial checksum over src/dst IP 3219 * addresses, protocol number and length. 3220 * 3221 * That means we have the following cases: 3222 * * Input or forwarding: we don't have TSO, the checksum fields are full 3223 * checksums, we need to update the checksum whenever we change anything. 3224 * * Output (i.e. the checksum is a pseudo-header checksum): 3225 * x The field being updated is src/dst address or affects the length of 3226 * the packet. We need to update the pseudo-header checksum (note that this 3227 * checksum is not ones' complement). 3228 * x Some other field is being modified (e.g. src/dst port numbers): We 3229 * don't have to update anything. 3230 **/ 3231 u_int16_t 3232 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 3233 { 3234 u_int32_t x; 3235 3236 x = cksum + old - new; 3237 x = (x + (x >> 16)) & 0xffff; 3238 3239 /* optimise: eliminate a branch when not udp */ 3240 if (udp && cksum == 0x0000) 3241 return cksum; 3242 if (udp && x == 0x0000) 3243 x = 0xffff; 3244 3245 return (u_int16_t)(x); 3246 } 3247 3248 static int 3249 pf_patch_8(struct pf_pdesc *pd, u_int8_t *f, u_int8_t v, bool hi) 3250 { 3251 int rewrite = 0; 3252 3253 if (*f != v) { 3254 uint16_t old = htons(hi ? (*f << 8) : *f); 3255 uint16_t new = htons(hi ? ( v << 8) : v); 3256 3257 *f = v; 3258 3259 if (! (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 3260 CSUM_DELAY_DATA_IPV6))) 3261 *pd->pcksum = pf_cksum_fixup(*pd->pcksum, old, new, 3262 pd->proto == IPPROTO_UDP); 3263 3264 rewrite = 1; 3265 } 3266 3267 return (rewrite); 3268 } 3269 3270 int 3271 pf_patch_16(struct pf_pdesc *pd, void *f, u_int16_t v, bool hi) 3272 { 3273 int rewrite = 0; 3274 u_int8_t *fb = (u_int8_t *)f; 3275 u_int8_t *vb = (u_int8_t *)&v; 3276 3277 rewrite += pf_patch_8(pd, fb++, *vb++, hi); 3278 rewrite += pf_patch_8(pd, fb++, *vb++, !hi); 3279 3280 return (rewrite); 3281 } 3282 3283 int 3284 pf_patch_32(struct pf_pdesc *pd, void *f, u_int32_t v, bool hi) 3285 { 3286 int rewrite = 0; 3287 u_int8_t *fb = (u_int8_t *)f; 3288 u_int8_t *vb = (u_int8_t *)&v; 3289 3290 rewrite += pf_patch_8(pd, fb++, *vb++, hi); 3291 rewrite += pf_patch_8(pd, fb++, *vb++, !hi); 3292 rewrite += pf_patch_8(pd, fb++, *vb++, hi); 3293 rewrite += pf_patch_8(pd, fb++, *vb++, !hi); 3294 3295 return (rewrite); 3296 } 3297 3298 u_int16_t 3299 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 3300 u_int16_t new, u_int8_t udp) 3301 { 3302 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3303 return (cksum); 3304 3305 return (pf_cksum_fixup(cksum, old, new, udp)); 3306 } 3307 3308 static void 3309 pf_change_ap(struct pf_pdesc *pd, struct pf_addr *a, u_int16_t *p, 3310 struct pf_addr *an, u_int16_t pn) 3311 { 3312 struct pf_addr ao; 3313 u_int16_t po; 3314 uint8_t u = pd->virtual_proto == IPPROTO_UDP; 3315 3316 MPASS(pd->pcksum); 3317 if (pd->af == AF_INET) { 3318 MPASS(pd->ip_sum); 3319 } 3320 3321 pf_addrcpy(&ao, a, pd->af); 3322 if (pd->af == pd->naf) 3323 pf_addrcpy(a, an, pd->af); 3324 3325 if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3326 *pd->pcksum = ~*pd->pcksum; 3327 3328 if (p == NULL) /* no port -> done. no cksum to worry about. */ 3329 return; 3330 po = *p; 3331 *p = pn; 3332 3333 switch (pd->af) { 3334 #ifdef INET 3335 case AF_INET: 3336 switch (pd->naf) { 3337 case AF_INET: 3338 *pd->ip_sum = pf_cksum_fixup(pf_cksum_fixup(*pd->ip_sum, 3339 ao.addr16[0], an->addr16[0], 0), 3340 ao.addr16[1], an->addr16[1], 0); 3341 *p = pn; 3342 3343 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum, 3344 ao.addr16[0], an->addr16[0], u), 3345 ao.addr16[1], an->addr16[1], u); 3346 3347 *pd->pcksum = pf_proto_cksum_fixup(pd->m, *pd->pcksum, po, pn, u); 3348 break; 3349 #ifdef INET6 3350 case AF_INET6: 3351 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3352 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3353 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum, 3354 ao.addr16[0], an->addr16[0], u), 3355 ao.addr16[1], an->addr16[1], u), 3356 0, an->addr16[2], u), 3357 0, an->addr16[3], u), 3358 0, an->addr16[4], u), 3359 0, an->addr16[5], u), 3360 0, an->addr16[6], u), 3361 0, an->addr16[7], u), 3362 po, pn, u); 3363 break; 3364 #endif /* INET6 */ 3365 default: 3366 unhandled_af(pd->naf); 3367 } 3368 break; 3369 #endif /* INET */ 3370 #ifdef INET6 3371 case AF_INET6: 3372 switch (pd->naf) { 3373 #ifdef INET 3374 case AF_INET: 3375 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3376 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3377 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum, 3378 ao.addr16[0], an->addr16[0], u), 3379 ao.addr16[1], an->addr16[1], u), 3380 ao.addr16[2], 0, u), 3381 ao.addr16[3], 0, u), 3382 ao.addr16[4], 0, u), 3383 ao.addr16[5], 0, u), 3384 ao.addr16[6], 0, u), 3385 ao.addr16[7], 0, u), 3386 po, pn, u); 3387 break; 3388 #endif /* INET */ 3389 case AF_INET6: 3390 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3391 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3392 pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum, 3393 ao.addr16[0], an->addr16[0], u), 3394 ao.addr16[1], an->addr16[1], u), 3395 ao.addr16[2], an->addr16[2], u), 3396 ao.addr16[3], an->addr16[3], u), 3397 ao.addr16[4], an->addr16[4], u), 3398 ao.addr16[5], an->addr16[5], u), 3399 ao.addr16[6], an->addr16[6], u), 3400 ao.addr16[7], an->addr16[7], u); 3401 3402 *pd->pcksum = pf_proto_cksum_fixup(pd->m, *pd->pcksum, po, pn, u); 3403 break; 3404 default: 3405 unhandled_af(pd->naf); 3406 } 3407 break; 3408 #endif /* INET6 */ 3409 default: 3410 unhandled_af(pd->af); 3411 } 3412 3413 if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 3414 CSUM_DELAY_DATA_IPV6)) { 3415 *pd->pcksum = ~*pd->pcksum; 3416 if (! *pd->pcksum) 3417 *pd->pcksum = 0xffff; 3418 } 3419 } 3420 3421 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 3422 void 3423 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 3424 { 3425 u_int32_t ao; 3426 3427 memcpy(&ao, a, sizeof(ao)); 3428 memcpy(a, &an, sizeof(u_int32_t)); 3429 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 3430 ao % 65536, an % 65536, u); 3431 } 3432 3433 void 3434 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 3435 { 3436 u_int32_t ao; 3437 3438 memcpy(&ao, a, sizeof(ao)); 3439 memcpy(a, &an, sizeof(u_int32_t)); 3440 3441 *c = pf_proto_cksum_fixup(m, 3442 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 3443 ao % 65536, an % 65536, udp); 3444 } 3445 3446 #ifdef INET6 3447 static void 3448 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 3449 { 3450 struct pf_addr ao; 3451 3452 pf_addrcpy(&ao, a, AF_INET6); 3453 pf_addrcpy(a, an, AF_INET6); 3454 3455 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3456 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3457 pf_cksum_fixup(pf_cksum_fixup(*c, 3458 ao.addr16[0], an->addr16[0], u), 3459 ao.addr16[1], an->addr16[1], u), 3460 ao.addr16[2], an->addr16[2], u), 3461 ao.addr16[3], an->addr16[3], u), 3462 ao.addr16[4], an->addr16[4], u), 3463 ao.addr16[5], an->addr16[5], u), 3464 ao.addr16[6], an->addr16[6], u), 3465 ao.addr16[7], an->addr16[7], u); 3466 } 3467 #endif /* INET6 */ 3468 3469 static void 3470 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 3471 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 3472 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 3473 { 3474 struct pf_addr oia, ooa; 3475 3476 pf_addrcpy(&oia, ia, af); 3477 if (oa) 3478 pf_addrcpy(&ooa, oa, af); 3479 3480 /* Change inner protocol port, fix inner protocol checksum. */ 3481 if (ip != NULL) { 3482 u_int16_t oip = *ip; 3483 u_int32_t opc; 3484 3485 if (pc != NULL) 3486 opc = *pc; 3487 *ip = np; 3488 if (pc != NULL) 3489 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 3490 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 3491 if (pc != NULL) 3492 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 3493 } 3494 /* Change inner ip address, fix inner ip and icmp checksums. */ 3495 pf_addrcpy(ia, na, af); 3496 switch (af) { 3497 #ifdef INET 3498 case AF_INET: { 3499 u_int32_t oh2c = *h2c; 3500 3501 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 3502 oia.addr16[0], ia->addr16[0], 0), 3503 oia.addr16[1], ia->addr16[1], 0); 3504 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3505 oia.addr16[0], ia->addr16[0], 0), 3506 oia.addr16[1], ia->addr16[1], 0); 3507 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 3508 break; 3509 } 3510 #endif /* INET */ 3511 #ifdef INET6 3512 case AF_INET6: 3513 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3514 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3515 pf_cksum_fixup(pf_cksum_fixup(*ic, 3516 oia.addr16[0], ia->addr16[0], u), 3517 oia.addr16[1], ia->addr16[1], u), 3518 oia.addr16[2], ia->addr16[2], u), 3519 oia.addr16[3], ia->addr16[3], u), 3520 oia.addr16[4], ia->addr16[4], u), 3521 oia.addr16[5], ia->addr16[5], u), 3522 oia.addr16[6], ia->addr16[6], u), 3523 oia.addr16[7], ia->addr16[7], u); 3524 break; 3525 #endif /* INET6 */ 3526 } 3527 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 3528 if (oa) { 3529 pf_addrcpy(oa, na, af); 3530 switch (af) { 3531 #ifdef INET 3532 case AF_INET: 3533 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 3534 ooa.addr16[0], oa->addr16[0], 0), 3535 ooa.addr16[1], oa->addr16[1], 0); 3536 break; 3537 #endif /* INET */ 3538 #ifdef INET6 3539 case AF_INET6: 3540 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3541 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3542 pf_cksum_fixup(pf_cksum_fixup(*ic, 3543 ooa.addr16[0], oa->addr16[0], u), 3544 ooa.addr16[1], oa->addr16[1], u), 3545 ooa.addr16[2], oa->addr16[2], u), 3546 ooa.addr16[3], oa->addr16[3], u), 3547 ooa.addr16[4], oa->addr16[4], u), 3548 ooa.addr16[5], oa->addr16[5], u), 3549 ooa.addr16[6], oa->addr16[6], u), 3550 ooa.addr16[7], oa->addr16[7], u); 3551 break; 3552 #endif /* INET6 */ 3553 } 3554 } 3555 } 3556 3557 int 3558 pf_translate_af(struct pf_pdesc *pd) 3559 { 3560 #if defined(INET) && defined(INET6) 3561 struct mbuf *mp; 3562 struct ip *ip4; 3563 struct ip6_hdr *ip6; 3564 struct icmp6_hdr *icmp; 3565 struct m_tag *mtag; 3566 struct pf_fragment_tag *ftag; 3567 int hlen; 3568 3569 hlen = pd->naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6); 3570 3571 /* trim the old header */ 3572 m_adj(pd->m, pd->off); 3573 3574 /* prepend a new one */ 3575 M_PREPEND(pd->m, hlen, M_NOWAIT); 3576 if (pd->m == NULL) 3577 return (-1); 3578 3579 switch (pd->naf) { 3580 case AF_INET: 3581 ip4 = mtod(pd->m, struct ip *); 3582 bzero(ip4, hlen); 3583 ip4->ip_v = IPVERSION; 3584 ip4->ip_hl = hlen >> 2; 3585 ip4->ip_tos = pd->tos; 3586 ip4->ip_len = htons(hlen + (pd->tot_len - pd->off)); 3587 ip_fillid(ip4, V_ip_random_id); 3588 ip4->ip_ttl = pd->ttl; 3589 ip4->ip_p = pd->proto; 3590 ip4->ip_src = pd->nsaddr.v4; 3591 ip4->ip_dst = pd->ndaddr.v4; 3592 pd->src = (struct pf_addr *)&ip4->ip_src; 3593 pd->dst = (struct pf_addr *)&ip4->ip_dst; 3594 pd->off = sizeof(struct ip); 3595 break; 3596 case AF_INET6: 3597 ip6 = mtod(pd->m, struct ip6_hdr *); 3598 bzero(ip6, hlen); 3599 ip6->ip6_vfc = IPV6_VERSION; 3600 ip6->ip6_flow |= htonl((u_int32_t)pd->tos << 20); 3601 ip6->ip6_plen = htons(pd->tot_len - pd->off); 3602 ip6->ip6_nxt = pd->proto; 3603 if (!pd->ttl || pd->ttl > IPV6_DEFHLIM) 3604 ip6->ip6_hlim = IPV6_DEFHLIM; 3605 else 3606 ip6->ip6_hlim = pd->ttl; 3607 ip6->ip6_src = pd->nsaddr.v6; 3608 ip6->ip6_dst = pd->ndaddr.v6; 3609 pd->src = (struct pf_addr *)&ip6->ip6_src; 3610 pd->dst = (struct pf_addr *)&ip6->ip6_dst; 3611 pd->off = sizeof(struct ip6_hdr); 3612 3613 /* 3614 * If we're dealing with a reassembled packet we need to adjust 3615 * the header length from the IPv4 header size to IPv6 header 3616 * size. 3617 */ 3618 mtag = m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL); 3619 if (mtag) { 3620 ftag = (struct pf_fragment_tag *)(mtag + 1); 3621 ftag->ft_hdrlen = sizeof(*ip6); 3622 ftag->ft_maxlen -= sizeof(struct ip6_hdr) - 3623 sizeof(struct ip) + sizeof(struct ip6_frag); 3624 } 3625 break; 3626 default: 3627 return (-1); 3628 } 3629 3630 /* recalculate icmp/icmp6 checksums */ 3631 if (pd->proto == IPPROTO_ICMP || pd->proto == IPPROTO_ICMPV6) { 3632 int off; 3633 if ((mp = m_pulldown(pd->m, hlen, sizeof(*icmp), &off)) == 3634 NULL) { 3635 pd->m = NULL; 3636 return (-1); 3637 } 3638 icmp = (struct icmp6_hdr *)(mp->m_data + off); 3639 icmp->icmp6_cksum = 0; 3640 icmp->icmp6_cksum = pd->naf == AF_INET ? 3641 in4_cksum(pd->m, 0, hlen, ntohs(ip4->ip_len) - hlen) : 3642 in6_cksum(pd->m, IPPROTO_ICMPV6, hlen, 3643 ntohs(ip6->ip6_plen)); 3644 } 3645 #endif /* INET && INET6 */ 3646 3647 return (0); 3648 } 3649 3650 int 3651 pf_change_icmp_af(struct mbuf *m, int off, struct pf_pdesc *pd, 3652 struct pf_pdesc *pd2, struct pf_addr *src, struct pf_addr *dst, 3653 sa_family_t af, sa_family_t naf) 3654 { 3655 #if defined(INET) && defined(INET6) 3656 struct mbuf *n = NULL; 3657 struct ip *ip4; 3658 struct ip6_hdr *ip6; 3659 int hlen, olen, mlen; 3660 3661 if (af == naf || (af != AF_INET && af != AF_INET6) || 3662 (naf != AF_INET && naf != AF_INET6)) 3663 return (-1); 3664 3665 /* split the mbuf chain on the inner ip/ip6 header boundary */ 3666 if ((n = m_split(m, off, M_NOWAIT)) == NULL) 3667 return (-1); 3668 3669 /* old header */ 3670 olen = pd2->off - off; 3671 /* new header */ 3672 hlen = naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6); 3673 3674 /* trim old header */ 3675 m_adj(n, olen); 3676 3677 /* prepend a new one */ 3678 M_PREPEND(n, hlen, M_NOWAIT); 3679 if (n == NULL) 3680 return (-1); 3681 3682 /* translate inner ip/ip6 header */ 3683 switch (naf) { 3684 case AF_INET: 3685 ip4 = mtod(n, struct ip *); 3686 bzero(ip4, sizeof(*ip4)); 3687 ip4->ip_v = IPVERSION; 3688 ip4->ip_hl = sizeof(*ip4) >> 2; 3689 ip4->ip_len = htons(sizeof(*ip4) + pd2->tot_len - olen); 3690 ip_fillid(ip4, V_ip_random_id); 3691 ip4->ip_off = htons(IP_DF); 3692 ip4->ip_ttl = pd2->ttl; 3693 if (pd2->proto == IPPROTO_ICMPV6) 3694 ip4->ip_p = IPPROTO_ICMP; 3695 else 3696 ip4->ip_p = pd2->proto; 3697 ip4->ip_src = src->v4; 3698 ip4->ip_dst = dst->v4; 3699 ip4->ip_sum = in_cksum(n, ip4->ip_hl << 2); 3700 break; 3701 case AF_INET6: 3702 ip6 = mtod(n, struct ip6_hdr *); 3703 bzero(ip6, sizeof(*ip6)); 3704 ip6->ip6_vfc = IPV6_VERSION; 3705 ip6->ip6_plen = htons(pd2->tot_len - olen); 3706 if (pd2->proto == IPPROTO_ICMP) 3707 ip6->ip6_nxt = IPPROTO_ICMPV6; 3708 else 3709 ip6->ip6_nxt = pd2->proto; 3710 if (!pd2->ttl || pd2->ttl > IPV6_DEFHLIM) 3711 ip6->ip6_hlim = IPV6_DEFHLIM; 3712 else 3713 ip6->ip6_hlim = pd2->ttl; 3714 ip6->ip6_src = src->v6; 3715 ip6->ip6_dst = dst->v6; 3716 break; 3717 default: 3718 unhandled_af(naf); 3719 } 3720 3721 /* adjust payload offset and total packet length */ 3722 pd2->off += hlen - olen; 3723 pd->tot_len += hlen - olen; 3724 3725 /* merge modified inner packet with the original header */ 3726 mlen = n->m_pkthdr.len; 3727 m_cat(m, n); 3728 m->m_pkthdr.len += mlen; 3729 #endif /* INET && INET6 */ 3730 3731 return (0); 3732 } 3733 3734 #define PTR_IP(field) (offsetof(struct ip, field)) 3735 #define PTR_IP6(field) (offsetof(struct ip6_hdr, field)) 3736 3737 int 3738 pf_translate_icmp_af(int af, void *arg) 3739 { 3740 #if defined(INET) && defined(INET6) 3741 struct icmp *icmp4; 3742 struct icmp6_hdr *icmp6; 3743 u_int32_t mtu; 3744 int32_t ptr = -1; 3745 u_int8_t type; 3746 u_int8_t code; 3747 3748 switch (af) { 3749 case AF_INET: 3750 icmp6 = arg; 3751 type = icmp6->icmp6_type; 3752 code = icmp6->icmp6_code; 3753 mtu = ntohl(icmp6->icmp6_mtu); 3754 3755 switch (type) { 3756 case ICMP6_ECHO_REQUEST: 3757 type = ICMP_ECHO; 3758 break; 3759 case ICMP6_ECHO_REPLY: 3760 type = ICMP_ECHOREPLY; 3761 break; 3762 case ICMP6_DST_UNREACH: 3763 type = ICMP_UNREACH; 3764 switch (code) { 3765 case ICMP6_DST_UNREACH_NOROUTE: 3766 case ICMP6_DST_UNREACH_BEYONDSCOPE: 3767 case ICMP6_DST_UNREACH_ADDR: 3768 code = ICMP_UNREACH_HOST; 3769 break; 3770 case ICMP6_DST_UNREACH_ADMIN: 3771 code = ICMP_UNREACH_HOST_PROHIB; 3772 break; 3773 case ICMP6_DST_UNREACH_NOPORT: 3774 code = ICMP_UNREACH_PORT; 3775 break; 3776 default: 3777 return (-1); 3778 } 3779 break; 3780 case ICMP6_PACKET_TOO_BIG: 3781 type = ICMP_UNREACH; 3782 code = ICMP_UNREACH_NEEDFRAG; 3783 mtu -= 20; 3784 break; 3785 case ICMP6_TIME_EXCEEDED: 3786 type = ICMP_TIMXCEED; 3787 break; 3788 case ICMP6_PARAM_PROB: 3789 switch (code) { 3790 case ICMP6_PARAMPROB_HEADER: 3791 type = ICMP_PARAMPROB; 3792 code = ICMP_PARAMPROB_ERRATPTR; 3793 ptr = ntohl(icmp6->icmp6_pptr); 3794 3795 if (ptr == PTR_IP6(ip6_vfc)) 3796 ; /* preserve */ 3797 else if (ptr == PTR_IP6(ip6_vfc) + 1) 3798 ptr = PTR_IP(ip_tos); 3799 else if (ptr == PTR_IP6(ip6_plen) || 3800 ptr == PTR_IP6(ip6_plen) + 1) 3801 ptr = PTR_IP(ip_len); 3802 else if (ptr == PTR_IP6(ip6_nxt)) 3803 ptr = PTR_IP(ip_p); 3804 else if (ptr == PTR_IP6(ip6_hlim)) 3805 ptr = PTR_IP(ip_ttl); 3806 else if (ptr >= PTR_IP6(ip6_src) && 3807 ptr < PTR_IP6(ip6_dst)) 3808 ptr = PTR_IP(ip_src); 3809 else if (ptr >= PTR_IP6(ip6_dst) && 3810 ptr < sizeof(struct ip6_hdr)) 3811 ptr = PTR_IP(ip_dst); 3812 else { 3813 return (-1); 3814 } 3815 break; 3816 case ICMP6_PARAMPROB_NEXTHEADER: 3817 type = ICMP_UNREACH; 3818 code = ICMP_UNREACH_PROTOCOL; 3819 break; 3820 default: 3821 return (-1); 3822 } 3823 break; 3824 default: 3825 return (-1); 3826 } 3827 if (icmp6->icmp6_type != type) { 3828 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3829 icmp6->icmp6_type, type, 0); 3830 icmp6->icmp6_type = type; 3831 } 3832 if (icmp6->icmp6_code != code) { 3833 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3834 icmp6->icmp6_code, code, 0); 3835 icmp6->icmp6_code = code; 3836 } 3837 if (icmp6->icmp6_mtu != htonl(mtu)) { 3838 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3839 htons(ntohl(icmp6->icmp6_mtu)), htons(mtu), 0); 3840 /* aligns well with a icmpv4 nextmtu */ 3841 icmp6->icmp6_mtu = htonl(mtu); 3842 } 3843 if (ptr >= 0 && icmp6->icmp6_pptr != htonl(ptr)) { 3844 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3845 htons(ntohl(icmp6->icmp6_pptr)), htons(ptr), 0); 3846 /* icmpv4 pptr is a one most significant byte */ 3847 icmp6->icmp6_pptr = htonl(ptr << 24); 3848 } 3849 break; 3850 case AF_INET6: 3851 icmp4 = arg; 3852 type = icmp4->icmp_type; 3853 code = icmp4->icmp_code; 3854 mtu = ntohs(icmp4->icmp_nextmtu); 3855 3856 switch (type) { 3857 case ICMP_ECHO: 3858 type = ICMP6_ECHO_REQUEST; 3859 break; 3860 case ICMP_ECHOREPLY: 3861 type = ICMP6_ECHO_REPLY; 3862 break; 3863 case ICMP_UNREACH: 3864 type = ICMP6_DST_UNREACH; 3865 switch (code) { 3866 case ICMP_UNREACH_NET: 3867 case ICMP_UNREACH_HOST: 3868 case ICMP_UNREACH_NET_UNKNOWN: 3869 case ICMP_UNREACH_HOST_UNKNOWN: 3870 case ICMP_UNREACH_ISOLATED: 3871 case ICMP_UNREACH_TOSNET: 3872 case ICMP_UNREACH_TOSHOST: 3873 code = ICMP6_DST_UNREACH_NOROUTE; 3874 break; 3875 case ICMP_UNREACH_PORT: 3876 code = ICMP6_DST_UNREACH_NOPORT; 3877 break; 3878 case ICMP_UNREACH_NET_PROHIB: 3879 case ICMP_UNREACH_HOST_PROHIB: 3880 case ICMP_UNREACH_FILTER_PROHIB: 3881 case ICMP_UNREACH_PRECEDENCE_CUTOFF: 3882 code = ICMP6_DST_UNREACH_ADMIN; 3883 break; 3884 case ICMP_UNREACH_PROTOCOL: 3885 type = ICMP6_PARAM_PROB; 3886 code = ICMP6_PARAMPROB_NEXTHEADER; 3887 ptr = offsetof(struct ip6_hdr, ip6_nxt); 3888 break; 3889 case ICMP_UNREACH_NEEDFRAG: 3890 type = ICMP6_PACKET_TOO_BIG; 3891 code = 0; 3892 mtu += 20; 3893 break; 3894 default: 3895 return (-1); 3896 } 3897 break; 3898 case ICMP_TIMXCEED: 3899 type = ICMP6_TIME_EXCEEDED; 3900 break; 3901 case ICMP_PARAMPROB: 3902 type = ICMP6_PARAM_PROB; 3903 switch (code) { 3904 case ICMP_PARAMPROB_ERRATPTR: 3905 code = ICMP6_PARAMPROB_HEADER; 3906 break; 3907 case ICMP_PARAMPROB_LENGTH: 3908 code = ICMP6_PARAMPROB_HEADER; 3909 break; 3910 default: 3911 return (-1); 3912 } 3913 3914 ptr = icmp4->icmp_pptr; 3915 if (ptr == 0 || ptr == PTR_IP(ip_tos)) 3916 ; /* preserve */ 3917 else if (ptr == PTR_IP(ip_len) || 3918 ptr == PTR_IP(ip_len) + 1) 3919 ptr = PTR_IP6(ip6_plen); 3920 else if (ptr == PTR_IP(ip_ttl)) 3921 ptr = PTR_IP6(ip6_hlim); 3922 else if (ptr == PTR_IP(ip_p)) 3923 ptr = PTR_IP6(ip6_nxt); 3924 else if (ptr >= PTR_IP(ip_src) && ptr < PTR_IP(ip_dst)) 3925 ptr = PTR_IP6(ip6_src); 3926 else if (ptr >= PTR_IP(ip_dst) && 3927 ptr < sizeof(struct ip)) 3928 ptr = PTR_IP6(ip6_dst); 3929 else { 3930 return (-1); 3931 } 3932 break; 3933 default: 3934 return (-1); 3935 } 3936 if (icmp4->icmp_type != type) { 3937 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3938 icmp4->icmp_type, type, 0); 3939 icmp4->icmp_type = type; 3940 } 3941 if (icmp4->icmp_code != code) { 3942 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3943 icmp4->icmp_code, code, 0); 3944 icmp4->icmp_code = code; 3945 } 3946 if (icmp4->icmp_nextmtu != htons(mtu)) { 3947 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3948 icmp4->icmp_nextmtu, htons(mtu), 0); 3949 icmp4->icmp_nextmtu = htons(mtu); 3950 } 3951 if (ptr >= 0 && icmp4->icmp_void != ptr) { 3952 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3953 htons(icmp4->icmp_pptr), htons(ptr), 0); 3954 icmp4->icmp_void = htonl(ptr); 3955 } 3956 break; 3957 default: 3958 unhandled_af(af); 3959 } 3960 #endif /* INET && INET6 */ 3961 3962 return (0); 3963 } 3964 3965 /* 3966 * Need to modulate the sequence numbers in the TCP SACK option 3967 * (credits to Krzysztof Pfaff for report and patch) 3968 */ 3969 static int 3970 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th, 3971 struct pf_state_peer *dst) 3972 { 3973 struct sackblk sack; 3974 int copyback = 0, i; 3975 int olen, optsoff; 3976 uint8_t opts[MAX_TCPOPTLEN], *opt, *eoh; 3977 3978 olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr); 3979 optsoff = pd->off + sizeof(struct tcphdr); 3980 #define TCPOLEN_MINSACK (TCPOLEN_SACK + 2) 3981 if (olen < TCPOLEN_MINSACK || 3982 !pf_pull_hdr(pd->m, optsoff, opts, olen, NULL, NULL, pd->af)) 3983 return (0); 3984 3985 eoh = opts + olen; 3986 opt = opts; 3987 while ((opt = pf_find_tcpopt(opt, opts, olen, 3988 TCPOPT_SACK, TCPOLEN_MINSACK)) != NULL) 3989 { 3990 size_t safelen = MIN(opt[1], (eoh - opt)); 3991 for (i = 2; i + TCPOLEN_SACK <= safelen; i += TCPOLEN_SACK) { 3992 size_t startoff = (opt + i) - opts; 3993 memcpy(&sack, &opt[i], sizeof(sack)); 3994 pf_patch_32(pd, &sack.start, 3995 htonl(ntohl(sack.start) - dst->seqdiff), 3996 PF_ALGNMNT(startoff)); 3997 pf_patch_32(pd, &sack.end, 3998 htonl(ntohl(sack.end) - dst->seqdiff), 3999 PF_ALGNMNT(startoff + sizeof(sack.start))); 4000 memcpy(&opt[i], &sack, sizeof(sack)); 4001 } 4002 copyback = 1; 4003 opt += opt[1]; 4004 } 4005 4006 if (copyback) 4007 m_copyback(pd->m, optsoff, olen, (caddr_t)opts); 4008 4009 return (copyback); 4010 } 4011 4012 struct mbuf * 4013 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 4014 const struct pf_addr *saddr, const struct pf_addr *daddr, 4015 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 4016 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 4017 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, u_int sack, 4018 int rtableid) 4019 { 4020 struct mbuf *m; 4021 int len, tlen; 4022 #ifdef INET 4023 struct ip *h = NULL; 4024 #endif /* INET */ 4025 #ifdef INET6 4026 struct ip6_hdr *h6 = NULL; 4027 #endif /* INET6 */ 4028 struct tcphdr *th; 4029 char *opt; 4030 struct pf_mtag *pf_mtag; 4031 4032 len = 0; 4033 th = NULL; 4034 4035 /* maximum segment size tcp option */ 4036 tlen = sizeof(struct tcphdr); 4037 if (mss) 4038 tlen += 4; 4039 if (sack) 4040 tlen += 2; 4041 4042 switch (af) { 4043 #ifdef INET 4044 case AF_INET: 4045 len = sizeof(struct ip) + tlen; 4046 break; 4047 #endif /* INET */ 4048 #ifdef INET6 4049 case AF_INET6: 4050 len = sizeof(struct ip6_hdr) + tlen; 4051 break; 4052 #endif /* INET6 */ 4053 default: 4054 unhandled_af(af); 4055 } 4056 4057 m = m_gethdr(M_NOWAIT, MT_DATA); 4058 if (m == NULL) 4059 return (NULL); 4060 4061 #ifdef MAC 4062 mac_netinet_firewall_send(m); 4063 #endif 4064 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 4065 m_freem(m); 4066 return (NULL); 4067 } 4068 m->m_flags |= mbuf_flags; 4069 pf_mtag->tag = mtag_tag; 4070 pf_mtag->flags = mtag_flags; 4071 4072 if (rtableid >= 0) 4073 M_SETFIB(m, rtableid); 4074 4075 #ifdef ALTQ 4076 if (r != NULL && r->qid) { 4077 pf_mtag->qid = r->qid; 4078 4079 /* add hints for ecn */ 4080 pf_mtag->hdr = mtod(m, struct ip *); 4081 } 4082 #endif /* ALTQ */ 4083 m->m_data += max_linkhdr; 4084 m->m_pkthdr.len = m->m_len = len; 4085 /* The rest of the stack assumes a rcvif, so provide one. 4086 * This is a locally generated packet, so .. close enough. */ 4087 m->m_pkthdr.rcvif = V_loif; 4088 bzero(m->m_data, len); 4089 switch (af) { 4090 #ifdef INET 4091 case AF_INET: 4092 m->m_pkthdr.csum_flags |= CSUM_TCP; 4093 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 4094 4095 h = mtod(m, struct ip *); 4096 4097 h->ip_p = IPPROTO_TCP; 4098 h->ip_len = htons(tlen); 4099 h->ip_v = 4; 4100 h->ip_hl = sizeof(*h) >> 2; 4101 h->ip_tos = IPTOS_LOWDELAY; 4102 h->ip_len = htons(len); 4103 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 4104 h->ip_ttl = ttl ? ttl : V_ip_defttl; 4105 h->ip_sum = 0; 4106 h->ip_src.s_addr = saddr->v4.s_addr; 4107 h->ip_dst.s_addr = daddr->v4.s_addr; 4108 4109 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 4110 th->th_sum = in_pseudo(h->ip_src.s_addr, h->ip_dst.s_addr, 4111 htons(len - sizeof(struct ip) + IPPROTO_TCP)); 4112 break; 4113 #endif /* INET */ 4114 #ifdef INET6 4115 case AF_INET6: 4116 m->m_pkthdr.csum_flags |= CSUM_TCP_IPV6; 4117 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 4118 4119 h6 = mtod(m, struct ip6_hdr *); 4120 4121 /* IP header fields included in the TCP checksum */ 4122 h6->ip6_nxt = IPPROTO_TCP; 4123 h6->ip6_plen = htons(tlen); 4124 h6->ip6_vfc |= IPV6_VERSION; 4125 h6->ip6_hlim = V_ip6_defhlim; 4126 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 4127 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 4128 4129 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 4130 th->th_sum = in6_cksum_pseudo(h6, len - sizeof(struct ip6_hdr), 4131 IPPROTO_TCP, 0); 4132 break; 4133 #endif /* INET6 */ 4134 } 4135 4136 /* TCP header */ 4137 th->th_sport = sport; 4138 th->th_dport = dport; 4139 th->th_seq = htonl(seq); 4140 th->th_ack = htonl(ack); 4141 th->th_off = tlen >> 2; 4142 tcp_set_flags(th, tcp_flags); 4143 th->th_win = htons(win); 4144 4145 opt = (char *)(th + 1); 4146 if (mss) { 4147 opt = (char *)(th + 1); 4148 opt[0] = TCPOPT_MAXSEG; 4149 opt[1] = 4; 4150 mss = htons(mss); 4151 memcpy((opt + 2), &mss, 2); 4152 opt += 4; 4153 } 4154 if (sack) { 4155 opt[0] = TCPOPT_SACK_PERMITTED; 4156 opt[1] = 2; 4157 opt += 2; 4158 } 4159 4160 return (m); 4161 } 4162 4163 static void 4164 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd, 4165 uint8_t ttl, int rtableid) 4166 { 4167 struct mbuf *m; 4168 #ifdef INET 4169 struct ip *h = NULL; 4170 #endif /* INET */ 4171 #ifdef INET6 4172 struct ip6_hdr *h6 = NULL; 4173 #endif /* INET6 */ 4174 struct sctphdr *hdr; 4175 struct sctp_chunkhdr *chunk; 4176 struct pf_send_entry *pfse; 4177 int off = 0; 4178 4179 MPASS(af == pd->af); 4180 4181 m = m_gethdr(M_NOWAIT, MT_DATA); 4182 if (m == NULL) 4183 return; 4184 4185 m->m_data += max_linkhdr; 4186 m->m_flags |= M_SKIP_FIREWALL; 4187 /* The rest of the stack assumes a rcvif, so provide one. 4188 * This is a locally generated packet, so .. close enough. */ 4189 m->m_pkthdr.rcvif = V_loif; 4190 4191 /* IPv4|6 header */ 4192 switch (af) { 4193 #ifdef INET 4194 case AF_INET: 4195 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk)); 4196 4197 h = mtod(m, struct ip *); 4198 4199 /* IP header fields included in the TCP checksum */ 4200 4201 h->ip_p = IPPROTO_SCTP; 4202 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk)); 4203 h->ip_ttl = ttl ? ttl : V_ip_defttl; 4204 h->ip_src = pd->dst->v4; 4205 h->ip_dst = pd->src->v4; 4206 4207 off += sizeof(struct ip); 4208 break; 4209 #endif /* INET */ 4210 #ifdef INET6 4211 case AF_INET6: 4212 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk)); 4213 4214 h6 = mtod(m, struct ip6_hdr *); 4215 4216 /* IP header fields included in the TCP checksum */ 4217 h6->ip6_vfc |= IPV6_VERSION; 4218 h6->ip6_nxt = IPPROTO_SCTP; 4219 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk)); 4220 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim; 4221 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr)); 4222 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr)); 4223 4224 off += sizeof(struct ip6_hdr); 4225 break; 4226 #endif /* INET6 */ 4227 default: 4228 unhandled_af(af); 4229 } 4230 4231 /* SCTP header */ 4232 hdr = mtodo(m, off); 4233 4234 hdr->src_port = pd->hdr.sctp.dest_port; 4235 hdr->dest_port = pd->hdr.sctp.src_port; 4236 hdr->v_tag = pd->sctp_initiate_tag; 4237 hdr->checksum = 0; 4238 4239 /* Abort chunk. */ 4240 off += sizeof(struct sctphdr); 4241 chunk = mtodo(m, off); 4242 4243 chunk->chunk_type = SCTP_ABORT_ASSOCIATION; 4244 chunk->chunk_length = htons(sizeof(*chunk)); 4245 4246 /* SCTP checksum */ 4247 off += sizeof(*chunk); 4248 m->m_pkthdr.len = m->m_len = off; 4249 4250 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk)); 4251 4252 if (rtableid >= 0) 4253 M_SETFIB(m, rtableid); 4254 4255 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 4256 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 4257 if (pfse == NULL) { 4258 m_freem(m); 4259 return; 4260 } 4261 4262 switch (af) { 4263 #ifdef INET 4264 case AF_INET: 4265 pfse->pfse_type = PFSE_IP; 4266 break; 4267 #endif /* INET */ 4268 #ifdef INET6 4269 case AF_INET6: 4270 pfse->pfse_type = PFSE_IP6; 4271 break; 4272 #endif /* INET6 */ 4273 } 4274 4275 pfse->pfse_m = m; 4276 pf_send(pfse); 4277 } 4278 4279 void 4280 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 4281 const struct pf_addr *saddr, const struct pf_addr *daddr, 4282 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 4283 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 4284 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 4285 { 4286 struct pf_send_entry *pfse; 4287 struct mbuf *m; 4288 4289 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags, 4290 win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, 0, rtableid); 4291 if (m == NULL) 4292 return; 4293 4294 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 4295 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 4296 if (pfse == NULL) { 4297 m_freem(m); 4298 return; 4299 } 4300 4301 switch (af) { 4302 #ifdef INET 4303 case AF_INET: 4304 pfse->pfse_type = PFSE_IP; 4305 break; 4306 #endif /* INET */ 4307 #ifdef INET6 4308 case AF_INET6: 4309 pfse->pfse_type = PFSE_IP6; 4310 break; 4311 #endif /* INET6 */ 4312 default: 4313 unhandled_af(af); 4314 } 4315 4316 pfse->pfse_m = m; 4317 pf_send(pfse); 4318 } 4319 4320 static void 4321 pf_undo_nat(struct pf_krule *nr, struct pf_pdesc *pd, uint16_t bip_sum) 4322 { 4323 /* undo NAT changes, if they have taken place */ 4324 if (nr != NULL) { 4325 pf_addrcpy(pd->src, &pd->osrc, pd->af); 4326 pf_addrcpy(pd->dst, &pd->odst, pd->af); 4327 if (pd->sport) 4328 *pd->sport = pd->osport; 4329 if (pd->dport) 4330 *pd->dport = pd->odport; 4331 if (pd->ip_sum) 4332 *pd->ip_sum = bip_sum; 4333 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 4334 } 4335 } 4336 4337 static void 4338 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 4339 struct tcphdr *th, u_int16_t bproto_sum, u_int16_t bip_sum, 4340 u_short *reason, int rtableid) 4341 { 4342 pf_undo_nat(nr, pd, bip_sum); 4343 4344 if (pd->proto == IPPROTO_TCP && 4345 ((r->rule_flag & PFRULE_RETURNRST) || 4346 (r->rule_flag & PFRULE_RETURN)) && 4347 !(tcp_get_flags(th) & TH_RST)) { 4348 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 4349 4350 if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off, 4351 IPPROTO_TCP, pd->af)) 4352 REASON_SET(reason, PFRES_PROTCKSUM); 4353 else { 4354 if (tcp_get_flags(th) & TH_SYN) 4355 ack++; 4356 if (tcp_get_flags(th) & TH_FIN) 4357 ack++; 4358 pf_send_tcp(r, pd->af, pd->dst, 4359 pd->src, th->th_dport, th->th_sport, 4360 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 4361 r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid); 4362 } 4363 } else if (pd->proto == IPPROTO_SCTP && 4364 (r->rule_flag & PFRULE_RETURN)) { 4365 pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid); 4366 } else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET && 4367 r->return_icmp) 4368 pf_send_icmp(pd->m, r->return_icmp >> 8, 4369 r->return_icmp & 255, 0, pd->af, r, rtableid); 4370 else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 && 4371 r->return_icmp6) 4372 pf_send_icmp(pd->m, r->return_icmp6 >> 8, 4373 r->return_icmp6 & 255, 0, pd->af, r, rtableid); 4374 } 4375 4376 static int 4377 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 4378 { 4379 struct m_tag *mtag; 4380 u_int8_t mpcp; 4381 4382 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 4383 if (mtag == NULL) 4384 return (0); 4385 4386 if (prio == PF_PRIO_ZERO) 4387 prio = 0; 4388 4389 mpcp = *(uint8_t *)(mtag + 1); 4390 4391 return (mpcp == prio); 4392 } 4393 4394 static int 4395 pf_icmp_to_bandlim(uint8_t type) 4396 { 4397 switch (type) { 4398 case ICMP_ECHO: 4399 case ICMP_ECHOREPLY: 4400 return (BANDLIM_ICMP_ECHO); 4401 case ICMP_TSTAMP: 4402 case ICMP_TSTAMPREPLY: 4403 return (BANDLIM_ICMP_TSTAMP); 4404 case ICMP_UNREACH: 4405 default: 4406 return (BANDLIM_ICMP_UNREACH); 4407 } 4408 } 4409 4410 static void 4411 pf_send_challenge_ack(struct pf_pdesc *pd, struct pf_kstate *s, 4412 struct pf_state_peer *src, struct pf_state_peer *dst) 4413 { 4414 /* 4415 * We are sending challenge ACK as a response to SYN packet, which 4416 * matches existing state (modulo TCP window check). Therefore packet 4417 * must be sent on behalf of destination. 4418 * 4419 * We expect sender to remain either silent, or send RST packet 4420 * so both, firewall and remote peer, can purge dead state from 4421 * memory. 4422 */ 4423 pf_send_tcp(s->rule, pd->af, pd->dst, pd->src, 4424 pd->hdr.tcp.th_dport, pd->hdr.tcp.th_sport, dst->seqlo, 4425 src->seqlo, TH_ACK, 0, 0, s->rule->return_ttl, 0, 0, 0, 4426 s->rule->rtableid); 4427 } 4428 4429 static void 4430 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, int mtu, 4431 sa_family_t af, struct pf_krule *r, int rtableid) 4432 { 4433 struct pf_send_entry *pfse; 4434 struct mbuf *m0; 4435 struct pf_mtag *pf_mtag; 4436 4437 /* ICMP packet rate limitation. */ 4438 switch (af) { 4439 #ifdef INET6 4440 case AF_INET6: 4441 if (icmp6_ratelimit(NULL, type, code)) 4442 return; 4443 break; 4444 #endif /* INET6 */ 4445 #ifdef INET 4446 case AF_INET: 4447 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 4448 return; 4449 break; 4450 #endif /* INET */ 4451 } 4452 4453 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 4454 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 4455 if (pfse == NULL) 4456 return; 4457 4458 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 4459 free(pfse, M_PFTEMP); 4460 return; 4461 } 4462 4463 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 4464 free(pfse, M_PFTEMP); 4465 return; 4466 } 4467 /* XXX: revisit */ 4468 m0->m_flags |= M_SKIP_FIREWALL; 4469 4470 if (rtableid >= 0) 4471 M_SETFIB(m0, rtableid); 4472 4473 #ifdef ALTQ 4474 if (r->qid) { 4475 pf_mtag->qid = r->qid; 4476 /* add hints for ecn */ 4477 pf_mtag->hdr = mtod(m0, struct ip *); 4478 } 4479 #endif /* ALTQ */ 4480 4481 switch (af) { 4482 #ifdef INET 4483 case AF_INET: 4484 pfse->pfse_type = PFSE_ICMP; 4485 break; 4486 #endif /* INET */ 4487 #ifdef INET6 4488 case AF_INET6: 4489 pfse->pfse_type = PFSE_ICMP6; 4490 break; 4491 #endif /* INET6 */ 4492 } 4493 pfse->pfse_m = m0; 4494 pfse->icmpopts.type = type; 4495 pfse->icmpopts.code = code; 4496 pfse->icmpopts.mtu = mtu; 4497 pf_send(pfse); 4498 } 4499 4500 /* 4501 * Return ((n = 0) == (a = b [with mask m])) 4502 * Note: n != 0 => returns (a != b [with mask m]) 4503 */ 4504 int 4505 pf_match_addr(u_int8_t n, const struct pf_addr *a, const struct pf_addr *m, 4506 const struct pf_addr *b, sa_family_t af) 4507 { 4508 switch (af) { 4509 #ifdef INET 4510 case AF_INET: 4511 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4)) 4512 return (n == 0); 4513 break; 4514 #endif /* INET */ 4515 #ifdef INET6 4516 case AF_INET6: 4517 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6)) 4518 return (n == 0); 4519 break; 4520 #endif /* INET6 */ 4521 } 4522 4523 return (n != 0); 4524 } 4525 4526 /* 4527 * Return 1 if b <= a <= e, otherwise return 0. 4528 */ 4529 int 4530 pf_match_addr_range(const struct pf_addr *b, const struct pf_addr *e, 4531 const struct pf_addr *a, sa_family_t af) 4532 { 4533 switch (af) { 4534 #ifdef INET 4535 case AF_INET: 4536 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 4537 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 4538 return (0); 4539 break; 4540 #endif /* INET */ 4541 #ifdef INET6 4542 case AF_INET6: { 4543 int i; 4544 4545 /* check a >= b */ 4546 for (i = 0; i < 4; ++i) 4547 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 4548 break; 4549 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 4550 return (0); 4551 /* check a <= e */ 4552 for (i = 0; i < 4; ++i) 4553 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 4554 break; 4555 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 4556 return (0); 4557 break; 4558 } 4559 #endif /* INET6 */ 4560 } 4561 return (1); 4562 } 4563 4564 static int 4565 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 4566 { 4567 switch (op) { 4568 case PF_OP_IRG: 4569 return ((p > a1) && (p < a2)); 4570 case PF_OP_XRG: 4571 return ((p < a1) || (p > a2)); 4572 case PF_OP_RRG: 4573 return ((p >= a1) && (p <= a2)); 4574 case PF_OP_EQ: 4575 return (p == a1); 4576 case PF_OP_NE: 4577 return (p != a1); 4578 case PF_OP_LT: 4579 return (p < a1); 4580 case PF_OP_LE: 4581 return (p <= a1); 4582 case PF_OP_GT: 4583 return (p > a1); 4584 case PF_OP_GE: 4585 return (p >= a1); 4586 } 4587 return (0); /* never reached */ 4588 } 4589 4590 int 4591 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 4592 { 4593 return (pf_match(op, ntohs(a1), ntohs(a2), ntohs(p))); 4594 } 4595 4596 static int 4597 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 4598 { 4599 if (u == -1 && op != PF_OP_EQ && op != PF_OP_NE) 4600 return (0); 4601 return (pf_match(op, a1, a2, u)); 4602 } 4603 4604 static int 4605 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 4606 { 4607 if (g == -1 && op != PF_OP_EQ && op != PF_OP_NE) 4608 return (0); 4609 return (pf_match(op, a1, a2, g)); 4610 } 4611 4612 int 4613 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 4614 { 4615 if (*tag == -1) 4616 *tag = mtag; 4617 4618 return ((!r->match_tag_not && r->match_tag == *tag) || 4619 (r->match_tag_not && r->match_tag != *tag)); 4620 } 4621 4622 static int 4623 pf_match_rcvif(struct mbuf *m, struct pf_krule *r) 4624 { 4625 struct ifnet *ifp = m->m_pkthdr.rcvif; 4626 struct pfi_kkif *kif; 4627 4628 if (ifp == NULL) 4629 return (0); 4630 4631 kif = (struct pfi_kkif *)ifp->if_pf_kif; 4632 4633 if (kif == NULL) { 4634 DPFPRINTF(PF_DEBUG_URGENT, 4635 "%s: kif == NULL, @%d via %s", __func__, r->nr, 4636 r->rcv_ifname); 4637 return (0); 4638 } 4639 4640 return (pfi_kkif_match(r->rcv_kif, kif)); 4641 } 4642 4643 int 4644 pf_tag_packet(struct pf_pdesc *pd, int tag) 4645 { 4646 4647 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 4648 4649 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) 4650 return (ENOMEM); 4651 4652 pd->pf_mtag->tag = tag; 4653 4654 return (0); 4655 } 4656 4657 /* 4658 * XXX: We rely on malloc(9) returning pointer aligned addresses. 4659 */ 4660 #define PF_ANCHORSTACK_MATCH 0x00000001 4661 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 4662 4663 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4664 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 4665 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4666 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4667 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4668 } while (0) 4669 4670 enum pf_test_status 4671 pf_step_into_anchor(struct pf_test_ctx *ctx, struct pf_krule *r) 4672 { 4673 enum pf_test_status rv; 4674 4675 PF_RULES_RASSERT(); 4676 4677 if (ctx->depth >= PF_ANCHOR_STACK_MAX) { 4678 printf("%s: anchor stack overflow on %s\n", 4679 __func__, r->anchor->name); 4680 return (PF_TEST_FAIL); 4681 } 4682 4683 ctx->depth++; 4684 4685 if (r->anchor_wildcard) { 4686 struct pf_kanchor *child; 4687 rv = PF_TEST_OK; 4688 RB_FOREACH(child, pf_kanchor_node, &r->anchor->children) { 4689 rv = pf_match_rule(ctx, &child->ruleset); 4690 if ((rv == PF_TEST_QUICK) || (rv == PF_TEST_FAIL)) { 4691 /* 4692 * we either hit a rule with quick action 4693 * (more likely), or hit some runtime 4694 * error (e.g. pool_get() failure). 4695 */ 4696 break; 4697 } 4698 } 4699 } else { 4700 rv = pf_match_rule(ctx, &r->anchor->ruleset); 4701 /* 4702 * Unless errors occured, stop iff any rule matched 4703 * within quick anchors. 4704 */ 4705 if (rv != PF_TEST_FAIL && r->quick == PF_TEST_QUICK && 4706 *ctx->am == r) 4707 rv = PF_TEST_QUICK; 4708 } 4709 4710 ctx->depth--; 4711 4712 return (rv); 4713 } 4714 4715 struct pf_keth_anchor_stackframe { 4716 struct pf_keth_ruleset *rs; 4717 struct pf_keth_rule *r; /* XXX: + match bit */ 4718 struct pf_keth_anchor *child; 4719 }; 4720 4721 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4722 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 4723 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4724 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4725 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4726 } while (0) 4727 4728 void 4729 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4730 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4731 struct pf_keth_rule **a, int *match) 4732 { 4733 struct pf_keth_anchor_stackframe *f; 4734 4735 NET_EPOCH_ASSERT(); 4736 4737 if (match) 4738 *match = 0; 4739 if (*depth >= PF_ANCHOR_STACK_MAX) { 4740 printf("%s: anchor stack overflow on %s\n", 4741 __func__, (*r)->anchor->name); 4742 *r = TAILQ_NEXT(*r, entries); 4743 return; 4744 } else if (*depth == 0 && a != NULL) 4745 *a = *r; 4746 f = stack + (*depth)++; 4747 f->rs = *rs; 4748 f->r = *r; 4749 if ((*r)->anchor_wildcard) { 4750 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 4751 4752 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 4753 *r = NULL; 4754 return; 4755 } 4756 *rs = &f->child->ruleset; 4757 } else { 4758 f->child = NULL; 4759 *rs = &(*r)->anchor->ruleset; 4760 } 4761 *r = TAILQ_FIRST((*rs)->active.rules); 4762 } 4763 4764 int 4765 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4766 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4767 struct pf_keth_rule **a, int *match) 4768 { 4769 struct pf_keth_anchor_stackframe *f; 4770 struct pf_keth_rule *fr; 4771 int quick = 0; 4772 4773 NET_EPOCH_ASSERT(); 4774 4775 do { 4776 if (*depth <= 0) 4777 break; 4778 f = stack + *depth - 1; 4779 fr = PF_ETH_ANCHOR_RULE(f); 4780 if (f->child != NULL) { 4781 /* 4782 * This block traverses through 4783 * a wildcard anchor. 4784 */ 4785 if (match != NULL && *match) { 4786 /* 4787 * If any of "*" matched, then 4788 * "foo/ *" matched, mark frame 4789 * appropriately. 4790 */ 4791 PF_ETH_ANCHOR_SET_MATCH(f); 4792 *match = 0; 4793 } 4794 f->child = RB_NEXT(pf_keth_anchor_node, 4795 &fr->anchor->children, f->child); 4796 if (f->child != NULL) { 4797 *rs = &f->child->ruleset; 4798 *r = TAILQ_FIRST((*rs)->active.rules); 4799 if (*r == NULL) 4800 continue; 4801 else 4802 break; 4803 } 4804 } 4805 (*depth)--; 4806 if (*depth == 0 && a != NULL) 4807 *a = NULL; 4808 *rs = f->rs; 4809 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 4810 quick = fr->quick; 4811 *r = TAILQ_NEXT(fr, entries); 4812 } while (*r == NULL); 4813 4814 return (quick); 4815 } 4816 4817 void 4818 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 4819 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 4820 { 4821 switch (af) { 4822 #ifdef INET 4823 case AF_INET: 4824 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4825 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4826 break; 4827 #endif /* INET */ 4828 #ifdef INET6 4829 case AF_INET6: 4830 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4831 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4832 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 4833 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 4834 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 4835 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 4836 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 4837 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 4838 break; 4839 #endif /* INET6 */ 4840 } 4841 } 4842 4843 void 4844 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 4845 { 4846 switch (af) { 4847 #ifdef INET 4848 case AF_INET: 4849 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 4850 break; 4851 #endif /* INET */ 4852 #ifdef INET6 4853 case AF_INET6: 4854 if (addr->addr32[3] == 0xffffffff) { 4855 addr->addr32[3] = 0; 4856 if (addr->addr32[2] == 0xffffffff) { 4857 addr->addr32[2] = 0; 4858 if (addr->addr32[1] == 0xffffffff) { 4859 addr->addr32[1] = 0; 4860 addr->addr32[0] = 4861 htonl(ntohl(addr->addr32[0]) + 1); 4862 } else 4863 addr->addr32[1] = 4864 htonl(ntohl(addr->addr32[1]) + 1); 4865 } else 4866 addr->addr32[2] = 4867 htonl(ntohl(addr->addr32[2]) + 1); 4868 } else 4869 addr->addr32[3] = 4870 htonl(ntohl(addr->addr32[3]) + 1); 4871 break; 4872 #endif /* INET6 */ 4873 } 4874 } 4875 4876 void 4877 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 4878 { 4879 /* 4880 * Modern rules use the same flags in rules as they do in states. 4881 */ 4882 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 4883 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 4884 4885 /* 4886 * Old-style scrub rules have different flags which need to be translated. 4887 */ 4888 if (r->rule_flag & PFRULE_RANDOMID) 4889 a->flags |= PFSTATE_RANDOMID; 4890 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) { 4891 a->flags |= PFSTATE_SETTOS; 4892 a->set_tos = r->set_tos; 4893 } 4894 4895 if (r->qid) 4896 a->qid = r->qid; 4897 if (r->pqid) 4898 a->pqid = r->pqid; 4899 if (r->rtableid >= 0) 4900 a->rtableid = r->rtableid; 4901 a->log |= r->log; 4902 if (r->min_ttl) 4903 a->min_ttl = r->min_ttl; 4904 if (r->max_mss) 4905 a->max_mss = r->max_mss; 4906 if (r->dnpipe) 4907 a->dnpipe = r->dnpipe; 4908 if (r->dnrpipe) 4909 a->dnrpipe = r->dnrpipe; 4910 if (r->dnpipe || r->dnrpipe) { 4911 if (r->free_flags & PFRULE_DN_IS_PIPE) 4912 a->flags |= PFSTATE_DN_IS_PIPE; 4913 else 4914 a->flags &= ~PFSTATE_DN_IS_PIPE; 4915 } 4916 if (r->scrub_flags & PFSTATE_SETPRIO) { 4917 a->set_prio[0] = r->set_prio[0]; 4918 a->set_prio[1] = r->set_prio[1]; 4919 } 4920 if (r->allow_opts) 4921 a->allow_opts = r->allow_opts; 4922 if (r->max_pkt_size) 4923 a->max_pkt_size = r->max_pkt_size; 4924 } 4925 4926 int 4927 pf_socket_lookup(struct pf_pdesc *pd) 4928 { 4929 struct pf_addr *saddr, *daddr; 4930 u_int16_t sport, dport; 4931 struct inpcbinfo *pi; 4932 struct inpcb *inp; 4933 4934 pd->lookup.uid = -1; 4935 pd->lookup.gid = -1; 4936 4937 switch (pd->proto) { 4938 case IPPROTO_TCP: 4939 sport = pd->hdr.tcp.th_sport; 4940 dport = pd->hdr.tcp.th_dport; 4941 pi = &V_tcbinfo; 4942 break; 4943 case IPPROTO_UDP: 4944 sport = pd->hdr.udp.uh_sport; 4945 dport = pd->hdr.udp.uh_dport; 4946 pi = &V_udbinfo; 4947 break; 4948 default: 4949 return (-1); 4950 } 4951 if (pd->dir == PF_IN) { 4952 saddr = pd->src; 4953 daddr = pd->dst; 4954 } else { 4955 u_int16_t p; 4956 4957 p = sport; 4958 sport = dport; 4959 dport = p; 4960 saddr = pd->dst; 4961 daddr = pd->src; 4962 } 4963 switch (pd->af) { 4964 #ifdef INET 4965 case AF_INET: 4966 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 4967 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m); 4968 if (inp == NULL) { 4969 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 4970 daddr->v4, dport, INPLOOKUP_WILDCARD | 4971 INPLOOKUP_RLOCKPCB, NULL, pd->m); 4972 if (inp == NULL) 4973 return (-1); 4974 } 4975 break; 4976 #endif /* INET */ 4977 #ifdef INET6 4978 case AF_INET6: 4979 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 4980 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m); 4981 if (inp == NULL) { 4982 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 4983 &daddr->v6, dport, INPLOOKUP_WILDCARD | 4984 INPLOOKUP_RLOCKPCB, NULL, pd->m); 4985 if (inp == NULL) 4986 return (-1); 4987 } 4988 break; 4989 #endif /* INET6 */ 4990 default: 4991 unhandled_af(pd->af); 4992 } 4993 INP_RLOCK_ASSERT(inp); 4994 pd->lookup.uid = inp->inp_cred->cr_uid; 4995 pd->lookup.gid = inp->inp_cred->cr_gid; 4996 INP_RUNLOCK(inp); 4997 4998 return (1); 4999 } 5000 5001 /* post: r => (r[0] == type /\ r[1] >= min_typelen >= 2 "validity" 5002 * /\ (eoh - r) >= min_typelen >= 2 "safety" ) 5003 * 5004 * warning: r + r[1] may exceed opts bounds for r[1] > min_typelen 5005 */ 5006 uint8_t* 5007 pf_find_tcpopt(u_int8_t *opt, u_int8_t *opts, size_t hlen, u_int8_t type, 5008 u_int8_t min_typelen) 5009 { 5010 uint8_t *eoh = opts + hlen; 5011 5012 if (min_typelen < 2) 5013 return (NULL); 5014 5015 while ((eoh - opt) >= min_typelen) { 5016 switch (*opt) { 5017 case TCPOPT_EOL: 5018 /* FALLTHROUGH - Workaround the failure of some 5019 systems to NOP-pad their bzero'd option buffers, 5020 producing spurious EOLs */ 5021 case TCPOPT_NOP: 5022 opt++; 5023 continue; 5024 default: 5025 if (opt[0] == type && 5026 opt[1] >= min_typelen) 5027 return (opt); 5028 } 5029 5030 opt += MAX(opt[1], 2); /* evade infinite loops */ 5031 } 5032 5033 return (NULL); 5034 } 5035 5036 u_int8_t 5037 pf_get_wscale(struct pf_pdesc *pd) 5038 { 5039 int olen; 5040 uint8_t opts[MAX_TCPOPTLEN], *opt; 5041 uint8_t wscale = 0; 5042 5043 olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr); 5044 if (olen < TCPOLEN_WINDOW || !pf_pull_hdr(pd->m, 5045 pd->off + sizeof(struct tcphdr), opts, olen, NULL, NULL, pd->af)) 5046 return (0); 5047 5048 opt = opts; 5049 while ((opt = pf_find_tcpopt(opt, opts, olen, 5050 TCPOPT_WINDOW, TCPOLEN_WINDOW)) != NULL) { 5051 wscale = opt[2]; 5052 wscale = MIN(wscale, TCP_MAX_WINSHIFT); 5053 wscale |= PF_WSCALE_FLAG; 5054 5055 opt += opt[1]; 5056 } 5057 5058 return (wscale); 5059 } 5060 5061 u_int16_t 5062 pf_get_mss(struct pf_pdesc *pd) 5063 { 5064 int olen; 5065 uint8_t opts[MAX_TCPOPTLEN], *opt; 5066 u_int16_t mss = V_tcp_mssdflt; 5067 5068 olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr); 5069 if (olen < TCPOLEN_MAXSEG || !pf_pull_hdr(pd->m, 5070 pd->off + sizeof(struct tcphdr), opts, olen, NULL, NULL, pd->af)) 5071 return (0); 5072 5073 opt = opts; 5074 while ((opt = pf_find_tcpopt(opt, opts, olen, 5075 TCPOPT_MAXSEG, TCPOLEN_MAXSEG)) != NULL) { 5076 memcpy(&mss, (opt + 2), 2); 5077 mss = ntohs(mss); 5078 opt += opt[1]; 5079 } 5080 5081 return (mss); 5082 } 5083 5084 static u_int16_t 5085 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 5086 { 5087 struct nhop_object *nh; 5088 #ifdef INET6 5089 struct in6_addr dst6; 5090 uint32_t scopeid; 5091 #endif /* INET6 */ 5092 int hlen = 0; 5093 uint16_t mss = 0; 5094 5095 NET_EPOCH_ASSERT(); 5096 5097 switch (af) { 5098 #ifdef INET 5099 case AF_INET: 5100 hlen = sizeof(struct ip); 5101 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 5102 if (nh != NULL) 5103 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 5104 break; 5105 #endif /* INET */ 5106 #ifdef INET6 5107 case AF_INET6: 5108 hlen = sizeof(struct ip6_hdr); 5109 in6_splitscope(&addr->v6, &dst6, &scopeid); 5110 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 5111 if (nh != NULL) 5112 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 5113 break; 5114 #endif /* INET6 */ 5115 } 5116 5117 mss = max(V_tcp_mssdflt, mss); 5118 mss = min(mss, offer); 5119 mss = max(mss, 64); /* sanity - at least max opt space */ 5120 return (mss); 5121 } 5122 5123 static u_int32_t 5124 pf_tcp_iss(struct pf_pdesc *pd) 5125 { 5126 SHA512_CTX ctx; 5127 union { 5128 uint8_t bytes[SHA512_DIGEST_LENGTH]; 5129 uint32_t words[1]; 5130 } digest; 5131 5132 if (V_pf_tcp_secret_init == 0) { 5133 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 5134 SHA512_Init(&V_pf_tcp_secret_ctx); 5135 SHA512_Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 5136 sizeof(V_pf_tcp_secret)); 5137 V_pf_tcp_secret_init = 1; 5138 } 5139 5140 ctx = V_pf_tcp_secret_ctx; 5141 5142 SHA512_Update(&ctx, &pd->hdr.tcp.th_sport, sizeof(u_short)); 5143 SHA512_Update(&ctx, &pd->hdr.tcp.th_dport, sizeof(u_short)); 5144 switch (pd->af) { 5145 case AF_INET6: 5146 SHA512_Update(&ctx, &pd->src->v6, sizeof(struct in6_addr)); 5147 SHA512_Update(&ctx, &pd->dst->v6, sizeof(struct in6_addr)); 5148 break; 5149 case AF_INET: 5150 SHA512_Update(&ctx, &pd->src->v4, sizeof(struct in_addr)); 5151 SHA512_Update(&ctx, &pd->dst->v4, sizeof(struct in_addr)); 5152 break; 5153 } 5154 SHA512_Final(digest.bytes, &ctx); 5155 V_pf_tcp_iss_off += 4096; 5156 #define ISN_RANDOM_INCREMENT (4096 - 1) 5157 return (digest.words[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 5158 V_pf_tcp_iss_off); 5159 #undef ISN_RANDOM_INCREMENT 5160 } 5161 5162 static bool 5163 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 5164 { 5165 bool match = true; 5166 5167 /* Always matches if not set */ 5168 if (! r->isset) 5169 return (!r->neg); 5170 5171 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 5172 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 5173 match = false; 5174 break; 5175 } 5176 } 5177 5178 return (match ^ r->neg); 5179 } 5180 5181 static int 5182 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 5183 { 5184 if (*tag == -1) 5185 *tag = mtag; 5186 5187 return ((!r->match_tag_not && r->match_tag == *tag) || 5188 (r->match_tag_not && r->match_tag != *tag)); 5189 } 5190 5191 static void 5192 pf_bridge_to(struct ifnet *ifp, struct mbuf *m) 5193 { 5194 /* If we don't have the interface drop the packet. */ 5195 if (ifp == NULL) { 5196 m_freem(m); 5197 return; 5198 } 5199 5200 switch (ifp->if_type) { 5201 case IFT_ETHER: 5202 case IFT_XETHER: 5203 case IFT_L2VLAN: 5204 case IFT_BRIDGE: 5205 case IFT_IEEE8023ADLAG: 5206 break; 5207 default: 5208 m_freem(m); 5209 return; 5210 } 5211 5212 ifp->if_transmit(ifp, m); 5213 } 5214 5215 static int 5216 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 5217 { 5218 #ifdef INET 5219 struct ip ip; 5220 #endif /* INET */ 5221 #ifdef INET6 5222 struct ip6_hdr ip6; 5223 #endif /* INET6 */ 5224 struct mbuf *m = *m0; 5225 struct ether_header *e; 5226 struct pf_keth_rule *r, *rm, *a = NULL; 5227 struct pf_keth_ruleset *ruleset = NULL; 5228 struct pf_mtag *mtag; 5229 struct pf_keth_ruleq *rules; 5230 struct pf_addr *src = NULL, *dst = NULL; 5231 struct pfi_kkif *bridge_to; 5232 sa_family_t af = 0; 5233 uint16_t proto; 5234 int asd = 0, match = 0; 5235 int tag = -1; 5236 uint8_t action; 5237 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACK_MAX]; 5238 5239 MPASS(kif->pfik_ifp->if_vnet == curvnet); 5240 NET_EPOCH_ASSERT(); 5241 5242 PF_RULES_RLOCK_TRACKER; 5243 5244 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 5245 5246 mtag = pf_find_mtag(m); 5247 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 5248 /* Dummynet re-injects packets after they've 5249 * completed their delay. We've already 5250 * processed them, so pass unconditionally. */ 5251 5252 /* But only once. We may see the packet multiple times (e.g. 5253 * PFIL_IN/PFIL_OUT). */ 5254 pf_dummynet_flag_remove(m, mtag); 5255 5256 return (PF_PASS); 5257 } 5258 5259 if (__predict_false(m->m_len < sizeof(struct ether_header)) && 5260 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) { 5261 DPFPRINTF(PF_DEBUG_URGENT, 5262 "%s: m_len < sizeof(struct ether_header)" 5263 ", pullup failed", __func__); 5264 return (PF_DROP); 5265 } 5266 e = mtod(m, struct ether_header *); 5267 proto = ntohs(e->ether_type); 5268 5269 switch (proto) { 5270 #ifdef INET 5271 case ETHERTYPE_IP: { 5272 if (m_length(m, NULL) < (sizeof(struct ether_header) + 5273 sizeof(ip))) 5274 return (PF_DROP); 5275 5276 af = AF_INET; 5277 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 5278 (caddr_t)&ip); 5279 src = (struct pf_addr *)&ip.ip_src; 5280 dst = (struct pf_addr *)&ip.ip_dst; 5281 break; 5282 } 5283 #endif /* INET */ 5284 #ifdef INET6 5285 case ETHERTYPE_IPV6: { 5286 if (m_length(m, NULL) < (sizeof(struct ether_header) + 5287 sizeof(ip6))) 5288 return (PF_DROP); 5289 5290 af = AF_INET6; 5291 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 5292 (caddr_t)&ip6); 5293 src = (struct pf_addr *)&ip6.ip6_src; 5294 dst = (struct pf_addr *)&ip6.ip6_dst; 5295 break; 5296 } 5297 #endif /* INET6 */ 5298 } 5299 5300 PF_RULES_RLOCK(); 5301 5302 ruleset = V_pf_keth; 5303 rules = atomic_load_ptr(&ruleset->active.rules); 5304 for (r = TAILQ_FIRST(rules), rm = NULL; r != NULL;) { 5305 counter_u64_add(r->evaluations, 1); 5306 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 5307 5308 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 5309 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5310 "kif"); 5311 r = r->skip[PFE_SKIP_IFP].ptr; 5312 } 5313 else if (r->direction && r->direction != dir) { 5314 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5315 "dir"); 5316 r = r->skip[PFE_SKIP_DIR].ptr; 5317 } 5318 else if (r->proto && r->proto != proto) { 5319 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5320 "proto"); 5321 r = r->skip[PFE_SKIP_PROTO].ptr; 5322 } 5323 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 5324 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5325 "src"); 5326 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 5327 } 5328 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 5329 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5330 "dst"); 5331 r = r->skip[PFE_SKIP_DST_ADDR].ptr; 5332 } 5333 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 5334 r->ipsrc.neg, kif, M_GETFIB(m))) { 5335 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5336 "ip_src"); 5337 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr; 5338 } 5339 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 5340 r->ipdst.neg, kif, M_GETFIB(m))) { 5341 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5342 "ip_dst"); 5343 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr; 5344 } 5345 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 5346 mtag ? mtag->tag : 0)) { 5347 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5348 "match_tag"); 5349 r = TAILQ_NEXT(r, entries); 5350 } 5351 else { 5352 if (r->tag) 5353 tag = r->tag; 5354 if (r->anchor == NULL) { 5355 /* Rule matches */ 5356 rm = r; 5357 5358 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 5359 5360 if (r->quick) 5361 break; 5362 5363 r = TAILQ_NEXT(r, entries); 5364 } else { 5365 pf_step_into_keth_anchor(anchor_stack, &asd, 5366 &ruleset, &r, &a, &match); 5367 } 5368 } 5369 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 5370 &ruleset, &r, &a, &match)) 5371 break; 5372 } 5373 5374 r = rm; 5375 5376 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 5377 5378 /* Default to pass. */ 5379 if (r == NULL) { 5380 PF_RULES_RUNLOCK(); 5381 return (PF_PASS); 5382 } 5383 5384 /* Execute action. */ 5385 counter_u64_add(r->packets[dir == PF_OUT], 1); 5386 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 5387 pf_update_timestamp(r); 5388 5389 /* Shortcut. Don't tag if we're just going to drop anyway. */ 5390 if (r->action == PF_DROP) { 5391 PF_RULES_RUNLOCK(); 5392 return (PF_DROP); 5393 } 5394 5395 if (tag > 0) { 5396 if (mtag == NULL) 5397 mtag = pf_get_mtag(m); 5398 if (mtag == NULL) { 5399 PF_RULES_RUNLOCK(); 5400 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5401 return (PF_DROP); 5402 } 5403 mtag->tag = tag; 5404 } 5405 5406 if (r->qid != 0) { 5407 if (mtag == NULL) 5408 mtag = pf_get_mtag(m); 5409 if (mtag == NULL) { 5410 PF_RULES_RUNLOCK(); 5411 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5412 return (PF_DROP); 5413 } 5414 mtag->qid = r->qid; 5415 } 5416 5417 action = r->action; 5418 bridge_to = r->bridge_to; 5419 5420 /* Dummynet */ 5421 if (r->dnpipe) { 5422 struct ip_fw_args dnflow; 5423 5424 /* Drop packet if dummynet is not loaded. */ 5425 if (ip_dn_io_ptr == NULL) { 5426 PF_RULES_RUNLOCK(); 5427 m_freem(m); 5428 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5429 return (PF_DROP); 5430 } 5431 if (mtag == NULL) 5432 mtag = pf_get_mtag(m); 5433 if (mtag == NULL) { 5434 PF_RULES_RUNLOCK(); 5435 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5436 return (PF_DROP); 5437 } 5438 5439 bzero(&dnflow, sizeof(dnflow)); 5440 5441 /* We don't have port numbers here, so we set 0. That means 5442 * that we'll be somewhat limited in distinguishing flows (i.e. 5443 * only based on IP addresses, not based on port numbers), but 5444 * it's better than nothing. */ 5445 dnflow.f_id.dst_port = 0; 5446 dnflow.f_id.src_port = 0; 5447 dnflow.f_id.proto = 0; 5448 5449 dnflow.rule.info = r->dnpipe; 5450 dnflow.rule.info |= IPFW_IS_DUMMYNET; 5451 if (r->dnflags & PFRULE_DN_IS_PIPE) 5452 dnflow.rule.info |= IPFW_IS_PIPE; 5453 5454 dnflow.f_id.extra = dnflow.rule.info; 5455 5456 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 5457 dnflow.flags |= IPFW_ARGS_ETHER; 5458 dnflow.ifp = kif->pfik_ifp; 5459 5460 switch (af) { 5461 case AF_INET: 5462 dnflow.f_id.addr_type = 4; 5463 dnflow.f_id.src_ip = src->v4.s_addr; 5464 dnflow.f_id.dst_ip = dst->v4.s_addr; 5465 break; 5466 case AF_INET6: 5467 dnflow.flags |= IPFW_ARGS_IP6; 5468 dnflow.f_id.addr_type = 6; 5469 dnflow.f_id.src_ip6 = src->v6; 5470 dnflow.f_id.dst_ip6 = dst->v6; 5471 break; 5472 } 5473 5474 PF_RULES_RUNLOCK(); 5475 5476 mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 5477 ip_dn_io_ptr(m0, &dnflow); 5478 if (*m0 != NULL) 5479 pf_dummynet_flag_remove(m, mtag); 5480 } else { 5481 PF_RULES_RUNLOCK(); 5482 } 5483 5484 if (action == PF_PASS && bridge_to) { 5485 pf_bridge_to(bridge_to->pfik_ifp, *m0); 5486 *m0 = NULL; /* We've eaten the packet. */ 5487 } 5488 5489 return (action); 5490 } 5491 5492 #define PF_TEST_ATTRIB(t, a) \ 5493 if (t) { \ 5494 r = a; \ 5495 continue; \ 5496 } else do { \ 5497 } while (0) 5498 5499 static __inline u_short 5500 pf_rule_apply_nat(struct pf_test_ctx *ctx, struct pf_krule *r) 5501 { 5502 struct pf_pdesc *pd = ctx->pd; 5503 u_short transerror; 5504 u_int8_t nat_action; 5505 5506 if (r->rule_flag & PFRULE_AFTO) { 5507 /* Don't translate if there was an old style NAT rule */ 5508 if (ctx->nr != NULL) 5509 return (PFRES_TRANSLATE); 5510 5511 /* pass af-to rules, unsupported on match rules */ 5512 KASSERT(r->action != PF_MATCH, ("%s: af-to on match rule", __func__)); 5513 /* XXX I can imagine scenarios where we have both NAT and RDR source tracking */ 5514 ctx->nat_pool = &(r->nat); 5515 ctx->nr = r; 5516 pd->naf = r->naf; 5517 if (pf_get_transaddr_af(ctx->nr, pd) == -1) { 5518 return (PFRES_TRANSLATE); 5519 } 5520 return (PFRES_MATCH); 5521 } else if (r->rdr.cur || r->nat.cur) { 5522 /* Don't translate if there was an old style NAT rule */ 5523 if (ctx->nr != NULL) 5524 return (PFRES_TRANSLATE); 5525 5526 /* match/pass nat-to/rdr-to rules */ 5527 ctx->nr = r; 5528 if (r->nat.cur) { 5529 nat_action = PF_NAT; 5530 ctx->nat_pool = &(r->nat); 5531 } else { 5532 nat_action = PF_RDR; 5533 ctx->nat_pool = &(r->rdr); 5534 } 5535 5536 transerror = pf_get_transaddr(ctx, ctx->nr, 5537 nat_action, ctx->nat_pool); 5538 if (transerror == PFRES_MATCH) { 5539 ctx->rewrite += pf_translate_compat(ctx); 5540 return(PFRES_MATCH); 5541 } 5542 return (transerror); 5543 } 5544 5545 return (PFRES_MAX); 5546 } 5547 5548 enum pf_test_status 5549 pf_match_rule(struct pf_test_ctx *ctx, struct pf_kruleset *ruleset) 5550 { 5551 struct pf_krule_item *ri; 5552 struct pf_krule *r; 5553 struct pf_krule *save_a; 5554 struct pf_kruleset *save_aruleset; 5555 struct pf_pdesc *pd = ctx->pd; 5556 u_short transerror; 5557 5558 r = TAILQ_FIRST(ruleset->rules[PF_RULESET_FILTER].active.ptr); 5559 while (r != NULL) { 5560 if (ctx->pd->related_rule) { 5561 *ctx->rm = ctx->pd->related_rule; 5562 break; 5563 } 5564 pf_counter_u64_add(&r->evaluations, 1); 5565 PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot, 5566 r->skip[PF_SKIP_IFP]); 5567 PF_TEST_ATTRIB(r->direction && r->direction != pd->dir, 5568 r->skip[PF_SKIP_DIR]); 5569 PF_TEST_ATTRIB(r->af && r->af != pd->af, 5570 r->skip[PF_SKIP_AF]); 5571 PF_TEST_ATTRIB(r->proto && r->proto != pd->proto, 5572 r->skip[PF_SKIP_PROTO]); 5573 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, &pd->nsaddr, pd->naf, 5574 r->src.neg, pd->kif, M_GETFIB(pd->m)), 5575 r->skip[PF_SKIP_SRC_ADDR]); 5576 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, &pd->ndaddr, pd->af, 5577 r->dst.neg, NULL, M_GETFIB(pd->m)), 5578 r->skip[PF_SKIP_DST_ADDR]); 5579 switch (pd->virtual_proto) { 5580 case PF_VPROTO_FRAGMENT: 5581 /* tcp/udp only. port_op always 0 in other cases */ 5582 PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op), 5583 TAILQ_NEXT(r, entries)); 5584 PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset), 5585 TAILQ_NEXT(r, entries)); 5586 /* icmp only. type/code always 0 in other cases */ 5587 PF_TEST_ATTRIB((r->type || r->code), 5588 TAILQ_NEXT(r, entries)); 5589 /* tcp/udp only. {uid|gid}.op always 0 in other cases */ 5590 PF_TEST_ATTRIB((r->gid.op || r->uid.op), 5591 TAILQ_NEXT(r, entries)); 5592 break; 5593 5594 case IPPROTO_TCP: 5595 PF_TEST_ATTRIB((r->flagset & tcp_get_flags(ctx->th)) 5596 != r->flags, 5597 TAILQ_NEXT(r, entries)); 5598 /* FALLTHROUGH */ 5599 case IPPROTO_SCTP: 5600 case IPPROTO_UDP: 5601 /* tcp/udp only. port_op always 0 in other cases */ 5602 PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op, 5603 r->src.port[0], r->src.port[1], pd->nsport), 5604 r->skip[PF_SKIP_SRC_PORT]); 5605 /* tcp/udp only. port_op always 0 in other cases */ 5606 PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op, 5607 r->dst.port[0], r->dst.port[1], pd->ndport), 5608 r->skip[PF_SKIP_DST_PORT]); 5609 /* tcp/udp only. uid.op always 0 in other cases */ 5610 PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done = 5611 pf_socket_lookup(pd), 1)) && 5612 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 5613 pd->lookup.uid), 5614 TAILQ_NEXT(r, entries)); 5615 /* tcp/udp only. gid.op always 0 in other cases */ 5616 PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done = 5617 pf_socket_lookup(pd), 1)) && 5618 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 5619 pd->lookup.gid), 5620 TAILQ_NEXT(r, entries)); 5621 break; 5622 5623 case IPPROTO_ICMP: 5624 case IPPROTO_ICMPV6: 5625 /* icmp only. type always 0 in other cases */ 5626 PF_TEST_ATTRIB(r->type && r->type != ctx->icmptype + 1, 5627 TAILQ_NEXT(r, entries)); 5628 /* icmp only. type always 0 in other cases */ 5629 PF_TEST_ATTRIB(r->code && r->code != ctx->icmpcode + 1, 5630 TAILQ_NEXT(r, entries)); 5631 break; 5632 5633 default: 5634 break; 5635 } 5636 PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos), 5637 TAILQ_NEXT(r, entries)); 5638 PF_TEST_ATTRIB(r->prio && 5639 !pf_match_ieee8021q_pcp(r->prio, pd->m), 5640 TAILQ_NEXT(r, entries)); 5641 PF_TEST_ATTRIB(r->prob && 5642 r->prob <= arc4random(), 5643 TAILQ_NEXT(r, entries)); 5644 PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r, 5645 &ctx->tag, pd->pf_mtag ? pd->pf_mtag->tag : 0), 5646 TAILQ_NEXT(r, entries)); 5647 PF_TEST_ATTRIB((r->rcv_kif && pf_match_rcvif(pd->m, r) == 5648 r->rcvifnot), 5649 TAILQ_NEXT(r, entries)); 5650 PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT && 5651 pd->virtual_proto != PF_VPROTO_FRAGMENT), 5652 TAILQ_NEXT(r, entries)); 5653 PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY && 5654 (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match( 5655 pf_osfp_fingerprint(pd, ctx->th), 5656 r->os_fingerprint)), 5657 TAILQ_NEXT(r, entries)); 5658 /* must be last! */ 5659 if (r->pktrate.limit) { 5660 PF_TEST_ATTRIB((pf_check_threshold(&r->pktrate)), 5661 TAILQ_NEXT(r, entries)); 5662 } 5663 /* FALLTHROUGH */ 5664 if (r->tag) 5665 ctx->tag = r->tag; 5666 if (r->anchor == NULL) { 5667 if (r->action == PF_MATCH) { 5668 /* 5669 * Apply translations before increasing counters, 5670 * in case it fails. 5671 */ 5672 transerror = pf_rule_apply_nat(ctx, r); 5673 switch (transerror) { 5674 case PFRES_MATCH: 5675 /* Translation action found in rule and applied successfully */ 5676 case PFRES_MAX: 5677 /* No translation action found in rule */ 5678 break; 5679 default: 5680 /* Translation action found in rule but failed to apply */ 5681 REASON_SET(&ctx->reason, transerror); 5682 return (PF_TEST_FAIL); 5683 } 5684 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5685 if (ri == NULL) { 5686 REASON_SET(&ctx->reason, PFRES_MEMORY); 5687 return (PF_TEST_FAIL); 5688 } 5689 ri->r = r; 5690 SLIST_INSERT_HEAD(&ctx->rules, ri, entry); 5691 pf_counter_u64_critical_enter(); 5692 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5693 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5694 pf_counter_u64_critical_exit(); 5695 pf_rule_to_actions(r, &pd->act); 5696 if (r->log) 5697 PFLOG_PACKET(r->action, PFRES_MATCH, r, 5698 ctx->a, ruleset, pd, 1, NULL); 5699 } else { 5700 /* 5701 * found matching r 5702 */ 5703 *ctx->rm = r; 5704 /* 5705 * anchor, with ruleset, where r belongs to 5706 */ 5707 *ctx->am = ctx->a; 5708 /* 5709 * ruleset where r belongs to 5710 */ 5711 *ctx->rsm = ruleset; 5712 /* 5713 * ruleset, where anchor belongs to. 5714 */ 5715 ctx->arsm = ctx->aruleset; 5716 } 5717 if (pd->act.log & PF_LOG_MATCHES) 5718 pf_log_matches(pd, r, ctx->a, ruleset, &ctx->rules); 5719 if (r->quick) { 5720 ctx->test_status = PF_TEST_QUICK; 5721 break; 5722 } 5723 } else { 5724 save_a = ctx->a; 5725 save_aruleset = ctx->aruleset; 5726 5727 ctx->a = r; /* remember anchor */ 5728 ctx->aruleset = ruleset; /* and its ruleset */ 5729 if (ctx->a->quick) 5730 ctx->test_status = PF_TEST_QUICK; 5731 /* 5732 * Note: we don't need to restore if we are not going 5733 * to continue with ruleset evaluation. 5734 */ 5735 if (pf_step_into_anchor(ctx, r) != PF_TEST_OK) { 5736 break; 5737 } 5738 ctx->a = save_a; 5739 ctx->aruleset = save_aruleset; 5740 } 5741 r = TAILQ_NEXT(r, entries); 5742 } 5743 5744 return (ctx->test_status); 5745 } 5746 5747 static int 5748 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, 5749 struct pf_pdesc *pd, struct pf_krule **am, 5750 struct pf_kruleset **rsm, u_short *reason, struct inpcb *inp) 5751 { 5752 struct pf_krule *r = NULL; 5753 struct pf_kruleset *ruleset = NULL; 5754 struct pf_krule_item *ri; 5755 struct pf_test_ctx ctx; 5756 u_short transerror; 5757 int action = PF_PASS; 5758 u_int16_t bproto_sum = 0, bip_sum = 0; 5759 enum pf_test_status rv; 5760 5761 PF_RULES_RASSERT(); 5762 5763 bzero(&ctx, sizeof(ctx)); 5764 ctx.tag = -1; 5765 ctx.pd = pd; 5766 ctx.rm = rm; 5767 ctx.am = am; 5768 ctx.rsm = rsm; 5769 ctx.th = &pd->hdr.tcp; 5770 ctx.reason = *reason; 5771 SLIST_INIT(&ctx.rules); 5772 5773 pf_addrcpy(&pd->nsaddr, pd->src, pd->af); 5774 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af); 5775 5776 if (inp != NULL) { 5777 INP_LOCK_ASSERT(inp); 5778 pd->lookup.uid = inp->inp_cred->cr_uid; 5779 pd->lookup.gid = inp->inp_cred->cr_gid; 5780 pd->lookup.done = 1; 5781 } 5782 5783 if (pd->ip_sum) 5784 bip_sum = *pd->ip_sum; 5785 5786 switch (pd->virtual_proto) { 5787 case IPPROTO_TCP: 5788 bproto_sum = ctx.th->th_sum; 5789 pd->nsport = ctx.th->th_sport; 5790 pd->ndport = ctx.th->th_dport; 5791 break; 5792 case IPPROTO_UDP: 5793 bproto_sum = pd->hdr.udp.uh_sum; 5794 pd->nsport = pd->hdr.udp.uh_sport; 5795 pd->ndport = pd->hdr.udp.uh_dport; 5796 break; 5797 case IPPROTO_SCTP: 5798 pd->nsport = pd->hdr.sctp.src_port; 5799 pd->ndport = pd->hdr.sctp.dest_port; 5800 break; 5801 #ifdef INET 5802 case IPPROTO_ICMP: 5803 MPASS(pd->af == AF_INET); 5804 ctx.icmptype = pd->hdr.icmp.icmp_type; 5805 ctx.icmpcode = pd->hdr.icmp.icmp_code; 5806 ctx.state_icmp = pf_icmp_mapping(pd, ctx.icmptype, 5807 &ctx.icmp_dir, &ctx.virtual_id, &ctx.virtual_type); 5808 if (ctx.icmp_dir == PF_IN) { 5809 pd->nsport = ctx.virtual_id; 5810 pd->ndport = ctx.virtual_type; 5811 } else { 5812 pd->nsport = ctx.virtual_type; 5813 pd->ndport = ctx.virtual_id; 5814 } 5815 break; 5816 #endif /* INET */ 5817 #ifdef INET6 5818 case IPPROTO_ICMPV6: 5819 MPASS(pd->af == AF_INET6); 5820 ctx.icmptype = pd->hdr.icmp6.icmp6_type; 5821 ctx.icmpcode = pd->hdr.icmp6.icmp6_code; 5822 ctx.state_icmp = pf_icmp_mapping(pd, ctx.icmptype, 5823 &ctx.icmp_dir, &ctx.virtual_id, &ctx.virtual_type); 5824 if (ctx.icmp_dir == PF_IN) { 5825 pd->nsport = ctx.virtual_id; 5826 pd->ndport = ctx.virtual_type; 5827 } else { 5828 pd->nsport = ctx.virtual_type; 5829 pd->ndport = ctx.virtual_id; 5830 } 5831 5832 break; 5833 #endif /* INET6 */ 5834 default: 5835 pd->nsport = pd->ndport = 0; 5836 break; 5837 } 5838 pd->osport = pd->nsport; 5839 pd->odport = pd->ndport; 5840 5841 /* check packet for BINAT/NAT/RDR */ 5842 transerror = pf_get_translation(&ctx); 5843 switch (transerror) { 5844 default: 5845 /* A translation error occurred. */ 5846 REASON_SET(&ctx.reason, transerror); 5847 goto cleanup; 5848 case PFRES_MAX: 5849 /* No match. */ 5850 break; 5851 case PFRES_MATCH: 5852 KASSERT(ctx.sk != NULL, ("%s: null sk", __func__)); 5853 KASSERT(ctx.nk != NULL, ("%s: null nk", __func__)); 5854 if (ctx.nr->log) { 5855 PFLOG_PACKET(ctx.nr->action, PFRES_MATCH, ctx.nr, ctx.a, 5856 ruleset, pd, 1, NULL); 5857 } 5858 5859 ctx.rewrite += pf_translate_compat(&ctx); 5860 ctx.nat_pool = &(ctx.nr->rdr); 5861 } 5862 5863 ruleset = &pf_main_ruleset; 5864 rv = pf_match_rule(&ctx, ruleset); 5865 if (rv == PF_TEST_FAIL) { 5866 /* 5867 * Reason has been set in pf_match_rule() already. 5868 */ 5869 goto cleanup; 5870 } 5871 5872 r = *ctx.rm; /* matching rule */ 5873 ctx.a = *ctx.am; /* rule that defines an anchor containing 'r' */ 5874 ruleset = *ctx.rsm; /* ruleset of the anchor defined by the rule 'a' */ 5875 ctx.aruleset = ctx.arsm; /* ruleset of the 'a' rule itself */ 5876 5877 REASON_SET(&ctx.reason, PFRES_MATCH); 5878 5879 /* apply actions for last matching pass/block rule */ 5880 pf_rule_to_actions(r, &pd->act); 5881 transerror = pf_rule_apply_nat(&ctx, r); 5882 switch (transerror) { 5883 case PFRES_MATCH: 5884 /* Translation action found in rule and applied successfully */ 5885 case PFRES_MAX: 5886 /* No translation action found in rule */ 5887 break; 5888 default: 5889 /* Translation action found in rule but failed to apply */ 5890 REASON_SET(&ctx.reason, transerror); 5891 goto cleanup; 5892 } 5893 5894 if (r->log) { 5895 if (ctx.rewrite) 5896 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5897 PFLOG_PACKET(r->action, ctx.reason, r, ctx.a, ruleset, pd, 1, NULL); 5898 } 5899 if (pd->act.log & PF_LOG_MATCHES) 5900 pf_log_matches(pd, r, ctx.a, ruleset, &ctx.rules); 5901 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5902 (r->action == PF_DROP) && 5903 ((r->rule_flag & PFRULE_RETURNRST) || 5904 (r->rule_flag & PFRULE_RETURNICMP) || 5905 (r->rule_flag & PFRULE_RETURN))) { 5906 pf_return(r, ctx.nr, pd, ctx.th, bproto_sum, 5907 bip_sum, &ctx.reason, r->rtableid); 5908 } 5909 5910 if (r->action == PF_DROP) 5911 goto cleanup; 5912 5913 if (ctx.tag > 0 && pf_tag_packet(pd, ctx.tag)) { 5914 REASON_SET(&ctx.reason, PFRES_MEMORY); 5915 goto cleanup; 5916 } 5917 if (pd->act.rtableid >= 0) 5918 M_SETFIB(pd->m, pd->act.rtableid); 5919 5920 if (r->rt) { 5921 /* 5922 * Set act.rt here instead of in pf_rule_to_actions() because 5923 * it is applied only from the last pass rule. 5924 */ 5925 pd->act.rt = r->rt; 5926 if (r->rt == PF_REPLYTO) 5927 pd->act.rt_af = pd->af; 5928 else 5929 pd->act.rt_af = pd->naf; 5930 if ((transerror = pf_map_addr_sn(pd->af, r, pd->src, 5931 &pd->act.rt_addr, &pd->act.rt_af, &pd->act.rt_kif, NULL, 5932 &(r->route), PF_SN_ROUTE)) != PFRES_MATCH) { 5933 REASON_SET(&ctx.reason, transerror); 5934 goto cleanup; 5935 } 5936 } 5937 5938 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5939 (!ctx.state_icmp && (r->keep_state || ctx.nr != NULL || 5940 (pd->flags & PFDESC_TCP_NORM)))) { 5941 bool nat64; 5942 5943 action = pf_create_state(r, &ctx, sm, bproto_sum, bip_sum); 5944 ctx.sk = ctx.nk = NULL; 5945 if (action != PF_PASS) { 5946 pf_udp_mapping_release(ctx.udp_mapping); 5947 if (r->log || (ctx.nr != NULL && ctx.nr->log) || 5948 ctx.reason == PFRES_MEMORY) 5949 pd->act.log |= PF_LOG_FORCE; 5950 if (action == PF_DROP && 5951 (r->rule_flag & PFRULE_RETURN)) 5952 pf_return(r, ctx.nr, pd, ctx.th, 5953 bproto_sum, bip_sum, &ctx.reason, 5954 pd->act.rtableid); 5955 *reason = ctx.reason; 5956 return (action); 5957 } 5958 5959 nat64 = pd->af != pd->naf; 5960 if (nat64) { 5961 int ret; 5962 5963 if (ctx.sk == NULL) 5964 ctx.sk = (*sm)->key[pd->dir == PF_IN ? PF_SK_STACK : PF_SK_WIRE]; 5965 if (ctx.nk == NULL) 5966 ctx.nk = (*sm)->key[pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK]; 5967 5968 if (pd->dir == PF_IN) { 5969 ret = pf_translate(pd, &ctx.sk->addr[pd->didx], 5970 ctx.sk->port[pd->didx], &ctx.sk->addr[pd->sidx], 5971 ctx.sk->port[pd->sidx], ctx.virtual_type, 5972 ctx.icmp_dir); 5973 } else { 5974 ret = pf_translate(pd, &ctx.sk->addr[pd->sidx], 5975 ctx.sk->port[pd->sidx], &ctx.sk->addr[pd->didx], 5976 ctx.sk->port[pd->didx], ctx.virtual_type, 5977 ctx.icmp_dir); 5978 } 5979 5980 if (ret < 0) 5981 goto cleanup; 5982 5983 ctx.rewrite += ret; 5984 5985 if (ctx.rewrite && ctx.sk->af != ctx.nk->af) 5986 action = PF_AFRT; 5987 } 5988 } else { 5989 while ((ri = SLIST_FIRST(&ctx.rules))) { 5990 SLIST_REMOVE_HEAD(&ctx.rules, entry); 5991 free(ri, M_PF_RULE_ITEM); 5992 } 5993 5994 uma_zfree(V_pf_state_key_z, ctx.sk); 5995 uma_zfree(V_pf_state_key_z, ctx.nk); 5996 ctx.sk = ctx.nk = NULL; 5997 pf_udp_mapping_release(ctx.udp_mapping); 5998 } 5999 6000 /* copy back packet headers if we performed NAT operations */ 6001 if (ctx.rewrite) 6002 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 6003 6004 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 6005 pd->dir == PF_OUT && 6006 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m)) { 6007 /* 6008 * We want the state created, but we dont 6009 * want to send this in case a partner 6010 * firewall has to know about it to allow 6011 * replies through it. 6012 */ 6013 *reason = ctx.reason; 6014 return (PF_DEFER); 6015 } 6016 6017 *reason = ctx.reason; 6018 return (action); 6019 6020 cleanup: 6021 while ((ri = SLIST_FIRST(&ctx.rules))) { 6022 SLIST_REMOVE_HEAD(&ctx.rules, entry); 6023 free(ri, M_PF_RULE_ITEM); 6024 } 6025 6026 uma_zfree(V_pf_state_key_z, ctx.sk); 6027 uma_zfree(V_pf_state_key_z, ctx.nk); 6028 pf_udp_mapping_release(ctx.udp_mapping); 6029 *reason = ctx.reason; 6030 6031 return (PF_DROP); 6032 } 6033 6034 static int 6035 pf_create_state(struct pf_krule *r, struct pf_test_ctx *ctx, 6036 struct pf_kstate **sm, u_int16_t bproto_sum, u_int16_t bip_sum) 6037 { 6038 struct pf_pdesc *pd = ctx->pd; 6039 struct pf_kstate *s = NULL; 6040 struct pf_ksrc_node *sns[PF_SN_MAX] = { NULL }; 6041 /* 6042 * XXXKS: The hash for PF_SN_LIMIT and PF_SN_ROUTE should be the same 6043 * but for PF_SN_NAT it is different. Don't try optimizing it, 6044 * just store all 3 hashes. 6045 */ 6046 struct pf_srchash *snhs[PF_SN_MAX] = { NULL }; 6047 struct tcphdr *th = &pd->hdr.tcp; 6048 u_int16_t mss = V_tcp_mssdflt; 6049 u_short sn_reason; 6050 struct pf_krule_item *ri; 6051 6052 /* check maximums */ 6053 if (r->max_states && 6054 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 6055 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 6056 REASON_SET(&ctx->reason, PFRES_MAXSTATES); 6057 goto csfailed; 6058 } 6059 /* src node for limits */ 6060 if ((r->rule_flag & PFRULE_SRCTRACK) && 6061 (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src, pd->af, 6062 NULL, NULL, pd->af, PF_SN_LIMIT)) != 0) { 6063 REASON_SET(&ctx->reason, sn_reason); 6064 goto csfailed; 6065 } 6066 /* src node for route-to rule */ 6067 if (r->rt) { 6068 if ((r->route.opts & PF_POOL_STICKYADDR) && 6069 (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src, 6070 pd->af, &pd->act.rt_addr, pd->act.rt_kif, pd->act.rt_af, 6071 PF_SN_ROUTE)) != 0) { 6072 REASON_SET(&ctx->reason, sn_reason); 6073 goto csfailed; 6074 } 6075 } 6076 /* src node for translation rule */ 6077 if (ctx->nr != NULL) { 6078 KASSERT(ctx->nat_pool != NULL, ("%s: nat_pool is NULL", __func__)); 6079 /* 6080 * The NAT addresses are chosen during ruleset parsing. 6081 * The new afto code stores post-nat addresses in nsaddr. 6082 * The old nat code (also used for new nat-to rules) creates 6083 * state keys and stores addresses in them. 6084 */ 6085 if ((ctx->nat_pool->opts & PF_POOL_STICKYADDR) && 6086 (sn_reason = pf_insert_src_node(sns, snhs, ctx->nr, 6087 ctx->sk ? &(ctx->sk->addr[pd->sidx]) : pd->src, pd->af, 6088 ctx->nk ? &(ctx->nk->addr[1]) : &(pd->nsaddr), NULL, 6089 pd->naf, PF_SN_NAT)) != 0 ) { 6090 REASON_SET(&ctx->reason, sn_reason); 6091 goto csfailed; 6092 } 6093 } 6094 s = pf_alloc_state(M_NOWAIT); 6095 if (s == NULL) { 6096 REASON_SET(&ctx->reason, PFRES_MEMORY); 6097 goto csfailed; 6098 } 6099 s->rule = r; 6100 s->nat_rule = ctx->nr; 6101 s->anchor = ctx->a; 6102 memcpy(&s->match_rules, &ctx->rules, sizeof(s->match_rules)); 6103 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions)); 6104 6105 if (pd->act.allow_opts) 6106 s->state_flags |= PFSTATE_ALLOWOPTS; 6107 if (r->rule_flag & PFRULE_STATESLOPPY) 6108 s->state_flags |= PFSTATE_SLOPPY; 6109 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 6110 s->state_flags |= PFSTATE_SCRUB_TCP; 6111 if ((r->rule_flag & PFRULE_PFLOW) || 6112 (ctx->nr != NULL && ctx->nr->rule_flag & PFRULE_PFLOW)) 6113 s->state_flags |= PFSTATE_PFLOW; 6114 6115 s->act.log = pd->act.log & PF_LOG_ALL; 6116 s->sync_state = PFSYNC_S_NONE; 6117 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */ 6118 6119 if (ctx->nr != NULL) 6120 s->act.log |= ctx->nr->log & PF_LOG_ALL; 6121 switch (pd->proto) { 6122 case IPPROTO_TCP: 6123 s->src.seqlo = ntohl(th->th_seq); 6124 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 6125 if ((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN && 6126 r->keep_state == PF_STATE_MODULATE) { 6127 /* Generate sequence number modulator */ 6128 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 6129 0) 6130 s->src.seqdiff = 1; 6131 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, 6132 htonl(s->src.seqlo + s->src.seqdiff), 0); 6133 ctx->rewrite = 1; 6134 } else 6135 s->src.seqdiff = 0; 6136 if (tcp_get_flags(th) & TH_SYN) { 6137 s->src.seqhi++; 6138 s->src.wscale = pf_get_wscale(pd); 6139 } 6140 s->src.max_win = MAX(ntohs(th->th_win), 1); 6141 if (s->src.wscale & PF_WSCALE_MASK) { 6142 /* Remove scale factor from initial window */ 6143 int win = s->src.max_win; 6144 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 6145 s->src.max_win = (win - 1) >> 6146 (s->src.wscale & PF_WSCALE_MASK); 6147 } 6148 if (tcp_get_flags(th) & TH_FIN) 6149 s->src.seqhi++; 6150 s->dst.seqhi = 1; 6151 s->dst.max_win = 1; 6152 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 6153 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 6154 s->timeout = PFTM_TCP_FIRST_PACKET; 6155 atomic_add_32(&V_pf_status.states_halfopen, 1); 6156 break; 6157 case IPPROTO_UDP: 6158 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 6159 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 6160 s->timeout = PFTM_UDP_FIRST_PACKET; 6161 break; 6162 case IPPROTO_SCTP: 6163 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT); 6164 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED); 6165 s->timeout = PFTM_SCTP_FIRST_PACKET; 6166 break; 6167 case IPPROTO_ICMP: 6168 #ifdef INET6 6169 case IPPROTO_ICMPV6: 6170 #endif /* INET6 */ 6171 s->timeout = PFTM_ICMP_FIRST_PACKET; 6172 break; 6173 default: 6174 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 6175 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 6176 s->timeout = PFTM_OTHER_FIRST_PACKET; 6177 } 6178 6179 s->creation = s->expire = pf_get_uptime(); 6180 6181 if (pd->proto == IPPROTO_TCP) { 6182 if (s->state_flags & PFSTATE_SCRUB_TCP && 6183 pf_normalize_tcp_init(pd, th, &s->src)) { 6184 REASON_SET(&ctx->reason, PFRES_MEMORY); 6185 goto csfailed; 6186 } 6187 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 6188 pf_normalize_tcp_stateful(pd, &ctx->reason, th, s, 6189 &s->src, &s->dst, &ctx->rewrite)) { 6190 /* This really shouldn't happen!!! */ 6191 DPFPRINTF(PF_DEBUG_URGENT, 6192 "%s: tcp normalize failed on first " 6193 "pkt", __func__); 6194 goto csfailed; 6195 } 6196 } else if (pd->proto == IPPROTO_SCTP) { 6197 if (pf_normalize_sctp_init(pd, &s->src, &s->dst)) 6198 goto csfailed; 6199 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP))) 6200 goto csfailed; 6201 } 6202 s->direction = pd->dir; 6203 6204 /* 6205 * sk/nk could already been setup by pf_get_translation(). 6206 */ 6207 if (ctx->sk == NULL && ctx->nk == NULL) { 6208 MPASS(pd->sport == NULL || (pd->osport == *pd->sport)); 6209 MPASS(pd->dport == NULL || (pd->odport == *pd->dport)); 6210 if (pf_state_key_setup(pd, pd->nsport, pd->ndport, 6211 &ctx->sk, &ctx->nk)) { 6212 goto csfailed; 6213 } 6214 } else 6215 KASSERT((ctx->sk != NULL && ctx->nk != NULL), ("%s: nr %p sk %p, nk %p", 6216 __func__, ctx->nr, ctx->sk, ctx->nk)); 6217 6218 /* Swap sk/nk for PF_OUT. */ 6219 if (pf_state_insert(BOUND_IFACE(s, pd), pd->kif, 6220 (pd->dir == PF_IN) ? ctx->sk : ctx->nk, 6221 (pd->dir == PF_IN) ? ctx->nk : ctx->sk, s)) { 6222 REASON_SET(&ctx->reason, PFRES_STATEINS); 6223 goto drop; 6224 } else 6225 *sm = s; 6226 ctx->sk = ctx->nk = NULL; 6227 6228 STATE_INC_COUNTERS(s); 6229 6230 /* 6231 * Lock order is important: first state, then source node. 6232 */ 6233 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) { 6234 if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) { 6235 s->sns[sn_type] = sns[sn_type]; 6236 PF_HASHROW_UNLOCK(snhs[sn_type]); 6237 } 6238 } 6239 6240 if (ctx->tag > 0) 6241 s->tag = ctx->tag; 6242 if (pd->proto == IPPROTO_TCP && (tcp_get_flags(th) & (TH_SYN|TH_ACK)) == 6243 TH_SYN && r->keep_state == PF_STATE_SYNPROXY && pd->dir == PF_IN) { 6244 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 6245 pf_undo_nat(ctx->nr, pd, bip_sum); 6246 s->src.seqhi = arc4random(); 6247 /* Find mss option */ 6248 int rtid = M_GETFIB(pd->m); 6249 mss = pf_get_mss(pd); 6250 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 6251 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 6252 s->src.mss = mss; 6253 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 6254 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 6255 TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0, 6256 pd->act.rtableid); 6257 REASON_SET(&ctx->reason, PFRES_SYNPROXY); 6258 return (PF_SYNPROXY_DROP); 6259 } 6260 6261 s->udp_mapping = ctx->udp_mapping; 6262 6263 return (PF_PASS); 6264 6265 csfailed: 6266 while ((ri = SLIST_FIRST(&ctx->rules))) { 6267 SLIST_REMOVE_HEAD(&ctx->rules, entry); 6268 free(ri, M_PF_RULE_ITEM); 6269 } 6270 6271 uma_zfree(V_pf_state_key_z, ctx->sk); 6272 uma_zfree(V_pf_state_key_z, ctx->nk); 6273 6274 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) { 6275 if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) { 6276 if (--sns[sn_type]->states == 0 && 6277 sns[sn_type]->expire == 0) { 6278 pf_unlink_src_node(sns[sn_type]); 6279 pf_free_src_node(sns[sn_type]); 6280 counter_u64_add( 6281 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 6282 } 6283 PF_HASHROW_UNLOCK(snhs[sn_type]); 6284 } 6285 } 6286 6287 drop: 6288 if (s != NULL) { 6289 pf_src_tree_remove_state(s); 6290 s->timeout = PFTM_UNLINKED; 6291 pf_free_state(s); 6292 } 6293 6294 return (PF_DROP); 6295 } 6296 6297 int 6298 pf_translate(struct pf_pdesc *pd, struct pf_addr *saddr, u_int16_t sport, 6299 struct pf_addr *daddr, u_int16_t dport, u_int16_t virtual_type, 6300 int icmp_dir) 6301 { 6302 /* 6303 * pf_translate() implements OpenBSD's "new" NAT approach. 6304 * We don't follow it, because it involves a breaking syntax change 6305 * (removing nat/rdr rules, moving it into regular pf rules.) 6306 * It also moves NAT processing to be done after normal rules evaluation 6307 * whereas in FreeBSD that's done before rules processing. 6308 * 6309 * We adopt the function only for nat64, and keep other NAT processing 6310 * before rules processing. 6311 */ 6312 int rewrite = 0; 6313 int afto = pd->af != pd->naf; 6314 6315 MPASS(afto); 6316 6317 switch (pd->proto) { 6318 case IPPROTO_TCP: 6319 case IPPROTO_UDP: 6320 case IPPROTO_SCTP: 6321 if (afto || *pd->sport != sport) { 6322 pf_change_ap(pd, pd->src, pd->sport, 6323 saddr, sport); 6324 rewrite = 1; 6325 } 6326 if (afto || *pd->dport != dport) { 6327 pf_change_ap(pd, pd->dst, pd->dport, 6328 daddr, dport); 6329 rewrite = 1; 6330 } 6331 break; 6332 6333 #ifdef INET 6334 case IPPROTO_ICMP: 6335 /* pf_translate() is also used when logging invalid packets */ 6336 if (pd->af != AF_INET) 6337 return (0); 6338 6339 if (afto) { 6340 if (pf_translate_icmp_af(AF_INET6, &pd->hdr.icmp)) 6341 return (-1); 6342 pd->proto = IPPROTO_ICMPV6; 6343 rewrite = 1; 6344 } 6345 if (virtual_type == htons(ICMP_ECHO)) { 6346 u_int16_t icmpid = (icmp_dir == PF_IN) ? sport : dport; 6347 6348 if (icmpid != pd->hdr.icmp.icmp_id) { 6349 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 6350 pd->hdr.icmp.icmp_cksum, 6351 pd->hdr.icmp.icmp_id, icmpid, 0); 6352 pd->hdr.icmp.icmp_id = icmpid; 6353 /* XXX TODO copyback. */ 6354 rewrite = 1; 6355 } 6356 } 6357 break; 6358 #endif /* INET */ 6359 6360 #ifdef INET6 6361 case IPPROTO_ICMPV6: 6362 /* pf_translate() is also used when logging invalid packets */ 6363 if (pd->af != AF_INET6) 6364 return (0); 6365 6366 if (afto) { 6367 /* ip_sum will be recalculated in pf_translate_af */ 6368 if (pf_translate_icmp_af(AF_INET, &pd->hdr.icmp6)) 6369 return (0); 6370 pd->proto = IPPROTO_ICMP; 6371 rewrite = 1; 6372 } 6373 break; 6374 #endif /* INET6 */ 6375 6376 default: 6377 break; 6378 } 6379 6380 return (rewrite); 6381 } 6382 6383 int 6384 pf_translate_compat(struct pf_test_ctx *ctx) 6385 { 6386 struct pf_pdesc *pd = ctx->pd; 6387 struct pf_state_key *nk = ctx->nk; 6388 struct tcphdr *th = &pd->hdr.tcp; 6389 int rewrite = 0; 6390 6391 KASSERT(ctx->sk != NULL, ("%s: null sk", __func__)); 6392 KASSERT(ctx->nk != NULL, ("%s: null nk", __func__)); 6393 6394 switch (pd->virtual_proto) { 6395 case IPPROTO_TCP: 6396 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) || 6397 nk->port[pd->sidx] != pd->nsport) { 6398 pf_change_ap(pd, pd->src, &th->th_sport, 6399 &nk->addr[pd->sidx], nk->port[pd->sidx]); 6400 pd->sport = &th->th_sport; 6401 pd->nsport = th->th_sport; 6402 pf_addrcpy(&pd->nsaddr, pd->src, pd->af); 6403 } 6404 6405 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) || 6406 nk->port[pd->didx] != pd->ndport) { 6407 pf_change_ap(pd, pd->dst, &th->th_dport, 6408 &nk->addr[pd->didx], nk->port[pd->didx]); 6409 pd->dport = &th->th_dport; 6410 pd->ndport = th->th_dport; 6411 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af); 6412 } 6413 rewrite++; 6414 break; 6415 case IPPROTO_UDP: 6416 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) || 6417 nk->port[pd->sidx] != pd->nsport) { 6418 pf_change_ap(pd, pd->src, 6419 &pd->hdr.udp.uh_sport, 6420 &nk->addr[pd->sidx], 6421 nk->port[pd->sidx]); 6422 pd->sport = &pd->hdr.udp.uh_sport; 6423 pd->nsport = pd->hdr.udp.uh_sport; 6424 pf_addrcpy(&pd->nsaddr, pd->src, pd->af); 6425 } 6426 6427 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) || 6428 nk->port[pd->didx] != pd->ndport) { 6429 pf_change_ap(pd, pd->dst, 6430 &pd->hdr.udp.uh_dport, 6431 &nk->addr[pd->didx], 6432 nk->port[pd->didx]); 6433 pd->dport = &pd->hdr.udp.uh_dport; 6434 pd->ndport = pd->hdr.udp.uh_dport; 6435 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af); 6436 } 6437 rewrite++; 6438 break; 6439 case IPPROTO_SCTP: { 6440 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) || 6441 nk->port[pd->sidx] != pd->nsport) { 6442 pf_change_ap(pd, pd->src, 6443 &pd->hdr.sctp.src_port, 6444 &nk->addr[pd->sidx], 6445 nk->port[pd->sidx]); 6446 pd->sport = &pd->hdr.sctp.src_port; 6447 pd->nsport = pd->hdr.sctp.src_port; 6448 pf_addrcpy(&pd->nsaddr, pd->src, pd->af); 6449 } 6450 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) || 6451 nk->port[pd->didx] != pd->ndport) { 6452 pf_change_ap(pd, pd->dst, 6453 &pd->hdr.sctp.dest_port, 6454 &nk->addr[pd->didx], 6455 nk->port[pd->didx]); 6456 pd->dport = &pd->hdr.sctp.dest_port; 6457 pd->ndport = pd->hdr.sctp.dest_port; 6458 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af); 6459 } 6460 break; 6461 } 6462 #ifdef INET 6463 case IPPROTO_ICMP: 6464 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET)) { 6465 pf_change_a(&pd->src->v4.s_addr, pd->ip_sum, 6466 nk->addr[pd->sidx].v4.s_addr, 0); 6467 pf_addrcpy(&pd->nsaddr, pd->src, pd->af); 6468 } 6469 6470 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET)) { 6471 pf_change_a(&pd->dst->v4.s_addr, pd->ip_sum, 6472 nk->addr[pd->didx].v4.s_addr, 0); 6473 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af); 6474 } 6475 6476 if (ctx->virtual_type == htons(ICMP_ECHO) && 6477 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) { 6478 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 6479 pd->hdr.icmp.icmp_cksum, pd->nsport, 6480 nk->port[pd->sidx], 0); 6481 pd->hdr.icmp.icmp_id = nk->port[pd->sidx]; 6482 pd->sport = &pd->hdr.icmp.icmp_id; 6483 } 6484 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 6485 break; 6486 #endif /* INET */ 6487 #ifdef INET6 6488 case IPPROTO_ICMPV6: 6489 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET6)) { 6490 pf_change_a6(pd->src, &pd->hdr.icmp6.icmp6_cksum, 6491 &nk->addr[pd->sidx], 0); 6492 pf_addrcpy(&pd->nsaddr, pd->src, pd->af); 6493 } 6494 6495 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET6)) { 6496 pf_change_a6(pd->dst, &pd->hdr.icmp6.icmp6_cksum, 6497 &nk->addr[pd->didx], 0); 6498 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af); 6499 } 6500 rewrite++; 6501 break; 6502 #endif /* INET */ 6503 default: 6504 switch (pd->af) { 6505 #ifdef INET 6506 case AF_INET: 6507 if (PF_ANEQ(&pd->nsaddr, 6508 &nk->addr[pd->sidx], AF_INET)) { 6509 pf_change_a(&pd->src->v4.s_addr, 6510 pd->ip_sum, 6511 nk->addr[pd->sidx].v4.s_addr, 0); 6512 pf_addrcpy(&pd->nsaddr, pd->src, pd->af); 6513 } 6514 6515 if (PF_ANEQ(&pd->ndaddr, 6516 &nk->addr[pd->didx], AF_INET)) { 6517 pf_change_a(&pd->dst->v4.s_addr, 6518 pd->ip_sum, 6519 nk->addr[pd->didx].v4.s_addr, 0); 6520 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af); 6521 } 6522 break; 6523 #endif /* INET */ 6524 #ifdef INET6 6525 case AF_INET6: 6526 if (PF_ANEQ(&pd->nsaddr, 6527 &nk->addr[pd->sidx], AF_INET6)) { 6528 pf_addrcpy(&pd->nsaddr, &nk->addr[pd->sidx], 6529 pd->af); 6530 pf_addrcpy(pd->src, &nk->addr[pd->sidx], pd->af); 6531 } 6532 6533 if (PF_ANEQ(&pd->ndaddr, 6534 &nk->addr[pd->didx], AF_INET6)) { 6535 pf_addrcpy(&pd->ndaddr, &nk->addr[pd->didx], 6536 pd->af); 6537 pf_addrcpy(pd->dst, &nk->addr[pd->didx], 6538 pd->af); 6539 } 6540 break; 6541 #endif /* INET6 */ 6542 } 6543 break; 6544 } 6545 return (rewrite); 6546 } 6547 6548 static int 6549 pf_tcp_track_full(struct pf_kstate *state, struct pf_pdesc *pd, 6550 u_short *reason, int *copyback, struct pf_state_peer *src, 6551 struct pf_state_peer *dst, u_int8_t psrc, u_int8_t pdst) 6552 { 6553 struct tcphdr *th = &pd->hdr.tcp; 6554 u_int16_t win = ntohs(th->th_win); 6555 u_int32_t ack, end, data_end, seq, orig_seq; 6556 u_int8_t sws, dws; 6557 int ackskew; 6558 6559 if (src->wscale && dst->wscale && !(tcp_get_flags(th) & TH_SYN)) { 6560 sws = src->wscale & PF_WSCALE_MASK; 6561 dws = dst->wscale & PF_WSCALE_MASK; 6562 } else 6563 sws = dws = 0; 6564 6565 /* 6566 * Sequence tracking algorithm from Guido van Rooij's paper: 6567 * http://www.madison-gurkha.com/publications/tcp_filtering/ 6568 * tcp_filtering.ps 6569 */ 6570 6571 orig_seq = seq = ntohl(th->th_seq); 6572 if (src->seqlo == 0) { 6573 /* First packet from this end. Set its state */ 6574 6575 if ((state->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 6576 src->scrub == NULL) { 6577 if (pf_normalize_tcp_init(pd, th, src)) { 6578 REASON_SET(reason, PFRES_MEMORY); 6579 return (PF_DROP); 6580 } 6581 } 6582 6583 /* Deferred generation of sequence number modulator */ 6584 if (dst->seqdiff && !src->seqdiff) { 6585 /* use random iss for the TCP server */ 6586 while ((src->seqdiff = arc4random() - seq) == 0) 6587 ; 6588 ack = ntohl(th->th_ack) - dst->seqdiff; 6589 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq + 6590 src->seqdiff), 0); 6591 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0); 6592 *copyback = 1; 6593 } else { 6594 ack = ntohl(th->th_ack); 6595 } 6596 6597 end = seq + pd->p_len; 6598 if (tcp_get_flags(th) & TH_SYN) { 6599 end++; 6600 if (dst->wscale & PF_WSCALE_FLAG) { 6601 src->wscale = pf_get_wscale(pd); 6602 if (src->wscale & PF_WSCALE_FLAG) { 6603 /* Remove scale factor from initial 6604 * window */ 6605 sws = src->wscale & PF_WSCALE_MASK; 6606 win = ((u_int32_t)win + (1 << sws) - 1) 6607 >> sws; 6608 dws = dst->wscale & PF_WSCALE_MASK; 6609 } else { 6610 /* fixup other window */ 6611 dst->max_win = MIN(TCP_MAXWIN, 6612 (u_int32_t)dst->max_win << 6613 (dst->wscale & PF_WSCALE_MASK)); 6614 /* in case of a retrans SYN|ACK */ 6615 dst->wscale = 0; 6616 } 6617 } 6618 } 6619 data_end = end; 6620 if (tcp_get_flags(th) & TH_FIN) 6621 end++; 6622 6623 src->seqlo = seq; 6624 if (src->state < TCPS_SYN_SENT) 6625 pf_set_protostate(state, psrc, TCPS_SYN_SENT); 6626 6627 /* 6628 * May need to slide the window (seqhi may have been set by 6629 * the crappy stack check or if we picked up the connection 6630 * after establishment) 6631 */ 6632 if (src->seqhi == 1 || 6633 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 6634 src->seqhi = end + MAX(1, dst->max_win << dws); 6635 if (win > src->max_win) 6636 src->max_win = win; 6637 6638 } else { 6639 ack = ntohl(th->th_ack) - dst->seqdiff; 6640 if (src->seqdiff) { 6641 /* Modulate sequence numbers */ 6642 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq + 6643 src->seqdiff), 0); 6644 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0); 6645 *copyback = 1; 6646 } 6647 end = seq + pd->p_len; 6648 if (tcp_get_flags(th) & TH_SYN) 6649 end++; 6650 data_end = end; 6651 if (tcp_get_flags(th) & TH_FIN) 6652 end++; 6653 } 6654 6655 if ((tcp_get_flags(th) & TH_ACK) == 0) { 6656 /* Let it pass through the ack skew check */ 6657 ack = dst->seqlo; 6658 } else if ((ack == 0 && 6659 (tcp_get_flags(th) & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 6660 /* broken tcp stacks do not set ack */ 6661 (dst->state < TCPS_SYN_SENT)) { 6662 /* 6663 * Many stacks (ours included) will set the ACK number in an 6664 * FIN|ACK if the SYN times out -- no sequence to ACK. 6665 */ 6666 ack = dst->seqlo; 6667 } 6668 6669 if (seq == end) { 6670 /* Ease sequencing restrictions on no data packets */ 6671 seq = src->seqlo; 6672 data_end = end = seq; 6673 } 6674 6675 ackskew = dst->seqlo - ack; 6676 6677 /* 6678 * Need to demodulate the sequence numbers in any TCP SACK options 6679 * (Selective ACK). We could optionally validate the SACK values 6680 * against the current ACK window, either forwards or backwards, but 6681 * I'm not confident that SACK has been implemented properly 6682 * everywhere. It wouldn't surprise me if several stacks accidentally 6683 * SACK too far backwards of previously ACKed data. There really aren't 6684 * any security implications of bad SACKing unless the target stack 6685 * doesn't validate the option length correctly. Someone trying to 6686 * spoof into a TCP connection won't bother blindly sending SACK 6687 * options anyway. 6688 */ 6689 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 6690 if (pf_modulate_sack(pd, th, dst)) 6691 *copyback = 1; 6692 } 6693 6694 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 6695 if (SEQ_GEQ(src->seqhi, data_end) && 6696 /* Last octet inside other's window space */ 6697 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 6698 /* Retrans: not more than one window back */ 6699 (ackskew >= -MAXACKWINDOW) && 6700 /* Acking not more than one reassembled fragment backwards */ 6701 (ackskew <= (MAXACKWINDOW << sws)) && 6702 /* Acking not more than one window forward */ 6703 ((tcp_get_flags(th) & TH_RST) == 0 || orig_seq == src->seqlo || 6704 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) { 6705 /* Require an exact/+1 sequence match on resets when possible */ 6706 6707 if (dst->scrub || src->scrub) { 6708 if (pf_normalize_tcp_stateful(pd, reason, th, 6709 state, src, dst, copyback)) 6710 return (PF_DROP); 6711 } 6712 6713 /* update max window */ 6714 if (src->max_win < win) 6715 src->max_win = win; 6716 /* synchronize sequencing */ 6717 if (SEQ_GT(end, src->seqlo)) 6718 src->seqlo = end; 6719 /* slide the window of what the other end can send */ 6720 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 6721 dst->seqhi = ack + MAX((win << sws), 1); 6722 6723 /* update states */ 6724 if (tcp_get_flags(th) & TH_SYN) 6725 if (src->state < TCPS_SYN_SENT) 6726 pf_set_protostate(state, psrc, TCPS_SYN_SENT); 6727 if (tcp_get_flags(th) & TH_FIN) 6728 if (src->state < TCPS_CLOSING) 6729 pf_set_protostate(state, psrc, TCPS_CLOSING); 6730 if (tcp_get_flags(th) & TH_ACK) { 6731 if (dst->state == TCPS_SYN_SENT) { 6732 pf_set_protostate(state, pdst, 6733 TCPS_ESTABLISHED); 6734 if (src->state == TCPS_ESTABLISHED && 6735 state->sns[PF_SN_LIMIT] != NULL && 6736 pf_src_connlimit(state)) { 6737 REASON_SET(reason, PFRES_SRCLIMIT); 6738 return (PF_DROP); 6739 } 6740 } else if (dst->state == TCPS_CLOSING) 6741 pf_set_protostate(state, pdst, 6742 TCPS_FIN_WAIT_2); 6743 } 6744 if (tcp_get_flags(th) & TH_RST) 6745 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6746 6747 /* update expire time */ 6748 state->expire = pf_get_uptime(); 6749 if (src->state >= TCPS_FIN_WAIT_2 && 6750 dst->state >= TCPS_FIN_WAIT_2) 6751 state->timeout = PFTM_TCP_CLOSED; 6752 else if (src->state >= TCPS_CLOSING && 6753 dst->state >= TCPS_CLOSING) 6754 state->timeout = PFTM_TCP_FIN_WAIT; 6755 else if (src->state < TCPS_ESTABLISHED || 6756 dst->state < TCPS_ESTABLISHED) 6757 state->timeout = PFTM_TCP_OPENING; 6758 else if (src->state >= TCPS_CLOSING || 6759 dst->state >= TCPS_CLOSING) 6760 state->timeout = PFTM_TCP_CLOSING; 6761 else 6762 state->timeout = PFTM_TCP_ESTABLISHED; 6763 6764 /* Fall through to PASS packet */ 6765 6766 } else if ((dst->state < TCPS_SYN_SENT || 6767 dst->state >= TCPS_FIN_WAIT_2 || 6768 src->state >= TCPS_FIN_WAIT_2) && 6769 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) && 6770 /* Within a window forward of the originating packet */ 6771 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 6772 /* Within a window backward of the originating packet */ 6773 6774 /* 6775 * This currently handles three situations: 6776 * 1) Stupid stacks will shotgun SYNs before their peer 6777 * replies. 6778 * 2) When PF catches an already established stream (the 6779 * firewall rebooted, the state table was flushed, routes 6780 * changed...) 6781 * 3) Packets get funky immediately after the connection 6782 * closes (this should catch Solaris spurious ACK|FINs 6783 * that web servers like to spew after a close) 6784 * 6785 * This must be a little more careful than the above code 6786 * since packet floods will also be caught here. We don't 6787 * update the TTL here to mitigate the damage of a packet 6788 * flood and so the same code can handle awkward establishment 6789 * and a loosened connection close. 6790 * In the establishment case, a correct peer response will 6791 * validate the connection, go through the normal state code 6792 * and keep updating the state TTL. 6793 */ 6794 6795 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6796 printf("pf: loose state match: "); 6797 pf_print_state(state); 6798 pf_print_flags(tcp_get_flags(th)); 6799 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 6800 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 6801 pd->p_len, ackskew, (unsigned long long)state->packets[0], 6802 (unsigned long long)state->packets[1], 6803 pd->dir == PF_IN ? "in" : "out", 6804 pd->dir == state->direction ? "fwd" : "rev"); 6805 } 6806 6807 if (dst->scrub || src->scrub) { 6808 if (pf_normalize_tcp_stateful(pd, reason, th, 6809 state, src, dst, copyback)) 6810 return (PF_DROP); 6811 } 6812 6813 /* update max window */ 6814 if (src->max_win < win) 6815 src->max_win = win; 6816 /* synchronize sequencing */ 6817 if (SEQ_GT(end, src->seqlo)) 6818 src->seqlo = end; 6819 /* slide the window of what the other end can send */ 6820 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 6821 dst->seqhi = ack + MAX((win << sws), 1); 6822 6823 /* 6824 * Cannot set dst->seqhi here since this could be a shotgunned 6825 * SYN and not an already established connection. 6826 */ 6827 6828 if (tcp_get_flags(th) & TH_FIN) 6829 if (src->state < TCPS_CLOSING) 6830 pf_set_protostate(state, psrc, TCPS_CLOSING); 6831 if (tcp_get_flags(th) & TH_RST) 6832 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6833 6834 /* Fall through to PASS packet */ 6835 6836 } else { 6837 if (state->dst.state == TCPS_SYN_SENT && 6838 state->src.state == TCPS_SYN_SENT) { 6839 /* Send RST for state mismatches during handshake */ 6840 if (!(tcp_get_flags(th) & TH_RST)) 6841 pf_send_tcp(state->rule, pd->af, 6842 pd->dst, pd->src, th->th_dport, 6843 th->th_sport, ntohl(th->th_ack), 0, 6844 TH_RST, 0, 0, 6845 state->rule->return_ttl, M_SKIP_FIREWALL, 6846 0, 0, state->act.rtableid); 6847 src->seqlo = 0; 6848 src->seqhi = 1; 6849 src->max_win = 1; 6850 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 6851 printf("pf: BAD state: "); 6852 pf_print_state(state); 6853 pf_print_flags(tcp_get_flags(th)); 6854 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 6855 "pkts=%llu:%llu dir=%s,%s\n", 6856 seq, orig_seq, ack, pd->p_len, ackskew, 6857 (unsigned long long)state->packets[0], 6858 (unsigned long long)state->packets[1], 6859 pd->dir == PF_IN ? "in" : "out", 6860 pd->dir == state->direction ? "fwd" : "rev"); 6861 printf("pf: State failure on: %c %c %c %c | %c %c\n", 6862 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1', 6863 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 6864 ' ': '2', 6865 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 6866 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 6867 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5', 6868 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 6869 } 6870 REASON_SET(reason, PFRES_BADSTATE); 6871 return (PF_DROP); 6872 } 6873 6874 return (PF_PASS); 6875 } 6876 6877 static int 6878 pf_tcp_track_sloppy(struct pf_kstate *state, struct pf_pdesc *pd, 6879 u_short *reason, struct pf_state_peer *src, struct pf_state_peer *dst, 6880 u_int8_t psrc, u_int8_t pdst) 6881 { 6882 struct tcphdr *th = &pd->hdr.tcp; 6883 6884 if (tcp_get_flags(th) & TH_SYN) 6885 if (src->state < TCPS_SYN_SENT) 6886 pf_set_protostate(state, psrc, TCPS_SYN_SENT); 6887 if (tcp_get_flags(th) & TH_FIN) 6888 if (src->state < TCPS_CLOSING) 6889 pf_set_protostate(state, psrc, TCPS_CLOSING); 6890 if (tcp_get_flags(th) & TH_ACK) { 6891 if (dst->state == TCPS_SYN_SENT) { 6892 pf_set_protostate(state, pdst, TCPS_ESTABLISHED); 6893 if (src->state == TCPS_ESTABLISHED && 6894 state->sns[PF_SN_LIMIT] != NULL && 6895 pf_src_connlimit(state)) { 6896 REASON_SET(reason, PFRES_SRCLIMIT); 6897 return (PF_DROP); 6898 } 6899 } else if (dst->state == TCPS_CLOSING) { 6900 pf_set_protostate(state, pdst, TCPS_FIN_WAIT_2); 6901 } else if (src->state == TCPS_SYN_SENT && 6902 dst->state < TCPS_SYN_SENT) { 6903 /* 6904 * Handle a special sloppy case where we only see one 6905 * half of the connection. If there is a ACK after 6906 * the initial SYN without ever seeing a packet from 6907 * the destination, set the connection to established. 6908 */ 6909 pf_set_protostate(state, PF_PEER_BOTH, 6910 TCPS_ESTABLISHED); 6911 dst->state = src->state = TCPS_ESTABLISHED; 6912 if (state->sns[PF_SN_LIMIT] != NULL && 6913 pf_src_connlimit(state)) { 6914 REASON_SET(reason, PFRES_SRCLIMIT); 6915 return (PF_DROP); 6916 } 6917 } else if (src->state == TCPS_CLOSING && 6918 dst->state == TCPS_ESTABLISHED && 6919 dst->seqlo == 0) { 6920 /* 6921 * Handle the closing of half connections where we 6922 * don't see the full bidirectional FIN/ACK+ACK 6923 * handshake. 6924 */ 6925 pf_set_protostate(state, pdst, TCPS_CLOSING); 6926 } 6927 } 6928 if (tcp_get_flags(th) & TH_RST) 6929 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6930 6931 /* update expire time */ 6932 state->expire = pf_get_uptime(); 6933 if (src->state >= TCPS_FIN_WAIT_2 && 6934 dst->state >= TCPS_FIN_WAIT_2) 6935 state->timeout = PFTM_TCP_CLOSED; 6936 else if (src->state >= TCPS_CLOSING && 6937 dst->state >= TCPS_CLOSING) 6938 state->timeout = PFTM_TCP_FIN_WAIT; 6939 else if (src->state < TCPS_ESTABLISHED || 6940 dst->state < TCPS_ESTABLISHED) 6941 state->timeout = PFTM_TCP_OPENING; 6942 else if (src->state >= TCPS_CLOSING || 6943 dst->state >= TCPS_CLOSING) 6944 state->timeout = PFTM_TCP_CLOSING; 6945 else 6946 state->timeout = PFTM_TCP_ESTABLISHED; 6947 6948 return (PF_PASS); 6949 } 6950 6951 static int 6952 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate *state, u_short *reason) 6953 { 6954 struct pf_state_key *sk = state->key[pd->didx]; 6955 struct tcphdr *th = &pd->hdr.tcp; 6956 6957 if (state->src.state == PF_TCPS_PROXY_SRC) { 6958 if (pd->dir != state->direction) { 6959 REASON_SET(reason, PFRES_SYNPROXY); 6960 return (PF_SYNPROXY_DROP); 6961 } 6962 if (tcp_get_flags(th) & TH_SYN) { 6963 if (ntohl(th->th_seq) != state->src.seqlo) { 6964 REASON_SET(reason, PFRES_SYNPROXY); 6965 return (PF_DROP); 6966 } 6967 pf_send_tcp(state->rule, pd->af, pd->dst, 6968 pd->src, th->th_dport, th->th_sport, 6969 state->src.seqhi, ntohl(th->th_seq) + 1, 6970 TH_SYN|TH_ACK, 0, state->src.mss, 0, 6971 M_SKIP_FIREWALL, 0, 0, state->act.rtableid); 6972 REASON_SET(reason, PFRES_SYNPROXY); 6973 return (PF_SYNPROXY_DROP); 6974 } else if ((tcp_get_flags(th) & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 6975 (ntohl(th->th_ack) != state->src.seqhi + 1) || 6976 (ntohl(th->th_seq) != state->src.seqlo + 1)) { 6977 REASON_SET(reason, PFRES_SYNPROXY); 6978 return (PF_DROP); 6979 } else if (state->sns[PF_SN_LIMIT] != NULL && 6980 pf_src_connlimit(state)) { 6981 REASON_SET(reason, PFRES_SRCLIMIT); 6982 return (PF_DROP); 6983 } else 6984 pf_set_protostate(state, PF_PEER_SRC, 6985 PF_TCPS_PROXY_DST); 6986 } 6987 if (state->src.state == PF_TCPS_PROXY_DST) { 6988 if (pd->dir == state->direction) { 6989 if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != TH_ACK) || 6990 (ntohl(th->th_ack) != state->src.seqhi + 1) || 6991 (ntohl(th->th_seq) != state->src.seqlo + 1)) { 6992 REASON_SET(reason, PFRES_SYNPROXY); 6993 return (PF_DROP); 6994 } 6995 state->src.max_win = MAX(ntohs(th->th_win), 1); 6996 if (state->dst.seqhi == 1) 6997 state->dst.seqhi = arc4random(); 6998 pf_send_tcp(state->rule, pd->af, 6999 &sk->addr[pd->sidx], &sk->addr[pd->didx], 7000 sk->port[pd->sidx], sk->port[pd->didx], 7001 state->dst.seqhi, 0, TH_SYN, 0, 7002 state->src.mss, 0, 7003 state->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0, 7004 state->tag, 0, state->act.rtableid); 7005 REASON_SET(reason, PFRES_SYNPROXY); 7006 return (PF_SYNPROXY_DROP); 7007 } else if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != 7008 (TH_SYN|TH_ACK)) || 7009 (ntohl(th->th_ack) != state->dst.seqhi + 1)) { 7010 REASON_SET(reason, PFRES_SYNPROXY); 7011 return (PF_DROP); 7012 } else { 7013 state->dst.max_win = MAX(ntohs(th->th_win), 1); 7014 state->dst.seqlo = ntohl(th->th_seq); 7015 pf_send_tcp(state->rule, pd->af, pd->dst, 7016 pd->src, th->th_dport, th->th_sport, 7017 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 7018 TH_ACK, state->src.max_win, 0, 0, 0, 7019 state->tag, 0, state->act.rtableid); 7020 pf_send_tcp(state->rule, pd->af, 7021 &sk->addr[pd->sidx], &sk->addr[pd->didx], 7022 sk->port[pd->sidx], sk->port[pd->didx], 7023 state->src.seqhi + 1, state->src.seqlo + 1, 7024 TH_ACK, state->dst.max_win, 0, 0, 7025 M_SKIP_FIREWALL, 0, 0, state->act.rtableid); 7026 state->src.seqdiff = state->dst.seqhi - 7027 state->src.seqlo; 7028 state->dst.seqdiff = state->src.seqhi - 7029 state->dst.seqlo; 7030 state->src.seqhi = state->src.seqlo + 7031 state->dst.max_win; 7032 state->dst.seqhi = state->dst.seqlo + 7033 state->src.max_win; 7034 state->src.wscale = state->dst.wscale = 0; 7035 pf_set_protostate(state, PF_PEER_BOTH, 7036 TCPS_ESTABLISHED); 7037 REASON_SET(reason, PFRES_SYNPROXY); 7038 return (PF_SYNPROXY_DROP); 7039 } 7040 } 7041 7042 return (PF_PASS); 7043 } 7044 7045 static int 7046 pf_test_state(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 7047 { 7048 struct pf_state_key_cmp key; 7049 int copyback = 0; 7050 struct pf_state_peer *src, *dst; 7051 uint8_t psrc, pdst; 7052 int action; 7053 7054 bzero(&key, sizeof(key)); 7055 key.af = pd->af; 7056 key.proto = pd->virtual_proto; 7057 pf_addrcpy(&key.addr[pd->sidx], pd->src, key.af); 7058 pf_addrcpy(&key.addr[pd->didx], pd->dst, key.af); 7059 key.port[pd->sidx] = pd->osport; 7060 key.port[pd->didx] = pd->odport; 7061 7062 action = pf_find_state(pd, &key, state); 7063 if (action != PF_MATCH) 7064 return (action); 7065 7066 action = PF_PASS; 7067 if (pd->dir == (*state)->direction) { 7068 if (PF_REVERSED_KEY(*state, pd->af)) { 7069 src = &(*state)->dst; 7070 dst = &(*state)->src; 7071 psrc = PF_PEER_DST; 7072 pdst = PF_PEER_SRC; 7073 } else { 7074 src = &(*state)->src; 7075 dst = &(*state)->dst; 7076 psrc = PF_PEER_SRC; 7077 pdst = PF_PEER_DST; 7078 } 7079 } else { 7080 if (PF_REVERSED_KEY(*state, pd->af)) { 7081 src = &(*state)->src; 7082 dst = &(*state)->dst; 7083 psrc = PF_PEER_SRC; 7084 pdst = PF_PEER_DST; 7085 } else { 7086 src = &(*state)->dst; 7087 dst = &(*state)->src; 7088 psrc = PF_PEER_DST; 7089 pdst = PF_PEER_SRC; 7090 } 7091 } 7092 7093 switch (pd->virtual_proto) { 7094 case IPPROTO_TCP: { 7095 struct tcphdr *th = &pd->hdr.tcp; 7096 7097 if ((action = pf_synproxy(pd, *state, reason)) != PF_PASS) 7098 return (action); 7099 if (((tcp_get_flags(th) & (TH_SYN | TH_ACK)) == TH_SYN) || 7100 ((th->th_flags & (TH_SYN | TH_ACK | TH_RST)) == TH_ACK && 7101 pf_syncookie_check(pd) && pd->dir == PF_IN)) { 7102 if ((*state)->src.state >= TCPS_FIN_WAIT_2 && 7103 (*state)->dst.state >= TCPS_FIN_WAIT_2) { 7104 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7105 printf("pf: state reuse "); 7106 pf_print_state(*state); 7107 pf_print_flags(tcp_get_flags(th)); 7108 printf("\n"); 7109 } 7110 /* XXX make sure it's the same direction ?? */ 7111 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 7112 pf_remove_state(*state); 7113 *state = NULL; 7114 return (PF_DROP); 7115 } else if ((*state)->src.state >= TCPS_ESTABLISHED && 7116 (*state)->dst.state >= TCPS_ESTABLISHED) { 7117 /* 7118 * SYN matches existing state??? 7119 * Typically happens when sender boots up after 7120 * sudden panic. Certain protocols (NFSv3) are 7121 * always using same port numbers. Challenge 7122 * ACK enables all parties (firewall and peers) 7123 * to get in sync again. 7124 */ 7125 pf_send_challenge_ack(pd, *state, src, dst); 7126 return (PF_DROP); 7127 } 7128 } 7129 if ((*state)->state_flags & PFSTATE_SLOPPY) { 7130 if (pf_tcp_track_sloppy(*state, pd, reason, src, dst, 7131 psrc, pdst) == PF_DROP) 7132 return (PF_DROP); 7133 } else { 7134 int ret; 7135 7136 ret = pf_tcp_track_full(*state, pd, reason, 7137 ©back, src, dst, psrc, pdst); 7138 if (ret == PF_DROP) 7139 return (PF_DROP); 7140 } 7141 break; 7142 } 7143 case IPPROTO_UDP: 7144 /* update states */ 7145 if (src->state < PFUDPS_SINGLE) 7146 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 7147 if (dst->state == PFUDPS_SINGLE) 7148 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 7149 7150 /* update expire time */ 7151 (*state)->expire = pf_get_uptime(); 7152 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 7153 (*state)->timeout = PFTM_UDP_MULTIPLE; 7154 else 7155 (*state)->timeout = PFTM_UDP_SINGLE; 7156 break; 7157 case IPPROTO_SCTP: 7158 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) && 7159 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) && 7160 pd->sctp_flags & PFDESC_SCTP_INIT) { 7161 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED); 7162 pf_remove_state(*state); 7163 *state = NULL; 7164 return (PF_DROP); 7165 } 7166 7167 if (pf_sctp_track(*state, pd, reason) != PF_PASS) 7168 return (PF_DROP); 7169 7170 /* Track state. */ 7171 if (pd->sctp_flags & PFDESC_SCTP_INIT) { 7172 if (src->state < SCTP_COOKIE_WAIT) { 7173 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT); 7174 (*state)->timeout = PFTM_SCTP_OPENING; 7175 } 7176 } 7177 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) { 7178 MPASS(dst->scrub != NULL); 7179 if (dst->scrub->pfss_v_tag == 0) 7180 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag; 7181 } 7182 7183 /* 7184 * Bind to the correct interface if we're if-bound. For multihomed 7185 * extra associations we don't know which interface that will be until 7186 * here, so we've inserted the state on V_pf_all. Fix that now. 7187 */ 7188 if ((*state)->kif == V_pfi_all && 7189 (*state)->rule->rule_flag & PFRULE_IFBOUND) 7190 (*state)->kif = pd->kif; 7191 7192 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) { 7193 if (src->state < SCTP_ESTABLISHED) { 7194 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED); 7195 (*state)->timeout = PFTM_SCTP_ESTABLISHED; 7196 } 7197 } 7198 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | 7199 PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 7200 if (src->state < SCTP_SHUTDOWN_PENDING) { 7201 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING); 7202 (*state)->timeout = PFTM_SCTP_CLOSING; 7203 } 7204 } 7205 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE | PFDESC_SCTP_ABORT)) { 7206 pf_set_protostate(*state, psrc, SCTP_CLOSED); 7207 (*state)->timeout = PFTM_SCTP_CLOSED; 7208 } 7209 7210 (*state)->expire = pf_get_uptime(); 7211 break; 7212 default: 7213 /* update states */ 7214 if (src->state < PFOTHERS_SINGLE) 7215 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 7216 if (dst->state == PFOTHERS_SINGLE) 7217 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 7218 7219 /* update expire time */ 7220 (*state)->expire = pf_get_uptime(); 7221 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 7222 (*state)->timeout = PFTM_OTHER_MULTIPLE; 7223 else 7224 (*state)->timeout = PFTM_OTHER_SINGLE; 7225 break; 7226 } 7227 7228 /* translate source/destination address, if necessary */ 7229 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7230 struct pf_state_key *nk; 7231 int afto, sidx, didx; 7232 7233 if (PF_REVERSED_KEY(*state, pd->af)) 7234 nk = (*state)->key[pd->sidx]; 7235 else 7236 nk = (*state)->key[pd->didx]; 7237 7238 afto = pd->af != nk->af; 7239 7240 if (afto && (*state)->direction == PF_IN) { 7241 sidx = pd->didx; 7242 didx = pd->sidx; 7243 } else { 7244 sidx = pd->sidx; 7245 didx = pd->didx; 7246 } 7247 7248 if (afto) { 7249 pf_addrcpy(&pd->nsaddr, &nk->addr[sidx], nk->af); 7250 pf_addrcpy(&pd->ndaddr, &nk->addr[didx], nk->af); 7251 pd->naf = nk->af; 7252 action = PF_AFRT; 7253 } 7254 7255 if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) || 7256 nk->port[sidx] != pd->osport) 7257 pf_change_ap(pd, pd->src, pd->sport, 7258 &nk->addr[sidx], nk->port[sidx]); 7259 7260 if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) || 7261 nk->port[didx] != pd->odport) 7262 pf_change_ap(pd, pd->dst, pd->dport, 7263 &nk->addr[didx], nk->port[didx]); 7264 7265 copyback = 1; 7266 } 7267 7268 if (copyback && pd->hdrlen > 0) 7269 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 7270 7271 return (action); 7272 } 7273 7274 static int 7275 pf_sctp_track(struct pf_kstate *state, struct pf_pdesc *pd, 7276 u_short *reason) 7277 { 7278 struct pf_state_peer *src; 7279 if (pd->dir == state->direction) { 7280 if (PF_REVERSED_KEY(state, pd->af)) 7281 src = &state->dst; 7282 else 7283 src = &state->src; 7284 } else { 7285 if (PF_REVERSED_KEY(state, pd->af)) 7286 src = &state->src; 7287 else 7288 src = &state->dst; 7289 } 7290 7291 if (src->scrub != NULL) { 7292 if (src->scrub->pfss_v_tag == 0) 7293 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag; 7294 else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag) 7295 return (PF_DROP); 7296 } 7297 7298 return (PF_PASS); 7299 } 7300 7301 static void 7302 pf_sctp_multihome_detach_addr(const struct pf_kstate *s) 7303 { 7304 struct pf_sctp_endpoint key; 7305 struct pf_sctp_endpoint *ep; 7306 struct pf_state_key *sks = s->key[PF_SK_STACK]; 7307 struct pf_sctp_source *i, *tmp; 7308 7309 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL) 7310 return; 7311 7312 PF_SCTP_ENDPOINTS_LOCK(); 7313 7314 key.v_tag = s->dst.scrub->pfss_v_tag; 7315 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7316 if (ep != NULL) { 7317 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 7318 if (pf_addr_cmp(&i->addr, 7319 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT], 7320 s->key[PF_SK_WIRE]->af) == 0) { 7321 SDT_PROBE3(pf, sctp, multihome, remove, 7322 key.v_tag, s, i); 7323 TAILQ_REMOVE(&ep->sources, i, entry); 7324 free(i, M_PFTEMP); 7325 break; 7326 } 7327 } 7328 7329 if (TAILQ_EMPTY(&ep->sources)) { 7330 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 7331 free(ep, M_PFTEMP); 7332 } 7333 } 7334 7335 /* Other direction. */ 7336 key.v_tag = s->src.scrub->pfss_v_tag; 7337 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7338 if (ep != NULL) { 7339 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 7340 if (pf_addr_cmp(&i->addr, 7341 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN], 7342 s->key[PF_SK_WIRE]->af) == 0) { 7343 SDT_PROBE3(pf, sctp, multihome, remove, 7344 key.v_tag, s, i); 7345 TAILQ_REMOVE(&ep->sources, i, entry); 7346 free(i, M_PFTEMP); 7347 break; 7348 } 7349 } 7350 7351 if (TAILQ_EMPTY(&ep->sources)) { 7352 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 7353 free(ep, M_PFTEMP); 7354 } 7355 } 7356 7357 PF_SCTP_ENDPOINTS_UNLOCK(); 7358 } 7359 7360 static void 7361 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag) 7362 { 7363 struct pf_sctp_endpoint key = { 7364 .v_tag = v_tag, 7365 }; 7366 struct pf_sctp_source *i; 7367 struct pf_sctp_endpoint *ep; 7368 int count; 7369 7370 PF_SCTP_ENDPOINTS_LOCK(); 7371 7372 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7373 if (ep == NULL) { 7374 ep = malloc(sizeof(struct pf_sctp_endpoint), 7375 M_PFTEMP, M_NOWAIT); 7376 if (ep == NULL) { 7377 PF_SCTP_ENDPOINTS_UNLOCK(); 7378 return; 7379 } 7380 7381 ep->v_tag = v_tag; 7382 TAILQ_INIT(&ep->sources); 7383 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 7384 } 7385 7386 /* Avoid inserting duplicates. */ 7387 count = 0; 7388 TAILQ_FOREACH(i, &ep->sources, entry) { 7389 count++; 7390 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) { 7391 PF_SCTP_ENDPOINTS_UNLOCK(); 7392 return; 7393 } 7394 } 7395 7396 /* Limit the number of addresses per endpoint. */ 7397 if (count >= PF_SCTP_MAX_ENDPOINTS) { 7398 PF_SCTP_ENDPOINTS_UNLOCK(); 7399 return; 7400 } 7401 7402 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT); 7403 if (i == NULL) { 7404 PF_SCTP_ENDPOINTS_UNLOCK(); 7405 return; 7406 } 7407 7408 i->af = pd->af; 7409 memcpy(&i->addr, a, sizeof(*a)); 7410 TAILQ_INSERT_TAIL(&ep->sources, i, entry); 7411 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i); 7412 7413 PF_SCTP_ENDPOINTS_UNLOCK(); 7414 } 7415 7416 static void 7417 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif, 7418 struct pf_kstate *s, int action) 7419 { 7420 struct pf_sctp_multihome_job *j, *tmp; 7421 struct pf_sctp_source *i; 7422 int ret; 7423 struct pf_kstate *sm = NULL; 7424 struct pf_krule *ra = NULL; 7425 struct pf_krule *r = &V_pf_default_rule; 7426 struct pf_kruleset *rs = NULL; 7427 u_short reason; 7428 bool do_extra = true; 7429 7430 PF_RULES_RLOCK_TRACKER; 7431 7432 again: 7433 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) { 7434 if (s == NULL || action != PF_PASS) 7435 goto free; 7436 7437 /* Confirm we don't recurse here. */ 7438 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP)); 7439 7440 switch (j->op) { 7441 case SCTP_ADD_IP_ADDRESS: { 7442 uint32_t v_tag = pd->sctp_initiate_tag; 7443 7444 if (v_tag == 0) { 7445 if (s->direction == pd->dir) 7446 v_tag = s->src.scrub->pfss_v_tag; 7447 else 7448 v_tag = s->dst.scrub->pfss_v_tag; 7449 } 7450 7451 /* 7452 * Avoid duplicating states. We'll already have 7453 * created a state based on the source address of 7454 * the packet, but SCTP endpoints may also list this 7455 * address again in the INIT(_ACK) parameters. 7456 */ 7457 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) { 7458 break; 7459 } 7460 7461 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP; 7462 PF_RULES_RLOCK(); 7463 sm = NULL; 7464 if (s->rule->rule_flag & PFRULE_ALLOW_RELATED) { 7465 j->pd.related_rule = s->rule; 7466 } 7467 ret = pf_test_rule(&r, &sm, 7468 &j->pd, &ra, &rs, &reason, NULL); 7469 PF_RULES_RUNLOCK(); 7470 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret); 7471 if (ret != PF_DROP && sm != NULL) { 7472 /* Inherit v_tag values. */ 7473 if (sm->direction == s->direction) { 7474 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 7475 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 7476 } else { 7477 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 7478 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 7479 } 7480 PF_STATE_UNLOCK(sm); 7481 } else { 7482 /* If we try duplicate inserts? */ 7483 break; 7484 } 7485 7486 /* Only add the address if we've actually allowed the state. */ 7487 pf_sctp_multihome_add_addr(pd, &j->src, v_tag); 7488 7489 if (! do_extra) { 7490 break; 7491 } 7492 /* 7493 * We need to do this for each of our source addresses. 7494 * Find those based on the verification tag. 7495 */ 7496 struct pf_sctp_endpoint key = { 7497 .v_tag = pd->hdr.sctp.v_tag, 7498 }; 7499 struct pf_sctp_endpoint *ep; 7500 7501 PF_SCTP_ENDPOINTS_LOCK(); 7502 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7503 if (ep == NULL) { 7504 PF_SCTP_ENDPOINTS_UNLOCK(); 7505 break; 7506 } 7507 MPASS(ep != NULL); 7508 7509 TAILQ_FOREACH(i, &ep->sources, entry) { 7510 struct pf_sctp_multihome_job *nj; 7511 7512 /* SCTP can intermingle IPv4 and IPv6. */ 7513 if (i->af != pd->af) 7514 continue; 7515 7516 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO); 7517 if (! nj) { 7518 continue; 7519 } 7520 memcpy(&nj->pd, &j->pd, sizeof(j->pd)); 7521 memcpy(&nj->src, &j->src, sizeof(nj->src)); 7522 nj->pd.src = &nj->src; 7523 // New destination address! 7524 memcpy(&nj->dst, &i->addr, sizeof(nj->dst)); 7525 nj->pd.dst = &nj->dst; 7526 nj->pd.m = j->pd.m; 7527 nj->op = j->op; 7528 7529 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next); 7530 } 7531 PF_SCTP_ENDPOINTS_UNLOCK(); 7532 7533 break; 7534 } 7535 case SCTP_DEL_IP_ADDRESS: { 7536 struct pf_state_key_cmp key; 7537 uint8_t psrc; 7538 int action; 7539 7540 bzero(&key, sizeof(key)); 7541 key.af = j->pd.af; 7542 key.proto = IPPROTO_SCTP; 7543 if (j->pd.dir == PF_IN) { /* wire side, straight */ 7544 pf_addrcpy(&key.addr[0], j->pd.src, key.af); 7545 pf_addrcpy(&key.addr[1], j->pd.dst, key.af); 7546 key.port[0] = j->pd.hdr.sctp.src_port; 7547 key.port[1] = j->pd.hdr.sctp.dest_port; 7548 } else { /* stack side, reverse */ 7549 pf_addrcpy(&key.addr[1], j->pd.src, key.af); 7550 pf_addrcpy(&key.addr[0], j->pd.dst, key.af); 7551 key.port[1] = j->pd.hdr.sctp.src_port; 7552 key.port[0] = j->pd.hdr.sctp.dest_port; 7553 } 7554 7555 action = pf_find_state(&j->pd, &key, &sm); 7556 if (action == PF_MATCH) { 7557 PF_STATE_LOCK_ASSERT(sm); 7558 if (j->pd.dir == sm->direction) { 7559 psrc = PF_PEER_SRC; 7560 } else { 7561 psrc = PF_PEER_DST; 7562 } 7563 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING); 7564 sm->timeout = PFTM_SCTP_CLOSING; 7565 PF_STATE_UNLOCK(sm); 7566 } 7567 break; 7568 default: 7569 panic("Unknown op %#x", j->op); 7570 } 7571 } 7572 7573 free: 7574 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next); 7575 free(j, M_PFTEMP); 7576 } 7577 7578 /* We may have inserted extra work while processing the list. */ 7579 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) { 7580 do_extra = false; 7581 goto again; 7582 } 7583 } 7584 7585 static int 7586 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op) 7587 { 7588 int off = 0; 7589 struct pf_sctp_multihome_job *job; 7590 7591 SDT_PROBE4(pf, sctp, multihome_scan, entry, start, len, pd, op); 7592 7593 while (off < len) { 7594 struct sctp_paramhdr h; 7595 7596 if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL, NULL, 7597 pd->af)) 7598 return (PF_DROP); 7599 7600 /* Parameters are at least 4 bytes. */ 7601 if (ntohs(h.param_length) < 4) 7602 return (PF_DROP); 7603 7604 SDT_PROBE2(pf, sctp, multihome_scan, param, ntohs(h.param_type), 7605 ntohs(h.param_length)); 7606 7607 switch (ntohs(h.param_type)) { 7608 case SCTP_IPV4_ADDRESS: { 7609 struct in_addr t; 7610 7611 if (ntohs(h.param_length) != 7612 (sizeof(struct sctp_paramhdr) + sizeof(t))) 7613 return (PF_DROP); 7614 7615 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t), 7616 NULL, NULL, pd->af)) 7617 return (PF_DROP); 7618 7619 if (in_nullhost(t)) 7620 t.s_addr = pd->src->v4.s_addr; 7621 7622 /* 7623 * We hold the state lock (idhash) here, which means 7624 * that we can't acquire the keyhash, or we'll get a 7625 * LOR (and potentially double-lock things too). We also 7626 * can't release the state lock here, so instead we'll 7627 * enqueue this for async handling. 7628 * There's a relatively small race here, in that a 7629 * packet using the new addresses could arrive already, 7630 * but that's just though luck for it. 7631 */ 7632 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 7633 if (! job) 7634 return (PF_DROP); 7635 7636 SDT_PROBE2(pf, sctp, multihome_scan, ipv4, &t, op); 7637 7638 memcpy(&job->pd, pd, sizeof(*pd)); 7639 7640 // New source address! 7641 memcpy(&job->src, &t, sizeof(t)); 7642 job->pd.src = &job->src; 7643 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 7644 job->pd.dst = &job->dst; 7645 job->pd.m = pd->m; 7646 job->op = op; 7647 7648 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 7649 break; 7650 } 7651 #ifdef INET6 7652 case SCTP_IPV6_ADDRESS: { 7653 struct in6_addr t; 7654 7655 if (ntohs(h.param_length) != 7656 (sizeof(struct sctp_paramhdr) + sizeof(t))) 7657 return (PF_DROP); 7658 7659 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t), 7660 NULL, NULL, pd->af)) 7661 return (PF_DROP); 7662 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0) 7663 break; 7664 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0) 7665 memcpy(&t, &pd->src->v6, sizeof(t)); 7666 7667 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 7668 if (! job) 7669 return (PF_DROP); 7670 7671 SDT_PROBE2(pf, sctp, multihome_scan, ipv6, &t, op); 7672 7673 memcpy(&job->pd, pd, sizeof(*pd)); 7674 memcpy(&job->src, &t, sizeof(t)); 7675 job->pd.src = &job->src; 7676 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 7677 job->pd.dst = &job->dst; 7678 job->pd.m = pd->m; 7679 job->op = op; 7680 7681 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 7682 break; 7683 } 7684 #endif /* INET6 */ 7685 case SCTP_ADD_IP_ADDRESS: { 7686 int ret; 7687 struct sctp_asconf_paramhdr ah; 7688 7689 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah), 7690 NULL, NULL, pd->af)) 7691 return (PF_DROP); 7692 7693 ret = pf_multihome_scan(start + off + sizeof(ah), 7694 ntohs(ah.ph.param_length) - sizeof(ah), pd, 7695 SCTP_ADD_IP_ADDRESS); 7696 if (ret != PF_PASS) 7697 return (ret); 7698 break; 7699 } 7700 case SCTP_DEL_IP_ADDRESS: { 7701 int ret; 7702 struct sctp_asconf_paramhdr ah; 7703 7704 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah), 7705 NULL, NULL, pd->af)) 7706 return (PF_DROP); 7707 ret = pf_multihome_scan(start + off + sizeof(ah), 7708 ntohs(ah.ph.param_length) - sizeof(ah), pd, 7709 SCTP_DEL_IP_ADDRESS); 7710 if (ret != PF_PASS) 7711 return (ret); 7712 break; 7713 } 7714 default: 7715 break; 7716 } 7717 7718 off += roundup(ntohs(h.param_length), 4); 7719 } 7720 7721 return (PF_PASS); 7722 } 7723 7724 int 7725 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd) 7726 { 7727 start += sizeof(struct sctp_init_chunk); 7728 len -= sizeof(struct sctp_init_chunk); 7729 7730 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS)); 7731 } 7732 7733 int 7734 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd) 7735 { 7736 start += sizeof(struct sctp_asconf_chunk); 7737 len -= sizeof(struct sctp_asconf_chunk); 7738 7739 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS)); 7740 } 7741 7742 int 7743 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd, 7744 struct pf_kstate **state, u_int16_t icmpid, u_int16_t type, int icmp_dir, 7745 int *iidx, int multi, int inner) 7746 { 7747 int action, direction = pd->dir; 7748 7749 key->af = pd->af; 7750 key->proto = pd->proto; 7751 if (icmp_dir == PF_IN) { 7752 *iidx = pd->sidx; 7753 key->port[pd->sidx] = icmpid; 7754 key->port[pd->didx] = type; 7755 } else { 7756 *iidx = pd->didx; 7757 key->port[pd->sidx] = type; 7758 key->port[pd->didx] = icmpid; 7759 } 7760 if (pf_state_key_addr_setup(pd, key, multi)) 7761 return (PF_DROP); 7762 7763 action = pf_find_state(pd, key, state); 7764 if (action != PF_MATCH) 7765 return (action); 7766 7767 if ((*state)->state_flags & PFSTATE_SLOPPY) 7768 return (-1); 7769 7770 /* Is this ICMP message flowing in right direction? */ 7771 if ((*state)->key[PF_SK_WIRE]->af != (*state)->key[PF_SK_STACK]->af) 7772 direction = (pd->af == (*state)->key[PF_SK_WIRE]->af) ? 7773 PF_IN : PF_OUT; 7774 else 7775 direction = (*state)->direction; 7776 if ((*state)->rule->type && 7777 (((!inner && direction == pd->dir) || 7778 (inner && direction != pd->dir)) ? 7779 PF_IN : PF_OUT) != icmp_dir) { 7780 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7781 printf("pf: icmp type %d in wrong direction (%d): ", 7782 ntohs(type), icmp_dir); 7783 pf_print_state(*state); 7784 printf("\n"); 7785 } 7786 PF_STATE_UNLOCK(*state); 7787 *state = NULL; 7788 return (PF_DROP); 7789 } 7790 return (-1); 7791 } 7792 7793 static int 7794 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd, 7795 u_short *reason) 7796 { 7797 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 7798 u_int16_t *icmpsum, virtual_id, virtual_type; 7799 u_int8_t icmptype, icmpcode; 7800 int icmp_dir, iidx, ret; 7801 struct pf_state_key_cmp key; 7802 #ifdef INET 7803 u_int16_t icmpid; 7804 #endif /* INET*/ 7805 7806 MPASS(*state == NULL); 7807 7808 bzero(&key, sizeof(key)); 7809 switch (pd->proto) { 7810 #ifdef INET 7811 case IPPROTO_ICMP: 7812 icmptype = pd->hdr.icmp.icmp_type; 7813 icmpcode = pd->hdr.icmp.icmp_code; 7814 icmpid = pd->hdr.icmp.icmp_id; 7815 icmpsum = &pd->hdr.icmp.icmp_cksum; 7816 break; 7817 #endif /* INET */ 7818 #ifdef INET6 7819 case IPPROTO_ICMPV6: 7820 icmptype = pd->hdr.icmp6.icmp6_type; 7821 icmpcode = pd->hdr.icmp6.icmp6_code; 7822 #ifdef INET 7823 icmpid = pd->hdr.icmp6.icmp6_id; 7824 #endif /* INET */ 7825 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 7826 break; 7827 #endif /* INET6 */ 7828 default: 7829 panic("unhandled proto %d", pd->proto); 7830 } 7831 7832 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &virtual_id, 7833 &virtual_type) == 0) { 7834 /* 7835 * ICMP query/reply message not related to a TCP/UDP/SCTP 7836 * packet. Search for an ICMP state. 7837 */ 7838 ret = pf_icmp_state_lookup(&key, pd, state, virtual_id, 7839 virtual_type, icmp_dir, &iidx, 0, 0); 7840 /* IPv6? try matching a multicast address */ 7841 if (ret == PF_DROP && pd->af == AF_INET6 && icmp_dir == PF_OUT) { 7842 MPASS(*state == NULL); 7843 ret = pf_icmp_state_lookup(&key, pd, state, 7844 virtual_id, virtual_type, 7845 icmp_dir, &iidx, 1, 0); 7846 } 7847 if (ret >= 0) { 7848 MPASS(*state == NULL); 7849 return (ret); 7850 } 7851 7852 (*state)->expire = pf_get_uptime(); 7853 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 7854 7855 /* translate source/destination address, if necessary */ 7856 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7857 struct pf_state_key *nk; 7858 int afto, sidx, didx; 7859 7860 if (PF_REVERSED_KEY(*state, pd->af)) 7861 nk = (*state)->key[pd->sidx]; 7862 else 7863 nk = (*state)->key[pd->didx]; 7864 7865 afto = pd->af != nk->af; 7866 7867 if (afto && (*state)->direction == PF_IN) { 7868 sidx = pd->didx; 7869 didx = pd->sidx; 7870 iidx = !iidx; 7871 } else { 7872 sidx = pd->sidx; 7873 didx = pd->didx; 7874 } 7875 7876 switch (pd->af) { 7877 #ifdef INET 7878 case AF_INET: 7879 #ifdef INET6 7880 if (afto) { 7881 if (pf_translate_icmp_af(AF_INET6, 7882 &pd->hdr.icmp)) 7883 return (PF_DROP); 7884 pd->proto = IPPROTO_ICMPV6; 7885 } 7886 #endif /* INET6 */ 7887 if (!afto && 7888 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET)) 7889 pf_change_a(&saddr->v4.s_addr, 7890 pd->ip_sum, 7891 nk->addr[sidx].v4.s_addr, 7892 0); 7893 7894 if (!afto && PF_ANEQ(pd->dst, 7895 &nk->addr[didx], AF_INET)) 7896 pf_change_a(&daddr->v4.s_addr, 7897 pd->ip_sum, 7898 nk->addr[didx].v4.s_addr, 0); 7899 7900 if (nk->port[iidx] != 7901 pd->hdr.icmp.icmp_id) { 7902 pd->hdr.icmp.icmp_cksum = 7903 pf_cksum_fixup( 7904 pd->hdr.icmp.icmp_cksum, icmpid, 7905 nk->port[iidx], 0); 7906 pd->hdr.icmp.icmp_id = 7907 nk->port[iidx]; 7908 } 7909 7910 m_copyback(pd->m, pd->off, ICMP_MINLEN, 7911 (caddr_t )&pd->hdr.icmp); 7912 break; 7913 #endif /* INET */ 7914 #ifdef INET6 7915 case AF_INET6: 7916 #ifdef INET 7917 if (afto) { 7918 if (pf_translate_icmp_af(AF_INET, 7919 &pd->hdr.icmp6)) 7920 return (PF_DROP); 7921 pd->proto = IPPROTO_ICMP; 7922 } 7923 #endif /* INET */ 7924 if (!afto && 7925 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET6)) 7926 pf_change_a6(saddr, 7927 &pd->hdr.icmp6.icmp6_cksum, 7928 &nk->addr[sidx], 0); 7929 7930 if (!afto && PF_ANEQ(pd->dst, 7931 &nk->addr[didx], AF_INET6)) 7932 pf_change_a6(daddr, 7933 &pd->hdr.icmp6.icmp6_cksum, 7934 &nk->addr[didx], 0); 7935 7936 if (nk->port[iidx] != pd->hdr.icmp6.icmp6_id) 7937 pd->hdr.icmp6.icmp6_id = 7938 nk->port[iidx]; 7939 7940 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr), 7941 (caddr_t )&pd->hdr.icmp6); 7942 break; 7943 #endif /* INET6 */ 7944 } 7945 if (afto) { 7946 pf_addrcpy(&pd->nsaddr, &nk->addr[sidx], 7947 nk->af); 7948 pf_addrcpy(&pd->ndaddr, &nk->addr[didx], 7949 nk->af); 7950 pd->naf = nk->af; 7951 return (PF_AFRT); 7952 } 7953 } 7954 return (PF_PASS); 7955 7956 } else { 7957 /* 7958 * ICMP error message in response to a TCP/UDP packet. 7959 * Extract the inner TCP/UDP header and search for that state. 7960 */ 7961 7962 struct pf_pdesc pd2; 7963 bzero(&pd2, sizeof pd2); 7964 #ifdef INET 7965 struct ip h2; 7966 #endif /* INET */ 7967 #ifdef INET6 7968 struct ip6_hdr h2_6; 7969 #endif /* INET6 */ 7970 int ipoff2 = 0; 7971 7972 pd2.af = pd->af; 7973 pd2.dir = pd->dir; 7974 /* Payload packet is from the opposite direction. */ 7975 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0; 7976 pd2.didx = (pd->dir == PF_IN) ? 0 : 1; 7977 pd2.m = pd->m; 7978 pd2.pf_mtag = pd->pf_mtag; 7979 pd2.kif = pd->kif; 7980 switch (pd->af) { 7981 #ifdef INET 7982 case AF_INET: 7983 /* offset of h2 in mbuf chain */ 7984 ipoff2 = pd->off + ICMP_MINLEN; 7985 7986 if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2), 7987 NULL, reason, pd2.af)) { 7988 DPFPRINTF(PF_DEBUG_MISC, 7989 "pf: ICMP error message too short " 7990 "(ip)"); 7991 return (PF_DROP); 7992 } 7993 /* 7994 * ICMP error messages don't refer to non-first 7995 * fragments 7996 */ 7997 if (h2.ip_off & htons(IP_OFFMASK)) { 7998 REASON_SET(reason, PFRES_FRAG); 7999 return (PF_DROP); 8000 } 8001 8002 /* offset of protocol header that follows h2 */ 8003 pd2.off = ipoff2; 8004 if (pf_walk_header(&pd2, &h2, reason) != PF_PASS) 8005 return (PF_DROP); 8006 8007 pd2.tot_len = ntohs(h2.ip_len); 8008 pd2.src = (struct pf_addr *)&h2.ip_src; 8009 pd2.dst = (struct pf_addr *)&h2.ip_dst; 8010 pd2.ip_sum = &h2.ip_sum; 8011 break; 8012 #endif /* INET */ 8013 #ifdef INET6 8014 case AF_INET6: 8015 ipoff2 = pd->off + sizeof(struct icmp6_hdr); 8016 8017 if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6), 8018 NULL, reason, pd2.af)) { 8019 DPFPRINTF(PF_DEBUG_MISC, 8020 "pf: ICMP error message too short " 8021 "(ip6)"); 8022 return (PF_DROP); 8023 } 8024 pd2.off = ipoff2; 8025 if (pf_walk_header6(&pd2, &h2_6, reason) != PF_PASS) 8026 return (PF_DROP); 8027 8028 pd2.tot_len = ntohs(h2_6.ip6_plen) + 8029 sizeof(struct ip6_hdr); 8030 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 8031 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 8032 pd2.ip_sum = NULL; 8033 break; 8034 #endif /* INET6 */ 8035 default: 8036 unhandled_af(pd->af); 8037 } 8038 8039 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 8040 if (V_pf_status.debug >= PF_DEBUG_MISC) { 8041 printf("pf: BAD ICMP %d:%d outer dst: ", 8042 icmptype, icmpcode); 8043 pf_print_host(pd->src, 0, pd->af); 8044 printf(" -> "); 8045 pf_print_host(pd->dst, 0, pd->af); 8046 printf(" inner src: "); 8047 pf_print_host(pd2.src, 0, pd2.af); 8048 printf(" -> "); 8049 pf_print_host(pd2.dst, 0, pd2.af); 8050 printf("\n"); 8051 } 8052 REASON_SET(reason, PFRES_BADSTATE); 8053 return (PF_DROP); 8054 } 8055 8056 switch (pd2.proto) { 8057 case IPPROTO_TCP: { 8058 struct tcphdr *th = &pd2.hdr.tcp; 8059 u_int32_t seq; 8060 struct pf_state_peer *src, *dst; 8061 u_int8_t dws; 8062 int copyback = 0; 8063 int action; 8064 8065 /* 8066 * Only the first 8 bytes of the TCP header can be 8067 * expected. Don't access any TCP header fields after 8068 * th_seq, an ackskew test is not possible. 8069 */ 8070 if (!pf_pull_hdr(pd->m, pd2.off, th, 8, NULL, reason, 8071 pd2.af)) { 8072 DPFPRINTF(PF_DEBUG_MISC, 8073 "pf: ICMP error message too short " 8074 "(tcp)"); 8075 return (PF_DROP); 8076 } 8077 pd2.pcksum = &pd2.hdr.tcp.th_sum; 8078 8079 key.af = pd2.af; 8080 key.proto = IPPROTO_TCP; 8081 pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af); 8082 pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af); 8083 key.port[pd2.sidx] = th->th_sport; 8084 key.port[pd2.didx] = th->th_dport; 8085 8086 action = pf_find_state(&pd2, &key, state); 8087 if (action != PF_MATCH) 8088 return (action); 8089 8090 if (pd->dir == (*state)->direction) { 8091 if (PF_REVERSED_KEY(*state, pd->af)) { 8092 src = &(*state)->src; 8093 dst = &(*state)->dst; 8094 } else { 8095 src = &(*state)->dst; 8096 dst = &(*state)->src; 8097 } 8098 } else { 8099 if (PF_REVERSED_KEY(*state, pd->af)) { 8100 src = &(*state)->dst; 8101 dst = &(*state)->src; 8102 } else { 8103 src = &(*state)->src; 8104 dst = &(*state)->dst; 8105 } 8106 } 8107 8108 if (src->wscale && dst->wscale) 8109 dws = dst->wscale & PF_WSCALE_MASK; 8110 else 8111 dws = 0; 8112 8113 /* Demodulate sequence number */ 8114 seq = ntohl(th->th_seq) - src->seqdiff; 8115 if (src->seqdiff) { 8116 pf_change_a(&th->th_seq, icmpsum, 8117 htonl(seq), 0); 8118 copyback = 1; 8119 } 8120 8121 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 8122 (!SEQ_GEQ(src->seqhi, seq) || 8123 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 8124 if (V_pf_status.debug >= PF_DEBUG_MISC) { 8125 printf("pf: BAD ICMP %d:%d ", 8126 icmptype, icmpcode); 8127 pf_print_host(pd->src, 0, pd->af); 8128 printf(" -> "); 8129 pf_print_host(pd->dst, 0, pd->af); 8130 printf(" state: "); 8131 pf_print_state(*state); 8132 printf(" seq=%u\n", seq); 8133 } 8134 REASON_SET(reason, PFRES_BADSTATE); 8135 return (PF_DROP); 8136 } else { 8137 if (V_pf_status.debug >= PF_DEBUG_MISC) { 8138 printf("pf: OK ICMP %d:%d ", 8139 icmptype, icmpcode); 8140 pf_print_host(pd->src, 0, pd->af); 8141 printf(" -> "); 8142 pf_print_host(pd->dst, 0, pd->af); 8143 printf(" state: "); 8144 pf_print_state(*state); 8145 printf(" seq=%u\n", seq); 8146 } 8147 } 8148 8149 /* translate source/destination address, if necessary */ 8150 if ((*state)->key[PF_SK_WIRE] != 8151 (*state)->key[PF_SK_STACK]) { 8152 8153 struct pf_state_key *nk; 8154 8155 if (PF_REVERSED_KEY(*state, pd->af)) 8156 nk = (*state)->key[pd->sidx]; 8157 else 8158 nk = (*state)->key[pd->didx]; 8159 8160 #if defined(INET) && defined(INET6) 8161 int afto, sidx, didx; 8162 8163 afto = pd->af != nk->af; 8164 8165 if (afto && (*state)->direction == PF_IN) { 8166 sidx = pd2.didx; 8167 didx = pd2.sidx; 8168 } else { 8169 sidx = pd2.sidx; 8170 didx = pd2.didx; 8171 } 8172 8173 if (afto) { 8174 if (pf_translate_icmp_af(nk->af, 8175 &pd->hdr.icmp)) 8176 return (PF_DROP); 8177 m_copyback(pd->m, pd->off, 8178 sizeof(struct icmp6_hdr), 8179 (c_caddr_t)&pd->hdr.icmp6); 8180 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8181 &pd2, &nk->addr[sidx], 8182 &nk->addr[didx], pd->af, 8183 nk->af)) 8184 return (PF_DROP); 8185 pf_addrcpy(&pd->nsaddr, 8186 &nk->addr[pd2.sidx], nk->af); 8187 pf_addrcpy(&pd->ndaddr, 8188 &nk->addr[pd2.didx], nk->af); 8189 if (nk->af == AF_INET) { 8190 pd->proto = IPPROTO_ICMP; 8191 } else { 8192 pd->proto = IPPROTO_ICMPV6; 8193 /* 8194 * IPv4 becomes IPv6 so we must 8195 * copy IPv4 src addr to least 8196 * 32bits in IPv6 address to 8197 * keep traceroute/icmp 8198 * working. 8199 */ 8200 pd->nsaddr.addr32[3] = 8201 pd->src->addr32[0]; 8202 } 8203 pd->naf = pd2.naf = nk->af; 8204 pf_change_ap(&pd2, pd2.src, &th->th_sport, 8205 &nk->addr[pd2.sidx], nk->port[sidx]); 8206 pf_change_ap(&pd2, pd2.dst, &th->th_dport, 8207 &nk->addr[pd2.didx], nk->port[didx]); 8208 m_copyback(pd2.m, pd2.off, 8, (c_caddr_t)th); 8209 return (PF_AFRT); 8210 } 8211 #endif /* INET && INET6 */ 8212 8213 if (PF_ANEQ(pd2.src, 8214 &nk->addr[pd2.sidx], pd2.af) || 8215 nk->port[pd2.sidx] != th->th_sport) 8216 pf_change_icmp(pd2.src, &th->th_sport, 8217 daddr, &nk->addr[pd2.sidx], 8218 nk->port[pd2.sidx], NULL, 8219 pd2.ip_sum, icmpsum, 8220 pd->ip_sum, 0, pd2.af); 8221 8222 if (PF_ANEQ(pd2.dst, 8223 &nk->addr[pd2.didx], pd2.af) || 8224 nk->port[pd2.didx] != th->th_dport) 8225 pf_change_icmp(pd2.dst, &th->th_dport, 8226 saddr, &nk->addr[pd2.didx], 8227 nk->port[pd2.didx], NULL, 8228 pd2.ip_sum, icmpsum, 8229 pd->ip_sum, 0, pd2.af); 8230 copyback = 1; 8231 } 8232 8233 if (copyback) { 8234 switch (pd2.af) { 8235 #ifdef INET 8236 case AF_INET: 8237 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8238 (caddr_t )&pd->hdr.icmp); 8239 m_copyback(pd->m, ipoff2, sizeof(h2), 8240 (caddr_t )&h2); 8241 break; 8242 #endif /* INET */ 8243 #ifdef INET6 8244 case AF_INET6: 8245 m_copyback(pd->m, pd->off, 8246 sizeof(struct icmp6_hdr), 8247 (caddr_t )&pd->hdr.icmp6); 8248 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8249 (caddr_t )&h2_6); 8250 break; 8251 #endif /* INET6 */ 8252 default: 8253 unhandled_af(pd->af); 8254 } 8255 m_copyback(pd->m, pd2.off, 8, (caddr_t)th); 8256 } 8257 8258 return (PF_PASS); 8259 break; 8260 } 8261 case IPPROTO_UDP: { 8262 struct udphdr *uh = &pd2.hdr.udp; 8263 int action; 8264 8265 if (!pf_pull_hdr(pd->m, pd2.off, uh, sizeof(*uh), 8266 NULL, reason, pd2.af)) { 8267 DPFPRINTF(PF_DEBUG_MISC, 8268 "pf: ICMP error message too short " 8269 "(udp)"); 8270 return (PF_DROP); 8271 } 8272 pd2.pcksum = &pd2.hdr.udp.uh_sum; 8273 8274 key.af = pd2.af; 8275 key.proto = IPPROTO_UDP; 8276 pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af); 8277 pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af); 8278 key.port[pd2.sidx] = uh->uh_sport; 8279 key.port[pd2.didx] = uh->uh_dport; 8280 8281 action = pf_find_state(&pd2, &key, state); 8282 if (action != PF_MATCH) 8283 return (action); 8284 8285 /* translate source/destination address, if necessary */ 8286 if ((*state)->key[PF_SK_WIRE] != 8287 (*state)->key[PF_SK_STACK]) { 8288 struct pf_state_key *nk; 8289 8290 if (PF_REVERSED_KEY(*state, pd->af)) 8291 nk = (*state)->key[pd->sidx]; 8292 else 8293 nk = (*state)->key[pd->didx]; 8294 8295 #if defined(INET) && defined(INET6) 8296 int afto, sidx, didx; 8297 8298 afto = pd->af != nk->af; 8299 8300 if (afto && (*state)->direction == PF_IN) { 8301 sidx = pd2.didx; 8302 didx = pd2.sidx; 8303 } else { 8304 sidx = pd2.sidx; 8305 didx = pd2.didx; 8306 } 8307 8308 if (afto) { 8309 if (pf_translate_icmp_af(nk->af, 8310 &pd->hdr.icmp)) 8311 return (PF_DROP); 8312 m_copyback(pd->m, pd->off, 8313 sizeof(struct icmp6_hdr), 8314 (c_caddr_t)&pd->hdr.icmp6); 8315 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8316 &pd2, &nk->addr[sidx], 8317 &nk->addr[didx], pd->af, 8318 nk->af)) 8319 return (PF_DROP); 8320 pf_addrcpy(&pd->nsaddr, 8321 &nk->addr[pd2.sidx], nk->af); 8322 pf_addrcpy(&pd->ndaddr, 8323 &nk->addr[pd2.didx], nk->af); 8324 if (nk->af == AF_INET) { 8325 pd->proto = IPPROTO_ICMP; 8326 } else { 8327 pd->proto = IPPROTO_ICMPV6; 8328 /* 8329 * IPv4 becomes IPv6 so we must 8330 * copy IPv4 src addr to least 8331 * 32bits in IPv6 address to 8332 * keep traceroute/icmp 8333 * working. 8334 */ 8335 pd->nsaddr.addr32[3] = 8336 pd->src->addr32[0]; 8337 } 8338 pd->naf = pd2.naf = nk->af; 8339 pf_change_ap(&pd2, pd2.src, &uh->uh_sport, 8340 &nk->addr[pd2.sidx], nk->port[sidx]); 8341 pf_change_ap(&pd2, pd2.dst, &uh->uh_dport, 8342 &nk->addr[pd2.didx], nk->port[didx]); 8343 m_copyback(pd2.m, pd2.off, sizeof(*uh), 8344 (c_caddr_t)uh); 8345 return (PF_AFRT); 8346 } 8347 #endif /* INET && INET6 */ 8348 8349 if (PF_ANEQ(pd2.src, 8350 &nk->addr[pd2.sidx], pd2.af) || 8351 nk->port[pd2.sidx] != uh->uh_sport) 8352 pf_change_icmp(pd2.src, &uh->uh_sport, 8353 daddr, &nk->addr[pd2.sidx], 8354 nk->port[pd2.sidx], &uh->uh_sum, 8355 pd2.ip_sum, icmpsum, 8356 pd->ip_sum, 1, pd2.af); 8357 8358 if (PF_ANEQ(pd2.dst, 8359 &nk->addr[pd2.didx], pd2.af) || 8360 nk->port[pd2.didx] != uh->uh_dport) 8361 pf_change_icmp(pd2.dst, &uh->uh_dport, 8362 saddr, &nk->addr[pd2.didx], 8363 nk->port[pd2.didx], &uh->uh_sum, 8364 pd2.ip_sum, icmpsum, 8365 pd->ip_sum, 1, pd2.af); 8366 8367 switch (pd2.af) { 8368 #ifdef INET 8369 case AF_INET: 8370 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8371 (caddr_t )&pd->hdr.icmp); 8372 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 8373 break; 8374 #endif /* INET */ 8375 #ifdef INET6 8376 case AF_INET6: 8377 m_copyback(pd->m, pd->off, 8378 sizeof(struct icmp6_hdr), 8379 (caddr_t )&pd->hdr.icmp6); 8380 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8381 (caddr_t )&h2_6); 8382 break; 8383 #endif /* INET6 */ 8384 } 8385 m_copyback(pd->m, pd2.off, sizeof(*uh), (caddr_t)uh); 8386 } 8387 return (PF_PASS); 8388 break; 8389 } 8390 #ifdef INET 8391 case IPPROTO_SCTP: { 8392 struct sctphdr *sh = &pd2.hdr.sctp; 8393 struct pf_state_peer *src; 8394 int copyback = 0; 8395 int action; 8396 8397 if (! pf_pull_hdr(pd->m, pd2.off, sh, sizeof(*sh), NULL, reason, 8398 pd2.af)) { 8399 DPFPRINTF(PF_DEBUG_MISC, 8400 "pf: ICMP error message too short " 8401 "(sctp)"); 8402 return (PF_DROP); 8403 } 8404 pd2.pcksum = &pd2.sctp_dummy_sum; 8405 8406 key.af = pd2.af; 8407 key.proto = IPPROTO_SCTP; 8408 pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af); 8409 pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af); 8410 key.port[pd2.sidx] = sh->src_port; 8411 key.port[pd2.didx] = sh->dest_port; 8412 8413 action = pf_find_state(&pd2, &key, state); 8414 if (action != PF_MATCH) 8415 return (action); 8416 8417 if (pd->dir == (*state)->direction) { 8418 if (PF_REVERSED_KEY(*state, pd->af)) 8419 src = &(*state)->src; 8420 else 8421 src = &(*state)->dst; 8422 } else { 8423 if (PF_REVERSED_KEY(*state, pd->af)) 8424 src = &(*state)->dst; 8425 else 8426 src = &(*state)->src; 8427 } 8428 8429 if (src->scrub->pfss_v_tag != sh->v_tag) { 8430 DPFPRINTF(PF_DEBUG_MISC, 8431 "pf: ICMP error message has incorrect " 8432 "SCTP v_tag"); 8433 return (PF_DROP); 8434 } 8435 8436 /* translate source/destination address, if necessary */ 8437 if ((*state)->key[PF_SK_WIRE] != 8438 (*state)->key[PF_SK_STACK]) { 8439 8440 struct pf_state_key *nk; 8441 8442 if (PF_REVERSED_KEY(*state, pd->af)) 8443 nk = (*state)->key[pd->sidx]; 8444 else 8445 nk = (*state)->key[pd->didx]; 8446 8447 #if defined(INET) && defined(INET6) 8448 int afto, sidx, didx; 8449 8450 afto = pd->af != nk->af; 8451 8452 if (afto && (*state)->direction == PF_IN) { 8453 sidx = pd2.didx; 8454 didx = pd2.sidx; 8455 } else { 8456 sidx = pd2.sidx; 8457 didx = pd2.didx; 8458 } 8459 8460 if (afto) { 8461 if (pf_translate_icmp_af(nk->af, 8462 &pd->hdr.icmp)) 8463 return (PF_DROP); 8464 m_copyback(pd->m, pd->off, 8465 sizeof(struct icmp6_hdr), 8466 (c_caddr_t)&pd->hdr.icmp6); 8467 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8468 &pd2, &nk->addr[sidx], 8469 &nk->addr[didx], pd->af, 8470 nk->af)) 8471 return (PF_DROP); 8472 sh->src_port = nk->port[sidx]; 8473 sh->dest_port = nk->port[didx]; 8474 m_copyback(pd2.m, pd2.off, sizeof(*sh), (c_caddr_t)sh); 8475 pf_addrcpy(&pd->nsaddr, 8476 &nk->addr[pd2.sidx], nk->af); 8477 pf_addrcpy(&pd->ndaddr, 8478 &nk->addr[pd2.didx], nk->af); 8479 if (nk->af == AF_INET) { 8480 pd->proto = IPPROTO_ICMP; 8481 } else { 8482 pd->proto = IPPROTO_ICMPV6; 8483 /* 8484 * IPv4 becomes IPv6 so we must 8485 * copy IPv4 src addr to least 8486 * 32bits in IPv6 address to 8487 * keep traceroute/icmp 8488 * working. 8489 */ 8490 pd->nsaddr.addr32[3] = 8491 pd->src->addr32[0]; 8492 } 8493 pd->naf = nk->af; 8494 return (PF_AFRT); 8495 } 8496 #endif /* INET && INET6 */ 8497 8498 if (PF_ANEQ(pd2.src, 8499 &nk->addr[pd2.sidx], pd2.af) || 8500 nk->port[pd2.sidx] != sh->src_port) 8501 pf_change_icmp(pd2.src, &sh->src_port, 8502 daddr, &nk->addr[pd2.sidx], 8503 nk->port[pd2.sidx], NULL, 8504 pd2.ip_sum, icmpsum, 8505 pd->ip_sum, 0, pd2.af); 8506 8507 if (PF_ANEQ(pd2.dst, 8508 &nk->addr[pd2.didx], pd2.af) || 8509 nk->port[pd2.didx] != sh->dest_port) 8510 pf_change_icmp(pd2.dst, &sh->dest_port, 8511 saddr, &nk->addr[pd2.didx], 8512 nk->port[pd2.didx], NULL, 8513 pd2.ip_sum, icmpsum, 8514 pd->ip_sum, 0, pd2.af); 8515 copyback = 1; 8516 } 8517 8518 if (copyback) { 8519 switch (pd2.af) { 8520 #ifdef INET 8521 case AF_INET: 8522 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8523 (caddr_t )&pd->hdr.icmp); 8524 m_copyback(pd->m, ipoff2, sizeof(h2), 8525 (caddr_t )&h2); 8526 break; 8527 #endif /* INET */ 8528 #ifdef INET6 8529 case AF_INET6: 8530 m_copyback(pd->m, pd->off, 8531 sizeof(struct icmp6_hdr), 8532 (caddr_t )&pd->hdr.icmp6); 8533 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8534 (caddr_t )&h2_6); 8535 break; 8536 #endif /* INET6 */ 8537 } 8538 m_copyback(pd->m, pd2.off, sizeof(*sh), (caddr_t)sh); 8539 } 8540 8541 return (PF_PASS); 8542 break; 8543 } 8544 case IPPROTO_ICMP: { 8545 struct icmp *iih = &pd2.hdr.icmp; 8546 8547 if (pd2.af != AF_INET) { 8548 REASON_SET(reason, PFRES_NORM); 8549 return (PF_DROP); 8550 } 8551 8552 if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN, 8553 NULL, reason, pd2.af)) { 8554 DPFPRINTF(PF_DEBUG_MISC, 8555 "pf: ICMP error message too short i" 8556 "(icmp)"); 8557 return (PF_DROP); 8558 } 8559 pd2.pcksum = &pd2.hdr.icmp.icmp_cksum; 8560 8561 icmpid = iih->icmp_id; 8562 pf_icmp_mapping(&pd2, iih->icmp_type, 8563 &icmp_dir, &virtual_id, &virtual_type); 8564 8565 ret = pf_icmp_state_lookup(&key, &pd2, state, 8566 virtual_id, virtual_type, icmp_dir, &iidx, 0, 1); 8567 if (ret >= 0) { 8568 MPASS(*state == NULL); 8569 return (ret); 8570 } 8571 8572 /* translate source/destination address, if necessary */ 8573 if ((*state)->key[PF_SK_WIRE] != 8574 (*state)->key[PF_SK_STACK]) { 8575 struct pf_state_key *nk; 8576 8577 if (PF_REVERSED_KEY(*state, pd->af)) 8578 nk = (*state)->key[pd->sidx]; 8579 else 8580 nk = (*state)->key[pd->didx]; 8581 8582 #if defined(INET) && defined(INET6) 8583 int afto, sidx, didx; 8584 8585 afto = pd->af != nk->af; 8586 8587 if (afto && (*state)->direction == PF_IN) { 8588 sidx = pd2.didx; 8589 didx = pd2.sidx; 8590 iidx = !iidx; 8591 } else { 8592 sidx = pd2.sidx; 8593 didx = pd2.didx; 8594 } 8595 8596 if (afto) { 8597 if (nk->af != AF_INET6) 8598 return (PF_DROP); 8599 if (pf_translate_icmp_af(nk->af, 8600 &pd->hdr.icmp)) 8601 return (PF_DROP); 8602 m_copyback(pd->m, pd->off, 8603 sizeof(struct icmp6_hdr), 8604 (c_caddr_t)&pd->hdr.icmp6); 8605 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8606 &pd2, &nk->addr[sidx], 8607 &nk->addr[didx], pd->af, 8608 nk->af)) 8609 return (PF_DROP); 8610 pd->proto = IPPROTO_ICMPV6; 8611 if (pf_translate_icmp_af(nk->af, iih)) 8612 return (PF_DROP); 8613 if (virtual_type == htons(ICMP_ECHO) && 8614 nk->port[iidx] != iih->icmp_id) 8615 iih->icmp_id = nk->port[iidx]; 8616 m_copyback(pd2.m, pd2.off, ICMP_MINLEN, 8617 (c_caddr_t)iih); 8618 pf_addrcpy(&pd->nsaddr, 8619 &nk->addr[pd2.sidx], nk->af); 8620 pf_addrcpy(&pd->ndaddr, 8621 &nk->addr[pd2.didx], nk->af); 8622 /* 8623 * IPv4 becomes IPv6 so we must copy 8624 * IPv4 src addr to least 32bits in 8625 * IPv6 address to keep traceroute 8626 * working. 8627 */ 8628 pd->nsaddr.addr32[3] = 8629 pd->src->addr32[0]; 8630 pd->naf = nk->af; 8631 return (PF_AFRT); 8632 } 8633 #endif /* INET && INET6 */ 8634 8635 if (PF_ANEQ(pd2.src, 8636 &nk->addr[pd2.sidx], pd2.af) || 8637 (virtual_type == htons(ICMP_ECHO) && 8638 nk->port[iidx] != iih->icmp_id)) 8639 pf_change_icmp(pd2.src, 8640 (virtual_type == htons(ICMP_ECHO)) ? 8641 &iih->icmp_id : NULL, 8642 daddr, &nk->addr[pd2.sidx], 8643 (virtual_type == htons(ICMP_ECHO)) ? 8644 nk->port[iidx] : 0, NULL, 8645 pd2.ip_sum, icmpsum, 8646 pd->ip_sum, 0, AF_INET); 8647 8648 if (PF_ANEQ(pd2.dst, 8649 &nk->addr[pd2.didx], pd2.af)) 8650 pf_change_icmp(pd2.dst, NULL, NULL, 8651 &nk->addr[pd2.didx], 0, NULL, 8652 pd2.ip_sum, icmpsum, pd->ip_sum, 0, 8653 AF_INET); 8654 8655 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 8656 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 8657 m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih); 8658 } 8659 return (PF_PASS); 8660 break; 8661 } 8662 #endif /* INET */ 8663 #ifdef INET6 8664 case IPPROTO_ICMPV6: { 8665 struct icmp6_hdr *iih = &pd2.hdr.icmp6; 8666 8667 if (pd2.af != AF_INET6) { 8668 REASON_SET(reason, PFRES_NORM); 8669 return (PF_DROP); 8670 } 8671 8672 if (!pf_pull_hdr(pd->m, pd2.off, iih, 8673 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 8674 DPFPRINTF(PF_DEBUG_MISC, 8675 "pf: ICMP error message too short " 8676 "(icmp6)"); 8677 return (PF_DROP); 8678 } 8679 pd2.pcksum = &pd2.hdr.icmp6.icmp6_cksum; 8680 8681 pf_icmp_mapping(&pd2, iih->icmp6_type, 8682 &icmp_dir, &virtual_id, &virtual_type); 8683 8684 ret = pf_icmp_state_lookup(&key, &pd2, state, 8685 virtual_id, virtual_type, icmp_dir, &iidx, 0, 1); 8686 /* IPv6? try matching a multicast address */ 8687 if (ret == PF_DROP && pd2.af == AF_INET6 && 8688 icmp_dir == PF_OUT) { 8689 MPASS(*state == NULL); 8690 ret = pf_icmp_state_lookup(&key, &pd2, 8691 state, virtual_id, virtual_type, 8692 icmp_dir, &iidx, 1, 1); 8693 } 8694 if (ret >= 0) { 8695 MPASS(*state == NULL); 8696 return (ret); 8697 } 8698 8699 /* translate source/destination address, if necessary */ 8700 if ((*state)->key[PF_SK_WIRE] != 8701 (*state)->key[PF_SK_STACK]) { 8702 struct pf_state_key *nk; 8703 8704 if (PF_REVERSED_KEY(*state, pd->af)) 8705 nk = (*state)->key[pd->sidx]; 8706 else 8707 nk = (*state)->key[pd->didx]; 8708 8709 #if defined(INET) && defined(INET6) 8710 int afto, sidx, didx; 8711 8712 afto = pd->af != nk->af; 8713 8714 if (afto && (*state)->direction == PF_IN) { 8715 sidx = pd2.didx; 8716 didx = pd2.sidx; 8717 iidx = !iidx; 8718 } else { 8719 sidx = pd2.sidx; 8720 didx = pd2.didx; 8721 } 8722 8723 if (afto) { 8724 if (nk->af != AF_INET) 8725 return (PF_DROP); 8726 if (pf_translate_icmp_af(nk->af, 8727 &pd->hdr.icmp)) 8728 return (PF_DROP); 8729 m_copyback(pd->m, pd->off, 8730 sizeof(struct icmp6_hdr), 8731 (c_caddr_t)&pd->hdr.icmp6); 8732 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8733 &pd2, &nk->addr[sidx], 8734 &nk->addr[didx], pd->af, 8735 nk->af)) 8736 return (PF_DROP); 8737 pd->proto = IPPROTO_ICMP; 8738 if (pf_translate_icmp_af(nk->af, iih)) 8739 return (PF_DROP); 8740 if (virtual_type == 8741 htons(ICMP6_ECHO_REQUEST) && 8742 nk->port[iidx] != iih->icmp6_id) 8743 iih->icmp6_id = nk->port[iidx]; 8744 m_copyback(pd2.m, pd2.off, 8745 sizeof(struct icmp6_hdr), (c_caddr_t)iih); 8746 pf_addrcpy(&pd->nsaddr, 8747 &nk->addr[pd2.sidx], nk->af); 8748 pf_addrcpy(&pd->ndaddr, 8749 &nk->addr[pd2.didx], nk->af); 8750 pd->naf = nk->af; 8751 return (PF_AFRT); 8752 } 8753 #endif /* INET && INET6 */ 8754 8755 if (PF_ANEQ(pd2.src, 8756 &nk->addr[pd2.sidx], pd2.af) || 8757 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) && 8758 nk->port[pd2.sidx] != iih->icmp6_id)) 8759 pf_change_icmp(pd2.src, 8760 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 8761 ? &iih->icmp6_id : NULL, 8762 daddr, &nk->addr[pd2.sidx], 8763 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 8764 ? nk->port[iidx] : 0, NULL, 8765 pd2.ip_sum, icmpsum, 8766 pd->ip_sum, 0, AF_INET6); 8767 8768 if (PF_ANEQ(pd2.dst, 8769 &nk->addr[pd2.didx], pd2.af)) 8770 pf_change_icmp(pd2.dst, NULL, NULL, 8771 &nk->addr[pd2.didx], 0, NULL, 8772 pd2.ip_sum, icmpsum, 8773 pd->ip_sum, 0, AF_INET6); 8774 8775 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr), 8776 (caddr_t)&pd->hdr.icmp6); 8777 m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 8778 m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr), 8779 (caddr_t)iih); 8780 } 8781 return (PF_PASS); 8782 break; 8783 } 8784 #endif /* INET6 */ 8785 default: { 8786 int action; 8787 8788 key.af = pd2.af; 8789 key.proto = pd2.proto; 8790 pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af); 8791 pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af); 8792 key.port[0] = key.port[1] = 0; 8793 8794 action = pf_find_state(&pd2, &key, state); 8795 if (action != PF_MATCH) 8796 return (action); 8797 8798 /* translate source/destination address, if necessary */ 8799 if ((*state)->key[PF_SK_WIRE] != 8800 (*state)->key[PF_SK_STACK]) { 8801 struct pf_state_key *nk = 8802 (*state)->key[pd->didx]; 8803 8804 if (PF_ANEQ(pd2.src, 8805 &nk->addr[pd2.sidx], pd2.af)) 8806 pf_change_icmp(pd2.src, NULL, daddr, 8807 &nk->addr[pd2.sidx], 0, NULL, 8808 pd2.ip_sum, icmpsum, 8809 pd->ip_sum, 0, pd2.af); 8810 8811 if (PF_ANEQ(pd2.dst, 8812 &nk->addr[pd2.didx], pd2.af)) 8813 pf_change_icmp(pd2.dst, NULL, saddr, 8814 &nk->addr[pd2.didx], 0, NULL, 8815 pd2.ip_sum, icmpsum, 8816 pd->ip_sum, 0, pd2.af); 8817 8818 switch (pd2.af) { 8819 #ifdef INET 8820 case AF_INET: 8821 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8822 (caddr_t)&pd->hdr.icmp); 8823 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 8824 break; 8825 #endif /* INET */ 8826 #ifdef INET6 8827 case AF_INET6: 8828 m_copyback(pd->m, pd->off, 8829 sizeof(struct icmp6_hdr), 8830 (caddr_t )&pd->hdr.icmp6); 8831 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8832 (caddr_t )&h2_6); 8833 break; 8834 #endif /* INET6 */ 8835 } 8836 } 8837 return (PF_PASS); 8838 break; 8839 } 8840 } 8841 } 8842 } 8843 8844 /* 8845 * ipoff and off are measured from the start of the mbuf chain. 8846 * h must be at "ipoff" on the mbuf chain. 8847 */ 8848 void * 8849 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len, 8850 u_short *actionp, u_short *reasonp, sa_family_t af) 8851 { 8852 int iplen = 0; 8853 switch (af) { 8854 #ifdef INET 8855 case AF_INET: { 8856 const struct ip *h = mtod(m, struct ip *); 8857 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 8858 8859 if (fragoff) { 8860 if (fragoff >= len) 8861 ACTION_SET(actionp, PF_PASS); 8862 else { 8863 ACTION_SET(actionp, PF_DROP); 8864 REASON_SET(reasonp, PFRES_FRAG); 8865 } 8866 return (NULL); 8867 } 8868 iplen = ntohs(h->ip_len); 8869 break; 8870 } 8871 #endif /* INET */ 8872 #ifdef INET6 8873 case AF_INET6: { 8874 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 8875 8876 iplen = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 8877 break; 8878 } 8879 #endif /* INET6 */ 8880 } 8881 if (m->m_pkthdr.len < off + len || iplen < off + len) { 8882 ACTION_SET(actionp, PF_DROP); 8883 REASON_SET(reasonp, PFRES_SHORT); 8884 return (NULL); 8885 } 8886 m_copydata(m, off, len, p); 8887 return (p); 8888 } 8889 8890 int 8891 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 8892 int rtableid) 8893 { 8894 struct ifnet *ifp; 8895 8896 /* 8897 * Skip check for addresses with embedded interface scope, 8898 * as they would always match anyway. 8899 */ 8900 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 8901 return (1); 8902 8903 if (af != AF_INET && af != AF_INET6) 8904 return (0); 8905 8906 if (kif == V_pfi_all) 8907 return (1); 8908 8909 /* Skip checks for ipsec interfaces */ 8910 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 8911 return (1); 8912 8913 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 8914 8915 switch (af) { 8916 #ifdef INET6 8917 case AF_INET6: 8918 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 8919 ifp)); 8920 #endif /* INET6 */ 8921 #ifdef INET 8922 case AF_INET: 8923 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 8924 ifp)); 8925 #endif /* INET */ 8926 } 8927 8928 return (0); 8929 } 8930 8931 #ifdef INET 8932 static int 8933 pf_route(struct pf_krule *r, struct ifnet *oifp, 8934 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 8935 { 8936 struct mbuf *m0, *m1, *md; 8937 struct route ro; 8938 const struct sockaddr *gw = &ro.ro_dst; 8939 struct sockaddr_in *dst; 8940 struct ip *ip; 8941 struct ifnet *ifp = NULL; 8942 int error = 0; 8943 uint16_t ip_len, ip_off; 8944 uint16_t tmp; 8945 int r_dir; 8946 bool skip_test = false; 8947 int action = PF_PASS; 8948 8949 KASSERT(pd->m && r && oifp, ("%s: invalid parameters", __func__)); 8950 8951 SDT_PROBE4(pf, ip, route_to, entry, pd->m, pd, s, oifp); 8952 8953 if (s) { 8954 r_dir = s->direction; 8955 } else { 8956 r_dir = r->direction; 8957 } 8958 8959 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 8960 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 8961 __func__)); 8962 8963 if ((pd->pf_mtag == NULL && 8964 ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) || 8965 pd->pf_mtag->routed++ > 3) { 8966 m0 = pd->m; 8967 pd->m = NULL; 8968 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8969 action = PF_DROP; 8970 goto bad_locked; 8971 } 8972 8973 if (pd->act.rt_kif != NULL) 8974 ifp = pd->act.rt_kif->pfik_ifp; 8975 8976 if (pd->act.rt == PF_DUPTO) { 8977 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 8978 if (s != NULL) { 8979 PF_STATE_UNLOCK(s); 8980 } 8981 if (ifp == oifp) { 8982 /* When the 2nd interface is not skipped */ 8983 return (action); 8984 } else { 8985 m0 = pd->m; 8986 pd->m = NULL; 8987 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8988 action = PF_DROP; 8989 goto bad; 8990 } 8991 } else { 8992 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 8993 if (((m0 = m_dup(pd->m, M_NOWAIT)) == NULL)) { 8994 if (s) 8995 PF_STATE_UNLOCK(s); 8996 return (action); 8997 } 8998 } 8999 } else { 9000 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) { 9001 if (pd->af == pd->naf) { 9002 pf_dummynet(pd, s, r, &pd->m); 9003 if (s) 9004 PF_STATE_UNLOCK(s); 9005 return (action); 9006 } else { 9007 if (r_dir == PF_IN) { 9008 skip_test = true; 9009 } 9010 } 9011 } 9012 9013 /* 9014 * If we're actually doing route-to and af-to and are in the 9015 * reply direction. 9016 */ 9017 if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp && 9018 pd->af != pd->naf) { 9019 if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET) { 9020 /* Un-set ifp so we do a plain route lookup. */ 9021 ifp = NULL; 9022 } 9023 if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET6) { 9024 /* Un-set ifp so we do a plain route lookup. */ 9025 ifp = NULL; 9026 } 9027 } 9028 m0 = pd->m; 9029 } 9030 9031 ip = mtod(m0, struct ip *); 9032 9033 bzero(&ro, sizeof(ro)); 9034 dst = (struct sockaddr_in *)&ro.ro_dst; 9035 dst->sin_family = AF_INET; 9036 dst->sin_len = sizeof(struct sockaddr_in); 9037 dst->sin_addr.s_addr = pd->act.rt_addr.v4.s_addr; 9038 9039 if (pd->dir == PF_IN) { 9040 if (ip->ip_ttl <= IPTTLDEC) { 9041 if (r->rt != PF_DUPTO) 9042 pf_send_icmp(m0, ICMP_TIMXCEED, 9043 ICMP_TIMXCEED_INTRANS, 0, pd->af, r, 9044 pd->act.rtableid); 9045 action = PF_DROP; 9046 goto bad_locked; 9047 } 9048 ip->ip_ttl -= IPTTLDEC; 9049 } 9050 9051 if (s != NULL) { 9052 if (ifp == NULL && (pd->af != pd->naf)) { 9053 /* We're in the AFTO case. Do a route lookup. */ 9054 const struct nhop_object *nh; 9055 nh = fib4_lookup(M_GETFIB(m0), ip->ip_dst, 0, NHR_NONE, 0); 9056 if (nh) { 9057 ifp = nh->nh_ifp; 9058 9059 /* Use the gateway if needed. */ 9060 if (nh->nh_flags & NHF_GATEWAY) { 9061 gw = &nh->gw_sa; 9062 ro.ro_flags |= RT_HAS_GW; 9063 } else { 9064 dst->sin_addr = ip->ip_dst; 9065 } 9066 9067 /* 9068 * Bind to the correct interface if we're 9069 * if-bound. We don't know which interface 9070 * that will be until here, so we've inserted 9071 * the state on V_pf_all. Fix that now. 9072 */ 9073 if (s->kif == V_pfi_all && ifp != NULL && 9074 r->rule_flag & PFRULE_IFBOUND) 9075 s->kif = ifp->if_pf_kif; 9076 } 9077 } 9078 9079 if (r->rule_flag & PFRULE_IFBOUND && 9080 pd->act.rt == PF_REPLYTO && 9081 s->kif == V_pfi_all) { 9082 s->kif = pd->act.rt_kif; 9083 s->orig_kif = oifp->if_pf_kif; 9084 } 9085 9086 PF_STATE_UNLOCK(s); 9087 } 9088 9089 if (ifp == NULL) { 9090 m0 = pd->m; 9091 pd->m = NULL; 9092 action = PF_DROP; 9093 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9094 goto bad; 9095 } 9096 9097 if (r->rt == PF_DUPTO) 9098 skip_test = true; 9099 9100 if (pd->dir == PF_IN && !skip_test) { 9101 if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp, 9102 &pd->act) != PF_PASS) { 9103 action = PF_DROP; 9104 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9105 goto bad; 9106 } else if (m0 == NULL) { 9107 action = PF_DROP; 9108 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9109 goto done; 9110 } 9111 if (m0->m_len < sizeof(struct ip)) { 9112 DPFPRINTF(PF_DEBUG_URGENT, 9113 "%s: m0->m_len < sizeof(struct ip)", __func__); 9114 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9115 action = PF_DROP; 9116 goto bad; 9117 } 9118 ip = mtod(m0, struct ip *); 9119 } 9120 9121 if (ifp->if_flags & IFF_LOOPBACK) 9122 m0->m_flags |= M_SKIP_FIREWALL; 9123 9124 ip_len = ntohs(ip->ip_len); 9125 ip_off = ntohs(ip->ip_off); 9126 9127 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 9128 m0->m_pkthdr.csum_flags |= CSUM_IP; 9129 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 9130 in_delayed_cksum(m0); 9131 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 9132 } 9133 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 9134 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2)); 9135 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 9136 } 9137 9138 if (pd->dir == PF_IN) { 9139 /* 9140 * Make sure dummynet gets the correct direction, in case it needs to 9141 * re-inject later. 9142 */ 9143 pd->dir = PF_OUT; 9144 9145 /* 9146 * The following processing is actually the rest of the inbound processing, even 9147 * though we've marked it as outbound (so we don't look through dummynet) and it 9148 * happens after the outbound processing (pf_test(PF_OUT) above). 9149 * Swap the dummynet pipe numbers, because it's going to come to the wrong 9150 * conclusion about what direction it's processing, and we can't fix it or it 9151 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 9152 * decision will pick the right pipe, and everything will mostly work as expected. 9153 */ 9154 tmp = pd->act.dnrpipe; 9155 pd->act.dnrpipe = pd->act.dnpipe; 9156 pd->act.dnpipe = tmp; 9157 } 9158 9159 /* 9160 * If small enough for interface, or the interface will take 9161 * care of the fragmentation for us, we can just send directly. 9162 */ 9163 if (ip_len <= ifp->if_mtu || 9164 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 9165 ip->ip_sum = 0; 9166 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 9167 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 9168 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 9169 } 9170 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 9171 9172 md = m0; 9173 error = pf_dummynet_route(pd, s, r, ifp, gw, &md); 9174 if (md != NULL) { 9175 error = (*ifp->if_output)(ifp, md, gw, &ro); 9176 SDT_PROBE2(pf, ip, route_to, output, ifp, error); 9177 } 9178 goto done; 9179 } 9180 9181 /* Balk when DF bit is set or the interface didn't support TSO. */ 9182 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 9183 error = EMSGSIZE; 9184 KMOD_IPSTAT_INC(ips_cantfrag); 9185 if (pd->act.rt != PF_DUPTO) { 9186 if (s && s->nat_rule != NULL) { 9187 MPASS(m0 == pd->m); 9188 PACKET_UNDO_NAT(pd, 9189 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 9190 s); 9191 } 9192 9193 pf_send_icmp(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 9194 ifp->if_mtu, pd->af, r, pd->act.rtableid); 9195 } 9196 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9197 action = PF_DROP; 9198 goto bad; 9199 } 9200 9201 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 9202 if (error) { 9203 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9204 action = PF_DROP; 9205 goto bad; 9206 } 9207 9208 for (; m0; m0 = m1) { 9209 m1 = m0->m_nextpkt; 9210 m0->m_nextpkt = NULL; 9211 if (error == 0) { 9212 m_clrprotoflags(m0); 9213 md = m0; 9214 pd->pf_mtag = pf_find_mtag(md); 9215 error = pf_dummynet_route(pd, s, r, ifp, 9216 gw, &md); 9217 if (md != NULL) { 9218 error = (*ifp->if_output)(ifp, md, gw, &ro); 9219 SDT_PROBE2(pf, ip, route_to, output, ifp, error); 9220 } 9221 } else 9222 m_freem(m0); 9223 } 9224 9225 if (error == 0) 9226 KMOD_IPSTAT_INC(ips_fragmented); 9227 9228 done: 9229 if (pd->act.rt != PF_DUPTO) 9230 pd->m = NULL; 9231 else 9232 action = PF_PASS; 9233 return (action); 9234 9235 bad_locked: 9236 if (s) 9237 PF_STATE_UNLOCK(s); 9238 bad: 9239 m_freem(m0); 9240 goto done; 9241 } 9242 #endif /* INET */ 9243 9244 #ifdef INET6 9245 static int 9246 pf_route6(struct pf_krule *r, struct ifnet *oifp, 9247 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 9248 { 9249 struct mbuf *m0, *md; 9250 struct m_tag *mtag; 9251 struct sockaddr_in6 dst; 9252 struct ip6_hdr *ip6; 9253 struct ifnet *ifp = NULL; 9254 int r_dir; 9255 bool skip_test = false; 9256 int action = PF_PASS; 9257 9258 KASSERT(pd->m && r && oifp, ("%s: invalid parameters", __func__)); 9259 9260 SDT_PROBE4(pf, ip6, route_to, entry, pd->m, pd, s, oifp); 9261 9262 if (s) { 9263 r_dir = s->direction; 9264 } else { 9265 r_dir = r->direction; 9266 } 9267 9268 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 9269 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 9270 __func__)); 9271 9272 if ((pd->pf_mtag == NULL && 9273 ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) || 9274 pd->pf_mtag->routed++ > 3) { 9275 m0 = pd->m; 9276 pd->m = NULL; 9277 action = PF_DROP; 9278 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9279 goto bad_locked; 9280 } 9281 9282 if (pd->act.rt_kif != NULL) 9283 ifp = pd->act.rt_kif->pfik_ifp; 9284 9285 if (pd->act.rt == PF_DUPTO) { 9286 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 9287 if (s != NULL) { 9288 PF_STATE_UNLOCK(s); 9289 } 9290 if (ifp == oifp) { 9291 /* When the 2nd interface is not skipped */ 9292 return (action); 9293 } else { 9294 m0 = pd->m; 9295 pd->m = NULL; 9296 action = PF_DROP; 9297 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9298 goto bad; 9299 } 9300 } else { 9301 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 9302 if (((m0 = m_dup(pd->m, M_NOWAIT)) == NULL)) { 9303 if (s) 9304 PF_STATE_UNLOCK(s); 9305 return (action); 9306 } 9307 } 9308 } else { 9309 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) { 9310 if (pd->af == pd->naf) { 9311 pf_dummynet(pd, s, r, &pd->m); 9312 if (s) 9313 PF_STATE_UNLOCK(s); 9314 return (action); 9315 } else { 9316 if (r_dir == PF_IN) { 9317 skip_test = true; 9318 } 9319 } 9320 } 9321 9322 /* 9323 * If we're actually doing route-to and af-to and are in the 9324 * reply direction. 9325 */ 9326 if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp && 9327 pd->af != pd->naf) { 9328 if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET6) { 9329 /* Un-set ifp so we do a plain route lookup. */ 9330 ifp = NULL; 9331 } 9332 if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET) { 9333 /* Un-set ifp so we do a plain route lookup. */ 9334 ifp = NULL; 9335 } 9336 } 9337 m0 = pd->m; 9338 } 9339 9340 ip6 = mtod(m0, struct ip6_hdr *); 9341 9342 bzero(&dst, sizeof(dst)); 9343 dst.sin6_family = AF_INET6; 9344 dst.sin6_len = sizeof(dst); 9345 pf_addrcpy((struct pf_addr *)&dst.sin6_addr, &pd->act.rt_addr, 9346 AF_INET6); 9347 9348 if (pd->dir == PF_IN) { 9349 if (ip6->ip6_hlim <= IPV6_HLIMDEC) { 9350 if (r->rt != PF_DUPTO) 9351 pf_send_icmp(m0, ICMP6_TIME_EXCEEDED, 9352 ICMP6_TIME_EXCEED_TRANSIT, 0, pd->af, r, 9353 pd->act.rtableid); 9354 action = PF_DROP; 9355 goto bad_locked; 9356 } 9357 ip6->ip6_hlim -= IPV6_HLIMDEC; 9358 } 9359 9360 if (s != NULL) { 9361 if (ifp == NULL && (pd->af != pd->naf)) { 9362 const struct nhop_object *nh; 9363 nh = fib6_lookup(M_GETFIB(m0), &ip6->ip6_dst, 0, NHR_NONE, 0); 9364 if (nh) { 9365 ifp = nh->nh_ifp; 9366 9367 /* Use the gateway if needed. */ 9368 if (nh->nh_flags & NHF_GATEWAY) 9369 bcopy(&nh->gw6_sa.sin6_addr, &dst.sin6_addr, 9370 sizeof(dst.sin6_addr)); 9371 else 9372 dst.sin6_addr = ip6->ip6_dst; 9373 9374 /* 9375 * Bind to the correct interface if we're 9376 * if-bound. We don't know which interface 9377 * that will be until here, so we've inserted 9378 * the state on V_pf_all. Fix that now. 9379 */ 9380 if (s->kif == V_pfi_all && ifp != NULL && 9381 r->rule_flag & PFRULE_IFBOUND) 9382 s->kif = ifp->if_pf_kif; 9383 } 9384 } 9385 9386 if (r->rule_flag & PFRULE_IFBOUND && 9387 pd->act.rt == PF_REPLYTO && 9388 s->kif == V_pfi_all) { 9389 s->kif = pd->act.rt_kif; 9390 s->orig_kif = oifp->if_pf_kif; 9391 } 9392 9393 PF_STATE_UNLOCK(s); 9394 } 9395 9396 if (pd->af != pd->naf) { 9397 struct udphdr *uh = &pd->hdr.udp; 9398 9399 if (pd->proto == IPPROTO_UDP && uh->uh_sum == 0) { 9400 uh->uh_sum = in6_cksum_pseudo(ip6, 9401 ntohs(uh->uh_ulen), IPPROTO_UDP, 0); 9402 m_copyback(m0, pd->off, sizeof(*uh), pd->hdr.any); 9403 } 9404 } 9405 9406 if (ifp == NULL) { 9407 m0 = pd->m; 9408 pd->m = NULL; 9409 action = PF_DROP; 9410 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9411 goto bad; 9412 } 9413 9414 if (r->rt == PF_DUPTO) 9415 skip_test = true; 9416 9417 if (pd->dir == PF_IN && !skip_test) { 9418 if (pf_test(AF_INET6, PF_OUT, PFIL_FWD | PF_PFIL_NOREFRAGMENT, 9419 ifp, &m0, inp, &pd->act) != PF_PASS) { 9420 action = PF_DROP; 9421 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9422 goto bad; 9423 } else if (m0 == NULL) { 9424 action = PF_DROP; 9425 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9426 goto done; 9427 } 9428 if (m0->m_len < sizeof(struct ip6_hdr)) { 9429 DPFPRINTF(PF_DEBUG_URGENT, 9430 "%s: m0->m_len < sizeof(struct ip6_hdr)", 9431 __func__); 9432 action = PF_DROP; 9433 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9434 goto bad; 9435 } 9436 ip6 = mtod(m0, struct ip6_hdr *); 9437 } 9438 9439 if (ifp->if_flags & IFF_LOOPBACK) 9440 m0->m_flags |= M_SKIP_FIREWALL; 9441 9442 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 9443 ~ifp->if_hwassist) { 9444 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 9445 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 9446 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 9447 } 9448 9449 if (pd->dir == PF_IN) { 9450 uint16_t tmp; 9451 /* 9452 * Make sure dummynet gets the correct direction, in case it needs to 9453 * re-inject later. 9454 */ 9455 pd->dir = PF_OUT; 9456 9457 /* 9458 * The following processing is actually the rest of the inbound processing, even 9459 * though we've marked it as outbound (so we don't look through dummynet) and it 9460 * happens after the outbound processing (pf_test(PF_OUT) above). 9461 * Swap the dummynet pipe numbers, because it's going to come to the wrong 9462 * conclusion about what direction it's processing, and we can't fix it or it 9463 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 9464 * decision will pick the right pipe, and everything will mostly work as expected. 9465 */ 9466 tmp = pd->act.dnrpipe; 9467 pd->act.dnrpipe = pd->act.dnpipe; 9468 pd->act.dnpipe = tmp; 9469 } 9470 9471 /* 9472 * If the packet is too large for the outgoing interface, 9473 * send back an icmp6 error. 9474 */ 9475 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 9476 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 9477 mtag = m_tag_find(m0, PACKET_TAG_PF_REASSEMBLED, NULL); 9478 if (mtag != NULL) { 9479 int ret __sdt_used; 9480 ret = pf_refragment6(ifp, &m0, mtag, ifp, true); 9481 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret); 9482 goto done; 9483 } 9484 9485 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 9486 md = m0; 9487 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 9488 if (md != NULL) { 9489 int ret __sdt_used; 9490 ret = nd6_output_ifp(ifp, ifp, md, &dst, NULL); 9491 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret); 9492 } 9493 } 9494 else { 9495 in6_ifstat_inc(ifp, ifs6_in_toobig); 9496 if (pd->act.rt != PF_DUPTO) { 9497 if (s && s->nat_rule != NULL) { 9498 MPASS(m0 == pd->m); 9499 PACKET_UNDO_NAT(pd, 9500 ((caddr_t)ip6 - m0->m_data) + 9501 sizeof(struct ip6_hdr), s); 9502 } 9503 9504 if (r->rt != PF_DUPTO) 9505 pf_send_icmp(m0, ICMP6_PACKET_TOO_BIG, 0, 9506 ifp->if_mtu, pd->af, r, pd->act.rtableid); 9507 } 9508 action = PF_DROP; 9509 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9510 goto bad; 9511 } 9512 9513 done: 9514 if (pd->act.rt != PF_DUPTO) 9515 pd->m = NULL; 9516 else 9517 action = PF_PASS; 9518 return (action); 9519 9520 bad_locked: 9521 if (s) 9522 PF_STATE_UNLOCK(s); 9523 bad: 9524 m_freem(m0); 9525 goto done; 9526 } 9527 #endif /* INET6 */ 9528 9529 /* 9530 * FreeBSD supports cksum offloads for the following drivers. 9531 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 9532 * 9533 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 9534 * network driver performed cksum including pseudo header, need to verify 9535 * csum_data 9536 * CSUM_DATA_VALID : 9537 * network driver performed cksum, needs to additional pseudo header 9538 * cksum computation with partial csum_data(i.e. lack of H/W support for 9539 * pseudo header, for instance sk(4) and possibly gem(4)) 9540 * 9541 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 9542 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 9543 * TCP/UDP layer. 9544 * Also, set csum_data to 0xffff to force cksum validation. 9545 */ 9546 static int 9547 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 9548 { 9549 u_int16_t sum = 0; 9550 int hw_assist = 0; 9551 struct ip *ip; 9552 9553 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 9554 return (1); 9555 if (m->m_pkthdr.len < off + len) 9556 return (1); 9557 9558 switch (p) { 9559 case IPPROTO_TCP: 9560 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 9561 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 9562 sum = m->m_pkthdr.csum_data; 9563 } else { 9564 ip = mtod(m, struct ip *); 9565 sum = in_pseudo(ip->ip_src.s_addr, 9566 ip->ip_dst.s_addr, htonl((u_short)len + 9567 m->m_pkthdr.csum_data + IPPROTO_TCP)); 9568 } 9569 sum ^= 0xffff; 9570 ++hw_assist; 9571 } 9572 break; 9573 case IPPROTO_UDP: 9574 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 9575 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 9576 sum = m->m_pkthdr.csum_data; 9577 } else { 9578 ip = mtod(m, struct ip *); 9579 sum = in_pseudo(ip->ip_src.s_addr, 9580 ip->ip_dst.s_addr, htonl((u_short)len + 9581 m->m_pkthdr.csum_data + IPPROTO_UDP)); 9582 } 9583 sum ^= 0xffff; 9584 ++hw_assist; 9585 } 9586 break; 9587 case IPPROTO_ICMP: 9588 #ifdef INET6 9589 case IPPROTO_ICMPV6: 9590 #endif /* INET6 */ 9591 break; 9592 default: 9593 return (1); 9594 } 9595 9596 if (!hw_assist) { 9597 switch (af) { 9598 case AF_INET: 9599 if (m->m_len < sizeof(struct ip)) 9600 return (1); 9601 sum = in4_cksum(m, (p == IPPROTO_ICMP ? 0 : p), off, len); 9602 break; 9603 #ifdef INET6 9604 case AF_INET6: 9605 if (m->m_len < sizeof(struct ip6_hdr)) 9606 return (1); 9607 sum = in6_cksum(m, p, off, len); 9608 break; 9609 #endif /* INET6 */ 9610 } 9611 } 9612 if (sum) { 9613 switch (p) { 9614 case IPPROTO_TCP: 9615 { 9616 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 9617 break; 9618 } 9619 case IPPROTO_UDP: 9620 { 9621 KMOD_UDPSTAT_INC(udps_badsum); 9622 break; 9623 } 9624 #ifdef INET 9625 case IPPROTO_ICMP: 9626 { 9627 KMOD_ICMPSTAT_INC(icps_checksum); 9628 break; 9629 } 9630 #endif 9631 #ifdef INET6 9632 case IPPROTO_ICMPV6: 9633 { 9634 KMOD_ICMP6STAT_INC(icp6s_checksum); 9635 break; 9636 } 9637 #endif /* INET6 */ 9638 } 9639 return (1); 9640 } else { 9641 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 9642 m->m_pkthdr.csum_flags |= 9643 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 9644 m->m_pkthdr.csum_data = 0xffff; 9645 } 9646 } 9647 return (0); 9648 } 9649 9650 static bool 9651 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r, 9652 const struct pf_kstate *s, struct ip_fw_args *dnflow) 9653 { 9654 int dndir = r->direction; 9655 9656 if (s && dndir == PF_INOUT) { 9657 dndir = s->direction; 9658 } else if (dndir == PF_INOUT) { 9659 /* Assume primary direction. Happens when we've set dnpipe in 9660 * the ethernet level code. */ 9661 dndir = pd->dir; 9662 } 9663 9664 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED) 9665 return (false); 9666 9667 memset(dnflow, 0, sizeof(*dnflow)); 9668 9669 if (pd->dport != NULL) 9670 dnflow->f_id.dst_port = ntohs(*pd->dport); 9671 if (pd->sport != NULL) 9672 dnflow->f_id.src_port = ntohs(*pd->sport); 9673 9674 if (pd->dir == PF_IN) 9675 dnflow->flags |= IPFW_ARGS_IN; 9676 else 9677 dnflow->flags |= IPFW_ARGS_OUT; 9678 9679 if (pd->dir != dndir && pd->act.dnrpipe) { 9680 dnflow->rule.info = pd->act.dnrpipe; 9681 } 9682 else if (pd->dir == dndir && pd->act.dnpipe) { 9683 dnflow->rule.info = pd->act.dnpipe; 9684 } 9685 else { 9686 return (false); 9687 } 9688 9689 dnflow->rule.info |= IPFW_IS_DUMMYNET; 9690 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 9691 dnflow->rule.info |= IPFW_IS_PIPE; 9692 9693 dnflow->f_id.proto = pd->proto; 9694 dnflow->f_id.extra = dnflow->rule.info; 9695 switch (pd->naf) { 9696 case AF_INET: 9697 dnflow->f_id.addr_type = 4; 9698 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 9699 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 9700 break; 9701 case AF_INET6: 9702 dnflow->flags |= IPFW_ARGS_IP6; 9703 dnflow->f_id.addr_type = 6; 9704 dnflow->f_id.src_ip6 = pd->src->v6; 9705 dnflow->f_id.dst_ip6 = pd->dst->v6; 9706 break; 9707 } 9708 9709 return (true); 9710 } 9711 9712 int 9713 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 9714 struct inpcb *inp) 9715 { 9716 struct pfi_kkif *kif; 9717 struct mbuf *m = *m0; 9718 9719 M_ASSERTPKTHDR(m); 9720 MPASS(ifp->if_vnet == curvnet); 9721 NET_EPOCH_ASSERT(); 9722 9723 if (!V_pf_status.running) 9724 return (PF_PASS); 9725 9726 kif = (struct pfi_kkif *)ifp->if_pf_kif; 9727 9728 if (kif == NULL) { 9729 DPFPRINTF(PF_DEBUG_URGENT, 9730 "%s: kif == NULL, if_xname %s", __func__, ifp->if_xname); 9731 return (PF_DROP); 9732 } 9733 if (kif->pfik_flags & PFI_IFLAG_SKIP) 9734 return (PF_PASS); 9735 9736 if (m->m_flags & M_SKIP_FIREWALL) 9737 return (PF_PASS); 9738 9739 if (__predict_false(! M_WRITABLE(*m0))) { 9740 m = *m0 = m_unshare(*m0, M_NOWAIT); 9741 if (*m0 == NULL) 9742 return (PF_DROP); 9743 } 9744 9745 /* Stateless! */ 9746 return (pf_test_eth_rule(dir, kif, m0)); 9747 } 9748 9749 static __inline void 9750 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag) 9751 { 9752 struct m_tag *mtag; 9753 9754 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 9755 9756 /* dummynet adds this tag, but pf does not need it, 9757 * and keeping it creates unexpected behavior, 9758 * e.g. in case of divert(4) usage right after dummynet. */ 9759 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 9760 if (mtag != NULL) 9761 m_tag_delete(m, mtag); 9762 } 9763 9764 static int 9765 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s, 9766 struct pf_krule *r, struct mbuf **m0) 9767 { 9768 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0)); 9769 } 9770 9771 static int 9772 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s, 9773 struct pf_krule *r, struct ifnet *ifp, const struct sockaddr *sa, 9774 struct mbuf **m0) 9775 { 9776 struct ip_fw_args dnflow; 9777 9778 NET_EPOCH_ASSERT(); 9779 9780 if (pd->act.dnpipe == 0 && pd->act.dnrpipe == 0) 9781 return (0); 9782 9783 if (ip_dn_io_ptr == NULL) { 9784 m_freem(*m0); 9785 *m0 = NULL; 9786 return (ENOMEM); 9787 } 9788 9789 if (pd->pf_mtag == NULL && 9790 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 9791 m_freem(*m0); 9792 *m0 = NULL; 9793 return (ENOMEM); 9794 } 9795 9796 if (ifp != NULL) { 9797 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO; 9798 9799 pd->pf_mtag->if_index = ifp->if_index; 9800 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 9801 9802 MPASS(sa != NULL); 9803 9804 switch (sa->sa_family) { 9805 case AF_INET: 9806 memcpy(&pd->pf_mtag->dst, sa, 9807 sizeof(struct sockaddr_in)); 9808 break; 9809 case AF_INET6: 9810 memcpy(&pd->pf_mtag->dst, sa, 9811 sizeof(struct sockaddr_in6)); 9812 break; 9813 } 9814 } 9815 9816 if (s != NULL && s->nat_rule != NULL && 9817 s->nat_rule->action == PF_RDR && 9818 ( 9819 #ifdef INET 9820 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) || 9821 #endif /* INET */ 9822 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) { 9823 /* 9824 * If we're redirecting to loopback mark this packet 9825 * as being local. Otherwise it might get dropped 9826 * if dummynet re-injects. 9827 */ 9828 (*m0)->m_pkthdr.rcvif = V_loif; 9829 } 9830 9831 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) { 9832 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 9833 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED; 9834 ip_dn_io_ptr(m0, &dnflow); 9835 if (*m0 != NULL) { 9836 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 9837 pf_dummynet_flag_remove(*m0, pd->pf_mtag); 9838 } 9839 } 9840 9841 return (0); 9842 } 9843 9844 static int 9845 pf_walk_option(struct pf_pdesc *pd, struct ip *h, int off, int end, 9846 u_short *reason) 9847 { 9848 uint8_t type, length, opts[15 * 4 - sizeof(struct ip)]; 9849 9850 /* IP header in payload of ICMP packet may be too short */ 9851 if (pd->m->m_pkthdr.len < end) { 9852 DPFPRINTF(PF_DEBUG_MISC, "IP option too short"); 9853 REASON_SET(reason, PFRES_SHORT); 9854 return (PF_DROP); 9855 } 9856 9857 MPASS(end - off <= sizeof(opts)); 9858 m_copydata(pd->m, off, end - off, opts); 9859 end -= off; 9860 off = 0; 9861 9862 while (off < end) { 9863 type = opts[off]; 9864 if (type == IPOPT_EOL) 9865 break; 9866 if (type == IPOPT_NOP) { 9867 off++; 9868 continue; 9869 } 9870 if (off + 2 > end) { 9871 DPFPRINTF(PF_DEBUG_MISC, "IP length opt"); 9872 REASON_SET(reason, PFRES_IPOPTIONS); 9873 return (PF_DROP); 9874 } 9875 length = opts[off + 1]; 9876 if (length < 2) { 9877 DPFPRINTF(PF_DEBUG_MISC, "IP short opt"); 9878 REASON_SET(reason, PFRES_IPOPTIONS); 9879 return (PF_DROP); 9880 } 9881 if (off + length > end) { 9882 DPFPRINTF(PF_DEBUG_MISC, "IP long opt"); 9883 REASON_SET(reason, PFRES_IPOPTIONS); 9884 return (PF_DROP); 9885 } 9886 switch (type) { 9887 case IPOPT_RA: 9888 pd->badopts |= PF_OPT_ROUTER_ALERT; 9889 break; 9890 default: 9891 pd->badopts |= PF_OPT_OTHER; 9892 break; 9893 } 9894 off += length; 9895 } 9896 9897 return (PF_PASS); 9898 } 9899 9900 static int 9901 pf_walk_header(struct pf_pdesc *pd, struct ip *h, u_short *reason) 9902 { 9903 struct ah ext; 9904 u_int32_t hlen, end; 9905 int hdr_cnt; 9906 9907 hlen = h->ip_hl << 2; 9908 if (hlen < sizeof(struct ip) || hlen > ntohs(h->ip_len)) { 9909 REASON_SET(reason, PFRES_SHORT); 9910 return (PF_DROP); 9911 } 9912 if (hlen != sizeof(struct ip)) { 9913 if (pf_walk_option(pd, h, pd->off + sizeof(struct ip), 9914 pd->off + hlen, reason) != PF_PASS) 9915 return (PF_DROP); 9916 /* header options which contain only padding is fishy */ 9917 if (pd->badopts == 0) 9918 pd->badopts |= PF_OPT_OTHER; 9919 } 9920 end = pd->off + ntohs(h->ip_len); 9921 pd->off += hlen; 9922 pd->proto = h->ip_p; 9923 /* IGMP packets have router alert options, allow them */ 9924 if (pd->proto == IPPROTO_IGMP) { 9925 /* According to RFC 1112 ttl must be set to 1. */ 9926 if ((h->ip_ttl != 1) || 9927 !IN_MULTICAST(ntohl(h->ip_dst.s_addr))) { 9928 DPFPRINTF(PF_DEBUG_MISC, "Invalid IGMP"); 9929 REASON_SET(reason, PFRES_IPOPTIONS); 9930 return (PF_DROP); 9931 } 9932 pd->badopts &= ~PF_OPT_ROUTER_ALERT; 9933 } 9934 /* stop walking over non initial fragments */ 9935 if ((h->ip_off & htons(IP_OFFMASK)) != 0) 9936 return (PF_PASS); 9937 for (hdr_cnt = 0; hdr_cnt < PF_HDR_LIMIT; hdr_cnt++) { 9938 switch (pd->proto) { 9939 case IPPROTO_AH: 9940 /* fragments may be short */ 9941 if ((h->ip_off & htons(IP_MF | IP_OFFMASK)) != 0 && 9942 end < pd->off + sizeof(ext)) 9943 return (PF_PASS); 9944 if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext), 9945 NULL, reason, AF_INET)) { 9946 DPFPRINTF(PF_DEBUG_MISC, "IP short exthdr"); 9947 return (PF_DROP); 9948 } 9949 pd->off += (ext.ah_len + 2) * 4; 9950 pd->proto = ext.ah_nxt; 9951 break; 9952 default: 9953 return (PF_PASS); 9954 } 9955 } 9956 DPFPRINTF(PF_DEBUG_MISC, "IPv4 nested authentication header limit"); 9957 REASON_SET(reason, PFRES_IPOPTIONS); 9958 return (PF_DROP); 9959 } 9960 9961 #ifdef INET6 9962 static int 9963 pf_walk_option6(struct pf_pdesc *pd, struct ip6_hdr *h, int off, int end, 9964 u_short *reason) 9965 { 9966 struct ip6_opt opt; 9967 struct ip6_opt_jumbo jumbo; 9968 9969 while (off < end) { 9970 if (!pf_pull_hdr(pd->m, off, &opt.ip6o_type, 9971 sizeof(opt.ip6o_type), NULL, reason, AF_INET6)) { 9972 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short opt type"); 9973 return (PF_DROP); 9974 } 9975 if (opt.ip6o_type == IP6OPT_PAD1) { 9976 off++; 9977 continue; 9978 } 9979 if (!pf_pull_hdr(pd->m, off, &opt, sizeof(opt), NULL, 9980 reason, AF_INET6)) { 9981 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short opt"); 9982 return (PF_DROP); 9983 } 9984 if (off + sizeof(opt) + opt.ip6o_len > end) { 9985 DPFPRINTF(PF_DEBUG_MISC, "IPv6 long opt"); 9986 REASON_SET(reason, PFRES_IPOPTIONS); 9987 return (PF_DROP); 9988 } 9989 switch (opt.ip6o_type) { 9990 case IP6OPT_PADN: 9991 break; 9992 case IP6OPT_JUMBO: 9993 pd->badopts |= PF_OPT_JUMBO; 9994 if (pd->jumbolen != 0) { 9995 DPFPRINTF(PF_DEBUG_MISC, "IPv6 multiple jumbo"); 9996 REASON_SET(reason, PFRES_IPOPTIONS); 9997 return (PF_DROP); 9998 } 9999 if (ntohs(h->ip6_plen) != 0) { 10000 DPFPRINTF(PF_DEBUG_MISC, "IPv6 bad jumbo plen"); 10001 REASON_SET(reason, PFRES_IPOPTIONS); 10002 return (PF_DROP); 10003 } 10004 if (!pf_pull_hdr(pd->m, off, &jumbo, sizeof(jumbo), NULL, 10005 reason, AF_INET6)) { 10006 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short jumbo"); 10007 return (PF_DROP); 10008 } 10009 memcpy(&pd->jumbolen, jumbo.ip6oj_jumbo_len, 10010 sizeof(pd->jumbolen)); 10011 pd->jumbolen = ntohl(pd->jumbolen); 10012 if (pd->jumbolen < IPV6_MAXPACKET) { 10013 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short jumbolen"); 10014 REASON_SET(reason, PFRES_IPOPTIONS); 10015 return (PF_DROP); 10016 } 10017 break; 10018 case IP6OPT_ROUTER_ALERT: 10019 pd->badopts |= PF_OPT_ROUTER_ALERT; 10020 break; 10021 default: 10022 pd->badopts |= PF_OPT_OTHER; 10023 break; 10024 } 10025 off += sizeof(opt) + opt.ip6o_len; 10026 } 10027 10028 return (PF_PASS); 10029 } 10030 10031 int 10032 pf_walk_header6(struct pf_pdesc *pd, struct ip6_hdr *h, u_short *reason) 10033 { 10034 struct ip6_frag frag; 10035 struct ip6_ext ext; 10036 struct icmp6_hdr icmp6; 10037 struct ip6_rthdr rthdr; 10038 uint32_t end; 10039 int hdr_cnt, fraghdr_cnt = 0, rthdr_cnt = 0; 10040 10041 pd->off += sizeof(struct ip6_hdr); 10042 end = pd->off + ntohs(h->ip6_plen); 10043 pd->fragoff = pd->extoff = pd->jumbolen = 0; 10044 pd->proto = h->ip6_nxt; 10045 for (hdr_cnt = 0; hdr_cnt < PF_HDR_LIMIT; hdr_cnt++) { 10046 switch (pd->proto) { 10047 case IPPROTO_ROUTING: 10048 case IPPROTO_DSTOPTS: 10049 pd->badopts |= PF_OPT_OTHER; 10050 break; 10051 case IPPROTO_HOPOPTS: 10052 if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext), 10053 NULL, reason, AF_INET6)) { 10054 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short exthdr"); 10055 return (PF_DROP); 10056 } 10057 if (pf_walk_option6(pd, h, pd->off + sizeof(ext), 10058 pd->off + (ext.ip6e_len + 1) * 8, 10059 reason) != PF_PASS) 10060 return (PF_DROP); 10061 /* option header which contains only padding is fishy */ 10062 if (pd->badopts == 0) 10063 pd->badopts |= PF_OPT_OTHER; 10064 break; 10065 } 10066 switch (pd->proto) { 10067 case IPPROTO_FRAGMENT: 10068 if (fraghdr_cnt++) { 10069 DPFPRINTF(PF_DEBUG_MISC, "IPv6 multiple fragment"); 10070 REASON_SET(reason, PFRES_FRAG); 10071 return (PF_DROP); 10072 } 10073 /* jumbo payload packets cannot be fragmented */ 10074 if (pd->jumbolen != 0) { 10075 DPFPRINTF(PF_DEBUG_MISC, "IPv6 fragmented jumbo"); 10076 REASON_SET(reason, PFRES_FRAG); 10077 return (PF_DROP); 10078 } 10079 if (!pf_pull_hdr(pd->m, pd->off, &frag, sizeof(frag), 10080 NULL, reason, AF_INET6)) { 10081 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short fragment"); 10082 return (PF_DROP); 10083 } 10084 /* stop walking over non initial fragments */ 10085 if (ntohs((frag.ip6f_offlg & IP6F_OFF_MASK)) != 0) { 10086 pd->fragoff = pd->off; 10087 return (PF_PASS); 10088 } 10089 /* RFC6946: reassemble only non atomic fragments */ 10090 if (frag.ip6f_offlg & IP6F_MORE_FRAG) 10091 pd->fragoff = pd->off; 10092 pd->off += sizeof(frag); 10093 pd->proto = frag.ip6f_nxt; 10094 break; 10095 case IPPROTO_ROUTING: 10096 if (rthdr_cnt++) { 10097 DPFPRINTF(PF_DEBUG_MISC, "IPv6 multiple rthdr"); 10098 REASON_SET(reason, PFRES_IPOPTIONS); 10099 return (PF_DROP); 10100 } 10101 /* fragments may be short */ 10102 if (pd->fragoff != 0 && end < pd->off + sizeof(rthdr)) { 10103 pd->off = pd->fragoff; 10104 pd->proto = IPPROTO_FRAGMENT; 10105 return (PF_PASS); 10106 } 10107 if (!pf_pull_hdr(pd->m, pd->off, &rthdr, sizeof(rthdr), 10108 NULL, reason, AF_INET6)) { 10109 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short rthdr"); 10110 return (PF_DROP); 10111 } 10112 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 10113 DPFPRINTF(PF_DEBUG_MISC, "IPv6 rthdr0"); 10114 REASON_SET(reason, PFRES_IPOPTIONS); 10115 return (PF_DROP); 10116 } 10117 /* FALLTHROUGH */ 10118 case IPPROTO_HOPOPTS: 10119 /* RFC2460 4.1: Hop-by-Hop only after IPv6 header */ 10120 if (pd->proto == IPPROTO_HOPOPTS && hdr_cnt > 0) { 10121 DPFPRINTF(PF_DEBUG_MISC, "IPv6 hopopts not first"); 10122 REASON_SET(reason, PFRES_IPOPTIONS); 10123 return (PF_DROP); 10124 } 10125 /* FALLTHROUGH */ 10126 case IPPROTO_AH: 10127 case IPPROTO_DSTOPTS: 10128 if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext), 10129 NULL, reason, AF_INET6)) { 10130 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short exthdr"); 10131 return (PF_DROP); 10132 } 10133 /* fragments may be short */ 10134 if (pd->fragoff != 0 && end < pd->off + sizeof(ext)) { 10135 pd->off = pd->fragoff; 10136 pd->proto = IPPROTO_FRAGMENT; 10137 return (PF_PASS); 10138 } 10139 /* reassembly needs the ext header before the frag */ 10140 if (pd->fragoff == 0) 10141 pd->extoff = pd->off; 10142 if (pd->proto == IPPROTO_HOPOPTS && pd->fragoff == 0 && 10143 ntohs(h->ip6_plen) == 0 && pd->jumbolen != 0) { 10144 DPFPRINTF(PF_DEBUG_MISC, "IPv6 missing jumbo"); 10145 REASON_SET(reason, PFRES_IPOPTIONS); 10146 return (PF_DROP); 10147 } 10148 if (pd->proto == IPPROTO_AH) 10149 pd->off += (ext.ip6e_len + 2) * 4; 10150 else 10151 pd->off += (ext.ip6e_len + 1) * 8; 10152 pd->proto = ext.ip6e_nxt; 10153 break; 10154 case IPPROTO_ICMPV6: 10155 /* fragments may be short, ignore inner header then */ 10156 if (pd->fragoff != 0 && end < pd->off + sizeof(icmp6)) { 10157 pd->off = pd->fragoff; 10158 pd->proto = IPPROTO_FRAGMENT; 10159 return (PF_PASS); 10160 } 10161 if (!pf_pull_hdr(pd->m, pd->off, &icmp6, sizeof(icmp6), 10162 NULL, reason, AF_INET6)) { 10163 DPFPRINTF(PF_DEBUG_MISC, 10164 "IPv6 short icmp6hdr"); 10165 return (PF_DROP); 10166 } 10167 /* ICMP multicast packets have router alert options */ 10168 switch (icmp6.icmp6_type) { 10169 case MLD_LISTENER_QUERY: 10170 case MLD_LISTENER_REPORT: 10171 case MLD_LISTENER_DONE: 10172 case MLDV2_LISTENER_REPORT: 10173 /* 10174 * According to RFC 2710 all MLD messages are 10175 * sent with hop-limit (ttl) set to 1, and link 10176 * local source address. If either one is 10177 * missing then MLD message is invalid and 10178 * should be discarded. 10179 */ 10180 if ((h->ip6_hlim != 1) || 10181 !IN6_IS_ADDR_LINKLOCAL(&h->ip6_src)) { 10182 DPFPRINTF(PF_DEBUG_MISC, "Invalid MLD"); 10183 REASON_SET(reason, PFRES_IPOPTIONS); 10184 return (PF_DROP); 10185 } 10186 pd->badopts &= ~PF_OPT_ROUTER_ALERT; 10187 break; 10188 } 10189 return (PF_PASS); 10190 case IPPROTO_TCP: 10191 case IPPROTO_UDP: 10192 case IPPROTO_SCTP: 10193 /* fragments may be short, ignore inner header then */ 10194 if (pd->fragoff != 0 && end < pd->off + 10195 (pd->proto == IPPROTO_TCP ? sizeof(struct tcphdr) : 10196 pd->proto == IPPROTO_UDP ? sizeof(struct udphdr) : 10197 pd->proto == IPPROTO_SCTP ? sizeof(struct sctphdr) : 10198 sizeof(struct icmp6_hdr))) { 10199 pd->off = pd->fragoff; 10200 pd->proto = IPPROTO_FRAGMENT; 10201 } 10202 /* FALLTHROUGH */ 10203 default: 10204 return (PF_PASS); 10205 } 10206 } 10207 DPFPRINTF(PF_DEBUG_MISC, "IPv6 nested extension header limit"); 10208 REASON_SET(reason, PFRES_IPOPTIONS); 10209 return (PF_DROP); 10210 } 10211 #endif /* INET6 */ 10212 10213 static void 10214 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m) 10215 { 10216 memset(pd, 0, sizeof(*pd)); 10217 pd->pf_mtag = pf_find_mtag(m); 10218 pd->m = m; 10219 } 10220 10221 static int 10222 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0, 10223 u_short *action, u_short *reason, struct pfi_kkif *kif, 10224 struct pf_rule_actions *default_actions) 10225 { 10226 pd->dir = dir; 10227 pd->kif = kif; 10228 pd->m = *m0; 10229 pd->sidx = (dir == PF_IN) ? 0 : 1; 10230 pd->didx = (dir == PF_IN) ? 1 : 0; 10231 pd->af = pd->naf = af; 10232 10233 PF_RULES_ASSERT(); 10234 10235 TAILQ_INIT(&pd->sctp_multihome_jobs); 10236 if (default_actions != NULL) 10237 memcpy(&pd->act, default_actions, sizeof(pd->act)); 10238 10239 if (pd->pf_mtag && pd->pf_mtag->dnpipe) { 10240 pd->act.dnpipe = pd->pf_mtag->dnpipe; 10241 pd->act.flags = pd->pf_mtag->dnflags; 10242 } 10243 10244 switch (af) { 10245 #ifdef INET 10246 case AF_INET: { 10247 struct ip *h; 10248 10249 if (__predict_false((*m0)->m_len < sizeof(struct ip)) && 10250 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) { 10251 DPFPRINTF(PF_DEBUG_URGENT, 10252 "%s: m_len < sizeof(struct ip), pullup failed", 10253 __func__); 10254 *action = PF_DROP; 10255 REASON_SET(reason, PFRES_SHORT); 10256 return (-1); 10257 } 10258 10259 h = mtod(pd->m, struct ip *); 10260 if (pd->m->m_pkthdr.len < ntohs(h->ip_len)) { 10261 *action = PF_DROP; 10262 REASON_SET(reason, PFRES_SHORT); 10263 return (-1); 10264 } 10265 10266 if (pf_normalize_ip(reason, pd) != PF_PASS) { 10267 /* We do IP header normalization and packet reassembly here */ 10268 *m0 = pd->m; 10269 *action = PF_DROP; 10270 return (-1); 10271 } 10272 *m0 = pd->m; 10273 h = mtod(pd->m, struct ip *); 10274 10275 if (pf_walk_header(pd, h, reason) != PF_PASS) { 10276 *action = PF_DROP; 10277 return (-1); 10278 } 10279 10280 pd->src = (struct pf_addr *)&h->ip_src; 10281 pd->dst = (struct pf_addr *)&h->ip_dst; 10282 pf_addrcpy(&pd->osrc, pd->src, af); 10283 pf_addrcpy(&pd->odst, pd->dst, af); 10284 pd->ip_sum = &h->ip_sum; 10285 pd->tos = h->ip_tos & ~IPTOS_ECN_MASK; 10286 pd->ttl = h->ip_ttl; 10287 pd->tot_len = ntohs(h->ip_len); 10288 pd->act.rtableid = -1; 10289 pd->df = h->ip_off & htons(IP_DF); 10290 pd->virtual_proto = (h->ip_off & htons(IP_MF | IP_OFFMASK)) ? 10291 PF_VPROTO_FRAGMENT : pd->proto; 10292 10293 break; 10294 } 10295 #endif /* INET */ 10296 #ifdef INET6 10297 case AF_INET6: { 10298 struct ip6_hdr *h; 10299 10300 if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) && 10301 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) { 10302 DPFPRINTF(PF_DEBUG_URGENT, 10303 "%s: m_len < sizeof(struct ip6_hdr)" 10304 ", pullup failed", __func__); 10305 *action = PF_DROP; 10306 REASON_SET(reason, PFRES_SHORT); 10307 return (-1); 10308 } 10309 10310 h = mtod(pd->m, struct ip6_hdr *); 10311 if (pd->m->m_pkthdr.len < 10312 sizeof(struct ip6_hdr) + ntohs(h->ip6_plen)) { 10313 *action = PF_DROP; 10314 REASON_SET(reason, PFRES_SHORT); 10315 return (-1); 10316 } 10317 10318 /* 10319 * we do not support jumbogram. if we keep going, zero ip6_plen 10320 * will do something bad, so drop the packet for now. 10321 */ 10322 if (htons(h->ip6_plen) == 0) { 10323 *action = PF_DROP; 10324 return (-1); 10325 } 10326 10327 if (pf_walk_header6(pd, h, reason) != PF_PASS) { 10328 *action = PF_DROP; 10329 return (-1); 10330 } 10331 10332 h = mtod(pd->m, struct ip6_hdr *); 10333 pd->src = (struct pf_addr *)&h->ip6_src; 10334 pd->dst = (struct pf_addr *)&h->ip6_dst; 10335 pf_addrcpy(&pd->osrc, pd->src, af); 10336 pf_addrcpy(&pd->odst, pd->dst, af); 10337 pd->ip_sum = NULL; 10338 pd->tos = IPV6_DSCP(h); 10339 pd->ttl = h->ip6_hlim; 10340 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 10341 pd->act.rtableid = -1; 10342 10343 pd->virtual_proto = (pd->fragoff != 0) ? 10344 PF_VPROTO_FRAGMENT : pd->proto; 10345 10346 /* We do IP header normalization and packet reassembly here */ 10347 if (pf_normalize_ip6(pd->fragoff, reason, pd) != 10348 PF_PASS) { 10349 *m0 = pd->m; 10350 *action = PF_DROP; 10351 return (-1); 10352 } 10353 *m0 = pd->m; 10354 if (pd->m == NULL) { 10355 /* packet sits in reassembly queue, no error */ 10356 *action = PF_PASS; 10357 return (-1); 10358 } 10359 10360 /* Update pointers into the packet. */ 10361 h = mtod(pd->m, struct ip6_hdr *); 10362 pd->src = (struct pf_addr *)&h->ip6_src; 10363 pd->dst = (struct pf_addr *)&h->ip6_dst; 10364 10365 pd->off = 0; 10366 10367 if (pf_walk_header6(pd, h, reason) != PF_PASS) { 10368 *action = PF_DROP; 10369 return (-1); 10370 } 10371 10372 if (m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL) != NULL) { 10373 /* 10374 * Reassembly may have changed the next protocol from 10375 * fragment to something else, so update. 10376 */ 10377 pd->virtual_proto = pd->proto; 10378 MPASS(pd->fragoff == 0); 10379 } 10380 10381 if (pd->fragoff != 0) 10382 pd->virtual_proto = PF_VPROTO_FRAGMENT; 10383 10384 break; 10385 } 10386 #endif /* INET6 */ 10387 default: 10388 panic("pf_setup_pdesc called with illegal af %u", af); 10389 } 10390 10391 switch (pd->virtual_proto) { 10392 case IPPROTO_TCP: { 10393 struct tcphdr *th = &pd->hdr.tcp; 10394 10395 if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th), action, 10396 reason, af)) { 10397 *action = PF_DROP; 10398 REASON_SET(reason, PFRES_SHORT); 10399 return (-1); 10400 } 10401 pd->hdrlen = sizeof(*th); 10402 pd->p_len = pd->tot_len - pd->off - (th->th_off << 2); 10403 pd->sport = &th->th_sport; 10404 pd->dport = &th->th_dport; 10405 pd->pcksum = &th->th_sum; 10406 break; 10407 } 10408 case IPPROTO_UDP: { 10409 struct udphdr *uh = &pd->hdr.udp; 10410 10411 if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh), action, 10412 reason, af)) { 10413 *action = PF_DROP; 10414 REASON_SET(reason, PFRES_SHORT); 10415 return (-1); 10416 } 10417 pd->hdrlen = sizeof(*uh); 10418 if (uh->uh_dport == 0 || 10419 ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off || 10420 ntohs(uh->uh_ulen) < sizeof(struct udphdr)) { 10421 *action = PF_DROP; 10422 REASON_SET(reason, PFRES_SHORT); 10423 return (-1); 10424 } 10425 pd->sport = &uh->uh_sport; 10426 pd->dport = &uh->uh_dport; 10427 pd->pcksum = &uh->uh_sum; 10428 break; 10429 } 10430 case IPPROTO_SCTP: { 10431 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp), 10432 action, reason, af)) { 10433 *action = PF_DROP; 10434 REASON_SET(reason, PFRES_SHORT); 10435 return (-1); 10436 } 10437 pd->hdrlen = sizeof(pd->hdr.sctp); 10438 pd->p_len = pd->tot_len - pd->off; 10439 10440 pd->sport = &pd->hdr.sctp.src_port; 10441 pd->dport = &pd->hdr.sctp.dest_port; 10442 if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) { 10443 *action = PF_DROP; 10444 REASON_SET(reason, PFRES_SHORT); 10445 return (-1); 10446 } 10447 if (pf_scan_sctp(pd) != PF_PASS) { 10448 *action = PF_DROP; 10449 REASON_SET(reason, PFRES_SHORT); 10450 return (-1); 10451 } 10452 /* 10453 * Placeholder. The SCTP checksum is 32-bits, but 10454 * pf_test_state() expects to update a 16-bit checksum. 10455 * Provide a dummy value which we'll subsequently ignore. 10456 */ 10457 pd->pcksum = &pd->sctp_dummy_sum; 10458 break; 10459 } 10460 case IPPROTO_ICMP: { 10461 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN, 10462 action, reason, af)) { 10463 *action = PF_DROP; 10464 REASON_SET(reason, PFRES_SHORT); 10465 return (-1); 10466 } 10467 pd->pcksum = &pd->hdr.icmp.icmp_cksum; 10468 pd->hdrlen = ICMP_MINLEN; 10469 break; 10470 } 10471 #ifdef INET6 10472 case IPPROTO_ICMPV6: { 10473 size_t icmp_hlen = sizeof(struct icmp6_hdr); 10474 10475 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen, 10476 action, reason, af)) { 10477 *action = PF_DROP; 10478 REASON_SET(reason, PFRES_SHORT); 10479 return (-1); 10480 } 10481 /* ICMP headers we look further into to match state */ 10482 switch (pd->hdr.icmp6.icmp6_type) { 10483 case MLD_LISTENER_QUERY: 10484 case MLD_LISTENER_REPORT: 10485 icmp_hlen = sizeof(struct mld_hdr); 10486 break; 10487 case ND_NEIGHBOR_SOLICIT: 10488 case ND_NEIGHBOR_ADVERT: 10489 icmp_hlen = sizeof(struct nd_neighbor_solicit); 10490 /* FALLTHROUGH */ 10491 case ND_ROUTER_SOLICIT: 10492 case ND_ROUTER_ADVERT: 10493 case ND_REDIRECT: 10494 if (pd->ttl != 255) { 10495 REASON_SET(reason, PFRES_NORM); 10496 return (PF_DROP); 10497 } 10498 break; 10499 } 10500 if (icmp_hlen > sizeof(struct icmp6_hdr) && 10501 !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen, 10502 action, reason, af)) { 10503 *action = PF_DROP; 10504 REASON_SET(reason, PFRES_SHORT); 10505 return (-1); 10506 } 10507 pd->hdrlen = icmp_hlen; 10508 pd->pcksum = &pd->hdr.icmp6.icmp6_cksum; 10509 break; 10510 } 10511 #endif /* INET6 */ 10512 } 10513 10514 if (pd->sport) 10515 pd->osport = pd->nsport = *pd->sport; 10516 if (pd->dport) 10517 pd->odport = pd->ndport = *pd->dport; 10518 10519 return (0); 10520 } 10521 10522 static void 10523 pf_counters_inc(int action, struct pf_pdesc *pd, 10524 struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a) 10525 { 10526 struct pf_krule *tr; 10527 int dir = pd->dir; 10528 int dirndx; 10529 10530 pf_counter_u64_critical_enter(); 10531 pf_counter_u64_add_protected( 10532 &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 10533 pd->tot_len); 10534 pf_counter_u64_add_protected( 10535 &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 10536 1); 10537 10538 if (action == PF_PASS || action == PF_AFRT || r->action == PF_DROP) { 10539 dirndx = (dir == PF_OUT); 10540 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 10541 pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len); 10542 pf_update_timestamp(r); 10543 10544 if (a != NULL) { 10545 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 10546 pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len); 10547 } 10548 if (s != NULL) { 10549 struct pf_krule_item *ri; 10550 10551 if (s->nat_rule != NULL) { 10552 pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx], 10553 1); 10554 pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx], 10555 pd->tot_len); 10556 } 10557 /* 10558 * Source nodes are accessed unlocked here. 10559 * But since we are operating with stateful tracking 10560 * and the state is locked, those SNs could not have 10561 * been freed. 10562 */ 10563 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) { 10564 if (s->sns[sn_type] != NULL) { 10565 counter_u64_add( 10566 s->sns[sn_type]->packets[dirndx], 10567 1); 10568 counter_u64_add( 10569 s->sns[sn_type]->bytes[dirndx], 10570 pd->tot_len); 10571 } 10572 } 10573 dirndx = (dir == s->direction) ? 0 : 1; 10574 s->packets[dirndx]++; 10575 s->bytes[dirndx] += pd->tot_len; 10576 10577 SLIST_FOREACH(ri, &s->match_rules, entry) { 10578 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 10579 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len); 10580 10581 if (ri->r->src.addr.type == PF_ADDR_TABLE) 10582 pfr_update_stats(ri->r->src.addr.p.tbl, 10583 (s == NULL) ? pd->src : 10584 &s->key[(s->direction == PF_IN)]-> 10585 addr[(s->direction == PF_OUT)], 10586 pd->af, pd->tot_len, dir == PF_OUT, 10587 r->action == PF_PASS, ri->r->src.neg); 10588 if (ri->r->dst.addr.type == PF_ADDR_TABLE) 10589 pfr_update_stats(ri->r->dst.addr.p.tbl, 10590 (s == NULL) ? pd->dst : 10591 &s->key[(s->direction == PF_IN)]-> 10592 addr[(s->direction == PF_IN)], 10593 pd->af, pd->tot_len, dir == PF_OUT, 10594 r->action == PF_PASS, ri->r->dst.neg); 10595 } 10596 } 10597 10598 tr = r; 10599 if (s != NULL && s->nat_rule != NULL && 10600 r == &V_pf_default_rule) 10601 tr = s->nat_rule; 10602 10603 if (tr->src.addr.type == PF_ADDR_TABLE) 10604 pfr_update_stats(tr->src.addr.p.tbl, 10605 (s == NULL) ? pd->src : 10606 &s->key[(s->direction == PF_IN)]-> 10607 addr[(s->direction == PF_OUT)], 10608 pd->af, pd->tot_len, dir == PF_OUT, 10609 r->action == PF_PASS, tr->src.neg); 10610 if (tr->dst.addr.type == PF_ADDR_TABLE) 10611 pfr_update_stats(tr->dst.addr.p.tbl, 10612 (s == NULL) ? pd->dst : 10613 &s->key[(s->direction == PF_IN)]-> 10614 addr[(s->direction == PF_IN)], 10615 pd->af, pd->tot_len, dir == PF_OUT, 10616 r->action == PF_PASS, tr->dst.neg); 10617 } 10618 pf_counter_u64_critical_exit(); 10619 } 10620 static void 10621 pf_log_matches(struct pf_pdesc *pd, struct pf_krule *rm, 10622 struct pf_krule *am, struct pf_kruleset *ruleset, 10623 struct pf_krule_slist *matchrules) 10624 { 10625 struct pf_krule_item *ri; 10626 10627 /* if this is the log(matches) rule, packet has been logged already */ 10628 if (rm->log & PF_LOG_MATCHES) 10629 return; 10630 10631 SLIST_FOREACH(ri, matchrules, entry) 10632 if (ri->r->log & PF_LOG_MATCHES) 10633 PFLOG_PACKET(rm->action, PFRES_MATCH, rm, am, 10634 ruleset, pd, 1, ri->r); 10635 } 10636 10637 #if defined(INET) || defined(INET6) 10638 int 10639 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 10640 struct inpcb *inp, struct pf_rule_actions *default_actions) 10641 { 10642 struct pfi_kkif *kif; 10643 u_short action, reason = 0; 10644 struct m_tag *mtag; 10645 struct pf_krule *a = NULL, *r = &V_pf_default_rule; 10646 struct pf_kstate *s = NULL; 10647 struct pf_kruleset *ruleset = NULL; 10648 struct pf_pdesc pd; 10649 int use_2nd_queue = 0; 10650 uint16_t tag; 10651 10652 PF_RULES_RLOCK_TRACKER; 10653 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 10654 M_ASSERTPKTHDR(*m0); 10655 NET_EPOCH_ASSERT(); 10656 10657 if (!V_pf_status.running) 10658 return (PF_PASS); 10659 10660 kif = (struct pfi_kkif *)ifp->if_pf_kif; 10661 10662 if (__predict_false(kif == NULL)) { 10663 DPFPRINTF(PF_DEBUG_URGENT, 10664 "%s: kif == NULL, if_xname %s", 10665 __func__, ifp->if_xname); 10666 return (PF_DROP); 10667 } 10668 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 10669 return (PF_PASS); 10670 } 10671 10672 if ((*m0)->m_flags & M_SKIP_FIREWALL) { 10673 return (PF_PASS); 10674 } 10675 10676 if (__predict_false(! M_WRITABLE(*m0))) { 10677 *m0 = m_unshare(*m0, M_NOWAIT); 10678 if (*m0 == NULL) { 10679 return (PF_DROP); 10680 } 10681 } 10682 10683 pf_init_pdesc(&pd, *m0); 10684 10685 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 10686 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 10687 10688 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 10689 pd.pf_mtag->if_idxgen); 10690 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 10691 m_freem(*m0); 10692 *m0 = NULL; 10693 return (PF_PASS); 10694 } 10695 (ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL); 10696 *m0 = NULL; 10697 return (PF_PASS); 10698 } 10699 10700 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 10701 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 10702 /* Dummynet re-injects packets after they've 10703 * completed their delay. We've already 10704 * processed them, so pass unconditionally. */ 10705 10706 /* But only once. We may see the packet multiple times (e.g. 10707 * PFIL_IN/PFIL_OUT). */ 10708 pf_dummynet_flag_remove(pd.m, pd.pf_mtag); 10709 10710 return (PF_PASS); 10711 } 10712 10713 PF_RULES_RLOCK(); 10714 10715 if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason, 10716 kif, default_actions) == -1) { 10717 if (action != PF_PASS) 10718 pd.act.log |= PF_LOG_FORCE; 10719 goto done; 10720 } 10721 10722 #ifdef INET 10723 if (af == AF_INET && dir == PF_OUT && pflags & PFIL_FWD && 10724 pd.df && (*m0)->m_pkthdr.len > ifp->if_mtu) { 10725 PF_RULES_RUNLOCK(); 10726 icmp_error(*m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 10727 0, ifp->if_mtu); 10728 *m0 = NULL; 10729 return (PF_DROP); 10730 } 10731 #endif /* INET */ 10732 #ifdef INET6 10733 /* 10734 * If we end up changing IP addresses (e.g. binat) the stack may get 10735 * confused and fail to send the icmp6 packet too big error. Just send 10736 * it here, before we do any NAT. 10737 */ 10738 if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD && 10739 IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) { 10740 PF_RULES_RUNLOCK(); 10741 icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp)); 10742 *m0 = NULL; 10743 return (PF_DROP); 10744 } 10745 #endif /* INET6 */ 10746 10747 if (__predict_false(ip_divert_ptr != NULL) && 10748 ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) { 10749 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1); 10750 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) || 10751 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) { 10752 if (pd.pf_mtag == NULL && 10753 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 10754 action = PF_DROP; 10755 goto done; 10756 } 10757 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED; 10758 } 10759 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) { 10760 pd.m->m_flags |= M_FASTFWD_OURS; 10761 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 10762 } 10763 m_tag_delete(pd.m, mtag); 10764 10765 mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL); 10766 if (mtag != NULL) 10767 m_tag_delete(pd.m, mtag); 10768 } 10769 10770 switch (pd.virtual_proto) { 10771 case PF_VPROTO_FRAGMENT: 10772 /* 10773 * handle fragments that aren't reassembled by 10774 * normalization 10775 */ 10776 if (kif == NULL || r == NULL) /* pflog */ 10777 action = PF_DROP; 10778 else 10779 action = pf_test_rule(&r, &s, &pd, &a, 10780 &ruleset, &reason, inp); 10781 if (action != PF_PASS) 10782 REASON_SET(&reason, PFRES_FRAG); 10783 break; 10784 10785 case IPPROTO_TCP: { 10786 /* Respond to SYN with a syncookie. */ 10787 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 10788 pd.dir == PF_IN && pf_synflood_check(&pd)) { 10789 pf_syncookie_send(&pd); 10790 action = PF_DROP; 10791 break; 10792 } 10793 10794 if ((tcp_get_flags(&pd.hdr.tcp) & TH_ACK) && pd.p_len == 0) 10795 use_2nd_queue = 1; 10796 action = pf_normalize_tcp(&pd); 10797 if (action == PF_DROP) 10798 break; 10799 action = pf_test_state(&s, &pd, &reason); 10800 if (action == PF_PASS || action == PF_AFRT) { 10801 if (V_pfsync_update_state_ptr != NULL) 10802 V_pfsync_update_state_ptr(s); 10803 r = s->rule; 10804 a = s->anchor; 10805 } else if (s == NULL) { 10806 /* Validate remote SYN|ACK, re-create original SYN if 10807 * valid. */ 10808 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == 10809 TH_ACK && pf_syncookie_validate(&pd) && 10810 pd.dir == PF_IN) { 10811 struct mbuf *msyn; 10812 10813 msyn = pf_syncookie_recreate_syn(&pd); 10814 if (msyn == NULL) { 10815 action = PF_DROP; 10816 break; 10817 } 10818 10819 action = pf_test(af, dir, pflags, ifp, &msyn, inp, 10820 &pd.act); 10821 m_freem(msyn); 10822 if (action != PF_PASS) 10823 break; 10824 10825 action = pf_test_state(&s, &pd, &reason); 10826 if (action != PF_PASS || s == NULL) { 10827 action = PF_DROP; 10828 break; 10829 } 10830 10831 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 10832 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 10833 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 10834 action = pf_synproxy(&pd, s, &reason); 10835 break; 10836 } else { 10837 action = pf_test_rule(&r, &s, &pd, 10838 &a, &ruleset, &reason, inp); 10839 } 10840 } 10841 break; 10842 } 10843 10844 case IPPROTO_SCTP: 10845 action = pf_normalize_sctp(&pd); 10846 if (action == PF_DROP) 10847 break; 10848 /* fallthrough */ 10849 case IPPROTO_UDP: 10850 default: 10851 action = pf_test_state(&s, &pd, &reason); 10852 if (action == PF_PASS || action == PF_AFRT) { 10853 if (V_pfsync_update_state_ptr != NULL) 10854 V_pfsync_update_state_ptr(s); 10855 r = s->rule; 10856 a = s->anchor; 10857 } else if (s == NULL) { 10858 action = pf_test_rule(&r, &s, 10859 &pd, &a, &ruleset, &reason, inp); 10860 } 10861 break; 10862 10863 case IPPROTO_ICMP: 10864 case IPPROTO_ICMPV6: { 10865 if (pd.virtual_proto == IPPROTO_ICMP && af != AF_INET) { 10866 action = PF_DROP; 10867 REASON_SET(&reason, PFRES_NORM); 10868 DPFPRINTF(PF_DEBUG_MISC, 10869 "dropping IPv6 packet with ICMPv4 payload"); 10870 break; 10871 } 10872 if (pd.virtual_proto == IPPROTO_ICMPV6 && af != AF_INET6) { 10873 action = PF_DROP; 10874 REASON_SET(&reason, PFRES_NORM); 10875 DPFPRINTF(PF_DEBUG_MISC, 10876 "pf: dropping IPv4 packet with ICMPv6 payload"); 10877 break; 10878 } 10879 action = pf_test_state_icmp(&s, &pd, &reason); 10880 if (action == PF_PASS || action == PF_AFRT) { 10881 if (V_pfsync_update_state_ptr != NULL) 10882 V_pfsync_update_state_ptr(s); 10883 r = s->rule; 10884 a = s->anchor; 10885 } else if (s == NULL) 10886 action = pf_test_rule(&r, &s, &pd, 10887 &a, &ruleset, &reason, inp); 10888 break; 10889 } 10890 10891 } 10892 10893 done: 10894 PF_RULES_RUNLOCK(); 10895 10896 if (pd.m == NULL) 10897 goto eat_pkt; 10898 10899 if (s) 10900 memcpy(&pd.act, &s->act, sizeof(s->act)); 10901 10902 if (action == PF_PASS && pd.badopts != 0 && !pd.act.allow_opts) { 10903 action = PF_DROP; 10904 REASON_SET(&reason, PFRES_IPOPTIONS); 10905 pd.act.log = PF_LOG_FORCE; 10906 DPFPRINTF(PF_DEBUG_MISC, 10907 "pf: dropping packet with dangerous headers"); 10908 } 10909 10910 if (pd.act.max_pkt_size && pd.act.max_pkt_size && 10911 pd.tot_len > pd.act.max_pkt_size) { 10912 action = PF_DROP; 10913 REASON_SET(&reason, PFRES_NORM); 10914 pd.act.log = PF_LOG_FORCE; 10915 DPFPRINTF(PF_DEBUG_MISC, 10916 "pf: dropping overly long packet"); 10917 } 10918 10919 if (s) { 10920 uint8_t log = pd.act.log; 10921 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 10922 pd.act.log |= log; 10923 tag = s->tag; 10924 } else { 10925 tag = r->tag; 10926 } 10927 10928 if (tag > 0 && pf_tag_packet(&pd, tag)) { 10929 action = PF_DROP; 10930 REASON_SET(&reason, PFRES_MEMORY); 10931 } 10932 10933 pf_scrub(&pd); 10934 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 10935 pf_normalize_mss(&pd); 10936 10937 if (pd.act.rtableid >= 0) 10938 M_SETFIB(pd.m, pd.act.rtableid); 10939 10940 if (pd.act.flags & PFSTATE_SETPRIO) { 10941 if (pd.tos & IPTOS_LOWDELAY) 10942 use_2nd_queue = 1; 10943 if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) { 10944 action = PF_DROP; 10945 REASON_SET(&reason, PFRES_MEMORY); 10946 pd.act.log = PF_LOG_FORCE; 10947 DPFPRINTF(PF_DEBUG_MISC, 10948 "pf: failed to allocate 802.1q mtag"); 10949 } 10950 } 10951 10952 #ifdef ALTQ 10953 if (action == PF_PASS && pd.act.qid) { 10954 if (pd.pf_mtag == NULL && 10955 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 10956 action = PF_DROP; 10957 REASON_SET(&reason, PFRES_MEMORY); 10958 } else { 10959 if (s != NULL) 10960 pd.pf_mtag->qid_hash = pf_state_hash(s); 10961 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY)) 10962 pd.pf_mtag->qid = pd.act.pqid; 10963 else 10964 pd.pf_mtag->qid = pd.act.qid; 10965 /* Add hints for ecn. */ 10966 pd.pf_mtag->hdr = mtod(pd.m, void *); 10967 } 10968 } 10969 #endif /* ALTQ */ 10970 10971 /* 10972 * connections redirected to loopback should not match sockets 10973 * bound specifically to loopback due to security implications, 10974 * see tcp_input() and in_pcblookup_listen(). 10975 */ 10976 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 10977 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL && 10978 (s->nat_rule->action == PF_RDR || 10979 s->nat_rule->action == PF_BINAT) && 10980 pf_is_loopback(af, pd.dst)) 10981 pd.m->m_flags |= M_SKIP_FIREWALL; 10982 10983 if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) && 10984 action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) { 10985 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0, 10986 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO); 10987 if (mtag != NULL) { 10988 ((struct pf_divert_mtag *)(mtag+1))->port = 10989 ntohs(r->divert.port); 10990 ((struct pf_divert_mtag *)(mtag+1))->idir = 10991 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN : 10992 PF_DIVERT_MTAG_DIR_OUT; 10993 10994 if (s) 10995 PF_STATE_UNLOCK(s); 10996 10997 m_tag_prepend(pd.m, mtag); 10998 if (pd.m->m_flags & M_FASTFWD_OURS) { 10999 if (pd.pf_mtag == NULL && 11000 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 11001 action = PF_DROP; 11002 REASON_SET(&reason, PFRES_MEMORY); 11003 pd.act.log = PF_LOG_FORCE; 11004 DPFPRINTF(PF_DEBUG_MISC, 11005 "pf: failed to allocate tag"); 11006 } else { 11007 pd.pf_mtag->flags |= 11008 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 11009 pd.m->m_flags &= ~M_FASTFWD_OURS; 11010 } 11011 } 11012 ip_divert_ptr(*m0, dir == PF_IN); 11013 *m0 = NULL; 11014 11015 return (action); 11016 } else { 11017 /* XXX: ipfw has the same behaviour! */ 11018 action = PF_DROP; 11019 REASON_SET(&reason, PFRES_MEMORY); 11020 pd.act.log = PF_LOG_FORCE; 11021 DPFPRINTF(PF_DEBUG_MISC, 11022 "pf: failed to allocate divert tag"); 11023 } 11024 } 11025 /* XXX: Anybody working on it?! */ 11026 if (af == AF_INET6 && r->divert.port) 11027 printf("pf: divert(9) is not supported for IPv6\n"); 11028 11029 /* this flag will need revising if the pkt is forwarded */ 11030 if (pd.pf_mtag) 11031 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED; 11032 11033 if (pd.act.log) { 11034 struct pf_krule *lr; 11035 struct pf_krule_item *ri; 11036 11037 if (s != NULL && s->nat_rule != NULL && 11038 s->nat_rule->log & PF_LOG_ALL) 11039 lr = s->nat_rule; 11040 else 11041 lr = r; 11042 11043 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 11044 PFLOG_PACKET(action, reason, lr, a, 11045 ruleset, &pd, (s == NULL), NULL); 11046 if (s) { 11047 SLIST_FOREACH(ri, &s->match_rules, entry) 11048 if (ri->r->log & PF_LOG_ALL) 11049 PFLOG_PACKET(action, 11050 reason, ri->r, a, ruleset, &pd, 0, NULL); 11051 } 11052 } 11053 11054 pf_counters_inc(action, &pd, s, r, a); 11055 11056 switch (action) { 11057 case PF_SYNPROXY_DROP: 11058 m_freem(*m0); 11059 case PF_DEFER: 11060 *m0 = NULL; 11061 action = PF_PASS; 11062 break; 11063 case PF_DROP: 11064 m_freem(*m0); 11065 *m0 = NULL; 11066 break; 11067 case PF_AFRT: 11068 if (pf_translate_af(&pd)) { 11069 *m0 = pd.m; 11070 action = PF_DROP; 11071 break; 11072 } 11073 #ifdef INET 11074 if (pd.naf == AF_INET) { 11075 action = pf_route(r, kif->pfik_ifp, s, &pd, 11076 inp); 11077 } 11078 #endif /* INET */ 11079 #ifdef INET6 11080 if (pd.naf == AF_INET6) { 11081 action = pf_route6(r, kif->pfik_ifp, s, &pd, 11082 inp); 11083 } 11084 #endif /* INET6 */ 11085 *m0 = pd.m; 11086 goto out; 11087 break; 11088 default: 11089 if (pd.act.rt) { 11090 switch (af) { 11091 #ifdef INET 11092 case AF_INET: 11093 /* pf_route() returns unlocked. */ 11094 action = pf_route(r, kif->pfik_ifp, s, &pd, 11095 inp); 11096 break; 11097 #endif /* INET */ 11098 #ifdef INET6 11099 case AF_INET6: 11100 /* pf_route6() returns unlocked. */ 11101 action = pf_route6(r, kif->pfik_ifp, s, &pd, 11102 inp); 11103 break; 11104 #endif /* INET6 */ 11105 } 11106 *m0 = pd.m; 11107 goto out; 11108 } 11109 if (pf_dummynet(&pd, s, r, m0) != 0) { 11110 action = PF_DROP; 11111 REASON_SET(&reason, PFRES_MEMORY); 11112 } 11113 break; 11114 } 11115 11116 eat_pkt: 11117 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 11118 11119 if (s && action != PF_DROP) { 11120 if (!s->if_index_in && dir == PF_IN) 11121 s->if_index_in = ifp->if_index; 11122 else if (!s->if_index_out && dir == PF_OUT) 11123 s->if_index_out = ifp->if_index; 11124 } 11125 11126 if (s) 11127 PF_STATE_UNLOCK(s); 11128 11129 out: 11130 #ifdef INET6 11131 /* If reassembled packet passed, create new fragments. */ 11132 if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT && 11133 (! (pflags & PF_PFIL_NOREFRAGMENT)) && 11134 (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL) 11135 action = pf_refragment6(ifp, m0, mtag, NULL, pflags & PFIL_FWD); 11136 #endif /* INET6 */ 11137 11138 pf_sctp_multihome_delayed(&pd, kif, s, action); 11139 11140 return (action); 11141 } 11142 #endif /* INET || INET6 */ 11143