1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 #include "opt_bpf.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_pf.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/gsb_crc32.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/sdt.h> 61 #include <sys/socket.h> 62 #include <sys/sysctl.h> 63 #include <sys/taskqueue.h> 64 #include <sys/ucred.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_private.h> 69 #include <net/if_types.h> 70 #include <net/if_vlan_var.h> 71 #include <net/route.h> 72 #include <net/route/nhop.h> 73 #include <net/vnet.h> 74 75 #include <net/pfil.h> 76 #include <net/pfvar.h> 77 #include <net/if_pflog.h> 78 #include <net/if_pfsync.h> 79 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_var.h> 82 #include <netinet/in_fib.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_fw.h> 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp.h> 89 #include <netinet/tcp_fsm.h> 90 #include <netinet/tcp_seq.h> 91 #include <netinet/tcp_timer.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet/udp.h> 94 #include <netinet/udp_var.h> 95 96 /* dummynet */ 97 #include <netinet/ip_dummynet.h> 98 #include <netinet/ip_fw.h> 99 #include <netpfil/ipfw/dn_heap.h> 100 #include <netpfil/ipfw/ip_fw_private.h> 101 #include <netpfil/ipfw/ip_dn_private.h> 102 103 #ifdef INET6 104 #include <netinet/ip6.h> 105 #include <netinet/icmp6.h> 106 #include <netinet6/nd6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet6/in6_pcb.h> 109 #include <netinet6/in6_fib.h> 110 #include <netinet6/scope6_var.h> 111 #endif /* INET6 */ 112 113 #include <netinet/sctp_header.h> 114 #include <netinet/sctp_crc32.h> 115 116 #include <machine/in_cksum.h> 117 #include <security/mac/mac_framework.h> 118 119 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 120 121 SDT_PROVIDER_DEFINE(pf); 122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 123 "struct pf_kstate *"); 124 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 125 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 126 "struct pf_kstate *"); 127 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *", 128 "struct pfi_kkif *"); 129 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *", 130 "struct pf_krule *", "struct mbuf *", "int"); 131 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t", 132 "struct pf_sctp_source *"); 133 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t", 134 "struct pf_kstate *", "struct pf_sctp_source *"); 135 136 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 137 "struct mbuf *"); 138 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 139 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 140 "int", "struct pf_keth_rule *", "char *"); 141 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 142 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 143 "int", "struct pf_keth_rule *"); 144 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t"); 145 146 /* 147 * Global variables 148 */ 149 150 /* state tables */ 151 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 152 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 153 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 154 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 155 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 156 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 157 VNET_DEFINE(struct pf_kstatus, pf_status); 158 159 VNET_DEFINE(u_int32_t, ticket_altqs_active); 160 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 161 VNET_DEFINE(int, altqs_inactive_open); 162 VNET_DEFINE(u_int32_t, ticket_pabuf); 163 164 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 165 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 166 VNET_DEFINE(u_char, pf_tcp_secret[16]); 167 #define V_pf_tcp_secret VNET(pf_tcp_secret) 168 VNET_DEFINE(int, pf_tcp_secret_init); 169 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 170 VNET_DEFINE(int, pf_tcp_iss_off); 171 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 172 VNET_DECLARE(int, pf_vnet_active); 173 #define V_pf_vnet_active VNET(pf_vnet_active) 174 175 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 176 #define V_pf_purge_idx VNET(pf_purge_idx) 177 178 #ifdef PF_WANT_32_TO_64_COUNTER 179 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 180 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 181 182 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 183 VNET_DEFINE(size_t, pf_allrulecount); 184 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 185 #endif 186 187 struct pf_sctp_endpoint; 188 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint); 189 struct pf_sctp_source { 190 sa_family_t af; 191 struct pf_addr addr; 192 TAILQ_ENTRY(pf_sctp_source) entry; 193 }; 194 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source); 195 struct pf_sctp_endpoint 196 { 197 uint32_t v_tag; 198 struct pf_sctp_sources sources; 199 RB_ENTRY(pf_sctp_endpoint) entry; 200 }; 201 static int 202 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b) 203 { 204 return (a->v_tag - b->v_tag); 205 } 206 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 207 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 208 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints); 209 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints) 210 static struct mtx_padalign pf_sctp_endpoints_mtx; 211 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF); 212 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx) 213 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx) 214 215 /* 216 * Queue for pf_intr() sends. 217 */ 218 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 219 struct pf_send_entry { 220 STAILQ_ENTRY(pf_send_entry) pfse_next; 221 struct mbuf *pfse_m; 222 enum { 223 PFSE_IP, 224 PFSE_IP6, 225 PFSE_ICMP, 226 PFSE_ICMP6, 227 } pfse_type; 228 struct { 229 int type; 230 int code; 231 int mtu; 232 } icmpopts; 233 }; 234 235 STAILQ_HEAD(pf_send_head, pf_send_entry); 236 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 237 #define V_pf_sendqueue VNET(pf_sendqueue) 238 239 static struct mtx_padalign pf_sendqueue_mtx; 240 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 241 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 242 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 243 244 /* 245 * Queue for pf_overload_task() tasks. 246 */ 247 struct pf_overload_entry { 248 SLIST_ENTRY(pf_overload_entry) next; 249 struct pf_addr addr; 250 sa_family_t af; 251 uint8_t dir; 252 struct pf_krule *rule; 253 }; 254 255 SLIST_HEAD(pf_overload_head, pf_overload_entry); 256 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 257 #define V_pf_overloadqueue VNET(pf_overloadqueue) 258 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 259 #define V_pf_overloadtask VNET(pf_overloadtask) 260 261 static struct mtx_padalign pf_overloadqueue_mtx; 262 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 263 "pf overload/flush queue", MTX_DEF); 264 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 265 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 266 267 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 268 struct mtx_padalign pf_unlnkdrules_mtx; 269 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 270 MTX_DEF); 271 272 struct sx pf_config_lock; 273 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 274 275 struct mtx_padalign pf_table_stats_lock; 276 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 277 MTX_DEF); 278 279 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 280 #define V_pf_sources_z VNET(pf_sources_z) 281 uma_zone_t pf_mtag_z; 282 VNET_DEFINE(uma_zone_t, pf_state_z); 283 VNET_DEFINE(uma_zone_t, pf_state_key_z); 284 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z); 285 286 VNET_DEFINE(struct unrhdr64, pf_stateid); 287 288 static void pf_src_tree_remove_state(struct pf_kstate *); 289 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 290 u_int32_t); 291 static void pf_add_threshold(struct pf_threshold *); 292 static int pf_check_threshold(struct pf_threshold *); 293 294 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 295 u_int16_t *, u_int16_t *, struct pf_addr *, 296 u_int16_t, u_int8_t, sa_family_t); 297 static int pf_modulate_sack(struct mbuf *, struct pf_pdesc *, 298 struct tcphdr *, struct pf_state_peer *); 299 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *, 300 int *, u_int16_t *, u_int16_t *); 301 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 302 struct pf_addr *, struct pf_addr *, u_int16_t, 303 u_int16_t *, u_int16_t *, u_int16_t *, 304 u_int16_t *, u_int8_t, sa_family_t); 305 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 306 sa_family_t, struct pf_krule *, int); 307 static void pf_detach_state(struct pf_kstate *); 308 static int pf_state_key_attach(struct pf_state_key *, 309 struct pf_state_key *, struct pf_kstate *); 310 static void pf_state_key_detach(struct pf_kstate *, int); 311 static int pf_state_key_ctor(void *, int, void *, int); 312 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 313 static __inline void pf_dummynet_flag_remove(struct mbuf *m, 314 struct pf_mtag *pf_mtag); 315 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *, 316 struct pf_krule *, struct mbuf **); 317 static int pf_dummynet_route(struct pf_pdesc *, 318 struct pf_kstate *, struct pf_krule *, 319 struct ifnet *, struct sockaddr *, struct mbuf **); 320 static int pf_test_eth_rule(int, struct pfi_kkif *, 321 struct mbuf **); 322 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 323 struct pfi_kkif *, struct mbuf *, 324 struct pf_pdesc *, struct pf_krule **, 325 struct pf_kruleset **, struct inpcb *); 326 static int pf_create_state(struct pf_krule *, struct pf_krule *, 327 struct pf_krule *, struct pf_pdesc *, 328 struct pf_ksrc_node *, struct pf_state_key *, 329 struct pf_state_key *, struct mbuf *, 330 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 331 struct pf_kstate **, int, u_int16_t, u_int16_t, 332 struct pf_krule_slist *, struct pf_udp_mapping *); 333 static int pf_state_key_addr_setup(struct pf_pdesc *, struct mbuf *, 334 struct pf_state_key_cmp *, int, struct pf_addr *, 335 int, struct pf_addr *, int); 336 static int pf_tcp_track_full(struct pf_kstate **, 337 struct pfi_kkif *, struct mbuf *, 338 struct pf_pdesc *, u_short *, int *); 339 static int pf_tcp_track_sloppy(struct pf_kstate **, 340 struct pf_pdesc *, u_short *); 341 static int pf_test_state_tcp(struct pf_kstate **, 342 struct pfi_kkif *, struct mbuf *, 343 struct pf_pdesc *, u_short *); 344 static int pf_test_state_udp(struct pf_kstate **, 345 struct pfi_kkif *, struct mbuf *, 346 struct pf_pdesc *); 347 int pf_icmp_state_lookup(struct pf_state_key_cmp *, 348 struct pf_pdesc *, struct pf_kstate **, struct mbuf *, 349 int, struct pfi_kkif *, u_int16_t, u_int16_t, 350 int, int *, int, int); 351 static int pf_test_state_icmp(struct pf_kstate **, 352 struct pfi_kkif *, struct mbuf *, 353 struct pf_pdesc *, u_short *); 354 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *); 355 static void pf_sctp_multihome_delayed(struct pf_pdesc *, 356 struct pfi_kkif *, struct pf_kstate *, int); 357 static int pf_test_state_sctp(struct pf_kstate **, 358 struct pfi_kkif *, struct mbuf *, 359 struct pf_pdesc *, u_short *); 360 static int pf_test_state_other(struct pf_kstate **, 361 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 362 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 363 int, u_int16_t); 364 static int pf_check_proto_cksum(struct mbuf *, int, int, 365 u_int8_t, sa_family_t); 366 static int pf_walk_option6(struct mbuf *, int, int, uint32_t *, 367 u_short *); 368 static void pf_print_state_parts(struct pf_kstate *, 369 struct pf_state_key *, struct pf_state_key *); 370 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 371 bool, u_int8_t); 372 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 373 const struct pf_state_key_cmp *, u_int); 374 static int pf_src_connlimit(struct pf_kstate **); 375 static int pf_match_rcvif(struct mbuf *, struct pf_krule *); 376 static void pf_counters_inc(int, 377 struct pf_pdesc *, struct pfi_kkif *, 378 struct pf_kstate *, struct pf_krule *, 379 struct pf_krule *); 380 static void pf_overload_task(void *v, int pending); 381 static u_short pf_insert_src_node(struct pf_ksrc_node **, 382 struct pf_krule *, struct pf_addr *, sa_family_t); 383 static u_int pf_purge_expired_states(u_int, int); 384 static void pf_purge_unlinked_rules(void); 385 static int pf_mtag_uminit(void *, int, int); 386 static void pf_mtag_free(struct m_tag *); 387 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 388 int, struct pf_state_key *); 389 #ifdef INET 390 static void pf_route(struct mbuf **, struct pf_krule *, 391 struct ifnet *, struct pf_kstate *, 392 struct pf_pdesc *, struct inpcb *); 393 #endif /* INET */ 394 #ifdef INET6 395 static void pf_change_a6(struct pf_addr *, u_int16_t *, 396 struct pf_addr *, u_int8_t); 397 static void pf_route6(struct mbuf **, struct pf_krule *, 398 struct ifnet *, struct pf_kstate *, 399 struct pf_pdesc *, struct inpcb *); 400 #endif /* INET6 */ 401 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 402 403 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 404 405 extern int pf_end_threads; 406 extern struct proc *pf_purge_proc; 407 408 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 409 410 enum { PF_ICMP_MULTI_NONE, PF_ICMP_MULTI_LINK }; 411 412 #define PACKET_UNDO_NAT(_m, _pd, _off, _s) \ 413 do { \ 414 struct pf_state_key *nk; \ 415 if ((pd->dir) == PF_OUT) \ 416 nk = (_s)->key[PF_SK_STACK]; \ 417 else \ 418 nk = (_s)->key[PF_SK_WIRE]; \ 419 pf_packet_rework_nat(_m, _pd, _off, nk); \ 420 } while (0) 421 422 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 423 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED) 424 425 #define STATE_LOOKUP(i, k, s, pd) \ 426 do { \ 427 (s) = pf_find_state((i), (k), (pd->dir)); \ 428 SDT_PROBE5(pf, ip, state, lookup, i, k, (pd->dir), pd, (s)); \ 429 if ((s) == NULL) \ 430 return (PF_DROP); \ 431 if (PACKET_LOOPED(pd)) \ 432 return (PF_PASS); \ 433 } while (0) 434 435 static struct pfi_kkif * 436 BOUND_IFACE(struct pf_kstate *st, struct pfi_kkif *k) 437 { 438 SDT_PROBE2(pf, ip, , bound_iface, st, k); 439 440 /* Floating unless otherwise specified. */ 441 if (! (st->rule->rule_flag & PFRULE_IFBOUND)) 442 return (V_pfi_all); 443 444 /* 445 * Initially set to all, because we don't know what interface we'll be 446 * sending this out when we create the state. 447 */ 448 if (st->rule->rt == PF_REPLYTO) 449 return (V_pfi_all); 450 451 /* Don't overrule the interface for states created on incoming packets. */ 452 if (st->direction == PF_IN) 453 return (k); 454 455 /* No route-to, so don't overrule. */ 456 if (st->rt != PF_ROUTETO) 457 return (k); 458 459 /* Bind to the route-to interface. */ 460 return (st->rt_kif); 461 } 462 463 #define STATE_INC_COUNTERS(s) \ 464 do { \ 465 struct pf_krule_item *mrm; \ 466 counter_u64_add(s->rule->states_cur, 1); \ 467 counter_u64_add(s->rule->states_tot, 1); \ 468 if (s->anchor != NULL) { \ 469 counter_u64_add(s->anchor->states_cur, 1); \ 470 counter_u64_add(s->anchor->states_tot, 1); \ 471 } \ 472 if (s->nat_rule != NULL) { \ 473 counter_u64_add(s->nat_rule->states_cur, 1);\ 474 counter_u64_add(s->nat_rule->states_tot, 1);\ 475 } \ 476 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 477 counter_u64_add(mrm->r->states_cur, 1); \ 478 counter_u64_add(mrm->r->states_tot, 1); \ 479 } \ 480 } while (0) 481 482 #define STATE_DEC_COUNTERS(s) \ 483 do { \ 484 struct pf_krule_item *mrm; \ 485 if (s->nat_rule != NULL) \ 486 counter_u64_add(s->nat_rule->states_cur, -1);\ 487 if (s->anchor != NULL) \ 488 counter_u64_add(s->anchor->states_cur, -1); \ 489 counter_u64_add(s->rule->states_cur, -1); \ 490 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 491 counter_u64_add(mrm->r->states_cur, -1); \ 492 } while (0) 493 494 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 495 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 496 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 497 VNET_DEFINE(struct pf_idhash *, pf_idhash); 498 VNET_DEFINE(struct pf_srchash *, pf_srchash); 499 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash); 500 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping); 501 502 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 503 "pf(4)"); 504 505 VNET_DEFINE(u_long, pf_hashmask); 506 VNET_DEFINE(u_long, pf_srchashmask); 507 VNET_DEFINE(u_long, pf_udpendpointhashmask); 508 VNET_DEFINE_STATIC(u_long, pf_hashsize); 509 #define V_pf_hashsize VNET(pf_hashsize) 510 VNET_DEFINE_STATIC(u_long, pf_srchashsize); 511 #define V_pf_srchashsize VNET(pf_srchashsize) 512 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize); 513 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize) 514 u_long pf_ioctl_maxcount = 65535; 515 516 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 517 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 518 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 519 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 520 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 521 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable"); 522 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 523 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 524 525 VNET_DEFINE(void *, pf_swi_cookie); 526 VNET_DEFINE(struct intr_event *, pf_swi_ie); 527 528 VNET_DEFINE(uint32_t, pf_hashseed); 529 #define V_pf_hashseed VNET(pf_hashseed) 530 531 static void 532 pf_sctp_checksum(struct mbuf *m, int off) 533 { 534 uint32_t sum = 0; 535 536 /* Zero out the checksum, to enable recalculation. */ 537 m_copyback(m, off + offsetof(struct sctphdr, checksum), 538 sizeof(sum), (caddr_t)&sum); 539 540 sum = sctp_calculate_cksum(m, off); 541 542 m_copyback(m, off + offsetof(struct sctphdr, checksum), 543 sizeof(sum), (caddr_t)&sum); 544 } 545 546 int 547 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 548 { 549 550 switch (af) { 551 #ifdef INET 552 case AF_INET: 553 if (a->addr32[0] > b->addr32[0]) 554 return (1); 555 if (a->addr32[0] < b->addr32[0]) 556 return (-1); 557 break; 558 #endif /* INET */ 559 #ifdef INET6 560 case AF_INET6: 561 if (a->addr32[3] > b->addr32[3]) 562 return (1); 563 if (a->addr32[3] < b->addr32[3]) 564 return (-1); 565 if (a->addr32[2] > b->addr32[2]) 566 return (1); 567 if (a->addr32[2] < b->addr32[2]) 568 return (-1); 569 if (a->addr32[1] > b->addr32[1]) 570 return (1); 571 if (a->addr32[1] < b->addr32[1]) 572 return (-1); 573 if (a->addr32[0] > b->addr32[0]) 574 return (1); 575 if (a->addr32[0] < b->addr32[0]) 576 return (-1); 577 break; 578 #endif /* INET6 */ 579 default: 580 panic("%s: unknown address family %u", __func__, af); 581 } 582 return (0); 583 } 584 585 static bool 586 pf_is_loopback(sa_family_t af, struct pf_addr *addr) 587 { 588 switch (af) { 589 case AF_INET: 590 return IN_LOOPBACK(ntohl(addr->v4.s_addr)); 591 case AF_INET6: 592 return IN6_IS_ADDR_LOOPBACK(&addr->v6); 593 default: 594 panic("Unknown af %d", af); 595 } 596 } 597 598 static void 599 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 600 struct pf_state_key *nk) 601 { 602 603 switch (pd->proto) { 604 case IPPROTO_TCP: { 605 struct tcphdr *th = &pd->hdr.tcp; 606 607 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 608 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 609 &th->th_sum, &nk->addr[pd->sidx], 610 nk->port[pd->sidx], 0, pd->af); 611 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 612 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 613 &th->th_sum, &nk->addr[pd->didx], 614 nk->port[pd->didx], 0, pd->af); 615 m_copyback(m, off, sizeof(*th), (caddr_t)th); 616 break; 617 } 618 case IPPROTO_UDP: { 619 struct udphdr *uh = &pd->hdr.udp; 620 621 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 622 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 623 &uh->uh_sum, &nk->addr[pd->sidx], 624 nk->port[pd->sidx], 1, pd->af); 625 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 626 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 627 &uh->uh_sum, &nk->addr[pd->didx], 628 nk->port[pd->didx], 1, pd->af); 629 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 630 break; 631 } 632 case IPPROTO_SCTP: { 633 struct sctphdr *sh = &pd->hdr.sctp; 634 uint16_t checksum = 0; 635 636 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 637 pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum, 638 &checksum, &nk->addr[pd->sidx], 639 nk->port[pd->sidx], 1, pd->af); 640 } 641 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 642 pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum, 643 &checksum, &nk->addr[pd->didx], 644 nk->port[pd->didx], 1, pd->af); 645 } 646 647 break; 648 } 649 case IPPROTO_ICMP: { 650 struct icmp *ih = &pd->hdr.icmp; 651 652 if (nk->port[pd->sidx] != ih->icmp_id) { 653 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 654 ih->icmp_cksum, ih->icmp_id, 655 nk->port[pd->sidx], 0); 656 ih->icmp_id = nk->port[pd->sidx]; 657 pd->sport = &ih->icmp_id; 658 659 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 660 } 661 /* FALLTHROUGH */ 662 } 663 default: 664 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 665 switch (pd->af) { 666 case AF_INET: 667 pf_change_a(&pd->src->v4.s_addr, 668 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 669 0); 670 break; 671 case AF_INET6: 672 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 673 break; 674 } 675 } 676 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 677 switch (pd->af) { 678 case AF_INET: 679 pf_change_a(&pd->dst->v4.s_addr, 680 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 681 0); 682 break; 683 case AF_INET6: 684 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 685 break; 686 } 687 } 688 break; 689 } 690 } 691 692 static __inline uint32_t 693 pf_hashkey(const struct pf_state_key *sk) 694 { 695 uint32_t h; 696 697 h = murmur3_32_hash32((const uint32_t *)sk, 698 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 699 V_pf_hashseed); 700 701 return (h & V_pf_hashmask); 702 } 703 704 static __inline uint32_t 705 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 706 { 707 uint32_t h; 708 709 switch (af) { 710 case AF_INET: 711 h = murmur3_32_hash32((uint32_t *)&addr->v4, 712 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 713 break; 714 case AF_INET6: 715 h = murmur3_32_hash32((uint32_t *)&addr->v6, 716 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 717 break; 718 default: 719 panic("%s: unknown address family %u", __func__, af); 720 } 721 722 return (h & V_pf_srchashmask); 723 } 724 725 static inline uint32_t 726 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint) 727 { 728 uint32_t h; 729 730 h = murmur3_32_hash32((uint32_t *)endpoint, 731 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t), 732 V_pf_hashseed); 733 return (h & V_pf_udpendpointhashmask); 734 } 735 736 #ifdef ALTQ 737 static int 738 pf_state_hash(struct pf_kstate *s) 739 { 740 u_int32_t hv = (intptr_t)s / sizeof(*s); 741 742 hv ^= crc32(&s->src, sizeof(s->src)); 743 hv ^= crc32(&s->dst, sizeof(s->dst)); 744 if (hv == 0) 745 hv = 1; 746 return (hv); 747 } 748 #endif 749 750 static __inline void 751 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 752 { 753 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 754 s->dst.state = newstate; 755 if (which == PF_PEER_DST) 756 return; 757 if (s->src.state == newstate) 758 return; 759 if (s->creatorid == V_pf_status.hostid && 760 s->key[PF_SK_STACK] != NULL && 761 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 762 !(TCPS_HAVEESTABLISHED(s->src.state) || 763 s->src.state == TCPS_CLOSED) && 764 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 765 atomic_add_32(&V_pf_status.states_halfopen, -1); 766 767 s->src.state = newstate; 768 } 769 770 #ifdef INET6 771 void 772 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 773 { 774 switch (af) { 775 #ifdef INET 776 case AF_INET: 777 memcpy(&dst->v4, &src->v4, sizeof(dst->v4)); 778 break; 779 #endif /* INET */ 780 case AF_INET6: 781 memcpy(&dst->v6, &src->v6, sizeof(dst->v6)); 782 break; 783 } 784 } 785 #endif /* INET6 */ 786 787 static void 788 pf_init_threshold(struct pf_threshold *threshold, 789 u_int32_t limit, u_int32_t seconds) 790 { 791 threshold->limit = limit * PF_THRESHOLD_MULT; 792 threshold->seconds = seconds; 793 threshold->count = 0; 794 threshold->last = time_uptime; 795 } 796 797 static void 798 pf_add_threshold(struct pf_threshold *threshold) 799 { 800 u_int32_t t = time_uptime, diff = t - threshold->last; 801 802 if (diff >= threshold->seconds) 803 threshold->count = 0; 804 else 805 threshold->count -= threshold->count * diff / 806 threshold->seconds; 807 threshold->count += PF_THRESHOLD_MULT; 808 threshold->last = t; 809 } 810 811 static int 812 pf_check_threshold(struct pf_threshold *threshold) 813 { 814 return (threshold->count > threshold->limit); 815 } 816 817 static int 818 pf_src_connlimit(struct pf_kstate **state) 819 { 820 struct pf_overload_entry *pfoe; 821 int bad = 0; 822 823 PF_STATE_LOCK_ASSERT(*state); 824 /* 825 * XXXKS: The src node is accessed unlocked! 826 * PF_SRC_NODE_LOCK_ASSERT((*state)->src_node); 827 */ 828 829 (*state)->src_node->conn++; 830 (*state)->src.tcp_est = 1; 831 pf_add_threshold(&(*state)->src_node->conn_rate); 832 833 if ((*state)->rule->max_src_conn && 834 (*state)->rule->max_src_conn < 835 (*state)->src_node->conn) { 836 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 837 bad++; 838 } 839 840 if ((*state)->rule->max_src_conn_rate.limit && 841 pf_check_threshold(&(*state)->src_node->conn_rate)) { 842 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 843 bad++; 844 } 845 846 if (!bad) 847 return (0); 848 849 /* Kill this state. */ 850 (*state)->timeout = PFTM_PURGE; 851 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 852 853 if ((*state)->rule->overload_tbl == NULL) 854 return (1); 855 856 /* Schedule overloading and flushing task. */ 857 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 858 if (pfoe == NULL) 859 return (1); /* too bad :( */ 860 861 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 862 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 863 pfoe->rule = (*state)->rule; 864 pfoe->dir = (*state)->direction; 865 PF_OVERLOADQ_LOCK(); 866 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 867 PF_OVERLOADQ_UNLOCK(); 868 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 869 870 return (1); 871 } 872 873 static void 874 pf_overload_task(void *v, int pending) 875 { 876 struct pf_overload_head queue; 877 struct pfr_addr p; 878 struct pf_overload_entry *pfoe, *pfoe1; 879 uint32_t killed = 0; 880 881 CURVNET_SET((struct vnet *)v); 882 883 PF_OVERLOADQ_LOCK(); 884 queue = V_pf_overloadqueue; 885 SLIST_INIT(&V_pf_overloadqueue); 886 PF_OVERLOADQ_UNLOCK(); 887 888 bzero(&p, sizeof(p)); 889 SLIST_FOREACH(pfoe, &queue, next) { 890 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 891 if (V_pf_status.debug >= PF_DEBUG_MISC) { 892 printf("%s: blocking address ", __func__); 893 pf_print_host(&pfoe->addr, 0, pfoe->af); 894 printf("\n"); 895 } 896 897 p.pfra_af = pfoe->af; 898 switch (pfoe->af) { 899 #ifdef INET 900 case AF_INET: 901 p.pfra_net = 32; 902 p.pfra_ip4addr = pfoe->addr.v4; 903 break; 904 #endif 905 #ifdef INET6 906 case AF_INET6: 907 p.pfra_net = 128; 908 p.pfra_ip6addr = pfoe->addr.v6; 909 break; 910 #endif 911 } 912 913 PF_RULES_WLOCK(); 914 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 915 PF_RULES_WUNLOCK(); 916 } 917 918 /* 919 * Remove those entries, that don't need flushing. 920 */ 921 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 922 if (pfoe->rule->flush == 0) { 923 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 924 free(pfoe, M_PFTEMP); 925 } else 926 counter_u64_add( 927 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 928 929 /* If nothing to flush, return. */ 930 if (SLIST_EMPTY(&queue)) { 931 CURVNET_RESTORE(); 932 return; 933 } 934 935 for (int i = 0; i <= V_pf_hashmask; i++) { 936 struct pf_idhash *ih = &V_pf_idhash[i]; 937 struct pf_state_key *sk; 938 struct pf_kstate *s; 939 940 PF_HASHROW_LOCK(ih); 941 LIST_FOREACH(s, &ih->states, entry) { 942 sk = s->key[PF_SK_WIRE]; 943 SLIST_FOREACH(pfoe, &queue, next) 944 if (sk->af == pfoe->af && 945 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 946 pfoe->rule == s->rule) && 947 ((pfoe->dir == PF_OUT && 948 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 949 (pfoe->dir == PF_IN && 950 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 951 s->timeout = PFTM_PURGE; 952 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 953 killed++; 954 } 955 } 956 PF_HASHROW_UNLOCK(ih); 957 } 958 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 959 free(pfoe, M_PFTEMP); 960 if (V_pf_status.debug >= PF_DEBUG_MISC) 961 printf("%s: %u states killed", __func__, killed); 962 963 CURVNET_RESTORE(); 964 } 965 966 /* 967 * Can return locked on failure, so that we can consistently 968 * allocate and insert a new one. 969 */ 970 struct pf_ksrc_node * 971 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 972 struct pf_srchash **sh, bool returnlocked) 973 { 974 struct pf_ksrc_node *n; 975 976 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 977 978 *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 979 PF_HASHROW_LOCK(*sh); 980 LIST_FOREACH(n, &(*sh)->nodes, entry) 981 if (n->rule == rule && n->af == af && 982 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 983 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 984 break; 985 986 if (n != NULL) { 987 n->states++; 988 PF_HASHROW_UNLOCK(*sh); 989 } else if (returnlocked == false) 990 PF_HASHROW_UNLOCK(*sh); 991 992 return (n); 993 } 994 995 static void 996 pf_free_src_node(struct pf_ksrc_node *sn) 997 { 998 999 for (int i = 0; i < 2; i++) { 1000 counter_u64_free(sn->bytes[i]); 1001 counter_u64_free(sn->packets[i]); 1002 } 1003 uma_zfree(V_pf_sources_z, sn); 1004 } 1005 1006 static u_short 1007 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 1008 struct pf_addr *src, sa_family_t af) 1009 { 1010 u_short reason = 0; 1011 struct pf_srchash *sh = NULL; 1012 1013 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 1014 rule->rpool.opts & PF_POOL_STICKYADDR), 1015 ("%s for non-tracking rule %p", __func__, rule)); 1016 1017 if (*sn == NULL) 1018 *sn = pf_find_src_node(src, rule, af, &sh, true); 1019 1020 if (*sn == NULL) { 1021 PF_HASHROW_ASSERT(sh); 1022 1023 if (rule->max_src_nodes && 1024 counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) { 1025 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); 1026 PF_HASHROW_UNLOCK(sh); 1027 reason = PFRES_SRCLIMIT; 1028 goto done; 1029 } 1030 1031 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 1032 if ((*sn) == NULL) { 1033 PF_HASHROW_UNLOCK(sh); 1034 reason = PFRES_MEMORY; 1035 goto done; 1036 } 1037 1038 for (int i = 0; i < 2; i++) { 1039 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 1040 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 1041 1042 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 1043 pf_free_src_node(*sn); 1044 PF_HASHROW_UNLOCK(sh); 1045 reason = PFRES_MEMORY; 1046 goto done; 1047 } 1048 } 1049 1050 pf_init_threshold(&(*sn)->conn_rate, 1051 rule->max_src_conn_rate.limit, 1052 rule->max_src_conn_rate.seconds); 1053 1054 MPASS((*sn)->lock == NULL); 1055 (*sn)->lock = &sh->lock; 1056 1057 (*sn)->af = af; 1058 (*sn)->rule = rule; 1059 PF_ACPY(&(*sn)->addr, src, af); 1060 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 1061 (*sn)->creation = time_uptime; 1062 (*sn)->ruletype = rule->action; 1063 (*sn)->states = 1; 1064 if ((*sn)->rule != NULL) 1065 counter_u64_add((*sn)->rule->src_nodes, 1); 1066 PF_HASHROW_UNLOCK(sh); 1067 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 1068 } else { 1069 if (rule->max_src_states && 1070 (*sn)->states >= rule->max_src_states) { 1071 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 1072 1); 1073 reason = PFRES_SRCLIMIT; 1074 goto done; 1075 } 1076 } 1077 done: 1078 return (reason); 1079 } 1080 1081 void 1082 pf_unlink_src_node(struct pf_ksrc_node *src) 1083 { 1084 PF_SRC_NODE_LOCK_ASSERT(src); 1085 1086 LIST_REMOVE(src, entry); 1087 if (src->rule) 1088 counter_u64_add(src->rule->src_nodes, -1); 1089 } 1090 1091 u_int 1092 pf_free_src_nodes(struct pf_ksrc_node_list *head) 1093 { 1094 struct pf_ksrc_node *sn, *tmp; 1095 u_int count = 0; 1096 1097 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 1098 pf_free_src_node(sn); 1099 count++; 1100 } 1101 1102 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 1103 1104 return (count); 1105 } 1106 1107 void 1108 pf_mtag_initialize(void) 1109 { 1110 1111 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 1112 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 1113 UMA_ALIGN_PTR, 0); 1114 } 1115 1116 /* Per-vnet data storage structures initialization. */ 1117 void 1118 pf_initialize(void) 1119 { 1120 struct pf_keyhash *kh; 1121 struct pf_idhash *ih; 1122 struct pf_srchash *sh; 1123 struct pf_udpendpointhash *uh; 1124 u_int i; 1125 1126 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 1127 V_pf_hashsize = PF_HASHSIZ; 1128 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 1129 V_pf_srchashsize = PF_SRCHASHSIZ; 1130 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize)) 1131 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1132 1133 V_pf_hashseed = arc4random(); 1134 1135 /* States and state keys storage. */ 1136 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1137 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1138 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1139 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1140 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1141 1142 V_pf_state_key_z = uma_zcreate("pf state keys", 1143 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1144 UMA_ALIGN_PTR, 0); 1145 1146 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash), 1147 M_PFHASH, M_NOWAIT | M_ZERO); 1148 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash), 1149 M_PFHASH, M_NOWAIT | M_ZERO); 1150 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1151 printf("pf: Unable to allocate memory for " 1152 "state_hashsize %lu.\n", V_pf_hashsize); 1153 1154 free(V_pf_keyhash, M_PFHASH); 1155 free(V_pf_idhash, M_PFHASH); 1156 1157 V_pf_hashsize = PF_HASHSIZ; 1158 V_pf_keyhash = mallocarray(V_pf_hashsize, 1159 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1160 V_pf_idhash = mallocarray(V_pf_hashsize, 1161 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1162 } 1163 1164 V_pf_hashmask = V_pf_hashsize - 1; 1165 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 1166 i++, kh++, ih++) { 1167 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1168 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1169 } 1170 1171 /* Source nodes. */ 1172 V_pf_sources_z = uma_zcreate("pf source nodes", 1173 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1174 0); 1175 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1176 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1177 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1178 1179 V_pf_srchash = mallocarray(V_pf_srchashsize, 1180 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1181 if (V_pf_srchash == NULL) { 1182 printf("pf: Unable to allocate memory for " 1183 "source_hashsize %lu.\n", V_pf_srchashsize); 1184 1185 V_pf_srchashsize = PF_SRCHASHSIZ; 1186 V_pf_srchash = mallocarray(V_pf_srchashsize, 1187 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1188 } 1189 1190 V_pf_srchashmask = V_pf_srchashsize - 1; 1191 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 1192 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1193 1194 1195 /* UDP endpoint mappings. */ 1196 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings", 1197 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL, 1198 UMA_ALIGN_PTR, 0); 1199 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1200 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO); 1201 if (V_pf_udpendpointhash == NULL) { 1202 printf("pf: Unable to allocate memory for " 1203 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize); 1204 1205 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1206 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1207 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO); 1208 } 1209 1210 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1; 1211 for (i = 0, uh = V_pf_udpendpointhash; 1212 i <= V_pf_udpendpointhashmask; 1213 i++, uh++) { 1214 mtx_init(&uh->lock, "pf_udpendpointhash", NULL, 1215 MTX_DEF | MTX_DUPOK); 1216 } 1217 1218 /* ALTQ */ 1219 TAILQ_INIT(&V_pf_altqs[0]); 1220 TAILQ_INIT(&V_pf_altqs[1]); 1221 TAILQ_INIT(&V_pf_altqs[2]); 1222 TAILQ_INIT(&V_pf_altqs[3]); 1223 TAILQ_INIT(&V_pf_pabuf); 1224 V_pf_altqs_active = &V_pf_altqs[0]; 1225 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1226 V_pf_altqs_inactive = &V_pf_altqs[2]; 1227 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1228 1229 /* Send & overload+flush queues. */ 1230 STAILQ_INIT(&V_pf_sendqueue); 1231 SLIST_INIT(&V_pf_overloadqueue); 1232 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1233 1234 /* Unlinked, but may be referenced rules. */ 1235 TAILQ_INIT(&V_pf_unlinked_rules); 1236 } 1237 1238 void 1239 pf_mtag_cleanup(void) 1240 { 1241 1242 uma_zdestroy(pf_mtag_z); 1243 } 1244 1245 void 1246 pf_cleanup(void) 1247 { 1248 struct pf_keyhash *kh; 1249 struct pf_idhash *ih; 1250 struct pf_srchash *sh; 1251 struct pf_udpendpointhash *uh; 1252 struct pf_send_entry *pfse, *next; 1253 u_int i; 1254 1255 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; 1256 i <= V_pf_hashmask; 1257 i++, kh++, ih++) { 1258 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1259 __func__)); 1260 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1261 __func__)); 1262 mtx_destroy(&kh->lock); 1263 mtx_destroy(&ih->lock); 1264 } 1265 free(V_pf_keyhash, M_PFHASH); 1266 free(V_pf_idhash, M_PFHASH); 1267 1268 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1269 KASSERT(LIST_EMPTY(&sh->nodes), 1270 ("%s: source node hash not empty", __func__)); 1271 mtx_destroy(&sh->lock); 1272 } 1273 free(V_pf_srchash, M_PFHASH); 1274 1275 for (i = 0, uh = V_pf_udpendpointhash; 1276 i <= V_pf_udpendpointhashmask; 1277 i++, uh++) { 1278 KASSERT(LIST_EMPTY(&uh->endpoints), 1279 ("%s: udp endpoint hash not empty", __func__)); 1280 mtx_destroy(&uh->lock); 1281 } 1282 free(V_pf_udpendpointhash, M_PFHASH); 1283 1284 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1285 m_freem(pfse->pfse_m); 1286 free(pfse, M_PFTEMP); 1287 } 1288 MPASS(RB_EMPTY(&V_pf_sctp_endpoints)); 1289 1290 uma_zdestroy(V_pf_sources_z); 1291 uma_zdestroy(V_pf_state_z); 1292 uma_zdestroy(V_pf_state_key_z); 1293 uma_zdestroy(V_pf_udp_mapping_z); 1294 } 1295 1296 static int 1297 pf_mtag_uminit(void *mem, int size, int how) 1298 { 1299 struct m_tag *t; 1300 1301 t = (struct m_tag *)mem; 1302 t->m_tag_cookie = MTAG_ABI_COMPAT; 1303 t->m_tag_id = PACKET_TAG_PF; 1304 t->m_tag_len = sizeof(struct pf_mtag); 1305 t->m_tag_free = pf_mtag_free; 1306 1307 return (0); 1308 } 1309 1310 static void 1311 pf_mtag_free(struct m_tag *t) 1312 { 1313 1314 uma_zfree(pf_mtag_z, t); 1315 } 1316 1317 struct pf_mtag * 1318 pf_get_mtag(struct mbuf *m) 1319 { 1320 struct m_tag *mtag; 1321 1322 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1323 return ((struct pf_mtag *)(mtag + 1)); 1324 1325 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1326 if (mtag == NULL) 1327 return (NULL); 1328 bzero(mtag + 1, sizeof(struct pf_mtag)); 1329 m_tag_prepend(m, mtag); 1330 1331 return ((struct pf_mtag *)(mtag + 1)); 1332 } 1333 1334 static int 1335 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1336 struct pf_kstate *s) 1337 { 1338 struct pf_keyhash *khs, *khw, *kh; 1339 struct pf_state_key *sk, *cur; 1340 struct pf_kstate *si, *olds = NULL; 1341 int idx; 1342 1343 NET_EPOCH_ASSERT(); 1344 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1345 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1346 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1347 1348 /* 1349 * We need to lock hash slots of both keys. To avoid deadlock 1350 * we always lock the slot with lower address first. Unlock order 1351 * isn't important. 1352 * 1353 * We also need to lock ID hash slot before dropping key 1354 * locks. On success we return with ID hash slot locked. 1355 */ 1356 1357 if (skw == sks) { 1358 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1359 PF_HASHROW_LOCK(khs); 1360 } else { 1361 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1362 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1363 if (khs == khw) { 1364 PF_HASHROW_LOCK(khs); 1365 } else if (khs < khw) { 1366 PF_HASHROW_LOCK(khs); 1367 PF_HASHROW_LOCK(khw); 1368 } else { 1369 PF_HASHROW_LOCK(khw); 1370 PF_HASHROW_LOCK(khs); 1371 } 1372 } 1373 1374 #define KEYS_UNLOCK() do { \ 1375 if (khs != khw) { \ 1376 PF_HASHROW_UNLOCK(khs); \ 1377 PF_HASHROW_UNLOCK(khw); \ 1378 } else \ 1379 PF_HASHROW_UNLOCK(khs); \ 1380 } while (0) 1381 1382 /* 1383 * First run: start with wire key. 1384 */ 1385 sk = skw; 1386 kh = khw; 1387 idx = PF_SK_WIRE; 1388 1389 MPASS(s->lock == NULL); 1390 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1391 1392 keyattach: 1393 LIST_FOREACH(cur, &kh->keys, entry) 1394 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1395 break; 1396 1397 if (cur != NULL) { 1398 /* Key exists. Check for same kif, if none, add to key. */ 1399 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1400 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1401 1402 PF_HASHROW_LOCK(ih); 1403 if (si->kif == s->kif && 1404 si->direction == s->direction) { 1405 if (sk->proto == IPPROTO_TCP && 1406 si->src.state >= TCPS_FIN_WAIT_2 && 1407 si->dst.state >= TCPS_FIN_WAIT_2) { 1408 /* 1409 * New state matches an old >FIN_WAIT_2 1410 * state. We can't drop key hash locks, 1411 * thus we can't unlink it properly. 1412 * 1413 * As a workaround we drop it into 1414 * TCPS_CLOSED state, schedule purge 1415 * ASAP and push it into the very end 1416 * of the slot TAILQ, so that it won't 1417 * conflict with our new state. 1418 */ 1419 pf_set_protostate(si, PF_PEER_BOTH, 1420 TCPS_CLOSED); 1421 si->timeout = PFTM_PURGE; 1422 olds = si; 1423 } else { 1424 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1425 printf("pf: %s key attach " 1426 "failed on %s: ", 1427 (idx == PF_SK_WIRE) ? 1428 "wire" : "stack", 1429 s->kif->pfik_name); 1430 pf_print_state_parts(s, 1431 (idx == PF_SK_WIRE) ? 1432 sk : NULL, 1433 (idx == PF_SK_STACK) ? 1434 sk : NULL); 1435 printf(", existing: "); 1436 pf_print_state_parts(si, 1437 (idx == PF_SK_WIRE) ? 1438 sk : NULL, 1439 (idx == PF_SK_STACK) ? 1440 sk : NULL); 1441 printf("\n"); 1442 } 1443 s->timeout = PFTM_UNLINKED; 1444 PF_HASHROW_UNLOCK(ih); 1445 KEYS_UNLOCK(); 1446 uma_zfree(V_pf_state_key_z, sk); 1447 if (idx == PF_SK_STACK) 1448 pf_detach_state(s); 1449 return (EEXIST); /* collision! */ 1450 } 1451 } 1452 PF_HASHROW_UNLOCK(ih); 1453 } 1454 uma_zfree(V_pf_state_key_z, sk); 1455 s->key[idx] = cur; 1456 } else { 1457 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1458 s->key[idx] = sk; 1459 } 1460 1461 stateattach: 1462 /* List is sorted, if-bound states before floating. */ 1463 if (s->kif == V_pfi_all) 1464 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1465 else 1466 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1467 1468 if (olds) { 1469 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1470 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1471 key_list[idx]); 1472 olds = NULL; 1473 } 1474 1475 /* 1476 * Attach done. See how should we (or should not?) 1477 * attach a second key. 1478 */ 1479 if (sks == skw) { 1480 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1481 idx = PF_SK_STACK; 1482 sks = NULL; 1483 goto stateattach; 1484 } else if (sks != NULL) { 1485 /* 1486 * Continue attaching with stack key. 1487 */ 1488 sk = sks; 1489 kh = khs; 1490 idx = PF_SK_STACK; 1491 sks = NULL; 1492 goto keyattach; 1493 } 1494 1495 PF_STATE_LOCK(s); 1496 KEYS_UNLOCK(); 1497 1498 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1499 ("%s failure", __func__)); 1500 1501 return (0); 1502 #undef KEYS_UNLOCK 1503 } 1504 1505 static void 1506 pf_detach_state(struct pf_kstate *s) 1507 { 1508 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1509 struct pf_keyhash *kh; 1510 1511 NET_EPOCH_ASSERT(); 1512 MPASS(s->timeout >= PFTM_MAX); 1513 1514 pf_sctp_multihome_detach_addr(s); 1515 1516 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr) 1517 V_pflow_export_state_ptr(s); 1518 1519 if (sks != NULL) { 1520 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1521 PF_HASHROW_LOCK(kh); 1522 if (s->key[PF_SK_STACK] != NULL) 1523 pf_state_key_detach(s, PF_SK_STACK); 1524 /* 1525 * If both point to same key, then we are done. 1526 */ 1527 if (sks == s->key[PF_SK_WIRE]) { 1528 pf_state_key_detach(s, PF_SK_WIRE); 1529 PF_HASHROW_UNLOCK(kh); 1530 return; 1531 } 1532 PF_HASHROW_UNLOCK(kh); 1533 } 1534 1535 if (s->key[PF_SK_WIRE] != NULL) { 1536 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1537 PF_HASHROW_LOCK(kh); 1538 if (s->key[PF_SK_WIRE] != NULL) 1539 pf_state_key_detach(s, PF_SK_WIRE); 1540 PF_HASHROW_UNLOCK(kh); 1541 } 1542 } 1543 1544 static void 1545 pf_state_key_detach(struct pf_kstate *s, int idx) 1546 { 1547 struct pf_state_key *sk = s->key[idx]; 1548 #ifdef INVARIANTS 1549 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1550 1551 PF_HASHROW_ASSERT(kh); 1552 #endif 1553 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1554 s->key[idx] = NULL; 1555 1556 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1557 LIST_REMOVE(sk, entry); 1558 uma_zfree(V_pf_state_key_z, sk); 1559 } 1560 } 1561 1562 static int 1563 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1564 { 1565 struct pf_state_key *sk = mem; 1566 1567 bzero(sk, sizeof(struct pf_state_key_cmp)); 1568 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1569 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1570 1571 return (0); 1572 } 1573 1574 static int 1575 pf_state_key_addr_setup(struct pf_pdesc *pd, struct mbuf *m, 1576 struct pf_state_key_cmp *key, int sidx, struct pf_addr *saddr, 1577 int didx, struct pf_addr *daddr, int multi) 1578 { 1579 #ifdef INET6 1580 struct nd_neighbor_solicit nd; 1581 struct pf_addr *target; 1582 u_short action, reason; 1583 1584 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6) 1585 goto copy; 1586 1587 switch (pd->hdr.icmp6.icmp6_type) { 1588 case ND_NEIGHBOR_SOLICIT: 1589 if (multi) 1590 return (-1); 1591 if (!pf_pull_hdr(m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af)) 1592 return (-1); 1593 target = (struct pf_addr *)&nd.nd_ns_target; 1594 daddr = target; 1595 break; 1596 case ND_NEIGHBOR_ADVERT: 1597 if (multi) 1598 return (-1); 1599 if (!pf_pull_hdr(m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af)) 1600 return (-1); 1601 target = (struct pf_addr *)&nd.nd_ns_target; 1602 saddr = target; 1603 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) { 1604 key->addr[didx].addr32[0] = 0; 1605 key->addr[didx].addr32[1] = 0; 1606 key->addr[didx].addr32[2] = 0; 1607 key->addr[didx].addr32[3] = 0; 1608 daddr = NULL; /* overwritten */ 1609 } 1610 break; 1611 default: 1612 if (multi == PF_ICMP_MULTI_LINK) { 1613 key->addr[sidx].addr32[0] = IPV6_ADDR_INT32_MLL; 1614 key->addr[sidx].addr32[1] = 0; 1615 key->addr[sidx].addr32[2] = 0; 1616 key->addr[sidx].addr32[3] = IPV6_ADDR_INT32_ONE; 1617 saddr = NULL; /* overwritten */ 1618 } 1619 } 1620 copy: 1621 #endif 1622 if (saddr) 1623 PF_ACPY(&key->addr[sidx], saddr, pd->af); 1624 if (daddr) 1625 PF_ACPY(&key->addr[didx], daddr, pd->af); 1626 1627 return (0); 1628 } 1629 1630 struct pf_state_key * 1631 pf_state_key_setup(struct pf_pdesc *pd, struct mbuf *m, 1632 struct pf_addr *saddr, struct pf_addr *daddr, u_int16_t sport, 1633 u_int16_t dport) 1634 { 1635 struct pf_state_key *sk; 1636 1637 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1638 if (sk == NULL) 1639 return (NULL); 1640 1641 if (pf_state_key_addr_setup(pd, m, (struct pf_state_key_cmp *)sk, 1642 pd->sidx, pd->src, pd->didx, pd->dst, 0)) { 1643 uma_zfree(V_pf_state_key_z, sk); 1644 return (NULL); 1645 } 1646 1647 sk->port[pd->sidx] = sport; 1648 sk->port[pd->didx] = dport; 1649 sk->proto = pd->proto; 1650 sk->af = pd->af; 1651 1652 return (sk); 1653 } 1654 1655 struct pf_state_key * 1656 pf_state_key_clone(const struct pf_state_key *orig) 1657 { 1658 struct pf_state_key *sk; 1659 1660 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1661 if (sk == NULL) 1662 return (NULL); 1663 1664 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1665 1666 return (sk); 1667 } 1668 1669 int 1670 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1671 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1672 { 1673 struct pf_idhash *ih; 1674 struct pf_kstate *cur; 1675 int error; 1676 1677 NET_EPOCH_ASSERT(); 1678 1679 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1680 ("%s: sks not pristine", __func__)); 1681 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1682 ("%s: skw not pristine", __func__)); 1683 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1684 1685 s->kif = kif; 1686 s->orig_kif = orig_kif; 1687 1688 if (s->id == 0 && s->creatorid == 0) { 1689 s->id = alloc_unr64(&V_pf_stateid); 1690 s->id = htobe64(s->id); 1691 s->creatorid = V_pf_status.hostid; 1692 } 1693 1694 /* Returns with ID locked on success. */ 1695 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1696 return (error); 1697 1698 ih = &V_pf_idhash[PF_IDHASH(s)]; 1699 PF_HASHROW_ASSERT(ih); 1700 LIST_FOREACH(cur, &ih->states, entry) 1701 if (cur->id == s->id && cur->creatorid == s->creatorid) 1702 break; 1703 1704 if (cur != NULL) { 1705 s->timeout = PFTM_UNLINKED; 1706 PF_HASHROW_UNLOCK(ih); 1707 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1708 printf("pf: state ID collision: " 1709 "id: %016llx creatorid: %08x\n", 1710 (unsigned long long)be64toh(s->id), 1711 ntohl(s->creatorid)); 1712 } 1713 pf_detach_state(s); 1714 return (EEXIST); 1715 } 1716 LIST_INSERT_HEAD(&ih->states, s, entry); 1717 /* One for keys, one for ID hash. */ 1718 refcount_init(&s->refs, 2); 1719 1720 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1721 if (V_pfsync_insert_state_ptr != NULL) 1722 V_pfsync_insert_state_ptr(s); 1723 1724 /* Returns locked. */ 1725 return (0); 1726 } 1727 1728 /* 1729 * Find state by ID: returns with locked row on success. 1730 */ 1731 struct pf_kstate * 1732 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1733 { 1734 struct pf_idhash *ih; 1735 struct pf_kstate *s; 1736 1737 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1738 1739 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))]; 1740 1741 PF_HASHROW_LOCK(ih); 1742 LIST_FOREACH(s, &ih->states, entry) 1743 if (s->id == id && s->creatorid == creatorid) 1744 break; 1745 1746 if (s == NULL) 1747 PF_HASHROW_UNLOCK(ih); 1748 1749 return (s); 1750 } 1751 1752 /* 1753 * Find state by key. 1754 * Returns with ID hash slot locked on success. 1755 */ 1756 static struct pf_kstate * 1757 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key, 1758 u_int dir) 1759 { 1760 struct pf_keyhash *kh; 1761 struct pf_state_key *sk; 1762 struct pf_kstate *s; 1763 int idx; 1764 1765 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1766 1767 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1768 1769 PF_HASHROW_LOCK(kh); 1770 LIST_FOREACH(sk, &kh->keys, entry) 1771 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1772 break; 1773 if (sk == NULL) { 1774 PF_HASHROW_UNLOCK(kh); 1775 return (NULL); 1776 } 1777 1778 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1779 1780 /* List is sorted, if-bound states before floating ones. */ 1781 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1782 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) { 1783 PF_STATE_LOCK(s); 1784 PF_HASHROW_UNLOCK(kh); 1785 if (__predict_false(s->timeout >= PFTM_MAX)) { 1786 /* 1787 * State is either being processed by 1788 * pf_unlink_state() in an other thread, or 1789 * is scheduled for immediate expiry. 1790 */ 1791 PF_STATE_UNLOCK(s); 1792 return (NULL); 1793 } 1794 return (s); 1795 } 1796 PF_HASHROW_UNLOCK(kh); 1797 1798 return (NULL); 1799 } 1800 1801 /* 1802 * Returns with ID hash slot locked on success. 1803 */ 1804 struct pf_kstate * 1805 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more) 1806 { 1807 struct pf_keyhash *kh; 1808 struct pf_state_key *sk; 1809 struct pf_kstate *s, *ret = NULL; 1810 int idx, inout = 0; 1811 1812 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1813 1814 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1815 1816 PF_HASHROW_LOCK(kh); 1817 LIST_FOREACH(sk, &kh->keys, entry) 1818 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1819 break; 1820 if (sk == NULL) { 1821 PF_HASHROW_UNLOCK(kh); 1822 return (NULL); 1823 } 1824 switch (dir) { 1825 case PF_IN: 1826 idx = PF_SK_WIRE; 1827 break; 1828 case PF_OUT: 1829 idx = PF_SK_STACK; 1830 break; 1831 case PF_INOUT: 1832 idx = PF_SK_WIRE; 1833 inout = 1; 1834 break; 1835 default: 1836 panic("%s: dir %u", __func__, dir); 1837 } 1838 second_run: 1839 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1840 if (more == NULL) { 1841 PF_STATE_LOCK(s); 1842 PF_HASHROW_UNLOCK(kh); 1843 return (s); 1844 } 1845 1846 if (ret) 1847 (*more)++; 1848 else { 1849 ret = s; 1850 PF_STATE_LOCK(s); 1851 } 1852 } 1853 if (inout == 1) { 1854 inout = 0; 1855 idx = PF_SK_STACK; 1856 goto second_run; 1857 } 1858 PF_HASHROW_UNLOCK(kh); 1859 1860 return (ret); 1861 } 1862 1863 /* 1864 * FIXME 1865 * This routine is inefficient -- locks the state only to unlock immediately on 1866 * return. 1867 * It is racy -- after the state is unlocked nothing stops other threads from 1868 * removing it. 1869 */ 1870 bool 1871 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir) 1872 { 1873 struct pf_kstate *s; 1874 1875 s = pf_find_state_all(key, dir, NULL); 1876 if (s != NULL) { 1877 PF_STATE_UNLOCK(s); 1878 return (true); 1879 } 1880 return (false); 1881 } 1882 1883 struct pf_udp_mapping * 1884 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port, 1885 struct pf_addr *nat_addr, uint16_t nat_port) 1886 { 1887 struct pf_udp_mapping *mapping; 1888 1889 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO); 1890 if (mapping == NULL) 1891 return (NULL); 1892 PF_ACPY(&mapping->endpoints[0].addr, src_addr, af); 1893 mapping->endpoints[0].port = src_port; 1894 mapping->endpoints[0].af = af; 1895 mapping->endpoints[0].mapping = mapping; 1896 PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af); 1897 mapping->endpoints[1].port = nat_port; 1898 mapping->endpoints[1].af = af; 1899 mapping->endpoints[1].mapping = mapping; 1900 refcount_init(&mapping->refs, 1); 1901 return (mapping); 1902 } 1903 1904 int 1905 pf_udp_mapping_insert(struct pf_udp_mapping *mapping) 1906 { 1907 struct pf_udpendpointhash *h0, *h1; 1908 struct pf_udp_endpoint *endpoint; 1909 int ret = EEXIST; 1910 1911 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 1912 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 1913 if (h0 == h1) { 1914 PF_HASHROW_LOCK(h0); 1915 } else if (h0 < h1) { 1916 PF_HASHROW_LOCK(h0); 1917 PF_HASHROW_LOCK(h1); 1918 } else { 1919 PF_HASHROW_LOCK(h1); 1920 PF_HASHROW_LOCK(h0); 1921 } 1922 1923 LIST_FOREACH(endpoint, &h0->endpoints, entry) { 1924 if (bcmp(endpoint, &mapping->endpoints[0], 1925 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1926 break; 1927 } 1928 if (endpoint != NULL) 1929 goto cleanup; 1930 LIST_FOREACH(endpoint, &h1->endpoints, entry) { 1931 if (bcmp(endpoint, &mapping->endpoints[1], 1932 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1933 break; 1934 } 1935 if (endpoint != NULL) 1936 goto cleanup; 1937 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry); 1938 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry); 1939 ret = 0; 1940 1941 cleanup: 1942 if (h0 != h1) { 1943 PF_HASHROW_UNLOCK(h0); 1944 PF_HASHROW_UNLOCK(h1); 1945 } else { 1946 PF_HASHROW_UNLOCK(h0); 1947 } 1948 return (ret); 1949 } 1950 1951 void 1952 pf_udp_mapping_release(struct pf_udp_mapping *mapping) 1953 { 1954 /* refcount is synchronized on the source endpoint's row lock */ 1955 struct pf_udpendpointhash *h0, *h1; 1956 1957 if (mapping == NULL) 1958 return; 1959 1960 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 1961 PF_HASHROW_LOCK(h0); 1962 if (refcount_release(&mapping->refs)) { 1963 LIST_REMOVE(&mapping->endpoints[0], entry); 1964 PF_HASHROW_UNLOCK(h0); 1965 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 1966 PF_HASHROW_LOCK(h1); 1967 LIST_REMOVE(&mapping->endpoints[1], entry); 1968 PF_HASHROW_UNLOCK(h1); 1969 1970 uma_zfree(V_pf_udp_mapping_z, mapping); 1971 } else { 1972 PF_HASHROW_UNLOCK(h0); 1973 } 1974 } 1975 1976 1977 struct pf_udp_mapping * 1978 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key) 1979 { 1980 struct pf_udpendpointhash *uh; 1981 struct pf_udp_endpoint *endpoint; 1982 1983 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)]; 1984 1985 PF_HASHROW_LOCK(uh); 1986 LIST_FOREACH(endpoint, &uh->endpoints, entry) { 1987 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 && 1988 bcmp(endpoint, &endpoint->mapping->endpoints[0], 1989 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1990 break; 1991 } 1992 if (endpoint == NULL) { 1993 PF_HASHROW_UNLOCK(uh); 1994 return (NULL); 1995 } 1996 refcount_acquire(&endpoint->mapping->refs); 1997 PF_HASHROW_UNLOCK(uh); 1998 return (endpoint->mapping); 1999 } 2000 /* END state table stuff */ 2001 2002 static void 2003 pf_send(struct pf_send_entry *pfse) 2004 { 2005 2006 PF_SENDQ_LOCK(); 2007 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 2008 PF_SENDQ_UNLOCK(); 2009 swi_sched(V_pf_swi_cookie, 0); 2010 } 2011 2012 static bool 2013 pf_isforlocal(struct mbuf *m, int af) 2014 { 2015 switch (af) { 2016 #ifdef INET 2017 case AF_INET: { 2018 struct ip *ip = mtod(m, struct ip *); 2019 2020 return (in_localip(ip->ip_dst)); 2021 } 2022 #endif 2023 #ifdef INET6 2024 case AF_INET6: { 2025 struct ip6_hdr *ip6; 2026 struct in6_ifaddr *ia; 2027 ip6 = mtod(m, struct ip6_hdr *); 2028 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 2029 if (ia == NULL) 2030 return (false); 2031 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 2032 } 2033 #endif 2034 default: 2035 panic("Unsupported af %d", af); 2036 } 2037 2038 return (false); 2039 } 2040 2041 int 2042 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type, 2043 int *icmp_dir, int *multi, u_int16_t *virtual_id, u_int16_t *virtual_type) 2044 { 2045 /* 2046 * ICMP types marked with PF_OUT are typically responses to 2047 * PF_IN, and will match states in the opposite direction. 2048 * PF_IN ICMP types need to match a state with that type. 2049 */ 2050 *icmp_dir = PF_OUT; 2051 *multi = PF_ICMP_MULTI_LINK; 2052 /* Queries (and responses) */ 2053 switch (pd->af) { 2054 #ifdef INET 2055 case AF_INET: 2056 switch (type) { 2057 case ICMP_ECHO: 2058 *icmp_dir = PF_IN; 2059 case ICMP_ECHOREPLY: 2060 *virtual_type = ICMP_ECHO; 2061 *virtual_id = pd->hdr.icmp.icmp_id; 2062 break; 2063 2064 case ICMP_TSTAMP: 2065 *icmp_dir = PF_IN; 2066 case ICMP_TSTAMPREPLY: 2067 *virtual_type = ICMP_TSTAMP; 2068 *virtual_id = pd->hdr.icmp.icmp_id; 2069 break; 2070 2071 case ICMP_IREQ: 2072 *icmp_dir = PF_IN; 2073 case ICMP_IREQREPLY: 2074 *virtual_type = ICMP_IREQ; 2075 *virtual_id = pd->hdr.icmp.icmp_id; 2076 break; 2077 2078 case ICMP_MASKREQ: 2079 *icmp_dir = PF_IN; 2080 case ICMP_MASKREPLY: 2081 *virtual_type = ICMP_MASKREQ; 2082 *virtual_id = pd->hdr.icmp.icmp_id; 2083 break; 2084 2085 case ICMP_IPV6_WHEREAREYOU: 2086 *icmp_dir = PF_IN; 2087 case ICMP_IPV6_IAMHERE: 2088 *virtual_type = ICMP_IPV6_WHEREAREYOU; 2089 *virtual_id = 0; /* Nothing sane to match on! */ 2090 break; 2091 2092 case ICMP_MOBILE_REGREQUEST: 2093 *icmp_dir = PF_IN; 2094 case ICMP_MOBILE_REGREPLY: 2095 *virtual_type = ICMP_MOBILE_REGREQUEST; 2096 *virtual_id = 0; /* Nothing sane to match on! */ 2097 break; 2098 2099 case ICMP_ROUTERSOLICIT: 2100 *icmp_dir = PF_IN; 2101 case ICMP_ROUTERADVERT: 2102 *virtual_type = ICMP_ROUTERSOLICIT; 2103 *virtual_id = 0; /* Nothing sane to match on! */ 2104 break; 2105 2106 /* These ICMP types map to other connections */ 2107 case ICMP_UNREACH: 2108 case ICMP_SOURCEQUENCH: 2109 case ICMP_REDIRECT: 2110 case ICMP_TIMXCEED: 2111 case ICMP_PARAMPROB: 2112 /* These will not be used, but set them anyway */ 2113 *icmp_dir = PF_IN; 2114 *virtual_type = type; 2115 *virtual_id = 0; 2116 HTONS(*virtual_type); 2117 return (1); /* These types match to another state */ 2118 2119 /* 2120 * All remaining ICMP types get their own states, 2121 * and will only match in one direction. 2122 */ 2123 default: 2124 *icmp_dir = PF_IN; 2125 *virtual_type = type; 2126 *virtual_id = 0; 2127 break; 2128 } 2129 break; 2130 #endif /* INET */ 2131 #ifdef INET6 2132 case AF_INET6: 2133 switch (type) { 2134 case ICMP6_ECHO_REQUEST: 2135 *icmp_dir = PF_IN; 2136 case ICMP6_ECHO_REPLY: 2137 *virtual_type = ICMP6_ECHO_REQUEST; 2138 *virtual_id = pd->hdr.icmp6.icmp6_id; 2139 break; 2140 2141 case MLD_LISTENER_QUERY: 2142 case MLD_LISTENER_REPORT: { 2143 /* 2144 * Listener Report can be sent by clients 2145 * without an associated Listener Query. 2146 * In addition to that, when Report is sent as a 2147 * reply to a Query its source and destination 2148 * address are different. 2149 */ 2150 *icmp_dir = PF_IN; 2151 *virtual_type = MLD_LISTENER_QUERY; 2152 *virtual_id = 0; 2153 break; 2154 } 2155 case MLD_MTRACE: 2156 *icmp_dir = PF_IN; 2157 case MLD_MTRACE_RESP: 2158 *virtual_type = MLD_MTRACE; 2159 *virtual_id = 0; /* Nothing sane to match on! */ 2160 break; 2161 2162 case ND_NEIGHBOR_SOLICIT: 2163 *icmp_dir = PF_IN; 2164 case ND_NEIGHBOR_ADVERT: { 2165 *virtual_type = ND_NEIGHBOR_SOLICIT; 2166 *virtual_id = 0; 2167 break; 2168 } 2169 2170 /* 2171 * These ICMP types map to other connections. 2172 * ND_REDIRECT can't be in this list because the triggering 2173 * packet header is optional. 2174 */ 2175 case ICMP6_DST_UNREACH: 2176 case ICMP6_PACKET_TOO_BIG: 2177 case ICMP6_TIME_EXCEEDED: 2178 case ICMP6_PARAM_PROB: 2179 /* These will not be used, but set them anyway */ 2180 *icmp_dir = PF_IN; 2181 *virtual_type = type; 2182 *virtual_id = 0; 2183 HTONS(*virtual_type); 2184 return (1); /* These types match to another state */ 2185 /* 2186 * All remaining ICMP6 types get their own states, 2187 * and will only match in one direction. 2188 */ 2189 default: 2190 *icmp_dir = PF_IN; 2191 *virtual_type = type; 2192 *virtual_id = 0; 2193 break; 2194 } 2195 break; 2196 #endif /* INET6 */ 2197 default: 2198 *icmp_dir = PF_IN; 2199 *virtual_type = type; 2200 *virtual_id = 0; 2201 break; 2202 } 2203 HTONS(*virtual_type); 2204 return (0); /* These types match to their own state */ 2205 } 2206 2207 void 2208 pf_intr(void *v) 2209 { 2210 struct epoch_tracker et; 2211 struct pf_send_head queue; 2212 struct pf_send_entry *pfse, *next; 2213 2214 CURVNET_SET((struct vnet *)v); 2215 2216 PF_SENDQ_LOCK(); 2217 queue = V_pf_sendqueue; 2218 STAILQ_INIT(&V_pf_sendqueue); 2219 PF_SENDQ_UNLOCK(); 2220 2221 NET_EPOCH_ENTER(et); 2222 2223 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 2224 switch (pfse->pfse_type) { 2225 #ifdef INET 2226 case PFSE_IP: { 2227 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 2228 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 2229 pfse->pfse_m->m_pkthdr.csum_flags |= 2230 CSUM_IP_VALID | CSUM_IP_CHECKED; 2231 ip_input(pfse->pfse_m); 2232 } else { 2233 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2234 NULL); 2235 } 2236 break; 2237 } 2238 case PFSE_ICMP: 2239 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 2240 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 2241 break; 2242 #endif /* INET */ 2243 #ifdef INET6 2244 case PFSE_IP6: 2245 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 2246 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 2247 ip6_input(pfse->pfse_m); 2248 } else { 2249 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2250 NULL, NULL); 2251 } 2252 break; 2253 case PFSE_ICMP6: 2254 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 2255 pfse->icmpopts.code, pfse->icmpopts.mtu); 2256 break; 2257 #endif /* INET6 */ 2258 default: 2259 panic("%s: unknown type", __func__); 2260 } 2261 free(pfse, M_PFTEMP); 2262 } 2263 NET_EPOCH_EXIT(et); 2264 CURVNET_RESTORE(); 2265 } 2266 2267 #define pf_purge_thread_period (hz / 10) 2268 2269 #ifdef PF_WANT_32_TO_64_COUNTER 2270 static void 2271 pf_status_counter_u64_periodic(void) 2272 { 2273 2274 PF_RULES_RASSERT(); 2275 2276 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 2277 return; 2278 } 2279 2280 for (int i = 0; i < FCNT_MAX; i++) { 2281 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 2282 } 2283 } 2284 2285 static void 2286 pf_kif_counter_u64_periodic(void) 2287 { 2288 struct pfi_kkif *kif; 2289 size_t r, run; 2290 2291 PF_RULES_RASSERT(); 2292 2293 if (__predict_false(V_pf_allkifcount == 0)) { 2294 return; 2295 } 2296 2297 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2298 return; 2299 } 2300 2301 run = V_pf_allkifcount / 10; 2302 if (run < 5) 2303 run = 5; 2304 2305 for (r = 0; r < run; r++) { 2306 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 2307 if (kif == NULL) { 2308 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2309 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 2310 break; 2311 } 2312 2313 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2314 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 2315 2316 for (int i = 0; i < 2; i++) { 2317 for (int j = 0; j < 2; j++) { 2318 for (int k = 0; k < 2; k++) { 2319 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 2320 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 2321 } 2322 } 2323 } 2324 } 2325 } 2326 2327 static void 2328 pf_rule_counter_u64_periodic(void) 2329 { 2330 struct pf_krule *rule; 2331 size_t r, run; 2332 2333 PF_RULES_RASSERT(); 2334 2335 if (__predict_false(V_pf_allrulecount == 0)) { 2336 return; 2337 } 2338 2339 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2340 return; 2341 } 2342 2343 run = V_pf_allrulecount / 10; 2344 if (run < 5) 2345 run = 5; 2346 2347 for (r = 0; r < run; r++) { 2348 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 2349 if (rule == NULL) { 2350 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2351 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 2352 break; 2353 } 2354 2355 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2356 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 2357 2358 pf_counter_u64_periodic(&rule->evaluations); 2359 for (int i = 0; i < 2; i++) { 2360 pf_counter_u64_periodic(&rule->packets[i]); 2361 pf_counter_u64_periodic(&rule->bytes[i]); 2362 } 2363 } 2364 } 2365 2366 static void 2367 pf_counter_u64_periodic_main(void) 2368 { 2369 PF_RULES_RLOCK_TRACKER; 2370 2371 V_pf_counter_periodic_iter++; 2372 2373 PF_RULES_RLOCK(); 2374 pf_counter_u64_critical_enter(); 2375 pf_status_counter_u64_periodic(); 2376 pf_kif_counter_u64_periodic(); 2377 pf_rule_counter_u64_periodic(); 2378 pf_counter_u64_critical_exit(); 2379 PF_RULES_RUNLOCK(); 2380 } 2381 #else 2382 #define pf_counter_u64_periodic_main() do { } while (0) 2383 #endif 2384 2385 void 2386 pf_purge_thread(void *unused __unused) 2387 { 2388 struct epoch_tracker et; 2389 2390 VNET_ITERATOR_DECL(vnet_iter); 2391 2392 sx_xlock(&pf_end_lock); 2393 while (pf_end_threads == 0) { 2394 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 2395 2396 VNET_LIST_RLOCK(); 2397 NET_EPOCH_ENTER(et); 2398 VNET_FOREACH(vnet_iter) { 2399 CURVNET_SET(vnet_iter); 2400 2401 /* Wait until V_pf_default_rule is initialized. */ 2402 if (V_pf_vnet_active == 0) { 2403 CURVNET_RESTORE(); 2404 continue; 2405 } 2406 2407 pf_counter_u64_periodic_main(); 2408 2409 /* 2410 * Process 1/interval fraction of the state 2411 * table every run. 2412 */ 2413 V_pf_purge_idx = 2414 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask / 2415 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 2416 2417 /* 2418 * Purge other expired types every 2419 * PFTM_INTERVAL seconds. 2420 */ 2421 if (V_pf_purge_idx == 0) { 2422 /* 2423 * Order is important: 2424 * - states and src nodes reference rules 2425 * - states and rules reference kifs 2426 */ 2427 pf_purge_expired_fragments(); 2428 pf_purge_expired_src_nodes(); 2429 pf_purge_unlinked_rules(); 2430 pfi_kkif_purge(); 2431 } 2432 CURVNET_RESTORE(); 2433 } 2434 NET_EPOCH_EXIT(et); 2435 VNET_LIST_RUNLOCK(); 2436 } 2437 2438 pf_end_threads++; 2439 sx_xunlock(&pf_end_lock); 2440 kproc_exit(0); 2441 } 2442 2443 void 2444 pf_unload_vnet_purge(void) 2445 { 2446 2447 /* 2448 * To cleanse up all kifs and rules we need 2449 * two runs: first one clears reference flags, 2450 * then pf_purge_expired_states() doesn't 2451 * raise them, and then second run frees. 2452 */ 2453 pf_purge_unlinked_rules(); 2454 pfi_kkif_purge(); 2455 2456 /* 2457 * Now purge everything. 2458 */ 2459 pf_purge_expired_states(0, V_pf_hashmask); 2460 pf_purge_fragments(UINT_MAX); 2461 pf_purge_expired_src_nodes(); 2462 2463 /* 2464 * Now all kifs & rules should be unreferenced, 2465 * thus should be successfully freed. 2466 */ 2467 pf_purge_unlinked_rules(); 2468 pfi_kkif_purge(); 2469 } 2470 2471 u_int32_t 2472 pf_state_expires(const struct pf_kstate *state) 2473 { 2474 u_int32_t timeout; 2475 u_int32_t start; 2476 u_int32_t end; 2477 u_int32_t states; 2478 2479 /* handle all PFTM_* > PFTM_MAX here */ 2480 if (state->timeout == PFTM_PURGE) 2481 return (time_uptime); 2482 KASSERT(state->timeout != PFTM_UNLINKED, 2483 ("pf_state_expires: timeout == PFTM_UNLINKED")); 2484 KASSERT((state->timeout < PFTM_MAX), 2485 ("pf_state_expires: timeout > PFTM_MAX")); 2486 timeout = state->rule->timeout[state->timeout]; 2487 if (!timeout) 2488 timeout = V_pf_default_rule.timeout[state->timeout]; 2489 start = state->rule->timeout[PFTM_ADAPTIVE_START]; 2490 if (start && state->rule != &V_pf_default_rule) { 2491 end = state->rule->timeout[PFTM_ADAPTIVE_END]; 2492 states = counter_u64_fetch(state->rule->states_cur); 2493 } else { 2494 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 2495 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 2496 states = V_pf_status.states; 2497 } 2498 if (end && states > start && start < end) { 2499 if (states < end) { 2500 timeout = (u_int64_t)timeout * (end - states) / 2501 (end - start); 2502 return ((state->expire / 1000) + timeout); 2503 } 2504 else 2505 return (time_uptime); 2506 } 2507 return ((state->expire / 1000) + timeout); 2508 } 2509 2510 void 2511 pf_purge_expired_src_nodes(void) 2512 { 2513 struct pf_ksrc_node_list freelist; 2514 struct pf_srchash *sh; 2515 struct pf_ksrc_node *cur, *next; 2516 int i; 2517 2518 LIST_INIT(&freelist); 2519 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 2520 PF_HASHROW_LOCK(sh); 2521 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 2522 if (cur->states == 0 && cur->expire <= time_uptime) { 2523 pf_unlink_src_node(cur); 2524 LIST_INSERT_HEAD(&freelist, cur, entry); 2525 } else if (cur->rule != NULL) 2526 cur->rule->rule_ref |= PFRULE_REFS; 2527 PF_HASHROW_UNLOCK(sh); 2528 } 2529 2530 pf_free_src_nodes(&freelist); 2531 2532 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2533 } 2534 2535 static void 2536 pf_src_tree_remove_state(struct pf_kstate *s) 2537 { 2538 struct pf_ksrc_node *sn; 2539 uint32_t timeout; 2540 2541 timeout = s->rule->timeout[PFTM_SRC_NODE] ? 2542 s->rule->timeout[PFTM_SRC_NODE] : 2543 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2544 2545 if (s->src_node != NULL) { 2546 sn = s->src_node; 2547 PF_SRC_NODE_LOCK(sn); 2548 if (s->src.tcp_est) 2549 --sn->conn; 2550 if (--sn->states == 0) 2551 sn->expire = time_uptime + timeout; 2552 PF_SRC_NODE_UNLOCK(sn); 2553 } 2554 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 2555 sn = s->nat_src_node; 2556 PF_SRC_NODE_LOCK(sn); 2557 if (--sn->states == 0) 2558 sn->expire = time_uptime + timeout; 2559 PF_SRC_NODE_UNLOCK(sn); 2560 } 2561 s->src_node = s->nat_src_node = NULL; 2562 } 2563 2564 /* 2565 * Unlink and potentilly free a state. Function may be 2566 * called with ID hash row locked, but always returns 2567 * unlocked, since it needs to go through key hash locking. 2568 */ 2569 int 2570 pf_unlink_state(struct pf_kstate *s) 2571 { 2572 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2573 2574 NET_EPOCH_ASSERT(); 2575 PF_HASHROW_ASSERT(ih); 2576 2577 if (s->timeout == PFTM_UNLINKED) { 2578 /* 2579 * State is being processed 2580 * by pf_unlink_state() in 2581 * an other thread. 2582 */ 2583 PF_HASHROW_UNLOCK(ih); 2584 return (0); /* XXXGL: undefined actually */ 2585 } 2586 2587 if (s->src.state == PF_TCPS_PROXY_DST) { 2588 /* XXX wire key the right one? */ 2589 pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af, 2590 &s->key[PF_SK_WIRE]->addr[1], 2591 &s->key[PF_SK_WIRE]->addr[0], 2592 s->key[PF_SK_WIRE]->port[1], 2593 s->key[PF_SK_WIRE]->port[0], 2594 s->src.seqhi, s->src.seqlo + 1, 2595 TH_RST|TH_ACK, 0, 0, 0, true, s->tag, 0, s->act.rtableid); 2596 } 2597 2598 LIST_REMOVE(s, entry); 2599 pf_src_tree_remove_state(s); 2600 2601 if (V_pfsync_delete_state_ptr != NULL) 2602 V_pfsync_delete_state_ptr(s); 2603 2604 STATE_DEC_COUNTERS(s); 2605 2606 s->timeout = PFTM_UNLINKED; 2607 2608 /* Ensure we remove it from the list of halfopen states, if needed. */ 2609 if (s->key[PF_SK_STACK] != NULL && 2610 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2611 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2612 2613 PF_HASHROW_UNLOCK(ih); 2614 2615 pf_detach_state(s); 2616 2617 pf_udp_mapping_release(s->udp_mapping); 2618 2619 /* pf_state_insert() initialises refs to 2 */ 2620 return (pf_release_staten(s, 2)); 2621 } 2622 2623 struct pf_kstate * 2624 pf_alloc_state(int flags) 2625 { 2626 2627 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2628 } 2629 2630 void 2631 pf_free_state(struct pf_kstate *cur) 2632 { 2633 struct pf_krule_item *ri; 2634 2635 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2636 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2637 cur->timeout)); 2638 2639 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2640 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2641 free(ri, M_PF_RULE_ITEM); 2642 } 2643 2644 pf_normalize_tcp_cleanup(cur); 2645 uma_zfree(V_pf_state_z, cur); 2646 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2647 } 2648 2649 /* 2650 * Called only from pf_purge_thread(), thus serialized. 2651 */ 2652 static u_int 2653 pf_purge_expired_states(u_int i, int maxcheck) 2654 { 2655 struct pf_idhash *ih; 2656 struct pf_kstate *s; 2657 struct pf_krule_item *mrm; 2658 size_t count __unused; 2659 2660 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2661 2662 /* 2663 * Go through hash and unlink states that expire now. 2664 */ 2665 while (maxcheck > 0) { 2666 count = 0; 2667 ih = &V_pf_idhash[i]; 2668 2669 /* only take the lock if we expect to do work */ 2670 if (!LIST_EMPTY(&ih->states)) { 2671 relock: 2672 PF_HASHROW_LOCK(ih); 2673 LIST_FOREACH(s, &ih->states, entry) { 2674 if (pf_state_expires(s) <= time_uptime) { 2675 V_pf_status.states -= 2676 pf_unlink_state(s); 2677 goto relock; 2678 } 2679 s->rule->rule_ref |= PFRULE_REFS; 2680 if (s->nat_rule != NULL) 2681 s->nat_rule->rule_ref |= PFRULE_REFS; 2682 if (s->anchor != NULL) 2683 s->anchor->rule_ref |= PFRULE_REFS; 2684 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2685 SLIST_FOREACH(mrm, &s->match_rules, entry) 2686 mrm->r->rule_ref |= PFRULE_REFS; 2687 if (s->rt_kif) 2688 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2689 count++; 2690 } 2691 PF_HASHROW_UNLOCK(ih); 2692 } 2693 2694 SDT_PROBE2(pf, purge, state, rowcount, i, count); 2695 2696 /* Return when we hit end of hash. */ 2697 if (++i > V_pf_hashmask) { 2698 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2699 return (0); 2700 } 2701 2702 maxcheck--; 2703 } 2704 2705 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2706 2707 return (i); 2708 } 2709 2710 static void 2711 pf_purge_unlinked_rules(void) 2712 { 2713 struct pf_krulequeue tmpq; 2714 struct pf_krule *r, *r1; 2715 2716 /* 2717 * If we have overloading task pending, then we'd 2718 * better skip purging this time. There is a tiny 2719 * probability that overloading task references 2720 * an already unlinked rule. 2721 */ 2722 PF_OVERLOADQ_LOCK(); 2723 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2724 PF_OVERLOADQ_UNLOCK(); 2725 return; 2726 } 2727 PF_OVERLOADQ_UNLOCK(); 2728 2729 /* 2730 * Do naive mark-and-sweep garbage collecting of old rules. 2731 * Reference flag is raised by pf_purge_expired_states() 2732 * and pf_purge_expired_src_nodes(). 2733 * 2734 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2735 * use a temporary queue. 2736 */ 2737 TAILQ_INIT(&tmpq); 2738 PF_UNLNKDRULES_LOCK(); 2739 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2740 if (!(r->rule_ref & PFRULE_REFS)) { 2741 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2742 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2743 } else 2744 r->rule_ref &= ~PFRULE_REFS; 2745 } 2746 PF_UNLNKDRULES_UNLOCK(); 2747 2748 if (!TAILQ_EMPTY(&tmpq)) { 2749 PF_CONFIG_LOCK(); 2750 PF_RULES_WLOCK(); 2751 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2752 TAILQ_REMOVE(&tmpq, r, entries); 2753 pf_free_rule(r); 2754 } 2755 PF_RULES_WUNLOCK(); 2756 PF_CONFIG_UNLOCK(); 2757 } 2758 } 2759 2760 void 2761 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2762 { 2763 switch (af) { 2764 #ifdef INET 2765 case AF_INET: { 2766 u_int32_t a = ntohl(addr->addr32[0]); 2767 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2768 (a>>8)&255, a&255); 2769 if (p) { 2770 p = ntohs(p); 2771 printf(":%u", p); 2772 } 2773 break; 2774 } 2775 #endif /* INET */ 2776 #ifdef INET6 2777 case AF_INET6: { 2778 u_int16_t b; 2779 u_int8_t i, curstart, curend, maxstart, maxend; 2780 curstart = curend = maxstart = maxend = 255; 2781 for (i = 0; i < 8; i++) { 2782 if (!addr->addr16[i]) { 2783 if (curstart == 255) 2784 curstart = i; 2785 curend = i; 2786 } else { 2787 if ((curend - curstart) > 2788 (maxend - maxstart)) { 2789 maxstart = curstart; 2790 maxend = curend; 2791 } 2792 curstart = curend = 255; 2793 } 2794 } 2795 if ((curend - curstart) > 2796 (maxend - maxstart)) { 2797 maxstart = curstart; 2798 maxend = curend; 2799 } 2800 for (i = 0; i < 8; i++) { 2801 if (i >= maxstart && i <= maxend) { 2802 if (i == 0) 2803 printf(":"); 2804 if (i == maxend) 2805 printf(":"); 2806 } else { 2807 b = ntohs(addr->addr16[i]); 2808 printf("%x", b); 2809 if (i < 7) 2810 printf(":"); 2811 } 2812 } 2813 if (p) { 2814 p = ntohs(p); 2815 printf("[%u]", p); 2816 } 2817 break; 2818 } 2819 #endif /* INET6 */ 2820 } 2821 } 2822 2823 void 2824 pf_print_state(struct pf_kstate *s) 2825 { 2826 pf_print_state_parts(s, NULL, NULL); 2827 } 2828 2829 static void 2830 pf_print_state_parts(struct pf_kstate *s, 2831 struct pf_state_key *skwp, struct pf_state_key *sksp) 2832 { 2833 struct pf_state_key *skw, *sks; 2834 u_int8_t proto, dir; 2835 2836 /* Do our best to fill these, but they're skipped if NULL */ 2837 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2838 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2839 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2840 dir = s ? s->direction : 0; 2841 2842 switch (proto) { 2843 case IPPROTO_IPV4: 2844 printf("IPv4"); 2845 break; 2846 case IPPROTO_IPV6: 2847 printf("IPv6"); 2848 break; 2849 case IPPROTO_TCP: 2850 printf("TCP"); 2851 break; 2852 case IPPROTO_UDP: 2853 printf("UDP"); 2854 break; 2855 case IPPROTO_ICMP: 2856 printf("ICMP"); 2857 break; 2858 case IPPROTO_ICMPV6: 2859 printf("ICMPv6"); 2860 break; 2861 default: 2862 printf("%u", proto); 2863 break; 2864 } 2865 switch (dir) { 2866 case PF_IN: 2867 printf(" in"); 2868 break; 2869 case PF_OUT: 2870 printf(" out"); 2871 break; 2872 } 2873 if (skw) { 2874 printf(" wire: "); 2875 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2876 printf(" "); 2877 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2878 } 2879 if (sks) { 2880 printf(" stack: "); 2881 if (sks != skw) { 2882 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2883 printf(" "); 2884 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2885 } else 2886 printf("-"); 2887 } 2888 if (s) { 2889 if (proto == IPPROTO_TCP) { 2890 printf(" [lo=%u high=%u win=%u modulator=%u", 2891 s->src.seqlo, s->src.seqhi, 2892 s->src.max_win, s->src.seqdiff); 2893 if (s->src.wscale && s->dst.wscale) 2894 printf(" wscale=%u", 2895 s->src.wscale & PF_WSCALE_MASK); 2896 printf("]"); 2897 printf(" [lo=%u high=%u win=%u modulator=%u", 2898 s->dst.seqlo, s->dst.seqhi, 2899 s->dst.max_win, s->dst.seqdiff); 2900 if (s->src.wscale && s->dst.wscale) 2901 printf(" wscale=%u", 2902 s->dst.wscale & PF_WSCALE_MASK); 2903 printf("]"); 2904 } 2905 printf(" %u:%u", s->src.state, s->dst.state); 2906 if (s->rule) 2907 printf(" @%d", s->rule->nr); 2908 } 2909 } 2910 2911 void 2912 pf_print_flags(u_int8_t f) 2913 { 2914 if (f) 2915 printf(" "); 2916 if (f & TH_FIN) 2917 printf("F"); 2918 if (f & TH_SYN) 2919 printf("S"); 2920 if (f & TH_RST) 2921 printf("R"); 2922 if (f & TH_PUSH) 2923 printf("P"); 2924 if (f & TH_ACK) 2925 printf("A"); 2926 if (f & TH_URG) 2927 printf("U"); 2928 if (f & TH_ECE) 2929 printf("E"); 2930 if (f & TH_CWR) 2931 printf("W"); 2932 } 2933 2934 #define PF_SET_SKIP_STEPS(i) \ 2935 do { \ 2936 while (head[i] != cur) { \ 2937 head[i]->skip[i] = cur; \ 2938 head[i] = TAILQ_NEXT(head[i], entries); \ 2939 } \ 2940 } while (0) 2941 2942 void 2943 pf_calc_skip_steps(struct pf_krulequeue *rules) 2944 { 2945 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2946 int i; 2947 2948 cur = TAILQ_FIRST(rules); 2949 prev = cur; 2950 for (i = 0; i < PF_SKIP_COUNT; ++i) 2951 head[i] = cur; 2952 while (cur != NULL) { 2953 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2954 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2955 if (cur->direction != prev->direction) 2956 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2957 if (cur->af != prev->af) 2958 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2959 if (cur->proto != prev->proto) 2960 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2961 if (cur->src.neg != prev->src.neg || 2962 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2963 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2964 if (cur->dst.neg != prev->dst.neg || 2965 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2966 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2967 if (cur->src.port[0] != prev->src.port[0] || 2968 cur->src.port[1] != prev->src.port[1] || 2969 cur->src.port_op != prev->src.port_op) 2970 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2971 if (cur->dst.port[0] != prev->dst.port[0] || 2972 cur->dst.port[1] != prev->dst.port[1] || 2973 cur->dst.port_op != prev->dst.port_op) 2974 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2975 2976 prev = cur; 2977 cur = TAILQ_NEXT(cur, entries); 2978 } 2979 for (i = 0; i < PF_SKIP_COUNT; ++i) 2980 PF_SET_SKIP_STEPS(i); 2981 } 2982 2983 int 2984 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2985 { 2986 if (aw1->type != aw2->type) 2987 return (1); 2988 switch (aw1->type) { 2989 case PF_ADDR_ADDRMASK: 2990 case PF_ADDR_RANGE: 2991 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2992 return (1); 2993 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2994 return (1); 2995 return (0); 2996 case PF_ADDR_DYNIFTL: 2997 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2998 case PF_ADDR_NOROUTE: 2999 case PF_ADDR_URPFFAILED: 3000 return (0); 3001 case PF_ADDR_TABLE: 3002 return (aw1->p.tbl != aw2->p.tbl); 3003 default: 3004 printf("invalid address type: %d\n", aw1->type); 3005 return (1); 3006 } 3007 } 3008 3009 /** 3010 * Checksum updates are a little complicated because the checksum in the TCP/UDP 3011 * header isn't always a full checksum. In some cases (i.e. output) it's a 3012 * pseudo-header checksum, which is a partial checksum over src/dst IP 3013 * addresses, protocol number and length. 3014 * 3015 * That means we have the following cases: 3016 * * Input or forwarding: we don't have TSO, the checksum fields are full 3017 * checksums, we need to update the checksum whenever we change anything. 3018 * * Output (i.e. the checksum is a pseudo-header checksum): 3019 * x The field being updated is src/dst address or affects the length of 3020 * the packet. We need to update the pseudo-header checksum (note that this 3021 * checksum is not ones' complement). 3022 * x Some other field is being modified (e.g. src/dst port numbers): We 3023 * don't have to update anything. 3024 **/ 3025 u_int16_t 3026 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 3027 { 3028 u_int32_t x; 3029 3030 x = cksum + old - new; 3031 x = (x + (x >> 16)) & 0xffff; 3032 3033 /* optimise: eliminate a branch when not udp */ 3034 if (udp && cksum == 0x0000) 3035 return cksum; 3036 if (udp && x == 0x0000) 3037 x = 0xffff; 3038 3039 return (u_int16_t)(x); 3040 } 3041 3042 static void 3043 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 3044 u_int8_t udp) 3045 { 3046 u_int16_t old = htons(hi ? (*f << 8) : *f); 3047 u_int16_t new = htons(hi ? ( v << 8) : v); 3048 3049 if (*f == v) 3050 return; 3051 3052 *f = v; 3053 3054 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3055 return; 3056 3057 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 3058 } 3059 3060 void 3061 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 3062 bool hi, u_int8_t udp) 3063 { 3064 u_int8_t *fb = (u_int8_t *)f; 3065 u_int8_t *vb = (u_int8_t *)&v; 3066 3067 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3068 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3069 } 3070 3071 void 3072 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 3073 bool hi, u_int8_t udp) 3074 { 3075 u_int8_t *fb = (u_int8_t *)f; 3076 u_int8_t *vb = (u_int8_t *)&v; 3077 3078 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3079 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3080 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3081 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3082 } 3083 3084 u_int16_t 3085 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 3086 u_int16_t new, u_int8_t udp) 3087 { 3088 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3089 return (cksum); 3090 3091 return (pf_cksum_fixup(cksum, old, new, udp)); 3092 } 3093 3094 static void 3095 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 3096 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 3097 sa_family_t af) 3098 { 3099 struct pf_addr ao; 3100 u_int16_t po = *p; 3101 3102 PF_ACPY(&ao, a, af); 3103 PF_ACPY(a, an, af); 3104 3105 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3106 *pc = ~*pc; 3107 3108 *p = pn; 3109 3110 switch (af) { 3111 #ifdef INET 3112 case AF_INET: 3113 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3114 ao.addr16[0], an->addr16[0], 0), 3115 ao.addr16[1], an->addr16[1], 0); 3116 *p = pn; 3117 3118 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 3119 ao.addr16[0], an->addr16[0], u), 3120 ao.addr16[1], an->addr16[1], u); 3121 3122 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 3123 break; 3124 #endif /* INET */ 3125 #ifdef INET6 3126 case AF_INET6: 3127 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3128 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3129 pf_cksum_fixup(pf_cksum_fixup(*pc, 3130 ao.addr16[0], an->addr16[0], u), 3131 ao.addr16[1], an->addr16[1], u), 3132 ao.addr16[2], an->addr16[2], u), 3133 ao.addr16[3], an->addr16[3], u), 3134 ao.addr16[4], an->addr16[4], u), 3135 ao.addr16[5], an->addr16[5], u), 3136 ao.addr16[6], an->addr16[6], u), 3137 ao.addr16[7], an->addr16[7], u); 3138 3139 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 3140 break; 3141 #endif /* INET6 */ 3142 } 3143 3144 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 3145 CSUM_DELAY_DATA_IPV6)) { 3146 *pc = ~*pc; 3147 if (! *pc) 3148 *pc = 0xffff; 3149 } 3150 } 3151 3152 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 3153 void 3154 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 3155 { 3156 u_int32_t ao; 3157 3158 memcpy(&ao, a, sizeof(ao)); 3159 memcpy(a, &an, sizeof(u_int32_t)); 3160 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 3161 ao % 65536, an % 65536, u); 3162 } 3163 3164 void 3165 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 3166 { 3167 u_int32_t ao; 3168 3169 memcpy(&ao, a, sizeof(ao)); 3170 memcpy(a, &an, sizeof(u_int32_t)); 3171 3172 *c = pf_proto_cksum_fixup(m, 3173 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 3174 ao % 65536, an % 65536, udp); 3175 } 3176 3177 #ifdef INET6 3178 static void 3179 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 3180 { 3181 struct pf_addr ao; 3182 3183 PF_ACPY(&ao, a, AF_INET6); 3184 PF_ACPY(a, an, AF_INET6); 3185 3186 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3187 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3188 pf_cksum_fixup(pf_cksum_fixup(*c, 3189 ao.addr16[0], an->addr16[0], u), 3190 ao.addr16[1], an->addr16[1], u), 3191 ao.addr16[2], an->addr16[2], u), 3192 ao.addr16[3], an->addr16[3], u), 3193 ao.addr16[4], an->addr16[4], u), 3194 ao.addr16[5], an->addr16[5], u), 3195 ao.addr16[6], an->addr16[6], u), 3196 ao.addr16[7], an->addr16[7], u); 3197 } 3198 #endif /* INET6 */ 3199 3200 static void 3201 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 3202 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 3203 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 3204 { 3205 struct pf_addr oia, ooa; 3206 3207 PF_ACPY(&oia, ia, af); 3208 if (oa) 3209 PF_ACPY(&ooa, oa, af); 3210 3211 /* Change inner protocol port, fix inner protocol checksum. */ 3212 if (ip != NULL) { 3213 u_int16_t oip = *ip; 3214 u_int32_t opc; 3215 3216 if (pc != NULL) 3217 opc = *pc; 3218 *ip = np; 3219 if (pc != NULL) 3220 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 3221 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 3222 if (pc != NULL) 3223 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 3224 } 3225 /* Change inner ip address, fix inner ip and icmp checksums. */ 3226 PF_ACPY(ia, na, af); 3227 switch (af) { 3228 #ifdef INET 3229 case AF_INET: { 3230 u_int32_t oh2c = *h2c; 3231 3232 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 3233 oia.addr16[0], ia->addr16[0], 0), 3234 oia.addr16[1], ia->addr16[1], 0); 3235 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3236 oia.addr16[0], ia->addr16[0], 0), 3237 oia.addr16[1], ia->addr16[1], 0); 3238 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 3239 break; 3240 } 3241 #endif /* INET */ 3242 #ifdef INET6 3243 case AF_INET6: 3244 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3245 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3246 pf_cksum_fixup(pf_cksum_fixup(*ic, 3247 oia.addr16[0], ia->addr16[0], u), 3248 oia.addr16[1], ia->addr16[1], u), 3249 oia.addr16[2], ia->addr16[2], u), 3250 oia.addr16[3], ia->addr16[3], u), 3251 oia.addr16[4], ia->addr16[4], u), 3252 oia.addr16[5], ia->addr16[5], u), 3253 oia.addr16[6], ia->addr16[6], u), 3254 oia.addr16[7], ia->addr16[7], u); 3255 break; 3256 #endif /* INET6 */ 3257 } 3258 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 3259 if (oa) { 3260 PF_ACPY(oa, na, af); 3261 switch (af) { 3262 #ifdef INET 3263 case AF_INET: 3264 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 3265 ooa.addr16[0], oa->addr16[0], 0), 3266 ooa.addr16[1], oa->addr16[1], 0); 3267 break; 3268 #endif /* INET */ 3269 #ifdef INET6 3270 case AF_INET6: 3271 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3272 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3273 pf_cksum_fixup(pf_cksum_fixup(*ic, 3274 ooa.addr16[0], oa->addr16[0], u), 3275 ooa.addr16[1], oa->addr16[1], u), 3276 ooa.addr16[2], oa->addr16[2], u), 3277 ooa.addr16[3], oa->addr16[3], u), 3278 ooa.addr16[4], oa->addr16[4], u), 3279 ooa.addr16[5], oa->addr16[5], u), 3280 ooa.addr16[6], oa->addr16[6], u), 3281 ooa.addr16[7], oa->addr16[7], u); 3282 break; 3283 #endif /* INET6 */ 3284 } 3285 } 3286 } 3287 3288 /* 3289 * Need to modulate the sequence numbers in the TCP SACK option 3290 * (credits to Krzysztof Pfaff for report and patch) 3291 */ 3292 static int 3293 pf_modulate_sack(struct mbuf *m, struct pf_pdesc *pd, 3294 struct tcphdr *th, struct pf_state_peer *dst) 3295 { 3296 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 3297 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 3298 int copyback = 0, i, olen; 3299 struct sackblk sack; 3300 3301 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 3302 if (hlen < TCPOLEN_SACKLEN || 3303 !pf_pull_hdr(m, pd->off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 3304 return 0; 3305 3306 while (hlen >= TCPOLEN_SACKLEN) { 3307 size_t startoff = opt - opts; 3308 olen = opt[1]; 3309 switch (*opt) { 3310 case TCPOPT_EOL: /* FALLTHROUGH */ 3311 case TCPOPT_NOP: 3312 opt++; 3313 hlen--; 3314 break; 3315 case TCPOPT_SACK: 3316 if (olen > hlen) 3317 olen = hlen; 3318 if (olen >= TCPOLEN_SACKLEN) { 3319 for (i = 2; i + TCPOLEN_SACK <= olen; 3320 i += TCPOLEN_SACK) { 3321 memcpy(&sack, &opt[i], sizeof(sack)); 3322 pf_patch_32_unaligned(m, 3323 &th->th_sum, &sack.start, 3324 htonl(ntohl(sack.start) - dst->seqdiff), 3325 PF_ALGNMNT(startoff), 3326 0); 3327 pf_patch_32_unaligned(m, &th->th_sum, 3328 &sack.end, 3329 htonl(ntohl(sack.end) - dst->seqdiff), 3330 PF_ALGNMNT(startoff), 3331 0); 3332 memcpy(&opt[i], &sack, sizeof(sack)); 3333 } 3334 copyback = 1; 3335 } 3336 /* FALLTHROUGH */ 3337 default: 3338 if (olen < 2) 3339 olen = 2; 3340 hlen -= olen; 3341 opt += olen; 3342 } 3343 } 3344 3345 if (copyback) 3346 m_copyback(m, pd->off + sizeof(*th), thoptlen, (caddr_t)opts); 3347 return (copyback); 3348 } 3349 3350 struct mbuf * 3351 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 3352 const struct pf_addr *saddr, const struct pf_addr *daddr, 3353 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3354 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3355 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3356 { 3357 struct mbuf *m; 3358 int len, tlen; 3359 #ifdef INET 3360 struct ip *h = NULL; 3361 #endif /* INET */ 3362 #ifdef INET6 3363 struct ip6_hdr *h6 = NULL; 3364 #endif /* INET6 */ 3365 struct tcphdr *th; 3366 char *opt; 3367 struct pf_mtag *pf_mtag; 3368 3369 len = 0; 3370 th = NULL; 3371 3372 /* maximum segment size tcp option */ 3373 tlen = sizeof(struct tcphdr); 3374 if (mss) 3375 tlen += 4; 3376 3377 switch (af) { 3378 #ifdef INET 3379 case AF_INET: 3380 len = sizeof(struct ip) + tlen; 3381 break; 3382 #endif /* INET */ 3383 #ifdef INET6 3384 case AF_INET6: 3385 len = sizeof(struct ip6_hdr) + tlen; 3386 break; 3387 #endif /* INET6 */ 3388 default: 3389 panic("%s: unsupported af %d", __func__, af); 3390 } 3391 3392 m = m_gethdr(M_NOWAIT, MT_DATA); 3393 if (m == NULL) 3394 return (NULL); 3395 3396 #ifdef MAC 3397 mac_netinet_firewall_send(m); 3398 #endif 3399 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 3400 m_freem(m); 3401 return (NULL); 3402 } 3403 if (skip_firewall) 3404 m->m_flags |= M_SKIP_FIREWALL; 3405 pf_mtag->tag = mtag_tag; 3406 pf_mtag->flags = mtag_flags; 3407 3408 if (rtableid >= 0) 3409 M_SETFIB(m, rtableid); 3410 3411 #ifdef ALTQ 3412 if (r != NULL && r->qid) { 3413 pf_mtag->qid = r->qid; 3414 3415 /* add hints for ecn */ 3416 pf_mtag->hdr = mtod(m, struct ip *); 3417 } 3418 #endif /* ALTQ */ 3419 m->m_data += max_linkhdr; 3420 m->m_pkthdr.len = m->m_len = len; 3421 /* The rest of the stack assumes a rcvif, so provide one. 3422 * This is a locally generated packet, so .. close enough. */ 3423 m->m_pkthdr.rcvif = V_loif; 3424 bzero(m->m_data, len); 3425 switch (af) { 3426 #ifdef INET 3427 case AF_INET: 3428 h = mtod(m, struct ip *); 3429 3430 /* IP header fields included in the TCP checksum */ 3431 h->ip_p = IPPROTO_TCP; 3432 h->ip_len = htons(tlen); 3433 h->ip_src.s_addr = saddr->v4.s_addr; 3434 h->ip_dst.s_addr = daddr->v4.s_addr; 3435 3436 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 3437 break; 3438 #endif /* INET */ 3439 #ifdef INET6 3440 case AF_INET6: 3441 h6 = mtod(m, struct ip6_hdr *); 3442 3443 /* IP header fields included in the TCP checksum */ 3444 h6->ip6_nxt = IPPROTO_TCP; 3445 h6->ip6_plen = htons(tlen); 3446 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 3447 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 3448 3449 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 3450 break; 3451 #endif /* INET6 */ 3452 } 3453 3454 /* TCP header */ 3455 th->th_sport = sport; 3456 th->th_dport = dport; 3457 th->th_seq = htonl(seq); 3458 th->th_ack = htonl(ack); 3459 th->th_off = tlen >> 2; 3460 th->th_flags = tcp_flags; 3461 th->th_win = htons(win); 3462 3463 if (mss) { 3464 opt = (char *)(th + 1); 3465 opt[0] = TCPOPT_MAXSEG; 3466 opt[1] = 4; 3467 HTONS(mss); 3468 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 3469 } 3470 3471 switch (af) { 3472 #ifdef INET 3473 case AF_INET: 3474 /* TCP checksum */ 3475 th->th_sum = in_cksum(m, len); 3476 3477 /* Finish the IP header */ 3478 h->ip_v = 4; 3479 h->ip_hl = sizeof(*h) >> 2; 3480 h->ip_tos = IPTOS_LOWDELAY; 3481 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 3482 h->ip_len = htons(len); 3483 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3484 h->ip_sum = 0; 3485 break; 3486 #endif /* INET */ 3487 #ifdef INET6 3488 case AF_INET6: 3489 /* TCP checksum */ 3490 th->th_sum = in6_cksum(m, IPPROTO_TCP, 3491 sizeof(struct ip6_hdr), tlen); 3492 3493 h6->ip6_vfc |= IPV6_VERSION; 3494 h6->ip6_hlim = IPV6_DEFHLIM; 3495 break; 3496 #endif /* INET6 */ 3497 } 3498 3499 return (m); 3500 } 3501 3502 static void 3503 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd, 3504 uint8_t ttl, int rtableid) 3505 { 3506 struct mbuf *m; 3507 #ifdef INET 3508 struct ip *h = NULL; 3509 #endif /* INET */ 3510 #ifdef INET6 3511 struct ip6_hdr *h6 = NULL; 3512 #endif /* INET6 */ 3513 struct sctphdr *hdr; 3514 struct sctp_chunkhdr *chunk; 3515 struct pf_send_entry *pfse; 3516 int off = 0; 3517 3518 MPASS(af == pd->af); 3519 3520 m = m_gethdr(M_NOWAIT, MT_DATA); 3521 if (m == NULL) 3522 return; 3523 3524 m->m_data += max_linkhdr; 3525 m->m_flags |= M_SKIP_FIREWALL; 3526 /* The rest of the stack assumes a rcvif, so provide one. 3527 * This is a locally generated packet, so .. close enough. */ 3528 m->m_pkthdr.rcvif = V_loif; 3529 3530 /* IPv4|6 header */ 3531 switch (af) { 3532 #ifdef INET 3533 case AF_INET: 3534 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk)); 3535 3536 h = mtod(m, struct ip *); 3537 3538 /* IP header fields included in the TCP checksum */ 3539 3540 h->ip_p = IPPROTO_SCTP; 3541 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk)); 3542 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3543 h->ip_src = pd->dst->v4; 3544 h->ip_dst = pd->src->v4; 3545 3546 off += sizeof(struct ip); 3547 break; 3548 #endif /* INET */ 3549 #ifdef INET6 3550 case AF_INET6: 3551 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk)); 3552 3553 h6 = mtod(m, struct ip6_hdr *); 3554 3555 /* IP header fields included in the TCP checksum */ 3556 h6->ip6_vfc |= IPV6_VERSION; 3557 h6->ip6_nxt = IPPROTO_SCTP; 3558 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk)); 3559 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim; 3560 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr)); 3561 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr)); 3562 3563 off += sizeof(struct ip6_hdr); 3564 break; 3565 #endif /* INET6 */ 3566 } 3567 3568 /* SCTP header */ 3569 hdr = mtodo(m, off); 3570 3571 hdr->src_port = pd->hdr.sctp.dest_port; 3572 hdr->dest_port = pd->hdr.sctp.src_port; 3573 hdr->v_tag = pd->sctp_initiate_tag; 3574 hdr->checksum = 0; 3575 3576 /* Abort chunk. */ 3577 off += sizeof(struct sctphdr); 3578 chunk = mtodo(m, off); 3579 3580 chunk->chunk_type = SCTP_ABORT_ASSOCIATION; 3581 chunk->chunk_length = htons(sizeof(*chunk)); 3582 3583 /* SCTP checksum */ 3584 off += sizeof(*chunk); 3585 m->m_pkthdr.len = m->m_len = off; 3586 3587 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk)); 3588 3589 if (rtableid >= 0) 3590 M_SETFIB(m, rtableid); 3591 3592 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3593 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3594 if (pfse == NULL) { 3595 m_freem(m); 3596 return; 3597 } 3598 3599 switch (af) { 3600 #ifdef INET 3601 case AF_INET: 3602 pfse->pfse_type = PFSE_IP; 3603 break; 3604 #endif /* INET */ 3605 #ifdef INET6 3606 case AF_INET6: 3607 pfse->pfse_type = PFSE_IP6; 3608 break; 3609 #endif /* INET6 */ 3610 } 3611 3612 pfse->pfse_m = m; 3613 pf_send(pfse); 3614 } 3615 3616 void 3617 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 3618 const struct pf_addr *saddr, const struct pf_addr *daddr, 3619 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3620 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3621 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3622 { 3623 struct pf_send_entry *pfse; 3624 struct mbuf *m; 3625 3626 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags, 3627 win, mss, ttl, skip_firewall, mtag_tag, mtag_flags, rtableid); 3628 if (m == NULL) 3629 return; 3630 3631 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3632 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3633 if (pfse == NULL) { 3634 m_freem(m); 3635 return; 3636 } 3637 3638 switch (af) { 3639 #ifdef INET 3640 case AF_INET: 3641 pfse->pfse_type = PFSE_IP; 3642 break; 3643 #endif /* INET */ 3644 #ifdef INET6 3645 case AF_INET6: 3646 pfse->pfse_type = PFSE_IP6; 3647 break; 3648 #endif /* INET6 */ 3649 } 3650 3651 pfse->pfse_m = m; 3652 pf_send(pfse); 3653 } 3654 3655 static void 3656 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 3657 struct pf_state_key *sk, struct mbuf *m, struct tcphdr *th, 3658 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, 3659 u_short *reason, int rtableid) 3660 { 3661 struct pf_addr * const saddr = pd->src; 3662 struct pf_addr * const daddr = pd->dst; 3663 3664 /* undo NAT changes, if they have taken place */ 3665 if (nr != NULL) { 3666 PF_ACPY(saddr, &sk->addr[pd->sidx], pd->af); 3667 PF_ACPY(daddr, &sk->addr[pd->didx], pd->af); 3668 if (pd->sport) 3669 *pd->sport = sk->port[pd->sidx]; 3670 if (pd->dport) 3671 *pd->dport = sk->port[pd->didx]; 3672 if (pd->proto_sum) 3673 *pd->proto_sum = bproto_sum; 3674 if (pd->ip_sum) 3675 *pd->ip_sum = bip_sum; 3676 m_copyback(m, pd->off, pd->hdrlen, pd->hdr.any); 3677 } 3678 if (pd->proto == IPPROTO_TCP && 3679 ((r->rule_flag & PFRULE_RETURNRST) || 3680 (r->rule_flag & PFRULE_RETURN)) && 3681 !(th->th_flags & TH_RST)) { 3682 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3683 3684 if (pf_check_proto_cksum(m, pd->off, pd->tot_len - pd->off, 3685 IPPROTO_TCP, pd->af)) 3686 REASON_SET(reason, PFRES_PROTCKSUM); 3687 else { 3688 if (th->th_flags & TH_SYN) 3689 ack++; 3690 if (th->th_flags & TH_FIN) 3691 ack++; 3692 pf_send_tcp(r, pd->af, pd->dst, 3693 pd->src, th->th_dport, th->th_sport, 3694 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3695 r->return_ttl, true, 0, 0, rtableid); 3696 } 3697 } else if (pd->proto == IPPROTO_SCTP && 3698 (r->rule_flag & PFRULE_RETURN)) { 3699 pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid); 3700 } else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET && 3701 r->return_icmp) 3702 pf_send_icmp(m, r->return_icmp >> 8, 3703 r->return_icmp & 255, pd->af, r, rtableid); 3704 else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 && 3705 r->return_icmp6) 3706 pf_send_icmp(m, r->return_icmp6 >> 8, 3707 r->return_icmp6 & 255, pd->af, r, rtableid); 3708 } 3709 3710 static int 3711 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 3712 { 3713 struct m_tag *mtag; 3714 u_int8_t mpcp; 3715 3716 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 3717 if (mtag == NULL) 3718 return (0); 3719 3720 if (prio == PF_PRIO_ZERO) 3721 prio = 0; 3722 3723 mpcp = *(uint8_t *)(mtag + 1); 3724 3725 return (mpcp == prio); 3726 } 3727 3728 static int 3729 pf_icmp_to_bandlim(uint8_t type) 3730 { 3731 switch (type) { 3732 case ICMP_ECHO: 3733 case ICMP_ECHOREPLY: 3734 return (BANDLIM_ICMP_ECHO); 3735 case ICMP_TSTAMP: 3736 case ICMP_TSTAMPREPLY: 3737 return (BANDLIM_ICMP_TSTAMP); 3738 case ICMP_UNREACH: 3739 default: 3740 return (BANDLIM_ICMP_UNREACH); 3741 } 3742 } 3743 3744 static void 3745 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 3746 struct pf_krule *r, int rtableid) 3747 { 3748 struct pf_send_entry *pfse; 3749 struct mbuf *m0; 3750 struct pf_mtag *pf_mtag; 3751 3752 /* ICMP packet rate limitation. */ 3753 #ifdef INET6 3754 if (af == AF_INET6) { 3755 if (icmp6_ratelimit(NULL, type, code)) 3756 return; 3757 } 3758 #endif 3759 #ifdef INET 3760 if (af == AF_INET) { 3761 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 3762 return; 3763 } 3764 #endif 3765 3766 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3767 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3768 if (pfse == NULL) 3769 return; 3770 3771 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 3772 free(pfse, M_PFTEMP); 3773 return; 3774 } 3775 3776 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 3777 free(pfse, M_PFTEMP); 3778 return; 3779 } 3780 /* XXX: revisit */ 3781 m0->m_flags |= M_SKIP_FIREWALL; 3782 3783 if (rtableid >= 0) 3784 M_SETFIB(m0, rtableid); 3785 3786 #ifdef ALTQ 3787 if (r->qid) { 3788 pf_mtag->qid = r->qid; 3789 /* add hints for ecn */ 3790 pf_mtag->hdr = mtod(m0, struct ip *); 3791 } 3792 #endif /* ALTQ */ 3793 3794 switch (af) { 3795 #ifdef INET 3796 case AF_INET: 3797 pfse->pfse_type = PFSE_ICMP; 3798 break; 3799 #endif /* INET */ 3800 #ifdef INET6 3801 case AF_INET6: 3802 pfse->pfse_type = PFSE_ICMP6; 3803 break; 3804 #endif /* INET6 */ 3805 } 3806 pfse->pfse_m = m0; 3807 pfse->icmpopts.type = type; 3808 pfse->icmpopts.code = code; 3809 pf_send(pfse); 3810 } 3811 3812 /* 3813 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 3814 * If n is 0, they match if they are equal. If n is != 0, they match if they 3815 * are different. 3816 */ 3817 int 3818 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 3819 struct pf_addr *b, sa_family_t af) 3820 { 3821 int match = 0; 3822 3823 switch (af) { 3824 #ifdef INET 3825 case AF_INET: 3826 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4)) 3827 match++; 3828 break; 3829 #endif /* INET */ 3830 #ifdef INET6 3831 case AF_INET6: 3832 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6)) 3833 match++; 3834 break; 3835 #endif /* INET6 */ 3836 } 3837 if (match) { 3838 if (n) 3839 return (0); 3840 else 3841 return (1); 3842 } else { 3843 if (n) 3844 return (1); 3845 else 3846 return (0); 3847 } 3848 } 3849 3850 /* 3851 * Return 1 if b <= a <= e, otherwise return 0. 3852 */ 3853 int 3854 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 3855 struct pf_addr *a, sa_family_t af) 3856 { 3857 switch (af) { 3858 #ifdef INET 3859 case AF_INET: 3860 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 3861 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 3862 return (0); 3863 break; 3864 #endif /* INET */ 3865 #ifdef INET6 3866 case AF_INET6: { 3867 int i; 3868 3869 /* check a >= b */ 3870 for (i = 0; i < 4; ++i) 3871 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 3872 break; 3873 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 3874 return (0); 3875 /* check a <= e */ 3876 for (i = 0; i < 4; ++i) 3877 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 3878 break; 3879 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 3880 return (0); 3881 break; 3882 } 3883 #endif /* INET6 */ 3884 } 3885 return (1); 3886 } 3887 3888 static int 3889 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3890 { 3891 switch (op) { 3892 case PF_OP_IRG: 3893 return ((p > a1) && (p < a2)); 3894 case PF_OP_XRG: 3895 return ((p < a1) || (p > a2)); 3896 case PF_OP_RRG: 3897 return ((p >= a1) && (p <= a2)); 3898 case PF_OP_EQ: 3899 return (p == a1); 3900 case PF_OP_NE: 3901 return (p != a1); 3902 case PF_OP_LT: 3903 return (p < a1); 3904 case PF_OP_LE: 3905 return (p <= a1); 3906 case PF_OP_GT: 3907 return (p > a1); 3908 case PF_OP_GE: 3909 return (p >= a1); 3910 } 3911 return (0); /* never reached */ 3912 } 3913 3914 int 3915 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3916 { 3917 NTOHS(a1); 3918 NTOHS(a2); 3919 NTOHS(p); 3920 return (pf_match(op, a1, a2, p)); 3921 } 3922 3923 static int 3924 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3925 { 3926 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3927 return (0); 3928 return (pf_match(op, a1, a2, u)); 3929 } 3930 3931 static int 3932 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3933 { 3934 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3935 return (0); 3936 return (pf_match(op, a1, a2, g)); 3937 } 3938 3939 int 3940 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3941 { 3942 if (*tag == -1) 3943 *tag = mtag; 3944 3945 return ((!r->match_tag_not && r->match_tag == *tag) || 3946 (r->match_tag_not && r->match_tag != *tag)); 3947 } 3948 3949 static int 3950 pf_match_rcvif(struct mbuf *m, struct pf_krule *r) 3951 { 3952 struct ifnet *ifp = m->m_pkthdr.rcvif; 3953 struct pfi_kkif *kif; 3954 3955 if (ifp == NULL) 3956 return (0); 3957 3958 kif = (struct pfi_kkif *)ifp->if_pf_kif; 3959 3960 if (kif == NULL) { 3961 DPFPRINTF(PF_DEBUG_URGENT, 3962 ("pf_test_via: kif == NULL, @%d via %s\n", r->nr, 3963 r->rcv_ifname)); 3964 return (0); 3965 } 3966 3967 return (pfi_kkif_match(r->rcv_kif, kif)); 3968 } 3969 3970 int 3971 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 3972 { 3973 3974 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 3975 3976 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 3977 return (ENOMEM); 3978 3979 pd->pf_mtag->tag = tag; 3980 3981 return (0); 3982 } 3983 3984 #define PF_ANCHOR_STACKSIZE 32 3985 struct pf_kanchor_stackframe { 3986 struct pf_kruleset *rs; 3987 struct pf_krule *r; /* XXX: + match bit */ 3988 struct pf_kanchor *child; 3989 }; 3990 3991 /* 3992 * XXX: We rely on malloc(9) returning pointer aligned addresses. 3993 */ 3994 #define PF_ANCHORSTACK_MATCH 0x00000001 3995 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 3996 3997 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3998 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 3999 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4000 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4001 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4002 } while (0) 4003 4004 void 4005 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 4006 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 4007 int *match) 4008 { 4009 struct pf_kanchor_stackframe *f; 4010 4011 PF_RULES_RASSERT(); 4012 4013 if (match) 4014 *match = 0; 4015 if (*depth >= PF_ANCHOR_STACKSIZE) { 4016 printf("%s: anchor stack overflow on %s\n", 4017 __func__, (*r)->anchor->name); 4018 *r = TAILQ_NEXT(*r, entries); 4019 return; 4020 } else if (*depth == 0 && a != NULL) 4021 *a = *r; 4022 f = stack + (*depth)++; 4023 f->rs = *rs; 4024 f->r = *r; 4025 if ((*r)->anchor_wildcard) { 4026 struct pf_kanchor_node *parent = &(*r)->anchor->children; 4027 4028 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 4029 *r = NULL; 4030 return; 4031 } 4032 *rs = &f->child->ruleset; 4033 } else { 4034 f->child = NULL; 4035 *rs = &(*r)->anchor->ruleset; 4036 } 4037 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4038 } 4039 4040 int 4041 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 4042 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 4043 int *match) 4044 { 4045 struct pf_kanchor_stackframe *f; 4046 struct pf_krule *fr; 4047 int quick = 0; 4048 4049 PF_RULES_RASSERT(); 4050 4051 do { 4052 if (*depth <= 0) 4053 break; 4054 f = stack + *depth - 1; 4055 fr = PF_ANCHOR_RULE(f); 4056 if (f->child != NULL) { 4057 /* 4058 * This block traverses through 4059 * a wildcard anchor. 4060 */ 4061 if (match != NULL && *match) { 4062 /* 4063 * If any of "*" matched, then 4064 * "foo/ *" matched, mark frame 4065 * appropriately. 4066 */ 4067 PF_ANCHOR_SET_MATCH(f); 4068 *match = 0; 4069 } 4070 f->child = RB_NEXT(pf_kanchor_node, 4071 &fr->anchor->children, f->child); 4072 if (f->child != NULL) { 4073 *rs = &f->child->ruleset; 4074 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4075 if (*r == NULL) 4076 continue; 4077 else 4078 break; 4079 } 4080 } 4081 (*depth)--; 4082 if (*depth == 0 && a != NULL) 4083 *a = NULL; 4084 *rs = f->rs; 4085 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 4086 quick = fr->quick; 4087 *r = TAILQ_NEXT(fr, entries); 4088 } while (*r == NULL); 4089 4090 return (quick); 4091 } 4092 4093 struct pf_keth_anchor_stackframe { 4094 struct pf_keth_ruleset *rs; 4095 struct pf_keth_rule *r; /* XXX: + match bit */ 4096 struct pf_keth_anchor *child; 4097 }; 4098 4099 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4100 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 4101 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4102 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4103 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4104 } while (0) 4105 4106 void 4107 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4108 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4109 struct pf_keth_rule **a, int *match) 4110 { 4111 struct pf_keth_anchor_stackframe *f; 4112 4113 NET_EPOCH_ASSERT(); 4114 4115 if (match) 4116 *match = 0; 4117 if (*depth >= PF_ANCHOR_STACKSIZE) { 4118 printf("%s: anchor stack overflow on %s\n", 4119 __func__, (*r)->anchor->name); 4120 *r = TAILQ_NEXT(*r, entries); 4121 return; 4122 } else if (*depth == 0 && a != NULL) 4123 *a = *r; 4124 f = stack + (*depth)++; 4125 f->rs = *rs; 4126 f->r = *r; 4127 if ((*r)->anchor_wildcard) { 4128 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 4129 4130 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 4131 *r = NULL; 4132 return; 4133 } 4134 *rs = &f->child->ruleset; 4135 } else { 4136 f->child = NULL; 4137 *rs = &(*r)->anchor->ruleset; 4138 } 4139 *r = TAILQ_FIRST((*rs)->active.rules); 4140 } 4141 4142 int 4143 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4144 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4145 struct pf_keth_rule **a, int *match) 4146 { 4147 struct pf_keth_anchor_stackframe *f; 4148 struct pf_keth_rule *fr; 4149 int quick = 0; 4150 4151 NET_EPOCH_ASSERT(); 4152 4153 do { 4154 if (*depth <= 0) 4155 break; 4156 f = stack + *depth - 1; 4157 fr = PF_ETH_ANCHOR_RULE(f); 4158 if (f->child != NULL) { 4159 /* 4160 * This block traverses through 4161 * a wildcard anchor. 4162 */ 4163 if (match != NULL && *match) { 4164 /* 4165 * If any of "*" matched, then 4166 * "foo/ *" matched, mark frame 4167 * appropriately. 4168 */ 4169 PF_ETH_ANCHOR_SET_MATCH(f); 4170 *match = 0; 4171 } 4172 f->child = RB_NEXT(pf_keth_anchor_node, 4173 &fr->anchor->children, f->child); 4174 if (f->child != NULL) { 4175 *rs = &f->child->ruleset; 4176 *r = TAILQ_FIRST((*rs)->active.rules); 4177 if (*r == NULL) 4178 continue; 4179 else 4180 break; 4181 } 4182 } 4183 (*depth)--; 4184 if (*depth == 0 && a != NULL) 4185 *a = NULL; 4186 *rs = f->rs; 4187 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 4188 quick = fr->quick; 4189 *r = TAILQ_NEXT(fr, entries); 4190 } while (*r == NULL); 4191 4192 return (quick); 4193 } 4194 4195 #ifdef INET6 4196 void 4197 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 4198 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 4199 { 4200 switch (af) { 4201 #ifdef INET 4202 case AF_INET: 4203 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4204 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4205 break; 4206 #endif /* INET */ 4207 case AF_INET6: 4208 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4209 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4210 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 4211 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 4212 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 4213 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 4214 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 4215 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 4216 break; 4217 } 4218 } 4219 4220 void 4221 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 4222 { 4223 switch (af) { 4224 #ifdef INET 4225 case AF_INET: 4226 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 4227 break; 4228 #endif /* INET */ 4229 case AF_INET6: 4230 if (addr->addr32[3] == 0xffffffff) { 4231 addr->addr32[3] = 0; 4232 if (addr->addr32[2] == 0xffffffff) { 4233 addr->addr32[2] = 0; 4234 if (addr->addr32[1] == 0xffffffff) { 4235 addr->addr32[1] = 0; 4236 addr->addr32[0] = 4237 htonl(ntohl(addr->addr32[0]) + 1); 4238 } else 4239 addr->addr32[1] = 4240 htonl(ntohl(addr->addr32[1]) + 1); 4241 } else 4242 addr->addr32[2] = 4243 htonl(ntohl(addr->addr32[2]) + 1); 4244 } else 4245 addr->addr32[3] = 4246 htonl(ntohl(addr->addr32[3]) + 1); 4247 break; 4248 } 4249 } 4250 #endif /* INET6 */ 4251 4252 void 4253 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 4254 { 4255 /* 4256 * Modern rules use the same flags in rules as they do in states. 4257 */ 4258 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 4259 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 4260 4261 /* 4262 * Old-style scrub rules have different flags which need to be translated. 4263 */ 4264 if (r->rule_flag & PFRULE_RANDOMID) 4265 a->flags |= PFSTATE_RANDOMID; 4266 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) { 4267 a->flags |= PFSTATE_SETTOS; 4268 a->set_tos = r->set_tos; 4269 } 4270 4271 if (r->qid) 4272 a->qid = r->qid; 4273 if (r->pqid) 4274 a->pqid = r->pqid; 4275 if (r->rtableid >= 0) 4276 a->rtableid = r->rtableid; 4277 a->log |= r->log; 4278 if (r->min_ttl) 4279 a->min_ttl = r->min_ttl; 4280 if (r->max_mss) 4281 a->max_mss = r->max_mss; 4282 if (r->dnpipe) 4283 a->dnpipe = r->dnpipe; 4284 if (r->dnrpipe) 4285 a->dnrpipe = r->dnrpipe; 4286 if (r->dnpipe || r->dnrpipe) { 4287 if (r->free_flags & PFRULE_DN_IS_PIPE) 4288 a->flags |= PFSTATE_DN_IS_PIPE; 4289 else 4290 a->flags &= ~PFSTATE_DN_IS_PIPE; 4291 } 4292 if (r->scrub_flags & PFSTATE_SETPRIO) { 4293 a->set_prio[0] = r->set_prio[0]; 4294 a->set_prio[1] = r->set_prio[1]; 4295 } 4296 } 4297 4298 int 4299 pf_socket_lookup(struct pf_pdesc *pd, struct mbuf *m) 4300 { 4301 struct pf_addr *saddr, *daddr; 4302 u_int16_t sport, dport; 4303 struct inpcbinfo *pi; 4304 struct inpcb *inp; 4305 4306 pd->lookup.uid = UID_MAX; 4307 pd->lookup.gid = GID_MAX; 4308 4309 switch (pd->proto) { 4310 case IPPROTO_TCP: 4311 sport = pd->hdr.tcp.th_sport; 4312 dport = pd->hdr.tcp.th_dport; 4313 pi = &V_tcbinfo; 4314 break; 4315 case IPPROTO_UDP: 4316 sport = pd->hdr.udp.uh_sport; 4317 dport = pd->hdr.udp.uh_dport; 4318 pi = &V_udbinfo; 4319 break; 4320 default: 4321 return (-1); 4322 } 4323 if (pd->dir == PF_IN) { 4324 saddr = pd->src; 4325 daddr = pd->dst; 4326 } else { 4327 u_int16_t p; 4328 4329 p = sport; 4330 sport = dport; 4331 dport = p; 4332 saddr = pd->dst; 4333 daddr = pd->src; 4334 } 4335 switch (pd->af) { 4336 #ifdef INET 4337 case AF_INET: 4338 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 4339 dport, INPLOOKUP_RLOCKPCB, NULL, m); 4340 if (inp == NULL) { 4341 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 4342 daddr->v4, dport, INPLOOKUP_WILDCARD | 4343 INPLOOKUP_RLOCKPCB, NULL, m); 4344 if (inp == NULL) 4345 return (-1); 4346 } 4347 break; 4348 #endif /* INET */ 4349 #ifdef INET6 4350 case AF_INET6: 4351 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 4352 dport, INPLOOKUP_RLOCKPCB, NULL, m); 4353 if (inp == NULL) { 4354 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 4355 &daddr->v6, dport, INPLOOKUP_WILDCARD | 4356 INPLOOKUP_RLOCKPCB, NULL, m); 4357 if (inp == NULL) 4358 return (-1); 4359 } 4360 break; 4361 #endif /* INET6 */ 4362 4363 default: 4364 return (-1); 4365 } 4366 INP_RLOCK_ASSERT(inp); 4367 pd->lookup.uid = inp->inp_cred->cr_uid; 4368 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4369 INP_RUNLOCK(inp); 4370 4371 return (1); 4372 } 4373 4374 u_int8_t 4375 pf_get_wscale(struct mbuf *m, struct pf_pdesc *pd) 4376 { 4377 struct tcphdr *th = &pd->hdr.tcp; 4378 int hlen; 4379 u_int8_t hdr[60]; 4380 u_int8_t *opt, optlen; 4381 u_int8_t wscale = 0; 4382 4383 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */ 4384 if (hlen <= sizeof(struct tcphdr)) 4385 return (0); 4386 if (!pf_pull_hdr(m, pd->off, hdr, hlen, NULL, NULL, pd->af)) 4387 return (0); 4388 opt = hdr + sizeof(struct tcphdr); 4389 hlen -= sizeof(struct tcphdr); 4390 while (hlen >= 3) { 4391 switch (*opt) { 4392 case TCPOPT_EOL: 4393 case TCPOPT_NOP: 4394 ++opt; 4395 --hlen; 4396 break; 4397 case TCPOPT_WINDOW: 4398 wscale = opt[2]; 4399 if (wscale > TCP_MAX_WINSHIFT) 4400 wscale = TCP_MAX_WINSHIFT; 4401 wscale |= PF_WSCALE_FLAG; 4402 /* FALLTHROUGH */ 4403 default: 4404 optlen = opt[1]; 4405 if (optlen < 2) 4406 optlen = 2; 4407 hlen -= optlen; 4408 opt += optlen; 4409 break; 4410 } 4411 } 4412 return (wscale); 4413 } 4414 4415 u_int16_t 4416 pf_get_mss(struct mbuf *m, struct pf_pdesc *pd) 4417 { 4418 struct tcphdr *th = &pd->hdr.tcp; 4419 int hlen; 4420 u_int8_t hdr[60]; 4421 u_int8_t *opt, optlen; 4422 u_int16_t mss = V_tcp_mssdflt; 4423 4424 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */ 4425 if (hlen <= sizeof(struct tcphdr)) 4426 return (0); 4427 if (!pf_pull_hdr(m, pd->off, hdr, hlen, NULL, NULL, pd->af)) 4428 return (0); 4429 opt = hdr + sizeof(struct tcphdr); 4430 hlen -= sizeof(struct tcphdr); 4431 while (hlen >= TCPOLEN_MAXSEG) { 4432 switch (*opt) { 4433 case TCPOPT_EOL: 4434 case TCPOPT_NOP: 4435 ++opt; 4436 --hlen; 4437 break; 4438 case TCPOPT_MAXSEG: 4439 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 4440 NTOHS(mss); 4441 /* FALLTHROUGH */ 4442 default: 4443 optlen = opt[1]; 4444 if (optlen < 2) 4445 optlen = 2; 4446 hlen -= optlen; 4447 opt += optlen; 4448 break; 4449 } 4450 } 4451 return (mss); 4452 } 4453 4454 static u_int16_t 4455 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 4456 { 4457 struct nhop_object *nh; 4458 #ifdef INET6 4459 struct in6_addr dst6; 4460 uint32_t scopeid; 4461 #endif /* INET6 */ 4462 int hlen = 0; 4463 uint16_t mss = 0; 4464 4465 NET_EPOCH_ASSERT(); 4466 4467 switch (af) { 4468 #ifdef INET 4469 case AF_INET: 4470 hlen = sizeof(struct ip); 4471 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 4472 if (nh != NULL) 4473 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4474 break; 4475 #endif /* INET */ 4476 #ifdef INET6 4477 case AF_INET6: 4478 hlen = sizeof(struct ip6_hdr); 4479 in6_splitscope(&addr->v6, &dst6, &scopeid); 4480 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 4481 if (nh != NULL) 4482 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4483 break; 4484 #endif /* INET6 */ 4485 } 4486 4487 mss = max(V_tcp_mssdflt, mss); 4488 mss = min(mss, offer); 4489 mss = max(mss, 64); /* sanity - at least max opt space */ 4490 return (mss); 4491 } 4492 4493 static u_int32_t 4494 pf_tcp_iss(struct pf_pdesc *pd) 4495 { 4496 MD5_CTX ctx; 4497 u_int32_t digest[4]; 4498 4499 if (V_pf_tcp_secret_init == 0) { 4500 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 4501 MD5Init(&V_pf_tcp_secret_ctx); 4502 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 4503 sizeof(V_pf_tcp_secret)); 4504 V_pf_tcp_secret_init = 1; 4505 } 4506 4507 ctx = V_pf_tcp_secret_ctx; 4508 4509 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 4510 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 4511 if (pd->af == AF_INET6) { 4512 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 4513 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 4514 } else { 4515 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 4516 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 4517 } 4518 MD5Final((u_char *)digest, &ctx); 4519 V_pf_tcp_iss_off += 4096; 4520 #define ISN_RANDOM_INCREMENT (4096 - 1) 4521 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 4522 V_pf_tcp_iss_off); 4523 #undef ISN_RANDOM_INCREMENT 4524 } 4525 4526 static bool 4527 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 4528 { 4529 bool match = true; 4530 4531 /* Always matches if not set */ 4532 if (! r->isset) 4533 return (!r->neg); 4534 4535 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 4536 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 4537 match = false; 4538 break; 4539 } 4540 } 4541 4542 return (match ^ r->neg); 4543 } 4544 4545 static int 4546 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 4547 { 4548 if (*tag == -1) 4549 *tag = mtag; 4550 4551 return ((!r->match_tag_not && r->match_tag == *tag) || 4552 (r->match_tag_not && r->match_tag != *tag)); 4553 } 4554 4555 static void 4556 pf_bridge_to(struct ifnet *ifp, struct mbuf *m) 4557 { 4558 /* If we don't have the interface drop the packet. */ 4559 if (ifp == NULL) { 4560 m_freem(m); 4561 return; 4562 } 4563 4564 switch (ifp->if_type) { 4565 case IFT_ETHER: 4566 case IFT_XETHER: 4567 case IFT_L2VLAN: 4568 case IFT_BRIDGE: 4569 case IFT_IEEE8023ADLAG: 4570 break; 4571 default: 4572 m_freem(m); 4573 return; 4574 } 4575 4576 ifp->if_transmit(ifp, m); 4577 } 4578 4579 static int 4580 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 4581 { 4582 #ifdef INET 4583 struct ip ip; 4584 #endif 4585 #ifdef INET6 4586 struct ip6_hdr ip6; 4587 #endif 4588 struct mbuf *m = *m0; 4589 struct ether_header *e; 4590 struct pf_keth_rule *r, *rm, *a = NULL; 4591 struct pf_keth_ruleset *ruleset = NULL; 4592 struct pf_mtag *mtag; 4593 struct pf_keth_ruleq *rules; 4594 struct pf_addr *src = NULL, *dst = NULL; 4595 struct pfi_kkif *bridge_to; 4596 sa_family_t af = 0; 4597 uint16_t proto; 4598 int asd = 0, match = 0; 4599 int tag = -1; 4600 uint8_t action; 4601 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4602 4603 MPASS(kif->pfik_ifp->if_vnet == curvnet); 4604 NET_EPOCH_ASSERT(); 4605 4606 PF_RULES_RLOCK_TRACKER; 4607 4608 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 4609 4610 mtag = pf_find_mtag(m); 4611 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 4612 /* Dummynet re-injects packets after they've 4613 * completed their delay. We've already 4614 * processed them, so pass unconditionally. */ 4615 4616 /* But only once. We may see the packet multiple times (e.g. 4617 * PFIL_IN/PFIL_OUT). */ 4618 pf_dummynet_flag_remove(m, mtag); 4619 4620 return (PF_PASS); 4621 } 4622 4623 ruleset = V_pf_keth; 4624 rules = ck_pr_load_ptr(&ruleset->active.rules); 4625 r = TAILQ_FIRST(rules); 4626 rm = NULL; 4627 4628 if (__predict_false(m->m_len < sizeof(struct ether_header)) && 4629 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) { 4630 DPFPRINTF(PF_DEBUG_URGENT, 4631 ("pf_test_eth_rule: m_len < sizeof(struct ether_header)" 4632 ", pullup failed\n")); 4633 return (PF_DROP); 4634 } 4635 e = mtod(m, struct ether_header *); 4636 proto = ntohs(e->ether_type); 4637 4638 switch (proto) { 4639 #ifdef INET 4640 case ETHERTYPE_IP: { 4641 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4642 sizeof(ip))) 4643 return (PF_DROP); 4644 4645 af = AF_INET; 4646 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 4647 (caddr_t)&ip); 4648 src = (struct pf_addr *)&ip.ip_src; 4649 dst = (struct pf_addr *)&ip.ip_dst; 4650 break; 4651 } 4652 #endif /* INET */ 4653 #ifdef INET6 4654 case ETHERTYPE_IPV6: { 4655 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4656 sizeof(ip6))) 4657 return (PF_DROP); 4658 4659 af = AF_INET6; 4660 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 4661 (caddr_t)&ip6); 4662 src = (struct pf_addr *)&ip6.ip6_src; 4663 dst = (struct pf_addr *)&ip6.ip6_dst; 4664 break; 4665 } 4666 #endif /* INET6 */ 4667 } 4668 4669 PF_RULES_RLOCK(); 4670 4671 while (r != NULL) { 4672 counter_u64_add(r->evaluations, 1); 4673 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 4674 4675 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 4676 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4677 "kif"); 4678 r = r->skip[PFE_SKIP_IFP].ptr; 4679 } 4680 else if (r->direction && r->direction != dir) { 4681 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4682 "dir"); 4683 r = r->skip[PFE_SKIP_DIR].ptr; 4684 } 4685 else if (r->proto && r->proto != proto) { 4686 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4687 "proto"); 4688 r = r->skip[PFE_SKIP_PROTO].ptr; 4689 } 4690 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 4691 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4692 "src"); 4693 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 4694 } 4695 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 4696 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4697 "dst"); 4698 r = r->skip[PFE_SKIP_DST_ADDR].ptr; 4699 } 4700 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 4701 r->ipsrc.neg, kif, M_GETFIB(m))) { 4702 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4703 "ip_src"); 4704 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr; 4705 } 4706 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 4707 r->ipdst.neg, kif, M_GETFIB(m))) { 4708 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4709 "ip_dst"); 4710 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr; 4711 } 4712 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 4713 mtag ? mtag->tag : 0)) { 4714 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4715 "match_tag"); 4716 r = TAILQ_NEXT(r, entries); 4717 } 4718 else { 4719 if (r->tag) 4720 tag = r->tag; 4721 if (r->anchor == NULL) { 4722 /* Rule matches */ 4723 rm = r; 4724 4725 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 4726 4727 if (r->quick) 4728 break; 4729 4730 r = TAILQ_NEXT(r, entries); 4731 } else { 4732 pf_step_into_keth_anchor(anchor_stack, &asd, 4733 &ruleset, &r, &a, &match); 4734 } 4735 } 4736 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 4737 &ruleset, &r, &a, &match)) 4738 break; 4739 } 4740 4741 r = rm; 4742 4743 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 4744 4745 /* Default to pass. */ 4746 if (r == NULL) { 4747 PF_RULES_RUNLOCK(); 4748 return (PF_PASS); 4749 } 4750 4751 /* Execute action. */ 4752 counter_u64_add(r->packets[dir == PF_OUT], 1); 4753 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 4754 pf_update_timestamp(r); 4755 4756 /* Shortcut. Don't tag if we're just going to drop anyway. */ 4757 if (r->action == PF_DROP) { 4758 PF_RULES_RUNLOCK(); 4759 return (PF_DROP); 4760 } 4761 4762 if (tag > 0) { 4763 if (mtag == NULL) 4764 mtag = pf_get_mtag(m); 4765 if (mtag == NULL) { 4766 PF_RULES_RUNLOCK(); 4767 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4768 return (PF_DROP); 4769 } 4770 mtag->tag = tag; 4771 } 4772 4773 if (r->qid != 0) { 4774 if (mtag == NULL) 4775 mtag = pf_get_mtag(m); 4776 if (mtag == NULL) { 4777 PF_RULES_RUNLOCK(); 4778 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4779 return (PF_DROP); 4780 } 4781 mtag->qid = r->qid; 4782 } 4783 4784 action = r->action; 4785 bridge_to = r->bridge_to; 4786 4787 /* Dummynet */ 4788 if (r->dnpipe) { 4789 struct ip_fw_args dnflow; 4790 4791 /* Drop packet if dummynet is not loaded. */ 4792 if (ip_dn_io_ptr == NULL) { 4793 PF_RULES_RUNLOCK(); 4794 m_freem(m); 4795 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4796 return (PF_DROP); 4797 } 4798 if (mtag == NULL) 4799 mtag = pf_get_mtag(m); 4800 if (mtag == NULL) { 4801 PF_RULES_RUNLOCK(); 4802 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4803 return (PF_DROP); 4804 } 4805 4806 bzero(&dnflow, sizeof(dnflow)); 4807 4808 /* We don't have port numbers here, so we set 0. That means 4809 * that we'll be somewhat limited in distinguishing flows (i.e. 4810 * only based on IP addresses, not based on port numbers), but 4811 * it's better than nothing. */ 4812 dnflow.f_id.dst_port = 0; 4813 dnflow.f_id.src_port = 0; 4814 dnflow.f_id.proto = 0; 4815 4816 dnflow.rule.info = r->dnpipe; 4817 dnflow.rule.info |= IPFW_IS_DUMMYNET; 4818 if (r->dnflags & PFRULE_DN_IS_PIPE) 4819 dnflow.rule.info |= IPFW_IS_PIPE; 4820 4821 dnflow.f_id.extra = dnflow.rule.info; 4822 4823 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 4824 dnflow.flags |= IPFW_ARGS_ETHER; 4825 dnflow.ifp = kif->pfik_ifp; 4826 4827 switch (af) { 4828 case AF_INET: 4829 dnflow.f_id.addr_type = 4; 4830 dnflow.f_id.src_ip = src->v4.s_addr; 4831 dnflow.f_id.dst_ip = dst->v4.s_addr; 4832 break; 4833 case AF_INET6: 4834 dnflow.flags |= IPFW_ARGS_IP6; 4835 dnflow.f_id.addr_type = 6; 4836 dnflow.f_id.src_ip6 = src->v6; 4837 dnflow.f_id.dst_ip6 = dst->v6; 4838 break; 4839 } 4840 4841 PF_RULES_RUNLOCK(); 4842 4843 mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 4844 ip_dn_io_ptr(m0, &dnflow); 4845 if (*m0 != NULL) 4846 pf_dummynet_flag_remove(m, mtag); 4847 } else { 4848 PF_RULES_RUNLOCK(); 4849 } 4850 4851 if (action == PF_PASS && bridge_to) { 4852 pf_bridge_to(bridge_to->pfik_ifp, *m0); 4853 *m0 = NULL; /* We've eaten the packet. */ 4854 } 4855 4856 return (action); 4857 } 4858 4859 #define PF_TEST_ATTRIB(t, a)\ 4860 do { \ 4861 if (t) { \ 4862 r = a; \ 4863 goto nextrule; \ 4864 } \ 4865 } while (0) 4866 4867 static int 4868 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, struct pfi_kkif *kif, 4869 struct mbuf *m, struct pf_pdesc *pd, struct pf_krule **am, 4870 struct pf_kruleset **rsm, struct inpcb *inp) 4871 { 4872 struct pf_krule *nr = NULL; 4873 struct pf_addr * const saddr = pd->src; 4874 struct pf_addr * const daddr = pd->dst; 4875 struct pf_krule *r, *a = NULL; 4876 struct pf_kruleset *ruleset = NULL; 4877 struct pf_krule_slist match_rules; 4878 struct pf_krule_item *ri; 4879 struct pf_ksrc_node *nsn = NULL; 4880 struct tcphdr *th = &pd->hdr.tcp; 4881 struct pf_state_key *sk = NULL, *nk = NULL; 4882 u_short reason, transerror; 4883 int rewrite = 0; 4884 int tag = -1; 4885 int asd = 0; 4886 int match = 0; 4887 int state_icmp = 0, icmp_dir, multi; 4888 u_int16_t sport = 0, dport = 0, virtual_type, virtual_id; 4889 u_int16_t bproto_sum = 0, bip_sum = 0; 4890 u_int8_t icmptype = 0, icmpcode = 0; 4891 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4892 struct pf_udp_mapping *udp_mapping = NULL; 4893 4894 PF_RULES_RASSERT(); 4895 4896 SLIST_INIT(&match_rules); 4897 4898 if (inp != NULL) { 4899 INP_LOCK_ASSERT(inp); 4900 pd->lookup.uid = inp->inp_cred->cr_uid; 4901 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4902 pd->lookup.done = 1; 4903 } 4904 4905 switch (pd->virtual_proto) { 4906 case IPPROTO_TCP: 4907 sport = th->th_sport; 4908 dport = th->th_dport; 4909 break; 4910 case IPPROTO_UDP: 4911 sport = pd->hdr.udp.uh_sport; 4912 dport = pd->hdr.udp.uh_dport; 4913 break; 4914 case IPPROTO_SCTP: 4915 sport = pd->hdr.sctp.src_port; 4916 dport = pd->hdr.sctp.dest_port; 4917 break; 4918 #ifdef INET 4919 case IPPROTO_ICMP: 4920 MPASS(pd->af == AF_INET); 4921 icmptype = pd->hdr.icmp.icmp_type; 4922 icmpcode = pd->hdr.icmp.icmp_code; 4923 state_icmp = pf_icmp_mapping(pd, icmptype, 4924 &icmp_dir, &multi, &virtual_id, &virtual_type); 4925 if (icmp_dir == PF_IN) { 4926 sport = virtual_id; 4927 dport = virtual_type; 4928 } else { 4929 sport = virtual_type; 4930 dport = virtual_id; 4931 } 4932 break; 4933 #endif /* INET */ 4934 #ifdef INET6 4935 case IPPROTO_ICMPV6: 4936 MPASS(pd->af == AF_INET6); 4937 icmptype = pd->hdr.icmp6.icmp6_type; 4938 icmpcode = pd->hdr.icmp6.icmp6_code; 4939 state_icmp = pf_icmp_mapping(pd, icmptype, 4940 &icmp_dir, &multi, &virtual_id, &virtual_type); 4941 if (icmp_dir == PF_IN) { 4942 sport = virtual_id; 4943 dport = virtual_type; 4944 } else { 4945 sport = virtual_type; 4946 dport = virtual_id; 4947 } 4948 4949 break; 4950 #endif /* INET6 */ 4951 default: 4952 sport = dport = 0; 4953 break; 4954 } 4955 4956 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4957 4958 /* check packet for BINAT/NAT/RDR */ 4959 transerror = pf_get_translation(pd, m, pd->off, kif, &nsn, &sk, 4960 &nk, saddr, daddr, sport, dport, anchor_stack, &nr, &udp_mapping); 4961 switch (transerror) { 4962 default: 4963 /* A translation error occurred. */ 4964 REASON_SET(&reason, transerror); 4965 goto cleanup; 4966 case PFRES_MAX: 4967 /* No match. */ 4968 break; 4969 case PFRES_MATCH: 4970 KASSERT(sk != NULL, ("%s: null sk", __func__)); 4971 KASSERT(nk != NULL, ("%s: null nk", __func__)); 4972 4973 if (nr->log) { 4974 PFLOG_PACKET(kif, m, PF_PASS, PFRES_MATCH, nr, a, 4975 ruleset, pd, 1); 4976 } 4977 4978 if (pd->ip_sum) 4979 bip_sum = *pd->ip_sum; 4980 4981 switch (pd->proto) { 4982 case IPPROTO_TCP: 4983 bproto_sum = th->th_sum; 4984 pd->proto_sum = &th->th_sum; 4985 4986 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) || 4987 nk->port[pd->sidx] != sport) { 4988 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 4989 &th->th_sum, &nk->addr[pd->sidx], 4990 nk->port[pd->sidx], 0, pd->af); 4991 pd->sport = &th->th_sport; 4992 sport = th->th_sport; 4993 } 4994 4995 if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) || 4996 nk->port[pd->didx] != dport) { 4997 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 4998 &th->th_sum, &nk->addr[pd->didx], 4999 nk->port[pd->didx], 0, pd->af); 5000 dport = th->th_dport; 5001 pd->dport = &th->th_dport; 5002 } 5003 rewrite++; 5004 break; 5005 case IPPROTO_UDP: 5006 bproto_sum = pd->hdr.udp.uh_sum; 5007 pd->proto_sum = &pd->hdr.udp.uh_sum; 5008 5009 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) || 5010 nk->port[pd->sidx] != sport) { 5011 pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, 5012 pd->ip_sum, &pd->hdr.udp.uh_sum, 5013 &nk->addr[pd->sidx], 5014 nk->port[pd->sidx], 1, pd->af); 5015 sport = pd->hdr.udp.uh_sport; 5016 pd->sport = &pd->hdr.udp.uh_sport; 5017 } 5018 5019 if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) || 5020 nk->port[pd->didx] != dport) { 5021 pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, 5022 pd->ip_sum, &pd->hdr.udp.uh_sum, 5023 &nk->addr[pd->didx], 5024 nk->port[pd->didx], 1, pd->af); 5025 dport = pd->hdr.udp.uh_dport; 5026 pd->dport = &pd->hdr.udp.uh_dport; 5027 } 5028 rewrite++; 5029 break; 5030 case IPPROTO_SCTP: { 5031 uint16_t checksum = 0; 5032 5033 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) || 5034 nk->port[pd->sidx] != sport) { 5035 pf_change_ap(m, saddr, &pd->hdr.sctp.src_port, 5036 pd->ip_sum, &checksum, 5037 &nk->addr[pd->sidx], 5038 nk->port[pd->sidx], 1, pd->af); 5039 } 5040 if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) || 5041 nk->port[pd->didx] != dport) { 5042 pf_change_ap(m, daddr, &pd->hdr.sctp.dest_port, 5043 pd->ip_sum, &checksum, 5044 &nk->addr[pd->didx], 5045 nk->port[pd->didx], 1, pd->af); 5046 } 5047 break; 5048 } 5049 #ifdef INET 5050 case IPPROTO_ICMP: 5051 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 5052 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 5053 nk->addr[pd->sidx].v4.s_addr, 0); 5054 5055 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 5056 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 5057 nk->addr[pd->didx].v4.s_addr, 0); 5058 5059 if (virtual_type == htons(ICMP_ECHO) && 5060 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) { 5061 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 5062 pd->hdr.icmp.icmp_cksum, sport, 5063 nk->port[pd->sidx], 0); 5064 pd->hdr.icmp.icmp_id = nk->port[pd->sidx]; 5065 pd->sport = &pd->hdr.icmp.icmp_id; 5066 } 5067 m_copyback(m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 5068 break; 5069 #endif /* INET */ 5070 #ifdef INET6 5071 case IPPROTO_ICMPV6: 5072 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 5073 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 5074 &nk->addr[pd->sidx], 0); 5075 5076 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 5077 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 5078 &nk->addr[pd->didx], 0); 5079 rewrite++; 5080 break; 5081 #endif /* INET */ 5082 default: 5083 switch (pd->af) { 5084 #ifdef INET 5085 case AF_INET: 5086 if (PF_ANEQ(saddr, 5087 &nk->addr[pd->sidx], AF_INET)) 5088 pf_change_a(&saddr->v4.s_addr, 5089 pd->ip_sum, 5090 nk->addr[pd->sidx].v4.s_addr, 0); 5091 5092 if (PF_ANEQ(daddr, 5093 &nk->addr[pd->didx], AF_INET)) 5094 pf_change_a(&daddr->v4.s_addr, 5095 pd->ip_sum, 5096 nk->addr[pd->didx].v4.s_addr, 0); 5097 break; 5098 #endif /* INET */ 5099 #ifdef INET6 5100 case AF_INET6: 5101 if (PF_ANEQ(saddr, 5102 &nk->addr[pd->sidx], AF_INET6)) 5103 PF_ACPY(saddr, &nk->addr[pd->sidx], pd->af); 5104 5105 if (PF_ANEQ(daddr, 5106 &nk->addr[pd->didx], AF_INET6)) 5107 PF_ACPY(daddr, &nk->addr[pd->didx], pd->af); 5108 break; 5109 #endif /* INET */ 5110 } 5111 break; 5112 } 5113 if (nr->natpass) 5114 r = NULL; 5115 } 5116 5117 while (r != NULL) { 5118 pf_counter_u64_add(&r->evaluations, 1); 5119 PF_TEST_ATTRIB(pfi_kkif_match(r->kif, kif) == r->ifnot, 5120 r->skip[PF_SKIP_IFP]); 5121 PF_TEST_ATTRIB(r->direction && r->direction != pd->dir, 5122 r->skip[PF_SKIP_DIR]); 5123 PF_TEST_ATTRIB(r->af && r->af != pd->af, 5124 r->skip[PF_SKIP_AF]); 5125 PF_TEST_ATTRIB(r->proto && r->proto != pd->proto, 5126 r->skip[PF_SKIP_PROTO]); 5127 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, saddr, pd->af, 5128 r->src.neg, kif, M_GETFIB(m)), 5129 r->skip[PF_SKIP_SRC_ADDR]); 5130 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, daddr, pd->af, 5131 r->dst.neg, NULL, M_GETFIB(m)), 5132 r->skip[PF_SKIP_DST_ADDR]); 5133 switch (pd->virtual_proto) { 5134 case PF_VPROTO_FRAGMENT: 5135 /* tcp/udp only. port_op always 0 in other cases */ 5136 PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op), 5137 TAILQ_NEXT(r, entries)); 5138 PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset), 5139 TAILQ_NEXT(r, entries)); 5140 /* icmp only. type/code always 0 in other cases */ 5141 PF_TEST_ATTRIB((r->type || r->code), 5142 TAILQ_NEXT(r, entries)); 5143 /* tcp/udp only. {uid|gid}.op always 0 in other cases */ 5144 PF_TEST_ATTRIB((r->gid.op || r->uid.op), 5145 TAILQ_NEXT(r, entries)); 5146 break; 5147 5148 case IPPROTO_TCP: 5149 PF_TEST_ATTRIB((r->flagset & th->th_flags) != r->flags, 5150 TAILQ_NEXT(r, entries)); 5151 /* FALLTHROUGH */ 5152 case IPPROTO_SCTP: 5153 case IPPROTO_UDP: 5154 /* tcp/udp only. port_op always 0 in other cases */ 5155 PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op, 5156 r->src.port[0], r->src.port[1], sport), 5157 r->skip[PF_SKIP_SRC_PORT]); 5158 /* tcp/udp only. port_op always 0 in other cases */ 5159 PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op, 5160 r->dst.port[0], r->dst.port[1], dport), 5161 r->skip[PF_SKIP_DST_PORT]); 5162 /* tcp/udp only. uid.op always 0 in other cases */ 5163 PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done = 5164 pf_socket_lookup(pd, m), 1)) && 5165 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 5166 pd->lookup.uid), 5167 TAILQ_NEXT(r, entries)); 5168 /* tcp/udp only. gid.op always 0 in other cases */ 5169 PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done = 5170 pf_socket_lookup(pd, m), 1)) && 5171 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 5172 pd->lookup.gid), 5173 TAILQ_NEXT(r, entries)); 5174 break; 5175 5176 case IPPROTO_ICMP: 5177 case IPPROTO_ICMPV6: 5178 /* icmp only. type always 0 in other cases */ 5179 PF_TEST_ATTRIB(r->type && r->type != icmptype + 1, 5180 TAILQ_NEXT(r, entries)); 5181 /* icmp only. type always 0 in other cases */ 5182 PF_TEST_ATTRIB(r->code && r->code != icmpcode + 1, 5183 TAILQ_NEXT(r, entries)); 5184 break; 5185 5186 default: 5187 break; 5188 } 5189 PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos), 5190 TAILQ_NEXT(r, entries)); 5191 PF_TEST_ATTRIB(r->prio && 5192 !pf_match_ieee8021q_pcp(r->prio, m), 5193 TAILQ_NEXT(r, entries)); 5194 PF_TEST_ATTRIB(r->prob && 5195 r->prob <= arc4random(), 5196 TAILQ_NEXT(r, entries)); 5197 PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(m, r, &tag, 5198 pd->pf_mtag ? pd->pf_mtag->tag : 0), 5199 TAILQ_NEXT(r, entries)); 5200 PF_TEST_ATTRIB(r->rcv_kif && !pf_match_rcvif(m, r), 5201 TAILQ_NEXT(r, entries)); 5202 PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT && 5203 pd->virtual_proto != PF_VPROTO_FRAGMENT), 5204 TAILQ_NEXT(r, entries)); 5205 PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY && 5206 (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match( 5207 pf_osfp_fingerprint(pd, m, th), 5208 r->os_fingerprint)), 5209 TAILQ_NEXT(r, entries)); 5210 /* FALLTHROUGH */ 5211 if (r->tag) 5212 tag = r->tag; 5213 if (r->anchor == NULL) { 5214 if (r->action == PF_MATCH) { 5215 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5216 if (ri == NULL) { 5217 REASON_SET(&reason, PFRES_MEMORY); 5218 goto cleanup; 5219 } 5220 ri->r = r; 5221 SLIST_INSERT_HEAD(&match_rules, ri, entry); 5222 pf_counter_u64_critical_enter(); 5223 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5224 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5225 pf_counter_u64_critical_exit(); 5226 pf_rule_to_actions(r, &pd->act); 5227 if (r->log || pd->act.log & PF_LOG_MATCHES) 5228 PFLOG_PACKET(kif, m, 5229 r->action, PFRES_MATCH, r, 5230 a, ruleset, pd, 1); 5231 } else { 5232 match = 1; 5233 *rm = r; 5234 *am = a; 5235 *rsm = ruleset; 5236 if (pd->act.log & PF_LOG_MATCHES) 5237 PFLOG_PACKET(kif, m, 5238 r->action, PFRES_MATCH, r, 5239 a, ruleset, pd, 1); 5240 } 5241 if ((*rm)->quick) 5242 break; 5243 r = TAILQ_NEXT(r, entries); 5244 } else 5245 pf_step_into_anchor(anchor_stack, &asd, 5246 &ruleset, PF_RULESET_FILTER, &r, &a, 5247 &match); 5248 nextrule: 5249 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 5250 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 5251 break; 5252 } 5253 r = *rm; 5254 a = *am; 5255 ruleset = *rsm; 5256 5257 REASON_SET(&reason, PFRES_MATCH); 5258 5259 /* apply actions for last matching pass/block rule */ 5260 pf_rule_to_actions(r, &pd->act); 5261 5262 if (r->log || pd->act.log & PF_LOG_MATCHES) { 5263 if (rewrite) 5264 m_copyback(m, pd->off, pd->hdrlen, pd->hdr.any); 5265 PFLOG_PACKET(kif, m, r->action, reason, r, a, ruleset, pd, 1); 5266 } 5267 5268 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5269 (r->action == PF_DROP) && 5270 ((r->rule_flag & PFRULE_RETURNRST) || 5271 (r->rule_flag & PFRULE_RETURNICMP) || 5272 (r->rule_flag & PFRULE_RETURN))) { 5273 pf_return(r, nr, pd, sk, m, th, kif, bproto_sum, 5274 bip_sum, &reason, r->rtableid); 5275 } 5276 5277 if (r->action == PF_DROP) 5278 goto cleanup; 5279 5280 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 5281 REASON_SET(&reason, PFRES_MEMORY); 5282 goto cleanup; 5283 } 5284 if (pd->act.rtableid >= 0) 5285 M_SETFIB(m, pd->act.rtableid); 5286 5287 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5288 (!state_icmp && (r->keep_state || nr != NULL || 5289 (pd->flags & PFDESC_TCP_NORM)))) { 5290 int action; 5291 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, 5292 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 5293 &match_rules, udp_mapping); 5294 if (action != PF_PASS) { 5295 pf_udp_mapping_release(udp_mapping); 5296 if (action == PF_DROP && 5297 (r->rule_flag & PFRULE_RETURN)) 5298 pf_return(r, nr, pd, sk, m, th, kif, 5299 bproto_sum, bip_sum, &reason, 5300 pd->act.rtableid); 5301 return (action); 5302 } 5303 } else { 5304 while ((ri = SLIST_FIRST(&match_rules))) { 5305 SLIST_REMOVE_HEAD(&match_rules, entry); 5306 free(ri, M_PF_RULE_ITEM); 5307 } 5308 5309 uma_zfree(V_pf_state_key_z, sk); 5310 uma_zfree(V_pf_state_key_z, nk); 5311 pf_udp_mapping_release(udp_mapping); 5312 } 5313 5314 /* copy back packet headers if we performed NAT operations */ 5315 if (rewrite) 5316 m_copyback(m, pd->off, pd->hdrlen, pd->hdr.any); 5317 5318 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 5319 pd->dir == PF_OUT && 5320 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 5321 /* 5322 * We want the state created, but we dont 5323 * want to send this in case a partner 5324 * firewall has to know about it to allow 5325 * replies through it. 5326 */ 5327 return (PF_DEFER); 5328 5329 return (PF_PASS); 5330 5331 cleanup: 5332 while ((ri = SLIST_FIRST(&match_rules))) { 5333 SLIST_REMOVE_HEAD(&match_rules, entry); 5334 free(ri, M_PF_RULE_ITEM); 5335 } 5336 5337 uma_zfree(V_pf_state_key_z, sk); 5338 uma_zfree(V_pf_state_key_z, nk); 5339 pf_udp_mapping_release(udp_mapping); 5340 5341 return (PF_DROP); 5342 } 5343 5344 static int 5345 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 5346 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 5347 struct pf_state_key *sk, struct mbuf *m, u_int16_t sport, 5348 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, 5349 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, 5350 struct pf_krule_slist *match_rules, struct pf_udp_mapping *udp_mapping) 5351 { 5352 struct pf_kstate *s = NULL; 5353 struct pf_ksrc_node *sn = NULL; 5354 struct tcphdr *th = &pd->hdr.tcp; 5355 u_int16_t mss = V_tcp_mssdflt; 5356 u_short reason, sn_reason; 5357 struct pf_krule_item *ri; 5358 5359 /* check maximums */ 5360 if (r->max_states && 5361 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 5362 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 5363 REASON_SET(&reason, PFRES_MAXSTATES); 5364 goto csfailed; 5365 } 5366 /* src node for filter rule */ 5367 if ((r->rule_flag & PFRULE_SRCTRACK || 5368 r->rpool.opts & PF_POOL_STICKYADDR) && 5369 (sn_reason = pf_insert_src_node(&sn, r, pd->src, pd->af)) != 0) { 5370 REASON_SET(&reason, sn_reason); 5371 goto csfailed; 5372 } 5373 /* src node for translation rule */ 5374 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 5375 (sn_reason = pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], 5376 pd->af)) != 0 ) { 5377 REASON_SET(&reason, sn_reason); 5378 goto csfailed; 5379 } 5380 s = pf_alloc_state(M_NOWAIT); 5381 if (s == NULL) { 5382 REASON_SET(&reason, PFRES_MEMORY); 5383 goto csfailed; 5384 } 5385 s->rule = r; 5386 s->nat_rule = nr; 5387 s->anchor = a; 5388 bcopy(match_rules, &s->match_rules, sizeof(s->match_rules)); 5389 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions)); 5390 5391 STATE_INC_COUNTERS(s); 5392 if (r->allow_opts) 5393 s->state_flags |= PFSTATE_ALLOWOPTS; 5394 if (r->rule_flag & PFRULE_STATESLOPPY) 5395 s->state_flags |= PFSTATE_SLOPPY; 5396 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 5397 s->state_flags |= PFSTATE_SCRUB_TCP; 5398 if ((r->rule_flag & PFRULE_PFLOW) || 5399 (nr != NULL && nr->rule_flag & PFRULE_PFLOW)) 5400 s->state_flags |= PFSTATE_PFLOW; 5401 5402 s->act.log = pd->act.log & PF_LOG_ALL; 5403 s->sync_state = PFSYNC_S_NONE; 5404 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */ 5405 5406 if (nr != NULL) 5407 s->act.log |= nr->log & PF_LOG_ALL; 5408 switch (pd->proto) { 5409 case IPPROTO_TCP: 5410 s->src.seqlo = ntohl(th->th_seq); 5411 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 5412 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 5413 r->keep_state == PF_STATE_MODULATE) { 5414 /* Generate sequence number modulator */ 5415 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 5416 0) 5417 s->src.seqdiff = 1; 5418 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 5419 htonl(s->src.seqlo + s->src.seqdiff), 0); 5420 *rewrite = 1; 5421 } else 5422 s->src.seqdiff = 0; 5423 if (th->th_flags & TH_SYN) { 5424 s->src.seqhi++; 5425 s->src.wscale = pf_get_wscale(m, pd); 5426 } 5427 s->src.max_win = MAX(ntohs(th->th_win), 1); 5428 if (s->src.wscale & PF_WSCALE_MASK) { 5429 /* Remove scale factor from initial window */ 5430 int win = s->src.max_win; 5431 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 5432 s->src.max_win = (win - 1) >> 5433 (s->src.wscale & PF_WSCALE_MASK); 5434 } 5435 if (th->th_flags & TH_FIN) 5436 s->src.seqhi++; 5437 s->dst.seqhi = 1; 5438 s->dst.max_win = 1; 5439 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 5440 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 5441 s->timeout = PFTM_TCP_FIRST_PACKET; 5442 atomic_add_32(&V_pf_status.states_halfopen, 1); 5443 break; 5444 case IPPROTO_UDP: 5445 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 5446 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 5447 s->timeout = PFTM_UDP_FIRST_PACKET; 5448 break; 5449 case IPPROTO_SCTP: 5450 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT); 5451 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED); 5452 s->timeout = PFTM_SCTP_FIRST_PACKET; 5453 break; 5454 case IPPROTO_ICMP: 5455 #ifdef INET6 5456 case IPPROTO_ICMPV6: 5457 #endif 5458 s->timeout = PFTM_ICMP_FIRST_PACKET; 5459 break; 5460 default: 5461 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 5462 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 5463 s->timeout = PFTM_OTHER_FIRST_PACKET; 5464 } 5465 5466 if (r->rt) { 5467 /* pf_map_addr increases the reason counters */ 5468 if ((reason = pf_map_addr_sn(pd->af, r, pd->src, &s->rt_addr, 5469 &s->rt_kif, NULL, &sn)) != 0) 5470 goto csfailed; 5471 s->rt = r->rt; 5472 } 5473 5474 s->creation = s->expire = pf_get_uptime(); 5475 5476 if (sn != NULL) 5477 s->src_node = sn; 5478 if (nsn != NULL) { 5479 /* XXX We only modify one side for now. */ 5480 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 5481 s->nat_src_node = nsn; 5482 } 5483 if (pd->proto == IPPROTO_TCP) { 5484 if (s->state_flags & PFSTATE_SCRUB_TCP && 5485 pf_normalize_tcp_init(m, pd, th, &s->src, &s->dst)) { 5486 REASON_SET(&reason, PFRES_MEMORY); 5487 goto csfailed; 5488 } 5489 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 5490 pf_normalize_tcp_stateful(m, pd, &reason, th, s, 5491 &s->src, &s->dst, rewrite)) { 5492 /* This really shouldn't happen!!! */ 5493 DPFPRINTF(PF_DEBUG_URGENT, 5494 ("pf_normalize_tcp_stateful failed on first " 5495 "pkt\n")); 5496 goto csfailed; 5497 } 5498 } else if (pd->proto == IPPROTO_SCTP) { 5499 if (pf_normalize_sctp_init(m, pd, &s->src, &s->dst)) 5500 goto csfailed; 5501 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP))) 5502 goto csfailed; 5503 } 5504 s->direction = pd->dir; 5505 5506 /* 5507 * sk/nk could already been setup by pf_get_translation(). 5508 */ 5509 if (nr == NULL) { 5510 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 5511 __func__, nr, sk, nk)); 5512 sk = pf_state_key_setup(pd, m, pd->src, pd->dst, sport, dport); 5513 if (sk == NULL) 5514 goto csfailed; 5515 nk = sk; 5516 } else 5517 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 5518 __func__, nr, sk, nk)); 5519 5520 /* Swap sk/nk for PF_OUT. */ 5521 if (pf_state_insert(BOUND_IFACE(s, kif), kif, 5522 (pd->dir == PF_IN) ? sk : nk, 5523 (pd->dir == PF_IN) ? nk : sk, s)) { 5524 REASON_SET(&reason, PFRES_STATEINS); 5525 goto drop; 5526 } else 5527 *sm = s; 5528 5529 if (tag > 0) 5530 s->tag = tag; 5531 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 5532 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 5533 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 5534 /* undo NAT changes, if they have taken place */ 5535 if (nr != NULL) { 5536 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 5537 if (pd->dir == PF_OUT) 5538 skt = s->key[PF_SK_STACK]; 5539 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 5540 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 5541 if (pd->sport) 5542 *pd->sport = skt->port[pd->sidx]; 5543 if (pd->dport) 5544 *pd->dport = skt->port[pd->didx]; 5545 if (pd->proto_sum) 5546 *pd->proto_sum = bproto_sum; 5547 if (pd->ip_sum) 5548 *pd->ip_sum = bip_sum; 5549 m_copyback(m, pd->off, pd->hdrlen, pd->hdr.any); 5550 } 5551 s->src.seqhi = htonl(arc4random()); 5552 /* Find mss option */ 5553 int rtid = M_GETFIB(m); 5554 mss = pf_get_mss(m, pd); 5555 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 5556 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 5557 s->src.mss = mss; 5558 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 5559 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 5560 TH_SYN|TH_ACK, 0, s->src.mss, 0, true, 0, 0, 5561 pd->act.rtableid); 5562 REASON_SET(&reason, PFRES_SYNPROXY); 5563 return (PF_SYNPROXY_DROP); 5564 } 5565 5566 s->udp_mapping = udp_mapping; 5567 5568 return (PF_PASS); 5569 5570 csfailed: 5571 while ((ri = SLIST_FIRST(match_rules))) { 5572 SLIST_REMOVE_HEAD(match_rules, entry); 5573 free(ri, M_PF_RULE_ITEM); 5574 } 5575 5576 uma_zfree(V_pf_state_key_z, sk); 5577 uma_zfree(V_pf_state_key_z, nk); 5578 5579 if (sn != NULL) { 5580 PF_SRC_NODE_LOCK(sn); 5581 if (--sn->states == 0 && sn->expire == 0) { 5582 pf_unlink_src_node(sn); 5583 uma_zfree(V_pf_sources_z, sn); 5584 counter_u64_add( 5585 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5586 } 5587 PF_SRC_NODE_UNLOCK(sn); 5588 } 5589 5590 if (nsn != sn && nsn != NULL) { 5591 PF_SRC_NODE_LOCK(nsn); 5592 if (--nsn->states == 0 && nsn->expire == 0) { 5593 pf_unlink_src_node(nsn); 5594 uma_zfree(V_pf_sources_z, nsn); 5595 counter_u64_add( 5596 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5597 } 5598 PF_SRC_NODE_UNLOCK(nsn); 5599 } 5600 5601 drop: 5602 if (s != NULL) { 5603 pf_src_tree_remove_state(s); 5604 s->timeout = PFTM_UNLINKED; 5605 STATE_DEC_COUNTERS(s); 5606 pf_free_state(s); 5607 } 5608 5609 return (PF_DROP); 5610 } 5611 5612 static int 5613 pf_tcp_track_full(struct pf_kstate **state, struct pfi_kkif *kif, 5614 struct mbuf *m, struct pf_pdesc *pd, u_short *reason, 5615 int *copyback) 5616 { 5617 struct tcphdr *th = &pd->hdr.tcp; 5618 struct pf_state_peer *src, *dst; 5619 u_int16_t win = ntohs(th->th_win); 5620 u_int32_t ack, end, data_end, seq, orig_seq; 5621 u_int8_t sws, dws, psrc, pdst; 5622 int ackskew; 5623 5624 if (pd->dir == (*state)->direction) { 5625 src = &(*state)->src; 5626 dst = &(*state)->dst; 5627 psrc = PF_PEER_SRC; 5628 pdst = PF_PEER_DST; 5629 } else { 5630 src = &(*state)->dst; 5631 dst = &(*state)->src; 5632 psrc = PF_PEER_DST; 5633 pdst = PF_PEER_SRC; 5634 } 5635 5636 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 5637 sws = src->wscale & PF_WSCALE_MASK; 5638 dws = dst->wscale & PF_WSCALE_MASK; 5639 } else 5640 sws = dws = 0; 5641 5642 /* 5643 * Sequence tracking algorithm from Guido van Rooij's paper: 5644 * http://www.madison-gurkha.com/publications/tcp_filtering/ 5645 * tcp_filtering.ps 5646 */ 5647 5648 orig_seq = seq = ntohl(th->th_seq); 5649 if (src->seqlo == 0) { 5650 /* First packet from this end. Set its state */ 5651 5652 if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 5653 src->scrub == NULL) { 5654 if (pf_normalize_tcp_init(m, pd, th, src, dst)) { 5655 REASON_SET(reason, PFRES_MEMORY); 5656 return (PF_DROP); 5657 } 5658 } 5659 5660 /* Deferred generation of sequence number modulator */ 5661 if (dst->seqdiff && !src->seqdiff) { 5662 /* use random iss for the TCP server */ 5663 while ((src->seqdiff = arc4random() - seq) == 0) 5664 ; 5665 ack = ntohl(th->th_ack) - dst->seqdiff; 5666 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5667 src->seqdiff), 0); 5668 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5669 *copyback = 1; 5670 } else { 5671 ack = ntohl(th->th_ack); 5672 } 5673 5674 end = seq + pd->p_len; 5675 if (th->th_flags & TH_SYN) { 5676 end++; 5677 if (dst->wscale & PF_WSCALE_FLAG) { 5678 src->wscale = pf_get_wscale(m, pd); 5679 if (src->wscale & PF_WSCALE_FLAG) { 5680 /* Remove scale factor from initial 5681 * window */ 5682 sws = src->wscale & PF_WSCALE_MASK; 5683 win = ((u_int32_t)win + (1 << sws) - 1) 5684 >> sws; 5685 dws = dst->wscale & PF_WSCALE_MASK; 5686 } else { 5687 /* fixup other window */ 5688 dst->max_win = MIN(TCP_MAXWIN, 5689 (u_int32_t)dst->max_win << 5690 (dst->wscale & PF_WSCALE_MASK)); 5691 /* in case of a retrans SYN|ACK */ 5692 dst->wscale = 0; 5693 } 5694 } 5695 } 5696 data_end = end; 5697 if (th->th_flags & TH_FIN) 5698 end++; 5699 5700 src->seqlo = seq; 5701 if (src->state < TCPS_SYN_SENT) 5702 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5703 5704 /* 5705 * May need to slide the window (seqhi may have been set by 5706 * the crappy stack check or if we picked up the connection 5707 * after establishment) 5708 */ 5709 if (src->seqhi == 1 || 5710 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 5711 src->seqhi = end + MAX(1, dst->max_win << dws); 5712 if (win > src->max_win) 5713 src->max_win = win; 5714 5715 } else { 5716 ack = ntohl(th->th_ack) - dst->seqdiff; 5717 if (src->seqdiff) { 5718 /* Modulate sequence numbers */ 5719 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5720 src->seqdiff), 0); 5721 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5722 *copyback = 1; 5723 } 5724 end = seq + pd->p_len; 5725 if (th->th_flags & TH_SYN) 5726 end++; 5727 data_end = end; 5728 if (th->th_flags & TH_FIN) 5729 end++; 5730 } 5731 5732 if ((th->th_flags & TH_ACK) == 0) { 5733 /* Let it pass through the ack skew check */ 5734 ack = dst->seqlo; 5735 } else if ((ack == 0 && 5736 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 5737 /* broken tcp stacks do not set ack */ 5738 (dst->state < TCPS_SYN_SENT)) { 5739 /* 5740 * Many stacks (ours included) will set the ACK number in an 5741 * FIN|ACK if the SYN times out -- no sequence to ACK. 5742 */ 5743 ack = dst->seqlo; 5744 } 5745 5746 if (seq == end) { 5747 /* Ease sequencing restrictions on no data packets */ 5748 seq = src->seqlo; 5749 data_end = end = seq; 5750 } 5751 5752 ackskew = dst->seqlo - ack; 5753 5754 /* 5755 * Need to demodulate the sequence numbers in any TCP SACK options 5756 * (Selective ACK). We could optionally validate the SACK values 5757 * against the current ACK window, either forwards or backwards, but 5758 * I'm not confident that SACK has been implemented properly 5759 * everywhere. It wouldn't surprise me if several stacks accidentally 5760 * SACK too far backwards of previously ACKed data. There really aren't 5761 * any security implications of bad SACKing unless the target stack 5762 * doesn't validate the option length correctly. Someone trying to 5763 * spoof into a TCP connection won't bother blindly sending SACK 5764 * options anyway. 5765 */ 5766 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 5767 if (pf_modulate_sack(m, pd, th, dst)) 5768 *copyback = 1; 5769 } 5770 5771 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 5772 if (SEQ_GEQ(src->seqhi, data_end) && 5773 /* Last octet inside other's window space */ 5774 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 5775 /* Retrans: not more than one window back */ 5776 (ackskew >= -MAXACKWINDOW) && 5777 /* Acking not more than one reassembled fragment backwards */ 5778 (ackskew <= (MAXACKWINDOW << sws)) && 5779 /* Acking not more than one window forward */ 5780 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 5781 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) { 5782 /* Require an exact/+1 sequence match on resets when possible */ 5783 5784 if (dst->scrub || src->scrub) { 5785 if (pf_normalize_tcp_stateful(m, pd, reason, th, 5786 *state, src, dst, copyback)) 5787 return (PF_DROP); 5788 } 5789 5790 /* update max window */ 5791 if (src->max_win < win) 5792 src->max_win = win; 5793 /* synchronize sequencing */ 5794 if (SEQ_GT(end, src->seqlo)) 5795 src->seqlo = end; 5796 /* slide the window of what the other end can send */ 5797 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5798 dst->seqhi = ack + MAX((win << sws), 1); 5799 5800 /* update states */ 5801 if (th->th_flags & TH_SYN) 5802 if (src->state < TCPS_SYN_SENT) 5803 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5804 if (th->th_flags & TH_FIN) 5805 if (src->state < TCPS_CLOSING) 5806 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5807 if (th->th_flags & TH_ACK) { 5808 if (dst->state == TCPS_SYN_SENT) { 5809 pf_set_protostate(*state, pdst, 5810 TCPS_ESTABLISHED); 5811 if (src->state == TCPS_ESTABLISHED && 5812 (*state)->src_node != NULL && 5813 pf_src_connlimit(state)) { 5814 REASON_SET(reason, PFRES_SRCLIMIT); 5815 return (PF_DROP); 5816 } 5817 } else if (dst->state == TCPS_CLOSING) 5818 pf_set_protostate(*state, pdst, 5819 TCPS_FIN_WAIT_2); 5820 } 5821 if (th->th_flags & TH_RST) 5822 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5823 5824 /* update expire time */ 5825 (*state)->expire = pf_get_uptime(); 5826 if (src->state >= TCPS_FIN_WAIT_2 && 5827 dst->state >= TCPS_FIN_WAIT_2) 5828 (*state)->timeout = PFTM_TCP_CLOSED; 5829 else if (src->state >= TCPS_CLOSING && 5830 dst->state >= TCPS_CLOSING) 5831 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5832 else if (src->state < TCPS_ESTABLISHED || 5833 dst->state < TCPS_ESTABLISHED) 5834 (*state)->timeout = PFTM_TCP_OPENING; 5835 else if (src->state >= TCPS_CLOSING || 5836 dst->state >= TCPS_CLOSING) 5837 (*state)->timeout = PFTM_TCP_CLOSING; 5838 else 5839 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5840 5841 /* Fall through to PASS packet */ 5842 5843 } else if ((dst->state < TCPS_SYN_SENT || 5844 dst->state >= TCPS_FIN_WAIT_2 || 5845 src->state >= TCPS_FIN_WAIT_2) && 5846 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) && 5847 /* Within a window forward of the originating packet */ 5848 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 5849 /* Within a window backward of the originating packet */ 5850 5851 /* 5852 * This currently handles three situations: 5853 * 1) Stupid stacks will shotgun SYNs before their peer 5854 * replies. 5855 * 2) When PF catches an already established stream (the 5856 * firewall rebooted, the state table was flushed, routes 5857 * changed...) 5858 * 3) Packets get funky immediately after the connection 5859 * closes (this should catch Solaris spurious ACK|FINs 5860 * that web servers like to spew after a close) 5861 * 5862 * This must be a little more careful than the above code 5863 * since packet floods will also be caught here. We don't 5864 * update the TTL here to mitigate the damage of a packet 5865 * flood and so the same code can handle awkward establishment 5866 * and a loosened connection close. 5867 * In the establishment case, a correct peer response will 5868 * validate the connection, go through the normal state code 5869 * and keep updating the state TTL. 5870 */ 5871 5872 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5873 printf("pf: loose state match: "); 5874 pf_print_state(*state); 5875 pf_print_flags(th->th_flags); 5876 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5877 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 5878 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 5879 (unsigned long long)(*state)->packets[1], 5880 pd->dir == PF_IN ? "in" : "out", 5881 pd->dir == (*state)->direction ? "fwd" : "rev"); 5882 } 5883 5884 if (dst->scrub || src->scrub) { 5885 if (pf_normalize_tcp_stateful(m, pd, reason, th, 5886 *state, src, dst, copyback)) 5887 return (PF_DROP); 5888 } 5889 5890 /* update max window */ 5891 if (src->max_win < win) 5892 src->max_win = win; 5893 /* synchronize sequencing */ 5894 if (SEQ_GT(end, src->seqlo)) 5895 src->seqlo = end; 5896 /* slide the window of what the other end can send */ 5897 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5898 dst->seqhi = ack + MAX((win << sws), 1); 5899 5900 /* 5901 * Cannot set dst->seqhi here since this could be a shotgunned 5902 * SYN and not an already established connection. 5903 */ 5904 5905 if (th->th_flags & TH_FIN) 5906 if (src->state < TCPS_CLOSING) 5907 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5908 if (th->th_flags & TH_RST) 5909 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5910 5911 /* Fall through to PASS packet */ 5912 5913 } else { 5914 if ((*state)->dst.state == TCPS_SYN_SENT && 5915 (*state)->src.state == TCPS_SYN_SENT) { 5916 /* Send RST for state mismatches during handshake */ 5917 if (!(th->th_flags & TH_RST)) 5918 pf_send_tcp((*state)->rule, pd->af, 5919 pd->dst, pd->src, th->th_dport, 5920 th->th_sport, ntohl(th->th_ack), 0, 5921 TH_RST, 0, 0, 5922 (*state)->rule->return_ttl, true, 0, 0, 5923 (*state)->act.rtableid); 5924 src->seqlo = 0; 5925 src->seqhi = 1; 5926 src->max_win = 1; 5927 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 5928 printf("pf: BAD state: "); 5929 pf_print_state(*state); 5930 pf_print_flags(th->th_flags); 5931 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5932 "pkts=%llu:%llu dir=%s,%s\n", 5933 seq, orig_seq, ack, pd->p_len, ackskew, 5934 (unsigned long long)(*state)->packets[0], 5935 (unsigned long long)(*state)->packets[1], 5936 pd->dir == PF_IN ? "in" : "out", 5937 pd->dir == (*state)->direction ? "fwd" : "rev"); 5938 printf("pf: State failure on: %c %c %c %c | %c %c\n", 5939 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1', 5940 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 5941 ' ': '2', 5942 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 5943 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 5944 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5', 5945 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 5946 } 5947 REASON_SET(reason, PFRES_BADSTATE); 5948 return (PF_DROP); 5949 } 5950 5951 return (PF_PASS); 5952 } 5953 5954 static int 5955 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 5956 { 5957 struct tcphdr *th = &pd->hdr.tcp; 5958 struct pf_state_peer *src, *dst; 5959 u_int8_t psrc, pdst; 5960 5961 if (pd->dir == (*state)->direction) { 5962 src = &(*state)->src; 5963 dst = &(*state)->dst; 5964 psrc = PF_PEER_SRC; 5965 pdst = PF_PEER_DST; 5966 } else { 5967 src = &(*state)->dst; 5968 dst = &(*state)->src; 5969 psrc = PF_PEER_DST; 5970 pdst = PF_PEER_SRC; 5971 } 5972 5973 if (th->th_flags & TH_SYN) 5974 if (src->state < TCPS_SYN_SENT) 5975 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5976 if (th->th_flags & TH_FIN) 5977 if (src->state < TCPS_CLOSING) 5978 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5979 if (th->th_flags & TH_ACK) { 5980 if (dst->state == TCPS_SYN_SENT) { 5981 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 5982 if (src->state == TCPS_ESTABLISHED && 5983 (*state)->src_node != NULL && 5984 pf_src_connlimit(state)) { 5985 REASON_SET(reason, PFRES_SRCLIMIT); 5986 return (PF_DROP); 5987 } 5988 } else if (dst->state == TCPS_CLOSING) { 5989 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 5990 } else if (src->state == TCPS_SYN_SENT && 5991 dst->state < TCPS_SYN_SENT) { 5992 /* 5993 * Handle a special sloppy case where we only see one 5994 * half of the connection. If there is a ACK after 5995 * the initial SYN without ever seeing a packet from 5996 * the destination, set the connection to established. 5997 */ 5998 pf_set_protostate(*state, PF_PEER_BOTH, 5999 TCPS_ESTABLISHED); 6000 dst->state = src->state = TCPS_ESTABLISHED; 6001 if ((*state)->src_node != NULL && 6002 pf_src_connlimit(state)) { 6003 REASON_SET(reason, PFRES_SRCLIMIT); 6004 return (PF_DROP); 6005 } 6006 } else if (src->state == TCPS_CLOSING && 6007 dst->state == TCPS_ESTABLISHED && 6008 dst->seqlo == 0) { 6009 /* 6010 * Handle the closing of half connections where we 6011 * don't see the full bidirectional FIN/ACK+ACK 6012 * handshake. 6013 */ 6014 pf_set_protostate(*state, pdst, TCPS_CLOSING); 6015 } 6016 } 6017 if (th->th_flags & TH_RST) 6018 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6019 6020 /* update expire time */ 6021 (*state)->expire = pf_get_uptime(); 6022 if (src->state >= TCPS_FIN_WAIT_2 && 6023 dst->state >= TCPS_FIN_WAIT_2) 6024 (*state)->timeout = PFTM_TCP_CLOSED; 6025 else if (src->state >= TCPS_CLOSING && 6026 dst->state >= TCPS_CLOSING) 6027 (*state)->timeout = PFTM_TCP_FIN_WAIT; 6028 else if (src->state < TCPS_ESTABLISHED || 6029 dst->state < TCPS_ESTABLISHED) 6030 (*state)->timeout = PFTM_TCP_OPENING; 6031 else if (src->state >= TCPS_CLOSING || 6032 dst->state >= TCPS_CLOSING) 6033 (*state)->timeout = PFTM_TCP_CLOSING; 6034 else 6035 (*state)->timeout = PFTM_TCP_ESTABLISHED; 6036 6037 return (PF_PASS); 6038 } 6039 6040 static int 6041 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 6042 { 6043 struct pf_state_key *sk = (*state)->key[pd->didx]; 6044 struct tcphdr *th = &pd->hdr.tcp; 6045 6046 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 6047 if (pd->dir != (*state)->direction) { 6048 REASON_SET(reason, PFRES_SYNPROXY); 6049 return (PF_SYNPROXY_DROP); 6050 } 6051 if (th->th_flags & TH_SYN) { 6052 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 6053 REASON_SET(reason, PFRES_SYNPROXY); 6054 return (PF_DROP); 6055 } 6056 pf_send_tcp((*state)->rule, pd->af, pd->dst, 6057 pd->src, th->th_dport, th->th_sport, 6058 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 6059 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, true, 0, 0, 6060 (*state)->act.rtableid); 6061 REASON_SET(reason, PFRES_SYNPROXY); 6062 return (PF_SYNPROXY_DROP); 6063 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 6064 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 6065 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 6066 REASON_SET(reason, PFRES_SYNPROXY); 6067 return (PF_DROP); 6068 } else if ((*state)->src_node != NULL && 6069 pf_src_connlimit(state)) { 6070 REASON_SET(reason, PFRES_SRCLIMIT); 6071 return (PF_DROP); 6072 } else 6073 pf_set_protostate(*state, PF_PEER_SRC, 6074 PF_TCPS_PROXY_DST); 6075 } 6076 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 6077 if (pd->dir == (*state)->direction) { 6078 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 6079 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 6080 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 6081 REASON_SET(reason, PFRES_SYNPROXY); 6082 return (PF_DROP); 6083 } 6084 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 6085 if ((*state)->dst.seqhi == 1) 6086 (*state)->dst.seqhi = htonl(arc4random()); 6087 pf_send_tcp((*state)->rule, pd->af, 6088 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6089 sk->port[pd->sidx], sk->port[pd->didx], 6090 (*state)->dst.seqhi, 0, TH_SYN, 0, 6091 (*state)->src.mss, 0, false, (*state)->tag, 0, 6092 (*state)->act.rtableid); 6093 REASON_SET(reason, PFRES_SYNPROXY); 6094 return (PF_SYNPROXY_DROP); 6095 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 6096 (TH_SYN|TH_ACK)) || 6097 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 6098 REASON_SET(reason, PFRES_SYNPROXY); 6099 return (PF_DROP); 6100 } else { 6101 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 6102 (*state)->dst.seqlo = ntohl(th->th_seq); 6103 pf_send_tcp((*state)->rule, pd->af, pd->dst, 6104 pd->src, th->th_dport, th->th_sport, 6105 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 6106 TH_ACK, (*state)->src.max_win, 0, 0, false, 6107 (*state)->tag, 0, (*state)->act.rtableid); 6108 pf_send_tcp((*state)->rule, pd->af, 6109 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6110 sk->port[pd->sidx], sk->port[pd->didx], 6111 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 6112 TH_ACK, (*state)->dst.max_win, 0, 0, true, 0, 0, 6113 (*state)->act.rtableid); 6114 (*state)->src.seqdiff = (*state)->dst.seqhi - 6115 (*state)->src.seqlo; 6116 (*state)->dst.seqdiff = (*state)->src.seqhi - 6117 (*state)->dst.seqlo; 6118 (*state)->src.seqhi = (*state)->src.seqlo + 6119 (*state)->dst.max_win; 6120 (*state)->dst.seqhi = (*state)->dst.seqlo + 6121 (*state)->src.max_win; 6122 (*state)->src.wscale = (*state)->dst.wscale = 0; 6123 pf_set_protostate(*state, PF_PEER_BOTH, 6124 TCPS_ESTABLISHED); 6125 REASON_SET(reason, PFRES_SYNPROXY); 6126 return (PF_SYNPROXY_DROP); 6127 } 6128 } 6129 6130 return (PF_PASS); 6131 } 6132 6133 static int 6134 pf_test_state_tcp(struct pf_kstate **state, struct pfi_kkif *kif, 6135 struct mbuf *m, struct pf_pdesc *pd, 6136 u_short *reason) 6137 { 6138 struct pf_state_key_cmp key; 6139 struct tcphdr *th = &pd->hdr.tcp; 6140 int copyback = 0; 6141 int action; 6142 struct pf_state_peer *src, *dst; 6143 6144 bzero(&key, sizeof(key)); 6145 key.af = pd->af; 6146 key.proto = IPPROTO_TCP; 6147 if (pd->dir == PF_IN) { /* wire side, straight */ 6148 PF_ACPY(&key.addr[0], pd->src, key.af); 6149 PF_ACPY(&key.addr[1], pd->dst, key.af); 6150 key.port[0] = th->th_sport; 6151 key.port[1] = th->th_dport; 6152 } else { /* stack side, reverse */ 6153 PF_ACPY(&key.addr[1], pd->src, key.af); 6154 PF_ACPY(&key.addr[0], pd->dst, key.af); 6155 key.port[1] = th->th_sport; 6156 key.port[0] = th->th_dport; 6157 } 6158 6159 STATE_LOOKUP(kif, &key, *state, pd); 6160 6161 if (pd->dir == (*state)->direction) { 6162 src = &(*state)->src; 6163 dst = &(*state)->dst; 6164 } else { 6165 src = &(*state)->dst; 6166 dst = &(*state)->src; 6167 } 6168 6169 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 6170 return (action); 6171 6172 if (dst->state >= TCPS_FIN_WAIT_2 && 6173 src->state >= TCPS_FIN_WAIT_2 && 6174 (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) || 6175 ((th->th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK && 6176 pf_syncookie_check(pd) && pd->dir == PF_IN))) { 6177 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6178 printf("pf: state reuse "); 6179 pf_print_state(*state); 6180 pf_print_flags(th->th_flags); 6181 printf("\n"); 6182 } 6183 /* XXX make sure it's the same direction ?? */ 6184 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 6185 pf_unlink_state(*state); 6186 *state = NULL; 6187 return (PF_DROP); 6188 } 6189 6190 if ((*state)->state_flags & PFSTATE_SLOPPY) { 6191 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 6192 return (PF_DROP); 6193 } else { 6194 if (pf_tcp_track_full(state, kif, m, pd, reason, 6195 ©back) == PF_DROP) 6196 return (PF_DROP); 6197 } 6198 6199 /* translate source/destination address, if necessary */ 6200 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6201 struct pf_state_key *nk = (*state)->key[pd->didx]; 6202 6203 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6204 nk->port[pd->sidx] != th->th_sport) 6205 pf_change_ap(m, pd->src, &th->th_sport, 6206 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 6207 nk->port[pd->sidx], 0, pd->af); 6208 6209 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6210 nk->port[pd->didx] != th->th_dport) 6211 pf_change_ap(m, pd->dst, &th->th_dport, 6212 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 6213 nk->port[pd->didx], 0, pd->af); 6214 copyback = 1; 6215 } 6216 6217 /* Copyback sequence modulation or stateful scrub changes if needed */ 6218 if (copyback) 6219 m_copyback(m, pd->off, sizeof(*th), (caddr_t)th); 6220 6221 return (PF_PASS); 6222 } 6223 6224 static int 6225 pf_test_state_udp(struct pf_kstate **state, struct pfi_kkif *kif, 6226 struct mbuf *m, struct pf_pdesc *pd) 6227 { 6228 struct pf_state_peer *src, *dst; 6229 struct pf_state_key_cmp key; 6230 struct udphdr *uh = &pd->hdr.udp; 6231 uint8_t psrc, pdst; 6232 6233 bzero(&key, sizeof(key)); 6234 key.af = pd->af; 6235 key.proto = IPPROTO_UDP; 6236 if (pd->dir == PF_IN) { /* wire side, straight */ 6237 PF_ACPY(&key.addr[0], pd->src, key.af); 6238 PF_ACPY(&key.addr[1], pd->dst, key.af); 6239 key.port[0] = uh->uh_sport; 6240 key.port[1] = uh->uh_dport; 6241 } else { /* stack side, reverse */ 6242 PF_ACPY(&key.addr[1], pd->src, key.af); 6243 PF_ACPY(&key.addr[0], pd->dst, key.af); 6244 key.port[1] = uh->uh_sport; 6245 key.port[0] = uh->uh_dport; 6246 } 6247 6248 STATE_LOOKUP(kif, &key, *state, pd); 6249 6250 if (pd->dir == (*state)->direction) { 6251 src = &(*state)->src; 6252 dst = &(*state)->dst; 6253 psrc = PF_PEER_SRC; 6254 pdst = PF_PEER_DST; 6255 } else { 6256 src = &(*state)->dst; 6257 dst = &(*state)->src; 6258 psrc = PF_PEER_DST; 6259 pdst = PF_PEER_SRC; 6260 } 6261 6262 /* update states */ 6263 if (src->state < PFUDPS_SINGLE) 6264 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 6265 if (dst->state == PFUDPS_SINGLE) 6266 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 6267 6268 /* update expire time */ 6269 (*state)->expire = pf_get_uptime(); 6270 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 6271 (*state)->timeout = PFTM_UDP_MULTIPLE; 6272 else 6273 (*state)->timeout = PFTM_UDP_SINGLE; 6274 6275 /* translate source/destination address, if necessary */ 6276 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6277 struct pf_state_key *nk = (*state)->key[pd->didx]; 6278 6279 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6280 nk->port[pd->sidx] != uh->uh_sport) 6281 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 6282 &uh->uh_sum, &nk->addr[pd->sidx], 6283 nk->port[pd->sidx], 1, pd->af); 6284 6285 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6286 nk->port[pd->didx] != uh->uh_dport) 6287 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 6288 &uh->uh_sum, &nk->addr[pd->didx], 6289 nk->port[pd->didx], 1, pd->af); 6290 m_copyback(m, pd->off, sizeof(*uh), (caddr_t)uh); 6291 } 6292 6293 return (PF_PASS); 6294 } 6295 6296 static int 6297 pf_test_state_sctp(struct pf_kstate **state, struct pfi_kkif *kif, 6298 struct mbuf *m, struct pf_pdesc *pd, u_short *reason) 6299 { 6300 struct pf_state_key_cmp key; 6301 struct pf_state_peer *src, *dst; 6302 struct sctphdr *sh = &pd->hdr.sctp; 6303 u_int8_t psrc; //, pdst; 6304 6305 bzero(&key, sizeof(key)); 6306 key.af = pd->af; 6307 key.proto = IPPROTO_SCTP; 6308 if (pd->dir == PF_IN) { /* wire side, straight */ 6309 PF_ACPY(&key.addr[0], pd->src, key.af); 6310 PF_ACPY(&key.addr[1], pd->dst, key.af); 6311 key.port[0] = sh->src_port; 6312 key.port[1] = sh->dest_port; 6313 } else { /* stack side, reverse */ 6314 PF_ACPY(&key.addr[1], pd->src, key.af); 6315 PF_ACPY(&key.addr[0], pd->dst, key.af); 6316 key.port[1] = sh->src_port; 6317 key.port[0] = sh->dest_port; 6318 } 6319 6320 STATE_LOOKUP(kif, &key, *state, pd); 6321 6322 if (pd->dir == (*state)->direction) { 6323 src = &(*state)->src; 6324 dst = &(*state)->dst; 6325 psrc = PF_PEER_SRC; 6326 } else { 6327 src = &(*state)->dst; 6328 dst = &(*state)->src; 6329 psrc = PF_PEER_DST; 6330 } 6331 6332 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) && 6333 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) && 6334 pd->sctp_flags & PFDESC_SCTP_INIT) { 6335 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED); 6336 pf_unlink_state(*state); 6337 *state = NULL; 6338 return (PF_DROP); 6339 } 6340 6341 /* Track state. */ 6342 if (pd->sctp_flags & PFDESC_SCTP_INIT) { 6343 if (src->state < SCTP_COOKIE_WAIT) { 6344 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT); 6345 (*state)->timeout = PFTM_SCTP_OPENING; 6346 } 6347 } 6348 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) { 6349 MPASS(dst->scrub != NULL); 6350 if (dst->scrub->pfss_v_tag == 0) 6351 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag; 6352 } 6353 6354 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) { 6355 if (src->state < SCTP_ESTABLISHED) { 6356 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED); 6357 (*state)->timeout = PFTM_SCTP_ESTABLISHED; 6358 } 6359 } 6360 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | PFDESC_SCTP_ABORT | 6361 PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 6362 if (src->state < SCTP_SHUTDOWN_PENDING) { 6363 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING); 6364 (*state)->timeout = PFTM_SCTP_CLOSING; 6365 } 6366 } 6367 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 6368 pf_set_protostate(*state, psrc, SCTP_CLOSED); 6369 (*state)->timeout = PFTM_SCTP_CLOSED; 6370 } 6371 6372 if (src->scrub != NULL) { 6373 if (src->scrub->pfss_v_tag == 0) { 6374 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag; 6375 } else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag) 6376 return (PF_DROP); 6377 } 6378 6379 (*state)->expire = pf_get_uptime(); 6380 6381 /* translate source/destination address, if necessary */ 6382 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6383 uint16_t checksum = 0; 6384 struct pf_state_key *nk = (*state)->key[pd->didx]; 6385 6386 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6387 nk->port[pd->sidx] != pd->hdr.sctp.src_port) { 6388 pf_change_ap(m, pd->src, &pd->hdr.sctp.src_port, 6389 pd->ip_sum, &checksum, &nk->addr[pd->sidx], 6390 nk->port[pd->sidx], 1, pd->af); 6391 } 6392 6393 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6394 nk->port[pd->didx] != pd->hdr.sctp.dest_port) { 6395 pf_change_ap(m, pd->dst, &pd->hdr.sctp.dest_port, 6396 pd->ip_sum, &checksum, &nk->addr[pd->didx], 6397 nk->port[pd->didx], 1, pd->af); 6398 } 6399 } 6400 6401 return (PF_PASS); 6402 } 6403 6404 static void 6405 pf_sctp_multihome_detach_addr(const struct pf_kstate *s) 6406 { 6407 struct pf_sctp_endpoint key; 6408 struct pf_sctp_endpoint *ep; 6409 struct pf_state_key *sks = s->key[PF_SK_STACK]; 6410 struct pf_sctp_source *i, *tmp; 6411 6412 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL) 6413 return; 6414 6415 PF_SCTP_ENDPOINTS_LOCK(); 6416 6417 key.v_tag = s->dst.scrub->pfss_v_tag; 6418 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6419 if (ep != NULL) { 6420 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6421 if (pf_addr_cmp(&i->addr, 6422 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT], 6423 s->key[PF_SK_WIRE]->af) == 0) { 6424 SDT_PROBE3(pf, sctp, multihome, remove, 6425 key.v_tag, s, i); 6426 TAILQ_REMOVE(&ep->sources, i, entry); 6427 free(i, M_PFTEMP); 6428 break; 6429 } 6430 } 6431 6432 if (TAILQ_EMPTY(&ep->sources)) { 6433 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6434 free(ep, M_PFTEMP); 6435 } 6436 } 6437 6438 /* Other direction. */ 6439 key.v_tag = s->src.scrub->pfss_v_tag; 6440 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6441 if (ep != NULL) { 6442 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6443 if (pf_addr_cmp(&i->addr, 6444 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN], 6445 s->key[PF_SK_WIRE]->af) == 0) { 6446 SDT_PROBE3(pf, sctp, multihome, remove, 6447 key.v_tag, s, i); 6448 TAILQ_REMOVE(&ep->sources, i, entry); 6449 free(i, M_PFTEMP); 6450 break; 6451 } 6452 } 6453 6454 if (TAILQ_EMPTY(&ep->sources)) { 6455 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6456 free(ep, M_PFTEMP); 6457 } 6458 } 6459 6460 PF_SCTP_ENDPOINTS_UNLOCK(); 6461 } 6462 6463 static void 6464 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag) 6465 { 6466 struct pf_sctp_endpoint key = { 6467 .v_tag = v_tag, 6468 }; 6469 struct pf_sctp_source *i; 6470 struct pf_sctp_endpoint *ep; 6471 6472 PF_SCTP_ENDPOINTS_LOCK(); 6473 6474 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6475 if (ep == NULL) { 6476 ep = malloc(sizeof(struct pf_sctp_endpoint), 6477 M_PFTEMP, M_NOWAIT); 6478 if (ep == NULL) { 6479 PF_SCTP_ENDPOINTS_UNLOCK(); 6480 return; 6481 } 6482 6483 ep->v_tag = v_tag; 6484 TAILQ_INIT(&ep->sources); 6485 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6486 } 6487 6488 /* Avoid inserting duplicates. */ 6489 TAILQ_FOREACH(i, &ep->sources, entry) { 6490 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) { 6491 PF_SCTP_ENDPOINTS_UNLOCK(); 6492 return; 6493 } 6494 } 6495 6496 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT); 6497 if (i == NULL) { 6498 PF_SCTP_ENDPOINTS_UNLOCK(); 6499 return; 6500 } 6501 6502 i->af = pd->af; 6503 memcpy(&i->addr, a, sizeof(*a)); 6504 TAILQ_INSERT_TAIL(&ep->sources, i, entry); 6505 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i); 6506 6507 PF_SCTP_ENDPOINTS_UNLOCK(); 6508 } 6509 6510 static void 6511 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif, 6512 struct pf_kstate *s, int action) 6513 { 6514 struct pf_sctp_multihome_job *j, *tmp; 6515 struct pf_sctp_source *i; 6516 int ret __unused; 6517 struct pf_kstate *sm = NULL; 6518 struct pf_krule *ra = NULL; 6519 struct pf_krule *r = &V_pf_default_rule; 6520 struct pf_kruleset *rs = NULL; 6521 bool do_extra = true; 6522 6523 PF_RULES_RLOCK_TRACKER; 6524 6525 again: 6526 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) { 6527 if (s == NULL || action != PF_PASS) 6528 goto free; 6529 6530 /* Confirm we don't recurse here. */ 6531 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP)); 6532 6533 switch (j->op) { 6534 case SCTP_ADD_IP_ADDRESS: { 6535 uint32_t v_tag = pd->sctp_initiate_tag; 6536 6537 if (v_tag == 0) { 6538 if (s->direction == pd->dir) 6539 v_tag = s->src.scrub->pfss_v_tag; 6540 else 6541 v_tag = s->dst.scrub->pfss_v_tag; 6542 } 6543 6544 /* 6545 * Avoid duplicating states. We'll already have 6546 * created a state based on the source address of 6547 * the packet, but SCTP endpoints may also list this 6548 * address again in the INIT(_ACK) parameters. 6549 */ 6550 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) { 6551 break; 6552 } 6553 6554 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP; 6555 PF_RULES_RLOCK(); 6556 sm = NULL; 6557 /* 6558 * New connections need to be floating, because 6559 * we cannot know what interfaces it will use. 6560 * That's why we pass V_pfi_all rather than kif. 6561 */ 6562 ret = pf_test_rule(&r, &sm, V_pfi_all, 6563 j->m, &j->pd, &ra, &rs, NULL); 6564 PF_RULES_RUNLOCK(); 6565 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->m, ret); 6566 if (ret != PF_DROP && sm != NULL) { 6567 /* Inherit v_tag values. */ 6568 if (sm->direction == s->direction) { 6569 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6570 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6571 } else { 6572 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6573 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6574 } 6575 PF_STATE_UNLOCK(sm); 6576 } else { 6577 /* If we try duplicate inserts? */ 6578 break; 6579 } 6580 6581 /* Only add the address if we've actually allowed the state. */ 6582 pf_sctp_multihome_add_addr(pd, &j->src, v_tag); 6583 6584 if (! do_extra) { 6585 break; 6586 } 6587 /* 6588 * We need to do this for each of our source addresses. 6589 * Find those based on the verification tag. 6590 */ 6591 struct pf_sctp_endpoint key = { 6592 .v_tag = pd->hdr.sctp.v_tag, 6593 }; 6594 struct pf_sctp_endpoint *ep; 6595 6596 PF_SCTP_ENDPOINTS_LOCK(); 6597 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6598 if (ep == NULL) { 6599 PF_SCTP_ENDPOINTS_UNLOCK(); 6600 break; 6601 } 6602 MPASS(ep != NULL); 6603 6604 TAILQ_FOREACH(i, &ep->sources, entry) { 6605 struct pf_sctp_multihome_job *nj; 6606 6607 /* SCTP can intermingle IPv4 and IPv6. */ 6608 if (i->af != pd->af) 6609 continue; 6610 6611 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO); 6612 if (! nj) { 6613 continue; 6614 } 6615 memcpy(&nj->pd, &j->pd, sizeof(j->pd)); 6616 memcpy(&nj->src, &j->src, sizeof(nj->src)); 6617 nj->pd.src = &nj->src; 6618 // New destination address! 6619 memcpy(&nj->dst, &i->addr, sizeof(nj->dst)); 6620 nj->pd.dst = &nj->dst; 6621 nj->m = j->m; 6622 nj->op = j->op; 6623 6624 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next); 6625 } 6626 PF_SCTP_ENDPOINTS_UNLOCK(); 6627 6628 break; 6629 } 6630 case SCTP_DEL_IP_ADDRESS: { 6631 struct pf_state_key_cmp key; 6632 uint8_t psrc; 6633 6634 bzero(&key, sizeof(key)); 6635 key.af = j->pd.af; 6636 key.proto = IPPROTO_SCTP; 6637 if (j->pd.dir == PF_IN) { /* wire side, straight */ 6638 PF_ACPY(&key.addr[0], j->pd.src, key.af); 6639 PF_ACPY(&key.addr[1], j->pd.dst, key.af); 6640 key.port[0] = j->pd.hdr.sctp.src_port; 6641 key.port[1] = j->pd.hdr.sctp.dest_port; 6642 } else { /* stack side, reverse */ 6643 PF_ACPY(&key.addr[1], j->pd.src, key.af); 6644 PF_ACPY(&key.addr[0], j->pd.dst, key.af); 6645 key.port[1] = j->pd.hdr.sctp.src_port; 6646 key.port[0] = j->pd.hdr.sctp.dest_port; 6647 } 6648 6649 sm = pf_find_state(kif, &key, j->pd.dir); 6650 if (sm != NULL) { 6651 PF_STATE_LOCK_ASSERT(sm); 6652 if (j->pd.dir == sm->direction) { 6653 psrc = PF_PEER_SRC; 6654 } else { 6655 psrc = PF_PEER_DST; 6656 } 6657 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING); 6658 sm->timeout = PFTM_SCTP_CLOSING; 6659 PF_STATE_UNLOCK(sm); 6660 } 6661 break; 6662 default: 6663 panic("Unknown op %#x", j->op); 6664 } 6665 } 6666 6667 free: 6668 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next); 6669 free(j, M_PFTEMP); 6670 } 6671 6672 /* We may have inserted extra work while processing the list. */ 6673 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) { 6674 do_extra = false; 6675 goto again; 6676 } 6677 } 6678 6679 static int 6680 pf_multihome_scan(struct mbuf *m, int start, int len, struct pf_pdesc *pd, 6681 struct pfi_kkif *kif, int op) 6682 { 6683 int off = 0; 6684 struct pf_sctp_multihome_job *job; 6685 6686 while (off < len) { 6687 struct sctp_paramhdr h; 6688 6689 if (!pf_pull_hdr(m, start + off, &h, sizeof(h), NULL, NULL, 6690 pd->af)) 6691 return (PF_DROP); 6692 6693 /* Parameters are at least 4 bytes. */ 6694 if (ntohs(h.param_length) < 4) 6695 return (PF_DROP); 6696 6697 switch (ntohs(h.param_type)) { 6698 case SCTP_IPV4_ADDRESS: { 6699 struct in_addr t; 6700 6701 if (ntohs(h.param_length) != 6702 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6703 return (PF_DROP); 6704 6705 if (!pf_pull_hdr(m, start + off + sizeof(h), &t, sizeof(t), 6706 NULL, NULL, pd->af)) 6707 return (PF_DROP); 6708 6709 if (in_nullhost(t)) 6710 t.s_addr = pd->src->v4.s_addr; 6711 6712 /* 6713 * We hold the state lock (idhash) here, which means 6714 * that we can't acquire the keyhash, or we'll get a 6715 * LOR (and potentially double-lock things too). We also 6716 * can't release the state lock here, so instead we'll 6717 * enqueue this for async handling. 6718 * There's a relatively small race here, in that a 6719 * packet using the new addresses could arrive already, 6720 * but that's just though luck for it. 6721 */ 6722 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6723 if (! job) 6724 return (PF_DROP); 6725 6726 memcpy(&job->pd, pd, sizeof(*pd)); 6727 6728 // New source address! 6729 memcpy(&job->src, &t, sizeof(t)); 6730 job->pd.src = &job->src; 6731 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6732 job->pd.dst = &job->dst; 6733 job->m = m; 6734 job->op = op; 6735 6736 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6737 break; 6738 } 6739 #ifdef INET6 6740 case SCTP_IPV6_ADDRESS: { 6741 struct in6_addr t; 6742 6743 if (ntohs(h.param_length) != 6744 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6745 return (PF_DROP); 6746 6747 if (!pf_pull_hdr(m, start + off + sizeof(h), &t, sizeof(t), 6748 NULL, NULL, pd->af)) 6749 return (PF_DROP); 6750 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0) 6751 break; 6752 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0) 6753 memcpy(&t, &pd->src->v6, sizeof(t)); 6754 6755 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6756 if (! job) 6757 return (PF_DROP); 6758 6759 memcpy(&job->pd, pd, sizeof(*pd)); 6760 memcpy(&job->src, &t, sizeof(t)); 6761 job->pd.src = &job->src; 6762 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6763 job->pd.dst = &job->dst; 6764 job->m = m; 6765 job->op = op; 6766 6767 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6768 break; 6769 } 6770 #endif 6771 case SCTP_ADD_IP_ADDRESS: { 6772 int ret; 6773 struct sctp_asconf_paramhdr ah; 6774 6775 if (!pf_pull_hdr(m, start + off, &ah, sizeof(ah), 6776 NULL, NULL, pd->af)) 6777 return (PF_DROP); 6778 6779 ret = pf_multihome_scan(m, start + off + sizeof(ah), 6780 ntohs(ah.ph.param_length) - sizeof(ah), pd, kif, 6781 SCTP_ADD_IP_ADDRESS); 6782 if (ret != PF_PASS) 6783 return (ret); 6784 break; 6785 } 6786 case SCTP_DEL_IP_ADDRESS: { 6787 int ret; 6788 struct sctp_asconf_paramhdr ah; 6789 6790 if (!pf_pull_hdr(m, start + off, &ah, sizeof(ah), 6791 NULL, NULL, pd->af)) 6792 return (PF_DROP); 6793 ret = pf_multihome_scan(m, start + off + sizeof(ah), 6794 ntohs(ah.ph.param_length) - sizeof(ah), pd, kif, 6795 SCTP_DEL_IP_ADDRESS); 6796 if (ret != PF_PASS) 6797 return (ret); 6798 break; 6799 } 6800 default: 6801 break; 6802 } 6803 6804 off += roundup(ntohs(h.param_length), 4); 6805 } 6806 6807 return (PF_PASS); 6808 } 6809 int 6810 pf_multihome_scan_init(struct mbuf *m, int start, int len, struct pf_pdesc *pd, 6811 struct pfi_kkif *kif) 6812 { 6813 start += sizeof(struct sctp_init_chunk); 6814 len -= sizeof(struct sctp_init_chunk); 6815 6816 return (pf_multihome_scan(m, start, len, pd, kif, SCTP_ADD_IP_ADDRESS)); 6817 } 6818 6819 int 6820 pf_multihome_scan_asconf(struct mbuf *m, int start, int len, 6821 struct pf_pdesc *pd, struct pfi_kkif *kif) 6822 { 6823 start += sizeof(struct sctp_asconf_chunk); 6824 len -= sizeof(struct sctp_asconf_chunk); 6825 6826 return (pf_multihome_scan(m, start, len, pd, kif, SCTP_ADD_IP_ADDRESS)); 6827 } 6828 6829 int 6830 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd, 6831 struct pf_kstate **state, struct mbuf *m, int direction, 6832 struct pfi_kkif *kif, u_int16_t icmpid, u_int16_t type, int icmp_dir, 6833 int *iidx, int multi, int inner) 6834 { 6835 key->af = pd->af; 6836 key->proto = pd->proto; 6837 if (icmp_dir == PF_IN) { 6838 *iidx = pd->sidx; 6839 key->port[pd->sidx] = icmpid; 6840 key->port[pd->didx] = type; 6841 } else { 6842 *iidx = pd->didx; 6843 key->port[pd->sidx] = type; 6844 key->port[pd->didx] = icmpid; 6845 } 6846 if (pf_state_key_addr_setup(pd, m, key, pd->sidx, pd->src, 6847 pd->didx, pd->dst, multi)) 6848 return (PF_DROP); 6849 6850 STATE_LOOKUP(kif, key, *state, pd); 6851 6852 if ((*state)->state_flags & PFSTATE_SLOPPY) 6853 return (-1); 6854 6855 /* Is this ICMP message flowing in right direction? */ 6856 if ((*state)->rule->type && 6857 (((!inner && (*state)->direction == direction) || 6858 (inner && (*state)->direction != direction)) ? 6859 PF_IN : PF_OUT) != icmp_dir) { 6860 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6861 printf("pf: icmp type %d in wrong direction (%d): ", 6862 ntohs(type), icmp_dir); 6863 pf_print_state(*state); 6864 printf("\n"); 6865 } 6866 PF_STATE_UNLOCK(*state); 6867 *state = NULL; 6868 return (PF_DROP); 6869 } 6870 return (-1); 6871 } 6872 6873 static int 6874 pf_test_state_icmp(struct pf_kstate **state, struct pfi_kkif *kif, 6875 struct mbuf *m, struct pf_pdesc *pd, u_short *reason) 6876 { 6877 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 6878 u_int16_t *icmpsum, virtual_id, virtual_type; 6879 u_int8_t icmptype, icmpcode; 6880 int icmp_dir, iidx, ret, multi; 6881 struct pf_state_key_cmp key; 6882 #ifdef INET 6883 u_int16_t icmpid; 6884 #endif 6885 6886 MPASS(*state == NULL); 6887 6888 bzero(&key, sizeof(key)); 6889 switch (pd->proto) { 6890 #ifdef INET 6891 case IPPROTO_ICMP: 6892 icmptype = pd->hdr.icmp.icmp_type; 6893 icmpcode = pd->hdr.icmp.icmp_code; 6894 icmpid = pd->hdr.icmp.icmp_id; 6895 icmpsum = &pd->hdr.icmp.icmp_cksum; 6896 break; 6897 #endif /* INET */ 6898 #ifdef INET6 6899 case IPPROTO_ICMPV6: 6900 icmptype = pd->hdr.icmp6.icmp6_type; 6901 icmpcode = pd->hdr.icmp6.icmp6_code; 6902 #ifdef INET 6903 icmpid = pd->hdr.icmp6.icmp6_id; 6904 #endif 6905 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 6906 break; 6907 #endif /* INET6 */ 6908 } 6909 6910 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &multi, 6911 &virtual_id, &virtual_type) == 0) { 6912 /* 6913 * ICMP query/reply message not related to a TCP/UDP packet. 6914 * Search for an ICMP state. 6915 */ 6916 ret = pf_icmp_state_lookup(&key, pd, state, m, pd->dir, 6917 kif, virtual_id, virtual_type, icmp_dir, &iidx, 6918 PF_ICMP_MULTI_NONE, 0); 6919 if (ret >= 0) { 6920 MPASS(*state == NULL); 6921 if (ret == PF_DROP && pd->af == AF_INET6 && 6922 icmp_dir == PF_OUT) { 6923 ret = pf_icmp_state_lookup(&key, pd, state, m, 6924 pd->dir, kif, virtual_id, virtual_type, 6925 icmp_dir, &iidx, multi, 0); 6926 if (ret >= 0) { 6927 MPASS(*state == NULL); 6928 return (ret); 6929 } 6930 } else 6931 return (ret); 6932 } 6933 6934 (*state)->expire = pf_get_uptime(); 6935 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 6936 6937 /* translate source/destination address, if necessary */ 6938 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6939 struct pf_state_key *nk = (*state)->key[pd->didx]; 6940 6941 switch (pd->af) { 6942 #ifdef INET 6943 case AF_INET: 6944 if (PF_ANEQ(pd->src, 6945 &nk->addr[pd->sidx], AF_INET)) 6946 pf_change_a(&saddr->v4.s_addr, 6947 pd->ip_sum, 6948 nk->addr[pd->sidx].v4.s_addr, 0); 6949 6950 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 6951 AF_INET)) 6952 pf_change_a(&daddr->v4.s_addr, 6953 pd->ip_sum, 6954 nk->addr[pd->didx].v4.s_addr, 0); 6955 6956 if (nk->port[iidx] != 6957 pd->hdr.icmp.icmp_id) { 6958 pd->hdr.icmp.icmp_cksum = 6959 pf_cksum_fixup( 6960 pd->hdr.icmp.icmp_cksum, icmpid, 6961 nk->port[iidx], 0); 6962 pd->hdr.icmp.icmp_id = 6963 nk->port[iidx]; 6964 } 6965 6966 m_copyback(m, pd->off, ICMP_MINLEN, 6967 (caddr_t )&pd->hdr.icmp); 6968 break; 6969 #endif /* INET */ 6970 #ifdef INET6 6971 case AF_INET6: 6972 if (PF_ANEQ(pd->src, 6973 &nk->addr[pd->sidx], AF_INET6)) 6974 pf_change_a6(saddr, 6975 &pd->hdr.icmp6.icmp6_cksum, 6976 &nk->addr[pd->sidx], 0); 6977 6978 if (PF_ANEQ(pd->dst, 6979 &nk->addr[pd->didx], AF_INET6)) 6980 pf_change_a6(daddr, 6981 &pd->hdr.icmp6.icmp6_cksum, 6982 &nk->addr[pd->didx], 0); 6983 6984 m_copyback(m, pd->off, sizeof(struct icmp6_hdr), 6985 (caddr_t )&pd->hdr.icmp6); 6986 break; 6987 #endif /* INET6 */ 6988 } 6989 } 6990 return (PF_PASS); 6991 6992 } else { 6993 /* 6994 * ICMP error message in response to a TCP/UDP packet. 6995 * Extract the inner TCP/UDP header and search for that state. 6996 */ 6997 6998 struct pf_pdesc pd2; 6999 bzero(&pd2, sizeof pd2); 7000 #ifdef INET 7001 struct ip h2; 7002 #endif /* INET */ 7003 #ifdef INET6 7004 struct ip6_hdr h2_6; 7005 int fragoff2, extoff2; 7006 u_int32_t jumbolen; 7007 #endif /* INET6 */ 7008 int ipoff2 = 0; 7009 7010 pd2.af = pd->af; 7011 pd2.dir = pd->dir; 7012 /* Payload packet is from the opposite direction. */ 7013 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0; 7014 pd2.didx = (pd->dir == PF_IN) ? 0 : 1; 7015 switch (pd->af) { 7016 #ifdef INET 7017 case AF_INET: 7018 /* offset of h2 in mbuf chain */ 7019 ipoff2 = pd->off + ICMP_MINLEN; 7020 7021 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 7022 NULL, reason, pd2.af)) { 7023 DPFPRINTF(PF_DEBUG_MISC, 7024 ("pf: ICMP error message too short " 7025 "(ip)\n")); 7026 return (PF_DROP); 7027 } 7028 /* 7029 * ICMP error messages don't refer to non-first 7030 * fragments 7031 */ 7032 if (h2.ip_off & htons(IP_OFFMASK)) { 7033 REASON_SET(reason, PFRES_FRAG); 7034 return (PF_DROP); 7035 } 7036 7037 /* offset of protocol header that follows h2 */ 7038 pd2.off = ipoff2 + (h2.ip_hl << 2); 7039 7040 pd2.proto = h2.ip_p; 7041 pd2.src = (struct pf_addr *)&h2.ip_src; 7042 pd2.dst = (struct pf_addr *)&h2.ip_dst; 7043 pd2.ip_sum = &h2.ip_sum; 7044 break; 7045 #endif /* INET */ 7046 #ifdef INET6 7047 case AF_INET6: 7048 ipoff2 = pd->off + sizeof(struct icmp6_hdr); 7049 7050 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 7051 NULL, reason, pd2.af)) { 7052 DPFPRINTF(PF_DEBUG_MISC, 7053 ("pf: ICMP error message too short " 7054 "(ip6)\n")); 7055 return (PF_DROP); 7056 } 7057 pd2.off = ipoff2; 7058 if (pf_walk_header6(m, &h2_6, &pd2.off, &extoff2, 7059 &fragoff2, &pd2.proto, &jumbolen, 7060 reason) != PF_PASS) 7061 return (PF_DROP); 7062 7063 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 7064 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 7065 pd2.ip_sum = NULL; 7066 break; 7067 #endif /* INET6 */ 7068 } 7069 7070 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 7071 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7072 printf("pf: BAD ICMP %d:%d outer dst: ", 7073 icmptype, icmpcode); 7074 pf_print_host(pd->src, 0, pd->af); 7075 printf(" -> "); 7076 pf_print_host(pd->dst, 0, pd->af); 7077 printf(" inner src: "); 7078 pf_print_host(pd2.src, 0, pd2.af); 7079 printf(" -> "); 7080 pf_print_host(pd2.dst, 0, pd2.af); 7081 printf("\n"); 7082 } 7083 REASON_SET(reason, PFRES_BADSTATE); 7084 return (PF_DROP); 7085 } 7086 7087 switch (pd2.proto) { 7088 case IPPROTO_TCP: { 7089 struct tcphdr th; 7090 u_int32_t seq; 7091 struct pf_state_peer *src, *dst; 7092 u_int8_t dws; 7093 int copyback = 0; 7094 7095 /* 7096 * Only the first 8 bytes of the TCP header can be 7097 * expected. Don't access any TCP header fields after 7098 * th_seq, an ackskew test is not possible. 7099 */ 7100 if (!pf_pull_hdr(m, pd2.off, &th, 8, NULL, reason, 7101 pd2.af)) { 7102 DPFPRINTF(PF_DEBUG_MISC, 7103 ("pf: ICMP error message too short " 7104 "(tcp)\n")); 7105 return (PF_DROP); 7106 } 7107 7108 key.af = pd2.af; 7109 key.proto = IPPROTO_TCP; 7110 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7111 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7112 key.port[pd2.sidx] = th.th_sport; 7113 key.port[pd2.didx] = th.th_dport; 7114 7115 STATE_LOOKUP(kif, &key, *state, pd); 7116 7117 if (pd->dir == (*state)->direction) { 7118 src = &(*state)->dst; 7119 dst = &(*state)->src; 7120 } else { 7121 src = &(*state)->src; 7122 dst = &(*state)->dst; 7123 } 7124 7125 if (src->wscale && dst->wscale) 7126 dws = dst->wscale & PF_WSCALE_MASK; 7127 else 7128 dws = 0; 7129 7130 /* Demodulate sequence number */ 7131 seq = ntohl(th.th_seq) - src->seqdiff; 7132 if (src->seqdiff) { 7133 pf_change_a(&th.th_seq, icmpsum, 7134 htonl(seq), 0); 7135 copyback = 1; 7136 } 7137 7138 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 7139 (!SEQ_GEQ(src->seqhi, seq) || 7140 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 7141 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7142 printf("pf: BAD ICMP %d:%d ", 7143 icmptype, icmpcode); 7144 pf_print_host(pd->src, 0, pd->af); 7145 printf(" -> "); 7146 pf_print_host(pd->dst, 0, pd->af); 7147 printf(" state: "); 7148 pf_print_state(*state); 7149 printf(" seq=%u\n", seq); 7150 } 7151 REASON_SET(reason, PFRES_BADSTATE); 7152 return (PF_DROP); 7153 } else { 7154 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7155 printf("pf: OK ICMP %d:%d ", 7156 icmptype, icmpcode); 7157 pf_print_host(pd->src, 0, pd->af); 7158 printf(" -> "); 7159 pf_print_host(pd->dst, 0, pd->af); 7160 printf(" state: "); 7161 pf_print_state(*state); 7162 printf(" seq=%u\n", seq); 7163 } 7164 } 7165 7166 /* translate source/destination address, if necessary */ 7167 if ((*state)->key[PF_SK_WIRE] != 7168 (*state)->key[PF_SK_STACK]) { 7169 struct pf_state_key *nk = 7170 (*state)->key[pd->didx]; 7171 7172 if (PF_ANEQ(pd2.src, 7173 &nk->addr[pd2.sidx], pd2.af) || 7174 nk->port[pd2.sidx] != th.th_sport) 7175 pf_change_icmp(pd2.src, &th.th_sport, 7176 daddr, &nk->addr[pd2.sidx], 7177 nk->port[pd2.sidx], NULL, 7178 pd2.ip_sum, icmpsum, 7179 pd->ip_sum, 0, pd2.af); 7180 7181 if (PF_ANEQ(pd2.dst, 7182 &nk->addr[pd2.didx], pd2.af) || 7183 nk->port[pd2.didx] != th.th_dport) 7184 pf_change_icmp(pd2.dst, &th.th_dport, 7185 saddr, &nk->addr[pd2.didx], 7186 nk->port[pd2.didx], NULL, 7187 pd2.ip_sum, icmpsum, 7188 pd->ip_sum, 0, pd2.af); 7189 copyback = 1; 7190 } 7191 7192 if (copyback) { 7193 switch (pd2.af) { 7194 #ifdef INET 7195 case AF_INET: 7196 m_copyback(m, pd->off, ICMP_MINLEN, 7197 (caddr_t )&pd->hdr.icmp); 7198 m_copyback(m, ipoff2, sizeof(h2), 7199 (caddr_t )&h2); 7200 break; 7201 #endif /* INET */ 7202 #ifdef INET6 7203 case AF_INET6: 7204 m_copyback(m, pd->off, 7205 sizeof(struct icmp6_hdr), 7206 (caddr_t )&pd->hdr.icmp6); 7207 m_copyback(m, ipoff2, sizeof(h2_6), 7208 (caddr_t )&h2_6); 7209 break; 7210 #endif /* INET6 */ 7211 } 7212 m_copyback(m, pd2.off, 8, (caddr_t)&th); 7213 } 7214 7215 return (PF_PASS); 7216 break; 7217 } 7218 case IPPROTO_UDP: { 7219 struct udphdr uh; 7220 7221 if (!pf_pull_hdr(m, pd2.off, &uh, sizeof(uh), 7222 NULL, reason, pd2.af)) { 7223 DPFPRINTF(PF_DEBUG_MISC, 7224 ("pf: ICMP error message too short " 7225 "(udp)\n")); 7226 return (PF_DROP); 7227 } 7228 7229 key.af = pd2.af; 7230 key.proto = IPPROTO_UDP; 7231 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7232 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7233 key.port[pd2.sidx] = uh.uh_sport; 7234 key.port[pd2.didx] = uh.uh_dport; 7235 7236 STATE_LOOKUP(kif, &key, *state, pd); 7237 7238 /* translate source/destination address, if necessary */ 7239 if ((*state)->key[PF_SK_WIRE] != 7240 (*state)->key[PF_SK_STACK]) { 7241 struct pf_state_key *nk = 7242 (*state)->key[pd->didx]; 7243 7244 if (PF_ANEQ(pd2.src, 7245 &nk->addr[pd2.sidx], pd2.af) || 7246 nk->port[pd2.sidx] != uh.uh_sport) 7247 pf_change_icmp(pd2.src, &uh.uh_sport, 7248 daddr, &nk->addr[pd2.sidx], 7249 nk->port[pd2.sidx], &uh.uh_sum, 7250 pd2.ip_sum, icmpsum, 7251 pd->ip_sum, 1, pd2.af); 7252 7253 if (PF_ANEQ(pd2.dst, 7254 &nk->addr[pd2.didx], pd2.af) || 7255 nk->port[pd2.didx] != uh.uh_dport) 7256 pf_change_icmp(pd2.dst, &uh.uh_dport, 7257 saddr, &nk->addr[pd2.didx], 7258 nk->port[pd2.didx], &uh.uh_sum, 7259 pd2.ip_sum, icmpsum, 7260 pd->ip_sum, 1, pd2.af); 7261 7262 switch (pd2.af) { 7263 #ifdef INET 7264 case AF_INET: 7265 m_copyback(m, pd->off, ICMP_MINLEN, 7266 (caddr_t )&pd->hdr.icmp); 7267 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 7268 break; 7269 #endif /* INET */ 7270 #ifdef INET6 7271 case AF_INET6: 7272 m_copyback(m, pd->off, 7273 sizeof(struct icmp6_hdr), 7274 (caddr_t )&pd->hdr.icmp6); 7275 m_copyback(m, ipoff2, sizeof(h2_6), 7276 (caddr_t )&h2_6); 7277 break; 7278 #endif /* INET6 */ 7279 } 7280 m_copyback(m, pd2.off, sizeof(uh), (caddr_t)&uh); 7281 } 7282 return (PF_PASS); 7283 break; 7284 } 7285 #ifdef INET 7286 case IPPROTO_ICMP: { 7287 struct icmp *iih = &pd2.hdr.icmp; 7288 7289 if (pd2.af != AF_INET) { 7290 REASON_SET(reason, PFRES_NORM); 7291 return (PF_DROP); 7292 } 7293 7294 if (!pf_pull_hdr(m, pd2.off, iih, ICMP_MINLEN, 7295 NULL, reason, pd2.af)) { 7296 DPFPRINTF(PF_DEBUG_MISC, 7297 ("pf: ICMP error message too short i" 7298 "(icmp)\n")); 7299 return (PF_DROP); 7300 } 7301 7302 icmpid = iih->icmp_id; 7303 pf_icmp_mapping(&pd2, iih->icmp_type, 7304 &icmp_dir, &multi, &virtual_id, &virtual_type); 7305 7306 ret = pf_icmp_state_lookup(&key, &pd2, state, m, 7307 pd2.dir, kif, virtual_id, virtual_type, 7308 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1); 7309 if (ret >= 0) { 7310 MPASS(*state == NULL); 7311 return (ret); 7312 } 7313 7314 /* translate source/destination address, if necessary */ 7315 if ((*state)->key[PF_SK_WIRE] != 7316 (*state)->key[PF_SK_STACK]) { 7317 struct pf_state_key *nk = 7318 (*state)->key[pd->didx]; 7319 7320 if (PF_ANEQ(pd2.src, 7321 &nk->addr[pd2.sidx], pd2.af) || 7322 (virtual_type == htons(ICMP_ECHO) && 7323 nk->port[iidx] != iih->icmp_id)) 7324 pf_change_icmp(pd2.src, 7325 (virtual_type == htons(ICMP_ECHO)) ? 7326 &iih->icmp_id : NULL, 7327 daddr, &nk->addr[pd2.sidx], 7328 (virtual_type == htons(ICMP_ECHO)) ? 7329 nk->port[iidx] : 0, NULL, 7330 pd2.ip_sum, icmpsum, 7331 pd->ip_sum, 0, AF_INET); 7332 7333 if (PF_ANEQ(pd2.dst, 7334 &nk->addr[pd2.didx], pd2.af)) 7335 pf_change_icmp(pd2.dst, NULL, NULL, 7336 &nk->addr[pd2.didx], 0, NULL, 7337 pd2.ip_sum, icmpsum, pd->ip_sum, 0, 7338 AF_INET); 7339 7340 m_copyback(m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 7341 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 7342 m_copyback(m, pd2.off, ICMP_MINLEN, (caddr_t)iih); 7343 } 7344 return (PF_PASS); 7345 break; 7346 } 7347 #endif /* INET */ 7348 #ifdef INET6 7349 case IPPROTO_ICMPV6: { 7350 struct icmp6_hdr *iih = &pd2.hdr.icmp6; 7351 7352 if (pd2.af != AF_INET6) { 7353 REASON_SET(reason, PFRES_NORM); 7354 return (PF_DROP); 7355 } 7356 7357 if (!pf_pull_hdr(m, pd2.off, iih, 7358 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 7359 DPFPRINTF(PF_DEBUG_MISC, 7360 ("pf: ICMP error message too short " 7361 "(icmp6)\n")); 7362 return (PF_DROP); 7363 } 7364 7365 pf_icmp_mapping(&pd2, iih->icmp6_type, 7366 &icmp_dir, &multi, &virtual_id, &virtual_type); 7367 7368 ret = pf_icmp_state_lookup(&key, &pd2, state, m, 7369 pd->dir, kif, virtual_id, virtual_type, 7370 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1); 7371 if (ret >= 0) { 7372 MPASS(*state == NULL); 7373 if (ret == PF_DROP && pd2.af == AF_INET6 && 7374 icmp_dir == PF_OUT) { 7375 ret = pf_icmp_state_lookup(&key, &pd2, 7376 state, m, pd->dir, kif, 7377 virtual_id, virtual_type, 7378 icmp_dir, &iidx, multi, 1); 7379 if (ret >= 0) { 7380 MPASS(*state == NULL); 7381 return (ret); 7382 } 7383 } else 7384 return (ret); 7385 } 7386 7387 /* translate source/destination address, if necessary */ 7388 if ((*state)->key[PF_SK_WIRE] != 7389 (*state)->key[PF_SK_STACK]) { 7390 struct pf_state_key *nk = 7391 (*state)->key[pd->didx]; 7392 7393 if (PF_ANEQ(pd2.src, 7394 &nk->addr[pd2.sidx], pd2.af) || 7395 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) && 7396 nk->port[pd2.sidx] != iih->icmp6_id)) 7397 pf_change_icmp(pd2.src, 7398 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 7399 ? &iih->icmp6_id : NULL, 7400 daddr, &nk->addr[pd2.sidx], 7401 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 7402 ? nk->port[iidx] : 0, NULL, 7403 pd2.ip_sum, icmpsum, 7404 pd->ip_sum, 0, AF_INET6); 7405 7406 if (PF_ANEQ(pd2.dst, 7407 &nk->addr[pd2.didx], pd2.af)) 7408 pf_change_icmp(pd2.dst, NULL, NULL, 7409 &nk->addr[pd2.didx], 0, NULL, 7410 pd2.ip_sum, icmpsum, 7411 pd->ip_sum, 0, AF_INET6); 7412 7413 m_copyback(m, pd->off, sizeof(struct icmp6_hdr), 7414 (caddr_t)&pd->hdr.icmp6); 7415 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 7416 m_copyback(m, pd2.off, sizeof(struct icmp6_hdr), 7417 (caddr_t)iih); 7418 } 7419 return (PF_PASS); 7420 break; 7421 } 7422 #endif /* INET6 */ 7423 default: { 7424 key.af = pd2.af; 7425 key.proto = pd2.proto; 7426 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7427 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7428 key.port[0] = key.port[1] = 0; 7429 7430 STATE_LOOKUP(kif, &key, *state, pd); 7431 7432 /* translate source/destination address, if necessary */ 7433 if ((*state)->key[PF_SK_WIRE] != 7434 (*state)->key[PF_SK_STACK]) { 7435 struct pf_state_key *nk = 7436 (*state)->key[pd->didx]; 7437 7438 if (PF_ANEQ(pd2.src, 7439 &nk->addr[pd2.sidx], pd2.af)) 7440 pf_change_icmp(pd2.src, NULL, daddr, 7441 &nk->addr[pd2.sidx], 0, NULL, 7442 pd2.ip_sum, icmpsum, 7443 pd->ip_sum, 0, pd2.af); 7444 7445 if (PF_ANEQ(pd2.dst, 7446 &nk->addr[pd2.didx], pd2.af)) 7447 pf_change_icmp(pd2.dst, NULL, saddr, 7448 &nk->addr[pd2.didx], 0, NULL, 7449 pd2.ip_sum, icmpsum, 7450 pd->ip_sum, 0, pd2.af); 7451 7452 switch (pd2.af) { 7453 #ifdef INET 7454 case AF_INET: 7455 m_copyback(m, pd->off, ICMP_MINLEN, 7456 (caddr_t)&pd->hdr.icmp); 7457 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 7458 break; 7459 #endif /* INET */ 7460 #ifdef INET6 7461 case AF_INET6: 7462 m_copyback(m, pd->off, 7463 sizeof(struct icmp6_hdr), 7464 (caddr_t )&pd->hdr.icmp6); 7465 m_copyback(m, ipoff2, sizeof(h2_6), 7466 (caddr_t )&h2_6); 7467 break; 7468 #endif /* INET6 */ 7469 } 7470 } 7471 return (PF_PASS); 7472 break; 7473 } 7474 } 7475 } 7476 } 7477 7478 static int 7479 pf_test_state_other(struct pf_kstate **state, struct pfi_kkif *kif, 7480 struct mbuf *m, struct pf_pdesc *pd) 7481 { 7482 struct pf_state_peer *src, *dst; 7483 struct pf_state_key_cmp key; 7484 uint8_t psrc, pdst; 7485 7486 bzero(&key, sizeof(key)); 7487 key.af = pd->af; 7488 key.proto = pd->proto; 7489 if (pd->dir == PF_IN) { 7490 PF_ACPY(&key.addr[0], pd->src, key.af); 7491 PF_ACPY(&key.addr[1], pd->dst, key.af); 7492 key.port[0] = key.port[1] = 0; 7493 } else { 7494 PF_ACPY(&key.addr[1], pd->src, key.af); 7495 PF_ACPY(&key.addr[0], pd->dst, key.af); 7496 key.port[1] = key.port[0] = 0; 7497 } 7498 7499 STATE_LOOKUP(kif, &key, *state, pd); 7500 7501 if (pd->dir == (*state)->direction) { 7502 src = &(*state)->src; 7503 dst = &(*state)->dst; 7504 psrc = PF_PEER_SRC; 7505 pdst = PF_PEER_DST; 7506 } else { 7507 src = &(*state)->dst; 7508 dst = &(*state)->src; 7509 psrc = PF_PEER_DST; 7510 pdst = PF_PEER_SRC; 7511 } 7512 7513 /* update states */ 7514 if (src->state < PFOTHERS_SINGLE) 7515 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 7516 if (dst->state == PFOTHERS_SINGLE) 7517 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 7518 7519 /* update expire time */ 7520 (*state)->expire = pf_get_uptime(); 7521 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 7522 (*state)->timeout = PFTM_OTHER_MULTIPLE; 7523 else 7524 (*state)->timeout = PFTM_OTHER_SINGLE; 7525 7526 /* translate source/destination address, if necessary */ 7527 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7528 struct pf_state_key *nk = (*state)->key[pd->didx]; 7529 7530 KASSERT(nk, ("%s: nk is null", __func__)); 7531 KASSERT(pd, ("%s: pd is null", __func__)); 7532 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 7533 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 7534 switch (pd->af) { 7535 #ifdef INET 7536 case AF_INET: 7537 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 7538 pf_change_a(&pd->src->v4.s_addr, 7539 pd->ip_sum, 7540 nk->addr[pd->sidx].v4.s_addr, 7541 0); 7542 7543 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 7544 pf_change_a(&pd->dst->v4.s_addr, 7545 pd->ip_sum, 7546 nk->addr[pd->didx].v4.s_addr, 7547 0); 7548 7549 break; 7550 #endif /* INET */ 7551 #ifdef INET6 7552 case AF_INET6: 7553 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET6)) 7554 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 7555 7556 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET6)) 7557 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 7558 #endif /* INET6 */ 7559 } 7560 } 7561 return (PF_PASS); 7562 } 7563 7564 /* 7565 * ipoff and off are measured from the start of the mbuf chain. 7566 * h must be at "ipoff" on the mbuf chain. 7567 */ 7568 void * 7569 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len, 7570 u_short *actionp, u_short *reasonp, sa_family_t af) 7571 { 7572 switch (af) { 7573 #ifdef INET 7574 case AF_INET: { 7575 const struct ip *h = mtod(m, struct ip *); 7576 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 7577 7578 if (fragoff) { 7579 if (fragoff >= len) 7580 ACTION_SET(actionp, PF_PASS); 7581 else { 7582 ACTION_SET(actionp, PF_DROP); 7583 REASON_SET(reasonp, PFRES_FRAG); 7584 } 7585 return (NULL); 7586 } 7587 if (m->m_pkthdr.len < off + len || 7588 ntohs(h->ip_len) < off + len) { 7589 ACTION_SET(actionp, PF_DROP); 7590 REASON_SET(reasonp, PFRES_SHORT); 7591 return (NULL); 7592 } 7593 break; 7594 } 7595 #endif /* INET */ 7596 #ifdef INET6 7597 case AF_INET6: { 7598 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 7599 7600 if (m->m_pkthdr.len < off + len || 7601 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 7602 (unsigned)(off + len)) { 7603 ACTION_SET(actionp, PF_DROP); 7604 REASON_SET(reasonp, PFRES_SHORT); 7605 return (NULL); 7606 } 7607 break; 7608 } 7609 #endif /* INET6 */ 7610 } 7611 m_copydata(m, off, len, p); 7612 return (p); 7613 } 7614 7615 int 7616 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 7617 int rtableid) 7618 { 7619 struct ifnet *ifp; 7620 7621 /* 7622 * Skip check for addresses with embedded interface scope, 7623 * as they would always match anyway. 7624 */ 7625 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 7626 return (1); 7627 7628 if (af != AF_INET && af != AF_INET6) 7629 return (0); 7630 7631 if (kif == V_pfi_all) 7632 return (1); 7633 7634 /* Skip checks for ipsec interfaces */ 7635 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 7636 return (1); 7637 7638 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 7639 7640 switch (af) { 7641 #ifdef INET6 7642 case AF_INET6: 7643 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 7644 ifp)); 7645 #endif 7646 #ifdef INET 7647 case AF_INET: 7648 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 7649 ifp)); 7650 #endif 7651 } 7652 7653 return (0); 7654 } 7655 7656 #ifdef INET 7657 static void 7658 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7659 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7660 { 7661 struct mbuf *m0, *m1, *md; 7662 struct sockaddr_in dst; 7663 struct ip *ip; 7664 struct pfi_kkif *nkif = NULL; 7665 struct ifnet *ifp = NULL; 7666 struct pf_addr naddr; 7667 int error = 0; 7668 uint16_t ip_len, ip_off; 7669 uint16_t tmp; 7670 int r_rt, r_dir; 7671 7672 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 7673 7674 if (s) { 7675 r_rt = s->rt; 7676 r_dir = s->direction; 7677 } else { 7678 r_rt = r->rt; 7679 r_dir = r->direction; 7680 } 7681 7682 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7683 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7684 __func__)); 7685 7686 if ((pd->pf_mtag == NULL && 7687 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7688 pd->pf_mtag->routed++ > 3) { 7689 m0 = *m; 7690 *m = NULL; 7691 goto bad_locked; 7692 } 7693 7694 if (r_rt == PF_DUPTO) { 7695 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7696 if (s == NULL) { 7697 ifp = r->rpool.cur->kif ? 7698 r->rpool.cur->kif->pfik_ifp : NULL; 7699 } else { 7700 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7701 /* If pfsync'd */ 7702 if (ifp == NULL && r->rpool.cur != NULL) 7703 ifp = r->rpool.cur->kif ? 7704 r->rpool.cur->kif->pfik_ifp : NULL; 7705 PF_STATE_UNLOCK(s); 7706 } 7707 if (ifp == oifp) { 7708 /* When the 2nd interface is not skipped */ 7709 return; 7710 } else { 7711 m0 = *m; 7712 *m = NULL; 7713 goto bad; 7714 } 7715 } else { 7716 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 7717 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 7718 if (s) 7719 PF_STATE_UNLOCK(s); 7720 return; 7721 } 7722 } 7723 } else { 7724 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 7725 pf_dummynet(pd, s, r, m); 7726 if (s) 7727 PF_STATE_UNLOCK(s); 7728 return; 7729 } 7730 m0 = *m; 7731 } 7732 7733 ip = mtod(m0, struct ip *); 7734 7735 bzero(&dst, sizeof(dst)); 7736 dst.sin_family = AF_INET; 7737 dst.sin_len = sizeof(dst); 7738 dst.sin_addr = ip->ip_dst; 7739 7740 bzero(&naddr, sizeof(naddr)); 7741 7742 if (s == NULL) { 7743 if (TAILQ_EMPTY(&r->rpool.list)) { 7744 DPFPRINTF(PF_DEBUG_URGENT, 7745 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 7746 goto bad_locked; 7747 } 7748 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 7749 &naddr, &nkif, NULL); 7750 if (!PF_AZERO(&naddr, AF_INET)) 7751 dst.sin_addr.s_addr = naddr.v4.s_addr; 7752 ifp = nkif ? nkif->pfik_ifp : NULL; 7753 } else { 7754 struct pfi_kkif *kif; 7755 7756 if (!PF_AZERO(&s->rt_addr, AF_INET)) 7757 dst.sin_addr.s_addr = 7758 s->rt_addr.v4.s_addr; 7759 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7760 kif = s->rt_kif; 7761 /* If pfsync'd */ 7762 if (ifp == NULL && r->rpool.cur != NULL) { 7763 ifp = r->rpool.cur->kif ? 7764 r->rpool.cur->kif->pfik_ifp : NULL; 7765 kif = r->rpool.cur->kif; 7766 } 7767 if (ifp != NULL && kif != NULL && 7768 r->rule_flag & PFRULE_IFBOUND && 7769 r->rt == PF_REPLYTO && 7770 s->kif == V_pfi_all) { 7771 s->kif = kif; 7772 s->orig_kif = oifp->if_pf_kif; 7773 } 7774 7775 PF_STATE_UNLOCK(s); 7776 } 7777 7778 if (ifp == NULL) 7779 goto bad; 7780 7781 if (pd->dir == PF_IN) { 7782 if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp, 7783 &pd->act) != PF_PASS) 7784 goto bad; 7785 else if (m0 == NULL) 7786 goto done; 7787 if (m0->m_len < sizeof(struct ip)) { 7788 DPFPRINTF(PF_DEBUG_URGENT, 7789 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 7790 goto bad; 7791 } 7792 ip = mtod(m0, struct ip *); 7793 } 7794 7795 if (ifp->if_flags & IFF_LOOPBACK) 7796 m0->m_flags |= M_SKIP_FIREWALL; 7797 7798 ip_len = ntohs(ip->ip_len); 7799 ip_off = ntohs(ip->ip_off); 7800 7801 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 7802 m0->m_pkthdr.csum_flags |= CSUM_IP; 7803 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 7804 in_delayed_cksum(m0); 7805 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 7806 } 7807 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 7808 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2)); 7809 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 7810 } 7811 7812 if (pd->dir == PF_IN) { 7813 /* 7814 * Make sure dummynet gets the correct direction, in case it needs to 7815 * re-inject later. 7816 */ 7817 pd->dir = PF_OUT; 7818 7819 /* 7820 * The following processing is actually the rest of the inbound processing, even 7821 * though we've marked it as outbound (so we don't look through dummynet) and it 7822 * happens after the outbound processing (pf_test(PF_OUT) above). 7823 * Swap the dummynet pipe numbers, because it's going to come to the wrong 7824 * conclusion about what direction it's processing, and we can't fix it or it 7825 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 7826 * decision will pick the right pipe, and everything will mostly work as expected. 7827 */ 7828 tmp = pd->act.dnrpipe; 7829 pd->act.dnrpipe = pd->act.dnpipe; 7830 pd->act.dnpipe = tmp; 7831 } 7832 7833 /* 7834 * If small enough for interface, or the interface will take 7835 * care of the fragmentation for us, we can just send directly. 7836 */ 7837 if (ip_len <= ifp->if_mtu || 7838 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 7839 ip->ip_sum = 0; 7840 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 7841 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 7842 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 7843 } 7844 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 7845 7846 md = m0; 7847 error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 7848 if (md != NULL) 7849 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL); 7850 goto done; 7851 } 7852 7853 /* Balk when DF bit is set or the interface didn't support TSO. */ 7854 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 7855 error = EMSGSIZE; 7856 KMOD_IPSTAT_INC(ips_cantfrag); 7857 if (r_rt != PF_DUPTO) { 7858 if (s && s->nat_rule != NULL) 7859 PACKET_UNDO_NAT(m0, pd, 7860 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 7861 s); 7862 7863 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 7864 ifp->if_mtu); 7865 goto done; 7866 } else 7867 goto bad; 7868 } 7869 7870 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 7871 if (error) 7872 goto bad; 7873 7874 for (; m0; m0 = m1) { 7875 m1 = m0->m_nextpkt; 7876 m0->m_nextpkt = NULL; 7877 if (error == 0) { 7878 m_clrprotoflags(m0); 7879 md = m0; 7880 pd->pf_mtag = pf_find_mtag(md); 7881 error = pf_dummynet_route(pd, s, r, ifp, 7882 sintosa(&dst), &md); 7883 if (md != NULL) 7884 error = (*ifp->if_output)(ifp, md, 7885 sintosa(&dst), NULL); 7886 } else 7887 m_freem(m0); 7888 } 7889 7890 if (error == 0) 7891 KMOD_IPSTAT_INC(ips_fragmented); 7892 7893 done: 7894 if (r_rt != PF_DUPTO) 7895 *m = NULL; 7896 return; 7897 7898 bad_locked: 7899 if (s) 7900 PF_STATE_UNLOCK(s); 7901 bad: 7902 m_freem(m0); 7903 goto done; 7904 } 7905 #endif /* INET */ 7906 7907 #ifdef INET6 7908 static void 7909 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7910 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7911 { 7912 struct mbuf *m0, *md; 7913 struct sockaddr_in6 dst; 7914 struct ip6_hdr *ip6; 7915 struct pfi_kkif *nkif = NULL; 7916 struct ifnet *ifp = NULL; 7917 struct pf_addr naddr; 7918 int r_rt, r_dir; 7919 7920 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 7921 7922 if (s) { 7923 r_rt = s->rt; 7924 r_dir = s->direction; 7925 } else { 7926 r_rt = r->rt; 7927 r_dir = r->direction; 7928 } 7929 7930 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7931 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7932 __func__)); 7933 7934 if ((pd->pf_mtag == NULL && 7935 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7936 pd->pf_mtag->routed++ > 3) { 7937 m0 = *m; 7938 *m = NULL; 7939 goto bad_locked; 7940 } 7941 7942 if (r_rt == PF_DUPTO) { 7943 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7944 if (s == NULL) { 7945 ifp = r->rpool.cur->kif ? 7946 r->rpool.cur->kif->pfik_ifp : NULL; 7947 } else { 7948 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7949 /* If pfsync'd */ 7950 if (ifp == NULL && r->rpool.cur != NULL) 7951 ifp = r->rpool.cur->kif ? 7952 r->rpool.cur->kif->pfik_ifp : NULL; 7953 PF_STATE_UNLOCK(s); 7954 } 7955 if (ifp == oifp) { 7956 /* When the 2nd interface is not skipped */ 7957 return; 7958 } else { 7959 m0 = *m; 7960 *m = NULL; 7961 goto bad; 7962 } 7963 } else { 7964 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 7965 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 7966 if (s) 7967 PF_STATE_UNLOCK(s); 7968 return; 7969 } 7970 } 7971 } else { 7972 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 7973 pf_dummynet(pd, s, r, m); 7974 if (s) 7975 PF_STATE_UNLOCK(s); 7976 return; 7977 } 7978 m0 = *m; 7979 } 7980 7981 ip6 = mtod(m0, struct ip6_hdr *); 7982 7983 bzero(&dst, sizeof(dst)); 7984 dst.sin6_family = AF_INET6; 7985 dst.sin6_len = sizeof(dst); 7986 dst.sin6_addr = ip6->ip6_dst; 7987 7988 bzero(&naddr, sizeof(naddr)); 7989 7990 if (s == NULL) { 7991 if (TAILQ_EMPTY(&r->rpool.list)) { 7992 DPFPRINTF(PF_DEBUG_URGENT, 7993 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 7994 goto bad_locked; 7995 } 7996 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 7997 &naddr, &nkif, NULL); 7998 if (!PF_AZERO(&naddr, AF_INET6)) 7999 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 8000 &naddr, AF_INET6); 8001 ifp = nkif ? nkif->pfik_ifp : NULL; 8002 } else { 8003 struct pfi_kkif *kif; 8004 8005 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 8006 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 8007 &s->rt_addr, AF_INET6); 8008 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 8009 kif = s->rt_kif; 8010 /* If pfsync'd */ 8011 if (ifp == NULL && r->rpool.cur != NULL) { 8012 ifp = r->rpool.cur->kif ? 8013 r->rpool.cur->kif->pfik_ifp : NULL; 8014 kif = r->rpool.cur->kif; 8015 } 8016 if (ifp != NULL && kif != NULL && 8017 r->rule_flag & PFRULE_IFBOUND && 8018 r->rt == PF_REPLYTO && 8019 s->kif == V_pfi_all) { 8020 s->kif = kif; 8021 s->orig_kif = oifp->if_pf_kif; 8022 } 8023 } 8024 8025 if (s) 8026 PF_STATE_UNLOCK(s); 8027 8028 if (ifp == NULL) 8029 goto bad; 8030 8031 if (pd->dir == PF_IN) { 8032 if (pf_test(AF_INET6, PF_OUT, PFIL_FWD, ifp, &m0, inp, 8033 &pd->act) != PF_PASS) 8034 goto bad; 8035 else if (m0 == NULL) 8036 goto done; 8037 if (m0->m_len < sizeof(struct ip6_hdr)) { 8038 DPFPRINTF(PF_DEBUG_URGENT, 8039 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 8040 __func__)); 8041 goto bad; 8042 } 8043 ip6 = mtod(m0, struct ip6_hdr *); 8044 } 8045 8046 if (ifp->if_flags & IFF_LOOPBACK) 8047 m0->m_flags |= M_SKIP_FIREWALL; 8048 8049 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 8050 ~ifp->if_hwassist) { 8051 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 8052 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 8053 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 8054 } 8055 8056 /* 8057 * If the packet is too large for the outgoing interface, 8058 * send back an icmp6 error. 8059 */ 8060 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 8061 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 8062 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 8063 md = m0; 8064 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 8065 if (md != NULL) 8066 nd6_output_ifp(ifp, ifp, md, &dst, NULL); 8067 } 8068 else { 8069 in6_ifstat_inc(ifp, ifs6_in_toobig); 8070 if (r_rt != PF_DUPTO) { 8071 if (s && s->nat_rule != NULL) 8072 PACKET_UNDO_NAT(m0, pd, 8073 ((caddr_t)ip6 - m0->m_data) + 8074 sizeof(struct ip6_hdr), s); 8075 8076 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 8077 } else 8078 goto bad; 8079 } 8080 8081 done: 8082 if (r_rt != PF_DUPTO) 8083 *m = NULL; 8084 return; 8085 8086 bad_locked: 8087 if (s) 8088 PF_STATE_UNLOCK(s); 8089 bad: 8090 m_freem(m0); 8091 goto done; 8092 } 8093 #endif /* INET6 */ 8094 8095 /* 8096 * FreeBSD supports cksum offloads for the following drivers. 8097 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 8098 * 8099 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 8100 * network driver performed cksum including pseudo header, need to verify 8101 * csum_data 8102 * CSUM_DATA_VALID : 8103 * network driver performed cksum, needs to additional pseudo header 8104 * cksum computation with partial csum_data(i.e. lack of H/W support for 8105 * pseudo header, for instance sk(4) and possibly gem(4)) 8106 * 8107 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 8108 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 8109 * TCP/UDP layer. 8110 * Also, set csum_data to 0xffff to force cksum validation. 8111 */ 8112 static int 8113 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 8114 { 8115 u_int16_t sum = 0; 8116 int hw_assist = 0; 8117 struct ip *ip; 8118 8119 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 8120 return (1); 8121 if (m->m_pkthdr.len < off + len) 8122 return (1); 8123 8124 switch (p) { 8125 case IPPROTO_TCP: 8126 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 8127 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 8128 sum = m->m_pkthdr.csum_data; 8129 } else { 8130 ip = mtod(m, struct ip *); 8131 sum = in_pseudo(ip->ip_src.s_addr, 8132 ip->ip_dst.s_addr, htonl((u_short)len + 8133 m->m_pkthdr.csum_data + IPPROTO_TCP)); 8134 } 8135 sum ^= 0xffff; 8136 ++hw_assist; 8137 } 8138 break; 8139 case IPPROTO_UDP: 8140 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 8141 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 8142 sum = m->m_pkthdr.csum_data; 8143 } else { 8144 ip = mtod(m, struct ip *); 8145 sum = in_pseudo(ip->ip_src.s_addr, 8146 ip->ip_dst.s_addr, htonl((u_short)len + 8147 m->m_pkthdr.csum_data + IPPROTO_UDP)); 8148 } 8149 sum ^= 0xffff; 8150 ++hw_assist; 8151 } 8152 break; 8153 case IPPROTO_ICMP: 8154 #ifdef INET6 8155 case IPPROTO_ICMPV6: 8156 #endif /* INET6 */ 8157 break; 8158 default: 8159 return (1); 8160 } 8161 8162 if (!hw_assist) { 8163 switch (af) { 8164 case AF_INET: 8165 if (p == IPPROTO_ICMP) { 8166 if (m->m_len < off) 8167 return (1); 8168 m->m_data += off; 8169 m->m_len -= off; 8170 sum = in_cksum(m, len); 8171 m->m_data -= off; 8172 m->m_len += off; 8173 } else { 8174 if (m->m_len < sizeof(struct ip)) 8175 return (1); 8176 sum = in4_cksum(m, p, off, len); 8177 } 8178 break; 8179 #ifdef INET6 8180 case AF_INET6: 8181 if (m->m_len < sizeof(struct ip6_hdr)) 8182 return (1); 8183 sum = in6_cksum(m, p, off, len); 8184 break; 8185 #endif /* INET6 */ 8186 default: 8187 return (1); 8188 } 8189 } 8190 if (sum) { 8191 switch (p) { 8192 case IPPROTO_TCP: 8193 { 8194 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 8195 break; 8196 } 8197 case IPPROTO_UDP: 8198 { 8199 KMOD_UDPSTAT_INC(udps_badsum); 8200 break; 8201 } 8202 #ifdef INET 8203 case IPPROTO_ICMP: 8204 { 8205 KMOD_ICMPSTAT_INC(icps_checksum); 8206 break; 8207 } 8208 #endif 8209 #ifdef INET6 8210 case IPPROTO_ICMPV6: 8211 { 8212 KMOD_ICMP6STAT_INC(icp6s_checksum); 8213 break; 8214 } 8215 #endif /* INET6 */ 8216 } 8217 return (1); 8218 } else { 8219 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 8220 m->m_pkthdr.csum_flags |= 8221 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 8222 m->m_pkthdr.csum_data = 0xffff; 8223 } 8224 } 8225 return (0); 8226 } 8227 8228 static bool 8229 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r, 8230 const struct pf_kstate *s, struct ip_fw_args *dnflow) 8231 { 8232 int dndir = r->direction; 8233 8234 if (s && dndir == PF_INOUT) { 8235 dndir = s->direction; 8236 } else if (dndir == PF_INOUT) { 8237 /* Assume primary direction. Happens when we've set dnpipe in 8238 * the ethernet level code. */ 8239 dndir = pd->dir; 8240 } 8241 8242 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED) 8243 return (false); 8244 8245 memset(dnflow, 0, sizeof(*dnflow)); 8246 8247 if (pd->dport != NULL) 8248 dnflow->f_id.dst_port = ntohs(*pd->dport); 8249 if (pd->sport != NULL) 8250 dnflow->f_id.src_port = ntohs(*pd->sport); 8251 8252 if (pd->dir == PF_IN) 8253 dnflow->flags |= IPFW_ARGS_IN; 8254 else 8255 dnflow->flags |= IPFW_ARGS_OUT; 8256 8257 if (pd->dir != dndir && pd->act.dnrpipe) { 8258 dnflow->rule.info = pd->act.dnrpipe; 8259 } 8260 else if (pd->dir == dndir && pd->act.dnpipe) { 8261 dnflow->rule.info = pd->act.dnpipe; 8262 } 8263 else { 8264 return (false); 8265 } 8266 8267 dnflow->rule.info |= IPFW_IS_DUMMYNET; 8268 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 8269 dnflow->rule.info |= IPFW_IS_PIPE; 8270 8271 dnflow->f_id.proto = pd->proto; 8272 dnflow->f_id.extra = dnflow->rule.info; 8273 switch (pd->af) { 8274 case AF_INET: 8275 dnflow->f_id.addr_type = 4; 8276 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 8277 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 8278 break; 8279 case AF_INET6: 8280 dnflow->flags |= IPFW_ARGS_IP6; 8281 dnflow->f_id.addr_type = 6; 8282 dnflow->f_id.src_ip6 = pd->src->v6; 8283 dnflow->f_id.dst_ip6 = pd->dst->v6; 8284 break; 8285 default: 8286 panic("Invalid AF"); 8287 break; 8288 } 8289 8290 return (true); 8291 } 8292 8293 int 8294 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 8295 struct inpcb *inp) 8296 { 8297 struct pfi_kkif *kif; 8298 struct mbuf *m = *m0; 8299 8300 M_ASSERTPKTHDR(m); 8301 MPASS(ifp->if_vnet == curvnet); 8302 NET_EPOCH_ASSERT(); 8303 8304 if (!V_pf_status.running) 8305 return (PF_PASS); 8306 8307 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8308 8309 if (kif == NULL) { 8310 DPFPRINTF(PF_DEBUG_URGENT, 8311 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname)); 8312 return (PF_DROP); 8313 } 8314 if (kif->pfik_flags & PFI_IFLAG_SKIP) 8315 return (PF_PASS); 8316 8317 if (m->m_flags & M_SKIP_FIREWALL) 8318 return (PF_PASS); 8319 8320 if (__predict_false(! M_WRITABLE(*m0))) { 8321 m = *m0 = m_unshare(*m0, M_NOWAIT); 8322 if (*m0 == NULL) 8323 return (PF_DROP); 8324 } 8325 8326 /* Stateless! */ 8327 return (pf_test_eth_rule(dir, kif, m0)); 8328 } 8329 8330 static __inline void 8331 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag) 8332 { 8333 struct m_tag *mtag; 8334 8335 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 8336 8337 /* dummynet adds this tag, but pf does not need it, 8338 * and keeping it creates unexpected behavior, 8339 * e.g. in case of divert(4) usage right after dummynet. */ 8340 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 8341 if (mtag != NULL) 8342 m_tag_delete(m, mtag); 8343 } 8344 8345 static int 8346 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s, 8347 struct pf_krule *r, struct mbuf **m0) 8348 { 8349 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0)); 8350 } 8351 8352 static int 8353 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s, 8354 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa, 8355 struct mbuf **m0) 8356 { 8357 NET_EPOCH_ASSERT(); 8358 8359 if (pd->act.dnpipe || pd->act.dnrpipe) { 8360 struct ip_fw_args dnflow; 8361 if (ip_dn_io_ptr == NULL) { 8362 m_freem(*m0); 8363 *m0 = NULL; 8364 return (ENOMEM); 8365 } 8366 8367 if (pd->pf_mtag == NULL && 8368 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 8369 m_freem(*m0); 8370 *m0 = NULL; 8371 return (ENOMEM); 8372 } 8373 8374 if (ifp != NULL) { 8375 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO; 8376 8377 pd->pf_mtag->if_index = ifp->if_index; 8378 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 8379 8380 MPASS(sa != NULL); 8381 8382 if (pd->af == AF_INET) 8383 memcpy(&pd->pf_mtag->dst, sa, 8384 sizeof(struct sockaddr_in)); 8385 else 8386 memcpy(&pd->pf_mtag->dst, sa, 8387 sizeof(struct sockaddr_in6)); 8388 } 8389 8390 if (s != NULL && s->nat_rule != NULL && 8391 s->nat_rule->action == PF_RDR && 8392 ( 8393 #ifdef INET 8394 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) || 8395 #endif 8396 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) { 8397 /* 8398 * If we're redirecting to loopback mark this packet 8399 * as being local. Otherwise it might get dropped 8400 * if dummynet re-injects. 8401 */ 8402 (*m0)->m_pkthdr.rcvif = V_loif; 8403 } 8404 8405 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) { 8406 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 8407 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED; 8408 ip_dn_io_ptr(m0, &dnflow); 8409 if (*m0 != NULL) { 8410 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 8411 pf_dummynet_flag_remove(*m0, pd->pf_mtag); 8412 } 8413 } 8414 } 8415 8416 return (0); 8417 } 8418 8419 #ifdef INET6 8420 static int 8421 pf_walk_option6(struct mbuf *m, int off, int end, uint32_t *jumbolen, 8422 u_short *reason) 8423 { 8424 struct ip6_opt opt; 8425 struct ip6_opt_jumbo jumbo; 8426 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 8427 8428 while (off < end) { 8429 if (!pf_pull_hdr(m, off, &opt.ip6o_type, sizeof(opt.ip6o_type), 8430 NULL, reason, AF_INET6)) { 8431 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt type")); 8432 return (PF_DROP); 8433 } 8434 if (opt.ip6o_type == IP6OPT_PAD1) { 8435 off++; 8436 continue; 8437 } 8438 if (!pf_pull_hdr(m, off, &opt, sizeof(opt), NULL, reason, 8439 AF_INET6)) { 8440 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt")); 8441 return (PF_DROP); 8442 } 8443 if (off + sizeof(opt) + opt.ip6o_len > end) { 8444 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 long opt")); 8445 REASON_SET(reason, PFRES_IPOPTIONS); 8446 return (PF_DROP); 8447 } 8448 switch (opt.ip6o_type) { 8449 case IP6OPT_JUMBO: 8450 if (*jumbolen != 0) { 8451 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple jumbo")); 8452 REASON_SET(reason, PFRES_IPOPTIONS); 8453 return (PF_DROP); 8454 } 8455 if (ntohs(h->ip6_plen) != 0) { 8456 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 bad jumbo plen")); 8457 REASON_SET(reason, PFRES_IPOPTIONS); 8458 return (PF_DROP); 8459 } 8460 if (!pf_pull_hdr(m, off, &jumbo, sizeof(jumbo), NULL, 8461 reason, AF_INET6)) { 8462 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbo")); 8463 return (PF_DROP); 8464 } 8465 memcpy(jumbolen, jumbo.ip6oj_jumbo_len, 8466 sizeof(*jumbolen)); 8467 *jumbolen = ntohl(*jumbolen); 8468 if (*jumbolen < IPV6_MAXPACKET) { 8469 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbolen")); 8470 REASON_SET(reason, PFRES_IPOPTIONS); 8471 return (PF_DROP); 8472 } 8473 break; 8474 default: 8475 break; 8476 } 8477 off += sizeof(opt) + opt.ip6o_len; 8478 } 8479 8480 return (PF_PASS); 8481 } 8482 8483 int 8484 pf_walk_header6(struct mbuf *m, struct ip6_hdr *h, int *off, int *extoff, 8485 int *fragoff, uint8_t *nxt, uint32_t *jumbolen, u_short *reason) 8486 { 8487 struct ip6_frag frag; 8488 struct ip6_ext ext; 8489 struct ip6_rthdr rthdr; 8490 int rthdr_cnt = 0; 8491 8492 *off += sizeof(struct ip6_hdr); 8493 *extoff = *fragoff = 0; 8494 *nxt = h->ip6_nxt; 8495 *jumbolen = 0; 8496 for (;;) { 8497 switch (*nxt) { 8498 case IPPROTO_FRAGMENT: 8499 if (*fragoff != 0) { 8500 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple fragment")); 8501 REASON_SET(reason, PFRES_FRAG); 8502 return (PF_DROP); 8503 } 8504 /* jumbo payload packets cannot be fragmented */ 8505 if (*jumbolen != 0) { 8506 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 fragmented jumbo")); 8507 REASON_SET(reason, PFRES_FRAG); 8508 return (PF_DROP); 8509 } 8510 if (!pf_pull_hdr(m, *off, &frag, sizeof(frag), NULL, 8511 reason, AF_INET6)) { 8512 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short fragment")); 8513 return (PF_DROP); 8514 } 8515 *fragoff = *off; 8516 /* stop walking over non initial fragments */ 8517 if ((frag.ip6f_offlg & IP6F_OFF_MASK) != 0) 8518 return (PF_PASS); 8519 *off += sizeof(frag); 8520 *nxt = frag.ip6f_nxt; 8521 break; 8522 case IPPROTO_ROUTING: 8523 if (rthdr_cnt++) { 8524 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple rthdr")); 8525 REASON_SET(reason, PFRES_IPOPTIONS); 8526 return (PF_DROP); 8527 } 8528 if (!pf_pull_hdr(m, *off, &rthdr, sizeof(rthdr), NULL, 8529 reason, AF_INET6)) { 8530 /* fragments may be short */ 8531 if (*fragoff != 0) { 8532 *off = *fragoff; 8533 *nxt = IPPROTO_FRAGMENT; 8534 return (PF_PASS); 8535 } 8536 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short rthdr")); 8537 return (PF_DROP); 8538 } 8539 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 8540 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 rthdr0")); 8541 REASON_SET(reason, PFRES_IPOPTIONS); 8542 return (PF_DROP); 8543 } 8544 /* FALLTHROUGH */ 8545 case IPPROTO_AH: 8546 case IPPROTO_HOPOPTS: 8547 case IPPROTO_DSTOPTS: 8548 if (!pf_pull_hdr(m, *off, &ext, sizeof(ext), NULL, 8549 reason, AF_INET6)) { 8550 /* fragments may be short */ 8551 if (*fragoff != 0) { 8552 *off = *fragoff; 8553 *nxt = IPPROTO_FRAGMENT; 8554 return (PF_PASS); 8555 } 8556 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short exthdr")); 8557 return (PF_DROP); 8558 } 8559 /* reassembly needs the ext header before the frag */ 8560 if (*fragoff == 0) 8561 *extoff = *off; 8562 if (*nxt == IPPROTO_HOPOPTS && *fragoff == 0) { 8563 if (pf_walk_option6(m, *off + sizeof(ext), 8564 *off + (ext.ip6e_len + 1) * 8, jumbolen, 8565 reason) != PF_PASS) 8566 return (PF_DROP); 8567 if (ntohs(h->ip6_plen) == 0 && *jumbolen != 0) { 8568 DPFPRINTF(PF_DEBUG_MISC, 8569 ("IPv6 missing jumbo")); 8570 REASON_SET(reason, PFRES_IPOPTIONS); 8571 return (PF_DROP); 8572 } 8573 } 8574 if (*nxt == IPPROTO_AH) 8575 *off += (ext.ip6e_len + 2) * 4; 8576 else 8577 *off += (ext.ip6e_len + 1) * 8; 8578 *nxt = ext.ip6e_nxt; 8579 break; 8580 case IPPROTO_TCP: 8581 case IPPROTO_UDP: 8582 case IPPROTO_SCTP: 8583 case IPPROTO_ICMPV6: 8584 /* fragments may be short, ignore inner header then */ 8585 if (*fragoff != 0 && ntohs(h->ip6_plen) < *off + 8586 (*nxt == IPPROTO_TCP ? sizeof(struct tcphdr) : 8587 *nxt == IPPROTO_UDP ? sizeof(struct udphdr) : 8588 *nxt == IPPROTO_SCTP ? sizeof(struct sctphdr) : 8589 sizeof(struct icmp6_hdr))) { 8590 *off = *fragoff; 8591 *nxt = IPPROTO_FRAGMENT; 8592 } 8593 /* FALLTHROUGH */ 8594 default: 8595 return (PF_PASS); 8596 } 8597 } 8598 } 8599 #endif 8600 8601 static void 8602 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m) 8603 { 8604 memset(pd, 0, sizeof(*pd)); 8605 pd->pf_mtag = pf_find_mtag(m); 8606 } 8607 8608 static int 8609 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0, 8610 u_short *action, u_short *reason, struct pfi_kkif *kif, 8611 struct pf_rule_actions *default_actions) 8612 { 8613 struct mbuf *m = *m0; 8614 8615 pd->af = af; 8616 pd->dir = dir; 8617 pd->sidx = (dir == PF_IN) ? 0 : 1; 8618 pd->didx = (dir == PF_IN) ? 1 : 0; 8619 8620 TAILQ_INIT(&pd->sctp_multihome_jobs); 8621 if (default_actions != NULL) 8622 memcpy(&pd->act, default_actions, sizeof(pd->act)); 8623 8624 if (pd->pf_mtag && pd->pf_mtag->dnpipe) { 8625 pd->act.dnpipe = pd->pf_mtag->dnpipe; 8626 pd->act.flags = pd->pf_mtag->dnflags; 8627 } 8628 8629 switch (af) { 8630 #ifdef INET 8631 case AF_INET: { 8632 struct ip *h; 8633 8634 if (__predict_false(m->m_len < sizeof(struct ip)) && 8635 (m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) { 8636 DPFPRINTF(PF_DEBUG_URGENT, 8637 ("pf_test: m_len < sizeof(struct ip), pullup failed\n")); 8638 *action = PF_DROP; 8639 REASON_SET(reason, PFRES_SHORT); 8640 return (-1); 8641 } 8642 8643 if (pf_normalize_ip(m0, kif, reason, pd) != PF_PASS) { 8644 /* We do IP header normalization and packet reassembly here */ 8645 *action = PF_DROP; 8646 return (-1); 8647 } 8648 m = *m0; 8649 8650 h = mtod(m, struct ip *); 8651 pd->off = h->ip_hl << 2; 8652 if (pd->off < (int)sizeof(*h)) { 8653 *action = PF_DROP; 8654 REASON_SET(reason, PFRES_SHORT); 8655 return (-1); 8656 } 8657 pd->src = (struct pf_addr *)&h->ip_src; 8658 pd->dst = (struct pf_addr *)&h->ip_dst; 8659 pd->ip_sum = &h->ip_sum; 8660 pd->proto_sum = NULL; 8661 pd->virtual_proto = pd->proto = h->ip_p; 8662 pd->tos = h->ip_tos; 8663 pd->ttl = h->ip_ttl; 8664 pd->tot_len = ntohs(h->ip_len); 8665 pd->act.rtableid = -1; 8666 8667 if (h->ip_hl > 5) /* has options */ 8668 pd->badopts++; 8669 8670 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) 8671 pd->virtual_proto = PF_VPROTO_FRAGMENT; 8672 8673 break; 8674 } 8675 #endif 8676 #ifdef INET6 8677 case AF_INET6: { 8678 struct ip6_hdr *h; 8679 int fragoff; 8680 uint32_t jumbolen; 8681 uint8_t nxt; 8682 8683 if (__predict_false(m->m_len < sizeof(struct ip6_hdr)) && 8684 (m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) { 8685 DPFPRINTF(PF_DEBUG_URGENT, 8686 ("pf_test6: m_len < sizeof(struct ip6_hdr)" 8687 ", pullup failed\n")); 8688 *action = PF_DROP; 8689 REASON_SET(reason, PFRES_SHORT); 8690 return (-1); 8691 } 8692 8693 h = mtod(m, struct ip6_hdr *); 8694 pd->off = 0; 8695 if (pf_walk_header6(m, h, &pd->off, &pd->extoff, &fragoff, &nxt, 8696 &jumbolen, reason) != PF_PASS) { 8697 *action = PF_DROP; 8698 return (-1); 8699 } 8700 8701 h = mtod(m, struct ip6_hdr *); 8702 pd->src = (struct pf_addr *)&h->ip6_src; 8703 pd->dst = (struct pf_addr *)&h->ip6_dst; 8704 pd->ip_sum = NULL; 8705 pd->proto_sum = NULL; 8706 pd->tos = IPV6_DSCP(h); 8707 pd->ttl = h->ip6_hlim; 8708 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 8709 pd->virtual_proto = pd->proto = h->ip6_nxt; 8710 pd->act.rtableid = -1; 8711 8712 if (fragoff != 0) 8713 pd->virtual_proto = PF_VPROTO_FRAGMENT; 8714 8715 /* 8716 * we do not support jumbogram. if we keep going, zero ip6_plen 8717 * will do something bad, so drop the packet for now. 8718 */ 8719 if (htons(h->ip6_plen) == 0) { 8720 *action = PF_DROP; 8721 return (-1); 8722 } 8723 8724 /* We do IP header normalization and packet reassembly here */ 8725 if (pf_normalize_ip6(m0, kif, fragoff, reason, pd) != 8726 PF_PASS) { 8727 *action = PF_DROP; 8728 return (-1); 8729 } 8730 m = *m0; 8731 if (m == NULL) { 8732 /* packet sits in reassembly queue, no error */ 8733 *action = PF_PASS; 8734 return (-1); 8735 } 8736 8737 /* 8738 * Reassembly may have changed the next protocol from fragment 8739 * to something else, so update. 8740 */ 8741 h = mtod(m, struct ip6_hdr *); 8742 pd->virtual_proto = pd->proto = h->ip6_nxt; 8743 8744 /* refetch header, recalc offset, then update pd */ 8745 h = mtod(m, struct ip6_hdr *); 8746 pd->off = 0; 8747 8748 if (pf_walk_header6(m, h, &pd->off, &pd->extoff, &fragoff, &nxt, 8749 &jumbolen, reason) != PF_PASS) { 8750 *action = PF_DROP; 8751 return (-1); 8752 } 8753 8754 if (fragoff != 0) 8755 pd->virtual_proto = PF_VPROTO_FRAGMENT; 8756 8757 break; 8758 } 8759 #endif 8760 default: 8761 panic("pf_setup_pdesc called with illegal af %u", af); 8762 } 8763 8764 switch (pd->virtual_proto) { 8765 case IPPROTO_TCP: { 8766 struct tcphdr *th = &pd->hdr.tcp; 8767 8768 if (!pf_pull_hdr(m, pd->off, th, sizeof(*th), action, 8769 reason, af)) { 8770 *action = PF_DROP; 8771 REASON_SET(reason, PFRES_SHORT); 8772 return (-1); 8773 } 8774 pd->hdrlen = sizeof(*th); 8775 pd->p_len = pd->tot_len - pd->off - (th->th_off << 2); 8776 pd->sport = &th->th_sport; 8777 pd->dport = &th->th_dport; 8778 break; 8779 } 8780 case IPPROTO_UDP: { 8781 struct udphdr *uh = &pd->hdr.udp; 8782 8783 if (!pf_pull_hdr(m, pd->off, uh, sizeof(*uh), action, 8784 reason, af)) { 8785 *action = PF_DROP; 8786 REASON_SET(reason, PFRES_SHORT); 8787 return (-1); 8788 } 8789 pd->hdrlen = sizeof(*uh); 8790 if (uh->uh_dport == 0 || 8791 ntohs(uh->uh_ulen) > m->m_pkthdr.len - pd->off || 8792 ntohs(uh->uh_ulen) < sizeof(struct udphdr)) { 8793 *action = PF_DROP; 8794 REASON_SET(reason, PFRES_SHORT); 8795 return (-1); 8796 } 8797 pd->sport = &uh->uh_sport; 8798 pd->dport = &uh->uh_dport; 8799 break; 8800 } 8801 case IPPROTO_SCTP: { 8802 if (!pf_pull_hdr(m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp), 8803 action, reason, af)) { 8804 *action = PF_DROP; 8805 REASON_SET(reason, PFRES_SHORT); 8806 return (-1); 8807 } 8808 pd->hdrlen = sizeof(pd->hdr.sctp); 8809 pd->p_len = pd->tot_len - pd->off; 8810 8811 pd->sport = &pd->hdr.sctp.src_port; 8812 pd->dport = &pd->hdr.sctp.dest_port; 8813 if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) { 8814 *action = PF_DROP; 8815 REASON_SET(reason, PFRES_SHORT); 8816 return (-1); 8817 } 8818 if (pf_scan_sctp(m, pd->off, pd, kif) != PF_PASS) { 8819 *action = PF_DROP; 8820 REASON_SET(reason, PFRES_SHORT); 8821 return (-1); 8822 } 8823 break; 8824 } 8825 case IPPROTO_ICMP: { 8826 if (!pf_pull_hdr(m, pd->off, &pd->hdr.icmp, ICMP_MINLEN, 8827 action, reason, af)) { 8828 *action = PF_DROP; 8829 REASON_SET(reason, PFRES_SHORT); 8830 return (-1); 8831 } 8832 pd->hdrlen = ICMP_MINLEN; 8833 break; 8834 } 8835 #ifdef INET6 8836 case IPPROTO_ICMPV6: { 8837 size_t icmp_hlen = sizeof(struct icmp6_hdr); 8838 8839 if (!pf_pull_hdr(m, pd->off, &pd->hdr.icmp6, icmp_hlen, 8840 action, reason, af)) { 8841 *action = PF_DROP; 8842 REASON_SET(reason, PFRES_SHORT); 8843 return (-1); 8844 } 8845 /* ICMP headers we look further into to match state */ 8846 switch (pd->hdr.icmp6.icmp6_type) { 8847 case MLD_LISTENER_QUERY: 8848 case MLD_LISTENER_REPORT: 8849 icmp_hlen = sizeof(struct mld_hdr); 8850 break; 8851 case ND_NEIGHBOR_SOLICIT: 8852 case ND_NEIGHBOR_ADVERT: 8853 icmp_hlen = sizeof(struct nd_neighbor_solicit); 8854 break; 8855 } 8856 if (icmp_hlen > sizeof(struct icmp6_hdr) && 8857 !pf_pull_hdr(m, pd->off, &pd->hdr.icmp6, icmp_hlen, 8858 action, reason, af)) { 8859 *action = PF_DROP; 8860 REASON_SET(reason, PFRES_SHORT); 8861 return (-1); 8862 } 8863 pd->hdrlen = icmp_hlen; 8864 break; 8865 } 8866 #endif 8867 } 8868 return (0); 8869 } 8870 8871 static void 8872 pf_counters_inc(int action, struct pf_pdesc *pd, 8873 struct pfi_kkif *kif, struct pf_kstate *s, 8874 struct pf_krule *r, struct pf_krule *a) 8875 { 8876 struct pf_krule *tr; 8877 int dir = pd->dir; 8878 int dirndx; 8879 8880 pf_counter_u64_critical_enter(); 8881 pf_counter_u64_add_protected( 8882 &kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 8883 pd->tot_len); 8884 pf_counter_u64_add_protected( 8885 &kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 8886 1); 8887 8888 if (action == PF_PASS || r->action == PF_DROP) { 8889 dirndx = (dir == PF_OUT); 8890 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 8891 pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len); 8892 pf_update_timestamp(r); 8893 8894 if (a != NULL) { 8895 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 8896 pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len); 8897 } 8898 if (s != NULL) { 8899 struct pf_krule_item *ri; 8900 8901 if (s->nat_rule != NULL) { 8902 pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx], 8903 1); 8904 pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx], 8905 pd->tot_len); 8906 } 8907 if (s->src_node != NULL) { 8908 counter_u64_add(s->src_node->packets[dirndx], 8909 1); 8910 counter_u64_add(s->src_node->bytes[dirndx], 8911 pd->tot_len); 8912 } 8913 if (s->nat_src_node != NULL) { 8914 counter_u64_add(s->nat_src_node->packets[dirndx], 8915 1); 8916 counter_u64_add(s->nat_src_node->bytes[dirndx], 8917 pd->tot_len); 8918 } 8919 dirndx = (dir == s->direction) ? 0 : 1; 8920 s->packets[dirndx]++; 8921 s->bytes[dirndx] += pd->tot_len; 8922 8923 SLIST_FOREACH(ri, &s->match_rules, entry) { 8924 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 8925 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len); 8926 } 8927 } 8928 8929 tr = r; 8930 if (s != NULL && s->nat_rule != NULL && 8931 r == &V_pf_default_rule) 8932 tr = s->nat_rule; 8933 8934 if (tr->src.addr.type == PF_ADDR_TABLE) 8935 pfr_update_stats(tr->src.addr.p.tbl, 8936 (s == NULL) ? pd->src : 8937 &s->key[(s->direction == PF_IN)]-> 8938 addr[(s->direction == PF_OUT)], 8939 pd->af, pd->tot_len, dir == PF_OUT, 8940 r->action == PF_PASS, tr->src.neg); 8941 if (tr->dst.addr.type == PF_ADDR_TABLE) 8942 pfr_update_stats(tr->dst.addr.p.tbl, 8943 (s == NULL) ? pd->dst : 8944 &s->key[(s->direction == PF_IN)]-> 8945 addr[(s->direction == PF_IN)], 8946 pd->af, pd->tot_len, dir == PF_OUT, 8947 r->action == PF_PASS, tr->dst.neg); 8948 } 8949 pf_counter_u64_critical_exit(); 8950 } 8951 8952 #if defined(INET) || defined(INET6) 8953 int 8954 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 8955 struct inpcb *inp, struct pf_rule_actions *default_actions) 8956 { 8957 struct pfi_kkif *kif; 8958 u_short action, reason = 0; 8959 struct mbuf *m = *m0; 8960 struct m_tag *mtag; 8961 struct pf_krule *a = NULL, *r = &V_pf_default_rule; 8962 struct pf_kstate *s = NULL; 8963 struct pf_kruleset *ruleset = NULL; 8964 struct pf_pdesc pd; 8965 int use_2nd_queue = 0; 8966 uint16_t tag; 8967 uint8_t rt; 8968 8969 PF_RULES_RLOCK_TRACKER; 8970 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 8971 M_ASSERTPKTHDR(m); 8972 8973 if (!V_pf_status.running) 8974 return (PF_PASS); 8975 8976 PF_RULES_RLOCK(); 8977 8978 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8979 8980 if (__predict_false(kif == NULL)) { 8981 DPFPRINTF(PF_DEBUG_URGENT, 8982 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 8983 PF_RULES_RUNLOCK(); 8984 return (PF_DROP); 8985 } 8986 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 8987 PF_RULES_RUNLOCK(); 8988 return (PF_PASS); 8989 } 8990 8991 if (m->m_flags & M_SKIP_FIREWALL) { 8992 PF_RULES_RUNLOCK(); 8993 return (PF_PASS); 8994 } 8995 8996 #ifdef INET6 8997 /* 8998 * If we end up changing IP addresses (e.g. binat) the stack may get 8999 * confused and fail to send the icmp6 packet too big error. Just send 9000 * it here, before we do any NAT. 9001 */ 9002 if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD && 9003 IN6_LINKMTU(ifp) < pf_max_frag_size(m)) { 9004 PF_RULES_RUNLOCK(); 9005 *m0 = NULL; 9006 icmp6_error(m, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp)); 9007 return (PF_DROP); 9008 } 9009 #endif 9010 9011 if (__predict_false(! M_WRITABLE(*m0))) { 9012 m = *m0 = m_unshare(*m0, M_NOWAIT); 9013 if (*m0 == NULL) 9014 return (PF_DROP); 9015 } 9016 9017 pf_init_pdesc(&pd, m); 9018 9019 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 9020 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 9021 9022 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 9023 pd.pf_mtag->if_idxgen); 9024 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 9025 PF_RULES_RUNLOCK(); 9026 m_freem(*m0); 9027 *m0 = NULL; 9028 return (PF_PASS); 9029 } 9030 PF_RULES_RUNLOCK(); 9031 (ifp->if_output)(ifp, m, sintosa(&pd.pf_mtag->dst), NULL); 9032 *m0 = NULL; 9033 return (PF_PASS); 9034 } 9035 9036 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 9037 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 9038 /* Dummynet re-injects packets after they've 9039 * completed their delay. We've already 9040 * processed them, so pass unconditionally. */ 9041 9042 /* But only once. We may see the packet multiple times (e.g. 9043 * PFIL_IN/PFIL_OUT). */ 9044 pf_dummynet_flag_remove(m, pd.pf_mtag); 9045 PF_RULES_RUNLOCK(); 9046 9047 return (PF_PASS); 9048 } 9049 9050 if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason, 9051 kif, default_actions) == -1) { 9052 if (action != PF_PASS) 9053 pd.act.log |= PF_LOG_FORCE; 9054 goto done; 9055 } 9056 m = *m0; 9057 9058 if (__predict_false(ip_divert_ptr != NULL) && 9059 ((mtag = m_tag_locate(m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) { 9060 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1); 9061 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) || 9062 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) { 9063 if (pd.pf_mtag == NULL && 9064 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 9065 action = PF_DROP; 9066 goto done; 9067 } 9068 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED; 9069 } 9070 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) { 9071 m->m_flags |= M_FASTFWD_OURS; 9072 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 9073 } 9074 m_tag_delete(m, mtag); 9075 9076 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 9077 if (mtag != NULL) 9078 m_tag_delete(m, mtag); 9079 } 9080 9081 switch (pd.virtual_proto) { 9082 case PF_VPROTO_FRAGMENT: 9083 /* 9084 * handle fragments that aren't reassembled by 9085 * normalization 9086 */ 9087 if (kif == NULL || r == NULL) /* pflog */ 9088 action = PF_DROP; 9089 else 9090 action = pf_test_rule(&r, &s, kif, m, &pd, &a, 9091 &ruleset, inp); 9092 if (action != PF_PASS) 9093 REASON_SET(&reason, PFRES_FRAG); 9094 break; 9095 9096 case IPPROTO_TCP: { 9097 /* Respond to SYN with a syncookie. */ 9098 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 9099 pd.dir == PF_IN && pf_synflood_check(&pd)) { 9100 pf_syncookie_send(m, &pd); 9101 action = PF_DROP; 9102 break; 9103 } 9104 9105 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 9106 use_2nd_queue = 1; 9107 action = pf_normalize_tcp(kif, m, &pd); 9108 if (action == PF_DROP) 9109 goto done; 9110 action = pf_test_state_tcp(&s, kif, m, &pd, &reason); 9111 if (action == PF_PASS) { 9112 if (V_pfsync_update_state_ptr != NULL) 9113 V_pfsync_update_state_ptr(s); 9114 r = s->rule; 9115 a = s->anchor; 9116 } else if (s == NULL) { 9117 /* Validate remote SYN|ACK, re-create original SYN if 9118 * valid. */ 9119 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 9120 TH_ACK && pf_syncookie_validate(&pd) && 9121 pd.dir == PF_IN) { 9122 struct mbuf *msyn; 9123 9124 msyn = pf_syncookie_recreate_syn(&pd); 9125 if (msyn == NULL) { 9126 action = PF_DROP; 9127 break; 9128 } 9129 9130 action = pf_test(af, dir, pflags, ifp, &msyn, inp, 9131 &pd.act); 9132 m_freem(msyn); 9133 if (action != PF_PASS) 9134 break; 9135 9136 action = pf_test_state_tcp(&s, kif, m, 9137 &pd, &reason); 9138 if (action != PF_PASS || s == NULL) { 9139 action = PF_DROP; 9140 break; 9141 } 9142 9143 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 9144 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 9145 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 9146 action = pf_synproxy(&pd, &s, &reason); 9147 break; 9148 } else { 9149 action = pf_test_rule(&r, &s, kif, m, &pd, 9150 &a, &ruleset, inp); 9151 } 9152 } 9153 break; 9154 } 9155 9156 case IPPROTO_UDP: { 9157 action = pf_test_state_udp(&s, kif, m, &pd); 9158 if (action == PF_PASS) { 9159 if (V_pfsync_update_state_ptr != NULL) 9160 V_pfsync_update_state_ptr(s); 9161 r = s->rule; 9162 a = s->anchor; 9163 } else if (s == NULL) 9164 action = pf_test_rule(&r, &s, kif, m, &pd, 9165 &a, &ruleset, inp); 9166 break; 9167 } 9168 9169 case IPPROTO_SCTP: { 9170 action = pf_normalize_sctp(kif, m, &pd); 9171 if (action == PF_DROP) 9172 goto done; 9173 action = pf_test_state_sctp(&s, kif, m, &pd, &reason); 9174 if (action == PF_PASS) { 9175 if (V_pfsync_update_state_ptr != NULL) 9176 V_pfsync_update_state_ptr(s); 9177 r = s->rule; 9178 a = s->anchor; 9179 } else if (s == NULL) { 9180 action = pf_test_rule(&r, &s, kif, m, 9181 &pd, &a, &ruleset, inp); 9182 } 9183 break; 9184 } 9185 9186 case IPPROTO_ICMP: { 9187 if (af != AF_INET) { 9188 action = PF_DROP; 9189 REASON_SET(&reason, PFRES_NORM); 9190 DPFPRINTF(PF_DEBUG_MISC, 9191 ("dropping IPv6 packet with ICMPv4 payload")); 9192 goto done; 9193 } 9194 action = pf_test_state_icmp(&s, kif, m, &pd, &reason); 9195 if (action == PF_PASS) { 9196 if (V_pfsync_update_state_ptr != NULL) 9197 V_pfsync_update_state_ptr(s); 9198 r = s->rule; 9199 a = s->anchor; 9200 } else if (s == NULL) 9201 action = pf_test_rule(&r, &s, kif, m, &pd, 9202 &a, &ruleset, inp); 9203 break; 9204 } 9205 9206 case IPPROTO_ICMPV6: { 9207 if (af != AF_INET6) { 9208 action = PF_DROP; 9209 REASON_SET(&reason, PFRES_NORM); 9210 DPFPRINTF(PF_DEBUG_MISC, 9211 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 9212 goto done; 9213 } 9214 action = pf_test_state_icmp(&s, kif, m, &pd, &reason); 9215 if (action == PF_PASS) { 9216 if (V_pfsync_update_state_ptr != NULL) 9217 V_pfsync_update_state_ptr(s); 9218 r = s->rule; 9219 a = s->anchor; 9220 } else if (s == NULL) 9221 action = pf_test_rule(&r, &s, kif, m, &pd, 9222 &a, &ruleset, inp); 9223 break; 9224 } 9225 9226 default: 9227 action = pf_test_state_other(&s, kif, m, &pd); 9228 if (action == PF_PASS) { 9229 if (V_pfsync_update_state_ptr != NULL) 9230 V_pfsync_update_state_ptr(s); 9231 r = s->rule; 9232 a = s->anchor; 9233 } else if (s == NULL) 9234 action = pf_test_rule(&r, &s, kif, m, &pd, 9235 &a, &ruleset, inp); 9236 break; 9237 } 9238 9239 done: 9240 m = *m0; 9241 PF_RULES_RUNLOCK(); 9242 9243 if (m == NULL) 9244 goto eat_pkt; 9245 9246 if (action == PF_PASS && pd.badopts && 9247 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 9248 action = PF_DROP; 9249 REASON_SET(&reason, PFRES_IPOPTIONS); 9250 pd.act.log = PF_LOG_FORCE; 9251 DPFPRINTF(PF_DEBUG_MISC, 9252 ("pf: dropping packet with dangerous headers\n")); 9253 } 9254 9255 if (s) { 9256 uint8_t log = pd.act.log; 9257 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 9258 pd.act.log |= log; 9259 tag = s->tag; 9260 rt = s->rt; 9261 } else { 9262 tag = r->tag; 9263 rt = r->rt; 9264 } 9265 9266 if (tag > 0 && pf_tag_packet(m, &pd, tag)) { 9267 action = PF_DROP; 9268 REASON_SET(&reason, PFRES_MEMORY); 9269 } 9270 9271 pf_scrub(m, &pd); 9272 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 9273 pf_normalize_mss(m, &pd); 9274 9275 if (pd.act.rtableid >= 0) 9276 M_SETFIB(m, pd.act.rtableid); 9277 9278 if (pd.act.flags & PFSTATE_SETPRIO) { 9279 if (pd.tos & IPTOS_LOWDELAY) 9280 use_2nd_queue = 1; 9281 if (vlan_set_pcp(m, pd.act.set_prio[use_2nd_queue])) { 9282 action = PF_DROP; 9283 REASON_SET(&reason, PFRES_MEMORY); 9284 pd.act.log = PF_LOG_FORCE; 9285 DPFPRINTF(PF_DEBUG_MISC, 9286 ("pf: failed to allocate 802.1q mtag\n")); 9287 } 9288 } 9289 9290 #ifdef ALTQ 9291 if (action == PF_PASS && pd.act.qid) { 9292 if (pd.pf_mtag == NULL && 9293 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 9294 action = PF_DROP; 9295 REASON_SET(&reason, PFRES_MEMORY); 9296 } else { 9297 if (s != NULL) 9298 pd.pf_mtag->qid_hash = pf_state_hash(s); 9299 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY)) 9300 pd.pf_mtag->qid = pd.act.pqid; 9301 else 9302 pd.pf_mtag->qid = pd.act.qid; 9303 /* Add hints for ecn. */ 9304 pd.pf_mtag->hdr = mtod(m, void *); 9305 } 9306 } 9307 #endif /* ALTQ */ 9308 9309 /* 9310 * connections redirected to loopback should not match sockets 9311 * bound specifically to loopback due to security implications, 9312 * see tcp_input() and in_pcblookup_listen(). 9313 */ 9314 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 9315 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL && 9316 (s->nat_rule->action == PF_RDR || 9317 s->nat_rule->action == PF_BINAT) && 9318 pf_is_loopback(af, pd.dst)) 9319 m->m_flags |= M_SKIP_FIREWALL; 9320 9321 if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) && 9322 action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) { 9323 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0, 9324 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO); 9325 if (mtag != NULL) { 9326 ((struct pf_divert_mtag *)(mtag+1))->port = 9327 ntohs(r->divert.port); 9328 ((struct pf_divert_mtag *)(mtag+1))->idir = 9329 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN : 9330 PF_DIVERT_MTAG_DIR_OUT; 9331 9332 if (s) 9333 PF_STATE_UNLOCK(s); 9334 9335 m_tag_prepend(m, mtag); 9336 if (m->m_flags & M_FASTFWD_OURS) { 9337 if (pd.pf_mtag == NULL && 9338 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 9339 action = PF_DROP; 9340 REASON_SET(&reason, PFRES_MEMORY); 9341 pd.act.log = PF_LOG_FORCE; 9342 DPFPRINTF(PF_DEBUG_MISC, 9343 ("pf: failed to allocate tag\n")); 9344 } else { 9345 pd.pf_mtag->flags |= 9346 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 9347 m->m_flags &= ~M_FASTFWD_OURS; 9348 } 9349 } 9350 ip_divert_ptr(*m0, dir == PF_IN); 9351 *m0 = NULL; 9352 9353 return (action); 9354 } else { 9355 /* XXX: ipfw has the same behaviour! */ 9356 action = PF_DROP; 9357 REASON_SET(&reason, PFRES_MEMORY); 9358 pd.act.log = PF_LOG_FORCE; 9359 DPFPRINTF(PF_DEBUG_MISC, 9360 ("pf: failed to allocate divert tag\n")); 9361 } 9362 } 9363 /* XXX: Anybody working on it?! */ 9364 if (af == AF_INET6 && r->divert.port) 9365 printf("pf: divert(9) is not supported for IPv6\n"); 9366 9367 /* this flag will need revising if the pkt is forwarded */ 9368 if (pd.pf_mtag) 9369 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED; 9370 9371 if (pd.act.log) { 9372 struct pf_krule *lr; 9373 struct pf_krule_item *ri; 9374 9375 if (s != NULL && s->nat_rule != NULL && 9376 s->nat_rule->log & PF_LOG_ALL) 9377 lr = s->nat_rule; 9378 else 9379 lr = r; 9380 9381 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 9382 PFLOG_PACKET(kif, m, action, reason, lr, a, 9383 ruleset, &pd, (s == NULL)); 9384 if (s) { 9385 SLIST_FOREACH(ri, &s->match_rules, entry) 9386 if (ri->r->log & PF_LOG_ALL) 9387 PFLOG_PACKET(kif, m, action, 9388 reason, ri->r, a, ruleset, &pd, 0); 9389 } 9390 } 9391 9392 pf_counters_inc(action, &pd, kif, s, r, a); 9393 9394 switch (action) { 9395 case PF_SYNPROXY_DROP: 9396 m_freem(*m0); 9397 case PF_DEFER: 9398 *m0 = NULL; 9399 action = PF_PASS; 9400 break; 9401 case PF_DROP: 9402 m_freem(*m0); 9403 *m0 = NULL; 9404 break; 9405 default: 9406 if (rt) { 9407 switch (af) { 9408 #ifdef INET 9409 case AF_INET: 9410 /* pf_route() returns unlocked. */ 9411 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp); 9412 break; 9413 #endif 9414 #ifdef INET6 9415 case AF_INET6: 9416 /* pf_route6() returns unlocked. */ 9417 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp); 9418 break; 9419 #endif 9420 default: 9421 panic("Unknown af %d", af); 9422 } 9423 goto out; 9424 } 9425 if (pf_dummynet(&pd, s, r, m0) != 0) { 9426 action = PF_DROP; 9427 REASON_SET(&reason, PFRES_MEMORY); 9428 } 9429 break; 9430 } 9431 9432 eat_pkt: 9433 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 9434 9435 if (s && action != PF_DROP) { 9436 if (!s->if_index_in && dir == PF_IN) 9437 s->if_index_in = ifp->if_index; 9438 else if (!s->if_index_out && dir == PF_OUT) 9439 s->if_index_out = ifp->if_index; 9440 } 9441 9442 if (s) 9443 PF_STATE_UNLOCK(s); 9444 9445 #ifdef INET6 9446 /* If reassembled packet passed, create new fragments. */ 9447 if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT && 9448 (mtag = m_tag_find(m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL) 9449 action = pf_refragment6(ifp, m0, mtag, pflags & PFIL_FWD); 9450 #endif 9451 9452 out: 9453 pf_sctp_multihome_delayed(&pd, kif, s, action); 9454 9455 return (action); 9456 } 9457 #endif /* INET || INET6 */ 9458