1 /*- 2 * Copyright (c) 2001 Daniel Hartmeier 3 * Copyright (c) 2002 - 2008 Henning Brauer 4 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * - Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * - Redistributions in binary form must reproduce the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer in the documentation and/or other materials provided 16 * with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 26 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Effort sponsored in part by the Defense Advanced Research Projects 32 * Agency (DARPA) and Air Force Research Laboratory, Air Force 33 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 34 * 35 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_inet.h" 42 #include "opt_inet6.h" 43 #include "opt_bpf.h" 44 #include "opt_pf.h" 45 46 #include <sys/param.h> 47 #include <sys/bus.h> 48 #include <sys/endian.h> 49 #include <sys/hash.h> 50 #include <sys/interrupt.h> 51 #include <sys/kernel.h> 52 #include <sys/kthread.h> 53 #include <sys/limits.h> 54 #include <sys/mbuf.h> 55 #include <sys/md5.h> 56 #include <sys/random.h> 57 #include <sys/refcount.h> 58 #include <sys/socket.h> 59 #include <sys/sysctl.h> 60 #include <sys/taskqueue.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_types.h> 66 #include <net/if_vlan_var.h> 67 #include <net/route.h> 68 #include <net/radix_mpath.h> 69 #include <net/vnet.h> 70 71 #include <net/pfvar.h> 72 #include <net/if_pflog.h> 73 #include <net/if_pfsync.h> 74 75 #include <netinet/in_pcb.h> 76 #include <netinet/in_var.h> 77 #include <netinet/in_fib.h> 78 #include <netinet/ip.h> 79 #include <netinet/ip_fw.h> 80 #include <netinet/ip_icmp.h> 81 #include <netinet/icmp_var.h> 82 #include <netinet/ip_var.h> 83 #include <netinet/tcp.h> 84 #include <netinet/tcp_fsm.h> 85 #include <netinet/tcp_seq.h> 86 #include <netinet/tcp_timer.h> 87 #include <netinet/tcp_var.h> 88 #include <netinet/udp.h> 89 #include <netinet/udp_var.h> 90 91 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 92 93 #ifdef INET6 94 #include <netinet/ip6.h> 95 #include <netinet/icmp6.h> 96 #include <netinet6/nd6.h> 97 #include <netinet6/ip6_var.h> 98 #include <netinet6/in6_pcb.h> 99 #include <netinet6/in6_fib.h> 100 #include <netinet6/scope6_var.h> 101 #endif /* INET6 */ 102 103 #include <machine/in_cksum.h> 104 #include <security/mac/mac_framework.h> 105 106 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 107 108 /* 109 * Global variables 110 */ 111 112 /* state tables */ 113 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 114 VNET_DEFINE(struct pf_palist, pf_pabuf); 115 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 116 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 117 VNET_DEFINE(struct pf_kstatus, pf_status); 118 119 VNET_DEFINE(u_int32_t, ticket_altqs_active); 120 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 121 VNET_DEFINE(int, altqs_inactive_open); 122 VNET_DEFINE(u_int32_t, ticket_pabuf); 123 124 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 125 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 126 VNET_DEFINE(u_char, pf_tcp_secret[16]); 127 #define V_pf_tcp_secret VNET(pf_tcp_secret) 128 VNET_DEFINE(int, pf_tcp_secret_init); 129 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 130 VNET_DEFINE(int, pf_tcp_iss_off); 131 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 132 VNET_DECLARE(int, pf_vnet_active); 133 #define V_pf_vnet_active VNET(pf_vnet_active) 134 135 /* 136 * Queue for pf_intr() sends. 137 */ 138 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 139 struct pf_send_entry { 140 STAILQ_ENTRY(pf_send_entry) pfse_next; 141 struct mbuf *pfse_m; 142 enum { 143 PFSE_IP, 144 PFSE_IP6, 145 PFSE_ICMP, 146 PFSE_ICMP6, 147 } pfse_type; 148 struct { 149 int type; 150 int code; 151 int mtu; 152 } icmpopts; 153 }; 154 155 STAILQ_HEAD(pf_send_head, pf_send_entry); 156 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 157 #define V_pf_sendqueue VNET(pf_sendqueue) 158 159 static struct mtx pf_sendqueue_mtx; 160 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 161 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 162 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 163 164 /* 165 * Queue for pf_overload_task() tasks. 166 */ 167 struct pf_overload_entry { 168 SLIST_ENTRY(pf_overload_entry) next; 169 struct pf_addr addr; 170 sa_family_t af; 171 uint8_t dir; 172 struct pf_rule *rule; 173 }; 174 175 SLIST_HEAD(pf_overload_head, pf_overload_entry); 176 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 177 #define V_pf_overloadqueue VNET(pf_overloadqueue) 178 static VNET_DEFINE(struct task, pf_overloadtask); 179 #define V_pf_overloadtask VNET(pf_overloadtask) 180 181 static struct mtx pf_overloadqueue_mtx; 182 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 183 "pf overload/flush queue", MTX_DEF); 184 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 185 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 186 187 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 188 struct mtx pf_unlnkdrules_mtx; 189 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 190 MTX_DEF); 191 192 static VNET_DEFINE(uma_zone_t, pf_sources_z); 193 #define V_pf_sources_z VNET(pf_sources_z) 194 uma_zone_t pf_mtag_z; 195 VNET_DEFINE(uma_zone_t, pf_state_z); 196 VNET_DEFINE(uma_zone_t, pf_state_key_z); 197 198 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 199 #define PFID_CPUBITS 8 200 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 201 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 202 #define PFID_MAXID (~PFID_CPUMASK) 203 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 204 205 static void pf_src_tree_remove_state(struct pf_state *); 206 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 207 u_int32_t); 208 static void pf_add_threshold(struct pf_threshold *); 209 static int pf_check_threshold(struct pf_threshold *); 210 211 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 212 u_int16_t *, u_int16_t *, struct pf_addr *, 213 u_int16_t, u_int8_t, sa_family_t); 214 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 215 struct tcphdr *, struct pf_state_peer *); 216 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 217 struct pf_addr *, struct pf_addr *, u_int16_t, 218 u_int16_t *, u_int16_t *, u_int16_t *, 219 u_int16_t *, u_int8_t, sa_family_t); 220 static void pf_send_tcp(struct mbuf *, 221 const struct pf_rule *, sa_family_t, 222 const struct pf_addr *, const struct pf_addr *, 223 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 224 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 225 u_int16_t, struct ifnet *); 226 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 227 sa_family_t, struct pf_rule *); 228 static void pf_detach_state(struct pf_state *); 229 static int pf_state_key_attach(struct pf_state_key *, 230 struct pf_state_key *, struct pf_state *); 231 static void pf_state_key_detach(struct pf_state *, int); 232 static int pf_state_key_ctor(void *, int, void *, int); 233 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 234 static int pf_test_rule(struct pf_rule **, struct pf_state **, 235 int, struct pfi_kif *, struct mbuf *, int, 236 struct pf_pdesc *, struct pf_rule **, 237 struct pf_ruleset **, struct inpcb *); 238 static int pf_create_state(struct pf_rule *, struct pf_rule *, 239 struct pf_rule *, struct pf_pdesc *, 240 struct pf_src_node *, struct pf_state_key *, 241 struct pf_state_key *, struct mbuf *, int, 242 u_int16_t, u_int16_t, int *, struct pfi_kif *, 243 struct pf_state **, int, u_int16_t, u_int16_t, 244 int); 245 static int pf_test_fragment(struct pf_rule **, int, 246 struct pfi_kif *, struct mbuf *, void *, 247 struct pf_pdesc *, struct pf_rule **, 248 struct pf_ruleset **); 249 static int pf_tcp_track_full(struct pf_state_peer *, 250 struct pf_state_peer *, struct pf_state **, 251 struct pfi_kif *, struct mbuf *, int, 252 struct pf_pdesc *, u_short *, int *); 253 static int pf_tcp_track_sloppy(struct pf_state_peer *, 254 struct pf_state_peer *, struct pf_state **, 255 struct pf_pdesc *, u_short *); 256 static int pf_test_state_tcp(struct pf_state **, int, 257 struct pfi_kif *, struct mbuf *, int, 258 void *, struct pf_pdesc *, u_short *); 259 static int pf_test_state_udp(struct pf_state **, int, 260 struct pfi_kif *, struct mbuf *, int, 261 void *, struct pf_pdesc *); 262 static int pf_test_state_icmp(struct pf_state **, int, 263 struct pfi_kif *, struct mbuf *, int, 264 void *, struct pf_pdesc *, u_short *); 265 static int pf_test_state_other(struct pf_state **, int, 266 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 267 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 268 sa_family_t); 269 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 270 sa_family_t); 271 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 272 int, u_int16_t); 273 static int pf_check_proto_cksum(struct mbuf *, int, int, 274 u_int8_t, sa_family_t); 275 static void pf_print_state_parts(struct pf_state *, 276 struct pf_state_key *, struct pf_state_key *); 277 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 278 struct pf_addr_wrap *); 279 static struct pf_state *pf_find_state(struct pfi_kif *, 280 struct pf_state_key_cmp *, u_int); 281 static int pf_src_connlimit(struct pf_state **); 282 static void pf_overload_task(void *v, int pending); 283 static int pf_insert_src_node(struct pf_src_node **, 284 struct pf_rule *, struct pf_addr *, sa_family_t); 285 static u_int pf_purge_expired_states(u_int, int); 286 static void pf_purge_unlinked_rules(void); 287 static int pf_mtag_uminit(void *, int, int); 288 static void pf_mtag_free(struct m_tag *); 289 #ifdef INET 290 static void pf_route(struct mbuf **, struct pf_rule *, int, 291 struct ifnet *, struct pf_state *, 292 struct pf_pdesc *); 293 #endif /* INET */ 294 #ifdef INET6 295 static void pf_change_a6(struct pf_addr *, u_int16_t *, 296 struct pf_addr *, u_int8_t); 297 static void pf_route6(struct mbuf **, struct pf_rule *, int, 298 struct ifnet *, struct pf_state *, 299 struct pf_pdesc *); 300 #endif /* INET6 */ 301 302 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 303 304 extern int pf_end_threads; 305 306 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 307 308 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 309 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 310 311 #define STATE_LOOKUP(i, k, d, s, pd) \ 312 do { \ 313 (s) = pf_find_state((i), (k), (d)); \ 314 if ((s) == NULL) \ 315 return (PF_DROP); \ 316 if (PACKET_LOOPED(pd)) \ 317 return (PF_PASS); \ 318 if ((d) == PF_OUT && \ 319 (((s)->rule.ptr->rt == PF_ROUTETO && \ 320 (s)->rule.ptr->direction == PF_OUT) || \ 321 ((s)->rule.ptr->rt == PF_REPLYTO && \ 322 (s)->rule.ptr->direction == PF_IN)) && \ 323 (s)->rt_kif != NULL && \ 324 (s)->rt_kif != (i)) \ 325 return (PF_PASS); \ 326 } while (0) 327 328 #define BOUND_IFACE(r, k) \ 329 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 330 331 #define STATE_INC_COUNTERS(s) \ 332 do { \ 333 counter_u64_add(s->rule.ptr->states_cur, 1); \ 334 counter_u64_add(s->rule.ptr->states_tot, 1); \ 335 if (s->anchor.ptr != NULL) { \ 336 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 337 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 338 } \ 339 if (s->nat_rule.ptr != NULL) { \ 340 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 341 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 342 } \ 343 } while (0) 344 345 #define STATE_DEC_COUNTERS(s) \ 346 do { \ 347 if (s->nat_rule.ptr != NULL) \ 348 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 349 if (s->anchor.ptr != NULL) \ 350 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 351 counter_u64_add(s->rule.ptr->states_cur, -1); \ 352 } while (0) 353 354 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 355 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 356 VNET_DEFINE(struct pf_idhash *, pf_idhash); 357 VNET_DEFINE(struct pf_srchash *, pf_srchash); 358 359 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 360 361 u_long pf_hashmask; 362 u_long pf_srchashmask; 363 static u_long pf_hashsize; 364 static u_long pf_srchashsize; 365 366 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 367 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 368 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 369 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 370 371 VNET_DEFINE(void *, pf_swi_cookie); 372 373 VNET_DEFINE(uint32_t, pf_hashseed); 374 #define V_pf_hashseed VNET(pf_hashseed) 375 376 int 377 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 378 { 379 380 switch (af) { 381 #ifdef INET 382 case AF_INET: 383 if (a->addr32[0] > b->addr32[0]) 384 return (1); 385 if (a->addr32[0] < b->addr32[0]) 386 return (-1); 387 break; 388 #endif /* INET */ 389 #ifdef INET6 390 case AF_INET6: 391 if (a->addr32[3] > b->addr32[3]) 392 return (1); 393 if (a->addr32[3] < b->addr32[3]) 394 return (-1); 395 if (a->addr32[2] > b->addr32[2]) 396 return (1); 397 if (a->addr32[2] < b->addr32[2]) 398 return (-1); 399 if (a->addr32[1] > b->addr32[1]) 400 return (1); 401 if (a->addr32[1] < b->addr32[1]) 402 return (-1); 403 if (a->addr32[0] > b->addr32[0]) 404 return (1); 405 if (a->addr32[0] < b->addr32[0]) 406 return (-1); 407 break; 408 #endif /* INET6 */ 409 default: 410 panic("%s: unknown address family %u", __func__, af); 411 } 412 return (0); 413 } 414 415 static __inline uint32_t 416 pf_hashkey(struct pf_state_key *sk) 417 { 418 uint32_t h; 419 420 h = murmur3_32_hash32((uint32_t *)sk, 421 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 422 V_pf_hashseed); 423 424 return (h & pf_hashmask); 425 } 426 427 static __inline uint32_t 428 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 429 { 430 uint32_t h; 431 432 switch (af) { 433 case AF_INET: 434 h = murmur3_32_hash32((uint32_t *)&addr->v4, 435 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 436 break; 437 case AF_INET6: 438 h = murmur3_32_hash32((uint32_t *)&addr->v6, 439 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 440 break; 441 default: 442 panic("%s: unknown address family %u", __func__, af); 443 } 444 445 return (h & pf_srchashmask); 446 } 447 448 #ifdef ALTQ 449 static int 450 pf_state_hash(struct pf_state *s) 451 { 452 u_int32_t hv = (intptr_t)s / sizeof(*s); 453 454 hv ^= crc32(&s->src, sizeof(s->src)); 455 hv ^= crc32(&s->dst, sizeof(s->dst)); 456 if (hv == 0) 457 hv = 1; 458 return (hv); 459 } 460 #endif 461 462 #ifdef INET6 463 void 464 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 465 { 466 switch (af) { 467 #ifdef INET 468 case AF_INET: 469 dst->addr32[0] = src->addr32[0]; 470 break; 471 #endif /* INET */ 472 case AF_INET6: 473 dst->addr32[0] = src->addr32[0]; 474 dst->addr32[1] = src->addr32[1]; 475 dst->addr32[2] = src->addr32[2]; 476 dst->addr32[3] = src->addr32[3]; 477 break; 478 } 479 } 480 #endif /* INET6 */ 481 482 static void 483 pf_init_threshold(struct pf_threshold *threshold, 484 u_int32_t limit, u_int32_t seconds) 485 { 486 threshold->limit = limit * PF_THRESHOLD_MULT; 487 threshold->seconds = seconds; 488 threshold->count = 0; 489 threshold->last = time_uptime; 490 } 491 492 static void 493 pf_add_threshold(struct pf_threshold *threshold) 494 { 495 u_int32_t t = time_uptime, diff = t - threshold->last; 496 497 if (diff >= threshold->seconds) 498 threshold->count = 0; 499 else 500 threshold->count -= threshold->count * diff / 501 threshold->seconds; 502 threshold->count += PF_THRESHOLD_MULT; 503 threshold->last = t; 504 } 505 506 static int 507 pf_check_threshold(struct pf_threshold *threshold) 508 { 509 return (threshold->count > threshold->limit); 510 } 511 512 static int 513 pf_src_connlimit(struct pf_state **state) 514 { 515 struct pf_overload_entry *pfoe; 516 int bad = 0; 517 518 PF_STATE_LOCK_ASSERT(*state); 519 520 (*state)->src_node->conn++; 521 (*state)->src.tcp_est = 1; 522 pf_add_threshold(&(*state)->src_node->conn_rate); 523 524 if ((*state)->rule.ptr->max_src_conn && 525 (*state)->rule.ptr->max_src_conn < 526 (*state)->src_node->conn) { 527 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 528 bad++; 529 } 530 531 if ((*state)->rule.ptr->max_src_conn_rate.limit && 532 pf_check_threshold(&(*state)->src_node->conn_rate)) { 533 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 534 bad++; 535 } 536 537 if (!bad) 538 return (0); 539 540 /* Kill this state. */ 541 (*state)->timeout = PFTM_PURGE; 542 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 543 544 if ((*state)->rule.ptr->overload_tbl == NULL) 545 return (1); 546 547 /* Schedule overloading and flushing task. */ 548 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 549 if (pfoe == NULL) 550 return (1); /* too bad :( */ 551 552 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 553 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 554 pfoe->rule = (*state)->rule.ptr; 555 pfoe->dir = (*state)->direction; 556 PF_OVERLOADQ_LOCK(); 557 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 558 PF_OVERLOADQ_UNLOCK(); 559 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 560 561 return (1); 562 } 563 564 static void 565 pf_overload_task(void *v, int pending) 566 { 567 struct pf_overload_head queue; 568 struct pfr_addr p; 569 struct pf_overload_entry *pfoe, *pfoe1; 570 uint32_t killed = 0; 571 572 CURVNET_SET((struct vnet *)v); 573 574 PF_OVERLOADQ_LOCK(); 575 queue = V_pf_overloadqueue; 576 SLIST_INIT(&V_pf_overloadqueue); 577 PF_OVERLOADQ_UNLOCK(); 578 579 bzero(&p, sizeof(p)); 580 SLIST_FOREACH(pfoe, &queue, next) { 581 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 582 if (V_pf_status.debug >= PF_DEBUG_MISC) { 583 printf("%s: blocking address ", __func__); 584 pf_print_host(&pfoe->addr, 0, pfoe->af); 585 printf("\n"); 586 } 587 588 p.pfra_af = pfoe->af; 589 switch (pfoe->af) { 590 #ifdef INET 591 case AF_INET: 592 p.pfra_net = 32; 593 p.pfra_ip4addr = pfoe->addr.v4; 594 break; 595 #endif 596 #ifdef INET6 597 case AF_INET6: 598 p.pfra_net = 128; 599 p.pfra_ip6addr = pfoe->addr.v6; 600 break; 601 #endif 602 } 603 604 PF_RULES_WLOCK(); 605 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 606 PF_RULES_WUNLOCK(); 607 } 608 609 /* 610 * Remove those entries, that don't need flushing. 611 */ 612 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 613 if (pfoe->rule->flush == 0) { 614 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 615 free(pfoe, M_PFTEMP); 616 } else 617 counter_u64_add( 618 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 619 620 /* If nothing to flush, return. */ 621 if (SLIST_EMPTY(&queue)) { 622 CURVNET_RESTORE(); 623 return; 624 } 625 626 for (int i = 0; i <= pf_hashmask; i++) { 627 struct pf_idhash *ih = &V_pf_idhash[i]; 628 struct pf_state_key *sk; 629 struct pf_state *s; 630 631 PF_HASHROW_LOCK(ih); 632 LIST_FOREACH(s, &ih->states, entry) { 633 sk = s->key[PF_SK_WIRE]; 634 SLIST_FOREACH(pfoe, &queue, next) 635 if (sk->af == pfoe->af && 636 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 637 pfoe->rule == s->rule.ptr) && 638 ((pfoe->dir == PF_OUT && 639 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 640 (pfoe->dir == PF_IN && 641 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 642 s->timeout = PFTM_PURGE; 643 s->src.state = s->dst.state = TCPS_CLOSED; 644 killed++; 645 } 646 } 647 PF_HASHROW_UNLOCK(ih); 648 } 649 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 650 free(pfoe, M_PFTEMP); 651 if (V_pf_status.debug >= PF_DEBUG_MISC) 652 printf("%s: %u states killed", __func__, killed); 653 654 CURVNET_RESTORE(); 655 } 656 657 /* 658 * Can return locked on failure, so that we can consistently 659 * allocate and insert a new one. 660 */ 661 struct pf_src_node * 662 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 663 int returnlocked) 664 { 665 struct pf_srchash *sh; 666 struct pf_src_node *n; 667 668 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 669 670 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 671 PF_HASHROW_LOCK(sh); 672 LIST_FOREACH(n, &sh->nodes, entry) 673 if (n->rule.ptr == rule && n->af == af && 674 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 675 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 676 break; 677 if (n != NULL) { 678 n->states++; 679 PF_HASHROW_UNLOCK(sh); 680 } else if (returnlocked == 0) 681 PF_HASHROW_UNLOCK(sh); 682 683 return (n); 684 } 685 686 static int 687 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 688 struct pf_addr *src, sa_family_t af) 689 { 690 691 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 692 rule->rpool.opts & PF_POOL_STICKYADDR), 693 ("%s for non-tracking rule %p", __func__, rule)); 694 695 if (*sn == NULL) 696 *sn = pf_find_src_node(src, rule, af, 1); 697 698 if (*sn == NULL) { 699 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 700 701 PF_HASHROW_ASSERT(sh); 702 703 if (!rule->max_src_nodes || 704 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 705 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 706 else 707 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 708 1); 709 if ((*sn) == NULL) { 710 PF_HASHROW_UNLOCK(sh); 711 return (-1); 712 } 713 714 pf_init_threshold(&(*sn)->conn_rate, 715 rule->max_src_conn_rate.limit, 716 rule->max_src_conn_rate.seconds); 717 718 (*sn)->af = af; 719 (*sn)->rule.ptr = rule; 720 PF_ACPY(&(*sn)->addr, src, af); 721 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 722 (*sn)->creation = time_uptime; 723 (*sn)->ruletype = rule->action; 724 (*sn)->states = 1; 725 if ((*sn)->rule.ptr != NULL) 726 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 727 PF_HASHROW_UNLOCK(sh); 728 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 729 } else { 730 if (rule->max_src_states && 731 (*sn)->states >= rule->max_src_states) { 732 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 733 1); 734 return (-1); 735 } 736 } 737 return (0); 738 } 739 740 void 741 pf_unlink_src_node(struct pf_src_node *src) 742 { 743 744 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 745 LIST_REMOVE(src, entry); 746 if (src->rule.ptr) 747 counter_u64_add(src->rule.ptr->src_nodes, -1); 748 } 749 750 u_int 751 pf_free_src_nodes(struct pf_src_node_list *head) 752 { 753 struct pf_src_node *sn, *tmp; 754 u_int count = 0; 755 756 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 757 uma_zfree(V_pf_sources_z, sn); 758 count++; 759 } 760 761 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 762 763 return (count); 764 } 765 766 void 767 pf_mtag_initialize() 768 { 769 770 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 771 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 772 UMA_ALIGN_PTR, 0); 773 } 774 775 /* Per-vnet data storage structures initialization. */ 776 void 777 pf_initialize() 778 { 779 struct pf_keyhash *kh; 780 struct pf_idhash *ih; 781 struct pf_srchash *sh; 782 u_int i; 783 784 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 785 pf_hashsize = PF_HASHSIZ; 786 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 787 pf_srchashsize = PF_HASHSIZ / 4; 788 789 V_pf_hashseed = arc4random(); 790 791 /* States and state keys storage. */ 792 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 793 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 794 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 795 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 796 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 797 798 V_pf_state_key_z = uma_zcreate("pf state keys", 799 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 800 UMA_ALIGN_PTR, 0); 801 V_pf_keyhash = malloc(pf_hashsize * sizeof(struct pf_keyhash), 802 M_PFHASH, M_WAITOK | M_ZERO); 803 V_pf_idhash = malloc(pf_hashsize * sizeof(struct pf_idhash), 804 M_PFHASH, M_WAITOK | M_ZERO); 805 pf_hashmask = pf_hashsize - 1; 806 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 807 i++, kh++, ih++) { 808 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 809 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 810 } 811 812 /* Source nodes. */ 813 V_pf_sources_z = uma_zcreate("pf source nodes", 814 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 815 0); 816 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 817 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 818 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 819 V_pf_srchash = malloc(pf_srchashsize * sizeof(struct pf_srchash), 820 M_PFHASH, M_WAITOK|M_ZERO); 821 pf_srchashmask = pf_srchashsize - 1; 822 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 823 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 824 825 /* ALTQ */ 826 TAILQ_INIT(&V_pf_altqs[0]); 827 TAILQ_INIT(&V_pf_altqs[1]); 828 TAILQ_INIT(&V_pf_pabuf); 829 V_pf_altqs_active = &V_pf_altqs[0]; 830 V_pf_altqs_inactive = &V_pf_altqs[1]; 831 832 /* Send & overload+flush queues. */ 833 STAILQ_INIT(&V_pf_sendqueue); 834 SLIST_INIT(&V_pf_overloadqueue); 835 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 836 837 /* Unlinked, but may be referenced rules. */ 838 TAILQ_INIT(&V_pf_unlinked_rules); 839 } 840 841 void 842 pf_mtag_cleanup() 843 { 844 845 uma_zdestroy(pf_mtag_z); 846 } 847 848 void 849 pf_cleanup() 850 { 851 struct pf_keyhash *kh; 852 struct pf_idhash *ih; 853 struct pf_srchash *sh; 854 struct pf_send_entry *pfse, *next; 855 u_int i; 856 857 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 858 i++, kh++, ih++) { 859 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 860 __func__)); 861 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 862 __func__)); 863 mtx_destroy(&kh->lock); 864 mtx_destroy(&ih->lock); 865 } 866 free(V_pf_keyhash, M_PFHASH); 867 free(V_pf_idhash, M_PFHASH); 868 869 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 870 KASSERT(LIST_EMPTY(&sh->nodes), 871 ("%s: source node hash not empty", __func__)); 872 mtx_destroy(&sh->lock); 873 } 874 free(V_pf_srchash, M_PFHASH); 875 876 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 877 m_freem(pfse->pfse_m); 878 free(pfse, M_PFTEMP); 879 } 880 881 uma_zdestroy(V_pf_sources_z); 882 uma_zdestroy(V_pf_state_z); 883 uma_zdestroy(V_pf_state_key_z); 884 } 885 886 static int 887 pf_mtag_uminit(void *mem, int size, int how) 888 { 889 struct m_tag *t; 890 891 t = (struct m_tag *)mem; 892 t->m_tag_cookie = MTAG_ABI_COMPAT; 893 t->m_tag_id = PACKET_TAG_PF; 894 t->m_tag_len = sizeof(struct pf_mtag); 895 t->m_tag_free = pf_mtag_free; 896 897 return (0); 898 } 899 900 static void 901 pf_mtag_free(struct m_tag *t) 902 { 903 904 uma_zfree(pf_mtag_z, t); 905 } 906 907 struct pf_mtag * 908 pf_get_mtag(struct mbuf *m) 909 { 910 struct m_tag *mtag; 911 912 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 913 return ((struct pf_mtag *)(mtag + 1)); 914 915 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 916 if (mtag == NULL) 917 return (NULL); 918 bzero(mtag + 1, sizeof(struct pf_mtag)); 919 m_tag_prepend(m, mtag); 920 921 return ((struct pf_mtag *)(mtag + 1)); 922 } 923 924 static int 925 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 926 struct pf_state *s) 927 { 928 struct pf_keyhash *khs, *khw, *kh; 929 struct pf_state_key *sk, *cur; 930 struct pf_state *si, *olds = NULL; 931 int idx; 932 933 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 934 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 935 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 936 937 /* 938 * We need to lock hash slots of both keys. To avoid deadlock 939 * we always lock the slot with lower address first. Unlock order 940 * isn't important. 941 * 942 * We also need to lock ID hash slot before dropping key 943 * locks. On success we return with ID hash slot locked. 944 */ 945 946 if (skw == sks) { 947 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 948 PF_HASHROW_LOCK(khs); 949 } else { 950 khs = &V_pf_keyhash[pf_hashkey(sks)]; 951 khw = &V_pf_keyhash[pf_hashkey(skw)]; 952 if (khs == khw) { 953 PF_HASHROW_LOCK(khs); 954 } else if (khs < khw) { 955 PF_HASHROW_LOCK(khs); 956 PF_HASHROW_LOCK(khw); 957 } else { 958 PF_HASHROW_LOCK(khw); 959 PF_HASHROW_LOCK(khs); 960 } 961 } 962 963 #define KEYS_UNLOCK() do { \ 964 if (khs != khw) { \ 965 PF_HASHROW_UNLOCK(khs); \ 966 PF_HASHROW_UNLOCK(khw); \ 967 } else \ 968 PF_HASHROW_UNLOCK(khs); \ 969 } while (0) 970 971 /* 972 * First run: start with wire key. 973 */ 974 sk = skw; 975 kh = khw; 976 idx = PF_SK_WIRE; 977 978 keyattach: 979 LIST_FOREACH(cur, &kh->keys, entry) 980 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 981 break; 982 983 if (cur != NULL) { 984 /* Key exists. Check for same kif, if none, add to key. */ 985 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 986 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 987 988 PF_HASHROW_LOCK(ih); 989 if (si->kif == s->kif && 990 si->direction == s->direction) { 991 if (sk->proto == IPPROTO_TCP && 992 si->src.state >= TCPS_FIN_WAIT_2 && 993 si->dst.state >= TCPS_FIN_WAIT_2) { 994 /* 995 * New state matches an old >FIN_WAIT_2 996 * state. We can't drop key hash locks, 997 * thus we can't unlink it properly. 998 * 999 * As a workaround we drop it into 1000 * TCPS_CLOSED state, schedule purge 1001 * ASAP and push it into the very end 1002 * of the slot TAILQ, so that it won't 1003 * conflict with our new state. 1004 */ 1005 si->src.state = si->dst.state = 1006 TCPS_CLOSED; 1007 si->timeout = PFTM_PURGE; 1008 olds = si; 1009 } else { 1010 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1011 printf("pf: %s key attach " 1012 "failed on %s: ", 1013 (idx == PF_SK_WIRE) ? 1014 "wire" : "stack", 1015 s->kif->pfik_name); 1016 pf_print_state_parts(s, 1017 (idx == PF_SK_WIRE) ? 1018 sk : NULL, 1019 (idx == PF_SK_STACK) ? 1020 sk : NULL); 1021 printf(", existing: "); 1022 pf_print_state_parts(si, 1023 (idx == PF_SK_WIRE) ? 1024 sk : NULL, 1025 (idx == PF_SK_STACK) ? 1026 sk : NULL); 1027 printf("\n"); 1028 } 1029 PF_HASHROW_UNLOCK(ih); 1030 KEYS_UNLOCK(); 1031 uma_zfree(V_pf_state_key_z, sk); 1032 if (idx == PF_SK_STACK) 1033 pf_detach_state(s); 1034 return (EEXIST); /* collision! */ 1035 } 1036 } 1037 PF_HASHROW_UNLOCK(ih); 1038 } 1039 uma_zfree(V_pf_state_key_z, sk); 1040 s->key[idx] = cur; 1041 } else { 1042 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1043 s->key[idx] = sk; 1044 } 1045 1046 stateattach: 1047 /* List is sorted, if-bound states before floating. */ 1048 if (s->kif == V_pfi_all) 1049 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1050 else 1051 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1052 1053 if (olds) { 1054 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1055 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1056 key_list[idx]); 1057 olds = NULL; 1058 } 1059 1060 /* 1061 * Attach done. See how should we (or should not?) 1062 * attach a second key. 1063 */ 1064 if (sks == skw) { 1065 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1066 idx = PF_SK_STACK; 1067 sks = NULL; 1068 goto stateattach; 1069 } else if (sks != NULL) { 1070 /* 1071 * Continue attaching with stack key. 1072 */ 1073 sk = sks; 1074 kh = khs; 1075 idx = PF_SK_STACK; 1076 sks = NULL; 1077 goto keyattach; 1078 } 1079 1080 PF_STATE_LOCK(s); 1081 KEYS_UNLOCK(); 1082 1083 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1084 ("%s failure", __func__)); 1085 1086 return (0); 1087 #undef KEYS_UNLOCK 1088 } 1089 1090 static void 1091 pf_detach_state(struct pf_state *s) 1092 { 1093 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1094 struct pf_keyhash *kh; 1095 1096 if (sks != NULL) { 1097 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1098 PF_HASHROW_LOCK(kh); 1099 if (s->key[PF_SK_STACK] != NULL) 1100 pf_state_key_detach(s, PF_SK_STACK); 1101 /* 1102 * If both point to same key, then we are done. 1103 */ 1104 if (sks == s->key[PF_SK_WIRE]) { 1105 pf_state_key_detach(s, PF_SK_WIRE); 1106 PF_HASHROW_UNLOCK(kh); 1107 return; 1108 } 1109 PF_HASHROW_UNLOCK(kh); 1110 } 1111 1112 if (s->key[PF_SK_WIRE] != NULL) { 1113 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1114 PF_HASHROW_LOCK(kh); 1115 if (s->key[PF_SK_WIRE] != NULL) 1116 pf_state_key_detach(s, PF_SK_WIRE); 1117 PF_HASHROW_UNLOCK(kh); 1118 } 1119 } 1120 1121 static void 1122 pf_state_key_detach(struct pf_state *s, int idx) 1123 { 1124 struct pf_state_key *sk = s->key[idx]; 1125 #ifdef INVARIANTS 1126 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1127 1128 PF_HASHROW_ASSERT(kh); 1129 #endif 1130 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1131 s->key[idx] = NULL; 1132 1133 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1134 LIST_REMOVE(sk, entry); 1135 uma_zfree(V_pf_state_key_z, sk); 1136 } 1137 } 1138 1139 static int 1140 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1141 { 1142 struct pf_state_key *sk = mem; 1143 1144 bzero(sk, sizeof(struct pf_state_key_cmp)); 1145 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1146 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1147 1148 return (0); 1149 } 1150 1151 struct pf_state_key * 1152 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1153 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1154 { 1155 struct pf_state_key *sk; 1156 1157 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1158 if (sk == NULL) 1159 return (NULL); 1160 1161 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1162 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1163 sk->port[pd->sidx] = sport; 1164 sk->port[pd->didx] = dport; 1165 sk->proto = pd->proto; 1166 sk->af = pd->af; 1167 1168 return (sk); 1169 } 1170 1171 struct pf_state_key * 1172 pf_state_key_clone(struct pf_state_key *orig) 1173 { 1174 struct pf_state_key *sk; 1175 1176 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1177 if (sk == NULL) 1178 return (NULL); 1179 1180 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1181 1182 return (sk); 1183 } 1184 1185 int 1186 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1187 struct pf_state_key *sks, struct pf_state *s) 1188 { 1189 struct pf_idhash *ih; 1190 struct pf_state *cur; 1191 int error; 1192 1193 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1194 ("%s: sks not pristine", __func__)); 1195 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1196 ("%s: skw not pristine", __func__)); 1197 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1198 1199 s->kif = kif; 1200 1201 if (s->id == 0 && s->creatorid == 0) { 1202 /* XXX: should be atomic, but probability of collision low */ 1203 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1204 V_pf_stateid[curcpu] = 1; 1205 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1206 s->id = htobe64(s->id); 1207 s->creatorid = V_pf_status.hostid; 1208 } 1209 1210 /* Returns with ID locked on success. */ 1211 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1212 return (error); 1213 1214 ih = &V_pf_idhash[PF_IDHASH(s)]; 1215 PF_HASHROW_ASSERT(ih); 1216 LIST_FOREACH(cur, &ih->states, entry) 1217 if (cur->id == s->id && cur->creatorid == s->creatorid) 1218 break; 1219 1220 if (cur != NULL) { 1221 PF_HASHROW_UNLOCK(ih); 1222 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1223 printf("pf: state ID collision: " 1224 "id: %016llx creatorid: %08x\n", 1225 (unsigned long long)be64toh(s->id), 1226 ntohl(s->creatorid)); 1227 } 1228 pf_detach_state(s); 1229 return (EEXIST); 1230 } 1231 LIST_INSERT_HEAD(&ih->states, s, entry); 1232 /* One for keys, one for ID hash. */ 1233 refcount_init(&s->refs, 2); 1234 1235 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1236 if (pfsync_insert_state_ptr != NULL) 1237 pfsync_insert_state_ptr(s); 1238 1239 /* Returns locked. */ 1240 return (0); 1241 } 1242 1243 /* 1244 * Find state by ID: returns with locked row on success. 1245 */ 1246 struct pf_state * 1247 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1248 { 1249 struct pf_idhash *ih; 1250 struct pf_state *s; 1251 1252 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1253 1254 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1255 1256 PF_HASHROW_LOCK(ih); 1257 LIST_FOREACH(s, &ih->states, entry) 1258 if (s->id == id && s->creatorid == creatorid) 1259 break; 1260 1261 if (s == NULL) 1262 PF_HASHROW_UNLOCK(ih); 1263 1264 return (s); 1265 } 1266 1267 /* 1268 * Find state by key. 1269 * Returns with ID hash slot locked on success. 1270 */ 1271 static struct pf_state * 1272 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1273 { 1274 struct pf_keyhash *kh; 1275 struct pf_state_key *sk; 1276 struct pf_state *s; 1277 int idx; 1278 1279 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1280 1281 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1282 1283 PF_HASHROW_LOCK(kh); 1284 LIST_FOREACH(sk, &kh->keys, entry) 1285 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1286 break; 1287 if (sk == NULL) { 1288 PF_HASHROW_UNLOCK(kh); 1289 return (NULL); 1290 } 1291 1292 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1293 1294 /* List is sorted, if-bound states before floating ones. */ 1295 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1296 if (s->kif == V_pfi_all || s->kif == kif) { 1297 PF_STATE_LOCK(s); 1298 PF_HASHROW_UNLOCK(kh); 1299 if (s->timeout >= PFTM_MAX) { 1300 /* 1301 * State is either being processed by 1302 * pf_unlink_state() in an other thread, or 1303 * is scheduled for immediate expiry. 1304 */ 1305 PF_STATE_UNLOCK(s); 1306 return (NULL); 1307 } 1308 return (s); 1309 } 1310 PF_HASHROW_UNLOCK(kh); 1311 1312 return (NULL); 1313 } 1314 1315 struct pf_state * 1316 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1317 { 1318 struct pf_keyhash *kh; 1319 struct pf_state_key *sk; 1320 struct pf_state *s, *ret = NULL; 1321 int idx, inout = 0; 1322 1323 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1324 1325 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1326 1327 PF_HASHROW_LOCK(kh); 1328 LIST_FOREACH(sk, &kh->keys, entry) 1329 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1330 break; 1331 if (sk == NULL) { 1332 PF_HASHROW_UNLOCK(kh); 1333 return (NULL); 1334 } 1335 switch (dir) { 1336 case PF_IN: 1337 idx = PF_SK_WIRE; 1338 break; 1339 case PF_OUT: 1340 idx = PF_SK_STACK; 1341 break; 1342 case PF_INOUT: 1343 idx = PF_SK_WIRE; 1344 inout = 1; 1345 break; 1346 default: 1347 panic("%s: dir %u", __func__, dir); 1348 } 1349 second_run: 1350 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1351 if (more == NULL) { 1352 PF_HASHROW_UNLOCK(kh); 1353 return (s); 1354 } 1355 1356 if (ret) 1357 (*more)++; 1358 else 1359 ret = s; 1360 } 1361 if (inout == 1) { 1362 inout = 0; 1363 idx = PF_SK_STACK; 1364 goto second_run; 1365 } 1366 PF_HASHROW_UNLOCK(kh); 1367 1368 return (ret); 1369 } 1370 1371 /* END state table stuff */ 1372 1373 static void 1374 pf_send(struct pf_send_entry *pfse) 1375 { 1376 1377 PF_SENDQ_LOCK(); 1378 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1379 PF_SENDQ_UNLOCK(); 1380 swi_sched(V_pf_swi_cookie, 0); 1381 } 1382 1383 void 1384 pf_intr(void *v) 1385 { 1386 struct pf_send_head queue; 1387 struct pf_send_entry *pfse, *next; 1388 1389 CURVNET_SET((struct vnet *)v); 1390 1391 PF_SENDQ_LOCK(); 1392 queue = V_pf_sendqueue; 1393 STAILQ_INIT(&V_pf_sendqueue); 1394 PF_SENDQ_UNLOCK(); 1395 1396 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1397 switch (pfse->pfse_type) { 1398 #ifdef INET 1399 case PFSE_IP: 1400 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1401 break; 1402 case PFSE_ICMP: 1403 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1404 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1405 break; 1406 #endif /* INET */ 1407 #ifdef INET6 1408 case PFSE_IP6: 1409 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1410 NULL); 1411 break; 1412 case PFSE_ICMP6: 1413 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1414 pfse->icmpopts.code, pfse->icmpopts.mtu); 1415 break; 1416 #endif /* INET6 */ 1417 default: 1418 panic("%s: unknown type", __func__); 1419 } 1420 free(pfse, M_PFTEMP); 1421 } 1422 CURVNET_RESTORE(); 1423 } 1424 1425 void 1426 pf_purge_thread(void *unused __unused) 1427 { 1428 VNET_ITERATOR_DECL(vnet_iter); 1429 u_int idx = 0; 1430 1431 for (;;) { 1432 tsleep(pf_purge_thread, 0, "pftm", hz / 10); 1433 1434 VNET_LIST_RLOCK(); 1435 VNET_FOREACH(vnet_iter) { 1436 CURVNET_SET(vnet_iter); 1437 1438 if (pf_end_threads) { 1439 pf_end_threads++; 1440 wakeup(pf_purge_thread); 1441 VNET_LIST_RUNLOCK(); 1442 kproc_exit(0); 1443 } 1444 1445 /* Wait until V_pf_default_rule is initialized. */ 1446 if (V_pf_vnet_active == 0) { 1447 CURVNET_RESTORE(); 1448 continue; 1449 } 1450 1451 /* 1452 * Process 1/interval fraction of the state 1453 * table every run. 1454 */ 1455 idx = pf_purge_expired_states(idx, pf_hashmask / 1456 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1457 1458 /* 1459 * Purge other expired types every 1460 * PFTM_INTERVAL seconds. 1461 */ 1462 if (idx == 0) { 1463 /* 1464 * Order is important: 1465 * - states and src nodes reference rules 1466 * - states and rules reference kifs 1467 */ 1468 pf_purge_expired_fragments(); 1469 pf_purge_expired_src_nodes(); 1470 pf_purge_unlinked_rules(); 1471 pfi_kif_purge(); 1472 } 1473 CURVNET_RESTORE(); 1474 } 1475 VNET_LIST_RUNLOCK(); 1476 } 1477 /* not reached */ 1478 } 1479 1480 void 1481 pf_unload_vnet_purge(void) 1482 { 1483 1484 /* 1485 * To cleanse up all kifs and rules we need 1486 * two runs: first one clears reference flags, 1487 * then pf_purge_expired_states() doesn't 1488 * raise them, and then second run frees. 1489 */ 1490 pf_purge_unlinked_rules(); 1491 pfi_kif_purge(); 1492 1493 /* 1494 * Now purge everything. 1495 */ 1496 pf_purge_expired_states(0, pf_hashmask); 1497 pf_purge_expired_fragments(); 1498 pf_purge_expired_src_nodes(); 1499 1500 /* 1501 * Now all kifs & rules should be unreferenced, 1502 * thus should be successfully freed. 1503 */ 1504 pf_purge_unlinked_rules(); 1505 pfi_kif_purge(); 1506 } 1507 1508 1509 u_int32_t 1510 pf_state_expires(const struct pf_state *state) 1511 { 1512 u_int32_t timeout; 1513 u_int32_t start; 1514 u_int32_t end; 1515 u_int32_t states; 1516 1517 /* handle all PFTM_* > PFTM_MAX here */ 1518 if (state->timeout == PFTM_PURGE) 1519 return (time_uptime); 1520 KASSERT(state->timeout != PFTM_UNLINKED, 1521 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1522 KASSERT((state->timeout < PFTM_MAX), 1523 ("pf_state_expires: timeout > PFTM_MAX")); 1524 timeout = state->rule.ptr->timeout[state->timeout]; 1525 if (!timeout) 1526 timeout = V_pf_default_rule.timeout[state->timeout]; 1527 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1528 if (start) { 1529 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1530 states = counter_u64_fetch(state->rule.ptr->states_cur); 1531 } else { 1532 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1533 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1534 states = V_pf_status.states; 1535 } 1536 if (end && states > start && start < end) { 1537 if (states < end) 1538 return (state->expire + timeout * (end - states) / 1539 (end - start)); 1540 else 1541 return (time_uptime); 1542 } 1543 return (state->expire + timeout); 1544 } 1545 1546 void 1547 pf_purge_expired_src_nodes() 1548 { 1549 struct pf_src_node_list freelist; 1550 struct pf_srchash *sh; 1551 struct pf_src_node *cur, *next; 1552 int i; 1553 1554 LIST_INIT(&freelist); 1555 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1556 PF_HASHROW_LOCK(sh); 1557 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1558 if (cur->states == 0 && cur->expire <= time_uptime) { 1559 pf_unlink_src_node(cur); 1560 LIST_INSERT_HEAD(&freelist, cur, entry); 1561 } else if (cur->rule.ptr != NULL) 1562 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1563 PF_HASHROW_UNLOCK(sh); 1564 } 1565 1566 pf_free_src_nodes(&freelist); 1567 1568 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1569 } 1570 1571 static void 1572 pf_src_tree_remove_state(struct pf_state *s) 1573 { 1574 struct pf_src_node *sn; 1575 struct pf_srchash *sh; 1576 uint32_t timeout; 1577 1578 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1579 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1580 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1581 1582 if (s->src_node != NULL) { 1583 sn = s->src_node; 1584 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1585 PF_HASHROW_LOCK(sh); 1586 if (s->src.tcp_est) 1587 --sn->conn; 1588 if (--sn->states == 0) 1589 sn->expire = time_uptime + timeout; 1590 PF_HASHROW_UNLOCK(sh); 1591 } 1592 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1593 sn = s->nat_src_node; 1594 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1595 PF_HASHROW_LOCK(sh); 1596 if (--sn->states == 0) 1597 sn->expire = time_uptime + timeout; 1598 PF_HASHROW_UNLOCK(sh); 1599 } 1600 s->src_node = s->nat_src_node = NULL; 1601 } 1602 1603 /* 1604 * Unlink and potentilly free a state. Function may be 1605 * called with ID hash row locked, but always returns 1606 * unlocked, since it needs to go through key hash locking. 1607 */ 1608 int 1609 pf_unlink_state(struct pf_state *s, u_int flags) 1610 { 1611 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1612 1613 if ((flags & PF_ENTER_LOCKED) == 0) 1614 PF_HASHROW_LOCK(ih); 1615 else 1616 PF_HASHROW_ASSERT(ih); 1617 1618 if (s->timeout == PFTM_UNLINKED) { 1619 /* 1620 * State is being processed 1621 * by pf_unlink_state() in 1622 * an other thread. 1623 */ 1624 PF_HASHROW_UNLOCK(ih); 1625 return (0); /* XXXGL: undefined actually */ 1626 } 1627 1628 if (s->src.state == PF_TCPS_PROXY_DST) { 1629 /* XXX wire key the right one? */ 1630 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1631 &s->key[PF_SK_WIRE]->addr[1], 1632 &s->key[PF_SK_WIRE]->addr[0], 1633 s->key[PF_SK_WIRE]->port[1], 1634 s->key[PF_SK_WIRE]->port[0], 1635 s->src.seqhi, s->src.seqlo + 1, 1636 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1637 } 1638 1639 LIST_REMOVE(s, entry); 1640 pf_src_tree_remove_state(s); 1641 1642 if (pfsync_delete_state_ptr != NULL) 1643 pfsync_delete_state_ptr(s); 1644 1645 STATE_DEC_COUNTERS(s); 1646 1647 s->timeout = PFTM_UNLINKED; 1648 1649 PF_HASHROW_UNLOCK(ih); 1650 1651 pf_detach_state(s); 1652 refcount_release(&s->refs); 1653 1654 return (pf_release_state(s)); 1655 } 1656 1657 void 1658 pf_free_state(struct pf_state *cur) 1659 { 1660 1661 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1662 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1663 cur->timeout)); 1664 1665 pf_normalize_tcp_cleanup(cur); 1666 uma_zfree(V_pf_state_z, cur); 1667 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1668 } 1669 1670 /* 1671 * Called only from pf_purge_thread(), thus serialized. 1672 */ 1673 static u_int 1674 pf_purge_expired_states(u_int i, int maxcheck) 1675 { 1676 struct pf_idhash *ih; 1677 struct pf_state *s; 1678 1679 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1680 1681 /* 1682 * Go through hash and unlink states that expire now. 1683 */ 1684 while (maxcheck > 0) { 1685 1686 ih = &V_pf_idhash[i]; 1687 relock: 1688 PF_HASHROW_LOCK(ih); 1689 LIST_FOREACH(s, &ih->states, entry) { 1690 if (pf_state_expires(s) <= time_uptime) { 1691 V_pf_status.states -= 1692 pf_unlink_state(s, PF_ENTER_LOCKED); 1693 goto relock; 1694 } 1695 s->rule.ptr->rule_flag |= PFRULE_REFS; 1696 if (s->nat_rule.ptr != NULL) 1697 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1698 if (s->anchor.ptr != NULL) 1699 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1700 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1701 if (s->rt_kif) 1702 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1703 } 1704 PF_HASHROW_UNLOCK(ih); 1705 1706 /* Return when we hit end of hash. */ 1707 if (++i > pf_hashmask) { 1708 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1709 return (0); 1710 } 1711 1712 maxcheck--; 1713 } 1714 1715 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1716 1717 return (i); 1718 } 1719 1720 static void 1721 pf_purge_unlinked_rules() 1722 { 1723 struct pf_rulequeue tmpq; 1724 struct pf_rule *r, *r1; 1725 1726 /* 1727 * If we have overloading task pending, then we'd 1728 * better skip purging this time. There is a tiny 1729 * probability that overloading task references 1730 * an already unlinked rule. 1731 */ 1732 PF_OVERLOADQ_LOCK(); 1733 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1734 PF_OVERLOADQ_UNLOCK(); 1735 return; 1736 } 1737 PF_OVERLOADQ_UNLOCK(); 1738 1739 /* 1740 * Do naive mark-and-sweep garbage collecting of old rules. 1741 * Reference flag is raised by pf_purge_expired_states() 1742 * and pf_purge_expired_src_nodes(). 1743 * 1744 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1745 * use a temporary queue. 1746 */ 1747 TAILQ_INIT(&tmpq); 1748 PF_UNLNKDRULES_LOCK(); 1749 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1750 if (!(r->rule_flag & PFRULE_REFS)) { 1751 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1752 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1753 } else 1754 r->rule_flag &= ~PFRULE_REFS; 1755 } 1756 PF_UNLNKDRULES_UNLOCK(); 1757 1758 if (!TAILQ_EMPTY(&tmpq)) { 1759 PF_RULES_WLOCK(); 1760 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1761 TAILQ_REMOVE(&tmpq, r, entries); 1762 pf_free_rule(r); 1763 } 1764 PF_RULES_WUNLOCK(); 1765 } 1766 } 1767 1768 void 1769 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1770 { 1771 switch (af) { 1772 #ifdef INET 1773 case AF_INET: { 1774 u_int32_t a = ntohl(addr->addr32[0]); 1775 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1776 (a>>8)&255, a&255); 1777 if (p) { 1778 p = ntohs(p); 1779 printf(":%u", p); 1780 } 1781 break; 1782 } 1783 #endif /* INET */ 1784 #ifdef INET6 1785 case AF_INET6: { 1786 u_int16_t b; 1787 u_int8_t i, curstart, curend, maxstart, maxend; 1788 curstart = curend = maxstart = maxend = 255; 1789 for (i = 0; i < 8; i++) { 1790 if (!addr->addr16[i]) { 1791 if (curstart == 255) 1792 curstart = i; 1793 curend = i; 1794 } else { 1795 if ((curend - curstart) > 1796 (maxend - maxstart)) { 1797 maxstart = curstart; 1798 maxend = curend; 1799 } 1800 curstart = curend = 255; 1801 } 1802 } 1803 if ((curend - curstart) > 1804 (maxend - maxstart)) { 1805 maxstart = curstart; 1806 maxend = curend; 1807 } 1808 for (i = 0; i < 8; i++) { 1809 if (i >= maxstart && i <= maxend) { 1810 if (i == 0) 1811 printf(":"); 1812 if (i == maxend) 1813 printf(":"); 1814 } else { 1815 b = ntohs(addr->addr16[i]); 1816 printf("%x", b); 1817 if (i < 7) 1818 printf(":"); 1819 } 1820 } 1821 if (p) { 1822 p = ntohs(p); 1823 printf("[%u]", p); 1824 } 1825 break; 1826 } 1827 #endif /* INET6 */ 1828 } 1829 } 1830 1831 void 1832 pf_print_state(struct pf_state *s) 1833 { 1834 pf_print_state_parts(s, NULL, NULL); 1835 } 1836 1837 static void 1838 pf_print_state_parts(struct pf_state *s, 1839 struct pf_state_key *skwp, struct pf_state_key *sksp) 1840 { 1841 struct pf_state_key *skw, *sks; 1842 u_int8_t proto, dir; 1843 1844 /* Do our best to fill these, but they're skipped if NULL */ 1845 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1846 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1847 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1848 dir = s ? s->direction : 0; 1849 1850 switch (proto) { 1851 case IPPROTO_IPV4: 1852 printf("IPv4"); 1853 break; 1854 case IPPROTO_IPV6: 1855 printf("IPv6"); 1856 break; 1857 case IPPROTO_TCP: 1858 printf("TCP"); 1859 break; 1860 case IPPROTO_UDP: 1861 printf("UDP"); 1862 break; 1863 case IPPROTO_ICMP: 1864 printf("ICMP"); 1865 break; 1866 case IPPROTO_ICMPV6: 1867 printf("ICMPv6"); 1868 break; 1869 default: 1870 printf("%u", proto); 1871 break; 1872 } 1873 switch (dir) { 1874 case PF_IN: 1875 printf(" in"); 1876 break; 1877 case PF_OUT: 1878 printf(" out"); 1879 break; 1880 } 1881 if (skw) { 1882 printf(" wire: "); 1883 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1884 printf(" "); 1885 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1886 } 1887 if (sks) { 1888 printf(" stack: "); 1889 if (sks != skw) { 1890 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1891 printf(" "); 1892 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1893 } else 1894 printf("-"); 1895 } 1896 if (s) { 1897 if (proto == IPPROTO_TCP) { 1898 printf(" [lo=%u high=%u win=%u modulator=%u", 1899 s->src.seqlo, s->src.seqhi, 1900 s->src.max_win, s->src.seqdiff); 1901 if (s->src.wscale && s->dst.wscale) 1902 printf(" wscale=%u", 1903 s->src.wscale & PF_WSCALE_MASK); 1904 printf("]"); 1905 printf(" [lo=%u high=%u win=%u modulator=%u", 1906 s->dst.seqlo, s->dst.seqhi, 1907 s->dst.max_win, s->dst.seqdiff); 1908 if (s->src.wscale && s->dst.wscale) 1909 printf(" wscale=%u", 1910 s->dst.wscale & PF_WSCALE_MASK); 1911 printf("]"); 1912 } 1913 printf(" %u:%u", s->src.state, s->dst.state); 1914 } 1915 } 1916 1917 void 1918 pf_print_flags(u_int8_t f) 1919 { 1920 if (f) 1921 printf(" "); 1922 if (f & TH_FIN) 1923 printf("F"); 1924 if (f & TH_SYN) 1925 printf("S"); 1926 if (f & TH_RST) 1927 printf("R"); 1928 if (f & TH_PUSH) 1929 printf("P"); 1930 if (f & TH_ACK) 1931 printf("A"); 1932 if (f & TH_URG) 1933 printf("U"); 1934 if (f & TH_ECE) 1935 printf("E"); 1936 if (f & TH_CWR) 1937 printf("W"); 1938 } 1939 1940 #define PF_SET_SKIP_STEPS(i) \ 1941 do { \ 1942 while (head[i] != cur) { \ 1943 head[i]->skip[i].ptr = cur; \ 1944 head[i] = TAILQ_NEXT(head[i], entries); \ 1945 } \ 1946 } while (0) 1947 1948 void 1949 pf_calc_skip_steps(struct pf_rulequeue *rules) 1950 { 1951 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1952 int i; 1953 1954 cur = TAILQ_FIRST(rules); 1955 prev = cur; 1956 for (i = 0; i < PF_SKIP_COUNT; ++i) 1957 head[i] = cur; 1958 while (cur != NULL) { 1959 1960 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1961 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1962 if (cur->direction != prev->direction) 1963 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1964 if (cur->af != prev->af) 1965 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1966 if (cur->proto != prev->proto) 1967 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1968 if (cur->src.neg != prev->src.neg || 1969 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1970 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1971 if (cur->src.port[0] != prev->src.port[0] || 1972 cur->src.port[1] != prev->src.port[1] || 1973 cur->src.port_op != prev->src.port_op) 1974 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1975 if (cur->dst.neg != prev->dst.neg || 1976 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1977 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1978 if (cur->dst.port[0] != prev->dst.port[0] || 1979 cur->dst.port[1] != prev->dst.port[1] || 1980 cur->dst.port_op != prev->dst.port_op) 1981 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1982 1983 prev = cur; 1984 cur = TAILQ_NEXT(cur, entries); 1985 } 1986 for (i = 0; i < PF_SKIP_COUNT; ++i) 1987 PF_SET_SKIP_STEPS(i); 1988 } 1989 1990 static int 1991 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1992 { 1993 if (aw1->type != aw2->type) 1994 return (1); 1995 switch (aw1->type) { 1996 case PF_ADDR_ADDRMASK: 1997 case PF_ADDR_RANGE: 1998 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 1999 return (1); 2000 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2001 return (1); 2002 return (0); 2003 case PF_ADDR_DYNIFTL: 2004 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2005 case PF_ADDR_NOROUTE: 2006 case PF_ADDR_URPFFAILED: 2007 return (0); 2008 case PF_ADDR_TABLE: 2009 return (aw1->p.tbl != aw2->p.tbl); 2010 default: 2011 printf("invalid address type: %d\n", aw1->type); 2012 return (1); 2013 } 2014 } 2015 2016 /** 2017 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2018 * header isn't always a full checksum. In some cases (i.e. output) it's a 2019 * pseudo-header checksum, which is a partial checksum over src/dst IP 2020 * addresses, protocol number and length. 2021 * 2022 * That means we have the following cases: 2023 * * Input or forwarding: we don't have TSO, the checksum fields are full 2024 * checksums, we need to update the checksum whenever we change anything. 2025 * * Output (i.e. the checksum is a pseudo-header checksum): 2026 * x The field being updated is src/dst address or affects the length of 2027 * the packet. We need to update the pseudo-header checksum (note that this 2028 * checksum is not ones' complement). 2029 * x Some other field is being modified (e.g. src/dst port numbers): We 2030 * don't have to update anything. 2031 **/ 2032 u_int16_t 2033 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2034 { 2035 u_int32_t l; 2036 2037 if (udp && !cksum) 2038 return (0x0000); 2039 l = cksum + old - new; 2040 l = (l >> 16) + (l & 65535); 2041 l = l & 65535; 2042 if (udp && !l) 2043 return (0xFFFF); 2044 return (l); 2045 } 2046 2047 u_int16_t 2048 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2049 u_int16_t new, u_int8_t udp) 2050 { 2051 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2052 return (cksum); 2053 2054 return (pf_cksum_fixup(cksum, old, new, udp)); 2055 } 2056 2057 static void 2058 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2059 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2060 sa_family_t af) 2061 { 2062 struct pf_addr ao; 2063 u_int16_t po = *p; 2064 2065 PF_ACPY(&ao, a, af); 2066 PF_ACPY(a, an, af); 2067 2068 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2069 *pc = ~*pc; 2070 2071 *p = pn; 2072 2073 switch (af) { 2074 #ifdef INET 2075 case AF_INET: 2076 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2077 ao.addr16[0], an->addr16[0], 0), 2078 ao.addr16[1], an->addr16[1], 0); 2079 *p = pn; 2080 2081 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2082 ao.addr16[0], an->addr16[0], u), 2083 ao.addr16[1], an->addr16[1], u); 2084 2085 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2086 break; 2087 #endif /* INET */ 2088 #ifdef INET6 2089 case AF_INET6: 2090 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2091 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2092 pf_cksum_fixup(pf_cksum_fixup(*pc, 2093 ao.addr16[0], an->addr16[0], u), 2094 ao.addr16[1], an->addr16[1], u), 2095 ao.addr16[2], an->addr16[2], u), 2096 ao.addr16[3], an->addr16[3], u), 2097 ao.addr16[4], an->addr16[4], u), 2098 ao.addr16[5], an->addr16[5], u), 2099 ao.addr16[6], an->addr16[6], u), 2100 ao.addr16[7], an->addr16[7], u); 2101 2102 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2103 break; 2104 #endif /* INET6 */ 2105 } 2106 2107 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2108 CSUM_DELAY_DATA_IPV6)) { 2109 *pc = ~*pc; 2110 if (! *pc) 2111 *pc = 0xffff; 2112 } 2113 } 2114 2115 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2116 void 2117 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2118 { 2119 u_int32_t ao; 2120 2121 memcpy(&ao, a, sizeof(ao)); 2122 memcpy(a, &an, sizeof(u_int32_t)); 2123 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2124 ao % 65536, an % 65536, u); 2125 } 2126 2127 void 2128 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2129 { 2130 u_int32_t ao; 2131 2132 memcpy(&ao, a, sizeof(ao)); 2133 memcpy(a, &an, sizeof(u_int32_t)); 2134 2135 *c = pf_proto_cksum_fixup(m, 2136 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2137 ao % 65536, an % 65536, udp); 2138 } 2139 2140 #ifdef INET6 2141 static void 2142 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2143 { 2144 struct pf_addr ao; 2145 2146 PF_ACPY(&ao, a, AF_INET6); 2147 PF_ACPY(a, an, AF_INET6); 2148 2149 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2150 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2151 pf_cksum_fixup(pf_cksum_fixup(*c, 2152 ao.addr16[0], an->addr16[0], u), 2153 ao.addr16[1], an->addr16[1], u), 2154 ao.addr16[2], an->addr16[2], u), 2155 ao.addr16[3], an->addr16[3], u), 2156 ao.addr16[4], an->addr16[4], u), 2157 ao.addr16[5], an->addr16[5], u), 2158 ao.addr16[6], an->addr16[6], u), 2159 ao.addr16[7], an->addr16[7], u); 2160 } 2161 #endif /* INET6 */ 2162 2163 static void 2164 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2165 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2166 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2167 { 2168 struct pf_addr oia, ooa; 2169 2170 PF_ACPY(&oia, ia, af); 2171 if (oa) 2172 PF_ACPY(&ooa, oa, af); 2173 2174 /* Change inner protocol port, fix inner protocol checksum. */ 2175 if (ip != NULL) { 2176 u_int16_t oip = *ip; 2177 u_int32_t opc; 2178 2179 if (pc != NULL) 2180 opc = *pc; 2181 *ip = np; 2182 if (pc != NULL) 2183 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2184 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2185 if (pc != NULL) 2186 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2187 } 2188 /* Change inner ip address, fix inner ip and icmp checksums. */ 2189 PF_ACPY(ia, na, af); 2190 switch (af) { 2191 #ifdef INET 2192 case AF_INET: { 2193 u_int32_t oh2c = *h2c; 2194 2195 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2196 oia.addr16[0], ia->addr16[0], 0), 2197 oia.addr16[1], ia->addr16[1], 0); 2198 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2199 oia.addr16[0], ia->addr16[0], 0), 2200 oia.addr16[1], ia->addr16[1], 0); 2201 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2202 break; 2203 } 2204 #endif /* INET */ 2205 #ifdef INET6 2206 case AF_INET6: 2207 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2208 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2209 pf_cksum_fixup(pf_cksum_fixup(*ic, 2210 oia.addr16[0], ia->addr16[0], u), 2211 oia.addr16[1], ia->addr16[1], u), 2212 oia.addr16[2], ia->addr16[2], u), 2213 oia.addr16[3], ia->addr16[3], u), 2214 oia.addr16[4], ia->addr16[4], u), 2215 oia.addr16[5], ia->addr16[5], u), 2216 oia.addr16[6], ia->addr16[6], u), 2217 oia.addr16[7], ia->addr16[7], u); 2218 break; 2219 #endif /* INET6 */ 2220 } 2221 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2222 if (oa) { 2223 PF_ACPY(oa, na, af); 2224 switch (af) { 2225 #ifdef INET 2226 case AF_INET: 2227 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2228 ooa.addr16[0], oa->addr16[0], 0), 2229 ooa.addr16[1], oa->addr16[1], 0); 2230 break; 2231 #endif /* INET */ 2232 #ifdef INET6 2233 case AF_INET6: 2234 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2235 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2236 pf_cksum_fixup(pf_cksum_fixup(*ic, 2237 ooa.addr16[0], oa->addr16[0], u), 2238 ooa.addr16[1], oa->addr16[1], u), 2239 ooa.addr16[2], oa->addr16[2], u), 2240 ooa.addr16[3], oa->addr16[3], u), 2241 ooa.addr16[4], oa->addr16[4], u), 2242 ooa.addr16[5], oa->addr16[5], u), 2243 ooa.addr16[6], oa->addr16[6], u), 2244 ooa.addr16[7], oa->addr16[7], u); 2245 break; 2246 #endif /* INET6 */ 2247 } 2248 } 2249 } 2250 2251 2252 /* 2253 * Need to modulate the sequence numbers in the TCP SACK option 2254 * (credits to Krzysztof Pfaff for report and patch) 2255 */ 2256 static int 2257 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2258 struct tcphdr *th, struct pf_state_peer *dst) 2259 { 2260 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2261 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2262 int copyback = 0, i, olen; 2263 struct sackblk sack; 2264 2265 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2266 if (hlen < TCPOLEN_SACKLEN || 2267 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2268 return 0; 2269 2270 while (hlen >= TCPOLEN_SACKLEN) { 2271 olen = opt[1]; 2272 switch (*opt) { 2273 case TCPOPT_EOL: /* FALLTHROUGH */ 2274 case TCPOPT_NOP: 2275 opt++; 2276 hlen--; 2277 break; 2278 case TCPOPT_SACK: 2279 if (olen > hlen) 2280 olen = hlen; 2281 if (olen >= TCPOLEN_SACKLEN) { 2282 for (i = 2; i + TCPOLEN_SACK <= olen; 2283 i += TCPOLEN_SACK) { 2284 memcpy(&sack, &opt[i], sizeof(sack)); 2285 pf_change_proto_a(m, &sack.start, &th->th_sum, 2286 htonl(ntohl(sack.start) - dst->seqdiff), 0); 2287 pf_change_proto_a(m, &sack.end, &th->th_sum, 2288 htonl(ntohl(sack.end) - dst->seqdiff), 0); 2289 memcpy(&opt[i], &sack, sizeof(sack)); 2290 } 2291 copyback = 1; 2292 } 2293 /* FALLTHROUGH */ 2294 default: 2295 if (olen < 2) 2296 olen = 2; 2297 hlen -= olen; 2298 opt += olen; 2299 } 2300 } 2301 2302 if (copyback) 2303 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2304 return (copyback); 2305 } 2306 2307 static void 2308 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2309 const struct pf_addr *saddr, const struct pf_addr *daddr, 2310 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2311 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2312 u_int16_t rtag, struct ifnet *ifp) 2313 { 2314 struct pf_send_entry *pfse; 2315 struct mbuf *m; 2316 int len, tlen; 2317 #ifdef INET 2318 struct ip *h = NULL; 2319 #endif /* INET */ 2320 #ifdef INET6 2321 struct ip6_hdr *h6 = NULL; 2322 #endif /* INET6 */ 2323 struct tcphdr *th; 2324 char *opt; 2325 struct pf_mtag *pf_mtag; 2326 2327 len = 0; 2328 th = NULL; 2329 2330 /* maximum segment size tcp option */ 2331 tlen = sizeof(struct tcphdr); 2332 if (mss) 2333 tlen += 4; 2334 2335 switch (af) { 2336 #ifdef INET 2337 case AF_INET: 2338 len = sizeof(struct ip) + tlen; 2339 break; 2340 #endif /* INET */ 2341 #ifdef INET6 2342 case AF_INET6: 2343 len = sizeof(struct ip6_hdr) + tlen; 2344 break; 2345 #endif /* INET6 */ 2346 default: 2347 panic("%s: unsupported af %d", __func__, af); 2348 } 2349 2350 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2351 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2352 if (pfse == NULL) 2353 return; 2354 m = m_gethdr(M_NOWAIT, MT_DATA); 2355 if (m == NULL) { 2356 free(pfse, M_PFTEMP); 2357 return; 2358 } 2359 #ifdef MAC 2360 mac_netinet_firewall_send(m); 2361 #endif 2362 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2363 free(pfse, M_PFTEMP); 2364 m_freem(m); 2365 return; 2366 } 2367 if (tag) 2368 m->m_flags |= M_SKIP_FIREWALL; 2369 pf_mtag->tag = rtag; 2370 2371 if (r != NULL && r->rtableid >= 0) 2372 M_SETFIB(m, r->rtableid); 2373 2374 #ifdef ALTQ 2375 if (r != NULL && r->qid) { 2376 pf_mtag->qid = r->qid; 2377 2378 /* add hints for ecn */ 2379 pf_mtag->hdr = mtod(m, struct ip *); 2380 } 2381 #endif /* ALTQ */ 2382 m->m_data += max_linkhdr; 2383 m->m_pkthdr.len = m->m_len = len; 2384 m->m_pkthdr.rcvif = NULL; 2385 bzero(m->m_data, len); 2386 switch (af) { 2387 #ifdef INET 2388 case AF_INET: 2389 h = mtod(m, struct ip *); 2390 2391 /* IP header fields included in the TCP checksum */ 2392 h->ip_p = IPPROTO_TCP; 2393 h->ip_len = htons(tlen); 2394 h->ip_src.s_addr = saddr->v4.s_addr; 2395 h->ip_dst.s_addr = daddr->v4.s_addr; 2396 2397 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2398 break; 2399 #endif /* INET */ 2400 #ifdef INET6 2401 case AF_INET6: 2402 h6 = mtod(m, struct ip6_hdr *); 2403 2404 /* IP header fields included in the TCP checksum */ 2405 h6->ip6_nxt = IPPROTO_TCP; 2406 h6->ip6_plen = htons(tlen); 2407 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2408 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2409 2410 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2411 break; 2412 #endif /* INET6 */ 2413 } 2414 2415 /* TCP header */ 2416 th->th_sport = sport; 2417 th->th_dport = dport; 2418 th->th_seq = htonl(seq); 2419 th->th_ack = htonl(ack); 2420 th->th_off = tlen >> 2; 2421 th->th_flags = flags; 2422 th->th_win = htons(win); 2423 2424 if (mss) { 2425 opt = (char *)(th + 1); 2426 opt[0] = TCPOPT_MAXSEG; 2427 opt[1] = 4; 2428 HTONS(mss); 2429 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2430 } 2431 2432 switch (af) { 2433 #ifdef INET 2434 case AF_INET: 2435 /* TCP checksum */ 2436 th->th_sum = in_cksum(m, len); 2437 2438 /* Finish the IP header */ 2439 h->ip_v = 4; 2440 h->ip_hl = sizeof(*h) >> 2; 2441 h->ip_tos = IPTOS_LOWDELAY; 2442 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2443 h->ip_len = htons(len); 2444 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2445 h->ip_sum = 0; 2446 2447 pfse->pfse_type = PFSE_IP; 2448 break; 2449 #endif /* INET */ 2450 #ifdef INET6 2451 case AF_INET6: 2452 /* TCP checksum */ 2453 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2454 sizeof(struct ip6_hdr), tlen); 2455 2456 h6->ip6_vfc |= IPV6_VERSION; 2457 h6->ip6_hlim = IPV6_DEFHLIM; 2458 2459 pfse->pfse_type = PFSE_IP6; 2460 break; 2461 #endif /* INET6 */ 2462 } 2463 pfse->pfse_m = m; 2464 pf_send(pfse); 2465 } 2466 2467 static int 2468 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2469 { 2470 struct m_tag *mtag; 2471 2472 KASSERT(prio <= PF_PRIO_MAX, 2473 ("%s with invalid pcp", __func__)); 2474 2475 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2476 if (mtag == NULL) { 2477 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2478 sizeof(uint8_t), M_NOWAIT); 2479 if (mtag == NULL) 2480 return (ENOMEM); 2481 m_tag_prepend(m, mtag); 2482 } 2483 2484 *(uint8_t *)(mtag + 1) = prio; 2485 return (0); 2486 } 2487 2488 static int 2489 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2490 { 2491 struct m_tag *mtag; 2492 u_int8_t mpcp; 2493 2494 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2495 if (mtag == NULL) 2496 return (0); 2497 2498 if (prio == PF_PRIO_ZERO) 2499 prio = 0; 2500 2501 mpcp = *(uint8_t *)(mtag + 1); 2502 2503 return (mpcp == prio); 2504 } 2505 2506 static void 2507 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2508 struct pf_rule *r) 2509 { 2510 struct pf_send_entry *pfse; 2511 struct mbuf *m0; 2512 struct pf_mtag *pf_mtag; 2513 2514 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2515 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2516 if (pfse == NULL) 2517 return; 2518 2519 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2520 free(pfse, M_PFTEMP); 2521 return; 2522 } 2523 2524 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2525 free(pfse, M_PFTEMP); 2526 return; 2527 } 2528 /* XXX: revisit */ 2529 m0->m_flags |= M_SKIP_FIREWALL; 2530 2531 if (r->rtableid >= 0) 2532 M_SETFIB(m0, r->rtableid); 2533 2534 #ifdef ALTQ 2535 if (r->qid) { 2536 pf_mtag->qid = r->qid; 2537 /* add hints for ecn */ 2538 pf_mtag->hdr = mtod(m0, struct ip *); 2539 } 2540 #endif /* ALTQ */ 2541 2542 switch (af) { 2543 #ifdef INET 2544 case AF_INET: 2545 pfse->pfse_type = PFSE_ICMP; 2546 break; 2547 #endif /* INET */ 2548 #ifdef INET6 2549 case AF_INET6: 2550 pfse->pfse_type = PFSE_ICMP6; 2551 break; 2552 #endif /* INET6 */ 2553 } 2554 pfse->pfse_m = m0; 2555 pfse->icmpopts.type = type; 2556 pfse->icmpopts.code = code; 2557 pf_send(pfse); 2558 } 2559 2560 /* 2561 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2562 * If n is 0, they match if they are equal. If n is != 0, they match if they 2563 * are different. 2564 */ 2565 int 2566 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2567 struct pf_addr *b, sa_family_t af) 2568 { 2569 int match = 0; 2570 2571 switch (af) { 2572 #ifdef INET 2573 case AF_INET: 2574 if ((a->addr32[0] & m->addr32[0]) == 2575 (b->addr32[0] & m->addr32[0])) 2576 match++; 2577 break; 2578 #endif /* INET */ 2579 #ifdef INET6 2580 case AF_INET6: 2581 if (((a->addr32[0] & m->addr32[0]) == 2582 (b->addr32[0] & m->addr32[0])) && 2583 ((a->addr32[1] & m->addr32[1]) == 2584 (b->addr32[1] & m->addr32[1])) && 2585 ((a->addr32[2] & m->addr32[2]) == 2586 (b->addr32[2] & m->addr32[2])) && 2587 ((a->addr32[3] & m->addr32[3]) == 2588 (b->addr32[3] & m->addr32[3]))) 2589 match++; 2590 break; 2591 #endif /* INET6 */ 2592 } 2593 if (match) { 2594 if (n) 2595 return (0); 2596 else 2597 return (1); 2598 } else { 2599 if (n) 2600 return (1); 2601 else 2602 return (0); 2603 } 2604 } 2605 2606 /* 2607 * Return 1 if b <= a <= e, otherwise return 0. 2608 */ 2609 int 2610 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2611 struct pf_addr *a, sa_family_t af) 2612 { 2613 switch (af) { 2614 #ifdef INET 2615 case AF_INET: 2616 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2617 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2618 return (0); 2619 break; 2620 #endif /* INET */ 2621 #ifdef INET6 2622 case AF_INET6: { 2623 int i; 2624 2625 /* check a >= b */ 2626 for (i = 0; i < 4; ++i) 2627 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2628 break; 2629 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2630 return (0); 2631 /* check a <= e */ 2632 for (i = 0; i < 4; ++i) 2633 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2634 break; 2635 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2636 return (0); 2637 break; 2638 } 2639 #endif /* INET6 */ 2640 } 2641 return (1); 2642 } 2643 2644 static int 2645 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2646 { 2647 switch (op) { 2648 case PF_OP_IRG: 2649 return ((p > a1) && (p < a2)); 2650 case PF_OP_XRG: 2651 return ((p < a1) || (p > a2)); 2652 case PF_OP_RRG: 2653 return ((p >= a1) && (p <= a2)); 2654 case PF_OP_EQ: 2655 return (p == a1); 2656 case PF_OP_NE: 2657 return (p != a1); 2658 case PF_OP_LT: 2659 return (p < a1); 2660 case PF_OP_LE: 2661 return (p <= a1); 2662 case PF_OP_GT: 2663 return (p > a1); 2664 case PF_OP_GE: 2665 return (p >= a1); 2666 } 2667 return (0); /* never reached */ 2668 } 2669 2670 int 2671 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2672 { 2673 NTOHS(a1); 2674 NTOHS(a2); 2675 NTOHS(p); 2676 return (pf_match(op, a1, a2, p)); 2677 } 2678 2679 static int 2680 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2681 { 2682 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2683 return (0); 2684 return (pf_match(op, a1, a2, u)); 2685 } 2686 2687 static int 2688 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2689 { 2690 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2691 return (0); 2692 return (pf_match(op, a1, a2, g)); 2693 } 2694 2695 int 2696 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2697 { 2698 if (*tag == -1) 2699 *tag = mtag; 2700 2701 return ((!r->match_tag_not && r->match_tag == *tag) || 2702 (r->match_tag_not && r->match_tag != *tag)); 2703 } 2704 2705 int 2706 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2707 { 2708 2709 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2710 2711 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2712 return (ENOMEM); 2713 2714 pd->pf_mtag->tag = tag; 2715 2716 return (0); 2717 } 2718 2719 #define PF_ANCHOR_STACKSIZE 32 2720 struct pf_anchor_stackframe { 2721 struct pf_ruleset *rs; 2722 struct pf_rule *r; /* XXX: + match bit */ 2723 struct pf_anchor *child; 2724 }; 2725 2726 /* 2727 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2728 */ 2729 #define PF_ANCHORSTACK_MATCH 0x00000001 2730 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2731 2732 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2733 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2734 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2735 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2736 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2737 } while (0) 2738 2739 void 2740 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2741 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2742 int *match) 2743 { 2744 struct pf_anchor_stackframe *f; 2745 2746 PF_RULES_RASSERT(); 2747 2748 if (match) 2749 *match = 0; 2750 if (*depth >= PF_ANCHOR_STACKSIZE) { 2751 printf("%s: anchor stack overflow on %s\n", 2752 __func__, (*r)->anchor->name); 2753 *r = TAILQ_NEXT(*r, entries); 2754 return; 2755 } else if (*depth == 0 && a != NULL) 2756 *a = *r; 2757 f = stack + (*depth)++; 2758 f->rs = *rs; 2759 f->r = *r; 2760 if ((*r)->anchor_wildcard) { 2761 struct pf_anchor_node *parent = &(*r)->anchor->children; 2762 2763 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2764 *r = NULL; 2765 return; 2766 } 2767 *rs = &f->child->ruleset; 2768 } else { 2769 f->child = NULL; 2770 *rs = &(*r)->anchor->ruleset; 2771 } 2772 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2773 } 2774 2775 int 2776 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2777 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2778 int *match) 2779 { 2780 struct pf_anchor_stackframe *f; 2781 struct pf_rule *fr; 2782 int quick = 0; 2783 2784 PF_RULES_RASSERT(); 2785 2786 do { 2787 if (*depth <= 0) 2788 break; 2789 f = stack + *depth - 1; 2790 fr = PF_ANCHOR_RULE(f); 2791 if (f->child != NULL) { 2792 struct pf_anchor_node *parent; 2793 2794 /* 2795 * This block traverses through 2796 * a wildcard anchor. 2797 */ 2798 parent = &fr->anchor->children; 2799 if (match != NULL && *match) { 2800 /* 2801 * If any of "*" matched, then 2802 * "foo/ *" matched, mark frame 2803 * appropriately. 2804 */ 2805 PF_ANCHOR_SET_MATCH(f); 2806 *match = 0; 2807 } 2808 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2809 if (f->child != NULL) { 2810 *rs = &f->child->ruleset; 2811 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2812 if (*r == NULL) 2813 continue; 2814 else 2815 break; 2816 } 2817 } 2818 (*depth)--; 2819 if (*depth == 0 && a != NULL) 2820 *a = NULL; 2821 *rs = f->rs; 2822 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2823 quick = fr->quick; 2824 *r = TAILQ_NEXT(fr, entries); 2825 } while (*r == NULL); 2826 2827 return (quick); 2828 } 2829 2830 #ifdef INET6 2831 void 2832 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2833 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2834 { 2835 switch (af) { 2836 #ifdef INET 2837 case AF_INET: 2838 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2839 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2840 break; 2841 #endif /* INET */ 2842 case AF_INET6: 2843 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2844 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2845 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2846 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2847 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2848 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2849 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2850 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2851 break; 2852 } 2853 } 2854 2855 void 2856 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2857 { 2858 switch (af) { 2859 #ifdef INET 2860 case AF_INET: 2861 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2862 break; 2863 #endif /* INET */ 2864 case AF_INET6: 2865 if (addr->addr32[3] == 0xffffffff) { 2866 addr->addr32[3] = 0; 2867 if (addr->addr32[2] == 0xffffffff) { 2868 addr->addr32[2] = 0; 2869 if (addr->addr32[1] == 0xffffffff) { 2870 addr->addr32[1] = 0; 2871 addr->addr32[0] = 2872 htonl(ntohl(addr->addr32[0]) + 1); 2873 } else 2874 addr->addr32[1] = 2875 htonl(ntohl(addr->addr32[1]) + 1); 2876 } else 2877 addr->addr32[2] = 2878 htonl(ntohl(addr->addr32[2]) + 1); 2879 } else 2880 addr->addr32[3] = 2881 htonl(ntohl(addr->addr32[3]) + 1); 2882 break; 2883 } 2884 } 2885 #endif /* INET6 */ 2886 2887 int 2888 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2889 { 2890 struct pf_addr *saddr, *daddr; 2891 u_int16_t sport, dport; 2892 struct inpcbinfo *pi; 2893 struct inpcb *inp; 2894 2895 pd->lookup.uid = UID_MAX; 2896 pd->lookup.gid = GID_MAX; 2897 2898 switch (pd->proto) { 2899 case IPPROTO_TCP: 2900 if (pd->hdr.tcp == NULL) 2901 return (-1); 2902 sport = pd->hdr.tcp->th_sport; 2903 dport = pd->hdr.tcp->th_dport; 2904 pi = &V_tcbinfo; 2905 break; 2906 case IPPROTO_UDP: 2907 if (pd->hdr.udp == NULL) 2908 return (-1); 2909 sport = pd->hdr.udp->uh_sport; 2910 dport = pd->hdr.udp->uh_dport; 2911 pi = &V_udbinfo; 2912 break; 2913 default: 2914 return (-1); 2915 } 2916 if (direction == PF_IN) { 2917 saddr = pd->src; 2918 daddr = pd->dst; 2919 } else { 2920 u_int16_t p; 2921 2922 p = sport; 2923 sport = dport; 2924 dport = p; 2925 saddr = pd->dst; 2926 daddr = pd->src; 2927 } 2928 switch (pd->af) { 2929 #ifdef INET 2930 case AF_INET: 2931 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2932 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2933 if (inp == NULL) { 2934 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2935 daddr->v4, dport, INPLOOKUP_WILDCARD | 2936 INPLOOKUP_RLOCKPCB, NULL, m); 2937 if (inp == NULL) 2938 return (-1); 2939 } 2940 break; 2941 #endif /* INET */ 2942 #ifdef INET6 2943 case AF_INET6: 2944 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2945 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2946 if (inp == NULL) { 2947 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2948 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2949 INPLOOKUP_RLOCKPCB, NULL, m); 2950 if (inp == NULL) 2951 return (-1); 2952 } 2953 break; 2954 #endif /* INET6 */ 2955 2956 default: 2957 return (-1); 2958 } 2959 INP_RLOCK_ASSERT(inp); 2960 pd->lookup.uid = inp->inp_cred->cr_uid; 2961 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2962 INP_RUNLOCK(inp); 2963 2964 return (1); 2965 } 2966 2967 static u_int8_t 2968 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2969 { 2970 int hlen; 2971 u_int8_t hdr[60]; 2972 u_int8_t *opt, optlen; 2973 u_int8_t wscale = 0; 2974 2975 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2976 if (hlen <= sizeof(struct tcphdr)) 2977 return (0); 2978 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2979 return (0); 2980 opt = hdr + sizeof(struct tcphdr); 2981 hlen -= sizeof(struct tcphdr); 2982 while (hlen >= 3) { 2983 switch (*opt) { 2984 case TCPOPT_EOL: 2985 case TCPOPT_NOP: 2986 ++opt; 2987 --hlen; 2988 break; 2989 case TCPOPT_WINDOW: 2990 wscale = opt[2]; 2991 if (wscale > TCP_MAX_WINSHIFT) 2992 wscale = TCP_MAX_WINSHIFT; 2993 wscale |= PF_WSCALE_FLAG; 2994 /* FALLTHROUGH */ 2995 default: 2996 optlen = opt[1]; 2997 if (optlen < 2) 2998 optlen = 2; 2999 hlen -= optlen; 3000 opt += optlen; 3001 break; 3002 } 3003 } 3004 return (wscale); 3005 } 3006 3007 static u_int16_t 3008 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3009 { 3010 int hlen; 3011 u_int8_t hdr[60]; 3012 u_int8_t *opt, optlen; 3013 u_int16_t mss = V_tcp_mssdflt; 3014 3015 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3016 if (hlen <= sizeof(struct tcphdr)) 3017 return (0); 3018 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3019 return (0); 3020 opt = hdr + sizeof(struct tcphdr); 3021 hlen -= sizeof(struct tcphdr); 3022 while (hlen >= TCPOLEN_MAXSEG) { 3023 switch (*opt) { 3024 case TCPOPT_EOL: 3025 case TCPOPT_NOP: 3026 ++opt; 3027 --hlen; 3028 break; 3029 case TCPOPT_MAXSEG: 3030 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3031 NTOHS(mss); 3032 /* FALLTHROUGH */ 3033 default: 3034 optlen = opt[1]; 3035 if (optlen < 2) 3036 optlen = 2; 3037 hlen -= optlen; 3038 opt += optlen; 3039 break; 3040 } 3041 } 3042 return (mss); 3043 } 3044 3045 static u_int16_t 3046 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3047 { 3048 #ifdef INET 3049 struct nhop4_basic nh4; 3050 #endif /* INET */ 3051 #ifdef INET6 3052 struct nhop6_basic nh6; 3053 struct in6_addr dst6; 3054 uint32_t scopeid; 3055 #endif /* INET6 */ 3056 int hlen = 0; 3057 uint16_t mss = 0; 3058 3059 switch (af) { 3060 #ifdef INET 3061 case AF_INET: 3062 hlen = sizeof(struct ip); 3063 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) == 0) 3064 mss = nh4.nh_mtu - hlen - sizeof(struct tcphdr); 3065 break; 3066 #endif /* INET */ 3067 #ifdef INET6 3068 case AF_INET6: 3069 hlen = sizeof(struct ip6_hdr); 3070 in6_splitscope(&addr->v6, &dst6, &scopeid); 3071 if (fib6_lookup_nh_basic(rtableid, &dst6, scopeid, 0,0,&nh6)==0) 3072 mss = nh6.nh_mtu - hlen - sizeof(struct tcphdr); 3073 break; 3074 #endif /* INET6 */ 3075 } 3076 3077 mss = max(V_tcp_mssdflt, mss); 3078 mss = min(mss, offer); 3079 mss = max(mss, 64); /* sanity - at least max opt space */ 3080 return (mss); 3081 } 3082 3083 static u_int32_t 3084 pf_tcp_iss(struct pf_pdesc *pd) 3085 { 3086 MD5_CTX ctx; 3087 u_int32_t digest[4]; 3088 3089 if (V_pf_tcp_secret_init == 0) { 3090 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3091 MD5Init(&V_pf_tcp_secret_ctx); 3092 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3093 sizeof(V_pf_tcp_secret)); 3094 V_pf_tcp_secret_init = 1; 3095 } 3096 3097 ctx = V_pf_tcp_secret_ctx; 3098 3099 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3100 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3101 if (pd->af == AF_INET6) { 3102 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3103 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3104 } else { 3105 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3106 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3107 } 3108 MD5Final((u_char *)digest, &ctx); 3109 V_pf_tcp_iss_off += 4096; 3110 #define ISN_RANDOM_INCREMENT (4096 - 1) 3111 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3112 V_pf_tcp_iss_off); 3113 #undef ISN_RANDOM_INCREMENT 3114 } 3115 3116 static int 3117 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3118 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3119 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3120 { 3121 struct pf_rule *nr = NULL; 3122 struct pf_addr * const saddr = pd->src; 3123 struct pf_addr * const daddr = pd->dst; 3124 sa_family_t af = pd->af; 3125 struct pf_rule *r, *a = NULL; 3126 struct pf_ruleset *ruleset = NULL; 3127 struct pf_src_node *nsn = NULL; 3128 struct tcphdr *th = pd->hdr.tcp; 3129 struct pf_state_key *sk = NULL, *nk = NULL; 3130 u_short reason; 3131 int rewrite = 0, hdrlen = 0; 3132 int tag = -1, rtableid = -1; 3133 int asd = 0; 3134 int match = 0; 3135 int state_icmp = 0; 3136 u_int16_t sport = 0, dport = 0; 3137 u_int16_t bproto_sum = 0, bip_sum = 0; 3138 u_int8_t icmptype = 0, icmpcode = 0; 3139 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3140 3141 PF_RULES_RASSERT(); 3142 3143 if (inp != NULL) { 3144 INP_LOCK_ASSERT(inp); 3145 pd->lookup.uid = inp->inp_cred->cr_uid; 3146 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3147 pd->lookup.done = 1; 3148 } 3149 3150 switch (pd->proto) { 3151 case IPPROTO_TCP: 3152 sport = th->th_sport; 3153 dport = th->th_dport; 3154 hdrlen = sizeof(*th); 3155 break; 3156 case IPPROTO_UDP: 3157 sport = pd->hdr.udp->uh_sport; 3158 dport = pd->hdr.udp->uh_dport; 3159 hdrlen = sizeof(*pd->hdr.udp); 3160 break; 3161 #ifdef INET 3162 case IPPROTO_ICMP: 3163 if (pd->af != AF_INET) 3164 break; 3165 sport = dport = pd->hdr.icmp->icmp_id; 3166 hdrlen = sizeof(*pd->hdr.icmp); 3167 icmptype = pd->hdr.icmp->icmp_type; 3168 icmpcode = pd->hdr.icmp->icmp_code; 3169 3170 if (icmptype == ICMP_UNREACH || 3171 icmptype == ICMP_SOURCEQUENCH || 3172 icmptype == ICMP_REDIRECT || 3173 icmptype == ICMP_TIMXCEED || 3174 icmptype == ICMP_PARAMPROB) 3175 state_icmp++; 3176 break; 3177 #endif /* INET */ 3178 #ifdef INET6 3179 case IPPROTO_ICMPV6: 3180 if (af != AF_INET6) 3181 break; 3182 sport = dport = pd->hdr.icmp6->icmp6_id; 3183 hdrlen = sizeof(*pd->hdr.icmp6); 3184 icmptype = pd->hdr.icmp6->icmp6_type; 3185 icmpcode = pd->hdr.icmp6->icmp6_code; 3186 3187 if (icmptype == ICMP6_DST_UNREACH || 3188 icmptype == ICMP6_PACKET_TOO_BIG || 3189 icmptype == ICMP6_TIME_EXCEEDED || 3190 icmptype == ICMP6_PARAM_PROB) 3191 state_icmp++; 3192 break; 3193 #endif /* INET6 */ 3194 default: 3195 sport = dport = hdrlen = 0; 3196 break; 3197 } 3198 3199 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3200 3201 /* check packet for BINAT/NAT/RDR */ 3202 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3203 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3204 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3205 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3206 3207 if (pd->ip_sum) 3208 bip_sum = *pd->ip_sum; 3209 3210 switch (pd->proto) { 3211 case IPPROTO_TCP: 3212 bproto_sum = th->th_sum; 3213 pd->proto_sum = &th->th_sum; 3214 3215 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3216 nk->port[pd->sidx] != sport) { 3217 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3218 &th->th_sum, &nk->addr[pd->sidx], 3219 nk->port[pd->sidx], 0, af); 3220 pd->sport = &th->th_sport; 3221 sport = th->th_sport; 3222 } 3223 3224 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3225 nk->port[pd->didx] != dport) { 3226 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3227 &th->th_sum, &nk->addr[pd->didx], 3228 nk->port[pd->didx], 0, af); 3229 dport = th->th_dport; 3230 pd->dport = &th->th_dport; 3231 } 3232 rewrite++; 3233 break; 3234 case IPPROTO_UDP: 3235 bproto_sum = pd->hdr.udp->uh_sum; 3236 pd->proto_sum = &pd->hdr.udp->uh_sum; 3237 3238 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3239 nk->port[pd->sidx] != sport) { 3240 pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, 3241 pd->ip_sum, &pd->hdr.udp->uh_sum, 3242 &nk->addr[pd->sidx], 3243 nk->port[pd->sidx], 1, af); 3244 sport = pd->hdr.udp->uh_sport; 3245 pd->sport = &pd->hdr.udp->uh_sport; 3246 } 3247 3248 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3249 nk->port[pd->didx] != dport) { 3250 pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, 3251 pd->ip_sum, &pd->hdr.udp->uh_sum, 3252 &nk->addr[pd->didx], 3253 nk->port[pd->didx], 1, af); 3254 dport = pd->hdr.udp->uh_dport; 3255 pd->dport = &pd->hdr.udp->uh_dport; 3256 } 3257 rewrite++; 3258 break; 3259 #ifdef INET 3260 case IPPROTO_ICMP: 3261 nk->port[0] = nk->port[1]; 3262 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3263 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3264 nk->addr[pd->sidx].v4.s_addr, 0); 3265 3266 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3267 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3268 nk->addr[pd->didx].v4.s_addr, 0); 3269 3270 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3271 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3272 pd->hdr.icmp->icmp_cksum, sport, 3273 nk->port[1], 0); 3274 pd->hdr.icmp->icmp_id = nk->port[1]; 3275 pd->sport = &pd->hdr.icmp->icmp_id; 3276 } 3277 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3278 break; 3279 #endif /* INET */ 3280 #ifdef INET6 3281 case IPPROTO_ICMPV6: 3282 nk->port[0] = nk->port[1]; 3283 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3284 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3285 &nk->addr[pd->sidx], 0); 3286 3287 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3288 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3289 &nk->addr[pd->didx], 0); 3290 rewrite++; 3291 break; 3292 #endif /* INET */ 3293 default: 3294 switch (af) { 3295 #ifdef INET 3296 case AF_INET: 3297 if (PF_ANEQ(saddr, 3298 &nk->addr[pd->sidx], AF_INET)) 3299 pf_change_a(&saddr->v4.s_addr, 3300 pd->ip_sum, 3301 nk->addr[pd->sidx].v4.s_addr, 0); 3302 3303 if (PF_ANEQ(daddr, 3304 &nk->addr[pd->didx], AF_INET)) 3305 pf_change_a(&daddr->v4.s_addr, 3306 pd->ip_sum, 3307 nk->addr[pd->didx].v4.s_addr, 0); 3308 break; 3309 #endif /* INET */ 3310 #ifdef INET6 3311 case AF_INET6: 3312 if (PF_ANEQ(saddr, 3313 &nk->addr[pd->sidx], AF_INET6)) 3314 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3315 3316 if (PF_ANEQ(daddr, 3317 &nk->addr[pd->didx], AF_INET6)) 3318 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3319 break; 3320 #endif /* INET */ 3321 } 3322 break; 3323 } 3324 if (nr->natpass) 3325 r = NULL; 3326 pd->nat_rule = nr; 3327 } 3328 3329 while (r != NULL) { 3330 r->evaluations++; 3331 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3332 r = r->skip[PF_SKIP_IFP].ptr; 3333 else if (r->direction && r->direction != direction) 3334 r = r->skip[PF_SKIP_DIR].ptr; 3335 else if (r->af && r->af != af) 3336 r = r->skip[PF_SKIP_AF].ptr; 3337 else if (r->proto && r->proto != pd->proto) 3338 r = r->skip[PF_SKIP_PROTO].ptr; 3339 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3340 r->src.neg, kif, M_GETFIB(m))) 3341 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3342 /* tcp/udp only. port_op always 0 in other cases */ 3343 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3344 r->src.port[0], r->src.port[1], sport)) 3345 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3346 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3347 r->dst.neg, NULL, M_GETFIB(m))) 3348 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3349 /* tcp/udp only. port_op always 0 in other cases */ 3350 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3351 r->dst.port[0], r->dst.port[1], dport)) 3352 r = r->skip[PF_SKIP_DST_PORT].ptr; 3353 /* icmp only. type always 0 in other cases */ 3354 else if (r->type && r->type != icmptype + 1) 3355 r = TAILQ_NEXT(r, entries); 3356 /* icmp only. type always 0 in other cases */ 3357 else if (r->code && r->code != icmpcode + 1) 3358 r = TAILQ_NEXT(r, entries); 3359 else if (r->tos && !(r->tos == pd->tos)) 3360 r = TAILQ_NEXT(r, entries); 3361 else if (r->rule_flag & PFRULE_FRAGMENT) 3362 r = TAILQ_NEXT(r, entries); 3363 else if (pd->proto == IPPROTO_TCP && 3364 (r->flagset & th->th_flags) != r->flags) 3365 r = TAILQ_NEXT(r, entries); 3366 /* tcp/udp only. uid.op always 0 in other cases */ 3367 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3368 pf_socket_lookup(direction, pd, m), 1)) && 3369 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3370 pd->lookup.uid)) 3371 r = TAILQ_NEXT(r, entries); 3372 /* tcp/udp only. gid.op always 0 in other cases */ 3373 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3374 pf_socket_lookup(direction, pd, m), 1)) && 3375 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3376 pd->lookup.gid)) 3377 r = TAILQ_NEXT(r, entries); 3378 else if (r->prio && 3379 !pf_match_ieee8021q_pcp(r->prio, m)) 3380 r = TAILQ_NEXT(r, entries); 3381 else if (r->prob && 3382 r->prob <= arc4random()) 3383 r = TAILQ_NEXT(r, entries); 3384 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3385 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3386 r = TAILQ_NEXT(r, entries); 3387 else if (r->os_fingerprint != PF_OSFP_ANY && 3388 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3389 pf_osfp_fingerprint(pd, m, off, th), 3390 r->os_fingerprint))) 3391 r = TAILQ_NEXT(r, entries); 3392 else { 3393 if (r->tag) 3394 tag = r->tag; 3395 if (r->rtableid >= 0) 3396 rtableid = r->rtableid; 3397 if (r->anchor == NULL) { 3398 match = 1; 3399 *rm = r; 3400 *am = a; 3401 *rsm = ruleset; 3402 if ((*rm)->quick) 3403 break; 3404 r = TAILQ_NEXT(r, entries); 3405 } else 3406 pf_step_into_anchor(anchor_stack, &asd, 3407 &ruleset, PF_RULESET_FILTER, &r, &a, 3408 &match); 3409 } 3410 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3411 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3412 break; 3413 } 3414 r = *rm; 3415 a = *am; 3416 ruleset = *rsm; 3417 3418 REASON_SET(&reason, PFRES_MATCH); 3419 3420 if (r->log || (nr != NULL && nr->log)) { 3421 if (rewrite) 3422 m_copyback(m, off, hdrlen, pd->hdr.any); 3423 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3424 ruleset, pd, 1); 3425 } 3426 3427 if ((r->action == PF_DROP) && 3428 ((r->rule_flag & PFRULE_RETURNRST) || 3429 (r->rule_flag & PFRULE_RETURNICMP) || 3430 (r->rule_flag & PFRULE_RETURN))) { 3431 /* undo NAT changes, if they have taken place */ 3432 if (nr != NULL) { 3433 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3434 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3435 if (pd->sport) 3436 *pd->sport = sk->port[pd->sidx]; 3437 if (pd->dport) 3438 *pd->dport = sk->port[pd->didx]; 3439 if (pd->proto_sum) 3440 *pd->proto_sum = bproto_sum; 3441 if (pd->ip_sum) 3442 *pd->ip_sum = bip_sum; 3443 m_copyback(m, off, hdrlen, pd->hdr.any); 3444 } 3445 if (pd->proto == IPPROTO_TCP && 3446 ((r->rule_flag & PFRULE_RETURNRST) || 3447 (r->rule_flag & PFRULE_RETURN)) && 3448 !(th->th_flags & TH_RST)) { 3449 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3450 int len = 0; 3451 #ifdef INET 3452 struct ip *h4; 3453 #endif 3454 #ifdef INET6 3455 struct ip6_hdr *h6; 3456 #endif 3457 3458 switch (af) { 3459 #ifdef INET 3460 case AF_INET: 3461 h4 = mtod(m, struct ip *); 3462 len = ntohs(h4->ip_len) - off; 3463 break; 3464 #endif 3465 #ifdef INET6 3466 case AF_INET6: 3467 h6 = mtod(m, struct ip6_hdr *); 3468 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3469 break; 3470 #endif 3471 } 3472 3473 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3474 REASON_SET(&reason, PFRES_PROTCKSUM); 3475 else { 3476 if (th->th_flags & TH_SYN) 3477 ack++; 3478 if (th->th_flags & TH_FIN) 3479 ack++; 3480 pf_send_tcp(m, r, af, pd->dst, 3481 pd->src, th->th_dport, th->th_sport, 3482 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3483 r->return_ttl, 1, 0, kif->pfik_ifp); 3484 } 3485 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3486 r->return_icmp) 3487 pf_send_icmp(m, r->return_icmp >> 8, 3488 r->return_icmp & 255, af, r); 3489 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3490 r->return_icmp6) 3491 pf_send_icmp(m, r->return_icmp6 >> 8, 3492 r->return_icmp6 & 255, af, r); 3493 } 3494 3495 if (r->action == PF_DROP) 3496 goto cleanup; 3497 3498 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3499 REASON_SET(&reason, PFRES_MEMORY); 3500 goto cleanup; 3501 } 3502 if (rtableid >= 0) 3503 M_SETFIB(m, rtableid); 3504 3505 if (!state_icmp && (r->keep_state || nr != NULL || 3506 (pd->flags & PFDESC_TCP_NORM))) { 3507 int action; 3508 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3509 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3510 hdrlen); 3511 if (action != PF_PASS) 3512 return (action); 3513 } else { 3514 if (sk != NULL) 3515 uma_zfree(V_pf_state_key_z, sk); 3516 if (nk != NULL) 3517 uma_zfree(V_pf_state_key_z, nk); 3518 } 3519 3520 /* copy back packet headers if we performed NAT operations */ 3521 if (rewrite) 3522 m_copyback(m, off, hdrlen, pd->hdr.any); 3523 3524 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3525 direction == PF_OUT && 3526 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3527 /* 3528 * We want the state created, but we dont 3529 * want to send this in case a partner 3530 * firewall has to know about it to allow 3531 * replies through it. 3532 */ 3533 return (PF_DEFER); 3534 3535 return (PF_PASS); 3536 3537 cleanup: 3538 if (sk != NULL) 3539 uma_zfree(V_pf_state_key_z, sk); 3540 if (nk != NULL) 3541 uma_zfree(V_pf_state_key_z, nk); 3542 return (PF_DROP); 3543 } 3544 3545 static int 3546 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3547 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3548 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3549 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3550 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3551 { 3552 struct pf_state *s = NULL; 3553 struct pf_src_node *sn = NULL; 3554 struct tcphdr *th = pd->hdr.tcp; 3555 u_int16_t mss = V_tcp_mssdflt; 3556 u_short reason; 3557 3558 /* check maximums */ 3559 if (r->max_states && 3560 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3561 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3562 REASON_SET(&reason, PFRES_MAXSTATES); 3563 return (PF_DROP); 3564 } 3565 /* src node for filter rule */ 3566 if ((r->rule_flag & PFRULE_SRCTRACK || 3567 r->rpool.opts & PF_POOL_STICKYADDR) && 3568 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3569 REASON_SET(&reason, PFRES_SRCLIMIT); 3570 goto csfailed; 3571 } 3572 /* src node for translation rule */ 3573 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3574 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3575 REASON_SET(&reason, PFRES_SRCLIMIT); 3576 goto csfailed; 3577 } 3578 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3579 if (s == NULL) { 3580 REASON_SET(&reason, PFRES_MEMORY); 3581 goto csfailed; 3582 } 3583 s->rule.ptr = r; 3584 s->nat_rule.ptr = nr; 3585 s->anchor.ptr = a; 3586 STATE_INC_COUNTERS(s); 3587 if (r->allow_opts) 3588 s->state_flags |= PFSTATE_ALLOWOPTS; 3589 if (r->rule_flag & PFRULE_STATESLOPPY) 3590 s->state_flags |= PFSTATE_SLOPPY; 3591 s->log = r->log & PF_LOG_ALL; 3592 s->sync_state = PFSYNC_S_NONE; 3593 if (nr != NULL) 3594 s->log |= nr->log & PF_LOG_ALL; 3595 switch (pd->proto) { 3596 case IPPROTO_TCP: 3597 s->src.seqlo = ntohl(th->th_seq); 3598 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3599 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3600 r->keep_state == PF_STATE_MODULATE) { 3601 /* Generate sequence number modulator */ 3602 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3603 0) 3604 s->src.seqdiff = 1; 3605 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3606 htonl(s->src.seqlo + s->src.seqdiff), 0); 3607 *rewrite = 1; 3608 } else 3609 s->src.seqdiff = 0; 3610 if (th->th_flags & TH_SYN) { 3611 s->src.seqhi++; 3612 s->src.wscale = pf_get_wscale(m, off, 3613 th->th_off, pd->af); 3614 } 3615 s->src.max_win = MAX(ntohs(th->th_win), 1); 3616 if (s->src.wscale & PF_WSCALE_MASK) { 3617 /* Remove scale factor from initial window */ 3618 int win = s->src.max_win; 3619 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3620 s->src.max_win = (win - 1) >> 3621 (s->src.wscale & PF_WSCALE_MASK); 3622 } 3623 if (th->th_flags & TH_FIN) 3624 s->src.seqhi++; 3625 s->dst.seqhi = 1; 3626 s->dst.max_win = 1; 3627 s->src.state = TCPS_SYN_SENT; 3628 s->dst.state = TCPS_CLOSED; 3629 s->timeout = PFTM_TCP_FIRST_PACKET; 3630 break; 3631 case IPPROTO_UDP: 3632 s->src.state = PFUDPS_SINGLE; 3633 s->dst.state = PFUDPS_NO_TRAFFIC; 3634 s->timeout = PFTM_UDP_FIRST_PACKET; 3635 break; 3636 case IPPROTO_ICMP: 3637 #ifdef INET6 3638 case IPPROTO_ICMPV6: 3639 #endif 3640 s->timeout = PFTM_ICMP_FIRST_PACKET; 3641 break; 3642 default: 3643 s->src.state = PFOTHERS_SINGLE; 3644 s->dst.state = PFOTHERS_NO_TRAFFIC; 3645 s->timeout = PFTM_OTHER_FIRST_PACKET; 3646 } 3647 3648 if (r->rt) { 3649 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3650 REASON_SET(&reason, PFRES_MAPFAILED); 3651 pf_src_tree_remove_state(s); 3652 STATE_DEC_COUNTERS(s); 3653 uma_zfree(V_pf_state_z, s); 3654 goto csfailed; 3655 } 3656 s->rt_kif = r->rpool.cur->kif; 3657 } 3658 3659 s->creation = time_uptime; 3660 s->expire = time_uptime; 3661 3662 if (sn != NULL) 3663 s->src_node = sn; 3664 if (nsn != NULL) { 3665 /* XXX We only modify one side for now. */ 3666 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3667 s->nat_src_node = nsn; 3668 } 3669 if (pd->proto == IPPROTO_TCP) { 3670 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3671 off, pd, th, &s->src, &s->dst)) { 3672 REASON_SET(&reason, PFRES_MEMORY); 3673 pf_src_tree_remove_state(s); 3674 STATE_DEC_COUNTERS(s); 3675 uma_zfree(V_pf_state_z, s); 3676 return (PF_DROP); 3677 } 3678 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3679 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3680 &s->src, &s->dst, rewrite)) { 3681 /* This really shouldn't happen!!! */ 3682 DPFPRINTF(PF_DEBUG_URGENT, 3683 ("pf_normalize_tcp_stateful failed on first pkt")); 3684 pf_normalize_tcp_cleanup(s); 3685 pf_src_tree_remove_state(s); 3686 STATE_DEC_COUNTERS(s); 3687 uma_zfree(V_pf_state_z, s); 3688 return (PF_DROP); 3689 } 3690 } 3691 s->direction = pd->dir; 3692 3693 /* 3694 * sk/nk could already been setup by pf_get_translation(). 3695 */ 3696 if (nr == NULL) { 3697 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3698 __func__, nr, sk, nk)); 3699 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3700 if (sk == NULL) 3701 goto csfailed; 3702 nk = sk; 3703 } else 3704 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3705 __func__, nr, sk, nk)); 3706 3707 /* Swap sk/nk for PF_OUT. */ 3708 if (pf_state_insert(BOUND_IFACE(r, kif), 3709 (pd->dir == PF_IN) ? sk : nk, 3710 (pd->dir == PF_IN) ? nk : sk, s)) { 3711 if (pd->proto == IPPROTO_TCP) 3712 pf_normalize_tcp_cleanup(s); 3713 REASON_SET(&reason, PFRES_STATEINS); 3714 pf_src_tree_remove_state(s); 3715 STATE_DEC_COUNTERS(s); 3716 uma_zfree(V_pf_state_z, s); 3717 return (PF_DROP); 3718 } else 3719 *sm = s; 3720 3721 if (tag > 0) 3722 s->tag = tag; 3723 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3724 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3725 s->src.state = PF_TCPS_PROXY_SRC; 3726 /* undo NAT changes, if they have taken place */ 3727 if (nr != NULL) { 3728 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3729 if (pd->dir == PF_OUT) 3730 skt = s->key[PF_SK_STACK]; 3731 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3732 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3733 if (pd->sport) 3734 *pd->sport = skt->port[pd->sidx]; 3735 if (pd->dport) 3736 *pd->dport = skt->port[pd->didx]; 3737 if (pd->proto_sum) 3738 *pd->proto_sum = bproto_sum; 3739 if (pd->ip_sum) 3740 *pd->ip_sum = bip_sum; 3741 m_copyback(m, off, hdrlen, pd->hdr.any); 3742 } 3743 s->src.seqhi = htonl(arc4random()); 3744 /* Find mss option */ 3745 int rtid = M_GETFIB(m); 3746 mss = pf_get_mss(m, off, th->th_off, pd->af); 3747 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3748 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3749 s->src.mss = mss; 3750 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3751 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3752 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3753 REASON_SET(&reason, PFRES_SYNPROXY); 3754 return (PF_SYNPROXY_DROP); 3755 } 3756 3757 return (PF_PASS); 3758 3759 csfailed: 3760 if (sk != NULL) 3761 uma_zfree(V_pf_state_key_z, sk); 3762 if (nk != NULL) 3763 uma_zfree(V_pf_state_key_z, nk); 3764 3765 if (sn != NULL) { 3766 struct pf_srchash *sh; 3767 3768 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3769 PF_HASHROW_LOCK(sh); 3770 if (--sn->states == 0 && sn->expire == 0) { 3771 pf_unlink_src_node(sn); 3772 uma_zfree(V_pf_sources_z, sn); 3773 counter_u64_add( 3774 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3775 } 3776 PF_HASHROW_UNLOCK(sh); 3777 } 3778 3779 if (nsn != sn && nsn != NULL) { 3780 struct pf_srchash *sh; 3781 3782 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3783 PF_HASHROW_LOCK(sh); 3784 if (--nsn->states == 0 && nsn->expire == 0) { 3785 pf_unlink_src_node(nsn); 3786 uma_zfree(V_pf_sources_z, nsn); 3787 counter_u64_add( 3788 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3789 } 3790 PF_HASHROW_UNLOCK(sh); 3791 } 3792 3793 return (PF_DROP); 3794 } 3795 3796 static int 3797 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3798 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3799 struct pf_ruleset **rsm) 3800 { 3801 struct pf_rule *r, *a = NULL; 3802 struct pf_ruleset *ruleset = NULL; 3803 sa_family_t af = pd->af; 3804 u_short reason; 3805 int tag = -1; 3806 int asd = 0; 3807 int match = 0; 3808 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3809 3810 PF_RULES_RASSERT(); 3811 3812 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3813 while (r != NULL) { 3814 r->evaluations++; 3815 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3816 r = r->skip[PF_SKIP_IFP].ptr; 3817 else if (r->direction && r->direction != direction) 3818 r = r->skip[PF_SKIP_DIR].ptr; 3819 else if (r->af && r->af != af) 3820 r = r->skip[PF_SKIP_AF].ptr; 3821 else if (r->proto && r->proto != pd->proto) 3822 r = r->skip[PF_SKIP_PROTO].ptr; 3823 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3824 r->src.neg, kif, M_GETFIB(m))) 3825 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3826 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3827 r->dst.neg, NULL, M_GETFIB(m))) 3828 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3829 else if (r->tos && !(r->tos == pd->tos)) 3830 r = TAILQ_NEXT(r, entries); 3831 else if (r->os_fingerprint != PF_OSFP_ANY) 3832 r = TAILQ_NEXT(r, entries); 3833 else if (pd->proto == IPPROTO_UDP && 3834 (r->src.port_op || r->dst.port_op)) 3835 r = TAILQ_NEXT(r, entries); 3836 else if (pd->proto == IPPROTO_TCP && 3837 (r->src.port_op || r->dst.port_op || r->flagset)) 3838 r = TAILQ_NEXT(r, entries); 3839 else if ((pd->proto == IPPROTO_ICMP || 3840 pd->proto == IPPROTO_ICMPV6) && 3841 (r->type || r->code)) 3842 r = TAILQ_NEXT(r, entries); 3843 else if (r->prio && 3844 !pf_match_ieee8021q_pcp(r->prio, m)) 3845 r = TAILQ_NEXT(r, entries); 3846 else if (r->prob && r->prob <= 3847 (arc4random() % (UINT_MAX - 1) + 1)) 3848 r = TAILQ_NEXT(r, entries); 3849 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3850 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3851 r = TAILQ_NEXT(r, entries); 3852 else { 3853 if (r->anchor == NULL) { 3854 match = 1; 3855 *rm = r; 3856 *am = a; 3857 *rsm = ruleset; 3858 if ((*rm)->quick) 3859 break; 3860 r = TAILQ_NEXT(r, entries); 3861 } else 3862 pf_step_into_anchor(anchor_stack, &asd, 3863 &ruleset, PF_RULESET_FILTER, &r, &a, 3864 &match); 3865 } 3866 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3867 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3868 break; 3869 } 3870 r = *rm; 3871 a = *am; 3872 ruleset = *rsm; 3873 3874 REASON_SET(&reason, PFRES_MATCH); 3875 3876 if (r->log) 3877 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3878 1); 3879 3880 if (r->action != PF_PASS) 3881 return (PF_DROP); 3882 3883 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3884 REASON_SET(&reason, PFRES_MEMORY); 3885 return (PF_DROP); 3886 } 3887 3888 return (PF_PASS); 3889 } 3890 3891 static int 3892 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3893 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3894 struct pf_pdesc *pd, u_short *reason, int *copyback) 3895 { 3896 struct tcphdr *th = pd->hdr.tcp; 3897 u_int16_t win = ntohs(th->th_win); 3898 u_int32_t ack, end, seq, orig_seq; 3899 u_int8_t sws, dws; 3900 int ackskew; 3901 3902 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3903 sws = src->wscale & PF_WSCALE_MASK; 3904 dws = dst->wscale & PF_WSCALE_MASK; 3905 } else 3906 sws = dws = 0; 3907 3908 /* 3909 * Sequence tracking algorithm from Guido van Rooij's paper: 3910 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3911 * tcp_filtering.ps 3912 */ 3913 3914 orig_seq = seq = ntohl(th->th_seq); 3915 if (src->seqlo == 0) { 3916 /* First packet from this end. Set its state */ 3917 3918 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3919 src->scrub == NULL) { 3920 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3921 REASON_SET(reason, PFRES_MEMORY); 3922 return (PF_DROP); 3923 } 3924 } 3925 3926 /* Deferred generation of sequence number modulator */ 3927 if (dst->seqdiff && !src->seqdiff) { 3928 /* use random iss for the TCP server */ 3929 while ((src->seqdiff = arc4random() - seq) == 0) 3930 ; 3931 ack = ntohl(th->th_ack) - dst->seqdiff; 3932 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3933 src->seqdiff), 0); 3934 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 3935 *copyback = 1; 3936 } else { 3937 ack = ntohl(th->th_ack); 3938 } 3939 3940 end = seq + pd->p_len; 3941 if (th->th_flags & TH_SYN) { 3942 end++; 3943 if (dst->wscale & PF_WSCALE_FLAG) { 3944 src->wscale = pf_get_wscale(m, off, th->th_off, 3945 pd->af); 3946 if (src->wscale & PF_WSCALE_FLAG) { 3947 /* Remove scale factor from initial 3948 * window */ 3949 sws = src->wscale & PF_WSCALE_MASK; 3950 win = ((u_int32_t)win + (1 << sws) - 1) 3951 >> sws; 3952 dws = dst->wscale & PF_WSCALE_MASK; 3953 } else { 3954 /* fixup other window */ 3955 dst->max_win <<= dst->wscale & 3956 PF_WSCALE_MASK; 3957 /* in case of a retrans SYN|ACK */ 3958 dst->wscale = 0; 3959 } 3960 } 3961 } 3962 if (th->th_flags & TH_FIN) 3963 end++; 3964 3965 src->seqlo = seq; 3966 if (src->state < TCPS_SYN_SENT) 3967 src->state = TCPS_SYN_SENT; 3968 3969 /* 3970 * May need to slide the window (seqhi may have been set by 3971 * the crappy stack check or if we picked up the connection 3972 * after establishment) 3973 */ 3974 if (src->seqhi == 1 || 3975 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3976 src->seqhi = end + MAX(1, dst->max_win << dws); 3977 if (win > src->max_win) 3978 src->max_win = win; 3979 3980 } else { 3981 ack = ntohl(th->th_ack) - dst->seqdiff; 3982 if (src->seqdiff) { 3983 /* Modulate sequence numbers */ 3984 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3985 src->seqdiff), 0); 3986 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 3987 *copyback = 1; 3988 } 3989 end = seq + pd->p_len; 3990 if (th->th_flags & TH_SYN) 3991 end++; 3992 if (th->th_flags & TH_FIN) 3993 end++; 3994 } 3995 3996 if ((th->th_flags & TH_ACK) == 0) { 3997 /* Let it pass through the ack skew check */ 3998 ack = dst->seqlo; 3999 } else if ((ack == 0 && 4000 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4001 /* broken tcp stacks do not set ack */ 4002 (dst->state < TCPS_SYN_SENT)) { 4003 /* 4004 * Many stacks (ours included) will set the ACK number in an 4005 * FIN|ACK if the SYN times out -- no sequence to ACK. 4006 */ 4007 ack = dst->seqlo; 4008 } 4009 4010 if (seq == end) { 4011 /* Ease sequencing restrictions on no data packets */ 4012 seq = src->seqlo; 4013 end = seq; 4014 } 4015 4016 ackskew = dst->seqlo - ack; 4017 4018 4019 /* 4020 * Need to demodulate the sequence numbers in any TCP SACK options 4021 * (Selective ACK). We could optionally validate the SACK values 4022 * against the current ACK window, either forwards or backwards, but 4023 * I'm not confident that SACK has been implemented properly 4024 * everywhere. It wouldn't surprise me if several stacks accidentally 4025 * SACK too far backwards of previously ACKed data. There really aren't 4026 * any security implications of bad SACKing unless the target stack 4027 * doesn't validate the option length correctly. Someone trying to 4028 * spoof into a TCP connection won't bother blindly sending SACK 4029 * options anyway. 4030 */ 4031 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4032 if (pf_modulate_sack(m, off, pd, th, dst)) 4033 *copyback = 1; 4034 } 4035 4036 4037 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4038 if (SEQ_GEQ(src->seqhi, end) && 4039 /* Last octet inside other's window space */ 4040 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4041 /* Retrans: not more than one window back */ 4042 (ackskew >= -MAXACKWINDOW) && 4043 /* Acking not more than one reassembled fragment backwards */ 4044 (ackskew <= (MAXACKWINDOW << sws)) && 4045 /* Acking not more than one window forward */ 4046 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4047 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4048 (pd->flags & PFDESC_IP_REAS) == 0)) { 4049 /* Require an exact/+1 sequence match on resets when possible */ 4050 4051 if (dst->scrub || src->scrub) { 4052 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4053 *state, src, dst, copyback)) 4054 return (PF_DROP); 4055 } 4056 4057 /* update max window */ 4058 if (src->max_win < win) 4059 src->max_win = win; 4060 /* synchronize sequencing */ 4061 if (SEQ_GT(end, src->seqlo)) 4062 src->seqlo = end; 4063 /* slide the window of what the other end can send */ 4064 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4065 dst->seqhi = ack + MAX((win << sws), 1); 4066 4067 4068 /* update states */ 4069 if (th->th_flags & TH_SYN) 4070 if (src->state < TCPS_SYN_SENT) 4071 src->state = TCPS_SYN_SENT; 4072 if (th->th_flags & TH_FIN) 4073 if (src->state < TCPS_CLOSING) 4074 src->state = TCPS_CLOSING; 4075 if (th->th_flags & TH_ACK) { 4076 if (dst->state == TCPS_SYN_SENT) { 4077 dst->state = TCPS_ESTABLISHED; 4078 if (src->state == TCPS_ESTABLISHED && 4079 (*state)->src_node != NULL && 4080 pf_src_connlimit(state)) { 4081 REASON_SET(reason, PFRES_SRCLIMIT); 4082 return (PF_DROP); 4083 } 4084 } else if (dst->state == TCPS_CLOSING) 4085 dst->state = TCPS_FIN_WAIT_2; 4086 } 4087 if (th->th_flags & TH_RST) 4088 src->state = dst->state = TCPS_TIME_WAIT; 4089 4090 /* update expire time */ 4091 (*state)->expire = time_uptime; 4092 if (src->state >= TCPS_FIN_WAIT_2 && 4093 dst->state >= TCPS_FIN_WAIT_2) 4094 (*state)->timeout = PFTM_TCP_CLOSED; 4095 else if (src->state >= TCPS_CLOSING && 4096 dst->state >= TCPS_CLOSING) 4097 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4098 else if (src->state < TCPS_ESTABLISHED || 4099 dst->state < TCPS_ESTABLISHED) 4100 (*state)->timeout = PFTM_TCP_OPENING; 4101 else if (src->state >= TCPS_CLOSING || 4102 dst->state >= TCPS_CLOSING) 4103 (*state)->timeout = PFTM_TCP_CLOSING; 4104 else 4105 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4106 4107 /* Fall through to PASS packet */ 4108 4109 } else if ((dst->state < TCPS_SYN_SENT || 4110 dst->state >= TCPS_FIN_WAIT_2 || 4111 src->state >= TCPS_FIN_WAIT_2) && 4112 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4113 /* Within a window forward of the originating packet */ 4114 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4115 /* Within a window backward of the originating packet */ 4116 4117 /* 4118 * This currently handles three situations: 4119 * 1) Stupid stacks will shotgun SYNs before their peer 4120 * replies. 4121 * 2) When PF catches an already established stream (the 4122 * firewall rebooted, the state table was flushed, routes 4123 * changed...) 4124 * 3) Packets get funky immediately after the connection 4125 * closes (this should catch Solaris spurious ACK|FINs 4126 * that web servers like to spew after a close) 4127 * 4128 * This must be a little more careful than the above code 4129 * since packet floods will also be caught here. We don't 4130 * update the TTL here to mitigate the damage of a packet 4131 * flood and so the same code can handle awkward establishment 4132 * and a loosened connection close. 4133 * In the establishment case, a correct peer response will 4134 * validate the connection, go through the normal state code 4135 * and keep updating the state TTL. 4136 */ 4137 4138 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4139 printf("pf: loose state match: "); 4140 pf_print_state(*state); 4141 pf_print_flags(th->th_flags); 4142 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4143 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4144 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4145 (unsigned long long)(*state)->packets[1], 4146 pd->dir == PF_IN ? "in" : "out", 4147 pd->dir == (*state)->direction ? "fwd" : "rev"); 4148 } 4149 4150 if (dst->scrub || src->scrub) { 4151 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4152 *state, src, dst, copyback)) 4153 return (PF_DROP); 4154 } 4155 4156 /* update max window */ 4157 if (src->max_win < win) 4158 src->max_win = win; 4159 /* synchronize sequencing */ 4160 if (SEQ_GT(end, src->seqlo)) 4161 src->seqlo = end; 4162 /* slide the window of what the other end can send */ 4163 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4164 dst->seqhi = ack + MAX((win << sws), 1); 4165 4166 /* 4167 * Cannot set dst->seqhi here since this could be a shotgunned 4168 * SYN and not an already established connection. 4169 */ 4170 4171 if (th->th_flags & TH_FIN) 4172 if (src->state < TCPS_CLOSING) 4173 src->state = TCPS_CLOSING; 4174 if (th->th_flags & TH_RST) 4175 src->state = dst->state = TCPS_TIME_WAIT; 4176 4177 /* Fall through to PASS packet */ 4178 4179 } else { 4180 if ((*state)->dst.state == TCPS_SYN_SENT && 4181 (*state)->src.state == TCPS_SYN_SENT) { 4182 /* Send RST for state mismatches during handshake */ 4183 if (!(th->th_flags & TH_RST)) 4184 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4185 pd->dst, pd->src, th->th_dport, 4186 th->th_sport, ntohl(th->th_ack), 0, 4187 TH_RST, 0, 0, 4188 (*state)->rule.ptr->return_ttl, 1, 0, 4189 kif->pfik_ifp); 4190 src->seqlo = 0; 4191 src->seqhi = 1; 4192 src->max_win = 1; 4193 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4194 printf("pf: BAD state: "); 4195 pf_print_state(*state); 4196 pf_print_flags(th->th_flags); 4197 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4198 "pkts=%llu:%llu dir=%s,%s\n", 4199 seq, orig_seq, ack, pd->p_len, ackskew, 4200 (unsigned long long)(*state)->packets[0], 4201 (unsigned long long)(*state)->packets[1], 4202 pd->dir == PF_IN ? "in" : "out", 4203 pd->dir == (*state)->direction ? "fwd" : "rev"); 4204 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4205 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4206 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4207 ' ': '2', 4208 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4209 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4210 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4211 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4212 } 4213 REASON_SET(reason, PFRES_BADSTATE); 4214 return (PF_DROP); 4215 } 4216 4217 return (PF_PASS); 4218 } 4219 4220 static int 4221 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4222 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4223 { 4224 struct tcphdr *th = pd->hdr.tcp; 4225 4226 if (th->th_flags & TH_SYN) 4227 if (src->state < TCPS_SYN_SENT) 4228 src->state = TCPS_SYN_SENT; 4229 if (th->th_flags & TH_FIN) 4230 if (src->state < TCPS_CLOSING) 4231 src->state = TCPS_CLOSING; 4232 if (th->th_flags & TH_ACK) { 4233 if (dst->state == TCPS_SYN_SENT) { 4234 dst->state = TCPS_ESTABLISHED; 4235 if (src->state == TCPS_ESTABLISHED && 4236 (*state)->src_node != NULL && 4237 pf_src_connlimit(state)) { 4238 REASON_SET(reason, PFRES_SRCLIMIT); 4239 return (PF_DROP); 4240 } 4241 } else if (dst->state == TCPS_CLOSING) { 4242 dst->state = TCPS_FIN_WAIT_2; 4243 } else if (src->state == TCPS_SYN_SENT && 4244 dst->state < TCPS_SYN_SENT) { 4245 /* 4246 * Handle a special sloppy case where we only see one 4247 * half of the connection. If there is a ACK after 4248 * the initial SYN without ever seeing a packet from 4249 * the destination, set the connection to established. 4250 */ 4251 dst->state = src->state = TCPS_ESTABLISHED; 4252 if ((*state)->src_node != NULL && 4253 pf_src_connlimit(state)) { 4254 REASON_SET(reason, PFRES_SRCLIMIT); 4255 return (PF_DROP); 4256 } 4257 } else if (src->state == TCPS_CLOSING && 4258 dst->state == TCPS_ESTABLISHED && 4259 dst->seqlo == 0) { 4260 /* 4261 * Handle the closing of half connections where we 4262 * don't see the full bidirectional FIN/ACK+ACK 4263 * handshake. 4264 */ 4265 dst->state = TCPS_CLOSING; 4266 } 4267 } 4268 if (th->th_flags & TH_RST) 4269 src->state = dst->state = TCPS_TIME_WAIT; 4270 4271 /* update expire time */ 4272 (*state)->expire = time_uptime; 4273 if (src->state >= TCPS_FIN_WAIT_2 && 4274 dst->state >= TCPS_FIN_WAIT_2) 4275 (*state)->timeout = PFTM_TCP_CLOSED; 4276 else if (src->state >= TCPS_CLOSING && 4277 dst->state >= TCPS_CLOSING) 4278 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4279 else if (src->state < TCPS_ESTABLISHED || 4280 dst->state < TCPS_ESTABLISHED) 4281 (*state)->timeout = PFTM_TCP_OPENING; 4282 else if (src->state >= TCPS_CLOSING || 4283 dst->state >= TCPS_CLOSING) 4284 (*state)->timeout = PFTM_TCP_CLOSING; 4285 else 4286 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4287 4288 return (PF_PASS); 4289 } 4290 4291 static int 4292 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4293 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4294 u_short *reason) 4295 { 4296 struct pf_state_key_cmp key; 4297 struct tcphdr *th = pd->hdr.tcp; 4298 int copyback = 0; 4299 struct pf_state_peer *src, *dst; 4300 struct pf_state_key *sk; 4301 4302 bzero(&key, sizeof(key)); 4303 key.af = pd->af; 4304 key.proto = IPPROTO_TCP; 4305 if (direction == PF_IN) { /* wire side, straight */ 4306 PF_ACPY(&key.addr[0], pd->src, key.af); 4307 PF_ACPY(&key.addr[1], pd->dst, key.af); 4308 key.port[0] = th->th_sport; 4309 key.port[1] = th->th_dport; 4310 } else { /* stack side, reverse */ 4311 PF_ACPY(&key.addr[1], pd->src, key.af); 4312 PF_ACPY(&key.addr[0], pd->dst, key.af); 4313 key.port[1] = th->th_sport; 4314 key.port[0] = th->th_dport; 4315 } 4316 4317 STATE_LOOKUP(kif, &key, direction, *state, pd); 4318 4319 if (direction == (*state)->direction) { 4320 src = &(*state)->src; 4321 dst = &(*state)->dst; 4322 } else { 4323 src = &(*state)->dst; 4324 dst = &(*state)->src; 4325 } 4326 4327 sk = (*state)->key[pd->didx]; 4328 4329 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4330 if (direction != (*state)->direction) { 4331 REASON_SET(reason, PFRES_SYNPROXY); 4332 return (PF_SYNPROXY_DROP); 4333 } 4334 if (th->th_flags & TH_SYN) { 4335 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4336 REASON_SET(reason, PFRES_SYNPROXY); 4337 return (PF_DROP); 4338 } 4339 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4340 pd->src, th->th_dport, th->th_sport, 4341 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4342 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4343 REASON_SET(reason, PFRES_SYNPROXY); 4344 return (PF_SYNPROXY_DROP); 4345 } else if (!(th->th_flags & TH_ACK) || 4346 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4347 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4348 REASON_SET(reason, PFRES_SYNPROXY); 4349 return (PF_DROP); 4350 } else if ((*state)->src_node != NULL && 4351 pf_src_connlimit(state)) { 4352 REASON_SET(reason, PFRES_SRCLIMIT); 4353 return (PF_DROP); 4354 } else 4355 (*state)->src.state = PF_TCPS_PROXY_DST; 4356 } 4357 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4358 if (direction == (*state)->direction) { 4359 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4360 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4361 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4362 REASON_SET(reason, PFRES_SYNPROXY); 4363 return (PF_DROP); 4364 } 4365 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4366 if ((*state)->dst.seqhi == 1) 4367 (*state)->dst.seqhi = htonl(arc4random()); 4368 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4369 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4370 sk->port[pd->sidx], sk->port[pd->didx], 4371 (*state)->dst.seqhi, 0, TH_SYN, 0, 4372 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4373 REASON_SET(reason, PFRES_SYNPROXY); 4374 return (PF_SYNPROXY_DROP); 4375 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4376 (TH_SYN|TH_ACK)) || 4377 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4378 REASON_SET(reason, PFRES_SYNPROXY); 4379 return (PF_DROP); 4380 } else { 4381 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4382 (*state)->dst.seqlo = ntohl(th->th_seq); 4383 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4384 pd->src, th->th_dport, th->th_sport, 4385 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4386 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4387 (*state)->tag, NULL); 4388 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4389 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4390 sk->port[pd->sidx], sk->port[pd->didx], 4391 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4392 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4393 (*state)->src.seqdiff = (*state)->dst.seqhi - 4394 (*state)->src.seqlo; 4395 (*state)->dst.seqdiff = (*state)->src.seqhi - 4396 (*state)->dst.seqlo; 4397 (*state)->src.seqhi = (*state)->src.seqlo + 4398 (*state)->dst.max_win; 4399 (*state)->dst.seqhi = (*state)->dst.seqlo + 4400 (*state)->src.max_win; 4401 (*state)->src.wscale = (*state)->dst.wscale = 0; 4402 (*state)->src.state = (*state)->dst.state = 4403 TCPS_ESTABLISHED; 4404 REASON_SET(reason, PFRES_SYNPROXY); 4405 return (PF_SYNPROXY_DROP); 4406 } 4407 } 4408 4409 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4410 dst->state >= TCPS_FIN_WAIT_2 && 4411 src->state >= TCPS_FIN_WAIT_2) { 4412 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4413 printf("pf: state reuse "); 4414 pf_print_state(*state); 4415 pf_print_flags(th->th_flags); 4416 printf("\n"); 4417 } 4418 /* XXX make sure it's the same direction ?? */ 4419 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4420 pf_unlink_state(*state, PF_ENTER_LOCKED); 4421 *state = NULL; 4422 return (PF_DROP); 4423 } 4424 4425 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4426 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4427 return (PF_DROP); 4428 } else { 4429 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4430 ©back) == PF_DROP) 4431 return (PF_DROP); 4432 } 4433 4434 /* translate source/destination address, if necessary */ 4435 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4436 struct pf_state_key *nk = (*state)->key[pd->didx]; 4437 4438 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4439 nk->port[pd->sidx] != th->th_sport) 4440 pf_change_ap(m, pd->src, &th->th_sport, 4441 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4442 nk->port[pd->sidx], 0, pd->af); 4443 4444 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4445 nk->port[pd->didx] != th->th_dport) 4446 pf_change_ap(m, pd->dst, &th->th_dport, 4447 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4448 nk->port[pd->didx], 0, pd->af); 4449 copyback = 1; 4450 } 4451 4452 /* Copyback sequence modulation or stateful scrub changes if needed */ 4453 if (copyback) 4454 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4455 4456 return (PF_PASS); 4457 } 4458 4459 static int 4460 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4461 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4462 { 4463 struct pf_state_peer *src, *dst; 4464 struct pf_state_key_cmp key; 4465 struct udphdr *uh = pd->hdr.udp; 4466 4467 bzero(&key, sizeof(key)); 4468 key.af = pd->af; 4469 key.proto = IPPROTO_UDP; 4470 if (direction == PF_IN) { /* wire side, straight */ 4471 PF_ACPY(&key.addr[0], pd->src, key.af); 4472 PF_ACPY(&key.addr[1], pd->dst, key.af); 4473 key.port[0] = uh->uh_sport; 4474 key.port[1] = uh->uh_dport; 4475 } else { /* stack side, reverse */ 4476 PF_ACPY(&key.addr[1], pd->src, key.af); 4477 PF_ACPY(&key.addr[0], pd->dst, key.af); 4478 key.port[1] = uh->uh_sport; 4479 key.port[0] = uh->uh_dport; 4480 } 4481 4482 STATE_LOOKUP(kif, &key, direction, *state, pd); 4483 4484 if (direction == (*state)->direction) { 4485 src = &(*state)->src; 4486 dst = &(*state)->dst; 4487 } else { 4488 src = &(*state)->dst; 4489 dst = &(*state)->src; 4490 } 4491 4492 /* update states */ 4493 if (src->state < PFUDPS_SINGLE) 4494 src->state = PFUDPS_SINGLE; 4495 if (dst->state == PFUDPS_SINGLE) 4496 dst->state = PFUDPS_MULTIPLE; 4497 4498 /* update expire time */ 4499 (*state)->expire = time_uptime; 4500 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4501 (*state)->timeout = PFTM_UDP_MULTIPLE; 4502 else 4503 (*state)->timeout = PFTM_UDP_SINGLE; 4504 4505 /* translate source/destination address, if necessary */ 4506 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4507 struct pf_state_key *nk = (*state)->key[pd->didx]; 4508 4509 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4510 nk->port[pd->sidx] != uh->uh_sport) 4511 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4512 &uh->uh_sum, &nk->addr[pd->sidx], 4513 nk->port[pd->sidx], 1, pd->af); 4514 4515 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4516 nk->port[pd->didx] != uh->uh_dport) 4517 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4518 &uh->uh_sum, &nk->addr[pd->didx], 4519 nk->port[pd->didx], 1, pd->af); 4520 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4521 } 4522 4523 return (PF_PASS); 4524 } 4525 4526 static int 4527 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4528 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4529 { 4530 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4531 u_int16_t icmpid = 0, *icmpsum; 4532 u_int8_t icmptype; 4533 int state_icmp = 0; 4534 struct pf_state_key_cmp key; 4535 4536 bzero(&key, sizeof(key)); 4537 switch (pd->proto) { 4538 #ifdef INET 4539 case IPPROTO_ICMP: 4540 icmptype = pd->hdr.icmp->icmp_type; 4541 icmpid = pd->hdr.icmp->icmp_id; 4542 icmpsum = &pd->hdr.icmp->icmp_cksum; 4543 4544 if (icmptype == ICMP_UNREACH || 4545 icmptype == ICMP_SOURCEQUENCH || 4546 icmptype == ICMP_REDIRECT || 4547 icmptype == ICMP_TIMXCEED || 4548 icmptype == ICMP_PARAMPROB) 4549 state_icmp++; 4550 break; 4551 #endif /* INET */ 4552 #ifdef INET6 4553 case IPPROTO_ICMPV6: 4554 icmptype = pd->hdr.icmp6->icmp6_type; 4555 icmpid = pd->hdr.icmp6->icmp6_id; 4556 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4557 4558 if (icmptype == ICMP6_DST_UNREACH || 4559 icmptype == ICMP6_PACKET_TOO_BIG || 4560 icmptype == ICMP6_TIME_EXCEEDED || 4561 icmptype == ICMP6_PARAM_PROB) 4562 state_icmp++; 4563 break; 4564 #endif /* INET6 */ 4565 } 4566 4567 if (!state_icmp) { 4568 4569 /* 4570 * ICMP query/reply message not related to a TCP/UDP packet. 4571 * Search for an ICMP state. 4572 */ 4573 key.af = pd->af; 4574 key.proto = pd->proto; 4575 key.port[0] = key.port[1] = icmpid; 4576 if (direction == PF_IN) { /* wire side, straight */ 4577 PF_ACPY(&key.addr[0], pd->src, key.af); 4578 PF_ACPY(&key.addr[1], pd->dst, key.af); 4579 } else { /* stack side, reverse */ 4580 PF_ACPY(&key.addr[1], pd->src, key.af); 4581 PF_ACPY(&key.addr[0], pd->dst, key.af); 4582 } 4583 4584 STATE_LOOKUP(kif, &key, direction, *state, pd); 4585 4586 (*state)->expire = time_uptime; 4587 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4588 4589 /* translate source/destination address, if necessary */ 4590 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4591 struct pf_state_key *nk = (*state)->key[pd->didx]; 4592 4593 switch (pd->af) { 4594 #ifdef INET 4595 case AF_INET: 4596 if (PF_ANEQ(pd->src, 4597 &nk->addr[pd->sidx], AF_INET)) 4598 pf_change_a(&saddr->v4.s_addr, 4599 pd->ip_sum, 4600 nk->addr[pd->sidx].v4.s_addr, 0); 4601 4602 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4603 AF_INET)) 4604 pf_change_a(&daddr->v4.s_addr, 4605 pd->ip_sum, 4606 nk->addr[pd->didx].v4.s_addr, 0); 4607 4608 if (nk->port[0] != 4609 pd->hdr.icmp->icmp_id) { 4610 pd->hdr.icmp->icmp_cksum = 4611 pf_cksum_fixup( 4612 pd->hdr.icmp->icmp_cksum, icmpid, 4613 nk->port[pd->sidx], 0); 4614 pd->hdr.icmp->icmp_id = 4615 nk->port[pd->sidx]; 4616 } 4617 4618 m_copyback(m, off, ICMP_MINLEN, 4619 (caddr_t )pd->hdr.icmp); 4620 break; 4621 #endif /* INET */ 4622 #ifdef INET6 4623 case AF_INET6: 4624 if (PF_ANEQ(pd->src, 4625 &nk->addr[pd->sidx], AF_INET6)) 4626 pf_change_a6(saddr, 4627 &pd->hdr.icmp6->icmp6_cksum, 4628 &nk->addr[pd->sidx], 0); 4629 4630 if (PF_ANEQ(pd->dst, 4631 &nk->addr[pd->didx], AF_INET6)) 4632 pf_change_a6(daddr, 4633 &pd->hdr.icmp6->icmp6_cksum, 4634 &nk->addr[pd->didx], 0); 4635 4636 m_copyback(m, off, sizeof(struct icmp6_hdr), 4637 (caddr_t )pd->hdr.icmp6); 4638 break; 4639 #endif /* INET6 */ 4640 } 4641 } 4642 return (PF_PASS); 4643 4644 } else { 4645 /* 4646 * ICMP error message in response to a TCP/UDP packet. 4647 * Extract the inner TCP/UDP header and search for that state. 4648 */ 4649 4650 struct pf_pdesc pd2; 4651 bzero(&pd2, sizeof pd2); 4652 #ifdef INET 4653 struct ip h2; 4654 #endif /* INET */ 4655 #ifdef INET6 4656 struct ip6_hdr h2_6; 4657 int terminal = 0; 4658 #endif /* INET6 */ 4659 int ipoff2 = 0; 4660 int off2 = 0; 4661 4662 pd2.af = pd->af; 4663 /* Payload packet is from the opposite direction. */ 4664 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4665 pd2.didx = (direction == PF_IN) ? 0 : 1; 4666 switch (pd->af) { 4667 #ifdef INET 4668 case AF_INET: 4669 /* offset of h2 in mbuf chain */ 4670 ipoff2 = off + ICMP_MINLEN; 4671 4672 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4673 NULL, reason, pd2.af)) { 4674 DPFPRINTF(PF_DEBUG_MISC, 4675 ("pf: ICMP error message too short " 4676 "(ip)\n")); 4677 return (PF_DROP); 4678 } 4679 /* 4680 * ICMP error messages don't refer to non-first 4681 * fragments 4682 */ 4683 if (h2.ip_off & htons(IP_OFFMASK)) { 4684 REASON_SET(reason, PFRES_FRAG); 4685 return (PF_DROP); 4686 } 4687 4688 /* offset of protocol header that follows h2 */ 4689 off2 = ipoff2 + (h2.ip_hl << 2); 4690 4691 pd2.proto = h2.ip_p; 4692 pd2.src = (struct pf_addr *)&h2.ip_src; 4693 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4694 pd2.ip_sum = &h2.ip_sum; 4695 break; 4696 #endif /* INET */ 4697 #ifdef INET6 4698 case AF_INET6: 4699 ipoff2 = off + sizeof(struct icmp6_hdr); 4700 4701 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4702 NULL, reason, pd2.af)) { 4703 DPFPRINTF(PF_DEBUG_MISC, 4704 ("pf: ICMP error message too short " 4705 "(ip6)\n")); 4706 return (PF_DROP); 4707 } 4708 pd2.proto = h2_6.ip6_nxt; 4709 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4710 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4711 pd2.ip_sum = NULL; 4712 off2 = ipoff2 + sizeof(h2_6); 4713 do { 4714 switch (pd2.proto) { 4715 case IPPROTO_FRAGMENT: 4716 /* 4717 * ICMPv6 error messages for 4718 * non-first fragments 4719 */ 4720 REASON_SET(reason, PFRES_FRAG); 4721 return (PF_DROP); 4722 case IPPROTO_AH: 4723 case IPPROTO_HOPOPTS: 4724 case IPPROTO_ROUTING: 4725 case IPPROTO_DSTOPTS: { 4726 /* get next header and header length */ 4727 struct ip6_ext opt6; 4728 4729 if (!pf_pull_hdr(m, off2, &opt6, 4730 sizeof(opt6), NULL, reason, 4731 pd2.af)) { 4732 DPFPRINTF(PF_DEBUG_MISC, 4733 ("pf: ICMPv6 short opt\n")); 4734 return (PF_DROP); 4735 } 4736 if (pd2.proto == IPPROTO_AH) 4737 off2 += (opt6.ip6e_len + 2) * 4; 4738 else 4739 off2 += (opt6.ip6e_len + 1) * 8; 4740 pd2.proto = opt6.ip6e_nxt; 4741 /* goto the next header */ 4742 break; 4743 } 4744 default: 4745 terminal++; 4746 break; 4747 } 4748 } while (!terminal); 4749 break; 4750 #endif /* INET6 */ 4751 } 4752 4753 switch (pd2.proto) { 4754 case IPPROTO_TCP: { 4755 struct tcphdr th; 4756 u_int32_t seq; 4757 struct pf_state_peer *src, *dst; 4758 u_int8_t dws; 4759 int copyback = 0; 4760 4761 /* 4762 * Only the first 8 bytes of the TCP header can be 4763 * expected. Don't access any TCP header fields after 4764 * th_seq, an ackskew test is not possible. 4765 */ 4766 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4767 pd2.af)) { 4768 DPFPRINTF(PF_DEBUG_MISC, 4769 ("pf: ICMP error message too short " 4770 "(tcp)\n")); 4771 return (PF_DROP); 4772 } 4773 4774 key.af = pd2.af; 4775 key.proto = IPPROTO_TCP; 4776 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4777 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4778 key.port[pd2.sidx] = th.th_sport; 4779 key.port[pd2.didx] = th.th_dport; 4780 4781 STATE_LOOKUP(kif, &key, direction, *state, pd); 4782 4783 if (direction == (*state)->direction) { 4784 src = &(*state)->dst; 4785 dst = &(*state)->src; 4786 } else { 4787 src = &(*state)->src; 4788 dst = &(*state)->dst; 4789 } 4790 4791 if (src->wscale && dst->wscale) 4792 dws = dst->wscale & PF_WSCALE_MASK; 4793 else 4794 dws = 0; 4795 4796 /* Demodulate sequence number */ 4797 seq = ntohl(th.th_seq) - src->seqdiff; 4798 if (src->seqdiff) { 4799 pf_change_a(&th.th_seq, icmpsum, 4800 htonl(seq), 0); 4801 copyback = 1; 4802 } 4803 4804 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4805 (!SEQ_GEQ(src->seqhi, seq) || 4806 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4807 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4808 printf("pf: BAD ICMP %d:%d ", 4809 icmptype, pd->hdr.icmp->icmp_code); 4810 pf_print_host(pd->src, 0, pd->af); 4811 printf(" -> "); 4812 pf_print_host(pd->dst, 0, pd->af); 4813 printf(" state: "); 4814 pf_print_state(*state); 4815 printf(" seq=%u\n", seq); 4816 } 4817 REASON_SET(reason, PFRES_BADSTATE); 4818 return (PF_DROP); 4819 } else { 4820 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4821 printf("pf: OK ICMP %d:%d ", 4822 icmptype, pd->hdr.icmp->icmp_code); 4823 pf_print_host(pd->src, 0, pd->af); 4824 printf(" -> "); 4825 pf_print_host(pd->dst, 0, pd->af); 4826 printf(" state: "); 4827 pf_print_state(*state); 4828 printf(" seq=%u\n", seq); 4829 } 4830 } 4831 4832 /* translate source/destination address, if necessary */ 4833 if ((*state)->key[PF_SK_WIRE] != 4834 (*state)->key[PF_SK_STACK]) { 4835 struct pf_state_key *nk = 4836 (*state)->key[pd->didx]; 4837 4838 if (PF_ANEQ(pd2.src, 4839 &nk->addr[pd2.sidx], pd2.af) || 4840 nk->port[pd2.sidx] != th.th_sport) 4841 pf_change_icmp(pd2.src, &th.th_sport, 4842 daddr, &nk->addr[pd2.sidx], 4843 nk->port[pd2.sidx], NULL, 4844 pd2.ip_sum, icmpsum, 4845 pd->ip_sum, 0, pd2.af); 4846 4847 if (PF_ANEQ(pd2.dst, 4848 &nk->addr[pd2.didx], pd2.af) || 4849 nk->port[pd2.didx] != th.th_dport) 4850 pf_change_icmp(pd2.dst, &th.th_dport, 4851 saddr, &nk->addr[pd2.didx], 4852 nk->port[pd2.didx], NULL, 4853 pd2.ip_sum, icmpsum, 4854 pd->ip_sum, 0, pd2.af); 4855 copyback = 1; 4856 } 4857 4858 if (copyback) { 4859 switch (pd2.af) { 4860 #ifdef INET 4861 case AF_INET: 4862 m_copyback(m, off, ICMP_MINLEN, 4863 (caddr_t )pd->hdr.icmp); 4864 m_copyback(m, ipoff2, sizeof(h2), 4865 (caddr_t )&h2); 4866 break; 4867 #endif /* INET */ 4868 #ifdef INET6 4869 case AF_INET6: 4870 m_copyback(m, off, 4871 sizeof(struct icmp6_hdr), 4872 (caddr_t )pd->hdr.icmp6); 4873 m_copyback(m, ipoff2, sizeof(h2_6), 4874 (caddr_t )&h2_6); 4875 break; 4876 #endif /* INET6 */ 4877 } 4878 m_copyback(m, off2, 8, (caddr_t)&th); 4879 } 4880 4881 return (PF_PASS); 4882 break; 4883 } 4884 case IPPROTO_UDP: { 4885 struct udphdr uh; 4886 4887 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4888 NULL, reason, pd2.af)) { 4889 DPFPRINTF(PF_DEBUG_MISC, 4890 ("pf: ICMP error message too short " 4891 "(udp)\n")); 4892 return (PF_DROP); 4893 } 4894 4895 key.af = pd2.af; 4896 key.proto = IPPROTO_UDP; 4897 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4898 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4899 key.port[pd2.sidx] = uh.uh_sport; 4900 key.port[pd2.didx] = uh.uh_dport; 4901 4902 STATE_LOOKUP(kif, &key, direction, *state, pd); 4903 4904 /* translate source/destination address, if necessary */ 4905 if ((*state)->key[PF_SK_WIRE] != 4906 (*state)->key[PF_SK_STACK]) { 4907 struct pf_state_key *nk = 4908 (*state)->key[pd->didx]; 4909 4910 if (PF_ANEQ(pd2.src, 4911 &nk->addr[pd2.sidx], pd2.af) || 4912 nk->port[pd2.sidx] != uh.uh_sport) 4913 pf_change_icmp(pd2.src, &uh.uh_sport, 4914 daddr, &nk->addr[pd2.sidx], 4915 nk->port[pd2.sidx], &uh.uh_sum, 4916 pd2.ip_sum, icmpsum, 4917 pd->ip_sum, 1, pd2.af); 4918 4919 if (PF_ANEQ(pd2.dst, 4920 &nk->addr[pd2.didx], pd2.af) || 4921 nk->port[pd2.didx] != uh.uh_dport) 4922 pf_change_icmp(pd2.dst, &uh.uh_dport, 4923 saddr, &nk->addr[pd2.didx], 4924 nk->port[pd2.didx], &uh.uh_sum, 4925 pd2.ip_sum, icmpsum, 4926 pd->ip_sum, 1, pd2.af); 4927 4928 switch (pd2.af) { 4929 #ifdef INET 4930 case AF_INET: 4931 m_copyback(m, off, ICMP_MINLEN, 4932 (caddr_t )pd->hdr.icmp); 4933 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4934 break; 4935 #endif /* INET */ 4936 #ifdef INET6 4937 case AF_INET6: 4938 m_copyback(m, off, 4939 sizeof(struct icmp6_hdr), 4940 (caddr_t )pd->hdr.icmp6); 4941 m_copyback(m, ipoff2, sizeof(h2_6), 4942 (caddr_t )&h2_6); 4943 break; 4944 #endif /* INET6 */ 4945 } 4946 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4947 } 4948 return (PF_PASS); 4949 break; 4950 } 4951 #ifdef INET 4952 case IPPROTO_ICMP: { 4953 struct icmp iih; 4954 4955 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4956 NULL, reason, pd2.af)) { 4957 DPFPRINTF(PF_DEBUG_MISC, 4958 ("pf: ICMP error message too short i" 4959 "(icmp)\n")); 4960 return (PF_DROP); 4961 } 4962 4963 key.af = pd2.af; 4964 key.proto = IPPROTO_ICMP; 4965 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4966 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4967 key.port[0] = key.port[1] = iih.icmp_id; 4968 4969 STATE_LOOKUP(kif, &key, direction, *state, pd); 4970 4971 /* translate source/destination address, if necessary */ 4972 if ((*state)->key[PF_SK_WIRE] != 4973 (*state)->key[PF_SK_STACK]) { 4974 struct pf_state_key *nk = 4975 (*state)->key[pd->didx]; 4976 4977 if (PF_ANEQ(pd2.src, 4978 &nk->addr[pd2.sidx], pd2.af) || 4979 nk->port[pd2.sidx] != iih.icmp_id) 4980 pf_change_icmp(pd2.src, &iih.icmp_id, 4981 daddr, &nk->addr[pd2.sidx], 4982 nk->port[pd2.sidx], NULL, 4983 pd2.ip_sum, icmpsum, 4984 pd->ip_sum, 0, AF_INET); 4985 4986 if (PF_ANEQ(pd2.dst, 4987 &nk->addr[pd2.didx], pd2.af) || 4988 nk->port[pd2.didx] != iih.icmp_id) 4989 pf_change_icmp(pd2.dst, &iih.icmp_id, 4990 saddr, &nk->addr[pd2.didx], 4991 nk->port[pd2.didx], NULL, 4992 pd2.ip_sum, icmpsum, 4993 pd->ip_sum, 0, AF_INET); 4994 4995 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 4996 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4997 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 4998 } 4999 return (PF_PASS); 5000 break; 5001 } 5002 #endif /* INET */ 5003 #ifdef INET6 5004 case IPPROTO_ICMPV6: { 5005 struct icmp6_hdr iih; 5006 5007 if (!pf_pull_hdr(m, off2, &iih, 5008 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5009 DPFPRINTF(PF_DEBUG_MISC, 5010 ("pf: ICMP error message too short " 5011 "(icmp6)\n")); 5012 return (PF_DROP); 5013 } 5014 5015 key.af = pd2.af; 5016 key.proto = IPPROTO_ICMPV6; 5017 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5018 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5019 key.port[0] = key.port[1] = iih.icmp6_id; 5020 5021 STATE_LOOKUP(kif, &key, direction, *state, pd); 5022 5023 /* translate source/destination address, if necessary */ 5024 if ((*state)->key[PF_SK_WIRE] != 5025 (*state)->key[PF_SK_STACK]) { 5026 struct pf_state_key *nk = 5027 (*state)->key[pd->didx]; 5028 5029 if (PF_ANEQ(pd2.src, 5030 &nk->addr[pd2.sidx], pd2.af) || 5031 nk->port[pd2.sidx] != iih.icmp6_id) 5032 pf_change_icmp(pd2.src, &iih.icmp6_id, 5033 daddr, &nk->addr[pd2.sidx], 5034 nk->port[pd2.sidx], NULL, 5035 pd2.ip_sum, icmpsum, 5036 pd->ip_sum, 0, AF_INET6); 5037 5038 if (PF_ANEQ(pd2.dst, 5039 &nk->addr[pd2.didx], pd2.af) || 5040 nk->port[pd2.didx] != iih.icmp6_id) 5041 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5042 saddr, &nk->addr[pd2.didx], 5043 nk->port[pd2.didx], NULL, 5044 pd2.ip_sum, icmpsum, 5045 pd->ip_sum, 0, AF_INET6); 5046 5047 m_copyback(m, off, sizeof(struct icmp6_hdr), 5048 (caddr_t)pd->hdr.icmp6); 5049 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5050 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5051 (caddr_t)&iih); 5052 } 5053 return (PF_PASS); 5054 break; 5055 } 5056 #endif /* INET6 */ 5057 default: { 5058 key.af = pd2.af; 5059 key.proto = pd2.proto; 5060 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5061 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5062 key.port[0] = key.port[1] = 0; 5063 5064 STATE_LOOKUP(kif, &key, direction, *state, pd); 5065 5066 /* translate source/destination address, if necessary */ 5067 if ((*state)->key[PF_SK_WIRE] != 5068 (*state)->key[PF_SK_STACK]) { 5069 struct pf_state_key *nk = 5070 (*state)->key[pd->didx]; 5071 5072 if (PF_ANEQ(pd2.src, 5073 &nk->addr[pd2.sidx], pd2.af)) 5074 pf_change_icmp(pd2.src, NULL, daddr, 5075 &nk->addr[pd2.sidx], 0, NULL, 5076 pd2.ip_sum, icmpsum, 5077 pd->ip_sum, 0, pd2.af); 5078 5079 if (PF_ANEQ(pd2.dst, 5080 &nk->addr[pd2.didx], pd2.af)) 5081 pf_change_icmp(pd2.dst, NULL, saddr, 5082 &nk->addr[pd2.didx], 0, NULL, 5083 pd2.ip_sum, icmpsum, 5084 pd->ip_sum, 0, pd2.af); 5085 5086 switch (pd2.af) { 5087 #ifdef INET 5088 case AF_INET: 5089 m_copyback(m, off, ICMP_MINLEN, 5090 (caddr_t)pd->hdr.icmp); 5091 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5092 break; 5093 #endif /* INET */ 5094 #ifdef INET6 5095 case AF_INET6: 5096 m_copyback(m, off, 5097 sizeof(struct icmp6_hdr), 5098 (caddr_t )pd->hdr.icmp6); 5099 m_copyback(m, ipoff2, sizeof(h2_6), 5100 (caddr_t )&h2_6); 5101 break; 5102 #endif /* INET6 */ 5103 } 5104 } 5105 return (PF_PASS); 5106 break; 5107 } 5108 } 5109 } 5110 } 5111 5112 static int 5113 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5114 struct mbuf *m, struct pf_pdesc *pd) 5115 { 5116 struct pf_state_peer *src, *dst; 5117 struct pf_state_key_cmp key; 5118 5119 bzero(&key, sizeof(key)); 5120 key.af = pd->af; 5121 key.proto = pd->proto; 5122 if (direction == PF_IN) { 5123 PF_ACPY(&key.addr[0], pd->src, key.af); 5124 PF_ACPY(&key.addr[1], pd->dst, key.af); 5125 key.port[0] = key.port[1] = 0; 5126 } else { 5127 PF_ACPY(&key.addr[1], pd->src, key.af); 5128 PF_ACPY(&key.addr[0], pd->dst, key.af); 5129 key.port[1] = key.port[0] = 0; 5130 } 5131 5132 STATE_LOOKUP(kif, &key, direction, *state, pd); 5133 5134 if (direction == (*state)->direction) { 5135 src = &(*state)->src; 5136 dst = &(*state)->dst; 5137 } else { 5138 src = &(*state)->dst; 5139 dst = &(*state)->src; 5140 } 5141 5142 /* update states */ 5143 if (src->state < PFOTHERS_SINGLE) 5144 src->state = PFOTHERS_SINGLE; 5145 if (dst->state == PFOTHERS_SINGLE) 5146 dst->state = PFOTHERS_MULTIPLE; 5147 5148 /* update expire time */ 5149 (*state)->expire = time_uptime; 5150 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5151 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5152 else 5153 (*state)->timeout = PFTM_OTHER_SINGLE; 5154 5155 /* translate source/destination address, if necessary */ 5156 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5157 struct pf_state_key *nk = (*state)->key[pd->didx]; 5158 5159 KASSERT(nk, ("%s: nk is null", __func__)); 5160 KASSERT(pd, ("%s: pd is null", __func__)); 5161 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5162 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5163 switch (pd->af) { 5164 #ifdef INET 5165 case AF_INET: 5166 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5167 pf_change_a(&pd->src->v4.s_addr, 5168 pd->ip_sum, 5169 nk->addr[pd->sidx].v4.s_addr, 5170 0); 5171 5172 5173 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5174 pf_change_a(&pd->dst->v4.s_addr, 5175 pd->ip_sum, 5176 nk->addr[pd->didx].v4.s_addr, 5177 0); 5178 5179 break; 5180 #endif /* INET */ 5181 #ifdef INET6 5182 case AF_INET6: 5183 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5184 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5185 5186 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5187 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5188 #endif /* INET6 */ 5189 } 5190 } 5191 return (PF_PASS); 5192 } 5193 5194 /* 5195 * ipoff and off are measured from the start of the mbuf chain. 5196 * h must be at "ipoff" on the mbuf chain. 5197 */ 5198 void * 5199 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5200 u_short *actionp, u_short *reasonp, sa_family_t af) 5201 { 5202 switch (af) { 5203 #ifdef INET 5204 case AF_INET: { 5205 struct ip *h = mtod(m, struct ip *); 5206 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5207 5208 if (fragoff) { 5209 if (fragoff >= len) 5210 ACTION_SET(actionp, PF_PASS); 5211 else { 5212 ACTION_SET(actionp, PF_DROP); 5213 REASON_SET(reasonp, PFRES_FRAG); 5214 } 5215 return (NULL); 5216 } 5217 if (m->m_pkthdr.len < off + len || 5218 ntohs(h->ip_len) < off + len) { 5219 ACTION_SET(actionp, PF_DROP); 5220 REASON_SET(reasonp, PFRES_SHORT); 5221 return (NULL); 5222 } 5223 break; 5224 } 5225 #endif /* INET */ 5226 #ifdef INET6 5227 case AF_INET6: { 5228 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5229 5230 if (m->m_pkthdr.len < off + len || 5231 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5232 (unsigned)(off + len)) { 5233 ACTION_SET(actionp, PF_DROP); 5234 REASON_SET(reasonp, PFRES_SHORT); 5235 return (NULL); 5236 } 5237 break; 5238 } 5239 #endif /* INET6 */ 5240 } 5241 m_copydata(m, off, len, p); 5242 return (p); 5243 } 5244 5245 #ifdef RADIX_MPATH 5246 static int 5247 pf_routable_oldmpath(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5248 int rtableid) 5249 { 5250 struct radix_node_head *rnh; 5251 struct sockaddr_in *dst; 5252 int ret = 1; 5253 int check_mpath; 5254 #ifdef INET6 5255 struct sockaddr_in6 *dst6; 5256 struct route_in6 ro; 5257 #else 5258 struct route ro; 5259 #endif 5260 struct radix_node *rn; 5261 struct rtentry *rt; 5262 struct ifnet *ifp; 5263 5264 check_mpath = 0; 5265 /* XXX: stick to table 0 for now */ 5266 rnh = rt_tables_get_rnh(0, af); 5267 if (rnh != NULL && rn_mpath_capable(rnh)) 5268 check_mpath = 1; 5269 bzero(&ro, sizeof(ro)); 5270 switch (af) { 5271 case AF_INET: 5272 dst = satosin(&ro.ro_dst); 5273 dst->sin_family = AF_INET; 5274 dst->sin_len = sizeof(*dst); 5275 dst->sin_addr = addr->v4; 5276 break; 5277 #ifdef INET6 5278 case AF_INET6: 5279 /* 5280 * Skip check for addresses with embedded interface scope, 5281 * as they would always match anyway. 5282 */ 5283 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5284 goto out; 5285 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5286 dst6->sin6_family = AF_INET6; 5287 dst6->sin6_len = sizeof(*dst6); 5288 dst6->sin6_addr = addr->v6; 5289 break; 5290 #endif /* INET6 */ 5291 default: 5292 return (0); 5293 } 5294 5295 /* Skip checks for ipsec interfaces */ 5296 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5297 goto out; 5298 5299 switch (af) { 5300 #ifdef INET6 5301 case AF_INET6: 5302 in6_rtalloc_ign(&ro, 0, rtableid); 5303 break; 5304 #endif 5305 #ifdef INET 5306 case AF_INET: 5307 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5308 break; 5309 #endif 5310 } 5311 5312 if (ro.ro_rt != NULL) { 5313 /* No interface given, this is a no-route check */ 5314 if (kif == NULL) 5315 goto out; 5316 5317 if (kif->pfik_ifp == NULL) { 5318 ret = 0; 5319 goto out; 5320 } 5321 5322 /* Perform uRPF check if passed input interface */ 5323 ret = 0; 5324 rn = (struct radix_node *)ro.ro_rt; 5325 do { 5326 rt = (struct rtentry *)rn; 5327 ifp = rt->rt_ifp; 5328 5329 if (kif->pfik_ifp == ifp) 5330 ret = 1; 5331 rn = rn_mpath_next(rn); 5332 } while (check_mpath == 1 && rn != NULL && ret == 0); 5333 } else 5334 ret = 0; 5335 out: 5336 if (ro.ro_rt != NULL) 5337 RTFREE(ro.ro_rt); 5338 return (ret); 5339 } 5340 #endif 5341 5342 int 5343 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5344 int rtableid) 5345 { 5346 #ifdef INET 5347 struct nhop4_basic nh4; 5348 #endif 5349 #ifdef INET6 5350 struct nhop6_basic nh6; 5351 #endif 5352 struct ifnet *ifp; 5353 #ifdef RADIX_MPATH 5354 struct radix_node_head *rnh; 5355 5356 /* XXX: stick to table 0 for now */ 5357 rnh = rt_tables_get_rnh(0, af); 5358 if (rnh != NULL && rn_mpath_capable(rnh)) 5359 return (pf_routable_oldmpath(addr, af, kif, rtableid)); 5360 #endif 5361 /* 5362 * Skip check for addresses with embedded interface scope, 5363 * as they would always match anyway. 5364 */ 5365 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5366 return (1); 5367 5368 if (af != AF_INET && af != AF_INET6) 5369 return (0); 5370 5371 /* Skip checks for ipsec interfaces */ 5372 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5373 return (1); 5374 5375 ifp = NULL; 5376 5377 switch (af) { 5378 #ifdef INET6 5379 case AF_INET6: 5380 if (fib6_lookup_nh_basic(rtableid, &addr->v6, 0, 0, 0, &nh6)!=0) 5381 return (0); 5382 ifp = nh6.nh_ifp; 5383 break; 5384 #endif 5385 #ifdef INET 5386 case AF_INET: 5387 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) != 0) 5388 return (0); 5389 ifp = nh4.nh_ifp; 5390 break; 5391 #endif 5392 } 5393 5394 /* No interface given, this is a no-route check */ 5395 if (kif == NULL) 5396 return (1); 5397 5398 if (kif->pfik_ifp == NULL) 5399 return (0); 5400 5401 /* Perform uRPF check if passed input interface */ 5402 if (kif->pfik_ifp == ifp) 5403 return (1); 5404 return (0); 5405 } 5406 5407 #ifdef INET 5408 static void 5409 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5410 struct pf_state *s, struct pf_pdesc *pd) 5411 { 5412 struct mbuf *m0, *m1; 5413 struct sockaddr_in dst; 5414 struct ip *ip; 5415 struct ifnet *ifp = NULL; 5416 struct pf_addr naddr; 5417 struct pf_src_node *sn = NULL; 5418 int error = 0; 5419 uint16_t ip_len, ip_off; 5420 5421 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5422 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5423 __func__)); 5424 5425 if ((pd->pf_mtag == NULL && 5426 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5427 pd->pf_mtag->routed++ > 3) { 5428 m0 = *m; 5429 *m = NULL; 5430 goto bad_locked; 5431 } 5432 5433 if (r->rt == PF_DUPTO) { 5434 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5435 if (s) 5436 PF_STATE_UNLOCK(s); 5437 return; 5438 } 5439 } else { 5440 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5441 if (s) 5442 PF_STATE_UNLOCK(s); 5443 return; 5444 } 5445 m0 = *m; 5446 } 5447 5448 ip = mtod(m0, struct ip *); 5449 5450 bzero(&dst, sizeof(dst)); 5451 dst.sin_family = AF_INET; 5452 dst.sin_len = sizeof(dst); 5453 dst.sin_addr = ip->ip_dst; 5454 5455 if (TAILQ_EMPTY(&r->rpool.list)) { 5456 DPFPRINTF(PF_DEBUG_URGENT, 5457 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5458 goto bad_locked; 5459 } 5460 if (s == NULL) { 5461 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5462 &naddr, NULL, &sn); 5463 if (!PF_AZERO(&naddr, AF_INET)) 5464 dst.sin_addr.s_addr = naddr.v4.s_addr; 5465 ifp = r->rpool.cur->kif ? 5466 r->rpool.cur->kif->pfik_ifp : NULL; 5467 } else { 5468 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5469 dst.sin_addr.s_addr = 5470 s->rt_addr.v4.s_addr; 5471 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5472 PF_STATE_UNLOCK(s); 5473 } 5474 if (ifp == NULL) 5475 goto bad; 5476 5477 if (oifp != ifp) { 5478 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5479 goto bad; 5480 else if (m0 == NULL) 5481 goto done; 5482 if (m0->m_len < sizeof(struct ip)) { 5483 DPFPRINTF(PF_DEBUG_URGENT, 5484 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5485 goto bad; 5486 } 5487 ip = mtod(m0, struct ip *); 5488 } 5489 5490 if (ifp->if_flags & IFF_LOOPBACK) 5491 m0->m_flags |= M_SKIP_FIREWALL; 5492 5493 ip_len = ntohs(ip->ip_len); 5494 ip_off = ntohs(ip->ip_off); 5495 5496 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5497 m0->m_pkthdr.csum_flags |= CSUM_IP; 5498 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5499 in_delayed_cksum(m0); 5500 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5501 } 5502 #ifdef SCTP 5503 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5504 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5505 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5506 } 5507 #endif 5508 5509 /* 5510 * If small enough for interface, or the interface will take 5511 * care of the fragmentation for us, we can just send directly. 5512 */ 5513 if (ip_len <= ifp->if_mtu || 5514 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5515 ip->ip_sum = 0; 5516 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5517 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5518 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5519 } 5520 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5521 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5522 goto done; 5523 } 5524 5525 /* Balk when DF bit is set or the interface didn't support TSO. */ 5526 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5527 error = EMSGSIZE; 5528 KMOD_IPSTAT_INC(ips_cantfrag); 5529 if (r->rt != PF_DUPTO) { 5530 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5531 ifp->if_mtu); 5532 goto done; 5533 } else 5534 goto bad; 5535 } 5536 5537 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5538 if (error) 5539 goto bad; 5540 5541 for (; m0; m0 = m1) { 5542 m1 = m0->m_nextpkt; 5543 m0->m_nextpkt = NULL; 5544 if (error == 0) { 5545 m_clrprotoflags(m0); 5546 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5547 } else 5548 m_freem(m0); 5549 } 5550 5551 if (error == 0) 5552 KMOD_IPSTAT_INC(ips_fragmented); 5553 5554 done: 5555 if (r->rt != PF_DUPTO) 5556 *m = NULL; 5557 return; 5558 5559 bad_locked: 5560 if (s) 5561 PF_STATE_UNLOCK(s); 5562 bad: 5563 m_freem(m0); 5564 goto done; 5565 } 5566 #endif /* INET */ 5567 5568 #ifdef INET6 5569 static void 5570 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5571 struct pf_state *s, struct pf_pdesc *pd) 5572 { 5573 struct mbuf *m0; 5574 struct sockaddr_in6 dst; 5575 struct ip6_hdr *ip6; 5576 struct ifnet *ifp = NULL; 5577 struct pf_addr naddr; 5578 struct pf_src_node *sn = NULL; 5579 5580 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5581 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5582 __func__)); 5583 5584 if ((pd->pf_mtag == NULL && 5585 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5586 pd->pf_mtag->routed++ > 3) { 5587 m0 = *m; 5588 *m = NULL; 5589 goto bad_locked; 5590 } 5591 5592 if (r->rt == PF_DUPTO) { 5593 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5594 if (s) 5595 PF_STATE_UNLOCK(s); 5596 return; 5597 } 5598 } else { 5599 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5600 if (s) 5601 PF_STATE_UNLOCK(s); 5602 return; 5603 } 5604 m0 = *m; 5605 } 5606 5607 ip6 = mtod(m0, struct ip6_hdr *); 5608 5609 bzero(&dst, sizeof(dst)); 5610 dst.sin6_family = AF_INET6; 5611 dst.sin6_len = sizeof(dst); 5612 dst.sin6_addr = ip6->ip6_dst; 5613 5614 if (TAILQ_EMPTY(&r->rpool.list)) { 5615 DPFPRINTF(PF_DEBUG_URGENT, 5616 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5617 goto bad_locked; 5618 } 5619 if (s == NULL) { 5620 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5621 &naddr, NULL, &sn); 5622 if (!PF_AZERO(&naddr, AF_INET6)) 5623 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5624 &naddr, AF_INET6); 5625 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5626 } else { 5627 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5628 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5629 &s->rt_addr, AF_INET6); 5630 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5631 } 5632 5633 if (s) 5634 PF_STATE_UNLOCK(s); 5635 5636 if (ifp == NULL) 5637 goto bad; 5638 5639 if (oifp != ifp) { 5640 if (pf_test6(PF_FWD, ifp, &m0, NULL) != PF_PASS) 5641 goto bad; 5642 else if (m0 == NULL) 5643 goto done; 5644 if (m0->m_len < sizeof(struct ip6_hdr)) { 5645 DPFPRINTF(PF_DEBUG_URGENT, 5646 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5647 __func__)); 5648 goto bad; 5649 } 5650 ip6 = mtod(m0, struct ip6_hdr *); 5651 } 5652 5653 if (ifp->if_flags & IFF_LOOPBACK) 5654 m0->m_flags |= M_SKIP_FIREWALL; 5655 5656 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5657 ~ifp->if_hwassist) { 5658 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5659 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5660 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5661 } 5662 5663 /* 5664 * If the packet is too large for the outgoing interface, 5665 * send back an icmp6 error. 5666 */ 5667 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5668 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5669 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5670 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5671 else { 5672 in6_ifstat_inc(ifp, ifs6_in_toobig); 5673 if (r->rt != PF_DUPTO) 5674 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5675 else 5676 goto bad; 5677 } 5678 5679 done: 5680 if (r->rt != PF_DUPTO) 5681 *m = NULL; 5682 return; 5683 5684 bad_locked: 5685 if (s) 5686 PF_STATE_UNLOCK(s); 5687 bad: 5688 m_freem(m0); 5689 goto done; 5690 } 5691 #endif /* INET6 */ 5692 5693 /* 5694 * FreeBSD supports cksum offloads for the following drivers. 5695 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5696 * ti(4), txp(4), xl(4) 5697 * 5698 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5699 * network driver performed cksum including pseudo header, need to verify 5700 * csum_data 5701 * CSUM_DATA_VALID : 5702 * network driver performed cksum, needs to additional pseudo header 5703 * cksum computation with partial csum_data(i.e. lack of H/W support for 5704 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5705 * 5706 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5707 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5708 * TCP/UDP layer. 5709 * Also, set csum_data to 0xffff to force cksum validation. 5710 */ 5711 static int 5712 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5713 { 5714 u_int16_t sum = 0; 5715 int hw_assist = 0; 5716 struct ip *ip; 5717 5718 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5719 return (1); 5720 if (m->m_pkthdr.len < off + len) 5721 return (1); 5722 5723 switch (p) { 5724 case IPPROTO_TCP: 5725 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5726 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5727 sum = m->m_pkthdr.csum_data; 5728 } else { 5729 ip = mtod(m, struct ip *); 5730 sum = in_pseudo(ip->ip_src.s_addr, 5731 ip->ip_dst.s_addr, htonl((u_short)len + 5732 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5733 } 5734 sum ^= 0xffff; 5735 ++hw_assist; 5736 } 5737 break; 5738 case IPPROTO_UDP: 5739 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5740 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5741 sum = m->m_pkthdr.csum_data; 5742 } else { 5743 ip = mtod(m, struct ip *); 5744 sum = in_pseudo(ip->ip_src.s_addr, 5745 ip->ip_dst.s_addr, htonl((u_short)len + 5746 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5747 } 5748 sum ^= 0xffff; 5749 ++hw_assist; 5750 } 5751 break; 5752 case IPPROTO_ICMP: 5753 #ifdef INET6 5754 case IPPROTO_ICMPV6: 5755 #endif /* INET6 */ 5756 break; 5757 default: 5758 return (1); 5759 } 5760 5761 if (!hw_assist) { 5762 switch (af) { 5763 case AF_INET: 5764 if (p == IPPROTO_ICMP) { 5765 if (m->m_len < off) 5766 return (1); 5767 m->m_data += off; 5768 m->m_len -= off; 5769 sum = in_cksum(m, len); 5770 m->m_data -= off; 5771 m->m_len += off; 5772 } else { 5773 if (m->m_len < sizeof(struct ip)) 5774 return (1); 5775 sum = in4_cksum(m, p, off, len); 5776 } 5777 break; 5778 #ifdef INET6 5779 case AF_INET6: 5780 if (m->m_len < sizeof(struct ip6_hdr)) 5781 return (1); 5782 sum = in6_cksum(m, p, off, len); 5783 break; 5784 #endif /* INET6 */ 5785 default: 5786 return (1); 5787 } 5788 } 5789 if (sum) { 5790 switch (p) { 5791 case IPPROTO_TCP: 5792 { 5793 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5794 break; 5795 } 5796 case IPPROTO_UDP: 5797 { 5798 KMOD_UDPSTAT_INC(udps_badsum); 5799 break; 5800 } 5801 #ifdef INET 5802 case IPPROTO_ICMP: 5803 { 5804 KMOD_ICMPSTAT_INC(icps_checksum); 5805 break; 5806 } 5807 #endif 5808 #ifdef INET6 5809 case IPPROTO_ICMPV6: 5810 { 5811 KMOD_ICMP6STAT_INC(icp6s_checksum); 5812 break; 5813 } 5814 #endif /* INET6 */ 5815 } 5816 return (1); 5817 } else { 5818 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5819 m->m_pkthdr.csum_flags |= 5820 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5821 m->m_pkthdr.csum_data = 0xffff; 5822 } 5823 } 5824 return (0); 5825 } 5826 5827 5828 #ifdef INET 5829 int 5830 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5831 { 5832 struct pfi_kif *kif; 5833 u_short action, reason = 0, log = 0; 5834 struct mbuf *m = *m0; 5835 struct ip *h = NULL; 5836 struct m_tag *ipfwtag; 5837 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5838 struct pf_state *s = NULL; 5839 struct pf_ruleset *ruleset = NULL; 5840 struct pf_pdesc pd; 5841 int off, dirndx, pqid = 0; 5842 5843 M_ASSERTPKTHDR(m); 5844 5845 if (!V_pf_status.running) 5846 return (PF_PASS); 5847 5848 memset(&pd, 0, sizeof(pd)); 5849 5850 kif = (struct pfi_kif *)ifp->if_pf_kif; 5851 5852 if (kif == NULL) { 5853 DPFPRINTF(PF_DEBUG_URGENT, 5854 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5855 return (PF_DROP); 5856 } 5857 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5858 return (PF_PASS); 5859 5860 if (m->m_flags & M_SKIP_FIREWALL) 5861 return (PF_PASS); 5862 5863 pd.pf_mtag = pf_find_mtag(m); 5864 5865 PF_RULES_RLOCK(); 5866 5867 if (ip_divert_ptr != NULL && 5868 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5869 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5870 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5871 if (pd.pf_mtag == NULL && 5872 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5873 action = PF_DROP; 5874 goto done; 5875 } 5876 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5877 m_tag_delete(m, ipfwtag); 5878 } 5879 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5880 m->m_flags |= M_FASTFWD_OURS; 5881 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5882 } 5883 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5884 /* We do IP header normalization and packet reassembly here */ 5885 action = PF_DROP; 5886 goto done; 5887 } 5888 m = *m0; /* pf_normalize messes with m0 */ 5889 h = mtod(m, struct ip *); 5890 5891 off = h->ip_hl << 2; 5892 if (off < (int)sizeof(struct ip)) { 5893 action = PF_DROP; 5894 REASON_SET(&reason, PFRES_SHORT); 5895 log = 1; 5896 goto done; 5897 } 5898 5899 pd.src = (struct pf_addr *)&h->ip_src; 5900 pd.dst = (struct pf_addr *)&h->ip_dst; 5901 pd.sport = pd.dport = NULL; 5902 pd.ip_sum = &h->ip_sum; 5903 pd.proto_sum = NULL; 5904 pd.proto = h->ip_p; 5905 pd.dir = dir; 5906 pd.sidx = (dir == PF_IN) ? 0 : 1; 5907 pd.didx = (dir == PF_IN) ? 1 : 0; 5908 pd.af = AF_INET; 5909 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 5910 pd.tot_len = ntohs(h->ip_len); 5911 5912 /* handle fragments that didn't get reassembled by normalization */ 5913 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5914 action = pf_test_fragment(&r, dir, kif, m, h, 5915 &pd, &a, &ruleset); 5916 goto done; 5917 } 5918 5919 switch (h->ip_p) { 5920 5921 case IPPROTO_TCP: { 5922 struct tcphdr th; 5923 5924 pd.hdr.tcp = &th; 5925 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5926 &action, &reason, AF_INET)) { 5927 log = action != PF_PASS; 5928 goto done; 5929 } 5930 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5931 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5932 pqid = 1; 5933 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5934 if (action == PF_DROP) 5935 goto done; 5936 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5937 &reason); 5938 if (action == PF_PASS) { 5939 if (pfsync_update_state_ptr != NULL) 5940 pfsync_update_state_ptr(s); 5941 r = s->rule.ptr; 5942 a = s->anchor.ptr; 5943 log = s->log; 5944 } else if (s == NULL) 5945 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5946 &a, &ruleset, inp); 5947 break; 5948 } 5949 5950 case IPPROTO_UDP: { 5951 struct udphdr uh; 5952 5953 pd.hdr.udp = &uh; 5954 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5955 &action, &reason, AF_INET)) { 5956 log = action != PF_PASS; 5957 goto done; 5958 } 5959 if (uh.uh_dport == 0 || 5960 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5961 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5962 action = PF_DROP; 5963 REASON_SET(&reason, PFRES_SHORT); 5964 goto done; 5965 } 5966 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5967 if (action == PF_PASS) { 5968 if (pfsync_update_state_ptr != NULL) 5969 pfsync_update_state_ptr(s); 5970 r = s->rule.ptr; 5971 a = s->anchor.ptr; 5972 log = s->log; 5973 } else if (s == NULL) 5974 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5975 &a, &ruleset, inp); 5976 break; 5977 } 5978 5979 case IPPROTO_ICMP: { 5980 struct icmp ih; 5981 5982 pd.hdr.icmp = &ih; 5983 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 5984 &action, &reason, AF_INET)) { 5985 log = action != PF_PASS; 5986 goto done; 5987 } 5988 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 5989 &reason); 5990 if (action == PF_PASS) { 5991 if (pfsync_update_state_ptr != NULL) 5992 pfsync_update_state_ptr(s); 5993 r = s->rule.ptr; 5994 a = s->anchor.ptr; 5995 log = s->log; 5996 } else if (s == NULL) 5997 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5998 &a, &ruleset, inp); 5999 break; 6000 } 6001 6002 #ifdef INET6 6003 case IPPROTO_ICMPV6: { 6004 action = PF_DROP; 6005 DPFPRINTF(PF_DEBUG_MISC, 6006 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6007 goto done; 6008 } 6009 #endif 6010 6011 default: 6012 action = pf_test_state_other(&s, dir, kif, m, &pd); 6013 if (action == PF_PASS) { 6014 if (pfsync_update_state_ptr != NULL) 6015 pfsync_update_state_ptr(s); 6016 r = s->rule.ptr; 6017 a = s->anchor.ptr; 6018 log = s->log; 6019 } else if (s == NULL) 6020 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6021 &a, &ruleset, inp); 6022 break; 6023 } 6024 6025 done: 6026 PF_RULES_RUNLOCK(); 6027 if (action == PF_PASS && h->ip_hl > 5 && 6028 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6029 action = PF_DROP; 6030 REASON_SET(&reason, PFRES_IPOPTIONS); 6031 log = r->log; 6032 DPFPRINTF(PF_DEBUG_MISC, 6033 ("pf: dropping packet with ip options\n")); 6034 } 6035 6036 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6037 action = PF_DROP; 6038 REASON_SET(&reason, PFRES_MEMORY); 6039 } 6040 if (r->rtableid >= 0) 6041 M_SETFIB(m, r->rtableid); 6042 6043 if (r->scrub_flags & PFSTATE_SETPRIO) { 6044 if (pd.tos & IPTOS_LOWDELAY) 6045 pqid = 1; 6046 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6047 action = PF_DROP; 6048 REASON_SET(&reason, PFRES_MEMORY); 6049 log = 1; 6050 DPFPRINTF(PF_DEBUG_MISC, 6051 ("pf: failed to allocate 802.1q mtag\n")); 6052 } 6053 } 6054 6055 #ifdef ALTQ 6056 if (action == PF_PASS && r->qid) { 6057 if (pd.pf_mtag == NULL && 6058 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6059 action = PF_DROP; 6060 REASON_SET(&reason, PFRES_MEMORY); 6061 } else { 6062 if (s != NULL) 6063 pd.pf_mtag->qid_hash = pf_state_hash(s); 6064 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6065 pd.pf_mtag->qid = r->pqid; 6066 else 6067 pd.pf_mtag->qid = r->qid; 6068 /* Add hints for ecn. */ 6069 pd.pf_mtag->hdr = h; 6070 } 6071 6072 } 6073 #endif /* ALTQ */ 6074 6075 /* 6076 * connections redirected to loopback should not match sockets 6077 * bound specifically to loopback due to security implications, 6078 * see tcp_input() and in_pcblookup_listen(). 6079 */ 6080 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6081 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6082 (s->nat_rule.ptr->action == PF_RDR || 6083 s->nat_rule.ptr->action == PF_BINAT) && 6084 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 6085 m->m_flags |= M_SKIP_FIREWALL; 6086 6087 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6088 !PACKET_LOOPED(&pd)) { 6089 6090 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6091 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6092 if (ipfwtag != NULL) { 6093 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6094 ntohs(r->divert.port); 6095 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6096 6097 if (s) 6098 PF_STATE_UNLOCK(s); 6099 6100 m_tag_prepend(m, ipfwtag); 6101 if (m->m_flags & M_FASTFWD_OURS) { 6102 if (pd.pf_mtag == NULL && 6103 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6104 action = PF_DROP; 6105 REASON_SET(&reason, PFRES_MEMORY); 6106 log = 1; 6107 DPFPRINTF(PF_DEBUG_MISC, 6108 ("pf: failed to allocate tag\n")); 6109 } else { 6110 pd.pf_mtag->flags |= 6111 PF_FASTFWD_OURS_PRESENT; 6112 m->m_flags &= ~M_FASTFWD_OURS; 6113 } 6114 } 6115 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 6116 *m0 = NULL; 6117 6118 return (action); 6119 } else { 6120 /* XXX: ipfw has the same behaviour! */ 6121 action = PF_DROP; 6122 REASON_SET(&reason, PFRES_MEMORY); 6123 log = 1; 6124 DPFPRINTF(PF_DEBUG_MISC, 6125 ("pf: failed to allocate divert tag\n")); 6126 } 6127 } 6128 6129 if (log) { 6130 struct pf_rule *lr; 6131 6132 if (s != NULL && s->nat_rule.ptr != NULL && 6133 s->nat_rule.ptr->log & PF_LOG_ALL) 6134 lr = s->nat_rule.ptr; 6135 else 6136 lr = r; 6137 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6138 (s == NULL)); 6139 } 6140 6141 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6142 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 6143 6144 if (action == PF_PASS || r->action == PF_DROP) { 6145 dirndx = (dir == PF_OUT); 6146 r->packets[dirndx]++; 6147 r->bytes[dirndx] += pd.tot_len; 6148 if (a != NULL) { 6149 a->packets[dirndx]++; 6150 a->bytes[dirndx] += pd.tot_len; 6151 } 6152 if (s != NULL) { 6153 if (s->nat_rule.ptr != NULL) { 6154 s->nat_rule.ptr->packets[dirndx]++; 6155 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6156 } 6157 if (s->src_node != NULL) { 6158 s->src_node->packets[dirndx]++; 6159 s->src_node->bytes[dirndx] += pd.tot_len; 6160 } 6161 if (s->nat_src_node != NULL) { 6162 s->nat_src_node->packets[dirndx]++; 6163 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6164 } 6165 dirndx = (dir == s->direction) ? 0 : 1; 6166 s->packets[dirndx]++; 6167 s->bytes[dirndx] += pd.tot_len; 6168 } 6169 tr = r; 6170 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6171 if (nr != NULL && r == &V_pf_default_rule) 6172 tr = nr; 6173 if (tr->src.addr.type == PF_ADDR_TABLE) 6174 pfr_update_stats(tr->src.addr.p.tbl, 6175 (s == NULL) ? pd.src : 6176 &s->key[(s->direction == PF_IN)]-> 6177 addr[(s->direction == PF_OUT)], 6178 pd.af, pd.tot_len, dir == PF_OUT, 6179 r->action == PF_PASS, tr->src.neg); 6180 if (tr->dst.addr.type == PF_ADDR_TABLE) 6181 pfr_update_stats(tr->dst.addr.p.tbl, 6182 (s == NULL) ? pd.dst : 6183 &s->key[(s->direction == PF_IN)]-> 6184 addr[(s->direction == PF_IN)], 6185 pd.af, pd.tot_len, dir == PF_OUT, 6186 r->action == PF_PASS, tr->dst.neg); 6187 } 6188 6189 switch (action) { 6190 case PF_SYNPROXY_DROP: 6191 m_freem(*m0); 6192 case PF_DEFER: 6193 *m0 = NULL; 6194 action = PF_PASS; 6195 break; 6196 case PF_DROP: 6197 m_freem(*m0); 6198 *m0 = NULL; 6199 break; 6200 default: 6201 /* pf_route() returns unlocked. */ 6202 if (r->rt) { 6203 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 6204 return (action); 6205 } 6206 break; 6207 } 6208 if (s) 6209 PF_STATE_UNLOCK(s); 6210 6211 return (action); 6212 } 6213 #endif /* INET */ 6214 6215 #ifdef INET6 6216 int 6217 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6218 { 6219 struct pfi_kif *kif; 6220 u_short action, reason = 0, log = 0; 6221 struct mbuf *m = *m0, *n = NULL; 6222 struct m_tag *mtag; 6223 struct ip6_hdr *h = NULL; 6224 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6225 struct pf_state *s = NULL; 6226 struct pf_ruleset *ruleset = NULL; 6227 struct pf_pdesc pd; 6228 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6229 int fwdir = dir; 6230 6231 M_ASSERTPKTHDR(m); 6232 6233 /* Detect packet forwarding. 6234 * If the input interface is different from the output interface we're 6235 * forwarding. 6236 * We do need to be careful about bridges. If the 6237 * net.link.bridge.pfil_bridge sysctl is set we can be filtering on a 6238 * bridge, so if the input interface is a bridge member and the output 6239 * interface is its bridge or a member of the same bridge we're not 6240 * actually forwarding but bridging. 6241 */ 6242 if (dir == PF_OUT && m->m_pkthdr.rcvif && ifp != m->m_pkthdr.rcvif && 6243 (m->m_pkthdr.rcvif->if_bridge == NULL || 6244 (m->m_pkthdr.rcvif->if_bridge != ifp->if_softc && 6245 m->m_pkthdr.rcvif->if_bridge != ifp->if_bridge))) 6246 fwdir = PF_FWD; 6247 6248 if (dir == PF_FWD) 6249 dir = PF_OUT; 6250 6251 if (!V_pf_status.running) 6252 return (PF_PASS); 6253 6254 memset(&pd, 0, sizeof(pd)); 6255 pd.pf_mtag = pf_find_mtag(m); 6256 6257 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6258 return (PF_PASS); 6259 6260 kif = (struct pfi_kif *)ifp->if_pf_kif; 6261 if (kif == NULL) { 6262 DPFPRINTF(PF_DEBUG_URGENT, 6263 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6264 return (PF_DROP); 6265 } 6266 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6267 return (PF_PASS); 6268 6269 if (m->m_flags & M_SKIP_FIREWALL) 6270 return (PF_PASS); 6271 6272 PF_RULES_RLOCK(); 6273 6274 /* We do IP header normalization and packet reassembly here */ 6275 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6276 action = PF_DROP; 6277 goto done; 6278 } 6279 m = *m0; /* pf_normalize messes with m0 */ 6280 h = mtod(m, struct ip6_hdr *); 6281 6282 #if 1 6283 /* 6284 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6285 * will do something bad, so drop the packet for now. 6286 */ 6287 if (htons(h->ip6_plen) == 0) { 6288 action = PF_DROP; 6289 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6290 goto done; 6291 } 6292 #endif 6293 6294 pd.src = (struct pf_addr *)&h->ip6_src; 6295 pd.dst = (struct pf_addr *)&h->ip6_dst; 6296 pd.sport = pd.dport = NULL; 6297 pd.ip_sum = NULL; 6298 pd.proto_sum = NULL; 6299 pd.dir = dir; 6300 pd.sidx = (dir == PF_IN) ? 0 : 1; 6301 pd.didx = (dir == PF_IN) ? 1 : 0; 6302 pd.af = AF_INET6; 6303 pd.tos = 0; 6304 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6305 6306 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6307 pd.proto = h->ip6_nxt; 6308 do { 6309 switch (pd.proto) { 6310 case IPPROTO_FRAGMENT: 6311 action = pf_test_fragment(&r, dir, kif, m, h, 6312 &pd, &a, &ruleset); 6313 if (action == PF_DROP) 6314 REASON_SET(&reason, PFRES_FRAG); 6315 goto done; 6316 case IPPROTO_ROUTING: { 6317 struct ip6_rthdr rthdr; 6318 6319 if (rh_cnt++) { 6320 DPFPRINTF(PF_DEBUG_MISC, 6321 ("pf: IPv6 more than one rthdr\n")); 6322 action = PF_DROP; 6323 REASON_SET(&reason, PFRES_IPOPTIONS); 6324 log = 1; 6325 goto done; 6326 } 6327 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6328 &reason, pd.af)) { 6329 DPFPRINTF(PF_DEBUG_MISC, 6330 ("pf: IPv6 short rthdr\n")); 6331 action = PF_DROP; 6332 REASON_SET(&reason, PFRES_SHORT); 6333 log = 1; 6334 goto done; 6335 } 6336 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6337 DPFPRINTF(PF_DEBUG_MISC, 6338 ("pf: IPv6 rthdr0\n")); 6339 action = PF_DROP; 6340 REASON_SET(&reason, PFRES_IPOPTIONS); 6341 log = 1; 6342 goto done; 6343 } 6344 /* FALLTHROUGH */ 6345 } 6346 case IPPROTO_AH: 6347 case IPPROTO_HOPOPTS: 6348 case IPPROTO_DSTOPTS: { 6349 /* get next header and header length */ 6350 struct ip6_ext opt6; 6351 6352 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6353 NULL, &reason, pd.af)) { 6354 DPFPRINTF(PF_DEBUG_MISC, 6355 ("pf: IPv6 short opt\n")); 6356 action = PF_DROP; 6357 log = 1; 6358 goto done; 6359 } 6360 if (pd.proto == IPPROTO_AH) 6361 off += (opt6.ip6e_len + 2) * 4; 6362 else 6363 off += (opt6.ip6e_len + 1) * 8; 6364 pd.proto = opt6.ip6e_nxt; 6365 /* goto the next header */ 6366 break; 6367 } 6368 default: 6369 terminal++; 6370 break; 6371 } 6372 } while (!terminal); 6373 6374 /* if there's no routing header, use unmodified mbuf for checksumming */ 6375 if (!n) 6376 n = m; 6377 6378 switch (pd.proto) { 6379 6380 case IPPROTO_TCP: { 6381 struct tcphdr th; 6382 6383 pd.hdr.tcp = &th; 6384 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6385 &action, &reason, AF_INET6)) { 6386 log = action != PF_PASS; 6387 goto done; 6388 } 6389 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6390 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6391 if (action == PF_DROP) 6392 goto done; 6393 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6394 &reason); 6395 if (action == PF_PASS) { 6396 if (pfsync_update_state_ptr != NULL) 6397 pfsync_update_state_ptr(s); 6398 r = s->rule.ptr; 6399 a = s->anchor.ptr; 6400 log = s->log; 6401 } else if (s == NULL) 6402 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6403 &a, &ruleset, inp); 6404 break; 6405 } 6406 6407 case IPPROTO_UDP: { 6408 struct udphdr uh; 6409 6410 pd.hdr.udp = &uh; 6411 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6412 &action, &reason, AF_INET6)) { 6413 log = action != PF_PASS; 6414 goto done; 6415 } 6416 if (uh.uh_dport == 0 || 6417 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6418 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6419 action = PF_DROP; 6420 REASON_SET(&reason, PFRES_SHORT); 6421 goto done; 6422 } 6423 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6424 if (action == PF_PASS) { 6425 if (pfsync_update_state_ptr != NULL) 6426 pfsync_update_state_ptr(s); 6427 r = s->rule.ptr; 6428 a = s->anchor.ptr; 6429 log = s->log; 6430 } else if (s == NULL) 6431 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6432 &a, &ruleset, inp); 6433 break; 6434 } 6435 6436 case IPPROTO_ICMP: { 6437 action = PF_DROP; 6438 DPFPRINTF(PF_DEBUG_MISC, 6439 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6440 goto done; 6441 } 6442 6443 case IPPROTO_ICMPV6: { 6444 struct icmp6_hdr ih; 6445 6446 pd.hdr.icmp6 = &ih; 6447 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6448 &action, &reason, AF_INET6)) { 6449 log = action != PF_PASS; 6450 goto done; 6451 } 6452 action = pf_test_state_icmp(&s, dir, kif, 6453 m, off, h, &pd, &reason); 6454 if (action == PF_PASS) { 6455 if (pfsync_update_state_ptr != NULL) 6456 pfsync_update_state_ptr(s); 6457 r = s->rule.ptr; 6458 a = s->anchor.ptr; 6459 log = s->log; 6460 } else if (s == NULL) 6461 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6462 &a, &ruleset, inp); 6463 break; 6464 } 6465 6466 default: 6467 action = pf_test_state_other(&s, dir, kif, m, &pd); 6468 if (action == PF_PASS) { 6469 if (pfsync_update_state_ptr != NULL) 6470 pfsync_update_state_ptr(s); 6471 r = s->rule.ptr; 6472 a = s->anchor.ptr; 6473 log = s->log; 6474 } else if (s == NULL) 6475 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6476 &a, &ruleset, inp); 6477 break; 6478 } 6479 6480 done: 6481 PF_RULES_RUNLOCK(); 6482 if (n != m) { 6483 m_freem(n); 6484 n = NULL; 6485 } 6486 6487 /* handle dangerous IPv6 extension headers. */ 6488 if (action == PF_PASS && rh_cnt && 6489 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6490 action = PF_DROP; 6491 REASON_SET(&reason, PFRES_IPOPTIONS); 6492 log = r->log; 6493 DPFPRINTF(PF_DEBUG_MISC, 6494 ("pf: dropping packet with dangerous v6 headers\n")); 6495 } 6496 6497 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6498 action = PF_DROP; 6499 REASON_SET(&reason, PFRES_MEMORY); 6500 } 6501 if (r->rtableid >= 0) 6502 M_SETFIB(m, r->rtableid); 6503 6504 if (r->scrub_flags & PFSTATE_SETPRIO) { 6505 if (pd.tos & IPTOS_LOWDELAY) 6506 pqid = 1; 6507 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6508 action = PF_DROP; 6509 REASON_SET(&reason, PFRES_MEMORY); 6510 log = 1; 6511 DPFPRINTF(PF_DEBUG_MISC, 6512 ("pf: failed to allocate 802.1q mtag\n")); 6513 } 6514 } 6515 6516 #ifdef ALTQ 6517 if (action == PF_PASS && r->qid) { 6518 if (pd.pf_mtag == NULL && 6519 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6520 action = PF_DROP; 6521 REASON_SET(&reason, PFRES_MEMORY); 6522 } else { 6523 if (s != NULL) 6524 pd.pf_mtag->qid_hash = pf_state_hash(s); 6525 if (pd.tos & IPTOS_LOWDELAY) 6526 pd.pf_mtag->qid = r->pqid; 6527 else 6528 pd.pf_mtag->qid = r->qid; 6529 /* Add hints for ecn. */ 6530 pd.pf_mtag->hdr = h; 6531 } 6532 } 6533 #endif /* ALTQ */ 6534 6535 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6536 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6537 (s->nat_rule.ptr->action == PF_RDR || 6538 s->nat_rule.ptr->action == PF_BINAT) && 6539 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6540 m->m_flags |= M_SKIP_FIREWALL; 6541 6542 /* XXX: Anybody working on it?! */ 6543 if (r->divert.port) 6544 printf("pf: divert(9) is not supported for IPv6\n"); 6545 6546 if (log) { 6547 struct pf_rule *lr; 6548 6549 if (s != NULL && s->nat_rule.ptr != NULL && 6550 s->nat_rule.ptr->log & PF_LOG_ALL) 6551 lr = s->nat_rule.ptr; 6552 else 6553 lr = r; 6554 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6555 &pd, (s == NULL)); 6556 } 6557 6558 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6559 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6560 6561 if (action == PF_PASS || r->action == PF_DROP) { 6562 dirndx = (dir == PF_OUT); 6563 r->packets[dirndx]++; 6564 r->bytes[dirndx] += pd.tot_len; 6565 if (a != NULL) { 6566 a->packets[dirndx]++; 6567 a->bytes[dirndx] += pd.tot_len; 6568 } 6569 if (s != NULL) { 6570 if (s->nat_rule.ptr != NULL) { 6571 s->nat_rule.ptr->packets[dirndx]++; 6572 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6573 } 6574 if (s->src_node != NULL) { 6575 s->src_node->packets[dirndx]++; 6576 s->src_node->bytes[dirndx] += pd.tot_len; 6577 } 6578 if (s->nat_src_node != NULL) { 6579 s->nat_src_node->packets[dirndx]++; 6580 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6581 } 6582 dirndx = (dir == s->direction) ? 0 : 1; 6583 s->packets[dirndx]++; 6584 s->bytes[dirndx] += pd.tot_len; 6585 } 6586 tr = r; 6587 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6588 if (nr != NULL && r == &V_pf_default_rule) 6589 tr = nr; 6590 if (tr->src.addr.type == PF_ADDR_TABLE) 6591 pfr_update_stats(tr->src.addr.p.tbl, 6592 (s == NULL) ? pd.src : 6593 &s->key[(s->direction == PF_IN)]->addr[0], 6594 pd.af, pd.tot_len, dir == PF_OUT, 6595 r->action == PF_PASS, tr->src.neg); 6596 if (tr->dst.addr.type == PF_ADDR_TABLE) 6597 pfr_update_stats(tr->dst.addr.p.tbl, 6598 (s == NULL) ? pd.dst : 6599 &s->key[(s->direction == PF_IN)]->addr[1], 6600 pd.af, pd.tot_len, dir == PF_OUT, 6601 r->action == PF_PASS, tr->dst.neg); 6602 } 6603 6604 switch (action) { 6605 case PF_SYNPROXY_DROP: 6606 m_freem(*m0); 6607 case PF_DEFER: 6608 *m0 = NULL; 6609 action = PF_PASS; 6610 break; 6611 case PF_DROP: 6612 m_freem(*m0); 6613 *m0 = NULL; 6614 break; 6615 default: 6616 /* pf_route6() returns unlocked. */ 6617 if (r->rt) { 6618 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6619 return (action); 6620 } 6621 break; 6622 } 6623 6624 if (s) 6625 PF_STATE_UNLOCK(s); 6626 6627 /* If reassembled packet passed, create new fragments. */ 6628 if (action == PF_PASS && *m0 && fwdir == PF_FWD && 6629 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6630 action = pf_refragment6(ifp, m0, mtag); 6631 6632 return (action); 6633 } 6634 #endif /* INET6 */ 6635