1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 #include "opt_bpf.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_pf.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/gsb_crc32.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/sdt.h> 61 #include <sys/socket.h> 62 #include <sys/sysctl.h> 63 #include <sys/taskqueue.h> 64 #include <sys/ucred.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_private.h> 69 #include <net/if_types.h> 70 #include <net/if_vlan_var.h> 71 #include <net/route.h> 72 #include <net/route/nhop.h> 73 #include <net/vnet.h> 74 75 #include <net/pfil.h> 76 #include <net/pfvar.h> 77 #include <net/if_pflog.h> 78 #include <net/if_pfsync.h> 79 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_var.h> 82 #include <netinet/in_fib.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_fw.h> 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp.h> 89 #include <netinet/tcp_fsm.h> 90 #include <netinet/tcp_seq.h> 91 #include <netinet/tcp_timer.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet/udp.h> 94 #include <netinet/udp_var.h> 95 96 /* dummynet */ 97 #include <netinet/ip_dummynet.h> 98 #include <netinet/ip_fw.h> 99 #include <netpfil/ipfw/dn_heap.h> 100 #include <netpfil/ipfw/ip_fw_private.h> 101 #include <netpfil/ipfw/ip_dn_private.h> 102 103 #ifdef INET6 104 #include <netinet/ip6.h> 105 #include <netinet/icmp6.h> 106 #include <netinet6/nd6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet6/in6_pcb.h> 109 #include <netinet6/in6_fib.h> 110 #include <netinet6/scope6_var.h> 111 #endif /* INET6 */ 112 113 #include <netinet/sctp_header.h> 114 #include <netinet/sctp_crc32.h> 115 116 #include <machine/in_cksum.h> 117 #include <security/mac/mac_framework.h> 118 119 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 120 121 SDT_PROVIDER_DEFINE(pf); 122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 123 "struct pf_kstate *"); 124 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 125 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 126 "struct pf_kstate *"); 127 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *", 128 "struct pfi_kkif *"); 129 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *", 130 "struct pf_krule *", "struct mbuf *", "int"); 131 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t", 132 "struct pf_sctp_source *"); 133 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t", 134 "struct pf_kstate *", "struct pf_sctp_source *"); 135 136 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 137 "struct mbuf *"); 138 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 139 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 140 "int", "struct pf_keth_rule *", "char *"); 141 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 142 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 143 "int", "struct pf_keth_rule *"); 144 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t"); 145 146 /* 147 * Global variables 148 */ 149 150 /* state tables */ 151 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 152 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 153 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 154 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 155 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 156 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 157 VNET_DEFINE(struct pf_kstatus, pf_status); 158 159 VNET_DEFINE(u_int32_t, ticket_altqs_active); 160 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 161 VNET_DEFINE(int, altqs_inactive_open); 162 VNET_DEFINE(u_int32_t, ticket_pabuf); 163 164 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 165 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 166 VNET_DEFINE(u_char, pf_tcp_secret[16]); 167 #define V_pf_tcp_secret VNET(pf_tcp_secret) 168 VNET_DEFINE(int, pf_tcp_secret_init); 169 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 170 VNET_DEFINE(int, pf_tcp_iss_off); 171 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 172 VNET_DECLARE(int, pf_vnet_active); 173 #define V_pf_vnet_active VNET(pf_vnet_active) 174 175 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 176 #define V_pf_purge_idx VNET(pf_purge_idx) 177 178 #ifdef PF_WANT_32_TO_64_COUNTER 179 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 180 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 181 182 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 183 VNET_DEFINE(size_t, pf_allrulecount); 184 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 185 #endif 186 187 struct pf_sctp_endpoint; 188 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint); 189 struct pf_sctp_source { 190 sa_family_t af; 191 struct pf_addr addr; 192 TAILQ_ENTRY(pf_sctp_source) entry; 193 }; 194 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source); 195 struct pf_sctp_endpoint 196 { 197 uint32_t v_tag; 198 struct pf_sctp_sources sources; 199 RB_ENTRY(pf_sctp_endpoint) entry; 200 }; 201 static int 202 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b) 203 { 204 return (a->v_tag - b->v_tag); 205 } 206 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 207 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 208 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints); 209 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints) 210 static struct mtx_padalign pf_sctp_endpoints_mtx; 211 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF); 212 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx) 213 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx) 214 215 /* 216 * Queue for pf_intr() sends. 217 */ 218 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 219 struct pf_send_entry { 220 STAILQ_ENTRY(pf_send_entry) pfse_next; 221 struct mbuf *pfse_m; 222 enum { 223 PFSE_IP, 224 PFSE_IP6, 225 PFSE_ICMP, 226 PFSE_ICMP6, 227 } pfse_type; 228 struct { 229 int type; 230 int code; 231 int mtu; 232 } icmpopts; 233 }; 234 235 STAILQ_HEAD(pf_send_head, pf_send_entry); 236 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 237 #define V_pf_sendqueue VNET(pf_sendqueue) 238 239 static struct mtx_padalign pf_sendqueue_mtx; 240 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 241 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 242 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 243 244 /* 245 * Queue for pf_overload_task() tasks. 246 */ 247 struct pf_overload_entry { 248 SLIST_ENTRY(pf_overload_entry) next; 249 struct pf_addr addr; 250 sa_family_t af; 251 uint8_t dir; 252 struct pf_krule *rule; 253 }; 254 255 SLIST_HEAD(pf_overload_head, pf_overload_entry); 256 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 257 #define V_pf_overloadqueue VNET(pf_overloadqueue) 258 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 259 #define V_pf_overloadtask VNET(pf_overloadtask) 260 261 static struct mtx_padalign pf_overloadqueue_mtx; 262 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 263 "pf overload/flush queue", MTX_DEF); 264 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 265 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 266 267 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 268 struct mtx_padalign pf_unlnkdrules_mtx; 269 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 270 MTX_DEF); 271 272 struct sx pf_config_lock; 273 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 274 275 struct mtx_padalign pf_table_stats_lock; 276 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 277 MTX_DEF); 278 279 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 280 #define V_pf_sources_z VNET(pf_sources_z) 281 uma_zone_t pf_mtag_z; 282 VNET_DEFINE(uma_zone_t, pf_state_z); 283 VNET_DEFINE(uma_zone_t, pf_state_key_z); 284 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z); 285 286 VNET_DEFINE(struct unrhdr64, pf_stateid); 287 288 static void pf_src_tree_remove_state(struct pf_kstate *); 289 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 290 u_int32_t); 291 static void pf_add_threshold(struct pf_threshold *); 292 static int pf_check_threshold(struct pf_threshold *); 293 294 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 295 u_int16_t *, u_int16_t *, struct pf_addr *, 296 u_int16_t, u_int8_t, sa_family_t); 297 static int pf_modulate_sack(struct pf_pdesc *, 298 struct tcphdr *, struct pf_state_peer *); 299 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *, 300 int *, u_int16_t *, u_int16_t *); 301 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 302 struct pf_addr *, struct pf_addr *, u_int16_t, 303 u_int16_t *, u_int16_t *, u_int16_t *, 304 u_int16_t *, u_int8_t, sa_family_t); 305 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 306 sa_family_t, struct pf_krule *, int); 307 static void pf_detach_state(struct pf_kstate *); 308 static int pf_state_key_attach(struct pf_state_key *, 309 struct pf_state_key *, struct pf_kstate *); 310 static void pf_state_key_detach(struct pf_kstate *, int); 311 static int pf_state_key_ctor(void *, int, void *, int); 312 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 313 static __inline void pf_dummynet_flag_remove(struct mbuf *m, 314 struct pf_mtag *pf_mtag); 315 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *, 316 struct pf_krule *, struct mbuf **); 317 static int pf_dummynet_route(struct pf_pdesc *, 318 struct pf_kstate *, struct pf_krule *, 319 struct ifnet *, struct sockaddr *, struct mbuf **); 320 static int pf_test_eth_rule(int, struct pfi_kkif *, 321 struct mbuf **); 322 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 323 struct pf_pdesc *, struct pf_krule **, 324 struct pf_kruleset **, struct inpcb *); 325 static int pf_create_state(struct pf_krule *, struct pf_krule *, 326 struct pf_krule *, struct pf_pdesc *, 327 struct pf_ksrc_node *, struct pf_state_key *, 328 struct pf_state_key *, 329 u_int16_t, u_int16_t, int *, 330 struct pf_kstate **, int, u_int16_t, u_int16_t, 331 struct pf_krule_slist *, struct pf_udp_mapping *); 332 static int pf_state_key_addr_setup(struct pf_pdesc *, 333 struct pf_state_key_cmp *, int); 334 static int pf_tcp_track_full(struct pf_kstate **, 335 struct pf_pdesc *, u_short *, int *); 336 static int pf_tcp_track_sloppy(struct pf_kstate **, 337 struct pf_pdesc *, u_short *); 338 static int pf_test_state_tcp(struct pf_kstate **, 339 struct pf_pdesc *, u_short *); 340 static int pf_test_state_udp(struct pf_kstate **, 341 struct pf_pdesc *); 342 int pf_icmp_state_lookup(struct pf_state_key_cmp *, 343 struct pf_pdesc *, struct pf_kstate **, 344 int, u_int16_t, u_int16_t, 345 int, int *, int, int); 346 static int pf_test_state_icmp(struct pf_kstate **, 347 struct pf_pdesc *, u_short *); 348 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *); 349 static void pf_sctp_multihome_delayed(struct pf_pdesc *, 350 struct pfi_kkif *, struct pf_kstate *, int); 351 static int pf_test_state_sctp(struct pf_kstate **, 352 struct pf_pdesc *, u_short *); 353 static int pf_test_state_other(struct pf_kstate **, 354 struct pf_pdesc *); 355 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 356 int, u_int16_t); 357 static int pf_check_proto_cksum(struct mbuf *, int, int, 358 u_int8_t, sa_family_t); 359 static int pf_walk_option6(struct mbuf *, int, int, uint32_t *, 360 u_short *); 361 static void pf_print_state_parts(struct pf_kstate *, 362 struct pf_state_key *, struct pf_state_key *); 363 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 364 bool, u_int8_t); 365 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 366 const struct pf_state_key_cmp *, u_int); 367 static int pf_src_connlimit(struct pf_kstate **); 368 static int pf_match_rcvif(struct mbuf *, struct pf_krule *); 369 static void pf_counters_inc(int, struct pf_pdesc *, 370 struct pf_kstate *, struct pf_krule *, 371 struct pf_krule *); 372 static void pf_overload_task(void *v, int pending); 373 static u_short pf_insert_src_node(struct pf_ksrc_node **, 374 struct pf_krule *, struct pf_addr *, sa_family_t); 375 static u_int pf_purge_expired_states(u_int, int); 376 static void pf_purge_unlinked_rules(void); 377 static int pf_mtag_uminit(void *, int, int); 378 static void pf_mtag_free(struct m_tag *); 379 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 380 int, struct pf_state_key *); 381 #ifdef INET 382 static void pf_route(struct mbuf **, struct pf_krule *, 383 struct ifnet *, struct pf_kstate *, 384 struct pf_pdesc *, struct inpcb *); 385 #endif /* INET */ 386 #ifdef INET6 387 static void pf_change_a6(struct pf_addr *, u_int16_t *, 388 struct pf_addr *, u_int8_t); 389 static void pf_route6(struct mbuf **, struct pf_krule *, 390 struct ifnet *, struct pf_kstate *, 391 struct pf_pdesc *, struct inpcb *); 392 #endif /* INET6 */ 393 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 394 395 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 396 397 extern int pf_end_threads; 398 extern struct proc *pf_purge_proc; 399 400 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 401 402 enum { PF_ICMP_MULTI_NONE, PF_ICMP_MULTI_LINK }; 403 404 #define PACKET_UNDO_NAT(_m, _pd, _off, _s) \ 405 do { \ 406 struct pf_state_key *nk; \ 407 if ((pd->dir) == PF_OUT) \ 408 nk = (_s)->key[PF_SK_STACK]; \ 409 else \ 410 nk = (_s)->key[PF_SK_WIRE]; \ 411 pf_packet_rework_nat(_m, _pd, _off, nk); \ 412 } while (0) 413 414 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 415 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED) 416 417 #define STATE_LOOKUP(k, s, pd) \ 418 do { \ 419 (s) = pf_find_state((pd->kif), (k), (pd->dir)); \ 420 SDT_PROBE5(pf, ip, state, lookup, pd->kif, k, (pd->dir), pd, (s)); \ 421 if ((s) == NULL) \ 422 return (PF_DROP); \ 423 if (PACKET_LOOPED(pd)) \ 424 return (PF_PASS); \ 425 } while (0) 426 427 static struct pfi_kkif * 428 BOUND_IFACE(struct pf_kstate *st, struct pfi_kkif *k) 429 { 430 SDT_PROBE2(pf, ip, , bound_iface, st, k); 431 432 /* Floating unless otherwise specified. */ 433 if (! (st->rule->rule_flag & PFRULE_IFBOUND)) 434 return (V_pfi_all); 435 436 /* 437 * Initially set to all, because we don't know what interface we'll be 438 * sending this out when we create the state. 439 */ 440 if (st->rule->rt == PF_REPLYTO) 441 return (V_pfi_all); 442 443 /* Don't overrule the interface for states created on incoming packets. */ 444 if (st->direction == PF_IN) 445 return (k); 446 447 /* No route-to, so don't overrule. */ 448 if (st->rt != PF_ROUTETO) 449 return (k); 450 451 /* Bind to the route-to interface. */ 452 return (st->rt_kif); 453 } 454 455 #define STATE_INC_COUNTERS(s) \ 456 do { \ 457 struct pf_krule_item *mrm; \ 458 counter_u64_add(s->rule->states_cur, 1); \ 459 counter_u64_add(s->rule->states_tot, 1); \ 460 if (s->anchor != NULL) { \ 461 counter_u64_add(s->anchor->states_cur, 1); \ 462 counter_u64_add(s->anchor->states_tot, 1); \ 463 } \ 464 if (s->nat_rule != NULL) { \ 465 counter_u64_add(s->nat_rule->states_cur, 1);\ 466 counter_u64_add(s->nat_rule->states_tot, 1);\ 467 } \ 468 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 469 counter_u64_add(mrm->r->states_cur, 1); \ 470 counter_u64_add(mrm->r->states_tot, 1); \ 471 } \ 472 } while (0) 473 474 #define STATE_DEC_COUNTERS(s) \ 475 do { \ 476 struct pf_krule_item *mrm; \ 477 if (s->nat_rule != NULL) \ 478 counter_u64_add(s->nat_rule->states_cur, -1);\ 479 if (s->anchor != NULL) \ 480 counter_u64_add(s->anchor->states_cur, -1); \ 481 counter_u64_add(s->rule->states_cur, -1); \ 482 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 483 counter_u64_add(mrm->r->states_cur, -1); \ 484 } while (0) 485 486 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 487 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 488 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 489 VNET_DEFINE(struct pf_idhash *, pf_idhash); 490 VNET_DEFINE(struct pf_srchash *, pf_srchash); 491 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash); 492 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping); 493 494 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 495 "pf(4)"); 496 497 VNET_DEFINE(u_long, pf_hashmask); 498 VNET_DEFINE(u_long, pf_srchashmask); 499 VNET_DEFINE(u_long, pf_udpendpointhashmask); 500 VNET_DEFINE_STATIC(u_long, pf_hashsize); 501 #define V_pf_hashsize VNET(pf_hashsize) 502 VNET_DEFINE_STATIC(u_long, pf_srchashsize); 503 #define V_pf_srchashsize VNET(pf_srchashsize) 504 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize); 505 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize) 506 u_long pf_ioctl_maxcount = 65535; 507 508 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 509 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 510 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 511 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 512 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 513 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable"); 514 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 515 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 516 517 VNET_DEFINE(void *, pf_swi_cookie); 518 VNET_DEFINE(struct intr_event *, pf_swi_ie); 519 520 VNET_DEFINE(uint32_t, pf_hashseed); 521 #define V_pf_hashseed VNET(pf_hashseed) 522 523 static void 524 pf_sctp_checksum(struct mbuf *m, int off) 525 { 526 uint32_t sum = 0; 527 528 /* Zero out the checksum, to enable recalculation. */ 529 m_copyback(m, off + offsetof(struct sctphdr, checksum), 530 sizeof(sum), (caddr_t)&sum); 531 532 sum = sctp_calculate_cksum(m, off); 533 534 m_copyback(m, off + offsetof(struct sctphdr, checksum), 535 sizeof(sum), (caddr_t)&sum); 536 } 537 538 int 539 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 540 { 541 542 switch (af) { 543 #ifdef INET 544 case AF_INET: 545 if (a->addr32[0] > b->addr32[0]) 546 return (1); 547 if (a->addr32[0] < b->addr32[0]) 548 return (-1); 549 break; 550 #endif /* INET */ 551 #ifdef INET6 552 case AF_INET6: 553 if (a->addr32[3] > b->addr32[3]) 554 return (1); 555 if (a->addr32[3] < b->addr32[3]) 556 return (-1); 557 if (a->addr32[2] > b->addr32[2]) 558 return (1); 559 if (a->addr32[2] < b->addr32[2]) 560 return (-1); 561 if (a->addr32[1] > b->addr32[1]) 562 return (1); 563 if (a->addr32[1] < b->addr32[1]) 564 return (-1); 565 if (a->addr32[0] > b->addr32[0]) 566 return (1); 567 if (a->addr32[0] < b->addr32[0]) 568 return (-1); 569 break; 570 #endif /* INET6 */ 571 } 572 return (0); 573 } 574 575 static bool 576 pf_is_loopback(sa_family_t af, struct pf_addr *addr) 577 { 578 switch (af) { 579 case AF_INET: 580 return IN_LOOPBACK(ntohl(addr->v4.s_addr)); 581 case AF_INET6: 582 return IN6_IS_ADDR_LOOPBACK(&addr->v6); 583 default: 584 panic("Unknown af %d", af); 585 } 586 } 587 588 static void 589 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 590 struct pf_state_key *nk) 591 { 592 593 switch (pd->proto) { 594 case IPPROTO_TCP: { 595 struct tcphdr *th = &pd->hdr.tcp; 596 597 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 598 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 599 &th->th_sum, &nk->addr[pd->sidx], 600 nk->port[pd->sidx], 0, pd->af); 601 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 602 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 603 &th->th_sum, &nk->addr[pd->didx], 604 nk->port[pd->didx], 0, pd->af); 605 m_copyback(m, off, sizeof(*th), (caddr_t)th); 606 break; 607 } 608 case IPPROTO_UDP: { 609 struct udphdr *uh = &pd->hdr.udp; 610 611 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 612 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 613 &uh->uh_sum, &nk->addr[pd->sidx], 614 nk->port[pd->sidx], 1, pd->af); 615 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 616 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 617 &uh->uh_sum, &nk->addr[pd->didx], 618 nk->port[pd->didx], 1, pd->af); 619 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 620 break; 621 } 622 case IPPROTO_SCTP: { 623 struct sctphdr *sh = &pd->hdr.sctp; 624 uint16_t checksum = 0; 625 626 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 627 pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum, 628 &checksum, &nk->addr[pd->sidx], 629 nk->port[pd->sidx], 1, pd->af); 630 } 631 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 632 pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum, 633 &checksum, &nk->addr[pd->didx], 634 nk->port[pd->didx], 1, pd->af); 635 } 636 637 break; 638 } 639 case IPPROTO_ICMP: { 640 struct icmp *ih = &pd->hdr.icmp; 641 642 if (nk->port[pd->sidx] != ih->icmp_id) { 643 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 644 ih->icmp_cksum, ih->icmp_id, 645 nk->port[pd->sidx], 0); 646 ih->icmp_id = nk->port[pd->sidx]; 647 pd->sport = &ih->icmp_id; 648 649 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 650 } 651 /* FALLTHROUGH */ 652 } 653 default: 654 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 655 switch (pd->af) { 656 case AF_INET: 657 pf_change_a(&pd->src->v4.s_addr, 658 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 659 0); 660 break; 661 case AF_INET6: 662 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 663 break; 664 } 665 } 666 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 667 switch (pd->af) { 668 case AF_INET: 669 pf_change_a(&pd->dst->v4.s_addr, 670 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 671 0); 672 break; 673 case AF_INET6: 674 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 675 break; 676 } 677 } 678 break; 679 } 680 } 681 682 static __inline uint32_t 683 pf_hashkey(const struct pf_state_key *sk) 684 { 685 uint32_t h; 686 687 h = murmur3_32_hash32((const uint32_t *)sk, 688 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 689 V_pf_hashseed); 690 691 return (h & V_pf_hashmask); 692 } 693 694 static __inline uint32_t 695 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 696 { 697 uint32_t h; 698 699 switch (af) { 700 case AF_INET: 701 h = murmur3_32_hash32((uint32_t *)&addr->v4, 702 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 703 break; 704 case AF_INET6: 705 h = murmur3_32_hash32((uint32_t *)&addr->v6, 706 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 707 break; 708 } 709 710 return (h & V_pf_srchashmask); 711 } 712 713 static inline uint32_t 714 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint) 715 { 716 uint32_t h; 717 718 h = murmur3_32_hash32((uint32_t *)endpoint, 719 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t), 720 V_pf_hashseed); 721 return (h & V_pf_udpendpointhashmask); 722 } 723 724 #ifdef ALTQ 725 static int 726 pf_state_hash(struct pf_kstate *s) 727 { 728 u_int32_t hv = (intptr_t)s / sizeof(*s); 729 730 hv ^= crc32(&s->src, sizeof(s->src)); 731 hv ^= crc32(&s->dst, sizeof(s->dst)); 732 if (hv == 0) 733 hv = 1; 734 return (hv); 735 } 736 #endif 737 738 static __inline void 739 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 740 { 741 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 742 s->dst.state = newstate; 743 if (which == PF_PEER_DST) 744 return; 745 if (s->src.state == newstate) 746 return; 747 if (s->creatorid == V_pf_status.hostid && 748 s->key[PF_SK_STACK] != NULL && 749 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 750 !(TCPS_HAVEESTABLISHED(s->src.state) || 751 s->src.state == TCPS_CLOSED) && 752 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 753 atomic_add_32(&V_pf_status.states_halfopen, -1); 754 755 s->src.state = newstate; 756 } 757 758 #ifdef INET6 759 void 760 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 761 { 762 switch (af) { 763 #ifdef INET 764 case AF_INET: 765 memcpy(&dst->v4, &src->v4, sizeof(dst->v4)); 766 break; 767 #endif /* INET */ 768 case AF_INET6: 769 memcpy(&dst->v6, &src->v6, sizeof(dst->v6)); 770 break; 771 } 772 } 773 #endif /* INET6 */ 774 775 static void 776 pf_init_threshold(struct pf_threshold *threshold, 777 u_int32_t limit, u_int32_t seconds) 778 { 779 threshold->limit = limit * PF_THRESHOLD_MULT; 780 threshold->seconds = seconds; 781 threshold->count = 0; 782 threshold->last = time_uptime; 783 } 784 785 static void 786 pf_add_threshold(struct pf_threshold *threshold) 787 { 788 u_int32_t t = time_uptime, diff = t - threshold->last; 789 790 if (diff >= threshold->seconds) 791 threshold->count = 0; 792 else 793 threshold->count -= threshold->count * diff / 794 threshold->seconds; 795 threshold->count += PF_THRESHOLD_MULT; 796 threshold->last = t; 797 } 798 799 static int 800 pf_check_threshold(struct pf_threshold *threshold) 801 { 802 return (threshold->count > threshold->limit); 803 } 804 805 static int 806 pf_src_connlimit(struct pf_kstate **state) 807 { 808 struct pf_overload_entry *pfoe; 809 int bad = 0; 810 811 PF_STATE_LOCK_ASSERT(*state); 812 /* 813 * XXXKS: The src node is accessed unlocked! 814 * PF_SRC_NODE_LOCK_ASSERT((*state)->src_node); 815 */ 816 817 (*state)->src_node->conn++; 818 (*state)->src.tcp_est = 1; 819 pf_add_threshold(&(*state)->src_node->conn_rate); 820 821 if ((*state)->rule->max_src_conn && 822 (*state)->rule->max_src_conn < 823 (*state)->src_node->conn) { 824 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 825 bad++; 826 } 827 828 if ((*state)->rule->max_src_conn_rate.limit && 829 pf_check_threshold(&(*state)->src_node->conn_rate)) { 830 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 831 bad++; 832 } 833 834 if (!bad) 835 return (0); 836 837 /* Kill this state. */ 838 (*state)->timeout = PFTM_PURGE; 839 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 840 841 if ((*state)->rule->overload_tbl == NULL) 842 return (1); 843 844 /* Schedule overloading and flushing task. */ 845 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 846 if (pfoe == NULL) 847 return (1); /* too bad :( */ 848 849 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 850 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 851 pfoe->rule = (*state)->rule; 852 pfoe->dir = (*state)->direction; 853 PF_OVERLOADQ_LOCK(); 854 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 855 PF_OVERLOADQ_UNLOCK(); 856 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 857 858 return (1); 859 } 860 861 static void 862 pf_overload_task(void *v, int pending) 863 { 864 struct pf_overload_head queue; 865 struct pfr_addr p; 866 struct pf_overload_entry *pfoe, *pfoe1; 867 uint32_t killed = 0; 868 869 CURVNET_SET((struct vnet *)v); 870 871 PF_OVERLOADQ_LOCK(); 872 queue = V_pf_overloadqueue; 873 SLIST_INIT(&V_pf_overloadqueue); 874 PF_OVERLOADQ_UNLOCK(); 875 876 bzero(&p, sizeof(p)); 877 SLIST_FOREACH(pfoe, &queue, next) { 878 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 879 if (V_pf_status.debug >= PF_DEBUG_MISC) { 880 printf("%s: blocking address ", __func__); 881 pf_print_host(&pfoe->addr, 0, pfoe->af); 882 printf("\n"); 883 } 884 885 p.pfra_af = pfoe->af; 886 switch (pfoe->af) { 887 #ifdef INET 888 case AF_INET: 889 p.pfra_net = 32; 890 p.pfra_ip4addr = pfoe->addr.v4; 891 break; 892 #endif 893 #ifdef INET6 894 case AF_INET6: 895 p.pfra_net = 128; 896 p.pfra_ip6addr = pfoe->addr.v6; 897 break; 898 #endif 899 } 900 901 PF_RULES_WLOCK(); 902 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 903 PF_RULES_WUNLOCK(); 904 } 905 906 /* 907 * Remove those entries, that don't need flushing. 908 */ 909 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 910 if (pfoe->rule->flush == 0) { 911 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 912 free(pfoe, M_PFTEMP); 913 } else 914 counter_u64_add( 915 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 916 917 /* If nothing to flush, return. */ 918 if (SLIST_EMPTY(&queue)) { 919 CURVNET_RESTORE(); 920 return; 921 } 922 923 for (int i = 0; i <= V_pf_hashmask; i++) { 924 struct pf_idhash *ih = &V_pf_idhash[i]; 925 struct pf_state_key *sk; 926 struct pf_kstate *s; 927 928 PF_HASHROW_LOCK(ih); 929 LIST_FOREACH(s, &ih->states, entry) { 930 sk = s->key[PF_SK_WIRE]; 931 SLIST_FOREACH(pfoe, &queue, next) 932 if (sk->af == pfoe->af && 933 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 934 pfoe->rule == s->rule) && 935 ((pfoe->dir == PF_OUT && 936 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 937 (pfoe->dir == PF_IN && 938 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 939 s->timeout = PFTM_PURGE; 940 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 941 killed++; 942 } 943 } 944 PF_HASHROW_UNLOCK(ih); 945 } 946 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 947 free(pfoe, M_PFTEMP); 948 if (V_pf_status.debug >= PF_DEBUG_MISC) 949 printf("%s: %u states killed", __func__, killed); 950 951 CURVNET_RESTORE(); 952 } 953 954 /* 955 * Can return locked on failure, so that we can consistently 956 * allocate and insert a new one. 957 */ 958 struct pf_ksrc_node * 959 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 960 struct pf_srchash **sh, bool returnlocked) 961 { 962 struct pf_ksrc_node *n; 963 964 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 965 966 *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 967 PF_HASHROW_LOCK(*sh); 968 LIST_FOREACH(n, &(*sh)->nodes, entry) 969 if (n->rule == rule && n->af == af && 970 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 971 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 972 break; 973 974 if (n != NULL) { 975 n->states++; 976 PF_HASHROW_UNLOCK(*sh); 977 } else if (returnlocked == false) 978 PF_HASHROW_UNLOCK(*sh); 979 980 return (n); 981 } 982 983 static void 984 pf_free_src_node(struct pf_ksrc_node *sn) 985 { 986 987 for (int i = 0; i < 2; i++) { 988 counter_u64_free(sn->bytes[i]); 989 counter_u64_free(sn->packets[i]); 990 } 991 uma_zfree(V_pf_sources_z, sn); 992 } 993 994 static u_short 995 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 996 struct pf_addr *src, sa_family_t af) 997 { 998 u_short reason = 0; 999 struct pf_srchash *sh = NULL; 1000 1001 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 1002 rule->rpool.opts & PF_POOL_STICKYADDR), 1003 ("%s for non-tracking rule %p", __func__, rule)); 1004 1005 if (*sn == NULL) 1006 *sn = pf_find_src_node(src, rule, af, &sh, true); 1007 1008 if (*sn == NULL) { 1009 PF_HASHROW_ASSERT(sh); 1010 1011 if (rule->max_src_nodes && 1012 counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) { 1013 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); 1014 PF_HASHROW_UNLOCK(sh); 1015 reason = PFRES_SRCLIMIT; 1016 goto done; 1017 } 1018 1019 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 1020 if ((*sn) == NULL) { 1021 PF_HASHROW_UNLOCK(sh); 1022 reason = PFRES_MEMORY; 1023 goto done; 1024 } 1025 1026 for (int i = 0; i < 2; i++) { 1027 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 1028 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 1029 1030 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 1031 pf_free_src_node(*sn); 1032 PF_HASHROW_UNLOCK(sh); 1033 reason = PFRES_MEMORY; 1034 goto done; 1035 } 1036 } 1037 1038 pf_init_threshold(&(*sn)->conn_rate, 1039 rule->max_src_conn_rate.limit, 1040 rule->max_src_conn_rate.seconds); 1041 1042 MPASS((*sn)->lock == NULL); 1043 (*sn)->lock = &sh->lock; 1044 1045 (*sn)->af = af; 1046 (*sn)->rule = rule; 1047 PF_ACPY(&(*sn)->addr, src, af); 1048 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 1049 (*sn)->creation = time_uptime; 1050 (*sn)->ruletype = rule->action; 1051 (*sn)->states = 1; 1052 if ((*sn)->rule != NULL) 1053 counter_u64_add((*sn)->rule->src_nodes, 1); 1054 PF_HASHROW_UNLOCK(sh); 1055 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 1056 } else { 1057 if (rule->max_src_states && 1058 (*sn)->states >= rule->max_src_states) { 1059 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 1060 1); 1061 reason = PFRES_SRCLIMIT; 1062 goto done; 1063 } 1064 } 1065 done: 1066 return (reason); 1067 } 1068 1069 void 1070 pf_unlink_src_node(struct pf_ksrc_node *src) 1071 { 1072 PF_SRC_NODE_LOCK_ASSERT(src); 1073 1074 LIST_REMOVE(src, entry); 1075 if (src->rule) 1076 counter_u64_add(src->rule->src_nodes, -1); 1077 } 1078 1079 u_int 1080 pf_free_src_nodes(struct pf_ksrc_node_list *head) 1081 { 1082 struct pf_ksrc_node *sn, *tmp; 1083 u_int count = 0; 1084 1085 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 1086 pf_free_src_node(sn); 1087 count++; 1088 } 1089 1090 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 1091 1092 return (count); 1093 } 1094 1095 void 1096 pf_mtag_initialize(void) 1097 { 1098 1099 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 1100 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 1101 UMA_ALIGN_PTR, 0); 1102 } 1103 1104 /* Per-vnet data storage structures initialization. */ 1105 void 1106 pf_initialize(void) 1107 { 1108 struct pf_keyhash *kh; 1109 struct pf_idhash *ih; 1110 struct pf_srchash *sh; 1111 struct pf_udpendpointhash *uh; 1112 u_int i; 1113 1114 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 1115 V_pf_hashsize = PF_HASHSIZ; 1116 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 1117 V_pf_srchashsize = PF_SRCHASHSIZ; 1118 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize)) 1119 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1120 1121 V_pf_hashseed = arc4random(); 1122 1123 /* States and state keys storage. */ 1124 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1125 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1126 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1127 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1128 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1129 1130 V_pf_state_key_z = uma_zcreate("pf state keys", 1131 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1132 UMA_ALIGN_PTR, 0); 1133 1134 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash), 1135 M_PFHASH, M_NOWAIT | M_ZERO); 1136 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash), 1137 M_PFHASH, M_NOWAIT | M_ZERO); 1138 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1139 printf("pf: Unable to allocate memory for " 1140 "state_hashsize %lu.\n", V_pf_hashsize); 1141 1142 free(V_pf_keyhash, M_PFHASH); 1143 free(V_pf_idhash, M_PFHASH); 1144 1145 V_pf_hashsize = PF_HASHSIZ; 1146 V_pf_keyhash = mallocarray(V_pf_hashsize, 1147 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1148 V_pf_idhash = mallocarray(V_pf_hashsize, 1149 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1150 } 1151 1152 V_pf_hashmask = V_pf_hashsize - 1; 1153 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 1154 i++, kh++, ih++) { 1155 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1156 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1157 } 1158 1159 /* Source nodes. */ 1160 V_pf_sources_z = uma_zcreate("pf source nodes", 1161 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1162 0); 1163 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1164 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1165 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1166 1167 V_pf_srchash = mallocarray(V_pf_srchashsize, 1168 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1169 if (V_pf_srchash == NULL) { 1170 printf("pf: Unable to allocate memory for " 1171 "source_hashsize %lu.\n", V_pf_srchashsize); 1172 1173 V_pf_srchashsize = PF_SRCHASHSIZ; 1174 V_pf_srchash = mallocarray(V_pf_srchashsize, 1175 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1176 } 1177 1178 V_pf_srchashmask = V_pf_srchashsize - 1; 1179 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 1180 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1181 1182 1183 /* UDP endpoint mappings. */ 1184 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings", 1185 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL, 1186 UMA_ALIGN_PTR, 0); 1187 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1188 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO); 1189 if (V_pf_udpendpointhash == NULL) { 1190 printf("pf: Unable to allocate memory for " 1191 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize); 1192 1193 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1194 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1195 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO); 1196 } 1197 1198 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1; 1199 for (i = 0, uh = V_pf_udpendpointhash; 1200 i <= V_pf_udpendpointhashmask; 1201 i++, uh++) { 1202 mtx_init(&uh->lock, "pf_udpendpointhash", NULL, 1203 MTX_DEF | MTX_DUPOK); 1204 } 1205 1206 /* ALTQ */ 1207 TAILQ_INIT(&V_pf_altqs[0]); 1208 TAILQ_INIT(&V_pf_altqs[1]); 1209 TAILQ_INIT(&V_pf_altqs[2]); 1210 TAILQ_INIT(&V_pf_altqs[3]); 1211 TAILQ_INIT(&V_pf_pabuf); 1212 V_pf_altqs_active = &V_pf_altqs[0]; 1213 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1214 V_pf_altqs_inactive = &V_pf_altqs[2]; 1215 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1216 1217 /* Send & overload+flush queues. */ 1218 STAILQ_INIT(&V_pf_sendqueue); 1219 SLIST_INIT(&V_pf_overloadqueue); 1220 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1221 1222 /* Unlinked, but may be referenced rules. */ 1223 TAILQ_INIT(&V_pf_unlinked_rules); 1224 } 1225 1226 void 1227 pf_mtag_cleanup(void) 1228 { 1229 1230 uma_zdestroy(pf_mtag_z); 1231 } 1232 1233 void 1234 pf_cleanup(void) 1235 { 1236 struct pf_keyhash *kh; 1237 struct pf_idhash *ih; 1238 struct pf_srchash *sh; 1239 struct pf_udpendpointhash *uh; 1240 struct pf_send_entry *pfse, *next; 1241 u_int i; 1242 1243 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; 1244 i <= V_pf_hashmask; 1245 i++, kh++, ih++) { 1246 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1247 __func__)); 1248 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1249 __func__)); 1250 mtx_destroy(&kh->lock); 1251 mtx_destroy(&ih->lock); 1252 } 1253 free(V_pf_keyhash, M_PFHASH); 1254 free(V_pf_idhash, M_PFHASH); 1255 1256 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1257 KASSERT(LIST_EMPTY(&sh->nodes), 1258 ("%s: source node hash not empty", __func__)); 1259 mtx_destroy(&sh->lock); 1260 } 1261 free(V_pf_srchash, M_PFHASH); 1262 1263 for (i = 0, uh = V_pf_udpendpointhash; 1264 i <= V_pf_udpendpointhashmask; 1265 i++, uh++) { 1266 KASSERT(LIST_EMPTY(&uh->endpoints), 1267 ("%s: udp endpoint hash not empty", __func__)); 1268 mtx_destroy(&uh->lock); 1269 } 1270 free(V_pf_udpendpointhash, M_PFHASH); 1271 1272 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1273 m_freem(pfse->pfse_m); 1274 free(pfse, M_PFTEMP); 1275 } 1276 MPASS(RB_EMPTY(&V_pf_sctp_endpoints)); 1277 1278 uma_zdestroy(V_pf_sources_z); 1279 uma_zdestroy(V_pf_state_z); 1280 uma_zdestroy(V_pf_state_key_z); 1281 uma_zdestroy(V_pf_udp_mapping_z); 1282 } 1283 1284 static int 1285 pf_mtag_uminit(void *mem, int size, int how) 1286 { 1287 struct m_tag *t; 1288 1289 t = (struct m_tag *)mem; 1290 t->m_tag_cookie = MTAG_ABI_COMPAT; 1291 t->m_tag_id = PACKET_TAG_PF; 1292 t->m_tag_len = sizeof(struct pf_mtag); 1293 t->m_tag_free = pf_mtag_free; 1294 1295 return (0); 1296 } 1297 1298 static void 1299 pf_mtag_free(struct m_tag *t) 1300 { 1301 1302 uma_zfree(pf_mtag_z, t); 1303 } 1304 1305 struct pf_mtag * 1306 pf_get_mtag(struct mbuf *m) 1307 { 1308 struct m_tag *mtag; 1309 1310 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1311 return ((struct pf_mtag *)(mtag + 1)); 1312 1313 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1314 if (mtag == NULL) 1315 return (NULL); 1316 bzero(mtag + 1, sizeof(struct pf_mtag)); 1317 m_tag_prepend(m, mtag); 1318 1319 return ((struct pf_mtag *)(mtag + 1)); 1320 } 1321 1322 static int 1323 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1324 struct pf_kstate *s) 1325 { 1326 struct pf_keyhash *khs, *khw, *kh; 1327 struct pf_state_key *sk, *cur; 1328 struct pf_kstate *si, *olds = NULL; 1329 int idx; 1330 1331 NET_EPOCH_ASSERT(); 1332 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1333 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1334 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1335 1336 /* 1337 * We need to lock hash slots of both keys. To avoid deadlock 1338 * we always lock the slot with lower address first. Unlock order 1339 * isn't important. 1340 * 1341 * We also need to lock ID hash slot before dropping key 1342 * locks. On success we return with ID hash slot locked. 1343 */ 1344 1345 if (skw == sks) { 1346 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1347 PF_HASHROW_LOCK(khs); 1348 } else { 1349 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1350 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1351 if (khs == khw) { 1352 PF_HASHROW_LOCK(khs); 1353 } else if (khs < khw) { 1354 PF_HASHROW_LOCK(khs); 1355 PF_HASHROW_LOCK(khw); 1356 } else { 1357 PF_HASHROW_LOCK(khw); 1358 PF_HASHROW_LOCK(khs); 1359 } 1360 } 1361 1362 #define KEYS_UNLOCK() do { \ 1363 if (khs != khw) { \ 1364 PF_HASHROW_UNLOCK(khs); \ 1365 PF_HASHROW_UNLOCK(khw); \ 1366 } else \ 1367 PF_HASHROW_UNLOCK(khs); \ 1368 } while (0) 1369 1370 /* 1371 * First run: start with wire key. 1372 */ 1373 sk = skw; 1374 kh = khw; 1375 idx = PF_SK_WIRE; 1376 1377 MPASS(s->lock == NULL); 1378 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1379 1380 keyattach: 1381 LIST_FOREACH(cur, &kh->keys, entry) 1382 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1383 break; 1384 1385 if (cur != NULL) { 1386 /* Key exists. Check for same kif, if none, add to key. */ 1387 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1388 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1389 1390 PF_HASHROW_LOCK(ih); 1391 if (si->kif == s->kif && 1392 si->direction == s->direction) { 1393 if (sk->proto == IPPROTO_TCP && 1394 si->src.state >= TCPS_FIN_WAIT_2 && 1395 si->dst.state >= TCPS_FIN_WAIT_2) { 1396 /* 1397 * New state matches an old >FIN_WAIT_2 1398 * state. We can't drop key hash locks, 1399 * thus we can't unlink it properly. 1400 * 1401 * As a workaround we drop it into 1402 * TCPS_CLOSED state, schedule purge 1403 * ASAP and push it into the very end 1404 * of the slot TAILQ, so that it won't 1405 * conflict with our new state. 1406 */ 1407 pf_set_protostate(si, PF_PEER_BOTH, 1408 TCPS_CLOSED); 1409 si->timeout = PFTM_PURGE; 1410 olds = si; 1411 } else { 1412 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1413 printf("pf: %s key attach " 1414 "failed on %s: ", 1415 (idx == PF_SK_WIRE) ? 1416 "wire" : "stack", 1417 s->kif->pfik_name); 1418 pf_print_state_parts(s, 1419 (idx == PF_SK_WIRE) ? 1420 sk : NULL, 1421 (idx == PF_SK_STACK) ? 1422 sk : NULL); 1423 printf(", existing: "); 1424 pf_print_state_parts(si, 1425 (idx == PF_SK_WIRE) ? 1426 sk : NULL, 1427 (idx == PF_SK_STACK) ? 1428 sk : NULL); 1429 printf("\n"); 1430 } 1431 s->timeout = PFTM_UNLINKED; 1432 PF_HASHROW_UNLOCK(ih); 1433 KEYS_UNLOCK(); 1434 uma_zfree(V_pf_state_key_z, sk); 1435 if (idx == PF_SK_STACK) 1436 pf_detach_state(s); 1437 return (EEXIST); /* collision! */ 1438 } 1439 } 1440 PF_HASHROW_UNLOCK(ih); 1441 } 1442 uma_zfree(V_pf_state_key_z, sk); 1443 s->key[idx] = cur; 1444 } else { 1445 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1446 s->key[idx] = sk; 1447 } 1448 1449 stateattach: 1450 /* List is sorted, if-bound states before floating. */ 1451 if (s->kif == V_pfi_all) 1452 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1453 else 1454 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1455 1456 if (olds) { 1457 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1458 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1459 key_list[idx]); 1460 olds = NULL; 1461 } 1462 1463 /* 1464 * Attach done. See how should we (or should not?) 1465 * attach a second key. 1466 */ 1467 if (sks == skw) { 1468 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1469 idx = PF_SK_STACK; 1470 sks = NULL; 1471 goto stateattach; 1472 } else if (sks != NULL) { 1473 /* 1474 * Continue attaching with stack key. 1475 */ 1476 sk = sks; 1477 kh = khs; 1478 idx = PF_SK_STACK; 1479 sks = NULL; 1480 goto keyattach; 1481 } 1482 1483 PF_STATE_LOCK(s); 1484 KEYS_UNLOCK(); 1485 1486 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1487 ("%s failure", __func__)); 1488 1489 return (0); 1490 #undef KEYS_UNLOCK 1491 } 1492 1493 static void 1494 pf_detach_state(struct pf_kstate *s) 1495 { 1496 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1497 struct pf_keyhash *kh; 1498 1499 NET_EPOCH_ASSERT(); 1500 MPASS(s->timeout >= PFTM_MAX); 1501 1502 pf_sctp_multihome_detach_addr(s); 1503 1504 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr) 1505 V_pflow_export_state_ptr(s); 1506 1507 if (sks != NULL) { 1508 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1509 PF_HASHROW_LOCK(kh); 1510 if (s->key[PF_SK_STACK] != NULL) 1511 pf_state_key_detach(s, PF_SK_STACK); 1512 /* 1513 * If both point to same key, then we are done. 1514 */ 1515 if (sks == s->key[PF_SK_WIRE]) { 1516 pf_state_key_detach(s, PF_SK_WIRE); 1517 PF_HASHROW_UNLOCK(kh); 1518 return; 1519 } 1520 PF_HASHROW_UNLOCK(kh); 1521 } 1522 1523 if (s->key[PF_SK_WIRE] != NULL) { 1524 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1525 PF_HASHROW_LOCK(kh); 1526 if (s->key[PF_SK_WIRE] != NULL) 1527 pf_state_key_detach(s, PF_SK_WIRE); 1528 PF_HASHROW_UNLOCK(kh); 1529 } 1530 } 1531 1532 static void 1533 pf_state_key_detach(struct pf_kstate *s, int idx) 1534 { 1535 struct pf_state_key *sk = s->key[idx]; 1536 #ifdef INVARIANTS 1537 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1538 1539 PF_HASHROW_ASSERT(kh); 1540 #endif 1541 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1542 s->key[idx] = NULL; 1543 1544 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1545 LIST_REMOVE(sk, entry); 1546 uma_zfree(V_pf_state_key_z, sk); 1547 } 1548 } 1549 1550 static int 1551 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1552 { 1553 struct pf_state_key *sk = mem; 1554 1555 bzero(sk, sizeof(struct pf_state_key_cmp)); 1556 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1557 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1558 1559 return (0); 1560 } 1561 1562 static int 1563 pf_state_key_addr_setup(struct pf_pdesc *pd, 1564 struct pf_state_key_cmp *key, int multi) 1565 { 1566 struct pf_addr *saddr = pd->src; 1567 struct pf_addr *daddr = pd->dst; 1568 #ifdef INET6 1569 struct nd_neighbor_solicit nd; 1570 struct pf_addr *target; 1571 u_short action, reason; 1572 1573 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6) 1574 goto copy; 1575 1576 switch (pd->hdr.icmp6.icmp6_type) { 1577 case ND_NEIGHBOR_SOLICIT: 1578 if (multi) 1579 return (-1); 1580 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af)) 1581 return (-1); 1582 target = (struct pf_addr *)&nd.nd_ns_target; 1583 daddr = target; 1584 break; 1585 case ND_NEIGHBOR_ADVERT: 1586 if (multi) 1587 return (-1); 1588 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af)) 1589 return (-1); 1590 target = (struct pf_addr *)&nd.nd_ns_target; 1591 saddr = target; 1592 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) { 1593 key->addr[pd->didx].addr32[0] = 0; 1594 key->addr[pd->didx].addr32[1] = 0; 1595 key->addr[pd->didx].addr32[2] = 0; 1596 key->addr[pd->didx].addr32[3] = 0; 1597 daddr = NULL; /* overwritten */ 1598 } 1599 break; 1600 default: 1601 if (multi == PF_ICMP_MULTI_LINK) { 1602 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL; 1603 key->addr[pd->sidx].addr32[1] = 0; 1604 key->addr[pd->sidx].addr32[2] = 0; 1605 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE; 1606 saddr = NULL; /* overwritten */ 1607 } 1608 } 1609 copy: 1610 #endif 1611 if (saddr) 1612 PF_ACPY(&key->addr[pd->sidx], saddr, pd->af); 1613 if (daddr) 1614 PF_ACPY(&key->addr[pd->didx], daddr, pd->af); 1615 1616 return (0); 1617 } 1618 1619 struct pf_state_key * 1620 pf_state_key_setup(struct pf_pdesc *pd, 1621 struct pf_addr *saddr, struct pf_addr *daddr, u_int16_t sport, 1622 u_int16_t dport) 1623 { 1624 struct pf_state_key *sk; 1625 1626 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1627 if (sk == NULL) 1628 return (NULL); 1629 1630 if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)sk, 1631 0)) { 1632 uma_zfree(V_pf_state_key_z, sk); 1633 return (NULL); 1634 } 1635 1636 sk->port[pd->sidx] = sport; 1637 sk->port[pd->didx] = dport; 1638 sk->proto = pd->proto; 1639 sk->af = pd->af; 1640 1641 return (sk); 1642 } 1643 1644 struct pf_state_key * 1645 pf_state_key_clone(const struct pf_state_key *orig) 1646 { 1647 struct pf_state_key *sk; 1648 1649 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1650 if (sk == NULL) 1651 return (NULL); 1652 1653 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1654 1655 return (sk); 1656 } 1657 1658 int 1659 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1660 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1661 { 1662 struct pf_idhash *ih; 1663 struct pf_kstate *cur; 1664 int error; 1665 1666 NET_EPOCH_ASSERT(); 1667 1668 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1669 ("%s: sks not pristine", __func__)); 1670 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1671 ("%s: skw not pristine", __func__)); 1672 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1673 1674 s->kif = kif; 1675 s->orig_kif = orig_kif; 1676 1677 if (s->id == 0 && s->creatorid == 0) { 1678 s->id = alloc_unr64(&V_pf_stateid); 1679 s->id = htobe64(s->id); 1680 s->creatorid = V_pf_status.hostid; 1681 } 1682 1683 /* Returns with ID locked on success. */ 1684 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1685 return (error); 1686 1687 ih = &V_pf_idhash[PF_IDHASH(s)]; 1688 PF_HASHROW_ASSERT(ih); 1689 LIST_FOREACH(cur, &ih->states, entry) 1690 if (cur->id == s->id && cur->creatorid == s->creatorid) 1691 break; 1692 1693 if (cur != NULL) { 1694 s->timeout = PFTM_UNLINKED; 1695 PF_HASHROW_UNLOCK(ih); 1696 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1697 printf("pf: state ID collision: " 1698 "id: %016llx creatorid: %08x\n", 1699 (unsigned long long)be64toh(s->id), 1700 ntohl(s->creatorid)); 1701 } 1702 pf_detach_state(s); 1703 return (EEXIST); 1704 } 1705 LIST_INSERT_HEAD(&ih->states, s, entry); 1706 /* One for keys, one for ID hash. */ 1707 refcount_init(&s->refs, 2); 1708 1709 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1710 if (V_pfsync_insert_state_ptr != NULL) 1711 V_pfsync_insert_state_ptr(s); 1712 1713 /* Returns locked. */ 1714 return (0); 1715 } 1716 1717 /* 1718 * Find state by ID: returns with locked row on success. 1719 */ 1720 struct pf_kstate * 1721 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1722 { 1723 struct pf_idhash *ih; 1724 struct pf_kstate *s; 1725 1726 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1727 1728 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))]; 1729 1730 PF_HASHROW_LOCK(ih); 1731 LIST_FOREACH(s, &ih->states, entry) 1732 if (s->id == id && s->creatorid == creatorid) 1733 break; 1734 1735 if (s == NULL) 1736 PF_HASHROW_UNLOCK(ih); 1737 1738 return (s); 1739 } 1740 1741 /* 1742 * Find state by key. 1743 * Returns with ID hash slot locked on success. 1744 */ 1745 static struct pf_kstate * 1746 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key, 1747 u_int dir) 1748 { 1749 struct pf_keyhash *kh; 1750 struct pf_state_key *sk; 1751 struct pf_kstate *s; 1752 int idx; 1753 1754 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1755 1756 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1757 1758 PF_HASHROW_LOCK(kh); 1759 LIST_FOREACH(sk, &kh->keys, entry) 1760 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1761 break; 1762 if (sk == NULL) { 1763 PF_HASHROW_UNLOCK(kh); 1764 return (NULL); 1765 } 1766 1767 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1768 1769 /* List is sorted, if-bound states before floating ones. */ 1770 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1771 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) { 1772 PF_STATE_LOCK(s); 1773 PF_HASHROW_UNLOCK(kh); 1774 if (__predict_false(s->timeout >= PFTM_MAX)) { 1775 /* 1776 * State is either being processed by 1777 * pf_unlink_state() in an other thread, or 1778 * is scheduled for immediate expiry. 1779 */ 1780 PF_STATE_UNLOCK(s); 1781 return (NULL); 1782 } 1783 return (s); 1784 } 1785 PF_HASHROW_UNLOCK(kh); 1786 1787 return (NULL); 1788 } 1789 1790 /* 1791 * Returns with ID hash slot locked on success. 1792 */ 1793 struct pf_kstate * 1794 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more) 1795 { 1796 struct pf_keyhash *kh; 1797 struct pf_state_key *sk; 1798 struct pf_kstate *s, *ret = NULL; 1799 int idx, inout = 0; 1800 1801 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1802 1803 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1804 1805 PF_HASHROW_LOCK(kh); 1806 LIST_FOREACH(sk, &kh->keys, entry) 1807 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1808 break; 1809 if (sk == NULL) { 1810 PF_HASHROW_UNLOCK(kh); 1811 return (NULL); 1812 } 1813 switch (dir) { 1814 case PF_IN: 1815 idx = PF_SK_WIRE; 1816 break; 1817 case PF_OUT: 1818 idx = PF_SK_STACK; 1819 break; 1820 case PF_INOUT: 1821 idx = PF_SK_WIRE; 1822 inout = 1; 1823 break; 1824 default: 1825 panic("%s: dir %u", __func__, dir); 1826 } 1827 second_run: 1828 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1829 if (more == NULL) { 1830 PF_STATE_LOCK(s); 1831 PF_HASHROW_UNLOCK(kh); 1832 return (s); 1833 } 1834 1835 if (ret) 1836 (*more)++; 1837 else { 1838 ret = s; 1839 PF_STATE_LOCK(s); 1840 } 1841 } 1842 if (inout == 1) { 1843 inout = 0; 1844 idx = PF_SK_STACK; 1845 goto second_run; 1846 } 1847 PF_HASHROW_UNLOCK(kh); 1848 1849 return (ret); 1850 } 1851 1852 /* 1853 * FIXME 1854 * This routine is inefficient -- locks the state only to unlock immediately on 1855 * return. 1856 * It is racy -- after the state is unlocked nothing stops other threads from 1857 * removing it. 1858 */ 1859 bool 1860 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir) 1861 { 1862 struct pf_kstate *s; 1863 1864 s = pf_find_state_all(key, dir, NULL); 1865 if (s != NULL) { 1866 PF_STATE_UNLOCK(s); 1867 return (true); 1868 } 1869 return (false); 1870 } 1871 1872 struct pf_udp_mapping * 1873 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port, 1874 struct pf_addr *nat_addr, uint16_t nat_port) 1875 { 1876 struct pf_udp_mapping *mapping; 1877 1878 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO); 1879 if (mapping == NULL) 1880 return (NULL); 1881 PF_ACPY(&mapping->endpoints[0].addr, src_addr, af); 1882 mapping->endpoints[0].port = src_port; 1883 mapping->endpoints[0].af = af; 1884 mapping->endpoints[0].mapping = mapping; 1885 PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af); 1886 mapping->endpoints[1].port = nat_port; 1887 mapping->endpoints[1].af = af; 1888 mapping->endpoints[1].mapping = mapping; 1889 refcount_init(&mapping->refs, 1); 1890 return (mapping); 1891 } 1892 1893 int 1894 pf_udp_mapping_insert(struct pf_udp_mapping *mapping) 1895 { 1896 struct pf_udpendpointhash *h0, *h1; 1897 struct pf_udp_endpoint *endpoint; 1898 int ret = EEXIST; 1899 1900 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 1901 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 1902 if (h0 == h1) { 1903 PF_HASHROW_LOCK(h0); 1904 } else if (h0 < h1) { 1905 PF_HASHROW_LOCK(h0); 1906 PF_HASHROW_LOCK(h1); 1907 } else { 1908 PF_HASHROW_LOCK(h1); 1909 PF_HASHROW_LOCK(h0); 1910 } 1911 1912 LIST_FOREACH(endpoint, &h0->endpoints, entry) { 1913 if (bcmp(endpoint, &mapping->endpoints[0], 1914 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1915 break; 1916 } 1917 if (endpoint != NULL) 1918 goto cleanup; 1919 LIST_FOREACH(endpoint, &h1->endpoints, entry) { 1920 if (bcmp(endpoint, &mapping->endpoints[1], 1921 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1922 break; 1923 } 1924 if (endpoint != NULL) 1925 goto cleanup; 1926 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry); 1927 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry); 1928 ret = 0; 1929 1930 cleanup: 1931 if (h0 != h1) { 1932 PF_HASHROW_UNLOCK(h0); 1933 PF_HASHROW_UNLOCK(h1); 1934 } else { 1935 PF_HASHROW_UNLOCK(h0); 1936 } 1937 return (ret); 1938 } 1939 1940 void 1941 pf_udp_mapping_release(struct pf_udp_mapping *mapping) 1942 { 1943 /* refcount is synchronized on the source endpoint's row lock */ 1944 struct pf_udpendpointhash *h0, *h1; 1945 1946 if (mapping == NULL) 1947 return; 1948 1949 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 1950 PF_HASHROW_LOCK(h0); 1951 if (refcount_release(&mapping->refs)) { 1952 LIST_REMOVE(&mapping->endpoints[0], entry); 1953 PF_HASHROW_UNLOCK(h0); 1954 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 1955 PF_HASHROW_LOCK(h1); 1956 LIST_REMOVE(&mapping->endpoints[1], entry); 1957 PF_HASHROW_UNLOCK(h1); 1958 1959 uma_zfree(V_pf_udp_mapping_z, mapping); 1960 } else { 1961 PF_HASHROW_UNLOCK(h0); 1962 } 1963 } 1964 1965 1966 struct pf_udp_mapping * 1967 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key) 1968 { 1969 struct pf_udpendpointhash *uh; 1970 struct pf_udp_endpoint *endpoint; 1971 1972 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)]; 1973 1974 PF_HASHROW_LOCK(uh); 1975 LIST_FOREACH(endpoint, &uh->endpoints, entry) { 1976 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 && 1977 bcmp(endpoint, &endpoint->mapping->endpoints[0], 1978 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1979 break; 1980 } 1981 if (endpoint == NULL) { 1982 PF_HASHROW_UNLOCK(uh); 1983 return (NULL); 1984 } 1985 refcount_acquire(&endpoint->mapping->refs); 1986 PF_HASHROW_UNLOCK(uh); 1987 return (endpoint->mapping); 1988 } 1989 /* END state table stuff */ 1990 1991 static void 1992 pf_send(struct pf_send_entry *pfse) 1993 { 1994 1995 PF_SENDQ_LOCK(); 1996 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1997 PF_SENDQ_UNLOCK(); 1998 swi_sched(V_pf_swi_cookie, 0); 1999 } 2000 2001 static bool 2002 pf_isforlocal(struct mbuf *m, int af) 2003 { 2004 switch (af) { 2005 #ifdef INET 2006 case AF_INET: { 2007 struct ip *ip = mtod(m, struct ip *); 2008 2009 return (in_localip(ip->ip_dst)); 2010 } 2011 #endif 2012 #ifdef INET6 2013 case AF_INET6: { 2014 struct ip6_hdr *ip6; 2015 struct in6_ifaddr *ia; 2016 ip6 = mtod(m, struct ip6_hdr *); 2017 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 2018 if (ia == NULL) 2019 return (false); 2020 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 2021 } 2022 #endif 2023 } 2024 2025 return (false); 2026 } 2027 2028 int 2029 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type, 2030 int *icmp_dir, int *multi, u_int16_t *virtual_id, u_int16_t *virtual_type) 2031 { 2032 /* 2033 * ICMP types marked with PF_OUT are typically responses to 2034 * PF_IN, and will match states in the opposite direction. 2035 * PF_IN ICMP types need to match a state with that type. 2036 */ 2037 *icmp_dir = PF_OUT; 2038 *multi = PF_ICMP_MULTI_LINK; 2039 /* Queries (and responses) */ 2040 switch (pd->af) { 2041 #ifdef INET 2042 case AF_INET: 2043 switch (type) { 2044 case ICMP_ECHO: 2045 *icmp_dir = PF_IN; 2046 case ICMP_ECHOREPLY: 2047 *virtual_type = ICMP_ECHO; 2048 *virtual_id = pd->hdr.icmp.icmp_id; 2049 break; 2050 2051 case ICMP_TSTAMP: 2052 *icmp_dir = PF_IN; 2053 case ICMP_TSTAMPREPLY: 2054 *virtual_type = ICMP_TSTAMP; 2055 *virtual_id = pd->hdr.icmp.icmp_id; 2056 break; 2057 2058 case ICMP_IREQ: 2059 *icmp_dir = PF_IN; 2060 case ICMP_IREQREPLY: 2061 *virtual_type = ICMP_IREQ; 2062 *virtual_id = pd->hdr.icmp.icmp_id; 2063 break; 2064 2065 case ICMP_MASKREQ: 2066 *icmp_dir = PF_IN; 2067 case ICMP_MASKREPLY: 2068 *virtual_type = ICMP_MASKREQ; 2069 *virtual_id = pd->hdr.icmp.icmp_id; 2070 break; 2071 2072 case ICMP_IPV6_WHEREAREYOU: 2073 *icmp_dir = PF_IN; 2074 case ICMP_IPV6_IAMHERE: 2075 *virtual_type = ICMP_IPV6_WHEREAREYOU; 2076 *virtual_id = 0; /* Nothing sane to match on! */ 2077 break; 2078 2079 case ICMP_MOBILE_REGREQUEST: 2080 *icmp_dir = PF_IN; 2081 case ICMP_MOBILE_REGREPLY: 2082 *virtual_type = ICMP_MOBILE_REGREQUEST; 2083 *virtual_id = 0; /* Nothing sane to match on! */ 2084 break; 2085 2086 case ICMP_ROUTERSOLICIT: 2087 *icmp_dir = PF_IN; 2088 case ICMP_ROUTERADVERT: 2089 *virtual_type = ICMP_ROUTERSOLICIT; 2090 *virtual_id = 0; /* Nothing sane to match on! */ 2091 break; 2092 2093 /* These ICMP types map to other connections */ 2094 case ICMP_UNREACH: 2095 case ICMP_SOURCEQUENCH: 2096 case ICMP_REDIRECT: 2097 case ICMP_TIMXCEED: 2098 case ICMP_PARAMPROB: 2099 /* These will not be used, but set them anyway */ 2100 *icmp_dir = PF_IN; 2101 *virtual_type = type; 2102 *virtual_id = 0; 2103 HTONS(*virtual_type); 2104 return (1); /* These types match to another state */ 2105 2106 /* 2107 * All remaining ICMP types get their own states, 2108 * and will only match in one direction. 2109 */ 2110 default: 2111 *icmp_dir = PF_IN; 2112 *virtual_type = type; 2113 *virtual_id = 0; 2114 break; 2115 } 2116 break; 2117 #endif /* INET */ 2118 #ifdef INET6 2119 case AF_INET6: 2120 switch (type) { 2121 case ICMP6_ECHO_REQUEST: 2122 *icmp_dir = PF_IN; 2123 case ICMP6_ECHO_REPLY: 2124 *virtual_type = ICMP6_ECHO_REQUEST; 2125 *virtual_id = pd->hdr.icmp6.icmp6_id; 2126 break; 2127 2128 case MLD_LISTENER_QUERY: 2129 case MLD_LISTENER_REPORT: { 2130 /* 2131 * Listener Report can be sent by clients 2132 * without an associated Listener Query. 2133 * In addition to that, when Report is sent as a 2134 * reply to a Query its source and destination 2135 * address are different. 2136 */ 2137 *icmp_dir = PF_IN; 2138 *virtual_type = MLD_LISTENER_QUERY; 2139 *virtual_id = 0; 2140 break; 2141 } 2142 case MLD_MTRACE: 2143 *icmp_dir = PF_IN; 2144 case MLD_MTRACE_RESP: 2145 *virtual_type = MLD_MTRACE; 2146 *virtual_id = 0; /* Nothing sane to match on! */ 2147 break; 2148 2149 case ND_NEIGHBOR_SOLICIT: 2150 *icmp_dir = PF_IN; 2151 case ND_NEIGHBOR_ADVERT: { 2152 *virtual_type = ND_NEIGHBOR_SOLICIT; 2153 *virtual_id = 0; 2154 break; 2155 } 2156 2157 /* 2158 * These ICMP types map to other connections. 2159 * ND_REDIRECT can't be in this list because the triggering 2160 * packet header is optional. 2161 */ 2162 case ICMP6_DST_UNREACH: 2163 case ICMP6_PACKET_TOO_BIG: 2164 case ICMP6_TIME_EXCEEDED: 2165 case ICMP6_PARAM_PROB: 2166 /* These will not be used, but set them anyway */ 2167 *icmp_dir = PF_IN; 2168 *virtual_type = type; 2169 *virtual_id = 0; 2170 HTONS(*virtual_type); 2171 return (1); /* These types match to another state */ 2172 /* 2173 * All remaining ICMP6 types get their own states, 2174 * and will only match in one direction. 2175 */ 2176 default: 2177 *icmp_dir = PF_IN; 2178 *virtual_type = type; 2179 *virtual_id = 0; 2180 break; 2181 } 2182 break; 2183 #endif /* INET6 */ 2184 } 2185 HTONS(*virtual_type); 2186 return (0); /* These types match to their own state */ 2187 } 2188 2189 void 2190 pf_intr(void *v) 2191 { 2192 struct epoch_tracker et; 2193 struct pf_send_head queue; 2194 struct pf_send_entry *pfse, *next; 2195 2196 CURVNET_SET((struct vnet *)v); 2197 2198 PF_SENDQ_LOCK(); 2199 queue = V_pf_sendqueue; 2200 STAILQ_INIT(&V_pf_sendqueue); 2201 PF_SENDQ_UNLOCK(); 2202 2203 NET_EPOCH_ENTER(et); 2204 2205 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 2206 switch (pfse->pfse_type) { 2207 #ifdef INET 2208 case PFSE_IP: { 2209 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 2210 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif, 2211 ("%s: rcvif != loif", __func__)); 2212 2213 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 2214 pfse->pfse_m->m_pkthdr.csum_flags |= 2215 CSUM_IP_VALID | CSUM_IP_CHECKED; 2216 ip_input(pfse->pfse_m); 2217 } else { 2218 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2219 NULL); 2220 } 2221 break; 2222 } 2223 case PFSE_ICMP: 2224 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 2225 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 2226 break; 2227 #endif /* INET */ 2228 #ifdef INET6 2229 case PFSE_IP6: 2230 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 2231 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif, 2232 ("%s: rcvif != loif", __func__)); 2233 2234 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL | 2235 M_LOOP; 2236 ip6_input(pfse->pfse_m); 2237 } else { 2238 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2239 NULL, NULL); 2240 } 2241 break; 2242 case PFSE_ICMP6: 2243 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 2244 pfse->icmpopts.code, pfse->icmpopts.mtu); 2245 break; 2246 #endif /* INET6 */ 2247 default: 2248 panic("%s: unknown type", __func__); 2249 } 2250 free(pfse, M_PFTEMP); 2251 } 2252 NET_EPOCH_EXIT(et); 2253 CURVNET_RESTORE(); 2254 } 2255 2256 #define pf_purge_thread_period (hz / 10) 2257 2258 #ifdef PF_WANT_32_TO_64_COUNTER 2259 static void 2260 pf_status_counter_u64_periodic(void) 2261 { 2262 2263 PF_RULES_RASSERT(); 2264 2265 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 2266 return; 2267 } 2268 2269 for (int i = 0; i < FCNT_MAX; i++) { 2270 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 2271 } 2272 } 2273 2274 static void 2275 pf_kif_counter_u64_periodic(void) 2276 { 2277 struct pfi_kkif *kif; 2278 size_t r, run; 2279 2280 PF_RULES_RASSERT(); 2281 2282 if (__predict_false(V_pf_allkifcount == 0)) { 2283 return; 2284 } 2285 2286 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2287 return; 2288 } 2289 2290 run = V_pf_allkifcount / 10; 2291 if (run < 5) 2292 run = 5; 2293 2294 for (r = 0; r < run; r++) { 2295 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 2296 if (kif == NULL) { 2297 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2298 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 2299 break; 2300 } 2301 2302 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2303 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 2304 2305 for (int i = 0; i < 2; i++) { 2306 for (int j = 0; j < 2; j++) { 2307 for (int k = 0; k < 2; k++) { 2308 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 2309 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 2310 } 2311 } 2312 } 2313 } 2314 } 2315 2316 static void 2317 pf_rule_counter_u64_periodic(void) 2318 { 2319 struct pf_krule *rule; 2320 size_t r, run; 2321 2322 PF_RULES_RASSERT(); 2323 2324 if (__predict_false(V_pf_allrulecount == 0)) { 2325 return; 2326 } 2327 2328 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2329 return; 2330 } 2331 2332 run = V_pf_allrulecount / 10; 2333 if (run < 5) 2334 run = 5; 2335 2336 for (r = 0; r < run; r++) { 2337 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 2338 if (rule == NULL) { 2339 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2340 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 2341 break; 2342 } 2343 2344 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2345 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 2346 2347 pf_counter_u64_periodic(&rule->evaluations); 2348 for (int i = 0; i < 2; i++) { 2349 pf_counter_u64_periodic(&rule->packets[i]); 2350 pf_counter_u64_periodic(&rule->bytes[i]); 2351 } 2352 } 2353 } 2354 2355 static void 2356 pf_counter_u64_periodic_main(void) 2357 { 2358 PF_RULES_RLOCK_TRACKER; 2359 2360 V_pf_counter_periodic_iter++; 2361 2362 PF_RULES_RLOCK(); 2363 pf_counter_u64_critical_enter(); 2364 pf_status_counter_u64_periodic(); 2365 pf_kif_counter_u64_periodic(); 2366 pf_rule_counter_u64_periodic(); 2367 pf_counter_u64_critical_exit(); 2368 PF_RULES_RUNLOCK(); 2369 } 2370 #else 2371 #define pf_counter_u64_periodic_main() do { } while (0) 2372 #endif 2373 2374 void 2375 pf_purge_thread(void *unused __unused) 2376 { 2377 struct epoch_tracker et; 2378 2379 VNET_ITERATOR_DECL(vnet_iter); 2380 2381 sx_xlock(&pf_end_lock); 2382 while (pf_end_threads == 0) { 2383 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 2384 2385 VNET_LIST_RLOCK(); 2386 NET_EPOCH_ENTER(et); 2387 VNET_FOREACH(vnet_iter) { 2388 CURVNET_SET(vnet_iter); 2389 2390 /* Wait until V_pf_default_rule is initialized. */ 2391 if (V_pf_vnet_active == 0) { 2392 CURVNET_RESTORE(); 2393 continue; 2394 } 2395 2396 pf_counter_u64_periodic_main(); 2397 2398 /* 2399 * Process 1/interval fraction of the state 2400 * table every run. 2401 */ 2402 V_pf_purge_idx = 2403 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask / 2404 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 2405 2406 /* 2407 * Purge other expired types every 2408 * PFTM_INTERVAL seconds. 2409 */ 2410 if (V_pf_purge_idx == 0) { 2411 /* 2412 * Order is important: 2413 * - states and src nodes reference rules 2414 * - states and rules reference kifs 2415 */ 2416 pf_purge_expired_fragments(); 2417 pf_purge_expired_src_nodes(); 2418 pf_purge_unlinked_rules(); 2419 pfi_kkif_purge(); 2420 } 2421 CURVNET_RESTORE(); 2422 } 2423 NET_EPOCH_EXIT(et); 2424 VNET_LIST_RUNLOCK(); 2425 } 2426 2427 pf_end_threads++; 2428 sx_xunlock(&pf_end_lock); 2429 kproc_exit(0); 2430 } 2431 2432 void 2433 pf_unload_vnet_purge(void) 2434 { 2435 2436 /* 2437 * To cleanse up all kifs and rules we need 2438 * two runs: first one clears reference flags, 2439 * then pf_purge_expired_states() doesn't 2440 * raise them, and then second run frees. 2441 */ 2442 pf_purge_unlinked_rules(); 2443 pfi_kkif_purge(); 2444 2445 /* 2446 * Now purge everything. 2447 */ 2448 pf_purge_expired_states(0, V_pf_hashmask); 2449 pf_purge_fragments(UINT_MAX); 2450 pf_purge_expired_src_nodes(); 2451 2452 /* 2453 * Now all kifs & rules should be unreferenced, 2454 * thus should be successfully freed. 2455 */ 2456 pf_purge_unlinked_rules(); 2457 pfi_kkif_purge(); 2458 } 2459 2460 u_int32_t 2461 pf_state_expires(const struct pf_kstate *state) 2462 { 2463 u_int32_t timeout; 2464 u_int32_t start; 2465 u_int32_t end; 2466 u_int32_t states; 2467 2468 /* handle all PFTM_* > PFTM_MAX here */ 2469 if (state->timeout == PFTM_PURGE) 2470 return (time_uptime); 2471 KASSERT(state->timeout != PFTM_UNLINKED, 2472 ("pf_state_expires: timeout == PFTM_UNLINKED")); 2473 KASSERT((state->timeout < PFTM_MAX), 2474 ("pf_state_expires: timeout > PFTM_MAX")); 2475 timeout = state->rule->timeout[state->timeout]; 2476 if (!timeout) 2477 timeout = V_pf_default_rule.timeout[state->timeout]; 2478 start = state->rule->timeout[PFTM_ADAPTIVE_START]; 2479 if (start && state->rule != &V_pf_default_rule) { 2480 end = state->rule->timeout[PFTM_ADAPTIVE_END]; 2481 states = counter_u64_fetch(state->rule->states_cur); 2482 } else { 2483 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 2484 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 2485 states = V_pf_status.states; 2486 } 2487 if (end && states > start && start < end) { 2488 if (states < end) { 2489 timeout = (u_int64_t)timeout * (end - states) / 2490 (end - start); 2491 return ((state->expire / 1000) + timeout); 2492 } 2493 else 2494 return (time_uptime); 2495 } 2496 return ((state->expire / 1000) + timeout); 2497 } 2498 2499 void 2500 pf_purge_expired_src_nodes(void) 2501 { 2502 struct pf_ksrc_node_list freelist; 2503 struct pf_srchash *sh; 2504 struct pf_ksrc_node *cur, *next; 2505 int i; 2506 2507 LIST_INIT(&freelist); 2508 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 2509 PF_HASHROW_LOCK(sh); 2510 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 2511 if (cur->states == 0 && cur->expire <= time_uptime) { 2512 pf_unlink_src_node(cur); 2513 LIST_INSERT_HEAD(&freelist, cur, entry); 2514 } else if (cur->rule != NULL) 2515 cur->rule->rule_ref |= PFRULE_REFS; 2516 PF_HASHROW_UNLOCK(sh); 2517 } 2518 2519 pf_free_src_nodes(&freelist); 2520 2521 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2522 } 2523 2524 static void 2525 pf_src_tree_remove_state(struct pf_kstate *s) 2526 { 2527 struct pf_ksrc_node *sn; 2528 uint32_t timeout; 2529 2530 timeout = s->rule->timeout[PFTM_SRC_NODE] ? 2531 s->rule->timeout[PFTM_SRC_NODE] : 2532 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2533 2534 if (s->src_node != NULL) { 2535 sn = s->src_node; 2536 PF_SRC_NODE_LOCK(sn); 2537 if (s->src.tcp_est) 2538 --sn->conn; 2539 if (--sn->states == 0) 2540 sn->expire = time_uptime + timeout; 2541 PF_SRC_NODE_UNLOCK(sn); 2542 } 2543 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 2544 sn = s->nat_src_node; 2545 PF_SRC_NODE_LOCK(sn); 2546 if (--sn->states == 0) 2547 sn->expire = time_uptime + timeout; 2548 PF_SRC_NODE_UNLOCK(sn); 2549 } 2550 s->src_node = s->nat_src_node = NULL; 2551 } 2552 2553 /* 2554 * Unlink and potentilly free a state. Function may be 2555 * called with ID hash row locked, but always returns 2556 * unlocked, since it needs to go through key hash locking. 2557 */ 2558 int 2559 pf_unlink_state(struct pf_kstate *s) 2560 { 2561 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2562 2563 NET_EPOCH_ASSERT(); 2564 PF_HASHROW_ASSERT(ih); 2565 2566 if (s->timeout == PFTM_UNLINKED) { 2567 /* 2568 * State is being processed 2569 * by pf_unlink_state() in 2570 * an other thread. 2571 */ 2572 PF_HASHROW_UNLOCK(ih); 2573 return (0); /* XXXGL: undefined actually */ 2574 } 2575 2576 if (s->src.state == PF_TCPS_PROXY_DST) { 2577 /* XXX wire key the right one? */ 2578 pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af, 2579 &s->key[PF_SK_WIRE]->addr[1], 2580 &s->key[PF_SK_WIRE]->addr[0], 2581 s->key[PF_SK_WIRE]->port[1], 2582 s->key[PF_SK_WIRE]->port[0], 2583 s->src.seqhi, s->src.seqlo + 1, 2584 TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0, 2585 s->act.rtableid); 2586 } 2587 2588 LIST_REMOVE(s, entry); 2589 pf_src_tree_remove_state(s); 2590 2591 if (V_pfsync_delete_state_ptr != NULL) 2592 V_pfsync_delete_state_ptr(s); 2593 2594 STATE_DEC_COUNTERS(s); 2595 2596 s->timeout = PFTM_UNLINKED; 2597 2598 /* Ensure we remove it from the list of halfopen states, if needed. */ 2599 if (s->key[PF_SK_STACK] != NULL && 2600 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2601 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2602 2603 PF_HASHROW_UNLOCK(ih); 2604 2605 pf_detach_state(s); 2606 2607 pf_udp_mapping_release(s->udp_mapping); 2608 2609 /* pf_state_insert() initialises refs to 2 */ 2610 return (pf_release_staten(s, 2)); 2611 } 2612 2613 struct pf_kstate * 2614 pf_alloc_state(int flags) 2615 { 2616 2617 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2618 } 2619 2620 void 2621 pf_free_state(struct pf_kstate *cur) 2622 { 2623 struct pf_krule_item *ri; 2624 2625 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2626 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2627 cur->timeout)); 2628 2629 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2630 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2631 free(ri, M_PF_RULE_ITEM); 2632 } 2633 2634 pf_normalize_tcp_cleanup(cur); 2635 uma_zfree(V_pf_state_z, cur); 2636 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2637 } 2638 2639 /* 2640 * Called only from pf_purge_thread(), thus serialized. 2641 */ 2642 static u_int 2643 pf_purge_expired_states(u_int i, int maxcheck) 2644 { 2645 struct pf_idhash *ih; 2646 struct pf_kstate *s; 2647 struct pf_krule_item *mrm; 2648 size_t count __unused; 2649 2650 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2651 2652 /* 2653 * Go through hash and unlink states that expire now. 2654 */ 2655 while (maxcheck > 0) { 2656 count = 0; 2657 ih = &V_pf_idhash[i]; 2658 2659 /* only take the lock if we expect to do work */ 2660 if (!LIST_EMPTY(&ih->states)) { 2661 relock: 2662 PF_HASHROW_LOCK(ih); 2663 LIST_FOREACH(s, &ih->states, entry) { 2664 if (pf_state_expires(s) <= time_uptime) { 2665 V_pf_status.states -= 2666 pf_unlink_state(s); 2667 goto relock; 2668 } 2669 s->rule->rule_ref |= PFRULE_REFS; 2670 if (s->nat_rule != NULL) 2671 s->nat_rule->rule_ref |= PFRULE_REFS; 2672 if (s->anchor != NULL) 2673 s->anchor->rule_ref |= PFRULE_REFS; 2674 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2675 SLIST_FOREACH(mrm, &s->match_rules, entry) 2676 mrm->r->rule_ref |= PFRULE_REFS; 2677 if (s->rt_kif) 2678 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2679 count++; 2680 } 2681 PF_HASHROW_UNLOCK(ih); 2682 } 2683 2684 SDT_PROBE2(pf, purge, state, rowcount, i, count); 2685 2686 /* Return when we hit end of hash. */ 2687 if (++i > V_pf_hashmask) { 2688 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2689 return (0); 2690 } 2691 2692 maxcheck--; 2693 } 2694 2695 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2696 2697 return (i); 2698 } 2699 2700 static void 2701 pf_purge_unlinked_rules(void) 2702 { 2703 struct pf_krulequeue tmpq; 2704 struct pf_krule *r, *r1; 2705 2706 /* 2707 * If we have overloading task pending, then we'd 2708 * better skip purging this time. There is a tiny 2709 * probability that overloading task references 2710 * an already unlinked rule. 2711 */ 2712 PF_OVERLOADQ_LOCK(); 2713 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2714 PF_OVERLOADQ_UNLOCK(); 2715 return; 2716 } 2717 PF_OVERLOADQ_UNLOCK(); 2718 2719 /* 2720 * Do naive mark-and-sweep garbage collecting of old rules. 2721 * Reference flag is raised by pf_purge_expired_states() 2722 * and pf_purge_expired_src_nodes(). 2723 * 2724 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2725 * use a temporary queue. 2726 */ 2727 TAILQ_INIT(&tmpq); 2728 PF_UNLNKDRULES_LOCK(); 2729 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2730 if (!(r->rule_ref & PFRULE_REFS)) { 2731 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2732 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2733 } else 2734 r->rule_ref &= ~PFRULE_REFS; 2735 } 2736 PF_UNLNKDRULES_UNLOCK(); 2737 2738 if (!TAILQ_EMPTY(&tmpq)) { 2739 PF_CONFIG_LOCK(); 2740 PF_RULES_WLOCK(); 2741 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2742 TAILQ_REMOVE(&tmpq, r, entries); 2743 pf_free_rule(r); 2744 } 2745 PF_RULES_WUNLOCK(); 2746 PF_CONFIG_UNLOCK(); 2747 } 2748 } 2749 2750 void 2751 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2752 { 2753 switch (af) { 2754 #ifdef INET 2755 case AF_INET: { 2756 u_int32_t a = ntohl(addr->addr32[0]); 2757 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2758 (a>>8)&255, a&255); 2759 if (p) { 2760 p = ntohs(p); 2761 printf(":%u", p); 2762 } 2763 break; 2764 } 2765 #endif /* INET */ 2766 #ifdef INET6 2767 case AF_INET6: { 2768 u_int16_t b; 2769 u_int8_t i, curstart, curend, maxstart, maxend; 2770 curstart = curend = maxstart = maxend = 255; 2771 for (i = 0; i < 8; i++) { 2772 if (!addr->addr16[i]) { 2773 if (curstart == 255) 2774 curstart = i; 2775 curend = i; 2776 } else { 2777 if ((curend - curstart) > 2778 (maxend - maxstart)) { 2779 maxstart = curstart; 2780 maxend = curend; 2781 } 2782 curstart = curend = 255; 2783 } 2784 } 2785 if ((curend - curstart) > 2786 (maxend - maxstart)) { 2787 maxstart = curstart; 2788 maxend = curend; 2789 } 2790 for (i = 0; i < 8; i++) { 2791 if (i >= maxstart && i <= maxend) { 2792 if (i == 0) 2793 printf(":"); 2794 if (i == maxend) 2795 printf(":"); 2796 } else { 2797 b = ntohs(addr->addr16[i]); 2798 printf("%x", b); 2799 if (i < 7) 2800 printf(":"); 2801 } 2802 } 2803 if (p) { 2804 p = ntohs(p); 2805 printf("[%u]", p); 2806 } 2807 break; 2808 } 2809 #endif /* INET6 */ 2810 } 2811 } 2812 2813 void 2814 pf_print_state(struct pf_kstate *s) 2815 { 2816 pf_print_state_parts(s, NULL, NULL); 2817 } 2818 2819 static void 2820 pf_print_state_parts(struct pf_kstate *s, 2821 struct pf_state_key *skwp, struct pf_state_key *sksp) 2822 { 2823 struct pf_state_key *skw, *sks; 2824 u_int8_t proto, dir; 2825 2826 /* Do our best to fill these, but they're skipped if NULL */ 2827 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2828 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2829 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2830 dir = s ? s->direction : 0; 2831 2832 switch (proto) { 2833 case IPPROTO_IPV4: 2834 printf("IPv4"); 2835 break; 2836 case IPPROTO_IPV6: 2837 printf("IPv6"); 2838 break; 2839 case IPPROTO_TCP: 2840 printf("TCP"); 2841 break; 2842 case IPPROTO_UDP: 2843 printf("UDP"); 2844 break; 2845 case IPPROTO_ICMP: 2846 printf("ICMP"); 2847 break; 2848 case IPPROTO_ICMPV6: 2849 printf("ICMPv6"); 2850 break; 2851 default: 2852 printf("%u", proto); 2853 break; 2854 } 2855 switch (dir) { 2856 case PF_IN: 2857 printf(" in"); 2858 break; 2859 case PF_OUT: 2860 printf(" out"); 2861 break; 2862 } 2863 if (skw) { 2864 printf(" wire: "); 2865 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2866 printf(" "); 2867 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2868 } 2869 if (sks) { 2870 printf(" stack: "); 2871 if (sks != skw) { 2872 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2873 printf(" "); 2874 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2875 } else 2876 printf("-"); 2877 } 2878 if (s) { 2879 if (proto == IPPROTO_TCP) { 2880 printf(" [lo=%u high=%u win=%u modulator=%u", 2881 s->src.seqlo, s->src.seqhi, 2882 s->src.max_win, s->src.seqdiff); 2883 if (s->src.wscale && s->dst.wscale) 2884 printf(" wscale=%u", 2885 s->src.wscale & PF_WSCALE_MASK); 2886 printf("]"); 2887 printf(" [lo=%u high=%u win=%u modulator=%u", 2888 s->dst.seqlo, s->dst.seqhi, 2889 s->dst.max_win, s->dst.seqdiff); 2890 if (s->src.wscale && s->dst.wscale) 2891 printf(" wscale=%u", 2892 s->dst.wscale & PF_WSCALE_MASK); 2893 printf("]"); 2894 } 2895 printf(" %u:%u", s->src.state, s->dst.state); 2896 if (s->rule) 2897 printf(" @%d", s->rule->nr); 2898 } 2899 } 2900 2901 void 2902 pf_print_flags(u_int8_t f) 2903 { 2904 if (f) 2905 printf(" "); 2906 if (f & TH_FIN) 2907 printf("F"); 2908 if (f & TH_SYN) 2909 printf("S"); 2910 if (f & TH_RST) 2911 printf("R"); 2912 if (f & TH_PUSH) 2913 printf("P"); 2914 if (f & TH_ACK) 2915 printf("A"); 2916 if (f & TH_URG) 2917 printf("U"); 2918 if (f & TH_ECE) 2919 printf("E"); 2920 if (f & TH_CWR) 2921 printf("W"); 2922 } 2923 2924 #define PF_SET_SKIP_STEPS(i) \ 2925 do { \ 2926 while (head[i] != cur) { \ 2927 head[i]->skip[i] = cur; \ 2928 head[i] = TAILQ_NEXT(head[i], entries); \ 2929 } \ 2930 } while (0) 2931 2932 void 2933 pf_calc_skip_steps(struct pf_krulequeue *rules) 2934 { 2935 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2936 int i; 2937 2938 cur = TAILQ_FIRST(rules); 2939 prev = cur; 2940 for (i = 0; i < PF_SKIP_COUNT; ++i) 2941 head[i] = cur; 2942 while (cur != NULL) { 2943 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2944 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2945 if (cur->direction != prev->direction) 2946 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2947 if (cur->af != prev->af) 2948 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2949 if (cur->proto != prev->proto) 2950 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2951 if (cur->src.neg != prev->src.neg || 2952 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2953 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2954 if (cur->dst.neg != prev->dst.neg || 2955 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2956 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2957 if (cur->src.port[0] != prev->src.port[0] || 2958 cur->src.port[1] != prev->src.port[1] || 2959 cur->src.port_op != prev->src.port_op) 2960 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2961 if (cur->dst.port[0] != prev->dst.port[0] || 2962 cur->dst.port[1] != prev->dst.port[1] || 2963 cur->dst.port_op != prev->dst.port_op) 2964 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2965 2966 prev = cur; 2967 cur = TAILQ_NEXT(cur, entries); 2968 } 2969 for (i = 0; i < PF_SKIP_COUNT; ++i) 2970 PF_SET_SKIP_STEPS(i); 2971 } 2972 2973 int 2974 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2975 { 2976 if (aw1->type != aw2->type) 2977 return (1); 2978 switch (aw1->type) { 2979 case PF_ADDR_ADDRMASK: 2980 case PF_ADDR_RANGE: 2981 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2982 return (1); 2983 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2984 return (1); 2985 return (0); 2986 case PF_ADDR_DYNIFTL: 2987 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2988 case PF_ADDR_NOROUTE: 2989 case PF_ADDR_URPFFAILED: 2990 return (0); 2991 case PF_ADDR_TABLE: 2992 return (aw1->p.tbl != aw2->p.tbl); 2993 default: 2994 printf("invalid address type: %d\n", aw1->type); 2995 return (1); 2996 } 2997 } 2998 2999 /** 3000 * Checksum updates are a little complicated because the checksum in the TCP/UDP 3001 * header isn't always a full checksum. In some cases (i.e. output) it's a 3002 * pseudo-header checksum, which is a partial checksum over src/dst IP 3003 * addresses, protocol number and length. 3004 * 3005 * That means we have the following cases: 3006 * * Input or forwarding: we don't have TSO, the checksum fields are full 3007 * checksums, we need to update the checksum whenever we change anything. 3008 * * Output (i.e. the checksum is a pseudo-header checksum): 3009 * x The field being updated is src/dst address or affects the length of 3010 * the packet. We need to update the pseudo-header checksum (note that this 3011 * checksum is not ones' complement). 3012 * x Some other field is being modified (e.g. src/dst port numbers): We 3013 * don't have to update anything. 3014 **/ 3015 u_int16_t 3016 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 3017 { 3018 u_int32_t x; 3019 3020 x = cksum + old - new; 3021 x = (x + (x >> 16)) & 0xffff; 3022 3023 /* optimise: eliminate a branch when not udp */ 3024 if (udp && cksum == 0x0000) 3025 return cksum; 3026 if (udp && x == 0x0000) 3027 x = 0xffff; 3028 3029 return (u_int16_t)(x); 3030 } 3031 3032 static void 3033 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 3034 u_int8_t udp) 3035 { 3036 u_int16_t old = htons(hi ? (*f << 8) : *f); 3037 u_int16_t new = htons(hi ? ( v << 8) : v); 3038 3039 if (*f == v) 3040 return; 3041 3042 *f = v; 3043 3044 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3045 return; 3046 3047 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 3048 } 3049 3050 void 3051 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 3052 bool hi, u_int8_t udp) 3053 { 3054 u_int8_t *fb = (u_int8_t *)f; 3055 u_int8_t *vb = (u_int8_t *)&v; 3056 3057 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3058 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3059 } 3060 3061 void 3062 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 3063 bool hi, u_int8_t udp) 3064 { 3065 u_int8_t *fb = (u_int8_t *)f; 3066 u_int8_t *vb = (u_int8_t *)&v; 3067 3068 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3069 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3070 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3071 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3072 } 3073 3074 u_int16_t 3075 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 3076 u_int16_t new, u_int8_t udp) 3077 { 3078 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3079 return (cksum); 3080 3081 return (pf_cksum_fixup(cksum, old, new, udp)); 3082 } 3083 3084 static void 3085 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 3086 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 3087 sa_family_t af) 3088 { 3089 struct pf_addr ao; 3090 u_int16_t po = *p; 3091 3092 PF_ACPY(&ao, a, af); 3093 PF_ACPY(a, an, af); 3094 3095 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3096 *pc = ~*pc; 3097 3098 *p = pn; 3099 3100 switch (af) { 3101 #ifdef INET 3102 case AF_INET: 3103 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3104 ao.addr16[0], an->addr16[0], 0), 3105 ao.addr16[1], an->addr16[1], 0); 3106 *p = pn; 3107 3108 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 3109 ao.addr16[0], an->addr16[0], u), 3110 ao.addr16[1], an->addr16[1], u); 3111 3112 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 3113 break; 3114 #endif /* INET */ 3115 #ifdef INET6 3116 case AF_INET6: 3117 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3118 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3119 pf_cksum_fixup(pf_cksum_fixup(*pc, 3120 ao.addr16[0], an->addr16[0], u), 3121 ao.addr16[1], an->addr16[1], u), 3122 ao.addr16[2], an->addr16[2], u), 3123 ao.addr16[3], an->addr16[3], u), 3124 ao.addr16[4], an->addr16[4], u), 3125 ao.addr16[5], an->addr16[5], u), 3126 ao.addr16[6], an->addr16[6], u), 3127 ao.addr16[7], an->addr16[7], u); 3128 3129 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 3130 break; 3131 #endif /* INET6 */ 3132 } 3133 3134 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 3135 CSUM_DELAY_DATA_IPV6)) { 3136 *pc = ~*pc; 3137 if (! *pc) 3138 *pc = 0xffff; 3139 } 3140 } 3141 3142 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 3143 void 3144 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 3145 { 3146 u_int32_t ao; 3147 3148 memcpy(&ao, a, sizeof(ao)); 3149 memcpy(a, &an, sizeof(u_int32_t)); 3150 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 3151 ao % 65536, an % 65536, u); 3152 } 3153 3154 void 3155 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 3156 { 3157 u_int32_t ao; 3158 3159 memcpy(&ao, a, sizeof(ao)); 3160 memcpy(a, &an, sizeof(u_int32_t)); 3161 3162 *c = pf_proto_cksum_fixup(m, 3163 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 3164 ao % 65536, an % 65536, udp); 3165 } 3166 3167 #ifdef INET6 3168 static void 3169 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 3170 { 3171 struct pf_addr ao; 3172 3173 PF_ACPY(&ao, a, AF_INET6); 3174 PF_ACPY(a, an, AF_INET6); 3175 3176 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3177 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3178 pf_cksum_fixup(pf_cksum_fixup(*c, 3179 ao.addr16[0], an->addr16[0], u), 3180 ao.addr16[1], an->addr16[1], u), 3181 ao.addr16[2], an->addr16[2], u), 3182 ao.addr16[3], an->addr16[3], u), 3183 ao.addr16[4], an->addr16[4], u), 3184 ao.addr16[5], an->addr16[5], u), 3185 ao.addr16[6], an->addr16[6], u), 3186 ao.addr16[7], an->addr16[7], u); 3187 } 3188 #endif /* INET6 */ 3189 3190 static void 3191 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 3192 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 3193 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 3194 { 3195 struct pf_addr oia, ooa; 3196 3197 PF_ACPY(&oia, ia, af); 3198 if (oa) 3199 PF_ACPY(&ooa, oa, af); 3200 3201 /* Change inner protocol port, fix inner protocol checksum. */ 3202 if (ip != NULL) { 3203 u_int16_t oip = *ip; 3204 u_int32_t opc; 3205 3206 if (pc != NULL) 3207 opc = *pc; 3208 *ip = np; 3209 if (pc != NULL) 3210 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 3211 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 3212 if (pc != NULL) 3213 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 3214 } 3215 /* Change inner ip address, fix inner ip and icmp checksums. */ 3216 PF_ACPY(ia, na, af); 3217 switch (af) { 3218 #ifdef INET 3219 case AF_INET: { 3220 u_int32_t oh2c = *h2c; 3221 3222 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 3223 oia.addr16[0], ia->addr16[0], 0), 3224 oia.addr16[1], ia->addr16[1], 0); 3225 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3226 oia.addr16[0], ia->addr16[0], 0), 3227 oia.addr16[1], ia->addr16[1], 0); 3228 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 3229 break; 3230 } 3231 #endif /* INET */ 3232 #ifdef INET6 3233 case AF_INET6: 3234 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3235 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3236 pf_cksum_fixup(pf_cksum_fixup(*ic, 3237 oia.addr16[0], ia->addr16[0], u), 3238 oia.addr16[1], ia->addr16[1], u), 3239 oia.addr16[2], ia->addr16[2], u), 3240 oia.addr16[3], ia->addr16[3], u), 3241 oia.addr16[4], ia->addr16[4], u), 3242 oia.addr16[5], ia->addr16[5], u), 3243 oia.addr16[6], ia->addr16[6], u), 3244 oia.addr16[7], ia->addr16[7], u); 3245 break; 3246 #endif /* INET6 */ 3247 } 3248 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 3249 if (oa) { 3250 PF_ACPY(oa, na, af); 3251 switch (af) { 3252 #ifdef INET 3253 case AF_INET: 3254 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 3255 ooa.addr16[0], oa->addr16[0], 0), 3256 ooa.addr16[1], oa->addr16[1], 0); 3257 break; 3258 #endif /* INET */ 3259 #ifdef INET6 3260 case AF_INET6: 3261 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3262 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3263 pf_cksum_fixup(pf_cksum_fixup(*ic, 3264 ooa.addr16[0], oa->addr16[0], u), 3265 ooa.addr16[1], oa->addr16[1], u), 3266 ooa.addr16[2], oa->addr16[2], u), 3267 ooa.addr16[3], oa->addr16[3], u), 3268 ooa.addr16[4], oa->addr16[4], u), 3269 ooa.addr16[5], oa->addr16[5], u), 3270 ooa.addr16[6], oa->addr16[6], u), 3271 ooa.addr16[7], oa->addr16[7], u); 3272 break; 3273 #endif /* INET6 */ 3274 } 3275 } 3276 } 3277 3278 /* 3279 * Need to modulate the sequence numbers in the TCP SACK option 3280 * (credits to Krzysztof Pfaff for report and patch) 3281 */ 3282 static int 3283 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th, 3284 struct pf_state_peer *dst) 3285 { 3286 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 3287 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 3288 int copyback = 0, i, olen; 3289 struct sackblk sack; 3290 3291 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 3292 if (hlen < TCPOLEN_SACKLEN || 3293 !pf_pull_hdr(pd->m, pd->off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 3294 return 0; 3295 3296 while (hlen >= TCPOLEN_SACKLEN) { 3297 size_t startoff = opt - opts; 3298 olen = opt[1]; 3299 switch (*opt) { 3300 case TCPOPT_EOL: /* FALLTHROUGH */ 3301 case TCPOPT_NOP: 3302 opt++; 3303 hlen--; 3304 break; 3305 case TCPOPT_SACK: 3306 if (olen > hlen) 3307 olen = hlen; 3308 if (olen >= TCPOLEN_SACKLEN) { 3309 for (i = 2; i + TCPOLEN_SACK <= olen; 3310 i += TCPOLEN_SACK) { 3311 memcpy(&sack, &opt[i], sizeof(sack)); 3312 pf_patch_32_unaligned(pd->m, 3313 &th->th_sum, &sack.start, 3314 htonl(ntohl(sack.start) - dst->seqdiff), 3315 PF_ALGNMNT(startoff), 3316 0); 3317 pf_patch_32_unaligned(pd->m, &th->th_sum, 3318 &sack.end, 3319 htonl(ntohl(sack.end) - dst->seqdiff), 3320 PF_ALGNMNT(startoff), 3321 0); 3322 memcpy(&opt[i], &sack, sizeof(sack)); 3323 } 3324 copyback = 1; 3325 } 3326 /* FALLTHROUGH */ 3327 default: 3328 if (olen < 2) 3329 olen = 2; 3330 hlen -= olen; 3331 opt += olen; 3332 } 3333 } 3334 3335 if (copyback) 3336 m_copyback(pd->m, pd->off + sizeof(*th), thoptlen, (caddr_t)opts); 3337 return (copyback); 3338 } 3339 3340 struct mbuf * 3341 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 3342 const struct pf_addr *saddr, const struct pf_addr *daddr, 3343 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3344 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3345 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3346 { 3347 struct mbuf *m; 3348 int len, tlen; 3349 #ifdef INET 3350 struct ip *h = NULL; 3351 #endif /* INET */ 3352 #ifdef INET6 3353 struct ip6_hdr *h6 = NULL; 3354 #endif /* INET6 */ 3355 struct tcphdr *th; 3356 char *opt; 3357 struct pf_mtag *pf_mtag; 3358 3359 len = 0; 3360 th = NULL; 3361 3362 /* maximum segment size tcp option */ 3363 tlen = sizeof(struct tcphdr); 3364 if (mss) 3365 tlen += 4; 3366 3367 switch (af) { 3368 #ifdef INET 3369 case AF_INET: 3370 len = sizeof(struct ip) + tlen; 3371 break; 3372 #endif /* INET */ 3373 #ifdef INET6 3374 case AF_INET6: 3375 len = sizeof(struct ip6_hdr) + tlen; 3376 break; 3377 #endif /* INET6 */ 3378 } 3379 3380 m = m_gethdr(M_NOWAIT, MT_DATA); 3381 if (m == NULL) 3382 return (NULL); 3383 3384 #ifdef MAC 3385 mac_netinet_firewall_send(m); 3386 #endif 3387 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 3388 m_freem(m); 3389 return (NULL); 3390 } 3391 m->m_flags |= mbuf_flags; 3392 pf_mtag->tag = mtag_tag; 3393 pf_mtag->flags = mtag_flags; 3394 3395 if (rtableid >= 0) 3396 M_SETFIB(m, rtableid); 3397 3398 #ifdef ALTQ 3399 if (r != NULL && r->qid) { 3400 pf_mtag->qid = r->qid; 3401 3402 /* add hints for ecn */ 3403 pf_mtag->hdr = mtod(m, struct ip *); 3404 } 3405 #endif /* ALTQ */ 3406 m->m_data += max_linkhdr; 3407 m->m_pkthdr.len = m->m_len = len; 3408 /* The rest of the stack assumes a rcvif, so provide one. 3409 * This is a locally generated packet, so .. close enough. */ 3410 m->m_pkthdr.rcvif = V_loif; 3411 bzero(m->m_data, len); 3412 switch (af) { 3413 #ifdef INET 3414 case AF_INET: 3415 h = mtod(m, struct ip *); 3416 3417 /* IP header fields included in the TCP checksum */ 3418 h->ip_p = IPPROTO_TCP; 3419 h->ip_len = htons(tlen); 3420 h->ip_src.s_addr = saddr->v4.s_addr; 3421 h->ip_dst.s_addr = daddr->v4.s_addr; 3422 3423 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 3424 break; 3425 #endif /* INET */ 3426 #ifdef INET6 3427 case AF_INET6: 3428 h6 = mtod(m, struct ip6_hdr *); 3429 3430 /* IP header fields included in the TCP checksum */ 3431 h6->ip6_nxt = IPPROTO_TCP; 3432 h6->ip6_plen = htons(tlen); 3433 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 3434 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 3435 3436 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 3437 break; 3438 #endif /* INET6 */ 3439 } 3440 3441 /* TCP header */ 3442 th->th_sport = sport; 3443 th->th_dport = dport; 3444 th->th_seq = htonl(seq); 3445 th->th_ack = htonl(ack); 3446 th->th_off = tlen >> 2; 3447 th->th_flags = tcp_flags; 3448 th->th_win = htons(win); 3449 3450 if (mss) { 3451 opt = (char *)(th + 1); 3452 opt[0] = TCPOPT_MAXSEG; 3453 opt[1] = 4; 3454 HTONS(mss); 3455 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 3456 } 3457 3458 switch (af) { 3459 #ifdef INET 3460 case AF_INET: 3461 /* TCP checksum */ 3462 th->th_sum = in_cksum(m, len); 3463 3464 /* Finish the IP header */ 3465 h->ip_v = 4; 3466 h->ip_hl = sizeof(*h) >> 2; 3467 h->ip_tos = IPTOS_LOWDELAY; 3468 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 3469 h->ip_len = htons(len); 3470 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3471 h->ip_sum = 0; 3472 break; 3473 #endif /* INET */ 3474 #ifdef INET6 3475 case AF_INET6: 3476 /* TCP checksum */ 3477 th->th_sum = in6_cksum(m, IPPROTO_TCP, 3478 sizeof(struct ip6_hdr), tlen); 3479 3480 h6->ip6_vfc |= IPV6_VERSION; 3481 h6->ip6_hlim = IPV6_DEFHLIM; 3482 break; 3483 #endif /* INET6 */ 3484 } 3485 3486 return (m); 3487 } 3488 3489 static void 3490 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd, 3491 uint8_t ttl, int rtableid) 3492 { 3493 struct mbuf *m; 3494 #ifdef INET 3495 struct ip *h = NULL; 3496 #endif /* INET */ 3497 #ifdef INET6 3498 struct ip6_hdr *h6 = NULL; 3499 #endif /* INET6 */ 3500 struct sctphdr *hdr; 3501 struct sctp_chunkhdr *chunk; 3502 struct pf_send_entry *pfse; 3503 int off = 0; 3504 3505 MPASS(af == pd->af); 3506 3507 m = m_gethdr(M_NOWAIT, MT_DATA); 3508 if (m == NULL) 3509 return; 3510 3511 m->m_data += max_linkhdr; 3512 m->m_flags |= M_SKIP_FIREWALL; 3513 /* The rest of the stack assumes a rcvif, so provide one. 3514 * This is a locally generated packet, so .. close enough. */ 3515 m->m_pkthdr.rcvif = V_loif; 3516 3517 /* IPv4|6 header */ 3518 switch (af) { 3519 #ifdef INET 3520 case AF_INET: 3521 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk)); 3522 3523 h = mtod(m, struct ip *); 3524 3525 /* IP header fields included in the TCP checksum */ 3526 3527 h->ip_p = IPPROTO_SCTP; 3528 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk)); 3529 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3530 h->ip_src = pd->dst->v4; 3531 h->ip_dst = pd->src->v4; 3532 3533 off += sizeof(struct ip); 3534 break; 3535 #endif /* INET */ 3536 #ifdef INET6 3537 case AF_INET6: 3538 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk)); 3539 3540 h6 = mtod(m, struct ip6_hdr *); 3541 3542 /* IP header fields included in the TCP checksum */ 3543 h6->ip6_vfc |= IPV6_VERSION; 3544 h6->ip6_nxt = IPPROTO_SCTP; 3545 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk)); 3546 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim; 3547 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr)); 3548 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr)); 3549 3550 off += sizeof(struct ip6_hdr); 3551 break; 3552 #endif /* INET6 */ 3553 } 3554 3555 /* SCTP header */ 3556 hdr = mtodo(m, off); 3557 3558 hdr->src_port = pd->hdr.sctp.dest_port; 3559 hdr->dest_port = pd->hdr.sctp.src_port; 3560 hdr->v_tag = pd->sctp_initiate_tag; 3561 hdr->checksum = 0; 3562 3563 /* Abort chunk. */ 3564 off += sizeof(struct sctphdr); 3565 chunk = mtodo(m, off); 3566 3567 chunk->chunk_type = SCTP_ABORT_ASSOCIATION; 3568 chunk->chunk_length = htons(sizeof(*chunk)); 3569 3570 /* SCTP checksum */ 3571 off += sizeof(*chunk); 3572 m->m_pkthdr.len = m->m_len = off; 3573 3574 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk)); 3575 3576 if (rtableid >= 0) 3577 M_SETFIB(m, rtableid); 3578 3579 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3580 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3581 if (pfse == NULL) { 3582 m_freem(m); 3583 return; 3584 } 3585 3586 switch (af) { 3587 #ifdef INET 3588 case AF_INET: 3589 pfse->pfse_type = PFSE_IP; 3590 break; 3591 #endif /* INET */ 3592 #ifdef INET6 3593 case AF_INET6: 3594 pfse->pfse_type = PFSE_IP6; 3595 break; 3596 #endif /* INET6 */ 3597 } 3598 3599 pfse->pfse_m = m; 3600 pf_send(pfse); 3601 } 3602 3603 void 3604 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 3605 const struct pf_addr *saddr, const struct pf_addr *daddr, 3606 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3607 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3608 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3609 { 3610 struct pf_send_entry *pfse; 3611 struct mbuf *m; 3612 3613 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags, 3614 win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, rtableid); 3615 if (m == NULL) 3616 return; 3617 3618 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3619 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3620 if (pfse == NULL) { 3621 m_freem(m); 3622 return; 3623 } 3624 3625 switch (af) { 3626 #ifdef INET 3627 case AF_INET: 3628 pfse->pfse_type = PFSE_IP; 3629 break; 3630 #endif /* INET */ 3631 #ifdef INET6 3632 case AF_INET6: 3633 pfse->pfse_type = PFSE_IP6; 3634 break; 3635 #endif /* INET6 */ 3636 } 3637 3638 pfse->pfse_m = m; 3639 pf_send(pfse); 3640 } 3641 3642 static void 3643 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 3644 struct pf_state_key *sk, struct tcphdr *th, 3645 u_int16_t bproto_sum, u_int16_t bip_sum, 3646 u_short *reason, int rtableid) 3647 { 3648 struct pf_addr * const saddr = pd->src; 3649 struct pf_addr * const daddr = pd->dst; 3650 3651 /* undo NAT changes, if they have taken place */ 3652 if (nr != NULL) { 3653 PF_ACPY(saddr, &sk->addr[pd->sidx], pd->af); 3654 PF_ACPY(daddr, &sk->addr[pd->didx], pd->af); 3655 if (pd->sport) 3656 *pd->sport = sk->port[pd->sidx]; 3657 if (pd->dport) 3658 *pd->dport = sk->port[pd->didx]; 3659 if (pd->proto_sum) 3660 *pd->proto_sum = bproto_sum; 3661 if (pd->ip_sum) 3662 *pd->ip_sum = bip_sum; 3663 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 3664 } 3665 if (pd->proto == IPPROTO_TCP && 3666 ((r->rule_flag & PFRULE_RETURNRST) || 3667 (r->rule_flag & PFRULE_RETURN)) && 3668 !(th->th_flags & TH_RST)) { 3669 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3670 3671 if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off, 3672 IPPROTO_TCP, pd->af)) 3673 REASON_SET(reason, PFRES_PROTCKSUM); 3674 else { 3675 if (th->th_flags & TH_SYN) 3676 ack++; 3677 if (th->th_flags & TH_FIN) 3678 ack++; 3679 pf_send_tcp(r, pd->af, pd->dst, 3680 pd->src, th->th_dport, th->th_sport, 3681 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3682 r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid); 3683 } 3684 } else if (pd->proto == IPPROTO_SCTP && 3685 (r->rule_flag & PFRULE_RETURN)) { 3686 pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid); 3687 } else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET && 3688 r->return_icmp) 3689 pf_send_icmp(pd->m, r->return_icmp >> 8, 3690 r->return_icmp & 255, pd->af, r, rtableid); 3691 else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 && 3692 r->return_icmp6) 3693 pf_send_icmp(pd->m, r->return_icmp6 >> 8, 3694 r->return_icmp6 & 255, pd->af, r, rtableid); 3695 } 3696 3697 static int 3698 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 3699 { 3700 struct m_tag *mtag; 3701 u_int8_t mpcp; 3702 3703 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 3704 if (mtag == NULL) 3705 return (0); 3706 3707 if (prio == PF_PRIO_ZERO) 3708 prio = 0; 3709 3710 mpcp = *(uint8_t *)(mtag + 1); 3711 3712 return (mpcp == prio); 3713 } 3714 3715 static int 3716 pf_icmp_to_bandlim(uint8_t type) 3717 { 3718 switch (type) { 3719 case ICMP_ECHO: 3720 case ICMP_ECHOREPLY: 3721 return (BANDLIM_ICMP_ECHO); 3722 case ICMP_TSTAMP: 3723 case ICMP_TSTAMPREPLY: 3724 return (BANDLIM_ICMP_TSTAMP); 3725 case ICMP_UNREACH: 3726 default: 3727 return (BANDLIM_ICMP_UNREACH); 3728 } 3729 } 3730 3731 static void 3732 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 3733 struct pf_krule *r, int rtableid) 3734 { 3735 struct pf_send_entry *pfse; 3736 struct mbuf *m0; 3737 struct pf_mtag *pf_mtag; 3738 3739 /* ICMP packet rate limitation. */ 3740 switch (af) { 3741 #ifdef INET6 3742 case AF_INET6: 3743 if (icmp6_ratelimit(NULL, type, code)) 3744 return; 3745 break; 3746 #endif 3747 #ifdef INET 3748 case AF_INET: 3749 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 3750 return; 3751 break; 3752 #endif 3753 } 3754 3755 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3756 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3757 if (pfse == NULL) 3758 return; 3759 3760 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 3761 free(pfse, M_PFTEMP); 3762 return; 3763 } 3764 3765 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 3766 free(pfse, M_PFTEMP); 3767 return; 3768 } 3769 /* XXX: revisit */ 3770 m0->m_flags |= M_SKIP_FIREWALL; 3771 3772 if (rtableid >= 0) 3773 M_SETFIB(m0, rtableid); 3774 3775 #ifdef ALTQ 3776 if (r->qid) { 3777 pf_mtag->qid = r->qid; 3778 /* add hints for ecn */ 3779 pf_mtag->hdr = mtod(m0, struct ip *); 3780 } 3781 #endif /* ALTQ */ 3782 3783 switch (af) { 3784 #ifdef INET 3785 case AF_INET: 3786 pfse->pfse_type = PFSE_ICMP; 3787 break; 3788 #endif /* INET */ 3789 #ifdef INET6 3790 case AF_INET6: 3791 pfse->pfse_type = PFSE_ICMP6; 3792 break; 3793 #endif /* INET6 */ 3794 } 3795 pfse->pfse_m = m0; 3796 pfse->icmpopts.type = type; 3797 pfse->icmpopts.code = code; 3798 pf_send(pfse); 3799 } 3800 3801 /* 3802 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 3803 * If n is 0, they match if they are equal. If n is != 0, they match if they 3804 * are different. 3805 */ 3806 int 3807 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 3808 struct pf_addr *b, sa_family_t af) 3809 { 3810 int match = 0; 3811 3812 switch (af) { 3813 #ifdef INET 3814 case AF_INET: 3815 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4)) 3816 match++; 3817 break; 3818 #endif /* INET */ 3819 #ifdef INET6 3820 case AF_INET6: 3821 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6)) 3822 match++; 3823 break; 3824 #endif /* INET6 */ 3825 } 3826 if (match) { 3827 if (n) 3828 return (0); 3829 else 3830 return (1); 3831 } else { 3832 if (n) 3833 return (1); 3834 else 3835 return (0); 3836 } 3837 } 3838 3839 /* 3840 * Return 1 if b <= a <= e, otherwise return 0. 3841 */ 3842 int 3843 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 3844 struct pf_addr *a, sa_family_t af) 3845 { 3846 switch (af) { 3847 #ifdef INET 3848 case AF_INET: 3849 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 3850 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 3851 return (0); 3852 break; 3853 #endif /* INET */ 3854 #ifdef INET6 3855 case AF_INET6: { 3856 int i; 3857 3858 /* check a >= b */ 3859 for (i = 0; i < 4; ++i) 3860 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 3861 break; 3862 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 3863 return (0); 3864 /* check a <= e */ 3865 for (i = 0; i < 4; ++i) 3866 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 3867 break; 3868 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 3869 return (0); 3870 break; 3871 } 3872 #endif /* INET6 */ 3873 } 3874 return (1); 3875 } 3876 3877 static int 3878 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3879 { 3880 switch (op) { 3881 case PF_OP_IRG: 3882 return ((p > a1) && (p < a2)); 3883 case PF_OP_XRG: 3884 return ((p < a1) || (p > a2)); 3885 case PF_OP_RRG: 3886 return ((p >= a1) && (p <= a2)); 3887 case PF_OP_EQ: 3888 return (p == a1); 3889 case PF_OP_NE: 3890 return (p != a1); 3891 case PF_OP_LT: 3892 return (p < a1); 3893 case PF_OP_LE: 3894 return (p <= a1); 3895 case PF_OP_GT: 3896 return (p > a1); 3897 case PF_OP_GE: 3898 return (p >= a1); 3899 } 3900 return (0); /* never reached */ 3901 } 3902 3903 int 3904 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3905 { 3906 NTOHS(a1); 3907 NTOHS(a2); 3908 NTOHS(p); 3909 return (pf_match(op, a1, a2, p)); 3910 } 3911 3912 static int 3913 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3914 { 3915 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3916 return (0); 3917 return (pf_match(op, a1, a2, u)); 3918 } 3919 3920 static int 3921 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3922 { 3923 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3924 return (0); 3925 return (pf_match(op, a1, a2, g)); 3926 } 3927 3928 int 3929 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3930 { 3931 if (*tag == -1) 3932 *tag = mtag; 3933 3934 return ((!r->match_tag_not && r->match_tag == *tag) || 3935 (r->match_tag_not && r->match_tag != *tag)); 3936 } 3937 3938 static int 3939 pf_match_rcvif(struct mbuf *m, struct pf_krule *r) 3940 { 3941 struct ifnet *ifp = m->m_pkthdr.rcvif; 3942 struct pfi_kkif *kif; 3943 3944 if (ifp == NULL) 3945 return (0); 3946 3947 kif = (struct pfi_kkif *)ifp->if_pf_kif; 3948 3949 if (kif == NULL) { 3950 DPFPRINTF(PF_DEBUG_URGENT, 3951 ("pf_test_via: kif == NULL, @%d via %s\n", r->nr, 3952 r->rcv_ifname)); 3953 return (0); 3954 } 3955 3956 return (pfi_kkif_match(r->rcv_kif, kif)); 3957 } 3958 3959 int 3960 pf_tag_packet(struct pf_pdesc *pd, int tag) 3961 { 3962 3963 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 3964 3965 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) 3966 return (ENOMEM); 3967 3968 pd->pf_mtag->tag = tag; 3969 3970 return (0); 3971 } 3972 3973 #define PF_ANCHOR_STACKSIZE 32 3974 struct pf_kanchor_stackframe { 3975 struct pf_kruleset *rs; 3976 struct pf_krule *r; /* XXX: + match bit */ 3977 struct pf_kanchor *child; 3978 }; 3979 3980 /* 3981 * XXX: We rely on malloc(9) returning pointer aligned addresses. 3982 */ 3983 #define PF_ANCHORSTACK_MATCH 0x00000001 3984 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 3985 3986 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3987 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 3988 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3989 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3990 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3991 } while (0) 3992 3993 void 3994 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3995 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3996 int *match) 3997 { 3998 struct pf_kanchor_stackframe *f; 3999 4000 PF_RULES_RASSERT(); 4001 4002 if (match) 4003 *match = 0; 4004 if (*depth >= PF_ANCHOR_STACKSIZE) { 4005 printf("%s: anchor stack overflow on %s\n", 4006 __func__, (*r)->anchor->name); 4007 *r = TAILQ_NEXT(*r, entries); 4008 return; 4009 } else if (*depth == 0 && a != NULL) 4010 *a = *r; 4011 f = stack + (*depth)++; 4012 f->rs = *rs; 4013 f->r = *r; 4014 if ((*r)->anchor_wildcard) { 4015 struct pf_kanchor_node *parent = &(*r)->anchor->children; 4016 4017 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 4018 *r = NULL; 4019 return; 4020 } 4021 *rs = &f->child->ruleset; 4022 } else { 4023 f->child = NULL; 4024 *rs = &(*r)->anchor->ruleset; 4025 } 4026 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4027 } 4028 4029 int 4030 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 4031 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 4032 int *match) 4033 { 4034 struct pf_kanchor_stackframe *f; 4035 struct pf_krule *fr; 4036 int quick = 0; 4037 4038 PF_RULES_RASSERT(); 4039 4040 do { 4041 if (*depth <= 0) 4042 break; 4043 f = stack + *depth - 1; 4044 fr = PF_ANCHOR_RULE(f); 4045 if (f->child != NULL) { 4046 /* 4047 * This block traverses through 4048 * a wildcard anchor. 4049 */ 4050 if (match != NULL && *match) { 4051 /* 4052 * If any of "*" matched, then 4053 * "foo/ *" matched, mark frame 4054 * appropriately. 4055 */ 4056 PF_ANCHOR_SET_MATCH(f); 4057 *match = 0; 4058 } 4059 f->child = RB_NEXT(pf_kanchor_node, 4060 &fr->anchor->children, f->child); 4061 if (f->child != NULL) { 4062 *rs = &f->child->ruleset; 4063 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4064 if (*r == NULL) 4065 continue; 4066 else 4067 break; 4068 } 4069 } 4070 (*depth)--; 4071 if (*depth == 0 && a != NULL) 4072 *a = NULL; 4073 *rs = f->rs; 4074 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 4075 quick = fr->quick; 4076 *r = TAILQ_NEXT(fr, entries); 4077 } while (*r == NULL); 4078 4079 return (quick); 4080 } 4081 4082 struct pf_keth_anchor_stackframe { 4083 struct pf_keth_ruleset *rs; 4084 struct pf_keth_rule *r; /* XXX: + match bit */ 4085 struct pf_keth_anchor *child; 4086 }; 4087 4088 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4089 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 4090 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4091 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4092 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4093 } while (0) 4094 4095 void 4096 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4097 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4098 struct pf_keth_rule **a, int *match) 4099 { 4100 struct pf_keth_anchor_stackframe *f; 4101 4102 NET_EPOCH_ASSERT(); 4103 4104 if (match) 4105 *match = 0; 4106 if (*depth >= PF_ANCHOR_STACKSIZE) { 4107 printf("%s: anchor stack overflow on %s\n", 4108 __func__, (*r)->anchor->name); 4109 *r = TAILQ_NEXT(*r, entries); 4110 return; 4111 } else if (*depth == 0 && a != NULL) 4112 *a = *r; 4113 f = stack + (*depth)++; 4114 f->rs = *rs; 4115 f->r = *r; 4116 if ((*r)->anchor_wildcard) { 4117 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 4118 4119 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 4120 *r = NULL; 4121 return; 4122 } 4123 *rs = &f->child->ruleset; 4124 } else { 4125 f->child = NULL; 4126 *rs = &(*r)->anchor->ruleset; 4127 } 4128 *r = TAILQ_FIRST((*rs)->active.rules); 4129 } 4130 4131 int 4132 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4133 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4134 struct pf_keth_rule **a, int *match) 4135 { 4136 struct pf_keth_anchor_stackframe *f; 4137 struct pf_keth_rule *fr; 4138 int quick = 0; 4139 4140 NET_EPOCH_ASSERT(); 4141 4142 do { 4143 if (*depth <= 0) 4144 break; 4145 f = stack + *depth - 1; 4146 fr = PF_ETH_ANCHOR_RULE(f); 4147 if (f->child != NULL) { 4148 /* 4149 * This block traverses through 4150 * a wildcard anchor. 4151 */ 4152 if (match != NULL && *match) { 4153 /* 4154 * If any of "*" matched, then 4155 * "foo/ *" matched, mark frame 4156 * appropriately. 4157 */ 4158 PF_ETH_ANCHOR_SET_MATCH(f); 4159 *match = 0; 4160 } 4161 f->child = RB_NEXT(pf_keth_anchor_node, 4162 &fr->anchor->children, f->child); 4163 if (f->child != NULL) { 4164 *rs = &f->child->ruleset; 4165 *r = TAILQ_FIRST((*rs)->active.rules); 4166 if (*r == NULL) 4167 continue; 4168 else 4169 break; 4170 } 4171 } 4172 (*depth)--; 4173 if (*depth == 0 && a != NULL) 4174 *a = NULL; 4175 *rs = f->rs; 4176 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 4177 quick = fr->quick; 4178 *r = TAILQ_NEXT(fr, entries); 4179 } while (*r == NULL); 4180 4181 return (quick); 4182 } 4183 4184 #ifdef INET6 4185 void 4186 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 4187 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 4188 { 4189 switch (af) { 4190 #ifdef INET 4191 case AF_INET: 4192 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4193 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4194 break; 4195 #endif /* INET */ 4196 case AF_INET6: 4197 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4198 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4199 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 4200 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 4201 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 4202 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 4203 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 4204 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 4205 break; 4206 } 4207 } 4208 4209 void 4210 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 4211 { 4212 switch (af) { 4213 #ifdef INET 4214 case AF_INET: 4215 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 4216 break; 4217 #endif /* INET */ 4218 case AF_INET6: 4219 if (addr->addr32[3] == 0xffffffff) { 4220 addr->addr32[3] = 0; 4221 if (addr->addr32[2] == 0xffffffff) { 4222 addr->addr32[2] = 0; 4223 if (addr->addr32[1] == 0xffffffff) { 4224 addr->addr32[1] = 0; 4225 addr->addr32[0] = 4226 htonl(ntohl(addr->addr32[0]) + 1); 4227 } else 4228 addr->addr32[1] = 4229 htonl(ntohl(addr->addr32[1]) + 1); 4230 } else 4231 addr->addr32[2] = 4232 htonl(ntohl(addr->addr32[2]) + 1); 4233 } else 4234 addr->addr32[3] = 4235 htonl(ntohl(addr->addr32[3]) + 1); 4236 break; 4237 } 4238 } 4239 #endif /* INET6 */ 4240 4241 void 4242 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 4243 { 4244 /* 4245 * Modern rules use the same flags in rules as they do in states. 4246 */ 4247 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 4248 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 4249 4250 /* 4251 * Old-style scrub rules have different flags which need to be translated. 4252 */ 4253 if (r->rule_flag & PFRULE_RANDOMID) 4254 a->flags |= PFSTATE_RANDOMID; 4255 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) { 4256 a->flags |= PFSTATE_SETTOS; 4257 a->set_tos = r->set_tos; 4258 } 4259 4260 if (r->qid) 4261 a->qid = r->qid; 4262 if (r->pqid) 4263 a->pqid = r->pqid; 4264 if (r->rtableid >= 0) 4265 a->rtableid = r->rtableid; 4266 a->log |= r->log; 4267 if (r->min_ttl) 4268 a->min_ttl = r->min_ttl; 4269 if (r->max_mss) 4270 a->max_mss = r->max_mss; 4271 if (r->dnpipe) 4272 a->dnpipe = r->dnpipe; 4273 if (r->dnrpipe) 4274 a->dnrpipe = r->dnrpipe; 4275 if (r->dnpipe || r->dnrpipe) { 4276 if (r->free_flags & PFRULE_DN_IS_PIPE) 4277 a->flags |= PFSTATE_DN_IS_PIPE; 4278 else 4279 a->flags &= ~PFSTATE_DN_IS_PIPE; 4280 } 4281 if (r->scrub_flags & PFSTATE_SETPRIO) { 4282 a->set_prio[0] = r->set_prio[0]; 4283 a->set_prio[1] = r->set_prio[1]; 4284 } 4285 } 4286 4287 int 4288 pf_socket_lookup(struct pf_pdesc *pd) 4289 { 4290 struct pf_addr *saddr, *daddr; 4291 u_int16_t sport, dport; 4292 struct inpcbinfo *pi; 4293 struct inpcb *inp; 4294 4295 pd->lookup.uid = UID_MAX; 4296 pd->lookup.gid = GID_MAX; 4297 4298 switch (pd->proto) { 4299 case IPPROTO_TCP: 4300 sport = pd->hdr.tcp.th_sport; 4301 dport = pd->hdr.tcp.th_dport; 4302 pi = &V_tcbinfo; 4303 break; 4304 case IPPROTO_UDP: 4305 sport = pd->hdr.udp.uh_sport; 4306 dport = pd->hdr.udp.uh_dport; 4307 pi = &V_udbinfo; 4308 break; 4309 default: 4310 return (-1); 4311 } 4312 if (pd->dir == PF_IN) { 4313 saddr = pd->src; 4314 daddr = pd->dst; 4315 } else { 4316 u_int16_t p; 4317 4318 p = sport; 4319 sport = dport; 4320 dport = p; 4321 saddr = pd->dst; 4322 daddr = pd->src; 4323 } 4324 switch (pd->af) { 4325 #ifdef INET 4326 case AF_INET: 4327 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 4328 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m); 4329 if (inp == NULL) { 4330 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 4331 daddr->v4, dport, INPLOOKUP_WILDCARD | 4332 INPLOOKUP_RLOCKPCB, NULL, pd->m); 4333 if (inp == NULL) 4334 return (-1); 4335 } 4336 break; 4337 #endif /* INET */ 4338 #ifdef INET6 4339 case AF_INET6: 4340 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 4341 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m); 4342 if (inp == NULL) { 4343 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 4344 &daddr->v6, dport, INPLOOKUP_WILDCARD | 4345 INPLOOKUP_RLOCKPCB, NULL, pd->m); 4346 if (inp == NULL) 4347 return (-1); 4348 } 4349 break; 4350 #endif /* INET6 */ 4351 } 4352 INP_RLOCK_ASSERT(inp); 4353 pd->lookup.uid = inp->inp_cred->cr_uid; 4354 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4355 INP_RUNLOCK(inp); 4356 4357 return (1); 4358 } 4359 4360 u_int8_t 4361 pf_get_wscale(struct pf_pdesc *pd) 4362 { 4363 struct tcphdr *th = &pd->hdr.tcp; 4364 int hlen; 4365 u_int8_t hdr[60]; 4366 u_int8_t *opt, optlen; 4367 u_int8_t wscale = 0; 4368 4369 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */ 4370 if (hlen <= sizeof(struct tcphdr)) 4371 return (0); 4372 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af)) 4373 return (0); 4374 opt = hdr + sizeof(struct tcphdr); 4375 hlen -= sizeof(struct tcphdr); 4376 while (hlen >= 3) { 4377 switch (*opt) { 4378 case TCPOPT_EOL: 4379 case TCPOPT_NOP: 4380 ++opt; 4381 --hlen; 4382 break; 4383 case TCPOPT_WINDOW: 4384 wscale = opt[2]; 4385 if (wscale > TCP_MAX_WINSHIFT) 4386 wscale = TCP_MAX_WINSHIFT; 4387 wscale |= PF_WSCALE_FLAG; 4388 /* FALLTHROUGH */ 4389 default: 4390 optlen = opt[1]; 4391 if (optlen < 2) 4392 optlen = 2; 4393 hlen -= optlen; 4394 opt += optlen; 4395 break; 4396 } 4397 } 4398 return (wscale); 4399 } 4400 4401 u_int16_t 4402 pf_get_mss(struct pf_pdesc *pd) 4403 { 4404 struct tcphdr *th = &pd->hdr.tcp; 4405 int hlen; 4406 u_int8_t hdr[60]; 4407 u_int8_t *opt, optlen; 4408 u_int16_t mss = V_tcp_mssdflt; 4409 4410 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */ 4411 if (hlen <= sizeof(struct tcphdr)) 4412 return (0); 4413 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af)) 4414 return (0); 4415 opt = hdr + sizeof(struct tcphdr); 4416 hlen -= sizeof(struct tcphdr); 4417 while (hlen >= TCPOLEN_MAXSEG) { 4418 switch (*opt) { 4419 case TCPOPT_EOL: 4420 case TCPOPT_NOP: 4421 ++opt; 4422 --hlen; 4423 break; 4424 case TCPOPT_MAXSEG: 4425 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 4426 NTOHS(mss); 4427 /* FALLTHROUGH */ 4428 default: 4429 optlen = opt[1]; 4430 if (optlen < 2) 4431 optlen = 2; 4432 hlen -= optlen; 4433 opt += optlen; 4434 break; 4435 } 4436 } 4437 return (mss); 4438 } 4439 4440 static u_int16_t 4441 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 4442 { 4443 struct nhop_object *nh; 4444 #ifdef INET6 4445 struct in6_addr dst6; 4446 uint32_t scopeid; 4447 #endif /* INET6 */ 4448 int hlen = 0; 4449 uint16_t mss = 0; 4450 4451 NET_EPOCH_ASSERT(); 4452 4453 switch (af) { 4454 #ifdef INET 4455 case AF_INET: 4456 hlen = sizeof(struct ip); 4457 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 4458 if (nh != NULL) 4459 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4460 break; 4461 #endif /* INET */ 4462 #ifdef INET6 4463 case AF_INET6: 4464 hlen = sizeof(struct ip6_hdr); 4465 in6_splitscope(&addr->v6, &dst6, &scopeid); 4466 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 4467 if (nh != NULL) 4468 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4469 break; 4470 #endif /* INET6 */ 4471 } 4472 4473 mss = max(V_tcp_mssdflt, mss); 4474 mss = min(mss, offer); 4475 mss = max(mss, 64); /* sanity - at least max opt space */ 4476 return (mss); 4477 } 4478 4479 static u_int32_t 4480 pf_tcp_iss(struct pf_pdesc *pd) 4481 { 4482 MD5_CTX ctx; 4483 u_int32_t digest[4]; 4484 4485 if (V_pf_tcp_secret_init == 0) { 4486 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 4487 MD5Init(&V_pf_tcp_secret_ctx); 4488 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 4489 sizeof(V_pf_tcp_secret)); 4490 V_pf_tcp_secret_init = 1; 4491 } 4492 4493 ctx = V_pf_tcp_secret_ctx; 4494 4495 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 4496 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 4497 switch (pd->af) { 4498 case AF_INET6: 4499 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 4500 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 4501 break; 4502 case AF_INET: 4503 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 4504 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 4505 break; 4506 } 4507 MD5Final((u_char *)digest, &ctx); 4508 V_pf_tcp_iss_off += 4096; 4509 #define ISN_RANDOM_INCREMENT (4096 - 1) 4510 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 4511 V_pf_tcp_iss_off); 4512 #undef ISN_RANDOM_INCREMENT 4513 } 4514 4515 static bool 4516 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 4517 { 4518 bool match = true; 4519 4520 /* Always matches if not set */ 4521 if (! r->isset) 4522 return (!r->neg); 4523 4524 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 4525 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 4526 match = false; 4527 break; 4528 } 4529 } 4530 4531 return (match ^ r->neg); 4532 } 4533 4534 static int 4535 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 4536 { 4537 if (*tag == -1) 4538 *tag = mtag; 4539 4540 return ((!r->match_tag_not && r->match_tag == *tag) || 4541 (r->match_tag_not && r->match_tag != *tag)); 4542 } 4543 4544 static void 4545 pf_bridge_to(struct ifnet *ifp, struct mbuf *m) 4546 { 4547 /* If we don't have the interface drop the packet. */ 4548 if (ifp == NULL) { 4549 m_freem(m); 4550 return; 4551 } 4552 4553 switch (ifp->if_type) { 4554 case IFT_ETHER: 4555 case IFT_XETHER: 4556 case IFT_L2VLAN: 4557 case IFT_BRIDGE: 4558 case IFT_IEEE8023ADLAG: 4559 break; 4560 default: 4561 m_freem(m); 4562 return; 4563 } 4564 4565 ifp->if_transmit(ifp, m); 4566 } 4567 4568 static int 4569 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 4570 { 4571 #ifdef INET 4572 struct ip ip; 4573 #endif 4574 #ifdef INET6 4575 struct ip6_hdr ip6; 4576 #endif 4577 struct mbuf *m = *m0; 4578 struct ether_header *e; 4579 struct pf_keth_rule *r, *rm, *a = NULL; 4580 struct pf_keth_ruleset *ruleset = NULL; 4581 struct pf_mtag *mtag; 4582 struct pf_keth_ruleq *rules; 4583 struct pf_addr *src = NULL, *dst = NULL; 4584 struct pfi_kkif *bridge_to; 4585 sa_family_t af = 0; 4586 uint16_t proto; 4587 int asd = 0, match = 0; 4588 int tag = -1; 4589 uint8_t action; 4590 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4591 4592 MPASS(kif->pfik_ifp->if_vnet == curvnet); 4593 NET_EPOCH_ASSERT(); 4594 4595 PF_RULES_RLOCK_TRACKER; 4596 4597 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 4598 4599 mtag = pf_find_mtag(m); 4600 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 4601 /* Dummynet re-injects packets after they've 4602 * completed their delay. We've already 4603 * processed them, so pass unconditionally. */ 4604 4605 /* But only once. We may see the packet multiple times (e.g. 4606 * PFIL_IN/PFIL_OUT). */ 4607 pf_dummynet_flag_remove(m, mtag); 4608 4609 return (PF_PASS); 4610 } 4611 4612 ruleset = V_pf_keth; 4613 rules = ck_pr_load_ptr(&ruleset->active.rules); 4614 r = TAILQ_FIRST(rules); 4615 rm = NULL; 4616 4617 if (__predict_false(m->m_len < sizeof(struct ether_header)) && 4618 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) { 4619 DPFPRINTF(PF_DEBUG_URGENT, 4620 ("pf_test_eth_rule: m_len < sizeof(struct ether_header)" 4621 ", pullup failed\n")); 4622 return (PF_DROP); 4623 } 4624 e = mtod(m, struct ether_header *); 4625 proto = ntohs(e->ether_type); 4626 4627 switch (proto) { 4628 #ifdef INET 4629 case ETHERTYPE_IP: { 4630 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4631 sizeof(ip))) 4632 return (PF_DROP); 4633 4634 af = AF_INET; 4635 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 4636 (caddr_t)&ip); 4637 src = (struct pf_addr *)&ip.ip_src; 4638 dst = (struct pf_addr *)&ip.ip_dst; 4639 break; 4640 } 4641 #endif /* INET */ 4642 #ifdef INET6 4643 case ETHERTYPE_IPV6: { 4644 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4645 sizeof(ip6))) 4646 return (PF_DROP); 4647 4648 af = AF_INET6; 4649 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 4650 (caddr_t)&ip6); 4651 src = (struct pf_addr *)&ip6.ip6_src; 4652 dst = (struct pf_addr *)&ip6.ip6_dst; 4653 break; 4654 } 4655 #endif /* INET6 */ 4656 } 4657 4658 PF_RULES_RLOCK(); 4659 4660 while (r != NULL) { 4661 counter_u64_add(r->evaluations, 1); 4662 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 4663 4664 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 4665 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4666 "kif"); 4667 r = r->skip[PFE_SKIP_IFP].ptr; 4668 } 4669 else if (r->direction && r->direction != dir) { 4670 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4671 "dir"); 4672 r = r->skip[PFE_SKIP_DIR].ptr; 4673 } 4674 else if (r->proto && r->proto != proto) { 4675 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4676 "proto"); 4677 r = r->skip[PFE_SKIP_PROTO].ptr; 4678 } 4679 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 4680 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4681 "src"); 4682 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 4683 } 4684 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 4685 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4686 "dst"); 4687 r = r->skip[PFE_SKIP_DST_ADDR].ptr; 4688 } 4689 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 4690 r->ipsrc.neg, kif, M_GETFIB(m))) { 4691 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4692 "ip_src"); 4693 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr; 4694 } 4695 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 4696 r->ipdst.neg, kif, M_GETFIB(m))) { 4697 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4698 "ip_dst"); 4699 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr; 4700 } 4701 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 4702 mtag ? mtag->tag : 0)) { 4703 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4704 "match_tag"); 4705 r = TAILQ_NEXT(r, entries); 4706 } 4707 else { 4708 if (r->tag) 4709 tag = r->tag; 4710 if (r->anchor == NULL) { 4711 /* Rule matches */ 4712 rm = r; 4713 4714 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 4715 4716 if (r->quick) 4717 break; 4718 4719 r = TAILQ_NEXT(r, entries); 4720 } else { 4721 pf_step_into_keth_anchor(anchor_stack, &asd, 4722 &ruleset, &r, &a, &match); 4723 } 4724 } 4725 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 4726 &ruleset, &r, &a, &match)) 4727 break; 4728 } 4729 4730 r = rm; 4731 4732 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 4733 4734 /* Default to pass. */ 4735 if (r == NULL) { 4736 PF_RULES_RUNLOCK(); 4737 return (PF_PASS); 4738 } 4739 4740 /* Execute action. */ 4741 counter_u64_add(r->packets[dir == PF_OUT], 1); 4742 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 4743 pf_update_timestamp(r); 4744 4745 /* Shortcut. Don't tag if we're just going to drop anyway. */ 4746 if (r->action == PF_DROP) { 4747 PF_RULES_RUNLOCK(); 4748 return (PF_DROP); 4749 } 4750 4751 if (tag > 0) { 4752 if (mtag == NULL) 4753 mtag = pf_get_mtag(m); 4754 if (mtag == NULL) { 4755 PF_RULES_RUNLOCK(); 4756 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4757 return (PF_DROP); 4758 } 4759 mtag->tag = tag; 4760 } 4761 4762 if (r->qid != 0) { 4763 if (mtag == NULL) 4764 mtag = pf_get_mtag(m); 4765 if (mtag == NULL) { 4766 PF_RULES_RUNLOCK(); 4767 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4768 return (PF_DROP); 4769 } 4770 mtag->qid = r->qid; 4771 } 4772 4773 action = r->action; 4774 bridge_to = r->bridge_to; 4775 4776 /* Dummynet */ 4777 if (r->dnpipe) { 4778 struct ip_fw_args dnflow; 4779 4780 /* Drop packet if dummynet is not loaded. */ 4781 if (ip_dn_io_ptr == NULL) { 4782 PF_RULES_RUNLOCK(); 4783 m_freem(m); 4784 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4785 return (PF_DROP); 4786 } 4787 if (mtag == NULL) 4788 mtag = pf_get_mtag(m); 4789 if (mtag == NULL) { 4790 PF_RULES_RUNLOCK(); 4791 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4792 return (PF_DROP); 4793 } 4794 4795 bzero(&dnflow, sizeof(dnflow)); 4796 4797 /* We don't have port numbers here, so we set 0. That means 4798 * that we'll be somewhat limited in distinguishing flows (i.e. 4799 * only based on IP addresses, not based on port numbers), but 4800 * it's better than nothing. */ 4801 dnflow.f_id.dst_port = 0; 4802 dnflow.f_id.src_port = 0; 4803 dnflow.f_id.proto = 0; 4804 4805 dnflow.rule.info = r->dnpipe; 4806 dnflow.rule.info |= IPFW_IS_DUMMYNET; 4807 if (r->dnflags & PFRULE_DN_IS_PIPE) 4808 dnflow.rule.info |= IPFW_IS_PIPE; 4809 4810 dnflow.f_id.extra = dnflow.rule.info; 4811 4812 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 4813 dnflow.flags |= IPFW_ARGS_ETHER; 4814 dnflow.ifp = kif->pfik_ifp; 4815 4816 switch (af) { 4817 case AF_INET: 4818 dnflow.f_id.addr_type = 4; 4819 dnflow.f_id.src_ip = src->v4.s_addr; 4820 dnflow.f_id.dst_ip = dst->v4.s_addr; 4821 break; 4822 case AF_INET6: 4823 dnflow.flags |= IPFW_ARGS_IP6; 4824 dnflow.f_id.addr_type = 6; 4825 dnflow.f_id.src_ip6 = src->v6; 4826 dnflow.f_id.dst_ip6 = dst->v6; 4827 break; 4828 } 4829 4830 PF_RULES_RUNLOCK(); 4831 4832 mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 4833 ip_dn_io_ptr(m0, &dnflow); 4834 if (*m0 != NULL) 4835 pf_dummynet_flag_remove(m, mtag); 4836 } else { 4837 PF_RULES_RUNLOCK(); 4838 } 4839 4840 if (action == PF_PASS && bridge_to) { 4841 pf_bridge_to(bridge_to->pfik_ifp, *m0); 4842 *m0 = NULL; /* We've eaten the packet. */ 4843 } 4844 4845 return (action); 4846 } 4847 4848 #define PF_TEST_ATTRIB(t, a)\ 4849 do { \ 4850 if (t) { \ 4851 r = a; \ 4852 goto nextrule; \ 4853 } \ 4854 } while (0) 4855 4856 static int 4857 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, 4858 struct pf_pdesc *pd, struct pf_krule **am, 4859 struct pf_kruleset **rsm, struct inpcb *inp) 4860 { 4861 struct pf_krule *nr = NULL; 4862 struct pf_addr * const saddr = pd->src; 4863 struct pf_addr * const daddr = pd->dst; 4864 struct pf_krule *r, *a = NULL; 4865 struct pf_kruleset *ruleset = NULL; 4866 struct pf_krule_slist match_rules; 4867 struct pf_krule_item *ri; 4868 struct pf_ksrc_node *nsn = NULL; 4869 struct tcphdr *th = &pd->hdr.tcp; 4870 struct pf_state_key *sk = NULL, *nk = NULL; 4871 u_short reason, transerror; 4872 int rewrite = 0; 4873 int tag = -1; 4874 int asd = 0; 4875 int match = 0; 4876 int state_icmp = 0, icmp_dir, multi; 4877 u_int16_t sport = 0, dport = 0, virtual_type, virtual_id; 4878 u_int16_t bproto_sum = 0, bip_sum = 0; 4879 u_int8_t icmptype = 0, icmpcode = 0; 4880 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4881 struct pf_udp_mapping *udp_mapping = NULL; 4882 4883 PF_RULES_RASSERT(); 4884 4885 SLIST_INIT(&match_rules); 4886 4887 if (inp != NULL) { 4888 INP_LOCK_ASSERT(inp); 4889 pd->lookup.uid = inp->inp_cred->cr_uid; 4890 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4891 pd->lookup.done = 1; 4892 } 4893 4894 switch (pd->virtual_proto) { 4895 case IPPROTO_TCP: 4896 sport = th->th_sport; 4897 dport = th->th_dport; 4898 break; 4899 case IPPROTO_UDP: 4900 sport = pd->hdr.udp.uh_sport; 4901 dport = pd->hdr.udp.uh_dport; 4902 break; 4903 case IPPROTO_SCTP: 4904 sport = pd->hdr.sctp.src_port; 4905 dport = pd->hdr.sctp.dest_port; 4906 break; 4907 #ifdef INET 4908 case IPPROTO_ICMP: 4909 MPASS(pd->af == AF_INET); 4910 icmptype = pd->hdr.icmp.icmp_type; 4911 icmpcode = pd->hdr.icmp.icmp_code; 4912 state_icmp = pf_icmp_mapping(pd, icmptype, 4913 &icmp_dir, &multi, &virtual_id, &virtual_type); 4914 if (icmp_dir == PF_IN) { 4915 sport = virtual_id; 4916 dport = virtual_type; 4917 } else { 4918 sport = virtual_type; 4919 dport = virtual_id; 4920 } 4921 break; 4922 #endif /* INET */ 4923 #ifdef INET6 4924 case IPPROTO_ICMPV6: 4925 MPASS(pd->af == AF_INET6); 4926 icmptype = pd->hdr.icmp6.icmp6_type; 4927 icmpcode = pd->hdr.icmp6.icmp6_code; 4928 state_icmp = pf_icmp_mapping(pd, icmptype, 4929 &icmp_dir, &multi, &virtual_id, &virtual_type); 4930 if (icmp_dir == PF_IN) { 4931 sport = virtual_id; 4932 dport = virtual_type; 4933 } else { 4934 sport = virtual_type; 4935 dport = virtual_id; 4936 } 4937 4938 break; 4939 #endif /* INET6 */ 4940 default: 4941 sport = dport = 0; 4942 break; 4943 } 4944 4945 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4946 4947 /* check packet for BINAT/NAT/RDR */ 4948 transerror = pf_get_translation(pd, pd->off, &nsn, &sk, 4949 &nk, saddr, daddr, sport, dport, anchor_stack, &nr, &udp_mapping); 4950 switch (transerror) { 4951 default: 4952 /* A translation error occurred. */ 4953 REASON_SET(&reason, transerror); 4954 goto cleanup; 4955 case PFRES_MAX: 4956 /* No match. */ 4957 break; 4958 case PFRES_MATCH: 4959 KASSERT(sk != NULL, ("%s: null sk", __func__)); 4960 KASSERT(nk != NULL, ("%s: null nk", __func__)); 4961 4962 if (nr->log) { 4963 PFLOG_PACKET(PF_PASS, PFRES_MATCH, nr, a, 4964 ruleset, pd, 1); 4965 } 4966 4967 if (pd->ip_sum) 4968 bip_sum = *pd->ip_sum; 4969 4970 switch (pd->proto) { 4971 case IPPROTO_TCP: 4972 bproto_sum = th->th_sum; 4973 pd->proto_sum = &th->th_sum; 4974 4975 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) || 4976 nk->port[pd->sidx] != sport) { 4977 pf_change_ap(pd->m, saddr, &th->th_sport, pd->ip_sum, 4978 &th->th_sum, &nk->addr[pd->sidx], 4979 nk->port[pd->sidx], 0, pd->af); 4980 pd->sport = &th->th_sport; 4981 sport = th->th_sport; 4982 } 4983 4984 if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) || 4985 nk->port[pd->didx] != dport) { 4986 pf_change_ap(pd->m, daddr, &th->th_dport, pd->ip_sum, 4987 &th->th_sum, &nk->addr[pd->didx], 4988 nk->port[pd->didx], 0, pd->af); 4989 dport = th->th_dport; 4990 pd->dport = &th->th_dport; 4991 } 4992 rewrite++; 4993 break; 4994 case IPPROTO_UDP: 4995 bproto_sum = pd->hdr.udp.uh_sum; 4996 pd->proto_sum = &pd->hdr.udp.uh_sum; 4997 4998 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) || 4999 nk->port[pd->sidx] != sport) { 5000 pf_change_ap(pd->m, saddr, &pd->hdr.udp.uh_sport, 5001 pd->ip_sum, &pd->hdr.udp.uh_sum, 5002 &nk->addr[pd->sidx], 5003 nk->port[pd->sidx], 1, pd->af); 5004 sport = pd->hdr.udp.uh_sport; 5005 pd->sport = &pd->hdr.udp.uh_sport; 5006 } 5007 5008 if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) || 5009 nk->port[pd->didx] != dport) { 5010 pf_change_ap(pd->m, daddr, &pd->hdr.udp.uh_dport, 5011 pd->ip_sum, &pd->hdr.udp.uh_sum, 5012 &nk->addr[pd->didx], 5013 nk->port[pd->didx], 1, pd->af); 5014 dport = pd->hdr.udp.uh_dport; 5015 pd->dport = &pd->hdr.udp.uh_dport; 5016 } 5017 rewrite++; 5018 break; 5019 case IPPROTO_SCTP: { 5020 uint16_t checksum = 0; 5021 5022 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) || 5023 nk->port[pd->sidx] != sport) { 5024 pf_change_ap(pd->m, saddr, &pd->hdr.sctp.src_port, 5025 pd->ip_sum, &checksum, 5026 &nk->addr[pd->sidx], 5027 nk->port[pd->sidx], 1, pd->af); 5028 } 5029 if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) || 5030 nk->port[pd->didx] != dport) { 5031 pf_change_ap(pd->m, daddr, &pd->hdr.sctp.dest_port, 5032 pd->ip_sum, &checksum, 5033 &nk->addr[pd->didx], 5034 nk->port[pd->didx], 1, pd->af); 5035 } 5036 break; 5037 } 5038 #ifdef INET 5039 case IPPROTO_ICMP: 5040 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 5041 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 5042 nk->addr[pd->sidx].v4.s_addr, 0); 5043 5044 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 5045 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 5046 nk->addr[pd->didx].v4.s_addr, 0); 5047 5048 if (virtual_type == htons(ICMP_ECHO) && 5049 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) { 5050 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 5051 pd->hdr.icmp.icmp_cksum, sport, 5052 nk->port[pd->sidx], 0); 5053 pd->hdr.icmp.icmp_id = nk->port[pd->sidx]; 5054 pd->sport = &pd->hdr.icmp.icmp_id; 5055 } 5056 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 5057 break; 5058 #endif /* INET */ 5059 #ifdef INET6 5060 case IPPROTO_ICMPV6: 5061 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 5062 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 5063 &nk->addr[pd->sidx], 0); 5064 5065 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 5066 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 5067 &nk->addr[pd->didx], 0); 5068 rewrite++; 5069 break; 5070 #endif /* INET */ 5071 default: 5072 switch (pd->af) { 5073 #ifdef INET 5074 case AF_INET: 5075 if (PF_ANEQ(saddr, 5076 &nk->addr[pd->sidx], AF_INET)) 5077 pf_change_a(&saddr->v4.s_addr, 5078 pd->ip_sum, 5079 nk->addr[pd->sidx].v4.s_addr, 0); 5080 5081 if (PF_ANEQ(daddr, 5082 &nk->addr[pd->didx], AF_INET)) 5083 pf_change_a(&daddr->v4.s_addr, 5084 pd->ip_sum, 5085 nk->addr[pd->didx].v4.s_addr, 0); 5086 break; 5087 #endif /* INET */ 5088 #ifdef INET6 5089 case AF_INET6: 5090 if (PF_ANEQ(saddr, 5091 &nk->addr[pd->sidx], AF_INET6)) 5092 PF_ACPY(saddr, &nk->addr[pd->sidx], pd->af); 5093 5094 if (PF_ANEQ(daddr, 5095 &nk->addr[pd->didx], AF_INET6)) 5096 PF_ACPY(daddr, &nk->addr[pd->didx], pd->af); 5097 break; 5098 #endif /* INET */ 5099 } 5100 break; 5101 } 5102 if (nr->natpass) 5103 r = NULL; 5104 } 5105 5106 while (r != NULL) { 5107 pf_counter_u64_add(&r->evaluations, 1); 5108 PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot, 5109 r->skip[PF_SKIP_IFP]); 5110 PF_TEST_ATTRIB(r->direction && r->direction != pd->dir, 5111 r->skip[PF_SKIP_DIR]); 5112 PF_TEST_ATTRIB(r->af && r->af != pd->af, 5113 r->skip[PF_SKIP_AF]); 5114 PF_TEST_ATTRIB(r->proto && r->proto != pd->proto, 5115 r->skip[PF_SKIP_PROTO]); 5116 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, saddr, pd->af, 5117 r->src.neg, pd->kif, M_GETFIB(pd->m)), 5118 r->skip[PF_SKIP_SRC_ADDR]); 5119 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, daddr, pd->af, 5120 r->dst.neg, NULL, M_GETFIB(pd->m)), 5121 r->skip[PF_SKIP_DST_ADDR]); 5122 switch (pd->virtual_proto) { 5123 case PF_VPROTO_FRAGMENT: 5124 /* tcp/udp only. port_op always 0 in other cases */ 5125 PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op), 5126 TAILQ_NEXT(r, entries)); 5127 PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset), 5128 TAILQ_NEXT(r, entries)); 5129 /* icmp only. type/code always 0 in other cases */ 5130 PF_TEST_ATTRIB((r->type || r->code), 5131 TAILQ_NEXT(r, entries)); 5132 /* tcp/udp only. {uid|gid}.op always 0 in other cases */ 5133 PF_TEST_ATTRIB((r->gid.op || r->uid.op), 5134 TAILQ_NEXT(r, entries)); 5135 break; 5136 5137 case IPPROTO_TCP: 5138 PF_TEST_ATTRIB((r->flagset & th->th_flags) != r->flags, 5139 TAILQ_NEXT(r, entries)); 5140 /* FALLTHROUGH */ 5141 case IPPROTO_SCTP: 5142 case IPPROTO_UDP: 5143 /* tcp/udp only. port_op always 0 in other cases */ 5144 PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op, 5145 r->src.port[0], r->src.port[1], sport), 5146 r->skip[PF_SKIP_SRC_PORT]); 5147 /* tcp/udp only. port_op always 0 in other cases */ 5148 PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op, 5149 r->dst.port[0], r->dst.port[1], dport), 5150 r->skip[PF_SKIP_DST_PORT]); 5151 /* tcp/udp only. uid.op always 0 in other cases */ 5152 PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done = 5153 pf_socket_lookup(pd), 1)) && 5154 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 5155 pd->lookup.uid), 5156 TAILQ_NEXT(r, entries)); 5157 /* tcp/udp only. gid.op always 0 in other cases */ 5158 PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done = 5159 pf_socket_lookup(pd), 1)) && 5160 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 5161 pd->lookup.gid), 5162 TAILQ_NEXT(r, entries)); 5163 break; 5164 5165 case IPPROTO_ICMP: 5166 case IPPROTO_ICMPV6: 5167 /* icmp only. type always 0 in other cases */ 5168 PF_TEST_ATTRIB(r->type && r->type != icmptype + 1, 5169 TAILQ_NEXT(r, entries)); 5170 /* icmp only. type always 0 in other cases */ 5171 PF_TEST_ATTRIB(r->code && r->code != icmpcode + 1, 5172 TAILQ_NEXT(r, entries)); 5173 break; 5174 5175 default: 5176 break; 5177 } 5178 PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos), 5179 TAILQ_NEXT(r, entries)); 5180 PF_TEST_ATTRIB(r->prio && 5181 !pf_match_ieee8021q_pcp(r->prio, pd->m), 5182 TAILQ_NEXT(r, entries)); 5183 PF_TEST_ATTRIB(r->prob && 5184 r->prob <= arc4random(), 5185 TAILQ_NEXT(r, entries)); 5186 PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r, &tag, 5187 pd->pf_mtag ? pd->pf_mtag->tag : 0), 5188 TAILQ_NEXT(r, entries)); 5189 PF_TEST_ATTRIB(r->rcv_kif && !pf_match_rcvif(pd->m, r), 5190 TAILQ_NEXT(r, entries)); 5191 PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT && 5192 pd->virtual_proto != PF_VPROTO_FRAGMENT), 5193 TAILQ_NEXT(r, entries)); 5194 PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY && 5195 (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match( 5196 pf_osfp_fingerprint(pd, th), 5197 r->os_fingerprint)), 5198 TAILQ_NEXT(r, entries)); 5199 /* FALLTHROUGH */ 5200 if (r->tag) 5201 tag = r->tag; 5202 if (r->anchor == NULL) { 5203 if (r->action == PF_MATCH) { 5204 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5205 if (ri == NULL) { 5206 REASON_SET(&reason, PFRES_MEMORY); 5207 goto cleanup; 5208 } 5209 ri->r = r; 5210 SLIST_INSERT_HEAD(&match_rules, ri, entry); 5211 pf_counter_u64_critical_enter(); 5212 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5213 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5214 pf_counter_u64_critical_exit(); 5215 pf_rule_to_actions(r, &pd->act); 5216 if (r->log || pd->act.log & PF_LOG_MATCHES) 5217 PFLOG_PACKET(r->action, PFRES_MATCH, r, 5218 a, ruleset, pd, 1); 5219 } else { 5220 match = 1; 5221 *rm = r; 5222 *am = a; 5223 *rsm = ruleset; 5224 if (pd->act.log & PF_LOG_MATCHES) 5225 PFLOG_PACKET(r->action, PFRES_MATCH, r, 5226 a, ruleset, pd, 1); 5227 } 5228 if ((*rm)->quick) 5229 break; 5230 r = TAILQ_NEXT(r, entries); 5231 } else 5232 pf_step_into_anchor(anchor_stack, &asd, 5233 &ruleset, PF_RULESET_FILTER, &r, &a, 5234 &match); 5235 nextrule: 5236 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 5237 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 5238 break; 5239 } 5240 r = *rm; 5241 a = *am; 5242 ruleset = *rsm; 5243 5244 REASON_SET(&reason, PFRES_MATCH); 5245 5246 /* apply actions for last matching pass/block rule */ 5247 pf_rule_to_actions(r, &pd->act); 5248 5249 if (r->log || pd->act.log & PF_LOG_MATCHES) { 5250 if (rewrite) 5251 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5252 PFLOG_PACKET(r->action, reason, r, a, ruleset, pd, 1); 5253 } 5254 5255 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5256 (r->action == PF_DROP) && 5257 ((r->rule_flag & PFRULE_RETURNRST) || 5258 (r->rule_flag & PFRULE_RETURNICMP) || 5259 (r->rule_flag & PFRULE_RETURN))) { 5260 pf_return(r, nr, pd, sk, th, bproto_sum, 5261 bip_sum, &reason, r->rtableid); 5262 } 5263 5264 if (r->action == PF_DROP) 5265 goto cleanup; 5266 5267 if (tag > 0 && pf_tag_packet(pd, tag)) { 5268 REASON_SET(&reason, PFRES_MEMORY); 5269 goto cleanup; 5270 } 5271 if (pd->act.rtableid >= 0) 5272 M_SETFIB(pd->m, pd->act.rtableid); 5273 5274 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5275 (!state_icmp && (r->keep_state || nr != NULL || 5276 (pd->flags & PFDESC_TCP_NORM)))) { 5277 int action; 5278 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, 5279 sport, dport, &rewrite, sm, tag, bproto_sum, bip_sum, 5280 &match_rules, udp_mapping); 5281 if (action != PF_PASS) { 5282 pf_udp_mapping_release(udp_mapping); 5283 if (action == PF_DROP && 5284 (r->rule_flag & PFRULE_RETURN)) 5285 pf_return(r, nr, pd, sk, th, 5286 bproto_sum, bip_sum, &reason, 5287 pd->act.rtableid); 5288 return (action); 5289 } 5290 } else { 5291 while ((ri = SLIST_FIRST(&match_rules))) { 5292 SLIST_REMOVE_HEAD(&match_rules, entry); 5293 free(ri, M_PF_RULE_ITEM); 5294 } 5295 5296 uma_zfree(V_pf_state_key_z, sk); 5297 uma_zfree(V_pf_state_key_z, nk); 5298 pf_udp_mapping_release(udp_mapping); 5299 } 5300 5301 /* copy back packet headers if we performed NAT operations */ 5302 if (rewrite) 5303 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5304 5305 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 5306 pd->dir == PF_OUT && 5307 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m)) 5308 /* 5309 * We want the state created, but we dont 5310 * want to send this in case a partner 5311 * firewall has to know about it to allow 5312 * replies through it. 5313 */ 5314 return (PF_DEFER); 5315 5316 return (PF_PASS); 5317 5318 cleanup: 5319 while ((ri = SLIST_FIRST(&match_rules))) { 5320 SLIST_REMOVE_HEAD(&match_rules, entry); 5321 free(ri, M_PF_RULE_ITEM); 5322 } 5323 5324 uma_zfree(V_pf_state_key_z, sk); 5325 uma_zfree(V_pf_state_key_z, nk); 5326 pf_udp_mapping_release(udp_mapping); 5327 5328 return (PF_DROP); 5329 } 5330 5331 static int 5332 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 5333 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 5334 struct pf_state_key *sk, u_int16_t sport, 5335 u_int16_t dport, int *rewrite, struct pf_kstate **sm, 5336 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, 5337 struct pf_krule_slist *match_rules, struct pf_udp_mapping *udp_mapping) 5338 { 5339 struct pf_kstate *s = NULL; 5340 struct pf_ksrc_node *sn = NULL; 5341 struct tcphdr *th = &pd->hdr.tcp; 5342 u_int16_t mss = V_tcp_mssdflt; 5343 u_short reason, sn_reason; 5344 struct pf_krule_item *ri; 5345 5346 /* check maximums */ 5347 if (r->max_states && 5348 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 5349 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 5350 REASON_SET(&reason, PFRES_MAXSTATES); 5351 goto csfailed; 5352 } 5353 /* src node for filter rule */ 5354 if ((r->rule_flag & PFRULE_SRCTRACK || 5355 r->rpool.opts & PF_POOL_STICKYADDR) && 5356 (sn_reason = pf_insert_src_node(&sn, r, pd->src, pd->af)) != 0) { 5357 REASON_SET(&reason, sn_reason); 5358 goto csfailed; 5359 } 5360 /* src node for translation rule */ 5361 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 5362 (sn_reason = pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], 5363 pd->af)) != 0 ) { 5364 REASON_SET(&reason, sn_reason); 5365 goto csfailed; 5366 } 5367 s = pf_alloc_state(M_NOWAIT); 5368 if (s == NULL) { 5369 REASON_SET(&reason, PFRES_MEMORY); 5370 goto csfailed; 5371 } 5372 s->rule = r; 5373 s->nat_rule = nr; 5374 s->anchor = a; 5375 bcopy(match_rules, &s->match_rules, sizeof(s->match_rules)); 5376 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions)); 5377 5378 STATE_INC_COUNTERS(s); 5379 if (r->allow_opts) 5380 s->state_flags |= PFSTATE_ALLOWOPTS; 5381 if (r->rule_flag & PFRULE_STATESLOPPY) 5382 s->state_flags |= PFSTATE_SLOPPY; 5383 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 5384 s->state_flags |= PFSTATE_SCRUB_TCP; 5385 if ((r->rule_flag & PFRULE_PFLOW) || 5386 (nr != NULL && nr->rule_flag & PFRULE_PFLOW)) 5387 s->state_flags |= PFSTATE_PFLOW; 5388 5389 s->act.log = pd->act.log & PF_LOG_ALL; 5390 s->sync_state = PFSYNC_S_NONE; 5391 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */ 5392 5393 if (nr != NULL) 5394 s->act.log |= nr->log & PF_LOG_ALL; 5395 switch (pd->proto) { 5396 case IPPROTO_TCP: 5397 s->src.seqlo = ntohl(th->th_seq); 5398 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 5399 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 5400 r->keep_state == PF_STATE_MODULATE) { 5401 /* Generate sequence number modulator */ 5402 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 5403 0) 5404 s->src.seqdiff = 1; 5405 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, 5406 htonl(s->src.seqlo + s->src.seqdiff), 0); 5407 *rewrite = 1; 5408 } else 5409 s->src.seqdiff = 0; 5410 if (th->th_flags & TH_SYN) { 5411 s->src.seqhi++; 5412 s->src.wscale = pf_get_wscale(pd); 5413 } 5414 s->src.max_win = MAX(ntohs(th->th_win), 1); 5415 if (s->src.wscale & PF_WSCALE_MASK) { 5416 /* Remove scale factor from initial window */ 5417 int win = s->src.max_win; 5418 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 5419 s->src.max_win = (win - 1) >> 5420 (s->src.wscale & PF_WSCALE_MASK); 5421 } 5422 if (th->th_flags & TH_FIN) 5423 s->src.seqhi++; 5424 s->dst.seqhi = 1; 5425 s->dst.max_win = 1; 5426 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 5427 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 5428 s->timeout = PFTM_TCP_FIRST_PACKET; 5429 atomic_add_32(&V_pf_status.states_halfopen, 1); 5430 break; 5431 case IPPROTO_UDP: 5432 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 5433 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 5434 s->timeout = PFTM_UDP_FIRST_PACKET; 5435 break; 5436 case IPPROTO_SCTP: 5437 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT); 5438 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED); 5439 s->timeout = PFTM_SCTP_FIRST_PACKET; 5440 break; 5441 case IPPROTO_ICMP: 5442 #ifdef INET6 5443 case IPPROTO_ICMPV6: 5444 #endif 5445 s->timeout = PFTM_ICMP_FIRST_PACKET; 5446 break; 5447 default: 5448 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 5449 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 5450 s->timeout = PFTM_OTHER_FIRST_PACKET; 5451 } 5452 5453 if (r->rt) { 5454 /* pf_map_addr increases the reason counters */ 5455 if ((reason = pf_map_addr_sn(pd->af, r, pd->src, &s->rt_addr, 5456 &s->rt_kif, NULL, &sn)) != 0) 5457 goto csfailed; 5458 s->rt = r->rt; 5459 } 5460 5461 s->creation = s->expire = pf_get_uptime(); 5462 5463 if (sn != NULL) 5464 s->src_node = sn; 5465 if (nsn != NULL) { 5466 /* XXX We only modify one side for now. */ 5467 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 5468 s->nat_src_node = nsn; 5469 } 5470 if (pd->proto == IPPROTO_TCP) { 5471 if (s->state_flags & PFSTATE_SCRUB_TCP && 5472 pf_normalize_tcp_init(pd, th, &s->src, &s->dst)) { 5473 REASON_SET(&reason, PFRES_MEMORY); 5474 goto csfailed; 5475 } 5476 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 5477 pf_normalize_tcp_stateful(pd, &reason, th, s, 5478 &s->src, &s->dst, rewrite)) { 5479 /* This really shouldn't happen!!! */ 5480 DPFPRINTF(PF_DEBUG_URGENT, 5481 ("pf_normalize_tcp_stateful failed on first " 5482 "pkt\n")); 5483 goto csfailed; 5484 } 5485 } else if (pd->proto == IPPROTO_SCTP) { 5486 if (pf_normalize_sctp_init(pd, &s->src, &s->dst)) 5487 goto csfailed; 5488 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP))) 5489 goto csfailed; 5490 } 5491 s->direction = pd->dir; 5492 5493 /* 5494 * sk/nk could already been setup by pf_get_translation(). 5495 */ 5496 if (nr == NULL) { 5497 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 5498 __func__, nr, sk, nk)); 5499 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 5500 if (sk == NULL) 5501 goto csfailed; 5502 nk = sk; 5503 } else 5504 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 5505 __func__, nr, sk, nk)); 5506 5507 /* Swap sk/nk for PF_OUT. */ 5508 if (pf_state_insert(BOUND_IFACE(s, pd->kif), pd->kif, 5509 (pd->dir == PF_IN) ? sk : nk, 5510 (pd->dir == PF_IN) ? nk : sk, s)) { 5511 REASON_SET(&reason, PFRES_STATEINS); 5512 goto drop; 5513 } else 5514 *sm = s; 5515 5516 if (tag > 0) 5517 s->tag = tag; 5518 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 5519 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 5520 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 5521 /* undo NAT changes, if they have taken place */ 5522 if (nr != NULL) { 5523 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 5524 if (pd->dir == PF_OUT) 5525 skt = s->key[PF_SK_STACK]; 5526 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 5527 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 5528 if (pd->sport) 5529 *pd->sport = skt->port[pd->sidx]; 5530 if (pd->dport) 5531 *pd->dport = skt->port[pd->didx]; 5532 if (pd->proto_sum) 5533 *pd->proto_sum = bproto_sum; 5534 if (pd->ip_sum) 5535 *pd->ip_sum = bip_sum; 5536 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5537 } 5538 s->src.seqhi = htonl(arc4random()); 5539 /* Find mss option */ 5540 int rtid = M_GETFIB(pd->m); 5541 mss = pf_get_mss(pd); 5542 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 5543 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 5544 s->src.mss = mss; 5545 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 5546 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 5547 TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0, 5548 pd->act.rtableid); 5549 REASON_SET(&reason, PFRES_SYNPROXY); 5550 return (PF_SYNPROXY_DROP); 5551 } 5552 5553 s->udp_mapping = udp_mapping; 5554 5555 return (PF_PASS); 5556 5557 csfailed: 5558 while ((ri = SLIST_FIRST(match_rules))) { 5559 SLIST_REMOVE_HEAD(match_rules, entry); 5560 free(ri, M_PF_RULE_ITEM); 5561 } 5562 5563 uma_zfree(V_pf_state_key_z, sk); 5564 uma_zfree(V_pf_state_key_z, nk); 5565 5566 if (sn != NULL) { 5567 PF_SRC_NODE_LOCK(sn); 5568 if (--sn->states == 0 && sn->expire == 0) { 5569 pf_unlink_src_node(sn); 5570 uma_zfree(V_pf_sources_z, sn); 5571 counter_u64_add( 5572 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5573 } 5574 PF_SRC_NODE_UNLOCK(sn); 5575 } 5576 5577 if (nsn != sn && nsn != NULL) { 5578 PF_SRC_NODE_LOCK(nsn); 5579 if (--nsn->states == 0 && nsn->expire == 0) { 5580 pf_unlink_src_node(nsn); 5581 uma_zfree(V_pf_sources_z, nsn); 5582 counter_u64_add( 5583 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5584 } 5585 PF_SRC_NODE_UNLOCK(nsn); 5586 } 5587 5588 drop: 5589 if (s != NULL) { 5590 pf_src_tree_remove_state(s); 5591 s->timeout = PFTM_UNLINKED; 5592 STATE_DEC_COUNTERS(s); 5593 pf_free_state(s); 5594 } 5595 5596 return (PF_DROP); 5597 } 5598 5599 static int 5600 pf_tcp_track_full(struct pf_kstate **state, struct pf_pdesc *pd, 5601 u_short *reason, int *copyback) 5602 { 5603 struct tcphdr *th = &pd->hdr.tcp; 5604 struct pf_state_peer *src, *dst; 5605 u_int16_t win = ntohs(th->th_win); 5606 u_int32_t ack, end, data_end, seq, orig_seq; 5607 u_int8_t sws, dws, psrc, pdst; 5608 int ackskew; 5609 5610 if (pd->dir == (*state)->direction) { 5611 src = &(*state)->src; 5612 dst = &(*state)->dst; 5613 psrc = PF_PEER_SRC; 5614 pdst = PF_PEER_DST; 5615 } else { 5616 src = &(*state)->dst; 5617 dst = &(*state)->src; 5618 psrc = PF_PEER_DST; 5619 pdst = PF_PEER_SRC; 5620 } 5621 5622 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 5623 sws = src->wscale & PF_WSCALE_MASK; 5624 dws = dst->wscale & PF_WSCALE_MASK; 5625 } else 5626 sws = dws = 0; 5627 5628 /* 5629 * Sequence tracking algorithm from Guido van Rooij's paper: 5630 * http://www.madison-gurkha.com/publications/tcp_filtering/ 5631 * tcp_filtering.ps 5632 */ 5633 5634 orig_seq = seq = ntohl(th->th_seq); 5635 if (src->seqlo == 0) { 5636 /* First packet from this end. Set its state */ 5637 5638 if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 5639 src->scrub == NULL) { 5640 if (pf_normalize_tcp_init(pd, th, src, dst)) { 5641 REASON_SET(reason, PFRES_MEMORY); 5642 return (PF_DROP); 5643 } 5644 } 5645 5646 /* Deferred generation of sequence number modulator */ 5647 if (dst->seqdiff && !src->seqdiff) { 5648 /* use random iss for the TCP server */ 5649 while ((src->seqdiff = arc4random() - seq) == 0) 5650 ; 5651 ack = ntohl(th->th_ack) - dst->seqdiff; 5652 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq + 5653 src->seqdiff), 0); 5654 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5655 *copyback = 1; 5656 } else { 5657 ack = ntohl(th->th_ack); 5658 } 5659 5660 end = seq + pd->p_len; 5661 if (th->th_flags & TH_SYN) { 5662 end++; 5663 if (dst->wscale & PF_WSCALE_FLAG) { 5664 src->wscale = pf_get_wscale(pd); 5665 if (src->wscale & PF_WSCALE_FLAG) { 5666 /* Remove scale factor from initial 5667 * window */ 5668 sws = src->wscale & PF_WSCALE_MASK; 5669 win = ((u_int32_t)win + (1 << sws) - 1) 5670 >> sws; 5671 dws = dst->wscale & PF_WSCALE_MASK; 5672 } else { 5673 /* fixup other window */ 5674 dst->max_win = MIN(TCP_MAXWIN, 5675 (u_int32_t)dst->max_win << 5676 (dst->wscale & PF_WSCALE_MASK)); 5677 /* in case of a retrans SYN|ACK */ 5678 dst->wscale = 0; 5679 } 5680 } 5681 } 5682 data_end = end; 5683 if (th->th_flags & TH_FIN) 5684 end++; 5685 5686 src->seqlo = seq; 5687 if (src->state < TCPS_SYN_SENT) 5688 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5689 5690 /* 5691 * May need to slide the window (seqhi may have been set by 5692 * the crappy stack check or if we picked up the connection 5693 * after establishment) 5694 */ 5695 if (src->seqhi == 1 || 5696 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 5697 src->seqhi = end + MAX(1, dst->max_win << dws); 5698 if (win > src->max_win) 5699 src->max_win = win; 5700 5701 } else { 5702 ack = ntohl(th->th_ack) - dst->seqdiff; 5703 if (src->seqdiff) { 5704 /* Modulate sequence numbers */ 5705 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq + 5706 src->seqdiff), 0); 5707 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5708 *copyback = 1; 5709 } 5710 end = seq + pd->p_len; 5711 if (th->th_flags & TH_SYN) 5712 end++; 5713 data_end = end; 5714 if (th->th_flags & TH_FIN) 5715 end++; 5716 } 5717 5718 if ((th->th_flags & TH_ACK) == 0) { 5719 /* Let it pass through the ack skew check */ 5720 ack = dst->seqlo; 5721 } else if ((ack == 0 && 5722 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 5723 /* broken tcp stacks do not set ack */ 5724 (dst->state < TCPS_SYN_SENT)) { 5725 /* 5726 * Many stacks (ours included) will set the ACK number in an 5727 * FIN|ACK if the SYN times out -- no sequence to ACK. 5728 */ 5729 ack = dst->seqlo; 5730 } 5731 5732 if (seq == end) { 5733 /* Ease sequencing restrictions on no data packets */ 5734 seq = src->seqlo; 5735 data_end = end = seq; 5736 } 5737 5738 ackskew = dst->seqlo - ack; 5739 5740 /* 5741 * Need to demodulate the sequence numbers in any TCP SACK options 5742 * (Selective ACK). We could optionally validate the SACK values 5743 * against the current ACK window, either forwards or backwards, but 5744 * I'm not confident that SACK has been implemented properly 5745 * everywhere. It wouldn't surprise me if several stacks accidentally 5746 * SACK too far backwards of previously ACKed data. There really aren't 5747 * any security implications of bad SACKing unless the target stack 5748 * doesn't validate the option length correctly. Someone trying to 5749 * spoof into a TCP connection won't bother blindly sending SACK 5750 * options anyway. 5751 */ 5752 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 5753 if (pf_modulate_sack(pd, th, dst)) 5754 *copyback = 1; 5755 } 5756 5757 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 5758 if (SEQ_GEQ(src->seqhi, data_end) && 5759 /* Last octet inside other's window space */ 5760 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 5761 /* Retrans: not more than one window back */ 5762 (ackskew >= -MAXACKWINDOW) && 5763 /* Acking not more than one reassembled fragment backwards */ 5764 (ackskew <= (MAXACKWINDOW << sws)) && 5765 /* Acking not more than one window forward */ 5766 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 5767 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) { 5768 /* Require an exact/+1 sequence match on resets when possible */ 5769 5770 if (dst->scrub || src->scrub) { 5771 if (pf_normalize_tcp_stateful(pd, reason, th, 5772 *state, src, dst, copyback)) 5773 return (PF_DROP); 5774 } 5775 5776 /* update max window */ 5777 if (src->max_win < win) 5778 src->max_win = win; 5779 /* synchronize sequencing */ 5780 if (SEQ_GT(end, src->seqlo)) 5781 src->seqlo = end; 5782 /* slide the window of what the other end can send */ 5783 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5784 dst->seqhi = ack + MAX((win << sws), 1); 5785 5786 /* update states */ 5787 if (th->th_flags & TH_SYN) 5788 if (src->state < TCPS_SYN_SENT) 5789 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5790 if (th->th_flags & TH_FIN) 5791 if (src->state < TCPS_CLOSING) 5792 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5793 if (th->th_flags & TH_ACK) { 5794 if (dst->state == TCPS_SYN_SENT) { 5795 pf_set_protostate(*state, pdst, 5796 TCPS_ESTABLISHED); 5797 if (src->state == TCPS_ESTABLISHED && 5798 (*state)->src_node != NULL && 5799 pf_src_connlimit(state)) { 5800 REASON_SET(reason, PFRES_SRCLIMIT); 5801 return (PF_DROP); 5802 } 5803 } else if (dst->state == TCPS_CLOSING) 5804 pf_set_protostate(*state, pdst, 5805 TCPS_FIN_WAIT_2); 5806 } 5807 if (th->th_flags & TH_RST) 5808 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5809 5810 /* update expire time */ 5811 (*state)->expire = pf_get_uptime(); 5812 if (src->state >= TCPS_FIN_WAIT_2 && 5813 dst->state >= TCPS_FIN_WAIT_2) 5814 (*state)->timeout = PFTM_TCP_CLOSED; 5815 else if (src->state >= TCPS_CLOSING && 5816 dst->state >= TCPS_CLOSING) 5817 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5818 else if (src->state < TCPS_ESTABLISHED || 5819 dst->state < TCPS_ESTABLISHED) 5820 (*state)->timeout = PFTM_TCP_OPENING; 5821 else if (src->state >= TCPS_CLOSING || 5822 dst->state >= TCPS_CLOSING) 5823 (*state)->timeout = PFTM_TCP_CLOSING; 5824 else 5825 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5826 5827 /* Fall through to PASS packet */ 5828 5829 } else if ((dst->state < TCPS_SYN_SENT || 5830 dst->state >= TCPS_FIN_WAIT_2 || 5831 src->state >= TCPS_FIN_WAIT_2) && 5832 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) && 5833 /* Within a window forward of the originating packet */ 5834 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 5835 /* Within a window backward of the originating packet */ 5836 5837 /* 5838 * This currently handles three situations: 5839 * 1) Stupid stacks will shotgun SYNs before their peer 5840 * replies. 5841 * 2) When PF catches an already established stream (the 5842 * firewall rebooted, the state table was flushed, routes 5843 * changed...) 5844 * 3) Packets get funky immediately after the connection 5845 * closes (this should catch Solaris spurious ACK|FINs 5846 * that web servers like to spew after a close) 5847 * 5848 * This must be a little more careful than the above code 5849 * since packet floods will also be caught here. We don't 5850 * update the TTL here to mitigate the damage of a packet 5851 * flood and so the same code can handle awkward establishment 5852 * and a loosened connection close. 5853 * In the establishment case, a correct peer response will 5854 * validate the connection, go through the normal state code 5855 * and keep updating the state TTL. 5856 */ 5857 5858 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5859 printf("pf: loose state match: "); 5860 pf_print_state(*state); 5861 pf_print_flags(th->th_flags); 5862 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5863 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 5864 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 5865 (unsigned long long)(*state)->packets[1], 5866 pd->dir == PF_IN ? "in" : "out", 5867 pd->dir == (*state)->direction ? "fwd" : "rev"); 5868 } 5869 5870 if (dst->scrub || src->scrub) { 5871 if (pf_normalize_tcp_stateful(pd, reason, th, 5872 *state, src, dst, copyback)) 5873 return (PF_DROP); 5874 } 5875 5876 /* update max window */ 5877 if (src->max_win < win) 5878 src->max_win = win; 5879 /* synchronize sequencing */ 5880 if (SEQ_GT(end, src->seqlo)) 5881 src->seqlo = end; 5882 /* slide the window of what the other end can send */ 5883 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5884 dst->seqhi = ack + MAX((win << sws), 1); 5885 5886 /* 5887 * Cannot set dst->seqhi here since this could be a shotgunned 5888 * SYN and not an already established connection. 5889 */ 5890 5891 if (th->th_flags & TH_FIN) 5892 if (src->state < TCPS_CLOSING) 5893 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5894 if (th->th_flags & TH_RST) 5895 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5896 5897 /* Fall through to PASS packet */ 5898 5899 } else { 5900 if ((*state)->dst.state == TCPS_SYN_SENT && 5901 (*state)->src.state == TCPS_SYN_SENT) { 5902 /* Send RST for state mismatches during handshake */ 5903 if (!(th->th_flags & TH_RST)) 5904 pf_send_tcp((*state)->rule, pd->af, 5905 pd->dst, pd->src, th->th_dport, 5906 th->th_sport, ntohl(th->th_ack), 0, 5907 TH_RST, 0, 0, 5908 (*state)->rule->return_ttl, M_SKIP_FIREWALL, 5909 0, 0, (*state)->act.rtableid); 5910 src->seqlo = 0; 5911 src->seqhi = 1; 5912 src->max_win = 1; 5913 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 5914 printf("pf: BAD state: "); 5915 pf_print_state(*state); 5916 pf_print_flags(th->th_flags); 5917 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5918 "pkts=%llu:%llu dir=%s,%s\n", 5919 seq, orig_seq, ack, pd->p_len, ackskew, 5920 (unsigned long long)(*state)->packets[0], 5921 (unsigned long long)(*state)->packets[1], 5922 pd->dir == PF_IN ? "in" : "out", 5923 pd->dir == (*state)->direction ? "fwd" : "rev"); 5924 printf("pf: State failure on: %c %c %c %c | %c %c\n", 5925 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1', 5926 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 5927 ' ': '2', 5928 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 5929 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 5930 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5', 5931 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 5932 } 5933 REASON_SET(reason, PFRES_BADSTATE); 5934 return (PF_DROP); 5935 } 5936 5937 return (PF_PASS); 5938 } 5939 5940 static int 5941 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 5942 { 5943 struct tcphdr *th = &pd->hdr.tcp; 5944 struct pf_state_peer *src, *dst; 5945 u_int8_t psrc, pdst; 5946 5947 if (pd->dir == (*state)->direction) { 5948 src = &(*state)->src; 5949 dst = &(*state)->dst; 5950 psrc = PF_PEER_SRC; 5951 pdst = PF_PEER_DST; 5952 } else { 5953 src = &(*state)->dst; 5954 dst = &(*state)->src; 5955 psrc = PF_PEER_DST; 5956 pdst = PF_PEER_SRC; 5957 } 5958 5959 if (th->th_flags & TH_SYN) 5960 if (src->state < TCPS_SYN_SENT) 5961 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5962 if (th->th_flags & TH_FIN) 5963 if (src->state < TCPS_CLOSING) 5964 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5965 if (th->th_flags & TH_ACK) { 5966 if (dst->state == TCPS_SYN_SENT) { 5967 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 5968 if (src->state == TCPS_ESTABLISHED && 5969 (*state)->src_node != NULL && 5970 pf_src_connlimit(state)) { 5971 REASON_SET(reason, PFRES_SRCLIMIT); 5972 return (PF_DROP); 5973 } 5974 } else if (dst->state == TCPS_CLOSING) { 5975 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 5976 } else if (src->state == TCPS_SYN_SENT && 5977 dst->state < TCPS_SYN_SENT) { 5978 /* 5979 * Handle a special sloppy case where we only see one 5980 * half of the connection. If there is a ACK after 5981 * the initial SYN without ever seeing a packet from 5982 * the destination, set the connection to established. 5983 */ 5984 pf_set_protostate(*state, PF_PEER_BOTH, 5985 TCPS_ESTABLISHED); 5986 dst->state = src->state = TCPS_ESTABLISHED; 5987 if ((*state)->src_node != NULL && 5988 pf_src_connlimit(state)) { 5989 REASON_SET(reason, PFRES_SRCLIMIT); 5990 return (PF_DROP); 5991 } 5992 } else if (src->state == TCPS_CLOSING && 5993 dst->state == TCPS_ESTABLISHED && 5994 dst->seqlo == 0) { 5995 /* 5996 * Handle the closing of half connections where we 5997 * don't see the full bidirectional FIN/ACK+ACK 5998 * handshake. 5999 */ 6000 pf_set_protostate(*state, pdst, TCPS_CLOSING); 6001 } 6002 } 6003 if (th->th_flags & TH_RST) 6004 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6005 6006 /* update expire time */ 6007 (*state)->expire = pf_get_uptime(); 6008 if (src->state >= TCPS_FIN_WAIT_2 && 6009 dst->state >= TCPS_FIN_WAIT_2) 6010 (*state)->timeout = PFTM_TCP_CLOSED; 6011 else if (src->state >= TCPS_CLOSING && 6012 dst->state >= TCPS_CLOSING) 6013 (*state)->timeout = PFTM_TCP_FIN_WAIT; 6014 else if (src->state < TCPS_ESTABLISHED || 6015 dst->state < TCPS_ESTABLISHED) 6016 (*state)->timeout = PFTM_TCP_OPENING; 6017 else if (src->state >= TCPS_CLOSING || 6018 dst->state >= TCPS_CLOSING) 6019 (*state)->timeout = PFTM_TCP_CLOSING; 6020 else 6021 (*state)->timeout = PFTM_TCP_ESTABLISHED; 6022 6023 return (PF_PASS); 6024 } 6025 6026 static int 6027 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 6028 { 6029 struct pf_state_key *sk = (*state)->key[pd->didx]; 6030 struct tcphdr *th = &pd->hdr.tcp; 6031 6032 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 6033 if (pd->dir != (*state)->direction) { 6034 REASON_SET(reason, PFRES_SYNPROXY); 6035 return (PF_SYNPROXY_DROP); 6036 } 6037 if (th->th_flags & TH_SYN) { 6038 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 6039 REASON_SET(reason, PFRES_SYNPROXY); 6040 return (PF_DROP); 6041 } 6042 pf_send_tcp((*state)->rule, pd->af, pd->dst, 6043 pd->src, th->th_dport, th->th_sport, 6044 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 6045 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 6046 M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid); 6047 REASON_SET(reason, PFRES_SYNPROXY); 6048 return (PF_SYNPROXY_DROP); 6049 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 6050 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 6051 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 6052 REASON_SET(reason, PFRES_SYNPROXY); 6053 return (PF_DROP); 6054 } else if ((*state)->src_node != NULL && 6055 pf_src_connlimit(state)) { 6056 REASON_SET(reason, PFRES_SRCLIMIT); 6057 return (PF_DROP); 6058 } else 6059 pf_set_protostate(*state, PF_PEER_SRC, 6060 PF_TCPS_PROXY_DST); 6061 } 6062 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 6063 if (pd->dir == (*state)->direction) { 6064 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 6065 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 6066 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 6067 REASON_SET(reason, PFRES_SYNPROXY); 6068 return (PF_DROP); 6069 } 6070 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 6071 if ((*state)->dst.seqhi == 1) 6072 (*state)->dst.seqhi = htonl(arc4random()); 6073 pf_send_tcp((*state)->rule, pd->af, 6074 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6075 sk->port[pd->sidx], sk->port[pd->didx], 6076 (*state)->dst.seqhi, 0, TH_SYN, 0, 6077 (*state)->src.mss, 0, 6078 (*state)->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0, 6079 (*state)->tag, 0, (*state)->act.rtableid); 6080 REASON_SET(reason, PFRES_SYNPROXY); 6081 return (PF_SYNPROXY_DROP); 6082 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 6083 (TH_SYN|TH_ACK)) || 6084 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 6085 REASON_SET(reason, PFRES_SYNPROXY); 6086 return (PF_DROP); 6087 } else { 6088 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 6089 (*state)->dst.seqlo = ntohl(th->th_seq); 6090 pf_send_tcp((*state)->rule, pd->af, pd->dst, 6091 pd->src, th->th_dport, th->th_sport, 6092 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 6093 TH_ACK, (*state)->src.max_win, 0, 0, 0, 6094 (*state)->tag, 0, (*state)->act.rtableid); 6095 pf_send_tcp((*state)->rule, pd->af, 6096 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6097 sk->port[pd->sidx], sk->port[pd->didx], 6098 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 6099 TH_ACK, (*state)->dst.max_win, 0, 0, 6100 M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid); 6101 (*state)->src.seqdiff = (*state)->dst.seqhi - 6102 (*state)->src.seqlo; 6103 (*state)->dst.seqdiff = (*state)->src.seqhi - 6104 (*state)->dst.seqlo; 6105 (*state)->src.seqhi = (*state)->src.seqlo + 6106 (*state)->dst.max_win; 6107 (*state)->dst.seqhi = (*state)->dst.seqlo + 6108 (*state)->src.max_win; 6109 (*state)->src.wscale = (*state)->dst.wscale = 0; 6110 pf_set_protostate(*state, PF_PEER_BOTH, 6111 TCPS_ESTABLISHED); 6112 REASON_SET(reason, PFRES_SYNPROXY); 6113 return (PF_SYNPROXY_DROP); 6114 } 6115 } 6116 6117 return (PF_PASS); 6118 } 6119 6120 static int 6121 pf_test_state_tcp(struct pf_kstate **state, struct pf_pdesc *pd, 6122 u_short *reason) 6123 { 6124 struct pf_state_key_cmp key; 6125 struct tcphdr *th = &pd->hdr.tcp; 6126 int copyback = 0; 6127 int action; 6128 struct pf_state_peer *src, *dst; 6129 6130 bzero(&key, sizeof(key)); 6131 key.af = pd->af; 6132 key.proto = IPPROTO_TCP; 6133 if (pd->dir == PF_IN) { /* wire side, straight */ 6134 PF_ACPY(&key.addr[0], pd->src, key.af); 6135 PF_ACPY(&key.addr[1], pd->dst, key.af); 6136 key.port[0] = th->th_sport; 6137 key.port[1] = th->th_dport; 6138 } else { /* stack side, reverse */ 6139 PF_ACPY(&key.addr[1], pd->src, key.af); 6140 PF_ACPY(&key.addr[0], pd->dst, key.af); 6141 key.port[1] = th->th_sport; 6142 key.port[0] = th->th_dport; 6143 } 6144 6145 STATE_LOOKUP(&key, *state, pd); 6146 6147 if (pd->dir == (*state)->direction) { 6148 src = &(*state)->src; 6149 dst = &(*state)->dst; 6150 } else { 6151 src = &(*state)->dst; 6152 dst = &(*state)->src; 6153 } 6154 6155 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 6156 return (action); 6157 6158 if (dst->state >= TCPS_FIN_WAIT_2 && 6159 src->state >= TCPS_FIN_WAIT_2 && 6160 (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) || 6161 ((th->th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK && 6162 pf_syncookie_check(pd) && pd->dir == PF_IN))) { 6163 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6164 printf("pf: state reuse "); 6165 pf_print_state(*state); 6166 pf_print_flags(th->th_flags); 6167 printf("\n"); 6168 } 6169 /* XXX make sure it's the same direction ?? */ 6170 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 6171 pf_unlink_state(*state); 6172 *state = NULL; 6173 return (PF_DROP); 6174 } 6175 6176 if ((*state)->state_flags & PFSTATE_SLOPPY) { 6177 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 6178 return (PF_DROP); 6179 } else { 6180 if (pf_tcp_track_full(state, pd, reason, 6181 ©back) == PF_DROP) 6182 return (PF_DROP); 6183 } 6184 6185 /* translate source/destination address, if necessary */ 6186 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6187 struct pf_state_key *nk = (*state)->key[pd->didx]; 6188 6189 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6190 nk->port[pd->sidx] != th->th_sport) 6191 pf_change_ap(pd->m, pd->src, &th->th_sport, 6192 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 6193 nk->port[pd->sidx], 0, pd->af); 6194 6195 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6196 nk->port[pd->didx] != th->th_dport) 6197 pf_change_ap(pd->m, pd->dst, &th->th_dport, 6198 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 6199 nk->port[pd->didx], 0, pd->af); 6200 copyback = 1; 6201 } 6202 6203 /* Copyback sequence modulation or stateful scrub changes if needed */ 6204 if (copyback) 6205 m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th); 6206 6207 return (PF_PASS); 6208 } 6209 6210 static int 6211 pf_test_state_udp(struct pf_kstate **state, struct pf_pdesc *pd) 6212 { 6213 struct pf_state_peer *src, *dst; 6214 struct pf_state_key_cmp key; 6215 struct udphdr *uh = &pd->hdr.udp; 6216 uint8_t psrc, pdst; 6217 6218 bzero(&key, sizeof(key)); 6219 key.af = pd->af; 6220 key.proto = IPPROTO_UDP; 6221 if (pd->dir == PF_IN) { /* wire side, straight */ 6222 PF_ACPY(&key.addr[0], pd->src, key.af); 6223 PF_ACPY(&key.addr[1], pd->dst, key.af); 6224 key.port[0] = uh->uh_sport; 6225 key.port[1] = uh->uh_dport; 6226 } else { /* stack side, reverse */ 6227 PF_ACPY(&key.addr[1], pd->src, key.af); 6228 PF_ACPY(&key.addr[0], pd->dst, key.af); 6229 key.port[1] = uh->uh_sport; 6230 key.port[0] = uh->uh_dport; 6231 } 6232 6233 STATE_LOOKUP(&key, *state, pd); 6234 6235 if (pd->dir == (*state)->direction) { 6236 src = &(*state)->src; 6237 dst = &(*state)->dst; 6238 psrc = PF_PEER_SRC; 6239 pdst = PF_PEER_DST; 6240 } else { 6241 src = &(*state)->dst; 6242 dst = &(*state)->src; 6243 psrc = PF_PEER_DST; 6244 pdst = PF_PEER_SRC; 6245 } 6246 6247 /* update states */ 6248 if (src->state < PFUDPS_SINGLE) 6249 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 6250 if (dst->state == PFUDPS_SINGLE) 6251 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 6252 6253 /* update expire time */ 6254 (*state)->expire = pf_get_uptime(); 6255 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 6256 (*state)->timeout = PFTM_UDP_MULTIPLE; 6257 else 6258 (*state)->timeout = PFTM_UDP_SINGLE; 6259 6260 /* translate source/destination address, if necessary */ 6261 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6262 struct pf_state_key *nk = (*state)->key[pd->didx]; 6263 6264 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6265 nk->port[pd->sidx] != uh->uh_sport) 6266 pf_change_ap(pd->m, pd->src, &uh->uh_sport, pd->ip_sum, 6267 &uh->uh_sum, &nk->addr[pd->sidx], 6268 nk->port[pd->sidx], 1, pd->af); 6269 6270 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6271 nk->port[pd->didx] != uh->uh_dport) 6272 pf_change_ap(pd->m, pd->dst, &uh->uh_dport, pd->ip_sum, 6273 &uh->uh_sum, &nk->addr[pd->didx], 6274 nk->port[pd->didx], 1, pd->af); 6275 m_copyback(pd->m, pd->off, sizeof(*uh), (caddr_t)uh); 6276 } 6277 6278 return (PF_PASS); 6279 } 6280 6281 static int 6282 pf_test_state_sctp(struct pf_kstate **state, struct pf_pdesc *pd, 6283 u_short *reason) 6284 { 6285 struct pf_state_key_cmp key; 6286 struct pf_state_peer *src, *dst; 6287 struct sctphdr *sh = &pd->hdr.sctp; 6288 u_int8_t psrc; //, pdst; 6289 6290 bzero(&key, sizeof(key)); 6291 key.af = pd->af; 6292 key.proto = IPPROTO_SCTP; 6293 if (pd->dir == PF_IN) { /* wire side, straight */ 6294 PF_ACPY(&key.addr[0], pd->src, key.af); 6295 PF_ACPY(&key.addr[1], pd->dst, key.af); 6296 key.port[0] = sh->src_port; 6297 key.port[1] = sh->dest_port; 6298 } else { /* stack side, reverse */ 6299 PF_ACPY(&key.addr[1], pd->src, key.af); 6300 PF_ACPY(&key.addr[0], pd->dst, key.af); 6301 key.port[1] = sh->src_port; 6302 key.port[0] = sh->dest_port; 6303 } 6304 6305 STATE_LOOKUP(&key, *state, pd); 6306 6307 if (pd->dir == (*state)->direction) { 6308 src = &(*state)->src; 6309 dst = &(*state)->dst; 6310 psrc = PF_PEER_SRC; 6311 } else { 6312 src = &(*state)->dst; 6313 dst = &(*state)->src; 6314 psrc = PF_PEER_DST; 6315 } 6316 6317 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) && 6318 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) && 6319 pd->sctp_flags & PFDESC_SCTP_INIT) { 6320 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED); 6321 pf_unlink_state(*state); 6322 *state = NULL; 6323 return (PF_DROP); 6324 } 6325 6326 /* Track state. */ 6327 if (pd->sctp_flags & PFDESC_SCTP_INIT) { 6328 if (src->state < SCTP_COOKIE_WAIT) { 6329 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT); 6330 (*state)->timeout = PFTM_SCTP_OPENING; 6331 } 6332 } 6333 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) { 6334 MPASS(dst->scrub != NULL); 6335 if (dst->scrub->pfss_v_tag == 0) 6336 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag; 6337 } 6338 6339 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) { 6340 if (src->state < SCTP_ESTABLISHED) { 6341 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED); 6342 (*state)->timeout = PFTM_SCTP_ESTABLISHED; 6343 } 6344 } 6345 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | PFDESC_SCTP_ABORT | 6346 PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 6347 if (src->state < SCTP_SHUTDOWN_PENDING) { 6348 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING); 6349 (*state)->timeout = PFTM_SCTP_CLOSING; 6350 } 6351 } 6352 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 6353 pf_set_protostate(*state, psrc, SCTP_CLOSED); 6354 (*state)->timeout = PFTM_SCTP_CLOSED; 6355 } 6356 6357 if (src->scrub != NULL) { 6358 if (src->scrub->pfss_v_tag == 0) { 6359 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag; 6360 } else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag) 6361 return (PF_DROP); 6362 } 6363 6364 (*state)->expire = pf_get_uptime(); 6365 6366 /* translate source/destination address, if necessary */ 6367 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6368 uint16_t checksum = 0; 6369 struct pf_state_key *nk = (*state)->key[pd->didx]; 6370 6371 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6372 nk->port[pd->sidx] != pd->hdr.sctp.src_port) { 6373 pf_change_ap(pd->m, pd->src, &pd->hdr.sctp.src_port, 6374 pd->ip_sum, &checksum, &nk->addr[pd->sidx], 6375 nk->port[pd->sidx], 1, pd->af); 6376 } 6377 6378 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6379 nk->port[pd->didx] != pd->hdr.sctp.dest_port) { 6380 pf_change_ap(pd->m, pd->dst, &pd->hdr.sctp.dest_port, 6381 pd->ip_sum, &checksum, &nk->addr[pd->didx], 6382 nk->port[pd->didx], 1, pd->af); 6383 } 6384 } 6385 6386 return (PF_PASS); 6387 } 6388 6389 static void 6390 pf_sctp_multihome_detach_addr(const struct pf_kstate *s) 6391 { 6392 struct pf_sctp_endpoint key; 6393 struct pf_sctp_endpoint *ep; 6394 struct pf_state_key *sks = s->key[PF_SK_STACK]; 6395 struct pf_sctp_source *i, *tmp; 6396 6397 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL) 6398 return; 6399 6400 PF_SCTP_ENDPOINTS_LOCK(); 6401 6402 key.v_tag = s->dst.scrub->pfss_v_tag; 6403 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6404 if (ep != NULL) { 6405 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6406 if (pf_addr_cmp(&i->addr, 6407 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT], 6408 s->key[PF_SK_WIRE]->af) == 0) { 6409 SDT_PROBE3(pf, sctp, multihome, remove, 6410 key.v_tag, s, i); 6411 TAILQ_REMOVE(&ep->sources, i, entry); 6412 free(i, M_PFTEMP); 6413 break; 6414 } 6415 } 6416 6417 if (TAILQ_EMPTY(&ep->sources)) { 6418 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6419 free(ep, M_PFTEMP); 6420 } 6421 } 6422 6423 /* Other direction. */ 6424 key.v_tag = s->src.scrub->pfss_v_tag; 6425 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6426 if (ep != NULL) { 6427 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6428 if (pf_addr_cmp(&i->addr, 6429 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN], 6430 s->key[PF_SK_WIRE]->af) == 0) { 6431 SDT_PROBE3(pf, sctp, multihome, remove, 6432 key.v_tag, s, i); 6433 TAILQ_REMOVE(&ep->sources, i, entry); 6434 free(i, M_PFTEMP); 6435 break; 6436 } 6437 } 6438 6439 if (TAILQ_EMPTY(&ep->sources)) { 6440 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6441 free(ep, M_PFTEMP); 6442 } 6443 } 6444 6445 PF_SCTP_ENDPOINTS_UNLOCK(); 6446 } 6447 6448 static void 6449 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag) 6450 { 6451 struct pf_sctp_endpoint key = { 6452 .v_tag = v_tag, 6453 }; 6454 struct pf_sctp_source *i; 6455 struct pf_sctp_endpoint *ep; 6456 6457 PF_SCTP_ENDPOINTS_LOCK(); 6458 6459 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6460 if (ep == NULL) { 6461 ep = malloc(sizeof(struct pf_sctp_endpoint), 6462 M_PFTEMP, M_NOWAIT); 6463 if (ep == NULL) { 6464 PF_SCTP_ENDPOINTS_UNLOCK(); 6465 return; 6466 } 6467 6468 ep->v_tag = v_tag; 6469 TAILQ_INIT(&ep->sources); 6470 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6471 } 6472 6473 /* Avoid inserting duplicates. */ 6474 TAILQ_FOREACH(i, &ep->sources, entry) { 6475 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) { 6476 PF_SCTP_ENDPOINTS_UNLOCK(); 6477 return; 6478 } 6479 } 6480 6481 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT); 6482 if (i == NULL) { 6483 PF_SCTP_ENDPOINTS_UNLOCK(); 6484 return; 6485 } 6486 6487 i->af = pd->af; 6488 memcpy(&i->addr, a, sizeof(*a)); 6489 TAILQ_INSERT_TAIL(&ep->sources, i, entry); 6490 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i); 6491 6492 PF_SCTP_ENDPOINTS_UNLOCK(); 6493 } 6494 6495 static void 6496 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif, 6497 struct pf_kstate *s, int action) 6498 { 6499 struct pf_sctp_multihome_job *j, *tmp; 6500 struct pf_sctp_source *i; 6501 int ret __unused; 6502 struct pf_kstate *sm = NULL; 6503 struct pf_krule *ra = NULL; 6504 struct pf_krule *r = &V_pf_default_rule; 6505 struct pf_kruleset *rs = NULL; 6506 bool do_extra = true; 6507 6508 PF_RULES_RLOCK_TRACKER; 6509 6510 again: 6511 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) { 6512 if (s == NULL || action != PF_PASS) 6513 goto free; 6514 6515 /* Confirm we don't recurse here. */ 6516 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP)); 6517 6518 switch (j->op) { 6519 case SCTP_ADD_IP_ADDRESS: { 6520 uint32_t v_tag = pd->sctp_initiate_tag; 6521 6522 if (v_tag == 0) { 6523 if (s->direction == pd->dir) 6524 v_tag = s->src.scrub->pfss_v_tag; 6525 else 6526 v_tag = s->dst.scrub->pfss_v_tag; 6527 } 6528 6529 /* 6530 * Avoid duplicating states. We'll already have 6531 * created a state based on the source address of 6532 * the packet, but SCTP endpoints may also list this 6533 * address again in the INIT(_ACK) parameters. 6534 */ 6535 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) { 6536 break; 6537 } 6538 6539 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP; 6540 PF_RULES_RLOCK(); 6541 sm = NULL; 6542 /* 6543 * New connections need to be floating, because 6544 * we cannot know what interfaces it will use. 6545 * That's why we pass V_pfi_all rather than kif. 6546 */ 6547 j->pd.kif = V_pfi_all; 6548 ret = pf_test_rule(&r, &sm, 6549 &j->pd, &ra, &rs, NULL); 6550 PF_RULES_RUNLOCK(); 6551 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret); 6552 if (ret != PF_DROP && sm != NULL) { 6553 /* Inherit v_tag values. */ 6554 if (sm->direction == s->direction) { 6555 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6556 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6557 } else { 6558 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6559 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6560 } 6561 PF_STATE_UNLOCK(sm); 6562 } else { 6563 /* If we try duplicate inserts? */ 6564 break; 6565 } 6566 6567 /* Only add the address if we've actually allowed the state. */ 6568 pf_sctp_multihome_add_addr(pd, &j->src, v_tag); 6569 6570 if (! do_extra) { 6571 break; 6572 } 6573 /* 6574 * We need to do this for each of our source addresses. 6575 * Find those based on the verification tag. 6576 */ 6577 struct pf_sctp_endpoint key = { 6578 .v_tag = pd->hdr.sctp.v_tag, 6579 }; 6580 struct pf_sctp_endpoint *ep; 6581 6582 PF_SCTP_ENDPOINTS_LOCK(); 6583 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6584 if (ep == NULL) { 6585 PF_SCTP_ENDPOINTS_UNLOCK(); 6586 break; 6587 } 6588 MPASS(ep != NULL); 6589 6590 TAILQ_FOREACH(i, &ep->sources, entry) { 6591 struct pf_sctp_multihome_job *nj; 6592 6593 /* SCTP can intermingle IPv4 and IPv6. */ 6594 if (i->af != pd->af) 6595 continue; 6596 6597 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO); 6598 if (! nj) { 6599 continue; 6600 } 6601 memcpy(&nj->pd, &j->pd, sizeof(j->pd)); 6602 memcpy(&nj->src, &j->src, sizeof(nj->src)); 6603 nj->pd.src = &nj->src; 6604 // New destination address! 6605 memcpy(&nj->dst, &i->addr, sizeof(nj->dst)); 6606 nj->pd.dst = &nj->dst; 6607 nj->pd.m = j->pd.m; 6608 nj->op = j->op; 6609 6610 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next); 6611 } 6612 PF_SCTP_ENDPOINTS_UNLOCK(); 6613 6614 break; 6615 } 6616 case SCTP_DEL_IP_ADDRESS: { 6617 struct pf_state_key_cmp key; 6618 uint8_t psrc; 6619 6620 bzero(&key, sizeof(key)); 6621 key.af = j->pd.af; 6622 key.proto = IPPROTO_SCTP; 6623 if (j->pd.dir == PF_IN) { /* wire side, straight */ 6624 PF_ACPY(&key.addr[0], j->pd.src, key.af); 6625 PF_ACPY(&key.addr[1], j->pd.dst, key.af); 6626 key.port[0] = j->pd.hdr.sctp.src_port; 6627 key.port[1] = j->pd.hdr.sctp.dest_port; 6628 } else { /* stack side, reverse */ 6629 PF_ACPY(&key.addr[1], j->pd.src, key.af); 6630 PF_ACPY(&key.addr[0], j->pd.dst, key.af); 6631 key.port[1] = j->pd.hdr.sctp.src_port; 6632 key.port[0] = j->pd.hdr.sctp.dest_port; 6633 } 6634 6635 sm = pf_find_state(kif, &key, j->pd.dir); 6636 if (sm != NULL) { 6637 PF_STATE_LOCK_ASSERT(sm); 6638 if (j->pd.dir == sm->direction) { 6639 psrc = PF_PEER_SRC; 6640 } else { 6641 psrc = PF_PEER_DST; 6642 } 6643 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING); 6644 sm->timeout = PFTM_SCTP_CLOSING; 6645 PF_STATE_UNLOCK(sm); 6646 } 6647 break; 6648 default: 6649 panic("Unknown op %#x", j->op); 6650 } 6651 } 6652 6653 free: 6654 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next); 6655 free(j, M_PFTEMP); 6656 } 6657 6658 /* We may have inserted extra work while processing the list. */ 6659 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) { 6660 do_extra = false; 6661 goto again; 6662 } 6663 } 6664 6665 static int 6666 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op) 6667 { 6668 int off = 0; 6669 struct pf_sctp_multihome_job *job; 6670 6671 while (off < len) { 6672 struct sctp_paramhdr h; 6673 6674 if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL, NULL, 6675 pd->af)) 6676 return (PF_DROP); 6677 6678 /* Parameters are at least 4 bytes. */ 6679 if (ntohs(h.param_length) < 4) 6680 return (PF_DROP); 6681 6682 switch (ntohs(h.param_type)) { 6683 case SCTP_IPV4_ADDRESS: { 6684 struct in_addr t; 6685 6686 if (ntohs(h.param_length) != 6687 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6688 return (PF_DROP); 6689 6690 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t), 6691 NULL, NULL, pd->af)) 6692 return (PF_DROP); 6693 6694 if (in_nullhost(t)) 6695 t.s_addr = pd->src->v4.s_addr; 6696 6697 /* 6698 * We hold the state lock (idhash) here, which means 6699 * that we can't acquire the keyhash, or we'll get a 6700 * LOR (and potentially double-lock things too). We also 6701 * can't release the state lock here, so instead we'll 6702 * enqueue this for async handling. 6703 * There's a relatively small race here, in that a 6704 * packet using the new addresses could arrive already, 6705 * but that's just though luck for it. 6706 */ 6707 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6708 if (! job) 6709 return (PF_DROP); 6710 6711 memcpy(&job->pd, pd, sizeof(*pd)); 6712 6713 // New source address! 6714 memcpy(&job->src, &t, sizeof(t)); 6715 job->pd.src = &job->src; 6716 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6717 job->pd.dst = &job->dst; 6718 job->pd.m = pd->m; 6719 job->op = op; 6720 6721 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6722 break; 6723 } 6724 #ifdef INET6 6725 case SCTP_IPV6_ADDRESS: { 6726 struct in6_addr t; 6727 6728 if (ntohs(h.param_length) != 6729 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6730 return (PF_DROP); 6731 6732 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t), 6733 NULL, NULL, pd->af)) 6734 return (PF_DROP); 6735 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0) 6736 break; 6737 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0) 6738 memcpy(&t, &pd->src->v6, sizeof(t)); 6739 6740 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6741 if (! job) 6742 return (PF_DROP); 6743 6744 memcpy(&job->pd, pd, sizeof(*pd)); 6745 memcpy(&job->src, &t, sizeof(t)); 6746 job->pd.src = &job->src; 6747 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6748 job->pd.dst = &job->dst; 6749 job->pd.m = pd->m; 6750 job->op = op; 6751 6752 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6753 break; 6754 } 6755 #endif 6756 case SCTP_ADD_IP_ADDRESS: { 6757 int ret; 6758 struct sctp_asconf_paramhdr ah; 6759 6760 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah), 6761 NULL, NULL, pd->af)) 6762 return (PF_DROP); 6763 6764 ret = pf_multihome_scan(start + off + sizeof(ah), 6765 ntohs(ah.ph.param_length) - sizeof(ah), pd, 6766 SCTP_ADD_IP_ADDRESS); 6767 if (ret != PF_PASS) 6768 return (ret); 6769 break; 6770 } 6771 case SCTP_DEL_IP_ADDRESS: { 6772 int ret; 6773 struct sctp_asconf_paramhdr ah; 6774 6775 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah), 6776 NULL, NULL, pd->af)) 6777 return (PF_DROP); 6778 ret = pf_multihome_scan(start + off + sizeof(ah), 6779 ntohs(ah.ph.param_length) - sizeof(ah), pd, 6780 SCTP_DEL_IP_ADDRESS); 6781 if (ret != PF_PASS) 6782 return (ret); 6783 break; 6784 } 6785 default: 6786 break; 6787 } 6788 6789 off += roundup(ntohs(h.param_length), 4); 6790 } 6791 6792 return (PF_PASS); 6793 } 6794 int 6795 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd) 6796 { 6797 start += sizeof(struct sctp_init_chunk); 6798 len -= sizeof(struct sctp_init_chunk); 6799 6800 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS)); 6801 } 6802 6803 int 6804 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd) 6805 { 6806 start += sizeof(struct sctp_asconf_chunk); 6807 len -= sizeof(struct sctp_asconf_chunk); 6808 6809 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS)); 6810 } 6811 6812 int 6813 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd, 6814 struct pf_kstate **state, int direction, 6815 u_int16_t icmpid, u_int16_t type, int icmp_dir, 6816 int *iidx, int multi, int inner) 6817 { 6818 key->af = pd->af; 6819 key->proto = pd->proto; 6820 if (icmp_dir == PF_IN) { 6821 *iidx = pd->sidx; 6822 key->port[pd->sidx] = icmpid; 6823 key->port[pd->didx] = type; 6824 } else { 6825 *iidx = pd->didx; 6826 key->port[pd->sidx] = type; 6827 key->port[pd->didx] = icmpid; 6828 } 6829 if (pf_state_key_addr_setup(pd, key, multi)) 6830 return (PF_DROP); 6831 6832 STATE_LOOKUP(key, *state, pd); 6833 6834 if ((*state)->state_flags & PFSTATE_SLOPPY) 6835 return (-1); 6836 6837 /* Is this ICMP message flowing in right direction? */ 6838 if ((*state)->rule->type && 6839 (((!inner && (*state)->direction == direction) || 6840 (inner && (*state)->direction != direction)) ? 6841 PF_IN : PF_OUT) != icmp_dir) { 6842 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6843 printf("pf: icmp type %d in wrong direction (%d): ", 6844 ntohs(type), icmp_dir); 6845 pf_print_state(*state); 6846 printf("\n"); 6847 } 6848 PF_STATE_UNLOCK(*state); 6849 *state = NULL; 6850 return (PF_DROP); 6851 } 6852 return (-1); 6853 } 6854 6855 static int 6856 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd, 6857 u_short *reason) 6858 { 6859 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 6860 u_int16_t *icmpsum, virtual_id, virtual_type; 6861 u_int8_t icmptype, icmpcode; 6862 int icmp_dir, iidx, ret, multi; 6863 struct pf_state_key_cmp key; 6864 #ifdef INET 6865 u_int16_t icmpid; 6866 #endif 6867 6868 MPASS(*state == NULL); 6869 6870 bzero(&key, sizeof(key)); 6871 switch (pd->proto) { 6872 #ifdef INET 6873 case IPPROTO_ICMP: 6874 icmptype = pd->hdr.icmp.icmp_type; 6875 icmpcode = pd->hdr.icmp.icmp_code; 6876 icmpid = pd->hdr.icmp.icmp_id; 6877 icmpsum = &pd->hdr.icmp.icmp_cksum; 6878 break; 6879 #endif /* INET */ 6880 #ifdef INET6 6881 case IPPROTO_ICMPV6: 6882 icmptype = pd->hdr.icmp6.icmp6_type; 6883 icmpcode = pd->hdr.icmp6.icmp6_code; 6884 #ifdef INET 6885 icmpid = pd->hdr.icmp6.icmp6_id; 6886 #endif 6887 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 6888 break; 6889 #endif /* INET6 */ 6890 } 6891 6892 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &multi, 6893 &virtual_id, &virtual_type) == 0) { 6894 /* 6895 * ICMP query/reply message not related to a TCP/UDP packet. 6896 * Search for an ICMP state. 6897 */ 6898 ret = pf_icmp_state_lookup(&key, pd, state, pd->dir, 6899 virtual_id, virtual_type, icmp_dir, &iidx, 6900 PF_ICMP_MULTI_NONE, 0); 6901 if (ret >= 0) { 6902 MPASS(*state == NULL); 6903 if (ret == PF_DROP && pd->af == AF_INET6 && 6904 icmp_dir == PF_OUT) { 6905 ret = pf_icmp_state_lookup(&key, pd, state, 6906 pd->dir, virtual_id, virtual_type, 6907 icmp_dir, &iidx, multi, 0); 6908 if (ret >= 0) { 6909 MPASS(*state == NULL); 6910 return (ret); 6911 } 6912 } else 6913 return (ret); 6914 } 6915 6916 (*state)->expire = pf_get_uptime(); 6917 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 6918 6919 /* translate source/destination address, if necessary */ 6920 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6921 struct pf_state_key *nk = (*state)->key[pd->didx]; 6922 6923 switch (pd->af) { 6924 #ifdef INET 6925 case AF_INET: 6926 if (PF_ANEQ(pd->src, 6927 &nk->addr[pd->sidx], AF_INET)) 6928 pf_change_a(&saddr->v4.s_addr, 6929 pd->ip_sum, 6930 nk->addr[pd->sidx].v4.s_addr, 0); 6931 6932 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 6933 AF_INET)) 6934 pf_change_a(&daddr->v4.s_addr, 6935 pd->ip_sum, 6936 nk->addr[pd->didx].v4.s_addr, 0); 6937 6938 if (nk->port[iidx] != 6939 pd->hdr.icmp.icmp_id) { 6940 pd->hdr.icmp.icmp_cksum = 6941 pf_cksum_fixup( 6942 pd->hdr.icmp.icmp_cksum, icmpid, 6943 nk->port[iidx], 0); 6944 pd->hdr.icmp.icmp_id = 6945 nk->port[iidx]; 6946 } 6947 6948 m_copyback(pd->m, pd->off, ICMP_MINLEN, 6949 (caddr_t )&pd->hdr.icmp); 6950 break; 6951 #endif /* INET */ 6952 #ifdef INET6 6953 case AF_INET6: 6954 if (PF_ANEQ(pd->src, 6955 &nk->addr[pd->sidx], AF_INET6)) 6956 pf_change_a6(saddr, 6957 &pd->hdr.icmp6.icmp6_cksum, 6958 &nk->addr[pd->sidx], 0); 6959 6960 if (PF_ANEQ(pd->dst, 6961 &nk->addr[pd->didx], AF_INET6)) 6962 pf_change_a6(daddr, 6963 &pd->hdr.icmp6.icmp6_cksum, 6964 &nk->addr[pd->didx], 0); 6965 6966 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr), 6967 (caddr_t )&pd->hdr.icmp6); 6968 break; 6969 #endif /* INET6 */ 6970 } 6971 } 6972 return (PF_PASS); 6973 6974 } else { 6975 /* 6976 * ICMP error message in response to a TCP/UDP packet. 6977 * Extract the inner TCP/UDP header and search for that state. 6978 */ 6979 6980 struct pf_pdesc pd2; 6981 bzero(&pd2, sizeof pd2); 6982 #ifdef INET 6983 struct ip h2; 6984 #endif /* INET */ 6985 #ifdef INET6 6986 struct ip6_hdr h2_6; 6987 int fragoff2, extoff2; 6988 u_int32_t jumbolen; 6989 #endif /* INET6 */ 6990 int ipoff2 = 0; 6991 6992 pd2.af = pd->af; 6993 pd2.dir = pd->dir; 6994 /* Payload packet is from the opposite direction. */ 6995 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0; 6996 pd2.didx = (pd->dir == PF_IN) ? 0 : 1; 6997 pd2.m = pd->m; 6998 switch (pd->af) { 6999 #ifdef INET 7000 case AF_INET: 7001 /* offset of h2 in mbuf chain */ 7002 ipoff2 = pd->off + ICMP_MINLEN; 7003 7004 if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2), 7005 NULL, reason, pd2.af)) { 7006 DPFPRINTF(PF_DEBUG_MISC, 7007 ("pf: ICMP error message too short " 7008 "(ip)\n")); 7009 return (PF_DROP); 7010 } 7011 /* 7012 * ICMP error messages don't refer to non-first 7013 * fragments 7014 */ 7015 if (h2.ip_off & htons(IP_OFFMASK)) { 7016 REASON_SET(reason, PFRES_FRAG); 7017 return (PF_DROP); 7018 } 7019 7020 /* offset of protocol header that follows h2 */ 7021 pd2.off = ipoff2 + (h2.ip_hl << 2); 7022 7023 pd2.proto = h2.ip_p; 7024 pd2.src = (struct pf_addr *)&h2.ip_src; 7025 pd2.dst = (struct pf_addr *)&h2.ip_dst; 7026 pd2.ip_sum = &h2.ip_sum; 7027 break; 7028 #endif /* INET */ 7029 #ifdef INET6 7030 case AF_INET6: 7031 ipoff2 = pd->off + sizeof(struct icmp6_hdr); 7032 7033 if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6), 7034 NULL, reason, pd2.af)) { 7035 DPFPRINTF(PF_DEBUG_MISC, 7036 ("pf: ICMP error message too short " 7037 "(ip6)\n")); 7038 return (PF_DROP); 7039 } 7040 pd2.off = ipoff2; 7041 if (pf_walk_header6(pd->m, &h2_6, &pd2.off, &extoff2, 7042 &fragoff2, &pd2.proto, &jumbolen, 7043 reason) != PF_PASS) 7044 return (PF_DROP); 7045 7046 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 7047 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 7048 pd2.ip_sum = NULL; 7049 break; 7050 #endif /* INET6 */ 7051 } 7052 7053 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 7054 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7055 printf("pf: BAD ICMP %d:%d outer dst: ", 7056 icmptype, icmpcode); 7057 pf_print_host(pd->src, 0, pd->af); 7058 printf(" -> "); 7059 pf_print_host(pd->dst, 0, pd->af); 7060 printf(" inner src: "); 7061 pf_print_host(pd2.src, 0, pd2.af); 7062 printf(" -> "); 7063 pf_print_host(pd2.dst, 0, pd2.af); 7064 printf("\n"); 7065 } 7066 REASON_SET(reason, PFRES_BADSTATE); 7067 return (PF_DROP); 7068 } 7069 7070 switch (pd2.proto) { 7071 case IPPROTO_TCP: { 7072 struct tcphdr th; 7073 u_int32_t seq; 7074 struct pf_state_peer *src, *dst; 7075 u_int8_t dws; 7076 int copyback = 0; 7077 7078 /* 7079 * Only the first 8 bytes of the TCP header can be 7080 * expected. Don't access any TCP header fields after 7081 * th_seq, an ackskew test is not possible. 7082 */ 7083 if (!pf_pull_hdr(pd->m, pd2.off, &th, 8, NULL, reason, 7084 pd2.af)) { 7085 DPFPRINTF(PF_DEBUG_MISC, 7086 ("pf: ICMP error message too short " 7087 "(tcp)\n")); 7088 return (PF_DROP); 7089 } 7090 7091 key.af = pd2.af; 7092 key.proto = IPPROTO_TCP; 7093 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7094 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7095 key.port[pd2.sidx] = th.th_sport; 7096 key.port[pd2.didx] = th.th_dport; 7097 7098 STATE_LOOKUP(&key, *state, pd); 7099 7100 if (pd->dir == (*state)->direction) { 7101 src = &(*state)->dst; 7102 dst = &(*state)->src; 7103 } else { 7104 src = &(*state)->src; 7105 dst = &(*state)->dst; 7106 } 7107 7108 if (src->wscale && dst->wscale) 7109 dws = dst->wscale & PF_WSCALE_MASK; 7110 else 7111 dws = 0; 7112 7113 /* Demodulate sequence number */ 7114 seq = ntohl(th.th_seq) - src->seqdiff; 7115 if (src->seqdiff) { 7116 pf_change_a(&th.th_seq, icmpsum, 7117 htonl(seq), 0); 7118 copyback = 1; 7119 } 7120 7121 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 7122 (!SEQ_GEQ(src->seqhi, seq) || 7123 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 7124 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7125 printf("pf: BAD ICMP %d:%d ", 7126 icmptype, icmpcode); 7127 pf_print_host(pd->src, 0, pd->af); 7128 printf(" -> "); 7129 pf_print_host(pd->dst, 0, pd->af); 7130 printf(" state: "); 7131 pf_print_state(*state); 7132 printf(" seq=%u\n", seq); 7133 } 7134 REASON_SET(reason, PFRES_BADSTATE); 7135 return (PF_DROP); 7136 } else { 7137 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7138 printf("pf: OK ICMP %d:%d ", 7139 icmptype, icmpcode); 7140 pf_print_host(pd->src, 0, pd->af); 7141 printf(" -> "); 7142 pf_print_host(pd->dst, 0, pd->af); 7143 printf(" state: "); 7144 pf_print_state(*state); 7145 printf(" seq=%u\n", seq); 7146 } 7147 } 7148 7149 /* translate source/destination address, if necessary */ 7150 if ((*state)->key[PF_SK_WIRE] != 7151 (*state)->key[PF_SK_STACK]) { 7152 struct pf_state_key *nk = 7153 (*state)->key[pd->didx]; 7154 7155 if (PF_ANEQ(pd2.src, 7156 &nk->addr[pd2.sidx], pd2.af) || 7157 nk->port[pd2.sidx] != th.th_sport) 7158 pf_change_icmp(pd2.src, &th.th_sport, 7159 daddr, &nk->addr[pd2.sidx], 7160 nk->port[pd2.sidx], NULL, 7161 pd2.ip_sum, icmpsum, 7162 pd->ip_sum, 0, pd2.af); 7163 7164 if (PF_ANEQ(pd2.dst, 7165 &nk->addr[pd2.didx], pd2.af) || 7166 nk->port[pd2.didx] != th.th_dport) 7167 pf_change_icmp(pd2.dst, &th.th_dport, 7168 saddr, &nk->addr[pd2.didx], 7169 nk->port[pd2.didx], NULL, 7170 pd2.ip_sum, icmpsum, 7171 pd->ip_sum, 0, pd2.af); 7172 copyback = 1; 7173 } 7174 7175 if (copyback) { 7176 switch (pd2.af) { 7177 #ifdef INET 7178 case AF_INET: 7179 m_copyback(pd->m, pd->off, ICMP_MINLEN, 7180 (caddr_t )&pd->hdr.icmp); 7181 m_copyback(pd->m, ipoff2, sizeof(h2), 7182 (caddr_t )&h2); 7183 break; 7184 #endif /* INET */ 7185 #ifdef INET6 7186 case AF_INET6: 7187 m_copyback(pd->m, pd->off, 7188 sizeof(struct icmp6_hdr), 7189 (caddr_t )&pd->hdr.icmp6); 7190 m_copyback(pd->m, ipoff2, sizeof(h2_6), 7191 (caddr_t )&h2_6); 7192 break; 7193 #endif /* INET6 */ 7194 } 7195 m_copyback(pd->m, pd2.off, 8, (caddr_t)&th); 7196 } 7197 7198 return (PF_PASS); 7199 break; 7200 } 7201 case IPPROTO_UDP: { 7202 struct udphdr uh; 7203 7204 if (!pf_pull_hdr(pd->m, pd2.off, &uh, sizeof(uh), 7205 NULL, reason, pd2.af)) { 7206 DPFPRINTF(PF_DEBUG_MISC, 7207 ("pf: ICMP error message too short " 7208 "(udp)\n")); 7209 return (PF_DROP); 7210 } 7211 7212 key.af = pd2.af; 7213 key.proto = IPPROTO_UDP; 7214 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7215 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7216 key.port[pd2.sidx] = uh.uh_sport; 7217 key.port[pd2.didx] = uh.uh_dport; 7218 7219 STATE_LOOKUP(&key, *state, pd); 7220 7221 /* translate source/destination address, if necessary */ 7222 if ((*state)->key[PF_SK_WIRE] != 7223 (*state)->key[PF_SK_STACK]) { 7224 struct pf_state_key *nk = 7225 (*state)->key[pd->didx]; 7226 7227 if (PF_ANEQ(pd2.src, 7228 &nk->addr[pd2.sidx], pd2.af) || 7229 nk->port[pd2.sidx] != uh.uh_sport) 7230 pf_change_icmp(pd2.src, &uh.uh_sport, 7231 daddr, &nk->addr[pd2.sidx], 7232 nk->port[pd2.sidx], &uh.uh_sum, 7233 pd2.ip_sum, icmpsum, 7234 pd->ip_sum, 1, pd2.af); 7235 7236 if (PF_ANEQ(pd2.dst, 7237 &nk->addr[pd2.didx], pd2.af) || 7238 nk->port[pd2.didx] != uh.uh_dport) 7239 pf_change_icmp(pd2.dst, &uh.uh_dport, 7240 saddr, &nk->addr[pd2.didx], 7241 nk->port[pd2.didx], &uh.uh_sum, 7242 pd2.ip_sum, icmpsum, 7243 pd->ip_sum, 1, pd2.af); 7244 7245 switch (pd2.af) { 7246 #ifdef INET 7247 case AF_INET: 7248 m_copyback(pd->m, pd->off, ICMP_MINLEN, 7249 (caddr_t )&pd->hdr.icmp); 7250 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 7251 break; 7252 #endif /* INET */ 7253 #ifdef INET6 7254 case AF_INET6: 7255 m_copyback(pd->m, pd->off, 7256 sizeof(struct icmp6_hdr), 7257 (caddr_t )&pd->hdr.icmp6); 7258 m_copyback(pd->m, ipoff2, sizeof(h2_6), 7259 (caddr_t )&h2_6); 7260 break; 7261 #endif /* INET6 */ 7262 } 7263 m_copyback(pd->m, pd2.off, sizeof(uh), (caddr_t)&uh); 7264 } 7265 return (PF_PASS); 7266 break; 7267 } 7268 #ifdef INET 7269 case IPPROTO_ICMP: { 7270 struct icmp *iih = &pd2.hdr.icmp; 7271 7272 if (pd2.af != AF_INET) { 7273 REASON_SET(reason, PFRES_NORM); 7274 return (PF_DROP); 7275 } 7276 7277 if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN, 7278 NULL, reason, pd2.af)) { 7279 DPFPRINTF(PF_DEBUG_MISC, 7280 ("pf: ICMP error message too short i" 7281 "(icmp)\n")); 7282 return (PF_DROP); 7283 } 7284 7285 icmpid = iih->icmp_id; 7286 pf_icmp_mapping(&pd2, iih->icmp_type, 7287 &icmp_dir, &multi, &virtual_id, &virtual_type); 7288 7289 ret = pf_icmp_state_lookup(&key, &pd2, state, 7290 pd2.dir, virtual_id, virtual_type, 7291 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1); 7292 if (ret >= 0) { 7293 MPASS(*state == NULL); 7294 return (ret); 7295 } 7296 7297 /* translate source/destination address, if necessary */ 7298 if ((*state)->key[PF_SK_WIRE] != 7299 (*state)->key[PF_SK_STACK]) { 7300 struct pf_state_key *nk = 7301 (*state)->key[pd->didx]; 7302 7303 if (PF_ANEQ(pd2.src, 7304 &nk->addr[pd2.sidx], pd2.af) || 7305 (virtual_type == htons(ICMP_ECHO) && 7306 nk->port[iidx] != iih->icmp_id)) 7307 pf_change_icmp(pd2.src, 7308 (virtual_type == htons(ICMP_ECHO)) ? 7309 &iih->icmp_id : NULL, 7310 daddr, &nk->addr[pd2.sidx], 7311 (virtual_type == htons(ICMP_ECHO)) ? 7312 nk->port[iidx] : 0, NULL, 7313 pd2.ip_sum, icmpsum, 7314 pd->ip_sum, 0, AF_INET); 7315 7316 if (PF_ANEQ(pd2.dst, 7317 &nk->addr[pd2.didx], pd2.af)) 7318 pf_change_icmp(pd2.dst, NULL, NULL, 7319 &nk->addr[pd2.didx], 0, NULL, 7320 pd2.ip_sum, icmpsum, pd->ip_sum, 0, 7321 AF_INET); 7322 7323 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 7324 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 7325 m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih); 7326 } 7327 return (PF_PASS); 7328 break; 7329 } 7330 #endif /* INET */ 7331 #ifdef INET6 7332 case IPPROTO_ICMPV6: { 7333 struct icmp6_hdr *iih = &pd2.hdr.icmp6; 7334 7335 if (pd2.af != AF_INET6) { 7336 REASON_SET(reason, PFRES_NORM); 7337 return (PF_DROP); 7338 } 7339 7340 if (!pf_pull_hdr(pd->m, pd2.off, iih, 7341 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 7342 DPFPRINTF(PF_DEBUG_MISC, 7343 ("pf: ICMP error message too short " 7344 "(icmp6)\n")); 7345 return (PF_DROP); 7346 } 7347 7348 pf_icmp_mapping(&pd2, iih->icmp6_type, 7349 &icmp_dir, &multi, &virtual_id, &virtual_type); 7350 7351 ret = pf_icmp_state_lookup(&key, &pd2, state, 7352 pd->dir, virtual_id, virtual_type, 7353 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1); 7354 if (ret >= 0) { 7355 MPASS(*state == NULL); 7356 if (ret == PF_DROP && pd2.af == AF_INET6 && 7357 icmp_dir == PF_OUT) { 7358 ret = pf_icmp_state_lookup(&key, &pd2, 7359 state, pd->dir, 7360 virtual_id, virtual_type, 7361 icmp_dir, &iidx, multi, 1); 7362 if (ret >= 0) { 7363 MPASS(*state == NULL); 7364 return (ret); 7365 } 7366 } else 7367 return (ret); 7368 } 7369 7370 /* translate source/destination address, if necessary */ 7371 if ((*state)->key[PF_SK_WIRE] != 7372 (*state)->key[PF_SK_STACK]) { 7373 struct pf_state_key *nk = 7374 (*state)->key[pd->didx]; 7375 7376 if (PF_ANEQ(pd2.src, 7377 &nk->addr[pd2.sidx], pd2.af) || 7378 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) && 7379 nk->port[pd2.sidx] != iih->icmp6_id)) 7380 pf_change_icmp(pd2.src, 7381 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 7382 ? &iih->icmp6_id : NULL, 7383 daddr, &nk->addr[pd2.sidx], 7384 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 7385 ? nk->port[iidx] : 0, NULL, 7386 pd2.ip_sum, icmpsum, 7387 pd->ip_sum, 0, AF_INET6); 7388 7389 if (PF_ANEQ(pd2.dst, 7390 &nk->addr[pd2.didx], pd2.af)) 7391 pf_change_icmp(pd2.dst, NULL, NULL, 7392 &nk->addr[pd2.didx], 0, NULL, 7393 pd2.ip_sum, icmpsum, 7394 pd->ip_sum, 0, AF_INET6); 7395 7396 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr), 7397 (caddr_t)&pd->hdr.icmp6); 7398 m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 7399 m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr), 7400 (caddr_t)iih); 7401 } 7402 return (PF_PASS); 7403 break; 7404 } 7405 #endif /* INET6 */ 7406 default: { 7407 key.af = pd2.af; 7408 key.proto = pd2.proto; 7409 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7410 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7411 key.port[0] = key.port[1] = 0; 7412 7413 STATE_LOOKUP(&key, *state, pd); 7414 7415 /* translate source/destination address, if necessary */ 7416 if ((*state)->key[PF_SK_WIRE] != 7417 (*state)->key[PF_SK_STACK]) { 7418 struct pf_state_key *nk = 7419 (*state)->key[pd->didx]; 7420 7421 if (PF_ANEQ(pd2.src, 7422 &nk->addr[pd2.sidx], pd2.af)) 7423 pf_change_icmp(pd2.src, NULL, daddr, 7424 &nk->addr[pd2.sidx], 0, NULL, 7425 pd2.ip_sum, icmpsum, 7426 pd->ip_sum, 0, pd2.af); 7427 7428 if (PF_ANEQ(pd2.dst, 7429 &nk->addr[pd2.didx], pd2.af)) 7430 pf_change_icmp(pd2.dst, NULL, saddr, 7431 &nk->addr[pd2.didx], 0, NULL, 7432 pd2.ip_sum, icmpsum, 7433 pd->ip_sum, 0, pd2.af); 7434 7435 switch (pd2.af) { 7436 #ifdef INET 7437 case AF_INET: 7438 m_copyback(pd->m, pd->off, ICMP_MINLEN, 7439 (caddr_t)&pd->hdr.icmp); 7440 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 7441 break; 7442 #endif /* INET */ 7443 #ifdef INET6 7444 case AF_INET6: 7445 m_copyback(pd->m, pd->off, 7446 sizeof(struct icmp6_hdr), 7447 (caddr_t )&pd->hdr.icmp6); 7448 m_copyback(pd->m, ipoff2, sizeof(h2_6), 7449 (caddr_t )&h2_6); 7450 break; 7451 #endif /* INET6 */ 7452 } 7453 } 7454 return (PF_PASS); 7455 break; 7456 } 7457 } 7458 } 7459 } 7460 7461 static int 7462 pf_test_state_other(struct pf_kstate **state, struct pf_pdesc *pd) 7463 { 7464 struct pf_state_peer *src, *dst; 7465 struct pf_state_key_cmp key; 7466 uint8_t psrc, pdst; 7467 7468 bzero(&key, sizeof(key)); 7469 key.af = pd->af; 7470 key.proto = pd->proto; 7471 if (pd->dir == PF_IN) { 7472 PF_ACPY(&key.addr[0], pd->src, key.af); 7473 PF_ACPY(&key.addr[1], pd->dst, key.af); 7474 key.port[0] = key.port[1] = 0; 7475 } else { 7476 PF_ACPY(&key.addr[1], pd->src, key.af); 7477 PF_ACPY(&key.addr[0], pd->dst, key.af); 7478 key.port[1] = key.port[0] = 0; 7479 } 7480 7481 STATE_LOOKUP(&key, *state, pd); 7482 7483 if (pd->dir == (*state)->direction) { 7484 src = &(*state)->src; 7485 dst = &(*state)->dst; 7486 psrc = PF_PEER_SRC; 7487 pdst = PF_PEER_DST; 7488 } else { 7489 src = &(*state)->dst; 7490 dst = &(*state)->src; 7491 psrc = PF_PEER_DST; 7492 pdst = PF_PEER_SRC; 7493 } 7494 7495 /* update states */ 7496 if (src->state < PFOTHERS_SINGLE) 7497 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 7498 if (dst->state == PFOTHERS_SINGLE) 7499 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 7500 7501 /* update expire time */ 7502 (*state)->expire = pf_get_uptime(); 7503 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 7504 (*state)->timeout = PFTM_OTHER_MULTIPLE; 7505 else 7506 (*state)->timeout = PFTM_OTHER_SINGLE; 7507 7508 /* translate source/destination address, if necessary */ 7509 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7510 struct pf_state_key *nk = (*state)->key[pd->didx]; 7511 7512 KASSERT(nk, ("%s: nk is null", __func__)); 7513 KASSERT(pd, ("%s: pd is null", __func__)); 7514 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 7515 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 7516 switch (pd->af) { 7517 #ifdef INET 7518 case AF_INET: 7519 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 7520 pf_change_a(&pd->src->v4.s_addr, 7521 pd->ip_sum, 7522 nk->addr[pd->sidx].v4.s_addr, 7523 0); 7524 7525 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 7526 pf_change_a(&pd->dst->v4.s_addr, 7527 pd->ip_sum, 7528 nk->addr[pd->didx].v4.s_addr, 7529 0); 7530 7531 break; 7532 #endif /* INET */ 7533 #ifdef INET6 7534 case AF_INET6: 7535 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET6)) 7536 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 7537 7538 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET6)) 7539 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 7540 #endif /* INET6 */ 7541 } 7542 } 7543 return (PF_PASS); 7544 } 7545 7546 /* 7547 * ipoff and off are measured from the start of the mbuf chain. 7548 * h must be at "ipoff" on the mbuf chain. 7549 */ 7550 void * 7551 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len, 7552 u_short *actionp, u_short *reasonp, sa_family_t af) 7553 { 7554 switch (af) { 7555 #ifdef INET 7556 case AF_INET: { 7557 const struct ip *h = mtod(m, struct ip *); 7558 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 7559 7560 if (fragoff) { 7561 if (fragoff >= len) 7562 ACTION_SET(actionp, PF_PASS); 7563 else { 7564 ACTION_SET(actionp, PF_DROP); 7565 REASON_SET(reasonp, PFRES_FRAG); 7566 } 7567 return (NULL); 7568 } 7569 if (m->m_pkthdr.len < off + len || 7570 ntohs(h->ip_len) < off + len) { 7571 ACTION_SET(actionp, PF_DROP); 7572 REASON_SET(reasonp, PFRES_SHORT); 7573 return (NULL); 7574 } 7575 break; 7576 } 7577 #endif /* INET */ 7578 #ifdef INET6 7579 case AF_INET6: { 7580 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 7581 7582 if (m->m_pkthdr.len < off + len || 7583 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 7584 (unsigned)(off + len)) { 7585 ACTION_SET(actionp, PF_DROP); 7586 REASON_SET(reasonp, PFRES_SHORT); 7587 return (NULL); 7588 } 7589 break; 7590 } 7591 #endif /* INET6 */ 7592 } 7593 m_copydata(m, off, len, p); 7594 return (p); 7595 } 7596 7597 int 7598 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 7599 int rtableid) 7600 { 7601 struct ifnet *ifp; 7602 7603 /* 7604 * Skip check for addresses with embedded interface scope, 7605 * as they would always match anyway. 7606 */ 7607 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 7608 return (1); 7609 7610 if (af != AF_INET && af != AF_INET6) 7611 return (0); 7612 7613 if (kif == V_pfi_all) 7614 return (1); 7615 7616 /* Skip checks for ipsec interfaces */ 7617 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 7618 return (1); 7619 7620 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 7621 7622 switch (af) { 7623 #ifdef INET6 7624 case AF_INET6: 7625 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 7626 ifp)); 7627 #endif 7628 #ifdef INET 7629 case AF_INET: 7630 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 7631 ifp)); 7632 #endif 7633 } 7634 7635 return (0); 7636 } 7637 7638 #ifdef INET 7639 static void 7640 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7641 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7642 { 7643 struct mbuf *m0, *m1, *md; 7644 struct sockaddr_in dst; 7645 struct ip *ip; 7646 struct pfi_kkif *nkif = NULL; 7647 struct ifnet *ifp = NULL; 7648 struct pf_addr naddr; 7649 int error = 0; 7650 uint16_t ip_len, ip_off; 7651 uint16_t tmp; 7652 int r_rt, r_dir; 7653 7654 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 7655 7656 if (s) { 7657 r_rt = s->rt; 7658 r_dir = s->direction; 7659 } else { 7660 r_rt = r->rt; 7661 r_dir = r->direction; 7662 } 7663 7664 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7665 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7666 __func__)); 7667 7668 if ((pd->pf_mtag == NULL && 7669 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7670 pd->pf_mtag->routed++ > 3) { 7671 m0 = *m; 7672 *m = NULL; 7673 goto bad_locked; 7674 } 7675 7676 if (r_rt == PF_DUPTO) { 7677 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7678 if (s == NULL) { 7679 ifp = r->rpool.cur->kif ? 7680 r->rpool.cur->kif->pfik_ifp : NULL; 7681 } else { 7682 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7683 /* If pfsync'd */ 7684 if (ifp == NULL && r->rpool.cur != NULL) 7685 ifp = r->rpool.cur->kif ? 7686 r->rpool.cur->kif->pfik_ifp : NULL; 7687 PF_STATE_UNLOCK(s); 7688 } 7689 if (ifp == oifp) { 7690 /* When the 2nd interface is not skipped */ 7691 return; 7692 } else { 7693 m0 = *m; 7694 *m = NULL; 7695 goto bad; 7696 } 7697 } else { 7698 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 7699 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 7700 if (s) 7701 PF_STATE_UNLOCK(s); 7702 return; 7703 } 7704 } 7705 } else { 7706 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 7707 pf_dummynet(pd, s, r, m); 7708 if (s) 7709 PF_STATE_UNLOCK(s); 7710 return; 7711 } 7712 m0 = *m; 7713 } 7714 7715 ip = mtod(m0, struct ip *); 7716 7717 bzero(&dst, sizeof(dst)); 7718 dst.sin_family = AF_INET; 7719 dst.sin_len = sizeof(dst); 7720 dst.sin_addr = ip->ip_dst; 7721 7722 bzero(&naddr, sizeof(naddr)); 7723 7724 if (s == NULL) { 7725 if (TAILQ_EMPTY(&r->rpool.list)) { 7726 DPFPRINTF(PF_DEBUG_URGENT, 7727 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 7728 goto bad_locked; 7729 } 7730 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 7731 &naddr, &nkif, NULL); 7732 if (!PF_AZERO(&naddr, AF_INET)) 7733 dst.sin_addr.s_addr = naddr.v4.s_addr; 7734 ifp = nkif ? nkif->pfik_ifp : NULL; 7735 } else { 7736 struct pfi_kkif *kif; 7737 7738 if (!PF_AZERO(&s->rt_addr, AF_INET)) 7739 dst.sin_addr.s_addr = 7740 s->rt_addr.v4.s_addr; 7741 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7742 kif = s->rt_kif; 7743 /* If pfsync'd */ 7744 if (ifp == NULL && r->rpool.cur != NULL) { 7745 ifp = r->rpool.cur->kif ? 7746 r->rpool.cur->kif->pfik_ifp : NULL; 7747 kif = r->rpool.cur->kif; 7748 } 7749 if (ifp != NULL && kif != NULL && 7750 r->rule_flag & PFRULE_IFBOUND && 7751 r->rt == PF_REPLYTO && 7752 s->kif == V_pfi_all) { 7753 s->kif = kif; 7754 s->orig_kif = oifp->if_pf_kif; 7755 } 7756 7757 PF_STATE_UNLOCK(s); 7758 } 7759 7760 if (ifp == NULL) 7761 goto bad; 7762 7763 if (pd->dir == PF_IN) { 7764 if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp, 7765 &pd->act) != PF_PASS) 7766 goto bad; 7767 else if (m0 == NULL) 7768 goto done; 7769 if (m0->m_len < sizeof(struct ip)) { 7770 DPFPRINTF(PF_DEBUG_URGENT, 7771 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 7772 goto bad; 7773 } 7774 ip = mtod(m0, struct ip *); 7775 } 7776 7777 if (ifp->if_flags & IFF_LOOPBACK) 7778 m0->m_flags |= M_SKIP_FIREWALL; 7779 7780 ip_len = ntohs(ip->ip_len); 7781 ip_off = ntohs(ip->ip_off); 7782 7783 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 7784 m0->m_pkthdr.csum_flags |= CSUM_IP; 7785 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 7786 in_delayed_cksum(m0); 7787 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 7788 } 7789 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 7790 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2)); 7791 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 7792 } 7793 7794 if (pd->dir == PF_IN) { 7795 /* 7796 * Make sure dummynet gets the correct direction, in case it needs to 7797 * re-inject later. 7798 */ 7799 pd->dir = PF_OUT; 7800 7801 /* 7802 * The following processing is actually the rest of the inbound processing, even 7803 * though we've marked it as outbound (so we don't look through dummynet) and it 7804 * happens after the outbound processing (pf_test(PF_OUT) above). 7805 * Swap the dummynet pipe numbers, because it's going to come to the wrong 7806 * conclusion about what direction it's processing, and we can't fix it or it 7807 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 7808 * decision will pick the right pipe, and everything will mostly work as expected. 7809 */ 7810 tmp = pd->act.dnrpipe; 7811 pd->act.dnrpipe = pd->act.dnpipe; 7812 pd->act.dnpipe = tmp; 7813 } 7814 7815 /* 7816 * If small enough for interface, or the interface will take 7817 * care of the fragmentation for us, we can just send directly. 7818 */ 7819 if (ip_len <= ifp->if_mtu || 7820 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 7821 ip->ip_sum = 0; 7822 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 7823 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 7824 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 7825 } 7826 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 7827 7828 md = m0; 7829 error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 7830 if (md != NULL) 7831 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL); 7832 goto done; 7833 } 7834 7835 /* Balk when DF bit is set or the interface didn't support TSO. */ 7836 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 7837 error = EMSGSIZE; 7838 KMOD_IPSTAT_INC(ips_cantfrag); 7839 if (r_rt != PF_DUPTO) { 7840 if (s && s->nat_rule != NULL) 7841 PACKET_UNDO_NAT(m0, pd, 7842 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 7843 s); 7844 7845 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 7846 ifp->if_mtu); 7847 goto done; 7848 } else 7849 goto bad; 7850 } 7851 7852 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 7853 if (error) 7854 goto bad; 7855 7856 for (; m0; m0 = m1) { 7857 m1 = m0->m_nextpkt; 7858 m0->m_nextpkt = NULL; 7859 if (error == 0) { 7860 m_clrprotoflags(m0); 7861 md = m0; 7862 pd->pf_mtag = pf_find_mtag(md); 7863 error = pf_dummynet_route(pd, s, r, ifp, 7864 sintosa(&dst), &md); 7865 if (md != NULL) 7866 error = (*ifp->if_output)(ifp, md, 7867 sintosa(&dst), NULL); 7868 } else 7869 m_freem(m0); 7870 } 7871 7872 if (error == 0) 7873 KMOD_IPSTAT_INC(ips_fragmented); 7874 7875 done: 7876 if (r_rt != PF_DUPTO) 7877 *m = NULL; 7878 return; 7879 7880 bad_locked: 7881 if (s) 7882 PF_STATE_UNLOCK(s); 7883 bad: 7884 m_freem(m0); 7885 goto done; 7886 } 7887 #endif /* INET */ 7888 7889 #ifdef INET6 7890 static void 7891 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7892 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7893 { 7894 struct mbuf *m0, *md; 7895 struct sockaddr_in6 dst; 7896 struct ip6_hdr *ip6; 7897 struct pfi_kkif *nkif = NULL; 7898 struct ifnet *ifp = NULL; 7899 struct pf_addr naddr; 7900 int r_rt, r_dir; 7901 7902 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 7903 7904 if (s) { 7905 r_rt = s->rt; 7906 r_dir = s->direction; 7907 } else { 7908 r_rt = r->rt; 7909 r_dir = r->direction; 7910 } 7911 7912 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7913 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7914 __func__)); 7915 7916 if ((pd->pf_mtag == NULL && 7917 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7918 pd->pf_mtag->routed++ > 3) { 7919 m0 = *m; 7920 *m = NULL; 7921 goto bad_locked; 7922 } 7923 7924 if (r_rt == PF_DUPTO) { 7925 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7926 if (s == NULL) { 7927 ifp = r->rpool.cur->kif ? 7928 r->rpool.cur->kif->pfik_ifp : NULL; 7929 } else { 7930 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7931 /* If pfsync'd */ 7932 if (ifp == NULL && r->rpool.cur != NULL) 7933 ifp = r->rpool.cur->kif ? 7934 r->rpool.cur->kif->pfik_ifp : NULL; 7935 PF_STATE_UNLOCK(s); 7936 } 7937 if (ifp == oifp) { 7938 /* When the 2nd interface is not skipped */ 7939 return; 7940 } else { 7941 m0 = *m; 7942 *m = NULL; 7943 goto bad; 7944 } 7945 } else { 7946 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 7947 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 7948 if (s) 7949 PF_STATE_UNLOCK(s); 7950 return; 7951 } 7952 } 7953 } else { 7954 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 7955 pf_dummynet(pd, s, r, m); 7956 if (s) 7957 PF_STATE_UNLOCK(s); 7958 return; 7959 } 7960 m0 = *m; 7961 } 7962 7963 ip6 = mtod(m0, struct ip6_hdr *); 7964 7965 bzero(&dst, sizeof(dst)); 7966 dst.sin6_family = AF_INET6; 7967 dst.sin6_len = sizeof(dst); 7968 dst.sin6_addr = ip6->ip6_dst; 7969 7970 bzero(&naddr, sizeof(naddr)); 7971 7972 if (s == NULL) { 7973 if (TAILQ_EMPTY(&r->rpool.list)) { 7974 DPFPRINTF(PF_DEBUG_URGENT, 7975 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 7976 goto bad_locked; 7977 } 7978 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 7979 &naddr, &nkif, NULL); 7980 if (!PF_AZERO(&naddr, AF_INET6)) 7981 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 7982 &naddr, AF_INET6); 7983 ifp = nkif ? nkif->pfik_ifp : NULL; 7984 } else { 7985 struct pfi_kkif *kif; 7986 7987 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 7988 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 7989 &s->rt_addr, AF_INET6); 7990 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7991 kif = s->rt_kif; 7992 /* If pfsync'd */ 7993 if (ifp == NULL && r->rpool.cur != NULL) { 7994 ifp = r->rpool.cur->kif ? 7995 r->rpool.cur->kif->pfik_ifp : NULL; 7996 kif = r->rpool.cur->kif; 7997 } 7998 if (ifp != NULL && kif != NULL && 7999 r->rule_flag & PFRULE_IFBOUND && 8000 r->rt == PF_REPLYTO && 8001 s->kif == V_pfi_all) { 8002 s->kif = kif; 8003 s->orig_kif = oifp->if_pf_kif; 8004 } 8005 } 8006 8007 if (s) 8008 PF_STATE_UNLOCK(s); 8009 8010 if (ifp == NULL) 8011 goto bad; 8012 8013 if (pd->dir == PF_IN) { 8014 if (pf_test(AF_INET6, PF_OUT, PFIL_FWD, ifp, &m0, inp, 8015 &pd->act) != PF_PASS) 8016 goto bad; 8017 else if (m0 == NULL) 8018 goto done; 8019 if (m0->m_len < sizeof(struct ip6_hdr)) { 8020 DPFPRINTF(PF_DEBUG_URGENT, 8021 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 8022 __func__)); 8023 goto bad; 8024 } 8025 ip6 = mtod(m0, struct ip6_hdr *); 8026 } 8027 8028 if (ifp->if_flags & IFF_LOOPBACK) 8029 m0->m_flags |= M_SKIP_FIREWALL; 8030 8031 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 8032 ~ifp->if_hwassist) { 8033 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 8034 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 8035 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 8036 } 8037 8038 /* 8039 * If the packet is too large for the outgoing interface, 8040 * send back an icmp6 error. 8041 */ 8042 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 8043 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 8044 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 8045 md = m0; 8046 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 8047 if (md != NULL) 8048 nd6_output_ifp(ifp, ifp, md, &dst, NULL); 8049 } 8050 else { 8051 in6_ifstat_inc(ifp, ifs6_in_toobig); 8052 if (r_rt != PF_DUPTO) { 8053 if (s && s->nat_rule != NULL) 8054 PACKET_UNDO_NAT(m0, pd, 8055 ((caddr_t)ip6 - m0->m_data) + 8056 sizeof(struct ip6_hdr), s); 8057 8058 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 8059 } else 8060 goto bad; 8061 } 8062 8063 done: 8064 if (r_rt != PF_DUPTO) 8065 *m = NULL; 8066 return; 8067 8068 bad_locked: 8069 if (s) 8070 PF_STATE_UNLOCK(s); 8071 bad: 8072 m_freem(m0); 8073 goto done; 8074 } 8075 #endif /* INET6 */ 8076 8077 /* 8078 * FreeBSD supports cksum offloads for the following drivers. 8079 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 8080 * 8081 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 8082 * network driver performed cksum including pseudo header, need to verify 8083 * csum_data 8084 * CSUM_DATA_VALID : 8085 * network driver performed cksum, needs to additional pseudo header 8086 * cksum computation with partial csum_data(i.e. lack of H/W support for 8087 * pseudo header, for instance sk(4) and possibly gem(4)) 8088 * 8089 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 8090 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 8091 * TCP/UDP layer. 8092 * Also, set csum_data to 0xffff to force cksum validation. 8093 */ 8094 static int 8095 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 8096 { 8097 u_int16_t sum = 0; 8098 int hw_assist = 0; 8099 struct ip *ip; 8100 8101 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 8102 return (1); 8103 if (m->m_pkthdr.len < off + len) 8104 return (1); 8105 8106 switch (p) { 8107 case IPPROTO_TCP: 8108 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 8109 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 8110 sum = m->m_pkthdr.csum_data; 8111 } else { 8112 ip = mtod(m, struct ip *); 8113 sum = in_pseudo(ip->ip_src.s_addr, 8114 ip->ip_dst.s_addr, htonl((u_short)len + 8115 m->m_pkthdr.csum_data + IPPROTO_TCP)); 8116 } 8117 sum ^= 0xffff; 8118 ++hw_assist; 8119 } 8120 break; 8121 case IPPROTO_UDP: 8122 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 8123 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 8124 sum = m->m_pkthdr.csum_data; 8125 } else { 8126 ip = mtod(m, struct ip *); 8127 sum = in_pseudo(ip->ip_src.s_addr, 8128 ip->ip_dst.s_addr, htonl((u_short)len + 8129 m->m_pkthdr.csum_data + IPPROTO_UDP)); 8130 } 8131 sum ^= 0xffff; 8132 ++hw_assist; 8133 } 8134 break; 8135 case IPPROTO_ICMP: 8136 #ifdef INET6 8137 case IPPROTO_ICMPV6: 8138 #endif /* INET6 */ 8139 break; 8140 default: 8141 return (1); 8142 } 8143 8144 if (!hw_assist) { 8145 switch (af) { 8146 case AF_INET: 8147 if (p == IPPROTO_ICMP) { 8148 if (m->m_len < off) 8149 return (1); 8150 m->m_data += off; 8151 m->m_len -= off; 8152 sum = in_cksum(m, len); 8153 m->m_data -= off; 8154 m->m_len += off; 8155 } else { 8156 if (m->m_len < sizeof(struct ip)) 8157 return (1); 8158 sum = in4_cksum(m, p, off, len); 8159 } 8160 break; 8161 #ifdef INET6 8162 case AF_INET6: 8163 if (m->m_len < sizeof(struct ip6_hdr)) 8164 return (1); 8165 sum = in6_cksum(m, p, off, len); 8166 break; 8167 #endif /* INET6 */ 8168 } 8169 } 8170 if (sum) { 8171 switch (p) { 8172 case IPPROTO_TCP: 8173 { 8174 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 8175 break; 8176 } 8177 case IPPROTO_UDP: 8178 { 8179 KMOD_UDPSTAT_INC(udps_badsum); 8180 break; 8181 } 8182 #ifdef INET 8183 case IPPROTO_ICMP: 8184 { 8185 KMOD_ICMPSTAT_INC(icps_checksum); 8186 break; 8187 } 8188 #endif 8189 #ifdef INET6 8190 case IPPROTO_ICMPV6: 8191 { 8192 KMOD_ICMP6STAT_INC(icp6s_checksum); 8193 break; 8194 } 8195 #endif /* INET6 */ 8196 } 8197 return (1); 8198 } else { 8199 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 8200 m->m_pkthdr.csum_flags |= 8201 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 8202 m->m_pkthdr.csum_data = 0xffff; 8203 } 8204 } 8205 return (0); 8206 } 8207 8208 static bool 8209 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r, 8210 const struct pf_kstate *s, struct ip_fw_args *dnflow) 8211 { 8212 int dndir = r->direction; 8213 8214 if (s && dndir == PF_INOUT) { 8215 dndir = s->direction; 8216 } else if (dndir == PF_INOUT) { 8217 /* Assume primary direction. Happens when we've set dnpipe in 8218 * the ethernet level code. */ 8219 dndir = pd->dir; 8220 } 8221 8222 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED) 8223 return (false); 8224 8225 memset(dnflow, 0, sizeof(*dnflow)); 8226 8227 if (pd->dport != NULL) 8228 dnflow->f_id.dst_port = ntohs(*pd->dport); 8229 if (pd->sport != NULL) 8230 dnflow->f_id.src_port = ntohs(*pd->sport); 8231 8232 if (pd->dir == PF_IN) 8233 dnflow->flags |= IPFW_ARGS_IN; 8234 else 8235 dnflow->flags |= IPFW_ARGS_OUT; 8236 8237 if (pd->dir != dndir && pd->act.dnrpipe) { 8238 dnflow->rule.info = pd->act.dnrpipe; 8239 } 8240 else if (pd->dir == dndir && pd->act.dnpipe) { 8241 dnflow->rule.info = pd->act.dnpipe; 8242 } 8243 else { 8244 return (false); 8245 } 8246 8247 dnflow->rule.info |= IPFW_IS_DUMMYNET; 8248 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 8249 dnflow->rule.info |= IPFW_IS_PIPE; 8250 8251 dnflow->f_id.proto = pd->proto; 8252 dnflow->f_id.extra = dnflow->rule.info; 8253 switch (pd->af) { 8254 case AF_INET: 8255 dnflow->f_id.addr_type = 4; 8256 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 8257 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 8258 break; 8259 case AF_INET6: 8260 dnflow->flags |= IPFW_ARGS_IP6; 8261 dnflow->f_id.addr_type = 6; 8262 dnflow->f_id.src_ip6 = pd->src->v6; 8263 dnflow->f_id.dst_ip6 = pd->dst->v6; 8264 break; 8265 } 8266 8267 return (true); 8268 } 8269 8270 int 8271 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 8272 struct inpcb *inp) 8273 { 8274 struct pfi_kkif *kif; 8275 struct mbuf *m = *m0; 8276 8277 M_ASSERTPKTHDR(m); 8278 MPASS(ifp->if_vnet == curvnet); 8279 NET_EPOCH_ASSERT(); 8280 8281 if (!V_pf_status.running) 8282 return (PF_PASS); 8283 8284 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8285 8286 if (kif == NULL) { 8287 DPFPRINTF(PF_DEBUG_URGENT, 8288 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname)); 8289 return (PF_DROP); 8290 } 8291 if (kif->pfik_flags & PFI_IFLAG_SKIP) 8292 return (PF_PASS); 8293 8294 if (m->m_flags & M_SKIP_FIREWALL) 8295 return (PF_PASS); 8296 8297 if (__predict_false(! M_WRITABLE(*m0))) { 8298 m = *m0 = m_unshare(*m0, M_NOWAIT); 8299 if (*m0 == NULL) 8300 return (PF_DROP); 8301 } 8302 8303 /* Stateless! */ 8304 return (pf_test_eth_rule(dir, kif, m0)); 8305 } 8306 8307 static __inline void 8308 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag) 8309 { 8310 struct m_tag *mtag; 8311 8312 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 8313 8314 /* dummynet adds this tag, but pf does not need it, 8315 * and keeping it creates unexpected behavior, 8316 * e.g. in case of divert(4) usage right after dummynet. */ 8317 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 8318 if (mtag != NULL) 8319 m_tag_delete(m, mtag); 8320 } 8321 8322 static int 8323 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s, 8324 struct pf_krule *r, struct mbuf **m0) 8325 { 8326 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0)); 8327 } 8328 8329 static int 8330 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s, 8331 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa, 8332 struct mbuf **m0) 8333 { 8334 NET_EPOCH_ASSERT(); 8335 8336 if (pd->act.dnpipe || pd->act.dnrpipe) { 8337 struct ip_fw_args dnflow; 8338 if (ip_dn_io_ptr == NULL) { 8339 m_freem(*m0); 8340 *m0 = NULL; 8341 return (ENOMEM); 8342 } 8343 8344 if (pd->pf_mtag == NULL && 8345 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 8346 m_freem(*m0); 8347 *m0 = NULL; 8348 return (ENOMEM); 8349 } 8350 8351 if (ifp != NULL) { 8352 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO; 8353 8354 pd->pf_mtag->if_index = ifp->if_index; 8355 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 8356 8357 MPASS(sa != NULL); 8358 8359 switch (pd->af) { 8360 case AF_INET: 8361 memcpy(&pd->pf_mtag->dst, sa, 8362 sizeof(struct sockaddr_in)); 8363 break; 8364 case AF_INET6: 8365 memcpy(&pd->pf_mtag->dst, sa, 8366 sizeof(struct sockaddr_in6)); 8367 break; 8368 } 8369 } 8370 8371 if (s != NULL && s->nat_rule != NULL && 8372 s->nat_rule->action == PF_RDR && 8373 ( 8374 #ifdef INET 8375 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) || 8376 #endif 8377 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) { 8378 /* 8379 * If we're redirecting to loopback mark this packet 8380 * as being local. Otherwise it might get dropped 8381 * if dummynet re-injects. 8382 */ 8383 (*m0)->m_pkthdr.rcvif = V_loif; 8384 } 8385 8386 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) { 8387 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 8388 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED; 8389 ip_dn_io_ptr(m0, &dnflow); 8390 if (*m0 != NULL) { 8391 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 8392 pf_dummynet_flag_remove(*m0, pd->pf_mtag); 8393 } 8394 } 8395 } 8396 8397 return (0); 8398 } 8399 8400 #ifdef INET6 8401 static int 8402 pf_walk_option6(struct mbuf *m, int off, int end, uint32_t *jumbolen, 8403 u_short *reason) 8404 { 8405 struct ip6_opt opt; 8406 struct ip6_opt_jumbo jumbo; 8407 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 8408 8409 while (off < end) { 8410 if (!pf_pull_hdr(m, off, &opt.ip6o_type, sizeof(opt.ip6o_type), 8411 NULL, reason, AF_INET6)) { 8412 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt type")); 8413 return (PF_DROP); 8414 } 8415 if (opt.ip6o_type == IP6OPT_PAD1) { 8416 off++; 8417 continue; 8418 } 8419 if (!pf_pull_hdr(m, off, &opt, sizeof(opt), NULL, reason, 8420 AF_INET6)) { 8421 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt")); 8422 return (PF_DROP); 8423 } 8424 if (off + sizeof(opt) + opt.ip6o_len > end) { 8425 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 long opt")); 8426 REASON_SET(reason, PFRES_IPOPTIONS); 8427 return (PF_DROP); 8428 } 8429 switch (opt.ip6o_type) { 8430 case IP6OPT_JUMBO: 8431 if (*jumbolen != 0) { 8432 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple jumbo")); 8433 REASON_SET(reason, PFRES_IPOPTIONS); 8434 return (PF_DROP); 8435 } 8436 if (ntohs(h->ip6_plen) != 0) { 8437 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 bad jumbo plen")); 8438 REASON_SET(reason, PFRES_IPOPTIONS); 8439 return (PF_DROP); 8440 } 8441 if (!pf_pull_hdr(m, off, &jumbo, sizeof(jumbo), NULL, 8442 reason, AF_INET6)) { 8443 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbo")); 8444 return (PF_DROP); 8445 } 8446 memcpy(jumbolen, jumbo.ip6oj_jumbo_len, 8447 sizeof(*jumbolen)); 8448 *jumbolen = ntohl(*jumbolen); 8449 if (*jumbolen < IPV6_MAXPACKET) { 8450 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbolen")); 8451 REASON_SET(reason, PFRES_IPOPTIONS); 8452 return (PF_DROP); 8453 } 8454 break; 8455 default: 8456 break; 8457 } 8458 off += sizeof(opt) + opt.ip6o_len; 8459 } 8460 8461 return (PF_PASS); 8462 } 8463 8464 int 8465 pf_walk_header6(struct mbuf *m, struct ip6_hdr *h, int *off, int *extoff, 8466 int *fragoff, uint8_t *nxt, uint32_t *jumbolen, u_short *reason) 8467 { 8468 struct ip6_frag frag; 8469 struct ip6_ext ext; 8470 struct ip6_rthdr rthdr; 8471 int rthdr_cnt = 0; 8472 8473 *off += sizeof(struct ip6_hdr); 8474 *extoff = *fragoff = 0; 8475 *nxt = h->ip6_nxt; 8476 *jumbolen = 0; 8477 for (;;) { 8478 switch (*nxt) { 8479 case IPPROTO_FRAGMENT: 8480 if (*fragoff != 0) { 8481 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple fragment")); 8482 REASON_SET(reason, PFRES_FRAG); 8483 return (PF_DROP); 8484 } 8485 /* jumbo payload packets cannot be fragmented */ 8486 if (*jumbolen != 0) { 8487 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 fragmented jumbo")); 8488 REASON_SET(reason, PFRES_FRAG); 8489 return (PF_DROP); 8490 } 8491 if (!pf_pull_hdr(m, *off, &frag, sizeof(frag), NULL, 8492 reason, AF_INET6)) { 8493 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short fragment")); 8494 return (PF_DROP); 8495 } 8496 *fragoff = *off; 8497 /* stop walking over non initial fragments */ 8498 if ((frag.ip6f_offlg & IP6F_OFF_MASK) != 0) 8499 return (PF_PASS); 8500 *off += sizeof(frag); 8501 *nxt = frag.ip6f_nxt; 8502 break; 8503 case IPPROTO_ROUTING: 8504 if (rthdr_cnt++) { 8505 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple rthdr")); 8506 REASON_SET(reason, PFRES_IPOPTIONS); 8507 return (PF_DROP); 8508 } 8509 if (!pf_pull_hdr(m, *off, &rthdr, sizeof(rthdr), NULL, 8510 reason, AF_INET6)) { 8511 /* fragments may be short */ 8512 if (*fragoff != 0) { 8513 *off = *fragoff; 8514 *nxt = IPPROTO_FRAGMENT; 8515 return (PF_PASS); 8516 } 8517 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short rthdr")); 8518 return (PF_DROP); 8519 } 8520 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 8521 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 rthdr0")); 8522 REASON_SET(reason, PFRES_IPOPTIONS); 8523 return (PF_DROP); 8524 } 8525 /* FALLTHROUGH */ 8526 case IPPROTO_AH: 8527 case IPPROTO_HOPOPTS: 8528 case IPPROTO_DSTOPTS: 8529 if (!pf_pull_hdr(m, *off, &ext, sizeof(ext), NULL, 8530 reason, AF_INET6)) { 8531 /* fragments may be short */ 8532 if (*fragoff != 0) { 8533 *off = *fragoff; 8534 *nxt = IPPROTO_FRAGMENT; 8535 return (PF_PASS); 8536 } 8537 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short exthdr")); 8538 return (PF_DROP); 8539 } 8540 /* reassembly needs the ext header before the frag */ 8541 if (*fragoff == 0) 8542 *extoff = *off; 8543 if (*nxt == IPPROTO_HOPOPTS && *fragoff == 0) { 8544 if (pf_walk_option6(m, *off + sizeof(ext), 8545 *off + (ext.ip6e_len + 1) * 8, jumbolen, 8546 reason) != PF_PASS) 8547 return (PF_DROP); 8548 if (ntohs(h->ip6_plen) == 0 && *jumbolen != 0) { 8549 DPFPRINTF(PF_DEBUG_MISC, 8550 ("IPv6 missing jumbo")); 8551 REASON_SET(reason, PFRES_IPOPTIONS); 8552 return (PF_DROP); 8553 } 8554 } 8555 if (*nxt == IPPROTO_AH) 8556 *off += (ext.ip6e_len + 2) * 4; 8557 else 8558 *off += (ext.ip6e_len + 1) * 8; 8559 *nxt = ext.ip6e_nxt; 8560 break; 8561 case IPPROTO_TCP: 8562 case IPPROTO_UDP: 8563 case IPPROTO_SCTP: 8564 case IPPROTO_ICMPV6: 8565 /* fragments may be short, ignore inner header then */ 8566 if (*fragoff != 0 && ntohs(h->ip6_plen) < *off + 8567 (*nxt == IPPROTO_TCP ? sizeof(struct tcphdr) : 8568 *nxt == IPPROTO_UDP ? sizeof(struct udphdr) : 8569 *nxt == IPPROTO_SCTP ? sizeof(struct sctphdr) : 8570 sizeof(struct icmp6_hdr))) { 8571 *off = *fragoff; 8572 *nxt = IPPROTO_FRAGMENT; 8573 } 8574 /* FALLTHROUGH */ 8575 default: 8576 return (PF_PASS); 8577 } 8578 } 8579 } 8580 #endif 8581 8582 static void 8583 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m) 8584 { 8585 memset(pd, 0, sizeof(*pd)); 8586 pd->pf_mtag = pf_find_mtag(m); 8587 pd->m = m; 8588 } 8589 8590 static int 8591 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0, 8592 u_short *action, u_short *reason, struct pfi_kkif *kif, 8593 struct pf_rule_actions *default_actions) 8594 { 8595 pd->af = af; 8596 pd->dir = dir; 8597 pd->kif = kif; 8598 pd->m = *m0; 8599 pd->sidx = (dir == PF_IN) ? 0 : 1; 8600 pd->didx = (dir == PF_IN) ? 1 : 0; 8601 8602 TAILQ_INIT(&pd->sctp_multihome_jobs); 8603 if (default_actions != NULL) 8604 memcpy(&pd->act, default_actions, sizeof(pd->act)); 8605 8606 if (pd->pf_mtag && pd->pf_mtag->dnpipe) { 8607 pd->act.dnpipe = pd->pf_mtag->dnpipe; 8608 pd->act.flags = pd->pf_mtag->dnflags; 8609 } 8610 8611 switch (af) { 8612 #ifdef INET 8613 case AF_INET: { 8614 struct ip *h; 8615 8616 if (__predict_false((*m0)->m_len < sizeof(struct ip)) && 8617 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) { 8618 DPFPRINTF(PF_DEBUG_URGENT, 8619 ("pf_test: m_len < sizeof(struct ip), pullup failed\n")); 8620 *action = PF_DROP; 8621 REASON_SET(reason, PFRES_SHORT); 8622 return (-1); 8623 } 8624 8625 if (pf_normalize_ip(m0, reason, pd) != PF_PASS) { 8626 /* We do IP header normalization and packet reassembly here */ 8627 *action = PF_DROP; 8628 return (-1); 8629 } 8630 pd->m = *m0; 8631 8632 h = mtod(pd->m, struct ip *); 8633 pd->off = h->ip_hl << 2; 8634 if (pd->off < (int)sizeof(*h)) { 8635 *action = PF_DROP; 8636 REASON_SET(reason, PFRES_SHORT); 8637 return (-1); 8638 } 8639 pd->src = (struct pf_addr *)&h->ip_src; 8640 pd->dst = (struct pf_addr *)&h->ip_dst; 8641 pd->ip_sum = &h->ip_sum; 8642 pd->proto_sum = NULL; 8643 pd->virtual_proto = pd->proto = h->ip_p; 8644 pd->tos = h->ip_tos; 8645 pd->ttl = h->ip_ttl; 8646 pd->tot_len = ntohs(h->ip_len); 8647 pd->act.rtableid = -1; 8648 8649 if (h->ip_hl > 5) /* has options */ 8650 pd->badopts++; 8651 8652 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) 8653 pd->virtual_proto = PF_VPROTO_FRAGMENT; 8654 8655 break; 8656 } 8657 #endif 8658 #ifdef INET6 8659 case AF_INET6: { 8660 struct ip6_hdr *h; 8661 int fragoff; 8662 uint32_t jumbolen; 8663 uint8_t nxt; 8664 8665 if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) && 8666 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) { 8667 DPFPRINTF(PF_DEBUG_URGENT, 8668 ("pf_test6: m_len < sizeof(struct ip6_hdr)" 8669 ", pullup failed\n")); 8670 *action = PF_DROP; 8671 REASON_SET(reason, PFRES_SHORT); 8672 return (-1); 8673 } 8674 8675 h = mtod(pd->m, struct ip6_hdr *); 8676 pd->off = 0; 8677 if (pf_walk_header6(pd->m, h, &pd->off, &pd->extoff, &fragoff, &nxt, 8678 &jumbolen, reason) != PF_PASS) { 8679 *action = PF_DROP; 8680 return (-1); 8681 } 8682 8683 h = mtod(pd->m, struct ip6_hdr *); 8684 pd->src = (struct pf_addr *)&h->ip6_src; 8685 pd->dst = (struct pf_addr *)&h->ip6_dst; 8686 pd->ip_sum = NULL; 8687 pd->proto_sum = NULL; 8688 pd->tos = IPV6_DSCP(h); 8689 pd->ttl = h->ip6_hlim; 8690 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 8691 pd->virtual_proto = pd->proto = h->ip6_nxt; 8692 pd->act.rtableid = -1; 8693 8694 if (fragoff != 0) 8695 pd->virtual_proto = PF_VPROTO_FRAGMENT; 8696 8697 /* 8698 * we do not support jumbogram. if we keep going, zero ip6_plen 8699 * will do something bad, so drop the packet for now. 8700 */ 8701 if (htons(h->ip6_plen) == 0) { 8702 *action = PF_DROP; 8703 return (-1); 8704 } 8705 8706 /* We do IP header normalization and packet reassembly here */ 8707 if (pf_normalize_ip6(m0, fragoff, reason, pd) != 8708 PF_PASS) { 8709 *action = PF_DROP; 8710 return (-1); 8711 } 8712 pd->m = *m0; 8713 if (pd->m == NULL) { 8714 /* packet sits in reassembly queue, no error */ 8715 *action = PF_PASS; 8716 return (-1); 8717 } 8718 8719 /* Update pointers into the packet. */ 8720 h = mtod(pd->m, struct ip6_hdr *); 8721 pd->src = (struct pf_addr *)&h->ip6_src; 8722 pd->dst = (struct pf_addr *)&h->ip6_dst; 8723 8724 /* 8725 * Reassembly may have changed the next protocol from fragment 8726 * to something else, so update. 8727 */ 8728 pd->virtual_proto = pd->proto = h->ip6_nxt; 8729 pd->off = 0; 8730 8731 if (pf_walk_header6(pd->m, h, &pd->off, &pd->extoff, &fragoff, &nxt, 8732 &jumbolen, reason) != PF_PASS) { 8733 *action = PF_DROP; 8734 return (-1); 8735 } 8736 8737 if (fragoff != 0) 8738 pd->virtual_proto = PF_VPROTO_FRAGMENT; 8739 8740 break; 8741 } 8742 #endif 8743 default: 8744 panic("pf_setup_pdesc called with illegal af %u", af); 8745 } 8746 8747 switch (pd->virtual_proto) { 8748 case IPPROTO_TCP: { 8749 struct tcphdr *th = &pd->hdr.tcp; 8750 8751 if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th), action, 8752 reason, af)) { 8753 *action = PF_DROP; 8754 REASON_SET(reason, PFRES_SHORT); 8755 return (-1); 8756 } 8757 pd->hdrlen = sizeof(*th); 8758 pd->p_len = pd->tot_len - pd->off - (th->th_off << 2); 8759 pd->sport = &th->th_sport; 8760 pd->dport = &th->th_dport; 8761 break; 8762 } 8763 case IPPROTO_UDP: { 8764 struct udphdr *uh = &pd->hdr.udp; 8765 8766 if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh), action, 8767 reason, af)) { 8768 *action = PF_DROP; 8769 REASON_SET(reason, PFRES_SHORT); 8770 return (-1); 8771 } 8772 pd->hdrlen = sizeof(*uh); 8773 if (uh->uh_dport == 0 || 8774 ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off || 8775 ntohs(uh->uh_ulen) < sizeof(struct udphdr)) { 8776 *action = PF_DROP; 8777 REASON_SET(reason, PFRES_SHORT); 8778 return (-1); 8779 } 8780 pd->sport = &uh->uh_sport; 8781 pd->dport = &uh->uh_dport; 8782 break; 8783 } 8784 case IPPROTO_SCTP: { 8785 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp), 8786 action, reason, af)) { 8787 *action = PF_DROP; 8788 REASON_SET(reason, PFRES_SHORT); 8789 return (-1); 8790 } 8791 pd->hdrlen = sizeof(pd->hdr.sctp); 8792 pd->p_len = pd->tot_len - pd->off; 8793 8794 pd->sport = &pd->hdr.sctp.src_port; 8795 pd->dport = &pd->hdr.sctp.dest_port; 8796 if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) { 8797 *action = PF_DROP; 8798 REASON_SET(reason, PFRES_SHORT); 8799 return (-1); 8800 } 8801 if (pf_scan_sctp(pd) != PF_PASS) { 8802 *action = PF_DROP; 8803 REASON_SET(reason, PFRES_SHORT); 8804 return (-1); 8805 } 8806 break; 8807 } 8808 case IPPROTO_ICMP: { 8809 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN, 8810 action, reason, af)) { 8811 *action = PF_DROP; 8812 REASON_SET(reason, PFRES_SHORT); 8813 return (-1); 8814 } 8815 pd->hdrlen = ICMP_MINLEN; 8816 break; 8817 } 8818 #ifdef INET6 8819 case IPPROTO_ICMPV6: { 8820 size_t icmp_hlen = sizeof(struct icmp6_hdr); 8821 8822 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen, 8823 action, reason, af)) { 8824 *action = PF_DROP; 8825 REASON_SET(reason, PFRES_SHORT); 8826 return (-1); 8827 } 8828 /* ICMP headers we look further into to match state */ 8829 switch (pd->hdr.icmp6.icmp6_type) { 8830 case MLD_LISTENER_QUERY: 8831 case MLD_LISTENER_REPORT: 8832 icmp_hlen = sizeof(struct mld_hdr); 8833 break; 8834 case ND_NEIGHBOR_SOLICIT: 8835 case ND_NEIGHBOR_ADVERT: 8836 icmp_hlen = sizeof(struct nd_neighbor_solicit); 8837 break; 8838 } 8839 if (icmp_hlen > sizeof(struct icmp6_hdr) && 8840 !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen, 8841 action, reason, af)) { 8842 *action = PF_DROP; 8843 REASON_SET(reason, PFRES_SHORT); 8844 return (-1); 8845 } 8846 pd->hdrlen = icmp_hlen; 8847 break; 8848 } 8849 #endif 8850 } 8851 return (0); 8852 } 8853 8854 static void 8855 pf_counters_inc(int action, struct pf_pdesc *pd, 8856 struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a) 8857 { 8858 struct pf_krule *tr; 8859 int dir = pd->dir; 8860 int dirndx; 8861 8862 pf_counter_u64_critical_enter(); 8863 pf_counter_u64_add_protected( 8864 &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 8865 pd->tot_len); 8866 pf_counter_u64_add_protected( 8867 &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 8868 1); 8869 8870 if (action == PF_PASS || r->action == PF_DROP) { 8871 dirndx = (dir == PF_OUT); 8872 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 8873 pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len); 8874 pf_update_timestamp(r); 8875 8876 if (a != NULL) { 8877 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 8878 pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len); 8879 } 8880 if (s != NULL) { 8881 struct pf_krule_item *ri; 8882 8883 if (s->nat_rule != NULL) { 8884 pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx], 8885 1); 8886 pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx], 8887 pd->tot_len); 8888 } 8889 if (s->src_node != NULL) { 8890 counter_u64_add(s->src_node->packets[dirndx], 8891 1); 8892 counter_u64_add(s->src_node->bytes[dirndx], 8893 pd->tot_len); 8894 } 8895 if (s->nat_src_node != NULL) { 8896 counter_u64_add(s->nat_src_node->packets[dirndx], 8897 1); 8898 counter_u64_add(s->nat_src_node->bytes[dirndx], 8899 pd->tot_len); 8900 } 8901 dirndx = (dir == s->direction) ? 0 : 1; 8902 s->packets[dirndx]++; 8903 s->bytes[dirndx] += pd->tot_len; 8904 8905 SLIST_FOREACH(ri, &s->match_rules, entry) { 8906 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 8907 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len); 8908 } 8909 } 8910 8911 tr = r; 8912 if (s != NULL && s->nat_rule != NULL && 8913 r == &V_pf_default_rule) 8914 tr = s->nat_rule; 8915 8916 if (tr->src.addr.type == PF_ADDR_TABLE) 8917 pfr_update_stats(tr->src.addr.p.tbl, 8918 (s == NULL) ? pd->src : 8919 &s->key[(s->direction == PF_IN)]-> 8920 addr[(s->direction == PF_OUT)], 8921 pd->af, pd->tot_len, dir == PF_OUT, 8922 r->action == PF_PASS, tr->src.neg); 8923 if (tr->dst.addr.type == PF_ADDR_TABLE) 8924 pfr_update_stats(tr->dst.addr.p.tbl, 8925 (s == NULL) ? pd->dst : 8926 &s->key[(s->direction == PF_IN)]-> 8927 addr[(s->direction == PF_IN)], 8928 pd->af, pd->tot_len, dir == PF_OUT, 8929 r->action == PF_PASS, tr->dst.neg); 8930 } 8931 pf_counter_u64_critical_exit(); 8932 } 8933 8934 #if defined(INET) || defined(INET6) 8935 int 8936 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 8937 struct inpcb *inp, struct pf_rule_actions *default_actions) 8938 { 8939 struct pfi_kkif *kif; 8940 u_short action, reason = 0; 8941 struct m_tag *mtag; 8942 struct pf_krule *a = NULL, *r = &V_pf_default_rule; 8943 struct pf_kstate *s = NULL; 8944 struct pf_kruleset *ruleset = NULL; 8945 struct pf_pdesc pd; 8946 int use_2nd_queue = 0; 8947 uint16_t tag; 8948 uint8_t rt; 8949 8950 PF_RULES_RLOCK_TRACKER; 8951 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 8952 M_ASSERTPKTHDR(*m0); 8953 8954 if (!V_pf_status.running) 8955 return (PF_PASS); 8956 8957 PF_RULES_RLOCK(); 8958 8959 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8960 8961 if (__predict_false(kif == NULL)) { 8962 DPFPRINTF(PF_DEBUG_URGENT, 8963 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 8964 PF_RULES_RUNLOCK(); 8965 return (PF_DROP); 8966 } 8967 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 8968 PF_RULES_RUNLOCK(); 8969 return (PF_PASS); 8970 } 8971 8972 if ((*m0)->m_flags & M_SKIP_FIREWALL) { 8973 PF_RULES_RUNLOCK(); 8974 return (PF_PASS); 8975 } 8976 8977 #ifdef INET6 8978 /* 8979 * If we end up changing IP addresses (e.g. binat) the stack may get 8980 * confused and fail to send the icmp6 packet too big error. Just send 8981 * it here, before we do any NAT. 8982 */ 8983 if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD && 8984 IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) { 8985 PF_RULES_RUNLOCK(); 8986 icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp)); 8987 *m0 = NULL; 8988 return (PF_DROP); 8989 } 8990 #endif 8991 8992 if (__predict_false(! M_WRITABLE(*m0))) { 8993 *m0 = m_unshare(*m0, M_NOWAIT); 8994 if (*m0 == NULL) 8995 return (PF_DROP); 8996 } 8997 8998 pf_init_pdesc(&pd, *m0); 8999 9000 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 9001 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 9002 9003 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 9004 pd.pf_mtag->if_idxgen); 9005 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 9006 PF_RULES_RUNLOCK(); 9007 m_freem(*m0); 9008 *m0 = NULL; 9009 return (PF_PASS); 9010 } 9011 PF_RULES_RUNLOCK(); 9012 (ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL); 9013 *m0 = NULL; 9014 return (PF_PASS); 9015 } 9016 9017 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 9018 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 9019 /* Dummynet re-injects packets after they've 9020 * completed their delay. We've already 9021 * processed them, so pass unconditionally. */ 9022 9023 /* But only once. We may see the packet multiple times (e.g. 9024 * PFIL_IN/PFIL_OUT). */ 9025 pf_dummynet_flag_remove(pd.m, pd.pf_mtag); 9026 PF_RULES_RUNLOCK(); 9027 9028 return (PF_PASS); 9029 } 9030 9031 if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason, 9032 kif, default_actions) == -1) { 9033 if (action != PF_PASS) 9034 pd.act.log |= PF_LOG_FORCE; 9035 goto done; 9036 } 9037 9038 if (__predict_false(ip_divert_ptr != NULL) && 9039 ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) { 9040 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1); 9041 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) || 9042 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) { 9043 if (pd.pf_mtag == NULL && 9044 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 9045 action = PF_DROP; 9046 goto done; 9047 } 9048 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED; 9049 } 9050 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) { 9051 pd.m->m_flags |= M_FASTFWD_OURS; 9052 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 9053 } 9054 m_tag_delete(pd.m, mtag); 9055 9056 mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL); 9057 if (mtag != NULL) 9058 m_tag_delete(pd.m, mtag); 9059 } 9060 9061 switch (pd.virtual_proto) { 9062 case PF_VPROTO_FRAGMENT: 9063 /* 9064 * handle fragments that aren't reassembled by 9065 * normalization 9066 */ 9067 if (kif == NULL || r == NULL) /* pflog */ 9068 action = PF_DROP; 9069 else 9070 action = pf_test_rule(&r, &s, &pd, &a, 9071 &ruleset, inp); 9072 if (action != PF_PASS) 9073 REASON_SET(&reason, PFRES_FRAG); 9074 break; 9075 9076 case IPPROTO_TCP: { 9077 /* Respond to SYN with a syncookie. */ 9078 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 9079 pd.dir == PF_IN && pf_synflood_check(&pd)) { 9080 pf_syncookie_send(&pd); 9081 action = PF_DROP; 9082 break; 9083 } 9084 9085 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 9086 use_2nd_queue = 1; 9087 action = pf_normalize_tcp(&pd); 9088 if (action == PF_DROP) 9089 goto done; 9090 action = pf_test_state_tcp(&s, &pd, &reason); 9091 if (action == PF_PASS) { 9092 if (V_pfsync_update_state_ptr != NULL) 9093 V_pfsync_update_state_ptr(s); 9094 r = s->rule; 9095 a = s->anchor; 9096 } else if (s == NULL) { 9097 /* Validate remote SYN|ACK, re-create original SYN if 9098 * valid. */ 9099 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 9100 TH_ACK && pf_syncookie_validate(&pd) && 9101 pd.dir == PF_IN) { 9102 struct mbuf *msyn; 9103 9104 msyn = pf_syncookie_recreate_syn(&pd); 9105 if (msyn == NULL) { 9106 action = PF_DROP; 9107 break; 9108 } 9109 9110 action = pf_test(af, dir, pflags, ifp, &msyn, inp, 9111 &pd.act); 9112 m_freem(msyn); 9113 if (action != PF_PASS) 9114 break; 9115 9116 action = pf_test_state_tcp(&s, &pd, &reason); 9117 if (action != PF_PASS || s == NULL) { 9118 action = PF_DROP; 9119 break; 9120 } 9121 9122 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 9123 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 9124 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 9125 action = pf_synproxy(&pd, &s, &reason); 9126 break; 9127 } else { 9128 action = pf_test_rule(&r, &s, &pd, 9129 &a, &ruleset, inp); 9130 } 9131 } 9132 break; 9133 } 9134 9135 case IPPROTO_UDP: { 9136 action = pf_test_state_udp(&s, &pd); 9137 if (action == PF_PASS) { 9138 if (V_pfsync_update_state_ptr != NULL) 9139 V_pfsync_update_state_ptr(s); 9140 r = s->rule; 9141 a = s->anchor; 9142 } else if (s == NULL) 9143 action = pf_test_rule(&r, &s, &pd, 9144 &a, &ruleset, inp); 9145 break; 9146 } 9147 9148 case IPPROTO_SCTP: { 9149 action = pf_normalize_sctp(&pd); 9150 if (action == PF_DROP) 9151 goto done; 9152 action = pf_test_state_sctp(&s, &pd, &reason); 9153 if (action == PF_PASS) { 9154 if (V_pfsync_update_state_ptr != NULL) 9155 V_pfsync_update_state_ptr(s); 9156 r = s->rule; 9157 a = s->anchor; 9158 } else if (s == NULL) { 9159 action = pf_test_rule(&r, &s, 9160 &pd, &a, &ruleset, inp); 9161 } 9162 break; 9163 } 9164 9165 case IPPROTO_ICMP: { 9166 if (af != AF_INET) { 9167 action = PF_DROP; 9168 REASON_SET(&reason, PFRES_NORM); 9169 DPFPRINTF(PF_DEBUG_MISC, 9170 ("dropping IPv6 packet with ICMPv4 payload")); 9171 goto done; 9172 } 9173 action = pf_test_state_icmp(&s, &pd, &reason); 9174 if (action == PF_PASS) { 9175 if (V_pfsync_update_state_ptr != NULL) 9176 V_pfsync_update_state_ptr(s); 9177 r = s->rule; 9178 a = s->anchor; 9179 } else if (s == NULL) 9180 action = pf_test_rule(&r, &s, &pd, 9181 &a, &ruleset, inp); 9182 break; 9183 } 9184 9185 case IPPROTO_ICMPV6: { 9186 if (af != AF_INET6) { 9187 action = PF_DROP; 9188 REASON_SET(&reason, PFRES_NORM); 9189 DPFPRINTF(PF_DEBUG_MISC, 9190 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 9191 goto done; 9192 } 9193 action = pf_test_state_icmp(&s, &pd, &reason); 9194 if (action == PF_PASS) { 9195 if (V_pfsync_update_state_ptr != NULL) 9196 V_pfsync_update_state_ptr(s); 9197 r = s->rule; 9198 a = s->anchor; 9199 } else if (s == NULL) 9200 action = pf_test_rule(&r, &s, &pd, 9201 &a, &ruleset, inp); 9202 break; 9203 } 9204 9205 default: 9206 action = pf_test_state_other(&s, &pd); 9207 if (action == PF_PASS) { 9208 if (V_pfsync_update_state_ptr != NULL) 9209 V_pfsync_update_state_ptr(s); 9210 r = s->rule; 9211 a = s->anchor; 9212 } else if (s == NULL) 9213 action = pf_test_rule(&r, &s, &pd, 9214 &a, &ruleset, inp); 9215 break; 9216 } 9217 9218 done: 9219 PF_RULES_RUNLOCK(); 9220 9221 if (pd.m == NULL) 9222 goto eat_pkt; 9223 9224 if (action == PF_PASS && pd.badopts && 9225 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 9226 action = PF_DROP; 9227 REASON_SET(&reason, PFRES_IPOPTIONS); 9228 pd.act.log = PF_LOG_FORCE; 9229 DPFPRINTF(PF_DEBUG_MISC, 9230 ("pf: dropping packet with dangerous headers\n")); 9231 } 9232 9233 if (s) { 9234 uint8_t log = pd.act.log; 9235 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 9236 pd.act.log |= log; 9237 tag = s->tag; 9238 rt = s->rt; 9239 } else { 9240 tag = r->tag; 9241 rt = r->rt; 9242 } 9243 9244 if (tag > 0 && pf_tag_packet(&pd, tag)) { 9245 action = PF_DROP; 9246 REASON_SET(&reason, PFRES_MEMORY); 9247 } 9248 9249 pf_scrub(&pd); 9250 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 9251 pf_normalize_mss(&pd); 9252 9253 if (pd.act.rtableid >= 0) 9254 M_SETFIB(pd.m, pd.act.rtableid); 9255 9256 if (pd.act.flags & PFSTATE_SETPRIO) { 9257 if (pd.tos & IPTOS_LOWDELAY) 9258 use_2nd_queue = 1; 9259 if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) { 9260 action = PF_DROP; 9261 REASON_SET(&reason, PFRES_MEMORY); 9262 pd.act.log = PF_LOG_FORCE; 9263 DPFPRINTF(PF_DEBUG_MISC, 9264 ("pf: failed to allocate 802.1q mtag\n")); 9265 } 9266 } 9267 9268 #ifdef ALTQ 9269 if (action == PF_PASS && pd.act.qid) { 9270 if (pd.pf_mtag == NULL && 9271 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 9272 action = PF_DROP; 9273 REASON_SET(&reason, PFRES_MEMORY); 9274 } else { 9275 if (s != NULL) 9276 pd.pf_mtag->qid_hash = pf_state_hash(s); 9277 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY)) 9278 pd.pf_mtag->qid = pd.act.pqid; 9279 else 9280 pd.pf_mtag->qid = pd.act.qid; 9281 /* Add hints for ecn. */ 9282 pd.pf_mtag->hdr = mtod(pd.m, void *); 9283 } 9284 } 9285 #endif /* ALTQ */ 9286 9287 /* 9288 * connections redirected to loopback should not match sockets 9289 * bound specifically to loopback due to security implications, 9290 * see tcp_input() and in_pcblookup_listen(). 9291 */ 9292 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 9293 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL && 9294 (s->nat_rule->action == PF_RDR || 9295 s->nat_rule->action == PF_BINAT) && 9296 pf_is_loopback(af, pd.dst)) 9297 pd.m->m_flags |= M_SKIP_FIREWALL; 9298 9299 if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) && 9300 action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) { 9301 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0, 9302 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO); 9303 if (mtag != NULL) { 9304 ((struct pf_divert_mtag *)(mtag+1))->port = 9305 ntohs(r->divert.port); 9306 ((struct pf_divert_mtag *)(mtag+1))->idir = 9307 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN : 9308 PF_DIVERT_MTAG_DIR_OUT; 9309 9310 if (s) 9311 PF_STATE_UNLOCK(s); 9312 9313 m_tag_prepend(pd.m, mtag); 9314 if (pd.m->m_flags & M_FASTFWD_OURS) { 9315 if (pd.pf_mtag == NULL && 9316 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 9317 action = PF_DROP; 9318 REASON_SET(&reason, PFRES_MEMORY); 9319 pd.act.log = PF_LOG_FORCE; 9320 DPFPRINTF(PF_DEBUG_MISC, 9321 ("pf: failed to allocate tag\n")); 9322 } else { 9323 pd.pf_mtag->flags |= 9324 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 9325 pd.m->m_flags &= ~M_FASTFWD_OURS; 9326 } 9327 } 9328 ip_divert_ptr(*m0, dir == PF_IN); 9329 *m0 = NULL; 9330 9331 return (action); 9332 } else { 9333 /* XXX: ipfw has the same behaviour! */ 9334 action = PF_DROP; 9335 REASON_SET(&reason, PFRES_MEMORY); 9336 pd.act.log = PF_LOG_FORCE; 9337 DPFPRINTF(PF_DEBUG_MISC, 9338 ("pf: failed to allocate divert tag\n")); 9339 } 9340 } 9341 /* XXX: Anybody working on it?! */ 9342 if (af == AF_INET6 && r->divert.port) 9343 printf("pf: divert(9) is not supported for IPv6\n"); 9344 9345 /* this flag will need revising if the pkt is forwarded */ 9346 if (pd.pf_mtag) 9347 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED; 9348 9349 if (pd.act.log) { 9350 struct pf_krule *lr; 9351 struct pf_krule_item *ri; 9352 9353 if (s != NULL && s->nat_rule != NULL && 9354 s->nat_rule->log & PF_LOG_ALL) 9355 lr = s->nat_rule; 9356 else 9357 lr = r; 9358 9359 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 9360 PFLOG_PACKET(action, reason, lr, a, 9361 ruleset, &pd, (s == NULL)); 9362 if (s) { 9363 SLIST_FOREACH(ri, &s->match_rules, entry) 9364 if (ri->r->log & PF_LOG_ALL) 9365 PFLOG_PACKET(action, 9366 reason, ri->r, a, ruleset, &pd, 0); 9367 } 9368 } 9369 9370 pf_counters_inc(action, &pd, s, r, a); 9371 9372 switch (action) { 9373 case PF_SYNPROXY_DROP: 9374 m_freem(*m0); 9375 case PF_DEFER: 9376 *m0 = NULL; 9377 action = PF_PASS; 9378 break; 9379 case PF_DROP: 9380 m_freem(*m0); 9381 *m0 = NULL; 9382 break; 9383 default: 9384 if (rt) { 9385 switch (af) { 9386 #ifdef INET 9387 case AF_INET: 9388 /* pf_route() returns unlocked. */ 9389 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp); 9390 break; 9391 #endif 9392 #ifdef INET6 9393 case AF_INET6: 9394 /* pf_route6() returns unlocked. */ 9395 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp); 9396 break; 9397 #endif 9398 } 9399 goto out; 9400 } 9401 if (pf_dummynet(&pd, s, r, m0) != 0) { 9402 action = PF_DROP; 9403 REASON_SET(&reason, PFRES_MEMORY); 9404 } 9405 break; 9406 } 9407 9408 eat_pkt: 9409 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 9410 9411 if (s && action != PF_DROP) { 9412 if (!s->if_index_in && dir == PF_IN) 9413 s->if_index_in = ifp->if_index; 9414 else if (!s->if_index_out && dir == PF_OUT) 9415 s->if_index_out = ifp->if_index; 9416 } 9417 9418 if (s) 9419 PF_STATE_UNLOCK(s); 9420 9421 #ifdef INET6 9422 /* If reassembled packet passed, create new fragments. */ 9423 if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT && 9424 (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL) 9425 action = pf_refragment6(ifp, m0, mtag, pflags & PFIL_FWD); 9426 #endif 9427 9428 out: 9429 pf_sctp_multihome_delayed(&pd, kif, s, action); 9430 9431 return (action); 9432 } 9433 #endif /* INET || INET6 */ 9434